1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 35 #include <sys/param.h> 36 #include <sys/aio.h> 37 #include <sys/file.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/ktr.h> 41 #include <sys/module.h> 42 #include <sys/protosw.h> 43 #include <sys/proc.h> 44 #include <sys/domain.h> 45 #include <sys/socket.h> 46 #include <sys/socketvar.h> 47 #include <sys/taskqueue.h> 48 #include <sys/uio.h> 49 #include <netinet/in.h> 50 #include <netinet/in_pcb.h> 51 #include <netinet/ip.h> 52 #include <netinet/tcp_var.h> 53 #define TCPSTATES 54 #include <netinet/tcp_fsm.h> 55 #include <netinet/toecore.h> 56 57 #include <vm/vm.h> 58 #include <vm/vm_extern.h> 59 #include <vm/vm_param.h> 60 #include <vm/pmap.h> 61 #include <vm/vm_map.h> 62 #include <vm/vm_page.h> 63 #include <vm/vm_object.h> 64 65 #ifdef TCP_OFFLOAD 66 #include "common/common.h" 67 #include "common/t4_msg.h" 68 #include "common/t4_regs.h" 69 #include "common/t4_tcb.h" 70 #include "tom/t4_tom.h" 71 72 /* 73 * Use the 'backend3' field in AIO jobs to store the amount of data 74 * received by the AIO job so far. 75 */ 76 #define aio_received backend3 77 78 static void aio_ddp_requeue_task(void *context, int pending); 79 static void ddp_complete_all(struct toepcb *toep, int error); 80 static void t4_aio_cancel_active(struct kaiocb *job); 81 static void t4_aio_cancel_queued(struct kaiocb *job); 82 83 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; 84 static struct mtx ddp_orphan_pagesets_lock; 85 static struct task ddp_orphan_task; 86 87 #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) 88 89 /* 90 * A page set holds information about a buffer used for DDP. The page 91 * set holds resources such as the VM pages backing the buffer (either 92 * held or wired) and the page pods associated with the buffer. 93 * Recently used page sets are cached to allow for efficient reuse of 94 * buffers (avoiding the need to re-fault in pages, hold them, etc.). 95 * Note that cached page sets keep the backing pages wired. The 96 * number of wired pages is capped by only allowing for two wired 97 * pagesets per connection. This is not a perfect cap, but is a 98 * trade-off for performance. 99 * 100 * If an application ping-pongs two buffers for a connection via 101 * aio_read(2) then those buffers should remain wired and expensive VM 102 * fault lookups should be avoided after each buffer has been used 103 * once. If an application uses more than two buffers then this will 104 * fall back to doing expensive VM fault lookups for each operation. 105 */ 106 static void 107 free_pageset(struct tom_data *td, struct pageset *ps) 108 { 109 vm_page_t p; 110 int i; 111 112 if (ps->prsv.prsv_nppods > 0) 113 t4_free_page_pods(&ps->prsv); 114 115 for (i = 0; i < ps->npages; i++) { 116 p = ps->pages[i]; 117 vm_page_unwire(p, PQ_INACTIVE); 118 } 119 mtx_lock(&ddp_orphan_pagesets_lock); 120 TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); 121 taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); 122 mtx_unlock(&ddp_orphan_pagesets_lock); 123 } 124 125 static void 126 ddp_free_orphan_pagesets(void *context, int pending) 127 { 128 struct pageset *ps; 129 130 mtx_lock(&ddp_orphan_pagesets_lock); 131 while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { 132 ps = TAILQ_FIRST(&ddp_orphan_pagesets); 133 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); 134 mtx_unlock(&ddp_orphan_pagesets_lock); 135 if (ps->vm) 136 vmspace_free(ps->vm); 137 free(ps, M_CXGBE); 138 mtx_lock(&ddp_orphan_pagesets_lock); 139 } 140 mtx_unlock(&ddp_orphan_pagesets_lock); 141 } 142 143 static void 144 recycle_pageset(struct toepcb *toep, struct pageset *ps) 145 { 146 147 DDP_ASSERT_LOCKED(toep); 148 if (!(toep->ddp.flags & DDP_DEAD)) { 149 KASSERT(toep->ddp.cached_count + toep->ddp.active_count < 150 nitems(toep->ddp.db), ("too many wired pagesets")); 151 TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link); 152 toep->ddp.cached_count++; 153 } else 154 free_pageset(toep->td, ps); 155 } 156 157 static void 158 ddp_complete_one(struct kaiocb *job, int error) 159 { 160 long copied; 161 162 /* 163 * If this job had copied data out of the socket buffer before 164 * it was cancelled, report it as a short read rather than an 165 * error. 166 */ 167 copied = job->aio_received; 168 if (copied != 0 || error == 0) 169 aio_complete(job, copied, 0); 170 else 171 aio_complete(job, -1, error); 172 } 173 174 static void 175 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) 176 { 177 178 if (db->job) { 179 /* 180 * XXX: If we are un-offloading the socket then we 181 * should requeue these on the socket somehow. If we 182 * got a FIN from the remote end, then this completes 183 * any remaining requests with an EOF read. 184 */ 185 if (!aio_clear_cancel_function(db->job)) 186 ddp_complete_one(db->job, 0); 187 } 188 189 if (db->ps) 190 free_pageset(td, db->ps); 191 } 192 193 void 194 ddp_init_toep(struct toepcb *toep) 195 { 196 197 TAILQ_INIT(&toep->ddp.aiojobq); 198 TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep); 199 toep->ddp.flags = DDP_OK; 200 toep->ddp.active_id = -1; 201 mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF); 202 } 203 204 void 205 ddp_uninit_toep(struct toepcb *toep) 206 { 207 208 mtx_destroy(&toep->ddp.lock); 209 } 210 211 void 212 release_ddp_resources(struct toepcb *toep) 213 { 214 struct pageset *ps; 215 int i; 216 217 DDP_LOCK(toep); 218 toep->ddp.flags |= DDP_DEAD; 219 for (i = 0; i < nitems(toep->ddp.db); i++) { 220 free_ddp_buffer(toep->td, &toep->ddp.db[i]); 221 } 222 while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) { 223 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 224 free_pageset(toep->td, ps); 225 } 226 ddp_complete_all(toep, 0); 227 DDP_UNLOCK(toep); 228 } 229 230 #ifdef INVARIANTS 231 void 232 ddp_assert_empty(struct toepcb *toep) 233 { 234 int i; 235 236 MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE)); 237 for (i = 0; i < nitems(toep->ddp.db); i++) { 238 MPASS(toep->ddp.db[i].job == NULL); 239 MPASS(toep->ddp.db[i].ps == NULL); 240 } 241 MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets)); 242 MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq)); 243 } 244 #endif 245 246 static void 247 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, 248 unsigned int db_idx) 249 { 250 unsigned int db_flag; 251 252 toep->ddp.active_count--; 253 if (toep->ddp.active_id == db_idx) { 254 if (toep->ddp.active_count == 0) { 255 KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL, 256 ("%s: active_count mismatch", __func__)); 257 toep->ddp.active_id = -1; 258 } else 259 toep->ddp.active_id ^= 1; 260 #ifdef VERBOSE_TRACES 261 CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__, 262 toep->tid, toep->ddp.active_id); 263 #endif 264 } else { 265 KASSERT(toep->ddp.active_count != 0 && 266 toep->ddp.active_id != -1, 267 ("%s: active count mismatch", __func__)); 268 } 269 270 db->cancel_pending = 0; 271 db->job = NULL; 272 recycle_pageset(toep, db->ps); 273 db->ps = NULL; 274 275 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 276 KASSERT(toep->ddp.flags & db_flag, 277 ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", 278 __func__, toep, toep->ddp.flags)); 279 toep->ddp.flags &= ~db_flag; 280 } 281 282 /* XXX: handle_ddp_data code duplication */ 283 void 284 insert_ddp_data(struct toepcb *toep, uint32_t n) 285 { 286 struct inpcb *inp = toep->inp; 287 struct tcpcb *tp = intotcpcb(inp); 288 struct ddp_buffer *db; 289 struct kaiocb *job; 290 size_t placed; 291 long copied; 292 unsigned int db_flag, db_idx; 293 294 INP_WLOCK_ASSERT(inp); 295 DDP_ASSERT_LOCKED(toep); 296 297 tp->rcv_nxt += n; 298 #ifndef USE_DDP_RX_FLOW_CONTROL 299 KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); 300 tp->rcv_wnd -= n; 301 #endif 302 CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", 303 __func__, n); 304 while (toep->ddp.active_count > 0) { 305 MPASS(toep->ddp.active_id != -1); 306 db_idx = toep->ddp.active_id; 307 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 308 MPASS((toep->ddp.flags & db_flag) != 0); 309 db = &toep->ddp.db[db_idx]; 310 job = db->job; 311 copied = job->aio_received; 312 placed = n; 313 if (placed > job->uaiocb.aio_nbytes - copied) 314 placed = job->uaiocb.aio_nbytes - copied; 315 if (placed > 0) 316 job->msgrcv = 1; 317 if (!aio_clear_cancel_function(job)) { 318 /* 319 * Update the copied length for when 320 * t4_aio_cancel_active() completes this 321 * request. 322 */ 323 job->aio_received += placed; 324 } else if (copied + placed != 0) { 325 CTR4(KTR_CXGBE, 326 "%s: completing %p (copied %ld, placed %lu)", 327 __func__, job, copied, placed); 328 /* XXX: This always completes if there is some data. */ 329 aio_complete(job, copied + placed, 0); 330 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { 331 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 332 toep->ddp.waiting_count++; 333 } else 334 aio_cancel(job); 335 n -= placed; 336 complete_ddp_buffer(toep, db, db_idx); 337 } 338 339 MPASS(n == 0); 340 } 341 342 /* SET_TCB_FIELD sent as a ULP command looks like this */ 343 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 344 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 345 346 /* RX_DATA_ACK sent as a ULP command looks like this */ 347 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ 348 sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) 349 350 static inline void * 351 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, 352 uint64_t word, uint64_t mask, uint64_t val) 353 { 354 struct ulptx_idata *ulpsc; 355 struct cpl_set_tcb_field_core *req; 356 357 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 358 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 359 360 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 361 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 362 ulpsc->len = htobe32(sizeof(*req)); 363 364 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 365 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); 366 req->reply_ctrl = htobe16(V_NO_REPLY(1) | 367 V_QUEUENO(toep->ofld_rxq->iq.abs_id)); 368 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 369 req->mask = htobe64(mask); 370 req->val = htobe64(val); 371 372 ulpsc = (struct ulptx_idata *)(req + 1); 373 if (LEN__SET_TCB_FIELD_ULP % 16) { 374 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 375 ulpsc->len = htobe32(0); 376 return (ulpsc + 1); 377 } 378 return (ulpsc); 379 } 380 381 static inline void * 382 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) 383 { 384 struct ulptx_idata *ulpsc; 385 struct cpl_rx_data_ack_core *req; 386 387 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 388 ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); 389 390 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 391 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 392 ulpsc->len = htobe32(sizeof(*req)); 393 394 req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); 395 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); 396 req->credit_dack = htobe32(F_RX_MODULATE_RX); 397 398 ulpsc = (struct ulptx_idata *)(req + 1); 399 if (LEN__RX_DATA_ACK_ULP % 16) { 400 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 401 ulpsc->len = htobe32(0); 402 return (ulpsc + 1); 403 } 404 return (ulpsc); 405 } 406 407 static struct wrqe * 408 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, 409 struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask) 410 { 411 struct wrqe *wr; 412 struct work_request_hdr *wrh; 413 struct ulp_txpkt *ulpmc; 414 int len; 415 416 KASSERT(db_idx == 0 || db_idx == 1, 417 ("%s: bad DDP buffer index %d", __func__, db_idx)); 418 419 /* 420 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an 421 * RX_DATA_ACK (with RX_MODULATE to speed up delivery). 422 * 423 * The work request header is 16B and always ends at a 16B boundary. 424 * The ULPTX master commands that follow must all end at 16B boundaries 425 * too so we round up the size to 16. 426 */ 427 len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + 428 roundup2(LEN__RX_DATA_ACK_ULP, 16); 429 430 wr = alloc_wrqe(len, toep->ctrlq); 431 if (wr == NULL) 432 return (NULL); 433 wrh = wrtod(wr); 434 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 435 ulpmc = (struct ulp_txpkt *)(wrh + 1); 436 437 /* Write the buffer's tag */ 438 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 439 W_TCB_RX_DDP_BUF0_TAG + db_idx, 440 V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), 441 V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag)); 442 443 /* Update the current offset in the DDP buffer and its total length */ 444 if (db_idx == 0) 445 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 446 W_TCB_RX_DDP_BUF0_OFFSET, 447 V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | 448 V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), 449 V_TCB_RX_DDP_BUF0_OFFSET(offset) | 450 V_TCB_RX_DDP_BUF0_LEN(ps->len)); 451 else 452 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 453 W_TCB_RX_DDP_BUF1_OFFSET, 454 V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | 455 V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), 456 V_TCB_RX_DDP_BUF1_OFFSET(offset) | 457 V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32)); 458 459 /* Update DDP flags */ 460 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, 461 ddp_flags_mask, ddp_flags); 462 463 /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ 464 ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); 465 466 return (wr); 467 } 468 469 static int 470 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) 471 { 472 uint32_t report = be32toh(ddp_report); 473 unsigned int db_idx; 474 struct inpcb *inp = toep->inp; 475 struct ddp_buffer *db; 476 struct tcpcb *tp; 477 struct socket *so; 478 struct sockbuf *sb; 479 struct kaiocb *job; 480 long copied; 481 482 db_idx = report & F_DDP_BUF_IDX ? 1 : 0; 483 484 if (__predict_false(!(report & F_DDP_INV))) 485 CXGBE_UNIMPLEMENTED("DDP buffer still valid"); 486 487 INP_WLOCK(inp); 488 so = inp_inpcbtosocket(inp); 489 sb = &so->so_rcv; 490 DDP_LOCK(toep); 491 492 KASSERT(toep->ddp.active_id == db_idx, 493 ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, 494 toep->ddp.active_id, toep->tid)); 495 db = &toep->ddp.db[db_idx]; 496 job = db->job; 497 498 if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) { 499 /* 500 * This can happen due to an administrative tcpdrop(8). 501 * Just fail the request with ECONNRESET. 502 */ 503 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 504 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 505 if (aio_clear_cancel_function(job)) 506 ddp_complete_one(job, ECONNRESET); 507 goto completed; 508 } 509 510 tp = intotcpcb(inp); 511 512 /* 513 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 514 * sequence number of the next byte to receive. The length of 515 * the data received for this message must be computed by 516 * comparing the new and old values of rcv_nxt. 517 * 518 * For RX_DATA_DDP, len might be non-zero, but it is only the 519 * length of the most recent DMA. It does not include the 520 * total length of the data received since the previous update 521 * for this DDP buffer. rcv_nxt is the sequence number of the 522 * first received byte from the most recent DMA. 523 */ 524 len += be32toh(rcv_nxt) - tp->rcv_nxt; 525 tp->rcv_nxt += len; 526 tp->t_rcvtime = ticks; 527 #ifndef USE_DDP_RX_FLOW_CONTROL 528 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 529 tp->rcv_wnd -= len; 530 #endif 531 #ifdef VERBOSE_TRACES 532 CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__, 533 toep->tid, db_idx, len, report); 534 #endif 535 536 /* receive buffer autosize */ 537 MPASS(toep->vnet == so->so_vnet); 538 CURVNET_SET(toep->vnet); 539 SOCKBUF_LOCK(sb); 540 if (sb->sb_flags & SB_AUTOSIZE && 541 V_tcp_do_autorcvbuf && 542 sb->sb_hiwat < V_tcp_autorcvbuf_max && 543 len > (sbspace(sb) / 8 * 7)) { 544 struct adapter *sc = td_adapter(toep->td); 545 unsigned int hiwat = sb->sb_hiwat; 546 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 547 V_tcp_autorcvbuf_max); 548 549 if (!sbreserve_locked(sb, newsize, so, NULL)) 550 sb->sb_flags &= ~SB_AUTOSIZE; 551 } 552 SOCKBUF_UNLOCK(sb); 553 CURVNET_RESTORE(); 554 555 job->msgrcv = 1; 556 if (db->cancel_pending) { 557 /* 558 * Update the job's length but defer completion to the 559 * TCB_RPL callback. 560 */ 561 job->aio_received += len; 562 goto out; 563 } else if (!aio_clear_cancel_function(job)) { 564 /* 565 * Update the copied length for when 566 * t4_aio_cancel_active() completes this request. 567 */ 568 job->aio_received += len; 569 } else { 570 copied = job->aio_received; 571 #ifdef VERBOSE_TRACES 572 CTR5(KTR_CXGBE, 573 "%s: tid %u, completing %p (copied %ld, placed %d)", 574 __func__, toep->tid, job, copied, len); 575 #endif 576 aio_complete(job, copied + len, 0); 577 t4_rcvd(&toep->td->tod, tp); 578 } 579 580 completed: 581 complete_ddp_buffer(toep, db, db_idx); 582 if (toep->ddp.waiting_count > 0) 583 ddp_queue_toep(toep); 584 out: 585 DDP_UNLOCK(toep); 586 INP_WUNLOCK(inp); 587 588 return (0); 589 } 590 591 void 592 handle_ddp_indicate(struct toepcb *toep) 593 { 594 595 DDP_ASSERT_LOCKED(toep); 596 MPASS(toep->ddp.active_count == 0); 597 MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); 598 if (toep->ddp.waiting_count == 0) { 599 /* 600 * The pending requests that triggered the request for an 601 * an indicate were cancelled. Those cancels should have 602 * already disabled DDP. Just ignore this as the data is 603 * going into the socket buffer anyway. 604 */ 605 return; 606 } 607 CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, 608 toep->tid, toep->ddp.waiting_count); 609 ddp_queue_toep(toep); 610 } 611 612 enum { 613 DDP_BUF0_INVALIDATED = 0x2, 614 DDP_BUF1_INVALIDATED 615 }; 616 617 CTASSERT(DDP_BUF0_INVALIDATED == CPL_COOKIE_DDP0); 618 619 static int 620 do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 621 { 622 struct adapter *sc = iq->adapter; 623 const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); 624 unsigned int tid = GET_TID(cpl); 625 unsigned int db_idx; 626 struct toepcb *toep; 627 struct inpcb *inp; 628 struct ddp_buffer *db; 629 struct kaiocb *job; 630 long copied; 631 632 if (cpl->status != CPL_ERR_NONE) 633 panic("XXX: tcp_rpl failed: %d", cpl->status); 634 635 toep = lookup_tid(sc, tid); 636 inp = toep->inp; 637 switch (cpl->cookie) { 638 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF0_INVALIDATED): 639 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF1_INVALIDATED): 640 /* 641 * XXX: This duplicates a lot of code with handle_ddp_data(). 642 */ 643 db_idx = G_COOKIE(cpl->cookie) - DDP_BUF0_INVALIDATED; 644 MPASS(db_idx < nitems(toep->ddp.db)); 645 INP_WLOCK(inp); 646 DDP_LOCK(toep); 647 db = &toep->ddp.db[db_idx]; 648 649 /* 650 * handle_ddp_data() should leave the job around until 651 * this callback runs once a cancel is pending. 652 */ 653 MPASS(db != NULL); 654 MPASS(db->job != NULL); 655 MPASS(db->cancel_pending); 656 657 /* 658 * XXX: It's not clear what happens if there is data 659 * placed when the buffer is invalidated. I suspect we 660 * need to read the TCB to see how much data was placed. 661 * 662 * For now this just pretends like nothing was placed. 663 * 664 * XXX: Note that if we did check the PCB we would need to 665 * also take care of updating the tp, etc. 666 */ 667 job = db->job; 668 copied = job->aio_received; 669 if (copied == 0) { 670 CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); 671 aio_cancel(job); 672 } else { 673 CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", 674 __func__, job, copied); 675 aio_complete(job, copied, 0); 676 t4_rcvd(&toep->td->tod, intotcpcb(inp)); 677 } 678 679 complete_ddp_buffer(toep, db, db_idx); 680 if (toep->ddp.waiting_count > 0) 681 ddp_queue_toep(toep); 682 DDP_UNLOCK(toep); 683 INP_WUNLOCK(inp); 684 break; 685 default: 686 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", 687 G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); 688 } 689 690 return (0); 691 } 692 693 void 694 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) 695 { 696 struct ddp_buffer *db; 697 struct kaiocb *job; 698 long copied; 699 unsigned int db_flag, db_idx; 700 int len, placed; 701 702 INP_WLOCK_ASSERT(toep->inp); 703 DDP_ASSERT_LOCKED(toep); 704 705 len = be32toh(rcv_nxt) - tp->rcv_nxt; 706 tp->rcv_nxt += len; 707 708 while (toep->ddp.active_count > 0) { 709 MPASS(toep->ddp.active_id != -1); 710 db_idx = toep->ddp.active_id; 711 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 712 MPASS((toep->ddp.flags & db_flag) != 0); 713 db = &toep->ddp.db[db_idx]; 714 job = db->job; 715 copied = job->aio_received; 716 placed = len; 717 if (placed > job->uaiocb.aio_nbytes - copied) 718 placed = job->uaiocb.aio_nbytes - copied; 719 if (placed > 0) 720 job->msgrcv = 1; 721 if (!aio_clear_cancel_function(job)) { 722 /* 723 * Update the copied length for when 724 * t4_aio_cancel_active() completes this 725 * request. 726 */ 727 job->aio_received += placed; 728 } else { 729 CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", 730 __func__, toep->tid, db_idx, placed); 731 aio_complete(job, copied + placed, 0); 732 } 733 len -= placed; 734 complete_ddp_buffer(toep, db, db_idx); 735 } 736 737 MPASS(len == 0); 738 ddp_complete_all(toep, 0); 739 } 740 741 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ 742 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ 743 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ 744 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) 745 746 extern cpl_handler_t t4_cpl_handler[]; 747 748 static int 749 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 750 { 751 struct adapter *sc = iq->adapter; 752 const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); 753 unsigned int tid = GET_TID(cpl); 754 uint32_t vld; 755 struct toepcb *toep = lookup_tid(sc, tid); 756 757 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 758 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 759 KASSERT(!(toep->flags & TPF_SYNQE), 760 ("%s: toep %p claims to be a synq entry", __func__, toep)); 761 762 vld = be32toh(cpl->ddpvld); 763 if (__predict_false(vld & DDP_ERR)) { 764 panic("%s: DDP error 0x%x (tid %d, toep %p)", 765 __func__, vld, tid, toep); 766 } 767 768 if (ulp_mode(toep) == ULP_MODE_ISCSI) { 769 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); 770 return (0); 771 } 772 773 handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); 774 775 return (0); 776 } 777 778 static int 779 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, 780 struct mbuf *m) 781 { 782 struct adapter *sc = iq->adapter; 783 const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); 784 unsigned int tid = GET_TID(cpl); 785 struct toepcb *toep = lookup_tid(sc, tid); 786 787 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 788 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 789 KASSERT(!(toep->flags & TPF_SYNQE), 790 ("%s: toep %p claims to be a synq entry", __func__, toep)); 791 792 handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); 793 794 return (0); 795 } 796 797 static void 798 enable_ddp(struct adapter *sc, struct toepcb *toep) 799 { 800 801 KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, 802 ("%s: toep %p has bad ddp_flags 0x%x", 803 __func__, toep, toep->ddp.flags)); 804 805 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 806 __func__, toep->tid, time_uptime); 807 808 DDP_ASSERT_LOCKED(toep); 809 toep->ddp.flags |= DDP_SC_REQ; 810 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, 811 V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | 812 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | 813 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), 814 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0); 815 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 816 V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0); 817 } 818 819 static int 820 calculate_hcf(int n1, int n2) 821 { 822 int a, b, t; 823 824 if (n1 <= n2) { 825 a = n1; 826 b = n2; 827 } else { 828 a = n2; 829 b = n1; 830 } 831 832 while (a != 0) { 833 t = a; 834 a = b % a; 835 b = t; 836 } 837 838 return (b); 839 } 840 841 static inline int 842 pages_to_nppods(int npages, int ddp_page_shift) 843 { 844 845 MPASS(ddp_page_shift >= PAGE_SHIFT); 846 847 return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); 848 } 849 850 static int 851 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, 852 struct ppod_reservation *prsv) 853 { 854 vmem_addr_t addr; /* relative to start of region */ 855 856 if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, 857 &addr) != 0) 858 return (ENOMEM); 859 860 CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", 861 __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, 862 nppods, 1 << pr->pr_page_shift[pgsz_idx]); 863 864 /* 865 * The hardware tagmask includes an extra invalid bit but the arena was 866 * seeded with valid values only. An allocation out of this arena will 867 * fit inside the tagmask but won't have the invalid bit set. 868 */ 869 MPASS((addr & pr->pr_tag_mask) == addr); 870 MPASS((addr & pr->pr_invalid_bit) == 0); 871 872 prsv->prsv_pr = pr; 873 prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; 874 prsv->prsv_nppods = nppods; 875 876 return (0); 877 } 878 879 int 880 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) 881 { 882 int i, hcf, seglen, idx, nppods; 883 struct ppod_reservation *prsv = &ps->prsv; 884 885 KASSERT(prsv->prsv_nppods == 0, 886 ("%s: page pods already allocated", __func__)); 887 888 /* 889 * The DDP page size is unrelated to the VM page size. We combine 890 * contiguous physical pages into larger segments to get the best DDP 891 * page size possible. This is the largest of the four sizes in 892 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in 893 * the page list. 894 */ 895 hcf = 0; 896 for (i = 0; i < ps->npages; i++) { 897 seglen = PAGE_SIZE; 898 while (i < ps->npages - 1 && 899 ps->pages[i]->phys_addr + PAGE_SIZE == 900 ps->pages[i + 1]->phys_addr) { 901 seglen += PAGE_SIZE; 902 i++; 903 } 904 905 hcf = calculate_hcf(hcf, seglen); 906 if (hcf < (1 << pr->pr_page_shift[1])) { 907 idx = 0; 908 goto have_pgsz; /* give up, short circuit */ 909 } 910 } 911 912 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 913 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 914 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 915 if ((hcf & PR_PAGE_MASK(idx)) == 0) 916 break; 917 } 918 #undef PR_PAGE_MASK 919 920 have_pgsz: 921 MPASS(idx <= M_PPOD_PGSZ); 922 923 nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]); 924 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 925 return (0); 926 MPASS(prsv->prsv_nppods > 0); 927 928 return (1); 929 } 930 931 int 932 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, 933 struct ppod_reservation *prsv) 934 { 935 int hcf, seglen, idx, npages, nppods; 936 uintptr_t start_pva, end_pva, pva, p1; 937 938 MPASS(buf > 0); 939 MPASS(len > 0); 940 941 /* 942 * The DDP page size is unrelated to the VM page size. We combine 943 * contiguous physical pages into larger segments to get the best DDP 944 * page size possible. This is the largest of the four sizes in 945 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 946 * in the page list. 947 */ 948 hcf = 0; 949 start_pva = trunc_page(buf); 950 end_pva = trunc_page(buf + len - 1); 951 pva = start_pva; 952 while (pva <= end_pva) { 953 seglen = PAGE_SIZE; 954 p1 = pmap_kextract(pva); 955 pva += PAGE_SIZE; 956 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { 957 seglen += PAGE_SIZE; 958 pva += PAGE_SIZE; 959 } 960 961 hcf = calculate_hcf(hcf, seglen); 962 if (hcf < (1 << pr->pr_page_shift[1])) { 963 idx = 0; 964 goto have_pgsz; /* give up, short circuit */ 965 } 966 } 967 968 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 969 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 970 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 971 if ((hcf & PR_PAGE_MASK(idx)) == 0) 972 break; 973 } 974 #undef PR_PAGE_MASK 975 976 have_pgsz: 977 MPASS(idx <= M_PPOD_PGSZ); 978 979 npages = 1; 980 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 981 nppods = howmany(npages, PPOD_PAGES); 982 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 983 return (ENOMEM); 984 MPASS(prsv->prsv_nppods > 0); 985 986 return (0); 987 } 988 989 void 990 t4_free_page_pods(struct ppod_reservation *prsv) 991 { 992 struct ppod_region *pr = prsv->prsv_pr; 993 vmem_addr_t addr; 994 995 MPASS(prsv != NULL); 996 MPASS(prsv->prsv_nppods != 0); 997 998 addr = prsv->prsv_tag & pr->pr_tag_mask; 999 MPASS((addr & pr->pr_invalid_bit) == 0); 1000 1001 CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, 1002 pr->pr_arena, addr, prsv->prsv_nppods); 1003 1004 vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); 1005 prsv->prsv_nppods = 0; 1006 } 1007 1008 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) 1009 1010 int 1011 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, 1012 struct pageset *ps) 1013 { 1014 struct wrqe *wr; 1015 struct ulp_mem_io *ulpmc; 1016 struct ulptx_idata *ulpsc; 1017 struct pagepod *ppod; 1018 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1019 u_int ppod_addr; 1020 uint32_t cmd; 1021 struct ppod_reservation *prsv = &ps->prsv; 1022 struct ppod_region *pr = prsv->prsv_pr; 1023 1024 KASSERT(!(ps->flags & PS_PPODS_WRITTEN), 1025 ("%s: page pods already written", __func__)); 1026 MPASS(prsv->prsv_nppods > 0); 1027 1028 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1029 if (is_t4(sc)) 1030 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1031 else 1032 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1033 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1034 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1035 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1036 1037 /* How many page pods are we writing in this cycle */ 1038 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1039 chunk = PPOD_SZ(n); 1040 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1041 1042 wr = alloc_wrqe(len, wrq); 1043 if (wr == NULL) 1044 return (ENOMEM); /* ok to just bail out */ 1045 ulpmc = wrtod(wr); 1046 1047 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1048 ulpmc->cmd = cmd; 1049 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1050 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1051 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1052 1053 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1054 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1055 ulpsc->len = htobe32(chunk); 1056 1057 ppod = (struct pagepod *)(ulpsc + 1); 1058 for (j = 0; j < n; i++, j++, ppod++) { 1059 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1060 V_PPOD_TID(tid) | prsv->prsv_tag); 1061 ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | 1062 V_PPOD_OFST(ps->offset)); 1063 ppod->rsvd = 0; 1064 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1065 for (k = 0; k < nitems(ppod->addr); k++) { 1066 if (idx < ps->npages) { 1067 ppod->addr[k] = 1068 htobe64(ps->pages[idx]->phys_addr); 1069 idx += ddp_pgsz / PAGE_SIZE; 1070 } else 1071 ppod->addr[k] = 0; 1072 #if 0 1073 CTR5(KTR_CXGBE, 1074 "%s: tid %d ppod[%d]->addr[%d] = %p", 1075 __func__, toep->tid, i, k, 1076 htobe64(ppod->addr[k])); 1077 #endif 1078 } 1079 1080 } 1081 1082 t4_wrq_tx(sc, wr); 1083 } 1084 ps->flags |= PS_PPODS_WRITTEN; 1085 1086 return (0); 1087 } 1088 1089 int 1090 t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid, 1091 struct ppod_reservation *prsv, vm_offset_t buf, int buflen) 1092 { 1093 struct wrqe *wr; 1094 struct ulp_mem_io *ulpmc; 1095 struct ulptx_idata *ulpsc; 1096 struct pagepod *ppod; 1097 int i, j, k, n, chunk, len, ddp_pgsz; 1098 u_int ppod_addr, offset; 1099 uint32_t cmd; 1100 struct ppod_region *pr = prsv->prsv_pr; 1101 uintptr_t end_pva, pva, pa; 1102 1103 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1104 if (is_t4(sc)) 1105 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1106 else 1107 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1108 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1109 offset = buf & PAGE_MASK; 1110 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1111 pva = trunc_page(buf); 1112 end_pva = trunc_page(buf + buflen - 1); 1113 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1114 1115 /* How many page pods are we writing in this cycle */ 1116 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1117 MPASS(n > 0); 1118 chunk = PPOD_SZ(n); 1119 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1120 1121 wr = alloc_wrqe(len, wrq); 1122 if (wr == NULL) 1123 return (ENOMEM); /* ok to just bail out */ 1124 ulpmc = wrtod(wr); 1125 1126 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1127 ulpmc->cmd = cmd; 1128 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1129 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1130 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1131 1132 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1133 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1134 ulpsc->len = htobe32(chunk); 1135 1136 ppod = (struct pagepod *)(ulpsc + 1); 1137 for (j = 0; j < n; i++, j++, ppod++) { 1138 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1139 V_PPOD_TID(tid) | 1140 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1141 ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | 1142 V_PPOD_OFST(offset)); 1143 ppod->rsvd = 0; 1144 1145 for (k = 0; k < nitems(ppod->addr); k++) { 1146 if (pva > end_pva) 1147 ppod->addr[k] = 0; 1148 else { 1149 pa = pmap_kextract(pva); 1150 ppod->addr[k] = htobe64(pa); 1151 pva += ddp_pgsz; 1152 } 1153 #if 0 1154 CTR5(KTR_CXGBE, 1155 "%s: tid %d ppod[%d]->addr[%d] = %p", 1156 __func__, tid, i, k, 1157 htobe64(ppod->addr[k])); 1158 #endif 1159 } 1160 1161 /* 1162 * Walk back 1 segment so that the first address in the 1163 * next pod is the same as the last one in the current 1164 * pod. 1165 */ 1166 pva -= ddp_pgsz; 1167 } 1168 1169 t4_wrq_tx(sc, wr); 1170 } 1171 1172 MPASS(pva <= end_pva); 1173 1174 return (0); 1175 } 1176 1177 /* 1178 * Prepare a pageset for DDP. This sets up page pods. 1179 */ 1180 static int 1181 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) 1182 { 1183 struct tom_data *td = sc->tom_softc; 1184 1185 if (ps->prsv.prsv_nppods == 0 && 1186 !t4_alloc_page_pods_for_ps(&td->pr, ps)) { 1187 return (0); 1188 } 1189 if (!(ps->flags & PS_PPODS_WRITTEN) && 1190 t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { 1191 return (0); 1192 } 1193 1194 return (1); 1195 } 1196 1197 int 1198 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, 1199 const char *name) 1200 { 1201 int i; 1202 1203 MPASS(pr != NULL); 1204 MPASS(r->size > 0); 1205 1206 pr->pr_start = r->start; 1207 pr->pr_len = r->size; 1208 pr->pr_page_shift[0] = 12 + G_HPZ0(psz); 1209 pr->pr_page_shift[1] = 12 + G_HPZ1(psz); 1210 pr->pr_page_shift[2] = 12 + G_HPZ2(psz); 1211 pr->pr_page_shift[3] = 12 + G_HPZ3(psz); 1212 1213 /* The SGL -> page pod algorithm requires the sizes to be in order. */ 1214 for (i = 1; i < nitems(pr->pr_page_shift); i++) { 1215 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) 1216 return (ENXIO); 1217 } 1218 1219 pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); 1220 pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; 1221 if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) 1222 return (ENXIO); 1223 pr->pr_alias_shift = fls(pr->pr_tag_mask); 1224 pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); 1225 1226 pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, 1227 M_FIRSTFIT | M_NOWAIT); 1228 if (pr->pr_arena == NULL) 1229 return (ENOMEM); 1230 1231 return (0); 1232 } 1233 1234 void 1235 t4_free_ppod_region(struct ppod_region *pr) 1236 { 1237 1238 MPASS(pr != NULL); 1239 1240 if (pr->pr_arena) 1241 vmem_destroy(pr->pr_arena); 1242 bzero(pr, sizeof(*pr)); 1243 } 1244 1245 static int 1246 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, 1247 int pgoff, int len) 1248 { 1249 1250 if (ps->start != start || ps->npages != npages || 1251 ps->offset != pgoff || ps->len != len) 1252 return (1); 1253 1254 return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); 1255 } 1256 1257 static int 1258 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) 1259 { 1260 struct vmspace *vm; 1261 vm_map_t map; 1262 vm_offset_t start, end, pgoff; 1263 struct pageset *ps; 1264 int n; 1265 1266 DDP_ASSERT_LOCKED(toep); 1267 1268 /* 1269 * The AIO subsystem will cancel and drain all requests before 1270 * permitting a process to exit or exec, so p_vmspace should 1271 * be stable here. 1272 */ 1273 vm = job->userproc->p_vmspace; 1274 map = &vm->vm_map; 1275 start = (uintptr_t)job->uaiocb.aio_buf; 1276 pgoff = start & PAGE_MASK; 1277 end = round_page(start + job->uaiocb.aio_nbytes); 1278 start = trunc_page(start); 1279 1280 if (end - start > MAX_DDP_BUFFER_SIZE) { 1281 /* 1282 * Truncate the request to a short read. 1283 * Alternatively, we could DDP in chunks to the larger 1284 * buffer, but that would be quite a bit more work. 1285 * 1286 * When truncating, round the request down to avoid 1287 * crossing a cache line on the final transaction. 1288 */ 1289 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); 1290 #ifdef VERBOSE_TRACES 1291 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", 1292 __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, 1293 (unsigned long)(end - (start + pgoff))); 1294 job->uaiocb.aio_nbytes = end - (start + pgoff); 1295 #endif 1296 end = round_page(end); 1297 } 1298 1299 n = atop(end - start); 1300 1301 /* 1302 * Try to reuse a cached pageset. 1303 */ 1304 TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) { 1305 if (pscmp(ps, vm, start, n, pgoff, 1306 job->uaiocb.aio_nbytes) == 0) { 1307 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1308 toep->ddp.cached_count--; 1309 *pps = ps; 1310 return (0); 1311 } 1312 } 1313 1314 /* 1315 * If there are too many cached pagesets to create a new one, 1316 * free a pageset before creating a new one. 1317 */ 1318 KASSERT(toep->ddp.active_count + toep->ddp.cached_count <= 1319 nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__)); 1320 if (toep->ddp.active_count + toep->ddp.cached_count == 1321 nitems(toep->ddp.db)) { 1322 KASSERT(toep->ddp.cached_count > 0, 1323 ("no cached pageset to free")); 1324 ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq); 1325 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1326 toep->ddp.cached_count--; 1327 free_pageset(toep->td, ps); 1328 } 1329 DDP_UNLOCK(toep); 1330 1331 /* Create a new pageset. */ 1332 ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | 1333 M_ZERO); 1334 ps->pages = (vm_page_t *)(ps + 1); 1335 ps->vm_timestamp = map->timestamp; 1336 ps->npages = vm_fault_quick_hold_pages(map, start, end - start, 1337 VM_PROT_WRITE, ps->pages, n); 1338 1339 DDP_LOCK(toep); 1340 if (ps->npages < 0) { 1341 free(ps, M_CXGBE); 1342 return (EFAULT); 1343 } 1344 1345 KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", 1346 ps->npages, n)); 1347 1348 ps->offset = pgoff; 1349 ps->len = job->uaiocb.aio_nbytes; 1350 refcount_acquire(&vm->vm_refcnt); 1351 ps->vm = vm; 1352 ps->start = start; 1353 1354 CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", 1355 __func__, toep->tid, ps, job, ps->npages); 1356 *pps = ps; 1357 return (0); 1358 } 1359 1360 static void 1361 ddp_complete_all(struct toepcb *toep, int error) 1362 { 1363 struct kaiocb *job; 1364 1365 DDP_ASSERT_LOCKED(toep); 1366 while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) { 1367 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1368 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1369 toep->ddp.waiting_count--; 1370 if (aio_clear_cancel_function(job)) 1371 ddp_complete_one(job, error); 1372 } 1373 } 1374 1375 static void 1376 aio_ddp_cancel_one(struct kaiocb *job) 1377 { 1378 long copied; 1379 1380 /* 1381 * If this job had copied data out of the socket buffer before 1382 * it was cancelled, report it as a short read rather than an 1383 * error. 1384 */ 1385 copied = job->aio_received; 1386 if (copied != 0) 1387 aio_complete(job, copied, 0); 1388 else 1389 aio_cancel(job); 1390 } 1391 1392 /* 1393 * Called when the main loop wants to requeue a job to retry it later. 1394 * Deals with the race of the job being cancelled while it was being 1395 * examined. 1396 */ 1397 static void 1398 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) 1399 { 1400 1401 DDP_ASSERT_LOCKED(toep); 1402 if (!(toep->ddp.flags & DDP_DEAD) && 1403 aio_set_cancel_function(job, t4_aio_cancel_queued)) { 1404 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 1405 toep->ddp.waiting_count++; 1406 } else 1407 aio_ddp_cancel_one(job); 1408 } 1409 1410 static void 1411 aio_ddp_requeue(struct toepcb *toep) 1412 { 1413 struct adapter *sc = td_adapter(toep->td); 1414 struct socket *so; 1415 struct sockbuf *sb; 1416 struct inpcb *inp; 1417 struct kaiocb *job; 1418 struct ddp_buffer *db; 1419 size_t copied, offset, resid; 1420 struct pageset *ps; 1421 struct mbuf *m; 1422 uint64_t ddp_flags, ddp_flags_mask; 1423 struct wrqe *wr; 1424 int buf_flag, db_idx, error; 1425 1426 DDP_ASSERT_LOCKED(toep); 1427 1428 restart: 1429 if (toep->ddp.flags & DDP_DEAD) { 1430 MPASS(toep->ddp.waiting_count == 0); 1431 MPASS(toep->ddp.active_count == 0); 1432 return; 1433 } 1434 1435 if (toep->ddp.waiting_count == 0 || 1436 toep->ddp.active_count == nitems(toep->ddp.db)) { 1437 return; 1438 } 1439 1440 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1441 so = job->fd_file->f_data; 1442 sb = &so->so_rcv; 1443 SOCKBUF_LOCK(sb); 1444 1445 /* We will never get anything unless we are or were connected. */ 1446 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1447 SOCKBUF_UNLOCK(sb); 1448 ddp_complete_all(toep, ENOTCONN); 1449 return; 1450 } 1451 1452 KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0, 1453 ("%s: pending sockbuf data and DDP is active", __func__)); 1454 1455 /* Abort if socket has reported problems. */ 1456 /* XXX: Wait for any queued DDP's to finish and/or flush them? */ 1457 if (so->so_error && sbavail(sb) == 0) { 1458 toep->ddp.waiting_count--; 1459 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1460 if (!aio_clear_cancel_function(job)) { 1461 SOCKBUF_UNLOCK(sb); 1462 goto restart; 1463 } 1464 1465 /* 1466 * If this job has previously copied some data, report 1467 * a short read and leave the error to be reported by 1468 * a future request. 1469 */ 1470 copied = job->aio_received; 1471 if (copied != 0) { 1472 SOCKBUF_UNLOCK(sb); 1473 aio_complete(job, copied, 0); 1474 goto restart; 1475 } 1476 error = so->so_error; 1477 so->so_error = 0; 1478 SOCKBUF_UNLOCK(sb); 1479 aio_complete(job, -1, error); 1480 goto restart; 1481 } 1482 1483 /* 1484 * Door is closed. If there is pending data in the socket buffer, 1485 * deliver it. If there are pending DDP requests, wait for those 1486 * to complete. Once they have completed, return EOF reads. 1487 */ 1488 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1489 SOCKBUF_UNLOCK(sb); 1490 if (toep->ddp.active_count != 0) 1491 return; 1492 ddp_complete_all(toep, 0); 1493 return; 1494 } 1495 1496 /* 1497 * If DDP is not enabled and there is no pending socket buffer 1498 * data, try to enable DDP. 1499 */ 1500 if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) { 1501 SOCKBUF_UNLOCK(sb); 1502 1503 /* 1504 * Wait for the card to ACK that DDP is enabled before 1505 * queueing any buffers. Currently this waits for an 1506 * indicate to arrive. This could use a TCB_SET_FIELD_RPL 1507 * message to know that DDP was enabled instead of waiting 1508 * for the indicate which would avoid copying the indicate 1509 * if no data is pending. 1510 * 1511 * XXX: Might want to limit the indicate size to the size 1512 * of the first queued request. 1513 */ 1514 if ((toep->ddp.flags & DDP_SC_REQ) == 0) 1515 enable_ddp(sc, toep); 1516 return; 1517 } 1518 SOCKBUF_UNLOCK(sb); 1519 1520 /* 1521 * If another thread is queueing a buffer for DDP, let it 1522 * drain any work and return. 1523 */ 1524 if (toep->ddp.queueing != NULL) 1525 return; 1526 1527 /* Take the next job to prep it for DDP. */ 1528 toep->ddp.waiting_count--; 1529 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1530 if (!aio_clear_cancel_function(job)) 1531 goto restart; 1532 toep->ddp.queueing = job; 1533 1534 /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ 1535 error = hold_aio(toep, job, &ps); 1536 if (error != 0) { 1537 ddp_complete_one(job, error); 1538 toep->ddp.queueing = NULL; 1539 goto restart; 1540 } 1541 1542 SOCKBUF_LOCK(sb); 1543 if (so->so_error && sbavail(sb) == 0) { 1544 copied = job->aio_received; 1545 if (copied != 0) { 1546 SOCKBUF_UNLOCK(sb); 1547 recycle_pageset(toep, ps); 1548 aio_complete(job, copied, 0); 1549 toep->ddp.queueing = NULL; 1550 goto restart; 1551 } 1552 1553 error = so->so_error; 1554 so->so_error = 0; 1555 SOCKBUF_UNLOCK(sb); 1556 recycle_pageset(toep, ps); 1557 aio_complete(job, -1, error); 1558 toep->ddp.queueing = NULL; 1559 goto restart; 1560 } 1561 1562 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1563 SOCKBUF_UNLOCK(sb); 1564 recycle_pageset(toep, ps); 1565 if (toep->ddp.active_count != 0) { 1566 /* 1567 * The door is closed, but there are still pending 1568 * DDP buffers. Requeue. These jobs will all be 1569 * completed once those buffers drain. 1570 */ 1571 aio_ddp_requeue_one(toep, job); 1572 toep->ddp.queueing = NULL; 1573 return; 1574 } 1575 ddp_complete_one(job, 0); 1576 ddp_complete_all(toep, 0); 1577 toep->ddp.queueing = NULL; 1578 return; 1579 } 1580 1581 sbcopy: 1582 /* 1583 * If the toep is dead, there shouldn't be any data in the socket 1584 * buffer, so the above case should have handled this. 1585 */ 1586 MPASS(!(toep->ddp.flags & DDP_DEAD)); 1587 1588 /* 1589 * If there is pending data in the socket buffer (either 1590 * from before the requests were queued or a DDP indicate), 1591 * copy those mbufs out directly. 1592 */ 1593 copied = 0; 1594 offset = ps->offset + job->aio_received; 1595 MPASS(job->aio_received <= job->uaiocb.aio_nbytes); 1596 resid = job->uaiocb.aio_nbytes - job->aio_received; 1597 m = sb->sb_mb; 1598 KASSERT(m == NULL || toep->ddp.active_count == 0, 1599 ("%s: sockbuf data with active DDP", __func__)); 1600 while (m != NULL && resid > 0) { 1601 struct iovec iov[1]; 1602 struct uio uio; 1603 int error; 1604 1605 iov[0].iov_base = mtod(m, void *); 1606 iov[0].iov_len = m->m_len; 1607 if (iov[0].iov_len > resid) 1608 iov[0].iov_len = resid; 1609 uio.uio_iov = iov; 1610 uio.uio_iovcnt = 1; 1611 uio.uio_offset = 0; 1612 uio.uio_resid = iov[0].iov_len; 1613 uio.uio_segflg = UIO_SYSSPACE; 1614 uio.uio_rw = UIO_WRITE; 1615 error = uiomove_fromphys(ps->pages, offset + copied, 1616 uio.uio_resid, &uio); 1617 MPASS(error == 0 && uio.uio_resid == 0); 1618 copied += uio.uio_offset; 1619 resid -= uio.uio_offset; 1620 m = m->m_next; 1621 } 1622 if (copied != 0) { 1623 sbdrop_locked(sb, copied); 1624 job->aio_received += copied; 1625 job->msgrcv = 1; 1626 copied = job->aio_received; 1627 inp = sotoinpcb(so); 1628 if (!INP_TRY_WLOCK(inp)) { 1629 /* 1630 * The reference on the socket file descriptor in 1631 * the AIO job should keep 'sb' and 'inp' stable. 1632 * Our caller has a reference on the 'toep' that 1633 * keeps it stable. 1634 */ 1635 SOCKBUF_UNLOCK(sb); 1636 DDP_UNLOCK(toep); 1637 INP_WLOCK(inp); 1638 DDP_LOCK(toep); 1639 SOCKBUF_LOCK(sb); 1640 1641 /* 1642 * If the socket has been closed, we should detect 1643 * that and complete this request if needed on 1644 * the next trip around the loop. 1645 */ 1646 } 1647 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); 1648 INP_WUNLOCK(inp); 1649 if (resid == 0 || toep->ddp.flags & DDP_DEAD) { 1650 /* 1651 * We filled the entire buffer with socket 1652 * data, DDP is not being used, or the socket 1653 * is being shut down, so complete the 1654 * request. 1655 */ 1656 SOCKBUF_UNLOCK(sb); 1657 recycle_pageset(toep, ps); 1658 aio_complete(job, copied, 0); 1659 toep->ddp.queueing = NULL; 1660 goto restart; 1661 } 1662 1663 /* 1664 * If DDP is not enabled, requeue this request and restart. 1665 * This will either enable DDP or wait for more data to 1666 * arrive on the socket buffer. 1667 */ 1668 if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { 1669 SOCKBUF_UNLOCK(sb); 1670 recycle_pageset(toep, ps); 1671 aio_ddp_requeue_one(toep, job); 1672 toep->ddp.queueing = NULL; 1673 goto restart; 1674 } 1675 1676 /* 1677 * An indicate might have arrived and been added to 1678 * the socket buffer while it was unlocked after the 1679 * copy to lock the INP. If so, restart the copy. 1680 */ 1681 if (sbavail(sb) != 0) 1682 goto sbcopy; 1683 } 1684 SOCKBUF_UNLOCK(sb); 1685 1686 if (prep_pageset(sc, toep, ps) == 0) { 1687 recycle_pageset(toep, ps); 1688 aio_ddp_requeue_one(toep, job); 1689 toep->ddp.queueing = NULL; 1690 1691 /* 1692 * XXX: Need to retry this later. Mostly need a trigger 1693 * when page pods are freed up. 1694 */ 1695 printf("%s: prep_pageset failed\n", __func__); 1696 return; 1697 } 1698 1699 /* Determine which DDP buffer to use. */ 1700 if (toep->ddp.db[0].job == NULL) { 1701 db_idx = 0; 1702 } else { 1703 MPASS(toep->ddp.db[1].job == NULL); 1704 db_idx = 1; 1705 } 1706 1707 ddp_flags = 0; 1708 ddp_flags_mask = 0; 1709 if (db_idx == 0) { 1710 ddp_flags |= V_TF_DDP_BUF0_VALID(1); 1711 if (so->so_state & SS_NBIO) 1712 ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); 1713 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 1714 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | 1715 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); 1716 buf_flag = DDP_BUF0_ACTIVE; 1717 } else { 1718 ddp_flags |= V_TF_DDP_BUF1_VALID(1); 1719 if (so->so_state & SS_NBIO) 1720 ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); 1721 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 1722 V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | 1723 V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); 1724 buf_flag = DDP_BUF1_ACTIVE; 1725 } 1726 MPASS((toep->ddp.flags & buf_flag) == 0); 1727 if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { 1728 MPASS(db_idx == 0); 1729 MPASS(toep->ddp.active_id == -1); 1730 MPASS(toep->ddp.active_count == 0); 1731 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); 1732 } 1733 1734 /* 1735 * The TID for this connection should still be valid. If DDP_DEAD 1736 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be 1737 * this far anyway. Even if the socket is closing on the other 1738 * end, the AIO job holds a reference on this end of the socket 1739 * which will keep it open and keep the TCP PCB attached until 1740 * after the job is completed. 1741 */ 1742 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received, 1743 ddp_flags, ddp_flags_mask); 1744 if (wr == NULL) { 1745 recycle_pageset(toep, ps); 1746 aio_ddp_requeue_one(toep, job); 1747 toep->ddp.queueing = NULL; 1748 1749 /* 1750 * XXX: Need a way to kick a retry here. 1751 * 1752 * XXX: We know the fixed size needed and could 1753 * preallocate this using a blocking request at the 1754 * start of the task to avoid having to handle this 1755 * edge case. 1756 */ 1757 printf("%s: mk_update_tcb_for_ddp failed\n", __func__); 1758 return; 1759 } 1760 1761 if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { 1762 free_wrqe(wr); 1763 recycle_pageset(toep, ps); 1764 aio_ddp_cancel_one(job); 1765 toep->ddp.queueing = NULL; 1766 goto restart; 1767 } 1768 1769 #ifdef VERBOSE_TRACES 1770 CTR6(KTR_CXGBE, 1771 "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__, 1772 toep->tid, job, db_idx, ddp_flags, ddp_flags_mask); 1773 #endif 1774 /* Give the chip the go-ahead. */ 1775 t4_wrq_tx(sc, wr); 1776 db = &toep->ddp.db[db_idx]; 1777 db->cancel_pending = 0; 1778 db->job = job; 1779 db->ps = ps; 1780 toep->ddp.queueing = NULL; 1781 toep->ddp.flags |= buf_flag; 1782 toep->ddp.active_count++; 1783 if (toep->ddp.active_count == 1) { 1784 MPASS(toep->ddp.active_id == -1); 1785 toep->ddp.active_id = db_idx; 1786 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 1787 toep->ddp.active_id); 1788 } 1789 goto restart; 1790 } 1791 1792 void 1793 ddp_queue_toep(struct toepcb *toep) 1794 { 1795 1796 DDP_ASSERT_LOCKED(toep); 1797 if (toep->ddp.flags & DDP_TASK_ACTIVE) 1798 return; 1799 toep->ddp.flags |= DDP_TASK_ACTIVE; 1800 hold_toepcb(toep); 1801 soaio_enqueue(&toep->ddp.requeue_task); 1802 } 1803 1804 static void 1805 aio_ddp_requeue_task(void *context, int pending) 1806 { 1807 struct toepcb *toep = context; 1808 1809 DDP_LOCK(toep); 1810 aio_ddp_requeue(toep); 1811 toep->ddp.flags &= ~DDP_TASK_ACTIVE; 1812 DDP_UNLOCK(toep); 1813 1814 free_toepcb(toep); 1815 } 1816 1817 static void 1818 t4_aio_cancel_active(struct kaiocb *job) 1819 { 1820 struct socket *so = job->fd_file->f_data; 1821 struct tcpcb *tp = so_sototcpcb(so); 1822 struct toepcb *toep = tp->t_toe; 1823 struct adapter *sc = td_adapter(toep->td); 1824 uint64_t valid_flag; 1825 int i; 1826 1827 DDP_LOCK(toep); 1828 if (aio_cancel_cleared(job)) { 1829 DDP_UNLOCK(toep); 1830 aio_ddp_cancel_one(job); 1831 return; 1832 } 1833 1834 for (i = 0; i < nitems(toep->ddp.db); i++) { 1835 if (toep->ddp.db[i].job == job) { 1836 /* Should only ever get one cancel request for a job. */ 1837 MPASS(toep->ddp.db[i].cancel_pending == 0); 1838 1839 /* 1840 * Invalidate this buffer. It will be 1841 * cancelled or partially completed once the 1842 * card ACKs the invalidate. 1843 */ 1844 valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : 1845 V_TF_DDP_BUF1_VALID(1); 1846 t4_set_tcb_field(sc, toep->ctrlq, toep, 1847 W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, 1848 i + DDP_BUF0_INVALIDATED); 1849 toep->ddp.db[i].cancel_pending = 1; 1850 CTR2(KTR_CXGBE, "%s: request %p marked pending", 1851 __func__, job); 1852 break; 1853 } 1854 } 1855 DDP_UNLOCK(toep); 1856 } 1857 1858 static void 1859 t4_aio_cancel_queued(struct kaiocb *job) 1860 { 1861 struct socket *so = job->fd_file->f_data; 1862 struct tcpcb *tp = so_sototcpcb(so); 1863 struct toepcb *toep = tp->t_toe; 1864 1865 DDP_LOCK(toep); 1866 if (!aio_cancel_cleared(job)) { 1867 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1868 toep->ddp.waiting_count--; 1869 if (toep->ddp.waiting_count == 0) 1870 ddp_queue_toep(toep); 1871 } 1872 CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); 1873 DDP_UNLOCK(toep); 1874 1875 aio_ddp_cancel_one(job); 1876 } 1877 1878 int 1879 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) 1880 { 1881 struct tcpcb *tp = so_sototcpcb(so); 1882 struct toepcb *toep = tp->t_toe; 1883 1884 1885 /* Ignore writes. */ 1886 if (job->uaiocb.aio_lio_opcode != LIO_READ) 1887 return (EOPNOTSUPP); 1888 1889 DDP_LOCK(toep); 1890 1891 /* 1892 * XXX: Think about possibly returning errors for ENOTCONN, 1893 * etc. Perhaps the caller would only queue the request 1894 * if it failed with EOPNOTSUPP? 1895 */ 1896 1897 #ifdef VERBOSE_TRACES 1898 CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid); 1899 #endif 1900 if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) 1901 panic("new job was cancelled"); 1902 TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list); 1903 toep->ddp.waiting_count++; 1904 toep->ddp.flags |= DDP_OK; 1905 1906 /* 1907 * Try to handle this request synchronously. If this has 1908 * to block because the task is running, it will just bail 1909 * and let the task handle it instead. 1910 */ 1911 aio_ddp_requeue(toep); 1912 DDP_UNLOCK(toep); 1913 return (0); 1914 } 1915 1916 void 1917 t4_ddp_mod_load(void) 1918 { 1919 1920 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 1921 CPL_COOKIE_DDP0); 1922 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 1923 CPL_COOKIE_DDP1); 1924 t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); 1925 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); 1926 TAILQ_INIT(&ddp_orphan_pagesets); 1927 mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); 1928 TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); 1929 } 1930 1931 void 1932 t4_ddp_mod_unload(void) 1933 { 1934 1935 taskqueue_drain(taskqueue_thread, &ddp_orphan_task); 1936 MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); 1937 mtx_destroy(&ddp_orphan_pagesets_lock); 1938 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0); 1939 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1); 1940 t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); 1941 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); 1942 } 1943 #endif 1944