xref: /freebsd/sys/dev/cxgbe/tom/t4_ddp.c (revision ac099daf6742ead81ea7ea86351a8ef4e783041b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 
35 #include <sys/param.h>
36 #include <sys/aio.h>
37 #include <sys/file.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/ktr.h>
41 #include <sys/module.h>
42 #include <sys/protosw.h>
43 #include <sys/proc.h>
44 #include <sys/domain.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/taskqueue.h>
48 #include <sys/uio.h>
49 #include <netinet/in.h>
50 #include <netinet/in_pcb.h>
51 #include <netinet/ip.h>
52 #include <netinet/tcp_var.h>
53 #define TCPSTATES
54 #include <netinet/tcp_fsm.h>
55 #include <netinet/toecore.h>
56 
57 #include <vm/vm.h>
58 #include <vm/vm_extern.h>
59 #include <vm/vm_param.h>
60 #include <vm/pmap.h>
61 #include <vm/vm_map.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_object.h>
64 
65 #ifdef TCP_OFFLOAD
66 #include "common/common.h"
67 #include "common/t4_msg.h"
68 #include "common/t4_regs.h"
69 #include "common/t4_tcb.h"
70 #include "tom/t4_tom.h"
71 
72 /*
73  * Use the 'backend3' field in AIO jobs to store the amount of data
74  * received by the AIO job so far.
75  */
76 #define	aio_received	backend3
77 
78 static void aio_ddp_requeue_task(void *context, int pending);
79 static void ddp_complete_all(struct toepcb *toep, int error);
80 static void t4_aio_cancel_active(struct kaiocb *job);
81 static void t4_aio_cancel_queued(struct kaiocb *job);
82 
83 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets;
84 static struct mtx ddp_orphan_pagesets_lock;
85 static struct task ddp_orphan_task;
86 
87 #define MAX_DDP_BUFFER_SIZE		(M_TCB_RX_DDP_BUF0_LEN)
88 
89 /*
90  * A page set holds information about a buffer used for DDP.  The page
91  * set holds resources such as the VM pages backing the buffer (either
92  * held or wired) and the page pods associated with the buffer.
93  * Recently used page sets are cached to allow for efficient reuse of
94  * buffers (avoiding the need to re-fault in pages, hold them, etc.).
95  * Note that cached page sets keep the backing pages wired.  The
96  * number of wired pages is capped by only allowing for two wired
97  * pagesets per connection.  This is not a perfect cap, but is a
98  * trade-off for performance.
99  *
100  * If an application ping-pongs two buffers for a connection via
101  * aio_read(2) then those buffers should remain wired and expensive VM
102  * fault lookups should be avoided after each buffer has been used
103  * once.  If an application uses more than two buffers then this will
104  * fall back to doing expensive VM fault lookups for each operation.
105  */
106 static void
107 free_pageset(struct tom_data *td, struct pageset *ps)
108 {
109 	vm_page_t p;
110 	int i;
111 
112 	if (ps->prsv.prsv_nppods > 0)
113 		t4_free_page_pods(&ps->prsv);
114 
115 	for (i = 0; i < ps->npages; i++) {
116 		p = ps->pages[i];
117 		vm_page_unwire(p, PQ_INACTIVE);
118 	}
119 	mtx_lock(&ddp_orphan_pagesets_lock);
120 	TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link);
121 	taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task);
122 	mtx_unlock(&ddp_orphan_pagesets_lock);
123 }
124 
125 static void
126 ddp_free_orphan_pagesets(void *context, int pending)
127 {
128 	struct pageset *ps;
129 
130 	mtx_lock(&ddp_orphan_pagesets_lock);
131 	while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) {
132 		ps = TAILQ_FIRST(&ddp_orphan_pagesets);
133 		TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link);
134 		mtx_unlock(&ddp_orphan_pagesets_lock);
135 		if (ps->vm)
136 			vmspace_free(ps->vm);
137 		free(ps, M_CXGBE);
138 		mtx_lock(&ddp_orphan_pagesets_lock);
139 	}
140 	mtx_unlock(&ddp_orphan_pagesets_lock);
141 }
142 
143 static void
144 recycle_pageset(struct toepcb *toep, struct pageset *ps)
145 {
146 
147 	DDP_ASSERT_LOCKED(toep);
148 	if (!(toep->ddp.flags & DDP_DEAD)) {
149 		KASSERT(toep->ddp.cached_count + toep->ddp.active_count <
150 		    nitems(toep->ddp.db), ("too many wired pagesets"));
151 		TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link);
152 		toep->ddp.cached_count++;
153 	} else
154 		free_pageset(toep->td, ps);
155 }
156 
157 static void
158 ddp_complete_one(struct kaiocb *job, int error)
159 {
160 	long copied;
161 
162 	/*
163 	 * If this job had copied data out of the socket buffer before
164 	 * it was cancelled, report it as a short read rather than an
165 	 * error.
166 	 */
167 	copied = job->aio_received;
168 	if (copied != 0 || error == 0)
169 		aio_complete(job, copied, 0);
170 	else
171 		aio_complete(job, -1, error);
172 }
173 
174 static void
175 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db)
176 {
177 
178 	if (db->job) {
179 		/*
180 		 * XXX: If we are un-offloading the socket then we
181 		 * should requeue these on the socket somehow.  If we
182 		 * got a FIN from the remote end, then this completes
183 		 * any remaining requests with an EOF read.
184 		 */
185 		if (!aio_clear_cancel_function(db->job))
186 			ddp_complete_one(db->job, 0);
187 	}
188 
189 	if (db->ps)
190 		free_pageset(td, db->ps);
191 }
192 
193 void
194 ddp_init_toep(struct toepcb *toep)
195 {
196 
197 	TAILQ_INIT(&toep->ddp.aiojobq);
198 	TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep);
199 	toep->ddp.flags = DDP_OK;
200 	toep->ddp.active_id = -1;
201 	mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF);
202 }
203 
204 void
205 ddp_uninit_toep(struct toepcb *toep)
206 {
207 
208 	mtx_destroy(&toep->ddp.lock);
209 }
210 
211 void
212 release_ddp_resources(struct toepcb *toep)
213 {
214 	struct pageset *ps;
215 	int i;
216 
217 	DDP_LOCK(toep);
218 	toep->ddp.flags |= DDP_DEAD;
219 	for (i = 0; i < nitems(toep->ddp.db); i++) {
220 		free_ddp_buffer(toep->td, &toep->ddp.db[i]);
221 	}
222 	while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) {
223 		TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
224 		free_pageset(toep->td, ps);
225 	}
226 	ddp_complete_all(toep, 0);
227 	DDP_UNLOCK(toep);
228 }
229 
230 #ifdef INVARIANTS
231 void
232 ddp_assert_empty(struct toepcb *toep)
233 {
234 	int i;
235 
236 	MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE));
237 	for (i = 0; i < nitems(toep->ddp.db); i++) {
238 		MPASS(toep->ddp.db[i].job == NULL);
239 		MPASS(toep->ddp.db[i].ps == NULL);
240 	}
241 	MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets));
242 	MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq));
243 }
244 #endif
245 
246 static void
247 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db,
248     unsigned int db_idx)
249 {
250 	unsigned int db_flag;
251 
252 	toep->ddp.active_count--;
253 	if (toep->ddp.active_id == db_idx) {
254 		if (toep->ddp.active_count == 0) {
255 			KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL,
256 			    ("%s: active_count mismatch", __func__));
257 			toep->ddp.active_id = -1;
258 		} else
259 			toep->ddp.active_id ^= 1;
260 #ifdef VERBOSE_TRACES
261 		CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__,
262 		    toep->tid, toep->ddp.active_id);
263 #endif
264 	} else {
265 		KASSERT(toep->ddp.active_count != 0 &&
266 		    toep->ddp.active_id != -1,
267 		    ("%s: active count mismatch", __func__));
268 	}
269 
270 	db->cancel_pending = 0;
271 	db->job = NULL;
272 	recycle_pageset(toep, db->ps);
273 	db->ps = NULL;
274 
275 	db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
276 	KASSERT(toep->ddp.flags & db_flag,
277 	    ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x",
278 	    __func__, toep, toep->ddp.flags));
279 	toep->ddp.flags &= ~db_flag;
280 }
281 
282 /* XXX: handle_ddp_data code duplication */
283 void
284 insert_ddp_data(struct toepcb *toep, uint32_t n)
285 {
286 	struct inpcb *inp = toep->inp;
287 	struct tcpcb *tp = intotcpcb(inp);
288 	struct ddp_buffer *db;
289 	struct kaiocb *job;
290 	size_t placed;
291 	long copied;
292 	unsigned int db_flag, db_idx;
293 
294 	INP_WLOCK_ASSERT(inp);
295 	DDP_ASSERT_LOCKED(toep);
296 
297 	tp->rcv_nxt += n;
298 #ifndef USE_DDP_RX_FLOW_CONTROL
299 	KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__));
300 	tp->rcv_wnd -= n;
301 #endif
302 	CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP",
303 	    __func__, n);
304 	while (toep->ddp.active_count > 0) {
305 		MPASS(toep->ddp.active_id != -1);
306 		db_idx = toep->ddp.active_id;
307 		db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
308 		MPASS((toep->ddp.flags & db_flag) != 0);
309 		db = &toep->ddp.db[db_idx];
310 		job = db->job;
311 		copied = job->aio_received;
312 		placed = n;
313 		if (placed > job->uaiocb.aio_nbytes - copied)
314 			placed = job->uaiocb.aio_nbytes - copied;
315 		if (placed > 0)
316 			job->msgrcv = 1;
317 		if (!aio_clear_cancel_function(job)) {
318 			/*
319 			 * Update the copied length for when
320 			 * t4_aio_cancel_active() completes this
321 			 * request.
322 			 */
323 			job->aio_received += placed;
324 		} else if (copied + placed != 0) {
325 			CTR4(KTR_CXGBE,
326 			    "%s: completing %p (copied %ld, placed %lu)",
327 			    __func__, job, copied, placed);
328 			/* XXX: This always completes if there is some data. */
329 			aio_complete(job, copied + placed, 0);
330 		} else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) {
331 			TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
332 			toep->ddp.waiting_count++;
333 		} else
334 			aio_cancel(job);
335 		n -= placed;
336 		complete_ddp_buffer(toep, db, db_idx);
337 	}
338 
339 	MPASS(n == 0);
340 }
341 
342 /* SET_TCB_FIELD sent as a ULP command looks like this */
343 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \
344     sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core))
345 
346 /* RX_DATA_ACK sent as a ULP command looks like this */
347 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \
348     sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core))
349 
350 static inline void *
351 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep,
352     uint64_t word, uint64_t mask, uint64_t val)
353 {
354 	struct ulptx_idata *ulpsc;
355 	struct cpl_set_tcb_field_core *req;
356 
357 	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
358 	ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16));
359 
360 	ulpsc = (struct ulptx_idata *)(ulpmc + 1);
361 	ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
362 	ulpsc->len = htobe32(sizeof(*req));
363 
364 	req = (struct cpl_set_tcb_field_core *)(ulpsc + 1);
365 	OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid));
366 	req->reply_ctrl = htobe16(V_NO_REPLY(1) |
367 	    V_QUEUENO(toep->ofld_rxq->iq.abs_id));
368 	req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0));
369         req->mask = htobe64(mask);
370         req->val = htobe64(val);
371 
372 	ulpsc = (struct ulptx_idata *)(req + 1);
373 	if (LEN__SET_TCB_FIELD_ULP % 16) {
374 		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
375 		ulpsc->len = htobe32(0);
376 		return (ulpsc + 1);
377 	}
378 	return (ulpsc);
379 }
380 
381 static inline void *
382 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep)
383 {
384 	struct ulptx_idata *ulpsc;
385 	struct cpl_rx_data_ack_core *req;
386 
387 	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
388 	ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16));
389 
390 	ulpsc = (struct ulptx_idata *)(ulpmc + 1);
391 	ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
392 	ulpsc->len = htobe32(sizeof(*req));
393 
394 	req = (struct cpl_rx_data_ack_core *)(ulpsc + 1);
395 	OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid));
396 	req->credit_dack = htobe32(F_RX_MODULATE_RX);
397 
398 	ulpsc = (struct ulptx_idata *)(req + 1);
399 	if (LEN__RX_DATA_ACK_ULP % 16) {
400 		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
401 		ulpsc->len = htobe32(0);
402 		return (ulpsc + 1);
403 	}
404 	return (ulpsc);
405 }
406 
407 static struct wrqe *
408 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx,
409     struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask)
410 {
411 	struct wrqe *wr;
412 	struct work_request_hdr *wrh;
413 	struct ulp_txpkt *ulpmc;
414 	int len;
415 
416 	KASSERT(db_idx == 0 || db_idx == 1,
417 	    ("%s: bad DDP buffer index %d", __func__, db_idx));
418 
419 	/*
420 	 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an
421 	 * RX_DATA_ACK (with RX_MODULATE to speed up delivery).
422 	 *
423 	 * The work request header is 16B and always ends at a 16B boundary.
424 	 * The ULPTX master commands that follow must all end at 16B boundaries
425 	 * too so we round up the size to 16.
426 	 */
427 	len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) +
428 	    roundup2(LEN__RX_DATA_ACK_ULP, 16);
429 
430 	wr = alloc_wrqe(len, toep->ctrlq);
431 	if (wr == NULL)
432 		return (NULL);
433 	wrh = wrtod(wr);
434 	INIT_ULPTX_WRH(wrh, len, 1, 0);	/* atomic */
435 	ulpmc = (struct ulp_txpkt *)(wrh + 1);
436 
437 	/* Write the buffer's tag */
438 	ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
439 	    W_TCB_RX_DDP_BUF0_TAG + db_idx,
440 	    V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG),
441 	    V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag));
442 
443 	/* Update the current offset in the DDP buffer and its total length */
444 	if (db_idx == 0)
445 		ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
446 		    W_TCB_RX_DDP_BUF0_OFFSET,
447 		    V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) |
448 		    V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN),
449 		    V_TCB_RX_DDP_BUF0_OFFSET(offset) |
450 		    V_TCB_RX_DDP_BUF0_LEN(ps->len));
451 	else
452 		ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
453 		    W_TCB_RX_DDP_BUF1_OFFSET,
454 		    V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) |
455 		    V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32),
456 		    V_TCB_RX_DDP_BUF1_OFFSET(offset) |
457 		    V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32));
458 
459 	/* Update DDP flags */
460 	ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS,
461 	    ddp_flags_mask, ddp_flags);
462 
463 	/* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */
464 	ulpmc = mk_rx_data_ack_ulp(ulpmc, toep);
465 
466 	return (wr);
467 }
468 
469 static int
470 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len)
471 {
472 	uint32_t report = be32toh(ddp_report);
473 	unsigned int db_idx;
474 	struct inpcb *inp = toep->inp;
475 	struct ddp_buffer *db;
476 	struct tcpcb *tp;
477 	struct socket *so;
478 	struct sockbuf *sb;
479 	struct kaiocb *job;
480 	long copied;
481 
482 	db_idx = report & F_DDP_BUF_IDX ? 1 : 0;
483 
484 	if (__predict_false(!(report & F_DDP_INV)))
485 		CXGBE_UNIMPLEMENTED("DDP buffer still valid");
486 
487 	INP_WLOCK(inp);
488 	so = inp_inpcbtosocket(inp);
489 	sb = &so->so_rcv;
490 	DDP_LOCK(toep);
491 
492 	KASSERT(toep->ddp.active_id == db_idx,
493 	    ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx,
494 	    toep->ddp.active_id, toep->tid));
495 	db = &toep->ddp.db[db_idx];
496 	job = db->job;
497 
498 	if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) {
499 		/*
500 		 * This can happen due to an administrative tcpdrop(8).
501 		 * Just fail the request with ECONNRESET.
502 		 */
503 		CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x",
504 		    __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags);
505 		if (aio_clear_cancel_function(job))
506 			ddp_complete_one(job, ECONNRESET);
507 		goto completed;
508 	}
509 
510 	tp = intotcpcb(inp);
511 
512 	/*
513 	 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the
514 	 * sequence number of the next byte to receive.  The length of
515 	 * the data received for this message must be computed by
516 	 * comparing the new and old values of rcv_nxt.
517 	 *
518 	 * For RX_DATA_DDP, len might be non-zero, but it is only the
519 	 * length of the most recent DMA.  It does not include the
520 	 * total length of the data received since the previous update
521 	 * for this DDP buffer.  rcv_nxt is the sequence number of the
522 	 * first received byte from the most recent DMA.
523 	 */
524 	len += be32toh(rcv_nxt) - tp->rcv_nxt;
525 	tp->rcv_nxt += len;
526 	tp->t_rcvtime = ticks;
527 #ifndef USE_DDP_RX_FLOW_CONTROL
528 	KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__));
529 	tp->rcv_wnd -= len;
530 #endif
531 #ifdef VERBOSE_TRACES
532 	CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__,
533 	    toep->tid, db_idx, len, report);
534 #endif
535 
536 	/* receive buffer autosize */
537 	MPASS(toep->vnet == so->so_vnet);
538 	CURVNET_SET(toep->vnet);
539 	SOCKBUF_LOCK(sb);
540 	if (sb->sb_flags & SB_AUTOSIZE &&
541 	    V_tcp_do_autorcvbuf &&
542 	    sb->sb_hiwat < V_tcp_autorcvbuf_max &&
543 	    len > (sbspace(sb) / 8 * 7)) {
544 		struct adapter *sc = td_adapter(toep->td);
545 		unsigned int hiwat = sb->sb_hiwat;
546 		unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc,
547 		    V_tcp_autorcvbuf_max);
548 
549 		if (!sbreserve_locked(sb, newsize, so, NULL))
550 			sb->sb_flags &= ~SB_AUTOSIZE;
551 	}
552 	SOCKBUF_UNLOCK(sb);
553 	CURVNET_RESTORE();
554 
555 	job->msgrcv = 1;
556 	if (db->cancel_pending) {
557 		/*
558 		 * Update the job's length but defer completion to the
559 		 * TCB_RPL callback.
560 		 */
561 		job->aio_received += len;
562 		goto out;
563 	} else if (!aio_clear_cancel_function(job)) {
564 		/*
565 		 * Update the copied length for when
566 		 * t4_aio_cancel_active() completes this request.
567 		 */
568 		job->aio_received += len;
569 	} else {
570 		copied = job->aio_received;
571 #ifdef VERBOSE_TRACES
572 		CTR5(KTR_CXGBE,
573 		    "%s: tid %u, completing %p (copied %ld, placed %d)",
574 		    __func__, toep->tid, job, copied, len);
575 #endif
576 		aio_complete(job, copied + len, 0);
577 		t4_rcvd(&toep->td->tod, tp);
578 	}
579 
580 completed:
581 	complete_ddp_buffer(toep, db, db_idx);
582 	if (toep->ddp.waiting_count > 0)
583 		ddp_queue_toep(toep);
584 out:
585 	DDP_UNLOCK(toep);
586 	INP_WUNLOCK(inp);
587 
588 	return (0);
589 }
590 
591 void
592 handle_ddp_indicate(struct toepcb *toep)
593 {
594 
595 	DDP_ASSERT_LOCKED(toep);
596 	MPASS(toep->ddp.active_count == 0);
597 	MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0);
598 	if (toep->ddp.waiting_count == 0) {
599 		/*
600 		 * The pending requests that triggered the request for an
601 		 * an indicate were cancelled.  Those cancels should have
602 		 * already disabled DDP.  Just ignore this as the data is
603 		 * going into the socket buffer anyway.
604 		 */
605 		return;
606 	}
607 	CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__,
608 	    toep->tid, toep->ddp.waiting_count);
609 	ddp_queue_toep(toep);
610 }
611 
612 CTASSERT(CPL_COOKIE_DDP0 + 1 == CPL_COOKIE_DDP1);
613 
614 static int
615 do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
616 {
617 	struct adapter *sc = iq->adapter;
618 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
619 	unsigned int tid = GET_TID(cpl);
620 	unsigned int db_idx;
621 	struct toepcb *toep;
622 	struct inpcb *inp;
623 	struct ddp_buffer *db;
624 	struct kaiocb *job;
625 	long copied;
626 
627 	if (cpl->status != CPL_ERR_NONE)
628 		panic("XXX: tcp_rpl failed: %d", cpl->status);
629 
630 	toep = lookup_tid(sc, tid);
631 	inp = toep->inp;
632 	switch (cpl->cookie) {
633 	case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP0):
634 	case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP1):
635 		/*
636 		 * XXX: This duplicates a lot of code with handle_ddp_data().
637 		 */
638 		db_idx = G_COOKIE(cpl->cookie) - CPL_COOKIE_DDP0;
639 		MPASS(db_idx < nitems(toep->ddp.db));
640 		INP_WLOCK(inp);
641 		DDP_LOCK(toep);
642 		db = &toep->ddp.db[db_idx];
643 
644 		/*
645 		 * handle_ddp_data() should leave the job around until
646 		 * this callback runs once a cancel is pending.
647 		 */
648 		MPASS(db != NULL);
649 		MPASS(db->job != NULL);
650 		MPASS(db->cancel_pending);
651 
652 		/*
653 		 * XXX: It's not clear what happens if there is data
654 		 * placed when the buffer is invalidated.  I suspect we
655 		 * need to read the TCB to see how much data was placed.
656 		 *
657 		 * For now this just pretends like nothing was placed.
658 		 *
659 		 * XXX: Note that if we did check the PCB we would need to
660 		 * also take care of updating the tp, etc.
661 		 */
662 		job = db->job;
663 		copied = job->aio_received;
664 		if (copied == 0) {
665 			CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job);
666 			aio_cancel(job);
667 		} else {
668 			CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)",
669 			    __func__, job, copied);
670 			aio_complete(job, copied, 0);
671 			t4_rcvd(&toep->td->tod, intotcpcb(inp));
672 		}
673 
674 		complete_ddp_buffer(toep, db, db_idx);
675 		if (toep->ddp.waiting_count > 0)
676 			ddp_queue_toep(toep);
677 		DDP_UNLOCK(toep);
678 		INP_WUNLOCK(inp);
679 		break;
680 	default:
681 		panic("XXX: unknown tcb_rpl offset %#x, cookie %#x",
682 		    G_WORD(cpl->cookie), G_COOKIE(cpl->cookie));
683 	}
684 
685 	return (0);
686 }
687 
688 void
689 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt)
690 {
691 	struct ddp_buffer *db;
692 	struct kaiocb *job;
693 	long copied;
694 	unsigned int db_flag, db_idx;
695 	int len, placed;
696 
697 	INP_WLOCK_ASSERT(toep->inp);
698 	DDP_ASSERT_LOCKED(toep);
699 
700 	len = be32toh(rcv_nxt) - tp->rcv_nxt;
701 	tp->rcv_nxt += len;
702 
703 	while (toep->ddp.active_count > 0) {
704 		MPASS(toep->ddp.active_id != -1);
705 		db_idx = toep->ddp.active_id;
706 		db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
707 		MPASS((toep->ddp.flags & db_flag) != 0);
708 		db = &toep->ddp.db[db_idx];
709 		job = db->job;
710 		copied = job->aio_received;
711 		placed = len;
712 		if (placed > job->uaiocb.aio_nbytes - copied)
713 			placed = job->uaiocb.aio_nbytes - copied;
714 		if (placed > 0)
715 			job->msgrcv = 1;
716 		if (!aio_clear_cancel_function(job)) {
717 			/*
718 			 * Update the copied length for when
719 			 * t4_aio_cancel_active() completes this
720 			 * request.
721 			 */
722 			job->aio_received += placed;
723 		} else {
724 			CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d",
725 			    __func__, toep->tid, db_idx, placed);
726 			aio_complete(job, copied + placed, 0);
727 		}
728 		len -= placed;
729 		complete_ddp_buffer(toep, db, db_idx);
730 	}
731 
732 	MPASS(len == 0);
733 	ddp_complete_all(toep, 0);
734 }
735 
736 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\
737 	 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\
738 	 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\
739 	 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR)
740 
741 extern cpl_handler_t t4_cpl_handler[];
742 
743 static int
744 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
745 {
746 	struct adapter *sc = iq->adapter;
747 	const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1);
748 	unsigned int tid = GET_TID(cpl);
749 	uint32_t vld;
750 	struct toepcb *toep = lookup_tid(sc, tid);
751 
752 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
753 	KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
754 	KASSERT(!(toep->flags & TPF_SYNQE),
755 	    ("%s: toep %p claims to be a synq entry", __func__, toep));
756 
757 	vld = be32toh(cpl->ddpvld);
758 	if (__predict_false(vld & DDP_ERR)) {
759 		panic("%s: DDP error 0x%x (tid %d, toep %p)",
760 		    __func__, vld, tid, toep);
761 	}
762 
763 	if (ulp_mode(toep) == ULP_MODE_ISCSI) {
764 		t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m);
765 		return (0);
766 	}
767 
768 	handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len));
769 
770 	return (0);
771 }
772 
773 static int
774 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss,
775     struct mbuf *m)
776 {
777 	struct adapter *sc = iq->adapter;
778 	const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1);
779 	unsigned int tid = GET_TID(cpl);
780 	struct toepcb *toep = lookup_tid(sc, tid);
781 
782 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
783 	KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
784 	KASSERT(!(toep->flags & TPF_SYNQE),
785 	    ("%s: toep %p claims to be a synq entry", __func__, toep));
786 
787 	handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0);
788 
789 	return (0);
790 }
791 
792 static void
793 enable_ddp(struct adapter *sc, struct toepcb *toep)
794 {
795 
796 	KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK,
797 	    ("%s: toep %p has bad ddp_flags 0x%x",
798 	    __func__, toep, toep->ddp.flags));
799 
800 	CTR3(KTR_CXGBE, "%s: tid %u (time %u)",
801 	    __func__, toep->tid, time_uptime);
802 
803 	DDP_ASSERT_LOCKED(toep);
804 	toep->ddp.flags |= DDP_SC_REQ;
805 	t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS,
806 	    V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) |
807 	    V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) |
808 	    V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1),
809 	    V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0);
810 	t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS,
811 	    V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0);
812 }
813 
814 static int
815 calculate_hcf(int n1, int n2)
816 {
817 	int a, b, t;
818 
819 	if (n1 <= n2) {
820 		a = n1;
821 		b = n2;
822 	} else {
823 		a = n2;
824 		b = n1;
825 	}
826 
827 	while (a != 0) {
828 		t = a;
829 		a = b % a;
830 		b = t;
831 	}
832 
833 	return (b);
834 }
835 
836 static inline int
837 pages_to_nppods(int npages, int ddp_page_shift)
838 {
839 
840 	MPASS(ddp_page_shift >= PAGE_SHIFT);
841 
842 	return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES));
843 }
844 
845 static int
846 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx,
847     struct ppod_reservation *prsv)
848 {
849 	vmem_addr_t addr;       /* relative to start of region */
850 
851 	if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT,
852 	    &addr) != 0)
853 		return (ENOMEM);
854 
855 	CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d",
856 	    __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask,
857 	    nppods, 1 << pr->pr_page_shift[pgsz_idx]);
858 
859 	/*
860 	 * The hardware tagmask includes an extra invalid bit but the arena was
861 	 * seeded with valid values only.  An allocation out of this arena will
862 	 * fit inside the tagmask but won't have the invalid bit set.
863 	 */
864 	MPASS((addr & pr->pr_tag_mask) == addr);
865 	MPASS((addr & pr->pr_invalid_bit) == 0);
866 
867 	prsv->prsv_pr = pr;
868 	prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr;
869 	prsv->prsv_nppods = nppods;
870 
871 	return (0);
872 }
873 
874 int
875 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps)
876 {
877 	int i, hcf, seglen, idx, nppods;
878 	struct ppod_reservation *prsv = &ps->prsv;
879 
880 	KASSERT(prsv->prsv_nppods == 0,
881 	    ("%s: page pods already allocated", __func__));
882 
883 	/*
884 	 * The DDP page size is unrelated to the VM page size.  We combine
885 	 * contiguous physical pages into larger segments to get the best DDP
886 	 * page size possible.  This is the largest of the four sizes in
887 	 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in
888 	 * the page list.
889 	 */
890 	hcf = 0;
891 	for (i = 0; i < ps->npages; i++) {
892 		seglen = PAGE_SIZE;
893 		while (i < ps->npages - 1 &&
894 		    ps->pages[i]->phys_addr + PAGE_SIZE ==
895 		    ps->pages[i + 1]->phys_addr) {
896 			seglen += PAGE_SIZE;
897 			i++;
898 		}
899 
900 		hcf = calculate_hcf(hcf, seglen);
901 		if (hcf < (1 << pr->pr_page_shift[1])) {
902 			idx = 0;
903 			goto have_pgsz;	/* give up, short circuit */
904 		}
905 	}
906 
907 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
908 	MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
909 	for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
910 		if ((hcf & PR_PAGE_MASK(idx)) == 0)
911 			break;
912 	}
913 #undef PR_PAGE_MASK
914 
915 have_pgsz:
916 	MPASS(idx <= M_PPOD_PGSZ);
917 
918 	nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]);
919 	if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
920 		return (0);
921 	MPASS(prsv->prsv_nppods > 0);
922 
923 	return (1);
924 }
925 
926 int
927 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len,
928     struct ppod_reservation *prsv)
929 {
930 	int hcf, seglen, idx, npages, nppods;
931 	uintptr_t start_pva, end_pva, pva, p1;
932 
933 	MPASS(buf > 0);
934 	MPASS(len > 0);
935 
936 	/*
937 	 * The DDP page size is unrelated to the VM page size.  We combine
938 	 * contiguous physical pages into larger segments to get the best DDP
939 	 * page size possible.  This is the largest of the four sizes in
940 	 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes
941 	 * in the page list.
942 	 */
943 	hcf = 0;
944 	start_pva = trunc_page(buf);
945 	end_pva = trunc_page(buf + len - 1);
946 	pva = start_pva;
947 	while (pva <= end_pva) {
948 		seglen = PAGE_SIZE;
949 		p1 = pmap_kextract(pva);
950 		pva += PAGE_SIZE;
951 		while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) {
952 			seglen += PAGE_SIZE;
953 			pva += PAGE_SIZE;
954 		}
955 
956 		hcf = calculate_hcf(hcf, seglen);
957 		if (hcf < (1 << pr->pr_page_shift[1])) {
958 			idx = 0;
959 			goto have_pgsz;	/* give up, short circuit */
960 		}
961 	}
962 
963 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
964 	MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
965 	for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
966 		if ((hcf & PR_PAGE_MASK(idx)) == 0)
967 			break;
968 	}
969 #undef PR_PAGE_MASK
970 
971 have_pgsz:
972 	MPASS(idx <= M_PPOD_PGSZ);
973 
974 	npages = 1;
975 	npages += (end_pva - start_pva) >> pr->pr_page_shift[idx];
976 	nppods = howmany(npages, PPOD_PAGES);
977 	if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
978 		return (ENOMEM);
979 	MPASS(prsv->prsv_nppods > 0);
980 
981 	return (0);
982 }
983 
984 void
985 t4_free_page_pods(struct ppod_reservation *prsv)
986 {
987 	struct ppod_region *pr = prsv->prsv_pr;
988 	vmem_addr_t addr;
989 
990 	MPASS(prsv != NULL);
991 	MPASS(prsv->prsv_nppods != 0);
992 
993 	addr = prsv->prsv_tag & pr->pr_tag_mask;
994 	MPASS((addr & pr->pr_invalid_bit) == 0);
995 
996 	CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__,
997 	    pr->pr_arena, addr, prsv->prsv_nppods);
998 
999 	vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods));
1000 	prsv->prsv_nppods = 0;
1001 }
1002 
1003 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE)
1004 
1005 int
1006 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid,
1007     struct pageset *ps)
1008 {
1009 	struct wrqe *wr;
1010 	struct ulp_mem_io *ulpmc;
1011 	struct ulptx_idata *ulpsc;
1012 	struct pagepod *ppod;
1013 	int i, j, k, n, chunk, len, ddp_pgsz, idx;
1014 	u_int ppod_addr;
1015 	uint32_t cmd;
1016 	struct ppod_reservation *prsv = &ps->prsv;
1017 	struct ppod_region *pr = prsv->prsv_pr;
1018 
1019 	KASSERT(!(ps->flags & PS_PPODS_WRITTEN),
1020 	    ("%s: page pods already written", __func__));
1021 	MPASS(prsv->prsv_nppods > 0);
1022 
1023 	cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1024 	if (is_t4(sc))
1025 		cmd |= htobe32(F_ULP_MEMIO_ORDER);
1026 	else
1027 		cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1028 	ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1029 	ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1030 	for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1031 
1032 		/* How many page pods are we writing in this cycle */
1033 		n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1034 		chunk = PPOD_SZ(n);
1035 		len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1036 
1037 		wr = alloc_wrqe(len, wrq);
1038 		if (wr == NULL)
1039 			return (ENOMEM);	/* ok to just bail out */
1040 		ulpmc = wrtod(wr);
1041 
1042 		INIT_ULPTX_WR(ulpmc, len, 0, 0);
1043 		ulpmc->cmd = cmd;
1044 		ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1045 		ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1046 		ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1047 
1048 		ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1049 		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1050 		ulpsc->len = htobe32(chunk);
1051 
1052 		ppod = (struct pagepod *)(ulpsc + 1);
1053 		for (j = 0; j < n; i++, j++, ppod++) {
1054 			ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1055 			    V_PPOD_TID(tid) | prsv->prsv_tag);
1056 			ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) |
1057 			    V_PPOD_OFST(ps->offset));
1058 			ppod->rsvd = 0;
1059 			idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE);
1060 			for (k = 0; k < nitems(ppod->addr); k++) {
1061 				if (idx < ps->npages) {
1062 					ppod->addr[k] =
1063 					    htobe64(ps->pages[idx]->phys_addr);
1064 					idx += ddp_pgsz / PAGE_SIZE;
1065 				} else
1066 					ppod->addr[k] = 0;
1067 #if 0
1068 				CTR5(KTR_CXGBE,
1069 				    "%s: tid %d ppod[%d]->addr[%d] = %p",
1070 				    __func__, toep->tid, i, k,
1071 				    htobe64(ppod->addr[k]));
1072 #endif
1073 			}
1074 
1075 		}
1076 
1077 		t4_wrq_tx(sc, wr);
1078 	}
1079 	ps->flags |= PS_PPODS_WRITTEN;
1080 
1081 	return (0);
1082 }
1083 
1084 int
1085 t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid,
1086     struct ppod_reservation *prsv, vm_offset_t buf, int buflen)
1087 {
1088 	struct wrqe *wr;
1089 	struct ulp_mem_io *ulpmc;
1090 	struct ulptx_idata *ulpsc;
1091 	struct pagepod *ppod;
1092 	int i, j, k, n, chunk, len, ddp_pgsz;
1093 	u_int ppod_addr, offset;
1094 	uint32_t cmd;
1095 	struct ppod_region *pr = prsv->prsv_pr;
1096 	uintptr_t end_pva, pva, pa;
1097 
1098 	cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1099 	if (is_t4(sc))
1100 		cmd |= htobe32(F_ULP_MEMIO_ORDER);
1101 	else
1102 		cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1103 	ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1104 	offset = buf & PAGE_MASK;
1105 	ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1106 	pva = trunc_page(buf);
1107 	end_pva = trunc_page(buf + buflen - 1);
1108 	for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1109 
1110 		/* How many page pods are we writing in this cycle */
1111 		n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1112 		MPASS(n > 0);
1113 		chunk = PPOD_SZ(n);
1114 		len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1115 
1116 		wr = alloc_wrqe(len, wrq);
1117 		if (wr == NULL)
1118 			return (ENOMEM);	/* ok to just bail out */
1119 		ulpmc = wrtod(wr);
1120 
1121 		INIT_ULPTX_WR(ulpmc, len, 0, 0);
1122 		ulpmc->cmd = cmd;
1123 		ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1124 		ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1125 		ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1126 
1127 		ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1128 		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1129 		ulpsc->len = htobe32(chunk);
1130 
1131 		ppod = (struct pagepod *)(ulpsc + 1);
1132 		for (j = 0; j < n; i++, j++, ppod++) {
1133 			ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1134 			    V_PPOD_TID(tid) |
1135 			    (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ)));
1136 			ppod->len_offset = htobe64(V_PPOD_LEN(buflen) |
1137 			    V_PPOD_OFST(offset));
1138 			ppod->rsvd = 0;
1139 
1140 			for (k = 0; k < nitems(ppod->addr); k++) {
1141 				if (pva > end_pva)
1142 					ppod->addr[k] = 0;
1143 				else {
1144 					pa = pmap_kextract(pva);
1145 					ppod->addr[k] = htobe64(pa);
1146 					pva += ddp_pgsz;
1147 				}
1148 #if 0
1149 				CTR5(KTR_CXGBE,
1150 				    "%s: tid %d ppod[%d]->addr[%d] = %p",
1151 				    __func__, tid, i, k,
1152 				    htobe64(ppod->addr[k]));
1153 #endif
1154 			}
1155 
1156 			/*
1157 			 * Walk back 1 segment so that the first address in the
1158 			 * next pod is the same as the last one in the current
1159 			 * pod.
1160 			 */
1161 			pva -= ddp_pgsz;
1162 		}
1163 
1164 		t4_wrq_tx(sc, wr);
1165 	}
1166 
1167 	MPASS(pva <= end_pva);
1168 
1169 	return (0);
1170 }
1171 
1172 /*
1173  * Prepare a pageset for DDP.  This sets up page pods.
1174  */
1175 static int
1176 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps)
1177 {
1178 	struct tom_data *td = sc->tom_softc;
1179 
1180 	if (ps->prsv.prsv_nppods == 0 &&
1181 	    !t4_alloc_page_pods_for_ps(&td->pr, ps)) {
1182 		return (0);
1183 	}
1184 	if (!(ps->flags & PS_PPODS_WRITTEN) &&
1185 	    t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) {
1186 		return (0);
1187 	}
1188 
1189 	return (1);
1190 }
1191 
1192 int
1193 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz,
1194     const char *name)
1195 {
1196 	int i;
1197 
1198 	MPASS(pr != NULL);
1199 	MPASS(r->size > 0);
1200 
1201 	pr->pr_start = r->start;
1202 	pr->pr_len = r->size;
1203 	pr->pr_page_shift[0] = 12 + G_HPZ0(psz);
1204 	pr->pr_page_shift[1] = 12 + G_HPZ1(psz);
1205 	pr->pr_page_shift[2] = 12 + G_HPZ2(psz);
1206 	pr->pr_page_shift[3] = 12 + G_HPZ3(psz);
1207 
1208 	/* The SGL -> page pod algorithm requires the sizes to be in order. */
1209 	for (i = 1; i < nitems(pr->pr_page_shift); i++) {
1210 		if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1])
1211 			return (ENXIO);
1212 	}
1213 
1214 	pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG);
1215 	pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask;
1216 	if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0)
1217 		return (ENXIO);
1218 	pr->pr_alias_shift = fls(pr->pr_tag_mask);
1219 	pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1);
1220 
1221 	pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0,
1222 	    M_FIRSTFIT | M_NOWAIT);
1223 	if (pr->pr_arena == NULL)
1224 		return (ENOMEM);
1225 
1226 	return (0);
1227 }
1228 
1229 void
1230 t4_free_ppod_region(struct ppod_region *pr)
1231 {
1232 
1233 	MPASS(pr != NULL);
1234 
1235 	if (pr->pr_arena)
1236 		vmem_destroy(pr->pr_arena);
1237 	bzero(pr, sizeof(*pr));
1238 }
1239 
1240 static int
1241 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages,
1242     int pgoff, int len)
1243 {
1244 
1245 	if (ps->start != start || ps->npages != npages ||
1246 	    ps->offset != pgoff || ps->len != len)
1247 		return (1);
1248 
1249 	return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp);
1250 }
1251 
1252 static int
1253 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps)
1254 {
1255 	struct vmspace *vm;
1256 	vm_map_t map;
1257 	vm_offset_t start, end, pgoff;
1258 	struct pageset *ps;
1259 	int n;
1260 
1261 	DDP_ASSERT_LOCKED(toep);
1262 
1263 	/*
1264 	 * The AIO subsystem will cancel and drain all requests before
1265 	 * permitting a process to exit or exec, so p_vmspace should
1266 	 * be stable here.
1267 	 */
1268 	vm = job->userproc->p_vmspace;
1269 	map = &vm->vm_map;
1270 	start = (uintptr_t)job->uaiocb.aio_buf;
1271 	pgoff = start & PAGE_MASK;
1272 	end = round_page(start + job->uaiocb.aio_nbytes);
1273 	start = trunc_page(start);
1274 
1275 	if (end - start > MAX_DDP_BUFFER_SIZE) {
1276 		/*
1277 		 * Truncate the request to a short read.
1278 		 * Alternatively, we could DDP in chunks to the larger
1279 		 * buffer, but that would be quite a bit more work.
1280 		 *
1281 		 * When truncating, round the request down to avoid
1282 		 * crossing a cache line on the final transaction.
1283 		 */
1284 		end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE);
1285 #ifdef VERBOSE_TRACES
1286 		CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu",
1287 		    __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes,
1288 		    (unsigned long)(end - (start + pgoff)));
1289 		job->uaiocb.aio_nbytes = end - (start + pgoff);
1290 #endif
1291 		end = round_page(end);
1292 	}
1293 
1294 	n = atop(end - start);
1295 
1296 	/*
1297 	 * Try to reuse a cached pageset.
1298 	 */
1299 	TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) {
1300 		if (pscmp(ps, vm, start, n, pgoff,
1301 		    job->uaiocb.aio_nbytes) == 0) {
1302 			TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
1303 			toep->ddp.cached_count--;
1304 			*pps = ps;
1305 			return (0);
1306 		}
1307 	}
1308 
1309 	/*
1310 	 * If there are too many cached pagesets to create a new one,
1311 	 * free a pageset before creating a new one.
1312 	 */
1313 	KASSERT(toep->ddp.active_count + toep->ddp.cached_count <=
1314 	    nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__));
1315 	if (toep->ddp.active_count + toep->ddp.cached_count ==
1316 	    nitems(toep->ddp.db)) {
1317 		KASSERT(toep->ddp.cached_count > 0,
1318 		    ("no cached pageset to free"));
1319 		ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq);
1320 		TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
1321 		toep->ddp.cached_count--;
1322 		free_pageset(toep->td, ps);
1323 	}
1324 	DDP_UNLOCK(toep);
1325 
1326 	/* Create a new pageset. */
1327 	ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK |
1328 	    M_ZERO);
1329 	ps->pages = (vm_page_t *)(ps + 1);
1330 	ps->vm_timestamp = map->timestamp;
1331 	ps->npages = vm_fault_quick_hold_pages(map, start, end - start,
1332 	    VM_PROT_WRITE, ps->pages, n);
1333 
1334 	DDP_LOCK(toep);
1335 	if (ps->npages < 0) {
1336 		free(ps, M_CXGBE);
1337 		return (EFAULT);
1338 	}
1339 
1340 	KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d",
1341 	    ps->npages, n));
1342 
1343 	ps->offset = pgoff;
1344 	ps->len = job->uaiocb.aio_nbytes;
1345 	refcount_acquire(&vm->vm_refcnt);
1346 	ps->vm = vm;
1347 	ps->start = start;
1348 
1349 	CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d",
1350 	    __func__, toep->tid, ps, job, ps->npages);
1351 	*pps = ps;
1352 	return (0);
1353 }
1354 
1355 static void
1356 ddp_complete_all(struct toepcb *toep, int error)
1357 {
1358 	struct kaiocb *job;
1359 
1360 	DDP_ASSERT_LOCKED(toep);
1361 	while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) {
1362 		job = TAILQ_FIRST(&toep->ddp.aiojobq);
1363 		TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1364 		toep->ddp.waiting_count--;
1365 		if (aio_clear_cancel_function(job))
1366 			ddp_complete_one(job, error);
1367 	}
1368 }
1369 
1370 static void
1371 aio_ddp_cancel_one(struct kaiocb *job)
1372 {
1373 	long copied;
1374 
1375 	/*
1376 	 * If this job had copied data out of the socket buffer before
1377 	 * it was cancelled, report it as a short read rather than an
1378 	 * error.
1379 	 */
1380 	copied = job->aio_received;
1381 	if (copied != 0)
1382 		aio_complete(job, copied, 0);
1383 	else
1384 		aio_cancel(job);
1385 }
1386 
1387 /*
1388  * Called when the main loop wants to requeue a job to retry it later.
1389  * Deals with the race of the job being cancelled while it was being
1390  * examined.
1391  */
1392 static void
1393 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job)
1394 {
1395 
1396 	DDP_ASSERT_LOCKED(toep);
1397 	if (!(toep->ddp.flags & DDP_DEAD) &&
1398 	    aio_set_cancel_function(job, t4_aio_cancel_queued)) {
1399 		TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
1400 		toep->ddp.waiting_count++;
1401 	} else
1402 		aio_ddp_cancel_one(job);
1403 }
1404 
1405 static void
1406 aio_ddp_requeue(struct toepcb *toep)
1407 {
1408 	struct adapter *sc = td_adapter(toep->td);
1409 	struct socket *so;
1410 	struct sockbuf *sb;
1411 	struct inpcb *inp;
1412 	struct kaiocb *job;
1413 	struct ddp_buffer *db;
1414 	size_t copied, offset, resid;
1415 	struct pageset *ps;
1416 	struct mbuf *m;
1417 	uint64_t ddp_flags, ddp_flags_mask;
1418 	struct wrqe *wr;
1419 	int buf_flag, db_idx, error;
1420 
1421 	DDP_ASSERT_LOCKED(toep);
1422 
1423 restart:
1424 	if (toep->ddp.flags & DDP_DEAD) {
1425 		MPASS(toep->ddp.waiting_count == 0);
1426 		MPASS(toep->ddp.active_count == 0);
1427 		return;
1428 	}
1429 
1430 	if (toep->ddp.waiting_count == 0 ||
1431 	    toep->ddp.active_count == nitems(toep->ddp.db)) {
1432 		return;
1433 	}
1434 
1435 	job = TAILQ_FIRST(&toep->ddp.aiojobq);
1436 	so = job->fd_file->f_data;
1437 	sb = &so->so_rcv;
1438 	SOCKBUF_LOCK(sb);
1439 
1440 	/* We will never get anything unless we are or were connected. */
1441 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
1442 		SOCKBUF_UNLOCK(sb);
1443 		ddp_complete_all(toep, ENOTCONN);
1444 		return;
1445 	}
1446 
1447 	KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0,
1448 	    ("%s: pending sockbuf data and DDP is active", __func__));
1449 
1450 	/* Abort if socket has reported problems. */
1451 	/* XXX: Wait for any queued DDP's to finish and/or flush them? */
1452 	if (so->so_error && sbavail(sb) == 0) {
1453 		toep->ddp.waiting_count--;
1454 		TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1455 		if (!aio_clear_cancel_function(job)) {
1456 			SOCKBUF_UNLOCK(sb);
1457 			goto restart;
1458 		}
1459 
1460 		/*
1461 		 * If this job has previously copied some data, report
1462 		 * a short read and leave the error to be reported by
1463 		 * a future request.
1464 		 */
1465 		copied = job->aio_received;
1466 		if (copied != 0) {
1467 			SOCKBUF_UNLOCK(sb);
1468 			aio_complete(job, copied, 0);
1469 			goto restart;
1470 		}
1471 		error = so->so_error;
1472 		so->so_error = 0;
1473 		SOCKBUF_UNLOCK(sb);
1474 		aio_complete(job, -1, error);
1475 		goto restart;
1476 	}
1477 
1478 	/*
1479 	 * Door is closed.  If there is pending data in the socket buffer,
1480 	 * deliver it.  If there are pending DDP requests, wait for those
1481 	 * to complete.  Once they have completed, return EOF reads.
1482 	 */
1483 	if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
1484 		SOCKBUF_UNLOCK(sb);
1485 		if (toep->ddp.active_count != 0)
1486 			return;
1487 		ddp_complete_all(toep, 0);
1488 		return;
1489 	}
1490 
1491 	/*
1492 	 * If DDP is not enabled and there is no pending socket buffer
1493 	 * data, try to enable DDP.
1494 	 */
1495 	if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) {
1496 		SOCKBUF_UNLOCK(sb);
1497 
1498 		/*
1499 		 * Wait for the card to ACK that DDP is enabled before
1500 		 * queueing any buffers.  Currently this waits for an
1501 		 * indicate to arrive.  This could use a TCB_SET_FIELD_RPL
1502 		 * message to know that DDP was enabled instead of waiting
1503 		 * for the indicate which would avoid copying the indicate
1504 		 * if no data is pending.
1505 		 *
1506 		 * XXX: Might want to limit the indicate size to the size
1507 		 * of the first queued request.
1508 		 */
1509 		if ((toep->ddp.flags & DDP_SC_REQ) == 0)
1510 			enable_ddp(sc, toep);
1511 		return;
1512 	}
1513 	SOCKBUF_UNLOCK(sb);
1514 
1515 	/*
1516 	 * If another thread is queueing a buffer for DDP, let it
1517 	 * drain any work and return.
1518 	 */
1519 	if (toep->ddp.queueing != NULL)
1520 		return;
1521 
1522 	/* Take the next job to prep it for DDP. */
1523 	toep->ddp.waiting_count--;
1524 	TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1525 	if (!aio_clear_cancel_function(job))
1526 		goto restart;
1527 	toep->ddp.queueing = job;
1528 
1529 	/* NB: This drops DDP_LOCK while it holds the backing VM pages. */
1530 	error = hold_aio(toep, job, &ps);
1531 	if (error != 0) {
1532 		ddp_complete_one(job, error);
1533 		toep->ddp.queueing = NULL;
1534 		goto restart;
1535 	}
1536 
1537 	SOCKBUF_LOCK(sb);
1538 	if (so->so_error && sbavail(sb) == 0) {
1539 		copied = job->aio_received;
1540 		if (copied != 0) {
1541 			SOCKBUF_UNLOCK(sb);
1542 			recycle_pageset(toep, ps);
1543 			aio_complete(job, copied, 0);
1544 			toep->ddp.queueing = NULL;
1545 			goto restart;
1546 		}
1547 
1548 		error = so->so_error;
1549 		so->so_error = 0;
1550 		SOCKBUF_UNLOCK(sb);
1551 		recycle_pageset(toep, ps);
1552 		aio_complete(job, -1, error);
1553 		toep->ddp.queueing = NULL;
1554 		goto restart;
1555 	}
1556 
1557 	if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
1558 		SOCKBUF_UNLOCK(sb);
1559 		recycle_pageset(toep, ps);
1560 		if (toep->ddp.active_count != 0) {
1561 			/*
1562 			 * The door is closed, but there are still pending
1563 			 * DDP buffers.  Requeue.  These jobs will all be
1564 			 * completed once those buffers drain.
1565 			 */
1566 			aio_ddp_requeue_one(toep, job);
1567 			toep->ddp.queueing = NULL;
1568 			return;
1569 		}
1570 		ddp_complete_one(job, 0);
1571 		ddp_complete_all(toep, 0);
1572 		toep->ddp.queueing = NULL;
1573 		return;
1574 	}
1575 
1576 sbcopy:
1577 	/*
1578 	 * If the toep is dead, there shouldn't be any data in the socket
1579 	 * buffer, so the above case should have handled this.
1580 	 */
1581 	MPASS(!(toep->ddp.flags & DDP_DEAD));
1582 
1583 	/*
1584 	 * If there is pending data in the socket buffer (either
1585 	 * from before the requests were queued or a DDP indicate),
1586 	 * copy those mbufs out directly.
1587 	 */
1588 	copied = 0;
1589 	offset = ps->offset + job->aio_received;
1590 	MPASS(job->aio_received <= job->uaiocb.aio_nbytes);
1591 	resid = job->uaiocb.aio_nbytes - job->aio_received;
1592 	m = sb->sb_mb;
1593 	KASSERT(m == NULL || toep->ddp.active_count == 0,
1594 	    ("%s: sockbuf data with active DDP", __func__));
1595 	while (m != NULL && resid > 0) {
1596 		struct iovec iov[1];
1597 		struct uio uio;
1598 		int error;
1599 
1600 		iov[0].iov_base = mtod(m, void *);
1601 		iov[0].iov_len = m->m_len;
1602 		if (iov[0].iov_len > resid)
1603 			iov[0].iov_len = resid;
1604 		uio.uio_iov = iov;
1605 		uio.uio_iovcnt = 1;
1606 		uio.uio_offset = 0;
1607 		uio.uio_resid = iov[0].iov_len;
1608 		uio.uio_segflg = UIO_SYSSPACE;
1609 		uio.uio_rw = UIO_WRITE;
1610 		error = uiomove_fromphys(ps->pages, offset + copied,
1611 		    uio.uio_resid, &uio);
1612 		MPASS(error == 0 && uio.uio_resid == 0);
1613 		copied += uio.uio_offset;
1614 		resid -= uio.uio_offset;
1615 		m = m->m_next;
1616 	}
1617 	if (copied != 0) {
1618 		sbdrop_locked(sb, copied);
1619 		job->aio_received += copied;
1620 		job->msgrcv = 1;
1621 		copied = job->aio_received;
1622 		inp = sotoinpcb(so);
1623 		if (!INP_TRY_WLOCK(inp)) {
1624 			/*
1625 			 * The reference on the socket file descriptor in
1626 			 * the AIO job should keep 'sb' and 'inp' stable.
1627 			 * Our caller has a reference on the 'toep' that
1628 			 * keeps it stable.
1629 			 */
1630 			SOCKBUF_UNLOCK(sb);
1631 			DDP_UNLOCK(toep);
1632 			INP_WLOCK(inp);
1633 			DDP_LOCK(toep);
1634 			SOCKBUF_LOCK(sb);
1635 
1636 			/*
1637 			 * If the socket has been closed, we should detect
1638 			 * that and complete this request if needed on
1639 			 * the next trip around the loop.
1640 			 */
1641 		}
1642 		t4_rcvd_locked(&toep->td->tod, intotcpcb(inp));
1643 		INP_WUNLOCK(inp);
1644 		if (resid == 0 || toep->ddp.flags & DDP_DEAD) {
1645 			/*
1646 			 * We filled the entire buffer with socket
1647 			 * data, DDP is not being used, or the socket
1648 			 * is being shut down, so complete the
1649 			 * request.
1650 			 */
1651 			SOCKBUF_UNLOCK(sb);
1652 			recycle_pageset(toep, ps);
1653 			aio_complete(job, copied, 0);
1654 			toep->ddp.queueing = NULL;
1655 			goto restart;
1656 		}
1657 
1658 		/*
1659 		 * If DDP is not enabled, requeue this request and restart.
1660 		 * This will either enable DDP or wait for more data to
1661 		 * arrive on the socket buffer.
1662 		 */
1663 		if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) {
1664 			SOCKBUF_UNLOCK(sb);
1665 			recycle_pageset(toep, ps);
1666 			aio_ddp_requeue_one(toep, job);
1667 			toep->ddp.queueing = NULL;
1668 			goto restart;
1669 		}
1670 
1671 		/*
1672 		 * An indicate might have arrived and been added to
1673 		 * the socket buffer while it was unlocked after the
1674 		 * copy to lock the INP.  If so, restart the copy.
1675 		 */
1676 		if (sbavail(sb) != 0)
1677 			goto sbcopy;
1678 	}
1679 	SOCKBUF_UNLOCK(sb);
1680 
1681 	if (prep_pageset(sc, toep, ps) == 0) {
1682 		recycle_pageset(toep, ps);
1683 		aio_ddp_requeue_one(toep, job);
1684 		toep->ddp.queueing = NULL;
1685 
1686 		/*
1687 		 * XXX: Need to retry this later.  Mostly need a trigger
1688 		 * when page pods are freed up.
1689 		 */
1690 		printf("%s: prep_pageset failed\n", __func__);
1691 		return;
1692 	}
1693 
1694 	/* Determine which DDP buffer to use. */
1695 	if (toep->ddp.db[0].job == NULL) {
1696 		db_idx = 0;
1697 	} else {
1698 		MPASS(toep->ddp.db[1].job == NULL);
1699 		db_idx = 1;
1700 	}
1701 
1702 	ddp_flags = 0;
1703 	ddp_flags_mask = 0;
1704 	if (db_idx == 0) {
1705 		ddp_flags |= V_TF_DDP_BUF0_VALID(1);
1706 		if (so->so_state & SS_NBIO)
1707 			ddp_flags |= V_TF_DDP_BUF0_FLUSH(1);
1708 		ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) |
1709 		    V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) |
1710 		    V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1);
1711 		buf_flag = DDP_BUF0_ACTIVE;
1712 	} else {
1713 		ddp_flags |= V_TF_DDP_BUF1_VALID(1);
1714 		if (so->so_state & SS_NBIO)
1715 			ddp_flags |= V_TF_DDP_BUF1_FLUSH(1);
1716 		ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) |
1717 		    V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) |
1718 		    V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1);
1719 		buf_flag = DDP_BUF1_ACTIVE;
1720 	}
1721 	MPASS((toep->ddp.flags & buf_flag) == 0);
1722 	if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) {
1723 		MPASS(db_idx == 0);
1724 		MPASS(toep->ddp.active_id == -1);
1725 		MPASS(toep->ddp.active_count == 0);
1726 		ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1);
1727 	}
1728 
1729 	/*
1730 	 * The TID for this connection should still be valid.  If DDP_DEAD
1731 	 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be
1732 	 * this far anyway.  Even if the socket is closing on the other
1733 	 * end, the AIO job holds a reference on this end of the socket
1734 	 * which will keep it open and keep the TCP PCB attached until
1735 	 * after the job is completed.
1736 	 */
1737 	wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received,
1738 	    ddp_flags, ddp_flags_mask);
1739 	if (wr == NULL) {
1740 		recycle_pageset(toep, ps);
1741 		aio_ddp_requeue_one(toep, job);
1742 		toep->ddp.queueing = NULL;
1743 
1744 		/*
1745 		 * XXX: Need a way to kick a retry here.
1746 		 *
1747 		 * XXX: We know the fixed size needed and could
1748 		 * preallocate this using a blocking request at the
1749 		 * start of the task to avoid having to handle this
1750 		 * edge case.
1751 		 */
1752 		printf("%s: mk_update_tcb_for_ddp failed\n", __func__);
1753 		return;
1754 	}
1755 
1756 	if (!aio_set_cancel_function(job, t4_aio_cancel_active)) {
1757 		free_wrqe(wr);
1758 		recycle_pageset(toep, ps);
1759 		aio_ddp_cancel_one(job);
1760 		toep->ddp.queueing = NULL;
1761 		goto restart;
1762 	}
1763 
1764 #ifdef VERBOSE_TRACES
1765 	CTR6(KTR_CXGBE,
1766 	    "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__,
1767 	    toep->tid, job, db_idx, ddp_flags, ddp_flags_mask);
1768 #endif
1769 	/* Give the chip the go-ahead. */
1770 	t4_wrq_tx(sc, wr);
1771 	db = &toep->ddp.db[db_idx];
1772 	db->cancel_pending = 0;
1773 	db->job = job;
1774 	db->ps = ps;
1775 	toep->ddp.queueing = NULL;
1776 	toep->ddp.flags |= buf_flag;
1777 	toep->ddp.active_count++;
1778 	if (toep->ddp.active_count == 1) {
1779 		MPASS(toep->ddp.active_id == -1);
1780 		toep->ddp.active_id = db_idx;
1781 		CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
1782 		    toep->ddp.active_id);
1783 	}
1784 	goto restart;
1785 }
1786 
1787 void
1788 ddp_queue_toep(struct toepcb *toep)
1789 {
1790 
1791 	DDP_ASSERT_LOCKED(toep);
1792 	if (toep->ddp.flags & DDP_TASK_ACTIVE)
1793 		return;
1794 	toep->ddp.flags |= DDP_TASK_ACTIVE;
1795 	hold_toepcb(toep);
1796 	soaio_enqueue(&toep->ddp.requeue_task);
1797 }
1798 
1799 static void
1800 aio_ddp_requeue_task(void *context, int pending)
1801 {
1802 	struct toepcb *toep = context;
1803 
1804 	DDP_LOCK(toep);
1805 	aio_ddp_requeue(toep);
1806 	toep->ddp.flags &= ~DDP_TASK_ACTIVE;
1807 	DDP_UNLOCK(toep);
1808 
1809 	free_toepcb(toep);
1810 }
1811 
1812 static void
1813 t4_aio_cancel_active(struct kaiocb *job)
1814 {
1815 	struct socket *so = job->fd_file->f_data;
1816 	struct tcpcb *tp = so_sototcpcb(so);
1817 	struct toepcb *toep = tp->t_toe;
1818 	struct adapter *sc = td_adapter(toep->td);
1819 	uint64_t valid_flag;
1820 	int i;
1821 
1822 	DDP_LOCK(toep);
1823 	if (aio_cancel_cleared(job)) {
1824 		DDP_UNLOCK(toep);
1825 		aio_ddp_cancel_one(job);
1826 		return;
1827 	}
1828 
1829 	for (i = 0; i < nitems(toep->ddp.db); i++) {
1830 		if (toep->ddp.db[i].job == job) {
1831 			/* Should only ever get one cancel request for a job. */
1832 			MPASS(toep->ddp.db[i].cancel_pending == 0);
1833 
1834 			/*
1835 			 * Invalidate this buffer.  It will be
1836 			 * cancelled or partially completed once the
1837 			 * card ACKs the invalidate.
1838 			 */
1839 			valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) :
1840 			    V_TF_DDP_BUF1_VALID(1);
1841 			t4_set_tcb_field(sc, toep->ctrlq, toep,
1842 			    W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1,
1843 			    CPL_COOKIE_DDP0 + i);
1844 			toep->ddp.db[i].cancel_pending = 1;
1845 			CTR2(KTR_CXGBE, "%s: request %p marked pending",
1846 			    __func__, job);
1847 			break;
1848 		}
1849 	}
1850 	DDP_UNLOCK(toep);
1851 }
1852 
1853 static void
1854 t4_aio_cancel_queued(struct kaiocb *job)
1855 {
1856 	struct socket *so = job->fd_file->f_data;
1857 	struct tcpcb *tp = so_sototcpcb(so);
1858 	struct toepcb *toep = tp->t_toe;
1859 
1860 	DDP_LOCK(toep);
1861 	if (!aio_cancel_cleared(job)) {
1862 		TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1863 		toep->ddp.waiting_count--;
1864 		if (toep->ddp.waiting_count == 0)
1865 			ddp_queue_toep(toep);
1866 	}
1867 	CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job);
1868 	DDP_UNLOCK(toep);
1869 
1870 	aio_ddp_cancel_one(job);
1871 }
1872 
1873 int
1874 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job)
1875 {
1876 	struct tcpcb *tp = so_sototcpcb(so);
1877 	struct toepcb *toep = tp->t_toe;
1878 
1879 
1880 	/* Ignore writes. */
1881 	if (job->uaiocb.aio_lio_opcode != LIO_READ)
1882 		return (EOPNOTSUPP);
1883 
1884 	DDP_LOCK(toep);
1885 
1886 	/*
1887 	 * XXX: Think about possibly returning errors for ENOTCONN,
1888 	 * etc.  Perhaps the caller would only queue the request
1889 	 * if it failed with EOPNOTSUPP?
1890 	 */
1891 
1892 #ifdef VERBOSE_TRACES
1893 	CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid);
1894 #endif
1895 	if (!aio_set_cancel_function(job, t4_aio_cancel_queued))
1896 		panic("new job was cancelled");
1897 	TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list);
1898 	toep->ddp.waiting_count++;
1899 	toep->ddp.flags |= DDP_OK;
1900 
1901 	/*
1902 	 * Try to handle this request synchronously.  If this has
1903 	 * to block because the task is running, it will just bail
1904 	 * and let the task handle it instead.
1905 	 */
1906 	aio_ddp_requeue(toep);
1907 	DDP_UNLOCK(toep);
1908 	return (0);
1909 }
1910 
1911 void
1912 t4_ddp_mod_load(void)
1913 {
1914 
1915 	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
1916 	    CPL_COOKIE_DDP0);
1917 	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
1918 	    CPL_COOKIE_DDP1);
1919 	t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp);
1920 	t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete);
1921 	TAILQ_INIT(&ddp_orphan_pagesets);
1922 	mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF);
1923 	TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL);
1924 }
1925 
1926 void
1927 t4_ddp_mod_unload(void)
1928 {
1929 
1930 	taskqueue_drain(taskqueue_thread, &ddp_orphan_task);
1931 	MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets));
1932 	mtx_destroy(&ddp_orphan_pagesets_lock);
1933 	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0);
1934 	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1);
1935 	t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL);
1936 	t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL);
1937 }
1938 #endif
1939