1 /*- 2 * Copyright (c) 2012 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: Navdeep Parhar <np@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/ktr.h> 38 #include <sys/module.h> 39 #include <sys/protosw.h> 40 #include <sys/proc.h> 41 #include <sys/domain.h> 42 #include <sys/socket.h> 43 #include <sys/socketvar.h> 44 #include <sys/uio.h> 45 #include <netinet/in.h> 46 #include <netinet/in_pcb.h> 47 #include <netinet/ip.h> 48 #include <netinet/tcp_var.h> 49 #define TCPSTATES 50 #include <netinet/tcp_fsm.h> 51 #include <netinet/toecore.h> 52 53 #include <vm/vm.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_param.h> 56 #include <vm/pmap.h> 57 #include <vm/vm_map.h> 58 #include <vm/vm_page.h> 59 #include <vm/vm_object.h> 60 61 #ifdef TCP_OFFLOAD 62 #include "common/common.h" 63 #include "common/t4_msg.h" 64 #include "common/t4_regs.h" 65 #include "common/t4_tcb.h" 66 #include "tom/t4_tom.h" 67 68 VNET_DECLARE(int, tcp_do_autorcvbuf); 69 #define V_tcp_do_autorcvbuf VNET(tcp_do_autorcvbuf) 70 VNET_DECLARE(int, tcp_autorcvbuf_inc); 71 #define V_tcp_autorcvbuf_inc VNET(tcp_autorcvbuf_inc) 72 VNET_DECLARE(int, tcp_autorcvbuf_max); 73 #define V_tcp_autorcvbuf_max VNET(tcp_autorcvbuf_max) 74 75 static struct mbuf *get_ddp_mbuf(int len); 76 77 #define PPOD_SZ(n) ((n) * sizeof(struct pagepod)) 78 #define PPOD_SIZE (PPOD_SZ(1)) 79 80 /* XXX: must match A_ULP_RX_TDDP_PSZ */ 81 static int t4_ddp_pgsz[] = {4096, 4096 << 2, 4096 << 4, 4096 << 6}; 82 83 #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) 84 static int 85 alloc_ppods(struct tom_data *td, int n, u_int *ppod_addr) 86 { 87 vmem_addr_t v; 88 int rc; 89 90 MPASS(n > 0); 91 92 rc = vmem_alloc(td->ppod_arena, PPOD_SZ(n), M_NOWAIT | M_FIRSTFIT, &v); 93 *ppod_addr = (u_int)v; 94 95 return (rc); 96 } 97 98 static void 99 free_ppods(struct tom_data *td, u_int ppod_addr, int n) 100 { 101 102 MPASS(n > 0); 103 104 vmem_free(td->ppod_arena, (vmem_addr_t)ppod_addr, PPOD_SZ(n)); 105 } 106 107 static inline int 108 pages_to_nppods(int npages, int ddp_pgsz) 109 { 110 int nsegs = npages * PAGE_SIZE / ddp_pgsz; 111 112 return (howmany(nsegs, PPOD_PAGES)); 113 } 114 115 static void 116 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) 117 { 118 119 if (db == NULL) 120 return; 121 122 if (db->pages) 123 free(db->pages, M_CXGBE); 124 125 if (db->nppods > 0) 126 free_ppods(td, db->ppod_addr, db->nppods); 127 128 free(db, M_CXGBE); 129 } 130 131 void 132 release_ddp_resources(struct toepcb *toep) 133 { 134 int i; 135 136 for (i = 0; i < nitems(toep->db); i++) { 137 if (toep->db[i] != NULL) { 138 free_ddp_buffer(toep->td, toep->db[i]); 139 toep->db[i] = NULL; 140 } 141 } 142 } 143 144 /* XXX: handle_ddp_data code duplication */ 145 void 146 insert_ddp_data(struct toepcb *toep, uint32_t n) 147 { 148 struct inpcb *inp = toep->inp; 149 struct tcpcb *tp = intotcpcb(inp); 150 struct sockbuf *sb = &inp->inp_socket->so_rcv; 151 struct mbuf *m; 152 153 INP_WLOCK_ASSERT(inp); 154 SOCKBUF_LOCK_ASSERT(sb); 155 156 m = get_ddp_mbuf(n); 157 tp->rcv_nxt += n; 158 #ifndef USE_DDP_RX_FLOW_CONTROL 159 KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); 160 tp->rcv_wnd -= n; 161 #endif 162 163 KASSERT(toep->sb_cc >= sbused(sb), 164 ("%s: sb %p has more data (%d) than last time (%d).", 165 __func__, sb, sbused(sb), toep->sb_cc)); 166 toep->rx_credits += toep->sb_cc - sbused(sb); 167 #ifdef USE_DDP_RX_FLOW_CONTROL 168 toep->rx_credits -= n; /* adjust for F_RX_FC_DDP */ 169 #endif 170 sbappendstream_locked(sb, m, 0); 171 toep->sb_cc = sbused(sb); 172 } 173 174 /* SET_TCB_FIELD sent as a ULP command looks like this */ 175 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 176 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 177 178 /* RX_DATA_ACK sent as a ULP command looks like this */ 179 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ 180 sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) 181 182 static inline void * 183 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, 184 uint64_t word, uint64_t mask, uint64_t val) 185 { 186 struct ulptx_idata *ulpsc; 187 struct cpl_set_tcb_field_core *req; 188 189 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 190 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 191 192 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 193 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 194 ulpsc->len = htobe32(sizeof(*req)); 195 196 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 197 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); 198 req->reply_ctrl = htobe16(V_NO_REPLY(1) | 199 V_QUEUENO(toep->ofld_rxq->iq.abs_id)); 200 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 201 req->mask = htobe64(mask); 202 req->val = htobe64(val); 203 204 ulpsc = (struct ulptx_idata *)(req + 1); 205 if (LEN__SET_TCB_FIELD_ULP % 16) { 206 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 207 ulpsc->len = htobe32(0); 208 return (ulpsc + 1); 209 } 210 return (ulpsc); 211 } 212 213 static inline void * 214 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) 215 { 216 struct ulptx_idata *ulpsc; 217 struct cpl_rx_data_ack_core *req; 218 219 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 220 ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); 221 222 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 223 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 224 ulpsc->len = htobe32(sizeof(*req)); 225 226 req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); 227 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); 228 req->credit_dack = htobe32(F_RX_MODULATE_RX); 229 230 ulpsc = (struct ulptx_idata *)(req + 1); 231 if (LEN__RX_DATA_ACK_ULP % 16) { 232 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 233 ulpsc->len = htobe32(0); 234 return (ulpsc + 1); 235 } 236 return (ulpsc); 237 } 238 239 static inline uint64_t 240 select_ddp_flags(struct socket *so, int flags, int db_idx) 241 { 242 uint64_t ddp_flags = V_TF_DDP_INDICATE_OUT(0); 243 int waitall = flags & MSG_WAITALL; 244 int nb = so->so_state & SS_NBIO || flags & (MSG_DONTWAIT | MSG_NBIO); 245 246 KASSERT(db_idx == 0 || db_idx == 1, 247 ("%s: bad DDP buffer index %d", __func__, db_idx)); 248 249 if (db_idx == 0) { 250 ddp_flags |= V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_ACTIVE_BUF(0); 251 if (waitall) 252 ddp_flags |= V_TF_DDP_PUSH_DISABLE_0(1); 253 else if (nb) 254 ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); 255 else 256 ddp_flags |= V_TF_DDP_BUF0_FLUSH(0); 257 } else { 258 ddp_flags |= V_TF_DDP_BUF1_VALID(1) | V_TF_DDP_ACTIVE_BUF(1); 259 if (waitall) 260 ddp_flags |= V_TF_DDP_PUSH_DISABLE_1(1); 261 else if (nb) 262 ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); 263 else 264 ddp_flags |= V_TF_DDP_BUF1_FLUSH(0); 265 } 266 267 return (ddp_flags); 268 } 269 270 static struct wrqe * 271 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, 272 int offset, uint64_t ddp_flags) 273 { 274 struct ddp_buffer *db = toep->db[db_idx]; 275 struct wrqe *wr; 276 struct work_request_hdr *wrh; 277 struct ulp_txpkt *ulpmc; 278 int len; 279 280 KASSERT(db_idx == 0 || db_idx == 1, 281 ("%s: bad DDP buffer index %d", __func__, db_idx)); 282 283 /* 284 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an 285 * RX_DATA_ACK (with RX_MODULATE to speed up delivery). 286 * 287 * The work request header is 16B and always ends at a 16B boundary. 288 * The ULPTX master commands that follow must all end at 16B boundaries 289 * too so we round up the size to 16. 290 */ 291 len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + 292 roundup2(LEN__RX_DATA_ACK_ULP, 16); 293 294 wr = alloc_wrqe(len, toep->ctrlq); 295 if (wr == NULL) 296 return (NULL); 297 wrh = wrtod(wr); 298 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 299 ulpmc = (struct ulp_txpkt *)(wrh + 1); 300 301 /* Write the buffer's tag */ 302 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 303 W_TCB_RX_DDP_BUF0_TAG + db_idx, 304 V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), 305 V_TCB_RX_DDP_BUF0_TAG(db->tag)); 306 307 /* Update the current offset in the DDP buffer and its total length */ 308 if (db_idx == 0) 309 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 310 W_TCB_RX_DDP_BUF0_OFFSET, 311 V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | 312 V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), 313 V_TCB_RX_DDP_BUF0_OFFSET(offset) | 314 V_TCB_RX_DDP_BUF0_LEN(db->len)); 315 else 316 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 317 W_TCB_RX_DDP_BUF1_OFFSET, 318 V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | 319 V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), 320 V_TCB_RX_DDP_BUF1_OFFSET(offset) | 321 V_TCB_RX_DDP_BUF1_LEN((u64)db->len << 32)); 322 323 /* Update DDP flags */ 324 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, 325 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF1_FLUSH(1) | 326 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PUSH_DISABLE_1(1) | 327 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1) | 328 V_TF_DDP_ACTIVE_BUF(1) | V_TF_DDP_INDICATE_OUT(1), ddp_flags); 329 330 /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ 331 ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); 332 333 return (wr); 334 } 335 336 static void 337 discourage_ddp(struct toepcb *toep) 338 { 339 340 if (toep->ddp_score && --toep->ddp_score == 0) { 341 toep->ddp_flags &= ~DDP_OK; 342 toep->ddp_disabled = time_uptime; 343 CTR3(KTR_CXGBE, "%s: tid %u !DDP_OK @ %u", 344 __func__, toep->tid, time_uptime); 345 } 346 } 347 348 static int 349 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) 350 { 351 uint32_t report = be32toh(ddp_report); 352 unsigned int db_flag; 353 struct inpcb *inp = toep->inp; 354 struct tcpcb *tp; 355 struct socket *so; 356 struct sockbuf *sb; 357 struct mbuf *m; 358 359 db_flag = report & F_DDP_BUF_IDX ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 360 361 if (__predict_false(!(report & F_DDP_INV))) 362 CXGBE_UNIMPLEMENTED("DDP buffer still valid"); 363 364 INP_WLOCK(inp); 365 so = inp_inpcbtosocket(inp); 366 sb = &so->so_rcv; 367 if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) { 368 369 /* 370 * XXX: think a bit more. 371 * tcpcb probably gone, but socket should still be around 372 * because we always wait for DDP completion in soreceive no 373 * matter what. Just wake it up and let it clean up. 374 */ 375 376 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 377 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 378 SOCKBUF_LOCK(sb); 379 goto wakeup; 380 } 381 382 tp = intotcpcb(inp); 383 384 /* 385 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 386 * sequence number of the next byte to receive. The length of 387 * the data received for this message must be computed by 388 * comparing the new and old values of rcv_nxt. 389 * 390 * For RX_DATA_DDP, len might be non-zero, but it is only the 391 * length of the most recent DMA. It does not include the 392 * total length of the data received since the previous update 393 * for this DDP buffer. rcv_nxt is the sequence number of the 394 * first received byte from the most recent DMA. 395 */ 396 len += be32toh(rcv_nxt) - tp->rcv_nxt; 397 tp->rcv_nxt += len; 398 tp->t_rcvtime = ticks; 399 #ifndef USE_DDP_RX_FLOW_CONTROL 400 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 401 tp->rcv_wnd -= len; 402 #endif 403 m = get_ddp_mbuf(len); 404 405 SOCKBUF_LOCK(sb); 406 if (report & F_DDP_BUF_COMPLETE) 407 toep->ddp_score = DDP_HIGH_SCORE; 408 else 409 discourage_ddp(toep); 410 411 /* receive buffer autosize */ 412 if (sb->sb_flags & SB_AUTOSIZE && 413 V_tcp_do_autorcvbuf && 414 sb->sb_hiwat < V_tcp_autorcvbuf_max && 415 len > (sbspace(sb) / 8 * 7)) { 416 unsigned int hiwat = sb->sb_hiwat; 417 unsigned int newsize = min(hiwat + V_tcp_autorcvbuf_inc, 418 V_tcp_autorcvbuf_max); 419 420 if (!sbreserve_locked(sb, newsize, so, NULL)) 421 sb->sb_flags &= ~SB_AUTOSIZE; 422 else 423 toep->rx_credits += newsize - hiwat; 424 } 425 426 KASSERT(toep->sb_cc >= sbused(sb), 427 ("%s: sb %p has more data (%d) than last time (%d).", 428 __func__, sb, sbused(sb), toep->sb_cc)); 429 toep->rx_credits += toep->sb_cc - sbused(sb); 430 #ifdef USE_DDP_RX_FLOW_CONTROL 431 toep->rx_credits -= len; /* adjust for F_RX_FC_DDP */ 432 #endif 433 sbappendstream_locked(sb, m, 0); 434 toep->sb_cc = sbused(sb); 435 wakeup: 436 KASSERT(toep->ddp_flags & db_flag, 437 ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x, report 0x%x", 438 __func__, toep, toep->ddp_flags, report)); 439 toep->ddp_flags &= ~db_flag; 440 sorwakeup_locked(so); 441 SOCKBUF_UNLOCK_ASSERT(sb); 442 443 INP_WUNLOCK(inp); 444 return (0); 445 } 446 447 void 448 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, struct sockbuf *sb, 449 __be32 rcv_nxt) 450 { 451 struct mbuf *m; 452 int len; 453 454 SOCKBUF_LOCK_ASSERT(sb); 455 INP_WLOCK_ASSERT(toep->inp); 456 len = be32toh(rcv_nxt) - tp->rcv_nxt; 457 458 /* Signal handle_ddp() to break out of its sleep loop. */ 459 toep->ddp_flags &= ~(DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE); 460 if (len == 0) 461 return; 462 463 tp->rcv_nxt += len; 464 KASSERT(toep->sb_cc >= sbused(sb), 465 ("%s: sb %p has more data (%d) than last time (%d).", 466 __func__, sb, sbused(sb), toep->sb_cc)); 467 toep->rx_credits += toep->sb_cc - sbused(sb); 468 #ifdef USE_DDP_RX_FLOW_CONTROL 469 toep->rx_credits -= len; /* adjust for F_RX_FC_DDP */ 470 #endif 471 472 m = get_ddp_mbuf(len); 473 474 sbappendstream_locked(sb, m, 0); 475 toep->sb_cc = sbused(sb); 476 } 477 478 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ 479 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ 480 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ 481 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) 482 483 static int 484 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 485 { 486 struct adapter *sc = iq->adapter; 487 const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); 488 unsigned int tid = GET_TID(cpl); 489 uint32_t vld; 490 struct toepcb *toep = lookup_tid(sc, tid); 491 492 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 493 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 494 KASSERT(!(toep->flags & TPF_SYNQE), 495 ("%s: toep %p claims to be a synq entry", __func__, toep)); 496 497 vld = be32toh(cpl->ddpvld); 498 if (__predict_false(vld & DDP_ERR)) { 499 panic("%s: DDP error 0x%x (tid %d, toep %p)", 500 __func__, vld, tid, toep); 501 } 502 503 if (toep->ulp_mode == ULP_MODE_ISCSI) { 504 sc->cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); 505 return (0); 506 } 507 508 handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); 509 510 return (0); 511 } 512 513 static int 514 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, 515 struct mbuf *m) 516 { 517 struct adapter *sc = iq->adapter; 518 const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); 519 unsigned int tid = GET_TID(cpl); 520 struct toepcb *toep = lookup_tid(sc, tid); 521 522 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 523 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 524 KASSERT(!(toep->flags & TPF_SYNQE), 525 ("%s: toep %p claims to be a synq entry", __func__, toep)); 526 527 handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); 528 529 return (0); 530 } 531 532 void 533 enable_ddp(struct adapter *sc, struct toepcb *toep) 534 { 535 536 KASSERT((toep->ddp_flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, 537 ("%s: toep %p has bad ddp_flags 0x%x", 538 __func__, toep, toep->ddp_flags)); 539 540 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 541 __func__, toep->tid, time_uptime); 542 543 toep->ddp_flags |= DDP_SC_REQ; 544 t4_set_tcb_field(sc, toep, 1, W_TCB_RX_DDP_FLAGS, 545 V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | 546 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | 547 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), 548 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1)); 549 t4_set_tcb_field(sc, toep, 1, W_TCB_T_FLAGS, 550 V_TF_RCV_COALESCE_ENABLE(1), 0); 551 } 552 553 static inline void 554 disable_ddp(struct adapter *sc, struct toepcb *toep) 555 { 556 557 KASSERT((toep->ddp_flags & (DDP_ON | DDP_SC_REQ)) == DDP_ON, 558 ("%s: toep %p has bad ddp_flags 0x%x", 559 __func__, toep, toep->ddp_flags)); 560 561 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 562 __func__, toep->tid, time_uptime); 563 564 toep->ddp_flags |= DDP_SC_REQ; 565 t4_set_tcb_field(sc, toep, 1, W_TCB_T_FLAGS, 566 V_TF_RCV_COALESCE_ENABLE(1), V_TF_RCV_COALESCE_ENABLE(1)); 567 t4_set_tcb_field(sc, toep, 1, W_TCB_RX_DDP_FLAGS, V_TF_DDP_OFF(1), 568 V_TF_DDP_OFF(1)); 569 } 570 571 static int 572 hold_uio(struct uio *uio, vm_page_t **ppages, int *pnpages) 573 { 574 struct vm_map *map; 575 struct iovec *iov; 576 vm_offset_t start, end; 577 vm_page_t *pp; 578 int n; 579 580 KASSERT(uio->uio_iovcnt == 1, 581 ("%s: uio_iovcnt %d", __func__, uio->uio_iovcnt)); 582 KASSERT(uio->uio_td->td_proc == curproc, 583 ("%s: uio proc (%p) is not curproc (%p)", 584 __func__, uio->uio_td->td_proc, curproc)); 585 586 map = &curproc->p_vmspace->vm_map; 587 iov = &uio->uio_iov[0]; 588 start = trunc_page((uintptr_t)iov->iov_base); 589 end = round_page((vm_offset_t)iov->iov_base + iov->iov_len); 590 n = howmany(end - start, PAGE_SIZE); 591 592 if (end - start > MAX_DDP_BUFFER_SIZE) 593 return (E2BIG); 594 595 pp = malloc(n * sizeof(vm_page_t), M_CXGBE, M_NOWAIT); 596 if (pp == NULL) 597 return (ENOMEM); 598 599 if (vm_fault_quick_hold_pages(map, (vm_offset_t)iov->iov_base, 600 iov->iov_len, VM_PROT_WRITE, pp, n) < 0) { 601 free(pp, M_CXGBE); 602 return (EFAULT); 603 } 604 605 *ppages = pp; 606 *pnpages = n; 607 608 return (0); 609 } 610 611 static int 612 bufcmp(struct ddp_buffer *db, vm_page_t *pages, int npages, int offset, int len) 613 { 614 int i; 615 616 if (db == NULL || db->npages != npages || db->offset != offset || 617 db->len != len) 618 return (1); 619 620 for (i = 0; i < npages; i++) { 621 if (pages[i]->phys_addr != db->pages[i]->phys_addr) 622 return (1); 623 } 624 625 return (0); 626 } 627 628 static int 629 calculate_hcf(int n1, int n2) 630 { 631 int a, b, t; 632 633 if (n1 <= n2) { 634 a = n1; 635 b = n2; 636 } else { 637 a = n2; 638 b = n1; 639 } 640 641 while (a != 0) { 642 t = a; 643 a = b % a; 644 b = t; 645 } 646 647 return (b); 648 } 649 650 static struct ddp_buffer * 651 alloc_ddp_buffer(struct tom_data *td, vm_page_t *pages, int npages, int offset, 652 int len) 653 { 654 int i, hcf, seglen, idx, ppod, nppods; 655 struct ddp_buffer *db; 656 657 /* 658 * The DDP page size is unrelated to the VM page size. We combine 659 * contiguous physical pages into larger segments to get the best DDP 660 * page size possible. This is the largest of the four sizes in 661 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in 662 * the page list. 663 */ 664 hcf = 0; 665 for (i = 0; i < npages; i++) { 666 seglen = PAGE_SIZE; 667 while (i < npages - 1 && 668 pages[i]->phys_addr + PAGE_SIZE == pages[i + 1]->phys_addr) { 669 seglen += PAGE_SIZE; 670 i++; 671 } 672 673 hcf = calculate_hcf(hcf, seglen); 674 if (hcf < t4_ddp_pgsz[1]) { 675 idx = 0; 676 goto have_pgsz; /* give up, short circuit */ 677 } 678 } 679 680 if (hcf % t4_ddp_pgsz[0] != 0) { 681 /* hmmm. This could only happen when PAGE_SIZE < 4K */ 682 KASSERT(PAGE_SIZE < 4096, 683 ("%s: PAGE_SIZE %d, hcf %d", __func__, PAGE_SIZE, hcf)); 684 CTR3(KTR_CXGBE, "%s: PAGE_SIZE %d, hcf %d", 685 __func__, PAGE_SIZE, hcf); 686 return (NULL); 687 } 688 689 for (idx = nitems(t4_ddp_pgsz) - 1; idx > 0; idx--) { 690 if (hcf % t4_ddp_pgsz[idx] == 0) 691 break; 692 } 693 have_pgsz: 694 MPASS(idx <= M_PPOD_PGSZ); 695 696 db = malloc(sizeof(*db), M_CXGBE, M_NOWAIT); 697 if (db == NULL) { 698 CTR1(KTR_CXGBE, "%s: malloc failed.", __func__); 699 return (NULL); 700 } 701 702 nppods = pages_to_nppods(npages, t4_ddp_pgsz[idx]); 703 if (alloc_ppods(td, nppods, &db->ppod_addr) != 0) { 704 free(db, M_CXGBE); 705 CTR4(KTR_CXGBE, "%s: no pods, nppods %d, resid %d, pgsz %d", 706 __func__, nppods, len, t4_ddp_pgsz[idx]); 707 return (NULL); 708 } 709 ppod = (db->ppod_addr - td->ppod_start) / PPOD_SIZE; 710 711 db->tag = V_PPOD_PGSZ(idx) | V_PPOD_TAG(ppod); 712 db->nppods = nppods; 713 db->npages = npages; 714 db->pages = pages; 715 db->offset = offset; 716 db->len = len; 717 718 CTR6(KTR_CXGBE, "New DDP buffer. " 719 "ddp_pgsz %d, ppod 0x%x, npages %d, nppods %d, offset %d, len %d", 720 t4_ddp_pgsz[idx], ppod, db->npages, db->nppods, db->offset, 721 db->len); 722 723 return (db); 724 } 725 726 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) 727 728 static int 729 write_page_pods(struct adapter *sc, struct toepcb *toep, struct ddp_buffer *db) 730 { 731 struct wrqe *wr; 732 struct ulp_mem_io *ulpmc; 733 struct ulptx_idata *ulpsc; 734 struct pagepod *ppod; 735 int i, j, k, n, chunk, len, ddp_pgsz, idx; 736 u_int ppod_addr; 737 uint32_t cmd; 738 739 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 740 if (is_t4(sc)) 741 cmd |= htobe32(F_ULP_MEMIO_ORDER); 742 else 743 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 744 ddp_pgsz = t4_ddp_pgsz[G_PPOD_PGSZ(db->tag)]; 745 ppod_addr = db->ppod_addr; 746 for (i = 0; i < db->nppods; ppod_addr += chunk) { 747 748 /* How many page pods are we writing in this cycle */ 749 n = min(db->nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 750 chunk = PPOD_SZ(n); 751 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 752 753 wr = alloc_wrqe(len, toep->ctrlq); 754 if (wr == NULL) 755 return (ENOMEM); /* ok to just bail out */ 756 ulpmc = wrtod(wr); 757 758 INIT_ULPTX_WR(ulpmc, len, 0, 0); 759 ulpmc->cmd = cmd; 760 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 761 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 762 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 763 764 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 765 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 766 ulpsc->len = htobe32(chunk); 767 768 ppod = (struct pagepod *)(ulpsc + 1); 769 for (j = 0; j < n; i++, j++, ppod++) { 770 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 771 V_PPOD_TID(toep->tid) | db->tag); 772 ppod->len_offset = htobe64(V_PPOD_LEN(db->len) | 773 V_PPOD_OFST(db->offset)); 774 ppod->rsvd = 0; 775 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 776 for (k = 0; k < nitems(ppod->addr); k++) { 777 if (idx < db->npages) { 778 ppod->addr[k] = 779 htobe64(db->pages[idx]->phys_addr); 780 idx += ddp_pgsz / PAGE_SIZE; 781 } else 782 ppod->addr[k] = 0; 783 #if 0 784 CTR5(KTR_CXGBE, 785 "%s: tid %d ppod[%d]->addr[%d] = %p", 786 __func__, toep->tid, i, k, 787 htobe64(ppod->addr[k])); 788 #endif 789 } 790 791 } 792 793 t4_wrq_tx(sc, wr); 794 } 795 796 return (0); 797 } 798 799 /* 800 * Reuse, or allocate (and program the page pods for) a new DDP buffer. The 801 * "pages" array is handed over to this function and should not be used in any 802 * way by the caller after that. 803 */ 804 static int 805 select_ddp_buffer(struct adapter *sc, struct toepcb *toep, vm_page_t *pages, 806 int npages, int db_off, int db_len) 807 { 808 struct ddp_buffer *db; 809 struct tom_data *td = sc->tom_softc; 810 int i, empty_slot = -1; 811 812 /* Try to reuse */ 813 for (i = 0; i < nitems(toep->db); i++) { 814 if (bufcmp(toep->db[i], pages, npages, db_off, db_len) == 0) { 815 free(pages, M_CXGBE); 816 return (i); /* pages still held */ 817 } else if (toep->db[i] == NULL && empty_slot < 0) 818 empty_slot = i; 819 } 820 821 /* Allocate new buffer, write its page pods. */ 822 db = alloc_ddp_buffer(td, pages, npages, db_off, db_len); 823 if (db == NULL) { 824 vm_page_unhold_pages(pages, npages); 825 free(pages, M_CXGBE); 826 return (-1); 827 } 828 if (write_page_pods(sc, toep, db) != 0) { 829 vm_page_unhold_pages(pages, npages); 830 free_ddp_buffer(td, db); 831 return (-1); 832 } 833 834 i = empty_slot; 835 if (i < 0) { 836 i = arc4random() % nitems(toep->db); 837 free_ddp_buffer(td, toep->db[i]); 838 } 839 toep->db[i] = db; 840 841 CTR5(KTR_CXGBE, "%s: tid %d, DDP buffer[%d] = %p (tag 0x%x)", 842 __func__, toep->tid, i, db, db->tag); 843 844 return (i); 845 } 846 847 static void 848 wire_ddp_buffer(struct ddp_buffer *db) 849 { 850 int i; 851 vm_page_t p; 852 853 for (i = 0; i < db->npages; i++) { 854 p = db->pages[i]; 855 vm_page_lock(p); 856 vm_page_wire(p); 857 vm_page_unhold(p); 858 vm_page_unlock(p); 859 } 860 } 861 862 static void 863 unwire_ddp_buffer(struct ddp_buffer *db) 864 { 865 int i; 866 vm_page_t p; 867 868 for (i = 0; i < db->npages; i++) { 869 p = db->pages[i]; 870 vm_page_lock(p); 871 vm_page_unwire(p, PQ_INACTIVE); 872 vm_page_unlock(p); 873 } 874 } 875 876 static int 877 handle_ddp(struct socket *so, struct uio *uio, int flags, int error) 878 { 879 struct sockbuf *sb = &so->so_rcv; 880 struct tcpcb *tp = so_sototcpcb(so); 881 struct toepcb *toep = tp->t_toe; 882 struct adapter *sc = td_adapter(toep->td); 883 vm_page_t *pages; 884 int npages, db_idx, rc, buf_flag; 885 struct ddp_buffer *db; 886 struct wrqe *wr; 887 uint64_t ddp_flags; 888 889 SOCKBUF_LOCK_ASSERT(sb); 890 891 #if 0 892 if (sbused(sb) + sc->tt.ddp_thres > uio->uio_resid) { 893 CTR4(KTR_CXGBE, "%s: sb_cc %d, threshold %d, resid %d", 894 __func__, sbused(sb), sc->tt.ddp_thres, uio->uio_resid); 895 } 896 #endif 897 898 /* XXX: too eager to disable DDP, could handle NBIO better than this. */ 899 if (sbused(sb) >= uio->uio_resid || uio->uio_resid < sc->tt.ddp_thres || 900 uio->uio_resid > MAX_DDP_BUFFER_SIZE || uio->uio_iovcnt > 1 || 901 so->so_state & SS_NBIO || flags & (MSG_DONTWAIT | MSG_NBIO) || 902 error || so->so_error || sb->sb_state & SBS_CANTRCVMORE) 903 goto no_ddp; 904 905 /* 906 * Fault in and then hold the pages of the uio buffers. We'll wire them 907 * a bit later if everything else works out. 908 */ 909 SOCKBUF_UNLOCK(sb); 910 if (hold_uio(uio, &pages, &npages) != 0) { 911 SOCKBUF_LOCK(sb); 912 goto no_ddp; 913 } 914 SOCKBUF_LOCK(sb); 915 if (__predict_false(so->so_error || sb->sb_state & SBS_CANTRCVMORE)) { 916 vm_page_unhold_pages(pages, npages); 917 free(pages, M_CXGBE); 918 goto no_ddp; 919 } 920 921 /* 922 * Figure out which one of the two DDP buffers to use this time. 923 */ 924 db_idx = select_ddp_buffer(sc, toep, pages, npages, 925 (uintptr_t)uio->uio_iov->iov_base & PAGE_MASK, uio->uio_resid); 926 pages = NULL; /* handed off to select_ddp_buffer */ 927 if (db_idx < 0) 928 goto no_ddp; 929 db = toep->db[db_idx]; 930 buf_flag = db_idx == 0 ? DDP_BUF0_ACTIVE : DDP_BUF1_ACTIVE; 931 932 /* 933 * Build the compound work request that tells the chip where to DMA the 934 * payload. 935 */ 936 ddp_flags = select_ddp_flags(so, flags, db_idx); 937 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, sbused(sb), ddp_flags); 938 if (wr == NULL) { 939 /* 940 * Just unhold the pages. The DDP buffer's software state is 941 * left as-is in the toep. The page pods were written 942 * successfully and we may have an opportunity to use it in the 943 * future. 944 */ 945 vm_page_unhold_pages(db->pages, db->npages); 946 goto no_ddp; 947 } 948 949 /* Wire (and then unhold) the pages, and give the chip the go-ahead. */ 950 wire_ddp_buffer(db); 951 t4_wrq_tx(sc, wr); 952 sb->sb_flags &= ~SB_DDP_INDICATE; 953 toep->ddp_flags |= buf_flag; 954 955 /* 956 * Wait for the DDP operation to complete and then unwire the pages. 957 * The return code from the sbwait will be the final return code of this 958 * function. But we do need to wait for DDP no matter what. 959 */ 960 rc = sbwait(sb); 961 while (toep->ddp_flags & buf_flag) { 962 /* XXXGL: shouldn't here be sbwait() call? */ 963 sb->sb_flags |= SB_WAIT; 964 msleep(&sb->sb_acc, &sb->sb_mtx, PSOCK , "sbwait", 0); 965 } 966 unwire_ddp_buffer(db); 967 return (rc); 968 no_ddp: 969 disable_ddp(sc, toep); 970 discourage_ddp(toep); 971 sb->sb_flags &= ~SB_DDP_INDICATE; 972 return (0); 973 } 974 975 void 976 t4_init_ddp(struct adapter *sc, struct tom_data *td) 977 { 978 979 td->ppod_start = sc->vres.ddp.start; 980 td->ppod_arena = vmem_create("DDP page pods", sc->vres.ddp.start, 981 sc->vres.ddp.size, 1, 32, M_FIRSTFIT | M_NOWAIT); 982 983 t4_register_cpl_handler(sc, CPL_RX_DATA_DDP, do_rx_data_ddp); 984 t4_register_cpl_handler(sc, CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); 985 } 986 987 void 988 t4_uninit_ddp(struct adapter *sc __unused, struct tom_data *td) 989 { 990 991 if (td->ppod_arena != NULL) { 992 vmem_destroy(td->ppod_arena); 993 td->ppod_arena = NULL; 994 } 995 } 996 997 #define VNET_SO_ASSERT(so) \ 998 VNET_ASSERT(curvnet != NULL, \ 999 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 1000 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1001 static int 1002 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1003 { 1004 1005 CXGBE_UNIMPLEMENTED(__func__); 1006 } 1007 1008 static char ddp_magic_str[] = "nothing to see here"; 1009 1010 static struct mbuf * 1011 get_ddp_mbuf(int len) 1012 { 1013 struct mbuf *m; 1014 1015 m = m_get(M_NOWAIT, MT_DATA); 1016 if (m == NULL) 1017 CXGBE_UNIMPLEMENTED("mbuf alloc failure"); 1018 m->m_len = len; 1019 m->m_data = &ddp_magic_str[0]; 1020 1021 return (m); 1022 } 1023 1024 static inline int 1025 is_ddp_mbuf(struct mbuf *m) 1026 { 1027 1028 return (m->m_data == &ddp_magic_str[0]); 1029 } 1030 1031 /* 1032 * Copy an mbuf chain into a uio limited by len if set. 1033 */ 1034 static int 1035 m_mbuftouio_ddp(struct uio *uio, struct mbuf *m, int len) 1036 { 1037 int error, length, total; 1038 int progress = 0; 1039 1040 if (len > 0) 1041 total = min(uio->uio_resid, len); 1042 else 1043 total = uio->uio_resid; 1044 1045 /* Fill the uio with data from the mbufs. */ 1046 for (; m != NULL; m = m->m_next) { 1047 length = min(m->m_len, total - progress); 1048 1049 if (is_ddp_mbuf(m)) { 1050 enum uio_seg segflag = uio->uio_segflg; 1051 1052 uio->uio_segflg = UIO_NOCOPY; 1053 error = uiomove(mtod(m, void *), length, uio); 1054 uio->uio_segflg = segflag; 1055 } else 1056 error = uiomove(mtod(m, void *), length, uio); 1057 if (error) 1058 return (error); 1059 1060 progress += length; 1061 } 1062 1063 return (0); 1064 } 1065 1066 /* 1067 * Based on soreceive_stream() in uipc_socket.c 1068 */ 1069 int 1070 t4_soreceive_ddp(struct socket *so, struct sockaddr **psa, struct uio *uio, 1071 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1072 { 1073 int len = 0, error = 0, flags, oresid, ddp_handled = 0; 1074 struct sockbuf *sb; 1075 struct mbuf *m, *n = NULL; 1076 1077 /* We only do stream sockets. */ 1078 if (so->so_type != SOCK_STREAM) 1079 return (EINVAL); 1080 if (psa != NULL) 1081 *psa = NULL; 1082 if (controlp != NULL) 1083 return (EINVAL); 1084 if (flagsp != NULL) 1085 flags = *flagsp &~ MSG_EOR; 1086 else 1087 flags = 0; 1088 if (flags & MSG_OOB) 1089 return (soreceive_rcvoob(so, uio, flags)); 1090 if (mp0 != NULL) 1091 *mp0 = NULL; 1092 1093 sb = &so->so_rcv; 1094 1095 /* Prevent other readers from entering the socket. */ 1096 error = sblock(sb, SBLOCKWAIT(flags)); 1097 SOCKBUF_LOCK(sb); 1098 if (error) 1099 goto out; 1100 1101 /* Easy one, no space to copyout anything. */ 1102 if (uio->uio_resid == 0) { 1103 error = EINVAL; 1104 goto out; 1105 } 1106 oresid = uio->uio_resid; 1107 1108 /* We will never ever get anything unless we are or were connected. */ 1109 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1110 error = ENOTCONN; 1111 goto out; 1112 } 1113 1114 restart: 1115 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1116 1117 if (sb->sb_flags & SB_DDP_INDICATE && !ddp_handled) { 1118 1119 /* uio should be just as it was at entry */ 1120 KASSERT(oresid == uio->uio_resid, 1121 ("%s: oresid = %d, uio_resid = %zd, sbavail = %d", 1122 __func__, oresid, uio->uio_resid, sbavail(sb))); 1123 1124 error = handle_ddp(so, uio, flags, 0); 1125 ddp_handled = 1; 1126 if (error) 1127 goto out; 1128 } 1129 1130 /* Abort if socket has reported problems. */ 1131 if (so->so_error) { 1132 if (sbavail(sb)) 1133 goto deliver; 1134 if (oresid > uio->uio_resid) 1135 goto out; 1136 error = so->so_error; 1137 if (!(flags & MSG_PEEK)) 1138 so->so_error = 0; 1139 goto out; 1140 } 1141 1142 /* Door is closed. Deliver what is left, if any. */ 1143 if (sb->sb_state & SBS_CANTRCVMORE) { 1144 if (sbavail(sb)) 1145 goto deliver; 1146 else 1147 goto out; 1148 } 1149 1150 /* Socket buffer is empty and we shall not block. */ 1151 if (sbavail(sb) == 0 && 1152 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 1153 error = EAGAIN; 1154 goto out; 1155 } 1156 1157 /* Socket buffer got some data that we shall deliver now. */ 1158 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 1159 ((so->so_state & SS_NBIO) || 1160 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 1161 sbavail(sb) >= sb->sb_lowat || 1162 sbavail(sb) >= uio->uio_resid || 1163 sbavail(sb) >= sb->sb_hiwat) ) { 1164 goto deliver; 1165 } 1166 1167 /* On MSG_WAITALL we must wait until all data or error arrives. */ 1168 if ((flags & MSG_WAITALL) && 1169 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_lowat)) 1170 goto deliver; 1171 1172 /* 1173 * Wait and block until (more) data comes in. 1174 * NB: Drops the sockbuf lock during wait. 1175 */ 1176 error = sbwait(sb); 1177 if (error) { 1178 if (sb->sb_flags & SB_DDP_INDICATE && !ddp_handled) { 1179 (void) handle_ddp(so, uio, flags, 1); 1180 ddp_handled = 1; 1181 } 1182 goto out; 1183 } 1184 goto restart; 1185 1186 deliver: 1187 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1188 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 1189 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 1190 1191 if (sb->sb_flags & SB_DDP_INDICATE && !ddp_handled) 1192 goto restart; 1193 1194 /* Statistics. */ 1195 if (uio->uio_td) 1196 uio->uio_td->td_ru.ru_msgrcv++; 1197 1198 /* Fill uio until full or current end of socket buffer is reached. */ 1199 len = min(uio->uio_resid, sbavail(sb)); 1200 if (mp0 != NULL) { 1201 /* Dequeue as many mbufs as possible. */ 1202 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 1203 for (*mp0 = m = sb->sb_mb; 1204 m != NULL && m->m_len <= len; 1205 m = m->m_next) { 1206 len -= m->m_len; 1207 uio->uio_resid -= m->m_len; 1208 sbfree(sb, m); 1209 n = m; 1210 } 1211 sb->sb_mb = m; 1212 if (sb->sb_mb == NULL) 1213 SB_EMPTY_FIXUP(sb); 1214 n->m_next = NULL; 1215 } 1216 /* Copy the remainder. */ 1217 if (len > 0) { 1218 KASSERT(sb->sb_mb != NULL, 1219 ("%s: len > 0 && sb->sb_mb empty", __func__)); 1220 1221 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 1222 if (m == NULL) 1223 len = 0; /* Don't flush data from sockbuf. */ 1224 else 1225 uio->uio_resid -= m->m_len; 1226 if (*mp0 != NULL) 1227 n->m_next = m; 1228 else 1229 *mp0 = m; 1230 if (*mp0 == NULL) { 1231 error = ENOBUFS; 1232 goto out; 1233 } 1234 } 1235 } else { 1236 /* NB: Must unlock socket buffer as uiomove may sleep. */ 1237 SOCKBUF_UNLOCK(sb); 1238 error = m_mbuftouio_ddp(uio, sb->sb_mb, len); 1239 SOCKBUF_LOCK(sb); 1240 if (error) 1241 goto out; 1242 } 1243 SBLASTRECORDCHK(sb); 1244 SBLASTMBUFCHK(sb); 1245 1246 /* 1247 * Remove the delivered data from the socket buffer unless we 1248 * were only peeking. 1249 */ 1250 if (!(flags & MSG_PEEK)) { 1251 if (len > 0) 1252 sbdrop_locked(sb, len); 1253 1254 /* Notify protocol that we drained some data. */ 1255 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 1256 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 1257 !(flags & MSG_SOCALLBCK))) { 1258 SOCKBUF_UNLOCK(sb); 1259 VNET_SO_ASSERT(so); 1260 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 1261 SOCKBUF_LOCK(sb); 1262 } 1263 } 1264 1265 /* 1266 * For MSG_WAITALL we may have to loop again and wait for 1267 * more data to come in. 1268 */ 1269 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 1270 goto restart; 1271 out: 1272 SOCKBUF_LOCK_ASSERT(sb); 1273 SBLASTRECORDCHK(sb); 1274 SBLASTMBUFCHK(sb); 1275 SOCKBUF_UNLOCK(sb); 1276 sbunlock(sb); 1277 return (error); 1278 } 1279 1280 #endif 1281