xref: /freebsd/sys/dev/cxgbe/tom/t4_ddp.c (revision 86aa9539fef591a363b06a0ebd3aa7a07f4c1579)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 
35 #include <sys/param.h>
36 #include <sys/aio.h>
37 #include <sys/file.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/ktr.h>
41 #include <sys/module.h>
42 #include <sys/protosw.h>
43 #include <sys/proc.h>
44 #include <sys/domain.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/taskqueue.h>
48 #include <sys/uio.h>
49 #include <netinet/in.h>
50 #include <netinet/in_pcb.h>
51 #include <netinet/ip.h>
52 #include <netinet/tcp_var.h>
53 #define TCPSTATES
54 #include <netinet/tcp_fsm.h>
55 #include <netinet/toecore.h>
56 
57 #include <vm/vm.h>
58 #include <vm/vm_extern.h>
59 #include <vm/vm_param.h>
60 #include <vm/pmap.h>
61 #include <vm/vm_map.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_object.h>
64 
65 #ifdef TCP_OFFLOAD
66 #include "common/common.h"
67 #include "common/t4_msg.h"
68 #include "common/t4_regs.h"
69 #include "common/t4_tcb.h"
70 #include "tom/t4_tom.h"
71 
72 /*
73  * Use the 'backend3' field in AIO jobs to store the amount of data
74  * received by the AIO job so far.
75  */
76 #define	aio_received	backend3
77 
78 static void aio_ddp_requeue_task(void *context, int pending);
79 static void ddp_complete_all(struct toepcb *toep, int error);
80 static void t4_aio_cancel_active(struct kaiocb *job);
81 static void t4_aio_cancel_queued(struct kaiocb *job);
82 
83 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets;
84 static struct mtx ddp_orphan_pagesets_lock;
85 static struct task ddp_orphan_task;
86 
87 #define MAX_DDP_BUFFER_SIZE		(M_TCB_RX_DDP_BUF0_LEN)
88 
89 /*
90  * A page set holds information about a buffer used for DDP.  The page
91  * set holds resources such as the VM pages backing the buffer (either
92  * held or wired) and the page pods associated with the buffer.
93  * Recently used page sets are cached to allow for efficient reuse of
94  * buffers (avoiding the need to re-fault in pages, hold them, etc.).
95  * Note that cached page sets keep the backing pages wired.  The
96  * number of wired pages is capped by only allowing for two wired
97  * pagesets per connection.  This is not a perfect cap, but is a
98  * trade-off for performance.
99  *
100  * If an application ping-pongs two buffers for a connection via
101  * aio_read(2) then those buffers should remain wired and expensive VM
102  * fault lookups should be avoided after each buffer has been used
103  * once.  If an application uses more than two buffers then this will
104  * fall back to doing expensive VM fault lookups for each operation.
105  */
106 static void
107 free_pageset(struct tom_data *td, struct pageset *ps)
108 {
109 	vm_page_t p;
110 	int i;
111 
112 	if (ps->prsv.prsv_nppods > 0)
113 		t4_free_page_pods(&ps->prsv);
114 
115 	for (i = 0; i < ps->npages; i++) {
116 		p = ps->pages[i];
117 		vm_page_lock(p);
118 		vm_page_unwire(p, PQ_INACTIVE);
119 		vm_page_unlock(p);
120 	}
121 	mtx_lock(&ddp_orphan_pagesets_lock);
122 	TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link);
123 	taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task);
124 	mtx_unlock(&ddp_orphan_pagesets_lock);
125 }
126 
127 static void
128 ddp_free_orphan_pagesets(void *context, int pending)
129 {
130 	struct pageset *ps;
131 
132 	mtx_lock(&ddp_orphan_pagesets_lock);
133 	while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) {
134 		ps = TAILQ_FIRST(&ddp_orphan_pagesets);
135 		TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link);
136 		mtx_unlock(&ddp_orphan_pagesets_lock);
137 		if (ps->vm)
138 			vmspace_free(ps->vm);
139 		free(ps, M_CXGBE);
140 		mtx_lock(&ddp_orphan_pagesets_lock);
141 	}
142 	mtx_unlock(&ddp_orphan_pagesets_lock);
143 }
144 
145 static void
146 recycle_pageset(struct toepcb *toep, struct pageset *ps)
147 {
148 
149 	DDP_ASSERT_LOCKED(toep);
150 	if (!(toep->ddp.flags & DDP_DEAD)) {
151 		KASSERT(toep->ddp.cached_count + toep->ddp.active_count <
152 		    nitems(toep->ddp.db), ("too many wired pagesets"));
153 		TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link);
154 		toep->ddp.cached_count++;
155 	} else
156 		free_pageset(toep->td, ps);
157 }
158 
159 static void
160 ddp_complete_one(struct kaiocb *job, int error)
161 {
162 	long copied;
163 
164 	/*
165 	 * If this job had copied data out of the socket buffer before
166 	 * it was cancelled, report it as a short read rather than an
167 	 * error.
168 	 */
169 	copied = job->aio_received;
170 	if (copied != 0 || error == 0)
171 		aio_complete(job, copied, 0);
172 	else
173 		aio_complete(job, -1, error);
174 }
175 
176 static void
177 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db)
178 {
179 
180 	if (db->job) {
181 		/*
182 		 * XXX: If we are un-offloading the socket then we
183 		 * should requeue these on the socket somehow.  If we
184 		 * got a FIN from the remote end, then this completes
185 		 * any remaining requests with an EOF read.
186 		 */
187 		if (!aio_clear_cancel_function(db->job))
188 			ddp_complete_one(db->job, 0);
189 	}
190 
191 	if (db->ps)
192 		free_pageset(td, db->ps);
193 }
194 
195 void
196 ddp_init_toep(struct toepcb *toep)
197 {
198 
199 	TAILQ_INIT(&toep->ddp.aiojobq);
200 	TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep);
201 	toep->ddp.flags = DDP_OK;
202 	toep->ddp.active_id = -1;
203 	mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF);
204 }
205 
206 void
207 ddp_uninit_toep(struct toepcb *toep)
208 {
209 
210 	mtx_destroy(&toep->ddp.lock);
211 }
212 
213 void
214 release_ddp_resources(struct toepcb *toep)
215 {
216 	struct pageset *ps;
217 	int i;
218 
219 	DDP_LOCK(toep);
220 	toep->ddp.flags |= DDP_DEAD;
221 	for (i = 0; i < nitems(toep->ddp.db); i++) {
222 		free_ddp_buffer(toep->td, &toep->ddp.db[i]);
223 	}
224 	while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) {
225 		TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
226 		free_pageset(toep->td, ps);
227 	}
228 	ddp_complete_all(toep, 0);
229 	DDP_UNLOCK(toep);
230 }
231 
232 #ifdef INVARIANTS
233 void
234 ddp_assert_empty(struct toepcb *toep)
235 {
236 	int i;
237 
238 	MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE));
239 	for (i = 0; i < nitems(toep->ddp.db); i++) {
240 		MPASS(toep->ddp.db[i].job == NULL);
241 		MPASS(toep->ddp.db[i].ps == NULL);
242 	}
243 	MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets));
244 	MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq));
245 }
246 #endif
247 
248 static void
249 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db,
250     unsigned int db_idx)
251 {
252 	unsigned int db_flag;
253 
254 	toep->ddp.active_count--;
255 	if (toep->ddp.active_id == db_idx) {
256 		if (toep->ddp.active_count == 0) {
257 			KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL,
258 			    ("%s: active_count mismatch", __func__));
259 			toep->ddp.active_id = -1;
260 		} else
261 			toep->ddp.active_id ^= 1;
262 #ifdef VERBOSE_TRACES
263 		CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__,
264 		    toep->tid, toep->ddp.active_id);
265 #endif
266 	} else {
267 		KASSERT(toep->ddp.active_count != 0 &&
268 		    toep->ddp.active_id != -1,
269 		    ("%s: active count mismatch", __func__));
270 	}
271 
272 	db->cancel_pending = 0;
273 	db->job = NULL;
274 	recycle_pageset(toep, db->ps);
275 	db->ps = NULL;
276 
277 	db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
278 	KASSERT(toep->ddp.flags & db_flag,
279 	    ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x",
280 	    __func__, toep, toep->ddp.flags));
281 	toep->ddp.flags &= ~db_flag;
282 }
283 
284 /* XXX: handle_ddp_data code duplication */
285 void
286 insert_ddp_data(struct toepcb *toep, uint32_t n)
287 {
288 	struct inpcb *inp = toep->inp;
289 	struct tcpcb *tp = intotcpcb(inp);
290 	struct ddp_buffer *db;
291 	struct kaiocb *job;
292 	size_t placed;
293 	long copied;
294 	unsigned int db_flag, db_idx;
295 
296 	INP_WLOCK_ASSERT(inp);
297 	DDP_ASSERT_LOCKED(toep);
298 
299 	tp->rcv_nxt += n;
300 #ifndef USE_DDP_RX_FLOW_CONTROL
301 	KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__));
302 	tp->rcv_wnd -= n;
303 #endif
304 	CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP",
305 	    __func__, n);
306 	while (toep->ddp.active_count > 0) {
307 		MPASS(toep->ddp.active_id != -1);
308 		db_idx = toep->ddp.active_id;
309 		db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
310 		MPASS((toep->ddp.flags & db_flag) != 0);
311 		db = &toep->ddp.db[db_idx];
312 		job = db->job;
313 		copied = job->aio_received;
314 		placed = n;
315 		if (placed > job->uaiocb.aio_nbytes - copied)
316 			placed = job->uaiocb.aio_nbytes - copied;
317 		if (placed > 0)
318 			job->msgrcv = 1;
319 		if (!aio_clear_cancel_function(job)) {
320 			/*
321 			 * Update the copied length for when
322 			 * t4_aio_cancel_active() completes this
323 			 * request.
324 			 */
325 			job->aio_received += placed;
326 		} else if (copied + placed != 0) {
327 			CTR4(KTR_CXGBE,
328 			    "%s: completing %p (copied %ld, placed %lu)",
329 			    __func__, job, copied, placed);
330 			/* XXX: This always completes if there is some data. */
331 			aio_complete(job, copied + placed, 0);
332 		} else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) {
333 			TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
334 			toep->ddp.waiting_count++;
335 		} else
336 			aio_cancel(job);
337 		n -= placed;
338 		complete_ddp_buffer(toep, db, db_idx);
339 	}
340 
341 	MPASS(n == 0);
342 }
343 
344 /* SET_TCB_FIELD sent as a ULP command looks like this */
345 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \
346     sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core))
347 
348 /* RX_DATA_ACK sent as a ULP command looks like this */
349 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \
350     sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core))
351 
352 static inline void *
353 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep,
354     uint64_t word, uint64_t mask, uint64_t val)
355 {
356 	struct ulptx_idata *ulpsc;
357 	struct cpl_set_tcb_field_core *req;
358 
359 	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
360 	ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16));
361 
362 	ulpsc = (struct ulptx_idata *)(ulpmc + 1);
363 	ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
364 	ulpsc->len = htobe32(sizeof(*req));
365 
366 	req = (struct cpl_set_tcb_field_core *)(ulpsc + 1);
367 	OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid));
368 	req->reply_ctrl = htobe16(V_NO_REPLY(1) |
369 	    V_QUEUENO(toep->ofld_rxq->iq.abs_id));
370 	req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0));
371         req->mask = htobe64(mask);
372         req->val = htobe64(val);
373 
374 	ulpsc = (struct ulptx_idata *)(req + 1);
375 	if (LEN__SET_TCB_FIELD_ULP % 16) {
376 		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
377 		ulpsc->len = htobe32(0);
378 		return (ulpsc + 1);
379 	}
380 	return (ulpsc);
381 }
382 
383 static inline void *
384 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep)
385 {
386 	struct ulptx_idata *ulpsc;
387 	struct cpl_rx_data_ack_core *req;
388 
389 	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
390 	ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16));
391 
392 	ulpsc = (struct ulptx_idata *)(ulpmc + 1);
393 	ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
394 	ulpsc->len = htobe32(sizeof(*req));
395 
396 	req = (struct cpl_rx_data_ack_core *)(ulpsc + 1);
397 	OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid));
398 	req->credit_dack = htobe32(F_RX_MODULATE_RX);
399 
400 	ulpsc = (struct ulptx_idata *)(req + 1);
401 	if (LEN__RX_DATA_ACK_ULP % 16) {
402 		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
403 		ulpsc->len = htobe32(0);
404 		return (ulpsc + 1);
405 	}
406 	return (ulpsc);
407 }
408 
409 static struct wrqe *
410 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx,
411     struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask)
412 {
413 	struct wrqe *wr;
414 	struct work_request_hdr *wrh;
415 	struct ulp_txpkt *ulpmc;
416 	int len;
417 
418 	KASSERT(db_idx == 0 || db_idx == 1,
419 	    ("%s: bad DDP buffer index %d", __func__, db_idx));
420 
421 	/*
422 	 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an
423 	 * RX_DATA_ACK (with RX_MODULATE to speed up delivery).
424 	 *
425 	 * The work request header is 16B and always ends at a 16B boundary.
426 	 * The ULPTX master commands that follow must all end at 16B boundaries
427 	 * too so we round up the size to 16.
428 	 */
429 	len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) +
430 	    roundup2(LEN__RX_DATA_ACK_ULP, 16);
431 
432 	wr = alloc_wrqe(len, toep->ctrlq);
433 	if (wr == NULL)
434 		return (NULL);
435 	wrh = wrtod(wr);
436 	INIT_ULPTX_WRH(wrh, len, 1, 0);	/* atomic */
437 	ulpmc = (struct ulp_txpkt *)(wrh + 1);
438 
439 	/* Write the buffer's tag */
440 	ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
441 	    W_TCB_RX_DDP_BUF0_TAG + db_idx,
442 	    V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG),
443 	    V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag));
444 
445 	/* Update the current offset in the DDP buffer and its total length */
446 	if (db_idx == 0)
447 		ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
448 		    W_TCB_RX_DDP_BUF0_OFFSET,
449 		    V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) |
450 		    V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN),
451 		    V_TCB_RX_DDP_BUF0_OFFSET(offset) |
452 		    V_TCB_RX_DDP_BUF0_LEN(ps->len));
453 	else
454 		ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
455 		    W_TCB_RX_DDP_BUF1_OFFSET,
456 		    V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) |
457 		    V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32),
458 		    V_TCB_RX_DDP_BUF1_OFFSET(offset) |
459 		    V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32));
460 
461 	/* Update DDP flags */
462 	ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS,
463 	    ddp_flags_mask, ddp_flags);
464 
465 	/* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */
466 	ulpmc = mk_rx_data_ack_ulp(ulpmc, toep);
467 
468 	return (wr);
469 }
470 
471 static int
472 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len)
473 {
474 	uint32_t report = be32toh(ddp_report);
475 	unsigned int db_idx;
476 	struct inpcb *inp = toep->inp;
477 	struct ddp_buffer *db;
478 	struct tcpcb *tp;
479 	struct socket *so;
480 	struct sockbuf *sb;
481 	struct kaiocb *job;
482 	long copied;
483 
484 	db_idx = report & F_DDP_BUF_IDX ? 1 : 0;
485 
486 	if (__predict_false(!(report & F_DDP_INV)))
487 		CXGBE_UNIMPLEMENTED("DDP buffer still valid");
488 
489 	INP_WLOCK(inp);
490 	so = inp_inpcbtosocket(inp);
491 	sb = &so->so_rcv;
492 	DDP_LOCK(toep);
493 
494 	KASSERT(toep->ddp.active_id == db_idx,
495 	    ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx,
496 	    toep->ddp.active_id, toep->tid));
497 	db = &toep->ddp.db[db_idx];
498 	job = db->job;
499 
500 	if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) {
501 		/*
502 		 * This can happen due to an administrative tcpdrop(8).
503 		 * Just fail the request with ECONNRESET.
504 		 */
505 		CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x",
506 		    __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags);
507 		if (aio_clear_cancel_function(job))
508 			ddp_complete_one(job, ECONNRESET);
509 		goto completed;
510 	}
511 
512 	tp = intotcpcb(inp);
513 
514 	/*
515 	 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the
516 	 * sequence number of the next byte to receive.  The length of
517 	 * the data received for this message must be computed by
518 	 * comparing the new and old values of rcv_nxt.
519 	 *
520 	 * For RX_DATA_DDP, len might be non-zero, but it is only the
521 	 * length of the most recent DMA.  It does not include the
522 	 * total length of the data received since the previous update
523 	 * for this DDP buffer.  rcv_nxt is the sequence number of the
524 	 * first received byte from the most recent DMA.
525 	 */
526 	len += be32toh(rcv_nxt) - tp->rcv_nxt;
527 	tp->rcv_nxt += len;
528 	tp->t_rcvtime = ticks;
529 #ifndef USE_DDP_RX_FLOW_CONTROL
530 	KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__));
531 	tp->rcv_wnd -= len;
532 #endif
533 #ifdef VERBOSE_TRACES
534 	CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__,
535 	    toep->tid, db_idx, len, report);
536 #endif
537 
538 	/* receive buffer autosize */
539 	MPASS(toep->vnet == so->so_vnet);
540 	CURVNET_SET(toep->vnet);
541 	SOCKBUF_LOCK(sb);
542 	if (sb->sb_flags & SB_AUTOSIZE &&
543 	    V_tcp_do_autorcvbuf &&
544 	    sb->sb_hiwat < V_tcp_autorcvbuf_max &&
545 	    len > (sbspace(sb) / 8 * 7)) {
546 		struct adapter *sc = td_adapter(toep->td);
547 		unsigned int hiwat = sb->sb_hiwat;
548 		unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc,
549 		    V_tcp_autorcvbuf_max);
550 
551 		if (!sbreserve_locked(sb, newsize, so, NULL))
552 			sb->sb_flags &= ~SB_AUTOSIZE;
553 	}
554 	SOCKBUF_UNLOCK(sb);
555 	CURVNET_RESTORE();
556 
557 	job->msgrcv = 1;
558 	if (db->cancel_pending) {
559 		/*
560 		 * Update the job's length but defer completion to the
561 		 * TCB_RPL callback.
562 		 */
563 		job->aio_received += len;
564 		goto out;
565 	} else if (!aio_clear_cancel_function(job)) {
566 		/*
567 		 * Update the copied length for when
568 		 * t4_aio_cancel_active() completes this request.
569 		 */
570 		job->aio_received += len;
571 	} else {
572 		copied = job->aio_received;
573 #ifdef VERBOSE_TRACES
574 		CTR5(KTR_CXGBE,
575 		    "%s: tid %u, completing %p (copied %ld, placed %d)",
576 		    __func__, toep->tid, job, copied, len);
577 #endif
578 		aio_complete(job, copied + len, 0);
579 		t4_rcvd(&toep->td->tod, tp);
580 	}
581 
582 completed:
583 	complete_ddp_buffer(toep, db, db_idx);
584 	if (toep->ddp.waiting_count > 0)
585 		ddp_queue_toep(toep);
586 out:
587 	DDP_UNLOCK(toep);
588 	INP_WUNLOCK(inp);
589 
590 	return (0);
591 }
592 
593 void
594 handle_ddp_indicate(struct toepcb *toep)
595 {
596 
597 	DDP_ASSERT_LOCKED(toep);
598 	MPASS(toep->ddp.active_count == 0);
599 	MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0);
600 	if (toep->ddp.waiting_count == 0) {
601 		/*
602 		 * The pending requests that triggered the request for an
603 		 * an indicate were cancelled.  Those cancels should have
604 		 * already disabled DDP.  Just ignore this as the data is
605 		 * going into the socket buffer anyway.
606 		 */
607 		return;
608 	}
609 	CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__,
610 	    toep->tid, toep->ddp.waiting_count);
611 	ddp_queue_toep(toep);
612 }
613 
614 enum {
615 	DDP_BUF0_INVALIDATED = 0x2,
616 	DDP_BUF1_INVALIDATED
617 };
618 
619 CTASSERT(DDP_BUF0_INVALIDATED == CPL_COOKIE_DDP0);
620 
621 static int
622 do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
623 {
624 	struct adapter *sc = iq->adapter;
625 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
626 	unsigned int tid = GET_TID(cpl);
627 	unsigned int db_idx;
628 	struct toepcb *toep;
629 	struct inpcb *inp;
630 	struct ddp_buffer *db;
631 	struct kaiocb *job;
632 	long copied;
633 
634 	if (cpl->status != CPL_ERR_NONE)
635 		panic("XXX: tcp_rpl failed: %d", cpl->status);
636 
637 	toep = lookup_tid(sc, tid);
638 	inp = toep->inp;
639 	switch (cpl->cookie) {
640 	case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF0_INVALIDATED):
641 	case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF1_INVALIDATED):
642 		/*
643 		 * XXX: This duplicates a lot of code with handle_ddp_data().
644 		 */
645 		db_idx = G_COOKIE(cpl->cookie) - DDP_BUF0_INVALIDATED;
646 		MPASS(db_idx < nitems(toep->ddp.db));
647 		INP_WLOCK(inp);
648 		DDP_LOCK(toep);
649 		db = &toep->ddp.db[db_idx];
650 
651 		/*
652 		 * handle_ddp_data() should leave the job around until
653 		 * this callback runs once a cancel is pending.
654 		 */
655 		MPASS(db != NULL);
656 		MPASS(db->job != NULL);
657 		MPASS(db->cancel_pending);
658 
659 		/*
660 		 * XXX: It's not clear what happens if there is data
661 		 * placed when the buffer is invalidated.  I suspect we
662 		 * need to read the TCB to see how much data was placed.
663 		 *
664 		 * For now this just pretends like nothing was placed.
665 		 *
666 		 * XXX: Note that if we did check the PCB we would need to
667 		 * also take care of updating the tp, etc.
668 		 */
669 		job = db->job;
670 		copied = job->aio_received;
671 		if (copied == 0) {
672 			CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job);
673 			aio_cancel(job);
674 		} else {
675 			CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)",
676 			    __func__, job, copied);
677 			aio_complete(job, copied, 0);
678 			t4_rcvd(&toep->td->tod, intotcpcb(inp));
679 		}
680 
681 		complete_ddp_buffer(toep, db, db_idx);
682 		if (toep->ddp.waiting_count > 0)
683 			ddp_queue_toep(toep);
684 		DDP_UNLOCK(toep);
685 		INP_WUNLOCK(inp);
686 		break;
687 	default:
688 		panic("XXX: unknown tcb_rpl offset %#x, cookie %#x",
689 		    G_WORD(cpl->cookie), G_COOKIE(cpl->cookie));
690 	}
691 
692 	return (0);
693 }
694 
695 void
696 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt)
697 {
698 	struct ddp_buffer *db;
699 	struct kaiocb *job;
700 	long copied;
701 	unsigned int db_flag, db_idx;
702 	int len, placed;
703 
704 	INP_WLOCK_ASSERT(toep->inp);
705 	DDP_ASSERT_LOCKED(toep);
706 
707 	len = be32toh(rcv_nxt) - tp->rcv_nxt;
708 	tp->rcv_nxt += len;
709 
710 	while (toep->ddp.active_count > 0) {
711 		MPASS(toep->ddp.active_id != -1);
712 		db_idx = toep->ddp.active_id;
713 		db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
714 		MPASS((toep->ddp.flags & db_flag) != 0);
715 		db = &toep->ddp.db[db_idx];
716 		job = db->job;
717 		copied = job->aio_received;
718 		placed = len;
719 		if (placed > job->uaiocb.aio_nbytes - copied)
720 			placed = job->uaiocb.aio_nbytes - copied;
721 		if (placed > 0)
722 			job->msgrcv = 1;
723 		if (!aio_clear_cancel_function(job)) {
724 			/*
725 			 * Update the copied length for when
726 			 * t4_aio_cancel_active() completes this
727 			 * request.
728 			 */
729 			job->aio_received += placed;
730 		} else {
731 			CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d",
732 			    __func__, toep->tid, db_idx, placed);
733 			aio_complete(job, copied + placed, 0);
734 		}
735 		len -= placed;
736 		complete_ddp_buffer(toep, db, db_idx);
737 	}
738 
739 	MPASS(len == 0);
740 	ddp_complete_all(toep, 0);
741 }
742 
743 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\
744 	 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\
745 	 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\
746 	 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR)
747 
748 extern cpl_handler_t t4_cpl_handler[];
749 
750 static int
751 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
752 {
753 	struct adapter *sc = iq->adapter;
754 	const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1);
755 	unsigned int tid = GET_TID(cpl);
756 	uint32_t vld;
757 	struct toepcb *toep = lookup_tid(sc, tid);
758 
759 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
760 	KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
761 	KASSERT(!(toep->flags & TPF_SYNQE),
762 	    ("%s: toep %p claims to be a synq entry", __func__, toep));
763 
764 	vld = be32toh(cpl->ddpvld);
765 	if (__predict_false(vld & DDP_ERR)) {
766 		panic("%s: DDP error 0x%x (tid %d, toep %p)",
767 		    __func__, vld, tid, toep);
768 	}
769 
770 	if (toep->ulp_mode == ULP_MODE_ISCSI) {
771 		t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m);
772 		return (0);
773 	}
774 
775 	handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len));
776 
777 	return (0);
778 }
779 
780 static int
781 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss,
782     struct mbuf *m)
783 {
784 	struct adapter *sc = iq->adapter;
785 	const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1);
786 	unsigned int tid = GET_TID(cpl);
787 	struct toepcb *toep = lookup_tid(sc, tid);
788 
789 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
790 	KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
791 	KASSERT(!(toep->flags & TPF_SYNQE),
792 	    ("%s: toep %p claims to be a synq entry", __func__, toep));
793 
794 	handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0);
795 
796 	return (0);
797 }
798 
799 static void
800 enable_ddp(struct adapter *sc, struct toepcb *toep)
801 {
802 
803 	KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK,
804 	    ("%s: toep %p has bad ddp_flags 0x%x",
805 	    __func__, toep, toep->ddp.flags));
806 
807 	CTR3(KTR_CXGBE, "%s: tid %u (time %u)",
808 	    __func__, toep->tid, time_uptime);
809 
810 	DDP_ASSERT_LOCKED(toep);
811 	toep->ddp.flags |= DDP_SC_REQ;
812 	t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS,
813 	    V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) |
814 	    V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) |
815 	    V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1),
816 	    V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0);
817 	t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS,
818 	    V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0);
819 }
820 
821 static int
822 calculate_hcf(int n1, int n2)
823 {
824 	int a, b, t;
825 
826 	if (n1 <= n2) {
827 		a = n1;
828 		b = n2;
829 	} else {
830 		a = n2;
831 		b = n1;
832 	}
833 
834 	while (a != 0) {
835 		t = a;
836 		a = b % a;
837 		b = t;
838 	}
839 
840 	return (b);
841 }
842 
843 static inline int
844 pages_to_nppods(int npages, int ddp_page_shift)
845 {
846 
847 	MPASS(ddp_page_shift >= PAGE_SHIFT);
848 
849 	return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES));
850 }
851 
852 static int
853 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx,
854     struct ppod_reservation *prsv)
855 {
856 	vmem_addr_t addr;       /* relative to start of region */
857 
858 	if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT,
859 	    &addr) != 0)
860 		return (ENOMEM);
861 
862 	CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d",
863 	    __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask,
864 	    nppods, 1 << pr->pr_page_shift[pgsz_idx]);
865 
866 	/*
867 	 * The hardware tagmask includes an extra invalid bit but the arena was
868 	 * seeded with valid values only.  An allocation out of this arena will
869 	 * fit inside the tagmask but won't have the invalid bit set.
870 	 */
871 	MPASS((addr & pr->pr_tag_mask) == addr);
872 	MPASS((addr & pr->pr_invalid_bit) == 0);
873 
874 	prsv->prsv_pr = pr;
875 	prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr;
876 	prsv->prsv_nppods = nppods;
877 
878 	return (0);
879 }
880 
881 int
882 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps)
883 {
884 	int i, hcf, seglen, idx, nppods;
885 	struct ppod_reservation *prsv = &ps->prsv;
886 
887 	KASSERT(prsv->prsv_nppods == 0,
888 	    ("%s: page pods already allocated", __func__));
889 
890 	/*
891 	 * The DDP page size is unrelated to the VM page size.  We combine
892 	 * contiguous physical pages into larger segments to get the best DDP
893 	 * page size possible.  This is the largest of the four sizes in
894 	 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in
895 	 * the page list.
896 	 */
897 	hcf = 0;
898 	for (i = 0; i < ps->npages; i++) {
899 		seglen = PAGE_SIZE;
900 		while (i < ps->npages - 1 &&
901 		    ps->pages[i]->phys_addr + PAGE_SIZE ==
902 		    ps->pages[i + 1]->phys_addr) {
903 			seglen += PAGE_SIZE;
904 			i++;
905 		}
906 
907 		hcf = calculate_hcf(hcf, seglen);
908 		if (hcf < (1 << pr->pr_page_shift[1])) {
909 			idx = 0;
910 			goto have_pgsz;	/* give up, short circuit */
911 		}
912 	}
913 
914 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
915 	MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
916 	for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
917 		if ((hcf & PR_PAGE_MASK(idx)) == 0)
918 			break;
919 	}
920 #undef PR_PAGE_MASK
921 
922 have_pgsz:
923 	MPASS(idx <= M_PPOD_PGSZ);
924 
925 	nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]);
926 	if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
927 		return (0);
928 	MPASS(prsv->prsv_nppods > 0);
929 
930 	return (1);
931 }
932 
933 int
934 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len,
935     struct ppod_reservation *prsv)
936 {
937 	int hcf, seglen, idx, npages, nppods;
938 	uintptr_t start_pva, end_pva, pva, p1;
939 
940 	MPASS(buf > 0);
941 	MPASS(len > 0);
942 
943 	/*
944 	 * The DDP page size is unrelated to the VM page size.  We combine
945 	 * contiguous physical pages into larger segments to get the best DDP
946 	 * page size possible.  This is the largest of the four sizes in
947 	 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes
948 	 * in the page list.
949 	 */
950 	hcf = 0;
951 	start_pva = trunc_page(buf);
952 	end_pva = trunc_page(buf + len - 1);
953 	pva = start_pva;
954 	while (pva <= end_pva) {
955 		seglen = PAGE_SIZE;
956 		p1 = pmap_kextract(pva);
957 		pva += PAGE_SIZE;
958 		while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) {
959 			seglen += PAGE_SIZE;
960 			pva += PAGE_SIZE;
961 		}
962 
963 		hcf = calculate_hcf(hcf, seglen);
964 		if (hcf < (1 << pr->pr_page_shift[1])) {
965 			idx = 0;
966 			goto have_pgsz;	/* give up, short circuit */
967 		}
968 	}
969 
970 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
971 	MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
972 	for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
973 		if ((hcf & PR_PAGE_MASK(idx)) == 0)
974 			break;
975 	}
976 #undef PR_PAGE_MASK
977 
978 have_pgsz:
979 	MPASS(idx <= M_PPOD_PGSZ);
980 
981 	npages = 1;
982 	npages += (end_pva - start_pva) >> pr->pr_page_shift[idx];
983 	nppods = howmany(npages, PPOD_PAGES);
984 	if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
985 		return (ENOMEM);
986 	MPASS(prsv->prsv_nppods > 0);
987 
988 	return (0);
989 }
990 
991 void
992 t4_free_page_pods(struct ppod_reservation *prsv)
993 {
994 	struct ppod_region *pr = prsv->prsv_pr;
995 	vmem_addr_t addr;
996 
997 	MPASS(prsv != NULL);
998 	MPASS(prsv->prsv_nppods != 0);
999 
1000 	addr = prsv->prsv_tag & pr->pr_tag_mask;
1001 	MPASS((addr & pr->pr_invalid_bit) == 0);
1002 
1003 	CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__,
1004 	    pr->pr_arena, addr, prsv->prsv_nppods);
1005 
1006 	vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods));
1007 	prsv->prsv_nppods = 0;
1008 }
1009 
1010 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE)
1011 
1012 int
1013 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid,
1014     struct pageset *ps)
1015 {
1016 	struct wrqe *wr;
1017 	struct ulp_mem_io *ulpmc;
1018 	struct ulptx_idata *ulpsc;
1019 	struct pagepod *ppod;
1020 	int i, j, k, n, chunk, len, ddp_pgsz, idx;
1021 	u_int ppod_addr;
1022 	uint32_t cmd;
1023 	struct ppod_reservation *prsv = &ps->prsv;
1024 	struct ppod_region *pr = prsv->prsv_pr;
1025 
1026 	KASSERT(!(ps->flags & PS_PPODS_WRITTEN),
1027 	    ("%s: page pods already written", __func__));
1028 	MPASS(prsv->prsv_nppods > 0);
1029 
1030 	cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1031 	if (is_t4(sc))
1032 		cmd |= htobe32(F_ULP_MEMIO_ORDER);
1033 	else
1034 		cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1035 	ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1036 	ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1037 	for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1038 
1039 		/* How many page pods are we writing in this cycle */
1040 		n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1041 		chunk = PPOD_SZ(n);
1042 		len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1043 
1044 		wr = alloc_wrqe(len, wrq);
1045 		if (wr == NULL)
1046 			return (ENOMEM);	/* ok to just bail out */
1047 		ulpmc = wrtod(wr);
1048 
1049 		INIT_ULPTX_WR(ulpmc, len, 0, 0);
1050 		ulpmc->cmd = cmd;
1051 		ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1052 		ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1053 		ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1054 
1055 		ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1056 		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1057 		ulpsc->len = htobe32(chunk);
1058 
1059 		ppod = (struct pagepod *)(ulpsc + 1);
1060 		for (j = 0; j < n; i++, j++, ppod++) {
1061 			ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1062 			    V_PPOD_TID(tid) | prsv->prsv_tag);
1063 			ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) |
1064 			    V_PPOD_OFST(ps->offset));
1065 			ppod->rsvd = 0;
1066 			idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE);
1067 			for (k = 0; k < nitems(ppod->addr); k++) {
1068 				if (idx < ps->npages) {
1069 					ppod->addr[k] =
1070 					    htobe64(ps->pages[idx]->phys_addr);
1071 					idx += ddp_pgsz / PAGE_SIZE;
1072 				} else
1073 					ppod->addr[k] = 0;
1074 #if 0
1075 				CTR5(KTR_CXGBE,
1076 				    "%s: tid %d ppod[%d]->addr[%d] = %p",
1077 				    __func__, toep->tid, i, k,
1078 				    htobe64(ppod->addr[k]));
1079 #endif
1080 			}
1081 
1082 		}
1083 
1084 		t4_wrq_tx(sc, wr);
1085 	}
1086 	ps->flags |= PS_PPODS_WRITTEN;
1087 
1088 	return (0);
1089 }
1090 
1091 int
1092 t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid,
1093     struct ppod_reservation *prsv, vm_offset_t buf, int buflen)
1094 {
1095 	struct wrqe *wr;
1096 	struct ulp_mem_io *ulpmc;
1097 	struct ulptx_idata *ulpsc;
1098 	struct pagepod *ppod;
1099 	int i, j, k, n, chunk, len, ddp_pgsz;
1100 	u_int ppod_addr, offset;
1101 	uint32_t cmd;
1102 	struct ppod_region *pr = prsv->prsv_pr;
1103 	uintptr_t end_pva, pva, pa;
1104 
1105 	cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1106 	if (is_t4(sc))
1107 		cmd |= htobe32(F_ULP_MEMIO_ORDER);
1108 	else
1109 		cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1110 	ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1111 	offset = buf & PAGE_MASK;
1112 	ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1113 	pva = trunc_page(buf);
1114 	end_pva = trunc_page(buf + buflen - 1);
1115 	for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1116 
1117 		/* How many page pods are we writing in this cycle */
1118 		n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1119 		MPASS(n > 0);
1120 		chunk = PPOD_SZ(n);
1121 		len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1122 
1123 		wr = alloc_wrqe(len, wrq);
1124 		if (wr == NULL)
1125 			return (ENOMEM);	/* ok to just bail out */
1126 		ulpmc = wrtod(wr);
1127 
1128 		INIT_ULPTX_WR(ulpmc, len, 0, 0);
1129 		ulpmc->cmd = cmd;
1130 		ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1131 		ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1132 		ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1133 
1134 		ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1135 		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1136 		ulpsc->len = htobe32(chunk);
1137 
1138 		ppod = (struct pagepod *)(ulpsc + 1);
1139 		for (j = 0; j < n; i++, j++, ppod++) {
1140 			ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1141 			    V_PPOD_TID(tid) |
1142 			    (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ)));
1143 			ppod->len_offset = htobe64(V_PPOD_LEN(buflen) |
1144 			    V_PPOD_OFST(offset));
1145 			ppod->rsvd = 0;
1146 
1147 			for (k = 0; k < nitems(ppod->addr); k++) {
1148 				if (pva > end_pva)
1149 					ppod->addr[k] = 0;
1150 				else {
1151 					pa = pmap_kextract(pva);
1152 					ppod->addr[k] = htobe64(pa);
1153 					pva += ddp_pgsz;
1154 				}
1155 #if 0
1156 				CTR5(KTR_CXGBE,
1157 				    "%s: tid %d ppod[%d]->addr[%d] = %p",
1158 				    __func__, tid, i, k,
1159 				    htobe64(ppod->addr[k]));
1160 #endif
1161 			}
1162 
1163 			/*
1164 			 * Walk back 1 segment so that the first address in the
1165 			 * next pod is the same as the last one in the current
1166 			 * pod.
1167 			 */
1168 			pva -= ddp_pgsz;
1169 		}
1170 
1171 		t4_wrq_tx(sc, wr);
1172 	}
1173 
1174 	MPASS(pva <= end_pva);
1175 
1176 	return (0);
1177 }
1178 
1179 /*
1180  * Prepare a pageset for DDP.  This sets up page pods.
1181  */
1182 static int
1183 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps)
1184 {
1185 	struct tom_data *td = sc->tom_softc;
1186 
1187 	if (ps->prsv.prsv_nppods == 0 &&
1188 	    !t4_alloc_page_pods_for_ps(&td->pr, ps)) {
1189 		return (0);
1190 	}
1191 	if (!(ps->flags & PS_PPODS_WRITTEN) &&
1192 	    t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) {
1193 		return (0);
1194 	}
1195 
1196 	return (1);
1197 }
1198 
1199 int
1200 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz,
1201     const char *name)
1202 {
1203 	int i;
1204 
1205 	MPASS(pr != NULL);
1206 	MPASS(r->size > 0);
1207 
1208 	pr->pr_start = r->start;
1209 	pr->pr_len = r->size;
1210 	pr->pr_page_shift[0] = 12 + G_HPZ0(psz);
1211 	pr->pr_page_shift[1] = 12 + G_HPZ1(psz);
1212 	pr->pr_page_shift[2] = 12 + G_HPZ2(psz);
1213 	pr->pr_page_shift[3] = 12 + G_HPZ3(psz);
1214 
1215 	/* The SGL -> page pod algorithm requires the sizes to be in order. */
1216 	for (i = 1; i < nitems(pr->pr_page_shift); i++) {
1217 		if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1])
1218 			return (ENXIO);
1219 	}
1220 
1221 	pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG);
1222 	pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask;
1223 	if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0)
1224 		return (ENXIO);
1225 	pr->pr_alias_shift = fls(pr->pr_tag_mask);
1226 	pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1);
1227 
1228 	pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0,
1229 	    M_FIRSTFIT | M_NOWAIT);
1230 	if (pr->pr_arena == NULL)
1231 		return (ENOMEM);
1232 
1233 	return (0);
1234 }
1235 
1236 void
1237 t4_free_ppod_region(struct ppod_region *pr)
1238 {
1239 
1240 	MPASS(pr != NULL);
1241 
1242 	if (pr->pr_arena)
1243 		vmem_destroy(pr->pr_arena);
1244 	bzero(pr, sizeof(*pr));
1245 }
1246 
1247 static int
1248 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages,
1249     int pgoff, int len)
1250 {
1251 
1252 	if (ps->start != start || ps->npages != npages ||
1253 	    ps->offset != pgoff || ps->len != len)
1254 		return (1);
1255 
1256 	return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp);
1257 }
1258 
1259 static int
1260 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps)
1261 {
1262 	struct vmspace *vm;
1263 	vm_map_t map;
1264 	vm_offset_t start, end, pgoff;
1265 	struct pageset *ps;
1266 	int n;
1267 
1268 	DDP_ASSERT_LOCKED(toep);
1269 
1270 	/*
1271 	 * The AIO subsystem will cancel and drain all requests before
1272 	 * permitting a process to exit or exec, so p_vmspace should
1273 	 * be stable here.
1274 	 */
1275 	vm = job->userproc->p_vmspace;
1276 	map = &vm->vm_map;
1277 	start = (uintptr_t)job->uaiocb.aio_buf;
1278 	pgoff = start & PAGE_MASK;
1279 	end = round_page(start + job->uaiocb.aio_nbytes);
1280 	start = trunc_page(start);
1281 
1282 	if (end - start > MAX_DDP_BUFFER_SIZE) {
1283 		/*
1284 		 * Truncate the request to a short read.
1285 		 * Alternatively, we could DDP in chunks to the larger
1286 		 * buffer, but that would be quite a bit more work.
1287 		 *
1288 		 * When truncating, round the request down to avoid
1289 		 * crossing a cache line on the final transaction.
1290 		 */
1291 		end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE);
1292 #ifdef VERBOSE_TRACES
1293 		CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu",
1294 		    __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes,
1295 		    (unsigned long)(end - (start + pgoff)));
1296 		job->uaiocb.aio_nbytes = end - (start + pgoff);
1297 #endif
1298 		end = round_page(end);
1299 	}
1300 
1301 	n = atop(end - start);
1302 
1303 	/*
1304 	 * Try to reuse a cached pageset.
1305 	 */
1306 	TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) {
1307 		if (pscmp(ps, vm, start, n, pgoff,
1308 		    job->uaiocb.aio_nbytes) == 0) {
1309 			TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
1310 			toep->ddp.cached_count--;
1311 			*pps = ps;
1312 			return (0);
1313 		}
1314 	}
1315 
1316 	/*
1317 	 * If there are too many cached pagesets to create a new one,
1318 	 * free a pageset before creating a new one.
1319 	 */
1320 	KASSERT(toep->ddp.active_count + toep->ddp.cached_count <=
1321 	    nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__));
1322 	if (toep->ddp.active_count + toep->ddp.cached_count ==
1323 	    nitems(toep->ddp.db)) {
1324 		KASSERT(toep->ddp.cached_count > 0,
1325 		    ("no cached pageset to free"));
1326 		ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq);
1327 		TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
1328 		toep->ddp.cached_count--;
1329 		free_pageset(toep->td, ps);
1330 	}
1331 	DDP_UNLOCK(toep);
1332 
1333 	/* Create a new pageset. */
1334 	ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK |
1335 	    M_ZERO);
1336 	ps->pages = (vm_page_t *)(ps + 1);
1337 	ps->vm_timestamp = map->timestamp;
1338 	ps->npages = vm_fault_quick_hold_pages(map, start, end - start,
1339 	    VM_PROT_WRITE, ps->pages, n);
1340 
1341 	DDP_LOCK(toep);
1342 	if (ps->npages < 0) {
1343 		free(ps, M_CXGBE);
1344 		return (EFAULT);
1345 	}
1346 
1347 	KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d",
1348 	    ps->npages, n));
1349 
1350 	ps->offset = pgoff;
1351 	ps->len = job->uaiocb.aio_nbytes;
1352 	atomic_add_int(&vm->vm_refcnt, 1);
1353 	ps->vm = vm;
1354 	ps->start = start;
1355 
1356 	CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d",
1357 	    __func__, toep->tid, ps, job, ps->npages);
1358 	*pps = ps;
1359 	return (0);
1360 }
1361 
1362 static void
1363 ddp_complete_all(struct toepcb *toep, int error)
1364 {
1365 	struct kaiocb *job;
1366 
1367 	DDP_ASSERT_LOCKED(toep);
1368 	while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) {
1369 		job = TAILQ_FIRST(&toep->ddp.aiojobq);
1370 		TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1371 		toep->ddp.waiting_count--;
1372 		if (aio_clear_cancel_function(job))
1373 			ddp_complete_one(job, error);
1374 	}
1375 }
1376 
1377 static void
1378 aio_ddp_cancel_one(struct kaiocb *job)
1379 {
1380 	long copied;
1381 
1382 	/*
1383 	 * If this job had copied data out of the socket buffer before
1384 	 * it was cancelled, report it as a short read rather than an
1385 	 * error.
1386 	 */
1387 	copied = job->aio_received;
1388 	if (copied != 0)
1389 		aio_complete(job, copied, 0);
1390 	else
1391 		aio_cancel(job);
1392 }
1393 
1394 /*
1395  * Called when the main loop wants to requeue a job to retry it later.
1396  * Deals with the race of the job being cancelled while it was being
1397  * examined.
1398  */
1399 static void
1400 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job)
1401 {
1402 
1403 	DDP_ASSERT_LOCKED(toep);
1404 	if (!(toep->ddp.flags & DDP_DEAD) &&
1405 	    aio_set_cancel_function(job, t4_aio_cancel_queued)) {
1406 		TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
1407 		toep->ddp.waiting_count++;
1408 	} else
1409 		aio_ddp_cancel_one(job);
1410 }
1411 
1412 static void
1413 aio_ddp_requeue(struct toepcb *toep)
1414 {
1415 	struct adapter *sc = td_adapter(toep->td);
1416 	struct socket *so;
1417 	struct sockbuf *sb;
1418 	struct inpcb *inp;
1419 	struct kaiocb *job;
1420 	struct ddp_buffer *db;
1421 	size_t copied, offset, resid;
1422 	struct pageset *ps;
1423 	struct mbuf *m;
1424 	uint64_t ddp_flags, ddp_flags_mask;
1425 	struct wrqe *wr;
1426 	int buf_flag, db_idx, error;
1427 
1428 	DDP_ASSERT_LOCKED(toep);
1429 
1430 restart:
1431 	if (toep->ddp.flags & DDP_DEAD) {
1432 		MPASS(toep->ddp.waiting_count == 0);
1433 		MPASS(toep->ddp.active_count == 0);
1434 		return;
1435 	}
1436 
1437 	if (toep->ddp.waiting_count == 0 ||
1438 	    toep->ddp.active_count == nitems(toep->ddp.db)) {
1439 		return;
1440 	}
1441 
1442 	job = TAILQ_FIRST(&toep->ddp.aiojobq);
1443 	so = job->fd_file->f_data;
1444 	sb = &so->so_rcv;
1445 	SOCKBUF_LOCK(sb);
1446 
1447 	/* We will never get anything unless we are or were connected. */
1448 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
1449 		SOCKBUF_UNLOCK(sb);
1450 		ddp_complete_all(toep, ENOTCONN);
1451 		return;
1452 	}
1453 
1454 	KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0,
1455 	    ("%s: pending sockbuf data and DDP is active", __func__));
1456 
1457 	/* Abort if socket has reported problems. */
1458 	/* XXX: Wait for any queued DDP's to finish and/or flush them? */
1459 	if (so->so_error && sbavail(sb) == 0) {
1460 		toep->ddp.waiting_count--;
1461 		TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1462 		if (!aio_clear_cancel_function(job)) {
1463 			SOCKBUF_UNLOCK(sb);
1464 			goto restart;
1465 		}
1466 
1467 		/*
1468 		 * If this job has previously copied some data, report
1469 		 * a short read and leave the error to be reported by
1470 		 * a future request.
1471 		 */
1472 		copied = job->aio_received;
1473 		if (copied != 0) {
1474 			SOCKBUF_UNLOCK(sb);
1475 			aio_complete(job, copied, 0);
1476 			goto restart;
1477 		}
1478 		error = so->so_error;
1479 		so->so_error = 0;
1480 		SOCKBUF_UNLOCK(sb);
1481 		aio_complete(job, -1, error);
1482 		goto restart;
1483 	}
1484 
1485 	/*
1486 	 * Door is closed.  If there is pending data in the socket buffer,
1487 	 * deliver it.  If there are pending DDP requests, wait for those
1488 	 * to complete.  Once they have completed, return EOF reads.
1489 	 */
1490 	if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
1491 		SOCKBUF_UNLOCK(sb);
1492 		if (toep->ddp.active_count != 0)
1493 			return;
1494 		ddp_complete_all(toep, 0);
1495 		return;
1496 	}
1497 
1498 	/*
1499 	 * If DDP is not enabled and there is no pending socket buffer
1500 	 * data, try to enable DDP.
1501 	 */
1502 	if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) {
1503 		SOCKBUF_UNLOCK(sb);
1504 
1505 		/*
1506 		 * Wait for the card to ACK that DDP is enabled before
1507 		 * queueing any buffers.  Currently this waits for an
1508 		 * indicate to arrive.  This could use a TCB_SET_FIELD_RPL
1509 		 * message to know that DDP was enabled instead of waiting
1510 		 * for the indicate which would avoid copying the indicate
1511 		 * if no data is pending.
1512 		 *
1513 		 * XXX: Might want to limit the indicate size to the size
1514 		 * of the first queued request.
1515 		 */
1516 		if ((toep->ddp.flags & DDP_SC_REQ) == 0)
1517 			enable_ddp(sc, toep);
1518 		return;
1519 	}
1520 	SOCKBUF_UNLOCK(sb);
1521 
1522 	/*
1523 	 * If another thread is queueing a buffer for DDP, let it
1524 	 * drain any work and return.
1525 	 */
1526 	if (toep->ddp.queueing != NULL)
1527 		return;
1528 
1529 	/* Take the next job to prep it for DDP. */
1530 	toep->ddp.waiting_count--;
1531 	TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1532 	if (!aio_clear_cancel_function(job))
1533 		goto restart;
1534 	toep->ddp.queueing = job;
1535 
1536 	/* NB: This drops DDP_LOCK while it holds the backing VM pages. */
1537 	error = hold_aio(toep, job, &ps);
1538 	if (error != 0) {
1539 		ddp_complete_one(job, error);
1540 		toep->ddp.queueing = NULL;
1541 		goto restart;
1542 	}
1543 
1544 	SOCKBUF_LOCK(sb);
1545 	if (so->so_error && sbavail(sb) == 0) {
1546 		copied = job->aio_received;
1547 		if (copied != 0) {
1548 			SOCKBUF_UNLOCK(sb);
1549 			recycle_pageset(toep, ps);
1550 			aio_complete(job, copied, 0);
1551 			toep->ddp.queueing = NULL;
1552 			goto restart;
1553 		}
1554 
1555 		error = so->so_error;
1556 		so->so_error = 0;
1557 		SOCKBUF_UNLOCK(sb);
1558 		recycle_pageset(toep, ps);
1559 		aio_complete(job, -1, error);
1560 		toep->ddp.queueing = NULL;
1561 		goto restart;
1562 	}
1563 
1564 	if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
1565 		SOCKBUF_UNLOCK(sb);
1566 		recycle_pageset(toep, ps);
1567 		if (toep->ddp.active_count != 0) {
1568 			/*
1569 			 * The door is closed, but there are still pending
1570 			 * DDP buffers.  Requeue.  These jobs will all be
1571 			 * completed once those buffers drain.
1572 			 */
1573 			aio_ddp_requeue_one(toep, job);
1574 			toep->ddp.queueing = NULL;
1575 			return;
1576 		}
1577 		ddp_complete_one(job, 0);
1578 		ddp_complete_all(toep, 0);
1579 		toep->ddp.queueing = NULL;
1580 		return;
1581 	}
1582 
1583 sbcopy:
1584 	/*
1585 	 * If the toep is dead, there shouldn't be any data in the socket
1586 	 * buffer, so the above case should have handled this.
1587 	 */
1588 	MPASS(!(toep->ddp.flags & DDP_DEAD));
1589 
1590 	/*
1591 	 * If there is pending data in the socket buffer (either
1592 	 * from before the requests were queued or a DDP indicate),
1593 	 * copy those mbufs out directly.
1594 	 */
1595 	copied = 0;
1596 	offset = ps->offset + job->aio_received;
1597 	MPASS(job->aio_received <= job->uaiocb.aio_nbytes);
1598 	resid = job->uaiocb.aio_nbytes - job->aio_received;
1599 	m = sb->sb_mb;
1600 	KASSERT(m == NULL || toep->ddp.active_count == 0,
1601 	    ("%s: sockbuf data with active DDP", __func__));
1602 	while (m != NULL && resid > 0) {
1603 		struct iovec iov[1];
1604 		struct uio uio;
1605 		int error;
1606 
1607 		iov[0].iov_base = mtod(m, void *);
1608 		iov[0].iov_len = m->m_len;
1609 		if (iov[0].iov_len > resid)
1610 			iov[0].iov_len = resid;
1611 		uio.uio_iov = iov;
1612 		uio.uio_iovcnt = 1;
1613 		uio.uio_offset = 0;
1614 		uio.uio_resid = iov[0].iov_len;
1615 		uio.uio_segflg = UIO_SYSSPACE;
1616 		uio.uio_rw = UIO_WRITE;
1617 		error = uiomove_fromphys(ps->pages, offset + copied,
1618 		    uio.uio_resid, &uio);
1619 		MPASS(error == 0 && uio.uio_resid == 0);
1620 		copied += uio.uio_offset;
1621 		resid -= uio.uio_offset;
1622 		m = m->m_next;
1623 	}
1624 	if (copied != 0) {
1625 		sbdrop_locked(sb, copied);
1626 		job->aio_received += copied;
1627 		job->msgrcv = 1;
1628 		copied = job->aio_received;
1629 		inp = sotoinpcb(so);
1630 		if (!INP_TRY_WLOCK(inp)) {
1631 			/*
1632 			 * The reference on the socket file descriptor in
1633 			 * the AIO job should keep 'sb' and 'inp' stable.
1634 			 * Our caller has a reference on the 'toep' that
1635 			 * keeps it stable.
1636 			 */
1637 			SOCKBUF_UNLOCK(sb);
1638 			DDP_UNLOCK(toep);
1639 			INP_WLOCK(inp);
1640 			DDP_LOCK(toep);
1641 			SOCKBUF_LOCK(sb);
1642 
1643 			/*
1644 			 * If the socket has been closed, we should detect
1645 			 * that and complete this request if needed on
1646 			 * the next trip around the loop.
1647 			 */
1648 		}
1649 		t4_rcvd_locked(&toep->td->tod, intotcpcb(inp));
1650 		INP_WUNLOCK(inp);
1651 		if (resid == 0 || toep->ddp.flags & DDP_DEAD) {
1652 			/*
1653 			 * We filled the entire buffer with socket
1654 			 * data, DDP is not being used, or the socket
1655 			 * is being shut down, so complete the
1656 			 * request.
1657 			 */
1658 			SOCKBUF_UNLOCK(sb);
1659 			recycle_pageset(toep, ps);
1660 			aio_complete(job, copied, 0);
1661 			toep->ddp.queueing = NULL;
1662 			goto restart;
1663 		}
1664 
1665 		/*
1666 		 * If DDP is not enabled, requeue this request and restart.
1667 		 * This will either enable DDP or wait for more data to
1668 		 * arrive on the socket buffer.
1669 		 */
1670 		if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) {
1671 			SOCKBUF_UNLOCK(sb);
1672 			recycle_pageset(toep, ps);
1673 			aio_ddp_requeue_one(toep, job);
1674 			toep->ddp.queueing = NULL;
1675 			goto restart;
1676 		}
1677 
1678 		/*
1679 		 * An indicate might have arrived and been added to
1680 		 * the socket buffer while it was unlocked after the
1681 		 * copy to lock the INP.  If so, restart the copy.
1682 		 */
1683 		if (sbavail(sb) != 0)
1684 			goto sbcopy;
1685 	}
1686 	SOCKBUF_UNLOCK(sb);
1687 
1688 	if (prep_pageset(sc, toep, ps) == 0) {
1689 		recycle_pageset(toep, ps);
1690 		aio_ddp_requeue_one(toep, job);
1691 		toep->ddp.queueing = NULL;
1692 
1693 		/*
1694 		 * XXX: Need to retry this later.  Mostly need a trigger
1695 		 * when page pods are freed up.
1696 		 */
1697 		printf("%s: prep_pageset failed\n", __func__);
1698 		return;
1699 	}
1700 
1701 	/* Determine which DDP buffer to use. */
1702 	if (toep->ddp.db[0].job == NULL) {
1703 		db_idx = 0;
1704 	} else {
1705 		MPASS(toep->ddp.db[1].job == NULL);
1706 		db_idx = 1;
1707 	}
1708 
1709 	ddp_flags = 0;
1710 	ddp_flags_mask = 0;
1711 	if (db_idx == 0) {
1712 		ddp_flags |= V_TF_DDP_BUF0_VALID(1);
1713 		if (so->so_state & SS_NBIO)
1714 			ddp_flags |= V_TF_DDP_BUF0_FLUSH(1);
1715 		ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) |
1716 		    V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) |
1717 		    V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1);
1718 		buf_flag = DDP_BUF0_ACTIVE;
1719 	} else {
1720 		ddp_flags |= V_TF_DDP_BUF1_VALID(1);
1721 		if (so->so_state & SS_NBIO)
1722 			ddp_flags |= V_TF_DDP_BUF1_FLUSH(1);
1723 		ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) |
1724 		    V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) |
1725 		    V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1);
1726 		buf_flag = DDP_BUF1_ACTIVE;
1727 	}
1728 	MPASS((toep->ddp.flags & buf_flag) == 0);
1729 	if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) {
1730 		MPASS(db_idx == 0);
1731 		MPASS(toep->ddp.active_id == -1);
1732 		MPASS(toep->ddp.active_count == 0);
1733 		ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1);
1734 	}
1735 
1736 	/*
1737 	 * The TID for this connection should still be valid.  If DDP_DEAD
1738 	 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be
1739 	 * this far anyway.  Even if the socket is closing on the other
1740 	 * end, the AIO job holds a reference on this end of the socket
1741 	 * which will keep it open and keep the TCP PCB attached until
1742 	 * after the job is completed.
1743 	 */
1744 	wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received,
1745 	    ddp_flags, ddp_flags_mask);
1746 	if (wr == NULL) {
1747 		recycle_pageset(toep, ps);
1748 		aio_ddp_requeue_one(toep, job);
1749 		toep->ddp.queueing = NULL;
1750 
1751 		/*
1752 		 * XXX: Need a way to kick a retry here.
1753 		 *
1754 		 * XXX: We know the fixed size needed and could
1755 		 * preallocate this using a blocking request at the
1756 		 * start of the task to avoid having to handle this
1757 		 * edge case.
1758 		 */
1759 		printf("%s: mk_update_tcb_for_ddp failed\n", __func__);
1760 		return;
1761 	}
1762 
1763 	if (!aio_set_cancel_function(job, t4_aio_cancel_active)) {
1764 		free_wrqe(wr);
1765 		recycle_pageset(toep, ps);
1766 		aio_ddp_cancel_one(job);
1767 		toep->ddp.queueing = NULL;
1768 		goto restart;
1769 	}
1770 
1771 #ifdef VERBOSE_TRACES
1772 	CTR6(KTR_CXGBE,
1773 	    "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__,
1774 	    toep->tid, job, db_idx, ddp_flags, ddp_flags_mask);
1775 #endif
1776 	/* Give the chip the go-ahead. */
1777 	t4_wrq_tx(sc, wr);
1778 	db = &toep->ddp.db[db_idx];
1779 	db->cancel_pending = 0;
1780 	db->job = job;
1781 	db->ps = ps;
1782 	toep->ddp.queueing = NULL;
1783 	toep->ddp.flags |= buf_flag;
1784 	toep->ddp.active_count++;
1785 	if (toep->ddp.active_count == 1) {
1786 		MPASS(toep->ddp.active_id == -1);
1787 		toep->ddp.active_id = db_idx;
1788 		CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
1789 		    toep->ddp.active_id);
1790 	}
1791 	goto restart;
1792 }
1793 
1794 void
1795 ddp_queue_toep(struct toepcb *toep)
1796 {
1797 
1798 	DDP_ASSERT_LOCKED(toep);
1799 	if (toep->ddp.flags & DDP_TASK_ACTIVE)
1800 		return;
1801 	toep->ddp.flags |= DDP_TASK_ACTIVE;
1802 	hold_toepcb(toep);
1803 	soaio_enqueue(&toep->ddp.requeue_task);
1804 }
1805 
1806 static void
1807 aio_ddp_requeue_task(void *context, int pending)
1808 {
1809 	struct toepcb *toep = context;
1810 
1811 	DDP_LOCK(toep);
1812 	aio_ddp_requeue(toep);
1813 	toep->ddp.flags &= ~DDP_TASK_ACTIVE;
1814 	DDP_UNLOCK(toep);
1815 
1816 	free_toepcb(toep);
1817 }
1818 
1819 static void
1820 t4_aio_cancel_active(struct kaiocb *job)
1821 {
1822 	struct socket *so = job->fd_file->f_data;
1823 	struct tcpcb *tp = so_sototcpcb(so);
1824 	struct toepcb *toep = tp->t_toe;
1825 	struct adapter *sc = td_adapter(toep->td);
1826 	uint64_t valid_flag;
1827 	int i;
1828 
1829 	DDP_LOCK(toep);
1830 	if (aio_cancel_cleared(job)) {
1831 		DDP_UNLOCK(toep);
1832 		aio_ddp_cancel_one(job);
1833 		return;
1834 	}
1835 
1836 	for (i = 0; i < nitems(toep->ddp.db); i++) {
1837 		if (toep->ddp.db[i].job == job) {
1838 			/* Should only ever get one cancel request for a job. */
1839 			MPASS(toep->ddp.db[i].cancel_pending == 0);
1840 
1841 			/*
1842 			 * Invalidate this buffer.  It will be
1843 			 * cancelled or partially completed once the
1844 			 * card ACKs the invalidate.
1845 			 */
1846 			valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) :
1847 			    V_TF_DDP_BUF1_VALID(1);
1848 			t4_set_tcb_field(sc, toep->ctrlq, toep,
1849 			    W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1,
1850 			    i + DDP_BUF0_INVALIDATED);
1851 			toep->ddp.db[i].cancel_pending = 1;
1852 			CTR2(KTR_CXGBE, "%s: request %p marked pending",
1853 			    __func__, job);
1854 			break;
1855 		}
1856 	}
1857 	DDP_UNLOCK(toep);
1858 }
1859 
1860 static void
1861 t4_aio_cancel_queued(struct kaiocb *job)
1862 {
1863 	struct socket *so = job->fd_file->f_data;
1864 	struct tcpcb *tp = so_sototcpcb(so);
1865 	struct toepcb *toep = tp->t_toe;
1866 
1867 	DDP_LOCK(toep);
1868 	if (!aio_cancel_cleared(job)) {
1869 		TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1870 		toep->ddp.waiting_count--;
1871 		if (toep->ddp.waiting_count == 0)
1872 			ddp_queue_toep(toep);
1873 	}
1874 	CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job);
1875 	DDP_UNLOCK(toep);
1876 
1877 	aio_ddp_cancel_one(job);
1878 }
1879 
1880 int
1881 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job)
1882 {
1883 	struct tcpcb *tp = so_sototcpcb(so);
1884 	struct toepcb *toep = tp->t_toe;
1885 
1886 
1887 	/* Ignore writes. */
1888 	if (job->uaiocb.aio_lio_opcode != LIO_READ)
1889 		return (EOPNOTSUPP);
1890 
1891 	DDP_LOCK(toep);
1892 
1893 	/*
1894 	 * XXX: Think about possibly returning errors for ENOTCONN,
1895 	 * etc.  Perhaps the caller would only queue the request
1896 	 * if it failed with EOPNOTSUPP?
1897 	 */
1898 
1899 #ifdef VERBOSE_TRACES
1900 	CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid);
1901 #endif
1902 	if (!aio_set_cancel_function(job, t4_aio_cancel_queued))
1903 		panic("new job was cancelled");
1904 	TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list);
1905 	toep->ddp.waiting_count++;
1906 	toep->ddp.flags |= DDP_OK;
1907 
1908 	/*
1909 	 * Try to handle this request synchronously.  If this has
1910 	 * to block because the task is running, it will just bail
1911 	 * and let the task handle it instead.
1912 	 */
1913 	aio_ddp_requeue(toep);
1914 	DDP_UNLOCK(toep);
1915 	return (0);
1916 }
1917 
1918 void
1919 t4_ddp_mod_load(void)
1920 {
1921 
1922 	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
1923 	    CPL_COOKIE_DDP0);
1924 	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
1925 	    CPL_COOKIE_DDP1);
1926 	t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp);
1927 	t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete);
1928 	TAILQ_INIT(&ddp_orphan_pagesets);
1929 	mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF);
1930 	TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL);
1931 }
1932 
1933 void
1934 t4_ddp_mod_unload(void)
1935 {
1936 
1937 	taskqueue_drain(taskqueue_thread, &ddp_orphan_task);
1938 	MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets));
1939 	mtx_destroy(&ddp_orphan_pagesets_lock);
1940 	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0);
1941 	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1);
1942 	t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL);
1943 	t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL);
1944 }
1945 #endif
1946