1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_inet.h" 32 33 #include <sys/param.h> 34 #include <sys/aio.h> 35 #include <sys/bio.h> 36 #include <sys/file.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/ktr.h> 40 #include <sys/module.h> 41 #include <sys/protosw.h> 42 #include <sys/proc.h> 43 #include <sys/domain.h> 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <sys/taskqueue.h> 47 #include <sys/uio.h> 48 #include <netinet/in.h> 49 #include <netinet/in_pcb.h> 50 #include <netinet/ip.h> 51 #include <netinet/tcp_var.h> 52 #define TCPSTATES 53 #include <netinet/tcp_fsm.h> 54 #include <netinet/toecore.h> 55 56 #include <vm/vm.h> 57 #include <vm/vm_extern.h> 58 #include <vm/vm_param.h> 59 #include <vm/pmap.h> 60 #include <vm/vm_map.h> 61 #include <vm/vm_page.h> 62 #include <vm/vm_object.h> 63 64 #include <cam/scsi/scsi_all.h> 65 #include <cam/ctl/ctl_io.h> 66 67 #ifdef TCP_OFFLOAD 68 #include "common/common.h" 69 #include "common/t4_msg.h" 70 #include "common/t4_regs.h" 71 #include "common/t4_tcb.h" 72 #include "tom/t4_tom.h" 73 74 /* 75 * Use the 'backend3' field in AIO jobs to store the amount of data 76 * received by the AIO job so far. 77 */ 78 #define aio_received backend3 79 80 static void aio_ddp_requeue_task(void *context, int pending); 81 static void ddp_complete_all(struct toepcb *toep, int error); 82 static void t4_aio_cancel_active(struct kaiocb *job); 83 static void t4_aio_cancel_queued(struct kaiocb *job); 84 static int t4_alloc_page_pods_for_rcvbuf(struct ppod_region *pr, 85 struct ddp_rcv_buffer *drb); 86 static int t4_write_page_pods_for_rcvbuf(struct adapter *sc, 87 struct sge_wrq *wrq, int tid, struct ddp_rcv_buffer *drb); 88 89 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; 90 static struct mtx ddp_orphan_pagesets_lock; 91 static struct task ddp_orphan_task; 92 93 #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) 94 95 /* 96 * A page set holds information about a user buffer used for AIO DDP. 97 * The page set holds resources such as the VM pages backing the 98 * buffer (either held or wired) and the page pods associated with the 99 * buffer. Recently used page sets are cached to allow for efficient 100 * reuse of buffers (avoiding the need to re-fault in pages, hold 101 * them, etc.). Note that cached page sets keep the backing pages 102 * wired. The number of wired pages is capped by only allowing for 103 * two wired pagesets per connection. This is not a perfect cap, but 104 * is a trade-off for performance. 105 * 106 * If an application ping-pongs two buffers for a connection via 107 * aio_read(2) then those buffers should remain wired and expensive VM 108 * fault lookups should be avoided after each buffer has been used 109 * once. If an application uses more than two buffers then this will 110 * fall back to doing expensive VM fault lookups for each operation. 111 */ 112 static void 113 free_pageset(struct tom_data *td, struct pageset *ps) 114 { 115 vm_page_t p; 116 int i; 117 118 if (ps->prsv.prsv_nppods > 0) 119 t4_free_page_pods(&ps->prsv); 120 121 for (i = 0; i < ps->npages; i++) { 122 p = ps->pages[i]; 123 vm_page_unwire(p, PQ_INACTIVE); 124 } 125 mtx_lock(&ddp_orphan_pagesets_lock); 126 TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); 127 taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); 128 mtx_unlock(&ddp_orphan_pagesets_lock); 129 } 130 131 static void 132 ddp_free_orphan_pagesets(void *context, int pending) 133 { 134 struct pageset *ps; 135 136 mtx_lock(&ddp_orphan_pagesets_lock); 137 while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { 138 ps = TAILQ_FIRST(&ddp_orphan_pagesets); 139 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); 140 mtx_unlock(&ddp_orphan_pagesets_lock); 141 if (ps->vm) 142 vmspace_free(ps->vm); 143 free(ps, M_CXGBE); 144 mtx_lock(&ddp_orphan_pagesets_lock); 145 } 146 mtx_unlock(&ddp_orphan_pagesets_lock); 147 } 148 149 static void 150 recycle_pageset(struct toepcb *toep, struct pageset *ps) 151 { 152 153 DDP_ASSERT_LOCKED(toep); 154 if (!(toep->ddp.flags & DDP_DEAD)) { 155 KASSERT(toep->ddp.cached_count + toep->ddp.active_count < 156 nitems(toep->ddp.db), ("too many wired pagesets")); 157 TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link); 158 toep->ddp.cached_count++; 159 } else 160 free_pageset(toep->td, ps); 161 } 162 163 static void 164 ddp_complete_one(struct kaiocb *job, int error) 165 { 166 long copied; 167 168 /* 169 * If this job had copied data out of the socket buffer before 170 * it was cancelled, report it as a short read rather than an 171 * error. 172 */ 173 copied = job->aio_received; 174 if (copied != 0 || error == 0) 175 aio_complete(job, copied, 0); 176 else 177 aio_complete(job, -1, error); 178 } 179 180 static void 181 free_ddp_rcv_buffer(struct toepcb *toep, struct ddp_rcv_buffer *drb) 182 { 183 t4_free_page_pods(&drb->prsv); 184 free(drb->buf, M_CXGBE); 185 free(drb, M_CXGBE); 186 counter_u64_add(toep->ofld_rxq->ddp_buffer_free, 1); 187 free_toepcb(toep); 188 } 189 190 static void 191 recycle_ddp_rcv_buffer(struct toepcb *toep, struct ddp_rcv_buffer *drb) 192 { 193 DDP_CACHE_LOCK(toep); 194 if (!(toep->ddp.flags & DDP_DEAD) && 195 toep->ddp.cached_count < t4_ddp_rcvbuf_cache) { 196 TAILQ_INSERT_HEAD(&toep->ddp.cached_buffers, drb, link); 197 toep->ddp.cached_count++; 198 DDP_CACHE_UNLOCK(toep); 199 } else { 200 DDP_CACHE_UNLOCK(toep); 201 free_ddp_rcv_buffer(toep, drb); 202 } 203 } 204 205 static struct ddp_rcv_buffer * 206 alloc_cached_ddp_rcv_buffer(struct toepcb *toep) 207 { 208 struct ddp_rcv_buffer *drb; 209 210 DDP_CACHE_LOCK(toep); 211 if (!TAILQ_EMPTY(&toep->ddp.cached_buffers)) { 212 drb = TAILQ_FIRST(&toep->ddp.cached_buffers); 213 TAILQ_REMOVE(&toep->ddp.cached_buffers, drb, link); 214 toep->ddp.cached_count--; 215 counter_u64_add(toep->ofld_rxq->ddp_buffer_reuse, 1); 216 } else 217 drb = NULL; 218 DDP_CACHE_UNLOCK(toep); 219 return (drb); 220 } 221 222 static struct ddp_rcv_buffer * 223 alloc_ddp_rcv_buffer(struct toepcb *toep, int how) 224 { 225 struct tom_data *td = toep->td; 226 struct adapter *sc = td_adapter(td); 227 struct ddp_rcv_buffer *drb; 228 int error; 229 230 drb = malloc(sizeof(*drb), M_CXGBE, how | M_ZERO); 231 if (drb == NULL) 232 return (NULL); 233 234 drb->buf = contigmalloc(t4_ddp_rcvbuf_len, M_CXGBE, how, 0, ~0, 235 t4_ddp_rcvbuf_len, 0); 236 if (drb->buf == NULL) { 237 free(drb, M_CXGBE); 238 return (NULL); 239 } 240 drb->len = t4_ddp_rcvbuf_len; 241 drb->refs = 1; 242 243 error = t4_alloc_page_pods_for_rcvbuf(&td->pr, drb); 244 if (error != 0) { 245 free(drb->buf, M_CXGBE); 246 free(drb, M_CXGBE); 247 return (NULL); 248 } 249 250 error = t4_write_page_pods_for_rcvbuf(sc, toep->ctrlq, toep->tid, drb); 251 if (error != 0) { 252 t4_free_page_pods(&drb->prsv); 253 free(drb->buf, M_CXGBE); 254 free(drb, M_CXGBE); 255 return (NULL); 256 } 257 258 hold_toepcb(toep); 259 counter_u64_add(toep->ofld_rxq->ddp_buffer_alloc, 1); 260 return (drb); 261 } 262 263 static void 264 free_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db) 265 { 266 if ((toep->ddp.flags & DDP_RCVBUF) != 0) { 267 if (db->drb != NULL) 268 free_ddp_rcv_buffer(toep, db->drb); 269 #ifdef INVARIANTS 270 db->drb = NULL; 271 #endif 272 return; 273 } 274 275 if (db->job) { 276 /* 277 * XXX: If we are un-offloading the socket then we 278 * should requeue these on the socket somehow. If we 279 * got a FIN from the remote end, then this completes 280 * any remaining requests with an EOF read. 281 */ 282 if (!aio_clear_cancel_function(db->job)) 283 ddp_complete_one(db->job, 0); 284 #ifdef INVARIANTS 285 db->job = NULL; 286 #endif 287 } 288 289 if (db->ps) { 290 free_pageset(toep->td, db->ps); 291 #ifdef INVARIANTS 292 db->ps = NULL; 293 #endif 294 } 295 } 296 297 static void 298 ddp_init_toep(struct toepcb *toep) 299 { 300 301 toep->ddp.flags = DDP_OK; 302 toep->ddp.active_id = -1; 303 mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF); 304 mtx_init(&toep->ddp.cache_lock, "t4 ddp cache", NULL, MTX_DEF); 305 } 306 307 void 308 ddp_uninit_toep(struct toepcb *toep) 309 { 310 311 mtx_destroy(&toep->ddp.lock); 312 mtx_destroy(&toep->ddp.cache_lock); 313 } 314 315 void 316 release_ddp_resources(struct toepcb *toep) 317 { 318 struct ddp_rcv_buffer *drb; 319 struct pageset *ps; 320 int i; 321 322 DDP_LOCK(toep); 323 DDP_CACHE_LOCK(toep); 324 toep->ddp.flags |= DDP_DEAD; 325 DDP_CACHE_UNLOCK(toep); 326 for (i = 0; i < nitems(toep->ddp.db); i++) { 327 free_ddp_buffer(toep, &toep->ddp.db[i]); 328 } 329 if ((toep->ddp.flags & DDP_AIO) != 0) { 330 while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) { 331 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 332 free_pageset(toep->td, ps); 333 } 334 ddp_complete_all(toep, 0); 335 } 336 if ((toep->ddp.flags & DDP_RCVBUF) != 0) { 337 DDP_CACHE_LOCK(toep); 338 while ((drb = TAILQ_FIRST(&toep->ddp.cached_buffers)) != NULL) { 339 TAILQ_REMOVE(&toep->ddp.cached_buffers, drb, link); 340 free_ddp_rcv_buffer(toep, drb); 341 } 342 DDP_CACHE_UNLOCK(toep); 343 } 344 DDP_UNLOCK(toep); 345 } 346 347 #ifdef INVARIANTS 348 void 349 ddp_assert_empty(struct toepcb *toep) 350 { 351 int i; 352 353 MPASS((toep->ddp.flags & (DDP_TASK_ACTIVE | DDP_DEAD)) != DDP_TASK_ACTIVE); 354 for (i = 0; i < nitems(toep->ddp.db); i++) { 355 if ((toep->ddp.flags & DDP_AIO) != 0) { 356 MPASS(toep->ddp.db[i].job == NULL); 357 MPASS(toep->ddp.db[i].ps == NULL); 358 } else 359 MPASS(toep->ddp.db[i].drb == NULL); 360 } 361 if ((toep->ddp.flags & DDP_AIO) != 0) { 362 MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets)); 363 MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq)); 364 } 365 if ((toep->ddp.flags & DDP_RCVBUF) != 0) 366 MPASS(TAILQ_EMPTY(&toep->ddp.cached_buffers)); 367 } 368 #endif 369 370 static void 371 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, 372 unsigned int db_idx) 373 { 374 struct ddp_rcv_buffer *drb; 375 unsigned int db_flag; 376 377 toep->ddp.active_count--; 378 if (toep->ddp.active_id == db_idx) { 379 if (toep->ddp.active_count == 0) { 380 if ((toep->ddp.flags & DDP_AIO) != 0) 381 KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL, 382 ("%s: active_count mismatch", __func__)); 383 else 384 KASSERT(toep->ddp.db[db_idx ^ 1].drb == NULL, 385 ("%s: active_count mismatch", __func__)); 386 toep->ddp.active_id = -1; 387 } else 388 toep->ddp.active_id ^= 1; 389 #ifdef VERBOSE_TRACES 390 CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__, 391 toep->tid, toep->ddp.active_id); 392 #endif 393 } else { 394 KASSERT(toep->ddp.active_count != 0 && 395 toep->ddp.active_id != -1, 396 ("%s: active count mismatch", __func__)); 397 } 398 399 if ((toep->ddp.flags & DDP_AIO) != 0) { 400 db->cancel_pending = 0; 401 db->job = NULL; 402 recycle_pageset(toep, db->ps); 403 db->ps = NULL; 404 } else { 405 drb = db->drb; 406 if (atomic_fetchadd_int(&drb->refs, -1) == 1) 407 recycle_ddp_rcv_buffer(toep, drb); 408 db->drb = NULL; 409 db->placed = 0; 410 } 411 412 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 413 KASSERT(toep->ddp.flags & db_flag, 414 ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", 415 __func__, toep, toep->ddp.flags)); 416 toep->ddp.flags &= ~db_flag; 417 } 418 419 /* Called when m_free drops the last reference. */ 420 static void 421 ddp_rcv_mbuf_done(struct mbuf *m) 422 { 423 struct toepcb *toep = m->m_ext.ext_arg1; 424 struct ddp_rcv_buffer *drb = m->m_ext.ext_arg2; 425 426 recycle_ddp_rcv_buffer(toep, drb); 427 } 428 429 static void 430 queue_ddp_rcvbuf_mbuf(struct toepcb *toep, u_int db_idx, u_int len) 431 { 432 struct inpcb *inp = toep->inp; 433 struct sockbuf *sb; 434 struct ddp_buffer *db; 435 struct ddp_rcv_buffer *drb; 436 struct mbuf *m; 437 438 m = m_gethdr(M_NOWAIT, MT_DATA); 439 if (m == NULL) { 440 printf("%s: failed to allocate mbuf", __func__); 441 return; 442 } 443 m->m_pkthdr.rcvif = toep->vi->ifp; 444 445 db = &toep->ddp.db[db_idx]; 446 drb = db->drb; 447 m_extaddref(m, (char *)drb->buf + db->placed, len, &drb->refs, 448 ddp_rcv_mbuf_done, toep, drb); 449 m->m_pkthdr.len = len; 450 m->m_len = len; 451 452 sb = &inp->inp_socket->so_rcv; 453 SOCKBUF_LOCK_ASSERT(sb); 454 sbappendstream_locked(sb, m, 0); 455 456 db->placed += len; 457 toep->ofld_rxq->rx_toe_ddp_octets += len; 458 } 459 460 /* XXX: handle_ddp_data code duplication */ 461 void 462 insert_ddp_data(struct toepcb *toep, uint32_t n) 463 { 464 struct inpcb *inp = toep->inp; 465 struct tcpcb *tp = intotcpcb(inp); 466 struct ddp_buffer *db; 467 struct kaiocb *job; 468 size_t placed; 469 long copied; 470 unsigned int db_idx; 471 #ifdef INVARIANTS 472 unsigned int db_flag; 473 #endif 474 bool ddp_rcvbuf; 475 476 INP_WLOCK_ASSERT(inp); 477 DDP_ASSERT_LOCKED(toep); 478 479 ddp_rcvbuf = (toep->ddp.flags & DDP_RCVBUF) != 0; 480 tp->rcv_nxt += n; 481 #ifndef USE_DDP_RX_FLOW_CONTROL 482 KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); 483 tp->rcv_wnd -= n; 484 #endif 485 CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", 486 __func__, n); 487 while (toep->ddp.active_count > 0) { 488 MPASS(toep->ddp.active_id != -1); 489 db_idx = toep->ddp.active_id; 490 #ifdef INVARIANTS 491 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 492 #endif 493 MPASS((toep->ddp.flags & db_flag) != 0); 494 db = &toep->ddp.db[db_idx]; 495 if (ddp_rcvbuf) { 496 placed = n; 497 if (placed > db->drb->len - db->placed) 498 placed = db->drb->len - db->placed; 499 if (placed != 0) 500 queue_ddp_rcvbuf_mbuf(toep, db_idx, placed); 501 complete_ddp_buffer(toep, db, db_idx); 502 n -= placed; 503 continue; 504 } 505 job = db->job; 506 copied = job->aio_received; 507 placed = n; 508 if (placed > job->uaiocb.aio_nbytes - copied) 509 placed = job->uaiocb.aio_nbytes - copied; 510 if (placed > 0) { 511 job->msgrcv = 1; 512 toep->ofld_rxq->rx_aio_ddp_jobs++; 513 } 514 toep->ofld_rxq->rx_aio_ddp_octets += placed; 515 if (!aio_clear_cancel_function(job)) { 516 /* 517 * Update the copied length for when 518 * t4_aio_cancel_active() completes this 519 * request. 520 */ 521 job->aio_received += placed; 522 } else if (copied + placed != 0) { 523 CTR4(KTR_CXGBE, 524 "%s: completing %p (copied %ld, placed %lu)", 525 __func__, job, copied, placed); 526 /* XXX: This always completes if there is some data. */ 527 aio_complete(job, copied + placed, 0); 528 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { 529 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 530 toep->ddp.waiting_count++; 531 } else 532 aio_cancel(job); 533 n -= placed; 534 complete_ddp_buffer(toep, db, db_idx); 535 } 536 537 MPASS(n == 0); 538 } 539 540 /* SET_TCB_FIELD sent as a ULP command looks like this */ 541 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 542 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 543 544 /* RX_DATA_ACK sent as a ULP command looks like this */ 545 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ 546 sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) 547 548 static inline void * 549 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) 550 { 551 struct ulptx_idata *ulpsc; 552 struct cpl_rx_data_ack_core *req; 553 554 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 555 ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); 556 557 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 558 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 559 ulpsc->len = htobe32(sizeof(*req)); 560 561 req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); 562 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); 563 req->credit_dack = htobe32(F_RX_MODULATE_RX); 564 565 ulpsc = (struct ulptx_idata *)(req + 1); 566 if (LEN__RX_DATA_ACK_ULP % 16) { 567 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 568 ulpsc->len = htobe32(0); 569 return (ulpsc + 1); 570 } 571 return (ulpsc); 572 } 573 574 static struct wrqe * 575 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, 576 struct ppod_reservation *prsv, int offset, uint32_t len, 577 uint64_t ddp_flags, uint64_t ddp_flags_mask) 578 { 579 struct wrqe *wr; 580 struct work_request_hdr *wrh; 581 struct ulp_txpkt *ulpmc; 582 int wrlen; 583 584 KASSERT(db_idx == 0 || db_idx == 1, 585 ("%s: bad DDP buffer index %d", __func__, db_idx)); 586 587 /* 588 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an 589 * RX_DATA_ACK (with RX_MODULATE to speed up delivery). 590 * 591 * The work request header is 16B and always ends at a 16B boundary. 592 * The ULPTX master commands that follow must all end at 16B boundaries 593 * too so we round up the size to 16. 594 */ 595 wrlen = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + 596 roundup2(LEN__RX_DATA_ACK_ULP, 16); 597 598 wr = alloc_wrqe(wrlen, toep->ctrlq); 599 if (wr == NULL) 600 return (NULL); 601 wrh = wrtod(wr); 602 INIT_ULPTX_WRH(wrh, wrlen, 1, 0); /* atomic */ 603 ulpmc = (struct ulp_txpkt *)(wrh + 1); 604 605 /* Write the buffer's tag */ 606 ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, 607 W_TCB_RX_DDP_BUF0_TAG + db_idx, 608 V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), 609 V_TCB_RX_DDP_BUF0_TAG(prsv->prsv_tag)); 610 611 /* Update the current offset in the DDP buffer and its total length */ 612 if (db_idx == 0) 613 ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, 614 W_TCB_RX_DDP_BUF0_OFFSET, 615 V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | 616 V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), 617 V_TCB_RX_DDP_BUF0_OFFSET(offset) | 618 V_TCB_RX_DDP_BUF0_LEN(len)); 619 else 620 ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, 621 W_TCB_RX_DDP_BUF1_OFFSET, 622 V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | 623 V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), 624 V_TCB_RX_DDP_BUF1_OFFSET(offset) | 625 V_TCB_RX_DDP_BUF1_LEN((u64)len << 32)); 626 627 /* Update DDP flags */ 628 ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, W_TCB_RX_DDP_FLAGS, 629 ddp_flags_mask, ddp_flags); 630 631 /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ 632 ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); 633 634 return (wr); 635 } 636 637 static int 638 handle_ddp_data_aio(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, 639 int len) 640 { 641 uint32_t report = be32toh(ddp_report); 642 unsigned int db_idx; 643 struct inpcb *inp = toep->inp; 644 struct ddp_buffer *db; 645 struct tcpcb *tp; 646 struct socket *so; 647 struct sockbuf *sb; 648 struct kaiocb *job; 649 long copied; 650 651 db_idx = report & F_DDP_BUF_IDX ? 1 : 0; 652 653 if (__predict_false(!(report & F_DDP_INV))) 654 CXGBE_UNIMPLEMENTED("DDP buffer still valid"); 655 656 INP_WLOCK(inp); 657 so = inp_inpcbtosocket(inp); 658 sb = &so->so_rcv; 659 DDP_LOCK(toep); 660 661 KASSERT(toep->ddp.active_id == db_idx, 662 ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, 663 toep->ddp.active_id, toep->tid)); 664 db = &toep->ddp.db[db_idx]; 665 job = db->job; 666 667 if (__predict_false(inp->inp_flags & INP_DROPPED)) { 668 /* 669 * This can happen due to an administrative tcpdrop(8). 670 * Just fail the request with ECONNRESET. 671 */ 672 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 673 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 674 if (aio_clear_cancel_function(job)) 675 ddp_complete_one(job, ECONNRESET); 676 goto completed; 677 } 678 679 tp = intotcpcb(inp); 680 681 /* 682 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 683 * sequence number of the next byte to receive. The length of 684 * the data received for this message must be computed by 685 * comparing the new and old values of rcv_nxt. 686 * 687 * For RX_DATA_DDP, len might be non-zero, but it is only the 688 * length of the most recent DMA. It does not include the 689 * total length of the data received since the previous update 690 * for this DDP buffer. rcv_nxt is the sequence number of the 691 * first received byte from the most recent DMA. 692 */ 693 len += be32toh(rcv_nxt) - tp->rcv_nxt; 694 tp->rcv_nxt += len; 695 tp->t_rcvtime = ticks; 696 #ifndef USE_DDP_RX_FLOW_CONTROL 697 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 698 tp->rcv_wnd -= len; 699 #endif 700 #ifdef VERBOSE_TRACES 701 CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__, 702 toep->tid, db_idx, len, report); 703 #endif 704 705 /* receive buffer autosize */ 706 MPASS(toep->vnet == so->so_vnet); 707 CURVNET_SET(toep->vnet); 708 SOCKBUF_LOCK(sb); 709 if (sb->sb_flags & SB_AUTOSIZE && 710 V_tcp_do_autorcvbuf && 711 sb->sb_hiwat < V_tcp_autorcvbuf_max && 712 len > (sbspace(sb) / 8 * 7)) { 713 struct adapter *sc = td_adapter(toep->td); 714 unsigned int hiwat = sb->sb_hiwat; 715 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 716 V_tcp_autorcvbuf_max); 717 718 if (!sbreserve_locked(so, SO_RCV, newsize, NULL)) 719 sb->sb_flags &= ~SB_AUTOSIZE; 720 } 721 SOCKBUF_UNLOCK(sb); 722 CURVNET_RESTORE(); 723 724 job->msgrcv = 1; 725 toep->ofld_rxq->rx_aio_ddp_jobs++; 726 toep->ofld_rxq->rx_aio_ddp_octets += len; 727 if (db->cancel_pending) { 728 /* 729 * Update the job's length but defer completion to the 730 * TCB_RPL callback. 731 */ 732 job->aio_received += len; 733 goto out; 734 } else if (!aio_clear_cancel_function(job)) { 735 /* 736 * Update the copied length for when 737 * t4_aio_cancel_active() completes this request. 738 */ 739 job->aio_received += len; 740 } else { 741 copied = job->aio_received; 742 #ifdef VERBOSE_TRACES 743 CTR5(KTR_CXGBE, 744 "%s: tid %u, completing %p (copied %ld, placed %d)", 745 __func__, toep->tid, job, copied, len); 746 #endif 747 aio_complete(job, copied + len, 0); 748 t4_rcvd(&toep->td->tod, tp); 749 } 750 751 completed: 752 complete_ddp_buffer(toep, db, db_idx); 753 if (toep->ddp.waiting_count > 0) 754 ddp_queue_toep(toep); 755 out: 756 DDP_UNLOCK(toep); 757 INP_WUNLOCK(inp); 758 759 return (0); 760 } 761 762 static bool 763 queue_ddp_rcvbuf(struct toepcb *toep, struct ddp_rcv_buffer *drb) 764 { 765 struct adapter *sc = td_adapter(toep->td); 766 struct ddp_buffer *db; 767 struct wrqe *wr; 768 uint64_t ddp_flags, ddp_flags_mask; 769 int buf_flag, db_idx; 770 771 DDP_ASSERT_LOCKED(toep); 772 773 KASSERT((toep->ddp.flags & DDP_DEAD) == 0, ("%s: DDP_DEAD", __func__)); 774 KASSERT(toep->ddp.active_count < nitems(toep->ddp.db), 775 ("%s: no empty DDP buffer slot", __func__)); 776 777 /* Determine which DDP buffer to use. */ 778 if (toep->ddp.db[0].drb == NULL) { 779 db_idx = 0; 780 } else { 781 MPASS(toep->ddp.db[1].drb == NULL); 782 db_idx = 1; 783 } 784 785 /* 786 * Permit PSH to trigger a partial completion without 787 * invalidating the rest of the buffer, but disable the PUSH 788 * timer. 789 */ 790 ddp_flags = 0; 791 ddp_flags_mask = 0; 792 if (db_idx == 0) { 793 ddp_flags |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 794 V_TF_DDP_PUSH_DISABLE_0(0) | V_TF_DDP_PSHF_ENABLE_0(1) | 795 V_TF_DDP_BUF0_VALID(1); 796 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 797 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | 798 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); 799 buf_flag = DDP_BUF0_ACTIVE; 800 } else { 801 ddp_flags |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 802 V_TF_DDP_PUSH_DISABLE_1(0) | V_TF_DDP_PSHF_ENABLE_1(1) | 803 V_TF_DDP_BUF1_VALID(1); 804 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 805 V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | 806 V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); 807 buf_flag = DDP_BUF1_ACTIVE; 808 } 809 MPASS((toep->ddp.flags & buf_flag) == 0); 810 if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { 811 MPASS(db_idx == 0); 812 MPASS(toep->ddp.active_id == -1); 813 MPASS(toep->ddp.active_count == 0); 814 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); 815 } 816 817 /* 818 * The TID for this connection should still be valid. If 819 * DDP_DEAD is set, SBS_CANTRCVMORE should be set, so we 820 * shouldn't be this far anyway. 821 */ 822 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, &drb->prsv, 0, drb->len, 823 ddp_flags, ddp_flags_mask); 824 if (wr == NULL) { 825 recycle_ddp_rcv_buffer(toep, drb); 826 printf("%s: mk_update_tcb_for_ddp failed\n", __func__); 827 return (false); 828 } 829 830 #ifdef VERBOSE_TRACES 831 CTR(KTR_CXGBE, 832 "%s: tid %u, scheduling DDP[%d] (flags %#lx/%#lx)", __func__, 833 toep->tid, db_idx, ddp_flags, ddp_flags_mask); 834 #endif 835 /* 836 * Hold a reference on scheduled buffers that is dropped in 837 * complete_ddp_buffer. 838 */ 839 drb->refs = 1; 840 841 /* Give the chip the go-ahead. */ 842 t4_wrq_tx(sc, wr); 843 db = &toep->ddp.db[db_idx]; 844 db->drb = drb; 845 toep->ddp.flags |= buf_flag; 846 toep->ddp.active_count++; 847 if (toep->ddp.active_count == 1) { 848 MPASS(toep->ddp.active_id == -1); 849 toep->ddp.active_id = db_idx; 850 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 851 toep->ddp.active_id); 852 } 853 return (true); 854 } 855 856 static int 857 handle_ddp_data_rcvbuf(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, 858 int len) 859 { 860 uint32_t report = be32toh(ddp_report); 861 struct inpcb *inp = toep->inp; 862 struct tcpcb *tp; 863 struct socket *so; 864 struct sockbuf *sb; 865 struct ddp_buffer *db; 866 struct ddp_rcv_buffer *drb; 867 unsigned int db_idx; 868 bool invalidated; 869 870 db_idx = report & F_DDP_BUF_IDX ? 1 : 0; 871 872 invalidated = (report & F_DDP_INV) != 0; 873 874 INP_WLOCK(inp); 875 so = inp_inpcbtosocket(inp); 876 sb = &so->so_rcv; 877 DDP_LOCK(toep); 878 879 KASSERT(toep->ddp.active_id == db_idx, 880 ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, 881 toep->ddp.active_id, toep->tid)); 882 db = &toep->ddp.db[db_idx]; 883 884 if (__predict_false(inp->inp_flags & INP_DROPPED)) { 885 /* 886 * This can happen due to an administrative tcpdrop(8). 887 * Just ignore the received data. 888 */ 889 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 890 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 891 if (invalidated) 892 complete_ddp_buffer(toep, db, db_idx); 893 goto out; 894 } 895 896 tp = intotcpcb(inp); 897 898 /* 899 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 900 * sequence number of the next byte to receive. The length of 901 * the data received for this message must be computed by 902 * comparing the new and old values of rcv_nxt. 903 * 904 * For RX_DATA_DDP, len might be non-zero, but it is only the 905 * length of the most recent DMA. It does not include the 906 * total length of the data received since the previous update 907 * for this DDP buffer. rcv_nxt is the sequence number of the 908 * first received byte from the most recent DMA. 909 */ 910 len += be32toh(rcv_nxt) - tp->rcv_nxt; 911 tp->rcv_nxt += len; 912 tp->t_rcvtime = ticks; 913 #ifndef USE_DDP_RX_FLOW_CONTROL 914 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 915 tp->rcv_wnd -= len; 916 #endif 917 #ifdef VERBOSE_TRACES 918 CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__, 919 toep->tid, db_idx, len, report); 920 #endif 921 922 /* receive buffer autosize */ 923 MPASS(toep->vnet == so->so_vnet); 924 CURVNET_SET(toep->vnet); 925 SOCKBUF_LOCK(sb); 926 if (sb->sb_flags & SB_AUTOSIZE && 927 V_tcp_do_autorcvbuf && 928 sb->sb_hiwat < V_tcp_autorcvbuf_max && 929 len > (sbspace(sb) / 8 * 7)) { 930 struct adapter *sc = td_adapter(toep->td); 931 unsigned int hiwat = sb->sb_hiwat; 932 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 933 V_tcp_autorcvbuf_max); 934 935 if (!sbreserve_locked(so, SO_RCV, newsize, NULL)) 936 sb->sb_flags &= ~SB_AUTOSIZE; 937 } 938 939 if (len > 0) { 940 queue_ddp_rcvbuf_mbuf(toep, db_idx, len); 941 t4_rcvd_locked(&toep->td->tod, tp); 942 } 943 sorwakeup_locked(so); 944 SOCKBUF_UNLOCK_ASSERT(sb); 945 CURVNET_RESTORE(); 946 947 if (invalidated) 948 complete_ddp_buffer(toep, db, db_idx); 949 else 950 KASSERT(db->placed < db->drb->len, 951 ("%s: full DDP buffer not invalidated", __func__)); 952 953 if (toep->ddp.active_count != nitems(toep->ddp.db)) { 954 drb = alloc_cached_ddp_rcv_buffer(toep); 955 if (drb == NULL) 956 drb = alloc_ddp_rcv_buffer(toep, M_NOWAIT); 957 if (drb == NULL) 958 ddp_queue_toep(toep); 959 else { 960 if (!queue_ddp_rcvbuf(toep, drb)) { 961 ddp_queue_toep(toep); 962 } 963 } 964 } 965 out: 966 DDP_UNLOCK(toep); 967 INP_WUNLOCK(inp); 968 969 return (0); 970 } 971 972 static int 973 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) 974 { 975 if ((toep->ddp.flags & DDP_RCVBUF) != 0) 976 return (handle_ddp_data_rcvbuf(toep, ddp_report, rcv_nxt, len)); 977 else 978 return (handle_ddp_data_aio(toep, ddp_report, rcv_nxt, len)); 979 } 980 981 void 982 handle_ddp_indicate(struct toepcb *toep) 983 { 984 985 DDP_ASSERT_LOCKED(toep); 986 if ((toep->ddp.flags & DDP_RCVBUF) != 0) { 987 /* 988 * Indicates are not meaningful for RCVBUF since 989 * buffers are activated when the socket option is 990 * set. 991 */ 992 return; 993 } 994 995 MPASS(toep->ddp.active_count == 0); 996 MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); 997 if (toep->ddp.waiting_count == 0) { 998 /* 999 * The pending requests that triggered the request for an 1000 * an indicate were cancelled. Those cancels should have 1001 * already disabled DDP. Just ignore this as the data is 1002 * going into the socket buffer anyway. 1003 */ 1004 return; 1005 } 1006 CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, 1007 toep->tid, toep->ddp.waiting_count); 1008 ddp_queue_toep(toep); 1009 } 1010 1011 CTASSERT(CPL_COOKIE_DDP0 + 1 == CPL_COOKIE_DDP1); 1012 1013 static int 1014 do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 1015 { 1016 struct adapter *sc = iq->adapter; 1017 const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); 1018 unsigned int tid = GET_TID(cpl); 1019 unsigned int db_idx; 1020 struct toepcb *toep; 1021 struct inpcb *inp; 1022 struct ddp_buffer *db; 1023 struct kaiocb *job; 1024 long copied; 1025 1026 if (cpl->status != CPL_ERR_NONE) 1027 panic("XXX: tcp_rpl failed: %d", cpl->status); 1028 1029 toep = lookup_tid(sc, tid); 1030 inp = toep->inp; 1031 switch (cpl->cookie) { 1032 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP0): 1033 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP1): 1034 /* 1035 * XXX: This duplicates a lot of code with handle_ddp_data(). 1036 */ 1037 KASSERT((toep->ddp.flags & DDP_AIO) != 0, 1038 ("%s: DDP_RCVBUF", __func__)); 1039 db_idx = G_COOKIE(cpl->cookie) - CPL_COOKIE_DDP0; 1040 MPASS(db_idx < nitems(toep->ddp.db)); 1041 INP_WLOCK(inp); 1042 DDP_LOCK(toep); 1043 db = &toep->ddp.db[db_idx]; 1044 1045 /* 1046 * handle_ddp_data() should leave the job around until 1047 * this callback runs once a cancel is pending. 1048 */ 1049 MPASS(db != NULL); 1050 MPASS(db->job != NULL); 1051 MPASS(db->cancel_pending); 1052 1053 /* 1054 * XXX: It's not clear what happens if there is data 1055 * placed when the buffer is invalidated. I suspect we 1056 * need to read the TCB to see how much data was placed. 1057 * 1058 * For now this just pretends like nothing was placed. 1059 * 1060 * XXX: Note that if we did check the PCB we would need to 1061 * also take care of updating the tp, etc. 1062 */ 1063 job = db->job; 1064 copied = job->aio_received; 1065 if (copied == 0) { 1066 CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); 1067 aio_cancel(job); 1068 } else { 1069 CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", 1070 __func__, job, copied); 1071 aio_complete(job, copied, 0); 1072 t4_rcvd(&toep->td->tod, intotcpcb(inp)); 1073 } 1074 1075 complete_ddp_buffer(toep, db, db_idx); 1076 if (toep->ddp.waiting_count > 0) 1077 ddp_queue_toep(toep); 1078 DDP_UNLOCK(toep); 1079 INP_WUNLOCK(inp); 1080 break; 1081 default: 1082 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", 1083 G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); 1084 } 1085 1086 return (0); 1087 } 1088 1089 void 1090 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) 1091 { 1092 struct socket *so = toep->inp->inp_socket; 1093 struct sockbuf *sb = &so->so_rcv; 1094 struct ddp_buffer *db; 1095 struct kaiocb *job; 1096 long copied; 1097 unsigned int db_idx; 1098 #ifdef INVARIANTS 1099 unsigned int db_flag; 1100 #endif 1101 int len, placed; 1102 bool ddp_rcvbuf; 1103 1104 INP_WLOCK_ASSERT(toep->inp); 1105 DDP_ASSERT_LOCKED(toep); 1106 1107 ddp_rcvbuf = (toep->ddp.flags & DDP_RCVBUF) != 0; 1108 1109 /* - 1 is to ignore the byte for FIN */ 1110 len = be32toh(rcv_nxt) - tp->rcv_nxt - 1; 1111 tp->rcv_nxt += len; 1112 1113 CTR(KTR_CXGBE, "%s: tid %d placed %u bytes before FIN", __func__, 1114 toep->tid, len); 1115 while (toep->ddp.active_count > 0) { 1116 MPASS(toep->ddp.active_id != -1); 1117 db_idx = toep->ddp.active_id; 1118 #ifdef INVARIANTS 1119 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 1120 #endif 1121 MPASS((toep->ddp.flags & db_flag) != 0); 1122 db = &toep->ddp.db[db_idx]; 1123 if (ddp_rcvbuf) { 1124 placed = len; 1125 if (placed > db->drb->len - db->placed) 1126 placed = db->drb->len - db->placed; 1127 if (placed != 0) { 1128 SOCKBUF_LOCK(sb); 1129 queue_ddp_rcvbuf_mbuf(toep, db_idx, placed); 1130 sorwakeup_locked(so); 1131 SOCKBUF_UNLOCK_ASSERT(sb); 1132 } 1133 complete_ddp_buffer(toep, db, db_idx); 1134 len -= placed; 1135 continue; 1136 } 1137 job = db->job; 1138 copied = job->aio_received; 1139 placed = len; 1140 if (placed > job->uaiocb.aio_nbytes - copied) 1141 placed = job->uaiocb.aio_nbytes - copied; 1142 if (placed > 0) { 1143 job->msgrcv = 1; 1144 toep->ofld_rxq->rx_aio_ddp_jobs++; 1145 } 1146 toep->ofld_rxq->rx_aio_ddp_octets += placed; 1147 if (!aio_clear_cancel_function(job)) { 1148 /* 1149 * Update the copied length for when 1150 * t4_aio_cancel_active() completes this 1151 * request. 1152 */ 1153 job->aio_received += placed; 1154 } else { 1155 CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", 1156 __func__, toep->tid, db_idx, placed); 1157 aio_complete(job, copied + placed, 0); 1158 } 1159 len -= placed; 1160 complete_ddp_buffer(toep, db, db_idx); 1161 } 1162 1163 MPASS(len == 0); 1164 if ((toep->ddp.flags & DDP_AIO) != 0) 1165 ddp_complete_all(toep, 0); 1166 } 1167 1168 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ 1169 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ 1170 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ 1171 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) 1172 1173 extern cpl_handler_t t4_cpl_handler[]; 1174 1175 static int 1176 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 1177 { 1178 struct adapter *sc = iq->adapter; 1179 const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); 1180 unsigned int tid = GET_TID(cpl); 1181 uint32_t vld; 1182 struct toepcb *toep = lookup_tid(sc, tid); 1183 1184 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 1185 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 1186 KASSERT(!(toep->flags & TPF_SYNQE), 1187 ("%s: toep %p claims to be a synq entry", __func__, toep)); 1188 1189 vld = be32toh(cpl->ddpvld); 1190 if (__predict_false(vld & DDP_ERR)) { 1191 panic("%s: DDP error 0x%x (tid %d, toep %p)", 1192 __func__, vld, tid, toep); 1193 } 1194 1195 if (ulp_mode(toep) == ULP_MODE_ISCSI) { 1196 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); 1197 return (0); 1198 } 1199 1200 handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); 1201 1202 return (0); 1203 } 1204 1205 static int 1206 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, 1207 struct mbuf *m) 1208 { 1209 struct adapter *sc = iq->adapter; 1210 const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); 1211 unsigned int tid = GET_TID(cpl); 1212 struct toepcb *toep = lookup_tid(sc, tid); 1213 1214 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 1215 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 1216 KASSERT(!(toep->flags & TPF_SYNQE), 1217 ("%s: toep %p claims to be a synq entry", __func__, toep)); 1218 1219 handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); 1220 1221 return (0); 1222 } 1223 1224 static bool 1225 set_ddp_ulp_mode(struct toepcb *toep) 1226 { 1227 struct adapter *sc = toep->vi->adapter; 1228 struct wrqe *wr; 1229 struct work_request_hdr *wrh; 1230 struct ulp_txpkt *ulpmc; 1231 int fields, len; 1232 1233 if (!sc->tt.ddp) 1234 return (false); 1235 1236 fields = 0; 1237 1238 /* Overlay region including W_TCB_RX_DDP_FLAGS */ 1239 fields += 3; 1240 1241 /* W_TCB_ULP_TYPE */ 1242 fields++; 1243 1244 #ifdef USE_DDP_RX_FLOW_CONTROL 1245 /* W_TCB_T_FLAGS */ 1246 fields++; 1247 #endif 1248 1249 len = sizeof(*wrh) + fields * roundup2(LEN__SET_TCB_FIELD_ULP, 16); 1250 KASSERT(len <= SGE_MAX_WR_LEN, 1251 ("%s: WR with %d TCB field updates too large", __func__, fields)); 1252 1253 wr = alloc_wrqe(len, toep->ctrlq); 1254 if (wr == NULL) 1255 return (false); 1256 1257 CTR(KTR_CXGBE, "%s: tid %u", __func__, toep->tid); 1258 1259 wrh = wrtod(wr); 1260 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 1261 ulpmc = (struct ulp_txpkt *)(wrh + 1); 1262 1263 /* 1264 * Words 26/27 are zero except for the DDP_OFF flag in 1265 * W_TCB_RX_DDP_FLAGS (27). 1266 */ 1267 ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, 26, 1268 0xffffffffffffffff, (uint64_t)V_TF_DDP_OFF(1) << 32); 1269 1270 /* Words 28/29 are zero. */ 1271 ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, 28, 1272 0xffffffffffffffff, 0); 1273 1274 /* Words 30/31 are zero. */ 1275 ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, 30, 1276 0xffffffffffffffff, 0); 1277 1278 /* Set the ULP mode to ULP_MODE_TCPDDP. */ 1279 toep->params.ulp_mode = ULP_MODE_TCPDDP; 1280 ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, W_TCB_ULP_TYPE, 1281 V_TCB_ULP_TYPE(M_TCB_ULP_TYPE), V_TCB_ULP_TYPE(ULP_MODE_TCPDDP)); 1282 1283 #ifdef USE_DDP_RX_FLOW_CONTROL 1284 /* Set TF_RX_FLOW_CONTROL_DDP. */ 1285 ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, W_TCB_T_FLAGS, 1286 V_TF_RX_FLOW_CONTROL_DDP(1), V_TF_RX_FLOW_CONTROL_DDP(1)); 1287 #endif 1288 1289 ddp_init_toep(toep); 1290 1291 t4_wrq_tx(sc, wr); 1292 return (true); 1293 } 1294 1295 static void 1296 enable_ddp(struct adapter *sc, struct toepcb *toep) 1297 { 1298 uint64_t ddp_flags; 1299 1300 KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, 1301 ("%s: toep %p has bad ddp_flags 0x%x", 1302 __func__, toep, toep->ddp.flags)); 1303 1304 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 1305 __func__, toep->tid, time_uptime); 1306 1307 ddp_flags = 0; 1308 if ((toep->ddp.flags & DDP_AIO) != 0) 1309 ddp_flags |= V_TF_DDP_BUF0_INDICATE(1) | 1310 V_TF_DDP_BUF1_INDICATE(1); 1311 DDP_ASSERT_LOCKED(toep); 1312 toep->ddp.flags |= DDP_SC_REQ; 1313 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, 1314 V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | 1315 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | 1316 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), ddp_flags, 0, 0); 1317 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 1318 V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0); 1319 } 1320 1321 static int 1322 calculate_hcf(int n1, int n2) 1323 { 1324 int a, b, t; 1325 1326 if (n1 <= n2) { 1327 a = n1; 1328 b = n2; 1329 } else { 1330 a = n2; 1331 b = n1; 1332 } 1333 1334 while (a != 0) { 1335 t = a; 1336 a = b % a; 1337 b = t; 1338 } 1339 1340 return (b); 1341 } 1342 1343 static inline int 1344 pages_to_nppods(int npages, int ddp_page_shift) 1345 { 1346 1347 MPASS(ddp_page_shift >= PAGE_SHIFT); 1348 1349 return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); 1350 } 1351 1352 static int 1353 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, 1354 struct ppod_reservation *prsv) 1355 { 1356 vmem_addr_t addr; /* relative to start of region */ 1357 1358 if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, 1359 &addr) != 0) 1360 return (ENOMEM); 1361 1362 #ifdef VERBOSE_TRACES 1363 CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", 1364 __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, 1365 nppods, 1 << pr->pr_page_shift[pgsz_idx]); 1366 #endif 1367 1368 /* 1369 * The hardware tagmask includes an extra invalid bit but the arena was 1370 * seeded with valid values only. An allocation out of this arena will 1371 * fit inside the tagmask but won't have the invalid bit set. 1372 */ 1373 MPASS((addr & pr->pr_tag_mask) == addr); 1374 MPASS((addr & pr->pr_invalid_bit) == 0); 1375 1376 prsv->prsv_pr = pr; 1377 prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; 1378 prsv->prsv_nppods = nppods; 1379 1380 return (0); 1381 } 1382 1383 static int 1384 t4_alloc_page_pods_for_vmpages(struct ppod_region *pr, vm_page_t *pages, 1385 int npages, struct ppod_reservation *prsv) 1386 { 1387 int i, hcf, seglen, idx, nppods; 1388 1389 /* 1390 * The DDP page size is unrelated to the VM page size. We combine 1391 * contiguous physical pages into larger segments to get the best DDP 1392 * page size possible. This is the largest of the four sizes in 1393 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in 1394 * the page list. 1395 */ 1396 hcf = 0; 1397 for (i = 0; i < npages; i++) { 1398 seglen = PAGE_SIZE; 1399 while (i < npages - 1 && 1400 VM_PAGE_TO_PHYS(pages[i]) + PAGE_SIZE == 1401 VM_PAGE_TO_PHYS(pages[i + 1])) { 1402 seglen += PAGE_SIZE; 1403 i++; 1404 } 1405 1406 hcf = calculate_hcf(hcf, seglen); 1407 if (hcf < (1 << pr->pr_page_shift[1])) { 1408 idx = 0; 1409 goto have_pgsz; /* give up, short circuit */ 1410 } 1411 } 1412 1413 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 1414 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1415 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1416 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1417 break; 1418 } 1419 #undef PR_PAGE_MASK 1420 1421 have_pgsz: 1422 MPASS(idx <= M_PPOD_PGSZ); 1423 1424 nppods = pages_to_nppods(npages, pr->pr_page_shift[idx]); 1425 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1426 return (ENOMEM); 1427 MPASS(prsv->prsv_nppods > 0); 1428 1429 return (0); 1430 } 1431 1432 int 1433 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) 1434 { 1435 struct ppod_reservation *prsv = &ps->prsv; 1436 1437 KASSERT(prsv->prsv_nppods == 0, 1438 ("%s: page pods already allocated", __func__)); 1439 1440 return (t4_alloc_page_pods_for_vmpages(pr, ps->pages, ps->npages, 1441 prsv)); 1442 } 1443 1444 int 1445 t4_alloc_page_pods_for_bio(struct ppod_region *pr, struct bio *bp, 1446 struct ppod_reservation *prsv) 1447 { 1448 1449 MPASS(bp->bio_flags & BIO_UNMAPPED); 1450 1451 return (t4_alloc_page_pods_for_vmpages(pr, bp->bio_ma, bp->bio_ma_n, 1452 prsv)); 1453 } 1454 1455 int 1456 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, 1457 struct ppod_reservation *prsv) 1458 { 1459 int hcf, seglen, idx, npages, nppods; 1460 uintptr_t start_pva, end_pva, pva, p1; 1461 1462 MPASS(buf > 0); 1463 MPASS(len > 0); 1464 1465 /* 1466 * The DDP page size is unrelated to the VM page size. We combine 1467 * contiguous physical pages into larger segments to get the best DDP 1468 * page size possible. This is the largest of the four sizes in 1469 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 1470 * in the page list. 1471 */ 1472 hcf = 0; 1473 start_pva = trunc_page(buf); 1474 end_pva = trunc_page(buf + len - 1); 1475 pva = start_pva; 1476 while (pva <= end_pva) { 1477 seglen = PAGE_SIZE; 1478 p1 = pmap_kextract(pva); 1479 pva += PAGE_SIZE; 1480 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { 1481 seglen += PAGE_SIZE; 1482 pva += PAGE_SIZE; 1483 } 1484 1485 hcf = calculate_hcf(hcf, seglen); 1486 if (hcf < (1 << pr->pr_page_shift[1])) { 1487 idx = 0; 1488 goto have_pgsz; /* give up, short circuit */ 1489 } 1490 } 1491 1492 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 1493 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1494 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1495 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1496 break; 1497 } 1498 #undef PR_PAGE_MASK 1499 1500 have_pgsz: 1501 MPASS(idx <= M_PPOD_PGSZ); 1502 1503 npages = 1; 1504 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 1505 nppods = howmany(npages, PPOD_PAGES); 1506 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1507 return (ENOMEM); 1508 MPASS(prsv->prsv_nppods > 0); 1509 1510 return (0); 1511 } 1512 1513 static int 1514 t4_alloc_page_pods_for_rcvbuf(struct ppod_region *pr, 1515 struct ddp_rcv_buffer *drb) 1516 { 1517 struct ppod_reservation *prsv = &drb->prsv; 1518 1519 KASSERT(prsv->prsv_nppods == 0, 1520 ("%s: page pods already allocated", __func__)); 1521 1522 return (t4_alloc_page_pods_for_buf(pr, (vm_offset_t)drb->buf, drb->len, 1523 prsv)); 1524 } 1525 1526 int 1527 t4_alloc_page_pods_for_sgl(struct ppod_region *pr, struct ctl_sg_entry *sgl, 1528 int entries, struct ppod_reservation *prsv) 1529 { 1530 int hcf, seglen, idx = 0, npages, nppods, i, len; 1531 uintptr_t start_pva, end_pva, pva, p1 ; 1532 vm_offset_t buf; 1533 struct ctl_sg_entry *sge; 1534 1535 MPASS(entries > 0); 1536 MPASS(sgl); 1537 1538 /* 1539 * The DDP page size is unrelated to the VM page size. We combine 1540 * contiguous physical pages into larger segments to get the best DDP 1541 * page size possible. This is the largest of the four sizes in 1542 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 1543 * in the page list. 1544 */ 1545 hcf = 0; 1546 for (i = entries - 1; i >= 0; i--) { 1547 sge = sgl + i; 1548 buf = (vm_offset_t)sge->addr; 1549 len = sge->len; 1550 start_pva = trunc_page(buf); 1551 end_pva = trunc_page(buf + len - 1); 1552 pva = start_pva; 1553 while (pva <= end_pva) { 1554 seglen = PAGE_SIZE; 1555 p1 = pmap_kextract(pva); 1556 pva += PAGE_SIZE; 1557 while (pva <= end_pva && p1 + seglen == 1558 pmap_kextract(pva)) { 1559 seglen += PAGE_SIZE; 1560 pva += PAGE_SIZE; 1561 } 1562 1563 hcf = calculate_hcf(hcf, seglen); 1564 if (hcf < (1 << pr->pr_page_shift[1])) { 1565 idx = 0; 1566 goto have_pgsz; /* give up, short circuit */ 1567 } 1568 } 1569 } 1570 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 1571 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1572 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1573 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1574 break; 1575 } 1576 #undef PR_PAGE_MASK 1577 1578 have_pgsz: 1579 MPASS(idx <= M_PPOD_PGSZ); 1580 1581 npages = 0; 1582 while (entries--) { 1583 npages++; 1584 start_pva = trunc_page((vm_offset_t)sgl->addr); 1585 end_pva = trunc_page((vm_offset_t)sgl->addr + sgl->len - 1); 1586 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 1587 sgl = sgl + 1; 1588 } 1589 nppods = howmany(npages, PPOD_PAGES); 1590 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1591 return (ENOMEM); 1592 MPASS(prsv->prsv_nppods > 0); 1593 return (0); 1594 } 1595 1596 void 1597 t4_free_page_pods(struct ppod_reservation *prsv) 1598 { 1599 struct ppod_region *pr = prsv->prsv_pr; 1600 vmem_addr_t addr; 1601 1602 MPASS(prsv != NULL); 1603 MPASS(prsv->prsv_nppods != 0); 1604 1605 addr = prsv->prsv_tag & pr->pr_tag_mask; 1606 MPASS((addr & pr->pr_invalid_bit) == 0); 1607 1608 #ifdef VERBOSE_TRACES 1609 CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, 1610 pr->pr_arena, addr, prsv->prsv_nppods); 1611 #endif 1612 1613 vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); 1614 prsv->prsv_nppods = 0; 1615 } 1616 1617 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) 1618 1619 int 1620 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, 1621 struct pageset *ps) 1622 { 1623 struct wrqe *wr; 1624 struct ulp_mem_io *ulpmc; 1625 struct ulptx_idata *ulpsc; 1626 struct pagepod *ppod; 1627 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1628 u_int ppod_addr; 1629 uint32_t cmd; 1630 struct ppod_reservation *prsv = &ps->prsv; 1631 struct ppod_region *pr = prsv->prsv_pr; 1632 vm_paddr_t pa; 1633 1634 KASSERT(!(ps->flags & PS_PPODS_WRITTEN), 1635 ("%s: page pods already written", __func__)); 1636 MPASS(prsv->prsv_nppods > 0); 1637 1638 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1639 if (is_t4(sc)) 1640 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1641 else 1642 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1643 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1644 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1645 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1646 /* How many page pods are we writing in this cycle */ 1647 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1648 chunk = PPOD_SZ(n); 1649 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1650 1651 wr = alloc_wrqe(len, wrq); 1652 if (wr == NULL) 1653 return (ENOMEM); /* ok to just bail out */ 1654 ulpmc = wrtod(wr); 1655 1656 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1657 ulpmc->cmd = cmd; 1658 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1659 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1660 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1661 1662 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1663 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1664 ulpsc->len = htobe32(chunk); 1665 1666 ppod = (struct pagepod *)(ulpsc + 1); 1667 for (j = 0; j < n; i++, j++, ppod++) { 1668 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1669 V_PPOD_TID(tid) | prsv->prsv_tag); 1670 ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | 1671 V_PPOD_OFST(ps->offset)); 1672 ppod->rsvd = 0; 1673 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1674 for (k = 0; k < nitems(ppod->addr); k++) { 1675 if (idx < ps->npages) { 1676 pa = VM_PAGE_TO_PHYS(ps->pages[idx]); 1677 ppod->addr[k] = htobe64(pa); 1678 idx += ddp_pgsz / PAGE_SIZE; 1679 } else 1680 ppod->addr[k] = 0; 1681 #if 0 1682 CTR5(KTR_CXGBE, 1683 "%s: tid %d ppod[%d]->addr[%d] = %p", 1684 __func__, tid, i, k, 1685 be64toh(ppod->addr[k])); 1686 #endif 1687 } 1688 1689 } 1690 1691 t4_wrq_tx(sc, wr); 1692 } 1693 ps->flags |= PS_PPODS_WRITTEN; 1694 1695 return (0); 1696 } 1697 1698 static int 1699 t4_write_page_pods_for_rcvbuf(struct adapter *sc, struct sge_wrq *wrq, int tid, 1700 struct ddp_rcv_buffer *drb) 1701 { 1702 struct wrqe *wr; 1703 struct ulp_mem_io *ulpmc; 1704 struct ulptx_idata *ulpsc; 1705 struct pagepod *ppod; 1706 int i, j, k, n, chunk, len, ddp_pgsz; 1707 u_int ppod_addr, offset; 1708 uint32_t cmd; 1709 struct ppod_reservation *prsv = &drb->prsv; 1710 struct ppod_region *pr = prsv->prsv_pr; 1711 uintptr_t end_pva, pva; 1712 vm_paddr_t pa; 1713 1714 MPASS(prsv->prsv_nppods > 0); 1715 1716 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1717 if (is_t4(sc)) 1718 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1719 else 1720 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1721 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1722 offset = (uintptr_t)drb->buf & PAGE_MASK; 1723 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1724 pva = trunc_page((uintptr_t)drb->buf); 1725 end_pva = trunc_page((uintptr_t)drb->buf + drb->len - 1); 1726 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1727 /* How many page pods are we writing in this cycle */ 1728 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1729 MPASS(n > 0); 1730 chunk = PPOD_SZ(n); 1731 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1732 1733 wr = alloc_wrqe(len, wrq); 1734 if (wr == NULL) 1735 return (ENOMEM); /* ok to just bail out */ 1736 ulpmc = wrtod(wr); 1737 1738 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1739 ulpmc->cmd = cmd; 1740 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1741 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1742 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1743 1744 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1745 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1746 ulpsc->len = htobe32(chunk); 1747 1748 ppod = (struct pagepod *)(ulpsc + 1); 1749 for (j = 0; j < n; i++, j++, ppod++) { 1750 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1751 V_PPOD_TID(tid) | prsv->prsv_tag); 1752 ppod->len_offset = htobe64(V_PPOD_LEN(drb->len) | 1753 V_PPOD_OFST(offset)); 1754 ppod->rsvd = 0; 1755 1756 for (k = 0; k < nitems(ppod->addr); k++) { 1757 if (pva > end_pva) 1758 ppod->addr[k] = 0; 1759 else { 1760 pa = pmap_kextract(pva); 1761 ppod->addr[k] = htobe64(pa); 1762 pva += ddp_pgsz; 1763 } 1764 #if 0 1765 CTR5(KTR_CXGBE, 1766 "%s: tid %d ppod[%d]->addr[%d] = %p", 1767 __func__, tid, i, k, 1768 be64toh(ppod->addr[k])); 1769 #endif 1770 } 1771 1772 /* 1773 * Walk back 1 segment so that the first address in the 1774 * next pod is the same as the last one in the current 1775 * pod. 1776 */ 1777 pva -= ddp_pgsz; 1778 } 1779 1780 t4_wrq_tx(sc, wr); 1781 } 1782 1783 MPASS(pva <= end_pva); 1784 1785 return (0); 1786 } 1787 1788 static struct mbuf * 1789 alloc_raw_wr_mbuf(int len) 1790 { 1791 struct mbuf *m; 1792 1793 if (len <= MHLEN) 1794 m = m_gethdr(M_NOWAIT, MT_DATA); 1795 else if (len <= MCLBYTES) 1796 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1797 else 1798 m = NULL; 1799 if (m == NULL) 1800 return (NULL); 1801 m->m_pkthdr.len = len; 1802 m->m_len = len; 1803 set_mbuf_raw_wr(m, true); 1804 return (m); 1805 } 1806 1807 int 1808 t4_write_page_pods_for_bio(struct adapter *sc, struct toepcb *toep, 1809 struct ppod_reservation *prsv, struct bio *bp, struct mbufq *wrq) 1810 { 1811 struct ulp_mem_io *ulpmc; 1812 struct ulptx_idata *ulpsc; 1813 struct pagepod *ppod; 1814 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1815 u_int ppod_addr; 1816 uint32_t cmd; 1817 struct ppod_region *pr = prsv->prsv_pr; 1818 vm_paddr_t pa; 1819 struct mbuf *m; 1820 1821 MPASS(bp->bio_flags & BIO_UNMAPPED); 1822 1823 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1824 if (is_t4(sc)) 1825 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1826 else 1827 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1828 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1829 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1830 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1831 1832 /* How many page pods are we writing in this cycle */ 1833 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1834 MPASS(n > 0); 1835 chunk = PPOD_SZ(n); 1836 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1837 1838 m = alloc_raw_wr_mbuf(len); 1839 if (m == NULL) 1840 return (ENOMEM); 1841 1842 ulpmc = mtod(m, struct ulp_mem_io *); 1843 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1844 ulpmc->cmd = cmd; 1845 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1846 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1847 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1848 1849 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1850 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1851 ulpsc->len = htobe32(chunk); 1852 1853 ppod = (struct pagepod *)(ulpsc + 1); 1854 for (j = 0; j < n; i++, j++, ppod++) { 1855 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1856 V_PPOD_TID(toep->tid) | 1857 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1858 ppod->len_offset = htobe64(V_PPOD_LEN(bp->bio_bcount) | 1859 V_PPOD_OFST(bp->bio_ma_offset)); 1860 ppod->rsvd = 0; 1861 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1862 for (k = 0; k < nitems(ppod->addr); k++) { 1863 if (idx < bp->bio_ma_n) { 1864 pa = VM_PAGE_TO_PHYS(bp->bio_ma[idx]); 1865 ppod->addr[k] = htobe64(pa); 1866 idx += ddp_pgsz / PAGE_SIZE; 1867 } else 1868 ppod->addr[k] = 0; 1869 #if 0 1870 CTR5(KTR_CXGBE, 1871 "%s: tid %d ppod[%d]->addr[%d] = %p", 1872 __func__, toep->tid, i, k, 1873 be64toh(ppod->addr[k])); 1874 #endif 1875 } 1876 } 1877 1878 mbufq_enqueue(wrq, m); 1879 } 1880 1881 return (0); 1882 } 1883 1884 int 1885 t4_write_page_pods_for_buf(struct adapter *sc, struct toepcb *toep, 1886 struct ppod_reservation *prsv, vm_offset_t buf, int buflen, 1887 struct mbufq *wrq) 1888 { 1889 struct ulp_mem_io *ulpmc; 1890 struct ulptx_idata *ulpsc; 1891 struct pagepod *ppod; 1892 int i, j, k, n, chunk, len, ddp_pgsz; 1893 u_int ppod_addr, offset; 1894 uint32_t cmd; 1895 struct ppod_region *pr = prsv->prsv_pr; 1896 uintptr_t end_pva, pva; 1897 vm_paddr_t pa; 1898 struct mbuf *m; 1899 1900 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1901 if (is_t4(sc)) 1902 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1903 else 1904 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1905 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1906 offset = buf & PAGE_MASK; 1907 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1908 pva = trunc_page(buf); 1909 end_pva = trunc_page(buf + buflen - 1); 1910 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1911 1912 /* How many page pods are we writing in this cycle */ 1913 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1914 MPASS(n > 0); 1915 chunk = PPOD_SZ(n); 1916 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1917 1918 m = alloc_raw_wr_mbuf(len); 1919 if (m == NULL) 1920 return (ENOMEM); 1921 ulpmc = mtod(m, struct ulp_mem_io *); 1922 1923 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1924 ulpmc->cmd = cmd; 1925 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1926 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1927 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1928 1929 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1930 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1931 ulpsc->len = htobe32(chunk); 1932 1933 ppod = (struct pagepod *)(ulpsc + 1); 1934 for (j = 0; j < n; i++, j++, ppod++) { 1935 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1936 V_PPOD_TID(toep->tid) | 1937 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1938 ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | 1939 V_PPOD_OFST(offset)); 1940 ppod->rsvd = 0; 1941 1942 for (k = 0; k < nitems(ppod->addr); k++) { 1943 if (pva > end_pva) 1944 ppod->addr[k] = 0; 1945 else { 1946 pa = pmap_kextract(pva); 1947 ppod->addr[k] = htobe64(pa); 1948 pva += ddp_pgsz; 1949 } 1950 #if 0 1951 CTR5(KTR_CXGBE, 1952 "%s: tid %d ppod[%d]->addr[%d] = %p", 1953 __func__, toep->tid, i, k, 1954 be64toh(ppod->addr[k])); 1955 #endif 1956 } 1957 1958 /* 1959 * Walk back 1 segment so that the first address in the 1960 * next pod is the same as the last one in the current 1961 * pod. 1962 */ 1963 pva -= ddp_pgsz; 1964 } 1965 1966 mbufq_enqueue(wrq, m); 1967 } 1968 1969 MPASS(pva <= end_pva); 1970 1971 return (0); 1972 } 1973 1974 int 1975 t4_write_page_pods_for_sgl(struct adapter *sc, struct toepcb *toep, 1976 struct ppod_reservation *prsv, struct ctl_sg_entry *sgl, int entries, 1977 int xferlen, struct mbufq *wrq) 1978 { 1979 struct ulp_mem_io *ulpmc; 1980 struct ulptx_idata *ulpsc; 1981 struct pagepod *ppod; 1982 int i, j, k, n, chunk, len, ddp_pgsz; 1983 u_int ppod_addr, offset, sg_offset = 0; 1984 uint32_t cmd; 1985 struct ppod_region *pr = prsv->prsv_pr; 1986 uintptr_t pva; 1987 vm_paddr_t pa; 1988 struct mbuf *m; 1989 1990 MPASS(sgl != NULL); 1991 MPASS(entries > 0); 1992 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1993 if (is_t4(sc)) 1994 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1995 else 1996 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1997 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1998 offset = (vm_offset_t)sgl->addr & PAGE_MASK; 1999 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 2000 pva = trunc_page((vm_offset_t)sgl->addr); 2001 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 2002 2003 /* How many page pods are we writing in this cycle */ 2004 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 2005 MPASS(n > 0); 2006 chunk = PPOD_SZ(n); 2007 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 2008 2009 m = alloc_raw_wr_mbuf(len); 2010 if (m == NULL) 2011 return (ENOMEM); 2012 ulpmc = mtod(m, struct ulp_mem_io *); 2013 2014 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 2015 ulpmc->cmd = cmd; 2016 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 2017 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 2018 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 2019 2020 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 2021 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 2022 ulpsc->len = htobe32(chunk); 2023 2024 ppod = (struct pagepod *)(ulpsc + 1); 2025 for (j = 0; j < n; i++, j++, ppod++) { 2026 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 2027 V_PPOD_TID(toep->tid) | 2028 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 2029 ppod->len_offset = htobe64(V_PPOD_LEN(xferlen) | 2030 V_PPOD_OFST(offset)); 2031 ppod->rsvd = 0; 2032 2033 for (k = 0; k < nitems(ppod->addr); k++) { 2034 if (entries != 0) { 2035 pa = pmap_kextract(pva + sg_offset); 2036 ppod->addr[k] = htobe64(pa); 2037 } else 2038 ppod->addr[k] = 0; 2039 2040 #if 0 2041 CTR5(KTR_CXGBE, 2042 "%s: tid %d ppod[%d]->addr[%d] = %p", 2043 __func__, toep->tid, i, k, 2044 be64toh(ppod->addr[k])); 2045 #endif 2046 2047 /* 2048 * If this is the last entry in a pod, 2049 * reuse the same entry for first address 2050 * in the next pod. 2051 */ 2052 if (k + 1 == nitems(ppod->addr)) 2053 break; 2054 2055 /* 2056 * Don't move to the next DDP page if the 2057 * sgl is already finished. 2058 */ 2059 if (entries == 0) 2060 continue; 2061 2062 sg_offset += ddp_pgsz; 2063 if (sg_offset == sgl->len) { 2064 /* 2065 * This sgl entry is done. Go 2066 * to the next. 2067 */ 2068 entries--; 2069 sgl++; 2070 sg_offset = 0; 2071 if (entries != 0) 2072 pva = trunc_page( 2073 (vm_offset_t)sgl->addr); 2074 } 2075 } 2076 } 2077 2078 mbufq_enqueue(wrq, m); 2079 } 2080 2081 return (0); 2082 } 2083 2084 /* 2085 * Prepare a pageset for DDP. This sets up page pods. 2086 */ 2087 static int 2088 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) 2089 { 2090 struct tom_data *td = sc->tom_softc; 2091 2092 if (ps->prsv.prsv_nppods == 0 && 2093 t4_alloc_page_pods_for_ps(&td->pr, ps) != 0) { 2094 return (0); 2095 } 2096 if (!(ps->flags & PS_PPODS_WRITTEN) && 2097 t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { 2098 return (0); 2099 } 2100 2101 return (1); 2102 } 2103 2104 int 2105 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, 2106 const char *name) 2107 { 2108 int i; 2109 2110 MPASS(pr != NULL); 2111 MPASS(r->size > 0); 2112 2113 pr->pr_start = r->start; 2114 pr->pr_len = r->size; 2115 pr->pr_page_shift[0] = 12 + G_HPZ0(psz); 2116 pr->pr_page_shift[1] = 12 + G_HPZ1(psz); 2117 pr->pr_page_shift[2] = 12 + G_HPZ2(psz); 2118 pr->pr_page_shift[3] = 12 + G_HPZ3(psz); 2119 2120 /* The SGL -> page pod algorithm requires the sizes to be in order. */ 2121 for (i = 1; i < nitems(pr->pr_page_shift); i++) { 2122 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) 2123 return (ENXIO); 2124 } 2125 2126 pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); 2127 pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; 2128 if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) 2129 return (ENXIO); 2130 pr->pr_alias_shift = fls(pr->pr_tag_mask); 2131 pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); 2132 2133 pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, 2134 M_FIRSTFIT | M_NOWAIT); 2135 if (pr->pr_arena == NULL) 2136 return (ENOMEM); 2137 2138 return (0); 2139 } 2140 2141 void 2142 t4_free_ppod_region(struct ppod_region *pr) 2143 { 2144 2145 MPASS(pr != NULL); 2146 2147 if (pr->pr_arena) 2148 vmem_destroy(pr->pr_arena); 2149 bzero(pr, sizeof(*pr)); 2150 } 2151 2152 static int 2153 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, 2154 int pgoff, int len) 2155 { 2156 2157 if (ps->start != start || ps->npages != npages || 2158 ps->offset != pgoff || ps->len != len) 2159 return (1); 2160 2161 return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); 2162 } 2163 2164 static int 2165 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) 2166 { 2167 struct vmspace *vm; 2168 vm_map_t map; 2169 vm_offset_t start, end, pgoff; 2170 struct pageset *ps; 2171 int n; 2172 2173 DDP_ASSERT_LOCKED(toep); 2174 2175 /* 2176 * The AIO subsystem will cancel and drain all requests before 2177 * permitting a process to exit or exec, so p_vmspace should 2178 * be stable here. 2179 */ 2180 vm = job->userproc->p_vmspace; 2181 map = &vm->vm_map; 2182 start = (uintptr_t)job->uaiocb.aio_buf; 2183 pgoff = start & PAGE_MASK; 2184 end = round_page(start + job->uaiocb.aio_nbytes); 2185 start = trunc_page(start); 2186 2187 if (end - start > MAX_DDP_BUFFER_SIZE) { 2188 /* 2189 * Truncate the request to a short read. 2190 * Alternatively, we could DDP in chunks to the larger 2191 * buffer, but that would be quite a bit more work. 2192 * 2193 * When truncating, round the request down to avoid 2194 * crossing a cache line on the final transaction. 2195 */ 2196 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); 2197 #ifdef VERBOSE_TRACES 2198 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", 2199 __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, 2200 (unsigned long)(end - (start + pgoff))); 2201 job->uaiocb.aio_nbytes = end - (start + pgoff); 2202 #endif 2203 end = round_page(end); 2204 } 2205 2206 n = atop(end - start); 2207 2208 /* 2209 * Try to reuse a cached pageset. 2210 */ 2211 TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) { 2212 if (pscmp(ps, vm, start, n, pgoff, 2213 job->uaiocb.aio_nbytes) == 0) { 2214 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 2215 toep->ddp.cached_count--; 2216 *pps = ps; 2217 return (0); 2218 } 2219 } 2220 2221 /* 2222 * If there are too many cached pagesets to create a new one, 2223 * free a pageset before creating a new one. 2224 */ 2225 KASSERT(toep->ddp.active_count + toep->ddp.cached_count <= 2226 nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__)); 2227 if (toep->ddp.active_count + toep->ddp.cached_count == 2228 nitems(toep->ddp.db)) { 2229 KASSERT(toep->ddp.cached_count > 0, 2230 ("no cached pageset to free")); 2231 ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq); 2232 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 2233 toep->ddp.cached_count--; 2234 free_pageset(toep->td, ps); 2235 } 2236 DDP_UNLOCK(toep); 2237 2238 /* Create a new pageset. */ 2239 ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | 2240 M_ZERO); 2241 ps->pages = (vm_page_t *)(ps + 1); 2242 ps->vm_timestamp = map->timestamp; 2243 ps->npages = vm_fault_quick_hold_pages(map, start, end - start, 2244 VM_PROT_WRITE, ps->pages, n); 2245 2246 DDP_LOCK(toep); 2247 if (ps->npages < 0) { 2248 free(ps, M_CXGBE); 2249 return (EFAULT); 2250 } 2251 2252 KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", 2253 ps->npages, n)); 2254 2255 ps->offset = pgoff; 2256 ps->len = job->uaiocb.aio_nbytes; 2257 refcount_acquire(&vm->vm_refcnt); 2258 ps->vm = vm; 2259 ps->start = start; 2260 2261 CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", 2262 __func__, toep->tid, ps, job, ps->npages); 2263 *pps = ps; 2264 return (0); 2265 } 2266 2267 static void 2268 ddp_complete_all(struct toepcb *toep, int error) 2269 { 2270 struct kaiocb *job; 2271 2272 DDP_ASSERT_LOCKED(toep); 2273 KASSERT((toep->ddp.flags & DDP_AIO) != 0, ("%s: DDP_RCVBUF", __func__)); 2274 while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) { 2275 job = TAILQ_FIRST(&toep->ddp.aiojobq); 2276 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 2277 toep->ddp.waiting_count--; 2278 if (aio_clear_cancel_function(job)) 2279 ddp_complete_one(job, error); 2280 } 2281 } 2282 2283 static void 2284 aio_ddp_cancel_one(struct kaiocb *job) 2285 { 2286 long copied; 2287 2288 /* 2289 * If this job had copied data out of the socket buffer before 2290 * it was cancelled, report it as a short read rather than an 2291 * error. 2292 */ 2293 copied = job->aio_received; 2294 if (copied != 0) 2295 aio_complete(job, copied, 0); 2296 else 2297 aio_cancel(job); 2298 } 2299 2300 /* 2301 * Called when the main loop wants to requeue a job to retry it later. 2302 * Deals with the race of the job being cancelled while it was being 2303 * examined. 2304 */ 2305 static void 2306 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) 2307 { 2308 2309 DDP_ASSERT_LOCKED(toep); 2310 if (!(toep->ddp.flags & DDP_DEAD) && 2311 aio_set_cancel_function(job, t4_aio_cancel_queued)) { 2312 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 2313 toep->ddp.waiting_count++; 2314 } else 2315 aio_ddp_cancel_one(job); 2316 } 2317 2318 static void 2319 aio_ddp_requeue(struct toepcb *toep) 2320 { 2321 struct adapter *sc = td_adapter(toep->td); 2322 struct socket *so; 2323 struct sockbuf *sb; 2324 struct inpcb *inp; 2325 struct kaiocb *job; 2326 struct ddp_buffer *db; 2327 size_t copied, offset, resid; 2328 struct pageset *ps; 2329 struct mbuf *m; 2330 uint64_t ddp_flags, ddp_flags_mask; 2331 struct wrqe *wr; 2332 int buf_flag, db_idx, error; 2333 2334 DDP_ASSERT_LOCKED(toep); 2335 2336 restart: 2337 if (toep->ddp.flags & DDP_DEAD) { 2338 MPASS(toep->ddp.waiting_count == 0); 2339 MPASS(toep->ddp.active_count == 0); 2340 return; 2341 } 2342 2343 if (toep->ddp.waiting_count == 0 || 2344 toep->ddp.active_count == nitems(toep->ddp.db)) { 2345 return; 2346 } 2347 2348 job = TAILQ_FIRST(&toep->ddp.aiojobq); 2349 so = job->fd_file->f_data; 2350 sb = &so->so_rcv; 2351 SOCKBUF_LOCK(sb); 2352 2353 /* We will never get anything unless we are or were connected. */ 2354 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2355 SOCKBUF_UNLOCK(sb); 2356 ddp_complete_all(toep, ENOTCONN); 2357 return; 2358 } 2359 2360 KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0, 2361 ("%s: pending sockbuf data and DDP is active", __func__)); 2362 2363 /* Abort if socket has reported problems. */ 2364 /* XXX: Wait for any queued DDP's to finish and/or flush them? */ 2365 if (so->so_error && sbavail(sb) == 0) { 2366 toep->ddp.waiting_count--; 2367 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 2368 if (!aio_clear_cancel_function(job)) { 2369 SOCKBUF_UNLOCK(sb); 2370 goto restart; 2371 } 2372 2373 /* 2374 * If this job has previously copied some data, report 2375 * a short read and leave the error to be reported by 2376 * a future request. 2377 */ 2378 copied = job->aio_received; 2379 if (copied != 0) { 2380 SOCKBUF_UNLOCK(sb); 2381 aio_complete(job, copied, 0); 2382 goto restart; 2383 } 2384 error = so->so_error; 2385 so->so_error = 0; 2386 SOCKBUF_UNLOCK(sb); 2387 aio_complete(job, -1, error); 2388 goto restart; 2389 } 2390 2391 /* 2392 * Door is closed. If there is pending data in the socket buffer, 2393 * deliver it. If there are pending DDP requests, wait for those 2394 * to complete. Once they have completed, return EOF reads. 2395 */ 2396 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 2397 SOCKBUF_UNLOCK(sb); 2398 if (toep->ddp.active_count != 0) 2399 return; 2400 ddp_complete_all(toep, 0); 2401 return; 2402 } 2403 2404 /* 2405 * If DDP is not enabled and there is no pending socket buffer 2406 * data, try to enable DDP. 2407 */ 2408 if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) { 2409 SOCKBUF_UNLOCK(sb); 2410 2411 /* 2412 * Wait for the card to ACK that DDP is enabled before 2413 * queueing any buffers. Currently this waits for an 2414 * indicate to arrive. This could use a TCB_SET_FIELD_RPL 2415 * message to know that DDP was enabled instead of waiting 2416 * for the indicate which would avoid copying the indicate 2417 * if no data is pending. 2418 * 2419 * XXX: Might want to limit the indicate size to the size 2420 * of the first queued request. 2421 */ 2422 if ((toep->ddp.flags & DDP_SC_REQ) == 0) 2423 enable_ddp(sc, toep); 2424 return; 2425 } 2426 SOCKBUF_UNLOCK(sb); 2427 2428 /* 2429 * If another thread is queueing a buffer for DDP, let it 2430 * drain any work and return. 2431 */ 2432 if (toep->ddp.queueing != NULL) 2433 return; 2434 2435 /* Take the next job to prep it for DDP. */ 2436 toep->ddp.waiting_count--; 2437 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 2438 if (!aio_clear_cancel_function(job)) 2439 goto restart; 2440 toep->ddp.queueing = job; 2441 2442 /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ 2443 error = hold_aio(toep, job, &ps); 2444 if (error != 0) { 2445 ddp_complete_one(job, error); 2446 toep->ddp.queueing = NULL; 2447 goto restart; 2448 } 2449 2450 SOCKBUF_LOCK(sb); 2451 if (so->so_error && sbavail(sb) == 0) { 2452 copied = job->aio_received; 2453 if (copied != 0) { 2454 SOCKBUF_UNLOCK(sb); 2455 recycle_pageset(toep, ps); 2456 aio_complete(job, copied, 0); 2457 toep->ddp.queueing = NULL; 2458 goto restart; 2459 } 2460 2461 error = so->so_error; 2462 so->so_error = 0; 2463 SOCKBUF_UNLOCK(sb); 2464 recycle_pageset(toep, ps); 2465 aio_complete(job, -1, error); 2466 toep->ddp.queueing = NULL; 2467 goto restart; 2468 } 2469 2470 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 2471 SOCKBUF_UNLOCK(sb); 2472 recycle_pageset(toep, ps); 2473 if (toep->ddp.active_count != 0) { 2474 /* 2475 * The door is closed, but there are still pending 2476 * DDP buffers. Requeue. These jobs will all be 2477 * completed once those buffers drain. 2478 */ 2479 aio_ddp_requeue_one(toep, job); 2480 toep->ddp.queueing = NULL; 2481 return; 2482 } 2483 ddp_complete_one(job, 0); 2484 ddp_complete_all(toep, 0); 2485 toep->ddp.queueing = NULL; 2486 return; 2487 } 2488 2489 sbcopy: 2490 /* 2491 * If the toep is dead, there shouldn't be any data in the socket 2492 * buffer, so the above case should have handled this. 2493 */ 2494 MPASS(!(toep->ddp.flags & DDP_DEAD)); 2495 2496 /* 2497 * If there is pending data in the socket buffer (either 2498 * from before the requests were queued or a DDP indicate), 2499 * copy those mbufs out directly. 2500 */ 2501 copied = 0; 2502 offset = ps->offset + job->aio_received; 2503 MPASS(job->aio_received <= job->uaiocb.aio_nbytes); 2504 resid = job->uaiocb.aio_nbytes - job->aio_received; 2505 m = sb->sb_mb; 2506 KASSERT(m == NULL || toep->ddp.active_count == 0, 2507 ("%s: sockbuf data with active DDP", __func__)); 2508 while (m != NULL && resid > 0) { 2509 struct iovec iov[1]; 2510 struct uio uio; 2511 #ifdef INVARIANTS 2512 int error; 2513 #endif 2514 2515 iov[0].iov_base = mtod(m, void *); 2516 iov[0].iov_len = m->m_len; 2517 if (iov[0].iov_len > resid) 2518 iov[0].iov_len = resid; 2519 uio.uio_iov = iov; 2520 uio.uio_iovcnt = 1; 2521 uio.uio_offset = 0; 2522 uio.uio_resid = iov[0].iov_len; 2523 uio.uio_segflg = UIO_SYSSPACE; 2524 uio.uio_rw = UIO_WRITE; 2525 #ifdef INVARIANTS 2526 error = uiomove_fromphys(ps->pages, offset + copied, 2527 uio.uio_resid, &uio); 2528 #else 2529 uiomove_fromphys(ps->pages, offset + copied, uio.uio_resid, &uio); 2530 #endif 2531 MPASS(error == 0 && uio.uio_resid == 0); 2532 copied += uio.uio_offset; 2533 resid -= uio.uio_offset; 2534 m = m->m_next; 2535 } 2536 if (copied != 0) { 2537 sbdrop_locked(sb, copied); 2538 job->aio_received += copied; 2539 job->msgrcv = 1; 2540 copied = job->aio_received; 2541 inp = sotoinpcb(so); 2542 if (!INP_TRY_WLOCK(inp)) { 2543 /* 2544 * The reference on the socket file descriptor in 2545 * the AIO job should keep 'sb' and 'inp' stable. 2546 * Our caller has a reference on the 'toep' that 2547 * keeps it stable. 2548 */ 2549 SOCKBUF_UNLOCK(sb); 2550 DDP_UNLOCK(toep); 2551 INP_WLOCK(inp); 2552 DDP_LOCK(toep); 2553 SOCKBUF_LOCK(sb); 2554 2555 /* 2556 * If the socket has been closed, we should detect 2557 * that and complete this request if needed on 2558 * the next trip around the loop. 2559 */ 2560 } 2561 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); 2562 INP_WUNLOCK(inp); 2563 if (resid == 0 || toep->ddp.flags & DDP_DEAD) { 2564 /* 2565 * We filled the entire buffer with socket 2566 * data, DDP is not being used, or the socket 2567 * is being shut down, so complete the 2568 * request. 2569 */ 2570 SOCKBUF_UNLOCK(sb); 2571 recycle_pageset(toep, ps); 2572 aio_complete(job, copied, 0); 2573 toep->ddp.queueing = NULL; 2574 goto restart; 2575 } 2576 2577 /* 2578 * If DDP is not enabled, requeue this request and restart. 2579 * This will either enable DDP or wait for more data to 2580 * arrive on the socket buffer. 2581 */ 2582 if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { 2583 SOCKBUF_UNLOCK(sb); 2584 recycle_pageset(toep, ps); 2585 aio_ddp_requeue_one(toep, job); 2586 toep->ddp.queueing = NULL; 2587 goto restart; 2588 } 2589 2590 /* 2591 * An indicate might have arrived and been added to 2592 * the socket buffer while it was unlocked after the 2593 * copy to lock the INP. If so, restart the copy. 2594 */ 2595 if (sbavail(sb) != 0) 2596 goto sbcopy; 2597 } 2598 SOCKBUF_UNLOCK(sb); 2599 2600 if (prep_pageset(sc, toep, ps) == 0) { 2601 recycle_pageset(toep, ps); 2602 aio_ddp_requeue_one(toep, job); 2603 toep->ddp.queueing = NULL; 2604 2605 /* 2606 * XXX: Need to retry this later. Mostly need a trigger 2607 * when page pods are freed up. 2608 */ 2609 printf("%s: prep_pageset failed\n", __func__); 2610 return; 2611 } 2612 2613 /* Determine which DDP buffer to use. */ 2614 if (toep->ddp.db[0].job == NULL) { 2615 db_idx = 0; 2616 } else { 2617 MPASS(toep->ddp.db[1].job == NULL); 2618 db_idx = 1; 2619 } 2620 2621 ddp_flags = 0; 2622 ddp_flags_mask = 0; 2623 if (db_idx == 0) { 2624 ddp_flags |= V_TF_DDP_BUF0_VALID(1); 2625 if (so->so_state & SS_NBIO) 2626 ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); 2627 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 2628 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | 2629 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); 2630 buf_flag = DDP_BUF0_ACTIVE; 2631 } else { 2632 ddp_flags |= V_TF_DDP_BUF1_VALID(1); 2633 if (so->so_state & SS_NBIO) 2634 ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); 2635 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 2636 V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | 2637 V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); 2638 buf_flag = DDP_BUF1_ACTIVE; 2639 } 2640 MPASS((toep->ddp.flags & buf_flag) == 0); 2641 if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { 2642 MPASS(db_idx == 0); 2643 MPASS(toep->ddp.active_id == -1); 2644 MPASS(toep->ddp.active_count == 0); 2645 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); 2646 } 2647 2648 /* 2649 * The TID for this connection should still be valid. If DDP_DEAD 2650 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be 2651 * this far anyway. Even if the socket is closing on the other 2652 * end, the AIO job holds a reference on this end of the socket 2653 * which will keep it open and keep the TCP PCB attached until 2654 * after the job is completed. 2655 */ 2656 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, &ps->prsv, 2657 job->aio_received, ps->len, ddp_flags, ddp_flags_mask); 2658 if (wr == NULL) { 2659 recycle_pageset(toep, ps); 2660 aio_ddp_requeue_one(toep, job); 2661 toep->ddp.queueing = NULL; 2662 2663 /* 2664 * XXX: Need a way to kick a retry here. 2665 * 2666 * XXX: We know the fixed size needed and could 2667 * preallocate this using a blocking request at the 2668 * start of the task to avoid having to handle this 2669 * edge case. 2670 */ 2671 printf("%s: mk_update_tcb_for_ddp failed\n", __func__); 2672 return; 2673 } 2674 2675 if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { 2676 free_wrqe(wr); 2677 recycle_pageset(toep, ps); 2678 aio_ddp_cancel_one(job); 2679 toep->ddp.queueing = NULL; 2680 goto restart; 2681 } 2682 2683 #ifdef VERBOSE_TRACES 2684 CTR6(KTR_CXGBE, 2685 "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__, 2686 toep->tid, job, db_idx, ddp_flags, ddp_flags_mask); 2687 #endif 2688 /* Give the chip the go-ahead. */ 2689 t4_wrq_tx(sc, wr); 2690 db = &toep->ddp.db[db_idx]; 2691 db->cancel_pending = 0; 2692 db->job = job; 2693 db->ps = ps; 2694 toep->ddp.queueing = NULL; 2695 toep->ddp.flags |= buf_flag; 2696 toep->ddp.active_count++; 2697 if (toep->ddp.active_count == 1) { 2698 MPASS(toep->ddp.active_id == -1); 2699 toep->ddp.active_id = db_idx; 2700 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 2701 toep->ddp.active_id); 2702 } 2703 goto restart; 2704 } 2705 2706 void 2707 ddp_queue_toep(struct toepcb *toep) 2708 { 2709 2710 DDP_ASSERT_LOCKED(toep); 2711 if (toep->ddp.flags & DDP_TASK_ACTIVE) 2712 return; 2713 toep->ddp.flags |= DDP_TASK_ACTIVE; 2714 hold_toepcb(toep); 2715 soaio_enqueue(&toep->ddp.requeue_task); 2716 } 2717 2718 static void 2719 aio_ddp_requeue_task(void *context, int pending) 2720 { 2721 struct toepcb *toep = context; 2722 2723 DDP_LOCK(toep); 2724 aio_ddp_requeue(toep); 2725 toep->ddp.flags &= ~DDP_TASK_ACTIVE; 2726 DDP_UNLOCK(toep); 2727 2728 free_toepcb(toep); 2729 } 2730 2731 static void 2732 t4_aio_cancel_active(struct kaiocb *job) 2733 { 2734 struct socket *so = job->fd_file->f_data; 2735 struct tcpcb *tp = sototcpcb(so); 2736 struct toepcb *toep = tp->t_toe; 2737 struct adapter *sc = td_adapter(toep->td); 2738 uint64_t valid_flag; 2739 int i; 2740 2741 DDP_LOCK(toep); 2742 if (aio_cancel_cleared(job)) { 2743 DDP_UNLOCK(toep); 2744 aio_ddp_cancel_one(job); 2745 return; 2746 } 2747 2748 for (i = 0; i < nitems(toep->ddp.db); i++) { 2749 if (toep->ddp.db[i].job == job) { 2750 /* Should only ever get one cancel request for a job. */ 2751 MPASS(toep->ddp.db[i].cancel_pending == 0); 2752 2753 /* 2754 * Invalidate this buffer. It will be 2755 * cancelled or partially completed once the 2756 * card ACKs the invalidate. 2757 */ 2758 valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : 2759 V_TF_DDP_BUF1_VALID(1); 2760 t4_set_tcb_field(sc, toep->ctrlq, toep, 2761 W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, 2762 CPL_COOKIE_DDP0 + i); 2763 toep->ddp.db[i].cancel_pending = 1; 2764 CTR2(KTR_CXGBE, "%s: request %p marked pending", 2765 __func__, job); 2766 break; 2767 } 2768 } 2769 DDP_UNLOCK(toep); 2770 } 2771 2772 static void 2773 t4_aio_cancel_queued(struct kaiocb *job) 2774 { 2775 struct socket *so = job->fd_file->f_data; 2776 struct tcpcb *tp = sototcpcb(so); 2777 struct toepcb *toep = tp->t_toe; 2778 2779 DDP_LOCK(toep); 2780 if (!aio_cancel_cleared(job)) { 2781 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 2782 toep->ddp.waiting_count--; 2783 if (toep->ddp.waiting_count == 0) 2784 ddp_queue_toep(toep); 2785 } 2786 CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); 2787 DDP_UNLOCK(toep); 2788 2789 aio_ddp_cancel_one(job); 2790 } 2791 2792 int 2793 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) 2794 { 2795 struct inpcb *inp = sotoinpcb(so); 2796 struct tcpcb *tp = intotcpcb(inp); 2797 struct toepcb *toep = tp->t_toe; 2798 2799 /* Ignore writes. */ 2800 if (job->uaiocb.aio_lio_opcode != LIO_READ) 2801 return (EOPNOTSUPP); 2802 2803 INP_WLOCK(inp); 2804 if (__predict_false(ulp_mode(toep) == ULP_MODE_NONE)) { 2805 if (!set_ddp_ulp_mode(toep)) { 2806 INP_WUNLOCK(inp); 2807 return (EOPNOTSUPP); 2808 } 2809 } 2810 INP_WUNLOCK(inp); 2811 2812 DDP_LOCK(toep); 2813 2814 /* 2815 * If DDP is being used for all normal receive, don't use it 2816 * for AIO. 2817 */ 2818 if ((toep->ddp.flags & DDP_RCVBUF) != 0) { 2819 DDP_UNLOCK(toep); 2820 return (EOPNOTSUPP); 2821 } 2822 2823 if ((toep->ddp.flags & DDP_AIO) == 0) { 2824 toep->ddp.flags |= DDP_AIO; 2825 TAILQ_INIT(&toep->ddp.cached_pagesets); 2826 TAILQ_INIT(&toep->ddp.aiojobq); 2827 TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, 2828 toep); 2829 } 2830 2831 /* 2832 * XXX: Think about possibly returning errors for ENOTCONN, 2833 * etc. Perhaps the caller would only queue the request 2834 * if it failed with EOPNOTSUPP? 2835 */ 2836 2837 #ifdef VERBOSE_TRACES 2838 CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid); 2839 #endif 2840 if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) 2841 panic("new job was cancelled"); 2842 TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list); 2843 toep->ddp.waiting_count++; 2844 2845 /* 2846 * Try to handle this request synchronously. If this has 2847 * to block because the task is running, it will just bail 2848 * and let the task handle it instead. 2849 */ 2850 aio_ddp_requeue(toep); 2851 DDP_UNLOCK(toep); 2852 return (0); 2853 } 2854 2855 static void 2856 ddp_rcvbuf_requeue(struct toepcb *toep) 2857 { 2858 struct socket *so; 2859 struct sockbuf *sb; 2860 struct inpcb *inp; 2861 struct ddp_rcv_buffer *drb; 2862 2863 DDP_ASSERT_LOCKED(toep); 2864 restart: 2865 if ((toep->ddp.flags & DDP_DEAD) != 0) { 2866 MPASS(toep->ddp.active_count == 0); 2867 return; 2868 } 2869 2870 /* If both buffers are active, nothing to do. */ 2871 if (toep->ddp.active_count == nitems(toep->ddp.db)) { 2872 return; 2873 } 2874 2875 inp = toep->inp; 2876 so = inp->inp_socket; 2877 sb = &so->so_rcv; 2878 2879 drb = alloc_cached_ddp_rcv_buffer(toep); 2880 DDP_UNLOCK(toep); 2881 2882 if (drb == NULL) { 2883 drb = alloc_ddp_rcv_buffer(toep, M_WAITOK); 2884 if (drb == NULL) { 2885 printf("%s: failed to allocate buffer\n", __func__); 2886 DDP_LOCK(toep); 2887 return; 2888 } 2889 } 2890 2891 DDP_LOCK(toep); 2892 if ((toep->ddp.flags & DDP_DEAD) != 0 || 2893 toep->ddp.active_count == nitems(toep->ddp.db)) { 2894 recycle_ddp_rcv_buffer(toep, drb); 2895 return; 2896 } 2897 2898 /* We will never get anything unless we are or were connected. */ 2899 SOCKBUF_LOCK(sb); 2900 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2901 SOCKBUF_UNLOCK(sb); 2902 recycle_ddp_rcv_buffer(toep, drb); 2903 return; 2904 } 2905 2906 /* Abort if socket has reported problems or is closed. */ 2907 if (so->so_error != 0 || (sb->sb_state & SBS_CANTRCVMORE) != 0) { 2908 SOCKBUF_UNLOCK(sb); 2909 recycle_ddp_rcv_buffer(toep, drb); 2910 return; 2911 } 2912 SOCKBUF_UNLOCK(sb); 2913 2914 if (!queue_ddp_rcvbuf(toep, drb)) { 2915 /* 2916 * XXX: Need a way to kick a retry here. 2917 * 2918 * XXX: We know the fixed size needed and could 2919 * preallocate the work request using a blocking 2920 * request at the start of the task to avoid having to 2921 * handle this edge case. 2922 */ 2923 return; 2924 } 2925 goto restart; 2926 } 2927 2928 static void 2929 ddp_rcvbuf_requeue_task(void *context, int pending) 2930 { 2931 struct toepcb *toep = context; 2932 2933 DDP_LOCK(toep); 2934 ddp_rcvbuf_requeue(toep); 2935 toep->ddp.flags &= ~DDP_TASK_ACTIVE; 2936 DDP_UNLOCK(toep); 2937 2938 free_toepcb(toep); 2939 } 2940 2941 int 2942 t4_enable_ddp_rcv(struct socket *so, struct toepcb *toep) 2943 { 2944 struct inpcb *inp = sotoinpcb(so); 2945 struct adapter *sc = td_adapter(toep->td); 2946 2947 INP_WLOCK(inp); 2948 switch (ulp_mode(toep)) { 2949 case ULP_MODE_TCPDDP: 2950 break; 2951 case ULP_MODE_NONE: 2952 if (set_ddp_ulp_mode(toep)) 2953 break; 2954 /* FALLTHROUGH */ 2955 default: 2956 INP_WUNLOCK(inp); 2957 return (EOPNOTSUPP); 2958 } 2959 INP_WUNLOCK(inp); 2960 2961 DDP_LOCK(toep); 2962 2963 /* 2964 * If DDP is being used for AIO already, don't use it for 2965 * normal receive. 2966 */ 2967 if ((toep->ddp.flags & DDP_AIO) != 0) { 2968 DDP_UNLOCK(toep); 2969 return (EOPNOTSUPP); 2970 } 2971 2972 if ((toep->ddp.flags & DDP_RCVBUF) != 0) { 2973 DDP_UNLOCK(toep); 2974 return (EBUSY); 2975 } 2976 2977 toep->ddp.flags |= DDP_RCVBUF; 2978 TAILQ_INIT(&toep->ddp.cached_buffers); 2979 enable_ddp(sc, toep); 2980 TASK_INIT(&toep->ddp.requeue_task, 0, ddp_rcvbuf_requeue_task, toep); 2981 ddp_queue_toep(toep); 2982 DDP_UNLOCK(toep); 2983 return (0); 2984 } 2985 2986 void 2987 t4_ddp_mod_load(void) 2988 { 2989 if (t4_ddp_rcvbuf_len < PAGE_SIZE) 2990 t4_ddp_rcvbuf_len = PAGE_SIZE; 2991 if (t4_ddp_rcvbuf_len > MAX_DDP_BUFFER_SIZE) 2992 t4_ddp_rcvbuf_len = MAX_DDP_BUFFER_SIZE; 2993 if (!powerof2(t4_ddp_rcvbuf_len)) 2994 t4_ddp_rcvbuf_len = 1 << fls(t4_ddp_rcvbuf_len); 2995 2996 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 2997 CPL_COOKIE_DDP0); 2998 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 2999 CPL_COOKIE_DDP1); 3000 t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); 3001 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); 3002 TAILQ_INIT(&ddp_orphan_pagesets); 3003 mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); 3004 TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); 3005 } 3006 3007 void 3008 t4_ddp_mod_unload(void) 3009 { 3010 3011 taskqueue_drain(taskqueue_thread, &ddp_orphan_task); 3012 MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); 3013 mtx_destroy(&ddp_orphan_pagesets_lock); 3014 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0); 3015 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1); 3016 t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); 3017 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); 3018 } 3019 #endif 3020