1 /*- 2 * Copyright (c) 2012 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: Navdeep Parhar <np@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 33 #include <sys/param.h> 34 #include <sys/aio.h> 35 #include <sys/file.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/ktr.h> 39 #include <sys/module.h> 40 #include <sys/protosw.h> 41 #include <sys/proc.h> 42 #include <sys/domain.h> 43 #include <sys/socket.h> 44 #include <sys/socketvar.h> 45 #include <sys/taskqueue.h> 46 #include <sys/uio.h> 47 #include <netinet/in.h> 48 #include <netinet/in_pcb.h> 49 #include <netinet/ip.h> 50 #include <netinet/tcp_var.h> 51 #define TCPSTATES 52 #include <netinet/tcp_fsm.h> 53 #include <netinet/toecore.h> 54 55 #include <vm/vm.h> 56 #include <vm/vm_extern.h> 57 #include <vm/vm_param.h> 58 #include <vm/pmap.h> 59 #include <vm/vm_map.h> 60 #include <vm/vm_page.h> 61 #include <vm/vm_object.h> 62 63 #ifdef TCP_OFFLOAD 64 #include "common/common.h" 65 #include "common/t4_msg.h" 66 #include "common/t4_regs.h" 67 #include "common/t4_tcb.h" 68 #include "tom/t4_tom.h" 69 70 VNET_DECLARE(int, tcp_do_autorcvbuf); 71 #define V_tcp_do_autorcvbuf VNET(tcp_do_autorcvbuf) 72 VNET_DECLARE(int, tcp_autorcvbuf_inc); 73 #define V_tcp_autorcvbuf_inc VNET(tcp_autorcvbuf_inc) 74 VNET_DECLARE(int, tcp_autorcvbuf_max); 75 #define V_tcp_autorcvbuf_max VNET(tcp_autorcvbuf_max) 76 77 /* 78 * Use the 'backend3' field in AIO jobs to store the amount of data 79 * received by the AIO job so far. 80 */ 81 #define aio_received backend3 82 83 static void aio_ddp_requeue_task(void *context, int pending); 84 static void ddp_complete_all(struct toepcb *toep, int error); 85 static void t4_aio_cancel_active(struct kaiocb *job); 86 static void t4_aio_cancel_queued(struct kaiocb *job); 87 88 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; 89 static struct mtx ddp_orphan_pagesets_lock; 90 static struct task ddp_orphan_task; 91 92 #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) 93 94 /* 95 * A page set holds information about a buffer used for DDP. The page 96 * set holds resources such as the VM pages backing the buffer (either 97 * held or wired) and the page pods associated with the buffer. 98 * Recently used page sets are cached to allow for efficient reuse of 99 * buffers (avoiding the need to re-fault in pages, hold them, etc.). 100 * Note that cached page sets keep the backing pages wired. The 101 * number of wired pages is capped by only allowing for two wired 102 * pagesets per connection. This is not a perfect cap, but is a 103 * trade-off for performance. 104 * 105 * If an application ping-pongs two buffers for a connection via 106 * aio_read(2) then those buffers should remain wired and expensive VM 107 * fault lookups should be avoided after each buffer has been used 108 * once. If an application uses more than two buffers then this will 109 * fall back to doing expensive VM fault lookups for each operation. 110 */ 111 static void 112 free_pageset(struct tom_data *td, struct pageset *ps) 113 { 114 vm_page_t p; 115 int i; 116 117 if (ps->prsv.prsv_nppods > 0) 118 t4_free_page_pods(&ps->prsv); 119 120 if (ps->flags & PS_WIRED) { 121 for (i = 0; i < ps->npages; i++) { 122 p = ps->pages[i]; 123 vm_page_lock(p); 124 vm_page_unwire(p, PQ_INACTIVE); 125 vm_page_unlock(p); 126 } 127 } else 128 vm_page_unhold_pages(ps->pages, ps->npages); 129 mtx_lock(&ddp_orphan_pagesets_lock); 130 TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); 131 taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); 132 mtx_unlock(&ddp_orphan_pagesets_lock); 133 } 134 135 static void 136 ddp_free_orphan_pagesets(void *context, int pending) 137 { 138 struct pageset *ps; 139 140 mtx_lock(&ddp_orphan_pagesets_lock); 141 while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { 142 ps = TAILQ_FIRST(&ddp_orphan_pagesets); 143 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); 144 mtx_unlock(&ddp_orphan_pagesets_lock); 145 if (ps->vm) 146 vmspace_free(ps->vm); 147 free(ps, M_CXGBE); 148 mtx_lock(&ddp_orphan_pagesets_lock); 149 } 150 mtx_unlock(&ddp_orphan_pagesets_lock); 151 } 152 153 static void 154 recycle_pageset(struct toepcb *toep, struct pageset *ps) 155 { 156 157 DDP_ASSERT_LOCKED(toep); 158 if (!(toep->ddp_flags & DDP_DEAD) && ps->flags & PS_WIRED) { 159 KASSERT(toep->ddp_cached_count + toep->ddp_active_count < 160 nitems(toep->db), ("too many wired pagesets")); 161 TAILQ_INSERT_HEAD(&toep->ddp_cached_pagesets, ps, link); 162 toep->ddp_cached_count++; 163 } else 164 free_pageset(toep->td, ps); 165 } 166 167 static void 168 ddp_complete_one(struct kaiocb *job, int error) 169 { 170 long copied; 171 172 /* 173 * If this job had copied data out of the socket buffer before 174 * it was cancelled, report it as a short read rather than an 175 * error. 176 */ 177 copied = job->aio_received; 178 if (copied != 0 || error == 0) 179 aio_complete(job, copied, 0); 180 else 181 aio_complete(job, -1, error); 182 } 183 184 static void 185 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) 186 { 187 188 if (db->job) { 189 /* 190 * XXX: If we are un-offloading the socket then we 191 * should requeue these on the socket somehow. If we 192 * got a FIN from the remote end, then this completes 193 * any remaining requests with an EOF read. 194 */ 195 if (!aio_clear_cancel_function(db->job)) 196 ddp_complete_one(db->job, 0); 197 } 198 199 if (db->ps) 200 free_pageset(td, db->ps); 201 } 202 203 void 204 ddp_init_toep(struct toepcb *toep) 205 { 206 207 TAILQ_INIT(&toep->ddp_aiojobq); 208 TASK_INIT(&toep->ddp_requeue_task, 0, aio_ddp_requeue_task, toep); 209 toep->ddp_active_id = -1; 210 mtx_init(&toep->ddp_lock, "t4 ddp", NULL, MTX_DEF); 211 } 212 213 void 214 ddp_uninit_toep(struct toepcb *toep) 215 { 216 217 mtx_destroy(&toep->ddp_lock); 218 } 219 220 void 221 release_ddp_resources(struct toepcb *toep) 222 { 223 struct pageset *ps; 224 int i; 225 226 DDP_LOCK(toep); 227 toep->flags |= DDP_DEAD; 228 for (i = 0; i < nitems(toep->db); i++) { 229 free_ddp_buffer(toep->td, &toep->db[i]); 230 } 231 while ((ps = TAILQ_FIRST(&toep->ddp_cached_pagesets)) != NULL) { 232 TAILQ_REMOVE(&toep->ddp_cached_pagesets, ps, link); 233 free_pageset(toep->td, ps); 234 } 235 ddp_complete_all(toep, 0); 236 DDP_UNLOCK(toep); 237 } 238 239 #ifdef INVARIANTS 240 void 241 ddp_assert_empty(struct toepcb *toep) 242 { 243 int i; 244 245 MPASS(!(toep->ddp_flags & DDP_TASK_ACTIVE)); 246 for (i = 0; i < nitems(toep->db); i++) { 247 MPASS(toep->db[i].job == NULL); 248 MPASS(toep->db[i].ps == NULL); 249 } 250 MPASS(TAILQ_EMPTY(&toep->ddp_cached_pagesets)); 251 MPASS(TAILQ_EMPTY(&toep->ddp_aiojobq)); 252 } 253 #endif 254 255 static void 256 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, 257 unsigned int db_idx) 258 { 259 unsigned int db_flag; 260 261 toep->ddp_active_count--; 262 if (toep->ddp_active_id == db_idx) { 263 if (toep->ddp_active_count == 0) { 264 KASSERT(toep->db[db_idx ^ 1].job == NULL, 265 ("%s: active_count mismatch", __func__)); 266 toep->ddp_active_id = -1; 267 } else 268 toep->ddp_active_id ^= 1; 269 #ifdef VERBOSE_TRACES 270 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 271 toep->ddp_active_id); 272 #endif 273 } else { 274 KASSERT(toep->ddp_active_count != 0 && 275 toep->ddp_active_id != -1, 276 ("%s: active count mismatch", __func__)); 277 } 278 279 db->cancel_pending = 0; 280 db->job = NULL; 281 recycle_pageset(toep, db->ps); 282 db->ps = NULL; 283 284 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 285 KASSERT(toep->ddp_flags & db_flag, 286 ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", 287 __func__, toep, toep->ddp_flags)); 288 toep->ddp_flags &= ~db_flag; 289 } 290 291 /* XXX: handle_ddp_data code duplication */ 292 void 293 insert_ddp_data(struct toepcb *toep, uint32_t n) 294 { 295 struct inpcb *inp = toep->inp; 296 struct tcpcb *tp = intotcpcb(inp); 297 struct ddp_buffer *db; 298 struct kaiocb *job; 299 size_t placed; 300 long copied; 301 unsigned int db_flag, db_idx; 302 303 INP_WLOCK_ASSERT(inp); 304 DDP_ASSERT_LOCKED(toep); 305 306 tp->rcv_nxt += n; 307 #ifndef USE_DDP_RX_FLOW_CONTROL 308 KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); 309 tp->rcv_wnd -= n; 310 #endif 311 #ifndef USE_DDP_RX_FLOW_CONTROL 312 toep->rx_credits += n; 313 #endif 314 CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", 315 __func__, n); 316 while (toep->ddp_active_count > 0) { 317 MPASS(toep->ddp_active_id != -1); 318 db_idx = toep->ddp_active_id; 319 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 320 MPASS((toep->ddp_flags & db_flag) != 0); 321 db = &toep->db[db_idx]; 322 job = db->job; 323 copied = job->aio_received; 324 placed = n; 325 if (placed > job->uaiocb.aio_nbytes - copied) 326 placed = job->uaiocb.aio_nbytes - copied; 327 if (placed > 0) 328 job->msgrcv = 1; 329 if (!aio_clear_cancel_function(job)) { 330 /* 331 * Update the copied length for when 332 * t4_aio_cancel_active() completes this 333 * request. 334 */ 335 job->aio_received += placed; 336 } else if (copied + placed != 0) { 337 CTR4(KTR_CXGBE, 338 "%s: completing %p (copied %ld, placed %lu)", 339 __func__, job, copied, placed); 340 /* XXX: This always completes if there is some data. */ 341 aio_complete(job, copied + placed, 0); 342 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { 343 TAILQ_INSERT_HEAD(&toep->ddp_aiojobq, job, list); 344 toep->ddp_waiting_count++; 345 } else 346 aio_cancel(job); 347 n -= placed; 348 complete_ddp_buffer(toep, db, db_idx); 349 } 350 351 MPASS(n == 0); 352 } 353 354 /* SET_TCB_FIELD sent as a ULP command looks like this */ 355 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 356 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 357 358 /* RX_DATA_ACK sent as a ULP command looks like this */ 359 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ 360 sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) 361 362 static inline void * 363 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, 364 uint64_t word, uint64_t mask, uint64_t val) 365 { 366 struct ulptx_idata *ulpsc; 367 struct cpl_set_tcb_field_core *req; 368 369 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 370 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 371 372 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 373 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 374 ulpsc->len = htobe32(sizeof(*req)); 375 376 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 377 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); 378 req->reply_ctrl = htobe16(V_NO_REPLY(1) | 379 V_QUEUENO(toep->ofld_rxq->iq.abs_id)); 380 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 381 req->mask = htobe64(mask); 382 req->val = htobe64(val); 383 384 ulpsc = (struct ulptx_idata *)(req + 1); 385 if (LEN__SET_TCB_FIELD_ULP % 16) { 386 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 387 ulpsc->len = htobe32(0); 388 return (ulpsc + 1); 389 } 390 return (ulpsc); 391 } 392 393 static inline void * 394 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) 395 { 396 struct ulptx_idata *ulpsc; 397 struct cpl_rx_data_ack_core *req; 398 399 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 400 ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); 401 402 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 403 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 404 ulpsc->len = htobe32(sizeof(*req)); 405 406 req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); 407 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); 408 req->credit_dack = htobe32(F_RX_MODULATE_RX); 409 410 ulpsc = (struct ulptx_idata *)(req + 1); 411 if (LEN__RX_DATA_ACK_ULP % 16) { 412 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 413 ulpsc->len = htobe32(0); 414 return (ulpsc + 1); 415 } 416 return (ulpsc); 417 } 418 419 static struct wrqe * 420 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, 421 struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask) 422 { 423 struct wrqe *wr; 424 struct work_request_hdr *wrh; 425 struct ulp_txpkt *ulpmc; 426 int len; 427 428 KASSERT(db_idx == 0 || db_idx == 1, 429 ("%s: bad DDP buffer index %d", __func__, db_idx)); 430 431 /* 432 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an 433 * RX_DATA_ACK (with RX_MODULATE to speed up delivery). 434 * 435 * The work request header is 16B and always ends at a 16B boundary. 436 * The ULPTX master commands that follow must all end at 16B boundaries 437 * too so we round up the size to 16. 438 */ 439 len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + 440 roundup2(LEN__RX_DATA_ACK_ULP, 16); 441 442 wr = alloc_wrqe(len, toep->ctrlq); 443 if (wr == NULL) 444 return (NULL); 445 wrh = wrtod(wr); 446 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 447 ulpmc = (struct ulp_txpkt *)(wrh + 1); 448 449 /* Write the buffer's tag */ 450 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 451 W_TCB_RX_DDP_BUF0_TAG + db_idx, 452 V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), 453 V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag)); 454 455 /* Update the current offset in the DDP buffer and its total length */ 456 if (db_idx == 0) 457 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 458 W_TCB_RX_DDP_BUF0_OFFSET, 459 V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | 460 V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), 461 V_TCB_RX_DDP_BUF0_OFFSET(offset) | 462 V_TCB_RX_DDP_BUF0_LEN(ps->len)); 463 else 464 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 465 W_TCB_RX_DDP_BUF1_OFFSET, 466 V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | 467 V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), 468 V_TCB_RX_DDP_BUF1_OFFSET(offset) | 469 V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32)); 470 471 /* Update DDP flags */ 472 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, 473 ddp_flags_mask, ddp_flags); 474 475 /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ 476 ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); 477 478 return (wr); 479 } 480 481 static int 482 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) 483 { 484 uint32_t report = be32toh(ddp_report); 485 unsigned int db_idx; 486 struct inpcb *inp = toep->inp; 487 struct ddp_buffer *db; 488 struct tcpcb *tp; 489 struct socket *so; 490 struct sockbuf *sb; 491 struct kaiocb *job; 492 long copied; 493 494 db_idx = report & F_DDP_BUF_IDX ? 1 : 0; 495 496 if (__predict_false(!(report & F_DDP_INV))) 497 CXGBE_UNIMPLEMENTED("DDP buffer still valid"); 498 499 INP_WLOCK(inp); 500 so = inp_inpcbtosocket(inp); 501 sb = &so->so_rcv; 502 DDP_LOCK(toep); 503 504 KASSERT(toep->ddp_active_id == db_idx, 505 ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, 506 toep->ddp_active_id, toep->tid)); 507 db = &toep->db[db_idx]; 508 job = db->job; 509 510 if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) { 511 /* 512 * This can happen due to an administrative tcpdrop(8). 513 * Just fail the request with ECONNRESET. 514 */ 515 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 516 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 517 if (aio_clear_cancel_function(job)) 518 ddp_complete_one(job, ECONNRESET); 519 goto completed; 520 } 521 522 tp = intotcpcb(inp); 523 524 /* 525 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 526 * sequence number of the next byte to receive. The length of 527 * the data received for this message must be computed by 528 * comparing the new and old values of rcv_nxt. 529 * 530 * For RX_DATA_DDP, len might be non-zero, but it is only the 531 * length of the most recent DMA. It does not include the 532 * total length of the data received since the previous update 533 * for this DDP buffer. rcv_nxt is the sequence number of the 534 * first received byte from the most recent DMA. 535 */ 536 len += be32toh(rcv_nxt) - tp->rcv_nxt; 537 tp->rcv_nxt += len; 538 tp->t_rcvtime = ticks; 539 #ifndef USE_DDP_RX_FLOW_CONTROL 540 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 541 tp->rcv_wnd -= len; 542 #endif 543 #ifdef VERBOSE_TRACES 544 CTR4(KTR_CXGBE, "%s: DDP[%d] placed %d bytes (%#x)", __func__, db_idx, 545 len, report); 546 #endif 547 548 /* receive buffer autosize */ 549 CURVNET_SET(so->so_vnet); 550 SOCKBUF_LOCK(sb); 551 if (sb->sb_flags & SB_AUTOSIZE && 552 V_tcp_do_autorcvbuf && 553 sb->sb_hiwat < V_tcp_autorcvbuf_max && 554 len > (sbspace(sb) / 8 * 7)) { 555 unsigned int hiwat = sb->sb_hiwat; 556 unsigned int newsize = min(hiwat + V_tcp_autorcvbuf_inc, 557 V_tcp_autorcvbuf_max); 558 559 if (!sbreserve_locked(sb, newsize, so, NULL)) 560 sb->sb_flags &= ~SB_AUTOSIZE; 561 else 562 toep->rx_credits += newsize - hiwat; 563 } 564 SOCKBUF_UNLOCK(sb); 565 CURVNET_RESTORE(); 566 567 #ifndef USE_DDP_RX_FLOW_CONTROL 568 toep->rx_credits += len; 569 #endif 570 571 job->msgrcv = 1; 572 if (db->cancel_pending) { 573 /* 574 * Update the job's length but defer completion to the 575 * TCB_RPL callback. 576 */ 577 job->aio_received += len; 578 goto out; 579 } else if (!aio_clear_cancel_function(job)) { 580 /* 581 * Update the copied length for when 582 * t4_aio_cancel_active() completes this request. 583 */ 584 job->aio_received += len; 585 } else { 586 copied = job->aio_received; 587 #ifdef VERBOSE_TRACES 588 CTR4(KTR_CXGBE, "%s: completing %p (copied %ld, placed %d)", 589 __func__, job, copied, len); 590 #endif 591 aio_complete(job, copied + len, 0); 592 t4_rcvd(&toep->td->tod, tp); 593 } 594 595 completed: 596 complete_ddp_buffer(toep, db, db_idx); 597 if (toep->ddp_waiting_count > 0) 598 ddp_queue_toep(toep); 599 out: 600 DDP_UNLOCK(toep); 601 INP_WUNLOCK(inp); 602 603 return (0); 604 } 605 606 void 607 handle_ddp_indicate(struct toepcb *toep) 608 { 609 610 DDP_ASSERT_LOCKED(toep); 611 MPASS(toep->ddp_active_count == 0); 612 MPASS((toep->ddp_flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); 613 if (toep->ddp_waiting_count == 0) { 614 /* 615 * The pending requests that triggered the request for an 616 * an indicate were cancelled. Those cancels should have 617 * already disabled DDP. Just ignore this as the data is 618 * going into the socket buffer anyway. 619 */ 620 return; 621 } 622 CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, 623 toep->tid, toep->ddp_waiting_count); 624 ddp_queue_toep(toep); 625 } 626 627 enum { 628 DDP_BUF0_INVALIDATED = 0x2, 629 DDP_BUF1_INVALIDATED 630 }; 631 632 void 633 handle_ddp_tcb_rpl(struct toepcb *toep, const struct cpl_set_tcb_rpl *cpl) 634 { 635 unsigned int db_idx; 636 struct inpcb *inp = toep->inp; 637 struct ddp_buffer *db; 638 struct kaiocb *job; 639 long copied; 640 641 if (cpl->status != CPL_ERR_NONE) 642 panic("XXX: tcp_rpl failed: %d", cpl->status); 643 644 switch (cpl->cookie) { 645 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF0_INVALIDATED): 646 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF1_INVALIDATED): 647 /* 648 * XXX: This duplicates a lot of code with handle_ddp_data(). 649 */ 650 db_idx = G_COOKIE(cpl->cookie) - DDP_BUF0_INVALIDATED; 651 INP_WLOCK(inp); 652 DDP_LOCK(toep); 653 db = &toep->db[db_idx]; 654 655 /* 656 * handle_ddp_data() should leave the job around until 657 * this callback runs once a cancel is pending. 658 */ 659 MPASS(db != NULL); 660 MPASS(db->job != NULL); 661 MPASS(db->cancel_pending); 662 663 /* 664 * XXX: It's not clear what happens if there is data 665 * placed when the buffer is invalidated. I suspect we 666 * need to read the TCB to see how much data was placed. 667 * 668 * For now this just pretends like nothing was placed. 669 * 670 * XXX: Note that if we did check the PCB we would need to 671 * also take care of updating the tp, etc. 672 */ 673 job = db->job; 674 copied = job->aio_received; 675 if (copied == 0) { 676 CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); 677 aio_cancel(job); 678 } else { 679 CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", 680 __func__, job, copied); 681 aio_complete(job, copied, 0); 682 t4_rcvd(&toep->td->tod, intotcpcb(inp)); 683 } 684 685 complete_ddp_buffer(toep, db, db_idx); 686 if (toep->ddp_waiting_count > 0) 687 ddp_queue_toep(toep); 688 DDP_UNLOCK(toep); 689 INP_WUNLOCK(inp); 690 break; 691 default: 692 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", 693 G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); 694 } 695 } 696 697 void 698 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) 699 { 700 struct ddp_buffer *db; 701 struct kaiocb *job; 702 long copied; 703 unsigned int db_flag, db_idx; 704 int len, placed; 705 706 INP_WLOCK_ASSERT(toep->inp); 707 DDP_ASSERT_LOCKED(toep); 708 len = be32toh(rcv_nxt) - tp->rcv_nxt; 709 710 tp->rcv_nxt += len; 711 #ifndef USE_DDP_RX_FLOW_CONTROL 712 toep->rx_credits += len; 713 #endif 714 715 while (toep->ddp_active_count > 0) { 716 MPASS(toep->ddp_active_id != -1); 717 db_idx = toep->ddp_active_id; 718 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 719 MPASS((toep->ddp_flags & db_flag) != 0); 720 db = &toep->db[db_idx]; 721 job = db->job; 722 copied = job->aio_received; 723 placed = len; 724 if (placed > job->uaiocb.aio_nbytes - copied) 725 placed = job->uaiocb.aio_nbytes - copied; 726 if (placed > 0) 727 job->msgrcv = 1; 728 if (!aio_clear_cancel_function(job)) { 729 /* 730 * Update the copied length for when 731 * t4_aio_cancel_active() completes this 732 * request. 733 */ 734 job->aio_received += placed; 735 } else { 736 CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", 737 __func__, toep->tid, db_idx, placed); 738 aio_complete(job, copied + placed, 0); 739 } 740 len -= placed; 741 complete_ddp_buffer(toep, db, db_idx); 742 } 743 744 MPASS(len == 0); 745 ddp_complete_all(toep, 0); 746 } 747 748 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ 749 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ 750 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ 751 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) 752 753 extern cpl_handler_t t4_cpl_handler[]; 754 755 static int 756 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 757 { 758 struct adapter *sc = iq->adapter; 759 const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); 760 unsigned int tid = GET_TID(cpl); 761 uint32_t vld; 762 struct toepcb *toep = lookup_tid(sc, tid); 763 764 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 765 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 766 KASSERT(!(toep->flags & TPF_SYNQE), 767 ("%s: toep %p claims to be a synq entry", __func__, toep)); 768 769 vld = be32toh(cpl->ddpvld); 770 if (__predict_false(vld & DDP_ERR)) { 771 panic("%s: DDP error 0x%x (tid %d, toep %p)", 772 __func__, vld, tid, toep); 773 } 774 775 if (toep->ulp_mode == ULP_MODE_ISCSI) { 776 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); 777 return (0); 778 } 779 780 handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); 781 782 return (0); 783 } 784 785 static int 786 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, 787 struct mbuf *m) 788 { 789 struct adapter *sc = iq->adapter; 790 const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); 791 unsigned int tid = GET_TID(cpl); 792 struct toepcb *toep = lookup_tid(sc, tid); 793 794 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 795 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 796 KASSERT(!(toep->flags & TPF_SYNQE), 797 ("%s: toep %p claims to be a synq entry", __func__, toep)); 798 799 handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); 800 801 return (0); 802 } 803 804 static void 805 enable_ddp(struct adapter *sc, struct toepcb *toep) 806 { 807 808 KASSERT((toep->ddp_flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, 809 ("%s: toep %p has bad ddp_flags 0x%x", 810 __func__, toep, toep->ddp_flags)); 811 812 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 813 __func__, toep->tid, time_uptime); 814 815 DDP_ASSERT_LOCKED(toep); 816 toep->ddp_flags |= DDP_SC_REQ; 817 t4_set_tcb_field(sc, toep->ctrlq, toep->tid, W_TCB_RX_DDP_FLAGS, 818 V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | 819 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | 820 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), 821 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0, 822 toep->ofld_rxq->iq.abs_id); 823 t4_set_tcb_field(sc, toep->ctrlq, toep->tid, W_TCB_T_FLAGS, 824 V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0, toep->ofld_rxq->iq.abs_id); 825 } 826 827 static int 828 calculate_hcf(int n1, int n2) 829 { 830 int a, b, t; 831 832 if (n1 <= n2) { 833 a = n1; 834 b = n2; 835 } else { 836 a = n2; 837 b = n1; 838 } 839 840 while (a != 0) { 841 t = a; 842 a = b % a; 843 b = t; 844 } 845 846 return (b); 847 } 848 849 static inline int 850 pages_to_nppods(int npages, int ddp_page_shift) 851 { 852 853 MPASS(ddp_page_shift >= PAGE_SHIFT); 854 855 return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); 856 } 857 858 static int 859 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, 860 struct ppod_reservation *prsv) 861 { 862 vmem_addr_t addr; /* relative to start of region */ 863 864 if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, 865 &addr) != 0) 866 return (ENOMEM); 867 868 CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", 869 __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, 870 nppods, 1 << pr->pr_page_shift[pgsz_idx]); 871 872 /* 873 * The hardware tagmask includes an extra invalid bit but the arena was 874 * seeded with valid values only. An allocation out of this arena will 875 * fit inside the tagmask but won't have the invalid bit set. 876 */ 877 MPASS((addr & pr->pr_tag_mask) == addr); 878 MPASS((addr & pr->pr_invalid_bit) == 0); 879 880 prsv->prsv_pr = pr; 881 prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; 882 prsv->prsv_nppods = nppods; 883 884 return (0); 885 } 886 887 int 888 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) 889 { 890 int i, hcf, seglen, idx, nppods; 891 struct ppod_reservation *prsv = &ps->prsv; 892 893 KASSERT(prsv->prsv_nppods == 0, 894 ("%s: page pods already allocated", __func__)); 895 896 /* 897 * The DDP page size is unrelated to the VM page size. We combine 898 * contiguous physical pages into larger segments to get the best DDP 899 * page size possible. This is the largest of the four sizes in 900 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in 901 * the page list. 902 */ 903 hcf = 0; 904 for (i = 0; i < ps->npages; i++) { 905 seglen = PAGE_SIZE; 906 while (i < ps->npages - 1 && 907 ps->pages[i]->phys_addr + PAGE_SIZE == 908 ps->pages[i + 1]->phys_addr) { 909 seglen += PAGE_SIZE; 910 i++; 911 } 912 913 hcf = calculate_hcf(hcf, seglen); 914 if (hcf < (1 << pr->pr_page_shift[1])) { 915 idx = 0; 916 goto have_pgsz; /* give up, short circuit */ 917 } 918 } 919 920 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 921 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 922 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 923 if ((hcf & PR_PAGE_MASK(idx)) == 0) 924 break; 925 } 926 #undef PR_PAGE_MASK 927 928 have_pgsz: 929 MPASS(idx <= M_PPOD_PGSZ); 930 931 nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]); 932 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 933 return (0); 934 MPASS(prsv->prsv_nppods > 0); 935 936 return (1); 937 } 938 939 int 940 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, 941 struct ppod_reservation *prsv) 942 { 943 int hcf, seglen, idx, npages, nppods; 944 uintptr_t start_pva, end_pva, pva, p1; 945 946 MPASS(buf > 0); 947 MPASS(len > 0); 948 949 /* 950 * The DDP page size is unrelated to the VM page size. We combine 951 * contiguous physical pages into larger segments to get the best DDP 952 * page size possible. This is the largest of the four sizes in 953 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 954 * in the page list. 955 */ 956 hcf = 0; 957 start_pva = trunc_page(buf); 958 end_pva = trunc_page(buf + len - 1); 959 pva = start_pva; 960 while (pva <= end_pva) { 961 seglen = PAGE_SIZE; 962 p1 = pmap_kextract(pva); 963 pva += PAGE_SIZE; 964 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { 965 seglen += PAGE_SIZE; 966 pva += PAGE_SIZE; 967 } 968 969 hcf = calculate_hcf(hcf, seglen); 970 if (hcf < (1 << pr->pr_page_shift[1])) { 971 idx = 0; 972 goto have_pgsz; /* give up, short circuit */ 973 } 974 } 975 976 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 977 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 978 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 979 if ((hcf & PR_PAGE_MASK(idx)) == 0) 980 break; 981 } 982 #undef PR_PAGE_MASK 983 984 have_pgsz: 985 MPASS(idx <= M_PPOD_PGSZ); 986 987 npages = 1; 988 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 989 nppods = howmany(npages, PPOD_PAGES); 990 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 991 return (ENOMEM); 992 MPASS(prsv->prsv_nppods > 0); 993 994 return (0); 995 } 996 997 void 998 t4_free_page_pods(struct ppod_reservation *prsv) 999 { 1000 struct ppod_region *pr = prsv->prsv_pr; 1001 vmem_addr_t addr; 1002 1003 MPASS(prsv != NULL); 1004 MPASS(prsv->prsv_nppods != 0); 1005 1006 addr = prsv->prsv_tag & pr->pr_tag_mask; 1007 MPASS((addr & pr->pr_invalid_bit) == 0); 1008 1009 CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, 1010 pr->pr_arena, addr, prsv->prsv_nppods); 1011 1012 vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); 1013 prsv->prsv_nppods = 0; 1014 } 1015 1016 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) 1017 1018 int 1019 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, 1020 struct pageset *ps) 1021 { 1022 struct wrqe *wr; 1023 struct ulp_mem_io *ulpmc; 1024 struct ulptx_idata *ulpsc; 1025 struct pagepod *ppod; 1026 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1027 u_int ppod_addr; 1028 uint32_t cmd; 1029 struct ppod_reservation *prsv = &ps->prsv; 1030 struct ppod_region *pr = prsv->prsv_pr; 1031 1032 KASSERT(!(ps->flags & PS_PPODS_WRITTEN), 1033 ("%s: page pods already written", __func__)); 1034 MPASS(prsv->prsv_nppods > 0); 1035 1036 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1037 if (is_t4(sc)) 1038 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1039 else 1040 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1041 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1042 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1043 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1044 1045 /* How many page pods are we writing in this cycle */ 1046 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1047 chunk = PPOD_SZ(n); 1048 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1049 1050 wr = alloc_wrqe(len, wrq); 1051 if (wr == NULL) 1052 return (ENOMEM); /* ok to just bail out */ 1053 ulpmc = wrtod(wr); 1054 1055 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1056 ulpmc->cmd = cmd; 1057 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1058 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1059 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1060 1061 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1062 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1063 ulpsc->len = htobe32(chunk); 1064 1065 ppod = (struct pagepod *)(ulpsc + 1); 1066 for (j = 0; j < n; i++, j++, ppod++) { 1067 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1068 V_PPOD_TID(tid) | prsv->prsv_tag); 1069 ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | 1070 V_PPOD_OFST(ps->offset)); 1071 ppod->rsvd = 0; 1072 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1073 for (k = 0; k < nitems(ppod->addr); k++) { 1074 if (idx < ps->npages) { 1075 ppod->addr[k] = 1076 htobe64(ps->pages[idx]->phys_addr); 1077 idx += ddp_pgsz / PAGE_SIZE; 1078 } else 1079 ppod->addr[k] = 0; 1080 #if 0 1081 CTR5(KTR_CXGBE, 1082 "%s: tid %d ppod[%d]->addr[%d] = %p", 1083 __func__, toep->tid, i, k, 1084 htobe64(ppod->addr[k])); 1085 #endif 1086 } 1087 1088 } 1089 1090 t4_wrq_tx(sc, wr); 1091 } 1092 ps->flags |= PS_PPODS_WRITTEN; 1093 1094 return (0); 1095 } 1096 1097 int 1098 t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid, 1099 struct ppod_reservation *prsv, vm_offset_t buf, int buflen) 1100 { 1101 struct wrqe *wr; 1102 struct ulp_mem_io *ulpmc; 1103 struct ulptx_idata *ulpsc; 1104 struct pagepod *ppod; 1105 int i, j, k, n, chunk, len, ddp_pgsz; 1106 u_int ppod_addr, offset; 1107 uint32_t cmd; 1108 struct ppod_region *pr = prsv->prsv_pr; 1109 uintptr_t end_pva, pva, pa; 1110 1111 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1112 if (is_t4(sc)) 1113 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1114 else 1115 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1116 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1117 offset = buf & PAGE_MASK; 1118 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1119 pva = trunc_page(buf); 1120 end_pva = trunc_page(buf + buflen - 1); 1121 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1122 1123 /* How many page pods are we writing in this cycle */ 1124 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1125 MPASS(n > 0); 1126 chunk = PPOD_SZ(n); 1127 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1128 1129 wr = alloc_wrqe(len, wrq); 1130 if (wr == NULL) 1131 return (ENOMEM); /* ok to just bail out */ 1132 ulpmc = wrtod(wr); 1133 1134 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1135 ulpmc->cmd = cmd; 1136 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1137 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1138 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1139 1140 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1141 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1142 ulpsc->len = htobe32(chunk); 1143 1144 ppod = (struct pagepod *)(ulpsc + 1); 1145 for (j = 0; j < n; i++, j++, ppod++) { 1146 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1147 V_PPOD_TID(tid) | 1148 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1149 ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | 1150 V_PPOD_OFST(offset)); 1151 ppod->rsvd = 0; 1152 1153 for (k = 0; k < nitems(ppod->addr); k++) { 1154 if (pva > end_pva) 1155 ppod->addr[k] = 0; 1156 else { 1157 pa = pmap_kextract(pva); 1158 ppod->addr[k] = htobe64(pa); 1159 pva += ddp_pgsz; 1160 } 1161 #if 0 1162 CTR5(KTR_CXGBE, 1163 "%s: tid %d ppod[%d]->addr[%d] = %p", 1164 __func__, tid, i, k, 1165 htobe64(ppod->addr[k])); 1166 #endif 1167 } 1168 1169 /* 1170 * Walk back 1 segment so that the first address in the 1171 * next pod is the same as the last one in the current 1172 * pod. 1173 */ 1174 pva -= ddp_pgsz; 1175 } 1176 1177 t4_wrq_tx(sc, wr); 1178 } 1179 1180 MPASS(pva <= end_pva); 1181 1182 return (0); 1183 } 1184 1185 static void 1186 wire_pageset(struct pageset *ps) 1187 { 1188 vm_page_t p; 1189 int i; 1190 1191 KASSERT(!(ps->flags & PS_WIRED), ("pageset already wired")); 1192 1193 for (i = 0; i < ps->npages; i++) { 1194 p = ps->pages[i]; 1195 vm_page_lock(p); 1196 vm_page_wire(p); 1197 vm_page_unhold(p); 1198 vm_page_unlock(p); 1199 } 1200 ps->flags |= PS_WIRED; 1201 } 1202 1203 /* 1204 * Prepare a pageset for DDP. This wires the pageset and sets up page 1205 * pods. 1206 */ 1207 static int 1208 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) 1209 { 1210 struct tom_data *td = sc->tom_softc; 1211 1212 if (!(ps->flags & PS_WIRED)) 1213 wire_pageset(ps); 1214 if (ps->prsv.prsv_nppods == 0 && 1215 !t4_alloc_page_pods_for_ps(&td->pr, ps)) { 1216 return (0); 1217 } 1218 if (!(ps->flags & PS_PPODS_WRITTEN) && 1219 t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { 1220 return (0); 1221 } 1222 1223 return (1); 1224 } 1225 1226 int 1227 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, 1228 const char *name) 1229 { 1230 int i; 1231 1232 MPASS(pr != NULL); 1233 MPASS(r->size > 0); 1234 1235 pr->pr_start = r->start; 1236 pr->pr_len = r->size; 1237 pr->pr_page_shift[0] = 12 + G_HPZ0(psz); 1238 pr->pr_page_shift[1] = 12 + G_HPZ1(psz); 1239 pr->pr_page_shift[2] = 12 + G_HPZ2(psz); 1240 pr->pr_page_shift[3] = 12 + G_HPZ3(psz); 1241 1242 /* The SGL -> page pod algorithm requires the sizes to be in order. */ 1243 for (i = 1; i < nitems(pr->pr_page_shift); i++) { 1244 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) 1245 return (ENXIO); 1246 } 1247 1248 pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); 1249 pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; 1250 if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) 1251 return (ENXIO); 1252 pr->pr_alias_shift = fls(pr->pr_tag_mask); 1253 pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); 1254 1255 pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, 1256 M_FIRSTFIT | M_NOWAIT); 1257 if (pr->pr_arena == NULL) 1258 return (ENOMEM); 1259 1260 return (0); 1261 } 1262 1263 void 1264 t4_free_ppod_region(struct ppod_region *pr) 1265 { 1266 1267 MPASS(pr != NULL); 1268 1269 if (pr->pr_arena) 1270 vmem_destroy(pr->pr_arena); 1271 bzero(pr, sizeof(*pr)); 1272 } 1273 1274 static int 1275 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, 1276 int pgoff, int len) 1277 { 1278 1279 if (ps->npages != npages || ps->offset != pgoff || ps->len != len) 1280 return (1); 1281 1282 return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); 1283 } 1284 1285 static int 1286 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) 1287 { 1288 struct vmspace *vm; 1289 vm_map_t map; 1290 vm_offset_t start, end, pgoff; 1291 struct pageset *ps; 1292 int n; 1293 1294 DDP_ASSERT_LOCKED(toep); 1295 1296 /* 1297 * The AIO subsystem will cancel and drain all requests before 1298 * permitting a process to exit or exec, so p_vmspace should 1299 * be stable here. 1300 */ 1301 vm = job->userproc->p_vmspace; 1302 map = &vm->vm_map; 1303 start = (uintptr_t)job->uaiocb.aio_buf; 1304 pgoff = start & PAGE_MASK; 1305 end = round_page(start + job->uaiocb.aio_nbytes); 1306 start = trunc_page(start); 1307 1308 if (end - start > MAX_DDP_BUFFER_SIZE) { 1309 /* 1310 * Truncate the request to a short read. 1311 * Alternatively, we could DDP in chunks to the larger 1312 * buffer, but that would be quite a bit more work. 1313 * 1314 * When truncating, round the request down to avoid 1315 * crossing a cache line on the final transaction. 1316 */ 1317 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); 1318 #ifdef VERBOSE_TRACES 1319 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", 1320 __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, 1321 (unsigned long)(end - (start + pgoff))); 1322 job->uaiocb.aio_nbytes = end - (start + pgoff); 1323 #endif 1324 end = round_page(end); 1325 } 1326 1327 n = atop(end - start); 1328 1329 /* 1330 * Try to reuse a cached pageset. 1331 */ 1332 TAILQ_FOREACH(ps, &toep->ddp_cached_pagesets, link) { 1333 if (pscmp(ps, vm, start, n, pgoff, 1334 job->uaiocb.aio_nbytes) == 0) { 1335 TAILQ_REMOVE(&toep->ddp_cached_pagesets, ps, link); 1336 toep->ddp_cached_count--; 1337 *pps = ps; 1338 return (0); 1339 } 1340 } 1341 1342 /* 1343 * If there are too many cached pagesets to create a new one, 1344 * free a pageset before creating a new one. 1345 */ 1346 KASSERT(toep->ddp_active_count + toep->ddp_cached_count <= 1347 nitems(toep->db), ("%s: too many wired pagesets", __func__)); 1348 if (toep->ddp_active_count + toep->ddp_cached_count == 1349 nitems(toep->db)) { 1350 KASSERT(toep->ddp_cached_count > 0, 1351 ("no cached pageset to free")); 1352 ps = TAILQ_LAST(&toep->ddp_cached_pagesets, pagesetq); 1353 TAILQ_REMOVE(&toep->ddp_cached_pagesets, ps, link); 1354 toep->ddp_cached_count--; 1355 free_pageset(toep->td, ps); 1356 } 1357 DDP_UNLOCK(toep); 1358 1359 /* Create a new pageset. */ 1360 ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | 1361 M_ZERO); 1362 ps->pages = (vm_page_t *)(ps + 1); 1363 ps->vm_timestamp = map->timestamp; 1364 ps->npages = vm_fault_quick_hold_pages(map, start, end - start, 1365 VM_PROT_WRITE, ps->pages, n); 1366 1367 DDP_LOCK(toep); 1368 if (ps->npages < 0) { 1369 free(ps, M_CXGBE); 1370 return (EFAULT); 1371 } 1372 1373 KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", 1374 ps->npages, n)); 1375 1376 ps->offset = pgoff; 1377 ps->len = job->uaiocb.aio_nbytes; 1378 atomic_add_int(&vm->vm_refcnt, 1); 1379 ps->vm = vm; 1380 1381 CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", 1382 __func__, toep->tid, ps, job, ps->npages); 1383 *pps = ps; 1384 return (0); 1385 } 1386 1387 static void 1388 ddp_complete_all(struct toepcb *toep, int error) 1389 { 1390 struct kaiocb *job; 1391 1392 DDP_ASSERT_LOCKED(toep); 1393 while (!TAILQ_EMPTY(&toep->ddp_aiojobq)) { 1394 job = TAILQ_FIRST(&toep->ddp_aiojobq); 1395 TAILQ_REMOVE(&toep->ddp_aiojobq, job, list); 1396 toep->ddp_waiting_count--; 1397 if (aio_clear_cancel_function(job)) 1398 ddp_complete_one(job, error); 1399 } 1400 } 1401 1402 static void 1403 aio_ddp_cancel_one(struct kaiocb *job) 1404 { 1405 long copied; 1406 1407 /* 1408 * If this job had copied data out of the socket buffer before 1409 * it was cancelled, report it as a short read rather than an 1410 * error. 1411 */ 1412 copied = job->aio_received; 1413 if (copied != 0) 1414 aio_complete(job, copied, 0); 1415 else 1416 aio_cancel(job); 1417 } 1418 1419 /* 1420 * Called when the main loop wants to requeue a job to retry it later. 1421 * Deals with the race of the job being cancelled while it was being 1422 * examined. 1423 */ 1424 static void 1425 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) 1426 { 1427 1428 DDP_ASSERT_LOCKED(toep); 1429 if (!(toep->ddp_flags & DDP_DEAD) && 1430 aio_set_cancel_function(job, t4_aio_cancel_queued)) { 1431 TAILQ_INSERT_HEAD(&toep->ddp_aiojobq, job, list); 1432 toep->ddp_waiting_count++; 1433 } else 1434 aio_ddp_cancel_one(job); 1435 } 1436 1437 static void 1438 aio_ddp_requeue(struct toepcb *toep) 1439 { 1440 struct adapter *sc = td_adapter(toep->td); 1441 struct socket *so; 1442 struct sockbuf *sb; 1443 struct inpcb *inp; 1444 struct kaiocb *job; 1445 struct ddp_buffer *db; 1446 size_t copied, offset, resid; 1447 struct pageset *ps; 1448 struct mbuf *m; 1449 uint64_t ddp_flags, ddp_flags_mask; 1450 struct wrqe *wr; 1451 int buf_flag, db_idx, error; 1452 1453 DDP_ASSERT_LOCKED(toep); 1454 1455 restart: 1456 if (toep->ddp_flags & DDP_DEAD) { 1457 MPASS(toep->ddp_waiting_count == 0); 1458 MPASS(toep->ddp_active_count == 0); 1459 return; 1460 } 1461 1462 if (toep->ddp_waiting_count == 0 || 1463 toep->ddp_active_count == nitems(toep->db)) { 1464 return; 1465 } 1466 1467 job = TAILQ_FIRST(&toep->ddp_aiojobq); 1468 so = job->fd_file->f_data; 1469 sb = &so->so_rcv; 1470 SOCKBUF_LOCK(sb); 1471 1472 /* We will never get anything unless we are or were connected. */ 1473 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1474 SOCKBUF_UNLOCK(sb); 1475 ddp_complete_all(toep, ENOTCONN); 1476 return; 1477 } 1478 1479 KASSERT(toep->ddp_active_count == 0 || sbavail(sb) == 0, 1480 ("%s: pending sockbuf data and DDP is active", __func__)); 1481 1482 /* Abort if socket has reported problems. */ 1483 /* XXX: Wait for any queued DDP's to finish and/or flush them? */ 1484 if (so->so_error && sbavail(sb) == 0) { 1485 toep->ddp_waiting_count--; 1486 TAILQ_REMOVE(&toep->ddp_aiojobq, job, list); 1487 if (!aio_clear_cancel_function(job)) { 1488 SOCKBUF_UNLOCK(sb); 1489 goto restart; 1490 } 1491 1492 /* 1493 * If this job has previously copied some data, report 1494 * a short read and leave the error to be reported by 1495 * a future request. 1496 */ 1497 copied = job->aio_received; 1498 if (copied != 0) { 1499 SOCKBUF_UNLOCK(sb); 1500 aio_complete(job, copied, 0); 1501 goto restart; 1502 } 1503 error = so->so_error; 1504 so->so_error = 0; 1505 SOCKBUF_UNLOCK(sb); 1506 aio_complete(job, -1, error); 1507 goto restart; 1508 } 1509 1510 /* 1511 * Door is closed. If there is pending data in the socket buffer, 1512 * deliver it. If there are pending DDP requests, wait for those 1513 * to complete. Once they have completed, return EOF reads. 1514 */ 1515 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1516 SOCKBUF_UNLOCK(sb); 1517 if (toep->ddp_active_count != 0) 1518 return; 1519 ddp_complete_all(toep, 0); 1520 return; 1521 } 1522 1523 /* 1524 * If DDP is not enabled and there is no pending socket buffer 1525 * data, try to enable DDP. 1526 */ 1527 if (sbavail(sb) == 0 && (toep->ddp_flags & DDP_ON) == 0) { 1528 SOCKBUF_UNLOCK(sb); 1529 1530 /* 1531 * Wait for the card to ACK that DDP is enabled before 1532 * queueing any buffers. Currently this waits for an 1533 * indicate to arrive. This could use a TCB_SET_FIELD_RPL 1534 * message to know that DDP was enabled instead of waiting 1535 * for the indicate which would avoid copying the indicate 1536 * if no data is pending. 1537 * 1538 * XXX: Might want to limit the indicate size to the size 1539 * of the first queued request. 1540 */ 1541 if ((toep->ddp_flags & DDP_SC_REQ) == 0) 1542 enable_ddp(sc, toep); 1543 return; 1544 } 1545 SOCKBUF_UNLOCK(sb); 1546 1547 /* 1548 * If another thread is queueing a buffer for DDP, let it 1549 * drain any work and return. 1550 */ 1551 if (toep->ddp_queueing != NULL) 1552 return; 1553 1554 /* Take the next job to prep it for DDP. */ 1555 toep->ddp_waiting_count--; 1556 TAILQ_REMOVE(&toep->ddp_aiojobq, job, list); 1557 if (!aio_clear_cancel_function(job)) 1558 goto restart; 1559 toep->ddp_queueing = job; 1560 1561 /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ 1562 error = hold_aio(toep, job, &ps); 1563 if (error != 0) { 1564 ddp_complete_one(job, error); 1565 toep->ddp_queueing = NULL; 1566 goto restart; 1567 } 1568 1569 SOCKBUF_LOCK(sb); 1570 if (so->so_error && sbavail(sb) == 0) { 1571 copied = job->aio_received; 1572 if (copied != 0) { 1573 SOCKBUF_UNLOCK(sb); 1574 recycle_pageset(toep, ps); 1575 aio_complete(job, copied, 0); 1576 toep->ddp_queueing = NULL; 1577 goto restart; 1578 } 1579 1580 error = so->so_error; 1581 so->so_error = 0; 1582 SOCKBUF_UNLOCK(sb); 1583 recycle_pageset(toep, ps); 1584 aio_complete(job, -1, error); 1585 toep->ddp_queueing = NULL; 1586 goto restart; 1587 } 1588 1589 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1590 SOCKBUF_UNLOCK(sb); 1591 recycle_pageset(toep, ps); 1592 if (toep->ddp_active_count != 0) { 1593 /* 1594 * The door is closed, but there are still pending 1595 * DDP buffers. Requeue. These jobs will all be 1596 * completed once those buffers drain. 1597 */ 1598 aio_ddp_requeue_one(toep, job); 1599 toep->ddp_queueing = NULL; 1600 return; 1601 } 1602 ddp_complete_one(job, 0); 1603 ddp_complete_all(toep, 0); 1604 toep->ddp_queueing = NULL; 1605 return; 1606 } 1607 1608 sbcopy: 1609 /* 1610 * If the toep is dead, there shouldn't be any data in the socket 1611 * buffer, so the above case should have handled this. 1612 */ 1613 MPASS(!(toep->ddp_flags & DDP_DEAD)); 1614 1615 /* 1616 * If there is pending data in the socket buffer (either 1617 * from before the requests were queued or a DDP indicate), 1618 * copy those mbufs out directly. 1619 */ 1620 copied = 0; 1621 offset = ps->offset + job->aio_received; 1622 MPASS(job->aio_received <= job->uaiocb.aio_nbytes); 1623 resid = job->uaiocb.aio_nbytes - job->aio_received; 1624 m = sb->sb_mb; 1625 KASSERT(m == NULL || toep->ddp_active_count == 0, 1626 ("%s: sockbuf data with active DDP", __func__)); 1627 while (m != NULL && resid > 0) { 1628 struct iovec iov[1]; 1629 struct uio uio; 1630 int error; 1631 1632 iov[0].iov_base = mtod(m, void *); 1633 iov[0].iov_len = m->m_len; 1634 if (iov[0].iov_len > resid) 1635 iov[0].iov_len = resid; 1636 uio.uio_iov = iov; 1637 uio.uio_iovcnt = 1; 1638 uio.uio_offset = 0; 1639 uio.uio_resid = iov[0].iov_len; 1640 uio.uio_segflg = UIO_SYSSPACE; 1641 uio.uio_rw = UIO_WRITE; 1642 error = uiomove_fromphys(ps->pages, offset + copied, 1643 uio.uio_resid, &uio); 1644 MPASS(error == 0 && uio.uio_resid == 0); 1645 copied += uio.uio_offset; 1646 resid -= uio.uio_offset; 1647 m = m->m_next; 1648 } 1649 if (copied != 0) { 1650 sbdrop_locked(sb, copied); 1651 job->aio_received += copied; 1652 job->msgrcv = 1; 1653 copied = job->aio_received; 1654 inp = sotoinpcb(so); 1655 if (!INP_TRY_WLOCK(inp)) { 1656 /* 1657 * The reference on the socket file descriptor in 1658 * the AIO job should keep 'sb' and 'inp' stable. 1659 * Our caller has a reference on the 'toep' that 1660 * keeps it stable. 1661 */ 1662 SOCKBUF_UNLOCK(sb); 1663 DDP_UNLOCK(toep); 1664 INP_WLOCK(inp); 1665 DDP_LOCK(toep); 1666 SOCKBUF_LOCK(sb); 1667 1668 /* 1669 * If the socket has been closed, we should detect 1670 * that and complete this request if needed on 1671 * the next trip around the loop. 1672 */ 1673 } 1674 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); 1675 INP_WUNLOCK(inp); 1676 if (resid == 0 || toep->ddp_flags & DDP_DEAD) { 1677 /* 1678 * We filled the entire buffer with socket 1679 * data, DDP is not being used, or the socket 1680 * is being shut down, so complete the 1681 * request. 1682 */ 1683 SOCKBUF_UNLOCK(sb); 1684 recycle_pageset(toep, ps); 1685 aio_complete(job, copied, 0); 1686 toep->ddp_queueing = NULL; 1687 goto restart; 1688 } 1689 1690 /* 1691 * If DDP is not enabled, requeue this request and restart. 1692 * This will either enable DDP or wait for more data to 1693 * arrive on the socket buffer. 1694 */ 1695 if ((toep->ddp_flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { 1696 SOCKBUF_UNLOCK(sb); 1697 recycle_pageset(toep, ps); 1698 aio_ddp_requeue_one(toep, job); 1699 toep->ddp_queueing = NULL; 1700 goto restart; 1701 } 1702 1703 /* 1704 * An indicate might have arrived and been added to 1705 * the socket buffer while it was unlocked after the 1706 * copy to lock the INP. If so, restart the copy. 1707 */ 1708 if (sbavail(sb) != 0) 1709 goto sbcopy; 1710 } 1711 SOCKBUF_UNLOCK(sb); 1712 1713 if (prep_pageset(sc, toep, ps) == 0) { 1714 recycle_pageset(toep, ps); 1715 aio_ddp_requeue_one(toep, job); 1716 toep->ddp_queueing = NULL; 1717 1718 /* 1719 * XXX: Need to retry this later. Mostly need a trigger 1720 * when page pods are freed up. 1721 */ 1722 printf("%s: prep_pageset failed\n", __func__); 1723 return; 1724 } 1725 1726 /* Determine which DDP buffer to use. */ 1727 if (toep->db[0].job == NULL) { 1728 db_idx = 0; 1729 } else { 1730 MPASS(toep->db[1].job == NULL); 1731 db_idx = 1; 1732 } 1733 1734 ddp_flags = 0; 1735 ddp_flags_mask = 0; 1736 if (db_idx == 0) { 1737 ddp_flags |= V_TF_DDP_BUF0_VALID(1); 1738 if (so->so_state & SS_NBIO) 1739 ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); 1740 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 1741 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | 1742 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); 1743 buf_flag = DDP_BUF0_ACTIVE; 1744 } else { 1745 ddp_flags |= V_TF_DDP_BUF1_VALID(1); 1746 if (so->so_state & SS_NBIO) 1747 ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); 1748 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 1749 V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | 1750 V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); 1751 buf_flag = DDP_BUF1_ACTIVE; 1752 } 1753 MPASS((toep->ddp_flags & buf_flag) == 0); 1754 if ((toep->ddp_flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { 1755 MPASS(db_idx == 0); 1756 MPASS(toep->ddp_active_id == -1); 1757 MPASS(toep->ddp_active_count == 0); 1758 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); 1759 } 1760 1761 /* 1762 * The TID for this connection should still be valid. If DDP_DEAD 1763 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be 1764 * this far anyway. Even if the socket is closing on the other 1765 * end, the AIO job holds a reference on this end of the socket 1766 * which will keep it open and keep the TCP PCB attached until 1767 * after the job is completed. 1768 */ 1769 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received, 1770 ddp_flags, ddp_flags_mask); 1771 if (wr == NULL) { 1772 recycle_pageset(toep, ps); 1773 aio_ddp_requeue_one(toep, job); 1774 toep->ddp_queueing = NULL; 1775 1776 /* 1777 * XXX: Need a way to kick a retry here. 1778 * 1779 * XXX: We know the fixed size needed and could 1780 * preallocate this using a blocking request at the 1781 * start of the task to avoid having to handle this 1782 * edge case. 1783 */ 1784 printf("%s: mk_update_tcb_for_ddp failed\n", __func__); 1785 return; 1786 } 1787 1788 if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { 1789 free_wrqe(wr); 1790 recycle_pageset(toep, ps); 1791 aio_ddp_cancel_one(job); 1792 toep->ddp_queueing = NULL; 1793 goto restart; 1794 } 1795 1796 #ifdef VERBOSE_TRACES 1797 CTR5(KTR_CXGBE, "%s: scheduling %p for DDP[%d] (flags %#lx/%#lx)", 1798 __func__, job, db_idx, ddp_flags, ddp_flags_mask); 1799 #endif 1800 /* Give the chip the go-ahead. */ 1801 t4_wrq_tx(sc, wr); 1802 db = &toep->db[db_idx]; 1803 db->cancel_pending = 0; 1804 db->job = job; 1805 db->ps = ps; 1806 toep->ddp_queueing = NULL; 1807 toep->ddp_flags |= buf_flag; 1808 toep->ddp_active_count++; 1809 if (toep->ddp_active_count == 1) { 1810 MPASS(toep->ddp_active_id == -1); 1811 toep->ddp_active_id = db_idx; 1812 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 1813 toep->ddp_active_id); 1814 } 1815 goto restart; 1816 } 1817 1818 void 1819 ddp_queue_toep(struct toepcb *toep) 1820 { 1821 1822 DDP_ASSERT_LOCKED(toep); 1823 if (toep->ddp_flags & DDP_TASK_ACTIVE) 1824 return; 1825 toep->ddp_flags |= DDP_TASK_ACTIVE; 1826 hold_toepcb(toep); 1827 soaio_enqueue(&toep->ddp_requeue_task); 1828 } 1829 1830 static void 1831 aio_ddp_requeue_task(void *context, int pending) 1832 { 1833 struct toepcb *toep = context; 1834 1835 DDP_LOCK(toep); 1836 aio_ddp_requeue(toep); 1837 toep->ddp_flags &= ~DDP_TASK_ACTIVE; 1838 DDP_UNLOCK(toep); 1839 1840 free_toepcb(toep); 1841 } 1842 1843 static void 1844 t4_aio_cancel_active(struct kaiocb *job) 1845 { 1846 struct socket *so = job->fd_file->f_data; 1847 struct tcpcb *tp = so_sototcpcb(so); 1848 struct toepcb *toep = tp->t_toe; 1849 struct adapter *sc = td_adapter(toep->td); 1850 uint64_t valid_flag; 1851 int i; 1852 1853 DDP_LOCK(toep); 1854 if (aio_cancel_cleared(job)) { 1855 DDP_UNLOCK(toep); 1856 aio_ddp_cancel_one(job); 1857 return; 1858 } 1859 1860 for (i = 0; i < nitems(toep->db); i++) { 1861 if (toep->db[i].job == job) { 1862 /* Should only ever get one cancel request for a job. */ 1863 MPASS(toep->db[i].cancel_pending == 0); 1864 1865 /* 1866 * Invalidate this buffer. It will be 1867 * cancelled or partially completed once the 1868 * card ACKs the invalidate. 1869 */ 1870 valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : 1871 V_TF_DDP_BUF1_VALID(1); 1872 t4_set_tcb_field(sc, toep->ctrlq, toep->tid, 1873 W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, 1874 i + DDP_BUF0_INVALIDATED, 1875 toep->ofld_rxq->iq.abs_id); 1876 toep->db[i].cancel_pending = 1; 1877 CTR2(KTR_CXGBE, "%s: request %p marked pending", 1878 __func__, job); 1879 break; 1880 } 1881 } 1882 DDP_UNLOCK(toep); 1883 } 1884 1885 static void 1886 t4_aio_cancel_queued(struct kaiocb *job) 1887 { 1888 struct socket *so = job->fd_file->f_data; 1889 struct tcpcb *tp = so_sototcpcb(so); 1890 struct toepcb *toep = tp->t_toe; 1891 1892 DDP_LOCK(toep); 1893 if (!aio_cancel_cleared(job)) { 1894 TAILQ_REMOVE(&toep->ddp_aiojobq, job, list); 1895 toep->ddp_waiting_count--; 1896 if (toep->ddp_waiting_count == 0) 1897 ddp_queue_toep(toep); 1898 } 1899 CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); 1900 DDP_UNLOCK(toep); 1901 1902 aio_ddp_cancel_one(job); 1903 } 1904 1905 int 1906 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) 1907 { 1908 struct tcpcb *tp = so_sototcpcb(so); 1909 struct toepcb *toep = tp->t_toe; 1910 1911 1912 /* Ignore writes. */ 1913 if (job->uaiocb.aio_lio_opcode != LIO_READ) 1914 return (EOPNOTSUPP); 1915 1916 DDP_LOCK(toep); 1917 1918 /* 1919 * XXX: Think about possibly returning errors for ENOTCONN, 1920 * etc. Perhaps the caller would only queue the request 1921 * if it failed with EOPNOTSUPP? 1922 */ 1923 1924 #ifdef VERBOSE_TRACES 1925 CTR2(KTR_CXGBE, "%s: queueing %p", __func__, job); 1926 #endif 1927 if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) 1928 panic("new job was cancelled"); 1929 TAILQ_INSERT_TAIL(&toep->ddp_aiojobq, job, list); 1930 toep->ddp_waiting_count++; 1931 toep->ddp_flags |= DDP_OK; 1932 1933 /* 1934 * Try to handle this request synchronously. If this has 1935 * to block because the task is running, it will just bail 1936 * and let the task handle it instead. 1937 */ 1938 aio_ddp_requeue(toep); 1939 DDP_UNLOCK(toep); 1940 return (0); 1941 } 1942 1943 int 1944 t4_ddp_mod_load(void) 1945 { 1946 1947 t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); 1948 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); 1949 TAILQ_INIT(&ddp_orphan_pagesets); 1950 mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); 1951 TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); 1952 return (0); 1953 } 1954 1955 void 1956 t4_ddp_mod_unload(void) 1957 { 1958 1959 taskqueue_drain(taskqueue_thread, &ddp_orphan_task); 1960 MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); 1961 mtx_destroy(&ddp_orphan_pagesets_lock); 1962 t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); 1963 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); 1964 } 1965 #endif 1966