1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 35 #include <sys/param.h> 36 #include <sys/aio.h> 37 #include <sys/file.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/ktr.h> 41 #include <sys/module.h> 42 #include <sys/protosw.h> 43 #include <sys/proc.h> 44 #include <sys/domain.h> 45 #include <sys/socket.h> 46 #include <sys/socketvar.h> 47 #include <sys/taskqueue.h> 48 #include <sys/uio.h> 49 #include <netinet/in.h> 50 #include <netinet/in_pcb.h> 51 #include <netinet/ip.h> 52 #include <netinet/tcp_var.h> 53 #define TCPSTATES 54 #include <netinet/tcp_fsm.h> 55 #include <netinet/toecore.h> 56 57 #include <vm/vm.h> 58 #include <vm/vm_extern.h> 59 #include <vm/vm_param.h> 60 #include <vm/pmap.h> 61 #include <vm/vm_map.h> 62 #include <vm/vm_page.h> 63 #include <vm/vm_object.h> 64 65 #ifdef TCP_OFFLOAD 66 #include "common/common.h" 67 #include "common/t4_msg.h" 68 #include "common/t4_regs.h" 69 #include "common/t4_tcb.h" 70 #include "tom/t4_tom.h" 71 72 /* 73 * Use the 'backend3' field in AIO jobs to store the amount of data 74 * received by the AIO job so far. 75 */ 76 #define aio_received backend3 77 78 static void aio_ddp_requeue_task(void *context, int pending); 79 static void ddp_complete_all(struct toepcb *toep, int error); 80 static void t4_aio_cancel_active(struct kaiocb *job); 81 static void t4_aio_cancel_queued(struct kaiocb *job); 82 83 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; 84 static struct mtx ddp_orphan_pagesets_lock; 85 static struct task ddp_orphan_task; 86 87 #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) 88 89 /* 90 * A page set holds information about a buffer used for DDP. The page 91 * set holds resources such as the VM pages backing the buffer (either 92 * held or wired) and the page pods associated with the buffer. 93 * Recently used page sets are cached to allow for efficient reuse of 94 * buffers (avoiding the need to re-fault in pages, hold them, etc.). 95 * Note that cached page sets keep the backing pages wired. The 96 * number of wired pages is capped by only allowing for two wired 97 * pagesets per connection. This is not a perfect cap, but is a 98 * trade-off for performance. 99 * 100 * If an application ping-pongs two buffers for a connection via 101 * aio_read(2) then those buffers should remain wired and expensive VM 102 * fault lookups should be avoided after each buffer has been used 103 * once. If an application uses more than two buffers then this will 104 * fall back to doing expensive VM fault lookups for each operation. 105 */ 106 static void 107 free_pageset(struct tom_data *td, struct pageset *ps) 108 { 109 vm_page_t p; 110 int i; 111 112 if (ps->prsv.prsv_nppods > 0) 113 t4_free_page_pods(&ps->prsv); 114 115 if (ps->flags & PS_WIRED) { 116 for (i = 0; i < ps->npages; i++) { 117 p = ps->pages[i]; 118 vm_page_lock(p); 119 vm_page_unwire(p, PQ_INACTIVE); 120 vm_page_unlock(p); 121 } 122 } else 123 vm_page_unhold_pages(ps->pages, ps->npages); 124 mtx_lock(&ddp_orphan_pagesets_lock); 125 TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); 126 taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); 127 mtx_unlock(&ddp_orphan_pagesets_lock); 128 } 129 130 static void 131 ddp_free_orphan_pagesets(void *context, int pending) 132 { 133 struct pageset *ps; 134 135 mtx_lock(&ddp_orphan_pagesets_lock); 136 while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { 137 ps = TAILQ_FIRST(&ddp_orphan_pagesets); 138 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); 139 mtx_unlock(&ddp_orphan_pagesets_lock); 140 if (ps->vm) 141 vmspace_free(ps->vm); 142 free(ps, M_CXGBE); 143 mtx_lock(&ddp_orphan_pagesets_lock); 144 } 145 mtx_unlock(&ddp_orphan_pagesets_lock); 146 } 147 148 static void 149 recycle_pageset(struct toepcb *toep, struct pageset *ps) 150 { 151 152 DDP_ASSERT_LOCKED(toep); 153 if (!(toep->ddp.flags & DDP_DEAD) && ps->flags & PS_WIRED) { 154 KASSERT(toep->ddp.cached_count + toep->ddp.active_count < 155 nitems(toep->ddp.db), ("too many wired pagesets")); 156 TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link); 157 toep->ddp.cached_count++; 158 } else 159 free_pageset(toep->td, ps); 160 } 161 162 static void 163 ddp_complete_one(struct kaiocb *job, int error) 164 { 165 long copied; 166 167 /* 168 * If this job had copied data out of the socket buffer before 169 * it was cancelled, report it as a short read rather than an 170 * error. 171 */ 172 copied = job->aio_received; 173 if (copied != 0 || error == 0) 174 aio_complete(job, copied, 0); 175 else 176 aio_complete(job, -1, error); 177 } 178 179 static void 180 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) 181 { 182 183 if (db->job) { 184 /* 185 * XXX: If we are un-offloading the socket then we 186 * should requeue these on the socket somehow. If we 187 * got a FIN from the remote end, then this completes 188 * any remaining requests with an EOF read. 189 */ 190 if (!aio_clear_cancel_function(db->job)) 191 ddp_complete_one(db->job, 0); 192 } 193 194 if (db->ps) 195 free_pageset(td, db->ps); 196 } 197 198 void 199 ddp_init_toep(struct toepcb *toep) 200 { 201 202 TAILQ_INIT(&toep->ddp.aiojobq); 203 TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep); 204 toep->ddp.flags = DDP_OK; 205 toep->ddp.active_id = -1; 206 mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF); 207 } 208 209 void 210 ddp_uninit_toep(struct toepcb *toep) 211 { 212 213 mtx_destroy(&toep->ddp.lock); 214 } 215 216 void 217 release_ddp_resources(struct toepcb *toep) 218 { 219 struct pageset *ps; 220 int i; 221 222 DDP_LOCK(toep); 223 toep->ddp.flags |= DDP_DEAD; 224 for (i = 0; i < nitems(toep->ddp.db); i++) { 225 free_ddp_buffer(toep->td, &toep->ddp.db[i]); 226 } 227 while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) { 228 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 229 free_pageset(toep->td, ps); 230 } 231 ddp_complete_all(toep, 0); 232 DDP_UNLOCK(toep); 233 } 234 235 #ifdef INVARIANTS 236 void 237 ddp_assert_empty(struct toepcb *toep) 238 { 239 int i; 240 241 MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE)); 242 for (i = 0; i < nitems(toep->ddp.db); i++) { 243 MPASS(toep->ddp.db[i].job == NULL); 244 MPASS(toep->ddp.db[i].ps == NULL); 245 } 246 MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets)); 247 MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq)); 248 } 249 #endif 250 251 static void 252 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, 253 unsigned int db_idx) 254 { 255 unsigned int db_flag; 256 257 toep->ddp.active_count--; 258 if (toep->ddp.active_id == db_idx) { 259 if (toep->ddp.active_count == 0) { 260 KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL, 261 ("%s: active_count mismatch", __func__)); 262 toep->ddp.active_id = -1; 263 } else 264 toep->ddp.active_id ^= 1; 265 #ifdef VERBOSE_TRACES 266 CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__, 267 toep->tid, toep->ddp.active_id); 268 #endif 269 } else { 270 KASSERT(toep->ddp.active_count != 0 && 271 toep->ddp.active_id != -1, 272 ("%s: active count mismatch", __func__)); 273 } 274 275 db->cancel_pending = 0; 276 db->job = NULL; 277 recycle_pageset(toep, db->ps); 278 db->ps = NULL; 279 280 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 281 KASSERT(toep->ddp.flags & db_flag, 282 ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", 283 __func__, toep, toep->ddp.flags)); 284 toep->ddp.flags &= ~db_flag; 285 } 286 287 /* XXX: handle_ddp_data code duplication */ 288 void 289 insert_ddp_data(struct toepcb *toep, uint32_t n) 290 { 291 struct inpcb *inp = toep->inp; 292 struct tcpcb *tp = intotcpcb(inp); 293 struct ddp_buffer *db; 294 struct kaiocb *job; 295 size_t placed; 296 long copied; 297 unsigned int db_flag, db_idx; 298 299 INP_WLOCK_ASSERT(inp); 300 DDP_ASSERT_LOCKED(toep); 301 302 tp->rcv_nxt += n; 303 #ifndef USE_DDP_RX_FLOW_CONTROL 304 KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); 305 tp->rcv_wnd -= n; 306 #endif 307 CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", 308 __func__, n); 309 while (toep->ddp.active_count > 0) { 310 MPASS(toep->ddp.active_id != -1); 311 db_idx = toep->ddp.active_id; 312 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 313 MPASS((toep->ddp.flags & db_flag) != 0); 314 db = &toep->ddp.db[db_idx]; 315 job = db->job; 316 copied = job->aio_received; 317 placed = n; 318 if (placed > job->uaiocb.aio_nbytes - copied) 319 placed = job->uaiocb.aio_nbytes - copied; 320 if (placed > 0) 321 job->msgrcv = 1; 322 if (!aio_clear_cancel_function(job)) { 323 /* 324 * Update the copied length for when 325 * t4_aio_cancel_active() completes this 326 * request. 327 */ 328 job->aio_received += placed; 329 } else if (copied + placed != 0) { 330 CTR4(KTR_CXGBE, 331 "%s: completing %p (copied %ld, placed %lu)", 332 __func__, job, copied, placed); 333 /* XXX: This always completes if there is some data. */ 334 aio_complete(job, copied + placed, 0); 335 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { 336 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 337 toep->ddp.waiting_count++; 338 } else 339 aio_cancel(job); 340 n -= placed; 341 complete_ddp_buffer(toep, db, db_idx); 342 } 343 344 MPASS(n == 0); 345 } 346 347 /* SET_TCB_FIELD sent as a ULP command looks like this */ 348 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 349 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 350 351 /* RX_DATA_ACK sent as a ULP command looks like this */ 352 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ 353 sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) 354 355 static inline void * 356 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, 357 uint64_t word, uint64_t mask, uint64_t val) 358 { 359 struct ulptx_idata *ulpsc; 360 struct cpl_set_tcb_field_core *req; 361 362 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 363 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 364 365 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 366 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 367 ulpsc->len = htobe32(sizeof(*req)); 368 369 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 370 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); 371 req->reply_ctrl = htobe16(V_NO_REPLY(1) | 372 V_QUEUENO(toep->ofld_rxq->iq.abs_id)); 373 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 374 req->mask = htobe64(mask); 375 req->val = htobe64(val); 376 377 ulpsc = (struct ulptx_idata *)(req + 1); 378 if (LEN__SET_TCB_FIELD_ULP % 16) { 379 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 380 ulpsc->len = htobe32(0); 381 return (ulpsc + 1); 382 } 383 return (ulpsc); 384 } 385 386 static inline void * 387 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) 388 { 389 struct ulptx_idata *ulpsc; 390 struct cpl_rx_data_ack_core *req; 391 392 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 393 ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); 394 395 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 396 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 397 ulpsc->len = htobe32(sizeof(*req)); 398 399 req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); 400 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); 401 req->credit_dack = htobe32(F_RX_MODULATE_RX); 402 403 ulpsc = (struct ulptx_idata *)(req + 1); 404 if (LEN__RX_DATA_ACK_ULP % 16) { 405 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 406 ulpsc->len = htobe32(0); 407 return (ulpsc + 1); 408 } 409 return (ulpsc); 410 } 411 412 static struct wrqe * 413 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, 414 struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask) 415 { 416 struct wrqe *wr; 417 struct work_request_hdr *wrh; 418 struct ulp_txpkt *ulpmc; 419 int len; 420 421 KASSERT(db_idx == 0 || db_idx == 1, 422 ("%s: bad DDP buffer index %d", __func__, db_idx)); 423 424 /* 425 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an 426 * RX_DATA_ACK (with RX_MODULATE to speed up delivery). 427 * 428 * The work request header is 16B and always ends at a 16B boundary. 429 * The ULPTX master commands that follow must all end at 16B boundaries 430 * too so we round up the size to 16. 431 */ 432 len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + 433 roundup2(LEN__RX_DATA_ACK_ULP, 16); 434 435 wr = alloc_wrqe(len, toep->ctrlq); 436 if (wr == NULL) 437 return (NULL); 438 wrh = wrtod(wr); 439 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 440 ulpmc = (struct ulp_txpkt *)(wrh + 1); 441 442 /* Write the buffer's tag */ 443 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 444 W_TCB_RX_DDP_BUF0_TAG + db_idx, 445 V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), 446 V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag)); 447 448 /* Update the current offset in the DDP buffer and its total length */ 449 if (db_idx == 0) 450 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 451 W_TCB_RX_DDP_BUF0_OFFSET, 452 V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | 453 V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), 454 V_TCB_RX_DDP_BUF0_OFFSET(offset) | 455 V_TCB_RX_DDP_BUF0_LEN(ps->len)); 456 else 457 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 458 W_TCB_RX_DDP_BUF1_OFFSET, 459 V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | 460 V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), 461 V_TCB_RX_DDP_BUF1_OFFSET(offset) | 462 V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32)); 463 464 /* Update DDP flags */ 465 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, 466 ddp_flags_mask, ddp_flags); 467 468 /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ 469 ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); 470 471 return (wr); 472 } 473 474 static int 475 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) 476 { 477 uint32_t report = be32toh(ddp_report); 478 unsigned int db_idx; 479 struct inpcb *inp = toep->inp; 480 struct ddp_buffer *db; 481 struct tcpcb *tp; 482 struct socket *so; 483 struct sockbuf *sb; 484 struct kaiocb *job; 485 long copied; 486 487 db_idx = report & F_DDP_BUF_IDX ? 1 : 0; 488 489 if (__predict_false(!(report & F_DDP_INV))) 490 CXGBE_UNIMPLEMENTED("DDP buffer still valid"); 491 492 INP_WLOCK(inp); 493 so = inp_inpcbtosocket(inp); 494 sb = &so->so_rcv; 495 DDP_LOCK(toep); 496 497 KASSERT(toep->ddp.active_id == db_idx, 498 ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, 499 toep->ddp.active_id, toep->tid)); 500 db = &toep->ddp.db[db_idx]; 501 job = db->job; 502 503 if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) { 504 /* 505 * This can happen due to an administrative tcpdrop(8). 506 * Just fail the request with ECONNRESET. 507 */ 508 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 509 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 510 if (aio_clear_cancel_function(job)) 511 ddp_complete_one(job, ECONNRESET); 512 goto completed; 513 } 514 515 tp = intotcpcb(inp); 516 517 /* 518 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 519 * sequence number of the next byte to receive. The length of 520 * the data received for this message must be computed by 521 * comparing the new and old values of rcv_nxt. 522 * 523 * For RX_DATA_DDP, len might be non-zero, but it is only the 524 * length of the most recent DMA. It does not include the 525 * total length of the data received since the previous update 526 * for this DDP buffer. rcv_nxt is the sequence number of the 527 * first received byte from the most recent DMA. 528 */ 529 len += be32toh(rcv_nxt) - tp->rcv_nxt; 530 tp->rcv_nxt += len; 531 tp->t_rcvtime = ticks; 532 #ifndef USE_DDP_RX_FLOW_CONTROL 533 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 534 tp->rcv_wnd -= len; 535 #endif 536 #ifdef VERBOSE_TRACES 537 CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__, 538 toep->tid, db_idx, len, report); 539 #endif 540 541 /* receive buffer autosize */ 542 MPASS(toep->vnet == so->so_vnet); 543 CURVNET_SET(toep->vnet); 544 SOCKBUF_LOCK(sb); 545 if (sb->sb_flags & SB_AUTOSIZE && 546 V_tcp_do_autorcvbuf && 547 sb->sb_hiwat < V_tcp_autorcvbuf_max && 548 len > (sbspace(sb) / 8 * 7)) { 549 struct adapter *sc = td_adapter(toep->td); 550 unsigned int hiwat = sb->sb_hiwat; 551 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 552 V_tcp_autorcvbuf_max); 553 554 if (!sbreserve_locked(sb, newsize, so, NULL)) 555 sb->sb_flags &= ~SB_AUTOSIZE; 556 } 557 SOCKBUF_UNLOCK(sb); 558 CURVNET_RESTORE(); 559 560 job->msgrcv = 1; 561 if (db->cancel_pending) { 562 /* 563 * Update the job's length but defer completion to the 564 * TCB_RPL callback. 565 */ 566 job->aio_received += len; 567 goto out; 568 } else if (!aio_clear_cancel_function(job)) { 569 /* 570 * Update the copied length for when 571 * t4_aio_cancel_active() completes this request. 572 */ 573 job->aio_received += len; 574 } else { 575 copied = job->aio_received; 576 #ifdef VERBOSE_TRACES 577 CTR5(KTR_CXGBE, 578 "%s: tid %u, completing %p (copied %ld, placed %d)", 579 __func__, toep->tid, job, copied, len); 580 #endif 581 aio_complete(job, copied + len, 0); 582 t4_rcvd(&toep->td->tod, tp); 583 } 584 585 completed: 586 complete_ddp_buffer(toep, db, db_idx); 587 if (toep->ddp.waiting_count > 0) 588 ddp_queue_toep(toep); 589 out: 590 DDP_UNLOCK(toep); 591 INP_WUNLOCK(inp); 592 593 return (0); 594 } 595 596 void 597 handle_ddp_indicate(struct toepcb *toep) 598 { 599 600 DDP_ASSERT_LOCKED(toep); 601 MPASS(toep->ddp.active_count == 0); 602 MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); 603 if (toep->ddp.waiting_count == 0) { 604 /* 605 * The pending requests that triggered the request for an 606 * an indicate were cancelled. Those cancels should have 607 * already disabled DDP. Just ignore this as the data is 608 * going into the socket buffer anyway. 609 */ 610 return; 611 } 612 CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, 613 toep->tid, toep->ddp.waiting_count); 614 ddp_queue_toep(toep); 615 } 616 617 enum { 618 DDP_BUF0_INVALIDATED = 0x2, 619 DDP_BUF1_INVALIDATED 620 }; 621 622 CTASSERT(DDP_BUF0_INVALIDATED == CPL_COOKIE_DDP0); 623 624 static int 625 do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 626 { 627 struct adapter *sc = iq->adapter; 628 const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); 629 unsigned int tid = GET_TID(cpl); 630 unsigned int db_idx; 631 struct toepcb *toep; 632 struct inpcb *inp; 633 struct ddp_buffer *db; 634 struct kaiocb *job; 635 long copied; 636 637 if (cpl->status != CPL_ERR_NONE) 638 panic("XXX: tcp_rpl failed: %d", cpl->status); 639 640 toep = lookup_tid(sc, tid); 641 inp = toep->inp; 642 switch (cpl->cookie) { 643 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF0_INVALIDATED): 644 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF1_INVALIDATED): 645 /* 646 * XXX: This duplicates a lot of code with handle_ddp_data(). 647 */ 648 db_idx = G_COOKIE(cpl->cookie) - DDP_BUF0_INVALIDATED; 649 MPASS(db_idx < nitems(toep->ddp.db)); 650 INP_WLOCK(inp); 651 DDP_LOCK(toep); 652 db = &toep->ddp.db[db_idx]; 653 654 /* 655 * handle_ddp_data() should leave the job around until 656 * this callback runs once a cancel is pending. 657 */ 658 MPASS(db != NULL); 659 MPASS(db->job != NULL); 660 MPASS(db->cancel_pending); 661 662 /* 663 * XXX: It's not clear what happens if there is data 664 * placed when the buffer is invalidated. I suspect we 665 * need to read the TCB to see how much data was placed. 666 * 667 * For now this just pretends like nothing was placed. 668 * 669 * XXX: Note that if we did check the PCB we would need to 670 * also take care of updating the tp, etc. 671 */ 672 job = db->job; 673 copied = job->aio_received; 674 if (copied == 0) { 675 CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); 676 aio_cancel(job); 677 } else { 678 CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", 679 __func__, job, copied); 680 aio_complete(job, copied, 0); 681 t4_rcvd(&toep->td->tod, intotcpcb(inp)); 682 } 683 684 complete_ddp_buffer(toep, db, db_idx); 685 if (toep->ddp.waiting_count > 0) 686 ddp_queue_toep(toep); 687 DDP_UNLOCK(toep); 688 INP_WUNLOCK(inp); 689 break; 690 default: 691 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", 692 G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); 693 } 694 695 return (0); 696 } 697 698 void 699 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) 700 { 701 struct ddp_buffer *db; 702 struct kaiocb *job; 703 long copied; 704 unsigned int db_flag, db_idx; 705 int len, placed; 706 707 INP_WLOCK_ASSERT(toep->inp); 708 DDP_ASSERT_LOCKED(toep); 709 710 len = be32toh(rcv_nxt) - tp->rcv_nxt; 711 tp->rcv_nxt += len; 712 713 while (toep->ddp.active_count > 0) { 714 MPASS(toep->ddp.active_id != -1); 715 db_idx = toep->ddp.active_id; 716 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 717 MPASS((toep->ddp.flags & db_flag) != 0); 718 db = &toep->ddp.db[db_idx]; 719 job = db->job; 720 copied = job->aio_received; 721 placed = len; 722 if (placed > job->uaiocb.aio_nbytes - copied) 723 placed = job->uaiocb.aio_nbytes - copied; 724 if (placed > 0) 725 job->msgrcv = 1; 726 if (!aio_clear_cancel_function(job)) { 727 /* 728 * Update the copied length for when 729 * t4_aio_cancel_active() completes this 730 * request. 731 */ 732 job->aio_received += placed; 733 } else { 734 CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", 735 __func__, toep->tid, db_idx, placed); 736 aio_complete(job, copied + placed, 0); 737 } 738 len -= placed; 739 complete_ddp_buffer(toep, db, db_idx); 740 } 741 742 MPASS(len == 0); 743 ddp_complete_all(toep, 0); 744 } 745 746 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ 747 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ 748 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ 749 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) 750 751 extern cpl_handler_t t4_cpl_handler[]; 752 753 static int 754 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 755 { 756 struct adapter *sc = iq->adapter; 757 const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); 758 unsigned int tid = GET_TID(cpl); 759 uint32_t vld; 760 struct toepcb *toep = lookup_tid(sc, tid); 761 762 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 763 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 764 KASSERT(!(toep->flags & TPF_SYNQE), 765 ("%s: toep %p claims to be a synq entry", __func__, toep)); 766 767 vld = be32toh(cpl->ddpvld); 768 if (__predict_false(vld & DDP_ERR)) { 769 panic("%s: DDP error 0x%x (tid %d, toep %p)", 770 __func__, vld, tid, toep); 771 } 772 773 if (toep->ulp_mode == ULP_MODE_ISCSI) { 774 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); 775 return (0); 776 } 777 778 handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); 779 780 return (0); 781 } 782 783 static int 784 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, 785 struct mbuf *m) 786 { 787 struct adapter *sc = iq->adapter; 788 const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); 789 unsigned int tid = GET_TID(cpl); 790 struct toepcb *toep = lookup_tid(sc, tid); 791 792 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 793 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 794 KASSERT(!(toep->flags & TPF_SYNQE), 795 ("%s: toep %p claims to be a synq entry", __func__, toep)); 796 797 handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); 798 799 return (0); 800 } 801 802 static void 803 enable_ddp(struct adapter *sc, struct toepcb *toep) 804 { 805 806 KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, 807 ("%s: toep %p has bad ddp_flags 0x%x", 808 __func__, toep, toep->ddp.flags)); 809 810 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 811 __func__, toep->tid, time_uptime); 812 813 DDP_ASSERT_LOCKED(toep); 814 toep->ddp.flags |= DDP_SC_REQ; 815 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, 816 V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | 817 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | 818 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), 819 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0); 820 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 821 V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0); 822 } 823 824 static int 825 calculate_hcf(int n1, int n2) 826 { 827 int a, b, t; 828 829 if (n1 <= n2) { 830 a = n1; 831 b = n2; 832 } else { 833 a = n2; 834 b = n1; 835 } 836 837 while (a != 0) { 838 t = a; 839 a = b % a; 840 b = t; 841 } 842 843 return (b); 844 } 845 846 static inline int 847 pages_to_nppods(int npages, int ddp_page_shift) 848 { 849 850 MPASS(ddp_page_shift >= PAGE_SHIFT); 851 852 return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); 853 } 854 855 static int 856 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, 857 struct ppod_reservation *prsv) 858 { 859 vmem_addr_t addr; /* relative to start of region */ 860 861 if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, 862 &addr) != 0) 863 return (ENOMEM); 864 865 CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", 866 __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, 867 nppods, 1 << pr->pr_page_shift[pgsz_idx]); 868 869 /* 870 * The hardware tagmask includes an extra invalid bit but the arena was 871 * seeded with valid values only. An allocation out of this arena will 872 * fit inside the tagmask but won't have the invalid bit set. 873 */ 874 MPASS((addr & pr->pr_tag_mask) == addr); 875 MPASS((addr & pr->pr_invalid_bit) == 0); 876 877 prsv->prsv_pr = pr; 878 prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; 879 prsv->prsv_nppods = nppods; 880 881 return (0); 882 } 883 884 int 885 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) 886 { 887 int i, hcf, seglen, idx, nppods; 888 struct ppod_reservation *prsv = &ps->prsv; 889 890 KASSERT(prsv->prsv_nppods == 0, 891 ("%s: page pods already allocated", __func__)); 892 893 /* 894 * The DDP page size is unrelated to the VM page size. We combine 895 * contiguous physical pages into larger segments to get the best DDP 896 * page size possible. This is the largest of the four sizes in 897 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in 898 * the page list. 899 */ 900 hcf = 0; 901 for (i = 0; i < ps->npages; i++) { 902 seglen = PAGE_SIZE; 903 while (i < ps->npages - 1 && 904 ps->pages[i]->phys_addr + PAGE_SIZE == 905 ps->pages[i + 1]->phys_addr) { 906 seglen += PAGE_SIZE; 907 i++; 908 } 909 910 hcf = calculate_hcf(hcf, seglen); 911 if (hcf < (1 << pr->pr_page_shift[1])) { 912 idx = 0; 913 goto have_pgsz; /* give up, short circuit */ 914 } 915 } 916 917 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 918 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 919 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 920 if ((hcf & PR_PAGE_MASK(idx)) == 0) 921 break; 922 } 923 #undef PR_PAGE_MASK 924 925 have_pgsz: 926 MPASS(idx <= M_PPOD_PGSZ); 927 928 nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]); 929 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 930 return (0); 931 MPASS(prsv->prsv_nppods > 0); 932 933 return (1); 934 } 935 936 int 937 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, 938 struct ppod_reservation *prsv) 939 { 940 int hcf, seglen, idx, npages, nppods; 941 uintptr_t start_pva, end_pva, pva, p1; 942 943 MPASS(buf > 0); 944 MPASS(len > 0); 945 946 /* 947 * The DDP page size is unrelated to the VM page size. We combine 948 * contiguous physical pages into larger segments to get the best DDP 949 * page size possible. This is the largest of the four sizes in 950 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 951 * in the page list. 952 */ 953 hcf = 0; 954 start_pva = trunc_page(buf); 955 end_pva = trunc_page(buf + len - 1); 956 pva = start_pva; 957 while (pva <= end_pva) { 958 seglen = PAGE_SIZE; 959 p1 = pmap_kextract(pva); 960 pva += PAGE_SIZE; 961 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { 962 seglen += PAGE_SIZE; 963 pva += PAGE_SIZE; 964 } 965 966 hcf = calculate_hcf(hcf, seglen); 967 if (hcf < (1 << pr->pr_page_shift[1])) { 968 idx = 0; 969 goto have_pgsz; /* give up, short circuit */ 970 } 971 } 972 973 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 974 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 975 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 976 if ((hcf & PR_PAGE_MASK(idx)) == 0) 977 break; 978 } 979 #undef PR_PAGE_MASK 980 981 have_pgsz: 982 MPASS(idx <= M_PPOD_PGSZ); 983 984 npages = 1; 985 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 986 nppods = howmany(npages, PPOD_PAGES); 987 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 988 return (ENOMEM); 989 MPASS(prsv->prsv_nppods > 0); 990 991 return (0); 992 } 993 994 void 995 t4_free_page_pods(struct ppod_reservation *prsv) 996 { 997 struct ppod_region *pr = prsv->prsv_pr; 998 vmem_addr_t addr; 999 1000 MPASS(prsv != NULL); 1001 MPASS(prsv->prsv_nppods != 0); 1002 1003 addr = prsv->prsv_tag & pr->pr_tag_mask; 1004 MPASS((addr & pr->pr_invalid_bit) == 0); 1005 1006 CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, 1007 pr->pr_arena, addr, prsv->prsv_nppods); 1008 1009 vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); 1010 prsv->prsv_nppods = 0; 1011 } 1012 1013 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) 1014 1015 int 1016 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, 1017 struct pageset *ps) 1018 { 1019 struct wrqe *wr; 1020 struct ulp_mem_io *ulpmc; 1021 struct ulptx_idata *ulpsc; 1022 struct pagepod *ppod; 1023 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1024 u_int ppod_addr; 1025 uint32_t cmd; 1026 struct ppod_reservation *prsv = &ps->prsv; 1027 struct ppod_region *pr = prsv->prsv_pr; 1028 1029 KASSERT(!(ps->flags & PS_PPODS_WRITTEN), 1030 ("%s: page pods already written", __func__)); 1031 MPASS(prsv->prsv_nppods > 0); 1032 1033 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1034 if (is_t4(sc)) 1035 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1036 else 1037 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1038 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1039 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1040 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1041 1042 /* How many page pods are we writing in this cycle */ 1043 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1044 chunk = PPOD_SZ(n); 1045 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1046 1047 wr = alloc_wrqe(len, wrq); 1048 if (wr == NULL) 1049 return (ENOMEM); /* ok to just bail out */ 1050 ulpmc = wrtod(wr); 1051 1052 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1053 ulpmc->cmd = cmd; 1054 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1055 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1056 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1057 1058 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1059 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1060 ulpsc->len = htobe32(chunk); 1061 1062 ppod = (struct pagepod *)(ulpsc + 1); 1063 for (j = 0; j < n; i++, j++, ppod++) { 1064 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1065 V_PPOD_TID(tid) | prsv->prsv_tag); 1066 ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | 1067 V_PPOD_OFST(ps->offset)); 1068 ppod->rsvd = 0; 1069 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1070 for (k = 0; k < nitems(ppod->addr); k++) { 1071 if (idx < ps->npages) { 1072 ppod->addr[k] = 1073 htobe64(ps->pages[idx]->phys_addr); 1074 idx += ddp_pgsz / PAGE_SIZE; 1075 } else 1076 ppod->addr[k] = 0; 1077 #if 0 1078 CTR5(KTR_CXGBE, 1079 "%s: tid %d ppod[%d]->addr[%d] = %p", 1080 __func__, toep->tid, i, k, 1081 htobe64(ppod->addr[k])); 1082 #endif 1083 } 1084 1085 } 1086 1087 t4_wrq_tx(sc, wr); 1088 } 1089 ps->flags |= PS_PPODS_WRITTEN; 1090 1091 return (0); 1092 } 1093 1094 int 1095 t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid, 1096 struct ppod_reservation *prsv, vm_offset_t buf, int buflen) 1097 { 1098 struct wrqe *wr; 1099 struct ulp_mem_io *ulpmc; 1100 struct ulptx_idata *ulpsc; 1101 struct pagepod *ppod; 1102 int i, j, k, n, chunk, len, ddp_pgsz; 1103 u_int ppod_addr, offset; 1104 uint32_t cmd; 1105 struct ppod_region *pr = prsv->prsv_pr; 1106 uintptr_t end_pva, pva, pa; 1107 1108 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1109 if (is_t4(sc)) 1110 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1111 else 1112 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1113 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1114 offset = buf & PAGE_MASK; 1115 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1116 pva = trunc_page(buf); 1117 end_pva = trunc_page(buf + buflen - 1); 1118 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1119 1120 /* How many page pods are we writing in this cycle */ 1121 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1122 MPASS(n > 0); 1123 chunk = PPOD_SZ(n); 1124 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1125 1126 wr = alloc_wrqe(len, wrq); 1127 if (wr == NULL) 1128 return (ENOMEM); /* ok to just bail out */ 1129 ulpmc = wrtod(wr); 1130 1131 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1132 ulpmc->cmd = cmd; 1133 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1134 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1135 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1136 1137 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1138 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1139 ulpsc->len = htobe32(chunk); 1140 1141 ppod = (struct pagepod *)(ulpsc + 1); 1142 for (j = 0; j < n; i++, j++, ppod++) { 1143 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1144 V_PPOD_TID(tid) | 1145 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1146 ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | 1147 V_PPOD_OFST(offset)); 1148 ppod->rsvd = 0; 1149 1150 for (k = 0; k < nitems(ppod->addr); k++) { 1151 if (pva > end_pva) 1152 ppod->addr[k] = 0; 1153 else { 1154 pa = pmap_kextract(pva); 1155 ppod->addr[k] = htobe64(pa); 1156 pva += ddp_pgsz; 1157 } 1158 #if 0 1159 CTR5(KTR_CXGBE, 1160 "%s: tid %d ppod[%d]->addr[%d] = %p", 1161 __func__, tid, i, k, 1162 htobe64(ppod->addr[k])); 1163 #endif 1164 } 1165 1166 /* 1167 * Walk back 1 segment so that the first address in the 1168 * next pod is the same as the last one in the current 1169 * pod. 1170 */ 1171 pva -= ddp_pgsz; 1172 } 1173 1174 t4_wrq_tx(sc, wr); 1175 } 1176 1177 MPASS(pva <= end_pva); 1178 1179 return (0); 1180 } 1181 1182 static void 1183 wire_pageset(struct pageset *ps) 1184 { 1185 vm_page_t p; 1186 int i; 1187 1188 KASSERT(!(ps->flags & PS_WIRED), ("pageset already wired")); 1189 1190 for (i = 0; i < ps->npages; i++) { 1191 p = ps->pages[i]; 1192 vm_page_lock(p); 1193 vm_page_wire(p); 1194 vm_page_unhold(p); 1195 vm_page_unlock(p); 1196 } 1197 ps->flags |= PS_WIRED; 1198 } 1199 1200 /* 1201 * Prepare a pageset for DDP. This wires the pageset and sets up page 1202 * pods. 1203 */ 1204 static int 1205 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) 1206 { 1207 struct tom_data *td = sc->tom_softc; 1208 1209 if (!(ps->flags & PS_WIRED)) 1210 wire_pageset(ps); 1211 if (ps->prsv.prsv_nppods == 0 && 1212 !t4_alloc_page_pods_for_ps(&td->pr, ps)) { 1213 return (0); 1214 } 1215 if (!(ps->flags & PS_PPODS_WRITTEN) && 1216 t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { 1217 return (0); 1218 } 1219 1220 return (1); 1221 } 1222 1223 int 1224 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, 1225 const char *name) 1226 { 1227 int i; 1228 1229 MPASS(pr != NULL); 1230 MPASS(r->size > 0); 1231 1232 pr->pr_start = r->start; 1233 pr->pr_len = r->size; 1234 pr->pr_page_shift[0] = 12 + G_HPZ0(psz); 1235 pr->pr_page_shift[1] = 12 + G_HPZ1(psz); 1236 pr->pr_page_shift[2] = 12 + G_HPZ2(psz); 1237 pr->pr_page_shift[3] = 12 + G_HPZ3(psz); 1238 1239 /* The SGL -> page pod algorithm requires the sizes to be in order. */ 1240 for (i = 1; i < nitems(pr->pr_page_shift); i++) { 1241 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) 1242 return (ENXIO); 1243 } 1244 1245 pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); 1246 pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; 1247 if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) 1248 return (ENXIO); 1249 pr->pr_alias_shift = fls(pr->pr_tag_mask); 1250 pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); 1251 1252 pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, 1253 M_FIRSTFIT | M_NOWAIT); 1254 if (pr->pr_arena == NULL) 1255 return (ENOMEM); 1256 1257 return (0); 1258 } 1259 1260 void 1261 t4_free_ppod_region(struct ppod_region *pr) 1262 { 1263 1264 MPASS(pr != NULL); 1265 1266 if (pr->pr_arena) 1267 vmem_destroy(pr->pr_arena); 1268 bzero(pr, sizeof(*pr)); 1269 } 1270 1271 static int 1272 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, 1273 int pgoff, int len) 1274 { 1275 1276 if (ps->start != start || ps->npages != npages || 1277 ps->offset != pgoff || ps->len != len) 1278 return (1); 1279 1280 return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); 1281 } 1282 1283 static int 1284 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) 1285 { 1286 struct vmspace *vm; 1287 vm_map_t map; 1288 vm_offset_t start, end, pgoff; 1289 struct pageset *ps; 1290 int n; 1291 1292 DDP_ASSERT_LOCKED(toep); 1293 1294 /* 1295 * The AIO subsystem will cancel and drain all requests before 1296 * permitting a process to exit or exec, so p_vmspace should 1297 * be stable here. 1298 */ 1299 vm = job->userproc->p_vmspace; 1300 map = &vm->vm_map; 1301 start = (uintptr_t)job->uaiocb.aio_buf; 1302 pgoff = start & PAGE_MASK; 1303 end = round_page(start + job->uaiocb.aio_nbytes); 1304 start = trunc_page(start); 1305 1306 if (end - start > MAX_DDP_BUFFER_SIZE) { 1307 /* 1308 * Truncate the request to a short read. 1309 * Alternatively, we could DDP in chunks to the larger 1310 * buffer, but that would be quite a bit more work. 1311 * 1312 * When truncating, round the request down to avoid 1313 * crossing a cache line on the final transaction. 1314 */ 1315 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); 1316 #ifdef VERBOSE_TRACES 1317 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", 1318 __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, 1319 (unsigned long)(end - (start + pgoff))); 1320 job->uaiocb.aio_nbytes = end - (start + pgoff); 1321 #endif 1322 end = round_page(end); 1323 } 1324 1325 n = atop(end - start); 1326 1327 /* 1328 * Try to reuse a cached pageset. 1329 */ 1330 TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) { 1331 if (pscmp(ps, vm, start, n, pgoff, 1332 job->uaiocb.aio_nbytes) == 0) { 1333 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1334 toep->ddp.cached_count--; 1335 *pps = ps; 1336 return (0); 1337 } 1338 } 1339 1340 /* 1341 * If there are too many cached pagesets to create a new one, 1342 * free a pageset before creating a new one. 1343 */ 1344 KASSERT(toep->ddp.active_count + toep->ddp.cached_count <= 1345 nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__)); 1346 if (toep->ddp.active_count + toep->ddp.cached_count == 1347 nitems(toep->ddp.db)) { 1348 KASSERT(toep->ddp.cached_count > 0, 1349 ("no cached pageset to free")); 1350 ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq); 1351 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1352 toep->ddp.cached_count--; 1353 free_pageset(toep->td, ps); 1354 } 1355 DDP_UNLOCK(toep); 1356 1357 /* Create a new pageset. */ 1358 ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | 1359 M_ZERO); 1360 ps->pages = (vm_page_t *)(ps + 1); 1361 ps->vm_timestamp = map->timestamp; 1362 ps->npages = vm_fault_quick_hold_pages(map, start, end - start, 1363 VM_PROT_WRITE, ps->pages, n); 1364 1365 DDP_LOCK(toep); 1366 if (ps->npages < 0) { 1367 free(ps, M_CXGBE); 1368 return (EFAULT); 1369 } 1370 1371 KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", 1372 ps->npages, n)); 1373 1374 ps->offset = pgoff; 1375 ps->len = job->uaiocb.aio_nbytes; 1376 atomic_add_int(&vm->vm_refcnt, 1); 1377 ps->vm = vm; 1378 ps->start = start; 1379 1380 CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", 1381 __func__, toep->tid, ps, job, ps->npages); 1382 *pps = ps; 1383 return (0); 1384 } 1385 1386 static void 1387 ddp_complete_all(struct toepcb *toep, int error) 1388 { 1389 struct kaiocb *job; 1390 1391 DDP_ASSERT_LOCKED(toep); 1392 while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) { 1393 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1394 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1395 toep->ddp.waiting_count--; 1396 if (aio_clear_cancel_function(job)) 1397 ddp_complete_one(job, error); 1398 } 1399 } 1400 1401 static void 1402 aio_ddp_cancel_one(struct kaiocb *job) 1403 { 1404 long copied; 1405 1406 /* 1407 * If this job had copied data out of the socket buffer before 1408 * it was cancelled, report it as a short read rather than an 1409 * error. 1410 */ 1411 copied = job->aio_received; 1412 if (copied != 0) 1413 aio_complete(job, copied, 0); 1414 else 1415 aio_cancel(job); 1416 } 1417 1418 /* 1419 * Called when the main loop wants to requeue a job to retry it later. 1420 * Deals with the race of the job being cancelled while it was being 1421 * examined. 1422 */ 1423 static void 1424 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) 1425 { 1426 1427 DDP_ASSERT_LOCKED(toep); 1428 if (!(toep->ddp.flags & DDP_DEAD) && 1429 aio_set_cancel_function(job, t4_aio_cancel_queued)) { 1430 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 1431 toep->ddp.waiting_count++; 1432 } else 1433 aio_ddp_cancel_one(job); 1434 } 1435 1436 static void 1437 aio_ddp_requeue(struct toepcb *toep) 1438 { 1439 struct adapter *sc = td_adapter(toep->td); 1440 struct socket *so; 1441 struct sockbuf *sb; 1442 struct inpcb *inp; 1443 struct kaiocb *job; 1444 struct ddp_buffer *db; 1445 size_t copied, offset, resid; 1446 struct pageset *ps; 1447 struct mbuf *m; 1448 uint64_t ddp_flags, ddp_flags_mask; 1449 struct wrqe *wr; 1450 int buf_flag, db_idx, error; 1451 1452 DDP_ASSERT_LOCKED(toep); 1453 1454 restart: 1455 if (toep->ddp.flags & DDP_DEAD) { 1456 MPASS(toep->ddp.waiting_count == 0); 1457 MPASS(toep->ddp.active_count == 0); 1458 return; 1459 } 1460 1461 if (toep->ddp.waiting_count == 0 || 1462 toep->ddp.active_count == nitems(toep->ddp.db)) { 1463 return; 1464 } 1465 1466 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1467 so = job->fd_file->f_data; 1468 sb = &so->so_rcv; 1469 SOCKBUF_LOCK(sb); 1470 1471 /* We will never get anything unless we are or were connected. */ 1472 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1473 SOCKBUF_UNLOCK(sb); 1474 ddp_complete_all(toep, ENOTCONN); 1475 return; 1476 } 1477 1478 KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0, 1479 ("%s: pending sockbuf data and DDP is active", __func__)); 1480 1481 /* Abort if socket has reported problems. */ 1482 /* XXX: Wait for any queued DDP's to finish and/or flush them? */ 1483 if (so->so_error && sbavail(sb) == 0) { 1484 toep->ddp.waiting_count--; 1485 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1486 if (!aio_clear_cancel_function(job)) { 1487 SOCKBUF_UNLOCK(sb); 1488 goto restart; 1489 } 1490 1491 /* 1492 * If this job has previously copied some data, report 1493 * a short read and leave the error to be reported by 1494 * a future request. 1495 */ 1496 copied = job->aio_received; 1497 if (copied != 0) { 1498 SOCKBUF_UNLOCK(sb); 1499 aio_complete(job, copied, 0); 1500 goto restart; 1501 } 1502 error = so->so_error; 1503 so->so_error = 0; 1504 SOCKBUF_UNLOCK(sb); 1505 aio_complete(job, -1, error); 1506 goto restart; 1507 } 1508 1509 /* 1510 * Door is closed. If there is pending data in the socket buffer, 1511 * deliver it. If there are pending DDP requests, wait for those 1512 * to complete. Once they have completed, return EOF reads. 1513 */ 1514 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1515 SOCKBUF_UNLOCK(sb); 1516 if (toep->ddp.active_count != 0) 1517 return; 1518 ddp_complete_all(toep, 0); 1519 return; 1520 } 1521 1522 /* 1523 * If DDP is not enabled and there is no pending socket buffer 1524 * data, try to enable DDP. 1525 */ 1526 if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) { 1527 SOCKBUF_UNLOCK(sb); 1528 1529 /* 1530 * Wait for the card to ACK that DDP is enabled before 1531 * queueing any buffers. Currently this waits for an 1532 * indicate to arrive. This could use a TCB_SET_FIELD_RPL 1533 * message to know that DDP was enabled instead of waiting 1534 * for the indicate which would avoid copying the indicate 1535 * if no data is pending. 1536 * 1537 * XXX: Might want to limit the indicate size to the size 1538 * of the first queued request. 1539 */ 1540 if ((toep->ddp.flags & DDP_SC_REQ) == 0) 1541 enable_ddp(sc, toep); 1542 return; 1543 } 1544 SOCKBUF_UNLOCK(sb); 1545 1546 /* 1547 * If another thread is queueing a buffer for DDP, let it 1548 * drain any work and return. 1549 */ 1550 if (toep->ddp.queueing != NULL) 1551 return; 1552 1553 /* Take the next job to prep it for DDP. */ 1554 toep->ddp.waiting_count--; 1555 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1556 if (!aio_clear_cancel_function(job)) 1557 goto restart; 1558 toep->ddp.queueing = job; 1559 1560 /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ 1561 error = hold_aio(toep, job, &ps); 1562 if (error != 0) { 1563 ddp_complete_one(job, error); 1564 toep->ddp.queueing = NULL; 1565 goto restart; 1566 } 1567 1568 SOCKBUF_LOCK(sb); 1569 if (so->so_error && sbavail(sb) == 0) { 1570 copied = job->aio_received; 1571 if (copied != 0) { 1572 SOCKBUF_UNLOCK(sb); 1573 recycle_pageset(toep, ps); 1574 aio_complete(job, copied, 0); 1575 toep->ddp.queueing = NULL; 1576 goto restart; 1577 } 1578 1579 error = so->so_error; 1580 so->so_error = 0; 1581 SOCKBUF_UNLOCK(sb); 1582 recycle_pageset(toep, ps); 1583 aio_complete(job, -1, error); 1584 toep->ddp.queueing = NULL; 1585 goto restart; 1586 } 1587 1588 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1589 SOCKBUF_UNLOCK(sb); 1590 recycle_pageset(toep, ps); 1591 if (toep->ddp.active_count != 0) { 1592 /* 1593 * The door is closed, but there are still pending 1594 * DDP buffers. Requeue. These jobs will all be 1595 * completed once those buffers drain. 1596 */ 1597 aio_ddp_requeue_one(toep, job); 1598 toep->ddp.queueing = NULL; 1599 return; 1600 } 1601 ddp_complete_one(job, 0); 1602 ddp_complete_all(toep, 0); 1603 toep->ddp.queueing = NULL; 1604 return; 1605 } 1606 1607 sbcopy: 1608 /* 1609 * If the toep is dead, there shouldn't be any data in the socket 1610 * buffer, so the above case should have handled this. 1611 */ 1612 MPASS(!(toep->ddp.flags & DDP_DEAD)); 1613 1614 /* 1615 * If there is pending data in the socket buffer (either 1616 * from before the requests were queued or a DDP indicate), 1617 * copy those mbufs out directly. 1618 */ 1619 copied = 0; 1620 offset = ps->offset + job->aio_received; 1621 MPASS(job->aio_received <= job->uaiocb.aio_nbytes); 1622 resid = job->uaiocb.aio_nbytes - job->aio_received; 1623 m = sb->sb_mb; 1624 KASSERT(m == NULL || toep->ddp.active_count == 0, 1625 ("%s: sockbuf data with active DDP", __func__)); 1626 while (m != NULL && resid > 0) { 1627 struct iovec iov[1]; 1628 struct uio uio; 1629 int error; 1630 1631 iov[0].iov_base = mtod(m, void *); 1632 iov[0].iov_len = m->m_len; 1633 if (iov[0].iov_len > resid) 1634 iov[0].iov_len = resid; 1635 uio.uio_iov = iov; 1636 uio.uio_iovcnt = 1; 1637 uio.uio_offset = 0; 1638 uio.uio_resid = iov[0].iov_len; 1639 uio.uio_segflg = UIO_SYSSPACE; 1640 uio.uio_rw = UIO_WRITE; 1641 error = uiomove_fromphys(ps->pages, offset + copied, 1642 uio.uio_resid, &uio); 1643 MPASS(error == 0 && uio.uio_resid == 0); 1644 copied += uio.uio_offset; 1645 resid -= uio.uio_offset; 1646 m = m->m_next; 1647 } 1648 if (copied != 0) { 1649 sbdrop_locked(sb, copied); 1650 job->aio_received += copied; 1651 job->msgrcv = 1; 1652 copied = job->aio_received; 1653 inp = sotoinpcb(so); 1654 if (!INP_TRY_WLOCK(inp)) { 1655 /* 1656 * The reference on the socket file descriptor in 1657 * the AIO job should keep 'sb' and 'inp' stable. 1658 * Our caller has a reference on the 'toep' that 1659 * keeps it stable. 1660 */ 1661 SOCKBUF_UNLOCK(sb); 1662 DDP_UNLOCK(toep); 1663 INP_WLOCK(inp); 1664 DDP_LOCK(toep); 1665 SOCKBUF_LOCK(sb); 1666 1667 /* 1668 * If the socket has been closed, we should detect 1669 * that and complete this request if needed on 1670 * the next trip around the loop. 1671 */ 1672 } 1673 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); 1674 INP_WUNLOCK(inp); 1675 if (resid == 0 || toep->ddp.flags & DDP_DEAD) { 1676 /* 1677 * We filled the entire buffer with socket 1678 * data, DDP is not being used, or the socket 1679 * is being shut down, so complete the 1680 * request. 1681 */ 1682 SOCKBUF_UNLOCK(sb); 1683 recycle_pageset(toep, ps); 1684 aio_complete(job, copied, 0); 1685 toep->ddp.queueing = NULL; 1686 goto restart; 1687 } 1688 1689 /* 1690 * If DDP is not enabled, requeue this request and restart. 1691 * This will either enable DDP or wait for more data to 1692 * arrive on the socket buffer. 1693 */ 1694 if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { 1695 SOCKBUF_UNLOCK(sb); 1696 recycle_pageset(toep, ps); 1697 aio_ddp_requeue_one(toep, job); 1698 toep->ddp.queueing = NULL; 1699 goto restart; 1700 } 1701 1702 /* 1703 * An indicate might have arrived and been added to 1704 * the socket buffer while it was unlocked after the 1705 * copy to lock the INP. If so, restart the copy. 1706 */ 1707 if (sbavail(sb) != 0) 1708 goto sbcopy; 1709 } 1710 SOCKBUF_UNLOCK(sb); 1711 1712 if (prep_pageset(sc, toep, ps) == 0) { 1713 recycle_pageset(toep, ps); 1714 aio_ddp_requeue_one(toep, job); 1715 toep->ddp.queueing = NULL; 1716 1717 /* 1718 * XXX: Need to retry this later. Mostly need a trigger 1719 * when page pods are freed up. 1720 */ 1721 printf("%s: prep_pageset failed\n", __func__); 1722 return; 1723 } 1724 1725 /* Determine which DDP buffer to use. */ 1726 if (toep->ddp.db[0].job == NULL) { 1727 db_idx = 0; 1728 } else { 1729 MPASS(toep->ddp.db[1].job == NULL); 1730 db_idx = 1; 1731 } 1732 1733 ddp_flags = 0; 1734 ddp_flags_mask = 0; 1735 if (db_idx == 0) { 1736 ddp_flags |= V_TF_DDP_BUF0_VALID(1); 1737 if (so->so_state & SS_NBIO) 1738 ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); 1739 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 1740 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | 1741 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); 1742 buf_flag = DDP_BUF0_ACTIVE; 1743 } else { 1744 ddp_flags |= V_TF_DDP_BUF1_VALID(1); 1745 if (so->so_state & SS_NBIO) 1746 ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); 1747 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 1748 V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | 1749 V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); 1750 buf_flag = DDP_BUF1_ACTIVE; 1751 } 1752 MPASS((toep->ddp.flags & buf_flag) == 0); 1753 if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { 1754 MPASS(db_idx == 0); 1755 MPASS(toep->ddp.active_id == -1); 1756 MPASS(toep->ddp.active_count == 0); 1757 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); 1758 } 1759 1760 /* 1761 * The TID for this connection should still be valid. If DDP_DEAD 1762 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be 1763 * this far anyway. Even if the socket is closing on the other 1764 * end, the AIO job holds a reference on this end of the socket 1765 * which will keep it open and keep the TCP PCB attached until 1766 * after the job is completed. 1767 */ 1768 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received, 1769 ddp_flags, ddp_flags_mask); 1770 if (wr == NULL) { 1771 recycle_pageset(toep, ps); 1772 aio_ddp_requeue_one(toep, job); 1773 toep->ddp.queueing = NULL; 1774 1775 /* 1776 * XXX: Need a way to kick a retry here. 1777 * 1778 * XXX: We know the fixed size needed and could 1779 * preallocate this using a blocking request at the 1780 * start of the task to avoid having to handle this 1781 * edge case. 1782 */ 1783 printf("%s: mk_update_tcb_for_ddp failed\n", __func__); 1784 return; 1785 } 1786 1787 if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { 1788 free_wrqe(wr); 1789 recycle_pageset(toep, ps); 1790 aio_ddp_cancel_one(job); 1791 toep->ddp.queueing = NULL; 1792 goto restart; 1793 } 1794 1795 #ifdef VERBOSE_TRACES 1796 CTR6(KTR_CXGBE, 1797 "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__, 1798 toep->tid, job, db_idx, ddp_flags, ddp_flags_mask); 1799 #endif 1800 /* Give the chip the go-ahead. */ 1801 t4_wrq_tx(sc, wr); 1802 db = &toep->ddp.db[db_idx]; 1803 db->cancel_pending = 0; 1804 db->job = job; 1805 db->ps = ps; 1806 toep->ddp.queueing = NULL; 1807 toep->ddp.flags |= buf_flag; 1808 toep->ddp.active_count++; 1809 if (toep->ddp.active_count == 1) { 1810 MPASS(toep->ddp.active_id == -1); 1811 toep->ddp.active_id = db_idx; 1812 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 1813 toep->ddp.active_id); 1814 } 1815 goto restart; 1816 } 1817 1818 void 1819 ddp_queue_toep(struct toepcb *toep) 1820 { 1821 1822 DDP_ASSERT_LOCKED(toep); 1823 if (toep->ddp.flags & DDP_TASK_ACTIVE) 1824 return; 1825 toep->ddp.flags |= DDP_TASK_ACTIVE; 1826 hold_toepcb(toep); 1827 soaio_enqueue(&toep->ddp.requeue_task); 1828 } 1829 1830 static void 1831 aio_ddp_requeue_task(void *context, int pending) 1832 { 1833 struct toepcb *toep = context; 1834 1835 DDP_LOCK(toep); 1836 aio_ddp_requeue(toep); 1837 toep->ddp.flags &= ~DDP_TASK_ACTIVE; 1838 DDP_UNLOCK(toep); 1839 1840 free_toepcb(toep); 1841 } 1842 1843 static void 1844 t4_aio_cancel_active(struct kaiocb *job) 1845 { 1846 struct socket *so = job->fd_file->f_data; 1847 struct tcpcb *tp = so_sototcpcb(so); 1848 struct toepcb *toep = tp->t_toe; 1849 struct adapter *sc = td_adapter(toep->td); 1850 uint64_t valid_flag; 1851 int i; 1852 1853 DDP_LOCK(toep); 1854 if (aio_cancel_cleared(job)) { 1855 DDP_UNLOCK(toep); 1856 aio_ddp_cancel_one(job); 1857 return; 1858 } 1859 1860 for (i = 0; i < nitems(toep->ddp.db); i++) { 1861 if (toep->ddp.db[i].job == job) { 1862 /* Should only ever get one cancel request for a job. */ 1863 MPASS(toep->ddp.db[i].cancel_pending == 0); 1864 1865 /* 1866 * Invalidate this buffer. It will be 1867 * cancelled or partially completed once the 1868 * card ACKs the invalidate. 1869 */ 1870 valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : 1871 V_TF_DDP_BUF1_VALID(1); 1872 t4_set_tcb_field(sc, toep->ctrlq, toep, 1873 W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, 1874 i + DDP_BUF0_INVALIDATED); 1875 toep->ddp.db[i].cancel_pending = 1; 1876 CTR2(KTR_CXGBE, "%s: request %p marked pending", 1877 __func__, job); 1878 break; 1879 } 1880 } 1881 DDP_UNLOCK(toep); 1882 } 1883 1884 static void 1885 t4_aio_cancel_queued(struct kaiocb *job) 1886 { 1887 struct socket *so = job->fd_file->f_data; 1888 struct tcpcb *tp = so_sototcpcb(so); 1889 struct toepcb *toep = tp->t_toe; 1890 1891 DDP_LOCK(toep); 1892 if (!aio_cancel_cleared(job)) { 1893 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1894 toep->ddp.waiting_count--; 1895 if (toep->ddp.waiting_count == 0) 1896 ddp_queue_toep(toep); 1897 } 1898 CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); 1899 DDP_UNLOCK(toep); 1900 1901 aio_ddp_cancel_one(job); 1902 } 1903 1904 int 1905 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) 1906 { 1907 struct tcpcb *tp = so_sototcpcb(so); 1908 struct toepcb *toep = tp->t_toe; 1909 1910 1911 /* Ignore writes. */ 1912 if (job->uaiocb.aio_lio_opcode != LIO_READ) 1913 return (EOPNOTSUPP); 1914 1915 DDP_LOCK(toep); 1916 1917 /* 1918 * XXX: Think about possibly returning errors for ENOTCONN, 1919 * etc. Perhaps the caller would only queue the request 1920 * if it failed with EOPNOTSUPP? 1921 */ 1922 1923 #ifdef VERBOSE_TRACES 1924 CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid); 1925 #endif 1926 if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) 1927 panic("new job was cancelled"); 1928 TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list); 1929 toep->ddp.waiting_count++; 1930 toep->ddp.flags |= DDP_OK; 1931 1932 /* 1933 * Try to handle this request synchronously. If this has 1934 * to block because the task is running, it will just bail 1935 * and let the task handle it instead. 1936 */ 1937 aio_ddp_requeue(toep); 1938 DDP_UNLOCK(toep); 1939 return (0); 1940 } 1941 1942 void 1943 t4_ddp_mod_load(void) 1944 { 1945 1946 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 1947 CPL_COOKIE_DDP0); 1948 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 1949 CPL_COOKIE_DDP1); 1950 t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); 1951 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); 1952 TAILQ_INIT(&ddp_orphan_pagesets); 1953 mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); 1954 TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); 1955 } 1956 1957 void 1958 t4_ddp_mod_unload(void) 1959 { 1960 1961 taskqueue_drain(taskqueue_thread, &ddp_orphan_task); 1962 MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); 1963 mtx_destroy(&ddp_orphan_pagesets_lock); 1964 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0); 1965 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1); 1966 t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); 1967 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); 1968 } 1969 #endif 1970