1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_inet.h" 32 33 #include <sys/param.h> 34 #include <sys/aio.h> 35 #include <sys/bio.h> 36 #include <sys/file.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/ktr.h> 40 #include <sys/module.h> 41 #include <sys/protosw.h> 42 #include <sys/proc.h> 43 #include <sys/domain.h> 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <sys/taskqueue.h> 47 #include <sys/uio.h> 48 #include <netinet/in.h> 49 #include <netinet/in_pcb.h> 50 #include <netinet/ip.h> 51 #include <netinet/tcp_var.h> 52 #define TCPSTATES 53 #include <netinet/tcp_fsm.h> 54 #include <netinet/toecore.h> 55 56 #include <vm/vm.h> 57 #include <vm/vm_extern.h> 58 #include <vm/vm_param.h> 59 #include <vm/pmap.h> 60 #include <vm/vm_map.h> 61 #include <vm/vm_page.h> 62 #include <vm/vm_object.h> 63 64 #include <cam/scsi/scsi_all.h> 65 #include <cam/ctl/ctl_io.h> 66 67 #ifdef TCP_OFFLOAD 68 #include "common/common.h" 69 #include "common/t4_msg.h" 70 #include "common/t4_regs.h" 71 #include "common/t4_tcb.h" 72 #include "tom/t4_tom.h" 73 74 /* 75 * Use the 'backend3' field in AIO jobs to store the amount of data 76 * received by the AIO job so far. 77 */ 78 #define aio_received backend3 79 80 static void aio_ddp_requeue_task(void *context, int pending); 81 static void ddp_complete_all(struct toepcb *toep, int error); 82 static void t4_aio_cancel_active(struct kaiocb *job); 83 static void t4_aio_cancel_queued(struct kaiocb *job); 84 static int t4_alloc_page_pods_for_rcvbuf(struct ppod_region *pr, 85 struct ddp_rcv_buffer *drb); 86 static int t4_write_page_pods_for_rcvbuf(struct adapter *sc, 87 struct sge_wrq *wrq, int tid, struct ddp_rcv_buffer *drb); 88 89 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; 90 static struct mtx ddp_orphan_pagesets_lock; 91 static struct task ddp_orphan_task; 92 93 #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) 94 95 /* 96 * A page set holds information about a user buffer used for AIO DDP. 97 * The page set holds resources such as the VM pages backing the 98 * buffer (either held or wired) and the page pods associated with the 99 * buffer. Recently used page sets are cached to allow for efficient 100 * reuse of buffers (avoiding the need to re-fault in pages, hold 101 * them, etc.). Note that cached page sets keep the backing pages 102 * wired. The number of wired pages is capped by only allowing for 103 * two wired pagesets per connection. This is not a perfect cap, but 104 * is a trade-off for performance. 105 * 106 * If an application ping-pongs two buffers for a connection via 107 * aio_read(2) then those buffers should remain wired and expensive VM 108 * fault lookups should be avoided after each buffer has been used 109 * once. If an application uses more than two buffers then this will 110 * fall back to doing expensive VM fault lookups for each operation. 111 */ 112 static void 113 free_pageset(struct tom_data *td, struct pageset *ps) 114 { 115 vm_page_t p; 116 int i; 117 118 if (ps->prsv.prsv_nppods > 0) 119 t4_free_page_pods(&ps->prsv); 120 121 for (i = 0; i < ps->npages; i++) { 122 p = ps->pages[i]; 123 vm_page_unwire(p, PQ_INACTIVE); 124 } 125 mtx_lock(&ddp_orphan_pagesets_lock); 126 TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); 127 taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); 128 mtx_unlock(&ddp_orphan_pagesets_lock); 129 } 130 131 static void 132 ddp_free_orphan_pagesets(void *context, int pending) 133 { 134 struct pageset *ps; 135 136 mtx_lock(&ddp_orphan_pagesets_lock); 137 while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { 138 ps = TAILQ_FIRST(&ddp_orphan_pagesets); 139 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); 140 mtx_unlock(&ddp_orphan_pagesets_lock); 141 if (ps->vm) 142 vmspace_free(ps->vm); 143 free(ps, M_CXGBE); 144 mtx_lock(&ddp_orphan_pagesets_lock); 145 } 146 mtx_unlock(&ddp_orphan_pagesets_lock); 147 } 148 149 static void 150 recycle_pageset(struct toepcb *toep, struct pageset *ps) 151 { 152 153 DDP_ASSERT_LOCKED(toep); 154 if (!(toep->ddp.flags & DDP_DEAD)) { 155 KASSERT(toep->ddp.cached_count + toep->ddp.active_count < 156 nitems(toep->ddp.db), ("too many wired pagesets")); 157 TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link); 158 toep->ddp.cached_count++; 159 } else 160 free_pageset(toep->td, ps); 161 } 162 163 static void 164 ddp_complete_one(struct kaiocb *job, int error) 165 { 166 long copied; 167 168 /* 169 * If this job had copied data out of the socket buffer before 170 * it was cancelled, report it as a short read rather than an 171 * error. 172 */ 173 copied = job->aio_received; 174 if (copied != 0 || error == 0) 175 aio_complete(job, copied, 0); 176 else 177 aio_complete(job, -1, error); 178 } 179 180 static void 181 free_ddp_rcv_buffer(struct toepcb *toep, struct ddp_rcv_buffer *drb) 182 { 183 t4_free_page_pods(&drb->prsv); 184 contigfree(drb->buf, drb->len, M_CXGBE); 185 free(drb, M_CXGBE); 186 counter_u64_add(toep->ofld_rxq->ddp_buffer_free, 1); 187 free_toepcb(toep); 188 } 189 190 static void 191 recycle_ddp_rcv_buffer(struct toepcb *toep, struct ddp_rcv_buffer *drb) 192 { 193 DDP_CACHE_LOCK(toep); 194 if (!(toep->ddp.flags & DDP_DEAD) && 195 toep->ddp.cached_count < t4_ddp_rcvbuf_cache) { 196 TAILQ_INSERT_HEAD(&toep->ddp.cached_buffers, drb, link); 197 toep->ddp.cached_count++; 198 DDP_CACHE_UNLOCK(toep); 199 } else { 200 DDP_CACHE_UNLOCK(toep); 201 free_ddp_rcv_buffer(toep, drb); 202 } 203 } 204 205 static struct ddp_rcv_buffer * 206 alloc_cached_ddp_rcv_buffer(struct toepcb *toep) 207 { 208 struct ddp_rcv_buffer *drb; 209 210 DDP_CACHE_LOCK(toep); 211 if (!TAILQ_EMPTY(&toep->ddp.cached_buffers)) { 212 drb = TAILQ_FIRST(&toep->ddp.cached_buffers); 213 TAILQ_REMOVE(&toep->ddp.cached_buffers, drb, link); 214 toep->ddp.cached_count--; 215 counter_u64_add(toep->ofld_rxq->ddp_buffer_reuse, 1); 216 } else 217 drb = NULL; 218 DDP_CACHE_UNLOCK(toep); 219 return (drb); 220 } 221 222 static struct ddp_rcv_buffer * 223 alloc_ddp_rcv_buffer(struct toepcb *toep, int how) 224 { 225 struct tom_data *td = toep->td; 226 struct adapter *sc = td_adapter(td); 227 struct ddp_rcv_buffer *drb; 228 int error; 229 230 drb = malloc(sizeof(*drb), M_CXGBE, how | M_ZERO); 231 if (drb == NULL) 232 return (NULL); 233 234 drb->buf = contigmalloc(t4_ddp_rcvbuf_len, M_CXGBE, how, 0, ~0, 235 t4_ddp_rcvbuf_len, 0); 236 if (drb->buf == NULL) { 237 free(drb, M_CXGBE); 238 return (NULL); 239 } 240 drb->len = t4_ddp_rcvbuf_len; 241 drb->refs = 1; 242 243 error = t4_alloc_page_pods_for_rcvbuf(&td->pr, drb); 244 if (error != 0) { 245 contigfree(drb->buf, drb->len, M_CXGBE); 246 free(drb, M_CXGBE); 247 return (NULL); 248 } 249 250 error = t4_write_page_pods_for_rcvbuf(sc, toep->ctrlq, toep->tid, drb); 251 if (error != 0) { 252 t4_free_page_pods(&drb->prsv); 253 contigfree(drb->buf, drb->len, M_CXGBE); 254 free(drb, M_CXGBE); 255 return (NULL); 256 } 257 258 hold_toepcb(toep); 259 counter_u64_add(toep->ofld_rxq->ddp_buffer_alloc, 1); 260 return (drb); 261 } 262 263 static void 264 free_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db) 265 { 266 if ((toep->ddp.flags & DDP_RCVBUF) != 0) { 267 if (db->drb != NULL) 268 free_ddp_rcv_buffer(toep, db->drb); 269 #ifdef INVARIANTS 270 db->drb = NULL; 271 #endif 272 return; 273 } 274 275 if (db->job) { 276 /* 277 * XXX: If we are un-offloading the socket then we 278 * should requeue these on the socket somehow. If we 279 * got a FIN from the remote end, then this completes 280 * any remaining requests with an EOF read. 281 */ 282 if (!aio_clear_cancel_function(db->job)) 283 ddp_complete_one(db->job, 0); 284 #ifdef INVARIANTS 285 db->job = NULL; 286 #endif 287 } 288 289 if (db->ps) { 290 free_pageset(toep->td, db->ps); 291 #ifdef INVARIANTS 292 db->ps = NULL; 293 #endif 294 } 295 } 296 297 static void 298 ddp_init_toep(struct toepcb *toep) 299 { 300 301 toep->ddp.flags = DDP_OK; 302 toep->ddp.active_id = -1; 303 mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF); 304 mtx_init(&toep->ddp.cache_lock, "t4 ddp cache", NULL, MTX_DEF); 305 } 306 307 void 308 ddp_uninit_toep(struct toepcb *toep) 309 { 310 311 mtx_destroy(&toep->ddp.lock); 312 mtx_destroy(&toep->ddp.cache_lock); 313 } 314 315 void 316 release_ddp_resources(struct toepcb *toep) 317 { 318 struct ddp_rcv_buffer *drb; 319 struct pageset *ps; 320 int i; 321 322 DDP_LOCK(toep); 323 DDP_CACHE_LOCK(toep); 324 toep->ddp.flags |= DDP_DEAD; 325 DDP_CACHE_UNLOCK(toep); 326 for (i = 0; i < nitems(toep->ddp.db); i++) { 327 free_ddp_buffer(toep, &toep->ddp.db[i]); 328 } 329 if ((toep->ddp.flags & DDP_AIO) != 0) { 330 while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) { 331 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 332 free_pageset(toep->td, ps); 333 } 334 ddp_complete_all(toep, 0); 335 } 336 if ((toep->ddp.flags & DDP_RCVBUF) != 0) { 337 DDP_CACHE_LOCK(toep); 338 while ((drb = TAILQ_FIRST(&toep->ddp.cached_buffers)) != NULL) { 339 TAILQ_REMOVE(&toep->ddp.cached_buffers, drb, link); 340 free_ddp_rcv_buffer(toep, drb); 341 } 342 DDP_CACHE_UNLOCK(toep); 343 } 344 DDP_UNLOCK(toep); 345 } 346 347 #ifdef INVARIANTS 348 void 349 ddp_assert_empty(struct toepcb *toep) 350 { 351 int i; 352 353 MPASS((toep->ddp.flags & (DDP_TASK_ACTIVE | DDP_DEAD)) != DDP_TASK_ACTIVE); 354 for (i = 0; i < nitems(toep->ddp.db); i++) { 355 if ((toep->ddp.flags & DDP_AIO) != 0) { 356 MPASS(toep->ddp.db[i].job == NULL); 357 MPASS(toep->ddp.db[i].ps == NULL); 358 } else 359 MPASS(toep->ddp.db[i].drb == NULL); 360 } 361 if ((toep->ddp.flags & DDP_AIO) != 0) { 362 MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets)); 363 MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq)); 364 } 365 if ((toep->ddp.flags & DDP_RCVBUF) != 0) 366 MPASS(TAILQ_EMPTY(&toep->ddp.cached_buffers)); 367 } 368 #endif 369 370 static void 371 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, 372 unsigned int db_idx) 373 { 374 struct ddp_rcv_buffer *drb; 375 unsigned int db_flag; 376 377 toep->ddp.active_count--; 378 if (toep->ddp.active_id == db_idx) { 379 if (toep->ddp.active_count == 0) { 380 if ((toep->ddp.flags & DDP_AIO) != 0) 381 KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL, 382 ("%s: active_count mismatch", __func__)); 383 else 384 KASSERT(toep->ddp.db[db_idx ^ 1].drb == NULL, 385 ("%s: active_count mismatch", __func__)); 386 toep->ddp.active_id = -1; 387 } else 388 toep->ddp.active_id ^= 1; 389 #ifdef VERBOSE_TRACES 390 CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__, 391 toep->tid, toep->ddp.active_id); 392 #endif 393 } else { 394 KASSERT(toep->ddp.active_count != 0 && 395 toep->ddp.active_id != -1, 396 ("%s: active count mismatch", __func__)); 397 } 398 399 if ((toep->ddp.flags & DDP_AIO) != 0) { 400 db->cancel_pending = 0; 401 db->job = NULL; 402 recycle_pageset(toep, db->ps); 403 db->ps = NULL; 404 } else { 405 drb = db->drb; 406 if (atomic_fetchadd_int(&drb->refs, -1) == 1) 407 recycle_ddp_rcv_buffer(toep, drb); 408 db->drb = NULL; 409 db->placed = 0; 410 } 411 412 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 413 KASSERT(toep->ddp.flags & db_flag, 414 ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", 415 __func__, toep, toep->ddp.flags)); 416 toep->ddp.flags &= ~db_flag; 417 } 418 419 /* Called when m_free drops the last reference. */ 420 static void 421 ddp_rcv_mbuf_done(struct mbuf *m) 422 { 423 struct toepcb *toep = m->m_ext.ext_arg1; 424 struct ddp_rcv_buffer *drb = m->m_ext.ext_arg2; 425 426 recycle_ddp_rcv_buffer(toep, drb); 427 } 428 429 static void 430 queue_ddp_rcvbuf_mbuf(struct toepcb *toep, u_int db_idx, u_int len) 431 { 432 struct inpcb *inp = toep->inp; 433 struct sockbuf *sb; 434 struct ddp_buffer *db; 435 struct ddp_rcv_buffer *drb; 436 struct mbuf *m; 437 438 m = m_gethdr(M_NOWAIT, MT_DATA); 439 if (m == NULL) { 440 printf("%s: failed to allocate mbuf", __func__); 441 return; 442 } 443 m->m_pkthdr.rcvif = toep->vi->ifp; 444 445 db = &toep->ddp.db[db_idx]; 446 drb = db->drb; 447 m_extaddref(m, (char *)drb->buf + db->placed, len, &drb->refs, 448 ddp_rcv_mbuf_done, toep, drb); 449 m->m_pkthdr.len = len; 450 m->m_len = len; 451 452 sb = &inp->inp_socket->so_rcv; 453 SOCKBUF_LOCK_ASSERT(sb); 454 sbappendstream_locked(sb, m, 0); 455 456 db->placed += len; 457 toep->ofld_rxq->rx_toe_ddp_octets += len; 458 } 459 460 /* XXX: handle_ddp_data code duplication */ 461 void 462 insert_ddp_data(struct toepcb *toep, uint32_t n) 463 { 464 struct inpcb *inp = toep->inp; 465 struct tcpcb *tp = intotcpcb(inp); 466 struct ddp_buffer *db; 467 struct kaiocb *job; 468 size_t placed; 469 long copied; 470 unsigned int db_idx; 471 #ifdef INVARIANTS 472 unsigned int db_flag; 473 #endif 474 bool ddp_rcvbuf; 475 476 INP_WLOCK_ASSERT(inp); 477 DDP_ASSERT_LOCKED(toep); 478 479 ddp_rcvbuf = (toep->ddp.flags & DDP_RCVBUF) != 0; 480 tp->rcv_nxt += n; 481 #ifndef USE_DDP_RX_FLOW_CONTROL 482 KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); 483 tp->rcv_wnd -= n; 484 #endif 485 CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", 486 __func__, n); 487 while (toep->ddp.active_count > 0) { 488 MPASS(toep->ddp.active_id != -1); 489 db_idx = toep->ddp.active_id; 490 #ifdef INVARIANTS 491 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 492 #endif 493 MPASS((toep->ddp.flags & db_flag) != 0); 494 db = &toep->ddp.db[db_idx]; 495 if (ddp_rcvbuf) { 496 placed = n; 497 if (placed > db->drb->len - db->placed) 498 placed = db->drb->len - db->placed; 499 if (placed != 0) 500 queue_ddp_rcvbuf_mbuf(toep, db_idx, placed); 501 complete_ddp_buffer(toep, db, db_idx); 502 n -= placed; 503 continue; 504 } 505 job = db->job; 506 copied = job->aio_received; 507 placed = n; 508 if (placed > job->uaiocb.aio_nbytes - copied) 509 placed = job->uaiocb.aio_nbytes - copied; 510 if (placed > 0) { 511 job->msgrcv = 1; 512 toep->ofld_rxq->rx_aio_ddp_jobs++; 513 } 514 toep->ofld_rxq->rx_aio_ddp_octets += placed; 515 if (!aio_clear_cancel_function(job)) { 516 /* 517 * Update the copied length for when 518 * t4_aio_cancel_active() completes this 519 * request. 520 */ 521 job->aio_received += placed; 522 } else if (copied + placed != 0) { 523 CTR4(KTR_CXGBE, 524 "%s: completing %p (copied %ld, placed %lu)", 525 __func__, job, copied, placed); 526 /* XXX: This always completes if there is some data. */ 527 aio_complete(job, copied + placed, 0); 528 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { 529 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 530 toep->ddp.waiting_count++; 531 } else 532 aio_cancel(job); 533 n -= placed; 534 complete_ddp_buffer(toep, db, db_idx); 535 } 536 537 MPASS(n == 0); 538 } 539 540 /* SET_TCB_FIELD sent as a ULP command looks like this */ 541 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 542 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 543 544 /* RX_DATA_ACK sent as a ULP command looks like this */ 545 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ 546 sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) 547 548 static inline void * 549 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, 550 uint64_t word, uint64_t mask, uint64_t val) 551 { 552 struct ulptx_idata *ulpsc; 553 struct cpl_set_tcb_field_core *req; 554 555 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 556 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 557 558 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 559 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 560 ulpsc->len = htobe32(sizeof(*req)); 561 562 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 563 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); 564 req->reply_ctrl = htobe16(V_NO_REPLY(1) | 565 V_QUEUENO(toep->ofld_rxq->iq.abs_id)); 566 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 567 req->mask = htobe64(mask); 568 req->val = htobe64(val); 569 570 ulpsc = (struct ulptx_idata *)(req + 1); 571 if (LEN__SET_TCB_FIELD_ULP % 16) { 572 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 573 ulpsc->len = htobe32(0); 574 return (ulpsc + 1); 575 } 576 return (ulpsc); 577 } 578 579 static inline void * 580 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) 581 { 582 struct ulptx_idata *ulpsc; 583 struct cpl_rx_data_ack_core *req; 584 585 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 586 ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); 587 588 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 589 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 590 ulpsc->len = htobe32(sizeof(*req)); 591 592 req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); 593 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); 594 req->credit_dack = htobe32(F_RX_MODULATE_RX); 595 596 ulpsc = (struct ulptx_idata *)(req + 1); 597 if (LEN__RX_DATA_ACK_ULP % 16) { 598 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 599 ulpsc->len = htobe32(0); 600 return (ulpsc + 1); 601 } 602 return (ulpsc); 603 } 604 605 static struct wrqe * 606 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, 607 struct ppod_reservation *prsv, int offset, uint32_t len, 608 uint64_t ddp_flags, uint64_t ddp_flags_mask) 609 { 610 struct wrqe *wr; 611 struct work_request_hdr *wrh; 612 struct ulp_txpkt *ulpmc; 613 int wrlen; 614 615 KASSERT(db_idx == 0 || db_idx == 1, 616 ("%s: bad DDP buffer index %d", __func__, db_idx)); 617 618 /* 619 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an 620 * RX_DATA_ACK (with RX_MODULATE to speed up delivery). 621 * 622 * The work request header is 16B and always ends at a 16B boundary. 623 * The ULPTX master commands that follow must all end at 16B boundaries 624 * too so we round up the size to 16. 625 */ 626 wrlen = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + 627 roundup2(LEN__RX_DATA_ACK_ULP, 16); 628 629 wr = alloc_wrqe(wrlen, toep->ctrlq); 630 if (wr == NULL) 631 return (NULL); 632 wrh = wrtod(wr); 633 INIT_ULPTX_WRH(wrh, wrlen, 1, 0); /* atomic */ 634 ulpmc = (struct ulp_txpkt *)(wrh + 1); 635 636 /* Write the buffer's tag */ 637 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 638 W_TCB_RX_DDP_BUF0_TAG + db_idx, 639 V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), 640 V_TCB_RX_DDP_BUF0_TAG(prsv->prsv_tag)); 641 642 /* Update the current offset in the DDP buffer and its total length */ 643 if (db_idx == 0) 644 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 645 W_TCB_RX_DDP_BUF0_OFFSET, 646 V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | 647 V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), 648 V_TCB_RX_DDP_BUF0_OFFSET(offset) | 649 V_TCB_RX_DDP_BUF0_LEN(len)); 650 else 651 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 652 W_TCB_RX_DDP_BUF1_OFFSET, 653 V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | 654 V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), 655 V_TCB_RX_DDP_BUF1_OFFSET(offset) | 656 V_TCB_RX_DDP_BUF1_LEN((u64)len << 32)); 657 658 /* Update DDP flags */ 659 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, 660 ddp_flags_mask, ddp_flags); 661 662 /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ 663 ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); 664 665 return (wr); 666 } 667 668 static int 669 handle_ddp_data_aio(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, 670 int len) 671 { 672 uint32_t report = be32toh(ddp_report); 673 unsigned int db_idx; 674 struct inpcb *inp = toep->inp; 675 struct ddp_buffer *db; 676 struct tcpcb *tp; 677 struct socket *so; 678 struct sockbuf *sb; 679 struct kaiocb *job; 680 long copied; 681 682 db_idx = report & F_DDP_BUF_IDX ? 1 : 0; 683 684 if (__predict_false(!(report & F_DDP_INV))) 685 CXGBE_UNIMPLEMENTED("DDP buffer still valid"); 686 687 INP_WLOCK(inp); 688 so = inp_inpcbtosocket(inp); 689 sb = &so->so_rcv; 690 DDP_LOCK(toep); 691 692 KASSERT(toep->ddp.active_id == db_idx, 693 ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, 694 toep->ddp.active_id, toep->tid)); 695 db = &toep->ddp.db[db_idx]; 696 job = db->job; 697 698 if (__predict_false(inp->inp_flags & INP_DROPPED)) { 699 /* 700 * This can happen due to an administrative tcpdrop(8). 701 * Just fail the request with ECONNRESET. 702 */ 703 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 704 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 705 if (aio_clear_cancel_function(job)) 706 ddp_complete_one(job, ECONNRESET); 707 goto completed; 708 } 709 710 tp = intotcpcb(inp); 711 712 /* 713 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 714 * sequence number of the next byte to receive. The length of 715 * the data received for this message must be computed by 716 * comparing the new and old values of rcv_nxt. 717 * 718 * For RX_DATA_DDP, len might be non-zero, but it is only the 719 * length of the most recent DMA. It does not include the 720 * total length of the data received since the previous update 721 * for this DDP buffer. rcv_nxt is the sequence number of the 722 * first received byte from the most recent DMA. 723 */ 724 len += be32toh(rcv_nxt) - tp->rcv_nxt; 725 tp->rcv_nxt += len; 726 tp->t_rcvtime = ticks; 727 #ifndef USE_DDP_RX_FLOW_CONTROL 728 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 729 tp->rcv_wnd -= len; 730 #endif 731 #ifdef VERBOSE_TRACES 732 CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__, 733 toep->tid, db_idx, len, report); 734 #endif 735 736 /* receive buffer autosize */ 737 MPASS(toep->vnet == so->so_vnet); 738 CURVNET_SET(toep->vnet); 739 SOCKBUF_LOCK(sb); 740 if (sb->sb_flags & SB_AUTOSIZE && 741 V_tcp_do_autorcvbuf && 742 sb->sb_hiwat < V_tcp_autorcvbuf_max && 743 len > (sbspace(sb) / 8 * 7)) { 744 struct adapter *sc = td_adapter(toep->td); 745 unsigned int hiwat = sb->sb_hiwat; 746 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 747 V_tcp_autorcvbuf_max); 748 749 if (!sbreserve_locked(so, SO_RCV, newsize, NULL)) 750 sb->sb_flags &= ~SB_AUTOSIZE; 751 } 752 SOCKBUF_UNLOCK(sb); 753 CURVNET_RESTORE(); 754 755 job->msgrcv = 1; 756 toep->ofld_rxq->rx_aio_ddp_jobs++; 757 toep->ofld_rxq->rx_aio_ddp_octets += len; 758 if (db->cancel_pending) { 759 /* 760 * Update the job's length but defer completion to the 761 * TCB_RPL callback. 762 */ 763 job->aio_received += len; 764 goto out; 765 } else if (!aio_clear_cancel_function(job)) { 766 /* 767 * Update the copied length for when 768 * t4_aio_cancel_active() completes this request. 769 */ 770 job->aio_received += len; 771 } else { 772 copied = job->aio_received; 773 #ifdef VERBOSE_TRACES 774 CTR5(KTR_CXGBE, 775 "%s: tid %u, completing %p (copied %ld, placed %d)", 776 __func__, toep->tid, job, copied, len); 777 #endif 778 aio_complete(job, copied + len, 0); 779 t4_rcvd(&toep->td->tod, tp); 780 } 781 782 completed: 783 complete_ddp_buffer(toep, db, db_idx); 784 if (toep->ddp.waiting_count > 0) 785 ddp_queue_toep(toep); 786 out: 787 DDP_UNLOCK(toep); 788 INP_WUNLOCK(inp); 789 790 return (0); 791 } 792 793 static bool 794 queue_ddp_rcvbuf(struct toepcb *toep, struct ddp_rcv_buffer *drb) 795 { 796 struct adapter *sc = td_adapter(toep->td); 797 struct ddp_buffer *db; 798 struct wrqe *wr; 799 uint64_t ddp_flags, ddp_flags_mask; 800 int buf_flag, db_idx; 801 802 DDP_ASSERT_LOCKED(toep); 803 804 KASSERT((toep->ddp.flags & DDP_DEAD) == 0, ("%s: DDP_DEAD", __func__)); 805 KASSERT(toep->ddp.active_count < nitems(toep->ddp.db), 806 ("%s: no empty DDP buffer slot", __func__)); 807 808 /* Determine which DDP buffer to use. */ 809 if (toep->ddp.db[0].drb == NULL) { 810 db_idx = 0; 811 } else { 812 MPASS(toep->ddp.db[1].drb == NULL); 813 db_idx = 1; 814 } 815 816 /* 817 * Permit PSH to trigger a partial completion without 818 * invalidating the rest of the buffer, but disable the PUSH 819 * timer. 820 */ 821 ddp_flags = 0; 822 ddp_flags_mask = 0; 823 if (db_idx == 0) { 824 ddp_flags |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 825 V_TF_DDP_PUSH_DISABLE_0(0) | V_TF_DDP_PSHF_ENABLE_0(1) | 826 V_TF_DDP_BUF0_VALID(1); 827 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 828 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | 829 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); 830 buf_flag = DDP_BUF0_ACTIVE; 831 } else { 832 ddp_flags |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 833 V_TF_DDP_PUSH_DISABLE_1(0) | V_TF_DDP_PSHF_ENABLE_1(1) | 834 V_TF_DDP_BUF1_VALID(1); 835 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 836 V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | 837 V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); 838 buf_flag = DDP_BUF1_ACTIVE; 839 } 840 MPASS((toep->ddp.flags & buf_flag) == 0); 841 if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { 842 MPASS(db_idx == 0); 843 MPASS(toep->ddp.active_id == -1); 844 MPASS(toep->ddp.active_count == 0); 845 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); 846 } 847 848 /* 849 * The TID for this connection should still be valid. If 850 * DDP_DEAD is set, SBS_CANTRCVMORE should be set, so we 851 * shouldn't be this far anyway. 852 */ 853 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, &drb->prsv, 0, drb->len, 854 ddp_flags, ddp_flags_mask); 855 if (wr == NULL) { 856 recycle_ddp_rcv_buffer(toep, drb); 857 printf("%s: mk_update_tcb_for_ddp failed\n", __func__); 858 return (false); 859 } 860 861 #ifdef VERBOSE_TRACES 862 CTR(KTR_CXGBE, 863 "%s: tid %u, scheduling DDP[%d] (flags %#lx/%#lx)", __func__, 864 toep->tid, db_idx, ddp_flags, ddp_flags_mask); 865 #endif 866 /* 867 * Hold a reference on scheduled buffers that is dropped in 868 * complete_ddp_buffer. 869 */ 870 drb->refs = 1; 871 872 /* Give the chip the go-ahead. */ 873 t4_wrq_tx(sc, wr); 874 db = &toep->ddp.db[db_idx]; 875 db->drb = drb; 876 toep->ddp.flags |= buf_flag; 877 toep->ddp.active_count++; 878 if (toep->ddp.active_count == 1) { 879 MPASS(toep->ddp.active_id == -1); 880 toep->ddp.active_id = db_idx; 881 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 882 toep->ddp.active_id); 883 } 884 return (true); 885 } 886 887 static int 888 handle_ddp_data_rcvbuf(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, 889 int len) 890 { 891 uint32_t report = be32toh(ddp_report); 892 struct inpcb *inp = toep->inp; 893 struct tcpcb *tp; 894 struct socket *so; 895 struct sockbuf *sb; 896 struct ddp_buffer *db; 897 struct ddp_rcv_buffer *drb; 898 unsigned int db_idx; 899 bool invalidated; 900 901 db_idx = report & F_DDP_BUF_IDX ? 1 : 0; 902 903 invalidated = (report & F_DDP_INV) != 0; 904 905 INP_WLOCK(inp); 906 so = inp_inpcbtosocket(inp); 907 sb = &so->so_rcv; 908 DDP_LOCK(toep); 909 910 KASSERT(toep->ddp.active_id == db_idx, 911 ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, 912 toep->ddp.active_id, toep->tid)); 913 db = &toep->ddp.db[db_idx]; 914 915 if (__predict_false(inp->inp_flags & INP_DROPPED)) { 916 /* 917 * This can happen due to an administrative tcpdrop(8). 918 * Just ignore the received data. 919 */ 920 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 921 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 922 if (invalidated) 923 complete_ddp_buffer(toep, db, db_idx); 924 goto out; 925 } 926 927 tp = intotcpcb(inp); 928 929 /* 930 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 931 * sequence number of the next byte to receive. The length of 932 * the data received for this message must be computed by 933 * comparing the new and old values of rcv_nxt. 934 * 935 * For RX_DATA_DDP, len might be non-zero, but it is only the 936 * length of the most recent DMA. It does not include the 937 * total length of the data received since the previous update 938 * for this DDP buffer. rcv_nxt is the sequence number of the 939 * first received byte from the most recent DMA. 940 */ 941 len += be32toh(rcv_nxt) - tp->rcv_nxt; 942 tp->rcv_nxt += len; 943 tp->t_rcvtime = ticks; 944 #ifndef USE_DDP_RX_FLOW_CONTROL 945 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 946 tp->rcv_wnd -= len; 947 #endif 948 #ifdef VERBOSE_TRACES 949 CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__, 950 toep->tid, db_idx, len, report); 951 #endif 952 953 /* receive buffer autosize */ 954 MPASS(toep->vnet == so->so_vnet); 955 CURVNET_SET(toep->vnet); 956 SOCKBUF_LOCK(sb); 957 if (sb->sb_flags & SB_AUTOSIZE && 958 V_tcp_do_autorcvbuf && 959 sb->sb_hiwat < V_tcp_autorcvbuf_max && 960 len > (sbspace(sb) / 8 * 7)) { 961 struct adapter *sc = td_adapter(toep->td); 962 unsigned int hiwat = sb->sb_hiwat; 963 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 964 V_tcp_autorcvbuf_max); 965 966 if (!sbreserve_locked(so, SO_RCV, newsize, NULL)) 967 sb->sb_flags &= ~SB_AUTOSIZE; 968 } 969 970 if (len > 0) { 971 queue_ddp_rcvbuf_mbuf(toep, db_idx, len); 972 t4_rcvd_locked(&toep->td->tod, tp); 973 } 974 sorwakeup_locked(so); 975 SOCKBUF_UNLOCK_ASSERT(sb); 976 CURVNET_RESTORE(); 977 978 if (invalidated) 979 complete_ddp_buffer(toep, db, db_idx); 980 else 981 KASSERT(db->placed < db->drb->len, 982 ("%s: full DDP buffer not invalidated", __func__)); 983 984 if (toep->ddp.active_count != nitems(toep->ddp.db)) { 985 drb = alloc_cached_ddp_rcv_buffer(toep); 986 if (drb == NULL) 987 drb = alloc_ddp_rcv_buffer(toep, M_NOWAIT); 988 if (drb == NULL) 989 ddp_queue_toep(toep); 990 else { 991 if (!queue_ddp_rcvbuf(toep, drb)) { 992 ddp_queue_toep(toep); 993 } 994 } 995 } 996 out: 997 DDP_UNLOCK(toep); 998 INP_WUNLOCK(inp); 999 1000 return (0); 1001 } 1002 1003 static int 1004 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) 1005 { 1006 if ((toep->ddp.flags & DDP_RCVBUF) != 0) 1007 return (handle_ddp_data_rcvbuf(toep, ddp_report, rcv_nxt, len)); 1008 else 1009 return (handle_ddp_data_aio(toep, ddp_report, rcv_nxt, len)); 1010 } 1011 1012 void 1013 handle_ddp_indicate(struct toepcb *toep) 1014 { 1015 1016 DDP_ASSERT_LOCKED(toep); 1017 if ((toep->ddp.flags & DDP_RCVBUF) != 0) { 1018 /* 1019 * Indicates are not meaningful for RCVBUF since 1020 * buffers are activated when the socket option is 1021 * set. 1022 */ 1023 return; 1024 } 1025 1026 MPASS(toep->ddp.active_count == 0); 1027 MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); 1028 if (toep->ddp.waiting_count == 0) { 1029 /* 1030 * The pending requests that triggered the request for an 1031 * an indicate were cancelled. Those cancels should have 1032 * already disabled DDP. Just ignore this as the data is 1033 * going into the socket buffer anyway. 1034 */ 1035 return; 1036 } 1037 CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, 1038 toep->tid, toep->ddp.waiting_count); 1039 ddp_queue_toep(toep); 1040 } 1041 1042 CTASSERT(CPL_COOKIE_DDP0 + 1 == CPL_COOKIE_DDP1); 1043 1044 static int 1045 do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 1046 { 1047 struct adapter *sc = iq->adapter; 1048 const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); 1049 unsigned int tid = GET_TID(cpl); 1050 unsigned int db_idx; 1051 struct toepcb *toep; 1052 struct inpcb *inp; 1053 struct ddp_buffer *db; 1054 struct kaiocb *job; 1055 long copied; 1056 1057 if (cpl->status != CPL_ERR_NONE) 1058 panic("XXX: tcp_rpl failed: %d", cpl->status); 1059 1060 toep = lookup_tid(sc, tid); 1061 inp = toep->inp; 1062 switch (cpl->cookie) { 1063 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP0): 1064 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP1): 1065 /* 1066 * XXX: This duplicates a lot of code with handle_ddp_data(). 1067 */ 1068 KASSERT((toep->ddp.flags & DDP_AIO) != 0, 1069 ("%s: DDP_RCVBUF", __func__)); 1070 db_idx = G_COOKIE(cpl->cookie) - CPL_COOKIE_DDP0; 1071 MPASS(db_idx < nitems(toep->ddp.db)); 1072 INP_WLOCK(inp); 1073 DDP_LOCK(toep); 1074 db = &toep->ddp.db[db_idx]; 1075 1076 /* 1077 * handle_ddp_data() should leave the job around until 1078 * this callback runs once a cancel is pending. 1079 */ 1080 MPASS(db != NULL); 1081 MPASS(db->job != NULL); 1082 MPASS(db->cancel_pending); 1083 1084 /* 1085 * XXX: It's not clear what happens if there is data 1086 * placed when the buffer is invalidated. I suspect we 1087 * need to read the TCB to see how much data was placed. 1088 * 1089 * For now this just pretends like nothing was placed. 1090 * 1091 * XXX: Note that if we did check the PCB we would need to 1092 * also take care of updating the tp, etc. 1093 */ 1094 job = db->job; 1095 copied = job->aio_received; 1096 if (copied == 0) { 1097 CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); 1098 aio_cancel(job); 1099 } else { 1100 CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", 1101 __func__, job, copied); 1102 aio_complete(job, copied, 0); 1103 t4_rcvd(&toep->td->tod, intotcpcb(inp)); 1104 } 1105 1106 complete_ddp_buffer(toep, db, db_idx); 1107 if (toep->ddp.waiting_count > 0) 1108 ddp_queue_toep(toep); 1109 DDP_UNLOCK(toep); 1110 INP_WUNLOCK(inp); 1111 break; 1112 default: 1113 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", 1114 G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); 1115 } 1116 1117 return (0); 1118 } 1119 1120 void 1121 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) 1122 { 1123 struct socket *so = toep->inp->inp_socket; 1124 struct sockbuf *sb = &so->so_rcv; 1125 struct ddp_buffer *db; 1126 struct kaiocb *job; 1127 long copied; 1128 unsigned int db_idx; 1129 #ifdef INVARIANTS 1130 unsigned int db_flag; 1131 #endif 1132 int len, placed; 1133 bool ddp_rcvbuf; 1134 1135 INP_WLOCK_ASSERT(toep->inp); 1136 DDP_ASSERT_LOCKED(toep); 1137 1138 ddp_rcvbuf = (toep->ddp.flags & DDP_RCVBUF) != 0; 1139 1140 /* - 1 is to ignore the byte for FIN */ 1141 len = be32toh(rcv_nxt) - tp->rcv_nxt - 1; 1142 tp->rcv_nxt += len; 1143 1144 CTR(KTR_CXGBE, "%s: tid %d placed %u bytes before FIN", __func__, 1145 toep->tid, len); 1146 while (toep->ddp.active_count > 0) { 1147 MPASS(toep->ddp.active_id != -1); 1148 db_idx = toep->ddp.active_id; 1149 #ifdef INVARIANTS 1150 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 1151 #endif 1152 MPASS((toep->ddp.flags & db_flag) != 0); 1153 db = &toep->ddp.db[db_idx]; 1154 if (ddp_rcvbuf) { 1155 placed = len; 1156 if (placed > db->drb->len - db->placed) 1157 placed = db->drb->len - db->placed; 1158 if (placed != 0) { 1159 SOCKBUF_LOCK(sb); 1160 queue_ddp_rcvbuf_mbuf(toep, db_idx, placed); 1161 sorwakeup_locked(so); 1162 SOCKBUF_UNLOCK_ASSERT(sb); 1163 } 1164 complete_ddp_buffer(toep, db, db_idx); 1165 len -= placed; 1166 continue; 1167 } 1168 job = db->job; 1169 copied = job->aio_received; 1170 placed = len; 1171 if (placed > job->uaiocb.aio_nbytes - copied) 1172 placed = job->uaiocb.aio_nbytes - copied; 1173 if (placed > 0) { 1174 job->msgrcv = 1; 1175 toep->ofld_rxq->rx_aio_ddp_jobs++; 1176 } 1177 toep->ofld_rxq->rx_aio_ddp_octets += placed; 1178 if (!aio_clear_cancel_function(job)) { 1179 /* 1180 * Update the copied length for when 1181 * t4_aio_cancel_active() completes this 1182 * request. 1183 */ 1184 job->aio_received += placed; 1185 } else { 1186 CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", 1187 __func__, toep->tid, db_idx, placed); 1188 aio_complete(job, copied + placed, 0); 1189 } 1190 len -= placed; 1191 complete_ddp_buffer(toep, db, db_idx); 1192 } 1193 1194 MPASS(len == 0); 1195 if ((toep->ddp.flags & DDP_AIO) != 0) 1196 ddp_complete_all(toep, 0); 1197 } 1198 1199 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ 1200 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ 1201 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ 1202 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) 1203 1204 extern cpl_handler_t t4_cpl_handler[]; 1205 1206 static int 1207 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 1208 { 1209 struct adapter *sc = iq->adapter; 1210 const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); 1211 unsigned int tid = GET_TID(cpl); 1212 uint32_t vld; 1213 struct toepcb *toep = lookup_tid(sc, tid); 1214 1215 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 1216 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 1217 KASSERT(!(toep->flags & TPF_SYNQE), 1218 ("%s: toep %p claims to be a synq entry", __func__, toep)); 1219 1220 vld = be32toh(cpl->ddpvld); 1221 if (__predict_false(vld & DDP_ERR)) { 1222 panic("%s: DDP error 0x%x (tid %d, toep %p)", 1223 __func__, vld, tid, toep); 1224 } 1225 1226 if (ulp_mode(toep) == ULP_MODE_ISCSI) { 1227 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); 1228 return (0); 1229 } 1230 1231 handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); 1232 1233 return (0); 1234 } 1235 1236 static int 1237 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, 1238 struct mbuf *m) 1239 { 1240 struct adapter *sc = iq->adapter; 1241 const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); 1242 unsigned int tid = GET_TID(cpl); 1243 struct toepcb *toep = lookup_tid(sc, tid); 1244 1245 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 1246 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 1247 KASSERT(!(toep->flags & TPF_SYNQE), 1248 ("%s: toep %p claims to be a synq entry", __func__, toep)); 1249 1250 handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); 1251 1252 return (0); 1253 } 1254 1255 static bool 1256 set_ddp_ulp_mode(struct toepcb *toep) 1257 { 1258 struct adapter *sc = toep->vi->adapter; 1259 struct wrqe *wr; 1260 struct work_request_hdr *wrh; 1261 struct ulp_txpkt *ulpmc; 1262 int fields, len; 1263 1264 if (!sc->tt.ddp) 1265 return (false); 1266 1267 fields = 0; 1268 1269 /* Overlay region including W_TCB_RX_DDP_FLAGS */ 1270 fields += 3; 1271 1272 /* W_TCB_ULP_TYPE */ 1273 fields++; 1274 1275 #ifdef USE_DDP_RX_FLOW_CONTROL 1276 /* W_TCB_T_FLAGS */ 1277 fields++; 1278 #endif 1279 1280 len = sizeof(*wrh) + fields * roundup2(LEN__SET_TCB_FIELD_ULP, 16); 1281 KASSERT(len <= SGE_MAX_WR_LEN, 1282 ("%s: WR with %d TCB field updates too large", __func__, fields)); 1283 1284 wr = alloc_wrqe(len, toep->ctrlq); 1285 if (wr == NULL) 1286 return (false); 1287 1288 CTR(KTR_CXGBE, "%s: tid %u", __func__, toep->tid); 1289 1290 wrh = wrtod(wr); 1291 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 1292 ulpmc = (struct ulp_txpkt *)(wrh + 1); 1293 1294 /* 1295 * Words 26/27 are zero except for the DDP_OFF flag in 1296 * W_TCB_RX_DDP_FLAGS (27). 1297 */ 1298 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 26, 1299 0xffffffffffffffff, (uint64_t)V_TF_DDP_OFF(1) << 32); 1300 1301 /* Words 28/29 are zero. */ 1302 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 28, 1303 0xffffffffffffffff, 0); 1304 1305 /* Words 30/31 are zero. */ 1306 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 30, 1307 0xffffffffffffffff, 0); 1308 1309 /* Set the ULP mode to ULP_MODE_TCPDDP. */ 1310 toep->params.ulp_mode = ULP_MODE_TCPDDP; 1311 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_ULP_TYPE, 1312 V_TCB_ULP_TYPE(M_TCB_ULP_TYPE), 1313 V_TCB_ULP_TYPE(ULP_MODE_TCPDDP)); 1314 1315 #ifdef USE_DDP_RX_FLOW_CONTROL 1316 /* Set TF_RX_FLOW_CONTROL_DDP. */ 1317 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_T_FLAGS, 1318 V_TF_RX_FLOW_CONTROL_DDP(1), V_TF_RX_FLOW_CONTROL_DDP(1)); 1319 #endif 1320 1321 ddp_init_toep(toep); 1322 1323 t4_wrq_tx(sc, wr); 1324 return (true); 1325 } 1326 1327 static void 1328 enable_ddp(struct adapter *sc, struct toepcb *toep) 1329 { 1330 uint64_t ddp_flags; 1331 1332 KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, 1333 ("%s: toep %p has bad ddp_flags 0x%x", 1334 __func__, toep, toep->ddp.flags)); 1335 1336 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 1337 __func__, toep->tid, time_uptime); 1338 1339 ddp_flags = 0; 1340 if ((toep->ddp.flags & DDP_AIO) != 0) 1341 ddp_flags |= V_TF_DDP_BUF0_INDICATE(1) | 1342 V_TF_DDP_BUF1_INDICATE(1); 1343 DDP_ASSERT_LOCKED(toep); 1344 toep->ddp.flags |= DDP_SC_REQ; 1345 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, 1346 V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | 1347 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | 1348 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), ddp_flags, 0, 0); 1349 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 1350 V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0); 1351 } 1352 1353 static int 1354 calculate_hcf(int n1, int n2) 1355 { 1356 int a, b, t; 1357 1358 if (n1 <= n2) { 1359 a = n1; 1360 b = n2; 1361 } else { 1362 a = n2; 1363 b = n1; 1364 } 1365 1366 while (a != 0) { 1367 t = a; 1368 a = b % a; 1369 b = t; 1370 } 1371 1372 return (b); 1373 } 1374 1375 static inline int 1376 pages_to_nppods(int npages, int ddp_page_shift) 1377 { 1378 1379 MPASS(ddp_page_shift >= PAGE_SHIFT); 1380 1381 return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); 1382 } 1383 1384 static int 1385 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, 1386 struct ppod_reservation *prsv) 1387 { 1388 vmem_addr_t addr; /* relative to start of region */ 1389 1390 if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, 1391 &addr) != 0) 1392 return (ENOMEM); 1393 1394 #ifdef VERBOSE_TRACES 1395 CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", 1396 __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, 1397 nppods, 1 << pr->pr_page_shift[pgsz_idx]); 1398 #endif 1399 1400 /* 1401 * The hardware tagmask includes an extra invalid bit but the arena was 1402 * seeded with valid values only. An allocation out of this arena will 1403 * fit inside the tagmask but won't have the invalid bit set. 1404 */ 1405 MPASS((addr & pr->pr_tag_mask) == addr); 1406 MPASS((addr & pr->pr_invalid_bit) == 0); 1407 1408 prsv->prsv_pr = pr; 1409 prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; 1410 prsv->prsv_nppods = nppods; 1411 1412 return (0); 1413 } 1414 1415 static int 1416 t4_alloc_page_pods_for_vmpages(struct ppod_region *pr, vm_page_t *pages, 1417 int npages, struct ppod_reservation *prsv) 1418 { 1419 int i, hcf, seglen, idx, nppods; 1420 1421 /* 1422 * The DDP page size is unrelated to the VM page size. We combine 1423 * contiguous physical pages into larger segments to get the best DDP 1424 * page size possible. This is the largest of the four sizes in 1425 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in 1426 * the page list. 1427 */ 1428 hcf = 0; 1429 for (i = 0; i < npages; i++) { 1430 seglen = PAGE_SIZE; 1431 while (i < npages - 1 && 1432 VM_PAGE_TO_PHYS(pages[i]) + PAGE_SIZE == 1433 VM_PAGE_TO_PHYS(pages[i + 1])) { 1434 seglen += PAGE_SIZE; 1435 i++; 1436 } 1437 1438 hcf = calculate_hcf(hcf, seglen); 1439 if (hcf < (1 << pr->pr_page_shift[1])) { 1440 idx = 0; 1441 goto have_pgsz; /* give up, short circuit */ 1442 } 1443 } 1444 1445 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 1446 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1447 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1448 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1449 break; 1450 } 1451 #undef PR_PAGE_MASK 1452 1453 have_pgsz: 1454 MPASS(idx <= M_PPOD_PGSZ); 1455 1456 nppods = pages_to_nppods(npages, pr->pr_page_shift[idx]); 1457 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1458 return (ENOMEM); 1459 MPASS(prsv->prsv_nppods > 0); 1460 1461 return (0); 1462 } 1463 1464 int 1465 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) 1466 { 1467 struct ppod_reservation *prsv = &ps->prsv; 1468 1469 KASSERT(prsv->prsv_nppods == 0, 1470 ("%s: page pods already allocated", __func__)); 1471 1472 return (t4_alloc_page_pods_for_vmpages(pr, ps->pages, ps->npages, 1473 prsv)); 1474 } 1475 1476 int 1477 t4_alloc_page_pods_for_bio(struct ppod_region *pr, struct bio *bp, 1478 struct ppod_reservation *prsv) 1479 { 1480 1481 MPASS(bp->bio_flags & BIO_UNMAPPED); 1482 1483 return (t4_alloc_page_pods_for_vmpages(pr, bp->bio_ma, bp->bio_ma_n, 1484 prsv)); 1485 } 1486 1487 int 1488 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, 1489 struct ppod_reservation *prsv) 1490 { 1491 int hcf, seglen, idx, npages, nppods; 1492 uintptr_t start_pva, end_pva, pva, p1; 1493 1494 MPASS(buf > 0); 1495 MPASS(len > 0); 1496 1497 /* 1498 * The DDP page size is unrelated to the VM page size. We combine 1499 * contiguous physical pages into larger segments to get the best DDP 1500 * page size possible. This is the largest of the four sizes in 1501 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 1502 * in the page list. 1503 */ 1504 hcf = 0; 1505 start_pva = trunc_page(buf); 1506 end_pva = trunc_page(buf + len - 1); 1507 pva = start_pva; 1508 while (pva <= end_pva) { 1509 seglen = PAGE_SIZE; 1510 p1 = pmap_kextract(pva); 1511 pva += PAGE_SIZE; 1512 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { 1513 seglen += PAGE_SIZE; 1514 pva += PAGE_SIZE; 1515 } 1516 1517 hcf = calculate_hcf(hcf, seglen); 1518 if (hcf < (1 << pr->pr_page_shift[1])) { 1519 idx = 0; 1520 goto have_pgsz; /* give up, short circuit */ 1521 } 1522 } 1523 1524 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 1525 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1526 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1527 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1528 break; 1529 } 1530 #undef PR_PAGE_MASK 1531 1532 have_pgsz: 1533 MPASS(idx <= M_PPOD_PGSZ); 1534 1535 npages = 1; 1536 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 1537 nppods = howmany(npages, PPOD_PAGES); 1538 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1539 return (ENOMEM); 1540 MPASS(prsv->prsv_nppods > 0); 1541 1542 return (0); 1543 } 1544 1545 static int 1546 t4_alloc_page_pods_for_rcvbuf(struct ppod_region *pr, 1547 struct ddp_rcv_buffer *drb) 1548 { 1549 struct ppod_reservation *prsv = &drb->prsv; 1550 1551 KASSERT(prsv->prsv_nppods == 0, 1552 ("%s: page pods already allocated", __func__)); 1553 1554 return (t4_alloc_page_pods_for_buf(pr, (vm_offset_t)drb->buf, drb->len, 1555 prsv)); 1556 } 1557 1558 int 1559 t4_alloc_page_pods_for_sgl(struct ppod_region *pr, struct ctl_sg_entry *sgl, 1560 int entries, struct ppod_reservation *prsv) 1561 { 1562 int hcf, seglen, idx = 0, npages, nppods, i, len; 1563 uintptr_t start_pva, end_pva, pva, p1 ; 1564 vm_offset_t buf; 1565 struct ctl_sg_entry *sge; 1566 1567 MPASS(entries > 0); 1568 MPASS(sgl); 1569 1570 /* 1571 * The DDP page size is unrelated to the VM page size. We combine 1572 * contiguous physical pages into larger segments to get the best DDP 1573 * page size possible. This is the largest of the four sizes in 1574 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 1575 * in the page list. 1576 */ 1577 hcf = 0; 1578 for (i = entries - 1; i >= 0; i--) { 1579 sge = sgl + i; 1580 buf = (vm_offset_t)sge->addr; 1581 len = sge->len; 1582 start_pva = trunc_page(buf); 1583 end_pva = trunc_page(buf + len - 1); 1584 pva = start_pva; 1585 while (pva <= end_pva) { 1586 seglen = PAGE_SIZE; 1587 p1 = pmap_kextract(pva); 1588 pva += PAGE_SIZE; 1589 while (pva <= end_pva && p1 + seglen == 1590 pmap_kextract(pva)) { 1591 seglen += PAGE_SIZE; 1592 pva += PAGE_SIZE; 1593 } 1594 1595 hcf = calculate_hcf(hcf, seglen); 1596 if (hcf < (1 << pr->pr_page_shift[1])) { 1597 idx = 0; 1598 goto have_pgsz; /* give up, short circuit */ 1599 } 1600 } 1601 } 1602 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 1603 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1604 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1605 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1606 break; 1607 } 1608 #undef PR_PAGE_MASK 1609 1610 have_pgsz: 1611 MPASS(idx <= M_PPOD_PGSZ); 1612 1613 npages = 0; 1614 while (entries--) { 1615 npages++; 1616 start_pva = trunc_page((vm_offset_t)sgl->addr); 1617 end_pva = trunc_page((vm_offset_t)sgl->addr + sgl->len - 1); 1618 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 1619 sgl = sgl + 1; 1620 } 1621 nppods = howmany(npages, PPOD_PAGES); 1622 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1623 return (ENOMEM); 1624 MPASS(prsv->prsv_nppods > 0); 1625 return (0); 1626 } 1627 1628 void 1629 t4_free_page_pods(struct ppod_reservation *prsv) 1630 { 1631 struct ppod_region *pr = prsv->prsv_pr; 1632 vmem_addr_t addr; 1633 1634 MPASS(prsv != NULL); 1635 MPASS(prsv->prsv_nppods != 0); 1636 1637 addr = prsv->prsv_tag & pr->pr_tag_mask; 1638 MPASS((addr & pr->pr_invalid_bit) == 0); 1639 1640 #ifdef VERBOSE_TRACES 1641 CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, 1642 pr->pr_arena, addr, prsv->prsv_nppods); 1643 #endif 1644 1645 vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); 1646 prsv->prsv_nppods = 0; 1647 } 1648 1649 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) 1650 1651 int 1652 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, 1653 struct pageset *ps) 1654 { 1655 struct wrqe *wr; 1656 struct ulp_mem_io *ulpmc; 1657 struct ulptx_idata *ulpsc; 1658 struct pagepod *ppod; 1659 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1660 u_int ppod_addr; 1661 uint32_t cmd; 1662 struct ppod_reservation *prsv = &ps->prsv; 1663 struct ppod_region *pr = prsv->prsv_pr; 1664 vm_paddr_t pa; 1665 1666 KASSERT(!(ps->flags & PS_PPODS_WRITTEN), 1667 ("%s: page pods already written", __func__)); 1668 MPASS(prsv->prsv_nppods > 0); 1669 1670 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1671 if (is_t4(sc)) 1672 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1673 else 1674 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1675 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1676 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1677 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1678 /* How many page pods are we writing in this cycle */ 1679 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1680 chunk = PPOD_SZ(n); 1681 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1682 1683 wr = alloc_wrqe(len, wrq); 1684 if (wr == NULL) 1685 return (ENOMEM); /* ok to just bail out */ 1686 ulpmc = wrtod(wr); 1687 1688 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1689 ulpmc->cmd = cmd; 1690 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1691 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1692 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1693 1694 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1695 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1696 ulpsc->len = htobe32(chunk); 1697 1698 ppod = (struct pagepod *)(ulpsc + 1); 1699 for (j = 0; j < n; i++, j++, ppod++) { 1700 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1701 V_PPOD_TID(tid) | prsv->prsv_tag); 1702 ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | 1703 V_PPOD_OFST(ps->offset)); 1704 ppod->rsvd = 0; 1705 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1706 for (k = 0; k < nitems(ppod->addr); k++) { 1707 if (idx < ps->npages) { 1708 pa = VM_PAGE_TO_PHYS(ps->pages[idx]); 1709 ppod->addr[k] = htobe64(pa); 1710 idx += ddp_pgsz / PAGE_SIZE; 1711 } else 1712 ppod->addr[k] = 0; 1713 #if 0 1714 CTR5(KTR_CXGBE, 1715 "%s: tid %d ppod[%d]->addr[%d] = %p", 1716 __func__, tid, i, k, 1717 be64toh(ppod->addr[k])); 1718 #endif 1719 } 1720 1721 } 1722 1723 t4_wrq_tx(sc, wr); 1724 } 1725 ps->flags |= PS_PPODS_WRITTEN; 1726 1727 return (0); 1728 } 1729 1730 static int 1731 t4_write_page_pods_for_rcvbuf(struct adapter *sc, struct sge_wrq *wrq, int tid, 1732 struct ddp_rcv_buffer *drb) 1733 { 1734 struct wrqe *wr; 1735 struct ulp_mem_io *ulpmc; 1736 struct ulptx_idata *ulpsc; 1737 struct pagepod *ppod; 1738 int i, j, k, n, chunk, len, ddp_pgsz; 1739 u_int ppod_addr, offset; 1740 uint32_t cmd; 1741 struct ppod_reservation *prsv = &drb->prsv; 1742 struct ppod_region *pr = prsv->prsv_pr; 1743 uintptr_t end_pva, pva; 1744 vm_paddr_t pa; 1745 1746 MPASS(prsv->prsv_nppods > 0); 1747 1748 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1749 if (is_t4(sc)) 1750 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1751 else 1752 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1753 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1754 offset = (uintptr_t)drb->buf & PAGE_MASK; 1755 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1756 pva = trunc_page((uintptr_t)drb->buf); 1757 end_pva = trunc_page((uintptr_t)drb->buf + drb->len - 1); 1758 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1759 /* How many page pods are we writing in this cycle */ 1760 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1761 MPASS(n > 0); 1762 chunk = PPOD_SZ(n); 1763 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1764 1765 wr = alloc_wrqe(len, wrq); 1766 if (wr == NULL) 1767 return (ENOMEM); /* ok to just bail out */ 1768 ulpmc = wrtod(wr); 1769 1770 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1771 ulpmc->cmd = cmd; 1772 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1773 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1774 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1775 1776 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1777 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1778 ulpsc->len = htobe32(chunk); 1779 1780 ppod = (struct pagepod *)(ulpsc + 1); 1781 for (j = 0; j < n; i++, j++, ppod++) { 1782 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1783 V_PPOD_TID(tid) | prsv->prsv_tag); 1784 ppod->len_offset = htobe64(V_PPOD_LEN(drb->len) | 1785 V_PPOD_OFST(offset)); 1786 ppod->rsvd = 0; 1787 1788 for (k = 0; k < nitems(ppod->addr); k++) { 1789 if (pva > end_pva) 1790 ppod->addr[k] = 0; 1791 else { 1792 pa = pmap_kextract(pva); 1793 ppod->addr[k] = htobe64(pa); 1794 pva += ddp_pgsz; 1795 } 1796 #if 0 1797 CTR5(KTR_CXGBE, 1798 "%s: tid %d ppod[%d]->addr[%d] = %p", 1799 __func__, tid, i, k, 1800 be64toh(ppod->addr[k])); 1801 #endif 1802 } 1803 1804 /* 1805 * Walk back 1 segment so that the first address in the 1806 * next pod is the same as the last one in the current 1807 * pod. 1808 */ 1809 pva -= ddp_pgsz; 1810 } 1811 1812 t4_wrq_tx(sc, wr); 1813 } 1814 1815 MPASS(pva <= end_pva); 1816 1817 return (0); 1818 } 1819 1820 static struct mbuf * 1821 alloc_raw_wr_mbuf(int len) 1822 { 1823 struct mbuf *m; 1824 1825 if (len <= MHLEN) 1826 m = m_gethdr(M_NOWAIT, MT_DATA); 1827 else if (len <= MCLBYTES) 1828 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1829 else 1830 m = NULL; 1831 if (m == NULL) 1832 return (NULL); 1833 m->m_pkthdr.len = len; 1834 m->m_len = len; 1835 set_mbuf_raw_wr(m, true); 1836 return (m); 1837 } 1838 1839 int 1840 t4_write_page_pods_for_bio(struct adapter *sc, struct toepcb *toep, 1841 struct ppod_reservation *prsv, struct bio *bp, struct mbufq *wrq) 1842 { 1843 struct ulp_mem_io *ulpmc; 1844 struct ulptx_idata *ulpsc; 1845 struct pagepod *ppod; 1846 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1847 u_int ppod_addr; 1848 uint32_t cmd; 1849 struct ppod_region *pr = prsv->prsv_pr; 1850 vm_paddr_t pa; 1851 struct mbuf *m; 1852 1853 MPASS(bp->bio_flags & BIO_UNMAPPED); 1854 1855 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1856 if (is_t4(sc)) 1857 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1858 else 1859 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1860 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1861 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1862 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1863 1864 /* How many page pods are we writing in this cycle */ 1865 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1866 MPASS(n > 0); 1867 chunk = PPOD_SZ(n); 1868 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1869 1870 m = alloc_raw_wr_mbuf(len); 1871 if (m == NULL) 1872 return (ENOMEM); 1873 1874 ulpmc = mtod(m, struct ulp_mem_io *); 1875 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1876 ulpmc->cmd = cmd; 1877 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1878 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1879 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1880 1881 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1882 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1883 ulpsc->len = htobe32(chunk); 1884 1885 ppod = (struct pagepod *)(ulpsc + 1); 1886 for (j = 0; j < n; i++, j++, ppod++) { 1887 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1888 V_PPOD_TID(toep->tid) | 1889 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1890 ppod->len_offset = htobe64(V_PPOD_LEN(bp->bio_bcount) | 1891 V_PPOD_OFST(bp->bio_ma_offset)); 1892 ppod->rsvd = 0; 1893 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1894 for (k = 0; k < nitems(ppod->addr); k++) { 1895 if (idx < bp->bio_ma_n) { 1896 pa = VM_PAGE_TO_PHYS(bp->bio_ma[idx]); 1897 ppod->addr[k] = htobe64(pa); 1898 idx += ddp_pgsz / PAGE_SIZE; 1899 } else 1900 ppod->addr[k] = 0; 1901 #if 0 1902 CTR5(KTR_CXGBE, 1903 "%s: tid %d ppod[%d]->addr[%d] = %p", 1904 __func__, toep->tid, i, k, 1905 be64toh(ppod->addr[k])); 1906 #endif 1907 } 1908 } 1909 1910 mbufq_enqueue(wrq, m); 1911 } 1912 1913 return (0); 1914 } 1915 1916 int 1917 t4_write_page_pods_for_buf(struct adapter *sc, struct toepcb *toep, 1918 struct ppod_reservation *prsv, vm_offset_t buf, int buflen, 1919 struct mbufq *wrq) 1920 { 1921 struct ulp_mem_io *ulpmc; 1922 struct ulptx_idata *ulpsc; 1923 struct pagepod *ppod; 1924 int i, j, k, n, chunk, len, ddp_pgsz; 1925 u_int ppod_addr, offset; 1926 uint32_t cmd; 1927 struct ppod_region *pr = prsv->prsv_pr; 1928 uintptr_t end_pva, pva; 1929 vm_paddr_t pa; 1930 struct mbuf *m; 1931 1932 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1933 if (is_t4(sc)) 1934 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1935 else 1936 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1937 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1938 offset = buf & PAGE_MASK; 1939 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1940 pva = trunc_page(buf); 1941 end_pva = trunc_page(buf + buflen - 1); 1942 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1943 1944 /* How many page pods are we writing in this cycle */ 1945 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1946 MPASS(n > 0); 1947 chunk = PPOD_SZ(n); 1948 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1949 1950 m = alloc_raw_wr_mbuf(len); 1951 if (m == NULL) 1952 return (ENOMEM); 1953 ulpmc = mtod(m, struct ulp_mem_io *); 1954 1955 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1956 ulpmc->cmd = cmd; 1957 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1958 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1959 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1960 1961 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1962 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1963 ulpsc->len = htobe32(chunk); 1964 1965 ppod = (struct pagepod *)(ulpsc + 1); 1966 for (j = 0; j < n; i++, j++, ppod++) { 1967 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1968 V_PPOD_TID(toep->tid) | 1969 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1970 ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | 1971 V_PPOD_OFST(offset)); 1972 ppod->rsvd = 0; 1973 1974 for (k = 0; k < nitems(ppod->addr); k++) { 1975 if (pva > end_pva) 1976 ppod->addr[k] = 0; 1977 else { 1978 pa = pmap_kextract(pva); 1979 ppod->addr[k] = htobe64(pa); 1980 pva += ddp_pgsz; 1981 } 1982 #if 0 1983 CTR5(KTR_CXGBE, 1984 "%s: tid %d ppod[%d]->addr[%d] = %p", 1985 __func__, toep->tid, i, k, 1986 be64toh(ppod->addr[k])); 1987 #endif 1988 } 1989 1990 /* 1991 * Walk back 1 segment so that the first address in the 1992 * next pod is the same as the last one in the current 1993 * pod. 1994 */ 1995 pva -= ddp_pgsz; 1996 } 1997 1998 mbufq_enqueue(wrq, m); 1999 } 2000 2001 MPASS(pva <= end_pva); 2002 2003 return (0); 2004 } 2005 2006 int 2007 t4_write_page_pods_for_sgl(struct adapter *sc, struct toepcb *toep, 2008 struct ppod_reservation *prsv, struct ctl_sg_entry *sgl, int entries, 2009 int xferlen, struct mbufq *wrq) 2010 { 2011 struct ulp_mem_io *ulpmc; 2012 struct ulptx_idata *ulpsc; 2013 struct pagepod *ppod; 2014 int i, j, k, n, chunk, len, ddp_pgsz; 2015 u_int ppod_addr, offset, sg_offset = 0; 2016 uint32_t cmd; 2017 struct ppod_region *pr = prsv->prsv_pr; 2018 uintptr_t pva; 2019 vm_paddr_t pa; 2020 struct mbuf *m; 2021 2022 MPASS(sgl != NULL); 2023 MPASS(entries > 0); 2024 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 2025 if (is_t4(sc)) 2026 cmd |= htobe32(F_ULP_MEMIO_ORDER); 2027 else 2028 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 2029 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 2030 offset = (vm_offset_t)sgl->addr & PAGE_MASK; 2031 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 2032 pva = trunc_page((vm_offset_t)sgl->addr); 2033 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 2034 2035 /* How many page pods are we writing in this cycle */ 2036 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 2037 MPASS(n > 0); 2038 chunk = PPOD_SZ(n); 2039 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 2040 2041 m = alloc_raw_wr_mbuf(len); 2042 if (m == NULL) 2043 return (ENOMEM); 2044 ulpmc = mtod(m, struct ulp_mem_io *); 2045 2046 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 2047 ulpmc->cmd = cmd; 2048 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 2049 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 2050 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 2051 2052 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 2053 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 2054 ulpsc->len = htobe32(chunk); 2055 2056 ppod = (struct pagepod *)(ulpsc + 1); 2057 for (j = 0; j < n; i++, j++, ppod++) { 2058 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 2059 V_PPOD_TID(toep->tid) | 2060 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 2061 ppod->len_offset = htobe64(V_PPOD_LEN(xferlen) | 2062 V_PPOD_OFST(offset)); 2063 ppod->rsvd = 0; 2064 2065 for (k = 0; k < nitems(ppod->addr); k++) { 2066 if (entries != 0) { 2067 pa = pmap_kextract(pva + sg_offset); 2068 ppod->addr[k] = htobe64(pa); 2069 } else 2070 ppod->addr[k] = 0; 2071 2072 #if 0 2073 CTR5(KTR_CXGBE, 2074 "%s: tid %d ppod[%d]->addr[%d] = %p", 2075 __func__, toep->tid, i, k, 2076 be64toh(ppod->addr[k])); 2077 #endif 2078 2079 /* 2080 * If this is the last entry in a pod, 2081 * reuse the same entry for first address 2082 * in the next pod. 2083 */ 2084 if (k + 1 == nitems(ppod->addr)) 2085 break; 2086 2087 /* 2088 * Don't move to the next DDP page if the 2089 * sgl is already finished. 2090 */ 2091 if (entries == 0) 2092 continue; 2093 2094 sg_offset += ddp_pgsz; 2095 if (sg_offset == sgl->len) { 2096 /* 2097 * This sgl entry is done. Go 2098 * to the next. 2099 */ 2100 entries--; 2101 sgl++; 2102 sg_offset = 0; 2103 if (entries != 0) 2104 pva = trunc_page( 2105 (vm_offset_t)sgl->addr); 2106 } 2107 } 2108 } 2109 2110 mbufq_enqueue(wrq, m); 2111 } 2112 2113 return (0); 2114 } 2115 2116 /* 2117 * Prepare a pageset for DDP. This sets up page pods. 2118 */ 2119 static int 2120 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) 2121 { 2122 struct tom_data *td = sc->tom_softc; 2123 2124 if (ps->prsv.prsv_nppods == 0 && 2125 t4_alloc_page_pods_for_ps(&td->pr, ps) != 0) { 2126 return (0); 2127 } 2128 if (!(ps->flags & PS_PPODS_WRITTEN) && 2129 t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { 2130 return (0); 2131 } 2132 2133 return (1); 2134 } 2135 2136 int 2137 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, 2138 const char *name) 2139 { 2140 int i; 2141 2142 MPASS(pr != NULL); 2143 MPASS(r->size > 0); 2144 2145 pr->pr_start = r->start; 2146 pr->pr_len = r->size; 2147 pr->pr_page_shift[0] = 12 + G_HPZ0(psz); 2148 pr->pr_page_shift[1] = 12 + G_HPZ1(psz); 2149 pr->pr_page_shift[2] = 12 + G_HPZ2(psz); 2150 pr->pr_page_shift[3] = 12 + G_HPZ3(psz); 2151 2152 /* The SGL -> page pod algorithm requires the sizes to be in order. */ 2153 for (i = 1; i < nitems(pr->pr_page_shift); i++) { 2154 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) 2155 return (ENXIO); 2156 } 2157 2158 pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); 2159 pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; 2160 if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) 2161 return (ENXIO); 2162 pr->pr_alias_shift = fls(pr->pr_tag_mask); 2163 pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); 2164 2165 pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, 2166 M_FIRSTFIT | M_NOWAIT); 2167 if (pr->pr_arena == NULL) 2168 return (ENOMEM); 2169 2170 return (0); 2171 } 2172 2173 void 2174 t4_free_ppod_region(struct ppod_region *pr) 2175 { 2176 2177 MPASS(pr != NULL); 2178 2179 if (pr->pr_arena) 2180 vmem_destroy(pr->pr_arena); 2181 bzero(pr, sizeof(*pr)); 2182 } 2183 2184 static int 2185 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, 2186 int pgoff, int len) 2187 { 2188 2189 if (ps->start != start || ps->npages != npages || 2190 ps->offset != pgoff || ps->len != len) 2191 return (1); 2192 2193 return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); 2194 } 2195 2196 static int 2197 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) 2198 { 2199 struct vmspace *vm; 2200 vm_map_t map; 2201 vm_offset_t start, end, pgoff; 2202 struct pageset *ps; 2203 int n; 2204 2205 DDP_ASSERT_LOCKED(toep); 2206 2207 /* 2208 * The AIO subsystem will cancel and drain all requests before 2209 * permitting a process to exit or exec, so p_vmspace should 2210 * be stable here. 2211 */ 2212 vm = job->userproc->p_vmspace; 2213 map = &vm->vm_map; 2214 start = (uintptr_t)job->uaiocb.aio_buf; 2215 pgoff = start & PAGE_MASK; 2216 end = round_page(start + job->uaiocb.aio_nbytes); 2217 start = trunc_page(start); 2218 2219 if (end - start > MAX_DDP_BUFFER_SIZE) { 2220 /* 2221 * Truncate the request to a short read. 2222 * Alternatively, we could DDP in chunks to the larger 2223 * buffer, but that would be quite a bit more work. 2224 * 2225 * When truncating, round the request down to avoid 2226 * crossing a cache line on the final transaction. 2227 */ 2228 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); 2229 #ifdef VERBOSE_TRACES 2230 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", 2231 __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, 2232 (unsigned long)(end - (start + pgoff))); 2233 job->uaiocb.aio_nbytes = end - (start + pgoff); 2234 #endif 2235 end = round_page(end); 2236 } 2237 2238 n = atop(end - start); 2239 2240 /* 2241 * Try to reuse a cached pageset. 2242 */ 2243 TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) { 2244 if (pscmp(ps, vm, start, n, pgoff, 2245 job->uaiocb.aio_nbytes) == 0) { 2246 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 2247 toep->ddp.cached_count--; 2248 *pps = ps; 2249 return (0); 2250 } 2251 } 2252 2253 /* 2254 * If there are too many cached pagesets to create a new one, 2255 * free a pageset before creating a new one. 2256 */ 2257 KASSERT(toep->ddp.active_count + toep->ddp.cached_count <= 2258 nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__)); 2259 if (toep->ddp.active_count + toep->ddp.cached_count == 2260 nitems(toep->ddp.db)) { 2261 KASSERT(toep->ddp.cached_count > 0, 2262 ("no cached pageset to free")); 2263 ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq); 2264 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 2265 toep->ddp.cached_count--; 2266 free_pageset(toep->td, ps); 2267 } 2268 DDP_UNLOCK(toep); 2269 2270 /* Create a new pageset. */ 2271 ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | 2272 M_ZERO); 2273 ps->pages = (vm_page_t *)(ps + 1); 2274 ps->vm_timestamp = map->timestamp; 2275 ps->npages = vm_fault_quick_hold_pages(map, start, end - start, 2276 VM_PROT_WRITE, ps->pages, n); 2277 2278 DDP_LOCK(toep); 2279 if (ps->npages < 0) { 2280 free(ps, M_CXGBE); 2281 return (EFAULT); 2282 } 2283 2284 KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", 2285 ps->npages, n)); 2286 2287 ps->offset = pgoff; 2288 ps->len = job->uaiocb.aio_nbytes; 2289 refcount_acquire(&vm->vm_refcnt); 2290 ps->vm = vm; 2291 ps->start = start; 2292 2293 CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", 2294 __func__, toep->tid, ps, job, ps->npages); 2295 *pps = ps; 2296 return (0); 2297 } 2298 2299 static void 2300 ddp_complete_all(struct toepcb *toep, int error) 2301 { 2302 struct kaiocb *job; 2303 2304 DDP_ASSERT_LOCKED(toep); 2305 KASSERT((toep->ddp.flags & DDP_AIO) != 0, ("%s: DDP_RCVBUF", __func__)); 2306 while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) { 2307 job = TAILQ_FIRST(&toep->ddp.aiojobq); 2308 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 2309 toep->ddp.waiting_count--; 2310 if (aio_clear_cancel_function(job)) 2311 ddp_complete_one(job, error); 2312 } 2313 } 2314 2315 static void 2316 aio_ddp_cancel_one(struct kaiocb *job) 2317 { 2318 long copied; 2319 2320 /* 2321 * If this job had copied data out of the socket buffer before 2322 * it was cancelled, report it as a short read rather than an 2323 * error. 2324 */ 2325 copied = job->aio_received; 2326 if (copied != 0) 2327 aio_complete(job, copied, 0); 2328 else 2329 aio_cancel(job); 2330 } 2331 2332 /* 2333 * Called when the main loop wants to requeue a job to retry it later. 2334 * Deals with the race of the job being cancelled while it was being 2335 * examined. 2336 */ 2337 static void 2338 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) 2339 { 2340 2341 DDP_ASSERT_LOCKED(toep); 2342 if (!(toep->ddp.flags & DDP_DEAD) && 2343 aio_set_cancel_function(job, t4_aio_cancel_queued)) { 2344 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 2345 toep->ddp.waiting_count++; 2346 } else 2347 aio_ddp_cancel_one(job); 2348 } 2349 2350 static void 2351 aio_ddp_requeue(struct toepcb *toep) 2352 { 2353 struct adapter *sc = td_adapter(toep->td); 2354 struct socket *so; 2355 struct sockbuf *sb; 2356 struct inpcb *inp; 2357 struct kaiocb *job; 2358 struct ddp_buffer *db; 2359 size_t copied, offset, resid; 2360 struct pageset *ps; 2361 struct mbuf *m; 2362 uint64_t ddp_flags, ddp_flags_mask; 2363 struct wrqe *wr; 2364 int buf_flag, db_idx, error; 2365 2366 DDP_ASSERT_LOCKED(toep); 2367 2368 restart: 2369 if (toep->ddp.flags & DDP_DEAD) { 2370 MPASS(toep->ddp.waiting_count == 0); 2371 MPASS(toep->ddp.active_count == 0); 2372 return; 2373 } 2374 2375 if (toep->ddp.waiting_count == 0 || 2376 toep->ddp.active_count == nitems(toep->ddp.db)) { 2377 return; 2378 } 2379 2380 job = TAILQ_FIRST(&toep->ddp.aiojobq); 2381 so = job->fd_file->f_data; 2382 sb = &so->so_rcv; 2383 SOCKBUF_LOCK(sb); 2384 2385 /* We will never get anything unless we are or were connected. */ 2386 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2387 SOCKBUF_UNLOCK(sb); 2388 ddp_complete_all(toep, ENOTCONN); 2389 return; 2390 } 2391 2392 KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0, 2393 ("%s: pending sockbuf data and DDP is active", __func__)); 2394 2395 /* Abort if socket has reported problems. */ 2396 /* XXX: Wait for any queued DDP's to finish and/or flush them? */ 2397 if (so->so_error && sbavail(sb) == 0) { 2398 toep->ddp.waiting_count--; 2399 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 2400 if (!aio_clear_cancel_function(job)) { 2401 SOCKBUF_UNLOCK(sb); 2402 goto restart; 2403 } 2404 2405 /* 2406 * If this job has previously copied some data, report 2407 * a short read and leave the error to be reported by 2408 * a future request. 2409 */ 2410 copied = job->aio_received; 2411 if (copied != 0) { 2412 SOCKBUF_UNLOCK(sb); 2413 aio_complete(job, copied, 0); 2414 goto restart; 2415 } 2416 error = so->so_error; 2417 so->so_error = 0; 2418 SOCKBUF_UNLOCK(sb); 2419 aio_complete(job, -1, error); 2420 goto restart; 2421 } 2422 2423 /* 2424 * Door is closed. If there is pending data in the socket buffer, 2425 * deliver it. If there are pending DDP requests, wait for those 2426 * to complete. Once they have completed, return EOF reads. 2427 */ 2428 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 2429 SOCKBUF_UNLOCK(sb); 2430 if (toep->ddp.active_count != 0) 2431 return; 2432 ddp_complete_all(toep, 0); 2433 return; 2434 } 2435 2436 /* 2437 * If DDP is not enabled and there is no pending socket buffer 2438 * data, try to enable DDP. 2439 */ 2440 if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) { 2441 SOCKBUF_UNLOCK(sb); 2442 2443 /* 2444 * Wait for the card to ACK that DDP is enabled before 2445 * queueing any buffers. Currently this waits for an 2446 * indicate to arrive. This could use a TCB_SET_FIELD_RPL 2447 * message to know that DDP was enabled instead of waiting 2448 * for the indicate which would avoid copying the indicate 2449 * if no data is pending. 2450 * 2451 * XXX: Might want to limit the indicate size to the size 2452 * of the first queued request. 2453 */ 2454 if ((toep->ddp.flags & DDP_SC_REQ) == 0) 2455 enable_ddp(sc, toep); 2456 return; 2457 } 2458 SOCKBUF_UNLOCK(sb); 2459 2460 /* 2461 * If another thread is queueing a buffer for DDP, let it 2462 * drain any work and return. 2463 */ 2464 if (toep->ddp.queueing != NULL) 2465 return; 2466 2467 /* Take the next job to prep it for DDP. */ 2468 toep->ddp.waiting_count--; 2469 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 2470 if (!aio_clear_cancel_function(job)) 2471 goto restart; 2472 toep->ddp.queueing = job; 2473 2474 /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ 2475 error = hold_aio(toep, job, &ps); 2476 if (error != 0) { 2477 ddp_complete_one(job, error); 2478 toep->ddp.queueing = NULL; 2479 goto restart; 2480 } 2481 2482 SOCKBUF_LOCK(sb); 2483 if (so->so_error && sbavail(sb) == 0) { 2484 copied = job->aio_received; 2485 if (copied != 0) { 2486 SOCKBUF_UNLOCK(sb); 2487 recycle_pageset(toep, ps); 2488 aio_complete(job, copied, 0); 2489 toep->ddp.queueing = NULL; 2490 goto restart; 2491 } 2492 2493 error = so->so_error; 2494 so->so_error = 0; 2495 SOCKBUF_UNLOCK(sb); 2496 recycle_pageset(toep, ps); 2497 aio_complete(job, -1, error); 2498 toep->ddp.queueing = NULL; 2499 goto restart; 2500 } 2501 2502 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 2503 SOCKBUF_UNLOCK(sb); 2504 recycle_pageset(toep, ps); 2505 if (toep->ddp.active_count != 0) { 2506 /* 2507 * The door is closed, but there are still pending 2508 * DDP buffers. Requeue. These jobs will all be 2509 * completed once those buffers drain. 2510 */ 2511 aio_ddp_requeue_one(toep, job); 2512 toep->ddp.queueing = NULL; 2513 return; 2514 } 2515 ddp_complete_one(job, 0); 2516 ddp_complete_all(toep, 0); 2517 toep->ddp.queueing = NULL; 2518 return; 2519 } 2520 2521 sbcopy: 2522 /* 2523 * If the toep is dead, there shouldn't be any data in the socket 2524 * buffer, so the above case should have handled this. 2525 */ 2526 MPASS(!(toep->ddp.flags & DDP_DEAD)); 2527 2528 /* 2529 * If there is pending data in the socket buffer (either 2530 * from before the requests were queued or a DDP indicate), 2531 * copy those mbufs out directly. 2532 */ 2533 copied = 0; 2534 offset = ps->offset + job->aio_received; 2535 MPASS(job->aio_received <= job->uaiocb.aio_nbytes); 2536 resid = job->uaiocb.aio_nbytes - job->aio_received; 2537 m = sb->sb_mb; 2538 KASSERT(m == NULL || toep->ddp.active_count == 0, 2539 ("%s: sockbuf data with active DDP", __func__)); 2540 while (m != NULL && resid > 0) { 2541 struct iovec iov[1]; 2542 struct uio uio; 2543 #ifdef INVARIANTS 2544 int error; 2545 #endif 2546 2547 iov[0].iov_base = mtod(m, void *); 2548 iov[0].iov_len = m->m_len; 2549 if (iov[0].iov_len > resid) 2550 iov[0].iov_len = resid; 2551 uio.uio_iov = iov; 2552 uio.uio_iovcnt = 1; 2553 uio.uio_offset = 0; 2554 uio.uio_resid = iov[0].iov_len; 2555 uio.uio_segflg = UIO_SYSSPACE; 2556 uio.uio_rw = UIO_WRITE; 2557 #ifdef INVARIANTS 2558 error = uiomove_fromphys(ps->pages, offset + copied, 2559 uio.uio_resid, &uio); 2560 #else 2561 uiomove_fromphys(ps->pages, offset + copied, uio.uio_resid, &uio); 2562 #endif 2563 MPASS(error == 0 && uio.uio_resid == 0); 2564 copied += uio.uio_offset; 2565 resid -= uio.uio_offset; 2566 m = m->m_next; 2567 } 2568 if (copied != 0) { 2569 sbdrop_locked(sb, copied); 2570 job->aio_received += copied; 2571 job->msgrcv = 1; 2572 copied = job->aio_received; 2573 inp = sotoinpcb(so); 2574 if (!INP_TRY_WLOCK(inp)) { 2575 /* 2576 * The reference on the socket file descriptor in 2577 * the AIO job should keep 'sb' and 'inp' stable. 2578 * Our caller has a reference on the 'toep' that 2579 * keeps it stable. 2580 */ 2581 SOCKBUF_UNLOCK(sb); 2582 DDP_UNLOCK(toep); 2583 INP_WLOCK(inp); 2584 DDP_LOCK(toep); 2585 SOCKBUF_LOCK(sb); 2586 2587 /* 2588 * If the socket has been closed, we should detect 2589 * that and complete this request if needed on 2590 * the next trip around the loop. 2591 */ 2592 } 2593 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); 2594 INP_WUNLOCK(inp); 2595 if (resid == 0 || toep->ddp.flags & DDP_DEAD) { 2596 /* 2597 * We filled the entire buffer with socket 2598 * data, DDP is not being used, or the socket 2599 * is being shut down, so complete the 2600 * request. 2601 */ 2602 SOCKBUF_UNLOCK(sb); 2603 recycle_pageset(toep, ps); 2604 aio_complete(job, copied, 0); 2605 toep->ddp.queueing = NULL; 2606 goto restart; 2607 } 2608 2609 /* 2610 * If DDP is not enabled, requeue this request and restart. 2611 * This will either enable DDP or wait for more data to 2612 * arrive on the socket buffer. 2613 */ 2614 if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { 2615 SOCKBUF_UNLOCK(sb); 2616 recycle_pageset(toep, ps); 2617 aio_ddp_requeue_one(toep, job); 2618 toep->ddp.queueing = NULL; 2619 goto restart; 2620 } 2621 2622 /* 2623 * An indicate might have arrived and been added to 2624 * the socket buffer while it was unlocked after the 2625 * copy to lock the INP. If so, restart the copy. 2626 */ 2627 if (sbavail(sb) != 0) 2628 goto sbcopy; 2629 } 2630 SOCKBUF_UNLOCK(sb); 2631 2632 if (prep_pageset(sc, toep, ps) == 0) { 2633 recycle_pageset(toep, ps); 2634 aio_ddp_requeue_one(toep, job); 2635 toep->ddp.queueing = NULL; 2636 2637 /* 2638 * XXX: Need to retry this later. Mostly need a trigger 2639 * when page pods are freed up. 2640 */ 2641 printf("%s: prep_pageset failed\n", __func__); 2642 return; 2643 } 2644 2645 /* Determine which DDP buffer to use. */ 2646 if (toep->ddp.db[0].job == NULL) { 2647 db_idx = 0; 2648 } else { 2649 MPASS(toep->ddp.db[1].job == NULL); 2650 db_idx = 1; 2651 } 2652 2653 ddp_flags = 0; 2654 ddp_flags_mask = 0; 2655 if (db_idx == 0) { 2656 ddp_flags |= V_TF_DDP_BUF0_VALID(1); 2657 if (so->so_state & SS_NBIO) 2658 ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); 2659 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 2660 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | 2661 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); 2662 buf_flag = DDP_BUF0_ACTIVE; 2663 } else { 2664 ddp_flags |= V_TF_DDP_BUF1_VALID(1); 2665 if (so->so_state & SS_NBIO) 2666 ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); 2667 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 2668 V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | 2669 V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); 2670 buf_flag = DDP_BUF1_ACTIVE; 2671 } 2672 MPASS((toep->ddp.flags & buf_flag) == 0); 2673 if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { 2674 MPASS(db_idx == 0); 2675 MPASS(toep->ddp.active_id == -1); 2676 MPASS(toep->ddp.active_count == 0); 2677 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); 2678 } 2679 2680 /* 2681 * The TID for this connection should still be valid. If DDP_DEAD 2682 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be 2683 * this far anyway. Even if the socket is closing on the other 2684 * end, the AIO job holds a reference on this end of the socket 2685 * which will keep it open and keep the TCP PCB attached until 2686 * after the job is completed. 2687 */ 2688 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, &ps->prsv, ps->len, 2689 job->aio_received, ddp_flags, ddp_flags_mask); 2690 if (wr == NULL) { 2691 recycle_pageset(toep, ps); 2692 aio_ddp_requeue_one(toep, job); 2693 toep->ddp.queueing = NULL; 2694 2695 /* 2696 * XXX: Need a way to kick a retry here. 2697 * 2698 * XXX: We know the fixed size needed and could 2699 * preallocate this using a blocking request at the 2700 * start of the task to avoid having to handle this 2701 * edge case. 2702 */ 2703 printf("%s: mk_update_tcb_for_ddp failed\n", __func__); 2704 return; 2705 } 2706 2707 if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { 2708 free_wrqe(wr); 2709 recycle_pageset(toep, ps); 2710 aio_ddp_cancel_one(job); 2711 toep->ddp.queueing = NULL; 2712 goto restart; 2713 } 2714 2715 #ifdef VERBOSE_TRACES 2716 CTR6(KTR_CXGBE, 2717 "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__, 2718 toep->tid, job, db_idx, ddp_flags, ddp_flags_mask); 2719 #endif 2720 /* Give the chip the go-ahead. */ 2721 t4_wrq_tx(sc, wr); 2722 db = &toep->ddp.db[db_idx]; 2723 db->cancel_pending = 0; 2724 db->job = job; 2725 db->ps = ps; 2726 toep->ddp.queueing = NULL; 2727 toep->ddp.flags |= buf_flag; 2728 toep->ddp.active_count++; 2729 if (toep->ddp.active_count == 1) { 2730 MPASS(toep->ddp.active_id == -1); 2731 toep->ddp.active_id = db_idx; 2732 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 2733 toep->ddp.active_id); 2734 } 2735 goto restart; 2736 } 2737 2738 void 2739 ddp_queue_toep(struct toepcb *toep) 2740 { 2741 2742 DDP_ASSERT_LOCKED(toep); 2743 if (toep->ddp.flags & DDP_TASK_ACTIVE) 2744 return; 2745 toep->ddp.flags |= DDP_TASK_ACTIVE; 2746 hold_toepcb(toep); 2747 soaio_enqueue(&toep->ddp.requeue_task); 2748 } 2749 2750 static void 2751 aio_ddp_requeue_task(void *context, int pending) 2752 { 2753 struct toepcb *toep = context; 2754 2755 DDP_LOCK(toep); 2756 aio_ddp_requeue(toep); 2757 toep->ddp.flags &= ~DDP_TASK_ACTIVE; 2758 DDP_UNLOCK(toep); 2759 2760 free_toepcb(toep); 2761 } 2762 2763 static void 2764 t4_aio_cancel_active(struct kaiocb *job) 2765 { 2766 struct socket *so = job->fd_file->f_data; 2767 struct tcpcb *tp = sototcpcb(so); 2768 struct toepcb *toep = tp->t_toe; 2769 struct adapter *sc = td_adapter(toep->td); 2770 uint64_t valid_flag; 2771 int i; 2772 2773 DDP_LOCK(toep); 2774 if (aio_cancel_cleared(job)) { 2775 DDP_UNLOCK(toep); 2776 aio_ddp_cancel_one(job); 2777 return; 2778 } 2779 2780 for (i = 0; i < nitems(toep->ddp.db); i++) { 2781 if (toep->ddp.db[i].job == job) { 2782 /* Should only ever get one cancel request for a job. */ 2783 MPASS(toep->ddp.db[i].cancel_pending == 0); 2784 2785 /* 2786 * Invalidate this buffer. It will be 2787 * cancelled or partially completed once the 2788 * card ACKs the invalidate. 2789 */ 2790 valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : 2791 V_TF_DDP_BUF1_VALID(1); 2792 t4_set_tcb_field(sc, toep->ctrlq, toep, 2793 W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, 2794 CPL_COOKIE_DDP0 + i); 2795 toep->ddp.db[i].cancel_pending = 1; 2796 CTR2(KTR_CXGBE, "%s: request %p marked pending", 2797 __func__, job); 2798 break; 2799 } 2800 } 2801 DDP_UNLOCK(toep); 2802 } 2803 2804 static void 2805 t4_aio_cancel_queued(struct kaiocb *job) 2806 { 2807 struct socket *so = job->fd_file->f_data; 2808 struct tcpcb *tp = sototcpcb(so); 2809 struct toepcb *toep = tp->t_toe; 2810 2811 DDP_LOCK(toep); 2812 if (!aio_cancel_cleared(job)) { 2813 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 2814 toep->ddp.waiting_count--; 2815 if (toep->ddp.waiting_count == 0) 2816 ddp_queue_toep(toep); 2817 } 2818 CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); 2819 DDP_UNLOCK(toep); 2820 2821 aio_ddp_cancel_one(job); 2822 } 2823 2824 int 2825 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) 2826 { 2827 struct inpcb *inp = sotoinpcb(so); 2828 struct tcpcb *tp = intotcpcb(inp); 2829 struct toepcb *toep = tp->t_toe; 2830 2831 /* Ignore writes. */ 2832 if (job->uaiocb.aio_lio_opcode != LIO_READ) 2833 return (EOPNOTSUPP); 2834 2835 INP_WLOCK(inp); 2836 if (__predict_false(ulp_mode(toep) == ULP_MODE_NONE)) { 2837 if (!set_ddp_ulp_mode(toep)) { 2838 INP_WUNLOCK(inp); 2839 return (EOPNOTSUPP); 2840 } 2841 } 2842 INP_WUNLOCK(inp); 2843 2844 DDP_LOCK(toep); 2845 2846 /* 2847 * If DDP is being used for all normal receive, don't use it 2848 * for AIO. 2849 */ 2850 if ((toep->ddp.flags & DDP_RCVBUF) != 0) { 2851 DDP_UNLOCK(toep); 2852 return (EOPNOTSUPP); 2853 } 2854 2855 /* 2856 * XXX: Think about possibly returning errors for ENOTCONN, 2857 * etc. Perhaps the caller would only queue the request 2858 * if it failed with EOPNOTSUPP? 2859 */ 2860 2861 #ifdef VERBOSE_TRACES 2862 CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid); 2863 #endif 2864 if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) 2865 panic("new job was cancelled"); 2866 TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list); 2867 toep->ddp.waiting_count++; 2868 2869 if ((toep->ddp.flags & DDP_AIO) == 0) { 2870 toep->ddp.flags |= DDP_AIO; 2871 TAILQ_INIT(&toep->ddp.cached_pagesets); 2872 TAILQ_INIT(&toep->ddp.aiojobq); 2873 TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, 2874 toep); 2875 } 2876 2877 /* 2878 * Try to handle this request synchronously. If this has 2879 * to block because the task is running, it will just bail 2880 * and let the task handle it instead. 2881 */ 2882 aio_ddp_requeue(toep); 2883 DDP_UNLOCK(toep); 2884 return (0); 2885 } 2886 2887 static void 2888 ddp_rcvbuf_requeue(struct toepcb *toep) 2889 { 2890 struct socket *so; 2891 struct sockbuf *sb; 2892 struct inpcb *inp; 2893 struct ddp_rcv_buffer *drb; 2894 2895 DDP_ASSERT_LOCKED(toep); 2896 restart: 2897 if ((toep->ddp.flags & DDP_DEAD) != 0) { 2898 MPASS(toep->ddp.active_count == 0); 2899 return; 2900 } 2901 2902 /* If both buffers are active, nothing to do. */ 2903 if (toep->ddp.active_count == nitems(toep->ddp.db)) { 2904 return; 2905 } 2906 2907 inp = toep->inp; 2908 so = inp->inp_socket; 2909 sb = &so->so_rcv; 2910 2911 drb = alloc_cached_ddp_rcv_buffer(toep); 2912 DDP_UNLOCK(toep); 2913 2914 if (drb == NULL) { 2915 drb = alloc_ddp_rcv_buffer(toep, M_WAITOK); 2916 if (drb == NULL) { 2917 printf("%s: failed to allocate buffer\n", __func__); 2918 DDP_LOCK(toep); 2919 return; 2920 } 2921 } 2922 2923 DDP_LOCK(toep); 2924 if ((toep->ddp.flags & DDP_DEAD) != 0 || 2925 toep->ddp.active_count == nitems(toep->ddp.db)) { 2926 recycle_ddp_rcv_buffer(toep, drb); 2927 return; 2928 } 2929 2930 /* We will never get anything unless we are or were connected. */ 2931 SOCKBUF_LOCK(sb); 2932 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2933 SOCKBUF_UNLOCK(sb); 2934 recycle_ddp_rcv_buffer(toep, drb); 2935 return; 2936 } 2937 2938 /* Abort if socket has reported problems or is closed. */ 2939 if (so->so_error != 0 || (sb->sb_state & SBS_CANTRCVMORE) != 0) { 2940 SOCKBUF_UNLOCK(sb); 2941 recycle_ddp_rcv_buffer(toep, drb); 2942 return; 2943 } 2944 SOCKBUF_UNLOCK(sb); 2945 2946 if (!queue_ddp_rcvbuf(toep, drb)) { 2947 /* 2948 * XXX: Need a way to kick a retry here. 2949 * 2950 * XXX: We know the fixed size needed and could 2951 * preallocate the work request using a blocking 2952 * request at the start of the task to avoid having to 2953 * handle this edge case. 2954 */ 2955 return; 2956 } 2957 goto restart; 2958 } 2959 2960 static void 2961 ddp_rcvbuf_requeue_task(void *context, int pending) 2962 { 2963 struct toepcb *toep = context; 2964 2965 DDP_LOCK(toep); 2966 ddp_rcvbuf_requeue(toep); 2967 toep->ddp.flags &= ~DDP_TASK_ACTIVE; 2968 DDP_UNLOCK(toep); 2969 2970 free_toepcb(toep); 2971 } 2972 2973 int 2974 t4_enable_ddp_rcv(struct socket *so, struct toepcb *toep) 2975 { 2976 struct inpcb *inp = sotoinpcb(so); 2977 struct adapter *sc = td_adapter(toep->td); 2978 2979 INP_WLOCK(inp); 2980 switch (ulp_mode(toep)) { 2981 case ULP_MODE_TCPDDP: 2982 break; 2983 case ULP_MODE_NONE: 2984 if (set_ddp_ulp_mode(toep)) 2985 break; 2986 /* FALLTHROUGH */ 2987 default: 2988 INP_WUNLOCK(inp); 2989 return (EOPNOTSUPP); 2990 } 2991 INP_WUNLOCK(inp); 2992 2993 DDP_LOCK(toep); 2994 2995 /* 2996 * If DDP is being used for AIO already, don't use it for 2997 * normal receive. 2998 */ 2999 if ((toep->ddp.flags & DDP_AIO) != 0) { 3000 DDP_UNLOCK(toep); 3001 return (EOPNOTSUPP); 3002 } 3003 3004 if ((toep->ddp.flags & DDP_RCVBUF) != 0) { 3005 DDP_UNLOCK(toep); 3006 return (EBUSY); 3007 } 3008 3009 toep->ddp.flags |= DDP_RCVBUF; 3010 TAILQ_INIT(&toep->ddp.cached_buffers); 3011 enable_ddp(sc, toep); 3012 TASK_INIT(&toep->ddp.requeue_task, 0, ddp_rcvbuf_requeue_task, toep); 3013 ddp_queue_toep(toep); 3014 DDP_UNLOCK(toep); 3015 return (0); 3016 } 3017 3018 void 3019 t4_ddp_mod_load(void) 3020 { 3021 if (t4_ddp_rcvbuf_len < PAGE_SIZE) 3022 t4_ddp_rcvbuf_len = PAGE_SIZE; 3023 if (t4_ddp_rcvbuf_len > MAX_DDP_BUFFER_SIZE) 3024 t4_ddp_rcvbuf_len = MAX_DDP_BUFFER_SIZE; 3025 if (!powerof2(t4_ddp_rcvbuf_len)) 3026 t4_ddp_rcvbuf_len = 1 << fls(t4_ddp_rcvbuf_len); 3027 3028 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 3029 CPL_COOKIE_DDP0); 3030 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 3031 CPL_COOKIE_DDP1); 3032 t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); 3033 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); 3034 TAILQ_INIT(&ddp_orphan_pagesets); 3035 mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); 3036 TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); 3037 } 3038 3039 void 3040 t4_ddp_mod_unload(void) 3041 { 3042 3043 taskqueue_drain(taskqueue_thread, &ddp_orphan_task); 3044 MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); 3045 mtx_destroy(&ddp_orphan_pagesets_lock); 3046 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0); 3047 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1); 3048 t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); 3049 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); 3050 } 3051 #endif 3052