1 /*- 2 * Copyright (c) 2012 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: Navdeep Parhar <np@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/ktr.h> 38 #include <sys/module.h> 39 #include <sys/protosw.h> 40 #include <sys/proc.h> 41 #include <sys/domain.h> 42 #include <sys/socket.h> 43 #include <sys/socketvar.h> 44 #include <sys/uio.h> 45 #include <netinet/in.h> 46 #include <netinet/in_pcb.h> 47 #include <netinet/ip.h> 48 #include <netinet/tcp_var.h> 49 #define TCPSTATES 50 #include <netinet/tcp_fsm.h> 51 #include <netinet/toecore.h> 52 53 #include <vm/vm.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_param.h> 56 #include <vm/pmap.h> 57 #include <vm/vm_map.h> 58 #include <vm/vm_page.h> 59 #include <vm/vm_object.h> 60 61 #ifdef TCP_OFFLOAD 62 #include "common/common.h" 63 #include "common/t4_msg.h" 64 #include "common/t4_regs.h" 65 #include "common/t4_tcb.h" 66 #include "tom/t4_tom.h" 67 68 #define PPOD_SZ(n) ((n) * sizeof(struct pagepod)) 69 #define PPOD_SIZE (PPOD_SZ(1)) 70 71 /* XXX: must match A_ULP_RX_TDDP_PSZ */ 72 static int t4_ddp_pgsz[] = {4096, 4096 << 2, 4096 << 4, 4096 << 6}; 73 74 #if 0 75 static void 76 t4_dump_tcb(struct adapter *sc, int tid) 77 { 78 uint32_t tcb_base, off, i, j; 79 80 /* Dump TCB for the tid */ 81 tcb_base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 82 t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2), 83 tcb_base + tid * TCB_SIZE); 84 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2)); 85 off = 0; 86 printf("\n"); 87 for (i = 0; i < 4; i++) { 88 uint32_t buf[8]; 89 for (j = 0; j < 8; j++, off += 4) 90 buf[j] = htonl(t4_read_reg(sc, MEMWIN2_BASE + off)); 91 92 printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 93 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 94 buf[7]); 95 } 96 } 97 #endif 98 99 #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) 100 static int 101 alloc_ppods(struct tom_data *td, int n, struct ppod_region *pr) 102 { 103 int ppod; 104 105 KASSERT(n > 0, ("%s: nonsense allocation (%d)", __func__, n)); 106 107 mtx_lock(&td->ppod_lock); 108 if (n > td->nppods_free) { 109 mtx_unlock(&td->ppod_lock); 110 return (-1); 111 } 112 113 if (td->nppods_free_head >= n) { 114 td->nppods_free_head -= n; 115 ppod = td->nppods_free_head; 116 TAILQ_INSERT_HEAD(&td->ppods, pr, link); 117 } else { 118 struct ppod_region *p; 119 120 ppod = td->nppods_free_head; 121 TAILQ_FOREACH(p, &td->ppods, link) { 122 ppod += p->used + p->free; 123 if (n <= p->free) { 124 ppod -= n; 125 p->free -= n; 126 TAILQ_INSERT_AFTER(&td->ppods, p, pr, link); 127 goto allocated; 128 } 129 } 130 131 if (__predict_false(ppod != td->nppods)) { 132 panic("%s: ppods TAILQ (%p) corrupt." 133 " At %d instead of %d at the end of the queue.", 134 __func__, &td->ppods, ppod, td->nppods); 135 } 136 137 mtx_unlock(&td->ppod_lock); 138 return (-1); 139 } 140 141 allocated: 142 pr->used = n; 143 pr->free = 0; 144 td->nppods_free -= n; 145 mtx_unlock(&td->ppod_lock); 146 147 return (ppod); 148 } 149 150 static void 151 free_ppods(struct tom_data *td, struct ppod_region *pr) 152 { 153 struct ppod_region *p; 154 155 KASSERT(pr->used > 0, ("%s: nonsense free (%d)", __func__, pr->used)); 156 157 mtx_lock(&td->ppod_lock); 158 p = TAILQ_PREV(pr, ppod_head, link); 159 if (p != NULL) 160 p->free += pr->used + pr->free; 161 else 162 td->nppods_free_head += pr->used + pr->free; 163 td->nppods_free += pr->used; 164 KASSERT(td->nppods_free <= td->nppods, 165 ("%s: nppods_free (%d) > nppods (%d). %d freed this time.", 166 __func__, td->nppods_free, td->nppods, pr->used)); 167 TAILQ_REMOVE(&td->ppods, pr, link); 168 mtx_unlock(&td->ppod_lock); 169 } 170 171 static inline int 172 pages_to_nppods(int npages, int ddp_pgsz) 173 { 174 int nsegs = npages * PAGE_SIZE / ddp_pgsz; 175 176 return (howmany(nsegs, PPOD_PAGES)); 177 } 178 179 static void 180 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) 181 { 182 183 if (db == NULL) 184 return; 185 186 if (db->pages) 187 free(db->pages, M_CXGBE); 188 189 if (db->nppods > 0) 190 free_ppods(td, &db->ppod_region); 191 192 free(db, M_CXGBE); 193 } 194 195 void 196 release_ddp_resources(struct toepcb *toep) 197 { 198 int i; 199 200 for (i = 0; i < nitems(toep->db); i++) { 201 if (toep->db[i] != NULL) { 202 free_ddp_buffer(toep->td, toep->db[i]); 203 toep->db[i] = NULL; 204 } 205 } 206 } 207 208 /* SET_TCB_FIELD sent as a ULP command looks like this */ 209 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 210 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 211 212 /* RX_DATA_ACK sent as a ULP command looks like this */ 213 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ 214 sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) 215 216 static inline void * 217 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, 218 uint64_t word, uint64_t mask, uint64_t val) 219 { 220 struct ulptx_idata *ulpsc; 221 struct cpl_set_tcb_field_core *req; 222 223 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 224 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 225 226 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 227 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 228 ulpsc->len = htobe32(sizeof(*req)); 229 230 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 231 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); 232 req->reply_ctrl = htobe16(V_NO_REPLY(1) | 233 V_QUEUENO(toep->ofld_rxq->iq.abs_id)); 234 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 235 req->mask = htobe64(mask); 236 req->val = htobe64(val); 237 238 ulpsc = (struct ulptx_idata *)(req + 1); 239 if (LEN__SET_TCB_FIELD_ULP % 16) { 240 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 241 ulpsc->len = htobe32(0); 242 return (ulpsc + 1); 243 } 244 return (ulpsc); 245 } 246 247 static inline void * 248 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) 249 { 250 struct ulptx_idata *ulpsc; 251 struct cpl_rx_data_ack_core *req; 252 253 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 254 ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); 255 256 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 257 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 258 ulpsc->len = htobe32(sizeof(*req)); 259 260 req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); 261 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); 262 req->credit_dack = htobe32(F_RX_MODULATE_RX); 263 264 ulpsc = (struct ulptx_idata *)(req + 1); 265 if (LEN__RX_DATA_ACK_ULP % 16) { 266 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 267 ulpsc->len = htobe32(0); 268 return (ulpsc + 1); 269 } 270 return (ulpsc); 271 } 272 273 static inline uint64_t 274 select_ddp_flags(struct socket *so, int flags, int db_idx) 275 { 276 uint64_t ddp_flags = V_TF_DDP_INDICATE_OUT(0); 277 int waitall = flags & MSG_WAITALL; 278 int nb = so->so_state & SS_NBIO || flags & (MSG_DONTWAIT | MSG_NBIO); 279 280 KASSERT(db_idx == 0 || db_idx == 1, 281 ("%s: bad DDP buffer index %d", __func__, db_idx)); 282 283 if (db_idx == 0) { 284 ddp_flags |= V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_ACTIVE_BUF(0); 285 if (waitall) 286 ddp_flags |= V_TF_DDP_PUSH_DISABLE_0(1); 287 else if (nb) 288 ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); 289 else 290 ddp_flags |= V_TF_DDP_BUF0_FLUSH(0); 291 } else { 292 ddp_flags |= V_TF_DDP_BUF1_VALID(1) | V_TF_DDP_ACTIVE_BUF(1); 293 if (waitall) 294 ddp_flags |= V_TF_DDP_PUSH_DISABLE_1(1); 295 else if (nb) 296 ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); 297 else 298 ddp_flags |= V_TF_DDP_BUF1_FLUSH(0); 299 } 300 301 return (ddp_flags); 302 } 303 304 static struct wrqe * 305 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, 306 int offset, uint64_t ddp_flags) 307 { 308 struct ddp_buffer *db = toep->db[db_idx]; 309 struct wrqe *wr; 310 struct work_request_hdr *wrh; 311 struct ulp_txpkt *ulpmc; 312 int len; 313 314 KASSERT(db_idx == 0 || db_idx == 1, 315 ("%s: bad DDP buffer index %d", __func__, db_idx)); 316 317 /* 318 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an 319 * RX_DATA_ACK (with RX_MODULATE to speed up delivery). 320 * 321 * The work request header is 16B and always ends at a 16B boundary. 322 * The ULPTX master commands that follow must all end at 16B boundaries 323 * too so we round up the size to 16. 324 */ 325 len = sizeof(*wrh) + 3 * roundup(LEN__SET_TCB_FIELD_ULP, 16) + 326 roundup(LEN__RX_DATA_ACK_ULP, 16); 327 328 wr = alloc_wrqe(len, toep->ctrlq); 329 if (wr == NULL) 330 return (NULL); 331 wrh = wrtod(wr); 332 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 333 ulpmc = (struct ulp_txpkt *)(wrh + 1); 334 335 /* Write the buffer's tag */ 336 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 337 W_TCB_RX_DDP_BUF0_TAG + db_idx, 338 V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), 339 V_TCB_RX_DDP_BUF0_TAG(db->tag)); 340 341 /* Update the current offset in the DDP buffer and its total length */ 342 if (db_idx == 0) 343 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 344 W_TCB_RX_DDP_BUF0_OFFSET, 345 V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | 346 V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), 347 V_TCB_RX_DDP_BUF0_OFFSET(offset) | 348 V_TCB_RX_DDP_BUF0_LEN(db->len)); 349 else 350 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 351 W_TCB_RX_DDP_BUF1_OFFSET, 352 V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | 353 V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), 354 V_TCB_RX_DDP_BUF1_OFFSET(offset) | 355 V_TCB_RX_DDP_BUF1_LEN((u64)db->len << 32)); 356 357 /* Update DDP flags */ 358 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, 359 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF1_FLUSH(1) | 360 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PUSH_DISABLE_1(1) | 361 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1) | 362 V_TF_DDP_ACTIVE_BUF(1) | V_TF_DDP_INDICATE_OUT(1), ddp_flags); 363 364 /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ 365 ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); 366 367 return (wr); 368 } 369 370 static void 371 discourage_ddp(struct toepcb *toep) 372 { 373 374 if (toep->ddp_score && --toep->ddp_score == 0) { 375 toep->ddp_flags &= ~DDP_OK; 376 toep->ddp_disabled = time_uptime; 377 CTR3(KTR_CXGBE, "%s: tid %u !DDP_OK @ %u", 378 __func__, toep->tid, time_uptime); 379 } 380 } 381 382 static int 383 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) 384 { 385 uint32_t report = be32toh(ddp_report); 386 unsigned int db_flag; 387 struct inpcb *inp = toep->inp; 388 struct tcpcb *tp; 389 struct socket *so; 390 struct sockbuf *sb; 391 struct mbuf *m; 392 393 db_flag = report & F_DDP_BUF_IDX ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 394 395 if (__predict_false(!(report & F_DDP_INV))) 396 CXGBE_UNIMPLEMENTED("DDP buffer still valid"); 397 398 INP_WLOCK(inp); 399 so = inp_inpcbtosocket(inp); 400 sb = &so->so_rcv; 401 if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) { 402 403 /* 404 * XXX: think a bit more. 405 * tcpcb probably gone, but socket should still be around 406 * because we always wait for DDP completion in soreceive no 407 * matter what. Just wake it up and let it clean up. 408 */ 409 410 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 411 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 412 SOCKBUF_LOCK(sb); 413 goto wakeup; 414 } 415 416 tp = intotcpcb(inp); 417 len += be32toh(rcv_nxt) - tp->rcv_nxt; 418 tp->rcv_nxt += len; 419 tp->t_rcvtime = ticks; 420 #ifndef USE_DDP_RX_FLOW_CONTROL 421 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 422 tp->rcv_wnd -= len; 423 #endif 424 425 m = m_get(M_NOWAIT, MT_DATA); 426 if (m == NULL) 427 CXGBE_UNIMPLEMENTED("mbuf alloc failure"); 428 m->m_len = len; 429 m->m_flags |= M_DDP; /* Data is already where it should be */ 430 m->m_data = "nothing to see here"; 431 432 SOCKBUF_LOCK(sb); 433 if (report & F_DDP_BUF_COMPLETE) 434 toep->ddp_score = DDP_HIGH_SCORE; 435 else 436 discourage_ddp(toep); 437 438 KASSERT(toep->sb_cc >= sb->sb_cc, 439 ("%s: sb %p has more data (%d) than last time (%d).", 440 __func__, sb, sb->sb_cc, toep->sb_cc)); 441 toep->rx_credits += toep->sb_cc - sb->sb_cc; 442 #ifdef USE_DDP_RX_FLOW_CONTROL 443 toep->rx_credits -= len; /* adjust for F_RX_FC_DDP */ 444 #endif 445 sbappendstream_locked(sb, m); 446 toep->sb_cc = sb->sb_cc; 447 wakeup: 448 KASSERT(toep->ddp_flags & db_flag, 449 ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x, report 0x%x", 450 __func__, toep, toep->ddp_flags, report)); 451 toep->ddp_flags &= ~db_flag; 452 sorwakeup_locked(so); 453 SOCKBUF_UNLOCK_ASSERT(sb); 454 455 INP_WUNLOCK(inp); 456 return (0); 457 } 458 459 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ 460 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ 461 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ 462 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) 463 464 static int 465 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 466 { 467 struct adapter *sc = iq->adapter; 468 const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); 469 unsigned int tid = GET_TID(cpl); 470 uint32_t vld; 471 struct toepcb *toep = lookup_tid(sc, tid); 472 473 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 474 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 475 KASSERT(!(toep->flags & TPF_SYNQE), 476 ("%s: toep %p claims to be a synq entry", __func__, toep)); 477 478 vld = be32toh(cpl->ddpvld); 479 if (__predict_false(vld & DDP_ERR)) { 480 panic("%s: DDP error 0x%x (tid %d, toep %p)", 481 __func__, vld, tid, toep); 482 } 483 484 handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); 485 486 return (0); 487 } 488 489 static int 490 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, 491 struct mbuf *m) 492 { 493 struct adapter *sc = iq->adapter; 494 const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); 495 unsigned int tid = GET_TID(cpl); 496 struct toepcb *toep = lookup_tid(sc, tid); 497 498 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 499 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 500 KASSERT(!(toep->flags & TPF_SYNQE), 501 ("%s: toep %p claims to be a synq entry", __func__, toep)); 502 503 handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); 504 505 return (0); 506 } 507 508 void 509 enable_ddp(struct adapter *sc, struct toepcb *toep) 510 { 511 512 KASSERT((toep->ddp_flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, 513 ("%s: toep %p has bad ddp_flags 0x%x", 514 __func__, toep, toep->ddp_flags)); 515 516 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 517 __func__, toep->tid, time_uptime); 518 519 toep->ddp_flags |= DDP_SC_REQ; 520 t4_set_tcb_field(sc, toep, W_TCB_RX_DDP_FLAGS, 521 V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | 522 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | 523 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), 524 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1)); 525 t4_set_tcb_field(sc, toep, W_TCB_T_FLAGS, 526 V_TF_RCV_COALESCE_ENABLE(1), 0); 527 } 528 529 static inline void 530 disable_ddp(struct adapter *sc, struct toepcb *toep) 531 { 532 533 KASSERT((toep->ddp_flags & (DDP_ON | DDP_SC_REQ)) == DDP_ON, 534 ("%s: toep %p has bad ddp_flags 0x%x", 535 __func__, toep, toep->ddp_flags)); 536 537 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 538 __func__, toep->tid, time_uptime); 539 540 toep->ddp_flags |= DDP_SC_REQ; 541 t4_set_tcb_field(sc, toep, W_TCB_T_FLAGS, 542 V_TF_RCV_COALESCE_ENABLE(1), V_TF_RCV_COALESCE_ENABLE(1)); 543 t4_set_tcb_field(sc, toep, W_TCB_RX_DDP_FLAGS, V_TF_DDP_OFF(1), 544 V_TF_DDP_OFF(1)); 545 } 546 547 static int 548 hold_uio(struct uio *uio, vm_page_t **ppages, int *pnpages) 549 { 550 struct vm_map *map; 551 struct iovec *iov; 552 vm_offset_t start, end; 553 vm_page_t *pp; 554 int n; 555 556 KASSERT(uio->uio_iovcnt == 1, 557 ("%s: uio_iovcnt %d", __func__, uio->uio_iovcnt)); 558 KASSERT(uio->uio_td->td_proc == curproc, 559 ("%s: uio proc (%p) is not curproc (%p)", 560 __func__, uio->uio_td->td_proc, curproc)); 561 562 map = &curproc->p_vmspace->vm_map; 563 iov = &uio->uio_iov[0]; 564 start = trunc_page((uintptr_t)iov->iov_base); 565 end = round_page((vm_offset_t)iov->iov_base + iov->iov_len); 566 n = howmany(end - start, PAGE_SIZE); 567 568 if (end - start > MAX_DDP_BUFFER_SIZE) 569 return (E2BIG); 570 571 pp = malloc(n * sizeof(vm_page_t), M_CXGBE, M_NOWAIT); 572 if (pp == NULL) 573 return (ENOMEM); 574 575 if (vm_fault_quick_hold_pages(map, (vm_offset_t)iov->iov_base, 576 iov->iov_len, VM_PROT_WRITE, pp, n) < 0) { 577 free(pp, M_CXGBE); 578 return (EFAULT); 579 } 580 581 *ppages = pp; 582 *pnpages = n; 583 584 return (0); 585 } 586 587 static int 588 bufcmp(struct ddp_buffer *db, vm_page_t *pages, int npages, int offset, int len) 589 { 590 int i; 591 592 if (db == NULL || db->npages != npages || db->offset != offset || 593 db->len != len) 594 return (1); 595 596 for (i = 0; i < npages; i++) { 597 if (pages[i]->phys_addr != db->pages[i]->phys_addr) 598 return (1); 599 } 600 601 return (0); 602 } 603 604 static int 605 calculate_hcf(int n1, int n2) 606 { 607 int a, b, t; 608 609 if (n1 <= n2) { 610 a = n1; 611 b = n2; 612 } else { 613 a = n2; 614 b = n1; 615 } 616 617 while (a != 0) { 618 t = a; 619 a = b % a; 620 b = t; 621 } 622 623 return (b); 624 } 625 626 static struct ddp_buffer * 627 alloc_ddp_buffer(struct tom_data *td, vm_page_t *pages, int npages, int offset, 628 int len) 629 { 630 int i, hcf, seglen, idx, ppod, nppods; 631 struct ddp_buffer *db; 632 633 /* 634 * The DDP page size is unrelated to the VM page size. We combine 635 * contiguous physical pages into larger segments to get the best DDP 636 * page size possible. This is the largest of the four sizes in 637 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in 638 * the page list. 639 */ 640 hcf = 0; 641 for (i = 0; i < npages; i++) { 642 seglen = PAGE_SIZE; 643 while (i < npages - 1 && 644 pages[i]->phys_addr + PAGE_SIZE == pages[i + 1]->phys_addr) { 645 seglen += PAGE_SIZE; 646 i++; 647 } 648 649 hcf = calculate_hcf(hcf, seglen); 650 if (hcf < t4_ddp_pgsz[1]) { 651 idx = 0; 652 goto have_pgsz; /* give up, short circuit */ 653 } 654 } 655 656 if (hcf % t4_ddp_pgsz[0] != 0) { 657 /* hmmm. This could only happen when PAGE_SIZE < 4K */ 658 KASSERT(PAGE_SIZE < 4096, 659 ("%s: PAGE_SIZE %d, hcf %d", __func__, PAGE_SIZE, hcf)); 660 CTR3(KTR_CXGBE, "%s: PAGE_SIZE %d, hcf %d", 661 __func__, PAGE_SIZE, hcf); 662 return (NULL); 663 } 664 665 for (idx = nitems(t4_ddp_pgsz) - 1; idx > 0; idx--) { 666 if (hcf % t4_ddp_pgsz[idx] == 0) 667 break; 668 } 669 have_pgsz: 670 671 db = malloc(sizeof(*db), M_CXGBE, M_NOWAIT); 672 if (db == NULL) { 673 CTR1(KTR_CXGBE, "%s: malloc failed.", __func__); 674 return (NULL); 675 } 676 677 nppods = pages_to_nppods(npages, t4_ddp_pgsz[idx]); 678 ppod = alloc_ppods(td, nppods, &db->ppod_region); 679 if (ppod < 0) { 680 free(db, M_CXGBE); 681 CTR4(KTR_CXGBE, "%s: no pods, nppods %d, resid %d, pgsz %d", 682 __func__, nppods, len, t4_ddp_pgsz[idx]); 683 return (NULL); 684 } 685 686 KASSERT(idx <= M_PPOD_PGSZ && ppod <= M_PPOD_TAG, 687 ("%s: DDP pgsz_idx = %d, ppod = %d", __func__, idx, ppod)); 688 689 db->tag = V_PPOD_PGSZ(idx) | V_PPOD_TAG(ppod); 690 db->nppods = nppods; 691 db->npages = npages; 692 db->pages = pages; 693 db->offset = offset; 694 db->len = len; 695 696 CTR6(KTR_CXGBE, "New DDP buffer. " 697 "ddp_pgsz %d, ppod 0x%x, npages %d, nppods %d, offset %d, len %d", 698 t4_ddp_pgsz[idx], ppod, db->npages, db->nppods, db->offset, 699 db->len); 700 701 return (db); 702 } 703 704 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) 705 706 static int 707 write_page_pods(struct adapter *sc, struct toepcb *toep, struct ddp_buffer *db) 708 { 709 struct wrqe *wr; 710 struct ulp_mem_io *ulpmc; 711 struct ulptx_idata *ulpsc; 712 struct pagepod *ppod; 713 int i, j, k, n, chunk, len, ddp_pgsz, idx, ppod_addr; 714 715 ddp_pgsz = t4_ddp_pgsz[G_PPOD_PGSZ(db->tag)]; 716 ppod_addr = sc->vres.ddp.start + G_PPOD_TAG(db->tag) * PPOD_SIZE; 717 for (i = 0; i < db->nppods; ppod_addr += chunk) { 718 719 /* How many page pods are we writing in this cycle */ 720 n = min(db->nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 721 chunk = PPOD_SZ(n); 722 len = roundup(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 723 724 wr = alloc_wrqe(len, toep->ctrlq); 725 if (wr == NULL) 726 return (ENOMEM); /* ok to just bail out */ 727 ulpmc = wrtod(wr); 728 729 INIT_ULPTX_WR(ulpmc, len, 0, 0); 730 ulpmc->cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE) | 731 F_ULP_MEMIO_ORDER); 732 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 733 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 734 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 735 736 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 737 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 738 ulpsc->len = htobe32(chunk); 739 740 ppod = (struct pagepod *)(ulpsc + 1); 741 for (j = 0; j < n; i++, j++, ppod++) { 742 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 743 V_PPOD_TID(toep->tid) | db->tag); 744 ppod->len_offset = htobe64(V_PPOD_LEN(db->len) | 745 V_PPOD_OFST(db->offset)); 746 ppod->rsvd = 0; 747 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 748 for (k = 0; k < nitems(ppod->addr); k++) { 749 if (idx < db->npages) { 750 ppod->addr[k] = 751 htobe64(db->pages[idx]->phys_addr); 752 idx += ddp_pgsz / PAGE_SIZE; 753 } else 754 ppod->addr[k] = 0; 755 #if 0 756 CTR5(KTR_CXGBE, 757 "%s: tid %d ppod[%d]->addr[%d] = %p", 758 __func__, toep->tid, i, k, 759 htobe64(ppod->addr[k])); 760 #endif 761 } 762 763 } 764 765 t4_wrq_tx(sc, wr); 766 } 767 768 return (0); 769 } 770 771 /* 772 * Reuse, or allocate (and program the page pods for) a new DDP buffer. The 773 * "pages" array is handed over to this function and should not be used in any 774 * way by the caller after that. 775 */ 776 static int 777 select_ddp_buffer(struct adapter *sc, struct toepcb *toep, vm_page_t *pages, 778 int npages, int db_off, int db_len) 779 { 780 struct ddp_buffer *db; 781 struct tom_data *td = sc->tom_softc; 782 int i, empty_slot = -1; 783 784 /* Try to reuse */ 785 for (i = 0; i < nitems(toep->db); i++) { 786 if (bufcmp(toep->db[i], pages, npages, db_off, db_len) == 0) { 787 free(pages, M_CXGBE); 788 return (i); /* pages still held */ 789 } else if (toep->db[i] == NULL && empty_slot < 0) 790 empty_slot = i; 791 } 792 793 /* Allocate new buffer, write its page pods. */ 794 db = alloc_ddp_buffer(td, pages, npages, db_off, db_len); 795 if (db == NULL) { 796 vm_page_unhold_pages(pages, npages); 797 free(pages, M_CXGBE); 798 return (-1); 799 } 800 if (write_page_pods(sc, toep, db) != 0) { 801 vm_page_unhold_pages(pages, npages); 802 free_ddp_buffer(td, db); 803 return (-1); 804 } 805 806 i = empty_slot; 807 if (i < 0) { 808 i = arc4random() % nitems(toep->db); 809 free_ddp_buffer(td, toep->db[i]); 810 } 811 toep->db[i] = db; 812 813 CTR5(KTR_CXGBE, "%s: tid %d, DDP buffer[%d] = %p (tag 0x%x)", 814 __func__, toep->tid, i, db, db->tag); 815 816 return (i); 817 } 818 819 static void 820 wire_ddp_buffer(struct ddp_buffer *db) 821 { 822 int i; 823 vm_page_t p; 824 825 for (i = 0; i < db->npages; i++) { 826 p = db->pages[i]; 827 vm_page_lock(p); 828 vm_page_wire(p); 829 vm_page_unhold(p); 830 vm_page_unlock(p); 831 } 832 } 833 834 static void 835 unwire_ddp_buffer(struct ddp_buffer *db) 836 { 837 int i; 838 vm_page_t p; 839 840 for (i = 0; i < db->npages; i++) { 841 p = db->pages[i]; 842 vm_page_lock(p); 843 vm_page_unwire(p, 0); 844 vm_page_unlock(p); 845 } 846 } 847 848 static int 849 handle_ddp(struct socket *so, struct uio *uio, int flags, int error) 850 { 851 struct sockbuf *sb = &so->so_rcv; 852 struct tcpcb *tp = so_sototcpcb(so); 853 struct toepcb *toep = tp->t_toe; 854 struct adapter *sc = td_adapter(toep->td); 855 vm_page_t *pages; 856 int npages, db_idx, rc, buf_flag; 857 struct ddp_buffer *db; 858 struct wrqe *wr; 859 uint64_t ddp_flags; 860 861 SOCKBUF_LOCK_ASSERT(sb); 862 863 #if 0 864 if (sb->sb_cc + sc->tt.ddp_thres > uio->uio_resid) { 865 CTR4(KTR_CXGBE, "%s: sb_cc %d, threshold %d, resid %d", 866 __func__, sb->sb_cc, sc->tt.ddp_thres, uio->uio_resid); 867 } 868 #endif 869 870 /* XXX: too eager to disable DDP, could handle NBIO better than this. */ 871 if (sb->sb_cc >= uio->uio_resid || uio->uio_resid < sc->tt.ddp_thres || 872 uio->uio_resid > MAX_DDP_BUFFER_SIZE || uio->uio_iovcnt > 1 || 873 so->so_state & SS_NBIO || flags & (MSG_DONTWAIT | MSG_NBIO) || 874 error || so->so_error || sb->sb_state & SBS_CANTRCVMORE) 875 goto no_ddp; 876 877 /* 878 * Fault in and then hold the pages of the uio buffers. We'll wire them 879 * a bit later if everything else works out. 880 */ 881 SOCKBUF_UNLOCK(sb); 882 if (hold_uio(uio, &pages, &npages) != 0) { 883 SOCKBUF_LOCK(sb); 884 goto no_ddp; 885 } 886 SOCKBUF_LOCK(sb); 887 if (__predict_false(so->so_error || sb->sb_state & SBS_CANTRCVMORE)) { 888 vm_page_unhold_pages(pages, npages); 889 free(pages, M_CXGBE); 890 goto no_ddp; 891 } 892 893 /* 894 * Figure out which one of the two DDP buffers to use this time. 895 */ 896 db_idx = select_ddp_buffer(sc, toep, pages, npages, 897 (uintptr_t)uio->uio_iov->iov_base & PAGE_MASK, uio->uio_resid); 898 pages = NULL; /* handed off to select_ddp_buffer */ 899 if (db_idx < 0) 900 goto no_ddp; 901 db = toep->db[db_idx]; 902 buf_flag = db_idx == 0 ? DDP_BUF0_ACTIVE : DDP_BUF1_ACTIVE; 903 904 /* 905 * Build the compound work request that tells the chip where to DMA the 906 * payload. 907 */ 908 ddp_flags = select_ddp_flags(so, flags, db_idx); 909 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, sb->sb_cc, ddp_flags); 910 if (wr == NULL) { 911 /* 912 * Just unhold the pages. The DDP buffer's software state is 913 * left as-is in the toep. The page pods were written 914 * successfully and we may have an opportunity to use it in the 915 * future. 916 */ 917 vm_page_unhold_pages(db->pages, db->npages); 918 goto no_ddp; 919 } 920 921 /* Wire (and then unhold) the pages, and give the chip the go-ahead. */ 922 wire_ddp_buffer(db); 923 t4_wrq_tx(sc, wr); 924 sb->sb_flags &= ~SB_DDP_INDICATE; 925 toep->ddp_flags |= buf_flag; 926 927 /* 928 * Wait for the DDP operation to complete and then unwire the pages. 929 * The return code from the sbwait will be the final return code of this 930 * function. But we do need to wait for DDP no matter what. 931 */ 932 rc = sbwait(sb); 933 while (toep->ddp_flags & buf_flag) { 934 sb->sb_flags |= SB_WAIT; 935 msleep(&sb->sb_cc, &sb->sb_mtx, PSOCK , "sbwait", 0); 936 } 937 unwire_ddp_buffer(db); 938 return (rc); 939 no_ddp: 940 disable_ddp(sc, toep); 941 discourage_ddp(toep); 942 sb->sb_flags &= ~SB_DDP_INDICATE; 943 return (0); 944 } 945 946 void 947 t4_init_ddp(struct adapter *sc, struct tom_data *td) 948 { 949 int nppods = sc->vres.ddp.size / PPOD_SIZE; 950 951 td->nppods = nppods; 952 td->nppods_free = nppods; 953 td->nppods_free_head = nppods; 954 TAILQ_INIT(&td->ppods); 955 mtx_init(&td->ppod_lock, "page pods", NULL, MTX_DEF); 956 957 t4_register_cpl_handler(sc, CPL_RX_DATA_DDP, do_rx_data_ddp); 958 t4_register_cpl_handler(sc, CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); 959 } 960 961 void 962 t4_uninit_ddp(struct adapter *sc __unused, struct tom_data *td) 963 { 964 965 KASSERT(td->nppods == td->nppods_free, 966 ("%s: page pods still in use, nppods = %d, free = %d", 967 __func__, td->nppods, td->nppods_free)); 968 969 if (mtx_initialized(&td->ppod_lock)) 970 mtx_destroy(&td->ppod_lock); 971 } 972 973 #define VNET_SO_ASSERT(so) \ 974 VNET_ASSERT(curvnet != NULL, \ 975 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 976 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 977 static int 978 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 979 { 980 981 CXGBE_UNIMPLEMENTED(__func__); 982 } 983 984 /* 985 * Copy an mbuf chain into a uio limited by len if set. 986 */ 987 static int 988 m_mbuftouio_ddp(struct uio *uio, struct mbuf *m, int len) 989 { 990 int error, length, total; 991 int progress = 0; 992 993 if (len > 0) 994 total = min(uio->uio_resid, len); 995 else 996 total = uio->uio_resid; 997 998 /* Fill the uio with data from the mbufs. */ 999 for (; m != NULL; m = m->m_next) { 1000 length = min(m->m_len, total - progress); 1001 1002 if (m->m_flags & M_DDP) { 1003 enum uio_seg segflag = uio->uio_segflg; 1004 1005 uio->uio_segflg = UIO_NOCOPY; 1006 error = uiomove(mtod(m, void *), length, uio); 1007 uio->uio_segflg = segflag; 1008 } else 1009 error = uiomove(mtod(m, void *), length, uio); 1010 if (error) 1011 return (error); 1012 1013 progress += length; 1014 } 1015 1016 return (0); 1017 } 1018 1019 /* 1020 * Based on soreceive_stream() in uipc_socket.c 1021 */ 1022 int 1023 t4_soreceive_ddp(struct socket *so, struct sockaddr **psa, struct uio *uio, 1024 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1025 { 1026 int len = 0, error = 0, flags, oresid, ddp_handled = 0; 1027 struct sockbuf *sb; 1028 struct mbuf *m, *n = NULL; 1029 1030 /* We only do stream sockets. */ 1031 if (so->so_type != SOCK_STREAM) 1032 return (EINVAL); 1033 if (psa != NULL) 1034 *psa = NULL; 1035 if (controlp != NULL) 1036 return (EINVAL); 1037 if (flagsp != NULL) 1038 flags = *flagsp &~ MSG_EOR; 1039 else 1040 flags = 0; 1041 if (flags & MSG_OOB) 1042 return (soreceive_rcvoob(so, uio, flags)); 1043 if (mp0 != NULL) 1044 *mp0 = NULL; 1045 1046 sb = &so->so_rcv; 1047 1048 /* Prevent other readers from entering the socket. */ 1049 error = sblock(sb, SBLOCKWAIT(flags)); 1050 if (error) 1051 goto out; 1052 SOCKBUF_LOCK(sb); 1053 1054 /* Easy one, no space to copyout anything. */ 1055 if (uio->uio_resid == 0) { 1056 error = EINVAL; 1057 goto out; 1058 } 1059 oresid = uio->uio_resid; 1060 1061 /* We will never ever get anything unless we are or were connected. */ 1062 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1063 error = ENOTCONN; 1064 goto out; 1065 } 1066 1067 restart: 1068 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1069 1070 if (sb->sb_flags & SB_DDP_INDICATE && !ddp_handled) { 1071 1072 /* uio should be just as it was at entry */ 1073 KASSERT(oresid == uio->uio_resid, 1074 ("%s: oresid = %d, uio_resid = %zd, sb_cc = %d", 1075 __func__, oresid, uio->uio_resid, sb->sb_cc)); 1076 1077 error = handle_ddp(so, uio, flags, 0); 1078 ddp_handled = 1; 1079 if (error) 1080 goto out; 1081 } 1082 1083 /* Abort if socket has reported problems. */ 1084 if (so->so_error) { 1085 if (sb->sb_cc > 0) 1086 goto deliver; 1087 if (oresid > uio->uio_resid) 1088 goto out; 1089 error = so->so_error; 1090 if (!(flags & MSG_PEEK)) 1091 so->so_error = 0; 1092 goto out; 1093 } 1094 1095 /* Door is closed. Deliver what is left, if any. */ 1096 if (sb->sb_state & SBS_CANTRCVMORE) { 1097 if (sb->sb_cc > 0) 1098 goto deliver; 1099 else 1100 goto out; 1101 } 1102 1103 /* Socket buffer is empty and we shall not block. */ 1104 if (sb->sb_cc == 0 && 1105 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 1106 error = EAGAIN; 1107 goto out; 1108 } 1109 1110 /* Socket buffer got some data that we shall deliver now. */ 1111 if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) && 1112 ((sb->sb_flags & SS_NBIO) || 1113 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 1114 sb->sb_cc >= sb->sb_lowat || 1115 sb->sb_cc >= uio->uio_resid || 1116 sb->sb_cc >= sb->sb_hiwat) ) { 1117 goto deliver; 1118 } 1119 1120 /* On MSG_WAITALL we must wait until all data or error arrives. */ 1121 if ((flags & MSG_WAITALL) && 1122 (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_lowat)) 1123 goto deliver; 1124 1125 /* 1126 * Wait and block until (more) data comes in. 1127 * NB: Drops the sockbuf lock during wait. 1128 */ 1129 error = sbwait(sb); 1130 if (error) { 1131 if (sb->sb_flags & SB_DDP_INDICATE && !ddp_handled) { 1132 (void) handle_ddp(so, uio, flags, 1); 1133 ddp_handled = 1; 1134 } 1135 goto out; 1136 } 1137 goto restart; 1138 1139 deliver: 1140 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1141 KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__)); 1142 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 1143 1144 if (sb->sb_flags & SB_DDP_INDICATE && !ddp_handled) 1145 goto restart; 1146 1147 /* Statistics. */ 1148 if (uio->uio_td) 1149 uio->uio_td->td_ru.ru_msgrcv++; 1150 1151 /* Fill uio until full or current end of socket buffer is reached. */ 1152 len = min(uio->uio_resid, sb->sb_cc); 1153 if (mp0 != NULL) { 1154 /* Dequeue as many mbufs as possible. */ 1155 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 1156 for (*mp0 = m = sb->sb_mb; 1157 m != NULL && m->m_len <= len; 1158 m = m->m_next) { 1159 len -= m->m_len; 1160 uio->uio_resid -= m->m_len; 1161 sbfree(sb, m); 1162 n = m; 1163 } 1164 sb->sb_mb = m; 1165 if (sb->sb_mb == NULL) 1166 SB_EMPTY_FIXUP(sb); 1167 n->m_next = NULL; 1168 } 1169 /* Copy the remainder. */ 1170 if (len > 0) { 1171 KASSERT(sb->sb_mb != NULL, 1172 ("%s: len > 0 && sb->sb_mb empty", __func__)); 1173 1174 m = m_copym(sb->sb_mb, 0, len, M_DONTWAIT); 1175 if (m == NULL) 1176 len = 0; /* Don't flush data from sockbuf. */ 1177 else 1178 uio->uio_resid -= m->m_len; 1179 if (*mp0 != NULL) 1180 n->m_next = m; 1181 else 1182 *mp0 = m; 1183 if (*mp0 == NULL) { 1184 error = ENOBUFS; 1185 goto out; 1186 } 1187 } 1188 } else { 1189 /* NB: Must unlock socket buffer as uiomove may sleep. */ 1190 SOCKBUF_UNLOCK(sb); 1191 error = m_mbuftouio_ddp(uio, sb->sb_mb, len); 1192 SOCKBUF_LOCK(sb); 1193 if (error) 1194 goto out; 1195 } 1196 SBLASTRECORDCHK(sb); 1197 SBLASTMBUFCHK(sb); 1198 1199 /* 1200 * Remove the delivered data from the socket buffer unless we 1201 * were only peeking. 1202 */ 1203 if (!(flags & MSG_PEEK)) { 1204 if (len > 0) 1205 sbdrop_locked(sb, len); 1206 1207 /* Notify protocol that we drained some data. */ 1208 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 1209 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 1210 !(flags & MSG_SOCALLBCK))) { 1211 SOCKBUF_UNLOCK(sb); 1212 VNET_SO_ASSERT(so); 1213 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 1214 SOCKBUF_LOCK(sb); 1215 } 1216 } 1217 1218 /* 1219 * For MSG_WAITALL we may have to loop again and wait for 1220 * more data to come in. 1221 */ 1222 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 1223 goto restart; 1224 out: 1225 SOCKBUF_LOCK_ASSERT(sb); 1226 SBLASTRECORDCHK(sb); 1227 SBLASTMBUFCHK(sb); 1228 SOCKBUF_UNLOCK(sb); 1229 sbunlock(sb); 1230 return (error); 1231 } 1232 1233 #endif 1234