1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 35 #include <sys/param.h> 36 #include <sys/aio.h> 37 #include <sys/file.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/ktr.h> 41 #include <sys/module.h> 42 #include <sys/protosw.h> 43 #include <sys/proc.h> 44 #include <sys/domain.h> 45 #include <sys/socket.h> 46 #include <sys/socketvar.h> 47 #include <sys/taskqueue.h> 48 #include <sys/uio.h> 49 #include <netinet/in.h> 50 #include <netinet/in_pcb.h> 51 #include <netinet/ip.h> 52 #include <netinet/tcp_var.h> 53 #define TCPSTATES 54 #include <netinet/tcp_fsm.h> 55 #include <netinet/toecore.h> 56 57 #include <vm/vm.h> 58 #include <vm/vm_extern.h> 59 #include <vm/vm_param.h> 60 #include <vm/pmap.h> 61 #include <vm/vm_map.h> 62 #include <vm/vm_page.h> 63 #include <vm/vm_object.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/ctl/ctl_io.h> 67 68 #ifdef TCP_OFFLOAD 69 #include "common/common.h" 70 #include "common/t4_msg.h" 71 #include "common/t4_regs.h" 72 #include "common/t4_tcb.h" 73 #include "tom/t4_tom.h" 74 75 /* 76 * Use the 'backend3' field in AIO jobs to store the amount of data 77 * received by the AIO job so far. 78 */ 79 #define aio_received backend3 80 81 static void aio_ddp_requeue_task(void *context, int pending); 82 static void ddp_complete_all(struct toepcb *toep, int error); 83 static void t4_aio_cancel_active(struct kaiocb *job); 84 static void t4_aio_cancel_queued(struct kaiocb *job); 85 86 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; 87 static struct mtx ddp_orphan_pagesets_lock; 88 static struct task ddp_orphan_task; 89 90 #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) 91 92 /* 93 * A page set holds information about a buffer used for DDP. The page 94 * set holds resources such as the VM pages backing the buffer (either 95 * held or wired) and the page pods associated with the buffer. 96 * Recently used page sets are cached to allow for efficient reuse of 97 * buffers (avoiding the need to re-fault in pages, hold them, etc.). 98 * Note that cached page sets keep the backing pages wired. The 99 * number of wired pages is capped by only allowing for two wired 100 * pagesets per connection. This is not a perfect cap, but is a 101 * trade-off for performance. 102 * 103 * If an application ping-pongs two buffers for a connection via 104 * aio_read(2) then those buffers should remain wired and expensive VM 105 * fault lookups should be avoided after each buffer has been used 106 * once. If an application uses more than two buffers then this will 107 * fall back to doing expensive VM fault lookups for each operation. 108 */ 109 static void 110 free_pageset(struct tom_data *td, struct pageset *ps) 111 { 112 vm_page_t p; 113 int i; 114 115 if (ps->prsv.prsv_nppods > 0) 116 t4_free_page_pods(&ps->prsv); 117 118 for (i = 0; i < ps->npages; i++) { 119 p = ps->pages[i]; 120 vm_page_unwire(p, PQ_INACTIVE); 121 } 122 mtx_lock(&ddp_orphan_pagesets_lock); 123 TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); 124 taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); 125 mtx_unlock(&ddp_orphan_pagesets_lock); 126 } 127 128 static void 129 ddp_free_orphan_pagesets(void *context, int pending) 130 { 131 struct pageset *ps; 132 133 mtx_lock(&ddp_orphan_pagesets_lock); 134 while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { 135 ps = TAILQ_FIRST(&ddp_orphan_pagesets); 136 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); 137 mtx_unlock(&ddp_orphan_pagesets_lock); 138 if (ps->vm) 139 vmspace_free(ps->vm); 140 free(ps, M_CXGBE); 141 mtx_lock(&ddp_orphan_pagesets_lock); 142 } 143 mtx_unlock(&ddp_orphan_pagesets_lock); 144 } 145 146 static void 147 recycle_pageset(struct toepcb *toep, struct pageset *ps) 148 { 149 150 DDP_ASSERT_LOCKED(toep); 151 if (!(toep->ddp.flags & DDP_DEAD)) { 152 KASSERT(toep->ddp.cached_count + toep->ddp.active_count < 153 nitems(toep->ddp.db), ("too many wired pagesets")); 154 TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link); 155 toep->ddp.cached_count++; 156 } else 157 free_pageset(toep->td, ps); 158 } 159 160 static void 161 ddp_complete_one(struct kaiocb *job, int error) 162 { 163 long copied; 164 165 /* 166 * If this job had copied data out of the socket buffer before 167 * it was cancelled, report it as a short read rather than an 168 * error. 169 */ 170 copied = job->aio_received; 171 if (copied != 0 || error == 0) 172 aio_complete(job, copied, 0); 173 else 174 aio_complete(job, -1, error); 175 } 176 177 static void 178 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) 179 { 180 181 if (db->job) { 182 /* 183 * XXX: If we are un-offloading the socket then we 184 * should requeue these on the socket somehow. If we 185 * got a FIN from the remote end, then this completes 186 * any remaining requests with an EOF read. 187 */ 188 if (!aio_clear_cancel_function(db->job)) 189 ddp_complete_one(db->job, 0); 190 } 191 192 if (db->ps) 193 free_pageset(td, db->ps); 194 } 195 196 void 197 ddp_init_toep(struct toepcb *toep) 198 { 199 200 TAILQ_INIT(&toep->ddp.aiojobq); 201 TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep); 202 toep->ddp.flags = DDP_OK; 203 toep->ddp.active_id = -1; 204 mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF); 205 } 206 207 void 208 ddp_uninit_toep(struct toepcb *toep) 209 { 210 211 mtx_destroy(&toep->ddp.lock); 212 } 213 214 void 215 release_ddp_resources(struct toepcb *toep) 216 { 217 struct pageset *ps; 218 int i; 219 220 DDP_LOCK(toep); 221 toep->ddp.flags |= DDP_DEAD; 222 for (i = 0; i < nitems(toep->ddp.db); i++) { 223 free_ddp_buffer(toep->td, &toep->ddp.db[i]); 224 } 225 while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) { 226 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 227 free_pageset(toep->td, ps); 228 } 229 ddp_complete_all(toep, 0); 230 DDP_UNLOCK(toep); 231 } 232 233 #ifdef INVARIANTS 234 void 235 ddp_assert_empty(struct toepcb *toep) 236 { 237 int i; 238 239 MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE)); 240 for (i = 0; i < nitems(toep->ddp.db); i++) { 241 MPASS(toep->ddp.db[i].job == NULL); 242 MPASS(toep->ddp.db[i].ps == NULL); 243 } 244 MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets)); 245 MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq)); 246 } 247 #endif 248 249 static void 250 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, 251 unsigned int db_idx) 252 { 253 unsigned int db_flag; 254 255 toep->ddp.active_count--; 256 if (toep->ddp.active_id == db_idx) { 257 if (toep->ddp.active_count == 0) { 258 KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL, 259 ("%s: active_count mismatch", __func__)); 260 toep->ddp.active_id = -1; 261 } else 262 toep->ddp.active_id ^= 1; 263 #ifdef VERBOSE_TRACES 264 CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__, 265 toep->tid, toep->ddp.active_id); 266 #endif 267 } else { 268 KASSERT(toep->ddp.active_count != 0 && 269 toep->ddp.active_id != -1, 270 ("%s: active count mismatch", __func__)); 271 } 272 273 db->cancel_pending = 0; 274 db->job = NULL; 275 recycle_pageset(toep, db->ps); 276 db->ps = NULL; 277 278 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 279 KASSERT(toep->ddp.flags & db_flag, 280 ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", 281 __func__, toep, toep->ddp.flags)); 282 toep->ddp.flags &= ~db_flag; 283 } 284 285 /* XXX: handle_ddp_data code duplication */ 286 void 287 insert_ddp_data(struct toepcb *toep, uint32_t n) 288 { 289 struct inpcb *inp = toep->inp; 290 struct tcpcb *tp = intotcpcb(inp); 291 struct ddp_buffer *db; 292 struct kaiocb *job; 293 size_t placed; 294 long copied; 295 unsigned int db_idx; 296 #ifdef INVARIANTS 297 unsigned int db_flag; 298 #endif 299 300 INP_WLOCK_ASSERT(inp); 301 DDP_ASSERT_LOCKED(toep); 302 303 tp->rcv_nxt += n; 304 #ifndef USE_DDP_RX_FLOW_CONTROL 305 KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); 306 tp->rcv_wnd -= n; 307 #endif 308 CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", 309 __func__, n); 310 while (toep->ddp.active_count > 0) { 311 MPASS(toep->ddp.active_id != -1); 312 db_idx = toep->ddp.active_id; 313 #ifdef INVARIANTS 314 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 315 #endif 316 MPASS((toep->ddp.flags & db_flag) != 0); 317 db = &toep->ddp.db[db_idx]; 318 job = db->job; 319 copied = job->aio_received; 320 placed = n; 321 if (placed > job->uaiocb.aio_nbytes - copied) 322 placed = job->uaiocb.aio_nbytes - copied; 323 if (placed > 0) 324 job->msgrcv = 1; 325 if (!aio_clear_cancel_function(job)) { 326 /* 327 * Update the copied length for when 328 * t4_aio_cancel_active() completes this 329 * request. 330 */ 331 job->aio_received += placed; 332 } else if (copied + placed != 0) { 333 CTR4(KTR_CXGBE, 334 "%s: completing %p (copied %ld, placed %lu)", 335 __func__, job, copied, placed); 336 /* XXX: This always completes if there is some data. */ 337 aio_complete(job, copied + placed, 0); 338 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { 339 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 340 toep->ddp.waiting_count++; 341 } else 342 aio_cancel(job); 343 n -= placed; 344 complete_ddp_buffer(toep, db, db_idx); 345 } 346 347 MPASS(n == 0); 348 } 349 350 /* SET_TCB_FIELD sent as a ULP command looks like this */ 351 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 352 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 353 354 /* RX_DATA_ACK sent as a ULP command looks like this */ 355 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ 356 sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) 357 358 static inline void * 359 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, 360 uint64_t word, uint64_t mask, uint64_t val) 361 { 362 struct ulptx_idata *ulpsc; 363 struct cpl_set_tcb_field_core *req; 364 365 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 366 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 367 368 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 369 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 370 ulpsc->len = htobe32(sizeof(*req)); 371 372 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 373 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); 374 req->reply_ctrl = htobe16(V_NO_REPLY(1) | 375 V_QUEUENO(toep->ofld_rxq->iq.abs_id)); 376 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 377 req->mask = htobe64(mask); 378 req->val = htobe64(val); 379 380 ulpsc = (struct ulptx_idata *)(req + 1); 381 if (LEN__SET_TCB_FIELD_ULP % 16) { 382 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 383 ulpsc->len = htobe32(0); 384 return (ulpsc + 1); 385 } 386 return (ulpsc); 387 } 388 389 static inline void * 390 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) 391 { 392 struct ulptx_idata *ulpsc; 393 struct cpl_rx_data_ack_core *req; 394 395 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 396 ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); 397 398 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 399 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 400 ulpsc->len = htobe32(sizeof(*req)); 401 402 req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); 403 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); 404 req->credit_dack = htobe32(F_RX_MODULATE_RX); 405 406 ulpsc = (struct ulptx_idata *)(req + 1); 407 if (LEN__RX_DATA_ACK_ULP % 16) { 408 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 409 ulpsc->len = htobe32(0); 410 return (ulpsc + 1); 411 } 412 return (ulpsc); 413 } 414 415 static struct wrqe * 416 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, 417 struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask) 418 { 419 struct wrqe *wr; 420 struct work_request_hdr *wrh; 421 struct ulp_txpkt *ulpmc; 422 int len; 423 424 KASSERT(db_idx == 0 || db_idx == 1, 425 ("%s: bad DDP buffer index %d", __func__, db_idx)); 426 427 /* 428 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an 429 * RX_DATA_ACK (with RX_MODULATE to speed up delivery). 430 * 431 * The work request header is 16B and always ends at a 16B boundary. 432 * The ULPTX master commands that follow must all end at 16B boundaries 433 * too so we round up the size to 16. 434 */ 435 len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + 436 roundup2(LEN__RX_DATA_ACK_ULP, 16); 437 438 wr = alloc_wrqe(len, toep->ctrlq); 439 if (wr == NULL) 440 return (NULL); 441 wrh = wrtod(wr); 442 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 443 ulpmc = (struct ulp_txpkt *)(wrh + 1); 444 445 /* Write the buffer's tag */ 446 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 447 W_TCB_RX_DDP_BUF0_TAG + db_idx, 448 V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), 449 V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag)); 450 451 /* Update the current offset in the DDP buffer and its total length */ 452 if (db_idx == 0) 453 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 454 W_TCB_RX_DDP_BUF0_OFFSET, 455 V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | 456 V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), 457 V_TCB_RX_DDP_BUF0_OFFSET(offset) | 458 V_TCB_RX_DDP_BUF0_LEN(ps->len)); 459 else 460 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 461 W_TCB_RX_DDP_BUF1_OFFSET, 462 V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | 463 V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), 464 V_TCB_RX_DDP_BUF1_OFFSET(offset) | 465 V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32)); 466 467 /* Update DDP flags */ 468 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, 469 ddp_flags_mask, ddp_flags); 470 471 /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ 472 ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); 473 474 return (wr); 475 } 476 477 static int 478 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) 479 { 480 uint32_t report = be32toh(ddp_report); 481 unsigned int db_idx; 482 struct inpcb *inp = toep->inp; 483 struct ddp_buffer *db; 484 struct tcpcb *tp; 485 struct socket *so; 486 struct sockbuf *sb; 487 struct kaiocb *job; 488 long copied; 489 490 db_idx = report & F_DDP_BUF_IDX ? 1 : 0; 491 492 if (__predict_false(!(report & F_DDP_INV))) 493 CXGBE_UNIMPLEMENTED("DDP buffer still valid"); 494 495 INP_WLOCK(inp); 496 so = inp_inpcbtosocket(inp); 497 sb = &so->so_rcv; 498 DDP_LOCK(toep); 499 500 KASSERT(toep->ddp.active_id == db_idx, 501 ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, 502 toep->ddp.active_id, toep->tid)); 503 db = &toep->ddp.db[db_idx]; 504 job = db->job; 505 506 if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) { 507 /* 508 * This can happen due to an administrative tcpdrop(8). 509 * Just fail the request with ECONNRESET. 510 */ 511 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 512 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 513 if (aio_clear_cancel_function(job)) 514 ddp_complete_one(job, ECONNRESET); 515 goto completed; 516 } 517 518 tp = intotcpcb(inp); 519 520 /* 521 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 522 * sequence number of the next byte to receive. The length of 523 * the data received for this message must be computed by 524 * comparing the new and old values of rcv_nxt. 525 * 526 * For RX_DATA_DDP, len might be non-zero, but it is only the 527 * length of the most recent DMA. It does not include the 528 * total length of the data received since the previous update 529 * for this DDP buffer. rcv_nxt is the sequence number of the 530 * first received byte from the most recent DMA. 531 */ 532 len += be32toh(rcv_nxt) - tp->rcv_nxt; 533 tp->rcv_nxt += len; 534 tp->t_rcvtime = ticks; 535 #ifndef USE_DDP_RX_FLOW_CONTROL 536 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 537 tp->rcv_wnd -= len; 538 #endif 539 #ifdef VERBOSE_TRACES 540 CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__, 541 toep->tid, db_idx, len, report); 542 #endif 543 544 /* receive buffer autosize */ 545 MPASS(toep->vnet == so->so_vnet); 546 CURVNET_SET(toep->vnet); 547 SOCKBUF_LOCK(sb); 548 if (sb->sb_flags & SB_AUTOSIZE && 549 V_tcp_do_autorcvbuf && 550 sb->sb_hiwat < V_tcp_autorcvbuf_max && 551 len > (sbspace(sb) / 8 * 7)) { 552 struct adapter *sc = td_adapter(toep->td); 553 unsigned int hiwat = sb->sb_hiwat; 554 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 555 V_tcp_autorcvbuf_max); 556 557 if (!sbreserve_locked(sb, newsize, so, NULL)) 558 sb->sb_flags &= ~SB_AUTOSIZE; 559 } 560 SOCKBUF_UNLOCK(sb); 561 CURVNET_RESTORE(); 562 563 job->msgrcv = 1; 564 if (db->cancel_pending) { 565 /* 566 * Update the job's length but defer completion to the 567 * TCB_RPL callback. 568 */ 569 job->aio_received += len; 570 goto out; 571 } else if (!aio_clear_cancel_function(job)) { 572 /* 573 * Update the copied length for when 574 * t4_aio_cancel_active() completes this request. 575 */ 576 job->aio_received += len; 577 } else { 578 copied = job->aio_received; 579 #ifdef VERBOSE_TRACES 580 CTR5(KTR_CXGBE, 581 "%s: tid %u, completing %p (copied %ld, placed %d)", 582 __func__, toep->tid, job, copied, len); 583 #endif 584 aio_complete(job, copied + len, 0); 585 t4_rcvd(&toep->td->tod, tp); 586 } 587 588 completed: 589 complete_ddp_buffer(toep, db, db_idx); 590 if (toep->ddp.waiting_count > 0) 591 ddp_queue_toep(toep); 592 out: 593 DDP_UNLOCK(toep); 594 INP_WUNLOCK(inp); 595 596 return (0); 597 } 598 599 void 600 handle_ddp_indicate(struct toepcb *toep) 601 { 602 603 DDP_ASSERT_LOCKED(toep); 604 MPASS(toep->ddp.active_count == 0); 605 MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); 606 if (toep->ddp.waiting_count == 0) { 607 /* 608 * The pending requests that triggered the request for an 609 * an indicate were cancelled. Those cancels should have 610 * already disabled DDP. Just ignore this as the data is 611 * going into the socket buffer anyway. 612 */ 613 return; 614 } 615 CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, 616 toep->tid, toep->ddp.waiting_count); 617 ddp_queue_toep(toep); 618 } 619 620 CTASSERT(CPL_COOKIE_DDP0 + 1 == CPL_COOKIE_DDP1); 621 622 static int 623 do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 624 { 625 struct adapter *sc = iq->adapter; 626 const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); 627 unsigned int tid = GET_TID(cpl); 628 unsigned int db_idx; 629 struct toepcb *toep; 630 struct inpcb *inp; 631 struct ddp_buffer *db; 632 struct kaiocb *job; 633 long copied; 634 635 if (cpl->status != CPL_ERR_NONE) 636 panic("XXX: tcp_rpl failed: %d", cpl->status); 637 638 toep = lookup_tid(sc, tid); 639 inp = toep->inp; 640 switch (cpl->cookie) { 641 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP0): 642 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP1): 643 /* 644 * XXX: This duplicates a lot of code with handle_ddp_data(). 645 */ 646 db_idx = G_COOKIE(cpl->cookie) - CPL_COOKIE_DDP0; 647 MPASS(db_idx < nitems(toep->ddp.db)); 648 INP_WLOCK(inp); 649 DDP_LOCK(toep); 650 db = &toep->ddp.db[db_idx]; 651 652 /* 653 * handle_ddp_data() should leave the job around until 654 * this callback runs once a cancel is pending. 655 */ 656 MPASS(db != NULL); 657 MPASS(db->job != NULL); 658 MPASS(db->cancel_pending); 659 660 /* 661 * XXX: It's not clear what happens if there is data 662 * placed when the buffer is invalidated. I suspect we 663 * need to read the TCB to see how much data was placed. 664 * 665 * For now this just pretends like nothing was placed. 666 * 667 * XXX: Note that if we did check the PCB we would need to 668 * also take care of updating the tp, etc. 669 */ 670 job = db->job; 671 copied = job->aio_received; 672 if (copied == 0) { 673 CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); 674 aio_cancel(job); 675 } else { 676 CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", 677 __func__, job, copied); 678 aio_complete(job, copied, 0); 679 t4_rcvd(&toep->td->tod, intotcpcb(inp)); 680 } 681 682 complete_ddp_buffer(toep, db, db_idx); 683 if (toep->ddp.waiting_count > 0) 684 ddp_queue_toep(toep); 685 DDP_UNLOCK(toep); 686 INP_WUNLOCK(inp); 687 break; 688 default: 689 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", 690 G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); 691 } 692 693 return (0); 694 } 695 696 void 697 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) 698 { 699 struct ddp_buffer *db; 700 struct kaiocb *job; 701 long copied; 702 unsigned int db_idx; 703 #ifdef INVARIANTS 704 unsigned int db_flag; 705 #endif 706 int len, placed; 707 708 INP_WLOCK_ASSERT(toep->inp); 709 DDP_ASSERT_LOCKED(toep); 710 711 /* - 1 is to ignore the byte for FIN */ 712 len = be32toh(rcv_nxt) - tp->rcv_nxt - 1; 713 tp->rcv_nxt += len; 714 715 while (toep->ddp.active_count > 0) { 716 MPASS(toep->ddp.active_id != -1); 717 db_idx = toep->ddp.active_id; 718 #ifdef INVARIANTS 719 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 720 #endif 721 MPASS((toep->ddp.flags & db_flag) != 0); 722 db = &toep->ddp.db[db_idx]; 723 job = db->job; 724 copied = job->aio_received; 725 placed = len; 726 if (placed > job->uaiocb.aio_nbytes - copied) 727 placed = job->uaiocb.aio_nbytes - copied; 728 if (placed > 0) 729 job->msgrcv = 1; 730 if (!aio_clear_cancel_function(job)) { 731 /* 732 * Update the copied length for when 733 * t4_aio_cancel_active() completes this 734 * request. 735 */ 736 job->aio_received += placed; 737 } else { 738 CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", 739 __func__, toep->tid, db_idx, placed); 740 aio_complete(job, copied + placed, 0); 741 } 742 len -= placed; 743 complete_ddp_buffer(toep, db, db_idx); 744 } 745 746 MPASS(len == 0); 747 ddp_complete_all(toep, 0); 748 } 749 750 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ 751 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ 752 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ 753 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) 754 755 extern cpl_handler_t t4_cpl_handler[]; 756 757 static int 758 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 759 { 760 struct adapter *sc = iq->adapter; 761 const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); 762 unsigned int tid = GET_TID(cpl); 763 uint32_t vld; 764 struct toepcb *toep = lookup_tid(sc, tid); 765 766 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 767 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 768 KASSERT(!(toep->flags & TPF_SYNQE), 769 ("%s: toep %p claims to be a synq entry", __func__, toep)); 770 771 vld = be32toh(cpl->ddpvld); 772 if (__predict_false(vld & DDP_ERR)) { 773 panic("%s: DDP error 0x%x (tid %d, toep %p)", 774 __func__, vld, tid, toep); 775 } 776 777 if (ulp_mode(toep) == ULP_MODE_ISCSI) { 778 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); 779 return (0); 780 } 781 782 handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); 783 784 return (0); 785 } 786 787 static int 788 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, 789 struct mbuf *m) 790 { 791 struct adapter *sc = iq->adapter; 792 const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); 793 unsigned int tid = GET_TID(cpl); 794 struct toepcb *toep = lookup_tid(sc, tid); 795 796 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 797 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 798 KASSERT(!(toep->flags & TPF_SYNQE), 799 ("%s: toep %p claims to be a synq entry", __func__, toep)); 800 801 handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); 802 803 return (0); 804 } 805 806 static void 807 enable_ddp(struct adapter *sc, struct toepcb *toep) 808 { 809 810 KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, 811 ("%s: toep %p has bad ddp_flags 0x%x", 812 __func__, toep, toep->ddp.flags)); 813 814 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 815 __func__, toep->tid, time_uptime); 816 817 DDP_ASSERT_LOCKED(toep); 818 toep->ddp.flags |= DDP_SC_REQ; 819 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, 820 V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | 821 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | 822 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), 823 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0); 824 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 825 V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0); 826 } 827 828 static int 829 calculate_hcf(int n1, int n2) 830 { 831 int a, b, t; 832 833 if (n1 <= n2) { 834 a = n1; 835 b = n2; 836 } else { 837 a = n2; 838 b = n1; 839 } 840 841 while (a != 0) { 842 t = a; 843 a = b % a; 844 b = t; 845 } 846 847 return (b); 848 } 849 850 static inline int 851 pages_to_nppods(int npages, int ddp_page_shift) 852 { 853 854 MPASS(ddp_page_shift >= PAGE_SHIFT); 855 856 return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); 857 } 858 859 static int 860 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, 861 struct ppod_reservation *prsv) 862 { 863 vmem_addr_t addr; /* relative to start of region */ 864 865 if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, 866 &addr) != 0) 867 return (ENOMEM); 868 869 CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", 870 __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, 871 nppods, 1 << pr->pr_page_shift[pgsz_idx]); 872 873 /* 874 * The hardware tagmask includes an extra invalid bit but the arena was 875 * seeded with valid values only. An allocation out of this arena will 876 * fit inside the tagmask but won't have the invalid bit set. 877 */ 878 MPASS((addr & pr->pr_tag_mask) == addr); 879 MPASS((addr & pr->pr_invalid_bit) == 0); 880 881 prsv->prsv_pr = pr; 882 prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; 883 prsv->prsv_nppods = nppods; 884 885 return (0); 886 } 887 888 int 889 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) 890 { 891 int i, hcf, seglen, idx, nppods; 892 struct ppod_reservation *prsv = &ps->prsv; 893 894 KASSERT(prsv->prsv_nppods == 0, 895 ("%s: page pods already allocated", __func__)); 896 897 /* 898 * The DDP page size is unrelated to the VM page size. We combine 899 * contiguous physical pages into larger segments to get the best DDP 900 * page size possible. This is the largest of the four sizes in 901 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in 902 * the page list. 903 */ 904 hcf = 0; 905 for (i = 0; i < ps->npages; i++) { 906 seglen = PAGE_SIZE; 907 while (i < ps->npages - 1 && 908 ps->pages[i]->phys_addr + PAGE_SIZE == 909 ps->pages[i + 1]->phys_addr) { 910 seglen += PAGE_SIZE; 911 i++; 912 } 913 914 hcf = calculate_hcf(hcf, seglen); 915 if (hcf < (1 << pr->pr_page_shift[1])) { 916 idx = 0; 917 goto have_pgsz; /* give up, short circuit */ 918 } 919 } 920 921 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 922 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 923 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 924 if ((hcf & PR_PAGE_MASK(idx)) == 0) 925 break; 926 } 927 #undef PR_PAGE_MASK 928 929 have_pgsz: 930 MPASS(idx <= M_PPOD_PGSZ); 931 932 nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]); 933 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 934 return (0); 935 MPASS(prsv->prsv_nppods > 0); 936 937 return (1); 938 } 939 940 int 941 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, 942 struct ppod_reservation *prsv) 943 { 944 int hcf, seglen, idx, npages, nppods; 945 uintptr_t start_pva, end_pva, pva, p1; 946 947 MPASS(buf > 0); 948 MPASS(len > 0); 949 950 /* 951 * The DDP page size is unrelated to the VM page size. We combine 952 * contiguous physical pages into larger segments to get the best DDP 953 * page size possible. This is the largest of the four sizes in 954 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 955 * in the page list. 956 */ 957 hcf = 0; 958 start_pva = trunc_page(buf); 959 end_pva = trunc_page(buf + len - 1); 960 pva = start_pva; 961 while (pva <= end_pva) { 962 seglen = PAGE_SIZE; 963 p1 = pmap_kextract(pva); 964 pva += PAGE_SIZE; 965 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { 966 seglen += PAGE_SIZE; 967 pva += PAGE_SIZE; 968 } 969 970 hcf = calculate_hcf(hcf, seglen); 971 if (hcf < (1 << pr->pr_page_shift[1])) { 972 idx = 0; 973 goto have_pgsz; /* give up, short circuit */ 974 } 975 } 976 977 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 978 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 979 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 980 if ((hcf & PR_PAGE_MASK(idx)) == 0) 981 break; 982 } 983 #undef PR_PAGE_MASK 984 985 have_pgsz: 986 MPASS(idx <= M_PPOD_PGSZ); 987 988 npages = 1; 989 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 990 nppods = howmany(npages, PPOD_PAGES); 991 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 992 return (ENOMEM); 993 MPASS(prsv->prsv_nppods > 0); 994 995 return (0); 996 } 997 998 int 999 t4_alloc_page_pods_for_sgl(struct ppod_region *pr, struct ctl_sg_entry *sgl, 1000 int entries, struct ppod_reservation *prsv) 1001 { 1002 int hcf, seglen, idx = 0, npages, nppods, i, len; 1003 uintptr_t start_pva, end_pva, pva, p1 ; 1004 vm_offset_t buf; 1005 struct ctl_sg_entry *sge; 1006 1007 MPASS(entries > 0); 1008 MPASS(sgl); 1009 1010 /* 1011 * The DDP page size is unrelated to the VM page size. We combine 1012 * contiguous physical pages into larger segments to get the best DDP 1013 * page size possible. This is the largest of the four sizes in 1014 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 1015 * in the page list. 1016 */ 1017 hcf = 0; 1018 for (i = entries - 1; i >= 0; i--) { 1019 sge = sgl + i; 1020 buf = (vm_offset_t)sge->addr; 1021 len = sge->len; 1022 start_pva = trunc_page(buf); 1023 end_pva = trunc_page(buf + len - 1); 1024 pva = start_pva; 1025 while (pva <= end_pva) { 1026 seglen = PAGE_SIZE; 1027 p1 = pmap_kextract(pva); 1028 pva += PAGE_SIZE; 1029 while (pva <= end_pva && p1 + seglen == 1030 pmap_kextract(pva)) { 1031 seglen += PAGE_SIZE; 1032 pva += PAGE_SIZE; 1033 } 1034 1035 hcf = calculate_hcf(hcf, seglen); 1036 if (hcf < (1 << pr->pr_page_shift[1])) { 1037 idx = 0; 1038 goto have_pgsz; /* give up, short circuit */ 1039 } 1040 } 1041 } 1042 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 1043 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1044 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1045 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1046 break; 1047 } 1048 #undef PR_PAGE_MASK 1049 1050 have_pgsz: 1051 MPASS(idx <= M_PPOD_PGSZ); 1052 1053 npages = 0; 1054 while (entries--) { 1055 npages++; 1056 start_pva = trunc_page((vm_offset_t)sgl->addr); 1057 end_pva = trunc_page((vm_offset_t)sgl->addr + sgl->len - 1); 1058 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 1059 sgl = sgl + 1; 1060 } 1061 nppods = howmany(npages, PPOD_PAGES); 1062 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1063 return (ENOMEM); 1064 MPASS(prsv->prsv_nppods > 0); 1065 return (0); 1066 } 1067 1068 void 1069 t4_free_page_pods(struct ppod_reservation *prsv) 1070 { 1071 struct ppod_region *pr = prsv->prsv_pr; 1072 vmem_addr_t addr; 1073 1074 MPASS(prsv != NULL); 1075 MPASS(prsv->prsv_nppods != 0); 1076 1077 addr = prsv->prsv_tag & pr->pr_tag_mask; 1078 MPASS((addr & pr->pr_invalid_bit) == 0); 1079 1080 CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, 1081 pr->pr_arena, addr, prsv->prsv_nppods); 1082 1083 vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); 1084 prsv->prsv_nppods = 0; 1085 } 1086 1087 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) 1088 1089 int 1090 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, 1091 struct pageset *ps) 1092 { 1093 struct wrqe *wr; 1094 struct ulp_mem_io *ulpmc; 1095 struct ulptx_idata *ulpsc; 1096 struct pagepod *ppod; 1097 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1098 u_int ppod_addr; 1099 uint32_t cmd; 1100 struct ppod_reservation *prsv = &ps->prsv; 1101 struct ppod_region *pr = prsv->prsv_pr; 1102 1103 KASSERT(!(ps->flags & PS_PPODS_WRITTEN), 1104 ("%s: page pods already written", __func__)); 1105 MPASS(prsv->prsv_nppods > 0); 1106 1107 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1108 if (is_t4(sc)) 1109 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1110 else 1111 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1112 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1113 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1114 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1115 1116 /* How many page pods are we writing in this cycle */ 1117 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1118 chunk = PPOD_SZ(n); 1119 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1120 1121 wr = alloc_wrqe(len, wrq); 1122 if (wr == NULL) 1123 return (ENOMEM); /* ok to just bail out */ 1124 ulpmc = wrtod(wr); 1125 1126 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1127 ulpmc->cmd = cmd; 1128 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1129 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1130 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1131 1132 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1133 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1134 ulpsc->len = htobe32(chunk); 1135 1136 ppod = (struct pagepod *)(ulpsc + 1); 1137 for (j = 0; j < n; i++, j++, ppod++) { 1138 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1139 V_PPOD_TID(tid) | prsv->prsv_tag); 1140 ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | 1141 V_PPOD_OFST(ps->offset)); 1142 ppod->rsvd = 0; 1143 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1144 for (k = 0; k < nitems(ppod->addr); k++) { 1145 if (idx < ps->npages) { 1146 ppod->addr[k] = 1147 htobe64(ps->pages[idx]->phys_addr); 1148 idx += ddp_pgsz / PAGE_SIZE; 1149 } else 1150 ppod->addr[k] = 0; 1151 #if 0 1152 CTR5(KTR_CXGBE, 1153 "%s: tid %d ppod[%d]->addr[%d] = %p", 1154 __func__, toep->tid, i, k, 1155 htobe64(ppod->addr[k])); 1156 #endif 1157 } 1158 1159 } 1160 1161 t4_wrq_tx(sc, wr); 1162 } 1163 ps->flags |= PS_PPODS_WRITTEN; 1164 1165 return (0); 1166 } 1167 1168 static struct mbuf * 1169 alloc_raw_wr_mbuf(int len) 1170 { 1171 struct mbuf *m; 1172 1173 if (len <= MHLEN) 1174 m = m_gethdr(M_NOWAIT, MT_DATA); 1175 else if (len <= MCLBYTES) 1176 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1177 else 1178 m = NULL; 1179 if (m == NULL) 1180 return (NULL); 1181 m->m_pkthdr.len = len; 1182 m->m_len = len; 1183 set_mbuf_raw_wr(m, true); 1184 return (m); 1185 } 1186 1187 int 1188 t4_write_page_pods_for_buf(struct adapter *sc, struct toepcb *toep, 1189 struct ppod_reservation *prsv, vm_offset_t buf, int buflen, 1190 struct mbufq *wrq) 1191 { 1192 struct ulp_mem_io *ulpmc; 1193 struct ulptx_idata *ulpsc; 1194 struct pagepod *ppod; 1195 int i, j, k, n, chunk, len, ddp_pgsz; 1196 u_int ppod_addr, offset; 1197 uint32_t cmd; 1198 struct ppod_region *pr = prsv->prsv_pr; 1199 uintptr_t end_pva, pva, pa; 1200 struct mbuf *m; 1201 1202 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1203 if (is_t4(sc)) 1204 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1205 else 1206 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1207 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1208 offset = buf & PAGE_MASK; 1209 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1210 pva = trunc_page(buf); 1211 end_pva = trunc_page(buf + buflen - 1); 1212 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1213 1214 /* How many page pods are we writing in this cycle */ 1215 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1216 MPASS(n > 0); 1217 chunk = PPOD_SZ(n); 1218 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1219 1220 m = alloc_raw_wr_mbuf(len); 1221 if (m == NULL) 1222 return (ENOMEM); 1223 ulpmc = mtod(m, struct ulp_mem_io *); 1224 1225 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1226 ulpmc->cmd = cmd; 1227 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1228 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1229 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1230 1231 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1232 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1233 ulpsc->len = htobe32(chunk); 1234 1235 ppod = (struct pagepod *)(ulpsc + 1); 1236 for (j = 0; j < n; i++, j++, ppod++) { 1237 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1238 V_PPOD_TID(toep->tid) | 1239 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1240 ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | 1241 V_PPOD_OFST(offset)); 1242 ppod->rsvd = 0; 1243 1244 for (k = 0; k < nitems(ppod->addr); k++) { 1245 if (pva > end_pva) 1246 ppod->addr[k] = 0; 1247 else { 1248 pa = pmap_kextract(pva); 1249 ppod->addr[k] = htobe64(pa); 1250 pva += ddp_pgsz; 1251 } 1252 #if 0 1253 CTR5(KTR_CXGBE, 1254 "%s: tid %d ppod[%d]->addr[%d] = %p", 1255 __func__, toep->tid, i, k, 1256 htobe64(ppod->addr[k])); 1257 #endif 1258 } 1259 1260 /* 1261 * Walk back 1 segment so that the first address in the 1262 * next pod is the same as the last one in the current 1263 * pod. 1264 */ 1265 pva -= ddp_pgsz; 1266 } 1267 1268 mbufq_enqueue(wrq, m); 1269 } 1270 1271 MPASS(pva <= end_pva); 1272 1273 return (0); 1274 } 1275 1276 int 1277 t4_write_page_pods_for_sgl(struct adapter *sc, struct toepcb *toep, 1278 struct ppod_reservation *prsv, struct ctl_sg_entry *sgl, int entries, 1279 int xferlen, struct mbufq *wrq) 1280 { 1281 struct ulp_mem_io *ulpmc; 1282 struct ulptx_idata *ulpsc; 1283 struct pagepod *ppod; 1284 int i, j, k, n, chunk, len, ddp_pgsz; 1285 u_int ppod_addr, offset, sg_offset = 0; 1286 uint32_t cmd; 1287 struct ppod_region *pr = prsv->prsv_pr; 1288 uintptr_t pva, pa; 1289 struct mbuf *m; 1290 1291 MPASS(sgl != NULL); 1292 MPASS(entries > 0); 1293 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1294 if (is_t4(sc)) 1295 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1296 else 1297 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1298 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1299 offset = (vm_offset_t)sgl->addr & PAGE_MASK; 1300 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1301 pva = trunc_page((vm_offset_t)sgl->addr); 1302 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1303 1304 /* How many page pods are we writing in this cycle */ 1305 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1306 MPASS(n > 0); 1307 chunk = PPOD_SZ(n); 1308 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1309 1310 m = alloc_raw_wr_mbuf(len); 1311 if (m == NULL) 1312 return (ENOMEM); 1313 ulpmc = mtod(m, struct ulp_mem_io *); 1314 1315 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1316 ulpmc->cmd = cmd; 1317 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1318 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1319 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1320 1321 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1322 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1323 ulpsc->len = htobe32(chunk); 1324 1325 ppod = (struct pagepod *)(ulpsc + 1); 1326 for (j = 0; j < n; i++, j++, ppod++) { 1327 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1328 V_PPOD_TID(toep->tid) | 1329 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1330 ppod->len_offset = htobe64(V_PPOD_LEN(xferlen) | 1331 V_PPOD_OFST(offset)); 1332 ppod->rsvd = 0; 1333 1334 for (k = 0; k < nitems(ppod->addr); k++) { 1335 if (entries != 0) { 1336 pa = pmap_kextract(pva + sg_offset); 1337 ppod->addr[k] = htobe64(pa); 1338 } else 1339 ppod->addr[k] = 0; 1340 1341 #if 0 1342 CTR5(KTR_CXGBE, 1343 "%s: tid %d ppod[%d]->addr[%d] = %p", 1344 __func__, toep->tid, i, k, 1345 htobe64(ppod->addr[k])); 1346 #endif 1347 1348 /* 1349 * If this is the last entry in a pod, 1350 * reuse the same entry for first address 1351 * in the next pod. 1352 */ 1353 if (k + 1 == nitems(ppod->addr)) 1354 break; 1355 1356 /* 1357 * Don't move to the next DDP page if the 1358 * sgl is already finished. 1359 */ 1360 if (entries == 0) 1361 continue; 1362 1363 sg_offset += ddp_pgsz; 1364 if (sg_offset == sgl->len) { 1365 /* 1366 * This sgl entry is done. Go 1367 * to the next. 1368 */ 1369 entries--; 1370 sgl++; 1371 sg_offset = 0; 1372 if (entries != 0) 1373 pva = trunc_page( 1374 (vm_offset_t)sgl->addr); 1375 } 1376 } 1377 } 1378 1379 mbufq_enqueue(wrq, m); 1380 } 1381 1382 return (0); 1383 } 1384 1385 /* 1386 * Prepare a pageset for DDP. This sets up page pods. 1387 */ 1388 static int 1389 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) 1390 { 1391 struct tom_data *td = sc->tom_softc; 1392 1393 if (ps->prsv.prsv_nppods == 0 && 1394 !t4_alloc_page_pods_for_ps(&td->pr, ps)) { 1395 return (0); 1396 } 1397 if (!(ps->flags & PS_PPODS_WRITTEN) && 1398 t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { 1399 return (0); 1400 } 1401 1402 return (1); 1403 } 1404 1405 int 1406 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, 1407 const char *name) 1408 { 1409 int i; 1410 1411 MPASS(pr != NULL); 1412 MPASS(r->size > 0); 1413 1414 pr->pr_start = r->start; 1415 pr->pr_len = r->size; 1416 pr->pr_page_shift[0] = 12 + G_HPZ0(psz); 1417 pr->pr_page_shift[1] = 12 + G_HPZ1(psz); 1418 pr->pr_page_shift[2] = 12 + G_HPZ2(psz); 1419 pr->pr_page_shift[3] = 12 + G_HPZ3(psz); 1420 1421 /* The SGL -> page pod algorithm requires the sizes to be in order. */ 1422 for (i = 1; i < nitems(pr->pr_page_shift); i++) { 1423 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) 1424 return (ENXIO); 1425 } 1426 1427 pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); 1428 pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; 1429 if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) 1430 return (ENXIO); 1431 pr->pr_alias_shift = fls(pr->pr_tag_mask); 1432 pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); 1433 1434 pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, 1435 M_FIRSTFIT | M_NOWAIT); 1436 if (pr->pr_arena == NULL) 1437 return (ENOMEM); 1438 1439 return (0); 1440 } 1441 1442 void 1443 t4_free_ppod_region(struct ppod_region *pr) 1444 { 1445 1446 MPASS(pr != NULL); 1447 1448 if (pr->pr_arena) 1449 vmem_destroy(pr->pr_arena); 1450 bzero(pr, sizeof(*pr)); 1451 } 1452 1453 static int 1454 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, 1455 int pgoff, int len) 1456 { 1457 1458 if (ps->start != start || ps->npages != npages || 1459 ps->offset != pgoff || ps->len != len) 1460 return (1); 1461 1462 return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); 1463 } 1464 1465 static int 1466 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) 1467 { 1468 struct vmspace *vm; 1469 vm_map_t map; 1470 vm_offset_t start, end, pgoff; 1471 struct pageset *ps; 1472 int n; 1473 1474 DDP_ASSERT_LOCKED(toep); 1475 1476 /* 1477 * The AIO subsystem will cancel and drain all requests before 1478 * permitting a process to exit or exec, so p_vmspace should 1479 * be stable here. 1480 */ 1481 vm = job->userproc->p_vmspace; 1482 map = &vm->vm_map; 1483 start = (uintptr_t)job->uaiocb.aio_buf; 1484 pgoff = start & PAGE_MASK; 1485 end = round_page(start + job->uaiocb.aio_nbytes); 1486 start = trunc_page(start); 1487 1488 if (end - start > MAX_DDP_BUFFER_SIZE) { 1489 /* 1490 * Truncate the request to a short read. 1491 * Alternatively, we could DDP in chunks to the larger 1492 * buffer, but that would be quite a bit more work. 1493 * 1494 * When truncating, round the request down to avoid 1495 * crossing a cache line on the final transaction. 1496 */ 1497 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); 1498 #ifdef VERBOSE_TRACES 1499 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", 1500 __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, 1501 (unsigned long)(end - (start + pgoff))); 1502 job->uaiocb.aio_nbytes = end - (start + pgoff); 1503 #endif 1504 end = round_page(end); 1505 } 1506 1507 n = atop(end - start); 1508 1509 /* 1510 * Try to reuse a cached pageset. 1511 */ 1512 TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) { 1513 if (pscmp(ps, vm, start, n, pgoff, 1514 job->uaiocb.aio_nbytes) == 0) { 1515 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1516 toep->ddp.cached_count--; 1517 *pps = ps; 1518 return (0); 1519 } 1520 } 1521 1522 /* 1523 * If there are too many cached pagesets to create a new one, 1524 * free a pageset before creating a new one. 1525 */ 1526 KASSERT(toep->ddp.active_count + toep->ddp.cached_count <= 1527 nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__)); 1528 if (toep->ddp.active_count + toep->ddp.cached_count == 1529 nitems(toep->ddp.db)) { 1530 KASSERT(toep->ddp.cached_count > 0, 1531 ("no cached pageset to free")); 1532 ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq); 1533 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1534 toep->ddp.cached_count--; 1535 free_pageset(toep->td, ps); 1536 } 1537 DDP_UNLOCK(toep); 1538 1539 /* Create a new pageset. */ 1540 ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | 1541 M_ZERO); 1542 ps->pages = (vm_page_t *)(ps + 1); 1543 ps->vm_timestamp = map->timestamp; 1544 ps->npages = vm_fault_quick_hold_pages(map, start, end - start, 1545 VM_PROT_WRITE, ps->pages, n); 1546 1547 DDP_LOCK(toep); 1548 if (ps->npages < 0) { 1549 free(ps, M_CXGBE); 1550 return (EFAULT); 1551 } 1552 1553 KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", 1554 ps->npages, n)); 1555 1556 ps->offset = pgoff; 1557 ps->len = job->uaiocb.aio_nbytes; 1558 refcount_acquire(&vm->vm_refcnt); 1559 ps->vm = vm; 1560 ps->start = start; 1561 1562 CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", 1563 __func__, toep->tid, ps, job, ps->npages); 1564 *pps = ps; 1565 return (0); 1566 } 1567 1568 static void 1569 ddp_complete_all(struct toepcb *toep, int error) 1570 { 1571 struct kaiocb *job; 1572 1573 DDP_ASSERT_LOCKED(toep); 1574 while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) { 1575 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1576 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1577 toep->ddp.waiting_count--; 1578 if (aio_clear_cancel_function(job)) 1579 ddp_complete_one(job, error); 1580 } 1581 } 1582 1583 static void 1584 aio_ddp_cancel_one(struct kaiocb *job) 1585 { 1586 long copied; 1587 1588 /* 1589 * If this job had copied data out of the socket buffer before 1590 * it was cancelled, report it as a short read rather than an 1591 * error. 1592 */ 1593 copied = job->aio_received; 1594 if (copied != 0) 1595 aio_complete(job, copied, 0); 1596 else 1597 aio_cancel(job); 1598 } 1599 1600 /* 1601 * Called when the main loop wants to requeue a job to retry it later. 1602 * Deals with the race of the job being cancelled while it was being 1603 * examined. 1604 */ 1605 static void 1606 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) 1607 { 1608 1609 DDP_ASSERT_LOCKED(toep); 1610 if (!(toep->ddp.flags & DDP_DEAD) && 1611 aio_set_cancel_function(job, t4_aio_cancel_queued)) { 1612 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 1613 toep->ddp.waiting_count++; 1614 } else 1615 aio_ddp_cancel_one(job); 1616 } 1617 1618 static void 1619 aio_ddp_requeue(struct toepcb *toep) 1620 { 1621 struct adapter *sc = td_adapter(toep->td); 1622 struct socket *so; 1623 struct sockbuf *sb; 1624 struct inpcb *inp; 1625 struct kaiocb *job; 1626 struct ddp_buffer *db; 1627 size_t copied, offset, resid; 1628 struct pageset *ps; 1629 struct mbuf *m; 1630 uint64_t ddp_flags, ddp_flags_mask; 1631 struct wrqe *wr; 1632 int buf_flag, db_idx, error; 1633 1634 DDP_ASSERT_LOCKED(toep); 1635 1636 restart: 1637 if (toep->ddp.flags & DDP_DEAD) { 1638 MPASS(toep->ddp.waiting_count == 0); 1639 MPASS(toep->ddp.active_count == 0); 1640 return; 1641 } 1642 1643 if (toep->ddp.waiting_count == 0 || 1644 toep->ddp.active_count == nitems(toep->ddp.db)) { 1645 return; 1646 } 1647 1648 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1649 so = job->fd_file->f_data; 1650 sb = &so->so_rcv; 1651 SOCKBUF_LOCK(sb); 1652 1653 /* We will never get anything unless we are or were connected. */ 1654 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1655 SOCKBUF_UNLOCK(sb); 1656 ddp_complete_all(toep, ENOTCONN); 1657 return; 1658 } 1659 1660 KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0, 1661 ("%s: pending sockbuf data and DDP is active", __func__)); 1662 1663 /* Abort if socket has reported problems. */ 1664 /* XXX: Wait for any queued DDP's to finish and/or flush them? */ 1665 if (so->so_error && sbavail(sb) == 0) { 1666 toep->ddp.waiting_count--; 1667 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1668 if (!aio_clear_cancel_function(job)) { 1669 SOCKBUF_UNLOCK(sb); 1670 goto restart; 1671 } 1672 1673 /* 1674 * If this job has previously copied some data, report 1675 * a short read and leave the error to be reported by 1676 * a future request. 1677 */ 1678 copied = job->aio_received; 1679 if (copied != 0) { 1680 SOCKBUF_UNLOCK(sb); 1681 aio_complete(job, copied, 0); 1682 goto restart; 1683 } 1684 error = so->so_error; 1685 so->so_error = 0; 1686 SOCKBUF_UNLOCK(sb); 1687 aio_complete(job, -1, error); 1688 goto restart; 1689 } 1690 1691 /* 1692 * Door is closed. If there is pending data in the socket buffer, 1693 * deliver it. If there are pending DDP requests, wait for those 1694 * to complete. Once they have completed, return EOF reads. 1695 */ 1696 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1697 SOCKBUF_UNLOCK(sb); 1698 if (toep->ddp.active_count != 0) 1699 return; 1700 ddp_complete_all(toep, 0); 1701 return; 1702 } 1703 1704 /* 1705 * If DDP is not enabled and there is no pending socket buffer 1706 * data, try to enable DDP. 1707 */ 1708 if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) { 1709 SOCKBUF_UNLOCK(sb); 1710 1711 /* 1712 * Wait for the card to ACK that DDP is enabled before 1713 * queueing any buffers. Currently this waits for an 1714 * indicate to arrive. This could use a TCB_SET_FIELD_RPL 1715 * message to know that DDP was enabled instead of waiting 1716 * for the indicate which would avoid copying the indicate 1717 * if no data is pending. 1718 * 1719 * XXX: Might want to limit the indicate size to the size 1720 * of the first queued request. 1721 */ 1722 if ((toep->ddp.flags & DDP_SC_REQ) == 0) 1723 enable_ddp(sc, toep); 1724 return; 1725 } 1726 SOCKBUF_UNLOCK(sb); 1727 1728 /* 1729 * If another thread is queueing a buffer for DDP, let it 1730 * drain any work and return. 1731 */ 1732 if (toep->ddp.queueing != NULL) 1733 return; 1734 1735 /* Take the next job to prep it for DDP. */ 1736 toep->ddp.waiting_count--; 1737 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1738 if (!aio_clear_cancel_function(job)) 1739 goto restart; 1740 toep->ddp.queueing = job; 1741 1742 /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ 1743 error = hold_aio(toep, job, &ps); 1744 if (error != 0) { 1745 ddp_complete_one(job, error); 1746 toep->ddp.queueing = NULL; 1747 goto restart; 1748 } 1749 1750 SOCKBUF_LOCK(sb); 1751 if (so->so_error && sbavail(sb) == 0) { 1752 copied = job->aio_received; 1753 if (copied != 0) { 1754 SOCKBUF_UNLOCK(sb); 1755 recycle_pageset(toep, ps); 1756 aio_complete(job, copied, 0); 1757 toep->ddp.queueing = NULL; 1758 goto restart; 1759 } 1760 1761 error = so->so_error; 1762 so->so_error = 0; 1763 SOCKBUF_UNLOCK(sb); 1764 recycle_pageset(toep, ps); 1765 aio_complete(job, -1, error); 1766 toep->ddp.queueing = NULL; 1767 goto restart; 1768 } 1769 1770 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1771 SOCKBUF_UNLOCK(sb); 1772 recycle_pageset(toep, ps); 1773 if (toep->ddp.active_count != 0) { 1774 /* 1775 * The door is closed, but there are still pending 1776 * DDP buffers. Requeue. These jobs will all be 1777 * completed once those buffers drain. 1778 */ 1779 aio_ddp_requeue_one(toep, job); 1780 toep->ddp.queueing = NULL; 1781 return; 1782 } 1783 ddp_complete_one(job, 0); 1784 ddp_complete_all(toep, 0); 1785 toep->ddp.queueing = NULL; 1786 return; 1787 } 1788 1789 sbcopy: 1790 /* 1791 * If the toep is dead, there shouldn't be any data in the socket 1792 * buffer, so the above case should have handled this. 1793 */ 1794 MPASS(!(toep->ddp.flags & DDP_DEAD)); 1795 1796 /* 1797 * If there is pending data in the socket buffer (either 1798 * from before the requests were queued or a DDP indicate), 1799 * copy those mbufs out directly. 1800 */ 1801 copied = 0; 1802 offset = ps->offset + job->aio_received; 1803 MPASS(job->aio_received <= job->uaiocb.aio_nbytes); 1804 resid = job->uaiocb.aio_nbytes - job->aio_received; 1805 m = sb->sb_mb; 1806 KASSERT(m == NULL || toep->ddp.active_count == 0, 1807 ("%s: sockbuf data with active DDP", __func__)); 1808 while (m != NULL && resid > 0) { 1809 struct iovec iov[1]; 1810 struct uio uio; 1811 #ifdef INVARIANTS 1812 int error; 1813 #endif 1814 1815 iov[0].iov_base = mtod(m, void *); 1816 iov[0].iov_len = m->m_len; 1817 if (iov[0].iov_len > resid) 1818 iov[0].iov_len = resid; 1819 uio.uio_iov = iov; 1820 uio.uio_iovcnt = 1; 1821 uio.uio_offset = 0; 1822 uio.uio_resid = iov[0].iov_len; 1823 uio.uio_segflg = UIO_SYSSPACE; 1824 uio.uio_rw = UIO_WRITE; 1825 #ifdef INVARIANTS 1826 error = uiomove_fromphys(ps->pages, offset + copied, 1827 uio.uio_resid, &uio); 1828 #else 1829 uiomove_fromphys(ps->pages, offset + copied, uio.uio_resid, &uio); 1830 #endif 1831 MPASS(error == 0 && uio.uio_resid == 0); 1832 copied += uio.uio_offset; 1833 resid -= uio.uio_offset; 1834 m = m->m_next; 1835 } 1836 if (copied != 0) { 1837 sbdrop_locked(sb, copied); 1838 job->aio_received += copied; 1839 job->msgrcv = 1; 1840 copied = job->aio_received; 1841 inp = sotoinpcb(so); 1842 if (!INP_TRY_WLOCK(inp)) { 1843 /* 1844 * The reference on the socket file descriptor in 1845 * the AIO job should keep 'sb' and 'inp' stable. 1846 * Our caller has a reference on the 'toep' that 1847 * keeps it stable. 1848 */ 1849 SOCKBUF_UNLOCK(sb); 1850 DDP_UNLOCK(toep); 1851 INP_WLOCK(inp); 1852 DDP_LOCK(toep); 1853 SOCKBUF_LOCK(sb); 1854 1855 /* 1856 * If the socket has been closed, we should detect 1857 * that and complete this request if needed on 1858 * the next trip around the loop. 1859 */ 1860 } 1861 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); 1862 INP_WUNLOCK(inp); 1863 if (resid == 0 || toep->ddp.flags & DDP_DEAD) { 1864 /* 1865 * We filled the entire buffer with socket 1866 * data, DDP is not being used, or the socket 1867 * is being shut down, so complete the 1868 * request. 1869 */ 1870 SOCKBUF_UNLOCK(sb); 1871 recycle_pageset(toep, ps); 1872 aio_complete(job, copied, 0); 1873 toep->ddp.queueing = NULL; 1874 goto restart; 1875 } 1876 1877 /* 1878 * If DDP is not enabled, requeue this request and restart. 1879 * This will either enable DDP or wait for more data to 1880 * arrive on the socket buffer. 1881 */ 1882 if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { 1883 SOCKBUF_UNLOCK(sb); 1884 recycle_pageset(toep, ps); 1885 aio_ddp_requeue_one(toep, job); 1886 toep->ddp.queueing = NULL; 1887 goto restart; 1888 } 1889 1890 /* 1891 * An indicate might have arrived and been added to 1892 * the socket buffer while it was unlocked after the 1893 * copy to lock the INP. If so, restart the copy. 1894 */ 1895 if (sbavail(sb) != 0) 1896 goto sbcopy; 1897 } 1898 SOCKBUF_UNLOCK(sb); 1899 1900 if (prep_pageset(sc, toep, ps) == 0) { 1901 recycle_pageset(toep, ps); 1902 aio_ddp_requeue_one(toep, job); 1903 toep->ddp.queueing = NULL; 1904 1905 /* 1906 * XXX: Need to retry this later. Mostly need a trigger 1907 * when page pods are freed up. 1908 */ 1909 printf("%s: prep_pageset failed\n", __func__); 1910 return; 1911 } 1912 1913 /* Determine which DDP buffer to use. */ 1914 if (toep->ddp.db[0].job == NULL) { 1915 db_idx = 0; 1916 } else { 1917 MPASS(toep->ddp.db[1].job == NULL); 1918 db_idx = 1; 1919 } 1920 1921 ddp_flags = 0; 1922 ddp_flags_mask = 0; 1923 if (db_idx == 0) { 1924 ddp_flags |= V_TF_DDP_BUF0_VALID(1); 1925 if (so->so_state & SS_NBIO) 1926 ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); 1927 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 1928 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | 1929 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); 1930 buf_flag = DDP_BUF0_ACTIVE; 1931 } else { 1932 ddp_flags |= V_TF_DDP_BUF1_VALID(1); 1933 if (so->so_state & SS_NBIO) 1934 ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); 1935 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 1936 V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | 1937 V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); 1938 buf_flag = DDP_BUF1_ACTIVE; 1939 } 1940 MPASS((toep->ddp.flags & buf_flag) == 0); 1941 if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { 1942 MPASS(db_idx == 0); 1943 MPASS(toep->ddp.active_id == -1); 1944 MPASS(toep->ddp.active_count == 0); 1945 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); 1946 } 1947 1948 /* 1949 * The TID for this connection should still be valid. If DDP_DEAD 1950 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be 1951 * this far anyway. Even if the socket is closing on the other 1952 * end, the AIO job holds a reference on this end of the socket 1953 * which will keep it open and keep the TCP PCB attached until 1954 * after the job is completed. 1955 */ 1956 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received, 1957 ddp_flags, ddp_flags_mask); 1958 if (wr == NULL) { 1959 recycle_pageset(toep, ps); 1960 aio_ddp_requeue_one(toep, job); 1961 toep->ddp.queueing = NULL; 1962 1963 /* 1964 * XXX: Need a way to kick a retry here. 1965 * 1966 * XXX: We know the fixed size needed and could 1967 * preallocate this using a blocking request at the 1968 * start of the task to avoid having to handle this 1969 * edge case. 1970 */ 1971 printf("%s: mk_update_tcb_for_ddp failed\n", __func__); 1972 return; 1973 } 1974 1975 if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { 1976 free_wrqe(wr); 1977 recycle_pageset(toep, ps); 1978 aio_ddp_cancel_one(job); 1979 toep->ddp.queueing = NULL; 1980 goto restart; 1981 } 1982 1983 #ifdef VERBOSE_TRACES 1984 CTR6(KTR_CXGBE, 1985 "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__, 1986 toep->tid, job, db_idx, ddp_flags, ddp_flags_mask); 1987 #endif 1988 /* Give the chip the go-ahead. */ 1989 t4_wrq_tx(sc, wr); 1990 db = &toep->ddp.db[db_idx]; 1991 db->cancel_pending = 0; 1992 db->job = job; 1993 db->ps = ps; 1994 toep->ddp.queueing = NULL; 1995 toep->ddp.flags |= buf_flag; 1996 toep->ddp.active_count++; 1997 if (toep->ddp.active_count == 1) { 1998 MPASS(toep->ddp.active_id == -1); 1999 toep->ddp.active_id = db_idx; 2000 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 2001 toep->ddp.active_id); 2002 } 2003 goto restart; 2004 } 2005 2006 void 2007 ddp_queue_toep(struct toepcb *toep) 2008 { 2009 2010 DDP_ASSERT_LOCKED(toep); 2011 if (toep->ddp.flags & DDP_TASK_ACTIVE) 2012 return; 2013 toep->ddp.flags |= DDP_TASK_ACTIVE; 2014 hold_toepcb(toep); 2015 soaio_enqueue(&toep->ddp.requeue_task); 2016 } 2017 2018 static void 2019 aio_ddp_requeue_task(void *context, int pending) 2020 { 2021 struct toepcb *toep = context; 2022 2023 DDP_LOCK(toep); 2024 aio_ddp_requeue(toep); 2025 toep->ddp.flags &= ~DDP_TASK_ACTIVE; 2026 DDP_UNLOCK(toep); 2027 2028 free_toepcb(toep); 2029 } 2030 2031 static void 2032 t4_aio_cancel_active(struct kaiocb *job) 2033 { 2034 struct socket *so = job->fd_file->f_data; 2035 struct tcpcb *tp = so_sototcpcb(so); 2036 struct toepcb *toep = tp->t_toe; 2037 struct adapter *sc = td_adapter(toep->td); 2038 uint64_t valid_flag; 2039 int i; 2040 2041 DDP_LOCK(toep); 2042 if (aio_cancel_cleared(job)) { 2043 DDP_UNLOCK(toep); 2044 aio_ddp_cancel_one(job); 2045 return; 2046 } 2047 2048 for (i = 0; i < nitems(toep->ddp.db); i++) { 2049 if (toep->ddp.db[i].job == job) { 2050 /* Should only ever get one cancel request for a job. */ 2051 MPASS(toep->ddp.db[i].cancel_pending == 0); 2052 2053 /* 2054 * Invalidate this buffer. It will be 2055 * cancelled or partially completed once the 2056 * card ACKs the invalidate. 2057 */ 2058 valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : 2059 V_TF_DDP_BUF1_VALID(1); 2060 t4_set_tcb_field(sc, toep->ctrlq, toep, 2061 W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, 2062 CPL_COOKIE_DDP0 + i); 2063 toep->ddp.db[i].cancel_pending = 1; 2064 CTR2(KTR_CXGBE, "%s: request %p marked pending", 2065 __func__, job); 2066 break; 2067 } 2068 } 2069 DDP_UNLOCK(toep); 2070 } 2071 2072 static void 2073 t4_aio_cancel_queued(struct kaiocb *job) 2074 { 2075 struct socket *so = job->fd_file->f_data; 2076 struct tcpcb *tp = so_sototcpcb(so); 2077 struct toepcb *toep = tp->t_toe; 2078 2079 DDP_LOCK(toep); 2080 if (!aio_cancel_cleared(job)) { 2081 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 2082 toep->ddp.waiting_count--; 2083 if (toep->ddp.waiting_count == 0) 2084 ddp_queue_toep(toep); 2085 } 2086 CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); 2087 DDP_UNLOCK(toep); 2088 2089 aio_ddp_cancel_one(job); 2090 } 2091 2092 int 2093 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) 2094 { 2095 struct tcpcb *tp = so_sototcpcb(so); 2096 struct toepcb *toep = tp->t_toe; 2097 2098 2099 /* Ignore writes. */ 2100 if (job->uaiocb.aio_lio_opcode != LIO_READ) 2101 return (EOPNOTSUPP); 2102 2103 DDP_LOCK(toep); 2104 2105 /* 2106 * XXX: Think about possibly returning errors for ENOTCONN, 2107 * etc. Perhaps the caller would only queue the request 2108 * if it failed with EOPNOTSUPP? 2109 */ 2110 2111 #ifdef VERBOSE_TRACES 2112 CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid); 2113 #endif 2114 if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) 2115 panic("new job was cancelled"); 2116 TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list); 2117 toep->ddp.waiting_count++; 2118 toep->ddp.flags |= DDP_OK; 2119 2120 /* 2121 * Try to handle this request synchronously. If this has 2122 * to block because the task is running, it will just bail 2123 * and let the task handle it instead. 2124 */ 2125 aio_ddp_requeue(toep); 2126 DDP_UNLOCK(toep); 2127 return (0); 2128 } 2129 2130 void 2131 t4_ddp_mod_load(void) 2132 { 2133 2134 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 2135 CPL_COOKIE_DDP0); 2136 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 2137 CPL_COOKIE_DDP1); 2138 t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); 2139 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); 2140 TAILQ_INIT(&ddp_orphan_pagesets); 2141 mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); 2142 TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); 2143 } 2144 2145 void 2146 t4_ddp_mod_unload(void) 2147 { 2148 2149 taskqueue_drain(taskqueue_thread, &ddp_orphan_task); 2150 MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); 2151 mtx_destroy(&ddp_orphan_pagesets_lock); 2152 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0); 2153 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1); 2154 t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); 2155 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); 2156 } 2157 #endif 2158