1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_inet.h" 32 33 #include <sys/param.h> 34 #include <sys/aio.h> 35 #include <sys/bio.h> 36 #include <sys/file.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/ktr.h> 40 #include <sys/module.h> 41 #include <sys/protosw.h> 42 #include <sys/proc.h> 43 #include <sys/domain.h> 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <sys/taskqueue.h> 47 #include <sys/uio.h> 48 #include <netinet/in.h> 49 #include <netinet/in_pcb.h> 50 #include <netinet/ip.h> 51 #include <netinet/tcp_var.h> 52 #define TCPSTATES 53 #include <netinet/tcp_fsm.h> 54 #include <netinet/toecore.h> 55 56 #include <vm/vm.h> 57 #include <vm/vm_extern.h> 58 #include <vm/vm_param.h> 59 #include <vm/pmap.h> 60 #include <vm/vm_map.h> 61 #include <vm/vm_page.h> 62 #include <vm/vm_object.h> 63 64 #include <cam/scsi/scsi_all.h> 65 #include <cam/ctl/ctl_io.h> 66 67 #ifdef TCP_OFFLOAD 68 #include "common/common.h" 69 #include "common/t4_msg.h" 70 #include "common/t4_regs.h" 71 #include "common/t4_tcb.h" 72 #include "tom/t4_tom.h" 73 74 /* 75 * Use the 'backend3' field in AIO jobs to store the amount of data 76 * received by the AIO job so far. 77 */ 78 #define aio_received backend3 79 80 static void aio_ddp_requeue_task(void *context, int pending); 81 static void ddp_complete_all(struct toepcb *toep, int error); 82 static void t4_aio_cancel_active(struct kaiocb *job); 83 static void t4_aio_cancel_queued(struct kaiocb *job); 84 85 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; 86 static struct mtx ddp_orphan_pagesets_lock; 87 static struct task ddp_orphan_task; 88 89 #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) 90 91 /* 92 * A page set holds information about a buffer used for DDP. The page 93 * set holds resources such as the VM pages backing the buffer (either 94 * held or wired) and the page pods associated with the buffer. 95 * Recently used page sets are cached to allow for efficient reuse of 96 * buffers (avoiding the need to re-fault in pages, hold them, etc.). 97 * Note that cached page sets keep the backing pages wired. The 98 * number of wired pages is capped by only allowing for two wired 99 * pagesets per connection. This is not a perfect cap, but is a 100 * trade-off for performance. 101 * 102 * If an application ping-pongs two buffers for a connection via 103 * aio_read(2) then those buffers should remain wired and expensive VM 104 * fault lookups should be avoided after each buffer has been used 105 * once. If an application uses more than two buffers then this will 106 * fall back to doing expensive VM fault lookups for each operation. 107 */ 108 static void 109 free_pageset(struct tom_data *td, struct pageset *ps) 110 { 111 vm_page_t p; 112 int i; 113 114 if (ps->prsv.prsv_nppods > 0) 115 t4_free_page_pods(&ps->prsv); 116 117 for (i = 0; i < ps->npages; i++) { 118 p = ps->pages[i]; 119 vm_page_unwire(p, PQ_INACTIVE); 120 } 121 mtx_lock(&ddp_orphan_pagesets_lock); 122 TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); 123 taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); 124 mtx_unlock(&ddp_orphan_pagesets_lock); 125 } 126 127 static void 128 ddp_free_orphan_pagesets(void *context, int pending) 129 { 130 struct pageset *ps; 131 132 mtx_lock(&ddp_orphan_pagesets_lock); 133 while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { 134 ps = TAILQ_FIRST(&ddp_orphan_pagesets); 135 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); 136 mtx_unlock(&ddp_orphan_pagesets_lock); 137 if (ps->vm) 138 vmspace_free(ps->vm); 139 free(ps, M_CXGBE); 140 mtx_lock(&ddp_orphan_pagesets_lock); 141 } 142 mtx_unlock(&ddp_orphan_pagesets_lock); 143 } 144 145 static void 146 recycle_pageset(struct toepcb *toep, struct pageset *ps) 147 { 148 149 DDP_ASSERT_LOCKED(toep); 150 if (!(toep->ddp.flags & DDP_DEAD)) { 151 KASSERT(toep->ddp.cached_count + toep->ddp.active_count < 152 nitems(toep->ddp.db), ("too many wired pagesets")); 153 TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link); 154 toep->ddp.cached_count++; 155 } else 156 free_pageset(toep->td, ps); 157 } 158 159 static void 160 ddp_complete_one(struct kaiocb *job, int error) 161 { 162 long copied; 163 164 /* 165 * If this job had copied data out of the socket buffer before 166 * it was cancelled, report it as a short read rather than an 167 * error. 168 */ 169 copied = job->aio_received; 170 if (copied != 0 || error == 0) 171 aio_complete(job, copied, 0); 172 else 173 aio_complete(job, -1, error); 174 } 175 176 static void 177 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) 178 { 179 180 if (db->job) { 181 /* 182 * XXX: If we are un-offloading the socket then we 183 * should requeue these on the socket somehow. If we 184 * got a FIN from the remote end, then this completes 185 * any remaining requests with an EOF read. 186 */ 187 if (!aio_clear_cancel_function(db->job)) 188 ddp_complete_one(db->job, 0); 189 } 190 191 if (db->ps) 192 free_pageset(td, db->ps); 193 } 194 195 void 196 ddp_init_toep(struct toepcb *toep) 197 { 198 199 TAILQ_INIT(&toep->ddp.aiojobq); 200 TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep); 201 toep->ddp.flags = DDP_OK; 202 toep->ddp.active_id = -1; 203 mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF); 204 } 205 206 void 207 ddp_uninit_toep(struct toepcb *toep) 208 { 209 210 mtx_destroy(&toep->ddp.lock); 211 } 212 213 void 214 release_ddp_resources(struct toepcb *toep) 215 { 216 struct pageset *ps; 217 int i; 218 219 DDP_LOCK(toep); 220 toep->ddp.flags |= DDP_DEAD; 221 for (i = 0; i < nitems(toep->ddp.db); i++) { 222 free_ddp_buffer(toep->td, &toep->ddp.db[i]); 223 } 224 while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) { 225 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 226 free_pageset(toep->td, ps); 227 } 228 ddp_complete_all(toep, 0); 229 DDP_UNLOCK(toep); 230 } 231 232 #ifdef INVARIANTS 233 void 234 ddp_assert_empty(struct toepcb *toep) 235 { 236 int i; 237 238 MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE)); 239 for (i = 0; i < nitems(toep->ddp.db); i++) { 240 MPASS(toep->ddp.db[i].job == NULL); 241 MPASS(toep->ddp.db[i].ps == NULL); 242 } 243 MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets)); 244 MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq)); 245 } 246 #endif 247 248 static void 249 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, 250 unsigned int db_idx) 251 { 252 unsigned int db_flag; 253 254 toep->ddp.active_count--; 255 if (toep->ddp.active_id == db_idx) { 256 if (toep->ddp.active_count == 0) { 257 KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL, 258 ("%s: active_count mismatch", __func__)); 259 toep->ddp.active_id = -1; 260 } else 261 toep->ddp.active_id ^= 1; 262 #ifdef VERBOSE_TRACES 263 CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__, 264 toep->tid, toep->ddp.active_id); 265 #endif 266 } else { 267 KASSERT(toep->ddp.active_count != 0 && 268 toep->ddp.active_id != -1, 269 ("%s: active count mismatch", __func__)); 270 } 271 272 db->cancel_pending = 0; 273 db->job = NULL; 274 recycle_pageset(toep, db->ps); 275 db->ps = NULL; 276 277 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 278 KASSERT(toep->ddp.flags & db_flag, 279 ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", 280 __func__, toep, toep->ddp.flags)); 281 toep->ddp.flags &= ~db_flag; 282 } 283 284 /* XXX: handle_ddp_data code duplication */ 285 void 286 insert_ddp_data(struct toepcb *toep, uint32_t n) 287 { 288 struct inpcb *inp = toep->inp; 289 struct tcpcb *tp = intotcpcb(inp); 290 struct ddp_buffer *db; 291 struct kaiocb *job; 292 size_t placed; 293 long copied; 294 unsigned int db_idx; 295 #ifdef INVARIANTS 296 unsigned int db_flag; 297 #endif 298 299 INP_WLOCK_ASSERT(inp); 300 DDP_ASSERT_LOCKED(toep); 301 302 tp->rcv_nxt += n; 303 #ifndef USE_DDP_RX_FLOW_CONTROL 304 KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); 305 tp->rcv_wnd -= n; 306 #endif 307 CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", 308 __func__, n); 309 while (toep->ddp.active_count > 0) { 310 MPASS(toep->ddp.active_id != -1); 311 db_idx = toep->ddp.active_id; 312 #ifdef INVARIANTS 313 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 314 #endif 315 MPASS((toep->ddp.flags & db_flag) != 0); 316 db = &toep->ddp.db[db_idx]; 317 job = db->job; 318 copied = job->aio_received; 319 placed = n; 320 if (placed > job->uaiocb.aio_nbytes - copied) 321 placed = job->uaiocb.aio_nbytes - copied; 322 if (placed > 0) 323 job->msgrcv = 1; 324 if (!aio_clear_cancel_function(job)) { 325 /* 326 * Update the copied length for when 327 * t4_aio_cancel_active() completes this 328 * request. 329 */ 330 job->aio_received += placed; 331 } else if (copied + placed != 0) { 332 CTR4(KTR_CXGBE, 333 "%s: completing %p (copied %ld, placed %lu)", 334 __func__, job, copied, placed); 335 /* XXX: This always completes if there is some data. */ 336 aio_complete(job, copied + placed, 0); 337 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { 338 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 339 toep->ddp.waiting_count++; 340 } else 341 aio_cancel(job); 342 n -= placed; 343 complete_ddp_buffer(toep, db, db_idx); 344 } 345 346 MPASS(n == 0); 347 } 348 349 /* SET_TCB_FIELD sent as a ULP command looks like this */ 350 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 351 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 352 353 /* RX_DATA_ACK sent as a ULP command looks like this */ 354 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ 355 sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) 356 357 static inline void * 358 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, 359 uint64_t word, uint64_t mask, uint64_t val) 360 { 361 struct ulptx_idata *ulpsc; 362 struct cpl_set_tcb_field_core *req; 363 364 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 365 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 366 367 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 368 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 369 ulpsc->len = htobe32(sizeof(*req)); 370 371 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 372 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); 373 req->reply_ctrl = htobe16(V_NO_REPLY(1) | 374 V_QUEUENO(toep->ofld_rxq->iq.abs_id)); 375 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 376 req->mask = htobe64(mask); 377 req->val = htobe64(val); 378 379 ulpsc = (struct ulptx_idata *)(req + 1); 380 if (LEN__SET_TCB_FIELD_ULP % 16) { 381 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 382 ulpsc->len = htobe32(0); 383 return (ulpsc + 1); 384 } 385 return (ulpsc); 386 } 387 388 static inline void * 389 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) 390 { 391 struct ulptx_idata *ulpsc; 392 struct cpl_rx_data_ack_core *req; 393 394 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 395 ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); 396 397 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 398 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 399 ulpsc->len = htobe32(sizeof(*req)); 400 401 req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); 402 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); 403 req->credit_dack = htobe32(F_RX_MODULATE_RX); 404 405 ulpsc = (struct ulptx_idata *)(req + 1); 406 if (LEN__RX_DATA_ACK_ULP % 16) { 407 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 408 ulpsc->len = htobe32(0); 409 return (ulpsc + 1); 410 } 411 return (ulpsc); 412 } 413 414 static struct wrqe * 415 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, 416 struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask) 417 { 418 struct wrqe *wr; 419 struct work_request_hdr *wrh; 420 struct ulp_txpkt *ulpmc; 421 int len; 422 423 KASSERT(db_idx == 0 || db_idx == 1, 424 ("%s: bad DDP buffer index %d", __func__, db_idx)); 425 426 /* 427 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an 428 * RX_DATA_ACK (with RX_MODULATE to speed up delivery). 429 * 430 * The work request header is 16B and always ends at a 16B boundary. 431 * The ULPTX master commands that follow must all end at 16B boundaries 432 * too so we round up the size to 16. 433 */ 434 len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + 435 roundup2(LEN__RX_DATA_ACK_ULP, 16); 436 437 wr = alloc_wrqe(len, toep->ctrlq); 438 if (wr == NULL) 439 return (NULL); 440 wrh = wrtod(wr); 441 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 442 ulpmc = (struct ulp_txpkt *)(wrh + 1); 443 444 /* Write the buffer's tag */ 445 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 446 W_TCB_RX_DDP_BUF0_TAG + db_idx, 447 V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), 448 V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag)); 449 450 /* Update the current offset in the DDP buffer and its total length */ 451 if (db_idx == 0) 452 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 453 W_TCB_RX_DDP_BUF0_OFFSET, 454 V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | 455 V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), 456 V_TCB_RX_DDP_BUF0_OFFSET(offset) | 457 V_TCB_RX_DDP_BUF0_LEN(ps->len)); 458 else 459 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 460 W_TCB_RX_DDP_BUF1_OFFSET, 461 V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | 462 V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), 463 V_TCB_RX_DDP_BUF1_OFFSET(offset) | 464 V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32)); 465 466 /* Update DDP flags */ 467 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, 468 ddp_flags_mask, ddp_flags); 469 470 /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ 471 ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); 472 473 return (wr); 474 } 475 476 static int 477 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) 478 { 479 uint32_t report = be32toh(ddp_report); 480 unsigned int db_idx; 481 struct inpcb *inp = toep->inp; 482 struct ddp_buffer *db; 483 struct tcpcb *tp; 484 struct socket *so; 485 struct sockbuf *sb; 486 struct kaiocb *job; 487 long copied; 488 489 db_idx = report & F_DDP_BUF_IDX ? 1 : 0; 490 491 if (__predict_false(!(report & F_DDP_INV))) 492 CXGBE_UNIMPLEMENTED("DDP buffer still valid"); 493 494 INP_WLOCK(inp); 495 so = inp_inpcbtosocket(inp); 496 sb = &so->so_rcv; 497 DDP_LOCK(toep); 498 499 KASSERT(toep->ddp.active_id == db_idx, 500 ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, 501 toep->ddp.active_id, toep->tid)); 502 db = &toep->ddp.db[db_idx]; 503 job = db->job; 504 505 if (__predict_false(inp->inp_flags & INP_DROPPED)) { 506 /* 507 * This can happen due to an administrative tcpdrop(8). 508 * Just fail the request with ECONNRESET. 509 */ 510 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 511 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 512 if (aio_clear_cancel_function(job)) 513 ddp_complete_one(job, ECONNRESET); 514 goto completed; 515 } 516 517 tp = intotcpcb(inp); 518 519 /* 520 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 521 * sequence number of the next byte to receive. The length of 522 * the data received for this message must be computed by 523 * comparing the new and old values of rcv_nxt. 524 * 525 * For RX_DATA_DDP, len might be non-zero, but it is only the 526 * length of the most recent DMA. It does not include the 527 * total length of the data received since the previous update 528 * for this DDP buffer. rcv_nxt is the sequence number of the 529 * first received byte from the most recent DMA. 530 */ 531 len += be32toh(rcv_nxt) - tp->rcv_nxt; 532 tp->rcv_nxt += len; 533 tp->t_rcvtime = ticks; 534 #ifndef USE_DDP_RX_FLOW_CONTROL 535 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 536 tp->rcv_wnd -= len; 537 #endif 538 #ifdef VERBOSE_TRACES 539 CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__, 540 toep->tid, db_idx, len, report); 541 #endif 542 543 /* receive buffer autosize */ 544 MPASS(toep->vnet == so->so_vnet); 545 CURVNET_SET(toep->vnet); 546 SOCKBUF_LOCK(sb); 547 if (sb->sb_flags & SB_AUTOSIZE && 548 V_tcp_do_autorcvbuf && 549 sb->sb_hiwat < V_tcp_autorcvbuf_max && 550 len > (sbspace(sb) / 8 * 7)) { 551 struct adapter *sc = td_adapter(toep->td); 552 unsigned int hiwat = sb->sb_hiwat; 553 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 554 V_tcp_autorcvbuf_max); 555 556 if (!sbreserve_locked(so, SO_RCV, newsize, NULL)) 557 sb->sb_flags &= ~SB_AUTOSIZE; 558 } 559 SOCKBUF_UNLOCK(sb); 560 CURVNET_RESTORE(); 561 562 job->msgrcv = 1; 563 if (db->cancel_pending) { 564 /* 565 * Update the job's length but defer completion to the 566 * TCB_RPL callback. 567 */ 568 job->aio_received += len; 569 goto out; 570 } else if (!aio_clear_cancel_function(job)) { 571 /* 572 * Update the copied length for when 573 * t4_aio_cancel_active() completes this request. 574 */ 575 job->aio_received += len; 576 } else { 577 copied = job->aio_received; 578 #ifdef VERBOSE_TRACES 579 CTR5(KTR_CXGBE, 580 "%s: tid %u, completing %p (copied %ld, placed %d)", 581 __func__, toep->tid, job, copied, len); 582 #endif 583 aio_complete(job, copied + len, 0); 584 t4_rcvd(&toep->td->tod, tp); 585 } 586 587 completed: 588 complete_ddp_buffer(toep, db, db_idx); 589 if (toep->ddp.waiting_count > 0) 590 ddp_queue_toep(toep); 591 out: 592 DDP_UNLOCK(toep); 593 INP_WUNLOCK(inp); 594 595 return (0); 596 } 597 598 void 599 handle_ddp_indicate(struct toepcb *toep) 600 { 601 602 DDP_ASSERT_LOCKED(toep); 603 MPASS(toep->ddp.active_count == 0); 604 MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); 605 if (toep->ddp.waiting_count == 0) { 606 /* 607 * The pending requests that triggered the request for an 608 * an indicate were cancelled. Those cancels should have 609 * already disabled DDP. Just ignore this as the data is 610 * going into the socket buffer anyway. 611 */ 612 return; 613 } 614 CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, 615 toep->tid, toep->ddp.waiting_count); 616 ddp_queue_toep(toep); 617 } 618 619 CTASSERT(CPL_COOKIE_DDP0 + 1 == CPL_COOKIE_DDP1); 620 621 static int 622 do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 623 { 624 struct adapter *sc = iq->adapter; 625 const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); 626 unsigned int tid = GET_TID(cpl); 627 unsigned int db_idx; 628 struct toepcb *toep; 629 struct inpcb *inp; 630 struct ddp_buffer *db; 631 struct kaiocb *job; 632 long copied; 633 634 if (cpl->status != CPL_ERR_NONE) 635 panic("XXX: tcp_rpl failed: %d", cpl->status); 636 637 toep = lookup_tid(sc, tid); 638 inp = toep->inp; 639 switch (cpl->cookie) { 640 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP0): 641 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP1): 642 /* 643 * XXX: This duplicates a lot of code with handle_ddp_data(). 644 */ 645 db_idx = G_COOKIE(cpl->cookie) - CPL_COOKIE_DDP0; 646 MPASS(db_idx < nitems(toep->ddp.db)); 647 INP_WLOCK(inp); 648 DDP_LOCK(toep); 649 db = &toep->ddp.db[db_idx]; 650 651 /* 652 * handle_ddp_data() should leave the job around until 653 * this callback runs once a cancel is pending. 654 */ 655 MPASS(db != NULL); 656 MPASS(db->job != NULL); 657 MPASS(db->cancel_pending); 658 659 /* 660 * XXX: It's not clear what happens if there is data 661 * placed when the buffer is invalidated. I suspect we 662 * need to read the TCB to see how much data was placed. 663 * 664 * For now this just pretends like nothing was placed. 665 * 666 * XXX: Note that if we did check the PCB we would need to 667 * also take care of updating the tp, etc. 668 */ 669 job = db->job; 670 copied = job->aio_received; 671 if (copied == 0) { 672 CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); 673 aio_cancel(job); 674 } else { 675 CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", 676 __func__, job, copied); 677 aio_complete(job, copied, 0); 678 t4_rcvd(&toep->td->tod, intotcpcb(inp)); 679 } 680 681 complete_ddp_buffer(toep, db, db_idx); 682 if (toep->ddp.waiting_count > 0) 683 ddp_queue_toep(toep); 684 DDP_UNLOCK(toep); 685 INP_WUNLOCK(inp); 686 break; 687 default: 688 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", 689 G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); 690 } 691 692 return (0); 693 } 694 695 void 696 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) 697 { 698 struct ddp_buffer *db; 699 struct kaiocb *job; 700 long copied; 701 unsigned int db_idx; 702 #ifdef INVARIANTS 703 unsigned int db_flag; 704 #endif 705 int len, placed; 706 707 INP_WLOCK_ASSERT(toep->inp); 708 DDP_ASSERT_LOCKED(toep); 709 710 /* - 1 is to ignore the byte for FIN */ 711 len = be32toh(rcv_nxt) - tp->rcv_nxt - 1; 712 tp->rcv_nxt += len; 713 714 while (toep->ddp.active_count > 0) { 715 MPASS(toep->ddp.active_id != -1); 716 db_idx = toep->ddp.active_id; 717 #ifdef INVARIANTS 718 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 719 #endif 720 MPASS((toep->ddp.flags & db_flag) != 0); 721 db = &toep->ddp.db[db_idx]; 722 job = db->job; 723 copied = job->aio_received; 724 placed = len; 725 if (placed > job->uaiocb.aio_nbytes - copied) 726 placed = job->uaiocb.aio_nbytes - copied; 727 if (placed > 0) 728 job->msgrcv = 1; 729 if (!aio_clear_cancel_function(job)) { 730 /* 731 * Update the copied length for when 732 * t4_aio_cancel_active() completes this 733 * request. 734 */ 735 job->aio_received += placed; 736 } else { 737 CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", 738 __func__, toep->tid, db_idx, placed); 739 aio_complete(job, copied + placed, 0); 740 } 741 len -= placed; 742 complete_ddp_buffer(toep, db, db_idx); 743 } 744 745 MPASS(len == 0); 746 ddp_complete_all(toep, 0); 747 } 748 749 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ 750 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ 751 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ 752 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) 753 754 extern cpl_handler_t t4_cpl_handler[]; 755 756 static int 757 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 758 { 759 struct adapter *sc = iq->adapter; 760 const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); 761 unsigned int tid = GET_TID(cpl); 762 uint32_t vld; 763 struct toepcb *toep = lookup_tid(sc, tid); 764 765 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 766 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 767 KASSERT(!(toep->flags & TPF_SYNQE), 768 ("%s: toep %p claims to be a synq entry", __func__, toep)); 769 770 vld = be32toh(cpl->ddpvld); 771 if (__predict_false(vld & DDP_ERR)) { 772 panic("%s: DDP error 0x%x (tid %d, toep %p)", 773 __func__, vld, tid, toep); 774 } 775 776 if (ulp_mode(toep) == ULP_MODE_ISCSI) { 777 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); 778 return (0); 779 } 780 781 handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); 782 783 return (0); 784 } 785 786 static int 787 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, 788 struct mbuf *m) 789 { 790 struct adapter *sc = iq->adapter; 791 const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); 792 unsigned int tid = GET_TID(cpl); 793 struct toepcb *toep = lookup_tid(sc, tid); 794 795 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 796 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 797 KASSERT(!(toep->flags & TPF_SYNQE), 798 ("%s: toep %p claims to be a synq entry", __func__, toep)); 799 800 handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); 801 802 return (0); 803 } 804 805 static void 806 enable_ddp(struct adapter *sc, struct toepcb *toep) 807 { 808 809 KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, 810 ("%s: toep %p has bad ddp_flags 0x%x", 811 __func__, toep, toep->ddp.flags)); 812 813 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 814 __func__, toep->tid, time_uptime); 815 816 DDP_ASSERT_LOCKED(toep); 817 toep->ddp.flags |= DDP_SC_REQ; 818 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, 819 V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | 820 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | 821 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), 822 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0); 823 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 824 V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0); 825 } 826 827 static int 828 calculate_hcf(int n1, int n2) 829 { 830 int a, b, t; 831 832 if (n1 <= n2) { 833 a = n1; 834 b = n2; 835 } else { 836 a = n2; 837 b = n1; 838 } 839 840 while (a != 0) { 841 t = a; 842 a = b % a; 843 b = t; 844 } 845 846 return (b); 847 } 848 849 static inline int 850 pages_to_nppods(int npages, int ddp_page_shift) 851 { 852 853 MPASS(ddp_page_shift >= PAGE_SHIFT); 854 855 return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); 856 } 857 858 static int 859 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, 860 struct ppod_reservation *prsv) 861 { 862 vmem_addr_t addr; /* relative to start of region */ 863 864 if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, 865 &addr) != 0) 866 return (ENOMEM); 867 868 #ifdef VERBOSE_TRACES 869 CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", 870 __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, 871 nppods, 1 << pr->pr_page_shift[pgsz_idx]); 872 #endif 873 874 /* 875 * The hardware tagmask includes an extra invalid bit but the arena was 876 * seeded with valid values only. An allocation out of this arena will 877 * fit inside the tagmask but won't have the invalid bit set. 878 */ 879 MPASS((addr & pr->pr_tag_mask) == addr); 880 MPASS((addr & pr->pr_invalid_bit) == 0); 881 882 prsv->prsv_pr = pr; 883 prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; 884 prsv->prsv_nppods = nppods; 885 886 return (0); 887 } 888 889 static int 890 t4_alloc_page_pods_for_vmpages(struct ppod_region *pr, vm_page_t *pages, 891 int npages, struct ppod_reservation *prsv) 892 { 893 int i, hcf, seglen, idx, nppods; 894 895 /* 896 * The DDP page size is unrelated to the VM page size. We combine 897 * contiguous physical pages into larger segments to get the best DDP 898 * page size possible. This is the largest of the four sizes in 899 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in 900 * the page list. 901 */ 902 hcf = 0; 903 for (i = 0; i < npages; i++) { 904 seglen = PAGE_SIZE; 905 while (i < npages - 1 && 906 VM_PAGE_TO_PHYS(pages[i]) + PAGE_SIZE == 907 VM_PAGE_TO_PHYS(pages[i + 1])) { 908 seglen += PAGE_SIZE; 909 i++; 910 } 911 912 hcf = calculate_hcf(hcf, seglen); 913 if (hcf < (1 << pr->pr_page_shift[1])) { 914 idx = 0; 915 goto have_pgsz; /* give up, short circuit */ 916 } 917 } 918 919 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 920 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 921 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 922 if ((hcf & PR_PAGE_MASK(idx)) == 0) 923 break; 924 } 925 #undef PR_PAGE_MASK 926 927 have_pgsz: 928 MPASS(idx <= M_PPOD_PGSZ); 929 930 nppods = pages_to_nppods(npages, pr->pr_page_shift[idx]); 931 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 932 return (ENOMEM); 933 MPASS(prsv->prsv_nppods > 0); 934 935 return (0); 936 } 937 938 int 939 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) 940 { 941 struct ppod_reservation *prsv = &ps->prsv; 942 943 KASSERT(prsv->prsv_nppods == 0, 944 ("%s: page pods already allocated", __func__)); 945 946 return (t4_alloc_page_pods_for_vmpages(pr, ps->pages, ps->npages, 947 prsv)); 948 } 949 950 int 951 t4_alloc_page_pods_for_bio(struct ppod_region *pr, struct bio *bp, 952 struct ppod_reservation *prsv) 953 { 954 955 MPASS(bp->bio_flags & BIO_UNMAPPED); 956 957 return (t4_alloc_page_pods_for_vmpages(pr, bp->bio_ma, bp->bio_ma_n, 958 prsv)); 959 } 960 961 int 962 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, 963 struct ppod_reservation *prsv) 964 { 965 int hcf, seglen, idx, npages, nppods; 966 uintptr_t start_pva, end_pva, pva, p1; 967 968 MPASS(buf > 0); 969 MPASS(len > 0); 970 971 /* 972 * The DDP page size is unrelated to the VM page size. We combine 973 * contiguous physical pages into larger segments to get the best DDP 974 * page size possible. This is the largest of the four sizes in 975 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 976 * in the page list. 977 */ 978 hcf = 0; 979 start_pva = trunc_page(buf); 980 end_pva = trunc_page(buf + len - 1); 981 pva = start_pva; 982 while (pva <= end_pva) { 983 seglen = PAGE_SIZE; 984 p1 = pmap_kextract(pva); 985 pva += PAGE_SIZE; 986 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { 987 seglen += PAGE_SIZE; 988 pva += PAGE_SIZE; 989 } 990 991 hcf = calculate_hcf(hcf, seglen); 992 if (hcf < (1 << pr->pr_page_shift[1])) { 993 idx = 0; 994 goto have_pgsz; /* give up, short circuit */ 995 } 996 } 997 998 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 999 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1000 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1001 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1002 break; 1003 } 1004 #undef PR_PAGE_MASK 1005 1006 have_pgsz: 1007 MPASS(idx <= M_PPOD_PGSZ); 1008 1009 npages = 1; 1010 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 1011 nppods = howmany(npages, PPOD_PAGES); 1012 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1013 return (ENOMEM); 1014 MPASS(prsv->prsv_nppods > 0); 1015 1016 return (0); 1017 } 1018 1019 int 1020 t4_alloc_page_pods_for_sgl(struct ppod_region *pr, struct ctl_sg_entry *sgl, 1021 int entries, struct ppod_reservation *prsv) 1022 { 1023 int hcf, seglen, idx = 0, npages, nppods, i, len; 1024 uintptr_t start_pva, end_pva, pva, p1 ; 1025 vm_offset_t buf; 1026 struct ctl_sg_entry *sge; 1027 1028 MPASS(entries > 0); 1029 MPASS(sgl); 1030 1031 /* 1032 * The DDP page size is unrelated to the VM page size. We combine 1033 * contiguous physical pages into larger segments to get the best DDP 1034 * page size possible. This is the largest of the four sizes in 1035 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 1036 * in the page list. 1037 */ 1038 hcf = 0; 1039 for (i = entries - 1; i >= 0; i--) { 1040 sge = sgl + i; 1041 buf = (vm_offset_t)sge->addr; 1042 len = sge->len; 1043 start_pva = trunc_page(buf); 1044 end_pva = trunc_page(buf + len - 1); 1045 pva = start_pva; 1046 while (pva <= end_pva) { 1047 seglen = PAGE_SIZE; 1048 p1 = pmap_kextract(pva); 1049 pva += PAGE_SIZE; 1050 while (pva <= end_pva && p1 + seglen == 1051 pmap_kextract(pva)) { 1052 seglen += PAGE_SIZE; 1053 pva += PAGE_SIZE; 1054 } 1055 1056 hcf = calculate_hcf(hcf, seglen); 1057 if (hcf < (1 << pr->pr_page_shift[1])) { 1058 idx = 0; 1059 goto have_pgsz; /* give up, short circuit */ 1060 } 1061 } 1062 } 1063 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 1064 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1065 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1066 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1067 break; 1068 } 1069 #undef PR_PAGE_MASK 1070 1071 have_pgsz: 1072 MPASS(idx <= M_PPOD_PGSZ); 1073 1074 npages = 0; 1075 while (entries--) { 1076 npages++; 1077 start_pva = trunc_page((vm_offset_t)sgl->addr); 1078 end_pva = trunc_page((vm_offset_t)sgl->addr + sgl->len - 1); 1079 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 1080 sgl = sgl + 1; 1081 } 1082 nppods = howmany(npages, PPOD_PAGES); 1083 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1084 return (ENOMEM); 1085 MPASS(prsv->prsv_nppods > 0); 1086 return (0); 1087 } 1088 1089 void 1090 t4_free_page_pods(struct ppod_reservation *prsv) 1091 { 1092 struct ppod_region *pr = prsv->prsv_pr; 1093 vmem_addr_t addr; 1094 1095 MPASS(prsv != NULL); 1096 MPASS(prsv->prsv_nppods != 0); 1097 1098 addr = prsv->prsv_tag & pr->pr_tag_mask; 1099 MPASS((addr & pr->pr_invalid_bit) == 0); 1100 1101 #ifdef VERBOSE_TRACES 1102 CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, 1103 pr->pr_arena, addr, prsv->prsv_nppods); 1104 #endif 1105 1106 vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); 1107 prsv->prsv_nppods = 0; 1108 } 1109 1110 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) 1111 1112 int 1113 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, 1114 struct pageset *ps) 1115 { 1116 struct wrqe *wr; 1117 struct ulp_mem_io *ulpmc; 1118 struct ulptx_idata *ulpsc; 1119 struct pagepod *ppod; 1120 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1121 u_int ppod_addr; 1122 uint32_t cmd; 1123 struct ppod_reservation *prsv = &ps->prsv; 1124 struct ppod_region *pr = prsv->prsv_pr; 1125 vm_paddr_t pa; 1126 1127 KASSERT(!(ps->flags & PS_PPODS_WRITTEN), 1128 ("%s: page pods already written", __func__)); 1129 MPASS(prsv->prsv_nppods > 0); 1130 1131 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1132 if (is_t4(sc)) 1133 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1134 else 1135 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1136 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1137 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1138 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1139 1140 /* How many page pods are we writing in this cycle */ 1141 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1142 chunk = PPOD_SZ(n); 1143 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1144 1145 wr = alloc_wrqe(len, wrq); 1146 if (wr == NULL) 1147 return (ENOMEM); /* ok to just bail out */ 1148 ulpmc = wrtod(wr); 1149 1150 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1151 ulpmc->cmd = cmd; 1152 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1153 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1154 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1155 1156 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1157 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1158 ulpsc->len = htobe32(chunk); 1159 1160 ppod = (struct pagepod *)(ulpsc + 1); 1161 for (j = 0; j < n; i++, j++, ppod++) { 1162 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1163 V_PPOD_TID(tid) | prsv->prsv_tag); 1164 ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | 1165 V_PPOD_OFST(ps->offset)); 1166 ppod->rsvd = 0; 1167 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1168 for (k = 0; k < nitems(ppod->addr); k++) { 1169 if (idx < ps->npages) { 1170 pa = VM_PAGE_TO_PHYS(ps->pages[idx]); 1171 ppod->addr[k] = htobe64(pa); 1172 idx += ddp_pgsz / PAGE_SIZE; 1173 } else 1174 ppod->addr[k] = 0; 1175 #if 0 1176 CTR5(KTR_CXGBE, 1177 "%s: tid %d ppod[%d]->addr[%d] = %p", 1178 __func__, tid, i, k, 1179 be64toh(ppod->addr[k])); 1180 #endif 1181 } 1182 1183 } 1184 1185 t4_wrq_tx(sc, wr); 1186 } 1187 ps->flags |= PS_PPODS_WRITTEN; 1188 1189 return (0); 1190 } 1191 1192 static struct mbuf * 1193 alloc_raw_wr_mbuf(int len) 1194 { 1195 struct mbuf *m; 1196 1197 if (len <= MHLEN) 1198 m = m_gethdr(M_NOWAIT, MT_DATA); 1199 else if (len <= MCLBYTES) 1200 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1201 else 1202 m = NULL; 1203 if (m == NULL) 1204 return (NULL); 1205 m->m_pkthdr.len = len; 1206 m->m_len = len; 1207 set_mbuf_raw_wr(m, true); 1208 return (m); 1209 } 1210 1211 int 1212 t4_write_page_pods_for_bio(struct adapter *sc, struct toepcb *toep, 1213 struct ppod_reservation *prsv, struct bio *bp, struct mbufq *wrq) 1214 { 1215 struct ulp_mem_io *ulpmc; 1216 struct ulptx_idata *ulpsc; 1217 struct pagepod *ppod; 1218 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1219 u_int ppod_addr; 1220 uint32_t cmd; 1221 struct ppod_region *pr = prsv->prsv_pr; 1222 vm_paddr_t pa; 1223 struct mbuf *m; 1224 1225 MPASS(bp->bio_flags & BIO_UNMAPPED); 1226 1227 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1228 if (is_t4(sc)) 1229 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1230 else 1231 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1232 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1233 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1234 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1235 1236 /* How many page pods are we writing in this cycle */ 1237 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1238 MPASS(n > 0); 1239 chunk = PPOD_SZ(n); 1240 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1241 1242 m = alloc_raw_wr_mbuf(len); 1243 if (m == NULL) 1244 return (ENOMEM); 1245 1246 ulpmc = mtod(m, struct ulp_mem_io *); 1247 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1248 ulpmc->cmd = cmd; 1249 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1250 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1251 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1252 1253 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1254 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1255 ulpsc->len = htobe32(chunk); 1256 1257 ppod = (struct pagepod *)(ulpsc + 1); 1258 for (j = 0; j < n; i++, j++, ppod++) { 1259 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1260 V_PPOD_TID(toep->tid) | 1261 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1262 ppod->len_offset = htobe64(V_PPOD_LEN(bp->bio_bcount) | 1263 V_PPOD_OFST(bp->bio_ma_offset)); 1264 ppod->rsvd = 0; 1265 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1266 for (k = 0; k < nitems(ppod->addr); k++) { 1267 if (idx < bp->bio_ma_n) { 1268 pa = VM_PAGE_TO_PHYS(bp->bio_ma[idx]); 1269 ppod->addr[k] = htobe64(pa); 1270 idx += ddp_pgsz / PAGE_SIZE; 1271 } else 1272 ppod->addr[k] = 0; 1273 #if 0 1274 CTR5(KTR_CXGBE, 1275 "%s: tid %d ppod[%d]->addr[%d] = %p", 1276 __func__, toep->tid, i, k, 1277 be64toh(ppod->addr[k])); 1278 #endif 1279 } 1280 } 1281 1282 mbufq_enqueue(wrq, m); 1283 } 1284 1285 return (0); 1286 } 1287 1288 int 1289 t4_write_page_pods_for_buf(struct adapter *sc, struct toepcb *toep, 1290 struct ppod_reservation *prsv, vm_offset_t buf, int buflen, 1291 struct mbufq *wrq) 1292 { 1293 struct ulp_mem_io *ulpmc; 1294 struct ulptx_idata *ulpsc; 1295 struct pagepod *ppod; 1296 int i, j, k, n, chunk, len, ddp_pgsz; 1297 u_int ppod_addr, offset; 1298 uint32_t cmd; 1299 struct ppod_region *pr = prsv->prsv_pr; 1300 uintptr_t end_pva, pva; 1301 vm_paddr_t pa; 1302 struct mbuf *m; 1303 1304 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1305 if (is_t4(sc)) 1306 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1307 else 1308 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1309 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1310 offset = buf & PAGE_MASK; 1311 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1312 pva = trunc_page(buf); 1313 end_pva = trunc_page(buf + buflen - 1); 1314 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1315 1316 /* How many page pods are we writing in this cycle */ 1317 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1318 MPASS(n > 0); 1319 chunk = PPOD_SZ(n); 1320 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1321 1322 m = alloc_raw_wr_mbuf(len); 1323 if (m == NULL) 1324 return (ENOMEM); 1325 ulpmc = mtod(m, struct ulp_mem_io *); 1326 1327 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1328 ulpmc->cmd = cmd; 1329 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1330 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1331 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1332 1333 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1334 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1335 ulpsc->len = htobe32(chunk); 1336 1337 ppod = (struct pagepod *)(ulpsc + 1); 1338 for (j = 0; j < n; i++, j++, ppod++) { 1339 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1340 V_PPOD_TID(toep->tid) | 1341 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1342 ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | 1343 V_PPOD_OFST(offset)); 1344 ppod->rsvd = 0; 1345 1346 for (k = 0; k < nitems(ppod->addr); k++) { 1347 if (pva > end_pva) 1348 ppod->addr[k] = 0; 1349 else { 1350 pa = pmap_kextract(pva); 1351 ppod->addr[k] = htobe64(pa); 1352 pva += ddp_pgsz; 1353 } 1354 #if 0 1355 CTR5(KTR_CXGBE, 1356 "%s: tid %d ppod[%d]->addr[%d] = %p", 1357 __func__, toep->tid, i, k, 1358 be64toh(ppod->addr[k])); 1359 #endif 1360 } 1361 1362 /* 1363 * Walk back 1 segment so that the first address in the 1364 * next pod is the same as the last one in the current 1365 * pod. 1366 */ 1367 pva -= ddp_pgsz; 1368 } 1369 1370 mbufq_enqueue(wrq, m); 1371 } 1372 1373 MPASS(pva <= end_pva); 1374 1375 return (0); 1376 } 1377 1378 int 1379 t4_write_page_pods_for_sgl(struct adapter *sc, struct toepcb *toep, 1380 struct ppod_reservation *prsv, struct ctl_sg_entry *sgl, int entries, 1381 int xferlen, struct mbufq *wrq) 1382 { 1383 struct ulp_mem_io *ulpmc; 1384 struct ulptx_idata *ulpsc; 1385 struct pagepod *ppod; 1386 int i, j, k, n, chunk, len, ddp_pgsz; 1387 u_int ppod_addr, offset, sg_offset = 0; 1388 uint32_t cmd; 1389 struct ppod_region *pr = prsv->prsv_pr; 1390 uintptr_t pva; 1391 vm_paddr_t pa; 1392 struct mbuf *m; 1393 1394 MPASS(sgl != NULL); 1395 MPASS(entries > 0); 1396 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1397 if (is_t4(sc)) 1398 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1399 else 1400 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1401 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1402 offset = (vm_offset_t)sgl->addr & PAGE_MASK; 1403 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1404 pva = trunc_page((vm_offset_t)sgl->addr); 1405 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1406 1407 /* How many page pods are we writing in this cycle */ 1408 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1409 MPASS(n > 0); 1410 chunk = PPOD_SZ(n); 1411 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1412 1413 m = alloc_raw_wr_mbuf(len); 1414 if (m == NULL) 1415 return (ENOMEM); 1416 ulpmc = mtod(m, struct ulp_mem_io *); 1417 1418 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1419 ulpmc->cmd = cmd; 1420 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1421 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1422 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1423 1424 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1425 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1426 ulpsc->len = htobe32(chunk); 1427 1428 ppod = (struct pagepod *)(ulpsc + 1); 1429 for (j = 0; j < n; i++, j++, ppod++) { 1430 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1431 V_PPOD_TID(toep->tid) | 1432 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1433 ppod->len_offset = htobe64(V_PPOD_LEN(xferlen) | 1434 V_PPOD_OFST(offset)); 1435 ppod->rsvd = 0; 1436 1437 for (k = 0; k < nitems(ppod->addr); k++) { 1438 if (entries != 0) { 1439 pa = pmap_kextract(pva + sg_offset); 1440 ppod->addr[k] = htobe64(pa); 1441 } else 1442 ppod->addr[k] = 0; 1443 1444 #if 0 1445 CTR5(KTR_CXGBE, 1446 "%s: tid %d ppod[%d]->addr[%d] = %p", 1447 __func__, toep->tid, i, k, 1448 be64toh(ppod->addr[k])); 1449 #endif 1450 1451 /* 1452 * If this is the last entry in a pod, 1453 * reuse the same entry for first address 1454 * in the next pod. 1455 */ 1456 if (k + 1 == nitems(ppod->addr)) 1457 break; 1458 1459 /* 1460 * Don't move to the next DDP page if the 1461 * sgl is already finished. 1462 */ 1463 if (entries == 0) 1464 continue; 1465 1466 sg_offset += ddp_pgsz; 1467 if (sg_offset == sgl->len) { 1468 /* 1469 * This sgl entry is done. Go 1470 * to the next. 1471 */ 1472 entries--; 1473 sgl++; 1474 sg_offset = 0; 1475 if (entries != 0) 1476 pva = trunc_page( 1477 (vm_offset_t)sgl->addr); 1478 } 1479 } 1480 } 1481 1482 mbufq_enqueue(wrq, m); 1483 } 1484 1485 return (0); 1486 } 1487 1488 /* 1489 * Prepare a pageset for DDP. This sets up page pods. 1490 */ 1491 static int 1492 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) 1493 { 1494 struct tom_data *td = sc->tom_softc; 1495 1496 if (ps->prsv.prsv_nppods == 0 && 1497 t4_alloc_page_pods_for_ps(&td->pr, ps) != 0) { 1498 return (0); 1499 } 1500 if (!(ps->flags & PS_PPODS_WRITTEN) && 1501 t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { 1502 return (0); 1503 } 1504 1505 return (1); 1506 } 1507 1508 int 1509 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, 1510 const char *name) 1511 { 1512 int i; 1513 1514 MPASS(pr != NULL); 1515 MPASS(r->size > 0); 1516 1517 pr->pr_start = r->start; 1518 pr->pr_len = r->size; 1519 pr->pr_page_shift[0] = 12 + G_HPZ0(psz); 1520 pr->pr_page_shift[1] = 12 + G_HPZ1(psz); 1521 pr->pr_page_shift[2] = 12 + G_HPZ2(psz); 1522 pr->pr_page_shift[3] = 12 + G_HPZ3(psz); 1523 1524 /* The SGL -> page pod algorithm requires the sizes to be in order. */ 1525 for (i = 1; i < nitems(pr->pr_page_shift); i++) { 1526 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) 1527 return (ENXIO); 1528 } 1529 1530 pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); 1531 pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; 1532 if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) 1533 return (ENXIO); 1534 pr->pr_alias_shift = fls(pr->pr_tag_mask); 1535 pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); 1536 1537 pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, 1538 M_FIRSTFIT | M_NOWAIT); 1539 if (pr->pr_arena == NULL) 1540 return (ENOMEM); 1541 1542 return (0); 1543 } 1544 1545 void 1546 t4_free_ppod_region(struct ppod_region *pr) 1547 { 1548 1549 MPASS(pr != NULL); 1550 1551 if (pr->pr_arena) 1552 vmem_destroy(pr->pr_arena); 1553 bzero(pr, sizeof(*pr)); 1554 } 1555 1556 static int 1557 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, 1558 int pgoff, int len) 1559 { 1560 1561 if (ps->start != start || ps->npages != npages || 1562 ps->offset != pgoff || ps->len != len) 1563 return (1); 1564 1565 return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); 1566 } 1567 1568 static int 1569 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) 1570 { 1571 struct vmspace *vm; 1572 vm_map_t map; 1573 vm_offset_t start, end, pgoff; 1574 struct pageset *ps; 1575 int n; 1576 1577 DDP_ASSERT_LOCKED(toep); 1578 1579 /* 1580 * The AIO subsystem will cancel and drain all requests before 1581 * permitting a process to exit or exec, so p_vmspace should 1582 * be stable here. 1583 */ 1584 vm = job->userproc->p_vmspace; 1585 map = &vm->vm_map; 1586 start = (uintptr_t)job->uaiocb.aio_buf; 1587 pgoff = start & PAGE_MASK; 1588 end = round_page(start + job->uaiocb.aio_nbytes); 1589 start = trunc_page(start); 1590 1591 if (end - start > MAX_DDP_BUFFER_SIZE) { 1592 /* 1593 * Truncate the request to a short read. 1594 * Alternatively, we could DDP in chunks to the larger 1595 * buffer, but that would be quite a bit more work. 1596 * 1597 * When truncating, round the request down to avoid 1598 * crossing a cache line on the final transaction. 1599 */ 1600 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); 1601 #ifdef VERBOSE_TRACES 1602 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", 1603 __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, 1604 (unsigned long)(end - (start + pgoff))); 1605 job->uaiocb.aio_nbytes = end - (start + pgoff); 1606 #endif 1607 end = round_page(end); 1608 } 1609 1610 n = atop(end - start); 1611 1612 /* 1613 * Try to reuse a cached pageset. 1614 */ 1615 TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) { 1616 if (pscmp(ps, vm, start, n, pgoff, 1617 job->uaiocb.aio_nbytes) == 0) { 1618 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1619 toep->ddp.cached_count--; 1620 *pps = ps; 1621 return (0); 1622 } 1623 } 1624 1625 /* 1626 * If there are too many cached pagesets to create a new one, 1627 * free a pageset before creating a new one. 1628 */ 1629 KASSERT(toep->ddp.active_count + toep->ddp.cached_count <= 1630 nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__)); 1631 if (toep->ddp.active_count + toep->ddp.cached_count == 1632 nitems(toep->ddp.db)) { 1633 KASSERT(toep->ddp.cached_count > 0, 1634 ("no cached pageset to free")); 1635 ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq); 1636 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1637 toep->ddp.cached_count--; 1638 free_pageset(toep->td, ps); 1639 } 1640 DDP_UNLOCK(toep); 1641 1642 /* Create a new pageset. */ 1643 ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | 1644 M_ZERO); 1645 ps->pages = (vm_page_t *)(ps + 1); 1646 ps->vm_timestamp = map->timestamp; 1647 ps->npages = vm_fault_quick_hold_pages(map, start, end - start, 1648 VM_PROT_WRITE, ps->pages, n); 1649 1650 DDP_LOCK(toep); 1651 if (ps->npages < 0) { 1652 free(ps, M_CXGBE); 1653 return (EFAULT); 1654 } 1655 1656 KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", 1657 ps->npages, n)); 1658 1659 ps->offset = pgoff; 1660 ps->len = job->uaiocb.aio_nbytes; 1661 refcount_acquire(&vm->vm_refcnt); 1662 ps->vm = vm; 1663 ps->start = start; 1664 1665 CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", 1666 __func__, toep->tid, ps, job, ps->npages); 1667 *pps = ps; 1668 return (0); 1669 } 1670 1671 static void 1672 ddp_complete_all(struct toepcb *toep, int error) 1673 { 1674 struct kaiocb *job; 1675 1676 DDP_ASSERT_LOCKED(toep); 1677 while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) { 1678 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1679 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1680 toep->ddp.waiting_count--; 1681 if (aio_clear_cancel_function(job)) 1682 ddp_complete_one(job, error); 1683 } 1684 } 1685 1686 static void 1687 aio_ddp_cancel_one(struct kaiocb *job) 1688 { 1689 long copied; 1690 1691 /* 1692 * If this job had copied data out of the socket buffer before 1693 * it was cancelled, report it as a short read rather than an 1694 * error. 1695 */ 1696 copied = job->aio_received; 1697 if (copied != 0) 1698 aio_complete(job, copied, 0); 1699 else 1700 aio_cancel(job); 1701 } 1702 1703 /* 1704 * Called when the main loop wants to requeue a job to retry it later. 1705 * Deals with the race of the job being cancelled while it was being 1706 * examined. 1707 */ 1708 static void 1709 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) 1710 { 1711 1712 DDP_ASSERT_LOCKED(toep); 1713 if (!(toep->ddp.flags & DDP_DEAD) && 1714 aio_set_cancel_function(job, t4_aio_cancel_queued)) { 1715 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 1716 toep->ddp.waiting_count++; 1717 } else 1718 aio_ddp_cancel_one(job); 1719 } 1720 1721 static void 1722 aio_ddp_requeue(struct toepcb *toep) 1723 { 1724 struct adapter *sc = td_adapter(toep->td); 1725 struct socket *so; 1726 struct sockbuf *sb; 1727 struct inpcb *inp; 1728 struct kaiocb *job; 1729 struct ddp_buffer *db; 1730 size_t copied, offset, resid; 1731 struct pageset *ps; 1732 struct mbuf *m; 1733 uint64_t ddp_flags, ddp_flags_mask; 1734 struct wrqe *wr; 1735 int buf_flag, db_idx, error; 1736 1737 DDP_ASSERT_LOCKED(toep); 1738 1739 restart: 1740 if (toep->ddp.flags & DDP_DEAD) { 1741 MPASS(toep->ddp.waiting_count == 0); 1742 MPASS(toep->ddp.active_count == 0); 1743 return; 1744 } 1745 1746 if (toep->ddp.waiting_count == 0 || 1747 toep->ddp.active_count == nitems(toep->ddp.db)) { 1748 return; 1749 } 1750 1751 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1752 so = job->fd_file->f_data; 1753 sb = &so->so_rcv; 1754 SOCKBUF_LOCK(sb); 1755 1756 /* We will never get anything unless we are or were connected. */ 1757 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1758 SOCKBUF_UNLOCK(sb); 1759 ddp_complete_all(toep, ENOTCONN); 1760 return; 1761 } 1762 1763 KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0, 1764 ("%s: pending sockbuf data and DDP is active", __func__)); 1765 1766 /* Abort if socket has reported problems. */ 1767 /* XXX: Wait for any queued DDP's to finish and/or flush them? */ 1768 if (so->so_error && sbavail(sb) == 0) { 1769 toep->ddp.waiting_count--; 1770 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1771 if (!aio_clear_cancel_function(job)) { 1772 SOCKBUF_UNLOCK(sb); 1773 goto restart; 1774 } 1775 1776 /* 1777 * If this job has previously copied some data, report 1778 * a short read and leave the error to be reported by 1779 * a future request. 1780 */ 1781 copied = job->aio_received; 1782 if (copied != 0) { 1783 SOCKBUF_UNLOCK(sb); 1784 aio_complete(job, copied, 0); 1785 goto restart; 1786 } 1787 error = so->so_error; 1788 so->so_error = 0; 1789 SOCKBUF_UNLOCK(sb); 1790 aio_complete(job, -1, error); 1791 goto restart; 1792 } 1793 1794 /* 1795 * Door is closed. If there is pending data in the socket buffer, 1796 * deliver it. If there are pending DDP requests, wait for those 1797 * to complete. Once they have completed, return EOF reads. 1798 */ 1799 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1800 SOCKBUF_UNLOCK(sb); 1801 if (toep->ddp.active_count != 0) 1802 return; 1803 ddp_complete_all(toep, 0); 1804 return; 1805 } 1806 1807 /* 1808 * If DDP is not enabled and there is no pending socket buffer 1809 * data, try to enable DDP. 1810 */ 1811 if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) { 1812 SOCKBUF_UNLOCK(sb); 1813 1814 /* 1815 * Wait for the card to ACK that DDP is enabled before 1816 * queueing any buffers. Currently this waits for an 1817 * indicate to arrive. This could use a TCB_SET_FIELD_RPL 1818 * message to know that DDP was enabled instead of waiting 1819 * for the indicate which would avoid copying the indicate 1820 * if no data is pending. 1821 * 1822 * XXX: Might want to limit the indicate size to the size 1823 * of the first queued request. 1824 */ 1825 if ((toep->ddp.flags & DDP_SC_REQ) == 0) 1826 enable_ddp(sc, toep); 1827 return; 1828 } 1829 SOCKBUF_UNLOCK(sb); 1830 1831 /* 1832 * If another thread is queueing a buffer for DDP, let it 1833 * drain any work and return. 1834 */ 1835 if (toep->ddp.queueing != NULL) 1836 return; 1837 1838 /* Take the next job to prep it for DDP. */ 1839 toep->ddp.waiting_count--; 1840 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1841 if (!aio_clear_cancel_function(job)) 1842 goto restart; 1843 toep->ddp.queueing = job; 1844 1845 /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ 1846 error = hold_aio(toep, job, &ps); 1847 if (error != 0) { 1848 ddp_complete_one(job, error); 1849 toep->ddp.queueing = NULL; 1850 goto restart; 1851 } 1852 1853 SOCKBUF_LOCK(sb); 1854 if (so->so_error && sbavail(sb) == 0) { 1855 copied = job->aio_received; 1856 if (copied != 0) { 1857 SOCKBUF_UNLOCK(sb); 1858 recycle_pageset(toep, ps); 1859 aio_complete(job, copied, 0); 1860 toep->ddp.queueing = NULL; 1861 goto restart; 1862 } 1863 1864 error = so->so_error; 1865 so->so_error = 0; 1866 SOCKBUF_UNLOCK(sb); 1867 recycle_pageset(toep, ps); 1868 aio_complete(job, -1, error); 1869 toep->ddp.queueing = NULL; 1870 goto restart; 1871 } 1872 1873 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1874 SOCKBUF_UNLOCK(sb); 1875 recycle_pageset(toep, ps); 1876 if (toep->ddp.active_count != 0) { 1877 /* 1878 * The door is closed, but there are still pending 1879 * DDP buffers. Requeue. These jobs will all be 1880 * completed once those buffers drain. 1881 */ 1882 aio_ddp_requeue_one(toep, job); 1883 toep->ddp.queueing = NULL; 1884 return; 1885 } 1886 ddp_complete_one(job, 0); 1887 ddp_complete_all(toep, 0); 1888 toep->ddp.queueing = NULL; 1889 return; 1890 } 1891 1892 sbcopy: 1893 /* 1894 * If the toep is dead, there shouldn't be any data in the socket 1895 * buffer, so the above case should have handled this. 1896 */ 1897 MPASS(!(toep->ddp.flags & DDP_DEAD)); 1898 1899 /* 1900 * If there is pending data in the socket buffer (either 1901 * from before the requests were queued or a DDP indicate), 1902 * copy those mbufs out directly. 1903 */ 1904 copied = 0; 1905 offset = ps->offset + job->aio_received; 1906 MPASS(job->aio_received <= job->uaiocb.aio_nbytes); 1907 resid = job->uaiocb.aio_nbytes - job->aio_received; 1908 m = sb->sb_mb; 1909 KASSERT(m == NULL || toep->ddp.active_count == 0, 1910 ("%s: sockbuf data with active DDP", __func__)); 1911 while (m != NULL && resid > 0) { 1912 struct iovec iov[1]; 1913 struct uio uio; 1914 #ifdef INVARIANTS 1915 int error; 1916 #endif 1917 1918 iov[0].iov_base = mtod(m, void *); 1919 iov[0].iov_len = m->m_len; 1920 if (iov[0].iov_len > resid) 1921 iov[0].iov_len = resid; 1922 uio.uio_iov = iov; 1923 uio.uio_iovcnt = 1; 1924 uio.uio_offset = 0; 1925 uio.uio_resid = iov[0].iov_len; 1926 uio.uio_segflg = UIO_SYSSPACE; 1927 uio.uio_rw = UIO_WRITE; 1928 #ifdef INVARIANTS 1929 error = uiomove_fromphys(ps->pages, offset + copied, 1930 uio.uio_resid, &uio); 1931 #else 1932 uiomove_fromphys(ps->pages, offset + copied, uio.uio_resid, &uio); 1933 #endif 1934 MPASS(error == 0 && uio.uio_resid == 0); 1935 copied += uio.uio_offset; 1936 resid -= uio.uio_offset; 1937 m = m->m_next; 1938 } 1939 if (copied != 0) { 1940 sbdrop_locked(sb, copied); 1941 job->aio_received += copied; 1942 job->msgrcv = 1; 1943 copied = job->aio_received; 1944 inp = sotoinpcb(so); 1945 if (!INP_TRY_WLOCK(inp)) { 1946 /* 1947 * The reference on the socket file descriptor in 1948 * the AIO job should keep 'sb' and 'inp' stable. 1949 * Our caller has a reference on the 'toep' that 1950 * keeps it stable. 1951 */ 1952 SOCKBUF_UNLOCK(sb); 1953 DDP_UNLOCK(toep); 1954 INP_WLOCK(inp); 1955 DDP_LOCK(toep); 1956 SOCKBUF_LOCK(sb); 1957 1958 /* 1959 * If the socket has been closed, we should detect 1960 * that and complete this request if needed on 1961 * the next trip around the loop. 1962 */ 1963 } 1964 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); 1965 INP_WUNLOCK(inp); 1966 if (resid == 0 || toep->ddp.flags & DDP_DEAD) { 1967 /* 1968 * We filled the entire buffer with socket 1969 * data, DDP is not being used, or the socket 1970 * is being shut down, so complete the 1971 * request. 1972 */ 1973 SOCKBUF_UNLOCK(sb); 1974 recycle_pageset(toep, ps); 1975 aio_complete(job, copied, 0); 1976 toep->ddp.queueing = NULL; 1977 goto restart; 1978 } 1979 1980 /* 1981 * If DDP is not enabled, requeue this request and restart. 1982 * This will either enable DDP or wait for more data to 1983 * arrive on the socket buffer. 1984 */ 1985 if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { 1986 SOCKBUF_UNLOCK(sb); 1987 recycle_pageset(toep, ps); 1988 aio_ddp_requeue_one(toep, job); 1989 toep->ddp.queueing = NULL; 1990 goto restart; 1991 } 1992 1993 /* 1994 * An indicate might have arrived and been added to 1995 * the socket buffer while it was unlocked after the 1996 * copy to lock the INP. If so, restart the copy. 1997 */ 1998 if (sbavail(sb) != 0) 1999 goto sbcopy; 2000 } 2001 SOCKBUF_UNLOCK(sb); 2002 2003 if (prep_pageset(sc, toep, ps) == 0) { 2004 recycle_pageset(toep, ps); 2005 aio_ddp_requeue_one(toep, job); 2006 toep->ddp.queueing = NULL; 2007 2008 /* 2009 * XXX: Need to retry this later. Mostly need a trigger 2010 * when page pods are freed up. 2011 */ 2012 printf("%s: prep_pageset failed\n", __func__); 2013 return; 2014 } 2015 2016 /* Determine which DDP buffer to use. */ 2017 if (toep->ddp.db[0].job == NULL) { 2018 db_idx = 0; 2019 } else { 2020 MPASS(toep->ddp.db[1].job == NULL); 2021 db_idx = 1; 2022 } 2023 2024 ddp_flags = 0; 2025 ddp_flags_mask = 0; 2026 if (db_idx == 0) { 2027 ddp_flags |= V_TF_DDP_BUF0_VALID(1); 2028 if (so->so_state & SS_NBIO) 2029 ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); 2030 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 2031 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | 2032 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); 2033 buf_flag = DDP_BUF0_ACTIVE; 2034 } else { 2035 ddp_flags |= V_TF_DDP_BUF1_VALID(1); 2036 if (so->so_state & SS_NBIO) 2037 ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); 2038 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 2039 V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | 2040 V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); 2041 buf_flag = DDP_BUF1_ACTIVE; 2042 } 2043 MPASS((toep->ddp.flags & buf_flag) == 0); 2044 if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { 2045 MPASS(db_idx == 0); 2046 MPASS(toep->ddp.active_id == -1); 2047 MPASS(toep->ddp.active_count == 0); 2048 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); 2049 } 2050 2051 /* 2052 * The TID for this connection should still be valid. If DDP_DEAD 2053 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be 2054 * this far anyway. Even if the socket is closing on the other 2055 * end, the AIO job holds a reference on this end of the socket 2056 * which will keep it open and keep the TCP PCB attached until 2057 * after the job is completed. 2058 */ 2059 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received, 2060 ddp_flags, ddp_flags_mask); 2061 if (wr == NULL) { 2062 recycle_pageset(toep, ps); 2063 aio_ddp_requeue_one(toep, job); 2064 toep->ddp.queueing = NULL; 2065 2066 /* 2067 * XXX: Need a way to kick a retry here. 2068 * 2069 * XXX: We know the fixed size needed and could 2070 * preallocate this using a blocking request at the 2071 * start of the task to avoid having to handle this 2072 * edge case. 2073 */ 2074 printf("%s: mk_update_tcb_for_ddp failed\n", __func__); 2075 return; 2076 } 2077 2078 if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { 2079 free_wrqe(wr); 2080 recycle_pageset(toep, ps); 2081 aio_ddp_cancel_one(job); 2082 toep->ddp.queueing = NULL; 2083 goto restart; 2084 } 2085 2086 #ifdef VERBOSE_TRACES 2087 CTR6(KTR_CXGBE, 2088 "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__, 2089 toep->tid, job, db_idx, ddp_flags, ddp_flags_mask); 2090 #endif 2091 /* Give the chip the go-ahead. */ 2092 t4_wrq_tx(sc, wr); 2093 db = &toep->ddp.db[db_idx]; 2094 db->cancel_pending = 0; 2095 db->job = job; 2096 db->ps = ps; 2097 toep->ddp.queueing = NULL; 2098 toep->ddp.flags |= buf_flag; 2099 toep->ddp.active_count++; 2100 if (toep->ddp.active_count == 1) { 2101 MPASS(toep->ddp.active_id == -1); 2102 toep->ddp.active_id = db_idx; 2103 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 2104 toep->ddp.active_id); 2105 } 2106 goto restart; 2107 } 2108 2109 void 2110 ddp_queue_toep(struct toepcb *toep) 2111 { 2112 2113 DDP_ASSERT_LOCKED(toep); 2114 if (toep->ddp.flags & DDP_TASK_ACTIVE) 2115 return; 2116 toep->ddp.flags |= DDP_TASK_ACTIVE; 2117 hold_toepcb(toep); 2118 soaio_enqueue(&toep->ddp.requeue_task); 2119 } 2120 2121 static void 2122 aio_ddp_requeue_task(void *context, int pending) 2123 { 2124 struct toepcb *toep = context; 2125 2126 DDP_LOCK(toep); 2127 aio_ddp_requeue(toep); 2128 toep->ddp.flags &= ~DDP_TASK_ACTIVE; 2129 DDP_UNLOCK(toep); 2130 2131 free_toepcb(toep); 2132 } 2133 2134 static void 2135 t4_aio_cancel_active(struct kaiocb *job) 2136 { 2137 struct socket *so = job->fd_file->f_data; 2138 struct tcpcb *tp = sototcpcb(so); 2139 struct toepcb *toep = tp->t_toe; 2140 struct adapter *sc = td_adapter(toep->td); 2141 uint64_t valid_flag; 2142 int i; 2143 2144 DDP_LOCK(toep); 2145 if (aio_cancel_cleared(job)) { 2146 DDP_UNLOCK(toep); 2147 aio_ddp_cancel_one(job); 2148 return; 2149 } 2150 2151 for (i = 0; i < nitems(toep->ddp.db); i++) { 2152 if (toep->ddp.db[i].job == job) { 2153 /* Should only ever get one cancel request for a job. */ 2154 MPASS(toep->ddp.db[i].cancel_pending == 0); 2155 2156 /* 2157 * Invalidate this buffer. It will be 2158 * cancelled or partially completed once the 2159 * card ACKs the invalidate. 2160 */ 2161 valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : 2162 V_TF_DDP_BUF1_VALID(1); 2163 t4_set_tcb_field(sc, toep->ctrlq, toep, 2164 W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, 2165 CPL_COOKIE_DDP0 + i); 2166 toep->ddp.db[i].cancel_pending = 1; 2167 CTR2(KTR_CXGBE, "%s: request %p marked pending", 2168 __func__, job); 2169 break; 2170 } 2171 } 2172 DDP_UNLOCK(toep); 2173 } 2174 2175 static void 2176 t4_aio_cancel_queued(struct kaiocb *job) 2177 { 2178 struct socket *so = job->fd_file->f_data; 2179 struct tcpcb *tp = sototcpcb(so); 2180 struct toepcb *toep = tp->t_toe; 2181 2182 DDP_LOCK(toep); 2183 if (!aio_cancel_cleared(job)) { 2184 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 2185 toep->ddp.waiting_count--; 2186 if (toep->ddp.waiting_count == 0) 2187 ddp_queue_toep(toep); 2188 } 2189 CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); 2190 DDP_UNLOCK(toep); 2191 2192 aio_ddp_cancel_one(job); 2193 } 2194 2195 int 2196 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) 2197 { 2198 struct tcpcb *tp = sototcpcb(so); 2199 struct toepcb *toep = tp->t_toe; 2200 2201 2202 /* Ignore writes. */ 2203 if (job->uaiocb.aio_lio_opcode != LIO_READ) 2204 return (EOPNOTSUPP); 2205 2206 DDP_LOCK(toep); 2207 2208 /* 2209 * XXX: Think about possibly returning errors for ENOTCONN, 2210 * etc. Perhaps the caller would only queue the request 2211 * if it failed with EOPNOTSUPP? 2212 */ 2213 2214 #ifdef VERBOSE_TRACES 2215 CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid); 2216 #endif 2217 if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) 2218 panic("new job was cancelled"); 2219 TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list); 2220 toep->ddp.waiting_count++; 2221 toep->ddp.flags |= DDP_OK; 2222 2223 /* 2224 * Try to handle this request synchronously. If this has 2225 * to block because the task is running, it will just bail 2226 * and let the task handle it instead. 2227 */ 2228 aio_ddp_requeue(toep); 2229 DDP_UNLOCK(toep); 2230 return (0); 2231 } 2232 2233 void 2234 t4_ddp_mod_load(void) 2235 { 2236 2237 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 2238 CPL_COOKIE_DDP0); 2239 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 2240 CPL_COOKIE_DDP1); 2241 t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); 2242 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); 2243 TAILQ_INIT(&ddp_orphan_pagesets); 2244 mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); 2245 TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); 2246 } 2247 2248 void 2249 t4_ddp_mod_unload(void) 2250 { 2251 2252 taskqueue_drain(taskqueue_thread, &ddp_orphan_task); 2253 MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); 2254 mtx_destroy(&ddp_orphan_pagesets_lock); 2255 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0); 2256 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1); 2257 t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); 2258 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); 2259 } 2260 #endif 2261