1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012, 2015 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_kern_tls.h" 36 #include "opt_ratelimit.h" 37 38 #ifdef TCP_OFFLOAD 39 #include <sys/param.h> 40 #include <sys/aio.h> 41 #include <sys/file.h> 42 #include <sys/kernel.h> 43 #include <sys/ktr.h> 44 #include <sys/module.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/domain.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sglist.h> 51 #include <sys/taskqueue.h> 52 #include <netinet/in.h> 53 #include <netinet/in_pcb.h> 54 #include <netinet/ip.h> 55 #include <netinet/ip6.h> 56 #define TCPSTATES 57 #include <netinet/tcp_fsm.h> 58 #include <netinet/tcp_seq.h> 59 #include <netinet/tcp_var.h> 60 #include <netinet/toecore.h> 61 62 #include <security/mac/mac_framework.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_extern.h> 66 #include <vm/pmap.h> 67 #include <vm/vm_map.h> 68 #include <vm/vm_page.h> 69 70 #include <dev/iscsi/iscsi_proto.h> 71 72 #include "common/common.h" 73 #include "common/t4_msg.h" 74 #include "common/t4_regs.h" 75 #include "common/t4_tcb.h" 76 #include "tom/t4_tom_l2t.h" 77 #include "tom/t4_tom.h" 78 79 static void t4_aiotx_cancel(struct kaiocb *job); 80 static void t4_aiotx_queue_toep(struct socket *so, struct toepcb *toep); 81 82 void 83 send_flowc_wr(struct toepcb *toep, struct tcpcb *tp) 84 { 85 struct wrqe *wr; 86 struct fw_flowc_wr *flowc; 87 unsigned int nparams, flowclen, paramidx; 88 struct vi_info *vi = toep->vi; 89 struct port_info *pi = vi->pi; 90 struct adapter *sc = pi->adapter; 91 unsigned int pfvf = sc->pf << S_FW_VIID_PFN; 92 struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx]; 93 94 KASSERT(!(toep->flags & TPF_FLOWC_WR_SENT), 95 ("%s: flowc for tid %u sent already", __func__, toep->tid)); 96 97 if (tp != NULL) 98 nparams = 8; 99 else 100 nparams = 6; 101 if (ulp_mode(toep) == ULP_MODE_TLS) 102 nparams++; 103 if (toep->tls.fcplenmax != 0) 104 nparams++; 105 if (toep->params.tc_idx != -1) { 106 MPASS(toep->params.tc_idx >= 0 && 107 toep->params.tc_idx < sc->params.nsched_cls); 108 nparams++; 109 } 110 111 flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval); 112 113 wr = alloc_wrqe(roundup2(flowclen, 16), &toep->ofld_txq->wrq); 114 if (wr == NULL) { 115 /* XXX */ 116 panic("%s: allocation failure.", __func__); 117 } 118 flowc = wrtod(wr); 119 memset(flowc, 0, wr->wr_len); 120 121 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | 122 V_FW_FLOWC_WR_NPARAMS(nparams)); 123 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(howmany(flowclen, 16)) | 124 V_FW_WR_FLOWID(toep->tid)); 125 126 #define FLOWC_PARAM(__m, __v) \ 127 do { \ 128 flowc->mnemval[paramidx].mnemonic = FW_FLOWC_MNEM_##__m; \ 129 flowc->mnemval[paramidx].val = htobe32(__v); \ 130 paramidx++; \ 131 } while (0) 132 133 paramidx = 0; 134 135 FLOWC_PARAM(PFNVFN, pfvf); 136 FLOWC_PARAM(CH, pi->tx_chan); 137 FLOWC_PARAM(PORT, pi->tx_chan); 138 FLOWC_PARAM(IQID, toep->ofld_rxq->iq.abs_id); 139 FLOWC_PARAM(SNDBUF, toep->params.sndbuf); 140 if (tp) { 141 FLOWC_PARAM(MSS, toep->params.emss); 142 FLOWC_PARAM(SNDNXT, tp->snd_nxt); 143 FLOWC_PARAM(RCVNXT, tp->rcv_nxt); 144 } else 145 FLOWC_PARAM(MSS, 512); 146 CTR6(KTR_CXGBE, 147 "%s: tid %u, mss %u, sndbuf %u, snd_nxt 0x%x, rcv_nxt 0x%x", 148 __func__, toep->tid, toep->params.emss, toep->params.sndbuf, 149 tp ? tp->snd_nxt : 0, tp ? tp->rcv_nxt : 0); 150 151 if (ulp_mode(toep) == ULP_MODE_TLS) 152 FLOWC_PARAM(ULP_MODE, ulp_mode(toep)); 153 if (toep->tls.fcplenmax != 0) 154 FLOWC_PARAM(TXDATAPLEN_MAX, toep->tls.fcplenmax); 155 if (toep->params.tc_idx != -1) 156 FLOWC_PARAM(SCHEDCLASS, toep->params.tc_idx); 157 #undef FLOWC_PARAM 158 159 KASSERT(paramidx == nparams, ("nparams mismatch")); 160 161 txsd->tx_credits = howmany(flowclen, 16); 162 txsd->plen = 0; 163 KASSERT(toep->tx_credits >= txsd->tx_credits && toep->txsd_avail > 0, 164 ("%s: not enough credits (%d)", __func__, toep->tx_credits)); 165 toep->tx_credits -= txsd->tx_credits; 166 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) 167 toep->txsd_pidx = 0; 168 toep->txsd_avail--; 169 170 toep->flags |= TPF_FLOWC_WR_SENT; 171 t4_wrq_tx(sc, wr); 172 } 173 174 #ifdef RATELIMIT 175 /* 176 * Input is Bytes/second (so_max_pacing_rate), chip counts in Kilobits/second. 177 */ 178 static int 179 update_tx_rate_limit(struct adapter *sc, struct toepcb *toep, u_int Bps) 180 { 181 int tc_idx, rc; 182 const u_int kbps = (u_int) (uint64_t)Bps * 8ULL / 1000; 183 const int port_id = toep->vi->pi->port_id; 184 185 CTR3(KTR_CXGBE, "%s: tid %u, rate %uKbps", __func__, toep->tid, kbps); 186 187 if (kbps == 0) { 188 /* unbind */ 189 tc_idx = -1; 190 } else { 191 rc = t4_reserve_cl_rl_kbps(sc, port_id, kbps, &tc_idx); 192 if (rc != 0) 193 return (rc); 194 MPASS(tc_idx >= 0 && tc_idx < sc->params.nsched_cls); 195 } 196 197 if (toep->params.tc_idx != tc_idx) { 198 struct wrqe *wr; 199 struct fw_flowc_wr *flowc; 200 int nparams = 1, flowclen, flowclen16; 201 struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx]; 202 203 flowclen = sizeof(*flowc) + nparams * sizeof(struct 204 fw_flowc_mnemval); 205 flowclen16 = howmany(flowclen, 16); 206 if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0 || 207 (wr = alloc_wrqe(roundup2(flowclen, 16), 208 &toep->ofld_txq->wrq)) == NULL) { 209 if (tc_idx >= 0) 210 t4_release_cl_rl(sc, port_id, tc_idx); 211 return (ENOMEM); 212 } 213 214 flowc = wrtod(wr); 215 memset(flowc, 0, wr->wr_len); 216 217 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | 218 V_FW_FLOWC_WR_NPARAMS(nparams)); 219 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) | 220 V_FW_WR_FLOWID(toep->tid)); 221 222 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 223 if (tc_idx == -1) 224 flowc->mnemval[0].val = htobe32(0xff); 225 else 226 flowc->mnemval[0].val = htobe32(tc_idx); 227 228 txsd->tx_credits = flowclen16; 229 txsd->plen = 0; 230 toep->tx_credits -= txsd->tx_credits; 231 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) 232 toep->txsd_pidx = 0; 233 toep->txsd_avail--; 234 t4_wrq_tx(sc, wr); 235 } 236 237 if (toep->params.tc_idx >= 0) 238 t4_release_cl_rl(sc, port_id, toep->params.tc_idx); 239 toep->params.tc_idx = tc_idx; 240 241 return (0); 242 } 243 #endif 244 245 void 246 send_reset(struct adapter *sc, struct toepcb *toep, uint32_t snd_nxt) 247 { 248 struct wrqe *wr; 249 struct cpl_abort_req *req; 250 int tid = toep->tid; 251 struct inpcb *inp = toep->inp; 252 struct tcpcb *tp = intotcpcb(inp); /* don't use if INP_DROPPED */ 253 254 INP_WLOCK_ASSERT(inp); 255 256 CTR6(KTR_CXGBE, "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x%s", 257 __func__, toep->tid, 258 inp->inp_flags & INP_DROPPED ? "inp dropped" : 259 tcpstates[tp->t_state], 260 toep->flags, inp->inp_flags, 261 toep->flags & TPF_ABORT_SHUTDOWN ? 262 " (abort already in progress)" : ""); 263 264 if (toep->flags & TPF_ABORT_SHUTDOWN) 265 return; /* abort already in progress */ 266 267 toep->flags |= TPF_ABORT_SHUTDOWN; 268 269 KASSERT(toep->flags & TPF_FLOWC_WR_SENT, 270 ("%s: flowc_wr not sent for tid %d.", __func__, tid)); 271 272 wr = alloc_wrqe(sizeof(*req), &toep->ofld_txq->wrq); 273 if (wr == NULL) { 274 /* XXX */ 275 panic("%s: allocation failure.", __func__); 276 } 277 req = wrtod(wr); 278 279 INIT_TP_WR_MIT_CPL(req, CPL_ABORT_REQ, tid); 280 if (inp->inp_flags & INP_DROPPED) 281 req->rsvd0 = htobe32(snd_nxt); 282 else 283 req->rsvd0 = htobe32(tp->snd_nxt); 284 req->rsvd1 = !(toep->flags & TPF_TX_DATA_SENT); 285 req->cmd = CPL_ABORT_SEND_RST; 286 287 /* 288 * XXX: What's the correct way to tell that the inp hasn't been detached 289 * from its socket? Should I even be flushing the snd buffer here? 290 */ 291 if ((inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) == 0) { 292 struct socket *so = inp->inp_socket; 293 294 if (so != NULL) /* because I'm not sure. See comment above */ 295 sbflush(&so->so_snd); 296 } 297 298 t4_l2t_send(sc, wr, toep->l2te); 299 } 300 301 /* 302 * Called when a connection is established to translate the TCP options 303 * reported by HW to FreeBSD's native format. 304 */ 305 static void 306 assign_rxopt(struct tcpcb *tp, uint16_t opt) 307 { 308 struct toepcb *toep = tp->t_toe; 309 struct inpcb *inp = tp->t_inpcb; 310 struct adapter *sc = td_adapter(toep->td); 311 312 INP_LOCK_ASSERT(inp); 313 314 toep->params.mtu_idx = G_TCPOPT_MSS(opt); 315 tp->t_maxseg = sc->params.mtus[toep->params.mtu_idx]; 316 if (inp->inp_inc.inc_flags & INC_ISIPV6) 317 tp->t_maxseg -= sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 318 else 319 tp->t_maxseg -= sizeof(struct ip) + sizeof(struct tcphdr); 320 321 toep->params.emss = tp->t_maxseg; 322 if (G_TCPOPT_TSTAMP(opt)) { 323 toep->params.tstamp = 1; 324 toep->params.emss -= TCPOLEN_TSTAMP_APPA; 325 tp->t_flags |= TF_RCVD_TSTMP; /* timestamps ok */ 326 tp->ts_recent = 0; /* hmmm */ 327 tp->ts_recent_age = tcp_ts_getticks(); 328 } else 329 toep->params.tstamp = 0; 330 331 if (G_TCPOPT_SACK(opt)) { 332 toep->params.sack = 1; 333 tp->t_flags |= TF_SACK_PERMIT; /* should already be set */ 334 } else { 335 toep->params.sack = 0; 336 tp->t_flags &= ~TF_SACK_PERMIT; /* sack disallowed by peer */ 337 } 338 339 if (G_TCPOPT_WSCALE_OK(opt)) 340 tp->t_flags |= TF_RCVD_SCALE; 341 342 /* Doing window scaling? */ 343 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == 344 (TF_RCVD_SCALE | TF_REQ_SCALE)) { 345 tp->rcv_scale = tp->request_r_scale; 346 tp->snd_scale = G_TCPOPT_SND_WSCALE(opt); 347 } else 348 toep->params.wscale = 0; 349 350 CTR6(KTR_CXGBE, 351 "assign_rxopt: tid %d, mtu_idx %u, emss %u, ts %u, sack %u, wscale %u", 352 toep->tid, toep->params.mtu_idx, toep->params.emss, 353 toep->params.tstamp, toep->params.sack, toep->params.wscale); 354 } 355 356 /* 357 * Completes some final bits of initialization for just established connections 358 * and changes their state to TCPS_ESTABLISHED. 359 * 360 * The ISNs are from the exchange of SYNs. 361 */ 362 void 363 make_established(struct toepcb *toep, uint32_t iss, uint32_t irs, uint16_t opt) 364 { 365 struct inpcb *inp = toep->inp; 366 struct socket *so = inp->inp_socket; 367 struct tcpcb *tp = intotcpcb(inp); 368 uint16_t tcpopt = be16toh(opt); 369 370 INP_WLOCK_ASSERT(inp); 371 KASSERT(tp->t_state == TCPS_SYN_SENT || 372 tp->t_state == TCPS_SYN_RECEIVED, 373 ("%s: TCP state %s", __func__, tcpstates[tp->t_state])); 374 375 CTR6(KTR_CXGBE, "%s: tid %d, so %p, inp %p, tp %p, toep %p", 376 __func__, toep->tid, so, inp, tp, toep); 377 378 tcp_state_change(tp, TCPS_ESTABLISHED); 379 tp->t_starttime = ticks; 380 TCPSTAT_INC(tcps_connects); 381 382 tp->irs = irs; 383 tcp_rcvseqinit(tp); 384 tp->rcv_wnd = (u_int)toep->params.opt0_bufsize << 10; 385 tp->rcv_adv += tp->rcv_wnd; 386 tp->last_ack_sent = tp->rcv_nxt; 387 388 tp->iss = iss; 389 tcp_sendseqinit(tp); 390 tp->snd_una = iss + 1; 391 tp->snd_nxt = iss + 1; 392 tp->snd_max = iss + 1; 393 394 assign_rxopt(tp, tcpopt); 395 send_flowc_wr(toep, tp); 396 397 soisconnected(so); 398 399 if (ulp_mode(toep) == ULP_MODE_TLS) 400 tls_establish(toep); 401 } 402 403 int 404 send_rx_credits(struct adapter *sc, struct toepcb *toep, int credits) 405 { 406 struct wrqe *wr; 407 struct cpl_rx_data_ack *req; 408 uint32_t dack = F_RX_DACK_CHANGE | V_RX_DACK_MODE(1); 409 410 KASSERT(credits >= 0, ("%s: %d credits", __func__, credits)); 411 412 wr = alloc_wrqe(sizeof(*req), toep->ctrlq); 413 if (wr == NULL) 414 return (0); 415 req = wrtod(wr); 416 417 INIT_TP_WR_MIT_CPL(req, CPL_RX_DATA_ACK, toep->tid); 418 req->credit_dack = htobe32(dack | V_RX_CREDITS(credits)); 419 420 t4_wrq_tx(sc, wr); 421 return (credits); 422 } 423 424 void 425 send_rx_modulate(struct adapter *sc, struct toepcb *toep) 426 { 427 struct wrqe *wr; 428 struct cpl_rx_data_ack *req; 429 430 wr = alloc_wrqe(sizeof(*req), toep->ctrlq); 431 if (wr == NULL) 432 return; 433 req = wrtod(wr); 434 435 INIT_TP_WR_MIT_CPL(req, CPL_RX_DATA_ACK, toep->tid); 436 req->credit_dack = htobe32(F_RX_MODULATE_RX); 437 438 t4_wrq_tx(sc, wr); 439 } 440 441 void 442 t4_rcvd_locked(struct toedev *tod, struct tcpcb *tp) 443 { 444 struct adapter *sc = tod->tod_softc; 445 struct inpcb *inp = tp->t_inpcb; 446 struct socket *so = inp->inp_socket; 447 struct sockbuf *sb = &so->so_rcv; 448 struct toepcb *toep = tp->t_toe; 449 int rx_credits; 450 451 INP_WLOCK_ASSERT(inp); 452 SOCKBUF_LOCK_ASSERT(sb); 453 454 rx_credits = sbspace(sb) > tp->rcv_wnd ? sbspace(sb) - tp->rcv_wnd : 0; 455 if (rx_credits > 0 && 456 (tp->rcv_wnd <= 32 * 1024 || rx_credits >= 64 * 1024 || 457 (rx_credits >= 16 * 1024 && tp->rcv_wnd <= 128 * 1024) || 458 sbused(sb) + tp->rcv_wnd < sb->sb_lowat)) { 459 rx_credits = send_rx_credits(sc, toep, rx_credits); 460 tp->rcv_wnd += rx_credits; 461 tp->rcv_adv += rx_credits; 462 } else if (toep->flags & TPF_FORCE_CREDITS) 463 send_rx_modulate(sc, toep); 464 } 465 466 void 467 t4_rcvd(struct toedev *tod, struct tcpcb *tp) 468 { 469 struct inpcb *inp = tp->t_inpcb; 470 struct socket *so = inp->inp_socket; 471 struct sockbuf *sb = &so->so_rcv; 472 473 SOCKBUF_LOCK(sb); 474 t4_rcvd_locked(tod, tp); 475 SOCKBUF_UNLOCK(sb); 476 } 477 478 /* 479 * Close a connection by sending a CPL_CLOSE_CON_REQ message. 480 */ 481 int 482 t4_close_conn(struct adapter *sc, struct toepcb *toep) 483 { 484 struct wrqe *wr; 485 struct cpl_close_con_req *req; 486 unsigned int tid = toep->tid; 487 488 CTR3(KTR_CXGBE, "%s: tid %u%s", __func__, toep->tid, 489 toep->flags & TPF_FIN_SENT ? ", IGNORED" : ""); 490 491 if (toep->flags & TPF_FIN_SENT) 492 return (0); 493 494 KASSERT(toep->flags & TPF_FLOWC_WR_SENT, 495 ("%s: flowc_wr not sent for tid %u.", __func__, tid)); 496 497 wr = alloc_wrqe(sizeof(*req), &toep->ofld_txq->wrq); 498 if (wr == NULL) { 499 /* XXX */ 500 panic("%s: allocation failure.", __func__); 501 } 502 req = wrtod(wr); 503 504 req->wr.wr_hi = htonl(V_FW_WR_OP(FW_TP_WR) | 505 V_FW_WR_IMMDLEN(sizeof(*req) - sizeof(req->wr))); 506 req->wr.wr_mid = htonl(V_FW_WR_LEN16(howmany(sizeof(*req), 16)) | 507 V_FW_WR_FLOWID(tid)); 508 req->wr.wr_lo = cpu_to_be64(0); 509 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, tid)); 510 req->rsvd = 0; 511 512 toep->flags |= TPF_FIN_SENT; 513 toep->flags &= ~TPF_SEND_FIN; 514 t4_l2t_send(sc, wr, toep->l2te); 515 516 return (0); 517 } 518 519 #define MAX_OFLD_TX_CREDITS (SGE_MAX_WR_LEN / 16) 520 #define MIN_OFLD_TX_CREDITS (howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16)) 521 #define MIN_ISO_TX_CREDITS (howmany(sizeof(struct cpl_tx_data_iso), 16)) 522 #define MIN_TX_CREDITS(iso) \ 523 (MIN_OFLD_TX_CREDITS + ((iso) ? MIN_ISO_TX_CREDITS : 0)) 524 525 /* Maximum amount of immediate data we could stuff in a WR */ 526 static inline int 527 max_imm_payload(int tx_credits, int iso) 528 { 529 const int iso_cpl_size = iso ? sizeof(struct cpl_tx_data_iso) : 0; 530 const int n = 1; /* Use no more than one desc for imm. data WR */ 531 532 KASSERT(tx_credits >= 0 && 533 tx_credits <= MAX_OFLD_TX_CREDITS, 534 ("%s: %d credits", __func__, tx_credits)); 535 536 if (tx_credits < MIN_TX_CREDITS(iso)) 537 return (0); 538 539 if (tx_credits >= (n * EQ_ESIZE) / 16) 540 return ((n * EQ_ESIZE) - sizeof(struct fw_ofld_tx_data_wr) - 541 iso_cpl_size); 542 else 543 return (tx_credits * 16 - sizeof(struct fw_ofld_tx_data_wr) - 544 iso_cpl_size); 545 } 546 547 /* Maximum number of SGL entries we could stuff in a WR */ 548 static inline int 549 max_dsgl_nsegs(int tx_credits, int iso) 550 { 551 int nseg = 1; /* ulptx_sgl has room for 1, rest ulp_tx_sge_pair */ 552 int sge_pair_credits = tx_credits - MIN_TX_CREDITS(iso); 553 554 KASSERT(tx_credits >= 0 && 555 tx_credits <= MAX_OFLD_TX_CREDITS, 556 ("%s: %d credits", __func__, tx_credits)); 557 558 if (tx_credits < MIN_TX_CREDITS(iso)) 559 return (0); 560 561 nseg += 2 * (sge_pair_credits * 16 / 24); 562 if ((sge_pair_credits * 16) % 24 == 16) 563 nseg++; 564 565 return (nseg); 566 } 567 568 static inline void 569 write_tx_wr(void *dst, struct toepcb *toep, int fw_wr_opcode, 570 unsigned int immdlen, unsigned int plen, uint8_t credits, int shove, 571 int ulp_submode) 572 { 573 struct fw_ofld_tx_data_wr *txwr = dst; 574 575 txwr->op_to_immdlen = htobe32(V_WR_OP(fw_wr_opcode) | 576 V_FW_WR_IMMDLEN(immdlen)); 577 txwr->flowid_len16 = htobe32(V_FW_WR_FLOWID(toep->tid) | 578 V_FW_WR_LEN16(credits)); 579 txwr->lsodisable_to_flags = htobe32(V_TX_ULP_MODE(ulp_mode(toep)) | 580 V_TX_ULP_SUBMODE(ulp_submode) | V_TX_URG(0) | V_TX_SHOVE(shove)); 581 txwr->plen = htobe32(plen); 582 583 if (toep->params.tx_align > 0) { 584 if (plen < 2 * toep->params.emss) 585 txwr->lsodisable_to_flags |= 586 htobe32(F_FW_OFLD_TX_DATA_WR_LSODISABLE); 587 else 588 txwr->lsodisable_to_flags |= 589 htobe32(F_FW_OFLD_TX_DATA_WR_ALIGNPLD | 590 (toep->params.nagle == 0 ? 0 : 591 F_FW_OFLD_TX_DATA_WR_ALIGNPLDSHOVE)); 592 } 593 } 594 595 /* 596 * Generate a DSGL from a starting mbuf. The total number of segments and the 597 * maximum segments in any one mbuf are provided. 598 */ 599 static void 600 write_tx_sgl(void *dst, struct mbuf *start, struct mbuf *stop, int nsegs, int n) 601 { 602 struct mbuf *m; 603 struct ulptx_sgl *usgl = dst; 604 int i, j, rc; 605 struct sglist sg; 606 struct sglist_seg segs[n]; 607 608 KASSERT(nsegs > 0, ("%s: nsegs 0", __func__)); 609 610 sglist_init(&sg, n, segs); 611 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 612 V_ULPTX_NSGE(nsegs)); 613 614 i = -1; 615 for (m = start; m != stop; m = m->m_next) { 616 if (m->m_flags & M_EXTPG) 617 rc = sglist_append_mbuf_epg(&sg, m, 618 mtod(m, vm_offset_t), m->m_len); 619 else 620 rc = sglist_append(&sg, mtod(m, void *), m->m_len); 621 if (__predict_false(rc != 0)) 622 panic("%s: sglist_append %d", __func__, rc); 623 624 for (j = 0; j < sg.sg_nseg; i++, j++) { 625 if (i < 0) { 626 usgl->len0 = htobe32(segs[j].ss_len); 627 usgl->addr0 = htobe64(segs[j].ss_paddr); 628 } else { 629 usgl->sge[i / 2].len[i & 1] = 630 htobe32(segs[j].ss_len); 631 usgl->sge[i / 2].addr[i & 1] = 632 htobe64(segs[j].ss_paddr); 633 } 634 #ifdef INVARIANTS 635 nsegs--; 636 #endif 637 } 638 sglist_reset(&sg); 639 } 640 if (i & 1) 641 usgl->sge[i / 2].len[1] = htobe32(0); 642 KASSERT(nsegs == 0, ("%s: nsegs %d, start %p, stop %p", 643 __func__, nsegs, start, stop)); 644 } 645 646 /* 647 * Max number of SGL entries an offload tx work request can have. This is 41 648 * (1 + 40) for a full 512B work request. 649 * fw_ofld_tx_data_wr(16B) + ulptx_sgl(16B, 1) + ulptx_sge_pair(480B, 40) 650 */ 651 #define OFLD_SGL_LEN (41) 652 653 /* 654 * Send data and/or a FIN to the peer. 655 * 656 * The socket's so_snd buffer consists of a stream of data starting with sb_mb 657 * and linked together with m_next. sb_sndptr, if set, is the last mbuf that 658 * was transmitted. 659 * 660 * drop indicates the number of bytes that should be dropped from the head of 661 * the send buffer. It is an optimization that lets do_fw4_ack avoid creating 662 * contention on the send buffer lock (before this change it used to do 663 * sowwakeup and then t4_push_frames right after that when recovering from tx 664 * stalls). When drop is set this function MUST drop the bytes and wake up any 665 * writers. 666 */ 667 void 668 t4_push_frames(struct adapter *sc, struct toepcb *toep, int drop) 669 { 670 struct mbuf *sndptr, *m, *sb_sndptr; 671 struct fw_ofld_tx_data_wr *txwr; 672 struct wrqe *wr; 673 u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf; 674 struct inpcb *inp = toep->inp; 675 struct tcpcb *tp = intotcpcb(inp); 676 struct socket *so = inp->inp_socket; 677 struct sockbuf *sb = &so->so_snd; 678 int tx_credits, shove, compl, sowwakeup; 679 struct ofld_tx_sdesc *txsd; 680 bool nomap_mbuf_seen; 681 682 INP_WLOCK_ASSERT(inp); 683 KASSERT(toep->flags & TPF_FLOWC_WR_SENT, 684 ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid)); 685 686 KASSERT(ulp_mode(toep) == ULP_MODE_NONE || 687 ulp_mode(toep) == ULP_MODE_TCPDDP || 688 ulp_mode(toep) == ULP_MODE_TLS || 689 ulp_mode(toep) == ULP_MODE_RDMA, 690 ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep)); 691 692 #ifdef VERBOSE_TRACES 693 CTR5(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d", 694 __func__, toep->tid, toep->flags, tp->t_flags, drop); 695 #endif 696 if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) 697 return; 698 699 #ifdef RATELIMIT 700 if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) && 701 (update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) { 702 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 703 } 704 #endif 705 706 /* 707 * This function doesn't resume by itself. Someone else must clear the 708 * flag and call this function. 709 */ 710 if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) { 711 KASSERT(drop == 0, 712 ("%s: drop (%d) != 0 but tx is suspended", __func__, drop)); 713 return; 714 } 715 716 txsd = &toep->txsd[toep->txsd_pidx]; 717 do { 718 tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS); 719 max_imm = max_imm_payload(tx_credits, 0); 720 max_nsegs = max_dsgl_nsegs(tx_credits, 0); 721 722 SOCKBUF_LOCK(sb); 723 sowwakeup = drop; 724 if (drop) { 725 sbdrop_locked(sb, drop); 726 drop = 0; 727 } 728 sb_sndptr = sb->sb_sndptr; 729 sndptr = sb_sndptr ? sb_sndptr->m_next : sb->sb_mb; 730 plen = 0; 731 nsegs = 0; 732 max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */ 733 nomap_mbuf_seen = false; 734 for (m = sndptr; m != NULL; m = m->m_next) { 735 int n; 736 737 if ((m->m_flags & M_NOTAVAIL) != 0) 738 break; 739 if (m->m_flags & M_EXTPG) { 740 #ifdef KERN_TLS 741 if (m->m_epg_tls != NULL) { 742 toep->flags |= TPF_KTLS; 743 if (plen == 0) { 744 SOCKBUF_UNLOCK(sb); 745 t4_push_ktls(sc, toep, 0); 746 return; 747 } 748 break; 749 } 750 #endif 751 n = sglist_count_mbuf_epg(m, 752 mtod(m, vm_offset_t), m->m_len); 753 } else 754 n = sglist_count(mtod(m, void *), m->m_len); 755 756 nsegs += n; 757 plen += m->m_len; 758 759 /* This mbuf sent us _over_ the nsegs limit, back out */ 760 if (plen > max_imm && nsegs > max_nsegs) { 761 nsegs -= n; 762 plen -= m->m_len; 763 if (plen == 0) { 764 /* Too few credits */ 765 toep->flags |= TPF_TX_SUSPENDED; 766 if (sowwakeup) { 767 if (!TAILQ_EMPTY( 768 &toep->aiotx_jobq)) 769 t4_aiotx_queue_toep(so, 770 toep); 771 sowwakeup_locked(so); 772 } else 773 SOCKBUF_UNLOCK(sb); 774 SOCKBUF_UNLOCK_ASSERT(sb); 775 return; 776 } 777 break; 778 } 779 780 if (m->m_flags & M_EXTPG) 781 nomap_mbuf_seen = true; 782 if (max_nsegs_1mbuf < n) 783 max_nsegs_1mbuf = n; 784 sb_sndptr = m; /* new sb->sb_sndptr if all goes well */ 785 786 /* This mbuf put us right at the max_nsegs limit */ 787 if (plen > max_imm && nsegs == max_nsegs) { 788 m = m->m_next; 789 break; 790 } 791 } 792 793 if (sbused(sb) > sb->sb_hiwat * 5 / 8 && 794 toep->plen_nocompl + plen >= sb->sb_hiwat / 4) 795 compl = 1; 796 else 797 compl = 0; 798 799 if (sb->sb_flags & SB_AUTOSIZE && 800 V_tcp_do_autosndbuf && 801 sb->sb_hiwat < V_tcp_autosndbuf_max && 802 sbused(sb) >= sb->sb_hiwat * 7 / 8) { 803 int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc, 804 V_tcp_autosndbuf_max); 805 806 if (!sbreserve_locked(sb, newsize, so, NULL)) 807 sb->sb_flags &= ~SB_AUTOSIZE; 808 else 809 sowwakeup = 1; /* room available */ 810 } 811 if (sowwakeup) { 812 if (!TAILQ_EMPTY(&toep->aiotx_jobq)) 813 t4_aiotx_queue_toep(so, toep); 814 sowwakeup_locked(so); 815 } else 816 SOCKBUF_UNLOCK(sb); 817 SOCKBUF_UNLOCK_ASSERT(sb); 818 819 /* nothing to send */ 820 if (plen == 0) { 821 KASSERT(m == NULL || (m->m_flags & M_NOTAVAIL) != 0, 822 ("%s: nothing to send, but m != NULL is ready", 823 __func__)); 824 break; 825 } 826 827 if (__predict_false(toep->flags & TPF_FIN_SENT)) 828 panic("%s: excess tx.", __func__); 829 830 shove = m == NULL && !(tp->t_flags & TF_MORETOCOME); 831 if (plen <= max_imm && !nomap_mbuf_seen) { 832 833 /* Immediate data tx */ 834 835 wr = alloc_wrqe(roundup2(sizeof(*txwr) + plen, 16), 836 &toep->ofld_txq->wrq); 837 if (wr == NULL) { 838 /* XXX: how will we recover from this? */ 839 toep->flags |= TPF_TX_SUSPENDED; 840 return; 841 } 842 txwr = wrtod(wr); 843 credits = howmany(wr->wr_len, 16); 844 write_tx_wr(txwr, toep, FW_OFLD_TX_DATA_WR, plen, plen, 845 credits, shove, 0); 846 m_copydata(sndptr, 0, plen, (void *)(txwr + 1)); 847 nsegs = 0; 848 } else { 849 int wr_len; 850 851 /* DSGL tx */ 852 853 wr_len = sizeof(*txwr) + sizeof(struct ulptx_sgl) + 854 ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8; 855 wr = alloc_wrqe(roundup2(wr_len, 16), 856 &toep->ofld_txq->wrq); 857 if (wr == NULL) { 858 /* XXX: how will we recover from this? */ 859 toep->flags |= TPF_TX_SUSPENDED; 860 return; 861 } 862 txwr = wrtod(wr); 863 credits = howmany(wr_len, 16); 864 write_tx_wr(txwr, toep, FW_OFLD_TX_DATA_WR, 0, plen, 865 credits, shove, 0); 866 write_tx_sgl(txwr + 1, sndptr, m, nsegs, 867 max_nsegs_1mbuf); 868 if (wr_len & 0xf) { 869 uint64_t *pad = (uint64_t *) 870 ((uintptr_t)txwr + wr_len); 871 *pad = 0; 872 } 873 } 874 875 KASSERT(toep->tx_credits >= credits, 876 ("%s: not enough credits", __func__)); 877 878 toep->tx_credits -= credits; 879 toep->tx_nocompl += credits; 880 toep->plen_nocompl += plen; 881 if (toep->tx_credits <= toep->tx_total * 3 / 8 && 882 toep->tx_nocompl >= toep->tx_total / 4) 883 compl = 1; 884 885 if (compl || ulp_mode(toep) == ULP_MODE_RDMA) { 886 txwr->op_to_immdlen |= htobe32(F_FW_WR_COMPL); 887 toep->tx_nocompl = 0; 888 toep->plen_nocompl = 0; 889 } 890 891 tp->snd_nxt += plen; 892 tp->snd_max += plen; 893 894 SOCKBUF_LOCK(sb); 895 KASSERT(sb_sndptr, ("%s: sb_sndptr is NULL", __func__)); 896 sb->sb_sndptr = sb_sndptr; 897 SOCKBUF_UNLOCK(sb); 898 899 toep->flags |= TPF_TX_DATA_SENT; 900 if (toep->tx_credits < MIN_OFLD_TX_CREDITS) 901 toep->flags |= TPF_TX_SUSPENDED; 902 903 KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__)); 904 txsd->plen = plen; 905 txsd->tx_credits = credits; 906 txsd++; 907 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) { 908 toep->txsd_pidx = 0; 909 txsd = &toep->txsd[0]; 910 } 911 toep->txsd_avail--; 912 913 t4_l2t_send(sc, wr, toep->l2te); 914 } while (m != NULL && (m->m_flags & M_NOTAVAIL) == 0); 915 916 /* Send a FIN if requested, but only if there's no more data to send */ 917 if (m == NULL && toep->flags & TPF_SEND_FIN) 918 t4_close_conn(sc, toep); 919 } 920 921 static inline void 922 rqdrop_locked(struct mbufq *q, int plen) 923 { 924 struct mbuf *m; 925 926 while (plen > 0) { 927 m = mbufq_dequeue(q); 928 929 /* Too many credits. */ 930 MPASS(m != NULL); 931 M_ASSERTPKTHDR(m); 932 933 /* Partial credits. */ 934 MPASS(plen >= m->m_pkthdr.len); 935 936 plen -= m->m_pkthdr.len; 937 m_freem(m); 938 } 939 } 940 941 /* 942 * Not a bit in the TCB, but is a bit in the ulp_submode field of the 943 * CPL_TX_DATA flags field in FW_ISCSI_TX_DATA_WR. 944 */ 945 #define ULP_ISO G_TX_ULP_SUBMODE(F_FW_ISCSI_TX_DATA_WR_ULPSUBMODE_ISO) 946 947 static void 948 write_tx_data_iso(void *dst, u_int ulp_submode, uint8_t flags, uint16_t mss, 949 int len, int npdu) 950 { 951 struct cpl_tx_data_iso *cpl; 952 unsigned int burst_size; 953 unsigned int last; 954 955 /* 956 * The firmware will set the 'F' bit on the last PDU when 957 * either condition is true: 958 * 959 * - this large PDU is marked as the "last" slice 960 * 961 * - the amount of data payload bytes equals the burst_size 962 * 963 * The strategy used here is to always set the burst_size 964 * artificially high (len includes the size of the template 965 * BHS) and only set the "last" flag if the original PDU had 966 * 'F' set. 967 */ 968 burst_size = len; 969 last = !!(flags & CXGBE_ISO_F); 970 971 cpl = (struct cpl_tx_data_iso *)dst; 972 cpl->op_to_scsi = htonl(V_CPL_TX_DATA_ISO_OP(CPL_TX_DATA_ISO) | 973 V_CPL_TX_DATA_ISO_FIRST(1) | V_CPL_TX_DATA_ISO_LAST(last) | 974 V_CPL_TX_DATA_ISO_CPLHDRLEN(0) | 975 V_CPL_TX_DATA_ISO_HDRCRC(!!(ulp_submode & ULP_CRC_HEADER)) | 976 V_CPL_TX_DATA_ISO_PLDCRC(!!(ulp_submode & ULP_CRC_DATA)) | 977 V_CPL_TX_DATA_ISO_IMMEDIATE(0) | 978 V_CPL_TX_DATA_ISO_SCSI(CXGBE_ISO_TYPE(flags))); 979 980 cpl->ahs_len = 0; 981 cpl->mpdu = htons(DIV_ROUND_UP(mss, 4)); 982 cpl->burst_size = htonl(DIV_ROUND_UP(burst_size, 4)); 983 cpl->len = htonl(len); 984 cpl->reserved2_seglen_offset = htonl(0); 985 cpl->datasn_offset = htonl(0); 986 cpl->buffer_offset = htonl(0); 987 cpl->reserved3 = 0; 988 } 989 990 static struct wrqe * 991 write_iscsi_mbuf_wr(struct toepcb *toep, struct mbuf *sndptr) 992 { 993 struct mbuf *m; 994 struct fw_ofld_tx_data_wr *txwr; 995 struct cpl_tx_data_iso *cpl_iso; 996 void *p; 997 struct wrqe *wr; 998 u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf; 999 u_int adjusted_plen, imm_data, ulp_submode; 1000 struct inpcb *inp = toep->inp; 1001 struct tcpcb *tp = intotcpcb(inp); 1002 int tx_credits, shove, npdu, wr_len; 1003 uint16_t iso_mss; 1004 static const u_int ulp_extra_len[] = {0, 4, 4, 8}; 1005 bool iso; 1006 1007 M_ASSERTPKTHDR(sndptr); 1008 1009 tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS); 1010 if (mbuf_raw_wr(sndptr)) { 1011 plen = sndptr->m_pkthdr.len; 1012 KASSERT(plen <= SGE_MAX_WR_LEN, 1013 ("raw WR len %u is greater than max WR len", plen)); 1014 if (plen > tx_credits * 16) 1015 return (NULL); 1016 1017 wr = alloc_wrqe(roundup2(plen, 16), &toep->ofld_txq->wrq); 1018 if (__predict_false(wr == NULL)) 1019 return (NULL); 1020 1021 m_copydata(sndptr, 0, plen, wrtod(wr)); 1022 return (wr); 1023 } 1024 1025 iso = mbuf_iscsi_iso(sndptr); 1026 max_imm = max_imm_payload(tx_credits, iso); 1027 max_nsegs = max_dsgl_nsegs(tx_credits, iso); 1028 iso_mss = mbuf_iscsi_iso_mss(sndptr); 1029 1030 plen = 0; 1031 nsegs = 0; 1032 max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */ 1033 for (m = sndptr; m != NULL; m = m->m_next) { 1034 int n = sglist_count(mtod(m, void *), m->m_len); 1035 1036 nsegs += n; 1037 plen += m->m_len; 1038 1039 /* 1040 * This mbuf would send us _over_ the nsegs limit. 1041 * Suspend tx because the PDU can't be sent out. 1042 */ 1043 if (plen > max_imm && nsegs > max_nsegs) 1044 return (NULL); 1045 1046 if (max_nsegs_1mbuf < n) 1047 max_nsegs_1mbuf = n; 1048 } 1049 1050 if (__predict_false(toep->flags & TPF_FIN_SENT)) 1051 panic("%s: excess tx.", __func__); 1052 1053 /* 1054 * We have a PDU to send. All of it goes out in one WR so 'm' 1055 * is NULL. A PDU's length is always a multiple of 4. 1056 */ 1057 MPASS(m == NULL); 1058 MPASS((plen & 3) == 0); 1059 MPASS(sndptr->m_pkthdr.len == plen); 1060 1061 shove = !(tp->t_flags & TF_MORETOCOME); 1062 1063 /* 1064 * plen doesn't include header and data digests, which are 1065 * generated and inserted in the right places by the TOE, but 1066 * they do occupy TCP sequence space and need to be accounted 1067 * for. 1068 */ 1069 ulp_submode = mbuf_ulp_submode(sndptr); 1070 MPASS(ulp_submode < nitems(ulp_extra_len)); 1071 npdu = iso ? howmany(plen - ISCSI_BHS_SIZE, iso_mss) : 1; 1072 adjusted_plen = plen + ulp_extra_len[ulp_submode] * npdu; 1073 if (iso) 1074 adjusted_plen += ISCSI_BHS_SIZE * (npdu - 1); 1075 wr_len = sizeof(*txwr); 1076 if (iso) 1077 wr_len += sizeof(struct cpl_tx_data_iso); 1078 if (plen <= max_imm) { 1079 /* Immediate data tx */ 1080 imm_data = plen; 1081 wr_len += plen; 1082 nsegs = 0; 1083 } else { 1084 /* DSGL tx */ 1085 imm_data = 0; 1086 wr_len += sizeof(struct ulptx_sgl) + 1087 ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8; 1088 } 1089 1090 wr = alloc_wrqe(roundup2(wr_len, 16), &toep->ofld_txq->wrq); 1091 if (wr == NULL) { 1092 /* XXX: how will we recover from this? */ 1093 return (NULL); 1094 } 1095 txwr = wrtod(wr); 1096 credits = howmany(wr->wr_len, 16); 1097 1098 if (iso) { 1099 write_tx_wr(txwr, toep, FW_ISCSI_TX_DATA_WR, 1100 imm_data + sizeof(struct cpl_tx_data_iso), 1101 adjusted_plen, credits, shove, ulp_submode | ULP_ISO); 1102 cpl_iso = (struct cpl_tx_data_iso *)(txwr + 1); 1103 MPASS(plen == sndptr->m_pkthdr.len); 1104 write_tx_data_iso(cpl_iso, ulp_submode, 1105 mbuf_iscsi_iso_flags(sndptr), iso_mss, plen, npdu); 1106 p = cpl_iso + 1; 1107 } else { 1108 write_tx_wr(txwr, toep, FW_OFLD_TX_DATA_WR, imm_data, 1109 adjusted_plen, credits, shove, ulp_submode); 1110 p = txwr + 1; 1111 } 1112 1113 if (imm_data != 0) { 1114 m_copydata(sndptr, 0, plen, p); 1115 } else { 1116 write_tx_sgl(p, sndptr, m, nsegs, max_nsegs_1mbuf); 1117 if (wr_len & 0xf) { 1118 uint64_t *pad = (uint64_t *)((uintptr_t)txwr + wr_len); 1119 *pad = 0; 1120 } 1121 } 1122 1123 KASSERT(toep->tx_credits >= credits, 1124 ("%s: not enough credits: credits %u " 1125 "toep->tx_credits %u tx_credits %u nsegs %u " 1126 "max_nsegs %u iso %d", __func__, credits, 1127 toep->tx_credits, tx_credits, nsegs, max_nsegs, iso)); 1128 1129 tp->snd_nxt += adjusted_plen; 1130 tp->snd_max += adjusted_plen; 1131 1132 counter_u64_add(toep->ofld_txq->tx_iscsi_pdus, npdu); 1133 counter_u64_add(toep->ofld_txq->tx_iscsi_octets, plen); 1134 if (iso) 1135 counter_u64_add(toep->ofld_txq->tx_iscsi_iso_wrs, 1); 1136 1137 return (wr); 1138 } 1139 1140 void 1141 t4_push_pdus(struct adapter *sc, struct toepcb *toep, int drop) 1142 { 1143 struct mbuf *sndptr, *m; 1144 struct fw_wr_hdr *wrhdr; 1145 struct wrqe *wr; 1146 u_int plen, credits; 1147 struct inpcb *inp = toep->inp; 1148 struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx]; 1149 struct mbufq *pduq = &toep->ulp_pduq; 1150 1151 INP_WLOCK_ASSERT(inp); 1152 KASSERT(toep->flags & TPF_FLOWC_WR_SENT, 1153 ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid)); 1154 KASSERT(ulp_mode(toep) == ULP_MODE_ISCSI, 1155 ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep)); 1156 1157 if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) 1158 return; 1159 1160 /* 1161 * This function doesn't resume by itself. Someone else must clear the 1162 * flag and call this function. 1163 */ 1164 if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) { 1165 KASSERT(drop == 0, 1166 ("%s: drop (%d) != 0 but tx is suspended", __func__, drop)); 1167 return; 1168 } 1169 1170 if (drop) { 1171 struct socket *so = inp->inp_socket; 1172 struct sockbuf *sb = &so->so_snd; 1173 int sbu; 1174 1175 /* 1176 * An unlocked read is ok here as the data should only 1177 * transition from a non-zero value to either another 1178 * non-zero value or zero. Once it is zero it should 1179 * stay zero. 1180 */ 1181 if (__predict_false(sbused(sb)) > 0) { 1182 SOCKBUF_LOCK(sb); 1183 sbu = sbused(sb); 1184 if (sbu > 0) { 1185 /* 1186 * The data transmitted before the 1187 * tid's ULP mode changed to ISCSI is 1188 * still in so_snd. Incoming credits 1189 * should account for so_snd first. 1190 */ 1191 sbdrop_locked(sb, min(sbu, drop)); 1192 drop -= min(sbu, drop); 1193 } 1194 sowwakeup_locked(so); /* unlocks so_snd */ 1195 } 1196 rqdrop_locked(&toep->ulp_pdu_reclaimq, drop); 1197 } 1198 1199 while ((sndptr = mbufq_first(pduq)) != NULL) { 1200 wr = write_iscsi_mbuf_wr(toep, sndptr); 1201 if (wr == NULL) { 1202 toep->flags |= TPF_TX_SUSPENDED; 1203 return; 1204 } 1205 1206 plen = sndptr->m_pkthdr.len; 1207 credits = howmany(wr->wr_len, 16); 1208 KASSERT(toep->tx_credits >= credits, 1209 ("%s: not enough credits", __func__)); 1210 1211 m = mbufq_dequeue(pduq); 1212 MPASS(m == sndptr); 1213 mbufq_enqueue(&toep->ulp_pdu_reclaimq, m); 1214 1215 toep->tx_credits -= credits; 1216 toep->tx_nocompl += credits; 1217 toep->plen_nocompl += plen; 1218 1219 /* 1220 * Ensure there are enough credits for a full-sized WR 1221 * as page pod WRs can be full-sized. 1222 */ 1223 if (toep->tx_credits <= SGE_MAX_WR_LEN * 5 / 4 && 1224 toep->tx_nocompl >= toep->tx_total / 4) { 1225 wrhdr = wrtod(wr); 1226 wrhdr->hi |= htobe32(F_FW_WR_COMPL); 1227 toep->tx_nocompl = 0; 1228 toep->plen_nocompl = 0; 1229 } 1230 1231 toep->flags |= TPF_TX_DATA_SENT; 1232 if (toep->tx_credits < MIN_OFLD_TX_CREDITS) 1233 toep->flags |= TPF_TX_SUSPENDED; 1234 1235 KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__)); 1236 txsd->plen = plen; 1237 txsd->tx_credits = credits; 1238 txsd++; 1239 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) { 1240 toep->txsd_pidx = 0; 1241 txsd = &toep->txsd[0]; 1242 } 1243 toep->txsd_avail--; 1244 1245 t4_l2t_send(sc, wr, toep->l2te); 1246 } 1247 1248 /* Send a FIN if requested, but only if there are no more PDUs to send */ 1249 if (mbufq_first(pduq) == NULL && toep->flags & TPF_SEND_FIN) 1250 t4_close_conn(sc, toep); 1251 } 1252 1253 static inline void 1254 t4_push_data(struct adapter *sc, struct toepcb *toep, int drop) 1255 { 1256 1257 if (ulp_mode(toep) == ULP_MODE_ISCSI) 1258 t4_push_pdus(sc, toep, drop); 1259 else if (toep->flags & TPF_KTLS) 1260 t4_push_ktls(sc, toep, drop); 1261 else 1262 t4_push_frames(sc, toep, drop); 1263 } 1264 1265 int 1266 t4_tod_output(struct toedev *tod, struct tcpcb *tp) 1267 { 1268 struct adapter *sc = tod->tod_softc; 1269 #ifdef INVARIANTS 1270 struct inpcb *inp = tp->t_inpcb; 1271 #endif 1272 struct toepcb *toep = tp->t_toe; 1273 1274 INP_WLOCK_ASSERT(inp); 1275 KASSERT((inp->inp_flags & INP_DROPPED) == 0, 1276 ("%s: inp %p dropped.", __func__, inp)); 1277 KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); 1278 1279 t4_push_data(sc, toep, 0); 1280 1281 return (0); 1282 } 1283 1284 int 1285 t4_send_fin(struct toedev *tod, struct tcpcb *tp) 1286 { 1287 struct adapter *sc = tod->tod_softc; 1288 #ifdef INVARIANTS 1289 struct inpcb *inp = tp->t_inpcb; 1290 #endif 1291 struct toepcb *toep = tp->t_toe; 1292 1293 INP_WLOCK_ASSERT(inp); 1294 KASSERT((inp->inp_flags & INP_DROPPED) == 0, 1295 ("%s: inp %p dropped.", __func__, inp)); 1296 KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); 1297 1298 toep->flags |= TPF_SEND_FIN; 1299 if (tp->t_state >= TCPS_ESTABLISHED) 1300 t4_push_data(sc, toep, 0); 1301 1302 return (0); 1303 } 1304 1305 int 1306 t4_send_rst(struct toedev *tod, struct tcpcb *tp) 1307 { 1308 struct adapter *sc = tod->tod_softc; 1309 #if defined(INVARIANTS) 1310 struct inpcb *inp = tp->t_inpcb; 1311 #endif 1312 struct toepcb *toep = tp->t_toe; 1313 1314 INP_WLOCK_ASSERT(inp); 1315 KASSERT((inp->inp_flags & INP_DROPPED) == 0, 1316 ("%s: inp %p dropped.", __func__, inp)); 1317 KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); 1318 1319 /* hmmmm */ 1320 KASSERT(toep->flags & TPF_FLOWC_WR_SENT, 1321 ("%s: flowc for tid %u [%s] not sent already", 1322 __func__, toep->tid, tcpstates[tp->t_state])); 1323 1324 send_reset(sc, toep, 0); 1325 return (0); 1326 } 1327 1328 /* 1329 * Peer has sent us a FIN. 1330 */ 1331 static int 1332 do_peer_close(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 1333 { 1334 struct adapter *sc = iq->adapter; 1335 const struct cpl_peer_close *cpl = (const void *)(rss + 1); 1336 unsigned int tid = GET_TID(cpl); 1337 struct toepcb *toep = lookup_tid(sc, tid); 1338 struct inpcb *inp = toep->inp; 1339 struct tcpcb *tp = NULL; 1340 struct socket *so; 1341 struct epoch_tracker et; 1342 #ifdef INVARIANTS 1343 unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); 1344 #endif 1345 1346 KASSERT(opcode == CPL_PEER_CLOSE, 1347 ("%s: unexpected opcode 0x%x", __func__, opcode)); 1348 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 1349 1350 if (__predict_false(toep->flags & TPF_SYNQE)) { 1351 /* 1352 * do_pass_establish must have run before do_peer_close and if 1353 * this is still a synqe instead of a toepcb then the connection 1354 * must be getting aborted. 1355 */ 1356 MPASS(toep->flags & TPF_ABORT_SHUTDOWN); 1357 CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid, 1358 toep, toep->flags); 1359 return (0); 1360 } 1361 1362 KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); 1363 1364 CURVNET_SET(toep->vnet); 1365 NET_EPOCH_ENTER(et); 1366 INP_WLOCK(inp); 1367 tp = intotcpcb(inp); 1368 1369 CTR6(KTR_CXGBE, 1370 "%s: tid %u (%s), toep_flags 0x%x, ddp_flags 0x%x, inp %p", 1371 __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags, 1372 toep->ddp.flags, inp); 1373 1374 if (toep->flags & TPF_ABORT_SHUTDOWN) 1375 goto done; 1376 1377 so = inp->inp_socket; 1378 socantrcvmore(so); 1379 if (ulp_mode(toep) == ULP_MODE_TCPDDP) { 1380 DDP_LOCK(toep); 1381 if (__predict_false(toep->ddp.flags & 1382 (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE))) 1383 handle_ddp_close(toep, tp, cpl->rcv_nxt); 1384 DDP_UNLOCK(toep); 1385 } 1386 1387 if (ulp_mode(toep) == ULP_MODE_RDMA || 1388 (ulp_mode(toep) == ULP_MODE_ISCSI && chip_id(sc) >= CHELSIO_T6)) { 1389 /* 1390 * There might be data received via DDP before the FIN 1391 * not reported to the driver. Just assume the 1392 * sequence number in the CPL is correct as the 1393 * sequence number of the FIN. 1394 */ 1395 } else { 1396 KASSERT(tp->rcv_nxt + 1 == be32toh(cpl->rcv_nxt), 1397 ("%s: rcv_nxt mismatch: %u %u", __func__, tp->rcv_nxt, 1398 be32toh(cpl->rcv_nxt))); 1399 } 1400 1401 tp->rcv_nxt = be32toh(cpl->rcv_nxt); 1402 1403 switch (tp->t_state) { 1404 case TCPS_SYN_RECEIVED: 1405 tp->t_starttime = ticks; 1406 /* FALLTHROUGH */ 1407 1408 case TCPS_ESTABLISHED: 1409 tcp_state_change(tp, TCPS_CLOSE_WAIT); 1410 break; 1411 1412 case TCPS_FIN_WAIT_1: 1413 tcp_state_change(tp, TCPS_CLOSING); 1414 break; 1415 1416 case TCPS_FIN_WAIT_2: 1417 restore_so_proto(so, inp->inp_vflag & INP_IPV6); 1418 tcp_twstart(tp); 1419 INP_UNLOCK_ASSERT(inp); /* safe, we have a ref on the inp */ 1420 NET_EPOCH_EXIT(et); 1421 CURVNET_RESTORE(); 1422 1423 INP_WLOCK(inp); 1424 final_cpl_received(toep); 1425 return (0); 1426 1427 default: 1428 log(LOG_ERR, "%s: TID %u received CPL_PEER_CLOSE in state %d\n", 1429 __func__, tid, tp->t_state); 1430 } 1431 done: 1432 INP_WUNLOCK(inp); 1433 NET_EPOCH_EXIT(et); 1434 CURVNET_RESTORE(); 1435 return (0); 1436 } 1437 1438 /* 1439 * Peer has ACK'd our FIN. 1440 */ 1441 static int 1442 do_close_con_rpl(struct sge_iq *iq, const struct rss_header *rss, 1443 struct mbuf *m) 1444 { 1445 struct adapter *sc = iq->adapter; 1446 const struct cpl_close_con_rpl *cpl = (const void *)(rss + 1); 1447 unsigned int tid = GET_TID(cpl); 1448 struct toepcb *toep = lookup_tid(sc, tid); 1449 struct inpcb *inp = toep->inp; 1450 struct tcpcb *tp = NULL; 1451 struct socket *so = NULL; 1452 struct epoch_tracker et; 1453 #ifdef INVARIANTS 1454 unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); 1455 #endif 1456 1457 KASSERT(opcode == CPL_CLOSE_CON_RPL, 1458 ("%s: unexpected opcode 0x%x", __func__, opcode)); 1459 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 1460 KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); 1461 1462 CURVNET_SET(toep->vnet); 1463 NET_EPOCH_ENTER(et); 1464 INP_WLOCK(inp); 1465 tp = intotcpcb(inp); 1466 1467 CTR4(KTR_CXGBE, "%s: tid %u (%s), toep_flags 0x%x", 1468 __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags); 1469 1470 if (toep->flags & TPF_ABORT_SHUTDOWN) 1471 goto done; 1472 1473 so = inp->inp_socket; 1474 tp->snd_una = be32toh(cpl->snd_nxt) - 1; /* exclude FIN */ 1475 1476 switch (tp->t_state) { 1477 case TCPS_CLOSING: /* see TCPS_FIN_WAIT_2 in do_peer_close too */ 1478 restore_so_proto(so, inp->inp_vflag & INP_IPV6); 1479 tcp_twstart(tp); 1480 release: 1481 INP_UNLOCK_ASSERT(inp); /* safe, we have a ref on the inp */ 1482 NET_EPOCH_EXIT(et); 1483 CURVNET_RESTORE(); 1484 1485 INP_WLOCK(inp); 1486 final_cpl_received(toep); /* no more CPLs expected */ 1487 1488 return (0); 1489 case TCPS_LAST_ACK: 1490 if (tcp_close(tp)) 1491 INP_WUNLOCK(inp); 1492 goto release; 1493 1494 case TCPS_FIN_WAIT_1: 1495 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 1496 soisdisconnected(so); 1497 tcp_state_change(tp, TCPS_FIN_WAIT_2); 1498 break; 1499 1500 default: 1501 log(LOG_ERR, 1502 "%s: TID %u received CPL_CLOSE_CON_RPL in state %s\n", 1503 __func__, tid, tcpstates[tp->t_state]); 1504 } 1505 done: 1506 INP_WUNLOCK(inp); 1507 NET_EPOCH_EXIT(et); 1508 CURVNET_RESTORE(); 1509 return (0); 1510 } 1511 1512 void 1513 send_abort_rpl(struct adapter *sc, struct sge_ofld_txq *ofld_txq, int tid, 1514 int rst_status) 1515 { 1516 struct wrqe *wr; 1517 struct cpl_abort_rpl *cpl; 1518 1519 wr = alloc_wrqe(sizeof(*cpl), &ofld_txq->wrq); 1520 if (wr == NULL) { 1521 /* XXX */ 1522 panic("%s: allocation failure.", __func__); 1523 } 1524 cpl = wrtod(wr); 1525 1526 INIT_TP_WR_MIT_CPL(cpl, CPL_ABORT_RPL, tid); 1527 cpl->cmd = rst_status; 1528 1529 t4_wrq_tx(sc, wr); 1530 } 1531 1532 static int 1533 abort_status_to_errno(struct tcpcb *tp, unsigned int abort_reason) 1534 { 1535 switch (abort_reason) { 1536 case CPL_ERR_BAD_SYN: 1537 case CPL_ERR_CONN_RESET: 1538 return (tp->t_state == TCPS_CLOSE_WAIT ? EPIPE : ECONNRESET); 1539 case CPL_ERR_XMIT_TIMEDOUT: 1540 case CPL_ERR_PERSIST_TIMEDOUT: 1541 case CPL_ERR_FINWAIT2_TIMEDOUT: 1542 case CPL_ERR_KEEPALIVE_TIMEDOUT: 1543 return (ETIMEDOUT); 1544 default: 1545 return (EIO); 1546 } 1547 } 1548 1549 /* 1550 * TCP RST from the peer, timeout, or some other such critical error. 1551 */ 1552 static int 1553 do_abort_req(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 1554 { 1555 struct adapter *sc = iq->adapter; 1556 const struct cpl_abort_req_rss *cpl = (const void *)(rss + 1); 1557 unsigned int tid = GET_TID(cpl); 1558 struct toepcb *toep = lookup_tid(sc, tid); 1559 struct sge_ofld_txq *ofld_txq = toep->ofld_txq; 1560 struct inpcb *inp; 1561 struct tcpcb *tp; 1562 struct epoch_tracker et; 1563 #ifdef INVARIANTS 1564 unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); 1565 #endif 1566 1567 KASSERT(opcode == CPL_ABORT_REQ_RSS, 1568 ("%s: unexpected opcode 0x%x", __func__, opcode)); 1569 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 1570 1571 if (toep->flags & TPF_SYNQE) 1572 return (do_abort_req_synqe(iq, rss, m)); 1573 1574 KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); 1575 1576 if (negative_advice(cpl->status)) { 1577 CTR4(KTR_CXGBE, "%s: negative advice %d for tid %d (0x%x)", 1578 __func__, cpl->status, tid, toep->flags); 1579 return (0); /* Ignore negative advice */ 1580 } 1581 1582 inp = toep->inp; 1583 CURVNET_SET(toep->vnet); 1584 NET_EPOCH_ENTER(et); /* for tcp_close */ 1585 INP_WLOCK(inp); 1586 1587 tp = intotcpcb(inp); 1588 1589 CTR6(KTR_CXGBE, 1590 "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x, status %d", 1591 __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags, 1592 inp->inp_flags, cpl->status); 1593 1594 /* 1595 * If we'd initiated an abort earlier the reply to it is responsible for 1596 * cleaning up resources. Otherwise we tear everything down right here 1597 * right now. We owe the T4 a CPL_ABORT_RPL no matter what. 1598 */ 1599 if (toep->flags & TPF_ABORT_SHUTDOWN) { 1600 INP_WUNLOCK(inp); 1601 goto done; 1602 } 1603 toep->flags |= TPF_ABORT_SHUTDOWN; 1604 1605 if ((inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) == 0) { 1606 struct socket *so = inp->inp_socket; 1607 1608 if (so != NULL) 1609 so_error_set(so, abort_status_to_errno(tp, 1610 cpl->status)); 1611 tp = tcp_close(tp); 1612 if (tp == NULL) 1613 INP_WLOCK(inp); /* re-acquire */ 1614 } 1615 1616 final_cpl_received(toep); 1617 done: 1618 NET_EPOCH_EXIT(et); 1619 CURVNET_RESTORE(); 1620 send_abort_rpl(sc, ofld_txq, tid, CPL_ABORT_NO_RST); 1621 return (0); 1622 } 1623 1624 /* 1625 * Reply to the CPL_ABORT_REQ (send_reset) 1626 */ 1627 static int 1628 do_abort_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 1629 { 1630 struct adapter *sc = iq->adapter; 1631 const struct cpl_abort_rpl_rss *cpl = (const void *)(rss + 1); 1632 unsigned int tid = GET_TID(cpl); 1633 struct toepcb *toep = lookup_tid(sc, tid); 1634 struct inpcb *inp = toep->inp; 1635 #ifdef INVARIANTS 1636 unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); 1637 #endif 1638 1639 KASSERT(opcode == CPL_ABORT_RPL_RSS, 1640 ("%s: unexpected opcode 0x%x", __func__, opcode)); 1641 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 1642 1643 if (toep->flags & TPF_SYNQE) 1644 return (do_abort_rpl_synqe(iq, rss, m)); 1645 1646 KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); 1647 1648 CTR5(KTR_CXGBE, "%s: tid %u, toep %p, inp %p, status %d", 1649 __func__, tid, toep, inp, cpl->status); 1650 1651 KASSERT(toep->flags & TPF_ABORT_SHUTDOWN, 1652 ("%s: wasn't expecting abort reply", __func__)); 1653 1654 INP_WLOCK(inp); 1655 final_cpl_received(toep); 1656 1657 return (0); 1658 } 1659 1660 static int 1661 do_rx_data(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 1662 { 1663 struct adapter *sc = iq->adapter; 1664 const struct cpl_rx_data *cpl = mtod(m, const void *); 1665 unsigned int tid = GET_TID(cpl); 1666 struct toepcb *toep = lookup_tid(sc, tid); 1667 struct inpcb *inp = toep->inp; 1668 struct tcpcb *tp; 1669 struct socket *so; 1670 struct sockbuf *sb; 1671 struct epoch_tracker et; 1672 int len, rx_credits; 1673 uint32_t ddp_placed = 0; 1674 1675 if (__predict_false(toep->flags & TPF_SYNQE)) { 1676 /* 1677 * do_pass_establish must have run before do_rx_data and if this 1678 * is still a synqe instead of a toepcb then the connection must 1679 * be getting aborted. 1680 */ 1681 MPASS(toep->flags & TPF_ABORT_SHUTDOWN); 1682 CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid, 1683 toep, toep->flags); 1684 m_freem(m); 1685 return (0); 1686 } 1687 1688 KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); 1689 1690 /* strip off CPL header */ 1691 m_adj(m, sizeof(*cpl)); 1692 len = m->m_pkthdr.len; 1693 1694 INP_WLOCK(inp); 1695 if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) { 1696 CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x", 1697 __func__, tid, len, inp->inp_flags); 1698 INP_WUNLOCK(inp); 1699 m_freem(m); 1700 return (0); 1701 } 1702 1703 tp = intotcpcb(inp); 1704 1705 if (__predict_false(ulp_mode(toep) == ULP_MODE_TLS && 1706 toep->flags & TPF_TLS_RECEIVE)) { 1707 /* Received "raw" data on a TLS socket. */ 1708 CTR3(KTR_CXGBE, "%s: tid %u, raw TLS data (%d bytes)", 1709 __func__, tid, len); 1710 do_rx_data_tls(cpl, toep, m); 1711 return (0); 1712 } 1713 1714 if (__predict_false(tp->rcv_nxt != be32toh(cpl->seq))) 1715 ddp_placed = be32toh(cpl->seq) - tp->rcv_nxt; 1716 1717 tp->rcv_nxt += len; 1718 if (tp->rcv_wnd < len) { 1719 KASSERT(ulp_mode(toep) == ULP_MODE_RDMA, 1720 ("%s: negative window size", __func__)); 1721 } 1722 1723 tp->rcv_wnd -= len; 1724 tp->t_rcvtime = ticks; 1725 1726 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 1727 DDP_LOCK(toep); 1728 so = inp_inpcbtosocket(inp); 1729 sb = &so->so_rcv; 1730 SOCKBUF_LOCK(sb); 1731 1732 if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) { 1733 CTR3(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes)", 1734 __func__, tid, len); 1735 m_freem(m); 1736 SOCKBUF_UNLOCK(sb); 1737 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 1738 DDP_UNLOCK(toep); 1739 INP_WUNLOCK(inp); 1740 1741 CURVNET_SET(toep->vnet); 1742 NET_EPOCH_ENTER(et); 1743 INP_WLOCK(inp); 1744 tp = tcp_drop(tp, ECONNRESET); 1745 if (tp) 1746 INP_WUNLOCK(inp); 1747 NET_EPOCH_EXIT(et); 1748 CURVNET_RESTORE(); 1749 1750 return (0); 1751 } 1752 1753 /* receive buffer autosize */ 1754 MPASS(toep->vnet == so->so_vnet); 1755 CURVNET_SET(toep->vnet); 1756 if (sb->sb_flags & SB_AUTOSIZE && 1757 V_tcp_do_autorcvbuf && 1758 sb->sb_hiwat < V_tcp_autorcvbuf_max && 1759 len > (sbspace(sb) / 8 * 7)) { 1760 unsigned int hiwat = sb->sb_hiwat; 1761 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 1762 V_tcp_autorcvbuf_max); 1763 1764 if (!sbreserve_locked(sb, newsize, so, NULL)) 1765 sb->sb_flags &= ~SB_AUTOSIZE; 1766 } 1767 1768 if (ulp_mode(toep) == ULP_MODE_TCPDDP) { 1769 int changed = !(toep->ddp.flags & DDP_ON) ^ cpl->ddp_off; 1770 1771 if (toep->ddp.waiting_count != 0 || toep->ddp.active_count != 0) 1772 CTR3(KTR_CXGBE, "%s: tid %u, non-ddp rx (%d bytes)", 1773 __func__, tid, len); 1774 1775 if (changed) { 1776 if (toep->ddp.flags & DDP_SC_REQ) 1777 toep->ddp.flags ^= DDP_ON | DDP_SC_REQ; 1778 else { 1779 KASSERT(cpl->ddp_off == 1, 1780 ("%s: DDP switched on by itself.", 1781 __func__)); 1782 1783 /* Fell out of DDP mode */ 1784 toep->ddp.flags &= ~DDP_ON; 1785 CTR1(KTR_CXGBE, "%s: fell out of DDP mode", 1786 __func__); 1787 1788 insert_ddp_data(toep, ddp_placed); 1789 } 1790 } 1791 1792 if (toep->ddp.flags & DDP_ON) { 1793 /* 1794 * CPL_RX_DATA with DDP on can only be an indicate. 1795 * Start posting queued AIO requests via DDP. The 1796 * payload that arrived in this indicate is appended 1797 * to the socket buffer as usual. 1798 */ 1799 handle_ddp_indicate(toep); 1800 } 1801 } 1802 1803 sbappendstream_locked(sb, m, 0); 1804 rx_credits = sbspace(sb) > tp->rcv_wnd ? sbspace(sb) - tp->rcv_wnd : 0; 1805 if (rx_credits > 0 && sbused(sb) + tp->rcv_wnd < sb->sb_lowat) { 1806 rx_credits = send_rx_credits(sc, toep, rx_credits); 1807 tp->rcv_wnd += rx_credits; 1808 tp->rcv_adv += rx_credits; 1809 } 1810 1811 if (ulp_mode(toep) == ULP_MODE_TCPDDP && toep->ddp.waiting_count > 0 && 1812 sbavail(sb) != 0) { 1813 CTR2(KTR_CXGBE, "%s: tid %u queueing AIO task", __func__, 1814 tid); 1815 ddp_queue_toep(toep); 1816 } 1817 sorwakeup_locked(so); 1818 SOCKBUF_UNLOCK_ASSERT(sb); 1819 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 1820 DDP_UNLOCK(toep); 1821 1822 INP_WUNLOCK(inp); 1823 CURVNET_RESTORE(); 1824 return (0); 1825 } 1826 1827 static int 1828 do_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 1829 { 1830 struct adapter *sc = iq->adapter; 1831 const struct cpl_fw4_ack *cpl = (const void *)(rss + 1); 1832 unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl))); 1833 struct toepcb *toep = lookup_tid(sc, tid); 1834 struct inpcb *inp; 1835 struct tcpcb *tp; 1836 struct socket *so; 1837 uint8_t credits = cpl->credits; 1838 struct ofld_tx_sdesc *txsd; 1839 int plen; 1840 #ifdef INVARIANTS 1841 unsigned int opcode = G_CPL_FW4_ACK_OPCODE(be32toh(OPCODE_TID(cpl))); 1842 #endif 1843 1844 /* 1845 * Very unusual case: we'd sent a flowc + abort_req for a synq entry and 1846 * now this comes back carrying the credits for the flowc. 1847 */ 1848 if (__predict_false(toep->flags & TPF_SYNQE)) { 1849 KASSERT(toep->flags & TPF_ABORT_SHUTDOWN, 1850 ("%s: credits for a synq entry %p", __func__, toep)); 1851 return (0); 1852 } 1853 1854 inp = toep->inp; 1855 1856 KASSERT(opcode == CPL_FW4_ACK, 1857 ("%s: unexpected opcode 0x%x", __func__, opcode)); 1858 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 1859 KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); 1860 1861 INP_WLOCK(inp); 1862 1863 if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) { 1864 INP_WUNLOCK(inp); 1865 return (0); 1866 } 1867 1868 KASSERT((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0, 1869 ("%s: inp_flags 0x%x", __func__, inp->inp_flags)); 1870 1871 tp = intotcpcb(inp); 1872 1873 if (cpl->flags & CPL_FW4_ACK_FLAGS_SEQVAL) { 1874 tcp_seq snd_una = be32toh(cpl->snd_una); 1875 1876 #ifdef INVARIANTS 1877 if (__predict_false(SEQ_LT(snd_una, tp->snd_una))) { 1878 log(LOG_ERR, 1879 "%s: unexpected seq# %x for TID %u, snd_una %x\n", 1880 __func__, snd_una, toep->tid, tp->snd_una); 1881 } 1882 #endif 1883 1884 if (tp->snd_una != snd_una) { 1885 tp->snd_una = snd_una; 1886 tp->ts_recent_age = tcp_ts_getticks(); 1887 } 1888 } 1889 1890 #ifdef VERBOSE_TRACES 1891 CTR3(KTR_CXGBE, "%s: tid %d credits %u", __func__, tid, credits); 1892 #endif 1893 so = inp->inp_socket; 1894 txsd = &toep->txsd[toep->txsd_cidx]; 1895 plen = 0; 1896 while (credits) { 1897 KASSERT(credits >= txsd->tx_credits, 1898 ("%s: too many (or partial) credits", __func__)); 1899 credits -= txsd->tx_credits; 1900 toep->tx_credits += txsd->tx_credits; 1901 plen += txsd->plen; 1902 txsd++; 1903 toep->txsd_avail++; 1904 KASSERT(toep->txsd_avail <= toep->txsd_total, 1905 ("%s: txsd avail > total", __func__)); 1906 if (__predict_false(++toep->txsd_cidx == toep->txsd_total)) { 1907 txsd = &toep->txsd[0]; 1908 toep->txsd_cidx = 0; 1909 } 1910 } 1911 1912 if (toep->tx_credits == toep->tx_total) { 1913 toep->tx_nocompl = 0; 1914 toep->plen_nocompl = 0; 1915 } 1916 1917 if (toep->flags & TPF_TX_SUSPENDED && 1918 toep->tx_credits >= toep->tx_total / 4) { 1919 #ifdef VERBOSE_TRACES 1920 CTR2(KTR_CXGBE, "%s: tid %d calling t4_push_frames", __func__, 1921 tid); 1922 #endif 1923 toep->flags &= ~TPF_TX_SUSPENDED; 1924 CURVNET_SET(toep->vnet); 1925 t4_push_data(sc, toep, plen); 1926 CURVNET_RESTORE(); 1927 } else if (plen > 0) { 1928 struct sockbuf *sb = &so->so_snd; 1929 int sbu; 1930 1931 SOCKBUF_LOCK(sb); 1932 sbu = sbused(sb); 1933 if (ulp_mode(toep) == ULP_MODE_ISCSI) { 1934 if (__predict_false(sbu > 0)) { 1935 /* 1936 * The data transmitted before the 1937 * tid's ULP mode changed to ISCSI is 1938 * still in so_snd. Incoming credits 1939 * should account for so_snd first. 1940 */ 1941 sbdrop_locked(sb, min(sbu, plen)); 1942 plen -= min(sbu, plen); 1943 } 1944 sowwakeup_locked(so); /* unlocks so_snd */ 1945 rqdrop_locked(&toep->ulp_pdu_reclaimq, plen); 1946 } else { 1947 #ifdef VERBOSE_TRACES 1948 CTR3(KTR_CXGBE, "%s: tid %d dropped %d bytes", __func__, 1949 tid, plen); 1950 #endif 1951 sbdrop_locked(sb, plen); 1952 if (!TAILQ_EMPTY(&toep->aiotx_jobq)) 1953 t4_aiotx_queue_toep(so, toep); 1954 sowwakeup_locked(so); /* unlocks so_snd */ 1955 } 1956 SOCKBUF_UNLOCK_ASSERT(sb); 1957 } 1958 1959 INP_WUNLOCK(inp); 1960 1961 return (0); 1962 } 1963 1964 void 1965 t4_set_tcb_field(struct adapter *sc, struct sge_wrq *wrq, struct toepcb *toep, 1966 uint16_t word, uint64_t mask, uint64_t val, int reply, int cookie) 1967 { 1968 struct wrqe *wr; 1969 struct cpl_set_tcb_field *req; 1970 struct ofld_tx_sdesc *txsd; 1971 1972 MPASS((cookie & ~M_COOKIE) == 0); 1973 if (reply) { 1974 MPASS(cookie != CPL_COOKIE_RESERVED); 1975 } 1976 1977 wr = alloc_wrqe(sizeof(*req), wrq); 1978 if (wr == NULL) { 1979 /* XXX */ 1980 panic("%s: allocation failure.", __func__); 1981 } 1982 req = wrtod(wr); 1983 1984 INIT_TP_WR_MIT_CPL(req, CPL_SET_TCB_FIELD, toep->tid); 1985 req->reply_ctrl = htobe16(V_QUEUENO(toep->ofld_rxq->iq.abs_id)); 1986 if (reply == 0) 1987 req->reply_ctrl |= htobe16(F_NO_REPLY); 1988 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(cookie)); 1989 req->mask = htobe64(mask); 1990 req->val = htobe64(val); 1991 if (wrq->eq.type == EQ_OFLD) { 1992 txsd = &toep->txsd[toep->txsd_pidx]; 1993 txsd->tx_credits = howmany(sizeof(*req), 16); 1994 txsd->plen = 0; 1995 KASSERT(toep->tx_credits >= txsd->tx_credits && 1996 toep->txsd_avail > 0, 1997 ("%s: not enough credits (%d)", __func__, 1998 toep->tx_credits)); 1999 toep->tx_credits -= txsd->tx_credits; 2000 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) 2001 toep->txsd_pidx = 0; 2002 toep->txsd_avail--; 2003 } 2004 2005 t4_wrq_tx(sc, wr); 2006 } 2007 2008 void 2009 t4_init_cpl_io_handlers(void) 2010 { 2011 2012 t4_register_cpl_handler(CPL_PEER_CLOSE, do_peer_close); 2013 t4_register_cpl_handler(CPL_CLOSE_CON_RPL, do_close_con_rpl); 2014 t4_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req); 2015 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, do_abort_rpl, 2016 CPL_COOKIE_TOM); 2017 t4_register_cpl_handler(CPL_RX_DATA, do_rx_data); 2018 t4_register_shared_cpl_handler(CPL_FW4_ACK, do_fw4_ack, CPL_COOKIE_TOM); 2019 } 2020 2021 void 2022 t4_uninit_cpl_io_handlers(void) 2023 { 2024 2025 t4_register_cpl_handler(CPL_PEER_CLOSE, NULL); 2026 t4_register_cpl_handler(CPL_CLOSE_CON_RPL, NULL); 2027 t4_register_cpl_handler(CPL_ABORT_REQ_RSS, NULL); 2028 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, NULL, CPL_COOKIE_TOM); 2029 t4_register_cpl_handler(CPL_RX_DATA, NULL); 2030 t4_register_shared_cpl_handler(CPL_FW4_ACK, NULL, CPL_COOKIE_TOM); 2031 } 2032 2033 /* 2034 * Use the 'backend1' field in AIO jobs to hold an error that should 2035 * be reported when the job is completed, the 'backend3' field to 2036 * store the amount of data sent by the AIO job so far, and the 2037 * 'backend4' field to hold a reference count on the job. 2038 * 2039 * Each unmapped mbuf holds a reference on the job as does the queue 2040 * so long as the job is queued. 2041 */ 2042 #define aio_error backend1 2043 #define aio_sent backend3 2044 #define aio_refs backend4 2045 2046 #define jobtotid(job) \ 2047 (((struct toepcb *)(so_sototcpcb((job)->fd_file->f_data)->t_toe))->tid) 2048 2049 static void 2050 aiotx_free_job(struct kaiocb *job) 2051 { 2052 long status; 2053 int error; 2054 2055 if (refcount_release(&job->aio_refs) == 0) 2056 return; 2057 2058 error = (intptr_t)job->aio_error; 2059 status = job->aio_sent; 2060 #ifdef VERBOSE_TRACES 2061 CTR5(KTR_CXGBE, "%s: tid %d completed %p len %ld, error %d", __func__, 2062 jobtotid(job), job, status, error); 2063 #endif 2064 if (error != 0 && status != 0) 2065 error = 0; 2066 if (error == ECANCELED) 2067 aio_cancel(job); 2068 else if (error) 2069 aio_complete(job, -1, error); 2070 else { 2071 job->msgsnd = 1; 2072 aio_complete(job, status, 0); 2073 } 2074 } 2075 2076 static void 2077 aiotx_free_pgs(struct mbuf *m) 2078 { 2079 struct kaiocb *job; 2080 vm_page_t pg; 2081 2082 M_ASSERTEXTPG(m); 2083 job = m->m_ext.ext_arg1; 2084 #ifdef VERBOSE_TRACES 2085 CTR3(KTR_CXGBE, "%s: completed %d bytes for tid %d", __func__, 2086 m->m_len, jobtotid(job)); 2087 #endif 2088 2089 for (int i = 0; i < m->m_epg_npgs; i++) { 2090 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]); 2091 vm_page_unwire(pg, PQ_ACTIVE); 2092 } 2093 2094 aiotx_free_job(job); 2095 } 2096 2097 /* 2098 * Allocate a chain of unmapped mbufs describing the next 'len' bytes 2099 * of an AIO job. 2100 */ 2101 static struct mbuf * 2102 alloc_aiotx_mbuf(struct kaiocb *job, int len) 2103 { 2104 struct vmspace *vm; 2105 vm_page_t pgs[MBUF_PEXT_MAX_PGS]; 2106 struct mbuf *m, *top, *last; 2107 vm_map_t map; 2108 vm_offset_t start; 2109 int i, mlen, npages, pgoff; 2110 2111 KASSERT(job->aio_sent + len <= job->uaiocb.aio_nbytes, 2112 ("%s(%p, %d): request to send beyond end of buffer", __func__, 2113 job, len)); 2114 2115 /* 2116 * The AIO subsystem will cancel and drain all requests before 2117 * permitting a process to exit or exec, so p_vmspace should 2118 * be stable here. 2119 */ 2120 vm = job->userproc->p_vmspace; 2121 map = &vm->vm_map; 2122 start = (uintptr_t)job->uaiocb.aio_buf + job->aio_sent; 2123 pgoff = start & PAGE_MASK; 2124 2125 top = NULL; 2126 last = NULL; 2127 while (len > 0) { 2128 mlen = imin(len, MBUF_PEXT_MAX_PGS * PAGE_SIZE - pgoff); 2129 KASSERT(mlen == len || ((start + mlen) & PAGE_MASK) == 0, 2130 ("%s: next start (%#jx + %#x) is not page aligned", 2131 __func__, (uintmax_t)start, mlen)); 2132 2133 npages = vm_fault_quick_hold_pages(map, start, mlen, 2134 VM_PROT_WRITE, pgs, nitems(pgs)); 2135 if (npages < 0) 2136 break; 2137 2138 m = mb_alloc_ext_pgs(M_WAITOK, aiotx_free_pgs); 2139 if (m == NULL) { 2140 vm_page_unhold_pages(pgs, npages); 2141 break; 2142 } 2143 2144 m->m_epg_1st_off = pgoff; 2145 m->m_epg_npgs = npages; 2146 if (npages == 1) { 2147 KASSERT(mlen + pgoff <= PAGE_SIZE, 2148 ("%s: single page is too large (off %d len %d)", 2149 __func__, pgoff, mlen)); 2150 m->m_epg_last_len = mlen; 2151 } else { 2152 m->m_epg_last_len = mlen - (PAGE_SIZE - pgoff) - 2153 (npages - 2) * PAGE_SIZE; 2154 } 2155 for (i = 0; i < npages; i++) 2156 m->m_epg_pa[i] = VM_PAGE_TO_PHYS(pgs[i]); 2157 2158 m->m_len = mlen; 2159 m->m_ext.ext_size = npages * PAGE_SIZE; 2160 m->m_ext.ext_arg1 = job; 2161 refcount_acquire(&job->aio_refs); 2162 2163 #ifdef VERBOSE_TRACES 2164 CTR5(KTR_CXGBE, "%s: tid %d, new mbuf %p for job %p, npages %d", 2165 __func__, jobtotid(job), m, job, npages); 2166 #endif 2167 2168 if (top == NULL) 2169 top = m; 2170 else 2171 last->m_next = m; 2172 last = m; 2173 2174 len -= mlen; 2175 start += mlen; 2176 pgoff = 0; 2177 } 2178 2179 return (top); 2180 } 2181 2182 static void 2183 t4_aiotx_process_job(struct toepcb *toep, struct socket *so, struct kaiocb *job) 2184 { 2185 struct sockbuf *sb; 2186 struct file *fp; 2187 struct inpcb *inp; 2188 struct tcpcb *tp; 2189 struct mbuf *m; 2190 int error, len; 2191 bool moretocome, sendmore; 2192 2193 sb = &so->so_snd; 2194 SOCKBUF_UNLOCK(sb); 2195 fp = job->fd_file; 2196 m = NULL; 2197 2198 #ifdef MAC 2199 error = mac_socket_check_send(fp->f_cred, so); 2200 if (error != 0) 2201 goto out; 2202 #endif 2203 2204 /* Inline sosend_generic(). */ 2205 2206 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 2207 MPASS(error == 0); 2208 2209 sendanother: 2210 SOCKBUF_LOCK(sb); 2211 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 2212 SOCKBUF_UNLOCK(sb); 2213 SOCK_IO_SEND_UNLOCK(so); 2214 if ((so->so_options & SO_NOSIGPIPE) == 0) { 2215 PROC_LOCK(job->userproc); 2216 kern_psignal(job->userproc, SIGPIPE); 2217 PROC_UNLOCK(job->userproc); 2218 } 2219 error = EPIPE; 2220 goto out; 2221 } 2222 if (so->so_error) { 2223 error = so->so_error; 2224 so->so_error = 0; 2225 SOCKBUF_UNLOCK(sb); 2226 SOCK_IO_SEND_UNLOCK(so); 2227 goto out; 2228 } 2229 if ((so->so_state & SS_ISCONNECTED) == 0) { 2230 SOCKBUF_UNLOCK(sb); 2231 SOCK_IO_SEND_UNLOCK(so); 2232 error = ENOTCONN; 2233 goto out; 2234 } 2235 if (sbspace(sb) < sb->sb_lowat) { 2236 MPASS(job->aio_sent == 0 || !(so->so_state & SS_NBIO)); 2237 2238 /* 2239 * Don't block if there is too little room in the socket 2240 * buffer. Instead, requeue the request. 2241 */ 2242 if (!aio_set_cancel_function(job, t4_aiotx_cancel)) { 2243 SOCKBUF_UNLOCK(sb); 2244 SOCK_IO_SEND_UNLOCK(so); 2245 error = ECANCELED; 2246 goto out; 2247 } 2248 TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list); 2249 SOCKBUF_UNLOCK(sb); 2250 SOCK_IO_SEND_UNLOCK(so); 2251 goto out; 2252 } 2253 2254 /* 2255 * Write as much data as the socket permits, but no more than a 2256 * a single sndbuf at a time. 2257 */ 2258 len = sbspace(sb); 2259 if (len > job->uaiocb.aio_nbytes - job->aio_sent) { 2260 len = job->uaiocb.aio_nbytes - job->aio_sent; 2261 moretocome = false; 2262 } else 2263 moretocome = true; 2264 if (len > toep->params.sndbuf) { 2265 len = toep->params.sndbuf; 2266 sendmore = true; 2267 } else 2268 sendmore = false; 2269 2270 if (!TAILQ_EMPTY(&toep->aiotx_jobq)) 2271 moretocome = true; 2272 SOCKBUF_UNLOCK(sb); 2273 MPASS(len != 0); 2274 2275 m = alloc_aiotx_mbuf(job, len); 2276 if (m == NULL) { 2277 SOCK_IO_SEND_UNLOCK(so); 2278 error = EFAULT; 2279 goto out; 2280 } 2281 2282 /* Inlined tcp_usr_send(). */ 2283 2284 inp = toep->inp; 2285 INP_WLOCK(inp); 2286 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2287 INP_WUNLOCK(inp); 2288 SOCK_IO_SEND_UNLOCK(so); 2289 error = ECONNRESET; 2290 goto out; 2291 } 2292 2293 job->aio_sent += m_length(m, NULL); 2294 2295 sbappendstream(sb, m, 0); 2296 m = NULL; 2297 2298 if (!(inp->inp_flags & INP_DROPPED)) { 2299 tp = intotcpcb(inp); 2300 if (moretocome) 2301 tp->t_flags |= TF_MORETOCOME; 2302 error = tp->t_fb->tfb_tcp_output(tp); 2303 if (moretocome) 2304 tp->t_flags &= ~TF_MORETOCOME; 2305 } 2306 2307 INP_WUNLOCK(inp); 2308 if (sendmore) 2309 goto sendanother; 2310 SOCK_IO_SEND_UNLOCK(so); 2311 2312 if (error) 2313 goto out; 2314 2315 /* 2316 * If this is a blocking socket and the request has not been 2317 * fully completed, requeue it until the socket is ready 2318 * again. 2319 */ 2320 if (job->aio_sent < job->uaiocb.aio_nbytes && 2321 !(so->so_state & SS_NBIO)) { 2322 SOCKBUF_LOCK(sb); 2323 if (!aio_set_cancel_function(job, t4_aiotx_cancel)) { 2324 SOCKBUF_UNLOCK(sb); 2325 error = ECANCELED; 2326 goto out; 2327 } 2328 TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list); 2329 return; 2330 } 2331 2332 /* 2333 * If the request will not be requeued, drop the queue's 2334 * reference to the job. Any mbufs in flight should still 2335 * hold a reference, but this drops the reference that the 2336 * queue owns while it is waiting to queue mbufs to the 2337 * socket. 2338 */ 2339 aiotx_free_job(job); 2340 2341 out: 2342 if (error) { 2343 job->aio_error = (void *)(intptr_t)error; 2344 aiotx_free_job(job); 2345 } 2346 m_freem(m); 2347 SOCKBUF_LOCK(sb); 2348 } 2349 2350 static void 2351 t4_aiotx_task(void *context, int pending) 2352 { 2353 struct toepcb *toep = context; 2354 struct socket *so; 2355 struct kaiocb *job; 2356 struct epoch_tracker et; 2357 2358 so = toep->aiotx_so; 2359 CURVNET_SET(toep->vnet); 2360 NET_EPOCH_ENTER(et); 2361 SOCKBUF_LOCK(&so->so_snd); 2362 while (!TAILQ_EMPTY(&toep->aiotx_jobq) && sowriteable(so)) { 2363 job = TAILQ_FIRST(&toep->aiotx_jobq); 2364 TAILQ_REMOVE(&toep->aiotx_jobq, job, list); 2365 if (!aio_clear_cancel_function(job)) 2366 continue; 2367 2368 t4_aiotx_process_job(toep, so, job); 2369 } 2370 toep->aiotx_so = NULL; 2371 SOCKBUF_UNLOCK(&so->so_snd); 2372 NET_EPOCH_EXIT(et); 2373 2374 free_toepcb(toep); 2375 sorele(so); 2376 CURVNET_RESTORE(); 2377 } 2378 2379 static void 2380 t4_aiotx_queue_toep(struct socket *so, struct toepcb *toep) 2381 { 2382 2383 SOCKBUF_LOCK_ASSERT(&toep->inp->inp_socket->so_snd); 2384 #ifdef VERBOSE_TRACES 2385 CTR3(KTR_CXGBE, "%s: queueing aiotx task for tid %d, active = %s", 2386 __func__, toep->tid, toep->aiotx_so != NULL ? "true" : "false"); 2387 #endif 2388 if (toep->aiotx_so != NULL) 2389 return; 2390 soref(so); 2391 toep->aiotx_so = so; 2392 hold_toepcb(toep); 2393 soaio_enqueue(&toep->aiotx_task); 2394 } 2395 2396 static void 2397 t4_aiotx_cancel(struct kaiocb *job) 2398 { 2399 struct socket *so; 2400 struct sockbuf *sb; 2401 struct tcpcb *tp; 2402 struct toepcb *toep; 2403 2404 so = job->fd_file->f_data; 2405 tp = so_sototcpcb(so); 2406 toep = tp->t_toe; 2407 MPASS(job->uaiocb.aio_lio_opcode == LIO_WRITE); 2408 sb = &so->so_snd; 2409 2410 SOCKBUF_LOCK(sb); 2411 if (!aio_cancel_cleared(job)) 2412 TAILQ_REMOVE(&toep->aiotx_jobq, job, list); 2413 SOCKBUF_UNLOCK(sb); 2414 2415 job->aio_error = (void *)(intptr_t)ECANCELED; 2416 aiotx_free_job(job); 2417 } 2418 2419 int 2420 t4_aio_queue_aiotx(struct socket *so, struct kaiocb *job) 2421 { 2422 struct tcpcb *tp = so_sototcpcb(so); 2423 struct toepcb *toep = tp->t_toe; 2424 struct adapter *sc = td_adapter(toep->td); 2425 2426 /* This only handles writes. */ 2427 if (job->uaiocb.aio_lio_opcode != LIO_WRITE) 2428 return (EOPNOTSUPP); 2429 2430 if (!sc->tt.tx_zcopy) 2431 return (EOPNOTSUPP); 2432 2433 if (tls_tx_key(toep)) 2434 return (EOPNOTSUPP); 2435 2436 SOCKBUF_LOCK(&so->so_snd); 2437 #ifdef VERBOSE_TRACES 2438 CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid); 2439 #endif 2440 if (!aio_set_cancel_function(job, t4_aiotx_cancel)) 2441 panic("new job was cancelled"); 2442 refcount_init(&job->aio_refs, 1); 2443 TAILQ_INSERT_TAIL(&toep->aiotx_jobq, job, list); 2444 if (sowriteable(so)) 2445 t4_aiotx_queue_toep(so, toep); 2446 SOCKBUF_UNLOCK(&so->so_snd); 2447 return (0); 2448 } 2449 2450 void 2451 aiotx_init_toep(struct toepcb *toep) 2452 { 2453 2454 TAILQ_INIT(&toep->aiotx_jobq); 2455 TASK_INIT(&toep->aiotx_task, 0, t4_aiotx_task, toep); 2456 } 2457 #endif 2458