xref: /freebsd/sys/dev/cxgbe/t4_vf.c (revision cbd30a72ca196976c1c700400ecd424baa1b9c16)
1 /*-
2  * Copyright (c) 2016 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/kernel.h>
38 #include <sys/module.h>
39 #include <sys/priv.h>
40 #include <dev/pci/pcivar.h>
41 #if defined(__i386__) || defined(__amd64__)
42 #include <vm/vm.h>
43 #include <vm/pmap.h>
44 #endif
45 
46 #include "common/common.h"
47 #include "common/t4_regs.h"
48 #include "t4_ioctl.h"
49 #include "t4_mp_ring.h"
50 
51 /*
52  * Some notes:
53  *
54  * The Virtual Interfaces are connected to an internal switch on the chip
55  * which allows VIs attached to the same port to talk to each other even when
56  * the port link is down.  As a result, we might want to always report a
57  * VF's link as being "up".
58  *
59  * XXX: Add a TUNABLE and possible per-device sysctl for this?
60  */
61 
62 struct intrs_and_queues {
63 	uint16_t intr_type;	/* MSI, or MSI-X */
64 	uint16_t nirq;		/* Total # of vectors */
65 	uint16_t intr_flags_10g;/* Interrupt flags for each 10G port */
66 	uint16_t intr_flags_1g;	/* Interrupt flags for each 1G port */
67 	uint16_t ntxq10g;	/* # of NIC txq's for each 10G port */
68 	uint16_t nrxq10g;	/* # of NIC rxq's for each 10G port */
69 	uint16_t ntxq1g;	/* # of NIC txq's for each 1G port */
70 	uint16_t nrxq1g;	/* # of NIC rxq's for each 1G port */
71 };
72 
73 struct {
74 	uint16_t device;
75 	char *desc;
76 } t4vf_pciids[] = {
77 	{0x4800, "Chelsio T440-dbg VF"},
78 	{0x4801, "Chelsio T420-CR VF"},
79 	{0x4802, "Chelsio T422-CR VF"},
80 	{0x4803, "Chelsio T440-CR VF"},
81 	{0x4804, "Chelsio T420-BCH VF"},
82 	{0x4805, "Chelsio T440-BCH VF"},
83 	{0x4806, "Chelsio T440-CH VF"},
84 	{0x4807, "Chelsio T420-SO VF"},
85 	{0x4808, "Chelsio T420-CX VF"},
86 	{0x4809, "Chelsio T420-BT VF"},
87 	{0x480a, "Chelsio T404-BT VF"},
88 	{0x480e, "Chelsio T440-LP-CR VF"},
89 }, t5vf_pciids[] = {
90 	{0x5800, "Chelsio T580-dbg VF"},
91 	{0x5801,  "Chelsio T520-CR VF"},	/* 2 x 10G */
92 	{0x5802,  "Chelsio T522-CR VF"},	/* 2 x 10G, 2 X 1G */
93 	{0x5803,  "Chelsio T540-CR VF"},	/* 4 x 10G */
94 	{0x5807,  "Chelsio T520-SO VF"},	/* 2 x 10G, nomem */
95 	{0x5809,  "Chelsio T520-BT VF"},	/* 2 x 10GBaseT */
96 	{0x580a,  "Chelsio T504-BT VF"},	/* 4 x 1G */
97 	{0x580d,  "Chelsio T580-CR VF"},	/* 2 x 40G */
98 	{0x580e,  "Chelsio T540-LP-CR VF"},	/* 4 x 10G */
99 	{0x5810,  "Chelsio T580-LP-CR VF"},	/* 2 x 40G */
100 	{0x5811,  "Chelsio T520-LL-CR VF"},	/* 2 x 10G */
101 	{0x5812,  "Chelsio T560-CR VF"},	/* 1 x 40G, 2 x 10G */
102 	{0x5814,  "Chelsio T580-LP-SO-CR VF"},	/* 2 x 40G, nomem */
103 	{0x5815,  "Chelsio T502-BT VF"},	/* 2 x 1G */
104 #ifdef notyet
105 	{0x5804,  "Chelsio T520-BCH VF"},
106 	{0x5805,  "Chelsio T540-BCH VF"},
107 	{0x5806,  "Chelsio T540-CH VF"},
108 	{0x5808,  "Chelsio T520-CX VF"},
109 	{0x580b,  "Chelsio B520-SR VF"},
110 	{0x580c,  "Chelsio B504-BT VF"},
111 	{0x580f,  "Chelsio Amsterdam VF"},
112 	{0x5813,  "Chelsio T580-CHR VF"},
113 #endif
114 }, t6vf_pciids[] = {
115 	{0x6801, "Chelsio T6225-CR VF"},	/* 2 x 10/25G */
116 	{0x6802, "Chelsio T6225-SO-CR VF"},	/* 2 x 10/25G, nomem */
117 	{0x6807, "Chelsio T62100-LP-CR VF"},	/* 2 x 40/50/100G */
118 	{0x6808, "Chelsio T62100-SO-CR VF"},	/* 2 x 40/50/100G, nomem */
119 	{0x680d, "Chelsio T62100-CR VF"},	/* 2 x 40/50/100G */
120 };
121 
122 static d_ioctl_t t4vf_ioctl;
123 
124 static struct cdevsw t4vf_cdevsw = {
125        .d_version = D_VERSION,
126        .d_ioctl = t4vf_ioctl,
127        .d_name = "t4vf",
128 };
129 
130 static int
131 t4vf_probe(device_t dev)
132 {
133 	uint16_t d;
134 	size_t i;
135 
136 	d = pci_get_device(dev);
137 	for (i = 0; i < nitems(t4vf_pciids); i++) {
138 		if (d == t4vf_pciids[i].device) {
139 			device_set_desc(dev, t4vf_pciids[i].desc);
140 			return (BUS_PROBE_DEFAULT);
141 		}
142 	}
143 	return (ENXIO);
144 }
145 
146 static int
147 t5vf_probe(device_t dev)
148 {
149 	uint16_t d;
150 	size_t i;
151 
152 	d = pci_get_device(dev);
153 	for (i = 0; i < nitems(t5vf_pciids); i++) {
154 		if (d == t5vf_pciids[i].device) {
155 			device_set_desc(dev, t5vf_pciids[i].desc);
156 			return (BUS_PROBE_DEFAULT);
157 		}
158 	}
159 	return (ENXIO);
160 }
161 
162 static int
163 t6vf_probe(device_t dev)
164 {
165 	uint16_t d;
166 	size_t i;
167 
168 	d = pci_get_device(dev);
169 	for (i = 0; i < nitems(t6vf_pciids); i++) {
170 		if (d == t6vf_pciids[i].device) {
171 			device_set_desc(dev, t6vf_pciids[i].desc);
172 			return (BUS_PROBE_DEFAULT);
173 		}
174 	}
175 	return (ENXIO);
176 }
177 
178 #define FW_PARAM_DEV(param) \
179 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
180 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
181 #define FW_PARAM_PFVF(param) \
182 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
183 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
184 
185 static int
186 get_params__pre_init(struct adapter *sc)
187 {
188 	int rc;
189 	uint32_t param[3], val[3];
190 
191 	param[0] = FW_PARAM_DEV(FWREV);
192 	param[1] = FW_PARAM_DEV(TPREV);
193 	param[2] = FW_PARAM_DEV(CCLK);
194 	rc = -t4vf_query_params(sc, nitems(param), param, val);
195 	if (rc != 0) {
196 		device_printf(sc->dev,
197 		    "failed to query parameters (pre_init): %d.\n", rc);
198 		return (rc);
199 	}
200 
201 	sc->params.fw_vers = val[0];
202 	sc->params.tp_vers = val[1];
203 	sc->params.vpd.cclk = val[2];
204 
205 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
206 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
207 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
208 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
209 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
210 
211 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
212 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
213 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
214 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
215 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
216 
217 	return (0);
218 }
219 
220 static int
221 get_params__post_init(struct adapter *sc)
222 {
223 	int rc;
224 
225 	rc = -t4vf_get_sge_params(sc);
226 	if (rc != 0) {
227 		device_printf(sc->dev,
228 		    "unable to retrieve adapter SGE parameters: %d\n", rc);
229 		return (rc);
230 	}
231 
232 	rc = -t4vf_get_rss_glb_config(sc);
233 	if (rc != 0) {
234 		device_printf(sc->dev,
235 		    "unable to retrieve adapter RSS parameters: %d\n", rc);
236 		return (rc);
237 	}
238 	if (sc->params.rss.mode != FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
239 		device_printf(sc->dev,
240 		    "unable to operate with global RSS mode %d\n",
241 		    sc->params.rss.mode);
242 		return (EINVAL);
243 	}
244 
245 	rc = t4_read_chip_settings(sc);
246 	if (rc != 0)
247 		return (rc);
248 
249 	/*
250 	 * Grab our Virtual Interface resource allocation, extract the
251 	 * features that we're interested in and do a bit of sanity testing on
252 	 * what we discover.
253 	 */
254 	rc = -t4vf_get_vfres(sc);
255 	if (rc != 0) {
256 		device_printf(sc->dev,
257 		    "unable to get virtual interface resources: %d\n", rc);
258 		return (rc);
259 	}
260 
261 	/*
262 	 * Check for various parameter sanity issues.
263 	 */
264 	if (sc->params.vfres.pmask == 0) {
265 		device_printf(sc->dev, "no port access configured/usable!\n");
266 		return (EINVAL);
267 	}
268 	if (sc->params.vfres.nvi == 0) {
269 		device_printf(sc->dev,
270 		    "no virtual interfaces configured/usable!\n");
271 		return (EINVAL);
272 	}
273 	sc->params.portvec = sc->params.vfres.pmask;
274 
275 	return (0);
276 }
277 
278 static int
279 set_params__post_init(struct adapter *sc)
280 {
281 	uint32_t param, val;
282 
283 	/* ask for encapsulated CPLs */
284 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
285 	val = 1;
286 	(void)t4vf_set_params(sc, 1, &param, &val);
287 
288 	return (0);
289 }
290 
291 #undef FW_PARAM_PFVF
292 #undef FW_PARAM_DEV
293 
294 static int
295 cfg_itype_and_nqueues(struct adapter *sc, int n10g, int n1g,
296     struct intrs_and_queues *iaq)
297 {
298 	struct vf_resources *vfres;
299 	int nrxq10g, nrxq1g, nrxq;
300 	int ntxq10g, ntxq1g, ntxq;
301 	int itype, iq_avail, navail, rc;
302 
303 	/*
304 	 * Figure out the layout of queues across our VIs and ensure
305 	 * we can allocate enough interrupts for our layout.
306 	 */
307 	vfres = &sc->params.vfres;
308 	bzero(iaq, sizeof(*iaq));
309 
310 	for (itype = INTR_MSIX; itype != 0; itype >>= 1) {
311 		if (itype == INTR_INTX)
312 			continue;
313 
314 		if (itype == INTR_MSIX)
315 			navail = pci_msix_count(sc->dev);
316 		else
317 			navail = pci_msi_count(sc->dev);
318 
319 		if (navail == 0)
320 			continue;
321 
322 		iaq->intr_type = itype;
323 		iaq->intr_flags_10g = 0;
324 		iaq->intr_flags_1g = 0;
325 
326 		/*
327 		 * XXX: The Linux driver reserves an Ingress Queue for
328 		 * forwarded interrupts when using MSI (but not MSI-X).
329 		 * It seems it just always asks for 2 interrupts and
330 		 * forwards all rxqs to the forwarded interrupt.
331 		 *
332 		 * We must reserve one IRQ for the for the firmware
333 		 * event queue.
334 		 *
335 		 * Every rxq requires an ingress queue with a free
336 		 * list and interrupts and an egress queue.  Every txq
337 		 * requires an ETH egress queue.
338 		 */
339 		iaq->nirq = T4VF_EXTRA_INTR;
340 
341 		/*
342 		 * First, determine how many queues we can allocate.
343 		 * Start by finding the upper bound on rxqs from the
344 		 * limit on ingress queues.
345 		 */
346 		iq_avail = vfres->niqflint - iaq->nirq;
347 		if (iq_avail < n10g + n1g) {
348 			device_printf(sc->dev,
349 			    "Not enough ingress queues (%d) for %d ports\n",
350 			    vfres->niqflint, n10g + n1g);
351 			return (ENXIO);
352 		}
353 
354 		/*
355 		 * Try to honor the cap on interrupts.  If there aren't
356 		 * enough interrupts for at least one interrupt per
357 		 * port, then don't bother, we will just forward all
358 		 * interrupts to one interrupt in that case.
359 		 */
360 		if (iaq->nirq + n10g + n1g <= navail) {
361 			if (iq_avail > navail - iaq->nirq)
362 				iq_avail = navail - iaq->nirq;
363 		}
364 
365 		nrxq10g = t4_nrxq10g;
366 		nrxq1g = t4_nrxq1g;
367 		nrxq = n10g * nrxq10g + n1g * nrxq1g;
368 		if (nrxq > iq_avail && nrxq1g > 1) {
369 			/* Too many ingress queues.  Try just 1 for 1G. */
370 			nrxq1g = 1;
371 			nrxq = n10g * nrxq10g + n1g * nrxq1g;
372 		}
373 		if (nrxq > iq_avail) {
374 			/*
375 			 * Still too many ingress queues.  Use what we
376 			 * can for each 10G port.
377 			 */
378 			nrxq10g = (iq_avail - n1g) / n10g;
379 			nrxq = n10g * nrxq10g + n1g * nrxq1g;
380 		}
381 		KASSERT(nrxq <= iq_avail, ("too many ingress queues"));
382 
383 		/*
384 		 * Next, determine the upper bound on txqs from the limit
385 		 * on ETH queues.
386 		 */
387 		if (vfres->nethctrl < n10g + n1g) {
388 			device_printf(sc->dev,
389 			    "Not enough ETH queues (%d) for %d ports\n",
390 			    vfres->nethctrl, n10g + n1g);
391 			return (ENXIO);
392 		}
393 
394 		ntxq10g = t4_ntxq10g;
395 		ntxq1g = t4_ntxq1g;
396 		ntxq = n10g * ntxq10g + n1g * ntxq1g;
397 		if (ntxq > vfres->nethctrl) {
398 			/* Too many ETH queues.  Try just 1 for 1G. */
399 			ntxq1g = 1;
400 			ntxq = n10g * ntxq10g + n1g * ntxq1g;
401 		}
402 		if (ntxq > vfres->nethctrl) {
403 			/*
404 			 * Still too many ETH queues.  Use what we
405 			 * can for each 10G port.
406 			 */
407 			ntxq10g = (vfres->nethctrl - n1g) / n10g;
408 			ntxq = n10g * ntxq10g + n1g * ntxq1g;
409 		}
410 		KASSERT(ntxq <= vfres->nethctrl, ("too many ETH queues"));
411 
412 		/*
413 		 * Finally, ensure we have enough egress queues.
414 		 */
415 		if (vfres->neq < (n10g + n1g) * 2) {
416 			device_printf(sc->dev,
417 			    "Not enough egress queues (%d) for %d ports\n",
418 			    vfres->neq, n10g + n1g);
419 			return (ENXIO);
420 		}
421 		if (nrxq + ntxq > vfres->neq) {
422 			/* Just punt and use 1 for everything. */
423 			nrxq1g = ntxq1g = nrxq10g = ntxq10g = 1;
424 			nrxq = n10g * nrxq10g + n1g * nrxq1g;
425 			ntxq = n10g * ntxq10g + n1g * ntxq1g;
426 		}
427 		KASSERT(nrxq <= iq_avail, ("too many ingress queues"));
428 		KASSERT(ntxq <= vfres->nethctrl, ("too many ETH queues"));
429 		KASSERT(nrxq + ntxq <= vfres->neq, ("too many egress queues"));
430 
431 		/*
432 		 * Do we have enough interrupts?  For MSI the interrupts
433 		 * have to be a power of 2 as well.
434 		 */
435 		iaq->nirq += nrxq;
436 		iaq->ntxq10g = ntxq10g;
437 		iaq->ntxq1g = ntxq1g;
438 		iaq->nrxq10g = nrxq10g;
439 		iaq->nrxq1g = nrxq1g;
440 		if (iaq->nirq <= navail &&
441 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
442 			navail = iaq->nirq;
443 			if (itype == INTR_MSIX)
444 				rc = pci_alloc_msix(sc->dev, &navail);
445 			else
446 				rc = pci_alloc_msi(sc->dev, &navail);
447 			if (rc != 0) {
448 				device_printf(sc->dev,
449 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
450 				    itype, rc, iaq->nirq, navail);
451 				return (rc);
452 			}
453 			if (navail == iaq->nirq) {
454 				iaq->intr_flags_10g = INTR_RXQ;
455 				iaq->intr_flags_1g = INTR_RXQ;
456 				return (0);
457 			}
458 			pci_release_msi(sc->dev);
459 		}
460 
461 		/* Fall back to a single interrupt. */
462 		iaq->nirq = 1;
463 		navail = iaq->nirq;
464 		if (itype == INTR_MSIX)
465 			rc = pci_alloc_msix(sc->dev, &navail);
466 		else
467 			rc = pci_alloc_msi(sc->dev, &navail);
468 		if (rc != 0)
469 			device_printf(sc->dev,
470 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
471 			    itype, rc, iaq->nirq, navail);
472 		iaq->intr_flags_10g = 0;
473 		iaq->intr_flags_1g = 0;
474 		return (rc);
475 	}
476 
477 	device_printf(sc->dev,
478 	    "failed to find a usable interrupt type.  "
479 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
480 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
481 
482 	return (ENXIO);
483 }
484 
485 static int
486 t4vf_attach(device_t dev)
487 {
488 	struct adapter *sc;
489 	int rc = 0, i, j, n10g, n1g, rqidx, tqidx;
490 	struct make_dev_args mda;
491 	struct intrs_and_queues iaq;
492 	struct sge *s;
493 
494 	sc = device_get_softc(dev);
495 	sc->dev = dev;
496 	pci_enable_busmaster(dev);
497 	pci_set_max_read_req(dev, 4096);
498 	sc->params.pci.mps = pci_get_max_payload(dev);
499 
500 	sc->flags |= IS_VF;
501 
502 	sc->sge_gts_reg = VF_SGE_REG(A_SGE_VF_GTS);
503 	sc->sge_kdoorbell_reg = VF_SGE_REG(A_SGE_VF_KDOORBELL);
504 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
505 	    device_get_nameunit(dev));
506 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
507 	t4_add_adapter(sc);
508 
509 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
510 	TAILQ_INIT(&sc->sfl);
511 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
512 
513 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
514 
515 	rc = t4_map_bars_0_and_4(sc);
516 	if (rc != 0)
517 		goto done; /* error message displayed already */
518 
519 	rc = -t4vf_prep_adapter(sc);
520 	if (rc != 0)
521 		goto done;
522 
523 	t4_init_devnames(sc);
524 	if (sc->names == NULL) {
525 		rc = ENOTSUP;
526 		goto done; /* error message displayed already */
527 	}
528 
529 	/*
530 	 * Leave the 'pf' and 'mbox' values as zero.  This ensures
531 	 * that various firmware messages do not set the fields which
532 	 * is the correct thing to do for a VF.
533 	 */
534 
535 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
536 
537 	make_dev_args_init(&mda);
538 	mda.mda_devsw = &t4vf_cdevsw;
539 	mda.mda_uid = UID_ROOT;
540 	mda.mda_gid = GID_WHEEL;
541 	mda.mda_mode = 0600;
542 	mda.mda_si_drv1 = sc;
543 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
544 	if (rc != 0)
545 		device_printf(dev, "failed to create nexus char device: %d.\n",
546 		    rc);
547 
548 #if defined(__i386__)
549 	if ((cpu_feature & CPUID_CX8) == 0) {
550 		device_printf(dev, "64 bit atomics not available.\n");
551 		rc = ENOTSUP;
552 		goto done;
553 	}
554 #endif
555 
556 	/*
557 	 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
558 	 * 2.6.31 and later we can't call pci_reset_function() in order to
559 	 * issue an FLR because of a self- deadlock on the device semaphore.
560 	 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
561 	 * cases where they're needed -- for instance, some versions of KVM
562 	 * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
563 	 * use the firmware based reset in order to reset any per function
564 	 * state.
565 	 */
566 	rc = -t4vf_fw_reset(sc);
567 	if (rc != 0) {
568 		device_printf(dev, "FW reset failed: %d\n", rc);
569 		goto done;
570 	}
571 	sc->flags |= FW_OK;
572 
573 	/*
574 	 * Grab basic operational parameters.  These will predominantly have
575 	 * been set up by the Physical Function Driver or will be hard coded
576 	 * into the adapter.  We just have to live with them ...  Note that
577 	 * we _must_ get our VPD parameters before our SGE parameters because
578 	 * we need to know the adapter's core clock from the VPD in order to
579 	 * properly decode the SGE Timer Values.
580 	 */
581 	rc = get_params__pre_init(sc);
582 	if (rc != 0)
583 		goto done; /* error message displayed already */
584 	rc = get_params__post_init(sc);
585 	if (rc != 0)
586 		goto done; /* error message displayed already */
587 
588 	rc = set_params__post_init(sc);
589 	if (rc != 0)
590 		goto done; /* error message displayed already */
591 
592 	rc = t4_map_bar_2(sc);
593 	if (rc != 0)
594 		goto done; /* error message displayed already */
595 
596 	rc = t4_create_dma_tag(sc);
597 	if (rc != 0)
598 		goto done; /* error message displayed already */
599 
600 	/*
601 	 * The number of "ports" which we support is equal to the number of
602 	 * Virtual Interfaces with which we've been provisioned.
603 	 */
604 	sc->params.nports = imin(sc->params.vfres.nvi, MAX_NPORTS);
605 
606 	/*
607 	 * We may have been provisioned with more VIs than the number of
608 	 * ports we're allowed to access (our Port Access Rights Mask).
609 	 * Just use a single VI for each port.
610 	 */
611 	sc->params.nports = imin(sc->params.nports,
612 	    bitcount32(sc->params.vfres.pmask));
613 
614 #ifdef notyet
615 	/*
616 	 * XXX: The Linux VF driver will lower nports if it thinks there
617 	 * are too few resources in vfres (niqflint, nethctrl, neq).
618 	 */
619 #endif
620 
621 	/*
622 	 * First pass over all the ports - allocate VIs and initialize some
623 	 * basic parameters like mac address, port type, etc.  We also figure
624 	 * out whether a port is 10G or 1G and use that information when
625 	 * calculating how many interrupts to attempt to allocate.
626 	 */
627 	n10g = n1g = 0;
628 	for_each_port(sc, i) {
629 		struct port_info *pi;
630 
631 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
632 		sc->port[i] = pi;
633 
634 		/* These must be set before t4_port_init */
635 		pi->adapter = sc;
636 		pi->port_id = i;
637 		pi->nvi = 1;
638 		pi->vi = malloc(sizeof(struct vi_info) * pi->nvi, M_CXGBE,
639 		    M_ZERO | M_WAITOK);
640 
641 		/*
642 		 * Allocate the "main" VI and initialize parameters
643 		 * like mac addr.
644 		 */
645 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
646 		if (rc != 0) {
647 			device_printf(dev, "unable to initialize port %d: %d\n",
648 			    i, rc);
649 			free(pi->vi, M_CXGBE);
650 			free(pi, M_CXGBE);
651 			sc->port[i] = NULL;
652 			goto done;
653 		}
654 
655 		/* No t4_link_start. */
656 
657 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
658 		    device_get_nameunit(dev), i);
659 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
660 		sc->chan_map[pi->tx_chan] = i;
661 
662 		pi->tc = malloc(sizeof(struct tx_sched_class) *
663 		    sc->chip_params->nsched_cls, M_CXGBE, M_ZERO | M_WAITOK);
664 
665 		if (port_top_speed(pi) >= 10) {
666 			n10g++;
667 		} else {
668 			n1g++;
669 		}
670 
671 		pi->dev = device_add_child(dev, sc->names->vf_ifnet_name, -1);
672 		if (pi->dev == NULL) {
673 			device_printf(dev,
674 			    "failed to add device for port %d.\n", i);
675 			rc = ENXIO;
676 			goto done;
677 		}
678 		pi->vi[0].dev = pi->dev;
679 		device_set_softc(pi->dev, pi);
680 	}
681 
682 	/*
683 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
684 	 */
685 	rc = cfg_itype_and_nqueues(sc, n10g, n1g, &iaq);
686 	if (rc != 0)
687 		goto done; /* error message displayed already */
688 
689 	sc->intr_type = iaq.intr_type;
690 	sc->intr_count = iaq.nirq;
691 
692 	s = &sc->sge;
693 	s->nrxq = n10g * iaq.nrxq10g + n1g * iaq.nrxq1g;
694 	s->ntxq = n10g * iaq.ntxq10g + n1g * iaq.ntxq1g;
695 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
696 	s->neq += sc->params.nports + 1;/* ctrl queues: 1 per port + 1 mgmt */
697 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
698 
699 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
700 	    M_ZERO | M_WAITOK);
701 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
702 	    M_ZERO | M_WAITOK);
703 	s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
704 	    M_ZERO | M_WAITOK);
705 	s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
706 	    M_ZERO | M_WAITOK);
707 
708 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
709 	    M_ZERO | M_WAITOK);
710 
711 	/*
712 	 * Second pass over the ports.  This time we know the number of rx and
713 	 * tx queues that each port should get.
714 	 */
715 	rqidx = tqidx = 0;
716 	for_each_port(sc, i) {
717 		struct port_info *pi = sc->port[i];
718 		struct vi_info *vi;
719 
720 		if (pi == NULL)
721 			continue;
722 
723 		for_each_vi(pi, j, vi) {
724 			vi->pi = pi;
725 			vi->qsize_rxq = t4_qsize_rxq;
726 			vi->qsize_txq = t4_qsize_txq;
727 
728 			vi->first_rxq = rqidx;
729 			vi->first_txq = tqidx;
730 			if (port_top_speed(pi) >= 10) {
731 				vi->tmr_idx = t4_tmr_idx_10g;
732 				vi->pktc_idx = t4_pktc_idx_10g;
733 				vi->flags |= iaq.intr_flags_10g & INTR_RXQ;
734 				vi->nrxq = j == 0 ? iaq.nrxq10g : 1;
735 				vi->ntxq = j == 0 ? iaq.ntxq10g : 1;
736 			} else {
737 				vi->tmr_idx = t4_tmr_idx_1g;
738 				vi->pktc_idx = t4_pktc_idx_1g;
739 				vi->flags |= iaq.intr_flags_1g & INTR_RXQ;
740 				vi->nrxq = j == 0 ? iaq.nrxq1g : 1;
741 				vi->ntxq = j == 0 ? iaq.ntxq1g : 1;
742 			}
743 			rqidx += vi->nrxq;
744 			tqidx += vi->ntxq;
745 
746 			vi->rsrv_noflowq = 0;
747 		}
748 	}
749 
750 	rc = t4_setup_intr_handlers(sc);
751 	if (rc != 0) {
752 		device_printf(dev,
753 		    "failed to setup interrupt handlers: %d\n", rc);
754 		goto done;
755 	}
756 
757 	rc = bus_generic_attach(dev);
758 	if (rc != 0) {
759 		device_printf(dev,
760 		    "failed to attach all child ports: %d\n", rc);
761 		goto done;
762 	}
763 
764 	device_printf(dev,
765 	    "%d ports, %d %s interrupt%s, %d eq, %d iq\n",
766 	    sc->params.nports, sc->intr_count, sc->intr_type == INTR_MSIX ?
767 	    "MSI-X" : "MSI", sc->intr_count > 1 ? "s" : "", sc->sge.neq,
768 	    sc->sge.niq);
769 
770 done:
771 	if (rc != 0)
772 		t4_detach_common(dev);
773 	else
774 		t4_sysctls(sc);
775 
776 	return (rc);
777 }
778 
779 static void
780 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
781 {
782 
783 	/* 0x3f is used as the revision for VFs. */
784 	regs->version = chip_id(sc) | (0x3f << 10);
785 	t4_get_regs(sc, buf, regs->len);
786 }
787 
788 static void
789 t4_clr_vi_stats(struct adapter *sc)
790 {
791 	int reg;
792 
793 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
794 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
795 		t4_write_reg(sc, VF_MPS_REG(reg), 0);
796 }
797 
798 static int
799 t4vf_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
800     struct thread *td)
801 {
802 	int rc;
803 	struct adapter *sc = dev->si_drv1;
804 
805 	rc = priv_check(td, PRIV_DRIVER);
806 	if (rc != 0)
807 		return (rc);
808 
809 	switch (cmd) {
810 	case CHELSIO_T4_GETREG: {
811 		struct t4_reg *edata = (struct t4_reg *)data;
812 
813 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
814 			return (EFAULT);
815 
816 		if (edata->size == 4)
817 			edata->val = t4_read_reg(sc, edata->addr);
818 		else if (edata->size == 8)
819 			edata->val = t4_read_reg64(sc, edata->addr);
820 		else
821 			return (EINVAL);
822 
823 		break;
824 	}
825 	case CHELSIO_T4_SETREG: {
826 		struct t4_reg *edata = (struct t4_reg *)data;
827 
828 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
829 			return (EFAULT);
830 
831 		if (edata->size == 4) {
832 			if (edata->val & 0xffffffff00000000)
833 				return (EINVAL);
834 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
835 		} else if (edata->size == 8)
836 			t4_write_reg64(sc, edata->addr, edata->val);
837 		else
838 			return (EINVAL);
839 		break;
840 	}
841 	case CHELSIO_T4_REGDUMP: {
842 		struct t4_regdump *regs = (struct t4_regdump *)data;
843 		int reglen = t4_get_regs_len(sc);
844 		uint8_t *buf;
845 
846 		if (regs->len < reglen) {
847 			regs->len = reglen; /* hint to the caller */
848 			return (ENOBUFS);
849 		}
850 
851 		regs->len = reglen;
852 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
853 		get_regs(sc, regs, buf);
854 		rc = copyout(buf, regs->data, reglen);
855 		free(buf, M_CXGBE);
856 		break;
857 	}
858 	case CHELSIO_T4_CLEAR_STATS: {
859 		int i, v;
860 		u_int port_id = *(uint32_t *)data;
861 		struct port_info *pi;
862 		struct vi_info *vi;
863 
864 		if (port_id >= sc->params.nports)
865 			return (EINVAL);
866 		pi = sc->port[port_id];
867 
868 		/* MAC stats */
869 		pi->tx_parse_error = 0;
870 		t4_clr_vi_stats(sc);
871 
872 		/*
873 		 * Since this command accepts a port, clear stats for
874 		 * all VIs on this port.
875 		 */
876 		for_each_vi(pi, v, vi) {
877 			if (vi->flags & VI_INIT_DONE) {
878 				struct sge_rxq *rxq;
879 				struct sge_txq *txq;
880 
881 				for_each_rxq(vi, i, rxq) {
882 #if defined(INET) || defined(INET6)
883 					rxq->lro.lro_queued = 0;
884 					rxq->lro.lro_flushed = 0;
885 #endif
886 					rxq->rxcsum = 0;
887 					rxq->vlan_extraction = 0;
888 				}
889 
890 				for_each_txq(vi, i, txq) {
891 					txq->txcsum = 0;
892 					txq->tso_wrs = 0;
893 					txq->vlan_insertion = 0;
894 					txq->imm_wrs = 0;
895 					txq->sgl_wrs = 0;
896 					txq->txpkt_wrs = 0;
897 					txq->txpkts0_wrs = 0;
898 					txq->txpkts1_wrs = 0;
899 					txq->txpkts0_pkts = 0;
900 					txq->txpkts1_pkts = 0;
901 					mp_ring_reset_stats(txq->r);
902 				}
903 			}
904 		}
905 		break;
906 	}
907 	case CHELSIO_T4_SCHED_CLASS:
908 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
909 		break;
910 	case CHELSIO_T4_SCHED_QUEUE:
911 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
912 		break;
913 	default:
914 		rc = ENOTTY;
915 	}
916 
917 	return (rc);
918 }
919 
920 static device_method_t t4vf_methods[] = {
921 	DEVMETHOD(device_probe,		t4vf_probe),
922 	DEVMETHOD(device_attach,	t4vf_attach),
923 	DEVMETHOD(device_detach,	t4_detach_common),
924 
925 	DEVMETHOD_END
926 };
927 
928 static driver_t t4vf_driver = {
929 	"t4vf",
930 	t4vf_methods,
931 	sizeof(struct adapter)
932 };
933 
934 static device_method_t t5vf_methods[] = {
935 	DEVMETHOD(device_probe,		t5vf_probe),
936 	DEVMETHOD(device_attach,	t4vf_attach),
937 	DEVMETHOD(device_detach,	t4_detach_common),
938 
939 	DEVMETHOD_END
940 };
941 
942 static driver_t t5vf_driver = {
943 	"t5vf",
944 	t5vf_methods,
945 	sizeof(struct adapter)
946 };
947 
948 static device_method_t t6vf_methods[] = {
949 	DEVMETHOD(device_probe,		t6vf_probe),
950 	DEVMETHOD(device_attach,	t4vf_attach),
951 	DEVMETHOD(device_detach,	t4_detach_common),
952 
953 	DEVMETHOD_END
954 };
955 
956 static driver_t t6vf_driver = {
957 	"t6vf",
958 	t6vf_methods,
959 	sizeof(struct adapter)
960 };
961 
962 static driver_t cxgbev_driver = {
963 	"cxgbev",
964 	cxgbe_methods,
965 	sizeof(struct port_info)
966 };
967 
968 static driver_t cxlv_driver = {
969 	"cxlv",
970 	cxgbe_methods,
971 	sizeof(struct port_info)
972 };
973 
974 static driver_t ccv_driver = {
975 	"ccv",
976 	cxgbe_methods,
977 	sizeof(struct port_info)
978 };
979 
980 static devclass_t t4vf_devclass, t5vf_devclass, t6vf_devclass;
981 static devclass_t cxgbev_devclass, cxlv_devclass, ccv_devclass;
982 
983 DRIVER_MODULE(t4vf, pci, t4vf_driver, t4vf_devclass, 0, 0);
984 MODULE_VERSION(t4vf, 1);
985 MODULE_DEPEND(t4vf, t4nex, 1, 1, 1);
986 
987 DRIVER_MODULE(t5vf, pci, t5vf_driver, t5vf_devclass, 0, 0);
988 MODULE_VERSION(t5vf, 1);
989 MODULE_DEPEND(t5vf, t5nex, 1, 1, 1);
990 
991 DRIVER_MODULE(t6vf, pci, t6vf_driver, t6vf_devclass, 0, 0);
992 MODULE_VERSION(t6vf, 1);
993 MODULE_DEPEND(t6vf, t6nex, 1, 1, 1);
994 
995 DRIVER_MODULE(cxgbev, t4vf, cxgbev_driver, cxgbev_devclass, 0, 0);
996 MODULE_VERSION(cxgbev, 1);
997 
998 DRIVER_MODULE(cxlv, t5vf, cxlv_driver, cxlv_devclass, 0, 0);
999 MODULE_VERSION(cxlv, 1);
1000 
1001 DRIVER_MODULE(ccv, t6vf, ccv_driver, ccv_devclass, 0, 0);
1002 MODULE_VERSION(ccv, 1);
1003