1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ratelimit.h" 36 37 #include <sys/types.h> 38 #include <sys/eventhandler.h> 39 #include <sys/mbuf.h> 40 #include <sys/socket.h> 41 #include <sys/kernel.h> 42 #include <sys/malloc.h> 43 #include <sys/queue.h> 44 #include <sys/sbuf.h> 45 #include <sys/taskqueue.h> 46 #include <sys/time.h> 47 #include <sys/sglist.h> 48 #include <sys/sysctl.h> 49 #include <sys/smp.h> 50 #include <sys/counter.h> 51 #include <net/bpf.h> 52 #include <net/ethernet.h> 53 #include <net/if.h> 54 #include <net/if_vlan_var.h> 55 #include <netinet/in.h> 56 #include <netinet/ip.h> 57 #include <netinet/ip6.h> 58 #include <netinet/tcp.h> 59 #include <netinet/udp.h> 60 #include <machine/in_cksum.h> 61 #include <machine/md_var.h> 62 #include <vm/vm.h> 63 #include <vm/pmap.h> 64 #ifdef DEV_NETMAP 65 #include <machine/bus.h> 66 #include <sys/selinfo.h> 67 #include <net/if_var.h> 68 #include <net/netmap.h> 69 #include <dev/netmap/netmap_kern.h> 70 #endif 71 72 #include "common/common.h" 73 #include "common/t4_regs.h" 74 #include "common/t4_regs_values.h" 75 #include "common/t4_msg.h" 76 #include "t4_l2t.h" 77 #include "t4_mp_ring.h" 78 79 #ifdef T4_PKT_TIMESTAMP 80 #define RX_COPY_THRESHOLD (MINCLSIZE - 8) 81 #else 82 #define RX_COPY_THRESHOLD MINCLSIZE 83 #endif 84 85 /* Internal mbuf flags stored in PH_loc.eight[1]. */ 86 #define MC_NOMAP 0x01 87 #define MC_RAW_WR 0x02 88 89 /* 90 * Ethernet frames are DMA'd at this byte offset into the freelist buffer. 91 * 0-7 are valid values. 92 */ 93 static int fl_pktshift = 0; 94 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0, 95 "payload DMA offset in rx buffer (bytes)"); 96 97 /* 98 * Pad ethernet payload up to this boundary. 99 * -1: driver should figure out a good value. 100 * 0: disable padding. 101 * Any power of 2 from 32 to 4096 (both inclusive) is also a valid value. 102 */ 103 int fl_pad = -1; 104 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0, 105 "payload pad boundary (bytes)"); 106 107 /* 108 * Status page length. 109 * -1: driver should figure out a good value. 110 * 64 or 128 are the only other valid values. 111 */ 112 static int spg_len = -1; 113 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0, 114 "status page size (bytes)"); 115 116 /* 117 * Congestion drops. 118 * -1: no congestion feedback (not recommended). 119 * 0: backpressure the channel instead of dropping packets right away. 120 * 1: no backpressure, drop packets for the congested queue immediately. 121 */ 122 static int cong_drop = 0; 123 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0, 124 "Congestion control for RX queues (0 = backpressure, 1 = drop"); 125 126 /* 127 * Deliver multiple frames in the same free list buffer if they fit. 128 * -1: let the driver decide whether to enable buffer packing or not. 129 * 0: disable buffer packing. 130 * 1: enable buffer packing. 131 */ 132 static int buffer_packing = -1; 133 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing, 134 0, "Enable buffer packing"); 135 136 /* 137 * Start next frame in a packed buffer at this boundary. 138 * -1: driver should figure out a good value. 139 * T4: driver will ignore this and use the same value as fl_pad above. 140 * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value. 141 */ 142 static int fl_pack = -1; 143 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0, 144 "payload pack boundary (bytes)"); 145 146 /* 147 * Allow the driver to create mbuf(s) in a cluster allocated for rx. 148 * 0: never; always allocate mbufs from the zone_mbuf UMA zone. 149 * 1: ok to create mbuf(s) within a cluster if there is room. 150 */ 151 static int allow_mbufs_in_cluster = 1; 152 SYSCTL_INT(_hw_cxgbe, OID_AUTO, allow_mbufs_in_cluster, CTLFLAG_RDTUN, 153 &allow_mbufs_in_cluster, 0, 154 "Allow driver to create mbufs within a rx cluster"); 155 156 /* 157 * Largest rx cluster size that the driver is allowed to allocate. 158 */ 159 static int largest_rx_cluster = MJUM16BYTES; 160 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN, 161 &largest_rx_cluster, 0, "Largest rx cluster (bytes)"); 162 163 /* 164 * Size of cluster allocation that's most likely to succeed. The driver will 165 * fall back to this size if it fails to allocate clusters larger than this. 166 */ 167 static int safest_rx_cluster = PAGE_SIZE; 168 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN, 169 &safest_rx_cluster, 0, "Safe rx cluster (bytes)"); 170 171 #ifdef RATELIMIT 172 /* 173 * Knob to control TCP timestamp rewriting, and the granularity of the tick used 174 * for rewriting. -1 and 0-3 are all valid values. 175 * -1: hardware should leave the TCP timestamps alone. 176 * 0: 1ms 177 * 1: 100us 178 * 2: 10us 179 * 3: 1us 180 */ 181 static int tsclk = -1; 182 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0, 183 "Control TCP timestamp rewriting when using pacing"); 184 185 static int eo_max_backlog = 1024 * 1024; 186 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog, 187 0, "Maximum backlog of ratelimited data per flow"); 188 #endif 189 190 /* 191 * The interrupt holdoff timers are multiplied by this value on T6+. 192 * 1 and 3-17 (both inclusive) are legal values. 193 */ 194 static int tscale = 1; 195 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0, 196 "Interrupt holdoff timer scale on T6+"); 197 198 /* 199 * Number of LRO entries in the lro_ctrl structure per rx queue. 200 */ 201 static int lro_entries = TCP_LRO_ENTRIES; 202 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0, 203 "Number of LRO entries per RX queue"); 204 205 /* 206 * This enables presorting of frames before they're fed into tcp_lro_rx. 207 */ 208 static int lro_mbufs = 0; 209 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0, 210 "Enable presorting of LRO frames"); 211 212 struct txpkts { 213 u_int wr_type; /* type 0 or type 1 */ 214 u_int npkt; /* # of packets in this work request */ 215 u_int plen; /* total payload (sum of all packets) */ 216 u_int len16; /* # of 16B pieces used by this work request */ 217 }; 218 219 /* A packet's SGL. This + m_pkthdr has all info needed for tx */ 220 struct sgl { 221 struct sglist sg; 222 struct sglist_seg seg[TX_SGL_SEGS]; 223 }; 224 225 static int service_iq(struct sge_iq *, int); 226 static int service_iq_fl(struct sge_iq *, int); 227 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t); 228 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *); 229 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int); 230 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *); 231 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t, 232 uint16_t, char *); 233 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, 234 bus_addr_t *, void **); 235 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, 236 void *); 237 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *, 238 int, int); 239 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *); 240 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *, 241 struct sge_iq *); 242 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *, 243 struct sysctl_oid *, struct sge_fl *); 244 static int alloc_fwq(struct adapter *); 245 static int free_fwq(struct adapter *); 246 static int alloc_ctrlq(struct adapter *, struct sge_wrq *, int, 247 struct sysctl_oid *); 248 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, 249 struct sysctl_oid *); 250 static int free_rxq(struct vi_info *, struct sge_rxq *); 251 #ifdef TCP_OFFLOAD 252 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int, 253 struct sysctl_oid *); 254 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *); 255 #endif 256 #ifdef DEV_NETMAP 257 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int, 258 struct sysctl_oid *); 259 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *); 260 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int, 261 struct sysctl_oid *); 262 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *); 263 #endif 264 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *); 265 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 266 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 267 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 268 #endif 269 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *); 270 static int free_eq(struct adapter *, struct sge_eq *); 271 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *, 272 struct sysctl_oid *); 273 static int free_wrq(struct adapter *, struct sge_wrq *); 274 static int alloc_txq(struct vi_info *, struct sge_txq *, int, 275 struct sysctl_oid *); 276 static int free_txq(struct vi_info *, struct sge_txq *); 277 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); 278 static inline void ring_fl_db(struct adapter *, struct sge_fl *); 279 static int refill_fl(struct adapter *, struct sge_fl *, int); 280 static void refill_sfl(void *); 281 static int alloc_fl_sdesc(struct sge_fl *); 282 static void free_fl_sdesc(struct adapter *, struct sge_fl *); 283 static void find_best_refill_source(struct adapter *, struct sge_fl *, int); 284 static void find_safe_refill_source(struct adapter *, struct sge_fl *); 285 static void add_fl_to_sfl(struct adapter *, struct sge_fl *); 286 287 static inline void get_pkt_gl(struct mbuf *, struct sglist *); 288 static inline u_int txpkt_len16(u_int, u_int); 289 static inline u_int txpkt_vm_len16(u_int, u_int); 290 static inline u_int txpkts0_len16(u_int); 291 static inline u_int txpkts1_len16(void); 292 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int); 293 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *, 294 struct mbuf *, u_int); 295 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *, 296 struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int); 297 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int); 298 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int); 299 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *, 300 struct mbuf *, const struct txpkts *, u_int); 301 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int); 302 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); 303 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int); 304 static inline uint16_t read_hw_cidx(struct sge_eq *); 305 static inline u_int reclaimable_tx_desc(struct sge_eq *); 306 static inline u_int total_available_tx_desc(struct sge_eq *); 307 static u_int reclaim_tx_descs(struct sge_txq *, u_int); 308 static void tx_reclaim(void *, int); 309 static __be64 get_flit(struct sglist_seg *, int, int); 310 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, 311 struct mbuf *); 312 static int handle_fw_msg(struct sge_iq *, const struct rss_header *, 313 struct mbuf *); 314 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *); 315 static void wrq_tx_drain(void *, int); 316 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *); 317 318 static int sysctl_uint16(SYSCTL_HANDLER_ARGS); 319 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS); 320 #ifdef RATELIMIT 321 static inline u_int txpkt_eo_len16(u_int, u_int, u_int); 322 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *, 323 struct mbuf *); 324 #endif 325 326 static counter_u64_t extfree_refs; 327 static counter_u64_t extfree_rels; 328 329 an_handler_t t4_an_handler; 330 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES]; 331 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS]; 332 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES]; 333 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES]; 334 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES]; 335 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES]; 336 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES]; 337 338 void 339 t4_register_an_handler(an_handler_t h) 340 { 341 uintptr_t *loc; 342 343 MPASS(h == NULL || t4_an_handler == NULL); 344 345 loc = (uintptr_t *)&t4_an_handler; 346 atomic_store_rel_ptr(loc, (uintptr_t)h); 347 } 348 349 void 350 t4_register_fw_msg_handler(int type, fw_msg_handler_t h) 351 { 352 uintptr_t *loc; 353 354 MPASS(type < nitems(t4_fw_msg_handler)); 355 MPASS(h == NULL || t4_fw_msg_handler[type] == NULL); 356 /* 357 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL 358 * handler dispatch table. Reject any attempt to install a handler for 359 * this subtype. 360 */ 361 MPASS(type != FW_TYPE_RSSCPL); 362 MPASS(type != FW6_TYPE_RSSCPL); 363 364 loc = (uintptr_t *)&t4_fw_msg_handler[type]; 365 atomic_store_rel_ptr(loc, (uintptr_t)h); 366 } 367 368 void 369 t4_register_cpl_handler(int opcode, cpl_handler_t h) 370 { 371 uintptr_t *loc; 372 373 MPASS(opcode < nitems(t4_cpl_handler)); 374 MPASS(h == NULL || t4_cpl_handler[opcode] == NULL); 375 376 loc = (uintptr_t *)&t4_cpl_handler[opcode]; 377 atomic_store_rel_ptr(loc, (uintptr_t)h); 378 } 379 380 static int 381 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss, 382 struct mbuf *m) 383 { 384 const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); 385 u_int tid; 386 int cookie; 387 388 MPASS(m == NULL); 389 390 tid = GET_TID(cpl); 391 if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) { 392 /* 393 * The return code for filter-write is put in the CPL cookie so 394 * we have to rely on the hardware tid (is_ftid) to determine 395 * that this is a response to a filter. 396 */ 397 cookie = CPL_COOKIE_FILTER; 398 } else { 399 cookie = G_COOKIE(cpl->cookie); 400 } 401 MPASS(cookie > CPL_COOKIE_RESERVED); 402 MPASS(cookie < nitems(set_tcb_rpl_handlers)); 403 404 return (set_tcb_rpl_handlers[cookie](iq, rss, m)); 405 } 406 407 static int 408 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss, 409 struct mbuf *m) 410 { 411 const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1); 412 unsigned int cookie; 413 414 MPASS(m == NULL); 415 416 cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER; 417 return (l2t_write_rpl_handlers[cookie](iq, rss, m)); 418 } 419 420 static int 421 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss, 422 struct mbuf *m) 423 { 424 const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1); 425 u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status))); 426 427 MPASS(m == NULL); 428 MPASS(cookie != CPL_COOKIE_RESERVED); 429 430 return (act_open_rpl_handlers[cookie](iq, rss, m)); 431 } 432 433 static int 434 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss, 435 struct mbuf *m) 436 { 437 struct adapter *sc = iq->adapter; 438 u_int cookie; 439 440 MPASS(m == NULL); 441 if (is_hashfilter(sc)) 442 cookie = CPL_COOKIE_HASHFILTER; 443 else 444 cookie = CPL_COOKIE_TOM; 445 446 return (abort_rpl_rss_handlers[cookie](iq, rss, m)); 447 } 448 449 static int 450 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 451 { 452 struct adapter *sc = iq->adapter; 453 const struct cpl_fw4_ack *cpl = (const void *)(rss + 1); 454 unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl))); 455 u_int cookie; 456 457 MPASS(m == NULL); 458 if (is_etid(sc, tid)) 459 cookie = CPL_COOKIE_ETHOFLD; 460 else 461 cookie = CPL_COOKIE_TOM; 462 463 return (fw4_ack_handlers[cookie](iq, rss, m)); 464 } 465 466 static void 467 t4_init_shared_cpl_handlers(void) 468 { 469 470 t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler); 471 t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler); 472 t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler); 473 t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler); 474 t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler); 475 } 476 477 void 478 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie) 479 { 480 uintptr_t *loc; 481 482 MPASS(opcode < nitems(t4_cpl_handler)); 483 MPASS(cookie > CPL_COOKIE_RESERVED); 484 MPASS(cookie < NUM_CPL_COOKIES); 485 MPASS(t4_cpl_handler[opcode] != NULL); 486 487 switch (opcode) { 488 case CPL_SET_TCB_RPL: 489 loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie]; 490 break; 491 case CPL_L2T_WRITE_RPL: 492 loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie]; 493 break; 494 case CPL_ACT_OPEN_RPL: 495 loc = (uintptr_t *)&act_open_rpl_handlers[cookie]; 496 break; 497 case CPL_ABORT_RPL_RSS: 498 loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie]; 499 break; 500 case CPL_FW4_ACK: 501 loc = (uintptr_t *)&fw4_ack_handlers[cookie]; 502 break; 503 default: 504 MPASS(0); 505 return; 506 } 507 MPASS(h == NULL || *loc == (uintptr_t)NULL); 508 atomic_store_rel_ptr(loc, (uintptr_t)h); 509 } 510 511 /* 512 * Called on MOD_LOAD. Validates and calculates the SGE tunables. 513 */ 514 void 515 t4_sge_modload(void) 516 { 517 518 if (fl_pktshift < 0 || fl_pktshift > 7) { 519 printf("Invalid hw.cxgbe.fl_pktshift value (%d)," 520 " using 0 instead.\n", fl_pktshift); 521 fl_pktshift = 0; 522 } 523 524 if (spg_len != 64 && spg_len != 128) { 525 int len; 526 527 #if defined(__i386__) || defined(__amd64__) 528 len = cpu_clflush_line_size > 64 ? 128 : 64; 529 #else 530 len = 64; 531 #endif 532 if (spg_len != -1) { 533 printf("Invalid hw.cxgbe.spg_len value (%d)," 534 " using %d instead.\n", spg_len, len); 535 } 536 spg_len = len; 537 } 538 539 if (cong_drop < -1 || cong_drop > 1) { 540 printf("Invalid hw.cxgbe.cong_drop value (%d)," 541 " using 0 instead.\n", cong_drop); 542 cong_drop = 0; 543 } 544 545 if (tscale != 1 && (tscale < 3 || tscale > 17)) { 546 printf("Invalid hw.cxgbe.tscale value (%d)," 547 " using 1 instead.\n", tscale); 548 tscale = 1; 549 } 550 551 extfree_refs = counter_u64_alloc(M_WAITOK); 552 extfree_rels = counter_u64_alloc(M_WAITOK); 553 counter_u64_zero(extfree_refs); 554 counter_u64_zero(extfree_rels); 555 556 t4_init_shared_cpl_handlers(); 557 t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg); 558 t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg); 559 t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update); 560 t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx); 561 #ifdef RATELIMIT 562 t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack, 563 CPL_COOKIE_ETHOFLD); 564 #endif 565 t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl); 566 t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl); 567 } 568 569 void 570 t4_sge_modunload(void) 571 { 572 573 counter_u64_free(extfree_refs); 574 counter_u64_free(extfree_rels); 575 } 576 577 uint64_t 578 t4_sge_extfree_refs(void) 579 { 580 uint64_t refs, rels; 581 582 rels = counter_u64_fetch(extfree_rels); 583 refs = counter_u64_fetch(extfree_refs); 584 585 return (refs - rels); 586 } 587 588 static inline void 589 setup_pad_and_pack_boundaries(struct adapter *sc) 590 { 591 uint32_t v, m; 592 int pad, pack, pad_shift; 593 594 pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT : 595 X_INGPADBOUNDARY_SHIFT; 596 pad = fl_pad; 597 if (fl_pad < (1 << pad_shift) || 598 fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) || 599 !powerof2(fl_pad)) { 600 /* 601 * If there is any chance that we might use buffer packing and 602 * the chip is a T4, then pick 64 as the pad/pack boundary. Set 603 * it to the minimum allowed in all other cases. 604 */ 605 pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift; 606 607 /* 608 * For fl_pad = 0 we'll still write a reasonable value to the 609 * register but all the freelists will opt out of padding. 610 * We'll complain here only if the user tried to set it to a 611 * value greater than 0 that was invalid. 612 */ 613 if (fl_pad > 0) { 614 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value" 615 " (%d), using %d instead.\n", fl_pad, pad); 616 } 617 } 618 m = V_INGPADBOUNDARY(M_INGPADBOUNDARY); 619 v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift); 620 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 621 622 if (is_t4(sc)) { 623 if (fl_pack != -1 && fl_pack != pad) { 624 /* Complain but carry on. */ 625 device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored," 626 " using %d instead.\n", fl_pack, pad); 627 } 628 return; 629 } 630 631 pack = fl_pack; 632 if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 || 633 !powerof2(fl_pack)) { 634 pack = max(sc->params.pci.mps, CACHE_LINE_SIZE); 635 MPASS(powerof2(pack)); 636 if (pack < 16) 637 pack = 16; 638 if (pack == 32) 639 pack = 64; 640 if (pack > 4096) 641 pack = 4096; 642 if (fl_pack != -1) { 643 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value" 644 " (%d), using %d instead.\n", fl_pack, pack); 645 } 646 } 647 m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY); 648 if (pack == 16) 649 v = V_INGPACKBOUNDARY(0); 650 else 651 v = V_INGPACKBOUNDARY(ilog2(pack) - 5); 652 653 MPASS(!is_t4(sc)); /* T4 doesn't have SGE_CONTROL2 */ 654 t4_set_reg_field(sc, A_SGE_CONTROL2, m, v); 655 } 656 657 /* 658 * adap->params.vpd.cclk must be set up before this is called. 659 */ 660 void 661 t4_tweak_chip_settings(struct adapter *sc) 662 { 663 int i; 664 uint32_t v, m; 665 int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; 666 int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk; 667 int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ 668 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 669 static int sge_flbuf_sizes[] = { 670 MCLBYTES, 671 #if MJUMPAGESIZE != MCLBYTES 672 MJUMPAGESIZE, 673 MJUMPAGESIZE - CL_METADATA_SIZE, 674 MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE, 675 #endif 676 MJUM9BYTES, 677 MJUM16BYTES, 678 MCLBYTES - MSIZE - CL_METADATA_SIZE, 679 MJUM9BYTES - CL_METADATA_SIZE, 680 MJUM16BYTES - CL_METADATA_SIZE, 681 }; 682 683 KASSERT(sc->flags & MASTER_PF, 684 ("%s: trying to change chip settings when not master.", __func__)); 685 686 m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE; 687 v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | 688 V_EGRSTATUSPAGESIZE(spg_len == 128); 689 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 690 691 setup_pad_and_pack_boundaries(sc); 692 693 v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | 694 V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | 695 V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | 696 V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | 697 V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | 698 V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | 699 V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | 700 V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); 701 t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v); 702 703 KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES, 704 ("%s: hw buffer size table too big", __func__)); 705 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096); 706 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536); 707 for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) { 708 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE15 - (4 * i), 709 sge_flbuf_sizes[i]); 710 } 711 712 v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) | 713 V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]); 714 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v); 715 716 KASSERT(intr_timer[0] <= timer_max, 717 ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0], 718 timer_max)); 719 for (i = 1; i < nitems(intr_timer); i++) { 720 KASSERT(intr_timer[i] >= intr_timer[i - 1], 721 ("%s: timers not listed in increasing order (%d)", 722 __func__, i)); 723 724 while (intr_timer[i] > timer_max) { 725 if (i == nitems(intr_timer) - 1) { 726 intr_timer[i] = timer_max; 727 break; 728 } 729 intr_timer[i] += intr_timer[i - 1]; 730 intr_timer[i] /= 2; 731 } 732 } 733 734 v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) | 735 V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])); 736 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v); 737 v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) | 738 V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])); 739 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v); 740 v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) | 741 V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])); 742 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v); 743 744 if (chip_id(sc) >= CHELSIO_T6) { 745 m = V_TSCALE(M_TSCALE); 746 if (tscale == 1) 747 v = 0; 748 else 749 v = V_TSCALE(tscale - 2); 750 t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v); 751 752 if (sc->debug_flags & DF_DISABLE_TCB_CACHE) { 753 m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN | 754 V_WRTHRTHRESH(M_WRTHRTHRESH); 755 t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1); 756 v &= ~m; 757 v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN | 758 V_WRTHRTHRESH(16); 759 t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1); 760 } 761 } 762 763 /* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */ 764 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 765 t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v); 766 767 /* 768 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP. These have been 769 * chosen with MAXPHYS = 128K in mind. The largest DDP buffer that we 770 * may have to deal with is MAXPHYS + 1 page. 771 */ 772 v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4); 773 t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v); 774 775 /* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */ 776 m = v = F_TDDPTAGTCB | F_ISCSITAGTCB; 777 t4_set_reg_field(sc, A_ULP_RX_CTL, m, v); 778 779 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 780 F_RESETDDPOFFSET; 781 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 782 t4_set_reg_field(sc, A_TP_PARA_REG5, m, v); 783 } 784 785 /* 786 * SGE wants the buffer to be at least 64B and then a multiple of 16. If 787 * padding is in use, the buffer's start and end need to be aligned to the pad 788 * boundary as well. We'll just make sure that the size is a multiple of the 789 * boundary here, it is up to the buffer allocation code to make sure the start 790 * of the buffer is aligned as well. 791 */ 792 static inline int 793 hwsz_ok(struct adapter *sc, int hwsz) 794 { 795 int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1; 796 797 return (hwsz >= 64 && (hwsz & mask) == 0); 798 } 799 800 /* 801 * XXX: driver really should be able to deal with unexpected settings. 802 */ 803 int 804 t4_read_chip_settings(struct adapter *sc) 805 { 806 struct sge *s = &sc->sge; 807 struct sge_params *sp = &sc->params.sge; 808 int i, j, n, rc = 0; 809 uint32_t m, v, r; 810 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 811 static int sw_buf_sizes[] = { /* Sorted by size */ 812 MCLBYTES, 813 #if MJUMPAGESIZE != MCLBYTES 814 MJUMPAGESIZE, 815 #endif 816 MJUM9BYTES, 817 MJUM16BYTES 818 }; 819 struct sw_zone_info *swz, *safe_swz; 820 struct hw_buf_info *hwb; 821 822 m = F_RXPKTCPLMODE; 823 v = F_RXPKTCPLMODE; 824 r = sc->params.sge.sge_control; 825 if ((r & m) != v) { 826 device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r); 827 rc = EINVAL; 828 } 829 830 /* 831 * If this changes then every single use of PAGE_SHIFT in the driver 832 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift. 833 */ 834 if (sp->page_shift != PAGE_SHIFT) { 835 device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r); 836 rc = EINVAL; 837 } 838 839 /* Filter out unusable hw buffer sizes entirely (mark with -2). */ 840 hwb = &s->hw_buf_info[0]; 841 for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) { 842 r = sc->params.sge.sge_fl_buffer_size[i]; 843 hwb->size = r; 844 hwb->zidx = hwsz_ok(sc, r) ? -1 : -2; 845 hwb->next = -1; 846 } 847 848 /* 849 * Create a sorted list in decreasing order of hw buffer sizes (and so 850 * increasing order of spare area) for each software zone. 851 * 852 * If padding is enabled then the start and end of the buffer must align 853 * to the pad boundary; if packing is enabled then they must align with 854 * the pack boundary as well. Allocations from the cluster zones are 855 * aligned to min(size, 4K), so the buffer starts at that alignment and 856 * ends at hwb->size alignment. If mbuf inlining is allowed the 857 * starting alignment will be reduced to MSIZE and the driver will 858 * exercise appropriate caution when deciding on the best buffer layout 859 * to use. 860 */ 861 n = 0; /* no usable buffer size to begin with */ 862 swz = &s->sw_zone_info[0]; 863 safe_swz = NULL; 864 for (i = 0; i < SW_ZONE_SIZES; i++, swz++) { 865 int8_t head = -1, tail = -1; 866 867 swz->size = sw_buf_sizes[i]; 868 swz->zone = m_getzone(swz->size); 869 swz->type = m_gettype(swz->size); 870 871 if (swz->size < PAGE_SIZE) { 872 MPASS(powerof2(swz->size)); 873 if (fl_pad && (swz->size % sp->pad_boundary != 0)) 874 continue; 875 } 876 877 if (swz->size == safest_rx_cluster) 878 safe_swz = swz; 879 880 hwb = &s->hw_buf_info[0]; 881 for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) { 882 if (hwb->zidx != -1 || hwb->size > swz->size) 883 continue; 884 #ifdef INVARIANTS 885 if (fl_pad) 886 MPASS(hwb->size % sp->pad_boundary == 0); 887 #endif 888 hwb->zidx = i; 889 if (head == -1) 890 head = tail = j; 891 else if (hwb->size < s->hw_buf_info[tail].size) { 892 s->hw_buf_info[tail].next = j; 893 tail = j; 894 } else { 895 int8_t *cur; 896 struct hw_buf_info *t; 897 898 for (cur = &head; *cur != -1; cur = &t->next) { 899 t = &s->hw_buf_info[*cur]; 900 if (hwb->size == t->size) { 901 hwb->zidx = -2; 902 break; 903 } 904 if (hwb->size > t->size) { 905 hwb->next = *cur; 906 *cur = j; 907 break; 908 } 909 } 910 } 911 } 912 swz->head_hwidx = head; 913 swz->tail_hwidx = tail; 914 915 if (tail != -1) { 916 n++; 917 if (swz->size - s->hw_buf_info[tail].size >= 918 CL_METADATA_SIZE) 919 sc->flags |= BUF_PACKING_OK; 920 } 921 } 922 if (n == 0) { 923 device_printf(sc->dev, "no usable SGE FL buffer size.\n"); 924 rc = EINVAL; 925 } 926 927 s->safe_hwidx1 = -1; 928 s->safe_hwidx2 = -1; 929 if (safe_swz != NULL) { 930 s->safe_hwidx1 = safe_swz->head_hwidx; 931 for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) { 932 int spare; 933 934 hwb = &s->hw_buf_info[i]; 935 #ifdef INVARIANTS 936 if (fl_pad) 937 MPASS(hwb->size % sp->pad_boundary == 0); 938 #endif 939 spare = safe_swz->size - hwb->size; 940 if (spare >= CL_METADATA_SIZE) { 941 s->safe_hwidx2 = i; 942 break; 943 } 944 } 945 } 946 947 if (sc->flags & IS_VF) 948 return (0); 949 950 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 951 r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ); 952 if (r != v) { 953 device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r); 954 rc = EINVAL; 955 } 956 957 m = v = F_TDDPTAGTCB; 958 r = t4_read_reg(sc, A_ULP_RX_CTL); 959 if ((r & m) != v) { 960 device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r); 961 rc = EINVAL; 962 } 963 964 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 965 F_RESETDDPOFFSET; 966 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 967 r = t4_read_reg(sc, A_TP_PARA_REG5); 968 if ((r & m) != v) { 969 device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r); 970 rc = EINVAL; 971 } 972 973 t4_init_tp_params(sc, 1); 974 975 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 976 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 977 978 return (rc); 979 } 980 981 int 982 t4_create_dma_tag(struct adapter *sc) 983 { 984 int rc; 985 986 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, 987 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, 988 BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, 989 NULL, &sc->dmat); 990 if (rc != 0) { 991 device_printf(sc->dev, 992 "failed to create main DMA tag: %d\n", rc); 993 } 994 995 return (rc); 996 } 997 998 void 999 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 1000 struct sysctl_oid_list *children) 1001 { 1002 struct sge_params *sp = &sc->params.sge; 1003 1004 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes", 1005 CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A", 1006 "freelist buffer sizes"); 1007 1008 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD, 1009 NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)"); 1010 1011 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD, 1012 NULL, sp->pad_boundary, "payload pad boundary (bytes)"); 1013 1014 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD, 1015 NULL, sp->spg_len, "status page size (bytes)"); 1016 1017 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD, 1018 NULL, cong_drop, "congestion drop setting"); 1019 1020 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD, 1021 NULL, sp->pack_boundary, "payload pack boundary (bytes)"); 1022 } 1023 1024 int 1025 t4_destroy_dma_tag(struct adapter *sc) 1026 { 1027 if (sc->dmat) 1028 bus_dma_tag_destroy(sc->dmat); 1029 1030 return (0); 1031 } 1032 1033 /* 1034 * Allocate and initialize the firmware event queue, control queues, and special 1035 * purpose rx queues owned by the adapter. 1036 * 1037 * Returns errno on failure. Resources allocated up to that point may still be 1038 * allocated. Caller is responsible for cleanup in case this function fails. 1039 */ 1040 int 1041 t4_setup_adapter_queues(struct adapter *sc) 1042 { 1043 struct sysctl_oid *oid; 1044 struct sysctl_oid_list *children; 1045 int rc, i; 1046 1047 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 1048 1049 sysctl_ctx_init(&sc->ctx); 1050 sc->flags |= ADAP_SYSCTL_CTX; 1051 1052 /* 1053 * Firmware event queue 1054 */ 1055 rc = alloc_fwq(sc); 1056 if (rc != 0) 1057 return (rc); 1058 1059 /* 1060 * That's all for the VF driver. 1061 */ 1062 if (sc->flags & IS_VF) 1063 return (rc); 1064 1065 oid = device_get_sysctl_tree(sc->dev); 1066 children = SYSCTL_CHILDREN(oid); 1067 1068 /* 1069 * XXX: General purpose rx queues, one per port. 1070 */ 1071 1072 /* 1073 * Control queues, one per port. 1074 */ 1075 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "ctrlq", 1076 CTLFLAG_RD, NULL, "control queues"); 1077 for_each_port(sc, i) { 1078 struct sge_wrq *ctrlq = &sc->sge.ctrlq[i]; 1079 1080 rc = alloc_ctrlq(sc, ctrlq, i, oid); 1081 if (rc != 0) 1082 return (rc); 1083 } 1084 1085 return (rc); 1086 } 1087 1088 /* 1089 * Idempotent 1090 */ 1091 int 1092 t4_teardown_adapter_queues(struct adapter *sc) 1093 { 1094 int i; 1095 1096 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 1097 1098 /* Do this before freeing the queue */ 1099 if (sc->flags & ADAP_SYSCTL_CTX) { 1100 sysctl_ctx_free(&sc->ctx); 1101 sc->flags &= ~ADAP_SYSCTL_CTX; 1102 } 1103 1104 if (!(sc->flags & IS_VF)) { 1105 for_each_port(sc, i) 1106 free_wrq(sc, &sc->sge.ctrlq[i]); 1107 } 1108 free_fwq(sc); 1109 1110 return (0); 1111 } 1112 1113 /* Maximum payload that can be delivered with a single iq descriptor */ 1114 static inline int 1115 mtu_to_max_payload(struct adapter *sc, int mtu) 1116 { 1117 1118 /* large enough even when hw VLAN extraction is disabled */ 1119 return (sc->params.sge.fl_pktshift + ETHER_HDR_LEN + 1120 ETHER_VLAN_ENCAP_LEN + mtu); 1121 } 1122 1123 int 1124 t4_setup_vi_queues(struct vi_info *vi) 1125 { 1126 int rc = 0, i, intr_idx, iqidx; 1127 struct sge_rxq *rxq; 1128 struct sge_txq *txq; 1129 #ifdef TCP_OFFLOAD 1130 struct sge_ofld_rxq *ofld_rxq; 1131 #endif 1132 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1133 struct sge_wrq *ofld_txq; 1134 #endif 1135 #ifdef DEV_NETMAP 1136 int saved_idx; 1137 struct sge_nm_rxq *nm_rxq; 1138 struct sge_nm_txq *nm_txq; 1139 #endif 1140 char name[16]; 1141 struct port_info *pi = vi->pi; 1142 struct adapter *sc = pi->adapter; 1143 struct ifnet *ifp = vi->ifp; 1144 struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev); 1145 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 1146 int maxp, mtu = ifp->if_mtu; 1147 1148 /* Interrupt vector to start from (when using multiple vectors) */ 1149 intr_idx = vi->first_intr; 1150 1151 #ifdef DEV_NETMAP 1152 saved_idx = intr_idx; 1153 if (ifp->if_capabilities & IFCAP_NETMAP) { 1154 1155 /* netmap is supported with direct interrupts only. */ 1156 MPASS(!forwarding_intr_to_fwq(sc)); 1157 1158 /* 1159 * We don't have buffers to back the netmap rx queues 1160 * right now so we create the queues in a way that 1161 * doesn't set off any congestion signal in the chip. 1162 */ 1163 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq", 1164 CTLFLAG_RD, NULL, "rx queues"); 1165 for_each_nm_rxq(vi, i, nm_rxq) { 1166 rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid); 1167 if (rc != 0) 1168 goto done; 1169 intr_idx++; 1170 } 1171 1172 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq", 1173 CTLFLAG_RD, NULL, "tx queues"); 1174 for_each_nm_txq(vi, i, nm_txq) { 1175 iqidx = vi->first_nm_rxq + (i % vi->nnmrxq); 1176 rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid); 1177 if (rc != 0) 1178 goto done; 1179 } 1180 } 1181 1182 /* Normal rx queues and netmap rx queues share the same interrupts. */ 1183 intr_idx = saved_idx; 1184 #endif 1185 1186 /* 1187 * Allocate rx queues first because a default iqid is required when 1188 * creating a tx queue. 1189 */ 1190 maxp = mtu_to_max_payload(sc, mtu); 1191 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", 1192 CTLFLAG_RD, NULL, "rx queues"); 1193 for_each_rxq(vi, i, rxq) { 1194 1195 init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq); 1196 1197 snprintf(name, sizeof(name), "%s rxq%d-fl", 1198 device_get_nameunit(vi->dev), i); 1199 init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name); 1200 1201 rc = alloc_rxq(vi, rxq, 1202 forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid); 1203 if (rc != 0) 1204 goto done; 1205 intr_idx++; 1206 } 1207 #ifdef DEV_NETMAP 1208 if (ifp->if_capabilities & IFCAP_NETMAP) 1209 intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq); 1210 #endif 1211 #ifdef TCP_OFFLOAD 1212 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq", 1213 CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections"); 1214 for_each_ofld_rxq(vi, i, ofld_rxq) { 1215 1216 init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx, 1217 vi->qsize_rxq); 1218 1219 snprintf(name, sizeof(name), "%s ofld_rxq%d-fl", 1220 device_get_nameunit(vi->dev), i); 1221 init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name); 1222 1223 rc = alloc_ofld_rxq(vi, ofld_rxq, 1224 forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid); 1225 if (rc != 0) 1226 goto done; 1227 intr_idx++; 1228 } 1229 #endif 1230 1231 /* 1232 * Now the tx queues. 1233 */ 1234 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD, 1235 NULL, "tx queues"); 1236 for_each_txq(vi, i, txq) { 1237 iqidx = vi->first_rxq + (i % vi->nrxq); 1238 snprintf(name, sizeof(name), "%s txq%d", 1239 device_get_nameunit(vi->dev), i); 1240 init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, 1241 sc->sge.rxq[iqidx].iq.cntxt_id, name); 1242 1243 rc = alloc_txq(vi, txq, i, oid); 1244 if (rc != 0) 1245 goto done; 1246 } 1247 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1248 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq", 1249 CTLFLAG_RD, NULL, "tx queues for TOE/ETHOFLD"); 1250 for_each_ofld_txq(vi, i, ofld_txq) { 1251 struct sysctl_oid *oid2; 1252 1253 snprintf(name, sizeof(name), "%s ofld_txq%d", 1254 device_get_nameunit(vi->dev), i); 1255 if (vi->nofldrxq > 0) { 1256 iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq); 1257 init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, 1258 pi->tx_chan, sc->sge.ofld_rxq[iqidx].iq.cntxt_id, 1259 name); 1260 } else { 1261 iqidx = vi->first_rxq + (i % vi->nrxq); 1262 init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, 1263 pi->tx_chan, sc->sge.rxq[iqidx].iq.cntxt_id, name); 1264 } 1265 1266 snprintf(name, sizeof(name), "%d", i); 1267 oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1268 name, CTLFLAG_RD, NULL, "offload tx queue"); 1269 1270 rc = alloc_wrq(sc, vi, ofld_txq, oid2); 1271 if (rc != 0) 1272 goto done; 1273 } 1274 #endif 1275 done: 1276 if (rc) 1277 t4_teardown_vi_queues(vi); 1278 1279 return (rc); 1280 } 1281 1282 /* 1283 * Idempotent 1284 */ 1285 int 1286 t4_teardown_vi_queues(struct vi_info *vi) 1287 { 1288 int i; 1289 struct sge_rxq *rxq; 1290 struct sge_txq *txq; 1291 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1292 struct port_info *pi = vi->pi; 1293 struct adapter *sc = pi->adapter; 1294 struct sge_wrq *ofld_txq; 1295 #endif 1296 #ifdef TCP_OFFLOAD 1297 struct sge_ofld_rxq *ofld_rxq; 1298 #endif 1299 #ifdef DEV_NETMAP 1300 struct sge_nm_rxq *nm_rxq; 1301 struct sge_nm_txq *nm_txq; 1302 #endif 1303 1304 /* Do this before freeing the queues */ 1305 if (vi->flags & VI_SYSCTL_CTX) { 1306 sysctl_ctx_free(&vi->ctx); 1307 vi->flags &= ~VI_SYSCTL_CTX; 1308 } 1309 1310 #ifdef DEV_NETMAP 1311 if (vi->ifp->if_capabilities & IFCAP_NETMAP) { 1312 for_each_nm_txq(vi, i, nm_txq) { 1313 free_nm_txq(vi, nm_txq); 1314 } 1315 1316 for_each_nm_rxq(vi, i, nm_rxq) { 1317 free_nm_rxq(vi, nm_rxq); 1318 } 1319 } 1320 #endif 1321 1322 /* 1323 * Take down all the tx queues first, as they reference the rx queues 1324 * (for egress updates, etc.). 1325 */ 1326 1327 for_each_txq(vi, i, txq) { 1328 free_txq(vi, txq); 1329 } 1330 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1331 for_each_ofld_txq(vi, i, ofld_txq) { 1332 free_wrq(sc, ofld_txq); 1333 } 1334 #endif 1335 1336 /* 1337 * Then take down the rx queues. 1338 */ 1339 1340 for_each_rxq(vi, i, rxq) { 1341 free_rxq(vi, rxq); 1342 } 1343 #ifdef TCP_OFFLOAD 1344 for_each_ofld_rxq(vi, i, ofld_rxq) { 1345 free_ofld_rxq(vi, ofld_rxq); 1346 } 1347 #endif 1348 1349 return (0); 1350 } 1351 1352 /* 1353 * Interrupt handler when the driver is using only 1 interrupt. This is a very 1354 * unusual scenario. 1355 * 1356 * a) Deals with errors, if any. 1357 * b) Services firmware event queue, which is taking interrupts for all other 1358 * queues. 1359 */ 1360 void 1361 t4_intr_all(void *arg) 1362 { 1363 struct adapter *sc = arg; 1364 struct sge_iq *fwq = &sc->sge.fwq; 1365 1366 MPASS(sc->intr_count == 1); 1367 1368 if (sc->intr_type == INTR_INTX) 1369 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); 1370 1371 t4_intr_err(arg); 1372 t4_intr_evt(fwq); 1373 } 1374 1375 /* 1376 * Interrupt handler for errors (installed directly when multiple interrupts are 1377 * being used, or called by t4_intr_all). 1378 */ 1379 void 1380 t4_intr_err(void *arg) 1381 { 1382 struct adapter *sc = arg; 1383 uint32_t v; 1384 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 1385 1386 if (sc->flags & ADAP_ERR) 1387 return; 1388 1389 v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE)); 1390 if (v & F_PFSW) { 1391 sc->swintr++; 1392 t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v); 1393 } 1394 1395 t4_slow_intr_handler(sc, verbose); 1396 } 1397 1398 /* 1399 * Interrupt handler for iq-only queues. The firmware event queue is the only 1400 * such queue right now. 1401 */ 1402 void 1403 t4_intr_evt(void *arg) 1404 { 1405 struct sge_iq *iq = arg; 1406 1407 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1408 service_iq(iq, 0); 1409 (void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1410 } 1411 } 1412 1413 /* 1414 * Interrupt handler for iq+fl queues. 1415 */ 1416 void 1417 t4_intr(void *arg) 1418 { 1419 struct sge_iq *iq = arg; 1420 1421 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1422 service_iq_fl(iq, 0); 1423 (void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1424 } 1425 } 1426 1427 #ifdef DEV_NETMAP 1428 /* 1429 * Interrupt handler for netmap rx queues. 1430 */ 1431 void 1432 t4_nm_intr(void *arg) 1433 { 1434 struct sge_nm_rxq *nm_rxq = arg; 1435 1436 if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) { 1437 service_nm_rxq(nm_rxq); 1438 (void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON); 1439 } 1440 } 1441 1442 /* 1443 * Interrupt handler for vectors shared between NIC and netmap rx queues. 1444 */ 1445 void 1446 t4_vi_intr(void *arg) 1447 { 1448 struct irq *irq = arg; 1449 1450 MPASS(irq->nm_rxq != NULL); 1451 t4_nm_intr(irq->nm_rxq); 1452 1453 MPASS(irq->rxq != NULL); 1454 t4_intr(irq->rxq); 1455 } 1456 #endif 1457 1458 /* 1459 * Deals with interrupts on an iq-only (no freelist) queue. 1460 */ 1461 static int 1462 service_iq(struct sge_iq *iq, int budget) 1463 { 1464 struct sge_iq *q; 1465 struct adapter *sc = iq->adapter; 1466 struct iq_desc *d = &iq->desc[iq->cidx]; 1467 int ndescs = 0, limit; 1468 int rsp_type; 1469 uint32_t lq; 1470 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); 1471 1472 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); 1473 KASSERT((iq->flags & IQ_HAS_FL) == 0, 1474 ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq, 1475 iq->flags)); 1476 MPASS((iq->flags & IQ_ADJ_CREDIT) == 0); 1477 MPASS((iq->flags & IQ_LRO_ENABLED) == 0); 1478 1479 limit = budget ? budget : iq->qsize / 16; 1480 1481 /* 1482 * We always come back and check the descriptor ring for new indirect 1483 * interrupts and other responses after running a single handler. 1484 */ 1485 for (;;) { 1486 while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { 1487 1488 rmb(); 1489 1490 rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); 1491 lq = be32toh(d->rsp.pldbuflen_qid); 1492 1493 switch (rsp_type) { 1494 case X_RSPD_TYPE_FLBUF: 1495 panic("%s: data for an iq (%p) with no freelist", 1496 __func__, iq); 1497 1498 /* NOTREACHED */ 1499 1500 case X_RSPD_TYPE_CPL: 1501 KASSERT(d->rss.opcode < NUM_CPL_CMDS, 1502 ("%s: bad opcode %02x.", __func__, 1503 d->rss.opcode)); 1504 t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL); 1505 break; 1506 1507 case X_RSPD_TYPE_INTR: 1508 /* 1509 * There are 1K interrupt-capable queues (qids 0 1510 * through 1023). A response type indicating a 1511 * forwarded interrupt with a qid >= 1K is an 1512 * iWARP async notification. 1513 */ 1514 if (__predict_true(lq >= 1024)) { 1515 t4_an_handler(iq, &d->rsp); 1516 break; 1517 } 1518 1519 q = sc->sge.iqmap[lq - sc->sge.iq_start - 1520 sc->sge.iq_base]; 1521 if (atomic_cmpset_int(&q->state, IQS_IDLE, 1522 IQS_BUSY)) { 1523 if (service_iq_fl(q, q->qsize / 16) == 0) { 1524 (void) atomic_cmpset_int(&q->state, 1525 IQS_BUSY, IQS_IDLE); 1526 } else { 1527 STAILQ_INSERT_TAIL(&iql, q, 1528 link); 1529 } 1530 } 1531 break; 1532 1533 default: 1534 KASSERT(0, 1535 ("%s: illegal response type %d on iq %p", 1536 __func__, rsp_type, iq)); 1537 log(LOG_ERR, 1538 "%s: illegal response type %d on iq %p", 1539 device_get_nameunit(sc->dev), rsp_type, iq); 1540 break; 1541 } 1542 1543 d++; 1544 if (__predict_false(++iq->cidx == iq->sidx)) { 1545 iq->cidx = 0; 1546 iq->gen ^= F_RSPD_GEN; 1547 d = &iq->desc[0]; 1548 } 1549 if (__predict_false(++ndescs == limit)) { 1550 t4_write_reg(sc, sc->sge_gts_reg, 1551 V_CIDXINC(ndescs) | 1552 V_INGRESSQID(iq->cntxt_id) | 1553 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 1554 ndescs = 0; 1555 1556 if (budget) { 1557 return (EINPROGRESS); 1558 } 1559 } 1560 } 1561 1562 if (STAILQ_EMPTY(&iql)) 1563 break; 1564 1565 /* 1566 * Process the head only, and send it to the back of the list if 1567 * it's still not done. 1568 */ 1569 q = STAILQ_FIRST(&iql); 1570 STAILQ_REMOVE_HEAD(&iql, link); 1571 if (service_iq_fl(q, q->qsize / 8) == 0) 1572 (void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); 1573 else 1574 STAILQ_INSERT_TAIL(&iql, q, link); 1575 } 1576 1577 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | 1578 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); 1579 1580 return (0); 1581 } 1582 1583 static inline int 1584 sort_before_lro(struct lro_ctrl *lro) 1585 { 1586 1587 return (lro->lro_mbuf_max != 0); 1588 } 1589 1590 static inline uint64_t 1591 last_flit_to_ns(struct adapter *sc, uint64_t lf) 1592 { 1593 uint64_t n = be64toh(lf) & 0xfffffffffffffff; /* 60b, not 64b. */ 1594 1595 if (n > UINT64_MAX / 1000000) 1596 return (n / sc->params.vpd.cclk * 1000000); 1597 else 1598 return (n * 1000000 / sc->params.vpd.cclk); 1599 } 1600 1601 /* 1602 * Deals with interrupts on an iq+fl queue. 1603 */ 1604 static int 1605 service_iq_fl(struct sge_iq *iq, int budget) 1606 { 1607 struct sge_rxq *rxq = iq_to_rxq(iq); 1608 struct sge_fl *fl; 1609 struct adapter *sc = iq->adapter; 1610 struct iq_desc *d = &iq->desc[iq->cidx]; 1611 int ndescs = 0, limit; 1612 int rsp_type, refill, starved; 1613 uint32_t lq; 1614 uint16_t fl_hw_cidx; 1615 struct mbuf *m0; 1616 #if defined(INET) || defined(INET6) 1617 const struct timeval lro_timeout = {0, sc->lro_timeout}; 1618 struct lro_ctrl *lro = &rxq->lro; 1619 #endif 1620 1621 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); 1622 MPASS(iq->flags & IQ_HAS_FL); 1623 1624 limit = budget ? budget : iq->qsize / 16; 1625 fl = &rxq->fl; 1626 fl_hw_cidx = fl->hw_cidx; /* stable snapshot */ 1627 1628 #if defined(INET) || defined(INET6) 1629 if (iq->flags & IQ_ADJ_CREDIT) { 1630 MPASS(sort_before_lro(lro)); 1631 iq->flags &= ~IQ_ADJ_CREDIT; 1632 if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) { 1633 tcp_lro_flush_all(lro); 1634 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) | 1635 V_INGRESSQID((u32)iq->cntxt_id) | 1636 V_SEINTARM(iq->intr_params)); 1637 return (0); 1638 } 1639 ndescs = 1; 1640 } 1641 #else 1642 MPASS((iq->flags & IQ_ADJ_CREDIT) == 0); 1643 #endif 1644 1645 while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { 1646 1647 rmb(); 1648 1649 refill = 0; 1650 m0 = NULL; 1651 rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); 1652 lq = be32toh(d->rsp.pldbuflen_qid); 1653 1654 switch (rsp_type) { 1655 case X_RSPD_TYPE_FLBUF: 1656 1657 m0 = get_fl_payload(sc, fl, lq); 1658 if (__predict_false(m0 == NULL)) 1659 goto out; 1660 refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2; 1661 1662 if (iq->flags & IQ_RX_TIMESTAMP) { 1663 /* 1664 * Fill up rcv_tstmp but do not set M_TSTMP. 1665 * rcv_tstmp is not in the format that the 1666 * kernel expects and we don't want to mislead 1667 * it. For now this is only for custom code 1668 * that knows how to interpret cxgbe's stamp. 1669 */ 1670 m0->m_pkthdr.rcv_tstmp = 1671 last_flit_to_ns(sc, d->rsp.u.last_flit); 1672 #ifdef notyet 1673 m0->m_flags |= M_TSTMP; 1674 #endif 1675 } 1676 1677 /* fall through */ 1678 1679 case X_RSPD_TYPE_CPL: 1680 KASSERT(d->rss.opcode < NUM_CPL_CMDS, 1681 ("%s: bad opcode %02x.", __func__, d->rss.opcode)); 1682 t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0); 1683 break; 1684 1685 case X_RSPD_TYPE_INTR: 1686 1687 /* 1688 * There are 1K interrupt-capable queues (qids 0 1689 * through 1023). A response type indicating a 1690 * forwarded interrupt with a qid >= 1K is an 1691 * iWARP async notification. That is the only 1692 * acceptable indirect interrupt on this queue. 1693 */ 1694 if (__predict_false(lq < 1024)) { 1695 panic("%s: indirect interrupt on iq_fl %p " 1696 "with qid %u", __func__, iq, lq); 1697 } 1698 1699 t4_an_handler(iq, &d->rsp); 1700 break; 1701 1702 default: 1703 KASSERT(0, ("%s: illegal response type %d on iq %p", 1704 __func__, rsp_type, iq)); 1705 log(LOG_ERR, "%s: illegal response type %d on iq %p", 1706 device_get_nameunit(sc->dev), rsp_type, iq); 1707 break; 1708 } 1709 1710 d++; 1711 if (__predict_false(++iq->cidx == iq->sidx)) { 1712 iq->cidx = 0; 1713 iq->gen ^= F_RSPD_GEN; 1714 d = &iq->desc[0]; 1715 } 1716 if (__predict_false(++ndescs == limit)) { 1717 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | 1718 V_INGRESSQID(iq->cntxt_id) | 1719 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 1720 ndescs = 0; 1721 1722 #if defined(INET) || defined(INET6) 1723 if (iq->flags & IQ_LRO_ENABLED && 1724 !sort_before_lro(lro) && 1725 sc->lro_timeout != 0) { 1726 tcp_lro_flush_inactive(lro, &lro_timeout); 1727 } 1728 #endif 1729 if (budget) { 1730 FL_LOCK(fl); 1731 refill_fl(sc, fl, 32); 1732 FL_UNLOCK(fl); 1733 1734 return (EINPROGRESS); 1735 } 1736 } 1737 if (refill) { 1738 FL_LOCK(fl); 1739 refill_fl(sc, fl, 32); 1740 FL_UNLOCK(fl); 1741 fl_hw_cidx = fl->hw_cidx; 1742 } 1743 } 1744 out: 1745 #if defined(INET) || defined(INET6) 1746 if (iq->flags & IQ_LRO_ENABLED) { 1747 if (ndescs > 0 && lro->lro_mbuf_count > 8) { 1748 MPASS(sort_before_lro(lro)); 1749 /* hold back one credit and don't flush LRO state */ 1750 iq->flags |= IQ_ADJ_CREDIT; 1751 ndescs--; 1752 } else { 1753 tcp_lro_flush_all(lro); 1754 } 1755 } 1756 #endif 1757 1758 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | 1759 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); 1760 1761 FL_LOCK(fl); 1762 starved = refill_fl(sc, fl, 64); 1763 FL_UNLOCK(fl); 1764 if (__predict_false(starved != 0)) 1765 add_fl_to_sfl(sc, fl); 1766 1767 return (0); 1768 } 1769 1770 static inline int 1771 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll) 1772 { 1773 int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0; 1774 1775 if (rc) 1776 MPASS(cll->region3 >= CL_METADATA_SIZE); 1777 1778 return (rc); 1779 } 1780 1781 static inline struct cluster_metadata * 1782 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll, 1783 caddr_t cl) 1784 { 1785 1786 if (cl_has_metadata(fl, cll)) { 1787 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1788 1789 return ((struct cluster_metadata *)(cl + swz->size) - 1); 1790 } 1791 return (NULL); 1792 } 1793 1794 static void 1795 rxb_free(struct mbuf *m) 1796 { 1797 uma_zone_t zone = m->m_ext.ext_arg1; 1798 void *cl = m->m_ext.ext_arg2; 1799 1800 uma_zfree(zone, cl); 1801 counter_u64_add(extfree_rels, 1); 1802 } 1803 1804 /* 1805 * The mbuf returned by this function could be allocated from zone_mbuf or 1806 * constructed in spare room in the cluster. 1807 * 1808 * The mbuf carries the payload in one of these ways 1809 * a) frame inside the mbuf (mbuf from zone_mbuf) 1810 * b) m_cljset (for clusters without metadata) zone_mbuf 1811 * c) m_extaddref (cluster with metadata) inline mbuf 1812 * d) m_extaddref (cluster with metadata) zone_mbuf 1813 */ 1814 static struct mbuf * 1815 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset, 1816 int remaining) 1817 { 1818 struct mbuf *m; 1819 struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; 1820 struct cluster_layout *cll = &sd->cll; 1821 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1822 struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx]; 1823 struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl); 1824 int len, blen; 1825 caddr_t payload; 1826 1827 blen = hwb->size - fl->rx_offset; /* max possible in this buf */ 1828 len = min(remaining, blen); 1829 payload = sd->cl + cll->region1 + fl->rx_offset; 1830 if (fl->flags & FL_BUF_PACKING) { 1831 const u_int l = fr_offset + len; 1832 const u_int pad = roundup2(l, fl->buf_boundary) - l; 1833 1834 if (fl->rx_offset + len + pad < hwb->size) 1835 blen = len + pad; 1836 MPASS(fl->rx_offset + blen <= hwb->size); 1837 } else { 1838 MPASS(fl->rx_offset == 0); /* not packing */ 1839 } 1840 1841 1842 if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) { 1843 1844 /* 1845 * Copy payload into a freshly allocated mbuf. 1846 */ 1847 1848 m = fr_offset == 0 ? 1849 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1850 if (m == NULL) 1851 return (NULL); 1852 fl->mbuf_allocated++; 1853 1854 /* copy data to mbuf */ 1855 bcopy(payload, mtod(m, caddr_t), len); 1856 1857 } else if (sd->nmbuf * MSIZE < cll->region1) { 1858 1859 /* 1860 * There's spare room in the cluster for an mbuf. Create one 1861 * and associate it with the payload that's in the cluster. 1862 */ 1863 1864 MPASS(clm != NULL); 1865 m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE); 1866 /* No bzero required */ 1867 if (m_init(m, M_NOWAIT, MT_DATA, 1868 fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE)) 1869 return (NULL); 1870 fl->mbuf_inlined++; 1871 m_extaddref(m, payload, blen, &clm->refcount, rxb_free, 1872 swz->zone, sd->cl); 1873 if (sd->nmbuf++ == 0) 1874 counter_u64_add(extfree_refs, 1); 1875 1876 } else { 1877 1878 /* 1879 * Grab an mbuf from zone_mbuf and associate it with the 1880 * payload in the cluster. 1881 */ 1882 1883 m = fr_offset == 0 ? 1884 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1885 if (m == NULL) 1886 return (NULL); 1887 fl->mbuf_allocated++; 1888 if (clm != NULL) { 1889 m_extaddref(m, payload, blen, &clm->refcount, 1890 rxb_free, swz->zone, sd->cl); 1891 if (sd->nmbuf++ == 0) 1892 counter_u64_add(extfree_refs, 1); 1893 } else { 1894 m_cljset(m, sd->cl, swz->type); 1895 sd->cl = NULL; /* consumed, not a recycle candidate */ 1896 } 1897 } 1898 if (fr_offset == 0) 1899 m->m_pkthdr.len = remaining; 1900 m->m_len = len; 1901 1902 if (fl->flags & FL_BUF_PACKING) { 1903 fl->rx_offset += blen; 1904 MPASS(fl->rx_offset <= hwb->size); 1905 if (fl->rx_offset < hwb->size) 1906 return (m); /* without advancing the cidx */ 1907 } 1908 1909 if (__predict_false(++fl->cidx % 8 == 0)) { 1910 uint16_t cidx = fl->cidx / 8; 1911 1912 if (__predict_false(cidx == fl->sidx)) 1913 fl->cidx = cidx = 0; 1914 fl->hw_cidx = cidx; 1915 } 1916 fl->rx_offset = 0; 1917 1918 return (m); 1919 } 1920 1921 static struct mbuf * 1922 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf) 1923 { 1924 struct mbuf *m0, *m, **pnext; 1925 u_int remaining; 1926 const u_int total = G_RSPD_LEN(len_newbuf); 1927 1928 if (__predict_false(fl->flags & FL_BUF_RESUME)) { 1929 M_ASSERTPKTHDR(fl->m0); 1930 MPASS(fl->m0->m_pkthdr.len == total); 1931 MPASS(fl->remaining < total); 1932 1933 m0 = fl->m0; 1934 pnext = fl->pnext; 1935 remaining = fl->remaining; 1936 fl->flags &= ~FL_BUF_RESUME; 1937 goto get_segment; 1938 } 1939 1940 if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) { 1941 fl->rx_offset = 0; 1942 if (__predict_false(++fl->cidx % 8 == 0)) { 1943 uint16_t cidx = fl->cidx / 8; 1944 1945 if (__predict_false(cidx == fl->sidx)) 1946 fl->cidx = cidx = 0; 1947 fl->hw_cidx = cidx; 1948 } 1949 } 1950 1951 /* 1952 * Payload starts at rx_offset in the current hw buffer. Its length is 1953 * 'len' and it may span multiple hw buffers. 1954 */ 1955 1956 m0 = get_scatter_segment(sc, fl, 0, total); 1957 if (m0 == NULL) 1958 return (NULL); 1959 remaining = total - m0->m_len; 1960 pnext = &m0->m_next; 1961 while (remaining > 0) { 1962 get_segment: 1963 MPASS(fl->rx_offset == 0); 1964 m = get_scatter_segment(sc, fl, total - remaining, remaining); 1965 if (__predict_false(m == NULL)) { 1966 fl->m0 = m0; 1967 fl->pnext = pnext; 1968 fl->remaining = remaining; 1969 fl->flags |= FL_BUF_RESUME; 1970 return (NULL); 1971 } 1972 *pnext = m; 1973 pnext = &m->m_next; 1974 remaining -= m->m_len; 1975 } 1976 *pnext = NULL; 1977 1978 M_ASSERTPKTHDR(m0); 1979 return (m0); 1980 } 1981 1982 static int 1983 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) 1984 { 1985 struct sge_rxq *rxq = iq_to_rxq(iq); 1986 struct ifnet *ifp = rxq->ifp; 1987 struct adapter *sc = iq->adapter; 1988 const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); 1989 #if defined(INET) || defined(INET6) 1990 struct lro_ctrl *lro = &rxq->lro; 1991 #endif 1992 static const int sw_hashtype[4][2] = { 1993 {M_HASHTYPE_NONE, M_HASHTYPE_NONE}, 1994 {M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6}, 1995 {M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6}, 1996 {M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6}, 1997 }; 1998 1999 KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__, 2000 rss->opcode)); 2001 2002 m0->m_pkthdr.len -= sc->params.sge.fl_pktshift; 2003 m0->m_len -= sc->params.sge.fl_pktshift; 2004 m0->m_data += sc->params.sge.fl_pktshift; 2005 2006 m0->m_pkthdr.rcvif = ifp; 2007 M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]); 2008 m0->m_pkthdr.flowid = be32toh(rss->hash_val); 2009 2010 if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) { 2011 if (ifp->if_capenable & IFCAP_RXCSUM && 2012 cpl->l2info & htobe32(F_RXF_IP)) { 2013 m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED | 2014 CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 2015 rxq->rxcsum++; 2016 } else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 && 2017 cpl->l2info & htobe32(F_RXF_IP6)) { 2018 m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 | 2019 CSUM_PSEUDO_HDR); 2020 rxq->rxcsum++; 2021 } 2022 2023 if (__predict_false(cpl->ip_frag)) 2024 m0->m_pkthdr.csum_data = be16toh(cpl->csum); 2025 else 2026 m0->m_pkthdr.csum_data = 0xffff; 2027 } 2028 2029 if (cpl->vlan_ex) { 2030 m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); 2031 m0->m_flags |= M_VLANTAG; 2032 rxq->vlan_extraction++; 2033 } 2034 2035 #ifdef NUMA 2036 m0->m_pkthdr.numa_domain = ifp->if_numa_domain; 2037 #endif 2038 #if defined(INET) || defined(INET6) 2039 if (iq->flags & IQ_LRO_ENABLED) { 2040 if (sort_before_lro(lro)) { 2041 tcp_lro_queue_mbuf(lro, m0); 2042 return (0); /* queued for sort, then LRO */ 2043 } 2044 if (tcp_lro_rx(lro, m0, 0) == 0) 2045 return (0); /* queued for LRO */ 2046 } 2047 #endif 2048 ifp->if_input(ifp, m0); 2049 2050 return (0); 2051 } 2052 2053 /* 2054 * Must drain the wrq or make sure that someone else will. 2055 */ 2056 static void 2057 wrq_tx_drain(void *arg, int n) 2058 { 2059 struct sge_wrq *wrq = arg; 2060 struct sge_eq *eq = &wrq->eq; 2061 2062 EQ_LOCK(eq); 2063 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 2064 drain_wrq_wr_list(wrq->adapter, wrq); 2065 EQ_UNLOCK(eq); 2066 } 2067 2068 static void 2069 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq) 2070 { 2071 struct sge_eq *eq = &wrq->eq; 2072 u_int available, dbdiff; /* # of hardware descriptors */ 2073 u_int n; 2074 struct wrqe *wr; 2075 struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ 2076 2077 EQ_LOCK_ASSERT_OWNED(eq); 2078 MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs)); 2079 wr = STAILQ_FIRST(&wrq->wr_list); 2080 MPASS(wr != NULL); /* Must be called with something useful to do */ 2081 MPASS(eq->pidx == eq->dbidx); 2082 dbdiff = 0; 2083 2084 do { 2085 eq->cidx = read_hw_cidx(eq); 2086 if (eq->pidx == eq->cidx) 2087 available = eq->sidx - 1; 2088 else 2089 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2090 2091 MPASS(wr->wrq == wrq); 2092 n = howmany(wr->wr_len, EQ_ESIZE); 2093 if (available < n) 2094 break; 2095 2096 dst = (void *)&eq->desc[eq->pidx]; 2097 if (__predict_true(eq->sidx - eq->pidx > n)) { 2098 /* Won't wrap, won't end exactly at the status page. */ 2099 bcopy(&wr->wr[0], dst, wr->wr_len); 2100 eq->pidx += n; 2101 } else { 2102 int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE; 2103 2104 bcopy(&wr->wr[0], dst, first_portion); 2105 if (wr->wr_len > first_portion) { 2106 bcopy(&wr->wr[first_portion], &eq->desc[0], 2107 wr->wr_len - first_portion); 2108 } 2109 eq->pidx = n - (eq->sidx - eq->pidx); 2110 } 2111 wrq->tx_wrs_copied++; 2112 2113 if (available < eq->sidx / 4 && 2114 atomic_cmpset_int(&eq->equiq, 0, 1)) { 2115 /* 2116 * XXX: This is not 100% reliable with some 2117 * types of WRs. But this is a very unusual 2118 * situation for an ofld/ctrl queue anyway. 2119 */ 2120 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 2121 F_FW_WR_EQUEQ); 2122 } 2123 2124 dbdiff += n; 2125 if (dbdiff >= 16) { 2126 ring_eq_db(sc, eq, dbdiff); 2127 dbdiff = 0; 2128 } 2129 2130 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 2131 free_wrqe(wr); 2132 MPASS(wrq->nwr_pending > 0); 2133 wrq->nwr_pending--; 2134 MPASS(wrq->ndesc_needed >= n); 2135 wrq->ndesc_needed -= n; 2136 } while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL); 2137 2138 if (dbdiff) 2139 ring_eq_db(sc, eq, dbdiff); 2140 } 2141 2142 /* 2143 * Doesn't fail. Holds on to work requests it can't send right away. 2144 */ 2145 void 2146 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr) 2147 { 2148 #ifdef INVARIANTS 2149 struct sge_eq *eq = &wrq->eq; 2150 #endif 2151 2152 EQ_LOCK_ASSERT_OWNED(eq); 2153 MPASS(wr != NULL); 2154 MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN); 2155 MPASS((wr->wr_len & 0x7) == 0); 2156 2157 STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link); 2158 wrq->nwr_pending++; 2159 wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE); 2160 2161 if (!TAILQ_EMPTY(&wrq->incomplete_wrs)) 2162 return; /* commit_wrq_wr will drain wr_list as well. */ 2163 2164 drain_wrq_wr_list(sc, wrq); 2165 2166 /* Doorbell must have caught up to the pidx. */ 2167 MPASS(eq->pidx == eq->dbidx); 2168 } 2169 2170 void 2171 t4_update_fl_bufsize(struct ifnet *ifp) 2172 { 2173 struct vi_info *vi = ifp->if_softc; 2174 struct adapter *sc = vi->pi->adapter; 2175 struct sge_rxq *rxq; 2176 #ifdef TCP_OFFLOAD 2177 struct sge_ofld_rxq *ofld_rxq; 2178 #endif 2179 struct sge_fl *fl; 2180 int i, maxp, mtu = ifp->if_mtu; 2181 2182 maxp = mtu_to_max_payload(sc, mtu); 2183 for_each_rxq(vi, i, rxq) { 2184 fl = &rxq->fl; 2185 2186 FL_LOCK(fl); 2187 find_best_refill_source(sc, fl, maxp); 2188 FL_UNLOCK(fl); 2189 } 2190 #ifdef TCP_OFFLOAD 2191 for_each_ofld_rxq(vi, i, ofld_rxq) { 2192 fl = &ofld_rxq->fl; 2193 2194 FL_LOCK(fl); 2195 find_best_refill_source(sc, fl, maxp); 2196 FL_UNLOCK(fl); 2197 } 2198 #endif 2199 } 2200 2201 static inline int 2202 mbuf_nsegs(struct mbuf *m) 2203 { 2204 2205 M_ASSERTPKTHDR(m); 2206 KASSERT(m->m_pkthdr.l5hlen > 0, 2207 ("%s: mbuf %p missing information on # of segments.", __func__, m)); 2208 2209 return (m->m_pkthdr.l5hlen); 2210 } 2211 2212 static inline void 2213 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs) 2214 { 2215 2216 M_ASSERTPKTHDR(m); 2217 m->m_pkthdr.l5hlen = nsegs; 2218 } 2219 2220 static inline int 2221 mbuf_cflags(struct mbuf *m) 2222 { 2223 2224 M_ASSERTPKTHDR(m); 2225 return (m->m_pkthdr.PH_loc.eight[4]); 2226 } 2227 2228 static inline void 2229 set_mbuf_cflags(struct mbuf *m, uint8_t flags) 2230 { 2231 2232 M_ASSERTPKTHDR(m); 2233 m->m_pkthdr.PH_loc.eight[4] = flags; 2234 } 2235 2236 static inline int 2237 mbuf_len16(struct mbuf *m) 2238 { 2239 int n; 2240 2241 M_ASSERTPKTHDR(m); 2242 n = m->m_pkthdr.PH_loc.eight[0]; 2243 MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16); 2244 2245 return (n); 2246 } 2247 2248 static inline void 2249 set_mbuf_len16(struct mbuf *m, uint8_t len16) 2250 { 2251 2252 M_ASSERTPKTHDR(m); 2253 m->m_pkthdr.PH_loc.eight[0] = len16; 2254 } 2255 2256 #ifdef RATELIMIT 2257 static inline int 2258 mbuf_eo_nsegs(struct mbuf *m) 2259 { 2260 2261 M_ASSERTPKTHDR(m); 2262 return (m->m_pkthdr.PH_loc.eight[1]); 2263 } 2264 2265 static inline void 2266 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs) 2267 { 2268 2269 M_ASSERTPKTHDR(m); 2270 m->m_pkthdr.PH_loc.eight[1] = nsegs; 2271 } 2272 2273 static inline int 2274 mbuf_eo_len16(struct mbuf *m) 2275 { 2276 int n; 2277 2278 M_ASSERTPKTHDR(m); 2279 n = m->m_pkthdr.PH_loc.eight[2]; 2280 MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16); 2281 2282 return (n); 2283 } 2284 2285 static inline void 2286 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16) 2287 { 2288 2289 M_ASSERTPKTHDR(m); 2290 m->m_pkthdr.PH_loc.eight[2] = len16; 2291 } 2292 2293 static inline int 2294 mbuf_eo_tsclk_tsoff(struct mbuf *m) 2295 { 2296 2297 M_ASSERTPKTHDR(m); 2298 return (m->m_pkthdr.PH_loc.eight[3]); 2299 } 2300 2301 static inline void 2302 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff) 2303 { 2304 2305 M_ASSERTPKTHDR(m); 2306 m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff; 2307 } 2308 2309 static inline int 2310 needs_eo(struct mbuf *m) 2311 { 2312 2313 return (m->m_pkthdr.csum_flags & CSUM_SND_TAG); 2314 } 2315 #endif 2316 2317 /* 2318 * Try to allocate an mbuf to contain a raw work request. To make it 2319 * easy to construct the work request, don't allocate a chain but a 2320 * single mbuf. 2321 */ 2322 struct mbuf * 2323 alloc_wr_mbuf(int len, int how) 2324 { 2325 struct mbuf *m; 2326 2327 if (len <= MHLEN) 2328 m = m_gethdr(how, MT_DATA); 2329 else if (len <= MCLBYTES) 2330 m = m_getcl(how, MT_DATA, M_PKTHDR); 2331 else 2332 m = NULL; 2333 if (m == NULL) 2334 return (NULL); 2335 m->m_pkthdr.len = len; 2336 m->m_len = len; 2337 set_mbuf_cflags(m, MC_RAW_WR); 2338 set_mbuf_len16(m, howmany(len, 16)); 2339 return (m); 2340 } 2341 2342 static inline int 2343 needs_tso(struct mbuf *m) 2344 { 2345 2346 M_ASSERTPKTHDR(m); 2347 2348 return (m->m_pkthdr.csum_flags & CSUM_TSO); 2349 } 2350 2351 static inline int 2352 needs_l3_csum(struct mbuf *m) 2353 { 2354 2355 M_ASSERTPKTHDR(m); 2356 2357 return (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)); 2358 } 2359 2360 static inline int 2361 needs_l4_csum(struct mbuf *m) 2362 { 2363 2364 M_ASSERTPKTHDR(m); 2365 2366 return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | 2367 CSUM_TCP_IPV6 | CSUM_TSO)); 2368 } 2369 2370 static inline int 2371 needs_tcp_csum(struct mbuf *m) 2372 { 2373 2374 M_ASSERTPKTHDR(m); 2375 return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_TCP_IPV6 | CSUM_TSO)); 2376 } 2377 2378 #ifdef RATELIMIT 2379 static inline int 2380 needs_udp_csum(struct mbuf *m) 2381 { 2382 2383 M_ASSERTPKTHDR(m); 2384 return (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_UDP_IPV6)); 2385 } 2386 #endif 2387 2388 static inline int 2389 needs_vlan_insertion(struct mbuf *m) 2390 { 2391 2392 M_ASSERTPKTHDR(m); 2393 2394 return (m->m_flags & M_VLANTAG); 2395 } 2396 2397 static void * 2398 m_advance(struct mbuf **pm, int *poffset, int len) 2399 { 2400 struct mbuf *m = *pm; 2401 int offset = *poffset; 2402 uintptr_t p = 0; 2403 2404 MPASS(len > 0); 2405 2406 for (;;) { 2407 if (offset + len < m->m_len) { 2408 offset += len; 2409 p = mtod(m, uintptr_t) + offset; 2410 break; 2411 } 2412 len -= m->m_len - offset; 2413 m = m->m_next; 2414 offset = 0; 2415 MPASS(m != NULL); 2416 } 2417 *poffset = offset; 2418 *pm = m; 2419 return ((void *)p); 2420 } 2421 2422 static inline int 2423 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr) 2424 { 2425 struct mbuf_ext_pgs *ext_pgs; 2426 vm_paddr_t paddr; 2427 int i, len, off, pglen, pgoff, seglen, segoff; 2428 int nsegs = 0; 2429 2430 MBUF_EXT_PGS_ASSERT(m); 2431 ext_pgs = m->m_ext.ext_pgs; 2432 off = mtod(m, vm_offset_t); 2433 len = m->m_len; 2434 off += skip; 2435 len -= skip; 2436 2437 if (ext_pgs->hdr_len != 0) { 2438 if (off >= ext_pgs->hdr_len) { 2439 off -= ext_pgs->hdr_len; 2440 } else { 2441 seglen = ext_pgs->hdr_len - off; 2442 segoff = off; 2443 seglen = min(seglen, len); 2444 off = 0; 2445 len -= seglen; 2446 paddr = pmap_kextract( 2447 (vm_offset_t)&ext_pgs->hdr[segoff]); 2448 if (*nextaddr != paddr) 2449 nsegs++; 2450 *nextaddr = paddr + seglen; 2451 } 2452 } 2453 pgoff = ext_pgs->first_pg_off; 2454 for (i = 0; i < ext_pgs->npgs && len > 0; i++) { 2455 pglen = mbuf_ext_pg_len(ext_pgs, i, pgoff); 2456 if (off >= pglen) { 2457 off -= pglen; 2458 pgoff = 0; 2459 continue; 2460 } 2461 seglen = pglen - off; 2462 segoff = pgoff + off; 2463 off = 0; 2464 seglen = min(seglen, len); 2465 len -= seglen; 2466 paddr = ext_pgs->pa[i] + segoff; 2467 if (*nextaddr != paddr) 2468 nsegs++; 2469 *nextaddr = paddr + seglen; 2470 pgoff = 0; 2471 }; 2472 if (len != 0) { 2473 seglen = min(len, ext_pgs->trail_len - off); 2474 len -= seglen; 2475 paddr = pmap_kextract((vm_offset_t)&ext_pgs->trail[off]); 2476 if (*nextaddr != paddr) 2477 nsegs++; 2478 *nextaddr = paddr + seglen; 2479 } 2480 2481 return (nsegs); 2482 } 2483 2484 2485 /* 2486 * Can deal with empty mbufs in the chain that have m_len = 0, but the chain 2487 * must have at least one mbuf that's not empty. It is possible for this 2488 * routine to return 0 if skip accounts for all the contents of the mbuf chain. 2489 */ 2490 static inline int 2491 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags) 2492 { 2493 vm_paddr_t nextaddr, paddr; 2494 vm_offset_t va; 2495 int len, nsegs; 2496 2497 M_ASSERTPKTHDR(m); 2498 MPASS(m->m_pkthdr.len > 0); 2499 MPASS(m->m_pkthdr.len >= skip); 2500 2501 nsegs = 0; 2502 nextaddr = 0; 2503 for (; m; m = m->m_next) { 2504 len = m->m_len; 2505 if (__predict_false(len == 0)) 2506 continue; 2507 if (skip >= len) { 2508 skip -= len; 2509 continue; 2510 } 2511 if ((m->m_flags & M_NOMAP) != 0) { 2512 *cflags |= MC_NOMAP; 2513 nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr); 2514 skip = 0; 2515 continue; 2516 } 2517 va = mtod(m, vm_offset_t) + skip; 2518 len -= skip; 2519 skip = 0; 2520 paddr = pmap_kextract(va); 2521 nsegs += sglist_count((void *)(uintptr_t)va, len); 2522 if (paddr == nextaddr) 2523 nsegs--; 2524 nextaddr = pmap_kextract(va + len - 1) + 1; 2525 } 2526 2527 return (nsegs); 2528 } 2529 2530 /* 2531 * Analyze the mbuf to determine its tx needs. The mbuf passed in may change: 2532 * a) caller can assume it's been freed if this function returns with an error. 2533 * b) it may get defragged up if the gather list is too long for the hardware. 2534 */ 2535 int 2536 parse_pkt(struct adapter *sc, struct mbuf **mp) 2537 { 2538 struct mbuf *m0 = *mp, *m; 2539 int rc, nsegs, defragged = 0, offset; 2540 struct ether_header *eh; 2541 void *l3hdr; 2542 #if defined(INET) || defined(INET6) 2543 struct tcphdr *tcp; 2544 #endif 2545 uint16_t eh_type; 2546 uint8_t cflags; 2547 2548 cflags = 0; 2549 M_ASSERTPKTHDR(m0); 2550 if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) { 2551 rc = EINVAL; 2552 fail: 2553 m_freem(m0); 2554 *mp = NULL; 2555 return (rc); 2556 } 2557 restart: 2558 /* 2559 * First count the number of gather list segments in the payload. 2560 * Defrag the mbuf if nsegs exceeds the hardware limit. 2561 */ 2562 M_ASSERTPKTHDR(m0); 2563 MPASS(m0->m_pkthdr.len > 0); 2564 nsegs = count_mbuf_nsegs(m0, 0, &cflags); 2565 if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) { 2566 if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) { 2567 rc = EFBIG; 2568 goto fail; 2569 } 2570 *mp = m0 = m; /* update caller's copy after defrag */ 2571 goto restart; 2572 } 2573 2574 if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN && 2575 !(cflags & MC_NOMAP))) { 2576 m0 = m_pullup(m0, m0->m_pkthdr.len); 2577 if (m0 == NULL) { 2578 /* Should have left well enough alone. */ 2579 rc = EFBIG; 2580 goto fail; 2581 } 2582 *mp = m0; /* update caller's copy after pullup */ 2583 goto restart; 2584 } 2585 set_mbuf_nsegs(m0, nsegs); 2586 set_mbuf_cflags(m0, cflags); 2587 if (sc->flags & IS_VF) 2588 set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0))); 2589 else 2590 set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0))); 2591 2592 #ifdef RATELIMIT 2593 /* 2594 * Ethofld is limited to TCP and UDP for now, and only when L4 hw 2595 * checksumming is enabled. needs_l4_csum happens to check for all the 2596 * right things. 2597 */ 2598 if (__predict_false(needs_eo(m0) && !needs_l4_csum(m0))) { 2599 m_snd_tag_rele(m0->m_pkthdr.snd_tag); 2600 m0->m_pkthdr.snd_tag = NULL; 2601 m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG; 2602 } 2603 #endif 2604 2605 if (!needs_tso(m0) && 2606 #ifdef RATELIMIT 2607 !needs_eo(m0) && 2608 #endif 2609 !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0)))) 2610 return (0); 2611 2612 m = m0; 2613 eh = mtod(m, struct ether_header *); 2614 eh_type = ntohs(eh->ether_type); 2615 if (eh_type == ETHERTYPE_VLAN) { 2616 struct ether_vlan_header *evh = (void *)eh; 2617 2618 eh_type = ntohs(evh->evl_proto); 2619 m0->m_pkthdr.l2hlen = sizeof(*evh); 2620 } else 2621 m0->m_pkthdr.l2hlen = sizeof(*eh); 2622 2623 offset = 0; 2624 l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen); 2625 2626 switch (eh_type) { 2627 #ifdef INET6 2628 case ETHERTYPE_IPV6: 2629 { 2630 struct ip6_hdr *ip6 = l3hdr; 2631 2632 MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP); 2633 2634 m0->m_pkthdr.l3hlen = sizeof(*ip6); 2635 break; 2636 } 2637 #endif 2638 #ifdef INET 2639 case ETHERTYPE_IP: 2640 { 2641 struct ip *ip = l3hdr; 2642 2643 m0->m_pkthdr.l3hlen = ip->ip_hl * 4; 2644 break; 2645 } 2646 #endif 2647 default: 2648 panic("%s: ethertype 0x%04x unknown. if_cxgbe must be compiled" 2649 " with the same INET/INET6 options as the kernel.", 2650 __func__, eh_type); 2651 } 2652 2653 #if defined(INET) || defined(INET6) 2654 if (needs_tcp_csum(m0)) { 2655 tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen); 2656 m0->m_pkthdr.l4hlen = tcp->th_off * 4; 2657 #ifdef RATELIMIT 2658 if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) { 2659 set_mbuf_eo_tsclk_tsoff(m0, 2660 V_FW_ETH_TX_EO_WR_TSCLK(tsclk) | 2661 V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1)); 2662 } else 2663 set_mbuf_eo_tsclk_tsoff(m0, 0); 2664 } else if (needs_udp_csum(m)) { 2665 m0->m_pkthdr.l4hlen = sizeof(struct udphdr); 2666 #endif 2667 } 2668 #ifdef RATELIMIT 2669 if (needs_eo(m0)) { 2670 u_int immhdrs; 2671 2672 /* EO WRs have the headers in the WR and not the GL. */ 2673 immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + 2674 m0->m_pkthdr.l4hlen; 2675 cflags = 0; 2676 nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags); 2677 MPASS(cflags == mbuf_cflags(m0)); 2678 set_mbuf_eo_nsegs(m0, nsegs); 2679 set_mbuf_eo_len16(m0, 2680 txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0))); 2681 } 2682 #endif 2683 #endif 2684 MPASS(m0 == *mp); 2685 return (0); 2686 } 2687 2688 void * 2689 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie) 2690 { 2691 struct sge_eq *eq = &wrq->eq; 2692 struct adapter *sc = wrq->adapter; 2693 int ndesc, available; 2694 struct wrqe *wr; 2695 void *w; 2696 2697 MPASS(len16 > 0); 2698 ndesc = howmany(len16, EQ_ESIZE / 16); 2699 MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC); 2700 2701 EQ_LOCK(eq); 2702 2703 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 2704 drain_wrq_wr_list(sc, wrq); 2705 2706 if (!STAILQ_EMPTY(&wrq->wr_list)) { 2707 slowpath: 2708 EQ_UNLOCK(eq); 2709 wr = alloc_wrqe(len16 * 16, wrq); 2710 if (__predict_false(wr == NULL)) 2711 return (NULL); 2712 cookie->pidx = -1; 2713 cookie->ndesc = ndesc; 2714 return (&wr->wr); 2715 } 2716 2717 eq->cidx = read_hw_cidx(eq); 2718 if (eq->pidx == eq->cidx) 2719 available = eq->sidx - 1; 2720 else 2721 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2722 if (available < ndesc) 2723 goto slowpath; 2724 2725 cookie->pidx = eq->pidx; 2726 cookie->ndesc = ndesc; 2727 TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link); 2728 2729 w = &eq->desc[eq->pidx]; 2730 IDXINCR(eq->pidx, ndesc, eq->sidx); 2731 if (__predict_false(cookie->pidx + ndesc > eq->sidx)) { 2732 w = &wrq->ss[0]; 2733 wrq->ss_pidx = cookie->pidx; 2734 wrq->ss_len = len16 * 16; 2735 } 2736 2737 EQ_UNLOCK(eq); 2738 2739 return (w); 2740 } 2741 2742 void 2743 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie) 2744 { 2745 struct sge_eq *eq = &wrq->eq; 2746 struct adapter *sc = wrq->adapter; 2747 int ndesc, pidx; 2748 struct wrq_cookie *prev, *next; 2749 2750 if (cookie->pidx == -1) { 2751 struct wrqe *wr = __containerof(w, struct wrqe, wr); 2752 2753 t4_wrq_tx(sc, wr); 2754 return; 2755 } 2756 2757 if (__predict_false(w == &wrq->ss[0])) { 2758 int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE; 2759 2760 MPASS(wrq->ss_len > n); /* WR had better wrap around. */ 2761 bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n); 2762 bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n); 2763 wrq->tx_wrs_ss++; 2764 } else 2765 wrq->tx_wrs_direct++; 2766 2767 EQ_LOCK(eq); 2768 ndesc = cookie->ndesc; /* Can be more than SGE_MAX_WR_NDESC here. */ 2769 pidx = cookie->pidx; 2770 MPASS(pidx >= 0 && pidx < eq->sidx); 2771 prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link); 2772 next = TAILQ_NEXT(cookie, link); 2773 if (prev == NULL) { 2774 MPASS(pidx == eq->dbidx); 2775 if (next == NULL || ndesc >= 16) { 2776 int available; 2777 struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ 2778 2779 /* 2780 * Note that the WR via which we'll request tx updates 2781 * is at pidx and not eq->pidx, which has moved on 2782 * already. 2783 */ 2784 dst = (void *)&eq->desc[pidx]; 2785 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2786 if (available < eq->sidx / 4 && 2787 atomic_cmpset_int(&eq->equiq, 0, 1)) { 2788 /* 2789 * XXX: This is not 100% reliable with some 2790 * types of WRs. But this is a very unusual 2791 * situation for an ofld/ctrl queue anyway. 2792 */ 2793 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 2794 F_FW_WR_EQUEQ); 2795 } 2796 2797 ring_eq_db(wrq->adapter, eq, ndesc); 2798 } else { 2799 MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc); 2800 next->pidx = pidx; 2801 next->ndesc += ndesc; 2802 } 2803 } else { 2804 MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc); 2805 prev->ndesc += ndesc; 2806 } 2807 TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link); 2808 2809 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 2810 drain_wrq_wr_list(sc, wrq); 2811 2812 #ifdef INVARIANTS 2813 if (TAILQ_EMPTY(&wrq->incomplete_wrs)) { 2814 /* Doorbell must have caught up to the pidx. */ 2815 MPASS(wrq->eq.pidx == wrq->eq.dbidx); 2816 } 2817 #endif 2818 EQ_UNLOCK(eq); 2819 } 2820 2821 static u_int 2822 can_resume_eth_tx(struct mp_ring *r) 2823 { 2824 struct sge_eq *eq = r->cookie; 2825 2826 return (total_available_tx_desc(eq) > eq->sidx / 8); 2827 } 2828 2829 static inline int 2830 cannot_use_txpkts(struct mbuf *m) 2831 { 2832 /* maybe put a GL limit too, to avoid silliness? */ 2833 2834 return (needs_tso(m) || (mbuf_cflags(m) & MC_RAW_WR) != 0); 2835 } 2836 2837 static inline int 2838 discard_tx(struct sge_eq *eq) 2839 { 2840 2841 return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED); 2842 } 2843 2844 static inline int 2845 wr_can_update_eq(struct fw_eth_tx_pkts_wr *wr) 2846 { 2847 2848 switch (G_FW_WR_OP(be32toh(wr->op_pkd))) { 2849 case FW_ULPTX_WR: 2850 case FW_ETH_TX_PKT_WR: 2851 case FW_ETH_TX_PKTS_WR: 2852 case FW_ETH_TX_PKT_VM_WR: 2853 return (1); 2854 default: 2855 return (0); 2856 } 2857 } 2858 2859 /* 2860 * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to 2861 * be consumed. Return the actual number consumed. 0 indicates a stall. 2862 */ 2863 static u_int 2864 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx) 2865 { 2866 struct sge_txq *txq = r->cookie; 2867 struct sge_eq *eq = &txq->eq; 2868 struct ifnet *ifp = txq->ifp; 2869 struct vi_info *vi = ifp->if_softc; 2870 struct port_info *pi = vi->pi; 2871 struct adapter *sc = pi->adapter; 2872 u_int total, remaining; /* # of packets */ 2873 u_int available, dbdiff; /* # of hardware descriptors */ 2874 u_int n, next_cidx; 2875 struct mbuf *m0, *tail; 2876 struct txpkts txp; 2877 struct fw_eth_tx_pkts_wr *wr; /* any fw WR struct will do */ 2878 2879 remaining = IDXDIFF(pidx, cidx, r->size); 2880 MPASS(remaining > 0); /* Must not be called without work to do. */ 2881 total = 0; 2882 2883 TXQ_LOCK(txq); 2884 if (__predict_false(discard_tx(eq))) { 2885 while (cidx != pidx) { 2886 m0 = r->items[cidx]; 2887 m_freem(m0); 2888 if (++cidx == r->size) 2889 cidx = 0; 2890 } 2891 reclaim_tx_descs(txq, 2048); 2892 total = remaining; 2893 goto done; 2894 } 2895 2896 /* How many hardware descriptors do we have readily available. */ 2897 if (eq->pidx == eq->cidx) 2898 available = eq->sidx - 1; 2899 else 2900 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2901 dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx); 2902 2903 while (remaining > 0) { 2904 2905 m0 = r->items[cidx]; 2906 M_ASSERTPKTHDR(m0); 2907 MPASS(m0->m_nextpkt == NULL); 2908 2909 if (available < SGE_MAX_WR_NDESC) { 2910 available += reclaim_tx_descs(txq, 64); 2911 if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16)) 2912 break; /* out of descriptors */ 2913 } 2914 2915 next_cidx = cidx + 1; 2916 if (__predict_false(next_cidx == r->size)) 2917 next_cidx = 0; 2918 2919 wr = (void *)&eq->desc[eq->pidx]; 2920 if (sc->flags & IS_VF) { 2921 total++; 2922 remaining--; 2923 ETHER_BPF_MTAP(ifp, m0); 2924 n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0, 2925 available); 2926 } else if (remaining > 1 && 2927 try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) { 2928 2929 /* pkts at cidx, next_cidx should both be in txp. */ 2930 MPASS(txp.npkt == 2); 2931 tail = r->items[next_cidx]; 2932 MPASS(tail->m_nextpkt == NULL); 2933 ETHER_BPF_MTAP(ifp, m0); 2934 ETHER_BPF_MTAP(ifp, tail); 2935 m0->m_nextpkt = tail; 2936 2937 if (__predict_false(++next_cidx == r->size)) 2938 next_cidx = 0; 2939 2940 while (next_cidx != pidx) { 2941 if (add_to_txpkts(r->items[next_cidx], &txp, 2942 available) != 0) 2943 break; 2944 tail->m_nextpkt = r->items[next_cidx]; 2945 tail = tail->m_nextpkt; 2946 ETHER_BPF_MTAP(ifp, tail); 2947 if (__predict_false(++next_cidx == r->size)) 2948 next_cidx = 0; 2949 } 2950 2951 n = write_txpkts_wr(txq, wr, m0, &txp, available); 2952 total += txp.npkt; 2953 remaining -= txp.npkt; 2954 } else if (mbuf_cflags(m0) & MC_RAW_WR) { 2955 total++; 2956 remaining--; 2957 n = write_raw_wr(txq, (void *)wr, m0, available); 2958 } else { 2959 total++; 2960 remaining--; 2961 ETHER_BPF_MTAP(ifp, m0); 2962 n = write_txpkt_wr(txq, (void *)wr, m0, available); 2963 } 2964 MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC); 2965 2966 available -= n; 2967 dbdiff += n; 2968 IDXINCR(eq->pidx, n, eq->sidx); 2969 2970 if (wr_can_update_eq(wr)) { 2971 if (total_available_tx_desc(eq) < eq->sidx / 4 && 2972 atomic_cmpset_int(&eq->equiq, 0, 1)) { 2973 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 2974 F_FW_WR_EQUEQ); 2975 eq->equeqidx = eq->pidx; 2976 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 2977 32) { 2978 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 2979 eq->equeqidx = eq->pidx; 2980 } 2981 } 2982 2983 if (dbdiff >= 16 && remaining >= 4) { 2984 ring_eq_db(sc, eq, dbdiff); 2985 available += reclaim_tx_descs(txq, 4 * dbdiff); 2986 dbdiff = 0; 2987 } 2988 2989 cidx = next_cidx; 2990 } 2991 if (dbdiff != 0) { 2992 ring_eq_db(sc, eq, dbdiff); 2993 reclaim_tx_descs(txq, 32); 2994 } 2995 done: 2996 TXQ_UNLOCK(txq); 2997 2998 return (total); 2999 } 3000 3001 static inline void 3002 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, 3003 int qsize) 3004 { 3005 3006 KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, 3007 ("%s: bad tmr_idx %d", __func__, tmr_idx)); 3008 KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ 3009 ("%s: bad pktc_idx %d", __func__, pktc_idx)); 3010 3011 iq->flags = 0; 3012 iq->adapter = sc; 3013 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); 3014 iq->intr_pktc_idx = SGE_NCOUNTERS - 1; 3015 if (pktc_idx >= 0) { 3016 iq->intr_params |= F_QINTR_CNT_EN; 3017 iq->intr_pktc_idx = pktc_idx; 3018 } 3019 iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */ 3020 iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE; 3021 } 3022 3023 static inline void 3024 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name) 3025 { 3026 3027 fl->qsize = qsize; 3028 fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 3029 strlcpy(fl->lockname, name, sizeof(fl->lockname)); 3030 if (sc->flags & BUF_PACKING_OK && 3031 ((!is_t4(sc) && buffer_packing) || /* T5+: enabled unless 0 */ 3032 (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */ 3033 fl->flags |= FL_BUF_PACKING; 3034 find_best_refill_source(sc, fl, maxp); 3035 find_safe_refill_source(sc, fl); 3036 } 3037 3038 static inline void 3039 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize, 3040 uint8_t tx_chan, uint16_t iqid, char *name) 3041 { 3042 KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype)); 3043 3044 eq->flags = eqtype & EQ_TYPEMASK; 3045 eq->tx_chan = tx_chan; 3046 eq->iqid = iqid; 3047 eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 3048 strlcpy(eq->lockname, name, sizeof(eq->lockname)); 3049 } 3050 3051 static int 3052 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, 3053 bus_dmamap_t *map, bus_addr_t *pa, void **va) 3054 { 3055 int rc; 3056 3057 rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, 3058 BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); 3059 if (rc != 0) { 3060 device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc); 3061 goto done; 3062 } 3063 3064 rc = bus_dmamem_alloc(*tag, va, 3065 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); 3066 if (rc != 0) { 3067 device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc); 3068 goto done; 3069 } 3070 3071 rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); 3072 if (rc != 0) { 3073 device_printf(sc->dev, "cannot load DMA map: %d\n", rc); 3074 goto done; 3075 } 3076 done: 3077 if (rc) 3078 free_ring(sc, *tag, *map, *pa, *va); 3079 3080 return (rc); 3081 } 3082 3083 static int 3084 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, 3085 bus_addr_t pa, void *va) 3086 { 3087 if (pa) 3088 bus_dmamap_unload(tag, map); 3089 if (va) 3090 bus_dmamem_free(tag, va, map); 3091 if (tag) 3092 bus_dma_tag_destroy(tag); 3093 3094 return (0); 3095 } 3096 3097 /* 3098 * Allocates the ring for an ingress queue and an optional freelist. If the 3099 * freelist is specified it will be allocated and then associated with the 3100 * ingress queue. 3101 * 3102 * Returns errno on failure. Resources allocated up to that point may still be 3103 * allocated. Caller is responsible for cleanup in case this function fails. 3104 * 3105 * If the ingress queue will take interrupts directly then the intr_idx 3106 * specifies the vector, starting from 0. -1 means the interrupts for this 3107 * queue should be forwarded to the fwq. 3108 */ 3109 static int 3110 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl, 3111 int intr_idx, int cong) 3112 { 3113 int rc, i, cntxt_id; 3114 size_t len; 3115 struct fw_iq_cmd c; 3116 struct port_info *pi = vi->pi; 3117 struct adapter *sc = iq->adapter; 3118 struct sge_params *sp = &sc->params.sge; 3119 __be32 v = 0; 3120 3121 len = iq->qsize * IQ_ESIZE; 3122 rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, 3123 (void **)&iq->desc); 3124 if (rc != 0) 3125 return (rc); 3126 3127 bzero(&c, sizeof(c)); 3128 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 3129 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | 3130 V_FW_IQ_CMD_VFN(0)); 3131 3132 c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | 3133 FW_LEN16(c)); 3134 3135 /* Special handling for firmware event queue */ 3136 if (iq == &sc->sge.fwq) 3137 v |= F_FW_IQ_CMD_IQASYNCH; 3138 3139 if (intr_idx < 0) { 3140 /* Forwarded interrupts, all headed to fwq */ 3141 v |= F_FW_IQ_CMD_IQANDST; 3142 v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id); 3143 } else { 3144 KASSERT(intr_idx < sc->intr_count, 3145 ("%s: invalid direct intr_idx %d", __func__, intr_idx)); 3146 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); 3147 } 3148 3149 c.type_to_iqandstindex = htobe32(v | 3150 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 3151 V_FW_IQ_CMD_VIID(vi->viid) | 3152 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); 3153 c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 3154 F_FW_IQ_CMD_IQGTSMODE | 3155 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | 3156 V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4)); 3157 c.iqsize = htobe16(iq->qsize); 3158 c.iqaddr = htobe64(iq->ba); 3159 if (cong >= 0) 3160 c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN); 3161 3162 if (fl) { 3163 mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); 3164 3165 len = fl->qsize * EQ_ESIZE; 3166 rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, 3167 &fl->ba, (void **)&fl->desc); 3168 if (rc) 3169 return (rc); 3170 3171 /* Allocate space for one software descriptor per buffer. */ 3172 rc = alloc_fl_sdesc(fl); 3173 if (rc != 0) { 3174 device_printf(sc->dev, 3175 "failed to setup fl software descriptors: %d\n", 3176 rc); 3177 return (rc); 3178 } 3179 3180 if (fl->flags & FL_BUF_PACKING) { 3181 fl->lowat = roundup2(sp->fl_starve_threshold2, 8); 3182 fl->buf_boundary = sp->pack_boundary; 3183 } else { 3184 fl->lowat = roundup2(sp->fl_starve_threshold, 8); 3185 fl->buf_boundary = 16; 3186 } 3187 if (fl_pad && fl->buf_boundary < sp->pad_boundary) 3188 fl->buf_boundary = sp->pad_boundary; 3189 3190 c.iqns_to_fl0congen |= 3191 htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | 3192 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | 3193 (fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) | 3194 (fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN : 3195 0)); 3196 if (cong >= 0) { 3197 c.iqns_to_fl0congen |= 3198 htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | 3199 F_FW_IQ_CMD_FL0CONGCIF | 3200 F_FW_IQ_CMD_FL0CONGEN); 3201 } 3202 c.fl0dcaen_to_fl0cidxfthresh = 3203 htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ? 3204 X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) | 3205 V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ? 3206 X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B)); 3207 c.fl0size = htobe16(fl->qsize); 3208 c.fl0addr = htobe64(fl->ba); 3209 } 3210 3211 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3212 if (rc != 0) { 3213 device_printf(sc->dev, 3214 "failed to create ingress queue: %d\n", rc); 3215 return (rc); 3216 } 3217 3218 iq->cidx = 0; 3219 iq->gen = F_RSPD_GEN; 3220 iq->intr_next = iq->intr_params; 3221 iq->cntxt_id = be16toh(c.iqid); 3222 iq->abs_id = be16toh(c.physiqid); 3223 iq->flags |= IQ_ALLOCATED; 3224 3225 cntxt_id = iq->cntxt_id - sc->sge.iq_start; 3226 if (cntxt_id >= sc->sge.niq) { 3227 panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, 3228 cntxt_id, sc->sge.niq - 1); 3229 } 3230 sc->sge.iqmap[cntxt_id] = iq; 3231 3232 if (fl) { 3233 u_int qid; 3234 3235 iq->flags |= IQ_HAS_FL; 3236 fl->cntxt_id = be16toh(c.fl0id); 3237 fl->pidx = fl->cidx = 0; 3238 3239 cntxt_id = fl->cntxt_id - sc->sge.eq_start; 3240 if (cntxt_id >= sc->sge.neq) { 3241 panic("%s: fl->cntxt_id (%d) more than the max (%d)", 3242 __func__, cntxt_id, sc->sge.neq - 1); 3243 } 3244 sc->sge.eqmap[cntxt_id] = (void *)fl; 3245 3246 qid = fl->cntxt_id; 3247 if (isset(&sc->doorbells, DOORBELL_UDB)) { 3248 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 3249 uint32_t mask = (1 << s_qpp) - 1; 3250 volatile uint8_t *udb; 3251 3252 udb = sc->udbs_base + UDBS_DB_OFFSET; 3253 udb += (qid >> s_qpp) << PAGE_SHIFT; 3254 qid &= mask; 3255 if (qid < PAGE_SIZE / UDBS_SEG_SIZE) { 3256 udb += qid << UDBS_SEG_SHIFT; 3257 qid = 0; 3258 } 3259 fl->udb = (volatile void *)udb; 3260 } 3261 fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db; 3262 3263 FL_LOCK(fl); 3264 /* Enough to make sure the SGE doesn't think it's starved */ 3265 refill_fl(sc, fl, fl->lowat); 3266 FL_UNLOCK(fl); 3267 } 3268 3269 if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) { 3270 uint32_t param, val; 3271 3272 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 3273 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 3274 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id); 3275 if (cong == 0) 3276 val = 1 << 19; 3277 else { 3278 val = 2 << 19; 3279 for (i = 0; i < 4; i++) { 3280 if (cong & (1 << i)) 3281 val |= 1 << (i << 2); 3282 } 3283 } 3284 3285 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3286 if (rc != 0) { 3287 /* report error but carry on */ 3288 device_printf(sc->dev, 3289 "failed to set congestion manager context for " 3290 "ingress queue %d: %d\n", iq->cntxt_id, rc); 3291 } 3292 } 3293 3294 /* Enable IQ interrupts */ 3295 atomic_store_rel_int(&iq->state, IQS_IDLE); 3296 t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) | 3297 V_INGRESSQID(iq->cntxt_id)); 3298 3299 return (0); 3300 } 3301 3302 static int 3303 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl) 3304 { 3305 int rc; 3306 struct adapter *sc = iq->adapter; 3307 device_t dev; 3308 3309 if (sc == NULL) 3310 return (0); /* nothing to do */ 3311 3312 dev = vi ? vi->dev : sc->dev; 3313 3314 if (iq->flags & IQ_ALLOCATED) { 3315 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, 3316 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, 3317 fl ? fl->cntxt_id : 0xffff, 0xffff); 3318 if (rc != 0) { 3319 device_printf(dev, 3320 "failed to free queue %p: %d\n", iq, rc); 3321 return (rc); 3322 } 3323 iq->flags &= ~IQ_ALLOCATED; 3324 } 3325 3326 free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); 3327 3328 bzero(iq, sizeof(*iq)); 3329 3330 if (fl) { 3331 free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, 3332 fl->desc); 3333 3334 if (fl->sdesc) 3335 free_fl_sdesc(sc, fl); 3336 3337 if (mtx_initialized(&fl->fl_lock)) 3338 mtx_destroy(&fl->fl_lock); 3339 3340 bzero(fl, sizeof(*fl)); 3341 } 3342 3343 return (0); 3344 } 3345 3346 static void 3347 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, 3348 struct sge_iq *iq) 3349 { 3350 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3351 3352 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba, 3353 "bus address of descriptor ring"); 3354 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3355 iq->qsize * IQ_ESIZE, "descriptor ring size in bytes"); 3356 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", 3357 CTLTYPE_INT | CTLFLAG_RD, &iq->abs_id, 0, sysctl_uint16, "I", 3358 "absolute id of the queue"); 3359 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3360 CTLTYPE_INT | CTLFLAG_RD, &iq->cntxt_id, 0, sysctl_uint16, "I", 3361 "SGE context id of the queue"); 3362 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3363 CTLTYPE_INT | CTLFLAG_RD, &iq->cidx, 0, sysctl_uint16, "I", 3364 "consumer index"); 3365 } 3366 3367 static void 3368 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 3369 struct sysctl_oid *oid, struct sge_fl *fl) 3370 { 3371 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3372 3373 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 3374 "freelist"); 3375 children = SYSCTL_CHILDREN(oid); 3376 3377 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 3378 &fl->ba, "bus address of descriptor ring"); 3379 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3380 fl->sidx * EQ_ESIZE + sc->params.sge.spg_len, 3381 "desc ring size in bytes"); 3382 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3383 CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I", 3384 "SGE context id of the freelist"); 3385 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL, 3386 fl_pad ? 1 : 0, "padding enabled"); 3387 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL, 3388 fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled"); 3389 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx, 3390 0, "consumer index"); 3391 if (fl->flags & FL_BUF_PACKING) { 3392 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset", 3393 CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset"); 3394 } 3395 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx, 3396 0, "producer index"); 3397 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated", 3398 CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated"); 3399 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined", 3400 CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters"); 3401 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated", 3402 CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated"); 3403 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled", 3404 CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled"); 3405 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled", 3406 CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)"); 3407 } 3408 3409 static int 3410 alloc_fwq(struct adapter *sc) 3411 { 3412 int rc, intr_idx; 3413 struct sge_iq *fwq = &sc->sge.fwq; 3414 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 3415 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3416 3417 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE); 3418 if (sc->flags & IS_VF) 3419 intr_idx = 0; 3420 else 3421 intr_idx = sc->intr_count > 1 ? 1 : 0; 3422 rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1); 3423 if (rc != 0) { 3424 device_printf(sc->dev, 3425 "failed to create firmware event queue: %d\n", rc); 3426 return (rc); 3427 } 3428 3429 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD, 3430 NULL, "firmware event queue"); 3431 add_iq_sysctls(&sc->ctx, oid, fwq); 3432 3433 return (0); 3434 } 3435 3436 static int 3437 free_fwq(struct adapter *sc) 3438 { 3439 return free_iq_fl(NULL, &sc->sge.fwq, NULL); 3440 } 3441 3442 static int 3443 alloc_ctrlq(struct adapter *sc, struct sge_wrq *ctrlq, int idx, 3444 struct sysctl_oid *oid) 3445 { 3446 int rc; 3447 char name[16]; 3448 struct sysctl_oid_list *children; 3449 3450 snprintf(name, sizeof(name), "%s ctrlq%d", device_get_nameunit(sc->dev), 3451 idx); 3452 init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[idx]->tx_chan, 3453 sc->sge.fwq.cntxt_id, name); 3454 3455 children = SYSCTL_CHILDREN(oid); 3456 snprintf(name, sizeof(name), "%d", idx); 3457 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3458 NULL, "ctrl queue"); 3459 rc = alloc_wrq(sc, NULL, ctrlq, oid); 3460 3461 return (rc); 3462 } 3463 3464 int 3465 tnl_cong(struct port_info *pi, int drop) 3466 { 3467 3468 if (drop == -1) 3469 return (-1); 3470 else if (drop == 1) 3471 return (0); 3472 else 3473 return (pi->rx_e_chan_map); 3474 } 3475 3476 static int 3477 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx, 3478 struct sysctl_oid *oid) 3479 { 3480 int rc; 3481 struct adapter *sc = vi->pi->adapter; 3482 struct sysctl_oid_list *children; 3483 char name[16]; 3484 3485 rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx, 3486 tnl_cong(vi->pi, cong_drop)); 3487 if (rc != 0) 3488 return (rc); 3489 3490 if (idx == 0) 3491 sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id; 3492 else 3493 KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id, 3494 ("iq_base mismatch")); 3495 KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF, 3496 ("PF with non-zero iq_base")); 3497 3498 /* 3499 * The freelist is just barely above the starvation threshold right now, 3500 * fill it up a bit more. 3501 */ 3502 FL_LOCK(&rxq->fl); 3503 refill_fl(sc, &rxq->fl, 128); 3504 FL_UNLOCK(&rxq->fl); 3505 3506 #if defined(INET) || defined(INET6) 3507 rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs); 3508 if (rc != 0) 3509 return (rc); 3510 MPASS(rxq->lro.ifp == vi->ifp); /* also indicates LRO init'ed */ 3511 3512 if (vi->ifp->if_capenable & IFCAP_LRO) 3513 rxq->iq.flags |= IQ_LRO_ENABLED; 3514 #endif 3515 if (vi->ifp->if_capenable & IFCAP_HWRXTSTMP) 3516 rxq->iq.flags |= IQ_RX_TIMESTAMP; 3517 rxq->ifp = vi->ifp; 3518 3519 children = SYSCTL_CHILDREN(oid); 3520 3521 snprintf(name, sizeof(name), "%d", idx); 3522 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3523 NULL, "rx queue"); 3524 children = SYSCTL_CHILDREN(oid); 3525 3526 add_iq_sysctls(&vi->ctx, oid, &rxq->iq); 3527 #if defined(INET) || defined(INET6) 3528 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, 3529 &rxq->lro.lro_queued, 0, NULL); 3530 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, 3531 &rxq->lro.lro_flushed, 0, NULL); 3532 #endif 3533 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, 3534 &rxq->rxcsum, "# of times hardware assisted with checksum"); 3535 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction", 3536 CTLFLAG_RD, &rxq->vlan_extraction, 3537 "# of times hardware extracted 802.1Q tag"); 3538 3539 add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl); 3540 3541 return (rc); 3542 } 3543 3544 static int 3545 free_rxq(struct vi_info *vi, struct sge_rxq *rxq) 3546 { 3547 int rc; 3548 3549 #if defined(INET) || defined(INET6) 3550 if (rxq->lro.ifp) { 3551 tcp_lro_free(&rxq->lro); 3552 rxq->lro.ifp = NULL; 3553 } 3554 #endif 3555 3556 rc = free_iq_fl(vi, &rxq->iq, &rxq->fl); 3557 if (rc == 0) 3558 bzero(rxq, sizeof(*rxq)); 3559 3560 return (rc); 3561 } 3562 3563 #ifdef TCP_OFFLOAD 3564 static int 3565 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, 3566 int intr_idx, int idx, struct sysctl_oid *oid) 3567 { 3568 struct port_info *pi = vi->pi; 3569 int rc; 3570 struct sysctl_oid_list *children; 3571 char name[16]; 3572 3573 rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0); 3574 if (rc != 0) 3575 return (rc); 3576 3577 children = SYSCTL_CHILDREN(oid); 3578 3579 snprintf(name, sizeof(name), "%d", idx); 3580 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3581 NULL, "rx queue"); 3582 add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq); 3583 add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl); 3584 3585 return (rc); 3586 } 3587 3588 static int 3589 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq) 3590 { 3591 int rc; 3592 3593 rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl); 3594 if (rc == 0) 3595 bzero(ofld_rxq, sizeof(*ofld_rxq)); 3596 3597 return (rc); 3598 } 3599 #endif 3600 3601 #ifdef DEV_NETMAP 3602 static int 3603 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx, 3604 int idx, struct sysctl_oid *oid) 3605 { 3606 int rc; 3607 struct sysctl_oid_list *children; 3608 struct sysctl_ctx_list *ctx; 3609 char name[16]; 3610 size_t len; 3611 struct adapter *sc = vi->pi->adapter; 3612 struct netmap_adapter *na = NA(vi->ifp); 3613 3614 MPASS(na != NULL); 3615 3616 len = vi->qsize_rxq * IQ_ESIZE; 3617 rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map, 3618 &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc); 3619 if (rc != 0) 3620 return (rc); 3621 3622 len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len; 3623 rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map, 3624 &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc); 3625 if (rc != 0) 3626 return (rc); 3627 3628 nm_rxq->vi = vi; 3629 nm_rxq->nid = idx; 3630 nm_rxq->iq_cidx = 0; 3631 nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE; 3632 nm_rxq->iq_gen = F_RSPD_GEN; 3633 nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0; 3634 nm_rxq->fl_sidx = na->num_rx_desc; 3635 nm_rxq->intr_idx = intr_idx; 3636 nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID; 3637 3638 ctx = &vi->ctx; 3639 children = SYSCTL_CHILDREN(oid); 3640 3641 snprintf(name, sizeof(name), "%d", idx); 3642 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, 3643 "rx queue"); 3644 children = SYSCTL_CHILDREN(oid); 3645 3646 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", 3647 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16, 3648 "I", "absolute id of the queue"); 3649 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3650 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16, 3651 "I", "SGE context id of the queue"); 3652 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3653 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I", 3654 "consumer index"); 3655 3656 children = SYSCTL_CHILDREN(oid); 3657 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 3658 "freelist"); 3659 children = SYSCTL_CHILDREN(oid); 3660 3661 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3662 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16, 3663 "I", "SGE context id of the freelist"); 3664 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, 3665 &nm_rxq->fl_cidx, 0, "consumer index"); 3666 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, 3667 &nm_rxq->fl_pidx, 0, "producer index"); 3668 3669 return (rc); 3670 } 3671 3672 3673 static int 3674 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq) 3675 { 3676 struct adapter *sc = vi->pi->adapter; 3677 3678 if (vi->flags & VI_INIT_DONE) 3679 MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID); 3680 else 3681 MPASS(nm_rxq->iq_cntxt_id == 0); 3682 3683 free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba, 3684 nm_rxq->iq_desc); 3685 free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba, 3686 nm_rxq->fl_desc); 3687 3688 return (0); 3689 } 3690 3691 static int 3692 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx, 3693 struct sysctl_oid *oid) 3694 { 3695 int rc; 3696 size_t len; 3697 struct port_info *pi = vi->pi; 3698 struct adapter *sc = pi->adapter; 3699 struct netmap_adapter *na = NA(vi->ifp); 3700 char name[16]; 3701 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3702 3703 len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len; 3704 rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map, 3705 &nm_txq->ba, (void **)&nm_txq->desc); 3706 if (rc) 3707 return (rc); 3708 3709 nm_txq->pidx = nm_txq->cidx = 0; 3710 nm_txq->sidx = na->num_tx_desc; 3711 nm_txq->nid = idx; 3712 nm_txq->iqidx = iqidx; 3713 nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3714 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 3715 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 3716 nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID; 3717 3718 snprintf(name, sizeof(name), "%d", idx); 3719 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3720 NULL, "netmap tx queue"); 3721 children = SYSCTL_CHILDREN(oid); 3722 3723 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3724 &nm_txq->cntxt_id, 0, "SGE context id of the queue"); 3725 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3726 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I", 3727 "consumer index"); 3728 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 3729 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I", 3730 "producer index"); 3731 3732 return (rc); 3733 } 3734 3735 static int 3736 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq) 3737 { 3738 struct adapter *sc = vi->pi->adapter; 3739 3740 if (vi->flags & VI_INIT_DONE) 3741 MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID); 3742 else 3743 MPASS(nm_txq->cntxt_id == 0); 3744 3745 free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba, 3746 nm_txq->desc); 3747 3748 return (0); 3749 } 3750 #endif 3751 3752 /* 3753 * Returns a reasonable automatic cidx flush threshold for a given queue size. 3754 */ 3755 static u_int 3756 qsize_to_fthresh(int qsize) 3757 { 3758 u_int fthresh; 3759 3760 while (!powerof2(qsize)) 3761 qsize++; 3762 fthresh = ilog2(qsize); 3763 if (fthresh > X_CIDXFLUSHTHRESH_128) 3764 fthresh = X_CIDXFLUSHTHRESH_128; 3765 3766 return (fthresh); 3767 } 3768 3769 static int 3770 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) 3771 { 3772 int rc, cntxt_id; 3773 struct fw_eq_ctrl_cmd c; 3774 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3775 3776 bzero(&c, sizeof(c)); 3777 3778 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | 3779 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | 3780 V_FW_EQ_CTRL_CMD_VFN(0)); 3781 c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC | 3782 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 3783 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); 3784 c.physeqid_pkd = htobe32(0); 3785 c.fetchszm_to_iqid = 3786 htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 3787 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | 3788 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); 3789 c.dcaen_to_eqsize = 3790 htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3791 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3792 V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) | 3793 V_FW_EQ_CTRL_CMD_EQSIZE(qsize)); 3794 c.eqaddr = htobe64(eq->ba); 3795 3796 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3797 if (rc != 0) { 3798 device_printf(sc->dev, 3799 "failed to create control queue %d: %d\n", eq->tx_chan, rc); 3800 return (rc); 3801 } 3802 eq->flags |= EQ_ALLOCATED; 3803 3804 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid)); 3805 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3806 if (cntxt_id >= sc->sge.neq) 3807 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3808 cntxt_id, sc->sge.neq - 1); 3809 sc->sge.eqmap[cntxt_id] = eq; 3810 3811 return (rc); 3812 } 3813 3814 static int 3815 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3816 { 3817 int rc, cntxt_id; 3818 struct fw_eq_eth_cmd c; 3819 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3820 3821 bzero(&c, sizeof(c)); 3822 3823 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | 3824 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | 3825 V_FW_EQ_ETH_CMD_VFN(0)); 3826 c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | 3827 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 3828 c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE | 3829 F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid)); 3830 c.fetchszm_to_iqid = 3831 htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3832 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | 3833 V_FW_EQ_ETH_CMD_IQID(eq->iqid)); 3834 c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3835 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3836 V_FW_EQ_ETH_CMD_EQSIZE(qsize)); 3837 c.eqaddr = htobe64(eq->ba); 3838 3839 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3840 if (rc != 0) { 3841 device_printf(vi->dev, 3842 "failed to create Ethernet egress queue: %d\n", rc); 3843 return (rc); 3844 } 3845 eq->flags |= EQ_ALLOCATED; 3846 3847 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); 3848 eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd)); 3849 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3850 if (cntxt_id >= sc->sge.neq) 3851 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3852 cntxt_id, sc->sge.neq - 1); 3853 sc->sge.eqmap[cntxt_id] = eq; 3854 3855 return (rc); 3856 } 3857 3858 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 3859 static int 3860 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3861 { 3862 int rc, cntxt_id; 3863 struct fw_eq_ofld_cmd c; 3864 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3865 3866 bzero(&c, sizeof(c)); 3867 3868 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | 3869 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | 3870 V_FW_EQ_OFLD_CMD_VFN(0)); 3871 c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | 3872 F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 3873 c.fetchszm_to_iqid = 3874 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 3875 V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | 3876 F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); 3877 c.dcaen_to_eqsize = 3878 htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3879 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3880 V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) | 3881 V_FW_EQ_OFLD_CMD_EQSIZE(qsize)); 3882 c.eqaddr = htobe64(eq->ba); 3883 3884 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3885 if (rc != 0) { 3886 device_printf(vi->dev, 3887 "failed to create egress queue for TCP offload: %d\n", rc); 3888 return (rc); 3889 } 3890 eq->flags |= EQ_ALLOCATED; 3891 3892 eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd)); 3893 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3894 if (cntxt_id >= sc->sge.neq) 3895 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3896 cntxt_id, sc->sge.neq - 1); 3897 sc->sge.eqmap[cntxt_id] = eq; 3898 3899 return (rc); 3900 } 3901 #endif 3902 3903 static int 3904 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3905 { 3906 int rc, qsize; 3907 size_t len; 3908 3909 mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); 3910 3911 qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3912 len = qsize * EQ_ESIZE; 3913 rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, 3914 &eq->ba, (void **)&eq->desc); 3915 if (rc) 3916 return (rc); 3917 3918 eq->pidx = eq->cidx = eq->dbidx = 0; 3919 /* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */ 3920 eq->equeqidx = 0; 3921 eq->doorbells = sc->doorbells; 3922 3923 switch (eq->flags & EQ_TYPEMASK) { 3924 case EQ_CTRL: 3925 rc = ctrl_eq_alloc(sc, eq); 3926 break; 3927 3928 case EQ_ETH: 3929 rc = eth_eq_alloc(sc, vi, eq); 3930 break; 3931 3932 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 3933 case EQ_OFLD: 3934 rc = ofld_eq_alloc(sc, vi, eq); 3935 break; 3936 #endif 3937 3938 default: 3939 panic("%s: invalid eq type %d.", __func__, 3940 eq->flags & EQ_TYPEMASK); 3941 } 3942 if (rc != 0) { 3943 device_printf(sc->dev, 3944 "failed to allocate egress queue(%d): %d\n", 3945 eq->flags & EQ_TYPEMASK, rc); 3946 } 3947 3948 if (isset(&eq->doorbells, DOORBELL_UDB) || 3949 isset(&eq->doorbells, DOORBELL_UDBWC) || 3950 isset(&eq->doorbells, DOORBELL_WCWR)) { 3951 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 3952 uint32_t mask = (1 << s_qpp) - 1; 3953 volatile uint8_t *udb; 3954 3955 udb = sc->udbs_base + UDBS_DB_OFFSET; 3956 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */ 3957 eq->udb_qid = eq->cntxt_id & mask; /* id in page */ 3958 if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE) 3959 clrbit(&eq->doorbells, DOORBELL_WCWR); 3960 else { 3961 udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */ 3962 eq->udb_qid = 0; 3963 } 3964 eq->udb = (volatile void *)udb; 3965 } 3966 3967 return (rc); 3968 } 3969 3970 static int 3971 free_eq(struct adapter *sc, struct sge_eq *eq) 3972 { 3973 int rc; 3974 3975 if (eq->flags & EQ_ALLOCATED) { 3976 switch (eq->flags & EQ_TYPEMASK) { 3977 case EQ_CTRL: 3978 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, 3979 eq->cntxt_id); 3980 break; 3981 3982 case EQ_ETH: 3983 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, 3984 eq->cntxt_id); 3985 break; 3986 3987 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 3988 case EQ_OFLD: 3989 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, 3990 eq->cntxt_id); 3991 break; 3992 #endif 3993 3994 default: 3995 panic("%s: invalid eq type %d.", __func__, 3996 eq->flags & EQ_TYPEMASK); 3997 } 3998 if (rc != 0) { 3999 device_printf(sc->dev, 4000 "failed to free egress queue (%d): %d\n", 4001 eq->flags & EQ_TYPEMASK, rc); 4002 return (rc); 4003 } 4004 eq->flags &= ~EQ_ALLOCATED; 4005 } 4006 4007 free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); 4008 4009 if (mtx_initialized(&eq->eq_lock)) 4010 mtx_destroy(&eq->eq_lock); 4011 4012 bzero(eq, sizeof(*eq)); 4013 return (0); 4014 } 4015 4016 static int 4017 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq, 4018 struct sysctl_oid *oid) 4019 { 4020 int rc; 4021 struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx; 4022 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 4023 4024 rc = alloc_eq(sc, vi, &wrq->eq); 4025 if (rc) 4026 return (rc); 4027 4028 wrq->adapter = sc; 4029 TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq); 4030 TAILQ_INIT(&wrq->incomplete_wrs); 4031 STAILQ_INIT(&wrq->wr_list); 4032 wrq->nwr_pending = 0; 4033 wrq->ndesc_needed = 0; 4034 4035 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 4036 &wrq->eq.ba, "bus address of descriptor ring"); 4037 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 4038 wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len, 4039 "desc ring size in bytes"); 4040 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 4041 &wrq->eq.cntxt_id, 0, "SGE context id of the queue"); 4042 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 4043 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I", 4044 "consumer index"); 4045 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx", 4046 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I", 4047 "producer index"); 4048 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL, 4049 wrq->eq.sidx, "status page index"); 4050 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD, 4051 &wrq->tx_wrs_direct, "# of work requests (direct)"); 4052 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD, 4053 &wrq->tx_wrs_copied, "# of work requests (copied)"); 4054 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD, 4055 &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)"); 4056 4057 return (rc); 4058 } 4059 4060 static int 4061 free_wrq(struct adapter *sc, struct sge_wrq *wrq) 4062 { 4063 int rc; 4064 4065 rc = free_eq(sc, &wrq->eq); 4066 if (rc) 4067 return (rc); 4068 4069 bzero(wrq, sizeof(*wrq)); 4070 return (0); 4071 } 4072 4073 static int 4074 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx, 4075 struct sysctl_oid *oid) 4076 { 4077 int rc; 4078 struct port_info *pi = vi->pi; 4079 struct adapter *sc = pi->adapter; 4080 struct sge_eq *eq = &txq->eq; 4081 char name[16]; 4082 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 4083 4084 rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx, 4085 M_CXGBE, M_WAITOK); 4086 if (rc != 0) { 4087 device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc); 4088 return (rc); 4089 } 4090 4091 rc = alloc_eq(sc, vi, eq); 4092 if (rc != 0) { 4093 mp_ring_free(txq->r); 4094 txq->r = NULL; 4095 return (rc); 4096 } 4097 4098 /* Can't fail after this point. */ 4099 4100 if (idx == 0) 4101 sc->sge.eq_base = eq->abs_id - eq->cntxt_id; 4102 else 4103 KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id, 4104 ("eq_base mismatch")); 4105 KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF, 4106 ("PF with non-zero eq_base")); 4107 4108 TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq); 4109 txq->ifp = vi->ifp; 4110 txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK); 4111 if (sc->flags & IS_VF) 4112 txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 4113 V_TXPKT_INTF(pi->tx_chan)); 4114 else 4115 txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 4116 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 4117 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 4118 txq->tc_idx = -1; 4119 txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE, 4120 M_ZERO | M_WAITOK); 4121 4122 snprintf(name, sizeof(name), "%d", idx); 4123 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 4124 NULL, "tx queue"); 4125 children = SYSCTL_CHILDREN(oid); 4126 4127 SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 4128 &eq->ba, "bus address of descriptor ring"); 4129 SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 4130 eq->sidx * EQ_ESIZE + sc->params.sge.spg_len, 4131 "desc ring size in bytes"); 4132 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD, 4133 &eq->abs_id, 0, "absolute id of the queue"); 4134 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 4135 &eq->cntxt_id, 0, "SGE context id of the queue"); 4136 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 4137 CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I", 4138 "consumer index"); 4139 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 4140 CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I", 4141 "producer index"); 4142 SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL, 4143 eq->sidx, "status page index"); 4144 4145 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc", 4146 CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I", 4147 "traffic class (-1 means none)"); 4148 4149 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, 4150 &txq->txcsum, "# of times hardware assisted with checksum"); 4151 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion", 4152 CTLFLAG_RD, &txq->vlan_insertion, 4153 "# of times hardware inserted 802.1Q tag"); 4154 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, 4155 &txq->tso_wrs, "# of TSO work requests"); 4156 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, 4157 &txq->imm_wrs, "# of work requests with immediate data"); 4158 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, 4159 &txq->sgl_wrs, "# of work requests with direct SGL"); 4160 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, 4161 &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); 4162 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs", 4163 CTLFLAG_RD, &txq->txpkts0_wrs, 4164 "# of txpkts (type 0) work requests"); 4165 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs", 4166 CTLFLAG_RD, &txq->txpkts1_wrs, 4167 "# of txpkts (type 1) work requests"); 4168 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts", 4169 CTLFLAG_RD, &txq->txpkts0_pkts, 4170 "# of frames tx'd using type0 txpkts work requests"); 4171 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts", 4172 CTLFLAG_RD, &txq->txpkts1_pkts, 4173 "# of frames tx'd using type1 txpkts work requests"); 4174 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD, 4175 &txq->raw_wrs, "# of raw work requests (non-packets)"); 4176 4177 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues", 4178 CTLFLAG_RD, &txq->r->enqueues, 4179 "# of enqueues to the mp_ring for this queue"); 4180 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops", 4181 CTLFLAG_RD, &txq->r->drops, 4182 "# of drops in the mp_ring for this queue"); 4183 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts", 4184 CTLFLAG_RD, &txq->r->starts, 4185 "# of normal consumer starts in the mp_ring for this queue"); 4186 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls", 4187 CTLFLAG_RD, &txq->r->stalls, 4188 "# of consumer stalls in the mp_ring for this queue"); 4189 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts", 4190 CTLFLAG_RD, &txq->r->restarts, 4191 "# of consumer restarts in the mp_ring for this queue"); 4192 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications", 4193 CTLFLAG_RD, &txq->r->abdications, 4194 "# of consumer abdications in the mp_ring for this queue"); 4195 4196 return (0); 4197 } 4198 4199 static int 4200 free_txq(struct vi_info *vi, struct sge_txq *txq) 4201 { 4202 int rc; 4203 struct adapter *sc = vi->pi->adapter; 4204 struct sge_eq *eq = &txq->eq; 4205 4206 rc = free_eq(sc, eq); 4207 if (rc) 4208 return (rc); 4209 4210 sglist_free(txq->gl); 4211 free(txq->sdesc, M_CXGBE); 4212 mp_ring_free(txq->r); 4213 4214 bzero(txq, sizeof(*txq)); 4215 return (0); 4216 } 4217 4218 static void 4219 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) 4220 { 4221 bus_addr_t *ba = arg; 4222 4223 KASSERT(nseg == 1, 4224 ("%s meant for single segment mappings only.", __func__)); 4225 4226 *ba = error ? 0 : segs->ds_addr; 4227 } 4228 4229 static inline void 4230 ring_fl_db(struct adapter *sc, struct sge_fl *fl) 4231 { 4232 uint32_t n, v; 4233 4234 n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx); 4235 MPASS(n > 0); 4236 4237 wmb(); 4238 v = fl->dbval | V_PIDX(n); 4239 if (fl->udb) 4240 *fl->udb = htole32(v); 4241 else 4242 t4_write_reg(sc, sc->sge_kdoorbell_reg, v); 4243 IDXINCR(fl->dbidx, n, fl->sidx); 4244 } 4245 4246 /* 4247 * Fills up the freelist by allocating up to 'n' buffers. Buffers that are 4248 * recycled do not count towards this allocation budget. 4249 * 4250 * Returns non-zero to indicate that this freelist should be added to the list 4251 * of starving freelists. 4252 */ 4253 static int 4254 refill_fl(struct adapter *sc, struct sge_fl *fl, int n) 4255 { 4256 __be64 *d; 4257 struct fl_sdesc *sd; 4258 uintptr_t pa; 4259 caddr_t cl; 4260 struct cluster_layout *cll; 4261 struct sw_zone_info *swz; 4262 struct cluster_metadata *clm; 4263 uint16_t max_pidx; 4264 uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */ 4265 4266 FL_LOCK_ASSERT_OWNED(fl); 4267 4268 /* 4269 * We always stop at the beginning of the hardware descriptor that's just 4270 * before the one with the hw cidx. This is to avoid hw pidx = hw cidx, 4271 * which would mean an empty freelist to the chip. 4272 */ 4273 max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1; 4274 if (fl->pidx == max_pidx * 8) 4275 return (0); 4276 4277 d = &fl->desc[fl->pidx]; 4278 sd = &fl->sdesc[fl->pidx]; 4279 cll = &fl->cll_def; /* default layout */ 4280 swz = &sc->sge.sw_zone_info[cll->zidx]; 4281 4282 while (n > 0) { 4283 4284 if (sd->cl != NULL) { 4285 4286 if (sd->nmbuf == 0) { 4287 /* 4288 * Fast recycle without involving any atomics on 4289 * the cluster's metadata (if the cluster has 4290 * metadata). This happens when all frames 4291 * received in the cluster were small enough to 4292 * fit within a single mbuf each. 4293 */ 4294 fl->cl_fast_recycled++; 4295 #ifdef INVARIANTS 4296 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 4297 if (clm != NULL) 4298 MPASS(clm->refcount == 1); 4299 #endif 4300 goto recycled_fast; 4301 } 4302 4303 /* 4304 * Cluster is guaranteed to have metadata. Clusters 4305 * without metadata always take the fast recycle path 4306 * when they're recycled. 4307 */ 4308 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 4309 MPASS(clm != NULL); 4310 4311 if (atomic_fetchadd_int(&clm->refcount, -1) == 1) { 4312 fl->cl_recycled++; 4313 counter_u64_add(extfree_rels, 1); 4314 goto recycled; 4315 } 4316 sd->cl = NULL; /* gave up my reference */ 4317 } 4318 MPASS(sd->cl == NULL); 4319 alloc: 4320 cl = uma_zalloc(swz->zone, M_NOWAIT); 4321 if (__predict_false(cl == NULL)) { 4322 if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 || 4323 fl->cll_def.zidx == fl->cll_alt.zidx) 4324 break; 4325 4326 /* fall back to the safe zone */ 4327 cll = &fl->cll_alt; 4328 swz = &sc->sge.sw_zone_info[cll->zidx]; 4329 goto alloc; 4330 } 4331 fl->cl_allocated++; 4332 n--; 4333 4334 pa = pmap_kextract((vm_offset_t)cl); 4335 pa += cll->region1; 4336 sd->cl = cl; 4337 sd->cll = *cll; 4338 *d = htobe64(pa | cll->hwidx); 4339 clm = cl_metadata(sc, fl, cll, cl); 4340 if (clm != NULL) { 4341 recycled: 4342 #ifdef INVARIANTS 4343 clm->sd = sd; 4344 #endif 4345 clm->refcount = 1; 4346 } 4347 sd->nmbuf = 0; 4348 recycled_fast: 4349 d++; 4350 sd++; 4351 if (__predict_false(++fl->pidx % 8 == 0)) { 4352 uint16_t pidx = fl->pidx / 8; 4353 4354 if (__predict_false(pidx == fl->sidx)) { 4355 fl->pidx = 0; 4356 pidx = 0; 4357 sd = fl->sdesc; 4358 d = fl->desc; 4359 } 4360 if (pidx == max_pidx) 4361 break; 4362 4363 if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4) 4364 ring_fl_db(sc, fl); 4365 } 4366 } 4367 4368 if (fl->pidx / 8 != fl->dbidx) 4369 ring_fl_db(sc, fl); 4370 4371 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); 4372 } 4373 4374 /* 4375 * Attempt to refill all starving freelists. 4376 */ 4377 static void 4378 refill_sfl(void *arg) 4379 { 4380 struct adapter *sc = arg; 4381 struct sge_fl *fl, *fl_temp; 4382 4383 mtx_assert(&sc->sfl_lock, MA_OWNED); 4384 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { 4385 FL_LOCK(fl); 4386 refill_fl(sc, fl, 64); 4387 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { 4388 TAILQ_REMOVE(&sc->sfl, fl, link); 4389 fl->flags &= ~FL_STARVING; 4390 } 4391 FL_UNLOCK(fl); 4392 } 4393 4394 if (!TAILQ_EMPTY(&sc->sfl)) 4395 callout_schedule(&sc->sfl_callout, hz / 5); 4396 } 4397 4398 static int 4399 alloc_fl_sdesc(struct sge_fl *fl) 4400 { 4401 4402 fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE, 4403 M_ZERO | M_WAITOK); 4404 4405 return (0); 4406 } 4407 4408 static void 4409 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl) 4410 { 4411 struct fl_sdesc *sd; 4412 struct cluster_metadata *clm; 4413 struct cluster_layout *cll; 4414 int i; 4415 4416 sd = fl->sdesc; 4417 for (i = 0; i < fl->sidx * 8; i++, sd++) { 4418 if (sd->cl == NULL) 4419 continue; 4420 4421 cll = &sd->cll; 4422 clm = cl_metadata(sc, fl, cll, sd->cl); 4423 if (sd->nmbuf == 0) 4424 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 4425 else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) { 4426 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 4427 counter_u64_add(extfree_rels, 1); 4428 } 4429 sd->cl = NULL; 4430 } 4431 4432 free(fl->sdesc, M_CXGBE); 4433 fl->sdesc = NULL; 4434 } 4435 4436 static inline void 4437 get_pkt_gl(struct mbuf *m, struct sglist *gl) 4438 { 4439 int rc; 4440 4441 M_ASSERTPKTHDR(m); 4442 4443 sglist_reset(gl); 4444 rc = sglist_append_mbuf(gl, m); 4445 if (__predict_false(rc != 0)) { 4446 panic("%s: mbuf %p (%d segs) was vetted earlier but now fails " 4447 "with %d.", __func__, m, mbuf_nsegs(m), rc); 4448 } 4449 4450 KASSERT(gl->sg_nseg == mbuf_nsegs(m), 4451 ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m, 4452 mbuf_nsegs(m), gl->sg_nseg)); 4453 KASSERT(gl->sg_nseg > 0 && 4454 gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS), 4455 ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__, 4456 gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)); 4457 } 4458 4459 /* 4460 * len16 for a txpkt WR with a GL. Includes the firmware work request header. 4461 */ 4462 static inline u_int 4463 txpkt_len16(u_int nsegs, u_int tso) 4464 { 4465 u_int n; 4466 4467 MPASS(nsegs > 0); 4468 4469 nsegs--; /* first segment is part of ulptx_sgl */ 4470 n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) + 4471 sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 4472 if (tso) 4473 n += sizeof(struct cpl_tx_pkt_lso_core); 4474 4475 return (howmany(n, 16)); 4476 } 4477 4478 /* 4479 * len16 for a txpkt_vm WR with a GL. Includes the firmware work 4480 * request header. 4481 */ 4482 static inline u_int 4483 txpkt_vm_len16(u_int nsegs, u_int tso) 4484 { 4485 u_int n; 4486 4487 MPASS(nsegs > 0); 4488 4489 nsegs--; /* first segment is part of ulptx_sgl */ 4490 n = sizeof(struct fw_eth_tx_pkt_vm_wr) + 4491 sizeof(struct cpl_tx_pkt_core) + 4492 sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 4493 if (tso) 4494 n += sizeof(struct cpl_tx_pkt_lso_core); 4495 4496 return (howmany(n, 16)); 4497 } 4498 4499 /* 4500 * len16 for a txpkts type 0 WR with a GL. Does not include the firmware work 4501 * request header. 4502 */ 4503 static inline u_int 4504 txpkts0_len16(u_int nsegs) 4505 { 4506 u_int n; 4507 4508 MPASS(nsegs > 0); 4509 4510 nsegs--; /* first segment is part of ulptx_sgl */ 4511 n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) + 4512 sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 4513 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 4514 4515 return (howmany(n, 16)); 4516 } 4517 4518 /* 4519 * len16 for a txpkts type 1 WR with a GL. Does not include the firmware work 4520 * request header. 4521 */ 4522 static inline u_int 4523 txpkts1_len16(void) 4524 { 4525 u_int n; 4526 4527 n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl); 4528 4529 return (howmany(n, 16)); 4530 } 4531 4532 static inline u_int 4533 imm_payload(u_int ndesc) 4534 { 4535 u_int n; 4536 4537 n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) - 4538 sizeof(struct cpl_tx_pkt_core); 4539 4540 return (n); 4541 } 4542 4543 /* 4544 * Write a VM txpkt WR for this packet to the hardware descriptors, update the 4545 * software descriptor, and advance the pidx. It is guaranteed that enough 4546 * descriptors are available. 4547 * 4548 * The return value is the # of hardware descriptors used. 4549 */ 4550 static u_int 4551 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, 4552 struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available) 4553 { 4554 struct sge_eq *eq = &txq->eq; 4555 struct tx_sdesc *txsd; 4556 struct cpl_tx_pkt_core *cpl; 4557 uint32_t ctrl; /* used in many unrelated places */ 4558 uint64_t ctrl1; 4559 int csum_type, len16, ndesc, pktlen, nsegs; 4560 caddr_t dst; 4561 4562 TXQ_LOCK_ASSERT_OWNED(txq); 4563 M_ASSERTPKTHDR(m0); 4564 MPASS(available > 0 && available < eq->sidx); 4565 4566 len16 = mbuf_len16(m0); 4567 nsegs = mbuf_nsegs(m0); 4568 pktlen = m0->m_pkthdr.len; 4569 ctrl = sizeof(struct cpl_tx_pkt_core); 4570 if (needs_tso(m0)) 4571 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 4572 ndesc = howmany(len16, EQ_ESIZE / 16); 4573 MPASS(ndesc <= available); 4574 4575 /* Firmware work request header */ 4576 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4577 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) | 4578 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 4579 4580 ctrl = V_FW_WR_LEN16(len16); 4581 wr->equiq_to_len16 = htobe32(ctrl); 4582 wr->r3[0] = 0; 4583 wr->r3[1] = 0; 4584 4585 /* 4586 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci. 4587 * vlantci is ignored unless the ethtype is 0x8100, so it's 4588 * simpler to always copy it rather than making it 4589 * conditional. Also, it seems that we do not have to set 4590 * vlantci or fake the ethtype when doing VLAN tag insertion. 4591 */ 4592 m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst); 4593 4594 csum_type = -1; 4595 if (needs_tso(m0)) { 4596 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 4597 4598 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 4599 m0->m_pkthdr.l4hlen > 0, 4600 ("%s: mbuf %p needs TSO but missing header lengths", 4601 __func__, m0)); 4602 4603 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 4604 F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) 4605 | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 4606 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 4607 ctrl |= V_LSO_ETHHDR_LEN(1); 4608 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4609 ctrl |= F_LSO_IPV6; 4610 4611 lso->lso_ctrl = htobe32(ctrl); 4612 lso->ipid_ofst = htobe16(0); 4613 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 4614 lso->seqno_offset = htobe32(0); 4615 lso->len = htobe32(pktlen); 4616 4617 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4618 csum_type = TX_CSUM_TCPIP6; 4619 else 4620 csum_type = TX_CSUM_TCPIP; 4621 4622 cpl = (void *)(lso + 1); 4623 4624 txq->tso_wrs++; 4625 } else { 4626 if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP) 4627 csum_type = TX_CSUM_TCPIP; 4628 else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP) 4629 csum_type = TX_CSUM_UDPIP; 4630 else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP) 4631 csum_type = TX_CSUM_TCPIP6; 4632 else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP) 4633 csum_type = TX_CSUM_UDPIP6; 4634 #if defined(INET) 4635 else if (m0->m_pkthdr.csum_flags & CSUM_IP) { 4636 /* 4637 * XXX: The firmware appears to stomp on the 4638 * fragment/flags field of the IP header when 4639 * using TX_CSUM_IP. Fall back to doing 4640 * software checksums. 4641 */ 4642 u_short *sump; 4643 struct mbuf *m; 4644 int offset; 4645 4646 m = m0; 4647 offset = 0; 4648 sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen + 4649 offsetof(struct ip, ip_sum)); 4650 *sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen + 4651 m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen); 4652 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 4653 } 4654 #endif 4655 4656 cpl = (void *)(wr + 1); 4657 } 4658 4659 /* Checksum offload */ 4660 ctrl1 = 0; 4661 if (needs_l3_csum(m0) == 0) 4662 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4663 if (csum_type >= 0) { 4664 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0, 4665 ("%s: mbuf %p needs checksum offload but missing header lengths", 4666 __func__, m0)); 4667 4668 if (chip_id(sc) <= CHELSIO_T5) { 4669 ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen - 4670 ETHER_HDR_LEN); 4671 } else { 4672 ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen - 4673 ETHER_HDR_LEN); 4674 } 4675 ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen); 4676 ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type); 4677 } else 4678 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4679 if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4680 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4681 txq->txcsum++; /* some hardware assistance provided */ 4682 4683 /* VLAN tag insertion */ 4684 if (needs_vlan_insertion(m0)) { 4685 ctrl1 |= F_TXPKT_VLAN_VLD | 4686 V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 4687 txq->vlan_insertion++; 4688 } 4689 4690 /* CPL header */ 4691 cpl->ctrl0 = txq->cpl_ctrl0; 4692 cpl->pack = 0; 4693 cpl->len = htobe16(pktlen); 4694 cpl->ctrl1 = htobe64(ctrl1); 4695 4696 /* SGL */ 4697 dst = (void *)(cpl + 1); 4698 4699 /* 4700 * A packet using TSO will use up an entire descriptor for the 4701 * firmware work request header, LSO CPL, and TX_PKT_XT CPL. 4702 * If this descriptor is the last descriptor in the ring, wrap 4703 * around to the front of the ring explicitly for the start of 4704 * the sgl. 4705 */ 4706 if (dst == (void *)&eq->desc[eq->sidx]) { 4707 dst = (void *)&eq->desc[0]; 4708 write_gl_to_txd(txq, m0, &dst, 0); 4709 } else 4710 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); 4711 txq->sgl_wrs++; 4712 4713 txq->txpkt_wrs++; 4714 4715 txsd = &txq->sdesc[eq->pidx]; 4716 txsd->m = m0; 4717 txsd->desc_used = ndesc; 4718 4719 return (ndesc); 4720 } 4721 4722 /* 4723 * Write a raw WR to the hardware descriptors, update the software 4724 * descriptor, and advance the pidx. It is guaranteed that enough 4725 * descriptors are available. 4726 * 4727 * The return value is the # of hardware descriptors used. 4728 */ 4729 static u_int 4730 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available) 4731 { 4732 struct sge_eq *eq = &txq->eq; 4733 struct tx_sdesc *txsd; 4734 struct mbuf *m; 4735 caddr_t dst; 4736 int len16, ndesc; 4737 4738 len16 = mbuf_len16(m0); 4739 ndesc = howmany(len16, EQ_ESIZE / 16); 4740 MPASS(ndesc <= available); 4741 4742 dst = wr; 4743 for (m = m0; m != NULL; m = m->m_next) 4744 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); 4745 4746 txq->raw_wrs++; 4747 4748 txsd = &txq->sdesc[eq->pidx]; 4749 txsd->m = m0; 4750 txsd->desc_used = ndesc; 4751 4752 return (ndesc); 4753 } 4754 4755 /* 4756 * Write a txpkt WR for this packet to the hardware descriptors, update the 4757 * software descriptor, and advance the pidx. It is guaranteed that enough 4758 * descriptors are available. 4759 * 4760 * The return value is the # of hardware descriptors used. 4761 */ 4762 static u_int 4763 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr, 4764 struct mbuf *m0, u_int available) 4765 { 4766 struct sge_eq *eq = &txq->eq; 4767 struct tx_sdesc *txsd; 4768 struct cpl_tx_pkt_core *cpl; 4769 uint32_t ctrl; /* used in many unrelated places */ 4770 uint64_t ctrl1; 4771 int len16, ndesc, pktlen, nsegs; 4772 caddr_t dst; 4773 4774 TXQ_LOCK_ASSERT_OWNED(txq); 4775 M_ASSERTPKTHDR(m0); 4776 MPASS(available > 0 && available < eq->sidx); 4777 4778 len16 = mbuf_len16(m0); 4779 nsegs = mbuf_nsegs(m0); 4780 pktlen = m0->m_pkthdr.len; 4781 ctrl = sizeof(struct cpl_tx_pkt_core); 4782 if (needs_tso(m0)) 4783 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 4784 else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) && 4785 available >= 2) { 4786 /* Immediate data. Recalculate len16 and set nsegs to 0. */ 4787 ctrl += pktlen; 4788 len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) + 4789 sizeof(struct cpl_tx_pkt_core) + pktlen, 16); 4790 nsegs = 0; 4791 } 4792 ndesc = howmany(len16, EQ_ESIZE / 16); 4793 MPASS(ndesc <= available); 4794 4795 /* Firmware work request header */ 4796 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4797 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | 4798 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 4799 4800 ctrl = V_FW_WR_LEN16(len16); 4801 wr->equiq_to_len16 = htobe32(ctrl); 4802 wr->r3 = 0; 4803 4804 if (needs_tso(m0)) { 4805 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 4806 4807 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 4808 m0->m_pkthdr.l4hlen > 0, 4809 ("%s: mbuf %p needs TSO but missing header lengths", 4810 __func__, m0)); 4811 4812 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 4813 F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) 4814 | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 4815 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 4816 ctrl |= V_LSO_ETHHDR_LEN(1); 4817 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4818 ctrl |= F_LSO_IPV6; 4819 4820 lso->lso_ctrl = htobe32(ctrl); 4821 lso->ipid_ofst = htobe16(0); 4822 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 4823 lso->seqno_offset = htobe32(0); 4824 lso->len = htobe32(pktlen); 4825 4826 cpl = (void *)(lso + 1); 4827 4828 txq->tso_wrs++; 4829 } else 4830 cpl = (void *)(wr + 1); 4831 4832 /* Checksum offload */ 4833 ctrl1 = 0; 4834 if (needs_l3_csum(m0) == 0) 4835 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4836 if (needs_l4_csum(m0) == 0) 4837 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4838 if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4839 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4840 txq->txcsum++; /* some hardware assistance provided */ 4841 4842 /* VLAN tag insertion */ 4843 if (needs_vlan_insertion(m0)) { 4844 ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 4845 txq->vlan_insertion++; 4846 } 4847 4848 /* CPL header */ 4849 cpl->ctrl0 = txq->cpl_ctrl0; 4850 cpl->pack = 0; 4851 cpl->len = htobe16(pktlen); 4852 cpl->ctrl1 = htobe64(ctrl1); 4853 4854 /* SGL */ 4855 dst = (void *)(cpl + 1); 4856 if (nsegs > 0) { 4857 4858 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); 4859 txq->sgl_wrs++; 4860 } else { 4861 struct mbuf *m; 4862 4863 for (m = m0; m != NULL; m = m->m_next) { 4864 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); 4865 #ifdef INVARIANTS 4866 pktlen -= m->m_len; 4867 #endif 4868 } 4869 #ifdef INVARIANTS 4870 KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen)); 4871 #endif 4872 txq->imm_wrs++; 4873 } 4874 4875 txq->txpkt_wrs++; 4876 4877 txsd = &txq->sdesc[eq->pidx]; 4878 txsd->m = m0; 4879 txsd->desc_used = ndesc; 4880 4881 return (ndesc); 4882 } 4883 4884 static int 4885 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available) 4886 { 4887 u_int needed, nsegs1, nsegs2, l1, l2; 4888 4889 if (cannot_use_txpkts(m) || cannot_use_txpkts(n)) 4890 return (1); 4891 4892 nsegs1 = mbuf_nsegs(m); 4893 nsegs2 = mbuf_nsegs(n); 4894 if (nsegs1 + nsegs2 == 2) { 4895 txp->wr_type = 1; 4896 l1 = l2 = txpkts1_len16(); 4897 } else { 4898 txp->wr_type = 0; 4899 l1 = txpkts0_len16(nsegs1); 4900 l2 = txpkts0_len16(nsegs2); 4901 } 4902 txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2; 4903 needed = howmany(txp->len16, EQ_ESIZE / 16); 4904 if (needed > SGE_MAX_WR_NDESC || needed > available) 4905 return (1); 4906 4907 txp->plen = m->m_pkthdr.len + n->m_pkthdr.len; 4908 if (txp->plen > 65535) 4909 return (1); 4910 4911 txp->npkt = 2; 4912 set_mbuf_len16(m, l1); 4913 set_mbuf_len16(n, l2); 4914 4915 return (0); 4916 } 4917 4918 static int 4919 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available) 4920 { 4921 u_int plen, len16, needed, nsegs; 4922 4923 MPASS(txp->wr_type == 0 || txp->wr_type == 1); 4924 4925 if (cannot_use_txpkts(m)) 4926 return (1); 4927 4928 nsegs = mbuf_nsegs(m); 4929 if (txp->wr_type == 1 && nsegs != 1) 4930 return (1); 4931 4932 plen = txp->plen + m->m_pkthdr.len; 4933 if (plen > 65535) 4934 return (1); 4935 4936 if (txp->wr_type == 0) 4937 len16 = txpkts0_len16(nsegs); 4938 else 4939 len16 = txpkts1_len16(); 4940 needed = howmany(txp->len16 + len16, EQ_ESIZE / 16); 4941 if (needed > SGE_MAX_WR_NDESC || needed > available) 4942 return (1); 4943 4944 txp->npkt++; 4945 txp->plen = plen; 4946 txp->len16 += len16; 4947 set_mbuf_len16(m, len16); 4948 4949 return (0); 4950 } 4951 4952 /* 4953 * Write a txpkts WR for the packets in txp to the hardware descriptors, update 4954 * the software descriptor, and advance the pidx. It is guaranteed that enough 4955 * descriptors are available. 4956 * 4957 * The return value is the # of hardware descriptors used. 4958 */ 4959 static u_int 4960 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr, 4961 struct mbuf *m0, const struct txpkts *txp, u_int available) 4962 { 4963 struct sge_eq *eq = &txq->eq; 4964 struct tx_sdesc *txsd; 4965 struct cpl_tx_pkt_core *cpl; 4966 uint32_t ctrl; 4967 uint64_t ctrl1; 4968 int ndesc, checkwrap; 4969 struct mbuf *m; 4970 void *flitp; 4971 4972 TXQ_LOCK_ASSERT_OWNED(txq); 4973 MPASS(txp->npkt > 0); 4974 MPASS(txp->plen < 65536); 4975 MPASS(m0 != NULL); 4976 MPASS(m0->m_nextpkt != NULL); 4977 MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16)); 4978 MPASS(available > 0 && available < eq->sidx); 4979 4980 ndesc = howmany(txp->len16, EQ_ESIZE / 16); 4981 MPASS(ndesc <= available); 4982 4983 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4984 wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)); 4985 ctrl = V_FW_WR_LEN16(txp->len16); 4986 wr->equiq_to_len16 = htobe32(ctrl); 4987 wr->plen = htobe16(txp->plen); 4988 wr->npkt = txp->npkt; 4989 wr->r3 = 0; 4990 wr->type = txp->wr_type; 4991 flitp = wr + 1; 4992 4993 /* 4994 * At this point we are 16B into a hardware descriptor. If checkwrap is 4995 * set then we know the WR is going to wrap around somewhere. We'll 4996 * check for that at appropriate points. 4997 */ 4998 checkwrap = eq->sidx - ndesc < eq->pidx; 4999 for (m = m0; m != NULL; m = m->m_nextpkt) { 5000 if (txp->wr_type == 0) { 5001 struct ulp_txpkt *ulpmc; 5002 struct ulptx_idata *ulpsc; 5003 5004 /* ULP master command */ 5005 ulpmc = flitp; 5006 ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) | 5007 V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid)); 5008 ulpmc->len = htobe32(mbuf_len16(m)); 5009 5010 /* ULP subcommand */ 5011 ulpsc = (void *)(ulpmc + 1); 5012 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) | 5013 F_ULP_TX_SC_MORE); 5014 ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); 5015 5016 cpl = (void *)(ulpsc + 1); 5017 if (checkwrap && 5018 (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx]) 5019 cpl = (void *)&eq->desc[0]; 5020 } else { 5021 cpl = flitp; 5022 } 5023 5024 /* Checksum offload */ 5025 ctrl1 = 0; 5026 if (needs_l3_csum(m) == 0) 5027 ctrl1 |= F_TXPKT_IPCSUM_DIS; 5028 if (needs_l4_csum(m) == 0) 5029 ctrl1 |= F_TXPKT_L4CSUM_DIS; 5030 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 5031 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 5032 txq->txcsum++; /* some hardware assistance provided */ 5033 5034 /* VLAN tag insertion */ 5035 if (needs_vlan_insertion(m)) { 5036 ctrl1 |= F_TXPKT_VLAN_VLD | 5037 V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); 5038 txq->vlan_insertion++; 5039 } 5040 5041 /* CPL header */ 5042 cpl->ctrl0 = txq->cpl_ctrl0; 5043 cpl->pack = 0; 5044 cpl->len = htobe16(m->m_pkthdr.len); 5045 cpl->ctrl1 = htobe64(ctrl1); 5046 5047 flitp = cpl + 1; 5048 if (checkwrap && 5049 (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx]) 5050 flitp = (void *)&eq->desc[0]; 5051 5052 write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap); 5053 5054 } 5055 5056 if (txp->wr_type == 0) { 5057 txq->txpkts0_pkts += txp->npkt; 5058 txq->txpkts0_wrs++; 5059 } else { 5060 txq->txpkts1_pkts += txp->npkt; 5061 txq->txpkts1_wrs++; 5062 } 5063 5064 txsd = &txq->sdesc[eq->pidx]; 5065 txsd->m = m0; 5066 txsd->desc_used = ndesc; 5067 5068 return (ndesc); 5069 } 5070 5071 /* 5072 * If the SGL ends on an address that is not 16 byte aligned, this function will 5073 * add a 0 filled flit at the end. 5074 */ 5075 static void 5076 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap) 5077 { 5078 struct sge_eq *eq = &txq->eq; 5079 struct sglist *gl = txq->gl; 5080 struct sglist_seg *seg; 5081 __be64 *flitp, *wrap; 5082 struct ulptx_sgl *usgl; 5083 int i, nflits, nsegs; 5084 5085 KASSERT(((uintptr_t)(*to) & 0xf) == 0, 5086 ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); 5087 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 5088 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 5089 5090 get_pkt_gl(m, gl); 5091 nsegs = gl->sg_nseg; 5092 MPASS(nsegs > 0); 5093 5094 nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2; 5095 flitp = (__be64 *)(*to); 5096 wrap = (__be64 *)(&eq->desc[eq->sidx]); 5097 seg = &gl->sg_segs[0]; 5098 usgl = (void *)flitp; 5099 5100 /* 5101 * We start at a 16 byte boundary somewhere inside the tx descriptor 5102 * ring, so we're at least 16 bytes away from the status page. There is 5103 * no chance of a wrap around in the middle of usgl (which is 16 bytes). 5104 */ 5105 5106 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 5107 V_ULPTX_NSGE(nsegs)); 5108 usgl->len0 = htobe32(seg->ss_len); 5109 usgl->addr0 = htobe64(seg->ss_paddr); 5110 seg++; 5111 5112 if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) { 5113 5114 /* Won't wrap around at all */ 5115 5116 for (i = 0; i < nsegs - 1; i++, seg++) { 5117 usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len); 5118 usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr); 5119 } 5120 if (i & 1) 5121 usgl->sge[i / 2].len[1] = htobe32(0); 5122 flitp += nflits; 5123 } else { 5124 5125 /* Will wrap somewhere in the rest of the SGL */ 5126 5127 /* 2 flits already written, write the rest flit by flit */ 5128 flitp = (void *)(usgl + 1); 5129 for (i = 0; i < nflits - 2; i++) { 5130 if (flitp == wrap) 5131 flitp = (void *)eq->desc; 5132 *flitp++ = get_flit(seg, nsegs - 1, i); 5133 } 5134 } 5135 5136 if (nflits & 1) { 5137 MPASS(((uintptr_t)flitp) & 0xf); 5138 *flitp++ = 0; 5139 } 5140 5141 MPASS((((uintptr_t)flitp) & 0xf) == 0); 5142 if (__predict_false(flitp == wrap)) 5143 *to = (void *)eq->desc; 5144 else 5145 *to = (void *)flitp; 5146 } 5147 5148 static inline void 5149 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) 5150 { 5151 5152 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 5153 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 5154 5155 if (__predict_true((uintptr_t)(*to) + len <= 5156 (uintptr_t)&eq->desc[eq->sidx])) { 5157 bcopy(from, *to, len); 5158 (*to) += len; 5159 } else { 5160 int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to); 5161 5162 bcopy(from, *to, portion); 5163 from += portion; 5164 portion = len - portion; /* remaining */ 5165 bcopy(from, (void *)eq->desc, portion); 5166 (*to) = (caddr_t)eq->desc + portion; 5167 } 5168 } 5169 5170 static inline void 5171 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n) 5172 { 5173 u_int db; 5174 5175 MPASS(n > 0); 5176 5177 db = eq->doorbells; 5178 if (n > 1) 5179 clrbit(&db, DOORBELL_WCWR); 5180 wmb(); 5181 5182 switch (ffs(db) - 1) { 5183 case DOORBELL_UDB: 5184 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 5185 break; 5186 5187 case DOORBELL_WCWR: { 5188 volatile uint64_t *dst, *src; 5189 int i; 5190 5191 /* 5192 * Queues whose 128B doorbell segment fits in the page do not 5193 * use relative qid (udb_qid is always 0). Only queues with 5194 * doorbell segments can do WCWR. 5195 */ 5196 KASSERT(eq->udb_qid == 0 && n == 1, 5197 ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p", 5198 __func__, eq->doorbells, n, eq->dbidx, eq)); 5199 5200 dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET - 5201 UDBS_DB_OFFSET); 5202 i = eq->dbidx; 5203 src = (void *)&eq->desc[i]; 5204 while (src != (void *)&eq->desc[i + 1]) 5205 *dst++ = *src++; 5206 wmb(); 5207 break; 5208 } 5209 5210 case DOORBELL_UDBWC: 5211 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 5212 wmb(); 5213 break; 5214 5215 case DOORBELL_KDB: 5216 t4_write_reg(sc, sc->sge_kdoorbell_reg, 5217 V_QID(eq->cntxt_id) | V_PIDX(n)); 5218 break; 5219 } 5220 5221 IDXINCR(eq->dbidx, n, eq->sidx); 5222 } 5223 5224 static inline u_int 5225 reclaimable_tx_desc(struct sge_eq *eq) 5226 { 5227 uint16_t hw_cidx; 5228 5229 hw_cidx = read_hw_cidx(eq); 5230 return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx)); 5231 } 5232 5233 static inline u_int 5234 total_available_tx_desc(struct sge_eq *eq) 5235 { 5236 uint16_t hw_cidx, pidx; 5237 5238 hw_cidx = read_hw_cidx(eq); 5239 pidx = eq->pidx; 5240 5241 if (pidx == hw_cidx) 5242 return (eq->sidx - 1); 5243 else 5244 return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1); 5245 } 5246 5247 static inline uint16_t 5248 read_hw_cidx(struct sge_eq *eq) 5249 { 5250 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 5251 uint16_t cidx = spg->cidx; /* stable snapshot */ 5252 5253 return (be16toh(cidx)); 5254 } 5255 5256 /* 5257 * Reclaim 'n' descriptors approximately. 5258 */ 5259 static u_int 5260 reclaim_tx_descs(struct sge_txq *txq, u_int n) 5261 { 5262 struct tx_sdesc *txsd; 5263 struct sge_eq *eq = &txq->eq; 5264 u_int can_reclaim, reclaimed; 5265 5266 TXQ_LOCK_ASSERT_OWNED(txq); 5267 MPASS(n > 0); 5268 5269 reclaimed = 0; 5270 can_reclaim = reclaimable_tx_desc(eq); 5271 while (can_reclaim && reclaimed < n) { 5272 int ndesc; 5273 struct mbuf *m, *nextpkt; 5274 5275 txsd = &txq->sdesc[eq->cidx]; 5276 ndesc = txsd->desc_used; 5277 5278 /* Firmware doesn't return "partial" credits. */ 5279 KASSERT(can_reclaim >= ndesc, 5280 ("%s: unexpected number of credits: %d, %d", 5281 __func__, can_reclaim, ndesc)); 5282 KASSERT(ndesc != 0, 5283 ("%s: descriptor with no credits: cidx %d", 5284 __func__, eq->cidx)); 5285 5286 for (m = txsd->m; m != NULL; m = nextpkt) { 5287 nextpkt = m->m_nextpkt; 5288 m->m_nextpkt = NULL; 5289 m_freem(m); 5290 } 5291 reclaimed += ndesc; 5292 can_reclaim -= ndesc; 5293 IDXINCR(eq->cidx, ndesc, eq->sidx); 5294 } 5295 5296 return (reclaimed); 5297 } 5298 5299 static void 5300 tx_reclaim(void *arg, int n) 5301 { 5302 struct sge_txq *txq = arg; 5303 struct sge_eq *eq = &txq->eq; 5304 5305 do { 5306 if (TXQ_TRYLOCK(txq) == 0) 5307 break; 5308 n = reclaim_tx_descs(txq, 32); 5309 if (eq->cidx == eq->pidx) 5310 eq->equeqidx = eq->pidx; 5311 TXQ_UNLOCK(txq); 5312 } while (n > 0); 5313 } 5314 5315 static __be64 5316 get_flit(struct sglist_seg *segs, int nsegs, int idx) 5317 { 5318 int i = (idx / 3) * 2; 5319 5320 switch (idx % 3) { 5321 case 0: { 5322 uint64_t rc; 5323 5324 rc = (uint64_t)segs[i].ss_len << 32; 5325 if (i + 1 < nsegs) 5326 rc |= (uint64_t)(segs[i + 1].ss_len); 5327 5328 return (htobe64(rc)); 5329 } 5330 case 1: 5331 return (htobe64(segs[i].ss_paddr)); 5332 case 2: 5333 return (htobe64(segs[i + 1].ss_paddr)); 5334 } 5335 5336 return (0); 5337 } 5338 5339 static void 5340 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp) 5341 { 5342 int8_t zidx, hwidx, idx; 5343 uint16_t region1, region3; 5344 int spare, spare_needed, n; 5345 struct sw_zone_info *swz; 5346 struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0]; 5347 5348 /* 5349 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize 5350 * large enough for the max payload and cluster metadata. Otherwise 5351 * settle for the largest bufsize that leaves enough room in the cluster 5352 * for metadata. 5353 * 5354 * Without buffer packing: Look for the smallest zone which has a 5355 * bufsize large enough for the max payload. Settle for the largest 5356 * bufsize available if there's nothing big enough for max payload. 5357 */ 5358 spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0; 5359 swz = &sc->sge.sw_zone_info[0]; 5360 hwidx = -1; 5361 for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) { 5362 if (swz->size > largest_rx_cluster) { 5363 if (__predict_true(hwidx != -1)) 5364 break; 5365 5366 /* 5367 * This is a misconfiguration. largest_rx_cluster is 5368 * preventing us from finding a refill source. See 5369 * dev.t5nex.<n>.buffer_sizes to figure out why. 5370 */ 5371 device_printf(sc->dev, "largest_rx_cluster=%u leaves no" 5372 " refill source for fl %p (dma %u). Ignored.\n", 5373 largest_rx_cluster, fl, maxp); 5374 } 5375 for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) { 5376 hwb = &hwb_list[idx]; 5377 spare = swz->size - hwb->size; 5378 if (spare < spare_needed) 5379 continue; 5380 5381 hwidx = idx; /* best option so far */ 5382 if (hwb->size >= maxp) { 5383 5384 if ((fl->flags & FL_BUF_PACKING) == 0) 5385 goto done; /* stop looking (not packing) */ 5386 5387 if (swz->size >= safest_rx_cluster) 5388 goto done; /* stop looking (packing) */ 5389 } 5390 break; /* keep looking, next zone */ 5391 } 5392 } 5393 done: 5394 /* A usable hwidx has been located. */ 5395 MPASS(hwidx != -1); 5396 hwb = &hwb_list[hwidx]; 5397 zidx = hwb->zidx; 5398 swz = &sc->sge.sw_zone_info[zidx]; 5399 region1 = 0; 5400 region3 = swz->size - hwb->size; 5401 5402 /* 5403 * Stay within this zone and see if there is a better match when mbuf 5404 * inlining is allowed. Remember that the hwidx's are sorted in 5405 * decreasing order of size (so in increasing order of spare area). 5406 */ 5407 for (idx = hwidx; idx != -1; idx = hwb->next) { 5408 hwb = &hwb_list[idx]; 5409 spare = swz->size - hwb->size; 5410 5411 if (allow_mbufs_in_cluster == 0 || hwb->size < maxp) 5412 break; 5413 5414 /* 5415 * Do not inline mbufs if doing so would violate the pad/pack 5416 * boundary alignment requirement. 5417 */ 5418 if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0) 5419 continue; 5420 if (fl->flags & FL_BUF_PACKING && 5421 (MSIZE % sc->params.sge.pack_boundary) != 0) 5422 continue; 5423 5424 if (spare < CL_METADATA_SIZE + MSIZE) 5425 continue; 5426 n = (spare - CL_METADATA_SIZE) / MSIZE; 5427 if (n > howmany(hwb->size, maxp)) 5428 break; 5429 5430 hwidx = idx; 5431 if (fl->flags & FL_BUF_PACKING) { 5432 region1 = n * MSIZE; 5433 region3 = spare - region1; 5434 } else { 5435 region1 = MSIZE; 5436 region3 = spare - region1; 5437 break; 5438 } 5439 } 5440 5441 KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES, 5442 ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp)); 5443 KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES, 5444 ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp)); 5445 KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 == 5446 sc->sge.sw_zone_info[zidx].size, 5447 ("%s: bad buffer layout for fl %p, maxp %d. " 5448 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 5449 sc->sge.sw_zone_info[zidx].size, region1, 5450 sc->sge.hw_buf_info[hwidx].size, region3)); 5451 if (fl->flags & FL_BUF_PACKING || region1 > 0) { 5452 KASSERT(region3 >= CL_METADATA_SIZE, 5453 ("%s: no room for metadata. fl %p, maxp %d; " 5454 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 5455 sc->sge.sw_zone_info[zidx].size, region1, 5456 sc->sge.hw_buf_info[hwidx].size, region3)); 5457 KASSERT(region1 % MSIZE == 0, 5458 ("%s: bad mbuf region for fl %p, maxp %d. " 5459 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 5460 sc->sge.sw_zone_info[zidx].size, region1, 5461 sc->sge.hw_buf_info[hwidx].size, region3)); 5462 } 5463 5464 fl->cll_def.zidx = zidx; 5465 fl->cll_def.hwidx = hwidx; 5466 fl->cll_def.region1 = region1; 5467 fl->cll_def.region3 = region3; 5468 } 5469 5470 static void 5471 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl) 5472 { 5473 struct sge *s = &sc->sge; 5474 struct hw_buf_info *hwb; 5475 struct sw_zone_info *swz; 5476 int spare; 5477 int8_t hwidx; 5478 5479 if (fl->flags & FL_BUF_PACKING) 5480 hwidx = s->safe_hwidx2; /* with room for metadata */ 5481 else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) { 5482 hwidx = s->safe_hwidx2; 5483 hwb = &s->hw_buf_info[hwidx]; 5484 swz = &s->sw_zone_info[hwb->zidx]; 5485 spare = swz->size - hwb->size; 5486 5487 /* no good if there isn't room for an mbuf as well */ 5488 if (spare < CL_METADATA_SIZE + MSIZE) 5489 hwidx = s->safe_hwidx1; 5490 } else 5491 hwidx = s->safe_hwidx1; 5492 5493 if (hwidx == -1) { 5494 /* No fallback source */ 5495 fl->cll_alt.hwidx = -1; 5496 fl->cll_alt.zidx = -1; 5497 5498 return; 5499 } 5500 5501 hwb = &s->hw_buf_info[hwidx]; 5502 swz = &s->sw_zone_info[hwb->zidx]; 5503 spare = swz->size - hwb->size; 5504 fl->cll_alt.hwidx = hwidx; 5505 fl->cll_alt.zidx = hwb->zidx; 5506 if (allow_mbufs_in_cluster && 5507 (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0)) 5508 fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE; 5509 else 5510 fl->cll_alt.region1 = 0; 5511 fl->cll_alt.region3 = spare - fl->cll_alt.region1; 5512 } 5513 5514 static void 5515 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) 5516 { 5517 mtx_lock(&sc->sfl_lock); 5518 FL_LOCK(fl); 5519 if ((fl->flags & FL_DOOMED) == 0) { 5520 fl->flags |= FL_STARVING; 5521 TAILQ_INSERT_TAIL(&sc->sfl, fl, link); 5522 callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc); 5523 } 5524 FL_UNLOCK(fl); 5525 mtx_unlock(&sc->sfl_lock); 5526 } 5527 5528 static void 5529 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq) 5530 { 5531 struct sge_wrq *wrq = (void *)eq; 5532 5533 atomic_readandclear_int(&eq->equiq); 5534 taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task); 5535 } 5536 5537 static void 5538 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq) 5539 { 5540 struct sge_txq *txq = (void *)eq; 5541 5542 MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH); 5543 5544 atomic_readandclear_int(&eq->equiq); 5545 mp_ring_check_drainage(txq->r, 0); 5546 taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task); 5547 } 5548 5549 static int 5550 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, 5551 struct mbuf *m) 5552 { 5553 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); 5554 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); 5555 struct adapter *sc = iq->adapter; 5556 struct sge *s = &sc->sge; 5557 struct sge_eq *eq; 5558 static void (*h[])(struct adapter *, struct sge_eq *) = {NULL, 5559 &handle_wrq_egr_update, &handle_eth_egr_update, 5560 &handle_wrq_egr_update}; 5561 5562 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 5563 rss->opcode)); 5564 5565 eq = s->eqmap[qid - s->eq_start - s->eq_base]; 5566 (*h[eq->flags & EQ_TYPEMASK])(sc, eq); 5567 5568 return (0); 5569 } 5570 5571 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */ 5572 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \ 5573 offsetof(struct cpl_fw6_msg, data)); 5574 5575 static int 5576 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 5577 { 5578 struct adapter *sc = iq->adapter; 5579 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); 5580 5581 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 5582 rss->opcode)); 5583 5584 if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) { 5585 const struct rss_header *rss2; 5586 5587 rss2 = (const struct rss_header *)&cpl->data[0]; 5588 return (t4_cpl_handler[rss2->opcode](iq, rss2, m)); 5589 } 5590 5591 return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0])); 5592 } 5593 5594 /** 5595 * t4_handle_wrerr_rpl - process a FW work request error message 5596 * @adap: the adapter 5597 * @rpl: start of the FW message 5598 */ 5599 static int 5600 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl) 5601 { 5602 u8 opcode = *(const u8 *)rpl; 5603 const struct fw_error_cmd *e = (const void *)rpl; 5604 unsigned int i; 5605 5606 if (opcode != FW_ERROR_CMD) { 5607 log(LOG_ERR, 5608 "%s: Received WRERR_RPL message with opcode %#x\n", 5609 device_get_nameunit(adap->dev), opcode); 5610 return (EINVAL); 5611 } 5612 log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev), 5613 G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" : 5614 "non-fatal"); 5615 switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) { 5616 case FW_ERROR_TYPE_EXCEPTION: 5617 log(LOG_ERR, "exception info:\n"); 5618 for (i = 0; i < nitems(e->u.exception.info); i++) 5619 log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ", 5620 be32toh(e->u.exception.info[i])); 5621 log(LOG_ERR, "\n"); 5622 break; 5623 case FW_ERROR_TYPE_HWMODULE: 5624 log(LOG_ERR, "HW module regaddr %08x regval %08x\n", 5625 be32toh(e->u.hwmodule.regaddr), 5626 be32toh(e->u.hwmodule.regval)); 5627 break; 5628 case FW_ERROR_TYPE_WR: 5629 log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n", 5630 be16toh(e->u.wr.cidx), 5631 G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)), 5632 G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)), 5633 be32toh(e->u.wr.eqid)); 5634 for (i = 0; i < nitems(e->u.wr.wrhdr); i++) 5635 log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ", 5636 e->u.wr.wrhdr[i]); 5637 log(LOG_ERR, "\n"); 5638 break; 5639 case FW_ERROR_TYPE_ACL: 5640 log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s", 5641 be16toh(e->u.acl.cidx), 5642 G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)), 5643 G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)), 5644 be32toh(e->u.acl.eqid), 5645 G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" : 5646 "MAC"); 5647 for (i = 0; i < nitems(e->u.acl.val); i++) 5648 log(LOG_ERR, " %02x", e->u.acl.val[i]); 5649 log(LOG_ERR, "\n"); 5650 break; 5651 default: 5652 log(LOG_ERR, "type %#x\n", 5653 G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))); 5654 return (EINVAL); 5655 } 5656 return (0); 5657 } 5658 5659 static int 5660 sysctl_uint16(SYSCTL_HANDLER_ARGS) 5661 { 5662 uint16_t *id = arg1; 5663 int i = *id; 5664 5665 return sysctl_handle_int(oidp, &i, 0, req); 5666 } 5667 5668 static int 5669 sysctl_bufsizes(SYSCTL_HANDLER_ARGS) 5670 { 5671 struct sge *s = arg1; 5672 struct hw_buf_info *hwb = &s->hw_buf_info[0]; 5673 struct sw_zone_info *swz = &s->sw_zone_info[0]; 5674 int i, rc; 5675 struct sbuf sb; 5676 char c; 5677 5678 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 5679 for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) { 5680 if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster) 5681 c = '*'; 5682 else 5683 c = '\0'; 5684 5685 sbuf_printf(&sb, "%u%c ", hwb->size, c); 5686 } 5687 sbuf_trim(&sb); 5688 sbuf_finish(&sb); 5689 rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 5690 sbuf_delete(&sb); 5691 return (rc); 5692 } 5693 5694 #ifdef RATELIMIT 5695 /* 5696 * len16 for a txpkt WR with a GL. Includes the firmware work request header. 5697 */ 5698 static inline u_int 5699 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso) 5700 { 5701 u_int n; 5702 5703 MPASS(immhdrs > 0); 5704 5705 n = roundup2(sizeof(struct fw_eth_tx_eo_wr) + 5706 sizeof(struct cpl_tx_pkt_core) + immhdrs, 16); 5707 if (__predict_false(nsegs == 0)) 5708 goto done; 5709 5710 nsegs--; /* first segment is part of ulptx_sgl */ 5711 n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 5712 if (tso) 5713 n += sizeof(struct cpl_tx_pkt_lso_core); 5714 5715 done: 5716 return (howmany(n, 16)); 5717 } 5718 5719 #define ETID_FLOWC_NPARAMS 6 5720 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \ 5721 ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16)) 5722 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16)) 5723 5724 static int 5725 send_etid_flowc_wr(struct cxgbe_snd_tag *cst, struct port_info *pi, 5726 struct vi_info *vi) 5727 { 5728 struct wrq_cookie cookie; 5729 u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN; 5730 struct fw_flowc_wr *flowc; 5731 5732 mtx_assert(&cst->lock, MA_OWNED); 5733 MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) == 5734 EO_FLOWC_PENDING); 5735 5736 flowc = start_wrq_wr(cst->eo_txq, ETID_FLOWC_LEN16, &cookie); 5737 if (__predict_false(flowc == NULL)) 5738 return (ENOMEM); 5739 5740 bzero(flowc, ETID_FLOWC_LEN); 5741 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | 5742 V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0)); 5743 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) | 5744 V_FW_WR_FLOWID(cst->etid)); 5745 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 5746 flowc->mnemval[0].val = htobe32(pfvf); 5747 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 5748 flowc->mnemval[1].val = htobe32(pi->tx_chan); 5749 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 5750 flowc->mnemval[2].val = htobe32(pi->tx_chan); 5751 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 5752 flowc->mnemval[3].val = htobe32(cst->iqid); 5753 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE; 5754 flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED); 5755 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 5756 flowc->mnemval[5].val = htobe32(cst->schedcl); 5757 5758 commit_wrq_wr(cst->eo_txq, flowc, &cookie); 5759 5760 cst->flags &= ~EO_FLOWC_PENDING; 5761 cst->flags |= EO_FLOWC_RPL_PENDING; 5762 MPASS(cst->tx_credits >= ETID_FLOWC_LEN16); /* flowc is first WR. */ 5763 cst->tx_credits -= ETID_FLOWC_LEN16; 5764 5765 return (0); 5766 } 5767 5768 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16)) 5769 5770 void 5771 send_etid_flush_wr(struct cxgbe_snd_tag *cst) 5772 { 5773 struct fw_flowc_wr *flowc; 5774 struct wrq_cookie cookie; 5775 5776 mtx_assert(&cst->lock, MA_OWNED); 5777 5778 flowc = start_wrq_wr(cst->eo_txq, ETID_FLUSH_LEN16, &cookie); 5779 if (__predict_false(flowc == NULL)) 5780 CXGBE_UNIMPLEMENTED(__func__); 5781 5782 bzero(flowc, ETID_FLUSH_LEN16 * 16); 5783 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | 5784 V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL); 5785 flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) | 5786 V_FW_WR_FLOWID(cst->etid)); 5787 5788 commit_wrq_wr(cst->eo_txq, flowc, &cookie); 5789 5790 cst->flags |= EO_FLUSH_RPL_PENDING; 5791 MPASS(cst->tx_credits >= ETID_FLUSH_LEN16); 5792 cst->tx_credits -= ETID_FLUSH_LEN16; 5793 cst->ncompl++; 5794 } 5795 5796 static void 5797 write_ethofld_wr(struct cxgbe_snd_tag *cst, struct fw_eth_tx_eo_wr *wr, 5798 struct mbuf *m0, int compl) 5799 { 5800 struct cpl_tx_pkt_core *cpl; 5801 uint64_t ctrl1; 5802 uint32_t ctrl; /* used in many unrelated places */ 5803 int len16, pktlen, nsegs, immhdrs; 5804 caddr_t dst; 5805 uintptr_t p; 5806 struct ulptx_sgl *usgl; 5807 struct sglist sg; 5808 struct sglist_seg segs[38]; /* XXX: find real limit. XXX: get off the stack */ 5809 5810 mtx_assert(&cst->lock, MA_OWNED); 5811 M_ASSERTPKTHDR(m0); 5812 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 5813 m0->m_pkthdr.l4hlen > 0, 5814 ("%s: ethofld mbuf %p is missing header lengths", __func__, m0)); 5815 5816 len16 = mbuf_eo_len16(m0); 5817 nsegs = mbuf_eo_nsegs(m0); 5818 pktlen = m0->m_pkthdr.len; 5819 ctrl = sizeof(struct cpl_tx_pkt_core); 5820 if (needs_tso(m0)) 5821 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 5822 immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen; 5823 ctrl += immhdrs; 5824 5825 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) | 5826 V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl)); 5827 wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) | 5828 V_FW_WR_FLOWID(cst->etid)); 5829 wr->r3 = 0; 5830 if (needs_udp_csum(m0)) { 5831 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG; 5832 wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen; 5833 wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen); 5834 wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen; 5835 wr->u.udpseg.rtplen = 0; 5836 wr->u.udpseg.r4 = 0; 5837 wr->u.udpseg.mss = htobe16(pktlen - immhdrs); 5838 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss; 5839 wr->u.udpseg.plen = htobe32(pktlen - immhdrs); 5840 cpl = (void *)(wr + 1); 5841 } else { 5842 MPASS(needs_tcp_csum(m0)); 5843 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG; 5844 wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen; 5845 wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen); 5846 wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen; 5847 wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0); 5848 wr->u.tcpseg.r4 = 0; 5849 wr->u.tcpseg.r5 = 0; 5850 wr->u.tcpseg.plen = htobe32(pktlen - immhdrs); 5851 5852 if (needs_tso(m0)) { 5853 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 5854 5855 wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz); 5856 5857 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | 5858 F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE | 5859 V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) | 5860 V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 5861 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 5862 ctrl |= V_LSO_ETHHDR_LEN(1); 5863 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 5864 ctrl |= F_LSO_IPV6; 5865 lso->lso_ctrl = htobe32(ctrl); 5866 lso->ipid_ofst = htobe16(0); 5867 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 5868 lso->seqno_offset = htobe32(0); 5869 lso->len = htobe32(pktlen); 5870 5871 cpl = (void *)(lso + 1); 5872 } else { 5873 wr->u.tcpseg.mss = htobe16(0xffff); 5874 cpl = (void *)(wr + 1); 5875 } 5876 } 5877 5878 /* Checksum offload must be requested for ethofld. */ 5879 ctrl1 = 0; 5880 MPASS(needs_l4_csum(m0)); 5881 5882 /* VLAN tag insertion */ 5883 if (needs_vlan_insertion(m0)) { 5884 ctrl1 |= F_TXPKT_VLAN_VLD | 5885 V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 5886 } 5887 5888 /* CPL header */ 5889 cpl->ctrl0 = cst->ctrl0; 5890 cpl->pack = 0; 5891 cpl->len = htobe16(pktlen); 5892 cpl->ctrl1 = htobe64(ctrl1); 5893 5894 /* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */ 5895 p = (uintptr_t)(cpl + 1); 5896 m_copydata(m0, 0, immhdrs, (void *)p); 5897 5898 /* SGL */ 5899 dst = (void *)(cpl + 1); 5900 if (nsegs > 0) { 5901 int i, pad; 5902 5903 /* zero-pad upto next 16Byte boundary, if not 16Byte aligned */ 5904 p += immhdrs; 5905 pad = 16 - (immhdrs & 0xf); 5906 bzero((void *)p, pad); 5907 5908 usgl = (void *)(p + pad); 5909 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 5910 V_ULPTX_NSGE(nsegs)); 5911 5912 sglist_init(&sg, nitems(segs), segs); 5913 for (; m0 != NULL; m0 = m0->m_next) { 5914 if (__predict_false(m0->m_len == 0)) 5915 continue; 5916 if (immhdrs >= m0->m_len) { 5917 immhdrs -= m0->m_len; 5918 continue; 5919 } 5920 5921 sglist_append(&sg, mtod(m0, char *) + immhdrs, 5922 m0->m_len - immhdrs); 5923 immhdrs = 0; 5924 } 5925 MPASS(sg.sg_nseg == nsegs); 5926 5927 /* 5928 * Zero pad last 8B in case the WR doesn't end on a 16B 5929 * boundary. 5930 */ 5931 *(uint64_t *)((char *)wr + len16 * 16 - 8) = 0; 5932 5933 usgl->len0 = htobe32(segs[0].ss_len); 5934 usgl->addr0 = htobe64(segs[0].ss_paddr); 5935 for (i = 0; i < nsegs - 1; i++) { 5936 usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len); 5937 usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr); 5938 } 5939 if (i & 1) 5940 usgl->sge[i / 2].len[1] = htobe32(0); 5941 } 5942 5943 } 5944 5945 static void 5946 ethofld_tx(struct cxgbe_snd_tag *cst) 5947 { 5948 struct mbuf *m; 5949 struct wrq_cookie cookie; 5950 int next_credits, compl; 5951 struct fw_eth_tx_eo_wr *wr; 5952 5953 mtx_assert(&cst->lock, MA_OWNED); 5954 5955 while ((m = mbufq_first(&cst->pending_tx)) != NULL) { 5956 M_ASSERTPKTHDR(m); 5957 5958 /* How many len16 credits do we need to send this mbuf. */ 5959 next_credits = mbuf_eo_len16(m); 5960 MPASS(next_credits > 0); 5961 if (next_credits > cst->tx_credits) { 5962 /* 5963 * Tx will make progress eventually because there is at 5964 * least one outstanding fw4_ack that will return 5965 * credits and kick the tx. 5966 */ 5967 MPASS(cst->ncompl > 0); 5968 return; 5969 } 5970 wr = start_wrq_wr(cst->eo_txq, next_credits, &cookie); 5971 if (__predict_false(wr == NULL)) { 5972 /* XXX: wishful thinking, not a real assertion. */ 5973 MPASS(cst->ncompl > 0); 5974 return; 5975 } 5976 cst->tx_credits -= next_credits; 5977 cst->tx_nocompl += next_credits; 5978 compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2; 5979 ETHER_BPF_MTAP(cst->com.ifp, m); 5980 write_ethofld_wr(cst, wr, m, compl); 5981 commit_wrq_wr(cst->eo_txq, wr, &cookie); 5982 if (compl) { 5983 cst->ncompl++; 5984 cst->tx_nocompl = 0; 5985 } 5986 (void) mbufq_dequeue(&cst->pending_tx); 5987 5988 /* 5989 * Drop the mbuf's reference on the tag now rather 5990 * than waiting until m_freem(). This ensures that 5991 * cxgbe_snd_tag_free gets called when the inp drops 5992 * its reference on the tag and there are no more 5993 * mbufs in the pending_tx queue and can flush any 5994 * pending requests. Otherwise if the last mbuf 5995 * doesn't request a completion the etid will never be 5996 * released. 5997 */ 5998 m->m_pkthdr.snd_tag = NULL; 5999 m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG; 6000 m_snd_tag_rele(&cst->com); 6001 6002 mbufq_enqueue(&cst->pending_fwack, m); 6003 } 6004 } 6005 6006 int 6007 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0) 6008 { 6009 struct cxgbe_snd_tag *cst; 6010 int rc; 6011 6012 MPASS(m0->m_nextpkt == NULL); 6013 MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG); 6014 MPASS(m0->m_pkthdr.snd_tag != NULL); 6015 cst = mst_to_cst(m0->m_pkthdr.snd_tag); 6016 6017 mtx_lock(&cst->lock); 6018 MPASS(cst->flags & EO_SND_TAG_REF); 6019 6020 if (__predict_false(cst->flags & EO_FLOWC_PENDING)) { 6021 struct vi_info *vi = ifp->if_softc; 6022 struct port_info *pi = vi->pi; 6023 struct adapter *sc = pi->adapter; 6024 const uint32_t rss_mask = vi->rss_size - 1; 6025 uint32_t rss_hash; 6026 6027 cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq]; 6028 if (M_HASHTYPE_ISHASH(m0)) 6029 rss_hash = m0->m_pkthdr.flowid; 6030 else 6031 rss_hash = arc4random(); 6032 /* We assume RSS hashing */ 6033 cst->iqid = vi->rss[rss_hash & rss_mask]; 6034 cst->eo_txq += rss_hash % vi->nofldtxq; 6035 rc = send_etid_flowc_wr(cst, pi, vi); 6036 if (rc != 0) 6037 goto done; 6038 } 6039 6040 if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) { 6041 rc = ENOBUFS; 6042 goto done; 6043 } 6044 6045 mbufq_enqueue(&cst->pending_tx, m0); 6046 cst->plen += m0->m_pkthdr.len; 6047 6048 /* 6049 * Hold an extra reference on the tag while generating work 6050 * requests to ensure that we don't try to free the tag during 6051 * ethofld_tx() in case we are sending the final mbuf after 6052 * the inp was freed. 6053 */ 6054 m_snd_tag_ref(&cst->com); 6055 ethofld_tx(cst); 6056 mtx_unlock(&cst->lock); 6057 m_snd_tag_rele(&cst->com); 6058 return (0); 6059 6060 done: 6061 mtx_unlock(&cst->lock); 6062 if (__predict_false(rc != 0)) 6063 m_freem(m0); 6064 return (rc); 6065 } 6066 6067 static int 6068 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) 6069 { 6070 struct adapter *sc = iq->adapter; 6071 const struct cpl_fw4_ack *cpl = (const void *)(rss + 1); 6072 struct mbuf *m; 6073 u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl))); 6074 struct cxgbe_snd_tag *cst; 6075 uint8_t credits = cpl->credits; 6076 6077 cst = lookup_etid(sc, etid); 6078 mtx_lock(&cst->lock); 6079 if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) { 6080 MPASS(credits >= ETID_FLOWC_LEN16); 6081 credits -= ETID_FLOWC_LEN16; 6082 cst->flags &= ~EO_FLOWC_RPL_PENDING; 6083 } 6084 6085 KASSERT(cst->ncompl > 0, 6086 ("%s: etid %u (%p) wasn't expecting completion.", 6087 __func__, etid, cst)); 6088 cst->ncompl--; 6089 6090 while (credits > 0) { 6091 m = mbufq_dequeue(&cst->pending_fwack); 6092 if (__predict_false(m == NULL)) { 6093 /* 6094 * The remaining credits are for the final flush that 6095 * was issued when the tag was freed by the kernel. 6096 */ 6097 MPASS((cst->flags & 6098 (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) == 6099 EO_FLUSH_RPL_PENDING); 6100 MPASS(credits == ETID_FLUSH_LEN16); 6101 MPASS(cst->tx_credits + cpl->credits == cst->tx_total); 6102 MPASS(cst->ncompl == 0); 6103 6104 cst->flags &= ~EO_FLUSH_RPL_PENDING; 6105 cst->tx_credits += cpl->credits; 6106 cxgbe_snd_tag_free_locked(cst); 6107 return (0); /* cst is gone. */ 6108 } 6109 KASSERT(m != NULL, 6110 ("%s: too many credits (%u, %u)", __func__, cpl->credits, 6111 credits)); 6112 KASSERT(credits >= mbuf_eo_len16(m), 6113 ("%s: too few credits (%u, %u, %u)", __func__, 6114 cpl->credits, credits, mbuf_eo_len16(m))); 6115 credits -= mbuf_eo_len16(m); 6116 cst->plen -= m->m_pkthdr.len; 6117 m_freem(m); 6118 } 6119 6120 cst->tx_credits += cpl->credits; 6121 MPASS(cst->tx_credits <= cst->tx_total); 6122 6123 if (cst->flags & EO_SND_TAG_REF) { 6124 /* 6125 * As with ethofld_transmit(), hold an extra reference 6126 * so that the tag is stable across ethold_tx(). 6127 */ 6128 m_snd_tag_ref(&cst->com); 6129 m = mbufq_first(&cst->pending_tx); 6130 if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m)) 6131 ethofld_tx(cst); 6132 mtx_unlock(&cst->lock); 6133 m_snd_tag_rele(&cst->com); 6134 } else { 6135 /* 6136 * There shouldn't be any pending packets if the tag 6137 * was freed by the kernel since any pending packet 6138 * should hold a reference to the tag. 6139 */ 6140 MPASS(mbufq_first(&cst->pending_tx) == NULL); 6141 mtx_unlock(&cst->lock); 6142 } 6143 6144 return (0); 6145 } 6146 #endif 6147