xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision f4dc9bf43457515e5c88d1400d4f5ff70a82d9c7)
1 /*-
2  * Copyright (c) 2011 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #include <sys/types.h>
35 #include <sys/eventhandler.h>
36 #include <sys/mbuf.h>
37 #include <sys/socket.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/queue.h>
41 #include <sys/sbuf.h>
42 #include <sys/taskqueue.h>
43 #include <sys/time.h>
44 #include <sys/sglist.h>
45 #include <sys/sysctl.h>
46 #include <sys/smp.h>
47 #include <sys/counter.h>
48 #include <net/bpf.h>
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/if_vlan_var.h>
52 #include <netinet/in.h>
53 #include <netinet/ip.h>
54 #include <netinet/ip6.h>
55 #include <netinet/tcp.h>
56 #include <machine/md_var.h>
57 #include <vm/vm.h>
58 #include <vm/pmap.h>
59 #ifdef DEV_NETMAP
60 #include <machine/bus.h>
61 #include <sys/selinfo.h>
62 #include <net/if_var.h>
63 #include <net/netmap.h>
64 #include <dev/netmap/netmap_kern.h>
65 #endif
66 
67 #include "common/common.h"
68 #include "common/t4_regs.h"
69 #include "common/t4_regs_values.h"
70 #include "common/t4_msg.h"
71 #include "t4_l2t.h"
72 #include "t4_mp_ring.h"
73 
74 #ifdef T4_PKT_TIMESTAMP
75 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
76 #else
77 #define RX_COPY_THRESHOLD MINCLSIZE
78 #endif
79 
80 /*
81  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
82  * 0-7 are valid values.
83  */
84 int fl_pktshift = 2;
85 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
86 
87 /*
88  * Pad ethernet payload up to this boundary.
89  * -1: driver should figure out a good value.
90  *  0: disable padding.
91  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
92  */
93 int fl_pad = -1;
94 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
95 
96 /*
97  * Status page length.
98  * -1: driver should figure out a good value.
99  *  64 or 128 are the only other valid values.
100  */
101 int spg_len = -1;
102 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
103 
104 /*
105  * Congestion drops.
106  * -1: no congestion feedback (not recommended).
107  *  0: backpressure the channel instead of dropping packets right away.
108  *  1: no backpressure, drop packets for the congested queue immediately.
109  */
110 static int cong_drop = 0;
111 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
112 
113 /*
114  * Deliver multiple frames in the same free list buffer if they fit.
115  * -1: let the driver decide whether to enable buffer packing or not.
116  *  0: disable buffer packing.
117  *  1: enable buffer packing.
118  */
119 static int buffer_packing = -1;
120 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
121 
122 /*
123  * Start next frame in a packed buffer at this boundary.
124  * -1: driver should figure out a good value.
125  * T4: driver will ignore this and use the same value as fl_pad above.
126  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
127  */
128 static int fl_pack = -1;
129 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
130 
131 /*
132  * Allow the driver to create mbuf(s) in a cluster allocated for rx.
133  * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
134  * 1: ok to create mbuf(s) within a cluster if there is room.
135  */
136 static int allow_mbufs_in_cluster = 1;
137 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
138 
139 /*
140  * Largest rx cluster size that the driver is allowed to allocate.
141  */
142 static int largest_rx_cluster = MJUM16BYTES;
143 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
144 
145 /*
146  * Size of cluster allocation that's most likely to succeed.  The driver will
147  * fall back to this size if it fails to allocate clusters larger than this.
148  */
149 static int safest_rx_cluster = PAGE_SIZE;
150 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
151 
152 struct txpkts {
153 	u_int wr_type;		/* type 0 or type 1 */
154 	u_int npkt;		/* # of packets in this work request */
155 	u_int plen;		/* total payload (sum of all packets) */
156 	u_int len16;		/* # of 16B pieces used by this work request */
157 };
158 
159 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
160 struct sgl {
161 	struct sglist sg;
162 	struct sglist_seg seg[TX_SGL_SEGS];
163 };
164 
165 static int service_iq(struct sge_iq *, int);
166 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
167 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
168 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
169 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
170 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
171     uint16_t, char *);
172 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
173     bus_addr_t *, void **);
174 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
175     void *);
176 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
177     int, int);
178 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
179 static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
180     struct sge_fl *);
181 static int alloc_fwq(struct adapter *);
182 static int free_fwq(struct adapter *);
183 static int alloc_mgmtq(struct adapter *);
184 static int free_mgmtq(struct adapter *);
185 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
186     struct sysctl_oid *);
187 static int free_rxq(struct vi_info *, struct sge_rxq *);
188 #ifdef TCP_OFFLOAD
189 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
190     struct sysctl_oid *);
191 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
192 #endif
193 #ifdef DEV_NETMAP
194 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
195     struct sysctl_oid *);
196 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
197 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
198     struct sysctl_oid *);
199 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
200 #endif
201 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
202 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
203 #ifdef TCP_OFFLOAD
204 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
205 #endif
206 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
207 static int free_eq(struct adapter *, struct sge_eq *);
208 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
209     struct sysctl_oid *);
210 static int free_wrq(struct adapter *, struct sge_wrq *);
211 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
212     struct sysctl_oid *);
213 static int free_txq(struct vi_info *, struct sge_txq *);
214 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
215 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
216 static int refill_fl(struct adapter *, struct sge_fl *, int);
217 static void refill_sfl(void *);
218 static int alloc_fl_sdesc(struct sge_fl *);
219 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
220 static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
221 static void find_safe_refill_source(struct adapter *, struct sge_fl *);
222 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
223 
224 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
225 static inline u_int txpkt_len16(u_int, u_int);
226 static inline u_int txpkts0_len16(u_int);
227 static inline u_int txpkts1_len16(void);
228 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
229     struct mbuf *, u_int);
230 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
231 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
232 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
233     struct mbuf *, const struct txpkts *, u_int);
234 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
235 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
236 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
237 static inline uint16_t read_hw_cidx(struct sge_eq *);
238 static inline u_int reclaimable_tx_desc(struct sge_eq *);
239 static inline u_int total_available_tx_desc(struct sge_eq *);
240 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
241 static void tx_reclaim(void *, int);
242 static __be64 get_flit(struct sglist_seg *, int, int);
243 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
244     struct mbuf *);
245 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
246     struct mbuf *);
247 static void wrq_tx_drain(void *, int);
248 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
249 
250 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
251 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
252 static int sysctl_tc(SYSCTL_HANDLER_ARGS);
253 
254 static counter_u64_t extfree_refs;
255 static counter_u64_t extfree_rels;
256 
257 an_handler_t t4_an_handler;
258 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
259 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
260 
261 
262 static int
263 an_not_handled(struct sge_iq *iq, const struct rsp_ctrl *ctrl)
264 {
265 
266 #ifdef INVARIANTS
267 	panic("%s: async notification on iq %p (ctrl %p)", __func__, iq, ctrl);
268 #else
269 	log(LOG_ERR, "%s: async notification on iq %p (ctrl %p)\n",
270 	    __func__, iq, ctrl);
271 #endif
272 	return (EDOOFUS);
273 }
274 
275 int
276 t4_register_an_handler(an_handler_t h)
277 {
278 	uintptr_t *loc, new;
279 
280 	new = h ? (uintptr_t)h : (uintptr_t)an_not_handled;
281 	loc = (uintptr_t *) &t4_an_handler;
282 	atomic_store_rel_ptr(loc, new);
283 
284 	return (0);
285 }
286 
287 static int
288 fw_msg_not_handled(struct adapter *sc, const __be64 *rpl)
289 {
290 	const struct cpl_fw6_msg *cpl =
291 	    __containerof(rpl, struct cpl_fw6_msg, data[0]);
292 
293 #ifdef INVARIANTS
294 	panic("%s: fw_msg type %d", __func__, cpl->type);
295 #else
296 	log(LOG_ERR, "%s: fw_msg type %d\n", __func__, cpl->type);
297 #endif
298 	return (EDOOFUS);
299 }
300 
301 int
302 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
303 {
304 	uintptr_t *loc, new;
305 
306 	if (type >= nitems(t4_fw_msg_handler))
307 		return (EINVAL);
308 
309 	/*
310 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
311 	 * handler dispatch table.  Reject any attempt to install a handler for
312 	 * this subtype.
313 	 */
314 	if (type == FW_TYPE_RSSCPL || type == FW6_TYPE_RSSCPL)
315 		return (EINVAL);
316 
317 	new = h ? (uintptr_t)h : (uintptr_t)fw_msg_not_handled;
318 	loc = (uintptr_t *) &t4_fw_msg_handler[type];
319 	atomic_store_rel_ptr(loc, new);
320 
321 	return (0);
322 }
323 
324 static int
325 cpl_not_handled(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
326 {
327 
328 #ifdef INVARIANTS
329 	panic("%s: opcode 0x%02x on iq %p with payload %p",
330 	    __func__, rss->opcode, iq, m);
331 #else
332 	log(LOG_ERR, "%s: opcode 0x%02x on iq %p with payload %p\n",
333 	    __func__, rss->opcode, iq, m);
334 	m_freem(m);
335 #endif
336 	return (EDOOFUS);
337 }
338 
339 int
340 t4_register_cpl_handler(int opcode, cpl_handler_t h)
341 {
342 	uintptr_t *loc, new;
343 
344 	if (opcode >= nitems(t4_cpl_handler))
345 		return (EINVAL);
346 
347 	new = h ? (uintptr_t)h : (uintptr_t)cpl_not_handled;
348 	loc = (uintptr_t *) &t4_cpl_handler[opcode];
349 	atomic_store_rel_ptr(loc, new);
350 
351 	return (0);
352 }
353 
354 /*
355  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
356  */
357 void
358 t4_sge_modload(void)
359 {
360 	int i;
361 
362 	if (fl_pktshift < 0 || fl_pktshift > 7) {
363 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
364 		    " using 2 instead.\n", fl_pktshift);
365 		fl_pktshift = 2;
366 	}
367 
368 	if (spg_len != 64 && spg_len != 128) {
369 		int len;
370 
371 #if defined(__i386__) || defined(__amd64__)
372 		len = cpu_clflush_line_size > 64 ? 128 : 64;
373 #else
374 		len = 64;
375 #endif
376 		if (spg_len != -1) {
377 			printf("Invalid hw.cxgbe.spg_len value (%d),"
378 			    " using %d instead.\n", spg_len, len);
379 		}
380 		spg_len = len;
381 	}
382 
383 	if (cong_drop < -1 || cong_drop > 1) {
384 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
385 		    " using 0 instead.\n", cong_drop);
386 		cong_drop = 0;
387 	}
388 
389 	extfree_refs = counter_u64_alloc(M_WAITOK);
390 	extfree_rels = counter_u64_alloc(M_WAITOK);
391 	counter_u64_zero(extfree_refs);
392 	counter_u64_zero(extfree_rels);
393 
394 	t4_an_handler = an_not_handled;
395 	for (i = 0; i < nitems(t4_fw_msg_handler); i++)
396 		t4_fw_msg_handler[i] = fw_msg_not_handled;
397 	for (i = 0; i < nitems(t4_cpl_handler); i++)
398 		t4_cpl_handler[i] = cpl_not_handled;
399 
400 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
401 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
402 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
403 	t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx);
404 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
405 }
406 
407 void
408 t4_sge_modunload(void)
409 {
410 
411 	counter_u64_free(extfree_refs);
412 	counter_u64_free(extfree_rels);
413 }
414 
415 uint64_t
416 t4_sge_extfree_refs(void)
417 {
418 	uint64_t refs, rels;
419 
420 	rels = counter_u64_fetch(extfree_rels);
421 	refs = counter_u64_fetch(extfree_refs);
422 
423 	return (refs - rels);
424 }
425 
426 static inline void
427 setup_pad_and_pack_boundaries(struct adapter *sc)
428 {
429 	uint32_t v, m;
430 	int pad, pack;
431 
432 	pad = fl_pad;
433 	if (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad)) {
434 		/*
435 		 * If there is any chance that we might use buffer packing and
436 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
437 		 * it to 32 in all other cases.
438 		 */
439 		pad = is_t4(sc) && buffer_packing ? 64 : 32;
440 
441 		/*
442 		 * For fl_pad = 0 we'll still write a reasonable value to the
443 		 * register but all the freelists will opt out of padding.
444 		 * We'll complain here only if the user tried to set it to a
445 		 * value greater than 0 that was invalid.
446 		 */
447 		if (fl_pad > 0) {
448 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
449 			    " (%d), using %d instead.\n", fl_pad, pad);
450 		}
451 	}
452 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
453 	v = V_INGPADBOUNDARY(ilog2(pad) - 5);
454 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
455 
456 	if (is_t4(sc)) {
457 		if (fl_pack != -1 && fl_pack != pad) {
458 			/* Complain but carry on. */
459 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
460 			    " using %d instead.\n", fl_pack, pad);
461 		}
462 		return;
463 	}
464 
465 	pack = fl_pack;
466 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
467 	    !powerof2(fl_pack)) {
468 		pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
469 		MPASS(powerof2(pack));
470 		if (pack < 16)
471 			pack = 16;
472 		if (pack == 32)
473 			pack = 64;
474 		if (pack > 4096)
475 			pack = 4096;
476 		if (fl_pack != -1) {
477 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
478 			    " (%d), using %d instead.\n", fl_pack, pack);
479 		}
480 	}
481 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
482 	if (pack == 16)
483 		v = V_INGPACKBOUNDARY(0);
484 	else
485 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
486 
487 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
488 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
489 }
490 
491 /*
492  * adap->params.vpd.cclk must be set up before this is called.
493  */
494 void
495 t4_tweak_chip_settings(struct adapter *sc)
496 {
497 	int i;
498 	uint32_t v, m;
499 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
500 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
501 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
502 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
503 	static int sge_flbuf_sizes[] = {
504 		MCLBYTES,
505 #if MJUMPAGESIZE != MCLBYTES
506 		MJUMPAGESIZE,
507 		MJUMPAGESIZE - CL_METADATA_SIZE,
508 		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
509 #endif
510 		MJUM9BYTES,
511 		MJUM16BYTES,
512 		MCLBYTES - MSIZE - CL_METADATA_SIZE,
513 		MJUM9BYTES - CL_METADATA_SIZE,
514 		MJUM16BYTES - CL_METADATA_SIZE,
515 	};
516 
517 	KASSERT(sc->flags & MASTER_PF,
518 	    ("%s: trying to change chip settings when not master.", __func__));
519 
520 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
521 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
522 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
523 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
524 
525 	setup_pad_and_pack_boundaries(sc);
526 
527 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
528 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
529 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
530 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
531 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
532 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
533 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
534 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
535 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
536 
537 	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
538 	    ("%s: hw buffer size table too big", __func__));
539 	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
540 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
541 		    sge_flbuf_sizes[i]);
542 	}
543 
544 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
545 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
546 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
547 
548 	KASSERT(intr_timer[0] <= timer_max,
549 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
550 	    timer_max));
551 	for (i = 1; i < nitems(intr_timer); i++) {
552 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
553 		    ("%s: timers not listed in increasing order (%d)",
554 		    __func__, i));
555 
556 		while (intr_timer[i] > timer_max) {
557 			if (i == nitems(intr_timer) - 1) {
558 				intr_timer[i] = timer_max;
559 				break;
560 			}
561 			intr_timer[i] += intr_timer[i - 1];
562 			intr_timer[i] /= 2;
563 		}
564 	}
565 
566 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
567 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
568 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
569 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
570 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
571 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
572 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
573 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
574 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
575 
576 	/* 4K, 16K, 64K, 256K DDP "page sizes" */
577 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
578 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
579 
580 	m = v = F_TDDPTAGTCB;
581 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
582 
583 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
584 	    F_RESETDDPOFFSET;
585 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
586 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
587 }
588 
589 /*
590  * SGE wants the buffer to be at least 64B and then a multiple of 16.  If
591  * padding is is use the buffer's start and end need to be aligned to the pad
592  * boundary as well.  We'll just make sure that the size is a multiple of the
593  * boundary here, it is up to the buffer allocation code to make sure the start
594  * of the buffer is aligned as well.
595  */
596 static inline int
597 hwsz_ok(struct adapter *sc, int hwsz)
598 {
599 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
600 
601 	return (hwsz >= 64 && (hwsz & mask) == 0);
602 }
603 
604 /*
605  * XXX: driver really should be able to deal with unexpected settings.
606  */
607 int
608 t4_read_chip_settings(struct adapter *sc)
609 {
610 	struct sge *s = &sc->sge;
611 	struct sge_params *sp = &sc->params.sge;
612 	int i, j, n, rc = 0;
613 	uint32_t m, v, r;
614 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
615 	static int sw_buf_sizes[] = {	/* Sorted by size */
616 		MCLBYTES,
617 #if MJUMPAGESIZE != MCLBYTES
618 		MJUMPAGESIZE,
619 #endif
620 		MJUM9BYTES,
621 		MJUM16BYTES
622 	};
623 	struct sw_zone_info *swz, *safe_swz;
624 	struct hw_buf_info *hwb;
625 
626 	t4_init_sge_params(sc);
627 
628 	m = F_RXPKTCPLMODE;
629 	v = F_RXPKTCPLMODE;
630 	r = t4_read_reg(sc, A_SGE_CONTROL);
631 	if ((r & m) != v) {
632 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
633 		rc = EINVAL;
634 	}
635 
636 	/*
637 	 * If this changes then every single use of PAGE_SHIFT in the driver
638 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
639 	 */
640 	if (sp->page_shift != PAGE_SHIFT) {
641 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
642 		rc = EINVAL;
643 	}
644 
645 	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
646 	hwb = &s->hw_buf_info[0];
647 	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
648 		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
649 		hwb->size = r;
650 		hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
651 		hwb->next = -1;
652 	}
653 
654 	/*
655 	 * Create a sorted list in decreasing order of hw buffer sizes (and so
656 	 * increasing order of spare area) for each software zone.
657 	 *
658 	 * If padding is enabled then the start and end of the buffer must align
659 	 * to the pad boundary; if packing is enabled then they must align with
660 	 * the pack boundary as well.  Allocations from the cluster zones are
661 	 * aligned to min(size, 4K), so the buffer starts at that alignment and
662 	 * ends at hwb->size alignment.  If mbuf inlining is allowed the
663 	 * starting alignment will be reduced to MSIZE and the driver will
664 	 * exercise appropriate caution when deciding on the best buffer layout
665 	 * to use.
666 	 */
667 	n = 0;	/* no usable buffer size to begin with */
668 	swz = &s->sw_zone_info[0];
669 	safe_swz = NULL;
670 	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
671 		int8_t head = -1, tail = -1;
672 
673 		swz->size = sw_buf_sizes[i];
674 		swz->zone = m_getzone(swz->size);
675 		swz->type = m_gettype(swz->size);
676 
677 		if (swz->size < PAGE_SIZE) {
678 			MPASS(powerof2(swz->size));
679 			if (fl_pad && (swz->size % sp->pad_boundary != 0))
680 				continue;
681 		}
682 
683 		if (swz->size == safest_rx_cluster)
684 			safe_swz = swz;
685 
686 		hwb = &s->hw_buf_info[0];
687 		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
688 			if (hwb->zidx != -1 || hwb->size > swz->size)
689 				continue;
690 #ifdef INVARIANTS
691 			if (fl_pad)
692 				MPASS(hwb->size % sp->pad_boundary == 0);
693 #endif
694 			hwb->zidx = i;
695 			if (head == -1)
696 				head = tail = j;
697 			else if (hwb->size < s->hw_buf_info[tail].size) {
698 				s->hw_buf_info[tail].next = j;
699 				tail = j;
700 			} else {
701 				int8_t *cur;
702 				struct hw_buf_info *t;
703 
704 				for (cur = &head; *cur != -1; cur = &t->next) {
705 					t = &s->hw_buf_info[*cur];
706 					if (hwb->size == t->size) {
707 						hwb->zidx = -2;
708 						break;
709 					}
710 					if (hwb->size > t->size) {
711 						hwb->next = *cur;
712 						*cur = j;
713 						break;
714 					}
715 				}
716 			}
717 		}
718 		swz->head_hwidx = head;
719 		swz->tail_hwidx = tail;
720 
721 		if (tail != -1) {
722 			n++;
723 			if (swz->size - s->hw_buf_info[tail].size >=
724 			    CL_METADATA_SIZE)
725 				sc->flags |= BUF_PACKING_OK;
726 		}
727 	}
728 	if (n == 0) {
729 		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
730 		rc = EINVAL;
731 	}
732 
733 	s->safe_hwidx1 = -1;
734 	s->safe_hwidx2 = -1;
735 	if (safe_swz != NULL) {
736 		s->safe_hwidx1 = safe_swz->head_hwidx;
737 		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
738 			int spare;
739 
740 			hwb = &s->hw_buf_info[i];
741 #ifdef INVARIANTS
742 			if (fl_pad)
743 				MPASS(hwb->size % sp->pad_boundary == 0);
744 #endif
745 			spare = safe_swz->size - hwb->size;
746 			if (spare >= CL_METADATA_SIZE) {
747 				s->safe_hwidx2 = i;
748 				break;
749 			}
750 		}
751 	}
752 
753 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
754 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
755 	if (r != v) {
756 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
757 		rc = EINVAL;
758 	}
759 
760 	m = v = F_TDDPTAGTCB;
761 	r = t4_read_reg(sc, A_ULP_RX_CTL);
762 	if ((r & m) != v) {
763 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
764 		rc = EINVAL;
765 	}
766 
767 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
768 	    F_RESETDDPOFFSET;
769 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
770 	r = t4_read_reg(sc, A_TP_PARA_REG5);
771 	if ((r & m) != v) {
772 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
773 		rc = EINVAL;
774 	}
775 
776 	t4_init_tp_params(sc);
777 
778 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
779 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
780 
781 	return (rc);
782 }
783 
784 int
785 t4_create_dma_tag(struct adapter *sc)
786 {
787 	int rc;
788 
789 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
790 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
791 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
792 	    NULL, &sc->dmat);
793 	if (rc != 0) {
794 		device_printf(sc->dev,
795 		    "failed to create main DMA tag: %d\n", rc);
796 	}
797 
798 	return (rc);
799 }
800 
801 void
802 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
803     struct sysctl_oid_list *children)
804 {
805 	struct sge_params *sp = &sc->params.sge;
806 
807 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
808 	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
809 	    "freelist buffer sizes");
810 
811 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
812 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
813 
814 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
815 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
816 
817 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
818 	    NULL, sp->spg_len, "status page size (bytes)");
819 
820 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
821 	    NULL, cong_drop, "congestion drop setting");
822 
823 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
824 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
825 }
826 
827 int
828 t4_destroy_dma_tag(struct adapter *sc)
829 {
830 	if (sc->dmat)
831 		bus_dma_tag_destroy(sc->dmat);
832 
833 	return (0);
834 }
835 
836 /*
837  * Allocate and initialize the firmware event queue and the management queue.
838  *
839  * Returns errno on failure.  Resources allocated up to that point may still be
840  * allocated.  Caller is responsible for cleanup in case this function fails.
841  */
842 int
843 t4_setup_adapter_queues(struct adapter *sc)
844 {
845 	int rc;
846 
847 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
848 
849 	sysctl_ctx_init(&sc->ctx);
850 	sc->flags |= ADAP_SYSCTL_CTX;
851 
852 	/*
853 	 * Firmware event queue
854 	 */
855 	rc = alloc_fwq(sc);
856 	if (rc != 0)
857 		return (rc);
858 
859 	/*
860 	 * Management queue.  This is just a control queue that uses the fwq as
861 	 * its associated iq.
862 	 */
863 	rc = alloc_mgmtq(sc);
864 
865 	return (rc);
866 }
867 
868 /*
869  * Idempotent
870  */
871 int
872 t4_teardown_adapter_queues(struct adapter *sc)
873 {
874 
875 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
876 
877 	/* Do this before freeing the queue */
878 	if (sc->flags & ADAP_SYSCTL_CTX) {
879 		sysctl_ctx_free(&sc->ctx);
880 		sc->flags &= ~ADAP_SYSCTL_CTX;
881 	}
882 
883 	free_mgmtq(sc);
884 	free_fwq(sc);
885 
886 	return (0);
887 }
888 
889 static inline int
890 first_vector(struct vi_info *vi)
891 {
892 	struct adapter *sc = vi->pi->adapter;
893 
894 	if (sc->intr_count == 1)
895 		return (0);
896 
897 	return (vi->first_intr);
898 }
899 
900 /*
901  * Given an arbitrary "index," come up with an iq that can be used by other
902  * queues (of this VI) for interrupt forwarding, SGE egress updates, etc.
903  * The iq returned is guaranteed to be something that takes direct interrupts.
904  */
905 static struct sge_iq *
906 vi_intr_iq(struct vi_info *vi, int idx)
907 {
908 	struct adapter *sc = vi->pi->adapter;
909 	struct sge *s = &sc->sge;
910 	struct sge_iq *iq = NULL;
911 	int nintr, i;
912 
913 	if (sc->intr_count == 1)
914 		return (&sc->sge.fwq);
915 
916 	nintr = vi->nintr;
917 	KASSERT(nintr != 0,
918 	    ("%s: vi %p has no exclusive interrupts, total interrupts = %d",
919 	    __func__, vi, sc->intr_count));
920 	i = idx % nintr;
921 
922 	if (vi->flags & INTR_RXQ) {
923 	       	if (i < vi->nrxq) {
924 			iq = &s->rxq[vi->first_rxq + i].iq;
925 			goto done;
926 		}
927 		i -= vi->nrxq;
928 	}
929 #ifdef TCP_OFFLOAD
930 	if (vi->flags & INTR_OFLD_RXQ) {
931 	       	if (i < vi->nofldrxq) {
932 			iq = &s->ofld_rxq[vi->first_ofld_rxq + i].iq;
933 			goto done;
934 		}
935 		i -= vi->nofldrxq;
936 	}
937 #endif
938 	panic("%s: vi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
939 	    vi, vi->flags & INTR_ALL, idx, nintr);
940 done:
941 	MPASS(iq != NULL);
942 	KASSERT(iq->flags & IQ_INTR,
943 	    ("%s: iq %p (vi %p, intr_flags 0x%lx, idx %d)", __func__, iq, vi,
944 	    vi->flags & INTR_ALL, idx));
945 	return (iq);
946 }
947 
948 /* Maximum payload that can be delivered with a single iq descriptor */
949 static inline int
950 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
951 {
952 	int payload;
953 
954 #ifdef TCP_OFFLOAD
955 	if (toe) {
956 		payload = sc->tt.rx_coalesce ?
957 		    G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
958 	} else {
959 #endif
960 		/* large enough even when hw VLAN extraction is disabled */
961 		payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
962 		    ETHER_VLAN_ENCAP_LEN + mtu;
963 #ifdef TCP_OFFLOAD
964 	}
965 #endif
966 
967 	return (payload);
968 }
969 
970 int
971 t4_setup_vi_queues(struct vi_info *vi)
972 {
973 	int rc = 0, i, j, intr_idx, iqid;
974 	struct sge_rxq *rxq;
975 	struct sge_txq *txq;
976 	struct sge_wrq *ctrlq;
977 #ifdef TCP_OFFLOAD
978 	struct sge_ofld_rxq *ofld_rxq;
979 	struct sge_wrq *ofld_txq;
980 #endif
981 #ifdef DEV_NETMAP
982 	int saved_idx;
983 	struct sge_nm_rxq *nm_rxq;
984 	struct sge_nm_txq *nm_txq;
985 #endif
986 	char name[16];
987 	struct port_info *pi = vi->pi;
988 	struct adapter *sc = pi->adapter;
989 	struct ifnet *ifp = vi->ifp;
990 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
991 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
992 	int maxp, mtu = ifp->if_mtu;
993 
994 	/* Interrupt vector to start from (when using multiple vectors) */
995 	intr_idx = first_vector(vi);
996 
997 #ifdef DEV_NETMAP
998 	saved_idx = intr_idx;
999 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1000 
1001 		/* netmap is supported with direct interrupts only. */
1002 		MPASS(vi->flags & INTR_RXQ);
1003 
1004 		/*
1005 		 * We don't have buffers to back the netmap rx queues
1006 		 * right now so we create the queues in a way that
1007 		 * doesn't set off any congestion signal in the chip.
1008 		 */
1009 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1010 		    CTLFLAG_RD, NULL, "rx queues");
1011 		for_each_nm_rxq(vi, i, nm_rxq) {
1012 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1013 			if (rc != 0)
1014 				goto done;
1015 			intr_idx++;
1016 		}
1017 
1018 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1019 		    CTLFLAG_RD, NULL, "tx queues");
1020 		for_each_nm_txq(vi, i, nm_txq) {
1021 			iqid = vi->first_nm_rxq + (i % vi->nnmrxq);
1022 			rc = alloc_nm_txq(vi, nm_txq, iqid, i, oid);
1023 			if (rc != 0)
1024 				goto done;
1025 		}
1026 	}
1027 
1028 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1029 	intr_idx = saved_idx;
1030 #endif
1031 
1032 	/*
1033 	 * First pass over all NIC and TOE rx queues:
1034 	 * a) initialize iq and fl
1035 	 * b) allocate queue iff it will take direct interrupts.
1036 	 */
1037 	maxp = mtu_to_max_payload(sc, mtu, 0);
1038 	if (vi->flags & INTR_RXQ) {
1039 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1040 		    CTLFLAG_RD, NULL, "rx queues");
1041 	}
1042 	for_each_rxq(vi, i, rxq) {
1043 
1044 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1045 
1046 		snprintf(name, sizeof(name), "%s rxq%d-fl",
1047 		    device_get_nameunit(vi->dev), i);
1048 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1049 
1050 		if (vi->flags & INTR_RXQ) {
1051 			rxq->iq.flags |= IQ_INTR;
1052 			rc = alloc_rxq(vi, rxq, intr_idx, i, oid);
1053 			if (rc != 0)
1054 				goto done;
1055 			intr_idx++;
1056 		}
1057 	}
1058 #ifdef DEV_NETMAP
1059 	if (ifp->if_capabilities & IFCAP_NETMAP)
1060 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1061 #endif
1062 #ifdef TCP_OFFLOAD
1063 	maxp = mtu_to_max_payload(sc, mtu, 1);
1064 	if (vi->flags & INTR_OFLD_RXQ) {
1065 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1066 		    CTLFLAG_RD, NULL,
1067 		    "rx queues for offloaded TCP connections");
1068 	}
1069 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1070 
1071 		init_iq(&ofld_rxq->iq, sc, vi->tmr_idx, vi->pktc_idx,
1072 		    vi->qsize_rxq);
1073 
1074 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1075 		    device_get_nameunit(vi->dev), i);
1076 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1077 
1078 		if (vi->flags & INTR_OFLD_RXQ) {
1079 			ofld_rxq->iq.flags |= IQ_INTR;
1080 			rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid);
1081 			if (rc != 0)
1082 				goto done;
1083 			intr_idx++;
1084 		}
1085 	}
1086 #endif
1087 
1088 	/*
1089 	 * Second pass over all NIC and TOE rx queues.  The queues forwarding
1090 	 * their interrupts are allocated now.
1091 	 */
1092 	j = 0;
1093 	if (!(vi->flags & INTR_RXQ)) {
1094 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1095 		    CTLFLAG_RD, NULL, "rx queues");
1096 		for_each_rxq(vi, i, rxq) {
1097 			MPASS(!(rxq->iq.flags & IQ_INTR));
1098 
1099 			intr_idx = vi_intr_iq(vi, j)->abs_id;
1100 
1101 			rc = alloc_rxq(vi, rxq, intr_idx, i, oid);
1102 			if (rc != 0)
1103 				goto done;
1104 			j++;
1105 		}
1106 	}
1107 #ifdef TCP_OFFLOAD
1108 	if (vi->nofldrxq != 0 && !(vi->flags & INTR_OFLD_RXQ)) {
1109 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1110 		    CTLFLAG_RD, NULL,
1111 		    "rx queues for offloaded TCP connections");
1112 		for_each_ofld_rxq(vi, i, ofld_rxq) {
1113 			MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
1114 
1115 			intr_idx = vi_intr_iq(vi, j)->abs_id;
1116 
1117 			rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid);
1118 			if (rc != 0)
1119 				goto done;
1120 			j++;
1121 		}
1122 	}
1123 #endif
1124 
1125 	/*
1126 	 * Now the tx queues.  Only one pass needed.
1127 	 */
1128 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1129 	    NULL, "tx queues");
1130 	j = 0;
1131 	for_each_txq(vi, i, txq) {
1132 		iqid = vi_intr_iq(vi, j)->cntxt_id;
1133 		snprintf(name, sizeof(name), "%s txq%d",
1134 		    device_get_nameunit(vi->dev), i);
1135 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, iqid,
1136 		    name);
1137 
1138 		rc = alloc_txq(vi, txq, i, oid);
1139 		if (rc != 0)
1140 			goto done;
1141 		j++;
1142 	}
1143 #ifdef TCP_OFFLOAD
1144 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1145 	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1146 	for_each_ofld_txq(vi, i, ofld_txq) {
1147 		struct sysctl_oid *oid2;
1148 
1149 		iqid = vi_intr_iq(vi, j)->cntxt_id;
1150 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1151 		    device_get_nameunit(vi->dev), i);
1152 		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1153 		    iqid, name);
1154 
1155 		snprintf(name, sizeof(name), "%d", i);
1156 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1157 		    name, CTLFLAG_RD, NULL, "offload tx queue");
1158 
1159 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1160 		if (rc != 0)
1161 			goto done;
1162 		j++;
1163 	}
1164 #endif
1165 
1166 	/*
1167 	 * Finally, the control queue.
1168 	 */
1169 	if (!IS_MAIN_VI(vi))
1170 		goto done;
1171 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1172 	    NULL, "ctrl queue");
1173 	ctrlq = &sc->sge.ctrlq[pi->port_id];
1174 	iqid = vi_intr_iq(vi, 0)->cntxt_id;
1175 	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev));
1176 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid,
1177 	    name);
1178 	rc = alloc_wrq(sc, vi, ctrlq, oid);
1179 
1180 done:
1181 	if (rc)
1182 		t4_teardown_vi_queues(vi);
1183 
1184 	return (rc);
1185 }
1186 
1187 /*
1188  * Idempotent
1189  */
1190 int
1191 t4_teardown_vi_queues(struct vi_info *vi)
1192 {
1193 	int i;
1194 	struct port_info *pi = vi->pi;
1195 	struct adapter *sc = pi->adapter;
1196 	struct sge_rxq *rxq;
1197 	struct sge_txq *txq;
1198 #ifdef TCP_OFFLOAD
1199 	struct sge_ofld_rxq *ofld_rxq;
1200 	struct sge_wrq *ofld_txq;
1201 #endif
1202 #ifdef DEV_NETMAP
1203 	struct sge_nm_rxq *nm_rxq;
1204 	struct sge_nm_txq *nm_txq;
1205 #endif
1206 
1207 	/* Do this before freeing the queues */
1208 	if (vi->flags & VI_SYSCTL_CTX) {
1209 		sysctl_ctx_free(&vi->ctx);
1210 		vi->flags &= ~VI_SYSCTL_CTX;
1211 	}
1212 
1213 #ifdef DEV_NETMAP
1214 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1215 		for_each_nm_txq(vi, i, nm_txq) {
1216 			free_nm_txq(vi, nm_txq);
1217 		}
1218 
1219 		for_each_nm_rxq(vi, i, nm_rxq) {
1220 			free_nm_rxq(vi, nm_rxq);
1221 		}
1222 	}
1223 #endif
1224 
1225 	/*
1226 	 * Take down all the tx queues first, as they reference the rx queues
1227 	 * (for egress updates, etc.).
1228 	 */
1229 
1230 	if (IS_MAIN_VI(vi))
1231 		free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1232 
1233 	for_each_txq(vi, i, txq) {
1234 		free_txq(vi, txq);
1235 	}
1236 #ifdef TCP_OFFLOAD
1237 	for_each_ofld_txq(vi, i, ofld_txq) {
1238 		free_wrq(sc, ofld_txq);
1239 	}
1240 #endif
1241 
1242 	/*
1243 	 * Then take down the rx queues that forward their interrupts, as they
1244 	 * reference other rx queues.
1245 	 */
1246 
1247 	for_each_rxq(vi, i, rxq) {
1248 		if ((rxq->iq.flags & IQ_INTR) == 0)
1249 			free_rxq(vi, rxq);
1250 	}
1251 #ifdef TCP_OFFLOAD
1252 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1253 		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1254 			free_ofld_rxq(vi, ofld_rxq);
1255 	}
1256 #endif
1257 
1258 	/*
1259 	 * Then take down the rx queues that take direct interrupts.
1260 	 */
1261 
1262 	for_each_rxq(vi, i, rxq) {
1263 		if (rxq->iq.flags & IQ_INTR)
1264 			free_rxq(vi, rxq);
1265 	}
1266 #ifdef TCP_OFFLOAD
1267 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1268 		if (ofld_rxq->iq.flags & IQ_INTR)
1269 			free_ofld_rxq(vi, ofld_rxq);
1270 	}
1271 #endif
1272 
1273 	return (0);
1274 }
1275 
1276 /*
1277  * Deals with errors and the firmware event queue.  All data rx queues forward
1278  * their interrupt to the firmware event queue.
1279  */
1280 void
1281 t4_intr_all(void *arg)
1282 {
1283 	struct adapter *sc = arg;
1284 	struct sge_iq *fwq = &sc->sge.fwq;
1285 
1286 	t4_intr_err(arg);
1287 	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1288 		service_iq(fwq, 0);
1289 		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1290 	}
1291 }
1292 
1293 /* Deals with error interrupts */
1294 void
1295 t4_intr_err(void *arg)
1296 {
1297 	struct adapter *sc = arg;
1298 
1299 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1300 	t4_slow_intr_handler(sc);
1301 }
1302 
1303 void
1304 t4_intr_evt(void *arg)
1305 {
1306 	struct sge_iq *iq = arg;
1307 
1308 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1309 		service_iq(iq, 0);
1310 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1311 	}
1312 }
1313 
1314 void
1315 t4_intr(void *arg)
1316 {
1317 	struct sge_iq *iq = arg;
1318 
1319 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1320 		service_iq(iq, 0);
1321 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1322 	}
1323 }
1324 
1325 void
1326 t4_vi_intr(void *arg)
1327 {
1328 	struct irq *irq = arg;
1329 
1330 #ifdef DEV_NETMAP
1331 	if (atomic_cmpset_int(&irq->nm_state, NM_ON, NM_BUSY)) {
1332 		t4_nm_intr(irq->nm_rxq);
1333 		atomic_cmpset_int(&irq->nm_state, NM_BUSY, NM_ON);
1334 	}
1335 #endif
1336 	if (irq->rxq != NULL)
1337 		t4_intr(irq->rxq);
1338 }
1339 
1340 /*
1341  * Deals with anything and everything on the given ingress queue.
1342  */
1343 static int
1344 service_iq(struct sge_iq *iq, int budget)
1345 {
1346 	struct sge_iq *q;
1347 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1348 	struct sge_fl *fl;			/* Use iff IQ_HAS_FL */
1349 	struct adapter *sc = iq->adapter;
1350 	struct iq_desc *d = &iq->desc[iq->cidx];
1351 	int ndescs = 0, limit;
1352 	int rsp_type, refill;
1353 	uint32_t lq;
1354 	uint16_t fl_hw_cidx;
1355 	struct mbuf *m0;
1356 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1357 #if defined(INET) || defined(INET6)
1358 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1359 #endif
1360 
1361 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1362 
1363 	limit = budget ? budget : iq->qsize / 16;
1364 
1365 	if (iq->flags & IQ_HAS_FL) {
1366 		fl = &rxq->fl;
1367 		fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1368 	} else {
1369 		fl = NULL;
1370 		fl_hw_cidx = 0;			/* to silence gcc warning */
1371 	}
1372 
1373 	/*
1374 	 * We always come back and check the descriptor ring for new indirect
1375 	 * interrupts and other responses after running a single handler.
1376 	 */
1377 	for (;;) {
1378 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1379 
1380 			rmb();
1381 
1382 			refill = 0;
1383 			m0 = NULL;
1384 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1385 			lq = be32toh(d->rsp.pldbuflen_qid);
1386 
1387 			switch (rsp_type) {
1388 			case X_RSPD_TYPE_FLBUF:
1389 
1390 				KASSERT(iq->flags & IQ_HAS_FL,
1391 				    ("%s: data for an iq (%p) with no freelist",
1392 				    __func__, iq));
1393 
1394 				m0 = get_fl_payload(sc, fl, lq);
1395 				if (__predict_false(m0 == NULL))
1396 					goto process_iql;
1397 				refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1398 #ifdef T4_PKT_TIMESTAMP
1399 				/*
1400 				 * 60 bit timestamp for the payload is
1401 				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1402 				 * in the leading free-space in the mbuf.  The
1403 				 * kernel can clobber it during a pullup,
1404 				 * m_copymdata, etc.  You need to make sure that
1405 				 * the mbuf reaches you unmolested if you care
1406 				 * about the timestamp.
1407 				 */
1408 				*(uint64_t *)m0->m_pktdat =
1409 				    be64toh(ctrl->u.last_flit) &
1410 				    0xfffffffffffffff;
1411 #endif
1412 
1413 				/* fall through */
1414 
1415 			case X_RSPD_TYPE_CPL:
1416 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1417 				    ("%s: bad opcode %02x.", __func__,
1418 				    d->rss.opcode));
1419 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1420 				break;
1421 
1422 			case X_RSPD_TYPE_INTR:
1423 
1424 				/*
1425 				 * Interrupts should be forwarded only to queues
1426 				 * that are not forwarding their interrupts.
1427 				 * This means service_iq can recurse but only 1
1428 				 * level deep.
1429 				 */
1430 				KASSERT(budget == 0,
1431 				    ("%s: budget %u, rsp_type %u", __func__,
1432 				    budget, rsp_type));
1433 
1434 				/*
1435 				 * There are 1K interrupt-capable queues (qids 0
1436 				 * through 1023).  A response type indicating a
1437 				 * forwarded interrupt with a qid >= 1K is an
1438 				 * iWARP async notification.
1439 				 */
1440 				if (lq >= 1024) {
1441                                         t4_an_handler(iq, &d->rsp);
1442                                         break;
1443                                 }
1444 
1445 				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1446 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1447 				    IQS_BUSY)) {
1448 					if (service_iq(q, q->qsize / 16) == 0) {
1449 						atomic_cmpset_int(&q->state,
1450 						    IQS_BUSY, IQS_IDLE);
1451 					} else {
1452 						STAILQ_INSERT_TAIL(&iql, q,
1453 						    link);
1454 					}
1455 				}
1456 				break;
1457 
1458 			default:
1459 				KASSERT(0,
1460 				    ("%s: illegal response type %d on iq %p",
1461 				    __func__, rsp_type, iq));
1462 				log(LOG_ERR,
1463 				    "%s: illegal response type %d on iq %p",
1464 				    device_get_nameunit(sc->dev), rsp_type, iq);
1465 				break;
1466 			}
1467 
1468 			d++;
1469 			if (__predict_false(++iq->cidx == iq->sidx)) {
1470 				iq->cidx = 0;
1471 				iq->gen ^= F_RSPD_GEN;
1472 				d = &iq->desc[0];
1473 			}
1474 			if (__predict_false(++ndescs == limit)) {
1475 				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1476 				    V_CIDXINC(ndescs) |
1477 				    V_INGRESSQID(iq->cntxt_id) |
1478 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1479 				ndescs = 0;
1480 
1481 #if defined(INET) || defined(INET6)
1482 				if (iq->flags & IQ_LRO_ENABLED &&
1483 				    sc->lro_timeout != 0) {
1484 					tcp_lro_flush_inactive(&rxq->lro,
1485 					    &lro_timeout);
1486 				}
1487 #endif
1488 
1489 				if (budget) {
1490 					if (iq->flags & IQ_HAS_FL) {
1491 						FL_LOCK(fl);
1492 						refill_fl(sc, fl, 32);
1493 						FL_UNLOCK(fl);
1494 					}
1495 					return (EINPROGRESS);
1496 				}
1497 			}
1498 			if (refill) {
1499 				FL_LOCK(fl);
1500 				refill_fl(sc, fl, 32);
1501 				FL_UNLOCK(fl);
1502 				fl_hw_cidx = fl->hw_cidx;
1503 			}
1504 		}
1505 
1506 process_iql:
1507 		if (STAILQ_EMPTY(&iql))
1508 			break;
1509 
1510 		/*
1511 		 * Process the head only, and send it to the back of the list if
1512 		 * it's still not done.
1513 		 */
1514 		q = STAILQ_FIRST(&iql);
1515 		STAILQ_REMOVE_HEAD(&iql, link);
1516 		if (service_iq(q, q->qsize / 8) == 0)
1517 			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1518 		else
1519 			STAILQ_INSERT_TAIL(&iql, q, link);
1520 	}
1521 
1522 #if defined(INET) || defined(INET6)
1523 	if (iq->flags & IQ_LRO_ENABLED) {
1524 		struct lro_ctrl *lro = &rxq->lro;
1525 
1526 		tcp_lro_flush_all(lro);
1527 	}
1528 #endif
1529 
1530 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1531 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1532 
1533 	if (iq->flags & IQ_HAS_FL) {
1534 		int starved;
1535 
1536 		FL_LOCK(fl);
1537 		starved = refill_fl(sc, fl, 64);
1538 		FL_UNLOCK(fl);
1539 		if (__predict_false(starved != 0))
1540 			add_fl_to_sfl(sc, fl);
1541 	}
1542 
1543 	return (0);
1544 }
1545 
1546 static inline int
1547 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1548 {
1549 	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1550 
1551 	if (rc)
1552 		MPASS(cll->region3 >= CL_METADATA_SIZE);
1553 
1554 	return (rc);
1555 }
1556 
1557 static inline struct cluster_metadata *
1558 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1559     caddr_t cl)
1560 {
1561 
1562 	if (cl_has_metadata(fl, cll)) {
1563 		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1564 
1565 		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1566 	}
1567 	return (NULL);
1568 }
1569 
1570 static void
1571 rxb_free(struct mbuf *m, void *arg1, void *arg2)
1572 {
1573 	uma_zone_t zone = arg1;
1574 	caddr_t cl = arg2;
1575 
1576 	uma_zfree(zone, cl);
1577 	counter_u64_add(extfree_rels, 1);
1578 }
1579 
1580 /*
1581  * The mbuf returned by this function could be allocated from zone_mbuf or
1582  * constructed in spare room in the cluster.
1583  *
1584  * The mbuf carries the payload in one of these ways
1585  * a) frame inside the mbuf (mbuf from zone_mbuf)
1586  * b) m_cljset (for clusters without metadata) zone_mbuf
1587  * c) m_extaddref (cluster with metadata) inline mbuf
1588  * d) m_extaddref (cluster with metadata) zone_mbuf
1589  */
1590 static struct mbuf *
1591 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1592     int remaining)
1593 {
1594 	struct mbuf *m;
1595 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1596 	struct cluster_layout *cll = &sd->cll;
1597 	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1598 	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1599 	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1600 	int len, blen;
1601 	caddr_t payload;
1602 
1603 	blen = hwb->size - fl->rx_offset;	/* max possible in this buf */
1604 	len = min(remaining, blen);
1605 	payload = sd->cl + cll->region1 + fl->rx_offset;
1606 	if (fl->flags & FL_BUF_PACKING) {
1607 		const u_int l = fr_offset + len;
1608 		const u_int pad = roundup2(l, fl->buf_boundary) - l;
1609 
1610 		if (fl->rx_offset + len + pad < hwb->size)
1611 			blen = len + pad;
1612 		MPASS(fl->rx_offset + blen <= hwb->size);
1613 	} else {
1614 		MPASS(fl->rx_offset == 0);	/* not packing */
1615 	}
1616 
1617 
1618 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1619 
1620 		/*
1621 		 * Copy payload into a freshly allocated mbuf.
1622 		 */
1623 
1624 		m = fr_offset == 0 ?
1625 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1626 		if (m == NULL)
1627 			return (NULL);
1628 		fl->mbuf_allocated++;
1629 #ifdef T4_PKT_TIMESTAMP
1630 		/* Leave room for a timestamp */
1631 		m->m_data += 8;
1632 #endif
1633 		/* copy data to mbuf */
1634 		bcopy(payload, mtod(m, caddr_t), len);
1635 
1636 	} else if (sd->nmbuf * MSIZE < cll->region1) {
1637 
1638 		/*
1639 		 * There's spare room in the cluster for an mbuf.  Create one
1640 		 * and associate it with the payload that's in the cluster.
1641 		 */
1642 
1643 		MPASS(clm != NULL);
1644 		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1645 		/* No bzero required */
1646 		if (m_init(m, M_NOWAIT, MT_DATA,
1647 		    fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
1648 			return (NULL);
1649 		fl->mbuf_inlined++;
1650 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
1651 		    swz->zone, sd->cl);
1652 		if (sd->nmbuf++ == 0)
1653 			counter_u64_add(extfree_refs, 1);
1654 
1655 	} else {
1656 
1657 		/*
1658 		 * Grab an mbuf from zone_mbuf and associate it with the
1659 		 * payload in the cluster.
1660 		 */
1661 
1662 		m = fr_offset == 0 ?
1663 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1664 		if (m == NULL)
1665 			return (NULL);
1666 		fl->mbuf_allocated++;
1667 		if (clm != NULL) {
1668 			m_extaddref(m, payload, blen, &clm->refcount,
1669 			    rxb_free, swz->zone, sd->cl);
1670 			if (sd->nmbuf++ == 0)
1671 				counter_u64_add(extfree_refs, 1);
1672 		} else {
1673 			m_cljset(m, sd->cl, swz->type);
1674 			sd->cl = NULL;	/* consumed, not a recycle candidate */
1675 		}
1676 	}
1677 	if (fr_offset == 0)
1678 		m->m_pkthdr.len = remaining;
1679 	m->m_len = len;
1680 
1681 	if (fl->flags & FL_BUF_PACKING) {
1682 		fl->rx_offset += blen;
1683 		MPASS(fl->rx_offset <= hwb->size);
1684 		if (fl->rx_offset < hwb->size)
1685 			return (m);	/* without advancing the cidx */
1686 	}
1687 
1688 	if (__predict_false(++fl->cidx % 8 == 0)) {
1689 		uint16_t cidx = fl->cidx / 8;
1690 
1691 		if (__predict_false(cidx == fl->sidx))
1692 			fl->cidx = cidx = 0;
1693 		fl->hw_cidx = cidx;
1694 	}
1695 	fl->rx_offset = 0;
1696 
1697 	return (m);
1698 }
1699 
1700 static struct mbuf *
1701 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1702 {
1703 	struct mbuf *m0, *m, **pnext;
1704 	u_int remaining;
1705 	const u_int total = G_RSPD_LEN(len_newbuf);
1706 
1707 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1708 		M_ASSERTPKTHDR(fl->m0);
1709 		MPASS(fl->m0->m_pkthdr.len == total);
1710 		MPASS(fl->remaining < total);
1711 
1712 		m0 = fl->m0;
1713 		pnext = fl->pnext;
1714 		remaining = fl->remaining;
1715 		fl->flags &= ~FL_BUF_RESUME;
1716 		goto get_segment;
1717 	}
1718 
1719 	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1720 		fl->rx_offset = 0;
1721 		if (__predict_false(++fl->cidx % 8 == 0)) {
1722 			uint16_t cidx = fl->cidx / 8;
1723 
1724 			if (__predict_false(cidx == fl->sidx))
1725 				fl->cidx = cidx = 0;
1726 			fl->hw_cidx = cidx;
1727 		}
1728 	}
1729 
1730 	/*
1731 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1732 	 * 'len' and it may span multiple hw buffers.
1733 	 */
1734 
1735 	m0 = get_scatter_segment(sc, fl, 0, total);
1736 	if (m0 == NULL)
1737 		return (NULL);
1738 	remaining = total - m0->m_len;
1739 	pnext = &m0->m_next;
1740 	while (remaining > 0) {
1741 get_segment:
1742 		MPASS(fl->rx_offset == 0);
1743 		m = get_scatter_segment(sc, fl, total - remaining, remaining);
1744 		if (__predict_false(m == NULL)) {
1745 			fl->m0 = m0;
1746 			fl->pnext = pnext;
1747 			fl->remaining = remaining;
1748 			fl->flags |= FL_BUF_RESUME;
1749 			return (NULL);
1750 		}
1751 		*pnext = m;
1752 		pnext = &m->m_next;
1753 		remaining -= m->m_len;
1754 	}
1755 	*pnext = NULL;
1756 
1757 	M_ASSERTPKTHDR(m0);
1758 	return (m0);
1759 }
1760 
1761 static int
1762 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1763 {
1764 	struct sge_rxq *rxq = iq_to_rxq(iq);
1765 	struct ifnet *ifp = rxq->ifp;
1766 	struct adapter *sc = iq->adapter;
1767 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1768 #if defined(INET) || defined(INET6)
1769 	struct lro_ctrl *lro = &rxq->lro;
1770 #endif
1771 	static const int sw_hashtype[4][2] = {
1772 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1773 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1774 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1775 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1776 	};
1777 
1778 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1779 	    rss->opcode));
1780 
1781 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1782 	m0->m_len -= sc->params.sge.fl_pktshift;
1783 	m0->m_data += sc->params.sge.fl_pktshift;
1784 
1785 	m0->m_pkthdr.rcvif = ifp;
1786 	M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
1787 	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1788 
1789 	if (cpl->csum_calc && !cpl->err_vec) {
1790 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1791 		    cpl->l2info & htobe32(F_RXF_IP)) {
1792 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1793 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1794 			rxq->rxcsum++;
1795 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1796 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1797 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1798 			    CSUM_PSEUDO_HDR);
1799 			rxq->rxcsum++;
1800 		}
1801 
1802 		if (__predict_false(cpl->ip_frag))
1803 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1804 		else
1805 			m0->m_pkthdr.csum_data = 0xffff;
1806 	}
1807 
1808 	if (cpl->vlan_ex) {
1809 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1810 		m0->m_flags |= M_VLANTAG;
1811 		rxq->vlan_extraction++;
1812 	}
1813 
1814 #if defined(INET) || defined(INET6)
1815 	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1816 	    iq->flags & IQ_LRO_ENABLED &&
1817 	    tcp_lro_rx(lro, m0, 0) == 0) {
1818 		/* queued for LRO */
1819 	} else
1820 #endif
1821 	ifp->if_input(ifp, m0);
1822 
1823 	return (0);
1824 }
1825 
1826 /*
1827  * Must drain the wrq or make sure that someone else will.
1828  */
1829 static void
1830 wrq_tx_drain(void *arg, int n)
1831 {
1832 	struct sge_wrq *wrq = arg;
1833 	struct sge_eq *eq = &wrq->eq;
1834 
1835 	EQ_LOCK(eq);
1836 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
1837 		drain_wrq_wr_list(wrq->adapter, wrq);
1838 	EQ_UNLOCK(eq);
1839 }
1840 
1841 static void
1842 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
1843 {
1844 	struct sge_eq *eq = &wrq->eq;
1845 	u_int available, dbdiff;	/* # of hardware descriptors */
1846 	u_int n;
1847 	struct wrqe *wr;
1848 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
1849 
1850 	EQ_LOCK_ASSERT_OWNED(eq);
1851 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
1852 	wr = STAILQ_FIRST(&wrq->wr_list);
1853 	MPASS(wr != NULL);	/* Must be called with something useful to do */
1854 	MPASS(eq->pidx == eq->dbidx);
1855 	dbdiff = 0;
1856 
1857 	do {
1858 		eq->cidx = read_hw_cidx(eq);
1859 		if (eq->pidx == eq->cidx)
1860 			available = eq->sidx - 1;
1861 		else
1862 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
1863 
1864 		MPASS(wr->wrq == wrq);
1865 		n = howmany(wr->wr_len, EQ_ESIZE);
1866 		if (available < n)
1867 			break;
1868 
1869 		dst = (void *)&eq->desc[eq->pidx];
1870 		if (__predict_true(eq->sidx - eq->pidx > n)) {
1871 			/* Won't wrap, won't end exactly at the status page. */
1872 			bcopy(&wr->wr[0], dst, wr->wr_len);
1873 			eq->pidx += n;
1874 		} else {
1875 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
1876 
1877 			bcopy(&wr->wr[0], dst, first_portion);
1878 			if (wr->wr_len > first_portion) {
1879 				bcopy(&wr->wr[first_portion], &eq->desc[0],
1880 				    wr->wr_len - first_portion);
1881 			}
1882 			eq->pidx = n - (eq->sidx - eq->pidx);
1883 		}
1884 
1885 		if (available < eq->sidx / 4 &&
1886 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
1887 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
1888 			    F_FW_WR_EQUEQ);
1889 			eq->equeqidx = eq->pidx;
1890 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
1891 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
1892 			eq->equeqidx = eq->pidx;
1893 		}
1894 
1895 		dbdiff += n;
1896 		if (dbdiff >= 16) {
1897 			ring_eq_db(sc, eq, dbdiff);
1898 			dbdiff = 0;
1899 		}
1900 
1901 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1902 		free_wrqe(wr);
1903 		MPASS(wrq->nwr_pending > 0);
1904 		wrq->nwr_pending--;
1905 		MPASS(wrq->ndesc_needed >= n);
1906 		wrq->ndesc_needed -= n;
1907 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
1908 
1909 	if (dbdiff)
1910 		ring_eq_db(sc, eq, dbdiff);
1911 }
1912 
1913 /*
1914  * Doesn't fail.  Holds on to work requests it can't send right away.
1915  */
1916 void
1917 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1918 {
1919 #ifdef INVARIANTS
1920 	struct sge_eq *eq = &wrq->eq;
1921 #endif
1922 
1923 	EQ_LOCK_ASSERT_OWNED(eq);
1924 	MPASS(wr != NULL);
1925 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
1926 	MPASS((wr->wr_len & 0x7) == 0);
1927 
1928 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1929 	wrq->nwr_pending++;
1930 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
1931 
1932 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
1933 		return;	/* commit_wrq_wr will drain wr_list as well. */
1934 
1935 	drain_wrq_wr_list(sc, wrq);
1936 
1937 	/* Doorbell must have caught up to the pidx. */
1938 	MPASS(eq->pidx == eq->dbidx);
1939 }
1940 
1941 void
1942 t4_update_fl_bufsize(struct ifnet *ifp)
1943 {
1944 	struct vi_info *vi = ifp->if_softc;
1945 	struct adapter *sc = vi->pi->adapter;
1946 	struct sge_rxq *rxq;
1947 #ifdef TCP_OFFLOAD
1948 	struct sge_ofld_rxq *ofld_rxq;
1949 #endif
1950 	struct sge_fl *fl;
1951 	int i, maxp, mtu = ifp->if_mtu;
1952 
1953 	maxp = mtu_to_max_payload(sc, mtu, 0);
1954 	for_each_rxq(vi, i, rxq) {
1955 		fl = &rxq->fl;
1956 
1957 		FL_LOCK(fl);
1958 		find_best_refill_source(sc, fl, maxp);
1959 		FL_UNLOCK(fl);
1960 	}
1961 #ifdef TCP_OFFLOAD
1962 	maxp = mtu_to_max_payload(sc, mtu, 1);
1963 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1964 		fl = &ofld_rxq->fl;
1965 
1966 		FL_LOCK(fl);
1967 		find_best_refill_source(sc, fl, maxp);
1968 		FL_UNLOCK(fl);
1969 	}
1970 #endif
1971 }
1972 
1973 static inline int
1974 mbuf_nsegs(struct mbuf *m)
1975 {
1976 
1977 	M_ASSERTPKTHDR(m);
1978 	KASSERT(m->m_pkthdr.l5hlen > 0,
1979 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
1980 
1981 	return (m->m_pkthdr.l5hlen);
1982 }
1983 
1984 static inline void
1985 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
1986 {
1987 
1988 	M_ASSERTPKTHDR(m);
1989 	m->m_pkthdr.l5hlen = nsegs;
1990 }
1991 
1992 static inline int
1993 mbuf_len16(struct mbuf *m)
1994 {
1995 	int n;
1996 
1997 	M_ASSERTPKTHDR(m);
1998 	n = m->m_pkthdr.PH_loc.eight[0];
1999 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2000 
2001 	return (n);
2002 }
2003 
2004 static inline void
2005 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2006 {
2007 
2008 	M_ASSERTPKTHDR(m);
2009 	m->m_pkthdr.PH_loc.eight[0] = len16;
2010 }
2011 
2012 static inline int
2013 needs_tso(struct mbuf *m)
2014 {
2015 
2016 	M_ASSERTPKTHDR(m);
2017 
2018 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
2019 		KASSERT(m->m_pkthdr.tso_segsz > 0,
2020 		    ("%s: TSO requested in mbuf %p but MSS not provided",
2021 		    __func__, m));
2022 		return (1);
2023 	}
2024 
2025 	return (0);
2026 }
2027 
2028 static inline int
2029 needs_l3_csum(struct mbuf *m)
2030 {
2031 
2032 	M_ASSERTPKTHDR(m);
2033 
2034 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
2035 		return (1);
2036 	return (0);
2037 }
2038 
2039 static inline int
2040 needs_l4_csum(struct mbuf *m)
2041 {
2042 
2043 	M_ASSERTPKTHDR(m);
2044 
2045 	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2046 	    CSUM_TCP_IPV6 | CSUM_TSO))
2047 		return (1);
2048 	return (0);
2049 }
2050 
2051 static inline int
2052 needs_vlan_insertion(struct mbuf *m)
2053 {
2054 
2055 	M_ASSERTPKTHDR(m);
2056 
2057 	if (m->m_flags & M_VLANTAG) {
2058 		KASSERT(m->m_pkthdr.ether_vtag != 0,
2059 		    ("%s: HWVLAN requested in mbuf %p but tag not provided",
2060 		    __func__, m));
2061 		return (1);
2062 	}
2063 	return (0);
2064 }
2065 
2066 static void *
2067 m_advance(struct mbuf **pm, int *poffset, int len)
2068 {
2069 	struct mbuf *m = *pm;
2070 	int offset = *poffset;
2071 	uintptr_t p = 0;
2072 
2073 	MPASS(len > 0);
2074 
2075 	while (len) {
2076 		if (offset + len < m->m_len) {
2077 			offset += len;
2078 			p = mtod(m, uintptr_t) + offset;
2079 			break;
2080 		}
2081 		len -= m->m_len - offset;
2082 		m = m->m_next;
2083 		offset = 0;
2084 		MPASS(m != NULL);
2085 	}
2086 	*poffset = offset;
2087 	*pm = m;
2088 	return ((void *)p);
2089 }
2090 
2091 static inline int
2092 same_paddr(char *a, char *b)
2093 {
2094 
2095 	if (a == b)
2096 		return (1);
2097 	else if (a != NULL && b != NULL) {
2098 		vm_offset_t x = (vm_offset_t)a;
2099 		vm_offset_t y = (vm_offset_t)b;
2100 
2101 		if ((x & PAGE_MASK) == (y & PAGE_MASK) &&
2102 		    pmap_kextract(x) == pmap_kextract(y))
2103 			return (1);
2104 	}
2105 
2106 	return (0);
2107 }
2108 
2109 /*
2110  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2111  * must have at least one mbuf that's not empty.
2112  */
2113 static inline int
2114 count_mbuf_nsegs(struct mbuf *m)
2115 {
2116 	char *prev_end, *start;
2117 	int len, nsegs;
2118 
2119 	MPASS(m != NULL);
2120 
2121 	nsegs = 0;
2122 	prev_end = NULL;
2123 	for (; m; m = m->m_next) {
2124 
2125 		len = m->m_len;
2126 		if (__predict_false(len == 0))
2127 			continue;
2128 		start = mtod(m, char *);
2129 
2130 		nsegs += sglist_count(start, len);
2131 		if (same_paddr(prev_end, start))
2132 			nsegs--;
2133 		prev_end = start + len;
2134 	}
2135 
2136 	MPASS(nsegs > 0);
2137 	return (nsegs);
2138 }
2139 
2140 /*
2141  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2142  * a) caller can assume it's been freed if this function returns with an error.
2143  * b) it may get defragged up if the gather list is too long for the hardware.
2144  */
2145 int
2146 parse_pkt(struct mbuf **mp)
2147 {
2148 	struct mbuf *m0 = *mp, *m;
2149 	int rc, nsegs, defragged = 0, offset;
2150 	struct ether_header *eh;
2151 	void *l3hdr;
2152 #if defined(INET) || defined(INET6)
2153 	struct tcphdr *tcp;
2154 #endif
2155 	uint16_t eh_type;
2156 
2157 	M_ASSERTPKTHDR(m0);
2158 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2159 		rc = EINVAL;
2160 fail:
2161 		m_freem(m0);
2162 		*mp = NULL;
2163 		return (rc);
2164 	}
2165 restart:
2166 	/*
2167 	 * First count the number of gather list segments in the payload.
2168 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2169 	 */
2170 	M_ASSERTPKTHDR(m0);
2171 	MPASS(m0->m_pkthdr.len > 0);
2172 	nsegs = count_mbuf_nsegs(m0);
2173 	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2174 		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2175 			rc = EFBIG;
2176 			goto fail;
2177 		}
2178 		*mp = m0 = m;	/* update caller's copy after defrag */
2179 		goto restart;
2180 	}
2181 
2182 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
2183 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2184 		if (m0 == NULL) {
2185 			/* Should have left well enough alone. */
2186 			rc = EFBIG;
2187 			goto fail;
2188 		}
2189 		*mp = m0;	/* update caller's copy after pullup */
2190 		goto restart;
2191 	}
2192 	set_mbuf_nsegs(m0, nsegs);
2193 	set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2194 
2195 	if (!needs_tso(m0))
2196 		return (0);
2197 
2198 	m = m0;
2199 	eh = mtod(m, struct ether_header *);
2200 	eh_type = ntohs(eh->ether_type);
2201 	if (eh_type == ETHERTYPE_VLAN) {
2202 		struct ether_vlan_header *evh = (void *)eh;
2203 
2204 		eh_type = ntohs(evh->evl_proto);
2205 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2206 	} else
2207 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2208 
2209 	offset = 0;
2210 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2211 
2212 	switch (eh_type) {
2213 #ifdef INET6
2214 	case ETHERTYPE_IPV6:
2215 	{
2216 		struct ip6_hdr *ip6 = l3hdr;
2217 
2218 		MPASS(ip6->ip6_nxt == IPPROTO_TCP);
2219 
2220 		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2221 		break;
2222 	}
2223 #endif
2224 #ifdef INET
2225 	case ETHERTYPE_IP:
2226 	{
2227 		struct ip *ip = l3hdr;
2228 
2229 		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2230 		break;
2231 	}
2232 #endif
2233 	default:
2234 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2235 		    " with the same INET/INET6 options as the kernel.",
2236 		    __func__, eh_type);
2237 	}
2238 
2239 #if defined(INET) || defined(INET6)
2240 	tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2241 	m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2242 #endif
2243 	MPASS(m0 == *mp);
2244 	return (0);
2245 }
2246 
2247 void *
2248 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2249 {
2250 	struct sge_eq *eq = &wrq->eq;
2251 	struct adapter *sc = wrq->adapter;
2252 	int ndesc, available;
2253 	struct wrqe *wr;
2254 	void *w;
2255 
2256 	MPASS(len16 > 0);
2257 	ndesc = howmany(len16, EQ_ESIZE / 16);
2258 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2259 
2260 	EQ_LOCK(eq);
2261 
2262 	if (!STAILQ_EMPTY(&wrq->wr_list))
2263 		drain_wrq_wr_list(sc, wrq);
2264 
2265 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2266 slowpath:
2267 		EQ_UNLOCK(eq);
2268 		wr = alloc_wrqe(len16 * 16, wrq);
2269 		if (__predict_false(wr == NULL))
2270 			return (NULL);
2271 		cookie->pidx = -1;
2272 		cookie->ndesc = ndesc;
2273 		return (&wr->wr);
2274 	}
2275 
2276 	eq->cidx = read_hw_cidx(eq);
2277 	if (eq->pidx == eq->cidx)
2278 		available = eq->sidx - 1;
2279 	else
2280 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2281 	if (available < ndesc)
2282 		goto slowpath;
2283 
2284 	cookie->pidx = eq->pidx;
2285 	cookie->ndesc = ndesc;
2286 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2287 
2288 	w = &eq->desc[eq->pidx];
2289 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2290 	if (__predict_false(eq->pidx < ndesc - 1)) {
2291 		w = &wrq->ss[0];
2292 		wrq->ss_pidx = cookie->pidx;
2293 		wrq->ss_len = len16 * 16;
2294 	}
2295 
2296 	EQ_UNLOCK(eq);
2297 
2298 	return (w);
2299 }
2300 
2301 void
2302 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2303 {
2304 	struct sge_eq *eq = &wrq->eq;
2305 	struct adapter *sc = wrq->adapter;
2306 	int ndesc, pidx;
2307 	struct wrq_cookie *prev, *next;
2308 
2309 	if (cookie->pidx == -1) {
2310 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2311 
2312 		t4_wrq_tx(sc, wr);
2313 		return;
2314 	}
2315 
2316 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2317 	pidx = cookie->pidx;
2318 	MPASS(pidx >= 0 && pidx < eq->sidx);
2319 	if (__predict_false(w == &wrq->ss[0])) {
2320 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2321 
2322 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2323 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2324 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2325 		wrq->tx_wrs_ss++;
2326 	} else
2327 		wrq->tx_wrs_direct++;
2328 
2329 	EQ_LOCK(eq);
2330 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2331 	next = TAILQ_NEXT(cookie, link);
2332 	if (prev == NULL) {
2333 		MPASS(pidx == eq->dbidx);
2334 		if (next == NULL || ndesc >= 16)
2335 			ring_eq_db(wrq->adapter, eq, ndesc);
2336 		else {
2337 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2338 			next->pidx = pidx;
2339 			next->ndesc += ndesc;
2340 		}
2341 	} else {
2342 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2343 		prev->ndesc += ndesc;
2344 	}
2345 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2346 
2347 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2348 		drain_wrq_wr_list(sc, wrq);
2349 
2350 #ifdef INVARIANTS
2351 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2352 		/* Doorbell must have caught up to the pidx. */
2353 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2354 	}
2355 #endif
2356 	EQ_UNLOCK(eq);
2357 }
2358 
2359 static u_int
2360 can_resume_eth_tx(struct mp_ring *r)
2361 {
2362 	struct sge_eq *eq = r->cookie;
2363 
2364 	return (total_available_tx_desc(eq) > eq->sidx / 8);
2365 }
2366 
2367 static inline int
2368 cannot_use_txpkts(struct mbuf *m)
2369 {
2370 	/* maybe put a GL limit too, to avoid silliness? */
2371 
2372 	return (needs_tso(m));
2373 }
2374 
2375 /*
2376  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2377  * be consumed.  Return the actual number consumed.  0 indicates a stall.
2378  */
2379 static u_int
2380 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2381 {
2382 	struct sge_txq *txq = r->cookie;
2383 	struct sge_eq *eq = &txq->eq;
2384 	struct ifnet *ifp = txq->ifp;
2385 	struct vi_info *vi = ifp->if_softc;
2386 	struct port_info *pi = vi->pi;
2387 	struct adapter *sc = pi->adapter;
2388 	u_int total, remaining;		/* # of packets */
2389 	u_int available, dbdiff;	/* # of hardware descriptors */
2390 	u_int n, next_cidx;
2391 	struct mbuf *m0, *tail;
2392 	struct txpkts txp;
2393 	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2394 
2395 	remaining = IDXDIFF(pidx, cidx, r->size);
2396 	MPASS(remaining > 0);	/* Must not be called without work to do. */
2397 	total = 0;
2398 
2399 	TXQ_LOCK(txq);
2400 	if (__predict_false((eq->flags & EQ_ENABLED) == 0)) {
2401 		while (cidx != pidx) {
2402 			m0 = r->items[cidx];
2403 			m_freem(m0);
2404 			if (++cidx == r->size)
2405 				cidx = 0;
2406 		}
2407 		reclaim_tx_descs(txq, 2048);
2408 		total = remaining;
2409 		goto done;
2410 	}
2411 
2412 	/* How many hardware descriptors do we have readily available. */
2413 	if (eq->pidx == eq->cidx)
2414 		available = eq->sidx - 1;
2415 	else
2416 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2417 	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2418 
2419 	while (remaining > 0) {
2420 
2421 		m0 = r->items[cidx];
2422 		M_ASSERTPKTHDR(m0);
2423 		MPASS(m0->m_nextpkt == NULL);
2424 
2425 		if (available < SGE_MAX_WR_NDESC) {
2426 			available += reclaim_tx_descs(txq, 64);
2427 			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2428 				break;	/* out of descriptors */
2429 		}
2430 
2431 		next_cidx = cidx + 1;
2432 		if (__predict_false(next_cidx == r->size))
2433 			next_cidx = 0;
2434 
2435 		wr = (void *)&eq->desc[eq->pidx];
2436 		if (remaining > 1 &&
2437 		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2438 
2439 			/* pkts at cidx, next_cidx should both be in txp. */
2440 			MPASS(txp.npkt == 2);
2441 			tail = r->items[next_cidx];
2442 			MPASS(tail->m_nextpkt == NULL);
2443 			ETHER_BPF_MTAP(ifp, m0);
2444 			ETHER_BPF_MTAP(ifp, tail);
2445 			m0->m_nextpkt = tail;
2446 
2447 			if (__predict_false(++next_cidx == r->size))
2448 				next_cidx = 0;
2449 
2450 			while (next_cidx != pidx) {
2451 				if (add_to_txpkts(r->items[next_cidx], &txp,
2452 				    available) != 0)
2453 					break;
2454 				tail->m_nextpkt = r->items[next_cidx];
2455 				tail = tail->m_nextpkt;
2456 				ETHER_BPF_MTAP(ifp, tail);
2457 				if (__predict_false(++next_cidx == r->size))
2458 					next_cidx = 0;
2459 			}
2460 
2461 			n = write_txpkts_wr(txq, wr, m0, &txp, available);
2462 			total += txp.npkt;
2463 			remaining -= txp.npkt;
2464 		} else {
2465 			total++;
2466 			remaining--;
2467 			ETHER_BPF_MTAP(ifp, m0);
2468 			n = write_txpkt_wr(txq, (void *)wr, m0, available);
2469 		}
2470 		MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
2471 
2472 		available -= n;
2473 		dbdiff += n;
2474 		IDXINCR(eq->pidx, n, eq->sidx);
2475 
2476 		if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2477 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2478 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2479 			    F_FW_WR_EQUEQ);
2480 			eq->equeqidx = eq->pidx;
2481 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2482 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2483 			eq->equeqidx = eq->pidx;
2484 		}
2485 
2486 		if (dbdiff >= 16 && remaining >= 4) {
2487 			ring_eq_db(sc, eq, dbdiff);
2488 			available += reclaim_tx_descs(txq, 4 * dbdiff);
2489 			dbdiff = 0;
2490 		}
2491 
2492 		cidx = next_cidx;
2493 	}
2494 	if (dbdiff != 0) {
2495 		ring_eq_db(sc, eq, dbdiff);
2496 		reclaim_tx_descs(txq, 32);
2497 	}
2498 done:
2499 	TXQ_UNLOCK(txq);
2500 
2501 	return (total);
2502 }
2503 
2504 static inline void
2505 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2506     int qsize)
2507 {
2508 
2509 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2510 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2511 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2512 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2513 
2514 	iq->flags = 0;
2515 	iq->adapter = sc;
2516 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2517 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2518 	if (pktc_idx >= 0) {
2519 		iq->intr_params |= F_QINTR_CNT_EN;
2520 		iq->intr_pktc_idx = pktc_idx;
2521 	}
2522 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2523 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
2524 }
2525 
2526 static inline void
2527 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
2528 {
2529 
2530 	fl->qsize = qsize;
2531 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2532 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2533 	if (sc->flags & BUF_PACKING_OK &&
2534 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
2535 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
2536 		fl->flags |= FL_BUF_PACKING;
2537 	find_best_refill_source(sc, fl, maxp);
2538 	find_safe_refill_source(sc, fl);
2539 }
2540 
2541 static inline void
2542 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
2543     uint8_t tx_chan, uint16_t iqid, char *name)
2544 {
2545 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2546 
2547 	eq->flags = eqtype & EQ_TYPEMASK;
2548 	eq->tx_chan = tx_chan;
2549 	eq->iqid = iqid;
2550 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2551 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2552 }
2553 
2554 static int
2555 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2556     bus_dmamap_t *map, bus_addr_t *pa, void **va)
2557 {
2558 	int rc;
2559 
2560 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2561 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2562 	if (rc != 0) {
2563 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2564 		goto done;
2565 	}
2566 
2567 	rc = bus_dmamem_alloc(*tag, va,
2568 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2569 	if (rc != 0) {
2570 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2571 		goto done;
2572 	}
2573 
2574 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2575 	if (rc != 0) {
2576 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2577 		goto done;
2578 	}
2579 done:
2580 	if (rc)
2581 		free_ring(sc, *tag, *map, *pa, *va);
2582 
2583 	return (rc);
2584 }
2585 
2586 static int
2587 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2588     bus_addr_t pa, void *va)
2589 {
2590 	if (pa)
2591 		bus_dmamap_unload(tag, map);
2592 	if (va)
2593 		bus_dmamem_free(tag, va, map);
2594 	if (tag)
2595 		bus_dma_tag_destroy(tag);
2596 
2597 	return (0);
2598 }
2599 
2600 /*
2601  * Allocates the ring for an ingress queue and an optional freelist.  If the
2602  * freelist is specified it will be allocated and then associated with the
2603  * ingress queue.
2604  *
2605  * Returns errno on failure.  Resources allocated up to that point may still be
2606  * allocated.  Caller is responsible for cleanup in case this function fails.
2607  *
2608  * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2609  * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2610  * the abs_id of the ingress queue to which its interrupts should be forwarded.
2611  */
2612 static int
2613 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
2614     int intr_idx, int cong)
2615 {
2616 	int rc, i, cntxt_id;
2617 	size_t len;
2618 	struct fw_iq_cmd c;
2619 	struct port_info *pi = vi->pi;
2620 	struct adapter *sc = iq->adapter;
2621 	struct sge_params *sp = &sc->params.sge;
2622 	__be32 v = 0;
2623 
2624 	len = iq->qsize * IQ_ESIZE;
2625 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2626 	    (void **)&iq->desc);
2627 	if (rc != 0)
2628 		return (rc);
2629 
2630 	bzero(&c, sizeof(c));
2631 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2632 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2633 	    V_FW_IQ_CMD_VFN(0));
2634 
2635 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2636 	    FW_LEN16(c));
2637 
2638 	/* Special handling for firmware event queue */
2639 	if (iq == &sc->sge.fwq)
2640 		v |= F_FW_IQ_CMD_IQASYNCH;
2641 
2642 	if (iq->flags & IQ_INTR) {
2643 		KASSERT(intr_idx < sc->intr_count,
2644 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2645 	} else
2646 		v |= F_FW_IQ_CMD_IQANDST;
2647 	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2648 
2649 	c.type_to_iqandstindex = htobe32(v |
2650 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2651 	    V_FW_IQ_CMD_VIID(vi->viid) |
2652 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2653 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2654 	    F_FW_IQ_CMD_IQGTSMODE |
2655 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2656 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2657 	c.iqsize = htobe16(iq->qsize);
2658 	c.iqaddr = htobe64(iq->ba);
2659 	if (cong >= 0)
2660 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2661 
2662 	if (fl) {
2663 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2664 
2665 		len = fl->qsize * EQ_ESIZE;
2666 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2667 		    &fl->ba, (void **)&fl->desc);
2668 		if (rc)
2669 			return (rc);
2670 
2671 		/* Allocate space for one software descriptor per buffer. */
2672 		rc = alloc_fl_sdesc(fl);
2673 		if (rc != 0) {
2674 			device_printf(sc->dev,
2675 			    "failed to setup fl software descriptors: %d\n",
2676 			    rc);
2677 			return (rc);
2678 		}
2679 
2680 		if (fl->flags & FL_BUF_PACKING) {
2681 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
2682 			fl->buf_boundary = sp->pack_boundary;
2683 		} else {
2684 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
2685 			fl->buf_boundary = 16;
2686 		}
2687 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
2688 			fl->buf_boundary = sp->pad_boundary;
2689 
2690 		c.iqns_to_fl0congen |=
2691 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2692 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2693 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2694 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2695 			    0));
2696 		if (cong >= 0) {
2697 			c.iqns_to_fl0congen |=
2698 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2699 				    F_FW_IQ_CMD_FL0CONGCIF |
2700 				    F_FW_IQ_CMD_FL0CONGEN);
2701 		}
2702 		c.fl0dcaen_to_fl0cidxfthresh =
2703 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_128B) |
2704 			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2705 		c.fl0size = htobe16(fl->qsize);
2706 		c.fl0addr = htobe64(fl->ba);
2707 	}
2708 
2709 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2710 	if (rc != 0) {
2711 		device_printf(sc->dev,
2712 		    "failed to create ingress queue: %d\n", rc);
2713 		return (rc);
2714 	}
2715 
2716 	iq->cidx = 0;
2717 	iq->gen = F_RSPD_GEN;
2718 	iq->intr_next = iq->intr_params;
2719 	iq->cntxt_id = be16toh(c.iqid);
2720 	iq->abs_id = be16toh(c.physiqid);
2721 	iq->flags |= IQ_ALLOCATED;
2722 
2723 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2724 	if (cntxt_id >= sc->sge.niq) {
2725 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2726 		    cntxt_id, sc->sge.niq - 1);
2727 	}
2728 	sc->sge.iqmap[cntxt_id] = iq;
2729 
2730 	if (fl) {
2731 		u_int qid;
2732 
2733 		iq->flags |= IQ_HAS_FL;
2734 		fl->cntxt_id = be16toh(c.fl0id);
2735 		fl->pidx = fl->cidx = 0;
2736 
2737 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2738 		if (cntxt_id >= sc->sge.neq) {
2739 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2740 			    __func__, cntxt_id, sc->sge.neq - 1);
2741 		}
2742 		sc->sge.eqmap[cntxt_id] = (void *)fl;
2743 
2744 		qid = fl->cntxt_id;
2745 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
2746 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
2747 			uint32_t mask = (1 << s_qpp) - 1;
2748 			volatile uint8_t *udb;
2749 
2750 			udb = sc->udbs_base + UDBS_DB_OFFSET;
2751 			udb += (qid >> s_qpp) << PAGE_SHIFT;
2752 			qid &= mask;
2753 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
2754 				udb += qid << UDBS_SEG_SHIFT;
2755 				qid = 0;
2756 			}
2757 			fl->udb = (volatile void *)udb;
2758 		}
2759 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
2760 
2761 		FL_LOCK(fl);
2762 		/* Enough to make sure the SGE doesn't think it's starved */
2763 		refill_fl(sc, fl, fl->lowat);
2764 		FL_UNLOCK(fl);
2765 	}
2766 
2767 	if (is_t5(sc) && cong >= 0) {
2768 		uint32_t param, val;
2769 
2770 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2771 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2772 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2773 		if (cong == 0)
2774 			val = 1 << 19;
2775 		else {
2776 			val = 2 << 19;
2777 			for (i = 0; i < 4; i++) {
2778 				if (cong & (1 << i))
2779 					val |= 1 << (i << 2);
2780 			}
2781 		}
2782 
2783 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2784 		if (rc != 0) {
2785 			/* report error but carry on */
2786 			device_printf(sc->dev,
2787 			    "failed to set congestion manager context for "
2788 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2789 		}
2790 	}
2791 
2792 	/* Enable IQ interrupts */
2793 	atomic_store_rel_int(&iq->state, IQS_IDLE);
2794 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2795 	    V_INGRESSQID(iq->cntxt_id));
2796 
2797 	return (0);
2798 }
2799 
2800 static int
2801 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
2802 {
2803 	int rc;
2804 	struct adapter *sc = iq->adapter;
2805 	device_t dev;
2806 
2807 	if (sc == NULL)
2808 		return (0);	/* nothing to do */
2809 
2810 	dev = vi ? vi->dev : sc->dev;
2811 
2812 	if (iq->flags & IQ_ALLOCATED) {
2813 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2814 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2815 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2816 		if (rc != 0) {
2817 			device_printf(dev,
2818 			    "failed to free queue %p: %d\n", iq, rc);
2819 			return (rc);
2820 		}
2821 		iq->flags &= ~IQ_ALLOCATED;
2822 	}
2823 
2824 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2825 
2826 	bzero(iq, sizeof(*iq));
2827 
2828 	if (fl) {
2829 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2830 		    fl->desc);
2831 
2832 		if (fl->sdesc)
2833 			free_fl_sdesc(sc, fl);
2834 
2835 		if (mtx_initialized(&fl->fl_lock))
2836 			mtx_destroy(&fl->fl_lock);
2837 
2838 		bzero(fl, sizeof(*fl));
2839 	}
2840 
2841 	return (0);
2842 }
2843 
2844 static void
2845 add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2846     struct sge_fl *fl)
2847 {
2848 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2849 
2850 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2851 	    "freelist");
2852 	children = SYSCTL_CHILDREN(oid);
2853 
2854 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2855 	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2856 	    "SGE context id of the freelist");
2857 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
2858 	    fl_pad ? 1 : 0, "padding enabled");
2859 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
2860 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
2861 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2862 	    0, "consumer index");
2863 	if (fl->flags & FL_BUF_PACKING) {
2864 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2865 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2866 	}
2867 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2868 	    0, "producer index");
2869 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2870 	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2871 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2872 	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2873 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2874 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2875 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2876 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2877 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2878 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2879 }
2880 
2881 static int
2882 alloc_fwq(struct adapter *sc)
2883 {
2884 	int rc, intr_idx;
2885 	struct sge_iq *fwq = &sc->sge.fwq;
2886 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2887 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2888 
2889 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
2890 	fwq->flags |= IQ_INTR;	/* always */
2891 	intr_idx = sc->intr_count > 1 ? 1 : 0;
2892 	fwq->set_tcb_rpl = t4_filter_rpl;
2893 	fwq->l2t_write_rpl = do_l2t_write_rpl;
2894 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
2895 	if (rc != 0) {
2896 		device_printf(sc->dev,
2897 		    "failed to create firmware event queue: %d\n", rc);
2898 		return (rc);
2899 	}
2900 
2901 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2902 	    NULL, "firmware event queue");
2903 	children = SYSCTL_CHILDREN(oid);
2904 
2905 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2906 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2907 	    "absolute id of the queue");
2908 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2909 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2910 	    "SGE context id of the queue");
2911 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2912 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2913 	    "consumer index");
2914 
2915 	return (0);
2916 }
2917 
2918 static int
2919 free_fwq(struct adapter *sc)
2920 {
2921 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2922 }
2923 
2924 static int
2925 alloc_mgmtq(struct adapter *sc)
2926 {
2927 	int rc;
2928 	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2929 	char name[16];
2930 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2931 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2932 
2933 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2934 	    NULL, "management queue");
2935 
2936 	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2937 	init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2938 	    sc->sge.fwq.cntxt_id, name);
2939 	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2940 	if (rc != 0) {
2941 		device_printf(sc->dev,
2942 		    "failed to create management queue: %d\n", rc);
2943 		return (rc);
2944 	}
2945 
2946 	return (0);
2947 }
2948 
2949 static int
2950 free_mgmtq(struct adapter *sc)
2951 {
2952 
2953 	return free_wrq(sc, &sc->sge.mgmtq);
2954 }
2955 
2956 int
2957 tnl_cong(struct port_info *pi, int drop)
2958 {
2959 
2960 	if (drop == -1)
2961 		return (-1);
2962 	else if (drop == 1)
2963 		return (0);
2964 	else
2965 		return (pi->rx_chan_map);
2966 }
2967 
2968 static int
2969 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
2970     struct sysctl_oid *oid)
2971 {
2972 	int rc;
2973 	struct sysctl_oid_list *children;
2974 	char name[16];
2975 
2976 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
2977 	    tnl_cong(vi->pi, cong_drop));
2978 	if (rc != 0)
2979 		return (rc);
2980 
2981 	/*
2982 	 * The freelist is just barely above the starvation threshold right now,
2983 	 * fill it up a bit more.
2984 	 */
2985 	FL_LOCK(&rxq->fl);
2986 	refill_fl(vi->pi->adapter, &rxq->fl, 128);
2987 	FL_UNLOCK(&rxq->fl);
2988 
2989 #if defined(INET) || defined(INET6)
2990 	rc = tcp_lro_init(&rxq->lro);
2991 	if (rc != 0)
2992 		return (rc);
2993 	rxq->lro.ifp = vi->ifp; /* also indicates LRO init'ed */
2994 
2995 	if (vi->ifp->if_capenable & IFCAP_LRO)
2996 		rxq->iq.flags |= IQ_LRO_ENABLED;
2997 #endif
2998 	rxq->ifp = vi->ifp;
2999 
3000 	children = SYSCTL_CHILDREN(oid);
3001 
3002 	snprintf(name, sizeof(name), "%d", idx);
3003 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3004 	    NULL, "rx queue");
3005 	children = SYSCTL_CHILDREN(oid);
3006 
3007 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id",
3008 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
3009 	    "absolute id of the queue");
3010 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id",
3011 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
3012 	    "SGE context id of the queue");
3013 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3014 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
3015 	    "consumer index");
3016 #if defined(INET) || defined(INET6)
3017 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3018 	    &rxq->lro.lro_queued, 0, NULL);
3019 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3020 	    &rxq->lro.lro_flushed, 0, NULL);
3021 #endif
3022 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3023 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3024 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3025 	    CTLFLAG_RD, &rxq->vlan_extraction,
3026 	    "# of times hardware extracted 802.1Q tag");
3027 
3028 	add_fl_sysctls(&vi->ctx, oid, &rxq->fl);
3029 
3030 	return (rc);
3031 }
3032 
3033 static int
3034 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3035 {
3036 	int rc;
3037 
3038 #if defined(INET) || defined(INET6)
3039 	if (rxq->lro.ifp) {
3040 		tcp_lro_free(&rxq->lro);
3041 		rxq->lro.ifp = NULL;
3042 	}
3043 #endif
3044 
3045 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3046 	if (rc == 0)
3047 		bzero(rxq, sizeof(*rxq));
3048 
3049 	return (rc);
3050 }
3051 
3052 #ifdef TCP_OFFLOAD
3053 static int
3054 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3055     int intr_idx, int idx, struct sysctl_oid *oid)
3056 {
3057 	int rc;
3058 	struct sysctl_oid_list *children;
3059 	char name[16];
3060 
3061 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
3062 	    vi->pi->rx_chan_map);
3063 	if (rc != 0)
3064 		return (rc);
3065 
3066 	children = SYSCTL_CHILDREN(oid);
3067 
3068 	snprintf(name, sizeof(name), "%d", idx);
3069 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3070 	    NULL, "rx queue");
3071 	children = SYSCTL_CHILDREN(oid);
3072 
3073 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id",
3074 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
3075 	    "I", "absolute id of the queue");
3076 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id",
3077 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
3078 	    "I", "SGE context id of the queue");
3079 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3080 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
3081 	    "consumer index");
3082 
3083 	add_fl_sysctls(&vi->ctx, oid, &ofld_rxq->fl);
3084 
3085 	return (rc);
3086 }
3087 
3088 static int
3089 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3090 {
3091 	int rc;
3092 
3093 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3094 	if (rc == 0)
3095 		bzero(ofld_rxq, sizeof(*ofld_rxq));
3096 
3097 	return (rc);
3098 }
3099 #endif
3100 
3101 #ifdef DEV_NETMAP
3102 static int
3103 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3104     int idx, struct sysctl_oid *oid)
3105 {
3106 	int rc;
3107 	struct sysctl_oid_list *children;
3108 	struct sysctl_ctx_list *ctx;
3109 	char name[16];
3110 	size_t len;
3111 	struct adapter *sc = vi->pi->adapter;
3112 	struct netmap_adapter *na = NA(vi->ifp);
3113 
3114 	MPASS(na != NULL);
3115 
3116 	len = vi->qsize_rxq * IQ_ESIZE;
3117 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3118 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3119 	if (rc != 0)
3120 		return (rc);
3121 
3122 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3123 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3124 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3125 	if (rc != 0)
3126 		return (rc);
3127 
3128 	nm_rxq->vi = vi;
3129 	nm_rxq->nid = idx;
3130 	nm_rxq->iq_cidx = 0;
3131 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3132 	nm_rxq->iq_gen = F_RSPD_GEN;
3133 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3134 	nm_rxq->fl_sidx = na->num_rx_desc;
3135 	nm_rxq->intr_idx = intr_idx;
3136 
3137 	ctx = &vi->ctx;
3138 	children = SYSCTL_CHILDREN(oid);
3139 
3140 	snprintf(name, sizeof(name), "%d", idx);
3141 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3142 	    "rx queue");
3143 	children = SYSCTL_CHILDREN(oid);
3144 
3145 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3146 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3147 	    "I", "absolute id of the queue");
3148 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3149 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3150 	    "I", "SGE context id of the queue");
3151 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3152 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3153 	    "consumer index");
3154 
3155 	children = SYSCTL_CHILDREN(oid);
3156 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3157 	    "freelist");
3158 	children = SYSCTL_CHILDREN(oid);
3159 
3160 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3161 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3162 	    "I", "SGE context id of the freelist");
3163 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3164 	    &nm_rxq->fl_cidx, 0, "consumer index");
3165 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3166 	    &nm_rxq->fl_pidx, 0, "producer index");
3167 
3168 	return (rc);
3169 }
3170 
3171 
3172 static int
3173 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3174 {
3175 	struct adapter *sc = vi->pi->adapter;
3176 
3177 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3178 	    nm_rxq->iq_desc);
3179 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3180 	    nm_rxq->fl_desc);
3181 
3182 	return (0);
3183 }
3184 
3185 static int
3186 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3187     struct sysctl_oid *oid)
3188 {
3189 	int rc;
3190 	size_t len;
3191 	struct port_info *pi = vi->pi;
3192 	struct adapter *sc = pi->adapter;
3193 	struct netmap_adapter *na = NA(vi->ifp);
3194 	char name[16];
3195 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3196 
3197 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3198 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3199 	    &nm_txq->ba, (void **)&nm_txq->desc);
3200 	if (rc)
3201 		return (rc);
3202 
3203 	nm_txq->pidx = nm_txq->cidx = 0;
3204 	nm_txq->sidx = na->num_tx_desc;
3205 	nm_txq->nid = idx;
3206 	nm_txq->iqidx = iqidx;
3207 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3208 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) |
3209 	    V_TXPKT_VF(vi->viid));
3210 
3211 	snprintf(name, sizeof(name), "%d", idx);
3212 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3213 	    NULL, "netmap tx queue");
3214 	children = SYSCTL_CHILDREN(oid);
3215 
3216 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3217 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3218 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3219 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3220 	    "consumer index");
3221 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3222 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3223 	    "producer index");
3224 
3225 	return (rc);
3226 }
3227 
3228 static int
3229 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3230 {
3231 	struct adapter *sc = vi->pi->adapter;
3232 
3233 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3234 	    nm_txq->desc);
3235 
3236 	return (0);
3237 }
3238 #endif
3239 
3240 static int
3241 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3242 {
3243 	int rc, cntxt_id;
3244 	struct fw_eq_ctrl_cmd c;
3245 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3246 
3247 	bzero(&c, sizeof(c));
3248 
3249 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3250 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3251 	    V_FW_EQ_CTRL_CMD_VFN(0));
3252 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3253 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3254 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3255 	c.physeqid_pkd = htobe32(0);
3256 	c.fetchszm_to_iqid =
3257 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3258 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3259 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3260 	c.dcaen_to_eqsize =
3261 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3262 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3263 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3264 	c.eqaddr = htobe64(eq->ba);
3265 
3266 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3267 	if (rc != 0) {
3268 		device_printf(sc->dev,
3269 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3270 		return (rc);
3271 	}
3272 	eq->flags |= EQ_ALLOCATED;
3273 
3274 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3275 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3276 	if (cntxt_id >= sc->sge.neq)
3277 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3278 		cntxt_id, sc->sge.neq - 1);
3279 	sc->sge.eqmap[cntxt_id] = eq;
3280 
3281 	return (rc);
3282 }
3283 
3284 static int
3285 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3286 {
3287 	int rc, cntxt_id;
3288 	struct fw_eq_eth_cmd c;
3289 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3290 
3291 	bzero(&c, sizeof(c));
3292 
3293 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3294 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3295 	    V_FW_EQ_ETH_CMD_VFN(0));
3296 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3297 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3298 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3299 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3300 	c.fetchszm_to_iqid =
3301 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3302 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3303 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3304 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3305 	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3306 	    V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3307 	c.eqaddr = htobe64(eq->ba);
3308 
3309 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3310 	if (rc != 0) {
3311 		device_printf(vi->dev,
3312 		    "failed to create Ethernet egress queue: %d\n", rc);
3313 		return (rc);
3314 	}
3315 	eq->flags |= EQ_ALLOCATED;
3316 
3317 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3318 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3319 	if (cntxt_id >= sc->sge.neq)
3320 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3321 		cntxt_id, sc->sge.neq - 1);
3322 	sc->sge.eqmap[cntxt_id] = eq;
3323 
3324 	return (rc);
3325 }
3326 
3327 #ifdef TCP_OFFLOAD
3328 static int
3329 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3330 {
3331 	int rc, cntxt_id;
3332 	struct fw_eq_ofld_cmd c;
3333 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3334 
3335 	bzero(&c, sizeof(c));
3336 
3337 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3338 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3339 	    V_FW_EQ_OFLD_CMD_VFN(0));
3340 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3341 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3342 	c.fetchszm_to_iqid =
3343 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3344 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3345 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3346 	c.dcaen_to_eqsize =
3347 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3348 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3349 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3350 	c.eqaddr = htobe64(eq->ba);
3351 
3352 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3353 	if (rc != 0) {
3354 		device_printf(vi->dev,
3355 		    "failed to create egress queue for TCP offload: %d\n", rc);
3356 		return (rc);
3357 	}
3358 	eq->flags |= EQ_ALLOCATED;
3359 
3360 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3361 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3362 	if (cntxt_id >= sc->sge.neq)
3363 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3364 		cntxt_id, sc->sge.neq - 1);
3365 	sc->sge.eqmap[cntxt_id] = eq;
3366 
3367 	return (rc);
3368 }
3369 #endif
3370 
3371 static int
3372 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3373 {
3374 	int rc, qsize;
3375 	size_t len;
3376 
3377 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3378 
3379 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3380 	len = qsize * EQ_ESIZE;
3381 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3382 	    &eq->ba, (void **)&eq->desc);
3383 	if (rc)
3384 		return (rc);
3385 
3386 	eq->pidx = eq->cidx = 0;
3387 	eq->equeqidx = eq->dbidx = 0;
3388 	eq->doorbells = sc->doorbells;
3389 
3390 	switch (eq->flags & EQ_TYPEMASK) {
3391 	case EQ_CTRL:
3392 		rc = ctrl_eq_alloc(sc, eq);
3393 		break;
3394 
3395 	case EQ_ETH:
3396 		rc = eth_eq_alloc(sc, vi, eq);
3397 		break;
3398 
3399 #ifdef TCP_OFFLOAD
3400 	case EQ_OFLD:
3401 		rc = ofld_eq_alloc(sc, vi, eq);
3402 		break;
3403 #endif
3404 
3405 	default:
3406 		panic("%s: invalid eq type %d.", __func__,
3407 		    eq->flags & EQ_TYPEMASK);
3408 	}
3409 	if (rc != 0) {
3410 		device_printf(sc->dev,
3411 		    "failed to allocate egress queue(%d): %d\n",
3412 		    eq->flags & EQ_TYPEMASK, rc);
3413 	}
3414 
3415 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3416 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3417 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3418 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3419 		uint32_t mask = (1 << s_qpp) - 1;
3420 		volatile uint8_t *udb;
3421 
3422 		udb = sc->udbs_base + UDBS_DB_OFFSET;
3423 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3424 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3425 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3426 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3427 		else {
3428 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3429 			eq->udb_qid = 0;
3430 		}
3431 		eq->udb = (volatile void *)udb;
3432 	}
3433 
3434 	return (rc);
3435 }
3436 
3437 static int
3438 free_eq(struct adapter *sc, struct sge_eq *eq)
3439 {
3440 	int rc;
3441 
3442 	if (eq->flags & EQ_ALLOCATED) {
3443 		switch (eq->flags & EQ_TYPEMASK) {
3444 		case EQ_CTRL:
3445 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3446 			    eq->cntxt_id);
3447 			break;
3448 
3449 		case EQ_ETH:
3450 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3451 			    eq->cntxt_id);
3452 			break;
3453 
3454 #ifdef TCP_OFFLOAD
3455 		case EQ_OFLD:
3456 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3457 			    eq->cntxt_id);
3458 			break;
3459 #endif
3460 
3461 		default:
3462 			panic("%s: invalid eq type %d.", __func__,
3463 			    eq->flags & EQ_TYPEMASK);
3464 		}
3465 		if (rc != 0) {
3466 			device_printf(sc->dev,
3467 			    "failed to free egress queue (%d): %d\n",
3468 			    eq->flags & EQ_TYPEMASK, rc);
3469 			return (rc);
3470 		}
3471 		eq->flags &= ~EQ_ALLOCATED;
3472 	}
3473 
3474 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3475 
3476 	if (mtx_initialized(&eq->eq_lock))
3477 		mtx_destroy(&eq->eq_lock);
3478 
3479 	bzero(eq, sizeof(*eq));
3480 	return (0);
3481 }
3482 
3483 static int
3484 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
3485     struct sysctl_oid *oid)
3486 {
3487 	int rc;
3488 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
3489 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3490 
3491 	rc = alloc_eq(sc, vi, &wrq->eq);
3492 	if (rc)
3493 		return (rc);
3494 
3495 	wrq->adapter = sc;
3496 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
3497 	TAILQ_INIT(&wrq->incomplete_wrs);
3498 	STAILQ_INIT(&wrq->wr_list);
3499 	wrq->nwr_pending = 0;
3500 	wrq->ndesc_needed = 0;
3501 
3502 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3503 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3504 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3505 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3506 	    "consumer index");
3507 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3508 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3509 	    "producer index");
3510 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
3511 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
3512 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
3513 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
3514 
3515 	return (rc);
3516 }
3517 
3518 static int
3519 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3520 {
3521 	int rc;
3522 
3523 	rc = free_eq(sc, &wrq->eq);
3524 	if (rc)
3525 		return (rc);
3526 
3527 	bzero(wrq, sizeof(*wrq));
3528 	return (0);
3529 }
3530 
3531 static int
3532 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
3533     struct sysctl_oid *oid)
3534 {
3535 	int rc;
3536 	struct port_info *pi = vi->pi;
3537 	struct adapter *sc = pi->adapter;
3538 	struct sge_eq *eq = &txq->eq;
3539 	char name[16];
3540 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3541 
3542 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
3543 	    M_CXGBE, M_WAITOK);
3544 	if (rc != 0) {
3545 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
3546 		return (rc);
3547 	}
3548 
3549 	rc = alloc_eq(sc, vi, eq);
3550 	if (rc != 0) {
3551 		mp_ring_free(txq->r);
3552 		txq->r = NULL;
3553 		return (rc);
3554 	}
3555 
3556 	/* Can't fail after this point. */
3557 
3558 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
3559 	txq->ifp = vi->ifp;
3560 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
3561 	txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3562 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) |
3563 	    V_TXPKT_VF(vi->viid));
3564 	txq->tc_idx = -1;
3565 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
3566 	    M_ZERO | M_WAITOK);
3567 
3568 	snprintf(name, sizeof(name), "%d", idx);
3569 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3570 	    NULL, "tx queue");
3571 	children = SYSCTL_CHILDREN(oid);
3572 
3573 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3574 	    &eq->cntxt_id, 0, "SGE context id of the queue");
3575 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3576 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3577 	    "consumer index");
3578 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3579 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3580 	    "producer index");
3581 
3582 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
3583 	    CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I",
3584 	    "traffic class (-1 means none)");
3585 
3586 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3587 	    &txq->txcsum, "# of times hardware assisted with checksum");
3588 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
3589 	    CTLFLAG_RD, &txq->vlan_insertion,
3590 	    "# of times hardware inserted 802.1Q tag");
3591 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3592 	    &txq->tso_wrs, "# of TSO work requests");
3593 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3594 	    &txq->imm_wrs, "# of work requests with immediate data");
3595 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3596 	    &txq->sgl_wrs, "# of work requests with direct SGL");
3597 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3598 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3599 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
3600 	    CTLFLAG_RD, &txq->txpkts0_wrs,
3601 	    "# of txpkts (type 0) work requests");
3602 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
3603 	    CTLFLAG_RD, &txq->txpkts1_wrs,
3604 	    "# of txpkts (type 1) work requests");
3605 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
3606 	    CTLFLAG_RD, &txq->txpkts0_pkts,
3607 	    "# of frames tx'd using type0 txpkts work requests");
3608 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
3609 	    CTLFLAG_RD, &txq->txpkts1_pkts,
3610 	    "# of frames tx'd using type1 txpkts work requests");
3611 
3612 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
3613 	    CTLFLAG_RD, &txq->r->enqueues,
3614 	    "# of enqueues to the mp_ring for this queue");
3615 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
3616 	    CTLFLAG_RD, &txq->r->drops,
3617 	    "# of drops in the mp_ring for this queue");
3618 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
3619 	    CTLFLAG_RD, &txq->r->starts,
3620 	    "# of normal consumer starts in the mp_ring for this queue");
3621 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
3622 	    CTLFLAG_RD, &txq->r->stalls,
3623 	    "# of consumer stalls in the mp_ring for this queue");
3624 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
3625 	    CTLFLAG_RD, &txq->r->restarts,
3626 	    "# of consumer restarts in the mp_ring for this queue");
3627 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
3628 	    CTLFLAG_RD, &txq->r->abdications,
3629 	    "# of consumer abdications in the mp_ring for this queue");
3630 
3631 	return (0);
3632 }
3633 
3634 static int
3635 free_txq(struct vi_info *vi, struct sge_txq *txq)
3636 {
3637 	int rc;
3638 	struct adapter *sc = vi->pi->adapter;
3639 	struct sge_eq *eq = &txq->eq;
3640 
3641 	rc = free_eq(sc, eq);
3642 	if (rc)
3643 		return (rc);
3644 
3645 	sglist_free(txq->gl);
3646 	free(txq->sdesc, M_CXGBE);
3647 	mp_ring_free(txq->r);
3648 
3649 	bzero(txq, sizeof(*txq));
3650 	return (0);
3651 }
3652 
3653 static void
3654 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3655 {
3656 	bus_addr_t *ba = arg;
3657 
3658 	KASSERT(nseg == 1,
3659 	    ("%s meant for single segment mappings only.", __func__));
3660 
3661 	*ba = error ? 0 : segs->ds_addr;
3662 }
3663 
3664 static inline void
3665 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3666 {
3667 	uint32_t n, v;
3668 
3669 	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
3670 	MPASS(n > 0);
3671 
3672 	wmb();
3673 	v = fl->dbval | V_PIDX(n);
3674 	if (fl->udb)
3675 		*fl->udb = htole32(v);
3676 	else
3677 		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3678 	IDXINCR(fl->dbidx, n, fl->sidx);
3679 }
3680 
3681 /*
3682  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
3683  * recycled do not count towards this allocation budget.
3684  *
3685  * Returns non-zero to indicate that this freelist should be added to the list
3686  * of starving freelists.
3687  */
3688 static int
3689 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
3690 {
3691 	__be64 *d;
3692 	struct fl_sdesc *sd;
3693 	uintptr_t pa;
3694 	caddr_t cl;
3695 	struct cluster_layout *cll;
3696 	struct sw_zone_info *swz;
3697 	struct cluster_metadata *clm;
3698 	uint16_t max_pidx;
3699 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
3700 
3701 	FL_LOCK_ASSERT_OWNED(fl);
3702 
3703 	/*
3704 	 * We always stop at the beginning of the hardware descriptor that's just
3705 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
3706 	 * which would mean an empty freelist to the chip.
3707 	 */
3708 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
3709 	if (fl->pidx == max_pidx * 8)
3710 		return (0);
3711 
3712 	d = &fl->desc[fl->pidx];
3713 	sd = &fl->sdesc[fl->pidx];
3714 	cll = &fl->cll_def;	/* default layout */
3715 	swz = &sc->sge.sw_zone_info[cll->zidx];
3716 
3717 	while (n > 0) {
3718 
3719 		if (sd->cl != NULL) {
3720 
3721 			if (sd->nmbuf == 0) {
3722 				/*
3723 				 * Fast recycle without involving any atomics on
3724 				 * the cluster's metadata (if the cluster has
3725 				 * metadata).  This happens when all frames
3726 				 * received in the cluster were small enough to
3727 				 * fit within a single mbuf each.
3728 				 */
3729 				fl->cl_fast_recycled++;
3730 #ifdef INVARIANTS
3731 				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3732 				if (clm != NULL)
3733 					MPASS(clm->refcount == 1);
3734 #endif
3735 				goto recycled_fast;
3736 			}
3737 
3738 			/*
3739 			 * Cluster is guaranteed to have metadata.  Clusters
3740 			 * without metadata always take the fast recycle path
3741 			 * when they're recycled.
3742 			 */
3743 			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3744 			MPASS(clm != NULL);
3745 
3746 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3747 				fl->cl_recycled++;
3748 				counter_u64_add(extfree_rels, 1);
3749 				goto recycled;
3750 			}
3751 			sd->cl = NULL;	/* gave up my reference */
3752 		}
3753 		MPASS(sd->cl == NULL);
3754 alloc:
3755 		cl = uma_zalloc(swz->zone, M_NOWAIT);
3756 		if (__predict_false(cl == NULL)) {
3757 			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3758 			    fl->cll_def.zidx == fl->cll_alt.zidx)
3759 				break;
3760 
3761 			/* fall back to the safe zone */
3762 			cll = &fl->cll_alt;
3763 			swz = &sc->sge.sw_zone_info[cll->zidx];
3764 			goto alloc;
3765 		}
3766 		fl->cl_allocated++;
3767 		n--;
3768 
3769 		pa = pmap_kextract((vm_offset_t)cl);
3770 		pa += cll->region1;
3771 		sd->cl = cl;
3772 		sd->cll = *cll;
3773 		*d = htobe64(pa | cll->hwidx);
3774 		clm = cl_metadata(sc, fl, cll, cl);
3775 		if (clm != NULL) {
3776 recycled:
3777 #ifdef INVARIANTS
3778 			clm->sd = sd;
3779 #endif
3780 			clm->refcount = 1;
3781 		}
3782 		sd->nmbuf = 0;
3783 recycled_fast:
3784 		d++;
3785 		sd++;
3786 		if (__predict_false(++fl->pidx % 8 == 0)) {
3787 			uint16_t pidx = fl->pidx / 8;
3788 
3789 			if (__predict_false(pidx == fl->sidx)) {
3790 				fl->pidx = 0;
3791 				pidx = 0;
3792 				sd = fl->sdesc;
3793 				d = fl->desc;
3794 			}
3795 			if (pidx == max_pidx)
3796 				break;
3797 
3798 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
3799 				ring_fl_db(sc, fl);
3800 		}
3801 	}
3802 
3803 	if (fl->pidx / 8 != fl->dbidx)
3804 		ring_fl_db(sc, fl);
3805 
3806 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3807 }
3808 
3809 /*
3810  * Attempt to refill all starving freelists.
3811  */
3812 static void
3813 refill_sfl(void *arg)
3814 {
3815 	struct adapter *sc = arg;
3816 	struct sge_fl *fl, *fl_temp;
3817 
3818 	mtx_assert(&sc->sfl_lock, MA_OWNED);
3819 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3820 		FL_LOCK(fl);
3821 		refill_fl(sc, fl, 64);
3822 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3823 			TAILQ_REMOVE(&sc->sfl, fl, link);
3824 			fl->flags &= ~FL_STARVING;
3825 		}
3826 		FL_UNLOCK(fl);
3827 	}
3828 
3829 	if (!TAILQ_EMPTY(&sc->sfl))
3830 		callout_schedule(&sc->sfl_callout, hz / 5);
3831 }
3832 
3833 static int
3834 alloc_fl_sdesc(struct sge_fl *fl)
3835 {
3836 
3837 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
3838 	    M_ZERO | M_WAITOK);
3839 
3840 	return (0);
3841 }
3842 
3843 static void
3844 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3845 {
3846 	struct fl_sdesc *sd;
3847 	struct cluster_metadata *clm;
3848 	struct cluster_layout *cll;
3849 	int i;
3850 
3851 	sd = fl->sdesc;
3852 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
3853 		if (sd->cl == NULL)
3854 			continue;
3855 
3856 		cll = &sd->cll;
3857 		clm = cl_metadata(sc, fl, cll, sd->cl);
3858 		if (sd->nmbuf == 0)
3859 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3860 		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3861 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3862 			counter_u64_add(extfree_rels, 1);
3863 		}
3864 		sd->cl = NULL;
3865 	}
3866 
3867 	free(fl->sdesc, M_CXGBE);
3868 	fl->sdesc = NULL;
3869 }
3870 
3871 static inline void
3872 get_pkt_gl(struct mbuf *m, struct sglist *gl)
3873 {
3874 	int rc;
3875 
3876 	M_ASSERTPKTHDR(m);
3877 
3878 	sglist_reset(gl);
3879 	rc = sglist_append_mbuf(gl, m);
3880 	if (__predict_false(rc != 0)) {
3881 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
3882 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
3883 	}
3884 
3885 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
3886 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
3887 	    mbuf_nsegs(m), gl->sg_nseg));
3888 	KASSERT(gl->sg_nseg > 0 &&
3889 	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
3890 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
3891 		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
3892 }
3893 
3894 /*
3895  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
3896  */
3897 static inline u_int
3898 txpkt_len16(u_int nsegs, u_int tso)
3899 {
3900 	u_int n;
3901 
3902 	MPASS(nsegs > 0);
3903 
3904 	nsegs--; /* first segment is part of ulptx_sgl */
3905 	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
3906 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
3907 	if (tso)
3908 		n += sizeof(struct cpl_tx_pkt_lso_core);
3909 
3910 	return (howmany(n, 16));
3911 }
3912 
3913 /*
3914  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
3915  * request header.
3916  */
3917 static inline u_int
3918 txpkts0_len16(u_int nsegs)
3919 {
3920 	u_int n;
3921 
3922 	MPASS(nsegs > 0);
3923 
3924 	nsegs--; /* first segment is part of ulptx_sgl */
3925 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
3926 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
3927 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
3928 
3929 	return (howmany(n, 16));
3930 }
3931 
3932 /*
3933  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
3934  * request header.
3935  */
3936 static inline u_int
3937 txpkts1_len16(void)
3938 {
3939 	u_int n;
3940 
3941 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
3942 
3943 	return (howmany(n, 16));
3944 }
3945 
3946 static inline u_int
3947 imm_payload(u_int ndesc)
3948 {
3949 	u_int n;
3950 
3951 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
3952 	    sizeof(struct cpl_tx_pkt_core);
3953 
3954 	return (n);
3955 }
3956 
3957 /*
3958  * Write a txpkt WR for this packet to the hardware descriptors, update the
3959  * software descriptor, and advance the pidx.  It is guaranteed that enough
3960  * descriptors are available.
3961  *
3962  * The return value is the # of hardware descriptors used.
3963  */
3964 static u_int
3965 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
3966     struct mbuf *m0, u_int available)
3967 {
3968 	struct sge_eq *eq = &txq->eq;
3969 	struct tx_sdesc *txsd;
3970 	struct cpl_tx_pkt_core *cpl;
3971 	uint32_t ctrl;	/* used in many unrelated places */
3972 	uint64_t ctrl1;
3973 	int len16, ndesc, pktlen, nsegs;
3974 	caddr_t dst;
3975 
3976 	TXQ_LOCK_ASSERT_OWNED(txq);
3977 	M_ASSERTPKTHDR(m0);
3978 	MPASS(available > 0 && available < eq->sidx);
3979 
3980 	len16 = mbuf_len16(m0);
3981 	nsegs = mbuf_nsegs(m0);
3982 	pktlen = m0->m_pkthdr.len;
3983 	ctrl = sizeof(struct cpl_tx_pkt_core);
3984 	if (needs_tso(m0))
3985 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3986 	else if (pktlen <= imm_payload(2) && available >= 2) {
3987 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
3988 		ctrl += pktlen;
3989 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
3990 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
3991 		nsegs = 0;
3992 	}
3993 	ndesc = howmany(len16, EQ_ESIZE / 16);
3994 	MPASS(ndesc <= available);
3995 
3996 	/* Firmware work request header */
3997 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
3998 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3999 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4000 
4001 	ctrl = V_FW_WR_LEN16(len16);
4002 	wr->equiq_to_len16 = htobe32(ctrl);
4003 	wr->r3 = 0;
4004 
4005 	if (needs_tso(m0)) {
4006 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4007 
4008 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4009 		    m0->m_pkthdr.l4hlen > 0,
4010 		    ("%s: mbuf %p needs TSO but missing header lengths",
4011 			__func__, m0));
4012 
4013 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4014 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4015 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4016 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4017 			ctrl |= V_LSO_ETHHDR_LEN(1);
4018 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4019 			ctrl |= F_LSO_IPV6;
4020 
4021 		lso->lso_ctrl = htobe32(ctrl);
4022 		lso->ipid_ofst = htobe16(0);
4023 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4024 		lso->seqno_offset = htobe32(0);
4025 		lso->len = htobe32(pktlen);
4026 
4027 		cpl = (void *)(lso + 1);
4028 
4029 		txq->tso_wrs++;
4030 	} else
4031 		cpl = (void *)(wr + 1);
4032 
4033 	/* Checksum offload */
4034 	ctrl1 = 0;
4035 	if (needs_l3_csum(m0) == 0)
4036 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4037 	if (needs_l4_csum(m0) == 0)
4038 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4039 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4040 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4041 		txq->txcsum++;	/* some hardware assistance provided */
4042 
4043 	/* VLAN tag insertion */
4044 	if (needs_vlan_insertion(m0)) {
4045 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4046 		txq->vlan_insertion++;
4047 	}
4048 
4049 	/* CPL header */
4050 	cpl->ctrl0 = txq->cpl_ctrl0;
4051 	cpl->pack = 0;
4052 	cpl->len = htobe16(pktlen);
4053 	cpl->ctrl1 = htobe64(ctrl1);
4054 
4055 	/* SGL */
4056 	dst = (void *)(cpl + 1);
4057 	if (nsegs > 0) {
4058 
4059 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4060 		txq->sgl_wrs++;
4061 	} else {
4062 		struct mbuf *m;
4063 
4064 		for (m = m0; m != NULL; m = m->m_next) {
4065 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4066 #ifdef INVARIANTS
4067 			pktlen -= m->m_len;
4068 #endif
4069 		}
4070 #ifdef INVARIANTS
4071 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
4072 #endif
4073 		txq->imm_wrs++;
4074 	}
4075 
4076 	txq->txpkt_wrs++;
4077 
4078 	txsd = &txq->sdesc[eq->pidx];
4079 	txsd->m = m0;
4080 	txsd->desc_used = ndesc;
4081 
4082 	return (ndesc);
4083 }
4084 
4085 static int
4086 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
4087 {
4088 	u_int needed, nsegs1, nsegs2, l1, l2;
4089 
4090 	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
4091 		return (1);
4092 
4093 	nsegs1 = mbuf_nsegs(m);
4094 	nsegs2 = mbuf_nsegs(n);
4095 	if (nsegs1 + nsegs2 == 2) {
4096 		txp->wr_type = 1;
4097 		l1 = l2 = txpkts1_len16();
4098 	} else {
4099 		txp->wr_type = 0;
4100 		l1 = txpkts0_len16(nsegs1);
4101 		l2 = txpkts0_len16(nsegs2);
4102 	}
4103 	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
4104 	needed = howmany(txp->len16, EQ_ESIZE / 16);
4105 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4106 		return (1);
4107 
4108 	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
4109 	if (txp->plen > 65535)
4110 		return (1);
4111 
4112 	txp->npkt = 2;
4113 	set_mbuf_len16(m, l1);
4114 	set_mbuf_len16(n, l2);
4115 
4116 	return (0);
4117 }
4118 
4119 static int
4120 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
4121 {
4122 	u_int plen, len16, needed, nsegs;
4123 
4124 	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
4125 
4126 	nsegs = mbuf_nsegs(m);
4127 	if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
4128 		return (1);
4129 
4130 	plen = txp->plen + m->m_pkthdr.len;
4131 	if (plen > 65535)
4132 		return (1);
4133 
4134 	if (txp->wr_type == 0)
4135 		len16 = txpkts0_len16(nsegs);
4136 	else
4137 		len16 = txpkts1_len16();
4138 	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4139 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4140 		return (1);
4141 
4142 	txp->npkt++;
4143 	txp->plen = plen;
4144 	txp->len16 += len16;
4145 	set_mbuf_len16(m, len16);
4146 
4147 	return (0);
4148 }
4149 
4150 /*
4151  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
4152  * the software descriptor, and advance the pidx.  It is guaranteed that enough
4153  * descriptors are available.
4154  *
4155  * The return value is the # of hardware descriptors used.
4156  */
4157 static u_int
4158 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
4159     struct mbuf *m0, const struct txpkts *txp, u_int available)
4160 {
4161 	struct sge_eq *eq = &txq->eq;
4162 	struct tx_sdesc *txsd;
4163 	struct cpl_tx_pkt_core *cpl;
4164 	uint32_t ctrl;
4165 	uint64_t ctrl1;
4166 	int ndesc, checkwrap;
4167 	struct mbuf *m;
4168 	void *flitp;
4169 
4170 	TXQ_LOCK_ASSERT_OWNED(txq);
4171 	MPASS(txp->npkt > 0);
4172 	MPASS(txp->plen < 65536);
4173 	MPASS(m0 != NULL);
4174 	MPASS(m0->m_nextpkt != NULL);
4175 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
4176 	MPASS(available > 0 && available < eq->sidx);
4177 
4178 	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
4179 	MPASS(ndesc <= available);
4180 
4181 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4182 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4183 	ctrl = V_FW_WR_LEN16(txp->len16);
4184 	wr->equiq_to_len16 = htobe32(ctrl);
4185 	wr->plen = htobe16(txp->plen);
4186 	wr->npkt = txp->npkt;
4187 	wr->r3 = 0;
4188 	wr->type = txp->wr_type;
4189 	flitp = wr + 1;
4190 
4191 	/*
4192 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
4193 	 * set then we know the WR is going to wrap around somewhere.  We'll
4194 	 * check for that at appropriate points.
4195 	 */
4196 	checkwrap = eq->sidx - ndesc < eq->pidx;
4197 	for (m = m0; m != NULL; m = m->m_nextpkt) {
4198 		if (txp->wr_type == 0) {
4199 			struct ulp_txpkt *ulpmc;
4200 			struct ulptx_idata *ulpsc;
4201 
4202 			/* ULP master command */
4203 			ulpmc = flitp;
4204 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
4205 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
4206 			ulpmc->len = htobe32(mbuf_len16(m));
4207 
4208 			/* ULP subcommand */
4209 			ulpsc = (void *)(ulpmc + 1);
4210 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
4211 			    F_ULP_TX_SC_MORE);
4212 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
4213 
4214 			cpl = (void *)(ulpsc + 1);
4215 			if (checkwrap &&
4216 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
4217 				cpl = (void *)&eq->desc[0];
4218 			txq->txpkts0_pkts += txp->npkt;
4219 			txq->txpkts0_wrs++;
4220 		} else {
4221 			cpl = flitp;
4222 			txq->txpkts1_pkts += txp->npkt;
4223 			txq->txpkts1_wrs++;
4224 		}
4225 
4226 		/* Checksum offload */
4227 		ctrl1 = 0;
4228 		if (needs_l3_csum(m) == 0)
4229 			ctrl1 |= F_TXPKT_IPCSUM_DIS;
4230 		if (needs_l4_csum(m) == 0)
4231 			ctrl1 |= F_TXPKT_L4CSUM_DIS;
4232 		if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4233 		    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4234 			txq->txcsum++;	/* some hardware assistance provided */
4235 
4236 		/* VLAN tag insertion */
4237 		if (needs_vlan_insertion(m)) {
4238 			ctrl1 |= F_TXPKT_VLAN_VLD |
4239 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
4240 			txq->vlan_insertion++;
4241 		}
4242 
4243 		/* CPL header */
4244 		cpl->ctrl0 = txq->cpl_ctrl0;
4245 		cpl->pack = 0;
4246 		cpl->len = htobe16(m->m_pkthdr.len);
4247 		cpl->ctrl1 = htobe64(ctrl1);
4248 
4249 		flitp = cpl + 1;
4250 		if (checkwrap &&
4251 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
4252 			flitp = (void *)&eq->desc[0];
4253 
4254 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
4255 
4256 	}
4257 
4258 	txsd = &txq->sdesc[eq->pidx];
4259 	txsd->m = m0;
4260 	txsd->desc_used = ndesc;
4261 
4262 	return (ndesc);
4263 }
4264 
4265 /*
4266  * If the SGL ends on an address that is not 16 byte aligned, this function will
4267  * add a 0 filled flit at the end.
4268  */
4269 static void
4270 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
4271 {
4272 	struct sge_eq *eq = &txq->eq;
4273 	struct sglist *gl = txq->gl;
4274 	struct sglist_seg *seg;
4275 	__be64 *flitp, *wrap;
4276 	struct ulptx_sgl *usgl;
4277 	int i, nflits, nsegs;
4278 
4279 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4280 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4281 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4282 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4283 
4284 	get_pkt_gl(m, gl);
4285 	nsegs = gl->sg_nseg;
4286 	MPASS(nsegs > 0);
4287 
4288 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
4289 	flitp = (__be64 *)(*to);
4290 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
4291 	seg = &gl->sg_segs[0];
4292 	usgl = (void *)flitp;
4293 
4294 	/*
4295 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4296 	 * ring, so we're at least 16 bytes away from the status page.  There is
4297 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4298 	 */
4299 
4300 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4301 	    V_ULPTX_NSGE(nsegs));
4302 	usgl->len0 = htobe32(seg->ss_len);
4303 	usgl->addr0 = htobe64(seg->ss_paddr);
4304 	seg++;
4305 
4306 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
4307 
4308 		/* Won't wrap around at all */
4309 
4310 		for (i = 0; i < nsegs - 1; i++, seg++) {
4311 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
4312 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
4313 		}
4314 		if (i & 1)
4315 			usgl->sge[i / 2].len[1] = htobe32(0);
4316 		flitp += nflits;
4317 	} else {
4318 
4319 		/* Will wrap somewhere in the rest of the SGL */
4320 
4321 		/* 2 flits already written, write the rest flit by flit */
4322 		flitp = (void *)(usgl + 1);
4323 		for (i = 0; i < nflits - 2; i++) {
4324 			if (flitp == wrap)
4325 				flitp = (void *)eq->desc;
4326 			*flitp++ = get_flit(seg, nsegs - 1, i);
4327 		}
4328 	}
4329 
4330 	if (nflits & 1) {
4331 		MPASS(((uintptr_t)flitp) & 0xf);
4332 		*flitp++ = 0;
4333 	}
4334 
4335 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
4336 	if (__predict_false(flitp == wrap))
4337 		*to = (void *)eq->desc;
4338 	else
4339 		*to = (void *)flitp;
4340 }
4341 
4342 static inline void
4343 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4344 {
4345 
4346 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4347 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4348 
4349 	if (__predict_true((uintptr_t)(*to) + len <=
4350 	    (uintptr_t)&eq->desc[eq->sidx])) {
4351 		bcopy(from, *to, len);
4352 		(*to) += len;
4353 	} else {
4354 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
4355 
4356 		bcopy(from, *to, portion);
4357 		from += portion;
4358 		portion = len - portion;	/* remaining */
4359 		bcopy(from, (void *)eq->desc, portion);
4360 		(*to) = (caddr_t)eq->desc + portion;
4361 	}
4362 }
4363 
4364 static inline void
4365 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
4366 {
4367 	u_int db;
4368 
4369 	MPASS(n > 0);
4370 
4371 	db = eq->doorbells;
4372 	if (n > 1)
4373 		clrbit(&db, DOORBELL_WCWR);
4374 	wmb();
4375 
4376 	switch (ffs(db) - 1) {
4377 	case DOORBELL_UDB:
4378 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4379 		break;
4380 
4381 	case DOORBELL_WCWR: {
4382 		volatile uint64_t *dst, *src;
4383 		int i;
4384 
4385 		/*
4386 		 * Queues whose 128B doorbell segment fits in the page do not
4387 		 * use relative qid (udb_qid is always 0).  Only queues with
4388 		 * doorbell segments can do WCWR.
4389 		 */
4390 		KASSERT(eq->udb_qid == 0 && n == 1,
4391 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4392 		    __func__, eq->doorbells, n, eq->dbidx, eq));
4393 
4394 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4395 		    UDBS_DB_OFFSET);
4396 		i = eq->dbidx;
4397 		src = (void *)&eq->desc[i];
4398 		while (src != (void *)&eq->desc[i + 1])
4399 			*dst++ = *src++;
4400 		wmb();
4401 		break;
4402 	}
4403 
4404 	case DOORBELL_UDBWC:
4405 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4406 		wmb();
4407 		break;
4408 
4409 	case DOORBELL_KDB:
4410 		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
4411 		    V_QID(eq->cntxt_id) | V_PIDX(n));
4412 		break;
4413 	}
4414 
4415 	IDXINCR(eq->dbidx, n, eq->sidx);
4416 }
4417 
4418 static inline u_int
4419 reclaimable_tx_desc(struct sge_eq *eq)
4420 {
4421 	uint16_t hw_cidx;
4422 
4423 	hw_cidx = read_hw_cidx(eq);
4424 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
4425 }
4426 
4427 static inline u_int
4428 total_available_tx_desc(struct sge_eq *eq)
4429 {
4430 	uint16_t hw_cidx, pidx;
4431 
4432 	hw_cidx = read_hw_cidx(eq);
4433 	pidx = eq->pidx;
4434 
4435 	if (pidx == hw_cidx)
4436 		return (eq->sidx - 1);
4437 	else
4438 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
4439 }
4440 
4441 static inline uint16_t
4442 read_hw_cidx(struct sge_eq *eq)
4443 {
4444 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4445 	uint16_t cidx = spg->cidx;	/* stable snapshot */
4446 
4447 	return (be16toh(cidx));
4448 }
4449 
4450 /*
4451  * Reclaim 'n' descriptors approximately.
4452  */
4453 static u_int
4454 reclaim_tx_descs(struct sge_txq *txq, u_int n)
4455 {
4456 	struct tx_sdesc *txsd;
4457 	struct sge_eq *eq = &txq->eq;
4458 	u_int can_reclaim, reclaimed;
4459 
4460 	TXQ_LOCK_ASSERT_OWNED(txq);
4461 	MPASS(n > 0);
4462 
4463 	reclaimed = 0;
4464 	can_reclaim = reclaimable_tx_desc(eq);
4465 	while (can_reclaim && reclaimed < n) {
4466 		int ndesc;
4467 		struct mbuf *m, *nextpkt;
4468 
4469 		txsd = &txq->sdesc[eq->cidx];
4470 		ndesc = txsd->desc_used;
4471 
4472 		/* Firmware doesn't return "partial" credits. */
4473 		KASSERT(can_reclaim >= ndesc,
4474 		    ("%s: unexpected number of credits: %d, %d",
4475 		    __func__, can_reclaim, ndesc));
4476 
4477 		for (m = txsd->m; m != NULL; m = nextpkt) {
4478 			nextpkt = m->m_nextpkt;
4479 			m->m_nextpkt = NULL;
4480 			m_freem(m);
4481 		}
4482 		reclaimed += ndesc;
4483 		can_reclaim -= ndesc;
4484 		IDXINCR(eq->cidx, ndesc, eq->sidx);
4485 	}
4486 
4487 	return (reclaimed);
4488 }
4489 
4490 static void
4491 tx_reclaim(void *arg, int n)
4492 {
4493 	struct sge_txq *txq = arg;
4494 	struct sge_eq *eq = &txq->eq;
4495 
4496 	do {
4497 		if (TXQ_TRYLOCK(txq) == 0)
4498 			break;
4499 		n = reclaim_tx_descs(txq, 32);
4500 		if (eq->cidx == eq->pidx)
4501 			eq->equeqidx = eq->pidx;
4502 		TXQ_UNLOCK(txq);
4503 	} while (n > 0);
4504 }
4505 
4506 static __be64
4507 get_flit(struct sglist_seg *segs, int nsegs, int idx)
4508 {
4509 	int i = (idx / 3) * 2;
4510 
4511 	switch (idx % 3) {
4512 	case 0: {
4513 		__be64 rc;
4514 
4515 		rc = htobe32(segs[i].ss_len);
4516 		if (i + 1 < nsegs)
4517 			rc |= (uint64_t)htobe32(segs[i + 1].ss_len) << 32;
4518 
4519 		return (rc);
4520 	}
4521 	case 1:
4522 		return (htobe64(segs[i].ss_paddr));
4523 	case 2:
4524 		return (htobe64(segs[i + 1].ss_paddr));
4525 	}
4526 
4527 	return (0);
4528 }
4529 
4530 static void
4531 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4532 {
4533 	int8_t zidx, hwidx, idx;
4534 	uint16_t region1, region3;
4535 	int spare, spare_needed, n;
4536 	struct sw_zone_info *swz;
4537 	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4538 
4539 	/*
4540 	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4541 	 * large enough for the max payload and cluster metadata.  Otherwise
4542 	 * settle for the largest bufsize that leaves enough room in the cluster
4543 	 * for metadata.
4544 	 *
4545 	 * Without buffer packing: Look for the smallest zone which has a
4546 	 * bufsize large enough for the max payload.  Settle for the largest
4547 	 * bufsize available if there's nothing big enough for max payload.
4548 	 */
4549 	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4550 	swz = &sc->sge.sw_zone_info[0];
4551 	hwidx = -1;
4552 	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4553 		if (swz->size > largest_rx_cluster) {
4554 			if (__predict_true(hwidx != -1))
4555 				break;
4556 
4557 			/*
4558 			 * This is a misconfiguration.  largest_rx_cluster is
4559 			 * preventing us from finding a refill source.  See
4560 			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4561 			 */
4562 			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4563 			    " refill source for fl %p (dma %u).  Ignored.\n",
4564 			    largest_rx_cluster, fl, maxp);
4565 		}
4566 		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4567 			hwb = &hwb_list[idx];
4568 			spare = swz->size - hwb->size;
4569 			if (spare < spare_needed)
4570 				continue;
4571 
4572 			hwidx = idx;		/* best option so far */
4573 			if (hwb->size >= maxp) {
4574 
4575 				if ((fl->flags & FL_BUF_PACKING) == 0)
4576 					goto done; /* stop looking (not packing) */
4577 
4578 				if (swz->size >= safest_rx_cluster)
4579 					goto done; /* stop looking (packing) */
4580 			}
4581 			break;		/* keep looking, next zone */
4582 		}
4583 	}
4584 done:
4585 	/* A usable hwidx has been located. */
4586 	MPASS(hwidx != -1);
4587 	hwb = &hwb_list[hwidx];
4588 	zidx = hwb->zidx;
4589 	swz = &sc->sge.sw_zone_info[zidx];
4590 	region1 = 0;
4591 	region3 = swz->size - hwb->size;
4592 
4593 	/*
4594 	 * Stay within this zone and see if there is a better match when mbuf
4595 	 * inlining is allowed.  Remember that the hwidx's are sorted in
4596 	 * decreasing order of size (so in increasing order of spare area).
4597 	 */
4598 	for (idx = hwidx; idx != -1; idx = hwb->next) {
4599 		hwb = &hwb_list[idx];
4600 		spare = swz->size - hwb->size;
4601 
4602 		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4603 			break;
4604 
4605 		/*
4606 		 * Do not inline mbufs if doing so would violate the pad/pack
4607 		 * boundary alignment requirement.
4608 		 */
4609 		if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0)
4610 			continue;
4611 		if (fl->flags & FL_BUF_PACKING &&
4612 		    (MSIZE % sc->params.sge.pack_boundary) != 0)
4613 			continue;
4614 
4615 		if (spare < CL_METADATA_SIZE + MSIZE)
4616 			continue;
4617 		n = (spare - CL_METADATA_SIZE) / MSIZE;
4618 		if (n > howmany(hwb->size, maxp))
4619 			break;
4620 
4621 		hwidx = idx;
4622 		if (fl->flags & FL_BUF_PACKING) {
4623 			region1 = n * MSIZE;
4624 			region3 = spare - region1;
4625 		} else {
4626 			region1 = MSIZE;
4627 			region3 = spare - region1;
4628 			break;
4629 		}
4630 	}
4631 
4632 	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4633 	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4634 	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4635 	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4636 	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4637 	    sc->sge.sw_zone_info[zidx].size,
4638 	    ("%s: bad buffer layout for fl %p, maxp %d. "
4639 		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4640 		sc->sge.sw_zone_info[zidx].size, region1,
4641 		sc->sge.hw_buf_info[hwidx].size, region3));
4642 	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4643 		KASSERT(region3 >= CL_METADATA_SIZE,
4644 		    ("%s: no room for metadata.  fl %p, maxp %d; "
4645 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4646 		    sc->sge.sw_zone_info[zidx].size, region1,
4647 		    sc->sge.hw_buf_info[hwidx].size, region3));
4648 		KASSERT(region1 % MSIZE == 0,
4649 		    ("%s: bad mbuf region for fl %p, maxp %d. "
4650 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4651 		    sc->sge.sw_zone_info[zidx].size, region1,
4652 		    sc->sge.hw_buf_info[hwidx].size, region3));
4653 	}
4654 
4655 	fl->cll_def.zidx = zidx;
4656 	fl->cll_def.hwidx = hwidx;
4657 	fl->cll_def.region1 = region1;
4658 	fl->cll_def.region3 = region3;
4659 }
4660 
4661 static void
4662 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4663 {
4664 	struct sge *s = &sc->sge;
4665 	struct hw_buf_info *hwb;
4666 	struct sw_zone_info *swz;
4667 	int spare;
4668 	int8_t hwidx;
4669 
4670 	if (fl->flags & FL_BUF_PACKING)
4671 		hwidx = s->safe_hwidx2;	/* with room for metadata */
4672 	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4673 		hwidx = s->safe_hwidx2;
4674 		hwb = &s->hw_buf_info[hwidx];
4675 		swz = &s->sw_zone_info[hwb->zidx];
4676 		spare = swz->size - hwb->size;
4677 
4678 		/* no good if there isn't room for an mbuf as well */
4679 		if (spare < CL_METADATA_SIZE + MSIZE)
4680 			hwidx = s->safe_hwidx1;
4681 	} else
4682 		hwidx = s->safe_hwidx1;
4683 
4684 	if (hwidx == -1) {
4685 		/* No fallback source */
4686 		fl->cll_alt.hwidx = -1;
4687 		fl->cll_alt.zidx = -1;
4688 
4689 		return;
4690 	}
4691 
4692 	hwb = &s->hw_buf_info[hwidx];
4693 	swz = &s->sw_zone_info[hwb->zidx];
4694 	spare = swz->size - hwb->size;
4695 	fl->cll_alt.hwidx = hwidx;
4696 	fl->cll_alt.zidx = hwb->zidx;
4697 	if (allow_mbufs_in_cluster &&
4698 	    (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0))
4699 		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
4700 	else
4701 		fl->cll_alt.region1 = 0;
4702 	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
4703 }
4704 
4705 static void
4706 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4707 {
4708 	mtx_lock(&sc->sfl_lock);
4709 	FL_LOCK(fl);
4710 	if ((fl->flags & FL_DOOMED) == 0) {
4711 		fl->flags |= FL_STARVING;
4712 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4713 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4714 	}
4715 	FL_UNLOCK(fl);
4716 	mtx_unlock(&sc->sfl_lock);
4717 }
4718 
4719 static void
4720 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
4721 {
4722 	struct sge_wrq *wrq = (void *)eq;
4723 
4724 	atomic_readandclear_int(&eq->equiq);
4725 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
4726 }
4727 
4728 static void
4729 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
4730 {
4731 	struct sge_txq *txq = (void *)eq;
4732 
4733 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
4734 
4735 	atomic_readandclear_int(&eq->equiq);
4736 	mp_ring_check_drainage(txq->r, 0);
4737 	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
4738 }
4739 
4740 static int
4741 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4742     struct mbuf *m)
4743 {
4744 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4745 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4746 	struct adapter *sc = iq->adapter;
4747 	struct sge *s = &sc->sge;
4748 	struct sge_eq *eq;
4749 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
4750 		&handle_wrq_egr_update, &handle_eth_egr_update,
4751 		&handle_wrq_egr_update};
4752 
4753 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4754 	    rss->opcode));
4755 
4756 	eq = s->eqmap[qid - s->eq_start];
4757 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
4758 
4759 	return (0);
4760 }
4761 
4762 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4763 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4764     offsetof(struct cpl_fw6_msg, data));
4765 
4766 static int
4767 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4768 {
4769 	struct adapter *sc = iq->adapter;
4770 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4771 
4772 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4773 	    rss->opcode));
4774 
4775 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4776 		const struct rss_header *rss2;
4777 
4778 		rss2 = (const struct rss_header *)&cpl->data[0];
4779 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
4780 	}
4781 
4782 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4783 }
4784 
4785 static int
4786 sysctl_uint16(SYSCTL_HANDLER_ARGS)
4787 {
4788 	uint16_t *id = arg1;
4789 	int i = *id;
4790 
4791 	return sysctl_handle_int(oidp, &i, 0, req);
4792 }
4793 
4794 static int
4795 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
4796 {
4797 	struct sge *s = arg1;
4798 	struct hw_buf_info *hwb = &s->hw_buf_info[0];
4799 	struct sw_zone_info *swz = &s->sw_zone_info[0];
4800 	int i, rc;
4801 	struct sbuf sb;
4802 	char c;
4803 
4804 	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4805 	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
4806 		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
4807 			c = '*';
4808 		else
4809 			c = '\0';
4810 
4811 		sbuf_printf(&sb, "%u%c ", hwb->size, c);
4812 	}
4813 	sbuf_trim(&sb);
4814 	sbuf_finish(&sb);
4815 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4816 	sbuf_delete(&sb);
4817 	return (rc);
4818 }
4819 
4820 static int
4821 sysctl_tc(SYSCTL_HANDLER_ARGS)
4822 {
4823 	struct vi_info *vi = arg1;
4824 	struct port_info *pi;
4825 	struct adapter *sc;
4826 	struct sge_txq *txq;
4827 	struct tx_sched_class *tc;
4828 	int qidx = arg2, rc, tc_idx;
4829 	uint32_t fw_queue, fw_class;
4830 
4831 	MPASS(qidx >= 0 && qidx < vi->ntxq);
4832 	pi = vi->pi;
4833 	sc = pi->adapter;
4834 	txq = &sc->sge.txq[vi->first_txq + qidx];
4835 
4836 	tc_idx = txq->tc_idx;
4837 	rc = sysctl_handle_int(oidp, &tc_idx, 0, req);
4838 	if (rc != 0 || req->newptr == NULL)
4839 		return (rc);
4840 
4841 	/* Note that -1 is legitimate input (it means unbind). */
4842 	if (tc_idx < -1 || tc_idx >= sc->chip_params->nsched_cls)
4843 		return (EINVAL);
4844 
4845 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4stc");
4846 	if (rc)
4847 		return (rc);
4848 
4849 	if (tc_idx == txq->tc_idx) {
4850 		rc = 0;		/* No change, nothing to do. */
4851 		goto done;
4852 	}
4853 
4854 	fw_queue = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
4855 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) |
4856 	    V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id);
4857 
4858 	if (tc_idx == -1)
4859 		fw_class = 0xffffffff;	/* Unbind. */
4860 	else {
4861 		/*
4862 		 * Bind to a different class.  Ethernet txq's are only allowed
4863 		 * to bind to cl-rl mode-class for now.  XXX: too restrictive.
4864 		 */
4865 		tc = &pi->tc[tc_idx];
4866 		if (tc->flags & TX_SC_OK &&
4867 		    tc->params.level == SCHED_CLASS_LEVEL_CL_RL &&
4868 		    tc->params.mode == SCHED_CLASS_MODE_CLASS) {
4869 			/* Ok to proceed. */
4870 			fw_class = tc_idx;
4871 		} else {
4872 			rc = tc->flags & TX_SC_OK ? EBUSY : ENXIO;
4873 			goto done;
4874 		}
4875 	}
4876 
4877 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, &fw_class);
4878 	if (rc == 0) {
4879 		if (txq->tc_idx != -1) {
4880 			tc = &pi->tc[txq->tc_idx];
4881 			MPASS(tc->refcount > 0);
4882 			tc->refcount--;
4883 		}
4884 		if (tc_idx != -1) {
4885 			tc = &pi->tc[tc_idx];
4886 			tc->refcount++;
4887 		}
4888 		txq->tc_idx = tc_idx;
4889 	}
4890 done:
4891 	end_synchronized_op(sc, 0);
4892 	return (rc);
4893 }
4894