1 /*- 2 * Copyright (c) 2011 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: Navdeep Parhar <np@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #include <sys/types.h> 35 #include <sys/eventhandler.h> 36 #include <sys/mbuf.h> 37 #include <sys/socket.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/queue.h> 41 #include <sys/sbuf.h> 42 #include <sys/taskqueue.h> 43 #include <sys/time.h> 44 #include <sys/sglist.h> 45 #include <sys/sysctl.h> 46 #include <sys/smp.h> 47 #include <sys/counter.h> 48 #include <net/bpf.h> 49 #include <net/ethernet.h> 50 #include <net/if.h> 51 #include <net/if_vlan_var.h> 52 #include <netinet/in.h> 53 #include <netinet/ip.h> 54 #include <netinet/ip6.h> 55 #include <netinet/tcp.h> 56 #include <machine/md_var.h> 57 #include <vm/vm.h> 58 #include <vm/pmap.h> 59 #ifdef DEV_NETMAP 60 #include <machine/bus.h> 61 #include <sys/selinfo.h> 62 #include <net/if_var.h> 63 #include <net/netmap.h> 64 #include <dev/netmap/netmap_kern.h> 65 #endif 66 67 #include "common/common.h" 68 #include "common/t4_regs.h" 69 #include "common/t4_regs_values.h" 70 #include "common/t4_msg.h" 71 #include "t4_l2t.h" 72 #include "t4_mp_ring.h" 73 74 #ifdef T4_PKT_TIMESTAMP 75 #define RX_COPY_THRESHOLD (MINCLSIZE - 8) 76 #else 77 #define RX_COPY_THRESHOLD MINCLSIZE 78 #endif 79 80 /* 81 * Ethernet frames are DMA'd at this byte offset into the freelist buffer. 82 * 0-7 are valid values. 83 */ 84 int fl_pktshift = 2; 85 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift); 86 87 /* 88 * Pad ethernet payload up to this boundary. 89 * -1: driver should figure out a good value. 90 * 0: disable padding. 91 * Any power of 2 from 32 to 4096 (both inclusive) is also a valid value. 92 */ 93 int fl_pad = -1; 94 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad); 95 96 /* 97 * Status page length. 98 * -1: driver should figure out a good value. 99 * 64 or 128 are the only other valid values. 100 */ 101 int spg_len = -1; 102 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len); 103 104 /* 105 * Congestion drops. 106 * -1: no congestion feedback (not recommended). 107 * 0: backpressure the channel instead of dropping packets right away. 108 * 1: no backpressure, drop packets for the congested queue immediately. 109 */ 110 static int cong_drop = 0; 111 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop); 112 113 /* 114 * Deliver multiple frames in the same free list buffer if they fit. 115 * -1: let the driver decide whether to enable buffer packing or not. 116 * 0: disable buffer packing. 117 * 1: enable buffer packing. 118 */ 119 static int buffer_packing = -1; 120 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing); 121 122 /* 123 * Start next frame in a packed buffer at this boundary. 124 * -1: driver should figure out a good value. 125 * T4: driver will ignore this and use the same value as fl_pad above. 126 * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value. 127 */ 128 static int fl_pack = -1; 129 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack); 130 131 /* 132 * Allow the driver to create mbuf(s) in a cluster allocated for rx. 133 * 0: never; always allocate mbufs from the zone_mbuf UMA zone. 134 * 1: ok to create mbuf(s) within a cluster if there is room. 135 */ 136 static int allow_mbufs_in_cluster = 1; 137 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster); 138 139 /* 140 * Largest rx cluster size that the driver is allowed to allocate. 141 */ 142 static int largest_rx_cluster = MJUM16BYTES; 143 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster); 144 145 /* 146 * Size of cluster allocation that's most likely to succeed. The driver will 147 * fall back to this size if it fails to allocate clusters larger than this. 148 */ 149 static int safest_rx_cluster = PAGE_SIZE; 150 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster); 151 152 struct txpkts { 153 u_int wr_type; /* type 0 or type 1 */ 154 u_int npkt; /* # of packets in this work request */ 155 u_int plen; /* total payload (sum of all packets) */ 156 u_int len16; /* # of 16B pieces used by this work request */ 157 }; 158 159 /* A packet's SGL. This + m_pkthdr has all info needed for tx */ 160 struct sgl { 161 struct sglist sg; 162 struct sglist_seg seg[TX_SGL_SEGS]; 163 }; 164 165 static int service_iq(struct sge_iq *, int); 166 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t); 167 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *); 168 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int); 169 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *); 170 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t, 171 uint16_t, char *); 172 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, 173 bus_addr_t *, void **); 174 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, 175 void *); 176 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *, 177 int, int); 178 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *); 179 static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *, 180 struct sge_fl *); 181 static int alloc_fwq(struct adapter *); 182 static int free_fwq(struct adapter *); 183 static int alloc_mgmtq(struct adapter *); 184 static int free_mgmtq(struct adapter *); 185 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, 186 struct sysctl_oid *); 187 static int free_rxq(struct vi_info *, struct sge_rxq *); 188 #ifdef TCP_OFFLOAD 189 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int, 190 struct sysctl_oid *); 191 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *); 192 #endif 193 #ifdef DEV_NETMAP 194 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int, 195 struct sysctl_oid *); 196 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *); 197 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int, 198 struct sysctl_oid *); 199 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *); 200 #endif 201 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *); 202 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 203 #ifdef TCP_OFFLOAD 204 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 205 #endif 206 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *); 207 static int free_eq(struct adapter *, struct sge_eq *); 208 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *, 209 struct sysctl_oid *); 210 static int free_wrq(struct adapter *, struct sge_wrq *); 211 static int alloc_txq(struct vi_info *, struct sge_txq *, int, 212 struct sysctl_oid *); 213 static int free_txq(struct vi_info *, struct sge_txq *); 214 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); 215 static inline void ring_fl_db(struct adapter *, struct sge_fl *); 216 static int refill_fl(struct adapter *, struct sge_fl *, int); 217 static void refill_sfl(void *); 218 static int alloc_fl_sdesc(struct sge_fl *); 219 static void free_fl_sdesc(struct adapter *, struct sge_fl *); 220 static void find_best_refill_source(struct adapter *, struct sge_fl *, int); 221 static void find_safe_refill_source(struct adapter *, struct sge_fl *); 222 static void add_fl_to_sfl(struct adapter *, struct sge_fl *); 223 224 static inline void get_pkt_gl(struct mbuf *, struct sglist *); 225 static inline u_int txpkt_len16(u_int, u_int); 226 static inline u_int txpkts0_len16(u_int); 227 static inline u_int txpkts1_len16(void); 228 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *, 229 struct mbuf *, u_int); 230 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int); 231 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int); 232 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *, 233 struct mbuf *, const struct txpkts *, u_int); 234 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int); 235 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); 236 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int); 237 static inline uint16_t read_hw_cidx(struct sge_eq *); 238 static inline u_int reclaimable_tx_desc(struct sge_eq *); 239 static inline u_int total_available_tx_desc(struct sge_eq *); 240 static u_int reclaim_tx_descs(struct sge_txq *, u_int); 241 static void tx_reclaim(void *, int); 242 static __be64 get_flit(struct sglist_seg *, int, int); 243 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, 244 struct mbuf *); 245 static int handle_fw_msg(struct sge_iq *, const struct rss_header *, 246 struct mbuf *); 247 static void wrq_tx_drain(void *, int); 248 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *); 249 250 static int sysctl_uint16(SYSCTL_HANDLER_ARGS); 251 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS); 252 static int sysctl_tc(SYSCTL_HANDLER_ARGS); 253 254 static counter_u64_t extfree_refs; 255 static counter_u64_t extfree_rels; 256 257 an_handler_t t4_an_handler; 258 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES]; 259 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS]; 260 261 262 static int 263 an_not_handled(struct sge_iq *iq, const struct rsp_ctrl *ctrl) 264 { 265 266 #ifdef INVARIANTS 267 panic("%s: async notification on iq %p (ctrl %p)", __func__, iq, ctrl); 268 #else 269 log(LOG_ERR, "%s: async notification on iq %p (ctrl %p)\n", 270 __func__, iq, ctrl); 271 #endif 272 return (EDOOFUS); 273 } 274 275 int 276 t4_register_an_handler(an_handler_t h) 277 { 278 uintptr_t *loc, new; 279 280 new = h ? (uintptr_t)h : (uintptr_t)an_not_handled; 281 loc = (uintptr_t *) &t4_an_handler; 282 atomic_store_rel_ptr(loc, new); 283 284 return (0); 285 } 286 287 static int 288 fw_msg_not_handled(struct adapter *sc, const __be64 *rpl) 289 { 290 const struct cpl_fw6_msg *cpl = 291 __containerof(rpl, struct cpl_fw6_msg, data[0]); 292 293 #ifdef INVARIANTS 294 panic("%s: fw_msg type %d", __func__, cpl->type); 295 #else 296 log(LOG_ERR, "%s: fw_msg type %d\n", __func__, cpl->type); 297 #endif 298 return (EDOOFUS); 299 } 300 301 int 302 t4_register_fw_msg_handler(int type, fw_msg_handler_t h) 303 { 304 uintptr_t *loc, new; 305 306 if (type >= nitems(t4_fw_msg_handler)) 307 return (EINVAL); 308 309 /* 310 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL 311 * handler dispatch table. Reject any attempt to install a handler for 312 * this subtype. 313 */ 314 if (type == FW_TYPE_RSSCPL || type == FW6_TYPE_RSSCPL) 315 return (EINVAL); 316 317 new = h ? (uintptr_t)h : (uintptr_t)fw_msg_not_handled; 318 loc = (uintptr_t *) &t4_fw_msg_handler[type]; 319 atomic_store_rel_ptr(loc, new); 320 321 return (0); 322 } 323 324 static int 325 cpl_not_handled(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 326 { 327 328 #ifdef INVARIANTS 329 panic("%s: opcode 0x%02x on iq %p with payload %p", 330 __func__, rss->opcode, iq, m); 331 #else 332 log(LOG_ERR, "%s: opcode 0x%02x on iq %p with payload %p\n", 333 __func__, rss->opcode, iq, m); 334 m_freem(m); 335 #endif 336 return (EDOOFUS); 337 } 338 339 int 340 t4_register_cpl_handler(int opcode, cpl_handler_t h) 341 { 342 uintptr_t *loc, new; 343 344 if (opcode >= nitems(t4_cpl_handler)) 345 return (EINVAL); 346 347 new = h ? (uintptr_t)h : (uintptr_t)cpl_not_handled; 348 loc = (uintptr_t *) &t4_cpl_handler[opcode]; 349 atomic_store_rel_ptr(loc, new); 350 351 return (0); 352 } 353 354 /* 355 * Called on MOD_LOAD. Validates and calculates the SGE tunables. 356 */ 357 void 358 t4_sge_modload(void) 359 { 360 int i; 361 362 if (fl_pktshift < 0 || fl_pktshift > 7) { 363 printf("Invalid hw.cxgbe.fl_pktshift value (%d)," 364 " using 2 instead.\n", fl_pktshift); 365 fl_pktshift = 2; 366 } 367 368 if (spg_len != 64 && spg_len != 128) { 369 int len; 370 371 #if defined(__i386__) || defined(__amd64__) 372 len = cpu_clflush_line_size > 64 ? 128 : 64; 373 #else 374 len = 64; 375 #endif 376 if (spg_len != -1) { 377 printf("Invalid hw.cxgbe.spg_len value (%d)," 378 " using %d instead.\n", spg_len, len); 379 } 380 spg_len = len; 381 } 382 383 if (cong_drop < -1 || cong_drop > 1) { 384 printf("Invalid hw.cxgbe.cong_drop value (%d)," 385 " using 0 instead.\n", cong_drop); 386 cong_drop = 0; 387 } 388 389 extfree_refs = counter_u64_alloc(M_WAITOK); 390 extfree_rels = counter_u64_alloc(M_WAITOK); 391 counter_u64_zero(extfree_refs); 392 counter_u64_zero(extfree_rels); 393 394 t4_an_handler = an_not_handled; 395 for (i = 0; i < nitems(t4_fw_msg_handler); i++) 396 t4_fw_msg_handler[i] = fw_msg_not_handled; 397 for (i = 0; i < nitems(t4_cpl_handler); i++) 398 t4_cpl_handler[i] = cpl_not_handled; 399 400 t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg); 401 t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg); 402 t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update); 403 t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx); 404 t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl); 405 } 406 407 void 408 t4_sge_modunload(void) 409 { 410 411 counter_u64_free(extfree_refs); 412 counter_u64_free(extfree_rels); 413 } 414 415 uint64_t 416 t4_sge_extfree_refs(void) 417 { 418 uint64_t refs, rels; 419 420 rels = counter_u64_fetch(extfree_rels); 421 refs = counter_u64_fetch(extfree_refs); 422 423 return (refs - rels); 424 } 425 426 static inline void 427 setup_pad_and_pack_boundaries(struct adapter *sc) 428 { 429 uint32_t v, m; 430 int pad, pack; 431 432 pad = fl_pad; 433 if (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad)) { 434 /* 435 * If there is any chance that we might use buffer packing and 436 * the chip is a T4, then pick 64 as the pad/pack boundary. Set 437 * it to 32 in all other cases. 438 */ 439 pad = is_t4(sc) && buffer_packing ? 64 : 32; 440 441 /* 442 * For fl_pad = 0 we'll still write a reasonable value to the 443 * register but all the freelists will opt out of padding. 444 * We'll complain here only if the user tried to set it to a 445 * value greater than 0 that was invalid. 446 */ 447 if (fl_pad > 0) { 448 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value" 449 " (%d), using %d instead.\n", fl_pad, pad); 450 } 451 } 452 m = V_INGPADBOUNDARY(M_INGPADBOUNDARY); 453 v = V_INGPADBOUNDARY(ilog2(pad) - 5); 454 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 455 456 if (is_t4(sc)) { 457 if (fl_pack != -1 && fl_pack != pad) { 458 /* Complain but carry on. */ 459 device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored," 460 " using %d instead.\n", fl_pack, pad); 461 } 462 return; 463 } 464 465 pack = fl_pack; 466 if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 || 467 !powerof2(fl_pack)) { 468 pack = max(sc->params.pci.mps, CACHE_LINE_SIZE); 469 MPASS(powerof2(pack)); 470 if (pack < 16) 471 pack = 16; 472 if (pack == 32) 473 pack = 64; 474 if (pack > 4096) 475 pack = 4096; 476 if (fl_pack != -1) { 477 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value" 478 " (%d), using %d instead.\n", fl_pack, pack); 479 } 480 } 481 m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY); 482 if (pack == 16) 483 v = V_INGPACKBOUNDARY(0); 484 else 485 v = V_INGPACKBOUNDARY(ilog2(pack) - 5); 486 487 MPASS(!is_t4(sc)); /* T4 doesn't have SGE_CONTROL2 */ 488 t4_set_reg_field(sc, A_SGE_CONTROL2, m, v); 489 } 490 491 /* 492 * adap->params.vpd.cclk must be set up before this is called. 493 */ 494 void 495 t4_tweak_chip_settings(struct adapter *sc) 496 { 497 int i; 498 uint32_t v, m; 499 int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; 500 int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk; 501 int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ 502 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 503 static int sge_flbuf_sizes[] = { 504 MCLBYTES, 505 #if MJUMPAGESIZE != MCLBYTES 506 MJUMPAGESIZE, 507 MJUMPAGESIZE - CL_METADATA_SIZE, 508 MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE, 509 #endif 510 MJUM9BYTES, 511 MJUM16BYTES, 512 MCLBYTES - MSIZE - CL_METADATA_SIZE, 513 MJUM9BYTES - CL_METADATA_SIZE, 514 MJUM16BYTES - CL_METADATA_SIZE, 515 }; 516 517 KASSERT(sc->flags & MASTER_PF, 518 ("%s: trying to change chip settings when not master.", __func__)); 519 520 m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE; 521 v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | 522 V_EGRSTATUSPAGESIZE(spg_len == 128); 523 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 524 525 setup_pad_and_pack_boundaries(sc); 526 527 v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | 528 V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | 529 V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | 530 V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | 531 V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | 532 V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | 533 V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | 534 V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); 535 t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v); 536 537 KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES, 538 ("%s: hw buffer size table too big", __func__)); 539 for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) { 540 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i), 541 sge_flbuf_sizes[i]); 542 } 543 544 v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) | 545 V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]); 546 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v); 547 548 KASSERT(intr_timer[0] <= timer_max, 549 ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0], 550 timer_max)); 551 for (i = 1; i < nitems(intr_timer); i++) { 552 KASSERT(intr_timer[i] >= intr_timer[i - 1], 553 ("%s: timers not listed in increasing order (%d)", 554 __func__, i)); 555 556 while (intr_timer[i] > timer_max) { 557 if (i == nitems(intr_timer) - 1) { 558 intr_timer[i] = timer_max; 559 break; 560 } 561 intr_timer[i] += intr_timer[i - 1]; 562 intr_timer[i] /= 2; 563 } 564 } 565 566 v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) | 567 V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])); 568 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v); 569 v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) | 570 V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])); 571 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v); 572 v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) | 573 V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])); 574 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v); 575 576 /* 4K, 16K, 64K, 256K DDP "page sizes" */ 577 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 578 t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v); 579 580 m = v = F_TDDPTAGTCB; 581 t4_set_reg_field(sc, A_ULP_RX_CTL, m, v); 582 583 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 584 F_RESETDDPOFFSET; 585 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 586 t4_set_reg_field(sc, A_TP_PARA_REG5, m, v); 587 } 588 589 /* 590 * SGE wants the buffer to be at least 64B and then a multiple of 16. If 591 * padding is is use the buffer's start and end need to be aligned to the pad 592 * boundary as well. We'll just make sure that the size is a multiple of the 593 * boundary here, it is up to the buffer allocation code to make sure the start 594 * of the buffer is aligned as well. 595 */ 596 static inline int 597 hwsz_ok(struct adapter *sc, int hwsz) 598 { 599 int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1; 600 601 return (hwsz >= 64 && (hwsz & mask) == 0); 602 } 603 604 /* 605 * XXX: driver really should be able to deal with unexpected settings. 606 */ 607 int 608 t4_read_chip_settings(struct adapter *sc) 609 { 610 struct sge *s = &sc->sge; 611 struct sge_params *sp = &sc->params.sge; 612 int i, j, n, rc = 0; 613 uint32_t m, v, r; 614 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 615 static int sw_buf_sizes[] = { /* Sorted by size */ 616 MCLBYTES, 617 #if MJUMPAGESIZE != MCLBYTES 618 MJUMPAGESIZE, 619 #endif 620 MJUM9BYTES, 621 MJUM16BYTES 622 }; 623 struct sw_zone_info *swz, *safe_swz; 624 struct hw_buf_info *hwb; 625 626 t4_init_sge_params(sc); 627 628 m = F_RXPKTCPLMODE; 629 v = F_RXPKTCPLMODE; 630 r = t4_read_reg(sc, A_SGE_CONTROL); 631 if ((r & m) != v) { 632 device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r); 633 rc = EINVAL; 634 } 635 636 /* 637 * If this changes then every single use of PAGE_SHIFT in the driver 638 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift. 639 */ 640 if (sp->page_shift != PAGE_SHIFT) { 641 device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r); 642 rc = EINVAL; 643 } 644 645 /* Filter out unusable hw buffer sizes entirely (mark with -2). */ 646 hwb = &s->hw_buf_info[0]; 647 for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) { 648 r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i)); 649 hwb->size = r; 650 hwb->zidx = hwsz_ok(sc, r) ? -1 : -2; 651 hwb->next = -1; 652 } 653 654 /* 655 * Create a sorted list in decreasing order of hw buffer sizes (and so 656 * increasing order of spare area) for each software zone. 657 * 658 * If padding is enabled then the start and end of the buffer must align 659 * to the pad boundary; if packing is enabled then they must align with 660 * the pack boundary as well. Allocations from the cluster zones are 661 * aligned to min(size, 4K), so the buffer starts at that alignment and 662 * ends at hwb->size alignment. If mbuf inlining is allowed the 663 * starting alignment will be reduced to MSIZE and the driver will 664 * exercise appropriate caution when deciding on the best buffer layout 665 * to use. 666 */ 667 n = 0; /* no usable buffer size to begin with */ 668 swz = &s->sw_zone_info[0]; 669 safe_swz = NULL; 670 for (i = 0; i < SW_ZONE_SIZES; i++, swz++) { 671 int8_t head = -1, tail = -1; 672 673 swz->size = sw_buf_sizes[i]; 674 swz->zone = m_getzone(swz->size); 675 swz->type = m_gettype(swz->size); 676 677 if (swz->size < PAGE_SIZE) { 678 MPASS(powerof2(swz->size)); 679 if (fl_pad && (swz->size % sp->pad_boundary != 0)) 680 continue; 681 } 682 683 if (swz->size == safest_rx_cluster) 684 safe_swz = swz; 685 686 hwb = &s->hw_buf_info[0]; 687 for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) { 688 if (hwb->zidx != -1 || hwb->size > swz->size) 689 continue; 690 #ifdef INVARIANTS 691 if (fl_pad) 692 MPASS(hwb->size % sp->pad_boundary == 0); 693 #endif 694 hwb->zidx = i; 695 if (head == -1) 696 head = tail = j; 697 else if (hwb->size < s->hw_buf_info[tail].size) { 698 s->hw_buf_info[tail].next = j; 699 tail = j; 700 } else { 701 int8_t *cur; 702 struct hw_buf_info *t; 703 704 for (cur = &head; *cur != -1; cur = &t->next) { 705 t = &s->hw_buf_info[*cur]; 706 if (hwb->size == t->size) { 707 hwb->zidx = -2; 708 break; 709 } 710 if (hwb->size > t->size) { 711 hwb->next = *cur; 712 *cur = j; 713 break; 714 } 715 } 716 } 717 } 718 swz->head_hwidx = head; 719 swz->tail_hwidx = tail; 720 721 if (tail != -1) { 722 n++; 723 if (swz->size - s->hw_buf_info[tail].size >= 724 CL_METADATA_SIZE) 725 sc->flags |= BUF_PACKING_OK; 726 } 727 } 728 if (n == 0) { 729 device_printf(sc->dev, "no usable SGE FL buffer size.\n"); 730 rc = EINVAL; 731 } 732 733 s->safe_hwidx1 = -1; 734 s->safe_hwidx2 = -1; 735 if (safe_swz != NULL) { 736 s->safe_hwidx1 = safe_swz->head_hwidx; 737 for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) { 738 int spare; 739 740 hwb = &s->hw_buf_info[i]; 741 #ifdef INVARIANTS 742 if (fl_pad) 743 MPASS(hwb->size % sp->pad_boundary == 0); 744 #endif 745 spare = safe_swz->size - hwb->size; 746 if (spare >= CL_METADATA_SIZE) { 747 s->safe_hwidx2 = i; 748 break; 749 } 750 } 751 } 752 753 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 754 r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ); 755 if (r != v) { 756 device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r); 757 rc = EINVAL; 758 } 759 760 m = v = F_TDDPTAGTCB; 761 r = t4_read_reg(sc, A_ULP_RX_CTL); 762 if ((r & m) != v) { 763 device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r); 764 rc = EINVAL; 765 } 766 767 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 768 F_RESETDDPOFFSET; 769 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 770 r = t4_read_reg(sc, A_TP_PARA_REG5); 771 if ((r & m) != v) { 772 device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r); 773 rc = EINVAL; 774 } 775 776 t4_init_tp_params(sc); 777 778 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 779 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 780 781 return (rc); 782 } 783 784 int 785 t4_create_dma_tag(struct adapter *sc) 786 { 787 int rc; 788 789 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, 790 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, 791 BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, 792 NULL, &sc->dmat); 793 if (rc != 0) { 794 device_printf(sc->dev, 795 "failed to create main DMA tag: %d\n", rc); 796 } 797 798 return (rc); 799 } 800 801 void 802 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 803 struct sysctl_oid_list *children) 804 { 805 struct sge_params *sp = &sc->params.sge; 806 807 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes", 808 CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A", 809 "freelist buffer sizes"); 810 811 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD, 812 NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)"); 813 814 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD, 815 NULL, sp->pad_boundary, "payload pad boundary (bytes)"); 816 817 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD, 818 NULL, sp->spg_len, "status page size (bytes)"); 819 820 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD, 821 NULL, cong_drop, "congestion drop setting"); 822 823 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD, 824 NULL, sp->pack_boundary, "payload pack boundary (bytes)"); 825 } 826 827 int 828 t4_destroy_dma_tag(struct adapter *sc) 829 { 830 if (sc->dmat) 831 bus_dma_tag_destroy(sc->dmat); 832 833 return (0); 834 } 835 836 /* 837 * Allocate and initialize the firmware event queue and the management queue. 838 * 839 * Returns errno on failure. Resources allocated up to that point may still be 840 * allocated. Caller is responsible for cleanup in case this function fails. 841 */ 842 int 843 t4_setup_adapter_queues(struct adapter *sc) 844 { 845 int rc; 846 847 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 848 849 sysctl_ctx_init(&sc->ctx); 850 sc->flags |= ADAP_SYSCTL_CTX; 851 852 /* 853 * Firmware event queue 854 */ 855 rc = alloc_fwq(sc); 856 if (rc != 0) 857 return (rc); 858 859 /* 860 * Management queue. This is just a control queue that uses the fwq as 861 * its associated iq. 862 */ 863 rc = alloc_mgmtq(sc); 864 865 return (rc); 866 } 867 868 /* 869 * Idempotent 870 */ 871 int 872 t4_teardown_adapter_queues(struct adapter *sc) 873 { 874 875 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 876 877 /* Do this before freeing the queue */ 878 if (sc->flags & ADAP_SYSCTL_CTX) { 879 sysctl_ctx_free(&sc->ctx); 880 sc->flags &= ~ADAP_SYSCTL_CTX; 881 } 882 883 free_mgmtq(sc); 884 free_fwq(sc); 885 886 return (0); 887 } 888 889 static inline int 890 first_vector(struct vi_info *vi) 891 { 892 struct adapter *sc = vi->pi->adapter; 893 894 if (sc->intr_count == 1) 895 return (0); 896 897 return (vi->first_intr); 898 } 899 900 /* 901 * Given an arbitrary "index," come up with an iq that can be used by other 902 * queues (of this VI) for interrupt forwarding, SGE egress updates, etc. 903 * The iq returned is guaranteed to be something that takes direct interrupts. 904 */ 905 static struct sge_iq * 906 vi_intr_iq(struct vi_info *vi, int idx) 907 { 908 struct adapter *sc = vi->pi->adapter; 909 struct sge *s = &sc->sge; 910 struct sge_iq *iq = NULL; 911 int nintr, i; 912 913 if (sc->intr_count == 1) 914 return (&sc->sge.fwq); 915 916 nintr = vi->nintr; 917 KASSERT(nintr != 0, 918 ("%s: vi %p has no exclusive interrupts, total interrupts = %d", 919 __func__, vi, sc->intr_count)); 920 i = idx % nintr; 921 922 if (vi->flags & INTR_RXQ) { 923 if (i < vi->nrxq) { 924 iq = &s->rxq[vi->first_rxq + i].iq; 925 goto done; 926 } 927 i -= vi->nrxq; 928 } 929 #ifdef TCP_OFFLOAD 930 if (vi->flags & INTR_OFLD_RXQ) { 931 if (i < vi->nofldrxq) { 932 iq = &s->ofld_rxq[vi->first_ofld_rxq + i].iq; 933 goto done; 934 } 935 i -= vi->nofldrxq; 936 } 937 #endif 938 panic("%s: vi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__, 939 vi, vi->flags & INTR_ALL, idx, nintr); 940 done: 941 MPASS(iq != NULL); 942 KASSERT(iq->flags & IQ_INTR, 943 ("%s: iq %p (vi %p, intr_flags 0x%lx, idx %d)", __func__, iq, vi, 944 vi->flags & INTR_ALL, idx)); 945 return (iq); 946 } 947 948 /* Maximum payload that can be delivered with a single iq descriptor */ 949 static inline int 950 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe) 951 { 952 int payload; 953 954 #ifdef TCP_OFFLOAD 955 if (toe) { 956 payload = sc->tt.rx_coalesce ? 957 G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu; 958 } else { 959 #endif 960 /* large enough even when hw VLAN extraction is disabled */ 961 payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN + 962 ETHER_VLAN_ENCAP_LEN + mtu; 963 #ifdef TCP_OFFLOAD 964 } 965 #endif 966 967 return (payload); 968 } 969 970 int 971 t4_setup_vi_queues(struct vi_info *vi) 972 { 973 int rc = 0, i, j, intr_idx, iqid; 974 struct sge_rxq *rxq; 975 struct sge_txq *txq; 976 struct sge_wrq *ctrlq; 977 #ifdef TCP_OFFLOAD 978 struct sge_ofld_rxq *ofld_rxq; 979 struct sge_wrq *ofld_txq; 980 #endif 981 #ifdef DEV_NETMAP 982 int saved_idx; 983 struct sge_nm_rxq *nm_rxq; 984 struct sge_nm_txq *nm_txq; 985 #endif 986 char name[16]; 987 struct port_info *pi = vi->pi; 988 struct adapter *sc = pi->adapter; 989 struct ifnet *ifp = vi->ifp; 990 struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev); 991 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 992 int maxp, mtu = ifp->if_mtu; 993 994 /* Interrupt vector to start from (when using multiple vectors) */ 995 intr_idx = first_vector(vi); 996 997 #ifdef DEV_NETMAP 998 saved_idx = intr_idx; 999 if (ifp->if_capabilities & IFCAP_NETMAP) { 1000 1001 /* netmap is supported with direct interrupts only. */ 1002 MPASS(vi->flags & INTR_RXQ); 1003 1004 /* 1005 * We don't have buffers to back the netmap rx queues 1006 * right now so we create the queues in a way that 1007 * doesn't set off any congestion signal in the chip. 1008 */ 1009 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq", 1010 CTLFLAG_RD, NULL, "rx queues"); 1011 for_each_nm_rxq(vi, i, nm_rxq) { 1012 rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid); 1013 if (rc != 0) 1014 goto done; 1015 intr_idx++; 1016 } 1017 1018 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq", 1019 CTLFLAG_RD, NULL, "tx queues"); 1020 for_each_nm_txq(vi, i, nm_txq) { 1021 iqid = vi->first_nm_rxq + (i % vi->nnmrxq); 1022 rc = alloc_nm_txq(vi, nm_txq, iqid, i, oid); 1023 if (rc != 0) 1024 goto done; 1025 } 1026 } 1027 1028 /* Normal rx queues and netmap rx queues share the same interrupts. */ 1029 intr_idx = saved_idx; 1030 #endif 1031 1032 /* 1033 * First pass over all NIC and TOE rx queues: 1034 * a) initialize iq and fl 1035 * b) allocate queue iff it will take direct interrupts. 1036 */ 1037 maxp = mtu_to_max_payload(sc, mtu, 0); 1038 if (vi->flags & INTR_RXQ) { 1039 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", 1040 CTLFLAG_RD, NULL, "rx queues"); 1041 } 1042 for_each_rxq(vi, i, rxq) { 1043 1044 init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq); 1045 1046 snprintf(name, sizeof(name), "%s rxq%d-fl", 1047 device_get_nameunit(vi->dev), i); 1048 init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name); 1049 1050 if (vi->flags & INTR_RXQ) { 1051 rxq->iq.flags |= IQ_INTR; 1052 rc = alloc_rxq(vi, rxq, intr_idx, i, oid); 1053 if (rc != 0) 1054 goto done; 1055 intr_idx++; 1056 } 1057 } 1058 #ifdef DEV_NETMAP 1059 if (ifp->if_capabilities & IFCAP_NETMAP) 1060 intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq); 1061 #endif 1062 #ifdef TCP_OFFLOAD 1063 maxp = mtu_to_max_payload(sc, mtu, 1); 1064 if (vi->flags & INTR_OFLD_RXQ) { 1065 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq", 1066 CTLFLAG_RD, NULL, 1067 "rx queues for offloaded TCP connections"); 1068 } 1069 for_each_ofld_rxq(vi, i, ofld_rxq) { 1070 1071 init_iq(&ofld_rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, 1072 vi->qsize_rxq); 1073 1074 snprintf(name, sizeof(name), "%s ofld_rxq%d-fl", 1075 device_get_nameunit(vi->dev), i); 1076 init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name); 1077 1078 if (vi->flags & INTR_OFLD_RXQ) { 1079 ofld_rxq->iq.flags |= IQ_INTR; 1080 rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid); 1081 if (rc != 0) 1082 goto done; 1083 intr_idx++; 1084 } 1085 } 1086 #endif 1087 1088 /* 1089 * Second pass over all NIC and TOE rx queues. The queues forwarding 1090 * their interrupts are allocated now. 1091 */ 1092 j = 0; 1093 if (!(vi->flags & INTR_RXQ)) { 1094 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", 1095 CTLFLAG_RD, NULL, "rx queues"); 1096 for_each_rxq(vi, i, rxq) { 1097 MPASS(!(rxq->iq.flags & IQ_INTR)); 1098 1099 intr_idx = vi_intr_iq(vi, j)->abs_id; 1100 1101 rc = alloc_rxq(vi, rxq, intr_idx, i, oid); 1102 if (rc != 0) 1103 goto done; 1104 j++; 1105 } 1106 } 1107 #ifdef TCP_OFFLOAD 1108 if (vi->nofldrxq != 0 && !(vi->flags & INTR_OFLD_RXQ)) { 1109 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq", 1110 CTLFLAG_RD, NULL, 1111 "rx queues for offloaded TCP connections"); 1112 for_each_ofld_rxq(vi, i, ofld_rxq) { 1113 MPASS(!(ofld_rxq->iq.flags & IQ_INTR)); 1114 1115 intr_idx = vi_intr_iq(vi, j)->abs_id; 1116 1117 rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid); 1118 if (rc != 0) 1119 goto done; 1120 j++; 1121 } 1122 } 1123 #endif 1124 1125 /* 1126 * Now the tx queues. Only one pass needed. 1127 */ 1128 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD, 1129 NULL, "tx queues"); 1130 j = 0; 1131 for_each_txq(vi, i, txq) { 1132 iqid = vi_intr_iq(vi, j)->cntxt_id; 1133 snprintf(name, sizeof(name), "%s txq%d", 1134 device_get_nameunit(vi->dev), i); 1135 init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, iqid, 1136 name); 1137 1138 rc = alloc_txq(vi, txq, i, oid); 1139 if (rc != 0) 1140 goto done; 1141 j++; 1142 } 1143 #ifdef TCP_OFFLOAD 1144 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq", 1145 CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections"); 1146 for_each_ofld_txq(vi, i, ofld_txq) { 1147 struct sysctl_oid *oid2; 1148 1149 iqid = vi_intr_iq(vi, j)->cntxt_id; 1150 snprintf(name, sizeof(name), "%s ofld_txq%d", 1151 device_get_nameunit(vi->dev), i); 1152 init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan, 1153 iqid, name); 1154 1155 snprintf(name, sizeof(name), "%d", i); 1156 oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1157 name, CTLFLAG_RD, NULL, "offload tx queue"); 1158 1159 rc = alloc_wrq(sc, vi, ofld_txq, oid2); 1160 if (rc != 0) 1161 goto done; 1162 j++; 1163 } 1164 #endif 1165 1166 /* 1167 * Finally, the control queue. 1168 */ 1169 if (!IS_MAIN_VI(vi)) 1170 goto done; 1171 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD, 1172 NULL, "ctrl queue"); 1173 ctrlq = &sc->sge.ctrlq[pi->port_id]; 1174 iqid = vi_intr_iq(vi, 0)->cntxt_id; 1175 snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev)); 1176 init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, 1177 name); 1178 rc = alloc_wrq(sc, vi, ctrlq, oid); 1179 1180 done: 1181 if (rc) 1182 t4_teardown_vi_queues(vi); 1183 1184 return (rc); 1185 } 1186 1187 /* 1188 * Idempotent 1189 */ 1190 int 1191 t4_teardown_vi_queues(struct vi_info *vi) 1192 { 1193 int i; 1194 struct port_info *pi = vi->pi; 1195 struct adapter *sc = pi->adapter; 1196 struct sge_rxq *rxq; 1197 struct sge_txq *txq; 1198 #ifdef TCP_OFFLOAD 1199 struct sge_ofld_rxq *ofld_rxq; 1200 struct sge_wrq *ofld_txq; 1201 #endif 1202 #ifdef DEV_NETMAP 1203 struct sge_nm_rxq *nm_rxq; 1204 struct sge_nm_txq *nm_txq; 1205 #endif 1206 1207 /* Do this before freeing the queues */ 1208 if (vi->flags & VI_SYSCTL_CTX) { 1209 sysctl_ctx_free(&vi->ctx); 1210 vi->flags &= ~VI_SYSCTL_CTX; 1211 } 1212 1213 #ifdef DEV_NETMAP 1214 if (vi->ifp->if_capabilities & IFCAP_NETMAP) { 1215 for_each_nm_txq(vi, i, nm_txq) { 1216 free_nm_txq(vi, nm_txq); 1217 } 1218 1219 for_each_nm_rxq(vi, i, nm_rxq) { 1220 free_nm_rxq(vi, nm_rxq); 1221 } 1222 } 1223 #endif 1224 1225 /* 1226 * Take down all the tx queues first, as they reference the rx queues 1227 * (for egress updates, etc.). 1228 */ 1229 1230 if (IS_MAIN_VI(vi)) 1231 free_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 1232 1233 for_each_txq(vi, i, txq) { 1234 free_txq(vi, txq); 1235 } 1236 #ifdef TCP_OFFLOAD 1237 for_each_ofld_txq(vi, i, ofld_txq) { 1238 free_wrq(sc, ofld_txq); 1239 } 1240 #endif 1241 1242 /* 1243 * Then take down the rx queues that forward their interrupts, as they 1244 * reference other rx queues. 1245 */ 1246 1247 for_each_rxq(vi, i, rxq) { 1248 if ((rxq->iq.flags & IQ_INTR) == 0) 1249 free_rxq(vi, rxq); 1250 } 1251 #ifdef TCP_OFFLOAD 1252 for_each_ofld_rxq(vi, i, ofld_rxq) { 1253 if ((ofld_rxq->iq.flags & IQ_INTR) == 0) 1254 free_ofld_rxq(vi, ofld_rxq); 1255 } 1256 #endif 1257 1258 /* 1259 * Then take down the rx queues that take direct interrupts. 1260 */ 1261 1262 for_each_rxq(vi, i, rxq) { 1263 if (rxq->iq.flags & IQ_INTR) 1264 free_rxq(vi, rxq); 1265 } 1266 #ifdef TCP_OFFLOAD 1267 for_each_ofld_rxq(vi, i, ofld_rxq) { 1268 if (ofld_rxq->iq.flags & IQ_INTR) 1269 free_ofld_rxq(vi, ofld_rxq); 1270 } 1271 #endif 1272 1273 return (0); 1274 } 1275 1276 /* 1277 * Deals with errors and the firmware event queue. All data rx queues forward 1278 * their interrupt to the firmware event queue. 1279 */ 1280 void 1281 t4_intr_all(void *arg) 1282 { 1283 struct adapter *sc = arg; 1284 struct sge_iq *fwq = &sc->sge.fwq; 1285 1286 t4_intr_err(arg); 1287 if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) { 1288 service_iq(fwq, 0); 1289 atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE); 1290 } 1291 } 1292 1293 /* Deals with error interrupts */ 1294 void 1295 t4_intr_err(void *arg) 1296 { 1297 struct adapter *sc = arg; 1298 1299 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); 1300 t4_slow_intr_handler(sc); 1301 } 1302 1303 void 1304 t4_intr_evt(void *arg) 1305 { 1306 struct sge_iq *iq = arg; 1307 1308 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1309 service_iq(iq, 0); 1310 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1311 } 1312 } 1313 1314 void 1315 t4_intr(void *arg) 1316 { 1317 struct sge_iq *iq = arg; 1318 1319 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1320 service_iq(iq, 0); 1321 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1322 } 1323 } 1324 1325 void 1326 t4_vi_intr(void *arg) 1327 { 1328 struct irq *irq = arg; 1329 1330 #ifdef DEV_NETMAP 1331 if (atomic_cmpset_int(&irq->nm_state, NM_ON, NM_BUSY)) { 1332 t4_nm_intr(irq->nm_rxq); 1333 atomic_cmpset_int(&irq->nm_state, NM_BUSY, NM_ON); 1334 } 1335 #endif 1336 if (irq->rxq != NULL) 1337 t4_intr(irq->rxq); 1338 } 1339 1340 /* 1341 * Deals with anything and everything on the given ingress queue. 1342 */ 1343 static int 1344 service_iq(struct sge_iq *iq, int budget) 1345 { 1346 struct sge_iq *q; 1347 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */ 1348 struct sge_fl *fl; /* Use iff IQ_HAS_FL */ 1349 struct adapter *sc = iq->adapter; 1350 struct iq_desc *d = &iq->desc[iq->cidx]; 1351 int ndescs = 0, limit; 1352 int rsp_type, refill; 1353 uint32_t lq; 1354 uint16_t fl_hw_cidx; 1355 struct mbuf *m0; 1356 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); 1357 #if defined(INET) || defined(INET6) 1358 const struct timeval lro_timeout = {0, sc->lro_timeout}; 1359 #endif 1360 1361 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); 1362 1363 limit = budget ? budget : iq->qsize / 16; 1364 1365 if (iq->flags & IQ_HAS_FL) { 1366 fl = &rxq->fl; 1367 fl_hw_cidx = fl->hw_cidx; /* stable snapshot */ 1368 } else { 1369 fl = NULL; 1370 fl_hw_cidx = 0; /* to silence gcc warning */ 1371 } 1372 1373 /* 1374 * We always come back and check the descriptor ring for new indirect 1375 * interrupts and other responses after running a single handler. 1376 */ 1377 for (;;) { 1378 while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { 1379 1380 rmb(); 1381 1382 refill = 0; 1383 m0 = NULL; 1384 rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); 1385 lq = be32toh(d->rsp.pldbuflen_qid); 1386 1387 switch (rsp_type) { 1388 case X_RSPD_TYPE_FLBUF: 1389 1390 KASSERT(iq->flags & IQ_HAS_FL, 1391 ("%s: data for an iq (%p) with no freelist", 1392 __func__, iq)); 1393 1394 m0 = get_fl_payload(sc, fl, lq); 1395 if (__predict_false(m0 == NULL)) 1396 goto process_iql; 1397 refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2; 1398 #ifdef T4_PKT_TIMESTAMP 1399 /* 1400 * 60 bit timestamp for the payload is 1401 * *(uint64_t *)m0->m_pktdat. Note that it is 1402 * in the leading free-space in the mbuf. The 1403 * kernel can clobber it during a pullup, 1404 * m_copymdata, etc. You need to make sure that 1405 * the mbuf reaches you unmolested if you care 1406 * about the timestamp. 1407 */ 1408 *(uint64_t *)m0->m_pktdat = 1409 be64toh(ctrl->u.last_flit) & 1410 0xfffffffffffffff; 1411 #endif 1412 1413 /* fall through */ 1414 1415 case X_RSPD_TYPE_CPL: 1416 KASSERT(d->rss.opcode < NUM_CPL_CMDS, 1417 ("%s: bad opcode %02x.", __func__, 1418 d->rss.opcode)); 1419 t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0); 1420 break; 1421 1422 case X_RSPD_TYPE_INTR: 1423 1424 /* 1425 * Interrupts should be forwarded only to queues 1426 * that are not forwarding their interrupts. 1427 * This means service_iq can recurse but only 1 1428 * level deep. 1429 */ 1430 KASSERT(budget == 0, 1431 ("%s: budget %u, rsp_type %u", __func__, 1432 budget, rsp_type)); 1433 1434 /* 1435 * There are 1K interrupt-capable queues (qids 0 1436 * through 1023). A response type indicating a 1437 * forwarded interrupt with a qid >= 1K is an 1438 * iWARP async notification. 1439 */ 1440 if (lq >= 1024) { 1441 t4_an_handler(iq, &d->rsp); 1442 break; 1443 } 1444 1445 q = sc->sge.iqmap[lq - sc->sge.iq_start]; 1446 if (atomic_cmpset_int(&q->state, IQS_IDLE, 1447 IQS_BUSY)) { 1448 if (service_iq(q, q->qsize / 16) == 0) { 1449 atomic_cmpset_int(&q->state, 1450 IQS_BUSY, IQS_IDLE); 1451 } else { 1452 STAILQ_INSERT_TAIL(&iql, q, 1453 link); 1454 } 1455 } 1456 break; 1457 1458 default: 1459 KASSERT(0, 1460 ("%s: illegal response type %d on iq %p", 1461 __func__, rsp_type, iq)); 1462 log(LOG_ERR, 1463 "%s: illegal response type %d on iq %p", 1464 device_get_nameunit(sc->dev), rsp_type, iq); 1465 break; 1466 } 1467 1468 d++; 1469 if (__predict_false(++iq->cidx == iq->sidx)) { 1470 iq->cidx = 0; 1471 iq->gen ^= F_RSPD_GEN; 1472 d = &iq->desc[0]; 1473 } 1474 if (__predict_false(++ndescs == limit)) { 1475 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), 1476 V_CIDXINC(ndescs) | 1477 V_INGRESSQID(iq->cntxt_id) | 1478 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 1479 ndescs = 0; 1480 1481 #if defined(INET) || defined(INET6) 1482 if (iq->flags & IQ_LRO_ENABLED && 1483 sc->lro_timeout != 0) { 1484 tcp_lro_flush_inactive(&rxq->lro, 1485 &lro_timeout); 1486 } 1487 #endif 1488 1489 if (budget) { 1490 if (iq->flags & IQ_HAS_FL) { 1491 FL_LOCK(fl); 1492 refill_fl(sc, fl, 32); 1493 FL_UNLOCK(fl); 1494 } 1495 return (EINPROGRESS); 1496 } 1497 } 1498 if (refill) { 1499 FL_LOCK(fl); 1500 refill_fl(sc, fl, 32); 1501 FL_UNLOCK(fl); 1502 fl_hw_cidx = fl->hw_cidx; 1503 } 1504 } 1505 1506 process_iql: 1507 if (STAILQ_EMPTY(&iql)) 1508 break; 1509 1510 /* 1511 * Process the head only, and send it to the back of the list if 1512 * it's still not done. 1513 */ 1514 q = STAILQ_FIRST(&iql); 1515 STAILQ_REMOVE_HEAD(&iql, link); 1516 if (service_iq(q, q->qsize / 8) == 0) 1517 atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); 1518 else 1519 STAILQ_INSERT_TAIL(&iql, q, link); 1520 } 1521 1522 #if defined(INET) || defined(INET6) 1523 if (iq->flags & IQ_LRO_ENABLED) { 1524 struct lro_ctrl *lro = &rxq->lro; 1525 1526 tcp_lro_flush_all(lro); 1527 } 1528 #endif 1529 1530 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) | 1531 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); 1532 1533 if (iq->flags & IQ_HAS_FL) { 1534 int starved; 1535 1536 FL_LOCK(fl); 1537 starved = refill_fl(sc, fl, 64); 1538 FL_UNLOCK(fl); 1539 if (__predict_false(starved != 0)) 1540 add_fl_to_sfl(sc, fl); 1541 } 1542 1543 return (0); 1544 } 1545 1546 static inline int 1547 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll) 1548 { 1549 int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0; 1550 1551 if (rc) 1552 MPASS(cll->region3 >= CL_METADATA_SIZE); 1553 1554 return (rc); 1555 } 1556 1557 static inline struct cluster_metadata * 1558 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll, 1559 caddr_t cl) 1560 { 1561 1562 if (cl_has_metadata(fl, cll)) { 1563 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1564 1565 return ((struct cluster_metadata *)(cl + swz->size) - 1); 1566 } 1567 return (NULL); 1568 } 1569 1570 static void 1571 rxb_free(struct mbuf *m, void *arg1, void *arg2) 1572 { 1573 uma_zone_t zone = arg1; 1574 caddr_t cl = arg2; 1575 1576 uma_zfree(zone, cl); 1577 counter_u64_add(extfree_rels, 1); 1578 } 1579 1580 /* 1581 * The mbuf returned by this function could be allocated from zone_mbuf or 1582 * constructed in spare room in the cluster. 1583 * 1584 * The mbuf carries the payload in one of these ways 1585 * a) frame inside the mbuf (mbuf from zone_mbuf) 1586 * b) m_cljset (for clusters without metadata) zone_mbuf 1587 * c) m_extaddref (cluster with metadata) inline mbuf 1588 * d) m_extaddref (cluster with metadata) zone_mbuf 1589 */ 1590 static struct mbuf * 1591 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset, 1592 int remaining) 1593 { 1594 struct mbuf *m; 1595 struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; 1596 struct cluster_layout *cll = &sd->cll; 1597 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1598 struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx]; 1599 struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl); 1600 int len, blen; 1601 caddr_t payload; 1602 1603 blen = hwb->size - fl->rx_offset; /* max possible in this buf */ 1604 len = min(remaining, blen); 1605 payload = sd->cl + cll->region1 + fl->rx_offset; 1606 if (fl->flags & FL_BUF_PACKING) { 1607 const u_int l = fr_offset + len; 1608 const u_int pad = roundup2(l, fl->buf_boundary) - l; 1609 1610 if (fl->rx_offset + len + pad < hwb->size) 1611 blen = len + pad; 1612 MPASS(fl->rx_offset + blen <= hwb->size); 1613 } else { 1614 MPASS(fl->rx_offset == 0); /* not packing */ 1615 } 1616 1617 1618 if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) { 1619 1620 /* 1621 * Copy payload into a freshly allocated mbuf. 1622 */ 1623 1624 m = fr_offset == 0 ? 1625 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1626 if (m == NULL) 1627 return (NULL); 1628 fl->mbuf_allocated++; 1629 #ifdef T4_PKT_TIMESTAMP 1630 /* Leave room for a timestamp */ 1631 m->m_data += 8; 1632 #endif 1633 /* copy data to mbuf */ 1634 bcopy(payload, mtod(m, caddr_t), len); 1635 1636 } else if (sd->nmbuf * MSIZE < cll->region1) { 1637 1638 /* 1639 * There's spare room in the cluster for an mbuf. Create one 1640 * and associate it with the payload that's in the cluster. 1641 */ 1642 1643 MPASS(clm != NULL); 1644 m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE); 1645 /* No bzero required */ 1646 if (m_init(m, M_NOWAIT, MT_DATA, 1647 fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE)) 1648 return (NULL); 1649 fl->mbuf_inlined++; 1650 m_extaddref(m, payload, blen, &clm->refcount, rxb_free, 1651 swz->zone, sd->cl); 1652 if (sd->nmbuf++ == 0) 1653 counter_u64_add(extfree_refs, 1); 1654 1655 } else { 1656 1657 /* 1658 * Grab an mbuf from zone_mbuf and associate it with the 1659 * payload in the cluster. 1660 */ 1661 1662 m = fr_offset == 0 ? 1663 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1664 if (m == NULL) 1665 return (NULL); 1666 fl->mbuf_allocated++; 1667 if (clm != NULL) { 1668 m_extaddref(m, payload, blen, &clm->refcount, 1669 rxb_free, swz->zone, sd->cl); 1670 if (sd->nmbuf++ == 0) 1671 counter_u64_add(extfree_refs, 1); 1672 } else { 1673 m_cljset(m, sd->cl, swz->type); 1674 sd->cl = NULL; /* consumed, not a recycle candidate */ 1675 } 1676 } 1677 if (fr_offset == 0) 1678 m->m_pkthdr.len = remaining; 1679 m->m_len = len; 1680 1681 if (fl->flags & FL_BUF_PACKING) { 1682 fl->rx_offset += blen; 1683 MPASS(fl->rx_offset <= hwb->size); 1684 if (fl->rx_offset < hwb->size) 1685 return (m); /* without advancing the cidx */ 1686 } 1687 1688 if (__predict_false(++fl->cidx % 8 == 0)) { 1689 uint16_t cidx = fl->cidx / 8; 1690 1691 if (__predict_false(cidx == fl->sidx)) 1692 fl->cidx = cidx = 0; 1693 fl->hw_cidx = cidx; 1694 } 1695 fl->rx_offset = 0; 1696 1697 return (m); 1698 } 1699 1700 static struct mbuf * 1701 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf) 1702 { 1703 struct mbuf *m0, *m, **pnext; 1704 u_int remaining; 1705 const u_int total = G_RSPD_LEN(len_newbuf); 1706 1707 if (__predict_false(fl->flags & FL_BUF_RESUME)) { 1708 M_ASSERTPKTHDR(fl->m0); 1709 MPASS(fl->m0->m_pkthdr.len == total); 1710 MPASS(fl->remaining < total); 1711 1712 m0 = fl->m0; 1713 pnext = fl->pnext; 1714 remaining = fl->remaining; 1715 fl->flags &= ~FL_BUF_RESUME; 1716 goto get_segment; 1717 } 1718 1719 if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) { 1720 fl->rx_offset = 0; 1721 if (__predict_false(++fl->cidx % 8 == 0)) { 1722 uint16_t cidx = fl->cidx / 8; 1723 1724 if (__predict_false(cidx == fl->sidx)) 1725 fl->cidx = cidx = 0; 1726 fl->hw_cidx = cidx; 1727 } 1728 } 1729 1730 /* 1731 * Payload starts at rx_offset in the current hw buffer. Its length is 1732 * 'len' and it may span multiple hw buffers. 1733 */ 1734 1735 m0 = get_scatter_segment(sc, fl, 0, total); 1736 if (m0 == NULL) 1737 return (NULL); 1738 remaining = total - m0->m_len; 1739 pnext = &m0->m_next; 1740 while (remaining > 0) { 1741 get_segment: 1742 MPASS(fl->rx_offset == 0); 1743 m = get_scatter_segment(sc, fl, total - remaining, remaining); 1744 if (__predict_false(m == NULL)) { 1745 fl->m0 = m0; 1746 fl->pnext = pnext; 1747 fl->remaining = remaining; 1748 fl->flags |= FL_BUF_RESUME; 1749 return (NULL); 1750 } 1751 *pnext = m; 1752 pnext = &m->m_next; 1753 remaining -= m->m_len; 1754 } 1755 *pnext = NULL; 1756 1757 M_ASSERTPKTHDR(m0); 1758 return (m0); 1759 } 1760 1761 static int 1762 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) 1763 { 1764 struct sge_rxq *rxq = iq_to_rxq(iq); 1765 struct ifnet *ifp = rxq->ifp; 1766 struct adapter *sc = iq->adapter; 1767 const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); 1768 #if defined(INET) || defined(INET6) 1769 struct lro_ctrl *lro = &rxq->lro; 1770 #endif 1771 static const int sw_hashtype[4][2] = { 1772 {M_HASHTYPE_NONE, M_HASHTYPE_NONE}, 1773 {M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6}, 1774 {M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6}, 1775 {M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6}, 1776 }; 1777 1778 KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__, 1779 rss->opcode)); 1780 1781 m0->m_pkthdr.len -= sc->params.sge.fl_pktshift; 1782 m0->m_len -= sc->params.sge.fl_pktshift; 1783 m0->m_data += sc->params.sge.fl_pktshift; 1784 1785 m0->m_pkthdr.rcvif = ifp; 1786 M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]); 1787 m0->m_pkthdr.flowid = be32toh(rss->hash_val); 1788 1789 if (cpl->csum_calc && !cpl->err_vec) { 1790 if (ifp->if_capenable & IFCAP_RXCSUM && 1791 cpl->l2info & htobe32(F_RXF_IP)) { 1792 m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED | 1793 CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 1794 rxq->rxcsum++; 1795 } else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 && 1796 cpl->l2info & htobe32(F_RXF_IP6)) { 1797 m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 | 1798 CSUM_PSEUDO_HDR); 1799 rxq->rxcsum++; 1800 } 1801 1802 if (__predict_false(cpl->ip_frag)) 1803 m0->m_pkthdr.csum_data = be16toh(cpl->csum); 1804 else 1805 m0->m_pkthdr.csum_data = 0xffff; 1806 } 1807 1808 if (cpl->vlan_ex) { 1809 m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); 1810 m0->m_flags |= M_VLANTAG; 1811 rxq->vlan_extraction++; 1812 } 1813 1814 #if defined(INET) || defined(INET6) 1815 if (cpl->l2info & htobe32(F_RXF_LRO) && 1816 iq->flags & IQ_LRO_ENABLED && 1817 tcp_lro_rx(lro, m0, 0) == 0) { 1818 /* queued for LRO */ 1819 } else 1820 #endif 1821 ifp->if_input(ifp, m0); 1822 1823 return (0); 1824 } 1825 1826 /* 1827 * Must drain the wrq or make sure that someone else will. 1828 */ 1829 static void 1830 wrq_tx_drain(void *arg, int n) 1831 { 1832 struct sge_wrq *wrq = arg; 1833 struct sge_eq *eq = &wrq->eq; 1834 1835 EQ_LOCK(eq); 1836 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 1837 drain_wrq_wr_list(wrq->adapter, wrq); 1838 EQ_UNLOCK(eq); 1839 } 1840 1841 static void 1842 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq) 1843 { 1844 struct sge_eq *eq = &wrq->eq; 1845 u_int available, dbdiff; /* # of hardware descriptors */ 1846 u_int n; 1847 struct wrqe *wr; 1848 struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ 1849 1850 EQ_LOCK_ASSERT_OWNED(eq); 1851 MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs)); 1852 wr = STAILQ_FIRST(&wrq->wr_list); 1853 MPASS(wr != NULL); /* Must be called with something useful to do */ 1854 MPASS(eq->pidx == eq->dbidx); 1855 dbdiff = 0; 1856 1857 do { 1858 eq->cidx = read_hw_cidx(eq); 1859 if (eq->pidx == eq->cidx) 1860 available = eq->sidx - 1; 1861 else 1862 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 1863 1864 MPASS(wr->wrq == wrq); 1865 n = howmany(wr->wr_len, EQ_ESIZE); 1866 if (available < n) 1867 break; 1868 1869 dst = (void *)&eq->desc[eq->pidx]; 1870 if (__predict_true(eq->sidx - eq->pidx > n)) { 1871 /* Won't wrap, won't end exactly at the status page. */ 1872 bcopy(&wr->wr[0], dst, wr->wr_len); 1873 eq->pidx += n; 1874 } else { 1875 int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE; 1876 1877 bcopy(&wr->wr[0], dst, first_portion); 1878 if (wr->wr_len > first_portion) { 1879 bcopy(&wr->wr[first_portion], &eq->desc[0], 1880 wr->wr_len - first_portion); 1881 } 1882 eq->pidx = n - (eq->sidx - eq->pidx); 1883 } 1884 1885 if (available < eq->sidx / 4 && 1886 atomic_cmpset_int(&eq->equiq, 0, 1)) { 1887 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 1888 F_FW_WR_EQUEQ); 1889 eq->equeqidx = eq->pidx; 1890 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 1891 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 1892 eq->equeqidx = eq->pidx; 1893 } 1894 1895 dbdiff += n; 1896 if (dbdiff >= 16) { 1897 ring_eq_db(sc, eq, dbdiff); 1898 dbdiff = 0; 1899 } 1900 1901 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 1902 free_wrqe(wr); 1903 MPASS(wrq->nwr_pending > 0); 1904 wrq->nwr_pending--; 1905 MPASS(wrq->ndesc_needed >= n); 1906 wrq->ndesc_needed -= n; 1907 } while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL); 1908 1909 if (dbdiff) 1910 ring_eq_db(sc, eq, dbdiff); 1911 } 1912 1913 /* 1914 * Doesn't fail. Holds on to work requests it can't send right away. 1915 */ 1916 void 1917 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr) 1918 { 1919 #ifdef INVARIANTS 1920 struct sge_eq *eq = &wrq->eq; 1921 #endif 1922 1923 EQ_LOCK_ASSERT_OWNED(eq); 1924 MPASS(wr != NULL); 1925 MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN); 1926 MPASS((wr->wr_len & 0x7) == 0); 1927 1928 STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link); 1929 wrq->nwr_pending++; 1930 wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE); 1931 1932 if (!TAILQ_EMPTY(&wrq->incomplete_wrs)) 1933 return; /* commit_wrq_wr will drain wr_list as well. */ 1934 1935 drain_wrq_wr_list(sc, wrq); 1936 1937 /* Doorbell must have caught up to the pidx. */ 1938 MPASS(eq->pidx == eq->dbidx); 1939 } 1940 1941 void 1942 t4_update_fl_bufsize(struct ifnet *ifp) 1943 { 1944 struct vi_info *vi = ifp->if_softc; 1945 struct adapter *sc = vi->pi->adapter; 1946 struct sge_rxq *rxq; 1947 #ifdef TCP_OFFLOAD 1948 struct sge_ofld_rxq *ofld_rxq; 1949 #endif 1950 struct sge_fl *fl; 1951 int i, maxp, mtu = ifp->if_mtu; 1952 1953 maxp = mtu_to_max_payload(sc, mtu, 0); 1954 for_each_rxq(vi, i, rxq) { 1955 fl = &rxq->fl; 1956 1957 FL_LOCK(fl); 1958 find_best_refill_source(sc, fl, maxp); 1959 FL_UNLOCK(fl); 1960 } 1961 #ifdef TCP_OFFLOAD 1962 maxp = mtu_to_max_payload(sc, mtu, 1); 1963 for_each_ofld_rxq(vi, i, ofld_rxq) { 1964 fl = &ofld_rxq->fl; 1965 1966 FL_LOCK(fl); 1967 find_best_refill_source(sc, fl, maxp); 1968 FL_UNLOCK(fl); 1969 } 1970 #endif 1971 } 1972 1973 static inline int 1974 mbuf_nsegs(struct mbuf *m) 1975 { 1976 1977 M_ASSERTPKTHDR(m); 1978 KASSERT(m->m_pkthdr.l5hlen > 0, 1979 ("%s: mbuf %p missing information on # of segments.", __func__, m)); 1980 1981 return (m->m_pkthdr.l5hlen); 1982 } 1983 1984 static inline void 1985 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs) 1986 { 1987 1988 M_ASSERTPKTHDR(m); 1989 m->m_pkthdr.l5hlen = nsegs; 1990 } 1991 1992 static inline int 1993 mbuf_len16(struct mbuf *m) 1994 { 1995 int n; 1996 1997 M_ASSERTPKTHDR(m); 1998 n = m->m_pkthdr.PH_loc.eight[0]; 1999 MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16); 2000 2001 return (n); 2002 } 2003 2004 static inline void 2005 set_mbuf_len16(struct mbuf *m, uint8_t len16) 2006 { 2007 2008 M_ASSERTPKTHDR(m); 2009 m->m_pkthdr.PH_loc.eight[0] = len16; 2010 } 2011 2012 static inline int 2013 needs_tso(struct mbuf *m) 2014 { 2015 2016 M_ASSERTPKTHDR(m); 2017 2018 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 2019 KASSERT(m->m_pkthdr.tso_segsz > 0, 2020 ("%s: TSO requested in mbuf %p but MSS not provided", 2021 __func__, m)); 2022 return (1); 2023 } 2024 2025 return (0); 2026 } 2027 2028 static inline int 2029 needs_l3_csum(struct mbuf *m) 2030 { 2031 2032 M_ASSERTPKTHDR(m); 2033 2034 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)) 2035 return (1); 2036 return (0); 2037 } 2038 2039 static inline int 2040 needs_l4_csum(struct mbuf *m) 2041 { 2042 2043 M_ASSERTPKTHDR(m); 2044 2045 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | 2046 CSUM_TCP_IPV6 | CSUM_TSO)) 2047 return (1); 2048 return (0); 2049 } 2050 2051 static inline int 2052 needs_vlan_insertion(struct mbuf *m) 2053 { 2054 2055 M_ASSERTPKTHDR(m); 2056 2057 if (m->m_flags & M_VLANTAG) { 2058 KASSERT(m->m_pkthdr.ether_vtag != 0, 2059 ("%s: HWVLAN requested in mbuf %p but tag not provided", 2060 __func__, m)); 2061 return (1); 2062 } 2063 return (0); 2064 } 2065 2066 static void * 2067 m_advance(struct mbuf **pm, int *poffset, int len) 2068 { 2069 struct mbuf *m = *pm; 2070 int offset = *poffset; 2071 uintptr_t p = 0; 2072 2073 MPASS(len > 0); 2074 2075 while (len) { 2076 if (offset + len < m->m_len) { 2077 offset += len; 2078 p = mtod(m, uintptr_t) + offset; 2079 break; 2080 } 2081 len -= m->m_len - offset; 2082 m = m->m_next; 2083 offset = 0; 2084 MPASS(m != NULL); 2085 } 2086 *poffset = offset; 2087 *pm = m; 2088 return ((void *)p); 2089 } 2090 2091 static inline int 2092 same_paddr(char *a, char *b) 2093 { 2094 2095 if (a == b) 2096 return (1); 2097 else if (a != NULL && b != NULL) { 2098 vm_offset_t x = (vm_offset_t)a; 2099 vm_offset_t y = (vm_offset_t)b; 2100 2101 if ((x & PAGE_MASK) == (y & PAGE_MASK) && 2102 pmap_kextract(x) == pmap_kextract(y)) 2103 return (1); 2104 } 2105 2106 return (0); 2107 } 2108 2109 /* 2110 * Can deal with empty mbufs in the chain that have m_len = 0, but the chain 2111 * must have at least one mbuf that's not empty. 2112 */ 2113 static inline int 2114 count_mbuf_nsegs(struct mbuf *m) 2115 { 2116 char *prev_end, *start; 2117 int len, nsegs; 2118 2119 MPASS(m != NULL); 2120 2121 nsegs = 0; 2122 prev_end = NULL; 2123 for (; m; m = m->m_next) { 2124 2125 len = m->m_len; 2126 if (__predict_false(len == 0)) 2127 continue; 2128 start = mtod(m, char *); 2129 2130 nsegs += sglist_count(start, len); 2131 if (same_paddr(prev_end, start)) 2132 nsegs--; 2133 prev_end = start + len; 2134 } 2135 2136 MPASS(nsegs > 0); 2137 return (nsegs); 2138 } 2139 2140 /* 2141 * Analyze the mbuf to determine its tx needs. The mbuf passed in may change: 2142 * a) caller can assume it's been freed if this function returns with an error. 2143 * b) it may get defragged up if the gather list is too long for the hardware. 2144 */ 2145 int 2146 parse_pkt(struct mbuf **mp) 2147 { 2148 struct mbuf *m0 = *mp, *m; 2149 int rc, nsegs, defragged = 0, offset; 2150 struct ether_header *eh; 2151 void *l3hdr; 2152 #if defined(INET) || defined(INET6) 2153 struct tcphdr *tcp; 2154 #endif 2155 uint16_t eh_type; 2156 2157 M_ASSERTPKTHDR(m0); 2158 if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) { 2159 rc = EINVAL; 2160 fail: 2161 m_freem(m0); 2162 *mp = NULL; 2163 return (rc); 2164 } 2165 restart: 2166 /* 2167 * First count the number of gather list segments in the payload. 2168 * Defrag the mbuf if nsegs exceeds the hardware limit. 2169 */ 2170 M_ASSERTPKTHDR(m0); 2171 MPASS(m0->m_pkthdr.len > 0); 2172 nsegs = count_mbuf_nsegs(m0); 2173 if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) { 2174 if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) { 2175 rc = EFBIG; 2176 goto fail; 2177 } 2178 *mp = m0 = m; /* update caller's copy after defrag */ 2179 goto restart; 2180 } 2181 2182 if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) { 2183 m0 = m_pullup(m0, m0->m_pkthdr.len); 2184 if (m0 == NULL) { 2185 /* Should have left well enough alone. */ 2186 rc = EFBIG; 2187 goto fail; 2188 } 2189 *mp = m0; /* update caller's copy after pullup */ 2190 goto restart; 2191 } 2192 set_mbuf_nsegs(m0, nsegs); 2193 set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0))); 2194 2195 if (!needs_tso(m0)) 2196 return (0); 2197 2198 m = m0; 2199 eh = mtod(m, struct ether_header *); 2200 eh_type = ntohs(eh->ether_type); 2201 if (eh_type == ETHERTYPE_VLAN) { 2202 struct ether_vlan_header *evh = (void *)eh; 2203 2204 eh_type = ntohs(evh->evl_proto); 2205 m0->m_pkthdr.l2hlen = sizeof(*evh); 2206 } else 2207 m0->m_pkthdr.l2hlen = sizeof(*eh); 2208 2209 offset = 0; 2210 l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen); 2211 2212 switch (eh_type) { 2213 #ifdef INET6 2214 case ETHERTYPE_IPV6: 2215 { 2216 struct ip6_hdr *ip6 = l3hdr; 2217 2218 MPASS(ip6->ip6_nxt == IPPROTO_TCP); 2219 2220 m0->m_pkthdr.l3hlen = sizeof(*ip6); 2221 break; 2222 } 2223 #endif 2224 #ifdef INET 2225 case ETHERTYPE_IP: 2226 { 2227 struct ip *ip = l3hdr; 2228 2229 m0->m_pkthdr.l3hlen = ip->ip_hl * 4; 2230 break; 2231 } 2232 #endif 2233 default: 2234 panic("%s: ethertype 0x%04x unknown. if_cxgbe must be compiled" 2235 " with the same INET/INET6 options as the kernel.", 2236 __func__, eh_type); 2237 } 2238 2239 #if defined(INET) || defined(INET6) 2240 tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen); 2241 m0->m_pkthdr.l4hlen = tcp->th_off * 4; 2242 #endif 2243 MPASS(m0 == *mp); 2244 return (0); 2245 } 2246 2247 void * 2248 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie) 2249 { 2250 struct sge_eq *eq = &wrq->eq; 2251 struct adapter *sc = wrq->adapter; 2252 int ndesc, available; 2253 struct wrqe *wr; 2254 void *w; 2255 2256 MPASS(len16 > 0); 2257 ndesc = howmany(len16, EQ_ESIZE / 16); 2258 MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC); 2259 2260 EQ_LOCK(eq); 2261 2262 if (!STAILQ_EMPTY(&wrq->wr_list)) 2263 drain_wrq_wr_list(sc, wrq); 2264 2265 if (!STAILQ_EMPTY(&wrq->wr_list)) { 2266 slowpath: 2267 EQ_UNLOCK(eq); 2268 wr = alloc_wrqe(len16 * 16, wrq); 2269 if (__predict_false(wr == NULL)) 2270 return (NULL); 2271 cookie->pidx = -1; 2272 cookie->ndesc = ndesc; 2273 return (&wr->wr); 2274 } 2275 2276 eq->cidx = read_hw_cidx(eq); 2277 if (eq->pidx == eq->cidx) 2278 available = eq->sidx - 1; 2279 else 2280 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2281 if (available < ndesc) 2282 goto slowpath; 2283 2284 cookie->pidx = eq->pidx; 2285 cookie->ndesc = ndesc; 2286 TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link); 2287 2288 w = &eq->desc[eq->pidx]; 2289 IDXINCR(eq->pidx, ndesc, eq->sidx); 2290 if (__predict_false(eq->pidx < ndesc - 1)) { 2291 w = &wrq->ss[0]; 2292 wrq->ss_pidx = cookie->pidx; 2293 wrq->ss_len = len16 * 16; 2294 } 2295 2296 EQ_UNLOCK(eq); 2297 2298 return (w); 2299 } 2300 2301 void 2302 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie) 2303 { 2304 struct sge_eq *eq = &wrq->eq; 2305 struct adapter *sc = wrq->adapter; 2306 int ndesc, pidx; 2307 struct wrq_cookie *prev, *next; 2308 2309 if (cookie->pidx == -1) { 2310 struct wrqe *wr = __containerof(w, struct wrqe, wr); 2311 2312 t4_wrq_tx(sc, wr); 2313 return; 2314 } 2315 2316 ndesc = cookie->ndesc; /* Can be more than SGE_MAX_WR_NDESC here. */ 2317 pidx = cookie->pidx; 2318 MPASS(pidx >= 0 && pidx < eq->sidx); 2319 if (__predict_false(w == &wrq->ss[0])) { 2320 int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE; 2321 2322 MPASS(wrq->ss_len > n); /* WR had better wrap around. */ 2323 bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n); 2324 bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n); 2325 wrq->tx_wrs_ss++; 2326 } else 2327 wrq->tx_wrs_direct++; 2328 2329 EQ_LOCK(eq); 2330 prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link); 2331 next = TAILQ_NEXT(cookie, link); 2332 if (prev == NULL) { 2333 MPASS(pidx == eq->dbidx); 2334 if (next == NULL || ndesc >= 16) 2335 ring_eq_db(wrq->adapter, eq, ndesc); 2336 else { 2337 MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc); 2338 next->pidx = pidx; 2339 next->ndesc += ndesc; 2340 } 2341 } else { 2342 MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc); 2343 prev->ndesc += ndesc; 2344 } 2345 TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link); 2346 2347 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 2348 drain_wrq_wr_list(sc, wrq); 2349 2350 #ifdef INVARIANTS 2351 if (TAILQ_EMPTY(&wrq->incomplete_wrs)) { 2352 /* Doorbell must have caught up to the pidx. */ 2353 MPASS(wrq->eq.pidx == wrq->eq.dbidx); 2354 } 2355 #endif 2356 EQ_UNLOCK(eq); 2357 } 2358 2359 static u_int 2360 can_resume_eth_tx(struct mp_ring *r) 2361 { 2362 struct sge_eq *eq = r->cookie; 2363 2364 return (total_available_tx_desc(eq) > eq->sidx / 8); 2365 } 2366 2367 static inline int 2368 cannot_use_txpkts(struct mbuf *m) 2369 { 2370 /* maybe put a GL limit too, to avoid silliness? */ 2371 2372 return (needs_tso(m)); 2373 } 2374 2375 /* 2376 * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to 2377 * be consumed. Return the actual number consumed. 0 indicates a stall. 2378 */ 2379 static u_int 2380 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx) 2381 { 2382 struct sge_txq *txq = r->cookie; 2383 struct sge_eq *eq = &txq->eq; 2384 struct ifnet *ifp = txq->ifp; 2385 struct vi_info *vi = ifp->if_softc; 2386 struct port_info *pi = vi->pi; 2387 struct adapter *sc = pi->adapter; 2388 u_int total, remaining; /* # of packets */ 2389 u_int available, dbdiff; /* # of hardware descriptors */ 2390 u_int n, next_cidx; 2391 struct mbuf *m0, *tail; 2392 struct txpkts txp; 2393 struct fw_eth_tx_pkts_wr *wr; /* any fw WR struct will do */ 2394 2395 remaining = IDXDIFF(pidx, cidx, r->size); 2396 MPASS(remaining > 0); /* Must not be called without work to do. */ 2397 total = 0; 2398 2399 TXQ_LOCK(txq); 2400 if (__predict_false((eq->flags & EQ_ENABLED) == 0)) { 2401 while (cidx != pidx) { 2402 m0 = r->items[cidx]; 2403 m_freem(m0); 2404 if (++cidx == r->size) 2405 cidx = 0; 2406 } 2407 reclaim_tx_descs(txq, 2048); 2408 total = remaining; 2409 goto done; 2410 } 2411 2412 /* How many hardware descriptors do we have readily available. */ 2413 if (eq->pidx == eq->cidx) 2414 available = eq->sidx - 1; 2415 else 2416 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2417 dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx); 2418 2419 while (remaining > 0) { 2420 2421 m0 = r->items[cidx]; 2422 M_ASSERTPKTHDR(m0); 2423 MPASS(m0->m_nextpkt == NULL); 2424 2425 if (available < SGE_MAX_WR_NDESC) { 2426 available += reclaim_tx_descs(txq, 64); 2427 if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16)) 2428 break; /* out of descriptors */ 2429 } 2430 2431 next_cidx = cidx + 1; 2432 if (__predict_false(next_cidx == r->size)) 2433 next_cidx = 0; 2434 2435 wr = (void *)&eq->desc[eq->pidx]; 2436 if (remaining > 1 && 2437 try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) { 2438 2439 /* pkts at cidx, next_cidx should both be in txp. */ 2440 MPASS(txp.npkt == 2); 2441 tail = r->items[next_cidx]; 2442 MPASS(tail->m_nextpkt == NULL); 2443 ETHER_BPF_MTAP(ifp, m0); 2444 ETHER_BPF_MTAP(ifp, tail); 2445 m0->m_nextpkt = tail; 2446 2447 if (__predict_false(++next_cidx == r->size)) 2448 next_cidx = 0; 2449 2450 while (next_cidx != pidx) { 2451 if (add_to_txpkts(r->items[next_cidx], &txp, 2452 available) != 0) 2453 break; 2454 tail->m_nextpkt = r->items[next_cidx]; 2455 tail = tail->m_nextpkt; 2456 ETHER_BPF_MTAP(ifp, tail); 2457 if (__predict_false(++next_cidx == r->size)) 2458 next_cidx = 0; 2459 } 2460 2461 n = write_txpkts_wr(txq, wr, m0, &txp, available); 2462 total += txp.npkt; 2463 remaining -= txp.npkt; 2464 } else { 2465 total++; 2466 remaining--; 2467 ETHER_BPF_MTAP(ifp, m0); 2468 n = write_txpkt_wr(txq, (void *)wr, m0, available); 2469 } 2470 MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC); 2471 2472 available -= n; 2473 dbdiff += n; 2474 IDXINCR(eq->pidx, n, eq->sidx); 2475 2476 if (total_available_tx_desc(eq) < eq->sidx / 4 && 2477 atomic_cmpset_int(&eq->equiq, 0, 1)) { 2478 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 2479 F_FW_WR_EQUEQ); 2480 eq->equeqidx = eq->pidx; 2481 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 2482 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 2483 eq->equeqidx = eq->pidx; 2484 } 2485 2486 if (dbdiff >= 16 && remaining >= 4) { 2487 ring_eq_db(sc, eq, dbdiff); 2488 available += reclaim_tx_descs(txq, 4 * dbdiff); 2489 dbdiff = 0; 2490 } 2491 2492 cidx = next_cidx; 2493 } 2494 if (dbdiff != 0) { 2495 ring_eq_db(sc, eq, dbdiff); 2496 reclaim_tx_descs(txq, 32); 2497 } 2498 done: 2499 TXQ_UNLOCK(txq); 2500 2501 return (total); 2502 } 2503 2504 static inline void 2505 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, 2506 int qsize) 2507 { 2508 2509 KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, 2510 ("%s: bad tmr_idx %d", __func__, tmr_idx)); 2511 KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ 2512 ("%s: bad pktc_idx %d", __func__, pktc_idx)); 2513 2514 iq->flags = 0; 2515 iq->adapter = sc; 2516 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); 2517 iq->intr_pktc_idx = SGE_NCOUNTERS - 1; 2518 if (pktc_idx >= 0) { 2519 iq->intr_params |= F_QINTR_CNT_EN; 2520 iq->intr_pktc_idx = pktc_idx; 2521 } 2522 iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */ 2523 iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE; 2524 } 2525 2526 static inline void 2527 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name) 2528 { 2529 2530 fl->qsize = qsize; 2531 fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 2532 strlcpy(fl->lockname, name, sizeof(fl->lockname)); 2533 if (sc->flags & BUF_PACKING_OK && 2534 ((!is_t4(sc) && buffer_packing) || /* T5+: enabled unless 0 */ 2535 (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */ 2536 fl->flags |= FL_BUF_PACKING; 2537 find_best_refill_source(sc, fl, maxp); 2538 find_safe_refill_source(sc, fl); 2539 } 2540 2541 static inline void 2542 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize, 2543 uint8_t tx_chan, uint16_t iqid, char *name) 2544 { 2545 KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype)); 2546 2547 eq->flags = eqtype & EQ_TYPEMASK; 2548 eq->tx_chan = tx_chan; 2549 eq->iqid = iqid; 2550 eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 2551 strlcpy(eq->lockname, name, sizeof(eq->lockname)); 2552 } 2553 2554 static int 2555 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, 2556 bus_dmamap_t *map, bus_addr_t *pa, void **va) 2557 { 2558 int rc; 2559 2560 rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, 2561 BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); 2562 if (rc != 0) { 2563 device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc); 2564 goto done; 2565 } 2566 2567 rc = bus_dmamem_alloc(*tag, va, 2568 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); 2569 if (rc != 0) { 2570 device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc); 2571 goto done; 2572 } 2573 2574 rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); 2575 if (rc != 0) { 2576 device_printf(sc->dev, "cannot load DMA map: %d\n", rc); 2577 goto done; 2578 } 2579 done: 2580 if (rc) 2581 free_ring(sc, *tag, *map, *pa, *va); 2582 2583 return (rc); 2584 } 2585 2586 static int 2587 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, 2588 bus_addr_t pa, void *va) 2589 { 2590 if (pa) 2591 bus_dmamap_unload(tag, map); 2592 if (va) 2593 bus_dmamem_free(tag, va, map); 2594 if (tag) 2595 bus_dma_tag_destroy(tag); 2596 2597 return (0); 2598 } 2599 2600 /* 2601 * Allocates the ring for an ingress queue and an optional freelist. If the 2602 * freelist is specified it will be allocated and then associated with the 2603 * ingress queue. 2604 * 2605 * Returns errno on failure. Resources allocated up to that point may still be 2606 * allocated. Caller is responsible for cleanup in case this function fails. 2607 * 2608 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then 2609 * the intr_idx specifies the vector, starting from 0. Otherwise it specifies 2610 * the abs_id of the ingress queue to which its interrupts should be forwarded. 2611 */ 2612 static int 2613 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl, 2614 int intr_idx, int cong) 2615 { 2616 int rc, i, cntxt_id; 2617 size_t len; 2618 struct fw_iq_cmd c; 2619 struct port_info *pi = vi->pi; 2620 struct adapter *sc = iq->adapter; 2621 struct sge_params *sp = &sc->params.sge; 2622 __be32 v = 0; 2623 2624 len = iq->qsize * IQ_ESIZE; 2625 rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, 2626 (void **)&iq->desc); 2627 if (rc != 0) 2628 return (rc); 2629 2630 bzero(&c, sizeof(c)); 2631 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 2632 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | 2633 V_FW_IQ_CMD_VFN(0)); 2634 2635 c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | 2636 FW_LEN16(c)); 2637 2638 /* Special handling for firmware event queue */ 2639 if (iq == &sc->sge.fwq) 2640 v |= F_FW_IQ_CMD_IQASYNCH; 2641 2642 if (iq->flags & IQ_INTR) { 2643 KASSERT(intr_idx < sc->intr_count, 2644 ("%s: invalid direct intr_idx %d", __func__, intr_idx)); 2645 } else 2646 v |= F_FW_IQ_CMD_IQANDST; 2647 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); 2648 2649 c.type_to_iqandstindex = htobe32(v | 2650 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 2651 V_FW_IQ_CMD_VIID(vi->viid) | 2652 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); 2653 c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 2654 F_FW_IQ_CMD_IQGTSMODE | 2655 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | 2656 V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4)); 2657 c.iqsize = htobe16(iq->qsize); 2658 c.iqaddr = htobe64(iq->ba); 2659 if (cong >= 0) 2660 c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN); 2661 2662 if (fl) { 2663 mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); 2664 2665 len = fl->qsize * EQ_ESIZE; 2666 rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, 2667 &fl->ba, (void **)&fl->desc); 2668 if (rc) 2669 return (rc); 2670 2671 /* Allocate space for one software descriptor per buffer. */ 2672 rc = alloc_fl_sdesc(fl); 2673 if (rc != 0) { 2674 device_printf(sc->dev, 2675 "failed to setup fl software descriptors: %d\n", 2676 rc); 2677 return (rc); 2678 } 2679 2680 if (fl->flags & FL_BUF_PACKING) { 2681 fl->lowat = roundup2(sp->fl_starve_threshold2, 8); 2682 fl->buf_boundary = sp->pack_boundary; 2683 } else { 2684 fl->lowat = roundup2(sp->fl_starve_threshold, 8); 2685 fl->buf_boundary = 16; 2686 } 2687 if (fl_pad && fl->buf_boundary < sp->pad_boundary) 2688 fl->buf_boundary = sp->pad_boundary; 2689 2690 c.iqns_to_fl0congen |= 2691 htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | 2692 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | 2693 (fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) | 2694 (fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN : 2695 0)); 2696 if (cong >= 0) { 2697 c.iqns_to_fl0congen |= 2698 htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | 2699 F_FW_IQ_CMD_FL0CONGCIF | 2700 F_FW_IQ_CMD_FL0CONGEN); 2701 } 2702 c.fl0dcaen_to_fl0cidxfthresh = 2703 htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_128B) | 2704 V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B)); 2705 c.fl0size = htobe16(fl->qsize); 2706 c.fl0addr = htobe64(fl->ba); 2707 } 2708 2709 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2710 if (rc != 0) { 2711 device_printf(sc->dev, 2712 "failed to create ingress queue: %d\n", rc); 2713 return (rc); 2714 } 2715 2716 iq->cidx = 0; 2717 iq->gen = F_RSPD_GEN; 2718 iq->intr_next = iq->intr_params; 2719 iq->cntxt_id = be16toh(c.iqid); 2720 iq->abs_id = be16toh(c.physiqid); 2721 iq->flags |= IQ_ALLOCATED; 2722 2723 cntxt_id = iq->cntxt_id - sc->sge.iq_start; 2724 if (cntxt_id >= sc->sge.niq) { 2725 panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, 2726 cntxt_id, sc->sge.niq - 1); 2727 } 2728 sc->sge.iqmap[cntxt_id] = iq; 2729 2730 if (fl) { 2731 u_int qid; 2732 2733 iq->flags |= IQ_HAS_FL; 2734 fl->cntxt_id = be16toh(c.fl0id); 2735 fl->pidx = fl->cidx = 0; 2736 2737 cntxt_id = fl->cntxt_id - sc->sge.eq_start; 2738 if (cntxt_id >= sc->sge.neq) { 2739 panic("%s: fl->cntxt_id (%d) more than the max (%d)", 2740 __func__, cntxt_id, sc->sge.neq - 1); 2741 } 2742 sc->sge.eqmap[cntxt_id] = (void *)fl; 2743 2744 qid = fl->cntxt_id; 2745 if (isset(&sc->doorbells, DOORBELL_UDB)) { 2746 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 2747 uint32_t mask = (1 << s_qpp) - 1; 2748 volatile uint8_t *udb; 2749 2750 udb = sc->udbs_base + UDBS_DB_OFFSET; 2751 udb += (qid >> s_qpp) << PAGE_SHIFT; 2752 qid &= mask; 2753 if (qid < PAGE_SIZE / UDBS_SEG_SIZE) { 2754 udb += qid << UDBS_SEG_SHIFT; 2755 qid = 0; 2756 } 2757 fl->udb = (volatile void *)udb; 2758 } 2759 fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db; 2760 2761 FL_LOCK(fl); 2762 /* Enough to make sure the SGE doesn't think it's starved */ 2763 refill_fl(sc, fl, fl->lowat); 2764 FL_UNLOCK(fl); 2765 } 2766 2767 if (is_t5(sc) && cong >= 0) { 2768 uint32_t param, val; 2769 2770 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 2771 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 2772 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id); 2773 if (cong == 0) 2774 val = 1 << 19; 2775 else { 2776 val = 2 << 19; 2777 for (i = 0; i < 4; i++) { 2778 if (cong & (1 << i)) 2779 val |= 1 << (i << 2); 2780 } 2781 } 2782 2783 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 2784 if (rc != 0) { 2785 /* report error but carry on */ 2786 device_printf(sc->dev, 2787 "failed to set congestion manager context for " 2788 "ingress queue %d: %d\n", iq->cntxt_id, rc); 2789 } 2790 } 2791 2792 /* Enable IQ interrupts */ 2793 atomic_store_rel_int(&iq->state, IQS_IDLE); 2794 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) | 2795 V_INGRESSQID(iq->cntxt_id)); 2796 2797 return (0); 2798 } 2799 2800 static int 2801 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl) 2802 { 2803 int rc; 2804 struct adapter *sc = iq->adapter; 2805 device_t dev; 2806 2807 if (sc == NULL) 2808 return (0); /* nothing to do */ 2809 2810 dev = vi ? vi->dev : sc->dev; 2811 2812 if (iq->flags & IQ_ALLOCATED) { 2813 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, 2814 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, 2815 fl ? fl->cntxt_id : 0xffff, 0xffff); 2816 if (rc != 0) { 2817 device_printf(dev, 2818 "failed to free queue %p: %d\n", iq, rc); 2819 return (rc); 2820 } 2821 iq->flags &= ~IQ_ALLOCATED; 2822 } 2823 2824 free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); 2825 2826 bzero(iq, sizeof(*iq)); 2827 2828 if (fl) { 2829 free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, 2830 fl->desc); 2831 2832 if (fl->sdesc) 2833 free_fl_sdesc(sc, fl); 2834 2835 if (mtx_initialized(&fl->fl_lock)) 2836 mtx_destroy(&fl->fl_lock); 2837 2838 bzero(fl, sizeof(*fl)); 2839 } 2840 2841 return (0); 2842 } 2843 2844 static void 2845 add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, 2846 struct sge_fl *fl) 2847 { 2848 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2849 2850 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 2851 "freelist"); 2852 children = SYSCTL_CHILDREN(oid); 2853 2854 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 2855 CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I", 2856 "SGE context id of the freelist"); 2857 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL, 2858 fl_pad ? 1 : 0, "padding enabled"); 2859 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL, 2860 fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled"); 2861 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx, 2862 0, "consumer index"); 2863 if (fl->flags & FL_BUF_PACKING) { 2864 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset", 2865 CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset"); 2866 } 2867 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx, 2868 0, "producer index"); 2869 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated", 2870 CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated"); 2871 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined", 2872 CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters"); 2873 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated", 2874 CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated"); 2875 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled", 2876 CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled"); 2877 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled", 2878 CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)"); 2879 } 2880 2881 static int 2882 alloc_fwq(struct adapter *sc) 2883 { 2884 int rc, intr_idx; 2885 struct sge_iq *fwq = &sc->sge.fwq; 2886 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 2887 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2888 2889 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE); 2890 fwq->flags |= IQ_INTR; /* always */ 2891 intr_idx = sc->intr_count > 1 ? 1 : 0; 2892 fwq->set_tcb_rpl = t4_filter_rpl; 2893 fwq->l2t_write_rpl = do_l2t_write_rpl; 2894 rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1); 2895 if (rc != 0) { 2896 device_printf(sc->dev, 2897 "failed to create firmware event queue: %d\n", rc); 2898 return (rc); 2899 } 2900 2901 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD, 2902 NULL, "firmware event queue"); 2903 children = SYSCTL_CHILDREN(oid); 2904 2905 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id", 2906 CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I", 2907 "absolute id of the queue"); 2908 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id", 2909 CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I", 2910 "SGE context id of the queue"); 2911 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx", 2912 CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I", 2913 "consumer index"); 2914 2915 return (0); 2916 } 2917 2918 static int 2919 free_fwq(struct adapter *sc) 2920 { 2921 return free_iq_fl(NULL, &sc->sge.fwq, NULL); 2922 } 2923 2924 static int 2925 alloc_mgmtq(struct adapter *sc) 2926 { 2927 int rc; 2928 struct sge_wrq *mgmtq = &sc->sge.mgmtq; 2929 char name[16]; 2930 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 2931 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2932 2933 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD, 2934 NULL, "management queue"); 2935 2936 snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev)); 2937 init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan, 2938 sc->sge.fwq.cntxt_id, name); 2939 rc = alloc_wrq(sc, NULL, mgmtq, oid); 2940 if (rc != 0) { 2941 device_printf(sc->dev, 2942 "failed to create management queue: %d\n", rc); 2943 return (rc); 2944 } 2945 2946 return (0); 2947 } 2948 2949 static int 2950 free_mgmtq(struct adapter *sc) 2951 { 2952 2953 return free_wrq(sc, &sc->sge.mgmtq); 2954 } 2955 2956 int 2957 tnl_cong(struct port_info *pi, int drop) 2958 { 2959 2960 if (drop == -1) 2961 return (-1); 2962 else if (drop == 1) 2963 return (0); 2964 else 2965 return (pi->rx_chan_map); 2966 } 2967 2968 static int 2969 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx, 2970 struct sysctl_oid *oid) 2971 { 2972 int rc; 2973 struct sysctl_oid_list *children; 2974 char name[16]; 2975 2976 rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx, 2977 tnl_cong(vi->pi, cong_drop)); 2978 if (rc != 0) 2979 return (rc); 2980 2981 /* 2982 * The freelist is just barely above the starvation threshold right now, 2983 * fill it up a bit more. 2984 */ 2985 FL_LOCK(&rxq->fl); 2986 refill_fl(vi->pi->adapter, &rxq->fl, 128); 2987 FL_UNLOCK(&rxq->fl); 2988 2989 #if defined(INET) || defined(INET6) 2990 rc = tcp_lro_init(&rxq->lro); 2991 if (rc != 0) 2992 return (rc); 2993 rxq->lro.ifp = vi->ifp; /* also indicates LRO init'ed */ 2994 2995 if (vi->ifp->if_capenable & IFCAP_LRO) 2996 rxq->iq.flags |= IQ_LRO_ENABLED; 2997 #endif 2998 rxq->ifp = vi->ifp; 2999 3000 children = SYSCTL_CHILDREN(oid); 3001 3002 snprintf(name, sizeof(name), "%d", idx); 3003 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3004 NULL, "rx queue"); 3005 children = SYSCTL_CHILDREN(oid); 3006 3007 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id", 3008 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I", 3009 "absolute id of the queue"); 3010 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id", 3011 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I", 3012 "SGE context id of the queue"); 3013 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3014 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I", 3015 "consumer index"); 3016 #if defined(INET) || defined(INET6) 3017 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, 3018 &rxq->lro.lro_queued, 0, NULL); 3019 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, 3020 &rxq->lro.lro_flushed, 0, NULL); 3021 #endif 3022 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, 3023 &rxq->rxcsum, "# of times hardware assisted with checksum"); 3024 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction", 3025 CTLFLAG_RD, &rxq->vlan_extraction, 3026 "# of times hardware extracted 802.1Q tag"); 3027 3028 add_fl_sysctls(&vi->ctx, oid, &rxq->fl); 3029 3030 return (rc); 3031 } 3032 3033 static int 3034 free_rxq(struct vi_info *vi, struct sge_rxq *rxq) 3035 { 3036 int rc; 3037 3038 #if defined(INET) || defined(INET6) 3039 if (rxq->lro.ifp) { 3040 tcp_lro_free(&rxq->lro); 3041 rxq->lro.ifp = NULL; 3042 } 3043 #endif 3044 3045 rc = free_iq_fl(vi, &rxq->iq, &rxq->fl); 3046 if (rc == 0) 3047 bzero(rxq, sizeof(*rxq)); 3048 3049 return (rc); 3050 } 3051 3052 #ifdef TCP_OFFLOAD 3053 static int 3054 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, 3055 int intr_idx, int idx, struct sysctl_oid *oid) 3056 { 3057 int rc; 3058 struct sysctl_oid_list *children; 3059 char name[16]; 3060 3061 rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 3062 vi->pi->rx_chan_map); 3063 if (rc != 0) 3064 return (rc); 3065 3066 children = SYSCTL_CHILDREN(oid); 3067 3068 snprintf(name, sizeof(name), "%d", idx); 3069 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3070 NULL, "rx queue"); 3071 children = SYSCTL_CHILDREN(oid); 3072 3073 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id", 3074 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16, 3075 "I", "absolute id of the queue"); 3076 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id", 3077 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16, 3078 "I", "SGE context id of the queue"); 3079 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3080 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I", 3081 "consumer index"); 3082 3083 add_fl_sysctls(&vi->ctx, oid, &ofld_rxq->fl); 3084 3085 return (rc); 3086 } 3087 3088 static int 3089 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq) 3090 { 3091 int rc; 3092 3093 rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl); 3094 if (rc == 0) 3095 bzero(ofld_rxq, sizeof(*ofld_rxq)); 3096 3097 return (rc); 3098 } 3099 #endif 3100 3101 #ifdef DEV_NETMAP 3102 static int 3103 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx, 3104 int idx, struct sysctl_oid *oid) 3105 { 3106 int rc; 3107 struct sysctl_oid_list *children; 3108 struct sysctl_ctx_list *ctx; 3109 char name[16]; 3110 size_t len; 3111 struct adapter *sc = vi->pi->adapter; 3112 struct netmap_adapter *na = NA(vi->ifp); 3113 3114 MPASS(na != NULL); 3115 3116 len = vi->qsize_rxq * IQ_ESIZE; 3117 rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map, 3118 &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc); 3119 if (rc != 0) 3120 return (rc); 3121 3122 len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len; 3123 rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map, 3124 &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc); 3125 if (rc != 0) 3126 return (rc); 3127 3128 nm_rxq->vi = vi; 3129 nm_rxq->nid = idx; 3130 nm_rxq->iq_cidx = 0; 3131 nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE; 3132 nm_rxq->iq_gen = F_RSPD_GEN; 3133 nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0; 3134 nm_rxq->fl_sidx = na->num_rx_desc; 3135 nm_rxq->intr_idx = intr_idx; 3136 3137 ctx = &vi->ctx; 3138 children = SYSCTL_CHILDREN(oid); 3139 3140 snprintf(name, sizeof(name), "%d", idx); 3141 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, 3142 "rx queue"); 3143 children = SYSCTL_CHILDREN(oid); 3144 3145 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", 3146 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16, 3147 "I", "absolute id of the queue"); 3148 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3149 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16, 3150 "I", "SGE context id of the queue"); 3151 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3152 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I", 3153 "consumer index"); 3154 3155 children = SYSCTL_CHILDREN(oid); 3156 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 3157 "freelist"); 3158 children = SYSCTL_CHILDREN(oid); 3159 3160 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3161 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16, 3162 "I", "SGE context id of the freelist"); 3163 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, 3164 &nm_rxq->fl_cidx, 0, "consumer index"); 3165 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, 3166 &nm_rxq->fl_pidx, 0, "producer index"); 3167 3168 return (rc); 3169 } 3170 3171 3172 static int 3173 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq) 3174 { 3175 struct adapter *sc = vi->pi->adapter; 3176 3177 free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba, 3178 nm_rxq->iq_desc); 3179 free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba, 3180 nm_rxq->fl_desc); 3181 3182 return (0); 3183 } 3184 3185 static int 3186 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx, 3187 struct sysctl_oid *oid) 3188 { 3189 int rc; 3190 size_t len; 3191 struct port_info *pi = vi->pi; 3192 struct adapter *sc = pi->adapter; 3193 struct netmap_adapter *na = NA(vi->ifp); 3194 char name[16]; 3195 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3196 3197 len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len; 3198 rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map, 3199 &nm_txq->ba, (void **)&nm_txq->desc); 3200 if (rc) 3201 return (rc); 3202 3203 nm_txq->pidx = nm_txq->cidx = 0; 3204 nm_txq->sidx = na->num_tx_desc; 3205 nm_txq->nid = idx; 3206 nm_txq->iqidx = iqidx; 3207 nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3208 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) | 3209 V_TXPKT_VF(vi->viid)); 3210 3211 snprintf(name, sizeof(name), "%d", idx); 3212 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3213 NULL, "netmap tx queue"); 3214 children = SYSCTL_CHILDREN(oid); 3215 3216 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3217 &nm_txq->cntxt_id, 0, "SGE context id of the queue"); 3218 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3219 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I", 3220 "consumer index"); 3221 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 3222 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I", 3223 "producer index"); 3224 3225 return (rc); 3226 } 3227 3228 static int 3229 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq) 3230 { 3231 struct adapter *sc = vi->pi->adapter; 3232 3233 free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba, 3234 nm_txq->desc); 3235 3236 return (0); 3237 } 3238 #endif 3239 3240 static int 3241 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) 3242 { 3243 int rc, cntxt_id; 3244 struct fw_eq_ctrl_cmd c; 3245 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3246 3247 bzero(&c, sizeof(c)); 3248 3249 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | 3250 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | 3251 V_FW_EQ_CTRL_CMD_VFN(0)); 3252 c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC | 3253 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 3254 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); 3255 c.physeqid_pkd = htobe32(0); 3256 c.fetchszm_to_iqid = 3257 htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3258 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | 3259 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); 3260 c.dcaen_to_eqsize = 3261 htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3262 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3263 V_FW_EQ_CTRL_CMD_EQSIZE(qsize)); 3264 c.eqaddr = htobe64(eq->ba); 3265 3266 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3267 if (rc != 0) { 3268 device_printf(sc->dev, 3269 "failed to create control queue %d: %d\n", eq->tx_chan, rc); 3270 return (rc); 3271 } 3272 eq->flags |= EQ_ALLOCATED; 3273 3274 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid)); 3275 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3276 if (cntxt_id >= sc->sge.neq) 3277 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3278 cntxt_id, sc->sge.neq - 1); 3279 sc->sge.eqmap[cntxt_id] = eq; 3280 3281 return (rc); 3282 } 3283 3284 static int 3285 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3286 { 3287 int rc, cntxt_id; 3288 struct fw_eq_eth_cmd c; 3289 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3290 3291 bzero(&c, sizeof(c)); 3292 3293 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | 3294 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | 3295 V_FW_EQ_ETH_CMD_VFN(0)); 3296 c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | 3297 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 3298 c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE | 3299 F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid)); 3300 c.fetchszm_to_iqid = 3301 htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3302 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | 3303 V_FW_EQ_ETH_CMD_IQID(eq->iqid)); 3304 c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3305 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3306 V_FW_EQ_ETH_CMD_EQSIZE(qsize)); 3307 c.eqaddr = htobe64(eq->ba); 3308 3309 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3310 if (rc != 0) { 3311 device_printf(vi->dev, 3312 "failed to create Ethernet egress queue: %d\n", rc); 3313 return (rc); 3314 } 3315 eq->flags |= EQ_ALLOCATED; 3316 3317 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); 3318 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3319 if (cntxt_id >= sc->sge.neq) 3320 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3321 cntxt_id, sc->sge.neq - 1); 3322 sc->sge.eqmap[cntxt_id] = eq; 3323 3324 return (rc); 3325 } 3326 3327 #ifdef TCP_OFFLOAD 3328 static int 3329 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3330 { 3331 int rc, cntxt_id; 3332 struct fw_eq_ofld_cmd c; 3333 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3334 3335 bzero(&c, sizeof(c)); 3336 3337 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | 3338 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | 3339 V_FW_EQ_OFLD_CMD_VFN(0)); 3340 c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | 3341 F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 3342 c.fetchszm_to_iqid = 3343 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3344 V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | 3345 F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); 3346 c.dcaen_to_eqsize = 3347 htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3348 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3349 V_FW_EQ_OFLD_CMD_EQSIZE(qsize)); 3350 c.eqaddr = htobe64(eq->ba); 3351 3352 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3353 if (rc != 0) { 3354 device_printf(vi->dev, 3355 "failed to create egress queue for TCP offload: %d\n", rc); 3356 return (rc); 3357 } 3358 eq->flags |= EQ_ALLOCATED; 3359 3360 eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd)); 3361 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3362 if (cntxt_id >= sc->sge.neq) 3363 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3364 cntxt_id, sc->sge.neq - 1); 3365 sc->sge.eqmap[cntxt_id] = eq; 3366 3367 return (rc); 3368 } 3369 #endif 3370 3371 static int 3372 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3373 { 3374 int rc, qsize; 3375 size_t len; 3376 3377 mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); 3378 3379 qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3380 len = qsize * EQ_ESIZE; 3381 rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, 3382 &eq->ba, (void **)&eq->desc); 3383 if (rc) 3384 return (rc); 3385 3386 eq->pidx = eq->cidx = 0; 3387 eq->equeqidx = eq->dbidx = 0; 3388 eq->doorbells = sc->doorbells; 3389 3390 switch (eq->flags & EQ_TYPEMASK) { 3391 case EQ_CTRL: 3392 rc = ctrl_eq_alloc(sc, eq); 3393 break; 3394 3395 case EQ_ETH: 3396 rc = eth_eq_alloc(sc, vi, eq); 3397 break; 3398 3399 #ifdef TCP_OFFLOAD 3400 case EQ_OFLD: 3401 rc = ofld_eq_alloc(sc, vi, eq); 3402 break; 3403 #endif 3404 3405 default: 3406 panic("%s: invalid eq type %d.", __func__, 3407 eq->flags & EQ_TYPEMASK); 3408 } 3409 if (rc != 0) { 3410 device_printf(sc->dev, 3411 "failed to allocate egress queue(%d): %d\n", 3412 eq->flags & EQ_TYPEMASK, rc); 3413 } 3414 3415 if (isset(&eq->doorbells, DOORBELL_UDB) || 3416 isset(&eq->doorbells, DOORBELL_UDBWC) || 3417 isset(&eq->doorbells, DOORBELL_WCWR)) { 3418 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 3419 uint32_t mask = (1 << s_qpp) - 1; 3420 volatile uint8_t *udb; 3421 3422 udb = sc->udbs_base + UDBS_DB_OFFSET; 3423 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */ 3424 eq->udb_qid = eq->cntxt_id & mask; /* id in page */ 3425 if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE) 3426 clrbit(&eq->doorbells, DOORBELL_WCWR); 3427 else { 3428 udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */ 3429 eq->udb_qid = 0; 3430 } 3431 eq->udb = (volatile void *)udb; 3432 } 3433 3434 return (rc); 3435 } 3436 3437 static int 3438 free_eq(struct adapter *sc, struct sge_eq *eq) 3439 { 3440 int rc; 3441 3442 if (eq->flags & EQ_ALLOCATED) { 3443 switch (eq->flags & EQ_TYPEMASK) { 3444 case EQ_CTRL: 3445 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, 3446 eq->cntxt_id); 3447 break; 3448 3449 case EQ_ETH: 3450 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, 3451 eq->cntxt_id); 3452 break; 3453 3454 #ifdef TCP_OFFLOAD 3455 case EQ_OFLD: 3456 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, 3457 eq->cntxt_id); 3458 break; 3459 #endif 3460 3461 default: 3462 panic("%s: invalid eq type %d.", __func__, 3463 eq->flags & EQ_TYPEMASK); 3464 } 3465 if (rc != 0) { 3466 device_printf(sc->dev, 3467 "failed to free egress queue (%d): %d\n", 3468 eq->flags & EQ_TYPEMASK, rc); 3469 return (rc); 3470 } 3471 eq->flags &= ~EQ_ALLOCATED; 3472 } 3473 3474 free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); 3475 3476 if (mtx_initialized(&eq->eq_lock)) 3477 mtx_destroy(&eq->eq_lock); 3478 3479 bzero(eq, sizeof(*eq)); 3480 return (0); 3481 } 3482 3483 static int 3484 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq, 3485 struct sysctl_oid *oid) 3486 { 3487 int rc; 3488 struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx; 3489 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3490 3491 rc = alloc_eq(sc, vi, &wrq->eq); 3492 if (rc) 3493 return (rc); 3494 3495 wrq->adapter = sc; 3496 TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq); 3497 TAILQ_INIT(&wrq->incomplete_wrs); 3498 STAILQ_INIT(&wrq->wr_list); 3499 wrq->nwr_pending = 0; 3500 wrq->ndesc_needed = 0; 3501 3502 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3503 &wrq->eq.cntxt_id, 0, "SGE context id of the queue"); 3504 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3505 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I", 3506 "consumer index"); 3507 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx", 3508 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I", 3509 "producer index"); 3510 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD, 3511 &wrq->tx_wrs_direct, "# of work requests (direct)"); 3512 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD, 3513 &wrq->tx_wrs_copied, "# of work requests (copied)"); 3514 3515 return (rc); 3516 } 3517 3518 static int 3519 free_wrq(struct adapter *sc, struct sge_wrq *wrq) 3520 { 3521 int rc; 3522 3523 rc = free_eq(sc, &wrq->eq); 3524 if (rc) 3525 return (rc); 3526 3527 bzero(wrq, sizeof(*wrq)); 3528 return (0); 3529 } 3530 3531 static int 3532 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx, 3533 struct sysctl_oid *oid) 3534 { 3535 int rc; 3536 struct port_info *pi = vi->pi; 3537 struct adapter *sc = pi->adapter; 3538 struct sge_eq *eq = &txq->eq; 3539 char name[16]; 3540 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3541 3542 rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx, 3543 M_CXGBE, M_WAITOK); 3544 if (rc != 0) { 3545 device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc); 3546 return (rc); 3547 } 3548 3549 rc = alloc_eq(sc, vi, eq); 3550 if (rc != 0) { 3551 mp_ring_free(txq->r); 3552 txq->r = NULL; 3553 return (rc); 3554 } 3555 3556 /* Can't fail after this point. */ 3557 3558 TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq); 3559 txq->ifp = vi->ifp; 3560 txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK); 3561 txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3562 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) | 3563 V_TXPKT_VF(vi->viid)); 3564 txq->tc_idx = -1; 3565 txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE, 3566 M_ZERO | M_WAITOK); 3567 3568 snprintf(name, sizeof(name), "%d", idx); 3569 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3570 NULL, "tx queue"); 3571 children = SYSCTL_CHILDREN(oid); 3572 3573 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3574 &eq->cntxt_id, 0, "SGE context id of the queue"); 3575 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3576 CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I", 3577 "consumer index"); 3578 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 3579 CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I", 3580 "producer index"); 3581 3582 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc", 3583 CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I", 3584 "traffic class (-1 means none)"); 3585 3586 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, 3587 &txq->txcsum, "# of times hardware assisted with checksum"); 3588 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion", 3589 CTLFLAG_RD, &txq->vlan_insertion, 3590 "# of times hardware inserted 802.1Q tag"); 3591 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, 3592 &txq->tso_wrs, "# of TSO work requests"); 3593 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, 3594 &txq->imm_wrs, "# of work requests with immediate data"); 3595 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, 3596 &txq->sgl_wrs, "# of work requests with direct SGL"); 3597 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, 3598 &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); 3599 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs", 3600 CTLFLAG_RD, &txq->txpkts0_wrs, 3601 "# of txpkts (type 0) work requests"); 3602 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs", 3603 CTLFLAG_RD, &txq->txpkts1_wrs, 3604 "# of txpkts (type 1) work requests"); 3605 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts", 3606 CTLFLAG_RD, &txq->txpkts0_pkts, 3607 "# of frames tx'd using type0 txpkts work requests"); 3608 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts", 3609 CTLFLAG_RD, &txq->txpkts1_pkts, 3610 "# of frames tx'd using type1 txpkts work requests"); 3611 3612 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues", 3613 CTLFLAG_RD, &txq->r->enqueues, 3614 "# of enqueues to the mp_ring for this queue"); 3615 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops", 3616 CTLFLAG_RD, &txq->r->drops, 3617 "# of drops in the mp_ring for this queue"); 3618 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts", 3619 CTLFLAG_RD, &txq->r->starts, 3620 "# of normal consumer starts in the mp_ring for this queue"); 3621 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls", 3622 CTLFLAG_RD, &txq->r->stalls, 3623 "# of consumer stalls in the mp_ring for this queue"); 3624 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts", 3625 CTLFLAG_RD, &txq->r->restarts, 3626 "# of consumer restarts in the mp_ring for this queue"); 3627 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications", 3628 CTLFLAG_RD, &txq->r->abdications, 3629 "# of consumer abdications in the mp_ring for this queue"); 3630 3631 return (0); 3632 } 3633 3634 static int 3635 free_txq(struct vi_info *vi, struct sge_txq *txq) 3636 { 3637 int rc; 3638 struct adapter *sc = vi->pi->adapter; 3639 struct sge_eq *eq = &txq->eq; 3640 3641 rc = free_eq(sc, eq); 3642 if (rc) 3643 return (rc); 3644 3645 sglist_free(txq->gl); 3646 free(txq->sdesc, M_CXGBE); 3647 mp_ring_free(txq->r); 3648 3649 bzero(txq, sizeof(*txq)); 3650 return (0); 3651 } 3652 3653 static void 3654 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) 3655 { 3656 bus_addr_t *ba = arg; 3657 3658 KASSERT(nseg == 1, 3659 ("%s meant for single segment mappings only.", __func__)); 3660 3661 *ba = error ? 0 : segs->ds_addr; 3662 } 3663 3664 static inline void 3665 ring_fl_db(struct adapter *sc, struct sge_fl *fl) 3666 { 3667 uint32_t n, v; 3668 3669 n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx); 3670 MPASS(n > 0); 3671 3672 wmb(); 3673 v = fl->dbval | V_PIDX(n); 3674 if (fl->udb) 3675 *fl->udb = htole32(v); 3676 else 3677 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v); 3678 IDXINCR(fl->dbidx, n, fl->sidx); 3679 } 3680 3681 /* 3682 * Fills up the freelist by allocating up to 'n' buffers. Buffers that are 3683 * recycled do not count towards this allocation budget. 3684 * 3685 * Returns non-zero to indicate that this freelist should be added to the list 3686 * of starving freelists. 3687 */ 3688 static int 3689 refill_fl(struct adapter *sc, struct sge_fl *fl, int n) 3690 { 3691 __be64 *d; 3692 struct fl_sdesc *sd; 3693 uintptr_t pa; 3694 caddr_t cl; 3695 struct cluster_layout *cll; 3696 struct sw_zone_info *swz; 3697 struct cluster_metadata *clm; 3698 uint16_t max_pidx; 3699 uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */ 3700 3701 FL_LOCK_ASSERT_OWNED(fl); 3702 3703 /* 3704 * We always stop at the beginning of the hardware descriptor that's just 3705 * before the one with the hw cidx. This is to avoid hw pidx = hw cidx, 3706 * which would mean an empty freelist to the chip. 3707 */ 3708 max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1; 3709 if (fl->pidx == max_pidx * 8) 3710 return (0); 3711 3712 d = &fl->desc[fl->pidx]; 3713 sd = &fl->sdesc[fl->pidx]; 3714 cll = &fl->cll_def; /* default layout */ 3715 swz = &sc->sge.sw_zone_info[cll->zidx]; 3716 3717 while (n > 0) { 3718 3719 if (sd->cl != NULL) { 3720 3721 if (sd->nmbuf == 0) { 3722 /* 3723 * Fast recycle without involving any atomics on 3724 * the cluster's metadata (if the cluster has 3725 * metadata). This happens when all frames 3726 * received in the cluster were small enough to 3727 * fit within a single mbuf each. 3728 */ 3729 fl->cl_fast_recycled++; 3730 #ifdef INVARIANTS 3731 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 3732 if (clm != NULL) 3733 MPASS(clm->refcount == 1); 3734 #endif 3735 goto recycled_fast; 3736 } 3737 3738 /* 3739 * Cluster is guaranteed to have metadata. Clusters 3740 * without metadata always take the fast recycle path 3741 * when they're recycled. 3742 */ 3743 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 3744 MPASS(clm != NULL); 3745 3746 if (atomic_fetchadd_int(&clm->refcount, -1) == 1) { 3747 fl->cl_recycled++; 3748 counter_u64_add(extfree_rels, 1); 3749 goto recycled; 3750 } 3751 sd->cl = NULL; /* gave up my reference */ 3752 } 3753 MPASS(sd->cl == NULL); 3754 alloc: 3755 cl = uma_zalloc(swz->zone, M_NOWAIT); 3756 if (__predict_false(cl == NULL)) { 3757 if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 || 3758 fl->cll_def.zidx == fl->cll_alt.zidx) 3759 break; 3760 3761 /* fall back to the safe zone */ 3762 cll = &fl->cll_alt; 3763 swz = &sc->sge.sw_zone_info[cll->zidx]; 3764 goto alloc; 3765 } 3766 fl->cl_allocated++; 3767 n--; 3768 3769 pa = pmap_kextract((vm_offset_t)cl); 3770 pa += cll->region1; 3771 sd->cl = cl; 3772 sd->cll = *cll; 3773 *d = htobe64(pa | cll->hwidx); 3774 clm = cl_metadata(sc, fl, cll, cl); 3775 if (clm != NULL) { 3776 recycled: 3777 #ifdef INVARIANTS 3778 clm->sd = sd; 3779 #endif 3780 clm->refcount = 1; 3781 } 3782 sd->nmbuf = 0; 3783 recycled_fast: 3784 d++; 3785 sd++; 3786 if (__predict_false(++fl->pidx % 8 == 0)) { 3787 uint16_t pidx = fl->pidx / 8; 3788 3789 if (__predict_false(pidx == fl->sidx)) { 3790 fl->pidx = 0; 3791 pidx = 0; 3792 sd = fl->sdesc; 3793 d = fl->desc; 3794 } 3795 if (pidx == max_pidx) 3796 break; 3797 3798 if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4) 3799 ring_fl_db(sc, fl); 3800 } 3801 } 3802 3803 if (fl->pidx / 8 != fl->dbidx) 3804 ring_fl_db(sc, fl); 3805 3806 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); 3807 } 3808 3809 /* 3810 * Attempt to refill all starving freelists. 3811 */ 3812 static void 3813 refill_sfl(void *arg) 3814 { 3815 struct adapter *sc = arg; 3816 struct sge_fl *fl, *fl_temp; 3817 3818 mtx_assert(&sc->sfl_lock, MA_OWNED); 3819 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { 3820 FL_LOCK(fl); 3821 refill_fl(sc, fl, 64); 3822 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { 3823 TAILQ_REMOVE(&sc->sfl, fl, link); 3824 fl->flags &= ~FL_STARVING; 3825 } 3826 FL_UNLOCK(fl); 3827 } 3828 3829 if (!TAILQ_EMPTY(&sc->sfl)) 3830 callout_schedule(&sc->sfl_callout, hz / 5); 3831 } 3832 3833 static int 3834 alloc_fl_sdesc(struct sge_fl *fl) 3835 { 3836 3837 fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE, 3838 M_ZERO | M_WAITOK); 3839 3840 return (0); 3841 } 3842 3843 static void 3844 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl) 3845 { 3846 struct fl_sdesc *sd; 3847 struct cluster_metadata *clm; 3848 struct cluster_layout *cll; 3849 int i; 3850 3851 sd = fl->sdesc; 3852 for (i = 0; i < fl->sidx * 8; i++, sd++) { 3853 if (sd->cl == NULL) 3854 continue; 3855 3856 cll = &sd->cll; 3857 clm = cl_metadata(sc, fl, cll, sd->cl); 3858 if (sd->nmbuf == 0) 3859 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 3860 else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) { 3861 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 3862 counter_u64_add(extfree_rels, 1); 3863 } 3864 sd->cl = NULL; 3865 } 3866 3867 free(fl->sdesc, M_CXGBE); 3868 fl->sdesc = NULL; 3869 } 3870 3871 static inline void 3872 get_pkt_gl(struct mbuf *m, struct sglist *gl) 3873 { 3874 int rc; 3875 3876 M_ASSERTPKTHDR(m); 3877 3878 sglist_reset(gl); 3879 rc = sglist_append_mbuf(gl, m); 3880 if (__predict_false(rc != 0)) { 3881 panic("%s: mbuf %p (%d segs) was vetted earlier but now fails " 3882 "with %d.", __func__, m, mbuf_nsegs(m), rc); 3883 } 3884 3885 KASSERT(gl->sg_nseg == mbuf_nsegs(m), 3886 ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m, 3887 mbuf_nsegs(m), gl->sg_nseg)); 3888 KASSERT(gl->sg_nseg > 0 && 3889 gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS), 3890 ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__, 3891 gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)); 3892 } 3893 3894 /* 3895 * len16 for a txpkt WR with a GL. Includes the firmware work request header. 3896 */ 3897 static inline u_int 3898 txpkt_len16(u_int nsegs, u_int tso) 3899 { 3900 u_int n; 3901 3902 MPASS(nsegs > 0); 3903 3904 nsegs--; /* first segment is part of ulptx_sgl */ 3905 n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) + 3906 sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 3907 if (tso) 3908 n += sizeof(struct cpl_tx_pkt_lso_core); 3909 3910 return (howmany(n, 16)); 3911 } 3912 3913 /* 3914 * len16 for a txpkts type 0 WR with a GL. Does not include the firmware work 3915 * request header. 3916 */ 3917 static inline u_int 3918 txpkts0_len16(u_int nsegs) 3919 { 3920 u_int n; 3921 3922 MPASS(nsegs > 0); 3923 3924 nsegs--; /* first segment is part of ulptx_sgl */ 3925 n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) + 3926 sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 3927 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 3928 3929 return (howmany(n, 16)); 3930 } 3931 3932 /* 3933 * len16 for a txpkts type 1 WR with a GL. Does not include the firmware work 3934 * request header. 3935 */ 3936 static inline u_int 3937 txpkts1_len16(void) 3938 { 3939 u_int n; 3940 3941 n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl); 3942 3943 return (howmany(n, 16)); 3944 } 3945 3946 static inline u_int 3947 imm_payload(u_int ndesc) 3948 { 3949 u_int n; 3950 3951 n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) - 3952 sizeof(struct cpl_tx_pkt_core); 3953 3954 return (n); 3955 } 3956 3957 /* 3958 * Write a txpkt WR for this packet to the hardware descriptors, update the 3959 * software descriptor, and advance the pidx. It is guaranteed that enough 3960 * descriptors are available. 3961 * 3962 * The return value is the # of hardware descriptors used. 3963 */ 3964 static u_int 3965 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr, 3966 struct mbuf *m0, u_int available) 3967 { 3968 struct sge_eq *eq = &txq->eq; 3969 struct tx_sdesc *txsd; 3970 struct cpl_tx_pkt_core *cpl; 3971 uint32_t ctrl; /* used in many unrelated places */ 3972 uint64_t ctrl1; 3973 int len16, ndesc, pktlen, nsegs; 3974 caddr_t dst; 3975 3976 TXQ_LOCK_ASSERT_OWNED(txq); 3977 M_ASSERTPKTHDR(m0); 3978 MPASS(available > 0 && available < eq->sidx); 3979 3980 len16 = mbuf_len16(m0); 3981 nsegs = mbuf_nsegs(m0); 3982 pktlen = m0->m_pkthdr.len; 3983 ctrl = sizeof(struct cpl_tx_pkt_core); 3984 if (needs_tso(m0)) 3985 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 3986 else if (pktlen <= imm_payload(2) && available >= 2) { 3987 /* Immediate data. Recalculate len16 and set nsegs to 0. */ 3988 ctrl += pktlen; 3989 len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) + 3990 sizeof(struct cpl_tx_pkt_core) + pktlen, 16); 3991 nsegs = 0; 3992 } 3993 ndesc = howmany(len16, EQ_ESIZE / 16); 3994 MPASS(ndesc <= available); 3995 3996 /* Firmware work request header */ 3997 MPASS(wr == (void *)&eq->desc[eq->pidx]); 3998 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | 3999 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 4000 4001 ctrl = V_FW_WR_LEN16(len16); 4002 wr->equiq_to_len16 = htobe32(ctrl); 4003 wr->r3 = 0; 4004 4005 if (needs_tso(m0)) { 4006 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 4007 4008 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 4009 m0->m_pkthdr.l4hlen > 0, 4010 ("%s: mbuf %p needs TSO but missing header lengths", 4011 __func__, m0)); 4012 4013 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 4014 F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) 4015 | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 4016 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 4017 ctrl |= V_LSO_ETHHDR_LEN(1); 4018 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4019 ctrl |= F_LSO_IPV6; 4020 4021 lso->lso_ctrl = htobe32(ctrl); 4022 lso->ipid_ofst = htobe16(0); 4023 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 4024 lso->seqno_offset = htobe32(0); 4025 lso->len = htobe32(pktlen); 4026 4027 cpl = (void *)(lso + 1); 4028 4029 txq->tso_wrs++; 4030 } else 4031 cpl = (void *)(wr + 1); 4032 4033 /* Checksum offload */ 4034 ctrl1 = 0; 4035 if (needs_l3_csum(m0) == 0) 4036 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4037 if (needs_l4_csum(m0) == 0) 4038 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4039 if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4040 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4041 txq->txcsum++; /* some hardware assistance provided */ 4042 4043 /* VLAN tag insertion */ 4044 if (needs_vlan_insertion(m0)) { 4045 ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 4046 txq->vlan_insertion++; 4047 } 4048 4049 /* CPL header */ 4050 cpl->ctrl0 = txq->cpl_ctrl0; 4051 cpl->pack = 0; 4052 cpl->len = htobe16(pktlen); 4053 cpl->ctrl1 = htobe64(ctrl1); 4054 4055 /* SGL */ 4056 dst = (void *)(cpl + 1); 4057 if (nsegs > 0) { 4058 4059 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); 4060 txq->sgl_wrs++; 4061 } else { 4062 struct mbuf *m; 4063 4064 for (m = m0; m != NULL; m = m->m_next) { 4065 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); 4066 #ifdef INVARIANTS 4067 pktlen -= m->m_len; 4068 #endif 4069 } 4070 #ifdef INVARIANTS 4071 KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen)); 4072 #endif 4073 txq->imm_wrs++; 4074 } 4075 4076 txq->txpkt_wrs++; 4077 4078 txsd = &txq->sdesc[eq->pidx]; 4079 txsd->m = m0; 4080 txsd->desc_used = ndesc; 4081 4082 return (ndesc); 4083 } 4084 4085 static int 4086 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available) 4087 { 4088 u_int needed, nsegs1, nsegs2, l1, l2; 4089 4090 if (cannot_use_txpkts(m) || cannot_use_txpkts(n)) 4091 return (1); 4092 4093 nsegs1 = mbuf_nsegs(m); 4094 nsegs2 = mbuf_nsegs(n); 4095 if (nsegs1 + nsegs2 == 2) { 4096 txp->wr_type = 1; 4097 l1 = l2 = txpkts1_len16(); 4098 } else { 4099 txp->wr_type = 0; 4100 l1 = txpkts0_len16(nsegs1); 4101 l2 = txpkts0_len16(nsegs2); 4102 } 4103 txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2; 4104 needed = howmany(txp->len16, EQ_ESIZE / 16); 4105 if (needed > SGE_MAX_WR_NDESC || needed > available) 4106 return (1); 4107 4108 txp->plen = m->m_pkthdr.len + n->m_pkthdr.len; 4109 if (txp->plen > 65535) 4110 return (1); 4111 4112 txp->npkt = 2; 4113 set_mbuf_len16(m, l1); 4114 set_mbuf_len16(n, l2); 4115 4116 return (0); 4117 } 4118 4119 static int 4120 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available) 4121 { 4122 u_int plen, len16, needed, nsegs; 4123 4124 MPASS(txp->wr_type == 0 || txp->wr_type == 1); 4125 4126 nsegs = mbuf_nsegs(m); 4127 if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1)) 4128 return (1); 4129 4130 plen = txp->plen + m->m_pkthdr.len; 4131 if (plen > 65535) 4132 return (1); 4133 4134 if (txp->wr_type == 0) 4135 len16 = txpkts0_len16(nsegs); 4136 else 4137 len16 = txpkts1_len16(); 4138 needed = howmany(txp->len16 + len16, EQ_ESIZE / 16); 4139 if (needed > SGE_MAX_WR_NDESC || needed > available) 4140 return (1); 4141 4142 txp->npkt++; 4143 txp->plen = plen; 4144 txp->len16 += len16; 4145 set_mbuf_len16(m, len16); 4146 4147 return (0); 4148 } 4149 4150 /* 4151 * Write a txpkts WR for the packets in txp to the hardware descriptors, update 4152 * the software descriptor, and advance the pidx. It is guaranteed that enough 4153 * descriptors are available. 4154 * 4155 * The return value is the # of hardware descriptors used. 4156 */ 4157 static u_int 4158 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr, 4159 struct mbuf *m0, const struct txpkts *txp, u_int available) 4160 { 4161 struct sge_eq *eq = &txq->eq; 4162 struct tx_sdesc *txsd; 4163 struct cpl_tx_pkt_core *cpl; 4164 uint32_t ctrl; 4165 uint64_t ctrl1; 4166 int ndesc, checkwrap; 4167 struct mbuf *m; 4168 void *flitp; 4169 4170 TXQ_LOCK_ASSERT_OWNED(txq); 4171 MPASS(txp->npkt > 0); 4172 MPASS(txp->plen < 65536); 4173 MPASS(m0 != NULL); 4174 MPASS(m0->m_nextpkt != NULL); 4175 MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16)); 4176 MPASS(available > 0 && available < eq->sidx); 4177 4178 ndesc = howmany(txp->len16, EQ_ESIZE / 16); 4179 MPASS(ndesc <= available); 4180 4181 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4182 wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)); 4183 ctrl = V_FW_WR_LEN16(txp->len16); 4184 wr->equiq_to_len16 = htobe32(ctrl); 4185 wr->plen = htobe16(txp->plen); 4186 wr->npkt = txp->npkt; 4187 wr->r3 = 0; 4188 wr->type = txp->wr_type; 4189 flitp = wr + 1; 4190 4191 /* 4192 * At this point we are 16B into a hardware descriptor. If checkwrap is 4193 * set then we know the WR is going to wrap around somewhere. We'll 4194 * check for that at appropriate points. 4195 */ 4196 checkwrap = eq->sidx - ndesc < eq->pidx; 4197 for (m = m0; m != NULL; m = m->m_nextpkt) { 4198 if (txp->wr_type == 0) { 4199 struct ulp_txpkt *ulpmc; 4200 struct ulptx_idata *ulpsc; 4201 4202 /* ULP master command */ 4203 ulpmc = flitp; 4204 ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) | 4205 V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid)); 4206 ulpmc->len = htobe32(mbuf_len16(m)); 4207 4208 /* ULP subcommand */ 4209 ulpsc = (void *)(ulpmc + 1); 4210 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) | 4211 F_ULP_TX_SC_MORE); 4212 ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); 4213 4214 cpl = (void *)(ulpsc + 1); 4215 if (checkwrap && 4216 (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx]) 4217 cpl = (void *)&eq->desc[0]; 4218 txq->txpkts0_pkts += txp->npkt; 4219 txq->txpkts0_wrs++; 4220 } else { 4221 cpl = flitp; 4222 txq->txpkts1_pkts += txp->npkt; 4223 txq->txpkts1_wrs++; 4224 } 4225 4226 /* Checksum offload */ 4227 ctrl1 = 0; 4228 if (needs_l3_csum(m) == 0) 4229 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4230 if (needs_l4_csum(m) == 0) 4231 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4232 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4233 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4234 txq->txcsum++; /* some hardware assistance provided */ 4235 4236 /* VLAN tag insertion */ 4237 if (needs_vlan_insertion(m)) { 4238 ctrl1 |= F_TXPKT_VLAN_VLD | 4239 V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); 4240 txq->vlan_insertion++; 4241 } 4242 4243 /* CPL header */ 4244 cpl->ctrl0 = txq->cpl_ctrl0; 4245 cpl->pack = 0; 4246 cpl->len = htobe16(m->m_pkthdr.len); 4247 cpl->ctrl1 = htobe64(ctrl1); 4248 4249 flitp = cpl + 1; 4250 if (checkwrap && 4251 (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx]) 4252 flitp = (void *)&eq->desc[0]; 4253 4254 write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap); 4255 4256 } 4257 4258 txsd = &txq->sdesc[eq->pidx]; 4259 txsd->m = m0; 4260 txsd->desc_used = ndesc; 4261 4262 return (ndesc); 4263 } 4264 4265 /* 4266 * If the SGL ends on an address that is not 16 byte aligned, this function will 4267 * add a 0 filled flit at the end. 4268 */ 4269 static void 4270 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap) 4271 { 4272 struct sge_eq *eq = &txq->eq; 4273 struct sglist *gl = txq->gl; 4274 struct sglist_seg *seg; 4275 __be64 *flitp, *wrap; 4276 struct ulptx_sgl *usgl; 4277 int i, nflits, nsegs; 4278 4279 KASSERT(((uintptr_t)(*to) & 0xf) == 0, 4280 ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); 4281 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 4282 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 4283 4284 get_pkt_gl(m, gl); 4285 nsegs = gl->sg_nseg; 4286 MPASS(nsegs > 0); 4287 4288 nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2; 4289 flitp = (__be64 *)(*to); 4290 wrap = (__be64 *)(&eq->desc[eq->sidx]); 4291 seg = &gl->sg_segs[0]; 4292 usgl = (void *)flitp; 4293 4294 /* 4295 * We start at a 16 byte boundary somewhere inside the tx descriptor 4296 * ring, so we're at least 16 bytes away from the status page. There is 4297 * no chance of a wrap around in the middle of usgl (which is 16 bytes). 4298 */ 4299 4300 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 4301 V_ULPTX_NSGE(nsegs)); 4302 usgl->len0 = htobe32(seg->ss_len); 4303 usgl->addr0 = htobe64(seg->ss_paddr); 4304 seg++; 4305 4306 if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) { 4307 4308 /* Won't wrap around at all */ 4309 4310 for (i = 0; i < nsegs - 1; i++, seg++) { 4311 usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len); 4312 usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr); 4313 } 4314 if (i & 1) 4315 usgl->sge[i / 2].len[1] = htobe32(0); 4316 flitp += nflits; 4317 } else { 4318 4319 /* Will wrap somewhere in the rest of the SGL */ 4320 4321 /* 2 flits already written, write the rest flit by flit */ 4322 flitp = (void *)(usgl + 1); 4323 for (i = 0; i < nflits - 2; i++) { 4324 if (flitp == wrap) 4325 flitp = (void *)eq->desc; 4326 *flitp++ = get_flit(seg, nsegs - 1, i); 4327 } 4328 } 4329 4330 if (nflits & 1) { 4331 MPASS(((uintptr_t)flitp) & 0xf); 4332 *flitp++ = 0; 4333 } 4334 4335 MPASS((((uintptr_t)flitp) & 0xf) == 0); 4336 if (__predict_false(flitp == wrap)) 4337 *to = (void *)eq->desc; 4338 else 4339 *to = (void *)flitp; 4340 } 4341 4342 static inline void 4343 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) 4344 { 4345 4346 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 4347 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 4348 4349 if (__predict_true((uintptr_t)(*to) + len <= 4350 (uintptr_t)&eq->desc[eq->sidx])) { 4351 bcopy(from, *to, len); 4352 (*to) += len; 4353 } else { 4354 int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to); 4355 4356 bcopy(from, *to, portion); 4357 from += portion; 4358 portion = len - portion; /* remaining */ 4359 bcopy(from, (void *)eq->desc, portion); 4360 (*to) = (caddr_t)eq->desc + portion; 4361 } 4362 } 4363 4364 static inline void 4365 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n) 4366 { 4367 u_int db; 4368 4369 MPASS(n > 0); 4370 4371 db = eq->doorbells; 4372 if (n > 1) 4373 clrbit(&db, DOORBELL_WCWR); 4374 wmb(); 4375 4376 switch (ffs(db) - 1) { 4377 case DOORBELL_UDB: 4378 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 4379 break; 4380 4381 case DOORBELL_WCWR: { 4382 volatile uint64_t *dst, *src; 4383 int i; 4384 4385 /* 4386 * Queues whose 128B doorbell segment fits in the page do not 4387 * use relative qid (udb_qid is always 0). Only queues with 4388 * doorbell segments can do WCWR. 4389 */ 4390 KASSERT(eq->udb_qid == 0 && n == 1, 4391 ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p", 4392 __func__, eq->doorbells, n, eq->dbidx, eq)); 4393 4394 dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET - 4395 UDBS_DB_OFFSET); 4396 i = eq->dbidx; 4397 src = (void *)&eq->desc[i]; 4398 while (src != (void *)&eq->desc[i + 1]) 4399 *dst++ = *src++; 4400 wmb(); 4401 break; 4402 } 4403 4404 case DOORBELL_UDBWC: 4405 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 4406 wmb(); 4407 break; 4408 4409 case DOORBELL_KDB: 4410 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), 4411 V_QID(eq->cntxt_id) | V_PIDX(n)); 4412 break; 4413 } 4414 4415 IDXINCR(eq->dbidx, n, eq->sidx); 4416 } 4417 4418 static inline u_int 4419 reclaimable_tx_desc(struct sge_eq *eq) 4420 { 4421 uint16_t hw_cidx; 4422 4423 hw_cidx = read_hw_cidx(eq); 4424 return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx)); 4425 } 4426 4427 static inline u_int 4428 total_available_tx_desc(struct sge_eq *eq) 4429 { 4430 uint16_t hw_cidx, pidx; 4431 4432 hw_cidx = read_hw_cidx(eq); 4433 pidx = eq->pidx; 4434 4435 if (pidx == hw_cidx) 4436 return (eq->sidx - 1); 4437 else 4438 return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1); 4439 } 4440 4441 static inline uint16_t 4442 read_hw_cidx(struct sge_eq *eq) 4443 { 4444 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 4445 uint16_t cidx = spg->cidx; /* stable snapshot */ 4446 4447 return (be16toh(cidx)); 4448 } 4449 4450 /* 4451 * Reclaim 'n' descriptors approximately. 4452 */ 4453 static u_int 4454 reclaim_tx_descs(struct sge_txq *txq, u_int n) 4455 { 4456 struct tx_sdesc *txsd; 4457 struct sge_eq *eq = &txq->eq; 4458 u_int can_reclaim, reclaimed; 4459 4460 TXQ_LOCK_ASSERT_OWNED(txq); 4461 MPASS(n > 0); 4462 4463 reclaimed = 0; 4464 can_reclaim = reclaimable_tx_desc(eq); 4465 while (can_reclaim && reclaimed < n) { 4466 int ndesc; 4467 struct mbuf *m, *nextpkt; 4468 4469 txsd = &txq->sdesc[eq->cidx]; 4470 ndesc = txsd->desc_used; 4471 4472 /* Firmware doesn't return "partial" credits. */ 4473 KASSERT(can_reclaim >= ndesc, 4474 ("%s: unexpected number of credits: %d, %d", 4475 __func__, can_reclaim, ndesc)); 4476 4477 for (m = txsd->m; m != NULL; m = nextpkt) { 4478 nextpkt = m->m_nextpkt; 4479 m->m_nextpkt = NULL; 4480 m_freem(m); 4481 } 4482 reclaimed += ndesc; 4483 can_reclaim -= ndesc; 4484 IDXINCR(eq->cidx, ndesc, eq->sidx); 4485 } 4486 4487 return (reclaimed); 4488 } 4489 4490 static void 4491 tx_reclaim(void *arg, int n) 4492 { 4493 struct sge_txq *txq = arg; 4494 struct sge_eq *eq = &txq->eq; 4495 4496 do { 4497 if (TXQ_TRYLOCK(txq) == 0) 4498 break; 4499 n = reclaim_tx_descs(txq, 32); 4500 if (eq->cidx == eq->pidx) 4501 eq->equeqidx = eq->pidx; 4502 TXQ_UNLOCK(txq); 4503 } while (n > 0); 4504 } 4505 4506 static __be64 4507 get_flit(struct sglist_seg *segs, int nsegs, int idx) 4508 { 4509 int i = (idx / 3) * 2; 4510 4511 switch (idx % 3) { 4512 case 0: { 4513 __be64 rc; 4514 4515 rc = htobe32(segs[i].ss_len); 4516 if (i + 1 < nsegs) 4517 rc |= (uint64_t)htobe32(segs[i + 1].ss_len) << 32; 4518 4519 return (rc); 4520 } 4521 case 1: 4522 return (htobe64(segs[i].ss_paddr)); 4523 case 2: 4524 return (htobe64(segs[i + 1].ss_paddr)); 4525 } 4526 4527 return (0); 4528 } 4529 4530 static void 4531 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp) 4532 { 4533 int8_t zidx, hwidx, idx; 4534 uint16_t region1, region3; 4535 int spare, spare_needed, n; 4536 struct sw_zone_info *swz; 4537 struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0]; 4538 4539 /* 4540 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize 4541 * large enough for the max payload and cluster metadata. Otherwise 4542 * settle for the largest bufsize that leaves enough room in the cluster 4543 * for metadata. 4544 * 4545 * Without buffer packing: Look for the smallest zone which has a 4546 * bufsize large enough for the max payload. Settle for the largest 4547 * bufsize available if there's nothing big enough for max payload. 4548 */ 4549 spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0; 4550 swz = &sc->sge.sw_zone_info[0]; 4551 hwidx = -1; 4552 for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) { 4553 if (swz->size > largest_rx_cluster) { 4554 if (__predict_true(hwidx != -1)) 4555 break; 4556 4557 /* 4558 * This is a misconfiguration. largest_rx_cluster is 4559 * preventing us from finding a refill source. See 4560 * dev.t5nex.<n>.buffer_sizes to figure out why. 4561 */ 4562 device_printf(sc->dev, "largest_rx_cluster=%u leaves no" 4563 " refill source for fl %p (dma %u). Ignored.\n", 4564 largest_rx_cluster, fl, maxp); 4565 } 4566 for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) { 4567 hwb = &hwb_list[idx]; 4568 spare = swz->size - hwb->size; 4569 if (spare < spare_needed) 4570 continue; 4571 4572 hwidx = idx; /* best option so far */ 4573 if (hwb->size >= maxp) { 4574 4575 if ((fl->flags & FL_BUF_PACKING) == 0) 4576 goto done; /* stop looking (not packing) */ 4577 4578 if (swz->size >= safest_rx_cluster) 4579 goto done; /* stop looking (packing) */ 4580 } 4581 break; /* keep looking, next zone */ 4582 } 4583 } 4584 done: 4585 /* A usable hwidx has been located. */ 4586 MPASS(hwidx != -1); 4587 hwb = &hwb_list[hwidx]; 4588 zidx = hwb->zidx; 4589 swz = &sc->sge.sw_zone_info[zidx]; 4590 region1 = 0; 4591 region3 = swz->size - hwb->size; 4592 4593 /* 4594 * Stay within this zone and see if there is a better match when mbuf 4595 * inlining is allowed. Remember that the hwidx's are sorted in 4596 * decreasing order of size (so in increasing order of spare area). 4597 */ 4598 for (idx = hwidx; idx != -1; idx = hwb->next) { 4599 hwb = &hwb_list[idx]; 4600 spare = swz->size - hwb->size; 4601 4602 if (allow_mbufs_in_cluster == 0 || hwb->size < maxp) 4603 break; 4604 4605 /* 4606 * Do not inline mbufs if doing so would violate the pad/pack 4607 * boundary alignment requirement. 4608 */ 4609 if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0) 4610 continue; 4611 if (fl->flags & FL_BUF_PACKING && 4612 (MSIZE % sc->params.sge.pack_boundary) != 0) 4613 continue; 4614 4615 if (spare < CL_METADATA_SIZE + MSIZE) 4616 continue; 4617 n = (spare - CL_METADATA_SIZE) / MSIZE; 4618 if (n > howmany(hwb->size, maxp)) 4619 break; 4620 4621 hwidx = idx; 4622 if (fl->flags & FL_BUF_PACKING) { 4623 region1 = n * MSIZE; 4624 region3 = spare - region1; 4625 } else { 4626 region1 = MSIZE; 4627 region3 = spare - region1; 4628 break; 4629 } 4630 } 4631 4632 KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES, 4633 ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp)); 4634 KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES, 4635 ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp)); 4636 KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 == 4637 sc->sge.sw_zone_info[zidx].size, 4638 ("%s: bad buffer layout for fl %p, maxp %d. " 4639 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4640 sc->sge.sw_zone_info[zidx].size, region1, 4641 sc->sge.hw_buf_info[hwidx].size, region3)); 4642 if (fl->flags & FL_BUF_PACKING || region1 > 0) { 4643 KASSERT(region3 >= CL_METADATA_SIZE, 4644 ("%s: no room for metadata. fl %p, maxp %d; " 4645 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4646 sc->sge.sw_zone_info[zidx].size, region1, 4647 sc->sge.hw_buf_info[hwidx].size, region3)); 4648 KASSERT(region1 % MSIZE == 0, 4649 ("%s: bad mbuf region for fl %p, maxp %d. " 4650 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4651 sc->sge.sw_zone_info[zidx].size, region1, 4652 sc->sge.hw_buf_info[hwidx].size, region3)); 4653 } 4654 4655 fl->cll_def.zidx = zidx; 4656 fl->cll_def.hwidx = hwidx; 4657 fl->cll_def.region1 = region1; 4658 fl->cll_def.region3 = region3; 4659 } 4660 4661 static void 4662 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl) 4663 { 4664 struct sge *s = &sc->sge; 4665 struct hw_buf_info *hwb; 4666 struct sw_zone_info *swz; 4667 int spare; 4668 int8_t hwidx; 4669 4670 if (fl->flags & FL_BUF_PACKING) 4671 hwidx = s->safe_hwidx2; /* with room for metadata */ 4672 else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) { 4673 hwidx = s->safe_hwidx2; 4674 hwb = &s->hw_buf_info[hwidx]; 4675 swz = &s->sw_zone_info[hwb->zidx]; 4676 spare = swz->size - hwb->size; 4677 4678 /* no good if there isn't room for an mbuf as well */ 4679 if (spare < CL_METADATA_SIZE + MSIZE) 4680 hwidx = s->safe_hwidx1; 4681 } else 4682 hwidx = s->safe_hwidx1; 4683 4684 if (hwidx == -1) { 4685 /* No fallback source */ 4686 fl->cll_alt.hwidx = -1; 4687 fl->cll_alt.zidx = -1; 4688 4689 return; 4690 } 4691 4692 hwb = &s->hw_buf_info[hwidx]; 4693 swz = &s->sw_zone_info[hwb->zidx]; 4694 spare = swz->size - hwb->size; 4695 fl->cll_alt.hwidx = hwidx; 4696 fl->cll_alt.zidx = hwb->zidx; 4697 if (allow_mbufs_in_cluster && 4698 (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0)) 4699 fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE; 4700 else 4701 fl->cll_alt.region1 = 0; 4702 fl->cll_alt.region3 = spare - fl->cll_alt.region1; 4703 } 4704 4705 static void 4706 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) 4707 { 4708 mtx_lock(&sc->sfl_lock); 4709 FL_LOCK(fl); 4710 if ((fl->flags & FL_DOOMED) == 0) { 4711 fl->flags |= FL_STARVING; 4712 TAILQ_INSERT_TAIL(&sc->sfl, fl, link); 4713 callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc); 4714 } 4715 FL_UNLOCK(fl); 4716 mtx_unlock(&sc->sfl_lock); 4717 } 4718 4719 static void 4720 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq) 4721 { 4722 struct sge_wrq *wrq = (void *)eq; 4723 4724 atomic_readandclear_int(&eq->equiq); 4725 taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task); 4726 } 4727 4728 static void 4729 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq) 4730 { 4731 struct sge_txq *txq = (void *)eq; 4732 4733 MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH); 4734 4735 atomic_readandclear_int(&eq->equiq); 4736 mp_ring_check_drainage(txq->r, 0); 4737 taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task); 4738 } 4739 4740 static int 4741 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, 4742 struct mbuf *m) 4743 { 4744 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); 4745 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); 4746 struct adapter *sc = iq->adapter; 4747 struct sge *s = &sc->sge; 4748 struct sge_eq *eq; 4749 static void (*h[])(struct adapter *, struct sge_eq *) = {NULL, 4750 &handle_wrq_egr_update, &handle_eth_egr_update, 4751 &handle_wrq_egr_update}; 4752 4753 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 4754 rss->opcode)); 4755 4756 eq = s->eqmap[qid - s->eq_start]; 4757 (*h[eq->flags & EQ_TYPEMASK])(sc, eq); 4758 4759 return (0); 4760 } 4761 4762 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */ 4763 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \ 4764 offsetof(struct cpl_fw6_msg, data)); 4765 4766 static int 4767 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 4768 { 4769 struct adapter *sc = iq->adapter; 4770 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); 4771 4772 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 4773 rss->opcode)); 4774 4775 if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) { 4776 const struct rss_header *rss2; 4777 4778 rss2 = (const struct rss_header *)&cpl->data[0]; 4779 return (t4_cpl_handler[rss2->opcode](iq, rss2, m)); 4780 } 4781 4782 return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0])); 4783 } 4784 4785 static int 4786 sysctl_uint16(SYSCTL_HANDLER_ARGS) 4787 { 4788 uint16_t *id = arg1; 4789 int i = *id; 4790 4791 return sysctl_handle_int(oidp, &i, 0, req); 4792 } 4793 4794 static int 4795 sysctl_bufsizes(SYSCTL_HANDLER_ARGS) 4796 { 4797 struct sge *s = arg1; 4798 struct hw_buf_info *hwb = &s->hw_buf_info[0]; 4799 struct sw_zone_info *swz = &s->sw_zone_info[0]; 4800 int i, rc; 4801 struct sbuf sb; 4802 char c; 4803 4804 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 4805 for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) { 4806 if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster) 4807 c = '*'; 4808 else 4809 c = '\0'; 4810 4811 sbuf_printf(&sb, "%u%c ", hwb->size, c); 4812 } 4813 sbuf_trim(&sb); 4814 sbuf_finish(&sb); 4815 rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 4816 sbuf_delete(&sb); 4817 return (rc); 4818 } 4819 4820 static int 4821 sysctl_tc(SYSCTL_HANDLER_ARGS) 4822 { 4823 struct vi_info *vi = arg1; 4824 struct port_info *pi; 4825 struct adapter *sc; 4826 struct sge_txq *txq; 4827 struct tx_sched_class *tc; 4828 int qidx = arg2, rc, tc_idx; 4829 uint32_t fw_queue, fw_class; 4830 4831 MPASS(qidx >= 0 && qidx < vi->ntxq); 4832 pi = vi->pi; 4833 sc = pi->adapter; 4834 txq = &sc->sge.txq[vi->first_txq + qidx]; 4835 4836 tc_idx = txq->tc_idx; 4837 rc = sysctl_handle_int(oidp, &tc_idx, 0, req); 4838 if (rc != 0 || req->newptr == NULL) 4839 return (rc); 4840 4841 /* Note that -1 is legitimate input (it means unbind). */ 4842 if (tc_idx < -1 || tc_idx >= sc->chip_params->nsched_cls) 4843 return (EINVAL); 4844 4845 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4stc"); 4846 if (rc) 4847 return (rc); 4848 4849 if (tc_idx == txq->tc_idx) { 4850 rc = 0; /* No change, nothing to do. */ 4851 goto done; 4852 } 4853 4854 fw_queue = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 4855 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) | 4856 V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id); 4857 4858 if (tc_idx == -1) 4859 fw_class = 0xffffffff; /* Unbind. */ 4860 else { 4861 /* 4862 * Bind to a different class. Ethernet txq's are only allowed 4863 * to bind to cl-rl mode-class for now. XXX: too restrictive. 4864 */ 4865 tc = &pi->tc[tc_idx]; 4866 if (tc->flags & TX_SC_OK && 4867 tc->params.level == SCHED_CLASS_LEVEL_CL_RL && 4868 tc->params.mode == SCHED_CLASS_MODE_CLASS) { 4869 /* Ok to proceed. */ 4870 fw_class = tc_idx; 4871 } else { 4872 rc = tc->flags & TX_SC_OK ? EBUSY : ENXIO; 4873 goto done; 4874 } 4875 } 4876 4877 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, &fw_class); 4878 if (rc == 0) { 4879 if (txq->tc_idx != -1) { 4880 tc = &pi->tc[txq->tc_idx]; 4881 MPASS(tc->refcount > 0); 4882 tc->refcount--; 4883 } 4884 if (tc_idx != -1) { 4885 tc = &pi->tc[tc_idx]; 4886 tc->refcount++; 4887 } 4888 txq->tc_idx = tc_idx; 4889 } 4890 done: 4891 end_synchronized_op(sc, 0); 4892 return (rc); 4893 } 4894