1 /*- 2 * Copyright (c) 2011 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: Navdeep Parhar <np@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #include <sys/types.h> 35 #include <sys/eventhandler.h> 36 #include <sys/mbuf.h> 37 #include <sys/socket.h> 38 #include <sys/kernel.h> 39 #include <sys/kdb.h> 40 #include <sys/malloc.h> 41 #include <sys/queue.h> 42 #include <sys/sbuf.h> 43 #include <sys/taskqueue.h> 44 #include <sys/time.h> 45 #include <sys/sysctl.h> 46 #include <sys/smp.h> 47 #include <sys/counter.h> 48 #include <net/bpf.h> 49 #include <net/ethernet.h> 50 #include <net/if.h> 51 #include <net/if_vlan_var.h> 52 #include <netinet/in.h> 53 #include <netinet/ip.h> 54 #include <netinet/ip6.h> 55 #include <netinet/tcp.h> 56 #include <machine/md_var.h> 57 #include <vm/vm.h> 58 #include <vm/pmap.h> 59 #ifdef DEV_NETMAP 60 #include <machine/bus.h> 61 #include <sys/selinfo.h> 62 #include <net/if_var.h> 63 #include <net/netmap.h> 64 #include <dev/netmap/netmap_kern.h> 65 #endif 66 67 #include "common/common.h" 68 #include "common/t4_regs.h" 69 #include "common/t4_regs_values.h" 70 #include "common/t4_msg.h" 71 72 #ifdef T4_PKT_TIMESTAMP 73 #define RX_COPY_THRESHOLD (MINCLSIZE - 8) 74 #else 75 #define RX_COPY_THRESHOLD MINCLSIZE 76 #endif 77 78 /* 79 * Ethernet frames are DMA'd at this byte offset into the freelist buffer. 80 * 0-7 are valid values. 81 */ 82 int fl_pktshift = 2; 83 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift); 84 85 /* 86 * Pad ethernet payload up to this boundary. 87 * -1: driver should figure out a good value. 88 * 0: disable padding. 89 * Any power of 2 from 32 to 4096 (both inclusive) is also a valid value. 90 */ 91 int fl_pad = -1; 92 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad); 93 94 /* 95 * Status page length. 96 * -1: driver should figure out a good value. 97 * 64 or 128 are the only other valid values. 98 */ 99 int spg_len = -1; 100 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len); 101 102 /* 103 * Congestion drops. 104 * -1: no congestion feedback (not recommended). 105 * 0: backpressure the channel instead of dropping packets right away. 106 * 1: no backpressure, drop packets for the congested queue immediately. 107 */ 108 static int cong_drop = 0; 109 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop); 110 111 /* 112 * Deliver multiple frames in the same free list buffer if they fit. 113 * -1: let the driver decide whether to enable buffer packing or not. 114 * 0: disable buffer packing. 115 * 1: enable buffer packing. 116 */ 117 static int buffer_packing = -1; 118 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing); 119 120 /* 121 * Start next frame in a packed buffer at this boundary. 122 * -1: driver should figure out a good value. 123 * T4: 124 * --- 125 * if fl_pad != 0 126 * value specified here will be overridden by fl_pad. 127 * else 128 * power of 2 from 32 to 4096 (both inclusive) is a valid value here. 129 * T5: 130 * --- 131 * 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value. 132 */ 133 static int fl_pack = -1; 134 static int t4_fl_pack; 135 static int t5_fl_pack; 136 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack); 137 138 /* 139 * Allow the driver to create mbuf(s) in a cluster allocated for rx. 140 * 0: never; always allocate mbufs from the zone_mbuf UMA zone. 141 * 1: ok to create mbuf(s) within a cluster if there is room. 142 */ 143 static int allow_mbufs_in_cluster = 1; 144 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster); 145 146 /* 147 * Largest rx cluster size that the driver is allowed to allocate. 148 */ 149 static int largest_rx_cluster = MJUM16BYTES; 150 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster); 151 152 /* 153 * Size of cluster allocation that's most likely to succeed. The driver will 154 * fall back to this size if it fails to allocate clusters larger than this. 155 */ 156 static int safest_rx_cluster = PAGE_SIZE; 157 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster); 158 159 /* Used to track coalesced tx work request */ 160 struct txpkts { 161 uint64_t *flitp; /* ptr to flit where next pkt should start */ 162 uint8_t npkt; /* # of packets in this work request */ 163 uint8_t nflits; /* # of flits used by this work request */ 164 uint16_t plen; /* total payload (sum of all packets) */ 165 }; 166 167 /* A packet's SGL. This + m_pkthdr has all info needed for tx */ 168 struct sgl { 169 int nsegs; /* # of segments in the SGL, 0 means imm. tx */ 170 int nflits; /* # of flits needed for the SGL */ 171 bus_dma_segment_t seg[TX_SGL_SEGS]; 172 }; 173 174 static int service_iq(struct sge_iq *, int); 175 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t); 176 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *); 177 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int); 178 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, int, 179 char *); 180 static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t, 181 char *); 182 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, 183 bus_addr_t *, void **); 184 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, 185 void *); 186 static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *, 187 int, int); 188 static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *); 189 static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *, 190 struct sge_fl *); 191 static int alloc_fwq(struct adapter *); 192 static int free_fwq(struct adapter *); 193 static int alloc_mgmtq(struct adapter *); 194 static int free_mgmtq(struct adapter *); 195 static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int, 196 struct sysctl_oid *); 197 static int free_rxq(struct port_info *, struct sge_rxq *); 198 #ifdef TCP_OFFLOAD 199 static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int, 200 struct sysctl_oid *); 201 static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *); 202 #endif 203 #ifdef DEV_NETMAP 204 static int alloc_nm_rxq(struct port_info *, struct sge_nm_rxq *, int, int, 205 struct sysctl_oid *); 206 static int free_nm_rxq(struct port_info *, struct sge_nm_rxq *); 207 static int alloc_nm_txq(struct port_info *, struct sge_nm_txq *, int, int, 208 struct sysctl_oid *); 209 static int free_nm_txq(struct port_info *, struct sge_nm_txq *); 210 #endif 211 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *); 212 static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *); 213 #ifdef TCP_OFFLOAD 214 static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *); 215 #endif 216 static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *); 217 static int free_eq(struct adapter *, struct sge_eq *); 218 static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *, 219 struct sysctl_oid *); 220 static int free_wrq(struct adapter *, struct sge_wrq *); 221 static int alloc_txq(struct port_info *, struct sge_txq *, int, 222 struct sysctl_oid *); 223 static int free_txq(struct port_info *, struct sge_txq *); 224 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); 225 static inline void ring_fl_db(struct adapter *, struct sge_fl *); 226 static int refill_fl(struct adapter *, struct sge_fl *, int); 227 static void refill_sfl(void *); 228 static int alloc_fl_sdesc(struct sge_fl *); 229 static void free_fl_sdesc(struct adapter *, struct sge_fl *); 230 static void find_best_refill_source(struct adapter *, struct sge_fl *, int); 231 static void find_safe_refill_source(struct adapter *, struct sge_fl *); 232 static void add_fl_to_sfl(struct adapter *, struct sge_fl *); 233 234 static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int); 235 static int free_pkt_sgl(struct sge_txq *, struct sgl *); 236 static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *, 237 struct sgl *); 238 static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *, 239 struct mbuf *, struct sgl *); 240 static void write_txpkts_wr(struct sge_txq *, struct txpkts *); 241 static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *, 242 struct txpkts *, struct mbuf *, struct sgl *); 243 static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *); 244 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); 245 static inline void ring_eq_db(struct adapter *, struct sge_eq *); 246 static inline int reclaimable(struct sge_eq *); 247 static int reclaim_tx_descs(struct sge_txq *, int, int); 248 static void write_eqflush_wr(struct sge_eq *); 249 static __be64 get_flit(bus_dma_segment_t *, int, int); 250 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, 251 struct mbuf *); 252 static int handle_fw_msg(struct sge_iq *, const struct rss_header *, 253 struct mbuf *); 254 255 static int sysctl_uint16(SYSCTL_HANDLER_ARGS); 256 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS); 257 258 static counter_u64_t extfree_refs; 259 static counter_u64_t extfree_rels; 260 261 /* 262 * Called on MOD_LOAD. Validates and calculates the SGE tunables. 263 */ 264 void 265 t4_sge_modload(void) 266 { 267 int pad; 268 269 /* set pad to a reasonable powerof2 between 16 and 4096 (inclusive) */ 270 #if defined(__i386__) || defined(__amd64__) 271 pad = max(cpu_clflush_line_size, 16); 272 #else 273 pad = max(CACHE_LINE_SIZE, 16); 274 #endif 275 pad = min(pad, 4096); 276 277 if (fl_pktshift < 0 || fl_pktshift > 7) { 278 printf("Invalid hw.cxgbe.fl_pktshift value (%d)," 279 " using 2 instead.\n", fl_pktshift); 280 fl_pktshift = 2; 281 } 282 283 if (fl_pad != 0 && 284 (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad))) { 285 286 if (fl_pad != -1) { 287 printf("Invalid hw.cxgbe.fl_pad value (%d)," 288 " using %d instead.\n", fl_pad, max(pad, 32)); 289 } 290 fl_pad = max(pad, 32); 291 } 292 293 /* 294 * T4 has the same pad and pack boundary. If a pad boundary is set, 295 * pack boundary must be set to the same value. Otherwise take the 296 * specified value or auto-calculate something reasonable. 297 */ 298 if (fl_pad) 299 t4_fl_pack = fl_pad; 300 else if (fl_pack < 32 || fl_pack > 4096 || !powerof2(fl_pack)) 301 t4_fl_pack = max(pad, 32); 302 else 303 t4_fl_pack = fl_pack; 304 305 /* T5's pack boundary is independent of the pad boundary. */ 306 if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 || 307 !powerof2(fl_pack)) 308 t5_fl_pack = max(pad, CACHE_LINE_SIZE); 309 else 310 t5_fl_pack = fl_pack; 311 312 if (spg_len != 64 && spg_len != 128) { 313 int len; 314 315 #if defined(__i386__) || defined(__amd64__) 316 len = cpu_clflush_line_size > 64 ? 128 : 64; 317 #else 318 len = 64; 319 #endif 320 if (spg_len != -1) { 321 printf("Invalid hw.cxgbe.spg_len value (%d)," 322 " using %d instead.\n", spg_len, len); 323 } 324 spg_len = len; 325 } 326 327 if (cong_drop < -1 || cong_drop > 1) { 328 printf("Invalid hw.cxgbe.cong_drop value (%d)," 329 " using 0 instead.\n", cong_drop); 330 cong_drop = 0; 331 } 332 333 extfree_refs = counter_u64_alloc(M_WAITOK); 334 extfree_rels = counter_u64_alloc(M_WAITOK); 335 counter_u64_zero(extfree_refs); 336 counter_u64_zero(extfree_rels); 337 } 338 339 void 340 t4_sge_modunload(void) 341 { 342 343 counter_u64_free(extfree_refs); 344 counter_u64_free(extfree_rels); 345 } 346 347 uint64_t 348 t4_sge_extfree_refs(void) 349 { 350 uint64_t refs, rels; 351 352 rels = counter_u64_fetch(extfree_rels); 353 refs = counter_u64_fetch(extfree_refs); 354 355 return (refs - rels); 356 } 357 358 void 359 t4_init_sge_cpl_handlers(struct adapter *sc) 360 { 361 362 t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg); 363 t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg); 364 t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update); 365 t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx); 366 t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl); 367 } 368 369 /* 370 * adap->params.vpd.cclk must be set up before this is called. 371 */ 372 void 373 t4_tweak_chip_settings(struct adapter *sc) 374 { 375 int i; 376 uint32_t v, m; 377 int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; 378 int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk; 379 int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ 380 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 381 static int sge_flbuf_sizes[] = { 382 MCLBYTES, 383 #if MJUMPAGESIZE != MCLBYTES 384 MJUMPAGESIZE, 385 MJUMPAGESIZE - CL_METADATA_SIZE, 386 MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE, 387 #endif 388 MJUM9BYTES, 389 MJUM16BYTES, 390 MCLBYTES - MSIZE - CL_METADATA_SIZE, 391 MJUM9BYTES - CL_METADATA_SIZE, 392 MJUM16BYTES - CL_METADATA_SIZE, 393 }; 394 395 KASSERT(sc->flags & MASTER_PF, 396 ("%s: trying to change chip settings when not master.", __func__)); 397 398 m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE; 399 v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | 400 V_EGRSTATUSPAGESIZE(spg_len == 128); 401 if (is_t4(sc) && (fl_pad || buffer_packing)) { 402 /* t4_fl_pack has the correct value even when fl_pad = 0 */ 403 m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY); 404 v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5); 405 } else if (is_t5(sc) && fl_pad) { 406 m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY); 407 v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5); 408 } 409 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 410 411 if (is_t5(sc) && buffer_packing) { 412 m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY); 413 if (t5_fl_pack == 16) 414 v = V_INGPACKBOUNDARY(0); 415 else 416 v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5); 417 t4_set_reg_field(sc, A_SGE_CONTROL2, m, v); 418 } 419 420 v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | 421 V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | 422 V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | 423 V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | 424 V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | 425 V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | 426 V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | 427 V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); 428 t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v); 429 430 KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES, 431 ("%s: hw buffer size table too big", __func__)); 432 for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) { 433 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i), 434 sge_flbuf_sizes[i]); 435 } 436 437 v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) | 438 V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]); 439 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v); 440 441 KASSERT(intr_timer[0] <= timer_max, 442 ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0], 443 timer_max)); 444 for (i = 1; i < nitems(intr_timer); i++) { 445 KASSERT(intr_timer[i] >= intr_timer[i - 1], 446 ("%s: timers not listed in increasing order (%d)", 447 __func__, i)); 448 449 while (intr_timer[i] > timer_max) { 450 if (i == nitems(intr_timer) - 1) { 451 intr_timer[i] = timer_max; 452 break; 453 } 454 intr_timer[i] += intr_timer[i - 1]; 455 intr_timer[i] /= 2; 456 } 457 } 458 459 v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) | 460 V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])); 461 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v); 462 v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) | 463 V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])); 464 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v); 465 v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) | 466 V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])); 467 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v); 468 469 if (cong_drop == 0) { 470 m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 | 471 F_TUNNELCNGDROP3; 472 t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0); 473 } 474 475 /* 4K, 16K, 64K, 256K DDP "page sizes" */ 476 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 477 t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v); 478 479 m = v = F_TDDPTAGTCB; 480 t4_set_reg_field(sc, A_ULP_RX_CTL, m, v); 481 482 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 483 F_RESETDDPOFFSET; 484 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 485 t4_set_reg_field(sc, A_TP_PARA_REG5, m, v); 486 } 487 488 /* 489 * SGE wants the buffer to be at least 64B and then a multiple of the pad 490 * boundary or 16, whichever is greater. 491 */ 492 static inline int 493 hwsz_ok(int hwsz) 494 { 495 int mask = max(fl_pad, 16) - 1; 496 497 return (hwsz >= 64 && (hwsz & mask) == 0); 498 } 499 500 /* 501 * XXX: driver really should be able to deal with unexpected settings. 502 */ 503 int 504 t4_read_chip_settings(struct adapter *sc) 505 { 506 struct sge *s = &sc->sge; 507 int i, j, n, rc = 0; 508 uint32_t m, v, r; 509 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 510 static int sw_buf_sizes[] = { /* Sorted by size */ 511 MCLBYTES, 512 #if MJUMPAGESIZE != MCLBYTES 513 MJUMPAGESIZE, 514 #endif 515 MJUM9BYTES, 516 MJUM16BYTES 517 }; 518 struct sw_zone_info *swz, *safe_swz; 519 struct hw_buf_info *hwb; 520 521 m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE; 522 v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | 523 V_EGRSTATUSPAGESIZE(spg_len == 128); 524 if (is_t4(sc) && (fl_pad || buffer_packing)) { 525 m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY); 526 v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5); 527 } else if (is_t5(sc) && fl_pad) { 528 m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY); 529 v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5); 530 } 531 r = t4_read_reg(sc, A_SGE_CONTROL); 532 if ((r & m) != v) { 533 device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r); 534 rc = EINVAL; 535 } 536 537 if (is_t5(sc) && buffer_packing) { 538 m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY); 539 if (t5_fl_pack == 16) 540 v = V_INGPACKBOUNDARY(0); 541 else 542 v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5); 543 r = t4_read_reg(sc, A_SGE_CONTROL2); 544 if ((r & m) != v) { 545 device_printf(sc->dev, 546 "invalid SGE_CONTROL2(0x%x)\n", r); 547 rc = EINVAL; 548 } 549 } 550 s->pack_boundary = is_t4(sc) ? t4_fl_pack : t5_fl_pack; 551 552 v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | 553 V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | 554 V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | 555 V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | 556 V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | 557 V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | 558 V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | 559 V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); 560 r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE); 561 if (r != v) { 562 device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r); 563 rc = EINVAL; 564 } 565 566 /* Filter out unusable hw buffer sizes entirely (mark with -2). */ 567 hwb = &s->hw_buf_info[0]; 568 for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) { 569 r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i)); 570 hwb->size = r; 571 hwb->zidx = hwsz_ok(r) ? -1 : -2; 572 hwb->next = -1; 573 } 574 575 /* 576 * Create a sorted list in decreasing order of hw buffer sizes (and so 577 * increasing order of spare area) for each software zone. 578 */ 579 n = 0; /* no usable buffer size to begin with */ 580 swz = &s->sw_zone_info[0]; 581 safe_swz = NULL; 582 for (i = 0; i < SW_ZONE_SIZES; i++, swz++) { 583 int8_t head = -1, tail = -1; 584 585 swz->size = sw_buf_sizes[i]; 586 swz->zone = m_getzone(swz->size); 587 swz->type = m_gettype(swz->size); 588 589 if (swz->size == safest_rx_cluster) 590 safe_swz = swz; 591 592 hwb = &s->hw_buf_info[0]; 593 for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) { 594 if (hwb->zidx != -1 || hwb->size > swz->size) 595 continue; 596 hwb->zidx = i; 597 if (head == -1) 598 head = tail = j; 599 else if (hwb->size < s->hw_buf_info[tail].size) { 600 s->hw_buf_info[tail].next = j; 601 tail = j; 602 } else { 603 int8_t *cur; 604 struct hw_buf_info *t; 605 606 for (cur = &head; *cur != -1; cur = &t->next) { 607 t = &s->hw_buf_info[*cur]; 608 if (hwb->size == t->size) { 609 hwb->zidx = -2; 610 break; 611 } 612 if (hwb->size > t->size) { 613 hwb->next = *cur; 614 *cur = j; 615 break; 616 } 617 } 618 } 619 } 620 swz->head_hwidx = head; 621 swz->tail_hwidx = tail; 622 623 if (tail != -1) { 624 n++; 625 if (swz->size - s->hw_buf_info[tail].size >= 626 CL_METADATA_SIZE) 627 sc->flags |= BUF_PACKING_OK; 628 } 629 } 630 if (n == 0) { 631 device_printf(sc->dev, "no usable SGE FL buffer size.\n"); 632 rc = EINVAL; 633 } 634 635 s->safe_hwidx1 = -1; 636 s->safe_hwidx2 = -1; 637 if (safe_swz != NULL) { 638 s->safe_hwidx1 = safe_swz->head_hwidx; 639 for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) { 640 int spare; 641 642 hwb = &s->hw_buf_info[i]; 643 spare = safe_swz->size - hwb->size; 644 if (spare < CL_METADATA_SIZE) 645 continue; 646 if (s->safe_hwidx2 == -1 || 647 spare == CL_METADATA_SIZE + MSIZE) 648 s->safe_hwidx2 = i; 649 if (spare >= CL_METADATA_SIZE + MSIZE) 650 break; 651 } 652 } 653 654 r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD); 655 s->counter_val[0] = G_THRESHOLD_0(r); 656 s->counter_val[1] = G_THRESHOLD_1(r); 657 s->counter_val[2] = G_THRESHOLD_2(r); 658 s->counter_val[3] = G_THRESHOLD_3(r); 659 660 r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1); 661 s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc); 662 s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc); 663 r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3); 664 s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc); 665 s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc); 666 r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5); 667 s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc); 668 s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc); 669 670 if (cong_drop == 0) { 671 m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 | 672 F_TUNNELCNGDROP3; 673 r = t4_read_reg(sc, A_TP_PARA_REG3); 674 if (r & m) { 675 device_printf(sc->dev, 676 "invalid TP_PARA_REG3(0x%x)\n", r); 677 rc = EINVAL; 678 } 679 } 680 681 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 682 r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ); 683 if (r != v) { 684 device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r); 685 rc = EINVAL; 686 } 687 688 m = v = F_TDDPTAGTCB; 689 r = t4_read_reg(sc, A_ULP_RX_CTL); 690 if ((r & m) != v) { 691 device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r); 692 rc = EINVAL; 693 } 694 695 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 696 F_RESETDDPOFFSET; 697 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 698 r = t4_read_reg(sc, A_TP_PARA_REG5); 699 if ((r & m) != v) { 700 device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r); 701 rc = EINVAL; 702 } 703 704 r = t4_read_reg(sc, A_SGE_CONM_CTRL); 705 s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1; 706 if (is_t4(sc)) 707 s->fl_starve_threshold2 = s->fl_starve_threshold; 708 else 709 s->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1; 710 711 /* egress queues: log2 of # of doorbells per BAR2 page */ 712 r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF); 713 r >>= S_QUEUESPERPAGEPF0 + 714 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf; 715 s->eq_s_qpp = r & M_QUEUESPERPAGEPF0; 716 717 /* ingress queues: log2 of # of doorbells per BAR2 page */ 718 r = t4_read_reg(sc, A_SGE_INGRESS_QUEUES_PER_PAGE_PF); 719 r >>= S_QUEUESPERPAGEPF0 + 720 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf; 721 s->iq_s_qpp = r & M_QUEUESPERPAGEPF0; 722 723 t4_init_tp_params(sc); 724 725 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 726 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 727 728 return (rc); 729 } 730 731 int 732 t4_create_dma_tag(struct adapter *sc) 733 { 734 int rc; 735 736 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, 737 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, 738 BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, 739 NULL, &sc->dmat); 740 if (rc != 0) { 741 device_printf(sc->dev, 742 "failed to create main DMA tag: %d\n", rc); 743 } 744 745 return (rc); 746 } 747 748 static inline int 749 enable_buffer_packing(struct adapter *sc) 750 { 751 752 if (sc->flags & BUF_PACKING_OK && 753 ((is_t5(sc) && buffer_packing) || /* 1 or -1 both ok for T5 */ 754 (is_t4(sc) && buffer_packing == 1))) 755 return (1); 756 return (0); 757 } 758 759 void 760 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 761 struct sysctl_oid_list *children) 762 { 763 764 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes", 765 CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A", 766 "freelist buffer sizes"); 767 768 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD, 769 NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)"); 770 771 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD, 772 NULL, fl_pad, "payload pad boundary (bytes)"); 773 774 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD, 775 NULL, spg_len, "status page size (bytes)"); 776 777 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD, 778 NULL, cong_drop, "congestion drop setting"); 779 780 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "buffer_packing", CTLFLAG_RD, 781 NULL, enable_buffer_packing(sc), 782 "pack multiple frames in one fl buffer"); 783 784 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD, 785 NULL, sc->sge.pack_boundary, "payload pack boundary (bytes)"); 786 } 787 788 int 789 t4_destroy_dma_tag(struct adapter *sc) 790 { 791 if (sc->dmat) 792 bus_dma_tag_destroy(sc->dmat); 793 794 return (0); 795 } 796 797 /* 798 * Allocate and initialize the firmware event queue and the management queue. 799 * 800 * Returns errno on failure. Resources allocated up to that point may still be 801 * allocated. Caller is responsible for cleanup in case this function fails. 802 */ 803 int 804 t4_setup_adapter_queues(struct adapter *sc) 805 { 806 int rc; 807 808 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 809 810 sysctl_ctx_init(&sc->ctx); 811 sc->flags |= ADAP_SYSCTL_CTX; 812 813 /* 814 * Firmware event queue 815 */ 816 rc = alloc_fwq(sc); 817 if (rc != 0) 818 return (rc); 819 820 /* 821 * Management queue. This is just a control queue that uses the fwq as 822 * its associated iq. 823 */ 824 rc = alloc_mgmtq(sc); 825 826 return (rc); 827 } 828 829 /* 830 * Idempotent 831 */ 832 int 833 t4_teardown_adapter_queues(struct adapter *sc) 834 { 835 836 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 837 838 /* Do this before freeing the queue */ 839 if (sc->flags & ADAP_SYSCTL_CTX) { 840 sysctl_ctx_free(&sc->ctx); 841 sc->flags &= ~ADAP_SYSCTL_CTX; 842 } 843 844 free_mgmtq(sc); 845 free_fwq(sc); 846 847 return (0); 848 } 849 850 static inline int 851 port_intr_count(struct port_info *pi) 852 { 853 int rc = 0; 854 855 if (pi->flags & INTR_RXQ) 856 rc += pi->nrxq; 857 #ifdef TCP_OFFLOAD 858 if (pi->flags & INTR_OFLD_RXQ) 859 rc += pi->nofldrxq; 860 #endif 861 #ifdef DEV_NETMAP 862 if (pi->flags & INTR_NM_RXQ) 863 rc += pi->nnmrxq; 864 #endif 865 return (rc); 866 } 867 868 static inline int 869 first_vector(struct port_info *pi) 870 { 871 struct adapter *sc = pi->adapter; 872 int rc = T4_EXTRA_INTR, i; 873 874 if (sc->intr_count == 1) 875 return (0); 876 877 for_each_port(sc, i) { 878 if (i == pi->port_id) 879 break; 880 881 rc += port_intr_count(sc->port[i]); 882 } 883 884 return (rc); 885 } 886 887 /* 888 * Given an arbitrary "index," come up with an iq that can be used by other 889 * queues (of this port) for interrupt forwarding, SGE egress updates, etc. 890 * The iq returned is guaranteed to be something that takes direct interrupts. 891 */ 892 static struct sge_iq * 893 port_intr_iq(struct port_info *pi, int idx) 894 { 895 struct adapter *sc = pi->adapter; 896 struct sge *s = &sc->sge; 897 struct sge_iq *iq = NULL; 898 int nintr, i; 899 900 if (sc->intr_count == 1) 901 return (&sc->sge.fwq); 902 903 nintr = port_intr_count(pi); 904 KASSERT(nintr != 0, 905 ("%s: pi %p has no exclusive interrupts, total interrupts = %d", 906 __func__, pi, sc->intr_count)); 907 #ifdef DEV_NETMAP 908 /* Exclude netmap queues as they can't take anyone else's interrupts */ 909 if (pi->flags & INTR_NM_RXQ) 910 nintr -= pi->nnmrxq; 911 KASSERT(nintr > 0, 912 ("%s: pi %p has nintr %d after netmap adjustment of %d", __func__, 913 pi, nintr, pi->nnmrxq)); 914 #endif 915 i = idx % nintr; 916 917 if (pi->flags & INTR_RXQ) { 918 if (i < pi->nrxq) { 919 iq = &s->rxq[pi->first_rxq + i].iq; 920 goto done; 921 } 922 i -= pi->nrxq; 923 } 924 #ifdef TCP_OFFLOAD 925 if (pi->flags & INTR_OFLD_RXQ) { 926 if (i < pi->nofldrxq) { 927 iq = &s->ofld_rxq[pi->first_ofld_rxq + i].iq; 928 goto done; 929 } 930 i -= pi->nofldrxq; 931 } 932 #endif 933 panic("%s: pi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__, 934 pi, pi->flags & INTR_ALL, idx, nintr); 935 done: 936 MPASS(iq != NULL); 937 KASSERT(iq->flags & IQ_INTR, 938 ("%s: iq %p (port %p, intr_flags 0x%lx, idx %d)", __func__, iq, pi, 939 pi->flags & INTR_ALL, idx)); 940 return (iq); 941 } 942 943 /* Maximum payload that can be delivered with a single iq descriptor */ 944 static inline int 945 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe) 946 { 947 int payload; 948 949 #ifdef TCP_OFFLOAD 950 if (toe) { 951 payload = sc->tt.rx_coalesce ? 952 G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu; 953 } else { 954 #endif 955 /* large enough even when hw VLAN extraction is disabled */ 956 payload = fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 957 mtu; 958 #ifdef TCP_OFFLOAD 959 } 960 #endif 961 payload = roundup2(payload, fl_pad); 962 963 return (payload); 964 } 965 966 int 967 t4_setup_port_queues(struct port_info *pi) 968 { 969 int rc = 0, i, j, intr_idx, iqid; 970 struct sge_rxq *rxq; 971 struct sge_txq *txq; 972 struct sge_wrq *ctrlq; 973 #ifdef TCP_OFFLOAD 974 struct sge_ofld_rxq *ofld_rxq; 975 struct sge_wrq *ofld_txq; 976 #endif 977 #ifdef DEV_NETMAP 978 struct sge_nm_rxq *nm_rxq; 979 struct sge_nm_txq *nm_txq; 980 #endif 981 char name[16]; 982 struct adapter *sc = pi->adapter; 983 struct ifnet *ifp = pi->ifp; 984 struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev); 985 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 986 int maxp, pack, mtu = ifp->if_mtu; 987 988 /* Interrupt vector to start from (when using multiple vectors) */ 989 intr_idx = first_vector(pi); 990 991 /* 992 * First pass over all NIC and TOE rx queues: 993 * a) initialize iq and fl 994 * b) allocate queue iff it will take direct interrupts. 995 */ 996 maxp = mtu_to_max_payload(sc, mtu, 0); 997 pack = enable_buffer_packing(sc); 998 if (pi->flags & INTR_RXQ) { 999 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq", 1000 CTLFLAG_RD, NULL, "rx queues"); 1001 } 1002 for_each_rxq(pi, i, rxq) { 1003 1004 init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq); 1005 1006 snprintf(name, sizeof(name), "%s rxq%d-fl", 1007 device_get_nameunit(pi->dev), i); 1008 init_fl(sc, &rxq->fl, pi->qsize_rxq / 8, maxp, pack, name); 1009 1010 if (pi->flags & INTR_RXQ) { 1011 rxq->iq.flags |= IQ_INTR; 1012 rc = alloc_rxq(pi, rxq, intr_idx, i, oid); 1013 if (rc != 0) 1014 goto done; 1015 intr_idx++; 1016 } 1017 } 1018 #ifdef TCP_OFFLOAD 1019 maxp = mtu_to_max_payload(sc, mtu, 1); 1020 if (is_offload(sc) && pi->flags & INTR_OFLD_RXQ) { 1021 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq", 1022 CTLFLAG_RD, NULL, 1023 "rx queues for offloaded TCP connections"); 1024 } 1025 for_each_ofld_rxq(pi, i, ofld_rxq) { 1026 1027 init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, 1028 pi->qsize_rxq); 1029 1030 snprintf(name, sizeof(name), "%s ofld_rxq%d-fl", 1031 device_get_nameunit(pi->dev), i); 1032 init_fl(sc, &ofld_rxq->fl, pi->qsize_rxq / 8, maxp, pack, name); 1033 1034 if (pi->flags & INTR_OFLD_RXQ) { 1035 ofld_rxq->iq.flags |= IQ_INTR; 1036 rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid); 1037 if (rc != 0) 1038 goto done; 1039 intr_idx++; 1040 } 1041 } 1042 #endif 1043 #ifdef DEV_NETMAP 1044 /* 1045 * We don't have buffers to back the netmap rx queues right now so we 1046 * create the queues in a way that doesn't set off any congestion signal 1047 * in the chip. 1048 */ 1049 if (pi->flags & INTR_NM_RXQ) { 1050 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_rxq", 1051 CTLFLAG_RD, NULL, "rx queues for netmap"); 1052 for_each_nm_rxq(pi, i, nm_rxq) { 1053 rc = alloc_nm_rxq(pi, nm_rxq, intr_idx, i, oid); 1054 if (rc != 0) 1055 goto done; 1056 intr_idx++; 1057 } 1058 } 1059 #endif 1060 1061 /* 1062 * Second pass over all NIC and TOE rx queues. The queues forwarding 1063 * their interrupts are allocated now. 1064 */ 1065 j = 0; 1066 if (!(pi->flags & INTR_RXQ)) { 1067 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq", 1068 CTLFLAG_RD, NULL, "rx queues"); 1069 for_each_rxq(pi, i, rxq) { 1070 MPASS(!(rxq->iq.flags & IQ_INTR)); 1071 1072 intr_idx = port_intr_iq(pi, j)->abs_id; 1073 1074 rc = alloc_rxq(pi, rxq, intr_idx, i, oid); 1075 if (rc != 0) 1076 goto done; 1077 j++; 1078 } 1079 } 1080 #ifdef TCP_OFFLOAD 1081 if (is_offload(sc) && !(pi->flags & INTR_OFLD_RXQ)) { 1082 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq", 1083 CTLFLAG_RD, NULL, 1084 "rx queues for offloaded TCP connections"); 1085 for_each_ofld_rxq(pi, i, ofld_rxq) { 1086 MPASS(!(ofld_rxq->iq.flags & IQ_INTR)); 1087 1088 intr_idx = port_intr_iq(pi, j)->abs_id; 1089 1090 rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid); 1091 if (rc != 0) 1092 goto done; 1093 j++; 1094 } 1095 } 1096 #endif 1097 #ifdef DEV_NETMAP 1098 if (!(pi->flags & INTR_NM_RXQ)) 1099 CXGBE_UNIMPLEMENTED(__func__); 1100 #endif 1101 1102 /* 1103 * Now the tx queues. Only one pass needed. 1104 */ 1105 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD, 1106 NULL, "tx queues"); 1107 j = 0; 1108 for_each_txq(pi, i, txq) { 1109 iqid = port_intr_iq(pi, j)->cntxt_id; 1110 snprintf(name, sizeof(name), "%s txq%d", 1111 device_get_nameunit(pi->dev), i); 1112 init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid, 1113 name); 1114 1115 rc = alloc_txq(pi, txq, i, oid); 1116 if (rc != 0) 1117 goto done; 1118 j++; 1119 } 1120 #ifdef TCP_OFFLOAD 1121 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq", 1122 CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections"); 1123 for_each_ofld_txq(pi, i, ofld_txq) { 1124 struct sysctl_oid *oid2; 1125 1126 iqid = port_intr_iq(pi, j)->cntxt_id; 1127 snprintf(name, sizeof(name), "%s ofld_txq%d", 1128 device_get_nameunit(pi->dev), i); 1129 init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan, 1130 iqid, name); 1131 1132 snprintf(name, sizeof(name), "%d", i); 1133 oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1134 name, CTLFLAG_RD, NULL, "offload tx queue"); 1135 1136 rc = alloc_wrq(sc, pi, ofld_txq, oid2); 1137 if (rc != 0) 1138 goto done; 1139 j++; 1140 } 1141 #endif 1142 #ifdef DEV_NETMAP 1143 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_txq", 1144 CTLFLAG_RD, NULL, "tx queues for netmap use"); 1145 for_each_nm_txq(pi, i, nm_txq) { 1146 iqid = pi->first_nm_rxq + (j % pi->nnmrxq); 1147 rc = alloc_nm_txq(pi, nm_txq, iqid, i, oid); 1148 if (rc != 0) 1149 goto done; 1150 j++; 1151 } 1152 #endif 1153 1154 /* 1155 * Finally, the control queue. 1156 */ 1157 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD, 1158 NULL, "ctrl queue"); 1159 ctrlq = &sc->sge.ctrlq[pi->port_id]; 1160 iqid = port_intr_iq(pi, 0)->cntxt_id; 1161 snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev)); 1162 init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name); 1163 rc = alloc_wrq(sc, pi, ctrlq, oid); 1164 1165 done: 1166 if (rc) 1167 t4_teardown_port_queues(pi); 1168 1169 return (rc); 1170 } 1171 1172 /* 1173 * Idempotent 1174 */ 1175 int 1176 t4_teardown_port_queues(struct port_info *pi) 1177 { 1178 int i; 1179 struct adapter *sc = pi->adapter; 1180 struct sge_rxq *rxq; 1181 struct sge_txq *txq; 1182 #ifdef TCP_OFFLOAD 1183 struct sge_ofld_rxq *ofld_rxq; 1184 struct sge_wrq *ofld_txq; 1185 #endif 1186 #ifdef DEV_NETMAP 1187 struct sge_nm_rxq *nm_rxq; 1188 struct sge_nm_txq *nm_txq; 1189 #endif 1190 1191 /* Do this before freeing the queues */ 1192 if (pi->flags & PORT_SYSCTL_CTX) { 1193 sysctl_ctx_free(&pi->ctx); 1194 pi->flags &= ~PORT_SYSCTL_CTX; 1195 } 1196 1197 /* 1198 * Take down all the tx queues first, as they reference the rx queues 1199 * (for egress updates, etc.). 1200 */ 1201 1202 free_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 1203 1204 for_each_txq(pi, i, txq) { 1205 free_txq(pi, txq); 1206 } 1207 #ifdef TCP_OFFLOAD 1208 for_each_ofld_txq(pi, i, ofld_txq) { 1209 free_wrq(sc, ofld_txq); 1210 } 1211 #endif 1212 #ifdef DEV_NETMAP 1213 for_each_nm_txq(pi, i, nm_txq) 1214 free_nm_txq(pi, nm_txq); 1215 #endif 1216 1217 /* 1218 * Then take down the rx queues that forward their interrupts, as they 1219 * reference other rx queues. 1220 */ 1221 1222 for_each_rxq(pi, i, rxq) { 1223 if ((rxq->iq.flags & IQ_INTR) == 0) 1224 free_rxq(pi, rxq); 1225 } 1226 #ifdef TCP_OFFLOAD 1227 for_each_ofld_rxq(pi, i, ofld_rxq) { 1228 if ((ofld_rxq->iq.flags & IQ_INTR) == 0) 1229 free_ofld_rxq(pi, ofld_rxq); 1230 } 1231 #endif 1232 #ifdef DEV_NETMAP 1233 for_each_nm_rxq(pi, i, nm_rxq) 1234 free_nm_rxq(pi, nm_rxq); 1235 #endif 1236 1237 /* 1238 * Then take down the rx queues that take direct interrupts. 1239 */ 1240 1241 for_each_rxq(pi, i, rxq) { 1242 if (rxq->iq.flags & IQ_INTR) 1243 free_rxq(pi, rxq); 1244 } 1245 #ifdef TCP_OFFLOAD 1246 for_each_ofld_rxq(pi, i, ofld_rxq) { 1247 if (ofld_rxq->iq.flags & IQ_INTR) 1248 free_ofld_rxq(pi, ofld_rxq); 1249 } 1250 #endif 1251 #ifdef DEV_NETMAP 1252 CXGBE_UNIMPLEMENTED(__func__); 1253 #endif 1254 1255 return (0); 1256 } 1257 1258 /* 1259 * Deals with errors and the firmware event queue. All data rx queues forward 1260 * their interrupt to the firmware event queue. 1261 */ 1262 void 1263 t4_intr_all(void *arg) 1264 { 1265 struct adapter *sc = arg; 1266 struct sge_iq *fwq = &sc->sge.fwq; 1267 1268 t4_intr_err(arg); 1269 if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) { 1270 service_iq(fwq, 0); 1271 atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE); 1272 } 1273 } 1274 1275 /* Deals with error interrupts */ 1276 void 1277 t4_intr_err(void *arg) 1278 { 1279 struct adapter *sc = arg; 1280 1281 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); 1282 t4_slow_intr_handler(sc); 1283 } 1284 1285 void 1286 t4_intr_evt(void *arg) 1287 { 1288 struct sge_iq *iq = arg; 1289 1290 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1291 service_iq(iq, 0); 1292 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1293 } 1294 } 1295 1296 void 1297 t4_intr(void *arg) 1298 { 1299 struct sge_iq *iq = arg; 1300 1301 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1302 service_iq(iq, 0); 1303 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1304 } 1305 } 1306 1307 /* 1308 * Deals with anything and everything on the given ingress queue. 1309 */ 1310 static int 1311 service_iq(struct sge_iq *iq, int budget) 1312 { 1313 struct sge_iq *q; 1314 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */ 1315 struct sge_fl *fl; /* Use iff IQ_HAS_FL */ 1316 struct adapter *sc = iq->adapter; 1317 struct iq_desc *d = &iq->desc[iq->cidx]; 1318 int ndescs = 0, limit; 1319 int rsp_type, refill; 1320 uint32_t lq; 1321 uint16_t fl_hw_cidx; 1322 struct mbuf *m0; 1323 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); 1324 #if defined(INET) || defined(INET6) 1325 const struct timeval lro_timeout = {0, sc->lro_timeout}; 1326 #endif 1327 1328 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); 1329 1330 limit = budget ? budget : iq->qsize / 16; 1331 1332 if (iq->flags & IQ_HAS_FL) { 1333 fl = &rxq->fl; 1334 fl_hw_cidx = fl->hw_cidx; /* stable snapshot */ 1335 } else { 1336 fl = NULL; 1337 fl_hw_cidx = 0; /* to silence gcc warning */ 1338 } 1339 1340 /* 1341 * We always come back and check the descriptor ring for new indirect 1342 * interrupts and other responses after running a single handler. 1343 */ 1344 for (;;) { 1345 while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { 1346 1347 rmb(); 1348 1349 refill = 0; 1350 m0 = NULL; 1351 rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); 1352 lq = be32toh(d->rsp.pldbuflen_qid); 1353 1354 switch (rsp_type) { 1355 case X_RSPD_TYPE_FLBUF: 1356 1357 KASSERT(iq->flags & IQ_HAS_FL, 1358 ("%s: data for an iq (%p) with no freelist", 1359 __func__, iq)); 1360 1361 m0 = get_fl_payload(sc, fl, lq); 1362 if (__predict_false(m0 == NULL)) 1363 goto process_iql; 1364 refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2; 1365 #ifdef T4_PKT_TIMESTAMP 1366 /* 1367 * 60 bit timestamp for the payload is 1368 * *(uint64_t *)m0->m_pktdat. Note that it is 1369 * in the leading free-space in the mbuf. The 1370 * kernel can clobber it during a pullup, 1371 * m_copymdata, etc. You need to make sure that 1372 * the mbuf reaches you unmolested if you care 1373 * about the timestamp. 1374 */ 1375 *(uint64_t *)m0->m_pktdat = 1376 be64toh(ctrl->u.last_flit) & 1377 0xfffffffffffffff; 1378 #endif 1379 1380 /* fall through */ 1381 1382 case X_RSPD_TYPE_CPL: 1383 KASSERT(d->rss.opcode < NUM_CPL_CMDS, 1384 ("%s: bad opcode %02x.", __func__, 1385 d->rss.opcode)); 1386 sc->cpl_handler[d->rss.opcode](iq, &d->rss, m0); 1387 break; 1388 1389 case X_RSPD_TYPE_INTR: 1390 1391 /* 1392 * Interrupts should be forwarded only to queues 1393 * that are not forwarding their interrupts. 1394 * This means service_iq can recurse but only 1 1395 * level deep. 1396 */ 1397 KASSERT(budget == 0, 1398 ("%s: budget %u, rsp_type %u", __func__, 1399 budget, rsp_type)); 1400 1401 /* 1402 * There are 1K interrupt-capable queues (qids 0 1403 * through 1023). A response type indicating a 1404 * forwarded interrupt with a qid >= 1K is an 1405 * iWARP async notification. 1406 */ 1407 if (lq >= 1024) { 1408 sc->an_handler(iq, &d->rsp); 1409 break; 1410 } 1411 1412 q = sc->sge.iqmap[lq - sc->sge.iq_start]; 1413 if (atomic_cmpset_int(&q->state, IQS_IDLE, 1414 IQS_BUSY)) { 1415 if (service_iq(q, q->qsize / 16) == 0) { 1416 atomic_cmpset_int(&q->state, 1417 IQS_BUSY, IQS_IDLE); 1418 } else { 1419 STAILQ_INSERT_TAIL(&iql, q, 1420 link); 1421 } 1422 } 1423 break; 1424 1425 default: 1426 KASSERT(0, 1427 ("%s: illegal response type %d on iq %p", 1428 __func__, rsp_type, iq)); 1429 log(LOG_ERR, 1430 "%s: illegal response type %d on iq %p", 1431 device_get_nameunit(sc->dev), rsp_type, iq); 1432 break; 1433 } 1434 1435 d++; 1436 if (__predict_false(++iq->cidx == iq->sidx)) { 1437 iq->cidx = 0; 1438 iq->gen ^= F_RSPD_GEN; 1439 d = &iq->desc[0]; 1440 } 1441 if (__predict_false(++ndescs == limit)) { 1442 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), 1443 V_CIDXINC(ndescs) | 1444 V_INGRESSQID(iq->cntxt_id) | 1445 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 1446 ndescs = 0; 1447 1448 #if defined(INET) || defined(INET6) 1449 if (iq->flags & IQ_LRO_ENABLED && 1450 sc->lro_timeout != 0) { 1451 tcp_lro_flush_inactive(&rxq->lro, 1452 &lro_timeout); 1453 } 1454 #endif 1455 1456 if (budget) { 1457 if (iq->flags & IQ_HAS_FL) { 1458 FL_LOCK(fl); 1459 refill_fl(sc, fl, 32); 1460 FL_UNLOCK(fl); 1461 } 1462 return (EINPROGRESS); 1463 } 1464 } 1465 if (refill) { 1466 FL_LOCK(fl); 1467 refill_fl(sc, fl, 32); 1468 FL_UNLOCK(fl); 1469 fl_hw_cidx = fl->hw_cidx; 1470 } 1471 } 1472 1473 process_iql: 1474 if (STAILQ_EMPTY(&iql)) 1475 break; 1476 1477 /* 1478 * Process the head only, and send it to the back of the list if 1479 * it's still not done. 1480 */ 1481 q = STAILQ_FIRST(&iql); 1482 STAILQ_REMOVE_HEAD(&iql, link); 1483 if (service_iq(q, q->qsize / 8) == 0) 1484 atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); 1485 else 1486 STAILQ_INSERT_TAIL(&iql, q, link); 1487 } 1488 1489 #if defined(INET) || defined(INET6) 1490 if (iq->flags & IQ_LRO_ENABLED) { 1491 struct lro_ctrl *lro = &rxq->lro; 1492 struct lro_entry *l; 1493 1494 while (!SLIST_EMPTY(&lro->lro_active)) { 1495 l = SLIST_FIRST(&lro->lro_active); 1496 SLIST_REMOVE_HEAD(&lro->lro_active, next); 1497 tcp_lro_flush(lro, l); 1498 } 1499 } 1500 #endif 1501 1502 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) | 1503 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); 1504 1505 if (iq->flags & IQ_HAS_FL) { 1506 int starved; 1507 1508 FL_LOCK(fl); 1509 starved = refill_fl(sc, fl, 64); 1510 FL_UNLOCK(fl); 1511 if (__predict_false(starved != 0)) 1512 add_fl_to_sfl(sc, fl); 1513 } 1514 1515 return (0); 1516 } 1517 1518 static inline int 1519 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll) 1520 { 1521 int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0; 1522 1523 if (rc) 1524 MPASS(cll->region3 >= CL_METADATA_SIZE); 1525 1526 return (rc); 1527 } 1528 1529 static inline struct cluster_metadata * 1530 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll, 1531 caddr_t cl) 1532 { 1533 1534 if (cl_has_metadata(fl, cll)) { 1535 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1536 1537 return ((struct cluster_metadata *)(cl + swz->size) - 1); 1538 } 1539 return (NULL); 1540 } 1541 1542 static void 1543 rxb_free(struct mbuf *m, void *arg1, void *arg2) 1544 { 1545 uma_zone_t zone = arg1; 1546 caddr_t cl = arg2; 1547 1548 uma_zfree(zone, cl); 1549 counter_u64_add(extfree_rels, 1); 1550 } 1551 1552 /* 1553 * The mbuf returned by this function could be allocated from zone_mbuf or 1554 * constructed in spare room in the cluster. 1555 * 1556 * The mbuf carries the payload in one of these ways 1557 * a) frame inside the mbuf (mbuf from zone_mbuf) 1558 * b) m_cljset (for clusters without metadata) zone_mbuf 1559 * c) m_extaddref (cluster with metadata) inline mbuf 1560 * d) m_extaddref (cluster with metadata) zone_mbuf 1561 */ 1562 static struct mbuf * 1563 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int total, int flags) 1564 { 1565 struct mbuf *m; 1566 struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; 1567 struct cluster_layout *cll = &sd->cll; 1568 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1569 struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx]; 1570 struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl); 1571 int len, padded_len; 1572 caddr_t payload; 1573 1574 len = min(total, hwb->size - fl->rx_offset); 1575 padded_len = roundup2(len, fl->buf_boundary); 1576 payload = sd->cl + cll->region1 + fl->rx_offset; 1577 1578 if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) { 1579 1580 /* 1581 * Copy payload into a freshly allocated mbuf. 1582 */ 1583 1584 m = flags & M_PKTHDR ? 1585 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1586 if (m == NULL) 1587 return (NULL); 1588 fl->mbuf_allocated++; 1589 #ifdef T4_PKT_TIMESTAMP 1590 /* Leave room for a timestamp */ 1591 m->m_data += 8; 1592 #endif 1593 /* copy data to mbuf */ 1594 bcopy(payload, mtod(m, caddr_t), len); 1595 1596 } else if (sd->nmbuf * MSIZE < cll->region1) { 1597 1598 /* 1599 * There's spare room in the cluster for an mbuf. Create one 1600 * and associate it with the payload that's in the cluster. 1601 */ 1602 1603 MPASS(clm != NULL); 1604 m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE); 1605 /* No bzero required */ 1606 if (m_init(m, NULL, 0, M_NOWAIT, MT_DATA, flags | M_NOFREE)) 1607 return (NULL); 1608 fl->mbuf_inlined++; 1609 m_extaddref(m, payload, padded_len, &clm->refcount, rxb_free, 1610 swz->zone, sd->cl); 1611 if (sd->nmbuf++ == 0) 1612 counter_u64_add(extfree_refs, 1); 1613 1614 } else { 1615 1616 /* 1617 * Grab an mbuf from zone_mbuf and associate it with the 1618 * payload in the cluster. 1619 */ 1620 1621 m = flags & M_PKTHDR ? 1622 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1623 if (m == NULL) 1624 return (NULL); 1625 fl->mbuf_allocated++; 1626 if (clm != NULL) { 1627 m_extaddref(m, payload, padded_len, &clm->refcount, 1628 rxb_free, swz->zone, sd->cl); 1629 if (sd->nmbuf++ == 0) 1630 counter_u64_add(extfree_refs, 1); 1631 } else { 1632 m_cljset(m, sd->cl, swz->type); 1633 sd->cl = NULL; /* consumed, not a recycle candidate */ 1634 } 1635 } 1636 if (flags & M_PKTHDR) 1637 m->m_pkthdr.len = total; 1638 m->m_len = len; 1639 1640 if (fl->flags & FL_BUF_PACKING) { 1641 fl->rx_offset += padded_len; 1642 MPASS(fl->rx_offset <= hwb->size); 1643 if (fl->rx_offset < hwb->size) 1644 return (m); /* without advancing the cidx */ 1645 } 1646 1647 if (__predict_false(++fl->cidx % 8 == 0)) { 1648 uint16_t cidx = fl->cidx / 8; 1649 1650 if (__predict_false(cidx == fl->sidx)) 1651 fl->cidx = cidx = 0; 1652 fl->hw_cidx = cidx; 1653 } 1654 fl->rx_offset = 0; 1655 1656 return (m); 1657 } 1658 1659 static struct mbuf * 1660 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf) 1661 { 1662 struct mbuf *m0, *m, **pnext; 1663 u_int len; 1664 1665 len = G_RSPD_LEN(len_newbuf); 1666 if (__predict_false(fl->flags & FL_BUF_RESUME)) { 1667 M_ASSERTPKTHDR(fl->m0); 1668 MPASS(len == fl->m0->m_pkthdr.len); 1669 MPASS(fl->remaining < len); 1670 1671 m0 = fl->m0; 1672 pnext = fl->pnext; 1673 len = fl->remaining; 1674 fl->flags &= ~FL_BUF_RESUME; 1675 goto get_segment; 1676 } 1677 1678 if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) { 1679 fl->rx_offset = 0; 1680 if (__predict_false(++fl->cidx % 8 == 0)) { 1681 uint16_t cidx = fl->cidx / 8; 1682 1683 if (__predict_false(cidx == fl->sidx)) 1684 fl->cidx = cidx = 0; 1685 fl->hw_cidx = cidx; 1686 } 1687 } 1688 1689 /* 1690 * Payload starts at rx_offset in the current hw buffer. Its length is 1691 * 'len' and it may span multiple hw buffers. 1692 */ 1693 1694 m0 = get_scatter_segment(sc, fl, len, M_PKTHDR); 1695 if (m0 == NULL) 1696 return (NULL); 1697 len -= m0->m_len; 1698 pnext = &m0->m_next; 1699 while (len > 0) { 1700 get_segment: 1701 MPASS(fl->rx_offset == 0); 1702 m = get_scatter_segment(sc, fl, len, 0); 1703 if (__predict_false(m == NULL)) { 1704 fl->m0 = m0; 1705 fl->pnext = pnext; 1706 fl->remaining = len; 1707 fl->flags |= FL_BUF_RESUME; 1708 return (NULL); 1709 } 1710 *pnext = m; 1711 pnext = &m->m_next; 1712 len -= m->m_len; 1713 } 1714 *pnext = NULL; 1715 1716 return (m0); 1717 } 1718 1719 static int 1720 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) 1721 { 1722 struct sge_rxq *rxq = iq_to_rxq(iq); 1723 struct ifnet *ifp = rxq->ifp; 1724 const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); 1725 #if defined(INET) || defined(INET6) 1726 struct lro_ctrl *lro = &rxq->lro; 1727 #endif 1728 1729 KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__, 1730 rss->opcode)); 1731 1732 m0->m_pkthdr.len -= fl_pktshift; 1733 m0->m_len -= fl_pktshift; 1734 m0->m_data += fl_pktshift; 1735 1736 m0->m_pkthdr.rcvif = ifp; 1737 m0->m_flags |= M_FLOWID; 1738 m0->m_pkthdr.flowid = be32toh(rss->hash_val); 1739 1740 if (cpl->csum_calc && !cpl->err_vec) { 1741 if (ifp->if_capenable & IFCAP_RXCSUM && 1742 cpl->l2info & htobe32(F_RXF_IP)) { 1743 m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED | 1744 CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 1745 rxq->rxcsum++; 1746 } else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 && 1747 cpl->l2info & htobe32(F_RXF_IP6)) { 1748 m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 | 1749 CSUM_PSEUDO_HDR); 1750 rxq->rxcsum++; 1751 } 1752 1753 if (__predict_false(cpl->ip_frag)) 1754 m0->m_pkthdr.csum_data = be16toh(cpl->csum); 1755 else 1756 m0->m_pkthdr.csum_data = 0xffff; 1757 } 1758 1759 if (cpl->vlan_ex) { 1760 m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); 1761 m0->m_flags |= M_VLANTAG; 1762 rxq->vlan_extraction++; 1763 } 1764 1765 #if defined(INET) || defined(INET6) 1766 if (cpl->l2info & htobe32(F_RXF_LRO) && 1767 iq->flags & IQ_LRO_ENABLED && 1768 tcp_lro_rx(lro, m0, 0) == 0) { 1769 /* queued for LRO */ 1770 } else 1771 #endif 1772 ifp->if_input(ifp, m0); 1773 1774 return (0); 1775 } 1776 1777 /* 1778 * Doesn't fail. Holds on to work requests it can't send right away. 1779 */ 1780 void 1781 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr) 1782 { 1783 struct sge_eq *eq = &wrq->eq; 1784 int can_reclaim; 1785 caddr_t dst; 1786 1787 TXQ_LOCK_ASSERT_OWNED(wrq); 1788 #ifdef TCP_OFFLOAD 1789 KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD || 1790 (eq->flags & EQ_TYPEMASK) == EQ_CTRL, 1791 ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK)); 1792 #else 1793 KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL, 1794 ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK)); 1795 #endif 1796 1797 if (__predict_true(wr != NULL)) 1798 STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link); 1799 1800 can_reclaim = reclaimable(eq); 1801 if (__predict_false(eq->flags & EQ_STALLED)) { 1802 if (eq->avail + can_reclaim < tx_resume_threshold(eq)) 1803 return; 1804 eq->flags &= ~EQ_STALLED; 1805 eq->unstalled++; 1806 } 1807 eq->cidx += can_reclaim; 1808 eq->avail += can_reclaim; 1809 if (__predict_false(eq->cidx >= eq->cap)) 1810 eq->cidx -= eq->cap; 1811 1812 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) { 1813 int ndesc; 1814 1815 if (__predict_false(wr->wr_len < 0 || 1816 wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) { 1817 1818 #ifdef INVARIANTS 1819 panic("%s: work request with length %d", __func__, 1820 wr->wr_len); 1821 #endif 1822 #ifdef KDB 1823 kdb_backtrace(); 1824 #endif 1825 log(LOG_ERR, "%s: %s work request with length %d", 1826 device_get_nameunit(sc->dev), __func__, wr->wr_len); 1827 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 1828 free_wrqe(wr); 1829 continue; 1830 } 1831 1832 ndesc = howmany(wr->wr_len, EQ_ESIZE); 1833 if (eq->avail < ndesc) { 1834 wrq->no_desc++; 1835 break; 1836 } 1837 1838 dst = (void *)&eq->desc[eq->pidx]; 1839 copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len); 1840 1841 eq->pidx += ndesc; 1842 eq->avail -= ndesc; 1843 if (__predict_false(eq->pidx >= eq->cap)) 1844 eq->pidx -= eq->cap; 1845 1846 eq->pending += ndesc; 1847 if (eq->pending >= 8) 1848 ring_eq_db(sc, eq); 1849 1850 wrq->tx_wrs++; 1851 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 1852 free_wrqe(wr); 1853 1854 if (eq->avail < 8) { 1855 can_reclaim = reclaimable(eq); 1856 eq->cidx += can_reclaim; 1857 eq->avail += can_reclaim; 1858 if (__predict_false(eq->cidx >= eq->cap)) 1859 eq->cidx -= eq->cap; 1860 } 1861 } 1862 1863 if (eq->pending) 1864 ring_eq_db(sc, eq); 1865 1866 if (wr != NULL) { 1867 eq->flags |= EQ_STALLED; 1868 if (callout_pending(&eq->tx_callout) == 0) 1869 callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq); 1870 } 1871 } 1872 1873 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */ 1874 #define TXPKTS_PKT_HDR ((\ 1875 sizeof(struct ulp_txpkt) + \ 1876 sizeof(struct ulptx_idata) + \ 1877 sizeof(struct cpl_tx_pkt_core) \ 1878 ) / 8) 1879 1880 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */ 1881 #define TXPKTS_WR_HDR (\ 1882 sizeof(struct fw_eth_tx_pkts_wr) / 8 + \ 1883 TXPKTS_PKT_HDR) 1884 1885 /* Header of a tx WR, before SGL of first packet (in flits) */ 1886 #define TXPKT_WR_HDR ((\ 1887 sizeof(struct fw_eth_tx_pkt_wr) + \ 1888 sizeof(struct cpl_tx_pkt_core) \ 1889 ) / 8 ) 1890 1891 /* Header of a tx LSO WR, before SGL of first packet (in flits) */ 1892 #define TXPKT_LSO_WR_HDR ((\ 1893 sizeof(struct fw_eth_tx_pkt_wr) + \ 1894 sizeof(struct cpl_tx_pkt_lso_core) + \ 1895 sizeof(struct cpl_tx_pkt_core) \ 1896 ) / 8 ) 1897 1898 int 1899 t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m) 1900 { 1901 struct port_info *pi = (void *)ifp->if_softc; 1902 struct adapter *sc = pi->adapter; 1903 struct sge_eq *eq = &txq->eq; 1904 struct buf_ring *br = txq->br; 1905 struct mbuf *next; 1906 int rc, coalescing, can_reclaim; 1907 struct txpkts txpkts; 1908 struct sgl sgl; 1909 1910 TXQ_LOCK_ASSERT_OWNED(txq); 1911 KASSERT(m, ("%s: called with nothing to do.", __func__)); 1912 KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH, 1913 ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK)); 1914 1915 prefetch(&eq->desc[eq->pidx]); 1916 prefetch(&txq->sdesc[eq->pidx]); 1917 1918 txpkts.npkt = 0;/* indicates there's nothing in txpkts */ 1919 coalescing = 0; 1920 1921 can_reclaim = reclaimable(eq); 1922 if (__predict_false(eq->flags & EQ_STALLED)) { 1923 if (eq->avail + can_reclaim < tx_resume_threshold(eq)) { 1924 txq->m = m; 1925 return (0); 1926 } 1927 eq->flags &= ~EQ_STALLED; 1928 eq->unstalled++; 1929 } 1930 1931 if (__predict_false(eq->flags & EQ_DOOMED)) { 1932 m_freem(m); 1933 while ((m = buf_ring_dequeue_sc(txq->br)) != NULL) 1934 m_freem(m); 1935 return (ENETDOWN); 1936 } 1937 1938 if (eq->avail < 8 && can_reclaim) 1939 reclaim_tx_descs(txq, can_reclaim, 32); 1940 1941 for (; m; m = next ? next : drbr_dequeue(ifp, br)) { 1942 1943 if (eq->avail < 8) 1944 break; 1945 1946 next = m->m_nextpkt; 1947 m->m_nextpkt = NULL; 1948 1949 if (next || buf_ring_peek(br)) 1950 coalescing = 1; 1951 1952 rc = get_pkt_sgl(txq, &m, &sgl, coalescing); 1953 if (rc != 0) { 1954 if (rc == ENOMEM) { 1955 1956 /* Short of resources, suspend tx */ 1957 1958 m->m_nextpkt = next; 1959 break; 1960 } 1961 1962 /* 1963 * Unrecoverable error for this packet, throw it away 1964 * and move on to the next. get_pkt_sgl may already 1965 * have freed m (it will be NULL in that case and the 1966 * m_freem here is still safe). 1967 */ 1968 1969 m_freem(m); 1970 continue; 1971 } 1972 1973 if (coalescing && 1974 add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) { 1975 1976 /* Successfully absorbed into txpkts */ 1977 1978 write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl); 1979 goto doorbell; 1980 } 1981 1982 /* 1983 * We weren't coalescing to begin with, or current frame could 1984 * not be coalesced (add_to_txpkts flushes txpkts if a frame 1985 * given to it can't be coalesced). Either way there should be 1986 * nothing in txpkts. 1987 */ 1988 KASSERT(txpkts.npkt == 0, 1989 ("%s: txpkts not empty: %d", __func__, txpkts.npkt)); 1990 1991 /* We're sending out individual packets now */ 1992 coalescing = 0; 1993 1994 if (eq->avail < 8) 1995 reclaim_tx_descs(txq, 0, 8); 1996 rc = write_txpkt_wr(pi, txq, m, &sgl); 1997 if (rc != 0) { 1998 1999 /* Short of hardware descriptors, suspend tx */ 2000 2001 /* 2002 * This is an unlikely but expensive failure. We've 2003 * done all the hard work (DMA mappings etc.) and now we 2004 * can't send out the packet. What's worse, we have to 2005 * spend even more time freeing up everything in sgl. 2006 */ 2007 txq->no_desc++; 2008 free_pkt_sgl(txq, &sgl); 2009 2010 m->m_nextpkt = next; 2011 break; 2012 } 2013 2014 ETHER_BPF_MTAP(ifp, m); 2015 if (sgl.nsegs == 0) 2016 m_freem(m); 2017 doorbell: 2018 if (eq->pending >= 8) 2019 ring_eq_db(sc, eq); 2020 2021 can_reclaim = reclaimable(eq); 2022 if (can_reclaim >= 32) 2023 reclaim_tx_descs(txq, can_reclaim, 64); 2024 } 2025 2026 if (txpkts.npkt > 0) 2027 write_txpkts_wr(txq, &txpkts); 2028 2029 /* 2030 * m not NULL means there was an error but we haven't thrown it away. 2031 * This can happen when we're short of tx descriptors (no_desc) or maybe 2032 * even DMA maps (no_dmamap). Either way, a credit flush and reclaim 2033 * will get things going again. 2034 */ 2035 if (m && !(eq->flags & EQ_CRFLUSHED)) { 2036 struct tx_sdesc *txsd = &txq->sdesc[eq->pidx]; 2037 2038 /* 2039 * If EQ_CRFLUSHED is not set then we know we have at least one 2040 * available descriptor because any WR that reduces eq->avail to 2041 * 0 also sets EQ_CRFLUSHED. 2042 */ 2043 KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__)); 2044 2045 txsd->desc_used = 1; 2046 txsd->credits = 0; 2047 write_eqflush_wr(eq); 2048 } 2049 txq->m = m; 2050 2051 if (eq->pending) 2052 ring_eq_db(sc, eq); 2053 2054 reclaim_tx_descs(txq, 0, 128); 2055 2056 if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0) 2057 callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq); 2058 2059 return (0); 2060 } 2061 2062 void 2063 t4_update_fl_bufsize(struct ifnet *ifp) 2064 { 2065 struct port_info *pi = ifp->if_softc; 2066 struct adapter *sc = pi->adapter; 2067 struct sge_rxq *rxq; 2068 #ifdef TCP_OFFLOAD 2069 struct sge_ofld_rxq *ofld_rxq; 2070 #endif 2071 struct sge_fl *fl; 2072 int i, maxp, mtu = ifp->if_mtu; 2073 2074 maxp = mtu_to_max_payload(sc, mtu, 0); 2075 for_each_rxq(pi, i, rxq) { 2076 fl = &rxq->fl; 2077 2078 FL_LOCK(fl); 2079 find_best_refill_source(sc, fl, maxp); 2080 FL_UNLOCK(fl); 2081 } 2082 #ifdef TCP_OFFLOAD 2083 maxp = mtu_to_max_payload(sc, mtu, 1); 2084 for_each_ofld_rxq(pi, i, ofld_rxq) { 2085 fl = &ofld_rxq->fl; 2086 2087 FL_LOCK(fl); 2088 find_best_refill_source(sc, fl, maxp); 2089 FL_UNLOCK(fl); 2090 } 2091 #endif 2092 } 2093 2094 int 2095 can_resume_tx(struct sge_eq *eq) 2096 { 2097 2098 return (eq->avail + reclaimable(eq) >= tx_resume_threshold(eq)); 2099 } 2100 2101 static inline void 2102 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, 2103 int qsize) 2104 { 2105 2106 KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, 2107 ("%s: bad tmr_idx %d", __func__, tmr_idx)); 2108 KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ 2109 ("%s: bad pktc_idx %d", __func__, pktc_idx)); 2110 2111 iq->flags = 0; 2112 iq->adapter = sc; 2113 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); 2114 iq->intr_pktc_idx = SGE_NCOUNTERS - 1; 2115 if (pktc_idx >= 0) { 2116 iq->intr_params |= F_QINTR_CNT_EN; 2117 iq->intr_pktc_idx = pktc_idx; 2118 } 2119 iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */ 2120 iq->sidx = iq->qsize - spg_len / IQ_ESIZE; 2121 } 2122 2123 static inline void 2124 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, int pack, 2125 char *name) 2126 { 2127 2128 fl->qsize = qsize; 2129 fl->sidx = qsize - spg_len / EQ_ESIZE; 2130 strlcpy(fl->lockname, name, sizeof(fl->lockname)); 2131 if (pack) 2132 fl->flags |= FL_BUF_PACKING; 2133 find_best_refill_source(sc, fl, maxp); 2134 find_safe_refill_source(sc, fl); 2135 } 2136 2137 static inline void 2138 init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan, 2139 uint16_t iqid, char *name) 2140 { 2141 KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan)); 2142 KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype)); 2143 2144 eq->flags = eqtype & EQ_TYPEMASK; 2145 eq->tx_chan = tx_chan; 2146 eq->iqid = iqid; 2147 eq->qsize = qsize; 2148 strlcpy(eq->lockname, name, sizeof(eq->lockname)); 2149 2150 TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq); 2151 callout_init(&eq->tx_callout, CALLOUT_MPSAFE); 2152 } 2153 2154 static int 2155 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, 2156 bus_dmamap_t *map, bus_addr_t *pa, void **va) 2157 { 2158 int rc; 2159 2160 rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, 2161 BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); 2162 if (rc != 0) { 2163 device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc); 2164 goto done; 2165 } 2166 2167 rc = bus_dmamem_alloc(*tag, va, 2168 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); 2169 if (rc != 0) { 2170 device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc); 2171 goto done; 2172 } 2173 2174 rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); 2175 if (rc != 0) { 2176 device_printf(sc->dev, "cannot load DMA map: %d\n", rc); 2177 goto done; 2178 } 2179 done: 2180 if (rc) 2181 free_ring(sc, *tag, *map, *pa, *va); 2182 2183 return (rc); 2184 } 2185 2186 static int 2187 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, 2188 bus_addr_t pa, void *va) 2189 { 2190 if (pa) 2191 bus_dmamap_unload(tag, map); 2192 if (va) 2193 bus_dmamem_free(tag, va, map); 2194 if (tag) 2195 bus_dma_tag_destroy(tag); 2196 2197 return (0); 2198 } 2199 2200 /* 2201 * Allocates the ring for an ingress queue and an optional freelist. If the 2202 * freelist is specified it will be allocated and then associated with the 2203 * ingress queue. 2204 * 2205 * Returns errno on failure. Resources allocated up to that point may still be 2206 * allocated. Caller is responsible for cleanup in case this function fails. 2207 * 2208 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then 2209 * the intr_idx specifies the vector, starting from 0. Otherwise it specifies 2210 * the abs_id of the ingress queue to which its interrupts should be forwarded. 2211 */ 2212 static int 2213 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl, 2214 int intr_idx, int cong) 2215 { 2216 int rc, i, cntxt_id; 2217 size_t len; 2218 struct fw_iq_cmd c; 2219 struct adapter *sc = iq->adapter; 2220 __be32 v = 0; 2221 2222 len = iq->qsize * IQ_ESIZE; 2223 rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, 2224 (void **)&iq->desc); 2225 if (rc != 0) 2226 return (rc); 2227 2228 bzero(&c, sizeof(c)); 2229 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 2230 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | 2231 V_FW_IQ_CMD_VFN(0)); 2232 2233 c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | 2234 FW_LEN16(c)); 2235 2236 /* Special handling for firmware event queue */ 2237 if (iq == &sc->sge.fwq) 2238 v |= F_FW_IQ_CMD_IQASYNCH; 2239 2240 if (iq->flags & IQ_INTR) { 2241 KASSERT(intr_idx < sc->intr_count, 2242 ("%s: invalid direct intr_idx %d", __func__, intr_idx)); 2243 } else 2244 v |= F_FW_IQ_CMD_IQANDST; 2245 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); 2246 2247 c.type_to_iqandstindex = htobe32(v | 2248 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 2249 V_FW_IQ_CMD_VIID(pi->viid) | 2250 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); 2251 c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 2252 F_FW_IQ_CMD_IQGTSMODE | 2253 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | 2254 V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4)); 2255 c.iqsize = htobe16(iq->qsize); 2256 c.iqaddr = htobe64(iq->ba); 2257 if (cong >= 0) 2258 c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN); 2259 2260 if (fl) { 2261 mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); 2262 2263 len = fl->qsize * EQ_ESIZE; 2264 rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, 2265 &fl->ba, (void **)&fl->desc); 2266 if (rc) 2267 return (rc); 2268 2269 /* Allocate space for one software descriptor per buffer. */ 2270 rc = alloc_fl_sdesc(fl); 2271 if (rc != 0) { 2272 device_printf(sc->dev, 2273 "failed to setup fl software descriptors: %d\n", 2274 rc); 2275 return (rc); 2276 } 2277 2278 if (fl->flags & FL_BUF_PACKING) { 2279 fl->lowat = roundup2(sc->sge.fl_starve_threshold2, 8); 2280 fl->buf_boundary = max(fl_pad, sc->sge.pack_boundary); 2281 } else { 2282 fl->lowat = roundup2(sc->sge.fl_starve_threshold, 8); 2283 fl->buf_boundary = fl_pad; 2284 } 2285 2286 c.iqns_to_fl0congen |= 2287 htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | 2288 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | 2289 (fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) | 2290 (fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN : 2291 0)); 2292 if (cong >= 0) { 2293 c.iqns_to_fl0congen |= 2294 htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | 2295 F_FW_IQ_CMD_FL0CONGCIF | 2296 F_FW_IQ_CMD_FL0CONGEN); 2297 } 2298 c.fl0dcaen_to_fl0cidxfthresh = 2299 htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) | 2300 V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B)); 2301 c.fl0size = htobe16(fl->qsize); 2302 c.fl0addr = htobe64(fl->ba); 2303 } 2304 2305 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2306 if (rc != 0) { 2307 device_printf(sc->dev, 2308 "failed to create ingress queue: %d\n", rc); 2309 return (rc); 2310 } 2311 2312 iq->cidx = 0; 2313 iq->gen = F_RSPD_GEN; 2314 iq->intr_next = iq->intr_params; 2315 iq->cntxt_id = be16toh(c.iqid); 2316 iq->abs_id = be16toh(c.physiqid); 2317 iq->flags |= IQ_ALLOCATED; 2318 2319 cntxt_id = iq->cntxt_id - sc->sge.iq_start; 2320 if (cntxt_id >= sc->sge.niq) { 2321 panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, 2322 cntxt_id, sc->sge.niq - 1); 2323 } 2324 sc->sge.iqmap[cntxt_id] = iq; 2325 2326 if (fl) { 2327 u_int qid; 2328 2329 iq->flags |= IQ_HAS_FL; 2330 fl->cntxt_id = be16toh(c.fl0id); 2331 fl->pidx = fl->cidx = 0; 2332 2333 cntxt_id = fl->cntxt_id - sc->sge.eq_start; 2334 if (cntxt_id >= sc->sge.neq) { 2335 panic("%s: fl->cntxt_id (%d) more than the max (%d)", 2336 __func__, cntxt_id, sc->sge.neq - 1); 2337 } 2338 sc->sge.eqmap[cntxt_id] = (void *)fl; 2339 2340 qid = fl->cntxt_id; 2341 if (isset(&sc->doorbells, DOORBELL_UDB)) { 2342 uint32_t s_qpp = sc->sge.eq_s_qpp; 2343 uint32_t mask = (1 << s_qpp) - 1; 2344 volatile uint8_t *udb; 2345 2346 udb = sc->udbs_base + UDBS_DB_OFFSET; 2347 udb += (qid >> s_qpp) << PAGE_SHIFT; 2348 qid &= mask; 2349 if (qid < PAGE_SIZE / UDBS_SEG_SIZE) { 2350 udb += qid << UDBS_SEG_SHIFT; 2351 qid = 0; 2352 } 2353 fl->udb = (volatile void *)udb; 2354 } 2355 fl->dbval = F_DBPRIO | V_QID(qid); 2356 if (is_t5(sc)) 2357 fl->dbval |= F_DBTYPE; 2358 2359 FL_LOCK(fl); 2360 /* Enough to make sure the SGE doesn't think it's starved */ 2361 refill_fl(sc, fl, fl->lowat); 2362 FL_UNLOCK(fl); 2363 } 2364 2365 if (is_t5(sc) && cong >= 0) { 2366 uint32_t param, val; 2367 2368 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 2369 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 2370 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id); 2371 if (cong == 0) 2372 val = 1 << 19; 2373 else { 2374 val = 2 << 19; 2375 for (i = 0; i < 4; i++) { 2376 if (cong & (1 << i)) 2377 val |= 1 << (i << 2); 2378 } 2379 } 2380 2381 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 2382 if (rc != 0) { 2383 /* report error but carry on */ 2384 device_printf(sc->dev, 2385 "failed to set congestion manager context for " 2386 "ingress queue %d: %d\n", iq->cntxt_id, rc); 2387 } 2388 } 2389 2390 /* Enable IQ interrupts */ 2391 atomic_store_rel_int(&iq->state, IQS_IDLE); 2392 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) | 2393 V_INGRESSQID(iq->cntxt_id)); 2394 2395 return (0); 2396 } 2397 2398 static int 2399 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl) 2400 { 2401 int rc; 2402 struct adapter *sc = iq->adapter; 2403 device_t dev; 2404 2405 if (sc == NULL) 2406 return (0); /* nothing to do */ 2407 2408 dev = pi ? pi->dev : sc->dev; 2409 2410 if (iq->flags & IQ_ALLOCATED) { 2411 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, 2412 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, 2413 fl ? fl->cntxt_id : 0xffff, 0xffff); 2414 if (rc != 0) { 2415 device_printf(dev, 2416 "failed to free queue %p: %d\n", iq, rc); 2417 return (rc); 2418 } 2419 iq->flags &= ~IQ_ALLOCATED; 2420 } 2421 2422 free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); 2423 2424 bzero(iq, sizeof(*iq)); 2425 2426 if (fl) { 2427 free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, 2428 fl->desc); 2429 2430 if (fl->sdesc) 2431 free_fl_sdesc(sc, fl); 2432 2433 if (mtx_initialized(&fl->fl_lock)) 2434 mtx_destroy(&fl->fl_lock); 2435 2436 bzero(fl, sizeof(*fl)); 2437 } 2438 2439 return (0); 2440 } 2441 2442 static void 2443 add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, 2444 struct sge_fl *fl) 2445 { 2446 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2447 2448 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 2449 "freelist"); 2450 children = SYSCTL_CHILDREN(oid); 2451 2452 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 2453 CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I", 2454 "SGE context id of the freelist"); 2455 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx, 2456 0, "consumer index"); 2457 if (fl->flags & FL_BUF_PACKING) { 2458 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset", 2459 CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset"); 2460 } 2461 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx, 2462 0, "producer index"); 2463 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated", 2464 CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated"); 2465 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined", 2466 CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters"); 2467 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated", 2468 CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated"); 2469 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled", 2470 CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled"); 2471 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled", 2472 CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)"); 2473 } 2474 2475 static int 2476 alloc_fwq(struct adapter *sc) 2477 { 2478 int rc, intr_idx; 2479 struct sge_iq *fwq = &sc->sge.fwq; 2480 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 2481 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2482 2483 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE); 2484 fwq->flags |= IQ_INTR; /* always */ 2485 intr_idx = sc->intr_count > 1 ? 1 : 0; 2486 rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1); 2487 if (rc != 0) { 2488 device_printf(sc->dev, 2489 "failed to create firmware event queue: %d\n", rc); 2490 return (rc); 2491 } 2492 2493 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD, 2494 NULL, "firmware event queue"); 2495 children = SYSCTL_CHILDREN(oid); 2496 2497 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id", 2498 CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I", 2499 "absolute id of the queue"); 2500 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id", 2501 CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I", 2502 "SGE context id of the queue"); 2503 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx", 2504 CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I", 2505 "consumer index"); 2506 2507 return (0); 2508 } 2509 2510 static int 2511 free_fwq(struct adapter *sc) 2512 { 2513 return free_iq_fl(NULL, &sc->sge.fwq, NULL); 2514 } 2515 2516 static int 2517 alloc_mgmtq(struct adapter *sc) 2518 { 2519 int rc; 2520 struct sge_wrq *mgmtq = &sc->sge.mgmtq; 2521 char name[16]; 2522 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 2523 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2524 2525 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD, 2526 NULL, "management queue"); 2527 2528 snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev)); 2529 init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan, 2530 sc->sge.fwq.cntxt_id, name); 2531 rc = alloc_wrq(sc, NULL, mgmtq, oid); 2532 if (rc != 0) { 2533 device_printf(sc->dev, 2534 "failed to create management queue: %d\n", rc); 2535 return (rc); 2536 } 2537 2538 return (0); 2539 } 2540 2541 static int 2542 free_mgmtq(struct adapter *sc) 2543 { 2544 2545 return free_wrq(sc, &sc->sge.mgmtq); 2546 } 2547 2548 static inline int 2549 tnl_cong(struct port_info *pi) 2550 { 2551 2552 if (cong_drop == -1) 2553 return (-1); 2554 else if (cong_drop == 1) 2555 return (0); 2556 else 2557 return (pi->rx_chan_map); 2558 } 2559 2560 static int 2561 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx, 2562 struct sysctl_oid *oid) 2563 { 2564 int rc; 2565 struct sysctl_oid_list *children; 2566 char name[16]; 2567 2568 rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi)); 2569 if (rc != 0) 2570 return (rc); 2571 2572 /* 2573 * The freelist is just barely above the starvation threshold right now, 2574 * fill it up a bit more. 2575 */ 2576 FL_LOCK(&rxq->fl); 2577 refill_fl(pi->adapter, &rxq->fl, 128); 2578 FL_UNLOCK(&rxq->fl); 2579 2580 #if defined(INET) || defined(INET6) 2581 rc = tcp_lro_init(&rxq->lro); 2582 if (rc != 0) 2583 return (rc); 2584 rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */ 2585 2586 if (pi->ifp->if_capenable & IFCAP_LRO) 2587 rxq->iq.flags |= IQ_LRO_ENABLED; 2588 #endif 2589 rxq->ifp = pi->ifp; 2590 2591 children = SYSCTL_CHILDREN(oid); 2592 2593 snprintf(name, sizeof(name), "%d", idx); 2594 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 2595 NULL, "rx queue"); 2596 children = SYSCTL_CHILDREN(oid); 2597 2598 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id", 2599 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I", 2600 "absolute id of the queue"); 2601 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id", 2602 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I", 2603 "SGE context id of the queue"); 2604 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx", 2605 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I", 2606 "consumer index"); 2607 #if defined(INET) || defined(INET6) 2608 SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, 2609 &rxq->lro.lro_queued, 0, NULL); 2610 SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, 2611 &rxq->lro.lro_flushed, 0, NULL); 2612 #endif 2613 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, 2614 &rxq->rxcsum, "# of times hardware assisted with checksum"); 2615 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction", 2616 CTLFLAG_RD, &rxq->vlan_extraction, 2617 "# of times hardware extracted 802.1Q tag"); 2618 2619 add_fl_sysctls(&pi->ctx, oid, &rxq->fl); 2620 2621 return (rc); 2622 } 2623 2624 static int 2625 free_rxq(struct port_info *pi, struct sge_rxq *rxq) 2626 { 2627 int rc; 2628 2629 #if defined(INET) || defined(INET6) 2630 if (rxq->lro.ifp) { 2631 tcp_lro_free(&rxq->lro); 2632 rxq->lro.ifp = NULL; 2633 } 2634 #endif 2635 2636 rc = free_iq_fl(pi, &rxq->iq, &rxq->fl); 2637 if (rc == 0) 2638 bzero(rxq, sizeof(*rxq)); 2639 2640 return (rc); 2641 } 2642 2643 #ifdef TCP_OFFLOAD 2644 static int 2645 alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq, 2646 int intr_idx, int idx, struct sysctl_oid *oid) 2647 { 2648 int rc; 2649 struct sysctl_oid_list *children; 2650 char name[16]; 2651 2652 rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 2653 pi->rx_chan_map); 2654 if (rc != 0) 2655 return (rc); 2656 2657 children = SYSCTL_CHILDREN(oid); 2658 2659 snprintf(name, sizeof(name), "%d", idx); 2660 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 2661 NULL, "rx queue"); 2662 children = SYSCTL_CHILDREN(oid); 2663 2664 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id", 2665 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16, 2666 "I", "absolute id of the queue"); 2667 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id", 2668 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16, 2669 "I", "SGE context id of the queue"); 2670 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx", 2671 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I", 2672 "consumer index"); 2673 2674 add_fl_sysctls(&pi->ctx, oid, &ofld_rxq->fl); 2675 2676 return (rc); 2677 } 2678 2679 static int 2680 free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq) 2681 { 2682 int rc; 2683 2684 rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl); 2685 if (rc == 0) 2686 bzero(ofld_rxq, sizeof(*ofld_rxq)); 2687 2688 return (rc); 2689 } 2690 #endif 2691 2692 #ifdef DEV_NETMAP 2693 static int 2694 alloc_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq, int intr_idx, 2695 int idx, struct sysctl_oid *oid) 2696 { 2697 int rc; 2698 struct sysctl_oid_list *children; 2699 struct sysctl_ctx_list *ctx; 2700 char name[16]; 2701 size_t len; 2702 struct adapter *sc = pi->adapter; 2703 struct netmap_adapter *na = NA(pi->nm_ifp); 2704 2705 MPASS(na != NULL); 2706 2707 len = pi->qsize_rxq * IQ_ESIZE; 2708 rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map, 2709 &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc); 2710 if (rc != 0) 2711 return (rc); 2712 2713 len = na->num_rx_desc * EQ_ESIZE + spg_len; 2714 rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map, 2715 &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc); 2716 if (rc != 0) 2717 return (rc); 2718 2719 nm_rxq->pi = pi; 2720 nm_rxq->nid = idx; 2721 nm_rxq->iq_cidx = 0; 2722 nm_rxq->iq_sidx = pi->qsize_rxq - spg_len / IQ_ESIZE; 2723 nm_rxq->iq_gen = F_RSPD_GEN; 2724 nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0; 2725 nm_rxq->fl_sidx = na->num_rx_desc; 2726 nm_rxq->intr_idx = intr_idx; 2727 2728 ctx = &pi->ctx; 2729 children = SYSCTL_CHILDREN(oid); 2730 2731 snprintf(name, sizeof(name), "%d", idx); 2732 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, 2733 "rx queue"); 2734 children = SYSCTL_CHILDREN(oid); 2735 2736 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", 2737 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16, 2738 "I", "absolute id of the queue"); 2739 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 2740 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16, 2741 "I", "SGE context id of the queue"); 2742 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 2743 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I", 2744 "consumer index"); 2745 2746 children = SYSCTL_CHILDREN(oid); 2747 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 2748 "freelist"); 2749 children = SYSCTL_CHILDREN(oid); 2750 2751 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 2752 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16, 2753 "I", "SGE context id of the freelist"); 2754 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, 2755 &nm_rxq->fl_cidx, 0, "consumer index"); 2756 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, 2757 &nm_rxq->fl_pidx, 0, "producer index"); 2758 2759 return (rc); 2760 } 2761 2762 2763 static int 2764 free_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq) 2765 { 2766 struct adapter *sc = pi->adapter; 2767 2768 free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba, 2769 nm_rxq->iq_desc); 2770 free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba, 2771 nm_rxq->fl_desc); 2772 2773 return (0); 2774 } 2775 2776 static int 2777 alloc_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq, int iqidx, int idx, 2778 struct sysctl_oid *oid) 2779 { 2780 int rc; 2781 size_t len; 2782 struct adapter *sc = pi->adapter; 2783 struct netmap_adapter *na = NA(pi->nm_ifp); 2784 char name[16]; 2785 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2786 2787 len = na->num_tx_desc * EQ_ESIZE + spg_len; 2788 rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map, 2789 &nm_txq->ba, (void **)&nm_txq->desc); 2790 if (rc) 2791 return (rc); 2792 2793 nm_txq->pidx = nm_txq->cidx = 0; 2794 nm_txq->sidx = na->num_tx_desc; 2795 nm_txq->nid = idx; 2796 nm_txq->iqidx = iqidx; 2797 nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 2798 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf)); 2799 2800 snprintf(name, sizeof(name), "%d", idx); 2801 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 2802 NULL, "netmap tx queue"); 2803 children = SYSCTL_CHILDREN(oid); 2804 2805 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 2806 &nm_txq->cntxt_id, 0, "SGE context id of the queue"); 2807 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx", 2808 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I", 2809 "consumer index"); 2810 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx", 2811 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I", 2812 "producer index"); 2813 2814 return (rc); 2815 } 2816 2817 static int 2818 free_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq) 2819 { 2820 struct adapter *sc = pi->adapter; 2821 2822 free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba, 2823 nm_txq->desc); 2824 2825 return (0); 2826 } 2827 #endif 2828 2829 static int 2830 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) 2831 { 2832 int rc, cntxt_id; 2833 struct fw_eq_ctrl_cmd c; 2834 2835 bzero(&c, sizeof(c)); 2836 2837 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | 2838 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | 2839 V_FW_EQ_CTRL_CMD_VFN(0)); 2840 c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC | 2841 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 2842 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */ 2843 c.physeqid_pkd = htobe32(0); 2844 c.fetchszm_to_iqid = 2845 htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 2846 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | 2847 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); 2848 c.dcaen_to_eqsize = 2849 htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 2850 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 2851 V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 2852 V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize)); 2853 c.eqaddr = htobe64(eq->ba); 2854 2855 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2856 if (rc != 0) { 2857 device_printf(sc->dev, 2858 "failed to create control queue %d: %d\n", eq->tx_chan, rc); 2859 return (rc); 2860 } 2861 eq->flags |= EQ_ALLOCATED; 2862 2863 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid)); 2864 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 2865 if (cntxt_id >= sc->sge.neq) 2866 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 2867 cntxt_id, sc->sge.neq - 1); 2868 sc->sge.eqmap[cntxt_id] = eq; 2869 2870 return (rc); 2871 } 2872 2873 static int 2874 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) 2875 { 2876 int rc, cntxt_id; 2877 struct fw_eq_eth_cmd c; 2878 2879 bzero(&c, sizeof(c)); 2880 2881 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | 2882 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | 2883 V_FW_EQ_ETH_CMD_VFN(0)); 2884 c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | 2885 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 2886 c.autoequiqe_to_viid = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid)); 2887 c.fetchszm_to_iqid = 2888 htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 2889 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | 2890 V_FW_EQ_ETH_CMD_IQID(eq->iqid)); 2891 c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 2892 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 2893 V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 2894 V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize)); 2895 c.eqaddr = htobe64(eq->ba); 2896 2897 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2898 if (rc != 0) { 2899 device_printf(pi->dev, 2900 "failed to create Ethernet egress queue: %d\n", rc); 2901 return (rc); 2902 } 2903 eq->flags |= EQ_ALLOCATED; 2904 2905 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); 2906 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 2907 if (cntxt_id >= sc->sge.neq) 2908 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 2909 cntxt_id, sc->sge.neq - 1); 2910 sc->sge.eqmap[cntxt_id] = eq; 2911 2912 return (rc); 2913 } 2914 2915 #ifdef TCP_OFFLOAD 2916 static int 2917 ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) 2918 { 2919 int rc, cntxt_id; 2920 struct fw_eq_ofld_cmd c; 2921 2922 bzero(&c, sizeof(c)); 2923 2924 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | 2925 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | 2926 V_FW_EQ_OFLD_CMD_VFN(0)); 2927 c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | 2928 F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 2929 c.fetchszm_to_iqid = 2930 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 2931 V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | 2932 F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); 2933 c.dcaen_to_eqsize = 2934 htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 2935 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 2936 V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 2937 V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize)); 2938 c.eqaddr = htobe64(eq->ba); 2939 2940 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2941 if (rc != 0) { 2942 device_printf(pi->dev, 2943 "failed to create egress queue for TCP offload: %d\n", rc); 2944 return (rc); 2945 } 2946 eq->flags |= EQ_ALLOCATED; 2947 2948 eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd)); 2949 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 2950 if (cntxt_id >= sc->sge.neq) 2951 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 2952 cntxt_id, sc->sge.neq - 1); 2953 sc->sge.eqmap[cntxt_id] = eq; 2954 2955 return (rc); 2956 } 2957 #endif 2958 2959 static int 2960 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) 2961 { 2962 int rc; 2963 size_t len; 2964 2965 mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); 2966 2967 len = eq->qsize * EQ_ESIZE; 2968 rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, 2969 &eq->ba, (void **)&eq->desc); 2970 if (rc) 2971 return (rc); 2972 2973 eq->cap = eq->qsize - spg_len / EQ_ESIZE; 2974 eq->spg = (void *)&eq->desc[eq->cap]; 2975 eq->avail = eq->cap - 1; /* one less to avoid cidx = pidx */ 2976 eq->pidx = eq->cidx = 0; 2977 eq->doorbells = sc->doorbells; 2978 2979 switch (eq->flags & EQ_TYPEMASK) { 2980 case EQ_CTRL: 2981 rc = ctrl_eq_alloc(sc, eq); 2982 break; 2983 2984 case EQ_ETH: 2985 rc = eth_eq_alloc(sc, pi, eq); 2986 break; 2987 2988 #ifdef TCP_OFFLOAD 2989 case EQ_OFLD: 2990 rc = ofld_eq_alloc(sc, pi, eq); 2991 break; 2992 #endif 2993 2994 default: 2995 panic("%s: invalid eq type %d.", __func__, 2996 eq->flags & EQ_TYPEMASK); 2997 } 2998 if (rc != 0) { 2999 device_printf(sc->dev, 3000 "failed to allocate egress queue(%d): %d\n", 3001 eq->flags & EQ_TYPEMASK, rc); 3002 } 3003 3004 eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus; 3005 3006 if (isset(&eq->doorbells, DOORBELL_UDB) || 3007 isset(&eq->doorbells, DOORBELL_UDBWC) || 3008 isset(&eq->doorbells, DOORBELL_WCWR)) { 3009 uint32_t s_qpp = sc->sge.eq_s_qpp; 3010 uint32_t mask = (1 << s_qpp) - 1; 3011 volatile uint8_t *udb; 3012 3013 udb = sc->udbs_base + UDBS_DB_OFFSET; 3014 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */ 3015 eq->udb_qid = eq->cntxt_id & mask; /* id in page */ 3016 if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE) 3017 clrbit(&eq->doorbells, DOORBELL_WCWR); 3018 else { 3019 udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */ 3020 eq->udb_qid = 0; 3021 } 3022 eq->udb = (volatile void *)udb; 3023 } 3024 3025 return (rc); 3026 } 3027 3028 static int 3029 free_eq(struct adapter *sc, struct sge_eq *eq) 3030 { 3031 int rc; 3032 3033 if (eq->flags & EQ_ALLOCATED) { 3034 switch (eq->flags & EQ_TYPEMASK) { 3035 case EQ_CTRL: 3036 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, 3037 eq->cntxt_id); 3038 break; 3039 3040 case EQ_ETH: 3041 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, 3042 eq->cntxt_id); 3043 break; 3044 3045 #ifdef TCP_OFFLOAD 3046 case EQ_OFLD: 3047 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, 3048 eq->cntxt_id); 3049 break; 3050 #endif 3051 3052 default: 3053 panic("%s: invalid eq type %d.", __func__, 3054 eq->flags & EQ_TYPEMASK); 3055 } 3056 if (rc != 0) { 3057 device_printf(sc->dev, 3058 "failed to free egress queue (%d): %d\n", 3059 eq->flags & EQ_TYPEMASK, rc); 3060 return (rc); 3061 } 3062 eq->flags &= ~EQ_ALLOCATED; 3063 } 3064 3065 free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); 3066 3067 if (mtx_initialized(&eq->eq_lock)) 3068 mtx_destroy(&eq->eq_lock); 3069 3070 bzero(eq, sizeof(*eq)); 3071 return (0); 3072 } 3073 3074 static int 3075 alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq, 3076 struct sysctl_oid *oid) 3077 { 3078 int rc; 3079 struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx; 3080 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3081 3082 rc = alloc_eq(sc, pi, &wrq->eq); 3083 if (rc) 3084 return (rc); 3085 3086 wrq->adapter = sc; 3087 STAILQ_INIT(&wrq->wr_list); 3088 3089 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3090 &wrq->eq.cntxt_id, 0, "SGE context id of the queue"); 3091 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3092 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I", 3093 "consumer index"); 3094 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx", 3095 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I", 3096 "producer index"); 3097 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD, 3098 &wrq->tx_wrs, "# of work requests"); 3099 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD, 3100 &wrq->no_desc, 0, 3101 "# of times queue ran out of hardware descriptors"); 3102 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD, 3103 &wrq->eq.unstalled, 0, "# of times queue recovered after stall"); 3104 3105 return (rc); 3106 } 3107 3108 static int 3109 free_wrq(struct adapter *sc, struct sge_wrq *wrq) 3110 { 3111 int rc; 3112 3113 rc = free_eq(sc, &wrq->eq); 3114 if (rc) 3115 return (rc); 3116 3117 bzero(wrq, sizeof(*wrq)); 3118 return (0); 3119 } 3120 3121 static int 3122 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx, 3123 struct sysctl_oid *oid) 3124 { 3125 int rc; 3126 struct adapter *sc = pi->adapter; 3127 struct sge_eq *eq = &txq->eq; 3128 char name[16]; 3129 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3130 3131 rc = alloc_eq(sc, pi, eq); 3132 if (rc) 3133 return (rc); 3134 3135 txq->ifp = pi->ifp; 3136 3137 txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE, 3138 M_ZERO | M_WAITOK); 3139 txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock); 3140 3141 rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR, 3142 BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS, 3143 BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag); 3144 if (rc != 0) { 3145 device_printf(sc->dev, 3146 "failed to create tx DMA tag: %d\n", rc); 3147 return (rc); 3148 } 3149 3150 /* 3151 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE 3152 * limit for any WR). txq->no_dmamap events shouldn't occur if maps is 3153 * sized for the worst case. 3154 */ 3155 rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8, 3156 M_WAITOK); 3157 if (rc != 0) { 3158 device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc); 3159 return (rc); 3160 } 3161 3162 snprintf(name, sizeof(name), "%d", idx); 3163 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3164 NULL, "tx queue"); 3165 children = SYSCTL_CHILDREN(oid); 3166 3167 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3168 &eq->cntxt_id, 0, "SGE context id of the queue"); 3169 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx", 3170 CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I", 3171 "consumer index"); 3172 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx", 3173 CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I", 3174 "producer index"); 3175 3176 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, 3177 &txq->txcsum, "# of times hardware assisted with checksum"); 3178 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion", 3179 CTLFLAG_RD, &txq->vlan_insertion, 3180 "# of times hardware inserted 802.1Q tag"); 3181 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, 3182 &txq->tso_wrs, "# of TSO work requests"); 3183 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, 3184 &txq->imm_wrs, "# of work requests with immediate data"); 3185 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, 3186 &txq->sgl_wrs, "# of work requests with direct SGL"); 3187 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, 3188 &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); 3189 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD, 3190 &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)"); 3191 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD, 3192 &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests"); 3193 3194 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD, 3195 &txq->br->br_drops, "# of drops in the buf_ring for this queue"); 3196 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD, 3197 &txq->no_dmamap, 0, "# of times txq ran out of DMA maps"); 3198 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD, 3199 &txq->no_desc, 0, "# of times txq ran out of hardware descriptors"); 3200 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD, 3201 &eq->egr_update, 0, "egress update notifications from the SGE"); 3202 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD, 3203 &eq->unstalled, 0, "# of times txq recovered after stall"); 3204 3205 return (rc); 3206 } 3207 3208 static int 3209 free_txq(struct port_info *pi, struct sge_txq *txq) 3210 { 3211 int rc; 3212 struct adapter *sc = pi->adapter; 3213 struct sge_eq *eq = &txq->eq; 3214 3215 rc = free_eq(sc, eq); 3216 if (rc) 3217 return (rc); 3218 3219 free(txq->sdesc, M_CXGBE); 3220 3221 if (txq->txmaps.maps) 3222 t4_free_tx_maps(&txq->txmaps, txq->tx_tag); 3223 3224 buf_ring_free(txq->br, M_CXGBE); 3225 3226 if (txq->tx_tag) 3227 bus_dma_tag_destroy(txq->tx_tag); 3228 3229 bzero(txq, sizeof(*txq)); 3230 return (0); 3231 } 3232 3233 static void 3234 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) 3235 { 3236 bus_addr_t *ba = arg; 3237 3238 KASSERT(nseg == 1, 3239 ("%s meant for single segment mappings only.", __func__)); 3240 3241 *ba = error ? 0 : segs->ds_addr; 3242 } 3243 3244 static inline void 3245 ring_fl_db(struct adapter *sc, struct sge_fl *fl) 3246 { 3247 uint32_t n, v; 3248 3249 n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx); 3250 MPASS(n > 0); 3251 3252 wmb(); 3253 v = fl->dbval | V_PIDX(n); 3254 if (fl->udb) 3255 *fl->udb = htole32(v); 3256 else 3257 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v); 3258 IDXINCR(fl->dbidx, n, fl->sidx); 3259 } 3260 3261 /* 3262 * Fills up the freelist by allocating upto 'n' buffers. Buffers that are 3263 * recycled do not count towards this allocation budget. 3264 * 3265 * Returns non-zero to indicate that this freelist should be added to the list 3266 * of starving freelists. 3267 */ 3268 static int 3269 refill_fl(struct adapter *sc, struct sge_fl *fl, int n) 3270 { 3271 __be64 *d; 3272 struct fl_sdesc *sd; 3273 uintptr_t pa; 3274 caddr_t cl; 3275 struct cluster_layout *cll; 3276 struct sw_zone_info *swz; 3277 struct cluster_metadata *clm; 3278 uint16_t max_pidx; 3279 uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */ 3280 3281 FL_LOCK_ASSERT_OWNED(fl); 3282 3283 /* 3284 * We always stop at the begining of the hardware descriptor that's just 3285 * before the one with the hw cidx. This is to avoid hw pidx = hw cidx, 3286 * which would mean an empty freelist to the chip. 3287 */ 3288 max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1; 3289 if (fl->pidx == max_pidx * 8) 3290 return (0); 3291 3292 d = &fl->desc[fl->pidx]; 3293 sd = &fl->sdesc[fl->pidx]; 3294 cll = &fl->cll_def; /* default layout */ 3295 swz = &sc->sge.sw_zone_info[cll->zidx]; 3296 3297 while (n > 0) { 3298 3299 if (sd->cl != NULL) { 3300 3301 if (sd->nmbuf == 0) { 3302 /* 3303 * Fast recycle without involving any atomics on 3304 * the cluster's metadata (if the cluster has 3305 * metadata). This happens when all frames 3306 * received in the cluster were small enough to 3307 * fit within a single mbuf each. 3308 */ 3309 fl->cl_fast_recycled++; 3310 #ifdef INVARIANTS 3311 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 3312 if (clm != NULL) 3313 MPASS(clm->refcount == 1); 3314 #endif 3315 goto recycled_fast; 3316 } 3317 3318 /* 3319 * Cluster is guaranteed to have metadata. Clusters 3320 * without metadata always take the fast recycle path 3321 * when they're recycled. 3322 */ 3323 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 3324 MPASS(clm != NULL); 3325 3326 if (atomic_fetchadd_int(&clm->refcount, -1) == 1) { 3327 fl->cl_recycled++; 3328 counter_u64_add(extfree_rels, 1); 3329 goto recycled; 3330 } 3331 sd->cl = NULL; /* gave up my reference */ 3332 } 3333 MPASS(sd->cl == NULL); 3334 alloc: 3335 cl = uma_zalloc(swz->zone, M_NOWAIT); 3336 if (__predict_false(cl == NULL)) { 3337 if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 || 3338 fl->cll_def.zidx == fl->cll_alt.zidx) 3339 break; 3340 3341 /* fall back to the safe zone */ 3342 cll = &fl->cll_alt; 3343 swz = &sc->sge.sw_zone_info[cll->zidx]; 3344 goto alloc; 3345 } 3346 fl->cl_allocated++; 3347 n--; 3348 3349 pa = pmap_kextract((vm_offset_t)cl); 3350 pa += cll->region1; 3351 sd->cl = cl; 3352 sd->cll = *cll; 3353 *d = htobe64(pa | cll->hwidx); 3354 clm = cl_metadata(sc, fl, cll, cl); 3355 if (clm != NULL) { 3356 recycled: 3357 #ifdef INVARIANTS 3358 clm->sd = sd; 3359 #endif 3360 clm->refcount = 1; 3361 } 3362 sd->nmbuf = 0; 3363 recycled_fast: 3364 d++; 3365 sd++; 3366 if (__predict_false(++fl->pidx % 8 == 0)) { 3367 uint16_t pidx = fl->pidx / 8; 3368 3369 if (__predict_false(pidx == fl->sidx)) { 3370 fl->pidx = 0; 3371 pidx = 0; 3372 sd = fl->sdesc; 3373 d = fl->desc; 3374 } 3375 if (pidx == max_pidx) 3376 break; 3377 3378 if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4) 3379 ring_fl_db(sc, fl); 3380 } 3381 } 3382 3383 if (fl->pidx / 8 != fl->dbidx) 3384 ring_fl_db(sc, fl); 3385 3386 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); 3387 } 3388 3389 /* 3390 * Attempt to refill all starving freelists. 3391 */ 3392 static void 3393 refill_sfl(void *arg) 3394 { 3395 struct adapter *sc = arg; 3396 struct sge_fl *fl, *fl_temp; 3397 3398 mtx_lock(&sc->sfl_lock); 3399 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { 3400 FL_LOCK(fl); 3401 refill_fl(sc, fl, 64); 3402 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { 3403 TAILQ_REMOVE(&sc->sfl, fl, link); 3404 fl->flags &= ~FL_STARVING; 3405 } 3406 FL_UNLOCK(fl); 3407 } 3408 3409 if (!TAILQ_EMPTY(&sc->sfl)) 3410 callout_schedule(&sc->sfl_callout, hz / 5); 3411 mtx_unlock(&sc->sfl_lock); 3412 } 3413 3414 static int 3415 alloc_fl_sdesc(struct sge_fl *fl) 3416 { 3417 3418 fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE, 3419 M_ZERO | M_WAITOK); 3420 3421 return (0); 3422 } 3423 3424 static void 3425 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl) 3426 { 3427 struct fl_sdesc *sd; 3428 struct cluster_metadata *clm; 3429 struct cluster_layout *cll; 3430 int i; 3431 3432 sd = fl->sdesc; 3433 for (i = 0; i < fl->sidx * 8; i++, sd++) { 3434 if (sd->cl == NULL) 3435 continue; 3436 3437 cll = &sd->cll; 3438 clm = cl_metadata(sc, fl, cll, sd->cl); 3439 if (sd->nmbuf == 0) 3440 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 3441 else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) { 3442 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 3443 counter_u64_add(extfree_rels, 1); 3444 } 3445 sd->cl = NULL; 3446 } 3447 3448 free(fl->sdesc, M_CXGBE); 3449 fl->sdesc = NULL; 3450 } 3451 3452 int 3453 t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count, 3454 int flags) 3455 { 3456 struct tx_map *txm; 3457 int i, rc; 3458 3459 txmaps->map_total = txmaps->map_avail = count; 3460 txmaps->map_cidx = txmaps->map_pidx = 0; 3461 3462 txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE, 3463 M_ZERO | flags); 3464 3465 txm = txmaps->maps; 3466 for (i = 0; i < count; i++, txm++) { 3467 rc = bus_dmamap_create(tx_tag, 0, &txm->map); 3468 if (rc != 0) 3469 goto failed; 3470 } 3471 3472 return (0); 3473 failed: 3474 while (--i >= 0) { 3475 txm--; 3476 bus_dmamap_destroy(tx_tag, txm->map); 3477 } 3478 KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__)); 3479 3480 free(txmaps->maps, M_CXGBE); 3481 txmaps->maps = NULL; 3482 3483 return (rc); 3484 } 3485 3486 void 3487 t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag) 3488 { 3489 struct tx_map *txm; 3490 int i; 3491 3492 txm = txmaps->maps; 3493 for (i = 0; i < txmaps->map_total; i++, txm++) { 3494 3495 if (txm->m) { 3496 bus_dmamap_unload(tx_tag, txm->map); 3497 m_freem(txm->m); 3498 txm->m = NULL; 3499 } 3500 3501 bus_dmamap_destroy(tx_tag, txm->map); 3502 } 3503 3504 free(txmaps->maps, M_CXGBE); 3505 txmaps->maps = NULL; 3506 } 3507 3508 /* 3509 * We'll do immediate data tx for non-TSO, but only when not coalescing. We're 3510 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes 3511 * of immediate data. 3512 */ 3513 #define IMM_LEN ( \ 3514 2 * EQ_ESIZE \ 3515 - sizeof(struct fw_eth_tx_pkt_wr) \ 3516 - sizeof(struct cpl_tx_pkt_core)) 3517 3518 /* 3519 * Returns non-zero on failure, no need to cleanup anything in that case. 3520 * 3521 * Note 1: We always try to defrag the mbuf if required and return EFBIG only 3522 * if the resulting chain still won't fit in a tx descriptor. 3523 * 3524 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf 3525 * does not have the TCP header in it. 3526 */ 3527 static int 3528 get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl, 3529 int sgl_only) 3530 { 3531 struct mbuf *m = *fp; 3532 struct tx_maps *txmaps; 3533 struct tx_map *txm; 3534 int rc, defragged = 0, n; 3535 3536 TXQ_LOCK_ASSERT_OWNED(txq); 3537 3538 if (m->m_pkthdr.tso_segsz) 3539 sgl_only = 1; /* Do not allow immediate data with LSO */ 3540 3541 start: sgl->nsegs = 0; 3542 3543 if (m->m_pkthdr.len <= IMM_LEN && !sgl_only) 3544 return (0); /* nsegs = 0 tells caller to use imm. tx */ 3545 3546 txmaps = &txq->txmaps; 3547 if (txmaps->map_avail == 0) { 3548 txq->no_dmamap++; 3549 return (ENOMEM); 3550 } 3551 txm = &txmaps->maps[txmaps->map_pidx]; 3552 3553 if (m->m_pkthdr.tso_segsz && m->m_len < 50) { 3554 *fp = m_pullup(m, 50); 3555 m = *fp; 3556 if (m == NULL) 3557 return (ENOBUFS); 3558 } 3559 3560 rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg, 3561 &sgl->nsegs, BUS_DMA_NOWAIT); 3562 if (rc == EFBIG && defragged == 0) { 3563 m = m_defrag(m, M_NOWAIT); 3564 if (m == NULL) 3565 return (EFBIG); 3566 3567 defragged = 1; 3568 *fp = m; 3569 goto start; 3570 } 3571 if (rc != 0) 3572 return (rc); 3573 3574 txm->m = m; 3575 txmaps->map_avail--; 3576 if (++txmaps->map_pidx == txmaps->map_total) 3577 txmaps->map_pidx = 0; 3578 3579 KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS, 3580 ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs)); 3581 3582 /* 3583 * Store the # of flits required to hold this frame's SGL in nflits. An 3584 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by 3585 * multiple (len0 + len1, addr0, addr1) tuples. If addr1 is not used 3586 * then len1 must be set to 0. 3587 */ 3588 n = sgl->nsegs - 1; 3589 sgl->nflits = (3 * n) / 2 + (n & 1) + 2; 3590 3591 return (0); 3592 } 3593 3594 3595 /* 3596 * Releases all the txq resources used up in the specified sgl. 3597 */ 3598 static int 3599 free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl) 3600 { 3601 struct tx_maps *txmaps; 3602 struct tx_map *txm; 3603 3604 TXQ_LOCK_ASSERT_OWNED(txq); 3605 3606 if (sgl->nsegs == 0) 3607 return (0); /* didn't use any map */ 3608 3609 txmaps = &txq->txmaps; 3610 3611 /* 1 pkt uses exactly 1 map, back it out */ 3612 3613 txmaps->map_avail++; 3614 if (txmaps->map_pidx > 0) 3615 txmaps->map_pidx--; 3616 else 3617 txmaps->map_pidx = txmaps->map_total - 1; 3618 3619 txm = &txmaps->maps[txmaps->map_pidx]; 3620 bus_dmamap_unload(txq->tx_tag, txm->map); 3621 txm->m = NULL; 3622 3623 return (0); 3624 } 3625 3626 static int 3627 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m, 3628 struct sgl *sgl) 3629 { 3630 struct sge_eq *eq = &txq->eq; 3631 struct fw_eth_tx_pkt_wr *wr; 3632 struct cpl_tx_pkt_core *cpl; 3633 uint32_t ctrl; /* used in many unrelated places */ 3634 uint64_t ctrl1; 3635 int nflits, ndesc, pktlen; 3636 struct tx_sdesc *txsd; 3637 caddr_t dst; 3638 3639 TXQ_LOCK_ASSERT_OWNED(txq); 3640 3641 pktlen = m->m_pkthdr.len; 3642 3643 /* 3644 * Do we have enough flits to send this frame out? 3645 */ 3646 ctrl = sizeof(struct cpl_tx_pkt_core); 3647 if (m->m_pkthdr.tso_segsz) { 3648 nflits = TXPKT_LSO_WR_HDR; 3649 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 3650 } else 3651 nflits = TXPKT_WR_HDR; 3652 if (sgl->nsegs > 0) 3653 nflits += sgl->nflits; 3654 else { 3655 nflits += howmany(pktlen, 8); 3656 ctrl += pktlen; 3657 } 3658 ndesc = howmany(nflits, 8); 3659 if (ndesc > eq->avail) 3660 return (ENOMEM); 3661 3662 /* Firmware work request header */ 3663 wr = (void *)&eq->desc[eq->pidx]; 3664 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | 3665 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 3666 ctrl = V_FW_WR_LEN16(howmany(nflits, 2)); 3667 if (eq->avail == ndesc) { 3668 if (!(eq->flags & EQ_CRFLUSHED)) { 3669 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ; 3670 eq->flags |= EQ_CRFLUSHED; 3671 } 3672 eq->flags |= EQ_STALLED; 3673 } 3674 3675 wr->equiq_to_len16 = htobe32(ctrl); 3676 wr->r3 = 0; 3677 3678 if (m->m_pkthdr.tso_segsz) { 3679 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 3680 struct ether_header *eh; 3681 void *l3hdr; 3682 #if defined(INET) || defined(INET6) 3683 struct tcphdr *tcp; 3684 #endif 3685 uint16_t eh_type; 3686 3687 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 3688 F_LSO_LAST_SLICE; 3689 3690 eh = mtod(m, struct ether_header *); 3691 eh_type = ntohs(eh->ether_type); 3692 if (eh_type == ETHERTYPE_VLAN) { 3693 struct ether_vlan_header *evh = (void *)eh; 3694 3695 ctrl |= V_LSO_ETHHDR_LEN(1); 3696 l3hdr = evh + 1; 3697 eh_type = ntohs(evh->evl_proto); 3698 } else 3699 l3hdr = eh + 1; 3700 3701 switch (eh_type) { 3702 #ifdef INET6 3703 case ETHERTYPE_IPV6: 3704 { 3705 struct ip6_hdr *ip6 = l3hdr; 3706 3707 /* 3708 * XXX-BZ For now we do not pretend to support 3709 * IPv6 extension headers. 3710 */ 3711 KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO " 3712 "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt)); 3713 tcp = (struct tcphdr *)(ip6 + 1); 3714 ctrl |= F_LSO_IPV6; 3715 ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) | 3716 V_LSO_TCPHDR_LEN(tcp->th_off); 3717 break; 3718 } 3719 #endif 3720 #ifdef INET 3721 case ETHERTYPE_IP: 3722 { 3723 struct ip *ip = l3hdr; 3724 3725 tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4); 3726 ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) | 3727 V_LSO_TCPHDR_LEN(tcp->th_off); 3728 break; 3729 } 3730 #endif 3731 default: 3732 panic("%s: CSUM_TSO but no supported IP version " 3733 "(0x%04x)", __func__, eh_type); 3734 } 3735 3736 lso->lso_ctrl = htobe32(ctrl); 3737 lso->ipid_ofst = htobe16(0); 3738 lso->mss = htobe16(m->m_pkthdr.tso_segsz); 3739 lso->seqno_offset = htobe32(0); 3740 lso->len = htobe32(pktlen); 3741 3742 cpl = (void *)(lso + 1); 3743 3744 txq->tso_wrs++; 3745 } else 3746 cpl = (void *)(wr + 1); 3747 3748 /* Checksum offload */ 3749 ctrl1 = 0; 3750 if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))) 3751 ctrl1 |= F_TXPKT_IPCSUM_DIS; 3752 if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | 3753 CSUM_TCP_IPV6 | CSUM_TSO))) 3754 ctrl1 |= F_TXPKT_L4CSUM_DIS; 3755 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 3756 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 3757 txq->txcsum++; /* some hardware assistance provided */ 3758 3759 /* VLAN tag insertion */ 3760 if (m->m_flags & M_VLANTAG) { 3761 ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); 3762 txq->vlan_insertion++; 3763 } 3764 3765 /* CPL header */ 3766 cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3767 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf)); 3768 cpl->pack = 0; 3769 cpl->len = htobe16(pktlen); 3770 cpl->ctrl1 = htobe64(ctrl1); 3771 3772 /* Software descriptor */ 3773 txsd = &txq->sdesc[eq->pidx]; 3774 txsd->desc_used = ndesc; 3775 3776 eq->pending += ndesc; 3777 eq->avail -= ndesc; 3778 eq->pidx += ndesc; 3779 if (eq->pidx >= eq->cap) 3780 eq->pidx -= eq->cap; 3781 3782 /* SGL */ 3783 dst = (void *)(cpl + 1); 3784 if (sgl->nsegs > 0) { 3785 txsd->credits = 1; 3786 txq->sgl_wrs++; 3787 write_sgl_to_txd(eq, sgl, &dst); 3788 } else { 3789 txsd->credits = 0; 3790 txq->imm_wrs++; 3791 for (; m; m = m->m_next) { 3792 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); 3793 #ifdef INVARIANTS 3794 pktlen -= m->m_len; 3795 #endif 3796 } 3797 #ifdef INVARIANTS 3798 KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen)); 3799 #endif 3800 3801 } 3802 3803 txq->txpkt_wrs++; 3804 return (0); 3805 } 3806 3807 /* 3808 * Returns 0 to indicate that m has been accepted into a coalesced tx work 3809 * request. It has either been folded into txpkts or txpkts was flushed and m 3810 * has started a new coalesced work request (as the first frame in a fresh 3811 * txpkts). 3812 * 3813 * Returns non-zero to indicate a failure - caller is responsible for 3814 * transmitting m, if there was anything in txpkts it has been flushed. 3815 */ 3816 static int 3817 add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts, 3818 struct mbuf *m, struct sgl *sgl) 3819 { 3820 struct sge_eq *eq = &txq->eq; 3821 int can_coalesce; 3822 struct tx_sdesc *txsd; 3823 int flits; 3824 3825 TXQ_LOCK_ASSERT_OWNED(txq); 3826 3827 KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__)); 3828 3829 if (txpkts->npkt > 0) { 3830 flits = TXPKTS_PKT_HDR + sgl->nflits; 3831 can_coalesce = m->m_pkthdr.tso_segsz == 0 && 3832 txpkts->nflits + flits <= TX_WR_FLITS && 3833 txpkts->nflits + flits <= eq->avail * 8 && 3834 txpkts->plen + m->m_pkthdr.len < 65536; 3835 3836 if (can_coalesce) { 3837 txpkts->npkt++; 3838 txpkts->nflits += flits; 3839 txpkts->plen += m->m_pkthdr.len; 3840 3841 txsd = &txq->sdesc[eq->pidx]; 3842 txsd->credits++; 3843 3844 return (0); 3845 } 3846 3847 /* 3848 * Couldn't coalesce m into txpkts. The first order of business 3849 * is to send txpkts on its way. Then we'll revisit m. 3850 */ 3851 write_txpkts_wr(txq, txpkts); 3852 } 3853 3854 /* 3855 * Check if we can start a new coalesced tx work request with m as 3856 * the first packet in it. 3857 */ 3858 3859 KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__)); 3860 3861 flits = TXPKTS_WR_HDR + sgl->nflits; 3862 can_coalesce = m->m_pkthdr.tso_segsz == 0 && 3863 flits <= eq->avail * 8 && flits <= TX_WR_FLITS; 3864 3865 if (can_coalesce == 0) 3866 return (EINVAL); 3867 3868 /* 3869 * Start a fresh coalesced tx WR with m as the first frame in it. 3870 */ 3871 txpkts->npkt = 1; 3872 txpkts->nflits = flits; 3873 txpkts->flitp = &eq->desc[eq->pidx].flit[2]; 3874 txpkts->plen = m->m_pkthdr.len; 3875 3876 txsd = &txq->sdesc[eq->pidx]; 3877 txsd->credits = 1; 3878 3879 return (0); 3880 } 3881 3882 /* 3883 * Note that write_txpkts_wr can never run out of hardware descriptors (but 3884 * write_txpkt_wr can). add_to_txpkts ensures that a frame is accepted for 3885 * coalescing only if sufficient hardware descriptors are available. 3886 */ 3887 static void 3888 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts) 3889 { 3890 struct sge_eq *eq = &txq->eq; 3891 struct fw_eth_tx_pkts_wr *wr; 3892 struct tx_sdesc *txsd; 3893 uint32_t ctrl; 3894 int ndesc; 3895 3896 TXQ_LOCK_ASSERT_OWNED(txq); 3897 3898 ndesc = howmany(txpkts->nflits, 8); 3899 3900 wr = (void *)&eq->desc[eq->pidx]; 3901 wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)); 3902 ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2)); 3903 if (eq->avail == ndesc) { 3904 if (!(eq->flags & EQ_CRFLUSHED)) { 3905 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ; 3906 eq->flags |= EQ_CRFLUSHED; 3907 } 3908 eq->flags |= EQ_STALLED; 3909 } 3910 wr->equiq_to_len16 = htobe32(ctrl); 3911 wr->plen = htobe16(txpkts->plen); 3912 wr->npkt = txpkts->npkt; 3913 wr->r3 = wr->type = 0; 3914 3915 /* Everything else already written */ 3916 3917 txsd = &txq->sdesc[eq->pidx]; 3918 txsd->desc_used = ndesc; 3919 3920 KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__)); 3921 3922 eq->pending += ndesc; 3923 eq->avail -= ndesc; 3924 eq->pidx += ndesc; 3925 if (eq->pidx >= eq->cap) 3926 eq->pidx -= eq->cap; 3927 3928 txq->txpkts_pkts += txpkts->npkt; 3929 txq->txpkts_wrs++; 3930 txpkts->npkt = 0; /* emptied */ 3931 } 3932 3933 static inline void 3934 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq, 3935 struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl) 3936 { 3937 struct ulp_txpkt *ulpmc; 3938 struct ulptx_idata *ulpsc; 3939 struct cpl_tx_pkt_core *cpl; 3940 struct sge_eq *eq = &txq->eq; 3941 uintptr_t flitp, start, end; 3942 uint64_t ctrl; 3943 caddr_t dst; 3944 3945 KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__)); 3946 3947 start = (uintptr_t)eq->desc; 3948 end = (uintptr_t)eq->spg; 3949 3950 /* Checksum offload */ 3951 ctrl = 0; 3952 if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))) 3953 ctrl |= F_TXPKT_IPCSUM_DIS; 3954 if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | 3955 CSUM_TCP_IPV6 | CSUM_TSO))) 3956 ctrl |= F_TXPKT_L4CSUM_DIS; 3957 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 3958 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 3959 txq->txcsum++; /* some hardware assistance provided */ 3960 3961 /* VLAN tag insertion */ 3962 if (m->m_flags & M_VLANTAG) { 3963 ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); 3964 txq->vlan_insertion++; 3965 } 3966 3967 /* 3968 * The previous packet's SGL must have ended at a 16 byte boundary (this 3969 * is required by the firmware/hardware). It follows that flitp cannot 3970 * wrap around between the ULPTX master command and ULPTX subcommand (8 3971 * bytes each), and that it can not wrap around in the middle of the 3972 * cpl_tx_pkt_core either. 3973 */ 3974 flitp = (uintptr_t)txpkts->flitp; 3975 KASSERT((flitp & 0xf) == 0, 3976 ("%s: last SGL did not end at 16 byte boundary: %p", 3977 __func__, txpkts->flitp)); 3978 3979 /* ULP master command */ 3980 ulpmc = (void *)flitp; 3981 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) | 3982 V_ULP_TXPKT_FID(eq->iqid)); 3983 ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) + 3984 sizeof(*cpl) + 8 * sgl->nflits, 16)); 3985 3986 /* ULP subcommand */ 3987 ulpsc = (void *)(ulpmc + 1); 3988 ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) | 3989 F_ULP_TX_SC_MORE); 3990 ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); 3991 3992 flitp += sizeof(*ulpmc) + sizeof(*ulpsc); 3993 if (flitp == end) 3994 flitp = start; 3995 3996 /* CPL_TX_PKT */ 3997 cpl = (void *)flitp; 3998 cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3999 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf)); 4000 cpl->pack = 0; 4001 cpl->len = htobe16(m->m_pkthdr.len); 4002 cpl->ctrl1 = htobe64(ctrl); 4003 4004 flitp += sizeof(*cpl); 4005 if (flitp == end) 4006 flitp = start; 4007 4008 /* SGL for this frame */ 4009 dst = (caddr_t)flitp; 4010 txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst); 4011 txpkts->flitp = (void *)dst; 4012 4013 KASSERT(((uintptr_t)dst & 0xf) == 0, 4014 ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst)); 4015 } 4016 4017 /* 4018 * If the SGL ends on an address that is not 16 byte aligned, this function will 4019 * add a 0 filled flit at the end. It returns 1 in that case. 4020 */ 4021 static int 4022 write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to) 4023 { 4024 __be64 *flitp, *end; 4025 struct ulptx_sgl *usgl; 4026 bus_dma_segment_t *seg; 4027 int i, padded; 4028 4029 KASSERT(sgl->nsegs > 0 && sgl->nflits > 0, 4030 ("%s: bad SGL - nsegs=%d, nflits=%d", 4031 __func__, sgl->nsegs, sgl->nflits)); 4032 4033 KASSERT(((uintptr_t)(*to) & 0xf) == 0, 4034 ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); 4035 4036 flitp = (__be64 *)(*to); 4037 end = flitp + sgl->nflits; 4038 seg = &sgl->seg[0]; 4039 usgl = (void *)flitp; 4040 4041 /* 4042 * We start at a 16 byte boundary somewhere inside the tx descriptor 4043 * ring, so we're at least 16 bytes away from the status page. There is 4044 * no chance of a wrap around in the middle of usgl (which is 16 bytes). 4045 */ 4046 4047 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 4048 V_ULPTX_NSGE(sgl->nsegs)); 4049 usgl->len0 = htobe32(seg->ds_len); 4050 usgl->addr0 = htobe64(seg->ds_addr); 4051 seg++; 4052 4053 if ((uintptr_t)end <= (uintptr_t)eq->spg) { 4054 4055 /* Won't wrap around at all */ 4056 4057 for (i = 0; i < sgl->nsegs - 1; i++, seg++) { 4058 usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len); 4059 usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr); 4060 } 4061 if (i & 1) 4062 usgl->sge[i / 2].len[1] = htobe32(0); 4063 } else { 4064 4065 /* Will wrap somewhere in the rest of the SGL */ 4066 4067 /* 2 flits already written, write the rest flit by flit */ 4068 flitp = (void *)(usgl + 1); 4069 for (i = 0; i < sgl->nflits - 2; i++) { 4070 if ((uintptr_t)flitp == (uintptr_t)eq->spg) 4071 flitp = (void *)eq->desc; 4072 *flitp++ = get_flit(seg, sgl->nsegs - 1, i); 4073 } 4074 end = flitp; 4075 } 4076 4077 if ((uintptr_t)end & 0xf) { 4078 *(uint64_t *)end = 0; 4079 end++; 4080 padded = 1; 4081 } else 4082 padded = 0; 4083 4084 if ((uintptr_t)end == (uintptr_t)eq->spg) 4085 *to = (void *)eq->desc; 4086 else 4087 *to = (void *)end; 4088 4089 return (padded); 4090 } 4091 4092 static inline void 4093 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) 4094 { 4095 if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) { 4096 bcopy(from, *to, len); 4097 (*to) += len; 4098 } else { 4099 int portion = (uintptr_t)eq->spg - (uintptr_t)(*to); 4100 4101 bcopy(from, *to, portion); 4102 from += portion; 4103 portion = len - portion; /* remaining */ 4104 bcopy(from, (void *)eq->desc, portion); 4105 (*to) = (caddr_t)eq->desc + portion; 4106 } 4107 } 4108 4109 static inline void 4110 ring_eq_db(struct adapter *sc, struct sge_eq *eq) 4111 { 4112 u_int db, pending; 4113 4114 db = eq->doorbells; 4115 pending = eq->pending; 4116 if (pending > 1) 4117 clrbit(&db, DOORBELL_WCWR); 4118 eq->pending = 0; 4119 wmb(); 4120 4121 switch (ffs(db) - 1) { 4122 case DOORBELL_UDB: 4123 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending)); 4124 return; 4125 4126 case DOORBELL_WCWR: { 4127 volatile uint64_t *dst, *src; 4128 int i; 4129 4130 /* 4131 * Queues whose 128B doorbell segment fits in the page do not 4132 * use relative qid (udb_qid is always 0). Only queues with 4133 * doorbell segments can do WCWR. 4134 */ 4135 KASSERT(eq->udb_qid == 0 && pending == 1, 4136 ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p", 4137 __func__, eq->doorbells, pending, eq->pidx, eq)); 4138 4139 dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET - 4140 UDBS_DB_OFFSET); 4141 i = eq->pidx ? eq->pidx - 1 : eq->cap - 1; 4142 src = (void *)&eq->desc[i]; 4143 while (src != (void *)&eq->desc[i + 1]) 4144 *dst++ = *src++; 4145 wmb(); 4146 return; 4147 } 4148 4149 case DOORBELL_UDBWC: 4150 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending)); 4151 wmb(); 4152 return; 4153 4154 case DOORBELL_KDB: 4155 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), 4156 V_QID(eq->cntxt_id) | V_PIDX(pending)); 4157 return; 4158 } 4159 } 4160 4161 static inline int 4162 reclaimable(struct sge_eq *eq) 4163 { 4164 unsigned int cidx; 4165 4166 cidx = eq->spg->cidx; /* stable snapshot */ 4167 cidx = be16toh(cidx); 4168 4169 if (cidx >= eq->cidx) 4170 return (cidx - eq->cidx); 4171 else 4172 return (cidx + eq->cap - eq->cidx); 4173 } 4174 4175 /* 4176 * There are "can_reclaim" tx descriptors ready to be reclaimed. Reclaim as 4177 * many as possible but stop when there are around "n" mbufs to free. 4178 * 4179 * The actual number reclaimed is provided as the return value. 4180 */ 4181 static int 4182 reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n) 4183 { 4184 struct tx_sdesc *txsd; 4185 struct tx_maps *txmaps; 4186 struct tx_map *txm; 4187 unsigned int reclaimed, maps; 4188 struct sge_eq *eq = &txq->eq; 4189 4190 TXQ_LOCK_ASSERT_OWNED(txq); 4191 4192 if (can_reclaim == 0) 4193 can_reclaim = reclaimable(eq); 4194 4195 maps = reclaimed = 0; 4196 while (can_reclaim && maps < n) { 4197 int ndesc; 4198 4199 txsd = &txq->sdesc[eq->cidx]; 4200 ndesc = txsd->desc_used; 4201 4202 /* Firmware doesn't return "partial" credits. */ 4203 KASSERT(can_reclaim >= ndesc, 4204 ("%s: unexpected number of credits: %d, %d", 4205 __func__, can_reclaim, ndesc)); 4206 4207 maps += txsd->credits; 4208 4209 reclaimed += ndesc; 4210 can_reclaim -= ndesc; 4211 4212 eq->cidx += ndesc; 4213 if (__predict_false(eq->cidx >= eq->cap)) 4214 eq->cidx -= eq->cap; 4215 } 4216 4217 txmaps = &txq->txmaps; 4218 txm = &txmaps->maps[txmaps->map_cidx]; 4219 if (maps) 4220 prefetch(txm->m); 4221 4222 eq->avail += reclaimed; 4223 KASSERT(eq->avail < eq->cap, /* avail tops out at (cap - 1) */ 4224 ("%s: too many descriptors available", __func__)); 4225 4226 txmaps->map_avail += maps; 4227 KASSERT(txmaps->map_avail <= txmaps->map_total, 4228 ("%s: too many maps available", __func__)); 4229 4230 while (maps--) { 4231 struct tx_map *next; 4232 4233 next = txm + 1; 4234 if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total)) 4235 next = txmaps->maps; 4236 prefetch(next->m); 4237 4238 bus_dmamap_unload(txq->tx_tag, txm->map); 4239 m_freem(txm->m); 4240 txm->m = NULL; 4241 4242 txm = next; 4243 if (__predict_false(++txmaps->map_cidx == txmaps->map_total)) 4244 txmaps->map_cidx = 0; 4245 } 4246 4247 return (reclaimed); 4248 } 4249 4250 static void 4251 write_eqflush_wr(struct sge_eq *eq) 4252 { 4253 struct fw_eq_flush_wr *wr; 4254 4255 EQ_LOCK_ASSERT_OWNED(eq); 4256 KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__)); 4257 KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__)); 4258 4259 wr = (void *)&eq->desc[eq->pidx]; 4260 bzero(wr, sizeof(*wr)); 4261 wr->opcode = FW_EQ_FLUSH_WR; 4262 wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) | 4263 F_FW_WR_EQUEQ | F_FW_WR_EQUIQ); 4264 4265 eq->flags |= (EQ_CRFLUSHED | EQ_STALLED); 4266 eq->pending++; 4267 eq->avail--; 4268 if (++eq->pidx == eq->cap) 4269 eq->pidx = 0; 4270 } 4271 4272 static __be64 4273 get_flit(bus_dma_segment_t *sgl, int nsegs, int idx) 4274 { 4275 int i = (idx / 3) * 2; 4276 4277 switch (idx % 3) { 4278 case 0: { 4279 __be64 rc; 4280 4281 rc = htobe32(sgl[i].ds_len); 4282 if (i + 1 < nsegs) 4283 rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32; 4284 4285 return (rc); 4286 } 4287 case 1: 4288 return htobe64(sgl[i].ds_addr); 4289 case 2: 4290 return htobe64(sgl[i + 1].ds_addr); 4291 } 4292 4293 return (0); 4294 } 4295 4296 static void 4297 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp) 4298 { 4299 int8_t zidx, hwidx, idx; 4300 uint16_t region1, region3; 4301 int spare, spare_needed, n; 4302 struct sw_zone_info *swz; 4303 struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0]; 4304 4305 /* 4306 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize 4307 * large enough for the max payload and cluster metadata. Otherwise 4308 * settle for the largest bufsize that leaves enough room in the cluster 4309 * for metadata. 4310 * 4311 * Without buffer packing: Look for the smallest zone which has a 4312 * bufsize large enough for the max payload. Settle for the largest 4313 * bufsize available if there's nothing big enough for max payload. 4314 */ 4315 spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0; 4316 swz = &sc->sge.sw_zone_info[0]; 4317 hwidx = -1; 4318 for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) { 4319 if (swz->size > largest_rx_cluster) { 4320 if (__predict_true(hwidx != -1)) 4321 break; 4322 4323 /* 4324 * This is a misconfiguration. largest_rx_cluster is 4325 * preventing us from finding a refill source. See 4326 * dev.t5nex.<n>.buffer_sizes to figure out why. 4327 */ 4328 device_printf(sc->dev, "largest_rx_cluster=%u leaves no" 4329 " refill source for fl %p (dma %u). Ignored.\n", 4330 largest_rx_cluster, fl, maxp); 4331 } 4332 for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) { 4333 hwb = &hwb_list[idx]; 4334 spare = swz->size - hwb->size; 4335 if (spare < spare_needed) 4336 continue; 4337 4338 hwidx = idx; /* best option so far */ 4339 if (hwb->size >= maxp) { 4340 4341 if ((fl->flags & FL_BUF_PACKING) == 0) 4342 goto done; /* stop looking (not packing) */ 4343 4344 if (swz->size >= safest_rx_cluster) 4345 goto done; /* stop looking (packing) */ 4346 } 4347 break; /* keep looking, next zone */ 4348 } 4349 } 4350 done: 4351 /* A usable hwidx has been located. */ 4352 MPASS(hwidx != -1); 4353 hwb = &hwb_list[hwidx]; 4354 zidx = hwb->zidx; 4355 swz = &sc->sge.sw_zone_info[zidx]; 4356 region1 = 0; 4357 region3 = swz->size - hwb->size; 4358 4359 /* 4360 * Stay within this zone and see if there is a better match when mbuf 4361 * inlining is allowed. Remember that the hwidx's are sorted in 4362 * decreasing order of size (so in increasing order of spare area). 4363 */ 4364 for (idx = hwidx; idx != -1; idx = hwb->next) { 4365 hwb = &hwb_list[idx]; 4366 spare = swz->size - hwb->size; 4367 4368 if (allow_mbufs_in_cluster == 0 || hwb->size < maxp) 4369 break; 4370 if (spare < CL_METADATA_SIZE + MSIZE) 4371 continue; 4372 n = (spare - CL_METADATA_SIZE) / MSIZE; 4373 if (n > howmany(hwb->size, maxp)) 4374 break; 4375 4376 hwidx = idx; 4377 if (fl->flags & FL_BUF_PACKING) { 4378 region1 = n * MSIZE; 4379 region3 = spare - region1; 4380 } else { 4381 region1 = MSIZE; 4382 region3 = spare - region1; 4383 break; 4384 } 4385 } 4386 4387 KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES, 4388 ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp)); 4389 KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES, 4390 ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp)); 4391 KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 == 4392 sc->sge.sw_zone_info[zidx].size, 4393 ("%s: bad buffer layout for fl %p, maxp %d. " 4394 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4395 sc->sge.sw_zone_info[zidx].size, region1, 4396 sc->sge.hw_buf_info[hwidx].size, region3)); 4397 if (fl->flags & FL_BUF_PACKING || region1 > 0) { 4398 KASSERT(region3 >= CL_METADATA_SIZE, 4399 ("%s: no room for metadata. fl %p, maxp %d; " 4400 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4401 sc->sge.sw_zone_info[zidx].size, region1, 4402 sc->sge.hw_buf_info[hwidx].size, region3)); 4403 KASSERT(region1 % MSIZE == 0, 4404 ("%s: bad mbuf region for fl %p, maxp %d. " 4405 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4406 sc->sge.sw_zone_info[zidx].size, region1, 4407 sc->sge.hw_buf_info[hwidx].size, region3)); 4408 } 4409 4410 fl->cll_def.zidx = zidx; 4411 fl->cll_def.hwidx = hwidx; 4412 fl->cll_def.region1 = region1; 4413 fl->cll_def.region3 = region3; 4414 } 4415 4416 static void 4417 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl) 4418 { 4419 struct sge *s = &sc->sge; 4420 struct hw_buf_info *hwb; 4421 struct sw_zone_info *swz; 4422 int spare; 4423 int8_t hwidx; 4424 4425 if (fl->flags & FL_BUF_PACKING) 4426 hwidx = s->safe_hwidx2; /* with room for metadata */ 4427 else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) { 4428 hwidx = s->safe_hwidx2; 4429 hwb = &s->hw_buf_info[hwidx]; 4430 swz = &s->sw_zone_info[hwb->zidx]; 4431 spare = swz->size - hwb->size; 4432 4433 /* no good if there isn't room for an mbuf as well */ 4434 if (spare < CL_METADATA_SIZE + MSIZE) 4435 hwidx = s->safe_hwidx1; 4436 } else 4437 hwidx = s->safe_hwidx1; 4438 4439 if (hwidx == -1) { 4440 /* No fallback source */ 4441 fl->cll_alt.hwidx = -1; 4442 fl->cll_alt.zidx = -1; 4443 4444 return; 4445 } 4446 4447 hwb = &s->hw_buf_info[hwidx]; 4448 swz = &s->sw_zone_info[hwb->zidx]; 4449 spare = swz->size - hwb->size; 4450 fl->cll_alt.hwidx = hwidx; 4451 fl->cll_alt.zidx = hwb->zidx; 4452 if (allow_mbufs_in_cluster) 4453 fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE; 4454 else 4455 fl->cll_alt.region1 = 0; 4456 fl->cll_alt.region3 = spare - fl->cll_alt.region1; 4457 } 4458 4459 static void 4460 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) 4461 { 4462 mtx_lock(&sc->sfl_lock); 4463 FL_LOCK(fl); 4464 if ((fl->flags & FL_DOOMED) == 0) { 4465 fl->flags |= FL_STARVING; 4466 TAILQ_INSERT_TAIL(&sc->sfl, fl, link); 4467 callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc); 4468 } 4469 FL_UNLOCK(fl); 4470 mtx_unlock(&sc->sfl_lock); 4471 } 4472 4473 static int 4474 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, 4475 struct mbuf *m) 4476 { 4477 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); 4478 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); 4479 struct adapter *sc = iq->adapter; 4480 struct sge *s = &sc->sge; 4481 struct sge_eq *eq; 4482 4483 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 4484 rss->opcode)); 4485 4486 eq = s->eqmap[qid - s->eq_start]; 4487 EQ_LOCK(eq); 4488 KASSERT(eq->flags & EQ_CRFLUSHED, 4489 ("%s: unsolicited egress update", __func__)); 4490 eq->flags &= ~EQ_CRFLUSHED; 4491 eq->egr_update++; 4492 4493 if (__predict_false(eq->flags & EQ_DOOMED)) 4494 wakeup_one(eq); 4495 else if (eq->flags & EQ_STALLED && can_resume_tx(eq)) 4496 taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task); 4497 EQ_UNLOCK(eq); 4498 4499 return (0); 4500 } 4501 4502 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */ 4503 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \ 4504 offsetof(struct cpl_fw6_msg, data)); 4505 4506 static int 4507 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 4508 { 4509 struct adapter *sc = iq->adapter; 4510 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); 4511 4512 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 4513 rss->opcode)); 4514 4515 if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) { 4516 const struct rss_header *rss2; 4517 4518 rss2 = (const struct rss_header *)&cpl->data[0]; 4519 return (sc->cpl_handler[rss2->opcode](iq, rss2, m)); 4520 } 4521 4522 return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0])); 4523 } 4524 4525 static int 4526 sysctl_uint16(SYSCTL_HANDLER_ARGS) 4527 { 4528 uint16_t *id = arg1; 4529 int i = *id; 4530 4531 return sysctl_handle_int(oidp, &i, 0, req); 4532 } 4533 4534 static int 4535 sysctl_bufsizes(SYSCTL_HANDLER_ARGS) 4536 { 4537 struct sge *s = arg1; 4538 struct hw_buf_info *hwb = &s->hw_buf_info[0]; 4539 struct sw_zone_info *swz = &s->sw_zone_info[0]; 4540 int i, rc; 4541 struct sbuf sb; 4542 char c; 4543 4544 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 4545 for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) { 4546 if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster) 4547 c = '*'; 4548 else 4549 c = '\0'; 4550 4551 sbuf_printf(&sb, "%u%c ", hwb->size, c); 4552 } 4553 sbuf_trim(&sb); 4554 sbuf_finish(&sb); 4555 rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 4556 sbuf_delete(&sb); 4557 return (rc); 4558 } 4559