xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision f02f7422801bb39f5eaab8fc383fa7b70c467ff9)
1 /*-
2  * Copyright (c) 2011 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #include <sys/types.h>
35 #include <sys/eventhandler.h>
36 #include <sys/mbuf.h>
37 #include <sys/socket.h>
38 #include <sys/kernel.h>
39 #include <sys/kdb.h>
40 #include <sys/malloc.h>
41 #include <sys/queue.h>
42 #include <sys/sbuf.h>
43 #include <sys/taskqueue.h>
44 #include <sys/time.h>
45 #include <sys/sysctl.h>
46 #include <sys/smp.h>
47 #include <sys/counter.h>
48 #include <net/bpf.h>
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/if_vlan_var.h>
52 #include <netinet/in.h>
53 #include <netinet/ip.h>
54 #include <netinet/ip6.h>
55 #include <netinet/tcp.h>
56 #include <machine/md_var.h>
57 #include <vm/vm.h>
58 #include <vm/pmap.h>
59 #ifdef DEV_NETMAP
60 #include <machine/bus.h>
61 #include <sys/selinfo.h>
62 #include <net/if_var.h>
63 #include <net/netmap.h>
64 #include <dev/netmap/netmap_kern.h>
65 #endif
66 
67 #include "common/common.h"
68 #include "common/t4_regs.h"
69 #include "common/t4_regs_values.h"
70 #include "common/t4_msg.h"
71 
72 #ifdef T4_PKT_TIMESTAMP
73 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
74 #else
75 #define RX_COPY_THRESHOLD MINCLSIZE
76 #endif
77 
78 /*
79  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
80  * 0-7 are valid values.
81  */
82 int fl_pktshift = 2;
83 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
84 
85 /*
86  * Pad ethernet payload up to this boundary.
87  * -1: driver should figure out a good value.
88  *  0: disable padding.
89  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
90  */
91 int fl_pad = -1;
92 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
93 
94 /*
95  * Status page length.
96  * -1: driver should figure out a good value.
97  *  64 or 128 are the only other valid values.
98  */
99 int spg_len = -1;
100 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
101 
102 /*
103  * Congestion drops.
104  * -1: no congestion feedback (not recommended).
105  *  0: backpressure the channel instead of dropping packets right away.
106  *  1: no backpressure, drop packets for the congested queue immediately.
107  */
108 static int cong_drop = 0;
109 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
110 
111 /*
112  * Deliver multiple frames in the same free list buffer if they fit.
113  * -1: let the driver decide whether to enable buffer packing or not.
114  *  0: disable buffer packing.
115  *  1: enable buffer packing.
116  */
117 static int buffer_packing = -1;
118 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
119 
120 /*
121  * Start next frame in a packed buffer at this boundary.
122  * -1: driver should figure out a good value.
123  * T4:
124  * ---
125  * if fl_pad != 0
126  * 	value specified here will be overridden by fl_pad.
127  * else
128  * 	power of 2 from 32 to 4096 (both inclusive) is a valid value here.
129  * T5:
130  * ---
131  * 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
132  */
133 static int fl_pack = -1;
134 static int t4_fl_pack;
135 static int t5_fl_pack;
136 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
137 
138 /*
139  * Allow the driver to create mbuf(s) in a cluster allocated for rx.
140  * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
141  * 1: ok to create mbuf(s) within a cluster if there is room.
142  */
143 static int allow_mbufs_in_cluster = 1;
144 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
145 
146 /*
147  * Largest rx cluster size that the driver is allowed to allocate.
148  */
149 static int largest_rx_cluster = MJUM16BYTES;
150 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
151 
152 /*
153  * Size of cluster allocation that's most likely to succeed.  The driver will
154  * fall back to this size if it fails to allocate clusters larger than this.
155  */
156 static int safest_rx_cluster = PAGE_SIZE;
157 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
158 
159 /* Used to track coalesced tx work request */
160 struct txpkts {
161 	uint64_t *flitp;	/* ptr to flit where next pkt should start */
162 	uint8_t npkt;		/* # of packets in this work request */
163 	uint8_t nflits;		/* # of flits used by this work request */
164 	uint16_t plen;		/* total payload (sum of all packets) */
165 };
166 
167 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
168 struct sgl {
169 	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
170 	int nflits;		/* # of flits needed for the SGL */
171 	bus_dma_segment_t seg[TX_SGL_SEGS];
172 };
173 
174 static int service_iq(struct sge_iq *, int);
175 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
176 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
177 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
178 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, int,
179     char *);
180 static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
181     char *);
182 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
183     bus_addr_t *, void **);
184 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
185     void *);
186 static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
187     int, int);
188 static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
189 static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
190     struct sge_fl *);
191 static int alloc_fwq(struct adapter *);
192 static int free_fwq(struct adapter *);
193 static int alloc_mgmtq(struct adapter *);
194 static int free_mgmtq(struct adapter *);
195 static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
196     struct sysctl_oid *);
197 static int free_rxq(struct port_info *, struct sge_rxq *);
198 #ifdef TCP_OFFLOAD
199 static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
200     struct sysctl_oid *);
201 static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
202 #endif
203 #ifdef DEV_NETMAP
204 static int alloc_nm_rxq(struct port_info *, struct sge_nm_rxq *, int, int,
205     struct sysctl_oid *);
206 static int free_nm_rxq(struct port_info *, struct sge_nm_rxq *);
207 static int alloc_nm_txq(struct port_info *, struct sge_nm_txq *, int, int,
208     struct sysctl_oid *);
209 static int free_nm_txq(struct port_info *, struct sge_nm_txq *);
210 #endif
211 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
212 static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
213 #ifdef TCP_OFFLOAD
214 static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
215 #endif
216 static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
217 static int free_eq(struct adapter *, struct sge_eq *);
218 static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
219     struct sysctl_oid *);
220 static int free_wrq(struct adapter *, struct sge_wrq *);
221 static int alloc_txq(struct port_info *, struct sge_txq *, int,
222     struct sysctl_oid *);
223 static int free_txq(struct port_info *, struct sge_txq *);
224 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
225 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
226 static int refill_fl(struct adapter *, struct sge_fl *, int);
227 static void refill_sfl(void *);
228 static int alloc_fl_sdesc(struct sge_fl *);
229 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
230 static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
231 static void find_safe_refill_source(struct adapter *, struct sge_fl *);
232 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
233 
234 static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
235 static int free_pkt_sgl(struct sge_txq *, struct sgl *);
236 static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
237     struct sgl *);
238 static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
239     struct mbuf *, struct sgl *);
240 static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
241 static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
242     struct txpkts *, struct mbuf *, struct sgl *);
243 static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
244 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
245 static inline void ring_eq_db(struct adapter *, struct sge_eq *);
246 static inline int reclaimable(struct sge_eq *);
247 static int reclaim_tx_descs(struct sge_txq *, int, int);
248 static void write_eqflush_wr(struct sge_eq *);
249 static __be64 get_flit(bus_dma_segment_t *, int, int);
250 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
251     struct mbuf *);
252 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
253     struct mbuf *);
254 
255 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
256 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
257 
258 static counter_u64_t extfree_refs;
259 static counter_u64_t extfree_rels;
260 
261 /*
262  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
263  */
264 void
265 t4_sge_modload(void)
266 {
267 	int pad;
268 
269 	/* set pad to a reasonable powerof2 between 16 and 4096 (inclusive) */
270 #if defined(__i386__) || defined(__amd64__)
271 	pad = max(cpu_clflush_line_size, 16);
272 #else
273 	pad = max(CACHE_LINE_SIZE, 16);
274 #endif
275 	pad = min(pad, 4096);
276 
277 	if (fl_pktshift < 0 || fl_pktshift > 7) {
278 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
279 		    " using 2 instead.\n", fl_pktshift);
280 		fl_pktshift = 2;
281 	}
282 
283 	if (fl_pad != 0 &&
284 	    (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad))) {
285 
286 		if (fl_pad != -1) {
287 			printf("Invalid hw.cxgbe.fl_pad value (%d),"
288 			    " using %d instead.\n", fl_pad, max(pad, 32));
289 		}
290 		fl_pad = max(pad, 32);
291 	}
292 
293 	/*
294 	 * T4 has the same pad and pack boundary.  If a pad boundary is set,
295 	 * pack boundary must be set to the same value.  Otherwise take the
296 	 * specified value or auto-calculate something reasonable.
297 	 */
298 	if (fl_pad)
299 		t4_fl_pack = fl_pad;
300 	else if (fl_pack < 32 || fl_pack > 4096 || !powerof2(fl_pack))
301 		t4_fl_pack = max(pad, 32);
302 	else
303 		t4_fl_pack = fl_pack;
304 
305 	/* T5's pack boundary is independent of the pad boundary. */
306 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
307 	    !powerof2(fl_pack))
308 	       t5_fl_pack = max(pad, CACHE_LINE_SIZE);
309 	else
310 	       t5_fl_pack = fl_pack;
311 
312 	if (spg_len != 64 && spg_len != 128) {
313 		int len;
314 
315 #if defined(__i386__) || defined(__amd64__)
316 		len = cpu_clflush_line_size > 64 ? 128 : 64;
317 #else
318 		len = 64;
319 #endif
320 		if (spg_len != -1) {
321 			printf("Invalid hw.cxgbe.spg_len value (%d),"
322 			    " using %d instead.\n", spg_len, len);
323 		}
324 		spg_len = len;
325 	}
326 
327 	if (cong_drop < -1 || cong_drop > 1) {
328 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
329 		    " using 0 instead.\n", cong_drop);
330 		cong_drop = 0;
331 	}
332 
333 	extfree_refs = counter_u64_alloc(M_WAITOK);
334 	extfree_rels = counter_u64_alloc(M_WAITOK);
335 	counter_u64_zero(extfree_refs);
336 	counter_u64_zero(extfree_rels);
337 }
338 
339 void
340 t4_sge_modunload(void)
341 {
342 
343 	counter_u64_free(extfree_refs);
344 	counter_u64_free(extfree_rels);
345 }
346 
347 uint64_t
348 t4_sge_extfree_refs(void)
349 {
350 	uint64_t refs, rels;
351 
352 	rels = counter_u64_fetch(extfree_rels);
353 	refs = counter_u64_fetch(extfree_refs);
354 
355 	return (refs - rels);
356 }
357 
358 void
359 t4_init_sge_cpl_handlers(struct adapter *sc)
360 {
361 
362 	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
363 	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
364 	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
365 	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
366 	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
367 }
368 
369 /*
370  * adap->params.vpd.cclk must be set up before this is called.
371  */
372 void
373 t4_tweak_chip_settings(struct adapter *sc)
374 {
375 	int i;
376 	uint32_t v, m;
377 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
378 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
379 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
380 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
381 	static int sge_flbuf_sizes[] = {
382 		MCLBYTES,
383 #if MJUMPAGESIZE != MCLBYTES
384 		MJUMPAGESIZE,
385 		MJUMPAGESIZE - CL_METADATA_SIZE,
386 		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
387 #endif
388 		MJUM9BYTES,
389 		MJUM16BYTES,
390 		MCLBYTES - MSIZE - CL_METADATA_SIZE,
391 		MJUM9BYTES - CL_METADATA_SIZE,
392 		MJUM16BYTES - CL_METADATA_SIZE,
393 	};
394 
395 	KASSERT(sc->flags & MASTER_PF,
396 	    ("%s: trying to change chip settings when not master.", __func__));
397 
398 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
399 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
400 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
401 	if (is_t4(sc) && (fl_pad || buffer_packing)) {
402 		/* t4_fl_pack has the correct value even when fl_pad = 0 */
403 		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
404 		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
405 	} else if (is_t5(sc) && fl_pad) {
406 		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
407 		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
408 	}
409 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
410 
411 	if (is_t5(sc) && buffer_packing) {
412 		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
413 		if (t5_fl_pack == 16)
414 			v = V_INGPACKBOUNDARY(0);
415 		else
416 			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
417 		t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
418 	}
419 
420 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
421 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
422 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
423 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
424 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
425 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
426 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
427 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
428 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
429 
430 	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
431 	    ("%s: hw buffer size table too big", __func__));
432 	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
433 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
434 		    sge_flbuf_sizes[i]);
435 	}
436 
437 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
438 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
439 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
440 
441 	KASSERT(intr_timer[0] <= timer_max,
442 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
443 	    timer_max));
444 	for (i = 1; i < nitems(intr_timer); i++) {
445 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
446 		    ("%s: timers not listed in increasing order (%d)",
447 		    __func__, i));
448 
449 		while (intr_timer[i] > timer_max) {
450 			if (i == nitems(intr_timer) - 1) {
451 				intr_timer[i] = timer_max;
452 				break;
453 			}
454 			intr_timer[i] += intr_timer[i - 1];
455 			intr_timer[i] /= 2;
456 		}
457 	}
458 
459 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
460 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
461 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
462 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
463 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
464 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
465 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
466 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
467 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
468 
469 	if (cong_drop == 0) {
470 		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
471 		    F_TUNNELCNGDROP3;
472 		t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0);
473 	}
474 
475 	/* 4K, 16K, 64K, 256K DDP "page sizes" */
476 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
477 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
478 
479 	m = v = F_TDDPTAGTCB;
480 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
481 
482 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
483 	    F_RESETDDPOFFSET;
484 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
485 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
486 }
487 
488 /*
489  * SGE wants the buffer to be at least 64B and then a multiple of the pad
490  * boundary or 16, whichever is greater.
491  */
492 static inline int
493 hwsz_ok(int hwsz)
494 {
495 	int mask = max(fl_pad, 16) - 1;
496 
497 	return (hwsz >= 64 && (hwsz & mask) == 0);
498 }
499 
500 /*
501  * XXX: driver really should be able to deal with unexpected settings.
502  */
503 int
504 t4_read_chip_settings(struct adapter *sc)
505 {
506 	struct sge *s = &sc->sge;
507 	int i, j, n, rc = 0;
508 	uint32_t m, v, r;
509 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
510 	static int sw_buf_sizes[] = {	/* Sorted by size */
511 		MCLBYTES,
512 #if MJUMPAGESIZE != MCLBYTES
513 		MJUMPAGESIZE,
514 #endif
515 		MJUM9BYTES,
516 		MJUM16BYTES
517 	};
518 	struct sw_zone_info *swz, *safe_swz;
519 	struct hw_buf_info *hwb;
520 
521 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
522 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
523 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
524 	if (is_t4(sc) && (fl_pad || buffer_packing)) {
525 		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
526 		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
527 	} else if (is_t5(sc) && fl_pad) {
528 		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
529 		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
530 	}
531 	r = t4_read_reg(sc, A_SGE_CONTROL);
532 	if ((r & m) != v) {
533 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
534 		rc = EINVAL;
535 	}
536 
537 	if (is_t5(sc) && buffer_packing) {
538 		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
539 		if (t5_fl_pack == 16)
540 			v = V_INGPACKBOUNDARY(0);
541 		else
542 			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
543 		r = t4_read_reg(sc, A_SGE_CONTROL2);
544 		if ((r & m) != v) {
545 			device_printf(sc->dev,
546 			    "invalid SGE_CONTROL2(0x%x)\n", r);
547 			rc = EINVAL;
548 		}
549 	}
550 	s->pack_boundary = is_t4(sc) ? t4_fl_pack : t5_fl_pack;
551 
552 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
553 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
554 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
555 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
556 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
557 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
558 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
559 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
560 	r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
561 	if (r != v) {
562 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
563 		rc = EINVAL;
564 	}
565 
566 	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
567 	hwb = &s->hw_buf_info[0];
568 	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
569 		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
570 		hwb->size = r;
571 		hwb->zidx = hwsz_ok(r) ? -1 : -2;
572 		hwb->next = -1;
573 	}
574 
575 	/*
576 	 * Create a sorted list in decreasing order of hw buffer sizes (and so
577 	 * increasing order of spare area) for each software zone.
578 	 */
579 	n = 0;	/* no usable buffer size to begin with */
580 	swz = &s->sw_zone_info[0];
581 	safe_swz = NULL;
582 	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
583 		int8_t head = -1, tail = -1;
584 
585 		swz->size = sw_buf_sizes[i];
586 		swz->zone = m_getzone(swz->size);
587 		swz->type = m_gettype(swz->size);
588 
589 		if (swz->size == safest_rx_cluster)
590 			safe_swz = swz;
591 
592 		hwb = &s->hw_buf_info[0];
593 		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
594 			if (hwb->zidx != -1 || hwb->size > swz->size)
595 				continue;
596 			hwb->zidx = i;
597 			if (head == -1)
598 				head = tail = j;
599 			else if (hwb->size < s->hw_buf_info[tail].size) {
600 				s->hw_buf_info[tail].next = j;
601 				tail = j;
602 			} else {
603 				int8_t *cur;
604 				struct hw_buf_info *t;
605 
606 				for (cur = &head; *cur != -1; cur = &t->next) {
607 					t = &s->hw_buf_info[*cur];
608 					if (hwb->size == t->size) {
609 						hwb->zidx = -2;
610 						break;
611 					}
612 					if (hwb->size > t->size) {
613 						hwb->next = *cur;
614 						*cur = j;
615 						break;
616 					}
617 				}
618 			}
619 		}
620 		swz->head_hwidx = head;
621 		swz->tail_hwidx = tail;
622 
623 		if (tail != -1) {
624 			n++;
625 			if (swz->size - s->hw_buf_info[tail].size >=
626 			    CL_METADATA_SIZE)
627 				sc->flags |= BUF_PACKING_OK;
628 		}
629 	}
630 	if (n == 0) {
631 		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
632 		rc = EINVAL;
633 	}
634 
635 	s->safe_hwidx1 = -1;
636 	s->safe_hwidx2 = -1;
637 	if (safe_swz != NULL) {
638 		s->safe_hwidx1 = safe_swz->head_hwidx;
639 		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
640 			int spare;
641 
642 			hwb = &s->hw_buf_info[i];
643 			spare = safe_swz->size - hwb->size;
644 			if (spare < CL_METADATA_SIZE)
645 				continue;
646 			if (s->safe_hwidx2 == -1 ||
647 			    spare == CL_METADATA_SIZE + MSIZE)
648 				s->safe_hwidx2 = i;
649 			if (spare >= CL_METADATA_SIZE + MSIZE)
650 				break;
651 		}
652 	}
653 
654 	r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
655 	s->counter_val[0] = G_THRESHOLD_0(r);
656 	s->counter_val[1] = G_THRESHOLD_1(r);
657 	s->counter_val[2] = G_THRESHOLD_2(r);
658 	s->counter_val[3] = G_THRESHOLD_3(r);
659 
660 	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
661 	s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
662 	s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
663 	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
664 	s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
665 	s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
666 	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
667 	s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
668 	s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
669 
670 	if (cong_drop == 0) {
671 		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
672 		    F_TUNNELCNGDROP3;
673 		r = t4_read_reg(sc, A_TP_PARA_REG3);
674 		if (r & m) {
675 			device_printf(sc->dev,
676 			    "invalid TP_PARA_REG3(0x%x)\n", r);
677 			rc = EINVAL;
678 		}
679 	}
680 
681 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
682 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
683 	if (r != v) {
684 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
685 		rc = EINVAL;
686 	}
687 
688 	m = v = F_TDDPTAGTCB;
689 	r = t4_read_reg(sc, A_ULP_RX_CTL);
690 	if ((r & m) != v) {
691 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
692 		rc = EINVAL;
693 	}
694 
695 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
696 	    F_RESETDDPOFFSET;
697 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
698 	r = t4_read_reg(sc, A_TP_PARA_REG5);
699 	if ((r & m) != v) {
700 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
701 		rc = EINVAL;
702 	}
703 
704 	r = t4_read_reg(sc, A_SGE_CONM_CTRL);
705 	s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
706 	if (is_t4(sc))
707 		s->fl_starve_threshold2 = s->fl_starve_threshold;
708 	else
709 		s->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
710 
711 	/* egress queues: log2 of # of doorbells per BAR2 page */
712 	r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
713 	r >>= S_QUEUESPERPAGEPF0 +
714 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
715 	s->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
716 
717 	/* ingress queues: log2 of # of doorbells per BAR2 page */
718 	r = t4_read_reg(sc, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
719 	r >>= S_QUEUESPERPAGEPF0 +
720 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
721 	s->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
722 
723 	t4_init_tp_params(sc);
724 
725 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
726 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
727 
728 	return (rc);
729 }
730 
731 int
732 t4_create_dma_tag(struct adapter *sc)
733 {
734 	int rc;
735 
736 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
737 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
738 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
739 	    NULL, &sc->dmat);
740 	if (rc != 0) {
741 		device_printf(sc->dev,
742 		    "failed to create main DMA tag: %d\n", rc);
743 	}
744 
745 	return (rc);
746 }
747 
748 static inline int
749 enable_buffer_packing(struct adapter *sc)
750 {
751 
752 	if (sc->flags & BUF_PACKING_OK &&
753 	    ((is_t5(sc) && buffer_packing) ||	/* 1 or -1 both ok for T5 */
754 	    (is_t4(sc) && buffer_packing == 1)))
755 		return (1);
756 	return (0);
757 }
758 
759 void
760 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
761     struct sysctl_oid_list *children)
762 {
763 
764 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
765 	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
766 	    "freelist buffer sizes");
767 
768 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
769 	    NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)");
770 
771 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
772 	    NULL, fl_pad, "payload pad boundary (bytes)");
773 
774 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
775 	    NULL, spg_len, "status page size (bytes)");
776 
777 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
778 	    NULL, cong_drop, "congestion drop setting");
779 
780 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "buffer_packing", CTLFLAG_RD,
781 	    NULL, enable_buffer_packing(sc),
782 	    "pack multiple frames in one fl buffer");
783 
784 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
785 	    NULL, sc->sge.pack_boundary, "payload pack boundary (bytes)");
786 }
787 
788 int
789 t4_destroy_dma_tag(struct adapter *sc)
790 {
791 	if (sc->dmat)
792 		bus_dma_tag_destroy(sc->dmat);
793 
794 	return (0);
795 }
796 
797 /*
798  * Allocate and initialize the firmware event queue and the management queue.
799  *
800  * Returns errno on failure.  Resources allocated up to that point may still be
801  * allocated.  Caller is responsible for cleanup in case this function fails.
802  */
803 int
804 t4_setup_adapter_queues(struct adapter *sc)
805 {
806 	int rc;
807 
808 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
809 
810 	sysctl_ctx_init(&sc->ctx);
811 	sc->flags |= ADAP_SYSCTL_CTX;
812 
813 	/*
814 	 * Firmware event queue
815 	 */
816 	rc = alloc_fwq(sc);
817 	if (rc != 0)
818 		return (rc);
819 
820 	/*
821 	 * Management queue.  This is just a control queue that uses the fwq as
822 	 * its associated iq.
823 	 */
824 	rc = alloc_mgmtq(sc);
825 
826 	return (rc);
827 }
828 
829 /*
830  * Idempotent
831  */
832 int
833 t4_teardown_adapter_queues(struct adapter *sc)
834 {
835 
836 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
837 
838 	/* Do this before freeing the queue */
839 	if (sc->flags & ADAP_SYSCTL_CTX) {
840 		sysctl_ctx_free(&sc->ctx);
841 		sc->flags &= ~ADAP_SYSCTL_CTX;
842 	}
843 
844 	free_mgmtq(sc);
845 	free_fwq(sc);
846 
847 	return (0);
848 }
849 
850 static inline int
851 port_intr_count(struct port_info *pi)
852 {
853 	int rc = 0;
854 
855 	if (pi->flags & INTR_RXQ)
856 		rc += pi->nrxq;
857 #ifdef TCP_OFFLOAD
858 	if (pi->flags & INTR_OFLD_RXQ)
859 		rc += pi->nofldrxq;
860 #endif
861 #ifdef DEV_NETMAP
862 	if (pi->flags & INTR_NM_RXQ)
863 		rc += pi->nnmrxq;
864 #endif
865 	return (rc);
866 }
867 
868 static inline int
869 first_vector(struct port_info *pi)
870 {
871 	struct adapter *sc = pi->adapter;
872 	int rc = T4_EXTRA_INTR, i;
873 
874 	if (sc->intr_count == 1)
875 		return (0);
876 
877 	for_each_port(sc, i) {
878 		if (i == pi->port_id)
879 			break;
880 
881 		rc += port_intr_count(sc->port[i]);
882 	}
883 
884 	return (rc);
885 }
886 
887 /*
888  * Given an arbitrary "index," come up with an iq that can be used by other
889  * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
890  * The iq returned is guaranteed to be something that takes direct interrupts.
891  */
892 static struct sge_iq *
893 port_intr_iq(struct port_info *pi, int idx)
894 {
895 	struct adapter *sc = pi->adapter;
896 	struct sge *s = &sc->sge;
897 	struct sge_iq *iq = NULL;
898 	int nintr, i;
899 
900 	if (sc->intr_count == 1)
901 		return (&sc->sge.fwq);
902 
903 	nintr = port_intr_count(pi);
904 	KASSERT(nintr != 0,
905 	    ("%s: pi %p has no exclusive interrupts, total interrupts = %d",
906 	    __func__, pi, sc->intr_count));
907 #ifdef DEV_NETMAP
908 	/* Exclude netmap queues as they can't take anyone else's interrupts */
909 	if (pi->flags & INTR_NM_RXQ)
910 		nintr -= pi->nnmrxq;
911 	KASSERT(nintr > 0,
912 	    ("%s: pi %p has nintr %d after netmap adjustment of %d", __func__,
913 	    pi, nintr, pi->nnmrxq));
914 #endif
915 	i = idx % nintr;
916 
917 	if (pi->flags & INTR_RXQ) {
918 	       	if (i < pi->nrxq) {
919 			iq = &s->rxq[pi->first_rxq + i].iq;
920 			goto done;
921 		}
922 		i -= pi->nrxq;
923 	}
924 #ifdef TCP_OFFLOAD
925 	if (pi->flags & INTR_OFLD_RXQ) {
926 	       	if (i < pi->nofldrxq) {
927 			iq = &s->ofld_rxq[pi->first_ofld_rxq + i].iq;
928 			goto done;
929 		}
930 		i -= pi->nofldrxq;
931 	}
932 #endif
933 	panic("%s: pi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
934 	    pi, pi->flags & INTR_ALL, idx, nintr);
935 done:
936 	MPASS(iq != NULL);
937 	KASSERT(iq->flags & IQ_INTR,
938 	    ("%s: iq %p (port %p, intr_flags 0x%lx, idx %d)", __func__, iq, pi,
939 	    pi->flags & INTR_ALL, idx));
940 	return (iq);
941 }
942 
943 /* Maximum payload that can be delivered with a single iq descriptor */
944 static inline int
945 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
946 {
947 	int payload;
948 
949 #ifdef TCP_OFFLOAD
950 	if (toe) {
951 		payload = sc->tt.rx_coalesce ?
952 		    G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
953 	} else {
954 #endif
955 		/* large enough even when hw VLAN extraction is disabled */
956 		payload = fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
957 		    mtu;
958 #ifdef TCP_OFFLOAD
959 	}
960 #endif
961 	payload = roundup2(payload, fl_pad);
962 
963 	return (payload);
964 }
965 
966 int
967 t4_setup_port_queues(struct port_info *pi)
968 {
969 	int rc = 0, i, j, intr_idx, iqid;
970 	struct sge_rxq *rxq;
971 	struct sge_txq *txq;
972 	struct sge_wrq *ctrlq;
973 #ifdef TCP_OFFLOAD
974 	struct sge_ofld_rxq *ofld_rxq;
975 	struct sge_wrq *ofld_txq;
976 #endif
977 #ifdef DEV_NETMAP
978 	struct sge_nm_rxq *nm_rxq;
979 	struct sge_nm_txq *nm_txq;
980 #endif
981 	char name[16];
982 	struct adapter *sc = pi->adapter;
983 	struct ifnet *ifp = pi->ifp;
984 	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
985 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
986 	int maxp, pack, mtu = ifp->if_mtu;
987 
988 	/* Interrupt vector to start from (when using multiple vectors) */
989 	intr_idx = first_vector(pi);
990 
991 	/*
992 	 * First pass over all NIC and TOE rx queues:
993 	 * a) initialize iq and fl
994 	 * b) allocate queue iff it will take direct interrupts.
995 	 */
996 	maxp = mtu_to_max_payload(sc, mtu, 0);
997 	pack = enable_buffer_packing(sc);
998 	if (pi->flags & INTR_RXQ) {
999 		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
1000 		    CTLFLAG_RD, NULL, "rx queues");
1001 	}
1002 	for_each_rxq(pi, i, rxq) {
1003 
1004 		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq);
1005 
1006 		snprintf(name, sizeof(name), "%s rxq%d-fl",
1007 		    device_get_nameunit(pi->dev), i);
1008 		init_fl(sc, &rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
1009 
1010 		if (pi->flags & INTR_RXQ) {
1011 			rxq->iq.flags |= IQ_INTR;
1012 			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
1013 			if (rc != 0)
1014 				goto done;
1015 			intr_idx++;
1016 		}
1017 	}
1018 #ifdef TCP_OFFLOAD
1019 	maxp = mtu_to_max_payload(sc, mtu, 1);
1020 	if (is_offload(sc) && pi->flags & INTR_OFLD_RXQ) {
1021 		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
1022 		    CTLFLAG_RD, NULL,
1023 		    "rx queues for offloaded TCP connections");
1024 	}
1025 	for_each_ofld_rxq(pi, i, ofld_rxq) {
1026 
1027 		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
1028 		    pi->qsize_rxq);
1029 
1030 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1031 		    device_get_nameunit(pi->dev), i);
1032 		init_fl(sc, &ofld_rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
1033 
1034 		if (pi->flags & INTR_OFLD_RXQ) {
1035 			ofld_rxq->iq.flags |= IQ_INTR;
1036 			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1037 			if (rc != 0)
1038 				goto done;
1039 			intr_idx++;
1040 		}
1041 	}
1042 #endif
1043 #ifdef DEV_NETMAP
1044 	/*
1045 	 * We don't have buffers to back the netmap rx queues right now so we
1046 	 * create the queues in a way that doesn't set off any congestion signal
1047 	 * in the chip.
1048 	 */
1049 	if (pi->flags & INTR_NM_RXQ) {
1050 		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_rxq",
1051 		    CTLFLAG_RD, NULL, "rx queues for netmap");
1052 		for_each_nm_rxq(pi, i, nm_rxq) {
1053 			rc = alloc_nm_rxq(pi, nm_rxq, intr_idx, i, oid);
1054 			if (rc != 0)
1055 				goto done;
1056 			intr_idx++;
1057 		}
1058 	}
1059 #endif
1060 
1061 	/*
1062 	 * Second pass over all NIC and TOE rx queues.  The queues forwarding
1063 	 * their interrupts are allocated now.
1064 	 */
1065 	j = 0;
1066 	if (!(pi->flags & INTR_RXQ)) {
1067 		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
1068 		    CTLFLAG_RD, NULL, "rx queues");
1069 		for_each_rxq(pi, i, rxq) {
1070 			MPASS(!(rxq->iq.flags & IQ_INTR));
1071 
1072 			intr_idx = port_intr_iq(pi, j)->abs_id;
1073 
1074 			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
1075 			if (rc != 0)
1076 				goto done;
1077 			j++;
1078 		}
1079 	}
1080 #ifdef TCP_OFFLOAD
1081 	if (is_offload(sc) && !(pi->flags & INTR_OFLD_RXQ)) {
1082 		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
1083 		    CTLFLAG_RD, NULL,
1084 		    "rx queues for offloaded TCP connections");
1085 		for_each_ofld_rxq(pi, i, ofld_rxq) {
1086 			MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
1087 
1088 			intr_idx = port_intr_iq(pi, j)->abs_id;
1089 
1090 			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1091 			if (rc != 0)
1092 				goto done;
1093 			j++;
1094 		}
1095 	}
1096 #endif
1097 #ifdef DEV_NETMAP
1098 	if (!(pi->flags & INTR_NM_RXQ))
1099 		CXGBE_UNIMPLEMENTED(__func__);
1100 #endif
1101 
1102 	/*
1103 	 * Now the tx queues.  Only one pass needed.
1104 	 */
1105 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1106 	    NULL, "tx queues");
1107 	j = 0;
1108 	for_each_txq(pi, i, txq) {
1109 		iqid = port_intr_iq(pi, j)->cntxt_id;
1110 		snprintf(name, sizeof(name), "%s txq%d",
1111 		    device_get_nameunit(pi->dev), i);
1112 		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
1113 		    name);
1114 
1115 		rc = alloc_txq(pi, txq, i, oid);
1116 		if (rc != 0)
1117 			goto done;
1118 		j++;
1119 	}
1120 #ifdef TCP_OFFLOAD
1121 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
1122 	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1123 	for_each_ofld_txq(pi, i, ofld_txq) {
1124 		struct sysctl_oid *oid2;
1125 
1126 		iqid = port_intr_iq(pi, j)->cntxt_id;
1127 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1128 		    device_get_nameunit(pi->dev), i);
1129 		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
1130 		    iqid, name);
1131 
1132 		snprintf(name, sizeof(name), "%d", i);
1133 		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1134 		    name, CTLFLAG_RD, NULL, "offload tx queue");
1135 
1136 		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
1137 		if (rc != 0)
1138 			goto done;
1139 		j++;
1140 	}
1141 #endif
1142 #ifdef DEV_NETMAP
1143 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_txq",
1144 	    CTLFLAG_RD, NULL, "tx queues for netmap use");
1145 	for_each_nm_txq(pi, i, nm_txq) {
1146 		iqid = pi->first_nm_rxq + (j % pi->nnmrxq);
1147 		rc = alloc_nm_txq(pi, nm_txq, iqid, i, oid);
1148 		if (rc != 0)
1149 			goto done;
1150 		j++;
1151 	}
1152 #endif
1153 
1154 	/*
1155 	 * Finally, the control queue.
1156 	 */
1157 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1158 	    NULL, "ctrl queue");
1159 	ctrlq = &sc->sge.ctrlq[pi->port_id];
1160 	iqid = port_intr_iq(pi, 0)->cntxt_id;
1161 	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
1162 	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
1163 	rc = alloc_wrq(sc, pi, ctrlq, oid);
1164 
1165 done:
1166 	if (rc)
1167 		t4_teardown_port_queues(pi);
1168 
1169 	return (rc);
1170 }
1171 
1172 /*
1173  * Idempotent
1174  */
1175 int
1176 t4_teardown_port_queues(struct port_info *pi)
1177 {
1178 	int i;
1179 	struct adapter *sc = pi->adapter;
1180 	struct sge_rxq *rxq;
1181 	struct sge_txq *txq;
1182 #ifdef TCP_OFFLOAD
1183 	struct sge_ofld_rxq *ofld_rxq;
1184 	struct sge_wrq *ofld_txq;
1185 #endif
1186 #ifdef DEV_NETMAP
1187 	struct sge_nm_rxq *nm_rxq;
1188 	struct sge_nm_txq *nm_txq;
1189 #endif
1190 
1191 	/* Do this before freeing the queues */
1192 	if (pi->flags & PORT_SYSCTL_CTX) {
1193 		sysctl_ctx_free(&pi->ctx);
1194 		pi->flags &= ~PORT_SYSCTL_CTX;
1195 	}
1196 
1197 	/*
1198 	 * Take down all the tx queues first, as they reference the rx queues
1199 	 * (for egress updates, etc.).
1200 	 */
1201 
1202 	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1203 
1204 	for_each_txq(pi, i, txq) {
1205 		free_txq(pi, txq);
1206 	}
1207 #ifdef TCP_OFFLOAD
1208 	for_each_ofld_txq(pi, i, ofld_txq) {
1209 		free_wrq(sc, ofld_txq);
1210 	}
1211 #endif
1212 #ifdef DEV_NETMAP
1213 	for_each_nm_txq(pi, i, nm_txq)
1214 	    free_nm_txq(pi, nm_txq);
1215 #endif
1216 
1217 	/*
1218 	 * Then take down the rx queues that forward their interrupts, as they
1219 	 * reference other rx queues.
1220 	 */
1221 
1222 	for_each_rxq(pi, i, rxq) {
1223 		if ((rxq->iq.flags & IQ_INTR) == 0)
1224 			free_rxq(pi, rxq);
1225 	}
1226 #ifdef TCP_OFFLOAD
1227 	for_each_ofld_rxq(pi, i, ofld_rxq) {
1228 		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1229 			free_ofld_rxq(pi, ofld_rxq);
1230 	}
1231 #endif
1232 #ifdef DEV_NETMAP
1233 	for_each_nm_rxq(pi, i, nm_rxq)
1234 	    free_nm_rxq(pi, nm_rxq);
1235 #endif
1236 
1237 	/*
1238 	 * Then take down the rx queues that take direct interrupts.
1239 	 */
1240 
1241 	for_each_rxq(pi, i, rxq) {
1242 		if (rxq->iq.flags & IQ_INTR)
1243 			free_rxq(pi, rxq);
1244 	}
1245 #ifdef TCP_OFFLOAD
1246 	for_each_ofld_rxq(pi, i, ofld_rxq) {
1247 		if (ofld_rxq->iq.flags & IQ_INTR)
1248 			free_ofld_rxq(pi, ofld_rxq);
1249 	}
1250 #endif
1251 #ifdef DEV_NETMAP
1252 	CXGBE_UNIMPLEMENTED(__func__);
1253 #endif
1254 
1255 	return (0);
1256 }
1257 
1258 /*
1259  * Deals with errors and the firmware event queue.  All data rx queues forward
1260  * their interrupt to the firmware event queue.
1261  */
1262 void
1263 t4_intr_all(void *arg)
1264 {
1265 	struct adapter *sc = arg;
1266 	struct sge_iq *fwq = &sc->sge.fwq;
1267 
1268 	t4_intr_err(arg);
1269 	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1270 		service_iq(fwq, 0);
1271 		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1272 	}
1273 }
1274 
1275 /* Deals with error interrupts */
1276 void
1277 t4_intr_err(void *arg)
1278 {
1279 	struct adapter *sc = arg;
1280 
1281 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1282 	t4_slow_intr_handler(sc);
1283 }
1284 
1285 void
1286 t4_intr_evt(void *arg)
1287 {
1288 	struct sge_iq *iq = arg;
1289 
1290 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1291 		service_iq(iq, 0);
1292 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1293 	}
1294 }
1295 
1296 void
1297 t4_intr(void *arg)
1298 {
1299 	struct sge_iq *iq = arg;
1300 
1301 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1302 		service_iq(iq, 0);
1303 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1304 	}
1305 }
1306 
1307 /*
1308  * Deals with anything and everything on the given ingress queue.
1309  */
1310 static int
1311 service_iq(struct sge_iq *iq, int budget)
1312 {
1313 	struct sge_iq *q;
1314 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1315 	struct sge_fl *fl;			/* Use iff IQ_HAS_FL */
1316 	struct adapter *sc = iq->adapter;
1317 	struct iq_desc *d = &iq->desc[iq->cidx];
1318 	int ndescs = 0, limit;
1319 	int rsp_type, refill;
1320 	uint32_t lq;
1321 	uint16_t fl_hw_cidx;
1322 	struct mbuf *m0;
1323 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1324 #if defined(INET) || defined(INET6)
1325 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1326 #endif
1327 
1328 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1329 
1330 	limit = budget ? budget : iq->qsize / 16;
1331 
1332 	if (iq->flags & IQ_HAS_FL) {
1333 		fl = &rxq->fl;
1334 		fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1335 	} else {
1336 		fl = NULL;
1337 		fl_hw_cidx = 0;			/* to silence gcc warning */
1338 	}
1339 
1340 	/*
1341 	 * We always come back and check the descriptor ring for new indirect
1342 	 * interrupts and other responses after running a single handler.
1343 	 */
1344 	for (;;) {
1345 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1346 
1347 			rmb();
1348 
1349 			refill = 0;
1350 			m0 = NULL;
1351 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1352 			lq = be32toh(d->rsp.pldbuflen_qid);
1353 
1354 			switch (rsp_type) {
1355 			case X_RSPD_TYPE_FLBUF:
1356 
1357 				KASSERT(iq->flags & IQ_HAS_FL,
1358 				    ("%s: data for an iq (%p) with no freelist",
1359 				    __func__, iq));
1360 
1361 				m0 = get_fl_payload(sc, fl, lq);
1362 				if (__predict_false(m0 == NULL))
1363 					goto process_iql;
1364 				refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1365 #ifdef T4_PKT_TIMESTAMP
1366 				/*
1367 				 * 60 bit timestamp for the payload is
1368 				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1369 				 * in the leading free-space in the mbuf.  The
1370 				 * kernel can clobber it during a pullup,
1371 				 * m_copymdata, etc.  You need to make sure that
1372 				 * the mbuf reaches you unmolested if you care
1373 				 * about the timestamp.
1374 				 */
1375 				*(uint64_t *)m0->m_pktdat =
1376 				    be64toh(ctrl->u.last_flit) &
1377 				    0xfffffffffffffff;
1378 #endif
1379 
1380 				/* fall through */
1381 
1382 			case X_RSPD_TYPE_CPL:
1383 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1384 				    ("%s: bad opcode %02x.", __func__,
1385 				    d->rss.opcode));
1386 				sc->cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1387 				break;
1388 
1389 			case X_RSPD_TYPE_INTR:
1390 
1391 				/*
1392 				 * Interrupts should be forwarded only to queues
1393 				 * that are not forwarding their interrupts.
1394 				 * This means service_iq can recurse but only 1
1395 				 * level deep.
1396 				 */
1397 				KASSERT(budget == 0,
1398 				    ("%s: budget %u, rsp_type %u", __func__,
1399 				    budget, rsp_type));
1400 
1401 				/*
1402 				 * There are 1K interrupt-capable queues (qids 0
1403 				 * through 1023).  A response type indicating a
1404 				 * forwarded interrupt with a qid >= 1K is an
1405 				 * iWARP async notification.
1406 				 */
1407 				if (lq >= 1024) {
1408                                         sc->an_handler(iq, &d->rsp);
1409                                         break;
1410                                 }
1411 
1412 				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1413 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1414 				    IQS_BUSY)) {
1415 					if (service_iq(q, q->qsize / 16) == 0) {
1416 						atomic_cmpset_int(&q->state,
1417 						    IQS_BUSY, IQS_IDLE);
1418 					} else {
1419 						STAILQ_INSERT_TAIL(&iql, q,
1420 						    link);
1421 					}
1422 				}
1423 				break;
1424 
1425 			default:
1426 				KASSERT(0,
1427 				    ("%s: illegal response type %d on iq %p",
1428 				    __func__, rsp_type, iq));
1429 				log(LOG_ERR,
1430 				    "%s: illegal response type %d on iq %p",
1431 				    device_get_nameunit(sc->dev), rsp_type, iq);
1432 				break;
1433 			}
1434 
1435 			d++;
1436 			if (__predict_false(++iq->cidx == iq->sidx)) {
1437 				iq->cidx = 0;
1438 				iq->gen ^= F_RSPD_GEN;
1439 				d = &iq->desc[0];
1440 			}
1441 			if (__predict_false(++ndescs == limit)) {
1442 				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1443 				    V_CIDXINC(ndescs) |
1444 				    V_INGRESSQID(iq->cntxt_id) |
1445 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1446 				ndescs = 0;
1447 
1448 #if defined(INET) || defined(INET6)
1449 				if (iq->flags & IQ_LRO_ENABLED &&
1450 				    sc->lro_timeout != 0) {
1451 					tcp_lro_flush_inactive(&rxq->lro,
1452 					    &lro_timeout);
1453 				}
1454 #endif
1455 
1456 				if (budget) {
1457 					if (iq->flags & IQ_HAS_FL) {
1458 						FL_LOCK(fl);
1459 						refill_fl(sc, fl, 32);
1460 						FL_UNLOCK(fl);
1461 					}
1462 					return (EINPROGRESS);
1463 				}
1464 			}
1465 			if (refill) {
1466 				FL_LOCK(fl);
1467 				refill_fl(sc, fl, 32);
1468 				FL_UNLOCK(fl);
1469 				fl_hw_cidx = fl->hw_cidx;
1470 			}
1471 		}
1472 
1473 process_iql:
1474 		if (STAILQ_EMPTY(&iql))
1475 			break;
1476 
1477 		/*
1478 		 * Process the head only, and send it to the back of the list if
1479 		 * it's still not done.
1480 		 */
1481 		q = STAILQ_FIRST(&iql);
1482 		STAILQ_REMOVE_HEAD(&iql, link);
1483 		if (service_iq(q, q->qsize / 8) == 0)
1484 			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1485 		else
1486 			STAILQ_INSERT_TAIL(&iql, q, link);
1487 	}
1488 
1489 #if defined(INET) || defined(INET6)
1490 	if (iq->flags & IQ_LRO_ENABLED) {
1491 		struct lro_ctrl *lro = &rxq->lro;
1492 		struct lro_entry *l;
1493 
1494 		while (!SLIST_EMPTY(&lro->lro_active)) {
1495 			l = SLIST_FIRST(&lro->lro_active);
1496 			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1497 			tcp_lro_flush(lro, l);
1498 		}
1499 	}
1500 #endif
1501 
1502 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1503 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1504 
1505 	if (iq->flags & IQ_HAS_FL) {
1506 		int starved;
1507 
1508 		FL_LOCK(fl);
1509 		starved = refill_fl(sc, fl, 64);
1510 		FL_UNLOCK(fl);
1511 		if (__predict_false(starved != 0))
1512 			add_fl_to_sfl(sc, fl);
1513 	}
1514 
1515 	return (0);
1516 }
1517 
1518 static inline int
1519 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1520 {
1521 	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1522 
1523 	if (rc)
1524 		MPASS(cll->region3 >= CL_METADATA_SIZE);
1525 
1526 	return (rc);
1527 }
1528 
1529 static inline struct cluster_metadata *
1530 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1531     caddr_t cl)
1532 {
1533 
1534 	if (cl_has_metadata(fl, cll)) {
1535 		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1536 
1537 		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1538 	}
1539 	return (NULL);
1540 }
1541 
1542 static void
1543 rxb_free(struct mbuf *m, void *arg1, void *arg2)
1544 {
1545 	uma_zone_t zone = arg1;
1546 	caddr_t cl = arg2;
1547 
1548 	uma_zfree(zone, cl);
1549 	counter_u64_add(extfree_rels, 1);
1550 }
1551 
1552 /*
1553  * The mbuf returned by this function could be allocated from zone_mbuf or
1554  * constructed in spare room in the cluster.
1555  *
1556  * The mbuf carries the payload in one of these ways
1557  * a) frame inside the mbuf (mbuf from zone_mbuf)
1558  * b) m_cljset (for clusters without metadata) zone_mbuf
1559  * c) m_extaddref (cluster with metadata) inline mbuf
1560  * d) m_extaddref (cluster with metadata) zone_mbuf
1561  */
1562 static struct mbuf *
1563 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int total, int flags)
1564 {
1565 	struct mbuf *m;
1566 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1567 	struct cluster_layout *cll = &sd->cll;
1568 	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1569 	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1570 	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1571 	int len, padded_len;
1572 	caddr_t payload;
1573 
1574 	len = min(total, hwb->size - fl->rx_offset);
1575 	padded_len = roundup2(len, fl->buf_boundary);
1576 	payload = sd->cl + cll->region1 + fl->rx_offset;
1577 
1578 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1579 
1580 		/*
1581 		 * Copy payload into a freshly allocated mbuf.
1582 		 */
1583 
1584 		m = flags & M_PKTHDR ?
1585 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1586 		if (m == NULL)
1587 			return (NULL);
1588 		fl->mbuf_allocated++;
1589 #ifdef T4_PKT_TIMESTAMP
1590 		/* Leave room for a timestamp */
1591 		m->m_data += 8;
1592 #endif
1593 		/* copy data to mbuf */
1594 		bcopy(payload, mtod(m, caddr_t), len);
1595 
1596 	} else if (sd->nmbuf * MSIZE < cll->region1) {
1597 
1598 		/*
1599 		 * There's spare room in the cluster for an mbuf.  Create one
1600 		 * and associate it with the payload that's in the cluster.
1601 		 */
1602 
1603 		MPASS(clm != NULL);
1604 		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1605 		/* No bzero required */
1606 		if (m_init(m, NULL, 0, M_NOWAIT, MT_DATA, flags | M_NOFREE))
1607 			return (NULL);
1608 		fl->mbuf_inlined++;
1609 		m_extaddref(m, payload, padded_len, &clm->refcount, rxb_free,
1610 		    swz->zone, sd->cl);
1611 		if (sd->nmbuf++ == 0)
1612 			counter_u64_add(extfree_refs, 1);
1613 
1614 	} else {
1615 
1616 		/*
1617 		 * Grab an mbuf from zone_mbuf and associate it with the
1618 		 * payload in the cluster.
1619 		 */
1620 
1621 		m = flags & M_PKTHDR ?
1622 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1623 		if (m == NULL)
1624 			return (NULL);
1625 		fl->mbuf_allocated++;
1626 		if (clm != NULL) {
1627 			m_extaddref(m, payload, padded_len, &clm->refcount,
1628 			    rxb_free, swz->zone, sd->cl);
1629 			if (sd->nmbuf++ == 0)
1630 				counter_u64_add(extfree_refs, 1);
1631 		} else {
1632 			m_cljset(m, sd->cl, swz->type);
1633 			sd->cl = NULL;	/* consumed, not a recycle candidate */
1634 		}
1635 	}
1636 	if (flags & M_PKTHDR)
1637 		m->m_pkthdr.len = total;
1638 	m->m_len = len;
1639 
1640 	if (fl->flags & FL_BUF_PACKING) {
1641 		fl->rx_offset += padded_len;
1642 		MPASS(fl->rx_offset <= hwb->size);
1643 		if (fl->rx_offset < hwb->size)
1644 			return (m);	/* without advancing the cidx */
1645 	}
1646 
1647 	if (__predict_false(++fl->cidx % 8 == 0)) {
1648 		uint16_t cidx = fl->cidx / 8;
1649 
1650 		if (__predict_false(cidx == fl->sidx))
1651 			fl->cidx = cidx = 0;
1652 		fl->hw_cidx = cidx;
1653 	}
1654 	fl->rx_offset = 0;
1655 
1656 	return (m);
1657 }
1658 
1659 static struct mbuf *
1660 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1661 {
1662 	struct mbuf *m0, *m, **pnext;
1663 	u_int len;
1664 
1665 	len = G_RSPD_LEN(len_newbuf);
1666 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1667 		M_ASSERTPKTHDR(fl->m0);
1668 		MPASS(len == fl->m0->m_pkthdr.len);
1669 		MPASS(fl->remaining < len);
1670 
1671 		m0 = fl->m0;
1672 		pnext = fl->pnext;
1673 		len = fl->remaining;
1674 		fl->flags &= ~FL_BUF_RESUME;
1675 		goto get_segment;
1676 	}
1677 
1678 	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1679 		fl->rx_offset = 0;
1680 		if (__predict_false(++fl->cidx % 8 == 0)) {
1681 			uint16_t cidx = fl->cidx / 8;
1682 
1683 			if (__predict_false(cidx == fl->sidx))
1684 				fl->cidx = cidx = 0;
1685 			fl->hw_cidx = cidx;
1686 		}
1687 	}
1688 
1689 	/*
1690 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1691 	 * 'len' and it may span multiple hw buffers.
1692 	 */
1693 
1694 	m0 = get_scatter_segment(sc, fl, len, M_PKTHDR);
1695 	if (m0 == NULL)
1696 		return (NULL);
1697 	len -= m0->m_len;
1698 	pnext = &m0->m_next;
1699 	while (len > 0) {
1700 get_segment:
1701 		MPASS(fl->rx_offset == 0);
1702 		m = get_scatter_segment(sc, fl, len, 0);
1703 		if (__predict_false(m == NULL)) {
1704 			fl->m0 = m0;
1705 			fl->pnext = pnext;
1706 			fl->remaining = len;
1707 			fl->flags |= FL_BUF_RESUME;
1708 			return (NULL);
1709 		}
1710 		*pnext = m;
1711 		pnext = &m->m_next;
1712 		len -= m->m_len;
1713 	}
1714 	*pnext = NULL;
1715 
1716 	return (m0);
1717 }
1718 
1719 static int
1720 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1721 {
1722 	struct sge_rxq *rxq = iq_to_rxq(iq);
1723 	struct ifnet *ifp = rxq->ifp;
1724 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1725 #if defined(INET) || defined(INET6)
1726 	struct lro_ctrl *lro = &rxq->lro;
1727 #endif
1728 
1729 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1730 	    rss->opcode));
1731 
1732 	m0->m_pkthdr.len -= fl_pktshift;
1733 	m0->m_len -= fl_pktshift;
1734 	m0->m_data += fl_pktshift;
1735 
1736 	m0->m_pkthdr.rcvif = ifp;
1737 	m0->m_flags |= M_FLOWID;
1738 	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1739 
1740 	if (cpl->csum_calc && !cpl->err_vec) {
1741 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1742 		    cpl->l2info & htobe32(F_RXF_IP)) {
1743 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1744 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1745 			rxq->rxcsum++;
1746 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1747 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1748 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1749 			    CSUM_PSEUDO_HDR);
1750 			rxq->rxcsum++;
1751 		}
1752 
1753 		if (__predict_false(cpl->ip_frag))
1754 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1755 		else
1756 			m0->m_pkthdr.csum_data = 0xffff;
1757 	}
1758 
1759 	if (cpl->vlan_ex) {
1760 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1761 		m0->m_flags |= M_VLANTAG;
1762 		rxq->vlan_extraction++;
1763 	}
1764 
1765 #if defined(INET) || defined(INET6)
1766 	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1767 	    iq->flags & IQ_LRO_ENABLED &&
1768 	    tcp_lro_rx(lro, m0, 0) == 0) {
1769 		/* queued for LRO */
1770 	} else
1771 #endif
1772 	ifp->if_input(ifp, m0);
1773 
1774 	return (0);
1775 }
1776 
1777 /*
1778  * Doesn't fail.  Holds on to work requests it can't send right away.
1779  */
1780 void
1781 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1782 {
1783 	struct sge_eq *eq = &wrq->eq;
1784 	int can_reclaim;
1785 	caddr_t dst;
1786 
1787 	TXQ_LOCK_ASSERT_OWNED(wrq);
1788 #ifdef TCP_OFFLOAD
1789 	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1790 	    (eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1791 	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1792 #else
1793 	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1794 	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1795 #endif
1796 
1797 	if (__predict_true(wr != NULL))
1798 		STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1799 
1800 	can_reclaim = reclaimable(eq);
1801 	if (__predict_false(eq->flags & EQ_STALLED)) {
1802 		if (eq->avail + can_reclaim < tx_resume_threshold(eq))
1803 			return;
1804 		eq->flags &= ~EQ_STALLED;
1805 		eq->unstalled++;
1806 	}
1807 	eq->cidx += can_reclaim;
1808 	eq->avail += can_reclaim;
1809 	if (__predict_false(eq->cidx >= eq->cap))
1810 		eq->cidx -= eq->cap;
1811 
1812 	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
1813 		int ndesc;
1814 
1815 		if (__predict_false(wr->wr_len < 0 ||
1816 		    wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) {
1817 
1818 #ifdef INVARIANTS
1819 			panic("%s: work request with length %d", __func__,
1820 			    wr->wr_len);
1821 #endif
1822 #ifdef KDB
1823 			kdb_backtrace();
1824 #endif
1825 			log(LOG_ERR, "%s: %s work request with length %d",
1826 			    device_get_nameunit(sc->dev), __func__, wr->wr_len);
1827 			STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1828 			free_wrqe(wr);
1829 			continue;
1830 		}
1831 
1832 		ndesc = howmany(wr->wr_len, EQ_ESIZE);
1833 		if (eq->avail < ndesc) {
1834 			wrq->no_desc++;
1835 			break;
1836 		}
1837 
1838 		dst = (void *)&eq->desc[eq->pidx];
1839 		copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len);
1840 
1841 		eq->pidx += ndesc;
1842 		eq->avail -= ndesc;
1843 		if (__predict_false(eq->pidx >= eq->cap))
1844 			eq->pidx -= eq->cap;
1845 
1846 		eq->pending += ndesc;
1847 		if (eq->pending >= 8)
1848 			ring_eq_db(sc, eq);
1849 
1850 		wrq->tx_wrs++;
1851 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1852 		free_wrqe(wr);
1853 
1854 		if (eq->avail < 8) {
1855 			can_reclaim = reclaimable(eq);
1856 			eq->cidx += can_reclaim;
1857 			eq->avail += can_reclaim;
1858 			if (__predict_false(eq->cidx >= eq->cap))
1859 				eq->cidx -= eq->cap;
1860 		}
1861 	}
1862 
1863 	if (eq->pending)
1864 		ring_eq_db(sc, eq);
1865 
1866 	if (wr != NULL) {
1867 		eq->flags |= EQ_STALLED;
1868 		if (callout_pending(&eq->tx_callout) == 0)
1869 			callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1870 	}
1871 }
1872 
1873 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1874 #define TXPKTS_PKT_HDR ((\
1875     sizeof(struct ulp_txpkt) + \
1876     sizeof(struct ulptx_idata) + \
1877     sizeof(struct cpl_tx_pkt_core) \
1878     ) / 8)
1879 
1880 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1881 #define TXPKTS_WR_HDR (\
1882     sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
1883     TXPKTS_PKT_HDR)
1884 
1885 /* Header of a tx WR, before SGL of first packet (in flits) */
1886 #define TXPKT_WR_HDR ((\
1887     sizeof(struct fw_eth_tx_pkt_wr) + \
1888     sizeof(struct cpl_tx_pkt_core) \
1889     ) / 8 )
1890 
1891 /* Header of a tx LSO WR, before SGL of first packet (in flits) */
1892 #define TXPKT_LSO_WR_HDR ((\
1893     sizeof(struct fw_eth_tx_pkt_wr) + \
1894     sizeof(struct cpl_tx_pkt_lso_core) + \
1895     sizeof(struct cpl_tx_pkt_core) \
1896     ) / 8 )
1897 
1898 int
1899 t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
1900 {
1901 	struct port_info *pi = (void *)ifp->if_softc;
1902 	struct adapter *sc = pi->adapter;
1903 	struct sge_eq *eq = &txq->eq;
1904 	struct buf_ring *br = txq->br;
1905 	struct mbuf *next;
1906 	int rc, coalescing, can_reclaim;
1907 	struct txpkts txpkts;
1908 	struct sgl sgl;
1909 
1910 	TXQ_LOCK_ASSERT_OWNED(txq);
1911 	KASSERT(m, ("%s: called with nothing to do.", __func__));
1912 	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
1913 	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1914 
1915 	prefetch(&eq->desc[eq->pidx]);
1916 	prefetch(&txq->sdesc[eq->pidx]);
1917 
1918 	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
1919 	coalescing = 0;
1920 
1921 	can_reclaim = reclaimable(eq);
1922 	if (__predict_false(eq->flags & EQ_STALLED)) {
1923 		if (eq->avail + can_reclaim < tx_resume_threshold(eq)) {
1924 			txq->m = m;
1925 			return (0);
1926 		}
1927 		eq->flags &= ~EQ_STALLED;
1928 		eq->unstalled++;
1929 	}
1930 
1931 	if (__predict_false(eq->flags & EQ_DOOMED)) {
1932 		m_freem(m);
1933 		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
1934 			m_freem(m);
1935 		return (ENETDOWN);
1936 	}
1937 
1938 	if (eq->avail < 8 && can_reclaim)
1939 		reclaim_tx_descs(txq, can_reclaim, 32);
1940 
1941 	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
1942 
1943 		if (eq->avail < 8)
1944 			break;
1945 
1946 		next = m->m_nextpkt;
1947 		m->m_nextpkt = NULL;
1948 
1949 		if (next || buf_ring_peek(br))
1950 			coalescing = 1;
1951 
1952 		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
1953 		if (rc != 0) {
1954 			if (rc == ENOMEM) {
1955 
1956 				/* Short of resources, suspend tx */
1957 
1958 				m->m_nextpkt = next;
1959 				break;
1960 			}
1961 
1962 			/*
1963 			 * Unrecoverable error for this packet, throw it away
1964 			 * and move on to the next.  get_pkt_sgl may already
1965 			 * have freed m (it will be NULL in that case and the
1966 			 * m_freem here is still safe).
1967 			 */
1968 
1969 			m_freem(m);
1970 			continue;
1971 		}
1972 
1973 		if (coalescing &&
1974 		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
1975 
1976 			/* Successfully absorbed into txpkts */
1977 
1978 			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
1979 			goto doorbell;
1980 		}
1981 
1982 		/*
1983 		 * We weren't coalescing to begin with, or current frame could
1984 		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1985 		 * given to it can't be coalesced).  Either way there should be
1986 		 * nothing in txpkts.
1987 		 */
1988 		KASSERT(txpkts.npkt == 0,
1989 		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
1990 
1991 		/* We're sending out individual packets now */
1992 		coalescing = 0;
1993 
1994 		if (eq->avail < 8)
1995 			reclaim_tx_descs(txq, 0, 8);
1996 		rc = write_txpkt_wr(pi, txq, m, &sgl);
1997 		if (rc != 0) {
1998 
1999 			/* Short of hardware descriptors, suspend tx */
2000 
2001 			/*
2002 			 * This is an unlikely but expensive failure.  We've
2003 			 * done all the hard work (DMA mappings etc.) and now we
2004 			 * can't send out the packet.  What's worse, we have to
2005 			 * spend even more time freeing up everything in sgl.
2006 			 */
2007 			txq->no_desc++;
2008 			free_pkt_sgl(txq, &sgl);
2009 
2010 			m->m_nextpkt = next;
2011 			break;
2012 		}
2013 
2014 		ETHER_BPF_MTAP(ifp, m);
2015 		if (sgl.nsegs == 0)
2016 			m_freem(m);
2017 doorbell:
2018 		if (eq->pending >= 8)
2019 			ring_eq_db(sc, eq);
2020 
2021 		can_reclaim = reclaimable(eq);
2022 		if (can_reclaim >= 32)
2023 			reclaim_tx_descs(txq, can_reclaim, 64);
2024 	}
2025 
2026 	if (txpkts.npkt > 0)
2027 		write_txpkts_wr(txq, &txpkts);
2028 
2029 	/*
2030 	 * m not NULL means there was an error but we haven't thrown it away.
2031 	 * This can happen when we're short of tx descriptors (no_desc) or maybe
2032 	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
2033 	 * will get things going again.
2034 	 */
2035 	if (m && !(eq->flags & EQ_CRFLUSHED)) {
2036 		struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
2037 
2038 		/*
2039 		 * If EQ_CRFLUSHED is not set then we know we have at least one
2040 		 * available descriptor because any WR that reduces eq->avail to
2041 		 * 0 also sets EQ_CRFLUSHED.
2042 		 */
2043 		KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
2044 
2045 		txsd->desc_used = 1;
2046 		txsd->credits = 0;
2047 		write_eqflush_wr(eq);
2048 	}
2049 	txq->m = m;
2050 
2051 	if (eq->pending)
2052 		ring_eq_db(sc, eq);
2053 
2054 	reclaim_tx_descs(txq, 0, 128);
2055 
2056 	if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
2057 		callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
2058 
2059 	return (0);
2060 }
2061 
2062 void
2063 t4_update_fl_bufsize(struct ifnet *ifp)
2064 {
2065 	struct port_info *pi = ifp->if_softc;
2066 	struct adapter *sc = pi->adapter;
2067 	struct sge_rxq *rxq;
2068 #ifdef TCP_OFFLOAD
2069 	struct sge_ofld_rxq *ofld_rxq;
2070 #endif
2071 	struct sge_fl *fl;
2072 	int i, maxp, mtu = ifp->if_mtu;
2073 
2074 	maxp = mtu_to_max_payload(sc, mtu, 0);
2075 	for_each_rxq(pi, i, rxq) {
2076 		fl = &rxq->fl;
2077 
2078 		FL_LOCK(fl);
2079 		find_best_refill_source(sc, fl, maxp);
2080 		FL_UNLOCK(fl);
2081 	}
2082 #ifdef TCP_OFFLOAD
2083 	maxp = mtu_to_max_payload(sc, mtu, 1);
2084 	for_each_ofld_rxq(pi, i, ofld_rxq) {
2085 		fl = &ofld_rxq->fl;
2086 
2087 		FL_LOCK(fl);
2088 		find_best_refill_source(sc, fl, maxp);
2089 		FL_UNLOCK(fl);
2090 	}
2091 #endif
2092 }
2093 
2094 int
2095 can_resume_tx(struct sge_eq *eq)
2096 {
2097 
2098 	return (eq->avail + reclaimable(eq) >= tx_resume_threshold(eq));
2099 }
2100 
2101 static inline void
2102 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2103     int qsize)
2104 {
2105 
2106 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2107 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2108 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2109 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2110 
2111 	iq->flags = 0;
2112 	iq->adapter = sc;
2113 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2114 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2115 	if (pktc_idx >= 0) {
2116 		iq->intr_params |= F_QINTR_CNT_EN;
2117 		iq->intr_pktc_idx = pktc_idx;
2118 	}
2119 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2120 	iq->sidx = iq->qsize - spg_len / IQ_ESIZE;
2121 }
2122 
2123 static inline void
2124 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, int pack,
2125     char *name)
2126 {
2127 
2128 	fl->qsize = qsize;
2129 	fl->sidx = qsize - spg_len / EQ_ESIZE;
2130 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2131 	if (pack)
2132 		fl->flags |= FL_BUF_PACKING;
2133 	find_best_refill_source(sc, fl, maxp);
2134 	find_safe_refill_source(sc, fl);
2135 }
2136 
2137 static inline void
2138 init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
2139     uint16_t iqid, char *name)
2140 {
2141 	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
2142 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2143 
2144 	eq->flags = eqtype & EQ_TYPEMASK;
2145 	eq->tx_chan = tx_chan;
2146 	eq->iqid = iqid;
2147 	eq->qsize = qsize;
2148 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2149 
2150 	TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
2151 	callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
2152 }
2153 
2154 static int
2155 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2156     bus_dmamap_t *map, bus_addr_t *pa, void **va)
2157 {
2158 	int rc;
2159 
2160 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2161 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2162 	if (rc != 0) {
2163 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2164 		goto done;
2165 	}
2166 
2167 	rc = bus_dmamem_alloc(*tag, va,
2168 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2169 	if (rc != 0) {
2170 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2171 		goto done;
2172 	}
2173 
2174 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2175 	if (rc != 0) {
2176 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2177 		goto done;
2178 	}
2179 done:
2180 	if (rc)
2181 		free_ring(sc, *tag, *map, *pa, *va);
2182 
2183 	return (rc);
2184 }
2185 
2186 static int
2187 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2188     bus_addr_t pa, void *va)
2189 {
2190 	if (pa)
2191 		bus_dmamap_unload(tag, map);
2192 	if (va)
2193 		bus_dmamem_free(tag, va, map);
2194 	if (tag)
2195 		bus_dma_tag_destroy(tag);
2196 
2197 	return (0);
2198 }
2199 
2200 /*
2201  * Allocates the ring for an ingress queue and an optional freelist.  If the
2202  * freelist is specified it will be allocated and then associated with the
2203  * ingress queue.
2204  *
2205  * Returns errno on failure.  Resources allocated up to that point may still be
2206  * allocated.  Caller is responsible for cleanup in case this function fails.
2207  *
2208  * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2209  * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2210  * the abs_id of the ingress queue to which its interrupts should be forwarded.
2211  */
2212 static int
2213 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
2214     int intr_idx, int cong)
2215 {
2216 	int rc, i, cntxt_id;
2217 	size_t len;
2218 	struct fw_iq_cmd c;
2219 	struct adapter *sc = iq->adapter;
2220 	__be32 v = 0;
2221 
2222 	len = iq->qsize * IQ_ESIZE;
2223 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2224 	    (void **)&iq->desc);
2225 	if (rc != 0)
2226 		return (rc);
2227 
2228 	bzero(&c, sizeof(c));
2229 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2230 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2231 	    V_FW_IQ_CMD_VFN(0));
2232 
2233 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2234 	    FW_LEN16(c));
2235 
2236 	/* Special handling for firmware event queue */
2237 	if (iq == &sc->sge.fwq)
2238 		v |= F_FW_IQ_CMD_IQASYNCH;
2239 
2240 	if (iq->flags & IQ_INTR) {
2241 		KASSERT(intr_idx < sc->intr_count,
2242 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2243 	} else
2244 		v |= F_FW_IQ_CMD_IQANDST;
2245 	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2246 
2247 	c.type_to_iqandstindex = htobe32(v |
2248 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2249 	    V_FW_IQ_CMD_VIID(pi->viid) |
2250 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2251 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2252 	    F_FW_IQ_CMD_IQGTSMODE |
2253 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2254 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2255 	c.iqsize = htobe16(iq->qsize);
2256 	c.iqaddr = htobe64(iq->ba);
2257 	if (cong >= 0)
2258 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2259 
2260 	if (fl) {
2261 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2262 
2263 		len = fl->qsize * EQ_ESIZE;
2264 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2265 		    &fl->ba, (void **)&fl->desc);
2266 		if (rc)
2267 			return (rc);
2268 
2269 		/* Allocate space for one software descriptor per buffer. */
2270 		rc = alloc_fl_sdesc(fl);
2271 		if (rc != 0) {
2272 			device_printf(sc->dev,
2273 			    "failed to setup fl software descriptors: %d\n",
2274 			    rc);
2275 			return (rc);
2276 		}
2277 
2278 		if (fl->flags & FL_BUF_PACKING) {
2279 			fl->lowat = roundup2(sc->sge.fl_starve_threshold2, 8);
2280 			fl->buf_boundary = max(fl_pad, sc->sge.pack_boundary);
2281 		} else {
2282 			fl->lowat = roundup2(sc->sge.fl_starve_threshold, 8);
2283 			fl->buf_boundary = fl_pad;
2284 		}
2285 
2286 		c.iqns_to_fl0congen |=
2287 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2288 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2289 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2290 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2291 			    0));
2292 		if (cong >= 0) {
2293 			c.iqns_to_fl0congen |=
2294 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2295 				    F_FW_IQ_CMD_FL0CONGCIF |
2296 				    F_FW_IQ_CMD_FL0CONGEN);
2297 		}
2298 		c.fl0dcaen_to_fl0cidxfthresh =
2299 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
2300 			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2301 		c.fl0size = htobe16(fl->qsize);
2302 		c.fl0addr = htobe64(fl->ba);
2303 	}
2304 
2305 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2306 	if (rc != 0) {
2307 		device_printf(sc->dev,
2308 		    "failed to create ingress queue: %d\n", rc);
2309 		return (rc);
2310 	}
2311 
2312 	iq->cidx = 0;
2313 	iq->gen = F_RSPD_GEN;
2314 	iq->intr_next = iq->intr_params;
2315 	iq->cntxt_id = be16toh(c.iqid);
2316 	iq->abs_id = be16toh(c.physiqid);
2317 	iq->flags |= IQ_ALLOCATED;
2318 
2319 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2320 	if (cntxt_id >= sc->sge.niq) {
2321 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2322 		    cntxt_id, sc->sge.niq - 1);
2323 	}
2324 	sc->sge.iqmap[cntxt_id] = iq;
2325 
2326 	if (fl) {
2327 		u_int qid;
2328 
2329 		iq->flags |= IQ_HAS_FL;
2330 		fl->cntxt_id = be16toh(c.fl0id);
2331 		fl->pidx = fl->cidx = 0;
2332 
2333 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2334 		if (cntxt_id >= sc->sge.neq) {
2335 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2336 			    __func__, cntxt_id, sc->sge.neq - 1);
2337 		}
2338 		sc->sge.eqmap[cntxt_id] = (void *)fl;
2339 
2340 		qid = fl->cntxt_id;
2341 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
2342 			uint32_t s_qpp = sc->sge.eq_s_qpp;
2343 			uint32_t mask = (1 << s_qpp) - 1;
2344 			volatile uint8_t *udb;
2345 
2346 			udb = sc->udbs_base + UDBS_DB_OFFSET;
2347 			udb += (qid >> s_qpp) << PAGE_SHIFT;
2348 			qid &= mask;
2349 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
2350 				udb += qid << UDBS_SEG_SHIFT;
2351 				qid = 0;
2352 			}
2353 			fl->udb = (volatile void *)udb;
2354 		}
2355 		fl->dbval = F_DBPRIO | V_QID(qid);
2356 		if (is_t5(sc))
2357 			fl->dbval |= F_DBTYPE;
2358 
2359 		FL_LOCK(fl);
2360 		/* Enough to make sure the SGE doesn't think it's starved */
2361 		refill_fl(sc, fl, fl->lowat);
2362 		FL_UNLOCK(fl);
2363 	}
2364 
2365 	if (is_t5(sc) && cong >= 0) {
2366 		uint32_t param, val;
2367 
2368 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2369 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2370 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2371 		if (cong == 0)
2372 			val = 1 << 19;
2373 		else {
2374 			val = 2 << 19;
2375 			for (i = 0; i < 4; i++) {
2376 				if (cong & (1 << i))
2377 					val |= 1 << (i << 2);
2378 			}
2379 		}
2380 
2381 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2382 		if (rc != 0) {
2383 			/* report error but carry on */
2384 			device_printf(sc->dev,
2385 			    "failed to set congestion manager context for "
2386 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2387 		}
2388 	}
2389 
2390 	/* Enable IQ interrupts */
2391 	atomic_store_rel_int(&iq->state, IQS_IDLE);
2392 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2393 	    V_INGRESSQID(iq->cntxt_id));
2394 
2395 	return (0);
2396 }
2397 
2398 static int
2399 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
2400 {
2401 	int rc;
2402 	struct adapter *sc = iq->adapter;
2403 	device_t dev;
2404 
2405 	if (sc == NULL)
2406 		return (0);	/* nothing to do */
2407 
2408 	dev = pi ? pi->dev : sc->dev;
2409 
2410 	if (iq->flags & IQ_ALLOCATED) {
2411 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2412 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2413 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2414 		if (rc != 0) {
2415 			device_printf(dev,
2416 			    "failed to free queue %p: %d\n", iq, rc);
2417 			return (rc);
2418 		}
2419 		iq->flags &= ~IQ_ALLOCATED;
2420 	}
2421 
2422 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2423 
2424 	bzero(iq, sizeof(*iq));
2425 
2426 	if (fl) {
2427 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2428 		    fl->desc);
2429 
2430 		if (fl->sdesc)
2431 			free_fl_sdesc(sc, fl);
2432 
2433 		if (mtx_initialized(&fl->fl_lock))
2434 			mtx_destroy(&fl->fl_lock);
2435 
2436 		bzero(fl, sizeof(*fl));
2437 	}
2438 
2439 	return (0);
2440 }
2441 
2442 static void
2443 add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2444     struct sge_fl *fl)
2445 {
2446 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2447 
2448 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2449 	    "freelist");
2450 	children = SYSCTL_CHILDREN(oid);
2451 
2452 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2453 	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2454 	    "SGE context id of the freelist");
2455 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2456 	    0, "consumer index");
2457 	if (fl->flags & FL_BUF_PACKING) {
2458 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2459 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2460 	}
2461 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2462 	    0, "producer index");
2463 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2464 	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2465 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2466 	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2467 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2468 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2469 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2470 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2471 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2472 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2473 }
2474 
2475 static int
2476 alloc_fwq(struct adapter *sc)
2477 {
2478 	int rc, intr_idx;
2479 	struct sge_iq *fwq = &sc->sge.fwq;
2480 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2481 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2482 
2483 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
2484 	fwq->flags |= IQ_INTR;	/* always */
2485 	intr_idx = sc->intr_count > 1 ? 1 : 0;
2486 	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
2487 	if (rc != 0) {
2488 		device_printf(sc->dev,
2489 		    "failed to create firmware event queue: %d\n", rc);
2490 		return (rc);
2491 	}
2492 
2493 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2494 	    NULL, "firmware event queue");
2495 	children = SYSCTL_CHILDREN(oid);
2496 
2497 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2498 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2499 	    "absolute id of the queue");
2500 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2501 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2502 	    "SGE context id of the queue");
2503 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2504 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2505 	    "consumer index");
2506 
2507 	return (0);
2508 }
2509 
2510 static int
2511 free_fwq(struct adapter *sc)
2512 {
2513 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2514 }
2515 
2516 static int
2517 alloc_mgmtq(struct adapter *sc)
2518 {
2519 	int rc;
2520 	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2521 	char name[16];
2522 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2523 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2524 
2525 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2526 	    NULL, "management queue");
2527 
2528 	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2529 	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2530 	    sc->sge.fwq.cntxt_id, name);
2531 	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2532 	if (rc != 0) {
2533 		device_printf(sc->dev,
2534 		    "failed to create management queue: %d\n", rc);
2535 		return (rc);
2536 	}
2537 
2538 	return (0);
2539 }
2540 
2541 static int
2542 free_mgmtq(struct adapter *sc)
2543 {
2544 
2545 	return free_wrq(sc, &sc->sge.mgmtq);
2546 }
2547 
2548 static inline int
2549 tnl_cong(struct port_info *pi)
2550 {
2551 
2552 	if (cong_drop == -1)
2553 		return (-1);
2554 	else if (cong_drop == 1)
2555 		return (0);
2556 	else
2557 		return (pi->rx_chan_map);
2558 }
2559 
2560 static int
2561 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
2562     struct sysctl_oid *oid)
2563 {
2564 	int rc;
2565 	struct sysctl_oid_list *children;
2566 	char name[16];
2567 
2568 	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
2569 	if (rc != 0)
2570 		return (rc);
2571 
2572 	/*
2573 	 * The freelist is just barely above the starvation threshold right now,
2574 	 * fill it up a bit more.
2575 	 */
2576 	FL_LOCK(&rxq->fl);
2577 	refill_fl(pi->adapter, &rxq->fl, 128);
2578 	FL_UNLOCK(&rxq->fl);
2579 
2580 #if defined(INET) || defined(INET6)
2581 	rc = tcp_lro_init(&rxq->lro);
2582 	if (rc != 0)
2583 		return (rc);
2584 	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
2585 
2586 	if (pi->ifp->if_capenable & IFCAP_LRO)
2587 		rxq->iq.flags |= IQ_LRO_ENABLED;
2588 #endif
2589 	rxq->ifp = pi->ifp;
2590 
2591 	children = SYSCTL_CHILDREN(oid);
2592 
2593 	snprintf(name, sizeof(name), "%d", idx);
2594 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2595 	    NULL, "rx queue");
2596 	children = SYSCTL_CHILDREN(oid);
2597 
2598 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2599 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2600 	    "absolute id of the queue");
2601 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2602 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2603 	    "SGE context id of the queue");
2604 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2605 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2606 	    "consumer index");
2607 #if defined(INET) || defined(INET6)
2608 	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2609 	    &rxq->lro.lro_queued, 0, NULL);
2610 	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2611 	    &rxq->lro.lro_flushed, 0, NULL);
2612 #endif
2613 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2614 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2615 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
2616 	    CTLFLAG_RD, &rxq->vlan_extraction,
2617 	    "# of times hardware extracted 802.1Q tag");
2618 
2619 	add_fl_sysctls(&pi->ctx, oid, &rxq->fl);
2620 
2621 	return (rc);
2622 }
2623 
2624 static int
2625 free_rxq(struct port_info *pi, struct sge_rxq *rxq)
2626 {
2627 	int rc;
2628 
2629 #if defined(INET) || defined(INET6)
2630 	if (rxq->lro.ifp) {
2631 		tcp_lro_free(&rxq->lro);
2632 		rxq->lro.ifp = NULL;
2633 	}
2634 #endif
2635 
2636 	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
2637 	if (rc == 0)
2638 		bzero(rxq, sizeof(*rxq));
2639 
2640 	return (rc);
2641 }
2642 
2643 #ifdef TCP_OFFLOAD
2644 static int
2645 alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
2646     int intr_idx, int idx, struct sysctl_oid *oid)
2647 {
2648 	int rc;
2649 	struct sysctl_oid_list *children;
2650 	char name[16];
2651 
2652 	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2653 	    pi->rx_chan_map);
2654 	if (rc != 0)
2655 		return (rc);
2656 
2657 	children = SYSCTL_CHILDREN(oid);
2658 
2659 	snprintf(name, sizeof(name), "%d", idx);
2660 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2661 	    NULL, "rx queue");
2662 	children = SYSCTL_CHILDREN(oid);
2663 
2664 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2665 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
2666 	    "I", "absolute id of the queue");
2667 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2668 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
2669 	    "I", "SGE context id of the queue");
2670 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2671 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
2672 	    "consumer index");
2673 
2674 	add_fl_sysctls(&pi->ctx, oid, &ofld_rxq->fl);
2675 
2676 	return (rc);
2677 }
2678 
2679 static int
2680 free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
2681 {
2682 	int rc;
2683 
2684 	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
2685 	if (rc == 0)
2686 		bzero(ofld_rxq, sizeof(*ofld_rxq));
2687 
2688 	return (rc);
2689 }
2690 #endif
2691 
2692 #ifdef DEV_NETMAP
2693 static int
2694 alloc_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq, int intr_idx,
2695     int idx, struct sysctl_oid *oid)
2696 {
2697 	int rc;
2698 	struct sysctl_oid_list *children;
2699 	struct sysctl_ctx_list *ctx;
2700 	char name[16];
2701 	size_t len;
2702 	struct adapter *sc = pi->adapter;
2703 	struct netmap_adapter *na = NA(pi->nm_ifp);
2704 
2705 	MPASS(na != NULL);
2706 
2707 	len = pi->qsize_rxq * IQ_ESIZE;
2708 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
2709 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
2710 	if (rc != 0)
2711 		return (rc);
2712 
2713 	len = na->num_rx_desc * EQ_ESIZE + spg_len;
2714 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
2715 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
2716 	if (rc != 0)
2717 		return (rc);
2718 
2719 	nm_rxq->pi = pi;
2720 	nm_rxq->nid = idx;
2721 	nm_rxq->iq_cidx = 0;
2722 	nm_rxq->iq_sidx = pi->qsize_rxq - spg_len / IQ_ESIZE;
2723 	nm_rxq->iq_gen = F_RSPD_GEN;
2724 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
2725 	nm_rxq->fl_sidx = na->num_rx_desc;
2726 	nm_rxq->intr_idx = intr_idx;
2727 
2728 	ctx = &pi->ctx;
2729 	children = SYSCTL_CHILDREN(oid);
2730 
2731 	snprintf(name, sizeof(name), "%d", idx);
2732 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
2733 	    "rx queue");
2734 	children = SYSCTL_CHILDREN(oid);
2735 
2736 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
2737 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
2738 	    "I", "absolute id of the queue");
2739 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2740 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
2741 	    "I", "SGE context id of the queue");
2742 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2743 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
2744 	    "consumer index");
2745 
2746 	children = SYSCTL_CHILDREN(oid);
2747 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2748 	    "freelist");
2749 	children = SYSCTL_CHILDREN(oid);
2750 
2751 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2752 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
2753 	    "I", "SGE context id of the freelist");
2754 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
2755 	    &nm_rxq->fl_cidx, 0, "consumer index");
2756 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2757 	    &nm_rxq->fl_pidx, 0, "producer index");
2758 
2759 	return (rc);
2760 }
2761 
2762 
2763 static int
2764 free_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq)
2765 {
2766 	struct adapter *sc = pi->adapter;
2767 
2768 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
2769 	    nm_rxq->iq_desc);
2770 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
2771 	    nm_rxq->fl_desc);
2772 
2773 	return (0);
2774 }
2775 
2776 static int
2777 alloc_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
2778     struct sysctl_oid *oid)
2779 {
2780 	int rc;
2781 	size_t len;
2782 	struct adapter *sc = pi->adapter;
2783 	struct netmap_adapter *na = NA(pi->nm_ifp);
2784 	char name[16];
2785 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2786 
2787 	len = na->num_tx_desc * EQ_ESIZE + spg_len;
2788 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
2789 	    &nm_txq->ba, (void **)&nm_txq->desc);
2790 	if (rc)
2791 		return (rc);
2792 
2793 	nm_txq->pidx = nm_txq->cidx = 0;
2794 	nm_txq->sidx = na->num_tx_desc;
2795 	nm_txq->nid = idx;
2796 	nm_txq->iqidx = iqidx;
2797 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2798 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf));
2799 
2800 	snprintf(name, sizeof(name), "%d", idx);
2801 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2802 	    NULL, "netmap tx queue");
2803 	children = SYSCTL_CHILDREN(oid);
2804 
2805 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2806 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
2807 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2808 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
2809 	    "consumer index");
2810 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
2811 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
2812 	    "producer index");
2813 
2814 	return (rc);
2815 }
2816 
2817 static int
2818 free_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq)
2819 {
2820 	struct adapter *sc = pi->adapter;
2821 
2822 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
2823 	    nm_txq->desc);
2824 
2825 	return (0);
2826 }
2827 #endif
2828 
2829 static int
2830 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
2831 {
2832 	int rc, cntxt_id;
2833 	struct fw_eq_ctrl_cmd c;
2834 
2835 	bzero(&c, sizeof(c));
2836 
2837 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2838 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
2839 	    V_FW_EQ_CTRL_CMD_VFN(0));
2840 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
2841 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2842 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
2843 	c.physeqid_pkd = htobe32(0);
2844 	c.fetchszm_to_iqid =
2845 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2846 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
2847 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
2848 	c.dcaen_to_eqsize =
2849 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2850 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2851 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2852 		V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
2853 	c.eqaddr = htobe64(eq->ba);
2854 
2855 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2856 	if (rc != 0) {
2857 		device_printf(sc->dev,
2858 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
2859 		return (rc);
2860 	}
2861 	eq->flags |= EQ_ALLOCATED;
2862 
2863 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
2864 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2865 	if (cntxt_id >= sc->sge.neq)
2866 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2867 		cntxt_id, sc->sge.neq - 1);
2868 	sc->sge.eqmap[cntxt_id] = eq;
2869 
2870 	return (rc);
2871 }
2872 
2873 static int
2874 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2875 {
2876 	int rc, cntxt_id;
2877 	struct fw_eq_eth_cmd c;
2878 
2879 	bzero(&c, sizeof(c));
2880 
2881 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2882 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
2883 	    V_FW_EQ_ETH_CMD_VFN(0));
2884 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
2885 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2886 	c.autoequiqe_to_viid = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
2887 	c.fetchszm_to_iqid =
2888 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2889 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
2890 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
2891 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2892 		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2893 		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2894 		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
2895 	c.eqaddr = htobe64(eq->ba);
2896 
2897 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2898 	if (rc != 0) {
2899 		device_printf(pi->dev,
2900 		    "failed to create Ethernet egress queue: %d\n", rc);
2901 		return (rc);
2902 	}
2903 	eq->flags |= EQ_ALLOCATED;
2904 
2905 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
2906 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2907 	if (cntxt_id >= sc->sge.neq)
2908 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2909 		cntxt_id, sc->sge.neq - 1);
2910 	sc->sge.eqmap[cntxt_id] = eq;
2911 
2912 	return (rc);
2913 }
2914 
2915 #ifdef TCP_OFFLOAD
2916 static int
2917 ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2918 {
2919 	int rc, cntxt_id;
2920 	struct fw_eq_ofld_cmd c;
2921 
2922 	bzero(&c, sizeof(c));
2923 
2924 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
2925 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
2926 	    V_FW_EQ_OFLD_CMD_VFN(0));
2927 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
2928 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2929 	c.fetchszm_to_iqid =
2930 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2931 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
2932 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
2933 	c.dcaen_to_eqsize =
2934 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2935 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2936 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2937 		V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
2938 	c.eqaddr = htobe64(eq->ba);
2939 
2940 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2941 	if (rc != 0) {
2942 		device_printf(pi->dev,
2943 		    "failed to create egress queue for TCP offload: %d\n", rc);
2944 		return (rc);
2945 	}
2946 	eq->flags |= EQ_ALLOCATED;
2947 
2948 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
2949 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2950 	if (cntxt_id >= sc->sge.neq)
2951 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2952 		cntxt_id, sc->sge.neq - 1);
2953 	sc->sge.eqmap[cntxt_id] = eq;
2954 
2955 	return (rc);
2956 }
2957 #endif
2958 
2959 static int
2960 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2961 {
2962 	int rc;
2963 	size_t len;
2964 
2965 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
2966 
2967 	len = eq->qsize * EQ_ESIZE;
2968 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
2969 	    &eq->ba, (void **)&eq->desc);
2970 	if (rc)
2971 		return (rc);
2972 
2973 	eq->cap = eq->qsize - spg_len / EQ_ESIZE;
2974 	eq->spg = (void *)&eq->desc[eq->cap];
2975 	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
2976 	eq->pidx = eq->cidx = 0;
2977 	eq->doorbells = sc->doorbells;
2978 
2979 	switch (eq->flags & EQ_TYPEMASK) {
2980 	case EQ_CTRL:
2981 		rc = ctrl_eq_alloc(sc, eq);
2982 		break;
2983 
2984 	case EQ_ETH:
2985 		rc = eth_eq_alloc(sc, pi, eq);
2986 		break;
2987 
2988 #ifdef TCP_OFFLOAD
2989 	case EQ_OFLD:
2990 		rc = ofld_eq_alloc(sc, pi, eq);
2991 		break;
2992 #endif
2993 
2994 	default:
2995 		panic("%s: invalid eq type %d.", __func__,
2996 		    eq->flags & EQ_TYPEMASK);
2997 	}
2998 	if (rc != 0) {
2999 		device_printf(sc->dev,
3000 		    "failed to allocate egress queue(%d): %d\n",
3001 		    eq->flags & EQ_TYPEMASK, rc);
3002 	}
3003 
3004 	eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
3005 
3006 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3007 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3008 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3009 		uint32_t s_qpp = sc->sge.eq_s_qpp;
3010 		uint32_t mask = (1 << s_qpp) - 1;
3011 		volatile uint8_t *udb;
3012 
3013 		udb = sc->udbs_base + UDBS_DB_OFFSET;
3014 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3015 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3016 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3017 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3018 		else {
3019 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3020 			eq->udb_qid = 0;
3021 		}
3022 		eq->udb = (volatile void *)udb;
3023 	}
3024 
3025 	return (rc);
3026 }
3027 
3028 static int
3029 free_eq(struct adapter *sc, struct sge_eq *eq)
3030 {
3031 	int rc;
3032 
3033 	if (eq->flags & EQ_ALLOCATED) {
3034 		switch (eq->flags & EQ_TYPEMASK) {
3035 		case EQ_CTRL:
3036 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3037 			    eq->cntxt_id);
3038 			break;
3039 
3040 		case EQ_ETH:
3041 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3042 			    eq->cntxt_id);
3043 			break;
3044 
3045 #ifdef TCP_OFFLOAD
3046 		case EQ_OFLD:
3047 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3048 			    eq->cntxt_id);
3049 			break;
3050 #endif
3051 
3052 		default:
3053 			panic("%s: invalid eq type %d.", __func__,
3054 			    eq->flags & EQ_TYPEMASK);
3055 		}
3056 		if (rc != 0) {
3057 			device_printf(sc->dev,
3058 			    "failed to free egress queue (%d): %d\n",
3059 			    eq->flags & EQ_TYPEMASK, rc);
3060 			return (rc);
3061 		}
3062 		eq->flags &= ~EQ_ALLOCATED;
3063 	}
3064 
3065 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3066 
3067 	if (mtx_initialized(&eq->eq_lock))
3068 		mtx_destroy(&eq->eq_lock);
3069 
3070 	bzero(eq, sizeof(*eq));
3071 	return (0);
3072 }
3073 
3074 static int
3075 alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
3076     struct sysctl_oid *oid)
3077 {
3078 	int rc;
3079 	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
3080 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3081 
3082 	rc = alloc_eq(sc, pi, &wrq->eq);
3083 	if (rc)
3084 		return (rc);
3085 
3086 	wrq->adapter = sc;
3087 	STAILQ_INIT(&wrq->wr_list);
3088 
3089 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3090 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3091 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3092 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3093 	    "consumer index");
3094 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3095 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3096 	    "producer index");
3097 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
3098 	    &wrq->tx_wrs, "# of work requests");
3099 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
3100 	    &wrq->no_desc, 0,
3101 	    "# of times queue ran out of hardware descriptors");
3102 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3103 	    &wrq->eq.unstalled, 0, "# of times queue recovered after stall");
3104 
3105 	return (rc);
3106 }
3107 
3108 static int
3109 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3110 {
3111 	int rc;
3112 
3113 	rc = free_eq(sc, &wrq->eq);
3114 	if (rc)
3115 		return (rc);
3116 
3117 	bzero(wrq, sizeof(*wrq));
3118 	return (0);
3119 }
3120 
3121 static int
3122 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
3123     struct sysctl_oid *oid)
3124 {
3125 	int rc;
3126 	struct adapter *sc = pi->adapter;
3127 	struct sge_eq *eq = &txq->eq;
3128 	char name[16];
3129 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3130 
3131 	rc = alloc_eq(sc, pi, eq);
3132 	if (rc)
3133 		return (rc);
3134 
3135 	txq->ifp = pi->ifp;
3136 
3137 	txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
3138 	    M_ZERO | M_WAITOK);
3139 	txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
3140 
3141 	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
3142 	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
3143 	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
3144 	if (rc != 0) {
3145 		device_printf(sc->dev,
3146 		    "failed to create tx DMA tag: %d\n", rc);
3147 		return (rc);
3148 	}
3149 
3150 	/*
3151 	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
3152 	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
3153 	 * sized for the worst case.
3154 	 */
3155 	rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
3156 	    M_WAITOK);
3157 	if (rc != 0) {
3158 		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
3159 		return (rc);
3160 	}
3161 
3162 	snprintf(name, sizeof(name), "%d", idx);
3163 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3164 	    NULL, "tx queue");
3165 	children = SYSCTL_CHILDREN(oid);
3166 
3167 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3168 	    &eq->cntxt_id, 0, "SGE context id of the queue");
3169 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
3170 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3171 	    "consumer index");
3172 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
3173 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3174 	    "producer index");
3175 
3176 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3177 	    &txq->txcsum, "# of times hardware assisted with checksum");
3178 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
3179 	    CTLFLAG_RD, &txq->vlan_insertion,
3180 	    "# of times hardware inserted 802.1Q tag");
3181 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3182 	    &txq->tso_wrs, "# of TSO work requests");
3183 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3184 	    &txq->imm_wrs, "# of work requests with immediate data");
3185 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3186 	    &txq->sgl_wrs, "# of work requests with direct SGL");
3187 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3188 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3189 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
3190 	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
3191 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
3192 	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
3193 
3194 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD,
3195 	    &txq->br->br_drops, "# of drops in the buf_ring for this queue");
3196 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
3197 	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
3198 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
3199 	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
3200 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
3201 	    &eq->egr_update, 0, "egress update notifications from the SGE");
3202 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3203 	    &eq->unstalled, 0, "# of times txq recovered after stall");
3204 
3205 	return (rc);
3206 }
3207 
3208 static int
3209 free_txq(struct port_info *pi, struct sge_txq *txq)
3210 {
3211 	int rc;
3212 	struct adapter *sc = pi->adapter;
3213 	struct sge_eq *eq = &txq->eq;
3214 
3215 	rc = free_eq(sc, eq);
3216 	if (rc)
3217 		return (rc);
3218 
3219 	free(txq->sdesc, M_CXGBE);
3220 
3221 	if (txq->txmaps.maps)
3222 		t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
3223 
3224 	buf_ring_free(txq->br, M_CXGBE);
3225 
3226 	if (txq->tx_tag)
3227 		bus_dma_tag_destroy(txq->tx_tag);
3228 
3229 	bzero(txq, sizeof(*txq));
3230 	return (0);
3231 }
3232 
3233 static void
3234 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3235 {
3236 	bus_addr_t *ba = arg;
3237 
3238 	KASSERT(nseg == 1,
3239 	    ("%s meant for single segment mappings only.", __func__));
3240 
3241 	*ba = error ? 0 : segs->ds_addr;
3242 }
3243 
3244 static inline void
3245 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3246 {
3247 	uint32_t n, v;
3248 
3249 	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
3250 	MPASS(n > 0);
3251 
3252 	wmb();
3253 	v = fl->dbval | V_PIDX(n);
3254 	if (fl->udb)
3255 		*fl->udb = htole32(v);
3256 	else
3257 		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3258 	IDXINCR(fl->dbidx, n, fl->sidx);
3259 }
3260 
3261 /*
3262  * Fills up the freelist by allocating upto 'n' buffers.  Buffers that are
3263  * recycled do not count towards this allocation budget.
3264  *
3265  * Returns non-zero to indicate that this freelist should be added to the list
3266  * of starving freelists.
3267  */
3268 static int
3269 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
3270 {
3271 	__be64 *d;
3272 	struct fl_sdesc *sd;
3273 	uintptr_t pa;
3274 	caddr_t cl;
3275 	struct cluster_layout *cll;
3276 	struct sw_zone_info *swz;
3277 	struct cluster_metadata *clm;
3278 	uint16_t max_pidx;
3279 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
3280 
3281 	FL_LOCK_ASSERT_OWNED(fl);
3282 
3283 	/*
3284 	 * We always stop at the begining of the hardware descriptor that's just
3285 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
3286 	 * which would mean an empty freelist to the chip.
3287 	 */
3288 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
3289 	if (fl->pidx == max_pidx * 8)
3290 		return (0);
3291 
3292 	d = &fl->desc[fl->pidx];
3293 	sd = &fl->sdesc[fl->pidx];
3294 	cll = &fl->cll_def;	/* default layout */
3295 	swz = &sc->sge.sw_zone_info[cll->zidx];
3296 
3297 	while (n > 0) {
3298 
3299 		if (sd->cl != NULL) {
3300 
3301 			if (sd->nmbuf == 0) {
3302 				/*
3303 				 * Fast recycle without involving any atomics on
3304 				 * the cluster's metadata (if the cluster has
3305 				 * metadata).  This happens when all frames
3306 				 * received in the cluster were small enough to
3307 				 * fit within a single mbuf each.
3308 				 */
3309 				fl->cl_fast_recycled++;
3310 #ifdef INVARIANTS
3311 				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3312 				if (clm != NULL)
3313 					MPASS(clm->refcount == 1);
3314 #endif
3315 				goto recycled_fast;
3316 			}
3317 
3318 			/*
3319 			 * Cluster is guaranteed to have metadata.  Clusters
3320 			 * without metadata always take the fast recycle path
3321 			 * when they're recycled.
3322 			 */
3323 			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3324 			MPASS(clm != NULL);
3325 
3326 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3327 				fl->cl_recycled++;
3328 				counter_u64_add(extfree_rels, 1);
3329 				goto recycled;
3330 			}
3331 			sd->cl = NULL;	/* gave up my reference */
3332 		}
3333 		MPASS(sd->cl == NULL);
3334 alloc:
3335 		cl = uma_zalloc(swz->zone, M_NOWAIT);
3336 		if (__predict_false(cl == NULL)) {
3337 			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3338 			    fl->cll_def.zidx == fl->cll_alt.zidx)
3339 				break;
3340 
3341 			/* fall back to the safe zone */
3342 			cll = &fl->cll_alt;
3343 			swz = &sc->sge.sw_zone_info[cll->zidx];
3344 			goto alloc;
3345 		}
3346 		fl->cl_allocated++;
3347 		n--;
3348 
3349 		pa = pmap_kextract((vm_offset_t)cl);
3350 		pa += cll->region1;
3351 		sd->cl = cl;
3352 		sd->cll = *cll;
3353 		*d = htobe64(pa | cll->hwidx);
3354 		clm = cl_metadata(sc, fl, cll, cl);
3355 		if (clm != NULL) {
3356 recycled:
3357 #ifdef INVARIANTS
3358 			clm->sd = sd;
3359 #endif
3360 			clm->refcount = 1;
3361 		}
3362 		sd->nmbuf = 0;
3363 recycled_fast:
3364 		d++;
3365 		sd++;
3366 		if (__predict_false(++fl->pidx % 8 == 0)) {
3367 			uint16_t pidx = fl->pidx / 8;
3368 
3369 			if (__predict_false(pidx == fl->sidx)) {
3370 				fl->pidx = 0;
3371 				pidx = 0;
3372 				sd = fl->sdesc;
3373 				d = fl->desc;
3374 			}
3375 			if (pidx == max_pidx)
3376 				break;
3377 
3378 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
3379 				ring_fl_db(sc, fl);
3380 		}
3381 	}
3382 
3383 	if (fl->pidx / 8 != fl->dbidx)
3384 		ring_fl_db(sc, fl);
3385 
3386 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3387 }
3388 
3389 /*
3390  * Attempt to refill all starving freelists.
3391  */
3392 static void
3393 refill_sfl(void *arg)
3394 {
3395 	struct adapter *sc = arg;
3396 	struct sge_fl *fl, *fl_temp;
3397 
3398 	mtx_lock(&sc->sfl_lock);
3399 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3400 		FL_LOCK(fl);
3401 		refill_fl(sc, fl, 64);
3402 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3403 			TAILQ_REMOVE(&sc->sfl, fl, link);
3404 			fl->flags &= ~FL_STARVING;
3405 		}
3406 		FL_UNLOCK(fl);
3407 	}
3408 
3409 	if (!TAILQ_EMPTY(&sc->sfl))
3410 		callout_schedule(&sc->sfl_callout, hz / 5);
3411 	mtx_unlock(&sc->sfl_lock);
3412 }
3413 
3414 static int
3415 alloc_fl_sdesc(struct sge_fl *fl)
3416 {
3417 
3418 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
3419 	    M_ZERO | M_WAITOK);
3420 
3421 	return (0);
3422 }
3423 
3424 static void
3425 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3426 {
3427 	struct fl_sdesc *sd;
3428 	struct cluster_metadata *clm;
3429 	struct cluster_layout *cll;
3430 	int i;
3431 
3432 	sd = fl->sdesc;
3433 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
3434 		if (sd->cl == NULL)
3435 			continue;
3436 
3437 		cll = &sd->cll;
3438 		clm = cl_metadata(sc, fl, cll, sd->cl);
3439 		if (sd->nmbuf == 0)
3440 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3441 		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3442 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3443 			counter_u64_add(extfree_rels, 1);
3444 		}
3445 		sd->cl = NULL;
3446 	}
3447 
3448 	free(fl->sdesc, M_CXGBE);
3449 	fl->sdesc = NULL;
3450 }
3451 
3452 int
3453 t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
3454     int flags)
3455 {
3456 	struct tx_map *txm;
3457 	int i, rc;
3458 
3459 	txmaps->map_total = txmaps->map_avail = count;
3460 	txmaps->map_cidx = txmaps->map_pidx = 0;
3461 
3462 	txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
3463 	    M_ZERO | flags);
3464 
3465 	txm = txmaps->maps;
3466 	for (i = 0; i < count; i++, txm++) {
3467 		rc = bus_dmamap_create(tx_tag, 0, &txm->map);
3468 		if (rc != 0)
3469 			goto failed;
3470 	}
3471 
3472 	return (0);
3473 failed:
3474 	while (--i >= 0) {
3475 		txm--;
3476 		bus_dmamap_destroy(tx_tag, txm->map);
3477 	}
3478 	KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
3479 
3480 	free(txmaps->maps, M_CXGBE);
3481 	txmaps->maps = NULL;
3482 
3483 	return (rc);
3484 }
3485 
3486 void
3487 t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
3488 {
3489 	struct tx_map *txm;
3490 	int i;
3491 
3492 	txm = txmaps->maps;
3493 	for (i = 0; i < txmaps->map_total; i++, txm++) {
3494 
3495 		if (txm->m) {
3496 			bus_dmamap_unload(tx_tag, txm->map);
3497 			m_freem(txm->m);
3498 			txm->m = NULL;
3499 		}
3500 
3501 		bus_dmamap_destroy(tx_tag, txm->map);
3502 	}
3503 
3504 	free(txmaps->maps, M_CXGBE);
3505 	txmaps->maps = NULL;
3506 }
3507 
3508 /*
3509  * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
3510  * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
3511  * of immediate data.
3512  */
3513 #define IMM_LEN ( \
3514       2 * EQ_ESIZE \
3515     - sizeof(struct fw_eth_tx_pkt_wr) \
3516     - sizeof(struct cpl_tx_pkt_core))
3517 
3518 /*
3519  * Returns non-zero on failure, no need to cleanup anything in that case.
3520  *
3521  * Note 1: We always try to defrag the mbuf if required and return EFBIG only
3522  * if the resulting chain still won't fit in a tx descriptor.
3523  *
3524  * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
3525  * does not have the TCP header in it.
3526  */
3527 static int
3528 get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
3529     int sgl_only)
3530 {
3531 	struct mbuf *m = *fp;
3532 	struct tx_maps *txmaps;
3533 	struct tx_map *txm;
3534 	int rc, defragged = 0, n;
3535 
3536 	TXQ_LOCK_ASSERT_OWNED(txq);
3537 
3538 	if (m->m_pkthdr.tso_segsz)
3539 		sgl_only = 1;	/* Do not allow immediate data with LSO */
3540 
3541 start:	sgl->nsegs = 0;
3542 
3543 	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
3544 		return (0);	/* nsegs = 0 tells caller to use imm. tx */
3545 
3546 	txmaps = &txq->txmaps;
3547 	if (txmaps->map_avail == 0) {
3548 		txq->no_dmamap++;
3549 		return (ENOMEM);
3550 	}
3551 	txm = &txmaps->maps[txmaps->map_pidx];
3552 
3553 	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
3554 		*fp = m_pullup(m, 50);
3555 		m = *fp;
3556 		if (m == NULL)
3557 			return (ENOBUFS);
3558 	}
3559 
3560 	rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
3561 	    &sgl->nsegs, BUS_DMA_NOWAIT);
3562 	if (rc == EFBIG && defragged == 0) {
3563 		m = m_defrag(m, M_NOWAIT);
3564 		if (m == NULL)
3565 			return (EFBIG);
3566 
3567 		defragged = 1;
3568 		*fp = m;
3569 		goto start;
3570 	}
3571 	if (rc != 0)
3572 		return (rc);
3573 
3574 	txm->m = m;
3575 	txmaps->map_avail--;
3576 	if (++txmaps->map_pidx == txmaps->map_total)
3577 		txmaps->map_pidx = 0;
3578 
3579 	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
3580 	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
3581 
3582 	/*
3583 	 * Store the # of flits required to hold this frame's SGL in nflits.  An
3584 	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
3585 	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
3586 	 * then len1 must be set to 0.
3587 	 */
3588 	n = sgl->nsegs - 1;
3589 	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
3590 
3591 	return (0);
3592 }
3593 
3594 
3595 /*
3596  * Releases all the txq resources used up in the specified sgl.
3597  */
3598 static int
3599 free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
3600 {
3601 	struct tx_maps *txmaps;
3602 	struct tx_map *txm;
3603 
3604 	TXQ_LOCK_ASSERT_OWNED(txq);
3605 
3606 	if (sgl->nsegs == 0)
3607 		return (0);	/* didn't use any map */
3608 
3609 	txmaps = &txq->txmaps;
3610 
3611 	/* 1 pkt uses exactly 1 map, back it out */
3612 
3613 	txmaps->map_avail++;
3614 	if (txmaps->map_pidx > 0)
3615 		txmaps->map_pidx--;
3616 	else
3617 		txmaps->map_pidx = txmaps->map_total - 1;
3618 
3619 	txm = &txmaps->maps[txmaps->map_pidx];
3620 	bus_dmamap_unload(txq->tx_tag, txm->map);
3621 	txm->m = NULL;
3622 
3623 	return (0);
3624 }
3625 
3626 static int
3627 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
3628     struct sgl *sgl)
3629 {
3630 	struct sge_eq *eq = &txq->eq;
3631 	struct fw_eth_tx_pkt_wr *wr;
3632 	struct cpl_tx_pkt_core *cpl;
3633 	uint32_t ctrl;	/* used in many unrelated places */
3634 	uint64_t ctrl1;
3635 	int nflits, ndesc, pktlen;
3636 	struct tx_sdesc *txsd;
3637 	caddr_t dst;
3638 
3639 	TXQ_LOCK_ASSERT_OWNED(txq);
3640 
3641 	pktlen = m->m_pkthdr.len;
3642 
3643 	/*
3644 	 * Do we have enough flits to send this frame out?
3645 	 */
3646 	ctrl = sizeof(struct cpl_tx_pkt_core);
3647 	if (m->m_pkthdr.tso_segsz) {
3648 		nflits = TXPKT_LSO_WR_HDR;
3649 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3650 	} else
3651 		nflits = TXPKT_WR_HDR;
3652 	if (sgl->nsegs > 0)
3653 		nflits += sgl->nflits;
3654 	else {
3655 		nflits += howmany(pktlen, 8);
3656 		ctrl += pktlen;
3657 	}
3658 	ndesc = howmany(nflits, 8);
3659 	if (ndesc > eq->avail)
3660 		return (ENOMEM);
3661 
3662 	/* Firmware work request header */
3663 	wr = (void *)&eq->desc[eq->pidx];
3664 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3665 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3666 	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
3667 	if (eq->avail == ndesc) {
3668 		if (!(eq->flags & EQ_CRFLUSHED)) {
3669 			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3670 			eq->flags |= EQ_CRFLUSHED;
3671 		}
3672 		eq->flags |= EQ_STALLED;
3673 	}
3674 
3675 	wr->equiq_to_len16 = htobe32(ctrl);
3676 	wr->r3 = 0;
3677 
3678 	if (m->m_pkthdr.tso_segsz) {
3679 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3680 		struct ether_header *eh;
3681 		void *l3hdr;
3682 #if defined(INET) || defined(INET6)
3683 		struct tcphdr *tcp;
3684 #endif
3685 		uint16_t eh_type;
3686 
3687 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3688 		    F_LSO_LAST_SLICE;
3689 
3690 		eh = mtod(m, struct ether_header *);
3691 		eh_type = ntohs(eh->ether_type);
3692 		if (eh_type == ETHERTYPE_VLAN) {
3693 			struct ether_vlan_header *evh = (void *)eh;
3694 
3695 			ctrl |= V_LSO_ETHHDR_LEN(1);
3696 			l3hdr = evh + 1;
3697 			eh_type = ntohs(evh->evl_proto);
3698 		} else
3699 			l3hdr = eh + 1;
3700 
3701 		switch (eh_type) {
3702 #ifdef INET6
3703 		case ETHERTYPE_IPV6:
3704 		{
3705 			struct ip6_hdr *ip6 = l3hdr;
3706 
3707 			/*
3708 			 * XXX-BZ For now we do not pretend to support
3709 			 * IPv6 extension headers.
3710 			 */
3711 			KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO "
3712 			    "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt));
3713 			tcp = (struct tcphdr *)(ip6 + 1);
3714 			ctrl |= F_LSO_IPV6;
3715 			ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) |
3716 			    V_LSO_TCPHDR_LEN(tcp->th_off);
3717 			break;
3718 		}
3719 #endif
3720 #ifdef INET
3721 		case ETHERTYPE_IP:
3722 		{
3723 			struct ip *ip = l3hdr;
3724 
3725 			tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
3726 			ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
3727 			    V_LSO_TCPHDR_LEN(tcp->th_off);
3728 			break;
3729 		}
3730 #endif
3731 		default:
3732 			panic("%s: CSUM_TSO but no supported IP version "
3733 			    "(0x%04x)", __func__, eh_type);
3734 		}
3735 
3736 		lso->lso_ctrl = htobe32(ctrl);
3737 		lso->ipid_ofst = htobe16(0);
3738 		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
3739 		lso->seqno_offset = htobe32(0);
3740 		lso->len = htobe32(pktlen);
3741 
3742 		cpl = (void *)(lso + 1);
3743 
3744 		txq->tso_wrs++;
3745 	} else
3746 		cpl = (void *)(wr + 1);
3747 
3748 	/* Checksum offload */
3749 	ctrl1 = 0;
3750 	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3751 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3752 	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3753 	    CSUM_TCP_IPV6 | CSUM_TSO)))
3754 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3755 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3756 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3757 		txq->txcsum++;	/* some hardware assistance provided */
3758 
3759 	/* VLAN tag insertion */
3760 	if (m->m_flags & M_VLANTAG) {
3761 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3762 		txq->vlan_insertion++;
3763 	}
3764 
3765 	/* CPL header */
3766 	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3767 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3768 	cpl->pack = 0;
3769 	cpl->len = htobe16(pktlen);
3770 	cpl->ctrl1 = htobe64(ctrl1);
3771 
3772 	/* Software descriptor */
3773 	txsd = &txq->sdesc[eq->pidx];
3774 	txsd->desc_used = ndesc;
3775 
3776 	eq->pending += ndesc;
3777 	eq->avail -= ndesc;
3778 	eq->pidx += ndesc;
3779 	if (eq->pidx >= eq->cap)
3780 		eq->pidx -= eq->cap;
3781 
3782 	/* SGL */
3783 	dst = (void *)(cpl + 1);
3784 	if (sgl->nsegs > 0) {
3785 		txsd->credits = 1;
3786 		txq->sgl_wrs++;
3787 		write_sgl_to_txd(eq, sgl, &dst);
3788 	} else {
3789 		txsd->credits = 0;
3790 		txq->imm_wrs++;
3791 		for (; m; m = m->m_next) {
3792 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3793 #ifdef INVARIANTS
3794 			pktlen -= m->m_len;
3795 #endif
3796 		}
3797 #ifdef INVARIANTS
3798 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3799 #endif
3800 
3801 	}
3802 
3803 	txq->txpkt_wrs++;
3804 	return (0);
3805 }
3806 
3807 /*
3808  * Returns 0 to indicate that m has been accepted into a coalesced tx work
3809  * request.  It has either been folded into txpkts or txpkts was flushed and m
3810  * has started a new coalesced work request (as the first frame in a fresh
3811  * txpkts).
3812  *
3813  * Returns non-zero to indicate a failure - caller is responsible for
3814  * transmitting m, if there was anything in txpkts it has been flushed.
3815  */
3816 static int
3817 add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
3818     struct mbuf *m, struct sgl *sgl)
3819 {
3820 	struct sge_eq *eq = &txq->eq;
3821 	int can_coalesce;
3822 	struct tx_sdesc *txsd;
3823 	int flits;
3824 
3825 	TXQ_LOCK_ASSERT_OWNED(txq);
3826 
3827 	KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
3828 
3829 	if (txpkts->npkt > 0) {
3830 		flits = TXPKTS_PKT_HDR + sgl->nflits;
3831 		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3832 		    txpkts->nflits + flits <= TX_WR_FLITS &&
3833 		    txpkts->nflits + flits <= eq->avail * 8 &&
3834 		    txpkts->plen + m->m_pkthdr.len < 65536;
3835 
3836 		if (can_coalesce) {
3837 			txpkts->npkt++;
3838 			txpkts->nflits += flits;
3839 			txpkts->plen += m->m_pkthdr.len;
3840 
3841 			txsd = &txq->sdesc[eq->pidx];
3842 			txsd->credits++;
3843 
3844 			return (0);
3845 		}
3846 
3847 		/*
3848 		 * Couldn't coalesce m into txpkts.  The first order of business
3849 		 * is to send txpkts on its way.  Then we'll revisit m.
3850 		 */
3851 		write_txpkts_wr(txq, txpkts);
3852 	}
3853 
3854 	/*
3855 	 * Check if we can start a new coalesced tx work request with m as
3856 	 * the first packet in it.
3857 	 */
3858 
3859 	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
3860 
3861 	flits = TXPKTS_WR_HDR + sgl->nflits;
3862 	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3863 	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
3864 
3865 	if (can_coalesce == 0)
3866 		return (EINVAL);
3867 
3868 	/*
3869 	 * Start a fresh coalesced tx WR with m as the first frame in it.
3870 	 */
3871 	txpkts->npkt = 1;
3872 	txpkts->nflits = flits;
3873 	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
3874 	txpkts->plen = m->m_pkthdr.len;
3875 
3876 	txsd = &txq->sdesc[eq->pidx];
3877 	txsd->credits = 1;
3878 
3879 	return (0);
3880 }
3881 
3882 /*
3883  * Note that write_txpkts_wr can never run out of hardware descriptors (but
3884  * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
3885  * coalescing only if sufficient hardware descriptors are available.
3886  */
3887 static void
3888 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
3889 {
3890 	struct sge_eq *eq = &txq->eq;
3891 	struct fw_eth_tx_pkts_wr *wr;
3892 	struct tx_sdesc *txsd;
3893 	uint32_t ctrl;
3894 	int ndesc;
3895 
3896 	TXQ_LOCK_ASSERT_OWNED(txq);
3897 
3898 	ndesc = howmany(txpkts->nflits, 8);
3899 
3900 	wr = (void *)&eq->desc[eq->pidx];
3901 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3902 	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
3903 	if (eq->avail == ndesc) {
3904 		if (!(eq->flags & EQ_CRFLUSHED)) {
3905 			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3906 			eq->flags |= EQ_CRFLUSHED;
3907 		}
3908 		eq->flags |= EQ_STALLED;
3909 	}
3910 	wr->equiq_to_len16 = htobe32(ctrl);
3911 	wr->plen = htobe16(txpkts->plen);
3912 	wr->npkt = txpkts->npkt;
3913 	wr->r3 = wr->type = 0;
3914 
3915 	/* Everything else already written */
3916 
3917 	txsd = &txq->sdesc[eq->pidx];
3918 	txsd->desc_used = ndesc;
3919 
3920 	KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
3921 
3922 	eq->pending += ndesc;
3923 	eq->avail -= ndesc;
3924 	eq->pidx += ndesc;
3925 	if (eq->pidx >= eq->cap)
3926 		eq->pidx -= eq->cap;
3927 
3928 	txq->txpkts_pkts += txpkts->npkt;
3929 	txq->txpkts_wrs++;
3930 	txpkts->npkt = 0;	/* emptied */
3931 }
3932 
3933 static inline void
3934 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
3935     struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
3936 {
3937 	struct ulp_txpkt *ulpmc;
3938 	struct ulptx_idata *ulpsc;
3939 	struct cpl_tx_pkt_core *cpl;
3940 	struct sge_eq *eq = &txq->eq;
3941 	uintptr_t flitp, start, end;
3942 	uint64_t ctrl;
3943 	caddr_t dst;
3944 
3945 	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
3946 
3947 	start = (uintptr_t)eq->desc;
3948 	end = (uintptr_t)eq->spg;
3949 
3950 	/* Checksum offload */
3951 	ctrl = 0;
3952 	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3953 		ctrl |= F_TXPKT_IPCSUM_DIS;
3954 	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3955 	    CSUM_TCP_IPV6 | CSUM_TSO)))
3956 		ctrl |= F_TXPKT_L4CSUM_DIS;
3957 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3958 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3959 		txq->txcsum++;	/* some hardware assistance provided */
3960 
3961 	/* VLAN tag insertion */
3962 	if (m->m_flags & M_VLANTAG) {
3963 		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3964 		txq->vlan_insertion++;
3965 	}
3966 
3967 	/*
3968 	 * The previous packet's SGL must have ended at a 16 byte boundary (this
3969 	 * is required by the firmware/hardware).  It follows that flitp cannot
3970 	 * wrap around between the ULPTX master command and ULPTX subcommand (8
3971 	 * bytes each), and that it can not wrap around in the middle of the
3972 	 * cpl_tx_pkt_core either.
3973 	 */
3974 	flitp = (uintptr_t)txpkts->flitp;
3975 	KASSERT((flitp & 0xf) == 0,
3976 	    ("%s: last SGL did not end at 16 byte boundary: %p",
3977 	    __func__, txpkts->flitp));
3978 
3979 	/* ULP master command */
3980 	ulpmc = (void *)flitp;
3981 	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
3982 	    V_ULP_TXPKT_FID(eq->iqid));
3983 	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
3984 	    sizeof(*cpl) + 8 * sgl->nflits, 16));
3985 
3986 	/* ULP subcommand */
3987 	ulpsc = (void *)(ulpmc + 1);
3988 	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3989 	    F_ULP_TX_SC_MORE);
3990 	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
3991 
3992 	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
3993 	if (flitp == end)
3994 		flitp = start;
3995 
3996 	/* CPL_TX_PKT */
3997 	cpl = (void *)flitp;
3998 	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3999 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
4000 	cpl->pack = 0;
4001 	cpl->len = htobe16(m->m_pkthdr.len);
4002 	cpl->ctrl1 = htobe64(ctrl);
4003 
4004 	flitp += sizeof(*cpl);
4005 	if (flitp == end)
4006 		flitp = start;
4007 
4008 	/* SGL for this frame */
4009 	dst = (caddr_t)flitp;
4010 	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
4011 	txpkts->flitp = (void *)dst;
4012 
4013 	KASSERT(((uintptr_t)dst & 0xf) == 0,
4014 	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
4015 }
4016 
4017 /*
4018  * If the SGL ends on an address that is not 16 byte aligned, this function will
4019  * add a 0 filled flit at the end.  It returns 1 in that case.
4020  */
4021 static int
4022 write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
4023 {
4024 	__be64 *flitp, *end;
4025 	struct ulptx_sgl *usgl;
4026 	bus_dma_segment_t *seg;
4027 	int i, padded;
4028 
4029 	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
4030 	    ("%s: bad SGL - nsegs=%d, nflits=%d",
4031 	    __func__, sgl->nsegs, sgl->nflits));
4032 
4033 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4034 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4035 
4036 	flitp = (__be64 *)(*to);
4037 	end = flitp + sgl->nflits;
4038 	seg = &sgl->seg[0];
4039 	usgl = (void *)flitp;
4040 
4041 	/*
4042 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4043 	 * ring, so we're at least 16 bytes away from the status page.  There is
4044 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4045 	 */
4046 
4047 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4048 	    V_ULPTX_NSGE(sgl->nsegs));
4049 	usgl->len0 = htobe32(seg->ds_len);
4050 	usgl->addr0 = htobe64(seg->ds_addr);
4051 	seg++;
4052 
4053 	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
4054 
4055 		/* Won't wrap around at all */
4056 
4057 		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
4058 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
4059 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
4060 		}
4061 		if (i & 1)
4062 			usgl->sge[i / 2].len[1] = htobe32(0);
4063 	} else {
4064 
4065 		/* Will wrap somewhere in the rest of the SGL */
4066 
4067 		/* 2 flits already written, write the rest flit by flit */
4068 		flitp = (void *)(usgl + 1);
4069 		for (i = 0; i < sgl->nflits - 2; i++) {
4070 			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
4071 				flitp = (void *)eq->desc;
4072 			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
4073 		}
4074 		end = flitp;
4075 	}
4076 
4077 	if ((uintptr_t)end & 0xf) {
4078 		*(uint64_t *)end = 0;
4079 		end++;
4080 		padded = 1;
4081 	} else
4082 		padded = 0;
4083 
4084 	if ((uintptr_t)end == (uintptr_t)eq->spg)
4085 		*to = (void *)eq->desc;
4086 	else
4087 		*to = (void *)end;
4088 
4089 	return (padded);
4090 }
4091 
4092 static inline void
4093 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4094 {
4095 	if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) {
4096 		bcopy(from, *to, len);
4097 		(*to) += len;
4098 	} else {
4099 		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
4100 
4101 		bcopy(from, *to, portion);
4102 		from += portion;
4103 		portion = len - portion;	/* remaining */
4104 		bcopy(from, (void *)eq->desc, portion);
4105 		(*to) = (caddr_t)eq->desc + portion;
4106 	}
4107 }
4108 
4109 static inline void
4110 ring_eq_db(struct adapter *sc, struct sge_eq *eq)
4111 {
4112 	u_int db, pending;
4113 
4114 	db = eq->doorbells;
4115 	pending = eq->pending;
4116 	if (pending > 1)
4117 		clrbit(&db, DOORBELL_WCWR);
4118 	eq->pending = 0;
4119 	wmb();
4120 
4121 	switch (ffs(db) - 1) {
4122 	case DOORBELL_UDB:
4123 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
4124 		return;
4125 
4126 	case DOORBELL_WCWR: {
4127 		volatile uint64_t *dst, *src;
4128 		int i;
4129 
4130 		/*
4131 		 * Queues whose 128B doorbell segment fits in the page do not
4132 		 * use relative qid (udb_qid is always 0).  Only queues with
4133 		 * doorbell segments can do WCWR.
4134 		 */
4135 		KASSERT(eq->udb_qid == 0 && pending == 1,
4136 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4137 		    __func__, eq->doorbells, pending, eq->pidx, eq));
4138 
4139 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4140 		    UDBS_DB_OFFSET);
4141 		i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
4142 		src = (void *)&eq->desc[i];
4143 		while (src != (void *)&eq->desc[i + 1])
4144 			*dst++ = *src++;
4145 		wmb();
4146 		return;
4147 	}
4148 
4149 	case DOORBELL_UDBWC:
4150 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
4151 		wmb();
4152 		return;
4153 
4154 	case DOORBELL_KDB:
4155 		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
4156 		    V_QID(eq->cntxt_id) | V_PIDX(pending));
4157 		return;
4158 	}
4159 }
4160 
4161 static inline int
4162 reclaimable(struct sge_eq *eq)
4163 {
4164 	unsigned int cidx;
4165 
4166 	cidx = eq->spg->cidx;	/* stable snapshot */
4167 	cidx = be16toh(cidx);
4168 
4169 	if (cidx >= eq->cidx)
4170 		return (cidx - eq->cidx);
4171 	else
4172 		return (cidx + eq->cap - eq->cidx);
4173 }
4174 
4175 /*
4176  * There are "can_reclaim" tx descriptors ready to be reclaimed.  Reclaim as
4177  * many as possible but stop when there are around "n" mbufs to free.
4178  *
4179  * The actual number reclaimed is provided as the return value.
4180  */
4181 static int
4182 reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
4183 {
4184 	struct tx_sdesc *txsd;
4185 	struct tx_maps *txmaps;
4186 	struct tx_map *txm;
4187 	unsigned int reclaimed, maps;
4188 	struct sge_eq *eq = &txq->eq;
4189 
4190 	TXQ_LOCK_ASSERT_OWNED(txq);
4191 
4192 	if (can_reclaim == 0)
4193 		can_reclaim = reclaimable(eq);
4194 
4195 	maps = reclaimed = 0;
4196 	while (can_reclaim && maps < n) {
4197 		int ndesc;
4198 
4199 		txsd = &txq->sdesc[eq->cidx];
4200 		ndesc = txsd->desc_used;
4201 
4202 		/* Firmware doesn't return "partial" credits. */
4203 		KASSERT(can_reclaim >= ndesc,
4204 		    ("%s: unexpected number of credits: %d, %d",
4205 		    __func__, can_reclaim, ndesc));
4206 
4207 		maps += txsd->credits;
4208 
4209 		reclaimed += ndesc;
4210 		can_reclaim -= ndesc;
4211 
4212 		eq->cidx += ndesc;
4213 		if (__predict_false(eq->cidx >= eq->cap))
4214 			eq->cidx -= eq->cap;
4215 	}
4216 
4217 	txmaps = &txq->txmaps;
4218 	txm = &txmaps->maps[txmaps->map_cidx];
4219 	if (maps)
4220 		prefetch(txm->m);
4221 
4222 	eq->avail += reclaimed;
4223 	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
4224 	    ("%s: too many descriptors available", __func__));
4225 
4226 	txmaps->map_avail += maps;
4227 	KASSERT(txmaps->map_avail <= txmaps->map_total,
4228 	    ("%s: too many maps available", __func__));
4229 
4230 	while (maps--) {
4231 		struct tx_map *next;
4232 
4233 		next = txm + 1;
4234 		if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
4235 			next = txmaps->maps;
4236 		prefetch(next->m);
4237 
4238 		bus_dmamap_unload(txq->tx_tag, txm->map);
4239 		m_freem(txm->m);
4240 		txm->m = NULL;
4241 
4242 		txm = next;
4243 		if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
4244 			txmaps->map_cidx = 0;
4245 	}
4246 
4247 	return (reclaimed);
4248 }
4249 
4250 static void
4251 write_eqflush_wr(struct sge_eq *eq)
4252 {
4253 	struct fw_eq_flush_wr *wr;
4254 
4255 	EQ_LOCK_ASSERT_OWNED(eq);
4256 	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
4257 	KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
4258 
4259 	wr = (void *)&eq->desc[eq->pidx];
4260 	bzero(wr, sizeof(*wr));
4261 	wr->opcode = FW_EQ_FLUSH_WR;
4262 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
4263 	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
4264 
4265 	eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
4266 	eq->pending++;
4267 	eq->avail--;
4268 	if (++eq->pidx == eq->cap)
4269 		eq->pidx = 0;
4270 }
4271 
4272 static __be64
4273 get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
4274 {
4275 	int i = (idx / 3) * 2;
4276 
4277 	switch (idx % 3) {
4278 	case 0: {
4279 		__be64 rc;
4280 
4281 		rc = htobe32(sgl[i].ds_len);
4282 		if (i + 1 < nsegs)
4283 			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
4284 
4285 		return (rc);
4286 	}
4287 	case 1:
4288 		return htobe64(sgl[i].ds_addr);
4289 	case 2:
4290 		return htobe64(sgl[i + 1].ds_addr);
4291 	}
4292 
4293 	return (0);
4294 }
4295 
4296 static void
4297 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4298 {
4299 	int8_t zidx, hwidx, idx;
4300 	uint16_t region1, region3;
4301 	int spare, spare_needed, n;
4302 	struct sw_zone_info *swz;
4303 	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4304 
4305 	/*
4306 	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4307 	 * large enough for the max payload and cluster metadata.  Otherwise
4308 	 * settle for the largest bufsize that leaves enough room in the cluster
4309 	 * for metadata.
4310 	 *
4311 	 * Without buffer packing: Look for the smallest zone which has a
4312 	 * bufsize large enough for the max payload.  Settle for the largest
4313 	 * bufsize available if there's nothing big enough for max payload.
4314 	 */
4315 	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4316 	swz = &sc->sge.sw_zone_info[0];
4317 	hwidx = -1;
4318 	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4319 		if (swz->size > largest_rx_cluster) {
4320 			if (__predict_true(hwidx != -1))
4321 				break;
4322 
4323 			/*
4324 			 * This is a misconfiguration.  largest_rx_cluster is
4325 			 * preventing us from finding a refill source.  See
4326 			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4327 			 */
4328 			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4329 			    " refill source for fl %p (dma %u).  Ignored.\n",
4330 			    largest_rx_cluster, fl, maxp);
4331 		}
4332 		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4333 			hwb = &hwb_list[idx];
4334 			spare = swz->size - hwb->size;
4335 			if (spare < spare_needed)
4336 				continue;
4337 
4338 			hwidx = idx;		/* best option so far */
4339 			if (hwb->size >= maxp) {
4340 
4341 				if ((fl->flags & FL_BUF_PACKING) == 0)
4342 					goto done; /* stop looking (not packing) */
4343 
4344 				if (swz->size >= safest_rx_cluster)
4345 					goto done; /* stop looking (packing) */
4346 			}
4347 			break;		/* keep looking, next zone */
4348 		}
4349 	}
4350 done:
4351 	/* A usable hwidx has been located. */
4352 	MPASS(hwidx != -1);
4353 	hwb = &hwb_list[hwidx];
4354 	zidx = hwb->zidx;
4355 	swz = &sc->sge.sw_zone_info[zidx];
4356 	region1 = 0;
4357 	region3 = swz->size - hwb->size;
4358 
4359 	/*
4360 	 * Stay within this zone and see if there is a better match when mbuf
4361 	 * inlining is allowed.  Remember that the hwidx's are sorted in
4362 	 * decreasing order of size (so in increasing order of spare area).
4363 	 */
4364 	for (idx = hwidx; idx != -1; idx = hwb->next) {
4365 		hwb = &hwb_list[idx];
4366 		spare = swz->size - hwb->size;
4367 
4368 		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4369 			break;
4370 		if (spare < CL_METADATA_SIZE + MSIZE)
4371 			continue;
4372 		n = (spare - CL_METADATA_SIZE) / MSIZE;
4373 		if (n > howmany(hwb->size, maxp))
4374 			break;
4375 
4376 		hwidx = idx;
4377 		if (fl->flags & FL_BUF_PACKING) {
4378 			region1 = n * MSIZE;
4379 			region3 = spare - region1;
4380 		} else {
4381 			region1 = MSIZE;
4382 			region3 = spare - region1;
4383 			break;
4384 		}
4385 	}
4386 
4387 	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4388 	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4389 	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4390 	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4391 	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4392 	    sc->sge.sw_zone_info[zidx].size,
4393 	    ("%s: bad buffer layout for fl %p, maxp %d. "
4394 		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4395 		sc->sge.sw_zone_info[zidx].size, region1,
4396 		sc->sge.hw_buf_info[hwidx].size, region3));
4397 	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4398 		KASSERT(region3 >= CL_METADATA_SIZE,
4399 		    ("%s: no room for metadata.  fl %p, maxp %d; "
4400 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4401 		    sc->sge.sw_zone_info[zidx].size, region1,
4402 		    sc->sge.hw_buf_info[hwidx].size, region3));
4403 		KASSERT(region1 % MSIZE == 0,
4404 		    ("%s: bad mbuf region for fl %p, maxp %d. "
4405 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4406 		    sc->sge.sw_zone_info[zidx].size, region1,
4407 		    sc->sge.hw_buf_info[hwidx].size, region3));
4408 	}
4409 
4410 	fl->cll_def.zidx = zidx;
4411 	fl->cll_def.hwidx = hwidx;
4412 	fl->cll_def.region1 = region1;
4413 	fl->cll_def.region3 = region3;
4414 }
4415 
4416 static void
4417 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4418 {
4419 	struct sge *s = &sc->sge;
4420 	struct hw_buf_info *hwb;
4421 	struct sw_zone_info *swz;
4422 	int spare;
4423 	int8_t hwidx;
4424 
4425 	if (fl->flags & FL_BUF_PACKING)
4426 		hwidx = s->safe_hwidx2;	/* with room for metadata */
4427 	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4428 		hwidx = s->safe_hwidx2;
4429 		hwb = &s->hw_buf_info[hwidx];
4430 		swz = &s->sw_zone_info[hwb->zidx];
4431 		spare = swz->size - hwb->size;
4432 
4433 		/* no good if there isn't room for an mbuf as well */
4434 		if (spare < CL_METADATA_SIZE + MSIZE)
4435 			hwidx = s->safe_hwidx1;
4436 	} else
4437 		hwidx = s->safe_hwidx1;
4438 
4439 	if (hwidx == -1) {
4440 		/* No fallback source */
4441 		fl->cll_alt.hwidx = -1;
4442 		fl->cll_alt.zidx = -1;
4443 
4444 		return;
4445 	}
4446 
4447 	hwb = &s->hw_buf_info[hwidx];
4448 	swz = &s->sw_zone_info[hwb->zidx];
4449 	spare = swz->size - hwb->size;
4450 	fl->cll_alt.hwidx = hwidx;
4451 	fl->cll_alt.zidx = hwb->zidx;
4452 	if (allow_mbufs_in_cluster)
4453 		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
4454 	else
4455 		fl->cll_alt.region1 = 0;
4456 	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
4457 }
4458 
4459 static void
4460 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4461 {
4462 	mtx_lock(&sc->sfl_lock);
4463 	FL_LOCK(fl);
4464 	if ((fl->flags & FL_DOOMED) == 0) {
4465 		fl->flags |= FL_STARVING;
4466 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4467 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4468 	}
4469 	FL_UNLOCK(fl);
4470 	mtx_unlock(&sc->sfl_lock);
4471 }
4472 
4473 static int
4474 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4475     struct mbuf *m)
4476 {
4477 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4478 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4479 	struct adapter *sc = iq->adapter;
4480 	struct sge *s = &sc->sge;
4481 	struct sge_eq *eq;
4482 
4483 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4484 	    rss->opcode));
4485 
4486 	eq = s->eqmap[qid - s->eq_start];
4487 	EQ_LOCK(eq);
4488 	KASSERT(eq->flags & EQ_CRFLUSHED,
4489 	    ("%s: unsolicited egress update", __func__));
4490 	eq->flags &= ~EQ_CRFLUSHED;
4491 	eq->egr_update++;
4492 
4493 	if (__predict_false(eq->flags & EQ_DOOMED))
4494 		wakeup_one(eq);
4495 	else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
4496 		taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
4497 	EQ_UNLOCK(eq);
4498 
4499 	return (0);
4500 }
4501 
4502 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4503 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4504     offsetof(struct cpl_fw6_msg, data));
4505 
4506 static int
4507 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4508 {
4509 	struct adapter *sc = iq->adapter;
4510 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4511 
4512 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4513 	    rss->opcode));
4514 
4515 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4516 		const struct rss_header *rss2;
4517 
4518 		rss2 = (const struct rss_header *)&cpl->data[0];
4519 		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
4520 	}
4521 
4522 	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4523 }
4524 
4525 static int
4526 sysctl_uint16(SYSCTL_HANDLER_ARGS)
4527 {
4528 	uint16_t *id = arg1;
4529 	int i = *id;
4530 
4531 	return sysctl_handle_int(oidp, &i, 0, req);
4532 }
4533 
4534 static int
4535 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
4536 {
4537 	struct sge *s = arg1;
4538 	struct hw_buf_info *hwb = &s->hw_buf_info[0];
4539 	struct sw_zone_info *swz = &s->sw_zone_info[0];
4540 	int i, rc;
4541 	struct sbuf sb;
4542 	char c;
4543 
4544 	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4545 	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
4546 		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
4547 			c = '*';
4548 		else
4549 			c = '\0';
4550 
4551 		sbuf_printf(&sb, "%u%c ", hwb->size, c);
4552 	}
4553 	sbuf_trim(&sb);
4554 	sbuf_finish(&sb);
4555 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4556 	sbuf_delete(&sb);
4557 	return (rc);
4558 }
4559