1 /*- 2 * Copyright (c) 2011 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: Navdeep Parhar <np@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #include <sys/types.h> 35 #include <sys/eventhandler.h> 36 #include <sys/mbuf.h> 37 #include <sys/socket.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/queue.h> 41 #include <sys/sbuf.h> 42 #include <sys/taskqueue.h> 43 #include <sys/time.h> 44 #include <sys/sglist.h> 45 #include <sys/sysctl.h> 46 #include <sys/smp.h> 47 #include <sys/counter.h> 48 #include <net/bpf.h> 49 #include <net/ethernet.h> 50 #include <net/if.h> 51 #include <net/if_vlan_var.h> 52 #include <netinet/in.h> 53 #include <netinet/ip.h> 54 #include <netinet/ip6.h> 55 #include <netinet/tcp.h> 56 #include <machine/in_cksum.h> 57 #include <machine/md_var.h> 58 #include <vm/vm.h> 59 #include <vm/pmap.h> 60 #ifdef DEV_NETMAP 61 #include <machine/bus.h> 62 #include <sys/selinfo.h> 63 #include <net/if_var.h> 64 #include <net/netmap.h> 65 #include <dev/netmap/netmap_kern.h> 66 #endif 67 68 #include "common/common.h" 69 #include "common/t4_regs.h" 70 #include "common/t4_regs_values.h" 71 #include "common/t4_msg.h" 72 #include "t4_l2t.h" 73 #include "t4_mp_ring.h" 74 75 #ifdef T4_PKT_TIMESTAMP 76 #define RX_COPY_THRESHOLD (MINCLSIZE - 8) 77 #else 78 #define RX_COPY_THRESHOLD MINCLSIZE 79 #endif 80 81 /* 82 * Ethernet frames are DMA'd at this byte offset into the freelist buffer. 83 * 0-7 are valid values. 84 */ 85 static int fl_pktshift = 2; 86 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift); 87 88 /* 89 * Pad ethernet payload up to this boundary. 90 * -1: driver should figure out a good value. 91 * 0: disable padding. 92 * Any power of 2 from 32 to 4096 (both inclusive) is also a valid value. 93 */ 94 int fl_pad = -1; 95 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad); 96 97 /* 98 * Status page length. 99 * -1: driver should figure out a good value. 100 * 64 or 128 are the only other valid values. 101 */ 102 static int spg_len = -1; 103 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len); 104 105 /* 106 * Congestion drops. 107 * -1: no congestion feedback (not recommended). 108 * 0: backpressure the channel instead of dropping packets right away. 109 * 1: no backpressure, drop packets for the congested queue immediately. 110 */ 111 static int cong_drop = 0; 112 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop); 113 114 /* 115 * Deliver multiple frames in the same free list buffer if they fit. 116 * -1: let the driver decide whether to enable buffer packing or not. 117 * 0: disable buffer packing. 118 * 1: enable buffer packing. 119 */ 120 static int buffer_packing = -1; 121 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing); 122 123 /* 124 * Start next frame in a packed buffer at this boundary. 125 * -1: driver should figure out a good value. 126 * T4: driver will ignore this and use the same value as fl_pad above. 127 * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value. 128 */ 129 static int fl_pack = -1; 130 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack); 131 132 /* 133 * Allow the driver to create mbuf(s) in a cluster allocated for rx. 134 * 0: never; always allocate mbufs from the zone_mbuf UMA zone. 135 * 1: ok to create mbuf(s) within a cluster if there is room. 136 */ 137 static int allow_mbufs_in_cluster = 1; 138 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster); 139 140 /* 141 * Largest rx cluster size that the driver is allowed to allocate. 142 */ 143 static int largest_rx_cluster = MJUM16BYTES; 144 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster); 145 146 /* 147 * Size of cluster allocation that's most likely to succeed. The driver will 148 * fall back to this size if it fails to allocate clusters larger than this. 149 */ 150 static int safest_rx_cluster = PAGE_SIZE; 151 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster); 152 153 /* 154 * The interrupt holdoff timers are multiplied by this value on T6+. 155 * 1 and 3-17 (both inclusive) are legal values. 156 */ 157 static int tscale = 1; 158 TUNABLE_INT("hw.cxgbe.tscale", &tscale); 159 160 /* 161 * Number of LRO entries in the lro_ctrl structure per rx queue. 162 */ 163 static int lro_entries = TCP_LRO_ENTRIES; 164 TUNABLE_INT("hw.cxgbe.lro_entries", &lro_entries); 165 166 /* 167 * This enables presorting of frames before they're fed into tcp_lro_rx. 168 */ 169 static int lro_mbufs = 0; 170 TUNABLE_INT("hw.cxgbe.lro_mbufs", &lro_mbufs); 171 172 struct txpkts { 173 u_int wr_type; /* type 0 or type 1 */ 174 u_int npkt; /* # of packets in this work request */ 175 u_int plen; /* total payload (sum of all packets) */ 176 u_int len16; /* # of 16B pieces used by this work request */ 177 }; 178 179 /* A packet's SGL. This + m_pkthdr has all info needed for tx */ 180 struct sgl { 181 struct sglist sg; 182 struct sglist_seg seg[TX_SGL_SEGS]; 183 }; 184 185 static int service_iq(struct sge_iq *, int); 186 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t); 187 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *); 188 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int); 189 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *); 190 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t, 191 uint16_t, char *); 192 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, 193 bus_addr_t *, void **); 194 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, 195 void *); 196 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *, 197 int, int); 198 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *); 199 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *, 200 struct sysctl_oid *, struct sge_fl *); 201 static int alloc_fwq(struct adapter *); 202 static int free_fwq(struct adapter *); 203 static int alloc_mgmtq(struct adapter *); 204 static int free_mgmtq(struct adapter *); 205 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, 206 struct sysctl_oid *); 207 static int free_rxq(struct vi_info *, struct sge_rxq *); 208 #ifdef TCP_OFFLOAD 209 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int, 210 struct sysctl_oid *); 211 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *); 212 #endif 213 #ifdef DEV_NETMAP 214 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int, 215 struct sysctl_oid *); 216 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *); 217 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int, 218 struct sysctl_oid *); 219 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *); 220 #endif 221 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *); 222 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 223 #ifdef TCP_OFFLOAD 224 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 225 #endif 226 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *); 227 static int free_eq(struct adapter *, struct sge_eq *); 228 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *, 229 struct sysctl_oid *); 230 static int free_wrq(struct adapter *, struct sge_wrq *); 231 static int alloc_txq(struct vi_info *, struct sge_txq *, int, 232 struct sysctl_oid *); 233 static int free_txq(struct vi_info *, struct sge_txq *); 234 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); 235 static inline void ring_fl_db(struct adapter *, struct sge_fl *); 236 static int refill_fl(struct adapter *, struct sge_fl *, int); 237 static void refill_sfl(void *); 238 static int alloc_fl_sdesc(struct sge_fl *); 239 static void free_fl_sdesc(struct adapter *, struct sge_fl *); 240 static void find_best_refill_source(struct adapter *, struct sge_fl *, int); 241 static void find_safe_refill_source(struct adapter *, struct sge_fl *); 242 static void add_fl_to_sfl(struct adapter *, struct sge_fl *); 243 244 static inline void get_pkt_gl(struct mbuf *, struct sglist *); 245 static inline u_int txpkt_len16(u_int, u_int); 246 static inline u_int txpkt_vm_len16(u_int, u_int); 247 static inline u_int txpkts0_len16(u_int); 248 static inline u_int txpkts1_len16(void); 249 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *, 250 struct mbuf *, u_int); 251 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *, 252 struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int); 253 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int); 254 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int); 255 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *, 256 struct mbuf *, const struct txpkts *, u_int); 257 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int); 258 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); 259 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int); 260 static inline uint16_t read_hw_cidx(struct sge_eq *); 261 static inline u_int reclaimable_tx_desc(struct sge_eq *); 262 static inline u_int total_available_tx_desc(struct sge_eq *); 263 static u_int reclaim_tx_descs(struct sge_txq *, u_int); 264 static void tx_reclaim(void *, int); 265 static __be64 get_flit(struct sglist_seg *, int, int); 266 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, 267 struct mbuf *); 268 static int handle_fw_msg(struct sge_iq *, const struct rss_header *, 269 struct mbuf *); 270 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *); 271 static void wrq_tx_drain(void *, int); 272 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *); 273 274 static int sysctl_uint16(SYSCTL_HANDLER_ARGS); 275 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS); 276 static int sysctl_tc(SYSCTL_HANDLER_ARGS); 277 278 static counter_u64_t extfree_refs; 279 static counter_u64_t extfree_rels; 280 281 an_handler_t t4_an_handler; 282 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES]; 283 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS]; 284 285 286 static int 287 an_not_handled(struct sge_iq *iq, const struct rsp_ctrl *ctrl) 288 { 289 290 #ifdef INVARIANTS 291 panic("%s: async notification on iq %p (ctrl %p)", __func__, iq, ctrl); 292 #else 293 log(LOG_ERR, "%s: async notification on iq %p (ctrl %p)\n", 294 __func__, iq, ctrl); 295 #endif 296 return (EDOOFUS); 297 } 298 299 int 300 t4_register_an_handler(an_handler_t h) 301 { 302 uintptr_t *loc, new; 303 304 new = h ? (uintptr_t)h : (uintptr_t)an_not_handled; 305 loc = (uintptr_t *) &t4_an_handler; 306 atomic_store_rel_ptr(loc, new); 307 308 return (0); 309 } 310 311 static int 312 fw_msg_not_handled(struct adapter *sc, const __be64 *rpl) 313 { 314 const struct cpl_fw6_msg *cpl = 315 __containerof(rpl, struct cpl_fw6_msg, data[0]); 316 317 #ifdef INVARIANTS 318 panic("%s: fw_msg type %d", __func__, cpl->type); 319 #else 320 log(LOG_ERR, "%s: fw_msg type %d\n", __func__, cpl->type); 321 #endif 322 return (EDOOFUS); 323 } 324 325 int 326 t4_register_fw_msg_handler(int type, fw_msg_handler_t h) 327 { 328 uintptr_t *loc, new; 329 330 if (type >= nitems(t4_fw_msg_handler)) 331 return (EINVAL); 332 333 /* 334 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL 335 * handler dispatch table. Reject any attempt to install a handler for 336 * this subtype. 337 */ 338 if (type == FW_TYPE_RSSCPL || type == FW6_TYPE_RSSCPL) 339 return (EINVAL); 340 341 new = h ? (uintptr_t)h : (uintptr_t)fw_msg_not_handled; 342 loc = (uintptr_t *) &t4_fw_msg_handler[type]; 343 atomic_store_rel_ptr(loc, new); 344 345 return (0); 346 } 347 348 static int 349 cpl_not_handled(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 350 { 351 352 #ifdef INVARIANTS 353 panic("%s: opcode 0x%02x on iq %p with payload %p", 354 __func__, rss->opcode, iq, m); 355 #else 356 log(LOG_ERR, "%s: opcode 0x%02x on iq %p with payload %p\n", 357 __func__, rss->opcode, iq, m); 358 m_freem(m); 359 #endif 360 return (EDOOFUS); 361 } 362 363 int 364 t4_register_cpl_handler(int opcode, cpl_handler_t h) 365 { 366 uintptr_t *loc, new; 367 368 if (opcode >= nitems(t4_cpl_handler)) 369 return (EINVAL); 370 371 new = h ? (uintptr_t)h : (uintptr_t)cpl_not_handled; 372 loc = (uintptr_t *) &t4_cpl_handler[opcode]; 373 atomic_store_rel_ptr(loc, new); 374 375 return (0); 376 } 377 378 /* 379 * Called on MOD_LOAD. Validates and calculates the SGE tunables. 380 */ 381 void 382 t4_sge_modload(void) 383 { 384 int i; 385 386 if (fl_pktshift < 0 || fl_pktshift > 7) { 387 printf("Invalid hw.cxgbe.fl_pktshift value (%d)," 388 " using 2 instead.\n", fl_pktshift); 389 fl_pktshift = 2; 390 } 391 392 if (spg_len != 64 && spg_len != 128) { 393 int len; 394 395 #if defined(__i386__) || defined(__amd64__) 396 len = cpu_clflush_line_size > 64 ? 128 : 64; 397 #else 398 len = 64; 399 #endif 400 if (spg_len != -1) { 401 printf("Invalid hw.cxgbe.spg_len value (%d)," 402 " using %d instead.\n", spg_len, len); 403 } 404 spg_len = len; 405 } 406 407 if (cong_drop < -1 || cong_drop > 1) { 408 printf("Invalid hw.cxgbe.cong_drop value (%d)," 409 " using 0 instead.\n", cong_drop); 410 cong_drop = 0; 411 } 412 413 if (tscale != 1 && (tscale < 3 || tscale > 17)) { 414 printf("Invalid hw.cxgbe.tscale value (%d)," 415 " using 1 instead.\n", tscale); 416 tscale = 1; 417 } 418 419 extfree_refs = counter_u64_alloc(M_WAITOK); 420 extfree_rels = counter_u64_alloc(M_WAITOK); 421 counter_u64_zero(extfree_refs); 422 counter_u64_zero(extfree_rels); 423 424 t4_an_handler = an_not_handled; 425 for (i = 0; i < nitems(t4_fw_msg_handler); i++) 426 t4_fw_msg_handler[i] = fw_msg_not_handled; 427 for (i = 0; i < nitems(t4_cpl_handler); i++) 428 t4_cpl_handler[i] = cpl_not_handled; 429 430 t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg); 431 t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg); 432 t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update); 433 t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx); 434 t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl); 435 t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl); 436 } 437 438 void 439 t4_sge_modunload(void) 440 { 441 442 counter_u64_free(extfree_refs); 443 counter_u64_free(extfree_rels); 444 } 445 446 uint64_t 447 t4_sge_extfree_refs(void) 448 { 449 uint64_t refs, rels; 450 451 rels = counter_u64_fetch(extfree_rels); 452 refs = counter_u64_fetch(extfree_refs); 453 454 return (refs - rels); 455 } 456 457 static inline void 458 setup_pad_and_pack_boundaries(struct adapter *sc) 459 { 460 uint32_t v, m; 461 int pad, pack, pad_shift; 462 463 pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT : 464 X_INGPADBOUNDARY_SHIFT; 465 pad = fl_pad; 466 if (fl_pad < (1 << pad_shift) || 467 fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) || 468 !powerof2(fl_pad)) { 469 /* 470 * If there is any chance that we might use buffer packing and 471 * the chip is a T4, then pick 64 as the pad/pack boundary. Set 472 * it to the minimum allowed in all other cases. 473 */ 474 pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift; 475 476 /* 477 * For fl_pad = 0 we'll still write a reasonable value to the 478 * register but all the freelists will opt out of padding. 479 * We'll complain here only if the user tried to set it to a 480 * value greater than 0 that was invalid. 481 */ 482 if (fl_pad > 0) { 483 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value" 484 " (%d), using %d instead.\n", fl_pad, pad); 485 } 486 } 487 m = V_INGPADBOUNDARY(M_INGPADBOUNDARY); 488 v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift); 489 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 490 491 if (is_t4(sc)) { 492 if (fl_pack != -1 && fl_pack != pad) { 493 /* Complain but carry on. */ 494 device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored," 495 " using %d instead.\n", fl_pack, pad); 496 } 497 return; 498 } 499 500 pack = fl_pack; 501 if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 || 502 !powerof2(fl_pack)) { 503 pack = max(sc->params.pci.mps, CACHE_LINE_SIZE); 504 MPASS(powerof2(pack)); 505 if (pack < 16) 506 pack = 16; 507 if (pack == 32) 508 pack = 64; 509 if (pack > 4096) 510 pack = 4096; 511 if (fl_pack != -1) { 512 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value" 513 " (%d), using %d instead.\n", fl_pack, pack); 514 } 515 } 516 m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY); 517 if (pack == 16) 518 v = V_INGPACKBOUNDARY(0); 519 else 520 v = V_INGPACKBOUNDARY(ilog2(pack) - 5); 521 522 MPASS(!is_t4(sc)); /* T4 doesn't have SGE_CONTROL2 */ 523 t4_set_reg_field(sc, A_SGE_CONTROL2, m, v); 524 } 525 526 /* 527 * adap->params.vpd.cclk must be set up before this is called. 528 */ 529 void 530 t4_tweak_chip_settings(struct adapter *sc) 531 { 532 int i; 533 uint32_t v, m; 534 int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; 535 int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk; 536 int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ 537 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 538 static int sge_flbuf_sizes[] = { 539 MCLBYTES, 540 #if MJUMPAGESIZE != MCLBYTES 541 MJUMPAGESIZE, 542 MJUMPAGESIZE - CL_METADATA_SIZE, 543 MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE, 544 #endif 545 MJUM9BYTES, 546 MJUM16BYTES, 547 MCLBYTES - MSIZE - CL_METADATA_SIZE, 548 MJUM9BYTES - CL_METADATA_SIZE, 549 MJUM16BYTES - CL_METADATA_SIZE, 550 }; 551 552 KASSERT(sc->flags & MASTER_PF, 553 ("%s: trying to change chip settings when not master.", __func__)); 554 555 m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE; 556 v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | 557 V_EGRSTATUSPAGESIZE(spg_len == 128); 558 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 559 560 setup_pad_and_pack_boundaries(sc); 561 562 v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | 563 V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | 564 V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | 565 V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | 566 V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | 567 V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | 568 V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | 569 V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); 570 t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v); 571 572 KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES, 573 ("%s: hw buffer size table too big", __func__)); 574 for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) { 575 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i), 576 sge_flbuf_sizes[i]); 577 } 578 579 v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) | 580 V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]); 581 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v); 582 583 KASSERT(intr_timer[0] <= timer_max, 584 ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0], 585 timer_max)); 586 for (i = 1; i < nitems(intr_timer); i++) { 587 KASSERT(intr_timer[i] >= intr_timer[i - 1], 588 ("%s: timers not listed in increasing order (%d)", 589 __func__, i)); 590 591 while (intr_timer[i] > timer_max) { 592 if (i == nitems(intr_timer) - 1) { 593 intr_timer[i] = timer_max; 594 break; 595 } 596 intr_timer[i] += intr_timer[i - 1]; 597 intr_timer[i] /= 2; 598 } 599 } 600 601 v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) | 602 V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])); 603 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v); 604 v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) | 605 V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])); 606 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v); 607 v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) | 608 V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])); 609 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v); 610 611 if (chip_id(sc) >= CHELSIO_T6) { 612 m = V_TSCALE(M_TSCALE); 613 if (tscale == 1) 614 v = 0; 615 else 616 v = V_TSCALE(tscale - 2); 617 t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v); 618 } 619 620 /* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */ 621 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 622 t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v); 623 624 /* 625 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP. These have been 626 * chosen with MAXPHYS = 128K in mind. The largest DDP buffer that we 627 * may have to deal with is MAXPHYS + 1 page. 628 */ 629 v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4); 630 t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v); 631 632 /* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */ 633 m = v = F_TDDPTAGTCB | F_ISCSITAGTCB; 634 t4_set_reg_field(sc, A_ULP_RX_CTL, m, v); 635 636 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 637 F_RESETDDPOFFSET; 638 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 639 t4_set_reg_field(sc, A_TP_PARA_REG5, m, v); 640 } 641 642 /* 643 * SGE wants the buffer to be at least 64B and then a multiple of 16. If 644 * padding is in use, the buffer's start and end need to be aligned to the pad 645 * boundary as well. We'll just make sure that the size is a multiple of the 646 * boundary here, it is up to the buffer allocation code to make sure the start 647 * of the buffer is aligned as well. 648 */ 649 static inline int 650 hwsz_ok(struct adapter *sc, int hwsz) 651 { 652 int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1; 653 654 return (hwsz >= 64 && (hwsz & mask) == 0); 655 } 656 657 /* 658 * XXX: driver really should be able to deal with unexpected settings. 659 */ 660 int 661 t4_read_chip_settings(struct adapter *sc) 662 { 663 struct sge *s = &sc->sge; 664 struct sge_params *sp = &sc->params.sge; 665 int i, j, n, rc = 0; 666 uint32_t m, v, r; 667 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 668 static int sw_buf_sizes[] = { /* Sorted by size */ 669 MCLBYTES, 670 #if MJUMPAGESIZE != MCLBYTES 671 MJUMPAGESIZE, 672 #endif 673 MJUM9BYTES, 674 MJUM16BYTES 675 }; 676 struct sw_zone_info *swz, *safe_swz; 677 struct hw_buf_info *hwb; 678 679 m = F_RXPKTCPLMODE; 680 v = F_RXPKTCPLMODE; 681 r = sc->params.sge.sge_control; 682 if ((r & m) != v) { 683 device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r); 684 rc = EINVAL; 685 } 686 687 /* 688 * If this changes then every single use of PAGE_SHIFT in the driver 689 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift. 690 */ 691 if (sp->page_shift != PAGE_SHIFT) { 692 device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r); 693 rc = EINVAL; 694 } 695 696 /* Filter out unusable hw buffer sizes entirely (mark with -2). */ 697 hwb = &s->hw_buf_info[0]; 698 for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) { 699 r = sc->params.sge.sge_fl_buffer_size[i]; 700 hwb->size = r; 701 hwb->zidx = hwsz_ok(sc, r) ? -1 : -2; 702 hwb->next = -1; 703 } 704 705 /* 706 * Create a sorted list in decreasing order of hw buffer sizes (and so 707 * increasing order of spare area) for each software zone. 708 * 709 * If padding is enabled then the start and end of the buffer must align 710 * to the pad boundary; if packing is enabled then they must align with 711 * the pack boundary as well. Allocations from the cluster zones are 712 * aligned to min(size, 4K), so the buffer starts at that alignment and 713 * ends at hwb->size alignment. If mbuf inlining is allowed the 714 * starting alignment will be reduced to MSIZE and the driver will 715 * exercise appropriate caution when deciding on the best buffer layout 716 * to use. 717 */ 718 n = 0; /* no usable buffer size to begin with */ 719 swz = &s->sw_zone_info[0]; 720 safe_swz = NULL; 721 for (i = 0; i < SW_ZONE_SIZES; i++, swz++) { 722 int8_t head = -1, tail = -1; 723 724 swz->size = sw_buf_sizes[i]; 725 swz->zone = m_getzone(swz->size); 726 swz->type = m_gettype(swz->size); 727 728 if (swz->size < PAGE_SIZE) { 729 MPASS(powerof2(swz->size)); 730 if (fl_pad && (swz->size % sp->pad_boundary != 0)) 731 continue; 732 } 733 734 if (swz->size == safest_rx_cluster) 735 safe_swz = swz; 736 737 hwb = &s->hw_buf_info[0]; 738 for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) { 739 if (hwb->zidx != -1 || hwb->size > swz->size) 740 continue; 741 #ifdef INVARIANTS 742 if (fl_pad) 743 MPASS(hwb->size % sp->pad_boundary == 0); 744 #endif 745 hwb->zidx = i; 746 if (head == -1) 747 head = tail = j; 748 else if (hwb->size < s->hw_buf_info[tail].size) { 749 s->hw_buf_info[tail].next = j; 750 tail = j; 751 } else { 752 int8_t *cur; 753 struct hw_buf_info *t; 754 755 for (cur = &head; *cur != -1; cur = &t->next) { 756 t = &s->hw_buf_info[*cur]; 757 if (hwb->size == t->size) { 758 hwb->zidx = -2; 759 break; 760 } 761 if (hwb->size > t->size) { 762 hwb->next = *cur; 763 *cur = j; 764 break; 765 } 766 } 767 } 768 } 769 swz->head_hwidx = head; 770 swz->tail_hwidx = tail; 771 772 if (tail != -1) { 773 n++; 774 if (swz->size - s->hw_buf_info[tail].size >= 775 CL_METADATA_SIZE) 776 sc->flags |= BUF_PACKING_OK; 777 } 778 } 779 if (n == 0) { 780 device_printf(sc->dev, "no usable SGE FL buffer size.\n"); 781 rc = EINVAL; 782 } 783 784 s->safe_hwidx1 = -1; 785 s->safe_hwidx2 = -1; 786 if (safe_swz != NULL) { 787 s->safe_hwidx1 = safe_swz->head_hwidx; 788 for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) { 789 int spare; 790 791 hwb = &s->hw_buf_info[i]; 792 #ifdef INVARIANTS 793 if (fl_pad) 794 MPASS(hwb->size % sp->pad_boundary == 0); 795 #endif 796 spare = safe_swz->size - hwb->size; 797 if (spare >= CL_METADATA_SIZE) { 798 s->safe_hwidx2 = i; 799 break; 800 } 801 } 802 } 803 804 if (sc->flags & IS_VF) 805 return (0); 806 807 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 808 r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ); 809 if (r != v) { 810 device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r); 811 rc = EINVAL; 812 } 813 814 m = v = F_TDDPTAGTCB; 815 r = t4_read_reg(sc, A_ULP_RX_CTL); 816 if ((r & m) != v) { 817 device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r); 818 rc = EINVAL; 819 } 820 821 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 822 F_RESETDDPOFFSET; 823 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 824 r = t4_read_reg(sc, A_TP_PARA_REG5); 825 if ((r & m) != v) { 826 device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r); 827 rc = EINVAL; 828 } 829 830 t4_init_tp_params(sc); 831 832 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 833 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 834 835 return (rc); 836 } 837 838 int 839 t4_create_dma_tag(struct adapter *sc) 840 { 841 int rc; 842 843 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, 844 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, 845 BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, 846 NULL, &sc->dmat); 847 if (rc != 0) { 848 device_printf(sc->dev, 849 "failed to create main DMA tag: %d\n", rc); 850 } 851 852 return (rc); 853 } 854 855 void 856 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 857 struct sysctl_oid_list *children) 858 { 859 struct sge_params *sp = &sc->params.sge; 860 861 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes", 862 CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A", 863 "freelist buffer sizes"); 864 865 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD, 866 NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)"); 867 868 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD, 869 NULL, sp->pad_boundary, "payload pad boundary (bytes)"); 870 871 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD, 872 NULL, sp->spg_len, "status page size (bytes)"); 873 874 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD, 875 NULL, cong_drop, "congestion drop setting"); 876 877 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD, 878 NULL, sp->pack_boundary, "payload pack boundary (bytes)"); 879 } 880 881 int 882 t4_destroy_dma_tag(struct adapter *sc) 883 { 884 if (sc->dmat) 885 bus_dma_tag_destroy(sc->dmat); 886 887 return (0); 888 } 889 890 /* 891 * Allocate and initialize the firmware event queue and the management queue. 892 * 893 * Returns errno on failure. Resources allocated up to that point may still be 894 * allocated. Caller is responsible for cleanup in case this function fails. 895 */ 896 int 897 t4_setup_adapter_queues(struct adapter *sc) 898 { 899 int rc; 900 901 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 902 903 sysctl_ctx_init(&sc->ctx); 904 sc->flags |= ADAP_SYSCTL_CTX; 905 906 /* 907 * Firmware event queue 908 */ 909 rc = alloc_fwq(sc); 910 if (rc != 0) 911 return (rc); 912 913 /* 914 * Management queue. This is just a control queue that uses the fwq as 915 * its associated iq. 916 */ 917 if (!(sc->flags & IS_VF)) 918 rc = alloc_mgmtq(sc); 919 920 return (rc); 921 } 922 923 /* 924 * Idempotent 925 */ 926 int 927 t4_teardown_adapter_queues(struct adapter *sc) 928 { 929 930 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 931 932 /* Do this before freeing the queue */ 933 if (sc->flags & ADAP_SYSCTL_CTX) { 934 sysctl_ctx_free(&sc->ctx); 935 sc->flags &= ~ADAP_SYSCTL_CTX; 936 } 937 938 free_mgmtq(sc); 939 free_fwq(sc); 940 941 return (0); 942 } 943 944 static inline int 945 first_vector(struct vi_info *vi) 946 { 947 struct adapter *sc = vi->pi->adapter; 948 949 if (sc->intr_count == 1) 950 return (0); 951 952 return (vi->first_intr); 953 } 954 955 /* 956 * Given an arbitrary "index," come up with an iq that can be used by other 957 * queues (of this VI) for interrupt forwarding, SGE egress updates, etc. 958 * The iq returned is guaranteed to be something that takes direct interrupts. 959 */ 960 static struct sge_iq * 961 vi_intr_iq(struct vi_info *vi, int idx) 962 { 963 struct adapter *sc = vi->pi->adapter; 964 struct sge *s = &sc->sge; 965 struct sge_iq *iq = NULL; 966 int nintr, i; 967 968 if (sc->intr_count == 1) 969 return (&sc->sge.fwq); 970 971 nintr = vi->nintr; 972 KASSERT(nintr != 0, 973 ("%s: vi %p has no exclusive interrupts, total interrupts = %d", 974 __func__, vi, sc->intr_count)); 975 i = idx % nintr; 976 977 if (vi->flags & INTR_RXQ) { 978 if (i < vi->nrxq) { 979 iq = &s->rxq[vi->first_rxq + i].iq; 980 goto done; 981 } 982 i -= vi->nrxq; 983 } 984 #ifdef TCP_OFFLOAD 985 if (vi->flags & INTR_OFLD_RXQ) { 986 if (i < vi->nofldrxq) { 987 iq = &s->ofld_rxq[vi->first_ofld_rxq + i].iq; 988 goto done; 989 } 990 i -= vi->nofldrxq; 991 } 992 #endif 993 panic("%s: vi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__, 994 vi, vi->flags & INTR_ALL, idx, nintr); 995 done: 996 MPASS(iq != NULL); 997 KASSERT(iq->flags & IQ_INTR, 998 ("%s: iq %p (vi %p, intr_flags 0x%lx, idx %d)", __func__, iq, vi, 999 vi->flags & INTR_ALL, idx)); 1000 return (iq); 1001 } 1002 1003 /* Maximum payload that can be delivered with a single iq descriptor */ 1004 static inline int 1005 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe) 1006 { 1007 int payload; 1008 1009 #ifdef TCP_OFFLOAD 1010 if (toe) { 1011 payload = sc->tt.rx_coalesce ? 1012 G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu; 1013 } else { 1014 #endif 1015 /* large enough even when hw VLAN extraction is disabled */ 1016 payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN + 1017 ETHER_VLAN_ENCAP_LEN + mtu; 1018 #ifdef TCP_OFFLOAD 1019 } 1020 #endif 1021 1022 return (payload); 1023 } 1024 1025 int 1026 t4_setup_vi_queues(struct vi_info *vi) 1027 { 1028 int rc = 0, i, j, intr_idx, iqid; 1029 struct sge_rxq *rxq; 1030 struct sge_txq *txq; 1031 struct sge_wrq *ctrlq; 1032 #ifdef TCP_OFFLOAD 1033 struct sge_ofld_rxq *ofld_rxq; 1034 struct sge_wrq *ofld_txq; 1035 #endif 1036 #ifdef DEV_NETMAP 1037 int saved_idx; 1038 struct sge_nm_rxq *nm_rxq; 1039 struct sge_nm_txq *nm_txq; 1040 #endif 1041 char name[16]; 1042 struct port_info *pi = vi->pi; 1043 struct adapter *sc = pi->adapter; 1044 struct ifnet *ifp = vi->ifp; 1045 struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev); 1046 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 1047 int maxp, mtu = ifp->if_mtu; 1048 1049 /* Interrupt vector to start from (when using multiple vectors) */ 1050 intr_idx = first_vector(vi); 1051 1052 #ifdef DEV_NETMAP 1053 saved_idx = intr_idx; 1054 if (ifp->if_capabilities & IFCAP_NETMAP) { 1055 1056 /* netmap is supported with direct interrupts only. */ 1057 MPASS(vi->flags & INTR_RXQ); 1058 1059 /* 1060 * We don't have buffers to back the netmap rx queues 1061 * right now so we create the queues in a way that 1062 * doesn't set off any congestion signal in the chip. 1063 */ 1064 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq", 1065 CTLFLAG_RD, NULL, "rx queues"); 1066 for_each_nm_rxq(vi, i, nm_rxq) { 1067 rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid); 1068 if (rc != 0) 1069 goto done; 1070 intr_idx++; 1071 } 1072 1073 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq", 1074 CTLFLAG_RD, NULL, "tx queues"); 1075 for_each_nm_txq(vi, i, nm_txq) { 1076 iqid = vi->first_nm_rxq + (i % vi->nnmrxq); 1077 rc = alloc_nm_txq(vi, nm_txq, iqid, i, oid); 1078 if (rc != 0) 1079 goto done; 1080 } 1081 } 1082 1083 /* Normal rx queues and netmap rx queues share the same interrupts. */ 1084 intr_idx = saved_idx; 1085 #endif 1086 1087 /* 1088 * First pass over all NIC and TOE rx queues: 1089 * a) initialize iq and fl 1090 * b) allocate queue iff it will take direct interrupts. 1091 */ 1092 maxp = mtu_to_max_payload(sc, mtu, 0); 1093 if (vi->flags & INTR_RXQ) { 1094 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", 1095 CTLFLAG_RD, NULL, "rx queues"); 1096 } 1097 for_each_rxq(vi, i, rxq) { 1098 1099 init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq); 1100 1101 snprintf(name, sizeof(name), "%s rxq%d-fl", 1102 device_get_nameunit(vi->dev), i); 1103 init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name); 1104 1105 if (vi->flags & INTR_RXQ) { 1106 rxq->iq.flags |= IQ_INTR; 1107 rc = alloc_rxq(vi, rxq, intr_idx, i, oid); 1108 if (rc != 0) 1109 goto done; 1110 intr_idx++; 1111 } 1112 } 1113 #ifdef DEV_NETMAP 1114 if (ifp->if_capabilities & IFCAP_NETMAP) 1115 intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq); 1116 #endif 1117 #ifdef TCP_OFFLOAD 1118 maxp = mtu_to_max_payload(sc, mtu, 1); 1119 if (vi->flags & INTR_OFLD_RXQ) { 1120 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq", 1121 CTLFLAG_RD, NULL, 1122 "rx queues for offloaded TCP connections"); 1123 } 1124 for_each_ofld_rxq(vi, i, ofld_rxq) { 1125 1126 init_iq(&ofld_rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, 1127 vi->qsize_rxq); 1128 1129 snprintf(name, sizeof(name), "%s ofld_rxq%d-fl", 1130 device_get_nameunit(vi->dev), i); 1131 init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name); 1132 1133 if (vi->flags & INTR_OFLD_RXQ) { 1134 ofld_rxq->iq.flags |= IQ_INTR; 1135 rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid); 1136 if (rc != 0) 1137 goto done; 1138 intr_idx++; 1139 } 1140 } 1141 #endif 1142 1143 /* 1144 * Second pass over all NIC and TOE rx queues. The queues forwarding 1145 * their interrupts are allocated now. 1146 */ 1147 j = 0; 1148 if (!(vi->flags & INTR_RXQ)) { 1149 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", 1150 CTLFLAG_RD, NULL, "rx queues"); 1151 for_each_rxq(vi, i, rxq) { 1152 MPASS(!(rxq->iq.flags & IQ_INTR)); 1153 1154 intr_idx = vi_intr_iq(vi, j)->abs_id; 1155 1156 rc = alloc_rxq(vi, rxq, intr_idx, i, oid); 1157 if (rc != 0) 1158 goto done; 1159 j++; 1160 } 1161 } 1162 #ifdef TCP_OFFLOAD 1163 if (vi->nofldrxq != 0 && !(vi->flags & INTR_OFLD_RXQ)) { 1164 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq", 1165 CTLFLAG_RD, NULL, 1166 "rx queues for offloaded TCP connections"); 1167 for_each_ofld_rxq(vi, i, ofld_rxq) { 1168 MPASS(!(ofld_rxq->iq.flags & IQ_INTR)); 1169 1170 intr_idx = vi_intr_iq(vi, j)->abs_id; 1171 1172 rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid); 1173 if (rc != 0) 1174 goto done; 1175 j++; 1176 } 1177 } 1178 #endif 1179 1180 /* 1181 * Now the tx queues. Only one pass needed. 1182 */ 1183 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD, 1184 NULL, "tx queues"); 1185 j = 0; 1186 for_each_txq(vi, i, txq) { 1187 iqid = vi_intr_iq(vi, j)->cntxt_id; 1188 snprintf(name, sizeof(name), "%s txq%d", 1189 device_get_nameunit(vi->dev), i); 1190 init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, iqid, 1191 name); 1192 1193 rc = alloc_txq(vi, txq, i, oid); 1194 if (rc != 0) 1195 goto done; 1196 j++; 1197 } 1198 #ifdef TCP_OFFLOAD 1199 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq", 1200 CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections"); 1201 for_each_ofld_txq(vi, i, ofld_txq) { 1202 struct sysctl_oid *oid2; 1203 1204 iqid = vi_intr_iq(vi, j)->cntxt_id; 1205 snprintf(name, sizeof(name), "%s ofld_txq%d", 1206 device_get_nameunit(vi->dev), i); 1207 init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan, 1208 iqid, name); 1209 1210 snprintf(name, sizeof(name), "%d", i); 1211 oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1212 name, CTLFLAG_RD, NULL, "offload tx queue"); 1213 1214 rc = alloc_wrq(sc, vi, ofld_txq, oid2); 1215 if (rc != 0) 1216 goto done; 1217 j++; 1218 } 1219 #endif 1220 1221 /* 1222 * Finally, the control queue. 1223 */ 1224 if (!IS_MAIN_VI(vi) || sc->flags & IS_VF) 1225 goto done; 1226 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD, 1227 NULL, "ctrl queue"); 1228 ctrlq = &sc->sge.ctrlq[pi->port_id]; 1229 iqid = vi_intr_iq(vi, 0)->cntxt_id; 1230 snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev)); 1231 init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, 1232 name); 1233 rc = alloc_wrq(sc, vi, ctrlq, oid); 1234 1235 done: 1236 if (rc) 1237 t4_teardown_vi_queues(vi); 1238 1239 return (rc); 1240 } 1241 1242 /* 1243 * Idempotent 1244 */ 1245 int 1246 t4_teardown_vi_queues(struct vi_info *vi) 1247 { 1248 int i; 1249 struct port_info *pi = vi->pi; 1250 struct adapter *sc = pi->adapter; 1251 struct sge_rxq *rxq; 1252 struct sge_txq *txq; 1253 #ifdef TCP_OFFLOAD 1254 struct sge_ofld_rxq *ofld_rxq; 1255 struct sge_wrq *ofld_txq; 1256 #endif 1257 #ifdef DEV_NETMAP 1258 struct sge_nm_rxq *nm_rxq; 1259 struct sge_nm_txq *nm_txq; 1260 #endif 1261 1262 /* Do this before freeing the queues */ 1263 if (vi->flags & VI_SYSCTL_CTX) { 1264 sysctl_ctx_free(&vi->ctx); 1265 vi->flags &= ~VI_SYSCTL_CTX; 1266 } 1267 1268 #ifdef DEV_NETMAP 1269 if (vi->ifp->if_capabilities & IFCAP_NETMAP) { 1270 for_each_nm_txq(vi, i, nm_txq) { 1271 free_nm_txq(vi, nm_txq); 1272 } 1273 1274 for_each_nm_rxq(vi, i, nm_rxq) { 1275 free_nm_rxq(vi, nm_rxq); 1276 } 1277 } 1278 #endif 1279 1280 /* 1281 * Take down all the tx queues first, as they reference the rx queues 1282 * (for egress updates, etc.). 1283 */ 1284 1285 if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF)) 1286 free_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 1287 1288 for_each_txq(vi, i, txq) { 1289 free_txq(vi, txq); 1290 } 1291 #ifdef TCP_OFFLOAD 1292 for_each_ofld_txq(vi, i, ofld_txq) { 1293 free_wrq(sc, ofld_txq); 1294 } 1295 #endif 1296 1297 /* 1298 * Then take down the rx queues that forward their interrupts, as they 1299 * reference other rx queues. 1300 */ 1301 1302 for_each_rxq(vi, i, rxq) { 1303 if ((rxq->iq.flags & IQ_INTR) == 0) 1304 free_rxq(vi, rxq); 1305 } 1306 #ifdef TCP_OFFLOAD 1307 for_each_ofld_rxq(vi, i, ofld_rxq) { 1308 if ((ofld_rxq->iq.flags & IQ_INTR) == 0) 1309 free_ofld_rxq(vi, ofld_rxq); 1310 } 1311 #endif 1312 1313 /* 1314 * Then take down the rx queues that take direct interrupts. 1315 */ 1316 1317 for_each_rxq(vi, i, rxq) { 1318 if (rxq->iq.flags & IQ_INTR) 1319 free_rxq(vi, rxq); 1320 } 1321 #ifdef TCP_OFFLOAD 1322 for_each_ofld_rxq(vi, i, ofld_rxq) { 1323 if (ofld_rxq->iq.flags & IQ_INTR) 1324 free_ofld_rxq(vi, ofld_rxq); 1325 } 1326 #endif 1327 1328 return (0); 1329 } 1330 1331 /* 1332 * Deals with errors and the firmware event queue. All data rx queues forward 1333 * their interrupt to the firmware event queue. 1334 */ 1335 void 1336 t4_intr_all(void *arg) 1337 { 1338 struct adapter *sc = arg; 1339 struct sge_iq *fwq = &sc->sge.fwq; 1340 1341 t4_intr_err(arg); 1342 if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) { 1343 service_iq(fwq, 0); 1344 atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE); 1345 } 1346 } 1347 1348 /* Deals with error interrupts */ 1349 void 1350 t4_intr_err(void *arg) 1351 { 1352 struct adapter *sc = arg; 1353 1354 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); 1355 t4_slow_intr_handler(sc); 1356 } 1357 1358 void 1359 t4_intr_evt(void *arg) 1360 { 1361 struct sge_iq *iq = arg; 1362 1363 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1364 service_iq(iq, 0); 1365 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1366 } 1367 } 1368 1369 void 1370 t4_intr(void *arg) 1371 { 1372 struct sge_iq *iq = arg; 1373 1374 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1375 service_iq(iq, 0); 1376 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1377 } 1378 } 1379 1380 void 1381 t4_vi_intr(void *arg) 1382 { 1383 struct irq *irq = arg; 1384 1385 #ifdef DEV_NETMAP 1386 if (atomic_cmpset_int(&irq->nm_state, NM_ON, NM_BUSY)) { 1387 t4_nm_intr(irq->nm_rxq); 1388 atomic_cmpset_int(&irq->nm_state, NM_BUSY, NM_ON); 1389 } 1390 #endif 1391 if (irq->rxq != NULL) 1392 t4_intr(irq->rxq); 1393 } 1394 1395 static inline int 1396 sort_before_lro(struct lro_ctrl *lro) 1397 { 1398 1399 return (lro->lro_mbuf_max != 0); 1400 } 1401 1402 /* 1403 * Deals with anything and everything on the given ingress queue. 1404 */ 1405 static int 1406 service_iq(struct sge_iq *iq, int budget) 1407 { 1408 struct sge_iq *q; 1409 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */ 1410 struct sge_fl *fl; /* Use iff IQ_HAS_FL */ 1411 struct adapter *sc = iq->adapter; 1412 struct iq_desc *d = &iq->desc[iq->cidx]; 1413 int ndescs = 0, limit; 1414 int rsp_type, refill; 1415 uint32_t lq; 1416 uint16_t fl_hw_cidx; 1417 struct mbuf *m0; 1418 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); 1419 #if defined(INET) || defined(INET6) 1420 const struct timeval lro_timeout = {0, sc->lro_timeout}; 1421 struct lro_ctrl *lro = &rxq->lro; 1422 #endif 1423 1424 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); 1425 1426 limit = budget ? budget : iq->qsize / 16; 1427 1428 if (iq->flags & IQ_HAS_FL) { 1429 fl = &rxq->fl; 1430 fl_hw_cidx = fl->hw_cidx; /* stable snapshot */ 1431 } else { 1432 fl = NULL; 1433 fl_hw_cidx = 0; /* to silence gcc warning */ 1434 } 1435 1436 #if defined(INET) || defined(INET6) 1437 if (iq->flags & IQ_ADJ_CREDIT) { 1438 MPASS(sort_before_lro(lro)); 1439 iq->flags &= ~IQ_ADJ_CREDIT; 1440 if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) { 1441 tcp_lro_flush_all(lro); 1442 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) | 1443 V_INGRESSQID((u32)iq->cntxt_id) | 1444 V_SEINTARM(iq->intr_params)); 1445 return (0); 1446 } 1447 ndescs = 1; 1448 } 1449 #else 1450 MPASS((iq->flags & IQ_ADJ_CREDIT) == 0); 1451 #endif 1452 1453 /* 1454 * We always come back and check the descriptor ring for new indirect 1455 * interrupts and other responses after running a single handler. 1456 */ 1457 for (;;) { 1458 while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { 1459 1460 rmb(); 1461 1462 refill = 0; 1463 m0 = NULL; 1464 rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); 1465 lq = be32toh(d->rsp.pldbuflen_qid); 1466 1467 switch (rsp_type) { 1468 case X_RSPD_TYPE_FLBUF: 1469 1470 KASSERT(iq->flags & IQ_HAS_FL, 1471 ("%s: data for an iq (%p) with no freelist", 1472 __func__, iq)); 1473 1474 m0 = get_fl_payload(sc, fl, lq); 1475 if (__predict_false(m0 == NULL)) 1476 goto process_iql; 1477 refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2; 1478 #ifdef T4_PKT_TIMESTAMP 1479 /* 1480 * 60 bit timestamp for the payload is 1481 * *(uint64_t *)m0->m_pktdat. Note that it is 1482 * in the leading free-space in the mbuf. The 1483 * kernel can clobber it during a pullup, 1484 * m_copymdata, etc. You need to make sure that 1485 * the mbuf reaches you unmolested if you care 1486 * about the timestamp. 1487 */ 1488 *(uint64_t *)m0->m_pktdat = 1489 be64toh(ctrl->u.last_flit) & 1490 0xfffffffffffffff; 1491 #endif 1492 1493 /* fall through */ 1494 1495 case X_RSPD_TYPE_CPL: 1496 KASSERT(d->rss.opcode < NUM_CPL_CMDS, 1497 ("%s: bad opcode %02x.", __func__, 1498 d->rss.opcode)); 1499 t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0); 1500 break; 1501 1502 case X_RSPD_TYPE_INTR: 1503 1504 /* 1505 * Interrupts should be forwarded only to queues 1506 * that are not forwarding their interrupts. 1507 * This means service_iq can recurse but only 1 1508 * level deep. 1509 */ 1510 KASSERT(budget == 0, 1511 ("%s: budget %u, rsp_type %u", __func__, 1512 budget, rsp_type)); 1513 1514 /* 1515 * There are 1K interrupt-capable queues (qids 0 1516 * through 1023). A response type indicating a 1517 * forwarded interrupt with a qid >= 1K is an 1518 * iWARP async notification. 1519 */ 1520 if (lq >= 1024) { 1521 t4_an_handler(iq, &d->rsp); 1522 break; 1523 } 1524 1525 q = sc->sge.iqmap[lq - sc->sge.iq_start - 1526 sc->sge.iq_base]; 1527 if (atomic_cmpset_int(&q->state, IQS_IDLE, 1528 IQS_BUSY)) { 1529 if (service_iq(q, q->qsize / 16) == 0) { 1530 atomic_cmpset_int(&q->state, 1531 IQS_BUSY, IQS_IDLE); 1532 } else { 1533 STAILQ_INSERT_TAIL(&iql, q, 1534 link); 1535 } 1536 } 1537 break; 1538 1539 default: 1540 KASSERT(0, 1541 ("%s: illegal response type %d on iq %p", 1542 __func__, rsp_type, iq)); 1543 log(LOG_ERR, 1544 "%s: illegal response type %d on iq %p", 1545 device_get_nameunit(sc->dev), rsp_type, iq); 1546 break; 1547 } 1548 1549 d++; 1550 if (__predict_false(++iq->cidx == iq->sidx)) { 1551 iq->cidx = 0; 1552 iq->gen ^= F_RSPD_GEN; 1553 d = &iq->desc[0]; 1554 } 1555 if (__predict_false(++ndescs == limit)) { 1556 t4_write_reg(sc, sc->sge_gts_reg, 1557 V_CIDXINC(ndescs) | 1558 V_INGRESSQID(iq->cntxt_id) | 1559 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 1560 ndescs = 0; 1561 1562 #if defined(INET) || defined(INET6) 1563 if (iq->flags & IQ_LRO_ENABLED && 1564 !sort_before_lro(lro) && 1565 sc->lro_timeout != 0) { 1566 tcp_lro_flush_inactive(lro, 1567 &lro_timeout); 1568 } 1569 #endif 1570 1571 if (budget) { 1572 if (iq->flags & IQ_HAS_FL) { 1573 FL_LOCK(fl); 1574 refill_fl(sc, fl, 32); 1575 FL_UNLOCK(fl); 1576 } 1577 return (EINPROGRESS); 1578 } 1579 } 1580 if (refill) { 1581 FL_LOCK(fl); 1582 refill_fl(sc, fl, 32); 1583 FL_UNLOCK(fl); 1584 fl_hw_cidx = fl->hw_cidx; 1585 } 1586 } 1587 1588 process_iql: 1589 if (STAILQ_EMPTY(&iql)) 1590 break; 1591 1592 /* 1593 * Process the head only, and send it to the back of the list if 1594 * it's still not done. 1595 */ 1596 q = STAILQ_FIRST(&iql); 1597 STAILQ_REMOVE_HEAD(&iql, link); 1598 if (service_iq(q, q->qsize / 8) == 0) 1599 atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); 1600 else 1601 STAILQ_INSERT_TAIL(&iql, q, link); 1602 } 1603 1604 #if defined(INET) || defined(INET6) 1605 if (iq->flags & IQ_LRO_ENABLED) { 1606 if (ndescs > 0 && lro->lro_mbuf_count > 8) { 1607 MPASS(sort_before_lro(lro)); 1608 /* hold back one credit and don't flush LRO state */ 1609 iq->flags |= IQ_ADJ_CREDIT; 1610 ndescs--; 1611 } else { 1612 tcp_lro_flush_all(lro); 1613 } 1614 } 1615 #endif 1616 1617 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | 1618 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); 1619 1620 if (iq->flags & IQ_HAS_FL) { 1621 int starved; 1622 1623 FL_LOCK(fl); 1624 starved = refill_fl(sc, fl, 64); 1625 FL_UNLOCK(fl); 1626 if (__predict_false(starved != 0)) 1627 add_fl_to_sfl(sc, fl); 1628 } 1629 1630 return (0); 1631 } 1632 1633 static inline int 1634 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll) 1635 { 1636 int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0; 1637 1638 if (rc) 1639 MPASS(cll->region3 >= CL_METADATA_SIZE); 1640 1641 return (rc); 1642 } 1643 1644 static inline struct cluster_metadata * 1645 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll, 1646 caddr_t cl) 1647 { 1648 1649 if (cl_has_metadata(fl, cll)) { 1650 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1651 1652 return ((struct cluster_metadata *)(cl + swz->size) - 1); 1653 } 1654 return (NULL); 1655 } 1656 1657 static void 1658 rxb_free(struct mbuf *m, void *arg1, void *arg2) 1659 { 1660 uma_zone_t zone = arg1; 1661 caddr_t cl = arg2; 1662 1663 uma_zfree(zone, cl); 1664 counter_u64_add(extfree_rels, 1); 1665 } 1666 1667 /* 1668 * The mbuf returned by this function could be allocated from zone_mbuf or 1669 * constructed in spare room in the cluster. 1670 * 1671 * The mbuf carries the payload in one of these ways 1672 * a) frame inside the mbuf (mbuf from zone_mbuf) 1673 * b) m_cljset (for clusters without metadata) zone_mbuf 1674 * c) m_extaddref (cluster with metadata) inline mbuf 1675 * d) m_extaddref (cluster with metadata) zone_mbuf 1676 */ 1677 static struct mbuf * 1678 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset, 1679 int remaining) 1680 { 1681 struct mbuf *m; 1682 struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; 1683 struct cluster_layout *cll = &sd->cll; 1684 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1685 struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx]; 1686 struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl); 1687 int len, blen; 1688 caddr_t payload; 1689 1690 blen = hwb->size - fl->rx_offset; /* max possible in this buf */ 1691 len = min(remaining, blen); 1692 payload = sd->cl + cll->region1 + fl->rx_offset; 1693 if (fl->flags & FL_BUF_PACKING) { 1694 const u_int l = fr_offset + len; 1695 const u_int pad = roundup2(l, fl->buf_boundary) - l; 1696 1697 if (fl->rx_offset + len + pad < hwb->size) 1698 blen = len + pad; 1699 MPASS(fl->rx_offset + blen <= hwb->size); 1700 } else { 1701 MPASS(fl->rx_offset == 0); /* not packing */ 1702 } 1703 1704 1705 if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) { 1706 1707 /* 1708 * Copy payload into a freshly allocated mbuf. 1709 */ 1710 1711 m = fr_offset == 0 ? 1712 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1713 if (m == NULL) 1714 return (NULL); 1715 fl->mbuf_allocated++; 1716 #ifdef T4_PKT_TIMESTAMP 1717 /* Leave room for a timestamp */ 1718 m->m_data += 8; 1719 #endif 1720 /* copy data to mbuf */ 1721 bcopy(payload, mtod(m, caddr_t), len); 1722 1723 } else if (sd->nmbuf * MSIZE < cll->region1) { 1724 1725 /* 1726 * There's spare room in the cluster for an mbuf. Create one 1727 * and associate it with the payload that's in the cluster. 1728 */ 1729 1730 MPASS(clm != NULL); 1731 m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE); 1732 /* No bzero required */ 1733 if (m_init(m, M_NOWAIT, MT_DATA, 1734 fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE)) 1735 return (NULL); 1736 fl->mbuf_inlined++; 1737 m_extaddref(m, payload, blen, &clm->refcount, rxb_free, 1738 swz->zone, sd->cl); 1739 if (sd->nmbuf++ == 0) 1740 counter_u64_add(extfree_refs, 1); 1741 1742 } else { 1743 1744 /* 1745 * Grab an mbuf from zone_mbuf and associate it with the 1746 * payload in the cluster. 1747 */ 1748 1749 m = fr_offset == 0 ? 1750 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1751 if (m == NULL) 1752 return (NULL); 1753 fl->mbuf_allocated++; 1754 if (clm != NULL) { 1755 m_extaddref(m, payload, blen, &clm->refcount, 1756 rxb_free, swz->zone, sd->cl); 1757 if (sd->nmbuf++ == 0) 1758 counter_u64_add(extfree_refs, 1); 1759 } else { 1760 m_cljset(m, sd->cl, swz->type); 1761 sd->cl = NULL; /* consumed, not a recycle candidate */ 1762 } 1763 } 1764 if (fr_offset == 0) 1765 m->m_pkthdr.len = remaining; 1766 m->m_len = len; 1767 1768 if (fl->flags & FL_BUF_PACKING) { 1769 fl->rx_offset += blen; 1770 MPASS(fl->rx_offset <= hwb->size); 1771 if (fl->rx_offset < hwb->size) 1772 return (m); /* without advancing the cidx */ 1773 } 1774 1775 if (__predict_false(++fl->cidx % 8 == 0)) { 1776 uint16_t cidx = fl->cidx / 8; 1777 1778 if (__predict_false(cidx == fl->sidx)) 1779 fl->cidx = cidx = 0; 1780 fl->hw_cidx = cidx; 1781 } 1782 fl->rx_offset = 0; 1783 1784 return (m); 1785 } 1786 1787 static struct mbuf * 1788 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf) 1789 { 1790 struct mbuf *m0, *m, **pnext; 1791 u_int remaining; 1792 const u_int total = G_RSPD_LEN(len_newbuf); 1793 1794 if (__predict_false(fl->flags & FL_BUF_RESUME)) { 1795 M_ASSERTPKTHDR(fl->m0); 1796 MPASS(fl->m0->m_pkthdr.len == total); 1797 MPASS(fl->remaining < total); 1798 1799 m0 = fl->m0; 1800 pnext = fl->pnext; 1801 remaining = fl->remaining; 1802 fl->flags &= ~FL_BUF_RESUME; 1803 goto get_segment; 1804 } 1805 1806 if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) { 1807 fl->rx_offset = 0; 1808 if (__predict_false(++fl->cidx % 8 == 0)) { 1809 uint16_t cidx = fl->cidx / 8; 1810 1811 if (__predict_false(cidx == fl->sidx)) 1812 fl->cidx = cidx = 0; 1813 fl->hw_cidx = cidx; 1814 } 1815 } 1816 1817 /* 1818 * Payload starts at rx_offset in the current hw buffer. Its length is 1819 * 'len' and it may span multiple hw buffers. 1820 */ 1821 1822 m0 = get_scatter_segment(sc, fl, 0, total); 1823 if (m0 == NULL) 1824 return (NULL); 1825 remaining = total - m0->m_len; 1826 pnext = &m0->m_next; 1827 while (remaining > 0) { 1828 get_segment: 1829 MPASS(fl->rx_offset == 0); 1830 m = get_scatter_segment(sc, fl, total - remaining, remaining); 1831 if (__predict_false(m == NULL)) { 1832 fl->m0 = m0; 1833 fl->pnext = pnext; 1834 fl->remaining = remaining; 1835 fl->flags |= FL_BUF_RESUME; 1836 return (NULL); 1837 } 1838 *pnext = m; 1839 pnext = &m->m_next; 1840 remaining -= m->m_len; 1841 } 1842 *pnext = NULL; 1843 1844 M_ASSERTPKTHDR(m0); 1845 return (m0); 1846 } 1847 1848 static int 1849 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) 1850 { 1851 struct sge_rxq *rxq = iq_to_rxq(iq); 1852 struct ifnet *ifp = rxq->ifp; 1853 struct adapter *sc = iq->adapter; 1854 const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); 1855 #if defined(INET) || defined(INET6) 1856 struct lro_ctrl *lro = &rxq->lro; 1857 #endif 1858 static const int sw_hashtype[4][2] = { 1859 {M_HASHTYPE_NONE, M_HASHTYPE_NONE}, 1860 {M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6}, 1861 {M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6}, 1862 {M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6}, 1863 }; 1864 1865 KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__, 1866 rss->opcode)); 1867 1868 m0->m_pkthdr.len -= sc->params.sge.fl_pktshift; 1869 m0->m_len -= sc->params.sge.fl_pktshift; 1870 m0->m_data += sc->params.sge.fl_pktshift; 1871 1872 m0->m_pkthdr.rcvif = ifp; 1873 M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]); 1874 m0->m_pkthdr.flowid = be32toh(rss->hash_val); 1875 1876 if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) { 1877 if (ifp->if_capenable & IFCAP_RXCSUM && 1878 cpl->l2info & htobe32(F_RXF_IP)) { 1879 m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED | 1880 CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 1881 rxq->rxcsum++; 1882 } else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 && 1883 cpl->l2info & htobe32(F_RXF_IP6)) { 1884 m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 | 1885 CSUM_PSEUDO_HDR); 1886 rxq->rxcsum++; 1887 } 1888 1889 if (__predict_false(cpl->ip_frag)) 1890 m0->m_pkthdr.csum_data = be16toh(cpl->csum); 1891 else 1892 m0->m_pkthdr.csum_data = 0xffff; 1893 } 1894 1895 if (cpl->vlan_ex) { 1896 m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); 1897 m0->m_flags |= M_VLANTAG; 1898 rxq->vlan_extraction++; 1899 } 1900 1901 #if defined(INET) || defined(INET6) 1902 if (iq->flags & IQ_LRO_ENABLED) { 1903 if (sort_before_lro(lro)) { 1904 tcp_lro_queue_mbuf(lro, m0); 1905 return (0); /* queued for sort, then LRO */ 1906 } 1907 if (tcp_lro_rx(lro, m0, 0) == 0) 1908 return (0); /* queued for LRO */ 1909 } 1910 #endif 1911 ifp->if_input(ifp, m0); 1912 1913 return (0); 1914 } 1915 1916 /* 1917 * Must drain the wrq or make sure that someone else will. 1918 */ 1919 static void 1920 wrq_tx_drain(void *arg, int n) 1921 { 1922 struct sge_wrq *wrq = arg; 1923 struct sge_eq *eq = &wrq->eq; 1924 1925 EQ_LOCK(eq); 1926 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 1927 drain_wrq_wr_list(wrq->adapter, wrq); 1928 EQ_UNLOCK(eq); 1929 } 1930 1931 static void 1932 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq) 1933 { 1934 struct sge_eq *eq = &wrq->eq; 1935 u_int available, dbdiff; /* # of hardware descriptors */ 1936 u_int n; 1937 struct wrqe *wr; 1938 struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ 1939 1940 EQ_LOCK_ASSERT_OWNED(eq); 1941 MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs)); 1942 wr = STAILQ_FIRST(&wrq->wr_list); 1943 MPASS(wr != NULL); /* Must be called with something useful to do */ 1944 MPASS(eq->pidx == eq->dbidx); 1945 dbdiff = 0; 1946 1947 do { 1948 eq->cidx = read_hw_cidx(eq); 1949 if (eq->pidx == eq->cidx) 1950 available = eq->sidx - 1; 1951 else 1952 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 1953 1954 MPASS(wr->wrq == wrq); 1955 n = howmany(wr->wr_len, EQ_ESIZE); 1956 if (available < n) 1957 break; 1958 1959 dst = (void *)&eq->desc[eq->pidx]; 1960 if (__predict_true(eq->sidx - eq->pidx > n)) { 1961 /* Won't wrap, won't end exactly at the status page. */ 1962 bcopy(&wr->wr[0], dst, wr->wr_len); 1963 eq->pidx += n; 1964 } else { 1965 int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE; 1966 1967 bcopy(&wr->wr[0], dst, first_portion); 1968 if (wr->wr_len > first_portion) { 1969 bcopy(&wr->wr[first_portion], &eq->desc[0], 1970 wr->wr_len - first_portion); 1971 } 1972 eq->pidx = n - (eq->sidx - eq->pidx); 1973 } 1974 wrq->tx_wrs_copied++; 1975 1976 if (available < eq->sidx / 4 && 1977 atomic_cmpset_int(&eq->equiq, 0, 1)) { 1978 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 1979 F_FW_WR_EQUEQ); 1980 eq->equeqidx = eq->pidx; 1981 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 1982 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 1983 eq->equeqidx = eq->pidx; 1984 } 1985 1986 dbdiff += n; 1987 if (dbdiff >= 16) { 1988 ring_eq_db(sc, eq, dbdiff); 1989 dbdiff = 0; 1990 } 1991 1992 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 1993 free_wrqe(wr); 1994 MPASS(wrq->nwr_pending > 0); 1995 wrq->nwr_pending--; 1996 MPASS(wrq->ndesc_needed >= n); 1997 wrq->ndesc_needed -= n; 1998 } while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL); 1999 2000 if (dbdiff) 2001 ring_eq_db(sc, eq, dbdiff); 2002 } 2003 2004 /* 2005 * Doesn't fail. Holds on to work requests it can't send right away. 2006 */ 2007 void 2008 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr) 2009 { 2010 #ifdef INVARIANTS 2011 struct sge_eq *eq = &wrq->eq; 2012 #endif 2013 2014 EQ_LOCK_ASSERT_OWNED(eq); 2015 MPASS(wr != NULL); 2016 MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN); 2017 MPASS((wr->wr_len & 0x7) == 0); 2018 2019 STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link); 2020 wrq->nwr_pending++; 2021 wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE); 2022 2023 if (!TAILQ_EMPTY(&wrq->incomplete_wrs)) 2024 return; /* commit_wrq_wr will drain wr_list as well. */ 2025 2026 drain_wrq_wr_list(sc, wrq); 2027 2028 /* Doorbell must have caught up to the pidx. */ 2029 MPASS(eq->pidx == eq->dbidx); 2030 } 2031 2032 void 2033 t4_update_fl_bufsize(struct ifnet *ifp) 2034 { 2035 struct vi_info *vi = ifp->if_softc; 2036 struct adapter *sc = vi->pi->adapter; 2037 struct sge_rxq *rxq; 2038 #ifdef TCP_OFFLOAD 2039 struct sge_ofld_rxq *ofld_rxq; 2040 #endif 2041 struct sge_fl *fl; 2042 int i, maxp, mtu = ifp->if_mtu; 2043 2044 maxp = mtu_to_max_payload(sc, mtu, 0); 2045 for_each_rxq(vi, i, rxq) { 2046 fl = &rxq->fl; 2047 2048 FL_LOCK(fl); 2049 find_best_refill_source(sc, fl, maxp); 2050 FL_UNLOCK(fl); 2051 } 2052 #ifdef TCP_OFFLOAD 2053 maxp = mtu_to_max_payload(sc, mtu, 1); 2054 for_each_ofld_rxq(vi, i, ofld_rxq) { 2055 fl = &ofld_rxq->fl; 2056 2057 FL_LOCK(fl); 2058 find_best_refill_source(sc, fl, maxp); 2059 FL_UNLOCK(fl); 2060 } 2061 #endif 2062 } 2063 2064 static inline int 2065 mbuf_nsegs(struct mbuf *m) 2066 { 2067 2068 M_ASSERTPKTHDR(m); 2069 KASSERT(m->m_pkthdr.l5hlen > 0, 2070 ("%s: mbuf %p missing information on # of segments.", __func__, m)); 2071 2072 return (m->m_pkthdr.l5hlen); 2073 } 2074 2075 static inline void 2076 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs) 2077 { 2078 2079 M_ASSERTPKTHDR(m); 2080 m->m_pkthdr.l5hlen = nsegs; 2081 } 2082 2083 static inline int 2084 mbuf_len16(struct mbuf *m) 2085 { 2086 int n; 2087 2088 M_ASSERTPKTHDR(m); 2089 n = m->m_pkthdr.PH_loc.eight[0]; 2090 MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16); 2091 2092 return (n); 2093 } 2094 2095 static inline void 2096 set_mbuf_len16(struct mbuf *m, uint8_t len16) 2097 { 2098 2099 M_ASSERTPKTHDR(m); 2100 m->m_pkthdr.PH_loc.eight[0] = len16; 2101 } 2102 2103 static inline int 2104 needs_tso(struct mbuf *m) 2105 { 2106 2107 M_ASSERTPKTHDR(m); 2108 2109 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 2110 KASSERT(m->m_pkthdr.tso_segsz > 0, 2111 ("%s: TSO requested in mbuf %p but MSS not provided", 2112 __func__, m)); 2113 return (1); 2114 } 2115 2116 return (0); 2117 } 2118 2119 static inline int 2120 needs_l3_csum(struct mbuf *m) 2121 { 2122 2123 M_ASSERTPKTHDR(m); 2124 2125 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)) 2126 return (1); 2127 return (0); 2128 } 2129 2130 static inline int 2131 needs_l4_csum(struct mbuf *m) 2132 { 2133 2134 M_ASSERTPKTHDR(m); 2135 2136 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | 2137 CSUM_TCP_IPV6 | CSUM_TSO)) 2138 return (1); 2139 return (0); 2140 } 2141 2142 static inline int 2143 needs_vlan_insertion(struct mbuf *m) 2144 { 2145 2146 M_ASSERTPKTHDR(m); 2147 2148 if (m->m_flags & M_VLANTAG) { 2149 KASSERT(m->m_pkthdr.ether_vtag != 0, 2150 ("%s: HWVLAN requested in mbuf %p but tag not provided", 2151 __func__, m)); 2152 return (1); 2153 } 2154 return (0); 2155 } 2156 2157 static void * 2158 m_advance(struct mbuf **pm, int *poffset, int len) 2159 { 2160 struct mbuf *m = *pm; 2161 int offset = *poffset; 2162 uintptr_t p = 0; 2163 2164 MPASS(len > 0); 2165 2166 for (;;) { 2167 if (offset + len < m->m_len) { 2168 offset += len; 2169 p = mtod(m, uintptr_t) + offset; 2170 break; 2171 } 2172 len -= m->m_len - offset; 2173 m = m->m_next; 2174 offset = 0; 2175 MPASS(m != NULL); 2176 } 2177 *poffset = offset; 2178 *pm = m; 2179 return ((void *)p); 2180 } 2181 2182 /* 2183 * Can deal with empty mbufs in the chain that have m_len = 0, but the chain 2184 * must have at least one mbuf that's not empty. 2185 */ 2186 static inline int 2187 count_mbuf_nsegs(struct mbuf *m) 2188 { 2189 vm_paddr_t lastb, next; 2190 vm_offset_t va; 2191 int len, nsegs; 2192 2193 MPASS(m != NULL); 2194 2195 nsegs = 0; 2196 lastb = 0; 2197 for (; m; m = m->m_next) { 2198 2199 len = m->m_len; 2200 if (__predict_false(len == 0)) 2201 continue; 2202 va = mtod(m, vm_offset_t); 2203 next = pmap_kextract(va); 2204 nsegs += sglist_count(m->m_data, len); 2205 if (lastb + 1 == next) 2206 nsegs--; 2207 lastb = pmap_kextract(va + len - 1); 2208 } 2209 2210 MPASS(nsegs > 0); 2211 return (nsegs); 2212 } 2213 2214 /* 2215 * Analyze the mbuf to determine its tx needs. The mbuf passed in may change: 2216 * a) caller can assume it's been freed if this function returns with an error. 2217 * b) it may get defragged up if the gather list is too long for the hardware. 2218 */ 2219 int 2220 parse_pkt(struct adapter *sc, struct mbuf **mp) 2221 { 2222 struct mbuf *m0 = *mp, *m; 2223 int rc, nsegs, defragged = 0, offset; 2224 struct ether_header *eh; 2225 void *l3hdr; 2226 #if defined(INET) || defined(INET6) 2227 struct tcphdr *tcp; 2228 #endif 2229 uint16_t eh_type; 2230 2231 M_ASSERTPKTHDR(m0); 2232 if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) { 2233 rc = EINVAL; 2234 fail: 2235 m_freem(m0); 2236 *mp = NULL; 2237 return (rc); 2238 } 2239 restart: 2240 /* 2241 * First count the number of gather list segments in the payload. 2242 * Defrag the mbuf if nsegs exceeds the hardware limit. 2243 */ 2244 M_ASSERTPKTHDR(m0); 2245 MPASS(m0->m_pkthdr.len > 0); 2246 nsegs = count_mbuf_nsegs(m0); 2247 if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) { 2248 if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) { 2249 rc = EFBIG; 2250 goto fail; 2251 } 2252 *mp = m0 = m; /* update caller's copy after defrag */ 2253 goto restart; 2254 } 2255 2256 if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) { 2257 m0 = m_pullup(m0, m0->m_pkthdr.len); 2258 if (m0 == NULL) { 2259 /* Should have left well enough alone. */ 2260 rc = EFBIG; 2261 goto fail; 2262 } 2263 *mp = m0; /* update caller's copy after pullup */ 2264 goto restart; 2265 } 2266 set_mbuf_nsegs(m0, nsegs); 2267 if (sc->flags & IS_VF) 2268 set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0))); 2269 else 2270 set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0))); 2271 2272 if (!needs_tso(m0) && 2273 !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0)))) 2274 return (0); 2275 2276 m = m0; 2277 eh = mtod(m, struct ether_header *); 2278 eh_type = ntohs(eh->ether_type); 2279 if (eh_type == ETHERTYPE_VLAN) { 2280 struct ether_vlan_header *evh = (void *)eh; 2281 2282 eh_type = ntohs(evh->evl_proto); 2283 m0->m_pkthdr.l2hlen = sizeof(*evh); 2284 } else 2285 m0->m_pkthdr.l2hlen = sizeof(*eh); 2286 2287 offset = 0; 2288 l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen); 2289 2290 switch (eh_type) { 2291 #ifdef INET6 2292 case ETHERTYPE_IPV6: 2293 { 2294 struct ip6_hdr *ip6 = l3hdr; 2295 2296 MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP); 2297 2298 m0->m_pkthdr.l3hlen = sizeof(*ip6); 2299 break; 2300 } 2301 #endif 2302 #ifdef INET 2303 case ETHERTYPE_IP: 2304 { 2305 struct ip *ip = l3hdr; 2306 2307 m0->m_pkthdr.l3hlen = ip->ip_hl * 4; 2308 break; 2309 } 2310 #endif 2311 default: 2312 panic("%s: ethertype 0x%04x unknown. if_cxgbe must be compiled" 2313 " with the same INET/INET6 options as the kernel.", 2314 __func__, eh_type); 2315 } 2316 2317 #if defined(INET) || defined(INET6) 2318 if (needs_tso(m0)) { 2319 tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen); 2320 m0->m_pkthdr.l4hlen = tcp->th_off * 4; 2321 } 2322 #endif 2323 MPASS(m0 == *mp); 2324 return (0); 2325 } 2326 2327 void * 2328 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie) 2329 { 2330 struct sge_eq *eq = &wrq->eq; 2331 struct adapter *sc = wrq->adapter; 2332 int ndesc, available; 2333 struct wrqe *wr; 2334 void *w; 2335 2336 MPASS(len16 > 0); 2337 ndesc = howmany(len16, EQ_ESIZE / 16); 2338 MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC); 2339 2340 EQ_LOCK(eq); 2341 2342 if (!STAILQ_EMPTY(&wrq->wr_list)) 2343 drain_wrq_wr_list(sc, wrq); 2344 2345 if (!STAILQ_EMPTY(&wrq->wr_list)) { 2346 slowpath: 2347 EQ_UNLOCK(eq); 2348 wr = alloc_wrqe(len16 * 16, wrq); 2349 if (__predict_false(wr == NULL)) 2350 return (NULL); 2351 cookie->pidx = -1; 2352 cookie->ndesc = ndesc; 2353 return (&wr->wr); 2354 } 2355 2356 eq->cidx = read_hw_cidx(eq); 2357 if (eq->pidx == eq->cidx) 2358 available = eq->sidx - 1; 2359 else 2360 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2361 if (available < ndesc) 2362 goto slowpath; 2363 2364 cookie->pidx = eq->pidx; 2365 cookie->ndesc = ndesc; 2366 TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link); 2367 2368 w = &eq->desc[eq->pidx]; 2369 IDXINCR(eq->pidx, ndesc, eq->sidx); 2370 if (__predict_false(cookie->pidx + ndesc > eq->sidx)) { 2371 w = &wrq->ss[0]; 2372 wrq->ss_pidx = cookie->pidx; 2373 wrq->ss_len = len16 * 16; 2374 } 2375 2376 EQ_UNLOCK(eq); 2377 2378 return (w); 2379 } 2380 2381 void 2382 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie) 2383 { 2384 struct sge_eq *eq = &wrq->eq; 2385 struct adapter *sc = wrq->adapter; 2386 int ndesc, pidx; 2387 struct wrq_cookie *prev, *next; 2388 2389 if (cookie->pidx == -1) { 2390 struct wrqe *wr = __containerof(w, struct wrqe, wr); 2391 2392 t4_wrq_tx(sc, wr); 2393 return; 2394 } 2395 2396 ndesc = cookie->ndesc; /* Can be more than SGE_MAX_WR_NDESC here. */ 2397 pidx = cookie->pidx; 2398 MPASS(pidx >= 0 && pidx < eq->sidx); 2399 if (__predict_false(w == &wrq->ss[0])) { 2400 int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE; 2401 2402 MPASS(wrq->ss_len > n); /* WR had better wrap around. */ 2403 bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n); 2404 bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n); 2405 wrq->tx_wrs_ss++; 2406 } else 2407 wrq->tx_wrs_direct++; 2408 2409 EQ_LOCK(eq); 2410 prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link); 2411 next = TAILQ_NEXT(cookie, link); 2412 if (prev == NULL) { 2413 MPASS(pidx == eq->dbidx); 2414 if (next == NULL || ndesc >= 16) 2415 ring_eq_db(wrq->adapter, eq, ndesc); 2416 else { 2417 MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc); 2418 next->pidx = pidx; 2419 next->ndesc += ndesc; 2420 } 2421 } else { 2422 MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc); 2423 prev->ndesc += ndesc; 2424 } 2425 TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link); 2426 2427 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 2428 drain_wrq_wr_list(sc, wrq); 2429 2430 #ifdef INVARIANTS 2431 if (TAILQ_EMPTY(&wrq->incomplete_wrs)) { 2432 /* Doorbell must have caught up to the pidx. */ 2433 MPASS(wrq->eq.pidx == wrq->eq.dbidx); 2434 } 2435 #endif 2436 EQ_UNLOCK(eq); 2437 } 2438 2439 static u_int 2440 can_resume_eth_tx(struct mp_ring *r) 2441 { 2442 struct sge_eq *eq = r->cookie; 2443 2444 return (total_available_tx_desc(eq) > eq->sidx / 8); 2445 } 2446 2447 static inline int 2448 cannot_use_txpkts(struct mbuf *m) 2449 { 2450 /* maybe put a GL limit too, to avoid silliness? */ 2451 2452 return (needs_tso(m)); 2453 } 2454 2455 /* 2456 * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to 2457 * be consumed. Return the actual number consumed. 0 indicates a stall. 2458 */ 2459 static u_int 2460 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx) 2461 { 2462 struct sge_txq *txq = r->cookie; 2463 struct sge_eq *eq = &txq->eq; 2464 struct ifnet *ifp = txq->ifp; 2465 struct vi_info *vi = ifp->if_softc; 2466 struct port_info *pi = vi->pi; 2467 struct adapter *sc = pi->adapter; 2468 u_int total, remaining; /* # of packets */ 2469 u_int available, dbdiff; /* # of hardware descriptors */ 2470 u_int n, next_cidx; 2471 struct mbuf *m0, *tail; 2472 struct txpkts txp; 2473 struct fw_eth_tx_pkts_wr *wr; /* any fw WR struct will do */ 2474 2475 remaining = IDXDIFF(pidx, cidx, r->size); 2476 MPASS(remaining > 0); /* Must not be called without work to do. */ 2477 total = 0; 2478 2479 TXQ_LOCK(txq); 2480 if (__predict_false((eq->flags & EQ_ENABLED) == 0)) { 2481 while (cidx != pidx) { 2482 m0 = r->items[cidx]; 2483 m_freem(m0); 2484 if (++cidx == r->size) 2485 cidx = 0; 2486 } 2487 reclaim_tx_descs(txq, 2048); 2488 total = remaining; 2489 goto done; 2490 } 2491 2492 /* How many hardware descriptors do we have readily available. */ 2493 if (eq->pidx == eq->cidx) 2494 available = eq->sidx - 1; 2495 else 2496 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2497 dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx); 2498 2499 while (remaining > 0) { 2500 2501 m0 = r->items[cidx]; 2502 M_ASSERTPKTHDR(m0); 2503 MPASS(m0->m_nextpkt == NULL); 2504 2505 if (available < SGE_MAX_WR_NDESC) { 2506 available += reclaim_tx_descs(txq, 64); 2507 if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16)) 2508 break; /* out of descriptors */ 2509 } 2510 2511 next_cidx = cidx + 1; 2512 if (__predict_false(next_cidx == r->size)) 2513 next_cidx = 0; 2514 2515 wr = (void *)&eq->desc[eq->pidx]; 2516 if (sc->flags & IS_VF) { 2517 total++; 2518 remaining--; 2519 ETHER_BPF_MTAP(ifp, m0); 2520 n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0, 2521 available); 2522 } else if (remaining > 1 && 2523 try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) { 2524 2525 /* pkts at cidx, next_cidx should both be in txp. */ 2526 MPASS(txp.npkt == 2); 2527 tail = r->items[next_cidx]; 2528 MPASS(tail->m_nextpkt == NULL); 2529 ETHER_BPF_MTAP(ifp, m0); 2530 ETHER_BPF_MTAP(ifp, tail); 2531 m0->m_nextpkt = tail; 2532 2533 if (__predict_false(++next_cidx == r->size)) 2534 next_cidx = 0; 2535 2536 while (next_cidx != pidx) { 2537 if (add_to_txpkts(r->items[next_cidx], &txp, 2538 available) != 0) 2539 break; 2540 tail->m_nextpkt = r->items[next_cidx]; 2541 tail = tail->m_nextpkt; 2542 ETHER_BPF_MTAP(ifp, tail); 2543 if (__predict_false(++next_cidx == r->size)) 2544 next_cidx = 0; 2545 } 2546 2547 n = write_txpkts_wr(txq, wr, m0, &txp, available); 2548 total += txp.npkt; 2549 remaining -= txp.npkt; 2550 } else { 2551 total++; 2552 remaining--; 2553 ETHER_BPF_MTAP(ifp, m0); 2554 n = write_txpkt_wr(txq, (void *)wr, m0, available); 2555 } 2556 MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC); 2557 2558 available -= n; 2559 dbdiff += n; 2560 IDXINCR(eq->pidx, n, eq->sidx); 2561 2562 if (total_available_tx_desc(eq) < eq->sidx / 4 && 2563 atomic_cmpset_int(&eq->equiq, 0, 1)) { 2564 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 2565 F_FW_WR_EQUEQ); 2566 eq->equeqidx = eq->pidx; 2567 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 2568 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 2569 eq->equeqidx = eq->pidx; 2570 } 2571 2572 if (dbdiff >= 16 && remaining >= 4) { 2573 ring_eq_db(sc, eq, dbdiff); 2574 available += reclaim_tx_descs(txq, 4 * dbdiff); 2575 dbdiff = 0; 2576 } 2577 2578 cidx = next_cidx; 2579 } 2580 if (dbdiff != 0) { 2581 ring_eq_db(sc, eq, dbdiff); 2582 reclaim_tx_descs(txq, 32); 2583 } 2584 done: 2585 TXQ_UNLOCK(txq); 2586 2587 return (total); 2588 } 2589 2590 static inline void 2591 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, 2592 int qsize) 2593 { 2594 2595 KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, 2596 ("%s: bad tmr_idx %d", __func__, tmr_idx)); 2597 KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ 2598 ("%s: bad pktc_idx %d", __func__, pktc_idx)); 2599 2600 iq->flags = 0; 2601 iq->adapter = sc; 2602 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); 2603 iq->intr_pktc_idx = SGE_NCOUNTERS - 1; 2604 if (pktc_idx >= 0) { 2605 iq->intr_params |= F_QINTR_CNT_EN; 2606 iq->intr_pktc_idx = pktc_idx; 2607 } 2608 iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */ 2609 iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE; 2610 } 2611 2612 static inline void 2613 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name) 2614 { 2615 2616 fl->qsize = qsize; 2617 fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 2618 strlcpy(fl->lockname, name, sizeof(fl->lockname)); 2619 if (sc->flags & BUF_PACKING_OK && 2620 ((!is_t4(sc) && buffer_packing) || /* T5+: enabled unless 0 */ 2621 (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */ 2622 fl->flags |= FL_BUF_PACKING; 2623 find_best_refill_source(sc, fl, maxp); 2624 find_safe_refill_source(sc, fl); 2625 } 2626 2627 static inline void 2628 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize, 2629 uint8_t tx_chan, uint16_t iqid, char *name) 2630 { 2631 KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype)); 2632 2633 eq->flags = eqtype & EQ_TYPEMASK; 2634 eq->tx_chan = tx_chan; 2635 eq->iqid = iqid; 2636 eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 2637 strlcpy(eq->lockname, name, sizeof(eq->lockname)); 2638 } 2639 2640 static int 2641 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, 2642 bus_dmamap_t *map, bus_addr_t *pa, void **va) 2643 { 2644 int rc; 2645 2646 rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, 2647 BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); 2648 if (rc != 0) { 2649 device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc); 2650 goto done; 2651 } 2652 2653 rc = bus_dmamem_alloc(*tag, va, 2654 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); 2655 if (rc != 0) { 2656 device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc); 2657 goto done; 2658 } 2659 2660 rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); 2661 if (rc != 0) { 2662 device_printf(sc->dev, "cannot load DMA map: %d\n", rc); 2663 goto done; 2664 } 2665 done: 2666 if (rc) 2667 free_ring(sc, *tag, *map, *pa, *va); 2668 2669 return (rc); 2670 } 2671 2672 static int 2673 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, 2674 bus_addr_t pa, void *va) 2675 { 2676 if (pa) 2677 bus_dmamap_unload(tag, map); 2678 if (va) 2679 bus_dmamem_free(tag, va, map); 2680 if (tag) 2681 bus_dma_tag_destroy(tag); 2682 2683 return (0); 2684 } 2685 2686 /* 2687 * Allocates the ring for an ingress queue and an optional freelist. If the 2688 * freelist is specified it will be allocated and then associated with the 2689 * ingress queue. 2690 * 2691 * Returns errno on failure. Resources allocated up to that point may still be 2692 * allocated. Caller is responsible for cleanup in case this function fails. 2693 * 2694 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then 2695 * the intr_idx specifies the vector, starting from 0. Otherwise it specifies 2696 * the abs_id of the ingress queue to which its interrupts should be forwarded. 2697 */ 2698 static int 2699 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl, 2700 int intr_idx, int cong) 2701 { 2702 int rc, i, cntxt_id; 2703 size_t len; 2704 struct fw_iq_cmd c; 2705 struct port_info *pi = vi->pi; 2706 struct adapter *sc = iq->adapter; 2707 struct sge_params *sp = &sc->params.sge; 2708 __be32 v = 0; 2709 2710 len = iq->qsize * IQ_ESIZE; 2711 rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, 2712 (void **)&iq->desc); 2713 if (rc != 0) 2714 return (rc); 2715 2716 bzero(&c, sizeof(c)); 2717 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 2718 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | 2719 V_FW_IQ_CMD_VFN(0)); 2720 2721 c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | 2722 FW_LEN16(c)); 2723 2724 /* Special handling for firmware event queue */ 2725 if (iq == &sc->sge.fwq) 2726 v |= F_FW_IQ_CMD_IQASYNCH; 2727 2728 if (iq->flags & IQ_INTR) { 2729 KASSERT(intr_idx < sc->intr_count, 2730 ("%s: invalid direct intr_idx %d", __func__, intr_idx)); 2731 } else 2732 v |= F_FW_IQ_CMD_IQANDST; 2733 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); 2734 2735 c.type_to_iqandstindex = htobe32(v | 2736 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 2737 V_FW_IQ_CMD_VIID(vi->viid) | 2738 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); 2739 c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 2740 F_FW_IQ_CMD_IQGTSMODE | 2741 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | 2742 V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4)); 2743 c.iqsize = htobe16(iq->qsize); 2744 c.iqaddr = htobe64(iq->ba); 2745 if (cong >= 0) 2746 c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN); 2747 2748 if (fl) { 2749 mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); 2750 2751 len = fl->qsize * EQ_ESIZE; 2752 rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, 2753 &fl->ba, (void **)&fl->desc); 2754 if (rc) 2755 return (rc); 2756 2757 /* Allocate space for one software descriptor per buffer. */ 2758 rc = alloc_fl_sdesc(fl); 2759 if (rc != 0) { 2760 device_printf(sc->dev, 2761 "failed to setup fl software descriptors: %d\n", 2762 rc); 2763 return (rc); 2764 } 2765 2766 if (fl->flags & FL_BUF_PACKING) { 2767 fl->lowat = roundup2(sp->fl_starve_threshold2, 8); 2768 fl->buf_boundary = sp->pack_boundary; 2769 } else { 2770 fl->lowat = roundup2(sp->fl_starve_threshold, 8); 2771 fl->buf_boundary = 16; 2772 } 2773 if (fl_pad && fl->buf_boundary < sp->pad_boundary) 2774 fl->buf_boundary = sp->pad_boundary; 2775 2776 c.iqns_to_fl0congen |= 2777 htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | 2778 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | 2779 (fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) | 2780 (fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN : 2781 0)); 2782 if (cong >= 0) { 2783 c.iqns_to_fl0congen |= 2784 htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | 2785 F_FW_IQ_CMD_FL0CONGCIF | 2786 F_FW_IQ_CMD_FL0CONGEN); 2787 } 2788 c.fl0dcaen_to_fl0cidxfthresh = 2789 htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ? 2790 X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) | 2791 V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ? 2792 X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B)); 2793 c.fl0size = htobe16(fl->qsize); 2794 c.fl0addr = htobe64(fl->ba); 2795 } 2796 2797 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2798 if (rc != 0) { 2799 device_printf(sc->dev, 2800 "failed to create ingress queue: %d\n", rc); 2801 return (rc); 2802 } 2803 2804 iq->cidx = 0; 2805 iq->gen = F_RSPD_GEN; 2806 iq->intr_next = iq->intr_params; 2807 iq->cntxt_id = be16toh(c.iqid); 2808 iq->abs_id = be16toh(c.physiqid); 2809 iq->flags |= IQ_ALLOCATED; 2810 2811 cntxt_id = iq->cntxt_id - sc->sge.iq_start; 2812 if (cntxt_id >= sc->sge.niq) { 2813 panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, 2814 cntxt_id, sc->sge.niq - 1); 2815 } 2816 sc->sge.iqmap[cntxt_id] = iq; 2817 2818 if (fl) { 2819 u_int qid; 2820 2821 iq->flags |= IQ_HAS_FL; 2822 fl->cntxt_id = be16toh(c.fl0id); 2823 fl->pidx = fl->cidx = 0; 2824 2825 cntxt_id = fl->cntxt_id - sc->sge.eq_start; 2826 if (cntxt_id >= sc->sge.neq) { 2827 panic("%s: fl->cntxt_id (%d) more than the max (%d)", 2828 __func__, cntxt_id, sc->sge.neq - 1); 2829 } 2830 sc->sge.eqmap[cntxt_id] = (void *)fl; 2831 2832 qid = fl->cntxt_id; 2833 if (isset(&sc->doorbells, DOORBELL_UDB)) { 2834 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 2835 uint32_t mask = (1 << s_qpp) - 1; 2836 volatile uint8_t *udb; 2837 2838 udb = sc->udbs_base + UDBS_DB_OFFSET; 2839 udb += (qid >> s_qpp) << PAGE_SHIFT; 2840 qid &= mask; 2841 if (qid < PAGE_SIZE / UDBS_SEG_SIZE) { 2842 udb += qid << UDBS_SEG_SHIFT; 2843 qid = 0; 2844 } 2845 fl->udb = (volatile void *)udb; 2846 } 2847 fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db; 2848 2849 FL_LOCK(fl); 2850 /* Enough to make sure the SGE doesn't think it's starved */ 2851 refill_fl(sc, fl, fl->lowat); 2852 FL_UNLOCK(fl); 2853 } 2854 2855 if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) { 2856 uint32_t param, val; 2857 2858 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 2859 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 2860 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id); 2861 if (cong == 0) 2862 val = 1 << 19; 2863 else { 2864 val = 2 << 19; 2865 for (i = 0; i < 4; i++) { 2866 if (cong & (1 << i)) 2867 val |= 1 << (i << 2); 2868 } 2869 } 2870 2871 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 2872 if (rc != 0) { 2873 /* report error but carry on */ 2874 device_printf(sc->dev, 2875 "failed to set congestion manager context for " 2876 "ingress queue %d: %d\n", iq->cntxt_id, rc); 2877 } 2878 } 2879 2880 /* Enable IQ interrupts */ 2881 atomic_store_rel_int(&iq->state, IQS_IDLE); 2882 t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) | 2883 V_INGRESSQID(iq->cntxt_id)); 2884 2885 return (0); 2886 } 2887 2888 static int 2889 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl) 2890 { 2891 int rc; 2892 struct adapter *sc = iq->adapter; 2893 device_t dev; 2894 2895 if (sc == NULL) 2896 return (0); /* nothing to do */ 2897 2898 dev = vi ? vi->dev : sc->dev; 2899 2900 if (iq->flags & IQ_ALLOCATED) { 2901 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, 2902 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, 2903 fl ? fl->cntxt_id : 0xffff, 0xffff); 2904 if (rc != 0) { 2905 device_printf(dev, 2906 "failed to free queue %p: %d\n", iq, rc); 2907 return (rc); 2908 } 2909 iq->flags &= ~IQ_ALLOCATED; 2910 } 2911 2912 free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); 2913 2914 bzero(iq, sizeof(*iq)); 2915 2916 if (fl) { 2917 free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, 2918 fl->desc); 2919 2920 if (fl->sdesc) 2921 free_fl_sdesc(sc, fl); 2922 2923 if (mtx_initialized(&fl->fl_lock)) 2924 mtx_destroy(&fl->fl_lock); 2925 2926 bzero(fl, sizeof(*fl)); 2927 } 2928 2929 return (0); 2930 } 2931 2932 static void 2933 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 2934 struct sysctl_oid *oid, struct sge_fl *fl) 2935 { 2936 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2937 2938 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 2939 "freelist"); 2940 children = SYSCTL_CHILDREN(oid); 2941 2942 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 2943 &fl->ba, "bus address of descriptor ring"); 2944 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 2945 fl->sidx * EQ_ESIZE + sc->params.sge.spg_len, 2946 "desc ring size in bytes"); 2947 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 2948 CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I", 2949 "SGE context id of the freelist"); 2950 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL, 2951 fl_pad ? 1 : 0, "padding enabled"); 2952 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL, 2953 fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled"); 2954 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx, 2955 0, "consumer index"); 2956 if (fl->flags & FL_BUF_PACKING) { 2957 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset", 2958 CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset"); 2959 } 2960 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx, 2961 0, "producer index"); 2962 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated", 2963 CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated"); 2964 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined", 2965 CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters"); 2966 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated", 2967 CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated"); 2968 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled", 2969 CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled"); 2970 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled", 2971 CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)"); 2972 } 2973 2974 static int 2975 alloc_fwq(struct adapter *sc) 2976 { 2977 int rc, intr_idx; 2978 struct sge_iq *fwq = &sc->sge.fwq; 2979 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 2980 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2981 2982 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE); 2983 fwq->flags |= IQ_INTR; /* always */ 2984 if (sc->flags & IS_VF) 2985 intr_idx = 0; 2986 else { 2987 intr_idx = sc->intr_count > 1 ? 1 : 0; 2988 fwq->set_tcb_rpl = t4_filter_rpl; 2989 fwq->l2t_write_rpl = do_l2t_write_rpl; 2990 } 2991 rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1); 2992 if (rc != 0) { 2993 device_printf(sc->dev, 2994 "failed to create firmware event queue: %d\n", rc); 2995 return (rc); 2996 } 2997 2998 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD, 2999 NULL, "firmware event queue"); 3000 children = SYSCTL_CHILDREN(oid); 3001 3002 SYSCTL_ADD_UAUTO(&sc->ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 3003 &fwq->ba, "bus address of descriptor ring"); 3004 SYSCTL_ADD_INT(&sc->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3005 fwq->qsize * IQ_ESIZE, "descriptor ring size in bytes"); 3006 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id", 3007 CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I", 3008 "absolute id of the queue"); 3009 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id", 3010 CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I", 3011 "SGE context id of the queue"); 3012 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx", 3013 CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I", 3014 "consumer index"); 3015 3016 return (0); 3017 } 3018 3019 static int 3020 free_fwq(struct adapter *sc) 3021 { 3022 return free_iq_fl(NULL, &sc->sge.fwq, NULL); 3023 } 3024 3025 static int 3026 alloc_mgmtq(struct adapter *sc) 3027 { 3028 int rc; 3029 struct sge_wrq *mgmtq = &sc->sge.mgmtq; 3030 char name[16]; 3031 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 3032 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3033 3034 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD, 3035 NULL, "management queue"); 3036 3037 snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev)); 3038 init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan, 3039 sc->sge.fwq.cntxt_id, name); 3040 rc = alloc_wrq(sc, NULL, mgmtq, oid); 3041 if (rc != 0) { 3042 device_printf(sc->dev, 3043 "failed to create management queue: %d\n", rc); 3044 return (rc); 3045 } 3046 3047 return (0); 3048 } 3049 3050 static int 3051 free_mgmtq(struct adapter *sc) 3052 { 3053 3054 return free_wrq(sc, &sc->sge.mgmtq); 3055 } 3056 3057 int 3058 tnl_cong(struct port_info *pi, int drop) 3059 { 3060 3061 if (drop == -1) 3062 return (-1); 3063 else if (drop == 1) 3064 return (0); 3065 else 3066 return (pi->rx_chan_map); 3067 } 3068 3069 static int 3070 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx, 3071 struct sysctl_oid *oid) 3072 { 3073 int rc; 3074 struct adapter *sc = vi->pi->adapter; 3075 struct sysctl_oid_list *children; 3076 char name[16]; 3077 3078 rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx, 3079 tnl_cong(vi->pi, cong_drop)); 3080 if (rc != 0) 3081 return (rc); 3082 3083 if (idx == 0) 3084 sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id; 3085 else 3086 KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id, 3087 ("iq_base mismatch")); 3088 KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF, 3089 ("PF with non-zero iq_base")); 3090 3091 /* 3092 * The freelist is just barely above the starvation threshold right now, 3093 * fill it up a bit more. 3094 */ 3095 FL_LOCK(&rxq->fl); 3096 refill_fl(sc, &rxq->fl, 128); 3097 FL_UNLOCK(&rxq->fl); 3098 3099 #if defined(INET) || defined(INET6) 3100 rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs); 3101 if (rc != 0) 3102 return (rc); 3103 MPASS(rxq->lro.ifp == vi->ifp); /* also indicates LRO init'ed */ 3104 3105 if (vi->ifp->if_capenable & IFCAP_LRO) 3106 rxq->iq.flags |= IQ_LRO_ENABLED; 3107 #endif 3108 rxq->ifp = vi->ifp; 3109 3110 children = SYSCTL_CHILDREN(oid); 3111 3112 snprintf(name, sizeof(name), "%d", idx); 3113 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3114 NULL, "rx queue"); 3115 children = SYSCTL_CHILDREN(oid); 3116 3117 SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 3118 &rxq->iq.ba, "bus address of descriptor ring"); 3119 SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3120 rxq->iq.qsize * IQ_ESIZE, "descriptor ring size in bytes"); 3121 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id", 3122 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I", 3123 "absolute id of the queue"); 3124 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id", 3125 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I", 3126 "SGE context id of the queue"); 3127 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3128 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I", 3129 "consumer index"); 3130 #if defined(INET) || defined(INET6) 3131 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, 3132 &rxq->lro.lro_queued, 0, NULL); 3133 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, 3134 &rxq->lro.lro_flushed, 0, NULL); 3135 #endif 3136 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, 3137 &rxq->rxcsum, "# of times hardware assisted with checksum"); 3138 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction", 3139 CTLFLAG_RD, &rxq->vlan_extraction, 3140 "# of times hardware extracted 802.1Q tag"); 3141 3142 add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl); 3143 3144 return (rc); 3145 } 3146 3147 static int 3148 free_rxq(struct vi_info *vi, struct sge_rxq *rxq) 3149 { 3150 int rc; 3151 3152 #if defined(INET) || defined(INET6) 3153 if (rxq->lro.ifp) { 3154 tcp_lro_free(&rxq->lro); 3155 rxq->lro.ifp = NULL; 3156 } 3157 #endif 3158 3159 rc = free_iq_fl(vi, &rxq->iq, &rxq->fl); 3160 if (rc == 0) 3161 bzero(rxq, sizeof(*rxq)); 3162 3163 return (rc); 3164 } 3165 3166 #ifdef TCP_OFFLOAD 3167 static int 3168 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, 3169 int intr_idx, int idx, struct sysctl_oid *oid) 3170 { 3171 struct port_info *pi = vi->pi; 3172 int rc; 3173 struct sysctl_oid_list *children; 3174 char name[16]; 3175 3176 rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 3177 pi->rx_chan_map); 3178 if (rc != 0) 3179 return (rc); 3180 3181 children = SYSCTL_CHILDREN(oid); 3182 3183 snprintf(name, sizeof(name), "%d", idx); 3184 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3185 NULL, "rx queue"); 3186 children = SYSCTL_CHILDREN(oid); 3187 3188 SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 3189 &ofld_rxq->iq.ba, "bus address of descriptor ring"); 3190 SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3191 ofld_rxq->iq.qsize * IQ_ESIZE, "descriptor ring size in bytes"); 3192 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id", 3193 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16, 3194 "I", "absolute id of the queue"); 3195 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id", 3196 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16, 3197 "I", "SGE context id of the queue"); 3198 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3199 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I", 3200 "consumer index"); 3201 3202 add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl); 3203 3204 return (rc); 3205 } 3206 3207 static int 3208 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq) 3209 { 3210 int rc; 3211 3212 rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl); 3213 if (rc == 0) 3214 bzero(ofld_rxq, sizeof(*ofld_rxq)); 3215 3216 return (rc); 3217 } 3218 #endif 3219 3220 #ifdef DEV_NETMAP 3221 static int 3222 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx, 3223 int idx, struct sysctl_oid *oid) 3224 { 3225 int rc; 3226 struct sysctl_oid_list *children; 3227 struct sysctl_ctx_list *ctx; 3228 char name[16]; 3229 size_t len; 3230 struct adapter *sc = vi->pi->adapter; 3231 struct netmap_adapter *na = NA(vi->ifp); 3232 3233 MPASS(na != NULL); 3234 3235 len = vi->qsize_rxq * IQ_ESIZE; 3236 rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map, 3237 &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc); 3238 if (rc != 0) 3239 return (rc); 3240 3241 len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len; 3242 rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map, 3243 &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc); 3244 if (rc != 0) 3245 return (rc); 3246 3247 nm_rxq->vi = vi; 3248 nm_rxq->nid = idx; 3249 nm_rxq->iq_cidx = 0; 3250 nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE; 3251 nm_rxq->iq_gen = F_RSPD_GEN; 3252 nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0; 3253 nm_rxq->fl_sidx = na->num_rx_desc; 3254 nm_rxq->intr_idx = intr_idx; 3255 3256 ctx = &vi->ctx; 3257 children = SYSCTL_CHILDREN(oid); 3258 3259 snprintf(name, sizeof(name), "%d", idx); 3260 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, 3261 "rx queue"); 3262 children = SYSCTL_CHILDREN(oid); 3263 3264 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", 3265 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16, 3266 "I", "absolute id of the queue"); 3267 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3268 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16, 3269 "I", "SGE context id of the queue"); 3270 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3271 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I", 3272 "consumer index"); 3273 3274 children = SYSCTL_CHILDREN(oid); 3275 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 3276 "freelist"); 3277 children = SYSCTL_CHILDREN(oid); 3278 3279 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3280 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16, 3281 "I", "SGE context id of the freelist"); 3282 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, 3283 &nm_rxq->fl_cidx, 0, "consumer index"); 3284 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, 3285 &nm_rxq->fl_pidx, 0, "producer index"); 3286 3287 return (rc); 3288 } 3289 3290 3291 static int 3292 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq) 3293 { 3294 struct adapter *sc = vi->pi->adapter; 3295 3296 free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba, 3297 nm_rxq->iq_desc); 3298 free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba, 3299 nm_rxq->fl_desc); 3300 3301 return (0); 3302 } 3303 3304 static int 3305 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx, 3306 struct sysctl_oid *oid) 3307 { 3308 int rc; 3309 size_t len; 3310 struct port_info *pi = vi->pi; 3311 struct adapter *sc = pi->adapter; 3312 struct netmap_adapter *na = NA(vi->ifp); 3313 char name[16]; 3314 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3315 3316 len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len; 3317 rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map, 3318 &nm_txq->ba, (void **)&nm_txq->desc); 3319 if (rc) 3320 return (rc); 3321 3322 nm_txq->pidx = nm_txq->cidx = 0; 3323 nm_txq->sidx = na->num_tx_desc; 3324 nm_txq->nid = idx; 3325 nm_txq->iqidx = iqidx; 3326 nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3327 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) | 3328 V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) | 3329 V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid))); 3330 3331 snprintf(name, sizeof(name), "%d", idx); 3332 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3333 NULL, "netmap tx queue"); 3334 children = SYSCTL_CHILDREN(oid); 3335 3336 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3337 &nm_txq->cntxt_id, 0, "SGE context id of the queue"); 3338 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3339 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I", 3340 "consumer index"); 3341 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 3342 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I", 3343 "producer index"); 3344 3345 return (rc); 3346 } 3347 3348 static int 3349 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq) 3350 { 3351 struct adapter *sc = vi->pi->adapter; 3352 3353 free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba, 3354 nm_txq->desc); 3355 3356 return (0); 3357 } 3358 #endif 3359 3360 static int 3361 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) 3362 { 3363 int rc, cntxt_id; 3364 struct fw_eq_ctrl_cmd c; 3365 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3366 3367 bzero(&c, sizeof(c)); 3368 3369 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | 3370 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | 3371 V_FW_EQ_CTRL_CMD_VFN(0)); 3372 c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC | 3373 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 3374 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); 3375 c.physeqid_pkd = htobe32(0); 3376 c.fetchszm_to_iqid = 3377 htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 3378 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | 3379 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); 3380 c.dcaen_to_eqsize = 3381 htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3382 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3383 V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 3384 V_FW_EQ_CTRL_CMD_EQSIZE(qsize)); 3385 c.eqaddr = htobe64(eq->ba); 3386 3387 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3388 if (rc != 0) { 3389 device_printf(sc->dev, 3390 "failed to create control queue %d: %d\n", eq->tx_chan, rc); 3391 return (rc); 3392 } 3393 eq->flags |= EQ_ALLOCATED; 3394 3395 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid)); 3396 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3397 if (cntxt_id >= sc->sge.neq) 3398 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3399 cntxt_id, sc->sge.neq - 1); 3400 sc->sge.eqmap[cntxt_id] = eq; 3401 3402 return (rc); 3403 } 3404 3405 static int 3406 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3407 { 3408 int rc, cntxt_id; 3409 struct fw_eq_eth_cmd c; 3410 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3411 3412 bzero(&c, sizeof(c)); 3413 3414 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | 3415 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | 3416 V_FW_EQ_ETH_CMD_VFN(0)); 3417 c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | 3418 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 3419 c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE | 3420 F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid)); 3421 c.fetchszm_to_iqid = 3422 htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3423 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | 3424 V_FW_EQ_ETH_CMD_IQID(eq->iqid)); 3425 c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3426 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3427 V_FW_EQ_ETH_CMD_EQSIZE(qsize)); 3428 c.eqaddr = htobe64(eq->ba); 3429 3430 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3431 if (rc != 0) { 3432 device_printf(vi->dev, 3433 "failed to create Ethernet egress queue: %d\n", rc); 3434 return (rc); 3435 } 3436 eq->flags |= EQ_ALLOCATED; 3437 3438 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); 3439 eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd)); 3440 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3441 if (cntxt_id >= sc->sge.neq) 3442 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3443 cntxt_id, sc->sge.neq - 1); 3444 sc->sge.eqmap[cntxt_id] = eq; 3445 3446 return (rc); 3447 } 3448 3449 #ifdef TCP_OFFLOAD 3450 static int 3451 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3452 { 3453 int rc, cntxt_id; 3454 struct fw_eq_ofld_cmd c; 3455 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3456 3457 bzero(&c, sizeof(c)); 3458 3459 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | 3460 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | 3461 V_FW_EQ_OFLD_CMD_VFN(0)); 3462 c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | 3463 F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 3464 c.fetchszm_to_iqid = 3465 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3466 V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | 3467 F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); 3468 c.dcaen_to_eqsize = 3469 htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3470 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3471 V_FW_EQ_OFLD_CMD_EQSIZE(qsize)); 3472 c.eqaddr = htobe64(eq->ba); 3473 3474 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3475 if (rc != 0) { 3476 device_printf(vi->dev, 3477 "failed to create egress queue for TCP offload: %d\n", rc); 3478 return (rc); 3479 } 3480 eq->flags |= EQ_ALLOCATED; 3481 3482 eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd)); 3483 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3484 if (cntxt_id >= sc->sge.neq) 3485 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3486 cntxt_id, sc->sge.neq - 1); 3487 sc->sge.eqmap[cntxt_id] = eq; 3488 3489 return (rc); 3490 } 3491 #endif 3492 3493 static int 3494 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3495 { 3496 int rc, qsize; 3497 size_t len; 3498 3499 mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); 3500 3501 qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3502 len = qsize * EQ_ESIZE; 3503 rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, 3504 &eq->ba, (void **)&eq->desc); 3505 if (rc) 3506 return (rc); 3507 3508 eq->pidx = eq->cidx = 0; 3509 eq->equeqidx = eq->dbidx = 0; 3510 eq->doorbells = sc->doorbells; 3511 3512 switch (eq->flags & EQ_TYPEMASK) { 3513 case EQ_CTRL: 3514 rc = ctrl_eq_alloc(sc, eq); 3515 break; 3516 3517 case EQ_ETH: 3518 rc = eth_eq_alloc(sc, vi, eq); 3519 break; 3520 3521 #ifdef TCP_OFFLOAD 3522 case EQ_OFLD: 3523 rc = ofld_eq_alloc(sc, vi, eq); 3524 break; 3525 #endif 3526 3527 default: 3528 panic("%s: invalid eq type %d.", __func__, 3529 eq->flags & EQ_TYPEMASK); 3530 } 3531 if (rc != 0) { 3532 device_printf(sc->dev, 3533 "failed to allocate egress queue(%d): %d\n", 3534 eq->flags & EQ_TYPEMASK, rc); 3535 } 3536 3537 if (isset(&eq->doorbells, DOORBELL_UDB) || 3538 isset(&eq->doorbells, DOORBELL_UDBWC) || 3539 isset(&eq->doorbells, DOORBELL_WCWR)) { 3540 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 3541 uint32_t mask = (1 << s_qpp) - 1; 3542 volatile uint8_t *udb; 3543 3544 udb = sc->udbs_base + UDBS_DB_OFFSET; 3545 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */ 3546 eq->udb_qid = eq->cntxt_id & mask; /* id in page */ 3547 if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE) 3548 clrbit(&eq->doorbells, DOORBELL_WCWR); 3549 else { 3550 udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */ 3551 eq->udb_qid = 0; 3552 } 3553 eq->udb = (volatile void *)udb; 3554 } 3555 3556 return (rc); 3557 } 3558 3559 static int 3560 free_eq(struct adapter *sc, struct sge_eq *eq) 3561 { 3562 int rc; 3563 3564 if (eq->flags & EQ_ALLOCATED) { 3565 switch (eq->flags & EQ_TYPEMASK) { 3566 case EQ_CTRL: 3567 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, 3568 eq->cntxt_id); 3569 break; 3570 3571 case EQ_ETH: 3572 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, 3573 eq->cntxt_id); 3574 break; 3575 3576 #ifdef TCP_OFFLOAD 3577 case EQ_OFLD: 3578 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, 3579 eq->cntxt_id); 3580 break; 3581 #endif 3582 3583 default: 3584 panic("%s: invalid eq type %d.", __func__, 3585 eq->flags & EQ_TYPEMASK); 3586 } 3587 if (rc != 0) { 3588 device_printf(sc->dev, 3589 "failed to free egress queue (%d): %d\n", 3590 eq->flags & EQ_TYPEMASK, rc); 3591 return (rc); 3592 } 3593 eq->flags &= ~EQ_ALLOCATED; 3594 } 3595 3596 free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); 3597 3598 if (mtx_initialized(&eq->eq_lock)) 3599 mtx_destroy(&eq->eq_lock); 3600 3601 bzero(eq, sizeof(*eq)); 3602 return (0); 3603 } 3604 3605 static int 3606 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq, 3607 struct sysctl_oid *oid) 3608 { 3609 int rc; 3610 struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx; 3611 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3612 3613 rc = alloc_eq(sc, vi, &wrq->eq); 3614 if (rc) 3615 return (rc); 3616 3617 wrq->adapter = sc; 3618 TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq); 3619 TAILQ_INIT(&wrq->incomplete_wrs); 3620 STAILQ_INIT(&wrq->wr_list); 3621 wrq->nwr_pending = 0; 3622 wrq->ndesc_needed = 0; 3623 3624 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 3625 &wrq->eq.ba, "bus address of descriptor ring"); 3626 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3627 wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len, 3628 "desc ring size in bytes"); 3629 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3630 &wrq->eq.cntxt_id, 0, "SGE context id of the queue"); 3631 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3632 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I", 3633 "consumer index"); 3634 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx", 3635 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I", 3636 "producer index"); 3637 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL, 3638 wrq->eq.sidx, "status page index"); 3639 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD, 3640 &wrq->tx_wrs_direct, "# of work requests (direct)"); 3641 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD, 3642 &wrq->tx_wrs_copied, "# of work requests (copied)"); 3643 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD, 3644 &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)"); 3645 3646 return (rc); 3647 } 3648 3649 static int 3650 free_wrq(struct adapter *sc, struct sge_wrq *wrq) 3651 { 3652 int rc; 3653 3654 rc = free_eq(sc, &wrq->eq); 3655 if (rc) 3656 return (rc); 3657 3658 bzero(wrq, sizeof(*wrq)); 3659 return (0); 3660 } 3661 3662 static int 3663 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx, 3664 struct sysctl_oid *oid) 3665 { 3666 int rc; 3667 struct port_info *pi = vi->pi; 3668 struct adapter *sc = pi->adapter; 3669 struct sge_eq *eq = &txq->eq; 3670 char name[16]; 3671 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3672 3673 rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx, 3674 M_CXGBE, M_WAITOK); 3675 if (rc != 0) { 3676 device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc); 3677 return (rc); 3678 } 3679 3680 rc = alloc_eq(sc, vi, eq); 3681 if (rc != 0) { 3682 mp_ring_free(txq->r); 3683 txq->r = NULL; 3684 return (rc); 3685 } 3686 3687 /* Can't fail after this point. */ 3688 3689 if (idx == 0) 3690 sc->sge.eq_base = eq->abs_id - eq->cntxt_id; 3691 else 3692 KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id, 3693 ("eq_base mismatch")); 3694 KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF, 3695 ("PF with non-zero eq_base")); 3696 3697 TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq); 3698 txq->ifp = vi->ifp; 3699 txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK); 3700 if (sc->flags & IS_VF) 3701 txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 3702 V_TXPKT_INTF(pi->tx_chan)); 3703 else 3704 txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3705 V_TXPKT_INTF(pi->tx_chan) | 3706 V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) | 3707 V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) | 3708 V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid))); 3709 txq->tc_idx = -1; 3710 txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE, 3711 M_ZERO | M_WAITOK); 3712 3713 snprintf(name, sizeof(name), "%d", idx); 3714 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3715 NULL, "tx queue"); 3716 children = SYSCTL_CHILDREN(oid); 3717 3718 SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 3719 &eq->ba, "bus address of descriptor ring"); 3720 SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3721 eq->sidx * EQ_ESIZE + sc->params.sge.spg_len, 3722 "desc ring size in bytes"); 3723 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD, 3724 &eq->abs_id, 0, "absolute id of the queue"); 3725 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3726 &eq->cntxt_id, 0, "SGE context id of the queue"); 3727 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3728 CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I", 3729 "consumer index"); 3730 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 3731 CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I", 3732 "producer index"); 3733 SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL, 3734 eq->sidx, "status page index"); 3735 3736 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc", 3737 CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I", 3738 "traffic class (-1 means none)"); 3739 3740 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, 3741 &txq->txcsum, "# of times hardware assisted with checksum"); 3742 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion", 3743 CTLFLAG_RD, &txq->vlan_insertion, 3744 "# of times hardware inserted 802.1Q tag"); 3745 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, 3746 &txq->tso_wrs, "# of TSO work requests"); 3747 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, 3748 &txq->imm_wrs, "# of work requests with immediate data"); 3749 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, 3750 &txq->sgl_wrs, "# of work requests with direct SGL"); 3751 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, 3752 &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); 3753 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs", 3754 CTLFLAG_RD, &txq->txpkts0_wrs, 3755 "# of txpkts (type 0) work requests"); 3756 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs", 3757 CTLFLAG_RD, &txq->txpkts1_wrs, 3758 "# of txpkts (type 1) work requests"); 3759 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts", 3760 CTLFLAG_RD, &txq->txpkts0_pkts, 3761 "# of frames tx'd using type0 txpkts work requests"); 3762 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts", 3763 CTLFLAG_RD, &txq->txpkts1_pkts, 3764 "# of frames tx'd using type1 txpkts work requests"); 3765 3766 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues", 3767 CTLFLAG_RD, &txq->r->enqueues, 3768 "# of enqueues to the mp_ring for this queue"); 3769 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops", 3770 CTLFLAG_RD, &txq->r->drops, 3771 "# of drops in the mp_ring for this queue"); 3772 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts", 3773 CTLFLAG_RD, &txq->r->starts, 3774 "# of normal consumer starts in the mp_ring for this queue"); 3775 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls", 3776 CTLFLAG_RD, &txq->r->stalls, 3777 "# of consumer stalls in the mp_ring for this queue"); 3778 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts", 3779 CTLFLAG_RD, &txq->r->restarts, 3780 "# of consumer restarts in the mp_ring for this queue"); 3781 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications", 3782 CTLFLAG_RD, &txq->r->abdications, 3783 "# of consumer abdications in the mp_ring for this queue"); 3784 3785 return (0); 3786 } 3787 3788 static int 3789 free_txq(struct vi_info *vi, struct sge_txq *txq) 3790 { 3791 int rc; 3792 struct adapter *sc = vi->pi->adapter; 3793 struct sge_eq *eq = &txq->eq; 3794 3795 rc = free_eq(sc, eq); 3796 if (rc) 3797 return (rc); 3798 3799 sglist_free(txq->gl); 3800 free(txq->sdesc, M_CXGBE); 3801 mp_ring_free(txq->r); 3802 3803 bzero(txq, sizeof(*txq)); 3804 return (0); 3805 } 3806 3807 static void 3808 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) 3809 { 3810 bus_addr_t *ba = arg; 3811 3812 KASSERT(nseg == 1, 3813 ("%s meant for single segment mappings only.", __func__)); 3814 3815 *ba = error ? 0 : segs->ds_addr; 3816 } 3817 3818 static inline void 3819 ring_fl_db(struct adapter *sc, struct sge_fl *fl) 3820 { 3821 uint32_t n, v; 3822 3823 n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx); 3824 MPASS(n > 0); 3825 3826 wmb(); 3827 v = fl->dbval | V_PIDX(n); 3828 if (fl->udb) 3829 *fl->udb = htole32(v); 3830 else 3831 t4_write_reg(sc, sc->sge_kdoorbell_reg, v); 3832 IDXINCR(fl->dbidx, n, fl->sidx); 3833 } 3834 3835 /* 3836 * Fills up the freelist by allocating up to 'n' buffers. Buffers that are 3837 * recycled do not count towards this allocation budget. 3838 * 3839 * Returns non-zero to indicate that this freelist should be added to the list 3840 * of starving freelists. 3841 */ 3842 static int 3843 refill_fl(struct adapter *sc, struct sge_fl *fl, int n) 3844 { 3845 __be64 *d; 3846 struct fl_sdesc *sd; 3847 uintptr_t pa; 3848 caddr_t cl; 3849 struct cluster_layout *cll; 3850 struct sw_zone_info *swz; 3851 struct cluster_metadata *clm; 3852 uint16_t max_pidx; 3853 uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */ 3854 3855 FL_LOCK_ASSERT_OWNED(fl); 3856 3857 /* 3858 * We always stop at the beginning of the hardware descriptor that's just 3859 * before the one with the hw cidx. This is to avoid hw pidx = hw cidx, 3860 * which would mean an empty freelist to the chip. 3861 */ 3862 max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1; 3863 if (fl->pidx == max_pidx * 8) 3864 return (0); 3865 3866 d = &fl->desc[fl->pidx]; 3867 sd = &fl->sdesc[fl->pidx]; 3868 cll = &fl->cll_def; /* default layout */ 3869 swz = &sc->sge.sw_zone_info[cll->zidx]; 3870 3871 while (n > 0) { 3872 3873 if (sd->cl != NULL) { 3874 3875 if (sd->nmbuf == 0) { 3876 /* 3877 * Fast recycle without involving any atomics on 3878 * the cluster's metadata (if the cluster has 3879 * metadata). This happens when all frames 3880 * received in the cluster were small enough to 3881 * fit within a single mbuf each. 3882 */ 3883 fl->cl_fast_recycled++; 3884 #ifdef INVARIANTS 3885 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 3886 if (clm != NULL) 3887 MPASS(clm->refcount == 1); 3888 #endif 3889 goto recycled_fast; 3890 } 3891 3892 /* 3893 * Cluster is guaranteed to have metadata. Clusters 3894 * without metadata always take the fast recycle path 3895 * when they're recycled. 3896 */ 3897 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 3898 MPASS(clm != NULL); 3899 3900 if (atomic_fetchadd_int(&clm->refcount, -1) == 1) { 3901 fl->cl_recycled++; 3902 counter_u64_add(extfree_rels, 1); 3903 goto recycled; 3904 } 3905 sd->cl = NULL; /* gave up my reference */ 3906 } 3907 MPASS(sd->cl == NULL); 3908 alloc: 3909 cl = uma_zalloc(swz->zone, M_NOWAIT); 3910 if (__predict_false(cl == NULL)) { 3911 if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 || 3912 fl->cll_def.zidx == fl->cll_alt.zidx) 3913 break; 3914 3915 /* fall back to the safe zone */ 3916 cll = &fl->cll_alt; 3917 swz = &sc->sge.sw_zone_info[cll->zidx]; 3918 goto alloc; 3919 } 3920 fl->cl_allocated++; 3921 n--; 3922 3923 pa = pmap_kextract((vm_offset_t)cl); 3924 pa += cll->region1; 3925 sd->cl = cl; 3926 sd->cll = *cll; 3927 *d = htobe64(pa | cll->hwidx); 3928 clm = cl_metadata(sc, fl, cll, cl); 3929 if (clm != NULL) { 3930 recycled: 3931 #ifdef INVARIANTS 3932 clm->sd = sd; 3933 #endif 3934 clm->refcount = 1; 3935 } 3936 sd->nmbuf = 0; 3937 recycled_fast: 3938 d++; 3939 sd++; 3940 if (__predict_false(++fl->pidx % 8 == 0)) { 3941 uint16_t pidx = fl->pidx / 8; 3942 3943 if (__predict_false(pidx == fl->sidx)) { 3944 fl->pidx = 0; 3945 pidx = 0; 3946 sd = fl->sdesc; 3947 d = fl->desc; 3948 } 3949 if (pidx == max_pidx) 3950 break; 3951 3952 if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4) 3953 ring_fl_db(sc, fl); 3954 } 3955 } 3956 3957 if (fl->pidx / 8 != fl->dbidx) 3958 ring_fl_db(sc, fl); 3959 3960 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); 3961 } 3962 3963 /* 3964 * Attempt to refill all starving freelists. 3965 */ 3966 static void 3967 refill_sfl(void *arg) 3968 { 3969 struct adapter *sc = arg; 3970 struct sge_fl *fl, *fl_temp; 3971 3972 mtx_assert(&sc->sfl_lock, MA_OWNED); 3973 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { 3974 FL_LOCK(fl); 3975 refill_fl(sc, fl, 64); 3976 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { 3977 TAILQ_REMOVE(&sc->sfl, fl, link); 3978 fl->flags &= ~FL_STARVING; 3979 } 3980 FL_UNLOCK(fl); 3981 } 3982 3983 if (!TAILQ_EMPTY(&sc->sfl)) 3984 callout_schedule(&sc->sfl_callout, hz / 5); 3985 } 3986 3987 static int 3988 alloc_fl_sdesc(struct sge_fl *fl) 3989 { 3990 3991 fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE, 3992 M_ZERO | M_WAITOK); 3993 3994 return (0); 3995 } 3996 3997 static void 3998 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl) 3999 { 4000 struct fl_sdesc *sd; 4001 struct cluster_metadata *clm; 4002 struct cluster_layout *cll; 4003 int i; 4004 4005 sd = fl->sdesc; 4006 for (i = 0; i < fl->sidx * 8; i++, sd++) { 4007 if (sd->cl == NULL) 4008 continue; 4009 4010 cll = &sd->cll; 4011 clm = cl_metadata(sc, fl, cll, sd->cl); 4012 if (sd->nmbuf == 0) 4013 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 4014 else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) { 4015 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 4016 counter_u64_add(extfree_rels, 1); 4017 } 4018 sd->cl = NULL; 4019 } 4020 4021 free(fl->sdesc, M_CXGBE); 4022 fl->sdesc = NULL; 4023 } 4024 4025 static inline void 4026 get_pkt_gl(struct mbuf *m, struct sglist *gl) 4027 { 4028 int rc; 4029 4030 M_ASSERTPKTHDR(m); 4031 4032 sglist_reset(gl); 4033 rc = sglist_append_mbuf(gl, m); 4034 if (__predict_false(rc != 0)) { 4035 panic("%s: mbuf %p (%d segs) was vetted earlier but now fails " 4036 "with %d.", __func__, m, mbuf_nsegs(m), rc); 4037 } 4038 4039 KASSERT(gl->sg_nseg == mbuf_nsegs(m), 4040 ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m, 4041 mbuf_nsegs(m), gl->sg_nseg)); 4042 KASSERT(gl->sg_nseg > 0 && 4043 gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS), 4044 ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__, 4045 gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)); 4046 } 4047 4048 /* 4049 * len16 for a txpkt WR with a GL. Includes the firmware work request header. 4050 */ 4051 static inline u_int 4052 txpkt_len16(u_int nsegs, u_int tso) 4053 { 4054 u_int n; 4055 4056 MPASS(nsegs > 0); 4057 4058 nsegs--; /* first segment is part of ulptx_sgl */ 4059 n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) + 4060 sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 4061 if (tso) 4062 n += sizeof(struct cpl_tx_pkt_lso_core); 4063 4064 return (howmany(n, 16)); 4065 } 4066 4067 /* 4068 * len16 for a txpkt_vm WR with a GL. Includes the firmware work 4069 * request header. 4070 */ 4071 static inline u_int 4072 txpkt_vm_len16(u_int nsegs, u_int tso) 4073 { 4074 u_int n; 4075 4076 MPASS(nsegs > 0); 4077 4078 nsegs--; /* first segment is part of ulptx_sgl */ 4079 n = sizeof(struct fw_eth_tx_pkt_vm_wr) + 4080 sizeof(struct cpl_tx_pkt_core) + 4081 sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 4082 if (tso) 4083 n += sizeof(struct cpl_tx_pkt_lso_core); 4084 4085 return (howmany(n, 16)); 4086 } 4087 4088 /* 4089 * len16 for a txpkts type 0 WR with a GL. Does not include the firmware work 4090 * request header. 4091 */ 4092 static inline u_int 4093 txpkts0_len16(u_int nsegs) 4094 { 4095 u_int n; 4096 4097 MPASS(nsegs > 0); 4098 4099 nsegs--; /* first segment is part of ulptx_sgl */ 4100 n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) + 4101 sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 4102 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 4103 4104 return (howmany(n, 16)); 4105 } 4106 4107 /* 4108 * len16 for a txpkts type 1 WR with a GL. Does not include the firmware work 4109 * request header. 4110 */ 4111 static inline u_int 4112 txpkts1_len16(void) 4113 { 4114 u_int n; 4115 4116 n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl); 4117 4118 return (howmany(n, 16)); 4119 } 4120 4121 static inline u_int 4122 imm_payload(u_int ndesc) 4123 { 4124 u_int n; 4125 4126 n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) - 4127 sizeof(struct cpl_tx_pkt_core); 4128 4129 return (n); 4130 } 4131 4132 /* 4133 * Write a VM txpkt WR for this packet to the hardware descriptors, update the 4134 * software descriptor, and advance the pidx. It is guaranteed that enough 4135 * descriptors are available. 4136 * 4137 * The return value is the # of hardware descriptors used. 4138 */ 4139 static u_int 4140 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, 4141 struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available) 4142 { 4143 struct sge_eq *eq = &txq->eq; 4144 struct tx_sdesc *txsd; 4145 struct cpl_tx_pkt_core *cpl; 4146 uint32_t ctrl; /* used in many unrelated places */ 4147 uint64_t ctrl1; 4148 int csum_type, len16, ndesc, pktlen, nsegs; 4149 caddr_t dst; 4150 4151 TXQ_LOCK_ASSERT_OWNED(txq); 4152 M_ASSERTPKTHDR(m0); 4153 MPASS(available > 0 && available < eq->sidx); 4154 4155 len16 = mbuf_len16(m0); 4156 nsegs = mbuf_nsegs(m0); 4157 pktlen = m0->m_pkthdr.len; 4158 ctrl = sizeof(struct cpl_tx_pkt_core); 4159 if (needs_tso(m0)) 4160 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 4161 ndesc = howmany(len16, EQ_ESIZE / 16); 4162 MPASS(ndesc <= available); 4163 4164 /* Firmware work request header */ 4165 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4166 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) | 4167 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 4168 4169 ctrl = V_FW_WR_LEN16(len16); 4170 wr->equiq_to_len16 = htobe32(ctrl); 4171 wr->r3[0] = 0; 4172 wr->r3[1] = 0; 4173 4174 /* 4175 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci. 4176 * vlantci is ignored unless the ethtype is 0x8100, so it's 4177 * simpler to always copy it rather than making it 4178 * conditional. Also, it seems that we do not have to set 4179 * vlantci or fake the ethtype when doing VLAN tag insertion. 4180 */ 4181 m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst); 4182 4183 csum_type = -1; 4184 if (needs_tso(m0)) { 4185 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 4186 4187 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 4188 m0->m_pkthdr.l4hlen > 0, 4189 ("%s: mbuf %p needs TSO but missing header lengths", 4190 __func__, m0)); 4191 4192 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 4193 F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) 4194 | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 4195 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 4196 ctrl |= V_LSO_ETHHDR_LEN(1); 4197 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4198 ctrl |= F_LSO_IPV6; 4199 4200 lso->lso_ctrl = htobe32(ctrl); 4201 lso->ipid_ofst = htobe16(0); 4202 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 4203 lso->seqno_offset = htobe32(0); 4204 lso->len = htobe32(pktlen); 4205 4206 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4207 csum_type = TX_CSUM_TCPIP6; 4208 else 4209 csum_type = TX_CSUM_TCPIP; 4210 4211 cpl = (void *)(lso + 1); 4212 4213 txq->tso_wrs++; 4214 } else { 4215 if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP) 4216 csum_type = TX_CSUM_TCPIP; 4217 else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP) 4218 csum_type = TX_CSUM_UDPIP; 4219 else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP) 4220 csum_type = TX_CSUM_TCPIP6; 4221 else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP) 4222 csum_type = TX_CSUM_UDPIP6; 4223 #if defined(INET) 4224 else if (m0->m_pkthdr.csum_flags & CSUM_IP) { 4225 /* 4226 * XXX: The firmware appears to stomp on the 4227 * fragment/flags field of the IP header when 4228 * using TX_CSUM_IP. Fall back to doing 4229 * software checksums. 4230 */ 4231 u_short *sump; 4232 struct mbuf *m; 4233 int offset; 4234 4235 m = m0; 4236 offset = 0; 4237 sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen + 4238 offsetof(struct ip, ip_sum)); 4239 *sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen + 4240 m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen); 4241 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 4242 } 4243 #endif 4244 4245 cpl = (void *)(wr + 1); 4246 } 4247 4248 /* Checksum offload */ 4249 ctrl1 = 0; 4250 if (needs_l3_csum(m0) == 0) 4251 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4252 if (csum_type >= 0) { 4253 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0, 4254 ("%s: mbuf %p needs checksum offload but missing header lengths", 4255 __func__, m0)); 4256 4257 if (chip_id(sc) <= CHELSIO_T5) { 4258 ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen - 4259 ETHER_HDR_LEN); 4260 } else { 4261 ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen - 4262 ETHER_HDR_LEN); 4263 } 4264 ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen); 4265 ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type); 4266 } else 4267 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4268 if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4269 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4270 txq->txcsum++; /* some hardware assistance provided */ 4271 4272 /* VLAN tag insertion */ 4273 if (needs_vlan_insertion(m0)) { 4274 ctrl1 |= F_TXPKT_VLAN_VLD | 4275 V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 4276 txq->vlan_insertion++; 4277 } 4278 4279 /* CPL header */ 4280 cpl->ctrl0 = txq->cpl_ctrl0; 4281 cpl->pack = 0; 4282 cpl->len = htobe16(pktlen); 4283 cpl->ctrl1 = htobe64(ctrl1); 4284 4285 /* SGL */ 4286 dst = (void *)(cpl + 1); 4287 4288 /* 4289 * A packet using TSO will use up an entire descriptor for the 4290 * firmware work request header, LSO CPL, and TX_PKT_XT CPL. 4291 * If this descriptor is the last descriptor in the ring, wrap 4292 * around to the front of the ring explicitly for the start of 4293 * the sgl. 4294 */ 4295 if (dst == (void *)&eq->desc[eq->sidx]) { 4296 dst = (void *)&eq->desc[0]; 4297 write_gl_to_txd(txq, m0, &dst, 0); 4298 } else 4299 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); 4300 txq->sgl_wrs++; 4301 4302 txq->txpkt_wrs++; 4303 4304 txsd = &txq->sdesc[eq->pidx]; 4305 txsd->m = m0; 4306 txsd->desc_used = ndesc; 4307 4308 return (ndesc); 4309 } 4310 4311 /* 4312 * Write a txpkt WR for this packet to the hardware descriptors, update the 4313 * software descriptor, and advance the pidx. It is guaranteed that enough 4314 * descriptors are available. 4315 * 4316 * The return value is the # of hardware descriptors used. 4317 */ 4318 static u_int 4319 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr, 4320 struct mbuf *m0, u_int available) 4321 { 4322 struct sge_eq *eq = &txq->eq; 4323 struct tx_sdesc *txsd; 4324 struct cpl_tx_pkt_core *cpl; 4325 uint32_t ctrl; /* used in many unrelated places */ 4326 uint64_t ctrl1; 4327 int len16, ndesc, pktlen, nsegs; 4328 caddr_t dst; 4329 4330 TXQ_LOCK_ASSERT_OWNED(txq); 4331 M_ASSERTPKTHDR(m0); 4332 MPASS(available > 0 && available < eq->sidx); 4333 4334 len16 = mbuf_len16(m0); 4335 nsegs = mbuf_nsegs(m0); 4336 pktlen = m0->m_pkthdr.len; 4337 ctrl = sizeof(struct cpl_tx_pkt_core); 4338 if (needs_tso(m0)) 4339 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 4340 else if (pktlen <= imm_payload(2) && available >= 2) { 4341 /* Immediate data. Recalculate len16 and set nsegs to 0. */ 4342 ctrl += pktlen; 4343 len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) + 4344 sizeof(struct cpl_tx_pkt_core) + pktlen, 16); 4345 nsegs = 0; 4346 } 4347 ndesc = howmany(len16, EQ_ESIZE / 16); 4348 MPASS(ndesc <= available); 4349 4350 /* Firmware work request header */ 4351 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4352 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | 4353 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 4354 4355 ctrl = V_FW_WR_LEN16(len16); 4356 wr->equiq_to_len16 = htobe32(ctrl); 4357 wr->r3 = 0; 4358 4359 if (needs_tso(m0)) { 4360 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 4361 4362 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 4363 m0->m_pkthdr.l4hlen > 0, 4364 ("%s: mbuf %p needs TSO but missing header lengths", 4365 __func__, m0)); 4366 4367 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 4368 F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) 4369 | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 4370 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 4371 ctrl |= V_LSO_ETHHDR_LEN(1); 4372 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4373 ctrl |= F_LSO_IPV6; 4374 4375 lso->lso_ctrl = htobe32(ctrl); 4376 lso->ipid_ofst = htobe16(0); 4377 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 4378 lso->seqno_offset = htobe32(0); 4379 lso->len = htobe32(pktlen); 4380 4381 cpl = (void *)(lso + 1); 4382 4383 txq->tso_wrs++; 4384 } else 4385 cpl = (void *)(wr + 1); 4386 4387 /* Checksum offload */ 4388 ctrl1 = 0; 4389 if (needs_l3_csum(m0) == 0) 4390 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4391 if (needs_l4_csum(m0) == 0) 4392 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4393 if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4394 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4395 txq->txcsum++; /* some hardware assistance provided */ 4396 4397 /* VLAN tag insertion */ 4398 if (needs_vlan_insertion(m0)) { 4399 ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 4400 txq->vlan_insertion++; 4401 } 4402 4403 /* CPL header */ 4404 cpl->ctrl0 = txq->cpl_ctrl0; 4405 cpl->pack = 0; 4406 cpl->len = htobe16(pktlen); 4407 cpl->ctrl1 = htobe64(ctrl1); 4408 4409 /* SGL */ 4410 dst = (void *)(cpl + 1); 4411 if (nsegs > 0) { 4412 4413 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); 4414 txq->sgl_wrs++; 4415 } else { 4416 struct mbuf *m; 4417 4418 for (m = m0; m != NULL; m = m->m_next) { 4419 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); 4420 #ifdef INVARIANTS 4421 pktlen -= m->m_len; 4422 #endif 4423 } 4424 #ifdef INVARIANTS 4425 KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen)); 4426 #endif 4427 txq->imm_wrs++; 4428 } 4429 4430 txq->txpkt_wrs++; 4431 4432 txsd = &txq->sdesc[eq->pidx]; 4433 txsd->m = m0; 4434 txsd->desc_used = ndesc; 4435 4436 return (ndesc); 4437 } 4438 4439 static int 4440 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available) 4441 { 4442 u_int needed, nsegs1, nsegs2, l1, l2; 4443 4444 if (cannot_use_txpkts(m) || cannot_use_txpkts(n)) 4445 return (1); 4446 4447 nsegs1 = mbuf_nsegs(m); 4448 nsegs2 = mbuf_nsegs(n); 4449 if (nsegs1 + nsegs2 == 2) { 4450 txp->wr_type = 1; 4451 l1 = l2 = txpkts1_len16(); 4452 } else { 4453 txp->wr_type = 0; 4454 l1 = txpkts0_len16(nsegs1); 4455 l2 = txpkts0_len16(nsegs2); 4456 } 4457 txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2; 4458 needed = howmany(txp->len16, EQ_ESIZE / 16); 4459 if (needed > SGE_MAX_WR_NDESC || needed > available) 4460 return (1); 4461 4462 txp->plen = m->m_pkthdr.len + n->m_pkthdr.len; 4463 if (txp->plen > 65535) 4464 return (1); 4465 4466 txp->npkt = 2; 4467 set_mbuf_len16(m, l1); 4468 set_mbuf_len16(n, l2); 4469 4470 return (0); 4471 } 4472 4473 static int 4474 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available) 4475 { 4476 u_int plen, len16, needed, nsegs; 4477 4478 MPASS(txp->wr_type == 0 || txp->wr_type == 1); 4479 4480 nsegs = mbuf_nsegs(m); 4481 if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1)) 4482 return (1); 4483 4484 plen = txp->plen + m->m_pkthdr.len; 4485 if (plen > 65535) 4486 return (1); 4487 4488 if (txp->wr_type == 0) 4489 len16 = txpkts0_len16(nsegs); 4490 else 4491 len16 = txpkts1_len16(); 4492 needed = howmany(txp->len16 + len16, EQ_ESIZE / 16); 4493 if (needed > SGE_MAX_WR_NDESC || needed > available) 4494 return (1); 4495 4496 txp->npkt++; 4497 txp->plen = plen; 4498 txp->len16 += len16; 4499 set_mbuf_len16(m, len16); 4500 4501 return (0); 4502 } 4503 4504 /* 4505 * Write a txpkts WR for the packets in txp to the hardware descriptors, update 4506 * the software descriptor, and advance the pidx. It is guaranteed that enough 4507 * descriptors are available. 4508 * 4509 * The return value is the # of hardware descriptors used. 4510 */ 4511 static u_int 4512 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr, 4513 struct mbuf *m0, const struct txpkts *txp, u_int available) 4514 { 4515 struct sge_eq *eq = &txq->eq; 4516 struct tx_sdesc *txsd; 4517 struct cpl_tx_pkt_core *cpl; 4518 uint32_t ctrl; 4519 uint64_t ctrl1; 4520 int ndesc, checkwrap; 4521 struct mbuf *m; 4522 void *flitp; 4523 4524 TXQ_LOCK_ASSERT_OWNED(txq); 4525 MPASS(txp->npkt > 0); 4526 MPASS(txp->plen < 65536); 4527 MPASS(m0 != NULL); 4528 MPASS(m0->m_nextpkt != NULL); 4529 MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16)); 4530 MPASS(available > 0 && available < eq->sidx); 4531 4532 ndesc = howmany(txp->len16, EQ_ESIZE / 16); 4533 MPASS(ndesc <= available); 4534 4535 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4536 wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)); 4537 ctrl = V_FW_WR_LEN16(txp->len16); 4538 wr->equiq_to_len16 = htobe32(ctrl); 4539 wr->plen = htobe16(txp->plen); 4540 wr->npkt = txp->npkt; 4541 wr->r3 = 0; 4542 wr->type = txp->wr_type; 4543 flitp = wr + 1; 4544 4545 /* 4546 * At this point we are 16B into a hardware descriptor. If checkwrap is 4547 * set then we know the WR is going to wrap around somewhere. We'll 4548 * check for that at appropriate points. 4549 */ 4550 checkwrap = eq->sidx - ndesc < eq->pidx; 4551 for (m = m0; m != NULL; m = m->m_nextpkt) { 4552 if (txp->wr_type == 0) { 4553 struct ulp_txpkt *ulpmc; 4554 struct ulptx_idata *ulpsc; 4555 4556 /* ULP master command */ 4557 ulpmc = flitp; 4558 ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) | 4559 V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid)); 4560 ulpmc->len = htobe32(mbuf_len16(m)); 4561 4562 /* ULP subcommand */ 4563 ulpsc = (void *)(ulpmc + 1); 4564 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) | 4565 F_ULP_TX_SC_MORE); 4566 ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); 4567 4568 cpl = (void *)(ulpsc + 1); 4569 if (checkwrap && 4570 (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx]) 4571 cpl = (void *)&eq->desc[0]; 4572 txq->txpkts0_pkts += txp->npkt; 4573 txq->txpkts0_wrs++; 4574 } else { 4575 cpl = flitp; 4576 txq->txpkts1_pkts += txp->npkt; 4577 txq->txpkts1_wrs++; 4578 } 4579 4580 /* Checksum offload */ 4581 ctrl1 = 0; 4582 if (needs_l3_csum(m) == 0) 4583 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4584 if (needs_l4_csum(m) == 0) 4585 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4586 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4587 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4588 txq->txcsum++; /* some hardware assistance provided */ 4589 4590 /* VLAN tag insertion */ 4591 if (needs_vlan_insertion(m)) { 4592 ctrl1 |= F_TXPKT_VLAN_VLD | 4593 V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); 4594 txq->vlan_insertion++; 4595 } 4596 4597 /* CPL header */ 4598 cpl->ctrl0 = txq->cpl_ctrl0; 4599 cpl->pack = 0; 4600 cpl->len = htobe16(m->m_pkthdr.len); 4601 cpl->ctrl1 = htobe64(ctrl1); 4602 4603 flitp = cpl + 1; 4604 if (checkwrap && 4605 (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx]) 4606 flitp = (void *)&eq->desc[0]; 4607 4608 write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap); 4609 4610 } 4611 4612 txsd = &txq->sdesc[eq->pidx]; 4613 txsd->m = m0; 4614 txsd->desc_used = ndesc; 4615 4616 return (ndesc); 4617 } 4618 4619 /* 4620 * If the SGL ends on an address that is not 16 byte aligned, this function will 4621 * add a 0 filled flit at the end. 4622 */ 4623 static void 4624 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap) 4625 { 4626 struct sge_eq *eq = &txq->eq; 4627 struct sglist *gl = txq->gl; 4628 struct sglist_seg *seg; 4629 __be64 *flitp, *wrap; 4630 struct ulptx_sgl *usgl; 4631 int i, nflits, nsegs; 4632 4633 KASSERT(((uintptr_t)(*to) & 0xf) == 0, 4634 ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); 4635 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 4636 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 4637 4638 get_pkt_gl(m, gl); 4639 nsegs = gl->sg_nseg; 4640 MPASS(nsegs > 0); 4641 4642 nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2; 4643 flitp = (__be64 *)(*to); 4644 wrap = (__be64 *)(&eq->desc[eq->sidx]); 4645 seg = &gl->sg_segs[0]; 4646 usgl = (void *)flitp; 4647 4648 /* 4649 * We start at a 16 byte boundary somewhere inside the tx descriptor 4650 * ring, so we're at least 16 bytes away from the status page. There is 4651 * no chance of a wrap around in the middle of usgl (which is 16 bytes). 4652 */ 4653 4654 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 4655 V_ULPTX_NSGE(nsegs)); 4656 usgl->len0 = htobe32(seg->ss_len); 4657 usgl->addr0 = htobe64(seg->ss_paddr); 4658 seg++; 4659 4660 if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) { 4661 4662 /* Won't wrap around at all */ 4663 4664 for (i = 0; i < nsegs - 1; i++, seg++) { 4665 usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len); 4666 usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr); 4667 } 4668 if (i & 1) 4669 usgl->sge[i / 2].len[1] = htobe32(0); 4670 flitp += nflits; 4671 } else { 4672 4673 /* Will wrap somewhere in the rest of the SGL */ 4674 4675 /* 2 flits already written, write the rest flit by flit */ 4676 flitp = (void *)(usgl + 1); 4677 for (i = 0; i < nflits - 2; i++) { 4678 if (flitp == wrap) 4679 flitp = (void *)eq->desc; 4680 *flitp++ = get_flit(seg, nsegs - 1, i); 4681 } 4682 } 4683 4684 if (nflits & 1) { 4685 MPASS(((uintptr_t)flitp) & 0xf); 4686 *flitp++ = 0; 4687 } 4688 4689 MPASS((((uintptr_t)flitp) & 0xf) == 0); 4690 if (__predict_false(flitp == wrap)) 4691 *to = (void *)eq->desc; 4692 else 4693 *to = (void *)flitp; 4694 } 4695 4696 static inline void 4697 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) 4698 { 4699 4700 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 4701 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 4702 4703 if (__predict_true((uintptr_t)(*to) + len <= 4704 (uintptr_t)&eq->desc[eq->sidx])) { 4705 bcopy(from, *to, len); 4706 (*to) += len; 4707 } else { 4708 int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to); 4709 4710 bcopy(from, *to, portion); 4711 from += portion; 4712 portion = len - portion; /* remaining */ 4713 bcopy(from, (void *)eq->desc, portion); 4714 (*to) = (caddr_t)eq->desc + portion; 4715 } 4716 } 4717 4718 static inline void 4719 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n) 4720 { 4721 u_int db; 4722 4723 MPASS(n > 0); 4724 4725 db = eq->doorbells; 4726 if (n > 1) 4727 clrbit(&db, DOORBELL_WCWR); 4728 wmb(); 4729 4730 switch (ffs(db) - 1) { 4731 case DOORBELL_UDB: 4732 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 4733 break; 4734 4735 case DOORBELL_WCWR: { 4736 volatile uint64_t *dst, *src; 4737 int i; 4738 4739 /* 4740 * Queues whose 128B doorbell segment fits in the page do not 4741 * use relative qid (udb_qid is always 0). Only queues with 4742 * doorbell segments can do WCWR. 4743 */ 4744 KASSERT(eq->udb_qid == 0 && n == 1, 4745 ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p", 4746 __func__, eq->doorbells, n, eq->dbidx, eq)); 4747 4748 dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET - 4749 UDBS_DB_OFFSET); 4750 i = eq->dbidx; 4751 src = (void *)&eq->desc[i]; 4752 while (src != (void *)&eq->desc[i + 1]) 4753 *dst++ = *src++; 4754 wmb(); 4755 break; 4756 } 4757 4758 case DOORBELL_UDBWC: 4759 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 4760 wmb(); 4761 break; 4762 4763 case DOORBELL_KDB: 4764 t4_write_reg(sc, sc->sge_kdoorbell_reg, 4765 V_QID(eq->cntxt_id) | V_PIDX(n)); 4766 break; 4767 } 4768 4769 IDXINCR(eq->dbidx, n, eq->sidx); 4770 } 4771 4772 static inline u_int 4773 reclaimable_tx_desc(struct sge_eq *eq) 4774 { 4775 uint16_t hw_cidx; 4776 4777 hw_cidx = read_hw_cidx(eq); 4778 return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx)); 4779 } 4780 4781 static inline u_int 4782 total_available_tx_desc(struct sge_eq *eq) 4783 { 4784 uint16_t hw_cidx, pidx; 4785 4786 hw_cidx = read_hw_cidx(eq); 4787 pidx = eq->pidx; 4788 4789 if (pidx == hw_cidx) 4790 return (eq->sidx - 1); 4791 else 4792 return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1); 4793 } 4794 4795 static inline uint16_t 4796 read_hw_cidx(struct sge_eq *eq) 4797 { 4798 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 4799 uint16_t cidx = spg->cidx; /* stable snapshot */ 4800 4801 return (be16toh(cidx)); 4802 } 4803 4804 /* 4805 * Reclaim 'n' descriptors approximately. 4806 */ 4807 static u_int 4808 reclaim_tx_descs(struct sge_txq *txq, u_int n) 4809 { 4810 struct tx_sdesc *txsd; 4811 struct sge_eq *eq = &txq->eq; 4812 u_int can_reclaim, reclaimed; 4813 4814 TXQ_LOCK_ASSERT_OWNED(txq); 4815 MPASS(n > 0); 4816 4817 reclaimed = 0; 4818 can_reclaim = reclaimable_tx_desc(eq); 4819 while (can_reclaim && reclaimed < n) { 4820 int ndesc; 4821 struct mbuf *m, *nextpkt; 4822 4823 txsd = &txq->sdesc[eq->cidx]; 4824 ndesc = txsd->desc_used; 4825 4826 /* Firmware doesn't return "partial" credits. */ 4827 KASSERT(can_reclaim >= ndesc, 4828 ("%s: unexpected number of credits: %d, %d", 4829 __func__, can_reclaim, ndesc)); 4830 4831 for (m = txsd->m; m != NULL; m = nextpkt) { 4832 nextpkt = m->m_nextpkt; 4833 m->m_nextpkt = NULL; 4834 m_freem(m); 4835 } 4836 reclaimed += ndesc; 4837 can_reclaim -= ndesc; 4838 IDXINCR(eq->cidx, ndesc, eq->sidx); 4839 } 4840 4841 return (reclaimed); 4842 } 4843 4844 static void 4845 tx_reclaim(void *arg, int n) 4846 { 4847 struct sge_txq *txq = arg; 4848 struct sge_eq *eq = &txq->eq; 4849 4850 do { 4851 if (TXQ_TRYLOCK(txq) == 0) 4852 break; 4853 n = reclaim_tx_descs(txq, 32); 4854 if (eq->cidx == eq->pidx) 4855 eq->equeqidx = eq->pidx; 4856 TXQ_UNLOCK(txq); 4857 } while (n > 0); 4858 } 4859 4860 static __be64 4861 get_flit(struct sglist_seg *segs, int nsegs, int idx) 4862 { 4863 int i = (idx / 3) * 2; 4864 4865 switch (idx % 3) { 4866 case 0: { 4867 __be64 rc; 4868 4869 rc = htobe32(segs[i].ss_len); 4870 if (i + 1 < nsegs) 4871 rc |= (uint64_t)htobe32(segs[i + 1].ss_len) << 32; 4872 4873 return (rc); 4874 } 4875 case 1: 4876 return (htobe64(segs[i].ss_paddr)); 4877 case 2: 4878 return (htobe64(segs[i + 1].ss_paddr)); 4879 } 4880 4881 return (0); 4882 } 4883 4884 static void 4885 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp) 4886 { 4887 int8_t zidx, hwidx, idx; 4888 uint16_t region1, region3; 4889 int spare, spare_needed, n; 4890 struct sw_zone_info *swz; 4891 struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0]; 4892 4893 /* 4894 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize 4895 * large enough for the max payload and cluster metadata. Otherwise 4896 * settle for the largest bufsize that leaves enough room in the cluster 4897 * for metadata. 4898 * 4899 * Without buffer packing: Look for the smallest zone which has a 4900 * bufsize large enough for the max payload. Settle for the largest 4901 * bufsize available if there's nothing big enough for max payload. 4902 */ 4903 spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0; 4904 swz = &sc->sge.sw_zone_info[0]; 4905 hwidx = -1; 4906 for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) { 4907 if (swz->size > largest_rx_cluster) { 4908 if (__predict_true(hwidx != -1)) 4909 break; 4910 4911 /* 4912 * This is a misconfiguration. largest_rx_cluster is 4913 * preventing us from finding a refill source. See 4914 * dev.t5nex.<n>.buffer_sizes to figure out why. 4915 */ 4916 device_printf(sc->dev, "largest_rx_cluster=%u leaves no" 4917 " refill source for fl %p (dma %u). Ignored.\n", 4918 largest_rx_cluster, fl, maxp); 4919 } 4920 for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) { 4921 hwb = &hwb_list[idx]; 4922 spare = swz->size - hwb->size; 4923 if (spare < spare_needed) 4924 continue; 4925 4926 hwidx = idx; /* best option so far */ 4927 if (hwb->size >= maxp) { 4928 4929 if ((fl->flags & FL_BUF_PACKING) == 0) 4930 goto done; /* stop looking (not packing) */ 4931 4932 if (swz->size >= safest_rx_cluster) 4933 goto done; /* stop looking (packing) */ 4934 } 4935 break; /* keep looking, next zone */ 4936 } 4937 } 4938 done: 4939 /* A usable hwidx has been located. */ 4940 MPASS(hwidx != -1); 4941 hwb = &hwb_list[hwidx]; 4942 zidx = hwb->zidx; 4943 swz = &sc->sge.sw_zone_info[zidx]; 4944 region1 = 0; 4945 region3 = swz->size - hwb->size; 4946 4947 /* 4948 * Stay within this zone and see if there is a better match when mbuf 4949 * inlining is allowed. Remember that the hwidx's are sorted in 4950 * decreasing order of size (so in increasing order of spare area). 4951 */ 4952 for (idx = hwidx; idx != -1; idx = hwb->next) { 4953 hwb = &hwb_list[idx]; 4954 spare = swz->size - hwb->size; 4955 4956 if (allow_mbufs_in_cluster == 0 || hwb->size < maxp) 4957 break; 4958 4959 /* 4960 * Do not inline mbufs if doing so would violate the pad/pack 4961 * boundary alignment requirement. 4962 */ 4963 if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0) 4964 continue; 4965 if (fl->flags & FL_BUF_PACKING && 4966 (MSIZE % sc->params.sge.pack_boundary) != 0) 4967 continue; 4968 4969 if (spare < CL_METADATA_SIZE + MSIZE) 4970 continue; 4971 n = (spare - CL_METADATA_SIZE) / MSIZE; 4972 if (n > howmany(hwb->size, maxp)) 4973 break; 4974 4975 hwidx = idx; 4976 if (fl->flags & FL_BUF_PACKING) { 4977 region1 = n * MSIZE; 4978 region3 = spare - region1; 4979 } else { 4980 region1 = MSIZE; 4981 region3 = spare - region1; 4982 break; 4983 } 4984 } 4985 4986 KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES, 4987 ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp)); 4988 KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES, 4989 ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp)); 4990 KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 == 4991 sc->sge.sw_zone_info[zidx].size, 4992 ("%s: bad buffer layout for fl %p, maxp %d. " 4993 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4994 sc->sge.sw_zone_info[zidx].size, region1, 4995 sc->sge.hw_buf_info[hwidx].size, region3)); 4996 if (fl->flags & FL_BUF_PACKING || region1 > 0) { 4997 KASSERT(region3 >= CL_METADATA_SIZE, 4998 ("%s: no room for metadata. fl %p, maxp %d; " 4999 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 5000 sc->sge.sw_zone_info[zidx].size, region1, 5001 sc->sge.hw_buf_info[hwidx].size, region3)); 5002 KASSERT(region1 % MSIZE == 0, 5003 ("%s: bad mbuf region for fl %p, maxp %d. " 5004 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 5005 sc->sge.sw_zone_info[zidx].size, region1, 5006 sc->sge.hw_buf_info[hwidx].size, region3)); 5007 } 5008 5009 fl->cll_def.zidx = zidx; 5010 fl->cll_def.hwidx = hwidx; 5011 fl->cll_def.region1 = region1; 5012 fl->cll_def.region3 = region3; 5013 } 5014 5015 static void 5016 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl) 5017 { 5018 struct sge *s = &sc->sge; 5019 struct hw_buf_info *hwb; 5020 struct sw_zone_info *swz; 5021 int spare; 5022 int8_t hwidx; 5023 5024 if (fl->flags & FL_BUF_PACKING) 5025 hwidx = s->safe_hwidx2; /* with room for metadata */ 5026 else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) { 5027 hwidx = s->safe_hwidx2; 5028 hwb = &s->hw_buf_info[hwidx]; 5029 swz = &s->sw_zone_info[hwb->zidx]; 5030 spare = swz->size - hwb->size; 5031 5032 /* no good if there isn't room for an mbuf as well */ 5033 if (spare < CL_METADATA_SIZE + MSIZE) 5034 hwidx = s->safe_hwidx1; 5035 } else 5036 hwidx = s->safe_hwidx1; 5037 5038 if (hwidx == -1) { 5039 /* No fallback source */ 5040 fl->cll_alt.hwidx = -1; 5041 fl->cll_alt.zidx = -1; 5042 5043 return; 5044 } 5045 5046 hwb = &s->hw_buf_info[hwidx]; 5047 swz = &s->sw_zone_info[hwb->zidx]; 5048 spare = swz->size - hwb->size; 5049 fl->cll_alt.hwidx = hwidx; 5050 fl->cll_alt.zidx = hwb->zidx; 5051 if (allow_mbufs_in_cluster && 5052 (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0)) 5053 fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE; 5054 else 5055 fl->cll_alt.region1 = 0; 5056 fl->cll_alt.region3 = spare - fl->cll_alt.region1; 5057 } 5058 5059 static void 5060 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) 5061 { 5062 mtx_lock(&sc->sfl_lock); 5063 FL_LOCK(fl); 5064 if ((fl->flags & FL_DOOMED) == 0) { 5065 fl->flags |= FL_STARVING; 5066 TAILQ_INSERT_TAIL(&sc->sfl, fl, link); 5067 callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc); 5068 } 5069 FL_UNLOCK(fl); 5070 mtx_unlock(&sc->sfl_lock); 5071 } 5072 5073 static void 5074 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq) 5075 { 5076 struct sge_wrq *wrq = (void *)eq; 5077 5078 atomic_readandclear_int(&eq->equiq); 5079 taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task); 5080 } 5081 5082 static void 5083 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq) 5084 { 5085 struct sge_txq *txq = (void *)eq; 5086 5087 MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH); 5088 5089 atomic_readandclear_int(&eq->equiq); 5090 mp_ring_check_drainage(txq->r, 0); 5091 taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task); 5092 } 5093 5094 static int 5095 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, 5096 struct mbuf *m) 5097 { 5098 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); 5099 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); 5100 struct adapter *sc = iq->adapter; 5101 struct sge *s = &sc->sge; 5102 struct sge_eq *eq; 5103 static void (*h[])(struct adapter *, struct sge_eq *) = {NULL, 5104 &handle_wrq_egr_update, &handle_eth_egr_update, 5105 &handle_wrq_egr_update}; 5106 5107 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 5108 rss->opcode)); 5109 5110 eq = s->eqmap[qid - s->eq_start - s->eq_base]; 5111 (*h[eq->flags & EQ_TYPEMASK])(sc, eq); 5112 5113 return (0); 5114 } 5115 5116 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */ 5117 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \ 5118 offsetof(struct cpl_fw6_msg, data)); 5119 5120 static int 5121 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 5122 { 5123 struct adapter *sc = iq->adapter; 5124 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); 5125 5126 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 5127 rss->opcode)); 5128 5129 if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) { 5130 const struct rss_header *rss2; 5131 5132 rss2 = (const struct rss_header *)&cpl->data[0]; 5133 return (t4_cpl_handler[rss2->opcode](iq, rss2, m)); 5134 } 5135 5136 return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0])); 5137 } 5138 5139 /** 5140 * t4_handle_wrerr_rpl - process a FW work request error message 5141 * @adap: the adapter 5142 * @rpl: start of the FW message 5143 */ 5144 static int 5145 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl) 5146 { 5147 u8 opcode = *(const u8 *)rpl; 5148 const struct fw_error_cmd *e = (const void *)rpl; 5149 unsigned int i; 5150 5151 if (opcode != FW_ERROR_CMD) { 5152 log(LOG_ERR, 5153 "%s: Received WRERR_RPL message with opcode %#x\n", 5154 device_get_nameunit(adap->dev), opcode); 5155 return (EINVAL); 5156 } 5157 log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev), 5158 G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" : 5159 "non-fatal"); 5160 switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) { 5161 case FW_ERROR_TYPE_EXCEPTION: 5162 log(LOG_ERR, "exception info:\n"); 5163 for (i = 0; i < nitems(e->u.exception.info); i++) 5164 log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ", 5165 be32toh(e->u.exception.info[i])); 5166 log(LOG_ERR, "\n"); 5167 break; 5168 case FW_ERROR_TYPE_HWMODULE: 5169 log(LOG_ERR, "HW module regaddr %08x regval %08x\n", 5170 be32toh(e->u.hwmodule.regaddr), 5171 be32toh(e->u.hwmodule.regval)); 5172 break; 5173 case FW_ERROR_TYPE_WR: 5174 log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n", 5175 be16toh(e->u.wr.cidx), 5176 G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)), 5177 G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)), 5178 be32toh(e->u.wr.eqid)); 5179 for (i = 0; i < nitems(e->u.wr.wrhdr); i++) 5180 log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ", 5181 e->u.wr.wrhdr[i]); 5182 log(LOG_ERR, "\n"); 5183 break; 5184 case FW_ERROR_TYPE_ACL: 5185 log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s", 5186 be16toh(e->u.acl.cidx), 5187 G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)), 5188 G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)), 5189 be32toh(e->u.acl.eqid), 5190 G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" : 5191 "MAC"); 5192 for (i = 0; i < nitems(e->u.acl.val); i++) 5193 log(LOG_ERR, " %02x", e->u.acl.val[i]); 5194 log(LOG_ERR, "\n"); 5195 break; 5196 default: 5197 log(LOG_ERR, "type %#x\n", 5198 G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))); 5199 return (EINVAL); 5200 } 5201 return (0); 5202 } 5203 5204 static int 5205 sysctl_uint16(SYSCTL_HANDLER_ARGS) 5206 { 5207 uint16_t *id = arg1; 5208 int i = *id; 5209 5210 return sysctl_handle_int(oidp, &i, 0, req); 5211 } 5212 5213 static int 5214 sysctl_bufsizes(SYSCTL_HANDLER_ARGS) 5215 { 5216 struct sge *s = arg1; 5217 struct hw_buf_info *hwb = &s->hw_buf_info[0]; 5218 struct sw_zone_info *swz = &s->sw_zone_info[0]; 5219 int i, rc; 5220 struct sbuf sb; 5221 char c; 5222 5223 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 5224 for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) { 5225 if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster) 5226 c = '*'; 5227 else 5228 c = '\0'; 5229 5230 sbuf_printf(&sb, "%u%c ", hwb->size, c); 5231 } 5232 sbuf_trim(&sb); 5233 sbuf_finish(&sb); 5234 rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 5235 sbuf_delete(&sb); 5236 return (rc); 5237 } 5238 5239 static int 5240 sysctl_tc(SYSCTL_HANDLER_ARGS) 5241 { 5242 struct vi_info *vi = arg1; 5243 struct port_info *pi; 5244 struct adapter *sc; 5245 struct sge_txq *txq; 5246 struct tx_cl_rl_params *tc; 5247 int qidx = arg2, rc, tc_idx; 5248 uint32_t fw_queue, fw_class; 5249 5250 MPASS(qidx >= 0 && qidx < vi->ntxq); 5251 pi = vi->pi; 5252 sc = pi->adapter; 5253 txq = &sc->sge.txq[vi->first_txq + qidx]; 5254 5255 tc_idx = txq->tc_idx; 5256 rc = sysctl_handle_int(oidp, &tc_idx, 0, req); 5257 if (rc != 0 || req->newptr == NULL) 5258 return (rc); 5259 5260 if (sc->flags & IS_VF) 5261 return (EPERM); 5262 5263 /* Note that -1 is legitimate input (it means unbind). */ 5264 if (tc_idx < -1 || tc_idx >= sc->chip_params->nsched_cls) 5265 return (EINVAL); 5266 5267 mtx_lock(&sc->tc_lock); 5268 if (tc_idx == txq->tc_idx) { 5269 rc = 0; /* No change, nothing to do. */ 5270 goto done; 5271 } 5272 5273 fw_queue = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 5274 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) | 5275 V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id); 5276 5277 if (tc_idx == -1) 5278 fw_class = 0xffffffff; /* Unbind. */ 5279 else { 5280 /* 5281 * Bind to a different class. 5282 */ 5283 tc = &pi->sched_params->cl_rl[tc_idx]; 5284 if (tc->flags & TX_CLRL_ERROR) { 5285 /* Previous attempt to set the cl-rl params failed. */ 5286 rc = EIO; 5287 goto done; 5288 } else { 5289 /* 5290 * Ok to proceed. Place a reference on the new class 5291 * while still holding on to the reference on the 5292 * previous class, if any. 5293 */ 5294 fw_class = tc_idx; 5295 tc->refcount++; 5296 } 5297 } 5298 mtx_unlock(&sc->tc_lock); 5299 5300 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4stc"); 5301 if (rc) 5302 return (rc); 5303 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, &fw_class); 5304 end_synchronized_op(sc, 0); 5305 5306 mtx_lock(&sc->tc_lock); 5307 if (rc == 0) { 5308 if (txq->tc_idx != -1) { 5309 tc = &pi->sched_params->cl_rl[txq->tc_idx]; 5310 MPASS(tc->refcount > 0); 5311 tc->refcount--; 5312 } 5313 txq->tc_idx = tc_idx; 5314 } else { 5315 tc = &pi->sched_params->cl_rl[tc_idx]; 5316 MPASS(tc->refcount > 0); 5317 tc->refcount--; 5318 } 5319 done: 5320 mtx_unlock(&sc->tc_lock); 5321 return (rc); 5322 } 5323