xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision e3514747256465c52c3b2aedc9795f52c0d3efe9)
1 /*-
2  * Copyright (c) 2011 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #include <sys/types.h>
35 #include <sys/eventhandler.h>
36 #include <sys/mbuf.h>
37 #include <sys/socket.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/queue.h>
41 #include <sys/sbuf.h>
42 #include <sys/taskqueue.h>
43 #include <sys/time.h>
44 #include <sys/sglist.h>
45 #include <sys/sysctl.h>
46 #include <sys/smp.h>
47 #include <sys/counter.h>
48 #include <net/bpf.h>
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/if_vlan_var.h>
52 #include <netinet/in.h>
53 #include <netinet/ip.h>
54 #include <netinet/ip6.h>
55 #include <netinet/tcp.h>
56 #include <machine/in_cksum.h>
57 #include <machine/md_var.h>
58 #include <vm/vm.h>
59 #include <vm/pmap.h>
60 #ifdef DEV_NETMAP
61 #include <machine/bus.h>
62 #include <sys/selinfo.h>
63 #include <net/if_var.h>
64 #include <net/netmap.h>
65 #include <dev/netmap/netmap_kern.h>
66 #endif
67 
68 #include "common/common.h"
69 #include "common/t4_regs.h"
70 #include "common/t4_regs_values.h"
71 #include "common/t4_msg.h"
72 #include "t4_l2t.h"
73 #include "t4_mp_ring.h"
74 
75 #ifdef T4_PKT_TIMESTAMP
76 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
77 #else
78 #define RX_COPY_THRESHOLD MINCLSIZE
79 #endif
80 
81 /*
82  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
83  * 0-7 are valid values.
84  */
85 static int fl_pktshift = 2;
86 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
87 
88 /*
89  * Pad ethernet payload up to this boundary.
90  * -1: driver should figure out a good value.
91  *  0: disable padding.
92  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
93  */
94 int fl_pad = -1;
95 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
96 
97 /*
98  * Status page length.
99  * -1: driver should figure out a good value.
100  *  64 or 128 are the only other valid values.
101  */
102 static int spg_len = -1;
103 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
104 
105 /*
106  * Congestion drops.
107  * -1: no congestion feedback (not recommended).
108  *  0: backpressure the channel instead of dropping packets right away.
109  *  1: no backpressure, drop packets for the congested queue immediately.
110  */
111 static int cong_drop = 0;
112 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
113 
114 /*
115  * Deliver multiple frames in the same free list buffer if they fit.
116  * -1: let the driver decide whether to enable buffer packing or not.
117  *  0: disable buffer packing.
118  *  1: enable buffer packing.
119  */
120 static int buffer_packing = -1;
121 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
122 
123 /*
124  * Start next frame in a packed buffer at this boundary.
125  * -1: driver should figure out a good value.
126  * T4: driver will ignore this and use the same value as fl_pad above.
127  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
128  */
129 static int fl_pack = -1;
130 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
131 
132 /*
133  * Allow the driver to create mbuf(s) in a cluster allocated for rx.
134  * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
135  * 1: ok to create mbuf(s) within a cluster if there is room.
136  */
137 static int allow_mbufs_in_cluster = 1;
138 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
139 
140 /*
141  * Largest rx cluster size that the driver is allowed to allocate.
142  */
143 static int largest_rx_cluster = MJUM16BYTES;
144 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
145 
146 /*
147  * Size of cluster allocation that's most likely to succeed.  The driver will
148  * fall back to this size if it fails to allocate clusters larger than this.
149  */
150 static int safest_rx_cluster = PAGE_SIZE;
151 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
152 
153 /*
154  * The interrupt holdoff timers are multiplied by this value on T6+.
155  * 1 and 3-17 (both inclusive) are legal values.
156  */
157 static int tscale = 1;
158 TUNABLE_INT("hw.cxgbe.tscale", &tscale);
159 
160 /*
161  * Number of LRO entries in the lro_ctrl structure per rx queue.
162  */
163 static int lro_entries = TCP_LRO_ENTRIES;
164 TUNABLE_INT("hw.cxgbe.lro_entries", &lro_entries);
165 
166 /*
167  * This enables presorting of frames before they're fed into tcp_lro_rx.
168  */
169 static int lro_mbufs = 0;
170 TUNABLE_INT("hw.cxgbe.lro_mbufs", &lro_mbufs);
171 
172 struct txpkts {
173 	u_int wr_type;		/* type 0 or type 1 */
174 	u_int npkt;		/* # of packets in this work request */
175 	u_int plen;		/* total payload (sum of all packets) */
176 	u_int len16;		/* # of 16B pieces used by this work request */
177 };
178 
179 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
180 struct sgl {
181 	struct sglist sg;
182 	struct sglist_seg seg[TX_SGL_SEGS];
183 };
184 
185 static int service_iq(struct sge_iq *, int);
186 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
187 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
188 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
189 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
190 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
191     uint16_t, char *);
192 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
193     bus_addr_t *, void **);
194 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
195     void *);
196 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
197     int, int);
198 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
199 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
200     struct sysctl_oid *, struct sge_fl *);
201 static int alloc_fwq(struct adapter *);
202 static int free_fwq(struct adapter *);
203 static int alloc_mgmtq(struct adapter *);
204 static int free_mgmtq(struct adapter *);
205 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
206     struct sysctl_oid *);
207 static int free_rxq(struct vi_info *, struct sge_rxq *);
208 #ifdef TCP_OFFLOAD
209 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
210     struct sysctl_oid *);
211 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
212 #endif
213 #ifdef DEV_NETMAP
214 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
215     struct sysctl_oid *);
216 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
217 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
218     struct sysctl_oid *);
219 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
220 #endif
221 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
222 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
223 #ifdef TCP_OFFLOAD
224 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
225 #endif
226 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
227 static int free_eq(struct adapter *, struct sge_eq *);
228 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
229     struct sysctl_oid *);
230 static int free_wrq(struct adapter *, struct sge_wrq *);
231 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
232     struct sysctl_oid *);
233 static int free_txq(struct vi_info *, struct sge_txq *);
234 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
235 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
236 static int refill_fl(struct adapter *, struct sge_fl *, int);
237 static void refill_sfl(void *);
238 static int alloc_fl_sdesc(struct sge_fl *);
239 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
240 static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
241 static void find_safe_refill_source(struct adapter *, struct sge_fl *);
242 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
243 
244 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
245 static inline u_int txpkt_len16(u_int, u_int);
246 static inline u_int txpkt_vm_len16(u_int, u_int);
247 static inline u_int txpkts0_len16(u_int);
248 static inline u_int txpkts1_len16(void);
249 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
250     struct mbuf *, u_int);
251 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
252     struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int);
253 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
254 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
255 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
256     struct mbuf *, const struct txpkts *, u_int);
257 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
258 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
259 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
260 static inline uint16_t read_hw_cidx(struct sge_eq *);
261 static inline u_int reclaimable_tx_desc(struct sge_eq *);
262 static inline u_int total_available_tx_desc(struct sge_eq *);
263 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
264 static void tx_reclaim(void *, int);
265 static __be64 get_flit(struct sglist_seg *, int, int);
266 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
267     struct mbuf *);
268 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
269     struct mbuf *);
270 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
271 static void wrq_tx_drain(void *, int);
272 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
273 
274 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
275 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
276 static int sysctl_tc(SYSCTL_HANDLER_ARGS);
277 
278 static counter_u64_t extfree_refs;
279 static counter_u64_t extfree_rels;
280 
281 an_handler_t t4_an_handler;
282 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
283 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
284 
285 
286 static int
287 an_not_handled(struct sge_iq *iq, const struct rsp_ctrl *ctrl)
288 {
289 
290 #ifdef INVARIANTS
291 	panic("%s: async notification on iq %p (ctrl %p)", __func__, iq, ctrl);
292 #else
293 	log(LOG_ERR, "%s: async notification on iq %p (ctrl %p)\n",
294 	    __func__, iq, ctrl);
295 #endif
296 	return (EDOOFUS);
297 }
298 
299 int
300 t4_register_an_handler(an_handler_t h)
301 {
302 	uintptr_t *loc, new;
303 
304 	new = h ? (uintptr_t)h : (uintptr_t)an_not_handled;
305 	loc = (uintptr_t *) &t4_an_handler;
306 	atomic_store_rel_ptr(loc, new);
307 
308 	return (0);
309 }
310 
311 static int
312 fw_msg_not_handled(struct adapter *sc, const __be64 *rpl)
313 {
314 	const struct cpl_fw6_msg *cpl =
315 	    __containerof(rpl, struct cpl_fw6_msg, data[0]);
316 
317 #ifdef INVARIANTS
318 	panic("%s: fw_msg type %d", __func__, cpl->type);
319 #else
320 	log(LOG_ERR, "%s: fw_msg type %d\n", __func__, cpl->type);
321 #endif
322 	return (EDOOFUS);
323 }
324 
325 int
326 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
327 {
328 	uintptr_t *loc, new;
329 
330 	if (type >= nitems(t4_fw_msg_handler))
331 		return (EINVAL);
332 
333 	/*
334 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
335 	 * handler dispatch table.  Reject any attempt to install a handler for
336 	 * this subtype.
337 	 */
338 	if (type == FW_TYPE_RSSCPL || type == FW6_TYPE_RSSCPL)
339 		return (EINVAL);
340 
341 	new = h ? (uintptr_t)h : (uintptr_t)fw_msg_not_handled;
342 	loc = (uintptr_t *) &t4_fw_msg_handler[type];
343 	atomic_store_rel_ptr(loc, new);
344 
345 	return (0);
346 }
347 
348 static int
349 cpl_not_handled(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
350 {
351 
352 #ifdef INVARIANTS
353 	panic("%s: opcode 0x%02x on iq %p with payload %p",
354 	    __func__, rss->opcode, iq, m);
355 #else
356 	log(LOG_ERR, "%s: opcode 0x%02x on iq %p with payload %p\n",
357 	    __func__, rss->opcode, iq, m);
358 	m_freem(m);
359 #endif
360 	return (EDOOFUS);
361 }
362 
363 int
364 t4_register_cpl_handler(int opcode, cpl_handler_t h)
365 {
366 	uintptr_t *loc, new;
367 
368 	if (opcode >= nitems(t4_cpl_handler))
369 		return (EINVAL);
370 
371 	new = h ? (uintptr_t)h : (uintptr_t)cpl_not_handled;
372 	loc = (uintptr_t *) &t4_cpl_handler[opcode];
373 	atomic_store_rel_ptr(loc, new);
374 
375 	return (0);
376 }
377 
378 /*
379  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
380  */
381 void
382 t4_sge_modload(void)
383 {
384 	int i;
385 
386 	if (fl_pktshift < 0 || fl_pktshift > 7) {
387 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
388 		    " using 2 instead.\n", fl_pktshift);
389 		fl_pktshift = 2;
390 	}
391 
392 	if (spg_len != 64 && spg_len != 128) {
393 		int len;
394 
395 #if defined(__i386__) || defined(__amd64__)
396 		len = cpu_clflush_line_size > 64 ? 128 : 64;
397 #else
398 		len = 64;
399 #endif
400 		if (spg_len != -1) {
401 			printf("Invalid hw.cxgbe.spg_len value (%d),"
402 			    " using %d instead.\n", spg_len, len);
403 		}
404 		spg_len = len;
405 	}
406 
407 	if (cong_drop < -1 || cong_drop > 1) {
408 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
409 		    " using 0 instead.\n", cong_drop);
410 		cong_drop = 0;
411 	}
412 
413 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
414 		printf("Invalid hw.cxgbe.tscale value (%d),"
415 		    " using 1 instead.\n", tscale);
416 		tscale = 1;
417 	}
418 
419 	extfree_refs = counter_u64_alloc(M_WAITOK);
420 	extfree_rels = counter_u64_alloc(M_WAITOK);
421 	counter_u64_zero(extfree_refs);
422 	counter_u64_zero(extfree_rels);
423 
424 	t4_an_handler = an_not_handled;
425 	for (i = 0; i < nitems(t4_fw_msg_handler); i++)
426 		t4_fw_msg_handler[i] = fw_msg_not_handled;
427 	for (i = 0; i < nitems(t4_cpl_handler); i++)
428 		t4_cpl_handler[i] = cpl_not_handled;
429 
430 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
431 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
432 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
433 	t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx);
434 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
435 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
436 }
437 
438 void
439 t4_sge_modunload(void)
440 {
441 
442 	counter_u64_free(extfree_refs);
443 	counter_u64_free(extfree_rels);
444 }
445 
446 uint64_t
447 t4_sge_extfree_refs(void)
448 {
449 	uint64_t refs, rels;
450 
451 	rels = counter_u64_fetch(extfree_rels);
452 	refs = counter_u64_fetch(extfree_refs);
453 
454 	return (refs - rels);
455 }
456 
457 static inline void
458 setup_pad_and_pack_boundaries(struct adapter *sc)
459 {
460 	uint32_t v, m;
461 	int pad, pack, pad_shift;
462 
463 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
464 	    X_INGPADBOUNDARY_SHIFT;
465 	pad = fl_pad;
466 	if (fl_pad < (1 << pad_shift) ||
467 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
468 	    !powerof2(fl_pad)) {
469 		/*
470 		 * If there is any chance that we might use buffer packing and
471 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
472 		 * it to the minimum allowed in all other cases.
473 		 */
474 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
475 
476 		/*
477 		 * For fl_pad = 0 we'll still write a reasonable value to the
478 		 * register but all the freelists will opt out of padding.
479 		 * We'll complain here only if the user tried to set it to a
480 		 * value greater than 0 that was invalid.
481 		 */
482 		if (fl_pad > 0) {
483 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
484 			    " (%d), using %d instead.\n", fl_pad, pad);
485 		}
486 	}
487 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
488 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
489 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
490 
491 	if (is_t4(sc)) {
492 		if (fl_pack != -1 && fl_pack != pad) {
493 			/* Complain but carry on. */
494 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
495 			    " using %d instead.\n", fl_pack, pad);
496 		}
497 		return;
498 	}
499 
500 	pack = fl_pack;
501 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
502 	    !powerof2(fl_pack)) {
503 		pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
504 		MPASS(powerof2(pack));
505 		if (pack < 16)
506 			pack = 16;
507 		if (pack == 32)
508 			pack = 64;
509 		if (pack > 4096)
510 			pack = 4096;
511 		if (fl_pack != -1) {
512 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
513 			    " (%d), using %d instead.\n", fl_pack, pack);
514 		}
515 	}
516 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
517 	if (pack == 16)
518 		v = V_INGPACKBOUNDARY(0);
519 	else
520 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
521 
522 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
523 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
524 }
525 
526 /*
527  * adap->params.vpd.cclk must be set up before this is called.
528  */
529 void
530 t4_tweak_chip_settings(struct adapter *sc)
531 {
532 	int i;
533 	uint32_t v, m;
534 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
535 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
536 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
537 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
538 	static int sge_flbuf_sizes[] = {
539 		MCLBYTES,
540 #if MJUMPAGESIZE != MCLBYTES
541 		MJUMPAGESIZE,
542 		MJUMPAGESIZE - CL_METADATA_SIZE,
543 		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
544 #endif
545 		MJUM9BYTES,
546 		MJUM16BYTES,
547 		MCLBYTES - MSIZE - CL_METADATA_SIZE,
548 		MJUM9BYTES - CL_METADATA_SIZE,
549 		MJUM16BYTES - CL_METADATA_SIZE,
550 	};
551 
552 	KASSERT(sc->flags & MASTER_PF,
553 	    ("%s: trying to change chip settings when not master.", __func__));
554 
555 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
556 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
557 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
558 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
559 
560 	setup_pad_and_pack_boundaries(sc);
561 
562 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
563 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
564 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
565 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
566 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
567 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
568 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
569 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
570 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
571 
572 	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
573 	    ("%s: hw buffer size table too big", __func__));
574 	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
575 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
576 		    sge_flbuf_sizes[i]);
577 	}
578 
579 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
580 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
581 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
582 
583 	KASSERT(intr_timer[0] <= timer_max,
584 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
585 	    timer_max));
586 	for (i = 1; i < nitems(intr_timer); i++) {
587 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
588 		    ("%s: timers not listed in increasing order (%d)",
589 		    __func__, i));
590 
591 		while (intr_timer[i] > timer_max) {
592 			if (i == nitems(intr_timer) - 1) {
593 				intr_timer[i] = timer_max;
594 				break;
595 			}
596 			intr_timer[i] += intr_timer[i - 1];
597 			intr_timer[i] /= 2;
598 		}
599 	}
600 
601 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
602 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
603 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
604 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
605 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
606 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
607 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
608 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
609 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
610 
611 	if (chip_id(sc) >= CHELSIO_T6) {
612 		m = V_TSCALE(M_TSCALE);
613 		if (tscale == 1)
614 			v = 0;
615 		else
616 			v = V_TSCALE(tscale - 2);
617 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
618 	}
619 
620 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
621 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
622 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
623 
624 	/*
625 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
626 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
627 	 * may have to deal with is MAXPHYS + 1 page.
628 	 */
629 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
630 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
631 
632 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
633 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
634 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
635 
636 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
637 	    F_RESETDDPOFFSET;
638 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
639 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
640 }
641 
642 /*
643  * SGE wants the buffer to be at least 64B and then a multiple of 16.  If
644  * padding is in use, the buffer's start and end need to be aligned to the pad
645  * boundary as well.  We'll just make sure that the size is a multiple of the
646  * boundary here, it is up to the buffer allocation code to make sure the start
647  * of the buffer is aligned as well.
648  */
649 static inline int
650 hwsz_ok(struct adapter *sc, int hwsz)
651 {
652 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
653 
654 	return (hwsz >= 64 && (hwsz & mask) == 0);
655 }
656 
657 /*
658  * XXX: driver really should be able to deal with unexpected settings.
659  */
660 int
661 t4_read_chip_settings(struct adapter *sc)
662 {
663 	struct sge *s = &sc->sge;
664 	struct sge_params *sp = &sc->params.sge;
665 	int i, j, n, rc = 0;
666 	uint32_t m, v, r;
667 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
668 	static int sw_buf_sizes[] = {	/* Sorted by size */
669 		MCLBYTES,
670 #if MJUMPAGESIZE != MCLBYTES
671 		MJUMPAGESIZE,
672 #endif
673 		MJUM9BYTES,
674 		MJUM16BYTES
675 	};
676 	struct sw_zone_info *swz, *safe_swz;
677 	struct hw_buf_info *hwb;
678 
679 	m = F_RXPKTCPLMODE;
680 	v = F_RXPKTCPLMODE;
681 	r = sc->params.sge.sge_control;
682 	if ((r & m) != v) {
683 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
684 		rc = EINVAL;
685 	}
686 
687 	/*
688 	 * If this changes then every single use of PAGE_SHIFT in the driver
689 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
690 	 */
691 	if (sp->page_shift != PAGE_SHIFT) {
692 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
693 		rc = EINVAL;
694 	}
695 
696 	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
697 	hwb = &s->hw_buf_info[0];
698 	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
699 		r = sc->params.sge.sge_fl_buffer_size[i];
700 		hwb->size = r;
701 		hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
702 		hwb->next = -1;
703 	}
704 
705 	/*
706 	 * Create a sorted list in decreasing order of hw buffer sizes (and so
707 	 * increasing order of spare area) for each software zone.
708 	 *
709 	 * If padding is enabled then the start and end of the buffer must align
710 	 * to the pad boundary; if packing is enabled then they must align with
711 	 * the pack boundary as well.  Allocations from the cluster zones are
712 	 * aligned to min(size, 4K), so the buffer starts at that alignment and
713 	 * ends at hwb->size alignment.  If mbuf inlining is allowed the
714 	 * starting alignment will be reduced to MSIZE and the driver will
715 	 * exercise appropriate caution when deciding on the best buffer layout
716 	 * to use.
717 	 */
718 	n = 0;	/* no usable buffer size to begin with */
719 	swz = &s->sw_zone_info[0];
720 	safe_swz = NULL;
721 	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
722 		int8_t head = -1, tail = -1;
723 
724 		swz->size = sw_buf_sizes[i];
725 		swz->zone = m_getzone(swz->size);
726 		swz->type = m_gettype(swz->size);
727 
728 		if (swz->size < PAGE_SIZE) {
729 			MPASS(powerof2(swz->size));
730 			if (fl_pad && (swz->size % sp->pad_boundary != 0))
731 				continue;
732 		}
733 
734 		if (swz->size == safest_rx_cluster)
735 			safe_swz = swz;
736 
737 		hwb = &s->hw_buf_info[0];
738 		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
739 			if (hwb->zidx != -1 || hwb->size > swz->size)
740 				continue;
741 #ifdef INVARIANTS
742 			if (fl_pad)
743 				MPASS(hwb->size % sp->pad_boundary == 0);
744 #endif
745 			hwb->zidx = i;
746 			if (head == -1)
747 				head = tail = j;
748 			else if (hwb->size < s->hw_buf_info[tail].size) {
749 				s->hw_buf_info[tail].next = j;
750 				tail = j;
751 			} else {
752 				int8_t *cur;
753 				struct hw_buf_info *t;
754 
755 				for (cur = &head; *cur != -1; cur = &t->next) {
756 					t = &s->hw_buf_info[*cur];
757 					if (hwb->size == t->size) {
758 						hwb->zidx = -2;
759 						break;
760 					}
761 					if (hwb->size > t->size) {
762 						hwb->next = *cur;
763 						*cur = j;
764 						break;
765 					}
766 				}
767 			}
768 		}
769 		swz->head_hwidx = head;
770 		swz->tail_hwidx = tail;
771 
772 		if (tail != -1) {
773 			n++;
774 			if (swz->size - s->hw_buf_info[tail].size >=
775 			    CL_METADATA_SIZE)
776 				sc->flags |= BUF_PACKING_OK;
777 		}
778 	}
779 	if (n == 0) {
780 		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
781 		rc = EINVAL;
782 	}
783 
784 	s->safe_hwidx1 = -1;
785 	s->safe_hwidx2 = -1;
786 	if (safe_swz != NULL) {
787 		s->safe_hwidx1 = safe_swz->head_hwidx;
788 		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
789 			int spare;
790 
791 			hwb = &s->hw_buf_info[i];
792 #ifdef INVARIANTS
793 			if (fl_pad)
794 				MPASS(hwb->size % sp->pad_boundary == 0);
795 #endif
796 			spare = safe_swz->size - hwb->size;
797 			if (spare >= CL_METADATA_SIZE) {
798 				s->safe_hwidx2 = i;
799 				break;
800 			}
801 		}
802 	}
803 
804 	if (sc->flags & IS_VF)
805 		return (0);
806 
807 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
808 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
809 	if (r != v) {
810 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
811 		rc = EINVAL;
812 	}
813 
814 	m = v = F_TDDPTAGTCB;
815 	r = t4_read_reg(sc, A_ULP_RX_CTL);
816 	if ((r & m) != v) {
817 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
818 		rc = EINVAL;
819 	}
820 
821 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
822 	    F_RESETDDPOFFSET;
823 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
824 	r = t4_read_reg(sc, A_TP_PARA_REG5);
825 	if ((r & m) != v) {
826 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
827 		rc = EINVAL;
828 	}
829 
830 	t4_init_tp_params(sc);
831 
832 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
833 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
834 
835 	return (rc);
836 }
837 
838 int
839 t4_create_dma_tag(struct adapter *sc)
840 {
841 	int rc;
842 
843 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
844 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
845 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
846 	    NULL, &sc->dmat);
847 	if (rc != 0) {
848 		device_printf(sc->dev,
849 		    "failed to create main DMA tag: %d\n", rc);
850 	}
851 
852 	return (rc);
853 }
854 
855 void
856 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
857     struct sysctl_oid_list *children)
858 {
859 	struct sge_params *sp = &sc->params.sge;
860 
861 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
862 	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
863 	    "freelist buffer sizes");
864 
865 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
866 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
867 
868 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
869 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
870 
871 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
872 	    NULL, sp->spg_len, "status page size (bytes)");
873 
874 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
875 	    NULL, cong_drop, "congestion drop setting");
876 
877 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
878 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
879 }
880 
881 int
882 t4_destroy_dma_tag(struct adapter *sc)
883 {
884 	if (sc->dmat)
885 		bus_dma_tag_destroy(sc->dmat);
886 
887 	return (0);
888 }
889 
890 /*
891  * Allocate and initialize the firmware event queue and the management queue.
892  *
893  * Returns errno on failure.  Resources allocated up to that point may still be
894  * allocated.  Caller is responsible for cleanup in case this function fails.
895  */
896 int
897 t4_setup_adapter_queues(struct adapter *sc)
898 {
899 	int rc;
900 
901 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
902 
903 	sysctl_ctx_init(&sc->ctx);
904 	sc->flags |= ADAP_SYSCTL_CTX;
905 
906 	/*
907 	 * Firmware event queue
908 	 */
909 	rc = alloc_fwq(sc);
910 	if (rc != 0)
911 		return (rc);
912 
913 	/*
914 	 * Management queue.  This is just a control queue that uses the fwq as
915 	 * its associated iq.
916 	 */
917 	if (!(sc->flags & IS_VF))
918 		rc = alloc_mgmtq(sc);
919 
920 	return (rc);
921 }
922 
923 /*
924  * Idempotent
925  */
926 int
927 t4_teardown_adapter_queues(struct adapter *sc)
928 {
929 
930 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
931 
932 	/* Do this before freeing the queue */
933 	if (sc->flags & ADAP_SYSCTL_CTX) {
934 		sysctl_ctx_free(&sc->ctx);
935 		sc->flags &= ~ADAP_SYSCTL_CTX;
936 	}
937 
938 	free_mgmtq(sc);
939 	free_fwq(sc);
940 
941 	return (0);
942 }
943 
944 static inline int
945 first_vector(struct vi_info *vi)
946 {
947 	struct adapter *sc = vi->pi->adapter;
948 
949 	if (sc->intr_count == 1)
950 		return (0);
951 
952 	return (vi->first_intr);
953 }
954 
955 /*
956  * Given an arbitrary "index," come up with an iq that can be used by other
957  * queues (of this VI) for interrupt forwarding, SGE egress updates, etc.
958  * The iq returned is guaranteed to be something that takes direct interrupts.
959  */
960 static struct sge_iq *
961 vi_intr_iq(struct vi_info *vi, int idx)
962 {
963 	struct adapter *sc = vi->pi->adapter;
964 	struct sge *s = &sc->sge;
965 	struct sge_iq *iq = NULL;
966 	int nintr, i;
967 
968 	if (sc->intr_count == 1)
969 		return (&sc->sge.fwq);
970 
971 	nintr = vi->nintr;
972 	KASSERT(nintr != 0,
973 	    ("%s: vi %p has no exclusive interrupts, total interrupts = %d",
974 	    __func__, vi, sc->intr_count));
975 	i = idx % nintr;
976 
977 	if (vi->flags & INTR_RXQ) {
978 	       	if (i < vi->nrxq) {
979 			iq = &s->rxq[vi->first_rxq + i].iq;
980 			goto done;
981 		}
982 		i -= vi->nrxq;
983 	}
984 #ifdef TCP_OFFLOAD
985 	if (vi->flags & INTR_OFLD_RXQ) {
986 	       	if (i < vi->nofldrxq) {
987 			iq = &s->ofld_rxq[vi->first_ofld_rxq + i].iq;
988 			goto done;
989 		}
990 		i -= vi->nofldrxq;
991 	}
992 #endif
993 	panic("%s: vi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
994 	    vi, vi->flags & INTR_ALL, idx, nintr);
995 done:
996 	MPASS(iq != NULL);
997 	KASSERT(iq->flags & IQ_INTR,
998 	    ("%s: iq %p (vi %p, intr_flags 0x%lx, idx %d)", __func__, iq, vi,
999 	    vi->flags & INTR_ALL, idx));
1000 	return (iq);
1001 }
1002 
1003 /* Maximum payload that can be delivered with a single iq descriptor */
1004 static inline int
1005 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
1006 {
1007 	int payload;
1008 
1009 #ifdef TCP_OFFLOAD
1010 	if (toe) {
1011 		payload = sc->tt.rx_coalesce ?
1012 		    G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
1013 	} else {
1014 #endif
1015 		/* large enough even when hw VLAN extraction is disabled */
1016 		payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1017 		    ETHER_VLAN_ENCAP_LEN + mtu;
1018 #ifdef TCP_OFFLOAD
1019 	}
1020 #endif
1021 
1022 	return (payload);
1023 }
1024 
1025 int
1026 t4_setup_vi_queues(struct vi_info *vi)
1027 {
1028 	int rc = 0, i, j, intr_idx, iqid;
1029 	struct sge_rxq *rxq;
1030 	struct sge_txq *txq;
1031 	struct sge_wrq *ctrlq;
1032 #ifdef TCP_OFFLOAD
1033 	struct sge_ofld_rxq *ofld_rxq;
1034 	struct sge_wrq *ofld_txq;
1035 #endif
1036 #ifdef DEV_NETMAP
1037 	int saved_idx;
1038 	struct sge_nm_rxq *nm_rxq;
1039 	struct sge_nm_txq *nm_txq;
1040 #endif
1041 	char name[16];
1042 	struct port_info *pi = vi->pi;
1043 	struct adapter *sc = pi->adapter;
1044 	struct ifnet *ifp = vi->ifp;
1045 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
1046 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1047 	int maxp, mtu = ifp->if_mtu;
1048 
1049 	/* Interrupt vector to start from (when using multiple vectors) */
1050 	intr_idx = first_vector(vi);
1051 
1052 #ifdef DEV_NETMAP
1053 	saved_idx = intr_idx;
1054 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1055 
1056 		/* netmap is supported with direct interrupts only. */
1057 		MPASS(vi->flags & INTR_RXQ);
1058 
1059 		/*
1060 		 * We don't have buffers to back the netmap rx queues
1061 		 * right now so we create the queues in a way that
1062 		 * doesn't set off any congestion signal in the chip.
1063 		 */
1064 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1065 		    CTLFLAG_RD, NULL, "rx queues");
1066 		for_each_nm_rxq(vi, i, nm_rxq) {
1067 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1068 			if (rc != 0)
1069 				goto done;
1070 			intr_idx++;
1071 		}
1072 
1073 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1074 		    CTLFLAG_RD, NULL, "tx queues");
1075 		for_each_nm_txq(vi, i, nm_txq) {
1076 			iqid = vi->first_nm_rxq + (i % vi->nnmrxq);
1077 			rc = alloc_nm_txq(vi, nm_txq, iqid, i, oid);
1078 			if (rc != 0)
1079 				goto done;
1080 		}
1081 	}
1082 
1083 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1084 	intr_idx = saved_idx;
1085 #endif
1086 
1087 	/*
1088 	 * First pass over all NIC and TOE rx queues:
1089 	 * a) initialize iq and fl
1090 	 * b) allocate queue iff it will take direct interrupts.
1091 	 */
1092 	maxp = mtu_to_max_payload(sc, mtu, 0);
1093 	if (vi->flags & INTR_RXQ) {
1094 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1095 		    CTLFLAG_RD, NULL, "rx queues");
1096 	}
1097 	for_each_rxq(vi, i, rxq) {
1098 
1099 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1100 
1101 		snprintf(name, sizeof(name), "%s rxq%d-fl",
1102 		    device_get_nameunit(vi->dev), i);
1103 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1104 
1105 		if (vi->flags & INTR_RXQ) {
1106 			rxq->iq.flags |= IQ_INTR;
1107 			rc = alloc_rxq(vi, rxq, intr_idx, i, oid);
1108 			if (rc != 0)
1109 				goto done;
1110 			intr_idx++;
1111 		}
1112 	}
1113 #ifdef DEV_NETMAP
1114 	if (ifp->if_capabilities & IFCAP_NETMAP)
1115 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1116 #endif
1117 #ifdef TCP_OFFLOAD
1118 	maxp = mtu_to_max_payload(sc, mtu, 1);
1119 	if (vi->flags & INTR_OFLD_RXQ) {
1120 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1121 		    CTLFLAG_RD, NULL,
1122 		    "rx queues for offloaded TCP connections");
1123 	}
1124 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1125 
1126 		init_iq(&ofld_rxq->iq, sc, vi->tmr_idx, vi->pktc_idx,
1127 		    vi->qsize_rxq);
1128 
1129 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1130 		    device_get_nameunit(vi->dev), i);
1131 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1132 
1133 		if (vi->flags & INTR_OFLD_RXQ) {
1134 			ofld_rxq->iq.flags |= IQ_INTR;
1135 			rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid);
1136 			if (rc != 0)
1137 				goto done;
1138 			intr_idx++;
1139 		}
1140 	}
1141 #endif
1142 
1143 	/*
1144 	 * Second pass over all NIC and TOE rx queues.  The queues forwarding
1145 	 * their interrupts are allocated now.
1146 	 */
1147 	j = 0;
1148 	if (!(vi->flags & INTR_RXQ)) {
1149 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1150 		    CTLFLAG_RD, NULL, "rx queues");
1151 		for_each_rxq(vi, i, rxq) {
1152 			MPASS(!(rxq->iq.flags & IQ_INTR));
1153 
1154 			intr_idx = vi_intr_iq(vi, j)->abs_id;
1155 
1156 			rc = alloc_rxq(vi, rxq, intr_idx, i, oid);
1157 			if (rc != 0)
1158 				goto done;
1159 			j++;
1160 		}
1161 	}
1162 #ifdef TCP_OFFLOAD
1163 	if (vi->nofldrxq != 0 && !(vi->flags & INTR_OFLD_RXQ)) {
1164 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1165 		    CTLFLAG_RD, NULL,
1166 		    "rx queues for offloaded TCP connections");
1167 		for_each_ofld_rxq(vi, i, ofld_rxq) {
1168 			MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
1169 
1170 			intr_idx = vi_intr_iq(vi, j)->abs_id;
1171 
1172 			rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid);
1173 			if (rc != 0)
1174 				goto done;
1175 			j++;
1176 		}
1177 	}
1178 #endif
1179 
1180 	/*
1181 	 * Now the tx queues.  Only one pass needed.
1182 	 */
1183 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1184 	    NULL, "tx queues");
1185 	j = 0;
1186 	for_each_txq(vi, i, txq) {
1187 		iqid = vi_intr_iq(vi, j)->cntxt_id;
1188 		snprintf(name, sizeof(name), "%s txq%d",
1189 		    device_get_nameunit(vi->dev), i);
1190 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, iqid,
1191 		    name);
1192 
1193 		rc = alloc_txq(vi, txq, i, oid);
1194 		if (rc != 0)
1195 			goto done;
1196 		j++;
1197 	}
1198 #ifdef TCP_OFFLOAD
1199 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1200 	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1201 	for_each_ofld_txq(vi, i, ofld_txq) {
1202 		struct sysctl_oid *oid2;
1203 
1204 		iqid = vi_intr_iq(vi, j)->cntxt_id;
1205 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1206 		    device_get_nameunit(vi->dev), i);
1207 		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1208 		    iqid, name);
1209 
1210 		snprintf(name, sizeof(name), "%d", i);
1211 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1212 		    name, CTLFLAG_RD, NULL, "offload tx queue");
1213 
1214 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1215 		if (rc != 0)
1216 			goto done;
1217 		j++;
1218 	}
1219 #endif
1220 
1221 	/*
1222 	 * Finally, the control queue.
1223 	 */
1224 	if (!IS_MAIN_VI(vi) || sc->flags & IS_VF)
1225 		goto done;
1226 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1227 	    NULL, "ctrl queue");
1228 	ctrlq = &sc->sge.ctrlq[pi->port_id];
1229 	iqid = vi_intr_iq(vi, 0)->cntxt_id;
1230 	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev));
1231 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid,
1232 	    name);
1233 	rc = alloc_wrq(sc, vi, ctrlq, oid);
1234 
1235 done:
1236 	if (rc)
1237 		t4_teardown_vi_queues(vi);
1238 
1239 	return (rc);
1240 }
1241 
1242 /*
1243  * Idempotent
1244  */
1245 int
1246 t4_teardown_vi_queues(struct vi_info *vi)
1247 {
1248 	int i;
1249 	struct port_info *pi = vi->pi;
1250 	struct adapter *sc = pi->adapter;
1251 	struct sge_rxq *rxq;
1252 	struct sge_txq *txq;
1253 #ifdef TCP_OFFLOAD
1254 	struct sge_ofld_rxq *ofld_rxq;
1255 	struct sge_wrq *ofld_txq;
1256 #endif
1257 #ifdef DEV_NETMAP
1258 	struct sge_nm_rxq *nm_rxq;
1259 	struct sge_nm_txq *nm_txq;
1260 #endif
1261 
1262 	/* Do this before freeing the queues */
1263 	if (vi->flags & VI_SYSCTL_CTX) {
1264 		sysctl_ctx_free(&vi->ctx);
1265 		vi->flags &= ~VI_SYSCTL_CTX;
1266 	}
1267 
1268 #ifdef DEV_NETMAP
1269 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1270 		for_each_nm_txq(vi, i, nm_txq) {
1271 			free_nm_txq(vi, nm_txq);
1272 		}
1273 
1274 		for_each_nm_rxq(vi, i, nm_rxq) {
1275 			free_nm_rxq(vi, nm_rxq);
1276 		}
1277 	}
1278 #endif
1279 
1280 	/*
1281 	 * Take down all the tx queues first, as they reference the rx queues
1282 	 * (for egress updates, etc.).
1283 	 */
1284 
1285 	if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
1286 		free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1287 
1288 	for_each_txq(vi, i, txq) {
1289 		free_txq(vi, txq);
1290 	}
1291 #ifdef TCP_OFFLOAD
1292 	for_each_ofld_txq(vi, i, ofld_txq) {
1293 		free_wrq(sc, ofld_txq);
1294 	}
1295 #endif
1296 
1297 	/*
1298 	 * Then take down the rx queues that forward their interrupts, as they
1299 	 * reference other rx queues.
1300 	 */
1301 
1302 	for_each_rxq(vi, i, rxq) {
1303 		if ((rxq->iq.flags & IQ_INTR) == 0)
1304 			free_rxq(vi, rxq);
1305 	}
1306 #ifdef TCP_OFFLOAD
1307 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1308 		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1309 			free_ofld_rxq(vi, ofld_rxq);
1310 	}
1311 #endif
1312 
1313 	/*
1314 	 * Then take down the rx queues that take direct interrupts.
1315 	 */
1316 
1317 	for_each_rxq(vi, i, rxq) {
1318 		if (rxq->iq.flags & IQ_INTR)
1319 			free_rxq(vi, rxq);
1320 	}
1321 #ifdef TCP_OFFLOAD
1322 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1323 		if (ofld_rxq->iq.flags & IQ_INTR)
1324 			free_ofld_rxq(vi, ofld_rxq);
1325 	}
1326 #endif
1327 
1328 	return (0);
1329 }
1330 
1331 /*
1332  * Deals with errors and the firmware event queue.  All data rx queues forward
1333  * their interrupt to the firmware event queue.
1334  */
1335 void
1336 t4_intr_all(void *arg)
1337 {
1338 	struct adapter *sc = arg;
1339 	struct sge_iq *fwq = &sc->sge.fwq;
1340 
1341 	t4_intr_err(arg);
1342 	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1343 		service_iq(fwq, 0);
1344 		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1345 	}
1346 }
1347 
1348 /* Deals with error interrupts */
1349 void
1350 t4_intr_err(void *arg)
1351 {
1352 	struct adapter *sc = arg;
1353 
1354 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1355 	t4_slow_intr_handler(sc);
1356 }
1357 
1358 void
1359 t4_intr_evt(void *arg)
1360 {
1361 	struct sge_iq *iq = arg;
1362 
1363 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1364 		service_iq(iq, 0);
1365 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1366 	}
1367 }
1368 
1369 void
1370 t4_intr(void *arg)
1371 {
1372 	struct sge_iq *iq = arg;
1373 
1374 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1375 		service_iq(iq, 0);
1376 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1377 	}
1378 }
1379 
1380 void
1381 t4_vi_intr(void *arg)
1382 {
1383 	struct irq *irq = arg;
1384 
1385 #ifdef DEV_NETMAP
1386 	if (atomic_cmpset_int(&irq->nm_state, NM_ON, NM_BUSY)) {
1387 		t4_nm_intr(irq->nm_rxq);
1388 		atomic_cmpset_int(&irq->nm_state, NM_BUSY, NM_ON);
1389 	}
1390 #endif
1391 	if (irq->rxq != NULL)
1392 		t4_intr(irq->rxq);
1393 }
1394 
1395 static inline int
1396 sort_before_lro(struct lro_ctrl *lro)
1397 {
1398 
1399 	return (lro->lro_mbuf_max != 0);
1400 }
1401 
1402 /*
1403  * Deals with anything and everything on the given ingress queue.
1404  */
1405 static int
1406 service_iq(struct sge_iq *iq, int budget)
1407 {
1408 	struct sge_iq *q;
1409 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1410 	struct sge_fl *fl;			/* Use iff IQ_HAS_FL */
1411 	struct adapter *sc = iq->adapter;
1412 	struct iq_desc *d = &iq->desc[iq->cidx];
1413 	int ndescs = 0, limit;
1414 	int rsp_type, refill;
1415 	uint32_t lq;
1416 	uint16_t fl_hw_cidx;
1417 	struct mbuf *m0;
1418 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1419 #if defined(INET) || defined(INET6)
1420 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1421 	struct lro_ctrl *lro = &rxq->lro;
1422 #endif
1423 
1424 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1425 
1426 	limit = budget ? budget : iq->qsize / 16;
1427 
1428 	if (iq->flags & IQ_HAS_FL) {
1429 		fl = &rxq->fl;
1430 		fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1431 	} else {
1432 		fl = NULL;
1433 		fl_hw_cidx = 0;			/* to silence gcc warning */
1434 	}
1435 
1436 #if defined(INET) || defined(INET6)
1437 	if (iq->flags & IQ_ADJ_CREDIT) {
1438 		MPASS(sort_before_lro(lro));
1439 		iq->flags &= ~IQ_ADJ_CREDIT;
1440 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1441 			tcp_lro_flush_all(lro);
1442 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1443 			    V_INGRESSQID((u32)iq->cntxt_id) |
1444 			    V_SEINTARM(iq->intr_params));
1445 			return (0);
1446 		}
1447 		ndescs = 1;
1448 	}
1449 #else
1450 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1451 #endif
1452 
1453 	/*
1454 	 * We always come back and check the descriptor ring for new indirect
1455 	 * interrupts and other responses after running a single handler.
1456 	 */
1457 	for (;;) {
1458 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1459 
1460 			rmb();
1461 
1462 			refill = 0;
1463 			m0 = NULL;
1464 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1465 			lq = be32toh(d->rsp.pldbuflen_qid);
1466 
1467 			switch (rsp_type) {
1468 			case X_RSPD_TYPE_FLBUF:
1469 
1470 				KASSERT(iq->flags & IQ_HAS_FL,
1471 				    ("%s: data for an iq (%p) with no freelist",
1472 				    __func__, iq));
1473 
1474 				m0 = get_fl_payload(sc, fl, lq);
1475 				if (__predict_false(m0 == NULL))
1476 					goto process_iql;
1477 				refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1478 #ifdef T4_PKT_TIMESTAMP
1479 				/*
1480 				 * 60 bit timestamp for the payload is
1481 				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1482 				 * in the leading free-space in the mbuf.  The
1483 				 * kernel can clobber it during a pullup,
1484 				 * m_copymdata, etc.  You need to make sure that
1485 				 * the mbuf reaches you unmolested if you care
1486 				 * about the timestamp.
1487 				 */
1488 				*(uint64_t *)m0->m_pktdat =
1489 				    be64toh(ctrl->u.last_flit) &
1490 				    0xfffffffffffffff;
1491 #endif
1492 
1493 				/* fall through */
1494 
1495 			case X_RSPD_TYPE_CPL:
1496 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1497 				    ("%s: bad opcode %02x.", __func__,
1498 				    d->rss.opcode));
1499 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1500 				break;
1501 
1502 			case X_RSPD_TYPE_INTR:
1503 
1504 				/*
1505 				 * Interrupts should be forwarded only to queues
1506 				 * that are not forwarding their interrupts.
1507 				 * This means service_iq can recurse but only 1
1508 				 * level deep.
1509 				 */
1510 				KASSERT(budget == 0,
1511 				    ("%s: budget %u, rsp_type %u", __func__,
1512 				    budget, rsp_type));
1513 
1514 				/*
1515 				 * There are 1K interrupt-capable queues (qids 0
1516 				 * through 1023).  A response type indicating a
1517 				 * forwarded interrupt with a qid >= 1K is an
1518 				 * iWARP async notification.
1519 				 */
1520 				if (lq >= 1024) {
1521                                         t4_an_handler(iq, &d->rsp);
1522                                         break;
1523                                 }
1524 
1525 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1526 				    sc->sge.iq_base];
1527 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1528 				    IQS_BUSY)) {
1529 					if (service_iq(q, q->qsize / 16) == 0) {
1530 						atomic_cmpset_int(&q->state,
1531 						    IQS_BUSY, IQS_IDLE);
1532 					} else {
1533 						STAILQ_INSERT_TAIL(&iql, q,
1534 						    link);
1535 					}
1536 				}
1537 				break;
1538 
1539 			default:
1540 				KASSERT(0,
1541 				    ("%s: illegal response type %d on iq %p",
1542 				    __func__, rsp_type, iq));
1543 				log(LOG_ERR,
1544 				    "%s: illegal response type %d on iq %p",
1545 				    device_get_nameunit(sc->dev), rsp_type, iq);
1546 				break;
1547 			}
1548 
1549 			d++;
1550 			if (__predict_false(++iq->cidx == iq->sidx)) {
1551 				iq->cidx = 0;
1552 				iq->gen ^= F_RSPD_GEN;
1553 				d = &iq->desc[0];
1554 			}
1555 			if (__predict_false(++ndescs == limit)) {
1556 				t4_write_reg(sc, sc->sge_gts_reg,
1557 				    V_CIDXINC(ndescs) |
1558 				    V_INGRESSQID(iq->cntxt_id) |
1559 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1560 				ndescs = 0;
1561 
1562 #if defined(INET) || defined(INET6)
1563 				if (iq->flags & IQ_LRO_ENABLED &&
1564 				    !sort_before_lro(lro) &&
1565 				    sc->lro_timeout != 0) {
1566 					tcp_lro_flush_inactive(lro,
1567 					    &lro_timeout);
1568 				}
1569 #endif
1570 
1571 				if (budget) {
1572 					if (iq->flags & IQ_HAS_FL) {
1573 						FL_LOCK(fl);
1574 						refill_fl(sc, fl, 32);
1575 						FL_UNLOCK(fl);
1576 					}
1577 					return (EINPROGRESS);
1578 				}
1579 			}
1580 			if (refill) {
1581 				FL_LOCK(fl);
1582 				refill_fl(sc, fl, 32);
1583 				FL_UNLOCK(fl);
1584 				fl_hw_cidx = fl->hw_cidx;
1585 			}
1586 		}
1587 
1588 process_iql:
1589 		if (STAILQ_EMPTY(&iql))
1590 			break;
1591 
1592 		/*
1593 		 * Process the head only, and send it to the back of the list if
1594 		 * it's still not done.
1595 		 */
1596 		q = STAILQ_FIRST(&iql);
1597 		STAILQ_REMOVE_HEAD(&iql, link);
1598 		if (service_iq(q, q->qsize / 8) == 0)
1599 			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1600 		else
1601 			STAILQ_INSERT_TAIL(&iql, q, link);
1602 	}
1603 
1604 #if defined(INET) || defined(INET6)
1605 	if (iq->flags & IQ_LRO_ENABLED) {
1606 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1607 			MPASS(sort_before_lro(lro));
1608 			/* hold back one credit and don't flush LRO state */
1609 			iq->flags |= IQ_ADJ_CREDIT;
1610 			ndescs--;
1611 		} else {
1612 			tcp_lro_flush_all(lro);
1613 		}
1614 	}
1615 #endif
1616 
1617 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1618 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1619 
1620 	if (iq->flags & IQ_HAS_FL) {
1621 		int starved;
1622 
1623 		FL_LOCK(fl);
1624 		starved = refill_fl(sc, fl, 64);
1625 		FL_UNLOCK(fl);
1626 		if (__predict_false(starved != 0))
1627 			add_fl_to_sfl(sc, fl);
1628 	}
1629 
1630 	return (0);
1631 }
1632 
1633 static inline int
1634 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1635 {
1636 	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1637 
1638 	if (rc)
1639 		MPASS(cll->region3 >= CL_METADATA_SIZE);
1640 
1641 	return (rc);
1642 }
1643 
1644 static inline struct cluster_metadata *
1645 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1646     caddr_t cl)
1647 {
1648 
1649 	if (cl_has_metadata(fl, cll)) {
1650 		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1651 
1652 		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1653 	}
1654 	return (NULL);
1655 }
1656 
1657 static void
1658 rxb_free(struct mbuf *m, void *arg1, void *arg2)
1659 {
1660 	uma_zone_t zone = arg1;
1661 	caddr_t cl = arg2;
1662 
1663 	uma_zfree(zone, cl);
1664 	counter_u64_add(extfree_rels, 1);
1665 }
1666 
1667 /*
1668  * The mbuf returned by this function could be allocated from zone_mbuf or
1669  * constructed in spare room in the cluster.
1670  *
1671  * The mbuf carries the payload in one of these ways
1672  * a) frame inside the mbuf (mbuf from zone_mbuf)
1673  * b) m_cljset (for clusters without metadata) zone_mbuf
1674  * c) m_extaddref (cluster with metadata) inline mbuf
1675  * d) m_extaddref (cluster with metadata) zone_mbuf
1676  */
1677 static struct mbuf *
1678 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1679     int remaining)
1680 {
1681 	struct mbuf *m;
1682 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1683 	struct cluster_layout *cll = &sd->cll;
1684 	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1685 	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1686 	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1687 	int len, blen;
1688 	caddr_t payload;
1689 
1690 	blen = hwb->size - fl->rx_offset;	/* max possible in this buf */
1691 	len = min(remaining, blen);
1692 	payload = sd->cl + cll->region1 + fl->rx_offset;
1693 	if (fl->flags & FL_BUF_PACKING) {
1694 		const u_int l = fr_offset + len;
1695 		const u_int pad = roundup2(l, fl->buf_boundary) - l;
1696 
1697 		if (fl->rx_offset + len + pad < hwb->size)
1698 			blen = len + pad;
1699 		MPASS(fl->rx_offset + blen <= hwb->size);
1700 	} else {
1701 		MPASS(fl->rx_offset == 0);	/* not packing */
1702 	}
1703 
1704 
1705 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1706 
1707 		/*
1708 		 * Copy payload into a freshly allocated mbuf.
1709 		 */
1710 
1711 		m = fr_offset == 0 ?
1712 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1713 		if (m == NULL)
1714 			return (NULL);
1715 		fl->mbuf_allocated++;
1716 #ifdef T4_PKT_TIMESTAMP
1717 		/* Leave room for a timestamp */
1718 		m->m_data += 8;
1719 #endif
1720 		/* copy data to mbuf */
1721 		bcopy(payload, mtod(m, caddr_t), len);
1722 
1723 	} else if (sd->nmbuf * MSIZE < cll->region1) {
1724 
1725 		/*
1726 		 * There's spare room in the cluster for an mbuf.  Create one
1727 		 * and associate it with the payload that's in the cluster.
1728 		 */
1729 
1730 		MPASS(clm != NULL);
1731 		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1732 		/* No bzero required */
1733 		if (m_init(m, M_NOWAIT, MT_DATA,
1734 		    fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
1735 			return (NULL);
1736 		fl->mbuf_inlined++;
1737 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
1738 		    swz->zone, sd->cl);
1739 		if (sd->nmbuf++ == 0)
1740 			counter_u64_add(extfree_refs, 1);
1741 
1742 	} else {
1743 
1744 		/*
1745 		 * Grab an mbuf from zone_mbuf and associate it with the
1746 		 * payload in the cluster.
1747 		 */
1748 
1749 		m = fr_offset == 0 ?
1750 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1751 		if (m == NULL)
1752 			return (NULL);
1753 		fl->mbuf_allocated++;
1754 		if (clm != NULL) {
1755 			m_extaddref(m, payload, blen, &clm->refcount,
1756 			    rxb_free, swz->zone, sd->cl);
1757 			if (sd->nmbuf++ == 0)
1758 				counter_u64_add(extfree_refs, 1);
1759 		} else {
1760 			m_cljset(m, sd->cl, swz->type);
1761 			sd->cl = NULL;	/* consumed, not a recycle candidate */
1762 		}
1763 	}
1764 	if (fr_offset == 0)
1765 		m->m_pkthdr.len = remaining;
1766 	m->m_len = len;
1767 
1768 	if (fl->flags & FL_BUF_PACKING) {
1769 		fl->rx_offset += blen;
1770 		MPASS(fl->rx_offset <= hwb->size);
1771 		if (fl->rx_offset < hwb->size)
1772 			return (m);	/* without advancing the cidx */
1773 	}
1774 
1775 	if (__predict_false(++fl->cidx % 8 == 0)) {
1776 		uint16_t cidx = fl->cidx / 8;
1777 
1778 		if (__predict_false(cidx == fl->sidx))
1779 			fl->cidx = cidx = 0;
1780 		fl->hw_cidx = cidx;
1781 	}
1782 	fl->rx_offset = 0;
1783 
1784 	return (m);
1785 }
1786 
1787 static struct mbuf *
1788 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1789 {
1790 	struct mbuf *m0, *m, **pnext;
1791 	u_int remaining;
1792 	const u_int total = G_RSPD_LEN(len_newbuf);
1793 
1794 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1795 		M_ASSERTPKTHDR(fl->m0);
1796 		MPASS(fl->m0->m_pkthdr.len == total);
1797 		MPASS(fl->remaining < total);
1798 
1799 		m0 = fl->m0;
1800 		pnext = fl->pnext;
1801 		remaining = fl->remaining;
1802 		fl->flags &= ~FL_BUF_RESUME;
1803 		goto get_segment;
1804 	}
1805 
1806 	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1807 		fl->rx_offset = 0;
1808 		if (__predict_false(++fl->cidx % 8 == 0)) {
1809 			uint16_t cidx = fl->cidx / 8;
1810 
1811 			if (__predict_false(cidx == fl->sidx))
1812 				fl->cidx = cidx = 0;
1813 			fl->hw_cidx = cidx;
1814 		}
1815 	}
1816 
1817 	/*
1818 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1819 	 * 'len' and it may span multiple hw buffers.
1820 	 */
1821 
1822 	m0 = get_scatter_segment(sc, fl, 0, total);
1823 	if (m0 == NULL)
1824 		return (NULL);
1825 	remaining = total - m0->m_len;
1826 	pnext = &m0->m_next;
1827 	while (remaining > 0) {
1828 get_segment:
1829 		MPASS(fl->rx_offset == 0);
1830 		m = get_scatter_segment(sc, fl, total - remaining, remaining);
1831 		if (__predict_false(m == NULL)) {
1832 			fl->m0 = m0;
1833 			fl->pnext = pnext;
1834 			fl->remaining = remaining;
1835 			fl->flags |= FL_BUF_RESUME;
1836 			return (NULL);
1837 		}
1838 		*pnext = m;
1839 		pnext = &m->m_next;
1840 		remaining -= m->m_len;
1841 	}
1842 	*pnext = NULL;
1843 
1844 	M_ASSERTPKTHDR(m0);
1845 	return (m0);
1846 }
1847 
1848 static int
1849 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1850 {
1851 	struct sge_rxq *rxq = iq_to_rxq(iq);
1852 	struct ifnet *ifp = rxq->ifp;
1853 	struct adapter *sc = iq->adapter;
1854 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1855 #if defined(INET) || defined(INET6)
1856 	struct lro_ctrl *lro = &rxq->lro;
1857 #endif
1858 	static const int sw_hashtype[4][2] = {
1859 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1860 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1861 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1862 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1863 	};
1864 
1865 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1866 	    rss->opcode));
1867 
1868 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1869 	m0->m_len -= sc->params.sge.fl_pktshift;
1870 	m0->m_data += sc->params.sge.fl_pktshift;
1871 
1872 	m0->m_pkthdr.rcvif = ifp;
1873 	M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
1874 	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1875 
1876 	if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) {
1877 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1878 		    cpl->l2info & htobe32(F_RXF_IP)) {
1879 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1880 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1881 			rxq->rxcsum++;
1882 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1883 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1884 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1885 			    CSUM_PSEUDO_HDR);
1886 			rxq->rxcsum++;
1887 		}
1888 
1889 		if (__predict_false(cpl->ip_frag))
1890 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1891 		else
1892 			m0->m_pkthdr.csum_data = 0xffff;
1893 	}
1894 
1895 	if (cpl->vlan_ex) {
1896 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1897 		m0->m_flags |= M_VLANTAG;
1898 		rxq->vlan_extraction++;
1899 	}
1900 
1901 #if defined(INET) || defined(INET6)
1902 	if (iq->flags & IQ_LRO_ENABLED) {
1903 		if (sort_before_lro(lro)) {
1904 			tcp_lro_queue_mbuf(lro, m0);
1905 			return (0); /* queued for sort, then LRO */
1906 		}
1907 		if (tcp_lro_rx(lro, m0, 0) == 0)
1908 			return (0); /* queued for LRO */
1909 	}
1910 #endif
1911 	ifp->if_input(ifp, m0);
1912 
1913 	return (0);
1914 }
1915 
1916 /*
1917  * Must drain the wrq or make sure that someone else will.
1918  */
1919 static void
1920 wrq_tx_drain(void *arg, int n)
1921 {
1922 	struct sge_wrq *wrq = arg;
1923 	struct sge_eq *eq = &wrq->eq;
1924 
1925 	EQ_LOCK(eq);
1926 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
1927 		drain_wrq_wr_list(wrq->adapter, wrq);
1928 	EQ_UNLOCK(eq);
1929 }
1930 
1931 static void
1932 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
1933 {
1934 	struct sge_eq *eq = &wrq->eq;
1935 	u_int available, dbdiff;	/* # of hardware descriptors */
1936 	u_int n;
1937 	struct wrqe *wr;
1938 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
1939 
1940 	EQ_LOCK_ASSERT_OWNED(eq);
1941 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
1942 	wr = STAILQ_FIRST(&wrq->wr_list);
1943 	MPASS(wr != NULL);	/* Must be called with something useful to do */
1944 	MPASS(eq->pidx == eq->dbidx);
1945 	dbdiff = 0;
1946 
1947 	do {
1948 		eq->cidx = read_hw_cidx(eq);
1949 		if (eq->pidx == eq->cidx)
1950 			available = eq->sidx - 1;
1951 		else
1952 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
1953 
1954 		MPASS(wr->wrq == wrq);
1955 		n = howmany(wr->wr_len, EQ_ESIZE);
1956 		if (available < n)
1957 			break;
1958 
1959 		dst = (void *)&eq->desc[eq->pidx];
1960 		if (__predict_true(eq->sidx - eq->pidx > n)) {
1961 			/* Won't wrap, won't end exactly at the status page. */
1962 			bcopy(&wr->wr[0], dst, wr->wr_len);
1963 			eq->pidx += n;
1964 		} else {
1965 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
1966 
1967 			bcopy(&wr->wr[0], dst, first_portion);
1968 			if (wr->wr_len > first_portion) {
1969 				bcopy(&wr->wr[first_portion], &eq->desc[0],
1970 				    wr->wr_len - first_portion);
1971 			}
1972 			eq->pidx = n - (eq->sidx - eq->pidx);
1973 		}
1974 		wrq->tx_wrs_copied++;
1975 
1976 		if (available < eq->sidx / 4 &&
1977 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
1978 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
1979 			    F_FW_WR_EQUEQ);
1980 			eq->equeqidx = eq->pidx;
1981 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
1982 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
1983 			eq->equeqidx = eq->pidx;
1984 		}
1985 
1986 		dbdiff += n;
1987 		if (dbdiff >= 16) {
1988 			ring_eq_db(sc, eq, dbdiff);
1989 			dbdiff = 0;
1990 		}
1991 
1992 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1993 		free_wrqe(wr);
1994 		MPASS(wrq->nwr_pending > 0);
1995 		wrq->nwr_pending--;
1996 		MPASS(wrq->ndesc_needed >= n);
1997 		wrq->ndesc_needed -= n;
1998 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
1999 
2000 	if (dbdiff)
2001 		ring_eq_db(sc, eq, dbdiff);
2002 }
2003 
2004 /*
2005  * Doesn't fail.  Holds on to work requests it can't send right away.
2006  */
2007 void
2008 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2009 {
2010 #ifdef INVARIANTS
2011 	struct sge_eq *eq = &wrq->eq;
2012 #endif
2013 
2014 	EQ_LOCK_ASSERT_OWNED(eq);
2015 	MPASS(wr != NULL);
2016 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2017 	MPASS((wr->wr_len & 0x7) == 0);
2018 
2019 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2020 	wrq->nwr_pending++;
2021 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2022 
2023 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2024 		return;	/* commit_wrq_wr will drain wr_list as well. */
2025 
2026 	drain_wrq_wr_list(sc, wrq);
2027 
2028 	/* Doorbell must have caught up to the pidx. */
2029 	MPASS(eq->pidx == eq->dbidx);
2030 }
2031 
2032 void
2033 t4_update_fl_bufsize(struct ifnet *ifp)
2034 {
2035 	struct vi_info *vi = ifp->if_softc;
2036 	struct adapter *sc = vi->pi->adapter;
2037 	struct sge_rxq *rxq;
2038 #ifdef TCP_OFFLOAD
2039 	struct sge_ofld_rxq *ofld_rxq;
2040 #endif
2041 	struct sge_fl *fl;
2042 	int i, maxp, mtu = ifp->if_mtu;
2043 
2044 	maxp = mtu_to_max_payload(sc, mtu, 0);
2045 	for_each_rxq(vi, i, rxq) {
2046 		fl = &rxq->fl;
2047 
2048 		FL_LOCK(fl);
2049 		find_best_refill_source(sc, fl, maxp);
2050 		FL_UNLOCK(fl);
2051 	}
2052 #ifdef TCP_OFFLOAD
2053 	maxp = mtu_to_max_payload(sc, mtu, 1);
2054 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2055 		fl = &ofld_rxq->fl;
2056 
2057 		FL_LOCK(fl);
2058 		find_best_refill_source(sc, fl, maxp);
2059 		FL_UNLOCK(fl);
2060 	}
2061 #endif
2062 }
2063 
2064 static inline int
2065 mbuf_nsegs(struct mbuf *m)
2066 {
2067 
2068 	M_ASSERTPKTHDR(m);
2069 	KASSERT(m->m_pkthdr.l5hlen > 0,
2070 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2071 
2072 	return (m->m_pkthdr.l5hlen);
2073 }
2074 
2075 static inline void
2076 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2077 {
2078 
2079 	M_ASSERTPKTHDR(m);
2080 	m->m_pkthdr.l5hlen = nsegs;
2081 }
2082 
2083 static inline int
2084 mbuf_len16(struct mbuf *m)
2085 {
2086 	int n;
2087 
2088 	M_ASSERTPKTHDR(m);
2089 	n = m->m_pkthdr.PH_loc.eight[0];
2090 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2091 
2092 	return (n);
2093 }
2094 
2095 static inline void
2096 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2097 {
2098 
2099 	M_ASSERTPKTHDR(m);
2100 	m->m_pkthdr.PH_loc.eight[0] = len16;
2101 }
2102 
2103 static inline int
2104 needs_tso(struct mbuf *m)
2105 {
2106 
2107 	M_ASSERTPKTHDR(m);
2108 
2109 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
2110 		KASSERT(m->m_pkthdr.tso_segsz > 0,
2111 		    ("%s: TSO requested in mbuf %p but MSS not provided",
2112 		    __func__, m));
2113 		return (1);
2114 	}
2115 
2116 	return (0);
2117 }
2118 
2119 static inline int
2120 needs_l3_csum(struct mbuf *m)
2121 {
2122 
2123 	M_ASSERTPKTHDR(m);
2124 
2125 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
2126 		return (1);
2127 	return (0);
2128 }
2129 
2130 static inline int
2131 needs_l4_csum(struct mbuf *m)
2132 {
2133 
2134 	M_ASSERTPKTHDR(m);
2135 
2136 	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2137 	    CSUM_TCP_IPV6 | CSUM_TSO))
2138 		return (1);
2139 	return (0);
2140 }
2141 
2142 static inline int
2143 needs_vlan_insertion(struct mbuf *m)
2144 {
2145 
2146 	M_ASSERTPKTHDR(m);
2147 
2148 	if (m->m_flags & M_VLANTAG) {
2149 		KASSERT(m->m_pkthdr.ether_vtag != 0,
2150 		    ("%s: HWVLAN requested in mbuf %p but tag not provided",
2151 		    __func__, m));
2152 		return (1);
2153 	}
2154 	return (0);
2155 }
2156 
2157 static void *
2158 m_advance(struct mbuf **pm, int *poffset, int len)
2159 {
2160 	struct mbuf *m = *pm;
2161 	int offset = *poffset;
2162 	uintptr_t p = 0;
2163 
2164 	MPASS(len > 0);
2165 
2166 	for (;;) {
2167 		if (offset + len < m->m_len) {
2168 			offset += len;
2169 			p = mtod(m, uintptr_t) + offset;
2170 			break;
2171 		}
2172 		len -= m->m_len - offset;
2173 		m = m->m_next;
2174 		offset = 0;
2175 		MPASS(m != NULL);
2176 	}
2177 	*poffset = offset;
2178 	*pm = m;
2179 	return ((void *)p);
2180 }
2181 
2182 /*
2183  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2184  * must have at least one mbuf that's not empty.
2185  */
2186 static inline int
2187 count_mbuf_nsegs(struct mbuf *m)
2188 {
2189 	vm_paddr_t lastb, next;
2190 	vm_offset_t va;
2191 	int len, nsegs;
2192 
2193 	MPASS(m != NULL);
2194 
2195 	nsegs = 0;
2196 	lastb = 0;
2197 	for (; m; m = m->m_next) {
2198 
2199 		len = m->m_len;
2200 		if (__predict_false(len == 0))
2201 			continue;
2202 		va = mtod(m, vm_offset_t);
2203 		next = pmap_kextract(va);
2204 		nsegs += sglist_count(m->m_data, len);
2205 		if (lastb + 1 == next)
2206 			nsegs--;
2207 		lastb = pmap_kextract(va + len - 1);
2208 	}
2209 
2210 	MPASS(nsegs > 0);
2211 	return (nsegs);
2212 }
2213 
2214 /*
2215  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2216  * a) caller can assume it's been freed if this function returns with an error.
2217  * b) it may get defragged up if the gather list is too long for the hardware.
2218  */
2219 int
2220 parse_pkt(struct adapter *sc, struct mbuf **mp)
2221 {
2222 	struct mbuf *m0 = *mp, *m;
2223 	int rc, nsegs, defragged = 0, offset;
2224 	struct ether_header *eh;
2225 	void *l3hdr;
2226 #if defined(INET) || defined(INET6)
2227 	struct tcphdr *tcp;
2228 #endif
2229 	uint16_t eh_type;
2230 
2231 	M_ASSERTPKTHDR(m0);
2232 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2233 		rc = EINVAL;
2234 fail:
2235 		m_freem(m0);
2236 		*mp = NULL;
2237 		return (rc);
2238 	}
2239 restart:
2240 	/*
2241 	 * First count the number of gather list segments in the payload.
2242 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2243 	 */
2244 	M_ASSERTPKTHDR(m0);
2245 	MPASS(m0->m_pkthdr.len > 0);
2246 	nsegs = count_mbuf_nsegs(m0);
2247 	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2248 		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2249 			rc = EFBIG;
2250 			goto fail;
2251 		}
2252 		*mp = m0 = m;	/* update caller's copy after defrag */
2253 		goto restart;
2254 	}
2255 
2256 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
2257 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2258 		if (m0 == NULL) {
2259 			/* Should have left well enough alone. */
2260 			rc = EFBIG;
2261 			goto fail;
2262 		}
2263 		*mp = m0;	/* update caller's copy after pullup */
2264 		goto restart;
2265 	}
2266 	set_mbuf_nsegs(m0, nsegs);
2267 	if (sc->flags & IS_VF)
2268 		set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0)));
2269 	else
2270 		set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2271 
2272 	if (!needs_tso(m0) &&
2273 	    !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0))))
2274 		return (0);
2275 
2276 	m = m0;
2277 	eh = mtod(m, struct ether_header *);
2278 	eh_type = ntohs(eh->ether_type);
2279 	if (eh_type == ETHERTYPE_VLAN) {
2280 		struct ether_vlan_header *evh = (void *)eh;
2281 
2282 		eh_type = ntohs(evh->evl_proto);
2283 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2284 	} else
2285 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2286 
2287 	offset = 0;
2288 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2289 
2290 	switch (eh_type) {
2291 #ifdef INET6
2292 	case ETHERTYPE_IPV6:
2293 	{
2294 		struct ip6_hdr *ip6 = l3hdr;
2295 
2296 		MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP);
2297 
2298 		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2299 		break;
2300 	}
2301 #endif
2302 #ifdef INET
2303 	case ETHERTYPE_IP:
2304 	{
2305 		struct ip *ip = l3hdr;
2306 
2307 		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2308 		break;
2309 	}
2310 #endif
2311 	default:
2312 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2313 		    " with the same INET/INET6 options as the kernel.",
2314 		    __func__, eh_type);
2315 	}
2316 
2317 #if defined(INET) || defined(INET6)
2318 	if (needs_tso(m0)) {
2319 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2320 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2321 	}
2322 #endif
2323 	MPASS(m0 == *mp);
2324 	return (0);
2325 }
2326 
2327 void *
2328 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2329 {
2330 	struct sge_eq *eq = &wrq->eq;
2331 	struct adapter *sc = wrq->adapter;
2332 	int ndesc, available;
2333 	struct wrqe *wr;
2334 	void *w;
2335 
2336 	MPASS(len16 > 0);
2337 	ndesc = howmany(len16, EQ_ESIZE / 16);
2338 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2339 
2340 	EQ_LOCK(eq);
2341 
2342 	if (!STAILQ_EMPTY(&wrq->wr_list))
2343 		drain_wrq_wr_list(sc, wrq);
2344 
2345 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2346 slowpath:
2347 		EQ_UNLOCK(eq);
2348 		wr = alloc_wrqe(len16 * 16, wrq);
2349 		if (__predict_false(wr == NULL))
2350 			return (NULL);
2351 		cookie->pidx = -1;
2352 		cookie->ndesc = ndesc;
2353 		return (&wr->wr);
2354 	}
2355 
2356 	eq->cidx = read_hw_cidx(eq);
2357 	if (eq->pidx == eq->cidx)
2358 		available = eq->sidx - 1;
2359 	else
2360 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2361 	if (available < ndesc)
2362 		goto slowpath;
2363 
2364 	cookie->pidx = eq->pidx;
2365 	cookie->ndesc = ndesc;
2366 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2367 
2368 	w = &eq->desc[eq->pidx];
2369 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2370 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2371 		w = &wrq->ss[0];
2372 		wrq->ss_pidx = cookie->pidx;
2373 		wrq->ss_len = len16 * 16;
2374 	}
2375 
2376 	EQ_UNLOCK(eq);
2377 
2378 	return (w);
2379 }
2380 
2381 void
2382 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2383 {
2384 	struct sge_eq *eq = &wrq->eq;
2385 	struct adapter *sc = wrq->adapter;
2386 	int ndesc, pidx;
2387 	struct wrq_cookie *prev, *next;
2388 
2389 	if (cookie->pidx == -1) {
2390 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2391 
2392 		t4_wrq_tx(sc, wr);
2393 		return;
2394 	}
2395 
2396 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2397 	pidx = cookie->pidx;
2398 	MPASS(pidx >= 0 && pidx < eq->sidx);
2399 	if (__predict_false(w == &wrq->ss[0])) {
2400 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2401 
2402 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2403 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2404 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2405 		wrq->tx_wrs_ss++;
2406 	} else
2407 		wrq->tx_wrs_direct++;
2408 
2409 	EQ_LOCK(eq);
2410 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2411 	next = TAILQ_NEXT(cookie, link);
2412 	if (prev == NULL) {
2413 		MPASS(pidx == eq->dbidx);
2414 		if (next == NULL || ndesc >= 16)
2415 			ring_eq_db(wrq->adapter, eq, ndesc);
2416 		else {
2417 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2418 			next->pidx = pidx;
2419 			next->ndesc += ndesc;
2420 		}
2421 	} else {
2422 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2423 		prev->ndesc += ndesc;
2424 	}
2425 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2426 
2427 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2428 		drain_wrq_wr_list(sc, wrq);
2429 
2430 #ifdef INVARIANTS
2431 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2432 		/* Doorbell must have caught up to the pidx. */
2433 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2434 	}
2435 #endif
2436 	EQ_UNLOCK(eq);
2437 }
2438 
2439 static u_int
2440 can_resume_eth_tx(struct mp_ring *r)
2441 {
2442 	struct sge_eq *eq = r->cookie;
2443 
2444 	return (total_available_tx_desc(eq) > eq->sidx / 8);
2445 }
2446 
2447 static inline int
2448 cannot_use_txpkts(struct mbuf *m)
2449 {
2450 	/* maybe put a GL limit too, to avoid silliness? */
2451 
2452 	return (needs_tso(m));
2453 }
2454 
2455 /*
2456  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2457  * be consumed.  Return the actual number consumed.  0 indicates a stall.
2458  */
2459 static u_int
2460 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2461 {
2462 	struct sge_txq *txq = r->cookie;
2463 	struct sge_eq *eq = &txq->eq;
2464 	struct ifnet *ifp = txq->ifp;
2465 	struct vi_info *vi = ifp->if_softc;
2466 	struct port_info *pi = vi->pi;
2467 	struct adapter *sc = pi->adapter;
2468 	u_int total, remaining;		/* # of packets */
2469 	u_int available, dbdiff;	/* # of hardware descriptors */
2470 	u_int n, next_cidx;
2471 	struct mbuf *m0, *tail;
2472 	struct txpkts txp;
2473 	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2474 
2475 	remaining = IDXDIFF(pidx, cidx, r->size);
2476 	MPASS(remaining > 0);	/* Must not be called without work to do. */
2477 	total = 0;
2478 
2479 	TXQ_LOCK(txq);
2480 	if (__predict_false((eq->flags & EQ_ENABLED) == 0)) {
2481 		while (cidx != pidx) {
2482 			m0 = r->items[cidx];
2483 			m_freem(m0);
2484 			if (++cidx == r->size)
2485 				cidx = 0;
2486 		}
2487 		reclaim_tx_descs(txq, 2048);
2488 		total = remaining;
2489 		goto done;
2490 	}
2491 
2492 	/* How many hardware descriptors do we have readily available. */
2493 	if (eq->pidx == eq->cidx)
2494 		available = eq->sidx - 1;
2495 	else
2496 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2497 	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2498 
2499 	while (remaining > 0) {
2500 
2501 		m0 = r->items[cidx];
2502 		M_ASSERTPKTHDR(m0);
2503 		MPASS(m0->m_nextpkt == NULL);
2504 
2505 		if (available < SGE_MAX_WR_NDESC) {
2506 			available += reclaim_tx_descs(txq, 64);
2507 			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2508 				break;	/* out of descriptors */
2509 		}
2510 
2511 		next_cidx = cidx + 1;
2512 		if (__predict_false(next_cidx == r->size))
2513 			next_cidx = 0;
2514 
2515 		wr = (void *)&eq->desc[eq->pidx];
2516 		if (sc->flags & IS_VF) {
2517 			total++;
2518 			remaining--;
2519 			ETHER_BPF_MTAP(ifp, m0);
2520 			n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0,
2521 			    available);
2522 		} else if (remaining > 1 &&
2523 		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2524 
2525 			/* pkts at cidx, next_cidx should both be in txp. */
2526 			MPASS(txp.npkt == 2);
2527 			tail = r->items[next_cidx];
2528 			MPASS(tail->m_nextpkt == NULL);
2529 			ETHER_BPF_MTAP(ifp, m0);
2530 			ETHER_BPF_MTAP(ifp, tail);
2531 			m0->m_nextpkt = tail;
2532 
2533 			if (__predict_false(++next_cidx == r->size))
2534 				next_cidx = 0;
2535 
2536 			while (next_cidx != pidx) {
2537 				if (add_to_txpkts(r->items[next_cidx], &txp,
2538 				    available) != 0)
2539 					break;
2540 				tail->m_nextpkt = r->items[next_cidx];
2541 				tail = tail->m_nextpkt;
2542 				ETHER_BPF_MTAP(ifp, tail);
2543 				if (__predict_false(++next_cidx == r->size))
2544 					next_cidx = 0;
2545 			}
2546 
2547 			n = write_txpkts_wr(txq, wr, m0, &txp, available);
2548 			total += txp.npkt;
2549 			remaining -= txp.npkt;
2550 		} else {
2551 			total++;
2552 			remaining--;
2553 			ETHER_BPF_MTAP(ifp, m0);
2554 			n = write_txpkt_wr(txq, (void *)wr, m0, available);
2555 		}
2556 		MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
2557 
2558 		available -= n;
2559 		dbdiff += n;
2560 		IDXINCR(eq->pidx, n, eq->sidx);
2561 
2562 		if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2563 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2564 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2565 			    F_FW_WR_EQUEQ);
2566 			eq->equeqidx = eq->pidx;
2567 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2568 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2569 			eq->equeqidx = eq->pidx;
2570 		}
2571 
2572 		if (dbdiff >= 16 && remaining >= 4) {
2573 			ring_eq_db(sc, eq, dbdiff);
2574 			available += reclaim_tx_descs(txq, 4 * dbdiff);
2575 			dbdiff = 0;
2576 		}
2577 
2578 		cidx = next_cidx;
2579 	}
2580 	if (dbdiff != 0) {
2581 		ring_eq_db(sc, eq, dbdiff);
2582 		reclaim_tx_descs(txq, 32);
2583 	}
2584 done:
2585 	TXQ_UNLOCK(txq);
2586 
2587 	return (total);
2588 }
2589 
2590 static inline void
2591 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2592     int qsize)
2593 {
2594 
2595 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2596 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2597 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2598 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2599 
2600 	iq->flags = 0;
2601 	iq->adapter = sc;
2602 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2603 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2604 	if (pktc_idx >= 0) {
2605 		iq->intr_params |= F_QINTR_CNT_EN;
2606 		iq->intr_pktc_idx = pktc_idx;
2607 	}
2608 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2609 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
2610 }
2611 
2612 static inline void
2613 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
2614 {
2615 
2616 	fl->qsize = qsize;
2617 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2618 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2619 	if (sc->flags & BUF_PACKING_OK &&
2620 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
2621 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
2622 		fl->flags |= FL_BUF_PACKING;
2623 	find_best_refill_source(sc, fl, maxp);
2624 	find_safe_refill_source(sc, fl);
2625 }
2626 
2627 static inline void
2628 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
2629     uint8_t tx_chan, uint16_t iqid, char *name)
2630 {
2631 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2632 
2633 	eq->flags = eqtype & EQ_TYPEMASK;
2634 	eq->tx_chan = tx_chan;
2635 	eq->iqid = iqid;
2636 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2637 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2638 }
2639 
2640 static int
2641 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2642     bus_dmamap_t *map, bus_addr_t *pa, void **va)
2643 {
2644 	int rc;
2645 
2646 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2647 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2648 	if (rc != 0) {
2649 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2650 		goto done;
2651 	}
2652 
2653 	rc = bus_dmamem_alloc(*tag, va,
2654 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2655 	if (rc != 0) {
2656 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2657 		goto done;
2658 	}
2659 
2660 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2661 	if (rc != 0) {
2662 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2663 		goto done;
2664 	}
2665 done:
2666 	if (rc)
2667 		free_ring(sc, *tag, *map, *pa, *va);
2668 
2669 	return (rc);
2670 }
2671 
2672 static int
2673 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2674     bus_addr_t pa, void *va)
2675 {
2676 	if (pa)
2677 		bus_dmamap_unload(tag, map);
2678 	if (va)
2679 		bus_dmamem_free(tag, va, map);
2680 	if (tag)
2681 		bus_dma_tag_destroy(tag);
2682 
2683 	return (0);
2684 }
2685 
2686 /*
2687  * Allocates the ring for an ingress queue and an optional freelist.  If the
2688  * freelist is specified it will be allocated and then associated with the
2689  * ingress queue.
2690  *
2691  * Returns errno on failure.  Resources allocated up to that point may still be
2692  * allocated.  Caller is responsible for cleanup in case this function fails.
2693  *
2694  * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2695  * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2696  * the abs_id of the ingress queue to which its interrupts should be forwarded.
2697  */
2698 static int
2699 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
2700     int intr_idx, int cong)
2701 {
2702 	int rc, i, cntxt_id;
2703 	size_t len;
2704 	struct fw_iq_cmd c;
2705 	struct port_info *pi = vi->pi;
2706 	struct adapter *sc = iq->adapter;
2707 	struct sge_params *sp = &sc->params.sge;
2708 	__be32 v = 0;
2709 
2710 	len = iq->qsize * IQ_ESIZE;
2711 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2712 	    (void **)&iq->desc);
2713 	if (rc != 0)
2714 		return (rc);
2715 
2716 	bzero(&c, sizeof(c));
2717 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2718 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2719 	    V_FW_IQ_CMD_VFN(0));
2720 
2721 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2722 	    FW_LEN16(c));
2723 
2724 	/* Special handling for firmware event queue */
2725 	if (iq == &sc->sge.fwq)
2726 		v |= F_FW_IQ_CMD_IQASYNCH;
2727 
2728 	if (iq->flags & IQ_INTR) {
2729 		KASSERT(intr_idx < sc->intr_count,
2730 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2731 	} else
2732 		v |= F_FW_IQ_CMD_IQANDST;
2733 	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2734 
2735 	c.type_to_iqandstindex = htobe32(v |
2736 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2737 	    V_FW_IQ_CMD_VIID(vi->viid) |
2738 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2739 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2740 	    F_FW_IQ_CMD_IQGTSMODE |
2741 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2742 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2743 	c.iqsize = htobe16(iq->qsize);
2744 	c.iqaddr = htobe64(iq->ba);
2745 	if (cong >= 0)
2746 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2747 
2748 	if (fl) {
2749 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2750 
2751 		len = fl->qsize * EQ_ESIZE;
2752 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2753 		    &fl->ba, (void **)&fl->desc);
2754 		if (rc)
2755 			return (rc);
2756 
2757 		/* Allocate space for one software descriptor per buffer. */
2758 		rc = alloc_fl_sdesc(fl);
2759 		if (rc != 0) {
2760 			device_printf(sc->dev,
2761 			    "failed to setup fl software descriptors: %d\n",
2762 			    rc);
2763 			return (rc);
2764 		}
2765 
2766 		if (fl->flags & FL_BUF_PACKING) {
2767 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
2768 			fl->buf_boundary = sp->pack_boundary;
2769 		} else {
2770 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
2771 			fl->buf_boundary = 16;
2772 		}
2773 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
2774 			fl->buf_boundary = sp->pad_boundary;
2775 
2776 		c.iqns_to_fl0congen |=
2777 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2778 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2779 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2780 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2781 			    0));
2782 		if (cong >= 0) {
2783 			c.iqns_to_fl0congen |=
2784 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2785 				    F_FW_IQ_CMD_FL0CONGCIF |
2786 				    F_FW_IQ_CMD_FL0CONGEN);
2787 		}
2788 		c.fl0dcaen_to_fl0cidxfthresh =
2789 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
2790 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) |
2791 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
2792 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
2793 		c.fl0size = htobe16(fl->qsize);
2794 		c.fl0addr = htobe64(fl->ba);
2795 	}
2796 
2797 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2798 	if (rc != 0) {
2799 		device_printf(sc->dev,
2800 		    "failed to create ingress queue: %d\n", rc);
2801 		return (rc);
2802 	}
2803 
2804 	iq->cidx = 0;
2805 	iq->gen = F_RSPD_GEN;
2806 	iq->intr_next = iq->intr_params;
2807 	iq->cntxt_id = be16toh(c.iqid);
2808 	iq->abs_id = be16toh(c.physiqid);
2809 	iq->flags |= IQ_ALLOCATED;
2810 
2811 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2812 	if (cntxt_id >= sc->sge.niq) {
2813 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2814 		    cntxt_id, sc->sge.niq - 1);
2815 	}
2816 	sc->sge.iqmap[cntxt_id] = iq;
2817 
2818 	if (fl) {
2819 		u_int qid;
2820 
2821 		iq->flags |= IQ_HAS_FL;
2822 		fl->cntxt_id = be16toh(c.fl0id);
2823 		fl->pidx = fl->cidx = 0;
2824 
2825 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2826 		if (cntxt_id >= sc->sge.neq) {
2827 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2828 			    __func__, cntxt_id, sc->sge.neq - 1);
2829 		}
2830 		sc->sge.eqmap[cntxt_id] = (void *)fl;
2831 
2832 		qid = fl->cntxt_id;
2833 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
2834 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
2835 			uint32_t mask = (1 << s_qpp) - 1;
2836 			volatile uint8_t *udb;
2837 
2838 			udb = sc->udbs_base + UDBS_DB_OFFSET;
2839 			udb += (qid >> s_qpp) << PAGE_SHIFT;
2840 			qid &= mask;
2841 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
2842 				udb += qid << UDBS_SEG_SHIFT;
2843 				qid = 0;
2844 			}
2845 			fl->udb = (volatile void *)udb;
2846 		}
2847 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
2848 
2849 		FL_LOCK(fl);
2850 		/* Enough to make sure the SGE doesn't think it's starved */
2851 		refill_fl(sc, fl, fl->lowat);
2852 		FL_UNLOCK(fl);
2853 	}
2854 
2855 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) {
2856 		uint32_t param, val;
2857 
2858 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2859 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2860 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2861 		if (cong == 0)
2862 			val = 1 << 19;
2863 		else {
2864 			val = 2 << 19;
2865 			for (i = 0; i < 4; i++) {
2866 				if (cong & (1 << i))
2867 					val |= 1 << (i << 2);
2868 			}
2869 		}
2870 
2871 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2872 		if (rc != 0) {
2873 			/* report error but carry on */
2874 			device_printf(sc->dev,
2875 			    "failed to set congestion manager context for "
2876 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2877 		}
2878 	}
2879 
2880 	/* Enable IQ interrupts */
2881 	atomic_store_rel_int(&iq->state, IQS_IDLE);
2882 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
2883 	    V_INGRESSQID(iq->cntxt_id));
2884 
2885 	return (0);
2886 }
2887 
2888 static int
2889 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
2890 {
2891 	int rc;
2892 	struct adapter *sc = iq->adapter;
2893 	device_t dev;
2894 
2895 	if (sc == NULL)
2896 		return (0);	/* nothing to do */
2897 
2898 	dev = vi ? vi->dev : sc->dev;
2899 
2900 	if (iq->flags & IQ_ALLOCATED) {
2901 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2902 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2903 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2904 		if (rc != 0) {
2905 			device_printf(dev,
2906 			    "failed to free queue %p: %d\n", iq, rc);
2907 			return (rc);
2908 		}
2909 		iq->flags &= ~IQ_ALLOCATED;
2910 	}
2911 
2912 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2913 
2914 	bzero(iq, sizeof(*iq));
2915 
2916 	if (fl) {
2917 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2918 		    fl->desc);
2919 
2920 		if (fl->sdesc)
2921 			free_fl_sdesc(sc, fl);
2922 
2923 		if (mtx_initialized(&fl->fl_lock))
2924 			mtx_destroy(&fl->fl_lock);
2925 
2926 		bzero(fl, sizeof(*fl));
2927 	}
2928 
2929 	return (0);
2930 }
2931 
2932 static void
2933 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
2934     struct sysctl_oid *oid, struct sge_fl *fl)
2935 {
2936 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2937 
2938 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2939 	    "freelist");
2940 	children = SYSCTL_CHILDREN(oid);
2941 
2942 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
2943 	    &fl->ba, "bus address of descriptor ring");
2944 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
2945 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
2946 	    "desc ring size in bytes");
2947 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2948 	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2949 	    "SGE context id of the freelist");
2950 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
2951 	    fl_pad ? 1 : 0, "padding enabled");
2952 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
2953 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
2954 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2955 	    0, "consumer index");
2956 	if (fl->flags & FL_BUF_PACKING) {
2957 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2958 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2959 	}
2960 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2961 	    0, "producer index");
2962 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2963 	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2964 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2965 	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2966 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2967 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2968 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2969 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2970 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2971 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2972 }
2973 
2974 static int
2975 alloc_fwq(struct adapter *sc)
2976 {
2977 	int rc, intr_idx;
2978 	struct sge_iq *fwq = &sc->sge.fwq;
2979 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2980 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2981 
2982 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
2983 	fwq->flags |= IQ_INTR;	/* always */
2984 	if (sc->flags & IS_VF)
2985 		intr_idx = 0;
2986 	else {
2987 		intr_idx = sc->intr_count > 1 ? 1 : 0;
2988 		fwq->set_tcb_rpl = t4_filter_rpl;
2989 		fwq->l2t_write_rpl = do_l2t_write_rpl;
2990 	}
2991 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
2992 	if (rc != 0) {
2993 		device_printf(sc->dev,
2994 		    "failed to create firmware event queue: %d\n", rc);
2995 		return (rc);
2996 	}
2997 
2998 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2999 	    NULL, "firmware event queue");
3000 	children = SYSCTL_CHILDREN(oid);
3001 
3002 	SYSCTL_ADD_UAUTO(&sc->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3003 	    &fwq->ba, "bus address of descriptor ring");
3004 	SYSCTL_ADD_INT(&sc->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3005 	    fwq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3006 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
3007 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
3008 	    "absolute id of the queue");
3009 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
3010 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
3011 	    "SGE context id of the queue");
3012 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
3013 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
3014 	    "consumer index");
3015 
3016 	return (0);
3017 }
3018 
3019 static int
3020 free_fwq(struct adapter *sc)
3021 {
3022 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
3023 }
3024 
3025 static int
3026 alloc_mgmtq(struct adapter *sc)
3027 {
3028 	int rc;
3029 	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
3030 	char name[16];
3031 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
3032 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3033 
3034 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
3035 	    NULL, "management queue");
3036 
3037 	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
3038 	init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
3039 	    sc->sge.fwq.cntxt_id, name);
3040 	rc = alloc_wrq(sc, NULL, mgmtq, oid);
3041 	if (rc != 0) {
3042 		device_printf(sc->dev,
3043 		    "failed to create management queue: %d\n", rc);
3044 		return (rc);
3045 	}
3046 
3047 	return (0);
3048 }
3049 
3050 static int
3051 free_mgmtq(struct adapter *sc)
3052 {
3053 
3054 	return free_wrq(sc, &sc->sge.mgmtq);
3055 }
3056 
3057 int
3058 tnl_cong(struct port_info *pi, int drop)
3059 {
3060 
3061 	if (drop == -1)
3062 		return (-1);
3063 	else if (drop == 1)
3064 		return (0);
3065 	else
3066 		return (pi->rx_chan_map);
3067 }
3068 
3069 static int
3070 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
3071     struct sysctl_oid *oid)
3072 {
3073 	int rc;
3074 	struct adapter *sc = vi->pi->adapter;
3075 	struct sysctl_oid_list *children;
3076 	char name[16];
3077 
3078 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
3079 	    tnl_cong(vi->pi, cong_drop));
3080 	if (rc != 0)
3081 		return (rc);
3082 
3083 	if (idx == 0)
3084 		sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3085 	else
3086 		KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3087 		    ("iq_base mismatch"));
3088 	KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3089 	    ("PF with non-zero iq_base"));
3090 
3091 	/*
3092 	 * The freelist is just barely above the starvation threshold right now,
3093 	 * fill it up a bit more.
3094 	 */
3095 	FL_LOCK(&rxq->fl);
3096 	refill_fl(sc, &rxq->fl, 128);
3097 	FL_UNLOCK(&rxq->fl);
3098 
3099 #if defined(INET) || defined(INET6)
3100 	rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs);
3101 	if (rc != 0)
3102 		return (rc);
3103 	MPASS(rxq->lro.ifp == vi->ifp);	/* also indicates LRO init'ed */
3104 
3105 	if (vi->ifp->if_capenable & IFCAP_LRO)
3106 		rxq->iq.flags |= IQ_LRO_ENABLED;
3107 #endif
3108 	rxq->ifp = vi->ifp;
3109 
3110 	children = SYSCTL_CHILDREN(oid);
3111 
3112 	snprintf(name, sizeof(name), "%d", idx);
3113 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3114 	    NULL, "rx queue");
3115 	children = SYSCTL_CHILDREN(oid);
3116 
3117 	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3118 	    &rxq->iq.ba, "bus address of descriptor ring");
3119 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3120 	    rxq->iq.qsize * IQ_ESIZE, "descriptor ring size in bytes");
3121 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id",
3122 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
3123 	    "absolute id of the queue");
3124 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id",
3125 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
3126 	    "SGE context id of the queue");
3127 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3128 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
3129 	    "consumer index");
3130 #if defined(INET) || defined(INET6)
3131 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3132 	    &rxq->lro.lro_queued, 0, NULL);
3133 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3134 	    &rxq->lro.lro_flushed, 0, NULL);
3135 #endif
3136 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3137 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3138 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3139 	    CTLFLAG_RD, &rxq->vlan_extraction,
3140 	    "# of times hardware extracted 802.1Q tag");
3141 
3142 	add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl);
3143 
3144 	return (rc);
3145 }
3146 
3147 static int
3148 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3149 {
3150 	int rc;
3151 
3152 #if defined(INET) || defined(INET6)
3153 	if (rxq->lro.ifp) {
3154 		tcp_lro_free(&rxq->lro);
3155 		rxq->lro.ifp = NULL;
3156 	}
3157 #endif
3158 
3159 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3160 	if (rc == 0)
3161 		bzero(rxq, sizeof(*rxq));
3162 
3163 	return (rc);
3164 }
3165 
3166 #ifdef TCP_OFFLOAD
3167 static int
3168 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3169     int intr_idx, int idx, struct sysctl_oid *oid)
3170 {
3171 	struct port_info *pi = vi->pi;
3172 	int rc;
3173 	struct sysctl_oid_list *children;
3174 	char name[16];
3175 
3176 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
3177 	    pi->rx_chan_map);
3178 	if (rc != 0)
3179 		return (rc);
3180 
3181 	children = SYSCTL_CHILDREN(oid);
3182 
3183 	snprintf(name, sizeof(name), "%d", idx);
3184 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3185 	    NULL, "rx queue");
3186 	children = SYSCTL_CHILDREN(oid);
3187 
3188 	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3189 	    &ofld_rxq->iq.ba, "bus address of descriptor ring");
3190 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3191 	    ofld_rxq->iq.qsize * IQ_ESIZE, "descriptor ring size in bytes");
3192 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id",
3193 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
3194 	    "I", "absolute id of the queue");
3195 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id",
3196 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
3197 	    "I", "SGE context id of the queue");
3198 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3199 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
3200 	    "consumer index");
3201 
3202 	add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl);
3203 
3204 	return (rc);
3205 }
3206 
3207 static int
3208 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3209 {
3210 	int rc;
3211 
3212 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3213 	if (rc == 0)
3214 		bzero(ofld_rxq, sizeof(*ofld_rxq));
3215 
3216 	return (rc);
3217 }
3218 #endif
3219 
3220 #ifdef DEV_NETMAP
3221 static int
3222 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3223     int idx, struct sysctl_oid *oid)
3224 {
3225 	int rc;
3226 	struct sysctl_oid_list *children;
3227 	struct sysctl_ctx_list *ctx;
3228 	char name[16];
3229 	size_t len;
3230 	struct adapter *sc = vi->pi->adapter;
3231 	struct netmap_adapter *na = NA(vi->ifp);
3232 
3233 	MPASS(na != NULL);
3234 
3235 	len = vi->qsize_rxq * IQ_ESIZE;
3236 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3237 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3238 	if (rc != 0)
3239 		return (rc);
3240 
3241 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3242 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3243 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3244 	if (rc != 0)
3245 		return (rc);
3246 
3247 	nm_rxq->vi = vi;
3248 	nm_rxq->nid = idx;
3249 	nm_rxq->iq_cidx = 0;
3250 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3251 	nm_rxq->iq_gen = F_RSPD_GEN;
3252 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3253 	nm_rxq->fl_sidx = na->num_rx_desc;
3254 	nm_rxq->intr_idx = intr_idx;
3255 
3256 	ctx = &vi->ctx;
3257 	children = SYSCTL_CHILDREN(oid);
3258 
3259 	snprintf(name, sizeof(name), "%d", idx);
3260 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3261 	    "rx queue");
3262 	children = SYSCTL_CHILDREN(oid);
3263 
3264 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3265 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3266 	    "I", "absolute id of the queue");
3267 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3268 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3269 	    "I", "SGE context id of the queue");
3270 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3271 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3272 	    "consumer index");
3273 
3274 	children = SYSCTL_CHILDREN(oid);
3275 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3276 	    "freelist");
3277 	children = SYSCTL_CHILDREN(oid);
3278 
3279 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3280 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3281 	    "I", "SGE context id of the freelist");
3282 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3283 	    &nm_rxq->fl_cidx, 0, "consumer index");
3284 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3285 	    &nm_rxq->fl_pidx, 0, "producer index");
3286 
3287 	return (rc);
3288 }
3289 
3290 
3291 static int
3292 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3293 {
3294 	struct adapter *sc = vi->pi->adapter;
3295 
3296 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3297 	    nm_rxq->iq_desc);
3298 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3299 	    nm_rxq->fl_desc);
3300 
3301 	return (0);
3302 }
3303 
3304 static int
3305 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3306     struct sysctl_oid *oid)
3307 {
3308 	int rc;
3309 	size_t len;
3310 	struct port_info *pi = vi->pi;
3311 	struct adapter *sc = pi->adapter;
3312 	struct netmap_adapter *na = NA(vi->ifp);
3313 	char name[16];
3314 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3315 
3316 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3317 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3318 	    &nm_txq->ba, (void **)&nm_txq->desc);
3319 	if (rc)
3320 		return (rc);
3321 
3322 	nm_txq->pidx = nm_txq->cidx = 0;
3323 	nm_txq->sidx = na->num_tx_desc;
3324 	nm_txq->nid = idx;
3325 	nm_txq->iqidx = iqidx;
3326 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3327 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) |
3328 	    V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) |
3329 	    V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid)));
3330 
3331 	snprintf(name, sizeof(name), "%d", idx);
3332 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3333 	    NULL, "netmap tx queue");
3334 	children = SYSCTL_CHILDREN(oid);
3335 
3336 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3337 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3338 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3339 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3340 	    "consumer index");
3341 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3342 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3343 	    "producer index");
3344 
3345 	return (rc);
3346 }
3347 
3348 static int
3349 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3350 {
3351 	struct adapter *sc = vi->pi->adapter;
3352 
3353 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3354 	    nm_txq->desc);
3355 
3356 	return (0);
3357 }
3358 #endif
3359 
3360 static int
3361 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3362 {
3363 	int rc, cntxt_id;
3364 	struct fw_eq_ctrl_cmd c;
3365 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3366 
3367 	bzero(&c, sizeof(c));
3368 
3369 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3370 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3371 	    V_FW_EQ_CTRL_CMD_VFN(0));
3372 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3373 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3374 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3375 	c.physeqid_pkd = htobe32(0);
3376 	c.fetchszm_to_iqid =
3377 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3378 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3379 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3380 	c.dcaen_to_eqsize =
3381 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3382 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3383 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
3384 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3385 	c.eqaddr = htobe64(eq->ba);
3386 
3387 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3388 	if (rc != 0) {
3389 		device_printf(sc->dev,
3390 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3391 		return (rc);
3392 	}
3393 	eq->flags |= EQ_ALLOCATED;
3394 
3395 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3396 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3397 	if (cntxt_id >= sc->sge.neq)
3398 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3399 		cntxt_id, sc->sge.neq - 1);
3400 	sc->sge.eqmap[cntxt_id] = eq;
3401 
3402 	return (rc);
3403 }
3404 
3405 static int
3406 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3407 {
3408 	int rc, cntxt_id;
3409 	struct fw_eq_eth_cmd c;
3410 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3411 
3412 	bzero(&c, sizeof(c));
3413 
3414 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3415 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3416 	    V_FW_EQ_ETH_CMD_VFN(0));
3417 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3418 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3419 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3420 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3421 	c.fetchszm_to_iqid =
3422 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3423 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3424 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3425 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3426 	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3427 	    V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3428 	c.eqaddr = htobe64(eq->ba);
3429 
3430 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3431 	if (rc != 0) {
3432 		device_printf(vi->dev,
3433 		    "failed to create Ethernet egress queue: %d\n", rc);
3434 		return (rc);
3435 	}
3436 	eq->flags |= EQ_ALLOCATED;
3437 
3438 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3439 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
3440 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3441 	if (cntxt_id >= sc->sge.neq)
3442 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3443 		cntxt_id, sc->sge.neq - 1);
3444 	sc->sge.eqmap[cntxt_id] = eq;
3445 
3446 	return (rc);
3447 }
3448 
3449 #ifdef TCP_OFFLOAD
3450 static int
3451 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3452 {
3453 	int rc, cntxt_id;
3454 	struct fw_eq_ofld_cmd c;
3455 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3456 
3457 	bzero(&c, sizeof(c));
3458 
3459 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3460 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3461 	    V_FW_EQ_OFLD_CMD_VFN(0));
3462 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3463 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3464 	c.fetchszm_to_iqid =
3465 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3466 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3467 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3468 	c.dcaen_to_eqsize =
3469 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3470 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3471 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3472 	c.eqaddr = htobe64(eq->ba);
3473 
3474 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3475 	if (rc != 0) {
3476 		device_printf(vi->dev,
3477 		    "failed to create egress queue for TCP offload: %d\n", rc);
3478 		return (rc);
3479 	}
3480 	eq->flags |= EQ_ALLOCATED;
3481 
3482 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3483 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3484 	if (cntxt_id >= sc->sge.neq)
3485 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3486 		cntxt_id, sc->sge.neq - 1);
3487 	sc->sge.eqmap[cntxt_id] = eq;
3488 
3489 	return (rc);
3490 }
3491 #endif
3492 
3493 static int
3494 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3495 {
3496 	int rc, qsize;
3497 	size_t len;
3498 
3499 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3500 
3501 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3502 	len = qsize * EQ_ESIZE;
3503 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3504 	    &eq->ba, (void **)&eq->desc);
3505 	if (rc)
3506 		return (rc);
3507 
3508 	eq->pidx = eq->cidx = 0;
3509 	eq->equeqidx = eq->dbidx = 0;
3510 	eq->doorbells = sc->doorbells;
3511 
3512 	switch (eq->flags & EQ_TYPEMASK) {
3513 	case EQ_CTRL:
3514 		rc = ctrl_eq_alloc(sc, eq);
3515 		break;
3516 
3517 	case EQ_ETH:
3518 		rc = eth_eq_alloc(sc, vi, eq);
3519 		break;
3520 
3521 #ifdef TCP_OFFLOAD
3522 	case EQ_OFLD:
3523 		rc = ofld_eq_alloc(sc, vi, eq);
3524 		break;
3525 #endif
3526 
3527 	default:
3528 		panic("%s: invalid eq type %d.", __func__,
3529 		    eq->flags & EQ_TYPEMASK);
3530 	}
3531 	if (rc != 0) {
3532 		device_printf(sc->dev,
3533 		    "failed to allocate egress queue(%d): %d\n",
3534 		    eq->flags & EQ_TYPEMASK, rc);
3535 	}
3536 
3537 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3538 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3539 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3540 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3541 		uint32_t mask = (1 << s_qpp) - 1;
3542 		volatile uint8_t *udb;
3543 
3544 		udb = sc->udbs_base + UDBS_DB_OFFSET;
3545 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3546 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3547 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3548 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3549 		else {
3550 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3551 			eq->udb_qid = 0;
3552 		}
3553 		eq->udb = (volatile void *)udb;
3554 	}
3555 
3556 	return (rc);
3557 }
3558 
3559 static int
3560 free_eq(struct adapter *sc, struct sge_eq *eq)
3561 {
3562 	int rc;
3563 
3564 	if (eq->flags & EQ_ALLOCATED) {
3565 		switch (eq->flags & EQ_TYPEMASK) {
3566 		case EQ_CTRL:
3567 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3568 			    eq->cntxt_id);
3569 			break;
3570 
3571 		case EQ_ETH:
3572 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3573 			    eq->cntxt_id);
3574 			break;
3575 
3576 #ifdef TCP_OFFLOAD
3577 		case EQ_OFLD:
3578 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3579 			    eq->cntxt_id);
3580 			break;
3581 #endif
3582 
3583 		default:
3584 			panic("%s: invalid eq type %d.", __func__,
3585 			    eq->flags & EQ_TYPEMASK);
3586 		}
3587 		if (rc != 0) {
3588 			device_printf(sc->dev,
3589 			    "failed to free egress queue (%d): %d\n",
3590 			    eq->flags & EQ_TYPEMASK, rc);
3591 			return (rc);
3592 		}
3593 		eq->flags &= ~EQ_ALLOCATED;
3594 	}
3595 
3596 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3597 
3598 	if (mtx_initialized(&eq->eq_lock))
3599 		mtx_destroy(&eq->eq_lock);
3600 
3601 	bzero(eq, sizeof(*eq));
3602 	return (0);
3603 }
3604 
3605 static int
3606 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
3607     struct sysctl_oid *oid)
3608 {
3609 	int rc;
3610 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
3611 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3612 
3613 	rc = alloc_eq(sc, vi, &wrq->eq);
3614 	if (rc)
3615 		return (rc);
3616 
3617 	wrq->adapter = sc;
3618 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
3619 	TAILQ_INIT(&wrq->incomplete_wrs);
3620 	STAILQ_INIT(&wrq->wr_list);
3621 	wrq->nwr_pending = 0;
3622 	wrq->ndesc_needed = 0;
3623 
3624 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3625 	    &wrq->eq.ba, "bus address of descriptor ring");
3626 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3627 	    wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len,
3628 	    "desc ring size in bytes");
3629 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3630 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3631 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3632 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3633 	    "consumer index");
3634 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3635 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3636 	    "producer index");
3637 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3638 	    wrq->eq.sidx, "status page index");
3639 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
3640 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
3641 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
3642 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
3643 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
3644 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
3645 
3646 	return (rc);
3647 }
3648 
3649 static int
3650 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3651 {
3652 	int rc;
3653 
3654 	rc = free_eq(sc, &wrq->eq);
3655 	if (rc)
3656 		return (rc);
3657 
3658 	bzero(wrq, sizeof(*wrq));
3659 	return (0);
3660 }
3661 
3662 static int
3663 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
3664     struct sysctl_oid *oid)
3665 {
3666 	int rc;
3667 	struct port_info *pi = vi->pi;
3668 	struct adapter *sc = pi->adapter;
3669 	struct sge_eq *eq = &txq->eq;
3670 	char name[16];
3671 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3672 
3673 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
3674 	    M_CXGBE, M_WAITOK);
3675 	if (rc != 0) {
3676 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
3677 		return (rc);
3678 	}
3679 
3680 	rc = alloc_eq(sc, vi, eq);
3681 	if (rc != 0) {
3682 		mp_ring_free(txq->r);
3683 		txq->r = NULL;
3684 		return (rc);
3685 	}
3686 
3687 	/* Can't fail after this point. */
3688 
3689 	if (idx == 0)
3690 		sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
3691 	else
3692 		KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
3693 		    ("eq_base mismatch"));
3694 	KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
3695 	    ("PF with non-zero eq_base"));
3696 
3697 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
3698 	txq->ifp = vi->ifp;
3699 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
3700 	if (sc->flags & IS_VF)
3701 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
3702 		    V_TXPKT_INTF(pi->tx_chan));
3703 	else
3704 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3705 		    V_TXPKT_INTF(pi->tx_chan) |
3706 		    V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) |
3707 		    V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) |
3708 		    V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid)));
3709 	txq->tc_idx = -1;
3710 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
3711 	    M_ZERO | M_WAITOK);
3712 
3713 	snprintf(name, sizeof(name), "%d", idx);
3714 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3715 	    NULL, "tx queue");
3716 	children = SYSCTL_CHILDREN(oid);
3717 
3718 	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3719 	    &eq->ba, "bus address of descriptor ring");
3720 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3721 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3722 	    "desc ring size in bytes");
3723 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3724 	    &eq->abs_id, 0, "absolute id of the queue");
3725 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3726 	    &eq->cntxt_id, 0, "SGE context id of the queue");
3727 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3728 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3729 	    "consumer index");
3730 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3731 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3732 	    "producer index");
3733 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3734 	    eq->sidx, "status page index");
3735 
3736 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
3737 	    CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I",
3738 	    "traffic class (-1 means none)");
3739 
3740 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3741 	    &txq->txcsum, "# of times hardware assisted with checksum");
3742 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
3743 	    CTLFLAG_RD, &txq->vlan_insertion,
3744 	    "# of times hardware inserted 802.1Q tag");
3745 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3746 	    &txq->tso_wrs, "# of TSO work requests");
3747 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3748 	    &txq->imm_wrs, "# of work requests with immediate data");
3749 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3750 	    &txq->sgl_wrs, "# of work requests with direct SGL");
3751 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3752 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3753 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
3754 	    CTLFLAG_RD, &txq->txpkts0_wrs,
3755 	    "# of txpkts (type 0) work requests");
3756 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
3757 	    CTLFLAG_RD, &txq->txpkts1_wrs,
3758 	    "# of txpkts (type 1) work requests");
3759 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
3760 	    CTLFLAG_RD, &txq->txpkts0_pkts,
3761 	    "# of frames tx'd using type0 txpkts work requests");
3762 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
3763 	    CTLFLAG_RD, &txq->txpkts1_pkts,
3764 	    "# of frames tx'd using type1 txpkts work requests");
3765 
3766 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
3767 	    CTLFLAG_RD, &txq->r->enqueues,
3768 	    "# of enqueues to the mp_ring for this queue");
3769 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
3770 	    CTLFLAG_RD, &txq->r->drops,
3771 	    "# of drops in the mp_ring for this queue");
3772 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
3773 	    CTLFLAG_RD, &txq->r->starts,
3774 	    "# of normal consumer starts in the mp_ring for this queue");
3775 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
3776 	    CTLFLAG_RD, &txq->r->stalls,
3777 	    "# of consumer stalls in the mp_ring for this queue");
3778 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
3779 	    CTLFLAG_RD, &txq->r->restarts,
3780 	    "# of consumer restarts in the mp_ring for this queue");
3781 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
3782 	    CTLFLAG_RD, &txq->r->abdications,
3783 	    "# of consumer abdications in the mp_ring for this queue");
3784 
3785 	return (0);
3786 }
3787 
3788 static int
3789 free_txq(struct vi_info *vi, struct sge_txq *txq)
3790 {
3791 	int rc;
3792 	struct adapter *sc = vi->pi->adapter;
3793 	struct sge_eq *eq = &txq->eq;
3794 
3795 	rc = free_eq(sc, eq);
3796 	if (rc)
3797 		return (rc);
3798 
3799 	sglist_free(txq->gl);
3800 	free(txq->sdesc, M_CXGBE);
3801 	mp_ring_free(txq->r);
3802 
3803 	bzero(txq, sizeof(*txq));
3804 	return (0);
3805 }
3806 
3807 static void
3808 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3809 {
3810 	bus_addr_t *ba = arg;
3811 
3812 	KASSERT(nseg == 1,
3813 	    ("%s meant for single segment mappings only.", __func__));
3814 
3815 	*ba = error ? 0 : segs->ds_addr;
3816 }
3817 
3818 static inline void
3819 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3820 {
3821 	uint32_t n, v;
3822 
3823 	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
3824 	MPASS(n > 0);
3825 
3826 	wmb();
3827 	v = fl->dbval | V_PIDX(n);
3828 	if (fl->udb)
3829 		*fl->udb = htole32(v);
3830 	else
3831 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
3832 	IDXINCR(fl->dbidx, n, fl->sidx);
3833 }
3834 
3835 /*
3836  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
3837  * recycled do not count towards this allocation budget.
3838  *
3839  * Returns non-zero to indicate that this freelist should be added to the list
3840  * of starving freelists.
3841  */
3842 static int
3843 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
3844 {
3845 	__be64 *d;
3846 	struct fl_sdesc *sd;
3847 	uintptr_t pa;
3848 	caddr_t cl;
3849 	struct cluster_layout *cll;
3850 	struct sw_zone_info *swz;
3851 	struct cluster_metadata *clm;
3852 	uint16_t max_pidx;
3853 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
3854 
3855 	FL_LOCK_ASSERT_OWNED(fl);
3856 
3857 	/*
3858 	 * We always stop at the beginning of the hardware descriptor that's just
3859 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
3860 	 * which would mean an empty freelist to the chip.
3861 	 */
3862 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
3863 	if (fl->pidx == max_pidx * 8)
3864 		return (0);
3865 
3866 	d = &fl->desc[fl->pidx];
3867 	sd = &fl->sdesc[fl->pidx];
3868 	cll = &fl->cll_def;	/* default layout */
3869 	swz = &sc->sge.sw_zone_info[cll->zidx];
3870 
3871 	while (n > 0) {
3872 
3873 		if (sd->cl != NULL) {
3874 
3875 			if (sd->nmbuf == 0) {
3876 				/*
3877 				 * Fast recycle without involving any atomics on
3878 				 * the cluster's metadata (if the cluster has
3879 				 * metadata).  This happens when all frames
3880 				 * received in the cluster were small enough to
3881 				 * fit within a single mbuf each.
3882 				 */
3883 				fl->cl_fast_recycled++;
3884 #ifdef INVARIANTS
3885 				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3886 				if (clm != NULL)
3887 					MPASS(clm->refcount == 1);
3888 #endif
3889 				goto recycled_fast;
3890 			}
3891 
3892 			/*
3893 			 * Cluster is guaranteed to have metadata.  Clusters
3894 			 * without metadata always take the fast recycle path
3895 			 * when they're recycled.
3896 			 */
3897 			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3898 			MPASS(clm != NULL);
3899 
3900 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3901 				fl->cl_recycled++;
3902 				counter_u64_add(extfree_rels, 1);
3903 				goto recycled;
3904 			}
3905 			sd->cl = NULL;	/* gave up my reference */
3906 		}
3907 		MPASS(sd->cl == NULL);
3908 alloc:
3909 		cl = uma_zalloc(swz->zone, M_NOWAIT);
3910 		if (__predict_false(cl == NULL)) {
3911 			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3912 			    fl->cll_def.zidx == fl->cll_alt.zidx)
3913 				break;
3914 
3915 			/* fall back to the safe zone */
3916 			cll = &fl->cll_alt;
3917 			swz = &sc->sge.sw_zone_info[cll->zidx];
3918 			goto alloc;
3919 		}
3920 		fl->cl_allocated++;
3921 		n--;
3922 
3923 		pa = pmap_kextract((vm_offset_t)cl);
3924 		pa += cll->region1;
3925 		sd->cl = cl;
3926 		sd->cll = *cll;
3927 		*d = htobe64(pa | cll->hwidx);
3928 		clm = cl_metadata(sc, fl, cll, cl);
3929 		if (clm != NULL) {
3930 recycled:
3931 #ifdef INVARIANTS
3932 			clm->sd = sd;
3933 #endif
3934 			clm->refcount = 1;
3935 		}
3936 		sd->nmbuf = 0;
3937 recycled_fast:
3938 		d++;
3939 		sd++;
3940 		if (__predict_false(++fl->pidx % 8 == 0)) {
3941 			uint16_t pidx = fl->pidx / 8;
3942 
3943 			if (__predict_false(pidx == fl->sidx)) {
3944 				fl->pidx = 0;
3945 				pidx = 0;
3946 				sd = fl->sdesc;
3947 				d = fl->desc;
3948 			}
3949 			if (pidx == max_pidx)
3950 				break;
3951 
3952 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
3953 				ring_fl_db(sc, fl);
3954 		}
3955 	}
3956 
3957 	if (fl->pidx / 8 != fl->dbidx)
3958 		ring_fl_db(sc, fl);
3959 
3960 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3961 }
3962 
3963 /*
3964  * Attempt to refill all starving freelists.
3965  */
3966 static void
3967 refill_sfl(void *arg)
3968 {
3969 	struct adapter *sc = arg;
3970 	struct sge_fl *fl, *fl_temp;
3971 
3972 	mtx_assert(&sc->sfl_lock, MA_OWNED);
3973 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3974 		FL_LOCK(fl);
3975 		refill_fl(sc, fl, 64);
3976 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3977 			TAILQ_REMOVE(&sc->sfl, fl, link);
3978 			fl->flags &= ~FL_STARVING;
3979 		}
3980 		FL_UNLOCK(fl);
3981 	}
3982 
3983 	if (!TAILQ_EMPTY(&sc->sfl))
3984 		callout_schedule(&sc->sfl_callout, hz / 5);
3985 }
3986 
3987 static int
3988 alloc_fl_sdesc(struct sge_fl *fl)
3989 {
3990 
3991 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
3992 	    M_ZERO | M_WAITOK);
3993 
3994 	return (0);
3995 }
3996 
3997 static void
3998 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3999 {
4000 	struct fl_sdesc *sd;
4001 	struct cluster_metadata *clm;
4002 	struct cluster_layout *cll;
4003 	int i;
4004 
4005 	sd = fl->sdesc;
4006 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
4007 		if (sd->cl == NULL)
4008 			continue;
4009 
4010 		cll = &sd->cll;
4011 		clm = cl_metadata(sc, fl, cll, sd->cl);
4012 		if (sd->nmbuf == 0)
4013 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
4014 		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4015 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
4016 			counter_u64_add(extfree_rels, 1);
4017 		}
4018 		sd->cl = NULL;
4019 	}
4020 
4021 	free(fl->sdesc, M_CXGBE);
4022 	fl->sdesc = NULL;
4023 }
4024 
4025 static inline void
4026 get_pkt_gl(struct mbuf *m, struct sglist *gl)
4027 {
4028 	int rc;
4029 
4030 	M_ASSERTPKTHDR(m);
4031 
4032 	sglist_reset(gl);
4033 	rc = sglist_append_mbuf(gl, m);
4034 	if (__predict_false(rc != 0)) {
4035 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
4036 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
4037 	}
4038 
4039 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
4040 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
4041 	    mbuf_nsegs(m), gl->sg_nseg));
4042 	KASSERT(gl->sg_nseg > 0 &&
4043 	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
4044 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
4045 		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
4046 }
4047 
4048 /*
4049  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
4050  */
4051 static inline u_int
4052 txpkt_len16(u_int nsegs, u_int tso)
4053 {
4054 	u_int n;
4055 
4056 	MPASS(nsegs > 0);
4057 
4058 	nsegs--; /* first segment is part of ulptx_sgl */
4059 	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
4060 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4061 	if (tso)
4062 		n += sizeof(struct cpl_tx_pkt_lso_core);
4063 
4064 	return (howmany(n, 16));
4065 }
4066 
4067 /*
4068  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
4069  * request header.
4070  */
4071 static inline u_int
4072 txpkt_vm_len16(u_int nsegs, u_int tso)
4073 {
4074 	u_int n;
4075 
4076 	MPASS(nsegs > 0);
4077 
4078 	nsegs--; /* first segment is part of ulptx_sgl */
4079 	n = sizeof(struct fw_eth_tx_pkt_vm_wr) +
4080 	    sizeof(struct cpl_tx_pkt_core) +
4081 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4082 	if (tso)
4083 		n += sizeof(struct cpl_tx_pkt_lso_core);
4084 
4085 	return (howmany(n, 16));
4086 }
4087 
4088 /*
4089  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
4090  * request header.
4091  */
4092 static inline u_int
4093 txpkts0_len16(u_int nsegs)
4094 {
4095 	u_int n;
4096 
4097 	MPASS(nsegs > 0);
4098 
4099 	nsegs--; /* first segment is part of ulptx_sgl */
4100 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
4101 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
4102 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
4103 
4104 	return (howmany(n, 16));
4105 }
4106 
4107 /*
4108  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
4109  * request header.
4110  */
4111 static inline u_int
4112 txpkts1_len16(void)
4113 {
4114 	u_int n;
4115 
4116 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
4117 
4118 	return (howmany(n, 16));
4119 }
4120 
4121 static inline u_int
4122 imm_payload(u_int ndesc)
4123 {
4124 	u_int n;
4125 
4126 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
4127 	    sizeof(struct cpl_tx_pkt_core);
4128 
4129 	return (n);
4130 }
4131 
4132 /*
4133  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
4134  * software descriptor, and advance the pidx.  It is guaranteed that enough
4135  * descriptors are available.
4136  *
4137  * The return value is the # of hardware descriptors used.
4138  */
4139 static u_int
4140 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq,
4141     struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available)
4142 {
4143 	struct sge_eq *eq = &txq->eq;
4144 	struct tx_sdesc *txsd;
4145 	struct cpl_tx_pkt_core *cpl;
4146 	uint32_t ctrl;	/* used in many unrelated places */
4147 	uint64_t ctrl1;
4148 	int csum_type, len16, ndesc, pktlen, nsegs;
4149 	caddr_t dst;
4150 
4151 	TXQ_LOCK_ASSERT_OWNED(txq);
4152 	M_ASSERTPKTHDR(m0);
4153 	MPASS(available > 0 && available < eq->sidx);
4154 
4155 	len16 = mbuf_len16(m0);
4156 	nsegs = mbuf_nsegs(m0);
4157 	pktlen = m0->m_pkthdr.len;
4158 	ctrl = sizeof(struct cpl_tx_pkt_core);
4159 	if (needs_tso(m0))
4160 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4161 	ndesc = howmany(len16, EQ_ESIZE / 16);
4162 	MPASS(ndesc <= available);
4163 
4164 	/* Firmware work request header */
4165 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4166 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
4167 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4168 
4169 	ctrl = V_FW_WR_LEN16(len16);
4170 	wr->equiq_to_len16 = htobe32(ctrl);
4171 	wr->r3[0] = 0;
4172 	wr->r3[1] = 0;
4173 
4174 	/*
4175 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
4176 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
4177 	 * simpler to always copy it rather than making it
4178 	 * conditional.  Also, it seems that we do not have to set
4179 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
4180 	 */
4181 	m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst);
4182 
4183 	csum_type = -1;
4184 	if (needs_tso(m0)) {
4185 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4186 
4187 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4188 		    m0->m_pkthdr.l4hlen > 0,
4189 		    ("%s: mbuf %p needs TSO but missing header lengths",
4190 			__func__, m0));
4191 
4192 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4193 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4194 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4195 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4196 			ctrl |= V_LSO_ETHHDR_LEN(1);
4197 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4198 			ctrl |= F_LSO_IPV6;
4199 
4200 		lso->lso_ctrl = htobe32(ctrl);
4201 		lso->ipid_ofst = htobe16(0);
4202 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4203 		lso->seqno_offset = htobe32(0);
4204 		lso->len = htobe32(pktlen);
4205 
4206 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4207 			csum_type = TX_CSUM_TCPIP6;
4208 		else
4209 			csum_type = TX_CSUM_TCPIP;
4210 
4211 		cpl = (void *)(lso + 1);
4212 
4213 		txq->tso_wrs++;
4214 	} else {
4215 		if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP)
4216 			csum_type = TX_CSUM_TCPIP;
4217 		else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP)
4218 			csum_type = TX_CSUM_UDPIP;
4219 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP)
4220 			csum_type = TX_CSUM_TCPIP6;
4221 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP)
4222 			csum_type = TX_CSUM_UDPIP6;
4223 #if defined(INET)
4224 		else if (m0->m_pkthdr.csum_flags & CSUM_IP) {
4225 			/*
4226 			 * XXX: The firmware appears to stomp on the
4227 			 * fragment/flags field of the IP header when
4228 			 * using TX_CSUM_IP.  Fall back to doing
4229 			 * software checksums.
4230 			 */
4231 			u_short *sump;
4232 			struct mbuf *m;
4233 			int offset;
4234 
4235 			m = m0;
4236 			offset = 0;
4237 			sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen +
4238 			    offsetof(struct ip, ip_sum));
4239 			*sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen +
4240 			    m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen);
4241 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
4242 		}
4243 #endif
4244 
4245 		cpl = (void *)(wr + 1);
4246 	}
4247 
4248 	/* Checksum offload */
4249 	ctrl1 = 0;
4250 	if (needs_l3_csum(m0) == 0)
4251 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4252 	if (csum_type >= 0) {
4253 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0,
4254 	    ("%s: mbuf %p needs checksum offload but missing header lengths",
4255 			__func__, m0));
4256 
4257 		if (chip_id(sc) <= CHELSIO_T5) {
4258 			ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4259 			    ETHER_HDR_LEN);
4260 		} else {
4261 			ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4262 			    ETHER_HDR_LEN);
4263 		}
4264 		ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen);
4265 		ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type);
4266 	} else
4267 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4268 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4269 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4270 		txq->txcsum++;	/* some hardware assistance provided */
4271 
4272 	/* VLAN tag insertion */
4273 	if (needs_vlan_insertion(m0)) {
4274 		ctrl1 |= F_TXPKT_VLAN_VLD |
4275 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4276 		txq->vlan_insertion++;
4277 	}
4278 
4279 	/* CPL header */
4280 	cpl->ctrl0 = txq->cpl_ctrl0;
4281 	cpl->pack = 0;
4282 	cpl->len = htobe16(pktlen);
4283 	cpl->ctrl1 = htobe64(ctrl1);
4284 
4285 	/* SGL */
4286 	dst = (void *)(cpl + 1);
4287 
4288 	/*
4289 	 * A packet using TSO will use up an entire descriptor for the
4290 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
4291 	 * If this descriptor is the last descriptor in the ring, wrap
4292 	 * around to the front of the ring explicitly for the start of
4293 	 * the sgl.
4294 	 */
4295 	if (dst == (void *)&eq->desc[eq->sidx]) {
4296 		dst = (void *)&eq->desc[0];
4297 		write_gl_to_txd(txq, m0, &dst, 0);
4298 	} else
4299 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4300 	txq->sgl_wrs++;
4301 
4302 	txq->txpkt_wrs++;
4303 
4304 	txsd = &txq->sdesc[eq->pidx];
4305 	txsd->m = m0;
4306 	txsd->desc_used = ndesc;
4307 
4308 	return (ndesc);
4309 }
4310 
4311 /*
4312  * Write a txpkt WR for this packet to the hardware descriptors, update the
4313  * software descriptor, and advance the pidx.  It is guaranteed that enough
4314  * descriptors are available.
4315  *
4316  * The return value is the # of hardware descriptors used.
4317  */
4318 static u_int
4319 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
4320     struct mbuf *m0, u_int available)
4321 {
4322 	struct sge_eq *eq = &txq->eq;
4323 	struct tx_sdesc *txsd;
4324 	struct cpl_tx_pkt_core *cpl;
4325 	uint32_t ctrl;	/* used in many unrelated places */
4326 	uint64_t ctrl1;
4327 	int len16, ndesc, pktlen, nsegs;
4328 	caddr_t dst;
4329 
4330 	TXQ_LOCK_ASSERT_OWNED(txq);
4331 	M_ASSERTPKTHDR(m0);
4332 	MPASS(available > 0 && available < eq->sidx);
4333 
4334 	len16 = mbuf_len16(m0);
4335 	nsegs = mbuf_nsegs(m0);
4336 	pktlen = m0->m_pkthdr.len;
4337 	ctrl = sizeof(struct cpl_tx_pkt_core);
4338 	if (needs_tso(m0))
4339 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4340 	else if (pktlen <= imm_payload(2) && available >= 2) {
4341 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
4342 		ctrl += pktlen;
4343 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
4344 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
4345 		nsegs = 0;
4346 	}
4347 	ndesc = howmany(len16, EQ_ESIZE / 16);
4348 	MPASS(ndesc <= available);
4349 
4350 	/* Firmware work request header */
4351 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4352 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
4353 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4354 
4355 	ctrl = V_FW_WR_LEN16(len16);
4356 	wr->equiq_to_len16 = htobe32(ctrl);
4357 	wr->r3 = 0;
4358 
4359 	if (needs_tso(m0)) {
4360 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4361 
4362 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4363 		    m0->m_pkthdr.l4hlen > 0,
4364 		    ("%s: mbuf %p needs TSO but missing header lengths",
4365 			__func__, m0));
4366 
4367 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4368 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4369 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4370 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4371 			ctrl |= V_LSO_ETHHDR_LEN(1);
4372 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4373 			ctrl |= F_LSO_IPV6;
4374 
4375 		lso->lso_ctrl = htobe32(ctrl);
4376 		lso->ipid_ofst = htobe16(0);
4377 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4378 		lso->seqno_offset = htobe32(0);
4379 		lso->len = htobe32(pktlen);
4380 
4381 		cpl = (void *)(lso + 1);
4382 
4383 		txq->tso_wrs++;
4384 	} else
4385 		cpl = (void *)(wr + 1);
4386 
4387 	/* Checksum offload */
4388 	ctrl1 = 0;
4389 	if (needs_l3_csum(m0) == 0)
4390 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4391 	if (needs_l4_csum(m0) == 0)
4392 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4393 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4394 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4395 		txq->txcsum++;	/* some hardware assistance provided */
4396 
4397 	/* VLAN tag insertion */
4398 	if (needs_vlan_insertion(m0)) {
4399 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4400 		txq->vlan_insertion++;
4401 	}
4402 
4403 	/* CPL header */
4404 	cpl->ctrl0 = txq->cpl_ctrl0;
4405 	cpl->pack = 0;
4406 	cpl->len = htobe16(pktlen);
4407 	cpl->ctrl1 = htobe64(ctrl1);
4408 
4409 	/* SGL */
4410 	dst = (void *)(cpl + 1);
4411 	if (nsegs > 0) {
4412 
4413 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4414 		txq->sgl_wrs++;
4415 	} else {
4416 		struct mbuf *m;
4417 
4418 		for (m = m0; m != NULL; m = m->m_next) {
4419 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4420 #ifdef INVARIANTS
4421 			pktlen -= m->m_len;
4422 #endif
4423 		}
4424 #ifdef INVARIANTS
4425 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
4426 #endif
4427 		txq->imm_wrs++;
4428 	}
4429 
4430 	txq->txpkt_wrs++;
4431 
4432 	txsd = &txq->sdesc[eq->pidx];
4433 	txsd->m = m0;
4434 	txsd->desc_used = ndesc;
4435 
4436 	return (ndesc);
4437 }
4438 
4439 static int
4440 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
4441 {
4442 	u_int needed, nsegs1, nsegs2, l1, l2;
4443 
4444 	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
4445 		return (1);
4446 
4447 	nsegs1 = mbuf_nsegs(m);
4448 	nsegs2 = mbuf_nsegs(n);
4449 	if (nsegs1 + nsegs2 == 2) {
4450 		txp->wr_type = 1;
4451 		l1 = l2 = txpkts1_len16();
4452 	} else {
4453 		txp->wr_type = 0;
4454 		l1 = txpkts0_len16(nsegs1);
4455 		l2 = txpkts0_len16(nsegs2);
4456 	}
4457 	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
4458 	needed = howmany(txp->len16, EQ_ESIZE / 16);
4459 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4460 		return (1);
4461 
4462 	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
4463 	if (txp->plen > 65535)
4464 		return (1);
4465 
4466 	txp->npkt = 2;
4467 	set_mbuf_len16(m, l1);
4468 	set_mbuf_len16(n, l2);
4469 
4470 	return (0);
4471 }
4472 
4473 static int
4474 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
4475 {
4476 	u_int plen, len16, needed, nsegs;
4477 
4478 	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
4479 
4480 	nsegs = mbuf_nsegs(m);
4481 	if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
4482 		return (1);
4483 
4484 	plen = txp->plen + m->m_pkthdr.len;
4485 	if (plen > 65535)
4486 		return (1);
4487 
4488 	if (txp->wr_type == 0)
4489 		len16 = txpkts0_len16(nsegs);
4490 	else
4491 		len16 = txpkts1_len16();
4492 	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4493 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4494 		return (1);
4495 
4496 	txp->npkt++;
4497 	txp->plen = plen;
4498 	txp->len16 += len16;
4499 	set_mbuf_len16(m, len16);
4500 
4501 	return (0);
4502 }
4503 
4504 /*
4505  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
4506  * the software descriptor, and advance the pidx.  It is guaranteed that enough
4507  * descriptors are available.
4508  *
4509  * The return value is the # of hardware descriptors used.
4510  */
4511 static u_int
4512 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
4513     struct mbuf *m0, const struct txpkts *txp, u_int available)
4514 {
4515 	struct sge_eq *eq = &txq->eq;
4516 	struct tx_sdesc *txsd;
4517 	struct cpl_tx_pkt_core *cpl;
4518 	uint32_t ctrl;
4519 	uint64_t ctrl1;
4520 	int ndesc, checkwrap;
4521 	struct mbuf *m;
4522 	void *flitp;
4523 
4524 	TXQ_LOCK_ASSERT_OWNED(txq);
4525 	MPASS(txp->npkt > 0);
4526 	MPASS(txp->plen < 65536);
4527 	MPASS(m0 != NULL);
4528 	MPASS(m0->m_nextpkt != NULL);
4529 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
4530 	MPASS(available > 0 && available < eq->sidx);
4531 
4532 	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
4533 	MPASS(ndesc <= available);
4534 
4535 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4536 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4537 	ctrl = V_FW_WR_LEN16(txp->len16);
4538 	wr->equiq_to_len16 = htobe32(ctrl);
4539 	wr->plen = htobe16(txp->plen);
4540 	wr->npkt = txp->npkt;
4541 	wr->r3 = 0;
4542 	wr->type = txp->wr_type;
4543 	flitp = wr + 1;
4544 
4545 	/*
4546 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
4547 	 * set then we know the WR is going to wrap around somewhere.  We'll
4548 	 * check for that at appropriate points.
4549 	 */
4550 	checkwrap = eq->sidx - ndesc < eq->pidx;
4551 	for (m = m0; m != NULL; m = m->m_nextpkt) {
4552 		if (txp->wr_type == 0) {
4553 			struct ulp_txpkt *ulpmc;
4554 			struct ulptx_idata *ulpsc;
4555 
4556 			/* ULP master command */
4557 			ulpmc = flitp;
4558 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
4559 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
4560 			ulpmc->len = htobe32(mbuf_len16(m));
4561 
4562 			/* ULP subcommand */
4563 			ulpsc = (void *)(ulpmc + 1);
4564 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
4565 			    F_ULP_TX_SC_MORE);
4566 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
4567 
4568 			cpl = (void *)(ulpsc + 1);
4569 			if (checkwrap &&
4570 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
4571 				cpl = (void *)&eq->desc[0];
4572 			txq->txpkts0_pkts += txp->npkt;
4573 			txq->txpkts0_wrs++;
4574 		} else {
4575 			cpl = flitp;
4576 			txq->txpkts1_pkts += txp->npkt;
4577 			txq->txpkts1_wrs++;
4578 		}
4579 
4580 		/* Checksum offload */
4581 		ctrl1 = 0;
4582 		if (needs_l3_csum(m) == 0)
4583 			ctrl1 |= F_TXPKT_IPCSUM_DIS;
4584 		if (needs_l4_csum(m) == 0)
4585 			ctrl1 |= F_TXPKT_L4CSUM_DIS;
4586 		if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4587 		    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4588 			txq->txcsum++;	/* some hardware assistance provided */
4589 
4590 		/* VLAN tag insertion */
4591 		if (needs_vlan_insertion(m)) {
4592 			ctrl1 |= F_TXPKT_VLAN_VLD |
4593 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
4594 			txq->vlan_insertion++;
4595 		}
4596 
4597 		/* CPL header */
4598 		cpl->ctrl0 = txq->cpl_ctrl0;
4599 		cpl->pack = 0;
4600 		cpl->len = htobe16(m->m_pkthdr.len);
4601 		cpl->ctrl1 = htobe64(ctrl1);
4602 
4603 		flitp = cpl + 1;
4604 		if (checkwrap &&
4605 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
4606 			flitp = (void *)&eq->desc[0];
4607 
4608 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
4609 
4610 	}
4611 
4612 	txsd = &txq->sdesc[eq->pidx];
4613 	txsd->m = m0;
4614 	txsd->desc_used = ndesc;
4615 
4616 	return (ndesc);
4617 }
4618 
4619 /*
4620  * If the SGL ends on an address that is not 16 byte aligned, this function will
4621  * add a 0 filled flit at the end.
4622  */
4623 static void
4624 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
4625 {
4626 	struct sge_eq *eq = &txq->eq;
4627 	struct sglist *gl = txq->gl;
4628 	struct sglist_seg *seg;
4629 	__be64 *flitp, *wrap;
4630 	struct ulptx_sgl *usgl;
4631 	int i, nflits, nsegs;
4632 
4633 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4634 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4635 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4636 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4637 
4638 	get_pkt_gl(m, gl);
4639 	nsegs = gl->sg_nseg;
4640 	MPASS(nsegs > 0);
4641 
4642 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
4643 	flitp = (__be64 *)(*to);
4644 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
4645 	seg = &gl->sg_segs[0];
4646 	usgl = (void *)flitp;
4647 
4648 	/*
4649 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4650 	 * ring, so we're at least 16 bytes away from the status page.  There is
4651 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4652 	 */
4653 
4654 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4655 	    V_ULPTX_NSGE(nsegs));
4656 	usgl->len0 = htobe32(seg->ss_len);
4657 	usgl->addr0 = htobe64(seg->ss_paddr);
4658 	seg++;
4659 
4660 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
4661 
4662 		/* Won't wrap around at all */
4663 
4664 		for (i = 0; i < nsegs - 1; i++, seg++) {
4665 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
4666 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
4667 		}
4668 		if (i & 1)
4669 			usgl->sge[i / 2].len[1] = htobe32(0);
4670 		flitp += nflits;
4671 	} else {
4672 
4673 		/* Will wrap somewhere in the rest of the SGL */
4674 
4675 		/* 2 flits already written, write the rest flit by flit */
4676 		flitp = (void *)(usgl + 1);
4677 		for (i = 0; i < nflits - 2; i++) {
4678 			if (flitp == wrap)
4679 				flitp = (void *)eq->desc;
4680 			*flitp++ = get_flit(seg, nsegs - 1, i);
4681 		}
4682 	}
4683 
4684 	if (nflits & 1) {
4685 		MPASS(((uintptr_t)flitp) & 0xf);
4686 		*flitp++ = 0;
4687 	}
4688 
4689 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
4690 	if (__predict_false(flitp == wrap))
4691 		*to = (void *)eq->desc;
4692 	else
4693 		*to = (void *)flitp;
4694 }
4695 
4696 static inline void
4697 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4698 {
4699 
4700 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4701 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4702 
4703 	if (__predict_true((uintptr_t)(*to) + len <=
4704 	    (uintptr_t)&eq->desc[eq->sidx])) {
4705 		bcopy(from, *to, len);
4706 		(*to) += len;
4707 	} else {
4708 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
4709 
4710 		bcopy(from, *to, portion);
4711 		from += portion;
4712 		portion = len - portion;	/* remaining */
4713 		bcopy(from, (void *)eq->desc, portion);
4714 		(*to) = (caddr_t)eq->desc + portion;
4715 	}
4716 }
4717 
4718 static inline void
4719 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
4720 {
4721 	u_int db;
4722 
4723 	MPASS(n > 0);
4724 
4725 	db = eq->doorbells;
4726 	if (n > 1)
4727 		clrbit(&db, DOORBELL_WCWR);
4728 	wmb();
4729 
4730 	switch (ffs(db) - 1) {
4731 	case DOORBELL_UDB:
4732 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4733 		break;
4734 
4735 	case DOORBELL_WCWR: {
4736 		volatile uint64_t *dst, *src;
4737 		int i;
4738 
4739 		/*
4740 		 * Queues whose 128B doorbell segment fits in the page do not
4741 		 * use relative qid (udb_qid is always 0).  Only queues with
4742 		 * doorbell segments can do WCWR.
4743 		 */
4744 		KASSERT(eq->udb_qid == 0 && n == 1,
4745 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4746 		    __func__, eq->doorbells, n, eq->dbidx, eq));
4747 
4748 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4749 		    UDBS_DB_OFFSET);
4750 		i = eq->dbidx;
4751 		src = (void *)&eq->desc[i];
4752 		while (src != (void *)&eq->desc[i + 1])
4753 			*dst++ = *src++;
4754 		wmb();
4755 		break;
4756 	}
4757 
4758 	case DOORBELL_UDBWC:
4759 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4760 		wmb();
4761 		break;
4762 
4763 	case DOORBELL_KDB:
4764 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
4765 		    V_QID(eq->cntxt_id) | V_PIDX(n));
4766 		break;
4767 	}
4768 
4769 	IDXINCR(eq->dbidx, n, eq->sidx);
4770 }
4771 
4772 static inline u_int
4773 reclaimable_tx_desc(struct sge_eq *eq)
4774 {
4775 	uint16_t hw_cidx;
4776 
4777 	hw_cidx = read_hw_cidx(eq);
4778 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
4779 }
4780 
4781 static inline u_int
4782 total_available_tx_desc(struct sge_eq *eq)
4783 {
4784 	uint16_t hw_cidx, pidx;
4785 
4786 	hw_cidx = read_hw_cidx(eq);
4787 	pidx = eq->pidx;
4788 
4789 	if (pidx == hw_cidx)
4790 		return (eq->sidx - 1);
4791 	else
4792 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
4793 }
4794 
4795 static inline uint16_t
4796 read_hw_cidx(struct sge_eq *eq)
4797 {
4798 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4799 	uint16_t cidx = spg->cidx;	/* stable snapshot */
4800 
4801 	return (be16toh(cidx));
4802 }
4803 
4804 /*
4805  * Reclaim 'n' descriptors approximately.
4806  */
4807 static u_int
4808 reclaim_tx_descs(struct sge_txq *txq, u_int n)
4809 {
4810 	struct tx_sdesc *txsd;
4811 	struct sge_eq *eq = &txq->eq;
4812 	u_int can_reclaim, reclaimed;
4813 
4814 	TXQ_LOCK_ASSERT_OWNED(txq);
4815 	MPASS(n > 0);
4816 
4817 	reclaimed = 0;
4818 	can_reclaim = reclaimable_tx_desc(eq);
4819 	while (can_reclaim && reclaimed < n) {
4820 		int ndesc;
4821 		struct mbuf *m, *nextpkt;
4822 
4823 		txsd = &txq->sdesc[eq->cidx];
4824 		ndesc = txsd->desc_used;
4825 
4826 		/* Firmware doesn't return "partial" credits. */
4827 		KASSERT(can_reclaim >= ndesc,
4828 		    ("%s: unexpected number of credits: %d, %d",
4829 		    __func__, can_reclaim, ndesc));
4830 
4831 		for (m = txsd->m; m != NULL; m = nextpkt) {
4832 			nextpkt = m->m_nextpkt;
4833 			m->m_nextpkt = NULL;
4834 			m_freem(m);
4835 		}
4836 		reclaimed += ndesc;
4837 		can_reclaim -= ndesc;
4838 		IDXINCR(eq->cidx, ndesc, eq->sidx);
4839 	}
4840 
4841 	return (reclaimed);
4842 }
4843 
4844 static void
4845 tx_reclaim(void *arg, int n)
4846 {
4847 	struct sge_txq *txq = arg;
4848 	struct sge_eq *eq = &txq->eq;
4849 
4850 	do {
4851 		if (TXQ_TRYLOCK(txq) == 0)
4852 			break;
4853 		n = reclaim_tx_descs(txq, 32);
4854 		if (eq->cidx == eq->pidx)
4855 			eq->equeqidx = eq->pidx;
4856 		TXQ_UNLOCK(txq);
4857 	} while (n > 0);
4858 }
4859 
4860 static __be64
4861 get_flit(struct sglist_seg *segs, int nsegs, int idx)
4862 {
4863 	int i = (idx / 3) * 2;
4864 
4865 	switch (idx % 3) {
4866 	case 0: {
4867 		__be64 rc;
4868 
4869 		rc = htobe32(segs[i].ss_len);
4870 		if (i + 1 < nsegs)
4871 			rc |= (uint64_t)htobe32(segs[i + 1].ss_len) << 32;
4872 
4873 		return (rc);
4874 	}
4875 	case 1:
4876 		return (htobe64(segs[i].ss_paddr));
4877 	case 2:
4878 		return (htobe64(segs[i + 1].ss_paddr));
4879 	}
4880 
4881 	return (0);
4882 }
4883 
4884 static void
4885 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4886 {
4887 	int8_t zidx, hwidx, idx;
4888 	uint16_t region1, region3;
4889 	int spare, spare_needed, n;
4890 	struct sw_zone_info *swz;
4891 	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4892 
4893 	/*
4894 	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4895 	 * large enough for the max payload and cluster metadata.  Otherwise
4896 	 * settle for the largest bufsize that leaves enough room in the cluster
4897 	 * for metadata.
4898 	 *
4899 	 * Without buffer packing: Look for the smallest zone which has a
4900 	 * bufsize large enough for the max payload.  Settle for the largest
4901 	 * bufsize available if there's nothing big enough for max payload.
4902 	 */
4903 	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4904 	swz = &sc->sge.sw_zone_info[0];
4905 	hwidx = -1;
4906 	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4907 		if (swz->size > largest_rx_cluster) {
4908 			if (__predict_true(hwidx != -1))
4909 				break;
4910 
4911 			/*
4912 			 * This is a misconfiguration.  largest_rx_cluster is
4913 			 * preventing us from finding a refill source.  See
4914 			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4915 			 */
4916 			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4917 			    " refill source for fl %p (dma %u).  Ignored.\n",
4918 			    largest_rx_cluster, fl, maxp);
4919 		}
4920 		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4921 			hwb = &hwb_list[idx];
4922 			spare = swz->size - hwb->size;
4923 			if (spare < spare_needed)
4924 				continue;
4925 
4926 			hwidx = idx;		/* best option so far */
4927 			if (hwb->size >= maxp) {
4928 
4929 				if ((fl->flags & FL_BUF_PACKING) == 0)
4930 					goto done; /* stop looking (not packing) */
4931 
4932 				if (swz->size >= safest_rx_cluster)
4933 					goto done; /* stop looking (packing) */
4934 			}
4935 			break;		/* keep looking, next zone */
4936 		}
4937 	}
4938 done:
4939 	/* A usable hwidx has been located. */
4940 	MPASS(hwidx != -1);
4941 	hwb = &hwb_list[hwidx];
4942 	zidx = hwb->zidx;
4943 	swz = &sc->sge.sw_zone_info[zidx];
4944 	region1 = 0;
4945 	region3 = swz->size - hwb->size;
4946 
4947 	/*
4948 	 * Stay within this zone and see if there is a better match when mbuf
4949 	 * inlining is allowed.  Remember that the hwidx's are sorted in
4950 	 * decreasing order of size (so in increasing order of spare area).
4951 	 */
4952 	for (idx = hwidx; idx != -1; idx = hwb->next) {
4953 		hwb = &hwb_list[idx];
4954 		spare = swz->size - hwb->size;
4955 
4956 		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4957 			break;
4958 
4959 		/*
4960 		 * Do not inline mbufs if doing so would violate the pad/pack
4961 		 * boundary alignment requirement.
4962 		 */
4963 		if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0)
4964 			continue;
4965 		if (fl->flags & FL_BUF_PACKING &&
4966 		    (MSIZE % sc->params.sge.pack_boundary) != 0)
4967 			continue;
4968 
4969 		if (spare < CL_METADATA_SIZE + MSIZE)
4970 			continue;
4971 		n = (spare - CL_METADATA_SIZE) / MSIZE;
4972 		if (n > howmany(hwb->size, maxp))
4973 			break;
4974 
4975 		hwidx = idx;
4976 		if (fl->flags & FL_BUF_PACKING) {
4977 			region1 = n * MSIZE;
4978 			region3 = spare - region1;
4979 		} else {
4980 			region1 = MSIZE;
4981 			region3 = spare - region1;
4982 			break;
4983 		}
4984 	}
4985 
4986 	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4987 	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4988 	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4989 	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4990 	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4991 	    sc->sge.sw_zone_info[zidx].size,
4992 	    ("%s: bad buffer layout for fl %p, maxp %d. "
4993 		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4994 		sc->sge.sw_zone_info[zidx].size, region1,
4995 		sc->sge.hw_buf_info[hwidx].size, region3));
4996 	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4997 		KASSERT(region3 >= CL_METADATA_SIZE,
4998 		    ("%s: no room for metadata.  fl %p, maxp %d; "
4999 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5000 		    sc->sge.sw_zone_info[zidx].size, region1,
5001 		    sc->sge.hw_buf_info[hwidx].size, region3));
5002 		KASSERT(region1 % MSIZE == 0,
5003 		    ("%s: bad mbuf region for fl %p, maxp %d. "
5004 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5005 		    sc->sge.sw_zone_info[zidx].size, region1,
5006 		    sc->sge.hw_buf_info[hwidx].size, region3));
5007 	}
5008 
5009 	fl->cll_def.zidx = zidx;
5010 	fl->cll_def.hwidx = hwidx;
5011 	fl->cll_def.region1 = region1;
5012 	fl->cll_def.region3 = region3;
5013 }
5014 
5015 static void
5016 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
5017 {
5018 	struct sge *s = &sc->sge;
5019 	struct hw_buf_info *hwb;
5020 	struct sw_zone_info *swz;
5021 	int spare;
5022 	int8_t hwidx;
5023 
5024 	if (fl->flags & FL_BUF_PACKING)
5025 		hwidx = s->safe_hwidx2;	/* with room for metadata */
5026 	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
5027 		hwidx = s->safe_hwidx2;
5028 		hwb = &s->hw_buf_info[hwidx];
5029 		swz = &s->sw_zone_info[hwb->zidx];
5030 		spare = swz->size - hwb->size;
5031 
5032 		/* no good if there isn't room for an mbuf as well */
5033 		if (spare < CL_METADATA_SIZE + MSIZE)
5034 			hwidx = s->safe_hwidx1;
5035 	} else
5036 		hwidx = s->safe_hwidx1;
5037 
5038 	if (hwidx == -1) {
5039 		/* No fallback source */
5040 		fl->cll_alt.hwidx = -1;
5041 		fl->cll_alt.zidx = -1;
5042 
5043 		return;
5044 	}
5045 
5046 	hwb = &s->hw_buf_info[hwidx];
5047 	swz = &s->sw_zone_info[hwb->zidx];
5048 	spare = swz->size - hwb->size;
5049 	fl->cll_alt.hwidx = hwidx;
5050 	fl->cll_alt.zidx = hwb->zidx;
5051 	if (allow_mbufs_in_cluster &&
5052 	    (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0))
5053 		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
5054 	else
5055 		fl->cll_alt.region1 = 0;
5056 	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
5057 }
5058 
5059 static void
5060 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
5061 {
5062 	mtx_lock(&sc->sfl_lock);
5063 	FL_LOCK(fl);
5064 	if ((fl->flags & FL_DOOMED) == 0) {
5065 		fl->flags |= FL_STARVING;
5066 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
5067 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
5068 	}
5069 	FL_UNLOCK(fl);
5070 	mtx_unlock(&sc->sfl_lock);
5071 }
5072 
5073 static void
5074 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
5075 {
5076 	struct sge_wrq *wrq = (void *)eq;
5077 
5078 	atomic_readandclear_int(&eq->equiq);
5079 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
5080 }
5081 
5082 static void
5083 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
5084 {
5085 	struct sge_txq *txq = (void *)eq;
5086 
5087 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
5088 
5089 	atomic_readandclear_int(&eq->equiq);
5090 	mp_ring_check_drainage(txq->r, 0);
5091 	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
5092 }
5093 
5094 static int
5095 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
5096     struct mbuf *m)
5097 {
5098 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
5099 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
5100 	struct adapter *sc = iq->adapter;
5101 	struct sge *s = &sc->sge;
5102 	struct sge_eq *eq;
5103 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
5104 		&handle_wrq_egr_update, &handle_eth_egr_update,
5105 		&handle_wrq_egr_update};
5106 
5107 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5108 	    rss->opcode));
5109 
5110 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
5111 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
5112 
5113 	return (0);
5114 }
5115 
5116 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
5117 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
5118     offsetof(struct cpl_fw6_msg, data));
5119 
5120 static int
5121 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
5122 {
5123 	struct adapter *sc = iq->adapter;
5124 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
5125 
5126 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5127 	    rss->opcode));
5128 
5129 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
5130 		const struct rss_header *rss2;
5131 
5132 		rss2 = (const struct rss_header *)&cpl->data[0];
5133 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
5134 	}
5135 
5136 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
5137 }
5138 
5139 /**
5140  *	t4_handle_wrerr_rpl - process a FW work request error message
5141  *	@adap: the adapter
5142  *	@rpl: start of the FW message
5143  */
5144 static int
5145 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
5146 {
5147 	u8 opcode = *(const u8 *)rpl;
5148 	const struct fw_error_cmd *e = (const void *)rpl;
5149 	unsigned int i;
5150 
5151 	if (opcode != FW_ERROR_CMD) {
5152 		log(LOG_ERR,
5153 		    "%s: Received WRERR_RPL message with opcode %#x\n",
5154 		    device_get_nameunit(adap->dev), opcode);
5155 		return (EINVAL);
5156 	}
5157 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
5158 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
5159 	    "non-fatal");
5160 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
5161 	case FW_ERROR_TYPE_EXCEPTION:
5162 		log(LOG_ERR, "exception info:\n");
5163 		for (i = 0; i < nitems(e->u.exception.info); i++)
5164 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
5165 			    be32toh(e->u.exception.info[i]));
5166 		log(LOG_ERR, "\n");
5167 		break;
5168 	case FW_ERROR_TYPE_HWMODULE:
5169 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
5170 		    be32toh(e->u.hwmodule.regaddr),
5171 		    be32toh(e->u.hwmodule.regval));
5172 		break;
5173 	case FW_ERROR_TYPE_WR:
5174 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
5175 		    be16toh(e->u.wr.cidx),
5176 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
5177 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
5178 		    be32toh(e->u.wr.eqid));
5179 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
5180 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
5181 			    e->u.wr.wrhdr[i]);
5182 		log(LOG_ERR, "\n");
5183 		break;
5184 	case FW_ERROR_TYPE_ACL:
5185 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
5186 		    be16toh(e->u.acl.cidx),
5187 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
5188 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
5189 		    be32toh(e->u.acl.eqid),
5190 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
5191 		    "MAC");
5192 		for (i = 0; i < nitems(e->u.acl.val); i++)
5193 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
5194 		log(LOG_ERR, "\n");
5195 		break;
5196 	default:
5197 		log(LOG_ERR, "type %#x\n",
5198 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
5199 		return (EINVAL);
5200 	}
5201 	return (0);
5202 }
5203 
5204 static int
5205 sysctl_uint16(SYSCTL_HANDLER_ARGS)
5206 {
5207 	uint16_t *id = arg1;
5208 	int i = *id;
5209 
5210 	return sysctl_handle_int(oidp, &i, 0, req);
5211 }
5212 
5213 static int
5214 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
5215 {
5216 	struct sge *s = arg1;
5217 	struct hw_buf_info *hwb = &s->hw_buf_info[0];
5218 	struct sw_zone_info *swz = &s->sw_zone_info[0];
5219 	int i, rc;
5220 	struct sbuf sb;
5221 	char c;
5222 
5223 	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
5224 	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
5225 		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
5226 			c = '*';
5227 		else
5228 			c = '\0';
5229 
5230 		sbuf_printf(&sb, "%u%c ", hwb->size, c);
5231 	}
5232 	sbuf_trim(&sb);
5233 	sbuf_finish(&sb);
5234 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
5235 	sbuf_delete(&sb);
5236 	return (rc);
5237 }
5238 
5239 static int
5240 sysctl_tc(SYSCTL_HANDLER_ARGS)
5241 {
5242 	struct vi_info *vi = arg1;
5243 	struct port_info *pi;
5244 	struct adapter *sc;
5245 	struct sge_txq *txq;
5246 	struct tx_cl_rl_params *tc;
5247 	int qidx = arg2, rc, tc_idx;
5248 	uint32_t fw_queue, fw_class;
5249 
5250 	MPASS(qidx >= 0 && qidx < vi->ntxq);
5251 	pi = vi->pi;
5252 	sc = pi->adapter;
5253 	txq = &sc->sge.txq[vi->first_txq + qidx];
5254 
5255 	tc_idx = txq->tc_idx;
5256 	rc = sysctl_handle_int(oidp, &tc_idx, 0, req);
5257 	if (rc != 0 || req->newptr == NULL)
5258 		return (rc);
5259 
5260 	if (sc->flags & IS_VF)
5261 		return (EPERM);
5262 
5263 	/* Note that -1 is legitimate input (it means unbind). */
5264 	if (tc_idx < -1 || tc_idx >= sc->chip_params->nsched_cls)
5265 		return (EINVAL);
5266 
5267 	mtx_lock(&sc->tc_lock);
5268 	if (tc_idx == txq->tc_idx) {
5269 		rc = 0;		/* No change, nothing to do. */
5270 		goto done;
5271 	}
5272 
5273 	fw_queue = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
5274 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) |
5275 	    V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id);
5276 
5277 	if (tc_idx == -1)
5278 		fw_class = 0xffffffff;	/* Unbind. */
5279 	else {
5280 		/*
5281 		 * Bind to a different class.
5282 		 */
5283 		tc = &pi->sched_params->cl_rl[tc_idx];
5284 		if (tc->flags & TX_CLRL_ERROR) {
5285 			/* Previous attempt to set the cl-rl params failed. */
5286 			rc = EIO;
5287 			goto done;
5288 		} else {
5289 			/*
5290 			 * Ok to proceed.  Place a reference on the new class
5291 			 * while still holding on to the reference on the
5292 			 * previous class, if any.
5293 			 */
5294 			fw_class = tc_idx;
5295 			tc->refcount++;
5296 		}
5297 	}
5298 	mtx_unlock(&sc->tc_lock);
5299 
5300 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4stc");
5301 	if (rc)
5302 		return (rc);
5303 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, &fw_class);
5304 	end_synchronized_op(sc, 0);
5305 
5306 	mtx_lock(&sc->tc_lock);
5307 	if (rc == 0) {
5308 		if (txq->tc_idx != -1) {
5309 			tc = &pi->sched_params->cl_rl[txq->tc_idx];
5310 			MPASS(tc->refcount > 0);
5311 			tc->refcount--;
5312 		}
5313 		txq->tc_idx = tc_idx;
5314 	} else {
5315 		tc = &pi->sched_params->cl_rl[tc_idx];
5316 		MPASS(tc->refcount > 0);
5317 		tc->refcount--;
5318 	}
5319 done:
5320 	mtx_unlock(&sc->tc_lock);
5321 	return (rc);
5322 }
5323