xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision d22c735e033e47d58878a9c00aa09e90e6e83f06)
1 /*-
2  * Copyright (c) 2011 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #include <sys/types.h>
35 #include <sys/eventhandler.h>
36 #include <sys/mbuf.h>
37 #include <sys/socket.h>
38 #include <sys/kernel.h>
39 #include <sys/kdb.h>
40 #include <sys/malloc.h>
41 #include <sys/queue.h>
42 #include <sys/sbuf.h>
43 #include <sys/taskqueue.h>
44 #include <sys/time.h>
45 #include <sys/sysctl.h>
46 #include <sys/smp.h>
47 #include <net/bpf.h>
48 #include <net/ethernet.h>
49 #include <net/if.h>
50 #include <net/if_vlan_var.h>
51 #include <netinet/in.h>
52 #include <netinet/ip.h>
53 #include <netinet/ip6.h>
54 #include <netinet/tcp.h>
55 #include <machine/md_var.h>
56 #include <vm/vm.h>
57 #include <vm/pmap.h>
58 #ifdef DEV_NETMAP
59 #include <machine/bus.h>
60 #include <sys/selinfo.h>
61 #include <net/if_var.h>
62 #include <net/netmap.h>
63 #include <dev/netmap/netmap_kern.h>
64 #endif
65 
66 #include "common/common.h"
67 #include "common/t4_regs.h"
68 #include "common/t4_regs_values.h"
69 #include "common/t4_msg.h"
70 
71 #ifdef T4_PKT_TIMESTAMP
72 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
73 #else
74 #define RX_COPY_THRESHOLD MINCLSIZE
75 #endif
76 
77 /*
78  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
79  * 0-7 are valid values.
80  */
81 int fl_pktshift = 2;
82 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
83 
84 /*
85  * Pad ethernet payload up to this boundary.
86  * -1: driver should figure out a good value.
87  *  0: disable padding.
88  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
89  */
90 int fl_pad = -1;
91 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
92 
93 /*
94  * Status page length.
95  * -1: driver should figure out a good value.
96  *  64 or 128 are the only other valid values.
97  */
98 int spg_len = -1;
99 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
100 
101 /*
102  * Congestion drops.
103  * -1: no congestion feedback (not recommended).
104  *  0: backpressure the channel instead of dropping packets right away.
105  *  1: no backpressure, drop packets for the congested queue immediately.
106  */
107 static int cong_drop = 0;
108 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
109 
110 /*
111  * Deliver multiple frames in the same free list buffer if they fit.
112  * -1: let the driver decide whether to enable buffer packing or not.
113  *  0: disable buffer packing.
114  *  1: enable buffer packing.
115  */
116 static int buffer_packing = -1;
117 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
118 
119 /*
120  * Start next frame in a packed buffer at this boundary.
121  * -1: driver should figure out a good value.
122  * T4:
123  * ---
124  * if fl_pad != 0
125  * 	value specified here will be overridden by fl_pad.
126  * else
127  * 	power of 2 from 32 to 4096 (both inclusive) is a valid value here.
128  * T5:
129  * ---
130  * 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
131  */
132 static int fl_pack = -1;
133 static int t4_fl_pack;
134 static int t5_fl_pack;
135 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
136 
137 /*
138  * Allow the driver to create mbuf(s) in a cluster allocated for rx.
139  * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
140  * 1: ok to create mbuf(s) within a cluster if there is room.
141  */
142 static int allow_mbufs_in_cluster = 1;
143 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
144 
145 /*
146  * Largest rx cluster size that the driver is allowed to allocate.
147  */
148 static int largest_rx_cluster = MJUM16BYTES;
149 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
150 
151 /*
152  * Size of cluster allocation that's most likely to succeed.  The driver will
153  * fall back to this size if it fails to allocate clusters larger than this.
154  */
155 static int safest_rx_cluster = PAGE_SIZE;
156 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
157 
158 /* Used to track coalesced tx work request */
159 struct txpkts {
160 	uint64_t *flitp;	/* ptr to flit where next pkt should start */
161 	uint8_t npkt;		/* # of packets in this work request */
162 	uint8_t nflits;		/* # of flits used by this work request */
163 	uint16_t plen;		/* total payload (sum of all packets) */
164 };
165 
166 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
167 struct sgl {
168 	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
169 	int nflits;		/* # of flits needed for the SGL */
170 	bus_dma_segment_t seg[TX_SGL_SEGS];
171 };
172 
173 static int service_iq(struct sge_iq *, int);
174 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t,
175     int *);
176 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
177 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
178     int);
179 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, int,
180     char *);
181 static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
182     char *);
183 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
184     bus_addr_t *, void **);
185 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
186     void *);
187 static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
188     int, int);
189 static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
190 static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
191     struct sge_fl *);
192 static int alloc_fwq(struct adapter *);
193 static int free_fwq(struct adapter *);
194 static int alloc_mgmtq(struct adapter *);
195 static int free_mgmtq(struct adapter *);
196 static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
197     struct sysctl_oid *);
198 static int free_rxq(struct port_info *, struct sge_rxq *);
199 #ifdef TCP_OFFLOAD
200 static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
201     struct sysctl_oid *);
202 static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
203 #endif
204 #ifdef DEV_NETMAP
205 static int alloc_nm_rxq(struct port_info *, struct sge_nm_rxq *, int, int,
206     struct sysctl_oid *);
207 static int free_nm_rxq(struct port_info *, struct sge_nm_rxq *);
208 static int alloc_nm_txq(struct port_info *, struct sge_nm_txq *, int, int,
209     struct sysctl_oid *);
210 static int free_nm_txq(struct port_info *, struct sge_nm_txq *);
211 #endif
212 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
213 static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
214 #ifdef TCP_OFFLOAD
215 static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
216 #endif
217 static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
218 static int free_eq(struct adapter *, struct sge_eq *);
219 static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
220     struct sysctl_oid *);
221 static int free_wrq(struct adapter *, struct sge_wrq *);
222 static int alloc_txq(struct port_info *, struct sge_txq *, int,
223     struct sysctl_oid *);
224 static int free_txq(struct port_info *, struct sge_txq *);
225 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
226 static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
227 static inline void iq_next(struct sge_iq *);
228 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
229 static int refill_fl(struct adapter *, struct sge_fl *, int);
230 static void refill_sfl(void *);
231 static int alloc_fl_sdesc(struct sge_fl *);
232 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
233 static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
234 static void find_safe_refill_source(struct adapter *, struct sge_fl *);
235 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
236 
237 static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
238 static int free_pkt_sgl(struct sge_txq *, struct sgl *);
239 static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
240     struct sgl *);
241 static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
242     struct mbuf *, struct sgl *);
243 static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
244 static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
245     struct txpkts *, struct mbuf *, struct sgl *);
246 static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
247 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
248 static inline void ring_eq_db(struct adapter *, struct sge_eq *);
249 static inline int reclaimable(struct sge_eq *);
250 static int reclaim_tx_descs(struct sge_txq *, int, int);
251 static void write_eqflush_wr(struct sge_eq *);
252 static __be64 get_flit(bus_dma_segment_t *, int, int);
253 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
254     struct mbuf *);
255 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
256     struct mbuf *);
257 
258 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
259 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
260 
261 /*
262  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
263  */
264 void
265 t4_sge_modload(void)
266 {
267 	int pad;
268 
269 	/* set pad to a reasonable powerof2 between 16 and 4096 (inclusive) */
270 #if defined(__i386__) || defined(__amd64__)
271 	pad = max(cpu_clflush_line_size, 16);
272 #else
273 	pad = max(CACHE_LINE_SIZE, 16);
274 #endif
275 	pad = min(pad, 4096);
276 
277 	if (fl_pktshift < 0 || fl_pktshift > 7) {
278 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
279 		    " using 2 instead.\n", fl_pktshift);
280 		fl_pktshift = 2;
281 	}
282 
283 	if (fl_pad != 0 &&
284 	    (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad))) {
285 
286 		if (fl_pad != -1) {
287 			printf("Invalid hw.cxgbe.fl_pad value (%d),"
288 			    " using %d instead.\n", fl_pad, max(pad, 32));
289 		}
290 		fl_pad = max(pad, 32);
291 	}
292 
293 	/*
294 	 * T4 has the same pad and pack boundary.  If a pad boundary is set,
295 	 * pack boundary must be set to the same value.  Otherwise take the
296 	 * specified value or auto-calculate something reasonable.
297 	 */
298 	if (fl_pad)
299 		t4_fl_pack = fl_pad;
300 	else if (fl_pack < 32 || fl_pack > 4096 || !powerof2(fl_pack))
301 		t4_fl_pack = max(pad, 32);
302 	else
303 		t4_fl_pack = fl_pack;
304 
305 	/* T5's pack boundary is independent of the pad boundary. */
306 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
307 	    !powerof2(fl_pack))
308 	       t5_fl_pack = max(pad, CACHE_LINE_SIZE);
309 	else
310 	       t5_fl_pack = fl_pack;
311 
312 	if (spg_len != 64 && spg_len != 128) {
313 		int len;
314 
315 #if defined(__i386__) || defined(__amd64__)
316 		len = cpu_clflush_line_size > 64 ? 128 : 64;
317 #else
318 		len = 64;
319 #endif
320 		if (spg_len != -1) {
321 			printf("Invalid hw.cxgbe.spg_len value (%d),"
322 			    " using %d instead.\n", spg_len, len);
323 		}
324 		spg_len = len;
325 	}
326 
327 	if (cong_drop < -1 || cong_drop > 1) {
328 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
329 		    " using 0 instead.\n", cong_drop);
330 		cong_drop = 0;
331 	}
332 }
333 
334 void
335 t4_init_sge_cpl_handlers(struct adapter *sc)
336 {
337 
338 	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
339 	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
340 	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
341 	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
342 	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
343 }
344 
345 /*
346  * adap->params.vpd.cclk must be set up before this is called.
347  */
348 void
349 t4_tweak_chip_settings(struct adapter *sc)
350 {
351 	int i;
352 	uint32_t v, m;
353 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
354 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
355 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
356 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
357 	static int sge_flbuf_sizes[] = {
358 		MCLBYTES,
359 #if MJUMPAGESIZE != MCLBYTES
360 		MJUMPAGESIZE,
361 		MJUMPAGESIZE - CL_METADATA_SIZE,
362 		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
363 #endif
364 		MJUM9BYTES,
365 		MJUM16BYTES,
366 		MCLBYTES - MSIZE - CL_METADATA_SIZE,
367 		MJUM9BYTES - CL_METADATA_SIZE,
368 		MJUM16BYTES - CL_METADATA_SIZE,
369 	};
370 
371 	KASSERT(sc->flags & MASTER_PF,
372 	    ("%s: trying to change chip settings when not master.", __func__));
373 
374 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
375 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
376 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
377 	if (is_t4(sc) && (fl_pad || buffer_packing)) {
378 		/* t4_fl_pack has the correct value even when fl_pad = 0 */
379 		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
380 		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
381 	} else if (is_t5(sc) && fl_pad) {
382 		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
383 		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
384 	}
385 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
386 
387 	if (is_t5(sc) && buffer_packing) {
388 		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
389 		if (t5_fl_pack == 16)
390 			v = V_INGPACKBOUNDARY(0);
391 		else
392 			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
393 		t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
394 	}
395 
396 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
397 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
398 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
399 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
400 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
401 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
402 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
403 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
404 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
405 
406 	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
407 	    ("%s: hw buffer size table too big", __func__));
408 	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
409 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
410 		    sge_flbuf_sizes[i]);
411 	}
412 
413 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
414 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
415 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
416 
417 	KASSERT(intr_timer[0] <= timer_max,
418 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
419 	    timer_max));
420 	for (i = 1; i < nitems(intr_timer); i++) {
421 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
422 		    ("%s: timers not listed in increasing order (%d)",
423 		    __func__, i));
424 
425 		while (intr_timer[i] > timer_max) {
426 			if (i == nitems(intr_timer) - 1) {
427 				intr_timer[i] = timer_max;
428 				break;
429 			}
430 			intr_timer[i] += intr_timer[i - 1];
431 			intr_timer[i] /= 2;
432 		}
433 	}
434 
435 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
436 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
437 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
438 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
439 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
440 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
441 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
442 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
443 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
444 
445 	if (cong_drop == 0) {
446 		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
447 		    F_TUNNELCNGDROP3;
448 		t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0);
449 	}
450 
451 	/* 4K, 16K, 64K, 256K DDP "page sizes" */
452 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
453 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
454 
455 	m = v = F_TDDPTAGTCB;
456 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
457 
458 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
459 	    F_RESETDDPOFFSET;
460 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
461 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
462 }
463 
464 /*
465  * SGE wants the buffer to be at least 64B and then a multiple of the pad
466  * boundary or 16, whichever is greater.
467  */
468 static inline int
469 hwsz_ok(int hwsz)
470 {
471 	int mask = max(fl_pad, 16) - 1;
472 
473 	return (hwsz >= 64 && (hwsz & mask) == 0);
474 }
475 
476 /*
477  * XXX: driver really should be able to deal with unexpected settings.
478  */
479 int
480 t4_read_chip_settings(struct adapter *sc)
481 {
482 	struct sge *s = &sc->sge;
483 	int i, j, n, rc = 0;
484 	uint32_t m, v, r;
485 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
486 	static int sw_buf_sizes[] = {	/* Sorted by size */
487 		MCLBYTES,
488 #if MJUMPAGESIZE != MCLBYTES
489 		MJUMPAGESIZE,
490 #endif
491 		MJUM9BYTES,
492 		MJUM16BYTES
493 	};
494 	struct sw_zone_info *swz, *safe_swz;
495 	struct hw_buf_info *hwb;
496 
497 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
498 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
499 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
500 	if (is_t4(sc) && (fl_pad || buffer_packing)) {
501 		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
502 		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
503 	} else if (is_t5(sc) && fl_pad) {
504 		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
505 		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
506 	}
507 	r = t4_read_reg(sc, A_SGE_CONTROL);
508 	if ((r & m) != v) {
509 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
510 		rc = EINVAL;
511 	}
512 
513 	if (is_t5(sc) && buffer_packing) {
514 		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
515 		if (t5_fl_pack == 16)
516 			v = V_INGPACKBOUNDARY(0);
517 		else
518 			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
519 		r = t4_read_reg(sc, A_SGE_CONTROL2);
520 		if ((r & m) != v) {
521 			device_printf(sc->dev,
522 			    "invalid SGE_CONTROL2(0x%x)\n", r);
523 			rc = EINVAL;
524 		}
525 	}
526 	s->pack_boundary = is_t4(sc) ? t4_fl_pack : t5_fl_pack;
527 
528 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
529 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
530 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
531 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
532 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
533 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
534 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
535 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
536 	r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
537 	if (r != v) {
538 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
539 		rc = EINVAL;
540 	}
541 
542 	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
543 	hwb = &s->hw_buf_info[0];
544 	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
545 		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
546 		hwb->size = r;
547 		hwb->zidx = hwsz_ok(r) ? -1 : -2;
548 		hwb->next = -1;
549 	}
550 
551 	/*
552 	 * Create a sorted list in decreasing order of hw buffer sizes (and so
553 	 * increasing order of spare area) for each software zone.
554 	 */
555 	n = 0;	/* no usable buffer size to begin with */
556 	swz = &s->sw_zone_info[0];
557 	safe_swz = NULL;
558 	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
559 		int8_t head = -1, tail = -1;
560 
561 		swz->size = sw_buf_sizes[i];
562 		swz->zone = m_getzone(swz->size);
563 		swz->type = m_gettype(swz->size);
564 
565 		if (swz->size == safest_rx_cluster)
566 			safe_swz = swz;
567 
568 		hwb = &s->hw_buf_info[0];
569 		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
570 			if (hwb->zidx != -1 || hwb->size > swz->size)
571 				continue;
572 			hwb->zidx = i;
573 			if (head == -1)
574 				head = tail = j;
575 			else if (hwb->size < s->hw_buf_info[tail].size) {
576 				s->hw_buf_info[tail].next = j;
577 				tail = j;
578 			} else {
579 				int8_t *cur;
580 				struct hw_buf_info *t;
581 
582 				for (cur = &head; *cur != -1; cur = &t->next) {
583 					t = &s->hw_buf_info[*cur];
584 					if (hwb->size == t->size) {
585 						hwb->zidx = -2;
586 						break;
587 					}
588 					if (hwb->size > t->size) {
589 						hwb->next = *cur;
590 						*cur = j;
591 						break;
592 					}
593 				}
594 			}
595 		}
596 		swz->head_hwidx = head;
597 		swz->tail_hwidx = tail;
598 
599 		if (tail != -1) {
600 			n++;
601 			if (swz->size - s->hw_buf_info[tail].size >=
602 			    CL_METADATA_SIZE)
603 				sc->flags |= BUF_PACKING_OK;
604 		}
605 	}
606 	if (n == 0) {
607 		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
608 		rc = EINVAL;
609 	}
610 
611 	s->safe_hwidx1 = -1;
612 	s->safe_hwidx2 = -1;
613 	if (safe_swz != NULL) {
614 		s->safe_hwidx1 = safe_swz->head_hwidx;
615 		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
616 			int spare;
617 
618 			hwb = &s->hw_buf_info[i];
619 			spare = safe_swz->size - hwb->size;
620 			if (spare < CL_METADATA_SIZE)
621 				continue;
622 			if (s->safe_hwidx2 == -1 ||
623 			    spare == CL_METADATA_SIZE + MSIZE)
624 				s->safe_hwidx2 = i;
625 			if (spare >= CL_METADATA_SIZE + MSIZE)
626 				break;
627 		}
628 	}
629 
630 	r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
631 	s->counter_val[0] = G_THRESHOLD_0(r);
632 	s->counter_val[1] = G_THRESHOLD_1(r);
633 	s->counter_val[2] = G_THRESHOLD_2(r);
634 	s->counter_val[3] = G_THRESHOLD_3(r);
635 
636 	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
637 	s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
638 	s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
639 	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
640 	s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
641 	s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
642 	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
643 	s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
644 	s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
645 
646 	if (cong_drop == 0) {
647 		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
648 		    F_TUNNELCNGDROP3;
649 		r = t4_read_reg(sc, A_TP_PARA_REG3);
650 		if (r & m) {
651 			device_printf(sc->dev,
652 			    "invalid TP_PARA_REG3(0x%x)\n", r);
653 			rc = EINVAL;
654 		}
655 	}
656 
657 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
658 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
659 	if (r != v) {
660 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
661 		rc = EINVAL;
662 	}
663 
664 	m = v = F_TDDPTAGTCB;
665 	r = t4_read_reg(sc, A_ULP_RX_CTL);
666 	if ((r & m) != v) {
667 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
668 		rc = EINVAL;
669 	}
670 
671 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
672 	    F_RESETDDPOFFSET;
673 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
674 	r = t4_read_reg(sc, A_TP_PARA_REG5);
675 	if ((r & m) != v) {
676 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
677 		rc = EINVAL;
678 	}
679 
680 	r = t4_read_reg(sc, A_SGE_CONM_CTRL);
681 	s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
682 	if (is_t4(sc))
683 		s->fl_starve_threshold2 = s->fl_starve_threshold;
684 	else
685 		s->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
686 
687 	/* egress queues: log2 of # of doorbells per BAR2 page */
688 	r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
689 	r >>= S_QUEUESPERPAGEPF0 +
690 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
691 	s->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
692 
693 	/* ingress queues: log2 of # of doorbells per BAR2 page */
694 	r = t4_read_reg(sc, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
695 	r >>= S_QUEUESPERPAGEPF0 +
696 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
697 	s->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
698 
699 	t4_init_tp_params(sc);
700 
701 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
702 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
703 
704 	return (rc);
705 }
706 
707 int
708 t4_create_dma_tag(struct adapter *sc)
709 {
710 	int rc;
711 
712 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
713 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
714 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
715 	    NULL, &sc->dmat);
716 	if (rc != 0) {
717 		device_printf(sc->dev,
718 		    "failed to create main DMA tag: %d\n", rc);
719 	}
720 
721 	return (rc);
722 }
723 
724 static inline int
725 enable_buffer_packing(struct adapter *sc)
726 {
727 
728 	if (sc->flags & BUF_PACKING_OK &&
729 	    ((is_t5(sc) && buffer_packing) ||	/* 1 or -1 both ok for T5 */
730 	    (is_t4(sc) && buffer_packing == 1)))
731 		return (1);
732 	return (0);
733 }
734 
735 void
736 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
737     struct sysctl_oid_list *children)
738 {
739 
740 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
741 	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
742 	    "freelist buffer sizes");
743 
744 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
745 	    NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)");
746 
747 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
748 	    NULL, fl_pad, "payload pad boundary (bytes)");
749 
750 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
751 	    NULL, spg_len, "status page size (bytes)");
752 
753 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
754 	    NULL, cong_drop, "congestion drop setting");
755 
756 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "buffer_packing", CTLFLAG_RD,
757 	    NULL, enable_buffer_packing(sc),
758 	    "pack multiple frames in one fl buffer");
759 
760 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
761 	    NULL, sc->sge.pack_boundary, "payload pack boundary (bytes)");
762 }
763 
764 int
765 t4_destroy_dma_tag(struct adapter *sc)
766 {
767 	if (sc->dmat)
768 		bus_dma_tag_destroy(sc->dmat);
769 
770 	return (0);
771 }
772 
773 /*
774  * Allocate and initialize the firmware event queue and the management queue.
775  *
776  * Returns errno on failure.  Resources allocated up to that point may still be
777  * allocated.  Caller is responsible for cleanup in case this function fails.
778  */
779 int
780 t4_setup_adapter_queues(struct adapter *sc)
781 {
782 	int rc;
783 
784 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
785 
786 	sysctl_ctx_init(&sc->ctx);
787 	sc->flags |= ADAP_SYSCTL_CTX;
788 
789 	/*
790 	 * Firmware event queue
791 	 */
792 	rc = alloc_fwq(sc);
793 	if (rc != 0)
794 		return (rc);
795 
796 	/*
797 	 * Management queue.  This is just a control queue that uses the fwq as
798 	 * its associated iq.
799 	 */
800 	rc = alloc_mgmtq(sc);
801 
802 	return (rc);
803 }
804 
805 /*
806  * Idempotent
807  */
808 int
809 t4_teardown_adapter_queues(struct adapter *sc)
810 {
811 
812 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
813 
814 	/* Do this before freeing the queue */
815 	if (sc->flags & ADAP_SYSCTL_CTX) {
816 		sysctl_ctx_free(&sc->ctx);
817 		sc->flags &= ~ADAP_SYSCTL_CTX;
818 	}
819 
820 	free_mgmtq(sc);
821 	free_fwq(sc);
822 
823 	return (0);
824 }
825 
826 static inline int
827 port_intr_count(struct port_info *pi)
828 {
829 	int rc = 0;
830 
831 	if (pi->flags & INTR_RXQ)
832 		rc += pi->nrxq;
833 #ifdef TCP_OFFLOAD
834 	if (pi->flags & INTR_OFLD_RXQ)
835 		rc += pi->nofldrxq;
836 #endif
837 #ifdef DEV_NETMAP
838 	if (pi->flags & INTR_NM_RXQ)
839 		rc += pi->nnmrxq;
840 #endif
841 	return (rc);
842 }
843 
844 static inline int
845 first_vector(struct port_info *pi)
846 {
847 	struct adapter *sc = pi->adapter;
848 	int rc = T4_EXTRA_INTR, i;
849 
850 	if (sc->intr_count == 1)
851 		return (0);
852 
853 	for_each_port(sc, i) {
854 		if (i == pi->port_id)
855 			break;
856 
857 		rc += port_intr_count(sc->port[i]);
858 	}
859 
860 	return (rc);
861 }
862 
863 /*
864  * Given an arbitrary "index," come up with an iq that can be used by other
865  * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
866  * The iq returned is guaranteed to be something that takes direct interrupts.
867  */
868 static struct sge_iq *
869 port_intr_iq(struct port_info *pi, int idx)
870 {
871 	struct adapter *sc = pi->adapter;
872 	struct sge *s = &sc->sge;
873 	struct sge_iq *iq = NULL;
874 	int nintr, i;
875 
876 	if (sc->intr_count == 1)
877 		return (&sc->sge.fwq);
878 
879 	nintr = port_intr_count(pi);
880 	KASSERT(nintr != 0,
881 	    ("%s: pi %p has no exclusive interrupts, total interrupts = %d",
882 	    __func__, pi, sc->intr_count));
883 #ifdef DEV_NETMAP
884 	/* Exclude netmap queues as they can't take anyone else's interrupts */
885 	if (pi->flags & INTR_NM_RXQ)
886 		nintr -= pi->nnmrxq;
887 	KASSERT(nintr > 0,
888 	    ("%s: pi %p has nintr %d after netmap adjustment of %d", __func__,
889 	    pi, nintr, pi->nnmrxq));
890 #endif
891 	i = idx % nintr;
892 
893 	if (pi->flags & INTR_RXQ) {
894 	       	if (i < pi->nrxq) {
895 			iq = &s->rxq[pi->first_rxq + i].iq;
896 			goto done;
897 		}
898 		i -= pi->nrxq;
899 	}
900 #ifdef TCP_OFFLOAD
901 	if (pi->flags & INTR_OFLD_RXQ) {
902 	       	if (i < pi->nofldrxq) {
903 			iq = &s->ofld_rxq[pi->first_ofld_rxq + i].iq;
904 			goto done;
905 		}
906 		i -= pi->nofldrxq;
907 	}
908 #endif
909 	panic("%s: pi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
910 	    pi, pi->flags & INTR_ALL, idx, nintr);
911 done:
912 	MPASS(iq != NULL);
913 	KASSERT(iq->flags & IQ_INTR,
914 	    ("%s: iq %p (port %p, intr_flags 0x%lx, idx %d)", __func__, iq, pi,
915 	    pi->flags & INTR_ALL, idx));
916 	return (iq);
917 }
918 
919 /* Maximum payload that can be delivered with a single iq descriptor */
920 static inline int
921 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
922 {
923 	int payload;
924 
925 #ifdef TCP_OFFLOAD
926 	if (toe) {
927 		payload = sc->tt.rx_coalesce ?
928 		    G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
929 	} else {
930 #endif
931 		/* large enough even when hw VLAN extraction is disabled */
932 		payload = fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
933 		    mtu;
934 #ifdef TCP_OFFLOAD
935 	}
936 #endif
937 	payload = roundup2(payload, fl_pad);
938 
939 	return (payload);
940 }
941 
942 int
943 t4_setup_port_queues(struct port_info *pi)
944 {
945 	int rc = 0, i, j, intr_idx, iqid;
946 	struct sge_rxq *rxq;
947 	struct sge_txq *txq;
948 	struct sge_wrq *ctrlq;
949 #ifdef TCP_OFFLOAD
950 	struct sge_ofld_rxq *ofld_rxq;
951 	struct sge_wrq *ofld_txq;
952 #endif
953 #ifdef DEV_NETMAP
954 	struct sge_nm_rxq *nm_rxq;
955 	struct sge_nm_txq *nm_txq;
956 #endif
957 	char name[16];
958 	struct adapter *sc = pi->adapter;
959 	struct ifnet *ifp = pi->ifp;
960 	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
961 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
962 	int maxp, pack, mtu = ifp->if_mtu;
963 
964 	/* Interrupt vector to start from (when using multiple vectors) */
965 	intr_idx = first_vector(pi);
966 
967 	/*
968 	 * First pass over all NIC and TOE rx queues:
969 	 * a) initialize iq and fl
970 	 * b) allocate queue iff it will take direct interrupts.
971 	 */
972 	maxp = mtu_to_max_payload(sc, mtu, 0);
973 	pack = enable_buffer_packing(sc);
974 	if (pi->flags & INTR_RXQ) {
975 		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
976 		    CTLFLAG_RD, NULL, "rx queues");
977 	}
978 	for_each_rxq(pi, i, rxq) {
979 
980 		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq,
981 		    RX_IQ_ESIZE);
982 
983 		snprintf(name, sizeof(name), "%s rxq%d-fl",
984 		    device_get_nameunit(pi->dev), i);
985 		init_fl(sc, &rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
986 
987 		if (pi->flags & INTR_RXQ) {
988 			rxq->iq.flags |= IQ_INTR;
989 			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
990 			if (rc != 0)
991 				goto done;
992 			intr_idx++;
993 		}
994 	}
995 #ifdef TCP_OFFLOAD
996 	maxp = mtu_to_max_payload(sc, mtu, 1);
997 	if (is_offload(sc) && pi->flags & INTR_OFLD_RXQ) {
998 		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
999 		    CTLFLAG_RD, NULL,
1000 		    "rx queues for offloaded TCP connections");
1001 	}
1002 	for_each_ofld_rxq(pi, i, ofld_rxq) {
1003 
1004 		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
1005 		    pi->qsize_rxq, RX_IQ_ESIZE);
1006 
1007 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1008 		    device_get_nameunit(pi->dev), i);
1009 		init_fl(sc, &ofld_rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
1010 
1011 		if (pi->flags & INTR_OFLD_RXQ) {
1012 			ofld_rxq->iq.flags |= IQ_INTR;
1013 			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1014 			if (rc != 0)
1015 				goto done;
1016 			intr_idx++;
1017 		}
1018 	}
1019 #endif
1020 #ifdef DEV_NETMAP
1021 	/*
1022 	 * We don't have buffers to back the netmap rx queues right now so we
1023 	 * create the queues in a way that doesn't set off any congestion signal
1024 	 * in the chip.
1025 	 */
1026 	if (pi->flags & INTR_NM_RXQ) {
1027 		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_rxq",
1028 		    CTLFLAG_RD, NULL, "rx queues for netmap");
1029 		for_each_nm_rxq(pi, i, nm_rxq) {
1030 			rc = alloc_nm_rxq(pi, nm_rxq, intr_idx, i, oid);
1031 			if (rc != 0)
1032 				goto done;
1033 			intr_idx++;
1034 		}
1035 	}
1036 #endif
1037 
1038 	/*
1039 	 * Second pass over all NIC and TOE rx queues.  The queues forwarding
1040 	 * their interrupts are allocated now.
1041 	 */
1042 	j = 0;
1043 	if (!(pi->flags & INTR_RXQ)) {
1044 		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
1045 		    CTLFLAG_RD, NULL, "rx queues");
1046 		for_each_rxq(pi, i, rxq) {
1047 			MPASS(!(rxq->iq.flags & IQ_INTR));
1048 
1049 			intr_idx = port_intr_iq(pi, j)->abs_id;
1050 
1051 			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
1052 			if (rc != 0)
1053 				goto done;
1054 			j++;
1055 		}
1056 	}
1057 #ifdef TCP_OFFLOAD
1058 	if (is_offload(sc) && !(pi->flags & INTR_OFLD_RXQ)) {
1059 		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
1060 		    CTLFLAG_RD, NULL,
1061 		    "rx queues for offloaded TCP connections");
1062 		for_each_ofld_rxq(pi, i, ofld_rxq) {
1063 			MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
1064 
1065 			intr_idx = port_intr_iq(pi, j)->abs_id;
1066 
1067 			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1068 			if (rc != 0)
1069 				goto done;
1070 			j++;
1071 		}
1072 	}
1073 #endif
1074 #ifdef DEV_NETMAP
1075 	if (!(pi->flags & INTR_NM_RXQ))
1076 		CXGBE_UNIMPLEMENTED(__func__);
1077 #endif
1078 
1079 	/*
1080 	 * Now the tx queues.  Only one pass needed.
1081 	 */
1082 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1083 	    NULL, "tx queues");
1084 	j = 0;
1085 	for_each_txq(pi, i, txq) {
1086 		iqid = port_intr_iq(pi, j)->cntxt_id;
1087 		snprintf(name, sizeof(name), "%s txq%d",
1088 		    device_get_nameunit(pi->dev), i);
1089 		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
1090 		    name);
1091 
1092 		rc = alloc_txq(pi, txq, i, oid);
1093 		if (rc != 0)
1094 			goto done;
1095 		j++;
1096 	}
1097 #ifdef TCP_OFFLOAD
1098 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
1099 	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1100 	for_each_ofld_txq(pi, i, ofld_txq) {
1101 		struct sysctl_oid *oid2;
1102 
1103 		iqid = port_intr_iq(pi, j)->cntxt_id;
1104 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1105 		    device_get_nameunit(pi->dev), i);
1106 		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
1107 		    iqid, name);
1108 
1109 		snprintf(name, sizeof(name), "%d", i);
1110 		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1111 		    name, CTLFLAG_RD, NULL, "offload tx queue");
1112 
1113 		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
1114 		if (rc != 0)
1115 			goto done;
1116 		j++;
1117 	}
1118 #endif
1119 #ifdef DEV_NETMAP
1120 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_txq",
1121 	    CTLFLAG_RD, NULL, "tx queues for netmap use");
1122 	for_each_nm_txq(pi, i, nm_txq) {
1123 		iqid = pi->first_nm_rxq + (j % pi->nnmrxq);
1124 		rc = alloc_nm_txq(pi, nm_txq, iqid, i, oid);
1125 		if (rc != 0)
1126 			goto done;
1127 		j++;
1128 	}
1129 #endif
1130 
1131 	/*
1132 	 * Finally, the control queue.
1133 	 */
1134 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1135 	    NULL, "ctrl queue");
1136 	ctrlq = &sc->sge.ctrlq[pi->port_id];
1137 	iqid = port_intr_iq(pi, 0)->cntxt_id;
1138 	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
1139 	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
1140 	rc = alloc_wrq(sc, pi, ctrlq, oid);
1141 
1142 done:
1143 	if (rc)
1144 		t4_teardown_port_queues(pi);
1145 
1146 	return (rc);
1147 }
1148 
1149 /*
1150  * Idempotent
1151  */
1152 int
1153 t4_teardown_port_queues(struct port_info *pi)
1154 {
1155 	int i;
1156 	struct adapter *sc = pi->adapter;
1157 	struct sge_rxq *rxq;
1158 	struct sge_txq *txq;
1159 #ifdef TCP_OFFLOAD
1160 	struct sge_ofld_rxq *ofld_rxq;
1161 	struct sge_wrq *ofld_txq;
1162 #endif
1163 #ifdef DEV_NETMAP
1164 	struct sge_nm_rxq *nm_rxq;
1165 	struct sge_nm_txq *nm_txq;
1166 #endif
1167 
1168 	/* Do this before freeing the queues */
1169 	if (pi->flags & PORT_SYSCTL_CTX) {
1170 		sysctl_ctx_free(&pi->ctx);
1171 		pi->flags &= ~PORT_SYSCTL_CTX;
1172 	}
1173 
1174 	/*
1175 	 * Take down all the tx queues first, as they reference the rx queues
1176 	 * (for egress updates, etc.).
1177 	 */
1178 
1179 	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1180 
1181 	for_each_txq(pi, i, txq) {
1182 		free_txq(pi, txq);
1183 	}
1184 #ifdef TCP_OFFLOAD
1185 	for_each_ofld_txq(pi, i, ofld_txq) {
1186 		free_wrq(sc, ofld_txq);
1187 	}
1188 #endif
1189 #ifdef DEV_NETMAP
1190 	for_each_nm_txq(pi, i, nm_txq)
1191 	    free_nm_txq(pi, nm_txq);
1192 #endif
1193 
1194 	/*
1195 	 * Then take down the rx queues that forward their interrupts, as they
1196 	 * reference other rx queues.
1197 	 */
1198 
1199 	for_each_rxq(pi, i, rxq) {
1200 		if ((rxq->iq.flags & IQ_INTR) == 0)
1201 			free_rxq(pi, rxq);
1202 	}
1203 #ifdef TCP_OFFLOAD
1204 	for_each_ofld_rxq(pi, i, ofld_rxq) {
1205 		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1206 			free_ofld_rxq(pi, ofld_rxq);
1207 	}
1208 #endif
1209 #ifdef DEV_NETMAP
1210 	for_each_nm_rxq(pi, i, nm_rxq)
1211 	    free_nm_rxq(pi, nm_rxq);
1212 #endif
1213 
1214 	/*
1215 	 * Then take down the rx queues that take direct interrupts.
1216 	 */
1217 
1218 	for_each_rxq(pi, i, rxq) {
1219 		if (rxq->iq.flags & IQ_INTR)
1220 			free_rxq(pi, rxq);
1221 	}
1222 #ifdef TCP_OFFLOAD
1223 	for_each_ofld_rxq(pi, i, ofld_rxq) {
1224 		if (ofld_rxq->iq.flags & IQ_INTR)
1225 			free_ofld_rxq(pi, ofld_rxq);
1226 	}
1227 #endif
1228 #ifdef DEV_NETMAP
1229 	CXGBE_UNIMPLEMENTED(__func__);
1230 #endif
1231 
1232 	return (0);
1233 }
1234 
1235 /*
1236  * Deals with errors and the firmware event queue.  All data rx queues forward
1237  * their interrupt to the firmware event queue.
1238  */
1239 void
1240 t4_intr_all(void *arg)
1241 {
1242 	struct adapter *sc = arg;
1243 	struct sge_iq *fwq = &sc->sge.fwq;
1244 
1245 	t4_intr_err(arg);
1246 	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1247 		service_iq(fwq, 0);
1248 		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1249 	}
1250 }
1251 
1252 /* Deals with error interrupts */
1253 void
1254 t4_intr_err(void *arg)
1255 {
1256 	struct adapter *sc = arg;
1257 
1258 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1259 	t4_slow_intr_handler(sc);
1260 }
1261 
1262 void
1263 t4_intr_evt(void *arg)
1264 {
1265 	struct sge_iq *iq = arg;
1266 
1267 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1268 		service_iq(iq, 0);
1269 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1270 	}
1271 }
1272 
1273 void
1274 t4_intr(void *arg)
1275 {
1276 	struct sge_iq *iq = arg;
1277 
1278 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1279 		service_iq(iq, 0);
1280 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1281 	}
1282 }
1283 
1284 /*
1285  * Deals with anything and everything on the given ingress queue.
1286  */
1287 static int
1288 service_iq(struct sge_iq *iq, int budget)
1289 {
1290 	struct sge_iq *q;
1291 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1292 	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
1293 	struct adapter *sc = iq->adapter;
1294 	struct rsp_ctrl *ctrl;
1295 	const struct rss_header *rss;
1296 	int ndescs = 0, limit, fl_bufs_used = 0;
1297 	int rsp_type;
1298 	uint32_t lq;
1299 	struct mbuf *m0;
1300 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1301 #if defined(INET) || defined(INET6)
1302 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1303 #endif
1304 
1305 	limit = budget ? budget : iq->qsize / 8;
1306 
1307 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1308 
1309 	/*
1310 	 * We always come back and check the descriptor ring for new indirect
1311 	 * interrupts and other responses after running a single handler.
1312 	 */
1313 	for (;;) {
1314 		while (is_new_response(iq, &ctrl)) {
1315 
1316 			rmb();
1317 
1318 			m0 = NULL;
1319 			rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
1320 			lq = be32toh(ctrl->pldbuflen_qid);
1321 			rss = (const void *)iq->cdesc;
1322 
1323 			switch (rsp_type) {
1324 			case X_RSPD_TYPE_FLBUF:
1325 
1326 				KASSERT(iq->flags & IQ_HAS_FL,
1327 				    ("%s: data for an iq (%p) with no freelist",
1328 				    __func__, iq));
1329 
1330 				m0 = get_fl_payload(sc, fl, lq, &fl_bufs_used);
1331 				if (__predict_false(m0 == NULL))
1332 					goto process_iql;
1333 #ifdef T4_PKT_TIMESTAMP
1334 				/*
1335 				 * 60 bit timestamp for the payload is
1336 				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1337 				 * in the leading free-space in the mbuf.  The
1338 				 * kernel can clobber it during a pullup,
1339 				 * m_copymdata, etc.  You need to make sure that
1340 				 * the mbuf reaches you unmolested if you care
1341 				 * about the timestamp.
1342 				 */
1343 				*(uint64_t *)m0->m_pktdat =
1344 				    be64toh(ctrl->u.last_flit) &
1345 				    0xfffffffffffffff;
1346 #endif
1347 
1348 				/* fall through */
1349 
1350 			case X_RSPD_TYPE_CPL:
1351 				KASSERT(rss->opcode < NUM_CPL_CMDS,
1352 				    ("%s: bad opcode %02x.", __func__,
1353 				    rss->opcode));
1354 				sc->cpl_handler[rss->opcode](iq, rss, m0);
1355 				break;
1356 
1357 			case X_RSPD_TYPE_INTR:
1358 
1359 				/*
1360 				 * Interrupts should be forwarded only to queues
1361 				 * that are not forwarding their interrupts.
1362 				 * This means service_iq can recurse but only 1
1363 				 * level deep.
1364 				 */
1365 				KASSERT(budget == 0,
1366 				    ("%s: budget %u, rsp_type %u", __func__,
1367 				    budget, rsp_type));
1368 
1369 				/*
1370 				 * There are 1K interrupt-capable queues (qids 0
1371 				 * through 1023).  A response type indicating a
1372 				 * forwarded interrupt with a qid >= 1K is an
1373 				 * iWARP async notification.
1374 				 */
1375 				if (lq >= 1024) {
1376                                         sc->an_handler(iq, ctrl);
1377                                         break;
1378                                 }
1379 
1380 				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1381 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1382 				    IQS_BUSY)) {
1383 					if (service_iq(q, q->qsize / 8) == 0) {
1384 						atomic_cmpset_int(&q->state,
1385 						    IQS_BUSY, IQS_IDLE);
1386 					} else {
1387 						STAILQ_INSERT_TAIL(&iql, q,
1388 						    link);
1389 					}
1390 				}
1391 				break;
1392 
1393 			default:
1394 				KASSERT(0,
1395 				    ("%s: illegal response type %d on iq %p",
1396 				    __func__, rsp_type, iq));
1397 				log(LOG_ERR,
1398 				    "%s: illegal response type %d on iq %p",
1399 				    device_get_nameunit(sc->dev), rsp_type, iq);
1400 				break;
1401 			}
1402 
1403 			if (fl_bufs_used >= 16) {
1404 				FL_LOCK(fl);
1405 				fl->needed += fl_bufs_used;
1406 				refill_fl(sc, fl, 32);
1407 				FL_UNLOCK(fl);
1408 				fl_bufs_used = 0;
1409 			}
1410 
1411 			iq_next(iq);
1412 			if (++ndescs == limit) {
1413 				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1414 				    V_CIDXINC(ndescs) |
1415 				    V_INGRESSQID(iq->cntxt_id) |
1416 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1417 				ndescs = 0;
1418 
1419 #if defined(INET) || defined(INET6)
1420 				if (iq->flags & IQ_LRO_ENABLED &&
1421 				    sc->lro_timeout != 0) {
1422 					tcp_lro_flush_inactive(&rxq->lro,
1423 					    &lro_timeout);
1424 				}
1425 #endif
1426 
1427 				if (budget)
1428 					return (EINPROGRESS);
1429 			}
1430 		}
1431 
1432 process_iql:
1433 		if (STAILQ_EMPTY(&iql))
1434 			break;
1435 
1436 		/*
1437 		 * Process the head only, and send it to the back of the list if
1438 		 * it's still not done.
1439 		 */
1440 		q = STAILQ_FIRST(&iql);
1441 		STAILQ_REMOVE_HEAD(&iql, link);
1442 		if (service_iq(q, q->qsize / 8) == 0)
1443 			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1444 		else
1445 			STAILQ_INSERT_TAIL(&iql, q, link);
1446 	}
1447 
1448 #if defined(INET) || defined(INET6)
1449 	if (iq->flags & IQ_LRO_ENABLED) {
1450 		struct lro_ctrl *lro = &rxq->lro;
1451 		struct lro_entry *l;
1452 
1453 		while (!SLIST_EMPTY(&lro->lro_active)) {
1454 			l = SLIST_FIRST(&lro->lro_active);
1455 			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1456 			tcp_lro_flush(lro, l);
1457 		}
1458 	}
1459 #endif
1460 
1461 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1462 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1463 
1464 	if (iq->flags & IQ_HAS_FL) {
1465 		int starved;
1466 
1467 		FL_LOCK(fl);
1468 		fl->needed += fl_bufs_used;
1469 		starved = refill_fl(sc, fl, 64);
1470 		FL_UNLOCK(fl);
1471 		if (__predict_false(starved != 0))
1472 			add_fl_to_sfl(sc, fl);
1473 	}
1474 
1475 	return (0);
1476 }
1477 
1478 static inline int
1479 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1480 {
1481 	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1482 
1483 	if (rc)
1484 		MPASS(cll->region3 >= CL_METADATA_SIZE);
1485 
1486 	return (rc);
1487 }
1488 
1489 static inline struct cluster_metadata *
1490 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1491     caddr_t cl)
1492 {
1493 
1494 	if (cl_has_metadata(fl, cll)) {
1495 		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1496 
1497 		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1498 	}
1499 	return (NULL);
1500 }
1501 
1502 static int
1503 rxb_free(struct mbuf *m, void *arg1, void *arg2)
1504 {
1505 	uma_zone_t zone = arg1;
1506 	caddr_t cl = arg2;
1507 
1508 	uma_zfree(zone, cl);
1509 
1510 	return (EXT_FREE_OK);
1511 }
1512 
1513 /*
1514  * The mbuf returned by this function could be allocated from zone_mbuf or
1515  * constructed in spare room in the cluster.
1516  *
1517  * The mbuf carries the payload in one of these ways
1518  * a) frame inside the mbuf (mbuf from zone_mbuf)
1519  * b) m_cljset (for clusters without metadata) zone_mbuf
1520  * c) m_extaddref (cluster with metadata) inline mbuf
1521  * d) m_extaddref (cluster with metadata) zone_mbuf
1522  */
1523 static struct mbuf *
1524 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int total, int flags)
1525 {
1526 	struct mbuf *m;
1527 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1528 	struct cluster_layout *cll = &sd->cll;
1529 	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1530 	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1531 	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1532 	int len, padded_len;
1533 	caddr_t payload;
1534 
1535 	len = min(total, hwb->size - fl->rx_offset);
1536 	padded_len = roundup2(len, fl_pad);
1537 	payload = sd->cl + cll->region1 + fl->rx_offset;
1538 
1539 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1540 
1541 		/*
1542 		 * Copy payload into a freshly allocated mbuf.
1543 		 */
1544 
1545 		m = flags & M_PKTHDR ?
1546 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1547 		if (m == NULL)
1548 			return (NULL);
1549 		fl->mbuf_allocated++;
1550 #ifdef T4_PKT_TIMESTAMP
1551 		/* Leave room for a timestamp */
1552 		m->m_data += 8;
1553 #endif
1554 		/* copy data to mbuf */
1555 		bcopy(payload, mtod(m, caddr_t), len);
1556 
1557 	} else if (sd->nmbuf * MSIZE < cll->region1) {
1558 
1559 		/*
1560 		 * There's spare room in the cluster for an mbuf.  Create one
1561 		 * and associate it with the payload that's in the cluster too.
1562 		 */
1563 
1564 		MPASS(clm != NULL);
1565 		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1566 		/* No bzero required */
1567 		if (m_init(m, NULL, 0, M_NOWAIT, MT_DATA, flags | M_NOFREE))
1568 			return (NULL);
1569 		fl->mbuf_inlined++;
1570 		m_extaddref(m, payload, padded_len, &clm->refcount, rxb_free,
1571 		    swz->zone, sd->cl);
1572 		sd->nmbuf++;
1573 
1574 	} else {
1575 
1576 		/*
1577 		 * Grab an mbuf from zone_mbuf and associate it with the
1578 		 * payload in the cluster.
1579 		 */
1580 
1581 		m = flags & M_PKTHDR ?
1582 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1583 		if (m == NULL)
1584 			return (NULL);
1585 		fl->mbuf_allocated++;
1586 		if (clm != NULL)
1587 			m_extaddref(m, payload, padded_len, &clm->refcount,
1588 			    rxb_free, swz->zone, sd->cl);
1589 		else {
1590 			m_cljset(m, sd->cl, swz->type);
1591 			sd->cl = NULL;	/* consumed, not a recycle candidate */
1592 		}
1593 	}
1594 	if (flags & M_PKTHDR)
1595 		m->m_pkthdr.len = total;
1596 	m->m_len = len;
1597 
1598 	if (fl->flags & FL_BUF_PACKING) {
1599 		fl->rx_offset += roundup2(padded_len, sc->sge.pack_boundary);
1600 		MPASS(fl->rx_offset <= hwb->size);
1601 		if (fl->rx_offset < hwb->size)
1602 			return (m);	/* without advancing the cidx */
1603 	}
1604 
1605 	if (__predict_false(++fl->cidx == fl->cap))
1606 		fl->cidx = 0;
1607 	fl->rx_offset = 0;
1608 
1609 	return (m);
1610 }
1611 
1612 static struct mbuf *
1613 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1614     int *fl_bufs_used)
1615 {
1616 	struct mbuf *m0, *m, **pnext;
1617 	u_int nbuf, len;
1618 
1619 	/*
1620 	 * No assertion for the fl lock because we don't need it.  This routine
1621 	 * is called only from the rx interrupt handler and it only updates
1622 	 * fl->cidx.  (Contrast that with fl->pidx/fl->needed which could be
1623 	 * updated in the rx interrupt handler or the starvation helper routine.
1624 	 * That's why code that manipulates fl->pidx/fl->needed needs the fl
1625 	 * lock but this routine does not).
1626 	 */
1627 
1628 	nbuf = 0;
1629 	len = G_RSPD_LEN(len_newbuf);
1630 	if (__predict_false(fl->m0 != NULL)) {
1631 		M_ASSERTPKTHDR(fl->m0);
1632 		MPASS(len == fl->m0->m_pkthdr.len);
1633 		MPASS(fl->remaining < len);
1634 
1635 		m0 = fl->m0;
1636 		pnext = fl->pnext;
1637 		len = fl->remaining;
1638 		fl->m0 = NULL;
1639 		goto get_segment;
1640 	}
1641 
1642 	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1643 		nbuf++;
1644 		fl->rx_offset = 0;
1645 		if (__predict_false(++fl->cidx == fl->cap))
1646 			fl->cidx = 0;
1647 	}
1648 
1649 	/*
1650 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1651 	 * 'len' and it may span multiple hw buffers.
1652 	 */
1653 
1654 	m0 = get_scatter_segment(sc, fl, len, M_PKTHDR);
1655 	if (m0 == NULL)
1656 		goto done;
1657 	len -= m0->m_len;
1658 	pnext = &m0->m_next;
1659 	while (len > 0) {
1660 		nbuf++;
1661 get_segment:
1662 		MPASS(fl->rx_offset == 0);
1663 		m = get_scatter_segment(sc, fl, len, 0);
1664 		if (m == NULL) {
1665 			fl->m0 = m0;
1666 			fl->pnext = pnext;
1667 			fl->remaining = len;
1668 			m0 = NULL;
1669 			goto done;
1670 		}
1671 		*pnext = m;
1672 		pnext = &m->m_next;
1673 		len -= m->m_len;
1674 	}
1675 	*pnext = NULL;
1676 	if (fl->rx_offset == 0)
1677 		nbuf++;
1678 done:
1679 	(*fl_bufs_used) += nbuf;
1680 	return (m0);
1681 }
1682 
1683 static int
1684 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1685 {
1686 	struct sge_rxq *rxq = iq_to_rxq(iq);
1687 	struct ifnet *ifp = rxq->ifp;
1688 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1689 #if defined(INET) || defined(INET6)
1690 	struct lro_ctrl *lro = &rxq->lro;
1691 #endif
1692 
1693 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1694 	    rss->opcode));
1695 
1696 	m0->m_pkthdr.len -= fl_pktshift;
1697 	m0->m_len -= fl_pktshift;
1698 	m0->m_data += fl_pktshift;
1699 
1700 	m0->m_pkthdr.rcvif = ifp;
1701 	m0->m_flags |= M_FLOWID;
1702 	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1703 
1704 	if (cpl->csum_calc && !cpl->err_vec) {
1705 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1706 		    cpl->l2info & htobe32(F_RXF_IP)) {
1707 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1708 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1709 			rxq->rxcsum++;
1710 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1711 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1712 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1713 			    CSUM_PSEUDO_HDR);
1714 			rxq->rxcsum++;
1715 		}
1716 
1717 		if (__predict_false(cpl->ip_frag))
1718 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1719 		else
1720 			m0->m_pkthdr.csum_data = 0xffff;
1721 	}
1722 
1723 	if (cpl->vlan_ex) {
1724 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1725 		m0->m_flags |= M_VLANTAG;
1726 		rxq->vlan_extraction++;
1727 	}
1728 
1729 #if defined(INET) || defined(INET6)
1730 	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1731 	    iq->flags & IQ_LRO_ENABLED &&
1732 	    tcp_lro_rx(lro, m0, 0) == 0) {
1733 		/* queued for LRO */
1734 	} else
1735 #endif
1736 	ifp->if_input(ifp, m0);
1737 
1738 	return (0);
1739 }
1740 
1741 /*
1742  * Doesn't fail.  Holds on to work requests it can't send right away.
1743  */
1744 void
1745 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1746 {
1747 	struct sge_eq *eq = &wrq->eq;
1748 	int can_reclaim;
1749 	caddr_t dst;
1750 
1751 	TXQ_LOCK_ASSERT_OWNED(wrq);
1752 #ifdef TCP_OFFLOAD
1753 	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1754 	    (eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1755 	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1756 #else
1757 	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1758 	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1759 #endif
1760 
1761 	if (__predict_true(wr != NULL))
1762 		STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1763 
1764 	can_reclaim = reclaimable(eq);
1765 	if (__predict_false(eq->flags & EQ_STALLED)) {
1766 		if (can_reclaim < tx_resume_threshold(eq))
1767 			return;
1768 		eq->flags &= ~EQ_STALLED;
1769 		eq->unstalled++;
1770 	}
1771 	eq->cidx += can_reclaim;
1772 	eq->avail += can_reclaim;
1773 	if (__predict_false(eq->cidx >= eq->cap))
1774 		eq->cidx -= eq->cap;
1775 
1776 	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
1777 		int ndesc;
1778 
1779 		if (__predict_false(wr->wr_len < 0 ||
1780 		    wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) {
1781 
1782 #ifdef INVARIANTS
1783 			panic("%s: work request with length %d", __func__,
1784 			    wr->wr_len);
1785 #endif
1786 #ifdef KDB
1787 			kdb_backtrace();
1788 #endif
1789 			log(LOG_ERR, "%s: %s work request with length %d",
1790 			    device_get_nameunit(sc->dev), __func__, wr->wr_len);
1791 			STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1792 			free_wrqe(wr);
1793 			continue;
1794 		}
1795 
1796 		ndesc = howmany(wr->wr_len, EQ_ESIZE);
1797 		if (eq->avail < ndesc) {
1798 			wrq->no_desc++;
1799 			break;
1800 		}
1801 
1802 		dst = (void *)&eq->desc[eq->pidx];
1803 		copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len);
1804 
1805 		eq->pidx += ndesc;
1806 		eq->avail -= ndesc;
1807 		if (__predict_false(eq->pidx >= eq->cap))
1808 			eq->pidx -= eq->cap;
1809 
1810 		eq->pending += ndesc;
1811 		if (eq->pending >= 8)
1812 			ring_eq_db(sc, eq);
1813 
1814 		wrq->tx_wrs++;
1815 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1816 		free_wrqe(wr);
1817 
1818 		if (eq->avail < 8) {
1819 			can_reclaim = reclaimable(eq);
1820 			eq->cidx += can_reclaim;
1821 			eq->avail += can_reclaim;
1822 			if (__predict_false(eq->cidx >= eq->cap))
1823 				eq->cidx -= eq->cap;
1824 		}
1825 	}
1826 
1827 	if (eq->pending)
1828 		ring_eq_db(sc, eq);
1829 
1830 	if (wr != NULL) {
1831 		eq->flags |= EQ_STALLED;
1832 		if (callout_pending(&eq->tx_callout) == 0)
1833 			callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1834 	}
1835 }
1836 
1837 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1838 #define TXPKTS_PKT_HDR ((\
1839     sizeof(struct ulp_txpkt) + \
1840     sizeof(struct ulptx_idata) + \
1841     sizeof(struct cpl_tx_pkt_core) \
1842     ) / 8)
1843 
1844 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1845 #define TXPKTS_WR_HDR (\
1846     sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
1847     TXPKTS_PKT_HDR)
1848 
1849 /* Header of a tx WR, before SGL of first packet (in flits) */
1850 #define TXPKT_WR_HDR ((\
1851     sizeof(struct fw_eth_tx_pkt_wr) + \
1852     sizeof(struct cpl_tx_pkt_core) \
1853     ) / 8 )
1854 
1855 /* Header of a tx LSO WR, before SGL of first packet (in flits) */
1856 #define TXPKT_LSO_WR_HDR ((\
1857     sizeof(struct fw_eth_tx_pkt_wr) + \
1858     sizeof(struct cpl_tx_pkt_lso_core) + \
1859     sizeof(struct cpl_tx_pkt_core) \
1860     ) / 8 )
1861 
1862 int
1863 t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
1864 {
1865 	struct port_info *pi = (void *)ifp->if_softc;
1866 	struct adapter *sc = pi->adapter;
1867 	struct sge_eq *eq = &txq->eq;
1868 	struct buf_ring *br = txq->br;
1869 	struct mbuf *next;
1870 	int rc, coalescing, can_reclaim;
1871 	struct txpkts txpkts;
1872 	struct sgl sgl;
1873 
1874 	TXQ_LOCK_ASSERT_OWNED(txq);
1875 	KASSERT(m, ("%s: called with nothing to do.", __func__));
1876 	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
1877 	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1878 
1879 	prefetch(&eq->desc[eq->pidx]);
1880 	prefetch(&txq->sdesc[eq->pidx]);
1881 
1882 	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
1883 	coalescing = 0;
1884 
1885 	can_reclaim = reclaimable(eq);
1886 	if (__predict_false(eq->flags & EQ_STALLED)) {
1887 		if (can_reclaim < tx_resume_threshold(eq)) {
1888 			txq->m = m;
1889 			return (0);
1890 		}
1891 		eq->flags &= ~EQ_STALLED;
1892 		eq->unstalled++;
1893 	}
1894 
1895 	if (__predict_false(eq->flags & EQ_DOOMED)) {
1896 		m_freem(m);
1897 		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
1898 			m_freem(m);
1899 		return (ENETDOWN);
1900 	}
1901 
1902 	if (eq->avail < 8 && can_reclaim)
1903 		reclaim_tx_descs(txq, can_reclaim, 32);
1904 
1905 	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
1906 
1907 		if (eq->avail < 8)
1908 			break;
1909 
1910 		next = m->m_nextpkt;
1911 		m->m_nextpkt = NULL;
1912 
1913 		if (next || buf_ring_peek(br))
1914 			coalescing = 1;
1915 
1916 		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
1917 		if (rc != 0) {
1918 			if (rc == ENOMEM) {
1919 
1920 				/* Short of resources, suspend tx */
1921 
1922 				m->m_nextpkt = next;
1923 				break;
1924 			}
1925 
1926 			/*
1927 			 * Unrecoverable error for this packet, throw it away
1928 			 * and move on to the next.  get_pkt_sgl may already
1929 			 * have freed m (it will be NULL in that case and the
1930 			 * m_freem here is still safe).
1931 			 */
1932 
1933 			m_freem(m);
1934 			continue;
1935 		}
1936 
1937 		if (coalescing &&
1938 		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
1939 
1940 			/* Successfully absorbed into txpkts */
1941 
1942 			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
1943 			goto doorbell;
1944 		}
1945 
1946 		/*
1947 		 * We weren't coalescing to begin with, or current frame could
1948 		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1949 		 * given to it can't be coalesced).  Either way there should be
1950 		 * nothing in txpkts.
1951 		 */
1952 		KASSERT(txpkts.npkt == 0,
1953 		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
1954 
1955 		/* We're sending out individual packets now */
1956 		coalescing = 0;
1957 
1958 		if (eq->avail < 8)
1959 			reclaim_tx_descs(txq, 0, 8);
1960 		rc = write_txpkt_wr(pi, txq, m, &sgl);
1961 		if (rc != 0) {
1962 
1963 			/* Short of hardware descriptors, suspend tx */
1964 
1965 			/*
1966 			 * This is an unlikely but expensive failure.  We've
1967 			 * done all the hard work (DMA mappings etc.) and now we
1968 			 * can't send out the packet.  What's worse, we have to
1969 			 * spend even more time freeing up everything in sgl.
1970 			 */
1971 			txq->no_desc++;
1972 			free_pkt_sgl(txq, &sgl);
1973 
1974 			m->m_nextpkt = next;
1975 			break;
1976 		}
1977 
1978 		ETHER_BPF_MTAP(ifp, m);
1979 		if (sgl.nsegs == 0)
1980 			m_freem(m);
1981 doorbell:
1982 		if (eq->pending >= 8)
1983 			ring_eq_db(sc, eq);
1984 
1985 		can_reclaim = reclaimable(eq);
1986 		if (can_reclaim >= 32)
1987 			reclaim_tx_descs(txq, can_reclaim, 64);
1988 	}
1989 
1990 	if (txpkts.npkt > 0)
1991 		write_txpkts_wr(txq, &txpkts);
1992 
1993 	/*
1994 	 * m not NULL means there was an error but we haven't thrown it away.
1995 	 * This can happen when we're short of tx descriptors (no_desc) or maybe
1996 	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
1997 	 * will get things going again.
1998 	 */
1999 	if (m && !(eq->flags & EQ_CRFLUSHED)) {
2000 		struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
2001 
2002 		/*
2003 		 * If EQ_CRFLUSHED is not set then we know we have at least one
2004 		 * available descriptor because any WR that reduces eq->avail to
2005 		 * 0 also sets EQ_CRFLUSHED.
2006 		 */
2007 		KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
2008 
2009 		txsd->desc_used = 1;
2010 		txsd->credits = 0;
2011 		write_eqflush_wr(eq);
2012 	}
2013 	txq->m = m;
2014 
2015 	if (eq->pending)
2016 		ring_eq_db(sc, eq);
2017 
2018 	reclaim_tx_descs(txq, 0, 128);
2019 
2020 	if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
2021 		callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
2022 
2023 	return (0);
2024 }
2025 
2026 void
2027 t4_update_fl_bufsize(struct ifnet *ifp)
2028 {
2029 	struct port_info *pi = ifp->if_softc;
2030 	struct adapter *sc = pi->adapter;
2031 	struct sge_rxq *rxq;
2032 #ifdef TCP_OFFLOAD
2033 	struct sge_ofld_rxq *ofld_rxq;
2034 #endif
2035 	struct sge_fl *fl;
2036 	int i, maxp, mtu = ifp->if_mtu;
2037 
2038 	maxp = mtu_to_max_payload(sc, mtu, 0);
2039 	for_each_rxq(pi, i, rxq) {
2040 		fl = &rxq->fl;
2041 
2042 		FL_LOCK(fl);
2043 		find_best_refill_source(sc, fl, maxp);
2044 		FL_UNLOCK(fl);
2045 	}
2046 #ifdef TCP_OFFLOAD
2047 	maxp = mtu_to_max_payload(sc, mtu, 1);
2048 	for_each_ofld_rxq(pi, i, ofld_rxq) {
2049 		fl = &ofld_rxq->fl;
2050 
2051 		FL_LOCK(fl);
2052 		find_best_refill_source(sc, fl, maxp);
2053 		FL_UNLOCK(fl);
2054 	}
2055 #endif
2056 }
2057 
2058 int
2059 can_resume_tx(struct sge_eq *eq)
2060 {
2061 	return (reclaimable(eq) >= tx_resume_threshold(eq));
2062 }
2063 
2064 static inline void
2065 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2066     int qsize, int esize)
2067 {
2068 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2069 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2070 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2071 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2072 
2073 	iq->flags = 0;
2074 	iq->adapter = sc;
2075 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2076 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2077 	if (pktc_idx >= 0) {
2078 		iq->intr_params |= F_QINTR_CNT_EN;
2079 		iq->intr_pktc_idx = pktc_idx;
2080 	}
2081 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2082 	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
2083 }
2084 
2085 static inline void
2086 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, int pack,
2087     char *name)
2088 {
2089 
2090 	fl->qsize = qsize;
2091 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2092 	if (pack)
2093 		fl->flags |= FL_BUF_PACKING;
2094 	find_best_refill_source(sc, fl, maxp);
2095 	find_safe_refill_source(sc, fl);
2096 }
2097 
2098 static inline void
2099 init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
2100     uint16_t iqid, char *name)
2101 {
2102 	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
2103 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2104 
2105 	eq->flags = eqtype & EQ_TYPEMASK;
2106 	eq->tx_chan = tx_chan;
2107 	eq->iqid = iqid;
2108 	eq->qsize = qsize;
2109 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2110 
2111 	TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
2112 	callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
2113 }
2114 
2115 static int
2116 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2117     bus_dmamap_t *map, bus_addr_t *pa, void **va)
2118 {
2119 	int rc;
2120 
2121 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2122 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2123 	if (rc != 0) {
2124 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2125 		goto done;
2126 	}
2127 
2128 	rc = bus_dmamem_alloc(*tag, va,
2129 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2130 	if (rc != 0) {
2131 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2132 		goto done;
2133 	}
2134 
2135 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2136 	if (rc != 0) {
2137 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2138 		goto done;
2139 	}
2140 done:
2141 	if (rc)
2142 		free_ring(sc, *tag, *map, *pa, *va);
2143 
2144 	return (rc);
2145 }
2146 
2147 static int
2148 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2149     bus_addr_t pa, void *va)
2150 {
2151 	if (pa)
2152 		bus_dmamap_unload(tag, map);
2153 	if (va)
2154 		bus_dmamem_free(tag, va, map);
2155 	if (tag)
2156 		bus_dma_tag_destroy(tag);
2157 
2158 	return (0);
2159 }
2160 
2161 /*
2162  * Allocates the ring for an ingress queue and an optional freelist.  If the
2163  * freelist is specified it will be allocated and then associated with the
2164  * ingress queue.
2165  *
2166  * Returns errno on failure.  Resources allocated up to that point may still be
2167  * allocated.  Caller is responsible for cleanup in case this function fails.
2168  *
2169  * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2170  * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2171  * the abs_id of the ingress queue to which its interrupts should be forwarded.
2172  */
2173 static int
2174 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
2175     int intr_idx, int cong)
2176 {
2177 	int rc, i, cntxt_id;
2178 	size_t len;
2179 	struct fw_iq_cmd c;
2180 	struct adapter *sc = iq->adapter;
2181 	__be32 v = 0;
2182 
2183 	len = iq->qsize * iq->esize;
2184 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2185 	    (void **)&iq->desc);
2186 	if (rc != 0)
2187 		return (rc);
2188 
2189 	bzero(&c, sizeof(c));
2190 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2191 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2192 	    V_FW_IQ_CMD_VFN(0));
2193 
2194 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2195 	    FW_LEN16(c));
2196 
2197 	/* Special handling for firmware event queue */
2198 	if (iq == &sc->sge.fwq)
2199 		v |= F_FW_IQ_CMD_IQASYNCH;
2200 
2201 	if (iq->flags & IQ_INTR) {
2202 		KASSERT(intr_idx < sc->intr_count,
2203 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2204 	} else
2205 		v |= F_FW_IQ_CMD_IQANDST;
2206 	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2207 
2208 	c.type_to_iqandstindex = htobe32(v |
2209 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2210 	    V_FW_IQ_CMD_VIID(pi->viid) |
2211 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2212 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2213 	    F_FW_IQ_CMD_IQGTSMODE |
2214 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2215 	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
2216 	c.iqsize = htobe16(iq->qsize);
2217 	c.iqaddr = htobe64(iq->ba);
2218 	if (cong >= 0)
2219 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2220 
2221 	if (fl) {
2222 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2223 
2224 		len = fl->qsize * RX_FL_ESIZE;
2225 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2226 		    &fl->ba, (void **)&fl->desc);
2227 		if (rc)
2228 			return (rc);
2229 
2230 		/* Allocate space for one software descriptor per buffer. */
2231 		fl->cap = (fl->qsize - spg_len / RX_FL_ESIZE) * 8;
2232 		rc = alloc_fl_sdesc(fl);
2233 		if (rc != 0) {
2234 			device_printf(sc->dev,
2235 			    "failed to setup fl software descriptors: %d\n",
2236 			    rc);
2237 			return (rc);
2238 		}
2239 		fl->needed = fl->cap;
2240 		fl->lowat = fl->flags & FL_BUF_PACKING ?
2241 		    roundup2(sc->sge.fl_starve_threshold2, 8) :
2242 		    roundup2(sc->sge.fl_starve_threshold, 8);
2243 
2244 		c.iqns_to_fl0congen |=
2245 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2246 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2247 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2248 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2249 			    0));
2250 		if (cong >= 0) {
2251 			c.iqns_to_fl0congen |=
2252 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2253 				    F_FW_IQ_CMD_FL0CONGCIF |
2254 				    F_FW_IQ_CMD_FL0CONGEN);
2255 		}
2256 		c.fl0dcaen_to_fl0cidxfthresh =
2257 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
2258 			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2259 		c.fl0size = htobe16(fl->qsize);
2260 		c.fl0addr = htobe64(fl->ba);
2261 	}
2262 
2263 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2264 	if (rc != 0) {
2265 		device_printf(sc->dev,
2266 		    "failed to create ingress queue: %d\n", rc);
2267 		return (rc);
2268 	}
2269 
2270 	iq->cdesc = iq->desc;
2271 	iq->cidx = 0;
2272 	iq->gen = 1;
2273 	iq->intr_next = iq->intr_params;
2274 	iq->cntxt_id = be16toh(c.iqid);
2275 	iq->abs_id = be16toh(c.physiqid);
2276 	iq->flags |= IQ_ALLOCATED;
2277 
2278 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2279 	if (cntxt_id >= sc->sge.niq) {
2280 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2281 		    cntxt_id, sc->sge.niq - 1);
2282 	}
2283 	sc->sge.iqmap[cntxt_id] = iq;
2284 
2285 	if (fl) {
2286 		fl->cntxt_id = be16toh(c.fl0id);
2287 		fl->pidx = fl->cidx = 0;
2288 
2289 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2290 		if (cntxt_id >= sc->sge.neq) {
2291 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2292 			    __func__, cntxt_id, sc->sge.neq - 1);
2293 		}
2294 		sc->sge.eqmap[cntxt_id] = (void *)fl;
2295 
2296 		FL_LOCK(fl);
2297 		/* Enough to make sure the SGE doesn't think it's starved */
2298 		refill_fl(sc, fl, fl->lowat);
2299 		FL_UNLOCK(fl);
2300 
2301 		iq->flags |= IQ_HAS_FL;
2302 	}
2303 
2304 	if (is_t5(sc) && cong >= 0) {
2305 		uint32_t param, val;
2306 
2307 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2308 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2309 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2310 		if (cong == 0)
2311 			val = 1 << 19;
2312 		else {
2313 			val = 2 << 19;
2314 			for (i = 0; i < 4; i++) {
2315 				if (cong & (1 << i))
2316 					val |= 1 << (i << 2);
2317 			}
2318 		}
2319 
2320 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2321 		if (rc != 0) {
2322 			/* report error but carry on */
2323 			device_printf(sc->dev,
2324 			    "failed to set congestion manager context for "
2325 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2326 		}
2327 	}
2328 
2329 	/* Enable IQ interrupts */
2330 	atomic_store_rel_int(&iq->state, IQS_IDLE);
2331 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2332 	    V_INGRESSQID(iq->cntxt_id));
2333 
2334 	return (0);
2335 }
2336 
2337 static int
2338 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
2339 {
2340 	int rc;
2341 	struct adapter *sc = iq->adapter;
2342 	device_t dev;
2343 
2344 	if (sc == NULL)
2345 		return (0);	/* nothing to do */
2346 
2347 	dev = pi ? pi->dev : sc->dev;
2348 
2349 	if (iq->flags & IQ_ALLOCATED) {
2350 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2351 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2352 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2353 		if (rc != 0) {
2354 			device_printf(dev,
2355 			    "failed to free queue %p: %d\n", iq, rc);
2356 			return (rc);
2357 		}
2358 		iq->flags &= ~IQ_ALLOCATED;
2359 	}
2360 
2361 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2362 
2363 	bzero(iq, sizeof(*iq));
2364 
2365 	if (fl) {
2366 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2367 		    fl->desc);
2368 
2369 		if (fl->sdesc)
2370 			free_fl_sdesc(sc, fl);
2371 
2372 		if (mtx_initialized(&fl->fl_lock))
2373 			mtx_destroy(&fl->fl_lock);
2374 
2375 		bzero(fl, sizeof(*fl));
2376 	}
2377 
2378 	return (0);
2379 }
2380 
2381 static void
2382 add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2383     struct sge_fl *fl)
2384 {
2385 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2386 
2387 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2388 	    "freelist");
2389 	children = SYSCTL_CHILDREN(oid);
2390 
2391 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2392 	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2393 	    "SGE context id of the freelist");
2394 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2395 	    0, "consumer index");
2396 	if (fl->flags & FL_BUF_PACKING) {
2397 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2398 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2399 	}
2400 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2401 	    0, "producer index");
2402 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2403 	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2404 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2405 	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2406 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2407 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2408 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2409 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2410 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2411 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2412 }
2413 
2414 static int
2415 alloc_fwq(struct adapter *sc)
2416 {
2417 	int rc, intr_idx;
2418 	struct sge_iq *fwq = &sc->sge.fwq;
2419 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2420 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2421 
2422 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
2423 	fwq->flags |= IQ_INTR;	/* always */
2424 	intr_idx = sc->intr_count > 1 ? 1 : 0;
2425 	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
2426 	if (rc != 0) {
2427 		device_printf(sc->dev,
2428 		    "failed to create firmware event queue: %d\n", rc);
2429 		return (rc);
2430 	}
2431 
2432 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2433 	    NULL, "firmware event queue");
2434 	children = SYSCTL_CHILDREN(oid);
2435 
2436 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2437 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2438 	    "absolute id of the queue");
2439 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2440 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2441 	    "SGE context id of the queue");
2442 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2443 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2444 	    "consumer index");
2445 
2446 	return (0);
2447 }
2448 
2449 static int
2450 free_fwq(struct adapter *sc)
2451 {
2452 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2453 }
2454 
2455 static int
2456 alloc_mgmtq(struct adapter *sc)
2457 {
2458 	int rc;
2459 	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2460 	char name[16];
2461 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2462 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2463 
2464 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2465 	    NULL, "management queue");
2466 
2467 	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2468 	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2469 	    sc->sge.fwq.cntxt_id, name);
2470 	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2471 	if (rc != 0) {
2472 		device_printf(sc->dev,
2473 		    "failed to create management queue: %d\n", rc);
2474 		return (rc);
2475 	}
2476 
2477 	return (0);
2478 }
2479 
2480 static int
2481 free_mgmtq(struct adapter *sc)
2482 {
2483 
2484 	return free_wrq(sc, &sc->sge.mgmtq);
2485 }
2486 
2487 static inline int
2488 tnl_cong(struct port_info *pi)
2489 {
2490 
2491 	if (cong_drop == -1)
2492 		return (-1);
2493 	else if (cong_drop == 1)
2494 		return (0);
2495 	else
2496 		return (pi->rx_chan_map);
2497 }
2498 
2499 static int
2500 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
2501     struct sysctl_oid *oid)
2502 {
2503 	int rc;
2504 	struct sysctl_oid_list *children;
2505 	char name[16];
2506 
2507 	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
2508 	if (rc != 0)
2509 		return (rc);
2510 
2511 	FL_LOCK(&rxq->fl);
2512 	refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8);
2513 	FL_UNLOCK(&rxq->fl);
2514 
2515 #if defined(INET) || defined(INET6)
2516 	rc = tcp_lro_init(&rxq->lro);
2517 	if (rc != 0)
2518 		return (rc);
2519 	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
2520 
2521 	if (pi->ifp->if_capenable & IFCAP_LRO)
2522 		rxq->iq.flags |= IQ_LRO_ENABLED;
2523 #endif
2524 	rxq->ifp = pi->ifp;
2525 
2526 	children = SYSCTL_CHILDREN(oid);
2527 
2528 	snprintf(name, sizeof(name), "%d", idx);
2529 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2530 	    NULL, "rx queue");
2531 	children = SYSCTL_CHILDREN(oid);
2532 
2533 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2534 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2535 	    "absolute id of the queue");
2536 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2537 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2538 	    "SGE context id of the queue");
2539 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2540 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2541 	    "consumer index");
2542 #if defined(INET) || defined(INET6)
2543 	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2544 	    &rxq->lro.lro_queued, 0, NULL);
2545 	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2546 	    &rxq->lro.lro_flushed, 0, NULL);
2547 #endif
2548 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2549 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2550 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
2551 	    CTLFLAG_RD, &rxq->vlan_extraction,
2552 	    "# of times hardware extracted 802.1Q tag");
2553 
2554 	add_fl_sysctls(&pi->ctx, oid, &rxq->fl);
2555 
2556 	return (rc);
2557 }
2558 
2559 static int
2560 free_rxq(struct port_info *pi, struct sge_rxq *rxq)
2561 {
2562 	int rc;
2563 
2564 #if defined(INET) || defined(INET6)
2565 	if (rxq->lro.ifp) {
2566 		tcp_lro_free(&rxq->lro);
2567 		rxq->lro.ifp = NULL;
2568 	}
2569 #endif
2570 
2571 	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
2572 	if (rc == 0)
2573 		bzero(rxq, sizeof(*rxq));
2574 
2575 	return (rc);
2576 }
2577 
2578 #ifdef TCP_OFFLOAD
2579 static int
2580 alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
2581     int intr_idx, int idx, struct sysctl_oid *oid)
2582 {
2583 	int rc;
2584 	struct sysctl_oid_list *children;
2585 	char name[16];
2586 
2587 	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2588 	    pi->rx_chan_map);
2589 	if (rc != 0)
2590 		return (rc);
2591 
2592 	children = SYSCTL_CHILDREN(oid);
2593 
2594 	snprintf(name, sizeof(name), "%d", idx);
2595 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2596 	    NULL, "rx queue");
2597 	children = SYSCTL_CHILDREN(oid);
2598 
2599 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2600 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
2601 	    "I", "absolute id of the queue");
2602 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2603 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
2604 	    "I", "SGE context id of the queue");
2605 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2606 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
2607 	    "consumer index");
2608 
2609 	add_fl_sysctls(&pi->ctx, oid, &ofld_rxq->fl);
2610 
2611 	return (rc);
2612 }
2613 
2614 static int
2615 free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
2616 {
2617 	int rc;
2618 
2619 	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
2620 	if (rc == 0)
2621 		bzero(ofld_rxq, sizeof(*ofld_rxq));
2622 
2623 	return (rc);
2624 }
2625 #endif
2626 
2627 #ifdef DEV_NETMAP
2628 static int
2629 alloc_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq, int intr_idx,
2630     int idx, struct sysctl_oid *oid)
2631 {
2632 	int rc;
2633 	struct sysctl_oid_list *children;
2634 	struct sysctl_ctx_list *ctx;
2635 	char name[16];
2636 	size_t len;
2637 	struct adapter *sc = pi->adapter;
2638 	struct netmap_adapter *na = NA(pi->nm_ifp);
2639 
2640 	MPASS(na != NULL);
2641 
2642 	len = pi->qsize_rxq * RX_IQ_ESIZE;
2643 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
2644 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
2645 	if (rc != 0)
2646 		return (rc);
2647 
2648 	len = na->num_rx_desc * RX_FL_ESIZE + spg_len;
2649 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
2650 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
2651 	if (rc != 0)
2652 		return (rc);
2653 
2654 	nm_rxq->pi = pi;
2655 	nm_rxq->nid = idx;
2656 	nm_rxq->iq_cidx = 0;
2657 	nm_rxq->iq_sidx = pi->qsize_rxq - spg_len / RX_IQ_ESIZE;
2658 	nm_rxq->iq_gen = F_RSPD_GEN;
2659 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
2660 	nm_rxq->fl_sidx = na->num_rx_desc;
2661 	nm_rxq->intr_idx = intr_idx;
2662 
2663 	ctx = &pi->ctx;
2664 	children = SYSCTL_CHILDREN(oid);
2665 
2666 	snprintf(name, sizeof(name), "%d", idx);
2667 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
2668 	    "rx queue");
2669 	children = SYSCTL_CHILDREN(oid);
2670 
2671 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
2672 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
2673 	    "I", "absolute id of the queue");
2674 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2675 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
2676 	    "I", "SGE context id of the queue");
2677 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2678 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
2679 	    "consumer index");
2680 
2681 	children = SYSCTL_CHILDREN(oid);
2682 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2683 	    "freelist");
2684 	children = SYSCTL_CHILDREN(oid);
2685 
2686 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2687 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
2688 	    "I", "SGE context id of the freelist");
2689 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
2690 	    &nm_rxq->fl_cidx, 0, "consumer index");
2691 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2692 	    &nm_rxq->fl_pidx, 0, "producer index");
2693 
2694 	return (rc);
2695 }
2696 
2697 
2698 static int
2699 free_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq)
2700 {
2701 	struct adapter *sc = pi->adapter;
2702 
2703 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
2704 	    nm_rxq->iq_desc);
2705 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
2706 	    nm_rxq->fl_desc);
2707 
2708 	return (0);
2709 }
2710 
2711 static int
2712 alloc_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
2713     struct sysctl_oid *oid)
2714 {
2715 	int rc;
2716 	size_t len;
2717 	struct adapter *sc = pi->adapter;
2718 	struct netmap_adapter *na = NA(pi->nm_ifp);
2719 	char name[16];
2720 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2721 
2722 	len = na->num_tx_desc * EQ_ESIZE + spg_len;
2723 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
2724 	    &nm_txq->ba, (void **)&nm_txq->desc);
2725 	if (rc)
2726 		return (rc);
2727 
2728 	nm_txq->pidx = nm_txq->cidx = 0;
2729 	nm_txq->sidx = na->num_tx_desc;
2730 	nm_txq->nid = idx;
2731 	nm_txq->iqidx = iqidx;
2732 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2733 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf));
2734 
2735 	snprintf(name, sizeof(name), "%d", idx);
2736 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2737 	    NULL, "netmap tx queue");
2738 	children = SYSCTL_CHILDREN(oid);
2739 
2740 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2741 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
2742 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2743 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
2744 	    "consumer index");
2745 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
2746 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
2747 	    "producer index");
2748 
2749 	return (rc);
2750 }
2751 
2752 static int
2753 free_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq)
2754 {
2755 	struct adapter *sc = pi->adapter;
2756 
2757 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
2758 	    nm_txq->desc);
2759 
2760 	return (0);
2761 }
2762 #endif
2763 
2764 static int
2765 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
2766 {
2767 	int rc, cntxt_id;
2768 	struct fw_eq_ctrl_cmd c;
2769 
2770 	bzero(&c, sizeof(c));
2771 
2772 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2773 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
2774 	    V_FW_EQ_CTRL_CMD_VFN(0));
2775 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
2776 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2777 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
2778 	c.physeqid_pkd = htobe32(0);
2779 	c.fetchszm_to_iqid =
2780 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2781 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
2782 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
2783 	c.dcaen_to_eqsize =
2784 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2785 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2786 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2787 		V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
2788 	c.eqaddr = htobe64(eq->ba);
2789 
2790 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2791 	if (rc != 0) {
2792 		device_printf(sc->dev,
2793 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
2794 		return (rc);
2795 	}
2796 	eq->flags |= EQ_ALLOCATED;
2797 
2798 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
2799 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2800 	if (cntxt_id >= sc->sge.neq)
2801 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2802 		cntxt_id, sc->sge.neq - 1);
2803 	sc->sge.eqmap[cntxt_id] = eq;
2804 
2805 	return (rc);
2806 }
2807 
2808 static int
2809 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2810 {
2811 	int rc, cntxt_id;
2812 	struct fw_eq_eth_cmd c;
2813 
2814 	bzero(&c, sizeof(c));
2815 
2816 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2817 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
2818 	    V_FW_EQ_ETH_CMD_VFN(0));
2819 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
2820 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2821 	c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
2822 	c.fetchszm_to_iqid =
2823 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2824 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
2825 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
2826 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2827 		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2828 		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2829 		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
2830 	c.eqaddr = htobe64(eq->ba);
2831 
2832 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2833 	if (rc != 0) {
2834 		device_printf(pi->dev,
2835 		    "failed to create Ethernet egress queue: %d\n", rc);
2836 		return (rc);
2837 	}
2838 	eq->flags |= EQ_ALLOCATED;
2839 
2840 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
2841 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2842 	if (cntxt_id >= sc->sge.neq)
2843 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2844 		cntxt_id, sc->sge.neq - 1);
2845 	sc->sge.eqmap[cntxt_id] = eq;
2846 
2847 	return (rc);
2848 }
2849 
2850 #ifdef TCP_OFFLOAD
2851 static int
2852 ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2853 {
2854 	int rc, cntxt_id;
2855 	struct fw_eq_ofld_cmd c;
2856 
2857 	bzero(&c, sizeof(c));
2858 
2859 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
2860 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
2861 	    V_FW_EQ_OFLD_CMD_VFN(0));
2862 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
2863 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2864 	c.fetchszm_to_iqid =
2865 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2866 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
2867 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
2868 	c.dcaen_to_eqsize =
2869 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2870 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2871 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2872 		V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
2873 	c.eqaddr = htobe64(eq->ba);
2874 
2875 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2876 	if (rc != 0) {
2877 		device_printf(pi->dev,
2878 		    "failed to create egress queue for TCP offload: %d\n", rc);
2879 		return (rc);
2880 	}
2881 	eq->flags |= EQ_ALLOCATED;
2882 
2883 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
2884 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2885 	if (cntxt_id >= sc->sge.neq)
2886 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2887 		cntxt_id, sc->sge.neq - 1);
2888 	sc->sge.eqmap[cntxt_id] = eq;
2889 
2890 	return (rc);
2891 }
2892 #endif
2893 
2894 static int
2895 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2896 {
2897 	int rc;
2898 	size_t len;
2899 
2900 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
2901 
2902 	len = eq->qsize * EQ_ESIZE;
2903 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
2904 	    &eq->ba, (void **)&eq->desc);
2905 	if (rc)
2906 		return (rc);
2907 
2908 	eq->cap = eq->qsize - spg_len / EQ_ESIZE;
2909 	eq->spg = (void *)&eq->desc[eq->cap];
2910 	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
2911 	eq->pidx = eq->cidx = 0;
2912 	eq->doorbells = sc->doorbells;
2913 
2914 	switch (eq->flags & EQ_TYPEMASK) {
2915 	case EQ_CTRL:
2916 		rc = ctrl_eq_alloc(sc, eq);
2917 		break;
2918 
2919 	case EQ_ETH:
2920 		rc = eth_eq_alloc(sc, pi, eq);
2921 		break;
2922 
2923 #ifdef TCP_OFFLOAD
2924 	case EQ_OFLD:
2925 		rc = ofld_eq_alloc(sc, pi, eq);
2926 		break;
2927 #endif
2928 
2929 	default:
2930 		panic("%s: invalid eq type %d.", __func__,
2931 		    eq->flags & EQ_TYPEMASK);
2932 	}
2933 	if (rc != 0) {
2934 		device_printf(sc->dev,
2935 		    "failed to allocate egress queue(%d): %d",
2936 		    eq->flags & EQ_TYPEMASK, rc);
2937 	}
2938 
2939 	eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
2940 
2941 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
2942 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
2943 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
2944 		uint32_t s_qpp = sc->sge.eq_s_qpp;
2945 		uint32_t mask = (1 << s_qpp) - 1;
2946 		volatile uint8_t *udb;
2947 
2948 		udb = sc->udbs_base + UDBS_DB_OFFSET;
2949 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
2950 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
2951 		if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
2952 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
2953 		else {
2954 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
2955 			eq->udb_qid = 0;
2956 		}
2957 		eq->udb = (volatile void *)udb;
2958 	}
2959 
2960 	return (rc);
2961 }
2962 
2963 static int
2964 free_eq(struct adapter *sc, struct sge_eq *eq)
2965 {
2966 	int rc;
2967 
2968 	if (eq->flags & EQ_ALLOCATED) {
2969 		switch (eq->flags & EQ_TYPEMASK) {
2970 		case EQ_CTRL:
2971 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
2972 			    eq->cntxt_id);
2973 			break;
2974 
2975 		case EQ_ETH:
2976 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
2977 			    eq->cntxt_id);
2978 			break;
2979 
2980 #ifdef TCP_OFFLOAD
2981 		case EQ_OFLD:
2982 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
2983 			    eq->cntxt_id);
2984 			break;
2985 #endif
2986 
2987 		default:
2988 			panic("%s: invalid eq type %d.", __func__,
2989 			    eq->flags & EQ_TYPEMASK);
2990 		}
2991 		if (rc != 0) {
2992 			device_printf(sc->dev,
2993 			    "failed to free egress queue (%d): %d\n",
2994 			    eq->flags & EQ_TYPEMASK, rc);
2995 			return (rc);
2996 		}
2997 		eq->flags &= ~EQ_ALLOCATED;
2998 	}
2999 
3000 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3001 
3002 	if (mtx_initialized(&eq->eq_lock))
3003 		mtx_destroy(&eq->eq_lock);
3004 
3005 	bzero(eq, sizeof(*eq));
3006 	return (0);
3007 }
3008 
3009 static int
3010 alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
3011     struct sysctl_oid *oid)
3012 {
3013 	int rc;
3014 	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
3015 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3016 
3017 	rc = alloc_eq(sc, pi, &wrq->eq);
3018 	if (rc)
3019 		return (rc);
3020 
3021 	wrq->adapter = sc;
3022 	STAILQ_INIT(&wrq->wr_list);
3023 
3024 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3025 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3026 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3027 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3028 	    "consumer index");
3029 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3030 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3031 	    "producer index");
3032 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
3033 	    &wrq->tx_wrs, "# of work requests");
3034 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
3035 	    &wrq->no_desc, 0,
3036 	    "# of times queue ran out of hardware descriptors");
3037 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3038 	    &wrq->eq.unstalled, 0, "# of times queue recovered after stall");
3039 
3040 	return (rc);
3041 }
3042 
3043 static int
3044 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3045 {
3046 	int rc;
3047 
3048 	rc = free_eq(sc, &wrq->eq);
3049 	if (rc)
3050 		return (rc);
3051 
3052 	bzero(wrq, sizeof(*wrq));
3053 	return (0);
3054 }
3055 
3056 static int
3057 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
3058     struct sysctl_oid *oid)
3059 {
3060 	int rc;
3061 	struct adapter *sc = pi->adapter;
3062 	struct sge_eq *eq = &txq->eq;
3063 	char name[16];
3064 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3065 
3066 	rc = alloc_eq(sc, pi, eq);
3067 	if (rc)
3068 		return (rc);
3069 
3070 	txq->ifp = pi->ifp;
3071 
3072 	txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
3073 	    M_ZERO | M_WAITOK);
3074 	txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
3075 
3076 	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
3077 	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
3078 	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
3079 	if (rc != 0) {
3080 		device_printf(sc->dev,
3081 		    "failed to create tx DMA tag: %d\n", rc);
3082 		return (rc);
3083 	}
3084 
3085 	/*
3086 	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
3087 	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
3088 	 * sized for the worst case.
3089 	 */
3090 	rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
3091 	    M_WAITOK);
3092 	if (rc != 0) {
3093 		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
3094 		return (rc);
3095 	}
3096 
3097 	snprintf(name, sizeof(name), "%d", idx);
3098 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3099 	    NULL, "tx queue");
3100 	children = SYSCTL_CHILDREN(oid);
3101 
3102 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3103 	    &eq->cntxt_id, 0, "SGE context id of the queue");
3104 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
3105 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3106 	    "consumer index");
3107 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
3108 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3109 	    "producer index");
3110 
3111 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3112 	    &txq->txcsum, "# of times hardware assisted with checksum");
3113 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
3114 	    CTLFLAG_RD, &txq->vlan_insertion,
3115 	    "# of times hardware inserted 802.1Q tag");
3116 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3117 	    &txq->tso_wrs, "# of TSO work requests");
3118 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3119 	    &txq->imm_wrs, "# of work requests with immediate data");
3120 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3121 	    &txq->sgl_wrs, "# of work requests with direct SGL");
3122 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3123 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3124 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
3125 	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
3126 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
3127 	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
3128 
3129 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD,
3130 	    &txq->br->br_drops, "# of drops in the buf_ring for this queue");
3131 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
3132 	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
3133 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
3134 	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
3135 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
3136 	    &eq->egr_update, 0, "egress update notifications from the SGE");
3137 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3138 	    &eq->unstalled, 0, "# of times txq recovered after stall");
3139 
3140 	return (rc);
3141 }
3142 
3143 static int
3144 free_txq(struct port_info *pi, struct sge_txq *txq)
3145 {
3146 	int rc;
3147 	struct adapter *sc = pi->adapter;
3148 	struct sge_eq *eq = &txq->eq;
3149 
3150 	rc = free_eq(sc, eq);
3151 	if (rc)
3152 		return (rc);
3153 
3154 	free(txq->sdesc, M_CXGBE);
3155 
3156 	if (txq->txmaps.maps)
3157 		t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
3158 
3159 	buf_ring_free(txq->br, M_CXGBE);
3160 
3161 	if (txq->tx_tag)
3162 		bus_dma_tag_destroy(txq->tx_tag);
3163 
3164 	bzero(txq, sizeof(*txq));
3165 	return (0);
3166 }
3167 
3168 static void
3169 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3170 {
3171 	bus_addr_t *ba = arg;
3172 
3173 	KASSERT(nseg == 1,
3174 	    ("%s meant for single segment mappings only.", __func__));
3175 
3176 	*ba = error ? 0 : segs->ds_addr;
3177 }
3178 
3179 static inline bool
3180 is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
3181 {
3182 	*ctrl = (void *)((uintptr_t)iq->cdesc +
3183 	    (iq->esize - sizeof(struct rsp_ctrl)));
3184 
3185 	return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
3186 }
3187 
3188 static inline void
3189 iq_next(struct sge_iq *iq)
3190 {
3191 	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
3192 	if (__predict_false(++iq->cidx == iq->qsize - spg_len / iq->esize)) {
3193 		iq->cidx = 0;
3194 		iq->gen ^= 1;
3195 		iq->cdesc = iq->desc;
3196 	}
3197 }
3198 
3199 #define FL_HW_IDX(x) ((x) >> 3)
3200 static inline void
3201 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3202 {
3203 	int ndesc = fl->pending / 8;
3204 	uint32_t v;
3205 
3206 	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
3207 		ndesc--;	/* hold back one credit */
3208 
3209 	if (ndesc <= 0)
3210 		return;		/* nothing to do */
3211 
3212 	v = F_DBPRIO | V_QID(fl->cntxt_id) | V_PIDX(ndesc);
3213 	if (is_t5(sc))
3214 		v |= F_DBTYPE;
3215 
3216 	wmb();
3217 
3218 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3219 	fl->pending -= ndesc * 8;
3220 }
3221 
3222 /*
3223  * Fill up the freelist by upto nbufs and maybe ring its doorbell.
3224  *
3225  * Returns non-zero to indicate that it should be added to the list of starving
3226  * freelists.
3227  */
3228 static int
3229 refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
3230 {
3231 	__be64 *d = &fl->desc[fl->pidx];
3232 	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
3233 	uintptr_t pa;
3234 	caddr_t cl;
3235 	struct cluster_layout *cll = &fl->cll_def;	/* default layout */
3236 	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
3237 	struct cluster_metadata *clm;
3238 
3239 	FL_LOCK_ASSERT_OWNED(fl);
3240 
3241 	if (nbufs > fl->needed)
3242 		nbufs = fl->needed;
3243 	nbufs -= (fl->pidx + nbufs) % 8;
3244 
3245 	while (nbufs--) {
3246 
3247 		if (sd->cl != NULL) {
3248 
3249 			if (sd->nmbuf == 0) {
3250 				/*
3251 				 * Fast recycle without involving any atomics on
3252 				 * the cluster's metadata (if the cluster has
3253 				 * metadata).  This happens when all frames
3254 				 * received in the cluster were small enough to
3255 				 * fit within a single mbuf each.
3256 				 */
3257 				fl->cl_fast_recycled++;
3258 				goto recycled_fast;
3259 			}
3260 
3261 			/*
3262 			 * Cluster is guaranteed to have metadata.  Clusters
3263 			 * without metadata always take the fast recycle path
3264 			 * when they're recycled.
3265 			 */
3266 			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3267 			MPASS(clm != NULL);
3268 
3269 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3270 				fl->cl_recycled++;
3271 				goto recycled;
3272 			}
3273 			sd->cl = NULL;	/* gave up my reference */
3274 		}
3275 		MPASS(sd->cl == NULL);
3276 alloc:
3277 		cl = uma_zalloc(swz->zone, M_NOWAIT);
3278 		if (__predict_false(cl == NULL)) {
3279 			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3280 			    fl->cll_def.zidx == fl->cll_alt.zidx)
3281 				break;
3282 
3283 			/* fall back to the safe zone */
3284 			cll = &fl->cll_alt;
3285 			swz = &sc->sge.sw_zone_info[cll->zidx];
3286 			goto alloc;
3287 		}
3288 		fl->cl_allocated++;
3289 
3290 		pa = pmap_kextract((vm_offset_t)cl);
3291 		pa += cll->region1;
3292 		sd->cl = cl;
3293 		sd->cll = *cll;
3294 		*d = htobe64(pa | cll->hwidx);
3295 		clm = cl_metadata(sc, fl, cll, cl);
3296 		if (clm != NULL) {
3297 recycled:
3298 #ifdef INVARIANTS
3299 			clm->sd = sd;
3300 #endif
3301 			clm->refcount = 1;
3302 		}
3303 		sd->nmbuf = 0;
3304 recycled_fast:
3305 		fl->pending++;
3306 		fl->needed--;
3307 		d++;
3308 		sd++;
3309 		if (__predict_false(++fl->pidx == fl->cap)) {
3310 			fl->pidx = 0;
3311 			sd = fl->sdesc;
3312 			d = fl->desc;
3313 		}
3314 	}
3315 
3316 	if (fl->pending >= 8)
3317 		ring_fl_db(sc, fl);
3318 
3319 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3320 }
3321 
3322 /*
3323  * Attempt to refill all starving freelists.
3324  */
3325 static void
3326 refill_sfl(void *arg)
3327 {
3328 	struct adapter *sc = arg;
3329 	struct sge_fl *fl, *fl_temp;
3330 
3331 	mtx_lock(&sc->sfl_lock);
3332 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3333 		FL_LOCK(fl);
3334 		refill_fl(sc, fl, 64);
3335 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3336 			TAILQ_REMOVE(&sc->sfl, fl, link);
3337 			fl->flags &= ~FL_STARVING;
3338 		}
3339 		FL_UNLOCK(fl);
3340 	}
3341 
3342 	if (!TAILQ_EMPTY(&sc->sfl))
3343 		callout_schedule(&sc->sfl_callout, hz / 5);
3344 	mtx_unlock(&sc->sfl_lock);
3345 }
3346 
3347 static int
3348 alloc_fl_sdesc(struct sge_fl *fl)
3349 {
3350 
3351 	fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
3352 	    M_ZERO | M_WAITOK);
3353 
3354 	return (0);
3355 }
3356 
3357 static void
3358 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3359 {
3360 	struct fl_sdesc *sd;
3361 	struct cluster_metadata *clm;
3362 	struct cluster_layout *cll;
3363 	int i;
3364 
3365 	sd = fl->sdesc;
3366 	for (i = 0; i < fl->cap; i++, sd++) {
3367 		if (sd->cl == NULL)
3368 			continue;
3369 
3370 		cll = &sd->cll;
3371 		clm = cl_metadata(sc, fl, cll, sd->cl);
3372 		if (sd->nmbuf == 0 ||
3373 		    (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1)) {
3374 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3375 		}
3376 		sd->cl = NULL;
3377 	}
3378 
3379 	free(fl->sdesc, M_CXGBE);
3380 	fl->sdesc = NULL;
3381 }
3382 
3383 int
3384 t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
3385     int flags)
3386 {
3387 	struct tx_map *txm;
3388 	int i, rc;
3389 
3390 	txmaps->map_total = txmaps->map_avail = count;
3391 	txmaps->map_cidx = txmaps->map_pidx = 0;
3392 
3393 	txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
3394 	    M_ZERO | flags);
3395 
3396 	txm = txmaps->maps;
3397 	for (i = 0; i < count; i++, txm++) {
3398 		rc = bus_dmamap_create(tx_tag, 0, &txm->map);
3399 		if (rc != 0)
3400 			goto failed;
3401 	}
3402 
3403 	return (0);
3404 failed:
3405 	while (--i >= 0) {
3406 		txm--;
3407 		bus_dmamap_destroy(tx_tag, txm->map);
3408 	}
3409 	KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
3410 
3411 	free(txmaps->maps, M_CXGBE);
3412 	txmaps->maps = NULL;
3413 
3414 	return (rc);
3415 }
3416 
3417 void
3418 t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
3419 {
3420 	struct tx_map *txm;
3421 	int i;
3422 
3423 	txm = txmaps->maps;
3424 	for (i = 0; i < txmaps->map_total; i++, txm++) {
3425 
3426 		if (txm->m) {
3427 			bus_dmamap_unload(tx_tag, txm->map);
3428 			m_freem(txm->m);
3429 			txm->m = NULL;
3430 		}
3431 
3432 		bus_dmamap_destroy(tx_tag, txm->map);
3433 	}
3434 
3435 	free(txmaps->maps, M_CXGBE);
3436 	txmaps->maps = NULL;
3437 }
3438 
3439 /*
3440  * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
3441  * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
3442  * of immediate data.
3443  */
3444 #define IMM_LEN ( \
3445       2 * EQ_ESIZE \
3446     - sizeof(struct fw_eth_tx_pkt_wr) \
3447     - sizeof(struct cpl_tx_pkt_core))
3448 
3449 /*
3450  * Returns non-zero on failure, no need to cleanup anything in that case.
3451  *
3452  * Note 1: We always try to defrag the mbuf if required and return EFBIG only
3453  * if the resulting chain still won't fit in a tx descriptor.
3454  *
3455  * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
3456  * does not have the TCP header in it.
3457  */
3458 static int
3459 get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
3460     int sgl_only)
3461 {
3462 	struct mbuf *m = *fp;
3463 	struct tx_maps *txmaps;
3464 	struct tx_map *txm;
3465 	int rc, defragged = 0, n;
3466 
3467 	TXQ_LOCK_ASSERT_OWNED(txq);
3468 
3469 	if (m->m_pkthdr.tso_segsz)
3470 		sgl_only = 1;	/* Do not allow immediate data with LSO */
3471 
3472 start:	sgl->nsegs = 0;
3473 
3474 	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
3475 		return (0);	/* nsegs = 0 tells caller to use imm. tx */
3476 
3477 	txmaps = &txq->txmaps;
3478 	if (txmaps->map_avail == 0) {
3479 		txq->no_dmamap++;
3480 		return (ENOMEM);
3481 	}
3482 	txm = &txmaps->maps[txmaps->map_pidx];
3483 
3484 	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
3485 		*fp = m_pullup(m, 50);
3486 		m = *fp;
3487 		if (m == NULL)
3488 			return (ENOBUFS);
3489 	}
3490 
3491 	rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
3492 	    &sgl->nsegs, BUS_DMA_NOWAIT);
3493 	if (rc == EFBIG && defragged == 0) {
3494 		m = m_defrag(m, M_NOWAIT);
3495 		if (m == NULL)
3496 			return (EFBIG);
3497 
3498 		defragged = 1;
3499 		*fp = m;
3500 		goto start;
3501 	}
3502 	if (rc != 0)
3503 		return (rc);
3504 
3505 	txm->m = m;
3506 	txmaps->map_avail--;
3507 	if (++txmaps->map_pidx == txmaps->map_total)
3508 		txmaps->map_pidx = 0;
3509 
3510 	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
3511 	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
3512 
3513 	/*
3514 	 * Store the # of flits required to hold this frame's SGL in nflits.  An
3515 	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
3516 	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
3517 	 * then len1 must be set to 0.
3518 	 */
3519 	n = sgl->nsegs - 1;
3520 	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
3521 
3522 	return (0);
3523 }
3524 
3525 
3526 /*
3527  * Releases all the txq resources used up in the specified sgl.
3528  */
3529 static int
3530 free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
3531 {
3532 	struct tx_maps *txmaps;
3533 	struct tx_map *txm;
3534 
3535 	TXQ_LOCK_ASSERT_OWNED(txq);
3536 
3537 	if (sgl->nsegs == 0)
3538 		return (0);	/* didn't use any map */
3539 
3540 	txmaps = &txq->txmaps;
3541 
3542 	/* 1 pkt uses exactly 1 map, back it out */
3543 
3544 	txmaps->map_avail++;
3545 	if (txmaps->map_pidx > 0)
3546 		txmaps->map_pidx--;
3547 	else
3548 		txmaps->map_pidx = txmaps->map_total - 1;
3549 
3550 	txm = &txmaps->maps[txmaps->map_pidx];
3551 	bus_dmamap_unload(txq->tx_tag, txm->map);
3552 	txm->m = NULL;
3553 
3554 	return (0);
3555 }
3556 
3557 static int
3558 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
3559     struct sgl *sgl)
3560 {
3561 	struct sge_eq *eq = &txq->eq;
3562 	struct fw_eth_tx_pkt_wr *wr;
3563 	struct cpl_tx_pkt_core *cpl;
3564 	uint32_t ctrl;	/* used in many unrelated places */
3565 	uint64_t ctrl1;
3566 	int nflits, ndesc, pktlen;
3567 	struct tx_sdesc *txsd;
3568 	caddr_t dst;
3569 
3570 	TXQ_LOCK_ASSERT_OWNED(txq);
3571 
3572 	pktlen = m->m_pkthdr.len;
3573 
3574 	/*
3575 	 * Do we have enough flits to send this frame out?
3576 	 */
3577 	ctrl = sizeof(struct cpl_tx_pkt_core);
3578 	if (m->m_pkthdr.tso_segsz) {
3579 		nflits = TXPKT_LSO_WR_HDR;
3580 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3581 	} else
3582 		nflits = TXPKT_WR_HDR;
3583 	if (sgl->nsegs > 0)
3584 		nflits += sgl->nflits;
3585 	else {
3586 		nflits += howmany(pktlen, 8);
3587 		ctrl += pktlen;
3588 	}
3589 	ndesc = howmany(nflits, 8);
3590 	if (ndesc > eq->avail)
3591 		return (ENOMEM);
3592 
3593 	/* Firmware work request header */
3594 	wr = (void *)&eq->desc[eq->pidx];
3595 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3596 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3597 	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
3598 	if (eq->avail == ndesc) {
3599 		if (!(eq->flags & EQ_CRFLUSHED)) {
3600 			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3601 			eq->flags |= EQ_CRFLUSHED;
3602 		}
3603 		eq->flags |= EQ_STALLED;
3604 	}
3605 
3606 	wr->equiq_to_len16 = htobe32(ctrl);
3607 	wr->r3 = 0;
3608 
3609 	if (m->m_pkthdr.tso_segsz) {
3610 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3611 		struct ether_header *eh;
3612 		void *l3hdr;
3613 #if defined(INET) || defined(INET6)
3614 		struct tcphdr *tcp;
3615 #endif
3616 		uint16_t eh_type;
3617 
3618 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3619 		    F_LSO_LAST_SLICE;
3620 
3621 		eh = mtod(m, struct ether_header *);
3622 		eh_type = ntohs(eh->ether_type);
3623 		if (eh_type == ETHERTYPE_VLAN) {
3624 			struct ether_vlan_header *evh = (void *)eh;
3625 
3626 			ctrl |= V_LSO_ETHHDR_LEN(1);
3627 			l3hdr = evh + 1;
3628 			eh_type = ntohs(evh->evl_proto);
3629 		} else
3630 			l3hdr = eh + 1;
3631 
3632 		switch (eh_type) {
3633 #ifdef INET6
3634 		case ETHERTYPE_IPV6:
3635 		{
3636 			struct ip6_hdr *ip6 = l3hdr;
3637 
3638 			/*
3639 			 * XXX-BZ For now we do not pretend to support
3640 			 * IPv6 extension headers.
3641 			 */
3642 			KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO "
3643 			    "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt));
3644 			tcp = (struct tcphdr *)(ip6 + 1);
3645 			ctrl |= F_LSO_IPV6;
3646 			ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) |
3647 			    V_LSO_TCPHDR_LEN(tcp->th_off);
3648 			break;
3649 		}
3650 #endif
3651 #ifdef INET
3652 		case ETHERTYPE_IP:
3653 		{
3654 			struct ip *ip = l3hdr;
3655 
3656 			tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
3657 			ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
3658 			    V_LSO_TCPHDR_LEN(tcp->th_off);
3659 			break;
3660 		}
3661 #endif
3662 		default:
3663 			panic("%s: CSUM_TSO but no supported IP version "
3664 			    "(0x%04x)", __func__, eh_type);
3665 		}
3666 
3667 		lso->lso_ctrl = htobe32(ctrl);
3668 		lso->ipid_ofst = htobe16(0);
3669 		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
3670 		lso->seqno_offset = htobe32(0);
3671 		lso->len = htobe32(pktlen);
3672 
3673 		cpl = (void *)(lso + 1);
3674 
3675 		txq->tso_wrs++;
3676 	} else
3677 		cpl = (void *)(wr + 1);
3678 
3679 	/* Checksum offload */
3680 	ctrl1 = 0;
3681 	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3682 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3683 	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3684 	    CSUM_TCP_IPV6 | CSUM_TSO)))
3685 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3686 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3687 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3688 		txq->txcsum++;	/* some hardware assistance provided */
3689 
3690 	/* VLAN tag insertion */
3691 	if (m->m_flags & M_VLANTAG) {
3692 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3693 		txq->vlan_insertion++;
3694 	}
3695 
3696 	/* CPL header */
3697 	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3698 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3699 	cpl->pack = 0;
3700 	cpl->len = htobe16(pktlen);
3701 	cpl->ctrl1 = htobe64(ctrl1);
3702 
3703 	/* Software descriptor */
3704 	txsd = &txq->sdesc[eq->pidx];
3705 	txsd->desc_used = ndesc;
3706 
3707 	eq->pending += ndesc;
3708 	eq->avail -= ndesc;
3709 	eq->pidx += ndesc;
3710 	if (eq->pidx >= eq->cap)
3711 		eq->pidx -= eq->cap;
3712 
3713 	/* SGL */
3714 	dst = (void *)(cpl + 1);
3715 	if (sgl->nsegs > 0) {
3716 		txsd->credits = 1;
3717 		txq->sgl_wrs++;
3718 		write_sgl_to_txd(eq, sgl, &dst);
3719 	} else {
3720 		txsd->credits = 0;
3721 		txq->imm_wrs++;
3722 		for (; m; m = m->m_next) {
3723 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3724 #ifdef INVARIANTS
3725 			pktlen -= m->m_len;
3726 #endif
3727 		}
3728 #ifdef INVARIANTS
3729 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3730 #endif
3731 
3732 	}
3733 
3734 	txq->txpkt_wrs++;
3735 	return (0);
3736 }
3737 
3738 /*
3739  * Returns 0 to indicate that m has been accepted into a coalesced tx work
3740  * request.  It has either been folded into txpkts or txpkts was flushed and m
3741  * has started a new coalesced work request (as the first frame in a fresh
3742  * txpkts).
3743  *
3744  * Returns non-zero to indicate a failure - caller is responsible for
3745  * transmitting m, if there was anything in txpkts it has been flushed.
3746  */
3747 static int
3748 add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
3749     struct mbuf *m, struct sgl *sgl)
3750 {
3751 	struct sge_eq *eq = &txq->eq;
3752 	int can_coalesce;
3753 	struct tx_sdesc *txsd;
3754 	int flits;
3755 
3756 	TXQ_LOCK_ASSERT_OWNED(txq);
3757 
3758 	KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
3759 
3760 	if (txpkts->npkt > 0) {
3761 		flits = TXPKTS_PKT_HDR + sgl->nflits;
3762 		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3763 		    txpkts->nflits + flits <= TX_WR_FLITS &&
3764 		    txpkts->nflits + flits <= eq->avail * 8 &&
3765 		    txpkts->plen + m->m_pkthdr.len < 65536;
3766 
3767 		if (can_coalesce) {
3768 			txpkts->npkt++;
3769 			txpkts->nflits += flits;
3770 			txpkts->plen += m->m_pkthdr.len;
3771 
3772 			txsd = &txq->sdesc[eq->pidx];
3773 			txsd->credits++;
3774 
3775 			return (0);
3776 		}
3777 
3778 		/*
3779 		 * Couldn't coalesce m into txpkts.  The first order of business
3780 		 * is to send txpkts on its way.  Then we'll revisit m.
3781 		 */
3782 		write_txpkts_wr(txq, txpkts);
3783 	}
3784 
3785 	/*
3786 	 * Check if we can start a new coalesced tx work request with m as
3787 	 * the first packet in it.
3788 	 */
3789 
3790 	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
3791 
3792 	flits = TXPKTS_WR_HDR + sgl->nflits;
3793 	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3794 	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
3795 
3796 	if (can_coalesce == 0)
3797 		return (EINVAL);
3798 
3799 	/*
3800 	 * Start a fresh coalesced tx WR with m as the first frame in it.
3801 	 */
3802 	txpkts->npkt = 1;
3803 	txpkts->nflits = flits;
3804 	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
3805 	txpkts->plen = m->m_pkthdr.len;
3806 
3807 	txsd = &txq->sdesc[eq->pidx];
3808 	txsd->credits = 1;
3809 
3810 	return (0);
3811 }
3812 
3813 /*
3814  * Note that write_txpkts_wr can never run out of hardware descriptors (but
3815  * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
3816  * coalescing only if sufficient hardware descriptors are available.
3817  */
3818 static void
3819 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
3820 {
3821 	struct sge_eq *eq = &txq->eq;
3822 	struct fw_eth_tx_pkts_wr *wr;
3823 	struct tx_sdesc *txsd;
3824 	uint32_t ctrl;
3825 	int ndesc;
3826 
3827 	TXQ_LOCK_ASSERT_OWNED(txq);
3828 
3829 	ndesc = howmany(txpkts->nflits, 8);
3830 
3831 	wr = (void *)&eq->desc[eq->pidx];
3832 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3833 	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
3834 	if (eq->avail == ndesc) {
3835 		if (!(eq->flags & EQ_CRFLUSHED)) {
3836 			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3837 			eq->flags |= EQ_CRFLUSHED;
3838 		}
3839 		eq->flags |= EQ_STALLED;
3840 	}
3841 	wr->equiq_to_len16 = htobe32(ctrl);
3842 	wr->plen = htobe16(txpkts->plen);
3843 	wr->npkt = txpkts->npkt;
3844 	wr->r3 = wr->type = 0;
3845 
3846 	/* Everything else already written */
3847 
3848 	txsd = &txq->sdesc[eq->pidx];
3849 	txsd->desc_used = ndesc;
3850 
3851 	KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
3852 
3853 	eq->pending += ndesc;
3854 	eq->avail -= ndesc;
3855 	eq->pidx += ndesc;
3856 	if (eq->pidx >= eq->cap)
3857 		eq->pidx -= eq->cap;
3858 
3859 	txq->txpkts_pkts += txpkts->npkt;
3860 	txq->txpkts_wrs++;
3861 	txpkts->npkt = 0;	/* emptied */
3862 }
3863 
3864 static inline void
3865 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
3866     struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
3867 {
3868 	struct ulp_txpkt *ulpmc;
3869 	struct ulptx_idata *ulpsc;
3870 	struct cpl_tx_pkt_core *cpl;
3871 	struct sge_eq *eq = &txq->eq;
3872 	uintptr_t flitp, start, end;
3873 	uint64_t ctrl;
3874 	caddr_t dst;
3875 
3876 	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
3877 
3878 	start = (uintptr_t)eq->desc;
3879 	end = (uintptr_t)eq->spg;
3880 
3881 	/* Checksum offload */
3882 	ctrl = 0;
3883 	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3884 		ctrl |= F_TXPKT_IPCSUM_DIS;
3885 	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3886 	    CSUM_TCP_IPV6 | CSUM_TSO)))
3887 		ctrl |= F_TXPKT_L4CSUM_DIS;
3888 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3889 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3890 		txq->txcsum++;	/* some hardware assistance provided */
3891 
3892 	/* VLAN tag insertion */
3893 	if (m->m_flags & M_VLANTAG) {
3894 		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3895 		txq->vlan_insertion++;
3896 	}
3897 
3898 	/*
3899 	 * The previous packet's SGL must have ended at a 16 byte boundary (this
3900 	 * is required by the firmware/hardware).  It follows that flitp cannot
3901 	 * wrap around between the ULPTX master command and ULPTX subcommand (8
3902 	 * bytes each), and that it can not wrap around in the middle of the
3903 	 * cpl_tx_pkt_core either.
3904 	 */
3905 	flitp = (uintptr_t)txpkts->flitp;
3906 	KASSERT((flitp & 0xf) == 0,
3907 	    ("%s: last SGL did not end at 16 byte boundary: %p",
3908 	    __func__, txpkts->flitp));
3909 
3910 	/* ULP master command */
3911 	ulpmc = (void *)flitp;
3912 	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
3913 	    V_ULP_TXPKT_FID(eq->iqid));
3914 	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
3915 	    sizeof(*cpl) + 8 * sgl->nflits, 16));
3916 
3917 	/* ULP subcommand */
3918 	ulpsc = (void *)(ulpmc + 1);
3919 	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3920 	    F_ULP_TX_SC_MORE);
3921 	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
3922 
3923 	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
3924 	if (flitp == end)
3925 		flitp = start;
3926 
3927 	/* CPL_TX_PKT */
3928 	cpl = (void *)flitp;
3929 	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3930 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3931 	cpl->pack = 0;
3932 	cpl->len = htobe16(m->m_pkthdr.len);
3933 	cpl->ctrl1 = htobe64(ctrl);
3934 
3935 	flitp += sizeof(*cpl);
3936 	if (flitp == end)
3937 		flitp = start;
3938 
3939 	/* SGL for this frame */
3940 	dst = (caddr_t)flitp;
3941 	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
3942 	txpkts->flitp = (void *)dst;
3943 
3944 	KASSERT(((uintptr_t)dst & 0xf) == 0,
3945 	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
3946 }
3947 
3948 /*
3949  * If the SGL ends on an address that is not 16 byte aligned, this function will
3950  * add a 0 filled flit at the end.  It returns 1 in that case.
3951  */
3952 static int
3953 write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
3954 {
3955 	__be64 *flitp, *end;
3956 	struct ulptx_sgl *usgl;
3957 	bus_dma_segment_t *seg;
3958 	int i, padded;
3959 
3960 	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
3961 	    ("%s: bad SGL - nsegs=%d, nflits=%d",
3962 	    __func__, sgl->nsegs, sgl->nflits));
3963 
3964 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
3965 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
3966 
3967 	flitp = (__be64 *)(*to);
3968 	end = flitp + sgl->nflits;
3969 	seg = &sgl->seg[0];
3970 	usgl = (void *)flitp;
3971 
3972 	/*
3973 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
3974 	 * ring, so we're at least 16 bytes away from the status page.  There is
3975 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
3976 	 */
3977 
3978 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
3979 	    V_ULPTX_NSGE(sgl->nsegs));
3980 	usgl->len0 = htobe32(seg->ds_len);
3981 	usgl->addr0 = htobe64(seg->ds_addr);
3982 	seg++;
3983 
3984 	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
3985 
3986 		/* Won't wrap around at all */
3987 
3988 		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
3989 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
3990 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
3991 		}
3992 		if (i & 1)
3993 			usgl->sge[i / 2].len[1] = htobe32(0);
3994 	} else {
3995 
3996 		/* Will wrap somewhere in the rest of the SGL */
3997 
3998 		/* 2 flits already written, write the rest flit by flit */
3999 		flitp = (void *)(usgl + 1);
4000 		for (i = 0; i < sgl->nflits - 2; i++) {
4001 			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
4002 				flitp = (void *)eq->desc;
4003 			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
4004 		}
4005 		end = flitp;
4006 	}
4007 
4008 	if ((uintptr_t)end & 0xf) {
4009 		*(uint64_t *)end = 0;
4010 		end++;
4011 		padded = 1;
4012 	} else
4013 		padded = 0;
4014 
4015 	if ((uintptr_t)end == (uintptr_t)eq->spg)
4016 		*to = (void *)eq->desc;
4017 	else
4018 		*to = (void *)end;
4019 
4020 	return (padded);
4021 }
4022 
4023 static inline void
4024 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4025 {
4026 	if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) {
4027 		bcopy(from, *to, len);
4028 		(*to) += len;
4029 	} else {
4030 		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
4031 
4032 		bcopy(from, *to, portion);
4033 		from += portion;
4034 		portion = len - portion;	/* remaining */
4035 		bcopy(from, (void *)eq->desc, portion);
4036 		(*to) = (caddr_t)eq->desc + portion;
4037 	}
4038 }
4039 
4040 static inline void
4041 ring_eq_db(struct adapter *sc, struct sge_eq *eq)
4042 {
4043 	u_int db, pending;
4044 
4045 	db = eq->doorbells;
4046 	pending = eq->pending;
4047 	if (pending > 1)
4048 		clrbit(&db, DOORBELL_WCWR);
4049 	eq->pending = 0;
4050 	wmb();
4051 
4052 	switch (ffs(db) - 1) {
4053 	case DOORBELL_UDB:
4054 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
4055 		return;
4056 
4057 	case DOORBELL_WCWR: {
4058 		volatile uint64_t *dst, *src;
4059 		int i;
4060 
4061 		/*
4062 		 * Queues whose 128B doorbell segment fits in the page do not
4063 		 * use relative qid (udb_qid is always 0).  Only queues with
4064 		 * doorbell segments can do WCWR.
4065 		 */
4066 		KASSERT(eq->udb_qid == 0 && pending == 1,
4067 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4068 		    __func__, eq->doorbells, pending, eq->pidx, eq));
4069 
4070 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4071 		    UDBS_DB_OFFSET);
4072 		i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
4073 		src = (void *)&eq->desc[i];
4074 		while (src != (void *)&eq->desc[i + 1])
4075 			*dst++ = *src++;
4076 		wmb();
4077 		return;
4078 	}
4079 
4080 	case DOORBELL_UDBWC:
4081 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
4082 		wmb();
4083 		return;
4084 
4085 	case DOORBELL_KDB:
4086 		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
4087 		    V_QID(eq->cntxt_id) | V_PIDX(pending));
4088 		return;
4089 	}
4090 }
4091 
4092 static inline int
4093 reclaimable(struct sge_eq *eq)
4094 {
4095 	unsigned int cidx;
4096 
4097 	cidx = eq->spg->cidx;	/* stable snapshot */
4098 	cidx = be16toh(cidx);
4099 
4100 	if (cidx >= eq->cidx)
4101 		return (cidx - eq->cidx);
4102 	else
4103 		return (cidx + eq->cap - eq->cidx);
4104 }
4105 
4106 /*
4107  * There are "can_reclaim" tx descriptors ready to be reclaimed.  Reclaim as
4108  * many as possible but stop when there are around "n" mbufs to free.
4109  *
4110  * The actual number reclaimed is provided as the return value.
4111  */
4112 static int
4113 reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
4114 {
4115 	struct tx_sdesc *txsd;
4116 	struct tx_maps *txmaps;
4117 	struct tx_map *txm;
4118 	unsigned int reclaimed, maps;
4119 	struct sge_eq *eq = &txq->eq;
4120 
4121 	TXQ_LOCK_ASSERT_OWNED(txq);
4122 
4123 	if (can_reclaim == 0)
4124 		can_reclaim = reclaimable(eq);
4125 
4126 	maps = reclaimed = 0;
4127 	while (can_reclaim && maps < n) {
4128 		int ndesc;
4129 
4130 		txsd = &txq->sdesc[eq->cidx];
4131 		ndesc = txsd->desc_used;
4132 
4133 		/* Firmware doesn't return "partial" credits. */
4134 		KASSERT(can_reclaim >= ndesc,
4135 		    ("%s: unexpected number of credits: %d, %d",
4136 		    __func__, can_reclaim, ndesc));
4137 
4138 		maps += txsd->credits;
4139 
4140 		reclaimed += ndesc;
4141 		can_reclaim -= ndesc;
4142 
4143 		eq->cidx += ndesc;
4144 		if (__predict_false(eq->cidx >= eq->cap))
4145 			eq->cidx -= eq->cap;
4146 	}
4147 
4148 	txmaps = &txq->txmaps;
4149 	txm = &txmaps->maps[txmaps->map_cidx];
4150 	if (maps)
4151 		prefetch(txm->m);
4152 
4153 	eq->avail += reclaimed;
4154 	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
4155 	    ("%s: too many descriptors available", __func__));
4156 
4157 	txmaps->map_avail += maps;
4158 	KASSERT(txmaps->map_avail <= txmaps->map_total,
4159 	    ("%s: too many maps available", __func__));
4160 
4161 	while (maps--) {
4162 		struct tx_map *next;
4163 
4164 		next = txm + 1;
4165 		if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
4166 			next = txmaps->maps;
4167 		prefetch(next->m);
4168 
4169 		bus_dmamap_unload(txq->tx_tag, txm->map);
4170 		m_freem(txm->m);
4171 		txm->m = NULL;
4172 
4173 		txm = next;
4174 		if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
4175 			txmaps->map_cidx = 0;
4176 	}
4177 
4178 	return (reclaimed);
4179 }
4180 
4181 static void
4182 write_eqflush_wr(struct sge_eq *eq)
4183 {
4184 	struct fw_eq_flush_wr *wr;
4185 
4186 	EQ_LOCK_ASSERT_OWNED(eq);
4187 	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
4188 	KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
4189 
4190 	wr = (void *)&eq->desc[eq->pidx];
4191 	bzero(wr, sizeof(*wr));
4192 	wr->opcode = FW_EQ_FLUSH_WR;
4193 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
4194 	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
4195 
4196 	eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
4197 	eq->pending++;
4198 	eq->avail--;
4199 	if (++eq->pidx == eq->cap)
4200 		eq->pidx = 0;
4201 }
4202 
4203 static __be64
4204 get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
4205 {
4206 	int i = (idx / 3) * 2;
4207 
4208 	switch (idx % 3) {
4209 	case 0: {
4210 		__be64 rc;
4211 
4212 		rc = htobe32(sgl[i].ds_len);
4213 		if (i + 1 < nsegs)
4214 			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
4215 
4216 		return (rc);
4217 	}
4218 	case 1:
4219 		return htobe64(sgl[i].ds_addr);
4220 	case 2:
4221 		return htobe64(sgl[i + 1].ds_addr);
4222 	}
4223 
4224 	return (0);
4225 }
4226 
4227 static void
4228 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4229 {
4230 	int8_t zidx, hwidx, idx;
4231 	uint16_t region1, region3;
4232 	int spare, spare_needed, n;
4233 	struct sw_zone_info *swz;
4234 	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4235 
4236 	/*
4237 	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4238 	 * large enough for the max payload and cluster metadata.  Otherwise
4239 	 * settle for the largest bufsize that leaves enough room in the cluster
4240 	 * for metadata.
4241 	 *
4242 	 * Without buffer packing: Look for the smallest zone which has a
4243 	 * bufsize large enough for the max payload.  Settle for the largest
4244 	 * bufsize available if there's nothing big enough for max payload.
4245 	 */
4246 	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4247 	swz = &sc->sge.sw_zone_info[0];
4248 	hwidx = -1;
4249 	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4250 		if (swz->size > largest_rx_cluster) {
4251 			if (__predict_true(hwidx != -1))
4252 				break;
4253 
4254 			/*
4255 			 * This is a misconfiguration.  largest_rx_cluster is
4256 			 * preventing us from finding a refill source.  See
4257 			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4258 			 */
4259 			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4260 			    " refill source for fl %p (dma %u).  Ignored.\n",
4261 			    largest_rx_cluster, fl, maxp);
4262 		}
4263 		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4264 			hwb = &hwb_list[idx];
4265 			spare = swz->size - hwb->size;
4266 			if (spare < spare_needed)
4267 				continue;
4268 
4269 			hwidx = idx;		/* best option so far */
4270 			if (hwb->size >= maxp) {
4271 
4272 				if ((fl->flags & FL_BUF_PACKING) == 0)
4273 					goto done; /* stop looking (not packing) */
4274 
4275 				if (swz->size >= safest_rx_cluster)
4276 					goto done; /* stop looking (packing) */
4277 			}
4278 			break;		/* keep looking, next zone */
4279 		}
4280 	}
4281 done:
4282 	/* A usable hwidx has been located. */
4283 	MPASS(hwidx != -1);
4284 	hwb = &hwb_list[hwidx];
4285 	zidx = hwb->zidx;
4286 	swz = &sc->sge.sw_zone_info[zidx];
4287 	region1 = 0;
4288 	region3 = swz->size - hwb->size;
4289 
4290 	/*
4291 	 * Stay within this zone and see if there is a better match when mbuf
4292 	 * inlining is allowed.  Remember that the hwidx's are sorted in
4293 	 * decreasing order of size (so in increasing order of spare area).
4294 	 */
4295 	for (idx = hwidx; idx != -1; idx = hwb->next) {
4296 		hwb = &hwb_list[idx];
4297 		spare = swz->size - hwb->size;
4298 
4299 		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4300 			break;
4301 		if (spare < CL_METADATA_SIZE + MSIZE)
4302 			continue;
4303 		n = (spare - CL_METADATA_SIZE) / MSIZE;
4304 		if (n > howmany(hwb->size, maxp))
4305 			break;
4306 
4307 		hwidx = idx;
4308 		if (fl->flags & FL_BUF_PACKING) {
4309 			region1 = n * MSIZE;
4310 			region3 = spare - region1;
4311 		} else {
4312 			region1 = MSIZE;
4313 			region3 = spare - region1;
4314 			break;
4315 		}
4316 	}
4317 
4318 	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4319 	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4320 	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4321 	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4322 	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4323 	    sc->sge.sw_zone_info[zidx].size,
4324 	    ("%s: bad buffer layout for fl %p, maxp %d. "
4325 		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4326 		sc->sge.sw_zone_info[zidx].size, region1,
4327 		sc->sge.hw_buf_info[hwidx].size, region3));
4328 	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4329 		KASSERT(region3 >= CL_METADATA_SIZE,
4330 		    ("%s: no room for metadata.  fl %p, maxp %d; "
4331 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4332 		    sc->sge.sw_zone_info[zidx].size, region1,
4333 		    sc->sge.hw_buf_info[hwidx].size, region3));
4334 		KASSERT(region1 % MSIZE == 0,
4335 		    ("%s: bad mbuf region for fl %p, maxp %d. "
4336 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4337 		    sc->sge.sw_zone_info[zidx].size, region1,
4338 		    sc->sge.hw_buf_info[hwidx].size, region3));
4339 	}
4340 
4341 	fl->cll_def.zidx = zidx;
4342 	fl->cll_def.hwidx = hwidx;
4343 	fl->cll_def.region1 = region1;
4344 	fl->cll_def.region3 = region3;
4345 }
4346 
4347 static void
4348 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4349 {
4350 	struct sge *s = &sc->sge;
4351 	struct hw_buf_info *hwb;
4352 	struct sw_zone_info *swz;
4353 	int spare;
4354 	int8_t hwidx;
4355 
4356 	if (fl->flags & FL_BUF_PACKING)
4357 		hwidx = s->safe_hwidx2;	/* with room for metadata */
4358 	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4359 		hwidx = s->safe_hwidx2;
4360 		hwb = &s->hw_buf_info[hwidx];
4361 		swz = &s->sw_zone_info[hwb->zidx];
4362 		spare = swz->size - hwb->size;
4363 
4364 		/* no good if there isn't room for an mbuf as well */
4365 		if (spare < CL_METADATA_SIZE + MSIZE)
4366 			hwidx = s->safe_hwidx1;
4367 	} else
4368 		hwidx = s->safe_hwidx1;
4369 
4370 	if (hwidx == -1) {
4371 		/* No fallback source */
4372 		fl->cll_alt.hwidx = -1;
4373 		fl->cll_alt.zidx = -1;
4374 
4375 		return;
4376 	}
4377 
4378 	hwb = &s->hw_buf_info[hwidx];
4379 	swz = &s->sw_zone_info[hwb->zidx];
4380 	spare = swz->size - hwb->size;
4381 	fl->cll_alt.hwidx = hwidx;
4382 	fl->cll_alt.zidx = hwb->zidx;
4383 	if (allow_mbufs_in_cluster)
4384 		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
4385 	else
4386 		fl->cll_alt.region1 = 0;
4387 	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
4388 }
4389 
4390 static void
4391 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4392 {
4393 	mtx_lock(&sc->sfl_lock);
4394 	FL_LOCK(fl);
4395 	if ((fl->flags & FL_DOOMED) == 0) {
4396 		fl->flags |= FL_STARVING;
4397 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4398 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4399 	}
4400 	FL_UNLOCK(fl);
4401 	mtx_unlock(&sc->sfl_lock);
4402 }
4403 
4404 static int
4405 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4406     struct mbuf *m)
4407 {
4408 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4409 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4410 	struct adapter *sc = iq->adapter;
4411 	struct sge *s = &sc->sge;
4412 	struct sge_eq *eq;
4413 
4414 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4415 	    rss->opcode));
4416 
4417 	eq = s->eqmap[qid - s->eq_start];
4418 	EQ_LOCK(eq);
4419 	KASSERT(eq->flags & EQ_CRFLUSHED,
4420 	    ("%s: unsolicited egress update", __func__));
4421 	eq->flags &= ~EQ_CRFLUSHED;
4422 	eq->egr_update++;
4423 
4424 	if (__predict_false(eq->flags & EQ_DOOMED))
4425 		wakeup_one(eq);
4426 	else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
4427 		taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
4428 	EQ_UNLOCK(eq);
4429 
4430 	return (0);
4431 }
4432 
4433 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4434 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4435     offsetof(struct cpl_fw6_msg, data));
4436 
4437 static int
4438 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4439 {
4440 	struct adapter *sc = iq->adapter;
4441 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4442 
4443 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4444 	    rss->opcode));
4445 
4446 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4447 		const struct rss_header *rss2;
4448 
4449 		rss2 = (const struct rss_header *)&cpl->data[0];
4450 		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
4451 	}
4452 
4453 	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4454 }
4455 
4456 static int
4457 sysctl_uint16(SYSCTL_HANDLER_ARGS)
4458 {
4459 	uint16_t *id = arg1;
4460 	int i = *id;
4461 
4462 	return sysctl_handle_int(oidp, &i, 0, req);
4463 }
4464 
4465 static int
4466 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
4467 {
4468 	struct sge *s = arg1;
4469 	struct hw_buf_info *hwb = &s->hw_buf_info[0];
4470 	struct sw_zone_info *swz = &s->sw_zone_info[0];
4471 	int i, rc;
4472 	struct sbuf sb;
4473 	char c;
4474 
4475 	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4476 	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
4477 		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
4478 			c = '*';
4479 		else
4480 			c = '\0';
4481 
4482 		sbuf_printf(&sb, "%u%c ", hwb->size, c);
4483 	}
4484 	sbuf_trim(&sb);
4485 	sbuf_finish(&sb);
4486 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4487 	sbuf_delete(&sb);
4488 	return (rc);
4489 }
4490