xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision c94c8223bd444fa38ded3797060110c590f422f4)
1 /*-
2  * Copyright (c) 2011 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #include <sys/types.h>
35 #include <sys/eventhandler.h>
36 #include <sys/mbuf.h>
37 #include <sys/socket.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/queue.h>
41 #include <sys/sbuf.h>
42 #include <sys/taskqueue.h>
43 #include <sys/time.h>
44 #include <sys/sglist.h>
45 #include <sys/sysctl.h>
46 #include <sys/smp.h>
47 #include <sys/counter.h>
48 #include <net/bpf.h>
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/if_vlan_var.h>
52 #include <netinet/in.h>
53 #include <netinet/ip.h>
54 #include <netinet/ip6.h>
55 #include <netinet/tcp.h>
56 #include <machine/md_var.h>
57 #include <vm/vm.h>
58 #include <vm/pmap.h>
59 #ifdef DEV_NETMAP
60 #include <machine/bus.h>
61 #include <sys/selinfo.h>
62 #include <net/if_var.h>
63 #include <net/netmap.h>
64 #include <dev/netmap/netmap_kern.h>
65 #endif
66 
67 #include "common/common.h"
68 #include "common/t4_regs.h"
69 #include "common/t4_regs_values.h"
70 #include "common/t4_msg.h"
71 #include "t4_mp_ring.h"
72 
73 #ifdef T4_PKT_TIMESTAMP
74 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
75 #else
76 #define RX_COPY_THRESHOLD MINCLSIZE
77 #endif
78 
79 /*
80  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
81  * 0-7 are valid values.
82  */
83 int fl_pktshift = 2;
84 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
85 
86 /*
87  * Pad ethernet payload up to this boundary.
88  * -1: driver should figure out a good value.
89  *  0: disable padding.
90  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
91  */
92 int fl_pad = -1;
93 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
94 
95 /*
96  * Status page length.
97  * -1: driver should figure out a good value.
98  *  64 or 128 are the only other valid values.
99  */
100 int spg_len = -1;
101 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
102 
103 /*
104  * Congestion drops.
105  * -1: no congestion feedback (not recommended).
106  *  0: backpressure the channel instead of dropping packets right away.
107  *  1: no backpressure, drop packets for the congested queue immediately.
108  */
109 static int cong_drop = 0;
110 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
111 
112 /*
113  * Deliver multiple frames in the same free list buffer if they fit.
114  * -1: let the driver decide whether to enable buffer packing or not.
115  *  0: disable buffer packing.
116  *  1: enable buffer packing.
117  */
118 static int buffer_packing = -1;
119 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
120 
121 /*
122  * Start next frame in a packed buffer at this boundary.
123  * -1: driver should figure out a good value.
124  * T4: driver will ignore this and use the same value as fl_pad above.
125  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
126  */
127 static int fl_pack = -1;
128 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
129 
130 /*
131  * Allow the driver to create mbuf(s) in a cluster allocated for rx.
132  * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
133  * 1: ok to create mbuf(s) within a cluster if there is room.
134  */
135 static int allow_mbufs_in_cluster = 1;
136 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
137 
138 /*
139  * Largest rx cluster size that the driver is allowed to allocate.
140  */
141 static int largest_rx_cluster = MJUM16BYTES;
142 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
143 
144 /*
145  * Size of cluster allocation that's most likely to succeed.  The driver will
146  * fall back to this size if it fails to allocate clusters larger than this.
147  */
148 static int safest_rx_cluster = PAGE_SIZE;
149 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
150 
151 struct txpkts {
152 	u_int wr_type;		/* type 0 or type 1 */
153 	u_int npkt;		/* # of packets in this work request */
154 	u_int plen;		/* total payload (sum of all packets) */
155 	u_int len16;		/* # of 16B pieces used by this work request */
156 };
157 
158 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
159 struct sgl {
160 	struct sglist sg;
161 	struct sglist_seg seg[TX_SGL_SEGS];
162 };
163 
164 static int service_iq(struct sge_iq *, int);
165 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
166 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
167 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
168 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
169 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
170     uint16_t, char *);
171 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
172     bus_addr_t *, void **);
173 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
174     void *);
175 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
176     int, int);
177 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
178 static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
179     struct sge_fl *);
180 static int alloc_fwq(struct adapter *);
181 static int free_fwq(struct adapter *);
182 static int alloc_mgmtq(struct adapter *);
183 static int free_mgmtq(struct adapter *);
184 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
185     struct sysctl_oid *);
186 static int free_rxq(struct vi_info *, struct sge_rxq *);
187 #ifdef TCP_OFFLOAD
188 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
189     struct sysctl_oid *);
190 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
191 #endif
192 #ifdef DEV_NETMAP
193 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
194     struct sysctl_oid *);
195 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
196 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
197     struct sysctl_oid *);
198 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
199 #endif
200 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
201 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
202 #ifdef TCP_OFFLOAD
203 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
204 #endif
205 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
206 static int free_eq(struct adapter *, struct sge_eq *);
207 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
208     struct sysctl_oid *);
209 static int free_wrq(struct adapter *, struct sge_wrq *);
210 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
211     struct sysctl_oid *);
212 static int free_txq(struct vi_info *, struct sge_txq *);
213 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
214 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
215 static int refill_fl(struct adapter *, struct sge_fl *, int);
216 static void refill_sfl(void *);
217 static int alloc_fl_sdesc(struct sge_fl *);
218 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
219 static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
220 static void find_safe_refill_source(struct adapter *, struct sge_fl *);
221 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
222 
223 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
224 static inline u_int txpkt_len16(u_int, u_int);
225 static inline u_int txpkts0_len16(u_int);
226 static inline u_int txpkts1_len16(void);
227 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
228     struct mbuf *, u_int);
229 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
230 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
231 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
232     struct mbuf *, const struct txpkts *, u_int);
233 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
234 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
235 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
236 static inline uint16_t read_hw_cidx(struct sge_eq *);
237 static inline u_int reclaimable_tx_desc(struct sge_eq *);
238 static inline u_int total_available_tx_desc(struct sge_eq *);
239 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
240 static void tx_reclaim(void *, int);
241 static __be64 get_flit(struct sglist_seg *, int, int);
242 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
243     struct mbuf *);
244 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
245     struct mbuf *);
246 static void wrq_tx_drain(void *, int);
247 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
248 
249 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
250 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
251 
252 static counter_u64_t extfree_refs;
253 static counter_u64_t extfree_rels;
254 
255 /*
256  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
257  */
258 void
259 t4_sge_modload(void)
260 {
261 
262 	if (fl_pktshift < 0 || fl_pktshift > 7) {
263 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
264 		    " using 2 instead.\n", fl_pktshift);
265 		fl_pktshift = 2;
266 	}
267 
268 	if (spg_len != 64 && spg_len != 128) {
269 		int len;
270 
271 #if defined(__i386__) || defined(__amd64__)
272 		len = cpu_clflush_line_size > 64 ? 128 : 64;
273 #else
274 		len = 64;
275 #endif
276 		if (spg_len != -1) {
277 			printf("Invalid hw.cxgbe.spg_len value (%d),"
278 			    " using %d instead.\n", spg_len, len);
279 		}
280 		spg_len = len;
281 	}
282 
283 	if (cong_drop < -1 || cong_drop > 1) {
284 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
285 		    " using 0 instead.\n", cong_drop);
286 		cong_drop = 0;
287 	}
288 
289 	extfree_refs = counter_u64_alloc(M_WAITOK);
290 	extfree_rels = counter_u64_alloc(M_WAITOK);
291 	counter_u64_zero(extfree_refs);
292 	counter_u64_zero(extfree_rels);
293 }
294 
295 void
296 t4_sge_modunload(void)
297 {
298 
299 	counter_u64_free(extfree_refs);
300 	counter_u64_free(extfree_rels);
301 }
302 
303 uint64_t
304 t4_sge_extfree_refs(void)
305 {
306 	uint64_t refs, rels;
307 
308 	rels = counter_u64_fetch(extfree_rels);
309 	refs = counter_u64_fetch(extfree_refs);
310 
311 	return (refs - rels);
312 }
313 
314 void
315 t4_init_sge_cpl_handlers(struct adapter *sc)
316 {
317 
318 	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
319 	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
320 	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
321 	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
322 	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
323 }
324 
325 static inline void
326 setup_pad_and_pack_boundaries(struct adapter *sc)
327 {
328 	uint32_t v, m;
329 	int pad, pack;
330 
331 	pad = fl_pad;
332 	if (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad)) {
333 		/*
334 		 * If there is any chance that we might use buffer packing and
335 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
336 		 * it to 32 in all other cases.
337 		 */
338 		pad = is_t4(sc) && buffer_packing ? 64 : 32;
339 
340 		/*
341 		 * For fl_pad = 0 we'll still write a reasonable value to the
342 		 * register but all the freelists will opt out of padding.
343 		 * We'll complain here only if the user tried to set it to a
344 		 * value greater than 0 that was invalid.
345 		 */
346 		if (fl_pad > 0) {
347 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
348 			    " (%d), using %d instead.\n", fl_pad, pad);
349 		}
350 	}
351 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
352 	v = V_INGPADBOUNDARY(ilog2(pad) - 5);
353 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
354 
355 	if (is_t4(sc)) {
356 		if (fl_pack != -1 && fl_pack != pad) {
357 			/* Complain but carry on. */
358 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
359 			    " using %d instead.\n", fl_pack, pad);
360 		}
361 		return;
362 	}
363 
364 	pack = fl_pack;
365 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
366 	    !powerof2(fl_pack)) {
367 		pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
368 		MPASS(powerof2(pack));
369 		if (pack < 16)
370 			pack = 16;
371 		if (pack == 32)
372 			pack = 64;
373 		if (pack > 4096)
374 			pack = 4096;
375 		if (fl_pack != -1) {
376 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
377 			    " (%d), using %d instead.\n", fl_pack, pack);
378 		}
379 	}
380 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
381 	if (pack == 16)
382 		v = V_INGPACKBOUNDARY(0);
383 	else
384 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
385 
386 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
387 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
388 }
389 
390 /*
391  * adap->params.vpd.cclk must be set up before this is called.
392  */
393 void
394 t4_tweak_chip_settings(struct adapter *sc)
395 {
396 	int i;
397 	uint32_t v, m;
398 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
399 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
400 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
401 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
402 	static int sge_flbuf_sizes[] = {
403 		MCLBYTES,
404 #if MJUMPAGESIZE != MCLBYTES
405 		MJUMPAGESIZE,
406 		MJUMPAGESIZE - CL_METADATA_SIZE,
407 		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
408 #endif
409 		MJUM9BYTES,
410 		MJUM16BYTES,
411 		MCLBYTES - MSIZE - CL_METADATA_SIZE,
412 		MJUM9BYTES - CL_METADATA_SIZE,
413 		MJUM16BYTES - CL_METADATA_SIZE,
414 	};
415 
416 	KASSERT(sc->flags & MASTER_PF,
417 	    ("%s: trying to change chip settings when not master.", __func__));
418 
419 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
420 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
421 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
422 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
423 
424 	setup_pad_and_pack_boundaries(sc);
425 
426 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
427 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
428 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
429 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
430 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
431 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
432 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
433 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
434 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
435 
436 	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
437 	    ("%s: hw buffer size table too big", __func__));
438 	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
439 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
440 		    sge_flbuf_sizes[i]);
441 	}
442 
443 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
444 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
445 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
446 
447 	KASSERT(intr_timer[0] <= timer_max,
448 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
449 	    timer_max));
450 	for (i = 1; i < nitems(intr_timer); i++) {
451 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
452 		    ("%s: timers not listed in increasing order (%d)",
453 		    __func__, i));
454 
455 		while (intr_timer[i] > timer_max) {
456 			if (i == nitems(intr_timer) - 1) {
457 				intr_timer[i] = timer_max;
458 				break;
459 			}
460 			intr_timer[i] += intr_timer[i - 1];
461 			intr_timer[i] /= 2;
462 		}
463 	}
464 
465 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
466 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
467 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
468 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
469 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
470 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
471 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
472 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
473 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
474 
475 	/* 4K, 16K, 64K, 256K DDP "page sizes" */
476 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
477 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
478 
479 	m = v = F_TDDPTAGTCB;
480 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
481 
482 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
483 	    F_RESETDDPOFFSET;
484 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
485 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
486 }
487 
488 /*
489  * SGE wants the buffer to be at least 64B and then a multiple of 16.  If
490  * padding is is use the buffer's start and end need to be aligned to the pad
491  * boundary as well.  We'll just make sure that the size is a multiple of the
492  * boundary here, it is up to the buffer allocation code to make sure the start
493  * of the buffer is aligned as well.
494  */
495 static inline int
496 hwsz_ok(struct adapter *sc, int hwsz)
497 {
498 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
499 
500 	return (hwsz >= 64 && (hwsz & mask) == 0);
501 }
502 
503 /*
504  * XXX: driver really should be able to deal with unexpected settings.
505  */
506 int
507 t4_read_chip_settings(struct adapter *sc)
508 {
509 	struct sge *s = &sc->sge;
510 	struct sge_params *sp = &sc->params.sge;
511 	int i, j, n, rc = 0;
512 	uint32_t m, v, r;
513 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
514 	static int sw_buf_sizes[] = {	/* Sorted by size */
515 		MCLBYTES,
516 #if MJUMPAGESIZE != MCLBYTES
517 		MJUMPAGESIZE,
518 #endif
519 		MJUM9BYTES,
520 		MJUM16BYTES
521 	};
522 	struct sw_zone_info *swz, *safe_swz;
523 	struct hw_buf_info *hwb;
524 
525 	t4_init_sge_params(sc);
526 
527 	m = F_RXPKTCPLMODE;
528 	v = F_RXPKTCPLMODE;
529 	r = t4_read_reg(sc, A_SGE_CONTROL);
530 	if ((r & m) != v) {
531 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
532 		rc = EINVAL;
533 	}
534 
535 	/*
536 	 * If this changes then every single use of PAGE_SHIFT in the driver
537 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
538 	 */
539 	if (sp->page_shift != PAGE_SHIFT) {
540 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
541 		rc = EINVAL;
542 	}
543 
544 	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
545 	hwb = &s->hw_buf_info[0];
546 	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
547 		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
548 		hwb->size = r;
549 		hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
550 		hwb->next = -1;
551 	}
552 
553 	/*
554 	 * Create a sorted list in decreasing order of hw buffer sizes (and so
555 	 * increasing order of spare area) for each software zone.
556 	 *
557 	 * If padding is enabled then the start and end of the buffer must align
558 	 * to the pad boundary; if packing is enabled then they must align with
559 	 * the pack boundary as well.  Allocations from the cluster zones are
560 	 * aligned to min(size, 4K), so the buffer starts at that alignment and
561 	 * ends at hwb->size alignment.  If mbuf inlining is allowed the
562 	 * starting alignment will be reduced to MSIZE and the driver will
563 	 * exercise appropriate caution when deciding on the best buffer layout
564 	 * to use.
565 	 */
566 	n = 0;	/* no usable buffer size to begin with */
567 	swz = &s->sw_zone_info[0];
568 	safe_swz = NULL;
569 	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
570 		int8_t head = -1, tail = -1;
571 
572 		swz->size = sw_buf_sizes[i];
573 		swz->zone = m_getzone(swz->size);
574 		swz->type = m_gettype(swz->size);
575 
576 		if (swz->size < PAGE_SIZE) {
577 			MPASS(powerof2(swz->size));
578 			if (fl_pad && (swz->size % sp->pad_boundary != 0))
579 				continue;
580 		}
581 
582 		if (swz->size == safest_rx_cluster)
583 			safe_swz = swz;
584 
585 		hwb = &s->hw_buf_info[0];
586 		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
587 			if (hwb->zidx != -1 || hwb->size > swz->size)
588 				continue;
589 #ifdef INVARIANTS
590 			if (fl_pad)
591 				MPASS(hwb->size % sp->pad_boundary == 0);
592 #endif
593 			hwb->zidx = i;
594 			if (head == -1)
595 				head = tail = j;
596 			else if (hwb->size < s->hw_buf_info[tail].size) {
597 				s->hw_buf_info[tail].next = j;
598 				tail = j;
599 			} else {
600 				int8_t *cur;
601 				struct hw_buf_info *t;
602 
603 				for (cur = &head; *cur != -1; cur = &t->next) {
604 					t = &s->hw_buf_info[*cur];
605 					if (hwb->size == t->size) {
606 						hwb->zidx = -2;
607 						break;
608 					}
609 					if (hwb->size > t->size) {
610 						hwb->next = *cur;
611 						*cur = j;
612 						break;
613 					}
614 				}
615 			}
616 		}
617 		swz->head_hwidx = head;
618 		swz->tail_hwidx = tail;
619 
620 		if (tail != -1) {
621 			n++;
622 			if (swz->size - s->hw_buf_info[tail].size >=
623 			    CL_METADATA_SIZE)
624 				sc->flags |= BUF_PACKING_OK;
625 		}
626 	}
627 	if (n == 0) {
628 		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
629 		rc = EINVAL;
630 	}
631 
632 	s->safe_hwidx1 = -1;
633 	s->safe_hwidx2 = -1;
634 	if (safe_swz != NULL) {
635 		s->safe_hwidx1 = safe_swz->head_hwidx;
636 		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
637 			int spare;
638 
639 			hwb = &s->hw_buf_info[i];
640 #ifdef INVARIANTS
641 			if (fl_pad)
642 				MPASS(hwb->size % sp->pad_boundary == 0);
643 #endif
644 			spare = safe_swz->size - hwb->size;
645 			if (spare >= CL_METADATA_SIZE) {
646 				s->safe_hwidx2 = i;
647 				break;
648 			}
649 		}
650 	}
651 
652 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
653 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
654 	if (r != v) {
655 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
656 		rc = EINVAL;
657 	}
658 
659 	m = v = F_TDDPTAGTCB;
660 	r = t4_read_reg(sc, A_ULP_RX_CTL);
661 	if ((r & m) != v) {
662 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
663 		rc = EINVAL;
664 	}
665 
666 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
667 	    F_RESETDDPOFFSET;
668 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
669 	r = t4_read_reg(sc, A_TP_PARA_REG5);
670 	if ((r & m) != v) {
671 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
672 		rc = EINVAL;
673 	}
674 
675 	t4_init_tp_params(sc);
676 
677 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
678 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
679 
680 	return (rc);
681 }
682 
683 int
684 t4_create_dma_tag(struct adapter *sc)
685 {
686 	int rc;
687 
688 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
689 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
690 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
691 	    NULL, &sc->dmat);
692 	if (rc != 0) {
693 		device_printf(sc->dev,
694 		    "failed to create main DMA tag: %d\n", rc);
695 	}
696 
697 	return (rc);
698 }
699 
700 void
701 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
702     struct sysctl_oid_list *children)
703 {
704 	struct sge_params *sp = &sc->params.sge;
705 
706 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
707 	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
708 	    "freelist buffer sizes");
709 
710 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
711 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
712 
713 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
714 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
715 
716 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
717 	    NULL, sp->spg_len, "status page size (bytes)");
718 
719 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
720 	    NULL, cong_drop, "congestion drop setting");
721 
722 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
723 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
724 }
725 
726 int
727 t4_destroy_dma_tag(struct adapter *sc)
728 {
729 	if (sc->dmat)
730 		bus_dma_tag_destroy(sc->dmat);
731 
732 	return (0);
733 }
734 
735 /*
736  * Allocate and initialize the firmware event queue and the management queue.
737  *
738  * Returns errno on failure.  Resources allocated up to that point may still be
739  * allocated.  Caller is responsible for cleanup in case this function fails.
740  */
741 int
742 t4_setup_adapter_queues(struct adapter *sc)
743 {
744 	int rc;
745 
746 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
747 
748 	sysctl_ctx_init(&sc->ctx);
749 	sc->flags |= ADAP_SYSCTL_CTX;
750 
751 	/*
752 	 * Firmware event queue
753 	 */
754 	rc = alloc_fwq(sc);
755 	if (rc != 0)
756 		return (rc);
757 
758 	/*
759 	 * Management queue.  This is just a control queue that uses the fwq as
760 	 * its associated iq.
761 	 */
762 	rc = alloc_mgmtq(sc);
763 
764 	return (rc);
765 }
766 
767 /*
768  * Idempotent
769  */
770 int
771 t4_teardown_adapter_queues(struct adapter *sc)
772 {
773 
774 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
775 
776 	/* Do this before freeing the queue */
777 	if (sc->flags & ADAP_SYSCTL_CTX) {
778 		sysctl_ctx_free(&sc->ctx);
779 		sc->flags &= ~ADAP_SYSCTL_CTX;
780 	}
781 
782 	free_mgmtq(sc);
783 	free_fwq(sc);
784 
785 	return (0);
786 }
787 
788 static inline int
789 first_vector(struct vi_info *vi)
790 {
791 	struct adapter *sc = vi->pi->adapter;
792 
793 	if (sc->intr_count == 1)
794 		return (0);
795 
796 	return (vi->first_intr);
797 }
798 
799 /*
800  * Given an arbitrary "index," come up with an iq that can be used by other
801  * queues (of this VI) for interrupt forwarding, SGE egress updates, etc.
802  * The iq returned is guaranteed to be something that takes direct interrupts.
803  */
804 static struct sge_iq *
805 vi_intr_iq(struct vi_info *vi, int idx)
806 {
807 	struct adapter *sc = vi->pi->adapter;
808 	struct sge *s = &sc->sge;
809 	struct sge_iq *iq = NULL;
810 	int nintr, i;
811 
812 	if (sc->intr_count == 1)
813 		return (&sc->sge.fwq);
814 
815 	KASSERT(!(vi->flags & VI_NETMAP),
816 	    ("%s: called on netmap VI", __func__));
817 	nintr = vi->nintr;
818 	KASSERT(nintr != 0,
819 	    ("%s: vi %p has no exclusive interrupts, total interrupts = %d",
820 	    __func__, vi, sc->intr_count));
821 	i = idx % nintr;
822 
823 	if (vi->flags & INTR_RXQ) {
824 	       	if (i < vi->nrxq) {
825 			iq = &s->rxq[vi->first_rxq + i].iq;
826 			goto done;
827 		}
828 		i -= vi->nrxq;
829 	}
830 #ifdef TCP_OFFLOAD
831 	if (vi->flags & INTR_OFLD_RXQ) {
832 	       	if (i < vi->nofldrxq) {
833 			iq = &s->ofld_rxq[vi->first_ofld_rxq + i].iq;
834 			goto done;
835 		}
836 		i -= vi->nofldrxq;
837 	}
838 #endif
839 	panic("%s: vi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
840 	    vi, vi->flags & INTR_ALL, idx, nintr);
841 done:
842 	MPASS(iq != NULL);
843 	KASSERT(iq->flags & IQ_INTR,
844 	    ("%s: iq %p (vi %p, intr_flags 0x%lx, idx %d)", __func__, iq, vi,
845 	    vi->flags & INTR_ALL, idx));
846 	return (iq);
847 }
848 
849 /* Maximum payload that can be delivered with a single iq descriptor */
850 static inline int
851 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
852 {
853 	int payload;
854 
855 #ifdef TCP_OFFLOAD
856 	if (toe) {
857 		payload = sc->tt.rx_coalesce ?
858 		    G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
859 	} else {
860 #endif
861 		/* large enough even when hw VLAN extraction is disabled */
862 		payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
863 		    ETHER_VLAN_ENCAP_LEN + mtu;
864 #ifdef TCP_OFFLOAD
865 	}
866 #endif
867 
868 	return (payload);
869 }
870 
871 int
872 t4_setup_vi_queues(struct vi_info *vi)
873 {
874 	int rc = 0, i, j, intr_idx, iqid;
875 	struct sge_rxq *rxq;
876 	struct sge_txq *txq;
877 	struct sge_wrq *ctrlq;
878 #ifdef TCP_OFFLOAD
879 	struct sge_ofld_rxq *ofld_rxq;
880 	struct sge_wrq *ofld_txq;
881 #endif
882 #ifdef DEV_NETMAP
883 	struct sge_nm_rxq *nm_rxq;
884 	struct sge_nm_txq *nm_txq;
885 #endif
886 	char name[16];
887 	struct port_info *pi = vi->pi;
888 	struct adapter *sc = pi->adapter;
889 	struct ifnet *ifp = vi->ifp;
890 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
891 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
892 	int maxp, mtu = ifp->if_mtu;
893 
894 	/* Interrupt vector to start from (when using multiple vectors) */
895 	intr_idx = first_vector(vi);
896 
897 #ifdef DEV_NETMAP
898 	if (vi->flags & VI_NETMAP) {
899 		/*
900 		 * We don't have buffers to back the netmap rx queues
901 		 * right now so we create the queues in a way that
902 		 * doesn't set off any congestion signal in the chip.
903 		 */
904 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
905 		    CTLFLAG_RD, NULL, "rx queues");
906 		for_each_nm_rxq(vi, i, nm_rxq) {
907 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
908 			if (rc != 0)
909 				goto done;
910 			intr_idx++;
911 		}
912 
913 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq",
914 		    CTLFLAG_RD, NULL, "tx queues");
915 		for_each_nm_txq(vi, i, nm_txq) {
916 			iqid = vi->first_rxq + (i % vi->nrxq);
917 			rc = alloc_nm_txq(vi, nm_txq, iqid, i, oid);
918 			if (rc != 0)
919 				goto done;
920 		}
921 		goto done;
922 	}
923 #endif
924 
925 	/*
926 	 * First pass over all NIC and TOE rx queues:
927 	 * a) initialize iq and fl
928 	 * b) allocate queue iff it will take direct interrupts.
929 	 */
930 	maxp = mtu_to_max_payload(sc, mtu, 0);
931 	if (vi->flags & INTR_RXQ) {
932 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
933 		    CTLFLAG_RD, NULL, "rx queues");
934 	}
935 	for_each_rxq(vi, i, rxq) {
936 
937 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
938 
939 		snprintf(name, sizeof(name), "%s rxq%d-fl",
940 		    device_get_nameunit(vi->dev), i);
941 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
942 
943 		if (vi->flags & INTR_RXQ) {
944 			rxq->iq.flags |= IQ_INTR;
945 			rc = alloc_rxq(vi, rxq, intr_idx, i, oid);
946 			if (rc != 0)
947 				goto done;
948 			intr_idx++;
949 		}
950 	}
951 #ifdef TCP_OFFLOAD
952 	maxp = mtu_to_max_payload(sc, mtu, 1);
953 	if (vi->flags & INTR_OFLD_RXQ) {
954 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
955 		    CTLFLAG_RD, NULL,
956 		    "rx queues for offloaded TCP connections");
957 	}
958 	for_each_ofld_rxq(vi, i, ofld_rxq) {
959 
960 		init_iq(&ofld_rxq->iq, sc, vi->tmr_idx, vi->pktc_idx,
961 		    vi->qsize_rxq);
962 
963 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
964 		    device_get_nameunit(vi->dev), i);
965 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
966 
967 		if (vi->flags & INTR_OFLD_RXQ) {
968 			ofld_rxq->iq.flags |= IQ_INTR;
969 			rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid);
970 			if (rc != 0)
971 				goto done;
972 			intr_idx++;
973 		}
974 	}
975 #endif
976 
977 	/*
978 	 * Second pass over all NIC and TOE rx queues.  The queues forwarding
979 	 * their interrupts are allocated now.
980 	 */
981 	j = 0;
982 	if (!(vi->flags & INTR_RXQ)) {
983 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
984 		    CTLFLAG_RD, NULL, "rx queues");
985 		for_each_rxq(vi, i, rxq) {
986 			MPASS(!(rxq->iq.flags & IQ_INTR));
987 
988 			intr_idx = vi_intr_iq(vi, j)->abs_id;
989 
990 			rc = alloc_rxq(vi, rxq, intr_idx, i, oid);
991 			if (rc != 0)
992 				goto done;
993 			j++;
994 		}
995 	}
996 #ifdef TCP_OFFLOAD
997 	if (vi->nofldrxq != 0 && !(vi->flags & INTR_OFLD_RXQ)) {
998 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
999 		    CTLFLAG_RD, NULL,
1000 		    "rx queues for offloaded TCP connections");
1001 		for_each_ofld_rxq(vi, i, ofld_rxq) {
1002 			MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
1003 
1004 			intr_idx = vi_intr_iq(vi, j)->abs_id;
1005 
1006 			rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid);
1007 			if (rc != 0)
1008 				goto done;
1009 			j++;
1010 		}
1011 	}
1012 #endif
1013 
1014 	/*
1015 	 * Now the tx queues.  Only one pass needed.
1016 	 */
1017 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1018 	    NULL, "tx queues");
1019 	j = 0;
1020 	for_each_txq(vi, i, txq) {
1021 		iqid = vi_intr_iq(vi, j)->cntxt_id;
1022 		snprintf(name, sizeof(name), "%s txq%d",
1023 		    device_get_nameunit(vi->dev), i);
1024 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, iqid,
1025 		    name);
1026 
1027 		rc = alloc_txq(vi, txq, i, oid);
1028 		if (rc != 0)
1029 			goto done;
1030 		j++;
1031 	}
1032 #ifdef TCP_OFFLOAD
1033 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1034 	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1035 	for_each_ofld_txq(vi, i, ofld_txq) {
1036 		struct sysctl_oid *oid2;
1037 
1038 		iqid = vi_intr_iq(vi, j)->cntxt_id;
1039 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1040 		    device_get_nameunit(vi->dev), i);
1041 		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1042 		    iqid, name);
1043 
1044 		snprintf(name, sizeof(name), "%d", i);
1045 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1046 		    name, CTLFLAG_RD, NULL, "offload tx queue");
1047 
1048 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1049 		if (rc != 0)
1050 			goto done;
1051 		j++;
1052 	}
1053 #endif
1054 
1055 	/*
1056 	 * Finally, the control queue.
1057 	 */
1058 	if (!IS_MAIN_VI(vi))
1059 		goto done;
1060 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1061 	    NULL, "ctrl queue");
1062 	ctrlq = &sc->sge.ctrlq[pi->port_id];
1063 	iqid = vi_intr_iq(vi, 0)->cntxt_id;
1064 	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev));
1065 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid,
1066 	    name);
1067 	rc = alloc_wrq(sc, vi, ctrlq, oid);
1068 
1069 done:
1070 	if (rc)
1071 		t4_teardown_vi_queues(vi);
1072 
1073 	return (rc);
1074 }
1075 
1076 /*
1077  * Idempotent
1078  */
1079 int
1080 t4_teardown_vi_queues(struct vi_info *vi)
1081 {
1082 	int i;
1083 	struct port_info *pi = vi->pi;
1084 	struct adapter *sc = pi->adapter;
1085 	struct sge_rxq *rxq;
1086 	struct sge_txq *txq;
1087 #ifdef TCP_OFFLOAD
1088 	struct sge_ofld_rxq *ofld_rxq;
1089 	struct sge_wrq *ofld_txq;
1090 #endif
1091 #ifdef DEV_NETMAP
1092 	struct sge_nm_rxq *nm_rxq;
1093 	struct sge_nm_txq *nm_txq;
1094 #endif
1095 
1096 	/* Do this before freeing the queues */
1097 	if (vi->flags & VI_SYSCTL_CTX) {
1098 		sysctl_ctx_free(&vi->ctx);
1099 		vi->flags &= ~VI_SYSCTL_CTX;
1100 	}
1101 
1102 #ifdef DEV_NETMAP
1103 	if (vi->flags & VI_NETMAP) {
1104 		for_each_nm_txq(vi, i, nm_txq) {
1105 			free_nm_txq(vi, nm_txq);
1106 		}
1107 
1108 		for_each_nm_rxq(vi, i, nm_rxq) {
1109 			free_nm_rxq(vi, nm_rxq);
1110 		}
1111 		return (0);
1112 	}
1113 #endif
1114 
1115 	/*
1116 	 * Take down all the tx queues first, as they reference the rx queues
1117 	 * (for egress updates, etc.).
1118 	 */
1119 
1120 	if (IS_MAIN_VI(vi))
1121 		free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1122 
1123 	for_each_txq(vi, i, txq) {
1124 		free_txq(vi, txq);
1125 	}
1126 #ifdef TCP_OFFLOAD
1127 	for_each_ofld_txq(vi, i, ofld_txq) {
1128 		free_wrq(sc, ofld_txq);
1129 	}
1130 #endif
1131 
1132 	/*
1133 	 * Then take down the rx queues that forward their interrupts, as they
1134 	 * reference other rx queues.
1135 	 */
1136 
1137 	for_each_rxq(vi, i, rxq) {
1138 		if ((rxq->iq.flags & IQ_INTR) == 0)
1139 			free_rxq(vi, rxq);
1140 	}
1141 #ifdef TCP_OFFLOAD
1142 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1143 		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1144 			free_ofld_rxq(vi, ofld_rxq);
1145 	}
1146 #endif
1147 
1148 	/*
1149 	 * Then take down the rx queues that take direct interrupts.
1150 	 */
1151 
1152 	for_each_rxq(vi, i, rxq) {
1153 		if (rxq->iq.flags & IQ_INTR)
1154 			free_rxq(vi, rxq);
1155 	}
1156 #ifdef TCP_OFFLOAD
1157 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1158 		if (ofld_rxq->iq.flags & IQ_INTR)
1159 			free_ofld_rxq(vi, ofld_rxq);
1160 	}
1161 #endif
1162 
1163 	return (0);
1164 }
1165 
1166 /*
1167  * Deals with errors and the firmware event queue.  All data rx queues forward
1168  * their interrupt to the firmware event queue.
1169  */
1170 void
1171 t4_intr_all(void *arg)
1172 {
1173 	struct adapter *sc = arg;
1174 	struct sge_iq *fwq = &sc->sge.fwq;
1175 
1176 	t4_intr_err(arg);
1177 	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1178 		service_iq(fwq, 0);
1179 		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1180 	}
1181 }
1182 
1183 /* Deals with error interrupts */
1184 void
1185 t4_intr_err(void *arg)
1186 {
1187 	struct adapter *sc = arg;
1188 
1189 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1190 	t4_slow_intr_handler(sc);
1191 }
1192 
1193 void
1194 t4_intr_evt(void *arg)
1195 {
1196 	struct sge_iq *iq = arg;
1197 
1198 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1199 		service_iq(iq, 0);
1200 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1201 	}
1202 }
1203 
1204 void
1205 t4_intr(void *arg)
1206 {
1207 	struct sge_iq *iq = arg;
1208 
1209 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1210 		service_iq(iq, 0);
1211 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1212 	}
1213 }
1214 
1215 /*
1216  * Deals with anything and everything on the given ingress queue.
1217  */
1218 static int
1219 service_iq(struct sge_iq *iq, int budget)
1220 {
1221 	struct sge_iq *q;
1222 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1223 	struct sge_fl *fl;			/* Use iff IQ_HAS_FL */
1224 	struct adapter *sc = iq->adapter;
1225 	struct iq_desc *d = &iq->desc[iq->cidx];
1226 	int ndescs = 0, limit;
1227 	int rsp_type, refill;
1228 	uint32_t lq;
1229 	uint16_t fl_hw_cidx;
1230 	struct mbuf *m0;
1231 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1232 #if defined(INET) || defined(INET6)
1233 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1234 #endif
1235 
1236 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1237 
1238 	limit = budget ? budget : iq->qsize / 16;
1239 
1240 	if (iq->flags & IQ_HAS_FL) {
1241 		fl = &rxq->fl;
1242 		fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1243 	} else {
1244 		fl = NULL;
1245 		fl_hw_cidx = 0;			/* to silence gcc warning */
1246 	}
1247 
1248 	/*
1249 	 * We always come back and check the descriptor ring for new indirect
1250 	 * interrupts and other responses after running a single handler.
1251 	 */
1252 	for (;;) {
1253 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1254 
1255 			rmb();
1256 
1257 			refill = 0;
1258 			m0 = NULL;
1259 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1260 			lq = be32toh(d->rsp.pldbuflen_qid);
1261 
1262 			switch (rsp_type) {
1263 			case X_RSPD_TYPE_FLBUF:
1264 
1265 				KASSERT(iq->flags & IQ_HAS_FL,
1266 				    ("%s: data for an iq (%p) with no freelist",
1267 				    __func__, iq));
1268 
1269 				m0 = get_fl_payload(sc, fl, lq);
1270 				if (__predict_false(m0 == NULL))
1271 					goto process_iql;
1272 				refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1273 #ifdef T4_PKT_TIMESTAMP
1274 				/*
1275 				 * 60 bit timestamp for the payload is
1276 				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1277 				 * in the leading free-space in the mbuf.  The
1278 				 * kernel can clobber it during a pullup,
1279 				 * m_copymdata, etc.  You need to make sure that
1280 				 * the mbuf reaches you unmolested if you care
1281 				 * about the timestamp.
1282 				 */
1283 				*(uint64_t *)m0->m_pktdat =
1284 				    be64toh(ctrl->u.last_flit) &
1285 				    0xfffffffffffffff;
1286 #endif
1287 
1288 				/* fall through */
1289 
1290 			case X_RSPD_TYPE_CPL:
1291 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1292 				    ("%s: bad opcode %02x.", __func__,
1293 				    d->rss.opcode));
1294 				sc->cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1295 				break;
1296 
1297 			case X_RSPD_TYPE_INTR:
1298 
1299 				/*
1300 				 * Interrupts should be forwarded only to queues
1301 				 * that are not forwarding their interrupts.
1302 				 * This means service_iq can recurse but only 1
1303 				 * level deep.
1304 				 */
1305 				KASSERT(budget == 0,
1306 				    ("%s: budget %u, rsp_type %u", __func__,
1307 				    budget, rsp_type));
1308 
1309 				/*
1310 				 * There are 1K interrupt-capable queues (qids 0
1311 				 * through 1023).  A response type indicating a
1312 				 * forwarded interrupt with a qid >= 1K is an
1313 				 * iWARP async notification.
1314 				 */
1315 				if (lq >= 1024) {
1316                                         sc->an_handler(iq, &d->rsp);
1317                                         break;
1318                                 }
1319 
1320 				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1321 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1322 				    IQS_BUSY)) {
1323 					if (service_iq(q, q->qsize / 16) == 0) {
1324 						atomic_cmpset_int(&q->state,
1325 						    IQS_BUSY, IQS_IDLE);
1326 					} else {
1327 						STAILQ_INSERT_TAIL(&iql, q,
1328 						    link);
1329 					}
1330 				}
1331 				break;
1332 
1333 			default:
1334 				KASSERT(0,
1335 				    ("%s: illegal response type %d on iq %p",
1336 				    __func__, rsp_type, iq));
1337 				log(LOG_ERR,
1338 				    "%s: illegal response type %d on iq %p",
1339 				    device_get_nameunit(sc->dev), rsp_type, iq);
1340 				break;
1341 			}
1342 
1343 			d++;
1344 			if (__predict_false(++iq->cidx == iq->sidx)) {
1345 				iq->cidx = 0;
1346 				iq->gen ^= F_RSPD_GEN;
1347 				d = &iq->desc[0];
1348 			}
1349 			if (__predict_false(++ndescs == limit)) {
1350 				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1351 				    V_CIDXINC(ndescs) |
1352 				    V_INGRESSQID(iq->cntxt_id) |
1353 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1354 				ndescs = 0;
1355 
1356 #if defined(INET) || defined(INET6)
1357 				if (iq->flags & IQ_LRO_ENABLED &&
1358 				    sc->lro_timeout != 0) {
1359 					tcp_lro_flush_inactive(&rxq->lro,
1360 					    &lro_timeout);
1361 				}
1362 #endif
1363 
1364 				if (budget) {
1365 					if (iq->flags & IQ_HAS_FL) {
1366 						FL_LOCK(fl);
1367 						refill_fl(sc, fl, 32);
1368 						FL_UNLOCK(fl);
1369 					}
1370 					return (EINPROGRESS);
1371 				}
1372 			}
1373 			if (refill) {
1374 				FL_LOCK(fl);
1375 				refill_fl(sc, fl, 32);
1376 				FL_UNLOCK(fl);
1377 				fl_hw_cidx = fl->hw_cidx;
1378 			}
1379 		}
1380 
1381 process_iql:
1382 		if (STAILQ_EMPTY(&iql))
1383 			break;
1384 
1385 		/*
1386 		 * Process the head only, and send it to the back of the list if
1387 		 * it's still not done.
1388 		 */
1389 		q = STAILQ_FIRST(&iql);
1390 		STAILQ_REMOVE_HEAD(&iql, link);
1391 		if (service_iq(q, q->qsize / 8) == 0)
1392 			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1393 		else
1394 			STAILQ_INSERT_TAIL(&iql, q, link);
1395 	}
1396 
1397 #if defined(INET) || defined(INET6)
1398 	if (iq->flags & IQ_LRO_ENABLED) {
1399 		struct lro_ctrl *lro = &rxq->lro;
1400 		struct lro_entry *l;
1401 
1402 		while (!SLIST_EMPTY(&lro->lro_active)) {
1403 			l = SLIST_FIRST(&lro->lro_active);
1404 			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1405 			tcp_lro_flush(lro, l);
1406 		}
1407 	}
1408 #endif
1409 
1410 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1411 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1412 
1413 	if (iq->flags & IQ_HAS_FL) {
1414 		int starved;
1415 
1416 		FL_LOCK(fl);
1417 		starved = refill_fl(sc, fl, 64);
1418 		FL_UNLOCK(fl);
1419 		if (__predict_false(starved != 0))
1420 			add_fl_to_sfl(sc, fl);
1421 	}
1422 
1423 	return (0);
1424 }
1425 
1426 static inline int
1427 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1428 {
1429 	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1430 
1431 	if (rc)
1432 		MPASS(cll->region3 >= CL_METADATA_SIZE);
1433 
1434 	return (rc);
1435 }
1436 
1437 static inline struct cluster_metadata *
1438 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1439     caddr_t cl)
1440 {
1441 
1442 	if (cl_has_metadata(fl, cll)) {
1443 		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1444 
1445 		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1446 	}
1447 	return (NULL);
1448 }
1449 
1450 static void
1451 rxb_free(struct mbuf *m, void *arg1, void *arg2)
1452 {
1453 	uma_zone_t zone = arg1;
1454 	caddr_t cl = arg2;
1455 
1456 	uma_zfree(zone, cl);
1457 	counter_u64_add(extfree_rels, 1);
1458 }
1459 
1460 /*
1461  * The mbuf returned by this function could be allocated from zone_mbuf or
1462  * constructed in spare room in the cluster.
1463  *
1464  * The mbuf carries the payload in one of these ways
1465  * a) frame inside the mbuf (mbuf from zone_mbuf)
1466  * b) m_cljset (for clusters without metadata) zone_mbuf
1467  * c) m_extaddref (cluster with metadata) inline mbuf
1468  * d) m_extaddref (cluster with metadata) zone_mbuf
1469  */
1470 static struct mbuf *
1471 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1472     int remaining)
1473 {
1474 	struct mbuf *m;
1475 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1476 	struct cluster_layout *cll = &sd->cll;
1477 	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1478 	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1479 	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1480 	int len, blen;
1481 	caddr_t payload;
1482 
1483 	blen = hwb->size - fl->rx_offset;	/* max possible in this buf */
1484 	len = min(remaining, blen);
1485 	payload = sd->cl + cll->region1 + fl->rx_offset;
1486 	if (fl->flags & FL_BUF_PACKING) {
1487 		const u_int l = fr_offset + len;
1488 		const u_int pad = roundup2(l, fl->buf_boundary) - l;
1489 
1490 		if (fl->rx_offset + len + pad < hwb->size)
1491 			blen = len + pad;
1492 		MPASS(fl->rx_offset + blen <= hwb->size);
1493 	} else {
1494 		MPASS(fl->rx_offset == 0);	/* not packing */
1495 	}
1496 
1497 
1498 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1499 
1500 		/*
1501 		 * Copy payload into a freshly allocated mbuf.
1502 		 */
1503 
1504 		m = fr_offset == 0 ?
1505 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1506 		if (m == NULL)
1507 			return (NULL);
1508 		fl->mbuf_allocated++;
1509 #ifdef T4_PKT_TIMESTAMP
1510 		/* Leave room for a timestamp */
1511 		m->m_data += 8;
1512 #endif
1513 		/* copy data to mbuf */
1514 		bcopy(payload, mtod(m, caddr_t), len);
1515 
1516 	} else if (sd->nmbuf * MSIZE < cll->region1) {
1517 
1518 		/*
1519 		 * There's spare room in the cluster for an mbuf.  Create one
1520 		 * and associate it with the payload that's in the cluster.
1521 		 */
1522 
1523 		MPASS(clm != NULL);
1524 		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1525 		/* No bzero required */
1526 		if (m_init(m, M_NOWAIT, MT_DATA,
1527 		    fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
1528 			return (NULL);
1529 		fl->mbuf_inlined++;
1530 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
1531 		    swz->zone, sd->cl);
1532 		if (sd->nmbuf++ == 0)
1533 			counter_u64_add(extfree_refs, 1);
1534 
1535 	} else {
1536 
1537 		/*
1538 		 * Grab an mbuf from zone_mbuf and associate it with the
1539 		 * payload in the cluster.
1540 		 */
1541 
1542 		m = fr_offset == 0 ?
1543 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1544 		if (m == NULL)
1545 			return (NULL);
1546 		fl->mbuf_allocated++;
1547 		if (clm != NULL) {
1548 			m_extaddref(m, payload, blen, &clm->refcount,
1549 			    rxb_free, swz->zone, sd->cl);
1550 			if (sd->nmbuf++ == 0)
1551 				counter_u64_add(extfree_refs, 1);
1552 		} else {
1553 			m_cljset(m, sd->cl, swz->type);
1554 			sd->cl = NULL;	/* consumed, not a recycle candidate */
1555 		}
1556 	}
1557 	if (fr_offset == 0)
1558 		m->m_pkthdr.len = remaining;
1559 	m->m_len = len;
1560 
1561 	if (fl->flags & FL_BUF_PACKING) {
1562 		fl->rx_offset += blen;
1563 		MPASS(fl->rx_offset <= hwb->size);
1564 		if (fl->rx_offset < hwb->size)
1565 			return (m);	/* without advancing the cidx */
1566 	}
1567 
1568 	if (__predict_false(++fl->cidx % 8 == 0)) {
1569 		uint16_t cidx = fl->cidx / 8;
1570 
1571 		if (__predict_false(cidx == fl->sidx))
1572 			fl->cidx = cidx = 0;
1573 		fl->hw_cidx = cidx;
1574 	}
1575 	fl->rx_offset = 0;
1576 
1577 	return (m);
1578 }
1579 
1580 static struct mbuf *
1581 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1582 {
1583 	struct mbuf *m0, *m, **pnext;
1584 	u_int remaining;
1585 	const u_int total = G_RSPD_LEN(len_newbuf);
1586 
1587 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1588 		M_ASSERTPKTHDR(fl->m0);
1589 		MPASS(fl->m0->m_pkthdr.len == total);
1590 		MPASS(fl->remaining < total);
1591 
1592 		m0 = fl->m0;
1593 		pnext = fl->pnext;
1594 		remaining = fl->remaining;
1595 		fl->flags &= ~FL_BUF_RESUME;
1596 		goto get_segment;
1597 	}
1598 
1599 	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1600 		fl->rx_offset = 0;
1601 		if (__predict_false(++fl->cidx % 8 == 0)) {
1602 			uint16_t cidx = fl->cidx / 8;
1603 
1604 			if (__predict_false(cidx == fl->sidx))
1605 				fl->cidx = cidx = 0;
1606 			fl->hw_cidx = cidx;
1607 		}
1608 	}
1609 
1610 	/*
1611 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1612 	 * 'len' and it may span multiple hw buffers.
1613 	 */
1614 
1615 	m0 = get_scatter_segment(sc, fl, 0, total);
1616 	if (m0 == NULL)
1617 		return (NULL);
1618 	remaining = total - m0->m_len;
1619 	pnext = &m0->m_next;
1620 	while (remaining > 0) {
1621 get_segment:
1622 		MPASS(fl->rx_offset == 0);
1623 		m = get_scatter_segment(sc, fl, total - remaining, remaining);
1624 		if (__predict_false(m == NULL)) {
1625 			fl->m0 = m0;
1626 			fl->pnext = pnext;
1627 			fl->remaining = remaining;
1628 			fl->flags |= FL_BUF_RESUME;
1629 			return (NULL);
1630 		}
1631 		*pnext = m;
1632 		pnext = &m->m_next;
1633 		remaining -= m->m_len;
1634 	}
1635 	*pnext = NULL;
1636 
1637 	M_ASSERTPKTHDR(m0);
1638 	return (m0);
1639 }
1640 
1641 static int
1642 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1643 {
1644 	struct sge_rxq *rxq = iq_to_rxq(iq);
1645 	struct ifnet *ifp = rxq->ifp;
1646 	struct adapter *sc = iq->adapter;
1647 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1648 #if defined(INET) || defined(INET6)
1649 	struct lro_ctrl *lro = &rxq->lro;
1650 #endif
1651 	static const int sw_hashtype[4][2] = {
1652 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1653 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1654 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1655 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1656 	};
1657 
1658 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1659 	    rss->opcode));
1660 
1661 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1662 	m0->m_len -= sc->params.sge.fl_pktshift;
1663 	m0->m_data += sc->params.sge.fl_pktshift;
1664 
1665 	m0->m_pkthdr.rcvif = ifp;
1666 	M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
1667 	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1668 
1669 	if (cpl->csum_calc && !cpl->err_vec) {
1670 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1671 		    cpl->l2info & htobe32(F_RXF_IP)) {
1672 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1673 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1674 			rxq->rxcsum++;
1675 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1676 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1677 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1678 			    CSUM_PSEUDO_HDR);
1679 			rxq->rxcsum++;
1680 		}
1681 
1682 		if (__predict_false(cpl->ip_frag))
1683 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1684 		else
1685 			m0->m_pkthdr.csum_data = 0xffff;
1686 	}
1687 
1688 	if (cpl->vlan_ex) {
1689 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1690 		m0->m_flags |= M_VLANTAG;
1691 		rxq->vlan_extraction++;
1692 	}
1693 
1694 #if defined(INET) || defined(INET6)
1695 	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1696 	    iq->flags & IQ_LRO_ENABLED &&
1697 	    tcp_lro_rx(lro, m0, 0) == 0) {
1698 		/* queued for LRO */
1699 	} else
1700 #endif
1701 	ifp->if_input(ifp, m0);
1702 
1703 	return (0);
1704 }
1705 
1706 /*
1707  * Must drain the wrq or make sure that someone else will.
1708  */
1709 static void
1710 wrq_tx_drain(void *arg, int n)
1711 {
1712 	struct sge_wrq *wrq = arg;
1713 	struct sge_eq *eq = &wrq->eq;
1714 
1715 	EQ_LOCK(eq);
1716 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
1717 		drain_wrq_wr_list(wrq->adapter, wrq);
1718 	EQ_UNLOCK(eq);
1719 }
1720 
1721 static void
1722 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
1723 {
1724 	struct sge_eq *eq = &wrq->eq;
1725 	u_int available, dbdiff;	/* # of hardware descriptors */
1726 	u_int n;
1727 	struct wrqe *wr;
1728 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
1729 
1730 	EQ_LOCK_ASSERT_OWNED(eq);
1731 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
1732 	wr = STAILQ_FIRST(&wrq->wr_list);
1733 	MPASS(wr != NULL);	/* Must be called with something useful to do */
1734 	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
1735 
1736 	do {
1737 		eq->cidx = read_hw_cidx(eq);
1738 		if (eq->pidx == eq->cidx)
1739 			available = eq->sidx - 1;
1740 		else
1741 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
1742 
1743 		MPASS(wr->wrq == wrq);
1744 		n = howmany(wr->wr_len, EQ_ESIZE);
1745 		if (available < n)
1746 			return;
1747 
1748 		dst = (void *)&eq->desc[eq->pidx];
1749 		if (__predict_true(eq->sidx - eq->pidx > n)) {
1750 			/* Won't wrap, won't end exactly at the status page. */
1751 			bcopy(&wr->wr[0], dst, wr->wr_len);
1752 			eq->pidx += n;
1753 		} else {
1754 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
1755 
1756 			bcopy(&wr->wr[0], dst, first_portion);
1757 			if (wr->wr_len > first_portion) {
1758 				bcopy(&wr->wr[first_portion], &eq->desc[0],
1759 				    wr->wr_len - first_portion);
1760 			}
1761 			eq->pidx = n - (eq->sidx - eq->pidx);
1762 		}
1763 
1764 		if (available < eq->sidx / 4 &&
1765 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
1766 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
1767 			    F_FW_WR_EQUEQ);
1768 			eq->equeqidx = eq->pidx;
1769 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
1770 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
1771 			eq->equeqidx = eq->pidx;
1772 		}
1773 
1774 		dbdiff += n;
1775 		if (dbdiff >= 16) {
1776 			ring_eq_db(sc, eq, dbdiff);
1777 			dbdiff = 0;
1778 		}
1779 
1780 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1781 		free_wrqe(wr);
1782 		MPASS(wrq->nwr_pending > 0);
1783 		wrq->nwr_pending--;
1784 		MPASS(wrq->ndesc_needed >= n);
1785 		wrq->ndesc_needed -= n;
1786 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
1787 
1788 	if (dbdiff)
1789 		ring_eq_db(sc, eq, dbdiff);
1790 }
1791 
1792 /*
1793  * Doesn't fail.  Holds on to work requests it can't send right away.
1794  */
1795 void
1796 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1797 {
1798 #ifdef INVARIANTS
1799 	struct sge_eq *eq = &wrq->eq;
1800 #endif
1801 
1802 	EQ_LOCK_ASSERT_OWNED(eq);
1803 	MPASS(wr != NULL);
1804 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
1805 	MPASS((wr->wr_len & 0x7) == 0);
1806 
1807 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1808 	wrq->nwr_pending++;
1809 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
1810 
1811 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
1812 		return;	/* commit_wrq_wr will drain wr_list as well. */
1813 
1814 	drain_wrq_wr_list(sc, wrq);
1815 
1816 	/* Doorbell must have caught up to the pidx. */
1817 	MPASS(eq->pidx == eq->dbidx);
1818 }
1819 
1820 void
1821 t4_update_fl_bufsize(struct ifnet *ifp)
1822 {
1823 	struct vi_info *vi = ifp->if_softc;
1824 	struct adapter *sc = vi->pi->adapter;
1825 	struct sge_rxq *rxq;
1826 #ifdef TCP_OFFLOAD
1827 	struct sge_ofld_rxq *ofld_rxq;
1828 #endif
1829 	struct sge_fl *fl;
1830 	int i, maxp, mtu = ifp->if_mtu;
1831 
1832 	maxp = mtu_to_max_payload(sc, mtu, 0);
1833 	for_each_rxq(vi, i, rxq) {
1834 		fl = &rxq->fl;
1835 
1836 		FL_LOCK(fl);
1837 		find_best_refill_source(sc, fl, maxp);
1838 		FL_UNLOCK(fl);
1839 	}
1840 #ifdef TCP_OFFLOAD
1841 	maxp = mtu_to_max_payload(sc, mtu, 1);
1842 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1843 		fl = &ofld_rxq->fl;
1844 
1845 		FL_LOCK(fl);
1846 		find_best_refill_source(sc, fl, maxp);
1847 		FL_UNLOCK(fl);
1848 	}
1849 #endif
1850 }
1851 
1852 static inline int
1853 mbuf_nsegs(struct mbuf *m)
1854 {
1855 
1856 	M_ASSERTPKTHDR(m);
1857 	KASSERT(m->m_pkthdr.l5hlen > 0,
1858 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
1859 
1860 	return (m->m_pkthdr.l5hlen);
1861 }
1862 
1863 static inline void
1864 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
1865 {
1866 
1867 	M_ASSERTPKTHDR(m);
1868 	m->m_pkthdr.l5hlen = nsegs;
1869 }
1870 
1871 static inline int
1872 mbuf_len16(struct mbuf *m)
1873 {
1874 	int n;
1875 
1876 	M_ASSERTPKTHDR(m);
1877 	n = m->m_pkthdr.PH_loc.eight[0];
1878 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
1879 
1880 	return (n);
1881 }
1882 
1883 static inline void
1884 set_mbuf_len16(struct mbuf *m, uint8_t len16)
1885 {
1886 
1887 	M_ASSERTPKTHDR(m);
1888 	m->m_pkthdr.PH_loc.eight[0] = len16;
1889 }
1890 
1891 static inline int
1892 needs_tso(struct mbuf *m)
1893 {
1894 
1895 	M_ASSERTPKTHDR(m);
1896 
1897 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1898 		KASSERT(m->m_pkthdr.tso_segsz > 0,
1899 		    ("%s: TSO requested in mbuf %p but MSS not provided",
1900 		    __func__, m));
1901 		return (1);
1902 	}
1903 
1904 	return (0);
1905 }
1906 
1907 static inline int
1908 needs_l3_csum(struct mbuf *m)
1909 {
1910 
1911 	M_ASSERTPKTHDR(m);
1912 
1913 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
1914 		return (1);
1915 	return (0);
1916 }
1917 
1918 static inline int
1919 needs_l4_csum(struct mbuf *m)
1920 {
1921 
1922 	M_ASSERTPKTHDR(m);
1923 
1924 	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
1925 	    CSUM_TCP_IPV6 | CSUM_TSO))
1926 		return (1);
1927 	return (0);
1928 }
1929 
1930 static inline int
1931 needs_vlan_insertion(struct mbuf *m)
1932 {
1933 
1934 	M_ASSERTPKTHDR(m);
1935 
1936 	if (m->m_flags & M_VLANTAG) {
1937 		KASSERT(m->m_pkthdr.ether_vtag != 0,
1938 		    ("%s: HWVLAN requested in mbuf %p but tag not provided",
1939 		    __func__, m));
1940 		return (1);
1941 	}
1942 	return (0);
1943 }
1944 
1945 static void *
1946 m_advance(struct mbuf **pm, int *poffset, int len)
1947 {
1948 	struct mbuf *m = *pm;
1949 	int offset = *poffset;
1950 	uintptr_t p = 0;
1951 
1952 	MPASS(len > 0);
1953 
1954 	while (len) {
1955 		if (offset + len < m->m_len) {
1956 			offset += len;
1957 			p = mtod(m, uintptr_t) + offset;
1958 			break;
1959 		}
1960 		len -= m->m_len - offset;
1961 		m = m->m_next;
1962 		offset = 0;
1963 		MPASS(m != NULL);
1964 	}
1965 	*poffset = offset;
1966 	*pm = m;
1967 	return ((void *)p);
1968 }
1969 
1970 static inline int
1971 same_paddr(char *a, char *b)
1972 {
1973 
1974 	if (a == b)
1975 		return (1);
1976 	else if (a != NULL && b != NULL) {
1977 		vm_offset_t x = (vm_offset_t)a;
1978 		vm_offset_t y = (vm_offset_t)b;
1979 
1980 		if ((x & PAGE_MASK) == (y & PAGE_MASK) &&
1981 		    pmap_kextract(x) == pmap_kextract(y))
1982 			return (1);
1983 	}
1984 
1985 	return (0);
1986 }
1987 
1988 /*
1989  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
1990  * must have at least one mbuf that's not empty.
1991  */
1992 static inline int
1993 count_mbuf_nsegs(struct mbuf *m)
1994 {
1995 	char *prev_end, *start;
1996 	int len, nsegs;
1997 
1998 	MPASS(m != NULL);
1999 
2000 	nsegs = 0;
2001 	prev_end = NULL;
2002 	for (; m; m = m->m_next) {
2003 
2004 		len = m->m_len;
2005 		if (__predict_false(len == 0))
2006 			continue;
2007 		start = mtod(m, char *);
2008 
2009 		nsegs += sglist_count(start, len);
2010 		if (same_paddr(prev_end, start))
2011 			nsegs--;
2012 		prev_end = start + len;
2013 	}
2014 
2015 	MPASS(nsegs > 0);
2016 	return (nsegs);
2017 }
2018 
2019 /*
2020  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2021  * a) caller can assume it's been freed if this function returns with an error.
2022  * b) it may get defragged up if the gather list is too long for the hardware.
2023  */
2024 int
2025 parse_pkt(struct mbuf **mp)
2026 {
2027 	struct mbuf *m0 = *mp, *m;
2028 	int rc, nsegs, defragged = 0, offset;
2029 	struct ether_header *eh;
2030 	void *l3hdr;
2031 #if defined(INET) || defined(INET6)
2032 	struct tcphdr *tcp;
2033 #endif
2034 	uint16_t eh_type;
2035 
2036 	M_ASSERTPKTHDR(m0);
2037 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2038 		rc = EINVAL;
2039 fail:
2040 		m_freem(m0);
2041 		*mp = NULL;
2042 		return (rc);
2043 	}
2044 restart:
2045 	/*
2046 	 * First count the number of gather list segments in the payload.
2047 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2048 	 */
2049 	M_ASSERTPKTHDR(m0);
2050 	MPASS(m0->m_pkthdr.len > 0);
2051 	nsegs = count_mbuf_nsegs(m0);
2052 	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2053 		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2054 			rc = EFBIG;
2055 			goto fail;
2056 		}
2057 		*mp = m0 = m;	/* update caller's copy after defrag */
2058 		goto restart;
2059 	}
2060 
2061 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
2062 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2063 		if (m0 == NULL) {
2064 			/* Should have left well enough alone. */
2065 			rc = EFBIG;
2066 			goto fail;
2067 		}
2068 		*mp = m0;	/* update caller's copy after pullup */
2069 		goto restart;
2070 	}
2071 	set_mbuf_nsegs(m0, nsegs);
2072 	set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2073 
2074 	if (!needs_tso(m0))
2075 		return (0);
2076 
2077 	m = m0;
2078 	eh = mtod(m, struct ether_header *);
2079 	eh_type = ntohs(eh->ether_type);
2080 	if (eh_type == ETHERTYPE_VLAN) {
2081 		struct ether_vlan_header *evh = (void *)eh;
2082 
2083 		eh_type = ntohs(evh->evl_proto);
2084 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2085 	} else
2086 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2087 
2088 	offset = 0;
2089 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2090 
2091 	switch (eh_type) {
2092 #ifdef INET6
2093 	case ETHERTYPE_IPV6:
2094 	{
2095 		struct ip6_hdr *ip6 = l3hdr;
2096 
2097 		MPASS(ip6->ip6_nxt == IPPROTO_TCP);
2098 
2099 		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2100 		break;
2101 	}
2102 #endif
2103 #ifdef INET
2104 	case ETHERTYPE_IP:
2105 	{
2106 		struct ip *ip = l3hdr;
2107 
2108 		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2109 		break;
2110 	}
2111 #endif
2112 	default:
2113 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2114 		    " with the same INET/INET6 options as the kernel.",
2115 		    __func__, eh_type);
2116 	}
2117 
2118 #if defined(INET) || defined(INET6)
2119 	tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2120 	m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2121 #endif
2122 	MPASS(m0 == *mp);
2123 	return (0);
2124 }
2125 
2126 void *
2127 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2128 {
2129 	struct sge_eq *eq = &wrq->eq;
2130 	struct adapter *sc = wrq->adapter;
2131 	int ndesc, available;
2132 	struct wrqe *wr;
2133 	void *w;
2134 
2135 	MPASS(len16 > 0);
2136 	ndesc = howmany(len16, EQ_ESIZE / 16);
2137 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2138 
2139 	EQ_LOCK(eq);
2140 
2141 	if (!STAILQ_EMPTY(&wrq->wr_list))
2142 		drain_wrq_wr_list(sc, wrq);
2143 
2144 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2145 slowpath:
2146 		EQ_UNLOCK(eq);
2147 		wr = alloc_wrqe(len16 * 16, wrq);
2148 		if (__predict_false(wr == NULL))
2149 			return (NULL);
2150 		cookie->pidx = -1;
2151 		cookie->ndesc = ndesc;
2152 		return (&wr->wr);
2153 	}
2154 
2155 	eq->cidx = read_hw_cidx(eq);
2156 	if (eq->pidx == eq->cidx)
2157 		available = eq->sidx - 1;
2158 	else
2159 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2160 	if (available < ndesc)
2161 		goto slowpath;
2162 
2163 	cookie->pidx = eq->pidx;
2164 	cookie->ndesc = ndesc;
2165 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2166 
2167 	w = &eq->desc[eq->pidx];
2168 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2169 	if (__predict_false(eq->pidx < ndesc - 1)) {
2170 		w = &wrq->ss[0];
2171 		wrq->ss_pidx = cookie->pidx;
2172 		wrq->ss_len = len16 * 16;
2173 	}
2174 
2175 	EQ_UNLOCK(eq);
2176 
2177 	return (w);
2178 }
2179 
2180 void
2181 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2182 {
2183 	struct sge_eq *eq = &wrq->eq;
2184 	struct adapter *sc = wrq->adapter;
2185 	int ndesc, pidx;
2186 	struct wrq_cookie *prev, *next;
2187 
2188 	if (cookie->pidx == -1) {
2189 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2190 
2191 		t4_wrq_tx(sc, wr);
2192 		return;
2193 	}
2194 
2195 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2196 	pidx = cookie->pidx;
2197 	MPASS(pidx >= 0 && pidx < eq->sidx);
2198 	if (__predict_false(w == &wrq->ss[0])) {
2199 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2200 
2201 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2202 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2203 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2204 		wrq->tx_wrs_ss++;
2205 	} else
2206 		wrq->tx_wrs_direct++;
2207 
2208 	EQ_LOCK(eq);
2209 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2210 	next = TAILQ_NEXT(cookie, link);
2211 	if (prev == NULL) {
2212 		MPASS(pidx == eq->dbidx);
2213 		if (next == NULL || ndesc >= 16)
2214 			ring_eq_db(wrq->adapter, eq, ndesc);
2215 		else {
2216 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2217 			next->pidx = pidx;
2218 			next->ndesc += ndesc;
2219 		}
2220 	} else {
2221 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2222 		prev->ndesc += ndesc;
2223 	}
2224 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2225 
2226 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2227 		drain_wrq_wr_list(sc, wrq);
2228 
2229 #ifdef INVARIANTS
2230 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2231 		/* Doorbell must have caught up to the pidx. */
2232 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2233 	}
2234 #endif
2235 	EQ_UNLOCK(eq);
2236 }
2237 
2238 static u_int
2239 can_resume_eth_tx(struct mp_ring *r)
2240 {
2241 	struct sge_eq *eq = r->cookie;
2242 
2243 	return (total_available_tx_desc(eq) > eq->sidx / 8);
2244 }
2245 
2246 static inline int
2247 cannot_use_txpkts(struct mbuf *m)
2248 {
2249 	/* maybe put a GL limit too, to avoid silliness? */
2250 
2251 	return (needs_tso(m));
2252 }
2253 
2254 /*
2255  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2256  * be consumed.  Return the actual number consumed.  0 indicates a stall.
2257  */
2258 static u_int
2259 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2260 {
2261 	struct sge_txq *txq = r->cookie;
2262 	struct sge_eq *eq = &txq->eq;
2263 	struct ifnet *ifp = txq->ifp;
2264 	struct vi_info *vi = ifp->if_softc;
2265 	struct port_info *pi = vi->pi;
2266 	struct adapter *sc = pi->adapter;
2267 	u_int total, remaining;		/* # of packets */
2268 	u_int available, dbdiff;	/* # of hardware descriptors */
2269 	u_int n, next_cidx;
2270 	struct mbuf *m0, *tail;
2271 	struct txpkts txp;
2272 	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2273 
2274 	remaining = IDXDIFF(pidx, cidx, r->size);
2275 	MPASS(remaining > 0);	/* Must not be called without work to do. */
2276 	total = 0;
2277 
2278 	TXQ_LOCK(txq);
2279 	if (__predict_false((eq->flags & EQ_ENABLED) == 0)) {
2280 		while (cidx != pidx) {
2281 			m0 = r->items[cidx];
2282 			m_freem(m0);
2283 			if (++cidx == r->size)
2284 				cidx = 0;
2285 		}
2286 		reclaim_tx_descs(txq, 2048);
2287 		total = remaining;
2288 		goto done;
2289 	}
2290 
2291 	/* How many hardware descriptors do we have readily available. */
2292 	if (eq->pidx == eq->cidx)
2293 		available = eq->sidx - 1;
2294 	else
2295 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2296 	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2297 
2298 	while (remaining > 0) {
2299 
2300 		m0 = r->items[cidx];
2301 		M_ASSERTPKTHDR(m0);
2302 		MPASS(m0->m_nextpkt == NULL);
2303 
2304 		if (available < SGE_MAX_WR_NDESC) {
2305 			available += reclaim_tx_descs(txq, 64);
2306 			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2307 				break;	/* out of descriptors */
2308 		}
2309 
2310 		next_cidx = cidx + 1;
2311 		if (__predict_false(next_cidx == r->size))
2312 			next_cidx = 0;
2313 
2314 		wr = (void *)&eq->desc[eq->pidx];
2315 		if (remaining > 1 &&
2316 		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2317 
2318 			/* pkts at cidx, next_cidx should both be in txp. */
2319 			MPASS(txp.npkt == 2);
2320 			tail = r->items[next_cidx];
2321 			MPASS(tail->m_nextpkt == NULL);
2322 			ETHER_BPF_MTAP(ifp, m0);
2323 			ETHER_BPF_MTAP(ifp, tail);
2324 			m0->m_nextpkt = tail;
2325 
2326 			if (__predict_false(++next_cidx == r->size))
2327 				next_cidx = 0;
2328 
2329 			while (next_cidx != pidx) {
2330 				if (add_to_txpkts(r->items[next_cidx], &txp,
2331 				    available) != 0)
2332 					break;
2333 				tail->m_nextpkt = r->items[next_cidx];
2334 				tail = tail->m_nextpkt;
2335 				ETHER_BPF_MTAP(ifp, tail);
2336 				if (__predict_false(++next_cidx == r->size))
2337 					next_cidx = 0;
2338 			}
2339 
2340 			n = write_txpkts_wr(txq, wr, m0, &txp, available);
2341 			total += txp.npkt;
2342 			remaining -= txp.npkt;
2343 		} else {
2344 			total++;
2345 			remaining--;
2346 			ETHER_BPF_MTAP(ifp, m0);
2347 			n = write_txpkt_wr(txq, (void *)wr, m0, available);
2348 		}
2349 		MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
2350 
2351 		available -= n;
2352 		dbdiff += n;
2353 		IDXINCR(eq->pidx, n, eq->sidx);
2354 
2355 		if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2356 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2357 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2358 			    F_FW_WR_EQUEQ);
2359 			eq->equeqidx = eq->pidx;
2360 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2361 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2362 			eq->equeqidx = eq->pidx;
2363 		}
2364 
2365 		if (dbdiff >= 16 && remaining >= 4) {
2366 			ring_eq_db(sc, eq, dbdiff);
2367 			available += reclaim_tx_descs(txq, 4 * dbdiff);
2368 			dbdiff = 0;
2369 		}
2370 
2371 		cidx = next_cidx;
2372 	}
2373 	if (dbdiff != 0) {
2374 		ring_eq_db(sc, eq, dbdiff);
2375 		reclaim_tx_descs(txq, 32);
2376 	}
2377 done:
2378 	TXQ_UNLOCK(txq);
2379 
2380 	return (total);
2381 }
2382 
2383 static inline void
2384 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2385     int qsize)
2386 {
2387 
2388 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2389 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2390 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2391 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2392 
2393 	iq->flags = 0;
2394 	iq->adapter = sc;
2395 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2396 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2397 	if (pktc_idx >= 0) {
2398 		iq->intr_params |= F_QINTR_CNT_EN;
2399 		iq->intr_pktc_idx = pktc_idx;
2400 	}
2401 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2402 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
2403 }
2404 
2405 static inline void
2406 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
2407 {
2408 
2409 	fl->qsize = qsize;
2410 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2411 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2412 	if (sc->flags & BUF_PACKING_OK &&
2413 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
2414 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
2415 		fl->flags |= FL_BUF_PACKING;
2416 	find_best_refill_source(sc, fl, maxp);
2417 	find_safe_refill_source(sc, fl);
2418 }
2419 
2420 static inline void
2421 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
2422     uint8_t tx_chan, uint16_t iqid, char *name)
2423 {
2424 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2425 
2426 	eq->flags = eqtype & EQ_TYPEMASK;
2427 	eq->tx_chan = tx_chan;
2428 	eq->iqid = iqid;
2429 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2430 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2431 }
2432 
2433 static int
2434 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2435     bus_dmamap_t *map, bus_addr_t *pa, void **va)
2436 {
2437 	int rc;
2438 
2439 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2440 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2441 	if (rc != 0) {
2442 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2443 		goto done;
2444 	}
2445 
2446 	rc = bus_dmamem_alloc(*tag, va,
2447 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2448 	if (rc != 0) {
2449 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2450 		goto done;
2451 	}
2452 
2453 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2454 	if (rc != 0) {
2455 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2456 		goto done;
2457 	}
2458 done:
2459 	if (rc)
2460 		free_ring(sc, *tag, *map, *pa, *va);
2461 
2462 	return (rc);
2463 }
2464 
2465 static int
2466 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2467     bus_addr_t pa, void *va)
2468 {
2469 	if (pa)
2470 		bus_dmamap_unload(tag, map);
2471 	if (va)
2472 		bus_dmamem_free(tag, va, map);
2473 	if (tag)
2474 		bus_dma_tag_destroy(tag);
2475 
2476 	return (0);
2477 }
2478 
2479 /*
2480  * Allocates the ring for an ingress queue and an optional freelist.  If the
2481  * freelist is specified it will be allocated and then associated with the
2482  * ingress queue.
2483  *
2484  * Returns errno on failure.  Resources allocated up to that point may still be
2485  * allocated.  Caller is responsible for cleanup in case this function fails.
2486  *
2487  * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2488  * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2489  * the abs_id of the ingress queue to which its interrupts should be forwarded.
2490  */
2491 static int
2492 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
2493     int intr_idx, int cong)
2494 {
2495 	int rc, i, cntxt_id;
2496 	size_t len;
2497 	struct fw_iq_cmd c;
2498 	struct port_info *pi = vi->pi;
2499 	struct adapter *sc = iq->adapter;
2500 	struct sge_params *sp = &sc->params.sge;
2501 	__be32 v = 0;
2502 
2503 	len = iq->qsize * IQ_ESIZE;
2504 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2505 	    (void **)&iq->desc);
2506 	if (rc != 0)
2507 		return (rc);
2508 
2509 	bzero(&c, sizeof(c));
2510 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2511 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2512 	    V_FW_IQ_CMD_VFN(0));
2513 
2514 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2515 	    FW_LEN16(c));
2516 
2517 	/* Special handling for firmware event queue */
2518 	if (iq == &sc->sge.fwq)
2519 		v |= F_FW_IQ_CMD_IQASYNCH;
2520 
2521 	if (iq->flags & IQ_INTR) {
2522 		KASSERT(intr_idx < sc->intr_count,
2523 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2524 	} else
2525 		v |= F_FW_IQ_CMD_IQANDST;
2526 	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2527 
2528 	c.type_to_iqandstindex = htobe32(v |
2529 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2530 	    V_FW_IQ_CMD_VIID(vi->viid) |
2531 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2532 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2533 	    F_FW_IQ_CMD_IQGTSMODE |
2534 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2535 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2536 	c.iqsize = htobe16(iq->qsize);
2537 	c.iqaddr = htobe64(iq->ba);
2538 	if (cong >= 0)
2539 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2540 
2541 	if (fl) {
2542 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2543 
2544 		len = fl->qsize * EQ_ESIZE;
2545 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2546 		    &fl->ba, (void **)&fl->desc);
2547 		if (rc)
2548 			return (rc);
2549 
2550 		/* Allocate space for one software descriptor per buffer. */
2551 		rc = alloc_fl_sdesc(fl);
2552 		if (rc != 0) {
2553 			device_printf(sc->dev,
2554 			    "failed to setup fl software descriptors: %d\n",
2555 			    rc);
2556 			return (rc);
2557 		}
2558 
2559 		if (fl->flags & FL_BUF_PACKING) {
2560 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
2561 			fl->buf_boundary = sp->pack_boundary;
2562 		} else {
2563 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
2564 			fl->buf_boundary = 16;
2565 		}
2566 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
2567 			fl->buf_boundary = sp->pad_boundary;
2568 
2569 		c.iqns_to_fl0congen |=
2570 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2571 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2572 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2573 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2574 			    0));
2575 		if (cong >= 0) {
2576 			c.iqns_to_fl0congen |=
2577 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2578 				    F_FW_IQ_CMD_FL0CONGCIF |
2579 				    F_FW_IQ_CMD_FL0CONGEN);
2580 		}
2581 		c.fl0dcaen_to_fl0cidxfthresh =
2582 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_128B) |
2583 			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2584 		c.fl0size = htobe16(fl->qsize);
2585 		c.fl0addr = htobe64(fl->ba);
2586 	}
2587 
2588 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2589 	if (rc != 0) {
2590 		device_printf(sc->dev,
2591 		    "failed to create ingress queue: %d\n", rc);
2592 		return (rc);
2593 	}
2594 
2595 	iq->cidx = 0;
2596 	iq->gen = F_RSPD_GEN;
2597 	iq->intr_next = iq->intr_params;
2598 	iq->cntxt_id = be16toh(c.iqid);
2599 	iq->abs_id = be16toh(c.physiqid);
2600 	iq->flags |= IQ_ALLOCATED;
2601 
2602 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2603 	if (cntxt_id >= sc->sge.niq) {
2604 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2605 		    cntxt_id, sc->sge.niq - 1);
2606 	}
2607 	sc->sge.iqmap[cntxt_id] = iq;
2608 
2609 	if (fl) {
2610 		u_int qid;
2611 
2612 		iq->flags |= IQ_HAS_FL;
2613 		fl->cntxt_id = be16toh(c.fl0id);
2614 		fl->pidx = fl->cidx = 0;
2615 
2616 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2617 		if (cntxt_id >= sc->sge.neq) {
2618 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2619 			    __func__, cntxt_id, sc->sge.neq - 1);
2620 		}
2621 		sc->sge.eqmap[cntxt_id] = (void *)fl;
2622 
2623 		qid = fl->cntxt_id;
2624 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
2625 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
2626 			uint32_t mask = (1 << s_qpp) - 1;
2627 			volatile uint8_t *udb;
2628 
2629 			udb = sc->udbs_base + UDBS_DB_OFFSET;
2630 			udb += (qid >> s_qpp) << PAGE_SHIFT;
2631 			qid &= mask;
2632 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
2633 				udb += qid << UDBS_SEG_SHIFT;
2634 				qid = 0;
2635 			}
2636 			fl->udb = (volatile void *)udb;
2637 		}
2638 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
2639 
2640 		FL_LOCK(fl);
2641 		/* Enough to make sure the SGE doesn't think it's starved */
2642 		refill_fl(sc, fl, fl->lowat);
2643 		FL_UNLOCK(fl);
2644 	}
2645 
2646 	if (is_t5(sc) && cong >= 0) {
2647 		uint32_t param, val;
2648 
2649 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2650 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2651 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2652 		if (cong == 0)
2653 			val = 1 << 19;
2654 		else {
2655 			val = 2 << 19;
2656 			for (i = 0; i < 4; i++) {
2657 				if (cong & (1 << i))
2658 					val |= 1 << (i << 2);
2659 			}
2660 		}
2661 
2662 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2663 		if (rc != 0) {
2664 			/* report error but carry on */
2665 			device_printf(sc->dev,
2666 			    "failed to set congestion manager context for "
2667 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2668 		}
2669 	}
2670 
2671 	/* Enable IQ interrupts */
2672 	atomic_store_rel_int(&iq->state, IQS_IDLE);
2673 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2674 	    V_INGRESSQID(iq->cntxt_id));
2675 
2676 	return (0);
2677 }
2678 
2679 static int
2680 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
2681 {
2682 	int rc;
2683 	struct adapter *sc = iq->adapter;
2684 	device_t dev;
2685 
2686 	if (sc == NULL)
2687 		return (0);	/* nothing to do */
2688 
2689 	dev = vi ? vi->dev : sc->dev;
2690 
2691 	if (iq->flags & IQ_ALLOCATED) {
2692 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2693 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2694 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2695 		if (rc != 0) {
2696 			device_printf(dev,
2697 			    "failed to free queue %p: %d\n", iq, rc);
2698 			return (rc);
2699 		}
2700 		iq->flags &= ~IQ_ALLOCATED;
2701 	}
2702 
2703 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2704 
2705 	bzero(iq, sizeof(*iq));
2706 
2707 	if (fl) {
2708 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2709 		    fl->desc);
2710 
2711 		if (fl->sdesc)
2712 			free_fl_sdesc(sc, fl);
2713 
2714 		if (mtx_initialized(&fl->fl_lock))
2715 			mtx_destroy(&fl->fl_lock);
2716 
2717 		bzero(fl, sizeof(*fl));
2718 	}
2719 
2720 	return (0);
2721 }
2722 
2723 static void
2724 add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2725     struct sge_fl *fl)
2726 {
2727 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2728 
2729 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2730 	    "freelist");
2731 	children = SYSCTL_CHILDREN(oid);
2732 
2733 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2734 	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2735 	    "SGE context id of the freelist");
2736 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
2737 	    fl_pad ? 1 : 0, "padding enabled");
2738 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
2739 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
2740 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2741 	    0, "consumer index");
2742 	if (fl->flags & FL_BUF_PACKING) {
2743 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2744 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2745 	}
2746 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2747 	    0, "producer index");
2748 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2749 	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2750 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2751 	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2752 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2753 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2754 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2755 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2756 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2757 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2758 }
2759 
2760 static int
2761 alloc_fwq(struct adapter *sc)
2762 {
2763 	int rc, intr_idx;
2764 	struct sge_iq *fwq = &sc->sge.fwq;
2765 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2766 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2767 
2768 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
2769 	fwq->flags |= IQ_INTR;	/* always */
2770 	intr_idx = sc->intr_count > 1 ? 1 : 0;
2771 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
2772 	if (rc != 0) {
2773 		device_printf(sc->dev,
2774 		    "failed to create firmware event queue: %d\n", rc);
2775 		return (rc);
2776 	}
2777 
2778 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2779 	    NULL, "firmware event queue");
2780 	children = SYSCTL_CHILDREN(oid);
2781 
2782 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2783 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2784 	    "absolute id of the queue");
2785 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2786 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2787 	    "SGE context id of the queue");
2788 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2789 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2790 	    "consumer index");
2791 
2792 	return (0);
2793 }
2794 
2795 static int
2796 free_fwq(struct adapter *sc)
2797 {
2798 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2799 }
2800 
2801 static int
2802 alloc_mgmtq(struct adapter *sc)
2803 {
2804 	int rc;
2805 	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2806 	char name[16];
2807 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2808 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2809 
2810 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2811 	    NULL, "management queue");
2812 
2813 	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2814 	init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2815 	    sc->sge.fwq.cntxt_id, name);
2816 	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2817 	if (rc != 0) {
2818 		device_printf(sc->dev,
2819 		    "failed to create management queue: %d\n", rc);
2820 		return (rc);
2821 	}
2822 
2823 	return (0);
2824 }
2825 
2826 static int
2827 free_mgmtq(struct adapter *sc)
2828 {
2829 
2830 	return free_wrq(sc, &sc->sge.mgmtq);
2831 }
2832 
2833 int
2834 tnl_cong(struct port_info *pi, int drop)
2835 {
2836 
2837 	if (drop == -1)
2838 		return (-1);
2839 	else if (drop == 1)
2840 		return (0);
2841 	else
2842 		return (pi->rx_chan_map);
2843 }
2844 
2845 static int
2846 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
2847     struct sysctl_oid *oid)
2848 {
2849 	int rc;
2850 	struct sysctl_oid_list *children;
2851 	char name[16];
2852 
2853 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
2854 	    tnl_cong(vi->pi, cong_drop));
2855 	if (rc != 0)
2856 		return (rc);
2857 
2858 	/*
2859 	 * The freelist is just barely above the starvation threshold right now,
2860 	 * fill it up a bit more.
2861 	 */
2862 	FL_LOCK(&rxq->fl);
2863 	refill_fl(vi->pi->adapter, &rxq->fl, 128);
2864 	FL_UNLOCK(&rxq->fl);
2865 
2866 #if defined(INET) || defined(INET6)
2867 	rc = tcp_lro_init(&rxq->lro);
2868 	if (rc != 0)
2869 		return (rc);
2870 	rxq->lro.ifp = vi->ifp; /* also indicates LRO init'ed */
2871 
2872 	if (vi->ifp->if_capenable & IFCAP_LRO)
2873 		rxq->iq.flags |= IQ_LRO_ENABLED;
2874 #endif
2875 	rxq->ifp = vi->ifp;
2876 
2877 	children = SYSCTL_CHILDREN(oid);
2878 
2879 	snprintf(name, sizeof(name), "%d", idx);
2880 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2881 	    NULL, "rx queue");
2882 	children = SYSCTL_CHILDREN(oid);
2883 
2884 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id",
2885 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2886 	    "absolute id of the queue");
2887 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id",
2888 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2889 	    "SGE context id of the queue");
2890 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
2891 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2892 	    "consumer index");
2893 #if defined(INET) || defined(INET6)
2894 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2895 	    &rxq->lro.lro_queued, 0, NULL);
2896 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2897 	    &rxq->lro.lro_flushed, 0, NULL);
2898 #endif
2899 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2900 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2901 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
2902 	    CTLFLAG_RD, &rxq->vlan_extraction,
2903 	    "# of times hardware extracted 802.1Q tag");
2904 
2905 	add_fl_sysctls(&vi->ctx, oid, &rxq->fl);
2906 
2907 	return (rc);
2908 }
2909 
2910 static int
2911 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
2912 {
2913 	int rc;
2914 
2915 #if defined(INET) || defined(INET6)
2916 	if (rxq->lro.ifp) {
2917 		tcp_lro_free(&rxq->lro);
2918 		rxq->lro.ifp = NULL;
2919 	}
2920 #endif
2921 
2922 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
2923 	if (rc == 0)
2924 		bzero(rxq, sizeof(*rxq));
2925 
2926 	return (rc);
2927 }
2928 
2929 #ifdef TCP_OFFLOAD
2930 static int
2931 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
2932     int intr_idx, int idx, struct sysctl_oid *oid)
2933 {
2934 	int rc;
2935 	struct sysctl_oid_list *children;
2936 	char name[16];
2937 
2938 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2939 	    vi->pi->rx_chan_map);
2940 	if (rc != 0)
2941 		return (rc);
2942 
2943 	children = SYSCTL_CHILDREN(oid);
2944 
2945 	snprintf(name, sizeof(name), "%d", idx);
2946 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2947 	    NULL, "rx queue");
2948 	children = SYSCTL_CHILDREN(oid);
2949 
2950 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id",
2951 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
2952 	    "I", "absolute id of the queue");
2953 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id",
2954 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
2955 	    "I", "SGE context id of the queue");
2956 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
2957 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
2958 	    "consumer index");
2959 
2960 	add_fl_sysctls(&vi->ctx, oid, &ofld_rxq->fl);
2961 
2962 	return (rc);
2963 }
2964 
2965 static int
2966 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
2967 {
2968 	int rc;
2969 
2970 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
2971 	if (rc == 0)
2972 		bzero(ofld_rxq, sizeof(*ofld_rxq));
2973 
2974 	return (rc);
2975 }
2976 #endif
2977 
2978 #ifdef DEV_NETMAP
2979 static int
2980 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
2981     int idx, struct sysctl_oid *oid)
2982 {
2983 	int rc;
2984 	struct sysctl_oid_list *children;
2985 	struct sysctl_ctx_list *ctx;
2986 	char name[16];
2987 	size_t len;
2988 	struct adapter *sc = vi->pi->adapter;
2989 	struct netmap_adapter *na = NA(vi->ifp);
2990 
2991 	MPASS(na != NULL);
2992 
2993 	len = vi->qsize_rxq * IQ_ESIZE;
2994 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
2995 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
2996 	if (rc != 0)
2997 		return (rc);
2998 
2999 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3000 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3001 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3002 	if (rc != 0)
3003 		return (rc);
3004 
3005 	nm_rxq->vi = vi;
3006 	nm_rxq->nid = idx;
3007 	nm_rxq->iq_cidx = 0;
3008 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3009 	nm_rxq->iq_gen = F_RSPD_GEN;
3010 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3011 	nm_rxq->fl_sidx = na->num_rx_desc;
3012 	nm_rxq->intr_idx = intr_idx;
3013 
3014 	ctx = &vi->ctx;
3015 	children = SYSCTL_CHILDREN(oid);
3016 
3017 	snprintf(name, sizeof(name), "%d", idx);
3018 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3019 	    "rx queue");
3020 	children = SYSCTL_CHILDREN(oid);
3021 
3022 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3023 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3024 	    "I", "absolute id of the queue");
3025 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3026 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3027 	    "I", "SGE context id of the queue");
3028 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3029 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3030 	    "consumer index");
3031 
3032 	children = SYSCTL_CHILDREN(oid);
3033 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3034 	    "freelist");
3035 	children = SYSCTL_CHILDREN(oid);
3036 
3037 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3038 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3039 	    "I", "SGE context id of the freelist");
3040 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3041 	    &nm_rxq->fl_cidx, 0, "consumer index");
3042 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3043 	    &nm_rxq->fl_pidx, 0, "producer index");
3044 
3045 	return (rc);
3046 }
3047 
3048 
3049 static int
3050 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3051 {
3052 	struct adapter *sc = vi->pi->adapter;
3053 
3054 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3055 	    nm_rxq->iq_desc);
3056 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3057 	    nm_rxq->fl_desc);
3058 
3059 	return (0);
3060 }
3061 
3062 static int
3063 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3064     struct sysctl_oid *oid)
3065 {
3066 	int rc;
3067 	size_t len;
3068 	struct port_info *pi = vi->pi;
3069 	struct adapter *sc = pi->adapter;
3070 	struct netmap_adapter *na = NA(vi->ifp);
3071 	char name[16];
3072 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3073 
3074 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3075 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3076 	    &nm_txq->ba, (void **)&nm_txq->desc);
3077 	if (rc)
3078 		return (rc);
3079 
3080 	nm_txq->pidx = nm_txq->cidx = 0;
3081 	nm_txq->sidx = na->num_tx_desc;
3082 	nm_txq->nid = idx;
3083 	nm_txq->iqidx = iqidx;
3084 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3085 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) |
3086 	    V_TXPKT_VF(vi->viid));
3087 
3088 	snprintf(name, sizeof(name), "%d", idx);
3089 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3090 	    NULL, "netmap tx queue");
3091 	children = SYSCTL_CHILDREN(oid);
3092 
3093 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3094 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3095 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3096 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3097 	    "consumer index");
3098 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3099 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3100 	    "producer index");
3101 
3102 	return (rc);
3103 }
3104 
3105 static int
3106 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3107 {
3108 	struct adapter *sc = vi->pi->adapter;
3109 
3110 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3111 	    nm_txq->desc);
3112 
3113 	return (0);
3114 }
3115 #endif
3116 
3117 static int
3118 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3119 {
3120 	int rc, cntxt_id;
3121 	struct fw_eq_ctrl_cmd c;
3122 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3123 
3124 	bzero(&c, sizeof(c));
3125 
3126 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3127 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3128 	    V_FW_EQ_CTRL_CMD_VFN(0));
3129 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3130 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3131 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3132 	c.physeqid_pkd = htobe32(0);
3133 	c.fetchszm_to_iqid =
3134 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3135 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3136 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3137 	c.dcaen_to_eqsize =
3138 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3139 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3140 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3141 	c.eqaddr = htobe64(eq->ba);
3142 
3143 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3144 	if (rc != 0) {
3145 		device_printf(sc->dev,
3146 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3147 		return (rc);
3148 	}
3149 	eq->flags |= EQ_ALLOCATED;
3150 
3151 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3152 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3153 	if (cntxt_id >= sc->sge.neq)
3154 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3155 		cntxt_id, sc->sge.neq - 1);
3156 	sc->sge.eqmap[cntxt_id] = eq;
3157 
3158 	return (rc);
3159 }
3160 
3161 static int
3162 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3163 {
3164 	int rc, cntxt_id;
3165 	struct fw_eq_eth_cmd c;
3166 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3167 
3168 	bzero(&c, sizeof(c));
3169 
3170 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3171 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3172 	    V_FW_EQ_ETH_CMD_VFN(0));
3173 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3174 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3175 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3176 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3177 	c.fetchszm_to_iqid =
3178 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3179 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3180 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3181 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3182 	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3183 	    V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3184 	c.eqaddr = htobe64(eq->ba);
3185 
3186 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3187 	if (rc != 0) {
3188 		device_printf(vi->dev,
3189 		    "failed to create Ethernet egress queue: %d\n", rc);
3190 		return (rc);
3191 	}
3192 	eq->flags |= EQ_ALLOCATED;
3193 
3194 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3195 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3196 	if (cntxt_id >= sc->sge.neq)
3197 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3198 		cntxt_id, sc->sge.neq - 1);
3199 	sc->sge.eqmap[cntxt_id] = eq;
3200 
3201 	return (rc);
3202 }
3203 
3204 #ifdef TCP_OFFLOAD
3205 static int
3206 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3207 {
3208 	int rc, cntxt_id;
3209 	struct fw_eq_ofld_cmd c;
3210 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3211 
3212 	bzero(&c, sizeof(c));
3213 
3214 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3215 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3216 	    V_FW_EQ_OFLD_CMD_VFN(0));
3217 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3218 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3219 	c.fetchszm_to_iqid =
3220 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3221 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3222 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3223 	c.dcaen_to_eqsize =
3224 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3225 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3226 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3227 	c.eqaddr = htobe64(eq->ba);
3228 
3229 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3230 	if (rc != 0) {
3231 		device_printf(vi->dev,
3232 		    "failed to create egress queue for TCP offload: %d\n", rc);
3233 		return (rc);
3234 	}
3235 	eq->flags |= EQ_ALLOCATED;
3236 
3237 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3238 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3239 	if (cntxt_id >= sc->sge.neq)
3240 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3241 		cntxt_id, sc->sge.neq - 1);
3242 	sc->sge.eqmap[cntxt_id] = eq;
3243 
3244 	return (rc);
3245 }
3246 #endif
3247 
3248 static int
3249 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3250 {
3251 	int rc, qsize;
3252 	size_t len;
3253 
3254 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3255 
3256 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3257 	len = qsize * EQ_ESIZE;
3258 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3259 	    &eq->ba, (void **)&eq->desc);
3260 	if (rc)
3261 		return (rc);
3262 
3263 	eq->pidx = eq->cidx = 0;
3264 	eq->equeqidx = eq->dbidx = 0;
3265 	eq->doorbells = sc->doorbells;
3266 
3267 	switch (eq->flags & EQ_TYPEMASK) {
3268 	case EQ_CTRL:
3269 		rc = ctrl_eq_alloc(sc, eq);
3270 		break;
3271 
3272 	case EQ_ETH:
3273 		rc = eth_eq_alloc(sc, vi, eq);
3274 		break;
3275 
3276 #ifdef TCP_OFFLOAD
3277 	case EQ_OFLD:
3278 		rc = ofld_eq_alloc(sc, vi, eq);
3279 		break;
3280 #endif
3281 
3282 	default:
3283 		panic("%s: invalid eq type %d.", __func__,
3284 		    eq->flags & EQ_TYPEMASK);
3285 	}
3286 	if (rc != 0) {
3287 		device_printf(sc->dev,
3288 		    "failed to allocate egress queue(%d): %d\n",
3289 		    eq->flags & EQ_TYPEMASK, rc);
3290 	}
3291 
3292 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3293 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3294 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3295 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3296 		uint32_t mask = (1 << s_qpp) - 1;
3297 		volatile uint8_t *udb;
3298 
3299 		udb = sc->udbs_base + UDBS_DB_OFFSET;
3300 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3301 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3302 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3303 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3304 		else {
3305 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3306 			eq->udb_qid = 0;
3307 		}
3308 		eq->udb = (volatile void *)udb;
3309 	}
3310 
3311 	return (rc);
3312 }
3313 
3314 static int
3315 free_eq(struct adapter *sc, struct sge_eq *eq)
3316 {
3317 	int rc;
3318 
3319 	if (eq->flags & EQ_ALLOCATED) {
3320 		switch (eq->flags & EQ_TYPEMASK) {
3321 		case EQ_CTRL:
3322 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3323 			    eq->cntxt_id);
3324 			break;
3325 
3326 		case EQ_ETH:
3327 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3328 			    eq->cntxt_id);
3329 			break;
3330 
3331 #ifdef TCP_OFFLOAD
3332 		case EQ_OFLD:
3333 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3334 			    eq->cntxt_id);
3335 			break;
3336 #endif
3337 
3338 		default:
3339 			panic("%s: invalid eq type %d.", __func__,
3340 			    eq->flags & EQ_TYPEMASK);
3341 		}
3342 		if (rc != 0) {
3343 			device_printf(sc->dev,
3344 			    "failed to free egress queue (%d): %d\n",
3345 			    eq->flags & EQ_TYPEMASK, rc);
3346 			return (rc);
3347 		}
3348 		eq->flags &= ~EQ_ALLOCATED;
3349 	}
3350 
3351 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3352 
3353 	if (mtx_initialized(&eq->eq_lock))
3354 		mtx_destroy(&eq->eq_lock);
3355 
3356 	bzero(eq, sizeof(*eq));
3357 	return (0);
3358 }
3359 
3360 static int
3361 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
3362     struct sysctl_oid *oid)
3363 {
3364 	int rc;
3365 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
3366 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3367 
3368 	rc = alloc_eq(sc, vi, &wrq->eq);
3369 	if (rc)
3370 		return (rc);
3371 
3372 	wrq->adapter = sc;
3373 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
3374 	TAILQ_INIT(&wrq->incomplete_wrs);
3375 	STAILQ_INIT(&wrq->wr_list);
3376 	wrq->nwr_pending = 0;
3377 	wrq->ndesc_needed = 0;
3378 
3379 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3380 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3381 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3382 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3383 	    "consumer index");
3384 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3385 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3386 	    "producer index");
3387 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
3388 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
3389 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
3390 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
3391 
3392 	return (rc);
3393 }
3394 
3395 static int
3396 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3397 {
3398 	int rc;
3399 
3400 	rc = free_eq(sc, &wrq->eq);
3401 	if (rc)
3402 		return (rc);
3403 
3404 	bzero(wrq, sizeof(*wrq));
3405 	return (0);
3406 }
3407 
3408 static int
3409 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
3410     struct sysctl_oid *oid)
3411 {
3412 	int rc;
3413 	struct port_info *pi = vi->pi;
3414 	struct adapter *sc = pi->adapter;
3415 	struct sge_eq *eq = &txq->eq;
3416 	char name[16];
3417 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3418 
3419 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
3420 	    M_CXGBE, M_WAITOK);
3421 	if (rc != 0) {
3422 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
3423 		return (rc);
3424 	}
3425 
3426 	rc = alloc_eq(sc, vi, eq);
3427 	if (rc != 0) {
3428 		mp_ring_free(txq->r);
3429 		txq->r = NULL;
3430 		return (rc);
3431 	}
3432 
3433 	/* Can't fail after this point. */
3434 
3435 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
3436 	txq->ifp = vi->ifp;
3437 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
3438 	txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3439 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) |
3440 	    V_TXPKT_VF(vi->viid));
3441 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
3442 	    M_ZERO | M_WAITOK);
3443 
3444 	snprintf(name, sizeof(name), "%d", idx);
3445 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3446 	    NULL, "tx queue");
3447 	children = SYSCTL_CHILDREN(oid);
3448 
3449 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3450 	    &eq->cntxt_id, 0, "SGE context id of the queue");
3451 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3452 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3453 	    "consumer index");
3454 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3455 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3456 	    "producer index");
3457 
3458 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3459 	    &txq->txcsum, "# of times hardware assisted with checksum");
3460 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
3461 	    CTLFLAG_RD, &txq->vlan_insertion,
3462 	    "# of times hardware inserted 802.1Q tag");
3463 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3464 	    &txq->tso_wrs, "# of TSO work requests");
3465 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3466 	    &txq->imm_wrs, "# of work requests with immediate data");
3467 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3468 	    &txq->sgl_wrs, "# of work requests with direct SGL");
3469 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3470 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3471 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
3472 	    CTLFLAG_RD, &txq->txpkts0_wrs,
3473 	    "# of txpkts (type 0) work requests");
3474 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
3475 	    CTLFLAG_RD, &txq->txpkts1_wrs,
3476 	    "# of txpkts (type 1) work requests");
3477 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
3478 	    CTLFLAG_RD, &txq->txpkts0_pkts,
3479 	    "# of frames tx'd using type0 txpkts work requests");
3480 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
3481 	    CTLFLAG_RD, &txq->txpkts1_pkts,
3482 	    "# of frames tx'd using type1 txpkts work requests");
3483 
3484 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
3485 	    CTLFLAG_RD, &txq->r->enqueues,
3486 	    "# of enqueues to the mp_ring for this queue");
3487 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
3488 	    CTLFLAG_RD, &txq->r->drops,
3489 	    "# of drops in the mp_ring for this queue");
3490 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
3491 	    CTLFLAG_RD, &txq->r->starts,
3492 	    "# of normal consumer starts in the mp_ring for this queue");
3493 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
3494 	    CTLFLAG_RD, &txq->r->stalls,
3495 	    "# of consumer stalls in the mp_ring for this queue");
3496 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
3497 	    CTLFLAG_RD, &txq->r->restarts,
3498 	    "# of consumer restarts in the mp_ring for this queue");
3499 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
3500 	    CTLFLAG_RD, &txq->r->abdications,
3501 	    "# of consumer abdications in the mp_ring for this queue");
3502 
3503 	return (0);
3504 }
3505 
3506 static int
3507 free_txq(struct vi_info *vi, struct sge_txq *txq)
3508 {
3509 	int rc;
3510 	struct adapter *sc = vi->pi->adapter;
3511 	struct sge_eq *eq = &txq->eq;
3512 
3513 	rc = free_eq(sc, eq);
3514 	if (rc)
3515 		return (rc);
3516 
3517 	sglist_free(txq->gl);
3518 	free(txq->sdesc, M_CXGBE);
3519 	mp_ring_free(txq->r);
3520 
3521 	bzero(txq, sizeof(*txq));
3522 	return (0);
3523 }
3524 
3525 static void
3526 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3527 {
3528 	bus_addr_t *ba = arg;
3529 
3530 	KASSERT(nseg == 1,
3531 	    ("%s meant for single segment mappings only.", __func__));
3532 
3533 	*ba = error ? 0 : segs->ds_addr;
3534 }
3535 
3536 static inline void
3537 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3538 {
3539 	uint32_t n, v;
3540 
3541 	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
3542 	MPASS(n > 0);
3543 
3544 	wmb();
3545 	v = fl->dbval | V_PIDX(n);
3546 	if (fl->udb)
3547 		*fl->udb = htole32(v);
3548 	else
3549 		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3550 	IDXINCR(fl->dbidx, n, fl->sidx);
3551 }
3552 
3553 /*
3554  * Fills up the freelist by allocating upto 'n' buffers.  Buffers that are
3555  * recycled do not count towards this allocation budget.
3556  *
3557  * Returns non-zero to indicate that this freelist should be added to the list
3558  * of starving freelists.
3559  */
3560 static int
3561 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
3562 {
3563 	__be64 *d;
3564 	struct fl_sdesc *sd;
3565 	uintptr_t pa;
3566 	caddr_t cl;
3567 	struct cluster_layout *cll;
3568 	struct sw_zone_info *swz;
3569 	struct cluster_metadata *clm;
3570 	uint16_t max_pidx;
3571 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
3572 
3573 	FL_LOCK_ASSERT_OWNED(fl);
3574 
3575 	/*
3576 	 * We always stop at the begining of the hardware descriptor that's just
3577 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
3578 	 * which would mean an empty freelist to the chip.
3579 	 */
3580 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
3581 	if (fl->pidx == max_pidx * 8)
3582 		return (0);
3583 
3584 	d = &fl->desc[fl->pidx];
3585 	sd = &fl->sdesc[fl->pidx];
3586 	cll = &fl->cll_def;	/* default layout */
3587 	swz = &sc->sge.sw_zone_info[cll->zidx];
3588 
3589 	while (n > 0) {
3590 
3591 		if (sd->cl != NULL) {
3592 
3593 			if (sd->nmbuf == 0) {
3594 				/*
3595 				 * Fast recycle without involving any atomics on
3596 				 * the cluster's metadata (if the cluster has
3597 				 * metadata).  This happens when all frames
3598 				 * received in the cluster were small enough to
3599 				 * fit within a single mbuf each.
3600 				 */
3601 				fl->cl_fast_recycled++;
3602 #ifdef INVARIANTS
3603 				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3604 				if (clm != NULL)
3605 					MPASS(clm->refcount == 1);
3606 #endif
3607 				goto recycled_fast;
3608 			}
3609 
3610 			/*
3611 			 * Cluster is guaranteed to have metadata.  Clusters
3612 			 * without metadata always take the fast recycle path
3613 			 * when they're recycled.
3614 			 */
3615 			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3616 			MPASS(clm != NULL);
3617 
3618 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3619 				fl->cl_recycled++;
3620 				counter_u64_add(extfree_rels, 1);
3621 				goto recycled;
3622 			}
3623 			sd->cl = NULL;	/* gave up my reference */
3624 		}
3625 		MPASS(sd->cl == NULL);
3626 alloc:
3627 		cl = uma_zalloc(swz->zone, M_NOWAIT);
3628 		if (__predict_false(cl == NULL)) {
3629 			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3630 			    fl->cll_def.zidx == fl->cll_alt.zidx)
3631 				break;
3632 
3633 			/* fall back to the safe zone */
3634 			cll = &fl->cll_alt;
3635 			swz = &sc->sge.sw_zone_info[cll->zidx];
3636 			goto alloc;
3637 		}
3638 		fl->cl_allocated++;
3639 		n--;
3640 
3641 		pa = pmap_kextract((vm_offset_t)cl);
3642 		pa += cll->region1;
3643 		sd->cl = cl;
3644 		sd->cll = *cll;
3645 		*d = htobe64(pa | cll->hwidx);
3646 		clm = cl_metadata(sc, fl, cll, cl);
3647 		if (clm != NULL) {
3648 recycled:
3649 #ifdef INVARIANTS
3650 			clm->sd = sd;
3651 #endif
3652 			clm->refcount = 1;
3653 		}
3654 		sd->nmbuf = 0;
3655 recycled_fast:
3656 		d++;
3657 		sd++;
3658 		if (__predict_false(++fl->pidx % 8 == 0)) {
3659 			uint16_t pidx = fl->pidx / 8;
3660 
3661 			if (__predict_false(pidx == fl->sidx)) {
3662 				fl->pidx = 0;
3663 				pidx = 0;
3664 				sd = fl->sdesc;
3665 				d = fl->desc;
3666 			}
3667 			if (pidx == max_pidx)
3668 				break;
3669 
3670 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
3671 				ring_fl_db(sc, fl);
3672 		}
3673 	}
3674 
3675 	if (fl->pidx / 8 != fl->dbidx)
3676 		ring_fl_db(sc, fl);
3677 
3678 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3679 }
3680 
3681 /*
3682  * Attempt to refill all starving freelists.
3683  */
3684 static void
3685 refill_sfl(void *arg)
3686 {
3687 	struct adapter *sc = arg;
3688 	struct sge_fl *fl, *fl_temp;
3689 
3690 	mtx_assert(&sc->sfl_lock, MA_OWNED);
3691 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3692 		FL_LOCK(fl);
3693 		refill_fl(sc, fl, 64);
3694 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3695 			TAILQ_REMOVE(&sc->sfl, fl, link);
3696 			fl->flags &= ~FL_STARVING;
3697 		}
3698 		FL_UNLOCK(fl);
3699 	}
3700 
3701 	if (!TAILQ_EMPTY(&sc->sfl))
3702 		callout_schedule(&sc->sfl_callout, hz / 5);
3703 }
3704 
3705 static int
3706 alloc_fl_sdesc(struct sge_fl *fl)
3707 {
3708 
3709 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
3710 	    M_ZERO | M_WAITOK);
3711 
3712 	return (0);
3713 }
3714 
3715 static void
3716 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3717 {
3718 	struct fl_sdesc *sd;
3719 	struct cluster_metadata *clm;
3720 	struct cluster_layout *cll;
3721 	int i;
3722 
3723 	sd = fl->sdesc;
3724 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
3725 		if (sd->cl == NULL)
3726 			continue;
3727 
3728 		cll = &sd->cll;
3729 		clm = cl_metadata(sc, fl, cll, sd->cl);
3730 		if (sd->nmbuf == 0)
3731 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3732 		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3733 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3734 			counter_u64_add(extfree_rels, 1);
3735 		}
3736 		sd->cl = NULL;
3737 	}
3738 
3739 	free(fl->sdesc, M_CXGBE);
3740 	fl->sdesc = NULL;
3741 }
3742 
3743 static inline void
3744 get_pkt_gl(struct mbuf *m, struct sglist *gl)
3745 {
3746 	int rc;
3747 
3748 	M_ASSERTPKTHDR(m);
3749 
3750 	sglist_reset(gl);
3751 	rc = sglist_append_mbuf(gl, m);
3752 	if (__predict_false(rc != 0)) {
3753 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
3754 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
3755 	}
3756 
3757 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
3758 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
3759 	    mbuf_nsegs(m), gl->sg_nseg));
3760 	KASSERT(gl->sg_nseg > 0 &&
3761 	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
3762 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
3763 		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
3764 }
3765 
3766 /*
3767  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
3768  */
3769 static inline u_int
3770 txpkt_len16(u_int nsegs, u_int tso)
3771 {
3772 	u_int n;
3773 
3774 	MPASS(nsegs > 0);
3775 
3776 	nsegs--; /* first segment is part of ulptx_sgl */
3777 	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
3778 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
3779 	if (tso)
3780 		n += sizeof(struct cpl_tx_pkt_lso_core);
3781 
3782 	return (howmany(n, 16));
3783 }
3784 
3785 /*
3786  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
3787  * request header.
3788  */
3789 static inline u_int
3790 txpkts0_len16(u_int nsegs)
3791 {
3792 	u_int n;
3793 
3794 	MPASS(nsegs > 0);
3795 
3796 	nsegs--; /* first segment is part of ulptx_sgl */
3797 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
3798 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
3799 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
3800 
3801 	return (howmany(n, 16));
3802 }
3803 
3804 /*
3805  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
3806  * request header.
3807  */
3808 static inline u_int
3809 txpkts1_len16(void)
3810 {
3811 	u_int n;
3812 
3813 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
3814 
3815 	return (howmany(n, 16));
3816 }
3817 
3818 static inline u_int
3819 imm_payload(u_int ndesc)
3820 {
3821 	u_int n;
3822 
3823 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
3824 	    sizeof(struct cpl_tx_pkt_core);
3825 
3826 	return (n);
3827 }
3828 
3829 /*
3830  * Write a txpkt WR for this packet to the hardware descriptors, update the
3831  * software descriptor, and advance the pidx.  It is guaranteed that enough
3832  * descriptors are available.
3833  *
3834  * The return value is the # of hardware descriptors used.
3835  */
3836 static u_int
3837 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
3838     struct mbuf *m0, u_int available)
3839 {
3840 	struct sge_eq *eq = &txq->eq;
3841 	struct tx_sdesc *txsd;
3842 	struct cpl_tx_pkt_core *cpl;
3843 	uint32_t ctrl;	/* used in many unrelated places */
3844 	uint64_t ctrl1;
3845 	int len16, ndesc, pktlen, nsegs;
3846 	caddr_t dst;
3847 
3848 	TXQ_LOCK_ASSERT_OWNED(txq);
3849 	M_ASSERTPKTHDR(m0);
3850 	MPASS(available > 0 && available < eq->sidx);
3851 
3852 	len16 = mbuf_len16(m0);
3853 	nsegs = mbuf_nsegs(m0);
3854 	pktlen = m0->m_pkthdr.len;
3855 	ctrl = sizeof(struct cpl_tx_pkt_core);
3856 	if (needs_tso(m0))
3857 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3858 	else if (pktlen <= imm_payload(2) && available >= 2) {
3859 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
3860 		ctrl += pktlen;
3861 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
3862 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
3863 		nsegs = 0;
3864 	}
3865 	ndesc = howmany(len16, EQ_ESIZE / 16);
3866 	MPASS(ndesc <= available);
3867 
3868 	/* Firmware work request header */
3869 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
3870 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3871 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3872 
3873 	ctrl = V_FW_WR_LEN16(len16);
3874 	wr->equiq_to_len16 = htobe32(ctrl);
3875 	wr->r3 = 0;
3876 
3877 	if (needs_tso(m0)) {
3878 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3879 
3880 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
3881 		    m0->m_pkthdr.l4hlen > 0,
3882 		    ("%s: mbuf %p needs TSO but missing header lengths",
3883 			__func__, m0));
3884 
3885 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3886 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
3887 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
3888 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
3889 			ctrl |= V_LSO_ETHHDR_LEN(1);
3890 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
3891 			ctrl |= F_LSO_IPV6;
3892 
3893 		lso->lso_ctrl = htobe32(ctrl);
3894 		lso->ipid_ofst = htobe16(0);
3895 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
3896 		lso->seqno_offset = htobe32(0);
3897 		lso->len = htobe32(pktlen);
3898 
3899 		cpl = (void *)(lso + 1);
3900 
3901 		txq->tso_wrs++;
3902 	} else
3903 		cpl = (void *)(wr + 1);
3904 
3905 	/* Checksum offload */
3906 	ctrl1 = 0;
3907 	if (needs_l3_csum(m0) == 0)
3908 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3909 	if (needs_l4_csum(m0) == 0)
3910 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3911 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3912 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3913 		txq->txcsum++;	/* some hardware assistance provided */
3914 
3915 	/* VLAN tag insertion */
3916 	if (needs_vlan_insertion(m0)) {
3917 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
3918 		txq->vlan_insertion++;
3919 	}
3920 
3921 	/* CPL header */
3922 	cpl->ctrl0 = txq->cpl_ctrl0;
3923 	cpl->pack = 0;
3924 	cpl->len = htobe16(pktlen);
3925 	cpl->ctrl1 = htobe64(ctrl1);
3926 
3927 	/* SGL */
3928 	dst = (void *)(cpl + 1);
3929 	if (nsegs > 0) {
3930 
3931 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
3932 		txq->sgl_wrs++;
3933 	} else {
3934 		struct mbuf *m;
3935 
3936 		for (m = m0; m != NULL; m = m->m_next) {
3937 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3938 #ifdef INVARIANTS
3939 			pktlen -= m->m_len;
3940 #endif
3941 		}
3942 #ifdef INVARIANTS
3943 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3944 #endif
3945 		txq->imm_wrs++;
3946 	}
3947 
3948 	txq->txpkt_wrs++;
3949 
3950 	txsd = &txq->sdesc[eq->pidx];
3951 	txsd->m = m0;
3952 	txsd->desc_used = ndesc;
3953 
3954 	return (ndesc);
3955 }
3956 
3957 static int
3958 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
3959 {
3960 	u_int needed, nsegs1, nsegs2, l1, l2;
3961 
3962 	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
3963 		return (1);
3964 
3965 	nsegs1 = mbuf_nsegs(m);
3966 	nsegs2 = mbuf_nsegs(n);
3967 	if (nsegs1 + nsegs2 == 2) {
3968 		txp->wr_type = 1;
3969 		l1 = l2 = txpkts1_len16();
3970 	} else {
3971 		txp->wr_type = 0;
3972 		l1 = txpkts0_len16(nsegs1);
3973 		l2 = txpkts0_len16(nsegs2);
3974 	}
3975 	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
3976 	needed = howmany(txp->len16, EQ_ESIZE / 16);
3977 	if (needed > SGE_MAX_WR_NDESC || needed > available)
3978 		return (1);
3979 
3980 	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
3981 	if (txp->plen > 65535)
3982 		return (1);
3983 
3984 	txp->npkt = 2;
3985 	set_mbuf_len16(m, l1);
3986 	set_mbuf_len16(n, l2);
3987 
3988 	return (0);
3989 }
3990 
3991 static int
3992 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
3993 {
3994 	u_int plen, len16, needed, nsegs;
3995 
3996 	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
3997 
3998 	nsegs = mbuf_nsegs(m);
3999 	if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
4000 		return (1);
4001 
4002 	plen = txp->plen + m->m_pkthdr.len;
4003 	if (plen > 65535)
4004 		return (1);
4005 
4006 	if (txp->wr_type == 0)
4007 		len16 = txpkts0_len16(nsegs);
4008 	else
4009 		len16 = txpkts1_len16();
4010 	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4011 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4012 		return (1);
4013 
4014 	txp->npkt++;
4015 	txp->plen = plen;
4016 	txp->len16 += len16;
4017 	set_mbuf_len16(m, len16);
4018 
4019 	return (0);
4020 }
4021 
4022 /*
4023  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
4024  * the software descriptor, and advance the pidx.  It is guaranteed that enough
4025  * descriptors are available.
4026  *
4027  * The return value is the # of hardware descriptors used.
4028  */
4029 static u_int
4030 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
4031     struct mbuf *m0, const struct txpkts *txp, u_int available)
4032 {
4033 	struct sge_eq *eq = &txq->eq;
4034 	struct tx_sdesc *txsd;
4035 	struct cpl_tx_pkt_core *cpl;
4036 	uint32_t ctrl;
4037 	uint64_t ctrl1;
4038 	int ndesc, checkwrap;
4039 	struct mbuf *m;
4040 	void *flitp;
4041 
4042 	TXQ_LOCK_ASSERT_OWNED(txq);
4043 	MPASS(txp->npkt > 0);
4044 	MPASS(txp->plen < 65536);
4045 	MPASS(m0 != NULL);
4046 	MPASS(m0->m_nextpkt != NULL);
4047 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
4048 	MPASS(available > 0 && available < eq->sidx);
4049 
4050 	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
4051 	MPASS(ndesc <= available);
4052 
4053 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4054 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4055 	ctrl = V_FW_WR_LEN16(txp->len16);
4056 	wr->equiq_to_len16 = htobe32(ctrl);
4057 	wr->plen = htobe16(txp->plen);
4058 	wr->npkt = txp->npkt;
4059 	wr->r3 = 0;
4060 	wr->type = txp->wr_type;
4061 	flitp = wr + 1;
4062 
4063 	/*
4064 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
4065 	 * set then we know the WR is going to wrap around somewhere.  We'll
4066 	 * check for that at appropriate points.
4067 	 */
4068 	checkwrap = eq->sidx - ndesc < eq->pidx;
4069 	for (m = m0; m != NULL; m = m->m_nextpkt) {
4070 		if (txp->wr_type == 0) {
4071 			struct ulp_txpkt *ulpmc;
4072 			struct ulptx_idata *ulpsc;
4073 
4074 			/* ULP master command */
4075 			ulpmc = flitp;
4076 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
4077 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
4078 			ulpmc->len = htobe32(mbuf_len16(m));
4079 
4080 			/* ULP subcommand */
4081 			ulpsc = (void *)(ulpmc + 1);
4082 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
4083 			    F_ULP_TX_SC_MORE);
4084 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
4085 
4086 			cpl = (void *)(ulpsc + 1);
4087 			if (checkwrap &&
4088 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
4089 				cpl = (void *)&eq->desc[0];
4090 			txq->txpkts0_pkts += txp->npkt;
4091 			txq->txpkts0_wrs++;
4092 		} else {
4093 			cpl = flitp;
4094 			txq->txpkts1_pkts += txp->npkt;
4095 			txq->txpkts1_wrs++;
4096 		}
4097 
4098 		/* Checksum offload */
4099 		ctrl1 = 0;
4100 		if (needs_l3_csum(m) == 0)
4101 			ctrl1 |= F_TXPKT_IPCSUM_DIS;
4102 		if (needs_l4_csum(m) == 0)
4103 			ctrl1 |= F_TXPKT_L4CSUM_DIS;
4104 		if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4105 		    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4106 			txq->txcsum++;	/* some hardware assistance provided */
4107 
4108 		/* VLAN tag insertion */
4109 		if (needs_vlan_insertion(m)) {
4110 			ctrl1 |= F_TXPKT_VLAN_VLD |
4111 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
4112 			txq->vlan_insertion++;
4113 		}
4114 
4115 		/* CPL header */
4116 		cpl->ctrl0 = txq->cpl_ctrl0;
4117 		cpl->pack = 0;
4118 		cpl->len = htobe16(m->m_pkthdr.len);
4119 		cpl->ctrl1 = htobe64(ctrl1);
4120 
4121 		flitp = cpl + 1;
4122 		if (checkwrap &&
4123 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
4124 			flitp = (void *)&eq->desc[0];
4125 
4126 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
4127 
4128 	}
4129 
4130 	txsd = &txq->sdesc[eq->pidx];
4131 	txsd->m = m0;
4132 	txsd->desc_used = ndesc;
4133 
4134 	return (ndesc);
4135 }
4136 
4137 /*
4138  * If the SGL ends on an address that is not 16 byte aligned, this function will
4139  * add a 0 filled flit at the end.
4140  */
4141 static void
4142 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
4143 {
4144 	struct sge_eq *eq = &txq->eq;
4145 	struct sglist *gl = txq->gl;
4146 	struct sglist_seg *seg;
4147 	__be64 *flitp, *wrap;
4148 	struct ulptx_sgl *usgl;
4149 	int i, nflits, nsegs;
4150 
4151 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4152 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4153 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4154 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4155 
4156 	get_pkt_gl(m, gl);
4157 	nsegs = gl->sg_nseg;
4158 	MPASS(nsegs > 0);
4159 
4160 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
4161 	flitp = (__be64 *)(*to);
4162 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
4163 	seg = &gl->sg_segs[0];
4164 	usgl = (void *)flitp;
4165 
4166 	/*
4167 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4168 	 * ring, so we're at least 16 bytes away from the status page.  There is
4169 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4170 	 */
4171 
4172 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4173 	    V_ULPTX_NSGE(nsegs));
4174 	usgl->len0 = htobe32(seg->ss_len);
4175 	usgl->addr0 = htobe64(seg->ss_paddr);
4176 	seg++;
4177 
4178 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
4179 
4180 		/* Won't wrap around at all */
4181 
4182 		for (i = 0; i < nsegs - 1; i++, seg++) {
4183 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
4184 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
4185 		}
4186 		if (i & 1)
4187 			usgl->sge[i / 2].len[1] = htobe32(0);
4188 		flitp += nflits;
4189 	} else {
4190 
4191 		/* Will wrap somewhere in the rest of the SGL */
4192 
4193 		/* 2 flits already written, write the rest flit by flit */
4194 		flitp = (void *)(usgl + 1);
4195 		for (i = 0; i < nflits - 2; i++) {
4196 			if (flitp == wrap)
4197 				flitp = (void *)eq->desc;
4198 			*flitp++ = get_flit(seg, nsegs - 1, i);
4199 		}
4200 	}
4201 
4202 	if (nflits & 1) {
4203 		MPASS(((uintptr_t)flitp) & 0xf);
4204 		*flitp++ = 0;
4205 	}
4206 
4207 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
4208 	if (__predict_false(flitp == wrap))
4209 		*to = (void *)eq->desc;
4210 	else
4211 		*to = (void *)flitp;
4212 }
4213 
4214 static inline void
4215 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4216 {
4217 
4218 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4219 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4220 
4221 	if (__predict_true((uintptr_t)(*to) + len <=
4222 	    (uintptr_t)&eq->desc[eq->sidx])) {
4223 		bcopy(from, *to, len);
4224 		(*to) += len;
4225 	} else {
4226 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
4227 
4228 		bcopy(from, *to, portion);
4229 		from += portion;
4230 		portion = len - portion;	/* remaining */
4231 		bcopy(from, (void *)eq->desc, portion);
4232 		(*to) = (caddr_t)eq->desc + portion;
4233 	}
4234 }
4235 
4236 static inline void
4237 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
4238 {
4239 	u_int db;
4240 
4241 	MPASS(n > 0);
4242 
4243 	db = eq->doorbells;
4244 	if (n > 1)
4245 		clrbit(&db, DOORBELL_WCWR);
4246 	wmb();
4247 
4248 	switch (ffs(db) - 1) {
4249 	case DOORBELL_UDB:
4250 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4251 		break;
4252 
4253 	case DOORBELL_WCWR: {
4254 		volatile uint64_t *dst, *src;
4255 		int i;
4256 
4257 		/*
4258 		 * Queues whose 128B doorbell segment fits in the page do not
4259 		 * use relative qid (udb_qid is always 0).  Only queues with
4260 		 * doorbell segments can do WCWR.
4261 		 */
4262 		KASSERT(eq->udb_qid == 0 && n == 1,
4263 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4264 		    __func__, eq->doorbells, n, eq->dbidx, eq));
4265 
4266 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4267 		    UDBS_DB_OFFSET);
4268 		i = eq->dbidx;
4269 		src = (void *)&eq->desc[i];
4270 		while (src != (void *)&eq->desc[i + 1])
4271 			*dst++ = *src++;
4272 		wmb();
4273 		break;
4274 	}
4275 
4276 	case DOORBELL_UDBWC:
4277 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4278 		wmb();
4279 		break;
4280 
4281 	case DOORBELL_KDB:
4282 		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
4283 		    V_QID(eq->cntxt_id) | V_PIDX(n));
4284 		break;
4285 	}
4286 
4287 	IDXINCR(eq->dbidx, n, eq->sidx);
4288 }
4289 
4290 static inline u_int
4291 reclaimable_tx_desc(struct sge_eq *eq)
4292 {
4293 	uint16_t hw_cidx;
4294 
4295 	hw_cidx = read_hw_cidx(eq);
4296 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
4297 }
4298 
4299 static inline u_int
4300 total_available_tx_desc(struct sge_eq *eq)
4301 {
4302 	uint16_t hw_cidx, pidx;
4303 
4304 	hw_cidx = read_hw_cidx(eq);
4305 	pidx = eq->pidx;
4306 
4307 	if (pidx == hw_cidx)
4308 		return (eq->sidx - 1);
4309 	else
4310 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
4311 }
4312 
4313 static inline uint16_t
4314 read_hw_cidx(struct sge_eq *eq)
4315 {
4316 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4317 	uint16_t cidx = spg->cidx;	/* stable snapshot */
4318 
4319 	return (be16toh(cidx));
4320 }
4321 
4322 /*
4323  * Reclaim 'n' descriptors approximately.
4324  */
4325 static u_int
4326 reclaim_tx_descs(struct sge_txq *txq, u_int n)
4327 {
4328 	struct tx_sdesc *txsd;
4329 	struct sge_eq *eq = &txq->eq;
4330 	u_int can_reclaim, reclaimed;
4331 
4332 	TXQ_LOCK_ASSERT_OWNED(txq);
4333 	MPASS(n > 0);
4334 
4335 	reclaimed = 0;
4336 	can_reclaim = reclaimable_tx_desc(eq);
4337 	while (can_reclaim && reclaimed < n) {
4338 		int ndesc;
4339 		struct mbuf *m, *nextpkt;
4340 
4341 		txsd = &txq->sdesc[eq->cidx];
4342 		ndesc = txsd->desc_used;
4343 
4344 		/* Firmware doesn't return "partial" credits. */
4345 		KASSERT(can_reclaim >= ndesc,
4346 		    ("%s: unexpected number of credits: %d, %d",
4347 		    __func__, can_reclaim, ndesc));
4348 
4349 		for (m = txsd->m; m != NULL; m = nextpkt) {
4350 			nextpkt = m->m_nextpkt;
4351 			m->m_nextpkt = NULL;
4352 			m_freem(m);
4353 		}
4354 		reclaimed += ndesc;
4355 		can_reclaim -= ndesc;
4356 		IDXINCR(eq->cidx, ndesc, eq->sidx);
4357 	}
4358 
4359 	return (reclaimed);
4360 }
4361 
4362 static void
4363 tx_reclaim(void *arg, int n)
4364 {
4365 	struct sge_txq *txq = arg;
4366 	struct sge_eq *eq = &txq->eq;
4367 
4368 	do {
4369 		if (TXQ_TRYLOCK(txq) == 0)
4370 			break;
4371 		n = reclaim_tx_descs(txq, 32);
4372 		if (eq->cidx == eq->pidx)
4373 			eq->equeqidx = eq->pidx;
4374 		TXQ_UNLOCK(txq);
4375 	} while (n > 0);
4376 }
4377 
4378 static __be64
4379 get_flit(struct sglist_seg *segs, int nsegs, int idx)
4380 {
4381 	int i = (idx / 3) * 2;
4382 
4383 	switch (idx % 3) {
4384 	case 0: {
4385 		__be64 rc;
4386 
4387 		rc = htobe32(segs[i].ss_len);
4388 		if (i + 1 < nsegs)
4389 			rc |= (uint64_t)htobe32(segs[i + 1].ss_len) << 32;
4390 
4391 		return (rc);
4392 	}
4393 	case 1:
4394 		return (htobe64(segs[i].ss_paddr));
4395 	case 2:
4396 		return (htobe64(segs[i + 1].ss_paddr));
4397 	}
4398 
4399 	return (0);
4400 }
4401 
4402 static void
4403 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4404 {
4405 	int8_t zidx, hwidx, idx;
4406 	uint16_t region1, region3;
4407 	int spare, spare_needed, n;
4408 	struct sw_zone_info *swz;
4409 	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4410 
4411 	/*
4412 	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4413 	 * large enough for the max payload and cluster metadata.  Otherwise
4414 	 * settle for the largest bufsize that leaves enough room in the cluster
4415 	 * for metadata.
4416 	 *
4417 	 * Without buffer packing: Look for the smallest zone which has a
4418 	 * bufsize large enough for the max payload.  Settle for the largest
4419 	 * bufsize available if there's nothing big enough for max payload.
4420 	 */
4421 	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4422 	swz = &sc->sge.sw_zone_info[0];
4423 	hwidx = -1;
4424 	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4425 		if (swz->size > largest_rx_cluster) {
4426 			if (__predict_true(hwidx != -1))
4427 				break;
4428 
4429 			/*
4430 			 * This is a misconfiguration.  largest_rx_cluster is
4431 			 * preventing us from finding a refill source.  See
4432 			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4433 			 */
4434 			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4435 			    " refill source for fl %p (dma %u).  Ignored.\n",
4436 			    largest_rx_cluster, fl, maxp);
4437 		}
4438 		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4439 			hwb = &hwb_list[idx];
4440 			spare = swz->size - hwb->size;
4441 			if (spare < spare_needed)
4442 				continue;
4443 
4444 			hwidx = idx;		/* best option so far */
4445 			if (hwb->size >= maxp) {
4446 
4447 				if ((fl->flags & FL_BUF_PACKING) == 0)
4448 					goto done; /* stop looking (not packing) */
4449 
4450 				if (swz->size >= safest_rx_cluster)
4451 					goto done; /* stop looking (packing) */
4452 			}
4453 			break;		/* keep looking, next zone */
4454 		}
4455 	}
4456 done:
4457 	/* A usable hwidx has been located. */
4458 	MPASS(hwidx != -1);
4459 	hwb = &hwb_list[hwidx];
4460 	zidx = hwb->zidx;
4461 	swz = &sc->sge.sw_zone_info[zidx];
4462 	region1 = 0;
4463 	region3 = swz->size - hwb->size;
4464 
4465 	/*
4466 	 * Stay within this zone and see if there is a better match when mbuf
4467 	 * inlining is allowed.  Remember that the hwidx's are sorted in
4468 	 * decreasing order of size (so in increasing order of spare area).
4469 	 */
4470 	for (idx = hwidx; idx != -1; idx = hwb->next) {
4471 		hwb = &hwb_list[idx];
4472 		spare = swz->size - hwb->size;
4473 
4474 		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4475 			break;
4476 
4477 		/*
4478 		 * Do not inline mbufs if doing so would violate the pad/pack
4479 		 * boundary alignment requirement.
4480 		 */
4481 		if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0)
4482 			continue;
4483 		if (fl->flags & FL_BUF_PACKING &&
4484 		    (MSIZE % sc->params.sge.pack_boundary) != 0)
4485 			continue;
4486 
4487 		if (spare < CL_METADATA_SIZE + MSIZE)
4488 			continue;
4489 		n = (spare - CL_METADATA_SIZE) / MSIZE;
4490 		if (n > howmany(hwb->size, maxp))
4491 			break;
4492 
4493 		hwidx = idx;
4494 		if (fl->flags & FL_BUF_PACKING) {
4495 			region1 = n * MSIZE;
4496 			region3 = spare - region1;
4497 		} else {
4498 			region1 = MSIZE;
4499 			region3 = spare - region1;
4500 			break;
4501 		}
4502 	}
4503 
4504 	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4505 	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4506 	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4507 	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4508 	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4509 	    sc->sge.sw_zone_info[zidx].size,
4510 	    ("%s: bad buffer layout for fl %p, maxp %d. "
4511 		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4512 		sc->sge.sw_zone_info[zidx].size, region1,
4513 		sc->sge.hw_buf_info[hwidx].size, region3));
4514 	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4515 		KASSERT(region3 >= CL_METADATA_SIZE,
4516 		    ("%s: no room for metadata.  fl %p, maxp %d; "
4517 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4518 		    sc->sge.sw_zone_info[zidx].size, region1,
4519 		    sc->sge.hw_buf_info[hwidx].size, region3));
4520 		KASSERT(region1 % MSIZE == 0,
4521 		    ("%s: bad mbuf region for fl %p, maxp %d. "
4522 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4523 		    sc->sge.sw_zone_info[zidx].size, region1,
4524 		    sc->sge.hw_buf_info[hwidx].size, region3));
4525 	}
4526 
4527 	fl->cll_def.zidx = zidx;
4528 	fl->cll_def.hwidx = hwidx;
4529 	fl->cll_def.region1 = region1;
4530 	fl->cll_def.region3 = region3;
4531 }
4532 
4533 static void
4534 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4535 {
4536 	struct sge *s = &sc->sge;
4537 	struct hw_buf_info *hwb;
4538 	struct sw_zone_info *swz;
4539 	int spare;
4540 	int8_t hwidx;
4541 
4542 	if (fl->flags & FL_BUF_PACKING)
4543 		hwidx = s->safe_hwidx2;	/* with room for metadata */
4544 	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4545 		hwidx = s->safe_hwidx2;
4546 		hwb = &s->hw_buf_info[hwidx];
4547 		swz = &s->sw_zone_info[hwb->zidx];
4548 		spare = swz->size - hwb->size;
4549 
4550 		/* no good if there isn't room for an mbuf as well */
4551 		if (spare < CL_METADATA_SIZE + MSIZE)
4552 			hwidx = s->safe_hwidx1;
4553 	} else
4554 		hwidx = s->safe_hwidx1;
4555 
4556 	if (hwidx == -1) {
4557 		/* No fallback source */
4558 		fl->cll_alt.hwidx = -1;
4559 		fl->cll_alt.zidx = -1;
4560 
4561 		return;
4562 	}
4563 
4564 	hwb = &s->hw_buf_info[hwidx];
4565 	swz = &s->sw_zone_info[hwb->zidx];
4566 	spare = swz->size - hwb->size;
4567 	fl->cll_alt.hwidx = hwidx;
4568 	fl->cll_alt.zidx = hwb->zidx;
4569 	if (allow_mbufs_in_cluster &&
4570 	    (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0))
4571 		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
4572 	else
4573 		fl->cll_alt.region1 = 0;
4574 	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
4575 }
4576 
4577 static void
4578 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4579 {
4580 	mtx_lock(&sc->sfl_lock);
4581 	FL_LOCK(fl);
4582 	if ((fl->flags & FL_DOOMED) == 0) {
4583 		fl->flags |= FL_STARVING;
4584 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4585 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4586 	}
4587 	FL_UNLOCK(fl);
4588 	mtx_unlock(&sc->sfl_lock);
4589 }
4590 
4591 static void
4592 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
4593 {
4594 	struct sge_wrq *wrq = (void *)eq;
4595 
4596 	atomic_readandclear_int(&eq->equiq);
4597 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
4598 }
4599 
4600 static void
4601 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
4602 {
4603 	struct sge_txq *txq = (void *)eq;
4604 
4605 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
4606 
4607 	atomic_readandclear_int(&eq->equiq);
4608 	mp_ring_check_drainage(txq->r, 0);
4609 	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
4610 }
4611 
4612 static int
4613 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4614     struct mbuf *m)
4615 {
4616 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4617 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4618 	struct adapter *sc = iq->adapter;
4619 	struct sge *s = &sc->sge;
4620 	struct sge_eq *eq;
4621 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
4622 		&handle_wrq_egr_update, &handle_eth_egr_update,
4623 		&handle_wrq_egr_update};
4624 
4625 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4626 	    rss->opcode));
4627 
4628 	eq = s->eqmap[qid - s->eq_start];
4629 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
4630 
4631 	return (0);
4632 }
4633 
4634 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4635 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4636     offsetof(struct cpl_fw6_msg, data));
4637 
4638 static int
4639 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4640 {
4641 	struct adapter *sc = iq->adapter;
4642 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4643 
4644 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4645 	    rss->opcode));
4646 
4647 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4648 		const struct rss_header *rss2;
4649 
4650 		rss2 = (const struct rss_header *)&cpl->data[0];
4651 		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
4652 	}
4653 
4654 	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4655 }
4656 
4657 static int
4658 sysctl_uint16(SYSCTL_HANDLER_ARGS)
4659 {
4660 	uint16_t *id = arg1;
4661 	int i = *id;
4662 
4663 	return sysctl_handle_int(oidp, &i, 0, req);
4664 }
4665 
4666 static int
4667 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
4668 {
4669 	struct sge *s = arg1;
4670 	struct hw_buf_info *hwb = &s->hw_buf_info[0];
4671 	struct sw_zone_info *swz = &s->sw_zone_info[0];
4672 	int i, rc;
4673 	struct sbuf sb;
4674 	char c;
4675 
4676 	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4677 	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
4678 		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
4679 			c = '*';
4680 		else
4681 			c = '\0';
4682 
4683 		sbuf_printf(&sb, "%u%c ", hwb->size, c);
4684 	}
4685 	sbuf_trim(&sb);
4686 	sbuf_finish(&sb);
4687 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4688 	sbuf_delete(&sb);
4689 	return (rc);
4690 }
4691