xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision c7046f76c2c027b00c0e6ba57cfd28f1a78f5e23)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_kern_tls.h"
36 #include "opt_ratelimit.h"
37 
38 #include <sys/types.h>
39 #include <sys/eventhandler.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/malloc.h>
45 #include <sys/msan.h>
46 #include <sys/queue.h>
47 #include <sys/sbuf.h>
48 #include <sys/taskqueue.h>
49 #include <sys/time.h>
50 #include <sys/sglist.h>
51 #include <sys/sysctl.h>
52 #include <sys/smp.h>
53 #include <sys/socketvar.h>
54 #include <sys/counter.h>
55 #include <net/bpf.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_vlan_var.h>
59 #include <net/if_vxlan.h>
60 #include <netinet/in.h>
61 #include <netinet/ip.h>
62 #include <netinet/ip6.h>
63 #include <netinet/tcp.h>
64 #include <netinet/udp.h>
65 #include <machine/in_cksum.h>
66 #include <machine/md_var.h>
67 #include <vm/vm.h>
68 #include <vm/pmap.h>
69 #ifdef DEV_NETMAP
70 #include <machine/bus.h>
71 #include <sys/selinfo.h>
72 #include <net/if_var.h>
73 #include <net/netmap.h>
74 #include <dev/netmap/netmap_kern.h>
75 #endif
76 
77 #include "common/common.h"
78 #include "common/t4_regs.h"
79 #include "common/t4_regs_values.h"
80 #include "common/t4_msg.h"
81 #include "t4_l2t.h"
82 #include "t4_mp_ring.h"
83 
84 #ifdef T4_PKT_TIMESTAMP
85 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
86 #else
87 #define RX_COPY_THRESHOLD MINCLSIZE
88 #endif
89 
90 /* Internal mbuf flags stored in PH_loc.eight[1]. */
91 #define	MC_NOMAP		0x01
92 #define	MC_RAW_WR		0x02
93 #define	MC_TLS			0x04
94 
95 /*
96  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
97  * 0-7 are valid values.
98  */
99 static int fl_pktshift = 0;
100 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
101     "payload DMA offset in rx buffer (bytes)");
102 
103 /*
104  * Pad ethernet payload up to this boundary.
105  * -1: driver should figure out a good value.
106  *  0: disable padding.
107  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
108  */
109 int fl_pad = -1;
110 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
111     "payload pad boundary (bytes)");
112 
113 /*
114  * Status page length.
115  * -1: driver should figure out a good value.
116  *  64 or 128 are the only other valid values.
117  */
118 static int spg_len = -1;
119 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
120     "status page size (bytes)");
121 
122 /*
123  * Congestion drops.
124  * -1: no congestion feedback (not recommended).
125  *  0: backpressure the channel instead of dropping packets right away.
126  *  1: no backpressure, drop packets for the congested queue immediately.
127  *  2: both backpressure and drop.
128  */
129 static int cong_drop = 0;
130 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
131     "Congestion control for NIC RX queues (0 = backpressure, 1 = drop, 2 = both");
132 #ifdef TCP_OFFLOAD
133 static int ofld_cong_drop = 0;
134 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ofld_cong_drop, CTLFLAG_RDTUN, &ofld_cong_drop, 0,
135     "Congestion control for TOE RX queues (0 = backpressure, 1 = drop, 2 = both");
136 #endif
137 
138 /*
139  * Deliver multiple frames in the same free list buffer if they fit.
140  * -1: let the driver decide whether to enable buffer packing or not.
141  *  0: disable buffer packing.
142  *  1: enable buffer packing.
143  */
144 static int buffer_packing = -1;
145 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
146     0, "Enable buffer packing");
147 
148 /*
149  * Start next frame in a packed buffer at this boundary.
150  * -1: driver should figure out a good value.
151  * T4: driver will ignore this and use the same value as fl_pad above.
152  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
153  */
154 static int fl_pack = -1;
155 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
156     "payload pack boundary (bytes)");
157 
158 /*
159  * Largest rx cluster size that the driver is allowed to allocate.
160  */
161 static int largest_rx_cluster = MJUM16BYTES;
162 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
163     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
164 
165 /*
166  * Size of cluster allocation that's most likely to succeed.  The driver will
167  * fall back to this size if it fails to allocate clusters larger than this.
168  */
169 static int safest_rx_cluster = PAGE_SIZE;
170 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
171     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
172 
173 #ifdef RATELIMIT
174 /*
175  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
176  * for rewriting.  -1 and 0-3 are all valid values.
177  * -1: hardware should leave the TCP timestamps alone.
178  * 0: 1ms
179  * 1: 100us
180  * 2: 10us
181  * 3: 1us
182  */
183 static int tsclk = -1;
184 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
185     "Control TCP timestamp rewriting when using pacing");
186 
187 static int eo_max_backlog = 1024 * 1024;
188 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
189     0, "Maximum backlog of ratelimited data per flow");
190 #endif
191 
192 /*
193  * The interrupt holdoff timers are multiplied by this value on T6+.
194  * 1 and 3-17 (both inclusive) are legal values.
195  */
196 static int tscale = 1;
197 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
198     "Interrupt holdoff timer scale on T6+");
199 
200 /*
201  * Number of LRO entries in the lro_ctrl structure per rx queue.
202  */
203 static int lro_entries = TCP_LRO_ENTRIES;
204 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
205     "Number of LRO entries per RX queue");
206 
207 /*
208  * This enables presorting of frames before they're fed into tcp_lro_rx.
209  */
210 static int lro_mbufs = 0;
211 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
212     "Enable presorting of LRO frames");
213 
214 static counter_u64_t pullups;
215 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
216     "Number of mbuf pullups performed");
217 
218 static counter_u64_t defrags;
219 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
220     "Number of mbuf defrags performed");
221 
222 static int t4_tx_coalesce = 1;
223 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
224     "tx coalescing allowed");
225 
226 /*
227  * The driver will make aggressive attempts at tx coalescing if it sees these
228  * many packets eligible for coalescing in quick succession, with no more than
229  * the specified gap in between the eth_tx calls that delivered the packets.
230  */
231 static int t4_tx_coalesce_pkts = 32;
232 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
233     &t4_tx_coalesce_pkts, 0,
234     "# of consecutive packets (1 - 255) that will trigger tx coalescing");
235 static int t4_tx_coalesce_gap = 5;
236 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
237     &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
238 
239 static int service_iq(struct sge_iq *, int);
240 static int service_iq_fl(struct sge_iq *, int);
241 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
242 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
243     u_int);
244 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
245     int, int, int);
246 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
247 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
248     struct sge_iq *, char *);
249 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
250     struct sysctl_ctx_list *, struct sysctl_oid *);
251 static void free_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
252 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
253     struct sge_iq *);
254 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
255     struct sysctl_oid *, struct sge_fl *);
256 static int alloc_iq_fl_hwq(struct vi_info *, struct sge_iq *, struct sge_fl *);
257 static int free_iq_fl_hwq(struct adapter *, struct sge_iq *, struct sge_fl *);
258 static int alloc_fwq(struct adapter *);
259 static void free_fwq(struct adapter *);
260 static int alloc_ctrlq(struct adapter *, int);
261 static void free_ctrlq(struct adapter *, int);
262 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, int);
263 static void free_rxq(struct vi_info *, struct sge_rxq *);
264 static void add_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
265     struct sge_rxq *);
266 #ifdef TCP_OFFLOAD
267 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
268     int);
269 static void free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
270 static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
271     struct sge_ofld_rxq *);
272 #endif
273 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
274 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
275 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
276 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
277 #endif
278 static int alloc_eq(struct adapter *, struct sge_eq *, struct sysctl_ctx_list *,
279     struct sysctl_oid *);
280 static void free_eq(struct adapter *, struct sge_eq *);
281 static void add_eq_sysctls(struct adapter *, struct sysctl_ctx_list *,
282     struct sysctl_oid *, struct sge_eq *);
283 static int alloc_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
284 static int free_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
285 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
286     struct sysctl_ctx_list *, struct sysctl_oid *);
287 static void free_wrq(struct adapter *, struct sge_wrq *);
288 static void add_wrq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
289     struct sge_wrq *);
290 static int alloc_txq(struct vi_info *, struct sge_txq *, int);
291 static void free_txq(struct vi_info *, struct sge_txq *);
292 static void add_txq_sysctls(struct vi_info *, struct sysctl_ctx_list *,
293     struct sysctl_oid *, struct sge_txq *);
294 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
295 static int alloc_ofld_txq(struct vi_info *, struct sge_ofld_txq *, int);
296 static void free_ofld_txq(struct vi_info *, struct sge_ofld_txq *);
297 static void add_ofld_txq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
298     struct sge_ofld_txq *);
299 #endif
300 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
301 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
302 static int refill_fl(struct adapter *, struct sge_fl *, int);
303 static void refill_sfl(void *);
304 static int find_refill_source(struct adapter *, int, bool);
305 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
306 
307 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
308 static inline u_int txpkt_len16(u_int, const u_int);
309 static inline u_int txpkt_vm_len16(u_int, const u_int);
310 static inline void calculate_mbuf_len16(struct mbuf *, bool);
311 static inline u_int txpkts0_len16(u_int);
312 static inline u_int txpkts1_len16(void);
313 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
314 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
315     u_int);
316 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
317     struct mbuf *);
318 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
319     int, bool *);
320 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
321     int, bool *);
322 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
323 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
324 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
325 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
326 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
327 static inline uint16_t read_hw_cidx(struct sge_eq *);
328 static inline u_int reclaimable_tx_desc(struct sge_eq *);
329 static inline u_int total_available_tx_desc(struct sge_eq *);
330 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
331 static void tx_reclaim(void *, int);
332 static __be64 get_flit(struct sglist_seg *, int, int);
333 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
334     struct mbuf *);
335 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
336     struct mbuf *);
337 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
338 static void wrq_tx_drain(void *, int);
339 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
340 
341 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
342 #ifdef RATELIMIT
343 #if defined(INET) || defined(INET6)
344 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
345 #endif
346 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
347     struct mbuf *);
348 #endif
349 
350 static counter_u64_t extfree_refs;
351 static counter_u64_t extfree_rels;
352 
353 an_handler_t t4_an_handler;
354 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
355 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
356 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
357 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
358 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
359 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
360 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
361 
362 void
363 t4_register_an_handler(an_handler_t h)
364 {
365 	uintptr_t *loc;
366 
367 	MPASS(h == NULL || t4_an_handler == NULL);
368 
369 	loc = (uintptr_t *)&t4_an_handler;
370 	atomic_store_rel_ptr(loc, (uintptr_t)h);
371 }
372 
373 void
374 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
375 {
376 	uintptr_t *loc;
377 
378 	MPASS(type < nitems(t4_fw_msg_handler));
379 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
380 	/*
381 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
382 	 * handler dispatch table.  Reject any attempt to install a handler for
383 	 * this subtype.
384 	 */
385 	MPASS(type != FW_TYPE_RSSCPL);
386 	MPASS(type != FW6_TYPE_RSSCPL);
387 
388 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
389 	atomic_store_rel_ptr(loc, (uintptr_t)h);
390 }
391 
392 void
393 t4_register_cpl_handler(int opcode, cpl_handler_t h)
394 {
395 	uintptr_t *loc;
396 
397 	MPASS(opcode < nitems(t4_cpl_handler));
398 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
399 
400 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
401 	atomic_store_rel_ptr(loc, (uintptr_t)h);
402 }
403 
404 static int
405 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
406     struct mbuf *m)
407 {
408 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
409 	u_int tid;
410 	int cookie;
411 
412 	MPASS(m == NULL);
413 
414 	tid = GET_TID(cpl);
415 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
416 		/*
417 		 * The return code for filter-write is put in the CPL cookie so
418 		 * we have to rely on the hardware tid (is_ftid) to determine
419 		 * that this is a response to a filter.
420 		 */
421 		cookie = CPL_COOKIE_FILTER;
422 	} else {
423 		cookie = G_COOKIE(cpl->cookie);
424 	}
425 	MPASS(cookie > CPL_COOKIE_RESERVED);
426 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
427 
428 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
429 }
430 
431 static int
432 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
433     struct mbuf *m)
434 {
435 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
436 	unsigned int cookie;
437 
438 	MPASS(m == NULL);
439 
440 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
441 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
442 }
443 
444 static int
445 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
446     struct mbuf *m)
447 {
448 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
449 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
450 
451 	MPASS(m == NULL);
452 	MPASS(cookie != CPL_COOKIE_RESERVED);
453 
454 	return (act_open_rpl_handlers[cookie](iq, rss, m));
455 }
456 
457 static int
458 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
459     struct mbuf *m)
460 {
461 	struct adapter *sc = iq->adapter;
462 	u_int cookie;
463 
464 	MPASS(m == NULL);
465 	if (is_hashfilter(sc))
466 		cookie = CPL_COOKIE_HASHFILTER;
467 	else
468 		cookie = CPL_COOKIE_TOM;
469 
470 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
471 }
472 
473 static int
474 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
475 {
476 	struct adapter *sc = iq->adapter;
477 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
478 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
479 	u_int cookie;
480 
481 	MPASS(m == NULL);
482 	if (is_etid(sc, tid))
483 		cookie = CPL_COOKIE_ETHOFLD;
484 	else
485 		cookie = CPL_COOKIE_TOM;
486 
487 	return (fw4_ack_handlers[cookie](iq, rss, m));
488 }
489 
490 static void
491 t4_init_shared_cpl_handlers(void)
492 {
493 
494 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
495 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
496 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
497 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
498 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
499 }
500 
501 void
502 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
503 {
504 	uintptr_t *loc;
505 
506 	MPASS(opcode < nitems(t4_cpl_handler));
507 	MPASS(cookie > CPL_COOKIE_RESERVED);
508 	MPASS(cookie < NUM_CPL_COOKIES);
509 	MPASS(t4_cpl_handler[opcode] != NULL);
510 
511 	switch (opcode) {
512 	case CPL_SET_TCB_RPL:
513 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
514 		break;
515 	case CPL_L2T_WRITE_RPL:
516 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
517 		break;
518 	case CPL_ACT_OPEN_RPL:
519 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
520 		break;
521 	case CPL_ABORT_RPL_RSS:
522 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
523 		break;
524 	case CPL_FW4_ACK:
525 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
526 		break;
527 	default:
528 		MPASS(0);
529 		return;
530 	}
531 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
532 	atomic_store_rel_ptr(loc, (uintptr_t)h);
533 }
534 
535 /*
536  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
537  */
538 void
539 t4_sge_modload(void)
540 {
541 
542 	if (fl_pktshift < 0 || fl_pktshift > 7) {
543 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
544 		    " using 0 instead.\n", fl_pktshift);
545 		fl_pktshift = 0;
546 	}
547 
548 	if (spg_len != 64 && spg_len != 128) {
549 		int len;
550 
551 #if defined(__i386__) || defined(__amd64__)
552 		len = cpu_clflush_line_size > 64 ? 128 : 64;
553 #else
554 		len = 64;
555 #endif
556 		if (spg_len != -1) {
557 			printf("Invalid hw.cxgbe.spg_len value (%d),"
558 			    " using %d instead.\n", spg_len, len);
559 		}
560 		spg_len = len;
561 	}
562 
563 	if (cong_drop < -1 || cong_drop > 2) {
564 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
565 		    " using 0 instead.\n", cong_drop);
566 		cong_drop = 0;
567 	}
568 #ifdef TCP_OFFLOAD
569 	if (ofld_cong_drop < -1 || ofld_cong_drop > 2) {
570 		printf("Invalid hw.cxgbe.ofld_cong_drop value (%d),"
571 		    " using 0 instead.\n", ofld_cong_drop);
572 		ofld_cong_drop = 0;
573 	}
574 #endif
575 
576 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
577 		printf("Invalid hw.cxgbe.tscale value (%d),"
578 		    " using 1 instead.\n", tscale);
579 		tscale = 1;
580 	}
581 
582 	if (largest_rx_cluster != MCLBYTES &&
583 	    largest_rx_cluster != MJUMPAGESIZE &&
584 	    largest_rx_cluster != MJUM9BYTES &&
585 	    largest_rx_cluster != MJUM16BYTES) {
586 		printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
587 		    " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
588 		largest_rx_cluster = MJUM16BYTES;
589 	}
590 
591 	if (safest_rx_cluster != MCLBYTES &&
592 	    safest_rx_cluster != MJUMPAGESIZE &&
593 	    safest_rx_cluster != MJUM9BYTES &&
594 	    safest_rx_cluster != MJUM16BYTES) {
595 		printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
596 		    " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
597 		safest_rx_cluster = MJUMPAGESIZE;
598 	}
599 
600 	extfree_refs = counter_u64_alloc(M_WAITOK);
601 	extfree_rels = counter_u64_alloc(M_WAITOK);
602 	pullups = counter_u64_alloc(M_WAITOK);
603 	defrags = counter_u64_alloc(M_WAITOK);
604 	counter_u64_zero(extfree_refs);
605 	counter_u64_zero(extfree_rels);
606 	counter_u64_zero(pullups);
607 	counter_u64_zero(defrags);
608 
609 	t4_init_shared_cpl_handlers();
610 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
611 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
612 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
613 #ifdef RATELIMIT
614 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
615 	    CPL_COOKIE_ETHOFLD);
616 #endif
617 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
618 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
619 }
620 
621 void
622 t4_sge_modunload(void)
623 {
624 
625 	counter_u64_free(extfree_refs);
626 	counter_u64_free(extfree_rels);
627 	counter_u64_free(pullups);
628 	counter_u64_free(defrags);
629 }
630 
631 uint64_t
632 t4_sge_extfree_refs(void)
633 {
634 	uint64_t refs, rels;
635 
636 	rels = counter_u64_fetch(extfree_rels);
637 	refs = counter_u64_fetch(extfree_refs);
638 
639 	return (refs - rels);
640 }
641 
642 /* max 4096 */
643 #define MAX_PACK_BOUNDARY 512
644 
645 static inline void
646 setup_pad_and_pack_boundaries(struct adapter *sc)
647 {
648 	uint32_t v, m;
649 	int pad, pack, pad_shift;
650 
651 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
652 	    X_INGPADBOUNDARY_SHIFT;
653 	pad = fl_pad;
654 	if (fl_pad < (1 << pad_shift) ||
655 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
656 	    !powerof2(fl_pad)) {
657 		/*
658 		 * If there is any chance that we might use buffer packing and
659 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
660 		 * it to the minimum allowed in all other cases.
661 		 */
662 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
663 
664 		/*
665 		 * For fl_pad = 0 we'll still write a reasonable value to the
666 		 * register but all the freelists will opt out of padding.
667 		 * We'll complain here only if the user tried to set it to a
668 		 * value greater than 0 that was invalid.
669 		 */
670 		if (fl_pad > 0) {
671 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
672 			    " (%d), using %d instead.\n", fl_pad, pad);
673 		}
674 	}
675 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
676 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
677 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
678 
679 	if (is_t4(sc)) {
680 		if (fl_pack != -1 && fl_pack != pad) {
681 			/* Complain but carry on. */
682 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
683 			    " using %d instead.\n", fl_pack, pad);
684 		}
685 		return;
686 	}
687 
688 	pack = fl_pack;
689 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
690 	    !powerof2(fl_pack)) {
691 		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
692 			pack = MAX_PACK_BOUNDARY;
693 		else
694 			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
695 		MPASS(powerof2(pack));
696 		if (pack < 16)
697 			pack = 16;
698 		if (pack == 32)
699 			pack = 64;
700 		if (pack > 4096)
701 			pack = 4096;
702 		if (fl_pack != -1) {
703 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
704 			    " (%d), using %d instead.\n", fl_pack, pack);
705 		}
706 	}
707 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
708 	if (pack == 16)
709 		v = V_INGPACKBOUNDARY(0);
710 	else
711 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
712 
713 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
714 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
715 }
716 
717 /*
718  * adap->params.vpd.cclk must be set up before this is called.
719  */
720 void
721 t4_tweak_chip_settings(struct adapter *sc)
722 {
723 	int i, reg;
724 	uint32_t v, m;
725 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
726 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
727 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
728 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
729 	static int sw_buf_sizes[] = {
730 		MCLBYTES,
731 		MJUMPAGESIZE,
732 		MJUM9BYTES,
733 		MJUM16BYTES
734 	};
735 
736 	KASSERT(sc->flags & MASTER_PF,
737 	    ("%s: trying to change chip settings when not master.", __func__));
738 
739 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
740 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
741 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
742 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
743 
744 	setup_pad_and_pack_boundaries(sc);
745 
746 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
747 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
748 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
749 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
750 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
751 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
752 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
753 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
754 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
755 
756 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
757 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
758 	reg = A_SGE_FL_BUFFER_SIZE2;
759 	for (i = 0; i < nitems(sw_buf_sizes); i++) {
760 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
761 		t4_write_reg(sc, reg, sw_buf_sizes[i]);
762 		reg += 4;
763 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
764 		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
765 		reg += 4;
766 	}
767 
768 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
769 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
770 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
771 
772 	KASSERT(intr_timer[0] <= timer_max,
773 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
774 	    timer_max));
775 	for (i = 1; i < nitems(intr_timer); i++) {
776 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
777 		    ("%s: timers not listed in increasing order (%d)",
778 		    __func__, i));
779 
780 		while (intr_timer[i] > timer_max) {
781 			if (i == nitems(intr_timer) - 1) {
782 				intr_timer[i] = timer_max;
783 				break;
784 			}
785 			intr_timer[i] += intr_timer[i - 1];
786 			intr_timer[i] /= 2;
787 		}
788 	}
789 
790 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
791 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
792 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
793 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
794 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
795 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
796 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
797 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
798 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
799 
800 	if (chip_id(sc) >= CHELSIO_T6) {
801 		m = V_TSCALE(M_TSCALE);
802 		if (tscale == 1)
803 			v = 0;
804 		else
805 			v = V_TSCALE(tscale - 2);
806 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
807 
808 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
809 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
810 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
811 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
812 			v &= ~m;
813 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
814 			    V_WRTHRTHRESH(16);
815 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
816 		}
817 	}
818 
819 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
820 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
821 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
822 
823 	/*
824 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
825 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
826 	 * may have to deal with is MAXPHYS + 1 page.
827 	 */
828 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
829 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
830 
831 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
832 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
833 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
834 
835 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
836 	    F_RESETDDPOFFSET;
837 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
838 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
839 }
840 
841 /*
842  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
843  * address mut be 16B aligned.  If padding is in use the buffer's start and end
844  * need to be aligned to the pad boundary as well.  We'll just make sure that
845  * the size is a multiple of the pad boundary here, it is up to the buffer
846  * allocation code to make sure the start of the buffer is aligned.
847  */
848 static inline int
849 hwsz_ok(struct adapter *sc, int hwsz)
850 {
851 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
852 
853 	return (hwsz >= 64 && (hwsz & mask) == 0);
854 }
855 
856 /*
857  * Initialize the rx buffer sizes and figure out which zones the buffers will
858  * be allocated from.
859  */
860 void
861 t4_init_rx_buf_info(struct adapter *sc)
862 {
863 	struct sge *s = &sc->sge;
864 	struct sge_params *sp = &sc->params.sge;
865 	int i, j, n;
866 	static int sw_buf_sizes[] = {	/* Sorted by size */
867 		MCLBYTES,
868 		MJUMPAGESIZE,
869 		MJUM9BYTES,
870 		MJUM16BYTES
871 	};
872 	struct rx_buf_info *rxb;
873 
874 	s->safe_zidx = -1;
875 	rxb = &s->rx_buf_info[0];
876 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
877 		rxb->size1 = sw_buf_sizes[i];
878 		rxb->zone = m_getzone(rxb->size1);
879 		rxb->type = m_gettype(rxb->size1);
880 		rxb->size2 = 0;
881 		rxb->hwidx1 = -1;
882 		rxb->hwidx2 = -1;
883 		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
884 			int hwsize = sp->sge_fl_buffer_size[j];
885 
886 			if (!hwsz_ok(sc, hwsize))
887 				continue;
888 
889 			/* hwidx for size1 */
890 			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
891 				rxb->hwidx1 = j;
892 
893 			/* hwidx for size2 (buffer packing) */
894 			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
895 				continue;
896 			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
897 			if (n == 0) {
898 				rxb->hwidx2 = j;
899 				rxb->size2 = hwsize;
900 				break;	/* stop looking */
901 			}
902 			if (rxb->hwidx2 != -1) {
903 				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
904 				    hwsize - CL_METADATA_SIZE) {
905 					rxb->hwidx2 = j;
906 					rxb->size2 = hwsize;
907 				}
908 			} else if (n <= 2 * CL_METADATA_SIZE) {
909 				rxb->hwidx2 = j;
910 				rxb->size2 = hwsize;
911 			}
912 		}
913 		if (rxb->hwidx2 != -1)
914 			sc->flags |= BUF_PACKING_OK;
915 		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
916 			s->safe_zidx = i;
917 	}
918 }
919 
920 /*
921  * Verify some basic SGE settings for the PF and VF driver, and other
922  * miscellaneous settings for the PF driver.
923  */
924 int
925 t4_verify_chip_settings(struct adapter *sc)
926 {
927 	struct sge_params *sp = &sc->params.sge;
928 	uint32_t m, v, r;
929 	int rc = 0;
930 	const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
931 
932 	m = F_RXPKTCPLMODE;
933 	v = F_RXPKTCPLMODE;
934 	r = sp->sge_control;
935 	if ((r & m) != v) {
936 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
937 		rc = EINVAL;
938 	}
939 
940 	/*
941 	 * If this changes then every single use of PAGE_SHIFT in the driver
942 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
943 	 */
944 	if (sp->page_shift != PAGE_SHIFT) {
945 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
946 		rc = EINVAL;
947 	}
948 
949 	if (sc->flags & IS_VF)
950 		return (0);
951 
952 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
953 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
954 	if (r != v) {
955 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
956 		if (sc->vres.ddp.size != 0)
957 			rc = EINVAL;
958 	}
959 
960 	m = v = F_TDDPTAGTCB;
961 	r = t4_read_reg(sc, A_ULP_RX_CTL);
962 	if ((r & m) != v) {
963 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
964 		if (sc->vres.ddp.size != 0)
965 			rc = EINVAL;
966 	}
967 
968 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
969 	    F_RESETDDPOFFSET;
970 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
971 	r = t4_read_reg(sc, A_TP_PARA_REG5);
972 	if ((r & m) != v) {
973 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
974 		if (sc->vres.ddp.size != 0)
975 			rc = EINVAL;
976 	}
977 
978 	return (rc);
979 }
980 
981 int
982 t4_create_dma_tag(struct adapter *sc)
983 {
984 	int rc;
985 
986 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
987 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
988 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
989 	    NULL, &sc->dmat);
990 	if (rc != 0) {
991 		device_printf(sc->dev,
992 		    "failed to create main DMA tag: %d\n", rc);
993 	}
994 
995 	return (rc);
996 }
997 
998 void
999 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
1000     struct sysctl_oid_list *children)
1001 {
1002 	struct sge_params *sp = &sc->params.sge;
1003 
1004 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
1005 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
1006 	    sysctl_bufsizes, "A", "freelist buffer sizes");
1007 
1008 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
1009 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
1010 
1011 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
1012 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
1013 
1014 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
1015 	    NULL, sp->spg_len, "status page size (bytes)");
1016 
1017 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
1018 	    NULL, cong_drop, "congestion drop setting");
1019 #ifdef TCP_OFFLOAD
1020 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ofld_cong_drop", CTLFLAG_RD,
1021 	    NULL, ofld_cong_drop, "congestion drop setting");
1022 #endif
1023 
1024 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
1025 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1026 }
1027 
1028 int
1029 t4_destroy_dma_tag(struct adapter *sc)
1030 {
1031 	if (sc->dmat)
1032 		bus_dma_tag_destroy(sc->dmat);
1033 
1034 	return (0);
1035 }
1036 
1037 /*
1038  * Allocate and initialize the firmware event queue, control queues, and special
1039  * purpose rx queues owned by the adapter.
1040  *
1041  * Returns errno on failure.  Resources allocated up to that point may still be
1042  * allocated.  Caller is responsible for cleanup in case this function fails.
1043  */
1044 int
1045 t4_setup_adapter_queues(struct adapter *sc)
1046 {
1047 	int rc, i;
1048 
1049 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1050 
1051 	/*
1052 	 * Firmware event queue
1053 	 */
1054 	rc = alloc_fwq(sc);
1055 	if (rc != 0)
1056 		return (rc);
1057 
1058 	/*
1059 	 * That's all for the VF driver.
1060 	 */
1061 	if (sc->flags & IS_VF)
1062 		return (rc);
1063 
1064 	/*
1065 	 * XXX: General purpose rx queues, one per port.
1066 	 */
1067 
1068 	/*
1069 	 * Control queues, one per port.
1070 	 */
1071 	for_each_port(sc, i) {
1072 		rc = alloc_ctrlq(sc, i);
1073 		if (rc != 0)
1074 			return (rc);
1075 	}
1076 
1077 	return (rc);
1078 }
1079 
1080 /*
1081  * Idempotent
1082  */
1083 int
1084 t4_teardown_adapter_queues(struct adapter *sc)
1085 {
1086 	int i;
1087 
1088 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1089 
1090 	if (sc->sge.ctrlq != NULL) {
1091 		MPASS(!(sc->flags & IS_VF));	/* VFs don't allocate ctrlq. */
1092 		for_each_port(sc, i)
1093 			free_ctrlq(sc, i);
1094 	}
1095 	free_fwq(sc);
1096 
1097 	return (0);
1098 }
1099 
1100 /* Maximum payload that could arrive with a single iq descriptor. */
1101 static inline int
1102 max_rx_payload(struct adapter *sc, struct ifnet *ifp, const bool ofld)
1103 {
1104 	int maxp;
1105 
1106 	/* large enough even when hw VLAN extraction is disabled */
1107 	maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1108 	    ETHER_VLAN_ENCAP_LEN + ifp->if_mtu;
1109 	if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1110 	    maxp < sc->params.tp.max_rx_pdu)
1111 		maxp = sc->params.tp.max_rx_pdu;
1112 	return (maxp);
1113 }
1114 
1115 int
1116 t4_setup_vi_queues(struct vi_info *vi)
1117 {
1118 	int rc = 0, i, intr_idx;
1119 	struct sge_rxq *rxq;
1120 	struct sge_txq *txq;
1121 #ifdef TCP_OFFLOAD
1122 	struct sge_ofld_rxq *ofld_rxq;
1123 #endif
1124 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1125 	struct sge_ofld_txq *ofld_txq;
1126 #endif
1127 #ifdef DEV_NETMAP
1128 	int saved_idx, iqidx;
1129 	struct sge_nm_rxq *nm_rxq;
1130 	struct sge_nm_txq *nm_txq;
1131 #endif
1132 	struct adapter *sc = vi->adapter;
1133 	struct ifnet *ifp = vi->ifp;
1134 	int maxp;
1135 
1136 	/* Interrupt vector to start from (when using multiple vectors) */
1137 	intr_idx = vi->first_intr;
1138 
1139 #ifdef DEV_NETMAP
1140 	saved_idx = intr_idx;
1141 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1142 
1143 		/* netmap is supported with direct interrupts only. */
1144 		MPASS(!forwarding_intr_to_fwq(sc));
1145 		MPASS(vi->first_intr >= 0);
1146 
1147 		/*
1148 		 * We don't have buffers to back the netmap rx queues
1149 		 * right now so we create the queues in a way that
1150 		 * doesn't set off any congestion signal in the chip.
1151 		 */
1152 		for_each_nm_rxq(vi, i, nm_rxq) {
1153 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i);
1154 			if (rc != 0)
1155 				goto done;
1156 			intr_idx++;
1157 		}
1158 
1159 		for_each_nm_txq(vi, i, nm_txq) {
1160 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1161 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i);
1162 			if (rc != 0)
1163 				goto done;
1164 		}
1165 	}
1166 
1167 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1168 	intr_idx = saved_idx;
1169 #endif
1170 
1171 	/*
1172 	 * Allocate rx queues first because a default iqid is required when
1173 	 * creating a tx queue.
1174 	 */
1175 	maxp = max_rx_payload(sc, ifp, false);
1176 	for_each_rxq(vi, i, rxq) {
1177 		rc = alloc_rxq(vi, rxq, i, intr_idx, maxp);
1178 		if (rc != 0)
1179 			goto done;
1180 		if (!forwarding_intr_to_fwq(sc))
1181 			intr_idx++;
1182 	}
1183 #ifdef DEV_NETMAP
1184 	if (ifp->if_capabilities & IFCAP_NETMAP)
1185 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1186 #endif
1187 #ifdef TCP_OFFLOAD
1188 	maxp = max_rx_payload(sc, ifp, true);
1189 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1190 		rc = alloc_ofld_rxq(vi, ofld_rxq, i, intr_idx, maxp);
1191 		if (rc != 0)
1192 			goto done;
1193 		if (!forwarding_intr_to_fwq(sc))
1194 			intr_idx++;
1195 	}
1196 #endif
1197 
1198 	/*
1199 	 * Now the tx queues.
1200 	 */
1201 	for_each_txq(vi, i, txq) {
1202 		rc = alloc_txq(vi, txq, i);
1203 		if (rc != 0)
1204 			goto done;
1205 	}
1206 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1207 	for_each_ofld_txq(vi, i, ofld_txq) {
1208 		rc = alloc_ofld_txq(vi, ofld_txq, i);
1209 		if (rc != 0)
1210 			goto done;
1211 	}
1212 #endif
1213 done:
1214 	if (rc)
1215 		t4_teardown_vi_queues(vi);
1216 
1217 	return (rc);
1218 }
1219 
1220 /*
1221  * Idempotent
1222  */
1223 int
1224 t4_teardown_vi_queues(struct vi_info *vi)
1225 {
1226 	int i;
1227 	struct sge_rxq *rxq;
1228 	struct sge_txq *txq;
1229 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1230 	struct sge_ofld_txq *ofld_txq;
1231 #endif
1232 #ifdef TCP_OFFLOAD
1233 	struct sge_ofld_rxq *ofld_rxq;
1234 #endif
1235 #ifdef DEV_NETMAP
1236 	struct sge_nm_rxq *nm_rxq;
1237 	struct sge_nm_txq *nm_txq;
1238 #endif
1239 
1240 #ifdef DEV_NETMAP
1241 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1242 		for_each_nm_txq(vi, i, nm_txq) {
1243 			free_nm_txq(vi, nm_txq);
1244 		}
1245 
1246 		for_each_nm_rxq(vi, i, nm_rxq) {
1247 			free_nm_rxq(vi, nm_rxq);
1248 		}
1249 	}
1250 #endif
1251 
1252 	/*
1253 	 * Take down all the tx queues first, as they reference the rx queues
1254 	 * (for egress updates, etc.).
1255 	 */
1256 
1257 	for_each_txq(vi, i, txq) {
1258 		free_txq(vi, txq);
1259 	}
1260 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1261 	for_each_ofld_txq(vi, i, ofld_txq) {
1262 		free_ofld_txq(vi, ofld_txq);
1263 	}
1264 #endif
1265 
1266 	/*
1267 	 * Then take down the rx queues.
1268 	 */
1269 
1270 	for_each_rxq(vi, i, rxq) {
1271 		free_rxq(vi, rxq);
1272 	}
1273 #ifdef TCP_OFFLOAD
1274 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1275 		free_ofld_rxq(vi, ofld_rxq);
1276 	}
1277 #endif
1278 
1279 	return (0);
1280 }
1281 
1282 /*
1283  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1284  * unusual scenario.
1285  *
1286  * a) Deals with errors, if any.
1287  * b) Services firmware event queue, which is taking interrupts for all other
1288  *    queues.
1289  */
1290 void
1291 t4_intr_all(void *arg)
1292 {
1293 	struct adapter *sc = arg;
1294 	struct sge_iq *fwq = &sc->sge.fwq;
1295 
1296 	MPASS(sc->intr_count == 1);
1297 
1298 	if (sc->intr_type == INTR_INTX)
1299 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1300 
1301 	t4_intr_err(arg);
1302 	t4_intr_evt(fwq);
1303 }
1304 
1305 /*
1306  * Interrupt handler for errors (installed directly when multiple interrupts are
1307  * being used, or called by t4_intr_all).
1308  */
1309 void
1310 t4_intr_err(void *arg)
1311 {
1312 	struct adapter *sc = arg;
1313 	uint32_t v;
1314 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1315 
1316 	if (atomic_load_int(&sc->error_flags) & ADAP_FATAL_ERR)
1317 		return;
1318 
1319 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1320 	if (v & F_PFSW) {
1321 		sc->swintr++;
1322 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1323 	}
1324 
1325 	if (t4_slow_intr_handler(sc, verbose))
1326 		t4_fatal_err(sc, false);
1327 }
1328 
1329 /*
1330  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1331  * such queue right now.
1332  */
1333 void
1334 t4_intr_evt(void *arg)
1335 {
1336 	struct sge_iq *iq = arg;
1337 
1338 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1339 		service_iq(iq, 0);
1340 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1341 	}
1342 }
1343 
1344 /*
1345  * Interrupt handler for iq+fl queues.
1346  */
1347 void
1348 t4_intr(void *arg)
1349 {
1350 	struct sge_iq *iq = arg;
1351 
1352 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1353 		service_iq_fl(iq, 0);
1354 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1355 	}
1356 }
1357 
1358 #ifdef DEV_NETMAP
1359 /*
1360  * Interrupt handler for netmap rx queues.
1361  */
1362 void
1363 t4_nm_intr(void *arg)
1364 {
1365 	struct sge_nm_rxq *nm_rxq = arg;
1366 
1367 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1368 		service_nm_rxq(nm_rxq);
1369 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1370 	}
1371 }
1372 
1373 /*
1374  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1375  */
1376 void
1377 t4_vi_intr(void *arg)
1378 {
1379 	struct irq *irq = arg;
1380 
1381 	MPASS(irq->nm_rxq != NULL);
1382 	t4_nm_intr(irq->nm_rxq);
1383 
1384 	MPASS(irq->rxq != NULL);
1385 	t4_intr(irq->rxq);
1386 }
1387 #endif
1388 
1389 /*
1390  * Deals with interrupts on an iq-only (no freelist) queue.
1391  */
1392 static int
1393 service_iq(struct sge_iq *iq, int budget)
1394 {
1395 	struct sge_iq *q;
1396 	struct adapter *sc = iq->adapter;
1397 	struct iq_desc *d = &iq->desc[iq->cidx];
1398 	int ndescs = 0, limit;
1399 	int rsp_type;
1400 	uint32_t lq;
1401 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1402 
1403 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1404 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1405 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1406 	    iq->flags));
1407 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1408 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1409 
1410 	limit = budget ? budget : iq->qsize / 16;
1411 
1412 	/*
1413 	 * We always come back and check the descriptor ring for new indirect
1414 	 * interrupts and other responses after running a single handler.
1415 	 */
1416 	for (;;) {
1417 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1418 
1419 			rmb();
1420 
1421 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1422 			lq = be32toh(d->rsp.pldbuflen_qid);
1423 
1424 			switch (rsp_type) {
1425 			case X_RSPD_TYPE_FLBUF:
1426 				panic("%s: data for an iq (%p) with no freelist",
1427 				    __func__, iq);
1428 
1429 				/* NOTREACHED */
1430 
1431 			case X_RSPD_TYPE_CPL:
1432 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1433 				    ("%s: bad opcode %02x.", __func__,
1434 				    d->rss.opcode));
1435 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1436 				break;
1437 
1438 			case X_RSPD_TYPE_INTR:
1439 				/*
1440 				 * There are 1K interrupt-capable queues (qids 0
1441 				 * through 1023).  A response type indicating a
1442 				 * forwarded interrupt with a qid >= 1K is an
1443 				 * iWARP async notification.
1444 				 */
1445 				if (__predict_true(lq >= 1024)) {
1446 					t4_an_handler(iq, &d->rsp);
1447 					break;
1448 				}
1449 
1450 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1451 				    sc->sge.iq_base];
1452 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1453 				    IQS_BUSY)) {
1454 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1455 						(void) atomic_cmpset_int(&q->state,
1456 						    IQS_BUSY, IQS_IDLE);
1457 					} else {
1458 						STAILQ_INSERT_TAIL(&iql, q,
1459 						    link);
1460 					}
1461 				}
1462 				break;
1463 
1464 			default:
1465 				KASSERT(0,
1466 				    ("%s: illegal response type %d on iq %p",
1467 				    __func__, rsp_type, iq));
1468 				log(LOG_ERR,
1469 				    "%s: illegal response type %d on iq %p",
1470 				    device_get_nameunit(sc->dev), rsp_type, iq);
1471 				break;
1472 			}
1473 
1474 			d++;
1475 			if (__predict_false(++iq->cidx == iq->sidx)) {
1476 				iq->cidx = 0;
1477 				iq->gen ^= F_RSPD_GEN;
1478 				d = &iq->desc[0];
1479 			}
1480 			if (__predict_false(++ndescs == limit)) {
1481 				t4_write_reg(sc, sc->sge_gts_reg,
1482 				    V_CIDXINC(ndescs) |
1483 				    V_INGRESSQID(iq->cntxt_id) |
1484 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1485 				ndescs = 0;
1486 
1487 				if (budget) {
1488 					return (EINPROGRESS);
1489 				}
1490 			}
1491 		}
1492 
1493 		if (STAILQ_EMPTY(&iql))
1494 			break;
1495 
1496 		/*
1497 		 * Process the head only, and send it to the back of the list if
1498 		 * it's still not done.
1499 		 */
1500 		q = STAILQ_FIRST(&iql);
1501 		STAILQ_REMOVE_HEAD(&iql, link);
1502 		if (service_iq_fl(q, q->qsize / 8) == 0)
1503 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1504 		else
1505 			STAILQ_INSERT_TAIL(&iql, q, link);
1506 	}
1507 
1508 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1509 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1510 
1511 	return (0);
1512 }
1513 
1514 #if defined(INET) || defined(INET6)
1515 static inline int
1516 sort_before_lro(struct lro_ctrl *lro)
1517 {
1518 
1519 	return (lro->lro_mbuf_max != 0);
1520 }
1521 #endif
1522 
1523 #define CGBE_SHIFT_SCALE 10
1524 
1525 static inline uint64_t
1526 t4_tstmp_to_ns(struct adapter *sc, uint64_t lf)
1527 {
1528 	struct clock_sync *cur, dcur;
1529 	uint64_t tstmp_sec, tstmp_nsec;
1530 	uint64_t hw_clocks;
1531 	uint64_t rt_cur_to_prev, res_s, res_n, res_s_modulo, res;
1532 	uint64_t hw_clk_div, cclk;
1533 	uint64_t hw_tstmp = lf & 0xfffffffffffffffULL;	/* 60b, not 64b. */
1534 	uint32_t gen;
1535 
1536 	do {
1537 		cur = &sc->cal_info[sc->cal_current];
1538 		gen = atomic_load_acq_int(&cur->gen);
1539 		if (gen == 0)
1540 			return (0);
1541 		dcur = *cur;
1542 		atomic_thread_fence_acq();
1543 	} while (gen != dcur.gen);
1544 
1545 	/*
1546 	 * Our goal here is to have a result that is:
1547 	 *
1548 	 * (                             (cur_time - prev_time)   )
1549 	 * ((hw_tstmp - hw_prev) *  ----------------------------- ) + prev_time
1550 	 * (                             (hw_cur - hw_prev)       )
1551 	 *
1552 	 * With the constraints that we cannot use float and we
1553 	 * don't want to overflow the uint64_t numbers we are using.
1554 	 *
1555 	 * The plan is to take the clocking value of the hw timestamps
1556 	 * and split them into seconds and nanosecond equivalent portions.
1557 	 * Then we operate on the two portions seperately making sure to
1558 	 * bring back the carry over from the seconds when we divide.
1559 	 *
1560 	 * First up lets get the two divided into separate entities
1561 	 * i.e. the seconds. We use the clock frequency for this.
1562 	 * Note that vpd.cclk is in khz, we need it in raw hz so
1563 	 * convert to hz.
1564 	 */
1565 	cclk = sc->params.vpd.cclk * 1000;
1566 	hw_clocks = hw_tstmp - dcur.hw_prev;
1567 	tstmp_sec = hw_clocks / cclk;
1568 	tstmp_nsec = hw_clocks % cclk;
1569 	/* Now work with them separately */
1570 	rt_cur_to_prev = (dcur.rt_cur - dcur.rt_prev);
1571 	res_s = tstmp_sec * rt_cur_to_prev;
1572 	res_n = tstmp_nsec * rt_cur_to_prev;
1573 	/* Now lets get our divider */
1574 	hw_clk_div = dcur.hw_cur - dcur.hw_prev;
1575 	/* Make sure to save the remainder from the seconds divide */
1576 	res_s_modulo = res_s % hw_clk_div;
1577 	res_s /= hw_clk_div;
1578 	/* scale the remainder to where it should be */
1579 	res_s_modulo *= cclk;
1580 	/* Now add in the remainder */
1581 	res_n += res_s_modulo;
1582 	/* Now do the divide */
1583 	res_n /= hw_clk_div;
1584 	res_s *= cclk;
1585 	/* Recombine the two */
1586 	res = res_s + res_n;
1587 	/* And now add in the base time to get to the real timestamp */
1588 	res += dcur.rt_prev;
1589 	return (res);
1590 }
1591 
1592 static inline void
1593 move_to_next_rxbuf(struct sge_fl *fl)
1594 {
1595 
1596 	fl->rx_offset = 0;
1597 	if (__predict_false((++fl->cidx & 7) == 0)) {
1598 		uint16_t cidx = fl->cidx >> 3;
1599 
1600 		if (__predict_false(cidx == fl->sidx))
1601 			fl->cidx = cidx = 0;
1602 		fl->hw_cidx = cidx;
1603 	}
1604 }
1605 
1606 /*
1607  * Deals with interrupts on an iq+fl queue.
1608  */
1609 static int
1610 service_iq_fl(struct sge_iq *iq, int budget)
1611 {
1612 	struct sge_rxq *rxq = iq_to_rxq(iq);
1613 	struct sge_fl *fl;
1614 	struct adapter *sc = iq->adapter;
1615 	struct iq_desc *d = &iq->desc[iq->cidx];
1616 	int ndescs, limit;
1617 	int rsp_type, starved;
1618 	uint32_t lq;
1619 	uint16_t fl_hw_cidx;
1620 	struct mbuf *m0;
1621 #if defined(INET) || defined(INET6)
1622 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1623 	struct lro_ctrl *lro = &rxq->lro;
1624 #endif
1625 
1626 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1627 	MPASS(iq->flags & IQ_HAS_FL);
1628 
1629 	ndescs = 0;
1630 #if defined(INET) || defined(INET6)
1631 	if (iq->flags & IQ_ADJ_CREDIT) {
1632 		MPASS(sort_before_lro(lro));
1633 		iq->flags &= ~IQ_ADJ_CREDIT;
1634 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1635 			tcp_lro_flush_all(lro);
1636 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1637 			    V_INGRESSQID((u32)iq->cntxt_id) |
1638 			    V_SEINTARM(iq->intr_params));
1639 			return (0);
1640 		}
1641 		ndescs = 1;
1642 	}
1643 #else
1644 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1645 #endif
1646 
1647 	limit = budget ? budget : iq->qsize / 16;
1648 	fl = &rxq->fl;
1649 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1650 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1651 
1652 		rmb();
1653 
1654 		m0 = NULL;
1655 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1656 		lq = be32toh(d->rsp.pldbuflen_qid);
1657 
1658 		switch (rsp_type) {
1659 		case X_RSPD_TYPE_FLBUF:
1660 			if (lq & F_RSPD_NEWBUF) {
1661 				if (fl->rx_offset > 0)
1662 					move_to_next_rxbuf(fl);
1663 				lq = G_RSPD_LEN(lq);
1664 			}
1665 			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1666 				FL_LOCK(fl);
1667 				refill_fl(sc, fl, 64);
1668 				FL_UNLOCK(fl);
1669 				fl_hw_cidx = fl->hw_cidx;
1670 			}
1671 
1672 			if (d->rss.opcode == CPL_RX_PKT) {
1673 				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1674 					break;
1675 				goto out;
1676 			}
1677 			m0 = get_fl_payload(sc, fl, lq);
1678 			if (__predict_false(m0 == NULL))
1679 				goto out;
1680 
1681 			/* fall through */
1682 
1683 		case X_RSPD_TYPE_CPL:
1684 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1685 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1686 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1687 			break;
1688 
1689 		case X_RSPD_TYPE_INTR:
1690 
1691 			/*
1692 			 * There are 1K interrupt-capable queues (qids 0
1693 			 * through 1023).  A response type indicating a
1694 			 * forwarded interrupt with a qid >= 1K is an
1695 			 * iWARP async notification.  That is the only
1696 			 * acceptable indirect interrupt on this queue.
1697 			 */
1698 			if (__predict_false(lq < 1024)) {
1699 				panic("%s: indirect interrupt on iq_fl %p "
1700 				    "with qid %u", __func__, iq, lq);
1701 			}
1702 
1703 			t4_an_handler(iq, &d->rsp);
1704 			break;
1705 
1706 		default:
1707 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1708 			    __func__, rsp_type, iq));
1709 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1710 			    device_get_nameunit(sc->dev), rsp_type, iq);
1711 			break;
1712 		}
1713 
1714 		d++;
1715 		if (__predict_false(++iq->cidx == iq->sidx)) {
1716 			iq->cidx = 0;
1717 			iq->gen ^= F_RSPD_GEN;
1718 			d = &iq->desc[0];
1719 		}
1720 		if (__predict_false(++ndescs == limit)) {
1721 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1722 			    V_INGRESSQID(iq->cntxt_id) |
1723 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1724 
1725 #if defined(INET) || defined(INET6)
1726 			if (iq->flags & IQ_LRO_ENABLED &&
1727 			    !sort_before_lro(lro) &&
1728 			    sc->lro_timeout != 0) {
1729 				tcp_lro_flush_inactive(lro, &lro_timeout);
1730 			}
1731 #endif
1732 			if (budget)
1733 				return (EINPROGRESS);
1734 			ndescs = 0;
1735 		}
1736 	}
1737 out:
1738 #if defined(INET) || defined(INET6)
1739 	if (iq->flags & IQ_LRO_ENABLED) {
1740 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1741 			MPASS(sort_before_lro(lro));
1742 			/* hold back one credit and don't flush LRO state */
1743 			iq->flags |= IQ_ADJ_CREDIT;
1744 			ndescs--;
1745 		} else {
1746 			tcp_lro_flush_all(lro);
1747 		}
1748 	}
1749 #endif
1750 
1751 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1752 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1753 
1754 	FL_LOCK(fl);
1755 	starved = refill_fl(sc, fl, 64);
1756 	FL_UNLOCK(fl);
1757 	if (__predict_false(starved != 0))
1758 		add_fl_to_sfl(sc, fl);
1759 
1760 	return (0);
1761 }
1762 
1763 static inline struct cluster_metadata *
1764 cl_metadata(struct fl_sdesc *sd)
1765 {
1766 
1767 	return ((void *)(sd->cl + sd->moff));
1768 }
1769 
1770 static void
1771 rxb_free(struct mbuf *m)
1772 {
1773 	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1774 
1775 	uma_zfree(clm->zone, clm->cl);
1776 	counter_u64_add(extfree_rels, 1);
1777 }
1778 
1779 /*
1780  * The mbuf returned comes from zone_muf and carries the payload in one of these
1781  * ways
1782  * a) complete frame inside the mbuf
1783  * b) m_cljset (for clusters without metadata)
1784  * d) m_extaddref (cluster with metadata)
1785  */
1786 static struct mbuf *
1787 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1788     int remaining)
1789 {
1790 	struct mbuf *m;
1791 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1792 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1793 	struct cluster_metadata *clm;
1794 	int len, blen;
1795 	caddr_t payload;
1796 
1797 	if (fl->flags & FL_BUF_PACKING) {
1798 		u_int l, pad;
1799 
1800 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1801 		len = min(remaining, blen);
1802 		payload = sd->cl + fl->rx_offset;
1803 
1804 		l = fr_offset + len;
1805 		pad = roundup2(l, fl->buf_boundary) - l;
1806 		if (fl->rx_offset + len + pad < rxb->size2)
1807 			blen = len + pad;
1808 		MPASS(fl->rx_offset + blen <= rxb->size2);
1809 	} else {
1810 		MPASS(fl->rx_offset == 0);	/* not packing */
1811 		blen = rxb->size1;
1812 		len = min(remaining, blen);
1813 		payload = sd->cl;
1814 	}
1815 
1816 	if (fr_offset == 0) {
1817 		m = m_gethdr(M_NOWAIT, MT_DATA);
1818 		if (__predict_false(m == NULL))
1819 			return (NULL);
1820 		m->m_pkthdr.len = remaining;
1821 	} else {
1822 		m = m_get(M_NOWAIT, MT_DATA);
1823 		if (__predict_false(m == NULL))
1824 			return (NULL);
1825 	}
1826 	m->m_len = len;
1827 	kmsan_mark(payload, len, KMSAN_STATE_INITED);
1828 
1829 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1830 		/* copy data to mbuf */
1831 		bcopy(payload, mtod(m, caddr_t), len);
1832 		if (fl->flags & FL_BUF_PACKING) {
1833 			fl->rx_offset += blen;
1834 			MPASS(fl->rx_offset <= rxb->size2);
1835 			if (fl->rx_offset < rxb->size2)
1836 				return (m);	/* without advancing the cidx */
1837 		}
1838 	} else if (fl->flags & FL_BUF_PACKING) {
1839 		clm = cl_metadata(sd);
1840 		if (sd->nmbuf++ == 0) {
1841 			clm->refcount = 1;
1842 			clm->zone = rxb->zone;
1843 			clm->cl = sd->cl;
1844 			counter_u64_add(extfree_refs, 1);
1845 		}
1846 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1847 		    NULL);
1848 
1849 		fl->rx_offset += blen;
1850 		MPASS(fl->rx_offset <= rxb->size2);
1851 		if (fl->rx_offset < rxb->size2)
1852 			return (m);	/* without advancing the cidx */
1853 	} else {
1854 		m_cljset(m, sd->cl, rxb->type);
1855 		sd->cl = NULL;	/* consumed, not a recycle candidate */
1856 	}
1857 
1858 	move_to_next_rxbuf(fl);
1859 
1860 	return (m);
1861 }
1862 
1863 static struct mbuf *
1864 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1865 {
1866 	struct mbuf *m0, *m, **pnext;
1867 	u_int remaining;
1868 
1869 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1870 		M_ASSERTPKTHDR(fl->m0);
1871 		MPASS(fl->m0->m_pkthdr.len == plen);
1872 		MPASS(fl->remaining < plen);
1873 
1874 		m0 = fl->m0;
1875 		pnext = fl->pnext;
1876 		remaining = fl->remaining;
1877 		fl->flags &= ~FL_BUF_RESUME;
1878 		goto get_segment;
1879 	}
1880 
1881 	/*
1882 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1883 	 * 'len' and it may span multiple hw buffers.
1884 	 */
1885 
1886 	m0 = get_scatter_segment(sc, fl, 0, plen);
1887 	if (m0 == NULL)
1888 		return (NULL);
1889 	remaining = plen - m0->m_len;
1890 	pnext = &m0->m_next;
1891 	while (remaining > 0) {
1892 get_segment:
1893 		MPASS(fl->rx_offset == 0);
1894 		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1895 		if (__predict_false(m == NULL)) {
1896 			fl->m0 = m0;
1897 			fl->pnext = pnext;
1898 			fl->remaining = remaining;
1899 			fl->flags |= FL_BUF_RESUME;
1900 			return (NULL);
1901 		}
1902 		*pnext = m;
1903 		pnext = &m->m_next;
1904 		remaining -= m->m_len;
1905 	}
1906 	*pnext = NULL;
1907 
1908 	M_ASSERTPKTHDR(m0);
1909 	return (m0);
1910 }
1911 
1912 static int
1913 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1914     int remaining)
1915 {
1916 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1917 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1918 	int len, blen;
1919 
1920 	if (fl->flags & FL_BUF_PACKING) {
1921 		u_int l, pad;
1922 
1923 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1924 		len = min(remaining, blen);
1925 
1926 		l = fr_offset + len;
1927 		pad = roundup2(l, fl->buf_boundary) - l;
1928 		if (fl->rx_offset + len + pad < rxb->size2)
1929 			blen = len + pad;
1930 		fl->rx_offset += blen;
1931 		MPASS(fl->rx_offset <= rxb->size2);
1932 		if (fl->rx_offset < rxb->size2)
1933 			return (len);	/* without advancing the cidx */
1934 	} else {
1935 		MPASS(fl->rx_offset == 0);	/* not packing */
1936 		blen = rxb->size1;
1937 		len = min(remaining, blen);
1938 	}
1939 	move_to_next_rxbuf(fl);
1940 	return (len);
1941 }
1942 
1943 static inline void
1944 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1945 {
1946 	int remaining, fr_offset, len;
1947 
1948 	fr_offset = 0;
1949 	remaining = plen;
1950 	while (remaining > 0) {
1951 		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1952 		fr_offset += len;
1953 		remaining -= len;
1954 	}
1955 }
1956 
1957 static inline int
1958 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1959 {
1960 	int len;
1961 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1962 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1963 
1964 	if (fl->flags & FL_BUF_PACKING)
1965 		len = rxb->size2 - fl->rx_offset;
1966 	else
1967 		len = rxb->size1;
1968 
1969 	return (min(plen, len));
1970 }
1971 
1972 static int
1973 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1974     u_int plen)
1975 {
1976 	struct mbuf *m0;
1977 	struct ifnet *ifp = rxq->ifp;
1978 	struct sge_fl *fl = &rxq->fl;
1979 	struct vi_info *vi = ifp->if_softc;
1980 	const struct cpl_rx_pkt *cpl;
1981 #if defined(INET) || defined(INET6)
1982 	struct lro_ctrl *lro = &rxq->lro;
1983 #endif
1984 	uint16_t err_vec, tnl_type, tnlhdr_len;
1985 	static const int sw_hashtype[4][2] = {
1986 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1987 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1988 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1989 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1990 	};
1991 	static const int sw_csum_flags[2][2] = {
1992 		{
1993 			/* IP, inner IP */
1994 			CSUM_ENCAP_VXLAN |
1995 			    CSUM_L3_CALC | CSUM_L3_VALID |
1996 			    CSUM_L4_CALC | CSUM_L4_VALID |
1997 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1998 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1999 
2000 			/* IP, inner IP6 */
2001 			CSUM_ENCAP_VXLAN |
2002 			    CSUM_L3_CALC | CSUM_L3_VALID |
2003 			    CSUM_L4_CALC | CSUM_L4_VALID |
2004 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
2005 		},
2006 		{
2007 			/* IP6, inner IP */
2008 			CSUM_ENCAP_VXLAN |
2009 			    CSUM_L4_CALC | CSUM_L4_VALID |
2010 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
2011 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
2012 
2013 			/* IP6, inner IP6 */
2014 			CSUM_ENCAP_VXLAN |
2015 			    CSUM_L4_CALC | CSUM_L4_VALID |
2016 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
2017 		},
2018 	};
2019 
2020 	MPASS(plen > sc->params.sge.fl_pktshift);
2021 	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
2022 	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
2023 		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
2024 		caddr_t frame;
2025 		int rc, slen;
2026 
2027 		slen = get_segment_len(sc, fl, plen) -
2028 		    sc->params.sge.fl_pktshift;
2029 		frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
2030 		CURVNET_SET_QUIET(ifp->if_vnet);
2031 		rc = pfil_run_hooks(vi->pfil, frame, ifp,
2032 		    slen | PFIL_MEMPTR | PFIL_IN, NULL);
2033 		CURVNET_RESTORE();
2034 		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
2035 			skip_fl_payload(sc, fl, plen);
2036 			return (0);
2037 		}
2038 		if (rc == PFIL_REALLOCED) {
2039 			skip_fl_payload(sc, fl, plen);
2040 			m0 = pfil_mem2mbuf(frame);
2041 			goto have_mbuf;
2042 		}
2043 	}
2044 
2045 	m0 = get_fl_payload(sc, fl, plen);
2046 	if (__predict_false(m0 == NULL))
2047 		return (ENOMEM);
2048 
2049 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
2050 	m0->m_len -= sc->params.sge.fl_pktshift;
2051 	m0->m_data += sc->params.sge.fl_pktshift;
2052 
2053 have_mbuf:
2054 	m0->m_pkthdr.rcvif = ifp;
2055 	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
2056 	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
2057 
2058 	cpl = (const void *)(&d->rss + 1);
2059 	if (sc->params.tp.rx_pkt_encap) {
2060 		const uint16_t ev = be16toh(cpl->err_vec);
2061 
2062 		err_vec = G_T6_COMPR_RXERR_VEC(ev);
2063 		tnl_type = G_T6_RX_TNL_TYPE(ev);
2064 		tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
2065 	} else {
2066 		err_vec = be16toh(cpl->err_vec);
2067 		tnl_type = 0;
2068 		tnlhdr_len = 0;
2069 	}
2070 	if (cpl->csum_calc && err_vec == 0) {
2071 		int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
2072 
2073 		/* checksum(s) calculated and found to be correct. */
2074 
2075 		MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
2076 		    (cpl->l2info & htobe32(F_RXF_IP6)));
2077 		m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2078 		if (tnl_type == 0) {
2079 	    		if (!ipv6 && ifp->if_capenable & IFCAP_RXCSUM) {
2080 				m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2081 				    CSUM_L3_VALID | CSUM_L4_CALC |
2082 				    CSUM_L4_VALID;
2083 			} else if (ipv6 && ifp->if_capenable & IFCAP_RXCSUM_IPV6) {
2084 				m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2085 				    CSUM_L4_VALID;
2086 			}
2087 			rxq->rxcsum++;
2088 		} else {
2089 			MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
2090 
2091 			M_HASHTYPE_SETINNER(m0);
2092 			if (__predict_false(cpl->ip_frag)) {
2093 				/*
2094 				 * csum_data is for the inner frame (which is an
2095 				 * IP fragment) and is not 0xffff.  There is no
2096 				 * way to pass the inner csum_data to the stack.
2097 				 * We don't want the stack to use the inner
2098 				 * csum_data to validate the outer frame or it
2099 				 * will get rejected.  So we fix csum_data here
2100 				 * and let sw do the checksum of inner IP
2101 				 * fragments.
2102 				 *
2103 				 * XXX: Need 32b for csum_data2 in an rx mbuf.
2104 				 * Maybe stuff it into rcv_tstmp?
2105 				 */
2106 				m0->m_pkthdr.csum_data = 0xffff;
2107 				if (ipv6) {
2108 					m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2109 					    CSUM_L4_VALID;
2110 				} else {
2111 					m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2112 					    CSUM_L3_VALID | CSUM_L4_CALC |
2113 					    CSUM_L4_VALID;
2114 				}
2115 			} else {
2116 				int outer_ipv6;
2117 
2118 				MPASS(m0->m_pkthdr.csum_data == 0xffff);
2119 
2120 				outer_ipv6 = tnlhdr_len >=
2121 				    sizeof(struct ether_header) +
2122 				    sizeof(struct ip6_hdr);
2123 				m0->m_pkthdr.csum_flags =
2124 				    sw_csum_flags[outer_ipv6][ipv6];
2125 			}
2126 			rxq->vxlan_rxcsum++;
2127 		}
2128 	}
2129 
2130 	if (cpl->vlan_ex) {
2131 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2132 		m0->m_flags |= M_VLANTAG;
2133 		rxq->vlan_extraction++;
2134 	}
2135 
2136 	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
2137 		/*
2138 		 * Fill up rcv_tstmp but do not set M_TSTMP as
2139 		 * long as we get a non-zero back from t4_tstmp_to_ns().
2140 		 */
2141 		m0->m_pkthdr.rcv_tstmp = t4_tstmp_to_ns(sc,
2142 		    be64toh(d->rsp.u.last_flit));
2143 		if (m0->m_pkthdr.rcv_tstmp != 0)
2144 			m0->m_flags |= M_TSTMP;
2145 	}
2146 
2147 #ifdef NUMA
2148 	m0->m_pkthdr.numa_domain = ifp->if_numa_domain;
2149 #endif
2150 #if defined(INET) || defined(INET6)
2151 	if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
2152 	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2153 	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2154 		if (sort_before_lro(lro)) {
2155 			tcp_lro_queue_mbuf(lro, m0);
2156 			return (0); /* queued for sort, then LRO */
2157 		}
2158 		if (tcp_lro_rx(lro, m0, 0) == 0)
2159 			return (0); /* queued for LRO */
2160 	}
2161 #endif
2162 	ifp->if_input(ifp, m0);
2163 
2164 	return (0);
2165 }
2166 
2167 /*
2168  * Must drain the wrq or make sure that someone else will.
2169  */
2170 static void
2171 wrq_tx_drain(void *arg, int n)
2172 {
2173 	struct sge_wrq *wrq = arg;
2174 	struct sge_eq *eq = &wrq->eq;
2175 
2176 	EQ_LOCK(eq);
2177 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2178 		drain_wrq_wr_list(wrq->adapter, wrq);
2179 	EQ_UNLOCK(eq);
2180 }
2181 
2182 static void
2183 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2184 {
2185 	struct sge_eq *eq = &wrq->eq;
2186 	u_int available, dbdiff;	/* # of hardware descriptors */
2187 	u_int n;
2188 	struct wrqe *wr;
2189 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2190 
2191 	EQ_LOCK_ASSERT_OWNED(eq);
2192 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2193 	wr = STAILQ_FIRST(&wrq->wr_list);
2194 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2195 	MPASS(eq->pidx == eq->dbidx);
2196 	dbdiff = 0;
2197 
2198 	do {
2199 		eq->cidx = read_hw_cidx(eq);
2200 		if (eq->pidx == eq->cidx)
2201 			available = eq->sidx - 1;
2202 		else
2203 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2204 
2205 		MPASS(wr->wrq == wrq);
2206 		n = howmany(wr->wr_len, EQ_ESIZE);
2207 		if (available < n)
2208 			break;
2209 
2210 		dst = (void *)&eq->desc[eq->pidx];
2211 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2212 			/* Won't wrap, won't end exactly at the status page. */
2213 			bcopy(&wr->wr[0], dst, wr->wr_len);
2214 			eq->pidx += n;
2215 		} else {
2216 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2217 
2218 			bcopy(&wr->wr[0], dst, first_portion);
2219 			if (wr->wr_len > first_portion) {
2220 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2221 				    wr->wr_len - first_portion);
2222 			}
2223 			eq->pidx = n - (eq->sidx - eq->pidx);
2224 		}
2225 		wrq->tx_wrs_copied++;
2226 
2227 		if (available < eq->sidx / 4 &&
2228 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2229 				/*
2230 				 * XXX: This is not 100% reliable with some
2231 				 * types of WRs.  But this is a very unusual
2232 				 * situation for an ofld/ctrl queue anyway.
2233 				 */
2234 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2235 			    F_FW_WR_EQUEQ);
2236 		}
2237 
2238 		dbdiff += n;
2239 		if (dbdiff >= 16) {
2240 			ring_eq_db(sc, eq, dbdiff);
2241 			dbdiff = 0;
2242 		}
2243 
2244 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2245 		free_wrqe(wr);
2246 		MPASS(wrq->nwr_pending > 0);
2247 		wrq->nwr_pending--;
2248 		MPASS(wrq->ndesc_needed >= n);
2249 		wrq->ndesc_needed -= n;
2250 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2251 
2252 	if (dbdiff)
2253 		ring_eq_db(sc, eq, dbdiff);
2254 }
2255 
2256 /*
2257  * Doesn't fail.  Holds on to work requests it can't send right away.
2258  */
2259 void
2260 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2261 {
2262 #ifdef INVARIANTS
2263 	struct sge_eq *eq = &wrq->eq;
2264 #endif
2265 
2266 	EQ_LOCK_ASSERT_OWNED(eq);
2267 	MPASS(wr != NULL);
2268 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2269 	MPASS((wr->wr_len & 0x7) == 0);
2270 
2271 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2272 	wrq->nwr_pending++;
2273 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2274 
2275 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2276 		return;	/* commit_wrq_wr will drain wr_list as well. */
2277 
2278 	drain_wrq_wr_list(sc, wrq);
2279 
2280 	/* Doorbell must have caught up to the pidx. */
2281 	MPASS(eq->pidx == eq->dbidx);
2282 }
2283 
2284 void
2285 t4_update_fl_bufsize(struct ifnet *ifp)
2286 {
2287 	struct vi_info *vi = ifp->if_softc;
2288 	struct adapter *sc = vi->adapter;
2289 	struct sge_rxq *rxq;
2290 #ifdef TCP_OFFLOAD
2291 	struct sge_ofld_rxq *ofld_rxq;
2292 #endif
2293 	struct sge_fl *fl;
2294 	int i, maxp;
2295 
2296 	maxp = max_rx_payload(sc, ifp, false);
2297 	for_each_rxq(vi, i, rxq) {
2298 		fl = &rxq->fl;
2299 
2300 		FL_LOCK(fl);
2301 		fl->zidx = find_refill_source(sc, maxp,
2302 		    fl->flags & FL_BUF_PACKING);
2303 		FL_UNLOCK(fl);
2304 	}
2305 #ifdef TCP_OFFLOAD
2306 	maxp = max_rx_payload(sc, ifp, true);
2307 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2308 		fl = &ofld_rxq->fl;
2309 
2310 		FL_LOCK(fl);
2311 		fl->zidx = find_refill_source(sc, maxp,
2312 		    fl->flags & FL_BUF_PACKING);
2313 		FL_UNLOCK(fl);
2314 	}
2315 #endif
2316 }
2317 
2318 static inline int
2319 mbuf_nsegs(struct mbuf *m)
2320 {
2321 
2322 	M_ASSERTPKTHDR(m);
2323 	KASSERT(m->m_pkthdr.inner_l5hlen > 0,
2324 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2325 
2326 	return (m->m_pkthdr.inner_l5hlen);
2327 }
2328 
2329 static inline void
2330 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2331 {
2332 
2333 	M_ASSERTPKTHDR(m);
2334 	m->m_pkthdr.inner_l5hlen = nsegs;
2335 }
2336 
2337 static inline int
2338 mbuf_cflags(struct mbuf *m)
2339 {
2340 
2341 	M_ASSERTPKTHDR(m);
2342 	return (m->m_pkthdr.PH_loc.eight[4]);
2343 }
2344 
2345 static inline void
2346 set_mbuf_cflags(struct mbuf *m, uint8_t flags)
2347 {
2348 
2349 	M_ASSERTPKTHDR(m);
2350 	m->m_pkthdr.PH_loc.eight[4] = flags;
2351 }
2352 
2353 static inline int
2354 mbuf_len16(struct mbuf *m)
2355 {
2356 	int n;
2357 
2358 	M_ASSERTPKTHDR(m);
2359 	n = m->m_pkthdr.PH_loc.eight[0];
2360 	if (!(mbuf_cflags(m) & MC_TLS))
2361 		MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2362 
2363 	return (n);
2364 }
2365 
2366 static inline void
2367 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2368 {
2369 
2370 	M_ASSERTPKTHDR(m);
2371 	if (!(mbuf_cflags(m) & MC_TLS))
2372 		MPASS(len16 > 0 && len16 <= SGE_MAX_WR_LEN / 16);
2373 	m->m_pkthdr.PH_loc.eight[0] = len16;
2374 }
2375 
2376 #ifdef RATELIMIT
2377 static inline int
2378 mbuf_eo_nsegs(struct mbuf *m)
2379 {
2380 
2381 	M_ASSERTPKTHDR(m);
2382 	return (m->m_pkthdr.PH_loc.eight[1]);
2383 }
2384 
2385 #if defined(INET) || defined(INET6)
2386 static inline void
2387 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2388 {
2389 
2390 	M_ASSERTPKTHDR(m);
2391 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2392 }
2393 #endif
2394 
2395 static inline int
2396 mbuf_eo_len16(struct mbuf *m)
2397 {
2398 	int n;
2399 
2400 	M_ASSERTPKTHDR(m);
2401 	n = m->m_pkthdr.PH_loc.eight[2];
2402 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2403 
2404 	return (n);
2405 }
2406 
2407 #if defined(INET) || defined(INET6)
2408 static inline void
2409 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2410 {
2411 
2412 	M_ASSERTPKTHDR(m);
2413 	m->m_pkthdr.PH_loc.eight[2] = len16;
2414 }
2415 #endif
2416 
2417 static inline int
2418 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2419 {
2420 
2421 	M_ASSERTPKTHDR(m);
2422 	return (m->m_pkthdr.PH_loc.eight[3]);
2423 }
2424 
2425 #if defined(INET) || defined(INET6)
2426 static inline void
2427 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2428 {
2429 
2430 	M_ASSERTPKTHDR(m);
2431 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2432 }
2433 #endif
2434 
2435 static inline int
2436 needs_eo(struct m_snd_tag *mst)
2437 {
2438 
2439 	return (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2440 }
2441 #endif
2442 
2443 /*
2444  * Try to allocate an mbuf to contain a raw work request.  To make it
2445  * easy to construct the work request, don't allocate a chain but a
2446  * single mbuf.
2447  */
2448 struct mbuf *
2449 alloc_wr_mbuf(int len, int how)
2450 {
2451 	struct mbuf *m;
2452 
2453 	if (len <= MHLEN)
2454 		m = m_gethdr(how, MT_DATA);
2455 	else if (len <= MCLBYTES)
2456 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2457 	else
2458 		m = NULL;
2459 	if (m == NULL)
2460 		return (NULL);
2461 	m->m_pkthdr.len = len;
2462 	m->m_len = len;
2463 	set_mbuf_cflags(m, MC_RAW_WR);
2464 	set_mbuf_len16(m, howmany(len, 16));
2465 	return (m);
2466 }
2467 
2468 static inline bool
2469 needs_hwcsum(struct mbuf *m)
2470 {
2471 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
2472 	    CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2473 	    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
2474 	    CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
2475 	    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
2476 
2477 	M_ASSERTPKTHDR(m);
2478 
2479 	return (m->m_pkthdr.csum_flags & csum_flags);
2480 }
2481 
2482 static inline bool
2483 needs_tso(struct mbuf *m)
2484 {
2485 	const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
2486 	    CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2487 
2488 	M_ASSERTPKTHDR(m);
2489 
2490 	return (m->m_pkthdr.csum_flags & csum_flags);
2491 }
2492 
2493 static inline bool
2494 needs_vxlan_csum(struct mbuf *m)
2495 {
2496 
2497 	M_ASSERTPKTHDR(m);
2498 
2499 	return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
2500 }
2501 
2502 static inline bool
2503 needs_vxlan_tso(struct mbuf *m)
2504 {
2505 	const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
2506 	    CSUM_INNER_IP6_TSO;
2507 
2508 	M_ASSERTPKTHDR(m);
2509 
2510 	return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
2511 	    (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
2512 }
2513 
2514 #if defined(INET) || defined(INET6)
2515 static inline bool
2516 needs_inner_tcp_csum(struct mbuf *m)
2517 {
2518 	const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2519 
2520 	M_ASSERTPKTHDR(m);
2521 
2522 	return (m->m_pkthdr.csum_flags & csum_flags);
2523 }
2524 #endif
2525 
2526 static inline bool
2527 needs_l3_csum(struct mbuf *m)
2528 {
2529 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
2530 	    CSUM_INNER_IP_TSO;
2531 
2532 	M_ASSERTPKTHDR(m);
2533 
2534 	return (m->m_pkthdr.csum_flags & csum_flags);
2535 }
2536 
2537 static inline bool
2538 needs_outer_tcp_csum(struct mbuf *m)
2539 {
2540 	const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
2541 	    CSUM_IP6_TSO;
2542 
2543 	M_ASSERTPKTHDR(m);
2544 
2545 	return (m->m_pkthdr.csum_flags & csum_flags);
2546 }
2547 
2548 #ifdef RATELIMIT
2549 static inline bool
2550 needs_outer_l4_csum(struct mbuf *m)
2551 {
2552 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
2553 	    CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
2554 
2555 	M_ASSERTPKTHDR(m);
2556 
2557 	return (m->m_pkthdr.csum_flags & csum_flags);
2558 }
2559 
2560 static inline bool
2561 needs_outer_udp_csum(struct mbuf *m)
2562 {
2563 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
2564 
2565 	M_ASSERTPKTHDR(m);
2566 
2567 	return (m->m_pkthdr.csum_flags & csum_flags);
2568 }
2569 #endif
2570 
2571 static inline bool
2572 needs_vlan_insertion(struct mbuf *m)
2573 {
2574 
2575 	M_ASSERTPKTHDR(m);
2576 
2577 	return (m->m_flags & M_VLANTAG);
2578 }
2579 
2580 #if defined(INET) || defined(INET6)
2581 static void *
2582 m_advance(struct mbuf **pm, int *poffset, int len)
2583 {
2584 	struct mbuf *m = *pm;
2585 	int offset = *poffset;
2586 	uintptr_t p = 0;
2587 
2588 	MPASS(len > 0);
2589 
2590 	for (;;) {
2591 		if (offset + len < m->m_len) {
2592 			offset += len;
2593 			p = mtod(m, uintptr_t) + offset;
2594 			break;
2595 		}
2596 		len -= m->m_len - offset;
2597 		m = m->m_next;
2598 		offset = 0;
2599 		MPASS(m != NULL);
2600 	}
2601 	*poffset = offset;
2602 	*pm = m;
2603 	return ((void *)p);
2604 }
2605 #endif
2606 
2607 static inline int
2608 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2609 {
2610 	vm_paddr_t paddr;
2611 	int i, len, off, pglen, pgoff, seglen, segoff;
2612 	int nsegs = 0;
2613 
2614 	M_ASSERTEXTPG(m);
2615 	off = mtod(m, vm_offset_t);
2616 	len = m->m_len;
2617 	off += skip;
2618 	len -= skip;
2619 
2620 	if (m->m_epg_hdrlen != 0) {
2621 		if (off >= m->m_epg_hdrlen) {
2622 			off -= m->m_epg_hdrlen;
2623 		} else {
2624 			seglen = m->m_epg_hdrlen - off;
2625 			segoff = off;
2626 			seglen = min(seglen, len);
2627 			off = 0;
2628 			len -= seglen;
2629 			paddr = pmap_kextract(
2630 			    (vm_offset_t)&m->m_epg_hdr[segoff]);
2631 			if (*nextaddr != paddr)
2632 				nsegs++;
2633 			*nextaddr = paddr + seglen;
2634 		}
2635 	}
2636 	pgoff = m->m_epg_1st_off;
2637 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2638 		pglen = m_epg_pagelen(m, i, pgoff);
2639 		if (off >= pglen) {
2640 			off -= pglen;
2641 			pgoff = 0;
2642 			continue;
2643 		}
2644 		seglen = pglen - off;
2645 		segoff = pgoff + off;
2646 		off = 0;
2647 		seglen = min(seglen, len);
2648 		len -= seglen;
2649 		paddr = m->m_epg_pa[i] + segoff;
2650 		if (*nextaddr != paddr)
2651 			nsegs++;
2652 		*nextaddr = paddr + seglen;
2653 		pgoff = 0;
2654 	};
2655 	if (len != 0) {
2656 		seglen = min(len, m->m_epg_trllen - off);
2657 		len -= seglen;
2658 		paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2659 		if (*nextaddr != paddr)
2660 			nsegs++;
2661 		*nextaddr = paddr + seglen;
2662 	}
2663 
2664 	return (nsegs);
2665 }
2666 
2667 
2668 /*
2669  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2670  * must have at least one mbuf that's not empty.  It is possible for this
2671  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2672  */
2673 static inline int
2674 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2675 {
2676 	vm_paddr_t nextaddr, paddr;
2677 	vm_offset_t va;
2678 	int len, nsegs;
2679 
2680 	M_ASSERTPKTHDR(m);
2681 	MPASS(m->m_pkthdr.len > 0);
2682 	MPASS(m->m_pkthdr.len >= skip);
2683 
2684 	nsegs = 0;
2685 	nextaddr = 0;
2686 	for (; m; m = m->m_next) {
2687 		len = m->m_len;
2688 		if (__predict_false(len == 0))
2689 			continue;
2690 		if (skip >= len) {
2691 			skip -= len;
2692 			continue;
2693 		}
2694 		if ((m->m_flags & M_EXTPG) != 0) {
2695 			*cflags |= MC_NOMAP;
2696 			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2697 			skip = 0;
2698 			continue;
2699 		}
2700 		va = mtod(m, vm_offset_t) + skip;
2701 		len -= skip;
2702 		skip = 0;
2703 		paddr = pmap_kextract(va);
2704 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2705 		if (paddr == nextaddr)
2706 			nsegs--;
2707 		nextaddr = pmap_kextract(va + len - 1) + 1;
2708 	}
2709 
2710 	return (nsegs);
2711 }
2712 
2713 /*
2714  * The maximum number of segments that can fit in a WR.
2715  */
2716 static int
2717 max_nsegs_allowed(struct mbuf *m, bool vm_wr)
2718 {
2719 
2720 	if (vm_wr) {
2721 		if (needs_tso(m))
2722 			return (TX_SGL_SEGS_VM_TSO);
2723 		return (TX_SGL_SEGS_VM);
2724 	}
2725 
2726 	if (needs_tso(m)) {
2727 		if (needs_vxlan_tso(m))
2728 			return (TX_SGL_SEGS_VXLAN_TSO);
2729 		else
2730 			return (TX_SGL_SEGS_TSO);
2731 	}
2732 
2733 	return (TX_SGL_SEGS);
2734 }
2735 
2736 static struct timeval txerr_ratecheck = {0};
2737 static const struct timeval txerr_interval = {3, 0};
2738 
2739 /*
2740  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2741  * a) caller can assume it's been freed if this function returns with an error.
2742  * b) it may get defragged up if the gather list is too long for the hardware.
2743  */
2744 int
2745 parse_pkt(struct mbuf **mp, bool vm_wr)
2746 {
2747 	struct mbuf *m0 = *mp, *m;
2748 	int rc, nsegs, defragged = 0;
2749 	struct ether_header *eh;
2750 #ifdef INET
2751 	void *l3hdr;
2752 #endif
2753 #if defined(INET) || defined(INET6)
2754 	int offset;
2755 	struct tcphdr *tcp;
2756 #endif
2757 #if defined(KERN_TLS) || defined(RATELIMIT)
2758 	struct m_snd_tag *mst;
2759 #endif
2760 	uint16_t eh_type;
2761 	uint8_t cflags;
2762 
2763 	cflags = 0;
2764 	M_ASSERTPKTHDR(m0);
2765 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2766 		rc = EINVAL;
2767 fail:
2768 		m_freem(m0);
2769 		*mp = NULL;
2770 		return (rc);
2771 	}
2772 restart:
2773 	/*
2774 	 * First count the number of gather list segments in the payload.
2775 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2776 	 */
2777 	M_ASSERTPKTHDR(m0);
2778 	MPASS(m0->m_pkthdr.len > 0);
2779 	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2780 #if defined(KERN_TLS) || defined(RATELIMIT)
2781 	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2782 		mst = m0->m_pkthdr.snd_tag;
2783 	else
2784 		mst = NULL;
2785 #endif
2786 #ifdef KERN_TLS
2787 	if (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_TLS) {
2788 		int len16;
2789 
2790 		cflags |= MC_TLS;
2791 		set_mbuf_cflags(m0, cflags);
2792 		rc = t6_ktls_parse_pkt(m0, &nsegs, &len16);
2793 		if (rc != 0)
2794 			goto fail;
2795 		set_mbuf_nsegs(m0, nsegs);
2796 		set_mbuf_len16(m0, len16);
2797 		return (0);
2798 	}
2799 #endif
2800 	if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
2801 		if (defragged++ > 0) {
2802 			rc = EFBIG;
2803 			goto fail;
2804 		}
2805 		counter_u64_add(defrags, 1);
2806 		if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
2807 			rc = ENOMEM;
2808 			goto fail;
2809 		}
2810 		*mp = m0 = m;	/* update caller's copy after defrag */
2811 		goto restart;
2812 	}
2813 
2814 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2815 	    !(cflags & MC_NOMAP))) {
2816 		counter_u64_add(pullups, 1);
2817 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2818 		if (m0 == NULL) {
2819 			/* Should have left well enough alone. */
2820 			rc = EFBIG;
2821 			goto fail;
2822 		}
2823 		*mp = m0;	/* update caller's copy after pullup */
2824 		goto restart;
2825 	}
2826 	set_mbuf_nsegs(m0, nsegs);
2827 	set_mbuf_cflags(m0, cflags);
2828 	calculate_mbuf_len16(m0, vm_wr);
2829 
2830 #ifdef RATELIMIT
2831 	/*
2832 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2833 	 * checksumming is enabled.  needs_outer_l4_csum happens to check for
2834 	 * all the right things.
2835 	 */
2836 	if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
2837 		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2838 		m0->m_pkthdr.snd_tag = NULL;
2839 		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2840 		mst = NULL;
2841 	}
2842 #endif
2843 
2844 	if (!needs_hwcsum(m0)
2845 #ifdef RATELIMIT
2846    		 && !needs_eo(mst)
2847 #endif
2848 	)
2849 		return (0);
2850 
2851 	m = m0;
2852 	eh = mtod(m, struct ether_header *);
2853 	eh_type = ntohs(eh->ether_type);
2854 	if (eh_type == ETHERTYPE_VLAN) {
2855 		struct ether_vlan_header *evh = (void *)eh;
2856 
2857 		eh_type = ntohs(evh->evl_proto);
2858 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2859 	} else
2860 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2861 
2862 #if defined(INET) || defined(INET6)
2863 	offset = 0;
2864 #ifdef INET
2865 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2866 #else
2867 	m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2868 #endif
2869 #endif
2870 
2871 	switch (eh_type) {
2872 #ifdef INET6
2873 	case ETHERTYPE_IPV6:
2874 		m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
2875 		break;
2876 #endif
2877 #ifdef INET
2878 	case ETHERTYPE_IP:
2879 	{
2880 		struct ip *ip = l3hdr;
2881 
2882 		if (needs_vxlan_csum(m0)) {
2883 			/* Driver will do the outer IP hdr checksum. */
2884 			ip->ip_sum = 0;
2885 			if (needs_vxlan_tso(m0)) {
2886 				const uint16_t ipl = ip->ip_len;
2887 
2888 				ip->ip_len = 0;
2889 				ip->ip_sum = ~in_cksum_hdr(ip);
2890 				ip->ip_len = ipl;
2891 			} else
2892 				ip->ip_sum = in_cksum_hdr(ip);
2893 		}
2894 		m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
2895 		break;
2896 	}
2897 #endif
2898 	default:
2899 		if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2900 			log(LOG_ERR, "%s: ethertype 0x%04x unknown.  "
2901 			    "if_cxgbe must be compiled with the same "
2902 			    "INET/INET6 options as the kernel.\n", __func__,
2903 			    eh_type);
2904 		}
2905 		rc = EINVAL;
2906 		goto fail;
2907 	}
2908 
2909 #if defined(INET) || defined(INET6)
2910 	if (needs_vxlan_csum(m0)) {
2911 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2912 		m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
2913 
2914 		/* Inner headers. */
2915 		eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
2916 		    sizeof(struct udphdr) + sizeof(struct vxlan_header));
2917 		eh_type = ntohs(eh->ether_type);
2918 		if (eh_type == ETHERTYPE_VLAN) {
2919 			struct ether_vlan_header *evh = (void *)eh;
2920 
2921 			eh_type = ntohs(evh->evl_proto);
2922 			m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
2923 		} else
2924 			m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
2925 #ifdef INET
2926 		l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2927 #else
2928 		m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2929 #endif
2930 
2931 		switch (eh_type) {
2932 #ifdef INET6
2933 		case ETHERTYPE_IPV6:
2934 			m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
2935 			break;
2936 #endif
2937 #ifdef INET
2938 		case ETHERTYPE_IP:
2939 		{
2940 			struct ip *ip = l3hdr;
2941 
2942 			m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
2943 			break;
2944 		}
2945 #endif
2946 		default:
2947 			if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2948 				log(LOG_ERR, "%s: VXLAN hw offload requested"
2949 				    "with unknown ethertype 0x%04x.  if_cxgbe "
2950 				    "must be compiled with the same INET/INET6 "
2951 				    "options as the kernel.\n", __func__,
2952 				    eh_type);
2953 			}
2954 			rc = EINVAL;
2955 			goto fail;
2956 		}
2957 		if (needs_inner_tcp_csum(m0)) {
2958 			tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
2959 			m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
2960 		}
2961 		MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
2962 		m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
2963 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
2964 		    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
2965 		    CSUM_ENCAP_VXLAN;
2966 	}
2967 
2968 	if (needs_outer_tcp_csum(m0)) {
2969 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2970 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2971 #ifdef RATELIMIT
2972 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2973 			set_mbuf_eo_tsclk_tsoff(m0,
2974 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2975 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2976 		} else
2977 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2978 	} else if (needs_outer_udp_csum(m0)) {
2979 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2980 #endif
2981 	}
2982 #ifdef RATELIMIT
2983 	if (needs_eo(mst)) {
2984 		u_int immhdrs;
2985 
2986 		/* EO WRs have the headers in the WR and not the GL. */
2987 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2988 		    m0->m_pkthdr.l4hlen;
2989 		cflags = 0;
2990 		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2991 		MPASS(cflags == mbuf_cflags(m0));
2992 		set_mbuf_eo_nsegs(m0, nsegs);
2993 		set_mbuf_eo_len16(m0,
2994 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2995 	}
2996 #endif
2997 #endif
2998 	MPASS(m0 == *mp);
2999 	return (0);
3000 }
3001 
3002 void *
3003 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
3004 {
3005 	struct sge_eq *eq = &wrq->eq;
3006 	struct adapter *sc = wrq->adapter;
3007 	int ndesc, available;
3008 	struct wrqe *wr;
3009 	void *w;
3010 
3011 	MPASS(len16 > 0);
3012 	ndesc = tx_len16_to_desc(len16);
3013 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
3014 
3015 	EQ_LOCK(eq);
3016 
3017 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
3018 		drain_wrq_wr_list(sc, wrq);
3019 
3020 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
3021 slowpath:
3022 		EQ_UNLOCK(eq);
3023 		wr = alloc_wrqe(len16 * 16, wrq);
3024 		if (__predict_false(wr == NULL))
3025 			return (NULL);
3026 		cookie->pidx = -1;
3027 		cookie->ndesc = ndesc;
3028 		return (&wr->wr);
3029 	}
3030 
3031 	eq->cidx = read_hw_cidx(eq);
3032 	if (eq->pidx == eq->cidx)
3033 		available = eq->sidx - 1;
3034 	else
3035 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3036 	if (available < ndesc)
3037 		goto slowpath;
3038 
3039 	cookie->pidx = eq->pidx;
3040 	cookie->ndesc = ndesc;
3041 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
3042 
3043 	w = &eq->desc[eq->pidx];
3044 	IDXINCR(eq->pidx, ndesc, eq->sidx);
3045 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
3046 		w = &wrq->ss[0];
3047 		wrq->ss_pidx = cookie->pidx;
3048 		wrq->ss_len = len16 * 16;
3049 	}
3050 
3051 	EQ_UNLOCK(eq);
3052 
3053 	return (w);
3054 }
3055 
3056 void
3057 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
3058 {
3059 	struct sge_eq *eq = &wrq->eq;
3060 	struct adapter *sc = wrq->adapter;
3061 	int ndesc, pidx;
3062 	struct wrq_cookie *prev, *next;
3063 
3064 	if (cookie->pidx == -1) {
3065 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
3066 
3067 		t4_wrq_tx(sc, wr);
3068 		return;
3069 	}
3070 
3071 	if (__predict_false(w == &wrq->ss[0])) {
3072 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
3073 
3074 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
3075 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
3076 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
3077 		wrq->tx_wrs_ss++;
3078 	} else
3079 		wrq->tx_wrs_direct++;
3080 
3081 	EQ_LOCK(eq);
3082 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
3083 	pidx = cookie->pidx;
3084 	MPASS(pidx >= 0 && pidx < eq->sidx);
3085 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
3086 	next = TAILQ_NEXT(cookie, link);
3087 	if (prev == NULL) {
3088 		MPASS(pidx == eq->dbidx);
3089 		if (next == NULL || ndesc >= 16) {
3090 			int available;
3091 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
3092 
3093 			/*
3094 			 * Note that the WR via which we'll request tx updates
3095 			 * is at pidx and not eq->pidx, which has moved on
3096 			 * already.
3097 			 */
3098 			dst = (void *)&eq->desc[pidx];
3099 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3100 			if (available < eq->sidx / 4 &&
3101 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3102 				/*
3103 				 * XXX: This is not 100% reliable with some
3104 				 * types of WRs.  But this is a very unusual
3105 				 * situation for an ofld/ctrl queue anyway.
3106 				 */
3107 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
3108 				    F_FW_WR_EQUEQ);
3109 			}
3110 
3111 			ring_eq_db(wrq->adapter, eq, ndesc);
3112 		} else {
3113 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
3114 			next->pidx = pidx;
3115 			next->ndesc += ndesc;
3116 		}
3117 	} else {
3118 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
3119 		prev->ndesc += ndesc;
3120 	}
3121 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
3122 
3123 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
3124 		drain_wrq_wr_list(sc, wrq);
3125 
3126 #ifdef INVARIANTS
3127 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
3128 		/* Doorbell must have caught up to the pidx. */
3129 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
3130 	}
3131 #endif
3132 	EQ_UNLOCK(eq);
3133 }
3134 
3135 static u_int
3136 can_resume_eth_tx(struct mp_ring *r)
3137 {
3138 	struct sge_eq *eq = r->cookie;
3139 
3140 	return (total_available_tx_desc(eq) > eq->sidx / 8);
3141 }
3142 
3143 static inline bool
3144 cannot_use_txpkts(struct mbuf *m)
3145 {
3146 	/* maybe put a GL limit too, to avoid silliness? */
3147 
3148 	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
3149 }
3150 
3151 static inline int
3152 discard_tx(struct sge_eq *eq)
3153 {
3154 
3155 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
3156 }
3157 
3158 static inline int
3159 wr_can_update_eq(void *p)
3160 {
3161 	struct fw_eth_tx_pkts_wr *wr = p;
3162 
3163 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
3164 	case FW_ULPTX_WR:
3165 	case FW_ETH_TX_PKT_WR:
3166 	case FW_ETH_TX_PKTS_WR:
3167 	case FW_ETH_TX_PKTS2_WR:
3168 	case FW_ETH_TX_PKT_VM_WR:
3169 	case FW_ETH_TX_PKTS_VM_WR:
3170 		return (1);
3171 	default:
3172 		return (0);
3173 	}
3174 }
3175 
3176 static inline void
3177 set_txupdate_flags(struct sge_txq *txq, u_int avail,
3178     struct fw_eth_tx_pkt_wr *wr)
3179 {
3180 	struct sge_eq *eq = &txq->eq;
3181 	struct txpkts *txp = &txq->txp;
3182 
3183 	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
3184 	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3185 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3186 		eq->equeqidx = eq->pidx;
3187 	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
3188 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3189 		eq->equeqidx = eq->pidx;
3190 	}
3191 }
3192 
3193 #if defined(__i386__) || defined(__amd64__)
3194 extern uint64_t tsc_freq;
3195 #endif
3196 
3197 static inline bool
3198 record_eth_tx_time(struct sge_txq *txq)
3199 {
3200 	const uint64_t cycles = get_cyclecount();
3201 	const uint64_t last_tx = txq->last_tx;
3202 #if defined(__i386__) || defined(__amd64__)
3203 	const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
3204 #else
3205 	const uint64_t itg = 0;
3206 #endif
3207 
3208 	MPASS(cycles >= last_tx);
3209 	txq->last_tx = cycles;
3210 	return (cycles - last_tx < itg);
3211 }
3212 
3213 /*
3214  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
3215  * be consumed.  Return the actual number consumed.  0 indicates a stall.
3216  */
3217 static u_int
3218 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
3219 {
3220 	struct sge_txq *txq = r->cookie;
3221 	struct ifnet *ifp = txq->ifp;
3222 	struct sge_eq *eq = &txq->eq;
3223 	struct txpkts *txp = &txq->txp;
3224 	struct vi_info *vi = ifp->if_softc;
3225 	struct adapter *sc = vi->adapter;
3226 	u_int total, remaining;		/* # of packets */
3227 	u_int n, avail, dbdiff;		/* # of hardware descriptors */
3228 	int i, rc;
3229 	struct mbuf *m0;
3230 	bool snd, recent_tx;
3231 	void *wr;	/* start of the last WR written to the ring */
3232 
3233 	TXQ_LOCK_ASSERT_OWNED(txq);
3234 	recent_tx = record_eth_tx_time(txq);
3235 
3236 	remaining = IDXDIFF(pidx, cidx, r->size);
3237 	if (__predict_false(discard_tx(eq))) {
3238 		for (i = 0; i < txp->npkt; i++)
3239 			m_freem(txp->mb[i]);
3240 		txp->npkt = 0;
3241 		while (cidx != pidx) {
3242 			m0 = r->items[cidx];
3243 			m_freem(m0);
3244 			if (++cidx == r->size)
3245 				cidx = 0;
3246 		}
3247 		reclaim_tx_descs(txq, eq->sidx);
3248 		*coalescing = false;
3249 		return (remaining);	/* emptied */
3250 	}
3251 
3252 	/* How many hardware descriptors do we have readily available. */
3253 	if (eq->pidx == eq->cidx)
3254 		avail = eq->sidx - 1;
3255 	else
3256 		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3257 
3258 	total = 0;
3259 	if (remaining == 0) {
3260 		txp->score = 0;
3261 		txq->txpkts_flush++;
3262 		goto send_txpkts;
3263 	}
3264 
3265 	dbdiff = 0;
3266 	MPASS(remaining > 0);
3267 	while (remaining > 0) {
3268 		m0 = r->items[cidx];
3269 		M_ASSERTPKTHDR(m0);
3270 		MPASS(m0->m_nextpkt == NULL);
3271 
3272 		if (avail < 2 * SGE_MAX_WR_NDESC)
3273 			avail += reclaim_tx_descs(txq, 64);
3274 
3275 		if (t4_tx_coalesce == 0 && txp->npkt == 0)
3276 			goto skip_coalescing;
3277 		if (cannot_use_txpkts(m0))
3278 			txp->score = 0;
3279 		else if (recent_tx) {
3280 			if (++txp->score == 0)
3281 				txp->score = UINT8_MAX;
3282 		} else
3283 			txp->score = 1;
3284 		if (txp->npkt > 0 || remaining > 1 ||
3285 		    txp->score >= t4_tx_coalesce_pkts ||
3286 		    atomic_load_int(&txq->eq.equiq) != 0) {
3287 			if (vi->flags & TX_USES_VM_WR)
3288 				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
3289 			else
3290 				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
3291 		} else {
3292 			snd = false;
3293 			rc = EINVAL;
3294 		}
3295 		if (snd) {
3296 			MPASS(txp->npkt > 0);
3297 			for (i = 0; i < txp->npkt; i++)
3298 				ETHER_BPF_MTAP(ifp, txp->mb[i]);
3299 			if (txp->npkt > 1) {
3300 				MPASS(avail >= tx_len16_to_desc(txp->len16));
3301 				if (vi->flags & TX_USES_VM_WR)
3302 					n = write_txpkts_vm_wr(sc, txq);
3303 				else
3304 					n = write_txpkts_wr(sc, txq);
3305 			} else {
3306 				MPASS(avail >=
3307 				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3308 				if (vi->flags & TX_USES_VM_WR)
3309 					n = write_txpkt_vm_wr(sc, txq,
3310 					    txp->mb[0]);
3311 				else
3312 					n = write_txpkt_wr(sc, txq, txp->mb[0],
3313 					    avail);
3314 			}
3315 			MPASS(n <= SGE_MAX_WR_NDESC);
3316 			avail -= n;
3317 			dbdiff += n;
3318 			wr = &eq->desc[eq->pidx];
3319 			IDXINCR(eq->pidx, n, eq->sidx);
3320 			txp->npkt = 0;	/* emptied */
3321 		}
3322 		if (rc == 0) {
3323 			/* m0 was coalesced into txq->txpkts. */
3324 			goto next_mbuf;
3325 		}
3326 		if (rc == EAGAIN) {
3327 			/*
3328 			 * m0 is suitable for tx coalescing but could not be
3329 			 * combined with the existing txq->txpkts, which has now
3330 			 * been transmitted.  Start a new txpkts with m0.
3331 			 */
3332 			MPASS(snd);
3333 			MPASS(txp->npkt == 0);
3334 			continue;
3335 		}
3336 
3337 		MPASS(rc != 0 && rc != EAGAIN);
3338 		MPASS(txp->npkt == 0);
3339 skip_coalescing:
3340 		n = tx_len16_to_desc(mbuf_len16(m0));
3341 		if (__predict_false(avail < n)) {
3342 			avail += reclaim_tx_descs(txq, min(n, 32));
3343 			if (avail < n)
3344 				break;	/* out of descriptors */
3345 		}
3346 
3347 		wr = &eq->desc[eq->pidx];
3348 		if (mbuf_cflags(m0) & MC_RAW_WR) {
3349 			n = write_raw_wr(txq, wr, m0, avail);
3350 #ifdef KERN_TLS
3351 		} else if (mbuf_cflags(m0) & MC_TLS) {
3352 			ETHER_BPF_MTAP(ifp, m0);
3353 			n = t6_ktls_write_wr(txq, wr, m0, mbuf_nsegs(m0),
3354 			    avail);
3355 #endif
3356 		} else {
3357 			ETHER_BPF_MTAP(ifp, m0);
3358 			if (vi->flags & TX_USES_VM_WR)
3359 				n = write_txpkt_vm_wr(sc, txq, m0);
3360 			else
3361 				n = write_txpkt_wr(sc, txq, m0, avail);
3362 		}
3363 		MPASS(n >= 1 && n <= avail);
3364 		if (!(mbuf_cflags(m0) & MC_TLS))
3365 			MPASS(n <= SGE_MAX_WR_NDESC);
3366 
3367 		avail -= n;
3368 		dbdiff += n;
3369 		IDXINCR(eq->pidx, n, eq->sidx);
3370 
3371 		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3372 			if (wr_can_update_eq(wr))
3373 				set_txupdate_flags(txq, avail, wr);
3374 			ring_eq_db(sc, eq, dbdiff);
3375 			avail += reclaim_tx_descs(txq, 32);
3376 			dbdiff = 0;
3377 		}
3378 next_mbuf:
3379 		total++;
3380 		remaining--;
3381 		if (__predict_false(++cidx == r->size))
3382 			cidx = 0;
3383 	}
3384 	if (dbdiff != 0) {
3385 		if (wr_can_update_eq(wr))
3386 			set_txupdate_flags(txq, avail, wr);
3387 		ring_eq_db(sc, eq, dbdiff);
3388 		reclaim_tx_descs(txq, 32);
3389 	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3390 	    atomic_load_int(&txq->eq.equiq) == 0) {
3391 		/*
3392 		 * If nothing was submitted to the chip for tx (it was coalesced
3393 		 * into txpkts instead) and there is no tx update outstanding
3394 		 * then we need to send txpkts now.
3395 		 */
3396 send_txpkts:
3397 		MPASS(txp->npkt > 0);
3398 		for (i = 0; i < txp->npkt; i++)
3399 			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3400 		if (txp->npkt > 1) {
3401 			MPASS(avail >= tx_len16_to_desc(txp->len16));
3402 			if (vi->flags & TX_USES_VM_WR)
3403 				n = write_txpkts_vm_wr(sc, txq);
3404 			else
3405 				n = write_txpkts_wr(sc, txq);
3406 		} else {
3407 			MPASS(avail >=
3408 			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3409 			if (vi->flags & TX_USES_VM_WR)
3410 				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3411 			else
3412 				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3413 		}
3414 		MPASS(n <= SGE_MAX_WR_NDESC);
3415 		wr = &eq->desc[eq->pidx];
3416 		IDXINCR(eq->pidx, n, eq->sidx);
3417 		txp->npkt = 0;	/* emptied */
3418 
3419 		MPASS(wr_can_update_eq(wr));
3420 		set_txupdate_flags(txq, avail - n, wr);
3421 		ring_eq_db(sc, eq, n);
3422 		reclaim_tx_descs(txq, 32);
3423 	}
3424 	*coalescing = txp->npkt > 0;
3425 
3426 	return (total);
3427 }
3428 
3429 static inline void
3430 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3431     int qsize, int intr_idx, int cong, int qtype)
3432 {
3433 
3434 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3435 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3436 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3437 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3438 	KASSERT(intr_idx >= -1 && intr_idx < sc->intr_count,
3439 	    ("%s: bad intr_idx %d", __func__, intr_idx));
3440 	KASSERT(qtype == FW_IQ_IQTYPE_OTHER || qtype == FW_IQ_IQTYPE_NIC ||
3441 	    qtype == FW_IQ_IQTYPE_OFLD, ("%s: bad qtype %d", __func__, qtype));
3442 
3443 	iq->flags = 0;
3444 	iq->state = IQS_DISABLED;
3445 	iq->adapter = sc;
3446 	iq->qtype = qtype;
3447 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3448 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3449 	if (pktc_idx >= 0) {
3450 		iq->intr_params |= F_QINTR_CNT_EN;
3451 		iq->intr_pktc_idx = pktc_idx;
3452 	}
3453 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3454 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3455 	iq->intr_idx = intr_idx;
3456 	iq->cong_drop = cong;
3457 }
3458 
3459 static inline void
3460 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3461 {
3462 	struct sge_params *sp = &sc->params.sge;
3463 
3464 	fl->qsize = qsize;
3465 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3466 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3467 	mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3468 	if (sc->flags & BUF_PACKING_OK &&
3469 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3470 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3471 		fl->flags |= FL_BUF_PACKING;
3472 	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3473 	fl->safe_zidx = sc->sge.safe_zidx;
3474 	if (fl->flags & FL_BUF_PACKING) {
3475 		fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3476 		fl->buf_boundary = sp->pack_boundary;
3477 	} else {
3478 		fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3479 		fl->buf_boundary = 16;
3480 	}
3481 	if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3482 		fl->buf_boundary = sp->pad_boundary;
3483 }
3484 
3485 static inline void
3486 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3487     uint8_t tx_chan, struct sge_iq *iq, char *name)
3488 {
3489 	KASSERT(eqtype >= EQ_CTRL && eqtype <= EQ_OFLD,
3490 	    ("%s: bad qtype %d", __func__, eqtype));
3491 
3492 	eq->type = eqtype;
3493 	eq->tx_chan = tx_chan;
3494 	eq->iq = iq;
3495 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3496 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3497 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3498 }
3499 
3500 int
3501 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3502     bus_dmamap_t *map, bus_addr_t *pa, void **va)
3503 {
3504 	int rc;
3505 
3506 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3507 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3508 	if (rc != 0) {
3509 		CH_ERR(sc, "cannot allocate DMA tag: %d\n", rc);
3510 		goto done;
3511 	}
3512 
3513 	rc = bus_dmamem_alloc(*tag, va,
3514 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3515 	if (rc != 0) {
3516 		CH_ERR(sc, "cannot allocate DMA memory: %d\n", rc);
3517 		goto done;
3518 	}
3519 
3520 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3521 	if (rc != 0) {
3522 		CH_ERR(sc, "cannot load DMA map: %d\n", rc);
3523 		goto done;
3524 	}
3525 done:
3526 	if (rc)
3527 		free_ring(sc, *tag, *map, *pa, *va);
3528 
3529 	return (rc);
3530 }
3531 
3532 int
3533 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3534     bus_addr_t pa, void *va)
3535 {
3536 	if (pa)
3537 		bus_dmamap_unload(tag, map);
3538 	if (va)
3539 		bus_dmamem_free(tag, va, map);
3540 	if (tag)
3541 		bus_dma_tag_destroy(tag);
3542 
3543 	return (0);
3544 }
3545 
3546 /*
3547  * Allocates the software resources (mainly memory and sysctl nodes) for an
3548  * ingress queue and an optional freelist.
3549  *
3550  * Sets IQ_SW_ALLOCATED and returns 0 on success.
3551  */
3552 static int
3553 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3554     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
3555 {
3556 	int rc;
3557 	size_t len;
3558 	struct adapter *sc = vi->adapter;
3559 
3560 	MPASS(!(iq->flags & IQ_SW_ALLOCATED));
3561 
3562 	len = iq->qsize * IQ_ESIZE;
3563 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3564 	    (void **)&iq->desc);
3565 	if (rc != 0)
3566 		return (rc);
3567 
3568 	if (fl) {
3569 		len = fl->qsize * EQ_ESIZE;
3570 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3571 		    &fl->ba, (void **)&fl->desc);
3572 		if (rc) {
3573 			free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba,
3574 			    iq->desc);
3575 			return (rc);
3576 		}
3577 
3578 		/* Allocate space for one software descriptor per buffer. */
3579 		fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc),
3580 		    M_CXGBE, M_ZERO | M_WAITOK);
3581 
3582 		add_fl_sysctls(sc, ctx, oid, fl);
3583 		iq->flags |= IQ_HAS_FL;
3584 	}
3585 	add_iq_sysctls(ctx, oid, iq);
3586 	iq->flags |= IQ_SW_ALLOCATED;
3587 
3588 	return (0);
3589 }
3590 
3591 /*
3592  * Frees all software resources (memory and locks) associated with an ingress
3593  * queue and an optional freelist.
3594  */
3595 static void
3596 free_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3597 {
3598 	MPASS(iq->flags & IQ_SW_ALLOCATED);
3599 
3600 	if (fl) {
3601 		MPASS(iq->flags & IQ_HAS_FL);
3602 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc);
3603 		free_fl_buffers(sc, fl);
3604 		free(fl->sdesc, M_CXGBE);
3605 		mtx_destroy(&fl->fl_lock);
3606 		bzero(fl, sizeof(*fl));
3607 	}
3608 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3609 	bzero(iq, sizeof(*iq));
3610 }
3611 
3612 /*
3613  * Allocates a hardware ingress queue and an optional freelist that will be
3614  * associated with it.
3615  *
3616  * Returns errno on failure.  Resources allocated up to that point may still be
3617  * allocated.  Caller is responsible for cleanup in case this function fails.
3618  */
3619 static int
3620 alloc_iq_fl_hwq(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3621 {
3622 	int rc, cntxt_id, cong_map;
3623 	struct fw_iq_cmd c;
3624 	struct adapter *sc = vi->adapter;
3625 	struct port_info *pi = vi->pi;
3626 	__be32 v = 0;
3627 
3628 	MPASS (!(iq->flags & IQ_HW_ALLOCATED));
3629 
3630 	bzero(&c, sizeof(c));
3631 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3632 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3633 	    V_FW_IQ_CMD_VFN(0));
3634 
3635 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3636 	    FW_LEN16(c));
3637 
3638 	/* Special handling for firmware event queue */
3639 	if (iq == &sc->sge.fwq)
3640 		v |= F_FW_IQ_CMD_IQASYNCH;
3641 
3642 	if (iq->intr_idx < 0) {
3643 		/* Forwarded interrupts, all headed to fwq */
3644 		v |= F_FW_IQ_CMD_IQANDST;
3645 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3646 	} else {
3647 		KASSERT(iq->intr_idx < sc->intr_count,
3648 		    ("%s: invalid direct intr_idx %d", __func__, iq->intr_idx));
3649 		v |= V_FW_IQ_CMD_IQANDSTINDEX(iq->intr_idx);
3650 	}
3651 
3652 	bzero(iq->desc, iq->qsize * IQ_ESIZE);
3653 	c.type_to_iqandstindex = htobe32(v |
3654 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3655 	    V_FW_IQ_CMD_VIID(vi->viid) |
3656 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3657 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
3658 	    F_FW_IQ_CMD_IQGTSMODE |
3659 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3660 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3661 	c.iqsize = htobe16(iq->qsize);
3662 	c.iqaddr = htobe64(iq->ba);
3663 	c.iqns_to_fl0congen = htobe32(V_FW_IQ_CMD_IQTYPE(iq->qtype));
3664 	if (iq->cong_drop != -1) {
3665 		cong_map = iq->qtype == IQ_ETH ? pi->rx_e_chan_map : 0;
3666 		c.iqns_to_fl0congen |= htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3667 	}
3668 
3669 	if (fl) {
3670 		bzero(fl->desc, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len);
3671 		c.iqns_to_fl0congen |=
3672 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3673 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3674 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3675 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3676 			    0));
3677 		if (iq->cong_drop != -1) {
3678 			c.iqns_to_fl0congen |=
3679 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong_map) |
3680 				    F_FW_IQ_CMD_FL0CONGCIF |
3681 				    F_FW_IQ_CMD_FL0CONGEN);
3682 		}
3683 		c.fl0dcaen_to_fl0cidxfthresh =
3684 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3685 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3686 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3687 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3688 		c.fl0size = htobe16(fl->qsize);
3689 		c.fl0addr = htobe64(fl->ba);
3690 	}
3691 
3692 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3693 	if (rc != 0) {
3694 		CH_ERR(sc, "failed to create hw ingress queue: %d\n", rc);
3695 		return (rc);
3696 	}
3697 
3698 	iq->cidx = 0;
3699 	iq->gen = F_RSPD_GEN;
3700 	iq->cntxt_id = be16toh(c.iqid);
3701 	iq->abs_id = be16toh(c.physiqid);
3702 
3703 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3704 	if (cntxt_id >= sc->sge.iqmap_sz) {
3705 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3706 		    cntxt_id, sc->sge.iqmap_sz - 1);
3707 	}
3708 	sc->sge.iqmap[cntxt_id] = iq;
3709 
3710 	if (fl) {
3711 		u_int qid;
3712 #ifdef INVARIANTS
3713 		int i;
3714 
3715 		MPASS(!(fl->flags & FL_BUF_RESUME));
3716 		for (i = 0; i < fl->sidx * 8; i++)
3717 			MPASS(fl->sdesc[i].cl == NULL);
3718 #endif
3719 		fl->cntxt_id = be16toh(c.fl0id);
3720 		fl->pidx = fl->cidx = fl->hw_cidx = fl->dbidx = 0;
3721 		fl->rx_offset = 0;
3722 		fl->flags &= ~(FL_STARVING | FL_DOOMED);
3723 
3724 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3725 		if (cntxt_id >= sc->sge.eqmap_sz) {
3726 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3727 			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
3728 		}
3729 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3730 
3731 		qid = fl->cntxt_id;
3732 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3733 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3734 			uint32_t mask = (1 << s_qpp) - 1;
3735 			volatile uint8_t *udb;
3736 
3737 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3738 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3739 			qid &= mask;
3740 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3741 				udb += qid << UDBS_SEG_SHIFT;
3742 				qid = 0;
3743 			}
3744 			fl->udb = (volatile void *)udb;
3745 		}
3746 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3747 
3748 		FL_LOCK(fl);
3749 		/* Enough to make sure the SGE doesn't think it's starved */
3750 		refill_fl(sc, fl, fl->lowat);
3751 		FL_UNLOCK(fl);
3752 	}
3753 
3754 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) &&
3755 	    iq->cong_drop != -1) {
3756 		t4_sge_set_conm_context(sc, iq->cntxt_id, iq->cong_drop,
3757 		    cong_map);
3758 	}
3759 
3760 	/* Enable IQ interrupts */
3761 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3762 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3763 	    V_INGRESSQID(iq->cntxt_id));
3764 
3765 	iq->flags |= IQ_HW_ALLOCATED;
3766 
3767 	return (0);
3768 }
3769 
3770 static int
3771 free_iq_fl_hwq(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3772 {
3773 	int rc;
3774 
3775 	MPASS(iq->flags & IQ_HW_ALLOCATED);
3776 	rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3777 	    iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
3778 	if (rc != 0) {
3779 		CH_ERR(sc, "failed to free iq %p: %d\n", iq, rc);
3780 		return (rc);
3781 	}
3782 	iq->flags &= ~IQ_HW_ALLOCATED;
3783 
3784 	return (0);
3785 }
3786 
3787 static void
3788 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3789     struct sge_iq *iq)
3790 {
3791 	struct sysctl_oid_list *children;
3792 
3793 	if (ctx == NULL || oid == NULL)
3794 		return;
3795 
3796 	children = SYSCTL_CHILDREN(oid);
3797 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3798 	    "bus address of descriptor ring");
3799 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3800 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3801 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3802 	    &iq->abs_id, 0, "absolute id of the queue");
3803 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3804 	    &iq->cntxt_id, 0, "SGE context id of the queue");
3805 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &iq->cidx,
3806 	    0, "consumer index");
3807 }
3808 
3809 static void
3810 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3811     struct sysctl_oid *oid, struct sge_fl *fl)
3812 {
3813 	struct sysctl_oid_list *children;
3814 
3815 	if (ctx == NULL || oid == NULL)
3816 		return;
3817 
3818 	children = SYSCTL_CHILDREN(oid);
3819 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3820 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3821 	children = SYSCTL_CHILDREN(oid);
3822 
3823 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3824 	    &fl->ba, "bus address of descriptor ring");
3825 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3826 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3827 	    "desc ring size in bytes");
3828 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3829 	    &fl->cntxt_id, 0, "SGE context id of the freelist");
3830 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3831 	    fl_pad ? 1 : 0, "padding enabled");
3832 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3833 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3834 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3835 	    0, "consumer index");
3836 	if (fl->flags & FL_BUF_PACKING) {
3837 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3838 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3839 	}
3840 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3841 	    0, "producer index");
3842 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3843 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3844 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3845 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3846 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3847 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3848 }
3849 
3850 /*
3851  * Idempotent.
3852  */
3853 static int
3854 alloc_fwq(struct adapter *sc)
3855 {
3856 	int rc, intr_idx;
3857 	struct sge_iq *fwq = &sc->sge.fwq;
3858 	struct vi_info *vi = &sc->port[0]->vi[0];
3859 
3860 	if (!(fwq->flags & IQ_SW_ALLOCATED)) {
3861 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3862 
3863 		if (sc->flags & IS_VF)
3864 			intr_idx = 0;
3865 		else
3866 			intr_idx = sc->intr_count > 1 ? 1 : 0;
3867 		init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, intr_idx, -1, IQ_OTHER);
3868 		rc = alloc_iq_fl(vi, fwq, NULL, &sc->ctx, sc->fwq_oid);
3869 		if (rc != 0) {
3870 			CH_ERR(sc, "failed to allocate fwq: %d\n", rc);
3871 			return (rc);
3872 		}
3873 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3874 	}
3875 
3876 	if (!(fwq->flags & IQ_HW_ALLOCATED)) {
3877 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3878 
3879 		rc = alloc_iq_fl_hwq(vi, fwq, NULL);
3880 		if (rc != 0) {
3881 			CH_ERR(sc, "failed to create hw fwq: %d\n", rc);
3882 			return (rc);
3883 		}
3884 		MPASS(fwq->flags & IQ_HW_ALLOCATED);
3885 	}
3886 
3887 	return (0);
3888 }
3889 
3890 /*
3891  * Idempotent.
3892  */
3893 static void
3894 free_fwq(struct adapter *sc)
3895 {
3896 	struct sge_iq *fwq = &sc->sge.fwq;
3897 
3898 	if (fwq->flags & IQ_HW_ALLOCATED) {
3899 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3900 		free_iq_fl_hwq(sc, fwq, NULL);
3901 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3902 	}
3903 
3904 	if (fwq->flags & IQ_SW_ALLOCATED) {
3905 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3906 		free_iq_fl(sc, fwq, NULL);
3907 		MPASS(!(fwq->flags & IQ_SW_ALLOCATED));
3908 	}
3909 }
3910 
3911 /*
3912  * Idempotent.
3913  */
3914 static int
3915 alloc_ctrlq(struct adapter *sc, int idx)
3916 {
3917 	int rc;
3918 	char name[16];
3919 	struct sysctl_oid *oid;
3920 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3921 
3922 	MPASS(idx < sc->params.nports);
3923 
3924 	if (!(ctrlq->eq.flags & EQ_SW_ALLOCATED)) {
3925 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3926 
3927 		snprintf(name, sizeof(name), "%d", idx);
3928 		oid = SYSCTL_ADD_NODE(&sc->ctx, SYSCTL_CHILDREN(sc->ctrlq_oid),
3929 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3930 		    "ctrl queue");
3931 
3932 		snprintf(name, sizeof(name), "%s ctrlq%d",
3933 		    device_get_nameunit(sc->dev), idx);
3934 		init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE,
3935 		    sc->port[idx]->tx_chan, &sc->sge.fwq, name);
3936 		rc = alloc_wrq(sc, NULL, ctrlq, &sc->ctx, oid);
3937 		if (rc != 0) {
3938 			CH_ERR(sc, "failed to allocate ctrlq%d: %d\n", idx, rc);
3939 			sysctl_remove_oid(oid, 1, 1);
3940 			return (rc);
3941 		}
3942 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3943 	}
3944 
3945 	if (!(ctrlq->eq.flags & EQ_HW_ALLOCATED)) {
3946 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3947 
3948 		rc = alloc_eq_hwq(sc, NULL, &ctrlq->eq);
3949 		if (rc != 0) {
3950 			CH_ERR(sc, "failed to create hw ctrlq%d: %d\n", idx, rc);
3951 			return (rc);
3952 		}
3953 		MPASS(ctrlq->eq.flags & EQ_HW_ALLOCATED);
3954 	}
3955 
3956 	return (0);
3957 }
3958 
3959 /*
3960  * Idempotent.
3961  */
3962 static void
3963 free_ctrlq(struct adapter *sc, int idx)
3964 {
3965 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3966 
3967 	if (ctrlq->eq.flags & EQ_HW_ALLOCATED) {
3968 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3969 		free_eq_hwq(sc, NULL, &ctrlq->eq);
3970 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3971 	}
3972 
3973 	if (ctrlq->eq.flags & EQ_SW_ALLOCATED) {
3974 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3975 		free_wrq(sc, ctrlq);
3976 		MPASS(!(ctrlq->eq.flags & EQ_SW_ALLOCATED));
3977 	}
3978 }
3979 
3980 int
3981 t4_sge_set_conm_context(struct adapter *sc, int cntxt_id, int cong_drop,
3982     int cong_map)
3983 {
3984 	const int cng_ch_bits_log = sc->chip_params->cng_ch_bits_log;
3985 	uint32_t param, val;
3986 	uint16_t ch_map;
3987 	int cong_mode, rc, i;
3988 
3989 	if (chip_id(sc) < CHELSIO_T5)
3990 		return (ENOTSUP);
3991 
3992 	/* Convert the driver knob to the mode understood by the firmware. */
3993 	switch (cong_drop) {
3994 	case -1:
3995 		cong_mode = X_CONMCTXT_CNGTPMODE_DISABLE;
3996 		break;
3997 	case 0:
3998 		cong_mode = X_CONMCTXT_CNGTPMODE_CHANNEL;
3999 		break;
4000 	case 1:
4001 		cong_mode = X_CONMCTXT_CNGTPMODE_QUEUE;
4002 		break;
4003 	case 2:
4004 		cong_mode = X_CONMCTXT_CNGTPMODE_BOTH;
4005 		break;
4006 	default:
4007 		MPASS(0);
4008 		CH_ERR(sc, "cong_drop = %d is invalid (ingress queue %d).\n",
4009 		    cong_drop, cntxt_id);
4010 		return (EINVAL);
4011 	}
4012 
4013 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
4014 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4015 	    V_FW_PARAMS_PARAM_YZ(cntxt_id);
4016 	val = V_CONMCTXT_CNGTPMODE(cong_mode);
4017 	if (cong_mode == X_CONMCTXT_CNGTPMODE_CHANNEL ||
4018 	    cong_mode == X_CONMCTXT_CNGTPMODE_BOTH) {
4019 		for (i = 0, ch_map = 0; i < 4; i++) {
4020 			if (cong_map & (1 << i))
4021 				ch_map |= 1 << (i << cng_ch_bits_log);
4022 		}
4023 		val |= V_CONMCTXT_CNGCHMAP(ch_map);
4024 	}
4025 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4026 	if (rc != 0) {
4027 		CH_ERR(sc, "failed to set congestion manager context "
4028 		    "for ingress queue %d: %d\n", cntxt_id, rc);
4029 	}
4030 
4031 	return (rc);
4032 }
4033 
4034 /*
4035  * Idempotent.
4036  */
4037 static int
4038 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int idx, int intr_idx,
4039     int maxp)
4040 {
4041 	int rc;
4042 	struct adapter *sc = vi->adapter;
4043 	struct ifnet *ifp = vi->ifp;
4044 	struct sysctl_oid *oid;
4045 	char name[16];
4046 
4047 	if (!(rxq->iq.flags & IQ_SW_ALLOCATED)) {
4048 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4049 #if defined(INET) || defined(INET6)
4050 		rc = tcp_lro_init_args(&rxq->lro, ifp, lro_entries, lro_mbufs);
4051 		if (rc != 0)
4052 			return (rc);
4053 		MPASS(rxq->lro.ifp == ifp);	/* also indicates LRO init'ed */
4054 #endif
4055 		rxq->ifp = ifp;
4056 
4057 		snprintf(name, sizeof(name), "%d", idx);
4058 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->rxq_oid),
4059 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4060 		    "rx queue");
4061 
4062 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq,
4063 		    intr_idx, cong_drop, IQ_ETH);
4064 #if defined(INET) || defined(INET6)
4065 		if (ifp->if_capenable & IFCAP_LRO)
4066 			rxq->iq.flags |= IQ_LRO_ENABLED;
4067 #endif
4068 		if (ifp->if_capenable & IFCAP_HWRXTSTMP)
4069 			rxq->iq.flags |= IQ_RX_TIMESTAMP;
4070 		snprintf(name, sizeof(name), "%s rxq%d-fl",
4071 		    device_get_nameunit(vi->dev), idx);
4072 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
4073 		rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, &vi->ctx, oid);
4074 		if (rc != 0) {
4075 			CH_ERR(vi, "failed to allocate rxq%d: %d\n", idx, rc);
4076 			sysctl_remove_oid(oid, 1, 1);
4077 #if defined(INET) || defined(INET6)
4078 			tcp_lro_free(&rxq->lro);
4079 			rxq->lro.ifp = NULL;
4080 #endif
4081 			return (rc);
4082 		}
4083 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4084 		add_rxq_sysctls(&vi->ctx, oid, rxq);
4085 	}
4086 
4087 	if (!(rxq->iq.flags & IQ_HW_ALLOCATED)) {
4088 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4089 		rc = alloc_iq_fl_hwq(vi, &rxq->iq, &rxq->fl);
4090 		if (rc != 0) {
4091 			CH_ERR(vi, "failed to create hw rxq%d: %d\n", idx, rc);
4092 			return (rc);
4093 		}
4094 		MPASS(rxq->iq.flags & IQ_HW_ALLOCATED);
4095 
4096 		if (idx == 0)
4097 			sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
4098 		else
4099 			KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
4100 			    ("iq_base mismatch"));
4101 		KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
4102 		    ("PF with non-zero iq_base"));
4103 
4104 		/*
4105 		 * The freelist is just barely above the starvation threshold
4106 		 * right now, fill it up a bit more.
4107 		 */
4108 		FL_LOCK(&rxq->fl);
4109 		refill_fl(sc, &rxq->fl, 128);
4110 		FL_UNLOCK(&rxq->fl);
4111 	}
4112 
4113 	return (0);
4114 }
4115 
4116 /*
4117  * Idempotent.
4118  */
4119 static void
4120 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
4121 {
4122 	if (rxq->iq.flags & IQ_HW_ALLOCATED) {
4123 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4124 		free_iq_fl_hwq(vi->adapter, &rxq->iq, &rxq->fl);
4125 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4126 	}
4127 
4128 	if (rxq->iq.flags & IQ_SW_ALLOCATED) {
4129 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4130 #if defined(INET) || defined(INET6)
4131 		tcp_lro_free(&rxq->lro);
4132 #endif
4133 		free_iq_fl(vi->adapter, &rxq->iq, &rxq->fl);
4134 		MPASS(!(rxq->iq.flags & IQ_SW_ALLOCATED));
4135 		bzero(rxq, sizeof(*rxq));
4136 	}
4137 }
4138 
4139 static void
4140 add_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4141     struct sge_rxq *rxq)
4142 {
4143 	struct sysctl_oid_list *children;
4144 
4145 	if (ctx == NULL || oid == NULL)
4146 		return;
4147 
4148 	children = SYSCTL_CHILDREN(oid);
4149 #if defined(INET) || defined(INET6)
4150 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
4151 	    &rxq->lro.lro_queued, 0, NULL);
4152 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
4153 	    &rxq->lro.lro_flushed, 0, NULL);
4154 #endif
4155 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
4156 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
4157 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD,
4158 	    &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag");
4159 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_rxcsum", CTLFLAG_RD,
4160 	    &rxq->vxlan_rxcsum,
4161 	    "# of times hardware assisted with inner checksum (VXLAN)");
4162 }
4163 
4164 #ifdef TCP_OFFLOAD
4165 /*
4166  * Idempotent.
4167  */
4168 static int
4169 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int idx,
4170     int intr_idx, int maxp)
4171 {
4172 	int rc;
4173 	struct adapter *sc = vi->adapter;
4174 	struct sysctl_oid *oid;
4175 	char name[16];
4176 
4177 	if (!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)) {
4178 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4179 
4180 		snprintf(name, sizeof(name), "%d", idx);
4181 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4182 		    SYSCTL_CHILDREN(vi->ofld_rxq_oid), OID_AUTO, name,
4183 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload rx queue");
4184 
4185 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
4186 		    vi->qsize_rxq, intr_idx, ofld_cong_drop, IQ_OFLD);
4187 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
4188 		    device_get_nameunit(vi->dev), idx);
4189 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
4190 		rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, &vi->ctx,
4191 		    oid);
4192 		if (rc != 0) {
4193 			CH_ERR(vi, "failed to allocate ofld_rxq%d: %d\n", idx,
4194 			    rc);
4195 			sysctl_remove_oid(oid, 1, 1);
4196 			return (rc);
4197 		}
4198 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4199 		ofld_rxq->rx_iscsi_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
4200 		ofld_rxq->rx_iscsi_ddp_setup_error =
4201 		    counter_u64_alloc(M_WAITOK);
4202 		add_ofld_rxq_sysctls(&vi->ctx, oid, ofld_rxq);
4203 	}
4204 
4205 	if (!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)) {
4206 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4207 		rc = alloc_iq_fl_hwq(vi, &ofld_rxq->iq, &ofld_rxq->fl);
4208 		if (rc != 0) {
4209 			CH_ERR(vi, "failed to create hw ofld_rxq%d: %d\n", idx,
4210 			    rc);
4211 			return (rc);
4212 		}
4213 		MPASS(ofld_rxq->iq.flags & IQ_HW_ALLOCATED);
4214 	}
4215 	return (rc);
4216 }
4217 
4218 /*
4219  * Idempotent.
4220  */
4221 static void
4222 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
4223 {
4224 	if (ofld_rxq->iq.flags & IQ_HW_ALLOCATED) {
4225 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4226 		free_iq_fl_hwq(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4227 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4228 	}
4229 
4230 	if (ofld_rxq->iq.flags & IQ_SW_ALLOCATED) {
4231 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4232 		free_iq_fl(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4233 		MPASS(!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED));
4234 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_ok);
4235 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_error);
4236 		bzero(ofld_rxq, sizeof(*ofld_rxq));
4237 	}
4238 }
4239 
4240 static void
4241 add_ofld_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4242     struct sge_ofld_rxq *ofld_rxq)
4243 {
4244 	struct sysctl_oid_list *children;
4245 
4246 	if (ctx == NULL || oid == NULL)
4247 		return;
4248 
4249 	children = SYSCTL_CHILDREN(oid);
4250 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4251 	    "rx_toe_tls_records", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_records,
4252 	    "# of TOE TLS records received");
4253 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4254 	    "rx_toe_tls_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_octets,
4255 	    "# of payload octets in received TOE TLS records");
4256 
4257 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "iscsi",
4258 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE iSCSI statistics");
4259 	children = SYSCTL_CHILDREN(oid);
4260 
4261 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
4262 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_ok,
4263 	    "# of times DDP buffer was setup successfully.");
4264 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
4265 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_error,
4266 	    "# of times DDP buffer setup failed.");
4267 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_octets",
4268 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_octets, 0,
4269 	    "# of octets placed directly");
4270 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_pdus",
4271 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_pdus, 0,
4272 	    "# of PDUs with data placed directly.");
4273 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_octets",
4274 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_octets, 0,
4275 	    "# of data octets delivered in freelist");
4276 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_pdus",
4277 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_pdus, 0,
4278 	    "# of PDUs with data delivered in freelist");
4279 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "padding_errors",
4280 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_padding_errors, 0,
4281 	    "# of PDUs with invalid padding");
4282 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "header_digest_errors",
4283 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_header_digest_errors, 0,
4284 	    "# of PDUs with invalid header digests");
4285 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "data_digest_errors",
4286 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_data_digest_errors, 0,
4287 	    "# of PDUs with invalid data digests");
4288 }
4289 #endif
4290 
4291 /*
4292  * Returns a reasonable automatic cidx flush threshold for a given queue size.
4293  */
4294 static u_int
4295 qsize_to_fthresh(int qsize)
4296 {
4297 	u_int fthresh;
4298 
4299 	while (!powerof2(qsize))
4300 		qsize++;
4301 	fthresh = ilog2(qsize);
4302 	if (fthresh > X_CIDXFLUSHTHRESH_128)
4303 		fthresh = X_CIDXFLUSHTHRESH_128;
4304 
4305 	return (fthresh);
4306 }
4307 
4308 static int
4309 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
4310 {
4311 	int rc, cntxt_id;
4312 	struct fw_eq_ctrl_cmd c;
4313 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4314 
4315 	bzero(&c, sizeof(c));
4316 
4317 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
4318 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
4319 	    V_FW_EQ_CTRL_CMD_VFN(0));
4320 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
4321 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
4322 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
4323 	c.physeqid_pkd = htobe32(0);
4324 	c.fetchszm_to_iqid =
4325 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4326 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
4327 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
4328 	c.dcaen_to_eqsize =
4329 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4330 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4331 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4332 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4333 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
4334 	c.eqaddr = htobe64(eq->ba);
4335 
4336 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4337 	if (rc != 0) {
4338 		CH_ERR(sc, "failed to create hw ctrlq for tx_chan %d: %d\n",
4339 		    eq->tx_chan, rc);
4340 		return (rc);
4341 	}
4342 
4343 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
4344 	eq->abs_id = G_FW_EQ_CTRL_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4345 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4346 	if (cntxt_id >= sc->sge.eqmap_sz)
4347 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4348 		cntxt_id, sc->sge.eqmap_sz - 1);
4349 	sc->sge.eqmap[cntxt_id] = eq;
4350 
4351 	return (rc);
4352 }
4353 
4354 static int
4355 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4356 {
4357 	int rc, cntxt_id;
4358 	struct fw_eq_eth_cmd c;
4359 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4360 
4361 	bzero(&c, sizeof(c));
4362 
4363 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
4364 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
4365 	    V_FW_EQ_ETH_CMD_VFN(0));
4366 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
4367 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
4368 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
4369 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
4370 	c.fetchszm_to_iqid =
4371 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
4372 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
4373 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
4374 	c.dcaen_to_eqsize =
4375 	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4376 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4377 		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4378 		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
4379 	c.eqaddr = htobe64(eq->ba);
4380 
4381 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4382 	if (rc != 0) {
4383 		device_printf(vi->dev,
4384 		    "failed to create Ethernet egress queue: %d\n", rc);
4385 		return (rc);
4386 	}
4387 
4388 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
4389 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4390 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4391 	if (cntxt_id >= sc->sge.eqmap_sz)
4392 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4393 		cntxt_id, sc->sge.eqmap_sz - 1);
4394 	sc->sge.eqmap[cntxt_id] = eq;
4395 
4396 	return (rc);
4397 }
4398 
4399 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4400 static int
4401 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4402 {
4403 	int rc, cntxt_id;
4404 	struct fw_eq_ofld_cmd c;
4405 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4406 
4407 	bzero(&c, sizeof(c));
4408 
4409 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
4410 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
4411 	    V_FW_EQ_OFLD_CMD_VFN(0));
4412 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
4413 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
4414 	c.fetchszm_to_iqid =
4415 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4416 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
4417 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
4418 	c.dcaen_to_eqsize =
4419 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4420 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4421 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4422 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4423 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
4424 	c.eqaddr = htobe64(eq->ba);
4425 
4426 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4427 	if (rc != 0) {
4428 		device_printf(vi->dev,
4429 		    "failed to create egress queue for TCP offload: %d\n", rc);
4430 		return (rc);
4431 	}
4432 
4433 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
4434 	eq->abs_id = G_FW_EQ_OFLD_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4435 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4436 	if (cntxt_id >= sc->sge.eqmap_sz)
4437 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4438 		cntxt_id, sc->sge.eqmap_sz - 1);
4439 	sc->sge.eqmap[cntxt_id] = eq;
4440 
4441 	return (rc);
4442 }
4443 #endif
4444 
4445 /* SW only */
4446 static int
4447 alloc_eq(struct adapter *sc, struct sge_eq *eq, struct sysctl_ctx_list *ctx,
4448     struct sysctl_oid *oid)
4449 {
4450 	int rc, qsize;
4451 	size_t len;
4452 
4453 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4454 
4455 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4456 	len = qsize * EQ_ESIZE;
4457 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba,
4458 	    (void **)&eq->desc);
4459 	if (rc)
4460 		return (rc);
4461 	if (ctx != NULL && oid != NULL)
4462 		add_eq_sysctls(sc, ctx, oid, eq);
4463 	eq->flags |= EQ_SW_ALLOCATED;
4464 
4465 	return (0);
4466 }
4467 
4468 /* SW only */
4469 static void
4470 free_eq(struct adapter *sc, struct sge_eq *eq)
4471 {
4472 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4473 	if (eq->type == EQ_ETH)
4474 		MPASS(eq->pidx == eq->cidx);
4475 
4476 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4477 	mtx_destroy(&eq->eq_lock);
4478 	bzero(eq, sizeof(*eq));
4479 }
4480 
4481 static void
4482 add_eq_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
4483     struct sysctl_oid *oid, struct sge_eq *eq)
4484 {
4485 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4486 
4487 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba,
4488 	    "bus address of descriptor ring");
4489 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4490 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4491 	    "desc ring size in bytes");
4492 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4493 	    &eq->abs_id, 0, "absolute id of the queue");
4494 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4495 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4496 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &eq->cidx,
4497 	    0, "consumer index");
4498 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &eq->pidx,
4499 	    0, "producer index");
4500 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4501 	    eq->sidx, "status page index");
4502 }
4503 
4504 static int
4505 alloc_eq_hwq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4506 {
4507 	int rc;
4508 
4509 	MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4510 
4511 	eq->iqid = eq->iq->cntxt_id;
4512 	eq->pidx = eq->cidx = eq->dbidx = 0;
4513 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4514 	eq->equeqidx = 0;
4515 	eq->doorbells = sc->doorbells;
4516 	bzero(eq->desc, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len);
4517 
4518 	switch (eq->type) {
4519 	case EQ_CTRL:
4520 		rc = ctrl_eq_alloc(sc, eq);
4521 		break;
4522 
4523 	case EQ_ETH:
4524 		rc = eth_eq_alloc(sc, vi, eq);
4525 		break;
4526 
4527 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4528 	case EQ_OFLD:
4529 		rc = ofld_eq_alloc(sc, vi, eq);
4530 		break;
4531 #endif
4532 
4533 	default:
4534 		panic("%s: invalid eq type %d.", __func__, eq->type);
4535 	}
4536 	if (rc != 0) {
4537 		CH_ERR(sc, "failed to allocate egress queue(%d): %d\n",
4538 		    eq->type, rc);
4539 		return (rc);
4540 	}
4541 
4542 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4543 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4544 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4545 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4546 		uint32_t mask = (1 << s_qpp) - 1;
4547 		volatile uint8_t *udb;
4548 
4549 		udb = sc->udbs_base + UDBS_DB_OFFSET;
4550 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4551 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4552 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4553 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
4554 		else {
4555 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4556 			eq->udb_qid = 0;
4557 		}
4558 		eq->udb = (volatile void *)udb;
4559 	}
4560 
4561 	eq->flags |= EQ_HW_ALLOCATED;
4562 	return (0);
4563 }
4564 
4565 static int
4566 free_eq_hwq(struct adapter *sc, struct vi_info *vi __unused, struct sge_eq *eq)
4567 {
4568 	int rc;
4569 
4570 	MPASS(eq->flags & EQ_HW_ALLOCATED);
4571 
4572 	switch (eq->type) {
4573 	case EQ_CTRL:
4574 		rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4575 		break;
4576 	case EQ_ETH:
4577 		rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4578 		break;
4579 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4580 	case EQ_OFLD:
4581 		rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4582 		break;
4583 #endif
4584 	default:
4585 		panic("%s: invalid eq type %d.", __func__, eq->type);
4586 	}
4587 	if (rc != 0) {
4588 		CH_ERR(sc, "failed to free eq (type %d): %d\n", eq->type, rc);
4589 		return (rc);
4590 	}
4591 	eq->flags &= ~EQ_HW_ALLOCATED;
4592 
4593 	return (0);
4594 }
4595 
4596 static int
4597 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4598     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
4599 {
4600 	struct sge_eq *eq = &wrq->eq;
4601 	int rc;
4602 
4603 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4604 
4605 	rc = alloc_eq(sc, eq, ctx, oid);
4606 	if (rc)
4607 		return (rc);
4608 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4609 	/* Can't fail after this. */
4610 
4611 	wrq->adapter = sc;
4612 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4613 	TAILQ_INIT(&wrq->incomplete_wrs);
4614 	STAILQ_INIT(&wrq->wr_list);
4615 	wrq->nwr_pending = 0;
4616 	wrq->ndesc_needed = 0;
4617 	add_wrq_sysctls(ctx, oid, wrq);
4618 
4619 	return (0);
4620 }
4621 
4622 static void
4623 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4624 {
4625 	free_eq(sc, &wrq->eq);
4626 	MPASS(wrq->nwr_pending == 0);
4627 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
4628 	MPASS(STAILQ_EMPTY(&wrq->wr_list));
4629 	bzero(wrq, sizeof(*wrq));
4630 }
4631 
4632 static void
4633 add_wrq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4634     struct sge_wrq *wrq)
4635 {
4636 	struct sysctl_oid_list *children;
4637 
4638 	if (ctx == NULL || oid == NULL)
4639 		return;
4640 
4641 	children = SYSCTL_CHILDREN(oid);
4642 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4643 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4644 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4645 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4646 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4647 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4648 }
4649 
4650 /*
4651  * Idempotent.
4652  */
4653 static int
4654 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx)
4655 {
4656 	int rc, iqidx;
4657 	struct port_info *pi = vi->pi;
4658 	struct adapter *sc = vi->adapter;
4659 	struct sge_eq *eq = &txq->eq;
4660 	struct txpkts *txp;
4661 	char name[16];
4662 	struct sysctl_oid *oid;
4663 
4664 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4665 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4666 
4667 		snprintf(name, sizeof(name), "%d", idx);
4668 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->txq_oid),
4669 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4670 		    "tx queue");
4671 
4672 		iqidx = vi->first_rxq + (idx % vi->nrxq);
4673 		snprintf(name, sizeof(name), "%s txq%d",
4674 		    device_get_nameunit(vi->dev), idx);
4675 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
4676 		    &sc->sge.rxq[iqidx].iq, name);
4677 
4678 		rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx,
4679 		    can_resume_eth_tx, M_CXGBE, &eq->eq_lock, M_WAITOK);
4680 		if (rc != 0) {
4681 			CH_ERR(vi, "failed to allocate mp_ring for txq%d: %d\n",
4682 			    idx, rc);
4683 failed:
4684 			sysctl_remove_oid(oid, 1, 1);
4685 			return (rc);
4686 		}
4687 
4688 		rc = alloc_eq(sc, eq, &vi->ctx, oid);
4689 		if (rc) {
4690 			CH_ERR(vi, "failed to allocate txq%d: %d\n", idx, rc);
4691 			mp_ring_free(txq->r);
4692 			goto failed;
4693 		}
4694 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4695 		/* Can't fail after this point. */
4696 
4697 		TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4698 		txq->ifp = vi->ifp;
4699 		txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4700 		txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4701 		    M_ZERO | M_WAITOK);
4702 
4703 		add_txq_sysctls(vi, &vi->ctx, oid, txq);
4704 	}
4705 
4706 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4707 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4708 		rc = alloc_eq_hwq(sc, vi, eq);
4709 		if (rc != 0) {
4710 			CH_ERR(vi, "failed to create hw txq%d: %d\n", idx, rc);
4711 			return (rc);
4712 		}
4713 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4714 		/* Can't fail after this point. */
4715 
4716 		if (idx == 0)
4717 			sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4718 		else
4719 			KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4720 			    ("eq_base mismatch"));
4721 		KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4722 		    ("PF with non-zero eq_base"));
4723 
4724 		txp = &txq->txp;
4725 		MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4726 		txq->txp.max_npkt = min(nitems(txp->mb),
4727 		    sc->params.max_pkts_per_eth_tx_pkts_wr);
4728 		if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
4729 			txq->txp.max_npkt--;
4730 
4731 		if (vi->flags & TX_USES_VM_WR)
4732 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4733 			    V_TXPKT_INTF(pi->tx_chan));
4734 		else
4735 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4736 			    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4737 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4738 
4739 		txq->tc_idx = -1;
4740 	}
4741 
4742 	return (0);
4743 }
4744 
4745 /*
4746  * Idempotent.
4747  */
4748 static void
4749 free_txq(struct vi_info *vi, struct sge_txq *txq)
4750 {
4751 	struct adapter *sc = vi->adapter;
4752 	struct sge_eq *eq = &txq->eq;
4753 
4754 	if (eq->flags & EQ_HW_ALLOCATED) {
4755 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4756 		free_eq_hwq(sc, NULL, eq);
4757 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4758 	}
4759 
4760 	if (eq->flags & EQ_SW_ALLOCATED) {
4761 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4762 		sglist_free(txq->gl);
4763 		free(txq->sdesc, M_CXGBE);
4764 		mp_ring_free(txq->r);
4765 		free_eq(sc, eq);
4766 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4767 		bzero(txq, sizeof(*txq));
4768 	}
4769 }
4770 
4771 static void
4772 add_txq_sysctls(struct vi_info *vi, struct sysctl_ctx_list *ctx,
4773     struct sysctl_oid *oid, struct sge_txq *txq)
4774 {
4775 	struct adapter *sc;
4776 	struct sysctl_oid_list *children;
4777 
4778 	if (ctx == NULL || oid == NULL)
4779 		return;
4780 
4781 	sc = vi->adapter;
4782 	children = SYSCTL_CHILDREN(oid);
4783 
4784 	mp_ring_sysctls(txq->r, ctx, children);
4785 
4786 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tc",
4787 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, txq - sc->sge.txq,
4788 	    sysctl_tc, "I", "traffic class (-1 means none)");
4789 
4790 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4791 	    &txq->txcsum, "# of times hardware assisted with checksum");
4792 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD,
4793 	    &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag");
4794 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4795 	    &txq->tso_wrs, "# of TSO work requests");
4796 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4797 	    &txq->imm_wrs, "# of work requests with immediate data");
4798 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4799 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4800 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4801 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4802 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD,
4803 	    &txq->txpkts0_wrs, "# of txpkts (type 0) work requests");
4804 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD,
4805 	    &txq->txpkts1_wrs, "# of txpkts (type 1) work requests");
4806 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD,
4807 	    &txq->txpkts0_pkts,
4808 	    "# of frames tx'd using type0 txpkts work requests");
4809 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD,
4810 	    &txq->txpkts1_pkts,
4811 	    "# of frames tx'd using type1 txpkts work requests");
4812 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts_flush", CTLFLAG_RD,
4813 	    &txq->txpkts_flush,
4814 	    "# of times txpkts had to be flushed out by an egress-update");
4815 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4816 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4817 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_tso_wrs", CTLFLAG_RD,
4818 	    &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
4819 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_txcsum", CTLFLAG_RD,
4820 	    &txq->vxlan_txcsum,
4821 	    "# of times hardware assisted with inner checksums (VXLAN)");
4822 
4823 #ifdef KERN_TLS
4824 	if (is_ktls(sc)) {
4825 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_records",
4826 		    CTLFLAG_RD, &txq->kern_tls_records,
4827 		    "# of NIC TLS records transmitted");
4828 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_short",
4829 		    CTLFLAG_RD, &txq->kern_tls_short,
4830 		    "# of short NIC TLS records transmitted");
4831 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_partial",
4832 		    CTLFLAG_RD, &txq->kern_tls_partial,
4833 		    "# of partial NIC TLS records transmitted");
4834 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_full",
4835 		    CTLFLAG_RD, &txq->kern_tls_full,
4836 		    "# of full NIC TLS records transmitted");
4837 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_octets",
4838 		    CTLFLAG_RD, &txq->kern_tls_octets,
4839 		    "# of payload octets in transmitted NIC TLS records");
4840 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_waste",
4841 		    CTLFLAG_RD, &txq->kern_tls_waste,
4842 		    "# of octets DMAd but not transmitted in NIC TLS records");
4843 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_options",
4844 		    CTLFLAG_RD, &txq->kern_tls_options,
4845 		    "# of NIC TLS options-only packets transmitted");
4846 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_header",
4847 		    CTLFLAG_RD, &txq->kern_tls_header,
4848 		    "# of NIC TLS header-only packets transmitted");
4849 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin",
4850 		    CTLFLAG_RD, &txq->kern_tls_fin,
4851 		    "# of NIC TLS FIN-only packets transmitted");
4852 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin_short",
4853 		    CTLFLAG_RD, &txq->kern_tls_fin_short,
4854 		    "# of NIC TLS padded FIN packets on short TLS records");
4855 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_cbc",
4856 		    CTLFLAG_RD, &txq->kern_tls_cbc,
4857 		    "# of NIC TLS sessions using AES-CBC");
4858 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_gcm",
4859 		    CTLFLAG_RD, &txq->kern_tls_gcm,
4860 		    "# of NIC TLS sessions using AES-GCM");
4861 	}
4862 #endif
4863 }
4864 
4865 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4866 /*
4867  * Idempotent.
4868  */
4869 static int
4870 alloc_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq, int idx)
4871 {
4872 	struct sysctl_oid *oid;
4873 	struct port_info *pi = vi->pi;
4874 	struct adapter *sc = vi->adapter;
4875 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4876 	int rc, iqidx;
4877 	char name[16];
4878 
4879 	MPASS(idx >= 0);
4880 	MPASS(idx < vi->nofldtxq);
4881 
4882 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4883 		snprintf(name, sizeof(name), "%d", idx);
4884 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4885 		    SYSCTL_CHILDREN(vi->ofld_txq_oid), OID_AUTO, name,
4886 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
4887 
4888 		snprintf(name, sizeof(name), "%s ofld_txq%d",
4889 		    device_get_nameunit(vi->dev), idx);
4890 		if (vi->nofldrxq > 0) {
4891 			iqidx = vi->first_ofld_rxq + (idx % vi->nofldrxq);
4892 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
4893 			    &sc->sge.ofld_rxq[iqidx].iq, name);
4894 		} else {
4895 			iqidx = vi->first_rxq + (idx % vi->nrxq);
4896 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
4897 			    &sc->sge.rxq[iqidx].iq, name);
4898 		}
4899 
4900 		rc = alloc_wrq(sc, vi, &ofld_txq->wrq, &vi->ctx, oid);
4901 		if (rc != 0) {
4902 			CH_ERR(vi, "failed to allocate ofld_txq%d: %d\n", idx,
4903 			    rc);
4904 			sysctl_remove_oid(oid, 1, 1);
4905 			return (rc);
4906 		}
4907 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4908 		/* Can't fail after this point. */
4909 
4910 		ofld_txq->tx_iscsi_pdus = counter_u64_alloc(M_WAITOK);
4911 		ofld_txq->tx_iscsi_octets = counter_u64_alloc(M_WAITOK);
4912 		ofld_txq->tx_iscsi_iso_wrs = counter_u64_alloc(M_WAITOK);
4913 		ofld_txq->tx_toe_tls_records = counter_u64_alloc(M_WAITOK);
4914 		ofld_txq->tx_toe_tls_octets = counter_u64_alloc(M_WAITOK);
4915 		add_ofld_txq_sysctls(&vi->ctx, oid, ofld_txq);
4916 	}
4917 
4918 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4919 		rc = alloc_eq_hwq(sc, vi, eq);
4920 		if (rc != 0) {
4921 			CH_ERR(vi, "failed to create hw ofld_txq%d: %d\n", idx,
4922 			    rc);
4923 			return (rc);
4924 		}
4925 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4926 	}
4927 
4928 	return (0);
4929 }
4930 
4931 /*
4932  * Idempotent.
4933  */
4934 static void
4935 free_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq)
4936 {
4937 	struct adapter *sc = vi->adapter;
4938 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4939 
4940 	if (eq->flags & EQ_HW_ALLOCATED) {
4941 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4942 		free_eq_hwq(sc, NULL, eq);
4943 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4944 	}
4945 
4946 	if (eq->flags & EQ_SW_ALLOCATED) {
4947 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4948 		counter_u64_free(ofld_txq->tx_iscsi_pdus);
4949 		counter_u64_free(ofld_txq->tx_iscsi_octets);
4950 		counter_u64_free(ofld_txq->tx_iscsi_iso_wrs);
4951 		counter_u64_free(ofld_txq->tx_toe_tls_records);
4952 		counter_u64_free(ofld_txq->tx_toe_tls_octets);
4953 		free_wrq(sc, &ofld_txq->wrq);
4954 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4955 		bzero(ofld_txq, sizeof(*ofld_txq));
4956 	}
4957 }
4958 
4959 static void
4960 add_ofld_txq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4961     struct sge_ofld_txq *ofld_txq)
4962 {
4963 	struct sysctl_oid_list *children;
4964 
4965 	if (ctx == NULL || oid == NULL)
4966 		return;
4967 
4968 	children = SYSCTL_CHILDREN(oid);
4969 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_pdus",
4970 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_pdus,
4971 	    "# of iSCSI PDUs transmitted");
4972 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_octets",
4973 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_octets,
4974 	    "# of payload octets in transmitted iSCSI PDUs");
4975 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_iso_wrs",
4976 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_iso_wrs,
4977 	    "# of iSCSI segmentation offload work requests");
4978 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_records",
4979 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_records,
4980 	    "# of TOE TLS records transmitted");
4981 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_octets",
4982 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_octets,
4983 	    "# of payload octets in transmitted TOE TLS records");
4984 }
4985 #endif
4986 
4987 static void
4988 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4989 {
4990 	bus_addr_t *ba = arg;
4991 
4992 	KASSERT(nseg == 1,
4993 	    ("%s meant for single segment mappings only.", __func__));
4994 
4995 	*ba = error ? 0 : segs->ds_addr;
4996 }
4997 
4998 static inline void
4999 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
5000 {
5001 	uint32_t n, v;
5002 
5003 	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
5004 	MPASS(n > 0);
5005 
5006 	wmb();
5007 	v = fl->dbval | V_PIDX(n);
5008 	if (fl->udb)
5009 		*fl->udb = htole32(v);
5010 	else
5011 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
5012 	IDXINCR(fl->dbidx, n, fl->sidx);
5013 }
5014 
5015 /*
5016  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
5017  * recycled do not count towards this allocation budget.
5018  *
5019  * Returns non-zero to indicate that this freelist should be added to the list
5020  * of starving freelists.
5021  */
5022 static int
5023 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
5024 {
5025 	__be64 *d;
5026 	struct fl_sdesc *sd;
5027 	uintptr_t pa;
5028 	caddr_t cl;
5029 	struct rx_buf_info *rxb;
5030 	struct cluster_metadata *clm;
5031 	uint16_t max_pidx, zidx = fl->zidx;
5032 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
5033 
5034 	FL_LOCK_ASSERT_OWNED(fl);
5035 
5036 	/*
5037 	 * We always stop at the beginning of the hardware descriptor that's just
5038 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
5039 	 * which would mean an empty freelist to the chip.
5040 	 */
5041 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
5042 	if (fl->pidx == max_pidx * 8)
5043 		return (0);
5044 
5045 	d = &fl->desc[fl->pidx];
5046 	sd = &fl->sdesc[fl->pidx];
5047 	rxb = &sc->sge.rx_buf_info[zidx];
5048 
5049 	while (n > 0) {
5050 
5051 		if (sd->cl != NULL) {
5052 
5053 			if (sd->nmbuf == 0) {
5054 				/*
5055 				 * Fast recycle without involving any atomics on
5056 				 * the cluster's metadata (if the cluster has
5057 				 * metadata).  This happens when all frames
5058 				 * received in the cluster were small enough to
5059 				 * fit within a single mbuf each.
5060 				 */
5061 				fl->cl_fast_recycled++;
5062 				goto recycled;
5063 			}
5064 
5065 			/*
5066 			 * Cluster is guaranteed to have metadata.  Clusters
5067 			 * without metadata always take the fast recycle path
5068 			 * when they're recycled.
5069 			 */
5070 			clm = cl_metadata(sd);
5071 			MPASS(clm != NULL);
5072 
5073 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5074 				fl->cl_recycled++;
5075 				counter_u64_add(extfree_rels, 1);
5076 				goto recycled;
5077 			}
5078 			sd->cl = NULL;	/* gave up my reference */
5079 		}
5080 		MPASS(sd->cl == NULL);
5081 		cl = uma_zalloc(rxb->zone, M_NOWAIT);
5082 		if (__predict_false(cl == NULL)) {
5083 			if (zidx != fl->safe_zidx) {
5084 				zidx = fl->safe_zidx;
5085 				rxb = &sc->sge.rx_buf_info[zidx];
5086 				cl = uma_zalloc(rxb->zone, M_NOWAIT);
5087 			}
5088 			if (cl == NULL)
5089 				break;
5090 		}
5091 		fl->cl_allocated++;
5092 		n--;
5093 
5094 		pa = pmap_kextract((vm_offset_t)cl);
5095 		sd->cl = cl;
5096 		sd->zidx = zidx;
5097 
5098 		if (fl->flags & FL_BUF_PACKING) {
5099 			*d = htobe64(pa | rxb->hwidx2);
5100 			sd->moff = rxb->size2;
5101 		} else {
5102 			*d = htobe64(pa | rxb->hwidx1);
5103 			sd->moff = 0;
5104 		}
5105 recycled:
5106 		sd->nmbuf = 0;
5107 		d++;
5108 		sd++;
5109 		if (__predict_false((++fl->pidx & 7) == 0)) {
5110 			uint16_t pidx = fl->pidx >> 3;
5111 
5112 			if (__predict_false(pidx == fl->sidx)) {
5113 				fl->pidx = 0;
5114 				pidx = 0;
5115 				sd = fl->sdesc;
5116 				d = fl->desc;
5117 			}
5118 			if (n < 8 || pidx == max_pidx)
5119 				break;
5120 
5121 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
5122 				ring_fl_db(sc, fl);
5123 		}
5124 	}
5125 
5126 	if ((fl->pidx >> 3) != fl->dbidx)
5127 		ring_fl_db(sc, fl);
5128 
5129 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
5130 }
5131 
5132 /*
5133  * Attempt to refill all starving freelists.
5134  */
5135 static void
5136 refill_sfl(void *arg)
5137 {
5138 	struct adapter *sc = arg;
5139 	struct sge_fl *fl, *fl_temp;
5140 
5141 	mtx_assert(&sc->sfl_lock, MA_OWNED);
5142 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
5143 		FL_LOCK(fl);
5144 		refill_fl(sc, fl, 64);
5145 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
5146 			TAILQ_REMOVE(&sc->sfl, fl, link);
5147 			fl->flags &= ~FL_STARVING;
5148 		}
5149 		FL_UNLOCK(fl);
5150 	}
5151 
5152 	if (!TAILQ_EMPTY(&sc->sfl))
5153 		callout_schedule(&sc->sfl_callout, hz / 5);
5154 }
5155 
5156 /*
5157  * Release the driver's reference on all buffers in the given freelist.  Buffers
5158  * with kernel references cannot be freed and will prevent the driver from being
5159  * unloaded safely.
5160  */
5161 void
5162 free_fl_buffers(struct adapter *sc, struct sge_fl *fl)
5163 {
5164 	struct fl_sdesc *sd;
5165 	struct cluster_metadata *clm;
5166 	int i;
5167 
5168 	sd = fl->sdesc;
5169 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
5170 		if (sd->cl == NULL)
5171 			continue;
5172 
5173 		if (sd->nmbuf == 0)
5174 			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
5175 		else if (fl->flags & FL_BUF_PACKING) {
5176 			clm = cl_metadata(sd);
5177 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5178 				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
5179 				    sd->cl);
5180 				counter_u64_add(extfree_rels, 1);
5181 			}
5182 		}
5183 		sd->cl = NULL;
5184 	}
5185 
5186 	if (fl->flags & FL_BUF_RESUME) {
5187 		m_freem(fl->m0);
5188 		fl->flags &= ~FL_BUF_RESUME;
5189 	}
5190 }
5191 
5192 static inline void
5193 get_pkt_gl(struct mbuf *m, struct sglist *gl)
5194 {
5195 	int rc;
5196 
5197 	M_ASSERTPKTHDR(m);
5198 
5199 	sglist_reset(gl);
5200 	rc = sglist_append_mbuf(gl, m);
5201 	if (__predict_false(rc != 0)) {
5202 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
5203 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
5204 	}
5205 
5206 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
5207 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
5208 	    mbuf_nsegs(m), gl->sg_nseg));
5209 #if 0	/* vm_wr not readily available here. */
5210 	KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
5211 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
5212 		gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
5213 #endif
5214 }
5215 
5216 /*
5217  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5218  */
5219 static inline u_int
5220 txpkt_len16(u_int nsegs, const u_int extra)
5221 {
5222 	u_int n;
5223 
5224 	MPASS(nsegs > 0);
5225 
5226 	nsegs--; /* first segment is part of ulptx_sgl */
5227 	n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
5228 	    sizeof(struct cpl_tx_pkt_core) +
5229 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5230 
5231 	return (howmany(n, 16));
5232 }
5233 
5234 /*
5235  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
5236  * request header.
5237  */
5238 static inline u_int
5239 txpkt_vm_len16(u_int nsegs, const u_int extra)
5240 {
5241 	u_int n;
5242 
5243 	MPASS(nsegs > 0);
5244 
5245 	nsegs--; /* first segment is part of ulptx_sgl */
5246 	n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
5247 	    sizeof(struct cpl_tx_pkt_core) +
5248 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5249 
5250 	return (howmany(n, 16));
5251 }
5252 
5253 static inline void
5254 calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
5255 {
5256 	const int lso = sizeof(struct cpl_tx_pkt_lso_core);
5257 	const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
5258 
5259 	if (vm_wr) {
5260 		if (needs_tso(m))
5261 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
5262 		else
5263 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
5264 		return;
5265 	}
5266 
5267 	if (needs_tso(m)) {
5268 		if (needs_vxlan_tso(m))
5269 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
5270 		else
5271 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
5272 	} else
5273 		set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
5274 }
5275 
5276 /*
5277  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
5278  * request header.
5279  */
5280 static inline u_int
5281 txpkts0_len16(u_int nsegs)
5282 {
5283 	u_int n;
5284 
5285 	MPASS(nsegs > 0);
5286 
5287 	nsegs--; /* first segment is part of ulptx_sgl */
5288 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
5289 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
5290 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
5291 
5292 	return (howmany(n, 16));
5293 }
5294 
5295 /*
5296  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
5297  * request header.
5298  */
5299 static inline u_int
5300 txpkts1_len16(void)
5301 {
5302 	u_int n;
5303 
5304 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
5305 
5306 	return (howmany(n, 16));
5307 }
5308 
5309 static inline u_int
5310 imm_payload(u_int ndesc)
5311 {
5312 	u_int n;
5313 
5314 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
5315 	    sizeof(struct cpl_tx_pkt_core);
5316 
5317 	return (n);
5318 }
5319 
5320 static inline uint64_t
5321 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
5322 {
5323 	uint64_t ctrl;
5324 	int csum_type, l2hlen, l3hlen;
5325 	int x, y;
5326 	static const int csum_types[3][2] = {
5327 		{TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
5328 		{TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
5329 		{TX_CSUM_IP, 0}
5330 	};
5331 
5332 	M_ASSERTPKTHDR(m);
5333 
5334 	if (!needs_hwcsum(m))
5335 		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
5336 
5337 	MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
5338 	MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
5339 
5340 	if (needs_vxlan_csum(m)) {
5341 		MPASS(m->m_pkthdr.l4hlen > 0);
5342 		MPASS(m->m_pkthdr.l5hlen > 0);
5343 		MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
5344 		MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
5345 
5346 		l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
5347 		    m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
5348 		    m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
5349 		l3hlen = m->m_pkthdr.inner_l3hlen;
5350 	} else {
5351 		l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
5352 		l3hlen = m->m_pkthdr.l3hlen;
5353 	}
5354 
5355 	ctrl = 0;
5356 	if (!needs_l3_csum(m))
5357 		ctrl |= F_TXPKT_IPCSUM_DIS;
5358 
5359 	if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
5360 	    CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
5361 		x = 0;	/* TCP */
5362 	else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
5363 	    CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
5364 		x = 1;	/* UDP */
5365 	else
5366 		x = 2;
5367 
5368 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
5369 	    CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
5370 		y = 0;	/* IPv4 */
5371 	else {
5372 		MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
5373 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
5374 		y = 1;	/* IPv6 */
5375 	}
5376 	/*
5377 	 * needs_hwcsum returned true earlier so there must be some kind of
5378 	 * checksum to calculate.
5379 	 */
5380 	csum_type = csum_types[x][y];
5381 	MPASS(csum_type != 0);
5382 	if (csum_type == TX_CSUM_IP)
5383 		ctrl |= F_TXPKT_L4CSUM_DIS;
5384 	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
5385 	if (chip_id(sc) <= CHELSIO_T5)
5386 		ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
5387 	else
5388 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
5389 
5390 	return (ctrl);
5391 }
5392 
5393 static inline void *
5394 write_lso_cpl(void *cpl, struct mbuf *m0)
5395 {
5396 	struct cpl_tx_pkt_lso_core *lso;
5397 	uint32_t ctrl;
5398 
5399 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5400 	    m0->m_pkthdr.l4hlen > 0,
5401 	    ("%s: mbuf %p needs TSO but missing header lengths",
5402 		__func__, m0));
5403 
5404 	ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5405 	    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5406 	    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5407 	    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5408 	    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5409 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5410 		ctrl |= F_LSO_IPV6;
5411 
5412 	lso = cpl;
5413 	lso->lso_ctrl = htobe32(ctrl);
5414 	lso->ipid_ofst = htobe16(0);
5415 	lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5416 	lso->seqno_offset = htobe32(0);
5417 	lso->len = htobe32(m0->m_pkthdr.len);
5418 
5419 	return (lso + 1);
5420 }
5421 
5422 static void *
5423 write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
5424 {
5425 	struct cpl_tx_tnl_lso *tnl_lso = cpl;
5426 	uint32_t ctrl;
5427 
5428 	KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
5429 	    m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
5430 	    m0->m_pkthdr.inner_l5hlen > 0,
5431 	    ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
5432 		__func__, m0));
5433 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5434 	    m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
5435 	    ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
5436 		__func__, m0));
5437 
5438 	/* Outer headers. */
5439 	ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
5440 	    F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
5441 	    V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
5442 		(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5443 	    V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
5444 	    F_CPL_TX_TNL_LSO_IPLENSETOUT;
5445 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5446 		ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
5447 	else {
5448 		ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
5449 		    F_CPL_TX_TNL_LSO_IPIDINCOUT;
5450 	}
5451 	tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
5452 	tnl_lso->IpIdOffsetOut = 0;
5453 	tnl_lso->UdpLenSetOut_to_TnlHdrLen =
5454 		htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
5455 		    F_CPL_TX_TNL_LSO_UDPLENSETOUT |
5456 		    V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
5457 			m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
5458 			m0->m_pkthdr.l5hlen) |
5459 		    V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
5460 	tnl_lso->r1 = 0;
5461 
5462 	/* Inner headers. */
5463 	ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
5464 	    (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
5465 	    V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
5466 	    V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
5467 	if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
5468 		ctrl |= F_CPL_TX_TNL_LSO_IPV6;
5469 	tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
5470 	tnl_lso->IpIdOffset = 0;
5471 	tnl_lso->IpIdSplit_to_Mss =
5472 	    htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
5473 	tnl_lso->TCPSeqOffset = 0;
5474 	tnl_lso->EthLenOffset_Size =
5475 	    htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
5476 
5477 	return (tnl_lso + 1);
5478 }
5479 
5480 #define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
5481 
5482 /*
5483  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
5484  * software descriptor, and advance the pidx.  It is guaranteed that enough
5485  * descriptors are available.
5486  *
5487  * The return value is the # of hardware descriptors used.
5488  */
5489 static u_int
5490 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
5491 {
5492 	struct sge_eq *eq;
5493 	struct fw_eth_tx_pkt_vm_wr *wr;
5494 	struct tx_sdesc *txsd;
5495 	struct cpl_tx_pkt_core *cpl;
5496 	uint32_t ctrl;	/* used in many unrelated places */
5497 	uint64_t ctrl1;
5498 	int len16, ndesc, pktlen;
5499 	caddr_t dst;
5500 
5501 	TXQ_LOCK_ASSERT_OWNED(txq);
5502 	M_ASSERTPKTHDR(m0);
5503 
5504 	len16 = mbuf_len16(m0);
5505 	pktlen = m0->m_pkthdr.len;
5506 	ctrl = sizeof(struct cpl_tx_pkt_core);
5507 	if (needs_tso(m0))
5508 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5509 	ndesc = tx_len16_to_desc(len16);
5510 
5511 	/* Firmware work request header */
5512 	eq = &txq->eq;
5513 	wr = (void *)&eq->desc[eq->pidx];
5514 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
5515 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5516 
5517 	ctrl = V_FW_WR_LEN16(len16);
5518 	wr->equiq_to_len16 = htobe32(ctrl);
5519 	wr->r3[0] = 0;
5520 	wr->r3[1] = 0;
5521 
5522 	/*
5523 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
5524 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
5525 	 * simpler to always copy it rather than making it
5526 	 * conditional.  Also, it seems that we do not have to set
5527 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
5528 	 */
5529 	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
5530 
5531 	if (needs_tso(m0)) {
5532 		cpl = write_lso_cpl(wr + 1, m0);
5533 		txq->tso_wrs++;
5534 	} else
5535 		cpl = (void *)(wr + 1);
5536 
5537 	/* Checksum offload */
5538 	ctrl1 = csum_to_ctrl(sc, m0);
5539 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5540 		txq->txcsum++;	/* some hardware assistance provided */
5541 
5542 	/* VLAN tag insertion */
5543 	if (needs_vlan_insertion(m0)) {
5544 		ctrl1 |= F_TXPKT_VLAN_VLD |
5545 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5546 		txq->vlan_insertion++;
5547 	}
5548 
5549 	/* CPL header */
5550 	cpl->ctrl0 = txq->cpl_ctrl0;
5551 	cpl->pack = 0;
5552 	cpl->len = htobe16(pktlen);
5553 	cpl->ctrl1 = htobe64(ctrl1);
5554 
5555 	/* SGL */
5556 	dst = (void *)(cpl + 1);
5557 
5558 	/*
5559 	 * A packet using TSO will use up an entire descriptor for the
5560 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
5561 	 * If this descriptor is the last descriptor in the ring, wrap
5562 	 * around to the front of the ring explicitly for the start of
5563 	 * the sgl.
5564 	 */
5565 	if (dst == (void *)&eq->desc[eq->sidx]) {
5566 		dst = (void *)&eq->desc[0];
5567 		write_gl_to_txd(txq, m0, &dst, 0);
5568 	} else
5569 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5570 	txq->sgl_wrs++;
5571 	txq->txpkt_wrs++;
5572 
5573 	txsd = &txq->sdesc[eq->pidx];
5574 	txsd->m = m0;
5575 	txsd->desc_used = ndesc;
5576 
5577 	return (ndesc);
5578 }
5579 
5580 /*
5581  * Write a raw WR to the hardware descriptors, update the software
5582  * descriptor, and advance the pidx.  It is guaranteed that enough
5583  * descriptors are available.
5584  *
5585  * The return value is the # of hardware descriptors used.
5586  */
5587 static u_int
5588 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
5589 {
5590 	struct sge_eq *eq = &txq->eq;
5591 	struct tx_sdesc *txsd;
5592 	struct mbuf *m;
5593 	caddr_t dst;
5594 	int len16, ndesc;
5595 
5596 	len16 = mbuf_len16(m0);
5597 	ndesc = tx_len16_to_desc(len16);
5598 	MPASS(ndesc <= available);
5599 
5600 	dst = wr;
5601 	for (m = m0; m != NULL; m = m->m_next)
5602 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5603 
5604 	txq->raw_wrs++;
5605 
5606 	txsd = &txq->sdesc[eq->pidx];
5607 	txsd->m = m0;
5608 	txsd->desc_used = ndesc;
5609 
5610 	return (ndesc);
5611 }
5612 
5613 /*
5614  * Write a txpkt WR for this packet to the hardware descriptors, update the
5615  * software descriptor, and advance the pidx.  It is guaranteed that enough
5616  * descriptors are available.
5617  *
5618  * The return value is the # of hardware descriptors used.
5619  */
5620 static u_int
5621 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
5622     u_int available)
5623 {
5624 	struct sge_eq *eq;
5625 	struct fw_eth_tx_pkt_wr *wr;
5626 	struct tx_sdesc *txsd;
5627 	struct cpl_tx_pkt_core *cpl;
5628 	uint32_t ctrl;	/* used in many unrelated places */
5629 	uint64_t ctrl1;
5630 	int len16, ndesc, pktlen, nsegs;
5631 	caddr_t dst;
5632 
5633 	TXQ_LOCK_ASSERT_OWNED(txq);
5634 	M_ASSERTPKTHDR(m0);
5635 
5636 	len16 = mbuf_len16(m0);
5637 	nsegs = mbuf_nsegs(m0);
5638 	pktlen = m0->m_pkthdr.len;
5639 	ctrl = sizeof(struct cpl_tx_pkt_core);
5640 	if (needs_tso(m0)) {
5641 		if (needs_vxlan_tso(m0))
5642 			ctrl += sizeof(struct cpl_tx_tnl_lso);
5643 		else
5644 			ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5645 	} else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
5646 	    available >= 2) {
5647 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
5648 		ctrl += pktlen;
5649 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
5650 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
5651 		nsegs = 0;
5652 	}
5653 	ndesc = tx_len16_to_desc(len16);
5654 	MPASS(ndesc <= available);
5655 
5656 	/* Firmware work request header */
5657 	eq = &txq->eq;
5658 	wr = (void *)&eq->desc[eq->pidx];
5659 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
5660 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5661 
5662 	ctrl = V_FW_WR_LEN16(len16);
5663 	wr->equiq_to_len16 = htobe32(ctrl);
5664 	wr->r3 = 0;
5665 
5666 	if (needs_tso(m0)) {
5667 		if (needs_vxlan_tso(m0)) {
5668 			cpl = write_tnl_lso_cpl(wr + 1, m0);
5669 			txq->vxlan_tso_wrs++;
5670 		} else {
5671 			cpl = write_lso_cpl(wr + 1, m0);
5672 			txq->tso_wrs++;
5673 		}
5674 	} else
5675 		cpl = (void *)(wr + 1);
5676 
5677 	/* Checksum offload */
5678 	ctrl1 = csum_to_ctrl(sc, m0);
5679 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5680 		/* some hardware assistance provided */
5681 		if (needs_vxlan_csum(m0))
5682 			txq->vxlan_txcsum++;
5683 		else
5684 			txq->txcsum++;
5685 	}
5686 
5687 	/* VLAN tag insertion */
5688 	if (needs_vlan_insertion(m0)) {
5689 		ctrl1 |= F_TXPKT_VLAN_VLD |
5690 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5691 		txq->vlan_insertion++;
5692 	}
5693 
5694 	/* CPL header */
5695 	cpl->ctrl0 = txq->cpl_ctrl0;
5696 	cpl->pack = 0;
5697 	cpl->len = htobe16(pktlen);
5698 	cpl->ctrl1 = htobe64(ctrl1);
5699 
5700 	/* SGL */
5701 	dst = (void *)(cpl + 1);
5702 	if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
5703 		dst = (caddr_t)&eq->desc[0];
5704 	if (nsegs > 0) {
5705 
5706 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5707 		txq->sgl_wrs++;
5708 	} else {
5709 		struct mbuf *m;
5710 
5711 		for (m = m0; m != NULL; m = m->m_next) {
5712 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5713 #ifdef INVARIANTS
5714 			pktlen -= m->m_len;
5715 #endif
5716 		}
5717 #ifdef INVARIANTS
5718 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
5719 #endif
5720 		txq->imm_wrs++;
5721 	}
5722 
5723 	txq->txpkt_wrs++;
5724 
5725 	txsd = &txq->sdesc[eq->pidx];
5726 	txsd->m = m0;
5727 	txsd->desc_used = ndesc;
5728 
5729 	return (ndesc);
5730 }
5731 
5732 static inline bool
5733 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
5734 {
5735 	int len;
5736 
5737 	MPASS(txp->npkt > 0);
5738 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5739 
5740 	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5741 		len = VM_TX_L2HDR_LEN;
5742 	else
5743 		len = sizeof(struct ether_header);
5744 
5745 	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5746 }
5747 
5748 static inline void
5749 save_l2hdr(struct txpkts *txp, struct mbuf *m)
5750 {
5751 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5752 
5753 	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5754 }
5755 
5756 static int
5757 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5758     int avail, bool *send)
5759 {
5760 	struct txpkts *txp = &txq->txp;
5761 
5762 	/* Cannot have TSO and coalesce at the same time. */
5763 	if (cannot_use_txpkts(m)) {
5764 cannot_coalesce:
5765 		*send = txp->npkt > 0;
5766 		return (EINVAL);
5767 	}
5768 
5769 	/* VF allows coalescing of type 1 (1 GL) only */
5770 	if (mbuf_nsegs(m) > 1)
5771 		goto cannot_coalesce;
5772 
5773 	*send = false;
5774 	if (txp->npkt > 0) {
5775 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5776 		MPASS(txp->npkt < txp->max_npkt);
5777 		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5778 
5779 		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5780 retry_after_send:
5781 			*send = true;
5782 			return (EAGAIN);
5783 		}
5784 		if (m->m_pkthdr.len + txp->plen > 65535)
5785 			goto retry_after_send;
5786 		if (cmp_l2hdr(txp, m))
5787 			goto retry_after_send;
5788 
5789 		txp->len16 += txpkts1_len16();
5790 		txp->plen += m->m_pkthdr.len;
5791 		txp->mb[txp->npkt++] = m;
5792 		if (txp->npkt == txp->max_npkt)
5793 			*send = true;
5794 	} else {
5795 		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5796 		    txpkts1_len16();
5797 		if (tx_len16_to_desc(txp->len16) > avail)
5798 			goto cannot_coalesce;
5799 		txp->npkt = 1;
5800 		txp->wr_type = 1;
5801 		txp->plen = m->m_pkthdr.len;
5802 		txp->mb[0] = m;
5803 		save_l2hdr(txp, m);
5804 	}
5805 	return (0);
5806 }
5807 
5808 static int
5809 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5810     int avail, bool *send)
5811 {
5812 	struct txpkts *txp = &txq->txp;
5813 	int nsegs;
5814 
5815 	MPASS(!(sc->flags & IS_VF));
5816 
5817 	/* Cannot have TSO and coalesce at the same time. */
5818 	if (cannot_use_txpkts(m)) {
5819 cannot_coalesce:
5820 		*send = txp->npkt > 0;
5821 		return (EINVAL);
5822 	}
5823 
5824 	*send = false;
5825 	nsegs = mbuf_nsegs(m);
5826 	if (txp->npkt == 0) {
5827 		if (m->m_pkthdr.len > 65535)
5828 			goto cannot_coalesce;
5829 		if (nsegs > 1) {
5830 			txp->wr_type = 0;
5831 			txp->len16 =
5832 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5833 			    txpkts0_len16(nsegs);
5834 		} else {
5835 			txp->wr_type = 1;
5836 			txp->len16 =
5837 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5838 			    txpkts1_len16();
5839 		}
5840 		if (tx_len16_to_desc(txp->len16) > avail)
5841 			goto cannot_coalesce;
5842 		txp->npkt = 1;
5843 		txp->plen = m->m_pkthdr.len;
5844 		txp->mb[0] = m;
5845 	} else {
5846 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5847 		MPASS(txp->npkt < txp->max_npkt);
5848 
5849 		if (m->m_pkthdr.len + txp->plen > 65535) {
5850 retry_after_send:
5851 			*send = true;
5852 			return (EAGAIN);
5853 		}
5854 
5855 		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5856 		if (txp->wr_type == 0) {
5857 			if (tx_len16_to_desc(txp->len16 +
5858 			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
5859 				goto retry_after_send;
5860 			txp->len16 += txpkts0_len16(nsegs);
5861 		} else {
5862 			if (nsegs != 1)
5863 				goto retry_after_send;
5864 			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
5865 			    avail)
5866 				goto retry_after_send;
5867 			txp->len16 += txpkts1_len16();
5868 		}
5869 
5870 		txp->plen += m->m_pkthdr.len;
5871 		txp->mb[txp->npkt++] = m;
5872 		if (txp->npkt == txp->max_npkt)
5873 			*send = true;
5874 	}
5875 	return (0);
5876 }
5877 
5878 /*
5879  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
5880  * the software descriptor, and advance the pidx.  It is guaranteed that enough
5881  * descriptors are available.
5882  *
5883  * The return value is the # of hardware descriptors used.
5884  */
5885 static u_int
5886 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
5887 {
5888 	const struct txpkts *txp = &txq->txp;
5889 	struct sge_eq *eq = &txq->eq;
5890 	struct fw_eth_tx_pkts_wr *wr;
5891 	struct tx_sdesc *txsd;
5892 	struct cpl_tx_pkt_core *cpl;
5893 	uint64_t ctrl1;
5894 	int ndesc, i, checkwrap;
5895 	struct mbuf *m, *last;
5896 	void *flitp;
5897 
5898 	TXQ_LOCK_ASSERT_OWNED(txq);
5899 	MPASS(txp->npkt > 0);
5900 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5901 
5902 	wr = (void *)&eq->desc[eq->pidx];
5903 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
5904 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5905 	wr->plen = htobe16(txp->plen);
5906 	wr->npkt = txp->npkt;
5907 	wr->r3 = 0;
5908 	wr->type = txp->wr_type;
5909 	flitp = wr + 1;
5910 
5911 	/*
5912 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
5913 	 * set then we know the WR is going to wrap around somewhere.  We'll
5914 	 * check for that at appropriate points.
5915 	 */
5916 	ndesc = tx_len16_to_desc(txp->len16);
5917 	last = NULL;
5918 	checkwrap = eq->sidx - ndesc < eq->pidx;
5919 	for (i = 0; i < txp->npkt; i++) {
5920 		m = txp->mb[i];
5921 		if (txp->wr_type == 0) {
5922 			struct ulp_txpkt *ulpmc;
5923 			struct ulptx_idata *ulpsc;
5924 
5925 			/* ULP master command */
5926 			ulpmc = flitp;
5927 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
5928 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
5929 			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
5930 
5931 			/* ULP subcommand */
5932 			ulpsc = (void *)(ulpmc + 1);
5933 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
5934 			    F_ULP_TX_SC_MORE);
5935 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
5936 
5937 			cpl = (void *)(ulpsc + 1);
5938 			if (checkwrap &&
5939 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
5940 				cpl = (void *)&eq->desc[0];
5941 		} else {
5942 			cpl = flitp;
5943 		}
5944 
5945 		/* Checksum offload */
5946 		ctrl1 = csum_to_ctrl(sc, m);
5947 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5948 			/* some hardware assistance provided */
5949 			if (needs_vxlan_csum(m))
5950 				txq->vxlan_txcsum++;
5951 			else
5952 				txq->txcsum++;
5953 		}
5954 
5955 		/* VLAN tag insertion */
5956 		if (needs_vlan_insertion(m)) {
5957 			ctrl1 |= F_TXPKT_VLAN_VLD |
5958 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5959 			txq->vlan_insertion++;
5960 		}
5961 
5962 		/* CPL header */
5963 		cpl->ctrl0 = txq->cpl_ctrl0;
5964 		cpl->pack = 0;
5965 		cpl->len = htobe16(m->m_pkthdr.len);
5966 		cpl->ctrl1 = htobe64(ctrl1);
5967 
5968 		flitp = cpl + 1;
5969 		if (checkwrap &&
5970 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5971 			flitp = (void *)&eq->desc[0];
5972 
5973 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
5974 
5975 		if (last != NULL)
5976 			last->m_nextpkt = m;
5977 		last = m;
5978 	}
5979 
5980 	txq->sgl_wrs++;
5981 	if (txp->wr_type == 0) {
5982 		txq->txpkts0_pkts += txp->npkt;
5983 		txq->txpkts0_wrs++;
5984 	} else {
5985 		txq->txpkts1_pkts += txp->npkt;
5986 		txq->txpkts1_wrs++;
5987 	}
5988 
5989 	txsd = &txq->sdesc[eq->pidx];
5990 	txsd->m = txp->mb[0];
5991 	txsd->desc_used = ndesc;
5992 
5993 	return (ndesc);
5994 }
5995 
5996 static u_int
5997 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
5998 {
5999 	const struct txpkts *txp = &txq->txp;
6000 	struct sge_eq *eq = &txq->eq;
6001 	struct fw_eth_tx_pkts_vm_wr *wr;
6002 	struct tx_sdesc *txsd;
6003 	struct cpl_tx_pkt_core *cpl;
6004 	uint64_t ctrl1;
6005 	int ndesc, i;
6006 	struct mbuf *m, *last;
6007 	void *flitp;
6008 
6009 	TXQ_LOCK_ASSERT_OWNED(txq);
6010 	MPASS(txp->npkt > 0);
6011 	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
6012 	MPASS(txp->mb[0] != NULL);
6013 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
6014 
6015 	wr = (void *)&eq->desc[eq->pidx];
6016 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
6017 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
6018 	wr->r3 = 0;
6019 	wr->plen = htobe16(txp->plen);
6020 	wr->npkt = txp->npkt;
6021 	wr->r4 = 0;
6022 	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
6023 	flitp = wr + 1;
6024 
6025 	/*
6026 	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
6027 	 * the WR will take 32B so we check for the end of the descriptor ring
6028 	 * before writing odd mbufs (mb[1], 3, 5, ..)
6029 	 */
6030 	ndesc = tx_len16_to_desc(txp->len16);
6031 	last = NULL;
6032 	for (i = 0; i < txp->npkt; i++) {
6033 		m = txp->mb[i];
6034 		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
6035 			flitp = &eq->desc[0];
6036 		cpl = flitp;
6037 
6038 		/* Checksum offload */
6039 		ctrl1 = csum_to_ctrl(sc, m);
6040 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
6041 			txq->txcsum++;	/* some hardware assistance provided */
6042 
6043 		/* VLAN tag insertion */
6044 		if (needs_vlan_insertion(m)) {
6045 			ctrl1 |= F_TXPKT_VLAN_VLD |
6046 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
6047 			txq->vlan_insertion++;
6048 		}
6049 
6050 		/* CPL header */
6051 		cpl->ctrl0 = txq->cpl_ctrl0;
6052 		cpl->pack = 0;
6053 		cpl->len = htobe16(m->m_pkthdr.len);
6054 		cpl->ctrl1 = htobe64(ctrl1);
6055 
6056 		flitp = cpl + 1;
6057 		MPASS(mbuf_nsegs(m) == 1);
6058 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
6059 
6060 		if (last != NULL)
6061 			last->m_nextpkt = m;
6062 		last = m;
6063 	}
6064 
6065 	txq->sgl_wrs++;
6066 	txq->txpkts1_pkts += txp->npkt;
6067 	txq->txpkts1_wrs++;
6068 
6069 	txsd = &txq->sdesc[eq->pidx];
6070 	txsd->m = txp->mb[0];
6071 	txsd->desc_used = ndesc;
6072 
6073 	return (ndesc);
6074 }
6075 
6076 /*
6077  * If the SGL ends on an address that is not 16 byte aligned, this function will
6078  * add a 0 filled flit at the end.
6079  */
6080 static void
6081 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
6082 {
6083 	struct sge_eq *eq = &txq->eq;
6084 	struct sglist *gl = txq->gl;
6085 	struct sglist_seg *seg;
6086 	__be64 *flitp, *wrap;
6087 	struct ulptx_sgl *usgl;
6088 	int i, nflits, nsegs;
6089 
6090 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
6091 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
6092 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6093 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6094 
6095 	get_pkt_gl(m, gl);
6096 	nsegs = gl->sg_nseg;
6097 	MPASS(nsegs > 0);
6098 
6099 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
6100 	flitp = (__be64 *)(*to);
6101 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
6102 	seg = &gl->sg_segs[0];
6103 	usgl = (void *)flitp;
6104 
6105 	/*
6106 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
6107 	 * ring, so we're at least 16 bytes away from the status page.  There is
6108 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
6109 	 */
6110 
6111 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6112 	    V_ULPTX_NSGE(nsegs));
6113 	usgl->len0 = htobe32(seg->ss_len);
6114 	usgl->addr0 = htobe64(seg->ss_paddr);
6115 	seg++;
6116 
6117 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
6118 
6119 		/* Won't wrap around at all */
6120 
6121 		for (i = 0; i < nsegs - 1; i++, seg++) {
6122 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
6123 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
6124 		}
6125 		if (i & 1)
6126 			usgl->sge[i / 2].len[1] = htobe32(0);
6127 		flitp += nflits;
6128 	} else {
6129 
6130 		/* Will wrap somewhere in the rest of the SGL */
6131 
6132 		/* 2 flits already written, write the rest flit by flit */
6133 		flitp = (void *)(usgl + 1);
6134 		for (i = 0; i < nflits - 2; i++) {
6135 			if (flitp == wrap)
6136 				flitp = (void *)eq->desc;
6137 			*flitp++ = get_flit(seg, nsegs - 1, i);
6138 		}
6139 	}
6140 
6141 	if (nflits & 1) {
6142 		MPASS(((uintptr_t)flitp) & 0xf);
6143 		*flitp++ = 0;
6144 	}
6145 
6146 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
6147 	if (__predict_false(flitp == wrap))
6148 		*to = (void *)eq->desc;
6149 	else
6150 		*to = (void *)flitp;
6151 }
6152 
6153 static inline void
6154 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
6155 {
6156 
6157 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6158 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6159 
6160 	if (__predict_true((uintptr_t)(*to) + len <=
6161 	    (uintptr_t)&eq->desc[eq->sidx])) {
6162 		bcopy(from, *to, len);
6163 		(*to) += len;
6164 	} else {
6165 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
6166 
6167 		bcopy(from, *to, portion);
6168 		from += portion;
6169 		portion = len - portion;	/* remaining */
6170 		bcopy(from, (void *)eq->desc, portion);
6171 		(*to) = (caddr_t)eq->desc + portion;
6172 	}
6173 }
6174 
6175 static inline void
6176 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
6177 {
6178 	u_int db;
6179 
6180 	MPASS(n > 0);
6181 
6182 	db = eq->doorbells;
6183 	if (n > 1)
6184 		clrbit(&db, DOORBELL_WCWR);
6185 	wmb();
6186 
6187 	switch (ffs(db) - 1) {
6188 	case DOORBELL_UDB:
6189 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6190 		break;
6191 
6192 	case DOORBELL_WCWR: {
6193 		volatile uint64_t *dst, *src;
6194 		int i;
6195 
6196 		/*
6197 		 * Queues whose 128B doorbell segment fits in the page do not
6198 		 * use relative qid (udb_qid is always 0).  Only queues with
6199 		 * doorbell segments can do WCWR.
6200 		 */
6201 		KASSERT(eq->udb_qid == 0 && n == 1,
6202 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
6203 		    __func__, eq->doorbells, n, eq->dbidx, eq));
6204 
6205 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
6206 		    UDBS_DB_OFFSET);
6207 		i = eq->dbidx;
6208 		src = (void *)&eq->desc[i];
6209 		while (src != (void *)&eq->desc[i + 1])
6210 			*dst++ = *src++;
6211 		wmb();
6212 		break;
6213 	}
6214 
6215 	case DOORBELL_UDBWC:
6216 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6217 		wmb();
6218 		break;
6219 
6220 	case DOORBELL_KDB:
6221 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
6222 		    V_QID(eq->cntxt_id) | V_PIDX(n));
6223 		break;
6224 	}
6225 
6226 	IDXINCR(eq->dbidx, n, eq->sidx);
6227 }
6228 
6229 static inline u_int
6230 reclaimable_tx_desc(struct sge_eq *eq)
6231 {
6232 	uint16_t hw_cidx;
6233 
6234 	hw_cidx = read_hw_cidx(eq);
6235 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
6236 }
6237 
6238 static inline u_int
6239 total_available_tx_desc(struct sge_eq *eq)
6240 {
6241 	uint16_t hw_cidx, pidx;
6242 
6243 	hw_cidx = read_hw_cidx(eq);
6244 	pidx = eq->pidx;
6245 
6246 	if (pidx == hw_cidx)
6247 		return (eq->sidx - 1);
6248 	else
6249 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
6250 }
6251 
6252 static inline uint16_t
6253 read_hw_cidx(struct sge_eq *eq)
6254 {
6255 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6256 	uint16_t cidx = spg->cidx;	/* stable snapshot */
6257 
6258 	return (be16toh(cidx));
6259 }
6260 
6261 /*
6262  * Reclaim 'n' descriptors approximately.
6263  */
6264 static u_int
6265 reclaim_tx_descs(struct sge_txq *txq, u_int n)
6266 {
6267 	struct tx_sdesc *txsd;
6268 	struct sge_eq *eq = &txq->eq;
6269 	u_int can_reclaim, reclaimed;
6270 
6271 	TXQ_LOCK_ASSERT_OWNED(txq);
6272 	MPASS(n > 0);
6273 
6274 	reclaimed = 0;
6275 	can_reclaim = reclaimable_tx_desc(eq);
6276 	while (can_reclaim && reclaimed < n) {
6277 		int ndesc;
6278 		struct mbuf *m, *nextpkt;
6279 
6280 		txsd = &txq->sdesc[eq->cidx];
6281 		ndesc = txsd->desc_used;
6282 
6283 		/* Firmware doesn't return "partial" credits. */
6284 		KASSERT(can_reclaim >= ndesc,
6285 		    ("%s: unexpected number of credits: %d, %d",
6286 		    __func__, can_reclaim, ndesc));
6287 		KASSERT(ndesc != 0,
6288 		    ("%s: descriptor with no credits: cidx %d",
6289 		    __func__, eq->cidx));
6290 
6291 		for (m = txsd->m; m != NULL; m = nextpkt) {
6292 			nextpkt = m->m_nextpkt;
6293 			m->m_nextpkt = NULL;
6294 			m_freem(m);
6295 		}
6296 		reclaimed += ndesc;
6297 		can_reclaim -= ndesc;
6298 		IDXINCR(eq->cidx, ndesc, eq->sidx);
6299 	}
6300 
6301 	return (reclaimed);
6302 }
6303 
6304 static void
6305 tx_reclaim(void *arg, int n)
6306 {
6307 	struct sge_txq *txq = arg;
6308 	struct sge_eq *eq = &txq->eq;
6309 
6310 	do {
6311 		if (TXQ_TRYLOCK(txq) == 0)
6312 			break;
6313 		n = reclaim_tx_descs(txq, 32);
6314 		if (eq->cidx == eq->pidx)
6315 			eq->equeqidx = eq->pidx;
6316 		TXQ_UNLOCK(txq);
6317 	} while (n > 0);
6318 }
6319 
6320 static __be64
6321 get_flit(struct sglist_seg *segs, int nsegs, int idx)
6322 {
6323 	int i = (idx / 3) * 2;
6324 
6325 	switch (idx % 3) {
6326 	case 0: {
6327 		uint64_t rc;
6328 
6329 		rc = (uint64_t)segs[i].ss_len << 32;
6330 		if (i + 1 < nsegs)
6331 			rc |= (uint64_t)(segs[i + 1].ss_len);
6332 
6333 		return (htobe64(rc));
6334 	}
6335 	case 1:
6336 		return (htobe64(segs[i].ss_paddr));
6337 	case 2:
6338 		return (htobe64(segs[i + 1].ss_paddr));
6339 	}
6340 
6341 	return (0);
6342 }
6343 
6344 static int
6345 find_refill_source(struct adapter *sc, int maxp, bool packing)
6346 {
6347 	int i, zidx = -1;
6348 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6349 
6350 	if (packing) {
6351 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6352 			if (rxb->hwidx2 == -1)
6353 				continue;
6354 			if (rxb->size1 < PAGE_SIZE &&
6355 			    rxb->size1 < largest_rx_cluster)
6356 				continue;
6357 			if (rxb->size1 > largest_rx_cluster)
6358 				break;
6359 			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
6360 			if (rxb->size2 >= maxp)
6361 				return (i);
6362 			zidx = i;
6363 		}
6364 	} else {
6365 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6366 			if (rxb->hwidx1 == -1)
6367 				continue;
6368 			if (rxb->size1 > largest_rx_cluster)
6369 				break;
6370 			if (rxb->size1 >= maxp)
6371 				return (i);
6372 			zidx = i;
6373 		}
6374 	}
6375 
6376 	return (zidx);
6377 }
6378 
6379 static void
6380 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
6381 {
6382 	mtx_lock(&sc->sfl_lock);
6383 	FL_LOCK(fl);
6384 	if ((fl->flags & FL_DOOMED) == 0) {
6385 		fl->flags |= FL_STARVING;
6386 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
6387 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
6388 	}
6389 	FL_UNLOCK(fl);
6390 	mtx_unlock(&sc->sfl_lock);
6391 }
6392 
6393 static void
6394 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
6395 {
6396 	struct sge_wrq *wrq = (void *)eq;
6397 
6398 	atomic_readandclear_int(&eq->equiq);
6399 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
6400 }
6401 
6402 static void
6403 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
6404 {
6405 	struct sge_txq *txq = (void *)eq;
6406 
6407 	MPASS(eq->type == EQ_ETH);
6408 
6409 	atomic_readandclear_int(&eq->equiq);
6410 	if (mp_ring_is_idle(txq->r))
6411 		taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
6412 	else
6413 		mp_ring_check_drainage(txq->r, 64);
6414 }
6415 
6416 static int
6417 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
6418     struct mbuf *m)
6419 {
6420 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
6421 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
6422 	struct adapter *sc = iq->adapter;
6423 	struct sge *s = &sc->sge;
6424 	struct sge_eq *eq;
6425 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
6426 		&handle_wrq_egr_update, &handle_eth_egr_update,
6427 		&handle_wrq_egr_update};
6428 
6429 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6430 	    rss->opcode));
6431 
6432 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
6433 	(*h[eq->type])(sc, eq);
6434 
6435 	return (0);
6436 }
6437 
6438 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
6439 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
6440     offsetof(struct cpl_fw6_msg, data));
6441 
6442 static int
6443 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
6444 {
6445 	struct adapter *sc = iq->adapter;
6446 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
6447 
6448 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6449 	    rss->opcode));
6450 
6451 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
6452 		const struct rss_header *rss2;
6453 
6454 		rss2 = (const struct rss_header *)&cpl->data[0];
6455 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
6456 	}
6457 
6458 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
6459 }
6460 
6461 /**
6462  *	t4_handle_wrerr_rpl - process a FW work request error message
6463  *	@adap: the adapter
6464  *	@rpl: start of the FW message
6465  */
6466 static int
6467 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
6468 {
6469 	u8 opcode = *(const u8 *)rpl;
6470 	const struct fw_error_cmd *e = (const void *)rpl;
6471 	unsigned int i;
6472 
6473 	if (opcode != FW_ERROR_CMD) {
6474 		log(LOG_ERR,
6475 		    "%s: Received WRERR_RPL message with opcode %#x\n",
6476 		    device_get_nameunit(adap->dev), opcode);
6477 		return (EINVAL);
6478 	}
6479 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
6480 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
6481 	    "non-fatal");
6482 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
6483 	case FW_ERROR_TYPE_EXCEPTION:
6484 		log(LOG_ERR, "exception info:\n");
6485 		for (i = 0; i < nitems(e->u.exception.info); i++)
6486 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
6487 			    be32toh(e->u.exception.info[i]));
6488 		log(LOG_ERR, "\n");
6489 		break;
6490 	case FW_ERROR_TYPE_HWMODULE:
6491 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
6492 		    be32toh(e->u.hwmodule.regaddr),
6493 		    be32toh(e->u.hwmodule.regval));
6494 		break;
6495 	case FW_ERROR_TYPE_WR:
6496 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
6497 		    be16toh(e->u.wr.cidx),
6498 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
6499 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
6500 		    be32toh(e->u.wr.eqid));
6501 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
6502 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
6503 			    e->u.wr.wrhdr[i]);
6504 		log(LOG_ERR, "\n");
6505 		break;
6506 	case FW_ERROR_TYPE_ACL:
6507 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
6508 		    be16toh(e->u.acl.cidx),
6509 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
6510 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
6511 		    be32toh(e->u.acl.eqid),
6512 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
6513 		    "MAC");
6514 		for (i = 0; i < nitems(e->u.acl.val); i++)
6515 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
6516 		log(LOG_ERR, "\n");
6517 		break;
6518 	default:
6519 		log(LOG_ERR, "type %#x\n",
6520 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
6521 		return (EINVAL);
6522 	}
6523 	return (0);
6524 }
6525 
6526 static inline bool
6527 bufidx_used(struct adapter *sc, int idx)
6528 {
6529 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6530 	int i;
6531 
6532 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6533 		if (rxb->size1 > largest_rx_cluster)
6534 			continue;
6535 		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
6536 			return (true);
6537 	}
6538 
6539 	return (false);
6540 }
6541 
6542 static int
6543 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
6544 {
6545 	struct adapter *sc = arg1;
6546 	struct sge_params *sp = &sc->params.sge;
6547 	int i, rc;
6548 	struct sbuf sb;
6549 	char c;
6550 
6551 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
6552 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
6553 		if (bufidx_used(sc, i))
6554 			c = '*';
6555 		else
6556 			c = '\0';
6557 
6558 		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
6559 	}
6560 	sbuf_trim(&sb);
6561 	sbuf_finish(&sb);
6562 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
6563 	sbuf_delete(&sb);
6564 	return (rc);
6565 }
6566 
6567 #ifdef RATELIMIT
6568 #if defined(INET) || defined(INET6)
6569 /*
6570  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
6571  */
6572 static inline u_int
6573 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
6574 {
6575 	u_int n;
6576 
6577 	MPASS(immhdrs > 0);
6578 
6579 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
6580 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
6581 	if (__predict_false(nsegs == 0))
6582 		goto done;
6583 
6584 	nsegs--; /* first segment is part of ulptx_sgl */
6585 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
6586 	if (tso)
6587 		n += sizeof(struct cpl_tx_pkt_lso_core);
6588 
6589 done:
6590 	return (howmany(n, 16));
6591 }
6592 #endif
6593 
6594 #define ETID_FLOWC_NPARAMS 6
6595 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
6596     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
6597 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
6598 
6599 static int
6600 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
6601     struct vi_info *vi)
6602 {
6603 	struct wrq_cookie cookie;
6604 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
6605 	struct fw_flowc_wr *flowc;
6606 
6607 	mtx_assert(&cst->lock, MA_OWNED);
6608 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
6609 	    EO_FLOWC_PENDING);
6610 
6611 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLOWC_LEN16, &cookie);
6612 	if (__predict_false(flowc == NULL))
6613 		return (ENOMEM);
6614 
6615 	bzero(flowc, ETID_FLOWC_LEN);
6616 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6617 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
6618 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
6619 	    V_FW_WR_FLOWID(cst->etid));
6620 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
6621 	flowc->mnemval[0].val = htobe32(pfvf);
6622 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
6623 	flowc->mnemval[1].val = htobe32(pi->tx_chan);
6624 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
6625 	flowc->mnemval[2].val = htobe32(pi->tx_chan);
6626 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
6627 	flowc->mnemval[3].val = htobe32(cst->iqid);
6628 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
6629 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
6630 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
6631 	flowc->mnemval[5].val = htobe32(cst->schedcl);
6632 
6633 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6634 
6635 	cst->flags &= ~EO_FLOWC_PENDING;
6636 	cst->flags |= EO_FLOWC_RPL_PENDING;
6637 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
6638 	cst->tx_credits -= ETID_FLOWC_LEN16;
6639 
6640 	return (0);
6641 }
6642 
6643 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
6644 
6645 void
6646 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
6647 {
6648 	struct fw_flowc_wr *flowc;
6649 	struct wrq_cookie cookie;
6650 
6651 	mtx_assert(&cst->lock, MA_OWNED);
6652 
6653 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLUSH_LEN16, &cookie);
6654 	if (__predict_false(flowc == NULL))
6655 		CXGBE_UNIMPLEMENTED(__func__);
6656 
6657 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
6658 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6659 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
6660 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
6661 	    V_FW_WR_FLOWID(cst->etid));
6662 
6663 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6664 
6665 	cst->flags |= EO_FLUSH_RPL_PENDING;
6666 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
6667 	cst->tx_credits -= ETID_FLUSH_LEN16;
6668 	cst->ncompl++;
6669 }
6670 
6671 static void
6672 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
6673     struct mbuf *m0, int compl)
6674 {
6675 	struct cpl_tx_pkt_core *cpl;
6676 	uint64_t ctrl1;
6677 	uint32_t ctrl;	/* used in many unrelated places */
6678 	int len16, pktlen, nsegs, immhdrs;
6679 	uintptr_t p;
6680 	struct ulptx_sgl *usgl;
6681 	struct sglist sg;
6682 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
6683 
6684 	mtx_assert(&cst->lock, MA_OWNED);
6685 	M_ASSERTPKTHDR(m0);
6686 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
6687 	    m0->m_pkthdr.l4hlen > 0,
6688 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
6689 
6690 	len16 = mbuf_eo_len16(m0);
6691 	nsegs = mbuf_eo_nsegs(m0);
6692 	pktlen = m0->m_pkthdr.len;
6693 	ctrl = sizeof(struct cpl_tx_pkt_core);
6694 	if (needs_tso(m0))
6695 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
6696 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
6697 	ctrl += immhdrs;
6698 
6699 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
6700 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
6701 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
6702 	    V_FW_WR_FLOWID(cst->etid));
6703 	wr->r3 = 0;
6704 	if (needs_outer_udp_csum(m0)) {
6705 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
6706 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
6707 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6708 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
6709 		wr->u.udpseg.rtplen = 0;
6710 		wr->u.udpseg.r4 = 0;
6711 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
6712 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
6713 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
6714 		cpl = (void *)(wr + 1);
6715 	} else {
6716 		MPASS(needs_outer_tcp_csum(m0));
6717 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
6718 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
6719 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6720 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
6721 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
6722 		wr->u.tcpseg.r4 = 0;
6723 		wr->u.tcpseg.r5 = 0;
6724 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
6725 
6726 		if (needs_tso(m0)) {
6727 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
6728 
6729 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
6730 
6731 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
6732 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
6733 			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6734 				ETHER_HDR_LEN) >> 2) |
6735 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6736 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6737 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6738 				ctrl |= F_LSO_IPV6;
6739 			lso->lso_ctrl = htobe32(ctrl);
6740 			lso->ipid_ofst = htobe16(0);
6741 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6742 			lso->seqno_offset = htobe32(0);
6743 			lso->len = htobe32(pktlen);
6744 
6745 			cpl = (void *)(lso + 1);
6746 		} else {
6747 			wr->u.tcpseg.mss = htobe16(0xffff);
6748 			cpl = (void *)(wr + 1);
6749 		}
6750 	}
6751 
6752 	/* Checksum offload must be requested for ethofld. */
6753 	MPASS(needs_outer_l4_csum(m0));
6754 	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6755 
6756 	/* VLAN tag insertion */
6757 	if (needs_vlan_insertion(m0)) {
6758 		ctrl1 |= F_TXPKT_VLAN_VLD |
6759 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6760 	}
6761 
6762 	/* CPL header */
6763 	cpl->ctrl0 = cst->ctrl0;
6764 	cpl->pack = 0;
6765 	cpl->len = htobe16(pktlen);
6766 	cpl->ctrl1 = htobe64(ctrl1);
6767 
6768 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6769 	p = (uintptr_t)(cpl + 1);
6770 	m_copydata(m0, 0, immhdrs, (void *)p);
6771 
6772 	/* SGL */
6773 	if (nsegs > 0) {
6774 		int i, pad;
6775 
6776 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6777 		p += immhdrs;
6778 		pad = 16 - (immhdrs & 0xf);
6779 		bzero((void *)p, pad);
6780 
6781 		usgl = (void *)(p + pad);
6782 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6783 		    V_ULPTX_NSGE(nsegs));
6784 
6785 		sglist_init(&sg, nitems(segs), segs);
6786 		for (; m0 != NULL; m0 = m0->m_next) {
6787 			if (__predict_false(m0->m_len == 0))
6788 				continue;
6789 			if (immhdrs >= m0->m_len) {
6790 				immhdrs -= m0->m_len;
6791 				continue;
6792 			}
6793 			if (m0->m_flags & M_EXTPG)
6794 				sglist_append_mbuf_epg(&sg, m0,
6795 				    mtod(m0, vm_offset_t), m0->m_len);
6796                         else
6797 				sglist_append(&sg, mtod(m0, char *) + immhdrs,
6798 				    m0->m_len - immhdrs);
6799 			immhdrs = 0;
6800 		}
6801 		MPASS(sg.sg_nseg == nsegs);
6802 
6803 		/*
6804 		 * Zero pad last 8B in case the WR doesn't end on a 16B
6805 		 * boundary.
6806 		 */
6807 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6808 
6809 		usgl->len0 = htobe32(segs[0].ss_len);
6810 		usgl->addr0 = htobe64(segs[0].ss_paddr);
6811 		for (i = 0; i < nsegs - 1; i++) {
6812 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6813 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6814 		}
6815 		if (i & 1)
6816 			usgl->sge[i / 2].len[1] = htobe32(0);
6817 	}
6818 
6819 }
6820 
6821 static void
6822 ethofld_tx(struct cxgbe_rate_tag *cst)
6823 {
6824 	struct mbuf *m;
6825 	struct wrq_cookie cookie;
6826 	int next_credits, compl;
6827 	struct fw_eth_tx_eo_wr *wr;
6828 
6829 	mtx_assert(&cst->lock, MA_OWNED);
6830 
6831 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6832 		M_ASSERTPKTHDR(m);
6833 
6834 		/* How many len16 credits do we need to send this mbuf. */
6835 		next_credits = mbuf_eo_len16(m);
6836 		MPASS(next_credits > 0);
6837 		if (next_credits > cst->tx_credits) {
6838 			/*
6839 			 * Tx will make progress eventually because there is at
6840 			 * least one outstanding fw4_ack that will return
6841 			 * credits and kick the tx.
6842 			 */
6843 			MPASS(cst->ncompl > 0);
6844 			return;
6845 		}
6846 		wr = start_wrq_wr(&cst->eo_txq->wrq, next_credits, &cookie);
6847 		if (__predict_false(wr == NULL)) {
6848 			/* XXX: wishful thinking, not a real assertion. */
6849 			MPASS(cst->ncompl > 0);
6850 			return;
6851 		}
6852 		cst->tx_credits -= next_credits;
6853 		cst->tx_nocompl += next_credits;
6854 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
6855 		ETHER_BPF_MTAP(cst->com.ifp, m);
6856 		write_ethofld_wr(cst, wr, m, compl);
6857 		commit_wrq_wr(&cst->eo_txq->wrq, wr, &cookie);
6858 		if (compl) {
6859 			cst->ncompl++;
6860 			cst->tx_nocompl	= 0;
6861 		}
6862 		(void) mbufq_dequeue(&cst->pending_tx);
6863 
6864 		/*
6865 		 * Drop the mbuf's reference on the tag now rather
6866 		 * than waiting until m_freem().  This ensures that
6867 		 * cxgbe_rate_tag_free gets called when the inp drops
6868 		 * its reference on the tag and there are no more
6869 		 * mbufs in the pending_tx queue and can flush any
6870 		 * pending requests.  Otherwise if the last mbuf
6871 		 * doesn't request a completion the etid will never be
6872 		 * released.
6873 		 */
6874 		m->m_pkthdr.snd_tag = NULL;
6875 		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
6876 		m_snd_tag_rele(&cst->com);
6877 
6878 		mbufq_enqueue(&cst->pending_fwack, m);
6879 	}
6880 }
6881 
6882 int
6883 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
6884 {
6885 	struct cxgbe_rate_tag *cst;
6886 	int rc;
6887 
6888 	MPASS(m0->m_nextpkt == NULL);
6889 	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
6890 	MPASS(m0->m_pkthdr.snd_tag != NULL);
6891 	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
6892 
6893 	mtx_lock(&cst->lock);
6894 	MPASS(cst->flags & EO_SND_TAG_REF);
6895 
6896 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
6897 		struct vi_info *vi = ifp->if_softc;
6898 		struct port_info *pi = vi->pi;
6899 		struct adapter *sc = pi->adapter;
6900 		const uint32_t rss_mask = vi->rss_size - 1;
6901 		uint32_t rss_hash;
6902 
6903 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
6904 		if (M_HASHTYPE_ISHASH(m0))
6905 			rss_hash = m0->m_pkthdr.flowid;
6906 		else
6907 			rss_hash = arc4random();
6908 		/* We assume RSS hashing */
6909 		cst->iqid = vi->rss[rss_hash & rss_mask];
6910 		cst->eo_txq += rss_hash % vi->nofldtxq;
6911 		rc = send_etid_flowc_wr(cst, pi, vi);
6912 		if (rc != 0)
6913 			goto done;
6914 	}
6915 
6916 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
6917 		rc = ENOBUFS;
6918 		goto done;
6919 	}
6920 
6921 	mbufq_enqueue(&cst->pending_tx, m0);
6922 	cst->plen += m0->m_pkthdr.len;
6923 
6924 	/*
6925 	 * Hold an extra reference on the tag while generating work
6926 	 * requests to ensure that we don't try to free the tag during
6927 	 * ethofld_tx() in case we are sending the final mbuf after
6928 	 * the inp was freed.
6929 	 */
6930 	m_snd_tag_ref(&cst->com);
6931 	ethofld_tx(cst);
6932 	mtx_unlock(&cst->lock);
6933 	m_snd_tag_rele(&cst->com);
6934 	return (0);
6935 
6936 done:
6937 	mtx_unlock(&cst->lock);
6938 	if (__predict_false(rc != 0))
6939 		m_freem(m0);
6940 	return (rc);
6941 }
6942 
6943 static int
6944 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
6945 {
6946 	struct adapter *sc = iq->adapter;
6947 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
6948 	struct mbuf *m;
6949 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
6950 	struct cxgbe_rate_tag *cst;
6951 	uint8_t credits = cpl->credits;
6952 
6953 	cst = lookup_etid(sc, etid);
6954 	mtx_lock(&cst->lock);
6955 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
6956 		MPASS(credits >= ETID_FLOWC_LEN16);
6957 		credits -= ETID_FLOWC_LEN16;
6958 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
6959 	}
6960 
6961 	KASSERT(cst->ncompl > 0,
6962 	    ("%s: etid %u (%p) wasn't expecting completion.",
6963 	    __func__, etid, cst));
6964 	cst->ncompl--;
6965 
6966 	while (credits > 0) {
6967 		m = mbufq_dequeue(&cst->pending_fwack);
6968 		if (__predict_false(m == NULL)) {
6969 			/*
6970 			 * The remaining credits are for the final flush that
6971 			 * was issued when the tag was freed by the kernel.
6972 			 */
6973 			MPASS((cst->flags &
6974 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
6975 			    EO_FLUSH_RPL_PENDING);
6976 			MPASS(credits == ETID_FLUSH_LEN16);
6977 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
6978 			MPASS(cst->ncompl == 0);
6979 
6980 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
6981 			cst->tx_credits += cpl->credits;
6982 			cxgbe_rate_tag_free_locked(cst);
6983 			return (0);	/* cst is gone. */
6984 		}
6985 		KASSERT(m != NULL,
6986 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
6987 		    credits));
6988 		KASSERT(credits >= mbuf_eo_len16(m),
6989 		    ("%s: too few credits (%u, %u, %u)", __func__,
6990 		    cpl->credits, credits, mbuf_eo_len16(m)));
6991 		credits -= mbuf_eo_len16(m);
6992 		cst->plen -= m->m_pkthdr.len;
6993 		m_freem(m);
6994 	}
6995 
6996 	cst->tx_credits += cpl->credits;
6997 	MPASS(cst->tx_credits <= cst->tx_total);
6998 
6999 	if (cst->flags & EO_SND_TAG_REF) {
7000 		/*
7001 		 * As with ethofld_transmit(), hold an extra reference
7002 		 * so that the tag is stable across ethold_tx().
7003 		 */
7004 		m_snd_tag_ref(&cst->com);
7005 		m = mbufq_first(&cst->pending_tx);
7006 		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
7007 			ethofld_tx(cst);
7008 		mtx_unlock(&cst->lock);
7009 		m_snd_tag_rele(&cst->com);
7010 	} else {
7011 		/*
7012 		 * There shouldn't be any pending packets if the tag
7013 		 * was freed by the kernel since any pending packet
7014 		 * should hold a reference to the tag.
7015 		 */
7016 		MPASS(mbufq_first(&cst->pending_tx) == NULL);
7017 		mtx_unlock(&cst->lock);
7018 	}
7019 
7020 	return (0);
7021 }
7022 #endif
7023