1 /*- 2 * Copyright (c) 2011 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: Navdeep Parhar <np@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #include <sys/types.h> 35 #include <sys/mbuf.h> 36 #include <sys/socket.h> 37 #include <sys/kernel.h> 38 #include <sys/kdb.h> 39 #include <sys/malloc.h> 40 #include <sys/queue.h> 41 #include <sys/taskqueue.h> 42 #include <sys/sysctl.h> 43 #include <sys/smp.h> 44 #include <net/bpf.h> 45 #include <net/ethernet.h> 46 #include <net/if.h> 47 #include <net/if_vlan_var.h> 48 #include <netinet/in.h> 49 #include <netinet/ip.h> 50 #include <netinet/ip6.h> 51 #include <netinet/tcp.h> 52 53 #include "common/common.h" 54 #include "common/t4_regs.h" 55 #include "common/t4_regs_values.h" 56 #include "common/t4_msg.h" 57 58 struct fl_buf_info { 59 int size; 60 int type; 61 uma_zone_t zone; 62 }; 63 64 /* Filled up by t4_sge_modload */ 65 static struct fl_buf_info fl_buf_info[FL_BUF_SIZES]; 66 67 #define FL_BUF_SIZE(x) (fl_buf_info[x].size) 68 #define FL_BUF_TYPE(x) (fl_buf_info[x].type) 69 #define FL_BUF_ZONE(x) (fl_buf_info[x].zone) 70 71 /* 72 * Ethernet frames are DMA'd at this byte offset into the freelist buffer. 73 * 0-7 are valid values. 74 */ 75 static int fl_pktshift = 2; 76 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift); 77 78 /* 79 * Pad ethernet payload up to this boundary. 80 * -1: driver should figure out a good value. 81 * Any power of 2, from 32 to 4096 (both inclusive) is a valid value. 82 */ 83 static int fl_pad = -1; 84 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad); 85 86 /* 87 * Status page length. 88 * -1: driver should figure out a good value. 89 * 64 or 128 are the only other valid values. 90 */ 91 static int spg_len = -1; 92 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len); 93 94 /* 95 * Congestion drops. 96 * -1: no congestion feedback (not recommended). 97 * 0: backpressure the channel instead of dropping packets right away. 98 * 1: no backpressure, drop packets for the congested queue immediately. 99 */ 100 static int cong_drop = 0; 101 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop); 102 103 /* Used to track coalesced tx work request */ 104 struct txpkts { 105 uint64_t *flitp; /* ptr to flit where next pkt should start */ 106 uint8_t npkt; /* # of packets in this work request */ 107 uint8_t nflits; /* # of flits used by this work request */ 108 uint16_t plen; /* total payload (sum of all packets) */ 109 }; 110 111 /* A packet's SGL. This + m_pkthdr has all info needed for tx */ 112 struct sgl { 113 int nsegs; /* # of segments in the SGL, 0 means imm. tx */ 114 int nflits; /* # of flits needed for the SGL */ 115 bus_dma_segment_t seg[TX_SGL_SEGS]; 116 }; 117 118 static int service_iq(struct sge_iq *, int); 119 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t, 120 int *); 121 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *); 122 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int, 123 int); 124 static inline void init_fl(struct sge_fl *, int, int, char *); 125 static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t, 126 char *); 127 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, 128 bus_addr_t *, void **); 129 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, 130 void *); 131 static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *, 132 int, int); 133 static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *); 134 static int alloc_fwq(struct adapter *); 135 static int free_fwq(struct adapter *); 136 static int alloc_mgmtq(struct adapter *); 137 static int free_mgmtq(struct adapter *); 138 static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int, 139 struct sysctl_oid *); 140 static int free_rxq(struct port_info *, struct sge_rxq *); 141 #ifdef TCP_OFFLOAD 142 static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int, 143 struct sysctl_oid *); 144 static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *); 145 #endif 146 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *); 147 static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *); 148 #ifdef TCP_OFFLOAD 149 static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *); 150 #endif 151 static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *); 152 static int free_eq(struct adapter *, struct sge_eq *); 153 static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *, 154 struct sysctl_oid *); 155 static int free_wrq(struct adapter *, struct sge_wrq *); 156 static int alloc_txq(struct port_info *, struct sge_txq *, int, 157 struct sysctl_oid *); 158 static int free_txq(struct port_info *, struct sge_txq *); 159 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); 160 static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **); 161 static inline void iq_next(struct sge_iq *); 162 static inline void ring_fl_db(struct adapter *, struct sge_fl *); 163 static int refill_fl(struct adapter *, struct sge_fl *, int); 164 static void refill_sfl(void *); 165 static int alloc_fl_sdesc(struct sge_fl *); 166 static void free_fl_sdesc(struct sge_fl *); 167 static void set_fl_tag_idx(struct sge_fl *, int); 168 static void add_fl_to_sfl(struct adapter *, struct sge_fl *); 169 170 static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int); 171 static int free_pkt_sgl(struct sge_txq *, struct sgl *); 172 static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *, 173 struct sgl *); 174 static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *, 175 struct mbuf *, struct sgl *); 176 static void write_txpkts_wr(struct sge_txq *, struct txpkts *); 177 static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *, 178 struct txpkts *, struct mbuf *, struct sgl *); 179 static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *); 180 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); 181 static inline void ring_eq_db(struct adapter *, struct sge_eq *); 182 static inline int reclaimable(struct sge_eq *); 183 static int reclaim_tx_descs(struct sge_txq *, int, int); 184 static void write_eqflush_wr(struct sge_eq *); 185 static __be64 get_flit(bus_dma_segment_t *, int, int); 186 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, 187 struct mbuf *); 188 static int handle_fw_msg(struct sge_iq *, const struct rss_header *, 189 struct mbuf *); 190 191 static int sysctl_uint16(SYSCTL_HANDLER_ARGS); 192 193 #if defined(__i386__) || defined(__amd64__) 194 extern u_int cpu_clflush_line_size; 195 #endif 196 197 /* 198 * Called on MOD_LOAD. Fills up fl_buf_info[] and validates/calculates the SGE 199 * tunables. 200 */ 201 void 202 t4_sge_modload(void) 203 { 204 int i; 205 int bufsize[FL_BUF_SIZES] = { 206 MCLBYTES, 207 #if MJUMPAGESIZE != MCLBYTES 208 MJUMPAGESIZE, 209 #endif 210 MJUM9BYTES, 211 MJUM16BYTES 212 }; 213 214 for (i = 0; i < FL_BUF_SIZES; i++) { 215 FL_BUF_SIZE(i) = bufsize[i]; 216 FL_BUF_TYPE(i) = m_gettype(bufsize[i]); 217 FL_BUF_ZONE(i) = m_getzone(bufsize[i]); 218 } 219 220 if (fl_pktshift < 0 || fl_pktshift > 7) { 221 printf("Invalid hw.cxgbe.fl_pktshift value (%d)," 222 " using 2 instead.\n", fl_pktshift); 223 fl_pktshift = 2; 224 } 225 226 if (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad)) { 227 int pad; 228 229 #if defined(__i386__) || defined(__amd64__) 230 pad = max(cpu_clflush_line_size, 32); 231 #else 232 pad = max(CACHE_LINE_SIZE, 32); 233 #endif 234 pad = min(pad, 4096); 235 236 if (fl_pad != -1) { 237 printf("Invalid hw.cxgbe.fl_pad value (%d)," 238 " using %d instead.\n", fl_pad, pad); 239 } 240 fl_pad = pad; 241 } 242 243 if (spg_len != 64 && spg_len != 128) { 244 int len; 245 246 #if defined(__i386__) || defined(__amd64__) 247 len = cpu_clflush_line_size > 64 ? 128 : 64; 248 #else 249 len = 64; 250 #endif 251 if (spg_len != -1) { 252 printf("Invalid hw.cxgbe.spg_len value (%d)," 253 " using %d instead.\n", spg_len, len); 254 } 255 spg_len = len; 256 } 257 258 if (cong_drop < -1 || cong_drop > 1) { 259 printf("Invalid hw.cxgbe.cong_drop value (%d)," 260 " using 0 instead.\n", cong_drop); 261 cong_drop = 0; 262 } 263 } 264 265 /** 266 * t4_sge_init - initialize SGE 267 * @sc: the adapter 268 * 269 * Performs SGE initialization needed every time after a chip reset. 270 * We do not initialize any of the queues here, instead the driver 271 * top-level must request them individually. 272 */ 273 int 274 t4_sge_init(struct adapter *sc) 275 { 276 struct sge *s = &sc->sge; 277 int i, rc = 0; 278 uint32_t ctrl_mask, ctrl_val, hpsize, v; 279 280 ctrl_mask = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | 281 V_INGPADBOUNDARY(M_INGPADBOUNDARY) | 282 F_EGRSTATUSPAGESIZE; 283 ctrl_val = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | 284 V_INGPADBOUNDARY(ilog2(fl_pad) - 5) | 285 V_EGRSTATUSPAGESIZE(spg_len == 128); 286 287 hpsize = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | 288 V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | 289 V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | 290 V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | 291 V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | 292 V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | 293 V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | 294 V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); 295 296 if (sc->flags & MASTER_PF) { 297 int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; 298 int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ 299 300 t4_set_reg_field(sc, A_SGE_CONTROL, ctrl_mask, ctrl_val); 301 t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, hpsize); 302 for (i = 0; i < FL_BUF_SIZES; i++) { 303 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i), 304 FL_BUF_SIZE(i)); 305 } 306 307 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, 308 V_THRESHOLD_0(intr_pktcount[0]) | 309 V_THRESHOLD_1(intr_pktcount[1]) | 310 V_THRESHOLD_2(intr_pktcount[2]) | 311 V_THRESHOLD_3(intr_pktcount[3])); 312 313 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, 314 V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) | 315 V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]))); 316 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, 317 V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) | 318 V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]))); 319 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, 320 V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) | 321 V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]))); 322 323 if (cong_drop == 0) { 324 t4_set_reg_field(sc, A_TP_PARA_REG3, F_TUNNELCNGDROP0 | 325 F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 | 326 F_TUNNELCNGDROP3, 0); 327 } 328 } 329 330 v = t4_read_reg(sc, A_SGE_CONTROL); 331 if ((v & ctrl_mask) != ctrl_val) { 332 device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", v); 333 rc = EINVAL; 334 } 335 336 v = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE); 337 if (v != hpsize) { 338 device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", v); 339 rc = EINVAL; 340 } 341 342 for (i = 0; i < FL_BUF_SIZES; i++) { 343 v = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i)); 344 if (v != FL_BUF_SIZE(i)) { 345 device_printf(sc->dev, 346 "invalid SGE_FL_BUFFER_SIZE[%d](0x%x)\n", i, v); 347 rc = EINVAL; 348 } 349 } 350 351 v = t4_read_reg(sc, A_SGE_CONM_CTRL); 352 s->fl_starve_threshold = G_EGRTHRESHOLD(v) * 2 + 1; 353 354 v = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD); 355 sc->sge.counter_val[0] = G_THRESHOLD_0(v); 356 sc->sge.counter_val[1] = G_THRESHOLD_1(v); 357 sc->sge.counter_val[2] = G_THRESHOLD_2(v); 358 sc->sge.counter_val[3] = G_THRESHOLD_3(v); 359 360 v = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1); 361 sc->sge.timer_val[0] = G_TIMERVALUE0(v) / core_ticks_per_usec(sc); 362 sc->sge.timer_val[1] = G_TIMERVALUE1(v) / core_ticks_per_usec(sc); 363 v = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3); 364 sc->sge.timer_val[2] = G_TIMERVALUE2(v) / core_ticks_per_usec(sc); 365 sc->sge.timer_val[3] = G_TIMERVALUE3(v) / core_ticks_per_usec(sc); 366 v = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5); 367 sc->sge.timer_val[4] = G_TIMERVALUE4(v) / core_ticks_per_usec(sc); 368 sc->sge.timer_val[5] = G_TIMERVALUE5(v) / core_ticks_per_usec(sc); 369 370 t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg); 371 t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg); 372 t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update); 373 t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx); 374 375 t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl); 376 377 return (rc); 378 } 379 380 int 381 t4_create_dma_tag(struct adapter *sc) 382 { 383 int rc; 384 385 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, 386 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, 387 BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, 388 NULL, &sc->dmat); 389 if (rc != 0) { 390 device_printf(sc->dev, 391 "failed to create main DMA tag: %d\n", rc); 392 } 393 394 return (rc); 395 } 396 397 int 398 t4_destroy_dma_tag(struct adapter *sc) 399 { 400 if (sc->dmat) 401 bus_dma_tag_destroy(sc->dmat); 402 403 return (0); 404 } 405 406 /* 407 * Allocate and initialize the firmware event queue and the management queue. 408 * 409 * Returns errno on failure. Resources allocated up to that point may still be 410 * allocated. Caller is responsible for cleanup in case this function fails. 411 */ 412 int 413 t4_setup_adapter_queues(struct adapter *sc) 414 { 415 int rc; 416 417 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 418 419 sysctl_ctx_init(&sc->ctx); 420 sc->flags |= ADAP_SYSCTL_CTX; 421 422 /* 423 * Firmware event queue 424 */ 425 rc = alloc_fwq(sc); 426 if (rc != 0) 427 return (rc); 428 429 /* 430 * Management queue. This is just a control queue that uses the fwq as 431 * its associated iq. 432 */ 433 rc = alloc_mgmtq(sc); 434 435 return (rc); 436 } 437 438 /* 439 * Idempotent 440 */ 441 int 442 t4_teardown_adapter_queues(struct adapter *sc) 443 { 444 445 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 446 447 /* Do this before freeing the queue */ 448 if (sc->flags & ADAP_SYSCTL_CTX) { 449 sysctl_ctx_free(&sc->ctx); 450 sc->flags &= ~ADAP_SYSCTL_CTX; 451 } 452 453 free_mgmtq(sc); 454 free_fwq(sc); 455 456 return (0); 457 } 458 459 static inline int 460 first_vector(struct port_info *pi) 461 { 462 struct adapter *sc = pi->adapter; 463 int rc = T4_EXTRA_INTR, i; 464 465 if (sc->intr_count == 1) 466 return (0); 467 468 for_each_port(sc, i) { 469 struct port_info *p = sc->port[i]; 470 471 if (i == pi->port_id) 472 break; 473 474 #ifdef TCP_OFFLOAD 475 if (sc->flags & INTR_DIRECT) 476 rc += p->nrxq + p->nofldrxq; 477 else 478 rc += max(p->nrxq, p->nofldrxq); 479 #else 480 /* 481 * Not compiled with offload support and intr_count > 1. Only 482 * NIC queues exist and they'd better be taking direct 483 * interrupts. 484 */ 485 KASSERT(sc->flags & INTR_DIRECT, 486 ("%s: intr_count %d, !INTR_DIRECT", __func__, 487 sc->intr_count)); 488 489 rc += p->nrxq; 490 #endif 491 } 492 493 return (rc); 494 } 495 496 /* 497 * Given an arbitrary "index," come up with an iq that can be used by other 498 * queues (of this port) for interrupt forwarding, SGE egress updates, etc. 499 * The iq returned is guaranteed to be something that takes direct interrupts. 500 */ 501 static struct sge_iq * 502 port_intr_iq(struct port_info *pi, int idx) 503 { 504 struct adapter *sc = pi->adapter; 505 struct sge *s = &sc->sge; 506 struct sge_iq *iq = NULL; 507 508 if (sc->intr_count == 1) 509 return (&sc->sge.fwq); 510 511 #ifdef TCP_OFFLOAD 512 if (sc->flags & INTR_DIRECT) { 513 idx %= pi->nrxq + pi->nofldrxq; 514 515 if (idx >= pi->nrxq) { 516 idx -= pi->nrxq; 517 iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq; 518 } else 519 iq = &s->rxq[pi->first_rxq + idx].iq; 520 521 } else { 522 idx %= max(pi->nrxq, pi->nofldrxq); 523 524 if (pi->nrxq >= pi->nofldrxq) 525 iq = &s->rxq[pi->first_rxq + idx].iq; 526 else 527 iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq; 528 } 529 #else 530 /* 531 * Not compiled with offload support and intr_count > 1. Only NIC 532 * queues exist and they'd better be taking direct interrupts. 533 */ 534 KASSERT(sc->flags & INTR_DIRECT, 535 ("%s: intr_count %d, !INTR_DIRECT", __func__, sc->intr_count)); 536 537 idx %= pi->nrxq; 538 iq = &s->rxq[pi->first_rxq + idx].iq; 539 #endif 540 541 KASSERT(iq->flags & IQ_INTR, ("%s: EDOOFUS", __func__)); 542 return (iq); 543 } 544 545 static inline int 546 mtu_to_bufsize(int mtu) 547 { 548 int bufsize; 549 550 /* large enough for a frame even when VLAN extraction is disabled */ 551 bufsize = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + mtu; 552 bufsize = roundup(bufsize + fl_pktshift, fl_pad); 553 554 return (bufsize); 555 } 556 557 int 558 t4_setup_port_queues(struct port_info *pi) 559 { 560 int rc = 0, i, j, intr_idx, iqid; 561 struct sge_rxq *rxq; 562 struct sge_txq *txq; 563 struct sge_wrq *ctrlq; 564 #ifdef TCP_OFFLOAD 565 struct sge_ofld_rxq *ofld_rxq; 566 struct sge_wrq *ofld_txq; 567 struct sysctl_oid *oid2 = NULL; 568 #endif 569 char name[16]; 570 struct adapter *sc = pi->adapter; 571 struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev); 572 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 573 int bufsize = mtu_to_bufsize(pi->ifp->if_mtu); 574 575 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD, 576 NULL, "rx queues"); 577 578 #ifdef TCP_OFFLOAD 579 if (is_offload(sc)) { 580 oid2 = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq", 581 CTLFLAG_RD, NULL, 582 "rx queues for offloaded TCP connections"); 583 } 584 #endif 585 586 /* Interrupt vector to start from (when using multiple vectors) */ 587 intr_idx = first_vector(pi); 588 589 /* 590 * First pass over all rx queues (NIC and TOE): 591 * a) initialize iq and fl 592 * b) allocate queue iff it will take direct interrupts. 593 */ 594 for_each_rxq(pi, i, rxq) { 595 596 init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq, 597 RX_IQ_ESIZE); 598 599 snprintf(name, sizeof(name), "%s rxq%d-fl", 600 device_get_nameunit(pi->dev), i); 601 init_fl(&rxq->fl, pi->qsize_rxq / 8, bufsize, name); 602 603 if (sc->flags & INTR_DIRECT 604 #ifdef TCP_OFFLOAD 605 || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq) 606 #endif 607 ) { 608 rxq->iq.flags |= IQ_INTR; 609 rc = alloc_rxq(pi, rxq, intr_idx, i, oid); 610 if (rc != 0) 611 goto done; 612 intr_idx++; 613 } 614 } 615 616 #ifdef TCP_OFFLOAD 617 for_each_ofld_rxq(pi, i, ofld_rxq) { 618 619 init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, 620 pi->qsize_rxq, RX_IQ_ESIZE); 621 622 snprintf(name, sizeof(name), "%s ofld_rxq%d-fl", 623 device_get_nameunit(pi->dev), i); 624 init_fl(&ofld_rxq->fl, pi->qsize_rxq / 8, OFLD_BUF_SIZE, name); 625 626 if (sc->flags & INTR_DIRECT || 627 (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) { 628 ofld_rxq->iq.flags |= IQ_INTR; 629 rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2); 630 if (rc != 0) 631 goto done; 632 intr_idx++; 633 } 634 } 635 #endif 636 637 /* 638 * Second pass over all rx queues (NIC and TOE). The queues forwarding 639 * their interrupts are allocated now. 640 */ 641 j = 0; 642 for_each_rxq(pi, i, rxq) { 643 if (rxq->iq.flags & IQ_INTR) 644 continue; 645 646 intr_idx = port_intr_iq(pi, j)->abs_id; 647 648 rc = alloc_rxq(pi, rxq, intr_idx, i, oid); 649 if (rc != 0) 650 goto done; 651 j++; 652 } 653 654 #ifdef TCP_OFFLOAD 655 for_each_ofld_rxq(pi, i, ofld_rxq) { 656 if (ofld_rxq->iq.flags & IQ_INTR) 657 continue; 658 659 intr_idx = port_intr_iq(pi, j)->abs_id; 660 661 rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2); 662 if (rc != 0) 663 goto done; 664 j++; 665 } 666 #endif 667 668 /* 669 * Now the tx queues. Only one pass needed. 670 */ 671 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD, 672 NULL, "tx queues"); 673 j = 0; 674 for_each_txq(pi, i, txq) { 675 uint16_t iqid; 676 677 iqid = port_intr_iq(pi, j)->cntxt_id; 678 679 snprintf(name, sizeof(name), "%s txq%d", 680 device_get_nameunit(pi->dev), i); 681 init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid, 682 name); 683 684 rc = alloc_txq(pi, txq, i, oid); 685 if (rc != 0) 686 goto done; 687 j++; 688 } 689 690 #ifdef TCP_OFFLOAD 691 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq", 692 CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections"); 693 for_each_ofld_txq(pi, i, ofld_txq) { 694 uint16_t iqid; 695 696 iqid = port_intr_iq(pi, j)->cntxt_id; 697 698 snprintf(name, sizeof(name), "%s ofld_txq%d", 699 device_get_nameunit(pi->dev), i); 700 init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan, 701 iqid, name); 702 703 snprintf(name, sizeof(name), "%d", i); 704 oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 705 name, CTLFLAG_RD, NULL, "offload tx queue"); 706 707 rc = alloc_wrq(sc, pi, ofld_txq, oid2); 708 if (rc != 0) 709 goto done; 710 j++; 711 } 712 #endif 713 714 /* 715 * Finally, the control queue. 716 */ 717 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD, 718 NULL, "ctrl queue"); 719 ctrlq = &sc->sge.ctrlq[pi->port_id]; 720 iqid = port_intr_iq(pi, 0)->cntxt_id; 721 snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev)); 722 init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name); 723 rc = alloc_wrq(sc, pi, ctrlq, oid); 724 725 done: 726 if (rc) 727 t4_teardown_port_queues(pi); 728 729 return (rc); 730 } 731 732 /* 733 * Idempotent 734 */ 735 int 736 t4_teardown_port_queues(struct port_info *pi) 737 { 738 int i; 739 struct adapter *sc = pi->adapter; 740 struct sge_rxq *rxq; 741 struct sge_txq *txq; 742 #ifdef TCP_OFFLOAD 743 struct sge_ofld_rxq *ofld_rxq; 744 struct sge_wrq *ofld_txq; 745 #endif 746 747 /* Do this before freeing the queues */ 748 if (pi->flags & PORT_SYSCTL_CTX) { 749 sysctl_ctx_free(&pi->ctx); 750 pi->flags &= ~PORT_SYSCTL_CTX; 751 } 752 753 /* 754 * Take down all the tx queues first, as they reference the rx queues 755 * (for egress updates, etc.). 756 */ 757 758 free_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 759 760 for_each_txq(pi, i, txq) { 761 free_txq(pi, txq); 762 } 763 764 #ifdef TCP_OFFLOAD 765 for_each_ofld_txq(pi, i, ofld_txq) { 766 free_wrq(sc, ofld_txq); 767 } 768 #endif 769 770 /* 771 * Then take down the rx queues that forward their interrupts, as they 772 * reference other rx queues. 773 */ 774 775 for_each_rxq(pi, i, rxq) { 776 if ((rxq->iq.flags & IQ_INTR) == 0) 777 free_rxq(pi, rxq); 778 } 779 780 #ifdef TCP_OFFLOAD 781 for_each_ofld_rxq(pi, i, ofld_rxq) { 782 if ((ofld_rxq->iq.flags & IQ_INTR) == 0) 783 free_ofld_rxq(pi, ofld_rxq); 784 } 785 #endif 786 787 /* 788 * Then take down the rx queues that take direct interrupts. 789 */ 790 791 for_each_rxq(pi, i, rxq) { 792 if (rxq->iq.flags & IQ_INTR) 793 free_rxq(pi, rxq); 794 } 795 796 #ifdef TCP_OFFLOAD 797 for_each_ofld_rxq(pi, i, ofld_rxq) { 798 if (ofld_rxq->iq.flags & IQ_INTR) 799 free_ofld_rxq(pi, ofld_rxq); 800 } 801 #endif 802 803 return (0); 804 } 805 806 /* 807 * Deals with errors and the firmware event queue. All data rx queues forward 808 * their interrupt to the firmware event queue. 809 */ 810 void 811 t4_intr_all(void *arg) 812 { 813 struct adapter *sc = arg; 814 struct sge_iq *fwq = &sc->sge.fwq; 815 816 t4_intr_err(arg); 817 if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) { 818 service_iq(fwq, 0); 819 atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE); 820 } 821 } 822 823 /* Deals with error interrupts */ 824 void 825 t4_intr_err(void *arg) 826 { 827 struct adapter *sc = arg; 828 829 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); 830 t4_slow_intr_handler(sc); 831 } 832 833 void 834 t4_intr_evt(void *arg) 835 { 836 struct sge_iq *iq = arg; 837 838 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 839 service_iq(iq, 0); 840 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 841 } 842 } 843 844 void 845 t4_intr(void *arg) 846 { 847 struct sge_iq *iq = arg; 848 849 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 850 service_iq(iq, 0); 851 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 852 } 853 } 854 855 /* 856 * Deals with anything and everything on the given ingress queue. 857 */ 858 static int 859 service_iq(struct sge_iq *iq, int budget) 860 { 861 struct sge_iq *q; 862 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */ 863 struct sge_fl *fl = &rxq->fl; /* Use iff IQ_HAS_FL */ 864 struct adapter *sc = iq->adapter; 865 struct rsp_ctrl *ctrl; 866 const struct rss_header *rss; 867 int ndescs = 0, limit, fl_bufs_used = 0; 868 int rsp_type; 869 uint32_t lq; 870 struct mbuf *m0; 871 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); 872 873 limit = budget ? budget : iq->qsize / 8; 874 875 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); 876 877 /* 878 * We always come back and check the descriptor ring for new indirect 879 * interrupts and other responses after running a single handler. 880 */ 881 for (;;) { 882 while (is_new_response(iq, &ctrl)) { 883 884 rmb(); 885 886 m0 = NULL; 887 rsp_type = G_RSPD_TYPE(ctrl->u.type_gen); 888 lq = be32toh(ctrl->pldbuflen_qid); 889 rss = (const void *)iq->cdesc; 890 891 switch (rsp_type) { 892 case X_RSPD_TYPE_FLBUF: 893 894 KASSERT(iq->flags & IQ_HAS_FL, 895 ("%s: data for an iq (%p) with no freelist", 896 __func__, iq)); 897 898 m0 = get_fl_payload(sc, fl, lq, &fl_bufs_used); 899 #ifdef T4_PKT_TIMESTAMP 900 /* 901 * 60 bit timestamp for the payload is 902 * *(uint64_t *)m0->m_pktdat. Note that it is 903 * in the leading free-space in the mbuf. The 904 * kernel can clobber it during a pullup, 905 * m_copymdata, etc. You need to make sure that 906 * the mbuf reaches you unmolested if you care 907 * about the timestamp. 908 */ 909 *(uint64_t *)m0->m_pktdat = 910 be64toh(ctrl->u.last_flit) & 911 0xfffffffffffffff; 912 #endif 913 914 /* fall through */ 915 916 case X_RSPD_TYPE_CPL: 917 KASSERT(rss->opcode < NUM_CPL_CMDS, 918 ("%s: bad opcode %02x.", __func__, 919 rss->opcode)); 920 sc->cpl_handler[rss->opcode](iq, rss, m0); 921 break; 922 923 case X_RSPD_TYPE_INTR: 924 925 /* 926 * Interrupts should be forwarded only to queues 927 * that are not forwarding their interrupts. 928 * This means service_iq can recurse but only 1 929 * level deep. 930 */ 931 KASSERT(budget == 0, 932 ("%s: budget %u, rsp_type %u", __func__, 933 budget, rsp_type)); 934 935 q = sc->sge.iqmap[lq - sc->sge.iq_start]; 936 if (atomic_cmpset_int(&q->state, IQS_IDLE, 937 IQS_BUSY)) { 938 if (service_iq(q, q->qsize / 8) == 0) { 939 atomic_cmpset_int(&q->state, 940 IQS_BUSY, IQS_IDLE); 941 } else { 942 STAILQ_INSERT_TAIL(&iql, q, 943 link); 944 } 945 } 946 break; 947 948 default: 949 sc->an_handler(iq, ctrl); 950 break; 951 } 952 953 iq_next(iq); 954 if (++ndescs == limit) { 955 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), 956 V_CIDXINC(ndescs) | 957 V_INGRESSQID(iq->cntxt_id) | 958 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 959 ndescs = 0; 960 961 if (fl_bufs_used > 0) { 962 FL_LOCK(fl); 963 fl->needed += fl_bufs_used; 964 refill_fl(sc, fl, fl->cap / 8); 965 FL_UNLOCK(fl); 966 fl_bufs_used = 0; 967 } 968 969 if (budget) 970 return (EINPROGRESS); 971 } 972 } 973 974 if (STAILQ_EMPTY(&iql)) 975 break; 976 977 /* 978 * Process the head only, and send it to the back of the list if 979 * it's still not done. 980 */ 981 q = STAILQ_FIRST(&iql); 982 STAILQ_REMOVE_HEAD(&iql, link); 983 if (service_iq(q, q->qsize / 8) == 0) 984 atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); 985 else 986 STAILQ_INSERT_TAIL(&iql, q, link); 987 } 988 989 #if defined(INET) || defined(INET6) 990 if (iq->flags & IQ_LRO_ENABLED) { 991 struct lro_ctrl *lro = &rxq->lro; 992 struct lro_entry *l; 993 994 while (!SLIST_EMPTY(&lro->lro_active)) { 995 l = SLIST_FIRST(&lro->lro_active); 996 SLIST_REMOVE_HEAD(&lro->lro_active, next); 997 tcp_lro_flush(lro, l); 998 } 999 } 1000 #endif 1001 1002 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) | 1003 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); 1004 1005 if (iq->flags & IQ_HAS_FL) { 1006 int starved; 1007 1008 FL_LOCK(fl); 1009 fl->needed += fl_bufs_used; 1010 starved = refill_fl(sc, fl, fl->cap / 4); 1011 FL_UNLOCK(fl); 1012 if (__predict_false(starved != 0)) 1013 add_fl_to_sfl(sc, fl); 1014 } 1015 1016 return (0); 1017 } 1018 1019 static struct mbuf * 1020 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf, 1021 int *fl_bufs_used) 1022 { 1023 struct mbuf *m0, *m; 1024 struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; 1025 unsigned int nbuf, len; 1026 1027 /* 1028 * No assertion for the fl lock because we don't need it. This routine 1029 * is called only from the rx interrupt handler and it only updates 1030 * fl->cidx. (Contrast that with fl->pidx/fl->needed which could be 1031 * updated in the rx interrupt handler or the starvation helper routine. 1032 * That's why code that manipulates fl->pidx/fl->needed needs the fl 1033 * lock but this routine does not). 1034 */ 1035 1036 if (__predict_false((len_newbuf & F_RSPD_NEWBUF) == 0)) 1037 panic("%s: cannot handle packed frames", __func__); 1038 len = G_RSPD_LEN(len_newbuf); 1039 1040 m0 = sd->m; 1041 sd->m = NULL; /* consumed */ 1042 1043 bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD); 1044 m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR); 1045 #ifdef T4_PKT_TIMESTAMP 1046 /* Leave room for a timestamp */ 1047 m0->m_data += 8; 1048 #endif 1049 1050 if (len < RX_COPY_THRESHOLD) { 1051 /* copy data to mbuf, buffer will be recycled */ 1052 bcopy(sd->cl, mtod(m0, caddr_t), len); 1053 m0->m_len = len; 1054 } else { 1055 bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map); 1056 m_cljset(m0, sd->cl, FL_BUF_TYPE(sd->tag_idx)); 1057 sd->cl = NULL; /* consumed */ 1058 m0->m_len = min(len, FL_BUF_SIZE(sd->tag_idx)); 1059 } 1060 m0->m_pkthdr.len = len; 1061 1062 sd++; 1063 if (__predict_false(++fl->cidx == fl->cap)) { 1064 sd = fl->sdesc; 1065 fl->cidx = 0; 1066 } 1067 1068 m = m0; 1069 len -= m->m_len; 1070 nbuf = 1; /* # of fl buffers used */ 1071 1072 while (len > 0) { 1073 m->m_next = sd->m; 1074 sd->m = NULL; /* consumed */ 1075 m = m->m_next; 1076 1077 bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, 1078 BUS_DMASYNC_POSTREAD); 1079 1080 m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0); 1081 if (len <= MLEN) { 1082 bcopy(sd->cl, mtod(m, caddr_t), len); 1083 m->m_len = len; 1084 } else { 1085 bus_dmamap_unload(fl->tag[sd->tag_idx], 1086 sd->map); 1087 m_cljset(m, sd->cl, FL_BUF_TYPE(sd->tag_idx)); 1088 sd->cl = NULL; /* consumed */ 1089 m->m_len = min(len, FL_BUF_SIZE(sd->tag_idx)); 1090 } 1091 1092 sd++; 1093 if (__predict_false(++fl->cidx == fl->cap)) { 1094 sd = fl->sdesc; 1095 fl->cidx = 0; 1096 } 1097 1098 len -= m->m_len; 1099 nbuf++; 1100 } 1101 1102 (*fl_bufs_used) += nbuf; 1103 1104 return (m0); 1105 } 1106 1107 static int 1108 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) 1109 { 1110 struct sge_rxq *rxq = iq_to_rxq(iq); 1111 struct ifnet *ifp = rxq->ifp; 1112 const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); 1113 #if defined(INET) || defined(INET6) 1114 struct lro_ctrl *lro = &rxq->lro; 1115 #endif 1116 1117 KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__, 1118 rss->opcode)); 1119 1120 m0->m_pkthdr.len -= fl_pktshift; 1121 m0->m_len -= fl_pktshift; 1122 m0->m_data += fl_pktshift; 1123 1124 m0->m_pkthdr.rcvif = ifp; 1125 m0->m_flags |= M_FLOWID; 1126 m0->m_pkthdr.flowid = rss->hash_val; 1127 1128 if (cpl->csum_calc && !cpl->err_vec) { 1129 if (ifp->if_capenable & IFCAP_RXCSUM && 1130 cpl->l2info & htobe32(F_RXF_IP)) { 1131 m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED | 1132 CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 1133 rxq->rxcsum++; 1134 } else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 && 1135 cpl->l2info & htobe32(F_RXF_IP6)) { 1136 m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 | 1137 CSUM_PSEUDO_HDR); 1138 rxq->rxcsum++; 1139 } 1140 1141 if (__predict_false(cpl->ip_frag)) 1142 m0->m_pkthdr.csum_data = be16toh(cpl->csum); 1143 else 1144 m0->m_pkthdr.csum_data = 0xffff; 1145 } 1146 1147 if (cpl->vlan_ex) { 1148 m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); 1149 m0->m_flags |= M_VLANTAG; 1150 rxq->vlan_extraction++; 1151 } 1152 1153 #if defined(INET) || defined(INET6) 1154 if (cpl->l2info & htobe32(F_RXF_LRO) && 1155 iq->flags & IQ_LRO_ENABLED && 1156 tcp_lro_rx(lro, m0, 0) == 0) { 1157 /* queued for LRO */ 1158 } else 1159 #endif 1160 ifp->if_input(ifp, m0); 1161 1162 return (0); 1163 } 1164 1165 /* 1166 * Doesn't fail. Holds on to work requests it can't send right away. 1167 */ 1168 void 1169 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr) 1170 { 1171 struct sge_eq *eq = &wrq->eq; 1172 int can_reclaim; 1173 caddr_t dst; 1174 1175 TXQ_LOCK_ASSERT_OWNED(wrq); 1176 #ifdef TCP_OFFLOAD 1177 KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD || 1178 (eq->flags & EQ_TYPEMASK) == EQ_CTRL, 1179 ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK)); 1180 #else 1181 KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL, 1182 ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK)); 1183 #endif 1184 1185 if (__predict_true(wr != NULL)) 1186 STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link); 1187 1188 can_reclaim = reclaimable(eq); 1189 if (__predict_false(eq->flags & EQ_STALLED)) { 1190 if (can_reclaim < tx_resume_threshold(eq)) 1191 return; 1192 eq->flags &= ~EQ_STALLED; 1193 eq->unstalled++; 1194 } 1195 eq->cidx += can_reclaim; 1196 eq->avail += can_reclaim; 1197 if (__predict_false(eq->cidx >= eq->cap)) 1198 eq->cidx -= eq->cap; 1199 1200 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) { 1201 int ndesc; 1202 1203 if (__predict_false(wr->wr_len < 0 || 1204 wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) { 1205 1206 #ifdef INVARIANTS 1207 panic("%s: work request with length %d", __func__, 1208 wr->wr_len); 1209 #endif 1210 #ifdef KDB 1211 kdb_backtrace(); 1212 #endif 1213 log(LOG_ERR, "%s: %s work request with length %d", 1214 device_get_nameunit(sc->dev), __func__, wr->wr_len); 1215 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 1216 free_wrqe(wr); 1217 continue; 1218 } 1219 1220 ndesc = howmany(wr->wr_len, EQ_ESIZE); 1221 if (eq->avail < ndesc) { 1222 wrq->no_desc++; 1223 break; 1224 } 1225 1226 dst = (void *)&eq->desc[eq->pidx]; 1227 copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len); 1228 1229 eq->pidx += ndesc; 1230 eq->avail -= ndesc; 1231 if (__predict_false(eq->pidx >= eq->cap)) 1232 eq->pidx -= eq->cap; 1233 1234 eq->pending += ndesc; 1235 if (eq->pending > 16) 1236 ring_eq_db(sc, eq); 1237 1238 wrq->tx_wrs++; 1239 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 1240 free_wrqe(wr); 1241 1242 if (eq->avail < 8) { 1243 can_reclaim = reclaimable(eq); 1244 eq->cidx += can_reclaim; 1245 eq->avail += can_reclaim; 1246 if (__predict_false(eq->cidx >= eq->cap)) 1247 eq->cidx -= eq->cap; 1248 } 1249 } 1250 1251 if (eq->pending) 1252 ring_eq_db(sc, eq); 1253 1254 if (wr != NULL) { 1255 eq->flags |= EQ_STALLED; 1256 if (callout_pending(&eq->tx_callout) == 0) 1257 callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq); 1258 } 1259 } 1260 1261 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */ 1262 #define TXPKTS_PKT_HDR ((\ 1263 sizeof(struct ulp_txpkt) + \ 1264 sizeof(struct ulptx_idata) + \ 1265 sizeof(struct cpl_tx_pkt_core) \ 1266 ) / 8) 1267 1268 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */ 1269 #define TXPKTS_WR_HDR (\ 1270 sizeof(struct fw_eth_tx_pkts_wr) / 8 + \ 1271 TXPKTS_PKT_HDR) 1272 1273 /* Header of a tx WR, before SGL of first packet (in flits) */ 1274 #define TXPKT_WR_HDR ((\ 1275 sizeof(struct fw_eth_tx_pkt_wr) + \ 1276 sizeof(struct cpl_tx_pkt_core) \ 1277 ) / 8 ) 1278 1279 /* Header of a tx LSO WR, before SGL of first packet (in flits) */ 1280 #define TXPKT_LSO_WR_HDR ((\ 1281 sizeof(struct fw_eth_tx_pkt_wr) + \ 1282 sizeof(struct cpl_tx_pkt_lso_core) + \ 1283 sizeof(struct cpl_tx_pkt_core) \ 1284 ) / 8 ) 1285 1286 int 1287 t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m) 1288 { 1289 struct port_info *pi = (void *)ifp->if_softc; 1290 struct adapter *sc = pi->adapter; 1291 struct sge_eq *eq = &txq->eq; 1292 struct buf_ring *br = txq->br; 1293 struct mbuf *next; 1294 int rc, coalescing, can_reclaim; 1295 struct txpkts txpkts; 1296 struct sgl sgl; 1297 1298 TXQ_LOCK_ASSERT_OWNED(txq); 1299 KASSERT(m, ("%s: called with nothing to do.", __func__)); 1300 KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH, 1301 ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK)); 1302 1303 prefetch(&eq->desc[eq->pidx]); 1304 prefetch(&txq->sdesc[eq->pidx]); 1305 1306 txpkts.npkt = 0;/* indicates there's nothing in txpkts */ 1307 coalescing = 0; 1308 1309 can_reclaim = reclaimable(eq); 1310 if (__predict_false(eq->flags & EQ_STALLED)) { 1311 if (can_reclaim < tx_resume_threshold(eq)) { 1312 txq->m = m; 1313 return (0); 1314 } 1315 eq->flags &= ~EQ_STALLED; 1316 eq->unstalled++; 1317 } 1318 1319 if (__predict_false(eq->flags & EQ_DOOMED)) { 1320 m_freem(m); 1321 while ((m = buf_ring_dequeue_sc(txq->br)) != NULL) 1322 m_freem(m); 1323 return (ENETDOWN); 1324 } 1325 1326 if (eq->avail < 8 && can_reclaim) 1327 reclaim_tx_descs(txq, can_reclaim, 32); 1328 1329 for (; m; m = next ? next : drbr_dequeue(ifp, br)) { 1330 1331 if (eq->avail < 8) 1332 break; 1333 1334 next = m->m_nextpkt; 1335 m->m_nextpkt = NULL; 1336 1337 if (next || buf_ring_peek(br)) 1338 coalescing = 1; 1339 1340 rc = get_pkt_sgl(txq, &m, &sgl, coalescing); 1341 if (rc != 0) { 1342 if (rc == ENOMEM) { 1343 1344 /* Short of resources, suspend tx */ 1345 1346 m->m_nextpkt = next; 1347 break; 1348 } 1349 1350 /* 1351 * Unrecoverable error for this packet, throw it away 1352 * and move on to the next. get_pkt_sgl may already 1353 * have freed m (it will be NULL in that case and the 1354 * m_freem here is still safe). 1355 */ 1356 1357 m_freem(m); 1358 continue; 1359 } 1360 1361 if (coalescing && 1362 add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) { 1363 1364 /* Successfully absorbed into txpkts */ 1365 1366 write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl); 1367 goto doorbell; 1368 } 1369 1370 /* 1371 * We weren't coalescing to begin with, or current frame could 1372 * not be coalesced (add_to_txpkts flushes txpkts if a frame 1373 * given to it can't be coalesced). Either way there should be 1374 * nothing in txpkts. 1375 */ 1376 KASSERT(txpkts.npkt == 0, 1377 ("%s: txpkts not empty: %d", __func__, txpkts.npkt)); 1378 1379 /* We're sending out individual packets now */ 1380 coalescing = 0; 1381 1382 if (eq->avail < 8) 1383 reclaim_tx_descs(txq, 0, 8); 1384 rc = write_txpkt_wr(pi, txq, m, &sgl); 1385 if (rc != 0) { 1386 1387 /* Short of hardware descriptors, suspend tx */ 1388 1389 /* 1390 * This is an unlikely but expensive failure. We've 1391 * done all the hard work (DMA mappings etc.) and now we 1392 * can't send out the packet. What's worse, we have to 1393 * spend even more time freeing up everything in sgl. 1394 */ 1395 txq->no_desc++; 1396 free_pkt_sgl(txq, &sgl); 1397 1398 m->m_nextpkt = next; 1399 break; 1400 } 1401 1402 ETHER_BPF_MTAP(ifp, m); 1403 if (sgl.nsegs == 0) 1404 m_freem(m); 1405 doorbell: 1406 if (eq->pending >= 64) 1407 ring_eq_db(sc, eq); 1408 1409 can_reclaim = reclaimable(eq); 1410 if (can_reclaim >= 32) 1411 reclaim_tx_descs(txq, can_reclaim, 64); 1412 } 1413 1414 if (txpkts.npkt > 0) 1415 write_txpkts_wr(txq, &txpkts); 1416 1417 /* 1418 * m not NULL means there was an error but we haven't thrown it away. 1419 * This can happen when we're short of tx descriptors (no_desc) or maybe 1420 * even DMA maps (no_dmamap). Either way, a credit flush and reclaim 1421 * will get things going again. 1422 */ 1423 if (m && !(eq->flags & EQ_CRFLUSHED)) { 1424 struct tx_sdesc *txsd = &txq->sdesc[eq->pidx]; 1425 1426 /* 1427 * If EQ_CRFLUSHED is not set then we know we have at least one 1428 * available descriptor because any WR that reduces eq->avail to 1429 * 0 also sets EQ_CRFLUSHED. 1430 */ 1431 KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__)); 1432 1433 txsd->desc_used = 1; 1434 txsd->credits = 0; 1435 write_eqflush_wr(eq); 1436 } 1437 txq->m = m; 1438 1439 if (eq->pending) 1440 ring_eq_db(sc, eq); 1441 1442 reclaim_tx_descs(txq, 0, 128); 1443 1444 if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0) 1445 callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq); 1446 1447 return (0); 1448 } 1449 1450 void 1451 t4_update_fl_bufsize(struct ifnet *ifp) 1452 { 1453 struct port_info *pi = ifp->if_softc; 1454 struct sge_rxq *rxq; 1455 struct sge_fl *fl; 1456 int i, bufsize = mtu_to_bufsize(ifp->if_mtu); 1457 1458 for_each_rxq(pi, i, rxq) { 1459 fl = &rxq->fl; 1460 1461 FL_LOCK(fl); 1462 set_fl_tag_idx(fl, bufsize); 1463 FL_UNLOCK(fl); 1464 } 1465 } 1466 1467 int 1468 can_resume_tx(struct sge_eq *eq) 1469 { 1470 return (reclaimable(eq) >= tx_resume_threshold(eq)); 1471 } 1472 1473 static inline void 1474 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, 1475 int qsize, int esize) 1476 { 1477 KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, 1478 ("%s: bad tmr_idx %d", __func__, tmr_idx)); 1479 KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ 1480 ("%s: bad pktc_idx %d", __func__, pktc_idx)); 1481 1482 iq->flags = 0; 1483 iq->adapter = sc; 1484 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); 1485 iq->intr_pktc_idx = SGE_NCOUNTERS - 1; 1486 if (pktc_idx >= 0) { 1487 iq->intr_params |= F_QINTR_CNT_EN; 1488 iq->intr_pktc_idx = pktc_idx; 1489 } 1490 iq->qsize = roundup(qsize, 16); /* See FW_IQ_CMD/iqsize */ 1491 iq->esize = max(esize, 16); /* See FW_IQ_CMD/iqesize */ 1492 } 1493 1494 static inline void 1495 init_fl(struct sge_fl *fl, int qsize, int bufsize, char *name) 1496 { 1497 fl->qsize = qsize; 1498 strlcpy(fl->lockname, name, sizeof(fl->lockname)); 1499 set_fl_tag_idx(fl, bufsize); 1500 } 1501 1502 static inline void 1503 init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan, 1504 uint16_t iqid, char *name) 1505 { 1506 KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan)); 1507 KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype)); 1508 1509 eq->flags = eqtype & EQ_TYPEMASK; 1510 eq->tx_chan = tx_chan; 1511 eq->iqid = iqid; 1512 eq->qsize = qsize; 1513 strlcpy(eq->lockname, name, sizeof(eq->lockname)); 1514 1515 TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq); 1516 callout_init(&eq->tx_callout, CALLOUT_MPSAFE); 1517 } 1518 1519 static int 1520 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, 1521 bus_dmamap_t *map, bus_addr_t *pa, void **va) 1522 { 1523 int rc; 1524 1525 rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, 1526 BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); 1527 if (rc != 0) { 1528 device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc); 1529 goto done; 1530 } 1531 1532 rc = bus_dmamem_alloc(*tag, va, 1533 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); 1534 if (rc != 0) { 1535 device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc); 1536 goto done; 1537 } 1538 1539 rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); 1540 if (rc != 0) { 1541 device_printf(sc->dev, "cannot load DMA map: %d\n", rc); 1542 goto done; 1543 } 1544 done: 1545 if (rc) 1546 free_ring(sc, *tag, *map, *pa, *va); 1547 1548 return (rc); 1549 } 1550 1551 static int 1552 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, 1553 bus_addr_t pa, void *va) 1554 { 1555 if (pa) 1556 bus_dmamap_unload(tag, map); 1557 if (va) 1558 bus_dmamem_free(tag, va, map); 1559 if (tag) 1560 bus_dma_tag_destroy(tag); 1561 1562 return (0); 1563 } 1564 1565 /* 1566 * Allocates the ring for an ingress queue and an optional freelist. If the 1567 * freelist is specified it will be allocated and then associated with the 1568 * ingress queue. 1569 * 1570 * Returns errno on failure. Resources allocated up to that point may still be 1571 * allocated. Caller is responsible for cleanup in case this function fails. 1572 * 1573 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then 1574 * the intr_idx specifies the vector, starting from 0. Otherwise it specifies 1575 * the abs_id of the ingress queue to which its interrupts should be forwarded. 1576 */ 1577 static int 1578 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl, 1579 int intr_idx, int cong) 1580 { 1581 int rc, i, cntxt_id; 1582 size_t len; 1583 struct fw_iq_cmd c; 1584 struct adapter *sc = iq->adapter; 1585 __be32 v = 0; 1586 1587 len = iq->qsize * iq->esize; 1588 rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, 1589 (void **)&iq->desc); 1590 if (rc != 0) 1591 return (rc); 1592 1593 bzero(&c, sizeof(c)); 1594 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 1595 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | 1596 V_FW_IQ_CMD_VFN(0)); 1597 1598 c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | 1599 FW_LEN16(c)); 1600 1601 /* Special handling for firmware event queue */ 1602 if (iq == &sc->sge.fwq) 1603 v |= F_FW_IQ_CMD_IQASYNCH; 1604 1605 if (iq->flags & IQ_INTR) { 1606 KASSERT(intr_idx < sc->intr_count, 1607 ("%s: invalid direct intr_idx %d", __func__, intr_idx)); 1608 } else 1609 v |= F_FW_IQ_CMD_IQANDST; 1610 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); 1611 1612 c.type_to_iqandstindex = htobe32(v | 1613 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 1614 V_FW_IQ_CMD_VIID(pi->viid) | 1615 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); 1616 c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 1617 F_FW_IQ_CMD_IQGTSMODE | 1618 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | 1619 V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4)); 1620 c.iqsize = htobe16(iq->qsize); 1621 c.iqaddr = htobe64(iq->ba); 1622 if (cong >= 0) 1623 c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN); 1624 1625 if (fl) { 1626 mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); 1627 1628 for (i = 0; i < FL_BUF_SIZES; i++) { 1629 1630 /* 1631 * A freelist buffer must be 16 byte aligned as the SGE 1632 * uses the low 4 bits of the bus addr to figure out the 1633 * buffer size. 1634 */ 1635 rc = bus_dma_tag_create(sc->dmat, 16, 0, 1636 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1637 FL_BUF_SIZE(i), 1, FL_BUF_SIZE(i), BUS_DMA_ALLOCNOW, 1638 NULL, NULL, &fl->tag[i]); 1639 if (rc != 0) { 1640 device_printf(sc->dev, 1641 "failed to create fl DMA tag[%d]: %d\n", 1642 i, rc); 1643 return (rc); 1644 } 1645 } 1646 len = fl->qsize * RX_FL_ESIZE; 1647 rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, 1648 &fl->ba, (void **)&fl->desc); 1649 if (rc) 1650 return (rc); 1651 1652 /* Allocate space for one software descriptor per buffer. */ 1653 fl->cap = (fl->qsize - spg_len / RX_FL_ESIZE) * 8; 1654 FL_LOCK(fl); 1655 rc = alloc_fl_sdesc(fl); 1656 FL_UNLOCK(fl); 1657 if (rc != 0) { 1658 device_printf(sc->dev, 1659 "failed to setup fl software descriptors: %d\n", 1660 rc); 1661 return (rc); 1662 } 1663 fl->needed = fl->cap; 1664 fl->lowat = roundup(sc->sge.fl_starve_threshold, 8); 1665 1666 c.iqns_to_fl0congen |= 1667 htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | 1668 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | 1669 F_FW_IQ_CMD_FL0PADEN); 1670 if (cong >= 0) { 1671 c.iqns_to_fl0congen |= 1672 htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | 1673 F_FW_IQ_CMD_FL0CONGCIF | 1674 F_FW_IQ_CMD_FL0CONGEN); 1675 } 1676 c.fl0dcaen_to_fl0cidxfthresh = 1677 htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) | 1678 V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B)); 1679 c.fl0size = htobe16(fl->qsize); 1680 c.fl0addr = htobe64(fl->ba); 1681 } 1682 1683 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 1684 if (rc != 0) { 1685 device_printf(sc->dev, 1686 "failed to create ingress queue: %d\n", rc); 1687 return (rc); 1688 } 1689 1690 iq->cdesc = iq->desc; 1691 iq->cidx = 0; 1692 iq->gen = 1; 1693 iq->intr_next = iq->intr_params; 1694 iq->cntxt_id = be16toh(c.iqid); 1695 iq->abs_id = be16toh(c.physiqid); 1696 iq->flags |= IQ_ALLOCATED; 1697 1698 cntxt_id = iq->cntxt_id - sc->sge.iq_start; 1699 if (cntxt_id >= sc->sge.niq) { 1700 panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, 1701 cntxt_id, sc->sge.niq - 1); 1702 } 1703 sc->sge.iqmap[cntxt_id] = iq; 1704 1705 if (fl) { 1706 fl->cntxt_id = be16toh(c.fl0id); 1707 fl->pidx = fl->cidx = 0; 1708 1709 cntxt_id = fl->cntxt_id - sc->sge.eq_start; 1710 if (cntxt_id >= sc->sge.neq) { 1711 panic("%s: fl->cntxt_id (%d) more than the max (%d)", 1712 __func__, cntxt_id, sc->sge.neq - 1); 1713 } 1714 sc->sge.eqmap[cntxt_id] = (void *)fl; 1715 1716 FL_LOCK(fl); 1717 /* Enough to make sure the SGE doesn't think it's starved */ 1718 refill_fl(sc, fl, fl->lowat); 1719 FL_UNLOCK(fl); 1720 1721 iq->flags |= IQ_HAS_FL; 1722 } 1723 1724 /* Enable IQ interrupts */ 1725 atomic_store_rel_int(&iq->state, IQS_IDLE); 1726 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) | 1727 V_INGRESSQID(iq->cntxt_id)); 1728 1729 return (0); 1730 } 1731 1732 static int 1733 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl) 1734 { 1735 int i, rc; 1736 struct adapter *sc = iq->adapter; 1737 device_t dev; 1738 1739 if (sc == NULL) 1740 return (0); /* nothing to do */ 1741 1742 dev = pi ? pi->dev : sc->dev; 1743 1744 if (iq->flags & IQ_ALLOCATED) { 1745 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, 1746 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, 1747 fl ? fl->cntxt_id : 0xffff, 0xffff); 1748 if (rc != 0) { 1749 device_printf(dev, 1750 "failed to free queue %p: %d\n", iq, rc); 1751 return (rc); 1752 } 1753 iq->flags &= ~IQ_ALLOCATED; 1754 } 1755 1756 free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); 1757 1758 bzero(iq, sizeof(*iq)); 1759 1760 if (fl) { 1761 free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, 1762 fl->desc); 1763 1764 if (fl->sdesc) { 1765 FL_LOCK(fl); 1766 free_fl_sdesc(fl); 1767 FL_UNLOCK(fl); 1768 } 1769 1770 if (mtx_initialized(&fl->fl_lock)) 1771 mtx_destroy(&fl->fl_lock); 1772 1773 for (i = 0; i < FL_BUF_SIZES; i++) { 1774 if (fl->tag[i]) 1775 bus_dma_tag_destroy(fl->tag[i]); 1776 } 1777 1778 bzero(fl, sizeof(*fl)); 1779 } 1780 1781 return (0); 1782 } 1783 1784 static int 1785 alloc_fwq(struct adapter *sc) 1786 { 1787 int rc, intr_idx; 1788 struct sge_iq *fwq = &sc->sge.fwq; 1789 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 1790 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 1791 1792 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE); 1793 fwq->flags |= IQ_INTR; /* always */ 1794 intr_idx = sc->intr_count > 1 ? 1 : 0; 1795 rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1); 1796 if (rc != 0) { 1797 device_printf(sc->dev, 1798 "failed to create firmware event queue: %d\n", rc); 1799 return (rc); 1800 } 1801 1802 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD, 1803 NULL, "firmware event queue"); 1804 children = SYSCTL_CHILDREN(oid); 1805 1806 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id", 1807 CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I", 1808 "absolute id of the queue"); 1809 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id", 1810 CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I", 1811 "SGE context id of the queue"); 1812 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx", 1813 CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I", 1814 "consumer index"); 1815 1816 return (0); 1817 } 1818 1819 static int 1820 free_fwq(struct adapter *sc) 1821 { 1822 return free_iq_fl(NULL, &sc->sge.fwq, NULL); 1823 } 1824 1825 static int 1826 alloc_mgmtq(struct adapter *sc) 1827 { 1828 int rc; 1829 struct sge_wrq *mgmtq = &sc->sge.mgmtq; 1830 char name[16]; 1831 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 1832 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 1833 1834 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD, 1835 NULL, "management queue"); 1836 1837 snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev)); 1838 init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan, 1839 sc->sge.fwq.cntxt_id, name); 1840 rc = alloc_wrq(sc, NULL, mgmtq, oid); 1841 if (rc != 0) { 1842 device_printf(sc->dev, 1843 "failed to create management queue: %d\n", rc); 1844 return (rc); 1845 } 1846 1847 return (0); 1848 } 1849 1850 static int 1851 free_mgmtq(struct adapter *sc) 1852 { 1853 1854 return free_wrq(sc, &sc->sge.mgmtq); 1855 } 1856 1857 static inline int 1858 tnl_cong(struct port_info *pi) 1859 { 1860 1861 if (cong_drop == -1) 1862 return (-1); 1863 else if (cong_drop == 1) 1864 return (0); 1865 else 1866 return (1 << pi->tx_chan); 1867 } 1868 1869 static int 1870 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx, 1871 struct sysctl_oid *oid) 1872 { 1873 int rc; 1874 struct sysctl_oid_list *children; 1875 char name[16]; 1876 1877 rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi)); 1878 if (rc != 0) 1879 return (rc); 1880 1881 FL_LOCK(&rxq->fl); 1882 refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8); 1883 FL_UNLOCK(&rxq->fl); 1884 1885 #if defined(INET) || defined(INET6) 1886 rc = tcp_lro_init(&rxq->lro); 1887 if (rc != 0) 1888 return (rc); 1889 rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */ 1890 1891 if (pi->ifp->if_capenable & IFCAP_LRO) 1892 rxq->iq.flags |= IQ_LRO_ENABLED; 1893 #endif 1894 rxq->ifp = pi->ifp; 1895 1896 children = SYSCTL_CHILDREN(oid); 1897 1898 snprintf(name, sizeof(name), "%d", idx); 1899 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 1900 NULL, "rx queue"); 1901 children = SYSCTL_CHILDREN(oid); 1902 1903 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id", 1904 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I", 1905 "absolute id of the queue"); 1906 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id", 1907 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I", 1908 "SGE context id of the queue"); 1909 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx", 1910 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I", 1911 "consumer index"); 1912 #if defined(INET) || defined(INET6) 1913 SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, 1914 &rxq->lro.lro_queued, 0, NULL); 1915 SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, 1916 &rxq->lro.lro_flushed, 0, NULL); 1917 #endif 1918 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, 1919 &rxq->rxcsum, "# of times hardware assisted with checksum"); 1920 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction", 1921 CTLFLAG_RD, &rxq->vlan_extraction, 1922 "# of times hardware extracted 802.1Q tag"); 1923 1924 children = SYSCTL_CHILDREN(oid); 1925 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD, 1926 NULL, "freelist"); 1927 children = SYSCTL_CHILDREN(oid); 1928 1929 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id", 1930 CTLTYPE_INT | CTLFLAG_RD, &rxq->fl.cntxt_id, 0, sysctl_uint16, "I", 1931 "SGE context id of the queue"); 1932 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, 1933 &rxq->fl.cidx, 0, "consumer index"); 1934 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, 1935 &rxq->fl.pidx, 0, "producer index"); 1936 1937 return (rc); 1938 } 1939 1940 static int 1941 free_rxq(struct port_info *pi, struct sge_rxq *rxq) 1942 { 1943 int rc; 1944 1945 #if defined(INET) || defined(INET6) 1946 if (rxq->lro.ifp) { 1947 tcp_lro_free(&rxq->lro); 1948 rxq->lro.ifp = NULL; 1949 } 1950 #endif 1951 1952 rc = free_iq_fl(pi, &rxq->iq, &rxq->fl); 1953 if (rc == 0) 1954 bzero(rxq, sizeof(*rxq)); 1955 1956 return (rc); 1957 } 1958 1959 #ifdef TCP_OFFLOAD 1960 static int 1961 alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq, 1962 int intr_idx, int idx, struct sysctl_oid *oid) 1963 { 1964 int rc; 1965 struct sysctl_oid_list *children; 1966 char name[16]; 1967 1968 rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 1969 1 << pi->tx_chan); 1970 if (rc != 0) 1971 return (rc); 1972 1973 children = SYSCTL_CHILDREN(oid); 1974 1975 snprintf(name, sizeof(name), "%d", idx); 1976 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 1977 NULL, "rx queue"); 1978 children = SYSCTL_CHILDREN(oid); 1979 1980 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id", 1981 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16, 1982 "I", "absolute id of the queue"); 1983 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id", 1984 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16, 1985 "I", "SGE context id of the queue"); 1986 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx", 1987 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I", 1988 "consumer index"); 1989 1990 children = SYSCTL_CHILDREN(oid); 1991 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD, 1992 NULL, "freelist"); 1993 children = SYSCTL_CHILDREN(oid); 1994 1995 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id", 1996 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->fl.cntxt_id, 0, sysctl_uint16, 1997 "I", "SGE context id of the queue"); 1998 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, 1999 &ofld_rxq->fl.cidx, 0, "consumer index"); 2000 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, 2001 &ofld_rxq->fl.pidx, 0, "producer index"); 2002 2003 return (rc); 2004 } 2005 2006 static int 2007 free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq) 2008 { 2009 int rc; 2010 2011 rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl); 2012 if (rc == 0) 2013 bzero(ofld_rxq, sizeof(*ofld_rxq)); 2014 2015 return (rc); 2016 } 2017 #endif 2018 2019 static int 2020 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) 2021 { 2022 int rc, cntxt_id; 2023 struct fw_eq_ctrl_cmd c; 2024 2025 bzero(&c, sizeof(c)); 2026 2027 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | 2028 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | 2029 V_FW_EQ_CTRL_CMD_VFN(0)); 2030 c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC | 2031 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 2032 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */ 2033 c.physeqid_pkd = htobe32(0); 2034 c.fetchszm_to_iqid = 2035 htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 2036 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | 2037 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); 2038 c.dcaen_to_eqsize = 2039 htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 2040 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 2041 V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 2042 V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize)); 2043 c.eqaddr = htobe64(eq->ba); 2044 2045 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2046 if (rc != 0) { 2047 device_printf(sc->dev, 2048 "failed to create control queue %d: %d\n", eq->tx_chan, rc); 2049 return (rc); 2050 } 2051 eq->flags |= EQ_ALLOCATED; 2052 2053 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid)); 2054 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 2055 if (cntxt_id >= sc->sge.neq) 2056 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 2057 cntxt_id, sc->sge.neq - 1); 2058 sc->sge.eqmap[cntxt_id] = eq; 2059 2060 return (rc); 2061 } 2062 2063 static int 2064 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) 2065 { 2066 int rc, cntxt_id; 2067 struct fw_eq_eth_cmd c; 2068 2069 bzero(&c, sizeof(c)); 2070 2071 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | 2072 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | 2073 V_FW_EQ_ETH_CMD_VFN(0)); 2074 c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | 2075 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 2076 c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid)); 2077 c.fetchszm_to_iqid = 2078 htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 2079 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | 2080 V_FW_EQ_ETH_CMD_IQID(eq->iqid)); 2081 c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 2082 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 2083 V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 2084 V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize)); 2085 c.eqaddr = htobe64(eq->ba); 2086 2087 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2088 if (rc != 0) { 2089 device_printf(pi->dev, 2090 "failed to create Ethernet egress queue: %d\n", rc); 2091 return (rc); 2092 } 2093 eq->flags |= EQ_ALLOCATED; 2094 2095 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); 2096 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 2097 if (cntxt_id >= sc->sge.neq) 2098 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 2099 cntxt_id, sc->sge.neq - 1); 2100 sc->sge.eqmap[cntxt_id] = eq; 2101 2102 return (rc); 2103 } 2104 2105 #ifdef TCP_OFFLOAD 2106 static int 2107 ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) 2108 { 2109 int rc, cntxt_id; 2110 struct fw_eq_ofld_cmd c; 2111 2112 bzero(&c, sizeof(c)); 2113 2114 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | 2115 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | 2116 V_FW_EQ_OFLD_CMD_VFN(0)); 2117 c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | 2118 F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 2119 c.fetchszm_to_iqid = 2120 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 2121 V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | 2122 F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); 2123 c.dcaen_to_eqsize = 2124 htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 2125 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 2126 V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 2127 V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize)); 2128 c.eqaddr = htobe64(eq->ba); 2129 2130 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2131 if (rc != 0) { 2132 device_printf(pi->dev, 2133 "failed to create egress queue for TCP offload: %d\n", rc); 2134 return (rc); 2135 } 2136 eq->flags |= EQ_ALLOCATED; 2137 2138 eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd)); 2139 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 2140 if (cntxt_id >= sc->sge.neq) 2141 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 2142 cntxt_id, sc->sge.neq - 1); 2143 sc->sge.eqmap[cntxt_id] = eq; 2144 2145 return (rc); 2146 } 2147 #endif 2148 2149 static int 2150 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) 2151 { 2152 int rc; 2153 size_t len; 2154 2155 mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); 2156 2157 len = eq->qsize * EQ_ESIZE; 2158 rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, 2159 &eq->ba, (void **)&eq->desc); 2160 if (rc) 2161 return (rc); 2162 2163 eq->cap = eq->qsize - spg_len / EQ_ESIZE; 2164 eq->spg = (void *)&eq->desc[eq->cap]; 2165 eq->avail = eq->cap - 1; /* one less to avoid cidx = pidx */ 2166 eq->pidx = eq->cidx = 0; 2167 2168 switch (eq->flags & EQ_TYPEMASK) { 2169 case EQ_CTRL: 2170 rc = ctrl_eq_alloc(sc, eq); 2171 break; 2172 2173 case EQ_ETH: 2174 rc = eth_eq_alloc(sc, pi, eq); 2175 break; 2176 2177 #ifdef TCP_OFFLOAD 2178 case EQ_OFLD: 2179 rc = ofld_eq_alloc(sc, pi, eq); 2180 break; 2181 #endif 2182 2183 default: 2184 panic("%s: invalid eq type %d.", __func__, 2185 eq->flags & EQ_TYPEMASK); 2186 } 2187 if (rc != 0) { 2188 device_printf(sc->dev, 2189 "failed to allocate egress queue(%d): %d", 2190 eq->flags & EQ_TYPEMASK, rc); 2191 } 2192 2193 eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus; 2194 2195 return (rc); 2196 } 2197 2198 static int 2199 free_eq(struct adapter *sc, struct sge_eq *eq) 2200 { 2201 int rc; 2202 2203 if (eq->flags & EQ_ALLOCATED) { 2204 switch (eq->flags & EQ_TYPEMASK) { 2205 case EQ_CTRL: 2206 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, 2207 eq->cntxt_id); 2208 break; 2209 2210 case EQ_ETH: 2211 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, 2212 eq->cntxt_id); 2213 break; 2214 2215 #ifdef TCP_OFFLOAD 2216 case EQ_OFLD: 2217 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, 2218 eq->cntxt_id); 2219 break; 2220 #endif 2221 2222 default: 2223 panic("%s: invalid eq type %d.", __func__, 2224 eq->flags & EQ_TYPEMASK); 2225 } 2226 if (rc != 0) { 2227 device_printf(sc->dev, 2228 "failed to free egress queue (%d): %d\n", 2229 eq->flags & EQ_TYPEMASK, rc); 2230 return (rc); 2231 } 2232 eq->flags &= ~EQ_ALLOCATED; 2233 } 2234 2235 free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); 2236 2237 if (mtx_initialized(&eq->eq_lock)) 2238 mtx_destroy(&eq->eq_lock); 2239 2240 bzero(eq, sizeof(*eq)); 2241 return (0); 2242 } 2243 2244 static int 2245 alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq, 2246 struct sysctl_oid *oid) 2247 { 2248 int rc; 2249 struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx; 2250 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2251 2252 rc = alloc_eq(sc, pi, &wrq->eq); 2253 if (rc) 2254 return (rc); 2255 2256 wrq->adapter = sc; 2257 STAILQ_INIT(&wrq->wr_list); 2258 2259 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 2260 &wrq->eq.cntxt_id, 0, "SGE context id of the queue"); 2261 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 2262 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I", 2263 "consumer index"); 2264 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx", 2265 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I", 2266 "producer index"); 2267 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD, 2268 &wrq->tx_wrs, "# of work requests"); 2269 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD, 2270 &wrq->no_desc, 0, 2271 "# of times queue ran out of hardware descriptors"); 2272 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD, 2273 &wrq->eq.unstalled, 0, "# of times queue recovered after stall"); 2274 2275 2276 return (rc); 2277 } 2278 2279 static int 2280 free_wrq(struct adapter *sc, struct sge_wrq *wrq) 2281 { 2282 int rc; 2283 2284 rc = free_eq(sc, &wrq->eq); 2285 if (rc) 2286 return (rc); 2287 2288 bzero(wrq, sizeof(*wrq)); 2289 return (0); 2290 } 2291 2292 static int 2293 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx, 2294 struct sysctl_oid *oid) 2295 { 2296 int rc; 2297 struct adapter *sc = pi->adapter; 2298 struct sge_eq *eq = &txq->eq; 2299 char name[16]; 2300 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2301 2302 rc = alloc_eq(sc, pi, eq); 2303 if (rc) 2304 return (rc); 2305 2306 txq->ifp = pi->ifp; 2307 2308 txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE, 2309 M_ZERO | M_WAITOK); 2310 txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock); 2311 2312 rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR, 2313 BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS, 2314 BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag); 2315 if (rc != 0) { 2316 device_printf(sc->dev, 2317 "failed to create tx DMA tag: %d\n", rc); 2318 return (rc); 2319 } 2320 2321 /* 2322 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE 2323 * limit for any WR). txq->no_dmamap events shouldn't occur if maps is 2324 * sized for the worst case. 2325 */ 2326 rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8, 2327 M_WAITOK); 2328 if (rc != 0) { 2329 device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc); 2330 return (rc); 2331 } 2332 2333 snprintf(name, sizeof(name), "%d", idx); 2334 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 2335 NULL, "tx queue"); 2336 children = SYSCTL_CHILDREN(oid); 2337 2338 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 2339 &eq->cntxt_id, 0, "SGE context id of the queue"); 2340 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx", 2341 CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I", 2342 "consumer index"); 2343 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx", 2344 CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I", 2345 "producer index"); 2346 2347 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, 2348 &txq->txcsum, "# of times hardware assisted with checksum"); 2349 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion", 2350 CTLFLAG_RD, &txq->vlan_insertion, 2351 "# of times hardware inserted 802.1Q tag"); 2352 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, 2353 &txq->tso_wrs, "# of TSO work requests"); 2354 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, 2355 &txq->imm_wrs, "# of work requests with immediate data"); 2356 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, 2357 &txq->sgl_wrs, "# of work requests with direct SGL"); 2358 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, 2359 &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); 2360 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD, 2361 &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)"); 2362 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD, 2363 &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests"); 2364 2365 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD, 2366 &txq->no_dmamap, 0, "# of times txq ran out of DMA maps"); 2367 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD, 2368 &txq->no_desc, 0, "# of times txq ran out of hardware descriptors"); 2369 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD, 2370 &eq->egr_update, 0, "egress update notifications from the SGE"); 2371 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD, 2372 &eq->unstalled, 0, "# of times txq recovered after stall"); 2373 2374 return (rc); 2375 } 2376 2377 static int 2378 free_txq(struct port_info *pi, struct sge_txq *txq) 2379 { 2380 int rc; 2381 struct adapter *sc = pi->adapter; 2382 struct sge_eq *eq = &txq->eq; 2383 2384 rc = free_eq(sc, eq); 2385 if (rc) 2386 return (rc); 2387 2388 free(txq->sdesc, M_CXGBE); 2389 2390 if (txq->txmaps.maps) 2391 t4_free_tx_maps(&txq->txmaps, txq->tx_tag); 2392 2393 buf_ring_free(txq->br, M_CXGBE); 2394 2395 if (txq->tx_tag) 2396 bus_dma_tag_destroy(txq->tx_tag); 2397 2398 bzero(txq, sizeof(*txq)); 2399 return (0); 2400 } 2401 2402 static void 2403 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) 2404 { 2405 bus_addr_t *ba = arg; 2406 2407 KASSERT(nseg == 1, 2408 ("%s meant for single segment mappings only.", __func__)); 2409 2410 *ba = error ? 0 : segs->ds_addr; 2411 } 2412 2413 static inline bool 2414 is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl) 2415 { 2416 *ctrl = (void *)((uintptr_t)iq->cdesc + 2417 (iq->esize - sizeof(struct rsp_ctrl))); 2418 2419 return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen); 2420 } 2421 2422 static inline void 2423 iq_next(struct sge_iq *iq) 2424 { 2425 iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize); 2426 if (__predict_false(++iq->cidx == iq->qsize - 1)) { 2427 iq->cidx = 0; 2428 iq->gen ^= 1; 2429 iq->cdesc = iq->desc; 2430 } 2431 } 2432 2433 #define FL_HW_IDX(x) ((x) >> 3) 2434 static inline void 2435 ring_fl_db(struct adapter *sc, struct sge_fl *fl) 2436 { 2437 int ndesc = fl->pending / 8; 2438 2439 if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx)) 2440 ndesc--; /* hold back one credit */ 2441 2442 if (ndesc <= 0) 2443 return; /* nothing to do */ 2444 2445 wmb(); 2446 2447 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), F_DBPRIO | 2448 V_QID(fl->cntxt_id) | V_PIDX(ndesc)); 2449 fl->pending -= ndesc * 8; 2450 } 2451 2452 /* 2453 * Fill up the freelist by upto nbufs and maybe ring its doorbell. 2454 * 2455 * Returns non-zero to indicate that it should be added to the list of starving 2456 * freelists. 2457 */ 2458 static int 2459 refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs) 2460 { 2461 __be64 *d = &fl->desc[fl->pidx]; 2462 struct fl_sdesc *sd = &fl->sdesc[fl->pidx]; 2463 bus_dma_tag_t tag; 2464 bus_addr_t pa; 2465 caddr_t cl; 2466 int rc; 2467 2468 FL_LOCK_ASSERT_OWNED(fl); 2469 2470 if (nbufs > fl->needed) 2471 nbufs = fl->needed; 2472 2473 while (nbufs--) { 2474 2475 if (sd->cl != NULL) { 2476 2477 /* 2478 * This happens when a frame small enough to fit 2479 * entirely in an mbuf was received in cl last time. 2480 * We'd held on to cl and can reuse it now. Note that 2481 * we reuse a cluster of the old size if fl->tag_idx is 2482 * no longer the same as sd->tag_idx. 2483 */ 2484 2485 KASSERT(*d == sd->ba_tag, 2486 ("%s: recyling problem at pidx %d", 2487 __func__, fl->pidx)); 2488 2489 d++; 2490 goto recycled; 2491 } 2492 2493 2494 if (fl->tag_idx != sd->tag_idx) { 2495 bus_dmamap_t map; 2496 bus_dma_tag_t newtag = fl->tag[fl->tag_idx]; 2497 bus_dma_tag_t oldtag = fl->tag[sd->tag_idx]; 2498 2499 /* 2500 * An MTU change can get us here. Discard the old map 2501 * which was created with the old tag, but only if 2502 * we're able to get a new one. 2503 */ 2504 rc = bus_dmamap_create(newtag, 0, &map); 2505 if (rc == 0) { 2506 bus_dmamap_destroy(oldtag, sd->map); 2507 sd->map = map; 2508 sd->tag_idx = fl->tag_idx; 2509 } 2510 } 2511 2512 tag = fl->tag[sd->tag_idx]; 2513 2514 cl = m_cljget(NULL, M_NOWAIT, FL_BUF_SIZE(sd->tag_idx)); 2515 if (cl == NULL) 2516 break; 2517 2518 rc = bus_dmamap_load(tag, sd->map, cl, FL_BUF_SIZE(sd->tag_idx), 2519 oneseg_dma_callback, &pa, 0); 2520 if (rc != 0 || pa == 0) { 2521 fl->dmamap_failed++; 2522 uma_zfree(FL_BUF_ZONE(sd->tag_idx), cl); 2523 break; 2524 } 2525 2526 sd->cl = cl; 2527 *d++ = htobe64(pa | sd->tag_idx); 2528 2529 #ifdef INVARIANTS 2530 sd->ba_tag = htobe64(pa | sd->tag_idx); 2531 #endif 2532 2533 recycled: 2534 /* sd->m is never recycled, should always be NULL */ 2535 KASSERT(sd->m == NULL, ("%s: stray mbuf", __func__)); 2536 2537 sd->m = m_gethdr(M_NOWAIT, MT_NOINIT); 2538 if (sd->m == NULL) 2539 break; 2540 2541 fl->pending++; 2542 fl->needed--; 2543 sd++; 2544 if (++fl->pidx == fl->cap) { 2545 fl->pidx = 0; 2546 sd = fl->sdesc; 2547 d = fl->desc; 2548 } 2549 } 2550 2551 if (fl->pending >= 8) 2552 ring_fl_db(sc, fl); 2553 2554 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); 2555 } 2556 2557 /* 2558 * Attempt to refill all starving freelists. 2559 */ 2560 static void 2561 refill_sfl(void *arg) 2562 { 2563 struct adapter *sc = arg; 2564 struct sge_fl *fl, *fl_temp; 2565 2566 mtx_lock(&sc->sfl_lock); 2567 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { 2568 FL_LOCK(fl); 2569 refill_fl(sc, fl, 64); 2570 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { 2571 TAILQ_REMOVE(&sc->sfl, fl, link); 2572 fl->flags &= ~FL_STARVING; 2573 } 2574 FL_UNLOCK(fl); 2575 } 2576 2577 if (!TAILQ_EMPTY(&sc->sfl)) 2578 callout_schedule(&sc->sfl_callout, hz / 5); 2579 mtx_unlock(&sc->sfl_lock); 2580 } 2581 2582 static int 2583 alloc_fl_sdesc(struct sge_fl *fl) 2584 { 2585 struct fl_sdesc *sd; 2586 bus_dma_tag_t tag; 2587 int i, rc; 2588 2589 FL_LOCK_ASSERT_OWNED(fl); 2590 2591 fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE, 2592 M_ZERO | M_WAITOK); 2593 2594 tag = fl->tag[fl->tag_idx]; 2595 sd = fl->sdesc; 2596 for (i = 0; i < fl->cap; i++, sd++) { 2597 2598 sd->tag_idx = fl->tag_idx; 2599 rc = bus_dmamap_create(tag, 0, &sd->map); 2600 if (rc != 0) 2601 goto failed; 2602 } 2603 2604 return (0); 2605 failed: 2606 while (--i >= 0) { 2607 sd--; 2608 bus_dmamap_destroy(tag, sd->map); 2609 if (sd->m) { 2610 m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0); 2611 m_free(sd->m); 2612 sd->m = NULL; 2613 } 2614 } 2615 KASSERT(sd == fl->sdesc, ("%s: EDOOFUS", __func__)); 2616 2617 free(fl->sdesc, M_CXGBE); 2618 fl->sdesc = NULL; 2619 2620 return (rc); 2621 } 2622 2623 static void 2624 free_fl_sdesc(struct sge_fl *fl) 2625 { 2626 struct fl_sdesc *sd; 2627 int i; 2628 2629 FL_LOCK_ASSERT_OWNED(fl); 2630 2631 sd = fl->sdesc; 2632 for (i = 0; i < fl->cap; i++, sd++) { 2633 2634 if (sd->m) { 2635 m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0); 2636 m_free(sd->m); 2637 sd->m = NULL; 2638 } 2639 2640 if (sd->cl) { 2641 bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map); 2642 uma_zfree(FL_BUF_ZONE(sd->tag_idx), sd->cl); 2643 sd->cl = NULL; 2644 } 2645 2646 bus_dmamap_destroy(fl->tag[sd->tag_idx], sd->map); 2647 } 2648 2649 free(fl->sdesc, M_CXGBE); 2650 fl->sdesc = NULL; 2651 } 2652 2653 int 2654 t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count, 2655 int flags) 2656 { 2657 struct tx_map *txm; 2658 int i, rc; 2659 2660 txmaps->map_total = txmaps->map_avail = count; 2661 txmaps->map_cidx = txmaps->map_pidx = 0; 2662 2663 txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE, 2664 M_ZERO | flags); 2665 2666 txm = txmaps->maps; 2667 for (i = 0; i < count; i++, txm++) { 2668 rc = bus_dmamap_create(tx_tag, 0, &txm->map); 2669 if (rc != 0) 2670 goto failed; 2671 } 2672 2673 return (0); 2674 failed: 2675 while (--i >= 0) { 2676 txm--; 2677 bus_dmamap_destroy(tx_tag, txm->map); 2678 } 2679 KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__)); 2680 2681 free(txmaps->maps, M_CXGBE); 2682 txmaps->maps = NULL; 2683 2684 return (rc); 2685 } 2686 2687 void 2688 t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag) 2689 { 2690 struct tx_map *txm; 2691 int i; 2692 2693 txm = txmaps->maps; 2694 for (i = 0; i < txmaps->map_total; i++, txm++) { 2695 2696 if (txm->m) { 2697 bus_dmamap_unload(tx_tag, txm->map); 2698 m_freem(txm->m); 2699 txm->m = NULL; 2700 } 2701 2702 bus_dmamap_destroy(tx_tag, txm->map); 2703 } 2704 2705 free(txmaps->maps, M_CXGBE); 2706 txmaps->maps = NULL; 2707 } 2708 2709 /* 2710 * We'll do immediate data tx for non-TSO, but only when not coalescing. We're 2711 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes 2712 * of immediate data. 2713 */ 2714 #define IMM_LEN ( \ 2715 2 * EQ_ESIZE \ 2716 - sizeof(struct fw_eth_tx_pkt_wr) \ 2717 - sizeof(struct cpl_tx_pkt_core)) 2718 2719 /* 2720 * Returns non-zero on failure, no need to cleanup anything in that case. 2721 * 2722 * Note 1: We always try to defrag the mbuf if required and return EFBIG only 2723 * if the resulting chain still won't fit in a tx descriptor. 2724 * 2725 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf 2726 * does not have the TCP header in it. 2727 */ 2728 static int 2729 get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl, 2730 int sgl_only) 2731 { 2732 struct mbuf *m = *fp; 2733 struct tx_maps *txmaps; 2734 struct tx_map *txm; 2735 int rc, defragged = 0, n; 2736 2737 TXQ_LOCK_ASSERT_OWNED(txq); 2738 2739 if (m->m_pkthdr.tso_segsz) 2740 sgl_only = 1; /* Do not allow immediate data with LSO */ 2741 2742 start: sgl->nsegs = 0; 2743 2744 if (m->m_pkthdr.len <= IMM_LEN && !sgl_only) 2745 return (0); /* nsegs = 0 tells caller to use imm. tx */ 2746 2747 txmaps = &txq->txmaps; 2748 if (txmaps->map_avail == 0) { 2749 txq->no_dmamap++; 2750 return (ENOMEM); 2751 } 2752 txm = &txmaps->maps[txmaps->map_pidx]; 2753 2754 if (m->m_pkthdr.tso_segsz && m->m_len < 50) { 2755 *fp = m_pullup(m, 50); 2756 m = *fp; 2757 if (m == NULL) 2758 return (ENOBUFS); 2759 } 2760 2761 rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg, 2762 &sgl->nsegs, BUS_DMA_NOWAIT); 2763 if (rc == EFBIG && defragged == 0) { 2764 m = m_defrag(m, M_NOWAIT); 2765 if (m == NULL) 2766 return (EFBIG); 2767 2768 defragged = 1; 2769 *fp = m; 2770 goto start; 2771 } 2772 if (rc != 0) 2773 return (rc); 2774 2775 txm->m = m; 2776 txmaps->map_avail--; 2777 if (++txmaps->map_pidx == txmaps->map_total) 2778 txmaps->map_pidx = 0; 2779 2780 KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS, 2781 ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs)); 2782 2783 /* 2784 * Store the # of flits required to hold this frame's SGL in nflits. An 2785 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by 2786 * multiple (len0 + len1, addr0, addr1) tuples. If addr1 is not used 2787 * then len1 must be set to 0. 2788 */ 2789 n = sgl->nsegs - 1; 2790 sgl->nflits = (3 * n) / 2 + (n & 1) + 2; 2791 2792 return (0); 2793 } 2794 2795 2796 /* 2797 * Releases all the txq resources used up in the specified sgl. 2798 */ 2799 static int 2800 free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl) 2801 { 2802 struct tx_maps *txmaps; 2803 struct tx_map *txm; 2804 2805 TXQ_LOCK_ASSERT_OWNED(txq); 2806 2807 if (sgl->nsegs == 0) 2808 return (0); /* didn't use any map */ 2809 2810 txmaps = &txq->txmaps; 2811 2812 /* 1 pkt uses exactly 1 map, back it out */ 2813 2814 txmaps->map_avail++; 2815 if (txmaps->map_pidx > 0) 2816 txmaps->map_pidx--; 2817 else 2818 txmaps->map_pidx = txmaps->map_total - 1; 2819 2820 txm = &txmaps->maps[txmaps->map_pidx]; 2821 bus_dmamap_unload(txq->tx_tag, txm->map); 2822 txm->m = NULL; 2823 2824 return (0); 2825 } 2826 2827 static int 2828 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m, 2829 struct sgl *sgl) 2830 { 2831 struct sge_eq *eq = &txq->eq; 2832 struct fw_eth_tx_pkt_wr *wr; 2833 struct cpl_tx_pkt_core *cpl; 2834 uint32_t ctrl; /* used in many unrelated places */ 2835 uint64_t ctrl1; 2836 int nflits, ndesc, pktlen; 2837 struct tx_sdesc *txsd; 2838 caddr_t dst; 2839 2840 TXQ_LOCK_ASSERT_OWNED(txq); 2841 2842 pktlen = m->m_pkthdr.len; 2843 2844 /* 2845 * Do we have enough flits to send this frame out? 2846 */ 2847 ctrl = sizeof(struct cpl_tx_pkt_core); 2848 if (m->m_pkthdr.tso_segsz) { 2849 nflits = TXPKT_LSO_WR_HDR; 2850 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 2851 } else 2852 nflits = TXPKT_WR_HDR; 2853 if (sgl->nsegs > 0) 2854 nflits += sgl->nflits; 2855 else { 2856 nflits += howmany(pktlen, 8); 2857 ctrl += pktlen; 2858 } 2859 ndesc = howmany(nflits, 8); 2860 if (ndesc > eq->avail) 2861 return (ENOMEM); 2862 2863 /* Firmware work request header */ 2864 wr = (void *)&eq->desc[eq->pidx]; 2865 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | 2866 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 2867 ctrl = V_FW_WR_LEN16(howmany(nflits, 2)); 2868 if (eq->avail == ndesc) { 2869 if (!(eq->flags & EQ_CRFLUSHED)) { 2870 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ; 2871 eq->flags |= EQ_CRFLUSHED; 2872 } 2873 eq->flags |= EQ_STALLED; 2874 } 2875 2876 wr->equiq_to_len16 = htobe32(ctrl); 2877 wr->r3 = 0; 2878 2879 if (m->m_pkthdr.tso_segsz) { 2880 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 2881 struct ether_header *eh; 2882 void *l3hdr; 2883 #if defined(INET) || defined(INET6) 2884 struct tcphdr *tcp; 2885 #endif 2886 uint16_t eh_type; 2887 2888 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 2889 F_LSO_LAST_SLICE; 2890 2891 eh = mtod(m, struct ether_header *); 2892 eh_type = ntohs(eh->ether_type); 2893 if (eh_type == ETHERTYPE_VLAN) { 2894 struct ether_vlan_header *evh = (void *)eh; 2895 2896 ctrl |= V_LSO_ETHHDR_LEN(1); 2897 l3hdr = evh + 1; 2898 eh_type = ntohs(evh->evl_proto); 2899 } else 2900 l3hdr = eh + 1; 2901 2902 switch (eh_type) { 2903 #ifdef INET6 2904 case ETHERTYPE_IPV6: 2905 { 2906 struct ip6_hdr *ip6 = l3hdr; 2907 2908 /* 2909 * XXX-BZ For now we do not pretend to support 2910 * IPv6 extension headers. 2911 */ 2912 KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO " 2913 "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt)); 2914 tcp = (struct tcphdr *)(ip6 + 1); 2915 ctrl |= F_LSO_IPV6; 2916 ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) | 2917 V_LSO_TCPHDR_LEN(tcp->th_off); 2918 break; 2919 } 2920 #endif 2921 #ifdef INET 2922 case ETHERTYPE_IP: 2923 { 2924 struct ip *ip = l3hdr; 2925 2926 tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4); 2927 ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) | 2928 V_LSO_TCPHDR_LEN(tcp->th_off); 2929 break; 2930 } 2931 #endif 2932 default: 2933 panic("%s: CSUM_TSO but no supported IP version " 2934 "(0x%04x)", __func__, eh_type); 2935 } 2936 2937 lso->lso_ctrl = htobe32(ctrl); 2938 lso->ipid_ofst = htobe16(0); 2939 lso->mss = htobe16(m->m_pkthdr.tso_segsz); 2940 lso->seqno_offset = htobe32(0); 2941 lso->len = htobe32(pktlen); 2942 2943 cpl = (void *)(lso + 1); 2944 2945 txq->tso_wrs++; 2946 } else 2947 cpl = (void *)(wr + 1); 2948 2949 /* Checksum offload */ 2950 ctrl1 = 0; 2951 if (!(m->m_pkthdr.csum_flags & CSUM_IP)) 2952 ctrl1 |= F_TXPKT_IPCSUM_DIS; 2953 if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | 2954 CSUM_TCP_IPV6))) 2955 ctrl1 |= F_TXPKT_L4CSUM_DIS; 2956 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 2957 CSUM_UDP_IPV6 | CSUM_TCP_IPV6)) 2958 txq->txcsum++; /* some hardware assistance provided */ 2959 2960 /* VLAN tag insertion */ 2961 if (m->m_flags & M_VLANTAG) { 2962 ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); 2963 txq->vlan_insertion++; 2964 } 2965 2966 /* CPL header */ 2967 cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 2968 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf)); 2969 cpl->pack = 0; 2970 cpl->len = htobe16(pktlen); 2971 cpl->ctrl1 = htobe64(ctrl1); 2972 2973 /* Software descriptor */ 2974 txsd = &txq->sdesc[eq->pidx]; 2975 txsd->desc_used = ndesc; 2976 2977 eq->pending += ndesc; 2978 eq->avail -= ndesc; 2979 eq->pidx += ndesc; 2980 if (eq->pidx >= eq->cap) 2981 eq->pidx -= eq->cap; 2982 2983 /* SGL */ 2984 dst = (void *)(cpl + 1); 2985 if (sgl->nsegs > 0) { 2986 txsd->credits = 1; 2987 txq->sgl_wrs++; 2988 write_sgl_to_txd(eq, sgl, &dst); 2989 } else { 2990 txsd->credits = 0; 2991 txq->imm_wrs++; 2992 for (; m; m = m->m_next) { 2993 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); 2994 #ifdef INVARIANTS 2995 pktlen -= m->m_len; 2996 #endif 2997 } 2998 #ifdef INVARIANTS 2999 KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen)); 3000 #endif 3001 3002 } 3003 3004 txq->txpkt_wrs++; 3005 return (0); 3006 } 3007 3008 /* 3009 * Returns 0 to indicate that m has been accepted into a coalesced tx work 3010 * request. It has either been folded into txpkts or txpkts was flushed and m 3011 * has started a new coalesced work request (as the first frame in a fresh 3012 * txpkts). 3013 * 3014 * Returns non-zero to indicate a failure - caller is responsible for 3015 * transmitting m, if there was anything in txpkts it has been flushed. 3016 */ 3017 static int 3018 add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts, 3019 struct mbuf *m, struct sgl *sgl) 3020 { 3021 struct sge_eq *eq = &txq->eq; 3022 int can_coalesce; 3023 struct tx_sdesc *txsd; 3024 int flits; 3025 3026 TXQ_LOCK_ASSERT_OWNED(txq); 3027 3028 KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__)); 3029 3030 if (txpkts->npkt > 0) { 3031 flits = TXPKTS_PKT_HDR + sgl->nflits; 3032 can_coalesce = m->m_pkthdr.tso_segsz == 0 && 3033 txpkts->nflits + flits <= TX_WR_FLITS && 3034 txpkts->nflits + flits <= eq->avail * 8 && 3035 txpkts->plen + m->m_pkthdr.len < 65536; 3036 3037 if (can_coalesce) { 3038 txpkts->npkt++; 3039 txpkts->nflits += flits; 3040 txpkts->plen += m->m_pkthdr.len; 3041 3042 txsd = &txq->sdesc[eq->pidx]; 3043 txsd->credits++; 3044 3045 return (0); 3046 } 3047 3048 /* 3049 * Couldn't coalesce m into txpkts. The first order of business 3050 * is to send txpkts on its way. Then we'll revisit m. 3051 */ 3052 write_txpkts_wr(txq, txpkts); 3053 } 3054 3055 /* 3056 * Check if we can start a new coalesced tx work request with m as 3057 * the first packet in it. 3058 */ 3059 3060 KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__)); 3061 3062 flits = TXPKTS_WR_HDR + sgl->nflits; 3063 can_coalesce = m->m_pkthdr.tso_segsz == 0 && 3064 flits <= eq->avail * 8 && flits <= TX_WR_FLITS; 3065 3066 if (can_coalesce == 0) 3067 return (EINVAL); 3068 3069 /* 3070 * Start a fresh coalesced tx WR with m as the first frame in it. 3071 */ 3072 txpkts->npkt = 1; 3073 txpkts->nflits = flits; 3074 txpkts->flitp = &eq->desc[eq->pidx].flit[2]; 3075 txpkts->plen = m->m_pkthdr.len; 3076 3077 txsd = &txq->sdesc[eq->pidx]; 3078 txsd->credits = 1; 3079 3080 return (0); 3081 } 3082 3083 /* 3084 * Note that write_txpkts_wr can never run out of hardware descriptors (but 3085 * write_txpkt_wr can). add_to_txpkts ensures that a frame is accepted for 3086 * coalescing only if sufficient hardware descriptors are available. 3087 */ 3088 static void 3089 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts) 3090 { 3091 struct sge_eq *eq = &txq->eq; 3092 struct fw_eth_tx_pkts_wr *wr; 3093 struct tx_sdesc *txsd; 3094 uint32_t ctrl; 3095 int ndesc; 3096 3097 TXQ_LOCK_ASSERT_OWNED(txq); 3098 3099 ndesc = howmany(txpkts->nflits, 8); 3100 3101 wr = (void *)&eq->desc[eq->pidx]; 3102 wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)); 3103 ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2)); 3104 if (eq->avail == ndesc) { 3105 if (!(eq->flags & EQ_CRFLUSHED)) { 3106 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ; 3107 eq->flags |= EQ_CRFLUSHED; 3108 } 3109 eq->flags |= EQ_STALLED; 3110 } 3111 wr->equiq_to_len16 = htobe32(ctrl); 3112 wr->plen = htobe16(txpkts->plen); 3113 wr->npkt = txpkts->npkt; 3114 wr->r3 = wr->type = 0; 3115 3116 /* Everything else already written */ 3117 3118 txsd = &txq->sdesc[eq->pidx]; 3119 txsd->desc_used = ndesc; 3120 3121 KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__)); 3122 3123 eq->pending += ndesc; 3124 eq->avail -= ndesc; 3125 eq->pidx += ndesc; 3126 if (eq->pidx >= eq->cap) 3127 eq->pidx -= eq->cap; 3128 3129 txq->txpkts_pkts += txpkts->npkt; 3130 txq->txpkts_wrs++; 3131 txpkts->npkt = 0; /* emptied */ 3132 } 3133 3134 static inline void 3135 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq, 3136 struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl) 3137 { 3138 struct ulp_txpkt *ulpmc; 3139 struct ulptx_idata *ulpsc; 3140 struct cpl_tx_pkt_core *cpl; 3141 struct sge_eq *eq = &txq->eq; 3142 uintptr_t flitp, start, end; 3143 uint64_t ctrl; 3144 caddr_t dst; 3145 3146 KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__)); 3147 3148 start = (uintptr_t)eq->desc; 3149 end = (uintptr_t)eq->spg; 3150 3151 /* Checksum offload */ 3152 ctrl = 0; 3153 if (!(m->m_pkthdr.csum_flags & CSUM_IP)) 3154 ctrl |= F_TXPKT_IPCSUM_DIS; 3155 if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))) 3156 ctrl |= F_TXPKT_L4CSUM_DIS; 3157 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP)) 3158 txq->txcsum++; /* some hardware assistance provided */ 3159 3160 /* VLAN tag insertion */ 3161 if (m->m_flags & M_VLANTAG) { 3162 ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); 3163 txq->vlan_insertion++; 3164 } 3165 3166 /* 3167 * The previous packet's SGL must have ended at a 16 byte boundary (this 3168 * is required by the firmware/hardware). It follows that flitp cannot 3169 * wrap around between the ULPTX master command and ULPTX subcommand (8 3170 * bytes each), and that it can not wrap around in the middle of the 3171 * cpl_tx_pkt_core either. 3172 */ 3173 flitp = (uintptr_t)txpkts->flitp; 3174 KASSERT((flitp & 0xf) == 0, 3175 ("%s: last SGL did not end at 16 byte boundary: %p", 3176 __func__, txpkts->flitp)); 3177 3178 /* ULP master command */ 3179 ulpmc = (void *)flitp; 3180 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) | 3181 V_ULP_TXPKT_FID(eq->iqid)); 3182 ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) + 3183 sizeof(*cpl) + 8 * sgl->nflits, 16)); 3184 3185 /* ULP subcommand */ 3186 ulpsc = (void *)(ulpmc + 1); 3187 ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) | 3188 F_ULP_TX_SC_MORE); 3189 ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); 3190 3191 flitp += sizeof(*ulpmc) + sizeof(*ulpsc); 3192 if (flitp == end) 3193 flitp = start; 3194 3195 /* CPL_TX_PKT */ 3196 cpl = (void *)flitp; 3197 cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3198 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf)); 3199 cpl->pack = 0; 3200 cpl->len = htobe16(m->m_pkthdr.len); 3201 cpl->ctrl1 = htobe64(ctrl); 3202 3203 flitp += sizeof(*cpl); 3204 if (flitp == end) 3205 flitp = start; 3206 3207 /* SGL for this frame */ 3208 dst = (caddr_t)flitp; 3209 txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst); 3210 txpkts->flitp = (void *)dst; 3211 3212 KASSERT(((uintptr_t)dst & 0xf) == 0, 3213 ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst)); 3214 } 3215 3216 /* 3217 * If the SGL ends on an address that is not 16 byte aligned, this function will 3218 * add a 0 filled flit at the end. It returns 1 in that case. 3219 */ 3220 static int 3221 write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to) 3222 { 3223 __be64 *flitp, *end; 3224 struct ulptx_sgl *usgl; 3225 bus_dma_segment_t *seg; 3226 int i, padded; 3227 3228 KASSERT(sgl->nsegs > 0 && sgl->nflits > 0, 3229 ("%s: bad SGL - nsegs=%d, nflits=%d", 3230 __func__, sgl->nsegs, sgl->nflits)); 3231 3232 KASSERT(((uintptr_t)(*to) & 0xf) == 0, 3233 ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); 3234 3235 flitp = (__be64 *)(*to); 3236 end = flitp + sgl->nflits; 3237 seg = &sgl->seg[0]; 3238 usgl = (void *)flitp; 3239 3240 /* 3241 * We start at a 16 byte boundary somewhere inside the tx descriptor 3242 * ring, so we're at least 16 bytes away from the status page. There is 3243 * no chance of a wrap around in the middle of usgl (which is 16 bytes). 3244 */ 3245 3246 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 3247 V_ULPTX_NSGE(sgl->nsegs)); 3248 usgl->len0 = htobe32(seg->ds_len); 3249 usgl->addr0 = htobe64(seg->ds_addr); 3250 seg++; 3251 3252 if ((uintptr_t)end <= (uintptr_t)eq->spg) { 3253 3254 /* Won't wrap around at all */ 3255 3256 for (i = 0; i < sgl->nsegs - 1; i++, seg++) { 3257 usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len); 3258 usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr); 3259 } 3260 if (i & 1) 3261 usgl->sge[i / 2].len[1] = htobe32(0); 3262 } else { 3263 3264 /* Will wrap somewhere in the rest of the SGL */ 3265 3266 /* 2 flits already written, write the rest flit by flit */ 3267 flitp = (void *)(usgl + 1); 3268 for (i = 0; i < sgl->nflits - 2; i++) { 3269 if ((uintptr_t)flitp == (uintptr_t)eq->spg) 3270 flitp = (void *)eq->desc; 3271 *flitp++ = get_flit(seg, sgl->nsegs - 1, i); 3272 } 3273 end = flitp; 3274 } 3275 3276 if ((uintptr_t)end & 0xf) { 3277 *(uint64_t *)end = 0; 3278 end++; 3279 padded = 1; 3280 } else 3281 padded = 0; 3282 3283 if ((uintptr_t)end == (uintptr_t)eq->spg) 3284 *to = (void *)eq->desc; 3285 else 3286 *to = (void *)end; 3287 3288 return (padded); 3289 } 3290 3291 static inline void 3292 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) 3293 { 3294 if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) { 3295 bcopy(from, *to, len); 3296 (*to) += len; 3297 } else { 3298 int portion = (uintptr_t)eq->spg - (uintptr_t)(*to); 3299 3300 bcopy(from, *to, portion); 3301 from += portion; 3302 portion = len - portion; /* remaining */ 3303 bcopy(from, (void *)eq->desc, portion); 3304 (*to) = (caddr_t)eq->desc + portion; 3305 } 3306 } 3307 3308 static inline void 3309 ring_eq_db(struct adapter *sc, struct sge_eq *eq) 3310 { 3311 wmb(); 3312 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), 3313 V_QID(eq->cntxt_id) | V_PIDX(eq->pending)); 3314 eq->pending = 0; 3315 } 3316 3317 static inline int 3318 reclaimable(struct sge_eq *eq) 3319 { 3320 unsigned int cidx; 3321 3322 cidx = eq->spg->cidx; /* stable snapshot */ 3323 cidx = be16toh(cidx); 3324 3325 if (cidx >= eq->cidx) 3326 return (cidx - eq->cidx); 3327 else 3328 return (cidx + eq->cap - eq->cidx); 3329 } 3330 3331 /* 3332 * There are "can_reclaim" tx descriptors ready to be reclaimed. Reclaim as 3333 * many as possible but stop when there are around "n" mbufs to free. 3334 * 3335 * The actual number reclaimed is provided as the return value. 3336 */ 3337 static int 3338 reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n) 3339 { 3340 struct tx_sdesc *txsd; 3341 struct tx_maps *txmaps; 3342 struct tx_map *txm; 3343 unsigned int reclaimed, maps; 3344 struct sge_eq *eq = &txq->eq; 3345 3346 TXQ_LOCK_ASSERT_OWNED(txq); 3347 3348 if (can_reclaim == 0) 3349 can_reclaim = reclaimable(eq); 3350 3351 maps = reclaimed = 0; 3352 while (can_reclaim && maps < n) { 3353 int ndesc; 3354 3355 txsd = &txq->sdesc[eq->cidx]; 3356 ndesc = txsd->desc_used; 3357 3358 /* Firmware doesn't return "partial" credits. */ 3359 KASSERT(can_reclaim >= ndesc, 3360 ("%s: unexpected number of credits: %d, %d", 3361 __func__, can_reclaim, ndesc)); 3362 3363 maps += txsd->credits; 3364 3365 reclaimed += ndesc; 3366 can_reclaim -= ndesc; 3367 3368 eq->cidx += ndesc; 3369 if (__predict_false(eq->cidx >= eq->cap)) 3370 eq->cidx -= eq->cap; 3371 } 3372 3373 txmaps = &txq->txmaps; 3374 txm = &txmaps->maps[txmaps->map_cidx]; 3375 if (maps) 3376 prefetch(txm->m); 3377 3378 eq->avail += reclaimed; 3379 KASSERT(eq->avail < eq->cap, /* avail tops out at (cap - 1) */ 3380 ("%s: too many descriptors available", __func__)); 3381 3382 txmaps->map_avail += maps; 3383 KASSERT(txmaps->map_avail <= txmaps->map_total, 3384 ("%s: too many maps available", __func__)); 3385 3386 while (maps--) { 3387 struct tx_map *next; 3388 3389 next = txm + 1; 3390 if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total)) 3391 next = txmaps->maps; 3392 prefetch(next->m); 3393 3394 bus_dmamap_unload(txq->tx_tag, txm->map); 3395 m_freem(txm->m); 3396 txm->m = NULL; 3397 3398 txm = next; 3399 if (__predict_false(++txmaps->map_cidx == txmaps->map_total)) 3400 txmaps->map_cidx = 0; 3401 } 3402 3403 return (reclaimed); 3404 } 3405 3406 static void 3407 write_eqflush_wr(struct sge_eq *eq) 3408 { 3409 struct fw_eq_flush_wr *wr; 3410 3411 EQ_LOCK_ASSERT_OWNED(eq); 3412 KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__)); 3413 KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__)); 3414 3415 wr = (void *)&eq->desc[eq->pidx]; 3416 bzero(wr, sizeof(*wr)); 3417 wr->opcode = FW_EQ_FLUSH_WR; 3418 wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) | 3419 F_FW_WR_EQUEQ | F_FW_WR_EQUIQ); 3420 3421 eq->flags |= (EQ_CRFLUSHED | EQ_STALLED); 3422 eq->pending++; 3423 eq->avail--; 3424 if (++eq->pidx == eq->cap) 3425 eq->pidx = 0; 3426 } 3427 3428 static __be64 3429 get_flit(bus_dma_segment_t *sgl, int nsegs, int idx) 3430 { 3431 int i = (idx / 3) * 2; 3432 3433 switch (idx % 3) { 3434 case 0: { 3435 __be64 rc; 3436 3437 rc = htobe32(sgl[i].ds_len); 3438 if (i + 1 < nsegs) 3439 rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32; 3440 3441 return (rc); 3442 } 3443 case 1: 3444 return htobe64(sgl[i].ds_addr); 3445 case 2: 3446 return htobe64(sgl[i + 1].ds_addr); 3447 } 3448 3449 return (0); 3450 } 3451 3452 static void 3453 set_fl_tag_idx(struct sge_fl *fl, int bufsize) 3454 { 3455 int i; 3456 3457 for (i = 0; i < FL_BUF_SIZES - 1; i++) { 3458 if (FL_BUF_SIZE(i) >= bufsize) 3459 break; 3460 } 3461 3462 fl->tag_idx = i; 3463 } 3464 3465 static void 3466 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) 3467 { 3468 mtx_lock(&sc->sfl_lock); 3469 FL_LOCK(fl); 3470 if ((fl->flags & FL_DOOMED) == 0) { 3471 fl->flags |= FL_STARVING; 3472 TAILQ_INSERT_TAIL(&sc->sfl, fl, link); 3473 callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc); 3474 } 3475 FL_UNLOCK(fl); 3476 mtx_unlock(&sc->sfl_lock); 3477 } 3478 3479 static int 3480 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, 3481 struct mbuf *m) 3482 { 3483 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); 3484 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); 3485 struct adapter *sc = iq->adapter; 3486 struct sge *s = &sc->sge; 3487 struct sge_eq *eq; 3488 3489 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 3490 rss->opcode)); 3491 3492 eq = s->eqmap[qid - s->eq_start]; 3493 EQ_LOCK(eq); 3494 KASSERT(eq->flags & EQ_CRFLUSHED, 3495 ("%s: unsolicited egress update", __func__)); 3496 eq->flags &= ~EQ_CRFLUSHED; 3497 eq->egr_update++; 3498 3499 if (__predict_false(eq->flags & EQ_DOOMED)) 3500 wakeup_one(eq); 3501 else if (eq->flags & EQ_STALLED && can_resume_tx(eq)) 3502 taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task); 3503 EQ_UNLOCK(eq); 3504 3505 return (0); 3506 } 3507 3508 static int 3509 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 3510 { 3511 struct adapter *sc = iq->adapter; 3512 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); 3513 3514 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 3515 rss->opcode)); 3516 3517 return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0])); 3518 } 3519 3520 static int 3521 sysctl_uint16(SYSCTL_HANDLER_ARGS) 3522 { 3523 uint16_t *id = arg1; 3524 int i = *id; 3525 3526 return sysctl_handle_int(oidp, &i, 0, req); 3527 } 3528