xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 9cdd5c07ad924249d620437d00458c3b6434dbe5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ratelimit.h"
36 
37 #include <sys/types.h>
38 #include <sys/eventhandler.h>
39 #include <sys/mbuf.h>
40 #include <sys/socket.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/queue.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 #include <sys/time.h>
47 #include <sys/sglist.h>
48 #include <sys/sysctl.h>
49 #include <sys/smp.h>
50 #include <sys/counter.h>
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_vlan_var.h>
55 #include <netinet/in.h>
56 #include <netinet/ip.h>
57 #include <netinet/ip6.h>
58 #include <netinet/tcp.h>
59 #include <netinet/udp.h>
60 #include <machine/in_cksum.h>
61 #include <machine/md_var.h>
62 #include <vm/vm.h>
63 #include <vm/pmap.h>
64 #ifdef DEV_NETMAP
65 #include <machine/bus.h>
66 #include <sys/selinfo.h>
67 #include <net/if_var.h>
68 #include <net/netmap.h>
69 #include <dev/netmap/netmap_kern.h>
70 #endif
71 
72 #include "common/common.h"
73 #include "common/t4_regs.h"
74 #include "common/t4_regs_values.h"
75 #include "common/t4_msg.h"
76 #include "t4_l2t.h"
77 #include "t4_mp_ring.h"
78 
79 #ifdef T4_PKT_TIMESTAMP
80 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
81 #else
82 #define RX_COPY_THRESHOLD MINCLSIZE
83 #endif
84 
85 /* Internal mbuf flags stored in PH_loc.eight[1]. */
86 #define	MC_RAW_WR		0x02
87 
88 /*
89  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
90  * 0-7 are valid values.
91  */
92 static int fl_pktshift = 0;
93 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
94     "payload DMA offset in rx buffer (bytes)");
95 
96 /*
97  * Pad ethernet payload up to this boundary.
98  * -1: driver should figure out a good value.
99  *  0: disable padding.
100  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
101  */
102 int fl_pad = -1;
103 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
104     "payload pad boundary (bytes)");
105 
106 /*
107  * Status page length.
108  * -1: driver should figure out a good value.
109  *  64 or 128 are the only other valid values.
110  */
111 static int spg_len = -1;
112 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
113     "status page size (bytes)");
114 
115 /*
116  * Congestion drops.
117  * -1: no congestion feedback (not recommended).
118  *  0: backpressure the channel instead of dropping packets right away.
119  *  1: no backpressure, drop packets for the congested queue immediately.
120  */
121 static int cong_drop = 0;
122 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
123     "Congestion control for RX queues (0 = backpressure, 1 = drop");
124 
125 /*
126  * Deliver multiple frames in the same free list buffer if they fit.
127  * -1: let the driver decide whether to enable buffer packing or not.
128  *  0: disable buffer packing.
129  *  1: enable buffer packing.
130  */
131 static int buffer_packing = -1;
132 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
133     0, "Enable buffer packing");
134 
135 /*
136  * Start next frame in a packed buffer at this boundary.
137  * -1: driver should figure out a good value.
138  * T4: driver will ignore this and use the same value as fl_pad above.
139  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
140  */
141 static int fl_pack = -1;
142 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
143     "payload pack boundary (bytes)");
144 
145 /*
146  * Allow the driver to create mbuf(s) in a cluster allocated for rx.
147  * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
148  * 1: ok to create mbuf(s) within a cluster if there is room.
149  */
150 static int allow_mbufs_in_cluster = 1;
151 SYSCTL_INT(_hw_cxgbe, OID_AUTO, allow_mbufs_in_cluster, CTLFLAG_RDTUN,
152     &allow_mbufs_in_cluster, 0,
153     "Allow driver to create mbufs within a rx cluster");
154 
155 /*
156  * Largest rx cluster size that the driver is allowed to allocate.
157  */
158 static int largest_rx_cluster = MJUM16BYTES;
159 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
160     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
161 
162 /*
163  * Size of cluster allocation that's most likely to succeed.  The driver will
164  * fall back to this size if it fails to allocate clusters larger than this.
165  */
166 static int safest_rx_cluster = PAGE_SIZE;
167 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
168     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
169 
170 #ifdef RATELIMIT
171 /*
172  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
173  * for rewriting.  -1 and 0-3 are all valid values.
174  * -1: hardware should leave the TCP timestamps alone.
175  * 0: 1ms
176  * 1: 100us
177  * 2: 10us
178  * 3: 1us
179  */
180 static int tsclk = -1;
181 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
182     "Control TCP timestamp rewriting when using pacing");
183 
184 static int eo_max_backlog = 1024 * 1024;
185 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
186     0, "Maximum backlog of ratelimited data per flow");
187 #endif
188 
189 /*
190  * The interrupt holdoff timers are multiplied by this value on T6+.
191  * 1 and 3-17 (both inclusive) are legal values.
192  */
193 static int tscale = 1;
194 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
195     "Interrupt holdoff timer scale on T6+");
196 
197 /*
198  * Number of LRO entries in the lro_ctrl structure per rx queue.
199  */
200 static int lro_entries = TCP_LRO_ENTRIES;
201 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
202     "Number of LRO entries per RX queue");
203 
204 /*
205  * This enables presorting of frames before they're fed into tcp_lro_rx.
206  */
207 static int lro_mbufs = 0;
208 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
209     "Enable presorting of LRO frames");
210 
211 struct txpkts {
212 	u_int wr_type;		/* type 0 or type 1 */
213 	u_int npkt;		/* # of packets in this work request */
214 	u_int plen;		/* total payload (sum of all packets) */
215 	u_int len16;		/* # of 16B pieces used by this work request */
216 };
217 
218 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
219 struct sgl {
220 	struct sglist sg;
221 	struct sglist_seg seg[TX_SGL_SEGS];
222 };
223 
224 static int service_iq(struct sge_iq *, int);
225 static int service_iq_fl(struct sge_iq *, int);
226 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
227 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
228 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
229 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
230 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
231     uint16_t, char *);
232 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
233     bus_addr_t *, void **);
234 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
235     void *);
236 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
237     int, int);
238 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
239 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
240     struct sge_iq *);
241 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
242     struct sysctl_oid *, struct sge_fl *);
243 static int alloc_fwq(struct adapter *);
244 static int free_fwq(struct adapter *);
245 static int alloc_ctrlq(struct adapter *, struct sge_wrq *, int,
246     struct sysctl_oid *);
247 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
248     struct sysctl_oid *);
249 static int free_rxq(struct vi_info *, struct sge_rxq *);
250 #ifdef TCP_OFFLOAD
251 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
252     struct sysctl_oid *);
253 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
254 #endif
255 #ifdef DEV_NETMAP
256 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
257     struct sysctl_oid *);
258 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
259 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
260     struct sysctl_oid *);
261 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
262 #endif
263 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
264 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
265 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
266 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
267 #endif
268 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
269 static int free_eq(struct adapter *, struct sge_eq *);
270 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
271     struct sysctl_oid *);
272 static int free_wrq(struct adapter *, struct sge_wrq *);
273 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
274     struct sysctl_oid *);
275 static int free_txq(struct vi_info *, struct sge_txq *);
276 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
277 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
278 static int refill_fl(struct adapter *, struct sge_fl *, int);
279 static void refill_sfl(void *);
280 static int alloc_fl_sdesc(struct sge_fl *);
281 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
282 static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
283 static void find_safe_refill_source(struct adapter *, struct sge_fl *);
284 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
285 
286 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
287 static inline u_int txpkt_len16(u_int, u_int);
288 static inline u_int txpkt_vm_len16(u_int, u_int);
289 static inline u_int txpkts0_len16(u_int);
290 static inline u_int txpkts1_len16(void);
291 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
292 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
293     struct mbuf *, u_int);
294 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
295     struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int);
296 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
297 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
298 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
299     struct mbuf *, const struct txpkts *, u_int);
300 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
301 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
302 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
303 static inline uint16_t read_hw_cidx(struct sge_eq *);
304 static inline u_int reclaimable_tx_desc(struct sge_eq *);
305 static inline u_int total_available_tx_desc(struct sge_eq *);
306 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
307 static void tx_reclaim(void *, int);
308 static __be64 get_flit(struct sglist_seg *, int, int);
309 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
310     struct mbuf *);
311 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
312     struct mbuf *);
313 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
314 static void wrq_tx_drain(void *, int);
315 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
316 
317 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
318 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
319 #ifdef RATELIMIT
320 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
321 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
322     struct mbuf *);
323 #endif
324 
325 static counter_u64_t extfree_refs;
326 static counter_u64_t extfree_rels;
327 
328 an_handler_t t4_an_handler;
329 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
330 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
331 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
332 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
333 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
334 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
335 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
336 
337 void
338 t4_register_an_handler(an_handler_t h)
339 {
340 	uintptr_t *loc;
341 
342 	MPASS(h == NULL || t4_an_handler == NULL);
343 
344 	loc = (uintptr_t *)&t4_an_handler;
345 	atomic_store_rel_ptr(loc, (uintptr_t)h);
346 }
347 
348 void
349 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
350 {
351 	uintptr_t *loc;
352 
353 	MPASS(type < nitems(t4_fw_msg_handler));
354 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
355 	/*
356 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
357 	 * handler dispatch table.  Reject any attempt to install a handler for
358 	 * this subtype.
359 	 */
360 	MPASS(type != FW_TYPE_RSSCPL);
361 	MPASS(type != FW6_TYPE_RSSCPL);
362 
363 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
364 	atomic_store_rel_ptr(loc, (uintptr_t)h);
365 }
366 
367 void
368 t4_register_cpl_handler(int opcode, cpl_handler_t h)
369 {
370 	uintptr_t *loc;
371 
372 	MPASS(opcode < nitems(t4_cpl_handler));
373 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
374 
375 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
376 	atomic_store_rel_ptr(loc, (uintptr_t)h);
377 }
378 
379 static int
380 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
381     struct mbuf *m)
382 {
383 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
384 	u_int tid;
385 	int cookie;
386 
387 	MPASS(m == NULL);
388 
389 	tid = GET_TID(cpl);
390 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
391 		/*
392 		 * The return code for filter-write is put in the CPL cookie so
393 		 * we have to rely on the hardware tid (is_ftid) to determine
394 		 * that this is a response to a filter.
395 		 */
396 		cookie = CPL_COOKIE_FILTER;
397 	} else {
398 		cookie = G_COOKIE(cpl->cookie);
399 	}
400 	MPASS(cookie > CPL_COOKIE_RESERVED);
401 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
402 
403 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
404 }
405 
406 static int
407 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
408     struct mbuf *m)
409 {
410 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
411 	unsigned int cookie;
412 
413 	MPASS(m == NULL);
414 
415 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
416 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
417 }
418 
419 static int
420 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
421     struct mbuf *m)
422 {
423 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
424 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
425 
426 	MPASS(m == NULL);
427 	MPASS(cookie != CPL_COOKIE_RESERVED);
428 
429 	return (act_open_rpl_handlers[cookie](iq, rss, m));
430 }
431 
432 static int
433 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
434     struct mbuf *m)
435 {
436 	struct adapter *sc = iq->adapter;
437 	u_int cookie;
438 
439 	MPASS(m == NULL);
440 	if (is_hashfilter(sc))
441 		cookie = CPL_COOKIE_HASHFILTER;
442 	else
443 		cookie = CPL_COOKIE_TOM;
444 
445 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
446 }
447 
448 static int
449 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
450 {
451 	struct adapter *sc = iq->adapter;
452 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
453 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
454 	u_int cookie;
455 
456 	MPASS(m == NULL);
457 	if (is_etid(sc, tid))
458 		cookie = CPL_COOKIE_ETHOFLD;
459 	else
460 		cookie = CPL_COOKIE_TOM;
461 
462 	return (fw4_ack_handlers[cookie](iq, rss, m));
463 }
464 
465 static void
466 t4_init_shared_cpl_handlers(void)
467 {
468 
469 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
470 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
471 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
472 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
473 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
474 }
475 
476 void
477 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
478 {
479 	uintptr_t *loc;
480 
481 	MPASS(opcode < nitems(t4_cpl_handler));
482 	MPASS(cookie > CPL_COOKIE_RESERVED);
483 	MPASS(cookie < NUM_CPL_COOKIES);
484 	MPASS(t4_cpl_handler[opcode] != NULL);
485 
486 	switch (opcode) {
487 	case CPL_SET_TCB_RPL:
488 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
489 		break;
490 	case CPL_L2T_WRITE_RPL:
491 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
492 		break;
493 	case CPL_ACT_OPEN_RPL:
494 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
495 		break;
496 	case CPL_ABORT_RPL_RSS:
497 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
498 		break;
499 	case CPL_FW4_ACK:
500 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
501 		break;
502 	default:
503 		MPASS(0);
504 		return;
505 	}
506 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
507 	atomic_store_rel_ptr(loc, (uintptr_t)h);
508 }
509 
510 /*
511  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
512  */
513 void
514 t4_sge_modload(void)
515 {
516 
517 	if (fl_pktshift < 0 || fl_pktshift > 7) {
518 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
519 		    " using 0 instead.\n", fl_pktshift);
520 		fl_pktshift = 0;
521 	}
522 
523 	if (spg_len != 64 && spg_len != 128) {
524 		int len;
525 
526 #if defined(__i386__) || defined(__amd64__)
527 		len = cpu_clflush_line_size > 64 ? 128 : 64;
528 #else
529 		len = 64;
530 #endif
531 		if (spg_len != -1) {
532 			printf("Invalid hw.cxgbe.spg_len value (%d),"
533 			    " using %d instead.\n", spg_len, len);
534 		}
535 		spg_len = len;
536 	}
537 
538 	if (cong_drop < -1 || cong_drop > 1) {
539 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
540 		    " using 0 instead.\n", cong_drop);
541 		cong_drop = 0;
542 	}
543 
544 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
545 		printf("Invalid hw.cxgbe.tscale value (%d),"
546 		    " using 1 instead.\n", tscale);
547 		tscale = 1;
548 	}
549 
550 	extfree_refs = counter_u64_alloc(M_WAITOK);
551 	extfree_rels = counter_u64_alloc(M_WAITOK);
552 	counter_u64_zero(extfree_refs);
553 	counter_u64_zero(extfree_rels);
554 
555 	t4_init_shared_cpl_handlers();
556 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
557 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
558 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
559 	t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx);
560 #ifdef RATELIMIT
561 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
562 	    CPL_COOKIE_ETHOFLD);
563 #endif
564 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
565 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
566 }
567 
568 void
569 t4_sge_modunload(void)
570 {
571 
572 	counter_u64_free(extfree_refs);
573 	counter_u64_free(extfree_rels);
574 }
575 
576 uint64_t
577 t4_sge_extfree_refs(void)
578 {
579 	uint64_t refs, rels;
580 
581 	rels = counter_u64_fetch(extfree_rels);
582 	refs = counter_u64_fetch(extfree_refs);
583 
584 	return (refs - rels);
585 }
586 
587 static inline void
588 setup_pad_and_pack_boundaries(struct adapter *sc)
589 {
590 	uint32_t v, m;
591 	int pad, pack, pad_shift;
592 
593 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
594 	    X_INGPADBOUNDARY_SHIFT;
595 	pad = fl_pad;
596 	if (fl_pad < (1 << pad_shift) ||
597 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
598 	    !powerof2(fl_pad)) {
599 		/*
600 		 * If there is any chance that we might use buffer packing and
601 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
602 		 * it to the minimum allowed in all other cases.
603 		 */
604 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
605 
606 		/*
607 		 * For fl_pad = 0 we'll still write a reasonable value to the
608 		 * register but all the freelists will opt out of padding.
609 		 * We'll complain here only if the user tried to set it to a
610 		 * value greater than 0 that was invalid.
611 		 */
612 		if (fl_pad > 0) {
613 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
614 			    " (%d), using %d instead.\n", fl_pad, pad);
615 		}
616 	}
617 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
618 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
619 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
620 
621 	if (is_t4(sc)) {
622 		if (fl_pack != -1 && fl_pack != pad) {
623 			/* Complain but carry on. */
624 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
625 			    " using %d instead.\n", fl_pack, pad);
626 		}
627 		return;
628 	}
629 
630 	pack = fl_pack;
631 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
632 	    !powerof2(fl_pack)) {
633 		pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
634 		MPASS(powerof2(pack));
635 		if (pack < 16)
636 			pack = 16;
637 		if (pack == 32)
638 			pack = 64;
639 		if (pack > 4096)
640 			pack = 4096;
641 		if (fl_pack != -1) {
642 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
643 			    " (%d), using %d instead.\n", fl_pack, pack);
644 		}
645 	}
646 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
647 	if (pack == 16)
648 		v = V_INGPACKBOUNDARY(0);
649 	else
650 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
651 
652 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
653 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
654 }
655 
656 /*
657  * adap->params.vpd.cclk must be set up before this is called.
658  */
659 void
660 t4_tweak_chip_settings(struct adapter *sc)
661 {
662 	int i;
663 	uint32_t v, m;
664 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
665 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
666 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
667 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
668 	static int sge_flbuf_sizes[] = {
669 		MCLBYTES,
670 #if MJUMPAGESIZE != MCLBYTES
671 		MJUMPAGESIZE,
672 		MJUMPAGESIZE - CL_METADATA_SIZE,
673 		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
674 #endif
675 		MJUM9BYTES,
676 		MJUM16BYTES,
677 		MCLBYTES - MSIZE - CL_METADATA_SIZE,
678 		MJUM9BYTES - CL_METADATA_SIZE,
679 		MJUM16BYTES - CL_METADATA_SIZE,
680 	};
681 
682 	KASSERT(sc->flags & MASTER_PF,
683 	    ("%s: trying to change chip settings when not master.", __func__));
684 
685 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
686 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
687 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
688 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
689 
690 	setup_pad_and_pack_boundaries(sc);
691 
692 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
693 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
694 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
695 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
696 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
697 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
698 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
699 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
700 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
701 
702 	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
703 	    ("%s: hw buffer size table too big", __func__));
704 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
705 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
706 	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
707 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE15 - (4 * i),
708 		    sge_flbuf_sizes[i]);
709 	}
710 
711 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
712 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
713 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
714 
715 	KASSERT(intr_timer[0] <= timer_max,
716 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
717 	    timer_max));
718 	for (i = 1; i < nitems(intr_timer); i++) {
719 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
720 		    ("%s: timers not listed in increasing order (%d)",
721 		    __func__, i));
722 
723 		while (intr_timer[i] > timer_max) {
724 			if (i == nitems(intr_timer) - 1) {
725 				intr_timer[i] = timer_max;
726 				break;
727 			}
728 			intr_timer[i] += intr_timer[i - 1];
729 			intr_timer[i] /= 2;
730 		}
731 	}
732 
733 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
734 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
735 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
736 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
737 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
738 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
739 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
740 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
741 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
742 
743 	if (chip_id(sc) >= CHELSIO_T6) {
744 		m = V_TSCALE(M_TSCALE);
745 		if (tscale == 1)
746 			v = 0;
747 		else
748 			v = V_TSCALE(tscale - 2);
749 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
750 
751 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
752 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
753 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
754 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
755 			v &= ~m;
756 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
757 			    V_WRTHRTHRESH(16);
758 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
759 		}
760 	}
761 
762 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
763 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
764 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
765 
766 	/*
767 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
768 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
769 	 * may have to deal with is MAXPHYS + 1 page.
770 	 */
771 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
772 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
773 
774 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
775 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
776 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
777 
778 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
779 	    F_RESETDDPOFFSET;
780 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
781 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
782 }
783 
784 /*
785  * SGE wants the buffer to be at least 64B and then a multiple of 16.  If
786  * padding is in use, the buffer's start and end need to be aligned to the pad
787  * boundary as well.  We'll just make sure that the size is a multiple of the
788  * boundary here, it is up to the buffer allocation code to make sure the start
789  * of the buffer is aligned as well.
790  */
791 static inline int
792 hwsz_ok(struct adapter *sc, int hwsz)
793 {
794 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
795 
796 	return (hwsz >= 64 && (hwsz & mask) == 0);
797 }
798 
799 /*
800  * XXX: driver really should be able to deal with unexpected settings.
801  */
802 int
803 t4_read_chip_settings(struct adapter *sc)
804 {
805 	struct sge *s = &sc->sge;
806 	struct sge_params *sp = &sc->params.sge;
807 	int i, j, n, rc = 0;
808 	uint32_t m, v, r;
809 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
810 	static int sw_buf_sizes[] = {	/* Sorted by size */
811 		MCLBYTES,
812 #if MJUMPAGESIZE != MCLBYTES
813 		MJUMPAGESIZE,
814 #endif
815 		MJUM9BYTES,
816 		MJUM16BYTES
817 	};
818 	struct sw_zone_info *swz, *safe_swz;
819 	struct hw_buf_info *hwb;
820 
821 	m = F_RXPKTCPLMODE;
822 	v = F_RXPKTCPLMODE;
823 	r = sc->params.sge.sge_control;
824 	if ((r & m) != v) {
825 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
826 		rc = EINVAL;
827 	}
828 
829 	/*
830 	 * If this changes then every single use of PAGE_SHIFT in the driver
831 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
832 	 */
833 	if (sp->page_shift != PAGE_SHIFT) {
834 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
835 		rc = EINVAL;
836 	}
837 
838 	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
839 	hwb = &s->hw_buf_info[0];
840 	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
841 		r = sc->params.sge.sge_fl_buffer_size[i];
842 		hwb->size = r;
843 		hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
844 		hwb->next = -1;
845 	}
846 
847 	/*
848 	 * Create a sorted list in decreasing order of hw buffer sizes (and so
849 	 * increasing order of spare area) for each software zone.
850 	 *
851 	 * If padding is enabled then the start and end of the buffer must align
852 	 * to the pad boundary; if packing is enabled then they must align with
853 	 * the pack boundary as well.  Allocations from the cluster zones are
854 	 * aligned to min(size, 4K), so the buffer starts at that alignment and
855 	 * ends at hwb->size alignment.  If mbuf inlining is allowed the
856 	 * starting alignment will be reduced to MSIZE and the driver will
857 	 * exercise appropriate caution when deciding on the best buffer layout
858 	 * to use.
859 	 */
860 	n = 0;	/* no usable buffer size to begin with */
861 	swz = &s->sw_zone_info[0];
862 	safe_swz = NULL;
863 	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
864 		int8_t head = -1, tail = -1;
865 
866 		swz->size = sw_buf_sizes[i];
867 		swz->zone = m_getzone(swz->size);
868 		swz->type = m_gettype(swz->size);
869 
870 		if (swz->size < PAGE_SIZE) {
871 			MPASS(powerof2(swz->size));
872 			if (fl_pad && (swz->size % sp->pad_boundary != 0))
873 				continue;
874 		}
875 
876 		if (swz->size == safest_rx_cluster)
877 			safe_swz = swz;
878 
879 		hwb = &s->hw_buf_info[0];
880 		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
881 			if (hwb->zidx != -1 || hwb->size > swz->size)
882 				continue;
883 #ifdef INVARIANTS
884 			if (fl_pad)
885 				MPASS(hwb->size % sp->pad_boundary == 0);
886 #endif
887 			hwb->zidx = i;
888 			if (head == -1)
889 				head = tail = j;
890 			else if (hwb->size < s->hw_buf_info[tail].size) {
891 				s->hw_buf_info[tail].next = j;
892 				tail = j;
893 			} else {
894 				int8_t *cur;
895 				struct hw_buf_info *t;
896 
897 				for (cur = &head; *cur != -1; cur = &t->next) {
898 					t = &s->hw_buf_info[*cur];
899 					if (hwb->size == t->size) {
900 						hwb->zidx = -2;
901 						break;
902 					}
903 					if (hwb->size > t->size) {
904 						hwb->next = *cur;
905 						*cur = j;
906 						break;
907 					}
908 				}
909 			}
910 		}
911 		swz->head_hwidx = head;
912 		swz->tail_hwidx = tail;
913 
914 		if (tail != -1) {
915 			n++;
916 			if (swz->size - s->hw_buf_info[tail].size >=
917 			    CL_METADATA_SIZE)
918 				sc->flags |= BUF_PACKING_OK;
919 		}
920 	}
921 	if (n == 0) {
922 		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
923 		rc = EINVAL;
924 	}
925 
926 	s->safe_hwidx1 = -1;
927 	s->safe_hwidx2 = -1;
928 	if (safe_swz != NULL) {
929 		s->safe_hwidx1 = safe_swz->head_hwidx;
930 		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
931 			int spare;
932 
933 			hwb = &s->hw_buf_info[i];
934 #ifdef INVARIANTS
935 			if (fl_pad)
936 				MPASS(hwb->size % sp->pad_boundary == 0);
937 #endif
938 			spare = safe_swz->size - hwb->size;
939 			if (spare >= CL_METADATA_SIZE) {
940 				s->safe_hwidx2 = i;
941 				break;
942 			}
943 		}
944 	}
945 
946 	if (sc->flags & IS_VF)
947 		return (0);
948 
949 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
950 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
951 	if (r != v) {
952 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
953 		rc = EINVAL;
954 	}
955 
956 	m = v = F_TDDPTAGTCB;
957 	r = t4_read_reg(sc, A_ULP_RX_CTL);
958 	if ((r & m) != v) {
959 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
960 		rc = EINVAL;
961 	}
962 
963 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
964 	    F_RESETDDPOFFSET;
965 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
966 	r = t4_read_reg(sc, A_TP_PARA_REG5);
967 	if ((r & m) != v) {
968 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
969 		rc = EINVAL;
970 	}
971 
972 	t4_init_tp_params(sc, 1);
973 
974 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
975 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
976 
977 	return (rc);
978 }
979 
980 int
981 t4_create_dma_tag(struct adapter *sc)
982 {
983 	int rc;
984 
985 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
986 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
987 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
988 	    NULL, &sc->dmat);
989 	if (rc != 0) {
990 		device_printf(sc->dev,
991 		    "failed to create main DMA tag: %d\n", rc);
992 	}
993 
994 	return (rc);
995 }
996 
997 void
998 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
999     struct sysctl_oid_list *children)
1000 {
1001 	struct sge_params *sp = &sc->params.sge;
1002 
1003 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
1004 	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
1005 	    "freelist buffer sizes");
1006 
1007 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
1008 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
1009 
1010 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
1011 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
1012 
1013 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
1014 	    NULL, sp->spg_len, "status page size (bytes)");
1015 
1016 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
1017 	    NULL, cong_drop, "congestion drop setting");
1018 
1019 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
1020 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1021 }
1022 
1023 int
1024 t4_destroy_dma_tag(struct adapter *sc)
1025 {
1026 	if (sc->dmat)
1027 		bus_dma_tag_destroy(sc->dmat);
1028 
1029 	return (0);
1030 }
1031 
1032 /*
1033  * Allocate and initialize the firmware event queue, control queues, and special
1034  * purpose rx queues owned by the adapter.
1035  *
1036  * Returns errno on failure.  Resources allocated up to that point may still be
1037  * allocated.  Caller is responsible for cleanup in case this function fails.
1038  */
1039 int
1040 t4_setup_adapter_queues(struct adapter *sc)
1041 {
1042 	struct sysctl_oid *oid;
1043 	struct sysctl_oid_list *children;
1044 	int rc, i;
1045 
1046 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1047 
1048 	sysctl_ctx_init(&sc->ctx);
1049 	sc->flags |= ADAP_SYSCTL_CTX;
1050 
1051 	/*
1052 	 * Firmware event queue
1053 	 */
1054 	rc = alloc_fwq(sc);
1055 	if (rc != 0)
1056 		return (rc);
1057 
1058 	/*
1059 	 * That's all for the VF driver.
1060 	 */
1061 	if (sc->flags & IS_VF)
1062 		return (rc);
1063 
1064 	oid = device_get_sysctl_tree(sc->dev);
1065 	children = SYSCTL_CHILDREN(oid);
1066 
1067 	/*
1068 	 * XXX: General purpose rx queues, one per port.
1069 	 */
1070 
1071 	/*
1072 	 * Control queues, one per port.
1073 	 */
1074 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "ctrlq",
1075 	    CTLFLAG_RD, NULL, "control queues");
1076 	for_each_port(sc, i) {
1077 		struct sge_wrq *ctrlq = &sc->sge.ctrlq[i];
1078 
1079 		rc = alloc_ctrlq(sc, ctrlq, i, oid);
1080 		if (rc != 0)
1081 			return (rc);
1082 	}
1083 
1084 	return (rc);
1085 }
1086 
1087 /*
1088  * Idempotent
1089  */
1090 int
1091 t4_teardown_adapter_queues(struct adapter *sc)
1092 {
1093 	int i;
1094 
1095 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1096 
1097 	/* Do this before freeing the queue */
1098 	if (sc->flags & ADAP_SYSCTL_CTX) {
1099 		sysctl_ctx_free(&sc->ctx);
1100 		sc->flags &= ~ADAP_SYSCTL_CTX;
1101 	}
1102 
1103 	if (!(sc->flags & IS_VF)) {
1104 		for_each_port(sc, i)
1105 			free_wrq(sc, &sc->sge.ctrlq[i]);
1106 	}
1107 	free_fwq(sc);
1108 
1109 	return (0);
1110 }
1111 
1112 /* Maximum payload that can be delivered with a single iq descriptor */
1113 static inline int
1114 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
1115 {
1116 	int payload;
1117 
1118 #ifdef TCP_OFFLOAD
1119 	if (toe) {
1120 		int rxcs = G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2));
1121 
1122 		/* Note that COP can set rx_coalesce on/off per connection. */
1123 		payload = max(mtu, rxcs);
1124 	} else {
1125 #endif
1126 		/* large enough even when hw VLAN extraction is disabled */
1127 		payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1128 		    ETHER_VLAN_ENCAP_LEN + mtu;
1129 #ifdef TCP_OFFLOAD
1130 	}
1131 #endif
1132 
1133 	return (payload);
1134 }
1135 
1136 int
1137 t4_setup_vi_queues(struct vi_info *vi)
1138 {
1139 	int rc = 0, i, intr_idx, iqidx;
1140 	struct sge_rxq *rxq;
1141 	struct sge_txq *txq;
1142 #ifdef TCP_OFFLOAD
1143 	struct sge_ofld_rxq *ofld_rxq;
1144 #endif
1145 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1146 	struct sge_wrq *ofld_txq;
1147 #endif
1148 #ifdef DEV_NETMAP
1149 	int saved_idx;
1150 	struct sge_nm_rxq *nm_rxq;
1151 	struct sge_nm_txq *nm_txq;
1152 #endif
1153 	char name[16];
1154 	struct port_info *pi = vi->pi;
1155 	struct adapter *sc = pi->adapter;
1156 	struct ifnet *ifp = vi->ifp;
1157 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
1158 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1159 	int maxp, mtu = ifp->if_mtu;
1160 
1161 	/* Interrupt vector to start from (when using multiple vectors) */
1162 	intr_idx = vi->first_intr;
1163 
1164 #ifdef DEV_NETMAP
1165 	saved_idx = intr_idx;
1166 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1167 
1168 		/* netmap is supported with direct interrupts only. */
1169 		MPASS(!forwarding_intr_to_fwq(sc));
1170 
1171 		/*
1172 		 * We don't have buffers to back the netmap rx queues
1173 		 * right now so we create the queues in a way that
1174 		 * doesn't set off any congestion signal in the chip.
1175 		 */
1176 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1177 		    CTLFLAG_RD, NULL, "rx queues");
1178 		for_each_nm_rxq(vi, i, nm_rxq) {
1179 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1180 			if (rc != 0)
1181 				goto done;
1182 			intr_idx++;
1183 		}
1184 
1185 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1186 		    CTLFLAG_RD, NULL, "tx queues");
1187 		for_each_nm_txq(vi, i, nm_txq) {
1188 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1189 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid);
1190 			if (rc != 0)
1191 				goto done;
1192 		}
1193 	}
1194 
1195 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1196 	intr_idx = saved_idx;
1197 #endif
1198 
1199 	/*
1200 	 * Allocate rx queues first because a default iqid is required when
1201 	 * creating a tx queue.
1202 	 */
1203 	maxp = mtu_to_max_payload(sc, mtu, 0);
1204 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1205 	    CTLFLAG_RD, NULL, "rx queues");
1206 	for_each_rxq(vi, i, rxq) {
1207 
1208 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1209 
1210 		snprintf(name, sizeof(name), "%s rxq%d-fl",
1211 		    device_get_nameunit(vi->dev), i);
1212 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1213 
1214 		rc = alloc_rxq(vi, rxq,
1215 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1216 		if (rc != 0)
1217 			goto done;
1218 		intr_idx++;
1219 	}
1220 #ifdef DEV_NETMAP
1221 	if (ifp->if_capabilities & IFCAP_NETMAP)
1222 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1223 #endif
1224 #ifdef TCP_OFFLOAD
1225 	maxp = mtu_to_max_payload(sc, mtu, 1);
1226 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1227 	    CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections");
1228 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1229 
1230 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
1231 		    vi->qsize_rxq);
1232 
1233 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1234 		    device_get_nameunit(vi->dev), i);
1235 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1236 
1237 		rc = alloc_ofld_rxq(vi, ofld_rxq,
1238 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1239 		if (rc != 0)
1240 			goto done;
1241 		intr_idx++;
1242 	}
1243 #endif
1244 
1245 	/*
1246 	 * Now the tx queues.
1247 	 */
1248 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1249 	    NULL, "tx queues");
1250 	for_each_txq(vi, i, txq) {
1251 		iqidx = vi->first_rxq + (i % vi->nrxq);
1252 		snprintf(name, sizeof(name), "%s txq%d",
1253 		    device_get_nameunit(vi->dev), i);
1254 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
1255 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1256 
1257 		rc = alloc_txq(vi, txq, i, oid);
1258 		if (rc != 0)
1259 			goto done;
1260 	}
1261 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1262 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1263 	    CTLFLAG_RD, NULL, "tx queues for TOE/ETHOFLD");
1264 	for_each_ofld_txq(vi, i, ofld_txq) {
1265 		struct sysctl_oid *oid2;
1266 
1267 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1268 		    device_get_nameunit(vi->dev), i);
1269 		if (vi->nofldrxq > 0) {
1270 			iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq);
1271 			init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq,
1272 			    pi->tx_chan, sc->sge.ofld_rxq[iqidx].iq.cntxt_id,
1273 			    name);
1274 		} else {
1275 			iqidx = vi->first_rxq + (i % vi->nrxq);
1276 			init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq,
1277 			    pi->tx_chan, sc->sge.rxq[iqidx].iq.cntxt_id, name);
1278 		}
1279 
1280 		snprintf(name, sizeof(name), "%d", i);
1281 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1282 		    name, CTLFLAG_RD, NULL, "offload tx queue");
1283 
1284 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1285 		if (rc != 0)
1286 			goto done;
1287 	}
1288 #endif
1289 done:
1290 	if (rc)
1291 		t4_teardown_vi_queues(vi);
1292 
1293 	return (rc);
1294 }
1295 
1296 /*
1297  * Idempotent
1298  */
1299 int
1300 t4_teardown_vi_queues(struct vi_info *vi)
1301 {
1302 	int i;
1303 	struct sge_rxq *rxq;
1304 	struct sge_txq *txq;
1305 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1306 	struct port_info *pi = vi->pi;
1307 	struct adapter *sc = pi->adapter;
1308 	struct sge_wrq *ofld_txq;
1309 #endif
1310 #ifdef TCP_OFFLOAD
1311 	struct sge_ofld_rxq *ofld_rxq;
1312 #endif
1313 #ifdef DEV_NETMAP
1314 	struct sge_nm_rxq *nm_rxq;
1315 	struct sge_nm_txq *nm_txq;
1316 #endif
1317 
1318 	/* Do this before freeing the queues */
1319 	if (vi->flags & VI_SYSCTL_CTX) {
1320 		sysctl_ctx_free(&vi->ctx);
1321 		vi->flags &= ~VI_SYSCTL_CTX;
1322 	}
1323 
1324 #ifdef DEV_NETMAP
1325 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1326 		for_each_nm_txq(vi, i, nm_txq) {
1327 			free_nm_txq(vi, nm_txq);
1328 		}
1329 
1330 		for_each_nm_rxq(vi, i, nm_rxq) {
1331 			free_nm_rxq(vi, nm_rxq);
1332 		}
1333 	}
1334 #endif
1335 
1336 	/*
1337 	 * Take down all the tx queues first, as they reference the rx queues
1338 	 * (for egress updates, etc.).
1339 	 */
1340 
1341 	for_each_txq(vi, i, txq) {
1342 		free_txq(vi, txq);
1343 	}
1344 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1345 	for_each_ofld_txq(vi, i, ofld_txq) {
1346 		free_wrq(sc, ofld_txq);
1347 	}
1348 #endif
1349 
1350 	/*
1351 	 * Then take down the rx queues.
1352 	 */
1353 
1354 	for_each_rxq(vi, i, rxq) {
1355 		free_rxq(vi, rxq);
1356 	}
1357 #ifdef TCP_OFFLOAD
1358 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1359 		free_ofld_rxq(vi, ofld_rxq);
1360 	}
1361 #endif
1362 
1363 	return (0);
1364 }
1365 
1366 /*
1367  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1368  * unusual scenario.
1369  *
1370  * a) Deals with errors, if any.
1371  * b) Services firmware event queue, which is taking interrupts for all other
1372  *    queues.
1373  */
1374 void
1375 t4_intr_all(void *arg)
1376 {
1377 	struct adapter *sc = arg;
1378 	struct sge_iq *fwq = &sc->sge.fwq;
1379 
1380 	MPASS(sc->intr_count == 1);
1381 
1382 	if (sc->intr_type == INTR_INTX)
1383 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1384 
1385 	t4_intr_err(arg);
1386 	t4_intr_evt(fwq);
1387 }
1388 
1389 /*
1390  * Interrupt handler for errors (installed directly when multiple interrupts are
1391  * being used, or called by t4_intr_all).
1392  */
1393 void
1394 t4_intr_err(void *arg)
1395 {
1396 	struct adapter *sc = arg;
1397 	uint32_t v;
1398 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1399 
1400 	if (sc->flags & ADAP_ERR)
1401 		return;
1402 
1403 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1404 	if (v & F_PFSW) {
1405 		sc->swintr++;
1406 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1407 	}
1408 
1409 	t4_slow_intr_handler(sc, verbose);
1410 }
1411 
1412 /*
1413  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1414  * such queue right now.
1415  */
1416 void
1417 t4_intr_evt(void *arg)
1418 {
1419 	struct sge_iq *iq = arg;
1420 
1421 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1422 		service_iq(iq, 0);
1423 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1424 	}
1425 }
1426 
1427 /*
1428  * Interrupt handler for iq+fl queues.
1429  */
1430 void
1431 t4_intr(void *arg)
1432 {
1433 	struct sge_iq *iq = arg;
1434 
1435 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1436 		service_iq_fl(iq, 0);
1437 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1438 	}
1439 }
1440 
1441 #ifdef DEV_NETMAP
1442 /*
1443  * Interrupt handler for netmap rx queues.
1444  */
1445 void
1446 t4_nm_intr(void *arg)
1447 {
1448 	struct sge_nm_rxq *nm_rxq = arg;
1449 
1450 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1451 		service_nm_rxq(nm_rxq);
1452 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1453 	}
1454 }
1455 
1456 /*
1457  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1458  */
1459 void
1460 t4_vi_intr(void *arg)
1461 {
1462 	struct irq *irq = arg;
1463 
1464 	MPASS(irq->nm_rxq != NULL);
1465 	t4_nm_intr(irq->nm_rxq);
1466 
1467 	MPASS(irq->rxq != NULL);
1468 	t4_intr(irq->rxq);
1469 }
1470 #endif
1471 
1472 /*
1473  * Deals with interrupts on an iq-only (no freelist) queue.
1474  */
1475 static int
1476 service_iq(struct sge_iq *iq, int budget)
1477 {
1478 	struct sge_iq *q;
1479 	struct adapter *sc = iq->adapter;
1480 	struct iq_desc *d = &iq->desc[iq->cidx];
1481 	int ndescs = 0, limit;
1482 	int rsp_type;
1483 	uint32_t lq;
1484 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1485 
1486 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1487 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1488 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1489 	    iq->flags));
1490 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1491 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1492 
1493 	limit = budget ? budget : iq->qsize / 16;
1494 
1495 	/*
1496 	 * We always come back and check the descriptor ring for new indirect
1497 	 * interrupts and other responses after running a single handler.
1498 	 */
1499 	for (;;) {
1500 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1501 
1502 			rmb();
1503 
1504 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1505 			lq = be32toh(d->rsp.pldbuflen_qid);
1506 
1507 			switch (rsp_type) {
1508 			case X_RSPD_TYPE_FLBUF:
1509 				panic("%s: data for an iq (%p) with no freelist",
1510 				    __func__, iq);
1511 
1512 				/* NOTREACHED */
1513 
1514 			case X_RSPD_TYPE_CPL:
1515 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1516 				    ("%s: bad opcode %02x.", __func__,
1517 				    d->rss.opcode));
1518 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1519 				break;
1520 
1521 			case X_RSPD_TYPE_INTR:
1522 				/*
1523 				 * There are 1K interrupt-capable queues (qids 0
1524 				 * through 1023).  A response type indicating a
1525 				 * forwarded interrupt with a qid >= 1K is an
1526 				 * iWARP async notification.
1527 				 */
1528 				if (__predict_true(lq >= 1024)) {
1529 					t4_an_handler(iq, &d->rsp);
1530 					break;
1531 				}
1532 
1533 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1534 				    sc->sge.iq_base];
1535 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1536 				    IQS_BUSY)) {
1537 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1538 						(void) atomic_cmpset_int(&q->state,
1539 						    IQS_BUSY, IQS_IDLE);
1540 					} else {
1541 						STAILQ_INSERT_TAIL(&iql, q,
1542 						    link);
1543 					}
1544 				}
1545 				break;
1546 
1547 			default:
1548 				KASSERT(0,
1549 				    ("%s: illegal response type %d on iq %p",
1550 				    __func__, rsp_type, iq));
1551 				log(LOG_ERR,
1552 				    "%s: illegal response type %d on iq %p",
1553 				    device_get_nameunit(sc->dev), rsp_type, iq);
1554 				break;
1555 			}
1556 
1557 			d++;
1558 			if (__predict_false(++iq->cidx == iq->sidx)) {
1559 				iq->cidx = 0;
1560 				iq->gen ^= F_RSPD_GEN;
1561 				d = &iq->desc[0];
1562 			}
1563 			if (__predict_false(++ndescs == limit)) {
1564 				t4_write_reg(sc, sc->sge_gts_reg,
1565 				    V_CIDXINC(ndescs) |
1566 				    V_INGRESSQID(iq->cntxt_id) |
1567 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1568 				ndescs = 0;
1569 
1570 				if (budget) {
1571 					return (EINPROGRESS);
1572 				}
1573 			}
1574 		}
1575 
1576 		if (STAILQ_EMPTY(&iql))
1577 			break;
1578 
1579 		/*
1580 		 * Process the head only, and send it to the back of the list if
1581 		 * it's still not done.
1582 		 */
1583 		q = STAILQ_FIRST(&iql);
1584 		STAILQ_REMOVE_HEAD(&iql, link);
1585 		if (service_iq_fl(q, q->qsize / 8) == 0)
1586 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1587 		else
1588 			STAILQ_INSERT_TAIL(&iql, q, link);
1589 	}
1590 
1591 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1592 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1593 
1594 	return (0);
1595 }
1596 
1597 static inline int
1598 sort_before_lro(struct lro_ctrl *lro)
1599 {
1600 
1601 	return (lro->lro_mbuf_max != 0);
1602 }
1603 
1604 static inline uint64_t
1605 last_flit_to_ns(struct adapter *sc, uint64_t lf)
1606 {
1607 	uint64_t n = be64toh(lf) & 0xfffffffffffffff;	/* 60b, not 64b. */
1608 
1609 	if (n > UINT64_MAX / 1000000)
1610 		return (n / sc->params.vpd.cclk * 1000000);
1611 	else
1612 		return (n * 1000000 / sc->params.vpd.cclk);
1613 }
1614 
1615 /*
1616  * Deals with interrupts on an iq+fl queue.
1617  */
1618 static int
1619 service_iq_fl(struct sge_iq *iq, int budget)
1620 {
1621 	struct sge_rxq *rxq = iq_to_rxq(iq);
1622 	struct sge_fl *fl;
1623 	struct adapter *sc = iq->adapter;
1624 	struct iq_desc *d = &iq->desc[iq->cidx];
1625 	int ndescs = 0, limit;
1626 	int rsp_type, refill, starved;
1627 	uint32_t lq;
1628 	uint16_t fl_hw_cidx;
1629 	struct mbuf *m0;
1630 #if defined(INET) || defined(INET6)
1631 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1632 	struct lro_ctrl *lro = &rxq->lro;
1633 #endif
1634 
1635 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1636 	MPASS(iq->flags & IQ_HAS_FL);
1637 
1638 	limit = budget ? budget : iq->qsize / 16;
1639 	fl = &rxq->fl;
1640 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1641 
1642 #if defined(INET) || defined(INET6)
1643 	if (iq->flags & IQ_ADJ_CREDIT) {
1644 		MPASS(sort_before_lro(lro));
1645 		iq->flags &= ~IQ_ADJ_CREDIT;
1646 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1647 			tcp_lro_flush_all(lro);
1648 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1649 			    V_INGRESSQID((u32)iq->cntxt_id) |
1650 			    V_SEINTARM(iq->intr_params));
1651 			return (0);
1652 		}
1653 		ndescs = 1;
1654 	}
1655 #else
1656 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1657 #endif
1658 
1659 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1660 
1661 		rmb();
1662 
1663 		refill = 0;
1664 		m0 = NULL;
1665 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1666 		lq = be32toh(d->rsp.pldbuflen_qid);
1667 
1668 		switch (rsp_type) {
1669 		case X_RSPD_TYPE_FLBUF:
1670 
1671 			m0 = get_fl_payload(sc, fl, lq);
1672 			if (__predict_false(m0 == NULL))
1673 				goto out;
1674 			refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1675 
1676 			if (iq->flags & IQ_RX_TIMESTAMP) {
1677 				/*
1678 				 * Fill up rcv_tstmp but do not set M_TSTMP.
1679 				 * rcv_tstmp is not in the format that the
1680 				 * kernel expects and we don't want to mislead
1681 				 * it.  For now this is only for custom code
1682 				 * that knows how to interpret cxgbe's stamp.
1683 				 */
1684 				m0->m_pkthdr.rcv_tstmp =
1685 				    last_flit_to_ns(sc, d->rsp.u.last_flit);
1686 #ifdef notyet
1687 				m0->m_flags |= M_TSTMP;
1688 #endif
1689 			}
1690 
1691 			/* fall through */
1692 
1693 		case X_RSPD_TYPE_CPL:
1694 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1695 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1696 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1697 			break;
1698 
1699 		case X_RSPD_TYPE_INTR:
1700 
1701 			/*
1702 			 * There are 1K interrupt-capable queues (qids 0
1703 			 * through 1023).  A response type indicating a
1704 			 * forwarded interrupt with a qid >= 1K is an
1705 			 * iWARP async notification.  That is the only
1706 			 * acceptable indirect interrupt on this queue.
1707 			 */
1708 			if (__predict_false(lq < 1024)) {
1709 				panic("%s: indirect interrupt on iq_fl %p "
1710 				    "with qid %u", __func__, iq, lq);
1711 			}
1712 
1713 			t4_an_handler(iq, &d->rsp);
1714 			break;
1715 
1716 		default:
1717 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1718 			    __func__, rsp_type, iq));
1719 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1720 			    device_get_nameunit(sc->dev), rsp_type, iq);
1721 			break;
1722 		}
1723 
1724 		d++;
1725 		if (__predict_false(++iq->cidx == iq->sidx)) {
1726 			iq->cidx = 0;
1727 			iq->gen ^= F_RSPD_GEN;
1728 			d = &iq->desc[0];
1729 		}
1730 		if (__predict_false(++ndescs == limit)) {
1731 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1732 			    V_INGRESSQID(iq->cntxt_id) |
1733 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1734 			ndescs = 0;
1735 
1736 #if defined(INET) || defined(INET6)
1737 			if (iq->flags & IQ_LRO_ENABLED &&
1738 			    !sort_before_lro(lro) &&
1739 			    sc->lro_timeout != 0) {
1740 				tcp_lro_flush_inactive(lro, &lro_timeout);
1741 			}
1742 #endif
1743 			if (budget) {
1744 				FL_LOCK(fl);
1745 				refill_fl(sc, fl, 32);
1746 				FL_UNLOCK(fl);
1747 
1748 				return (EINPROGRESS);
1749 			}
1750 		}
1751 		if (refill) {
1752 			FL_LOCK(fl);
1753 			refill_fl(sc, fl, 32);
1754 			FL_UNLOCK(fl);
1755 			fl_hw_cidx = fl->hw_cidx;
1756 		}
1757 	}
1758 out:
1759 #if defined(INET) || defined(INET6)
1760 	if (iq->flags & IQ_LRO_ENABLED) {
1761 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1762 			MPASS(sort_before_lro(lro));
1763 			/* hold back one credit and don't flush LRO state */
1764 			iq->flags |= IQ_ADJ_CREDIT;
1765 			ndescs--;
1766 		} else {
1767 			tcp_lro_flush_all(lro);
1768 		}
1769 	}
1770 #endif
1771 
1772 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1773 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1774 
1775 	FL_LOCK(fl);
1776 	starved = refill_fl(sc, fl, 64);
1777 	FL_UNLOCK(fl);
1778 	if (__predict_false(starved != 0))
1779 		add_fl_to_sfl(sc, fl);
1780 
1781 	return (0);
1782 }
1783 
1784 static inline int
1785 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1786 {
1787 	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1788 
1789 	if (rc)
1790 		MPASS(cll->region3 >= CL_METADATA_SIZE);
1791 
1792 	return (rc);
1793 }
1794 
1795 static inline struct cluster_metadata *
1796 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1797     caddr_t cl)
1798 {
1799 
1800 	if (cl_has_metadata(fl, cll)) {
1801 		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1802 
1803 		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1804 	}
1805 	return (NULL);
1806 }
1807 
1808 static void
1809 rxb_free(struct mbuf *m)
1810 {
1811 	uma_zone_t zone = m->m_ext.ext_arg1;
1812 	void *cl = m->m_ext.ext_arg2;
1813 
1814 	uma_zfree(zone, cl);
1815 	counter_u64_add(extfree_rels, 1);
1816 }
1817 
1818 /*
1819  * The mbuf returned by this function could be allocated from zone_mbuf or
1820  * constructed in spare room in the cluster.
1821  *
1822  * The mbuf carries the payload in one of these ways
1823  * a) frame inside the mbuf (mbuf from zone_mbuf)
1824  * b) m_cljset (for clusters without metadata) zone_mbuf
1825  * c) m_extaddref (cluster with metadata) inline mbuf
1826  * d) m_extaddref (cluster with metadata) zone_mbuf
1827  */
1828 static struct mbuf *
1829 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1830     int remaining)
1831 {
1832 	struct mbuf *m;
1833 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1834 	struct cluster_layout *cll = &sd->cll;
1835 	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1836 	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1837 	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1838 	int len, blen;
1839 	caddr_t payload;
1840 
1841 	blen = hwb->size - fl->rx_offset;	/* max possible in this buf */
1842 	len = min(remaining, blen);
1843 	payload = sd->cl + cll->region1 + fl->rx_offset;
1844 	if (fl->flags & FL_BUF_PACKING) {
1845 		const u_int l = fr_offset + len;
1846 		const u_int pad = roundup2(l, fl->buf_boundary) - l;
1847 
1848 		if (fl->rx_offset + len + pad < hwb->size)
1849 			blen = len + pad;
1850 		MPASS(fl->rx_offset + blen <= hwb->size);
1851 	} else {
1852 		MPASS(fl->rx_offset == 0);	/* not packing */
1853 	}
1854 
1855 
1856 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1857 
1858 		/*
1859 		 * Copy payload into a freshly allocated mbuf.
1860 		 */
1861 
1862 		m = fr_offset == 0 ?
1863 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1864 		if (m == NULL)
1865 			return (NULL);
1866 		fl->mbuf_allocated++;
1867 
1868 		/* copy data to mbuf */
1869 		bcopy(payload, mtod(m, caddr_t), len);
1870 
1871 	} else if (sd->nmbuf * MSIZE < cll->region1) {
1872 
1873 		/*
1874 		 * There's spare room in the cluster for an mbuf.  Create one
1875 		 * and associate it with the payload that's in the cluster.
1876 		 */
1877 
1878 		MPASS(clm != NULL);
1879 		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1880 		/* No bzero required */
1881 		if (m_init(m, M_NOWAIT, MT_DATA,
1882 		    fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
1883 			return (NULL);
1884 		fl->mbuf_inlined++;
1885 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
1886 		    swz->zone, sd->cl);
1887 		if (sd->nmbuf++ == 0)
1888 			counter_u64_add(extfree_refs, 1);
1889 
1890 	} else {
1891 
1892 		/*
1893 		 * Grab an mbuf from zone_mbuf and associate it with the
1894 		 * payload in the cluster.
1895 		 */
1896 
1897 		m = fr_offset == 0 ?
1898 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1899 		if (m == NULL)
1900 			return (NULL);
1901 		fl->mbuf_allocated++;
1902 		if (clm != NULL) {
1903 			m_extaddref(m, payload, blen, &clm->refcount,
1904 			    rxb_free, swz->zone, sd->cl);
1905 			if (sd->nmbuf++ == 0)
1906 				counter_u64_add(extfree_refs, 1);
1907 		} else {
1908 			m_cljset(m, sd->cl, swz->type);
1909 			sd->cl = NULL;	/* consumed, not a recycle candidate */
1910 		}
1911 	}
1912 	if (fr_offset == 0)
1913 		m->m_pkthdr.len = remaining;
1914 	m->m_len = len;
1915 
1916 	if (fl->flags & FL_BUF_PACKING) {
1917 		fl->rx_offset += blen;
1918 		MPASS(fl->rx_offset <= hwb->size);
1919 		if (fl->rx_offset < hwb->size)
1920 			return (m);	/* without advancing the cidx */
1921 	}
1922 
1923 	if (__predict_false(++fl->cidx % 8 == 0)) {
1924 		uint16_t cidx = fl->cidx / 8;
1925 
1926 		if (__predict_false(cidx == fl->sidx))
1927 			fl->cidx = cidx = 0;
1928 		fl->hw_cidx = cidx;
1929 	}
1930 	fl->rx_offset = 0;
1931 
1932 	return (m);
1933 }
1934 
1935 static struct mbuf *
1936 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1937 {
1938 	struct mbuf *m0, *m, **pnext;
1939 	u_int remaining;
1940 	const u_int total = G_RSPD_LEN(len_newbuf);
1941 
1942 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1943 		M_ASSERTPKTHDR(fl->m0);
1944 		MPASS(fl->m0->m_pkthdr.len == total);
1945 		MPASS(fl->remaining < total);
1946 
1947 		m0 = fl->m0;
1948 		pnext = fl->pnext;
1949 		remaining = fl->remaining;
1950 		fl->flags &= ~FL_BUF_RESUME;
1951 		goto get_segment;
1952 	}
1953 
1954 	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1955 		fl->rx_offset = 0;
1956 		if (__predict_false(++fl->cidx % 8 == 0)) {
1957 			uint16_t cidx = fl->cidx / 8;
1958 
1959 			if (__predict_false(cidx == fl->sidx))
1960 				fl->cidx = cidx = 0;
1961 			fl->hw_cidx = cidx;
1962 		}
1963 	}
1964 
1965 	/*
1966 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1967 	 * 'len' and it may span multiple hw buffers.
1968 	 */
1969 
1970 	m0 = get_scatter_segment(sc, fl, 0, total);
1971 	if (m0 == NULL)
1972 		return (NULL);
1973 	remaining = total - m0->m_len;
1974 	pnext = &m0->m_next;
1975 	while (remaining > 0) {
1976 get_segment:
1977 		MPASS(fl->rx_offset == 0);
1978 		m = get_scatter_segment(sc, fl, total - remaining, remaining);
1979 		if (__predict_false(m == NULL)) {
1980 			fl->m0 = m0;
1981 			fl->pnext = pnext;
1982 			fl->remaining = remaining;
1983 			fl->flags |= FL_BUF_RESUME;
1984 			return (NULL);
1985 		}
1986 		*pnext = m;
1987 		pnext = &m->m_next;
1988 		remaining -= m->m_len;
1989 	}
1990 	*pnext = NULL;
1991 
1992 	M_ASSERTPKTHDR(m0);
1993 	return (m0);
1994 }
1995 
1996 static int
1997 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1998 {
1999 	struct sge_rxq *rxq = iq_to_rxq(iq);
2000 	struct ifnet *ifp = rxq->ifp;
2001 	struct adapter *sc = iq->adapter;
2002 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
2003 #if defined(INET) || defined(INET6)
2004 	struct lro_ctrl *lro = &rxq->lro;
2005 #endif
2006 	static const int sw_hashtype[4][2] = {
2007 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
2008 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
2009 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
2010 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
2011 	};
2012 
2013 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
2014 	    rss->opcode));
2015 
2016 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
2017 	m0->m_len -= sc->params.sge.fl_pktshift;
2018 	m0->m_data += sc->params.sge.fl_pktshift;
2019 
2020 	m0->m_pkthdr.rcvif = ifp;
2021 	M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
2022 	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
2023 
2024 	if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) {
2025 		if (ifp->if_capenable & IFCAP_RXCSUM &&
2026 		    cpl->l2info & htobe32(F_RXF_IP)) {
2027 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
2028 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2029 			rxq->rxcsum++;
2030 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
2031 		    cpl->l2info & htobe32(F_RXF_IP6)) {
2032 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
2033 			    CSUM_PSEUDO_HDR);
2034 			rxq->rxcsum++;
2035 		}
2036 
2037 		if (__predict_false(cpl->ip_frag))
2038 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2039 		else
2040 			m0->m_pkthdr.csum_data = 0xffff;
2041 	}
2042 
2043 	if (cpl->vlan_ex) {
2044 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2045 		m0->m_flags |= M_VLANTAG;
2046 		rxq->vlan_extraction++;
2047 	}
2048 
2049 #if defined(INET) || defined(INET6)
2050 	if (iq->flags & IQ_LRO_ENABLED) {
2051 		if (sort_before_lro(lro)) {
2052 			tcp_lro_queue_mbuf(lro, m0);
2053 			return (0); /* queued for sort, then LRO */
2054 		}
2055 		if (tcp_lro_rx(lro, m0, 0) == 0)
2056 			return (0); /* queued for LRO */
2057 	}
2058 #endif
2059 	ifp->if_input(ifp, m0);
2060 
2061 	return (0);
2062 }
2063 
2064 /*
2065  * Must drain the wrq or make sure that someone else will.
2066  */
2067 static void
2068 wrq_tx_drain(void *arg, int n)
2069 {
2070 	struct sge_wrq *wrq = arg;
2071 	struct sge_eq *eq = &wrq->eq;
2072 
2073 	EQ_LOCK(eq);
2074 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2075 		drain_wrq_wr_list(wrq->adapter, wrq);
2076 	EQ_UNLOCK(eq);
2077 }
2078 
2079 static void
2080 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2081 {
2082 	struct sge_eq *eq = &wrq->eq;
2083 	u_int available, dbdiff;	/* # of hardware descriptors */
2084 	u_int n;
2085 	struct wrqe *wr;
2086 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2087 
2088 	EQ_LOCK_ASSERT_OWNED(eq);
2089 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2090 	wr = STAILQ_FIRST(&wrq->wr_list);
2091 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2092 	MPASS(eq->pidx == eq->dbidx);
2093 	dbdiff = 0;
2094 
2095 	do {
2096 		eq->cidx = read_hw_cidx(eq);
2097 		if (eq->pidx == eq->cidx)
2098 			available = eq->sidx - 1;
2099 		else
2100 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2101 
2102 		MPASS(wr->wrq == wrq);
2103 		n = howmany(wr->wr_len, EQ_ESIZE);
2104 		if (available < n)
2105 			break;
2106 
2107 		dst = (void *)&eq->desc[eq->pidx];
2108 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2109 			/* Won't wrap, won't end exactly at the status page. */
2110 			bcopy(&wr->wr[0], dst, wr->wr_len);
2111 			eq->pidx += n;
2112 		} else {
2113 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2114 
2115 			bcopy(&wr->wr[0], dst, first_portion);
2116 			if (wr->wr_len > first_portion) {
2117 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2118 				    wr->wr_len - first_portion);
2119 			}
2120 			eq->pidx = n - (eq->sidx - eq->pidx);
2121 		}
2122 		wrq->tx_wrs_copied++;
2123 
2124 		if (available < eq->sidx / 4 &&
2125 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2126 				/*
2127 				 * XXX: This is not 100% reliable with some
2128 				 * types of WRs.  But this is a very unusual
2129 				 * situation for an ofld/ctrl queue anyway.
2130 				 */
2131 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2132 			    F_FW_WR_EQUEQ);
2133 		}
2134 
2135 		dbdiff += n;
2136 		if (dbdiff >= 16) {
2137 			ring_eq_db(sc, eq, dbdiff);
2138 			dbdiff = 0;
2139 		}
2140 
2141 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2142 		free_wrqe(wr);
2143 		MPASS(wrq->nwr_pending > 0);
2144 		wrq->nwr_pending--;
2145 		MPASS(wrq->ndesc_needed >= n);
2146 		wrq->ndesc_needed -= n;
2147 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2148 
2149 	if (dbdiff)
2150 		ring_eq_db(sc, eq, dbdiff);
2151 }
2152 
2153 /*
2154  * Doesn't fail.  Holds on to work requests it can't send right away.
2155  */
2156 void
2157 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2158 {
2159 #ifdef INVARIANTS
2160 	struct sge_eq *eq = &wrq->eq;
2161 #endif
2162 
2163 	EQ_LOCK_ASSERT_OWNED(eq);
2164 	MPASS(wr != NULL);
2165 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2166 	MPASS((wr->wr_len & 0x7) == 0);
2167 
2168 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2169 	wrq->nwr_pending++;
2170 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2171 
2172 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2173 		return;	/* commit_wrq_wr will drain wr_list as well. */
2174 
2175 	drain_wrq_wr_list(sc, wrq);
2176 
2177 	/* Doorbell must have caught up to the pidx. */
2178 	MPASS(eq->pidx == eq->dbidx);
2179 }
2180 
2181 void
2182 t4_update_fl_bufsize(struct ifnet *ifp)
2183 {
2184 	struct vi_info *vi = ifp->if_softc;
2185 	struct adapter *sc = vi->pi->adapter;
2186 	struct sge_rxq *rxq;
2187 #ifdef TCP_OFFLOAD
2188 	struct sge_ofld_rxq *ofld_rxq;
2189 #endif
2190 	struct sge_fl *fl;
2191 	int i, maxp, mtu = ifp->if_mtu;
2192 
2193 	maxp = mtu_to_max_payload(sc, mtu, 0);
2194 	for_each_rxq(vi, i, rxq) {
2195 		fl = &rxq->fl;
2196 
2197 		FL_LOCK(fl);
2198 		find_best_refill_source(sc, fl, maxp);
2199 		FL_UNLOCK(fl);
2200 	}
2201 #ifdef TCP_OFFLOAD
2202 	maxp = mtu_to_max_payload(sc, mtu, 1);
2203 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2204 		fl = &ofld_rxq->fl;
2205 
2206 		FL_LOCK(fl);
2207 		find_best_refill_source(sc, fl, maxp);
2208 		FL_UNLOCK(fl);
2209 	}
2210 #endif
2211 }
2212 
2213 static inline int
2214 mbuf_nsegs(struct mbuf *m)
2215 {
2216 
2217 	M_ASSERTPKTHDR(m);
2218 	KASSERT(m->m_pkthdr.l5hlen > 0,
2219 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2220 
2221 	return (m->m_pkthdr.l5hlen);
2222 }
2223 
2224 static inline void
2225 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2226 {
2227 
2228 	M_ASSERTPKTHDR(m);
2229 	m->m_pkthdr.l5hlen = nsegs;
2230 }
2231 
2232 static inline int
2233 mbuf_cflags(struct mbuf *m)
2234 {
2235 
2236 	M_ASSERTPKTHDR(m);
2237 	return (m->m_pkthdr.PH_loc.eight[4]);
2238 }
2239 
2240 static inline void
2241 set_mbuf_cflags(struct mbuf *m, uint8_t flags)
2242 {
2243 
2244 	M_ASSERTPKTHDR(m);
2245 	m->m_pkthdr.PH_loc.eight[4] = flags;
2246 }
2247 
2248 static inline int
2249 mbuf_len16(struct mbuf *m)
2250 {
2251 	int n;
2252 
2253 	M_ASSERTPKTHDR(m);
2254 	n = m->m_pkthdr.PH_loc.eight[0];
2255 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2256 
2257 	return (n);
2258 }
2259 
2260 static inline void
2261 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2262 {
2263 
2264 	M_ASSERTPKTHDR(m);
2265 	m->m_pkthdr.PH_loc.eight[0] = len16;
2266 }
2267 
2268 #ifdef RATELIMIT
2269 static inline int
2270 mbuf_eo_nsegs(struct mbuf *m)
2271 {
2272 
2273 	M_ASSERTPKTHDR(m);
2274 	return (m->m_pkthdr.PH_loc.eight[1]);
2275 }
2276 
2277 static inline void
2278 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2279 {
2280 
2281 	M_ASSERTPKTHDR(m);
2282 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2283 }
2284 
2285 static inline int
2286 mbuf_eo_len16(struct mbuf *m)
2287 {
2288 	int n;
2289 
2290 	M_ASSERTPKTHDR(m);
2291 	n = m->m_pkthdr.PH_loc.eight[2];
2292 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2293 
2294 	return (n);
2295 }
2296 
2297 static inline void
2298 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2299 {
2300 
2301 	M_ASSERTPKTHDR(m);
2302 	m->m_pkthdr.PH_loc.eight[2] = len16;
2303 }
2304 
2305 static inline int
2306 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2307 {
2308 
2309 	M_ASSERTPKTHDR(m);
2310 	return (m->m_pkthdr.PH_loc.eight[3]);
2311 }
2312 
2313 static inline void
2314 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2315 {
2316 
2317 	M_ASSERTPKTHDR(m);
2318 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2319 }
2320 
2321 static inline int
2322 needs_eo(struct mbuf *m)
2323 {
2324 
2325 	return (m->m_pkthdr.snd_tag != NULL);
2326 }
2327 #endif
2328 
2329 /*
2330  * Try to allocate an mbuf to contain a raw work request.  To make it
2331  * easy to construct the work request, don't allocate a chain but a
2332  * single mbuf.
2333  */
2334 struct mbuf *
2335 alloc_wr_mbuf(int len, int how)
2336 {
2337 	struct mbuf *m;
2338 
2339 	if (len <= MHLEN)
2340 		m = m_gethdr(how, MT_DATA);
2341 	else if (len <= MCLBYTES)
2342 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2343 	else
2344 		m = NULL;
2345 	if (m == NULL)
2346 		return (NULL);
2347 	m->m_pkthdr.len = len;
2348 	m->m_len = len;
2349 	set_mbuf_cflags(m, MC_RAW_WR);
2350 	set_mbuf_len16(m, howmany(len, 16));
2351 	return (m);
2352 }
2353 
2354 static inline int
2355 needs_tso(struct mbuf *m)
2356 {
2357 
2358 	M_ASSERTPKTHDR(m);
2359 
2360 	return (m->m_pkthdr.csum_flags & CSUM_TSO);
2361 }
2362 
2363 static inline int
2364 needs_l3_csum(struct mbuf *m)
2365 {
2366 
2367 	M_ASSERTPKTHDR(m);
2368 
2369 	return (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO));
2370 }
2371 
2372 static inline int
2373 needs_l4_csum(struct mbuf *m)
2374 {
2375 
2376 	M_ASSERTPKTHDR(m);
2377 
2378 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2379 	    CSUM_TCP_IPV6 | CSUM_TSO));
2380 }
2381 
2382 static inline int
2383 needs_tcp_csum(struct mbuf *m)
2384 {
2385 
2386 	M_ASSERTPKTHDR(m);
2387 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_TCP_IPV6 | CSUM_TSO));
2388 }
2389 
2390 #ifdef RATELIMIT
2391 static inline int
2392 needs_udp_csum(struct mbuf *m)
2393 {
2394 
2395 	M_ASSERTPKTHDR(m);
2396 	return (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_UDP_IPV6));
2397 }
2398 #endif
2399 
2400 static inline int
2401 needs_vlan_insertion(struct mbuf *m)
2402 {
2403 
2404 	M_ASSERTPKTHDR(m);
2405 
2406 	return (m->m_flags & M_VLANTAG);
2407 }
2408 
2409 static void *
2410 m_advance(struct mbuf **pm, int *poffset, int len)
2411 {
2412 	struct mbuf *m = *pm;
2413 	int offset = *poffset;
2414 	uintptr_t p = 0;
2415 
2416 	MPASS(len > 0);
2417 
2418 	for (;;) {
2419 		if (offset + len < m->m_len) {
2420 			offset += len;
2421 			p = mtod(m, uintptr_t) + offset;
2422 			break;
2423 		}
2424 		len -= m->m_len - offset;
2425 		m = m->m_next;
2426 		offset = 0;
2427 		MPASS(m != NULL);
2428 	}
2429 	*poffset = offset;
2430 	*pm = m;
2431 	return ((void *)p);
2432 }
2433 
2434 /*
2435  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2436  * must have at least one mbuf that's not empty.  It is possible for this
2437  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2438  */
2439 static inline int
2440 count_mbuf_nsegs(struct mbuf *m, int skip)
2441 {
2442 	vm_paddr_t lastb, next;
2443 	vm_offset_t va;
2444 	int len, nsegs;
2445 
2446 	M_ASSERTPKTHDR(m);
2447 	MPASS(m->m_pkthdr.len > 0);
2448 	MPASS(m->m_pkthdr.len >= skip);
2449 
2450 	nsegs = 0;
2451 	lastb = 0;
2452 	for (; m; m = m->m_next) {
2453 
2454 		len = m->m_len;
2455 		if (__predict_false(len == 0))
2456 			continue;
2457 		if (skip >= len) {
2458 			skip -= len;
2459 			continue;
2460 		}
2461 		va = mtod(m, vm_offset_t) + skip;
2462 		len -= skip;
2463 		skip = 0;
2464 		next = pmap_kextract(va);
2465 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2466 		if (lastb + 1 == next)
2467 			nsegs--;
2468 		lastb = pmap_kextract(va + len - 1);
2469 	}
2470 
2471 	return (nsegs);
2472 }
2473 
2474 /*
2475  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2476  * a) caller can assume it's been freed if this function returns with an error.
2477  * b) it may get defragged up if the gather list is too long for the hardware.
2478  */
2479 int
2480 parse_pkt(struct adapter *sc, struct mbuf **mp)
2481 {
2482 	struct mbuf *m0 = *mp, *m;
2483 	int rc, nsegs, defragged = 0, offset;
2484 	struct ether_header *eh;
2485 	void *l3hdr;
2486 #if defined(INET) || defined(INET6)
2487 	struct tcphdr *tcp;
2488 #endif
2489 	uint16_t eh_type;
2490 
2491 	M_ASSERTPKTHDR(m0);
2492 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2493 		rc = EINVAL;
2494 fail:
2495 		m_freem(m0);
2496 		*mp = NULL;
2497 		return (rc);
2498 	}
2499 restart:
2500 	/*
2501 	 * First count the number of gather list segments in the payload.
2502 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2503 	 */
2504 	M_ASSERTPKTHDR(m0);
2505 	MPASS(m0->m_pkthdr.len > 0);
2506 	nsegs = count_mbuf_nsegs(m0, 0);
2507 	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2508 		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2509 			rc = EFBIG;
2510 			goto fail;
2511 		}
2512 		*mp = m0 = m;	/* update caller's copy after defrag */
2513 		goto restart;
2514 	}
2515 
2516 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
2517 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2518 		if (m0 == NULL) {
2519 			/* Should have left well enough alone. */
2520 			rc = EFBIG;
2521 			goto fail;
2522 		}
2523 		*mp = m0;	/* update caller's copy after pullup */
2524 		goto restart;
2525 	}
2526 	set_mbuf_nsegs(m0, nsegs);
2527 	set_mbuf_cflags(m0, 0);
2528 	if (sc->flags & IS_VF)
2529 		set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0)));
2530 	else
2531 		set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2532 
2533 #ifdef RATELIMIT
2534 	/*
2535 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2536 	 * checksumming is enabled.  needs_l4_csum happens to check for all the
2537 	 * right things.
2538 	 */
2539 	if (__predict_false(needs_eo(m0) && !needs_l4_csum(m0)))
2540 		m0->m_pkthdr.snd_tag = NULL;
2541 #endif
2542 
2543 	if (!needs_tso(m0) &&
2544 #ifdef RATELIMIT
2545 	    !needs_eo(m0) &&
2546 #endif
2547 	    !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0))))
2548 		return (0);
2549 
2550 	m = m0;
2551 	eh = mtod(m, struct ether_header *);
2552 	eh_type = ntohs(eh->ether_type);
2553 	if (eh_type == ETHERTYPE_VLAN) {
2554 		struct ether_vlan_header *evh = (void *)eh;
2555 
2556 		eh_type = ntohs(evh->evl_proto);
2557 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2558 	} else
2559 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2560 
2561 	offset = 0;
2562 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2563 
2564 	switch (eh_type) {
2565 #ifdef INET6
2566 	case ETHERTYPE_IPV6:
2567 	{
2568 		struct ip6_hdr *ip6 = l3hdr;
2569 
2570 		MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP);
2571 
2572 		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2573 		break;
2574 	}
2575 #endif
2576 #ifdef INET
2577 	case ETHERTYPE_IP:
2578 	{
2579 		struct ip *ip = l3hdr;
2580 
2581 		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2582 		break;
2583 	}
2584 #endif
2585 	default:
2586 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2587 		    " with the same INET/INET6 options as the kernel.",
2588 		    __func__, eh_type);
2589 	}
2590 
2591 #if defined(INET) || defined(INET6)
2592 	if (needs_tcp_csum(m0)) {
2593 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2594 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2595 #ifdef RATELIMIT
2596 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2597 			set_mbuf_eo_tsclk_tsoff(m0,
2598 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2599 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2600 		} else
2601 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2602 	} else if (needs_udp_csum(m)) {
2603 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2604 #endif
2605 	}
2606 #ifdef RATELIMIT
2607 	if (needs_eo(m0)) {
2608 		u_int immhdrs;
2609 
2610 		/* EO WRs have the headers in the WR and not the GL. */
2611 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2612 		    m0->m_pkthdr.l4hlen;
2613 		nsegs = count_mbuf_nsegs(m0, immhdrs);
2614 		set_mbuf_eo_nsegs(m0, nsegs);
2615 		set_mbuf_eo_len16(m0,
2616 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2617 	}
2618 #endif
2619 #endif
2620 	MPASS(m0 == *mp);
2621 	return (0);
2622 }
2623 
2624 void *
2625 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2626 {
2627 	struct sge_eq *eq = &wrq->eq;
2628 	struct adapter *sc = wrq->adapter;
2629 	int ndesc, available;
2630 	struct wrqe *wr;
2631 	void *w;
2632 
2633 	MPASS(len16 > 0);
2634 	ndesc = howmany(len16, EQ_ESIZE / 16);
2635 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2636 
2637 	EQ_LOCK(eq);
2638 
2639 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2640 		drain_wrq_wr_list(sc, wrq);
2641 
2642 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2643 slowpath:
2644 		EQ_UNLOCK(eq);
2645 		wr = alloc_wrqe(len16 * 16, wrq);
2646 		if (__predict_false(wr == NULL))
2647 			return (NULL);
2648 		cookie->pidx = -1;
2649 		cookie->ndesc = ndesc;
2650 		return (&wr->wr);
2651 	}
2652 
2653 	eq->cidx = read_hw_cidx(eq);
2654 	if (eq->pidx == eq->cidx)
2655 		available = eq->sidx - 1;
2656 	else
2657 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2658 	if (available < ndesc)
2659 		goto slowpath;
2660 
2661 	cookie->pidx = eq->pidx;
2662 	cookie->ndesc = ndesc;
2663 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2664 
2665 	w = &eq->desc[eq->pidx];
2666 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2667 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2668 		w = &wrq->ss[0];
2669 		wrq->ss_pidx = cookie->pidx;
2670 		wrq->ss_len = len16 * 16;
2671 	}
2672 
2673 	EQ_UNLOCK(eq);
2674 
2675 	return (w);
2676 }
2677 
2678 void
2679 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2680 {
2681 	struct sge_eq *eq = &wrq->eq;
2682 	struct adapter *sc = wrq->adapter;
2683 	int ndesc, pidx;
2684 	struct wrq_cookie *prev, *next;
2685 
2686 	if (cookie->pidx == -1) {
2687 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2688 
2689 		t4_wrq_tx(sc, wr);
2690 		return;
2691 	}
2692 
2693 	if (__predict_false(w == &wrq->ss[0])) {
2694 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2695 
2696 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2697 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2698 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2699 		wrq->tx_wrs_ss++;
2700 	} else
2701 		wrq->tx_wrs_direct++;
2702 
2703 	EQ_LOCK(eq);
2704 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2705 	pidx = cookie->pidx;
2706 	MPASS(pidx >= 0 && pidx < eq->sidx);
2707 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2708 	next = TAILQ_NEXT(cookie, link);
2709 	if (prev == NULL) {
2710 		MPASS(pidx == eq->dbidx);
2711 		if (next == NULL || ndesc >= 16) {
2712 			int available;
2713 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2714 
2715 			/*
2716 			 * Note that the WR via which we'll request tx updates
2717 			 * is at pidx and not eq->pidx, which has moved on
2718 			 * already.
2719 			 */
2720 			dst = (void *)&eq->desc[pidx];
2721 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2722 			if (available < eq->sidx / 4 &&
2723 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2724 				/*
2725 				 * XXX: This is not 100% reliable with some
2726 				 * types of WRs.  But this is a very unusual
2727 				 * situation for an ofld/ctrl queue anyway.
2728 				 */
2729 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2730 				    F_FW_WR_EQUEQ);
2731 			}
2732 
2733 			ring_eq_db(wrq->adapter, eq, ndesc);
2734 		} else {
2735 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2736 			next->pidx = pidx;
2737 			next->ndesc += ndesc;
2738 		}
2739 	} else {
2740 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2741 		prev->ndesc += ndesc;
2742 	}
2743 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2744 
2745 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2746 		drain_wrq_wr_list(sc, wrq);
2747 
2748 #ifdef INVARIANTS
2749 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2750 		/* Doorbell must have caught up to the pidx. */
2751 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2752 	}
2753 #endif
2754 	EQ_UNLOCK(eq);
2755 }
2756 
2757 static u_int
2758 can_resume_eth_tx(struct mp_ring *r)
2759 {
2760 	struct sge_eq *eq = r->cookie;
2761 
2762 	return (total_available_tx_desc(eq) > eq->sidx / 8);
2763 }
2764 
2765 static inline int
2766 cannot_use_txpkts(struct mbuf *m)
2767 {
2768 	/* maybe put a GL limit too, to avoid silliness? */
2769 
2770 	return (needs_tso(m) || (mbuf_cflags(m) & MC_RAW_WR) != 0);
2771 }
2772 
2773 static inline int
2774 discard_tx(struct sge_eq *eq)
2775 {
2776 
2777 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
2778 }
2779 
2780 static inline int
2781 wr_can_update_eq(struct fw_eth_tx_pkts_wr *wr)
2782 {
2783 
2784 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
2785 	case FW_ULPTX_WR:
2786 	case FW_ETH_TX_PKT_WR:
2787 	case FW_ETH_TX_PKTS_WR:
2788 	case FW_ETH_TX_PKT_VM_WR:
2789 		return (1);
2790 	default:
2791 		return (0);
2792 	}
2793 }
2794 
2795 /*
2796  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2797  * be consumed.  Return the actual number consumed.  0 indicates a stall.
2798  */
2799 static u_int
2800 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2801 {
2802 	struct sge_txq *txq = r->cookie;
2803 	struct sge_eq *eq = &txq->eq;
2804 	struct ifnet *ifp = txq->ifp;
2805 	struct vi_info *vi = ifp->if_softc;
2806 	struct port_info *pi = vi->pi;
2807 	struct adapter *sc = pi->adapter;
2808 	u_int total, remaining;		/* # of packets */
2809 	u_int available, dbdiff;	/* # of hardware descriptors */
2810 	u_int n, next_cidx;
2811 	struct mbuf *m0, *tail;
2812 	struct txpkts txp;
2813 	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2814 
2815 	remaining = IDXDIFF(pidx, cidx, r->size);
2816 	MPASS(remaining > 0);	/* Must not be called without work to do. */
2817 	total = 0;
2818 
2819 	TXQ_LOCK(txq);
2820 	if (__predict_false(discard_tx(eq))) {
2821 		while (cidx != pidx) {
2822 			m0 = r->items[cidx];
2823 			m_freem(m0);
2824 			if (++cidx == r->size)
2825 				cidx = 0;
2826 		}
2827 		reclaim_tx_descs(txq, 2048);
2828 		total = remaining;
2829 		goto done;
2830 	}
2831 
2832 	/* How many hardware descriptors do we have readily available. */
2833 	if (eq->pidx == eq->cidx)
2834 		available = eq->sidx - 1;
2835 	else
2836 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2837 	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2838 
2839 	while (remaining > 0) {
2840 
2841 		m0 = r->items[cidx];
2842 		M_ASSERTPKTHDR(m0);
2843 		MPASS(m0->m_nextpkt == NULL);
2844 
2845 		if (available < SGE_MAX_WR_NDESC) {
2846 			available += reclaim_tx_descs(txq, 64);
2847 			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2848 				break;	/* out of descriptors */
2849 		}
2850 
2851 		next_cidx = cidx + 1;
2852 		if (__predict_false(next_cidx == r->size))
2853 			next_cidx = 0;
2854 
2855 		wr = (void *)&eq->desc[eq->pidx];
2856 		if (sc->flags & IS_VF) {
2857 			total++;
2858 			remaining--;
2859 			ETHER_BPF_MTAP(ifp, m0);
2860 			n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0,
2861 			    available);
2862 		} else if (remaining > 1 &&
2863 		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2864 
2865 			/* pkts at cidx, next_cidx should both be in txp. */
2866 			MPASS(txp.npkt == 2);
2867 			tail = r->items[next_cidx];
2868 			MPASS(tail->m_nextpkt == NULL);
2869 			ETHER_BPF_MTAP(ifp, m0);
2870 			ETHER_BPF_MTAP(ifp, tail);
2871 			m0->m_nextpkt = tail;
2872 
2873 			if (__predict_false(++next_cidx == r->size))
2874 				next_cidx = 0;
2875 
2876 			while (next_cidx != pidx) {
2877 				if (add_to_txpkts(r->items[next_cidx], &txp,
2878 				    available) != 0)
2879 					break;
2880 				tail->m_nextpkt = r->items[next_cidx];
2881 				tail = tail->m_nextpkt;
2882 				ETHER_BPF_MTAP(ifp, tail);
2883 				if (__predict_false(++next_cidx == r->size))
2884 					next_cidx = 0;
2885 			}
2886 
2887 			n = write_txpkts_wr(txq, wr, m0, &txp, available);
2888 			total += txp.npkt;
2889 			remaining -= txp.npkt;
2890 		} else if (mbuf_cflags(m0) & MC_RAW_WR) {
2891 			total++;
2892 			remaining--;
2893 			n = write_raw_wr(txq, (void *)wr, m0, available);
2894 		} else {
2895 			total++;
2896 			remaining--;
2897 			ETHER_BPF_MTAP(ifp, m0);
2898 			n = write_txpkt_wr(txq, (void *)wr, m0, available);
2899 		}
2900 		MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
2901 
2902 		available -= n;
2903 		dbdiff += n;
2904 		IDXINCR(eq->pidx, n, eq->sidx);
2905 
2906 		if (wr_can_update_eq(wr)) {
2907 			if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2908 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2909 				wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2910 				    F_FW_WR_EQUEQ);
2911 				eq->equeqidx = eq->pidx;
2912 			} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >=
2913 			    32) {
2914 				wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2915 				eq->equeqidx = eq->pidx;
2916 			}
2917 		}
2918 
2919 		if (dbdiff >= 16 && remaining >= 4) {
2920 			ring_eq_db(sc, eq, dbdiff);
2921 			available += reclaim_tx_descs(txq, 4 * dbdiff);
2922 			dbdiff = 0;
2923 		}
2924 
2925 		cidx = next_cidx;
2926 	}
2927 	if (dbdiff != 0) {
2928 		ring_eq_db(sc, eq, dbdiff);
2929 		reclaim_tx_descs(txq, 32);
2930 	}
2931 done:
2932 	TXQ_UNLOCK(txq);
2933 
2934 	return (total);
2935 }
2936 
2937 static inline void
2938 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2939     int qsize)
2940 {
2941 
2942 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2943 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2944 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2945 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2946 
2947 	iq->flags = 0;
2948 	iq->adapter = sc;
2949 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2950 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2951 	if (pktc_idx >= 0) {
2952 		iq->intr_params |= F_QINTR_CNT_EN;
2953 		iq->intr_pktc_idx = pktc_idx;
2954 	}
2955 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2956 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
2957 }
2958 
2959 static inline void
2960 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
2961 {
2962 
2963 	fl->qsize = qsize;
2964 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2965 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2966 	if (sc->flags & BUF_PACKING_OK &&
2967 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
2968 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
2969 		fl->flags |= FL_BUF_PACKING;
2970 	find_best_refill_source(sc, fl, maxp);
2971 	find_safe_refill_source(sc, fl);
2972 }
2973 
2974 static inline void
2975 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
2976     uint8_t tx_chan, uint16_t iqid, char *name)
2977 {
2978 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2979 
2980 	eq->flags = eqtype & EQ_TYPEMASK;
2981 	eq->tx_chan = tx_chan;
2982 	eq->iqid = iqid;
2983 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2984 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2985 }
2986 
2987 static int
2988 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2989     bus_dmamap_t *map, bus_addr_t *pa, void **va)
2990 {
2991 	int rc;
2992 
2993 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2994 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2995 	if (rc != 0) {
2996 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2997 		goto done;
2998 	}
2999 
3000 	rc = bus_dmamem_alloc(*tag, va,
3001 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3002 	if (rc != 0) {
3003 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
3004 		goto done;
3005 	}
3006 
3007 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3008 	if (rc != 0) {
3009 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
3010 		goto done;
3011 	}
3012 done:
3013 	if (rc)
3014 		free_ring(sc, *tag, *map, *pa, *va);
3015 
3016 	return (rc);
3017 }
3018 
3019 static int
3020 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3021     bus_addr_t pa, void *va)
3022 {
3023 	if (pa)
3024 		bus_dmamap_unload(tag, map);
3025 	if (va)
3026 		bus_dmamem_free(tag, va, map);
3027 	if (tag)
3028 		bus_dma_tag_destroy(tag);
3029 
3030 	return (0);
3031 }
3032 
3033 /*
3034  * Allocates the ring for an ingress queue and an optional freelist.  If the
3035  * freelist is specified it will be allocated and then associated with the
3036  * ingress queue.
3037  *
3038  * Returns errno on failure.  Resources allocated up to that point may still be
3039  * allocated.  Caller is responsible for cleanup in case this function fails.
3040  *
3041  * If the ingress queue will take interrupts directly then the intr_idx
3042  * specifies the vector, starting from 0.  -1 means the interrupts for this
3043  * queue should be forwarded to the fwq.
3044  */
3045 static int
3046 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3047     int intr_idx, int cong)
3048 {
3049 	int rc, i, cntxt_id;
3050 	size_t len;
3051 	struct fw_iq_cmd c;
3052 	struct port_info *pi = vi->pi;
3053 	struct adapter *sc = iq->adapter;
3054 	struct sge_params *sp = &sc->params.sge;
3055 	__be32 v = 0;
3056 
3057 	len = iq->qsize * IQ_ESIZE;
3058 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3059 	    (void **)&iq->desc);
3060 	if (rc != 0)
3061 		return (rc);
3062 
3063 	bzero(&c, sizeof(c));
3064 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3065 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3066 	    V_FW_IQ_CMD_VFN(0));
3067 
3068 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3069 	    FW_LEN16(c));
3070 
3071 	/* Special handling for firmware event queue */
3072 	if (iq == &sc->sge.fwq)
3073 		v |= F_FW_IQ_CMD_IQASYNCH;
3074 
3075 	if (intr_idx < 0) {
3076 		/* Forwarded interrupts, all headed to fwq */
3077 		v |= F_FW_IQ_CMD_IQANDST;
3078 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3079 	} else {
3080 		KASSERT(intr_idx < sc->intr_count,
3081 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
3082 		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
3083 	}
3084 
3085 	c.type_to_iqandstindex = htobe32(v |
3086 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3087 	    V_FW_IQ_CMD_VIID(vi->viid) |
3088 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3089 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
3090 	    F_FW_IQ_CMD_IQGTSMODE |
3091 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3092 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3093 	c.iqsize = htobe16(iq->qsize);
3094 	c.iqaddr = htobe64(iq->ba);
3095 	if (cong >= 0)
3096 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3097 
3098 	if (fl) {
3099 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3100 
3101 		len = fl->qsize * EQ_ESIZE;
3102 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3103 		    &fl->ba, (void **)&fl->desc);
3104 		if (rc)
3105 			return (rc);
3106 
3107 		/* Allocate space for one software descriptor per buffer. */
3108 		rc = alloc_fl_sdesc(fl);
3109 		if (rc != 0) {
3110 			device_printf(sc->dev,
3111 			    "failed to setup fl software descriptors: %d\n",
3112 			    rc);
3113 			return (rc);
3114 		}
3115 
3116 		if (fl->flags & FL_BUF_PACKING) {
3117 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3118 			fl->buf_boundary = sp->pack_boundary;
3119 		} else {
3120 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3121 			fl->buf_boundary = 16;
3122 		}
3123 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3124 			fl->buf_boundary = sp->pad_boundary;
3125 
3126 		c.iqns_to_fl0congen |=
3127 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3128 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3129 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3130 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3131 			    0));
3132 		if (cong >= 0) {
3133 			c.iqns_to_fl0congen |=
3134 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
3135 				    F_FW_IQ_CMD_FL0CONGCIF |
3136 				    F_FW_IQ_CMD_FL0CONGEN);
3137 		}
3138 		c.fl0dcaen_to_fl0cidxfthresh =
3139 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3140 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) |
3141 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3142 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3143 		c.fl0size = htobe16(fl->qsize);
3144 		c.fl0addr = htobe64(fl->ba);
3145 	}
3146 
3147 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3148 	if (rc != 0) {
3149 		device_printf(sc->dev,
3150 		    "failed to create ingress queue: %d\n", rc);
3151 		return (rc);
3152 	}
3153 
3154 	iq->cidx = 0;
3155 	iq->gen = F_RSPD_GEN;
3156 	iq->intr_next = iq->intr_params;
3157 	iq->cntxt_id = be16toh(c.iqid);
3158 	iq->abs_id = be16toh(c.physiqid);
3159 	iq->flags |= IQ_ALLOCATED;
3160 
3161 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3162 	if (cntxt_id >= sc->sge.niq) {
3163 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3164 		    cntxt_id, sc->sge.niq - 1);
3165 	}
3166 	sc->sge.iqmap[cntxt_id] = iq;
3167 
3168 	if (fl) {
3169 		u_int qid;
3170 
3171 		iq->flags |= IQ_HAS_FL;
3172 		fl->cntxt_id = be16toh(c.fl0id);
3173 		fl->pidx = fl->cidx = 0;
3174 
3175 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3176 		if (cntxt_id >= sc->sge.neq) {
3177 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3178 			    __func__, cntxt_id, sc->sge.neq - 1);
3179 		}
3180 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3181 
3182 		qid = fl->cntxt_id;
3183 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3184 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3185 			uint32_t mask = (1 << s_qpp) - 1;
3186 			volatile uint8_t *udb;
3187 
3188 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3189 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3190 			qid &= mask;
3191 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3192 				udb += qid << UDBS_SEG_SHIFT;
3193 				qid = 0;
3194 			}
3195 			fl->udb = (volatile void *)udb;
3196 		}
3197 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3198 
3199 		FL_LOCK(fl);
3200 		/* Enough to make sure the SGE doesn't think it's starved */
3201 		refill_fl(sc, fl, fl->lowat);
3202 		FL_UNLOCK(fl);
3203 	}
3204 
3205 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) {
3206 		uint32_t param, val;
3207 
3208 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3209 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3210 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
3211 		if (cong == 0)
3212 			val = 1 << 19;
3213 		else {
3214 			val = 2 << 19;
3215 			for (i = 0; i < 4; i++) {
3216 				if (cong & (1 << i))
3217 					val |= 1 << (i << 2);
3218 			}
3219 		}
3220 
3221 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3222 		if (rc != 0) {
3223 			/* report error but carry on */
3224 			device_printf(sc->dev,
3225 			    "failed to set congestion manager context for "
3226 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
3227 		}
3228 	}
3229 
3230 	/* Enable IQ interrupts */
3231 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3232 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3233 	    V_INGRESSQID(iq->cntxt_id));
3234 
3235 	return (0);
3236 }
3237 
3238 static int
3239 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3240 {
3241 	int rc;
3242 	struct adapter *sc = iq->adapter;
3243 	device_t dev;
3244 
3245 	if (sc == NULL)
3246 		return (0);	/* nothing to do */
3247 
3248 	dev = vi ? vi->dev : sc->dev;
3249 
3250 	if (iq->flags & IQ_ALLOCATED) {
3251 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
3252 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
3253 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
3254 		if (rc != 0) {
3255 			device_printf(dev,
3256 			    "failed to free queue %p: %d\n", iq, rc);
3257 			return (rc);
3258 		}
3259 		iq->flags &= ~IQ_ALLOCATED;
3260 	}
3261 
3262 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3263 
3264 	bzero(iq, sizeof(*iq));
3265 
3266 	if (fl) {
3267 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
3268 		    fl->desc);
3269 
3270 		if (fl->sdesc)
3271 			free_fl_sdesc(sc, fl);
3272 
3273 		if (mtx_initialized(&fl->fl_lock))
3274 			mtx_destroy(&fl->fl_lock);
3275 
3276 		bzero(fl, sizeof(*fl));
3277 	}
3278 
3279 	return (0);
3280 }
3281 
3282 static void
3283 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3284     struct sge_iq *iq)
3285 {
3286 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3287 
3288 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3289 	    "bus address of descriptor ring");
3290 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3291 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3292 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3293 	    CTLTYPE_INT | CTLFLAG_RD, &iq->abs_id, 0, sysctl_uint16, "I",
3294 	    "absolute id of the queue");
3295 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3296 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cntxt_id, 0, sysctl_uint16, "I",
3297 	    "SGE context id of the queue");
3298 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3299 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cidx, 0, sysctl_uint16, "I",
3300 	    "consumer index");
3301 }
3302 
3303 static void
3304 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3305     struct sysctl_oid *oid, struct sge_fl *fl)
3306 {
3307 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3308 
3309 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3310 	    "freelist");
3311 	children = SYSCTL_CHILDREN(oid);
3312 
3313 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3314 	    &fl->ba, "bus address of descriptor ring");
3315 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3316 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3317 	    "desc ring size in bytes");
3318 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3319 	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
3320 	    "SGE context id of the freelist");
3321 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3322 	    fl_pad ? 1 : 0, "padding enabled");
3323 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3324 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3325 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3326 	    0, "consumer index");
3327 	if (fl->flags & FL_BUF_PACKING) {
3328 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3329 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3330 	}
3331 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3332 	    0, "producer index");
3333 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
3334 	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
3335 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
3336 	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
3337 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3338 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3339 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3340 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3341 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3342 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3343 }
3344 
3345 static int
3346 alloc_fwq(struct adapter *sc)
3347 {
3348 	int rc, intr_idx;
3349 	struct sge_iq *fwq = &sc->sge.fwq;
3350 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
3351 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3352 
3353 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
3354 	if (sc->flags & IS_VF)
3355 		intr_idx = 0;
3356 	else
3357 		intr_idx = sc->intr_count > 1 ? 1 : 0;
3358 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
3359 	if (rc != 0) {
3360 		device_printf(sc->dev,
3361 		    "failed to create firmware event queue: %d\n", rc);
3362 		return (rc);
3363 	}
3364 
3365 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
3366 	    NULL, "firmware event queue");
3367 	add_iq_sysctls(&sc->ctx, oid, fwq);
3368 
3369 	return (0);
3370 }
3371 
3372 static int
3373 free_fwq(struct adapter *sc)
3374 {
3375 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
3376 }
3377 
3378 static int
3379 alloc_ctrlq(struct adapter *sc, struct sge_wrq *ctrlq, int idx,
3380     struct sysctl_oid *oid)
3381 {
3382 	int rc;
3383 	char name[16];
3384 	struct sysctl_oid_list *children;
3385 
3386 	snprintf(name, sizeof(name), "%s ctrlq%d", device_get_nameunit(sc->dev),
3387 	    idx);
3388 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[idx]->tx_chan,
3389 	    sc->sge.fwq.cntxt_id, name);
3390 
3391 	children = SYSCTL_CHILDREN(oid);
3392 	snprintf(name, sizeof(name), "%d", idx);
3393 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3394 	    NULL, "ctrl queue");
3395 	rc = alloc_wrq(sc, NULL, ctrlq, oid);
3396 
3397 	return (rc);
3398 }
3399 
3400 int
3401 tnl_cong(struct port_info *pi, int drop)
3402 {
3403 
3404 	if (drop == -1)
3405 		return (-1);
3406 	else if (drop == 1)
3407 		return (0);
3408 	else
3409 		return (pi->rx_e_chan_map);
3410 }
3411 
3412 static int
3413 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
3414     struct sysctl_oid *oid)
3415 {
3416 	int rc;
3417 	struct adapter *sc = vi->pi->adapter;
3418 	struct sysctl_oid_list *children;
3419 	char name[16];
3420 
3421 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
3422 	    tnl_cong(vi->pi, cong_drop));
3423 	if (rc != 0)
3424 		return (rc);
3425 
3426 	if (idx == 0)
3427 		sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3428 	else
3429 		KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3430 		    ("iq_base mismatch"));
3431 	KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3432 	    ("PF with non-zero iq_base"));
3433 
3434 	/*
3435 	 * The freelist is just barely above the starvation threshold right now,
3436 	 * fill it up a bit more.
3437 	 */
3438 	FL_LOCK(&rxq->fl);
3439 	refill_fl(sc, &rxq->fl, 128);
3440 	FL_UNLOCK(&rxq->fl);
3441 
3442 #if defined(INET) || defined(INET6)
3443 	rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs);
3444 	if (rc != 0)
3445 		return (rc);
3446 	MPASS(rxq->lro.ifp == vi->ifp);	/* also indicates LRO init'ed */
3447 
3448 	if (vi->ifp->if_capenable & IFCAP_LRO)
3449 		rxq->iq.flags |= IQ_LRO_ENABLED;
3450 #endif
3451 	if (vi->ifp->if_capenable & IFCAP_HWRXTSTMP)
3452 		rxq->iq.flags |= IQ_RX_TIMESTAMP;
3453 	rxq->ifp = vi->ifp;
3454 
3455 	children = SYSCTL_CHILDREN(oid);
3456 
3457 	snprintf(name, sizeof(name), "%d", idx);
3458 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3459 	    NULL, "rx queue");
3460 	children = SYSCTL_CHILDREN(oid);
3461 
3462 	add_iq_sysctls(&vi->ctx, oid, &rxq->iq);
3463 #if defined(INET) || defined(INET6)
3464 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3465 	    &rxq->lro.lro_queued, 0, NULL);
3466 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3467 	    &rxq->lro.lro_flushed, 0, NULL);
3468 #endif
3469 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3470 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3471 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3472 	    CTLFLAG_RD, &rxq->vlan_extraction,
3473 	    "# of times hardware extracted 802.1Q tag");
3474 
3475 	add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl);
3476 
3477 	return (rc);
3478 }
3479 
3480 static int
3481 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3482 {
3483 	int rc;
3484 
3485 #if defined(INET) || defined(INET6)
3486 	if (rxq->lro.ifp) {
3487 		tcp_lro_free(&rxq->lro);
3488 		rxq->lro.ifp = NULL;
3489 	}
3490 #endif
3491 
3492 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3493 	if (rc == 0)
3494 		bzero(rxq, sizeof(*rxq));
3495 
3496 	return (rc);
3497 }
3498 
3499 #ifdef TCP_OFFLOAD
3500 static int
3501 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3502     int intr_idx, int idx, struct sysctl_oid *oid)
3503 {
3504 	struct port_info *pi = vi->pi;
3505 	int rc;
3506 	struct sysctl_oid_list *children;
3507 	char name[16];
3508 
3509 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0);
3510 	if (rc != 0)
3511 		return (rc);
3512 
3513 	children = SYSCTL_CHILDREN(oid);
3514 
3515 	snprintf(name, sizeof(name), "%d", idx);
3516 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3517 	    NULL, "rx queue");
3518 	add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq);
3519 	add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl);
3520 
3521 	return (rc);
3522 }
3523 
3524 static int
3525 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3526 {
3527 	int rc;
3528 
3529 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3530 	if (rc == 0)
3531 		bzero(ofld_rxq, sizeof(*ofld_rxq));
3532 
3533 	return (rc);
3534 }
3535 #endif
3536 
3537 #ifdef DEV_NETMAP
3538 static int
3539 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3540     int idx, struct sysctl_oid *oid)
3541 {
3542 	int rc;
3543 	struct sysctl_oid_list *children;
3544 	struct sysctl_ctx_list *ctx;
3545 	char name[16];
3546 	size_t len;
3547 	struct adapter *sc = vi->pi->adapter;
3548 	struct netmap_adapter *na = NA(vi->ifp);
3549 
3550 	MPASS(na != NULL);
3551 
3552 	len = vi->qsize_rxq * IQ_ESIZE;
3553 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3554 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3555 	if (rc != 0)
3556 		return (rc);
3557 
3558 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3559 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3560 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3561 	if (rc != 0)
3562 		return (rc);
3563 
3564 	nm_rxq->vi = vi;
3565 	nm_rxq->nid = idx;
3566 	nm_rxq->iq_cidx = 0;
3567 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3568 	nm_rxq->iq_gen = F_RSPD_GEN;
3569 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3570 	nm_rxq->fl_sidx = na->num_rx_desc;
3571 	nm_rxq->intr_idx = intr_idx;
3572 	nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID;
3573 
3574 	ctx = &vi->ctx;
3575 	children = SYSCTL_CHILDREN(oid);
3576 
3577 	snprintf(name, sizeof(name), "%d", idx);
3578 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3579 	    "rx queue");
3580 	children = SYSCTL_CHILDREN(oid);
3581 
3582 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3583 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3584 	    "I", "absolute id of the queue");
3585 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3586 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3587 	    "I", "SGE context id of the queue");
3588 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3589 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3590 	    "consumer index");
3591 
3592 	children = SYSCTL_CHILDREN(oid);
3593 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3594 	    "freelist");
3595 	children = SYSCTL_CHILDREN(oid);
3596 
3597 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3598 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3599 	    "I", "SGE context id of the freelist");
3600 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3601 	    &nm_rxq->fl_cidx, 0, "consumer index");
3602 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3603 	    &nm_rxq->fl_pidx, 0, "producer index");
3604 
3605 	return (rc);
3606 }
3607 
3608 
3609 static int
3610 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3611 {
3612 	struct adapter *sc = vi->pi->adapter;
3613 
3614 	if (vi->flags & VI_INIT_DONE)
3615 		MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID);
3616 	else
3617 		MPASS(nm_rxq->iq_cntxt_id == 0);
3618 
3619 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3620 	    nm_rxq->iq_desc);
3621 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3622 	    nm_rxq->fl_desc);
3623 
3624 	return (0);
3625 }
3626 
3627 static int
3628 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3629     struct sysctl_oid *oid)
3630 {
3631 	int rc;
3632 	size_t len;
3633 	struct port_info *pi = vi->pi;
3634 	struct adapter *sc = pi->adapter;
3635 	struct netmap_adapter *na = NA(vi->ifp);
3636 	char name[16];
3637 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3638 
3639 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3640 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3641 	    &nm_txq->ba, (void **)&nm_txq->desc);
3642 	if (rc)
3643 		return (rc);
3644 
3645 	nm_txq->pidx = nm_txq->cidx = 0;
3646 	nm_txq->sidx = na->num_tx_desc;
3647 	nm_txq->nid = idx;
3648 	nm_txq->iqidx = iqidx;
3649 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3650 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
3651 	    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
3652 	nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID;
3653 
3654 	snprintf(name, sizeof(name), "%d", idx);
3655 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3656 	    NULL, "netmap tx queue");
3657 	children = SYSCTL_CHILDREN(oid);
3658 
3659 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3660 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3661 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3662 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3663 	    "consumer index");
3664 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3665 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3666 	    "producer index");
3667 
3668 	return (rc);
3669 }
3670 
3671 static int
3672 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3673 {
3674 	struct adapter *sc = vi->pi->adapter;
3675 
3676 	if (vi->flags & VI_INIT_DONE)
3677 		MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID);
3678 	else
3679 		MPASS(nm_txq->cntxt_id == 0);
3680 
3681 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3682 	    nm_txq->desc);
3683 
3684 	return (0);
3685 }
3686 #endif
3687 
3688 /*
3689  * Returns a reasonable automatic cidx flush threshold for a given queue size.
3690  */
3691 static u_int
3692 qsize_to_fthresh(int qsize)
3693 {
3694 	u_int fthresh;
3695 
3696 	while (!powerof2(qsize))
3697 		qsize++;
3698 	fthresh = ilog2(qsize);
3699 	if (fthresh > X_CIDXFLUSHTHRESH_128)
3700 		fthresh = X_CIDXFLUSHTHRESH_128;
3701 
3702 	return (fthresh);
3703 }
3704 
3705 static int
3706 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3707 {
3708 	int rc, cntxt_id;
3709 	struct fw_eq_ctrl_cmd c;
3710 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3711 
3712 	bzero(&c, sizeof(c));
3713 
3714 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3715 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3716 	    V_FW_EQ_CTRL_CMD_VFN(0));
3717 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3718 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3719 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3720 	c.physeqid_pkd = htobe32(0);
3721 	c.fetchszm_to_iqid =
3722 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3723 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3724 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3725 	c.dcaen_to_eqsize =
3726 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3727 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3728 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
3729 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3730 	c.eqaddr = htobe64(eq->ba);
3731 
3732 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3733 	if (rc != 0) {
3734 		device_printf(sc->dev,
3735 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3736 		return (rc);
3737 	}
3738 	eq->flags |= EQ_ALLOCATED;
3739 
3740 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3741 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3742 	if (cntxt_id >= sc->sge.neq)
3743 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3744 		cntxt_id, sc->sge.neq - 1);
3745 	sc->sge.eqmap[cntxt_id] = eq;
3746 
3747 	return (rc);
3748 }
3749 
3750 static int
3751 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3752 {
3753 	int rc, cntxt_id;
3754 	struct fw_eq_eth_cmd c;
3755 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3756 
3757 	bzero(&c, sizeof(c));
3758 
3759 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3760 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3761 	    V_FW_EQ_ETH_CMD_VFN(0));
3762 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3763 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3764 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3765 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3766 	c.fetchszm_to_iqid =
3767 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3768 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3769 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3770 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3771 	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3772 	    V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3773 	c.eqaddr = htobe64(eq->ba);
3774 
3775 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3776 	if (rc != 0) {
3777 		device_printf(vi->dev,
3778 		    "failed to create Ethernet egress queue: %d\n", rc);
3779 		return (rc);
3780 	}
3781 	eq->flags |= EQ_ALLOCATED;
3782 
3783 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3784 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
3785 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3786 	if (cntxt_id >= sc->sge.neq)
3787 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3788 		cntxt_id, sc->sge.neq - 1);
3789 	sc->sge.eqmap[cntxt_id] = eq;
3790 
3791 	return (rc);
3792 }
3793 
3794 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3795 static int
3796 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3797 {
3798 	int rc, cntxt_id;
3799 	struct fw_eq_ofld_cmd c;
3800 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3801 
3802 	bzero(&c, sizeof(c));
3803 
3804 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3805 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3806 	    V_FW_EQ_OFLD_CMD_VFN(0));
3807 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3808 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3809 	c.fetchszm_to_iqid =
3810 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3811 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3812 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3813 	c.dcaen_to_eqsize =
3814 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3815 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3816 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
3817 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3818 	c.eqaddr = htobe64(eq->ba);
3819 
3820 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3821 	if (rc != 0) {
3822 		device_printf(vi->dev,
3823 		    "failed to create egress queue for TCP offload: %d\n", rc);
3824 		return (rc);
3825 	}
3826 	eq->flags |= EQ_ALLOCATED;
3827 
3828 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3829 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3830 	if (cntxt_id >= sc->sge.neq)
3831 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3832 		cntxt_id, sc->sge.neq - 1);
3833 	sc->sge.eqmap[cntxt_id] = eq;
3834 
3835 	return (rc);
3836 }
3837 #endif
3838 
3839 static int
3840 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3841 {
3842 	int rc, qsize;
3843 	size_t len;
3844 
3845 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3846 
3847 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3848 	len = qsize * EQ_ESIZE;
3849 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3850 	    &eq->ba, (void **)&eq->desc);
3851 	if (rc)
3852 		return (rc);
3853 
3854 	eq->pidx = eq->cidx = eq->dbidx = 0;
3855 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
3856 	eq->equeqidx = 0;
3857 	eq->doorbells = sc->doorbells;
3858 
3859 	switch (eq->flags & EQ_TYPEMASK) {
3860 	case EQ_CTRL:
3861 		rc = ctrl_eq_alloc(sc, eq);
3862 		break;
3863 
3864 	case EQ_ETH:
3865 		rc = eth_eq_alloc(sc, vi, eq);
3866 		break;
3867 
3868 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3869 	case EQ_OFLD:
3870 		rc = ofld_eq_alloc(sc, vi, eq);
3871 		break;
3872 #endif
3873 
3874 	default:
3875 		panic("%s: invalid eq type %d.", __func__,
3876 		    eq->flags & EQ_TYPEMASK);
3877 	}
3878 	if (rc != 0) {
3879 		device_printf(sc->dev,
3880 		    "failed to allocate egress queue(%d): %d\n",
3881 		    eq->flags & EQ_TYPEMASK, rc);
3882 	}
3883 
3884 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3885 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3886 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3887 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3888 		uint32_t mask = (1 << s_qpp) - 1;
3889 		volatile uint8_t *udb;
3890 
3891 		udb = sc->udbs_base + UDBS_DB_OFFSET;
3892 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3893 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3894 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3895 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3896 		else {
3897 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3898 			eq->udb_qid = 0;
3899 		}
3900 		eq->udb = (volatile void *)udb;
3901 	}
3902 
3903 	return (rc);
3904 }
3905 
3906 static int
3907 free_eq(struct adapter *sc, struct sge_eq *eq)
3908 {
3909 	int rc;
3910 
3911 	if (eq->flags & EQ_ALLOCATED) {
3912 		switch (eq->flags & EQ_TYPEMASK) {
3913 		case EQ_CTRL:
3914 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3915 			    eq->cntxt_id);
3916 			break;
3917 
3918 		case EQ_ETH:
3919 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3920 			    eq->cntxt_id);
3921 			break;
3922 
3923 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3924 		case EQ_OFLD:
3925 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3926 			    eq->cntxt_id);
3927 			break;
3928 #endif
3929 
3930 		default:
3931 			panic("%s: invalid eq type %d.", __func__,
3932 			    eq->flags & EQ_TYPEMASK);
3933 		}
3934 		if (rc != 0) {
3935 			device_printf(sc->dev,
3936 			    "failed to free egress queue (%d): %d\n",
3937 			    eq->flags & EQ_TYPEMASK, rc);
3938 			return (rc);
3939 		}
3940 		eq->flags &= ~EQ_ALLOCATED;
3941 	}
3942 
3943 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3944 
3945 	if (mtx_initialized(&eq->eq_lock))
3946 		mtx_destroy(&eq->eq_lock);
3947 
3948 	bzero(eq, sizeof(*eq));
3949 	return (0);
3950 }
3951 
3952 static int
3953 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
3954     struct sysctl_oid *oid)
3955 {
3956 	int rc;
3957 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
3958 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3959 
3960 	rc = alloc_eq(sc, vi, &wrq->eq);
3961 	if (rc)
3962 		return (rc);
3963 
3964 	wrq->adapter = sc;
3965 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
3966 	TAILQ_INIT(&wrq->incomplete_wrs);
3967 	STAILQ_INIT(&wrq->wr_list);
3968 	wrq->nwr_pending = 0;
3969 	wrq->ndesc_needed = 0;
3970 
3971 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3972 	    &wrq->eq.ba, "bus address of descriptor ring");
3973 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3974 	    wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len,
3975 	    "desc ring size in bytes");
3976 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3977 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3978 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3979 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3980 	    "consumer index");
3981 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3982 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3983 	    "producer index");
3984 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3985 	    wrq->eq.sidx, "status page index");
3986 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
3987 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
3988 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
3989 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
3990 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
3991 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
3992 
3993 	return (rc);
3994 }
3995 
3996 static int
3997 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3998 {
3999 	int rc;
4000 
4001 	rc = free_eq(sc, &wrq->eq);
4002 	if (rc)
4003 		return (rc);
4004 
4005 	bzero(wrq, sizeof(*wrq));
4006 	return (0);
4007 }
4008 
4009 static int
4010 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
4011     struct sysctl_oid *oid)
4012 {
4013 	int rc;
4014 	struct port_info *pi = vi->pi;
4015 	struct adapter *sc = pi->adapter;
4016 	struct sge_eq *eq = &txq->eq;
4017 	char name[16];
4018 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4019 
4020 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
4021 	    M_CXGBE, M_WAITOK);
4022 	if (rc != 0) {
4023 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
4024 		return (rc);
4025 	}
4026 
4027 	rc = alloc_eq(sc, vi, eq);
4028 	if (rc != 0) {
4029 		mp_ring_free(txq->r);
4030 		txq->r = NULL;
4031 		return (rc);
4032 	}
4033 
4034 	/* Can't fail after this point. */
4035 
4036 	if (idx == 0)
4037 		sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4038 	else
4039 		KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4040 		    ("eq_base mismatch"));
4041 	KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4042 	    ("PF with non-zero eq_base"));
4043 
4044 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4045 	txq->ifp = vi->ifp;
4046 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4047 	if (sc->flags & IS_VF)
4048 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4049 		    V_TXPKT_INTF(pi->tx_chan));
4050 	else
4051 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
4052 		    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4053 		    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4054 	txq->tc_idx = -1;
4055 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4056 	    M_ZERO | M_WAITOK);
4057 
4058 	snprintf(name, sizeof(name), "%d", idx);
4059 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
4060 	    NULL, "tx queue");
4061 	children = SYSCTL_CHILDREN(oid);
4062 
4063 	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
4064 	    &eq->ba, "bus address of descriptor ring");
4065 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4066 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4067 	    "desc ring size in bytes");
4068 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4069 	    &eq->abs_id, 0, "absolute id of the queue");
4070 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4071 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4072 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
4073 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
4074 	    "consumer index");
4075 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
4076 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
4077 	    "producer index");
4078 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4079 	    eq->sidx, "status page index");
4080 
4081 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
4082 	    CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I",
4083 	    "traffic class (-1 means none)");
4084 
4085 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4086 	    &txq->txcsum, "# of times hardware assisted with checksum");
4087 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
4088 	    CTLFLAG_RD, &txq->vlan_insertion,
4089 	    "# of times hardware inserted 802.1Q tag");
4090 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4091 	    &txq->tso_wrs, "# of TSO work requests");
4092 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4093 	    &txq->imm_wrs, "# of work requests with immediate data");
4094 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4095 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4096 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4097 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4098 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
4099 	    CTLFLAG_RD, &txq->txpkts0_wrs,
4100 	    "# of txpkts (type 0) work requests");
4101 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
4102 	    CTLFLAG_RD, &txq->txpkts1_wrs,
4103 	    "# of txpkts (type 1) work requests");
4104 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
4105 	    CTLFLAG_RD, &txq->txpkts0_pkts,
4106 	    "# of frames tx'd using type0 txpkts work requests");
4107 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
4108 	    CTLFLAG_RD, &txq->txpkts1_pkts,
4109 	    "# of frames tx'd using type1 txpkts work requests");
4110 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4111 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4112 
4113 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
4114 	    CTLFLAG_RD, &txq->r->enqueues,
4115 	    "# of enqueues to the mp_ring for this queue");
4116 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
4117 	    CTLFLAG_RD, &txq->r->drops,
4118 	    "# of drops in the mp_ring for this queue");
4119 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
4120 	    CTLFLAG_RD, &txq->r->starts,
4121 	    "# of normal consumer starts in the mp_ring for this queue");
4122 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
4123 	    CTLFLAG_RD, &txq->r->stalls,
4124 	    "# of consumer stalls in the mp_ring for this queue");
4125 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
4126 	    CTLFLAG_RD, &txq->r->restarts,
4127 	    "# of consumer restarts in the mp_ring for this queue");
4128 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
4129 	    CTLFLAG_RD, &txq->r->abdications,
4130 	    "# of consumer abdications in the mp_ring for this queue");
4131 
4132 	return (0);
4133 }
4134 
4135 static int
4136 free_txq(struct vi_info *vi, struct sge_txq *txq)
4137 {
4138 	int rc;
4139 	struct adapter *sc = vi->pi->adapter;
4140 	struct sge_eq *eq = &txq->eq;
4141 
4142 	rc = free_eq(sc, eq);
4143 	if (rc)
4144 		return (rc);
4145 
4146 	sglist_free(txq->gl);
4147 	free(txq->sdesc, M_CXGBE);
4148 	mp_ring_free(txq->r);
4149 
4150 	bzero(txq, sizeof(*txq));
4151 	return (0);
4152 }
4153 
4154 static void
4155 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4156 {
4157 	bus_addr_t *ba = arg;
4158 
4159 	KASSERT(nseg == 1,
4160 	    ("%s meant for single segment mappings only.", __func__));
4161 
4162 	*ba = error ? 0 : segs->ds_addr;
4163 }
4164 
4165 static inline void
4166 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4167 {
4168 	uint32_t n, v;
4169 
4170 	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
4171 	MPASS(n > 0);
4172 
4173 	wmb();
4174 	v = fl->dbval | V_PIDX(n);
4175 	if (fl->udb)
4176 		*fl->udb = htole32(v);
4177 	else
4178 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4179 	IDXINCR(fl->dbidx, n, fl->sidx);
4180 }
4181 
4182 /*
4183  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4184  * recycled do not count towards this allocation budget.
4185  *
4186  * Returns non-zero to indicate that this freelist should be added to the list
4187  * of starving freelists.
4188  */
4189 static int
4190 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4191 {
4192 	__be64 *d;
4193 	struct fl_sdesc *sd;
4194 	uintptr_t pa;
4195 	caddr_t cl;
4196 	struct cluster_layout *cll;
4197 	struct sw_zone_info *swz;
4198 	struct cluster_metadata *clm;
4199 	uint16_t max_pidx;
4200 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
4201 
4202 	FL_LOCK_ASSERT_OWNED(fl);
4203 
4204 	/*
4205 	 * We always stop at the beginning of the hardware descriptor that's just
4206 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
4207 	 * which would mean an empty freelist to the chip.
4208 	 */
4209 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
4210 	if (fl->pidx == max_pidx * 8)
4211 		return (0);
4212 
4213 	d = &fl->desc[fl->pidx];
4214 	sd = &fl->sdesc[fl->pidx];
4215 	cll = &fl->cll_def;	/* default layout */
4216 	swz = &sc->sge.sw_zone_info[cll->zidx];
4217 
4218 	while (n > 0) {
4219 
4220 		if (sd->cl != NULL) {
4221 
4222 			if (sd->nmbuf == 0) {
4223 				/*
4224 				 * Fast recycle without involving any atomics on
4225 				 * the cluster's metadata (if the cluster has
4226 				 * metadata).  This happens when all frames
4227 				 * received in the cluster were small enough to
4228 				 * fit within a single mbuf each.
4229 				 */
4230 				fl->cl_fast_recycled++;
4231 #ifdef INVARIANTS
4232 				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
4233 				if (clm != NULL)
4234 					MPASS(clm->refcount == 1);
4235 #endif
4236 				goto recycled_fast;
4237 			}
4238 
4239 			/*
4240 			 * Cluster is guaranteed to have metadata.  Clusters
4241 			 * without metadata always take the fast recycle path
4242 			 * when they're recycled.
4243 			 */
4244 			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
4245 			MPASS(clm != NULL);
4246 
4247 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4248 				fl->cl_recycled++;
4249 				counter_u64_add(extfree_rels, 1);
4250 				goto recycled;
4251 			}
4252 			sd->cl = NULL;	/* gave up my reference */
4253 		}
4254 		MPASS(sd->cl == NULL);
4255 alloc:
4256 		cl = uma_zalloc(swz->zone, M_NOWAIT);
4257 		if (__predict_false(cl == NULL)) {
4258 			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
4259 			    fl->cll_def.zidx == fl->cll_alt.zidx)
4260 				break;
4261 
4262 			/* fall back to the safe zone */
4263 			cll = &fl->cll_alt;
4264 			swz = &sc->sge.sw_zone_info[cll->zidx];
4265 			goto alloc;
4266 		}
4267 		fl->cl_allocated++;
4268 		n--;
4269 
4270 		pa = pmap_kextract((vm_offset_t)cl);
4271 		pa += cll->region1;
4272 		sd->cl = cl;
4273 		sd->cll = *cll;
4274 		*d = htobe64(pa | cll->hwidx);
4275 		clm = cl_metadata(sc, fl, cll, cl);
4276 		if (clm != NULL) {
4277 recycled:
4278 #ifdef INVARIANTS
4279 			clm->sd = sd;
4280 #endif
4281 			clm->refcount = 1;
4282 		}
4283 		sd->nmbuf = 0;
4284 recycled_fast:
4285 		d++;
4286 		sd++;
4287 		if (__predict_false(++fl->pidx % 8 == 0)) {
4288 			uint16_t pidx = fl->pidx / 8;
4289 
4290 			if (__predict_false(pidx == fl->sidx)) {
4291 				fl->pidx = 0;
4292 				pidx = 0;
4293 				sd = fl->sdesc;
4294 				d = fl->desc;
4295 			}
4296 			if (pidx == max_pidx)
4297 				break;
4298 
4299 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
4300 				ring_fl_db(sc, fl);
4301 		}
4302 	}
4303 
4304 	if (fl->pidx / 8 != fl->dbidx)
4305 		ring_fl_db(sc, fl);
4306 
4307 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
4308 }
4309 
4310 /*
4311  * Attempt to refill all starving freelists.
4312  */
4313 static void
4314 refill_sfl(void *arg)
4315 {
4316 	struct adapter *sc = arg;
4317 	struct sge_fl *fl, *fl_temp;
4318 
4319 	mtx_assert(&sc->sfl_lock, MA_OWNED);
4320 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
4321 		FL_LOCK(fl);
4322 		refill_fl(sc, fl, 64);
4323 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
4324 			TAILQ_REMOVE(&sc->sfl, fl, link);
4325 			fl->flags &= ~FL_STARVING;
4326 		}
4327 		FL_UNLOCK(fl);
4328 	}
4329 
4330 	if (!TAILQ_EMPTY(&sc->sfl))
4331 		callout_schedule(&sc->sfl_callout, hz / 5);
4332 }
4333 
4334 static int
4335 alloc_fl_sdesc(struct sge_fl *fl)
4336 {
4337 
4338 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
4339 	    M_ZERO | M_WAITOK);
4340 
4341 	return (0);
4342 }
4343 
4344 static void
4345 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
4346 {
4347 	struct fl_sdesc *sd;
4348 	struct cluster_metadata *clm;
4349 	struct cluster_layout *cll;
4350 	int i;
4351 
4352 	sd = fl->sdesc;
4353 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
4354 		if (sd->cl == NULL)
4355 			continue;
4356 
4357 		cll = &sd->cll;
4358 		clm = cl_metadata(sc, fl, cll, sd->cl);
4359 		if (sd->nmbuf == 0)
4360 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
4361 		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4362 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
4363 			counter_u64_add(extfree_rels, 1);
4364 		}
4365 		sd->cl = NULL;
4366 	}
4367 
4368 	free(fl->sdesc, M_CXGBE);
4369 	fl->sdesc = NULL;
4370 }
4371 
4372 static inline void
4373 get_pkt_gl(struct mbuf *m, struct sglist *gl)
4374 {
4375 	int rc;
4376 
4377 	M_ASSERTPKTHDR(m);
4378 
4379 	sglist_reset(gl);
4380 	rc = sglist_append_mbuf(gl, m);
4381 	if (__predict_false(rc != 0)) {
4382 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
4383 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
4384 	}
4385 
4386 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
4387 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
4388 	    mbuf_nsegs(m), gl->sg_nseg));
4389 	KASSERT(gl->sg_nseg > 0 &&
4390 	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
4391 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
4392 		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
4393 }
4394 
4395 /*
4396  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
4397  */
4398 static inline u_int
4399 txpkt_len16(u_int nsegs, u_int tso)
4400 {
4401 	u_int n;
4402 
4403 	MPASS(nsegs > 0);
4404 
4405 	nsegs--; /* first segment is part of ulptx_sgl */
4406 	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
4407 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4408 	if (tso)
4409 		n += sizeof(struct cpl_tx_pkt_lso_core);
4410 
4411 	return (howmany(n, 16));
4412 }
4413 
4414 /*
4415  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
4416  * request header.
4417  */
4418 static inline u_int
4419 txpkt_vm_len16(u_int nsegs, u_int tso)
4420 {
4421 	u_int n;
4422 
4423 	MPASS(nsegs > 0);
4424 
4425 	nsegs--; /* first segment is part of ulptx_sgl */
4426 	n = sizeof(struct fw_eth_tx_pkt_vm_wr) +
4427 	    sizeof(struct cpl_tx_pkt_core) +
4428 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4429 	if (tso)
4430 		n += sizeof(struct cpl_tx_pkt_lso_core);
4431 
4432 	return (howmany(n, 16));
4433 }
4434 
4435 /*
4436  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
4437  * request header.
4438  */
4439 static inline u_int
4440 txpkts0_len16(u_int nsegs)
4441 {
4442 	u_int n;
4443 
4444 	MPASS(nsegs > 0);
4445 
4446 	nsegs--; /* first segment is part of ulptx_sgl */
4447 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
4448 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
4449 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
4450 
4451 	return (howmany(n, 16));
4452 }
4453 
4454 /*
4455  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
4456  * request header.
4457  */
4458 static inline u_int
4459 txpkts1_len16(void)
4460 {
4461 	u_int n;
4462 
4463 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
4464 
4465 	return (howmany(n, 16));
4466 }
4467 
4468 static inline u_int
4469 imm_payload(u_int ndesc)
4470 {
4471 	u_int n;
4472 
4473 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
4474 	    sizeof(struct cpl_tx_pkt_core);
4475 
4476 	return (n);
4477 }
4478 
4479 /*
4480  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
4481  * software descriptor, and advance the pidx.  It is guaranteed that enough
4482  * descriptors are available.
4483  *
4484  * The return value is the # of hardware descriptors used.
4485  */
4486 static u_int
4487 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq,
4488     struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available)
4489 {
4490 	struct sge_eq *eq = &txq->eq;
4491 	struct tx_sdesc *txsd;
4492 	struct cpl_tx_pkt_core *cpl;
4493 	uint32_t ctrl;	/* used in many unrelated places */
4494 	uint64_t ctrl1;
4495 	int csum_type, len16, ndesc, pktlen, nsegs;
4496 	caddr_t dst;
4497 
4498 	TXQ_LOCK_ASSERT_OWNED(txq);
4499 	M_ASSERTPKTHDR(m0);
4500 	MPASS(available > 0 && available < eq->sidx);
4501 
4502 	len16 = mbuf_len16(m0);
4503 	nsegs = mbuf_nsegs(m0);
4504 	pktlen = m0->m_pkthdr.len;
4505 	ctrl = sizeof(struct cpl_tx_pkt_core);
4506 	if (needs_tso(m0))
4507 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4508 	ndesc = howmany(len16, EQ_ESIZE / 16);
4509 	MPASS(ndesc <= available);
4510 
4511 	/* Firmware work request header */
4512 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4513 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
4514 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4515 
4516 	ctrl = V_FW_WR_LEN16(len16);
4517 	wr->equiq_to_len16 = htobe32(ctrl);
4518 	wr->r3[0] = 0;
4519 	wr->r3[1] = 0;
4520 
4521 	/*
4522 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
4523 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
4524 	 * simpler to always copy it rather than making it
4525 	 * conditional.  Also, it seems that we do not have to set
4526 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
4527 	 */
4528 	m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst);
4529 
4530 	csum_type = -1;
4531 	if (needs_tso(m0)) {
4532 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4533 
4534 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4535 		    m0->m_pkthdr.l4hlen > 0,
4536 		    ("%s: mbuf %p needs TSO but missing header lengths",
4537 			__func__, m0));
4538 
4539 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4540 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4541 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4542 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4543 			ctrl |= V_LSO_ETHHDR_LEN(1);
4544 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4545 			ctrl |= F_LSO_IPV6;
4546 
4547 		lso->lso_ctrl = htobe32(ctrl);
4548 		lso->ipid_ofst = htobe16(0);
4549 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4550 		lso->seqno_offset = htobe32(0);
4551 		lso->len = htobe32(pktlen);
4552 
4553 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4554 			csum_type = TX_CSUM_TCPIP6;
4555 		else
4556 			csum_type = TX_CSUM_TCPIP;
4557 
4558 		cpl = (void *)(lso + 1);
4559 
4560 		txq->tso_wrs++;
4561 	} else {
4562 		if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP)
4563 			csum_type = TX_CSUM_TCPIP;
4564 		else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP)
4565 			csum_type = TX_CSUM_UDPIP;
4566 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP)
4567 			csum_type = TX_CSUM_TCPIP6;
4568 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP)
4569 			csum_type = TX_CSUM_UDPIP6;
4570 #if defined(INET)
4571 		else if (m0->m_pkthdr.csum_flags & CSUM_IP) {
4572 			/*
4573 			 * XXX: The firmware appears to stomp on the
4574 			 * fragment/flags field of the IP header when
4575 			 * using TX_CSUM_IP.  Fall back to doing
4576 			 * software checksums.
4577 			 */
4578 			u_short *sump;
4579 			struct mbuf *m;
4580 			int offset;
4581 
4582 			m = m0;
4583 			offset = 0;
4584 			sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen +
4585 			    offsetof(struct ip, ip_sum));
4586 			*sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen +
4587 			    m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen);
4588 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
4589 		}
4590 #endif
4591 
4592 		cpl = (void *)(wr + 1);
4593 	}
4594 
4595 	/* Checksum offload */
4596 	ctrl1 = 0;
4597 	if (needs_l3_csum(m0) == 0)
4598 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4599 	if (csum_type >= 0) {
4600 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0,
4601 	    ("%s: mbuf %p needs checksum offload but missing header lengths",
4602 			__func__, m0));
4603 
4604 		if (chip_id(sc) <= CHELSIO_T5) {
4605 			ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4606 			    ETHER_HDR_LEN);
4607 		} else {
4608 			ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4609 			    ETHER_HDR_LEN);
4610 		}
4611 		ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen);
4612 		ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type);
4613 	} else
4614 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4615 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4616 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4617 		txq->txcsum++;	/* some hardware assistance provided */
4618 
4619 	/* VLAN tag insertion */
4620 	if (needs_vlan_insertion(m0)) {
4621 		ctrl1 |= F_TXPKT_VLAN_VLD |
4622 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4623 		txq->vlan_insertion++;
4624 	}
4625 
4626 	/* CPL header */
4627 	cpl->ctrl0 = txq->cpl_ctrl0;
4628 	cpl->pack = 0;
4629 	cpl->len = htobe16(pktlen);
4630 	cpl->ctrl1 = htobe64(ctrl1);
4631 
4632 	/* SGL */
4633 	dst = (void *)(cpl + 1);
4634 
4635 	/*
4636 	 * A packet using TSO will use up an entire descriptor for the
4637 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
4638 	 * If this descriptor is the last descriptor in the ring, wrap
4639 	 * around to the front of the ring explicitly for the start of
4640 	 * the sgl.
4641 	 */
4642 	if (dst == (void *)&eq->desc[eq->sidx]) {
4643 		dst = (void *)&eq->desc[0];
4644 		write_gl_to_txd(txq, m0, &dst, 0);
4645 	} else
4646 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4647 	txq->sgl_wrs++;
4648 
4649 	txq->txpkt_wrs++;
4650 
4651 	txsd = &txq->sdesc[eq->pidx];
4652 	txsd->m = m0;
4653 	txsd->desc_used = ndesc;
4654 
4655 	return (ndesc);
4656 }
4657 
4658 /*
4659  * Write a raw WR to the hardware descriptors, update the software
4660  * descriptor, and advance the pidx.  It is guaranteed that enough
4661  * descriptors are available.
4662  *
4663  * The return value is the # of hardware descriptors used.
4664  */
4665 static u_int
4666 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
4667 {
4668 	struct sge_eq *eq = &txq->eq;
4669 	struct tx_sdesc *txsd;
4670 	struct mbuf *m;
4671 	caddr_t dst;
4672 	int len16, ndesc;
4673 
4674 	len16 = mbuf_len16(m0);
4675 	ndesc = howmany(len16, EQ_ESIZE / 16);
4676 	MPASS(ndesc <= available);
4677 
4678 	dst = wr;
4679 	for (m = m0; m != NULL; m = m->m_next)
4680 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4681 
4682 	txq->raw_wrs++;
4683 
4684 	txsd = &txq->sdesc[eq->pidx];
4685 	txsd->m = m0;
4686 	txsd->desc_used = ndesc;
4687 
4688 	return (ndesc);
4689 }
4690 
4691 /*
4692  * Write a txpkt WR for this packet to the hardware descriptors, update the
4693  * software descriptor, and advance the pidx.  It is guaranteed that enough
4694  * descriptors are available.
4695  *
4696  * The return value is the # of hardware descriptors used.
4697  */
4698 static u_int
4699 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
4700     struct mbuf *m0, u_int available)
4701 {
4702 	struct sge_eq *eq = &txq->eq;
4703 	struct tx_sdesc *txsd;
4704 	struct cpl_tx_pkt_core *cpl;
4705 	uint32_t ctrl;	/* used in many unrelated places */
4706 	uint64_t ctrl1;
4707 	int len16, ndesc, pktlen, nsegs;
4708 	caddr_t dst;
4709 
4710 	TXQ_LOCK_ASSERT_OWNED(txq);
4711 	M_ASSERTPKTHDR(m0);
4712 	MPASS(available > 0 && available < eq->sidx);
4713 
4714 	len16 = mbuf_len16(m0);
4715 	nsegs = mbuf_nsegs(m0);
4716 	pktlen = m0->m_pkthdr.len;
4717 	ctrl = sizeof(struct cpl_tx_pkt_core);
4718 	if (needs_tso(m0))
4719 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4720 	else if (pktlen <= imm_payload(2) && available >= 2) {
4721 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
4722 		ctrl += pktlen;
4723 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
4724 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
4725 		nsegs = 0;
4726 	}
4727 	ndesc = howmany(len16, EQ_ESIZE / 16);
4728 	MPASS(ndesc <= available);
4729 
4730 	/* Firmware work request header */
4731 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4732 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
4733 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4734 
4735 	ctrl = V_FW_WR_LEN16(len16);
4736 	wr->equiq_to_len16 = htobe32(ctrl);
4737 	wr->r3 = 0;
4738 
4739 	if (needs_tso(m0)) {
4740 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4741 
4742 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4743 		    m0->m_pkthdr.l4hlen > 0,
4744 		    ("%s: mbuf %p needs TSO but missing header lengths",
4745 			__func__, m0));
4746 
4747 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4748 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4749 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4750 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4751 			ctrl |= V_LSO_ETHHDR_LEN(1);
4752 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4753 			ctrl |= F_LSO_IPV6;
4754 
4755 		lso->lso_ctrl = htobe32(ctrl);
4756 		lso->ipid_ofst = htobe16(0);
4757 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4758 		lso->seqno_offset = htobe32(0);
4759 		lso->len = htobe32(pktlen);
4760 
4761 		cpl = (void *)(lso + 1);
4762 
4763 		txq->tso_wrs++;
4764 	} else
4765 		cpl = (void *)(wr + 1);
4766 
4767 	/* Checksum offload */
4768 	ctrl1 = 0;
4769 	if (needs_l3_csum(m0) == 0)
4770 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4771 	if (needs_l4_csum(m0) == 0)
4772 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4773 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4774 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4775 		txq->txcsum++;	/* some hardware assistance provided */
4776 
4777 	/* VLAN tag insertion */
4778 	if (needs_vlan_insertion(m0)) {
4779 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4780 		txq->vlan_insertion++;
4781 	}
4782 
4783 	/* CPL header */
4784 	cpl->ctrl0 = txq->cpl_ctrl0;
4785 	cpl->pack = 0;
4786 	cpl->len = htobe16(pktlen);
4787 	cpl->ctrl1 = htobe64(ctrl1);
4788 
4789 	/* SGL */
4790 	dst = (void *)(cpl + 1);
4791 	if (nsegs > 0) {
4792 
4793 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4794 		txq->sgl_wrs++;
4795 	} else {
4796 		struct mbuf *m;
4797 
4798 		for (m = m0; m != NULL; m = m->m_next) {
4799 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4800 #ifdef INVARIANTS
4801 			pktlen -= m->m_len;
4802 #endif
4803 		}
4804 #ifdef INVARIANTS
4805 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
4806 #endif
4807 		txq->imm_wrs++;
4808 	}
4809 
4810 	txq->txpkt_wrs++;
4811 
4812 	txsd = &txq->sdesc[eq->pidx];
4813 	txsd->m = m0;
4814 	txsd->desc_used = ndesc;
4815 
4816 	return (ndesc);
4817 }
4818 
4819 static int
4820 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
4821 {
4822 	u_int needed, nsegs1, nsegs2, l1, l2;
4823 
4824 	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
4825 		return (1);
4826 
4827 	nsegs1 = mbuf_nsegs(m);
4828 	nsegs2 = mbuf_nsegs(n);
4829 	if (nsegs1 + nsegs2 == 2) {
4830 		txp->wr_type = 1;
4831 		l1 = l2 = txpkts1_len16();
4832 	} else {
4833 		txp->wr_type = 0;
4834 		l1 = txpkts0_len16(nsegs1);
4835 		l2 = txpkts0_len16(nsegs2);
4836 	}
4837 	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
4838 	needed = howmany(txp->len16, EQ_ESIZE / 16);
4839 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4840 		return (1);
4841 
4842 	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
4843 	if (txp->plen > 65535)
4844 		return (1);
4845 
4846 	txp->npkt = 2;
4847 	set_mbuf_len16(m, l1);
4848 	set_mbuf_len16(n, l2);
4849 
4850 	return (0);
4851 }
4852 
4853 static int
4854 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
4855 {
4856 	u_int plen, len16, needed, nsegs;
4857 
4858 	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
4859 
4860 	if (cannot_use_txpkts(m))
4861 		return (1);
4862 
4863 	nsegs = mbuf_nsegs(m);
4864 	if (txp->wr_type == 1 && nsegs != 1)
4865 		return (1);
4866 
4867 	plen = txp->plen + m->m_pkthdr.len;
4868 	if (plen > 65535)
4869 		return (1);
4870 
4871 	if (txp->wr_type == 0)
4872 		len16 = txpkts0_len16(nsegs);
4873 	else
4874 		len16 = txpkts1_len16();
4875 	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4876 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4877 		return (1);
4878 
4879 	txp->npkt++;
4880 	txp->plen = plen;
4881 	txp->len16 += len16;
4882 	set_mbuf_len16(m, len16);
4883 
4884 	return (0);
4885 }
4886 
4887 /*
4888  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
4889  * the software descriptor, and advance the pidx.  It is guaranteed that enough
4890  * descriptors are available.
4891  *
4892  * The return value is the # of hardware descriptors used.
4893  */
4894 static u_int
4895 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
4896     struct mbuf *m0, const struct txpkts *txp, u_int available)
4897 {
4898 	struct sge_eq *eq = &txq->eq;
4899 	struct tx_sdesc *txsd;
4900 	struct cpl_tx_pkt_core *cpl;
4901 	uint32_t ctrl;
4902 	uint64_t ctrl1;
4903 	int ndesc, checkwrap;
4904 	struct mbuf *m;
4905 	void *flitp;
4906 
4907 	TXQ_LOCK_ASSERT_OWNED(txq);
4908 	MPASS(txp->npkt > 0);
4909 	MPASS(txp->plen < 65536);
4910 	MPASS(m0 != NULL);
4911 	MPASS(m0->m_nextpkt != NULL);
4912 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
4913 	MPASS(available > 0 && available < eq->sidx);
4914 
4915 	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
4916 	MPASS(ndesc <= available);
4917 
4918 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4919 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4920 	ctrl = V_FW_WR_LEN16(txp->len16);
4921 	wr->equiq_to_len16 = htobe32(ctrl);
4922 	wr->plen = htobe16(txp->plen);
4923 	wr->npkt = txp->npkt;
4924 	wr->r3 = 0;
4925 	wr->type = txp->wr_type;
4926 	flitp = wr + 1;
4927 
4928 	/*
4929 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
4930 	 * set then we know the WR is going to wrap around somewhere.  We'll
4931 	 * check for that at appropriate points.
4932 	 */
4933 	checkwrap = eq->sidx - ndesc < eq->pidx;
4934 	for (m = m0; m != NULL; m = m->m_nextpkt) {
4935 		if (txp->wr_type == 0) {
4936 			struct ulp_txpkt *ulpmc;
4937 			struct ulptx_idata *ulpsc;
4938 
4939 			/* ULP master command */
4940 			ulpmc = flitp;
4941 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
4942 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
4943 			ulpmc->len = htobe32(mbuf_len16(m));
4944 
4945 			/* ULP subcommand */
4946 			ulpsc = (void *)(ulpmc + 1);
4947 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
4948 			    F_ULP_TX_SC_MORE);
4949 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
4950 
4951 			cpl = (void *)(ulpsc + 1);
4952 			if (checkwrap &&
4953 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
4954 				cpl = (void *)&eq->desc[0];
4955 		} else {
4956 			cpl = flitp;
4957 		}
4958 
4959 		/* Checksum offload */
4960 		ctrl1 = 0;
4961 		if (needs_l3_csum(m) == 0)
4962 			ctrl1 |= F_TXPKT_IPCSUM_DIS;
4963 		if (needs_l4_csum(m) == 0)
4964 			ctrl1 |= F_TXPKT_L4CSUM_DIS;
4965 		if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4966 		    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4967 			txq->txcsum++;	/* some hardware assistance provided */
4968 
4969 		/* VLAN tag insertion */
4970 		if (needs_vlan_insertion(m)) {
4971 			ctrl1 |= F_TXPKT_VLAN_VLD |
4972 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
4973 			txq->vlan_insertion++;
4974 		}
4975 
4976 		/* CPL header */
4977 		cpl->ctrl0 = txq->cpl_ctrl0;
4978 		cpl->pack = 0;
4979 		cpl->len = htobe16(m->m_pkthdr.len);
4980 		cpl->ctrl1 = htobe64(ctrl1);
4981 
4982 		flitp = cpl + 1;
4983 		if (checkwrap &&
4984 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
4985 			flitp = (void *)&eq->desc[0];
4986 
4987 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
4988 
4989 	}
4990 
4991 	if (txp->wr_type == 0) {
4992 		txq->txpkts0_pkts += txp->npkt;
4993 		txq->txpkts0_wrs++;
4994 	} else {
4995 		txq->txpkts1_pkts += txp->npkt;
4996 		txq->txpkts1_wrs++;
4997 	}
4998 
4999 	txsd = &txq->sdesc[eq->pidx];
5000 	txsd->m = m0;
5001 	txsd->desc_used = ndesc;
5002 
5003 	return (ndesc);
5004 }
5005 
5006 /*
5007  * If the SGL ends on an address that is not 16 byte aligned, this function will
5008  * add a 0 filled flit at the end.
5009  */
5010 static void
5011 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
5012 {
5013 	struct sge_eq *eq = &txq->eq;
5014 	struct sglist *gl = txq->gl;
5015 	struct sglist_seg *seg;
5016 	__be64 *flitp, *wrap;
5017 	struct ulptx_sgl *usgl;
5018 	int i, nflits, nsegs;
5019 
5020 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
5021 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
5022 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5023 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5024 
5025 	get_pkt_gl(m, gl);
5026 	nsegs = gl->sg_nseg;
5027 	MPASS(nsegs > 0);
5028 
5029 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
5030 	flitp = (__be64 *)(*to);
5031 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
5032 	seg = &gl->sg_segs[0];
5033 	usgl = (void *)flitp;
5034 
5035 	/*
5036 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
5037 	 * ring, so we're at least 16 bytes away from the status page.  There is
5038 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
5039 	 */
5040 
5041 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
5042 	    V_ULPTX_NSGE(nsegs));
5043 	usgl->len0 = htobe32(seg->ss_len);
5044 	usgl->addr0 = htobe64(seg->ss_paddr);
5045 	seg++;
5046 
5047 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
5048 
5049 		/* Won't wrap around at all */
5050 
5051 		for (i = 0; i < nsegs - 1; i++, seg++) {
5052 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
5053 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
5054 		}
5055 		if (i & 1)
5056 			usgl->sge[i / 2].len[1] = htobe32(0);
5057 		flitp += nflits;
5058 	} else {
5059 
5060 		/* Will wrap somewhere in the rest of the SGL */
5061 
5062 		/* 2 flits already written, write the rest flit by flit */
5063 		flitp = (void *)(usgl + 1);
5064 		for (i = 0; i < nflits - 2; i++) {
5065 			if (flitp == wrap)
5066 				flitp = (void *)eq->desc;
5067 			*flitp++ = get_flit(seg, nsegs - 1, i);
5068 		}
5069 	}
5070 
5071 	if (nflits & 1) {
5072 		MPASS(((uintptr_t)flitp) & 0xf);
5073 		*flitp++ = 0;
5074 	}
5075 
5076 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
5077 	if (__predict_false(flitp == wrap))
5078 		*to = (void *)eq->desc;
5079 	else
5080 		*to = (void *)flitp;
5081 }
5082 
5083 static inline void
5084 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
5085 {
5086 
5087 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5088 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5089 
5090 	if (__predict_true((uintptr_t)(*to) + len <=
5091 	    (uintptr_t)&eq->desc[eq->sidx])) {
5092 		bcopy(from, *to, len);
5093 		(*to) += len;
5094 	} else {
5095 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
5096 
5097 		bcopy(from, *to, portion);
5098 		from += portion;
5099 		portion = len - portion;	/* remaining */
5100 		bcopy(from, (void *)eq->desc, portion);
5101 		(*to) = (caddr_t)eq->desc + portion;
5102 	}
5103 }
5104 
5105 static inline void
5106 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
5107 {
5108 	u_int db;
5109 
5110 	MPASS(n > 0);
5111 
5112 	db = eq->doorbells;
5113 	if (n > 1)
5114 		clrbit(&db, DOORBELL_WCWR);
5115 	wmb();
5116 
5117 	switch (ffs(db) - 1) {
5118 	case DOORBELL_UDB:
5119 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
5120 		break;
5121 
5122 	case DOORBELL_WCWR: {
5123 		volatile uint64_t *dst, *src;
5124 		int i;
5125 
5126 		/*
5127 		 * Queues whose 128B doorbell segment fits in the page do not
5128 		 * use relative qid (udb_qid is always 0).  Only queues with
5129 		 * doorbell segments can do WCWR.
5130 		 */
5131 		KASSERT(eq->udb_qid == 0 && n == 1,
5132 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
5133 		    __func__, eq->doorbells, n, eq->dbidx, eq));
5134 
5135 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
5136 		    UDBS_DB_OFFSET);
5137 		i = eq->dbidx;
5138 		src = (void *)&eq->desc[i];
5139 		while (src != (void *)&eq->desc[i + 1])
5140 			*dst++ = *src++;
5141 		wmb();
5142 		break;
5143 	}
5144 
5145 	case DOORBELL_UDBWC:
5146 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
5147 		wmb();
5148 		break;
5149 
5150 	case DOORBELL_KDB:
5151 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
5152 		    V_QID(eq->cntxt_id) | V_PIDX(n));
5153 		break;
5154 	}
5155 
5156 	IDXINCR(eq->dbidx, n, eq->sidx);
5157 }
5158 
5159 static inline u_int
5160 reclaimable_tx_desc(struct sge_eq *eq)
5161 {
5162 	uint16_t hw_cidx;
5163 
5164 	hw_cidx = read_hw_cidx(eq);
5165 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
5166 }
5167 
5168 static inline u_int
5169 total_available_tx_desc(struct sge_eq *eq)
5170 {
5171 	uint16_t hw_cidx, pidx;
5172 
5173 	hw_cidx = read_hw_cidx(eq);
5174 	pidx = eq->pidx;
5175 
5176 	if (pidx == hw_cidx)
5177 		return (eq->sidx - 1);
5178 	else
5179 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
5180 }
5181 
5182 static inline uint16_t
5183 read_hw_cidx(struct sge_eq *eq)
5184 {
5185 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5186 	uint16_t cidx = spg->cidx;	/* stable snapshot */
5187 
5188 	return (be16toh(cidx));
5189 }
5190 
5191 /*
5192  * Reclaim 'n' descriptors approximately.
5193  */
5194 static u_int
5195 reclaim_tx_descs(struct sge_txq *txq, u_int n)
5196 {
5197 	struct tx_sdesc *txsd;
5198 	struct sge_eq *eq = &txq->eq;
5199 	u_int can_reclaim, reclaimed;
5200 
5201 	TXQ_LOCK_ASSERT_OWNED(txq);
5202 	MPASS(n > 0);
5203 
5204 	reclaimed = 0;
5205 	can_reclaim = reclaimable_tx_desc(eq);
5206 	while (can_reclaim && reclaimed < n) {
5207 		int ndesc;
5208 		struct mbuf *m, *nextpkt;
5209 
5210 		txsd = &txq->sdesc[eq->cidx];
5211 		ndesc = txsd->desc_used;
5212 
5213 		/* Firmware doesn't return "partial" credits. */
5214 		KASSERT(can_reclaim >= ndesc,
5215 		    ("%s: unexpected number of credits: %d, %d",
5216 		    __func__, can_reclaim, ndesc));
5217 		KASSERT(ndesc != 0,
5218 		    ("%s: descriptor with no credits: cidx %d",
5219 		    __func__, eq->cidx));
5220 
5221 		for (m = txsd->m; m != NULL; m = nextpkt) {
5222 			nextpkt = m->m_nextpkt;
5223 			m->m_nextpkt = NULL;
5224 			m_freem(m);
5225 		}
5226 		reclaimed += ndesc;
5227 		can_reclaim -= ndesc;
5228 		IDXINCR(eq->cidx, ndesc, eq->sidx);
5229 	}
5230 
5231 	return (reclaimed);
5232 }
5233 
5234 static void
5235 tx_reclaim(void *arg, int n)
5236 {
5237 	struct sge_txq *txq = arg;
5238 	struct sge_eq *eq = &txq->eq;
5239 
5240 	do {
5241 		if (TXQ_TRYLOCK(txq) == 0)
5242 			break;
5243 		n = reclaim_tx_descs(txq, 32);
5244 		if (eq->cidx == eq->pidx)
5245 			eq->equeqidx = eq->pidx;
5246 		TXQ_UNLOCK(txq);
5247 	} while (n > 0);
5248 }
5249 
5250 static __be64
5251 get_flit(struct sglist_seg *segs, int nsegs, int idx)
5252 {
5253 	int i = (idx / 3) * 2;
5254 
5255 	switch (idx % 3) {
5256 	case 0: {
5257 		uint64_t rc;
5258 
5259 		rc = (uint64_t)segs[i].ss_len << 32;
5260 		if (i + 1 < nsegs)
5261 			rc |= (uint64_t)(segs[i + 1].ss_len);
5262 
5263 		return (htobe64(rc));
5264 	}
5265 	case 1:
5266 		return (htobe64(segs[i].ss_paddr));
5267 	case 2:
5268 		return (htobe64(segs[i + 1].ss_paddr));
5269 	}
5270 
5271 	return (0);
5272 }
5273 
5274 static void
5275 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
5276 {
5277 	int8_t zidx, hwidx, idx;
5278 	uint16_t region1, region3;
5279 	int spare, spare_needed, n;
5280 	struct sw_zone_info *swz;
5281 	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
5282 
5283 	/*
5284 	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
5285 	 * large enough for the max payload and cluster metadata.  Otherwise
5286 	 * settle for the largest bufsize that leaves enough room in the cluster
5287 	 * for metadata.
5288 	 *
5289 	 * Without buffer packing: Look for the smallest zone which has a
5290 	 * bufsize large enough for the max payload.  Settle for the largest
5291 	 * bufsize available if there's nothing big enough for max payload.
5292 	 */
5293 	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
5294 	swz = &sc->sge.sw_zone_info[0];
5295 	hwidx = -1;
5296 	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
5297 		if (swz->size > largest_rx_cluster) {
5298 			if (__predict_true(hwidx != -1))
5299 				break;
5300 
5301 			/*
5302 			 * This is a misconfiguration.  largest_rx_cluster is
5303 			 * preventing us from finding a refill source.  See
5304 			 * dev.t5nex.<n>.buffer_sizes to figure out why.
5305 			 */
5306 			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
5307 			    " refill source for fl %p (dma %u).  Ignored.\n",
5308 			    largest_rx_cluster, fl, maxp);
5309 		}
5310 		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
5311 			hwb = &hwb_list[idx];
5312 			spare = swz->size - hwb->size;
5313 			if (spare < spare_needed)
5314 				continue;
5315 
5316 			hwidx = idx;		/* best option so far */
5317 			if (hwb->size >= maxp) {
5318 
5319 				if ((fl->flags & FL_BUF_PACKING) == 0)
5320 					goto done; /* stop looking (not packing) */
5321 
5322 				if (swz->size >= safest_rx_cluster)
5323 					goto done; /* stop looking (packing) */
5324 			}
5325 			break;		/* keep looking, next zone */
5326 		}
5327 	}
5328 done:
5329 	/* A usable hwidx has been located. */
5330 	MPASS(hwidx != -1);
5331 	hwb = &hwb_list[hwidx];
5332 	zidx = hwb->zidx;
5333 	swz = &sc->sge.sw_zone_info[zidx];
5334 	region1 = 0;
5335 	region3 = swz->size - hwb->size;
5336 
5337 	/*
5338 	 * Stay within this zone and see if there is a better match when mbuf
5339 	 * inlining is allowed.  Remember that the hwidx's are sorted in
5340 	 * decreasing order of size (so in increasing order of spare area).
5341 	 */
5342 	for (idx = hwidx; idx != -1; idx = hwb->next) {
5343 		hwb = &hwb_list[idx];
5344 		spare = swz->size - hwb->size;
5345 
5346 		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
5347 			break;
5348 
5349 		/*
5350 		 * Do not inline mbufs if doing so would violate the pad/pack
5351 		 * boundary alignment requirement.
5352 		 */
5353 		if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0)
5354 			continue;
5355 		if (fl->flags & FL_BUF_PACKING &&
5356 		    (MSIZE % sc->params.sge.pack_boundary) != 0)
5357 			continue;
5358 
5359 		if (spare < CL_METADATA_SIZE + MSIZE)
5360 			continue;
5361 		n = (spare - CL_METADATA_SIZE) / MSIZE;
5362 		if (n > howmany(hwb->size, maxp))
5363 			break;
5364 
5365 		hwidx = idx;
5366 		if (fl->flags & FL_BUF_PACKING) {
5367 			region1 = n * MSIZE;
5368 			region3 = spare - region1;
5369 		} else {
5370 			region1 = MSIZE;
5371 			region3 = spare - region1;
5372 			break;
5373 		}
5374 	}
5375 
5376 	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
5377 	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
5378 	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
5379 	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
5380 	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
5381 	    sc->sge.sw_zone_info[zidx].size,
5382 	    ("%s: bad buffer layout for fl %p, maxp %d. "
5383 		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5384 		sc->sge.sw_zone_info[zidx].size, region1,
5385 		sc->sge.hw_buf_info[hwidx].size, region3));
5386 	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
5387 		KASSERT(region3 >= CL_METADATA_SIZE,
5388 		    ("%s: no room for metadata.  fl %p, maxp %d; "
5389 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5390 		    sc->sge.sw_zone_info[zidx].size, region1,
5391 		    sc->sge.hw_buf_info[hwidx].size, region3));
5392 		KASSERT(region1 % MSIZE == 0,
5393 		    ("%s: bad mbuf region for fl %p, maxp %d. "
5394 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5395 		    sc->sge.sw_zone_info[zidx].size, region1,
5396 		    sc->sge.hw_buf_info[hwidx].size, region3));
5397 	}
5398 
5399 	fl->cll_def.zidx = zidx;
5400 	fl->cll_def.hwidx = hwidx;
5401 	fl->cll_def.region1 = region1;
5402 	fl->cll_def.region3 = region3;
5403 }
5404 
5405 static void
5406 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
5407 {
5408 	struct sge *s = &sc->sge;
5409 	struct hw_buf_info *hwb;
5410 	struct sw_zone_info *swz;
5411 	int spare;
5412 	int8_t hwidx;
5413 
5414 	if (fl->flags & FL_BUF_PACKING)
5415 		hwidx = s->safe_hwidx2;	/* with room for metadata */
5416 	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
5417 		hwidx = s->safe_hwidx2;
5418 		hwb = &s->hw_buf_info[hwidx];
5419 		swz = &s->sw_zone_info[hwb->zidx];
5420 		spare = swz->size - hwb->size;
5421 
5422 		/* no good if there isn't room for an mbuf as well */
5423 		if (spare < CL_METADATA_SIZE + MSIZE)
5424 			hwidx = s->safe_hwidx1;
5425 	} else
5426 		hwidx = s->safe_hwidx1;
5427 
5428 	if (hwidx == -1) {
5429 		/* No fallback source */
5430 		fl->cll_alt.hwidx = -1;
5431 		fl->cll_alt.zidx = -1;
5432 
5433 		return;
5434 	}
5435 
5436 	hwb = &s->hw_buf_info[hwidx];
5437 	swz = &s->sw_zone_info[hwb->zidx];
5438 	spare = swz->size - hwb->size;
5439 	fl->cll_alt.hwidx = hwidx;
5440 	fl->cll_alt.zidx = hwb->zidx;
5441 	if (allow_mbufs_in_cluster &&
5442 	    (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0))
5443 		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
5444 	else
5445 		fl->cll_alt.region1 = 0;
5446 	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
5447 }
5448 
5449 static void
5450 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
5451 {
5452 	mtx_lock(&sc->sfl_lock);
5453 	FL_LOCK(fl);
5454 	if ((fl->flags & FL_DOOMED) == 0) {
5455 		fl->flags |= FL_STARVING;
5456 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
5457 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
5458 	}
5459 	FL_UNLOCK(fl);
5460 	mtx_unlock(&sc->sfl_lock);
5461 }
5462 
5463 static void
5464 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
5465 {
5466 	struct sge_wrq *wrq = (void *)eq;
5467 
5468 	atomic_readandclear_int(&eq->equiq);
5469 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
5470 }
5471 
5472 static void
5473 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
5474 {
5475 	struct sge_txq *txq = (void *)eq;
5476 
5477 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
5478 
5479 	atomic_readandclear_int(&eq->equiq);
5480 	mp_ring_check_drainage(txq->r, 0);
5481 	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
5482 }
5483 
5484 static int
5485 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
5486     struct mbuf *m)
5487 {
5488 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
5489 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
5490 	struct adapter *sc = iq->adapter;
5491 	struct sge *s = &sc->sge;
5492 	struct sge_eq *eq;
5493 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
5494 		&handle_wrq_egr_update, &handle_eth_egr_update,
5495 		&handle_wrq_egr_update};
5496 
5497 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5498 	    rss->opcode));
5499 
5500 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
5501 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
5502 
5503 	return (0);
5504 }
5505 
5506 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
5507 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
5508     offsetof(struct cpl_fw6_msg, data));
5509 
5510 static int
5511 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
5512 {
5513 	struct adapter *sc = iq->adapter;
5514 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
5515 
5516 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5517 	    rss->opcode));
5518 
5519 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
5520 		const struct rss_header *rss2;
5521 
5522 		rss2 = (const struct rss_header *)&cpl->data[0];
5523 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
5524 	}
5525 
5526 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
5527 }
5528 
5529 /**
5530  *	t4_handle_wrerr_rpl - process a FW work request error message
5531  *	@adap: the adapter
5532  *	@rpl: start of the FW message
5533  */
5534 static int
5535 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
5536 {
5537 	u8 opcode = *(const u8 *)rpl;
5538 	const struct fw_error_cmd *e = (const void *)rpl;
5539 	unsigned int i;
5540 
5541 	if (opcode != FW_ERROR_CMD) {
5542 		log(LOG_ERR,
5543 		    "%s: Received WRERR_RPL message with opcode %#x\n",
5544 		    device_get_nameunit(adap->dev), opcode);
5545 		return (EINVAL);
5546 	}
5547 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
5548 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
5549 	    "non-fatal");
5550 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
5551 	case FW_ERROR_TYPE_EXCEPTION:
5552 		log(LOG_ERR, "exception info:\n");
5553 		for (i = 0; i < nitems(e->u.exception.info); i++)
5554 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
5555 			    be32toh(e->u.exception.info[i]));
5556 		log(LOG_ERR, "\n");
5557 		break;
5558 	case FW_ERROR_TYPE_HWMODULE:
5559 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
5560 		    be32toh(e->u.hwmodule.regaddr),
5561 		    be32toh(e->u.hwmodule.regval));
5562 		break;
5563 	case FW_ERROR_TYPE_WR:
5564 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
5565 		    be16toh(e->u.wr.cidx),
5566 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
5567 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
5568 		    be32toh(e->u.wr.eqid));
5569 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
5570 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
5571 			    e->u.wr.wrhdr[i]);
5572 		log(LOG_ERR, "\n");
5573 		break;
5574 	case FW_ERROR_TYPE_ACL:
5575 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
5576 		    be16toh(e->u.acl.cidx),
5577 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
5578 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
5579 		    be32toh(e->u.acl.eqid),
5580 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
5581 		    "MAC");
5582 		for (i = 0; i < nitems(e->u.acl.val); i++)
5583 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
5584 		log(LOG_ERR, "\n");
5585 		break;
5586 	default:
5587 		log(LOG_ERR, "type %#x\n",
5588 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
5589 		return (EINVAL);
5590 	}
5591 	return (0);
5592 }
5593 
5594 static int
5595 sysctl_uint16(SYSCTL_HANDLER_ARGS)
5596 {
5597 	uint16_t *id = arg1;
5598 	int i = *id;
5599 
5600 	return sysctl_handle_int(oidp, &i, 0, req);
5601 }
5602 
5603 static int
5604 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
5605 {
5606 	struct sge *s = arg1;
5607 	struct hw_buf_info *hwb = &s->hw_buf_info[0];
5608 	struct sw_zone_info *swz = &s->sw_zone_info[0];
5609 	int i, rc;
5610 	struct sbuf sb;
5611 	char c;
5612 
5613 	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
5614 	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
5615 		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
5616 			c = '*';
5617 		else
5618 			c = '\0';
5619 
5620 		sbuf_printf(&sb, "%u%c ", hwb->size, c);
5621 	}
5622 	sbuf_trim(&sb);
5623 	sbuf_finish(&sb);
5624 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
5625 	sbuf_delete(&sb);
5626 	return (rc);
5627 }
5628 
5629 #ifdef RATELIMIT
5630 /*
5631  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5632  */
5633 static inline u_int
5634 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
5635 {
5636 	u_int n;
5637 
5638 	MPASS(immhdrs > 0);
5639 
5640 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
5641 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
5642 	if (__predict_false(nsegs == 0))
5643 		goto done;
5644 
5645 	nsegs--; /* first segment is part of ulptx_sgl */
5646 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5647 	if (tso)
5648 		n += sizeof(struct cpl_tx_pkt_lso_core);
5649 
5650 done:
5651 	return (howmany(n, 16));
5652 }
5653 
5654 #define ETID_FLOWC_NPARAMS 6
5655 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
5656     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
5657 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
5658 
5659 static int
5660 send_etid_flowc_wr(struct cxgbe_snd_tag *cst, struct port_info *pi,
5661     struct vi_info *vi)
5662 {
5663 	struct wrq_cookie cookie;
5664 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
5665 	struct fw_flowc_wr *flowc;
5666 
5667 	mtx_assert(&cst->lock, MA_OWNED);
5668 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
5669 	    EO_FLOWC_PENDING);
5670 
5671 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLOWC_LEN16, &cookie);
5672 	if (__predict_false(flowc == NULL))
5673 		return (ENOMEM);
5674 
5675 	bzero(flowc, ETID_FLOWC_LEN);
5676 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
5677 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
5678 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
5679 	    V_FW_WR_FLOWID(cst->etid));
5680 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
5681 	flowc->mnemval[0].val = htobe32(pfvf);
5682 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
5683 	flowc->mnemval[1].val = htobe32(pi->tx_chan);
5684 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
5685 	flowc->mnemval[2].val = htobe32(pi->tx_chan);
5686 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
5687 	flowc->mnemval[3].val = htobe32(cst->iqid);
5688 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
5689 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
5690 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
5691 	flowc->mnemval[5].val = htobe32(cst->schedcl);
5692 
5693 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
5694 
5695 	cst->flags &= ~EO_FLOWC_PENDING;
5696 	cst->flags |= EO_FLOWC_RPL_PENDING;
5697 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
5698 	cst->tx_credits -= ETID_FLOWC_LEN16;
5699 
5700 	return (0);
5701 }
5702 
5703 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
5704 
5705 void
5706 send_etid_flush_wr(struct cxgbe_snd_tag *cst)
5707 {
5708 	struct fw_flowc_wr *flowc;
5709 	struct wrq_cookie cookie;
5710 
5711 	mtx_assert(&cst->lock, MA_OWNED);
5712 
5713 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLUSH_LEN16, &cookie);
5714 	if (__predict_false(flowc == NULL))
5715 		CXGBE_UNIMPLEMENTED(__func__);
5716 
5717 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
5718 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
5719 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
5720 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
5721 	    V_FW_WR_FLOWID(cst->etid));
5722 
5723 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
5724 
5725 	cst->flags |= EO_FLUSH_RPL_PENDING;
5726 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
5727 	cst->tx_credits -= ETID_FLUSH_LEN16;
5728 	cst->ncompl++;
5729 }
5730 
5731 static void
5732 write_ethofld_wr(struct cxgbe_snd_tag *cst, struct fw_eth_tx_eo_wr *wr,
5733     struct mbuf *m0, int compl)
5734 {
5735 	struct cpl_tx_pkt_core *cpl;
5736 	uint64_t ctrl1;
5737 	uint32_t ctrl;	/* used in many unrelated places */
5738 	int len16, pktlen, nsegs, immhdrs;
5739 	caddr_t dst;
5740 	uintptr_t p;
5741 	struct ulptx_sgl *usgl;
5742 	struct sglist sg;
5743 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
5744 
5745 	mtx_assert(&cst->lock, MA_OWNED);
5746 	M_ASSERTPKTHDR(m0);
5747 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5748 	    m0->m_pkthdr.l4hlen > 0,
5749 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
5750 
5751 	len16 = mbuf_eo_len16(m0);
5752 	nsegs = mbuf_eo_nsegs(m0);
5753 	pktlen = m0->m_pkthdr.len;
5754 	ctrl = sizeof(struct cpl_tx_pkt_core);
5755 	if (needs_tso(m0))
5756 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5757 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
5758 	ctrl += immhdrs;
5759 
5760 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
5761 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
5762 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
5763 	    V_FW_WR_FLOWID(cst->etid));
5764 	wr->r3 = 0;
5765 	if (needs_udp_csum(m0)) {
5766 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
5767 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
5768 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
5769 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
5770 		wr->u.udpseg.rtplen = 0;
5771 		wr->u.udpseg.r4 = 0;
5772 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
5773 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
5774 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
5775 		cpl = (void *)(wr + 1);
5776 	} else {
5777 		MPASS(needs_tcp_csum(m0));
5778 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
5779 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
5780 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
5781 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
5782 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
5783 		wr->u.tcpseg.r4 = 0;
5784 		wr->u.tcpseg.r5 = 0;
5785 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
5786 
5787 		if (needs_tso(m0)) {
5788 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
5789 
5790 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
5791 
5792 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5793 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5794 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5795 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5796 			if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
5797 				ctrl |= V_LSO_ETHHDR_LEN(1);
5798 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5799 				ctrl |= F_LSO_IPV6;
5800 			lso->lso_ctrl = htobe32(ctrl);
5801 			lso->ipid_ofst = htobe16(0);
5802 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5803 			lso->seqno_offset = htobe32(0);
5804 			lso->len = htobe32(pktlen);
5805 
5806 			cpl = (void *)(lso + 1);
5807 		} else {
5808 			wr->u.tcpseg.mss = htobe16(0xffff);
5809 			cpl = (void *)(wr + 1);
5810 		}
5811 	}
5812 
5813 	/* Checksum offload must be requested for ethofld. */
5814 	ctrl1 = 0;
5815 	MPASS(needs_l4_csum(m0));
5816 
5817 	/* VLAN tag insertion */
5818 	if (needs_vlan_insertion(m0)) {
5819 		ctrl1 |= F_TXPKT_VLAN_VLD |
5820 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5821 	}
5822 
5823 	/* CPL header */
5824 	cpl->ctrl0 = cst->ctrl0;
5825 	cpl->pack = 0;
5826 	cpl->len = htobe16(pktlen);
5827 	cpl->ctrl1 = htobe64(ctrl1);
5828 
5829 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
5830 	p = (uintptr_t)(cpl + 1);
5831 	m_copydata(m0, 0, immhdrs, (void *)p);
5832 
5833 	/* SGL */
5834 	dst = (void *)(cpl + 1);
5835 	if (nsegs > 0) {
5836 		int i, pad;
5837 
5838 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
5839 		p += immhdrs;
5840 		pad = 16 - (immhdrs & 0xf);
5841 		bzero((void *)p, pad);
5842 
5843 		usgl = (void *)(p + pad);
5844 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
5845 		    V_ULPTX_NSGE(nsegs));
5846 
5847 		sglist_init(&sg, nitems(segs), segs);
5848 		for (; m0 != NULL; m0 = m0->m_next) {
5849 			if (__predict_false(m0->m_len == 0))
5850 				continue;
5851 			if (immhdrs >= m0->m_len) {
5852 				immhdrs -= m0->m_len;
5853 				continue;
5854 			}
5855 
5856 			sglist_append(&sg, mtod(m0, char *) + immhdrs,
5857 			    m0->m_len - immhdrs);
5858 			immhdrs = 0;
5859 		}
5860 		MPASS(sg.sg_nseg == nsegs);
5861 
5862 		/*
5863 		 * Zero pad last 8B in case the WR doesn't end on a 16B
5864 		 * boundary.
5865 		 */
5866 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
5867 
5868 		usgl->len0 = htobe32(segs[0].ss_len);
5869 		usgl->addr0 = htobe64(segs[0].ss_paddr);
5870 		for (i = 0; i < nsegs - 1; i++) {
5871 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
5872 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
5873 		}
5874 		if (i & 1)
5875 			usgl->sge[i / 2].len[1] = htobe32(0);
5876 	}
5877 
5878 }
5879 
5880 static void
5881 ethofld_tx(struct cxgbe_snd_tag *cst)
5882 {
5883 	struct mbuf *m;
5884 	struct wrq_cookie cookie;
5885 	int next_credits, compl;
5886 	struct fw_eth_tx_eo_wr *wr;
5887 
5888 	mtx_assert(&cst->lock, MA_OWNED);
5889 
5890 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
5891 		M_ASSERTPKTHDR(m);
5892 
5893 		/* How many len16 credits do we need to send this mbuf. */
5894 		next_credits = mbuf_eo_len16(m);
5895 		MPASS(next_credits > 0);
5896 		if (next_credits > cst->tx_credits) {
5897 			/*
5898 			 * Tx will make progress eventually because there is at
5899 			 * least one outstanding fw4_ack that will return
5900 			 * credits and kick the tx.
5901 			 */
5902 			MPASS(cst->ncompl > 0);
5903 			return;
5904 		}
5905 		wr = start_wrq_wr(cst->eo_txq, next_credits, &cookie);
5906 		if (__predict_false(wr == NULL)) {
5907 			/* XXX: wishful thinking, not a real assertion. */
5908 			MPASS(cst->ncompl > 0);
5909 			return;
5910 		}
5911 		cst->tx_credits -= next_credits;
5912 		cst->tx_nocompl += next_credits;
5913 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
5914 		ETHER_BPF_MTAP(cst->com.ifp, m);
5915 		write_ethofld_wr(cst, wr, m, compl);
5916 		commit_wrq_wr(cst->eo_txq, wr, &cookie);
5917 		if (compl) {
5918 			cst->ncompl++;
5919 			cst->tx_nocompl	= 0;
5920 		}
5921 		(void) mbufq_dequeue(&cst->pending_tx);
5922 		mbufq_enqueue(&cst->pending_fwack, m);
5923 	}
5924 }
5925 
5926 int
5927 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
5928 {
5929 	struct cxgbe_snd_tag *cst;
5930 	int rc;
5931 
5932 	MPASS(m0->m_nextpkt == NULL);
5933 	MPASS(m0->m_pkthdr.snd_tag != NULL);
5934 	cst = mst_to_cst(m0->m_pkthdr.snd_tag);
5935 
5936 	mtx_lock(&cst->lock);
5937 	MPASS(cst->flags & EO_SND_TAG_REF);
5938 
5939 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
5940 		struct vi_info *vi = ifp->if_softc;
5941 		struct port_info *pi = vi->pi;
5942 		struct adapter *sc = pi->adapter;
5943 		const uint32_t rss_mask = vi->rss_size - 1;
5944 		uint32_t rss_hash;
5945 
5946 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
5947 		if (M_HASHTYPE_ISHASH(m0))
5948 			rss_hash = m0->m_pkthdr.flowid;
5949 		else
5950 			rss_hash = arc4random();
5951 		/* We assume RSS hashing */
5952 		cst->iqid = vi->rss[rss_hash & rss_mask];
5953 		cst->eo_txq += rss_hash % vi->nofldtxq;
5954 		rc = send_etid_flowc_wr(cst, pi, vi);
5955 		if (rc != 0)
5956 			goto done;
5957 	}
5958 
5959 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
5960 		rc = ENOBUFS;
5961 		goto done;
5962 	}
5963 
5964 	mbufq_enqueue(&cst->pending_tx, m0);
5965 	cst->plen += m0->m_pkthdr.len;
5966 
5967 	ethofld_tx(cst);
5968 	rc = 0;
5969 done:
5970 	mtx_unlock(&cst->lock);
5971 	if (__predict_false(rc != 0))
5972 		m_freem(m0);
5973 	return (rc);
5974 }
5975 
5976 static int
5977 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
5978 {
5979 	struct adapter *sc = iq->adapter;
5980 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
5981 	struct mbuf *m;
5982 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
5983 	struct cxgbe_snd_tag *cst;
5984 	uint8_t credits = cpl->credits;
5985 
5986 	cst = lookup_etid(sc, etid);
5987 	mtx_lock(&cst->lock);
5988 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
5989 		MPASS(credits >= ETID_FLOWC_LEN16);
5990 		credits -= ETID_FLOWC_LEN16;
5991 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
5992 	}
5993 
5994 	KASSERT(cst->ncompl > 0,
5995 	    ("%s: etid %u (%p) wasn't expecting completion.",
5996 	    __func__, etid, cst));
5997 	cst->ncompl--;
5998 
5999 	while (credits > 0) {
6000 		m = mbufq_dequeue(&cst->pending_fwack);
6001 		if (__predict_false(m == NULL)) {
6002 			/*
6003 			 * The remaining credits are for the final flush that
6004 			 * was issued when the tag was freed by the kernel.
6005 			 */
6006 			MPASS((cst->flags &
6007 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
6008 			    EO_FLUSH_RPL_PENDING);
6009 			MPASS(credits == ETID_FLUSH_LEN16);
6010 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
6011 			MPASS(cst->ncompl == 0);
6012 
6013 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
6014 			cst->tx_credits += cpl->credits;
6015 freetag:
6016 			cxgbe_snd_tag_free_locked(cst);
6017 			return (0);	/* cst is gone. */
6018 		}
6019 		KASSERT(m != NULL,
6020 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
6021 		    credits));
6022 		KASSERT(credits >= mbuf_eo_len16(m),
6023 		    ("%s: too few credits (%u, %u, %u)", __func__,
6024 		    cpl->credits, credits, mbuf_eo_len16(m)));
6025 		credits -= mbuf_eo_len16(m);
6026 		cst->plen -= m->m_pkthdr.len;
6027 		m_freem(m);
6028 	}
6029 
6030 	cst->tx_credits += cpl->credits;
6031 	MPASS(cst->tx_credits <= cst->tx_total);
6032 
6033 	m = mbufq_first(&cst->pending_tx);
6034 	if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
6035 		ethofld_tx(cst);
6036 
6037 	if (__predict_false((cst->flags & EO_SND_TAG_REF) == 0) &&
6038 	    cst->ncompl == 0) {
6039 		if (cst->tx_credits == cst->tx_total)
6040 			goto freetag;
6041 		else {
6042 			MPASS((cst->flags & EO_FLUSH_RPL_PENDING) == 0);
6043 			send_etid_flush_wr(cst);
6044 		}
6045 	}
6046 
6047 	mtx_unlock(&cst->lock);
6048 
6049 	return (0);
6050 }
6051 #endif
6052