xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 8b04c1cbfc1cb71a1ce53b3a7855f1d45866fcfb)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_kern_tls.h"
36 #include "opt_ratelimit.h"
37 
38 #include <sys/types.h>
39 #include <sys/eventhandler.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/malloc.h>
45 #include <sys/msan.h>
46 #include <sys/queue.h>
47 #include <sys/sbuf.h>
48 #include <sys/taskqueue.h>
49 #include <sys/time.h>
50 #include <sys/sglist.h>
51 #include <sys/sysctl.h>
52 #include <sys/smp.h>
53 #include <sys/socketvar.h>
54 #include <sys/counter.h>
55 #include <net/bpf.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_vlan_var.h>
59 #include <net/if_vxlan.h>
60 #include <netinet/in.h>
61 #include <netinet/ip.h>
62 #include <netinet/ip6.h>
63 #include <netinet/tcp.h>
64 #include <netinet/udp.h>
65 #include <machine/in_cksum.h>
66 #include <machine/md_var.h>
67 #include <vm/vm.h>
68 #include <vm/pmap.h>
69 #ifdef DEV_NETMAP
70 #include <machine/bus.h>
71 #include <sys/selinfo.h>
72 #include <net/if_var.h>
73 #include <net/netmap.h>
74 #include <dev/netmap/netmap_kern.h>
75 #endif
76 
77 #include "common/common.h"
78 #include "common/t4_regs.h"
79 #include "common/t4_regs_values.h"
80 #include "common/t4_msg.h"
81 #include "t4_l2t.h"
82 #include "t4_mp_ring.h"
83 
84 #ifdef T4_PKT_TIMESTAMP
85 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
86 #else
87 #define RX_COPY_THRESHOLD MINCLSIZE
88 #endif
89 
90 /*
91  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
92  * 0-7 are valid values.
93  */
94 static int fl_pktshift = 0;
95 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
96     "payload DMA offset in rx buffer (bytes)");
97 
98 /*
99  * Pad ethernet payload up to this boundary.
100  * -1: driver should figure out a good value.
101  *  0: disable padding.
102  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
103  */
104 int fl_pad = -1;
105 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
106     "payload pad boundary (bytes)");
107 
108 /*
109  * Status page length.
110  * -1: driver should figure out a good value.
111  *  64 or 128 are the only other valid values.
112  */
113 static int spg_len = -1;
114 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
115     "status page size (bytes)");
116 
117 /*
118  * Congestion drops.
119  * -1: no congestion feedback (not recommended).
120  *  0: backpressure the channel instead of dropping packets right away.
121  *  1: no backpressure, drop packets for the congested queue immediately.
122  *  2: both backpressure and drop.
123  */
124 static int cong_drop = 0;
125 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
126     "Congestion control for NIC RX queues (0 = backpressure, 1 = drop, 2 = both");
127 #ifdef TCP_OFFLOAD
128 static int ofld_cong_drop = 0;
129 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ofld_cong_drop, CTLFLAG_RDTUN, &ofld_cong_drop, 0,
130     "Congestion control for TOE RX queues (0 = backpressure, 1 = drop, 2 = both");
131 #endif
132 
133 /*
134  * Deliver multiple frames in the same free list buffer if they fit.
135  * -1: let the driver decide whether to enable buffer packing or not.
136  *  0: disable buffer packing.
137  *  1: enable buffer packing.
138  */
139 static int buffer_packing = -1;
140 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
141     0, "Enable buffer packing");
142 
143 /*
144  * Start next frame in a packed buffer at this boundary.
145  * -1: driver should figure out a good value.
146  * T4: driver will ignore this and use the same value as fl_pad above.
147  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
148  */
149 static int fl_pack = -1;
150 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
151     "payload pack boundary (bytes)");
152 
153 /*
154  * Largest rx cluster size that the driver is allowed to allocate.
155  */
156 static int largest_rx_cluster = MJUM16BYTES;
157 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
158     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
159 
160 /*
161  * Size of cluster allocation that's most likely to succeed.  The driver will
162  * fall back to this size if it fails to allocate clusters larger than this.
163  */
164 static int safest_rx_cluster = PAGE_SIZE;
165 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
166     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
167 
168 #ifdef RATELIMIT
169 /*
170  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
171  * for rewriting.  -1 and 0-3 are all valid values.
172  * -1: hardware should leave the TCP timestamps alone.
173  * 0: 1ms
174  * 1: 100us
175  * 2: 10us
176  * 3: 1us
177  */
178 static int tsclk = -1;
179 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
180     "Control TCP timestamp rewriting when using pacing");
181 
182 static int eo_max_backlog = 1024 * 1024;
183 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
184     0, "Maximum backlog of ratelimited data per flow");
185 #endif
186 
187 /*
188  * The interrupt holdoff timers are multiplied by this value on T6+.
189  * 1 and 3-17 (both inclusive) are legal values.
190  */
191 static int tscale = 1;
192 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
193     "Interrupt holdoff timer scale on T6+");
194 
195 /*
196  * Number of LRO entries in the lro_ctrl structure per rx queue.
197  */
198 static int lro_entries = TCP_LRO_ENTRIES;
199 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
200     "Number of LRO entries per RX queue");
201 
202 /*
203  * This enables presorting of frames before they're fed into tcp_lro_rx.
204  */
205 static int lro_mbufs = 0;
206 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
207     "Enable presorting of LRO frames");
208 
209 static counter_u64_t pullups;
210 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
211     "Number of mbuf pullups performed");
212 
213 static counter_u64_t defrags;
214 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
215     "Number of mbuf defrags performed");
216 
217 static int t4_tx_coalesce = 1;
218 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
219     "tx coalescing allowed");
220 
221 /*
222  * The driver will make aggressive attempts at tx coalescing if it sees these
223  * many packets eligible for coalescing in quick succession, with no more than
224  * the specified gap in between the eth_tx calls that delivered the packets.
225  */
226 static int t4_tx_coalesce_pkts = 32;
227 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
228     &t4_tx_coalesce_pkts, 0,
229     "# of consecutive packets (1 - 255) that will trigger tx coalescing");
230 static int t4_tx_coalesce_gap = 5;
231 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
232     &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
233 
234 static int service_iq(struct sge_iq *, int);
235 static int service_iq_fl(struct sge_iq *, int);
236 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
237 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
238     u_int);
239 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
240     int, int, int);
241 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
242 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
243     struct sge_iq *, char *);
244 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
245     struct sysctl_ctx_list *, struct sysctl_oid *);
246 static void free_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
247 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
248     struct sge_iq *);
249 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
250     struct sysctl_oid *, struct sge_fl *);
251 static int alloc_iq_fl_hwq(struct vi_info *, struct sge_iq *, struct sge_fl *);
252 static int free_iq_fl_hwq(struct adapter *, struct sge_iq *, struct sge_fl *);
253 static int alloc_fwq(struct adapter *);
254 static void free_fwq(struct adapter *);
255 static int alloc_ctrlq(struct adapter *, int);
256 static void free_ctrlq(struct adapter *, int);
257 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, int);
258 static void free_rxq(struct vi_info *, struct sge_rxq *);
259 static void add_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
260     struct sge_rxq *);
261 #ifdef TCP_OFFLOAD
262 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
263     int);
264 static void free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
265 static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
266     struct sge_ofld_rxq *);
267 #endif
268 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
269 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
270 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
271 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
272 #endif
273 static int alloc_eq(struct adapter *, struct sge_eq *, struct sysctl_ctx_list *,
274     struct sysctl_oid *);
275 static void free_eq(struct adapter *, struct sge_eq *);
276 static void add_eq_sysctls(struct adapter *, struct sysctl_ctx_list *,
277     struct sysctl_oid *, struct sge_eq *);
278 static int alloc_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
279 static int free_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
280 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
281     struct sysctl_ctx_list *, struct sysctl_oid *);
282 static void free_wrq(struct adapter *, struct sge_wrq *);
283 static void add_wrq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
284     struct sge_wrq *);
285 static int alloc_txq(struct vi_info *, struct sge_txq *, int);
286 static void free_txq(struct vi_info *, struct sge_txq *);
287 static void add_txq_sysctls(struct vi_info *, struct sysctl_ctx_list *,
288     struct sysctl_oid *, struct sge_txq *);
289 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
290 static int alloc_ofld_txq(struct vi_info *, struct sge_ofld_txq *, int);
291 static void free_ofld_txq(struct vi_info *, struct sge_ofld_txq *);
292 static void add_ofld_txq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
293     struct sge_ofld_txq *);
294 #endif
295 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
296 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
297 static int refill_fl(struct adapter *, struct sge_fl *, int);
298 static void refill_sfl(void *);
299 static int find_refill_source(struct adapter *, int, bool);
300 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
301 
302 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
303 static inline u_int txpkt_len16(u_int, const u_int);
304 static inline u_int txpkt_vm_len16(u_int, const u_int);
305 static inline void calculate_mbuf_len16(struct mbuf *, bool);
306 static inline u_int txpkts0_len16(u_int);
307 static inline u_int txpkts1_len16(void);
308 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
309 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
310     u_int);
311 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
312     struct mbuf *);
313 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
314     int, bool *);
315 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
316     int, bool *);
317 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
318 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
319 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
320 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
321 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
322 static inline uint16_t read_hw_cidx(struct sge_eq *);
323 static inline u_int reclaimable_tx_desc(struct sge_eq *);
324 static inline u_int total_available_tx_desc(struct sge_eq *);
325 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
326 static void tx_reclaim(void *, int);
327 static __be64 get_flit(struct sglist_seg *, int, int);
328 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
329     struct mbuf *);
330 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
331     struct mbuf *);
332 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
333 static void wrq_tx_drain(void *, int);
334 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
335 
336 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
337 #ifdef RATELIMIT
338 #if defined(INET) || defined(INET6)
339 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
340 #endif
341 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
342     struct mbuf *);
343 static int ethofld_transmit(struct ifnet *, struct mbuf *);
344 #endif
345 
346 static counter_u64_t extfree_refs;
347 static counter_u64_t extfree_rels;
348 
349 an_handler_t t4_an_handler;
350 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
351 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
352 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
353 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
354 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
355 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
356 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
357 
358 void
359 t4_register_an_handler(an_handler_t h)
360 {
361 	uintptr_t *loc;
362 
363 	MPASS(h == NULL || t4_an_handler == NULL);
364 
365 	loc = (uintptr_t *)&t4_an_handler;
366 	atomic_store_rel_ptr(loc, (uintptr_t)h);
367 }
368 
369 void
370 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
371 {
372 	uintptr_t *loc;
373 
374 	MPASS(type < nitems(t4_fw_msg_handler));
375 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
376 	/*
377 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
378 	 * handler dispatch table.  Reject any attempt to install a handler for
379 	 * this subtype.
380 	 */
381 	MPASS(type != FW_TYPE_RSSCPL);
382 	MPASS(type != FW6_TYPE_RSSCPL);
383 
384 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
385 	atomic_store_rel_ptr(loc, (uintptr_t)h);
386 }
387 
388 void
389 t4_register_cpl_handler(int opcode, cpl_handler_t h)
390 {
391 	uintptr_t *loc;
392 
393 	MPASS(opcode < nitems(t4_cpl_handler));
394 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
395 
396 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
397 	atomic_store_rel_ptr(loc, (uintptr_t)h);
398 }
399 
400 static int
401 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
402     struct mbuf *m)
403 {
404 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
405 	u_int tid;
406 	int cookie;
407 
408 	MPASS(m == NULL);
409 
410 	tid = GET_TID(cpl);
411 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
412 		/*
413 		 * The return code for filter-write is put in the CPL cookie so
414 		 * we have to rely on the hardware tid (is_ftid) to determine
415 		 * that this is a response to a filter.
416 		 */
417 		cookie = CPL_COOKIE_FILTER;
418 	} else {
419 		cookie = G_COOKIE(cpl->cookie);
420 	}
421 	MPASS(cookie > CPL_COOKIE_RESERVED);
422 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
423 
424 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
425 }
426 
427 static int
428 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
429     struct mbuf *m)
430 {
431 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
432 	unsigned int cookie;
433 
434 	MPASS(m == NULL);
435 
436 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
437 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
438 }
439 
440 static int
441 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
442     struct mbuf *m)
443 {
444 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
445 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
446 
447 	MPASS(m == NULL);
448 	MPASS(cookie != CPL_COOKIE_RESERVED);
449 
450 	return (act_open_rpl_handlers[cookie](iq, rss, m));
451 }
452 
453 static int
454 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
455     struct mbuf *m)
456 {
457 	struct adapter *sc = iq->adapter;
458 	u_int cookie;
459 
460 	MPASS(m == NULL);
461 	if (is_hashfilter(sc))
462 		cookie = CPL_COOKIE_HASHFILTER;
463 	else
464 		cookie = CPL_COOKIE_TOM;
465 
466 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
467 }
468 
469 static int
470 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
471 {
472 	struct adapter *sc = iq->adapter;
473 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
474 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
475 	u_int cookie;
476 
477 	MPASS(m == NULL);
478 	if (is_etid(sc, tid))
479 		cookie = CPL_COOKIE_ETHOFLD;
480 	else
481 		cookie = CPL_COOKIE_TOM;
482 
483 	return (fw4_ack_handlers[cookie](iq, rss, m));
484 }
485 
486 static void
487 t4_init_shared_cpl_handlers(void)
488 {
489 
490 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
491 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
492 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
493 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
494 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
495 }
496 
497 void
498 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
499 {
500 	uintptr_t *loc;
501 
502 	MPASS(opcode < nitems(t4_cpl_handler));
503 	MPASS(cookie > CPL_COOKIE_RESERVED);
504 	MPASS(cookie < NUM_CPL_COOKIES);
505 	MPASS(t4_cpl_handler[opcode] != NULL);
506 
507 	switch (opcode) {
508 	case CPL_SET_TCB_RPL:
509 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
510 		break;
511 	case CPL_L2T_WRITE_RPL:
512 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
513 		break;
514 	case CPL_ACT_OPEN_RPL:
515 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
516 		break;
517 	case CPL_ABORT_RPL_RSS:
518 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
519 		break;
520 	case CPL_FW4_ACK:
521 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
522 		break;
523 	default:
524 		MPASS(0);
525 		return;
526 	}
527 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
528 	atomic_store_rel_ptr(loc, (uintptr_t)h);
529 }
530 
531 /*
532  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
533  */
534 void
535 t4_sge_modload(void)
536 {
537 
538 	if (fl_pktshift < 0 || fl_pktshift > 7) {
539 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
540 		    " using 0 instead.\n", fl_pktshift);
541 		fl_pktshift = 0;
542 	}
543 
544 	if (spg_len != 64 && spg_len != 128) {
545 		int len;
546 
547 #if defined(__i386__) || defined(__amd64__)
548 		len = cpu_clflush_line_size > 64 ? 128 : 64;
549 #else
550 		len = 64;
551 #endif
552 		if (spg_len != -1) {
553 			printf("Invalid hw.cxgbe.spg_len value (%d),"
554 			    " using %d instead.\n", spg_len, len);
555 		}
556 		spg_len = len;
557 	}
558 
559 	if (cong_drop < -1 || cong_drop > 2) {
560 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
561 		    " using 0 instead.\n", cong_drop);
562 		cong_drop = 0;
563 	}
564 #ifdef TCP_OFFLOAD
565 	if (ofld_cong_drop < -1 || ofld_cong_drop > 2) {
566 		printf("Invalid hw.cxgbe.ofld_cong_drop value (%d),"
567 		    " using 0 instead.\n", ofld_cong_drop);
568 		ofld_cong_drop = 0;
569 	}
570 #endif
571 
572 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
573 		printf("Invalid hw.cxgbe.tscale value (%d),"
574 		    " using 1 instead.\n", tscale);
575 		tscale = 1;
576 	}
577 
578 	if (largest_rx_cluster != MCLBYTES &&
579 	    largest_rx_cluster != MJUMPAGESIZE &&
580 	    largest_rx_cluster != MJUM9BYTES &&
581 	    largest_rx_cluster != MJUM16BYTES) {
582 		printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
583 		    " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
584 		largest_rx_cluster = MJUM16BYTES;
585 	}
586 
587 	if (safest_rx_cluster != MCLBYTES &&
588 	    safest_rx_cluster != MJUMPAGESIZE &&
589 	    safest_rx_cluster != MJUM9BYTES &&
590 	    safest_rx_cluster != MJUM16BYTES) {
591 		printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
592 		    " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
593 		safest_rx_cluster = MJUMPAGESIZE;
594 	}
595 
596 	extfree_refs = counter_u64_alloc(M_WAITOK);
597 	extfree_rels = counter_u64_alloc(M_WAITOK);
598 	pullups = counter_u64_alloc(M_WAITOK);
599 	defrags = counter_u64_alloc(M_WAITOK);
600 	counter_u64_zero(extfree_refs);
601 	counter_u64_zero(extfree_rels);
602 	counter_u64_zero(pullups);
603 	counter_u64_zero(defrags);
604 
605 	t4_init_shared_cpl_handlers();
606 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
607 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
608 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
609 #ifdef RATELIMIT
610 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
611 	    CPL_COOKIE_ETHOFLD);
612 #endif
613 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
614 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
615 }
616 
617 void
618 t4_sge_modunload(void)
619 {
620 
621 	counter_u64_free(extfree_refs);
622 	counter_u64_free(extfree_rels);
623 	counter_u64_free(pullups);
624 	counter_u64_free(defrags);
625 }
626 
627 uint64_t
628 t4_sge_extfree_refs(void)
629 {
630 	uint64_t refs, rels;
631 
632 	rels = counter_u64_fetch(extfree_rels);
633 	refs = counter_u64_fetch(extfree_refs);
634 
635 	return (refs - rels);
636 }
637 
638 /* max 4096 */
639 #define MAX_PACK_BOUNDARY 512
640 
641 static inline void
642 setup_pad_and_pack_boundaries(struct adapter *sc)
643 {
644 	uint32_t v, m;
645 	int pad, pack, pad_shift;
646 
647 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
648 	    X_INGPADBOUNDARY_SHIFT;
649 	pad = fl_pad;
650 	if (fl_pad < (1 << pad_shift) ||
651 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
652 	    !powerof2(fl_pad)) {
653 		/*
654 		 * If there is any chance that we might use buffer packing and
655 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
656 		 * it to the minimum allowed in all other cases.
657 		 */
658 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
659 
660 		/*
661 		 * For fl_pad = 0 we'll still write a reasonable value to the
662 		 * register but all the freelists will opt out of padding.
663 		 * We'll complain here only if the user tried to set it to a
664 		 * value greater than 0 that was invalid.
665 		 */
666 		if (fl_pad > 0) {
667 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
668 			    " (%d), using %d instead.\n", fl_pad, pad);
669 		}
670 	}
671 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
672 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
673 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
674 
675 	if (is_t4(sc)) {
676 		if (fl_pack != -1 && fl_pack != pad) {
677 			/* Complain but carry on. */
678 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
679 			    " using %d instead.\n", fl_pack, pad);
680 		}
681 		return;
682 	}
683 
684 	pack = fl_pack;
685 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
686 	    !powerof2(fl_pack)) {
687 		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
688 			pack = MAX_PACK_BOUNDARY;
689 		else
690 			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
691 		MPASS(powerof2(pack));
692 		if (pack < 16)
693 			pack = 16;
694 		if (pack == 32)
695 			pack = 64;
696 		if (pack > 4096)
697 			pack = 4096;
698 		if (fl_pack != -1) {
699 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
700 			    " (%d), using %d instead.\n", fl_pack, pack);
701 		}
702 	}
703 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
704 	if (pack == 16)
705 		v = V_INGPACKBOUNDARY(0);
706 	else
707 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
708 
709 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
710 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
711 }
712 
713 /*
714  * adap->params.vpd.cclk must be set up before this is called.
715  */
716 void
717 t4_tweak_chip_settings(struct adapter *sc)
718 {
719 	int i, reg;
720 	uint32_t v, m;
721 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
722 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
723 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
724 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
725 	static int sw_buf_sizes[] = {
726 		MCLBYTES,
727 		MJUMPAGESIZE,
728 		MJUM9BYTES,
729 		MJUM16BYTES
730 	};
731 
732 	KASSERT(sc->flags & MASTER_PF,
733 	    ("%s: trying to change chip settings when not master.", __func__));
734 
735 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
736 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
737 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
738 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
739 
740 	setup_pad_and_pack_boundaries(sc);
741 
742 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
743 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
744 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
745 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
746 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
747 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
748 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
749 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
750 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
751 
752 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
753 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
754 	reg = A_SGE_FL_BUFFER_SIZE2;
755 	for (i = 0; i < nitems(sw_buf_sizes); i++) {
756 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
757 		t4_write_reg(sc, reg, sw_buf_sizes[i]);
758 		reg += 4;
759 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
760 		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
761 		reg += 4;
762 	}
763 
764 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
765 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
766 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
767 
768 	KASSERT(intr_timer[0] <= timer_max,
769 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
770 	    timer_max));
771 	for (i = 1; i < nitems(intr_timer); i++) {
772 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
773 		    ("%s: timers not listed in increasing order (%d)",
774 		    __func__, i));
775 
776 		while (intr_timer[i] > timer_max) {
777 			if (i == nitems(intr_timer) - 1) {
778 				intr_timer[i] = timer_max;
779 				break;
780 			}
781 			intr_timer[i] += intr_timer[i - 1];
782 			intr_timer[i] /= 2;
783 		}
784 	}
785 
786 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
787 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
788 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
789 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
790 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
791 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
792 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
793 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
794 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
795 
796 	if (chip_id(sc) >= CHELSIO_T6) {
797 		m = V_TSCALE(M_TSCALE);
798 		if (tscale == 1)
799 			v = 0;
800 		else
801 			v = V_TSCALE(tscale - 2);
802 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
803 
804 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
805 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
806 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
807 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
808 			v &= ~m;
809 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
810 			    V_WRTHRTHRESH(16);
811 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
812 		}
813 	}
814 
815 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
816 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
817 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
818 
819 	/*
820 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
821 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
822 	 * may have to deal with is MAXPHYS + 1 page.
823 	 */
824 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
825 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
826 
827 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
828 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
829 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
830 
831 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
832 	    F_RESETDDPOFFSET;
833 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
834 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
835 }
836 
837 /*
838  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
839  * address mut be 16B aligned.  If padding is in use the buffer's start and end
840  * need to be aligned to the pad boundary as well.  We'll just make sure that
841  * the size is a multiple of the pad boundary here, it is up to the buffer
842  * allocation code to make sure the start of the buffer is aligned.
843  */
844 static inline int
845 hwsz_ok(struct adapter *sc, int hwsz)
846 {
847 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
848 
849 	return (hwsz >= 64 && (hwsz & mask) == 0);
850 }
851 
852 /*
853  * Initialize the rx buffer sizes and figure out which zones the buffers will
854  * be allocated from.
855  */
856 void
857 t4_init_rx_buf_info(struct adapter *sc)
858 {
859 	struct sge *s = &sc->sge;
860 	struct sge_params *sp = &sc->params.sge;
861 	int i, j, n;
862 	static int sw_buf_sizes[] = {	/* Sorted by size */
863 		MCLBYTES,
864 		MJUMPAGESIZE,
865 		MJUM9BYTES,
866 		MJUM16BYTES
867 	};
868 	struct rx_buf_info *rxb;
869 
870 	s->safe_zidx = -1;
871 	rxb = &s->rx_buf_info[0];
872 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
873 		rxb->size1 = sw_buf_sizes[i];
874 		rxb->zone = m_getzone(rxb->size1);
875 		rxb->type = m_gettype(rxb->size1);
876 		rxb->size2 = 0;
877 		rxb->hwidx1 = -1;
878 		rxb->hwidx2 = -1;
879 		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
880 			int hwsize = sp->sge_fl_buffer_size[j];
881 
882 			if (!hwsz_ok(sc, hwsize))
883 				continue;
884 
885 			/* hwidx for size1 */
886 			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
887 				rxb->hwidx1 = j;
888 
889 			/* hwidx for size2 (buffer packing) */
890 			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
891 				continue;
892 			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
893 			if (n == 0) {
894 				rxb->hwidx2 = j;
895 				rxb->size2 = hwsize;
896 				break;	/* stop looking */
897 			}
898 			if (rxb->hwidx2 != -1) {
899 				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
900 				    hwsize - CL_METADATA_SIZE) {
901 					rxb->hwidx2 = j;
902 					rxb->size2 = hwsize;
903 				}
904 			} else if (n <= 2 * CL_METADATA_SIZE) {
905 				rxb->hwidx2 = j;
906 				rxb->size2 = hwsize;
907 			}
908 		}
909 		if (rxb->hwidx2 != -1)
910 			sc->flags |= BUF_PACKING_OK;
911 		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
912 			s->safe_zidx = i;
913 	}
914 }
915 
916 /*
917  * Verify some basic SGE settings for the PF and VF driver, and other
918  * miscellaneous settings for the PF driver.
919  */
920 int
921 t4_verify_chip_settings(struct adapter *sc)
922 {
923 	struct sge_params *sp = &sc->params.sge;
924 	uint32_t m, v, r;
925 	int rc = 0;
926 	const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
927 
928 	m = F_RXPKTCPLMODE;
929 	v = F_RXPKTCPLMODE;
930 	r = sp->sge_control;
931 	if ((r & m) != v) {
932 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
933 		rc = EINVAL;
934 	}
935 
936 	/*
937 	 * If this changes then every single use of PAGE_SHIFT in the driver
938 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
939 	 */
940 	if (sp->page_shift != PAGE_SHIFT) {
941 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
942 		rc = EINVAL;
943 	}
944 
945 	if (sc->flags & IS_VF)
946 		return (0);
947 
948 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
949 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
950 	if (r != v) {
951 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
952 		if (sc->vres.ddp.size != 0)
953 			rc = EINVAL;
954 	}
955 
956 	m = v = F_TDDPTAGTCB;
957 	r = t4_read_reg(sc, A_ULP_RX_CTL);
958 	if ((r & m) != v) {
959 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
960 		if (sc->vres.ddp.size != 0)
961 			rc = EINVAL;
962 	}
963 
964 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
965 	    F_RESETDDPOFFSET;
966 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
967 	r = t4_read_reg(sc, A_TP_PARA_REG5);
968 	if ((r & m) != v) {
969 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
970 		if (sc->vres.ddp.size != 0)
971 			rc = EINVAL;
972 	}
973 
974 	return (rc);
975 }
976 
977 int
978 t4_create_dma_tag(struct adapter *sc)
979 {
980 	int rc;
981 
982 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
983 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
984 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
985 	    NULL, &sc->dmat);
986 	if (rc != 0) {
987 		device_printf(sc->dev,
988 		    "failed to create main DMA tag: %d\n", rc);
989 	}
990 
991 	return (rc);
992 }
993 
994 void
995 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
996     struct sysctl_oid_list *children)
997 {
998 	struct sge_params *sp = &sc->params.sge;
999 
1000 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
1001 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
1002 	    sysctl_bufsizes, "A", "freelist buffer sizes");
1003 
1004 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
1005 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
1006 
1007 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
1008 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
1009 
1010 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
1011 	    NULL, sp->spg_len, "status page size (bytes)");
1012 
1013 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
1014 	    NULL, cong_drop, "congestion drop setting");
1015 #ifdef TCP_OFFLOAD
1016 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ofld_cong_drop", CTLFLAG_RD,
1017 	    NULL, ofld_cong_drop, "congestion drop setting");
1018 #endif
1019 
1020 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
1021 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1022 }
1023 
1024 int
1025 t4_destroy_dma_tag(struct adapter *sc)
1026 {
1027 	if (sc->dmat)
1028 		bus_dma_tag_destroy(sc->dmat);
1029 
1030 	return (0);
1031 }
1032 
1033 /*
1034  * Allocate and initialize the firmware event queue, control queues, and special
1035  * purpose rx queues owned by the adapter.
1036  *
1037  * Returns errno on failure.  Resources allocated up to that point may still be
1038  * allocated.  Caller is responsible for cleanup in case this function fails.
1039  */
1040 int
1041 t4_setup_adapter_queues(struct adapter *sc)
1042 {
1043 	int rc, i;
1044 
1045 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1046 
1047 	/*
1048 	 * Firmware event queue
1049 	 */
1050 	rc = alloc_fwq(sc);
1051 	if (rc != 0)
1052 		return (rc);
1053 
1054 	/*
1055 	 * That's all for the VF driver.
1056 	 */
1057 	if (sc->flags & IS_VF)
1058 		return (rc);
1059 
1060 	/*
1061 	 * XXX: General purpose rx queues, one per port.
1062 	 */
1063 
1064 	/*
1065 	 * Control queues, one per port.
1066 	 */
1067 	for_each_port(sc, i) {
1068 		rc = alloc_ctrlq(sc, i);
1069 		if (rc != 0)
1070 			return (rc);
1071 	}
1072 
1073 	return (rc);
1074 }
1075 
1076 /*
1077  * Idempotent
1078  */
1079 int
1080 t4_teardown_adapter_queues(struct adapter *sc)
1081 {
1082 	int i;
1083 
1084 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1085 
1086 	if (sc->sge.ctrlq != NULL) {
1087 		MPASS(!(sc->flags & IS_VF));	/* VFs don't allocate ctrlq. */
1088 		for_each_port(sc, i)
1089 			free_ctrlq(sc, i);
1090 	}
1091 	free_fwq(sc);
1092 
1093 	return (0);
1094 }
1095 
1096 /* Maximum payload that could arrive with a single iq descriptor. */
1097 static inline int
1098 max_rx_payload(struct adapter *sc, struct ifnet *ifp, const bool ofld)
1099 {
1100 	int maxp;
1101 
1102 	/* large enough even when hw VLAN extraction is disabled */
1103 	maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1104 	    ETHER_VLAN_ENCAP_LEN + ifp->if_mtu;
1105 	if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1106 	    maxp < sc->params.tp.max_rx_pdu)
1107 		maxp = sc->params.tp.max_rx_pdu;
1108 	return (maxp);
1109 }
1110 
1111 int
1112 t4_setup_vi_queues(struct vi_info *vi)
1113 {
1114 	int rc = 0, i, intr_idx;
1115 	struct sge_rxq *rxq;
1116 	struct sge_txq *txq;
1117 #ifdef TCP_OFFLOAD
1118 	struct sge_ofld_rxq *ofld_rxq;
1119 #endif
1120 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1121 	struct sge_ofld_txq *ofld_txq;
1122 #endif
1123 #ifdef DEV_NETMAP
1124 	int saved_idx, iqidx;
1125 	struct sge_nm_rxq *nm_rxq;
1126 	struct sge_nm_txq *nm_txq;
1127 #endif
1128 	struct adapter *sc = vi->adapter;
1129 	struct ifnet *ifp = vi->ifp;
1130 	int maxp;
1131 
1132 	/* Interrupt vector to start from (when using multiple vectors) */
1133 	intr_idx = vi->first_intr;
1134 
1135 #ifdef DEV_NETMAP
1136 	saved_idx = intr_idx;
1137 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1138 
1139 		/* netmap is supported with direct interrupts only. */
1140 		MPASS(!forwarding_intr_to_fwq(sc));
1141 		MPASS(vi->first_intr >= 0);
1142 
1143 		/*
1144 		 * We don't have buffers to back the netmap rx queues
1145 		 * right now so we create the queues in a way that
1146 		 * doesn't set off any congestion signal in the chip.
1147 		 */
1148 		for_each_nm_rxq(vi, i, nm_rxq) {
1149 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i);
1150 			if (rc != 0)
1151 				goto done;
1152 			intr_idx++;
1153 		}
1154 
1155 		for_each_nm_txq(vi, i, nm_txq) {
1156 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1157 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i);
1158 			if (rc != 0)
1159 				goto done;
1160 		}
1161 	}
1162 
1163 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1164 	intr_idx = saved_idx;
1165 #endif
1166 
1167 	/*
1168 	 * Allocate rx queues first because a default iqid is required when
1169 	 * creating a tx queue.
1170 	 */
1171 	maxp = max_rx_payload(sc, ifp, false);
1172 	for_each_rxq(vi, i, rxq) {
1173 		rc = alloc_rxq(vi, rxq, i, intr_idx, maxp);
1174 		if (rc != 0)
1175 			goto done;
1176 		if (!forwarding_intr_to_fwq(sc))
1177 			intr_idx++;
1178 	}
1179 #ifdef DEV_NETMAP
1180 	if (ifp->if_capabilities & IFCAP_NETMAP)
1181 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1182 #endif
1183 #ifdef TCP_OFFLOAD
1184 	maxp = max_rx_payload(sc, ifp, true);
1185 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1186 		rc = alloc_ofld_rxq(vi, ofld_rxq, i, intr_idx, maxp);
1187 		if (rc != 0)
1188 			goto done;
1189 		if (!forwarding_intr_to_fwq(sc))
1190 			intr_idx++;
1191 	}
1192 #endif
1193 
1194 	/*
1195 	 * Now the tx queues.
1196 	 */
1197 	for_each_txq(vi, i, txq) {
1198 		rc = alloc_txq(vi, txq, i);
1199 		if (rc != 0)
1200 			goto done;
1201 	}
1202 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1203 	for_each_ofld_txq(vi, i, ofld_txq) {
1204 		rc = alloc_ofld_txq(vi, ofld_txq, i);
1205 		if (rc != 0)
1206 			goto done;
1207 	}
1208 #endif
1209 done:
1210 	if (rc)
1211 		t4_teardown_vi_queues(vi);
1212 
1213 	return (rc);
1214 }
1215 
1216 /*
1217  * Idempotent
1218  */
1219 int
1220 t4_teardown_vi_queues(struct vi_info *vi)
1221 {
1222 	int i;
1223 	struct sge_rxq *rxq;
1224 	struct sge_txq *txq;
1225 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1226 	struct sge_ofld_txq *ofld_txq;
1227 #endif
1228 #ifdef TCP_OFFLOAD
1229 	struct sge_ofld_rxq *ofld_rxq;
1230 #endif
1231 #ifdef DEV_NETMAP
1232 	struct sge_nm_rxq *nm_rxq;
1233 	struct sge_nm_txq *nm_txq;
1234 #endif
1235 
1236 #ifdef DEV_NETMAP
1237 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1238 		for_each_nm_txq(vi, i, nm_txq) {
1239 			free_nm_txq(vi, nm_txq);
1240 		}
1241 
1242 		for_each_nm_rxq(vi, i, nm_rxq) {
1243 			free_nm_rxq(vi, nm_rxq);
1244 		}
1245 	}
1246 #endif
1247 
1248 	/*
1249 	 * Take down all the tx queues first, as they reference the rx queues
1250 	 * (for egress updates, etc.).
1251 	 */
1252 
1253 	for_each_txq(vi, i, txq) {
1254 		free_txq(vi, txq);
1255 	}
1256 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1257 	for_each_ofld_txq(vi, i, ofld_txq) {
1258 		free_ofld_txq(vi, ofld_txq);
1259 	}
1260 #endif
1261 
1262 	/*
1263 	 * Then take down the rx queues.
1264 	 */
1265 
1266 	for_each_rxq(vi, i, rxq) {
1267 		free_rxq(vi, rxq);
1268 	}
1269 #ifdef TCP_OFFLOAD
1270 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1271 		free_ofld_rxq(vi, ofld_rxq);
1272 	}
1273 #endif
1274 
1275 	return (0);
1276 }
1277 
1278 /*
1279  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1280  * unusual scenario.
1281  *
1282  * a) Deals with errors, if any.
1283  * b) Services firmware event queue, which is taking interrupts for all other
1284  *    queues.
1285  */
1286 void
1287 t4_intr_all(void *arg)
1288 {
1289 	struct adapter *sc = arg;
1290 	struct sge_iq *fwq = &sc->sge.fwq;
1291 
1292 	MPASS(sc->intr_count == 1);
1293 
1294 	if (sc->intr_type == INTR_INTX)
1295 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1296 
1297 	t4_intr_err(arg);
1298 	t4_intr_evt(fwq);
1299 }
1300 
1301 /*
1302  * Interrupt handler for errors (installed directly when multiple interrupts are
1303  * being used, or called by t4_intr_all).
1304  */
1305 void
1306 t4_intr_err(void *arg)
1307 {
1308 	struct adapter *sc = arg;
1309 	uint32_t v;
1310 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1311 
1312 	if (atomic_load_int(&sc->error_flags) & ADAP_FATAL_ERR)
1313 		return;
1314 
1315 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1316 	if (v & F_PFSW) {
1317 		sc->swintr++;
1318 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1319 	}
1320 
1321 	if (t4_slow_intr_handler(sc, verbose))
1322 		t4_fatal_err(sc, false);
1323 }
1324 
1325 /*
1326  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1327  * such queue right now.
1328  */
1329 void
1330 t4_intr_evt(void *arg)
1331 {
1332 	struct sge_iq *iq = arg;
1333 
1334 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1335 		service_iq(iq, 0);
1336 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1337 	}
1338 }
1339 
1340 /*
1341  * Interrupt handler for iq+fl queues.
1342  */
1343 void
1344 t4_intr(void *arg)
1345 {
1346 	struct sge_iq *iq = arg;
1347 
1348 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1349 		service_iq_fl(iq, 0);
1350 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1351 	}
1352 }
1353 
1354 #ifdef DEV_NETMAP
1355 /*
1356  * Interrupt handler for netmap rx queues.
1357  */
1358 void
1359 t4_nm_intr(void *arg)
1360 {
1361 	struct sge_nm_rxq *nm_rxq = arg;
1362 
1363 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1364 		service_nm_rxq(nm_rxq);
1365 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1366 	}
1367 }
1368 
1369 /*
1370  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1371  */
1372 void
1373 t4_vi_intr(void *arg)
1374 {
1375 	struct irq *irq = arg;
1376 
1377 	MPASS(irq->nm_rxq != NULL);
1378 	t4_nm_intr(irq->nm_rxq);
1379 
1380 	MPASS(irq->rxq != NULL);
1381 	t4_intr(irq->rxq);
1382 }
1383 #endif
1384 
1385 /*
1386  * Deals with interrupts on an iq-only (no freelist) queue.
1387  */
1388 static int
1389 service_iq(struct sge_iq *iq, int budget)
1390 {
1391 	struct sge_iq *q;
1392 	struct adapter *sc = iq->adapter;
1393 	struct iq_desc *d = &iq->desc[iq->cidx];
1394 	int ndescs = 0, limit;
1395 	int rsp_type;
1396 	uint32_t lq;
1397 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1398 
1399 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1400 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1401 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1402 	    iq->flags));
1403 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1404 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1405 
1406 	limit = budget ? budget : iq->qsize / 16;
1407 
1408 	/*
1409 	 * We always come back and check the descriptor ring for new indirect
1410 	 * interrupts and other responses after running a single handler.
1411 	 */
1412 	for (;;) {
1413 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1414 
1415 			rmb();
1416 
1417 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1418 			lq = be32toh(d->rsp.pldbuflen_qid);
1419 
1420 			switch (rsp_type) {
1421 			case X_RSPD_TYPE_FLBUF:
1422 				panic("%s: data for an iq (%p) with no freelist",
1423 				    __func__, iq);
1424 
1425 				/* NOTREACHED */
1426 
1427 			case X_RSPD_TYPE_CPL:
1428 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1429 				    ("%s: bad opcode %02x.", __func__,
1430 				    d->rss.opcode));
1431 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1432 				break;
1433 
1434 			case X_RSPD_TYPE_INTR:
1435 				/*
1436 				 * There are 1K interrupt-capable queues (qids 0
1437 				 * through 1023).  A response type indicating a
1438 				 * forwarded interrupt with a qid >= 1K is an
1439 				 * iWARP async notification.
1440 				 */
1441 				if (__predict_true(lq >= 1024)) {
1442 					t4_an_handler(iq, &d->rsp);
1443 					break;
1444 				}
1445 
1446 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1447 				    sc->sge.iq_base];
1448 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1449 				    IQS_BUSY)) {
1450 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1451 						(void) atomic_cmpset_int(&q->state,
1452 						    IQS_BUSY, IQS_IDLE);
1453 					} else {
1454 						STAILQ_INSERT_TAIL(&iql, q,
1455 						    link);
1456 					}
1457 				}
1458 				break;
1459 
1460 			default:
1461 				KASSERT(0,
1462 				    ("%s: illegal response type %d on iq %p",
1463 				    __func__, rsp_type, iq));
1464 				log(LOG_ERR,
1465 				    "%s: illegal response type %d on iq %p",
1466 				    device_get_nameunit(sc->dev), rsp_type, iq);
1467 				break;
1468 			}
1469 
1470 			d++;
1471 			if (__predict_false(++iq->cidx == iq->sidx)) {
1472 				iq->cidx = 0;
1473 				iq->gen ^= F_RSPD_GEN;
1474 				d = &iq->desc[0];
1475 			}
1476 			if (__predict_false(++ndescs == limit)) {
1477 				t4_write_reg(sc, sc->sge_gts_reg,
1478 				    V_CIDXINC(ndescs) |
1479 				    V_INGRESSQID(iq->cntxt_id) |
1480 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1481 				ndescs = 0;
1482 
1483 				if (budget) {
1484 					return (EINPROGRESS);
1485 				}
1486 			}
1487 		}
1488 
1489 		if (STAILQ_EMPTY(&iql))
1490 			break;
1491 
1492 		/*
1493 		 * Process the head only, and send it to the back of the list if
1494 		 * it's still not done.
1495 		 */
1496 		q = STAILQ_FIRST(&iql);
1497 		STAILQ_REMOVE_HEAD(&iql, link);
1498 		if (service_iq_fl(q, q->qsize / 8) == 0)
1499 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1500 		else
1501 			STAILQ_INSERT_TAIL(&iql, q, link);
1502 	}
1503 
1504 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1505 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1506 
1507 	return (0);
1508 }
1509 
1510 #if defined(INET) || defined(INET6)
1511 static inline int
1512 sort_before_lro(struct lro_ctrl *lro)
1513 {
1514 
1515 	return (lro->lro_mbuf_max != 0);
1516 }
1517 #endif
1518 
1519 #define CGBE_SHIFT_SCALE 10
1520 
1521 static inline uint64_t
1522 t4_tstmp_to_ns(struct adapter *sc, uint64_t lf)
1523 {
1524 	struct clock_sync *cur, dcur;
1525 	uint64_t hw_clocks;
1526 	uint64_t hw_clk_div;
1527 	sbintime_t sbt_cur_to_prev, sbt;
1528 	uint64_t hw_tstmp = lf & 0xfffffffffffffffULL;	/* 60b, not 64b. */
1529 	seqc_t gen;
1530 
1531 	for (;;) {
1532 		cur = &sc->cal_info[sc->cal_current];
1533 		gen = seqc_read(&cur->gen);
1534 		if (gen == 0)
1535 			return (0);
1536 		dcur = *cur;
1537 		if (seqc_consistent(&cur->gen, gen))
1538 			break;
1539 	}
1540 
1541 	/*
1542 	 * Our goal here is to have a result that is:
1543 	 *
1544 	 * (                             (cur_time - prev_time)   )
1545 	 * ((hw_tstmp - hw_prev) *  ----------------------------- ) + prev_time
1546 	 * (                             (hw_cur - hw_prev)       )
1547 	 *
1548 	 * With the constraints that we cannot use float and we
1549 	 * don't want to overflow the uint64_t numbers we are using.
1550 	 */
1551 	hw_clocks = hw_tstmp - dcur.hw_prev;
1552 	sbt_cur_to_prev = (dcur.sbt_cur - dcur.sbt_prev);
1553 	hw_clk_div = dcur.hw_cur - dcur.hw_prev;
1554 	sbt = hw_clocks * sbt_cur_to_prev / hw_clk_div + dcur.sbt_prev;
1555 	return (sbttons(sbt));
1556 }
1557 
1558 static inline void
1559 move_to_next_rxbuf(struct sge_fl *fl)
1560 {
1561 
1562 	fl->rx_offset = 0;
1563 	if (__predict_false((++fl->cidx & 7) == 0)) {
1564 		uint16_t cidx = fl->cidx >> 3;
1565 
1566 		if (__predict_false(cidx == fl->sidx))
1567 			fl->cidx = cidx = 0;
1568 		fl->hw_cidx = cidx;
1569 	}
1570 }
1571 
1572 /*
1573  * Deals with interrupts on an iq+fl queue.
1574  */
1575 static int
1576 service_iq_fl(struct sge_iq *iq, int budget)
1577 {
1578 	struct sge_rxq *rxq = iq_to_rxq(iq);
1579 	struct sge_fl *fl;
1580 	struct adapter *sc = iq->adapter;
1581 	struct iq_desc *d = &iq->desc[iq->cidx];
1582 	int ndescs, limit;
1583 	int rsp_type, starved;
1584 	uint32_t lq;
1585 	uint16_t fl_hw_cidx;
1586 	struct mbuf *m0;
1587 #if defined(INET) || defined(INET6)
1588 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1589 	struct lro_ctrl *lro = &rxq->lro;
1590 #endif
1591 
1592 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1593 	MPASS(iq->flags & IQ_HAS_FL);
1594 
1595 	ndescs = 0;
1596 #if defined(INET) || defined(INET6)
1597 	if (iq->flags & IQ_ADJ_CREDIT) {
1598 		MPASS(sort_before_lro(lro));
1599 		iq->flags &= ~IQ_ADJ_CREDIT;
1600 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1601 			tcp_lro_flush_all(lro);
1602 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1603 			    V_INGRESSQID((u32)iq->cntxt_id) |
1604 			    V_SEINTARM(iq->intr_params));
1605 			return (0);
1606 		}
1607 		ndescs = 1;
1608 	}
1609 #else
1610 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1611 #endif
1612 
1613 	limit = budget ? budget : iq->qsize / 16;
1614 	fl = &rxq->fl;
1615 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1616 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1617 
1618 		rmb();
1619 
1620 		m0 = NULL;
1621 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1622 		lq = be32toh(d->rsp.pldbuflen_qid);
1623 
1624 		switch (rsp_type) {
1625 		case X_RSPD_TYPE_FLBUF:
1626 			if (lq & F_RSPD_NEWBUF) {
1627 				if (fl->rx_offset > 0)
1628 					move_to_next_rxbuf(fl);
1629 				lq = G_RSPD_LEN(lq);
1630 			}
1631 			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1632 				FL_LOCK(fl);
1633 				refill_fl(sc, fl, 64);
1634 				FL_UNLOCK(fl);
1635 				fl_hw_cidx = fl->hw_cidx;
1636 			}
1637 
1638 			if (d->rss.opcode == CPL_RX_PKT) {
1639 				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1640 					break;
1641 				goto out;
1642 			}
1643 			m0 = get_fl_payload(sc, fl, lq);
1644 			if (__predict_false(m0 == NULL))
1645 				goto out;
1646 
1647 			/* fall through */
1648 
1649 		case X_RSPD_TYPE_CPL:
1650 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1651 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1652 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1653 			break;
1654 
1655 		case X_RSPD_TYPE_INTR:
1656 
1657 			/*
1658 			 * There are 1K interrupt-capable queues (qids 0
1659 			 * through 1023).  A response type indicating a
1660 			 * forwarded interrupt with a qid >= 1K is an
1661 			 * iWARP async notification.  That is the only
1662 			 * acceptable indirect interrupt on this queue.
1663 			 */
1664 			if (__predict_false(lq < 1024)) {
1665 				panic("%s: indirect interrupt on iq_fl %p "
1666 				    "with qid %u", __func__, iq, lq);
1667 			}
1668 
1669 			t4_an_handler(iq, &d->rsp);
1670 			break;
1671 
1672 		default:
1673 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1674 			    __func__, rsp_type, iq));
1675 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1676 			    device_get_nameunit(sc->dev), rsp_type, iq);
1677 			break;
1678 		}
1679 
1680 		d++;
1681 		if (__predict_false(++iq->cidx == iq->sidx)) {
1682 			iq->cidx = 0;
1683 			iq->gen ^= F_RSPD_GEN;
1684 			d = &iq->desc[0];
1685 		}
1686 		if (__predict_false(++ndescs == limit)) {
1687 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1688 			    V_INGRESSQID(iq->cntxt_id) |
1689 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1690 
1691 #if defined(INET) || defined(INET6)
1692 			if (iq->flags & IQ_LRO_ENABLED &&
1693 			    !sort_before_lro(lro) &&
1694 			    sc->lro_timeout != 0) {
1695 				tcp_lro_flush_inactive(lro, &lro_timeout);
1696 			}
1697 #endif
1698 			if (budget)
1699 				return (EINPROGRESS);
1700 			ndescs = 0;
1701 		}
1702 	}
1703 out:
1704 #if defined(INET) || defined(INET6)
1705 	if (iq->flags & IQ_LRO_ENABLED) {
1706 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1707 			MPASS(sort_before_lro(lro));
1708 			/* hold back one credit and don't flush LRO state */
1709 			iq->flags |= IQ_ADJ_CREDIT;
1710 			ndescs--;
1711 		} else {
1712 			tcp_lro_flush_all(lro);
1713 		}
1714 	}
1715 #endif
1716 
1717 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1718 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1719 
1720 	FL_LOCK(fl);
1721 	starved = refill_fl(sc, fl, 64);
1722 	FL_UNLOCK(fl);
1723 	if (__predict_false(starved != 0))
1724 		add_fl_to_sfl(sc, fl);
1725 
1726 	return (0);
1727 }
1728 
1729 static inline struct cluster_metadata *
1730 cl_metadata(struct fl_sdesc *sd)
1731 {
1732 
1733 	return ((void *)(sd->cl + sd->moff));
1734 }
1735 
1736 static void
1737 rxb_free(struct mbuf *m)
1738 {
1739 	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1740 
1741 	uma_zfree(clm->zone, clm->cl);
1742 	counter_u64_add(extfree_rels, 1);
1743 }
1744 
1745 /*
1746  * The mbuf returned comes from zone_muf and carries the payload in one of these
1747  * ways
1748  * a) complete frame inside the mbuf
1749  * b) m_cljset (for clusters without metadata)
1750  * d) m_extaddref (cluster with metadata)
1751  */
1752 static struct mbuf *
1753 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1754     int remaining)
1755 {
1756 	struct mbuf *m;
1757 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1758 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1759 	struct cluster_metadata *clm;
1760 	int len, blen;
1761 	caddr_t payload;
1762 
1763 	if (fl->flags & FL_BUF_PACKING) {
1764 		u_int l, pad;
1765 
1766 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1767 		len = min(remaining, blen);
1768 		payload = sd->cl + fl->rx_offset;
1769 
1770 		l = fr_offset + len;
1771 		pad = roundup2(l, fl->buf_boundary) - l;
1772 		if (fl->rx_offset + len + pad < rxb->size2)
1773 			blen = len + pad;
1774 		MPASS(fl->rx_offset + blen <= rxb->size2);
1775 	} else {
1776 		MPASS(fl->rx_offset == 0);	/* not packing */
1777 		blen = rxb->size1;
1778 		len = min(remaining, blen);
1779 		payload = sd->cl;
1780 	}
1781 
1782 	if (fr_offset == 0) {
1783 		m = m_gethdr(M_NOWAIT, MT_DATA);
1784 		if (__predict_false(m == NULL))
1785 			return (NULL);
1786 		m->m_pkthdr.len = remaining;
1787 	} else {
1788 		m = m_get(M_NOWAIT, MT_DATA);
1789 		if (__predict_false(m == NULL))
1790 			return (NULL);
1791 	}
1792 	m->m_len = len;
1793 	kmsan_mark(payload, len, KMSAN_STATE_INITED);
1794 
1795 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1796 		/* copy data to mbuf */
1797 		bcopy(payload, mtod(m, caddr_t), len);
1798 		if (fl->flags & FL_BUF_PACKING) {
1799 			fl->rx_offset += blen;
1800 			MPASS(fl->rx_offset <= rxb->size2);
1801 			if (fl->rx_offset < rxb->size2)
1802 				return (m);	/* without advancing the cidx */
1803 		}
1804 	} else if (fl->flags & FL_BUF_PACKING) {
1805 		clm = cl_metadata(sd);
1806 		if (sd->nmbuf++ == 0) {
1807 			clm->refcount = 1;
1808 			clm->zone = rxb->zone;
1809 			clm->cl = sd->cl;
1810 			counter_u64_add(extfree_refs, 1);
1811 		}
1812 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1813 		    NULL);
1814 
1815 		fl->rx_offset += blen;
1816 		MPASS(fl->rx_offset <= rxb->size2);
1817 		if (fl->rx_offset < rxb->size2)
1818 			return (m);	/* without advancing the cidx */
1819 	} else {
1820 		m_cljset(m, sd->cl, rxb->type);
1821 		sd->cl = NULL;	/* consumed, not a recycle candidate */
1822 	}
1823 
1824 	move_to_next_rxbuf(fl);
1825 
1826 	return (m);
1827 }
1828 
1829 static struct mbuf *
1830 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1831 {
1832 	struct mbuf *m0, *m, **pnext;
1833 	u_int remaining;
1834 
1835 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1836 		M_ASSERTPKTHDR(fl->m0);
1837 		MPASS(fl->m0->m_pkthdr.len == plen);
1838 		MPASS(fl->remaining < plen);
1839 
1840 		m0 = fl->m0;
1841 		pnext = fl->pnext;
1842 		remaining = fl->remaining;
1843 		fl->flags &= ~FL_BUF_RESUME;
1844 		goto get_segment;
1845 	}
1846 
1847 	/*
1848 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1849 	 * 'len' and it may span multiple hw buffers.
1850 	 */
1851 
1852 	m0 = get_scatter_segment(sc, fl, 0, plen);
1853 	if (m0 == NULL)
1854 		return (NULL);
1855 	remaining = plen - m0->m_len;
1856 	pnext = &m0->m_next;
1857 	while (remaining > 0) {
1858 get_segment:
1859 		MPASS(fl->rx_offset == 0);
1860 		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1861 		if (__predict_false(m == NULL)) {
1862 			fl->m0 = m0;
1863 			fl->pnext = pnext;
1864 			fl->remaining = remaining;
1865 			fl->flags |= FL_BUF_RESUME;
1866 			return (NULL);
1867 		}
1868 		*pnext = m;
1869 		pnext = &m->m_next;
1870 		remaining -= m->m_len;
1871 	}
1872 	*pnext = NULL;
1873 
1874 	M_ASSERTPKTHDR(m0);
1875 	return (m0);
1876 }
1877 
1878 static int
1879 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1880     int remaining)
1881 {
1882 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1883 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1884 	int len, blen;
1885 
1886 	if (fl->flags & FL_BUF_PACKING) {
1887 		u_int l, pad;
1888 
1889 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1890 		len = min(remaining, blen);
1891 
1892 		l = fr_offset + len;
1893 		pad = roundup2(l, fl->buf_boundary) - l;
1894 		if (fl->rx_offset + len + pad < rxb->size2)
1895 			blen = len + pad;
1896 		fl->rx_offset += blen;
1897 		MPASS(fl->rx_offset <= rxb->size2);
1898 		if (fl->rx_offset < rxb->size2)
1899 			return (len);	/* without advancing the cidx */
1900 	} else {
1901 		MPASS(fl->rx_offset == 0);	/* not packing */
1902 		blen = rxb->size1;
1903 		len = min(remaining, blen);
1904 	}
1905 	move_to_next_rxbuf(fl);
1906 	return (len);
1907 }
1908 
1909 static inline void
1910 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1911 {
1912 	int remaining, fr_offset, len;
1913 
1914 	fr_offset = 0;
1915 	remaining = plen;
1916 	while (remaining > 0) {
1917 		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1918 		fr_offset += len;
1919 		remaining -= len;
1920 	}
1921 }
1922 
1923 static inline int
1924 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1925 {
1926 	int len;
1927 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1928 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1929 
1930 	if (fl->flags & FL_BUF_PACKING)
1931 		len = rxb->size2 - fl->rx_offset;
1932 	else
1933 		len = rxb->size1;
1934 
1935 	return (min(plen, len));
1936 }
1937 
1938 static int
1939 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1940     u_int plen)
1941 {
1942 	struct mbuf *m0;
1943 	struct ifnet *ifp = rxq->ifp;
1944 	struct sge_fl *fl = &rxq->fl;
1945 	struct vi_info *vi = ifp->if_softc;
1946 	const struct cpl_rx_pkt *cpl;
1947 #if defined(INET) || defined(INET6)
1948 	struct lro_ctrl *lro = &rxq->lro;
1949 #endif
1950 	uint16_t err_vec, tnl_type, tnlhdr_len;
1951 	static const int sw_hashtype[4][2] = {
1952 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1953 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1954 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1955 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1956 	};
1957 	static const int sw_csum_flags[2][2] = {
1958 		{
1959 			/* IP, inner IP */
1960 			CSUM_ENCAP_VXLAN |
1961 			    CSUM_L3_CALC | CSUM_L3_VALID |
1962 			    CSUM_L4_CALC | CSUM_L4_VALID |
1963 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1964 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1965 
1966 			/* IP, inner IP6 */
1967 			CSUM_ENCAP_VXLAN |
1968 			    CSUM_L3_CALC | CSUM_L3_VALID |
1969 			    CSUM_L4_CALC | CSUM_L4_VALID |
1970 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1971 		},
1972 		{
1973 			/* IP6, inner IP */
1974 			CSUM_ENCAP_VXLAN |
1975 			    CSUM_L4_CALC | CSUM_L4_VALID |
1976 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1977 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1978 
1979 			/* IP6, inner IP6 */
1980 			CSUM_ENCAP_VXLAN |
1981 			    CSUM_L4_CALC | CSUM_L4_VALID |
1982 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1983 		},
1984 	};
1985 
1986 	MPASS(plen > sc->params.sge.fl_pktshift);
1987 	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
1988 	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
1989 		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1990 		caddr_t frame;
1991 		int rc, slen;
1992 
1993 		slen = get_segment_len(sc, fl, plen) -
1994 		    sc->params.sge.fl_pktshift;
1995 		frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
1996 		CURVNET_SET_QUIET(ifp->if_vnet);
1997 		rc = pfil_mem_in(vi->pfil, frame, slen, ifp, &m0);
1998 		CURVNET_RESTORE();
1999 		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
2000 			skip_fl_payload(sc, fl, plen);
2001 			return (0);
2002 		}
2003 		if (rc == PFIL_REALLOCED) {
2004 			skip_fl_payload(sc, fl, plen);
2005 			goto have_mbuf;
2006 		}
2007 	}
2008 
2009 	m0 = get_fl_payload(sc, fl, plen);
2010 	if (__predict_false(m0 == NULL))
2011 		return (ENOMEM);
2012 
2013 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
2014 	m0->m_len -= sc->params.sge.fl_pktshift;
2015 	m0->m_data += sc->params.sge.fl_pktshift;
2016 
2017 have_mbuf:
2018 	m0->m_pkthdr.rcvif = ifp;
2019 	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
2020 	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
2021 
2022 	cpl = (const void *)(&d->rss + 1);
2023 	if (sc->params.tp.rx_pkt_encap) {
2024 		const uint16_t ev = be16toh(cpl->err_vec);
2025 
2026 		err_vec = G_T6_COMPR_RXERR_VEC(ev);
2027 		tnl_type = G_T6_RX_TNL_TYPE(ev);
2028 		tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
2029 	} else {
2030 		err_vec = be16toh(cpl->err_vec);
2031 		tnl_type = 0;
2032 		tnlhdr_len = 0;
2033 	}
2034 	if (cpl->csum_calc && err_vec == 0) {
2035 		int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
2036 
2037 		/* checksum(s) calculated and found to be correct. */
2038 
2039 		MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
2040 		    (cpl->l2info & htobe32(F_RXF_IP6)));
2041 		m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2042 		if (tnl_type == 0) {
2043 			if (!ipv6 && ifp->if_capenable & IFCAP_RXCSUM) {
2044 				m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2045 				    CSUM_L3_VALID | CSUM_L4_CALC |
2046 				    CSUM_L4_VALID;
2047 			} else if (ipv6 && ifp->if_capenable & IFCAP_RXCSUM_IPV6) {
2048 				m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2049 				    CSUM_L4_VALID;
2050 			}
2051 			rxq->rxcsum++;
2052 		} else {
2053 			MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
2054 
2055 			M_HASHTYPE_SETINNER(m0);
2056 			if (__predict_false(cpl->ip_frag)) {
2057 				/*
2058 				 * csum_data is for the inner frame (which is an
2059 				 * IP fragment) and is not 0xffff.  There is no
2060 				 * way to pass the inner csum_data to the stack.
2061 				 * We don't want the stack to use the inner
2062 				 * csum_data to validate the outer frame or it
2063 				 * will get rejected.  So we fix csum_data here
2064 				 * and let sw do the checksum of inner IP
2065 				 * fragments.
2066 				 *
2067 				 * XXX: Need 32b for csum_data2 in an rx mbuf.
2068 				 * Maybe stuff it into rcv_tstmp?
2069 				 */
2070 				m0->m_pkthdr.csum_data = 0xffff;
2071 				if (ipv6) {
2072 					m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2073 					    CSUM_L4_VALID;
2074 				} else {
2075 					m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2076 					    CSUM_L3_VALID | CSUM_L4_CALC |
2077 					    CSUM_L4_VALID;
2078 				}
2079 			} else {
2080 				int outer_ipv6;
2081 
2082 				MPASS(m0->m_pkthdr.csum_data == 0xffff);
2083 
2084 				outer_ipv6 = tnlhdr_len >=
2085 				    sizeof(struct ether_header) +
2086 				    sizeof(struct ip6_hdr);
2087 				m0->m_pkthdr.csum_flags =
2088 				    sw_csum_flags[outer_ipv6][ipv6];
2089 			}
2090 			rxq->vxlan_rxcsum++;
2091 		}
2092 	}
2093 
2094 	if (cpl->vlan_ex) {
2095 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2096 		m0->m_flags |= M_VLANTAG;
2097 		rxq->vlan_extraction++;
2098 	}
2099 
2100 	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
2101 		/*
2102 		 * Fill up rcv_tstmp but do not set M_TSTMP as
2103 		 * long as we get a non-zero back from t4_tstmp_to_ns().
2104 		 */
2105 		m0->m_pkthdr.rcv_tstmp = t4_tstmp_to_ns(sc,
2106 		    be64toh(d->rsp.u.last_flit));
2107 		if (m0->m_pkthdr.rcv_tstmp != 0)
2108 			m0->m_flags |= M_TSTMP;
2109 	}
2110 
2111 #ifdef NUMA
2112 	m0->m_pkthdr.numa_domain = ifp->if_numa_domain;
2113 #endif
2114 #if defined(INET) || defined(INET6)
2115 	if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
2116 	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2117 	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2118 		if (sort_before_lro(lro)) {
2119 			tcp_lro_queue_mbuf(lro, m0);
2120 			return (0); /* queued for sort, then LRO */
2121 		}
2122 		if (tcp_lro_rx(lro, m0, 0) == 0)
2123 			return (0); /* queued for LRO */
2124 	}
2125 #endif
2126 	ifp->if_input(ifp, m0);
2127 
2128 	return (0);
2129 }
2130 
2131 /*
2132  * Must drain the wrq or make sure that someone else will.
2133  */
2134 static void
2135 wrq_tx_drain(void *arg, int n)
2136 {
2137 	struct sge_wrq *wrq = arg;
2138 	struct sge_eq *eq = &wrq->eq;
2139 
2140 	EQ_LOCK(eq);
2141 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2142 		drain_wrq_wr_list(wrq->adapter, wrq);
2143 	EQ_UNLOCK(eq);
2144 }
2145 
2146 static void
2147 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2148 {
2149 	struct sge_eq *eq = &wrq->eq;
2150 	u_int available, dbdiff;	/* # of hardware descriptors */
2151 	u_int n;
2152 	struct wrqe *wr;
2153 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2154 
2155 	EQ_LOCK_ASSERT_OWNED(eq);
2156 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2157 	wr = STAILQ_FIRST(&wrq->wr_list);
2158 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2159 	MPASS(eq->pidx == eq->dbidx);
2160 	dbdiff = 0;
2161 
2162 	do {
2163 		eq->cidx = read_hw_cidx(eq);
2164 		if (eq->pidx == eq->cidx)
2165 			available = eq->sidx - 1;
2166 		else
2167 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2168 
2169 		MPASS(wr->wrq == wrq);
2170 		n = howmany(wr->wr_len, EQ_ESIZE);
2171 		if (available < n)
2172 			break;
2173 
2174 		dst = (void *)&eq->desc[eq->pidx];
2175 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2176 			/* Won't wrap, won't end exactly at the status page. */
2177 			bcopy(&wr->wr[0], dst, wr->wr_len);
2178 			eq->pidx += n;
2179 		} else {
2180 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2181 
2182 			bcopy(&wr->wr[0], dst, first_portion);
2183 			if (wr->wr_len > first_portion) {
2184 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2185 				    wr->wr_len - first_portion);
2186 			}
2187 			eq->pidx = n - (eq->sidx - eq->pidx);
2188 		}
2189 		wrq->tx_wrs_copied++;
2190 
2191 		if (available < eq->sidx / 4 &&
2192 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2193 				/*
2194 				 * XXX: This is not 100% reliable with some
2195 				 * types of WRs.  But this is a very unusual
2196 				 * situation for an ofld/ctrl queue anyway.
2197 				 */
2198 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2199 			    F_FW_WR_EQUEQ);
2200 		}
2201 
2202 		dbdiff += n;
2203 		if (dbdiff >= 16) {
2204 			ring_eq_db(sc, eq, dbdiff);
2205 			dbdiff = 0;
2206 		}
2207 
2208 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2209 		free_wrqe(wr);
2210 		MPASS(wrq->nwr_pending > 0);
2211 		wrq->nwr_pending--;
2212 		MPASS(wrq->ndesc_needed >= n);
2213 		wrq->ndesc_needed -= n;
2214 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2215 
2216 	if (dbdiff)
2217 		ring_eq_db(sc, eq, dbdiff);
2218 }
2219 
2220 /*
2221  * Doesn't fail.  Holds on to work requests it can't send right away.
2222  */
2223 void
2224 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2225 {
2226 #ifdef INVARIANTS
2227 	struct sge_eq *eq = &wrq->eq;
2228 #endif
2229 
2230 	EQ_LOCK_ASSERT_OWNED(eq);
2231 	MPASS(wr != NULL);
2232 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2233 	MPASS((wr->wr_len & 0x7) == 0);
2234 
2235 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2236 	wrq->nwr_pending++;
2237 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2238 
2239 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2240 		return;	/* commit_wrq_wr will drain wr_list as well. */
2241 
2242 	drain_wrq_wr_list(sc, wrq);
2243 
2244 	/* Doorbell must have caught up to the pidx. */
2245 	MPASS(eq->pidx == eq->dbidx);
2246 }
2247 
2248 void
2249 t4_update_fl_bufsize(struct ifnet *ifp)
2250 {
2251 	struct vi_info *vi = ifp->if_softc;
2252 	struct adapter *sc = vi->adapter;
2253 	struct sge_rxq *rxq;
2254 #ifdef TCP_OFFLOAD
2255 	struct sge_ofld_rxq *ofld_rxq;
2256 #endif
2257 	struct sge_fl *fl;
2258 	int i, maxp;
2259 
2260 	maxp = max_rx_payload(sc, ifp, false);
2261 	for_each_rxq(vi, i, rxq) {
2262 		fl = &rxq->fl;
2263 
2264 		FL_LOCK(fl);
2265 		fl->zidx = find_refill_source(sc, maxp,
2266 		    fl->flags & FL_BUF_PACKING);
2267 		FL_UNLOCK(fl);
2268 	}
2269 #ifdef TCP_OFFLOAD
2270 	maxp = max_rx_payload(sc, ifp, true);
2271 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2272 		fl = &ofld_rxq->fl;
2273 
2274 		FL_LOCK(fl);
2275 		fl->zidx = find_refill_source(sc, maxp,
2276 		    fl->flags & FL_BUF_PACKING);
2277 		FL_UNLOCK(fl);
2278 	}
2279 #endif
2280 }
2281 
2282 #ifdef RATELIMIT
2283 static inline int
2284 mbuf_eo_nsegs(struct mbuf *m)
2285 {
2286 
2287 	M_ASSERTPKTHDR(m);
2288 	return (m->m_pkthdr.PH_loc.eight[1]);
2289 }
2290 
2291 #if defined(INET) || defined(INET6)
2292 static inline void
2293 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2294 {
2295 
2296 	M_ASSERTPKTHDR(m);
2297 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2298 }
2299 #endif
2300 
2301 static inline int
2302 mbuf_eo_len16(struct mbuf *m)
2303 {
2304 	int n;
2305 
2306 	M_ASSERTPKTHDR(m);
2307 	n = m->m_pkthdr.PH_loc.eight[2];
2308 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2309 
2310 	return (n);
2311 }
2312 
2313 #if defined(INET) || defined(INET6)
2314 static inline void
2315 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2316 {
2317 
2318 	M_ASSERTPKTHDR(m);
2319 	m->m_pkthdr.PH_loc.eight[2] = len16;
2320 }
2321 #endif
2322 
2323 static inline int
2324 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2325 {
2326 
2327 	M_ASSERTPKTHDR(m);
2328 	return (m->m_pkthdr.PH_loc.eight[3]);
2329 }
2330 
2331 #if defined(INET) || defined(INET6)
2332 static inline void
2333 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2334 {
2335 
2336 	M_ASSERTPKTHDR(m);
2337 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2338 }
2339 #endif
2340 
2341 static inline int
2342 needs_eo(struct m_snd_tag *mst)
2343 {
2344 
2345 	return (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2346 }
2347 #endif
2348 
2349 /*
2350  * Try to allocate an mbuf to contain a raw work request.  To make it
2351  * easy to construct the work request, don't allocate a chain but a
2352  * single mbuf.
2353  */
2354 struct mbuf *
2355 alloc_wr_mbuf(int len, int how)
2356 {
2357 	struct mbuf *m;
2358 
2359 	if (len <= MHLEN)
2360 		m = m_gethdr(how, MT_DATA);
2361 	else if (len <= MCLBYTES)
2362 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2363 	else
2364 		m = NULL;
2365 	if (m == NULL)
2366 		return (NULL);
2367 	m->m_pkthdr.len = len;
2368 	m->m_len = len;
2369 	set_mbuf_cflags(m, MC_RAW_WR);
2370 	set_mbuf_len16(m, howmany(len, 16));
2371 	return (m);
2372 }
2373 
2374 static inline bool
2375 needs_hwcsum(struct mbuf *m)
2376 {
2377 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
2378 	    CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2379 	    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
2380 	    CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
2381 	    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
2382 
2383 	M_ASSERTPKTHDR(m);
2384 
2385 	return (m->m_pkthdr.csum_flags & csum_flags);
2386 }
2387 
2388 static inline bool
2389 needs_tso(struct mbuf *m)
2390 {
2391 	const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
2392 	    CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2393 
2394 	M_ASSERTPKTHDR(m);
2395 
2396 	return (m->m_pkthdr.csum_flags & csum_flags);
2397 }
2398 
2399 static inline bool
2400 needs_vxlan_csum(struct mbuf *m)
2401 {
2402 
2403 	M_ASSERTPKTHDR(m);
2404 
2405 	return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
2406 }
2407 
2408 static inline bool
2409 needs_vxlan_tso(struct mbuf *m)
2410 {
2411 	const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
2412 	    CSUM_INNER_IP6_TSO;
2413 
2414 	M_ASSERTPKTHDR(m);
2415 
2416 	return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
2417 	    (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
2418 }
2419 
2420 #if defined(INET) || defined(INET6)
2421 static inline bool
2422 needs_inner_tcp_csum(struct mbuf *m)
2423 {
2424 	const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2425 
2426 	M_ASSERTPKTHDR(m);
2427 
2428 	return (m->m_pkthdr.csum_flags & csum_flags);
2429 }
2430 #endif
2431 
2432 static inline bool
2433 needs_l3_csum(struct mbuf *m)
2434 {
2435 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
2436 	    CSUM_INNER_IP_TSO;
2437 
2438 	M_ASSERTPKTHDR(m);
2439 
2440 	return (m->m_pkthdr.csum_flags & csum_flags);
2441 }
2442 
2443 static inline bool
2444 needs_outer_tcp_csum(struct mbuf *m)
2445 {
2446 	const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
2447 	    CSUM_IP6_TSO;
2448 
2449 	M_ASSERTPKTHDR(m);
2450 
2451 	return (m->m_pkthdr.csum_flags & csum_flags);
2452 }
2453 
2454 #ifdef RATELIMIT
2455 static inline bool
2456 needs_outer_l4_csum(struct mbuf *m)
2457 {
2458 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
2459 	    CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
2460 
2461 	M_ASSERTPKTHDR(m);
2462 
2463 	return (m->m_pkthdr.csum_flags & csum_flags);
2464 }
2465 
2466 static inline bool
2467 needs_outer_udp_csum(struct mbuf *m)
2468 {
2469 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
2470 
2471 	M_ASSERTPKTHDR(m);
2472 
2473 	return (m->m_pkthdr.csum_flags & csum_flags);
2474 }
2475 #endif
2476 
2477 static inline bool
2478 needs_vlan_insertion(struct mbuf *m)
2479 {
2480 
2481 	M_ASSERTPKTHDR(m);
2482 
2483 	return (m->m_flags & M_VLANTAG);
2484 }
2485 
2486 #if defined(INET) || defined(INET6)
2487 static void *
2488 m_advance(struct mbuf **pm, int *poffset, int len)
2489 {
2490 	struct mbuf *m = *pm;
2491 	int offset = *poffset;
2492 	uintptr_t p = 0;
2493 
2494 	MPASS(len > 0);
2495 
2496 	for (;;) {
2497 		if (offset + len < m->m_len) {
2498 			offset += len;
2499 			p = mtod(m, uintptr_t) + offset;
2500 			break;
2501 		}
2502 		len -= m->m_len - offset;
2503 		m = m->m_next;
2504 		offset = 0;
2505 		MPASS(m != NULL);
2506 	}
2507 	*poffset = offset;
2508 	*pm = m;
2509 	return ((void *)p);
2510 }
2511 #endif
2512 
2513 static inline int
2514 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2515 {
2516 	vm_paddr_t paddr;
2517 	int i, len, off, pglen, pgoff, seglen, segoff;
2518 	int nsegs = 0;
2519 
2520 	M_ASSERTEXTPG(m);
2521 	off = mtod(m, vm_offset_t);
2522 	len = m->m_len;
2523 	off += skip;
2524 	len -= skip;
2525 
2526 	if (m->m_epg_hdrlen != 0) {
2527 		if (off >= m->m_epg_hdrlen) {
2528 			off -= m->m_epg_hdrlen;
2529 		} else {
2530 			seglen = m->m_epg_hdrlen - off;
2531 			segoff = off;
2532 			seglen = min(seglen, len);
2533 			off = 0;
2534 			len -= seglen;
2535 			paddr = pmap_kextract(
2536 			    (vm_offset_t)&m->m_epg_hdr[segoff]);
2537 			if (*nextaddr != paddr)
2538 				nsegs++;
2539 			*nextaddr = paddr + seglen;
2540 		}
2541 	}
2542 	pgoff = m->m_epg_1st_off;
2543 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2544 		pglen = m_epg_pagelen(m, i, pgoff);
2545 		if (off >= pglen) {
2546 			off -= pglen;
2547 			pgoff = 0;
2548 			continue;
2549 		}
2550 		seglen = pglen - off;
2551 		segoff = pgoff + off;
2552 		off = 0;
2553 		seglen = min(seglen, len);
2554 		len -= seglen;
2555 		paddr = m->m_epg_pa[i] + segoff;
2556 		if (*nextaddr != paddr)
2557 			nsegs++;
2558 		*nextaddr = paddr + seglen;
2559 		pgoff = 0;
2560 	};
2561 	if (len != 0) {
2562 		seglen = min(len, m->m_epg_trllen - off);
2563 		len -= seglen;
2564 		paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2565 		if (*nextaddr != paddr)
2566 			nsegs++;
2567 		*nextaddr = paddr + seglen;
2568 	}
2569 
2570 	return (nsegs);
2571 }
2572 
2573 
2574 /*
2575  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2576  * must have at least one mbuf that's not empty.  It is possible for this
2577  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2578  */
2579 static inline int
2580 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2581 {
2582 	vm_paddr_t nextaddr, paddr;
2583 	vm_offset_t va;
2584 	int len, nsegs;
2585 
2586 	M_ASSERTPKTHDR(m);
2587 	MPASS(m->m_pkthdr.len > 0);
2588 	MPASS(m->m_pkthdr.len >= skip);
2589 
2590 	nsegs = 0;
2591 	nextaddr = 0;
2592 	for (; m; m = m->m_next) {
2593 		len = m->m_len;
2594 		if (__predict_false(len == 0))
2595 			continue;
2596 		if (skip >= len) {
2597 			skip -= len;
2598 			continue;
2599 		}
2600 		if ((m->m_flags & M_EXTPG) != 0) {
2601 			*cflags |= MC_NOMAP;
2602 			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2603 			skip = 0;
2604 			continue;
2605 		}
2606 		va = mtod(m, vm_offset_t) + skip;
2607 		len -= skip;
2608 		skip = 0;
2609 		paddr = pmap_kextract(va);
2610 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2611 		if (paddr == nextaddr)
2612 			nsegs--;
2613 		nextaddr = pmap_kextract(va + len - 1) + 1;
2614 	}
2615 
2616 	return (nsegs);
2617 }
2618 
2619 /*
2620  * The maximum number of segments that can fit in a WR.
2621  */
2622 static int
2623 max_nsegs_allowed(struct mbuf *m, bool vm_wr)
2624 {
2625 
2626 	if (vm_wr) {
2627 		if (needs_tso(m))
2628 			return (TX_SGL_SEGS_VM_TSO);
2629 		return (TX_SGL_SEGS_VM);
2630 	}
2631 
2632 	if (needs_tso(m)) {
2633 		if (needs_vxlan_tso(m))
2634 			return (TX_SGL_SEGS_VXLAN_TSO);
2635 		else
2636 			return (TX_SGL_SEGS_TSO);
2637 	}
2638 
2639 	return (TX_SGL_SEGS);
2640 }
2641 
2642 static struct timeval txerr_ratecheck = {0};
2643 static const struct timeval txerr_interval = {3, 0};
2644 
2645 /*
2646  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2647  * a) caller can assume it's been freed if this function returns with an error.
2648  * b) it may get defragged up if the gather list is too long for the hardware.
2649  */
2650 int
2651 parse_pkt(struct mbuf **mp, bool vm_wr)
2652 {
2653 	struct mbuf *m0 = *mp, *m;
2654 	int rc, nsegs, defragged = 0;
2655 	struct ether_header *eh;
2656 #ifdef INET
2657 	void *l3hdr;
2658 #endif
2659 #if defined(INET) || defined(INET6)
2660 	int offset;
2661 	struct tcphdr *tcp;
2662 #endif
2663 #if defined(KERN_TLS) || defined(RATELIMIT)
2664 	struct m_snd_tag *mst;
2665 #endif
2666 	uint16_t eh_type;
2667 	uint8_t cflags;
2668 
2669 	cflags = 0;
2670 	M_ASSERTPKTHDR(m0);
2671 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2672 		rc = EINVAL;
2673 fail:
2674 		m_freem(m0);
2675 		*mp = NULL;
2676 		return (rc);
2677 	}
2678 restart:
2679 	/*
2680 	 * First count the number of gather list segments in the payload.
2681 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2682 	 */
2683 	M_ASSERTPKTHDR(m0);
2684 	MPASS(m0->m_pkthdr.len > 0);
2685 	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2686 #if defined(KERN_TLS) || defined(RATELIMIT)
2687 	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2688 		mst = m0->m_pkthdr.snd_tag;
2689 	else
2690 		mst = NULL;
2691 #endif
2692 #ifdef KERN_TLS
2693 	if (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_TLS) {
2694 		cflags |= MC_TLS;
2695 		set_mbuf_cflags(m0, cflags);
2696 		rc = t6_ktls_parse_pkt(m0);
2697 		if (rc != 0)
2698 			goto fail;
2699 		return (EINPROGRESS);
2700 	}
2701 #endif
2702 	if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
2703 		if (defragged++ > 0) {
2704 			rc = EFBIG;
2705 			goto fail;
2706 		}
2707 		counter_u64_add(defrags, 1);
2708 		if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
2709 			rc = ENOMEM;
2710 			goto fail;
2711 		}
2712 		*mp = m0 = m;	/* update caller's copy after defrag */
2713 		goto restart;
2714 	}
2715 
2716 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2717 	    !(cflags & MC_NOMAP))) {
2718 		counter_u64_add(pullups, 1);
2719 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2720 		if (m0 == NULL) {
2721 			/* Should have left well enough alone. */
2722 			rc = EFBIG;
2723 			goto fail;
2724 		}
2725 		*mp = m0;	/* update caller's copy after pullup */
2726 		goto restart;
2727 	}
2728 	set_mbuf_nsegs(m0, nsegs);
2729 	set_mbuf_cflags(m0, cflags);
2730 	calculate_mbuf_len16(m0, vm_wr);
2731 
2732 #ifdef RATELIMIT
2733 	/*
2734 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2735 	 * checksumming is enabled.  needs_outer_l4_csum happens to check for
2736 	 * all the right things.
2737 	 */
2738 	if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
2739 		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2740 		m0->m_pkthdr.snd_tag = NULL;
2741 		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2742 		mst = NULL;
2743 	}
2744 #endif
2745 
2746 	if (!needs_hwcsum(m0)
2747 #ifdef RATELIMIT
2748 		 && !needs_eo(mst)
2749 #endif
2750 	)
2751 		return (0);
2752 
2753 	m = m0;
2754 	eh = mtod(m, struct ether_header *);
2755 	eh_type = ntohs(eh->ether_type);
2756 	if (eh_type == ETHERTYPE_VLAN) {
2757 		struct ether_vlan_header *evh = (void *)eh;
2758 
2759 		eh_type = ntohs(evh->evl_proto);
2760 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2761 	} else
2762 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2763 
2764 #if defined(INET) || defined(INET6)
2765 	offset = 0;
2766 #ifdef INET
2767 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2768 #else
2769 	m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2770 #endif
2771 #endif
2772 
2773 	switch (eh_type) {
2774 #ifdef INET6
2775 	case ETHERTYPE_IPV6:
2776 		m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
2777 		break;
2778 #endif
2779 #ifdef INET
2780 	case ETHERTYPE_IP:
2781 	{
2782 		struct ip *ip = l3hdr;
2783 
2784 		if (needs_vxlan_csum(m0)) {
2785 			/* Driver will do the outer IP hdr checksum. */
2786 			ip->ip_sum = 0;
2787 			if (needs_vxlan_tso(m0)) {
2788 				const uint16_t ipl = ip->ip_len;
2789 
2790 				ip->ip_len = 0;
2791 				ip->ip_sum = ~in_cksum_hdr(ip);
2792 				ip->ip_len = ipl;
2793 			} else
2794 				ip->ip_sum = in_cksum_hdr(ip);
2795 		}
2796 		m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
2797 		break;
2798 	}
2799 #endif
2800 	default:
2801 		if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2802 			log(LOG_ERR, "%s: ethertype 0x%04x unknown.  "
2803 			    "if_cxgbe must be compiled with the same "
2804 			    "INET/INET6 options as the kernel.\n", __func__,
2805 			    eh_type);
2806 		}
2807 		rc = EINVAL;
2808 		goto fail;
2809 	}
2810 
2811 #if defined(INET) || defined(INET6)
2812 	if (needs_vxlan_csum(m0)) {
2813 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2814 		m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
2815 
2816 		/* Inner headers. */
2817 		eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
2818 		    sizeof(struct udphdr) + sizeof(struct vxlan_header));
2819 		eh_type = ntohs(eh->ether_type);
2820 		if (eh_type == ETHERTYPE_VLAN) {
2821 			struct ether_vlan_header *evh = (void *)eh;
2822 
2823 			eh_type = ntohs(evh->evl_proto);
2824 			m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
2825 		} else
2826 			m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
2827 #ifdef INET
2828 		l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2829 #else
2830 		m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2831 #endif
2832 
2833 		switch (eh_type) {
2834 #ifdef INET6
2835 		case ETHERTYPE_IPV6:
2836 			m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
2837 			break;
2838 #endif
2839 #ifdef INET
2840 		case ETHERTYPE_IP:
2841 		{
2842 			struct ip *ip = l3hdr;
2843 
2844 			m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
2845 			break;
2846 		}
2847 #endif
2848 		default:
2849 			if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2850 				log(LOG_ERR, "%s: VXLAN hw offload requested"
2851 				    "with unknown ethertype 0x%04x.  if_cxgbe "
2852 				    "must be compiled with the same INET/INET6 "
2853 				    "options as the kernel.\n", __func__,
2854 				    eh_type);
2855 			}
2856 			rc = EINVAL;
2857 			goto fail;
2858 		}
2859 		if (needs_inner_tcp_csum(m0)) {
2860 			tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
2861 			m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
2862 		}
2863 		MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
2864 		m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
2865 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
2866 		    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
2867 		    CSUM_ENCAP_VXLAN;
2868 	}
2869 
2870 	if (needs_outer_tcp_csum(m0)) {
2871 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2872 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2873 #ifdef RATELIMIT
2874 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2875 			set_mbuf_eo_tsclk_tsoff(m0,
2876 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2877 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2878 		} else
2879 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2880 	} else if (needs_outer_udp_csum(m0)) {
2881 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2882 #endif
2883 	}
2884 #ifdef RATELIMIT
2885 	if (needs_eo(mst)) {
2886 		u_int immhdrs;
2887 
2888 		/* EO WRs have the headers in the WR and not the GL. */
2889 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2890 		    m0->m_pkthdr.l4hlen;
2891 		cflags = 0;
2892 		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2893 		MPASS(cflags == mbuf_cflags(m0));
2894 		set_mbuf_eo_nsegs(m0, nsegs);
2895 		set_mbuf_eo_len16(m0,
2896 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2897 		rc = ethofld_transmit(mst->ifp, m0);
2898 		if (rc != 0)
2899 			goto fail;
2900 		return (EINPROGRESS);
2901 	}
2902 #endif
2903 #endif
2904 	MPASS(m0 == *mp);
2905 	return (0);
2906 }
2907 
2908 void *
2909 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2910 {
2911 	struct sge_eq *eq = &wrq->eq;
2912 	struct adapter *sc = wrq->adapter;
2913 	int ndesc, available;
2914 	struct wrqe *wr;
2915 	void *w;
2916 
2917 	MPASS(len16 > 0);
2918 	ndesc = tx_len16_to_desc(len16);
2919 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2920 
2921 	EQ_LOCK(eq);
2922 
2923 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2924 		drain_wrq_wr_list(sc, wrq);
2925 
2926 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2927 slowpath:
2928 		EQ_UNLOCK(eq);
2929 		wr = alloc_wrqe(len16 * 16, wrq);
2930 		if (__predict_false(wr == NULL))
2931 			return (NULL);
2932 		cookie->pidx = -1;
2933 		cookie->ndesc = ndesc;
2934 		return (&wr->wr);
2935 	}
2936 
2937 	eq->cidx = read_hw_cidx(eq);
2938 	if (eq->pidx == eq->cidx)
2939 		available = eq->sidx - 1;
2940 	else
2941 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2942 	if (available < ndesc)
2943 		goto slowpath;
2944 
2945 	cookie->pidx = eq->pidx;
2946 	cookie->ndesc = ndesc;
2947 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2948 
2949 	w = &eq->desc[eq->pidx];
2950 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2951 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2952 		w = &wrq->ss[0];
2953 		wrq->ss_pidx = cookie->pidx;
2954 		wrq->ss_len = len16 * 16;
2955 	}
2956 
2957 	EQ_UNLOCK(eq);
2958 
2959 	return (w);
2960 }
2961 
2962 void
2963 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2964 {
2965 	struct sge_eq *eq = &wrq->eq;
2966 	struct adapter *sc = wrq->adapter;
2967 	int ndesc, pidx;
2968 	struct wrq_cookie *prev, *next;
2969 
2970 	if (cookie->pidx == -1) {
2971 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2972 
2973 		t4_wrq_tx(sc, wr);
2974 		return;
2975 	}
2976 
2977 	if (__predict_false(w == &wrq->ss[0])) {
2978 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2979 
2980 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2981 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2982 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2983 		wrq->tx_wrs_ss++;
2984 	} else
2985 		wrq->tx_wrs_direct++;
2986 
2987 	EQ_LOCK(eq);
2988 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2989 	pidx = cookie->pidx;
2990 	MPASS(pidx >= 0 && pidx < eq->sidx);
2991 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2992 	next = TAILQ_NEXT(cookie, link);
2993 	if (prev == NULL) {
2994 		MPASS(pidx == eq->dbidx);
2995 		if (next == NULL || ndesc >= 16) {
2996 			int available;
2997 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2998 
2999 			/*
3000 			 * Note that the WR via which we'll request tx updates
3001 			 * is at pidx and not eq->pidx, which has moved on
3002 			 * already.
3003 			 */
3004 			dst = (void *)&eq->desc[pidx];
3005 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3006 			if (available < eq->sidx / 4 &&
3007 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3008 				/*
3009 				 * XXX: This is not 100% reliable with some
3010 				 * types of WRs.  But this is a very unusual
3011 				 * situation for an ofld/ctrl queue anyway.
3012 				 */
3013 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
3014 				    F_FW_WR_EQUEQ);
3015 			}
3016 
3017 			ring_eq_db(wrq->adapter, eq, ndesc);
3018 		} else {
3019 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
3020 			next->pidx = pidx;
3021 			next->ndesc += ndesc;
3022 		}
3023 	} else {
3024 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
3025 		prev->ndesc += ndesc;
3026 	}
3027 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
3028 
3029 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
3030 		drain_wrq_wr_list(sc, wrq);
3031 
3032 #ifdef INVARIANTS
3033 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
3034 		/* Doorbell must have caught up to the pidx. */
3035 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
3036 	}
3037 #endif
3038 	EQ_UNLOCK(eq);
3039 }
3040 
3041 static u_int
3042 can_resume_eth_tx(struct mp_ring *r)
3043 {
3044 	struct sge_eq *eq = r->cookie;
3045 
3046 	return (total_available_tx_desc(eq) > eq->sidx / 8);
3047 }
3048 
3049 static inline bool
3050 cannot_use_txpkts(struct mbuf *m)
3051 {
3052 	/* maybe put a GL limit too, to avoid silliness? */
3053 
3054 	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
3055 }
3056 
3057 static inline int
3058 discard_tx(struct sge_eq *eq)
3059 {
3060 
3061 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
3062 }
3063 
3064 static inline int
3065 wr_can_update_eq(void *p)
3066 {
3067 	struct fw_eth_tx_pkts_wr *wr = p;
3068 
3069 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
3070 	case FW_ULPTX_WR:
3071 	case FW_ETH_TX_PKT_WR:
3072 	case FW_ETH_TX_PKTS_WR:
3073 	case FW_ETH_TX_PKTS2_WR:
3074 	case FW_ETH_TX_PKT_VM_WR:
3075 	case FW_ETH_TX_PKTS_VM_WR:
3076 		return (1);
3077 	default:
3078 		return (0);
3079 	}
3080 }
3081 
3082 static inline void
3083 set_txupdate_flags(struct sge_txq *txq, u_int avail,
3084     struct fw_eth_tx_pkt_wr *wr)
3085 {
3086 	struct sge_eq *eq = &txq->eq;
3087 	struct txpkts *txp = &txq->txp;
3088 
3089 	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
3090 	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3091 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3092 		eq->equeqidx = eq->pidx;
3093 	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
3094 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3095 		eq->equeqidx = eq->pidx;
3096 	}
3097 }
3098 
3099 #if defined(__i386__) || defined(__amd64__)
3100 extern uint64_t tsc_freq;
3101 #endif
3102 
3103 static inline bool
3104 record_eth_tx_time(struct sge_txq *txq)
3105 {
3106 	const uint64_t cycles = get_cyclecount();
3107 	const uint64_t last_tx = txq->last_tx;
3108 #if defined(__i386__) || defined(__amd64__)
3109 	const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
3110 #else
3111 	const uint64_t itg = 0;
3112 #endif
3113 
3114 	MPASS(cycles >= last_tx);
3115 	txq->last_tx = cycles;
3116 	return (cycles - last_tx < itg);
3117 }
3118 
3119 /*
3120  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
3121  * be consumed.  Return the actual number consumed.  0 indicates a stall.
3122  */
3123 static u_int
3124 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
3125 {
3126 	struct sge_txq *txq = r->cookie;
3127 	struct ifnet *ifp = txq->ifp;
3128 	struct sge_eq *eq = &txq->eq;
3129 	struct txpkts *txp = &txq->txp;
3130 	struct vi_info *vi = ifp->if_softc;
3131 	struct adapter *sc = vi->adapter;
3132 	u_int total, remaining;		/* # of packets */
3133 	u_int n, avail, dbdiff;		/* # of hardware descriptors */
3134 	int i, rc;
3135 	struct mbuf *m0;
3136 	bool snd, recent_tx;
3137 	void *wr;	/* start of the last WR written to the ring */
3138 
3139 	TXQ_LOCK_ASSERT_OWNED(txq);
3140 	recent_tx = record_eth_tx_time(txq);
3141 
3142 	remaining = IDXDIFF(pidx, cidx, r->size);
3143 	if (__predict_false(discard_tx(eq))) {
3144 		for (i = 0; i < txp->npkt; i++)
3145 			m_freem(txp->mb[i]);
3146 		txp->npkt = 0;
3147 		while (cidx != pidx) {
3148 			m0 = r->items[cidx];
3149 			m_freem(m0);
3150 			if (++cidx == r->size)
3151 				cidx = 0;
3152 		}
3153 		reclaim_tx_descs(txq, eq->sidx);
3154 		*coalescing = false;
3155 		return (remaining);	/* emptied */
3156 	}
3157 
3158 	/* How many hardware descriptors do we have readily available. */
3159 	if (eq->pidx == eq->cidx)
3160 		avail = eq->sidx - 1;
3161 	else
3162 		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3163 
3164 	total = 0;
3165 	if (remaining == 0) {
3166 		txp->score = 0;
3167 		txq->txpkts_flush++;
3168 		goto send_txpkts;
3169 	}
3170 
3171 	dbdiff = 0;
3172 	MPASS(remaining > 0);
3173 	while (remaining > 0) {
3174 		m0 = r->items[cidx];
3175 		M_ASSERTPKTHDR(m0);
3176 		MPASS(m0->m_nextpkt == NULL);
3177 
3178 		if (avail < 2 * SGE_MAX_WR_NDESC)
3179 			avail += reclaim_tx_descs(txq, 64);
3180 
3181 		if (t4_tx_coalesce == 0 && txp->npkt == 0)
3182 			goto skip_coalescing;
3183 		if (cannot_use_txpkts(m0))
3184 			txp->score = 0;
3185 		else if (recent_tx) {
3186 			if (++txp->score == 0)
3187 				txp->score = UINT8_MAX;
3188 		} else
3189 			txp->score = 1;
3190 		if (txp->npkt > 0 || remaining > 1 ||
3191 		    txp->score >= t4_tx_coalesce_pkts ||
3192 		    atomic_load_int(&txq->eq.equiq) != 0) {
3193 			if (vi->flags & TX_USES_VM_WR)
3194 				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
3195 			else
3196 				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
3197 		} else {
3198 			snd = false;
3199 			rc = EINVAL;
3200 		}
3201 		if (snd) {
3202 			MPASS(txp->npkt > 0);
3203 			for (i = 0; i < txp->npkt; i++)
3204 				ETHER_BPF_MTAP(ifp, txp->mb[i]);
3205 			if (txp->npkt > 1) {
3206 				MPASS(avail >= tx_len16_to_desc(txp->len16));
3207 				if (vi->flags & TX_USES_VM_WR)
3208 					n = write_txpkts_vm_wr(sc, txq);
3209 				else
3210 					n = write_txpkts_wr(sc, txq);
3211 			} else {
3212 				MPASS(avail >=
3213 				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3214 				if (vi->flags & TX_USES_VM_WR)
3215 					n = write_txpkt_vm_wr(sc, txq,
3216 					    txp->mb[0]);
3217 				else
3218 					n = write_txpkt_wr(sc, txq, txp->mb[0],
3219 					    avail);
3220 			}
3221 			MPASS(n <= SGE_MAX_WR_NDESC);
3222 			avail -= n;
3223 			dbdiff += n;
3224 			wr = &eq->desc[eq->pidx];
3225 			IDXINCR(eq->pidx, n, eq->sidx);
3226 			txp->npkt = 0;	/* emptied */
3227 		}
3228 		if (rc == 0) {
3229 			/* m0 was coalesced into txq->txpkts. */
3230 			goto next_mbuf;
3231 		}
3232 		if (rc == EAGAIN) {
3233 			/*
3234 			 * m0 is suitable for tx coalescing but could not be
3235 			 * combined with the existing txq->txpkts, which has now
3236 			 * been transmitted.  Start a new txpkts with m0.
3237 			 */
3238 			MPASS(snd);
3239 			MPASS(txp->npkt == 0);
3240 			continue;
3241 		}
3242 
3243 		MPASS(rc != 0 && rc != EAGAIN);
3244 		MPASS(txp->npkt == 0);
3245 skip_coalescing:
3246 		n = tx_len16_to_desc(mbuf_len16(m0));
3247 		if (__predict_false(avail < n)) {
3248 			avail += reclaim_tx_descs(txq, min(n, 32));
3249 			if (avail < n)
3250 				break;	/* out of descriptors */
3251 		}
3252 
3253 		wr = &eq->desc[eq->pidx];
3254 		if (mbuf_cflags(m0) & MC_RAW_WR) {
3255 			n = write_raw_wr(txq, wr, m0, avail);
3256 #ifdef KERN_TLS
3257 		} else if (mbuf_cflags(m0) & MC_TLS) {
3258 			ETHER_BPF_MTAP(ifp, m0);
3259 			n = t6_ktls_write_wr(txq, wr, m0, avail);
3260 #endif
3261 		} else {
3262 			ETHER_BPF_MTAP(ifp, m0);
3263 			if (vi->flags & TX_USES_VM_WR)
3264 				n = write_txpkt_vm_wr(sc, txq, m0);
3265 			else
3266 				n = write_txpkt_wr(sc, txq, m0, avail);
3267 		}
3268 		MPASS(n >= 1 && n <= avail);
3269 		if (!(mbuf_cflags(m0) & MC_TLS))
3270 			MPASS(n <= SGE_MAX_WR_NDESC);
3271 
3272 		avail -= n;
3273 		dbdiff += n;
3274 		IDXINCR(eq->pidx, n, eq->sidx);
3275 
3276 		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3277 			if (wr_can_update_eq(wr))
3278 				set_txupdate_flags(txq, avail, wr);
3279 			ring_eq_db(sc, eq, dbdiff);
3280 			avail += reclaim_tx_descs(txq, 32);
3281 			dbdiff = 0;
3282 		}
3283 next_mbuf:
3284 		total++;
3285 		remaining--;
3286 		if (__predict_false(++cidx == r->size))
3287 			cidx = 0;
3288 	}
3289 	if (dbdiff != 0) {
3290 		if (wr_can_update_eq(wr))
3291 			set_txupdate_flags(txq, avail, wr);
3292 		ring_eq_db(sc, eq, dbdiff);
3293 		reclaim_tx_descs(txq, 32);
3294 	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3295 	    atomic_load_int(&txq->eq.equiq) == 0) {
3296 		/*
3297 		 * If nothing was submitted to the chip for tx (it was coalesced
3298 		 * into txpkts instead) and there is no tx update outstanding
3299 		 * then we need to send txpkts now.
3300 		 */
3301 send_txpkts:
3302 		MPASS(txp->npkt > 0);
3303 		for (i = 0; i < txp->npkt; i++)
3304 			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3305 		if (txp->npkt > 1) {
3306 			MPASS(avail >= tx_len16_to_desc(txp->len16));
3307 			if (vi->flags & TX_USES_VM_WR)
3308 				n = write_txpkts_vm_wr(sc, txq);
3309 			else
3310 				n = write_txpkts_wr(sc, txq);
3311 		} else {
3312 			MPASS(avail >=
3313 			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3314 			if (vi->flags & TX_USES_VM_WR)
3315 				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3316 			else
3317 				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3318 		}
3319 		MPASS(n <= SGE_MAX_WR_NDESC);
3320 		wr = &eq->desc[eq->pidx];
3321 		IDXINCR(eq->pidx, n, eq->sidx);
3322 		txp->npkt = 0;	/* emptied */
3323 
3324 		MPASS(wr_can_update_eq(wr));
3325 		set_txupdate_flags(txq, avail - n, wr);
3326 		ring_eq_db(sc, eq, n);
3327 		reclaim_tx_descs(txq, 32);
3328 	}
3329 	*coalescing = txp->npkt > 0;
3330 
3331 	return (total);
3332 }
3333 
3334 static inline void
3335 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3336     int qsize, int intr_idx, int cong, int qtype)
3337 {
3338 
3339 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3340 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3341 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3342 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3343 	KASSERT(intr_idx >= -1 && intr_idx < sc->intr_count,
3344 	    ("%s: bad intr_idx %d", __func__, intr_idx));
3345 	KASSERT(qtype == FW_IQ_IQTYPE_OTHER || qtype == FW_IQ_IQTYPE_NIC ||
3346 	    qtype == FW_IQ_IQTYPE_OFLD, ("%s: bad qtype %d", __func__, qtype));
3347 
3348 	iq->flags = 0;
3349 	iq->state = IQS_DISABLED;
3350 	iq->adapter = sc;
3351 	iq->qtype = qtype;
3352 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3353 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3354 	if (pktc_idx >= 0) {
3355 		iq->intr_params |= F_QINTR_CNT_EN;
3356 		iq->intr_pktc_idx = pktc_idx;
3357 	}
3358 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3359 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3360 	iq->intr_idx = intr_idx;
3361 	iq->cong_drop = cong;
3362 }
3363 
3364 static inline void
3365 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3366 {
3367 	struct sge_params *sp = &sc->params.sge;
3368 
3369 	fl->qsize = qsize;
3370 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3371 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3372 	mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3373 	if (sc->flags & BUF_PACKING_OK &&
3374 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3375 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3376 		fl->flags |= FL_BUF_PACKING;
3377 	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3378 	fl->safe_zidx = sc->sge.safe_zidx;
3379 	if (fl->flags & FL_BUF_PACKING) {
3380 		fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3381 		fl->buf_boundary = sp->pack_boundary;
3382 	} else {
3383 		fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3384 		fl->buf_boundary = 16;
3385 	}
3386 	if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3387 		fl->buf_boundary = sp->pad_boundary;
3388 }
3389 
3390 static inline void
3391 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3392     uint8_t tx_chan, struct sge_iq *iq, char *name)
3393 {
3394 	KASSERT(eqtype >= EQ_CTRL && eqtype <= EQ_OFLD,
3395 	    ("%s: bad qtype %d", __func__, eqtype));
3396 
3397 	eq->type = eqtype;
3398 	eq->tx_chan = tx_chan;
3399 	eq->iq = iq;
3400 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3401 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3402 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3403 }
3404 
3405 int
3406 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3407     bus_dmamap_t *map, bus_addr_t *pa, void **va)
3408 {
3409 	int rc;
3410 
3411 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3412 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3413 	if (rc != 0) {
3414 		CH_ERR(sc, "cannot allocate DMA tag: %d\n", rc);
3415 		goto done;
3416 	}
3417 
3418 	rc = bus_dmamem_alloc(*tag, va,
3419 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3420 	if (rc != 0) {
3421 		CH_ERR(sc, "cannot allocate DMA memory: %d\n", rc);
3422 		goto done;
3423 	}
3424 
3425 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3426 	if (rc != 0) {
3427 		CH_ERR(sc, "cannot load DMA map: %d\n", rc);
3428 		goto done;
3429 	}
3430 done:
3431 	if (rc)
3432 		free_ring(sc, *tag, *map, *pa, *va);
3433 
3434 	return (rc);
3435 }
3436 
3437 int
3438 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3439     bus_addr_t pa, void *va)
3440 {
3441 	if (pa)
3442 		bus_dmamap_unload(tag, map);
3443 	if (va)
3444 		bus_dmamem_free(tag, va, map);
3445 	if (tag)
3446 		bus_dma_tag_destroy(tag);
3447 
3448 	return (0);
3449 }
3450 
3451 /*
3452  * Allocates the software resources (mainly memory and sysctl nodes) for an
3453  * ingress queue and an optional freelist.
3454  *
3455  * Sets IQ_SW_ALLOCATED and returns 0 on success.
3456  */
3457 static int
3458 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3459     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
3460 {
3461 	int rc;
3462 	size_t len;
3463 	struct adapter *sc = vi->adapter;
3464 
3465 	MPASS(!(iq->flags & IQ_SW_ALLOCATED));
3466 
3467 	len = iq->qsize * IQ_ESIZE;
3468 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3469 	    (void **)&iq->desc);
3470 	if (rc != 0)
3471 		return (rc);
3472 
3473 	if (fl) {
3474 		len = fl->qsize * EQ_ESIZE;
3475 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3476 		    &fl->ba, (void **)&fl->desc);
3477 		if (rc) {
3478 			free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba,
3479 			    iq->desc);
3480 			return (rc);
3481 		}
3482 
3483 		/* Allocate space for one software descriptor per buffer. */
3484 		fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc),
3485 		    M_CXGBE, M_ZERO | M_WAITOK);
3486 
3487 		add_fl_sysctls(sc, ctx, oid, fl);
3488 		iq->flags |= IQ_HAS_FL;
3489 	}
3490 	add_iq_sysctls(ctx, oid, iq);
3491 	iq->flags |= IQ_SW_ALLOCATED;
3492 
3493 	return (0);
3494 }
3495 
3496 /*
3497  * Frees all software resources (memory and locks) associated with an ingress
3498  * queue and an optional freelist.
3499  */
3500 static void
3501 free_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3502 {
3503 	MPASS(iq->flags & IQ_SW_ALLOCATED);
3504 
3505 	if (fl) {
3506 		MPASS(iq->flags & IQ_HAS_FL);
3507 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc);
3508 		free_fl_buffers(sc, fl);
3509 		free(fl->sdesc, M_CXGBE);
3510 		mtx_destroy(&fl->fl_lock);
3511 		bzero(fl, sizeof(*fl));
3512 	}
3513 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3514 	bzero(iq, sizeof(*iq));
3515 }
3516 
3517 /*
3518  * Allocates a hardware ingress queue and an optional freelist that will be
3519  * associated with it.
3520  *
3521  * Returns errno on failure.  Resources allocated up to that point may still be
3522  * allocated.  Caller is responsible for cleanup in case this function fails.
3523  */
3524 static int
3525 alloc_iq_fl_hwq(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3526 {
3527 	int rc, cntxt_id, cong_map;
3528 	struct fw_iq_cmd c;
3529 	struct adapter *sc = vi->adapter;
3530 	struct port_info *pi = vi->pi;
3531 	__be32 v = 0;
3532 
3533 	MPASS (!(iq->flags & IQ_HW_ALLOCATED));
3534 
3535 	bzero(&c, sizeof(c));
3536 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3537 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3538 	    V_FW_IQ_CMD_VFN(0));
3539 
3540 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3541 	    FW_LEN16(c));
3542 
3543 	/* Special handling for firmware event queue */
3544 	if (iq == &sc->sge.fwq)
3545 		v |= F_FW_IQ_CMD_IQASYNCH;
3546 
3547 	if (iq->intr_idx < 0) {
3548 		/* Forwarded interrupts, all headed to fwq */
3549 		v |= F_FW_IQ_CMD_IQANDST;
3550 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3551 	} else {
3552 		KASSERT(iq->intr_idx < sc->intr_count,
3553 		    ("%s: invalid direct intr_idx %d", __func__, iq->intr_idx));
3554 		v |= V_FW_IQ_CMD_IQANDSTINDEX(iq->intr_idx);
3555 	}
3556 
3557 	bzero(iq->desc, iq->qsize * IQ_ESIZE);
3558 	c.type_to_iqandstindex = htobe32(v |
3559 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3560 	    V_FW_IQ_CMD_VIID(vi->viid) |
3561 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3562 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
3563 	    F_FW_IQ_CMD_IQGTSMODE |
3564 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3565 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3566 	c.iqsize = htobe16(iq->qsize);
3567 	c.iqaddr = htobe64(iq->ba);
3568 	c.iqns_to_fl0congen = htobe32(V_FW_IQ_CMD_IQTYPE(iq->qtype));
3569 	if (iq->cong_drop != -1) {
3570 		cong_map = iq->qtype == IQ_ETH ? pi->rx_e_chan_map : 0;
3571 		c.iqns_to_fl0congen |= htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3572 	}
3573 
3574 	if (fl) {
3575 		bzero(fl->desc, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len);
3576 		c.iqns_to_fl0congen |=
3577 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3578 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3579 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3580 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3581 			    0));
3582 		if (iq->cong_drop != -1) {
3583 			c.iqns_to_fl0congen |=
3584 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong_map) |
3585 				    F_FW_IQ_CMD_FL0CONGCIF |
3586 				    F_FW_IQ_CMD_FL0CONGEN);
3587 		}
3588 		c.fl0dcaen_to_fl0cidxfthresh =
3589 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3590 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3591 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3592 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3593 		c.fl0size = htobe16(fl->qsize);
3594 		c.fl0addr = htobe64(fl->ba);
3595 	}
3596 
3597 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3598 	if (rc != 0) {
3599 		CH_ERR(sc, "failed to create hw ingress queue: %d\n", rc);
3600 		return (rc);
3601 	}
3602 
3603 	iq->cidx = 0;
3604 	iq->gen = F_RSPD_GEN;
3605 	iq->cntxt_id = be16toh(c.iqid);
3606 	iq->abs_id = be16toh(c.physiqid);
3607 
3608 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3609 	if (cntxt_id >= sc->sge.iqmap_sz) {
3610 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3611 		    cntxt_id, sc->sge.iqmap_sz - 1);
3612 	}
3613 	sc->sge.iqmap[cntxt_id] = iq;
3614 
3615 	if (fl) {
3616 		u_int qid;
3617 #ifdef INVARIANTS
3618 		int i;
3619 
3620 		MPASS(!(fl->flags & FL_BUF_RESUME));
3621 		for (i = 0; i < fl->sidx * 8; i++)
3622 			MPASS(fl->sdesc[i].cl == NULL);
3623 #endif
3624 		fl->cntxt_id = be16toh(c.fl0id);
3625 		fl->pidx = fl->cidx = fl->hw_cidx = fl->dbidx = 0;
3626 		fl->rx_offset = 0;
3627 		fl->flags &= ~(FL_STARVING | FL_DOOMED);
3628 
3629 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3630 		if (cntxt_id >= sc->sge.eqmap_sz) {
3631 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3632 			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
3633 		}
3634 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3635 
3636 		qid = fl->cntxt_id;
3637 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3638 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3639 			uint32_t mask = (1 << s_qpp) - 1;
3640 			volatile uint8_t *udb;
3641 
3642 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3643 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3644 			qid &= mask;
3645 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3646 				udb += qid << UDBS_SEG_SHIFT;
3647 				qid = 0;
3648 			}
3649 			fl->udb = (volatile void *)udb;
3650 		}
3651 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3652 
3653 		FL_LOCK(fl);
3654 		/* Enough to make sure the SGE doesn't think it's starved */
3655 		refill_fl(sc, fl, fl->lowat);
3656 		FL_UNLOCK(fl);
3657 	}
3658 
3659 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) &&
3660 	    iq->cong_drop != -1) {
3661 		t4_sge_set_conm_context(sc, iq->cntxt_id, iq->cong_drop,
3662 		    cong_map);
3663 	}
3664 
3665 	/* Enable IQ interrupts */
3666 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3667 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3668 	    V_INGRESSQID(iq->cntxt_id));
3669 
3670 	iq->flags |= IQ_HW_ALLOCATED;
3671 
3672 	return (0);
3673 }
3674 
3675 static int
3676 free_iq_fl_hwq(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3677 {
3678 	int rc;
3679 
3680 	MPASS(iq->flags & IQ_HW_ALLOCATED);
3681 	rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3682 	    iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
3683 	if (rc != 0) {
3684 		CH_ERR(sc, "failed to free iq %p: %d\n", iq, rc);
3685 		return (rc);
3686 	}
3687 	iq->flags &= ~IQ_HW_ALLOCATED;
3688 
3689 	return (0);
3690 }
3691 
3692 static void
3693 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3694     struct sge_iq *iq)
3695 {
3696 	struct sysctl_oid_list *children;
3697 
3698 	if (ctx == NULL || oid == NULL)
3699 		return;
3700 
3701 	children = SYSCTL_CHILDREN(oid);
3702 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3703 	    "bus address of descriptor ring");
3704 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3705 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3706 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3707 	    &iq->abs_id, 0, "absolute id of the queue");
3708 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3709 	    &iq->cntxt_id, 0, "SGE context id of the queue");
3710 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &iq->cidx,
3711 	    0, "consumer index");
3712 }
3713 
3714 static void
3715 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3716     struct sysctl_oid *oid, struct sge_fl *fl)
3717 {
3718 	struct sysctl_oid_list *children;
3719 
3720 	if (ctx == NULL || oid == NULL)
3721 		return;
3722 
3723 	children = SYSCTL_CHILDREN(oid);
3724 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3725 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3726 	children = SYSCTL_CHILDREN(oid);
3727 
3728 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3729 	    &fl->ba, "bus address of descriptor ring");
3730 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3731 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3732 	    "desc ring size in bytes");
3733 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3734 	    &fl->cntxt_id, 0, "SGE context id of the freelist");
3735 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3736 	    fl_pad ? 1 : 0, "padding enabled");
3737 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3738 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3739 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3740 	    0, "consumer index");
3741 	if (fl->flags & FL_BUF_PACKING) {
3742 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3743 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3744 	}
3745 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3746 	    0, "producer index");
3747 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3748 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3749 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3750 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3751 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3752 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3753 }
3754 
3755 /*
3756  * Idempotent.
3757  */
3758 static int
3759 alloc_fwq(struct adapter *sc)
3760 {
3761 	int rc, intr_idx;
3762 	struct sge_iq *fwq = &sc->sge.fwq;
3763 	struct vi_info *vi = &sc->port[0]->vi[0];
3764 
3765 	if (!(fwq->flags & IQ_SW_ALLOCATED)) {
3766 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3767 
3768 		if (sc->flags & IS_VF)
3769 			intr_idx = 0;
3770 		else
3771 			intr_idx = sc->intr_count > 1 ? 1 : 0;
3772 		init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, intr_idx, -1, IQ_OTHER);
3773 		rc = alloc_iq_fl(vi, fwq, NULL, &sc->ctx, sc->fwq_oid);
3774 		if (rc != 0) {
3775 			CH_ERR(sc, "failed to allocate fwq: %d\n", rc);
3776 			return (rc);
3777 		}
3778 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3779 	}
3780 
3781 	if (!(fwq->flags & IQ_HW_ALLOCATED)) {
3782 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3783 
3784 		rc = alloc_iq_fl_hwq(vi, fwq, NULL);
3785 		if (rc != 0) {
3786 			CH_ERR(sc, "failed to create hw fwq: %d\n", rc);
3787 			return (rc);
3788 		}
3789 		MPASS(fwq->flags & IQ_HW_ALLOCATED);
3790 	}
3791 
3792 	return (0);
3793 }
3794 
3795 /*
3796  * Idempotent.
3797  */
3798 static void
3799 free_fwq(struct adapter *sc)
3800 {
3801 	struct sge_iq *fwq = &sc->sge.fwq;
3802 
3803 	if (fwq->flags & IQ_HW_ALLOCATED) {
3804 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3805 		free_iq_fl_hwq(sc, fwq, NULL);
3806 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3807 	}
3808 
3809 	if (fwq->flags & IQ_SW_ALLOCATED) {
3810 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3811 		free_iq_fl(sc, fwq, NULL);
3812 		MPASS(!(fwq->flags & IQ_SW_ALLOCATED));
3813 	}
3814 }
3815 
3816 /*
3817  * Idempotent.
3818  */
3819 static int
3820 alloc_ctrlq(struct adapter *sc, int idx)
3821 {
3822 	int rc;
3823 	char name[16];
3824 	struct sysctl_oid *oid;
3825 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3826 
3827 	MPASS(idx < sc->params.nports);
3828 
3829 	if (!(ctrlq->eq.flags & EQ_SW_ALLOCATED)) {
3830 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3831 
3832 		snprintf(name, sizeof(name), "%d", idx);
3833 		oid = SYSCTL_ADD_NODE(&sc->ctx, SYSCTL_CHILDREN(sc->ctrlq_oid),
3834 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3835 		    "ctrl queue");
3836 
3837 		snprintf(name, sizeof(name), "%s ctrlq%d",
3838 		    device_get_nameunit(sc->dev), idx);
3839 		init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE,
3840 		    sc->port[idx]->tx_chan, &sc->sge.fwq, name);
3841 		rc = alloc_wrq(sc, NULL, ctrlq, &sc->ctx, oid);
3842 		if (rc != 0) {
3843 			CH_ERR(sc, "failed to allocate ctrlq%d: %d\n", idx, rc);
3844 			sysctl_remove_oid(oid, 1, 1);
3845 			return (rc);
3846 		}
3847 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3848 	}
3849 
3850 	if (!(ctrlq->eq.flags & EQ_HW_ALLOCATED)) {
3851 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3852 
3853 		rc = alloc_eq_hwq(sc, NULL, &ctrlq->eq);
3854 		if (rc != 0) {
3855 			CH_ERR(sc, "failed to create hw ctrlq%d: %d\n", idx, rc);
3856 			return (rc);
3857 		}
3858 		MPASS(ctrlq->eq.flags & EQ_HW_ALLOCATED);
3859 	}
3860 
3861 	return (0);
3862 }
3863 
3864 /*
3865  * Idempotent.
3866  */
3867 static void
3868 free_ctrlq(struct adapter *sc, int idx)
3869 {
3870 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3871 
3872 	if (ctrlq->eq.flags & EQ_HW_ALLOCATED) {
3873 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3874 		free_eq_hwq(sc, NULL, &ctrlq->eq);
3875 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3876 	}
3877 
3878 	if (ctrlq->eq.flags & EQ_SW_ALLOCATED) {
3879 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3880 		free_wrq(sc, ctrlq);
3881 		MPASS(!(ctrlq->eq.flags & EQ_SW_ALLOCATED));
3882 	}
3883 }
3884 
3885 int
3886 t4_sge_set_conm_context(struct adapter *sc, int cntxt_id, int cong_drop,
3887     int cong_map)
3888 {
3889 	const int cng_ch_bits_log = sc->chip_params->cng_ch_bits_log;
3890 	uint32_t param, val;
3891 	uint16_t ch_map;
3892 	int cong_mode, rc, i;
3893 
3894 	if (chip_id(sc) < CHELSIO_T5)
3895 		return (ENOTSUP);
3896 
3897 	/* Convert the driver knob to the mode understood by the firmware. */
3898 	switch (cong_drop) {
3899 	case -1:
3900 		cong_mode = X_CONMCTXT_CNGTPMODE_DISABLE;
3901 		break;
3902 	case 0:
3903 		cong_mode = X_CONMCTXT_CNGTPMODE_CHANNEL;
3904 		break;
3905 	case 1:
3906 		cong_mode = X_CONMCTXT_CNGTPMODE_QUEUE;
3907 		break;
3908 	case 2:
3909 		cong_mode = X_CONMCTXT_CNGTPMODE_BOTH;
3910 		break;
3911 	default:
3912 		MPASS(0);
3913 		CH_ERR(sc, "cong_drop = %d is invalid (ingress queue %d).\n",
3914 		    cong_drop, cntxt_id);
3915 		return (EINVAL);
3916 	}
3917 
3918 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3919 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3920 	    V_FW_PARAMS_PARAM_YZ(cntxt_id);
3921 	val = V_CONMCTXT_CNGTPMODE(cong_mode);
3922 	if (cong_mode == X_CONMCTXT_CNGTPMODE_CHANNEL ||
3923 	    cong_mode == X_CONMCTXT_CNGTPMODE_BOTH) {
3924 		for (i = 0, ch_map = 0; i < 4; i++) {
3925 			if (cong_map & (1 << i))
3926 				ch_map |= 1 << (i << cng_ch_bits_log);
3927 		}
3928 		val |= V_CONMCTXT_CNGCHMAP(ch_map);
3929 	}
3930 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3931 	if (rc != 0) {
3932 		CH_ERR(sc, "failed to set congestion manager context "
3933 		    "for ingress queue %d: %d\n", cntxt_id, rc);
3934 	}
3935 
3936 	return (rc);
3937 }
3938 
3939 /*
3940  * Idempotent.
3941  */
3942 static int
3943 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int idx, int intr_idx,
3944     int maxp)
3945 {
3946 	int rc;
3947 	struct adapter *sc = vi->adapter;
3948 	struct ifnet *ifp = vi->ifp;
3949 	struct sysctl_oid *oid;
3950 	char name[16];
3951 
3952 	if (!(rxq->iq.flags & IQ_SW_ALLOCATED)) {
3953 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
3954 #if defined(INET) || defined(INET6)
3955 		rc = tcp_lro_init_args(&rxq->lro, ifp, lro_entries, lro_mbufs);
3956 		if (rc != 0)
3957 			return (rc);
3958 		MPASS(rxq->lro.ifp == ifp);	/* also indicates LRO init'ed */
3959 #endif
3960 		rxq->ifp = ifp;
3961 
3962 		snprintf(name, sizeof(name), "%d", idx);
3963 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->rxq_oid),
3964 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3965 		    "rx queue");
3966 
3967 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq,
3968 		    intr_idx, cong_drop, IQ_ETH);
3969 #if defined(INET) || defined(INET6)
3970 		if (ifp->if_capenable & IFCAP_LRO)
3971 			rxq->iq.flags |= IQ_LRO_ENABLED;
3972 #endif
3973 		if (ifp->if_capenable & IFCAP_HWRXTSTMP)
3974 			rxq->iq.flags |= IQ_RX_TIMESTAMP;
3975 		snprintf(name, sizeof(name), "%s rxq%d-fl",
3976 		    device_get_nameunit(vi->dev), idx);
3977 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
3978 		rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, &vi->ctx, oid);
3979 		if (rc != 0) {
3980 			CH_ERR(vi, "failed to allocate rxq%d: %d\n", idx, rc);
3981 			sysctl_remove_oid(oid, 1, 1);
3982 #if defined(INET) || defined(INET6)
3983 			tcp_lro_free(&rxq->lro);
3984 			rxq->lro.ifp = NULL;
3985 #endif
3986 			return (rc);
3987 		}
3988 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
3989 		add_rxq_sysctls(&vi->ctx, oid, rxq);
3990 	}
3991 
3992 	if (!(rxq->iq.flags & IQ_HW_ALLOCATED)) {
3993 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
3994 		rc = alloc_iq_fl_hwq(vi, &rxq->iq, &rxq->fl);
3995 		if (rc != 0) {
3996 			CH_ERR(vi, "failed to create hw rxq%d: %d\n", idx, rc);
3997 			return (rc);
3998 		}
3999 		MPASS(rxq->iq.flags & IQ_HW_ALLOCATED);
4000 
4001 		if (idx == 0)
4002 			sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
4003 		else
4004 			KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
4005 			    ("iq_base mismatch"));
4006 		KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
4007 		    ("PF with non-zero iq_base"));
4008 
4009 		/*
4010 		 * The freelist is just barely above the starvation threshold
4011 		 * right now, fill it up a bit more.
4012 		 */
4013 		FL_LOCK(&rxq->fl);
4014 		refill_fl(sc, &rxq->fl, 128);
4015 		FL_UNLOCK(&rxq->fl);
4016 	}
4017 
4018 	return (0);
4019 }
4020 
4021 /*
4022  * Idempotent.
4023  */
4024 static void
4025 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
4026 {
4027 	if (rxq->iq.flags & IQ_HW_ALLOCATED) {
4028 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4029 		free_iq_fl_hwq(vi->adapter, &rxq->iq, &rxq->fl);
4030 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4031 	}
4032 
4033 	if (rxq->iq.flags & IQ_SW_ALLOCATED) {
4034 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4035 #if defined(INET) || defined(INET6)
4036 		tcp_lro_free(&rxq->lro);
4037 #endif
4038 		free_iq_fl(vi->adapter, &rxq->iq, &rxq->fl);
4039 		MPASS(!(rxq->iq.flags & IQ_SW_ALLOCATED));
4040 		bzero(rxq, sizeof(*rxq));
4041 	}
4042 }
4043 
4044 static void
4045 add_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4046     struct sge_rxq *rxq)
4047 {
4048 	struct sysctl_oid_list *children;
4049 
4050 	if (ctx == NULL || oid == NULL)
4051 		return;
4052 
4053 	children = SYSCTL_CHILDREN(oid);
4054 #if defined(INET) || defined(INET6)
4055 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
4056 	    &rxq->lro.lro_queued, 0, NULL);
4057 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
4058 	    &rxq->lro.lro_flushed, 0, NULL);
4059 #endif
4060 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
4061 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
4062 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD,
4063 	    &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag");
4064 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_rxcsum", CTLFLAG_RD,
4065 	    &rxq->vxlan_rxcsum,
4066 	    "# of times hardware assisted with inner checksum (VXLAN)");
4067 }
4068 
4069 #ifdef TCP_OFFLOAD
4070 /*
4071  * Idempotent.
4072  */
4073 static int
4074 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int idx,
4075     int intr_idx, int maxp)
4076 {
4077 	int rc;
4078 	struct adapter *sc = vi->adapter;
4079 	struct sysctl_oid *oid;
4080 	char name[16];
4081 
4082 	if (!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)) {
4083 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4084 
4085 		snprintf(name, sizeof(name), "%d", idx);
4086 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4087 		    SYSCTL_CHILDREN(vi->ofld_rxq_oid), OID_AUTO, name,
4088 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload rx queue");
4089 
4090 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
4091 		    vi->qsize_rxq, intr_idx, ofld_cong_drop, IQ_OFLD);
4092 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
4093 		    device_get_nameunit(vi->dev), idx);
4094 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
4095 		rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, &vi->ctx,
4096 		    oid);
4097 		if (rc != 0) {
4098 			CH_ERR(vi, "failed to allocate ofld_rxq%d: %d\n", idx,
4099 			    rc);
4100 			sysctl_remove_oid(oid, 1, 1);
4101 			return (rc);
4102 		}
4103 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4104 		ofld_rxq->rx_iscsi_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
4105 		ofld_rxq->rx_iscsi_ddp_setup_error =
4106 		    counter_u64_alloc(M_WAITOK);
4107 		add_ofld_rxq_sysctls(&vi->ctx, oid, ofld_rxq);
4108 	}
4109 
4110 	if (!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)) {
4111 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4112 		rc = alloc_iq_fl_hwq(vi, &ofld_rxq->iq, &ofld_rxq->fl);
4113 		if (rc != 0) {
4114 			CH_ERR(vi, "failed to create hw ofld_rxq%d: %d\n", idx,
4115 			    rc);
4116 			return (rc);
4117 		}
4118 		MPASS(ofld_rxq->iq.flags & IQ_HW_ALLOCATED);
4119 	}
4120 	return (rc);
4121 }
4122 
4123 /*
4124  * Idempotent.
4125  */
4126 static void
4127 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
4128 {
4129 	if (ofld_rxq->iq.flags & IQ_HW_ALLOCATED) {
4130 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4131 		free_iq_fl_hwq(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4132 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4133 	}
4134 
4135 	if (ofld_rxq->iq.flags & IQ_SW_ALLOCATED) {
4136 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4137 		free_iq_fl(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4138 		MPASS(!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED));
4139 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_ok);
4140 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_error);
4141 		bzero(ofld_rxq, sizeof(*ofld_rxq));
4142 	}
4143 }
4144 
4145 static void
4146 add_ofld_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4147     struct sge_ofld_rxq *ofld_rxq)
4148 {
4149 	struct sysctl_oid_list *children;
4150 
4151 	if (ctx == NULL || oid == NULL)
4152 		return;
4153 
4154 	children = SYSCTL_CHILDREN(oid);
4155 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4156 	    "rx_toe_tls_records", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_records,
4157 	    "# of TOE TLS records received");
4158 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4159 	    "rx_toe_tls_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_octets,
4160 	    "# of payload octets in received TOE TLS records");
4161 
4162 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "iscsi",
4163 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE iSCSI statistics");
4164 	children = SYSCTL_CHILDREN(oid);
4165 
4166 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
4167 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_ok,
4168 	    "# of times DDP buffer was setup successfully.");
4169 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
4170 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_error,
4171 	    "# of times DDP buffer setup failed.");
4172 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_octets",
4173 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_octets, 0,
4174 	    "# of octets placed directly");
4175 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_pdus",
4176 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_pdus, 0,
4177 	    "# of PDUs with data placed directly.");
4178 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_octets",
4179 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_octets, 0,
4180 	    "# of data octets delivered in freelist");
4181 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_pdus",
4182 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_pdus, 0,
4183 	    "# of PDUs with data delivered in freelist");
4184 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "padding_errors",
4185 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_padding_errors, 0,
4186 	    "# of PDUs with invalid padding");
4187 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "header_digest_errors",
4188 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_header_digest_errors, 0,
4189 	    "# of PDUs with invalid header digests");
4190 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "data_digest_errors",
4191 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_data_digest_errors, 0,
4192 	    "# of PDUs with invalid data digests");
4193 }
4194 #endif
4195 
4196 /*
4197  * Returns a reasonable automatic cidx flush threshold for a given queue size.
4198  */
4199 static u_int
4200 qsize_to_fthresh(int qsize)
4201 {
4202 	u_int fthresh;
4203 
4204 	while (!powerof2(qsize))
4205 		qsize++;
4206 	fthresh = ilog2(qsize);
4207 	if (fthresh > X_CIDXFLUSHTHRESH_128)
4208 		fthresh = X_CIDXFLUSHTHRESH_128;
4209 
4210 	return (fthresh);
4211 }
4212 
4213 static int
4214 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
4215 {
4216 	int rc, cntxt_id;
4217 	struct fw_eq_ctrl_cmd c;
4218 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4219 
4220 	bzero(&c, sizeof(c));
4221 
4222 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
4223 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
4224 	    V_FW_EQ_CTRL_CMD_VFN(0));
4225 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
4226 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
4227 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
4228 	c.physeqid_pkd = htobe32(0);
4229 	c.fetchszm_to_iqid =
4230 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4231 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
4232 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
4233 	c.dcaen_to_eqsize =
4234 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4235 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4236 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4237 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4238 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
4239 	c.eqaddr = htobe64(eq->ba);
4240 
4241 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4242 	if (rc != 0) {
4243 		CH_ERR(sc, "failed to create hw ctrlq for tx_chan %d: %d\n",
4244 		    eq->tx_chan, rc);
4245 		return (rc);
4246 	}
4247 
4248 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
4249 	eq->abs_id = G_FW_EQ_CTRL_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4250 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4251 	if (cntxt_id >= sc->sge.eqmap_sz)
4252 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4253 		cntxt_id, sc->sge.eqmap_sz - 1);
4254 	sc->sge.eqmap[cntxt_id] = eq;
4255 
4256 	return (rc);
4257 }
4258 
4259 static int
4260 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4261 {
4262 	int rc, cntxt_id;
4263 	struct fw_eq_eth_cmd c;
4264 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4265 
4266 	bzero(&c, sizeof(c));
4267 
4268 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
4269 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
4270 	    V_FW_EQ_ETH_CMD_VFN(0));
4271 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
4272 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
4273 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
4274 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
4275 	c.fetchszm_to_iqid =
4276 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
4277 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
4278 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
4279 	c.dcaen_to_eqsize =
4280 	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4281 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4282 		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4283 		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
4284 	c.eqaddr = htobe64(eq->ba);
4285 
4286 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4287 	if (rc != 0) {
4288 		device_printf(vi->dev,
4289 		    "failed to create Ethernet egress queue: %d\n", rc);
4290 		return (rc);
4291 	}
4292 
4293 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
4294 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4295 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4296 	if (cntxt_id >= sc->sge.eqmap_sz)
4297 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4298 		cntxt_id, sc->sge.eqmap_sz - 1);
4299 	sc->sge.eqmap[cntxt_id] = eq;
4300 
4301 	return (rc);
4302 }
4303 
4304 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4305 static int
4306 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4307 {
4308 	int rc, cntxt_id;
4309 	struct fw_eq_ofld_cmd c;
4310 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4311 
4312 	bzero(&c, sizeof(c));
4313 
4314 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
4315 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
4316 	    V_FW_EQ_OFLD_CMD_VFN(0));
4317 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
4318 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
4319 	c.fetchszm_to_iqid =
4320 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4321 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
4322 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
4323 	c.dcaen_to_eqsize =
4324 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4325 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4326 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4327 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4328 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
4329 	c.eqaddr = htobe64(eq->ba);
4330 
4331 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4332 	if (rc != 0) {
4333 		device_printf(vi->dev,
4334 		    "failed to create egress queue for TCP offload: %d\n", rc);
4335 		return (rc);
4336 	}
4337 
4338 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
4339 	eq->abs_id = G_FW_EQ_OFLD_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4340 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4341 	if (cntxt_id >= sc->sge.eqmap_sz)
4342 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4343 		cntxt_id, sc->sge.eqmap_sz - 1);
4344 	sc->sge.eqmap[cntxt_id] = eq;
4345 
4346 	return (rc);
4347 }
4348 #endif
4349 
4350 /* SW only */
4351 static int
4352 alloc_eq(struct adapter *sc, struct sge_eq *eq, struct sysctl_ctx_list *ctx,
4353     struct sysctl_oid *oid)
4354 {
4355 	int rc, qsize;
4356 	size_t len;
4357 
4358 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4359 
4360 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4361 	len = qsize * EQ_ESIZE;
4362 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba,
4363 	    (void **)&eq->desc);
4364 	if (rc)
4365 		return (rc);
4366 	if (ctx != NULL && oid != NULL)
4367 		add_eq_sysctls(sc, ctx, oid, eq);
4368 	eq->flags |= EQ_SW_ALLOCATED;
4369 
4370 	return (0);
4371 }
4372 
4373 /* SW only */
4374 static void
4375 free_eq(struct adapter *sc, struct sge_eq *eq)
4376 {
4377 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4378 	if (eq->type == EQ_ETH)
4379 		MPASS(eq->pidx == eq->cidx);
4380 
4381 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4382 	mtx_destroy(&eq->eq_lock);
4383 	bzero(eq, sizeof(*eq));
4384 }
4385 
4386 static void
4387 add_eq_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
4388     struct sysctl_oid *oid, struct sge_eq *eq)
4389 {
4390 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4391 
4392 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba,
4393 	    "bus address of descriptor ring");
4394 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4395 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4396 	    "desc ring size in bytes");
4397 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4398 	    &eq->abs_id, 0, "absolute id of the queue");
4399 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4400 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4401 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &eq->cidx,
4402 	    0, "consumer index");
4403 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &eq->pidx,
4404 	    0, "producer index");
4405 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4406 	    eq->sidx, "status page index");
4407 }
4408 
4409 static int
4410 alloc_eq_hwq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4411 {
4412 	int rc;
4413 
4414 	MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4415 
4416 	eq->iqid = eq->iq->cntxt_id;
4417 	eq->pidx = eq->cidx = eq->dbidx = 0;
4418 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4419 	eq->equeqidx = 0;
4420 	eq->doorbells = sc->doorbells;
4421 	bzero(eq->desc, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len);
4422 
4423 	switch (eq->type) {
4424 	case EQ_CTRL:
4425 		rc = ctrl_eq_alloc(sc, eq);
4426 		break;
4427 
4428 	case EQ_ETH:
4429 		rc = eth_eq_alloc(sc, vi, eq);
4430 		break;
4431 
4432 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4433 	case EQ_OFLD:
4434 		rc = ofld_eq_alloc(sc, vi, eq);
4435 		break;
4436 #endif
4437 
4438 	default:
4439 		panic("%s: invalid eq type %d.", __func__, eq->type);
4440 	}
4441 	if (rc != 0) {
4442 		CH_ERR(sc, "failed to allocate egress queue(%d): %d\n",
4443 		    eq->type, rc);
4444 		return (rc);
4445 	}
4446 
4447 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4448 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4449 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4450 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4451 		uint32_t mask = (1 << s_qpp) - 1;
4452 		volatile uint8_t *udb;
4453 
4454 		udb = sc->udbs_base + UDBS_DB_OFFSET;
4455 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4456 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4457 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4458 			clrbit(&eq->doorbells, DOORBELL_WCWR);
4459 		else {
4460 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4461 			eq->udb_qid = 0;
4462 		}
4463 		eq->udb = (volatile void *)udb;
4464 	}
4465 
4466 	eq->flags |= EQ_HW_ALLOCATED;
4467 	return (0);
4468 }
4469 
4470 static int
4471 free_eq_hwq(struct adapter *sc, struct vi_info *vi __unused, struct sge_eq *eq)
4472 {
4473 	int rc;
4474 
4475 	MPASS(eq->flags & EQ_HW_ALLOCATED);
4476 
4477 	switch (eq->type) {
4478 	case EQ_CTRL:
4479 		rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4480 		break;
4481 	case EQ_ETH:
4482 		rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4483 		break;
4484 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4485 	case EQ_OFLD:
4486 		rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4487 		break;
4488 #endif
4489 	default:
4490 		panic("%s: invalid eq type %d.", __func__, eq->type);
4491 	}
4492 	if (rc != 0) {
4493 		CH_ERR(sc, "failed to free eq (type %d): %d\n", eq->type, rc);
4494 		return (rc);
4495 	}
4496 	eq->flags &= ~EQ_HW_ALLOCATED;
4497 
4498 	return (0);
4499 }
4500 
4501 static int
4502 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4503     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
4504 {
4505 	struct sge_eq *eq = &wrq->eq;
4506 	int rc;
4507 
4508 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4509 
4510 	rc = alloc_eq(sc, eq, ctx, oid);
4511 	if (rc)
4512 		return (rc);
4513 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4514 	/* Can't fail after this. */
4515 
4516 	wrq->adapter = sc;
4517 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4518 	TAILQ_INIT(&wrq->incomplete_wrs);
4519 	STAILQ_INIT(&wrq->wr_list);
4520 	wrq->nwr_pending = 0;
4521 	wrq->ndesc_needed = 0;
4522 	add_wrq_sysctls(ctx, oid, wrq);
4523 
4524 	return (0);
4525 }
4526 
4527 static void
4528 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4529 {
4530 	free_eq(sc, &wrq->eq);
4531 	MPASS(wrq->nwr_pending == 0);
4532 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
4533 	MPASS(STAILQ_EMPTY(&wrq->wr_list));
4534 	bzero(wrq, sizeof(*wrq));
4535 }
4536 
4537 static void
4538 add_wrq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4539     struct sge_wrq *wrq)
4540 {
4541 	struct sysctl_oid_list *children;
4542 
4543 	if (ctx == NULL || oid == NULL)
4544 		return;
4545 
4546 	children = SYSCTL_CHILDREN(oid);
4547 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4548 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4549 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4550 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4551 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4552 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4553 }
4554 
4555 /*
4556  * Idempotent.
4557  */
4558 static int
4559 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx)
4560 {
4561 	int rc, iqidx;
4562 	struct port_info *pi = vi->pi;
4563 	struct adapter *sc = vi->adapter;
4564 	struct sge_eq *eq = &txq->eq;
4565 	struct txpkts *txp;
4566 	char name[16];
4567 	struct sysctl_oid *oid;
4568 
4569 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4570 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4571 
4572 		snprintf(name, sizeof(name), "%d", idx);
4573 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->txq_oid),
4574 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4575 		    "tx queue");
4576 
4577 		iqidx = vi->first_rxq + (idx % vi->nrxq);
4578 		snprintf(name, sizeof(name), "%s txq%d",
4579 		    device_get_nameunit(vi->dev), idx);
4580 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
4581 		    &sc->sge.rxq[iqidx].iq, name);
4582 
4583 		rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx,
4584 		    can_resume_eth_tx, M_CXGBE, &eq->eq_lock, M_WAITOK);
4585 		if (rc != 0) {
4586 			CH_ERR(vi, "failed to allocate mp_ring for txq%d: %d\n",
4587 			    idx, rc);
4588 failed:
4589 			sysctl_remove_oid(oid, 1, 1);
4590 			return (rc);
4591 		}
4592 
4593 		rc = alloc_eq(sc, eq, &vi->ctx, oid);
4594 		if (rc) {
4595 			CH_ERR(vi, "failed to allocate txq%d: %d\n", idx, rc);
4596 			mp_ring_free(txq->r);
4597 			goto failed;
4598 		}
4599 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4600 		/* Can't fail after this point. */
4601 
4602 		TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4603 		txq->ifp = vi->ifp;
4604 		txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4605 		txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4606 		    M_ZERO | M_WAITOK);
4607 
4608 		add_txq_sysctls(vi, &vi->ctx, oid, txq);
4609 	}
4610 
4611 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4612 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4613 		rc = alloc_eq_hwq(sc, vi, eq);
4614 		if (rc != 0) {
4615 			CH_ERR(vi, "failed to create hw txq%d: %d\n", idx, rc);
4616 			return (rc);
4617 		}
4618 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4619 		/* Can't fail after this point. */
4620 
4621 		if (idx == 0)
4622 			sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4623 		else
4624 			KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4625 			    ("eq_base mismatch"));
4626 		KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4627 		    ("PF with non-zero eq_base"));
4628 
4629 		txp = &txq->txp;
4630 		MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4631 		txq->txp.max_npkt = min(nitems(txp->mb),
4632 		    sc->params.max_pkts_per_eth_tx_pkts_wr);
4633 		if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
4634 			txq->txp.max_npkt--;
4635 
4636 		if (vi->flags & TX_USES_VM_WR)
4637 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4638 			    V_TXPKT_INTF(pi->tx_chan));
4639 		else
4640 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4641 			    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4642 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4643 
4644 		txq->tc_idx = -1;
4645 	}
4646 
4647 	return (0);
4648 }
4649 
4650 /*
4651  * Idempotent.
4652  */
4653 static void
4654 free_txq(struct vi_info *vi, struct sge_txq *txq)
4655 {
4656 	struct adapter *sc = vi->adapter;
4657 	struct sge_eq *eq = &txq->eq;
4658 
4659 	if (eq->flags & EQ_HW_ALLOCATED) {
4660 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4661 		free_eq_hwq(sc, NULL, eq);
4662 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4663 	}
4664 
4665 	if (eq->flags & EQ_SW_ALLOCATED) {
4666 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4667 		sglist_free(txq->gl);
4668 		free(txq->sdesc, M_CXGBE);
4669 		mp_ring_free(txq->r);
4670 		free_eq(sc, eq);
4671 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4672 		bzero(txq, sizeof(*txq));
4673 	}
4674 }
4675 
4676 static void
4677 add_txq_sysctls(struct vi_info *vi, struct sysctl_ctx_list *ctx,
4678     struct sysctl_oid *oid, struct sge_txq *txq)
4679 {
4680 	struct adapter *sc;
4681 	struct sysctl_oid_list *children;
4682 
4683 	if (ctx == NULL || oid == NULL)
4684 		return;
4685 
4686 	sc = vi->adapter;
4687 	children = SYSCTL_CHILDREN(oid);
4688 
4689 	mp_ring_sysctls(txq->r, ctx, children);
4690 
4691 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tc",
4692 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, txq - sc->sge.txq,
4693 	    sysctl_tc, "I", "traffic class (-1 means none)");
4694 
4695 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4696 	    &txq->txcsum, "# of times hardware assisted with checksum");
4697 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD,
4698 	    &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag");
4699 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4700 	    &txq->tso_wrs, "# of TSO work requests");
4701 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4702 	    &txq->imm_wrs, "# of work requests with immediate data");
4703 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4704 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4705 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4706 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4707 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD,
4708 	    &txq->txpkts0_wrs, "# of txpkts (type 0) work requests");
4709 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD,
4710 	    &txq->txpkts1_wrs, "# of txpkts (type 1) work requests");
4711 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD,
4712 	    &txq->txpkts0_pkts,
4713 	    "# of frames tx'd using type0 txpkts work requests");
4714 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD,
4715 	    &txq->txpkts1_pkts,
4716 	    "# of frames tx'd using type1 txpkts work requests");
4717 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts_flush", CTLFLAG_RD,
4718 	    &txq->txpkts_flush,
4719 	    "# of times txpkts had to be flushed out by an egress-update");
4720 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4721 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4722 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_tso_wrs", CTLFLAG_RD,
4723 	    &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
4724 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_txcsum", CTLFLAG_RD,
4725 	    &txq->vxlan_txcsum,
4726 	    "# of times hardware assisted with inner checksums (VXLAN)");
4727 
4728 #ifdef KERN_TLS
4729 	if (is_ktls(sc)) {
4730 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_records",
4731 		    CTLFLAG_RD, &txq->kern_tls_records,
4732 		    "# of NIC TLS records transmitted");
4733 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_short",
4734 		    CTLFLAG_RD, &txq->kern_tls_short,
4735 		    "# of short NIC TLS records transmitted");
4736 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_partial",
4737 		    CTLFLAG_RD, &txq->kern_tls_partial,
4738 		    "# of partial NIC TLS records transmitted");
4739 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_full",
4740 		    CTLFLAG_RD, &txq->kern_tls_full,
4741 		    "# of full NIC TLS records transmitted");
4742 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_octets",
4743 		    CTLFLAG_RD, &txq->kern_tls_octets,
4744 		    "# of payload octets in transmitted NIC TLS records");
4745 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_waste",
4746 		    CTLFLAG_RD, &txq->kern_tls_waste,
4747 		    "# of octets DMAd but not transmitted in NIC TLS records");
4748 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_options",
4749 		    CTLFLAG_RD, &txq->kern_tls_options,
4750 		    "# of NIC TLS options-only packets transmitted");
4751 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_header",
4752 		    CTLFLAG_RD, &txq->kern_tls_header,
4753 		    "# of NIC TLS header-only packets transmitted");
4754 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin",
4755 		    CTLFLAG_RD, &txq->kern_tls_fin,
4756 		    "# of NIC TLS FIN-only packets transmitted");
4757 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin_short",
4758 		    CTLFLAG_RD, &txq->kern_tls_fin_short,
4759 		    "# of NIC TLS padded FIN packets on short TLS records");
4760 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_cbc",
4761 		    CTLFLAG_RD, &txq->kern_tls_cbc,
4762 		    "# of NIC TLS sessions using AES-CBC");
4763 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_gcm",
4764 		    CTLFLAG_RD, &txq->kern_tls_gcm,
4765 		    "# of NIC TLS sessions using AES-GCM");
4766 	}
4767 #endif
4768 }
4769 
4770 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4771 /*
4772  * Idempotent.
4773  */
4774 static int
4775 alloc_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq, int idx)
4776 {
4777 	struct sysctl_oid *oid;
4778 	struct port_info *pi = vi->pi;
4779 	struct adapter *sc = vi->adapter;
4780 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4781 	int rc, iqidx;
4782 	char name[16];
4783 
4784 	MPASS(idx >= 0);
4785 	MPASS(idx < vi->nofldtxq);
4786 
4787 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4788 		snprintf(name, sizeof(name), "%d", idx);
4789 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4790 		    SYSCTL_CHILDREN(vi->ofld_txq_oid), OID_AUTO, name,
4791 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
4792 
4793 		snprintf(name, sizeof(name), "%s ofld_txq%d",
4794 		    device_get_nameunit(vi->dev), idx);
4795 		if (vi->nofldrxq > 0) {
4796 			iqidx = vi->first_ofld_rxq + (idx % vi->nofldrxq);
4797 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
4798 			    &sc->sge.ofld_rxq[iqidx].iq, name);
4799 		} else {
4800 			iqidx = vi->first_rxq + (idx % vi->nrxq);
4801 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
4802 			    &sc->sge.rxq[iqidx].iq, name);
4803 		}
4804 
4805 		rc = alloc_wrq(sc, vi, &ofld_txq->wrq, &vi->ctx, oid);
4806 		if (rc != 0) {
4807 			CH_ERR(vi, "failed to allocate ofld_txq%d: %d\n", idx,
4808 			    rc);
4809 			sysctl_remove_oid(oid, 1, 1);
4810 			return (rc);
4811 		}
4812 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4813 		/* Can't fail after this point. */
4814 
4815 		ofld_txq->tx_iscsi_pdus = counter_u64_alloc(M_WAITOK);
4816 		ofld_txq->tx_iscsi_octets = counter_u64_alloc(M_WAITOK);
4817 		ofld_txq->tx_iscsi_iso_wrs = counter_u64_alloc(M_WAITOK);
4818 		ofld_txq->tx_toe_tls_records = counter_u64_alloc(M_WAITOK);
4819 		ofld_txq->tx_toe_tls_octets = counter_u64_alloc(M_WAITOK);
4820 		add_ofld_txq_sysctls(&vi->ctx, oid, ofld_txq);
4821 	}
4822 
4823 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4824 		rc = alloc_eq_hwq(sc, vi, eq);
4825 		if (rc != 0) {
4826 			CH_ERR(vi, "failed to create hw ofld_txq%d: %d\n", idx,
4827 			    rc);
4828 			return (rc);
4829 		}
4830 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4831 	}
4832 
4833 	return (0);
4834 }
4835 
4836 /*
4837  * Idempotent.
4838  */
4839 static void
4840 free_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq)
4841 {
4842 	struct adapter *sc = vi->adapter;
4843 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4844 
4845 	if (eq->flags & EQ_HW_ALLOCATED) {
4846 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4847 		free_eq_hwq(sc, NULL, eq);
4848 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4849 	}
4850 
4851 	if (eq->flags & EQ_SW_ALLOCATED) {
4852 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4853 		counter_u64_free(ofld_txq->tx_iscsi_pdus);
4854 		counter_u64_free(ofld_txq->tx_iscsi_octets);
4855 		counter_u64_free(ofld_txq->tx_iscsi_iso_wrs);
4856 		counter_u64_free(ofld_txq->tx_toe_tls_records);
4857 		counter_u64_free(ofld_txq->tx_toe_tls_octets);
4858 		free_wrq(sc, &ofld_txq->wrq);
4859 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4860 		bzero(ofld_txq, sizeof(*ofld_txq));
4861 	}
4862 }
4863 
4864 static void
4865 add_ofld_txq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4866     struct sge_ofld_txq *ofld_txq)
4867 {
4868 	struct sysctl_oid_list *children;
4869 
4870 	if (ctx == NULL || oid == NULL)
4871 		return;
4872 
4873 	children = SYSCTL_CHILDREN(oid);
4874 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_pdus",
4875 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_pdus,
4876 	    "# of iSCSI PDUs transmitted");
4877 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_octets",
4878 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_octets,
4879 	    "# of payload octets in transmitted iSCSI PDUs");
4880 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_iso_wrs",
4881 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_iso_wrs,
4882 	    "# of iSCSI segmentation offload work requests");
4883 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_records",
4884 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_records,
4885 	    "# of TOE TLS records transmitted");
4886 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_octets",
4887 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_octets,
4888 	    "# of payload octets in transmitted TOE TLS records");
4889 }
4890 #endif
4891 
4892 static void
4893 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4894 {
4895 	bus_addr_t *ba = arg;
4896 
4897 	KASSERT(nseg == 1,
4898 	    ("%s meant for single segment mappings only.", __func__));
4899 
4900 	*ba = error ? 0 : segs->ds_addr;
4901 }
4902 
4903 static inline void
4904 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4905 {
4906 	uint32_t n, v;
4907 
4908 	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
4909 	MPASS(n > 0);
4910 
4911 	wmb();
4912 	v = fl->dbval | V_PIDX(n);
4913 	if (fl->udb)
4914 		*fl->udb = htole32(v);
4915 	else
4916 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4917 	IDXINCR(fl->dbidx, n, fl->sidx);
4918 }
4919 
4920 /*
4921  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4922  * recycled do not count towards this allocation budget.
4923  *
4924  * Returns non-zero to indicate that this freelist should be added to the list
4925  * of starving freelists.
4926  */
4927 static int
4928 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4929 {
4930 	__be64 *d;
4931 	struct fl_sdesc *sd;
4932 	uintptr_t pa;
4933 	caddr_t cl;
4934 	struct rx_buf_info *rxb;
4935 	struct cluster_metadata *clm;
4936 	uint16_t max_pidx, zidx = fl->zidx;
4937 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
4938 
4939 	FL_LOCK_ASSERT_OWNED(fl);
4940 
4941 	/*
4942 	 * We always stop at the beginning of the hardware descriptor that's just
4943 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
4944 	 * which would mean an empty freelist to the chip.
4945 	 */
4946 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
4947 	if (fl->pidx == max_pidx * 8)
4948 		return (0);
4949 
4950 	d = &fl->desc[fl->pidx];
4951 	sd = &fl->sdesc[fl->pidx];
4952 	rxb = &sc->sge.rx_buf_info[zidx];
4953 
4954 	while (n > 0) {
4955 
4956 		if (sd->cl != NULL) {
4957 
4958 			if (sd->nmbuf == 0) {
4959 				/*
4960 				 * Fast recycle without involving any atomics on
4961 				 * the cluster's metadata (if the cluster has
4962 				 * metadata).  This happens when all frames
4963 				 * received in the cluster were small enough to
4964 				 * fit within a single mbuf each.
4965 				 */
4966 				fl->cl_fast_recycled++;
4967 				goto recycled;
4968 			}
4969 
4970 			/*
4971 			 * Cluster is guaranteed to have metadata.  Clusters
4972 			 * without metadata always take the fast recycle path
4973 			 * when they're recycled.
4974 			 */
4975 			clm = cl_metadata(sd);
4976 			MPASS(clm != NULL);
4977 
4978 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4979 				fl->cl_recycled++;
4980 				counter_u64_add(extfree_rels, 1);
4981 				goto recycled;
4982 			}
4983 			sd->cl = NULL;	/* gave up my reference */
4984 		}
4985 		MPASS(sd->cl == NULL);
4986 		cl = uma_zalloc(rxb->zone, M_NOWAIT);
4987 		if (__predict_false(cl == NULL)) {
4988 			if (zidx != fl->safe_zidx) {
4989 				zidx = fl->safe_zidx;
4990 				rxb = &sc->sge.rx_buf_info[zidx];
4991 				cl = uma_zalloc(rxb->zone, M_NOWAIT);
4992 			}
4993 			if (cl == NULL)
4994 				break;
4995 		}
4996 		fl->cl_allocated++;
4997 		n--;
4998 
4999 		pa = pmap_kextract((vm_offset_t)cl);
5000 		sd->cl = cl;
5001 		sd->zidx = zidx;
5002 
5003 		if (fl->flags & FL_BUF_PACKING) {
5004 			*d = htobe64(pa | rxb->hwidx2);
5005 			sd->moff = rxb->size2;
5006 		} else {
5007 			*d = htobe64(pa | rxb->hwidx1);
5008 			sd->moff = 0;
5009 		}
5010 recycled:
5011 		sd->nmbuf = 0;
5012 		d++;
5013 		sd++;
5014 		if (__predict_false((++fl->pidx & 7) == 0)) {
5015 			uint16_t pidx = fl->pidx >> 3;
5016 
5017 			if (__predict_false(pidx == fl->sidx)) {
5018 				fl->pidx = 0;
5019 				pidx = 0;
5020 				sd = fl->sdesc;
5021 				d = fl->desc;
5022 			}
5023 			if (n < 8 || pidx == max_pidx)
5024 				break;
5025 
5026 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
5027 				ring_fl_db(sc, fl);
5028 		}
5029 	}
5030 
5031 	if ((fl->pidx >> 3) != fl->dbidx)
5032 		ring_fl_db(sc, fl);
5033 
5034 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
5035 }
5036 
5037 /*
5038  * Attempt to refill all starving freelists.
5039  */
5040 static void
5041 refill_sfl(void *arg)
5042 {
5043 	struct adapter *sc = arg;
5044 	struct sge_fl *fl, *fl_temp;
5045 
5046 	mtx_assert(&sc->sfl_lock, MA_OWNED);
5047 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
5048 		FL_LOCK(fl);
5049 		refill_fl(sc, fl, 64);
5050 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
5051 			TAILQ_REMOVE(&sc->sfl, fl, link);
5052 			fl->flags &= ~FL_STARVING;
5053 		}
5054 		FL_UNLOCK(fl);
5055 	}
5056 
5057 	if (!TAILQ_EMPTY(&sc->sfl))
5058 		callout_schedule(&sc->sfl_callout, hz / 5);
5059 }
5060 
5061 /*
5062  * Release the driver's reference on all buffers in the given freelist.  Buffers
5063  * with kernel references cannot be freed and will prevent the driver from being
5064  * unloaded safely.
5065  */
5066 void
5067 free_fl_buffers(struct adapter *sc, struct sge_fl *fl)
5068 {
5069 	struct fl_sdesc *sd;
5070 	struct cluster_metadata *clm;
5071 	int i;
5072 
5073 	sd = fl->sdesc;
5074 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
5075 		if (sd->cl == NULL)
5076 			continue;
5077 
5078 		if (sd->nmbuf == 0)
5079 			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
5080 		else if (fl->flags & FL_BUF_PACKING) {
5081 			clm = cl_metadata(sd);
5082 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5083 				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
5084 				    sd->cl);
5085 				counter_u64_add(extfree_rels, 1);
5086 			}
5087 		}
5088 		sd->cl = NULL;
5089 	}
5090 
5091 	if (fl->flags & FL_BUF_RESUME) {
5092 		m_freem(fl->m0);
5093 		fl->flags &= ~FL_BUF_RESUME;
5094 	}
5095 }
5096 
5097 static inline void
5098 get_pkt_gl(struct mbuf *m, struct sglist *gl)
5099 {
5100 	int rc;
5101 
5102 	M_ASSERTPKTHDR(m);
5103 
5104 	sglist_reset(gl);
5105 	rc = sglist_append_mbuf(gl, m);
5106 	if (__predict_false(rc != 0)) {
5107 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
5108 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
5109 	}
5110 
5111 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
5112 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
5113 	    mbuf_nsegs(m), gl->sg_nseg));
5114 #if 0	/* vm_wr not readily available here. */
5115 	KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
5116 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
5117 		gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
5118 #endif
5119 }
5120 
5121 /*
5122  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5123  */
5124 static inline u_int
5125 txpkt_len16(u_int nsegs, const u_int extra)
5126 {
5127 	u_int n;
5128 
5129 	MPASS(nsegs > 0);
5130 
5131 	nsegs--; /* first segment is part of ulptx_sgl */
5132 	n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
5133 	    sizeof(struct cpl_tx_pkt_core) +
5134 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5135 
5136 	return (howmany(n, 16));
5137 }
5138 
5139 /*
5140  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
5141  * request header.
5142  */
5143 static inline u_int
5144 txpkt_vm_len16(u_int nsegs, const u_int extra)
5145 {
5146 	u_int n;
5147 
5148 	MPASS(nsegs > 0);
5149 
5150 	nsegs--; /* first segment is part of ulptx_sgl */
5151 	n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
5152 	    sizeof(struct cpl_tx_pkt_core) +
5153 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5154 
5155 	return (howmany(n, 16));
5156 }
5157 
5158 static inline void
5159 calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
5160 {
5161 	const int lso = sizeof(struct cpl_tx_pkt_lso_core);
5162 	const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
5163 
5164 	if (vm_wr) {
5165 		if (needs_tso(m))
5166 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
5167 		else
5168 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
5169 		return;
5170 	}
5171 
5172 	if (needs_tso(m)) {
5173 		if (needs_vxlan_tso(m))
5174 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
5175 		else
5176 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
5177 	} else
5178 		set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
5179 }
5180 
5181 /*
5182  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
5183  * request header.
5184  */
5185 static inline u_int
5186 txpkts0_len16(u_int nsegs)
5187 {
5188 	u_int n;
5189 
5190 	MPASS(nsegs > 0);
5191 
5192 	nsegs--; /* first segment is part of ulptx_sgl */
5193 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
5194 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
5195 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
5196 
5197 	return (howmany(n, 16));
5198 }
5199 
5200 /*
5201  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
5202  * request header.
5203  */
5204 static inline u_int
5205 txpkts1_len16(void)
5206 {
5207 	u_int n;
5208 
5209 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
5210 
5211 	return (howmany(n, 16));
5212 }
5213 
5214 static inline u_int
5215 imm_payload(u_int ndesc)
5216 {
5217 	u_int n;
5218 
5219 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
5220 	    sizeof(struct cpl_tx_pkt_core);
5221 
5222 	return (n);
5223 }
5224 
5225 static inline uint64_t
5226 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
5227 {
5228 	uint64_t ctrl;
5229 	int csum_type, l2hlen, l3hlen;
5230 	int x, y;
5231 	static const int csum_types[3][2] = {
5232 		{TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
5233 		{TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
5234 		{TX_CSUM_IP, 0}
5235 	};
5236 
5237 	M_ASSERTPKTHDR(m);
5238 
5239 	if (!needs_hwcsum(m))
5240 		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
5241 
5242 	MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
5243 	MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
5244 
5245 	if (needs_vxlan_csum(m)) {
5246 		MPASS(m->m_pkthdr.l4hlen > 0);
5247 		MPASS(m->m_pkthdr.l5hlen > 0);
5248 		MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
5249 		MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
5250 
5251 		l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
5252 		    m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
5253 		    m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
5254 		l3hlen = m->m_pkthdr.inner_l3hlen;
5255 	} else {
5256 		l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
5257 		l3hlen = m->m_pkthdr.l3hlen;
5258 	}
5259 
5260 	ctrl = 0;
5261 	if (!needs_l3_csum(m))
5262 		ctrl |= F_TXPKT_IPCSUM_DIS;
5263 
5264 	if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
5265 	    CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
5266 		x = 0;	/* TCP */
5267 	else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
5268 	    CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
5269 		x = 1;	/* UDP */
5270 	else
5271 		x = 2;
5272 
5273 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
5274 	    CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
5275 		y = 0;	/* IPv4 */
5276 	else {
5277 		MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
5278 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
5279 		y = 1;	/* IPv6 */
5280 	}
5281 	/*
5282 	 * needs_hwcsum returned true earlier so there must be some kind of
5283 	 * checksum to calculate.
5284 	 */
5285 	csum_type = csum_types[x][y];
5286 	MPASS(csum_type != 0);
5287 	if (csum_type == TX_CSUM_IP)
5288 		ctrl |= F_TXPKT_L4CSUM_DIS;
5289 	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
5290 	if (chip_id(sc) <= CHELSIO_T5)
5291 		ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
5292 	else
5293 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
5294 
5295 	return (ctrl);
5296 }
5297 
5298 static inline void *
5299 write_lso_cpl(void *cpl, struct mbuf *m0)
5300 {
5301 	struct cpl_tx_pkt_lso_core *lso;
5302 	uint32_t ctrl;
5303 
5304 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5305 	    m0->m_pkthdr.l4hlen > 0,
5306 	    ("%s: mbuf %p needs TSO but missing header lengths",
5307 		__func__, m0));
5308 
5309 	ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5310 	    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5311 	    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5312 	    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5313 	    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5314 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5315 		ctrl |= F_LSO_IPV6;
5316 
5317 	lso = cpl;
5318 	lso->lso_ctrl = htobe32(ctrl);
5319 	lso->ipid_ofst = htobe16(0);
5320 	lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5321 	lso->seqno_offset = htobe32(0);
5322 	lso->len = htobe32(m0->m_pkthdr.len);
5323 
5324 	return (lso + 1);
5325 }
5326 
5327 static void *
5328 write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
5329 {
5330 	struct cpl_tx_tnl_lso *tnl_lso = cpl;
5331 	uint32_t ctrl;
5332 
5333 	KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
5334 	    m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
5335 	    m0->m_pkthdr.inner_l5hlen > 0,
5336 	    ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
5337 		__func__, m0));
5338 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5339 	    m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
5340 	    ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
5341 		__func__, m0));
5342 
5343 	/* Outer headers. */
5344 	ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
5345 	    F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
5346 	    V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
5347 		(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5348 	    V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
5349 	    F_CPL_TX_TNL_LSO_IPLENSETOUT;
5350 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5351 		ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
5352 	else {
5353 		ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
5354 		    F_CPL_TX_TNL_LSO_IPIDINCOUT;
5355 	}
5356 	tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
5357 	tnl_lso->IpIdOffsetOut = 0;
5358 	tnl_lso->UdpLenSetOut_to_TnlHdrLen =
5359 		htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
5360 		    F_CPL_TX_TNL_LSO_UDPLENSETOUT |
5361 		    V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
5362 			m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
5363 			m0->m_pkthdr.l5hlen) |
5364 		    V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
5365 	tnl_lso->r1 = 0;
5366 
5367 	/* Inner headers. */
5368 	ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
5369 	    (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
5370 	    V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
5371 	    V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
5372 	if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
5373 		ctrl |= F_CPL_TX_TNL_LSO_IPV6;
5374 	tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
5375 	tnl_lso->IpIdOffset = 0;
5376 	tnl_lso->IpIdSplit_to_Mss =
5377 	    htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
5378 	tnl_lso->TCPSeqOffset = 0;
5379 	tnl_lso->EthLenOffset_Size =
5380 	    htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
5381 
5382 	return (tnl_lso + 1);
5383 }
5384 
5385 #define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
5386 
5387 /*
5388  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
5389  * software descriptor, and advance the pidx.  It is guaranteed that enough
5390  * descriptors are available.
5391  *
5392  * The return value is the # of hardware descriptors used.
5393  */
5394 static u_int
5395 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
5396 {
5397 	struct sge_eq *eq;
5398 	struct fw_eth_tx_pkt_vm_wr *wr;
5399 	struct tx_sdesc *txsd;
5400 	struct cpl_tx_pkt_core *cpl;
5401 	uint32_t ctrl;	/* used in many unrelated places */
5402 	uint64_t ctrl1;
5403 	int len16, ndesc, pktlen;
5404 	caddr_t dst;
5405 
5406 	TXQ_LOCK_ASSERT_OWNED(txq);
5407 	M_ASSERTPKTHDR(m0);
5408 
5409 	len16 = mbuf_len16(m0);
5410 	pktlen = m0->m_pkthdr.len;
5411 	ctrl = sizeof(struct cpl_tx_pkt_core);
5412 	if (needs_tso(m0))
5413 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5414 	ndesc = tx_len16_to_desc(len16);
5415 
5416 	/* Firmware work request header */
5417 	eq = &txq->eq;
5418 	wr = (void *)&eq->desc[eq->pidx];
5419 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
5420 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5421 
5422 	ctrl = V_FW_WR_LEN16(len16);
5423 	wr->equiq_to_len16 = htobe32(ctrl);
5424 	wr->r3[0] = 0;
5425 	wr->r3[1] = 0;
5426 
5427 	/*
5428 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
5429 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
5430 	 * simpler to always copy it rather than making it
5431 	 * conditional.  Also, it seems that we do not have to set
5432 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
5433 	 */
5434 	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
5435 
5436 	if (needs_tso(m0)) {
5437 		cpl = write_lso_cpl(wr + 1, m0);
5438 		txq->tso_wrs++;
5439 	} else
5440 		cpl = (void *)(wr + 1);
5441 
5442 	/* Checksum offload */
5443 	ctrl1 = csum_to_ctrl(sc, m0);
5444 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5445 		txq->txcsum++;	/* some hardware assistance provided */
5446 
5447 	/* VLAN tag insertion */
5448 	if (needs_vlan_insertion(m0)) {
5449 		ctrl1 |= F_TXPKT_VLAN_VLD |
5450 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5451 		txq->vlan_insertion++;
5452 	}
5453 
5454 	/* CPL header */
5455 	cpl->ctrl0 = txq->cpl_ctrl0;
5456 	cpl->pack = 0;
5457 	cpl->len = htobe16(pktlen);
5458 	cpl->ctrl1 = htobe64(ctrl1);
5459 
5460 	/* SGL */
5461 	dst = (void *)(cpl + 1);
5462 
5463 	/*
5464 	 * A packet using TSO will use up an entire descriptor for the
5465 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
5466 	 * If this descriptor is the last descriptor in the ring, wrap
5467 	 * around to the front of the ring explicitly for the start of
5468 	 * the sgl.
5469 	 */
5470 	if (dst == (void *)&eq->desc[eq->sidx]) {
5471 		dst = (void *)&eq->desc[0];
5472 		write_gl_to_txd(txq, m0, &dst, 0);
5473 	} else
5474 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5475 	txq->sgl_wrs++;
5476 	txq->txpkt_wrs++;
5477 
5478 	txsd = &txq->sdesc[eq->pidx];
5479 	txsd->m = m0;
5480 	txsd->desc_used = ndesc;
5481 
5482 	return (ndesc);
5483 }
5484 
5485 /*
5486  * Write a raw WR to the hardware descriptors, update the software
5487  * descriptor, and advance the pidx.  It is guaranteed that enough
5488  * descriptors are available.
5489  *
5490  * The return value is the # of hardware descriptors used.
5491  */
5492 static u_int
5493 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
5494 {
5495 	struct sge_eq *eq = &txq->eq;
5496 	struct tx_sdesc *txsd;
5497 	struct mbuf *m;
5498 	caddr_t dst;
5499 	int len16, ndesc;
5500 
5501 	len16 = mbuf_len16(m0);
5502 	ndesc = tx_len16_to_desc(len16);
5503 	MPASS(ndesc <= available);
5504 
5505 	dst = wr;
5506 	for (m = m0; m != NULL; m = m->m_next)
5507 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5508 
5509 	txq->raw_wrs++;
5510 
5511 	txsd = &txq->sdesc[eq->pidx];
5512 	txsd->m = m0;
5513 	txsd->desc_used = ndesc;
5514 
5515 	return (ndesc);
5516 }
5517 
5518 /*
5519  * Write a txpkt WR for this packet to the hardware descriptors, update the
5520  * software descriptor, and advance the pidx.  It is guaranteed that enough
5521  * descriptors are available.
5522  *
5523  * The return value is the # of hardware descriptors used.
5524  */
5525 static u_int
5526 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
5527     u_int available)
5528 {
5529 	struct sge_eq *eq;
5530 	struct fw_eth_tx_pkt_wr *wr;
5531 	struct tx_sdesc *txsd;
5532 	struct cpl_tx_pkt_core *cpl;
5533 	uint32_t ctrl;	/* used in many unrelated places */
5534 	uint64_t ctrl1;
5535 	int len16, ndesc, pktlen, nsegs;
5536 	caddr_t dst;
5537 
5538 	TXQ_LOCK_ASSERT_OWNED(txq);
5539 	M_ASSERTPKTHDR(m0);
5540 
5541 	len16 = mbuf_len16(m0);
5542 	nsegs = mbuf_nsegs(m0);
5543 	pktlen = m0->m_pkthdr.len;
5544 	ctrl = sizeof(struct cpl_tx_pkt_core);
5545 	if (needs_tso(m0)) {
5546 		if (needs_vxlan_tso(m0))
5547 			ctrl += sizeof(struct cpl_tx_tnl_lso);
5548 		else
5549 			ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5550 	} else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
5551 	    available >= 2) {
5552 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
5553 		ctrl += pktlen;
5554 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
5555 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
5556 		nsegs = 0;
5557 	}
5558 	ndesc = tx_len16_to_desc(len16);
5559 	MPASS(ndesc <= available);
5560 
5561 	/* Firmware work request header */
5562 	eq = &txq->eq;
5563 	wr = (void *)&eq->desc[eq->pidx];
5564 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
5565 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5566 
5567 	ctrl = V_FW_WR_LEN16(len16);
5568 	wr->equiq_to_len16 = htobe32(ctrl);
5569 	wr->r3 = 0;
5570 
5571 	if (needs_tso(m0)) {
5572 		if (needs_vxlan_tso(m0)) {
5573 			cpl = write_tnl_lso_cpl(wr + 1, m0);
5574 			txq->vxlan_tso_wrs++;
5575 		} else {
5576 			cpl = write_lso_cpl(wr + 1, m0);
5577 			txq->tso_wrs++;
5578 		}
5579 	} else
5580 		cpl = (void *)(wr + 1);
5581 
5582 	/* Checksum offload */
5583 	ctrl1 = csum_to_ctrl(sc, m0);
5584 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5585 		/* some hardware assistance provided */
5586 		if (needs_vxlan_csum(m0))
5587 			txq->vxlan_txcsum++;
5588 		else
5589 			txq->txcsum++;
5590 	}
5591 
5592 	/* VLAN tag insertion */
5593 	if (needs_vlan_insertion(m0)) {
5594 		ctrl1 |= F_TXPKT_VLAN_VLD |
5595 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5596 		txq->vlan_insertion++;
5597 	}
5598 
5599 	/* CPL header */
5600 	cpl->ctrl0 = txq->cpl_ctrl0;
5601 	cpl->pack = 0;
5602 	cpl->len = htobe16(pktlen);
5603 	cpl->ctrl1 = htobe64(ctrl1);
5604 
5605 	/* SGL */
5606 	dst = (void *)(cpl + 1);
5607 	if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
5608 		dst = (caddr_t)&eq->desc[0];
5609 	if (nsegs > 0) {
5610 
5611 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5612 		txq->sgl_wrs++;
5613 	} else {
5614 		struct mbuf *m;
5615 
5616 		for (m = m0; m != NULL; m = m->m_next) {
5617 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5618 #ifdef INVARIANTS
5619 			pktlen -= m->m_len;
5620 #endif
5621 		}
5622 #ifdef INVARIANTS
5623 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
5624 #endif
5625 		txq->imm_wrs++;
5626 	}
5627 
5628 	txq->txpkt_wrs++;
5629 
5630 	txsd = &txq->sdesc[eq->pidx];
5631 	txsd->m = m0;
5632 	txsd->desc_used = ndesc;
5633 
5634 	return (ndesc);
5635 }
5636 
5637 static inline bool
5638 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
5639 {
5640 	int len;
5641 
5642 	MPASS(txp->npkt > 0);
5643 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5644 
5645 	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5646 		len = VM_TX_L2HDR_LEN;
5647 	else
5648 		len = sizeof(struct ether_header);
5649 
5650 	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5651 }
5652 
5653 static inline void
5654 save_l2hdr(struct txpkts *txp, struct mbuf *m)
5655 {
5656 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5657 
5658 	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5659 }
5660 
5661 static int
5662 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5663     int avail, bool *send)
5664 {
5665 	struct txpkts *txp = &txq->txp;
5666 
5667 	/* Cannot have TSO and coalesce at the same time. */
5668 	if (cannot_use_txpkts(m)) {
5669 cannot_coalesce:
5670 		*send = txp->npkt > 0;
5671 		return (EINVAL);
5672 	}
5673 
5674 	/* VF allows coalescing of type 1 (1 GL) only */
5675 	if (mbuf_nsegs(m) > 1)
5676 		goto cannot_coalesce;
5677 
5678 	*send = false;
5679 	if (txp->npkt > 0) {
5680 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5681 		MPASS(txp->npkt < txp->max_npkt);
5682 		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5683 
5684 		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5685 retry_after_send:
5686 			*send = true;
5687 			return (EAGAIN);
5688 		}
5689 		if (m->m_pkthdr.len + txp->plen > 65535)
5690 			goto retry_after_send;
5691 		if (cmp_l2hdr(txp, m))
5692 			goto retry_after_send;
5693 
5694 		txp->len16 += txpkts1_len16();
5695 		txp->plen += m->m_pkthdr.len;
5696 		txp->mb[txp->npkt++] = m;
5697 		if (txp->npkt == txp->max_npkt)
5698 			*send = true;
5699 	} else {
5700 		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5701 		    txpkts1_len16();
5702 		if (tx_len16_to_desc(txp->len16) > avail)
5703 			goto cannot_coalesce;
5704 		txp->npkt = 1;
5705 		txp->wr_type = 1;
5706 		txp->plen = m->m_pkthdr.len;
5707 		txp->mb[0] = m;
5708 		save_l2hdr(txp, m);
5709 	}
5710 	return (0);
5711 }
5712 
5713 static int
5714 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5715     int avail, bool *send)
5716 {
5717 	struct txpkts *txp = &txq->txp;
5718 	int nsegs;
5719 
5720 	MPASS(!(sc->flags & IS_VF));
5721 
5722 	/* Cannot have TSO and coalesce at the same time. */
5723 	if (cannot_use_txpkts(m)) {
5724 cannot_coalesce:
5725 		*send = txp->npkt > 0;
5726 		return (EINVAL);
5727 	}
5728 
5729 	*send = false;
5730 	nsegs = mbuf_nsegs(m);
5731 	if (txp->npkt == 0) {
5732 		if (m->m_pkthdr.len > 65535)
5733 			goto cannot_coalesce;
5734 		if (nsegs > 1) {
5735 			txp->wr_type = 0;
5736 			txp->len16 =
5737 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5738 			    txpkts0_len16(nsegs);
5739 		} else {
5740 			txp->wr_type = 1;
5741 			txp->len16 =
5742 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5743 			    txpkts1_len16();
5744 		}
5745 		if (tx_len16_to_desc(txp->len16) > avail)
5746 			goto cannot_coalesce;
5747 		txp->npkt = 1;
5748 		txp->plen = m->m_pkthdr.len;
5749 		txp->mb[0] = m;
5750 	} else {
5751 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5752 		MPASS(txp->npkt < txp->max_npkt);
5753 
5754 		if (m->m_pkthdr.len + txp->plen > 65535) {
5755 retry_after_send:
5756 			*send = true;
5757 			return (EAGAIN);
5758 		}
5759 
5760 		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5761 		if (txp->wr_type == 0) {
5762 			if (tx_len16_to_desc(txp->len16 +
5763 			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
5764 				goto retry_after_send;
5765 			txp->len16 += txpkts0_len16(nsegs);
5766 		} else {
5767 			if (nsegs != 1)
5768 				goto retry_after_send;
5769 			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
5770 			    avail)
5771 				goto retry_after_send;
5772 			txp->len16 += txpkts1_len16();
5773 		}
5774 
5775 		txp->plen += m->m_pkthdr.len;
5776 		txp->mb[txp->npkt++] = m;
5777 		if (txp->npkt == txp->max_npkt)
5778 			*send = true;
5779 	}
5780 	return (0);
5781 }
5782 
5783 /*
5784  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
5785  * the software descriptor, and advance the pidx.  It is guaranteed that enough
5786  * descriptors are available.
5787  *
5788  * The return value is the # of hardware descriptors used.
5789  */
5790 static u_int
5791 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
5792 {
5793 	const struct txpkts *txp = &txq->txp;
5794 	struct sge_eq *eq = &txq->eq;
5795 	struct fw_eth_tx_pkts_wr *wr;
5796 	struct tx_sdesc *txsd;
5797 	struct cpl_tx_pkt_core *cpl;
5798 	uint64_t ctrl1;
5799 	int ndesc, i, checkwrap;
5800 	struct mbuf *m, *last;
5801 	void *flitp;
5802 
5803 	TXQ_LOCK_ASSERT_OWNED(txq);
5804 	MPASS(txp->npkt > 0);
5805 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5806 
5807 	wr = (void *)&eq->desc[eq->pidx];
5808 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
5809 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5810 	wr->plen = htobe16(txp->plen);
5811 	wr->npkt = txp->npkt;
5812 	wr->r3 = 0;
5813 	wr->type = txp->wr_type;
5814 	flitp = wr + 1;
5815 
5816 	/*
5817 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
5818 	 * set then we know the WR is going to wrap around somewhere.  We'll
5819 	 * check for that at appropriate points.
5820 	 */
5821 	ndesc = tx_len16_to_desc(txp->len16);
5822 	last = NULL;
5823 	checkwrap = eq->sidx - ndesc < eq->pidx;
5824 	for (i = 0; i < txp->npkt; i++) {
5825 		m = txp->mb[i];
5826 		if (txp->wr_type == 0) {
5827 			struct ulp_txpkt *ulpmc;
5828 			struct ulptx_idata *ulpsc;
5829 
5830 			/* ULP master command */
5831 			ulpmc = flitp;
5832 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
5833 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
5834 			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
5835 
5836 			/* ULP subcommand */
5837 			ulpsc = (void *)(ulpmc + 1);
5838 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
5839 			    F_ULP_TX_SC_MORE);
5840 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
5841 
5842 			cpl = (void *)(ulpsc + 1);
5843 			if (checkwrap &&
5844 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
5845 				cpl = (void *)&eq->desc[0];
5846 		} else {
5847 			cpl = flitp;
5848 		}
5849 
5850 		/* Checksum offload */
5851 		ctrl1 = csum_to_ctrl(sc, m);
5852 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5853 			/* some hardware assistance provided */
5854 			if (needs_vxlan_csum(m))
5855 				txq->vxlan_txcsum++;
5856 			else
5857 				txq->txcsum++;
5858 		}
5859 
5860 		/* VLAN tag insertion */
5861 		if (needs_vlan_insertion(m)) {
5862 			ctrl1 |= F_TXPKT_VLAN_VLD |
5863 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5864 			txq->vlan_insertion++;
5865 		}
5866 
5867 		/* CPL header */
5868 		cpl->ctrl0 = txq->cpl_ctrl0;
5869 		cpl->pack = 0;
5870 		cpl->len = htobe16(m->m_pkthdr.len);
5871 		cpl->ctrl1 = htobe64(ctrl1);
5872 
5873 		flitp = cpl + 1;
5874 		if (checkwrap &&
5875 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5876 			flitp = (void *)&eq->desc[0];
5877 
5878 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
5879 
5880 		if (last != NULL)
5881 			last->m_nextpkt = m;
5882 		last = m;
5883 	}
5884 
5885 	txq->sgl_wrs++;
5886 	if (txp->wr_type == 0) {
5887 		txq->txpkts0_pkts += txp->npkt;
5888 		txq->txpkts0_wrs++;
5889 	} else {
5890 		txq->txpkts1_pkts += txp->npkt;
5891 		txq->txpkts1_wrs++;
5892 	}
5893 
5894 	txsd = &txq->sdesc[eq->pidx];
5895 	txsd->m = txp->mb[0];
5896 	txsd->desc_used = ndesc;
5897 
5898 	return (ndesc);
5899 }
5900 
5901 static u_int
5902 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
5903 {
5904 	const struct txpkts *txp = &txq->txp;
5905 	struct sge_eq *eq = &txq->eq;
5906 	struct fw_eth_tx_pkts_vm_wr *wr;
5907 	struct tx_sdesc *txsd;
5908 	struct cpl_tx_pkt_core *cpl;
5909 	uint64_t ctrl1;
5910 	int ndesc, i;
5911 	struct mbuf *m, *last;
5912 	void *flitp;
5913 
5914 	TXQ_LOCK_ASSERT_OWNED(txq);
5915 	MPASS(txp->npkt > 0);
5916 	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5917 	MPASS(txp->mb[0] != NULL);
5918 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5919 
5920 	wr = (void *)&eq->desc[eq->pidx];
5921 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
5922 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5923 	wr->r3 = 0;
5924 	wr->plen = htobe16(txp->plen);
5925 	wr->npkt = txp->npkt;
5926 	wr->r4 = 0;
5927 	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
5928 	flitp = wr + 1;
5929 
5930 	/*
5931 	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
5932 	 * the WR will take 32B so we check for the end of the descriptor ring
5933 	 * before writing odd mbufs (mb[1], 3, 5, ..)
5934 	 */
5935 	ndesc = tx_len16_to_desc(txp->len16);
5936 	last = NULL;
5937 	for (i = 0; i < txp->npkt; i++) {
5938 		m = txp->mb[i];
5939 		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5940 			flitp = &eq->desc[0];
5941 		cpl = flitp;
5942 
5943 		/* Checksum offload */
5944 		ctrl1 = csum_to_ctrl(sc, m);
5945 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5946 			txq->txcsum++;	/* some hardware assistance provided */
5947 
5948 		/* VLAN tag insertion */
5949 		if (needs_vlan_insertion(m)) {
5950 			ctrl1 |= F_TXPKT_VLAN_VLD |
5951 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5952 			txq->vlan_insertion++;
5953 		}
5954 
5955 		/* CPL header */
5956 		cpl->ctrl0 = txq->cpl_ctrl0;
5957 		cpl->pack = 0;
5958 		cpl->len = htobe16(m->m_pkthdr.len);
5959 		cpl->ctrl1 = htobe64(ctrl1);
5960 
5961 		flitp = cpl + 1;
5962 		MPASS(mbuf_nsegs(m) == 1);
5963 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
5964 
5965 		if (last != NULL)
5966 			last->m_nextpkt = m;
5967 		last = m;
5968 	}
5969 
5970 	txq->sgl_wrs++;
5971 	txq->txpkts1_pkts += txp->npkt;
5972 	txq->txpkts1_wrs++;
5973 
5974 	txsd = &txq->sdesc[eq->pidx];
5975 	txsd->m = txp->mb[0];
5976 	txsd->desc_used = ndesc;
5977 
5978 	return (ndesc);
5979 }
5980 
5981 /*
5982  * If the SGL ends on an address that is not 16 byte aligned, this function will
5983  * add a 0 filled flit at the end.
5984  */
5985 static void
5986 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
5987 {
5988 	struct sge_eq *eq = &txq->eq;
5989 	struct sglist *gl = txq->gl;
5990 	struct sglist_seg *seg;
5991 	__be64 *flitp, *wrap;
5992 	struct ulptx_sgl *usgl;
5993 	int i, nflits, nsegs;
5994 
5995 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
5996 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
5997 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5998 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5999 
6000 	get_pkt_gl(m, gl);
6001 	nsegs = gl->sg_nseg;
6002 	MPASS(nsegs > 0);
6003 
6004 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
6005 	flitp = (__be64 *)(*to);
6006 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
6007 	seg = &gl->sg_segs[0];
6008 	usgl = (void *)flitp;
6009 
6010 	/*
6011 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
6012 	 * ring, so we're at least 16 bytes away from the status page.  There is
6013 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
6014 	 */
6015 
6016 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6017 	    V_ULPTX_NSGE(nsegs));
6018 	usgl->len0 = htobe32(seg->ss_len);
6019 	usgl->addr0 = htobe64(seg->ss_paddr);
6020 	seg++;
6021 
6022 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
6023 
6024 		/* Won't wrap around at all */
6025 
6026 		for (i = 0; i < nsegs - 1; i++, seg++) {
6027 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
6028 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
6029 		}
6030 		if (i & 1)
6031 			usgl->sge[i / 2].len[1] = htobe32(0);
6032 		flitp += nflits;
6033 	} else {
6034 
6035 		/* Will wrap somewhere in the rest of the SGL */
6036 
6037 		/* 2 flits already written, write the rest flit by flit */
6038 		flitp = (void *)(usgl + 1);
6039 		for (i = 0; i < nflits - 2; i++) {
6040 			if (flitp == wrap)
6041 				flitp = (void *)eq->desc;
6042 			*flitp++ = get_flit(seg, nsegs - 1, i);
6043 		}
6044 	}
6045 
6046 	if (nflits & 1) {
6047 		MPASS(((uintptr_t)flitp) & 0xf);
6048 		*flitp++ = 0;
6049 	}
6050 
6051 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
6052 	if (__predict_false(flitp == wrap))
6053 		*to = (void *)eq->desc;
6054 	else
6055 		*to = (void *)flitp;
6056 }
6057 
6058 static inline void
6059 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
6060 {
6061 
6062 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6063 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6064 
6065 	if (__predict_true((uintptr_t)(*to) + len <=
6066 	    (uintptr_t)&eq->desc[eq->sidx])) {
6067 		bcopy(from, *to, len);
6068 		(*to) += len;
6069 	} else {
6070 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
6071 
6072 		bcopy(from, *to, portion);
6073 		from += portion;
6074 		portion = len - portion;	/* remaining */
6075 		bcopy(from, (void *)eq->desc, portion);
6076 		(*to) = (caddr_t)eq->desc + portion;
6077 	}
6078 }
6079 
6080 static inline void
6081 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
6082 {
6083 	u_int db;
6084 
6085 	MPASS(n > 0);
6086 
6087 	db = eq->doorbells;
6088 	if (n > 1)
6089 		clrbit(&db, DOORBELL_WCWR);
6090 	wmb();
6091 
6092 	switch (ffs(db) - 1) {
6093 	case DOORBELL_UDB:
6094 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6095 		break;
6096 
6097 	case DOORBELL_WCWR: {
6098 		volatile uint64_t *dst, *src;
6099 		int i;
6100 
6101 		/*
6102 		 * Queues whose 128B doorbell segment fits in the page do not
6103 		 * use relative qid (udb_qid is always 0).  Only queues with
6104 		 * doorbell segments can do WCWR.
6105 		 */
6106 		KASSERT(eq->udb_qid == 0 && n == 1,
6107 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
6108 		    __func__, eq->doorbells, n, eq->dbidx, eq));
6109 
6110 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
6111 		    UDBS_DB_OFFSET);
6112 		i = eq->dbidx;
6113 		src = (void *)&eq->desc[i];
6114 		while (src != (void *)&eq->desc[i + 1])
6115 			*dst++ = *src++;
6116 		wmb();
6117 		break;
6118 	}
6119 
6120 	case DOORBELL_UDBWC:
6121 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6122 		wmb();
6123 		break;
6124 
6125 	case DOORBELL_KDB:
6126 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
6127 		    V_QID(eq->cntxt_id) | V_PIDX(n));
6128 		break;
6129 	}
6130 
6131 	IDXINCR(eq->dbidx, n, eq->sidx);
6132 }
6133 
6134 static inline u_int
6135 reclaimable_tx_desc(struct sge_eq *eq)
6136 {
6137 	uint16_t hw_cidx;
6138 
6139 	hw_cidx = read_hw_cidx(eq);
6140 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
6141 }
6142 
6143 static inline u_int
6144 total_available_tx_desc(struct sge_eq *eq)
6145 {
6146 	uint16_t hw_cidx, pidx;
6147 
6148 	hw_cidx = read_hw_cidx(eq);
6149 	pidx = eq->pidx;
6150 
6151 	if (pidx == hw_cidx)
6152 		return (eq->sidx - 1);
6153 	else
6154 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
6155 }
6156 
6157 static inline uint16_t
6158 read_hw_cidx(struct sge_eq *eq)
6159 {
6160 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6161 	uint16_t cidx = spg->cidx;	/* stable snapshot */
6162 
6163 	return (be16toh(cidx));
6164 }
6165 
6166 /*
6167  * Reclaim 'n' descriptors approximately.
6168  */
6169 static u_int
6170 reclaim_tx_descs(struct sge_txq *txq, u_int n)
6171 {
6172 	struct tx_sdesc *txsd;
6173 	struct sge_eq *eq = &txq->eq;
6174 	u_int can_reclaim, reclaimed;
6175 
6176 	TXQ_LOCK_ASSERT_OWNED(txq);
6177 	MPASS(n > 0);
6178 
6179 	reclaimed = 0;
6180 	can_reclaim = reclaimable_tx_desc(eq);
6181 	while (can_reclaim && reclaimed < n) {
6182 		int ndesc;
6183 		struct mbuf *m, *nextpkt;
6184 
6185 		txsd = &txq->sdesc[eq->cidx];
6186 		ndesc = txsd->desc_used;
6187 
6188 		/* Firmware doesn't return "partial" credits. */
6189 		KASSERT(can_reclaim >= ndesc,
6190 		    ("%s: unexpected number of credits: %d, %d",
6191 		    __func__, can_reclaim, ndesc));
6192 		KASSERT(ndesc != 0,
6193 		    ("%s: descriptor with no credits: cidx %d",
6194 		    __func__, eq->cidx));
6195 
6196 		for (m = txsd->m; m != NULL; m = nextpkt) {
6197 			nextpkt = m->m_nextpkt;
6198 			m->m_nextpkt = NULL;
6199 			m_freem(m);
6200 		}
6201 		reclaimed += ndesc;
6202 		can_reclaim -= ndesc;
6203 		IDXINCR(eq->cidx, ndesc, eq->sidx);
6204 	}
6205 
6206 	return (reclaimed);
6207 }
6208 
6209 static void
6210 tx_reclaim(void *arg, int n)
6211 {
6212 	struct sge_txq *txq = arg;
6213 	struct sge_eq *eq = &txq->eq;
6214 
6215 	do {
6216 		if (TXQ_TRYLOCK(txq) == 0)
6217 			break;
6218 		n = reclaim_tx_descs(txq, 32);
6219 		if (eq->cidx == eq->pidx)
6220 			eq->equeqidx = eq->pidx;
6221 		TXQ_UNLOCK(txq);
6222 	} while (n > 0);
6223 }
6224 
6225 static __be64
6226 get_flit(struct sglist_seg *segs, int nsegs, int idx)
6227 {
6228 	int i = (idx / 3) * 2;
6229 
6230 	switch (idx % 3) {
6231 	case 0: {
6232 		uint64_t rc;
6233 
6234 		rc = (uint64_t)segs[i].ss_len << 32;
6235 		if (i + 1 < nsegs)
6236 			rc |= (uint64_t)(segs[i + 1].ss_len);
6237 
6238 		return (htobe64(rc));
6239 	}
6240 	case 1:
6241 		return (htobe64(segs[i].ss_paddr));
6242 	case 2:
6243 		return (htobe64(segs[i + 1].ss_paddr));
6244 	}
6245 
6246 	return (0);
6247 }
6248 
6249 static int
6250 find_refill_source(struct adapter *sc, int maxp, bool packing)
6251 {
6252 	int i, zidx = -1;
6253 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6254 
6255 	if (packing) {
6256 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6257 			if (rxb->hwidx2 == -1)
6258 				continue;
6259 			if (rxb->size1 < PAGE_SIZE &&
6260 			    rxb->size1 < largest_rx_cluster)
6261 				continue;
6262 			if (rxb->size1 > largest_rx_cluster)
6263 				break;
6264 			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
6265 			if (rxb->size2 >= maxp)
6266 				return (i);
6267 			zidx = i;
6268 		}
6269 	} else {
6270 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6271 			if (rxb->hwidx1 == -1)
6272 				continue;
6273 			if (rxb->size1 > largest_rx_cluster)
6274 				break;
6275 			if (rxb->size1 >= maxp)
6276 				return (i);
6277 			zidx = i;
6278 		}
6279 	}
6280 
6281 	return (zidx);
6282 }
6283 
6284 static void
6285 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
6286 {
6287 	mtx_lock(&sc->sfl_lock);
6288 	FL_LOCK(fl);
6289 	if ((fl->flags & FL_DOOMED) == 0) {
6290 		fl->flags |= FL_STARVING;
6291 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
6292 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
6293 	}
6294 	FL_UNLOCK(fl);
6295 	mtx_unlock(&sc->sfl_lock);
6296 }
6297 
6298 static void
6299 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
6300 {
6301 	struct sge_wrq *wrq = (void *)eq;
6302 
6303 	atomic_readandclear_int(&eq->equiq);
6304 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
6305 }
6306 
6307 static void
6308 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
6309 {
6310 	struct sge_txq *txq = (void *)eq;
6311 
6312 	MPASS(eq->type == EQ_ETH);
6313 
6314 	atomic_readandclear_int(&eq->equiq);
6315 	if (mp_ring_is_idle(txq->r))
6316 		taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
6317 	else
6318 		mp_ring_check_drainage(txq->r, 64);
6319 }
6320 
6321 static int
6322 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
6323     struct mbuf *m)
6324 {
6325 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
6326 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
6327 	struct adapter *sc = iq->adapter;
6328 	struct sge *s = &sc->sge;
6329 	struct sge_eq *eq;
6330 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
6331 		&handle_wrq_egr_update, &handle_eth_egr_update,
6332 		&handle_wrq_egr_update};
6333 
6334 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6335 	    rss->opcode));
6336 
6337 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
6338 	(*h[eq->type])(sc, eq);
6339 
6340 	return (0);
6341 }
6342 
6343 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
6344 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
6345     offsetof(struct cpl_fw6_msg, data));
6346 
6347 static int
6348 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
6349 {
6350 	struct adapter *sc = iq->adapter;
6351 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
6352 
6353 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6354 	    rss->opcode));
6355 
6356 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
6357 		const struct rss_header *rss2;
6358 
6359 		rss2 = (const struct rss_header *)&cpl->data[0];
6360 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
6361 	}
6362 
6363 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
6364 }
6365 
6366 /**
6367  *	t4_handle_wrerr_rpl - process a FW work request error message
6368  *	@adap: the adapter
6369  *	@rpl: start of the FW message
6370  */
6371 static int
6372 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
6373 {
6374 	u8 opcode = *(const u8 *)rpl;
6375 	const struct fw_error_cmd *e = (const void *)rpl;
6376 	unsigned int i;
6377 
6378 	if (opcode != FW_ERROR_CMD) {
6379 		log(LOG_ERR,
6380 		    "%s: Received WRERR_RPL message with opcode %#x\n",
6381 		    device_get_nameunit(adap->dev), opcode);
6382 		return (EINVAL);
6383 	}
6384 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
6385 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
6386 	    "non-fatal");
6387 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
6388 	case FW_ERROR_TYPE_EXCEPTION:
6389 		log(LOG_ERR, "exception info:\n");
6390 		for (i = 0; i < nitems(e->u.exception.info); i++)
6391 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
6392 			    be32toh(e->u.exception.info[i]));
6393 		log(LOG_ERR, "\n");
6394 		break;
6395 	case FW_ERROR_TYPE_HWMODULE:
6396 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
6397 		    be32toh(e->u.hwmodule.regaddr),
6398 		    be32toh(e->u.hwmodule.regval));
6399 		break;
6400 	case FW_ERROR_TYPE_WR:
6401 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
6402 		    be16toh(e->u.wr.cidx),
6403 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
6404 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
6405 		    be32toh(e->u.wr.eqid));
6406 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
6407 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
6408 			    e->u.wr.wrhdr[i]);
6409 		log(LOG_ERR, "\n");
6410 		break;
6411 	case FW_ERROR_TYPE_ACL:
6412 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
6413 		    be16toh(e->u.acl.cidx),
6414 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
6415 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
6416 		    be32toh(e->u.acl.eqid),
6417 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
6418 		    "MAC");
6419 		for (i = 0; i < nitems(e->u.acl.val); i++)
6420 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
6421 		log(LOG_ERR, "\n");
6422 		break;
6423 	default:
6424 		log(LOG_ERR, "type %#x\n",
6425 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
6426 		return (EINVAL);
6427 	}
6428 	return (0);
6429 }
6430 
6431 static inline bool
6432 bufidx_used(struct adapter *sc, int idx)
6433 {
6434 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6435 	int i;
6436 
6437 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6438 		if (rxb->size1 > largest_rx_cluster)
6439 			continue;
6440 		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
6441 			return (true);
6442 	}
6443 
6444 	return (false);
6445 }
6446 
6447 static int
6448 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
6449 {
6450 	struct adapter *sc = arg1;
6451 	struct sge_params *sp = &sc->params.sge;
6452 	int i, rc;
6453 	struct sbuf sb;
6454 	char c;
6455 
6456 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
6457 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
6458 		if (bufidx_used(sc, i))
6459 			c = '*';
6460 		else
6461 			c = '\0';
6462 
6463 		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
6464 	}
6465 	sbuf_trim(&sb);
6466 	sbuf_finish(&sb);
6467 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
6468 	sbuf_delete(&sb);
6469 	return (rc);
6470 }
6471 
6472 #ifdef RATELIMIT
6473 #if defined(INET) || defined(INET6)
6474 /*
6475  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
6476  */
6477 static inline u_int
6478 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
6479 {
6480 	u_int n;
6481 
6482 	MPASS(immhdrs > 0);
6483 
6484 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
6485 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
6486 	if (__predict_false(nsegs == 0))
6487 		goto done;
6488 
6489 	nsegs--; /* first segment is part of ulptx_sgl */
6490 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
6491 	if (tso)
6492 		n += sizeof(struct cpl_tx_pkt_lso_core);
6493 
6494 done:
6495 	return (howmany(n, 16));
6496 }
6497 #endif
6498 
6499 #define ETID_FLOWC_NPARAMS 6
6500 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
6501     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
6502 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
6503 
6504 static int
6505 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
6506     struct vi_info *vi)
6507 {
6508 	struct wrq_cookie cookie;
6509 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
6510 	struct fw_flowc_wr *flowc;
6511 
6512 	mtx_assert(&cst->lock, MA_OWNED);
6513 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
6514 	    EO_FLOWC_PENDING);
6515 
6516 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLOWC_LEN16, &cookie);
6517 	if (__predict_false(flowc == NULL))
6518 		return (ENOMEM);
6519 
6520 	bzero(flowc, ETID_FLOWC_LEN);
6521 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6522 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
6523 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
6524 	    V_FW_WR_FLOWID(cst->etid));
6525 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
6526 	flowc->mnemval[0].val = htobe32(pfvf);
6527 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
6528 	flowc->mnemval[1].val = htobe32(pi->tx_chan);
6529 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
6530 	flowc->mnemval[2].val = htobe32(pi->tx_chan);
6531 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
6532 	flowc->mnemval[3].val = htobe32(cst->iqid);
6533 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
6534 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
6535 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
6536 	flowc->mnemval[5].val = htobe32(cst->schedcl);
6537 
6538 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6539 
6540 	cst->flags &= ~EO_FLOWC_PENDING;
6541 	cst->flags |= EO_FLOWC_RPL_PENDING;
6542 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
6543 	cst->tx_credits -= ETID_FLOWC_LEN16;
6544 
6545 	return (0);
6546 }
6547 
6548 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
6549 
6550 void
6551 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
6552 {
6553 	struct fw_flowc_wr *flowc;
6554 	struct wrq_cookie cookie;
6555 
6556 	mtx_assert(&cst->lock, MA_OWNED);
6557 
6558 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLUSH_LEN16, &cookie);
6559 	if (__predict_false(flowc == NULL))
6560 		CXGBE_UNIMPLEMENTED(__func__);
6561 
6562 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
6563 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6564 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
6565 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
6566 	    V_FW_WR_FLOWID(cst->etid));
6567 
6568 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6569 
6570 	cst->flags |= EO_FLUSH_RPL_PENDING;
6571 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
6572 	cst->tx_credits -= ETID_FLUSH_LEN16;
6573 	cst->ncompl++;
6574 }
6575 
6576 static void
6577 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
6578     struct mbuf *m0, int compl)
6579 {
6580 	struct cpl_tx_pkt_core *cpl;
6581 	uint64_t ctrl1;
6582 	uint32_t ctrl;	/* used in many unrelated places */
6583 	int len16, pktlen, nsegs, immhdrs;
6584 	uintptr_t p;
6585 	struct ulptx_sgl *usgl;
6586 	struct sglist sg;
6587 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
6588 
6589 	mtx_assert(&cst->lock, MA_OWNED);
6590 	M_ASSERTPKTHDR(m0);
6591 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
6592 	    m0->m_pkthdr.l4hlen > 0,
6593 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
6594 
6595 	len16 = mbuf_eo_len16(m0);
6596 	nsegs = mbuf_eo_nsegs(m0);
6597 	pktlen = m0->m_pkthdr.len;
6598 	ctrl = sizeof(struct cpl_tx_pkt_core);
6599 	if (needs_tso(m0))
6600 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
6601 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
6602 	ctrl += immhdrs;
6603 
6604 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
6605 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
6606 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
6607 	    V_FW_WR_FLOWID(cst->etid));
6608 	wr->r3 = 0;
6609 	if (needs_outer_udp_csum(m0)) {
6610 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
6611 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
6612 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6613 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
6614 		wr->u.udpseg.rtplen = 0;
6615 		wr->u.udpseg.r4 = 0;
6616 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
6617 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
6618 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
6619 		cpl = (void *)(wr + 1);
6620 	} else {
6621 		MPASS(needs_outer_tcp_csum(m0));
6622 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
6623 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
6624 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6625 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
6626 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
6627 		wr->u.tcpseg.r4 = 0;
6628 		wr->u.tcpseg.r5 = 0;
6629 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
6630 
6631 		if (needs_tso(m0)) {
6632 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
6633 
6634 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
6635 
6636 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
6637 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
6638 			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6639 				ETHER_HDR_LEN) >> 2) |
6640 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6641 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6642 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6643 				ctrl |= F_LSO_IPV6;
6644 			lso->lso_ctrl = htobe32(ctrl);
6645 			lso->ipid_ofst = htobe16(0);
6646 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6647 			lso->seqno_offset = htobe32(0);
6648 			lso->len = htobe32(pktlen);
6649 
6650 			cpl = (void *)(lso + 1);
6651 		} else {
6652 			wr->u.tcpseg.mss = htobe16(0xffff);
6653 			cpl = (void *)(wr + 1);
6654 		}
6655 	}
6656 
6657 	/* Checksum offload must be requested for ethofld. */
6658 	MPASS(needs_outer_l4_csum(m0));
6659 	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6660 
6661 	/* VLAN tag insertion */
6662 	if (needs_vlan_insertion(m0)) {
6663 		ctrl1 |= F_TXPKT_VLAN_VLD |
6664 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6665 	}
6666 
6667 	/* CPL header */
6668 	cpl->ctrl0 = cst->ctrl0;
6669 	cpl->pack = 0;
6670 	cpl->len = htobe16(pktlen);
6671 	cpl->ctrl1 = htobe64(ctrl1);
6672 
6673 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6674 	p = (uintptr_t)(cpl + 1);
6675 	m_copydata(m0, 0, immhdrs, (void *)p);
6676 
6677 	/* SGL */
6678 	if (nsegs > 0) {
6679 		int i, pad;
6680 
6681 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6682 		p += immhdrs;
6683 		pad = 16 - (immhdrs & 0xf);
6684 		bzero((void *)p, pad);
6685 
6686 		usgl = (void *)(p + pad);
6687 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6688 		    V_ULPTX_NSGE(nsegs));
6689 
6690 		sglist_init(&sg, nitems(segs), segs);
6691 		for (; m0 != NULL; m0 = m0->m_next) {
6692 			if (__predict_false(m0->m_len == 0))
6693 				continue;
6694 			if (immhdrs >= m0->m_len) {
6695 				immhdrs -= m0->m_len;
6696 				continue;
6697 			}
6698 			if (m0->m_flags & M_EXTPG)
6699 				sglist_append_mbuf_epg(&sg, m0,
6700 				    mtod(m0, vm_offset_t), m0->m_len);
6701                         else
6702 				sglist_append(&sg, mtod(m0, char *) + immhdrs,
6703 				    m0->m_len - immhdrs);
6704 			immhdrs = 0;
6705 		}
6706 		MPASS(sg.sg_nseg == nsegs);
6707 
6708 		/*
6709 		 * Zero pad last 8B in case the WR doesn't end on a 16B
6710 		 * boundary.
6711 		 */
6712 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6713 
6714 		usgl->len0 = htobe32(segs[0].ss_len);
6715 		usgl->addr0 = htobe64(segs[0].ss_paddr);
6716 		for (i = 0; i < nsegs - 1; i++) {
6717 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6718 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6719 		}
6720 		if (i & 1)
6721 			usgl->sge[i / 2].len[1] = htobe32(0);
6722 	}
6723 
6724 }
6725 
6726 static void
6727 ethofld_tx(struct cxgbe_rate_tag *cst)
6728 {
6729 	struct mbuf *m;
6730 	struct wrq_cookie cookie;
6731 	int next_credits, compl;
6732 	struct fw_eth_tx_eo_wr *wr;
6733 
6734 	mtx_assert(&cst->lock, MA_OWNED);
6735 
6736 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6737 		M_ASSERTPKTHDR(m);
6738 
6739 		/* How many len16 credits do we need to send this mbuf. */
6740 		next_credits = mbuf_eo_len16(m);
6741 		MPASS(next_credits > 0);
6742 		if (next_credits > cst->tx_credits) {
6743 			/*
6744 			 * Tx will make progress eventually because there is at
6745 			 * least one outstanding fw4_ack that will return
6746 			 * credits and kick the tx.
6747 			 */
6748 			MPASS(cst->ncompl > 0);
6749 			return;
6750 		}
6751 		wr = start_wrq_wr(&cst->eo_txq->wrq, next_credits, &cookie);
6752 		if (__predict_false(wr == NULL)) {
6753 			/* XXX: wishful thinking, not a real assertion. */
6754 			MPASS(cst->ncompl > 0);
6755 			return;
6756 		}
6757 		cst->tx_credits -= next_credits;
6758 		cst->tx_nocompl += next_credits;
6759 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
6760 		ETHER_BPF_MTAP(cst->com.ifp, m);
6761 		write_ethofld_wr(cst, wr, m, compl);
6762 		commit_wrq_wr(&cst->eo_txq->wrq, wr, &cookie);
6763 		if (compl) {
6764 			cst->ncompl++;
6765 			cst->tx_nocompl	= 0;
6766 		}
6767 		(void) mbufq_dequeue(&cst->pending_tx);
6768 
6769 		/*
6770 		 * Drop the mbuf's reference on the tag now rather
6771 		 * than waiting until m_freem().  This ensures that
6772 		 * cxgbe_rate_tag_free gets called when the inp drops
6773 		 * its reference on the tag and there are no more
6774 		 * mbufs in the pending_tx queue and can flush any
6775 		 * pending requests.  Otherwise if the last mbuf
6776 		 * doesn't request a completion the etid will never be
6777 		 * released.
6778 		 */
6779 		m->m_pkthdr.snd_tag = NULL;
6780 		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
6781 		m_snd_tag_rele(&cst->com);
6782 
6783 		mbufq_enqueue(&cst->pending_fwack, m);
6784 	}
6785 }
6786 
6787 static int
6788 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
6789 {
6790 	struct cxgbe_rate_tag *cst;
6791 	int rc;
6792 
6793 	MPASS(m0->m_nextpkt == NULL);
6794 	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
6795 	MPASS(m0->m_pkthdr.snd_tag != NULL);
6796 	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
6797 
6798 	mtx_lock(&cst->lock);
6799 	MPASS(cst->flags & EO_SND_TAG_REF);
6800 
6801 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
6802 		struct vi_info *vi = ifp->if_softc;
6803 		struct port_info *pi = vi->pi;
6804 		struct adapter *sc = pi->adapter;
6805 		const uint32_t rss_mask = vi->rss_size - 1;
6806 		uint32_t rss_hash;
6807 
6808 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
6809 		if (M_HASHTYPE_ISHASH(m0))
6810 			rss_hash = m0->m_pkthdr.flowid;
6811 		else
6812 			rss_hash = arc4random();
6813 		/* We assume RSS hashing */
6814 		cst->iqid = vi->rss[rss_hash & rss_mask];
6815 		cst->eo_txq += rss_hash % vi->nofldtxq;
6816 		rc = send_etid_flowc_wr(cst, pi, vi);
6817 		if (rc != 0)
6818 			goto done;
6819 	}
6820 
6821 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
6822 		rc = ENOBUFS;
6823 		goto done;
6824 	}
6825 
6826 	mbufq_enqueue(&cst->pending_tx, m0);
6827 	cst->plen += m0->m_pkthdr.len;
6828 
6829 	/*
6830 	 * Hold an extra reference on the tag while generating work
6831 	 * requests to ensure that we don't try to free the tag during
6832 	 * ethofld_tx() in case we are sending the final mbuf after
6833 	 * the inp was freed.
6834 	 */
6835 	m_snd_tag_ref(&cst->com);
6836 	ethofld_tx(cst);
6837 	mtx_unlock(&cst->lock);
6838 	m_snd_tag_rele(&cst->com);
6839 	return (0);
6840 
6841 done:
6842 	mtx_unlock(&cst->lock);
6843 	return (rc);
6844 }
6845 
6846 static int
6847 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
6848 {
6849 	struct adapter *sc = iq->adapter;
6850 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
6851 	struct mbuf *m;
6852 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
6853 	struct cxgbe_rate_tag *cst;
6854 	uint8_t credits = cpl->credits;
6855 
6856 	cst = lookup_etid(sc, etid);
6857 	mtx_lock(&cst->lock);
6858 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
6859 		MPASS(credits >= ETID_FLOWC_LEN16);
6860 		credits -= ETID_FLOWC_LEN16;
6861 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
6862 	}
6863 
6864 	KASSERT(cst->ncompl > 0,
6865 	    ("%s: etid %u (%p) wasn't expecting completion.",
6866 	    __func__, etid, cst));
6867 	cst->ncompl--;
6868 
6869 	while (credits > 0) {
6870 		m = mbufq_dequeue(&cst->pending_fwack);
6871 		if (__predict_false(m == NULL)) {
6872 			/*
6873 			 * The remaining credits are for the final flush that
6874 			 * was issued when the tag was freed by the kernel.
6875 			 */
6876 			MPASS((cst->flags &
6877 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
6878 			    EO_FLUSH_RPL_PENDING);
6879 			MPASS(credits == ETID_FLUSH_LEN16);
6880 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
6881 			MPASS(cst->ncompl == 0);
6882 
6883 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
6884 			cst->tx_credits += cpl->credits;
6885 			cxgbe_rate_tag_free_locked(cst);
6886 			return (0);	/* cst is gone. */
6887 		}
6888 		KASSERT(m != NULL,
6889 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
6890 		    credits));
6891 		KASSERT(credits >= mbuf_eo_len16(m),
6892 		    ("%s: too few credits (%u, %u, %u)", __func__,
6893 		    cpl->credits, credits, mbuf_eo_len16(m)));
6894 		credits -= mbuf_eo_len16(m);
6895 		cst->plen -= m->m_pkthdr.len;
6896 		m_freem(m);
6897 	}
6898 
6899 	cst->tx_credits += cpl->credits;
6900 	MPASS(cst->tx_credits <= cst->tx_total);
6901 
6902 	if (cst->flags & EO_SND_TAG_REF) {
6903 		/*
6904 		 * As with ethofld_transmit(), hold an extra reference
6905 		 * so that the tag is stable across ethold_tx().
6906 		 */
6907 		m_snd_tag_ref(&cst->com);
6908 		m = mbufq_first(&cst->pending_tx);
6909 		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
6910 			ethofld_tx(cst);
6911 		mtx_unlock(&cst->lock);
6912 		m_snd_tag_rele(&cst->com);
6913 	} else {
6914 		/*
6915 		 * There shouldn't be any pending packets if the tag
6916 		 * was freed by the kernel since any pending packet
6917 		 * should hold a reference to the tag.
6918 		 */
6919 		MPASS(mbufq_first(&cst->pending_tx) == NULL);
6920 		mtx_unlock(&cst->lock);
6921 	}
6922 
6923 	return (0);
6924 }
6925 #endif
6926