1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ratelimit.h" 36 37 #include <sys/types.h> 38 #include <sys/eventhandler.h> 39 #include <sys/mbuf.h> 40 #include <sys/socket.h> 41 #include <sys/kernel.h> 42 #include <sys/malloc.h> 43 #include <sys/queue.h> 44 #include <sys/sbuf.h> 45 #include <sys/taskqueue.h> 46 #include <sys/time.h> 47 #include <sys/sglist.h> 48 #include <sys/sysctl.h> 49 #include <sys/smp.h> 50 #include <sys/counter.h> 51 #include <net/bpf.h> 52 #include <net/ethernet.h> 53 #include <net/if.h> 54 #include <net/if_vlan_var.h> 55 #include <netinet/in.h> 56 #include <netinet/ip.h> 57 #include <netinet/ip6.h> 58 #include <netinet/tcp.h> 59 #include <netinet/udp.h> 60 #include <machine/in_cksum.h> 61 #include <machine/md_var.h> 62 #include <vm/vm.h> 63 #include <vm/pmap.h> 64 #ifdef DEV_NETMAP 65 #include <machine/bus.h> 66 #include <sys/selinfo.h> 67 #include <net/if_var.h> 68 #include <net/netmap.h> 69 #include <dev/netmap/netmap_kern.h> 70 #endif 71 72 #include "common/common.h" 73 #include "common/t4_regs.h" 74 #include "common/t4_regs_values.h" 75 #include "common/t4_msg.h" 76 #include "t4_l2t.h" 77 #include "t4_mp_ring.h" 78 79 #ifdef T4_PKT_TIMESTAMP 80 #define RX_COPY_THRESHOLD (MINCLSIZE - 8) 81 #else 82 #define RX_COPY_THRESHOLD MINCLSIZE 83 #endif 84 85 /* 86 * Ethernet frames are DMA'd at this byte offset into the freelist buffer. 87 * 0-7 are valid values. 88 */ 89 static int fl_pktshift = 0; 90 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift); 91 92 /* 93 * Pad ethernet payload up to this boundary. 94 * -1: driver should figure out a good value. 95 * 0: disable padding. 96 * Any power of 2 from 32 to 4096 (both inclusive) is also a valid value. 97 */ 98 int fl_pad = -1; 99 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad); 100 101 /* 102 * Status page length. 103 * -1: driver should figure out a good value. 104 * 64 or 128 are the only other valid values. 105 */ 106 static int spg_len = -1; 107 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len); 108 109 /* 110 * Congestion drops. 111 * -1: no congestion feedback (not recommended). 112 * 0: backpressure the channel instead of dropping packets right away. 113 * 1: no backpressure, drop packets for the congested queue immediately. 114 */ 115 static int cong_drop = 0; 116 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop); 117 118 /* 119 * Deliver multiple frames in the same free list buffer if they fit. 120 * -1: let the driver decide whether to enable buffer packing or not. 121 * 0: disable buffer packing. 122 * 1: enable buffer packing. 123 */ 124 static int buffer_packing = -1; 125 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing); 126 127 /* 128 * Start next frame in a packed buffer at this boundary. 129 * -1: driver should figure out a good value. 130 * T4: driver will ignore this and use the same value as fl_pad above. 131 * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value. 132 */ 133 static int fl_pack = -1; 134 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack); 135 136 /* 137 * Allow the driver to create mbuf(s) in a cluster allocated for rx. 138 * 0: never; always allocate mbufs from the zone_mbuf UMA zone. 139 * 1: ok to create mbuf(s) within a cluster if there is room. 140 */ 141 static int allow_mbufs_in_cluster = 1; 142 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster); 143 144 /* 145 * Largest rx cluster size that the driver is allowed to allocate. 146 */ 147 static int largest_rx_cluster = MJUM16BYTES; 148 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster); 149 150 /* 151 * Size of cluster allocation that's most likely to succeed. The driver will 152 * fall back to this size if it fails to allocate clusters larger than this. 153 */ 154 static int safest_rx_cluster = PAGE_SIZE; 155 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster); 156 157 #ifdef RATELIMIT 158 /* 159 * Knob to control TCP timestamp rewriting, and the granularity of the tick used 160 * for rewriting. -1 and 0-3 are all valid values. 161 * -1: hardware should leave the TCP timestamps alone. 162 * 0: 1ms 163 * 1: 100us 164 * 2: 10us 165 * 3: 1us 166 */ 167 static int tsclk = -1; 168 TUNABLE_INT("hw.cxgbe.tsclk", &tsclk); 169 170 static int eo_max_backlog = 1024 * 1024; 171 TUNABLE_INT("hw.cxgbe.eo_max_backlog", &eo_max_backlog); 172 #endif 173 174 /* 175 * The interrupt holdoff timers are multiplied by this value on T6+. 176 * 1 and 3-17 (both inclusive) are legal values. 177 */ 178 static int tscale = 1; 179 TUNABLE_INT("hw.cxgbe.tscale", &tscale); 180 181 /* 182 * Number of LRO entries in the lro_ctrl structure per rx queue. 183 */ 184 static int lro_entries = TCP_LRO_ENTRIES; 185 TUNABLE_INT("hw.cxgbe.lro_entries", &lro_entries); 186 187 /* 188 * This enables presorting of frames before they're fed into tcp_lro_rx. 189 */ 190 static int lro_mbufs = 0; 191 TUNABLE_INT("hw.cxgbe.lro_mbufs", &lro_mbufs); 192 193 struct txpkts { 194 u_int wr_type; /* type 0 or type 1 */ 195 u_int npkt; /* # of packets in this work request */ 196 u_int plen; /* total payload (sum of all packets) */ 197 u_int len16; /* # of 16B pieces used by this work request */ 198 }; 199 200 /* A packet's SGL. This + m_pkthdr has all info needed for tx */ 201 struct sgl { 202 struct sglist sg; 203 struct sglist_seg seg[TX_SGL_SEGS]; 204 }; 205 206 static int service_iq(struct sge_iq *, int); 207 static int service_iq_fl(struct sge_iq *, int); 208 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t); 209 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *); 210 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int); 211 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *); 212 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t, 213 uint16_t, char *); 214 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, 215 bus_addr_t *, void **); 216 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, 217 void *); 218 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *, 219 int, int); 220 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *); 221 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *, 222 struct sge_iq *); 223 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *, 224 struct sysctl_oid *, struct sge_fl *); 225 static int alloc_fwq(struct adapter *); 226 static int free_fwq(struct adapter *); 227 static int alloc_mgmtq(struct adapter *); 228 static int free_mgmtq(struct adapter *); 229 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, 230 struct sysctl_oid *); 231 static int free_rxq(struct vi_info *, struct sge_rxq *); 232 #ifdef TCP_OFFLOAD 233 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int, 234 struct sysctl_oid *); 235 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *); 236 #endif 237 #ifdef DEV_NETMAP 238 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int, 239 struct sysctl_oid *); 240 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *); 241 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int, 242 struct sysctl_oid *); 243 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *); 244 #endif 245 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *); 246 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 247 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 248 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 249 #endif 250 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *); 251 static int free_eq(struct adapter *, struct sge_eq *); 252 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *, 253 struct sysctl_oid *); 254 static int free_wrq(struct adapter *, struct sge_wrq *); 255 static int alloc_txq(struct vi_info *, struct sge_txq *, int, 256 struct sysctl_oid *); 257 static int free_txq(struct vi_info *, struct sge_txq *); 258 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); 259 static inline void ring_fl_db(struct adapter *, struct sge_fl *); 260 static int refill_fl(struct adapter *, struct sge_fl *, int); 261 static void refill_sfl(void *); 262 static int alloc_fl_sdesc(struct sge_fl *); 263 static void free_fl_sdesc(struct adapter *, struct sge_fl *); 264 static void find_best_refill_source(struct adapter *, struct sge_fl *, int); 265 static void find_safe_refill_source(struct adapter *, struct sge_fl *); 266 static void add_fl_to_sfl(struct adapter *, struct sge_fl *); 267 268 static inline void get_pkt_gl(struct mbuf *, struct sglist *); 269 static inline u_int txpkt_len16(u_int, u_int); 270 static inline u_int txpkt_vm_len16(u_int, u_int); 271 static inline u_int txpkts0_len16(u_int); 272 static inline u_int txpkts1_len16(void); 273 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *, 274 struct mbuf *, u_int); 275 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *, 276 struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int); 277 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int); 278 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int); 279 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *, 280 struct mbuf *, const struct txpkts *, u_int); 281 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int); 282 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); 283 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int); 284 static inline uint16_t read_hw_cidx(struct sge_eq *); 285 static inline u_int reclaimable_tx_desc(struct sge_eq *); 286 static inline u_int total_available_tx_desc(struct sge_eq *); 287 static u_int reclaim_tx_descs(struct sge_txq *, u_int); 288 static void tx_reclaim(void *, int); 289 static __be64 get_flit(struct sglist_seg *, int, int); 290 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, 291 struct mbuf *); 292 static int handle_fw_msg(struct sge_iq *, const struct rss_header *, 293 struct mbuf *); 294 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *); 295 static void wrq_tx_drain(void *, int); 296 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *); 297 298 static int sysctl_uint16(SYSCTL_HANDLER_ARGS); 299 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS); 300 #ifdef RATELIMIT 301 static inline u_int txpkt_eo_len16(u_int, u_int, u_int); 302 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *, 303 struct mbuf *); 304 #endif 305 306 static counter_u64_t extfree_refs; 307 static counter_u64_t extfree_rels; 308 309 an_handler_t t4_an_handler; 310 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES]; 311 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS]; 312 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES]; 313 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES]; 314 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES]; 315 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES]; 316 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES]; 317 318 void 319 t4_register_an_handler(an_handler_t h) 320 { 321 uintptr_t *loc; 322 323 MPASS(h == NULL || t4_an_handler == NULL); 324 325 loc = (uintptr_t *)&t4_an_handler; 326 atomic_store_rel_ptr(loc, (uintptr_t)h); 327 } 328 329 void 330 t4_register_fw_msg_handler(int type, fw_msg_handler_t h) 331 { 332 uintptr_t *loc; 333 334 MPASS(type < nitems(t4_fw_msg_handler)); 335 MPASS(h == NULL || t4_fw_msg_handler[type] == NULL); 336 /* 337 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL 338 * handler dispatch table. Reject any attempt to install a handler for 339 * this subtype. 340 */ 341 MPASS(type != FW_TYPE_RSSCPL); 342 MPASS(type != FW6_TYPE_RSSCPL); 343 344 loc = (uintptr_t *)&t4_fw_msg_handler[type]; 345 atomic_store_rel_ptr(loc, (uintptr_t)h); 346 } 347 348 void 349 t4_register_cpl_handler(int opcode, cpl_handler_t h) 350 { 351 uintptr_t *loc; 352 353 MPASS(opcode < nitems(t4_cpl_handler)); 354 MPASS(h == NULL || t4_cpl_handler[opcode] == NULL); 355 356 loc = (uintptr_t *)&t4_cpl_handler[opcode]; 357 atomic_store_rel_ptr(loc, (uintptr_t)h); 358 } 359 360 static int 361 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss, 362 struct mbuf *m) 363 { 364 const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); 365 u_int tid; 366 int cookie; 367 368 MPASS(m == NULL); 369 370 tid = GET_TID(cpl); 371 if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) { 372 /* 373 * The return code for filter-write is put in the CPL cookie so 374 * we have to rely on the hardware tid (is_ftid) to determine 375 * that this is a response to a filter. 376 */ 377 cookie = CPL_COOKIE_FILTER; 378 } else { 379 cookie = G_COOKIE(cpl->cookie); 380 } 381 MPASS(cookie > CPL_COOKIE_RESERVED); 382 MPASS(cookie < nitems(set_tcb_rpl_handlers)); 383 384 return (set_tcb_rpl_handlers[cookie](iq, rss, m)); 385 } 386 387 static int 388 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss, 389 struct mbuf *m) 390 { 391 const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1); 392 unsigned int cookie; 393 394 MPASS(m == NULL); 395 396 cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER; 397 return (l2t_write_rpl_handlers[cookie](iq, rss, m)); 398 } 399 400 static int 401 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss, 402 struct mbuf *m) 403 { 404 const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1); 405 u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status))); 406 407 MPASS(m == NULL); 408 MPASS(cookie != CPL_COOKIE_RESERVED); 409 410 return (act_open_rpl_handlers[cookie](iq, rss, m)); 411 } 412 413 static int 414 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss, 415 struct mbuf *m) 416 { 417 struct adapter *sc = iq->adapter; 418 u_int cookie; 419 420 MPASS(m == NULL); 421 if (is_hashfilter(sc)) 422 cookie = CPL_COOKIE_HASHFILTER; 423 else 424 cookie = CPL_COOKIE_TOM; 425 426 return (abort_rpl_rss_handlers[cookie](iq, rss, m)); 427 } 428 429 static int 430 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 431 { 432 struct adapter *sc = iq->adapter; 433 const struct cpl_fw4_ack *cpl = (const void *)(rss + 1); 434 unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl))); 435 u_int cookie; 436 437 MPASS(m == NULL); 438 if (is_etid(sc, tid)) 439 cookie = CPL_COOKIE_ETHOFLD; 440 else 441 cookie = CPL_COOKIE_TOM; 442 443 return (fw4_ack_handlers[cookie](iq, rss, m)); 444 } 445 446 static void 447 t4_init_shared_cpl_handlers(void) 448 { 449 450 t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler); 451 t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler); 452 t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler); 453 t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler); 454 t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler); 455 } 456 457 void 458 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie) 459 { 460 uintptr_t *loc; 461 462 MPASS(opcode < nitems(t4_cpl_handler)); 463 MPASS(cookie > CPL_COOKIE_RESERVED); 464 MPASS(cookie < NUM_CPL_COOKIES); 465 MPASS(t4_cpl_handler[opcode] != NULL); 466 467 switch (opcode) { 468 case CPL_SET_TCB_RPL: 469 loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie]; 470 break; 471 case CPL_L2T_WRITE_RPL: 472 loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie]; 473 break; 474 case CPL_ACT_OPEN_RPL: 475 loc = (uintptr_t *)&act_open_rpl_handlers[cookie]; 476 break; 477 case CPL_ABORT_RPL_RSS: 478 loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie]; 479 break; 480 case CPL_FW4_ACK: 481 loc = (uintptr_t *)&fw4_ack_handlers[cookie]; 482 break; 483 default: 484 MPASS(0); 485 return; 486 } 487 MPASS(h == NULL || *loc == (uintptr_t)NULL); 488 atomic_store_rel_ptr(loc, (uintptr_t)h); 489 } 490 491 /* 492 * Called on MOD_LOAD. Validates and calculates the SGE tunables. 493 */ 494 void 495 t4_sge_modload(void) 496 { 497 498 if (fl_pktshift < 0 || fl_pktshift > 7) { 499 printf("Invalid hw.cxgbe.fl_pktshift value (%d)," 500 " using 0 instead.\n", fl_pktshift); 501 fl_pktshift = 0; 502 } 503 504 if (spg_len != 64 && spg_len != 128) { 505 int len; 506 507 #if defined(__i386__) || defined(__amd64__) 508 len = cpu_clflush_line_size > 64 ? 128 : 64; 509 #else 510 len = 64; 511 #endif 512 if (spg_len != -1) { 513 printf("Invalid hw.cxgbe.spg_len value (%d)," 514 " using %d instead.\n", spg_len, len); 515 } 516 spg_len = len; 517 } 518 519 if (cong_drop < -1 || cong_drop > 1) { 520 printf("Invalid hw.cxgbe.cong_drop value (%d)," 521 " using 0 instead.\n", cong_drop); 522 cong_drop = 0; 523 } 524 525 if (tscale != 1 && (tscale < 3 || tscale > 17)) { 526 printf("Invalid hw.cxgbe.tscale value (%d)," 527 " using 1 instead.\n", tscale); 528 tscale = 1; 529 } 530 531 extfree_refs = counter_u64_alloc(M_WAITOK); 532 extfree_rels = counter_u64_alloc(M_WAITOK); 533 counter_u64_zero(extfree_refs); 534 counter_u64_zero(extfree_rels); 535 536 t4_init_shared_cpl_handlers(); 537 t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg); 538 t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg); 539 t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update); 540 t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx); 541 #ifdef RATELIMIT 542 t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack, 543 CPL_COOKIE_ETHOFLD); 544 #endif 545 t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl); 546 t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl); 547 } 548 549 void 550 t4_sge_modunload(void) 551 { 552 553 counter_u64_free(extfree_refs); 554 counter_u64_free(extfree_rels); 555 } 556 557 uint64_t 558 t4_sge_extfree_refs(void) 559 { 560 uint64_t refs, rels; 561 562 rels = counter_u64_fetch(extfree_rels); 563 refs = counter_u64_fetch(extfree_refs); 564 565 return (refs - rels); 566 } 567 568 static inline void 569 setup_pad_and_pack_boundaries(struct adapter *sc) 570 { 571 uint32_t v, m; 572 int pad, pack, pad_shift; 573 574 pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT : 575 X_INGPADBOUNDARY_SHIFT; 576 pad = fl_pad; 577 if (fl_pad < (1 << pad_shift) || 578 fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) || 579 !powerof2(fl_pad)) { 580 /* 581 * If there is any chance that we might use buffer packing and 582 * the chip is a T4, then pick 64 as the pad/pack boundary. Set 583 * it to the minimum allowed in all other cases. 584 */ 585 pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift; 586 587 /* 588 * For fl_pad = 0 we'll still write a reasonable value to the 589 * register but all the freelists will opt out of padding. 590 * We'll complain here only if the user tried to set it to a 591 * value greater than 0 that was invalid. 592 */ 593 if (fl_pad > 0) { 594 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value" 595 " (%d), using %d instead.\n", fl_pad, pad); 596 } 597 } 598 m = V_INGPADBOUNDARY(M_INGPADBOUNDARY); 599 v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift); 600 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 601 602 if (is_t4(sc)) { 603 if (fl_pack != -1 && fl_pack != pad) { 604 /* Complain but carry on. */ 605 device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored," 606 " using %d instead.\n", fl_pack, pad); 607 } 608 return; 609 } 610 611 pack = fl_pack; 612 if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 || 613 !powerof2(fl_pack)) { 614 pack = max(sc->params.pci.mps, CACHE_LINE_SIZE); 615 MPASS(powerof2(pack)); 616 if (pack < 16) 617 pack = 16; 618 if (pack == 32) 619 pack = 64; 620 if (pack > 4096) 621 pack = 4096; 622 if (fl_pack != -1) { 623 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value" 624 " (%d), using %d instead.\n", fl_pack, pack); 625 } 626 } 627 m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY); 628 if (pack == 16) 629 v = V_INGPACKBOUNDARY(0); 630 else 631 v = V_INGPACKBOUNDARY(ilog2(pack) - 5); 632 633 MPASS(!is_t4(sc)); /* T4 doesn't have SGE_CONTROL2 */ 634 t4_set_reg_field(sc, A_SGE_CONTROL2, m, v); 635 } 636 637 /* 638 * adap->params.vpd.cclk must be set up before this is called. 639 */ 640 void 641 t4_tweak_chip_settings(struct adapter *sc) 642 { 643 int i; 644 uint32_t v, m; 645 int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; 646 int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk; 647 int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ 648 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 649 static int sge_flbuf_sizes[] = { 650 MCLBYTES, 651 #if MJUMPAGESIZE != MCLBYTES 652 MJUMPAGESIZE, 653 MJUMPAGESIZE - CL_METADATA_SIZE, 654 MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE, 655 #endif 656 MJUM9BYTES, 657 MJUM16BYTES, 658 MCLBYTES - MSIZE - CL_METADATA_SIZE, 659 MJUM9BYTES - CL_METADATA_SIZE, 660 MJUM16BYTES - CL_METADATA_SIZE, 661 }; 662 663 KASSERT(sc->flags & MASTER_PF, 664 ("%s: trying to change chip settings when not master.", __func__)); 665 666 m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE; 667 v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | 668 V_EGRSTATUSPAGESIZE(spg_len == 128); 669 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 670 671 setup_pad_and_pack_boundaries(sc); 672 673 v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | 674 V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | 675 V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | 676 V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | 677 V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | 678 V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | 679 V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | 680 V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); 681 t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v); 682 683 KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES, 684 ("%s: hw buffer size table too big", __func__)); 685 for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) { 686 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i), 687 sge_flbuf_sizes[i]); 688 } 689 690 v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) | 691 V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]); 692 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v); 693 694 KASSERT(intr_timer[0] <= timer_max, 695 ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0], 696 timer_max)); 697 for (i = 1; i < nitems(intr_timer); i++) { 698 KASSERT(intr_timer[i] >= intr_timer[i - 1], 699 ("%s: timers not listed in increasing order (%d)", 700 __func__, i)); 701 702 while (intr_timer[i] > timer_max) { 703 if (i == nitems(intr_timer) - 1) { 704 intr_timer[i] = timer_max; 705 break; 706 } 707 intr_timer[i] += intr_timer[i - 1]; 708 intr_timer[i] /= 2; 709 } 710 } 711 712 v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) | 713 V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])); 714 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v); 715 v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) | 716 V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])); 717 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v); 718 v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) | 719 V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])); 720 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v); 721 722 if (chip_id(sc) >= CHELSIO_T6) { 723 m = V_TSCALE(M_TSCALE); 724 if (tscale == 1) 725 v = 0; 726 else 727 v = V_TSCALE(tscale - 2); 728 t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v); 729 730 if (sc->debug_flags & DF_DISABLE_TCB_CACHE) { 731 m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN | 732 V_WRTHRTHRESH(M_WRTHRTHRESH); 733 t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1); 734 v &= ~m; 735 v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN | 736 V_WRTHRTHRESH(16); 737 t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1); 738 } 739 } 740 741 /* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */ 742 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 743 t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v); 744 745 /* 746 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP. These have been 747 * chosen with MAXPHYS = 128K in mind. The largest DDP buffer that we 748 * may have to deal with is MAXPHYS + 1 page. 749 */ 750 v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4); 751 t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v); 752 753 /* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */ 754 m = v = F_TDDPTAGTCB | F_ISCSITAGTCB; 755 t4_set_reg_field(sc, A_ULP_RX_CTL, m, v); 756 757 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 758 F_RESETDDPOFFSET; 759 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 760 t4_set_reg_field(sc, A_TP_PARA_REG5, m, v); 761 } 762 763 /* 764 * SGE wants the buffer to be at least 64B and then a multiple of 16. If 765 * padding is in use, the buffer's start and end need to be aligned to the pad 766 * boundary as well. We'll just make sure that the size is a multiple of the 767 * boundary here, it is up to the buffer allocation code to make sure the start 768 * of the buffer is aligned as well. 769 */ 770 static inline int 771 hwsz_ok(struct adapter *sc, int hwsz) 772 { 773 int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1; 774 775 return (hwsz >= 64 && (hwsz & mask) == 0); 776 } 777 778 /* 779 * XXX: driver really should be able to deal with unexpected settings. 780 */ 781 int 782 t4_read_chip_settings(struct adapter *sc) 783 { 784 struct sge *s = &sc->sge; 785 struct sge_params *sp = &sc->params.sge; 786 int i, j, n, rc = 0; 787 uint32_t m, v, r; 788 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 789 static int sw_buf_sizes[] = { /* Sorted by size */ 790 MCLBYTES, 791 #if MJUMPAGESIZE != MCLBYTES 792 MJUMPAGESIZE, 793 #endif 794 MJUM9BYTES, 795 MJUM16BYTES 796 }; 797 struct sw_zone_info *swz, *safe_swz; 798 struct hw_buf_info *hwb; 799 800 m = F_RXPKTCPLMODE; 801 v = F_RXPKTCPLMODE; 802 r = sc->params.sge.sge_control; 803 if ((r & m) != v) { 804 device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r); 805 rc = EINVAL; 806 } 807 808 /* 809 * If this changes then every single use of PAGE_SHIFT in the driver 810 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift. 811 */ 812 if (sp->page_shift != PAGE_SHIFT) { 813 device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r); 814 rc = EINVAL; 815 } 816 817 /* Filter out unusable hw buffer sizes entirely (mark with -2). */ 818 hwb = &s->hw_buf_info[0]; 819 for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) { 820 r = sc->params.sge.sge_fl_buffer_size[i]; 821 hwb->size = r; 822 hwb->zidx = hwsz_ok(sc, r) ? -1 : -2; 823 hwb->next = -1; 824 } 825 826 /* 827 * Create a sorted list in decreasing order of hw buffer sizes (and so 828 * increasing order of spare area) for each software zone. 829 * 830 * If padding is enabled then the start and end of the buffer must align 831 * to the pad boundary; if packing is enabled then they must align with 832 * the pack boundary as well. Allocations from the cluster zones are 833 * aligned to min(size, 4K), so the buffer starts at that alignment and 834 * ends at hwb->size alignment. If mbuf inlining is allowed the 835 * starting alignment will be reduced to MSIZE and the driver will 836 * exercise appropriate caution when deciding on the best buffer layout 837 * to use. 838 */ 839 n = 0; /* no usable buffer size to begin with */ 840 swz = &s->sw_zone_info[0]; 841 safe_swz = NULL; 842 for (i = 0; i < SW_ZONE_SIZES; i++, swz++) { 843 int8_t head = -1, tail = -1; 844 845 swz->size = sw_buf_sizes[i]; 846 swz->zone = m_getzone(swz->size); 847 swz->type = m_gettype(swz->size); 848 849 if (swz->size < PAGE_SIZE) { 850 MPASS(powerof2(swz->size)); 851 if (fl_pad && (swz->size % sp->pad_boundary != 0)) 852 continue; 853 } 854 855 if (swz->size == safest_rx_cluster) 856 safe_swz = swz; 857 858 hwb = &s->hw_buf_info[0]; 859 for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) { 860 if (hwb->zidx != -1 || hwb->size > swz->size) 861 continue; 862 #ifdef INVARIANTS 863 if (fl_pad) 864 MPASS(hwb->size % sp->pad_boundary == 0); 865 #endif 866 hwb->zidx = i; 867 if (head == -1) 868 head = tail = j; 869 else if (hwb->size < s->hw_buf_info[tail].size) { 870 s->hw_buf_info[tail].next = j; 871 tail = j; 872 } else { 873 int8_t *cur; 874 struct hw_buf_info *t; 875 876 for (cur = &head; *cur != -1; cur = &t->next) { 877 t = &s->hw_buf_info[*cur]; 878 if (hwb->size == t->size) { 879 hwb->zidx = -2; 880 break; 881 } 882 if (hwb->size > t->size) { 883 hwb->next = *cur; 884 *cur = j; 885 break; 886 } 887 } 888 } 889 } 890 swz->head_hwidx = head; 891 swz->tail_hwidx = tail; 892 893 if (tail != -1) { 894 n++; 895 if (swz->size - s->hw_buf_info[tail].size >= 896 CL_METADATA_SIZE) 897 sc->flags |= BUF_PACKING_OK; 898 } 899 } 900 if (n == 0) { 901 device_printf(sc->dev, "no usable SGE FL buffer size.\n"); 902 rc = EINVAL; 903 } 904 905 s->safe_hwidx1 = -1; 906 s->safe_hwidx2 = -1; 907 if (safe_swz != NULL) { 908 s->safe_hwidx1 = safe_swz->head_hwidx; 909 for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) { 910 int spare; 911 912 hwb = &s->hw_buf_info[i]; 913 #ifdef INVARIANTS 914 if (fl_pad) 915 MPASS(hwb->size % sp->pad_boundary == 0); 916 #endif 917 spare = safe_swz->size - hwb->size; 918 if (spare >= CL_METADATA_SIZE) { 919 s->safe_hwidx2 = i; 920 break; 921 } 922 } 923 } 924 925 if (sc->flags & IS_VF) 926 return (0); 927 928 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 929 r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ); 930 if (r != v) { 931 device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r); 932 rc = EINVAL; 933 } 934 935 m = v = F_TDDPTAGTCB; 936 r = t4_read_reg(sc, A_ULP_RX_CTL); 937 if ((r & m) != v) { 938 device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r); 939 rc = EINVAL; 940 } 941 942 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 943 F_RESETDDPOFFSET; 944 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 945 r = t4_read_reg(sc, A_TP_PARA_REG5); 946 if ((r & m) != v) { 947 device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r); 948 rc = EINVAL; 949 } 950 951 t4_init_tp_params(sc, 1); 952 953 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 954 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 955 956 return (rc); 957 } 958 959 int 960 t4_create_dma_tag(struct adapter *sc) 961 { 962 int rc; 963 964 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, 965 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, 966 BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, 967 NULL, &sc->dmat); 968 if (rc != 0) { 969 device_printf(sc->dev, 970 "failed to create main DMA tag: %d\n", rc); 971 } 972 973 return (rc); 974 } 975 976 void 977 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 978 struct sysctl_oid_list *children) 979 { 980 struct sge_params *sp = &sc->params.sge; 981 982 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes", 983 CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A", 984 "freelist buffer sizes"); 985 986 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD, 987 NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)"); 988 989 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD, 990 NULL, sp->pad_boundary, "payload pad boundary (bytes)"); 991 992 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD, 993 NULL, sp->spg_len, "status page size (bytes)"); 994 995 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD, 996 NULL, cong_drop, "congestion drop setting"); 997 998 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD, 999 NULL, sp->pack_boundary, "payload pack boundary (bytes)"); 1000 } 1001 1002 int 1003 t4_destroy_dma_tag(struct adapter *sc) 1004 { 1005 if (sc->dmat) 1006 bus_dma_tag_destroy(sc->dmat); 1007 1008 return (0); 1009 } 1010 1011 /* 1012 * Allocate and initialize the firmware event queue and the management queue. 1013 * 1014 * Returns errno on failure. Resources allocated up to that point may still be 1015 * allocated. Caller is responsible for cleanup in case this function fails. 1016 */ 1017 int 1018 t4_setup_adapter_queues(struct adapter *sc) 1019 { 1020 int rc; 1021 1022 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 1023 1024 sysctl_ctx_init(&sc->ctx); 1025 sc->flags |= ADAP_SYSCTL_CTX; 1026 1027 /* 1028 * Firmware event queue 1029 */ 1030 rc = alloc_fwq(sc); 1031 if (rc != 0) 1032 return (rc); 1033 1034 /* 1035 * Management queue. This is just a control queue that uses the fwq as 1036 * its associated iq. 1037 */ 1038 if (!(sc->flags & IS_VF)) 1039 rc = alloc_mgmtq(sc); 1040 1041 return (rc); 1042 } 1043 1044 /* 1045 * Idempotent 1046 */ 1047 int 1048 t4_teardown_adapter_queues(struct adapter *sc) 1049 { 1050 1051 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 1052 1053 /* Do this before freeing the queue */ 1054 if (sc->flags & ADAP_SYSCTL_CTX) { 1055 sysctl_ctx_free(&sc->ctx); 1056 sc->flags &= ~ADAP_SYSCTL_CTX; 1057 } 1058 1059 free_mgmtq(sc); 1060 free_fwq(sc); 1061 1062 return (0); 1063 } 1064 1065 /* Maximum payload that can be delivered with a single iq descriptor */ 1066 static inline int 1067 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe) 1068 { 1069 int payload; 1070 1071 #ifdef TCP_OFFLOAD 1072 if (toe) { 1073 int rxcs = G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)); 1074 1075 /* Note that COP can set rx_coalesce on/off per connection. */ 1076 payload = max(mtu, rxcs); 1077 } else { 1078 #endif 1079 /* large enough even when hw VLAN extraction is disabled */ 1080 payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN + 1081 ETHER_VLAN_ENCAP_LEN + mtu; 1082 #ifdef TCP_OFFLOAD 1083 } 1084 #endif 1085 1086 return (payload); 1087 } 1088 1089 int 1090 t4_setup_vi_queues(struct vi_info *vi) 1091 { 1092 int rc = 0, i, intr_idx, iqidx; 1093 struct sge_rxq *rxq; 1094 struct sge_txq *txq; 1095 struct sge_wrq *ctrlq; 1096 #ifdef TCP_OFFLOAD 1097 struct sge_ofld_rxq *ofld_rxq; 1098 #endif 1099 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1100 struct sge_wrq *ofld_txq; 1101 #endif 1102 #ifdef DEV_NETMAP 1103 int saved_idx; 1104 struct sge_nm_rxq *nm_rxq; 1105 struct sge_nm_txq *nm_txq; 1106 #endif 1107 char name[16]; 1108 struct port_info *pi = vi->pi; 1109 struct adapter *sc = pi->adapter; 1110 struct ifnet *ifp = vi->ifp; 1111 struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev); 1112 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 1113 int maxp, mtu = ifp->if_mtu; 1114 1115 /* Interrupt vector to start from (when using multiple vectors) */ 1116 intr_idx = vi->first_intr; 1117 1118 #ifdef DEV_NETMAP 1119 saved_idx = intr_idx; 1120 if (ifp->if_capabilities & IFCAP_NETMAP) { 1121 1122 /* netmap is supported with direct interrupts only. */ 1123 MPASS(!forwarding_intr_to_fwq(sc)); 1124 1125 /* 1126 * We don't have buffers to back the netmap rx queues 1127 * right now so we create the queues in a way that 1128 * doesn't set off any congestion signal in the chip. 1129 */ 1130 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq", 1131 CTLFLAG_RD, NULL, "rx queues"); 1132 for_each_nm_rxq(vi, i, nm_rxq) { 1133 rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid); 1134 if (rc != 0) 1135 goto done; 1136 intr_idx++; 1137 } 1138 1139 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq", 1140 CTLFLAG_RD, NULL, "tx queues"); 1141 for_each_nm_txq(vi, i, nm_txq) { 1142 iqidx = vi->first_nm_rxq + (i % vi->nnmrxq); 1143 rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid); 1144 if (rc != 0) 1145 goto done; 1146 } 1147 } 1148 1149 /* Normal rx queues and netmap rx queues share the same interrupts. */ 1150 intr_idx = saved_idx; 1151 #endif 1152 1153 /* 1154 * Allocate rx queues first because a default iqid is required when 1155 * creating a tx queue. 1156 */ 1157 maxp = mtu_to_max_payload(sc, mtu, 0); 1158 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", 1159 CTLFLAG_RD, NULL, "rx queues"); 1160 for_each_rxq(vi, i, rxq) { 1161 1162 init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq); 1163 1164 snprintf(name, sizeof(name), "%s rxq%d-fl", 1165 device_get_nameunit(vi->dev), i); 1166 init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name); 1167 1168 rc = alloc_rxq(vi, rxq, 1169 forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid); 1170 if (rc != 0) 1171 goto done; 1172 intr_idx++; 1173 } 1174 #ifdef DEV_NETMAP 1175 if (ifp->if_capabilities & IFCAP_NETMAP) 1176 intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq); 1177 #endif 1178 #ifdef TCP_OFFLOAD 1179 maxp = mtu_to_max_payload(sc, mtu, 1); 1180 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq", 1181 CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections"); 1182 for_each_ofld_rxq(vi, i, ofld_rxq) { 1183 1184 init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx, 1185 vi->qsize_rxq); 1186 1187 snprintf(name, sizeof(name), "%s ofld_rxq%d-fl", 1188 device_get_nameunit(vi->dev), i); 1189 init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name); 1190 1191 rc = alloc_ofld_rxq(vi, ofld_rxq, 1192 forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid); 1193 if (rc != 0) 1194 goto done; 1195 intr_idx++; 1196 } 1197 #endif 1198 1199 /* 1200 * Now the tx queues. 1201 */ 1202 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD, 1203 NULL, "tx queues"); 1204 for_each_txq(vi, i, txq) { 1205 iqidx = vi->first_rxq + (i % vi->nrxq); 1206 snprintf(name, sizeof(name), "%s txq%d", 1207 device_get_nameunit(vi->dev), i); 1208 init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, 1209 sc->sge.rxq[iqidx].iq.cntxt_id, name); 1210 1211 rc = alloc_txq(vi, txq, i, oid); 1212 if (rc != 0) 1213 goto done; 1214 } 1215 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1216 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq", 1217 CTLFLAG_RD, NULL, "tx queues for TOE/ETHOFLD"); 1218 for_each_ofld_txq(vi, i, ofld_txq) { 1219 struct sysctl_oid *oid2; 1220 1221 snprintf(name, sizeof(name), "%s ofld_txq%d", 1222 device_get_nameunit(vi->dev), i); 1223 #ifdef TCP_OFFLOAD 1224 iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq); 1225 init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan, 1226 sc->sge.ofld_rxq[iqidx].iq.cntxt_id, name); 1227 #else 1228 iqidx = vi->first_rxq + (i % vi->nrxq); 1229 init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan, 1230 sc->sge.rxq[iqidx].iq.cntxt_id, name); 1231 #endif 1232 1233 snprintf(name, sizeof(name), "%d", i); 1234 oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1235 name, CTLFLAG_RD, NULL, "offload tx queue"); 1236 1237 rc = alloc_wrq(sc, vi, ofld_txq, oid2); 1238 if (rc != 0) 1239 goto done; 1240 } 1241 #endif 1242 1243 /* 1244 * Finally, the control queue. 1245 */ 1246 if (!IS_MAIN_VI(vi) || sc->flags & IS_VF) 1247 goto done; 1248 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD, 1249 NULL, "ctrl queue"); 1250 ctrlq = &sc->sge.ctrlq[pi->port_id]; 1251 snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev)); 1252 init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, 1253 sc->sge.rxq[vi->first_rxq].iq.cntxt_id, name); 1254 rc = alloc_wrq(sc, vi, ctrlq, oid); 1255 1256 done: 1257 if (rc) 1258 t4_teardown_vi_queues(vi); 1259 1260 return (rc); 1261 } 1262 1263 /* 1264 * Idempotent 1265 */ 1266 int 1267 t4_teardown_vi_queues(struct vi_info *vi) 1268 { 1269 int i; 1270 struct port_info *pi = vi->pi; 1271 struct adapter *sc = pi->adapter; 1272 struct sge_rxq *rxq; 1273 struct sge_txq *txq; 1274 #ifdef TCP_OFFLOAD 1275 struct sge_ofld_rxq *ofld_rxq; 1276 #endif 1277 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1278 struct sge_wrq *ofld_txq; 1279 #endif 1280 #ifdef DEV_NETMAP 1281 struct sge_nm_rxq *nm_rxq; 1282 struct sge_nm_txq *nm_txq; 1283 #endif 1284 1285 /* Do this before freeing the queues */ 1286 if (vi->flags & VI_SYSCTL_CTX) { 1287 sysctl_ctx_free(&vi->ctx); 1288 vi->flags &= ~VI_SYSCTL_CTX; 1289 } 1290 1291 #ifdef DEV_NETMAP 1292 if (vi->ifp->if_capabilities & IFCAP_NETMAP) { 1293 for_each_nm_txq(vi, i, nm_txq) { 1294 free_nm_txq(vi, nm_txq); 1295 } 1296 1297 for_each_nm_rxq(vi, i, nm_rxq) { 1298 free_nm_rxq(vi, nm_rxq); 1299 } 1300 } 1301 #endif 1302 1303 /* 1304 * Take down all the tx queues first, as they reference the rx queues 1305 * (for egress updates, etc.). 1306 */ 1307 1308 if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF)) 1309 free_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 1310 1311 for_each_txq(vi, i, txq) { 1312 free_txq(vi, txq); 1313 } 1314 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1315 for_each_ofld_txq(vi, i, ofld_txq) { 1316 free_wrq(sc, ofld_txq); 1317 } 1318 #endif 1319 1320 /* 1321 * Then take down the rx queues. 1322 */ 1323 1324 for_each_rxq(vi, i, rxq) { 1325 free_rxq(vi, rxq); 1326 } 1327 #ifdef TCP_OFFLOAD 1328 for_each_ofld_rxq(vi, i, ofld_rxq) { 1329 free_ofld_rxq(vi, ofld_rxq); 1330 } 1331 #endif 1332 1333 return (0); 1334 } 1335 1336 /* 1337 * Interrupt handler when the driver is using only 1 interrupt. This is a very 1338 * unusual scenario. 1339 * 1340 * a) Deals with errors, if any. 1341 * b) Services firmware event queue, which is taking interrupts for all other 1342 * queues. 1343 */ 1344 void 1345 t4_intr_all(void *arg) 1346 { 1347 struct adapter *sc = arg; 1348 struct sge_iq *fwq = &sc->sge.fwq; 1349 1350 MPASS(sc->intr_count == 1); 1351 1352 t4_intr_err(arg); 1353 t4_intr_evt(fwq); 1354 } 1355 1356 /* 1357 * Interrupt handler for errors (installed directly when multiple interrupts are 1358 * being used, or called by t4_intr_all). 1359 */ 1360 void 1361 t4_intr_err(void *arg) 1362 { 1363 struct adapter *sc = arg; 1364 1365 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); 1366 t4_slow_intr_handler(sc); 1367 } 1368 1369 /* 1370 * Interrupt handler for iq-only queues. The firmware event queue is the only 1371 * such queue right now. 1372 */ 1373 void 1374 t4_intr_evt(void *arg) 1375 { 1376 struct sge_iq *iq = arg; 1377 1378 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1379 service_iq(iq, 0); 1380 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1381 } 1382 } 1383 1384 /* 1385 * Interrupt handler for iq+fl queues. 1386 */ 1387 void 1388 t4_intr(void *arg) 1389 { 1390 struct sge_iq *iq = arg; 1391 1392 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1393 service_iq_fl(iq, 0); 1394 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1395 } 1396 } 1397 1398 #ifdef DEV_NETMAP 1399 /* 1400 * Interrupt handler for netmap rx queues. 1401 */ 1402 void 1403 t4_nm_intr(void *arg) 1404 { 1405 struct sge_nm_rxq *nm_rxq = arg; 1406 1407 if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) { 1408 service_nm_rxq(nm_rxq); 1409 atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON); 1410 } 1411 } 1412 1413 /* 1414 * Interrupt handler for vectors shared between NIC and netmap rx queues. 1415 */ 1416 void 1417 t4_vi_intr(void *arg) 1418 { 1419 struct irq *irq = arg; 1420 1421 MPASS(irq->nm_rxq != NULL); 1422 t4_nm_intr(irq->nm_rxq); 1423 1424 MPASS(irq->rxq != NULL); 1425 t4_intr(irq->rxq); 1426 } 1427 #endif 1428 1429 /* 1430 * Deals with interrupts on an iq-only (no freelist) queue. 1431 */ 1432 static int 1433 service_iq(struct sge_iq *iq, int budget) 1434 { 1435 struct sge_iq *q; 1436 struct adapter *sc = iq->adapter; 1437 struct iq_desc *d = &iq->desc[iq->cidx]; 1438 int ndescs = 0, limit; 1439 int rsp_type; 1440 uint32_t lq; 1441 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); 1442 1443 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); 1444 KASSERT((iq->flags & IQ_HAS_FL) == 0, 1445 ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq, 1446 iq->flags)); 1447 MPASS((iq->flags & IQ_ADJ_CREDIT) == 0); 1448 MPASS((iq->flags & IQ_LRO_ENABLED) == 0); 1449 1450 limit = budget ? budget : iq->qsize / 16; 1451 1452 /* 1453 * We always come back and check the descriptor ring for new indirect 1454 * interrupts and other responses after running a single handler. 1455 */ 1456 for (;;) { 1457 while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { 1458 1459 rmb(); 1460 1461 rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); 1462 lq = be32toh(d->rsp.pldbuflen_qid); 1463 1464 switch (rsp_type) { 1465 case X_RSPD_TYPE_FLBUF: 1466 panic("%s: data for an iq (%p) with no freelist", 1467 __func__, iq); 1468 1469 /* NOTREACHED */ 1470 1471 case X_RSPD_TYPE_CPL: 1472 KASSERT(d->rss.opcode < NUM_CPL_CMDS, 1473 ("%s: bad opcode %02x.", __func__, 1474 d->rss.opcode)); 1475 t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL); 1476 break; 1477 1478 case X_RSPD_TYPE_INTR: 1479 /* 1480 * There are 1K interrupt-capable queues (qids 0 1481 * through 1023). A response type indicating a 1482 * forwarded interrupt with a qid >= 1K is an 1483 * iWARP async notification. 1484 */ 1485 if (__predict_true(lq >= 1024)) { 1486 t4_an_handler(iq, &d->rsp); 1487 break; 1488 } 1489 1490 q = sc->sge.iqmap[lq - sc->sge.iq_start - 1491 sc->sge.iq_base]; 1492 if (atomic_cmpset_int(&q->state, IQS_IDLE, 1493 IQS_BUSY)) { 1494 if (service_iq_fl(q, q->qsize / 16) == 0) { 1495 atomic_cmpset_int(&q->state, 1496 IQS_BUSY, IQS_IDLE); 1497 } else { 1498 STAILQ_INSERT_TAIL(&iql, q, 1499 link); 1500 } 1501 } 1502 break; 1503 1504 default: 1505 KASSERT(0, 1506 ("%s: illegal response type %d on iq %p", 1507 __func__, rsp_type, iq)); 1508 log(LOG_ERR, 1509 "%s: illegal response type %d on iq %p", 1510 device_get_nameunit(sc->dev), rsp_type, iq); 1511 break; 1512 } 1513 1514 d++; 1515 if (__predict_false(++iq->cidx == iq->sidx)) { 1516 iq->cidx = 0; 1517 iq->gen ^= F_RSPD_GEN; 1518 d = &iq->desc[0]; 1519 } 1520 if (__predict_false(++ndescs == limit)) { 1521 t4_write_reg(sc, sc->sge_gts_reg, 1522 V_CIDXINC(ndescs) | 1523 V_INGRESSQID(iq->cntxt_id) | 1524 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 1525 ndescs = 0; 1526 1527 if (budget) { 1528 return (EINPROGRESS); 1529 } 1530 } 1531 } 1532 1533 if (STAILQ_EMPTY(&iql)) 1534 break; 1535 1536 /* 1537 * Process the head only, and send it to the back of the list if 1538 * it's still not done. 1539 */ 1540 q = STAILQ_FIRST(&iql); 1541 STAILQ_REMOVE_HEAD(&iql, link); 1542 if (service_iq_fl(q, q->qsize / 8) == 0) 1543 atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); 1544 else 1545 STAILQ_INSERT_TAIL(&iql, q, link); 1546 } 1547 1548 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | 1549 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); 1550 1551 return (0); 1552 } 1553 1554 static inline int 1555 sort_before_lro(struct lro_ctrl *lro) 1556 { 1557 1558 return (lro->lro_mbuf_max != 0); 1559 } 1560 1561 /* 1562 * Deals with interrupts on an iq+fl queue. 1563 */ 1564 static int 1565 service_iq_fl(struct sge_iq *iq, int budget) 1566 { 1567 struct sge_rxq *rxq = iq_to_rxq(iq); 1568 struct sge_fl *fl; 1569 struct adapter *sc = iq->adapter; 1570 struct iq_desc *d = &iq->desc[iq->cidx]; 1571 int ndescs = 0, limit; 1572 int rsp_type, refill, starved; 1573 uint32_t lq; 1574 uint16_t fl_hw_cidx; 1575 struct mbuf *m0; 1576 #if defined(INET) || defined(INET6) 1577 const struct timeval lro_timeout = {0, sc->lro_timeout}; 1578 struct lro_ctrl *lro = &rxq->lro; 1579 #endif 1580 1581 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); 1582 MPASS(iq->flags & IQ_HAS_FL); 1583 1584 limit = budget ? budget : iq->qsize / 16; 1585 fl = &rxq->fl; 1586 fl_hw_cidx = fl->hw_cidx; /* stable snapshot */ 1587 1588 #if defined(INET) || defined(INET6) 1589 if (iq->flags & IQ_ADJ_CREDIT) { 1590 MPASS(sort_before_lro(lro)); 1591 iq->flags &= ~IQ_ADJ_CREDIT; 1592 if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) { 1593 tcp_lro_flush_all(lro); 1594 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) | 1595 V_INGRESSQID((u32)iq->cntxt_id) | 1596 V_SEINTARM(iq->intr_params)); 1597 return (0); 1598 } 1599 ndescs = 1; 1600 } 1601 #else 1602 MPASS((iq->flags & IQ_ADJ_CREDIT) == 0); 1603 #endif 1604 1605 while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { 1606 1607 rmb(); 1608 1609 refill = 0; 1610 m0 = NULL; 1611 rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); 1612 lq = be32toh(d->rsp.pldbuflen_qid); 1613 1614 switch (rsp_type) { 1615 case X_RSPD_TYPE_FLBUF: 1616 1617 m0 = get_fl_payload(sc, fl, lq); 1618 if (__predict_false(m0 == NULL)) 1619 goto out; 1620 refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2; 1621 #ifdef T4_PKT_TIMESTAMP 1622 /* 1623 * 60 bit timestamp for the payload is 1624 * *(uint64_t *)m0->m_pktdat. Note that it is 1625 * in the leading free-space in the mbuf. The 1626 * kernel can clobber it during a pullup, 1627 * m_copymdata, etc. You need to make sure that 1628 * the mbuf reaches you unmolested if you care 1629 * about the timestamp. 1630 */ 1631 *(uint64_t *)m0->m_pktdat = 1632 be64toh(ctrl->u.last_flit) & 0xfffffffffffffff; 1633 #endif 1634 1635 /* fall through */ 1636 1637 case X_RSPD_TYPE_CPL: 1638 KASSERT(d->rss.opcode < NUM_CPL_CMDS, 1639 ("%s: bad opcode %02x.", __func__, d->rss.opcode)); 1640 t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0); 1641 break; 1642 1643 case X_RSPD_TYPE_INTR: 1644 1645 /* 1646 * There are 1K interrupt-capable queues (qids 0 1647 * through 1023). A response type indicating a 1648 * forwarded interrupt with a qid >= 1K is an 1649 * iWARP async notification. That is the only 1650 * acceptable indirect interrupt on this queue. 1651 */ 1652 if (__predict_false(lq < 1024)) { 1653 panic("%s: indirect interrupt on iq_fl %p " 1654 "with qid %u", __func__, iq, lq); 1655 } 1656 1657 t4_an_handler(iq, &d->rsp); 1658 break; 1659 1660 default: 1661 KASSERT(0, ("%s: illegal response type %d on iq %p", 1662 __func__, rsp_type, iq)); 1663 log(LOG_ERR, "%s: illegal response type %d on iq %p", 1664 device_get_nameunit(sc->dev), rsp_type, iq); 1665 break; 1666 } 1667 1668 d++; 1669 if (__predict_false(++iq->cidx == iq->sidx)) { 1670 iq->cidx = 0; 1671 iq->gen ^= F_RSPD_GEN; 1672 d = &iq->desc[0]; 1673 } 1674 if (__predict_false(++ndescs == limit)) { 1675 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | 1676 V_INGRESSQID(iq->cntxt_id) | 1677 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 1678 ndescs = 0; 1679 1680 #if defined(INET) || defined(INET6) 1681 if (iq->flags & IQ_LRO_ENABLED && 1682 !sort_before_lro(lro) && 1683 sc->lro_timeout != 0) { 1684 tcp_lro_flush_inactive(lro, &lro_timeout); 1685 } 1686 #endif 1687 if (budget) { 1688 FL_LOCK(fl); 1689 refill_fl(sc, fl, 32); 1690 FL_UNLOCK(fl); 1691 1692 return (EINPROGRESS); 1693 } 1694 } 1695 if (refill) { 1696 FL_LOCK(fl); 1697 refill_fl(sc, fl, 32); 1698 FL_UNLOCK(fl); 1699 fl_hw_cidx = fl->hw_cidx; 1700 } 1701 } 1702 out: 1703 #if defined(INET) || defined(INET6) 1704 if (iq->flags & IQ_LRO_ENABLED) { 1705 if (ndescs > 0 && lro->lro_mbuf_count > 8) { 1706 MPASS(sort_before_lro(lro)); 1707 /* hold back one credit and don't flush LRO state */ 1708 iq->flags |= IQ_ADJ_CREDIT; 1709 ndescs--; 1710 } else { 1711 tcp_lro_flush_all(lro); 1712 } 1713 } 1714 #endif 1715 1716 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | 1717 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); 1718 1719 FL_LOCK(fl); 1720 starved = refill_fl(sc, fl, 64); 1721 FL_UNLOCK(fl); 1722 if (__predict_false(starved != 0)) 1723 add_fl_to_sfl(sc, fl); 1724 1725 return (0); 1726 } 1727 1728 static inline int 1729 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll) 1730 { 1731 int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0; 1732 1733 if (rc) 1734 MPASS(cll->region3 >= CL_METADATA_SIZE); 1735 1736 return (rc); 1737 } 1738 1739 static inline struct cluster_metadata * 1740 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll, 1741 caddr_t cl) 1742 { 1743 1744 if (cl_has_metadata(fl, cll)) { 1745 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1746 1747 return ((struct cluster_metadata *)(cl + swz->size) - 1); 1748 } 1749 return (NULL); 1750 } 1751 1752 static void 1753 rxb_free(struct mbuf *m) 1754 { 1755 uma_zone_t zone = m->m_ext.ext_arg1; 1756 void *cl = m->m_ext.ext_arg2; 1757 1758 uma_zfree(zone, cl); 1759 counter_u64_add(extfree_rels, 1); 1760 } 1761 1762 /* 1763 * The mbuf returned by this function could be allocated from zone_mbuf or 1764 * constructed in spare room in the cluster. 1765 * 1766 * The mbuf carries the payload in one of these ways 1767 * a) frame inside the mbuf (mbuf from zone_mbuf) 1768 * b) m_cljset (for clusters without metadata) zone_mbuf 1769 * c) m_extaddref (cluster with metadata) inline mbuf 1770 * d) m_extaddref (cluster with metadata) zone_mbuf 1771 */ 1772 static struct mbuf * 1773 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset, 1774 int remaining) 1775 { 1776 struct mbuf *m; 1777 struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; 1778 struct cluster_layout *cll = &sd->cll; 1779 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1780 struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx]; 1781 struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl); 1782 int len, blen; 1783 caddr_t payload; 1784 1785 blen = hwb->size - fl->rx_offset; /* max possible in this buf */ 1786 len = min(remaining, blen); 1787 payload = sd->cl + cll->region1 + fl->rx_offset; 1788 if (fl->flags & FL_BUF_PACKING) { 1789 const u_int l = fr_offset + len; 1790 const u_int pad = roundup2(l, fl->buf_boundary) - l; 1791 1792 if (fl->rx_offset + len + pad < hwb->size) 1793 blen = len + pad; 1794 MPASS(fl->rx_offset + blen <= hwb->size); 1795 } else { 1796 MPASS(fl->rx_offset == 0); /* not packing */ 1797 } 1798 1799 1800 if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) { 1801 1802 /* 1803 * Copy payload into a freshly allocated mbuf. 1804 */ 1805 1806 m = fr_offset == 0 ? 1807 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1808 if (m == NULL) 1809 return (NULL); 1810 fl->mbuf_allocated++; 1811 #ifdef T4_PKT_TIMESTAMP 1812 /* Leave room for a timestamp */ 1813 m->m_data += 8; 1814 #endif 1815 /* copy data to mbuf */ 1816 bcopy(payload, mtod(m, caddr_t), len); 1817 1818 } else if (sd->nmbuf * MSIZE < cll->region1) { 1819 1820 /* 1821 * There's spare room in the cluster for an mbuf. Create one 1822 * and associate it with the payload that's in the cluster. 1823 */ 1824 1825 MPASS(clm != NULL); 1826 m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE); 1827 /* No bzero required */ 1828 if (m_init(m, M_NOWAIT, MT_DATA, 1829 fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE)) 1830 return (NULL); 1831 fl->mbuf_inlined++; 1832 m_extaddref(m, payload, blen, &clm->refcount, rxb_free, 1833 swz->zone, sd->cl); 1834 if (sd->nmbuf++ == 0) 1835 counter_u64_add(extfree_refs, 1); 1836 1837 } else { 1838 1839 /* 1840 * Grab an mbuf from zone_mbuf and associate it with the 1841 * payload in the cluster. 1842 */ 1843 1844 m = fr_offset == 0 ? 1845 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1846 if (m == NULL) 1847 return (NULL); 1848 fl->mbuf_allocated++; 1849 if (clm != NULL) { 1850 m_extaddref(m, payload, blen, &clm->refcount, 1851 rxb_free, swz->zone, sd->cl); 1852 if (sd->nmbuf++ == 0) 1853 counter_u64_add(extfree_refs, 1); 1854 } else { 1855 m_cljset(m, sd->cl, swz->type); 1856 sd->cl = NULL; /* consumed, not a recycle candidate */ 1857 } 1858 } 1859 if (fr_offset == 0) 1860 m->m_pkthdr.len = remaining; 1861 m->m_len = len; 1862 1863 if (fl->flags & FL_BUF_PACKING) { 1864 fl->rx_offset += blen; 1865 MPASS(fl->rx_offset <= hwb->size); 1866 if (fl->rx_offset < hwb->size) 1867 return (m); /* without advancing the cidx */ 1868 } 1869 1870 if (__predict_false(++fl->cidx % 8 == 0)) { 1871 uint16_t cidx = fl->cidx / 8; 1872 1873 if (__predict_false(cidx == fl->sidx)) 1874 fl->cidx = cidx = 0; 1875 fl->hw_cidx = cidx; 1876 } 1877 fl->rx_offset = 0; 1878 1879 return (m); 1880 } 1881 1882 static struct mbuf * 1883 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf) 1884 { 1885 struct mbuf *m0, *m, **pnext; 1886 u_int remaining; 1887 const u_int total = G_RSPD_LEN(len_newbuf); 1888 1889 if (__predict_false(fl->flags & FL_BUF_RESUME)) { 1890 M_ASSERTPKTHDR(fl->m0); 1891 MPASS(fl->m0->m_pkthdr.len == total); 1892 MPASS(fl->remaining < total); 1893 1894 m0 = fl->m0; 1895 pnext = fl->pnext; 1896 remaining = fl->remaining; 1897 fl->flags &= ~FL_BUF_RESUME; 1898 goto get_segment; 1899 } 1900 1901 if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) { 1902 fl->rx_offset = 0; 1903 if (__predict_false(++fl->cidx % 8 == 0)) { 1904 uint16_t cidx = fl->cidx / 8; 1905 1906 if (__predict_false(cidx == fl->sidx)) 1907 fl->cidx = cidx = 0; 1908 fl->hw_cidx = cidx; 1909 } 1910 } 1911 1912 /* 1913 * Payload starts at rx_offset in the current hw buffer. Its length is 1914 * 'len' and it may span multiple hw buffers. 1915 */ 1916 1917 m0 = get_scatter_segment(sc, fl, 0, total); 1918 if (m0 == NULL) 1919 return (NULL); 1920 remaining = total - m0->m_len; 1921 pnext = &m0->m_next; 1922 while (remaining > 0) { 1923 get_segment: 1924 MPASS(fl->rx_offset == 0); 1925 m = get_scatter_segment(sc, fl, total - remaining, remaining); 1926 if (__predict_false(m == NULL)) { 1927 fl->m0 = m0; 1928 fl->pnext = pnext; 1929 fl->remaining = remaining; 1930 fl->flags |= FL_BUF_RESUME; 1931 return (NULL); 1932 } 1933 *pnext = m; 1934 pnext = &m->m_next; 1935 remaining -= m->m_len; 1936 } 1937 *pnext = NULL; 1938 1939 M_ASSERTPKTHDR(m0); 1940 return (m0); 1941 } 1942 1943 static int 1944 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) 1945 { 1946 struct sge_rxq *rxq = iq_to_rxq(iq); 1947 struct ifnet *ifp = rxq->ifp; 1948 struct adapter *sc = iq->adapter; 1949 const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); 1950 #if defined(INET) || defined(INET6) 1951 struct lro_ctrl *lro = &rxq->lro; 1952 #endif 1953 static const int sw_hashtype[4][2] = { 1954 {M_HASHTYPE_NONE, M_HASHTYPE_NONE}, 1955 {M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6}, 1956 {M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6}, 1957 {M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6}, 1958 }; 1959 1960 KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__, 1961 rss->opcode)); 1962 1963 m0->m_pkthdr.len -= sc->params.sge.fl_pktshift; 1964 m0->m_len -= sc->params.sge.fl_pktshift; 1965 m0->m_data += sc->params.sge.fl_pktshift; 1966 1967 m0->m_pkthdr.rcvif = ifp; 1968 M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]); 1969 m0->m_pkthdr.flowid = be32toh(rss->hash_val); 1970 1971 if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) { 1972 if (ifp->if_capenable & IFCAP_RXCSUM && 1973 cpl->l2info & htobe32(F_RXF_IP)) { 1974 m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED | 1975 CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 1976 rxq->rxcsum++; 1977 } else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 && 1978 cpl->l2info & htobe32(F_RXF_IP6)) { 1979 m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 | 1980 CSUM_PSEUDO_HDR); 1981 rxq->rxcsum++; 1982 } 1983 1984 if (__predict_false(cpl->ip_frag)) 1985 m0->m_pkthdr.csum_data = be16toh(cpl->csum); 1986 else 1987 m0->m_pkthdr.csum_data = 0xffff; 1988 } 1989 1990 if (cpl->vlan_ex) { 1991 m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); 1992 m0->m_flags |= M_VLANTAG; 1993 rxq->vlan_extraction++; 1994 } 1995 1996 #if defined(INET) || defined(INET6) 1997 if (iq->flags & IQ_LRO_ENABLED) { 1998 if (sort_before_lro(lro)) { 1999 tcp_lro_queue_mbuf(lro, m0); 2000 return (0); /* queued for sort, then LRO */ 2001 } 2002 if (tcp_lro_rx(lro, m0, 0) == 0) 2003 return (0); /* queued for LRO */ 2004 } 2005 #endif 2006 ifp->if_input(ifp, m0); 2007 2008 return (0); 2009 } 2010 2011 /* 2012 * Must drain the wrq or make sure that someone else will. 2013 */ 2014 static void 2015 wrq_tx_drain(void *arg, int n) 2016 { 2017 struct sge_wrq *wrq = arg; 2018 struct sge_eq *eq = &wrq->eq; 2019 2020 EQ_LOCK(eq); 2021 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 2022 drain_wrq_wr_list(wrq->adapter, wrq); 2023 EQ_UNLOCK(eq); 2024 } 2025 2026 static void 2027 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq) 2028 { 2029 struct sge_eq *eq = &wrq->eq; 2030 u_int available, dbdiff; /* # of hardware descriptors */ 2031 u_int n; 2032 struct wrqe *wr; 2033 struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ 2034 2035 EQ_LOCK_ASSERT_OWNED(eq); 2036 MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs)); 2037 wr = STAILQ_FIRST(&wrq->wr_list); 2038 MPASS(wr != NULL); /* Must be called with something useful to do */ 2039 MPASS(eq->pidx == eq->dbidx); 2040 dbdiff = 0; 2041 2042 do { 2043 eq->cidx = read_hw_cidx(eq); 2044 if (eq->pidx == eq->cidx) 2045 available = eq->sidx - 1; 2046 else 2047 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2048 2049 MPASS(wr->wrq == wrq); 2050 n = howmany(wr->wr_len, EQ_ESIZE); 2051 if (available < n) 2052 break; 2053 2054 dst = (void *)&eq->desc[eq->pidx]; 2055 if (__predict_true(eq->sidx - eq->pidx > n)) { 2056 /* Won't wrap, won't end exactly at the status page. */ 2057 bcopy(&wr->wr[0], dst, wr->wr_len); 2058 eq->pidx += n; 2059 } else { 2060 int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE; 2061 2062 bcopy(&wr->wr[0], dst, first_portion); 2063 if (wr->wr_len > first_portion) { 2064 bcopy(&wr->wr[first_portion], &eq->desc[0], 2065 wr->wr_len - first_portion); 2066 } 2067 eq->pidx = n - (eq->sidx - eq->pidx); 2068 } 2069 wrq->tx_wrs_copied++; 2070 2071 if (available < eq->sidx / 4 && 2072 atomic_cmpset_int(&eq->equiq, 0, 1)) { 2073 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 2074 F_FW_WR_EQUEQ); 2075 eq->equeqidx = eq->pidx; 2076 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 2077 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 2078 eq->equeqidx = eq->pidx; 2079 } 2080 2081 dbdiff += n; 2082 if (dbdiff >= 16) { 2083 ring_eq_db(sc, eq, dbdiff); 2084 dbdiff = 0; 2085 } 2086 2087 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 2088 free_wrqe(wr); 2089 MPASS(wrq->nwr_pending > 0); 2090 wrq->nwr_pending--; 2091 MPASS(wrq->ndesc_needed >= n); 2092 wrq->ndesc_needed -= n; 2093 } while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL); 2094 2095 if (dbdiff) 2096 ring_eq_db(sc, eq, dbdiff); 2097 } 2098 2099 /* 2100 * Doesn't fail. Holds on to work requests it can't send right away. 2101 */ 2102 void 2103 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr) 2104 { 2105 #ifdef INVARIANTS 2106 struct sge_eq *eq = &wrq->eq; 2107 #endif 2108 2109 EQ_LOCK_ASSERT_OWNED(eq); 2110 MPASS(wr != NULL); 2111 MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN); 2112 MPASS((wr->wr_len & 0x7) == 0); 2113 2114 STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link); 2115 wrq->nwr_pending++; 2116 wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE); 2117 2118 if (!TAILQ_EMPTY(&wrq->incomplete_wrs)) 2119 return; /* commit_wrq_wr will drain wr_list as well. */ 2120 2121 drain_wrq_wr_list(sc, wrq); 2122 2123 /* Doorbell must have caught up to the pidx. */ 2124 MPASS(eq->pidx == eq->dbidx); 2125 } 2126 2127 void 2128 t4_update_fl_bufsize(struct ifnet *ifp) 2129 { 2130 struct vi_info *vi = ifp->if_softc; 2131 struct adapter *sc = vi->pi->adapter; 2132 struct sge_rxq *rxq; 2133 #ifdef TCP_OFFLOAD 2134 struct sge_ofld_rxq *ofld_rxq; 2135 #endif 2136 struct sge_fl *fl; 2137 int i, maxp, mtu = ifp->if_mtu; 2138 2139 maxp = mtu_to_max_payload(sc, mtu, 0); 2140 for_each_rxq(vi, i, rxq) { 2141 fl = &rxq->fl; 2142 2143 FL_LOCK(fl); 2144 find_best_refill_source(sc, fl, maxp); 2145 FL_UNLOCK(fl); 2146 } 2147 #ifdef TCP_OFFLOAD 2148 maxp = mtu_to_max_payload(sc, mtu, 1); 2149 for_each_ofld_rxq(vi, i, ofld_rxq) { 2150 fl = &ofld_rxq->fl; 2151 2152 FL_LOCK(fl); 2153 find_best_refill_source(sc, fl, maxp); 2154 FL_UNLOCK(fl); 2155 } 2156 #endif 2157 } 2158 2159 static inline int 2160 mbuf_nsegs(struct mbuf *m) 2161 { 2162 2163 M_ASSERTPKTHDR(m); 2164 KASSERT(m->m_pkthdr.l5hlen > 0, 2165 ("%s: mbuf %p missing information on # of segments.", __func__, m)); 2166 2167 return (m->m_pkthdr.l5hlen); 2168 } 2169 2170 static inline void 2171 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs) 2172 { 2173 2174 M_ASSERTPKTHDR(m); 2175 m->m_pkthdr.l5hlen = nsegs; 2176 } 2177 2178 static inline int 2179 mbuf_len16(struct mbuf *m) 2180 { 2181 int n; 2182 2183 M_ASSERTPKTHDR(m); 2184 n = m->m_pkthdr.PH_loc.eight[0]; 2185 MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16); 2186 2187 return (n); 2188 } 2189 2190 static inline void 2191 set_mbuf_len16(struct mbuf *m, uint8_t len16) 2192 { 2193 2194 M_ASSERTPKTHDR(m); 2195 m->m_pkthdr.PH_loc.eight[0] = len16; 2196 } 2197 2198 #ifdef RATELIMIT 2199 static inline int 2200 mbuf_eo_nsegs(struct mbuf *m) 2201 { 2202 2203 M_ASSERTPKTHDR(m); 2204 return (m->m_pkthdr.PH_loc.eight[1]); 2205 } 2206 2207 static inline void 2208 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs) 2209 { 2210 2211 M_ASSERTPKTHDR(m); 2212 m->m_pkthdr.PH_loc.eight[1] = nsegs; 2213 } 2214 2215 static inline int 2216 mbuf_eo_len16(struct mbuf *m) 2217 { 2218 int n; 2219 2220 M_ASSERTPKTHDR(m); 2221 n = m->m_pkthdr.PH_loc.eight[2]; 2222 MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16); 2223 2224 return (n); 2225 } 2226 2227 static inline void 2228 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16) 2229 { 2230 2231 M_ASSERTPKTHDR(m); 2232 m->m_pkthdr.PH_loc.eight[2] = len16; 2233 } 2234 2235 static inline int 2236 mbuf_eo_tsclk_tsoff(struct mbuf *m) 2237 { 2238 2239 M_ASSERTPKTHDR(m); 2240 return (m->m_pkthdr.PH_loc.eight[3]); 2241 } 2242 2243 static inline void 2244 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff) 2245 { 2246 2247 M_ASSERTPKTHDR(m); 2248 m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff; 2249 } 2250 2251 static inline int 2252 needs_eo(struct mbuf *m) 2253 { 2254 2255 return (m->m_pkthdr.snd_tag != NULL); 2256 } 2257 #endif 2258 2259 static inline int 2260 needs_tso(struct mbuf *m) 2261 { 2262 2263 M_ASSERTPKTHDR(m); 2264 2265 return (m->m_pkthdr.csum_flags & CSUM_TSO); 2266 } 2267 2268 static inline int 2269 needs_l3_csum(struct mbuf *m) 2270 { 2271 2272 M_ASSERTPKTHDR(m); 2273 2274 return (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)); 2275 } 2276 2277 static inline int 2278 needs_l4_csum(struct mbuf *m) 2279 { 2280 2281 M_ASSERTPKTHDR(m); 2282 2283 return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | 2284 CSUM_TCP_IPV6 | CSUM_TSO)); 2285 } 2286 2287 static inline int 2288 needs_tcp_csum(struct mbuf *m) 2289 { 2290 2291 M_ASSERTPKTHDR(m); 2292 return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_TCP_IPV6 | CSUM_TSO)); 2293 } 2294 2295 #ifdef RATELIMIT 2296 static inline int 2297 needs_udp_csum(struct mbuf *m) 2298 { 2299 2300 M_ASSERTPKTHDR(m); 2301 return (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_UDP_IPV6)); 2302 } 2303 #endif 2304 2305 static inline int 2306 needs_vlan_insertion(struct mbuf *m) 2307 { 2308 2309 M_ASSERTPKTHDR(m); 2310 2311 return (m->m_flags & M_VLANTAG); 2312 } 2313 2314 static void * 2315 m_advance(struct mbuf **pm, int *poffset, int len) 2316 { 2317 struct mbuf *m = *pm; 2318 int offset = *poffset; 2319 uintptr_t p = 0; 2320 2321 MPASS(len > 0); 2322 2323 for (;;) { 2324 if (offset + len < m->m_len) { 2325 offset += len; 2326 p = mtod(m, uintptr_t) + offset; 2327 break; 2328 } 2329 len -= m->m_len - offset; 2330 m = m->m_next; 2331 offset = 0; 2332 MPASS(m != NULL); 2333 } 2334 *poffset = offset; 2335 *pm = m; 2336 return ((void *)p); 2337 } 2338 2339 /* 2340 * Can deal with empty mbufs in the chain that have m_len = 0, but the chain 2341 * must have at least one mbuf that's not empty. It is possible for this 2342 * routine to return 0 if skip accounts for all the contents of the mbuf chain. 2343 */ 2344 static inline int 2345 count_mbuf_nsegs(struct mbuf *m, int skip) 2346 { 2347 vm_paddr_t lastb, next; 2348 vm_offset_t va; 2349 int len, nsegs; 2350 2351 M_ASSERTPKTHDR(m); 2352 MPASS(m->m_pkthdr.len > 0); 2353 MPASS(m->m_pkthdr.len >= skip); 2354 2355 nsegs = 0; 2356 lastb = 0; 2357 for (; m; m = m->m_next) { 2358 2359 len = m->m_len; 2360 if (__predict_false(len == 0)) 2361 continue; 2362 if (skip >= len) { 2363 skip -= len; 2364 continue; 2365 } 2366 va = mtod(m, vm_offset_t) + skip; 2367 len -= skip; 2368 skip = 0; 2369 next = pmap_kextract(va); 2370 nsegs += sglist_count((void *)(uintptr_t)va, len); 2371 if (lastb + 1 == next) 2372 nsegs--; 2373 lastb = pmap_kextract(va + len - 1); 2374 } 2375 2376 return (nsegs); 2377 } 2378 2379 /* 2380 * Analyze the mbuf to determine its tx needs. The mbuf passed in may change: 2381 * a) caller can assume it's been freed if this function returns with an error. 2382 * b) it may get defragged up if the gather list is too long for the hardware. 2383 */ 2384 int 2385 parse_pkt(struct adapter *sc, struct mbuf **mp) 2386 { 2387 struct mbuf *m0 = *mp, *m; 2388 int rc, nsegs, defragged = 0, offset; 2389 struct ether_header *eh; 2390 void *l3hdr; 2391 #if defined(INET) || defined(INET6) 2392 struct tcphdr *tcp; 2393 #endif 2394 uint16_t eh_type; 2395 2396 M_ASSERTPKTHDR(m0); 2397 if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) { 2398 rc = EINVAL; 2399 fail: 2400 m_freem(m0); 2401 *mp = NULL; 2402 return (rc); 2403 } 2404 restart: 2405 /* 2406 * First count the number of gather list segments in the payload. 2407 * Defrag the mbuf if nsegs exceeds the hardware limit. 2408 */ 2409 M_ASSERTPKTHDR(m0); 2410 MPASS(m0->m_pkthdr.len > 0); 2411 nsegs = count_mbuf_nsegs(m0, 0); 2412 if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) { 2413 if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) { 2414 rc = EFBIG; 2415 goto fail; 2416 } 2417 *mp = m0 = m; /* update caller's copy after defrag */ 2418 goto restart; 2419 } 2420 2421 if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) { 2422 m0 = m_pullup(m0, m0->m_pkthdr.len); 2423 if (m0 == NULL) { 2424 /* Should have left well enough alone. */ 2425 rc = EFBIG; 2426 goto fail; 2427 } 2428 *mp = m0; /* update caller's copy after pullup */ 2429 goto restart; 2430 } 2431 set_mbuf_nsegs(m0, nsegs); 2432 if (sc->flags & IS_VF) 2433 set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0))); 2434 else 2435 set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0))); 2436 2437 #ifdef RATELIMIT 2438 /* 2439 * Ethofld is limited to TCP and UDP for now, and only when L4 hw 2440 * checksumming is enabled. needs_l4_csum happens to check for all the 2441 * right things. 2442 */ 2443 if (__predict_false(needs_eo(m0) && !needs_l4_csum(m0))) 2444 m0->m_pkthdr.snd_tag = NULL; 2445 #endif 2446 2447 if (!needs_tso(m0) && 2448 #ifdef RATELIMIT 2449 !needs_eo(m0) && 2450 #endif 2451 !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0)))) 2452 return (0); 2453 2454 m = m0; 2455 eh = mtod(m, struct ether_header *); 2456 eh_type = ntohs(eh->ether_type); 2457 if (eh_type == ETHERTYPE_VLAN) { 2458 struct ether_vlan_header *evh = (void *)eh; 2459 2460 eh_type = ntohs(evh->evl_proto); 2461 m0->m_pkthdr.l2hlen = sizeof(*evh); 2462 } else 2463 m0->m_pkthdr.l2hlen = sizeof(*eh); 2464 2465 offset = 0; 2466 l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen); 2467 2468 switch (eh_type) { 2469 #ifdef INET6 2470 case ETHERTYPE_IPV6: 2471 { 2472 struct ip6_hdr *ip6 = l3hdr; 2473 2474 MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP); 2475 2476 m0->m_pkthdr.l3hlen = sizeof(*ip6); 2477 break; 2478 } 2479 #endif 2480 #ifdef INET 2481 case ETHERTYPE_IP: 2482 { 2483 struct ip *ip = l3hdr; 2484 2485 m0->m_pkthdr.l3hlen = ip->ip_hl * 4; 2486 break; 2487 } 2488 #endif 2489 default: 2490 panic("%s: ethertype 0x%04x unknown. if_cxgbe must be compiled" 2491 " with the same INET/INET6 options as the kernel.", 2492 __func__, eh_type); 2493 } 2494 2495 #if defined(INET) || defined(INET6) 2496 if (needs_tcp_csum(m0)) { 2497 tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen); 2498 m0->m_pkthdr.l4hlen = tcp->th_off * 4; 2499 #ifdef RATELIMIT 2500 if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) { 2501 set_mbuf_eo_tsclk_tsoff(m0, 2502 V_FW_ETH_TX_EO_WR_TSCLK(tsclk) | 2503 V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1)); 2504 } else 2505 set_mbuf_eo_tsclk_tsoff(m0, 0); 2506 } else if (needs_udp_csum(m)) { 2507 m0->m_pkthdr.l4hlen = sizeof(struct udphdr); 2508 #endif 2509 } 2510 #ifdef RATELIMIT 2511 if (needs_eo(m0)) { 2512 u_int immhdrs; 2513 2514 /* EO WRs have the headers in the WR and not the GL. */ 2515 immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + 2516 m0->m_pkthdr.l4hlen; 2517 nsegs = count_mbuf_nsegs(m0, immhdrs); 2518 set_mbuf_eo_nsegs(m0, nsegs); 2519 set_mbuf_eo_len16(m0, 2520 txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0))); 2521 } 2522 #endif 2523 #endif 2524 MPASS(m0 == *mp); 2525 return (0); 2526 } 2527 2528 void * 2529 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie) 2530 { 2531 struct sge_eq *eq = &wrq->eq; 2532 struct adapter *sc = wrq->adapter; 2533 int ndesc, available; 2534 struct wrqe *wr; 2535 void *w; 2536 2537 MPASS(len16 > 0); 2538 ndesc = howmany(len16, EQ_ESIZE / 16); 2539 MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC); 2540 2541 EQ_LOCK(eq); 2542 2543 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 2544 drain_wrq_wr_list(sc, wrq); 2545 2546 if (!STAILQ_EMPTY(&wrq->wr_list)) { 2547 slowpath: 2548 EQ_UNLOCK(eq); 2549 wr = alloc_wrqe(len16 * 16, wrq); 2550 if (__predict_false(wr == NULL)) 2551 return (NULL); 2552 cookie->pidx = -1; 2553 cookie->ndesc = ndesc; 2554 return (&wr->wr); 2555 } 2556 2557 eq->cidx = read_hw_cidx(eq); 2558 if (eq->pidx == eq->cidx) 2559 available = eq->sidx - 1; 2560 else 2561 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2562 if (available < ndesc) 2563 goto slowpath; 2564 2565 cookie->pidx = eq->pidx; 2566 cookie->ndesc = ndesc; 2567 TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link); 2568 2569 w = &eq->desc[eq->pidx]; 2570 IDXINCR(eq->pidx, ndesc, eq->sidx); 2571 if (__predict_false(cookie->pidx + ndesc > eq->sidx)) { 2572 w = &wrq->ss[0]; 2573 wrq->ss_pidx = cookie->pidx; 2574 wrq->ss_len = len16 * 16; 2575 } 2576 2577 EQ_UNLOCK(eq); 2578 2579 return (w); 2580 } 2581 2582 void 2583 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie) 2584 { 2585 struct sge_eq *eq = &wrq->eq; 2586 struct adapter *sc = wrq->adapter; 2587 int ndesc, pidx; 2588 struct wrq_cookie *prev, *next; 2589 2590 if (cookie->pidx == -1) { 2591 struct wrqe *wr = __containerof(w, struct wrqe, wr); 2592 2593 t4_wrq_tx(sc, wr); 2594 return; 2595 } 2596 2597 if (__predict_false(w == &wrq->ss[0])) { 2598 int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE; 2599 2600 MPASS(wrq->ss_len > n); /* WR had better wrap around. */ 2601 bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n); 2602 bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n); 2603 wrq->tx_wrs_ss++; 2604 } else 2605 wrq->tx_wrs_direct++; 2606 2607 EQ_LOCK(eq); 2608 ndesc = cookie->ndesc; /* Can be more than SGE_MAX_WR_NDESC here. */ 2609 pidx = cookie->pidx; 2610 MPASS(pidx >= 0 && pidx < eq->sidx); 2611 prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link); 2612 next = TAILQ_NEXT(cookie, link); 2613 if (prev == NULL) { 2614 MPASS(pidx == eq->dbidx); 2615 if (next == NULL || ndesc >= 16) { 2616 int available; 2617 struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ 2618 2619 /* 2620 * Note that the WR via which we'll request tx updates 2621 * is at pidx and not eq->pidx, which has moved on 2622 * already. 2623 */ 2624 dst = (void *)&eq->desc[pidx]; 2625 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2626 if (available < eq->sidx / 4 && 2627 atomic_cmpset_int(&eq->equiq, 0, 1)) { 2628 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 2629 F_FW_WR_EQUEQ); 2630 eq->equeqidx = pidx; 2631 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 2632 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 2633 eq->equeqidx = pidx; 2634 } 2635 2636 ring_eq_db(wrq->adapter, eq, ndesc); 2637 } else { 2638 MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc); 2639 next->pidx = pidx; 2640 next->ndesc += ndesc; 2641 } 2642 } else { 2643 MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc); 2644 prev->ndesc += ndesc; 2645 } 2646 TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link); 2647 2648 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 2649 drain_wrq_wr_list(sc, wrq); 2650 2651 #ifdef INVARIANTS 2652 if (TAILQ_EMPTY(&wrq->incomplete_wrs)) { 2653 /* Doorbell must have caught up to the pidx. */ 2654 MPASS(wrq->eq.pidx == wrq->eq.dbidx); 2655 } 2656 #endif 2657 EQ_UNLOCK(eq); 2658 } 2659 2660 static u_int 2661 can_resume_eth_tx(struct mp_ring *r) 2662 { 2663 struct sge_eq *eq = r->cookie; 2664 2665 return (total_available_tx_desc(eq) > eq->sidx / 8); 2666 } 2667 2668 static inline int 2669 cannot_use_txpkts(struct mbuf *m) 2670 { 2671 /* maybe put a GL limit too, to avoid silliness? */ 2672 2673 return (needs_tso(m)); 2674 } 2675 2676 static inline int 2677 discard_tx(struct sge_eq *eq) 2678 { 2679 2680 return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED); 2681 } 2682 2683 /* 2684 * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to 2685 * be consumed. Return the actual number consumed. 0 indicates a stall. 2686 */ 2687 static u_int 2688 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx) 2689 { 2690 struct sge_txq *txq = r->cookie; 2691 struct sge_eq *eq = &txq->eq; 2692 struct ifnet *ifp = txq->ifp; 2693 struct vi_info *vi = ifp->if_softc; 2694 struct port_info *pi = vi->pi; 2695 struct adapter *sc = pi->adapter; 2696 u_int total, remaining; /* # of packets */ 2697 u_int available, dbdiff; /* # of hardware descriptors */ 2698 u_int n, next_cidx; 2699 struct mbuf *m0, *tail; 2700 struct txpkts txp; 2701 struct fw_eth_tx_pkts_wr *wr; /* any fw WR struct will do */ 2702 2703 remaining = IDXDIFF(pidx, cidx, r->size); 2704 MPASS(remaining > 0); /* Must not be called without work to do. */ 2705 total = 0; 2706 2707 TXQ_LOCK(txq); 2708 if (__predict_false(discard_tx(eq))) { 2709 while (cidx != pidx) { 2710 m0 = r->items[cidx]; 2711 m_freem(m0); 2712 if (++cidx == r->size) 2713 cidx = 0; 2714 } 2715 reclaim_tx_descs(txq, 2048); 2716 total = remaining; 2717 goto done; 2718 } 2719 2720 /* How many hardware descriptors do we have readily available. */ 2721 if (eq->pidx == eq->cidx) 2722 available = eq->sidx - 1; 2723 else 2724 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2725 dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx); 2726 2727 while (remaining > 0) { 2728 2729 m0 = r->items[cidx]; 2730 M_ASSERTPKTHDR(m0); 2731 MPASS(m0->m_nextpkt == NULL); 2732 2733 if (available < SGE_MAX_WR_NDESC) { 2734 available += reclaim_tx_descs(txq, 64); 2735 if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16)) 2736 break; /* out of descriptors */ 2737 } 2738 2739 next_cidx = cidx + 1; 2740 if (__predict_false(next_cidx == r->size)) 2741 next_cidx = 0; 2742 2743 wr = (void *)&eq->desc[eq->pidx]; 2744 if (sc->flags & IS_VF) { 2745 total++; 2746 remaining--; 2747 ETHER_BPF_MTAP(ifp, m0); 2748 n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0, 2749 available); 2750 } else if (remaining > 1 && 2751 try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) { 2752 2753 /* pkts at cidx, next_cidx should both be in txp. */ 2754 MPASS(txp.npkt == 2); 2755 tail = r->items[next_cidx]; 2756 MPASS(tail->m_nextpkt == NULL); 2757 ETHER_BPF_MTAP(ifp, m0); 2758 ETHER_BPF_MTAP(ifp, tail); 2759 m0->m_nextpkt = tail; 2760 2761 if (__predict_false(++next_cidx == r->size)) 2762 next_cidx = 0; 2763 2764 while (next_cidx != pidx) { 2765 if (add_to_txpkts(r->items[next_cidx], &txp, 2766 available) != 0) 2767 break; 2768 tail->m_nextpkt = r->items[next_cidx]; 2769 tail = tail->m_nextpkt; 2770 ETHER_BPF_MTAP(ifp, tail); 2771 if (__predict_false(++next_cidx == r->size)) 2772 next_cidx = 0; 2773 } 2774 2775 n = write_txpkts_wr(txq, wr, m0, &txp, available); 2776 total += txp.npkt; 2777 remaining -= txp.npkt; 2778 } else { 2779 total++; 2780 remaining--; 2781 ETHER_BPF_MTAP(ifp, m0); 2782 n = write_txpkt_wr(txq, (void *)wr, m0, available); 2783 } 2784 MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC); 2785 2786 available -= n; 2787 dbdiff += n; 2788 IDXINCR(eq->pidx, n, eq->sidx); 2789 2790 if (total_available_tx_desc(eq) < eq->sidx / 4 && 2791 atomic_cmpset_int(&eq->equiq, 0, 1)) { 2792 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 2793 F_FW_WR_EQUEQ); 2794 eq->equeqidx = eq->pidx; 2795 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 2796 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 2797 eq->equeqidx = eq->pidx; 2798 } 2799 2800 if (dbdiff >= 16 && remaining >= 4) { 2801 ring_eq_db(sc, eq, dbdiff); 2802 available += reclaim_tx_descs(txq, 4 * dbdiff); 2803 dbdiff = 0; 2804 } 2805 2806 cidx = next_cidx; 2807 } 2808 if (dbdiff != 0) { 2809 ring_eq_db(sc, eq, dbdiff); 2810 reclaim_tx_descs(txq, 32); 2811 } 2812 done: 2813 TXQ_UNLOCK(txq); 2814 2815 return (total); 2816 } 2817 2818 static inline void 2819 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, 2820 int qsize) 2821 { 2822 2823 KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, 2824 ("%s: bad tmr_idx %d", __func__, tmr_idx)); 2825 KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ 2826 ("%s: bad pktc_idx %d", __func__, pktc_idx)); 2827 2828 iq->flags = 0; 2829 iq->adapter = sc; 2830 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); 2831 iq->intr_pktc_idx = SGE_NCOUNTERS - 1; 2832 if (pktc_idx >= 0) { 2833 iq->intr_params |= F_QINTR_CNT_EN; 2834 iq->intr_pktc_idx = pktc_idx; 2835 } 2836 iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */ 2837 iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE; 2838 } 2839 2840 static inline void 2841 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name) 2842 { 2843 2844 fl->qsize = qsize; 2845 fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 2846 strlcpy(fl->lockname, name, sizeof(fl->lockname)); 2847 if (sc->flags & BUF_PACKING_OK && 2848 ((!is_t4(sc) && buffer_packing) || /* T5+: enabled unless 0 */ 2849 (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */ 2850 fl->flags |= FL_BUF_PACKING; 2851 find_best_refill_source(sc, fl, maxp); 2852 find_safe_refill_source(sc, fl); 2853 } 2854 2855 static inline void 2856 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize, 2857 uint8_t tx_chan, uint16_t iqid, char *name) 2858 { 2859 KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype)); 2860 2861 eq->flags = eqtype & EQ_TYPEMASK; 2862 eq->tx_chan = tx_chan; 2863 eq->iqid = iqid; 2864 eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 2865 strlcpy(eq->lockname, name, sizeof(eq->lockname)); 2866 } 2867 2868 static int 2869 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, 2870 bus_dmamap_t *map, bus_addr_t *pa, void **va) 2871 { 2872 int rc; 2873 2874 rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, 2875 BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); 2876 if (rc != 0) { 2877 device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc); 2878 goto done; 2879 } 2880 2881 rc = bus_dmamem_alloc(*tag, va, 2882 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); 2883 if (rc != 0) { 2884 device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc); 2885 goto done; 2886 } 2887 2888 rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); 2889 if (rc != 0) { 2890 device_printf(sc->dev, "cannot load DMA map: %d\n", rc); 2891 goto done; 2892 } 2893 done: 2894 if (rc) 2895 free_ring(sc, *tag, *map, *pa, *va); 2896 2897 return (rc); 2898 } 2899 2900 static int 2901 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, 2902 bus_addr_t pa, void *va) 2903 { 2904 if (pa) 2905 bus_dmamap_unload(tag, map); 2906 if (va) 2907 bus_dmamem_free(tag, va, map); 2908 if (tag) 2909 bus_dma_tag_destroy(tag); 2910 2911 return (0); 2912 } 2913 2914 /* 2915 * Allocates the ring for an ingress queue and an optional freelist. If the 2916 * freelist is specified it will be allocated and then associated with the 2917 * ingress queue. 2918 * 2919 * Returns errno on failure. Resources allocated up to that point may still be 2920 * allocated. Caller is responsible for cleanup in case this function fails. 2921 * 2922 * If the ingress queue will take interrupts directly then the intr_idx 2923 * specifies the vector, starting from 0. -1 means the interrupts for this 2924 * queue should be forwarded to the fwq. 2925 */ 2926 static int 2927 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl, 2928 int intr_idx, int cong) 2929 { 2930 int rc, i, cntxt_id; 2931 size_t len; 2932 struct fw_iq_cmd c; 2933 struct port_info *pi = vi->pi; 2934 struct adapter *sc = iq->adapter; 2935 struct sge_params *sp = &sc->params.sge; 2936 __be32 v = 0; 2937 2938 len = iq->qsize * IQ_ESIZE; 2939 rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, 2940 (void **)&iq->desc); 2941 if (rc != 0) 2942 return (rc); 2943 2944 bzero(&c, sizeof(c)); 2945 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 2946 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | 2947 V_FW_IQ_CMD_VFN(0)); 2948 2949 c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | 2950 FW_LEN16(c)); 2951 2952 /* Special handling for firmware event queue */ 2953 if (iq == &sc->sge.fwq) 2954 v |= F_FW_IQ_CMD_IQASYNCH; 2955 2956 if (intr_idx < 0) { 2957 /* Forwarded interrupts, all headed to fwq */ 2958 v |= F_FW_IQ_CMD_IQANDST; 2959 v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id); 2960 } else { 2961 KASSERT(intr_idx < sc->intr_count, 2962 ("%s: invalid direct intr_idx %d", __func__, intr_idx)); 2963 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); 2964 } 2965 2966 c.type_to_iqandstindex = htobe32(v | 2967 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 2968 V_FW_IQ_CMD_VIID(vi->viid) | 2969 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); 2970 c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 2971 F_FW_IQ_CMD_IQGTSMODE | 2972 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | 2973 V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4)); 2974 c.iqsize = htobe16(iq->qsize); 2975 c.iqaddr = htobe64(iq->ba); 2976 if (cong >= 0) 2977 c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN); 2978 2979 if (fl) { 2980 mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); 2981 2982 len = fl->qsize * EQ_ESIZE; 2983 rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, 2984 &fl->ba, (void **)&fl->desc); 2985 if (rc) 2986 return (rc); 2987 2988 /* Allocate space for one software descriptor per buffer. */ 2989 rc = alloc_fl_sdesc(fl); 2990 if (rc != 0) { 2991 device_printf(sc->dev, 2992 "failed to setup fl software descriptors: %d\n", 2993 rc); 2994 return (rc); 2995 } 2996 2997 if (fl->flags & FL_BUF_PACKING) { 2998 fl->lowat = roundup2(sp->fl_starve_threshold2, 8); 2999 fl->buf_boundary = sp->pack_boundary; 3000 } else { 3001 fl->lowat = roundup2(sp->fl_starve_threshold, 8); 3002 fl->buf_boundary = 16; 3003 } 3004 if (fl_pad && fl->buf_boundary < sp->pad_boundary) 3005 fl->buf_boundary = sp->pad_boundary; 3006 3007 c.iqns_to_fl0congen |= 3008 htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | 3009 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | 3010 (fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) | 3011 (fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN : 3012 0)); 3013 if (cong >= 0) { 3014 c.iqns_to_fl0congen |= 3015 htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | 3016 F_FW_IQ_CMD_FL0CONGCIF | 3017 F_FW_IQ_CMD_FL0CONGEN); 3018 } 3019 c.fl0dcaen_to_fl0cidxfthresh = 3020 htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ? 3021 X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) | 3022 V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ? 3023 X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B)); 3024 c.fl0size = htobe16(fl->qsize); 3025 c.fl0addr = htobe64(fl->ba); 3026 } 3027 3028 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3029 if (rc != 0) { 3030 device_printf(sc->dev, 3031 "failed to create ingress queue: %d\n", rc); 3032 return (rc); 3033 } 3034 3035 iq->cidx = 0; 3036 iq->gen = F_RSPD_GEN; 3037 iq->intr_next = iq->intr_params; 3038 iq->cntxt_id = be16toh(c.iqid); 3039 iq->abs_id = be16toh(c.physiqid); 3040 iq->flags |= IQ_ALLOCATED; 3041 3042 cntxt_id = iq->cntxt_id - sc->sge.iq_start; 3043 if (cntxt_id >= sc->sge.niq) { 3044 panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, 3045 cntxt_id, sc->sge.niq - 1); 3046 } 3047 sc->sge.iqmap[cntxt_id] = iq; 3048 3049 if (fl) { 3050 u_int qid; 3051 3052 iq->flags |= IQ_HAS_FL; 3053 fl->cntxt_id = be16toh(c.fl0id); 3054 fl->pidx = fl->cidx = 0; 3055 3056 cntxt_id = fl->cntxt_id - sc->sge.eq_start; 3057 if (cntxt_id >= sc->sge.neq) { 3058 panic("%s: fl->cntxt_id (%d) more than the max (%d)", 3059 __func__, cntxt_id, sc->sge.neq - 1); 3060 } 3061 sc->sge.eqmap[cntxt_id] = (void *)fl; 3062 3063 qid = fl->cntxt_id; 3064 if (isset(&sc->doorbells, DOORBELL_UDB)) { 3065 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 3066 uint32_t mask = (1 << s_qpp) - 1; 3067 volatile uint8_t *udb; 3068 3069 udb = sc->udbs_base + UDBS_DB_OFFSET; 3070 udb += (qid >> s_qpp) << PAGE_SHIFT; 3071 qid &= mask; 3072 if (qid < PAGE_SIZE / UDBS_SEG_SIZE) { 3073 udb += qid << UDBS_SEG_SHIFT; 3074 qid = 0; 3075 } 3076 fl->udb = (volatile void *)udb; 3077 } 3078 fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db; 3079 3080 FL_LOCK(fl); 3081 /* Enough to make sure the SGE doesn't think it's starved */ 3082 refill_fl(sc, fl, fl->lowat); 3083 FL_UNLOCK(fl); 3084 } 3085 3086 if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) { 3087 uint32_t param, val; 3088 3089 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 3090 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 3091 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id); 3092 if (cong == 0) 3093 val = 1 << 19; 3094 else { 3095 val = 2 << 19; 3096 for (i = 0; i < 4; i++) { 3097 if (cong & (1 << i)) 3098 val |= 1 << (i << 2); 3099 } 3100 } 3101 3102 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3103 if (rc != 0) { 3104 /* report error but carry on */ 3105 device_printf(sc->dev, 3106 "failed to set congestion manager context for " 3107 "ingress queue %d: %d\n", iq->cntxt_id, rc); 3108 } 3109 } 3110 3111 /* Enable IQ interrupts */ 3112 atomic_store_rel_int(&iq->state, IQS_IDLE); 3113 t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) | 3114 V_INGRESSQID(iq->cntxt_id)); 3115 3116 return (0); 3117 } 3118 3119 static int 3120 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl) 3121 { 3122 int rc; 3123 struct adapter *sc = iq->adapter; 3124 device_t dev; 3125 3126 if (sc == NULL) 3127 return (0); /* nothing to do */ 3128 3129 dev = vi ? vi->dev : sc->dev; 3130 3131 if (iq->flags & IQ_ALLOCATED) { 3132 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, 3133 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, 3134 fl ? fl->cntxt_id : 0xffff, 0xffff); 3135 if (rc != 0) { 3136 device_printf(dev, 3137 "failed to free queue %p: %d\n", iq, rc); 3138 return (rc); 3139 } 3140 iq->flags &= ~IQ_ALLOCATED; 3141 } 3142 3143 free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); 3144 3145 bzero(iq, sizeof(*iq)); 3146 3147 if (fl) { 3148 free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, 3149 fl->desc); 3150 3151 if (fl->sdesc) 3152 free_fl_sdesc(sc, fl); 3153 3154 if (mtx_initialized(&fl->fl_lock)) 3155 mtx_destroy(&fl->fl_lock); 3156 3157 bzero(fl, sizeof(*fl)); 3158 } 3159 3160 return (0); 3161 } 3162 3163 static void 3164 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, 3165 struct sge_iq *iq) 3166 { 3167 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3168 3169 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba, 3170 "bus address of descriptor ring"); 3171 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3172 iq->qsize * IQ_ESIZE, "descriptor ring size in bytes"); 3173 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", 3174 CTLTYPE_INT | CTLFLAG_RD, &iq->abs_id, 0, sysctl_uint16, "I", 3175 "absolute id of the queue"); 3176 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3177 CTLTYPE_INT | CTLFLAG_RD, &iq->cntxt_id, 0, sysctl_uint16, "I", 3178 "SGE context id of the queue"); 3179 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3180 CTLTYPE_INT | CTLFLAG_RD, &iq->cidx, 0, sysctl_uint16, "I", 3181 "consumer index"); 3182 } 3183 3184 static void 3185 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 3186 struct sysctl_oid *oid, struct sge_fl *fl) 3187 { 3188 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3189 3190 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 3191 "freelist"); 3192 children = SYSCTL_CHILDREN(oid); 3193 3194 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 3195 &fl->ba, "bus address of descriptor ring"); 3196 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3197 fl->sidx * EQ_ESIZE + sc->params.sge.spg_len, 3198 "desc ring size in bytes"); 3199 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3200 CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I", 3201 "SGE context id of the freelist"); 3202 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL, 3203 fl_pad ? 1 : 0, "padding enabled"); 3204 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL, 3205 fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled"); 3206 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx, 3207 0, "consumer index"); 3208 if (fl->flags & FL_BUF_PACKING) { 3209 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset", 3210 CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset"); 3211 } 3212 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx, 3213 0, "producer index"); 3214 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated", 3215 CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated"); 3216 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined", 3217 CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters"); 3218 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated", 3219 CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated"); 3220 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled", 3221 CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled"); 3222 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled", 3223 CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)"); 3224 } 3225 3226 static int 3227 alloc_fwq(struct adapter *sc) 3228 { 3229 int rc, intr_idx; 3230 struct sge_iq *fwq = &sc->sge.fwq; 3231 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 3232 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3233 3234 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE); 3235 if (sc->flags & IS_VF) 3236 intr_idx = 0; 3237 else 3238 intr_idx = sc->intr_count > 1 ? 1 : 0; 3239 rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1); 3240 if (rc != 0) { 3241 device_printf(sc->dev, 3242 "failed to create firmware event queue: %d\n", rc); 3243 return (rc); 3244 } 3245 3246 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD, 3247 NULL, "firmware event queue"); 3248 add_iq_sysctls(&sc->ctx, oid, fwq); 3249 3250 return (0); 3251 } 3252 3253 static int 3254 free_fwq(struct adapter *sc) 3255 { 3256 return free_iq_fl(NULL, &sc->sge.fwq, NULL); 3257 } 3258 3259 static int 3260 alloc_mgmtq(struct adapter *sc) 3261 { 3262 int rc; 3263 struct sge_wrq *mgmtq = &sc->sge.mgmtq; 3264 char name[16]; 3265 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 3266 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3267 3268 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD, 3269 NULL, "management queue"); 3270 3271 snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev)); 3272 init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan, 3273 sc->sge.fwq.cntxt_id, name); 3274 rc = alloc_wrq(sc, NULL, mgmtq, oid); 3275 if (rc != 0) { 3276 device_printf(sc->dev, 3277 "failed to create management queue: %d\n", rc); 3278 return (rc); 3279 } 3280 3281 return (0); 3282 } 3283 3284 static int 3285 free_mgmtq(struct adapter *sc) 3286 { 3287 3288 return free_wrq(sc, &sc->sge.mgmtq); 3289 } 3290 3291 int 3292 tnl_cong(struct port_info *pi, int drop) 3293 { 3294 3295 if (drop == -1) 3296 return (-1); 3297 else if (drop == 1) 3298 return (0); 3299 else 3300 return (pi->rx_e_chan_map); 3301 } 3302 3303 static int 3304 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx, 3305 struct sysctl_oid *oid) 3306 { 3307 int rc; 3308 struct adapter *sc = vi->pi->adapter; 3309 struct sysctl_oid_list *children; 3310 char name[16]; 3311 3312 rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx, 3313 tnl_cong(vi->pi, cong_drop)); 3314 if (rc != 0) 3315 return (rc); 3316 3317 if (idx == 0) 3318 sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id; 3319 else 3320 KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id, 3321 ("iq_base mismatch")); 3322 KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF, 3323 ("PF with non-zero iq_base")); 3324 3325 /* 3326 * The freelist is just barely above the starvation threshold right now, 3327 * fill it up a bit more. 3328 */ 3329 FL_LOCK(&rxq->fl); 3330 refill_fl(sc, &rxq->fl, 128); 3331 FL_UNLOCK(&rxq->fl); 3332 3333 #if defined(INET) || defined(INET6) 3334 rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs); 3335 if (rc != 0) 3336 return (rc); 3337 MPASS(rxq->lro.ifp == vi->ifp); /* also indicates LRO init'ed */ 3338 3339 if (vi->ifp->if_capenable & IFCAP_LRO) 3340 rxq->iq.flags |= IQ_LRO_ENABLED; 3341 #endif 3342 rxq->ifp = vi->ifp; 3343 3344 children = SYSCTL_CHILDREN(oid); 3345 3346 snprintf(name, sizeof(name), "%d", idx); 3347 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3348 NULL, "rx queue"); 3349 children = SYSCTL_CHILDREN(oid); 3350 3351 add_iq_sysctls(&vi->ctx, oid, &rxq->iq); 3352 #if defined(INET) || defined(INET6) 3353 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, 3354 &rxq->lro.lro_queued, 0, NULL); 3355 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, 3356 &rxq->lro.lro_flushed, 0, NULL); 3357 #endif 3358 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, 3359 &rxq->rxcsum, "# of times hardware assisted with checksum"); 3360 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction", 3361 CTLFLAG_RD, &rxq->vlan_extraction, 3362 "# of times hardware extracted 802.1Q tag"); 3363 3364 add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl); 3365 3366 return (rc); 3367 } 3368 3369 static int 3370 free_rxq(struct vi_info *vi, struct sge_rxq *rxq) 3371 { 3372 int rc; 3373 3374 #if defined(INET) || defined(INET6) 3375 if (rxq->lro.ifp) { 3376 tcp_lro_free(&rxq->lro); 3377 rxq->lro.ifp = NULL; 3378 } 3379 #endif 3380 3381 rc = free_iq_fl(vi, &rxq->iq, &rxq->fl); 3382 if (rc == 0) 3383 bzero(rxq, sizeof(*rxq)); 3384 3385 return (rc); 3386 } 3387 3388 #ifdef TCP_OFFLOAD 3389 static int 3390 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, 3391 int intr_idx, int idx, struct sysctl_oid *oid) 3392 { 3393 struct port_info *pi = vi->pi; 3394 int rc; 3395 struct sysctl_oid_list *children; 3396 char name[16]; 3397 3398 rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0); 3399 if (rc != 0) 3400 return (rc); 3401 3402 children = SYSCTL_CHILDREN(oid); 3403 3404 snprintf(name, sizeof(name), "%d", idx); 3405 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3406 NULL, "rx queue"); 3407 add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq); 3408 add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl); 3409 3410 return (rc); 3411 } 3412 3413 static int 3414 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq) 3415 { 3416 int rc; 3417 3418 rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl); 3419 if (rc == 0) 3420 bzero(ofld_rxq, sizeof(*ofld_rxq)); 3421 3422 return (rc); 3423 } 3424 #endif 3425 3426 #ifdef DEV_NETMAP 3427 static int 3428 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx, 3429 int idx, struct sysctl_oid *oid) 3430 { 3431 int rc; 3432 struct sysctl_oid_list *children; 3433 struct sysctl_ctx_list *ctx; 3434 char name[16]; 3435 size_t len; 3436 struct adapter *sc = vi->pi->adapter; 3437 struct netmap_adapter *na = NA(vi->ifp); 3438 3439 MPASS(na != NULL); 3440 3441 len = vi->qsize_rxq * IQ_ESIZE; 3442 rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map, 3443 &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc); 3444 if (rc != 0) 3445 return (rc); 3446 3447 len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len; 3448 rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map, 3449 &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc); 3450 if (rc != 0) 3451 return (rc); 3452 3453 nm_rxq->vi = vi; 3454 nm_rxq->nid = idx; 3455 nm_rxq->iq_cidx = 0; 3456 nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE; 3457 nm_rxq->iq_gen = F_RSPD_GEN; 3458 nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0; 3459 nm_rxq->fl_sidx = na->num_rx_desc; 3460 nm_rxq->intr_idx = intr_idx; 3461 nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID; 3462 3463 ctx = &vi->ctx; 3464 children = SYSCTL_CHILDREN(oid); 3465 3466 snprintf(name, sizeof(name), "%d", idx); 3467 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, 3468 "rx queue"); 3469 children = SYSCTL_CHILDREN(oid); 3470 3471 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", 3472 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16, 3473 "I", "absolute id of the queue"); 3474 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3475 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16, 3476 "I", "SGE context id of the queue"); 3477 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3478 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I", 3479 "consumer index"); 3480 3481 children = SYSCTL_CHILDREN(oid); 3482 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 3483 "freelist"); 3484 children = SYSCTL_CHILDREN(oid); 3485 3486 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3487 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16, 3488 "I", "SGE context id of the freelist"); 3489 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, 3490 &nm_rxq->fl_cidx, 0, "consumer index"); 3491 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, 3492 &nm_rxq->fl_pidx, 0, "producer index"); 3493 3494 return (rc); 3495 } 3496 3497 3498 static int 3499 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq) 3500 { 3501 struct adapter *sc = vi->pi->adapter; 3502 3503 if (vi->flags & VI_INIT_DONE) 3504 MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID); 3505 else 3506 MPASS(nm_rxq->iq_cntxt_id == 0); 3507 3508 free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba, 3509 nm_rxq->iq_desc); 3510 free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba, 3511 nm_rxq->fl_desc); 3512 3513 return (0); 3514 } 3515 3516 static int 3517 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx, 3518 struct sysctl_oid *oid) 3519 { 3520 int rc; 3521 size_t len; 3522 struct port_info *pi = vi->pi; 3523 struct adapter *sc = pi->adapter; 3524 struct netmap_adapter *na = NA(vi->ifp); 3525 char name[16]; 3526 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3527 3528 len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len; 3529 rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map, 3530 &nm_txq->ba, (void **)&nm_txq->desc); 3531 if (rc) 3532 return (rc); 3533 3534 nm_txq->pidx = nm_txq->cidx = 0; 3535 nm_txq->sidx = na->num_tx_desc; 3536 nm_txq->nid = idx; 3537 nm_txq->iqidx = iqidx; 3538 nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3539 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) | 3540 V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) | 3541 V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid))); 3542 nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID; 3543 3544 snprintf(name, sizeof(name), "%d", idx); 3545 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3546 NULL, "netmap tx queue"); 3547 children = SYSCTL_CHILDREN(oid); 3548 3549 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3550 &nm_txq->cntxt_id, 0, "SGE context id of the queue"); 3551 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3552 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I", 3553 "consumer index"); 3554 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 3555 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I", 3556 "producer index"); 3557 3558 return (rc); 3559 } 3560 3561 static int 3562 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq) 3563 { 3564 struct adapter *sc = vi->pi->adapter; 3565 3566 if (vi->flags & VI_INIT_DONE) 3567 MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID); 3568 else 3569 MPASS(nm_txq->cntxt_id == 0); 3570 3571 free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba, 3572 nm_txq->desc); 3573 3574 return (0); 3575 } 3576 #endif 3577 3578 static int 3579 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) 3580 { 3581 int rc, cntxt_id; 3582 struct fw_eq_ctrl_cmd c; 3583 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3584 3585 bzero(&c, sizeof(c)); 3586 3587 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | 3588 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | 3589 V_FW_EQ_CTRL_CMD_VFN(0)); 3590 c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC | 3591 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 3592 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); 3593 c.physeqid_pkd = htobe32(0); 3594 c.fetchszm_to_iqid = 3595 htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 3596 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | 3597 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); 3598 c.dcaen_to_eqsize = 3599 htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3600 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3601 V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 3602 V_FW_EQ_CTRL_CMD_EQSIZE(qsize)); 3603 c.eqaddr = htobe64(eq->ba); 3604 3605 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3606 if (rc != 0) { 3607 device_printf(sc->dev, 3608 "failed to create control queue %d: %d\n", eq->tx_chan, rc); 3609 return (rc); 3610 } 3611 eq->flags |= EQ_ALLOCATED; 3612 3613 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid)); 3614 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3615 if (cntxt_id >= sc->sge.neq) 3616 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3617 cntxt_id, sc->sge.neq - 1); 3618 sc->sge.eqmap[cntxt_id] = eq; 3619 3620 return (rc); 3621 } 3622 3623 static int 3624 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3625 { 3626 int rc, cntxt_id; 3627 struct fw_eq_eth_cmd c; 3628 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3629 3630 bzero(&c, sizeof(c)); 3631 3632 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | 3633 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | 3634 V_FW_EQ_ETH_CMD_VFN(0)); 3635 c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | 3636 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 3637 c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE | 3638 F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid)); 3639 c.fetchszm_to_iqid = 3640 htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3641 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | 3642 V_FW_EQ_ETH_CMD_IQID(eq->iqid)); 3643 c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3644 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3645 V_FW_EQ_ETH_CMD_EQSIZE(qsize)); 3646 c.eqaddr = htobe64(eq->ba); 3647 3648 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3649 if (rc != 0) { 3650 device_printf(vi->dev, 3651 "failed to create Ethernet egress queue: %d\n", rc); 3652 return (rc); 3653 } 3654 eq->flags |= EQ_ALLOCATED; 3655 3656 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); 3657 eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd)); 3658 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3659 if (cntxt_id >= sc->sge.neq) 3660 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3661 cntxt_id, sc->sge.neq - 1); 3662 sc->sge.eqmap[cntxt_id] = eq; 3663 3664 return (rc); 3665 } 3666 3667 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 3668 static int 3669 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3670 { 3671 int rc, cntxt_id; 3672 struct fw_eq_ofld_cmd c; 3673 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3674 3675 bzero(&c, sizeof(c)); 3676 3677 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | 3678 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | 3679 V_FW_EQ_OFLD_CMD_VFN(0)); 3680 c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | 3681 F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 3682 c.fetchszm_to_iqid = 3683 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3684 V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | 3685 F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); 3686 c.dcaen_to_eqsize = 3687 htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3688 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3689 V_FW_EQ_OFLD_CMD_EQSIZE(qsize)); 3690 c.eqaddr = htobe64(eq->ba); 3691 3692 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3693 if (rc != 0) { 3694 device_printf(vi->dev, 3695 "failed to create egress queue for TCP offload: %d\n", rc); 3696 return (rc); 3697 } 3698 eq->flags |= EQ_ALLOCATED; 3699 3700 eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd)); 3701 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3702 if (cntxt_id >= sc->sge.neq) 3703 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3704 cntxt_id, sc->sge.neq - 1); 3705 sc->sge.eqmap[cntxt_id] = eq; 3706 3707 return (rc); 3708 } 3709 #endif 3710 3711 static int 3712 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3713 { 3714 int rc, qsize; 3715 size_t len; 3716 3717 mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); 3718 3719 qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3720 len = qsize * EQ_ESIZE; 3721 rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, 3722 &eq->ba, (void **)&eq->desc); 3723 if (rc) 3724 return (rc); 3725 3726 eq->pidx = eq->cidx = 0; 3727 eq->equeqidx = eq->dbidx = 0; 3728 eq->doorbells = sc->doorbells; 3729 3730 switch (eq->flags & EQ_TYPEMASK) { 3731 case EQ_CTRL: 3732 rc = ctrl_eq_alloc(sc, eq); 3733 break; 3734 3735 case EQ_ETH: 3736 rc = eth_eq_alloc(sc, vi, eq); 3737 break; 3738 3739 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 3740 case EQ_OFLD: 3741 rc = ofld_eq_alloc(sc, vi, eq); 3742 break; 3743 #endif 3744 3745 default: 3746 panic("%s: invalid eq type %d.", __func__, 3747 eq->flags & EQ_TYPEMASK); 3748 } 3749 if (rc != 0) { 3750 device_printf(sc->dev, 3751 "failed to allocate egress queue(%d): %d\n", 3752 eq->flags & EQ_TYPEMASK, rc); 3753 } 3754 3755 if (isset(&eq->doorbells, DOORBELL_UDB) || 3756 isset(&eq->doorbells, DOORBELL_UDBWC) || 3757 isset(&eq->doorbells, DOORBELL_WCWR)) { 3758 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 3759 uint32_t mask = (1 << s_qpp) - 1; 3760 volatile uint8_t *udb; 3761 3762 udb = sc->udbs_base + UDBS_DB_OFFSET; 3763 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */ 3764 eq->udb_qid = eq->cntxt_id & mask; /* id in page */ 3765 if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE) 3766 clrbit(&eq->doorbells, DOORBELL_WCWR); 3767 else { 3768 udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */ 3769 eq->udb_qid = 0; 3770 } 3771 eq->udb = (volatile void *)udb; 3772 } 3773 3774 return (rc); 3775 } 3776 3777 static int 3778 free_eq(struct adapter *sc, struct sge_eq *eq) 3779 { 3780 int rc; 3781 3782 if (eq->flags & EQ_ALLOCATED) { 3783 switch (eq->flags & EQ_TYPEMASK) { 3784 case EQ_CTRL: 3785 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, 3786 eq->cntxt_id); 3787 break; 3788 3789 case EQ_ETH: 3790 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, 3791 eq->cntxt_id); 3792 break; 3793 3794 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 3795 case EQ_OFLD: 3796 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, 3797 eq->cntxt_id); 3798 break; 3799 #endif 3800 3801 default: 3802 panic("%s: invalid eq type %d.", __func__, 3803 eq->flags & EQ_TYPEMASK); 3804 } 3805 if (rc != 0) { 3806 device_printf(sc->dev, 3807 "failed to free egress queue (%d): %d\n", 3808 eq->flags & EQ_TYPEMASK, rc); 3809 return (rc); 3810 } 3811 eq->flags &= ~EQ_ALLOCATED; 3812 } 3813 3814 free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); 3815 3816 if (mtx_initialized(&eq->eq_lock)) 3817 mtx_destroy(&eq->eq_lock); 3818 3819 bzero(eq, sizeof(*eq)); 3820 return (0); 3821 } 3822 3823 static int 3824 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq, 3825 struct sysctl_oid *oid) 3826 { 3827 int rc; 3828 struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx; 3829 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3830 3831 rc = alloc_eq(sc, vi, &wrq->eq); 3832 if (rc) 3833 return (rc); 3834 3835 wrq->adapter = sc; 3836 TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq); 3837 TAILQ_INIT(&wrq->incomplete_wrs); 3838 STAILQ_INIT(&wrq->wr_list); 3839 wrq->nwr_pending = 0; 3840 wrq->ndesc_needed = 0; 3841 3842 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 3843 &wrq->eq.ba, "bus address of descriptor ring"); 3844 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3845 wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len, 3846 "desc ring size in bytes"); 3847 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3848 &wrq->eq.cntxt_id, 0, "SGE context id of the queue"); 3849 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3850 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I", 3851 "consumer index"); 3852 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx", 3853 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I", 3854 "producer index"); 3855 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL, 3856 wrq->eq.sidx, "status page index"); 3857 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD, 3858 &wrq->tx_wrs_direct, "# of work requests (direct)"); 3859 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD, 3860 &wrq->tx_wrs_copied, "# of work requests (copied)"); 3861 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD, 3862 &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)"); 3863 3864 return (rc); 3865 } 3866 3867 static int 3868 free_wrq(struct adapter *sc, struct sge_wrq *wrq) 3869 { 3870 int rc; 3871 3872 rc = free_eq(sc, &wrq->eq); 3873 if (rc) 3874 return (rc); 3875 3876 bzero(wrq, sizeof(*wrq)); 3877 return (0); 3878 } 3879 3880 static int 3881 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx, 3882 struct sysctl_oid *oid) 3883 { 3884 int rc; 3885 struct port_info *pi = vi->pi; 3886 struct adapter *sc = pi->adapter; 3887 struct sge_eq *eq = &txq->eq; 3888 char name[16]; 3889 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3890 3891 rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx, 3892 M_CXGBE, M_WAITOK); 3893 if (rc != 0) { 3894 device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc); 3895 return (rc); 3896 } 3897 3898 rc = alloc_eq(sc, vi, eq); 3899 if (rc != 0) { 3900 mp_ring_free(txq->r); 3901 txq->r = NULL; 3902 return (rc); 3903 } 3904 3905 /* Can't fail after this point. */ 3906 3907 if (idx == 0) 3908 sc->sge.eq_base = eq->abs_id - eq->cntxt_id; 3909 else 3910 KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id, 3911 ("eq_base mismatch")); 3912 KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF, 3913 ("PF with non-zero eq_base")); 3914 3915 TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq); 3916 txq->ifp = vi->ifp; 3917 txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK); 3918 if (sc->flags & IS_VF) 3919 txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 3920 V_TXPKT_INTF(pi->tx_chan)); 3921 else 3922 txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3923 V_TXPKT_INTF(pi->tx_chan) | 3924 V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) | 3925 V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) | 3926 V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid))); 3927 txq->tc_idx = -1; 3928 txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE, 3929 M_ZERO | M_WAITOK); 3930 3931 snprintf(name, sizeof(name), "%d", idx); 3932 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3933 NULL, "tx queue"); 3934 children = SYSCTL_CHILDREN(oid); 3935 3936 SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 3937 &eq->ba, "bus address of descriptor ring"); 3938 SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3939 eq->sidx * EQ_ESIZE + sc->params.sge.spg_len, 3940 "desc ring size in bytes"); 3941 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD, 3942 &eq->abs_id, 0, "absolute id of the queue"); 3943 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3944 &eq->cntxt_id, 0, "SGE context id of the queue"); 3945 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3946 CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I", 3947 "consumer index"); 3948 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 3949 CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I", 3950 "producer index"); 3951 SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL, 3952 eq->sidx, "status page index"); 3953 3954 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc", 3955 CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I", 3956 "traffic class (-1 means none)"); 3957 3958 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, 3959 &txq->txcsum, "# of times hardware assisted with checksum"); 3960 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion", 3961 CTLFLAG_RD, &txq->vlan_insertion, 3962 "# of times hardware inserted 802.1Q tag"); 3963 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, 3964 &txq->tso_wrs, "# of TSO work requests"); 3965 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, 3966 &txq->imm_wrs, "# of work requests with immediate data"); 3967 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, 3968 &txq->sgl_wrs, "# of work requests with direct SGL"); 3969 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, 3970 &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); 3971 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs", 3972 CTLFLAG_RD, &txq->txpkts0_wrs, 3973 "# of txpkts (type 0) work requests"); 3974 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs", 3975 CTLFLAG_RD, &txq->txpkts1_wrs, 3976 "# of txpkts (type 1) work requests"); 3977 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts", 3978 CTLFLAG_RD, &txq->txpkts0_pkts, 3979 "# of frames tx'd using type0 txpkts work requests"); 3980 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts", 3981 CTLFLAG_RD, &txq->txpkts1_pkts, 3982 "# of frames tx'd using type1 txpkts work requests"); 3983 3984 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues", 3985 CTLFLAG_RD, &txq->r->enqueues, 3986 "# of enqueues to the mp_ring for this queue"); 3987 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops", 3988 CTLFLAG_RD, &txq->r->drops, 3989 "# of drops in the mp_ring for this queue"); 3990 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts", 3991 CTLFLAG_RD, &txq->r->starts, 3992 "# of normal consumer starts in the mp_ring for this queue"); 3993 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls", 3994 CTLFLAG_RD, &txq->r->stalls, 3995 "# of consumer stalls in the mp_ring for this queue"); 3996 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts", 3997 CTLFLAG_RD, &txq->r->restarts, 3998 "# of consumer restarts in the mp_ring for this queue"); 3999 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications", 4000 CTLFLAG_RD, &txq->r->abdications, 4001 "# of consumer abdications in the mp_ring for this queue"); 4002 4003 return (0); 4004 } 4005 4006 static int 4007 free_txq(struct vi_info *vi, struct sge_txq *txq) 4008 { 4009 int rc; 4010 struct adapter *sc = vi->pi->adapter; 4011 struct sge_eq *eq = &txq->eq; 4012 4013 rc = free_eq(sc, eq); 4014 if (rc) 4015 return (rc); 4016 4017 sglist_free(txq->gl); 4018 free(txq->sdesc, M_CXGBE); 4019 mp_ring_free(txq->r); 4020 4021 bzero(txq, sizeof(*txq)); 4022 return (0); 4023 } 4024 4025 static void 4026 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) 4027 { 4028 bus_addr_t *ba = arg; 4029 4030 KASSERT(nseg == 1, 4031 ("%s meant for single segment mappings only.", __func__)); 4032 4033 *ba = error ? 0 : segs->ds_addr; 4034 } 4035 4036 static inline void 4037 ring_fl_db(struct adapter *sc, struct sge_fl *fl) 4038 { 4039 uint32_t n, v; 4040 4041 n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx); 4042 MPASS(n > 0); 4043 4044 wmb(); 4045 v = fl->dbval | V_PIDX(n); 4046 if (fl->udb) 4047 *fl->udb = htole32(v); 4048 else 4049 t4_write_reg(sc, sc->sge_kdoorbell_reg, v); 4050 IDXINCR(fl->dbidx, n, fl->sidx); 4051 } 4052 4053 /* 4054 * Fills up the freelist by allocating up to 'n' buffers. Buffers that are 4055 * recycled do not count towards this allocation budget. 4056 * 4057 * Returns non-zero to indicate that this freelist should be added to the list 4058 * of starving freelists. 4059 */ 4060 static int 4061 refill_fl(struct adapter *sc, struct sge_fl *fl, int n) 4062 { 4063 __be64 *d; 4064 struct fl_sdesc *sd; 4065 uintptr_t pa; 4066 caddr_t cl; 4067 struct cluster_layout *cll; 4068 struct sw_zone_info *swz; 4069 struct cluster_metadata *clm; 4070 uint16_t max_pidx; 4071 uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */ 4072 4073 FL_LOCK_ASSERT_OWNED(fl); 4074 4075 /* 4076 * We always stop at the beginning of the hardware descriptor that's just 4077 * before the one with the hw cidx. This is to avoid hw pidx = hw cidx, 4078 * which would mean an empty freelist to the chip. 4079 */ 4080 max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1; 4081 if (fl->pidx == max_pidx * 8) 4082 return (0); 4083 4084 d = &fl->desc[fl->pidx]; 4085 sd = &fl->sdesc[fl->pidx]; 4086 cll = &fl->cll_def; /* default layout */ 4087 swz = &sc->sge.sw_zone_info[cll->zidx]; 4088 4089 while (n > 0) { 4090 4091 if (sd->cl != NULL) { 4092 4093 if (sd->nmbuf == 0) { 4094 /* 4095 * Fast recycle without involving any atomics on 4096 * the cluster's metadata (if the cluster has 4097 * metadata). This happens when all frames 4098 * received in the cluster were small enough to 4099 * fit within a single mbuf each. 4100 */ 4101 fl->cl_fast_recycled++; 4102 #ifdef INVARIANTS 4103 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 4104 if (clm != NULL) 4105 MPASS(clm->refcount == 1); 4106 #endif 4107 goto recycled_fast; 4108 } 4109 4110 /* 4111 * Cluster is guaranteed to have metadata. Clusters 4112 * without metadata always take the fast recycle path 4113 * when they're recycled. 4114 */ 4115 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 4116 MPASS(clm != NULL); 4117 4118 if (atomic_fetchadd_int(&clm->refcount, -1) == 1) { 4119 fl->cl_recycled++; 4120 counter_u64_add(extfree_rels, 1); 4121 goto recycled; 4122 } 4123 sd->cl = NULL; /* gave up my reference */ 4124 } 4125 MPASS(sd->cl == NULL); 4126 alloc: 4127 cl = uma_zalloc(swz->zone, M_NOWAIT); 4128 if (__predict_false(cl == NULL)) { 4129 if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 || 4130 fl->cll_def.zidx == fl->cll_alt.zidx) 4131 break; 4132 4133 /* fall back to the safe zone */ 4134 cll = &fl->cll_alt; 4135 swz = &sc->sge.sw_zone_info[cll->zidx]; 4136 goto alloc; 4137 } 4138 fl->cl_allocated++; 4139 n--; 4140 4141 pa = pmap_kextract((vm_offset_t)cl); 4142 pa += cll->region1; 4143 sd->cl = cl; 4144 sd->cll = *cll; 4145 *d = htobe64(pa | cll->hwidx); 4146 clm = cl_metadata(sc, fl, cll, cl); 4147 if (clm != NULL) { 4148 recycled: 4149 #ifdef INVARIANTS 4150 clm->sd = sd; 4151 #endif 4152 clm->refcount = 1; 4153 } 4154 sd->nmbuf = 0; 4155 recycled_fast: 4156 d++; 4157 sd++; 4158 if (__predict_false(++fl->pidx % 8 == 0)) { 4159 uint16_t pidx = fl->pidx / 8; 4160 4161 if (__predict_false(pidx == fl->sidx)) { 4162 fl->pidx = 0; 4163 pidx = 0; 4164 sd = fl->sdesc; 4165 d = fl->desc; 4166 } 4167 if (pidx == max_pidx) 4168 break; 4169 4170 if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4) 4171 ring_fl_db(sc, fl); 4172 } 4173 } 4174 4175 if (fl->pidx / 8 != fl->dbidx) 4176 ring_fl_db(sc, fl); 4177 4178 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); 4179 } 4180 4181 /* 4182 * Attempt to refill all starving freelists. 4183 */ 4184 static void 4185 refill_sfl(void *arg) 4186 { 4187 struct adapter *sc = arg; 4188 struct sge_fl *fl, *fl_temp; 4189 4190 mtx_assert(&sc->sfl_lock, MA_OWNED); 4191 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { 4192 FL_LOCK(fl); 4193 refill_fl(sc, fl, 64); 4194 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { 4195 TAILQ_REMOVE(&sc->sfl, fl, link); 4196 fl->flags &= ~FL_STARVING; 4197 } 4198 FL_UNLOCK(fl); 4199 } 4200 4201 if (!TAILQ_EMPTY(&sc->sfl)) 4202 callout_schedule(&sc->sfl_callout, hz / 5); 4203 } 4204 4205 static int 4206 alloc_fl_sdesc(struct sge_fl *fl) 4207 { 4208 4209 fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE, 4210 M_ZERO | M_WAITOK); 4211 4212 return (0); 4213 } 4214 4215 static void 4216 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl) 4217 { 4218 struct fl_sdesc *sd; 4219 struct cluster_metadata *clm; 4220 struct cluster_layout *cll; 4221 int i; 4222 4223 sd = fl->sdesc; 4224 for (i = 0; i < fl->sidx * 8; i++, sd++) { 4225 if (sd->cl == NULL) 4226 continue; 4227 4228 cll = &sd->cll; 4229 clm = cl_metadata(sc, fl, cll, sd->cl); 4230 if (sd->nmbuf == 0) 4231 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 4232 else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) { 4233 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 4234 counter_u64_add(extfree_rels, 1); 4235 } 4236 sd->cl = NULL; 4237 } 4238 4239 free(fl->sdesc, M_CXGBE); 4240 fl->sdesc = NULL; 4241 } 4242 4243 static inline void 4244 get_pkt_gl(struct mbuf *m, struct sglist *gl) 4245 { 4246 int rc; 4247 4248 M_ASSERTPKTHDR(m); 4249 4250 sglist_reset(gl); 4251 rc = sglist_append_mbuf(gl, m); 4252 if (__predict_false(rc != 0)) { 4253 panic("%s: mbuf %p (%d segs) was vetted earlier but now fails " 4254 "with %d.", __func__, m, mbuf_nsegs(m), rc); 4255 } 4256 4257 KASSERT(gl->sg_nseg == mbuf_nsegs(m), 4258 ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m, 4259 mbuf_nsegs(m), gl->sg_nseg)); 4260 KASSERT(gl->sg_nseg > 0 && 4261 gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS), 4262 ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__, 4263 gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)); 4264 } 4265 4266 /* 4267 * len16 for a txpkt WR with a GL. Includes the firmware work request header. 4268 */ 4269 static inline u_int 4270 txpkt_len16(u_int nsegs, u_int tso) 4271 { 4272 u_int n; 4273 4274 MPASS(nsegs > 0); 4275 4276 nsegs--; /* first segment is part of ulptx_sgl */ 4277 n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) + 4278 sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 4279 if (tso) 4280 n += sizeof(struct cpl_tx_pkt_lso_core); 4281 4282 return (howmany(n, 16)); 4283 } 4284 4285 /* 4286 * len16 for a txpkt_vm WR with a GL. Includes the firmware work 4287 * request header. 4288 */ 4289 static inline u_int 4290 txpkt_vm_len16(u_int nsegs, u_int tso) 4291 { 4292 u_int n; 4293 4294 MPASS(nsegs > 0); 4295 4296 nsegs--; /* first segment is part of ulptx_sgl */ 4297 n = sizeof(struct fw_eth_tx_pkt_vm_wr) + 4298 sizeof(struct cpl_tx_pkt_core) + 4299 sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 4300 if (tso) 4301 n += sizeof(struct cpl_tx_pkt_lso_core); 4302 4303 return (howmany(n, 16)); 4304 } 4305 4306 /* 4307 * len16 for a txpkts type 0 WR with a GL. Does not include the firmware work 4308 * request header. 4309 */ 4310 static inline u_int 4311 txpkts0_len16(u_int nsegs) 4312 { 4313 u_int n; 4314 4315 MPASS(nsegs > 0); 4316 4317 nsegs--; /* first segment is part of ulptx_sgl */ 4318 n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) + 4319 sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 4320 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 4321 4322 return (howmany(n, 16)); 4323 } 4324 4325 /* 4326 * len16 for a txpkts type 1 WR with a GL. Does not include the firmware work 4327 * request header. 4328 */ 4329 static inline u_int 4330 txpkts1_len16(void) 4331 { 4332 u_int n; 4333 4334 n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl); 4335 4336 return (howmany(n, 16)); 4337 } 4338 4339 static inline u_int 4340 imm_payload(u_int ndesc) 4341 { 4342 u_int n; 4343 4344 n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) - 4345 sizeof(struct cpl_tx_pkt_core); 4346 4347 return (n); 4348 } 4349 4350 /* 4351 * Write a VM txpkt WR for this packet to the hardware descriptors, update the 4352 * software descriptor, and advance the pidx. It is guaranteed that enough 4353 * descriptors are available. 4354 * 4355 * The return value is the # of hardware descriptors used. 4356 */ 4357 static u_int 4358 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, 4359 struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available) 4360 { 4361 struct sge_eq *eq = &txq->eq; 4362 struct tx_sdesc *txsd; 4363 struct cpl_tx_pkt_core *cpl; 4364 uint32_t ctrl; /* used in many unrelated places */ 4365 uint64_t ctrl1; 4366 int csum_type, len16, ndesc, pktlen, nsegs; 4367 caddr_t dst; 4368 4369 TXQ_LOCK_ASSERT_OWNED(txq); 4370 M_ASSERTPKTHDR(m0); 4371 MPASS(available > 0 && available < eq->sidx); 4372 4373 len16 = mbuf_len16(m0); 4374 nsegs = mbuf_nsegs(m0); 4375 pktlen = m0->m_pkthdr.len; 4376 ctrl = sizeof(struct cpl_tx_pkt_core); 4377 if (needs_tso(m0)) 4378 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 4379 ndesc = howmany(len16, EQ_ESIZE / 16); 4380 MPASS(ndesc <= available); 4381 4382 /* Firmware work request header */ 4383 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4384 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) | 4385 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 4386 4387 ctrl = V_FW_WR_LEN16(len16); 4388 wr->equiq_to_len16 = htobe32(ctrl); 4389 wr->r3[0] = 0; 4390 wr->r3[1] = 0; 4391 4392 /* 4393 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci. 4394 * vlantci is ignored unless the ethtype is 0x8100, so it's 4395 * simpler to always copy it rather than making it 4396 * conditional. Also, it seems that we do not have to set 4397 * vlantci or fake the ethtype when doing VLAN tag insertion. 4398 */ 4399 m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst); 4400 4401 csum_type = -1; 4402 if (needs_tso(m0)) { 4403 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 4404 4405 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 4406 m0->m_pkthdr.l4hlen > 0, 4407 ("%s: mbuf %p needs TSO but missing header lengths", 4408 __func__, m0)); 4409 4410 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 4411 F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) 4412 | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 4413 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 4414 ctrl |= V_LSO_ETHHDR_LEN(1); 4415 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4416 ctrl |= F_LSO_IPV6; 4417 4418 lso->lso_ctrl = htobe32(ctrl); 4419 lso->ipid_ofst = htobe16(0); 4420 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 4421 lso->seqno_offset = htobe32(0); 4422 lso->len = htobe32(pktlen); 4423 4424 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4425 csum_type = TX_CSUM_TCPIP6; 4426 else 4427 csum_type = TX_CSUM_TCPIP; 4428 4429 cpl = (void *)(lso + 1); 4430 4431 txq->tso_wrs++; 4432 } else { 4433 if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP) 4434 csum_type = TX_CSUM_TCPIP; 4435 else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP) 4436 csum_type = TX_CSUM_UDPIP; 4437 else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP) 4438 csum_type = TX_CSUM_TCPIP6; 4439 else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP) 4440 csum_type = TX_CSUM_UDPIP6; 4441 #if defined(INET) 4442 else if (m0->m_pkthdr.csum_flags & CSUM_IP) { 4443 /* 4444 * XXX: The firmware appears to stomp on the 4445 * fragment/flags field of the IP header when 4446 * using TX_CSUM_IP. Fall back to doing 4447 * software checksums. 4448 */ 4449 u_short *sump; 4450 struct mbuf *m; 4451 int offset; 4452 4453 m = m0; 4454 offset = 0; 4455 sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen + 4456 offsetof(struct ip, ip_sum)); 4457 *sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen + 4458 m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen); 4459 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 4460 } 4461 #endif 4462 4463 cpl = (void *)(wr + 1); 4464 } 4465 4466 /* Checksum offload */ 4467 ctrl1 = 0; 4468 if (needs_l3_csum(m0) == 0) 4469 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4470 if (csum_type >= 0) { 4471 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0, 4472 ("%s: mbuf %p needs checksum offload but missing header lengths", 4473 __func__, m0)); 4474 4475 if (chip_id(sc) <= CHELSIO_T5) { 4476 ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen - 4477 ETHER_HDR_LEN); 4478 } else { 4479 ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen - 4480 ETHER_HDR_LEN); 4481 } 4482 ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen); 4483 ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type); 4484 } else 4485 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4486 if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4487 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4488 txq->txcsum++; /* some hardware assistance provided */ 4489 4490 /* VLAN tag insertion */ 4491 if (needs_vlan_insertion(m0)) { 4492 ctrl1 |= F_TXPKT_VLAN_VLD | 4493 V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 4494 txq->vlan_insertion++; 4495 } 4496 4497 /* CPL header */ 4498 cpl->ctrl0 = txq->cpl_ctrl0; 4499 cpl->pack = 0; 4500 cpl->len = htobe16(pktlen); 4501 cpl->ctrl1 = htobe64(ctrl1); 4502 4503 /* SGL */ 4504 dst = (void *)(cpl + 1); 4505 4506 /* 4507 * A packet using TSO will use up an entire descriptor for the 4508 * firmware work request header, LSO CPL, and TX_PKT_XT CPL. 4509 * If this descriptor is the last descriptor in the ring, wrap 4510 * around to the front of the ring explicitly for the start of 4511 * the sgl. 4512 */ 4513 if (dst == (void *)&eq->desc[eq->sidx]) { 4514 dst = (void *)&eq->desc[0]; 4515 write_gl_to_txd(txq, m0, &dst, 0); 4516 } else 4517 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); 4518 txq->sgl_wrs++; 4519 4520 txq->txpkt_wrs++; 4521 4522 txsd = &txq->sdesc[eq->pidx]; 4523 txsd->m = m0; 4524 txsd->desc_used = ndesc; 4525 4526 return (ndesc); 4527 } 4528 4529 /* 4530 * Write a txpkt WR for this packet to the hardware descriptors, update the 4531 * software descriptor, and advance the pidx. It is guaranteed that enough 4532 * descriptors are available. 4533 * 4534 * The return value is the # of hardware descriptors used. 4535 */ 4536 static u_int 4537 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr, 4538 struct mbuf *m0, u_int available) 4539 { 4540 struct sge_eq *eq = &txq->eq; 4541 struct tx_sdesc *txsd; 4542 struct cpl_tx_pkt_core *cpl; 4543 uint32_t ctrl; /* used in many unrelated places */ 4544 uint64_t ctrl1; 4545 int len16, ndesc, pktlen, nsegs; 4546 caddr_t dst; 4547 4548 TXQ_LOCK_ASSERT_OWNED(txq); 4549 M_ASSERTPKTHDR(m0); 4550 MPASS(available > 0 && available < eq->sidx); 4551 4552 len16 = mbuf_len16(m0); 4553 nsegs = mbuf_nsegs(m0); 4554 pktlen = m0->m_pkthdr.len; 4555 ctrl = sizeof(struct cpl_tx_pkt_core); 4556 if (needs_tso(m0)) 4557 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 4558 else if (pktlen <= imm_payload(2) && available >= 2) { 4559 /* Immediate data. Recalculate len16 and set nsegs to 0. */ 4560 ctrl += pktlen; 4561 len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) + 4562 sizeof(struct cpl_tx_pkt_core) + pktlen, 16); 4563 nsegs = 0; 4564 } 4565 ndesc = howmany(len16, EQ_ESIZE / 16); 4566 MPASS(ndesc <= available); 4567 4568 /* Firmware work request header */ 4569 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4570 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | 4571 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 4572 4573 ctrl = V_FW_WR_LEN16(len16); 4574 wr->equiq_to_len16 = htobe32(ctrl); 4575 wr->r3 = 0; 4576 4577 if (needs_tso(m0)) { 4578 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 4579 4580 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 4581 m0->m_pkthdr.l4hlen > 0, 4582 ("%s: mbuf %p needs TSO but missing header lengths", 4583 __func__, m0)); 4584 4585 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 4586 F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) 4587 | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 4588 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 4589 ctrl |= V_LSO_ETHHDR_LEN(1); 4590 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4591 ctrl |= F_LSO_IPV6; 4592 4593 lso->lso_ctrl = htobe32(ctrl); 4594 lso->ipid_ofst = htobe16(0); 4595 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 4596 lso->seqno_offset = htobe32(0); 4597 lso->len = htobe32(pktlen); 4598 4599 cpl = (void *)(lso + 1); 4600 4601 txq->tso_wrs++; 4602 } else 4603 cpl = (void *)(wr + 1); 4604 4605 /* Checksum offload */ 4606 ctrl1 = 0; 4607 if (needs_l3_csum(m0) == 0) 4608 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4609 if (needs_l4_csum(m0) == 0) 4610 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4611 if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4612 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4613 txq->txcsum++; /* some hardware assistance provided */ 4614 4615 /* VLAN tag insertion */ 4616 if (needs_vlan_insertion(m0)) { 4617 ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 4618 txq->vlan_insertion++; 4619 } 4620 4621 /* CPL header */ 4622 cpl->ctrl0 = txq->cpl_ctrl0; 4623 cpl->pack = 0; 4624 cpl->len = htobe16(pktlen); 4625 cpl->ctrl1 = htobe64(ctrl1); 4626 4627 /* SGL */ 4628 dst = (void *)(cpl + 1); 4629 if (nsegs > 0) { 4630 4631 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); 4632 txq->sgl_wrs++; 4633 } else { 4634 struct mbuf *m; 4635 4636 for (m = m0; m != NULL; m = m->m_next) { 4637 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); 4638 #ifdef INVARIANTS 4639 pktlen -= m->m_len; 4640 #endif 4641 } 4642 #ifdef INVARIANTS 4643 KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen)); 4644 #endif 4645 txq->imm_wrs++; 4646 } 4647 4648 txq->txpkt_wrs++; 4649 4650 txsd = &txq->sdesc[eq->pidx]; 4651 txsd->m = m0; 4652 txsd->desc_used = ndesc; 4653 4654 return (ndesc); 4655 } 4656 4657 static int 4658 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available) 4659 { 4660 u_int needed, nsegs1, nsegs2, l1, l2; 4661 4662 if (cannot_use_txpkts(m) || cannot_use_txpkts(n)) 4663 return (1); 4664 4665 nsegs1 = mbuf_nsegs(m); 4666 nsegs2 = mbuf_nsegs(n); 4667 if (nsegs1 + nsegs2 == 2) { 4668 txp->wr_type = 1; 4669 l1 = l2 = txpkts1_len16(); 4670 } else { 4671 txp->wr_type = 0; 4672 l1 = txpkts0_len16(nsegs1); 4673 l2 = txpkts0_len16(nsegs2); 4674 } 4675 txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2; 4676 needed = howmany(txp->len16, EQ_ESIZE / 16); 4677 if (needed > SGE_MAX_WR_NDESC || needed > available) 4678 return (1); 4679 4680 txp->plen = m->m_pkthdr.len + n->m_pkthdr.len; 4681 if (txp->plen > 65535) 4682 return (1); 4683 4684 txp->npkt = 2; 4685 set_mbuf_len16(m, l1); 4686 set_mbuf_len16(n, l2); 4687 4688 return (0); 4689 } 4690 4691 static int 4692 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available) 4693 { 4694 u_int plen, len16, needed, nsegs; 4695 4696 MPASS(txp->wr_type == 0 || txp->wr_type == 1); 4697 4698 nsegs = mbuf_nsegs(m); 4699 if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1)) 4700 return (1); 4701 4702 plen = txp->plen + m->m_pkthdr.len; 4703 if (plen > 65535) 4704 return (1); 4705 4706 if (txp->wr_type == 0) 4707 len16 = txpkts0_len16(nsegs); 4708 else 4709 len16 = txpkts1_len16(); 4710 needed = howmany(txp->len16 + len16, EQ_ESIZE / 16); 4711 if (needed > SGE_MAX_WR_NDESC || needed > available) 4712 return (1); 4713 4714 txp->npkt++; 4715 txp->plen = plen; 4716 txp->len16 += len16; 4717 set_mbuf_len16(m, len16); 4718 4719 return (0); 4720 } 4721 4722 /* 4723 * Write a txpkts WR for the packets in txp to the hardware descriptors, update 4724 * the software descriptor, and advance the pidx. It is guaranteed that enough 4725 * descriptors are available. 4726 * 4727 * The return value is the # of hardware descriptors used. 4728 */ 4729 static u_int 4730 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr, 4731 struct mbuf *m0, const struct txpkts *txp, u_int available) 4732 { 4733 struct sge_eq *eq = &txq->eq; 4734 struct tx_sdesc *txsd; 4735 struct cpl_tx_pkt_core *cpl; 4736 uint32_t ctrl; 4737 uint64_t ctrl1; 4738 int ndesc, checkwrap; 4739 struct mbuf *m; 4740 void *flitp; 4741 4742 TXQ_LOCK_ASSERT_OWNED(txq); 4743 MPASS(txp->npkt > 0); 4744 MPASS(txp->plen < 65536); 4745 MPASS(m0 != NULL); 4746 MPASS(m0->m_nextpkt != NULL); 4747 MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16)); 4748 MPASS(available > 0 && available < eq->sidx); 4749 4750 ndesc = howmany(txp->len16, EQ_ESIZE / 16); 4751 MPASS(ndesc <= available); 4752 4753 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4754 wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)); 4755 ctrl = V_FW_WR_LEN16(txp->len16); 4756 wr->equiq_to_len16 = htobe32(ctrl); 4757 wr->plen = htobe16(txp->plen); 4758 wr->npkt = txp->npkt; 4759 wr->r3 = 0; 4760 wr->type = txp->wr_type; 4761 flitp = wr + 1; 4762 4763 /* 4764 * At this point we are 16B into a hardware descriptor. If checkwrap is 4765 * set then we know the WR is going to wrap around somewhere. We'll 4766 * check for that at appropriate points. 4767 */ 4768 checkwrap = eq->sidx - ndesc < eq->pidx; 4769 for (m = m0; m != NULL; m = m->m_nextpkt) { 4770 if (txp->wr_type == 0) { 4771 struct ulp_txpkt *ulpmc; 4772 struct ulptx_idata *ulpsc; 4773 4774 /* ULP master command */ 4775 ulpmc = flitp; 4776 ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) | 4777 V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid)); 4778 ulpmc->len = htobe32(mbuf_len16(m)); 4779 4780 /* ULP subcommand */ 4781 ulpsc = (void *)(ulpmc + 1); 4782 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) | 4783 F_ULP_TX_SC_MORE); 4784 ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); 4785 4786 cpl = (void *)(ulpsc + 1); 4787 if (checkwrap && 4788 (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx]) 4789 cpl = (void *)&eq->desc[0]; 4790 } else { 4791 cpl = flitp; 4792 } 4793 4794 /* Checksum offload */ 4795 ctrl1 = 0; 4796 if (needs_l3_csum(m) == 0) 4797 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4798 if (needs_l4_csum(m) == 0) 4799 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4800 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4801 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4802 txq->txcsum++; /* some hardware assistance provided */ 4803 4804 /* VLAN tag insertion */ 4805 if (needs_vlan_insertion(m)) { 4806 ctrl1 |= F_TXPKT_VLAN_VLD | 4807 V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); 4808 txq->vlan_insertion++; 4809 } 4810 4811 /* CPL header */ 4812 cpl->ctrl0 = txq->cpl_ctrl0; 4813 cpl->pack = 0; 4814 cpl->len = htobe16(m->m_pkthdr.len); 4815 cpl->ctrl1 = htobe64(ctrl1); 4816 4817 flitp = cpl + 1; 4818 if (checkwrap && 4819 (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx]) 4820 flitp = (void *)&eq->desc[0]; 4821 4822 write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap); 4823 4824 } 4825 4826 if (txp->wr_type == 0) { 4827 txq->txpkts0_pkts += txp->npkt; 4828 txq->txpkts0_wrs++; 4829 } else { 4830 txq->txpkts1_pkts += txp->npkt; 4831 txq->txpkts1_wrs++; 4832 } 4833 4834 txsd = &txq->sdesc[eq->pidx]; 4835 txsd->m = m0; 4836 txsd->desc_used = ndesc; 4837 4838 return (ndesc); 4839 } 4840 4841 /* 4842 * If the SGL ends on an address that is not 16 byte aligned, this function will 4843 * add a 0 filled flit at the end. 4844 */ 4845 static void 4846 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap) 4847 { 4848 struct sge_eq *eq = &txq->eq; 4849 struct sglist *gl = txq->gl; 4850 struct sglist_seg *seg; 4851 __be64 *flitp, *wrap; 4852 struct ulptx_sgl *usgl; 4853 int i, nflits, nsegs; 4854 4855 KASSERT(((uintptr_t)(*to) & 0xf) == 0, 4856 ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); 4857 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 4858 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 4859 4860 get_pkt_gl(m, gl); 4861 nsegs = gl->sg_nseg; 4862 MPASS(nsegs > 0); 4863 4864 nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2; 4865 flitp = (__be64 *)(*to); 4866 wrap = (__be64 *)(&eq->desc[eq->sidx]); 4867 seg = &gl->sg_segs[0]; 4868 usgl = (void *)flitp; 4869 4870 /* 4871 * We start at a 16 byte boundary somewhere inside the tx descriptor 4872 * ring, so we're at least 16 bytes away from the status page. There is 4873 * no chance of a wrap around in the middle of usgl (which is 16 bytes). 4874 */ 4875 4876 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 4877 V_ULPTX_NSGE(nsegs)); 4878 usgl->len0 = htobe32(seg->ss_len); 4879 usgl->addr0 = htobe64(seg->ss_paddr); 4880 seg++; 4881 4882 if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) { 4883 4884 /* Won't wrap around at all */ 4885 4886 for (i = 0; i < nsegs - 1; i++, seg++) { 4887 usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len); 4888 usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr); 4889 } 4890 if (i & 1) 4891 usgl->sge[i / 2].len[1] = htobe32(0); 4892 flitp += nflits; 4893 } else { 4894 4895 /* Will wrap somewhere in the rest of the SGL */ 4896 4897 /* 2 flits already written, write the rest flit by flit */ 4898 flitp = (void *)(usgl + 1); 4899 for (i = 0; i < nflits - 2; i++) { 4900 if (flitp == wrap) 4901 flitp = (void *)eq->desc; 4902 *flitp++ = get_flit(seg, nsegs - 1, i); 4903 } 4904 } 4905 4906 if (nflits & 1) { 4907 MPASS(((uintptr_t)flitp) & 0xf); 4908 *flitp++ = 0; 4909 } 4910 4911 MPASS((((uintptr_t)flitp) & 0xf) == 0); 4912 if (__predict_false(flitp == wrap)) 4913 *to = (void *)eq->desc; 4914 else 4915 *to = (void *)flitp; 4916 } 4917 4918 static inline void 4919 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) 4920 { 4921 4922 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 4923 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 4924 4925 if (__predict_true((uintptr_t)(*to) + len <= 4926 (uintptr_t)&eq->desc[eq->sidx])) { 4927 bcopy(from, *to, len); 4928 (*to) += len; 4929 } else { 4930 int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to); 4931 4932 bcopy(from, *to, portion); 4933 from += portion; 4934 portion = len - portion; /* remaining */ 4935 bcopy(from, (void *)eq->desc, portion); 4936 (*to) = (caddr_t)eq->desc + portion; 4937 } 4938 } 4939 4940 static inline void 4941 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n) 4942 { 4943 u_int db; 4944 4945 MPASS(n > 0); 4946 4947 db = eq->doorbells; 4948 if (n > 1) 4949 clrbit(&db, DOORBELL_WCWR); 4950 wmb(); 4951 4952 switch (ffs(db) - 1) { 4953 case DOORBELL_UDB: 4954 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 4955 break; 4956 4957 case DOORBELL_WCWR: { 4958 volatile uint64_t *dst, *src; 4959 int i; 4960 4961 /* 4962 * Queues whose 128B doorbell segment fits in the page do not 4963 * use relative qid (udb_qid is always 0). Only queues with 4964 * doorbell segments can do WCWR. 4965 */ 4966 KASSERT(eq->udb_qid == 0 && n == 1, 4967 ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p", 4968 __func__, eq->doorbells, n, eq->dbidx, eq)); 4969 4970 dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET - 4971 UDBS_DB_OFFSET); 4972 i = eq->dbidx; 4973 src = (void *)&eq->desc[i]; 4974 while (src != (void *)&eq->desc[i + 1]) 4975 *dst++ = *src++; 4976 wmb(); 4977 break; 4978 } 4979 4980 case DOORBELL_UDBWC: 4981 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 4982 wmb(); 4983 break; 4984 4985 case DOORBELL_KDB: 4986 t4_write_reg(sc, sc->sge_kdoorbell_reg, 4987 V_QID(eq->cntxt_id) | V_PIDX(n)); 4988 break; 4989 } 4990 4991 IDXINCR(eq->dbidx, n, eq->sidx); 4992 } 4993 4994 static inline u_int 4995 reclaimable_tx_desc(struct sge_eq *eq) 4996 { 4997 uint16_t hw_cidx; 4998 4999 hw_cidx = read_hw_cidx(eq); 5000 return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx)); 5001 } 5002 5003 static inline u_int 5004 total_available_tx_desc(struct sge_eq *eq) 5005 { 5006 uint16_t hw_cidx, pidx; 5007 5008 hw_cidx = read_hw_cidx(eq); 5009 pidx = eq->pidx; 5010 5011 if (pidx == hw_cidx) 5012 return (eq->sidx - 1); 5013 else 5014 return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1); 5015 } 5016 5017 static inline uint16_t 5018 read_hw_cidx(struct sge_eq *eq) 5019 { 5020 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 5021 uint16_t cidx = spg->cidx; /* stable snapshot */ 5022 5023 return (be16toh(cidx)); 5024 } 5025 5026 /* 5027 * Reclaim 'n' descriptors approximately. 5028 */ 5029 static u_int 5030 reclaim_tx_descs(struct sge_txq *txq, u_int n) 5031 { 5032 struct tx_sdesc *txsd; 5033 struct sge_eq *eq = &txq->eq; 5034 u_int can_reclaim, reclaimed; 5035 5036 TXQ_LOCK_ASSERT_OWNED(txq); 5037 MPASS(n > 0); 5038 5039 reclaimed = 0; 5040 can_reclaim = reclaimable_tx_desc(eq); 5041 while (can_reclaim && reclaimed < n) { 5042 int ndesc; 5043 struct mbuf *m, *nextpkt; 5044 5045 txsd = &txq->sdesc[eq->cidx]; 5046 ndesc = txsd->desc_used; 5047 5048 /* Firmware doesn't return "partial" credits. */ 5049 KASSERT(can_reclaim >= ndesc, 5050 ("%s: unexpected number of credits: %d, %d", 5051 __func__, can_reclaim, ndesc)); 5052 5053 for (m = txsd->m; m != NULL; m = nextpkt) { 5054 nextpkt = m->m_nextpkt; 5055 m->m_nextpkt = NULL; 5056 m_freem(m); 5057 } 5058 reclaimed += ndesc; 5059 can_reclaim -= ndesc; 5060 IDXINCR(eq->cidx, ndesc, eq->sidx); 5061 } 5062 5063 return (reclaimed); 5064 } 5065 5066 static void 5067 tx_reclaim(void *arg, int n) 5068 { 5069 struct sge_txq *txq = arg; 5070 struct sge_eq *eq = &txq->eq; 5071 5072 do { 5073 if (TXQ_TRYLOCK(txq) == 0) 5074 break; 5075 n = reclaim_tx_descs(txq, 32); 5076 if (eq->cidx == eq->pidx) 5077 eq->equeqidx = eq->pidx; 5078 TXQ_UNLOCK(txq); 5079 } while (n > 0); 5080 } 5081 5082 static __be64 5083 get_flit(struct sglist_seg *segs, int nsegs, int idx) 5084 { 5085 int i = (idx / 3) * 2; 5086 5087 switch (idx % 3) { 5088 case 0: { 5089 uint64_t rc; 5090 5091 rc = (uint64_t)segs[i].ss_len << 32; 5092 if (i + 1 < nsegs) 5093 rc |= (uint64_t)(segs[i + 1].ss_len); 5094 5095 return (htobe64(rc)); 5096 } 5097 case 1: 5098 return (htobe64(segs[i].ss_paddr)); 5099 case 2: 5100 return (htobe64(segs[i + 1].ss_paddr)); 5101 } 5102 5103 return (0); 5104 } 5105 5106 static void 5107 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp) 5108 { 5109 int8_t zidx, hwidx, idx; 5110 uint16_t region1, region3; 5111 int spare, spare_needed, n; 5112 struct sw_zone_info *swz; 5113 struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0]; 5114 5115 /* 5116 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize 5117 * large enough for the max payload and cluster metadata. Otherwise 5118 * settle for the largest bufsize that leaves enough room in the cluster 5119 * for metadata. 5120 * 5121 * Without buffer packing: Look for the smallest zone which has a 5122 * bufsize large enough for the max payload. Settle for the largest 5123 * bufsize available if there's nothing big enough for max payload. 5124 */ 5125 spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0; 5126 swz = &sc->sge.sw_zone_info[0]; 5127 hwidx = -1; 5128 for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) { 5129 if (swz->size > largest_rx_cluster) { 5130 if (__predict_true(hwidx != -1)) 5131 break; 5132 5133 /* 5134 * This is a misconfiguration. largest_rx_cluster is 5135 * preventing us from finding a refill source. See 5136 * dev.t5nex.<n>.buffer_sizes to figure out why. 5137 */ 5138 device_printf(sc->dev, "largest_rx_cluster=%u leaves no" 5139 " refill source for fl %p (dma %u). Ignored.\n", 5140 largest_rx_cluster, fl, maxp); 5141 } 5142 for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) { 5143 hwb = &hwb_list[idx]; 5144 spare = swz->size - hwb->size; 5145 if (spare < spare_needed) 5146 continue; 5147 5148 hwidx = idx; /* best option so far */ 5149 if (hwb->size >= maxp) { 5150 5151 if ((fl->flags & FL_BUF_PACKING) == 0) 5152 goto done; /* stop looking (not packing) */ 5153 5154 if (swz->size >= safest_rx_cluster) 5155 goto done; /* stop looking (packing) */ 5156 } 5157 break; /* keep looking, next zone */ 5158 } 5159 } 5160 done: 5161 /* A usable hwidx has been located. */ 5162 MPASS(hwidx != -1); 5163 hwb = &hwb_list[hwidx]; 5164 zidx = hwb->zidx; 5165 swz = &sc->sge.sw_zone_info[zidx]; 5166 region1 = 0; 5167 region3 = swz->size - hwb->size; 5168 5169 /* 5170 * Stay within this zone and see if there is a better match when mbuf 5171 * inlining is allowed. Remember that the hwidx's are sorted in 5172 * decreasing order of size (so in increasing order of spare area). 5173 */ 5174 for (idx = hwidx; idx != -1; idx = hwb->next) { 5175 hwb = &hwb_list[idx]; 5176 spare = swz->size - hwb->size; 5177 5178 if (allow_mbufs_in_cluster == 0 || hwb->size < maxp) 5179 break; 5180 5181 /* 5182 * Do not inline mbufs if doing so would violate the pad/pack 5183 * boundary alignment requirement. 5184 */ 5185 if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0) 5186 continue; 5187 if (fl->flags & FL_BUF_PACKING && 5188 (MSIZE % sc->params.sge.pack_boundary) != 0) 5189 continue; 5190 5191 if (spare < CL_METADATA_SIZE + MSIZE) 5192 continue; 5193 n = (spare - CL_METADATA_SIZE) / MSIZE; 5194 if (n > howmany(hwb->size, maxp)) 5195 break; 5196 5197 hwidx = idx; 5198 if (fl->flags & FL_BUF_PACKING) { 5199 region1 = n * MSIZE; 5200 region3 = spare - region1; 5201 } else { 5202 region1 = MSIZE; 5203 region3 = spare - region1; 5204 break; 5205 } 5206 } 5207 5208 KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES, 5209 ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp)); 5210 KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES, 5211 ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp)); 5212 KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 == 5213 sc->sge.sw_zone_info[zidx].size, 5214 ("%s: bad buffer layout for fl %p, maxp %d. " 5215 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 5216 sc->sge.sw_zone_info[zidx].size, region1, 5217 sc->sge.hw_buf_info[hwidx].size, region3)); 5218 if (fl->flags & FL_BUF_PACKING || region1 > 0) { 5219 KASSERT(region3 >= CL_METADATA_SIZE, 5220 ("%s: no room for metadata. fl %p, maxp %d; " 5221 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 5222 sc->sge.sw_zone_info[zidx].size, region1, 5223 sc->sge.hw_buf_info[hwidx].size, region3)); 5224 KASSERT(region1 % MSIZE == 0, 5225 ("%s: bad mbuf region for fl %p, maxp %d. " 5226 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 5227 sc->sge.sw_zone_info[zidx].size, region1, 5228 sc->sge.hw_buf_info[hwidx].size, region3)); 5229 } 5230 5231 fl->cll_def.zidx = zidx; 5232 fl->cll_def.hwidx = hwidx; 5233 fl->cll_def.region1 = region1; 5234 fl->cll_def.region3 = region3; 5235 } 5236 5237 static void 5238 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl) 5239 { 5240 struct sge *s = &sc->sge; 5241 struct hw_buf_info *hwb; 5242 struct sw_zone_info *swz; 5243 int spare; 5244 int8_t hwidx; 5245 5246 if (fl->flags & FL_BUF_PACKING) 5247 hwidx = s->safe_hwidx2; /* with room for metadata */ 5248 else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) { 5249 hwidx = s->safe_hwidx2; 5250 hwb = &s->hw_buf_info[hwidx]; 5251 swz = &s->sw_zone_info[hwb->zidx]; 5252 spare = swz->size - hwb->size; 5253 5254 /* no good if there isn't room for an mbuf as well */ 5255 if (spare < CL_METADATA_SIZE + MSIZE) 5256 hwidx = s->safe_hwidx1; 5257 } else 5258 hwidx = s->safe_hwidx1; 5259 5260 if (hwidx == -1) { 5261 /* No fallback source */ 5262 fl->cll_alt.hwidx = -1; 5263 fl->cll_alt.zidx = -1; 5264 5265 return; 5266 } 5267 5268 hwb = &s->hw_buf_info[hwidx]; 5269 swz = &s->sw_zone_info[hwb->zidx]; 5270 spare = swz->size - hwb->size; 5271 fl->cll_alt.hwidx = hwidx; 5272 fl->cll_alt.zidx = hwb->zidx; 5273 if (allow_mbufs_in_cluster && 5274 (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0)) 5275 fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE; 5276 else 5277 fl->cll_alt.region1 = 0; 5278 fl->cll_alt.region3 = spare - fl->cll_alt.region1; 5279 } 5280 5281 static void 5282 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) 5283 { 5284 mtx_lock(&sc->sfl_lock); 5285 FL_LOCK(fl); 5286 if ((fl->flags & FL_DOOMED) == 0) { 5287 fl->flags |= FL_STARVING; 5288 TAILQ_INSERT_TAIL(&sc->sfl, fl, link); 5289 callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc); 5290 } 5291 FL_UNLOCK(fl); 5292 mtx_unlock(&sc->sfl_lock); 5293 } 5294 5295 static void 5296 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq) 5297 { 5298 struct sge_wrq *wrq = (void *)eq; 5299 5300 atomic_readandclear_int(&eq->equiq); 5301 taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task); 5302 } 5303 5304 static void 5305 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq) 5306 { 5307 struct sge_txq *txq = (void *)eq; 5308 5309 MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH); 5310 5311 atomic_readandclear_int(&eq->equiq); 5312 mp_ring_check_drainage(txq->r, 0); 5313 taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task); 5314 } 5315 5316 static int 5317 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, 5318 struct mbuf *m) 5319 { 5320 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); 5321 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); 5322 struct adapter *sc = iq->adapter; 5323 struct sge *s = &sc->sge; 5324 struct sge_eq *eq; 5325 static void (*h[])(struct adapter *, struct sge_eq *) = {NULL, 5326 &handle_wrq_egr_update, &handle_eth_egr_update, 5327 &handle_wrq_egr_update}; 5328 5329 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 5330 rss->opcode)); 5331 5332 eq = s->eqmap[qid - s->eq_start - s->eq_base]; 5333 (*h[eq->flags & EQ_TYPEMASK])(sc, eq); 5334 5335 return (0); 5336 } 5337 5338 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */ 5339 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \ 5340 offsetof(struct cpl_fw6_msg, data)); 5341 5342 static int 5343 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 5344 { 5345 struct adapter *sc = iq->adapter; 5346 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); 5347 5348 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 5349 rss->opcode)); 5350 5351 if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) { 5352 const struct rss_header *rss2; 5353 5354 rss2 = (const struct rss_header *)&cpl->data[0]; 5355 return (t4_cpl_handler[rss2->opcode](iq, rss2, m)); 5356 } 5357 5358 return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0])); 5359 } 5360 5361 /** 5362 * t4_handle_wrerr_rpl - process a FW work request error message 5363 * @adap: the adapter 5364 * @rpl: start of the FW message 5365 */ 5366 static int 5367 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl) 5368 { 5369 u8 opcode = *(const u8 *)rpl; 5370 const struct fw_error_cmd *e = (const void *)rpl; 5371 unsigned int i; 5372 5373 if (opcode != FW_ERROR_CMD) { 5374 log(LOG_ERR, 5375 "%s: Received WRERR_RPL message with opcode %#x\n", 5376 device_get_nameunit(adap->dev), opcode); 5377 return (EINVAL); 5378 } 5379 log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev), 5380 G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" : 5381 "non-fatal"); 5382 switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) { 5383 case FW_ERROR_TYPE_EXCEPTION: 5384 log(LOG_ERR, "exception info:\n"); 5385 for (i = 0; i < nitems(e->u.exception.info); i++) 5386 log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ", 5387 be32toh(e->u.exception.info[i])); 5388 log(LOG_ERR, "\n"); 5389 break; 5390 case FW_ERROR_TYPE_HWMODULE: 5391 log(LOG_ERR, "HW module regaddr %08x regval %08x\n", 5392 be32toh(e->u.hwmodule.regaddr), 5393 be32toh(e->u.hwmodule.regval)); 5394 break; 5395 case FW_ERROR_TYPE_WR: 5396 log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n", 5397 be16toh(e->u.wr.cidx), 5398 G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)), 5399 G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)), 5400 be32toh(e->u.wr.eqid)); 5401 for (i = 0; i < nitems(e->u.wr.wrhdr); i++) 5402 log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ", 5403 e->u.wr.wrhdr[i]); 5404 log(LOG_ERR, "\n"); 5405 break; 5406 case FW_ERROR_TYPE_ACL: 5407 log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s", 5408 be16toh(e->u.acl.cidx), 5409 G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)), 5410 G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)), 5411 be32toh(e->u.acl.eqid), 5412 G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" : 5413 "MAC"); 5414 for (i = 0; i < nitems(e->u.acl.val); i++) 5415 log(LOG_ERR, " %02x", e->u.acl.val[i]); 5416 log(LOG_ERR, "\n"); 5417 break; 5418 default: 5419 log(LOG_ERR, "type %#x\n", 5420 G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))); 5421 return (EINVAL); 5422 } 5423 return (0); 5424 } 5425 5426 static int 5427 sysctl_uint16(SYSCTL_HANDLER_ARGS) 5428 { 5429 uint16_t *id = arg1; 5430 int i = *id; 5431 5432 return sysctl_handle_int(oidp, &i, 0, req); 5433 } 5434 5435 static int 5436 sysctl_bufsizes(SYSCTL_HANDLER_ARGS) 5437 { 5438 struct sge *s = arg1; 5439 struct hw_buf_info *hwb = &s->hw_buf_info[0]; 5440 struct sw_zone_info *swz = &s->sw_zone_info[0]; 5441 int i, rc; 5442 struct sbuf sb; 5443 char c; 5444 5445 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 5446 for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) { 5447 if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster) 5448 c = '*'; 5449 else 5450 c = '\0'; 5451 5452 sbuf_printf(&sb, "%u%c ", hwb->size, c); 5453 } 5454 sbuf_trim(&sb); 5455 sbuf_finish(&sb); 5456 rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 5457 sbuf_delete(&sb); 5458 return (rc); 5459 } 5460 5461 #ifdef RATELIMIT 5462 /* 5463 * len16 for a txpkt WR with a GL. Includes the firmware work request header. 5464 */ 5465 static inline u_int 5466 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso) 5467 { 5468 u_int n; 5469 5470 MPASS(immhdrs > 0); 5471 5472 n = roundup2(sizeof(struct fw_eth_tx_eo_wr) + 5473 sizeof(struct cpl_tx_pkt_core) + immhdrs, 16); 5474 if (__predict_false(nsegs == 0)) 5475 goto done; 5476 5477 nsegs--; /* first segment is part of ulptx_sgl */ 5478 n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 5479 if (tso) 5480 n += sizeof(struct cpl_tx_pkt_lso_core); 5481 5482 done: 5483 return (howmany(n, 16)); 5484 } 5485 5486 #define ETID_FLOWC_NPARAMS 6 5487 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \ 5488 ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16)) 5489 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16)) 5490 5491 static int 5492 send_etid_flowc_wr(struct cxgbe_snd_tag *cst, struct port_info *pi, 5493 struct vi_info *vi) 5494 { 5495 struct wrq_cookie cookie; 5496 u_int pfvf = G_FW_VIID_PFN(vi->viid) << S_FW_VIID_PFN; 5497 struct fw_flowc_wr *flowc; 5498 5499 mtx_assert(&cst->lock, MA_OWNED); 5500 MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) == 5501 EO_FLOWC_PENDING); 5502 5503 flowc = start_wrq_wr(cst->eo_txq, ETID_FLOWC_LEN16, &cookie); 5504 if (__predict_false(flowc == NULL)) 5505 return (ENOMEM); 5506 5507 bzero(flowc, ETID_FLOWC_LEN); 5508 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | 5509 V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0)); 5510 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) | 5511 V_FW_WR_FLOWID(cst->etid)); 5512 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 5513 flowc->mnemval[0].val = htobe32(pfvf); 5514 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 5515 flowc->mnemval[1].val = htobe32(pi->tx_chan); 5516 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 5517 flowc->mnemval[2].val = htobe32(pi->tx_chan); 5518 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 5519 flowc->mnemval[3].val = htobe32(cst->iqid); 5520 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE; 5521 flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED); 5522 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 5523 flowc->mnemval[5].val = htobe32(cst->schedcl); 5524 5525 commit_wrq_wr(cst->eo_txq, flowc, &cookie); 5526 5527 cst->flags &= ~EO_FLOWC_PENDING; 5528 cst->flags |= EO_FLOWC_RPL_PENDING; 5529 MPASS(cst->tx_credits >= ETID_FLOWC_LEN16); /* flowc is first WR. */ 5530 cst->tx_credits -= ETID_FLOWC_LEN16; 5531 5532 return (0); 5533 } 5534 5535 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16)) 5536 5537 void 5538 send_etid_flush_wr(struct cxgbe_snd_tag *cst) 5539 { 5540 struct fw_flowc_wr *flowc; 5541 struct wrq_cookie cookie; 5542 5543 mtx_assert(&cst->lock, MA_OWNED); 5544 5545 flowc = start_wrq_wr(cst->eo_txq, ETID_FLUSH_LEN16, &cookie); 5546 if (__predict_false(flowc == NULL)) 5547 CXGBE_UNIMPLEMENTED(__func__); 5548 5549 bzero(flowc, ETID_FLUSH_LEN16 * 16); 5550 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | 5551 V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL); 5552 flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) | 5553 V_FW_WR_FLOWID(cst->etid)); 5554 5555 commit_wrq_wr(cst->eo_txq, flowc, &cookie); 5556 5557 cst->flags |= EO_FLUSH_RPL_PENDING; 5558 MPASS(cst->tx_credits >= ETID_FLUSH_LEN16); 5559 cst->tx_credits -= ETID_FLUSH_LEN16; 5560 cst->ncompl++; 5561 } 5562 5563 static void 5564 write_ethofld_wr(struct cxgbe_snd_tag *cst, struct fw_eth_tx_eo_wr *wr, 5565 struct mbuf *m0, int compl) 5566 { 5567 struct cpl_tx_pkt_core *cpl; 5568 uint64_t ctrl1; 5569 uint32_t ctrl; /* used in many unrelated places */ 5570 int len16, pktlen, nsegs, immhdrs; 5571 caddr_t dst; 5572 uintptr_t p; 5573 struct ulptx_sgl *usgl; 5574 struct sglist sg; 5575 struct sglist_seg segs[38]; /* XXX: find real limit. XXX: get off the stack */ 5576 5577 mtx_assert(&cst->lock, MA_OWNED); 5578 M_ASSERTPKTHDR(m0); 5579 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 5580 m0->m_pkthdr.l4hlen > 0, 5581 ("%s: ethofld mbuf %p is missing header lengths", __func__, m0)); 5582 5583 if (needs_udp_csum(m0)) { 5584 CXGBE_UNIMPLEMENTED("UDP ethofld"); 5585 } 5586 5587 len16 = mbuf_eo_len16(m0); 5588 nsegs = mbuf_eo_nsegs(m0); 5589 pktlen = m0->m_pkthdr.len; 5590 ctrl = sizeof(struct cpl_tx_pkt_core); 5591 if (needs_tso(m0)) 5592 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 5593 immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen; 5594 ctrl += immhdrs; 5595 5596 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) | 5597 V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl)); 5598 wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) | 5599 V_FW_WR_FLOWID(cst->etid)); 5600 wr->r3 = 0; 5601 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG; 5602 wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen; 5603 wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen); 5604 wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen; 5605 wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0); 5606 wr->u.tcpseg.r4 = 0; 5607 wr->u.tcpseg.r5 = 0; 5608 wr->u.tcpseg.plen = htobe32(pktlen - immhdrs); 5609 5610 if (needs_tso(m0)) { 5611 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 5612 5613 wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz); 5614 5615 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 5616 F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) 5617 | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 5618 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 5619 ctrl |= V_LSO_ETHHDR_LEN(1); 5620 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 5621 ctrl |= F_LSO_IPV6; 5622 lso->lso_ctrl = htobe32(ctrl); 5623 lso->ipid_ofst = htobe16(0); 5624 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 5625 lso->seqno_offset = htobe32(0); 5626 lso->len = htobe32(pktlen); 5627 5628 cpl = (void *)(lso + 1); 5629 } else { 5630 wr->u.tcpseg.mss = htobe16(0xffff); 5631 cpl = (void *)(wr + 1); 5632 } 5633 5634 /* Checksum offload must be requested for ethofld. */ 5635 ctrl1 = 0; 5636 MPASS(needs_l4_csum(m0)); 5637 5638 /* VLAN tag insertion */ 5639 if (needs_vlan_insertion(m0)) { 5640 ctrl1 |= F_TXPKT_VLAN_VLD | 5641 V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 5642 } 5643 5644 /* CPL header */ 5645 cpl->ctrl0 = cst->ctrl0; 5646 cpl->pack = 0; 5647 cpl->len = htobe16(pktlen); 5648 cpl->ctrl1 = htobe64(ctrl1); 5649 5650 /* Copy Ethernet, IP & TCP hdrs as immediate data */ 5651 p = (uintptr_t)(cpl + 1); 5652 m_copydata(m0, 0, immhdrs, (void *)p); 5653 5654 /* SGL */ 5655 dst = (void *)(cpl + 1); 5656 if (nsegs > 0) { 5657 int i, pad; 5658 5659 /* zero-pad upto next 16Byte boundary, if not 16Byte aligned */ 5660 p += immhdrs; 5661 pad = 16 - (immhdrs & 0xf); 5662 bzero((void *)p, pad); 5663 5664 usgl = (void *)(p + pad); 5665 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 5666 V_ULPTX_NSGE(nsegs)); 5667 5668 sglist_init(&sg, nitems(segs), segs); 5669 for (; m0 != NULL; m0 = m0->m_next) { 5670 if (__predict_false(m0->m_len == 0)) 5671 continue; 5672 if (immhdrs >= m0->m_len) { 5673 immhdrs -= m0->m_len; 5674 continue; 5675 } 5676 5677 sglist_append(&sg, mtod(m0, char *) + immhdrs, 5678 m0->m_len - immhdrs); 5679 immhdrs = 0; 5680 } 5681 MPASS(sg.sg_nseg == nsegs); 5682 5683 /* 5684 * Zero pad last 8B in case the WR doesn't end on a 16B 5685 * boundary. 5686 */ 5687 *(uint64_t *)((char *)wr + len16 * 16 - 8) = 0; 5688 5689 usgl->len0 = htobe32(segs[0].ss_len); 5690 usgl->addr0 = htobe64(segs[0].ss_paddr); 5691 for (i = 0; i < nsegs - 1; i++) { 5692 usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len); 5693 usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr); 5694 } 5695 if (i & 1) 5696 usgl->sge[i / 2].len[1] = htobe32(0); 5697 } 5698 5699 } 5700 5701 static void 5702 ethofld_tx(struct cxgbe_snd_tag *cst) 5703 { 5704 struct mbuf *m; 5705 struct wrq_cookie cookie; 5706 int next_credits, compl; 5707 struct fw_eth_tx_eo_wr *wr; 5708 5709 mtx_assert(&cst->lock, MA_OWNED); 5710 5711 while ((m = mbufq_first(&cst->pending_tx)) != NULL) { 5712 M_ASSERTPKTHDR(m); 5713 5714 /* How many len16 credits do we need to send this mbuf. */ 5715 next_credits = mbuf_eo_len16(m); 5716 MPASS(next_credits > 0); 5717 if (next_credits > cst->tx_credits) { 5718 /* 5719 * Tx will make progress eventually because there is at 5720 * least one outstanding fw4_ack that will return 5721 * credits and kick the tx. 5722 */ 5723 MPASS(cst->ncompl > 0); 5724 return; 5725 } 5726 wr = start_wrq_wr(cst->eo_txq, next_credits, &cookie); 5727 if (__predict_false(wr == NULL)) { 5728 /* XXX: wishful thinking, not a real assertion. */ 5729 MPASS(cst->ncompl > 0); 5730 return; 5731 } 5732 cst->tx_credits -= next_credits; 5733 cst->tx_nocompl += next_credits; 5734 compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2; 5735 ETHER_BPF_MTAP(cst->com.ifp, m); 5736 write_ethofld_wr(cst, wr, m, compl); 5737 commit_wrq_wr(cst->eo_txq, wr, &cookie); 5738 if (compl) { 5739 cst->ncompl++; 5740 cst->tx_nocompl = 0; 5741 } 5742 (void) mbufq_dequeue(&cst->pending_tx); 5743 mbufq_enqueue(&cst->pending_fwack, m); 5744 } 5745 } 5746 5747 int 5748 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0) 5749 { 5750 struct cxgbe_snd_tag *cst; 5751 int rc; 5752 5753 MPASS(m0->m_nextpkt == NULL); 5754 MPASS(m0->m_pkthdr.snd_tag != NULL); 5755 cst = mst_to_cst(m0->m_pkthdr.snd_tag); 5756 5757 mtx_lock(&cst->lock); 5758 MPASS(cst->flags & EO_SND_TAG_REF); 5759 5760 if (__predict_false(cst->flags & EO_FLOWC_PENDING)) { 5761 struct vi_info *vi = ifp->if_softc; 5762 struct port_info *pi = vi->pi; 5763 struct adapter *sc = pi->adapter; 5764 const uint32_t rss_mask = vi->rss_size - 1; 5765 uint32_t rss_hash; 5766 5767 cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq]; 5768 if (M_HASHTYPE_ISHASH(m0)) 5769 rss_hash = m0->m_pkthdr.flowid; 5770 else 5771 rss_hash = arc4random(); 5772 /* We assume RSS hashing */ 5773 cst->iqid = vi->rss[rss_hash & rss_mask]; 5774 cst->eo_txq += rss_hash % vi->nofldtxq; 5775 rc = send_etid_flowc_wr(cst, pi, vi); 5776 if (rc != 0) 5777 goto done; 5778 } 5779 5780 if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) { 5781 rc = ENOBUFS; 5782 goto done; 5783 } 5784 5785 mbufq_enqueue(&cst->pending_tx, m0); 5786 cst->plen += m0->m_pkthdr.len; 5787 5788 ethofld_tx(cst); 5789 rc = 0; 5790 done: 5791 mtx_unlock(&cst->lock); 5792 if (__predict_false(rc != 0)) 5793 m_freem(m0); 5794 return (rc); 5795 } 5796 5797 static int 5798 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) 5799 { 5800 struct adapter *sc = iq->adapter; 5801 const struct cpl_fw4_ack *cpl = (const void *)(rss + 1); 5802 struct mbuf *m; 5803 u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl))); 5804 struct cxgbe_snd_tag *cst; 5805 uint8_t credits = cpl->credits; 5806 5807 cst = lookup_etid(sc, etid); 5808 mtx_lock(&cst->lock); 5809 if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) { 5810 MPASS(credits >= ETID_FLOWC_LEN16); 5811 credits -= ETID_FLOWC_LEN16; 5812 cst->flags &= ~EO_FLOWC_RPL_PENDING; 5813 } 5814 5815 KASSERT(cst->ncompl > 0, 5816 ("%s: etid %u (%p) wasn't expecting completion.", 5817 __func__, etid, cst)); 5818 cst->ncompl--; 5819 5820 while (credits > 0) { 5821 m = mbufq_dequeue(&cst->pending_fwack); 5822 if (__predict_false(m == NULL)) { 5823 /* 5824 * The remaining credits are for the final flush that 5825 * was issued when the tag was freed by the kernel. 5826 */ 5827 MPASS((cst->flags & 5828 (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) == 5829 EO_FLUSH_RPL_PENDING); 5830 MPASS(credits == ETID_FLUSH_LEN16); 5831 MPASS(cst->tx_credits + cpl->credits == cst->tx_total); 5832 MPASS(cst->ncompl == 0); 5833 5834 cst->flags &= ~EO_FLUSH_RPL_PENDING; 5835 cst->tx_credits += cpl->credits; 5836 freetag: 5837 cxgbe_snd_tag_free_locked(cst); 5838 return (0); /* cst is gone. */ 5839 } 5840 KASSERT(m != NULL, 5841 ("%s: too many credits (%u, %u)", __func__, cpl->credits, 5842 credits)); 5843 KASSERT(credits >= mbuf_eo_len16(m), 5844 ("%s: too few credits (%u, %u, %u)", __func__, 5845 cpl->credits, credits, mbuf_eo_len16(m))); 5846 credits -= mbuf_eo_len16(m); 5847 cst->plen -= m->m_pkthdr.len; 5848 m_freem(m); 5849 } 5850 5851 cst->tx_credits += cpl->credits; 5852 MPASS(cst->tx_credits <= cst->tx_total); 5853 5854 m = mbufq_first(&cst->pending_tx); 5855 if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m)) 5856 ethofld_tx(cst); 5857 5858 if (__predict_false((cst->flags & EO_SND_TAG_REF) == 0) && 5859 cst->ncompl == 0) { 5860 if (cst->tx_credits == cst->tx_total) 5861 goto freetag; 5862 else { 5863 MPASS((cst->flags & EO_FLUSH_RPL_PENDING) == 0); 5864 send_etid_flush_wr(cst); 5865 } 5866 } 5867 5868 mtx_unlock(&cst->lock); 5869 5870 return (0); 5871 } 5872 #endif 5873