xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 81ea85a8845662ca329a954eeeb3e6d4124282a2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ratelimit.h"
36 
37 #include <sys/types.h>
38 #include <sys/eventhandler.h>
39 #include <sys/mbuf.h>
40 #include <sys/socket.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/queue.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 #include <sys/time.h>
47 #include <sys/sglist.h>
48 #include <sys/sysctl.h>
49 #include <sys/smp.h>
50 #include <sys/counter.h>
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_vlan_var.h>
55 #include <netinet/in.h>
56 #include <netinet/ip.h>
57 #include <netinet/ip6.h>
58 #include <netinet/tcp.h>
59 #include <netinet/udp.h>
60 #include <machine/in_cksum.h>
61 #include <machine/md_var.h>
62 #include <vm/vm.h>
63 #include <vm/pmap.h>
64 #ifdef DEV_NETMAP
65 #include <machine/bus.h>
66 #include <sys/selinfo.h>
67 #include <net/if_var.h>
68 #include <net/netmap.h>
69 #include <dev/netmap/netmap_kern.h>
70 #endif
71 
72 #include "common/common.h"
73 #include "common/t4_regs.h"
74 #include "common/t4_regs_values.h"
75 #include "common/t4_msg.h"
76 #include "t4_l2t.h"
77 #include "t4_mp_ring.h"
78 
79 #ifdef T4_PKT_TIMESTAMP
80 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
81 #else
82 #define RX_COPY_THRESHOLD MINCLSIZE
83 #endif
84 
85 /*
86  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
87  * 0-7 are valid values.
88  */
89 static int fl_pktshift = 0;
90 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
91 
92 /*
93  * Pad ethernet payload up to this boundary.
94  * -1: driver should figure out a good value.
95  *  0: disable padding.
96  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
97  */
98 int fl_pad = -1;
99 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
100 
101 /*
102  * Status page length.
103  * -1: driver should figure out a good value.
104  *  64 or 128 are the only other valid values.
105  */
106 static int spg_len = -1;
107 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
108 
109 /*
110  * Congestion drops.
111  * -1: no congestion feedback (not recommended).
112  *  0: backpressure the channel instead of dropping packets right away.
113  *  1: no backpressure, drop packets for the congested queue immediately.
114  */
115 static int cong_drop = 0;
116 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
117 
118 /*
119  * Deliver multiple frames in the same free list buffer if they fit.
120  * -1: let the driver decide whether to enable buffer packing or not.
121  *  0: disable buffer packing.
122  *  1: enable buffer packing.
123  */
124 static int buffer_packing = -1;
125 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
126 
127 /*
128  * Start next frame in a packed buffer at this boundary.
129  * -1: driver should figure out a good value.
130  * T4: driver will ignore this and use the same value as fl_pad above.
131  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
132  */
133 static int fl_pack = -1;
134 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
135 
136 /*
137  * Allow the driver to create mbuf(s) in a cluster allocated for rx.
138  * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
139  * 1: ok to create mbuf(s) within a cluster if there is room.
140  */
141 static int allow_mbufs_in_cluster = 1;
142 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
143 
144 /*
145  * Largest rx cluster size that the driver is allowed to allocate.
146  */
147 static int largest_rx_cluster = MJUM16BYTES;
148 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
149 
150 /*
151  * Size of cluster allocation that's most likely to succeed.  The driver will
152  * fall back to this size if it fails to allocate clusters larger than this.
153  */
154 static int safest_rx_cluster = PAGE_SIZE;
155 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
156 
157 #ifdef RATELIMIT
158 /*
159  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
160  * for rewriting.  -1 and 0-3 are all valid values.
161  * -1: hardware should leave the TCP timestamps alone.
162  * 0: 1ms
163  * 1: 100us
164  * 2: 10us
165  * 3: 1us
166  */
167 static int tsclk = -1;
168 TUNABLE_INT("hw.cxgbe.tsclk", &tsclk);
169 
170 static int eo_max_backlog = 1024 * 1024;
171 TUNABLE_INT("hw.cxgbe.eo_max_backlog", &eo_max_backlog);
172 #endif
173 
174 /*
175  * The interrupt holdoff timers are multiplied by this value on T6+.
176  * 1 and 3-17 (both inclusive) are legal values.
177  */
178 static int tscale = 1;
179 TUNABLE_INT("hw.cxgbe.tscale", &tscale);
180 
181 /*
182  * Number of LRO entries in the lro_ctrl structure per rx queue.
183  */
184 static int lro_entries = TCP_LRO_ENTRIES;
185 TUNABLE_INT("hw.cxgbe.lro_entries", &lro_entries);
186 
187 /*
188  * This enables presorting of frames before they're fed into tcp_lro_rx.
189  */
190 static int lro_mbufs = 0;
191 TUNABLE_INT("hw.cxgbe.lro_mbufs", &lro_mbufs);
192 
193 struct txpkts {
194 	u_int wr_type;		/* type 0 or type 1 */
195 	u_int npkt;		/* # of packets in this work request */
196 	u_int plen;		/* total payload (sum of all packets) */
197 	u_int len16;		/* # of 16B pieces used by this work request */
198 };
199 
200 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
201 struct sgl {
202 	struct sglist sg;
203 	struct sglist_seg seg[TX_SGL_SEGS];
204 };
205 
206 static int service_iq(struct sge_iq *, int);
207 static int service_iq_fl(struct sge_iq *, int);
208 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
209 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
210 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
211 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
212 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
213     uint16_t, char *);
214 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
215     bus_addr_t *, void **);
216 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
217     void *);
218 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
219     int, int);
220 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
221 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
222     struct sge_iq *);
223 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
224     struct sysctl_oid *, struct sge_fl *);
225 static int alloc_fwq(struct adapter *);
226 static int free_fwq(struct adapter *);
227 static int alloc_mgmtq(struct adapter *);
228 static int free_mgmtq(struct adapter *);
229 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
230     struct sysctl_oid *);
231 static int free_rxq(struct vi_info *, struct sge_rxq *);
232 #ifdef TCP_OFFLOAD
233 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
234     struct sysctl_oid *);
235 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
236 #endif
237 #ifdef DEV_NETMAP
238 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
239     struct sysctl_oid *);
240 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
241 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
242     struct sysctl_oid *);
243 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
244 #endif
245 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
246 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
247 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
248 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
249 #endif
250 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
251 static int free_eq(struct adapter *, struct sge_eq *);
252 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
253     struct sysctl_oid *);
254 static int free_wrq(struct adapter *, struct sge_wrq *);
255 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
256     struct sysctl_oid *);
257 static int free_txq(struct vi_info *, struct sge_txq *);
258 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
259 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
260 static int refill_fl(struct adapter *, struct sge_fl *, int);
261 static void refill_sfl(void *);
262 static int alloc_fl_sdesc(struct sge_fl *);
263 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
264 static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
265 static void find_safe_refill_source(struct adapter *, struct sge_fl *);
266 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
267 
268 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
269 static inline u_int txpkt_len16(u_int, u_int);
270 static inline u_int txpkt_vm_len16(u_int, u_int);
271 static inline u_int txpkts0_len16(u_int);
272 static inline u_int txpkts1_len16(void);
273 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
274     struct mbuf *, u_int);
275 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
276     struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int);
277 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
278 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
279 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
280     struct mbuf *, const struct txpkts *, u_int);
281 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
282 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
283 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
284 static inline uint16_t read_hw_cidx(struct sge_eq *);
285 static inline u_int reclaimable_tx_desc(struct sge_eq *);
286 static inline u_int total_available_tx_desc(struct sge_eq *);
287 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
288 static void tx_reclaim(void *, int);
289 static __be64 get_flit(struct sglist_seg *, int, int);
290 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
291     struct mbuf *);
292 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
293     struct mbuf *);
294 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
295 static void wrq_tx_drain(void *, int);
296 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
297 
298 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
299 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
300 #ifdef RATELIMIT
301 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
302 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
303     struct mbuf *);
304 #endif
305 
306 static counter_u64_t extfree_refs;
307 static counter_u64_t extfree_rels;
308 
309 an_handler_t t4_an_handler;
310 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
311 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
312 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
313 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
314 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
315 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
316 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
317 
318 void
319 t4_register_an_handler(an_handler_t h)
320 {
321 	uintptr_t *loc;
322 
323 	MPASS(h == NULL || t4_an_handler == NULL);
324 
325 	loc = (uintptr_t *)&t4_an_handler;
326 	atomic_store_rel_ptr(loc, (uintptr_t)h);
327 }
328 
329 void
330 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
331 {
332 	uintptr_t *loc;
333 
334 	MPASS(type < nitems(t4_fw_msg_handler));
335 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
336 	/*
337 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
338 	 * handler dispatch table.  Reject any attempt to install a handler for
339 	 * this subtype.
340 	 */
341 	MPASS(type != FW_TYPE_RSSCPL);
342 	MPASS(type != FW6_TYPE_RSSCPL);
343 
344 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
345 	atomic_store_rel_ptr(loc, (uintptr_t)h);
346 }
347 
348 void
349 t4_register_cpl_handler(int opcode, cpl_handler_t h)
350 {
351 	uintptr_t *loc;
352 
353 	MPASS(opcode < nitems(t4_cpl_handler));
354 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
355 
356 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
357 	atomic_store_rel_ptr(loc, (uintptr_t)h);
358 }
359 
360 static int
361 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
362     struct mbuf *m)
363 {
364 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
365 	u_int tid;
366 	int cookie;
367 
368 	MPASS(m == NULL);
369 
370 	tid = GET_TID(cpl);
371 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
372 		/*
373 		 * The return code for filter-write is put in the CPL cookie so
374 		 * we have to rely on the hardware tid (is_ftid) to determine
375 		 * that this is a response to a filter.
376 		 */
377 		cookie = CPL_COOKIE_FILTER;
378 	} else {
379 		cookie = G_COOKIE(cpl->cookie);
380 	}
381 	MPASS(cookie > CPL_COOKIE_RESERVED);
382 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
383 
384 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
385 }
386 
387 static int
388 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
389     struct mbuf *m)
390 {
391 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
392 	unsigned int cookie;
393 
394 	MPASS(m == NULL);
395 
396 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
397 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
398 }
399 
400 static int
401 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
402     struct mbuf *m)
403 {
404 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
405 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
406 
407 	MPASS(m == NULL);
408 	MPASS(cookie != CPL_COOKIE_RESERVED);
409 
410 	return (act_open_rpl_handlers[cookie](iq, rss, m));
411 }
412 
413 static int
414 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
415     struct mbuf *m)
416 {
417 	struct adapter *sc = iq->adapter;
418 	u_int cookie;
419 
420 	MPASS(m == NULL);
421 	if (is_hashfilter(sc))
422 		cookie = CPL_COOKIE_HASHFILTER;
423 	else
424 		cookie = CPL_COOKIE_TOM;
425 
426 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
427 }
428 
429 static int
430 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
431 {
432 	struct adapter *sc = iq->adapter;
433 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
434 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
435 	u_int cookie;
436 
437 	MPASS(m == NULL);
438 	if (is_etid(sc, tid))
439 		cookie = CPL_COOKIE_ETHOFLD;
440 	else
441 		cookie = CPL_COOKIE_TOM;
442 
443 	return (fw4_ack_handlers[cookie](iq, rss, m));
444 }
445 
446 static void
447 t4_init_shared_cpl_handlers(void)
448 {
449 
450 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
451 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
452 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
453 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
454 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
455 }
456 
457 void
458 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
459 {
460 	uintptr_t *loc;
461 
462 	MPASS(opcode < nitems(t4_cpl_handler));
463 	MPASS(cookie > CPL_COOKIE_RESERVED);
464 	MPASS(cookie < NUM_CPL_COOKIES);
465 	MPASS(t4_cpl_handler[opcode] != NULL);
466 
467 	switch (opcode) {
468 	case CPL_SET_TCB_RPL:
469 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
470 		break;
471 	case CPL_L2T_WRITE_RPL:
472 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
473 		break;
474 	case CPL_ACT_OPEN_RPL:
475 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
476 		break;
477 	case CPL_ABORT_RPL_RSS:
478 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
479 		break;
480 	case CPL_FW4_ACK:
481 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
482 		break;
483 	default:
484 		MPASS(0);
485 		return;
486 	}
487 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
488 	atomic_store_rel_ptr(loc, (uintptr_t)h);
489 }
490 
491 /*
492  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
493  */
494 void
495 t4_sge_modload(void)
496 {
497 
498 	if (fl_pktshift < 0 || fl_pktshift > 7) {
499 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
500 		    " using 0 instead.\n", fl_pktshift);
501 		fl_pktshift = 0;
502 	}
503 
504 	if (spg_len != 64 && spg_len != 128) {
505 		int len;
506 
507 #if defined(__i386__) || defined(__amd64__)
508 		len = cpu_clflush_line_size > 64 ? 128 : 64;
509 #else
510 		len = 64;
511 #endif
512 		if (spg_len != -1) {
513 			printf("Invalid hw.cxgbe.spg_len value (%d),"
514 			    " using %d instead.\n", spg_len, len);
515 		}
516 		spg_len = len;
517 	}
518 
519 	if (cong_drop < -1 || cong_drop > 1) {
520 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
521 		    " using 0 instead.\n", cong_drop);
522 		cong_drop = 0;
523 	}
524 
525 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
526 		printf("Invalid hw.cxgbe.tscale value (%d),"
527 		    " using 1 instead.\n", tscale);
528 		tscale = 1;
529 	}
530 
531 	extfree_refs = counter_u64_alloc(M_WAITOK);
532 	extfree_rels = counter_u64_alloc(M_WAITOK);
533 	counter_u64_zero(extfree_refs);
534 	counter_u64_zero(extfree_rels);
535 
536 	t4_init_shared_cpl_handlers();
537 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
538 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
539 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
540 	t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx);
541 #ifdef RATELIMIT
542 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
543 	    CPL_COOKIE_ETHOFLD);
544 #endif
545 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
546 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
547 }
548 
549 void
550 t4_sge_modunload(void)
551 {
552 
553 	counter_u64_free(extfree_refs);
554 	counter_u64_free(extfree_rels);
555 }
556 
557 uint64_t
558 t4_sge_extfree_refs(void)
559 {
560 	uint64_t refs, rels;
561 
562 	rels = counter_u64_fetch(extfree_rels);
563 	refs = counter_u64_fetch(extfree_refs);
564 
565 	return (refs - rels);
566 }
567 
568 static inline void
569 setup_pad_and_pack_boundaries(struct adapter *sc)
570 {
571 	uint32_t v, m;
572 	int pad, pack, pad_shift;
573 
574 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
575 	    X_INGPADBOUNDARY_SHIFT;
576 	pad = fl_pad;
577 	if (fl_pad < (1 << pad_shift) ||
578 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
579 	    !powerof2(fl_pad)) {
580 		/*
581 		 * If there is any chance that we might use buffer packing and
582 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
583 		 * it to the minimum allowed in all other cases.
584 		 */
585 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
586 
587 		/*
588 		 * For fl_pad = 0 we'll still write a reasonable value to the
589 		 * register but all the freelists will opt out of padding.
590 		 * We'll complain here only if the user tried to set it to a
591 		 * value greater than 0 that was invalid.
592 		 */
593 		if (fl_pad > 0) {
594 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
595 			    " (%d), using %d instead.\n", fl_pad, pad);
596 		}
597 	}
598 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
599 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
600 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
601 
602 	if (is_t4(sc)) {
603 		if (fl_pack != -1 && fl_pack != pad) {
604 			/* Complain but carry on. */
605 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
606 			    " using %d instead.\n", fl_pack, pad);
607 		}
608 		return;
609 	}
610 
611 	pack = fl_pack;
612 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
613 	    !powerof2(fl_pack)) {
614 		pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
615 		MPASS(powerof2(pack));
616 		if (pack < 16)
617 			pack = 16;
618 		if (pack == 32)
619 			pack = 64;
620 		if (pack > 4096)
621 			pack = 4096;
622 		if (fl_pack != -1) {
623 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
624 			    " (%d), using %d instead.\n", fl_pack, pack);
625 		}
626 	}
627 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
628 	if (pack == 16)
629 		v = V_INGPACKBOUNDARY(0);
630 	else
631 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
632 
633 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
634 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
635 }
636 
637 /*
638  * adap->params.vpd.cclk must be set up before this is called.
639  */
640 void
641 t4_tweak_chip_settings(struct adapter *sc)
642 {
643 	int i;
644 	uint32_t v, m;
645 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
646 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
647 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
648 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
649 	static int sge_flbuf_sizes[] = {
650 		MCLBYTES,
651 #if MJUMPAGESIZE != MCLBYTES
652 		MJUMPAGESIZE,
653 		MJUMPAGESIZE - CL_METADATA_SIZE,
654 		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
655 #endif
656 		MJUM9BYTES,
657 		MJUM16BYTES,
658 		MCLBYTES - MSIZE - CL_METADATA_SIZE,
659 		MJUM9BYTES - CL_METADATA_SIZE,
660 		MJUM16BYTES - CL_METADATA_SIZE,
661 	};
662 
663 	KASSERT(sc->flags & MASTER_PF,
664 	    ("%s: trying to change chip settings when not master.", __func__));
665 
666 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
667 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
668 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
669 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
670 
671 	setup_pad_and_pack_boundaries(sc);
672 
673 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
674 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
675 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
676 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
677 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
678 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
679 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
680 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
681 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
682 
683 	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
684 	    ("%s: hw buffer size table too big", __func__));
685 	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
686 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
687 		    sge_flbuf_sizes[i]);
688 	}
689 
690 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
691 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
692 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
693 
694 	KASSERT(intr_timer[0] <= timer_max,
695 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
696 	    timer_max));
697 	for (i = 1; i < nitems(intr_timer); i++) {
698 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
699 		    ("%s: timers not listed in increasing order (%d)",
700 		    __func__, i));
701 
702 		while (intr_timer[i] > timer_max) {
703 			if (i == nitems(intr_timer) - 1) {
704 				intr_timer[i] = timer_max;
705 				break;
706 			}
707 			intr_timer[i] += intr_timer[i - 1];
708 			intr_timer[i] /= 2;
709 		}
710 	}
711 
712 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
713 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
714 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
715 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
716 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
717 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
718 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
719 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
720 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
721 
722 	if (chip_id(sc) >= CHELSIO_T6) {
723 		m = V_TSCALE(M_TSCALE);
724 		if (tscale == 1)
725 			v = 0;
726 		else
727 			v = V_TSCALE(tscale - 2);
728 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
729 
730 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
731 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
732 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
733 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
734 			v &= ~m;
735 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
736 			    V_WRTHRTHRESH(16);
737 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
738 		}
739 	}
740 
741 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
742 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
743 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
744 
745 	/*
746 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
747 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
748 	 * may have to deal with is MAXPHYS + 1 page.
749 	 */
750 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
751 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
752 
753 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
754 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
755 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
756 
757 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
758 	    F_RESETDDPOFFSET;
759 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
760 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
761 }
762 
763 /*
764  * SGE wants the buffer to be at least 64B and then a multiple of 16.  If
765  * padding is in use, the buffer's start and end need to be aligned to the pad
766  * boundary as well.  We'll just make sure that the size is a multiple of the
767  * boundary here, it is up to the buffer allocation code to make sure the start
768  * of the buffer is aligned as well.
769  */
770 static inline int
771 hwsz_ok(struct adapter *sc, int hwsz)
772 {
773 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
774 
775 	return (hwsz >= 64 && (hwsz & mask) == 0);
776 }
777 
778 /*
779  * XXX: driver really should be able to deal with unexpected settings.
780  */
781 int
782 t4_read_chip_settings(struct adapter *sc)
783 {
784 	struct sge *s = &sc->sge;
785 	struct sge_params *sp = &sc->params.sge;
786 	int i, j, n, rc = 0;
787 	uint32_t m, v, r;
788 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
789 	static int sw_buf_sizes[] = {	/* Sorted by size */
790 		MCLBYTES,
791 #if MJUMPAGESIZE != MCLBYTES
792 		MJUMPAGESIZE,
793 #endif
794 		MJUM9BYTES,
795 		MJUM16BYTES
796 	};
797 	struct sw_zone_info *swz, *safe_swz;
798 	struct hw_buf_info *hwb;
799 
800 	m = F_RXPKTCPLMODE;
801 	v = F_RXPKTCPLMODE;
802 	r = sc->params.sge.sge_control;
803 	if ((r & m) != v) {
804 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
805 		rc = EINVAL;
806 	}
807 
808 	/*
809 	 * If this changes then every single use of PAGE_SHIFT in the driver
810 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
811 	 */
812 	if (sp->page_shift != PAGE_SHIFT) {
813 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
814 		rc = EINVAL;
815 	}
816 
817 	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
818 	hwb = &s->hw_buf_info[0];
819 	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
820 		r = sc->params.sge.sge_fl_buffer_size[i];
821 		hwb->size = r;
822 		hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
823 		hwb->next = -1;
824 	}
825 
826 	/*
827 	 * Create a sorted list in decreasing order of hw buffer sizes (and so
828 	 * increasing order of spare area) for each software zone.
829 	 *
830 	 * If padding is enabled then the start and end of the buffer must align
831 	 * to the pad boundary; if packing is enabled then they must align with
832 	 * the pack boundary as well.  Allocations from the cluster zones are
833 	 * aligned to min(size, 4K), so the buffer starts at that alignment and
834 	 * ends at hwb->size alignment.  If mbuf inlining is allowed the
835 	 * starting alignment will be reduced to MSIZE and the driver will
836 	 * exercise appropriate caution when deciding on the best buffer layout
837 	 * to use.
838 	 */
839 	n = 0;	/* no usable buffer size to begin with */
840 	swz = &s->sw_zone_info[0];
841 	safe_swz = NULL;
842 	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
843 		int8_t head = -1, tail = -1;
844 
845 		swz->size = sw_buf_sizes[i];
846 		swz->zone = m_getzone(swz->size);
847 		swz->type = m_gettype(swz->size);
848 
849 		if (swz->size < PAGE_SIZE) {
850 			MPASS(powerof2(swz->size));
851 			if (fl_pad && (swz->size % sp->pad_boundary != 0))
852 				continue;
853 		}
854 
855 		if (swz->size == safest_rx_cluster)
856 			safe_swz = swz;
857 
858 		hwb = &s->hw_buf_info[0];
859 		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
860 			if (hwb->zidx != -1 || hwb->size > swz->size)
861 				continue;
862 #ifdef INVARIANTS
863 			if (fl_pad)
864 				MPASS(hwb->size % sp->pad_boundary == 0);
865 #endif
866 			hwb->zidx = i;
867 			if (head == -1)
868 				head = tail = j;
869 			else if (hwb->size < s->hw_buf_info[tail].size) {
870 				s->hw_buf_info[tail].next = j;
871 				tail = j;
872 			} else {
873 				int8_t *cur;
874 				struct hw_buf_info *t;
875 
876 				for (cur = &head; *cur != -1; cur = &t->next) {
877 					t = &s->hw_buf_info[*cur];
878 					if (hwb->size == t->size) {
879 						hwb->zidx = -2;
880 						break;
881 					}
882 					if (hwb->size > t->size) {
883 						hwb->next = *cur;
884 						*cur = j;
885 						break;
886 					}
887 				}
888 			}
889 		}
890 		swz->head_hwidx = head;
891 		swz->tail_hwidx = tail;
892 
893 		if (tail != -1) {
894 			n++;
895 			if (swz->size - s->hw_buf_info[tail].size >=
896 			    CL_METADATA_SIZE)
897 				sc->flags |= BUF_PACKING_OK;
898 		}
899 	}
900 	if (n == 0) {
901 		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
902 		rc = EINVAL;
903 	}
904 
905 	s->safe_hwidx1 = -1;
906 	s->safe_hwidx2 = -1;
907 	if (safe_swz != NULL) {
908 		s->safe_hwidx1 = safe_swz->head_hwidx;
909 		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
910 			int spare;
911 
912 			hwb = &s->hw_buf_info[i];
913 #ifdef INVARIANTS
914 			if (fl_pad)
915 				MPASS(hwb->size % sp->pad_boundary == 0);
916 #endif
917 			spare = safe_swz->size - hwb->size;
918 			if (spare >= CL_METADATA_SIZE) {
919 				s->safe_hwidx2 = i;
920 				break;
921 			}
922 		}
923 	}
924 
925 	if (sc->flags & IS_VF)
926 		return (0);
927 
928 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
929 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
930 	if (r != v) {
931 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
932 		rc = EINVAL;
933 	}
934 
935 	m = v = F_TDDPTAGTCB;
936 	r = t4_read_reg(sc, A_ULP_RX_CTL);
937 	if ((r & m) != v) {
938 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
939 		rc = EINVAL;
940 	}
941 
942 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
943 	    F_RESETDDPOFFSET;
944 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
945 	r = t4_read_reg(sc, A_TP_PARA_REG5);
946 	if ((r & m) != v) {
947 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
948 		rc = EINVAL;
949 	}
950 
951 	t4_init_tp_params(sc, 1);
952 
953 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
954 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
955 
956 	return (rc);
957 }
958 
959 int
960 t4_create_dma_tag(struct adapter *sc)
961 {
962 	int rc;
963 
964 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
965 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
966 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
967 	    NULL, &sc->dmat);
968 	if (rc != 0) {
969 		device_printf(sc->dev,
970 		    "failed to create main DMA tag: %d\n", rc);
971 	}
972 
973 	return (rc);
974 }
975 
976 void
977 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
978     struct sysctl_oid_list *children)
979 {
980 	struct sge_params *sp = &sc->params.sge;
981 
982 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
983 	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
984 	    "freelist buffer sizes");
985 
986 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
987 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
988 
989 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
990 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
991 
992 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
993 	    NULL, sp->spg_len, "status page size (bytes)");
994 
995 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
996 	    NULL, cong_drop, "congestion drop setting");
997 
998 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
999 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1000 }
1001 
1002 int
1003 t4_destroy_dma_tag(struct adapter *sc)
1004 {
1005 	if (sc->dmat)
1006 		bus_dma_tag_destroy(sc->dmat);
1007 
1008 	return (0);
1009 }
1010 
1011 /*
1012  * Allocate and initialize the firmware event queue and the management queue.
1013  *
1014  * Returns errno on failure.  Resources allocated up to that point may still be
1015  * allocated.  Caller is responsible for cleanup in case this function fails.
1016  */
1017 int
1018 t4_setup_adapter_queues(struct adapter *sc)
1019 {
1020 	int rc;
1021 
1022 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1023 
1024 	sysctl_ctx_init(&sc->ctx);
1025 	sc->flags |= ADAP_SYSCTL_CTX;
1026 
1027 	/*
1028 	 * Firmware event queue
1029 	 */
1030 	rc = alloc_fwq(sc);
1031 	if (rc != 0)
1032 		return (rc);
1033 
1034 	/*
1035 	 * Management queue.  This is just a control queue that uses the fwq as
1036 	 * its associated iq.
1037 	 */
1038 	if (!(sc->flags & IS_VF))
1039 		rc = alloc_mgmtq(sc);
1040 
1041 	return (rc);
1042 }
1043 
1044 /*
1045  * Idempotent
1046  */
1047 int
1048 t4_teardown_adapter_queues(struct adapter *sc)
1049 {
1050 
1051 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1052 
1053 	/* Do this before freeing the queue */
1054 	if (sc->flags & ADAP_SYSCTL_CTX) {
1055 		sysctl_ctx_free(&sc->ctx);
1056 		sc->flags &= ~ADAP_SYSCTL_CTX;
1057 	}
1058 
1059 	free_mgmtq(sc);
1060 	free_fwq(sc);
1061 
1062 	return (0);
1063 }
1064 
1065 /* Maximum payload that can be delivered with a single iq descriptor */
1066 static inline int
1067 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
1068 {
1069 	int payload;
1070 
1071 #ifdef TCP_OFFLOAD
1072 	if (toe) {
1073 		int rxcs = G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2));
1074 
1075 		/* Note that COP can set rx_coalesce on/off per connection. */
1076 		payload = max(mtu, rxcs);
1077 	} else {
1078 #endif
1079 		/* large enough even when hw VLAN extraction is disabled */
1080 		payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1081 		    ETHER_VLAN_ENCAP_LEN + mtu;
1082 #ifdef TCP_OFFLOAD
1083 	}
1084 #endif
1085 
1086 	return (payload);
1087 }
1088 
1089 int
1090 t4_setup_vi_queues(struct vi_info *vi)
1091 {
1092 	int rc = 0, i, intr_idx, iqidx;
1093 	struct sge_rxq *rxq;
1094 	struct sge_txq *txq;
1095 	struct sge_wrq *ctrlq;
1096 #ifdef TCP_OFFLOAD
1097 	struct sge_ofld_rxq *ofld_rxq;
1098 #endif
1099 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1100 	struct sge_wrq *ofld_txq;
1101 #endif
1102 #ifdef DEV_NETMAP
1103 	int saved_idx;
1104 	struct sge_nm_rxq *nm_rxq;
1105 	struct sge_nm_txq *nm_txq;
1106 #endif
1107 	char name[16];
1108 	struct port_info *pi = vi->pi;
1109 	struct adapter *sc = pi->adapter;
1110 	struct ifnet *ifp = vi->ifp;
1111 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
1112 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1113 	int maxp, mtu = ifp->if_mtu;
1114 
1115 	/* Interrupt vector to start from (when using multiple vectors) */
1116 	intr_idx = vi->first_intr;
1117 
1118 #ifdef DEV_NETMAP
1119 	saved_idx = intr_idx;
1120 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1121 
1122 		/* netmap is supported with direct interrupts only. */
1123 		MPASS(!forwarding_intr_to_fwq(sc));
1124 
1125 		/*
1126 		 * We don't have buffers to back the netmap rx queues
1127 		 * right now so we create the queues in a way that
1128 		 * doesn't set off any congestion signal in the chip.
1129 		 */
1130 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1131 		    CTLFLAG_RD, NULL, "rx queues");
1132 		for_each_nm_rxq(vi, i, nm_rxq) {
1133 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1134 			if (rc != 0)
1135 				goto done;
1136 			intr_idx++;
1137 		}
1138 
1139 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1140 		    CTLFLAG_RD, NULL, "tx queues");
1141 		for_each_nm_txq(vi, i, nm_txq) {
1142 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1143 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid);
1144 			if (rc != 0)
1145 				goto done;
1146 		}
1147 	}
1148 
1149 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1150 	intr_idx = saved_idx;
1151 #endif
1152 
1153 	/*
1154 	 * Allocate rx queues first because a default iqid is required when
1155 	 * creating a tx queue.
1156 	 */
1157 	maxp = mtu_to_max_payload(sc, mtu, 0);
1158 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1159 	    CTLFLAG_RD, NULL, "rx queues");
1160 	for_each_rxq(vi, i, rxq) {
1161 
1162 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1163 
1164 		snprintf(name, sizeof(name), "%s rxq%d-fl",
1165 		    device_get_nameunit(vi->dev), i);
1166 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1167 
1168 		rc = alloc_rxq(vi, rxq,
1169 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1170 		if (rc != 0)
1171 			goto done;
1172 		intr_idx++;
1173 	}
1174 #ifdef DEV_NETMAP
1175 	if (ifp->if_capabilities & IFCAP_NETMAP)
1176 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1177 #endif
1178 #ifdef TCP_OFFLOAD
1179 	maxp = mtu_to_max_payload(sc, mtu, 1);
1180 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1181 	    CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections");
1182 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1183 
1184 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
1185 		    vi->qsize_rxq);
1186 
1187 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1188 		    device_get_nameunit(vi->dev), i);
1189 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1190 
1191 		rc = alloc_ofld_rxq(vi, ofld_rxq,
1192 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1193 		if (rc != 0)
1194 			goto done;
1195 		intr_idx++;
1196 	}
1197 #endif
1198 
1199 	/*
1200 	 * Now the tx queues.
1201 	 */
1202 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1203 	    NULL, "tx queues");
1204 	for_each_txq(vi, i, txq) {
1205 		iqidx = vi->first_rxq + (i % vi->nrxq);
1206 		snprintf(name, sizeof(name), "%s txq%d",
1207 		    device_get_nameunit(vi->dev), i);
1208 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
1209 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1210 
1211 		rc = alloc_txq(vi, txq, i, oid);
1212 		if (rc != 0)
1213 			goto done;
1214 	}
1215 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1216 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1217 	    CTLFLAG_RD, NULL, "tx queues for TOE/ETHOFLD");
1218 	for_each_ofld_txq(vi, i, ofld_txq) {
1219 		struct sysctl_oid *oid2;
1220 
1221 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1222 		    device_get_nameunit(vi->dev), i);
1223 #ifdef TCP_OFFLOAD
1224 		iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq);
1225 		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1226 		    sc->sge.ofld_rxq[iqidx].iq.cntxt_id, name);
1227 #else
1228 		iqidx = vi->first_rxq + (i % vi->nrxq);
1229 		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1230 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1231 #endif
1232 
1233 		snprintf(name, sizeof(name), "%d", i);
1234 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1235 		    name, CTLFLAG_RD, NULL, "offload tx queue");
1236 
1237 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1238 		if (rc != 0)
1239 			goto done;
1240 	}
1241 #endif
1242 
1243 	/*
1244 	 * Finally, the control queue.
1245 	 */
1246 	if (!IS_MAIN_VI(vi) || sc->flags & IS_VF)
1247 		goto done;
1248 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1249 	    NULL, "ctrl queue");
1250 	ctrlq = &sc->sge.ctrlq[pi->port_id];
1251 	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev));
1252 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan,
1253 	    sc->sge.rxq[vi->first_rxq].iq.cntxt_id, name);
1254 	rc = alloc_wrq(sc, vi, ctrlq, oid);
1255 
1256 done:
1257 	if (rc)
1258 		t4_teardown_vi_queues(vi);
1259 
1260 	return (rc);
1261 }
1262 
1263 /*
1264  * Idempotent
1265  */
1266 int
1267 t4_teardown_vi_queues(struct vi_info *vi)
1268 {
1269 	int i;
1270 	struct port_info *pi = vi->pi;
1271 	struct adapter *sc = pi->adapter;
1272 	struct sge_rxq *rxq;
1273 	struct sge_txq *txq;
1274 #ifdef TCP_OFFLOAD
1275 	struct sge_ofld_rxq *ofld_rxq;
1276 #endif
1277 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1278 	struct sge_wrq *ofld_txq;
1279 #endif
1280 #ifdef DEV_NETMAP
1281 	struct sge_nm_rxq *nm_rxq;
1282 	struct sge_nm_txq *nm_txq;
1283 #endif
1284 
1285 	/* Do this before freeing the queues */
1286 	if (vi->flags & VI_SYSCTL_CTX) {
1287 		sysctl_ctx_free(&vi->ctx);
1288 		vi->flags &= ~VI_SYSCTL_CTX;
1289 	}
1290 
1291 #ifdef DEV_NETMAP
1292 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1293 		for_each_nm_txq(vi, i, nm_txq) {
1294 			free_nm_txq(vi, nm_txq);
1295 		}
1296 
1297 		for_each_nm_rxq(vi, i, nm_rxq) {
1298 			free_nm_rxq(vi, nm_rxq);
1299 		}
1300 	}
1301 #endif
1302 
1303 	/*
1304 	 * Take down all the tx queues first, as they reference the rx queues
1305 	 * (for egress updates, etc.).
1306 	 */
1307 
1308 	if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
1309 		free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1310 
1311 	for_each_txq(vi, i, txq) {
1312 		free_txq(vi, txq);
1313 	}
1314 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1315 	for_each_ofld_txq(vi, i, ofld_txq) {
1316 		free_wrq(sc, ofld_txq);
1317 	}
1318 #endif
1319 
1320 	/*
1321 	 * Then take down the rx queues.
1322 	 */
1323 
1324 	for_each_rxq(vi, i, rxq) {
1325 		free_rxq(vi, rxq);
1326 	}
1327 #ifdef TCP_OFFLOAD
1328 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1329 		free_ofld_rxq(vi, ofld_rxq);
1330 	}
1331 #endif
1332 
1333 	return (0);
1334 }
1335 
1336 /*
1337  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1338  * unusual scenario.
1339  *
1340  * a) Deals with errors, if any.
1341  * b) Services firmware event queue, which is taking interrupts for all other
1342  *    queues.
1343  */
1344 void
1345 t4_intr_all(void *arg)
1346 {
1347 	struct adapter *sc = arg;
1348 	struct sge_iq *fwq = &sc->sge.fwq;
1349 
1350 	MPASS(sc->intr_count == 1);
1351 
1352 	t4_intr_err(arg);
1353 	t4_intr_evt(fwq);
1354 }
1355 
1356 /*
1357  * Interrupt handler for errors (installed directly when multiple interrupts are
1358  * being used, or called by t4_intr_all).
1359  */
1360 void
1361 t4_intr_err(void *arg)
1362 {
1363 	struct adapter *sc = arg;
1364 
1365 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1366 	t4_slow_intr_handler(sc);
1367 }
1368 
1369 /*
1370  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1371  * such queue right now.
1372  */
1373 void
1374 t4_intr_evt(void *arg)
1375 {
1376 	struct sge_iq *iq = arg;
1377 
1378 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1379 		service_iq(iq, 0);
1380 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1381 	}
1382 }
1383 
1384 /*
1385  * Interrupt handler for iq+fl queues.
1386  */
1387 void
1388 t4_intr(void *arg)
1389 {
1390 	struct sge_iq *iq = arg;
1391 
1392 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1393 		service_iq_fl(iq, 0);
1394 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1395 	}
1396 }
1397 
1398 #ifdef DEV_NETMAP
1399 /*
1400  * Interrupt handler for netmap rx queues.
1401  */
1402 void
1403 t4_nm_intr(void *arg)
1404 {
1405 	struct sge_nm_rxq *nm_rxq = arg;
1406 
1407 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1408 		service_nm_rxq(nm_rxq);
1409 		atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1410 	}
1411 }
1412 
1413 /*
1414  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1415  */
1416 void
1417 t4_vi_intr(void *arg)
1418 {
1419 	struct irq *irq = arg;
1420 
1421 	MPASS(irq->nm_rxq != NULL);
1422 	t4_nm_intr(irq->nm_rxq);
1423 
1424 	MPASS(irq->rxq != NULL);
1425 	t4_intr(irq->rxq);
1426 }
1427 #endif
1428 
1429 /*
1430  * Deals with interrupts on an iq-only (no freelist) queue.
1431  */
1432 static int
1433 service_iq(struct sge_iq *iq, int budget)
1434 {
1435 	struct sge_iq *q;
1436 	struct adapter *sc = iq->adapter;
1437 	struct iq_desc *d = &iq->desc[iq->cidx];
1438 	int ndescs = 0, limit;
1439 	int rsp_type;
1440 	uint32_t lq;
1441 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1442 
1443 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1444 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1445 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1446 	    iq->flags));
1447 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1448 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1449 
1450 	limit = budget ? budget : iq->qsize / 16;
1451 
1452 	/*
1453 	 * We always come back and check the descriptor ring for new indirect
1454 	 * interrupts and other responses after running a single handler.
1455 	 */
1456 	for (;;) {
1457 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1458 
1459 			rmb();
1460 
1461 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1462 			lq = be32toh(d->rsp.pldbuflen_qid);
1463 
1464 			switch (rsp_type) {
1465 			case X_RSPD_TYPE_FLBUF:
1466 				panic("%s: data for an iq (%p) with no freelist",
1467 				    __func__, iq);
1468 
1469 				/* NOTREACHED */
1470 
1471 			case X_RSPD_TYPE_CPL:
1472 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1473 				    ("%s: bad opcode %02x.", __func__,
1474 				    d->rss.opcode));
1475 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1476 				break;
1477 
1478 			case X_RSPD_TYPE_INTR:
1479 				/*
1480 				 * There are 1K interrupt-capable queues (qids 0
1481 				 * through 1023).  A response type indicating a
1482 				 * forwarded interrupt with a qid >= 1K is an
1483 				 * iWARP async notification.
1484 				 */
1485 				if (__predict_true(lq >= 1024)) {
1486 					t4_an_handler(iq, &d->rsp);
1487 					break;
1488 				}
1489 
1490 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1491 				    sc->sge.iq_base];
1492 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1493 				    IQS_BUSY)) {
1494 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1495 						atomic_cmpset_int(&q->state,
1496 						    IQS_BUSY, IQS_IDLE);
1497 					} else {
1498 						STAILQ_INSERT_TAIL(&iql, q,
1499 						    link);
1500 					}
1501 				}
1502 				break;
1503 
1504 			default:
1505 				KASSERT(0,
1506 				    ("%s: illegal response type %d on iq %p",
1507 				    __func__, rsp_type, iq));
1508 				log(LOG_ERR,
1509 				    "%s: illegal response type %d on iq %p",
1510 				    device_get_nameunit(sc->dev), rsp_type, iq);
1511 				break;
1512 			}
1513 
1514 			d++;
1515 			if (__predict_false(++iq->cidx == iq->sidx)) {
1516 				iq->cidx = 0;
1517 				iq->gen ^= F_RSPD_GEN;
1518 				d = &iq->desc[0];
1519 			}
1520 			if (__predict_false(++ndescs == limit)) {
1521 				t4_write_reg(sc, sc->sge_gts_reg,
1522 				    V_CIDXINC(ndescs) |
1523 				    V_INGRESSQID(iq->cntxt_id) |
1524 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1525 				ndescs = 0;
1526 
1527 				if (budget) {
1528 					return (EINPROGRESS);
1529 				}
1530 			}
1531 		}
1532 
1533 		if (STAILQ_EMPTY(&iql))
1534 			break;
1535 
1536 		/*
1537 		 * Process the head only, and send it to the back of the list if
1538 		 * it's still not done.
1539 		 */
1540 		q = STAILQ_FIRST(&iql);
1541 		STAILQ_REMOVE_HEAD(&iql, link);
1542 		if (service_iq_fl(q, q->qsize / 8) == 0)
1543 			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1544 		else
1545 			STAILQ_INSERT_TAIL(&iql, q, link);
1546 	}
1547 
1548 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1549 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1550 
1551 	return (0);
1552 }
1553 
1554 static inline int
1555 sort_before_lro(struct lro_ctrl *lro)
1556 {
1557 
1558 	return (lro->lro_mbuf_max != 0);
1559 }
1560 
1561 /*
1562  * Deals with interrupts on an iq+fl queue.
1563  */
1564 static int
1565 service_iq_fl(struct sge_iq *iq, int budget)
1566 {
1567 	struct sge_rxq *rxq = iq_to_rxq(iq);
1568 	struct sge_fl *fl;
1569 	struct adapter *sc = iq->adapter;
1570 	struct iq_desc *d = &iq->desc[iq->cidx];
1571 	int ndescs = 0, limit;
1572 	int rsp_type, refill, starved;
1573 	uint32_t lq;
1574 	uint16_t fl_hw_cidx;
1575 	struct mbuf *m0;
1576 #if defined(INET) || defined(INET6)
1577 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1578 	struct lro_ctrl *lro = &rxq->lro;
1579 #endif
1580 
1581 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1582 	MPASS(iq->flags & IQ_HAS_FL);
1583 
1584 	limit = budget ? budget : iq->qsize / 16;
1585 	fl = &rxq->fl;
1586 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1587 
1588 #if defined(INET) || defined(INET6)
1589 	if (iq->flags & IQ_ADJ_CREDIT) {
1590 		MPASS(sort_before_lro(lro));
1591 		iq->flags &= ~IQ_ADJ_CREDIT;
1592 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1593 			tcp_lro_flush_all(lro);
1594 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1595 			    V_INGRESSQID((u32)iq->cntxt_id) |
1596 			    V_SEINTARM(iq->intr_params));
1597 			return (0);
1598 		}
1599 		ndescs = 1;
1600 	}
1601 #else
1602 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1603 #endif
1604 
1605 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1606 
1607 		rmb();
1608 
1609 		refill = 0;
1610 		m0 = NULL;
1611 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1612 		lq = be32toh(d->rsp.pldbuflen_qid);
1613 
1614 		switch (rsp_type) {
1615 		case X_RSPD_TYPE_FLBUF:
1616 
1617 			m0 = get_fl_payload(sc, fl, lq);
1618 			if (__predict_false(m0 == NULL))
1619 				goto out;
1620 			refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1621 #ifdef T4_PKT_TIMESTAMP
1622 			/*
1623 			 * 60 bit timestamp for the payload is
1624 			 * *(uint64_t *)m0->m_pktdat.  Note that it is
1625 			 * in the leading free-space in the mbuf.  The
1626 			 * kernel can clobber it during a pullup,
1627 			 * m_copymdata, etc.  You need to make sure that
1628 			 * the mbuf reaches you unmolested if you care
1629 			 * about the timestamp.
1630 			 */
1631 			*(uint64_t *)m0->m_pktdat =
1632 			    be64toh(ctrl->u.last_flit) & 0xfffffffffffffff;
1633 #endif
1634 
1635 			/* fall through */
1636 
1637 		case X_RSPD_TYPE_CPL:
1638 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1639 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1640 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1641 			break;
1642 
1643 		case X_RSPD_TYPE_INTR:
1644 
1645 			/*
1646 			 * There are 1K interrupt-capable queues (qids 0
1647 			 * through 1023).  A response type indicating a
1648 			 * forwarded interrupt with a qid >= 1K is an
1649 			 * iWARP async notification.  That is the only
1650 			 * acceptable indirect interrupt on this queue.
1651 			 */
1652 			if (__predict_false(lq < 1024)) {
1653 				panic("%s: indirect interrupt on iq_fl %p "
1654 				    "with qid %u", __func__, iq, lq);
1655 			}
1656 
1657 			t4_an_handler(iq, &d->rsp);
1658 			break;
1659 
1660 		default:
1661 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1662 			    __func__, rsp_type, iq));
1663 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1664 			    device_get_nameunit(sc->dev), rsp_type, iq);
1665 			break;
1666 		}
1667 
1668 		d++;
1669 		if (__predict_false(++iq->cidx == iq->sidx)) {
1670 			iq->cidx = 0;
1671 			iq->gen ^= F_RSPD_GEN;
1672 			d = &iq->desc[0];
1673 		}
1674 		if (__predict_false(++ndescs == limit)) {
1675 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1676 			    V_INGRESSQID(iq->cntxt_id) |
1677 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1678 			ndescs = 0;
1679 
1680 #if defined(INET) || defined(INET6)
1681 			if (iq->flags & IQ_LRO_ENABLED &&
1682 			    !sort_before_lro(lro) &&
1683 			    sc->lro_timeout != 0) {
1684 				tcp_lro_flush_inactive(lro, &lro_timeout);
1685 			}
1686 #endif
1687 			if (budget) {
1688 				FL_LOCK(fl);
1689 				refill_fl(sc, fl, 32);
1690 				FL_UNLOCK(fl);
1691 
1692 				return (EINPROGRESS);
1693 			}
1694 		}
1695 		if (refill) {
1696 			FL_LOCK(fl);
1697 			refill_fl(sc, fl, 32);
1698 			FL_UNLOCK(fl);
1699 			fl_hw_cidx = fl->hw_cidx;
1700 		}
1701 	}
1702 out:
1703 #if defined(INET) || defined(INET6)
1704 	if (iq->flags & IQ_LRO_ENABLED) {
1705 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1706 			MPASS(sort_before_lro(lro));
1707 			/* hold back one credit and don't flush LRO state */
1708 			iq->flags |= IQ_ADJ_CREDIT;
1709 			ndescs--;
1710 		} else {
1711 			tcp_lro_flush_all(lro);
1712 		}
1713 	}
1714 #endif
1715 
1716 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1717 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1718 
1719 	FL_LOCK(fl);
1720 	starved = refill_fl(sc, fl, 64);
1721 	FL_UNLOCK(fl);
1722 	if (__predict_false(starved != 0))
1723 		add_fl_to_sfl(sc, fl);
1724 
1725 	return (0);
1726 }
1727 
1728 static inline int
1729 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1730 {
1731 	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1732 
1733 	if (rc)
1734 		MPASS(cll->region3 >= CL_METADATA_SIZE);
1735 
1736 	return (rc);
1737 }
1738 
1739 static inline struct cluster_metadata *
1740 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1741     caddr_t cl)
1742 {
1743 
1744 	if (cl_has_metadata(fl, cll)) {
1745 		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1746 
1747 		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1748 	}
1749 	return (NULL);
1750 }
1751 
1752 static void
1753 rxb_free(struct mbuf *m)
1754 {
1755 	uma_zone_t zone = m->m_ext.ext_arg1;
1756 	void *cl = m->m_ext.ext_arg2;
1757 
1758 	uma_zfree(zone, cl);
1759 	counter_u64_add(extfree_rels, 1);
1760 }
1761 
1762 /*
1763  * The mbuf returned by this function could be allocated from zone_mbuf or
1764  * constructed in spare room in the cluster.
1765  *
1766  * The mbuf carries the payload in one of these ways
1767  * a) frame inside the mbuf (mbuf from zone_mbuf)
1768  * b) m_cljset (for clusters without metadata) zone_mbuf
1769  * c) m_extaddref (cluster with metadata) inline mbuf
1770  * d) m_extaddref (cluster with metadata) zone_mbuf
1771  */
1772 static struct mbuf *
1773 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1774     int remaining)
1775 {
1776 	struct mbuf *m;
1777 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1778 	struct cluster_layout *cll = &sd->cll;
1779 	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1780 	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1781 	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1782 	int len, blen;
1783 	caddr_t payload;
1784 
1785 	blen = hwb->size - fl->rx_offset;	/* max possible in this buf */
1786 	len = min(remaining, blen);
1787 	payload = sd->cl + cll->region1 + fl->rx_offset;
1788 	if (fl->flags & FL_BUF_PACKING) {
1789 		const u_int l = fr_offset + len;
1790 		const u_int pad = roundup2(l, fl->buf_boundary) - l;
1791 
1792 		if (fl->rx_offset + len + pad < hwb->size)
1793 			blen = len + pad;
1794 		MPASS(fl->rx_offset + blen <= hwb->size);
1795 	} else {
1796 		MPASS(fl->rx_offset == 0);	/* not packing */
1797 	}
1798 
1799 
1800 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1801 
1802 		/*
1803 		 * Copy payload into a freshly allocated mbuf.
1804 		 */
1805 
1806 		m = fr_offset == 0 ?
1807 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1808 		if (m == NULL)
1809 			return (NULL);
1810 		fl->mbuf_allocated++;
1811 #ifdef T4_PKT_TIMESTAMP
1812 		/* Leave room for a timestamp */
1813 		m->m_data += 8;
1814 #endif
1815 		/* copy data to mbuf */
1816 		bcopy(payload, mtod(m, caddr_t), len);
1817 
1818 	} else if (sd->nmbuf * MSIZE < cll->region1) {
1819 
1820 		/*
1821 		 * There's spare room in the cluster for an mbuf.  Create one
1822 		 * and associate it with the payload that's in the cluster.
1823 		 */
1824 
1825 		MPASS(clm != NULL);
1826 		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1827 		/* No bzero required */
1828 		if (m_init(m, M_NOWAIT, MT_DATA,
1829 		    fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
1830 			return (NULL);
1831 		fl->mbuf_inlined++;
1832 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
1833 		    swz->zone, sd->cl);
1834 		if (sd->nmbuf++ == 0)
1835 			counter_u64_add(extfree_refs, 1);
1836 
1837 	} else {
1838 
1839 		/*
1840 		 * Grab an mbuf from zone_mbuf and associate it with the
1841 		 * payload in the cluster.
1842 		 */
1843 
1844 		m = fr_offset == 0 ?
1845 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1846 		if (m == NULL)
1847 			return (NULL);
1848 		fl->mbuf_allocated++;
1849 		if (clm != NULL) {
1850 			m_extaddref(m, payload, blen, &clm->refcount,
1851 			    rxb_free, swz->zone, sd->cl);
1852 			if (sd->nmbuf++ == 0)
1853 				counter_u64_add(extfree_refs, 1);
1854 		} else {
1855 			m_cljset(m, sd->cl, swz->type);
1856 			sd->cl = NULL;	/* consumed, not a recycle candidate */
1857 		}
1858 	}
1859 	if (fr_offset == 0)
1860 		m->m_pkthdr.len = remaining;
1861 	m->m_len = len;
1862 
1863 	if (fl->flags & FL_BUF_PACKING) {
1864 		fl->rx_offset += blen;
1865 		MPASS(fl->rx_offset <= hwb->size);
1866 		if (fl->rx_offset < hwb->size)
1867 			return (m);	/* without advancing the cidx */
1868 	}
1869 
1870 	if (__predict_false(++fl->cidx % 8 == 0)) {
1871 		uint16_t cidx = fl->cidx / 8;
1872 
1873 		if (__predict_false(cidx == fl->sidx))
1874 			fl->cidx = cidx = 0;
1875 		fl->hw_cidx = cidx;
1876 	}
1877 	fl->rx_offset = 0;
1878 
1879 	return (m);
1880 }
1881 
1882 static struct mbuf *
1883 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1884 {
1885 	struct mbuf *m0, *m, **pnext;
1886 	u_int remaining;
1887 	const u_int total = G_RSPD_LEN(len_newbuf);
1888 
1889 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1890 		M_ASSERTPKTHDR(fl->m0);
1891 		MPASS(fl->m0->m_pkthdr.len == total);
1892 		MPASS(fl->remaining < total);
1893 
1894 		m0 = fl->m0;
1895 		pnext = fl->pnext;
1896 		remaining = fl->remaining;
1897 		fl->flags &= ~FL_BUF_RESUME;
1898 		goto get_segment;
1899 	}
1900 
1901 	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1902 		fl->rx_offset = 0;
1903 		if (__predict_false(++fl->cidx % 8 == 0)) {
1904 			uint16_t cidx = fl->cidx / 8;
1905 
1906 			if (__predict_false(cidx == fl->sidx))
1907 				fl->cidx = cidx = 0;
1908 			fl->hw_cidx = cidx;
1909 		}
1910 	}
1911 
1912 	/*
1913 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1914 	 * 'len' and it may span multiple hw buffers.
1915 	 */
1916 
1917 	m0 = get_scatter_segment(sc, fl, 0, total);
1918 	if (m0 == NULL)
1919 		return (NULL);
1920 	remaining = total - m0->m_len;
1921 	pnext = &m0->m_next;
1922 	while (remaining > 0) {
1923 get_segment:
1924 		MPASS(fl->rx_offset == 0);
1925 		m = get_scatter_segment(sc, fl, total - remaining, remaining);
1926 		if (__predict_false(m == NULL)) {
1927 			fl->m0 = m0;
1928 			fl->pnext = pnext;
1929 			fl->remaining = remaining;
1930 			fl->flags |= FL_BUF_RESUME;
1931 			return (NULL);
1932 		}
1933 		*pnext = m;
1934 		pnext = &m->m_next;
1935 		remaining -= m->m_len;
1936 	}
1937 	*pnext = NULL;
1938 
1939 	M_ASSERTPKTHDR(m0);
1940 	return (m0);
1941 }
1942 
1943 static int
1944 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1945 {
1946 	struct sge_rxq *rxq = iq_to_rxq(iq);
1947 	struct ifnet *ifp = rxq->ifp;
1948 	struct adapter *sc = iq->adapter;
1949 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1950 #if defined(INET) || defined(INET6)
1951 	struct lro_ctrl *lro = &rxq->lro;
1952 #endif
1953 	static const int sw_hashtype[4][2] = {
1954 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1955 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1956 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1957 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1958 	};
1959 
1960 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1961 	    rss->opcode));
1962 
1963 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1964 	m0->m_len -= sc->params.sge.fl_pktshift;
1965 	m0->m_data += sc->params.sge.fl_pktshift;
1966 
1967 	m0->m_pkthdr.rcvif = ifp;
1968 	M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
1969 	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1970 
1971 	if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) {
1972 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1973 		    cpl->l2info & htobe32(F_RXF_IP)) {
1974 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1975 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1976 			rxq->rxcsum++;
1977 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1978 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1979 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1980 			    CSUM_PSEUDO_HDR);
1981 			rxq->rxcsum++;
1982 		}
1983 
1984 		if (__predict_false(cpl->ip_frag))
1985 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1986 		else
1987 			m0->m_pkthdr.csum_data = 0xffff;
1988 	}
1989 
1990 	if (cpl->vlan_ex) {
1991 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1992 		m0->m_flags |= M_VLANTAG;
1993 		rxq->vlan_extraction++;
1994 	}
1995 
1996 #if defined(INET) || defined(INET6)
1997 	if (iq->flags & IQ_LRO_ENABLED) {
1998 		if (sort_before_lro(lro)) {
1999 			tcp_lro_queue_mbuf(lro, m0);
2000 			return (0); /* queued for sort, then LRO */
2001 		}
2002 		if (tcp_lro_rx(lro, m0, 0) == 0)
2003 			return (0); /* queued for LRO */
2004 	}
2005 #endif
2006 	ifp->if_input(ifp, m0);
2007 
2008 	return (0);
2009 }
2010 
2011 /*
2012  * Must drain the wrq or make sure that someone else will.
2013  */
2014 static void
2015 wrq_tx_drain(void *arg, int n)
2016 {
2017 	struct sge_wrq *wrq = arg;
2018 	struct sge_eq *eq = &wrq->eq;
2019 
2020 	EQ_LOCK(eq);
2021 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2022 		drain_wrq_wr_list(wrq->adapter, wrq);
2023 	EQ_UNLOCK(eq);
2024 }
2025 
2026 static void
2027 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2028 {
2029 	struct sge_eq *eq = &wrq->eq;
2030 	u_int available, dbdiff;	/* # of hardware descriptors */
2031 	u_int n;
2032 	struct wrqe *wr;
2033 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2034 
2035 	EQ_LOCK_ASSERT_OWNED(eq);
2036 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2037 	wr = STAILQ_FIRST(&wrq->wr_list);
2038 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2039 	MPASS(eq->pidx == eq->dbidx);
2040 	dbdiff = 0;
2041 
2042 	do {
2043 		eq->cidx = read_hw_cidx(eq);
2044 		if (eq->pidx == eq->cidx)
2045 			available = eq->sidx - 1;
2046 		else
2047 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2048 
2049 		MPASS(wr->wrq == wrq);
2050 		n = howmany(wr->wr_len, EQ_ESIZE);
2051 		if (available < n)
2052 			break;
2053 
2054 		dst = (void *)&eq->desc[eq->pidx];
2055 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2056 			/* Won't wrap, won't end exactly at the status page. */
2057 			bcopy(&wr->wr[0], dst, wr->wr_len);
2058 			eq->pidx += n;
2059 		} else {
2060 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2061 
2062 			bcopy(&wr->wr[0], dst, first_portion);
2063 			if (wr->wr_len > first_portion) {
2064 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2065 				    wr->wr_len - first_portion);
2066 			}
2067 			eq->pidx = n - (eq->sidx - eq->pidx);
2068 		}
2069 		wrq->tx_wrs_copied++;
2070 
2071 		if (available < eq->sidx / 4 &&
2072 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2073 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2074 			    F_FW_WR_EQUEQ);
2075 			eq->equeqidx = eq->pidx;
2076 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2077 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2078 			eq->equeqidx = eq->pidx;
2079 		}
2080 
2081 		dbdiff += n;
2082 		if (dbdiff >= 16) {
2083 			ring_eq_db(sc, eq, dbdiff);
2084 			dbdiff = 0;
2085 		}
2086 
2087 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2088 		free_wrqe(wr);
2089 		MPASS(wrq->nwr_pending > 0);
2090 		wrq->nwr_pending--;
2091 		MPASS(wrq->ndesc_needed >= n);
2092 		wrq->ndesc_needed -= n;
2093 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2094 
2095 	if (dbdiff)
2096 		ring_eq_db(sc, eq, dbdiff);
2097 }
2098 
2099 /*
2100  * Doesn't fail.  Holds on to work requests it can't send right away.
2101  */
2102 void
2103 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2104 {
2105 #ifdef INVARIANTS
2106 	struct sge_eq *eq = &wrq->eq;
2107 #endif
2108 
2109 	EQ_LOCK_ASSERT_OWNED(eq);
2110 	MPASS(wr != NULL);
2111 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2112 	MPASS((wr->wr_len & 0x7) == 0);
2113 
2114 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2115 	wrq->nwr_pending++;
2116 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2117 
2118 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2119 		return;	/* commit_wrq_wr will drain wr_list as well. */
2120 
2121 	drain_wrq_wr_list(sc, wrq);
2122 
2123 	/* Doorbell must have caught up to the pidx. */
2124 	MPASS(eq->pidx == eq->dbidx);
2125 }
2126 
2127 void
2128 t4_update_fl_bufsize(struct ifnet *ifp)
2129 {
2130 	struct vi_info *vi = ifp->if_softc;
2131 	struct adapter *sc = vi->pi->adapter;
2132 	struct sge_rxq *rxq;
2133 #ifdef TCP_OFFLOAD
2134 	struct sge_ofld_rxq *ofld_rxq;
2135 #endif
2136 	struct sge_fl *fl;
2137 	int i, maxp, mtu = ifp->if_mtu;
2138 
2139 	maxp = mtu_to_max_payload(sc, mtu, 0);
2140 	for_each_rxq(vi, i, rxq) {
2141 		fl = &rxq->fl;
2142 
2143 		FL_LOCK(fl);
2144 		find_best_refill_source(sc, fl, maxp);
2145 		FL_UNLOCK(fl);
2146 	}
2147 #ifdef TCP_OFFLOAD
2148 	maxp = mtu_to_max_payload(sc, mtu, 1);
2149 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2150 		fl = &ofld_rxq->fl;
2151 
2152 		FL_LOCK(fl);
2153 		find_best_refill_source(sc, fl, maxp);
2154 		FL_UNLOCK(fl);
2155 	}
2156 #endif
2157 }
2158 
2159 static inline int
2160 mbuf_nsegs(struct mbuf *m)
2161 {
2162 
2163 	M_ASSERTPKTHDR(m);
2164 	KASSERT(m->m_pkthdr.l5hlen > 0,
2165 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2166 
2167 	return (m->m_pkthdr.l5hlen);
2168 }
2169 
2170 static inline void
2171 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2172 {
2173 
2174 	M_ASSERTPKTHDR(m);
2175 	m->m_pkthdr.l5hlen = nsegs;
2176 }
2177 
2178 static inline int
2179 mbuf_len16(struct mbuf *m)
2180 {
2181 	int n;
2182 
2183 	M_ASSERTPKTHDR(m);
2184 	n = m->m_pkthdr.PH_loc.eight[0];
2185 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2186 
2187 	return (n);
2188 }
2189 
2190 static inline void
2191 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2192 {
2193 
2194 	M_ASSERTPKTHDR(m);
2195 	m->m_pkthdr.PH_loc.eight[0] = len16;
2196 }
2197 
2198 #ifdef RATELIMIT
2199 static inline int
2200 mbuf_eo_nsegs(struct mbuf *m)
2201 {
2202 
2203 	M_ASSERTPKTHDR(m);
2204 	return (m->m_pkthdr.PH_loc.eight[1]);
2205 }
2206 
2207 static inline void
2208 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2209 {
2210 
2211 	M_ASSERTPKTHDR(m);
2212 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2213 }
2214 
2215 static inline int
2216 mbuf_eo_len16(struct mbuf *m)
2217 {
2218 	int n;
2219 
2220 	M_ASSERTPKTHDR(m);
2221 	n = m->m_pkthdr.PH_loc.eight[2];
2222 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2223 
2224 	return (n);
2225 }
2226 
2227 static inline void
2228 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2229 {
2230 
2231 	M_ASSERTPKTHDR(m);
2232 	m->m_pkthdr.PH_loc.eight[2] = len16;
2233 }
2234 
2235 static inline int
2236 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2237 {
2238 
2239 	M_ASSERTPKTHDR(m);
2240 	return (m->m_pkthdr.PH_loc.eight[3]);
2241 }
2242 
2243 static inline void
2244 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2245 {
2246 
2247 	M_ASSERTPKTHDR(m);
2248 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2249 }
2250 
2251 static inline int
2252 needs_eo(struct mbuf *m)
2253 {
2254 
2255 	return (m->m_pkthdr.snd_tag != NULL);
2256 }
2257 #endif
2258 
2259 static inline int
2260 needs_tso(struct mbuf *m)
2261 {
2262 
2263 	M_ASSERTPKTHDR(m);
2264 
2265 	return (m->m_pkthdr.csum_flags & CSUM_TSO);
2266 }
2267 
2268 static inline int
2269 needs_l3_csum(struct mbuf *m)
2270 {
2271 
2272 	M_ASSERTPKTHDR(m);
2273 
2274 	return (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO));
2275 }
2276 
2277 static inline int
2278 needs_l4_csum(struct mbuf *m)
2279 {
2280 
2281 	M_ASSERTPKTHDR(m);
2282 
2283 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2284 	    CSUM_TCP_IPV6 | CSUM_TSO));
2285 }
2286 
2287 static inline int
2288 needs_tcp_csum(struct mbuf *m)
2289 {
2290 
2291 	M_ASSERTPKTHDR(m);
2292 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_TCP_IPV6 | CSUM_TSO));
2293 }
2294 
2295 #ifdef RATELIMIT
2296 static inline int
2297 needs_udp_csum(struct mbuf *m)
2298 {
2299 
2300 	M_ASSERTPKTHDR(m);
2301 	return (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_UDP_IPV6));
2302 }
2303 #endif
2304 
2305 static inline int
2306 needs_vlan_insertion(struct mbuf *m)
2307 {
2308 
2309 	M_ASSERTPKTHDR(m);
2310 
2311 	return (m->m_flags & M_VLANTAG);
2312 }
2313 
2314 static void *
2315 m_advance(struct mbuf **pm, int *poffset, int len)
2316 {
2317 	struct mbuf *m = *pm;
2318 	int offset = *poffset;
2319 	uintptr_t p = 0;
2320 
2321 	MPASS(len > 0);
2322 
2323 	for (;;) {
2324 		if (offset + len < m->m_len) {
2325 			offset += len;
2326 			p = mtod(m, uintptr_t) + offset;
2327 			break;
2328 		}
2329 		len -= m->m_len - offset;
2330 		m = m->m_next;
2331 		offset = 0;
2332 		MPASS(m != NULL);
2333 	}
2334 	*poffset = offset;
2335 	*pm = m;
2336 	return ((void *)p);
2337 }
2338 
2339 /*
2340  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2341  * must have at least one mbuf that's not empty.  It is possible for this
2342  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2343  */
2344 static inline int
2345 count_mbuf_nsegs(struct mbuf *m, int skip)
2346 {
2347 	vm_paddr_t lastb, next;
2348 	vm_offset_t va;
2349 	int len, nsegs;
2350 
2351 	M_ASSERTPKTHDR(m);
2352 	MPASS(m->m_pkthdr.len > 0);
2353 	MPASS(m->m_pkthdr.len >= skip);
2354 
2355 	nsegs = 0;
2356 	lastb = 0;
2357 	for (; m; m = m->m_next) {
2358 
2359 		len = m->m_len;
2360 		if (__predict_false(len == 0))
2361 			continue;
2362 		if (skip >= len) {
2363 			skip -= len;
2364 			continue;
2365 		}
2366 		va = mtod(m, vm_offset_t) + skip;
2367 		len -= skip;
2368 		skip = 0;
2369 		next = pmap_kextract(va);
2370 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2371 		if (lastb + 1 == next)
2372 			nsegs--;
2373 		lastb = pmap_kextract(va + len - 1);
2374 	}
2375 
2376 	return (nsegs);
2377 }
2378 
2379 /*
2380  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2381  * a) caller can assume it's been freed if this function returns with an error.
2382  * b) it may get defragged up if the gather list is too long for the hardware.
2383  */
2384 int
2385 parse_pkt(struct adapter *sc, struct mbuf **mp)
2386 {
2387 	struct mbuf *m0 = *mp, *m;
2388 	int rc, nsegs, defragged = 0, offset;
2389 	struct ether_header *eh;
2390 	void *l3hdr;
2391 #if defined(INET) || defined(INET6)
2392 	struct tcphdr *tcp;
2393 #endif
2394 	uint16_t eh_type;
2395 
2396 	M_ASSERTPKTHDR(m0);
2397 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2398 		rc = EINVAL;
2399 fail:
2400 		m_freem(m0);
2401 		*mp = NULL;
2402 		return (rc);
2403 	}
2404 restart:
2405 	/*
2406 	 * First count the number of gather list segments in the payload.
2407 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2408 	 */
2409 	M_ASSERTPKTHDR(m0);
2410 	MPASS(m0->m_pkthdr.len > 0);
2411 	nsegs = count_mbuf_nsegs(m0, 0);
2412 	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2413 		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2414 			rc = EFBIG;
2415 			goto fail;
2416 		}
2417 		*mp = m0 = m;	/* update caller's copy after defrag */
2418 		goto restart;
2419 	}
2420 
2421 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
2422 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2423 		if (m0 == NULL) {
2424 			/* Should have left well enough alone. */
2425 			rc = EFBIG;
2426 			goto fail;
2427 		}
2428 		*mp = m0;	/* update caller's copy after pullup */
2429 		goto restart;
2430 	}
2431 	set_mbuf_nsegs(m0, nsegs);
2432 	if (sc->flags & IS_VF)
2433 		set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0)));
2434 	else
2435 		set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2436 
2437 #ifdef RATELIMIT
2438 	/*
2439 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2440 	 * checksumming is enabled.  needs_l4_csum happens to check for all the
2441 	 * right things.
2442 	 */
2443 	if (__predict_false(needs_eo(m0) && !needs_l4_csum(m0)))
2444 		m0->m_pkthdr.snd_tag = NULL;
2445 #endif
2446 
2447 	if (!needs_tso(m0) &&
2448 #ifdef RATELIMIT
2449 	    !needs_eo(m0) &&
2450 #endif
2451 	    !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0))))
2452 		return (0);
2453 
2454 	m = m0;
2455 	eh = mtod(m, struct ether_header *);
2456 	eh_type = ntohs(eh->ether_type);
2457 	if (eh_type == ETHERTYPE_VLAN) {
2458 		struct ether_vlan_header *evh = (void *)eh;
2459 
2460 		eh_type = ntohs(evh->evl_proto);
2461 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2462 	} else
2463 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2464 
2465 	offset = 0;
2466 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2467 
2468 	switch (eh_type) {
2469 #ifdef INET6
2470 	case ETHERTYPE_IPV6:
2471 	{
2472 		struct ip6_hdr *ip6 = l3hdr;
2473 
2474 		MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP);
2475 
2476 		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2477 		break;
2478 	}
2479 #endif
2480 #ifdef INET
2481 	case ETHERTYPE_IP:
2482 	{
2483 		struct ip *ip = l3hdr;
2484 
2485 		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2486 		break;
2487 	}
2488 #endif
2489 	default:
2490 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2491 		    " with the same INET/INET6 options as the kernel.",
2492 		    __func__, eh_type);
2493 	}
2494 
2495 #if defined(INET) || defined(INET6)
2496 	if (needs_tcp_csum(m0)) {
2497 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2498 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2499 #ifdef RATELIMIT
2500 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2501 			set_mbuf_eo_tsclk_tsoff(m0,
2502 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2503 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2504 		} else
2505 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2506 	} else if (needs_udp_csum(m)) {
2507 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2508 #endif
2509 	}
2510 #ifdef RATELIMIT
2511 	if (needs_eo(m0)) {
2512 		u_int immhdrs;
2513 
2514 		/* EO WRs have the headers in the WR and not the GL. */
2515 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2516 		    m0->m_pkthdr.l4hlen;
2517 		nsegs = count_mbuf_nsegs(m0, immhdrs);
2518 		set_mbuf_eo_nsegs(m0, nsegs);
2519 		set_mbuf_eo_len16(m0,
2520 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2521 	}
2522 #endif
2523 #endif
2524 	MPASS(m0 == *mp);
2525 	return (0);
2526 }
2527 
2528 void *
2529 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2530 {
2531 	struct sge_eq *eq = &wrq->eq;
2532 	struct adapter *sc = wrq->adapter;
2533 	int ndesc, available;
2534 	struct wrqe *wr;
2535 	void *w;
2536 
2537 	MPASS(len16 > 0);
2538 	ndesc = howmany(len16, EQ_ESIZE / 16);
2539 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2540 
2541 	EQ_LOCK(eq);
2542 
2543 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2544 		drain_wrq_wr_list(sc, wrq);
2545 
2546 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2547 slowpath:
2548 		EQ_UNLOCK(eq);
2549 		wr = alloc_wrqe(len16 * 16, wrq);
2550 		if (__predict_false(wr == NULL))
2551 			return (NULL);
2552 		cookie->pidx = -1;
2553 		cookie->ndesc = ndesc;
2554 		return (&wr->wr);
2555 	}
2556 
2557 	eq->cidx = read_hw_cidx(eq);
2558 	if (eq->pidx == eq->cidx)
2559 		available = eq->sidx - 1;
2560 	else
2561 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2562 	if (available < ndesc)
2563 		goto slowpath;
2564 
2565 	cookie->pidx = eq->pidx;
2566 	cookie->ndesc = ndesc;
2567 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2568 
2569 	w = &eq->desc[eq->pidx];
2570 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2571 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2572 		w = &wrq->ss[0];
2573 		wrq->ss_pidx = cookie->pidx;
2574 		wrq->ss_len = len16 * 16;
2575 	}
2576 
2577 	EQ_UNLOCK(eq);
2578 
2579 	return (w);
2580 }
2581 
2582 void
2583 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2584 {
2585 	struct sge_eq *eq = &wrq->eq;
2586 	struct adapter *sc = wrq->adapter;
2587 	int ndesc, pidx;
2588 	struct wrq_cookie *prev, *next;
2589 
2590 	if (cookie->pidx == -1) {
2591 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2592 
2593 		t4_wrq_tx(sc, wr);
2594 		return;
2595 	}
2596 
2597 	if (__predict_false(w == &wrq->ss[0])) {
2598 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2599 
2600 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2601 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2602 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2603 		wrq->tx_wrs_ss++;
2604 	} else
2605 		wrq->tx_wrs_direct++;
2606 
2607 	EQ_LOCK(eq);
2608 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2609 	pidx = cookie->pidx;
2610 	MPASS(pidx >= 0 && pidx < eq->sidx);
2611 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2612 	next = TAILQ_NEXT(cookie, link);
2613 	if (prev == NULL) {
2614 		MPASS(pidx == eq->dbidx);
2615 		if (next == NULL || ndesc >= 16) {
2616 			int available;
2617 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2618 
2619 			/*
2620 			 * Note that the WR via which we'll request tx updates
2621 			 * is at pidx and not eq->pidx, which has moved on
2622 			 * already.
2623 			 */
2624 			dst = (void *)&eq->desc[pidx];
2625 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2626 			if (available < eq->sidx / 4 &&
2627 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2628 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2629 				    F_FW_WR_EQUEQ);
2630 				eq->equeqidx = pidx;
2631 			} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2632 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2633 				eq->equeqidx = pidx;
2634 			}
2635 
2636 			ring_eq_db(wrq->adapter, eq, ndesc);
2637 		} else {
2638 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2639 			next->pidx = pidx;
2640 			next->ndesc += ndesc;
2641 		}
2642 	} else {
2643 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2644 		prev->ndesc += ndesc;
2645 	}
2646 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2647 
2648 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2649 		drain_wrq_wr_list(sc, wrq);
2650 
2651 #ifdef INVARIANTS
2652 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2653 		/* Doorbell must have caught up to the pidx. */
2654 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2655 	}
2656 #endif
2657 	EQ_UNLOCK(eq);
2658 }
2659 
2660 static u_int
2661 can_resume_eth_tx(struct mp_ring *r)
2662 {
2663 	struct sge_eq *eq = r->cookie;
2664 
2665 	return (total_available_tx_desc(eq) > eq->sidx / 8);
2666 }
2667 
2668 static inline int
2669 cannot_use_txpkts(struct mbuf *m)
2670 {
2671 	/* maybe put a GL limit too, to avoid silliness? */
2672 
2673 	return (needs_tso(m));
2674 }
2675 
2676 static inline int
2677 discard_tx(struct sge_eq *eq)
2678 {
2679 
2680 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
2681 }
2682 
2683 /*
2684  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2685  * be consumed.  Return the actual number consumed.  0 indicates a stall.
2686  */
2687 static u_int
2688 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2689 {
2690 	struct sge_txq *txq = r->cookie;
2691 	struct sge_eq *eq = &txq->eq;
2692 	struct ifnet *ifp = txq->ifp;
2693 	struct vi_info *vi = ifp->if_softc;
2694 	struct port_info *pi = vi->pi;
2695 	struct adapter *sc = pi->adapter;
2696 	u_int total, remaining;		/* # of packets */
2697 	u_int available, dbdiff;	/* # of hardware descriptors */
2698 	u_int n, next_cidx;
2699 	struct mbuf *m0, *tail;
2700 	struct txpkts txp;
2701 	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2702 
2703 	remaining = IDXDIFF(pidx, cidx, r->size);
2704 	MPASS(remaining > 0);	/* Must not be called without work to do. */
2705 	total = 0;
2706 
2707 	TXQ_LOCK(txq);
2708 	if (__predict_false(discard_tx(eq))) {
2709 		while (cidx != pidx) {
2710 			m0 = r->items[cidx];
2711 			m_freem(m0);
2712 			if (++cidx == r->size)
2713 				cidx = 0;
2714 		}
2715 		reclaim_tx_descs(txq, 2048);
2716 		total = remaining;
2717 		goto done;
2718 	}
2719 
2720 	/* How many hardware descriptors do we have readily available. */
2721 	if (eq->pidx == eq->cidx)
2722 		available = eq->sidx - 1;
2723 	else
2724 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2725 	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2726 
2727 	while (remaining > 0) {
2728 
2729 		m0 = r->items[cidx];
2730 		M_ASSERTPKTHDR(m0);
2731 		MPASS(m0->m_nextpkt == NULL);
2732 
2733 		if (available < SGE_MAX_WR_NDESC) {
2734 			available += reclaim_tx_descs(txq, 64);
2735 			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2736 				break;	/* out of descriptors */
2737 		}
2738 
2739 		next_cidx = cidx + 1;
2740 		if (__predict_false(next_cidx == r->size))
2741 			next_cidx = 0;
2742 
2743 		wr = (void *)&eq->desc[eq->pidx];
2744 		if (sc->flags & IS_VF) {
2745 			total++;
2746 			remaining--;
2747 			ETHER_BPF_MTAP(ifp, m0);
2748 			n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0,
2749 			    available);
2750 		} else if (remaining > 1 &&
2751 		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2752 
2753 			/* pkts at cidx, next_cidx should both be in txp. */
2754 			MPASS(txp.npkt == 2);
2755 			tail = r->items[next_cidx];
2756 			MPASS(tail->m_nextpkt == NULL);
2757 			ETHER_BPF_MTAP(ifp, m0);
2758 			ETHER_BPF_MTAP(ifp, tail);
2759 			m0->m_nextpkt = tail;
2760 
2761 			if (__predict_false(++next_cidx == r->size))
2762 				next_cidx = 0;
2763 
2764 			while (next_cidx != pidx) {
2765 				if (add_to_txpkts(r->items[next_cidx], &txp,
2766 				    available) != 0)
2767 					break;
2768 				tail->m_nextpkt = r->items[next_cidx];
2769 				tail = tail->m_nextpkt;
2770 				ETHER_BPF_MTAP(ifp, tail);
2771 				if (__predict_false(++next_cidx == r->size))
2772 					next_cidx = 0;
2773 			}
2774 
2775 			n = write_txpkts_wr(txq, wr, m0, &txp, available);
2776 			total += txp.npkt;
2777 			remaining -= txp.npkt;
2778 		} else {
2779 			total++;
2780 			remaining--;
2781 			ETHER_BPF_MTAP(ifp, m0);
2782 			n = write_txpkt_wr(txq, (void *)wr, m0, available);
2783 		}
2784 		MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
2785 
2786 		available -= n;
2787 		dbdiff += n;
2788 		IDXINCR(eq->pidx, n, eq->sidx);
2789 
2790 		if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2791 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2792 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2793 			    F_FW_WR_EQUEQ);
2794 			eq->equeqidx = eq->pidx;
2795 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2796 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2797 			eq->equeqidx = eq->pidx;
2798 		}
2799 
2800 		if (dbdiff >= 16 && remaining >= 4) {
2801 			ring_eq_db(sc, eq, dbdiff);
2802 			available += reclaim_tx_descs(txq, 4 * dbdiff);
2803 			dbdiff = 0;
2804 		}
2805 
2806 		cidx = next_cidx;
2807 	}
2808 	if (dbdiff != 0) {
2809 		ring_eq_db(sc, eq, dbdiff);
2810 		reclaim_tx_descs(txq, 32);
2811 	}
2812 done:
2813 	TXQ_UNLOCK(txq);
2814 
2815 	return (total);
2816 }
2817 
2818 static inline void
2819 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2820     int qsize)
2821 {
2822 
2823 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2824 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2825 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2826 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2827 
2828 	iq->flags = 0;
2829 	iq->adapter = sc;
2830 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2831 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2832 	if (pktc_idx >= 0) {
2833 		iq->intr_params |= F_QINTR_CNT_EN;
2834 		iq->intr_pktc_idx = pktc_idx;
2835 	}
2836 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2837 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
2838 }
2839 
2840 static inline void
2841 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
2842 {
2843 
2844 	fl->qsize = qsize;
2845 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2846 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2847 	if (sc->flags & BUF_PACKING_OK &&
2848 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
2849 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
2850 		fl->flags |= FL_BUF_PACKING;
2851 	find_best_refill_source(sc, fl, maxp);
2852 	find_safe_refill_source(sc, fl);
2853 }
2854 
2855 static inline void
2856 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
2857     uint8_t tx_chan, uint16_t iqid, char *name)
2858 {
2859 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2860 
2861 	eq->flags = eqtype & EQ_TYPEMASK;
2862 	eq->tx_chan = tx_chan;
2863 	eq->iqid = iqid;
2864 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2865 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2866 }
2867 
2868 static int
2869 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2870     bus_dmamap_t *map, bus_addr_t *pa, void **va)
2871 {
2872 	int rc;
2873 
2874 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2875 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2876 	if (rc != 0) {
2877 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2878 		goto done;
2879 	}
2880 
2881 	rc = bus_dmamem_alloc(*tag, va,
2882 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2883 	if (rc != 0) {
2884 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2885 		goto done;
2886 	}
2887 
2888 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2889 	if (rc != 0) {
2890 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2891 		goto done;
2892 	}
2893 done:
2894 	if (rc)
2895 		free_ring(sc, *tag, *map, *pa, *va);
2896 
2897 	return (rc);
2898 }
2899 
2900 static int
2901 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2902     bus_addr_t pa, void *va)
2903 {
2904 	if (pa)
2905 		bus_dmamap_unload(tag, map);
2906 	if (va)
2907 		bus_dmamem_free(tag, va, map);
2908 	if (tag)
2909 		bus_dma_tag_destroy(tag);
2910 
2911 	return (0);
2912 }
2913 
2914 /*
2915  * Allocates the ring for an ingress queue and an optional freelist.  If the
2916  * freelist is specified it will be allocated and then associated with the
2917  * ingress queue.
2918  *
2919  * Returns errno on failure.  Resources allocated up to that point may still be
2920  * allocated.  Caller is responsible for cleanup in case this function fails.
2921  *
2922  * If the ingress queue will take interrupts directly then the intr_idx
2923  * specifies the vector, starting from 0.  -1 means the interrupts for this
2924  * queue should be forwarded to the fwq.
2925  */
2926 static int
2927 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
2928     int intr_idx, int cong)
2929 {
2930 	int rc, i, cntxt_id;
2931 	size_t len;
2932 	struct fw_iq_cmd c;
2933 	struct port_info *pi = vi->pi;
2934 	struct adapter *sc = iq->adapter;
2935 	struct sge_params *sp = &sc->params.sge;
2936 	__be32 v = 0;
2937 
2938 	len = iq->qsize * IQ_ESIZE;
2939 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2940 	    (void **)&iq->desc);
2941 	if (rc != 0)
2942 		return (rc);
2943 
2944 	bzero(&c, sizeof(c));
2945 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2946 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2947 	    V_FW_IQ_CMD_VFN(0));
2948 
2949 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2950 	    FW_LEN16(c));
2951 
2952 	/* Special handling for firmware event queue */
2953 	if (iq == &sc->sge.fwq)
2954 		v |= F_FW_IQ_CMD_IQASYNCH;
2955 
2956 	if (intr_idx < 0) {
2957 		/* Forwarded interrupts, all headed to fwq */
2958 		v |= F_FW_IQ_CMD_IQANDST;
2959 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
2960 	} else {
2961 		KASSERT(intr_idx < sc->intr_count,
2962 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2963 		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2964 	}
2965 
2966 	c.type_to_iqandstindex = htobe32(v |
2967 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2968 	    V_FW_IQ_CMD_VIID(vi->viid) |
2969 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2970 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2971 	    F_FW_IQ_CMD_IQGTSMODE |
2972 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2973 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2974 	c.iqsize = htobe16(iq->qsize);
2975 	c.iqaddr = htobe64(iq->ba);
2976 	if (cong >= 0)
2977 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2978 
2979 	if (fl) {
2980 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2981 
2982 		len = fl->qsize * EQ_ESIZE;
2983 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2984 		    &fl->ba, (void **)&fl->desc);
2985 		if (rc)
2986 			return (rc);
2987 
2988 		/* Allocate space for one software descriptor per buffer. */
2989 		rc = alloc_fl_sdesc(fl);
2990 		if (rc != 0) {
2991 			device_printf(sc->dev,
2992 			    "failed to setup fl software descriptors: %d\n",
2993 			    rc);
2994 			return (rc);
2995 		}
2996 
2997 		if (fl->flags & FL_BUF_PACKING) {
2998 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
2999 			fl->buf_boundary = sp->pack_boundary;
3000 		} else {
3001 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3002 			fl->buf_boundary = 16;
3003 		}
3004 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3005 			fl->buf_boundary = sp->pad_boundary;
3006 
3007 		c.iqns_to_fl0congen |=
3008 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3009 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3010 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3011 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3012 			    0));
3013 		if (cong >= 0) {
3014 			c.iqns_to_fl0congen |=
3015 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
3016 				    F_FW_IQ_CMD_FL0CONGCIF |
3017 				    F_FW_IQ_CMD_FL0CONGEN);
3018 		}
3019 		c.fl0dcaen_to_fl0cidxfthresh =
3020 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3021 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) |
3022 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3023 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3024 		c.fl0size = htobe16(fl->qsize);
3025 		c.fl0addr = htobe64(fl->ba);
3026 	}
3027 
3028 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3029 	if (rc != 0) {
3030 		device_printf(sc->dev,
3031 		    "failed to create ingress queue: %d\n", rc);
3032 		return (rc);
3033 	}
3034 
3035 	iq->cidx = 0;
3036 	iq->gen = F_RSPD_GEN;
3037 	iq->intr_next = iq->intr_params;
3038 	iq->cntxt_id = be16toh(c.iqid);
3039 	iq->abs_id = be16toh(c.physiqid);
3040 	iq->flags |= IQ_ALLOCATED;
3041 
3042 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3043 	if (cntxt_id >= sc->sge.niq) {
3044 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3045 		    cntxt_id, sc->sge.niq - 1);
3046 	}
3047 	sc->sge.iqmap[cntxt_id] = iq;
3048 
3049 	if (fl) {
3050 		u_int qid;
3051 
3052 		iq->flags |= IQ_HAS_FL;
3053 		fl->cntxt_id = be16toh(c.fl0id);
3054 		fl->pidx = fl->cidx = 0;
3055 
3056 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3057 		if (cntxt_id >= sc->sge.neq) {
3058 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3059 			    __func__, cntxt_id, sc->sge.neq - 1);
3060 		}
3061 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3062 
3063 		qid = fl->cntxt_id;
3064 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3065 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3066 			uint32_t mask = (1 << s_qpp) - 1;
3067 			volatile uint8_t *udb;
3068 
3069 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3070 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3071 			qid &= mask;
3072 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3073 				udb += qid << UDBS_SEG_SHIFT;
3074 				qid = 0;
3075 			}
3076 			fl->udb = (volatile void *)udb;
3077 		}
3078 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3079 
3080 		FL_LOCK(fl);
3081 		/* Enough to make sure the SGE doesn't think it's starved */
3082 		refill_fl(sc, fl, fl->lowat);
3083 		FL_UNLOCK(fl);
3084 	}
3085 
3086 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) {
3087 		uint32_t param, val;
3088 
3089 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3090 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3091 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
3092 		if (cong == 0)
3093 			val = 1 << 19;
3094 		else {
3095 			val = 2 << 19;
3096 			for (i = 0; i < 4; i++) {
3097 				if (cong & (1 << i))
3098 					val |= 1 << (i << 2);
3099 			}
3100 		}
3101 
3102 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3103 		if (rc != 0) {
3104 			/* report error but carry on */
3105 			device_printf(sc->dev,
3106 			    "failed to set congestion manager context for "
3107 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
3108 		}
3109 	}
3110 
3111 	/* Enable IQ interrupts */
3112 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3113 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3114 	    V_INGRESSQID(iq->cntxt_id));
3115 
3116 	return (0);
3117 }
3118 
3119 static int
3120 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3121 {
3122 	int rc;
3123 	struct adapter *sc = iq->adapter;
3124 	device_t dev;
3125 
3126 	if (sc == NULL)
3127 		return (0);	/* nothing to do */
3128 
3129 	dev = vi ? vi->dev : sc->dev;
3130 
3131 	if (iq->flags & IQ_ALLOCATED) {
3132 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
3133 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
3134 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
3135 		if (rc != 0) {
3136 			device_printf(dev,
3137 			    "failed to free queue %p: %d\n", iq, rc);
3138 			return (rc);
3139 		}
3140 		iq->flags &= ~IQ_ALLOCATED;
3141 	}
3142 
3143 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3144 
3145 	bzero(iq, sizeof(*iq));
3146 
3147 	if (fl) {
3148 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
3149 		    fl->desc);
3150 
3151 		if (fl->sdesc)
3152 			free_fl_sdesc(sc, fl);
3153 
3154 		if (mtx_initialized(&fl->fl_lock))
3155 			mtx_destroy(&fl->fl_lock);
3156 
3157 		bzero(fl, sizeof(*fl));
3158 	}
3159 
3160 	return (0);
3161 }
3162 
3163 static void
3164 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3165     struct sge_iq *iq)
3166 {
3167 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3168 
3169 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3170 	    "bus address of descriptor ring");
3171 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3172 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3173 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3174 	    CTLTYPE_INT | CTLFLAG_RD, &iq->abs_id, 0, sysctl_uint16, "I",
3175 	    "absolute id of the queue");
3176 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3177 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cntxt_id, 0, sysctl_uint16, "I",
3178 	    "SGE context id of the queue");
3179 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3180 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cidx, 0, sysctl_uint16, "I",
3181 	    "consumer index");
3182 }
3183 
3184 static void
3185 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3186     struct sysctl_oid *oid, struct sge_fl *fl)
3187 {
3188 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3189 
3190 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3191 	    "freelist");
3192 	children = SYSCTL_CHILDREN(oid);
3193 
3194 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3195 	    &fl->ba, "bus address of descriptor ring");
3196 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3197 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3198 	    "desc ring size in bytes");
3199 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3200 	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
3201 	    "SGE context id of the freelist");
3202 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3203 	    fl_pad ? 1 : 0, "padding enabled");
3204 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3205 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3206 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3207 	    0, "consumer index");
3208 	if (fl->flags & FL_BUF_PACKING) {
3209 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3210 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3211 	}
3212 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3213 	    0, "producer index");
3214 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
3215 	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
3216 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
3217 	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
3218 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3219 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3220 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3221 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3222 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3223 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3224 }
3225 
3226 static int
3227 alloc_fwq(struct adapter *sc)
3228 {
3229 	int rc, intr_idx;
3230 	struct sge_iq *fwq = &sc->sge.fwq;
3231 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
3232 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3233 
3234 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
3235 	if (sc->flags & IS_VF)
3236 		intr_idx = 0;
3237 	else
3238 		intr_idx = sc->intr_count > 1 ? 1 : 0;
3239 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
3240 	if (rc != 0) {
3241 		device_printf(sc->dev,
3242 		    "failed to create firmware event queue: %d\n", rc);
3243 		return (rc);
3244 	}
3245 
3246 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
3247 	    NULL, "firmware event queue");
3248 	add_iq_sysctls(&sc->ctx, oid, fwq);
3249 
3250 	return (0);
3251 }
3252 
3253 static int
3254 free_fwq(struct adapter *sc)
3255 {
3256 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
3257 }
3258 
3259 static int
3260 alloc_mgmtq(struct adapter *sc)
3261 {
3262 	int rc;
3263 	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
3264 	char name[16];
3265 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
3266 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3267 
3268 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
3269 	    NULL, "management queue");
3270 
3271 	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
3272 	init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
3273 	    sc->sge.fwq.cntxt_id, name);
3274 	rc = alloc_wrq(sc, NULL, mgmtq, oid);
3275 	if (rc != 0) {
3276 		device_printf(sc->dev,
3277 		    "failed to create management queue: %d\n", rc);
3278 		return (rc);
3279 	}
3280 
3281 	return (0);
3282 }
3283 
3284 static int
3285 free_mgmtq(struct adapter *sc)
3286 {
3287 
3288 	return free_wrq(sc, &sc->sge.mgmtq);
3289 }
3290 
3291 int
3292 tnl_cong(struct port_info *pi, int drop)
3293 {
3294 
3295 	if (drop == -1)
3296 		return (-1);
3297 	else if (drop == 1)
3298 		return (0);
3299 	else
3300 		return (pi->rx_e_chan_map);
3301 }
3302 
3303 static int
3304 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
3305     struct sysctl_oid *oid)
3306 {
3307 	int rc;
3308 	struct adapter *sc = vi->pi->adapter;
3309 	struct sysctl_oid_list *children;
3310 	char name[16];
3311 
3312 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
3313 	    tnl_cong(vi->pi, cong_drop));
3314 	if (rc != 0)
3315 		return (rc);
3316 
3317 	if (idx == 0)
3318 		sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3319 	else
3320 		KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3321 		    ("iq_base mismatch"));
3322 	KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3323 	    ("PF with non-zero iq_base"));
3324 
3325 	/*
3326 	 * The freelist is just barely above the starvation threshold right now,
3327 	 * fill it up a bit more.
3328 	 */
3329 	FL_LOCK(&rxq->fl);
3330 	refill_fl(sc, &rxq->fl, 128);
3331 	FL_UNLOCK(&rxq->fl);
3332 
3333 #if defined(INET) || defined(INET6)
3334 	rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs);
3335 	if (rc != 0)
3336 		return (rc);
3337 	MPASS(rxq->lro.ifp == vi->ifp);	/* also indicates LRO init'ed */
3338 
3339 	if (vi->ifp->if_capenable & IFCAP_LRO)
3340 		rxq->iq.flags |= IQ_LRO_ENABLED;
3341 #endif
3342 	rxq->ifp = vi->ifp;
3343 
3344 	children = SYSCTL_CHILDREN(oid);
3345 
3346 	snprintf(name, sizeof(name), "%d", idx);
3347 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3348 	    NULL, "rx queue");
3349 	children = SYSCTL_CHILDREN(oid);
3350 
3351 	add_iq_sysctls(&vi->ctx, oid, &rxq->iq);
3352 #if defined(INET) || defined(INET6)
3353 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3354 	    &rxq->lro.lro_queued, 0, NULL);
3355 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3356 	    &rxq->lro.lro_flushed, 0, NULL);
3357 #endif
3358 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3359 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3360 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3361 	    CTLFLAG_RD, &rxq->vlan_extraction,
3362 	    "# of times hardware extracted 802.1Q tag");
3363 
3364 	add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl);
3365 
3366 	return (rc);
3367 }
3368 
3369 static int
3370 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3371 {
3372 	int rc;
3373 
3374 #if defined(INET) || defined(INET6)
3375 	if (rxq->lro.ifp) {
3376 		tcp_lro_free(&rxq->lro);
3377 		rxq->lro.ifp = NULL;
3378 	}
3379 #endif
3380 
3381 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3382 	if (rc == 0)
3383 		bzero(rxq, sizeof(*rxq));
3384 
3385 	return (rc);
3386 }
3387 
3388 #ifdef TCP_OFFLOAD
3389 static int
3390 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3391     int intr_idx, int idx, struct sysctl_oid *oid)
3392 {
3393 	struct port_info *pi = vi->pi;
3394 	int rc;
3395 	struct sysctl_oid_list *children;
3396 	char name[16];
3397 
3398 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0);
3399 	if (rc != 0)
3400 		return (rc);
3401 
3402 	children = SYSCTL_CHILDREN(oid);
3403 
3404 	snprintf(name, sizeof(name), "%d", idx);
3405 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3406 	    NULL, "rx queue");
3407 	add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq);
3408 	add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl);
3409 
3410 	return (rc);
3411 }
3412 
3413 static int
3414 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3415 {
3416 	int rc;
3417 
3418 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3419 	if (rc == 0)
3420 		bzero(ofld_rxq, sizeof(*ofld_rxq));
3421 
3422 	return (rc);
3423 }
3424 #endif
3425 
3426 #ifdef DEV_NETMAP
3427 static int
3428 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3429     int idx, struct sysctl_oid *oid)
3430 {
3431 	int rc;
3432 	struct sysctl_oid_list *children;
3433 	struct sysctl_ctx_list *ctx;
3434 	char name[16];
3435 	size_t len;
3436 	struct adapter *sc = vi->pi->adapter;
3437 	struct netmap_adapter *na = NA(vi->ifp);
3438 
3439 	MPASS(na != NULL);
3440 
3441 	len = vi->qsize_rxq * IQ_ESIZE;
3442 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3443 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3444 	if (rc != 0)
3445 		return (rc);
3446 
3447 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3448 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3449 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3450 	if (rc != 0)
3451 		return (rc);
3452 
3453 	nm_rxq->vi = vi;
3454 	nm_rxq->nid = idx;
3455 	nm_rxq->iq_cidx = 0;
3456 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3457 	nm_rxq->iq_gen = F_RSPD_GEN;
3458 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3459 	nm_rxq->fl_sidx = na->num_rx_desc;
3460 	nm_rxq->intr_idx = intr_idx;
3461 	nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID;
3462 
3463 	ctx = &vi->ctx;
3464 	children = SYSCTL_CHILDREN(oid);
3465 
3466 	snprintf(name, sizeof(name), "%d", idx);
3467 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3468 	    "rx queue");
3469 	children = SYSCTL_CHILDREN(oid);
3470 
3471 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3472 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3473 	    "I", "absolute id of the queue");
3474 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3475 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3476 	    "I", "SGE context id of the queue");
3477 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3478 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3479 	    "consumer index");
3480 
3481 	children = SYSCTL_CHILDREN(oid);
3482 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3483 	    "freelist");
3484 	children = SYSCTL_CHILDREN(oid);
3485 
3486 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3487 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3488 	    "I", "SGE context id of the freelist");
3489 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3490 	    &nm_rxq->fl_cidx, 0, "consumer index");
3491 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3492 	    &nm_rxq->fl_pidx, 0, "producer index");
3493 
3494 	return (rc);
3495 }
3496 
3497 
3498 static int
3499 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3500 {
3501 	struct adapter *sc = vi->pi->adapter;
3502 
3503 	if (vi->flags & VI_INIT_DONE)
3504 		MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID);
3505 	else
3506 		MPASS(nm_rxq->iq_cntxt_id == 0);
3507 
3508 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3509 	    nm_rxq->iq_desc);
3510 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3511 	    nm_rxq->fl_desc);
3512 
3513 	return (0);
3514 }
3515 
3516 static int
3517 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3518     struct sysctl_oid *oid)
3519 {
3520 	int rc;
3521 	size_t len;
3522 	struct port_info *pi = vi->pi;
3523 	struct adapter *sc = pi->adapter;
3524 	struct netmap_adapter *na = NA(vi->ifp);
3525 	char name[16];
3526 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3527 
3528 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3529 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3530 	    &nm_txq->ba, (void **)&nm_txq->desc);
3531 	if (rc)
3532 		return (rc);
3533 
3534 	nm_txq->pidx = nm_txq->cidx = 0;
3535 	nm_txq->sidx = na->num_tx_desc;
3536 	nm_txq->nid = idx;
3537 	nm_txq->iqidx = iqidx;
3538 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3539 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) |
3540 	    V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) |
3541 	    V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid)));
3542 	nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID;
3543 
3544 	snprintf(name, sizeof(name), "%d", idx);
3545 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3546 	    NULL, "netmap tx queue");
3547 	children = SYSCTL_CHILDREN(oid);
3548 
3549 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3550 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3551 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3552 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3553 	    "consumer index");
3554 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3555 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3556 	    "producer index");
3557 
3558 	return (rc);
3559 }
3560 
3561 static int
3562 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3563 {
3564 	struct adapter *sc = vi->pi->adapter;
3565 
3566 	if (vi->flags & VI_INIT_DONE)
3567 		MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID);
3568 	else
3569 		MPASS(nm_txq->cntxt_id == 0);
3570 
3571 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3572 	    nm_txq->desc);
3573 
3574 	return (0);
3575 }
3576 #endif
3577 
3578 static int
3579 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3580 {
3581 	int rc, cntxt_id;
3582 	struct fw_eq_ctrl_cmd c;
3583 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3584 
3585 	bzero(&c, sizeof(c));
3586 
3587 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3588 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3589 	    V_FW_EQ_CTRL_CMD_VFN(0));
3590 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3591 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3592 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3593 	c.physeqid_pkd = htobe32(0);
3594 	c.fetchszm_to_iqid =
3595 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3596 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3597 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3598 	c.dcaen_to_eqsize =
3599 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3600 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3601 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
3602 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3603 	c.eqaddr = htobe64(eq->ba);
3604 
3605 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3606 	if (rc != 0) {
3607 		device_printf(sc->dev,
3608 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3609 		return (rc);
3610 	}
3611 	eq->flags |= EQ_ALLOCATED;
3612 
3613 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3614 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3615 	if (cntxt_id >= sc->sge.neq)
3616 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3617 		cntxt_id, sc->sge.neq - 1);
3618 	sc->sge.eqmap[cntxt_id] = eq;
3619 
3620 	return (rc);
3621 }
3622 
3623 static int
3624 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3625 {
3626 	int rc, cntxt_id;
3627 	struct fw_eq_eth_cmd c;
3628 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3629 
3630 	bzero(&c, sizeof(c));
3631 
3632 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3633 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3634 	    V_FW_EQ_ETH_CMD_VFN(0));
3635 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3636 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3637 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3638 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3639 	c.fetchszm_to_iqid =
3640 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3641 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3642 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3643 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3644 	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3645 	    V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3646 	c.eqaddr = htobe64(eq->ba);
3647 
3648 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3649 	if (rc != 0) {
3650 		device_printf(vi->dev,
3651 		    "failed to create Ethernet egress queue: %d\n", rc);
3652 		return (rc);
3653 	}
3654 	eq->flags |= EQ_ALLOCATED;
3655 
3656 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3657 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
3658 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3659 	if (cntxt_id >= sc->sge.neq)
3660 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3661 		cntxt_id, sc->sge.neq - 1);
3662 	sc->sge.eqmap[cntxt_id] = eq;
3663 
3664 	return (rc);
3665 }
3666 
3667 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3668 static int
3669 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3670 {
3671 	int rc, cntxt_id;
3672 	struct fw_eq_ofld_cmd c;
3673 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3674 
3675 	bzero(&c, sizeof(c));
3676 
3677 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3678 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3679 	    V_FW_EQ_OFLD_CMD_VFN(0));
3680 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3681 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3682 	c.fetchszm_to_iqid =
3683 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3684 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3685 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3686 	c.dcaen_to_eqsize =
3687 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3688 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3689 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3690 	c.eqaddr = htobe64(eq->ba);
3691 
3692 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3693 	if (rc != 0) {
3694 		device_printf(vi->dev,
3695 		    "failed to create egress queue for TCP offload: %d\n", rc);
3696 		return (rc);
3697 	}
3698 	eq->flags |= EQ_ALLOCATED;
3699 
3700 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3701 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3702 	if (cntxt_id >= sc->sge.neq)
3703 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3704 		cntxt_id, sc->sge.neq - 1);
3705 	sc->sge.eqmap[cntxt_id] = eq;
3706 
3707 	return (rc);
3708 }
3709 #endif
3710 
3711 static int
3712 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3713 {
3714 	int rc, qsize;
3715 	size_t len;
3716 
3717 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3718 
3719 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3720 	len = qsize * EQ_ESIZE;
3721 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3722 	    &eq->ba, (void **)&eq->desc);
3723 	if (rc)
3724 		return (rc);
3725 
3726 	eq->pidx = eq->cidx = 0;
3727 	eq->equeqidx = eq->dbidx = 0;
3728 	eq->doorbells = sc->doorbells;
3729 
3730 	switch (eq->flags & EQ_TYPEMASK) {
3731 	case EQ_CTRL:
3732 		rc = ctrl_eq_alloc(sc, eq);
3733 		break;
3734 
3735 	case EQ_ETH:
3736 		rc = eth_eq_alloc(sc, vi, eq);
3737 		break;
3738 
3739 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3740 	case EQ_OFLD:
3741 		rc = ofld_eq_alloc(sc, vi, eq);
3742 		break;
3743 #endif
3744 
3745 	default:
3746 		panic("%s: invalid eq type %d.", __func__,
3747 		    eq->flags & EQ_TYPEMASK);
3748 	}
3749 	if (rc != 0) {
3750 		device_printf(sc->dev,
3751 		    "failed to allocate egress queue(%d): %d\n",
3752 		    eq->flags & EQ_TYPEMASK, rc);
3753 	}
3754 
3755 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3756 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3757 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3758 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3759 		uint32_t mask = (1 << s_qpp) - 1;
3760 		volatile uint8_t *udb;
3761 
3762 		udb = sc->udbs_base + UDBS_DB_OFFSET;
3763 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3764 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3765 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3766 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3767 		else {
3768 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3769 			eq->udb_qid = 0;
3770 		}
3771 		eq->udb = (volatile void *)udb;
3772 	}
3773 
3774 	return (rc);
3775 }
3776 
3777 static int
3778 free_eq(struct adapter *sc, struct sge_eq *eq)
3779 {
3780 	int rc;
3781 
3782 	if (eq->flags & EQ_ALLOCATED) {
3783 		switch (eq->flags & EQ_TYPEMASK) {
3784 		case EQ_CTRL:
3785 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3786 			    eq->cntxt_id);
3787 			break;
3788 
3789 		case EQ_ETH:
3790 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3791 			    eq->cntxt_id);
3792 			break;
3793 
3794 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3795 		case EQ_OFLD:
3796 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3797 			    eq->cntxt_id);
3798 			break;
3799 #endif
3800 
3801 		default:
3802 			panic("%s: invalid eq type %d.", __func__,
3803 			    eq->flags & EQ_TYPEMASK);
3804 		}
3805 		if (rc != 0) {
3806 			device_printf(sc->dev,
3807 			    "failed to free egress queue (%d): %d\n",
3808 			    eq->flags & EQ_TYPEMASK, rc);
3809 			return (rc);
3810 		}
3811 		eq->flags &= ~EQ_ALLOCATED;
3812 	}
3813 
3814 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3815 
3816 	if (mtx_initialized(&eq->eq_lock))
3817 		mtx_destroy(&eq->eq_lock);
3818 
3819 	bzero(eq, sizeof(*eq));
3820 	return (0);
3821 }
3822 
3823 static int
3824 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
3825     struct sysctl_oid *oid)
3826 {
3827 	int rc;
3828 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
3829 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3830 
3831 	rc = alloc_eq(sc, vi, &wrq->eq);
3832 	if (rc)
3833 		return (rc);
3834 
3835 	wrq->adapter = sc;
3836 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
3837 	TAILQ_INIT(&wrq->incomplete_wrs);
3838 	STAILQ_INIT(&wrq->wr_list);
3839 	wrq->nwr_pending = 0;
3840 	wrq->ndesc_needed = 0;
3841 
3842 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3843 	    &wrq->eq.ba, "bus address of descriptor ring");
3844 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3845 	    wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len,
3846 	    "desc ring size in bytes");
3847 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3848 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3849 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3850 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3851 	    "consumer index");
3852 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3853 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3854 	    "producer index");
3855 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3856 	    wrq->eq.sidx, "status page index");
3857 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
3858 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
3859 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
3860 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
3861 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
3862 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
3863 
3864 	return (rc);
3865 }
3866 
3867 static int
3868 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3869 {
3870 	int rc;
3871 
3872 	rc = free_eq(sc, &wrq->eq);
3873 	if (rc)
3874 		return (rc);
3875 
3876 	bzero(wrq, sizeof(*wrq));
3877 	return (0);
3878 }
3879 
3880 static int
3881 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
3882     struct sysctl_oid *oid)
3883 {
3884 	int rc;
3885 	struct port_info *pi = vi->pi;
3886 	struct adapter *sc = pi->adapter;
3887 	struct sge_eq *eq = &txq->eq;
3888 	char name[16];
3889 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3890 
3891 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
3892 	    M_CXGBE, M_WAITOK);
3893 	if (rc != 0) {
3894 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
3895 		return (rc);
3896 	}
3897 
3898 	rc = alloc_eq(sc, vi, eq);
3899 	if (rc != 0) {
3900 		mp_ring_free(txq->r);
3901 		txq->r = NULL;
3902 		return (rc);
3903 	}
3904 
3905 	/* Can't fail after this point. */
3906 
3907 	if (idx == 0)
3908 		sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
3909 	else
3910 		KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
3911 		    ("eq_base mismatch"));
3912 	KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
3913 	    ("PF with non-zero eq_base"));
3914 
3915 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
3916 	txq->ifp = vi->ifp;
3917 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
3918 	if (sc->flags & IS_VF)
3919 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
3920 		    V_TXPKT_INTF(pi->tx_chan));
3921 	else
3922 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3923 		    V_TXPKT_INTF(pi->tx_chan) |
3924 		    V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) |
3925 		    V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) |
3926 		    V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid)));
3927 	txq->tc_idx = -1;
3928 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
3929 	    M_ZERO | M_WAITOK);
3930 
3931 	snprintf(name, sizeof(name), "%d", idx);
3932 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3933 	    NULL, "tx queue");
3934 	children = SYSCTL_CHILDREN(oid);
3935 
3936 	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3937 	    &eq->ba, "bus address of descriptor ring");
3938 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3939 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3940 	    "desc ring size in bytes");
3941 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3942 	    &eq->abs_id, 0, "absolute id of the queue");
3943 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3944 	    &eq->cntxt_id, 0, "SGE context id of the queue");
3945 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3946 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3947 	    "consumer index");
3948 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3949 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3950 	    "producer index");
3951 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3952 	    eq->sidx, "status page index");
3953 
3954 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
3955 	    CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I",
3956 	    "traffic class (-1 means none)");
3957 
3958 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3959 	    &txq->txcsum, "# of times hardware assisted with checksum");
3960 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
3961 	    CTLFLAG_RD, &txq->vlan_insertion,
3962 	    "# of times hardware inserted 802.1Q tag");
3963 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3964 	    &txq->tso_wrs, "# of TSO work requests");
3965 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3966 	    &txq->imm_wrs, "# of work requests with immediate data");
3967 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3968 	    &txq->sgl_wrs, "# of work requests with direct SGL");
3969 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3970 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3971 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
3972 	    CTLFLAG_RD, &txq->txpkts0_wrs,
3973 	    "# of txpkts (type 0) work requests");
3974 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
3975 	    CTLFLAG_RD, &txq->txpkts1_wrs,
3976 	    "# of txpkts (type 1) work requests");
3977 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
3978 	    CTLFLAG_RD, &txq->txpkts0_pkts,
3979 	    "# of frames tx'd using type0 txpkts work requests");
3980 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
3981 	    CTLFLAG_RD, &txq->txpkts1_pkts,
3982 	    "# of frames tx'd using type1 txpkts work requests");
3983 
3984 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
3985 	    CTLFLAG_RD, &txq->r->enqueues,
3986 	    "# of enqueues to the mp_ring for this queue");
3987 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
3988 	    CTLFLAG_RD, &txq->r->drops,
3989 	    "# of drops in the mp_ring for this queue");
3990 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
3991 	    CTLFLAG_RD, &txq->r->starts,
3992 	    "# of normal consumer starts in the mp_ring for this queue");
3993 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
3994 	    CTLFLAG_RD, &txq->r->stalls,
3995 	    "# of consumer stalls in the mp_ring for this queue");
3996 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
3997 	    CTLFLAG_RD, &txq->r->restarts,
3998 	    "# of consumer restarts in the mp_ring for this queue");
3999 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
4000 	    CTLFLAG_RD, &txq->r->abdications,
4001 	    "# of consumer abdications in the mp_ring for this queue");
4002 
4003 	return (0);
4004 }
4005 
4006 static int
4007 free_txq(struct vi_info *vi, struct sge_txq *txq)
4008 {
4009 	int rc;
4010 	struct adapter *sc = vi->pi->adapter;
4011 	struct sge_eq *eq = &txq->eq;
4012 
4013 	rc = free_eq(sc, eq);
4014 	if (rc)
4015 		return (rc);
4016 
4017 	sglist_free(txq->gl);
4018 	free(txq->sdesc, M_CXGBE);
4019 	mp_ring_free(txq->r);
4020 
4021 	bzero(txq, sizeof(*txq));
4022 	return (0);
4023 }
4024 
4025 static void
4026 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4027 {
4028 	bus_addr_t *ba = arg;
4029 
4030 	KASSERT(nseg == 1,
4031 	    ("%s meant for single segment mappings only.", __func__));
4032 
4033 	*ba = error ? 0 : segs->ds_addr;
4034 }
4035 
4036 static inline void
4037 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4038 {
4039 	uint32_t n, v;
4040 
4041 	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
4042 	MPASS(n > 0);
4043 
4044 	wmb();
4045 	v = fl->dbval | V_PIDX(n);
4046 	if (fl->udb)
4047 		*fl->udb = htole32(v);
4048 	else
4049 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4050 	IDXINCR(fl->dbidx, n, fl->sidx);
4051 }
4052 
4053 /*
4054  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4055  * recycled do not count towards this allocation budget.
4056  *
4057  * Returns non-zero to indicate that this freelist should be added to the list
4058  * of starving freelists.
4059  */
4060 static int
4061 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4062 {
4063 	__be64 *d;
4064 	struct fl_sdesc *sd;
4065 	uintptr_t pa;
4066 	caddr_t cl;
4067 	struct cluster_layout *cll;
4068 	struct sw_zone_info *swz;
4069 	struct cluster_metadata *clm;
4070 	uint16_t max_pidx;
4071 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
4072 
4073 	FL_LOCK_ASSERT_OWNED(fl);
4074 
4075 	/*
4076 	 * We always stop at the beginning of the hardware descriptor that's just
4077 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
4078 	 * which would mean an empty freelist to the chip.
4079 	 */
4080 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
4081 	if (fl->pidx == max_pidx * 8)
4082 		return (0);
4083 
4084 	d = &fl->desc[fl->pidx];
4085 	sd = &fl->sdesc[fl->pidx];
4086 	cll = &fl->cll_def;	/* default layout */
4087 	swz = &sc->sge.sw_zone_info[cll->zidx];
4088 
4089 	while (n > 0) {
4090 
4091 		if (sd->cl != NULL) {
4092 
4093 			if (sd->nmbuf == 0) {
4094 				/*
4095 				 * Fast recycle without involving any atomics on
4096 				 * the cluster's metadata (if the cluster has
4097 				 * metadata).  This happens when all frames
4098 				 * received in the cluster were small enough to
4099 				 * fit within a single mbuf each.
4100 				 */
4101 				fl->cl_fast_recycled++;
4102 #ifdef INVARIANTS
4103 				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
4104 				if (clm != NULL)
4105 					MPASS(clm->refcount == 1);
4106 #endif
4107 				goto recycled_fast;
4108 			}
4109 
4110 			/*
4111 			 * Cluster is guaranteed to have metadata.  Clusters
4112 			 * without metadata always take the fast recycle path
4113 			 * when they're recycled.
4114 			 */
4115 			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
4116 			MPASS(clm != NULL);
4117 
4118 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4119 				fl->cl_recycled++;
4120 				counter_u64_add(extfree_rels, 1);
4121 				goto recycled;
4122 			}
4123 			sd->cl = NULL;	/* gave up my reference */
4124 		}
4125 		MPASS(sd->cl == NULL);
4126 alloc:
4127 		cl = uma_zalloc(swz->zone, M_NOWAIT);
4128 		if (__predict_false(cl == NULL)) {
4129 			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
4130 			    fl->cll_def.zidx == fl->cll_alt.zidx)
4131 				break;
4132 
4133 			/* fall back to the safe zone */
4134 			cll = &fl->cll_alt;
4135 			swz = &sc->sge.sw_zone_info[cll->zidx];
4136 			goto alloc;
4137 		}
4138 		fl->cl_allocated++;
4139 		n--;
4140 
4141 		pa = pmap_kextract((vm_offset_t)cl);
4142 		pa += cll->region1;
4143 		sd->cl = cl;
4144 		sd->cll = *cll;
4145 		*d = htobe64(pa | cll->hwidx);
4146 		clm = cl_metadata(sc, fl, cll, cl);
4147 		if (clm != NULL) {
4148 recycled:
4149 #ifdef INVARIANTS
4150 			clm->sd = sd;
4151 #endif
4152 			clm->refcount = 1;
4153 		}
4154 		sd->nmbuf = 0;
4155 recycled_fast:
4156 		d++;
4157 		sd++;
4158 		if (__predict_false(++fl->pidx % 8 == 0)) {
4159 			uint16_t pidx = fl->pidx / 8;
4160 
4161 			if (__predict_false(pidx == fl->sidx)) {
4162 				fl->pidx = 0;
4163 				pidx = 0;
4164 				sd = fl->sdesc;
4165 				d = fl->desc;
4166 			}
4167 			if (pidx == max_pidx)
4168 				break;
4169 
4170 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
4171 				ring_fl_db(sc, fl);
4172 		}
4173 	}
4174 
4175 	if (fl->pidx / 8 != fl->dbidx)
4176 		ring_fl_db(sc, fl);
4177 
4178 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
4179 }
4180 
4181 /*
4182  * Attempt to refill all starving freelists.
4183  */
4184 static void
4185 refill_sfl(void *arg)
4186 {
4187 	struct adapter *sc = arg;
4188 	struct sge_fl *fl, *fl_temp;
4189 
4190 	mtx_assert(&sc->sfl_lock, MA_OWNED);
4191 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
4192 		FL_LOCK(fl);
4193 		refill_fl(sc, fl, 64);
4194 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
4195 			TAILQ_REMOVE(&sc->sfl, fl, link);
4196 			fl->flags &= ~FL_STARVING;
4197 		}
4198 		FL_UNLOCK(fl);
4199 	}
4200 
4201 	if (!TAILQ_EMPTY(&sc->sfl))
4202 		callout_schedule(&sc->sfl_callout, hz / 5);
4203 }
4204 
4205 static int
4206 alloc_fl_sdesc(struct sge_fl *fl)
4207 {
4208 
4209 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
4210 	    M_ZERO | M_WAITOK);
4211 
4212 	return (0);
4213 }
4214 
4215 static void
4216 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
4217 {
4218 	struct fl_sdesc *sd;
4219 	struct cluster_metadata *clm;
4220 	struct cluster_layout *cll;
4221 	int i;
4222 
4223 	sd = fl->sdesc;
4224 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
4225 		if (sd->cl == NULL)
4226 			continue;
4227 
4228 		cll = &sd->cll;
4229 		clm = cl_metadata(sc, fl, cll, sd->cl);
4230 		if (sd->nmbuf == 0)
4231 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
4232 		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4233 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
4234 			counter_u64_add(extfree_rels, 1);
4235 		}
4236 		sd->cl = NULL;
4237 	}
4238 
4239 	free(fl->sdesc, M_CXGBE);
4240 	fl->sdesc = NULL;
4241 }
4242 
4243 static inline void
4244 get_pkt_gl(struct mbuf *m, struct sglist *gl)
4245 {
4246 	int rc;
4247 
4248 	M_ASSERTPKTHDR(m);
4249 
4250 	sglist_reset(gl);
4251 	rc = sglist_append_mbuf(gl, m);
4252 	if (__predict_false(rc != 0)) {
4253 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
4254 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
4255 	}
4256 
4257 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
4258 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
4259 	    mbuf_nsegs(m), gl->sg_nseg));
4260 	KASSERT(gl->sg_nseg > 0 &&
4261 	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
4262 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
4263 		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
4264 }
4265 
4266 /*
4267  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
4268  */
4269 static inline u_int
4270 txpkt_len16(u_int nsegs, u_int tso)
4271 {
4272 	u_int n;
4273 
4274 	MPASS(nsegs > 0);
4275 
4276 	nsegs--; /* first segment is part of ulptx_sgl */
4277 	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
4278 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4279 	if (tso)
4280 		n += sizeof(struct cpl_tx_pkt_lso_core);
4281 
4282 	return (howmany(n, 16));
4283 }
4284 
4285 /*
4286  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
4287  * request header.
4288  */
4289 static inline u_int
4290 txpkt_vm_len16(u_int nsegs, u_int tso)
4291 {
4292 	u_int n;
4293 
4294 	MPASS(nsegs > 0);
4295 
4296 	nsegs--; /* first segment is part of ulptx_sgl */
4297 	n = sizeof(struct fw_eth_tx_pkt_vm_wr) +
4298 	    sizeof(struct cpl_tx_pkt_core) +
4299 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4300 	if (tso)
4301 		n += sizeof(struct cpl_tx_pkt_lso_core);
4302 
4303 	return (howmany(n, 16));
4304 }
4305 
4306 /*
4307  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
4308  * request header.
4309  */
4310 static inline u_int
4311 txpkts0_len16(u_int nsegs)
4312 {
4313 	u_int n;
4314 
4315 	MPASS(nsegs > 0);
4316 
4317 	nsegs--; /* first segment is part of ulptx_sgl */
4318 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
4319 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
4320 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
4321 
4322 	return (howmany(n, 16));
4323 }
4324 
4325 /*
4326  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
4327  * request header.
4328  */
4329 static inline u_int
4330 txpkts1_len16(void)
4331 {
4332 	u_int n;
4333 
4334 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
4335 
4336 	return (howmany(n, 16));
4337 }
4338 
4339 static inline u_int
4340 imm_payload(u_int ndesc)
4341 {
4342 	u_int n;
4343 
4344 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
4345 	    sizeof(struct cpl_tx_pkt_core);
4346 
4347 	return (n);
4348 }
4349 
4350 /*
4351  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
4352  * software descriptor, and advance the pidx.  It is guaranteed that enough
4353  * descriptors are available.
4354  *
4355  * The return value is the # of hardware descriptors used.
4356  */
4357 static u_int
4358 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq,
4359     struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available)
4360 {
4361 	struct sge_eq *eq = &txq->eq;
4362 	struct tx_sdesc *txsd;
4363 	struct cpl_tx_pkt_core *cpl;
4364 	uint32_t ctrl;	/* used in many unrelated places */
4365 	uint64_t ctrl1;
4366 	int csum_type, len16, ndesc, pktlen, nsegs;
4367 	caddr_t dst;
4368 
4369 	TXQ_LOCK_ASSERT_OWNED(txq);
4370 	M_ASSERTPKTHDR(m0);
4371 	MPASS(available > 0 && available < eq->sidx);
4372 
4373 	len16 = mbuf_len16(m0);
4374 	nsegs = mbuf_nsegs(m0);
4375 	pktlen = m0->m_pkthdr.len;
4376 	ctrl = sizeof(struct cpl_tx_pkt_core);
4377 	if (needs_tso(m0))
4378 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4379 	ndesc = howmany(len16, EQ_ESIZE / 16);
4380 	MPASS(ndesc <= available);
4381 
4382 	/* Firmware work request header */
4383 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4384 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
4385 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4386 
4387 	ctrl = V_FW_WR_LEN16(len16);
4388 	wr->equiq_to_len16 = htobe32(ctrl);
4389 	wr->r3[0] = 0;
4390 	wr->r3[1] = 0;
4391 
4392 	/*
4393 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
4394 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
4395 	 * simpler to always copy it rather than making it
4396 	 * conditional.  Also, it seems that we do not have to set
4397 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
4398 	 */
4399 	m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst);
4400 
4401 	csum_type = -1;
4402 	if (needs_tso(m0)) {
4403 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4404 
4405 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4406 		    m0->m_pkthdr.l4hlen > 0,
4407 		    ("%s: mbuf %p needs TSO but missing header lengths",
4408 			__func__, m0));
4409 
4410 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4411 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4412 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4413 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4414 			ctrl |= V_LSO_ETHHDR_LEN(1);
4415 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4416 			ctrl |= F_LSO_IPV6;
4417 
4418 		lso->lso_ctrl = htobe32(ctrl);
4419 		lso->ipid_ofst = htobe16(0);
4420 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4421 		lso->seqno_offset = htobe32(0);
4422 		lso->len = htobe32(pktlen);
4423 
4424 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4425 			csum_type = TX_CSUM_TCPIP6;
4426 		else
4427 			csum_type = TX_CSUM_TCPIP;
4428 
4429 		cpl = (void *)(lso + 1);
4430 
4431 		txq->tso_wrs++;
4432 	} else {
4433 		if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP)
4434 			csum_type = TX_CSUM_TCPIP;
4435 		else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP)
4436 			csum_type = TX_CSUM_UDPIP;
4437 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP)
4438 			csum_type = TX_CSUM_TCPIP6;
4439 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP)
4440 			csum_type = TX_CSUM_UDPIP6;
4441 #if defined(INET)
4442 		else if (m0->m_pkthdr.csum_flags & CSUM_IP) {
4443 			/*
4444 			 * XXX: The firmware appears to stomp on the
4445 			 * fragment/flags field of the IP header when
4446 			 * using TX_CSUM_IP.  Fall back to doing
4447 			 * software checksums.
4448 			 */
4449 			u_short *sump;
4450 			struct mbuf *m;
4451 			int offset;
4452 
4453 			m = m0;
4454 			offset = 0;
4455 			sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen +
4456 			    offsetof(struct ip, ip_sum));
4457 			*sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen +
4458 			    m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen);
4459 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
4460 		}
4461 #endif
4462 
4463 		cpl = (void *)(wr + 1);
4464 	}
4465 
4466 	/* Checksum offload */
4467 	ctrl1 = 0;
4468 	if (needs_l3_csum(m0) == 0)
4469 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4470 	if (csum_type >= 0) {
4471 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0,
4472 	    ("%s: mbuf %p needs checksum offload but missing header lengths",
4473 			__func__, m0));
4474 
4475 		if (chip_id(sc) <= CHELSIO_T5) {
4476 			ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4477 			    ETHER_HDR_LEN);
4478 		} else {
4479 			ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4480 			    ETHER_HDR_LEN);
4481 		}
4482 		ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen);
4483 		ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type);
4484 	} else
4485 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4486 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4487 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4488 		txq->txcsum++;	/* some hardware assistance provided */
4489 
4490 	/* VLAN tag insertion */
4491 	if (needs_vlan_insertion(m0)) {
4492 		ctrl1 |= F_TXPKT_VLAN_VLD |
4493 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4494 		txq->vlan_insertion++;
4495 	}
4496 
4497 	/* CPL header */
4498 	cpl->ctrl0 = txq->cpl_ctrl0;
4499 	cpl->pack = 0;
4500 	cpl->len = htobe16(pktlen);
4501 	cpl->ctrl1 = htobe64(ctrl1);
4502 
4503 	/* SGL */
4504 	dst = (void *)(cpl + 1);
4505 
4506 	/*
4507 	 * A packet using TSO will use up an entire descriptor for the
4508 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
4509 	 * If this descriptor is the last descriptor in the ring, wrap
4510 	 * around to the front of the ring explicitly for the start of
4511 	 * the sgl.
4512 	 */
4513 	if (dst == (void *)&eq->desc[eq->sidx]) {
4514 		dst = (void *)&eq->desc[0];
4515 		write_gl_to_txd(txq, m0, &dst, 0);
4516 	} else
4517 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4518 	txq->sgl_wrs++;
4519 
4520 	txq->txpkt_wrs++;
4521 
4522 	txsd = &txq->sdesc[eq->pidx];
4523 	txsd->m = m0;
4524 	txsd->desc_used = ndesc;
4525 
4526 	return (ndesc);
4527 }
4528 
4529 /*
4530  * Write a txpkt WR for this packet to the hardware descriptors, update the
4531  * software descriptor, and advance the pidx.  It is guaranteed that enough
4532  * descriptors are available.
4533  *
4534  * The return value is the # of hardware descriptors used.
4535  */
4536 static u_int
4537 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
4538     struct mbuf *m0, u_int available)
4539 {
4540 	struct sge_eq *eq = &txq->eq;
4541 	struct tx_sdesc *txsd;
4542 	struct cpl_tx_pkt_core *cpl;
4543 	uint32_t ctrl;	/* used in many unrelated places */
4544 	uint64_t ctrl1;
4545 	int len16, ndesc, pktlen, nsegs;
4546 	caddr_t dst;
4547 
4548 	TXQ_LOCK_ASSERT_OWNED(txq);
4549 	M_ASSERTPKTHDR(m0);
4550 	MPASS(available > 0 && available < eq->sidx);
4551 
4552 	len16 = mbuf_len16(m0);
4553 	nsegs = mbuf_nsegs(m0);
4554 	pktlen = m0->m_pkthdr.len;
4555 	ctrl = sizeof(struct cpl_tx_pkt_core);
4556 	if (needs_tso(m0))
4557 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4558 	else if (pktlen <= imm_payload(2) && available >= 2) {
4559 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
4560 		ctrl += pktlen;
4561 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
4562 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
4563 		nsegs = 0;
4564 	}
4565 	ndesc = howmany(len16, EQ_ESIZE / 16);
4566 	MPASS(ndesc <= available);
4567 
4568 	/* Firmware work request header */
4569 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4570 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
4571 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4572 
4573 	ctrl = V_FW_WR_LEN16(len16);
4574 	wr->equiq_to_len16 = htobe32(ctrl);
4575 	wr->r3 = 0;
4576 
4577 	if (needs_tso(m0)) {
4578 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4579 
4580 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4581 		    m0->m_pkthdr.l4hlen > 0,
4582 		    ("%s: mbuf %p needs TSO but missing header lengths",
4583 			__func__, m0));
4584 
4585 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4586 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4587 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4588 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4589 			ctrl |= V_LSO_ETHHDR_LEN(1);
4590 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4591 			ctrl |= F_LSO_IPV6;
4592 
4593 		lso->lso_ctrl = htobe32(ctrl);
4594 		lso->ipid_ofst = htobe16(0);
4595 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4596 		lso->seqno_offset = htobe32(0);
4597 		lso->len = htobe32(pktlen);
4598 
4599 		cpl = (void *)(lso + 1);
4600 
4601 		txq->tso_wrs++;
4602 	} else
4603 		cpl = (void *)(wr + 1);
4604 
4605 	/* Checksum offload */
4606 	ctrl1 = 0;
4607 	if (needs_l3_csum(m0) == 0)
4608 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4609 	if (needs_l4_csum(m0) == 0)
4610 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4611 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4612 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4613 		txq->txcsum++;	/* some hardware assistance provided */
4614 
4615 	/* VLAN tag insertion */
4616 	if (needs_vlan_insertion(m0)) {
4617 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4618 		txq->vlan_insertion++;
4619 	}
4620 
4621 	/* CPL header */
4622 	cpl->ctrl0 = txq->cpl_ctrl0;
4623 	cpl->pack = 0;
4624 	cpl->len = htobe16(pktlen);
4625 	cpl->ctrl1 = htobe64(ctrl1);
4626 
4627 	/* SGL */
4628 	dst = (void *)(cpl + 1);
4629 	if (nsegs > 0) {
4630 
4631 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4632 		txq->sgl_wrs++;
4633 	} else {
4634 		struct mbuf *m;
4635 
4636 		for (m = m0; m != NULL; m = m->m_next) {
4637 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4638 #ifdef INVARIANTS
4639 			pktlen -= m->m_len;
4640 #endif
4641 		}
4642 #ifdef INVARIANTS
4643 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
4644 #endif
4645 		txq->imm_wrs++;
4646 	}
4647 
4648 	txq->txpkt_wrs++;
4649 
4650 	txsd = &txq->sdesc[eq->pidx];
4651 	txsd->m = m0;
4652 	txsd->desc_used = ndesc;
4653 
4654 	return (ndesc);
4655 }
4656 
4657 static int
4658 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
4659 {
4660 	u_int needed, nsegs1, nsegs2, l1, l2;
4661 
4662 	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
4663 		return (1);
4664 
4665 	nsegs1 = mbuf_nsegs(m);
4666 	nsegs2 = mbuf_nsegs(n);
4667 	if (nsegs1 + nsegs2 == 2) {
4668 		txp->wr_type = 1;
4669 		l1 = l2 = txpkts1_len16();
4670 	} else {
4671 		txp->wr_type = 0;
4672 		l1 = txpkts0_len16(nsegs1);
4673 		l2 = txpkts0_len16(nsegs2);
4674 	}
4675 	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
4676 	needed = howmany(txp->len16, EQ_ESIZE / 16);
4677 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4678 		return (1);
4679 
4680 	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
4681 	if (txp->plen > 65535)
4682 		return (1);
4683 
4684 	txp->npkt = 2;
4685 	set_mbuf_len16(m, l1);
4686 	set_mbuf_len16(n, l2);
4687 
4688 	return (0);
4689 }
4690 
4691 static int
4692 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
4693 {
4694 	u_int plen, len16, needed, nsegs;
4695 
4696 	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
4697 
4698 	nsegs = mbuf_nsegs(m);
4699 	if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
4700 		return (1);
4701 
4702 	plen = txp->plen + m->m_pkthdr.len;
4703 	if (plen > 65535)
4704 		return (1);
4705 
4706 	if (txp->wr_type == 0)
4707 		len16 = txpkts0_len16(nsegs);
4708 	else
4709 		len16 = txpkts1_len16();
4710 	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4711 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4712 		return (1);
4713 
4714 	txp->npkt++;
4715 	txp->plen = plen;
4716 	txp->len16 += len16;
4717 	set_mbuf_len16(m, len16);
4718 
4719 	return (0);
4720 }
4721 
4722 /*
4723  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
4724  * the software descriptor, and advance the pidx.  It is guaranteed that enough
4725  * descriptors are available.
4726  *
4727  * The return value is the # of hardware descriptors used.
4728  */
4729 static u_int
4730 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
4731     struct mbuf *m0, const struct txpkts *txp, u_int available)
4732 {
4733 	struct sge_eq *eq = &txq->eq;
4734 	struct tx_sdesc *txsd;
4735 	struct cpl_tx_pkt_core *cpl;
4736 	uint32_t ctrl;
4737 	uint64_t ctrl1;
4738 	int ndesc, checkwrap;
4739 	struct mbuf *m;
4740 	void *flitp;
4741 
4742 	TXQ_LOCK_ASSERT_OWNED(txq);
4743 	MPASS(txp->npkt > 0);
4744 	MPASS(txp->plen < 65536);
4745 	MPASS(m0 != NULL);
4746 	MPASS(m0->m_nextpkt != NULL);
4747 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
4748 	MPASS(available > 0 && available < eq->sidx);
4749 
4750 	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
4751 	MPASS(ndesc <= available);
4752 
4753 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4754 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4755 	ctrl = V_FW_WR_LEN16(txp->len16);
4756 	wr->equiq_to_len16 = htobe32(ctrl);
4757 	wr->plen = htobe16(txp->plen);
4758 	wr->npkt = txp->npkt;
4759 	wr->r3 = 0;
4760 	wr->type = txp->wr_type;
4761 	flitp = wr + 1;
4762 
4763 	/*
4764 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
4765 	 * set then we know the WR is going to wrap around somewhere.  We'll
4766 	 * check for that at appropriate points.
4767 	 */
4768 	checkwrap = eq->sidx - ndesc < eq->pidx;
4769 	for (m = m0; m != NULL; m = m->m_nextpkt) {
4770 		if (txp->wr_type == 0) {
4771 			struct ulp_txpkt *ulpmc;
4772 			struct ulptx_idata *ulpsc;
4773 
4774 			/* ULP master command */
4775 			ulpmc = flitp;
4776 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
4777 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
4778 			ulpmc->len = htobe32(mbuf_len16(m));
4779 
4780 			/* ULP subcommand */
4781 			ulpsc = (void *)(ulpmc + 1);
4782 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
4783 			    F_ULP_TX_SC_MORE);
4784 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
4785 
4786 			cpl = (void *)(ulpsc + 1);
4787 			if (checkwrap &&
4788 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
4789 				cpl = (void *)&eq->desc[0];
4790 		} else {
4791 			cpl = flitp;
4792 		}
4793 
4794 		/* Checksum offload */
4795 		ctrl1 = 0;
4796 		if (needs_l3_csum(m) == 0)
4797 			ctrl1 |= F_TXPKT_IPCSUM_DIS;
4798 		if (needs_l4_csum(m) == 0)
4799 			ctrl1 |= F_TXPKT_L4CSUM_DIS;
4800 		if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4801 		    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4802 			txq->txcsum++;	/* some hardware assistance provided */
4803 
4804 		/* VLAN tag insertion */
4805 		if (needs_vlan_insertion(m)) {
4806 			ctrl1 |= F_TXPKT_VLAN_VLD |
4807 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
4808 			txq->vlan_insertion++;
4809 		}
4810 
4811 		/* CPL header */
4812 		cpl->ctrl0 = txq->cpl_ctrl0;
4813 		cpl->pack = 0;
4814 		cpl->len = htobe16(m->m_pkthdr.len);
4815 		cpl->ctrl1 = htobe64(ctrl1);
4816 
4817 		flitp = cpl + 1;
4818 		if (checkwrap &&
4819 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
4820 			flitp = (void *)&eq->desc[0];
4821 
4822 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
4823 
4824 	}
4825 
4826 	if (txp->wr_type == 0) {
4827 		txq->txpkts0_pkts += txp->npkt;
4828 		txq->txpkts0_wrs++;
4829 	} else {
4830 		txq->txpkts1_pkts += txp->npkt;
4831 		txq->txpkts1_wrs++;
4832 	}
4833 
4834 	txsd = &txq->sdesc[eq->pidx];
4835 	txsd->m = m0;
4836 	txsd->desc_used = ndesc;
4837 
4838 	return (ndesc);
4839 }
4840 
4841 /*
4842  * If the SGL ends on an address that is not 16 byte aligned, this function will
4843  * add a 0 filled flit at the end.
4844  */
4845 static void
4846 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
4847 {
4848 	struct sge_eq *eq = &txq->eq;
4849 	struct sglist *gl = txq->gl;
4850 	struct sglist_seg *seg;
4851 	__be64 *flitp, *wrap;
4852 	struct ulptx_sgl *usgl;
4853 	int i, nflits, nsegs;
4854 
4855 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4856 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4857 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4858 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4859 
4860 	get_pkt_gl(m, gl);
4861 	nsegs = gl->sg_nseg;
4862 	MPASS(nsegs > 0);
4863 
4864 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
4865 	flitp = (__be64 *)(*to);
4866 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
4867 	seg = &gl->sg_segs[0];
4868 	usgl = (void *)flitp;
4869 
4870 	/*
4871 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4872 	 * ring, so we're at least 16 bytes away from the status page.  There is
4873 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4874 	 */
4875 
4876 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4877 	    V_ULPTX_NSGE(nsegs));
4878 	usgl->len0 = htobe32(seg->ss_len);
4879 	usgl->addr0 = htobe64(seg->ss_paddr);
4880 	seg++;
4881 
4882 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
4883 
4884 		/* Won't wrap around at all */
4885 
4886 		for (i = 0; i < nsegs - 1; i++, seg++) {
4887 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
4888 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
4889 		}
4890 		if (i & 1)
4891 			usgl->sge[i / 2].len[1] = htobe32(0);
4892 		flitp += nflits;
4893 	} else {
4894 
4895 		/* Will wrap somewhere in the rest of the SGL */
4896 
4897 		/* 2 flits already written, write the rest flit by flit */
4898 		flitp = (void *)(usgl + 1);
4899 		for (i = 0; i < nflits - 2; i++) {
4900 			if (flitp == wrap)
4901 				flitp = (void *)eq->desc;
4902 			*flitp++ = get_flit(seg, nsegs - 1, i);
4903 		}
4904 	}
4905 
4906 	if (nflits & 1) {
4907 		MPASS(((uintptr_t)flitp) & 0xf);
4908 		*flitp++ = 0;
4909 	}
4910 
4911 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
4912 	if (__predict_false(flitp == wrap))
4913 		*to = (void *)eq->desc;
4914 	else
4915 		*to = (void *)flitp;
4916 }
4917 
4918 static inline void
4919 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4920 {
4921 
4922 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4923 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4924 
4925 	if (__predict_true((uintptr_t)(*to) + len <=
4926 	    (uintptr_t)&eq->desc[eq->sidx])) {
4927 		bcopy(from, *to, len);
4928 		(*to) += len;
4929 	} else {
4930 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
4931 
4932 		bcopy(from, *to, portion);
4933 		from += portion;
4934 		portion = len - portion;	/* remaining */
4935 		bcopy(from, (void *)eq->desc, portion);
4936 		(*to) = (caddr_t)eq->desc + portion;
4937 	}
4938 }
4939 
4940 static inline void
4941 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
4942 {
4943 	u_int db;
4944 
4945 	MPASS(n > 0);
4946 
4947 	db = eq->doorbells;
4948 	if (n > 1)
4949 		clrbit(&db, DOORBELL_WCWR);
4950 	wmb();
4951 
4952 	switch (ffs(db) - 1) {
4953 	case DOORBELL_UDB:
4954 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4955 		break;
4956 
4957 	case DOORBELL_WCWR: {
4958 		volatile uint64_t *dst, *src;
4959 		int i;
4960 
4961 		/*
4962 		 * Queues whose 128B doorbell segment fits in the page do not
4963 		 * use relative qid (udb_qid is always 0).  Only queues with
4964 		 * doorbell segments can do WCWR.
4965 		 */
4966 		KASSERT(eq->udb_qid == 0 && n == 1,
4967 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4968 		    __func__, eq->doorbells, n, eq->dbidx, eq));
4969 
4970 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4971 		    UDBS_DB_OFFSET);
4972 		i = eq->dbidx;
4973 		src = (void *)&eq->desc[i];
4974 		while (src != (void *)&eq->desc[i + 1])
4975 			*dst++ = *src++;
4976 		wmb();
4977 		break;
4978 	}
4979 
4980 	case DOORBELL_UDBWC:
4981 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4982 		wmb();
4983 		break;
4984 
4985 	case DOORBELL_KDB:
4986 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
4987 		    V_QID(eq->cntxt_id) | V_PIDX(n));
4988 		break;
4989 	}
4990 
4991 	IDXINCR(eq->dbidx, n, eq->sidx);
4992 }
4993 
4994 static inline u_int
4995 reclaimable_tx_desc(struct sge_eq *eq)
4996 {
4997 	uint16_t hw_cidx;
4998 
4999 	hw_cidx = read_hw_cidx(eq);
5000 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
5001 }
5002 
5003 static inline u_int
5004 total_available_tx_desc(struct sge_eq *eq)
5005 {
5006 	uint16_t hw_cidx, pidx;
5007 
5008 	hw_cidx = read_hw_cidx(eq);
5009 	pidx = eq->pidx;
5010 
5011 	if (pidx == hw_cidx)
5012 		return (eq->sidx - 1);
5013 	else
5014 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
5015 }
5016 
5017 static inline uint16_t
5018 read_hw_cidx(struct sge_eq *eq)
5019 {
5020 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5021 	uint16_t cidx = spg->cidx;	/* stable snapshot */
5022 
5023 	return (be16toh(cidx));
5024 }
5025 
5026 /*
5027  * Reclaim 'n' descriptors approximately.
5028  */
5029 static u_int
5030 reclaim_tx_descs(struct sge_txq *txq, u_int n)
5031 {
5032 	struct tx_sdesc *txsd;
5033 	struct sge_eq *eq = &txq->eq;
5034 	u_int can_reclaim, reclaimed;
5035 
5036 	TXQ_LOCK_ASSERT_OWNED(txq);
5037 	MPASS(n > 0);
5038 
5039 	reclaimed = 0;
5040 	can_reclaim = reclaimable_tx_desc(eq);
5041 	while (can_reclaim && reclaimed < n) {
5042 		int ndesc;
5043 		struct mbuf *m, *nextpkt;
5044 
5045 		txsd = &txq->sdesc[eq->cidx];
5046 		ndesc = txsd->desc_used;
5047 
5048 		/* Firmware doesn't return "partial" credits. */
5049 		KASSERT(can_reclaim >= ndesc,
5050 		    ("%s: unexpected number of credits: %d, %d",
5051 		    __func__, can_reclaim, ndesc));
5052 
5053 		for (m = txsd->m; m != NULL; m = nextpkt) {
5054 			nextpkt = m->m_nextpkt;
5055 			m->m_nextpkt = NULL;
5056 			m_freem(m);
5057 		}
5058 		reclaimed += ndesc;
5059 		can_reclaim -= ndesc;
5060 		IDXINCR(eq->cidx, ndesc, eq->sidx);
5061 	}
5062 
5063 	return (reclaimed);
5064 }
5065 
5066 static void
5067 tx_reclaim(void *arg, int n)
5068 {
5069 	struct sge_txq *txq = arg;
5070 	struct sge_eq *eq = &txq->eq;
5071 
5072 	do {
5073 		if (TXQ_TRYLOCK(txq) == 0)
5074 			break;
5075 		n = reclaim_tx_descs(txq, 32);
5076 		if (eq->cidx == eq->pidx)
5077 			eq->equeqidx = eq->pidx;
5078 		TXQ_UNLOCK(txq);
5079 	} while (n > 0);
5080 }
5081 
5082 static __be64
5083 get_flit(struct sglist_seg *segs, int nsegs, int idx)
5084 {
5085 	int i = (idx / 3) * 2;
5086 
5087 	switch (idx % 3) {
5088 	case 0: {
5089 		uint64_t rc;
5090 
5091 		rc = (uint64_t)segs[i].ss_len << 32;
5092 		if (i + 1 < nsegs)
5093 			rc |= (uint64_t)(segs[i + 1].ss_len);
5094 
5095 		return (htobe64(rc));
5096 	}
5097 	case 1:
5098 		return (htobe64(segs[i].ss_paddr));
5099 	case 2:
5100 		return (htobe64(segs[i + 1].ss_paddr));
5101 	}
5102 
5103 	return (0);
5104 }
5105 
5106 static void
5107 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
5108 {
5109 	int8_t zidx, hwidx, idx;
5110 	uint16_t region1, region3;
5111 	int spare, spare_needed, n;
5112 	struct sw_zone_info *swz;
5113 	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
5114 
5115 	/*
5116 	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
5117 	 * large enough for the max payload and cluster metadata.  Otherwise
5118 	 * settle for the largest bufsize that leaves enough room in the cluster
5119 	 * for metadata.
5120 	 *
5121 	 * Without buffer packing: Look for the smallest zone which has a
5122 	 * bufsize large enough for the max payload.  Settle for the largest
5123 	 * bufsize available if there's nothing big enough for max payload.
5124 	 */
5125 	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
5126 	swz = &sc->sge.sw_zone_info[0];
5127 	hwidx = -1;
5128 	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
5129 		if (swz->size > largest_rx_cluster) {
5130 			if (__predict_true(hwidx != -1))
5131 				break;
5132 
5133 			/*
5134 			 * This is a misconfiguration.  largest_rx_cluster is
5135 			 * preventing us from finding a refill source.  See
5136 			 * dev.t5nex.<n>.buffer_sizes to figure out why.
5137 			 */
5138 			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
5139 			    " refill source for fl %p (dma %u).  Ignored.\n",
5140 			    largest_rx_cluster, fl, maxp);
5141 		}
5142 		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
5143 			hwb = &hwb_list[idx];
5144 			spare = swz->size - hwb->size;
5145 			if (spare < spare_needed)
5146 				continue;
5147 
5148 			hwidx = idx;		/* best option so far */
5149 			if (hwb->size >= maxp) {
5150 
5151 				if ((fl->flags & FL_BUF_PACKING) == 0)
5152 					goto done; /* stop looking (not packing) */
5153 
5154 				if (swz->size >= safest_rx_cluster)
5155 					goto done; /* stop looking (packing) */
5156 			}
5157 			break;		/* keep looking, next zone */
5158 		}
5159 	}
5160 done:
5161 	/* A usable hwidx has been located. */
5162 	MPASS(hwidx != -1);
5163 	hwb = &hwb_list[hwidx];
5164 	zidx = hwb->zidx;
5165 	swz = &sc->sge.sw_zone_info[zidx];
5166 	region1 = 0;
5167 	region3 = swz->size - hwb->size;
5168 
5169 	/*
5170 	 * Stay within this zone and see if there is a better match when mbuf
5171 	 * inlining is allowed.  Remember that the hwidx's are sorted in
5172 	 * decreasing order of size (so in increasing order of spare area).
5173 	 */
5174 	for (idx = hwidx; idx != -1; idx = hwb->next) {
5175 		hwb = &hwb_list[idx];
5176 		spare = swz->size - hwb->size;
5177 
5178 		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
5179 			break;
5180 
5181 		/*
5182 		 * Do not inline mbufs if doing so would violate the pad/pack
5183 		 * boundary alignment requirement.
5184 		 */
5185 		if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0)
5186 			continue;
5187 		if (fl->flags & FL_BUF_PACKING &&
5188 		    (MSIZE % sc->params.sge.pack_boundary) != 0)
5189 			continue;
5190 
5191 		if (spare < CL_METADATA_SIZE + MSIZE)
5192 			continue;
5193 		n = (spare - CL_METADATA_SIZE) / MSIZE;
5194 		if (n > howmany(hwb->size, maxp))
5195 			break;
5196 
5197 		hwidx = idx;
5198 		if (fl->flags & FL_BUF_PACKING) {
5199 			region1 = n * MSIZE;
5200 			region3 = spare - region1;
5201 		} else {
5202 			region1 = MSIZE;
5203 			region3 = spare - region1;
5204 			break;
5205 		}
5206 	}
5207 
5208 	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
5209 	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
5210 	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
5211 	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
5212 	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
5213 	    sc->sge.sw_zone_info[zidx].size,
5214 	    ("%s: bad buffer layout for fl %p, maxp %d. "
5215 		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5216 		sc->sge.sw_zone_info[zidx].size, region1,
5217 		sc->sge.hw_buf_info[hwidx].size, region3));
5218 	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
5219 		KASSERT(region3 >= CL_METADATA_SIZE,
5220 		    ("%s: no room for metadata.  fl %p, maxp %d; "
5221 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5222 		    sc->sge.sw_zone_info[zidx].size, region1,
5223 		    sc->sge.hw_buf_info[hwidx].size, region3));
5224 		KASSERT(region1 % MSIZE == 0,
5225 		    ("%s: bad mbuf region for fl %p, maxp %d. "
5226 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5227 		    sc->sge.sw_zone_info[zidx].size, region1,
5228 		    sc->sge.hw_buf_info[hwidx].size, region3));
5229 	}
5230 
5231 	fl->cll_def.zidx = zidx;
5232 	fl->cll_def.hwidx = hwidx;
5233 	fl->cll_def.region1 = region1;
5234 	fl->cll_def.region3 = region3;
5235 }
5236 
5237 static void
5238 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
5239 {
5240 	struct sge *s = &sc->sge;
5241 	struct hw_buf_info *hwb;
5242 	struct sw_zone_info *swz;
5243 	int spare;
5244 	int8_t hwidx;
5245 
5246 	if (fl->flags & FL_BUF_PACKING)
5247 		hwidx = s->safe_hwidx2;	/* with room for metadata */
5248 	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
5249 		hwidx = s->safe_hwidx2;
5250 		hwb = &s->hw_buf_info[hwidx];
5251 		swz = &s->sw_zone_info[hwb->zidx];
5252 		spare = swz->size - hwb->size;
5253 
5254 		/* no good if there isn't room for an mbuf as well */
5255 		if (spare < CL_METADATA_SIZE + MSIZE)
5256 			hwidx = s->safe_hwidx1;
5257 	} else
5258 		hwidx = s->safe_hwidx1;
5259 
5260 	if (hwidx == -1) {
5261 		/* No fallback source */
5262 		fl->cll_alt.hwidx = -1;
5263 		fl->cll_alt.zidx = -1;
5264 
5265 		return;
5266 	}
5267 
5268 	hwb = &s->hw_buf_info[hwidx];
5269 	swz = &s->sw_zone_info[hwb->zidx];
5270 	spare = swz->size - hwb->size;
5271 	fl->cll_alt.hwidx = hwidx;
5272 	fl->cll_alt.zidx = hwb->zidx;
5273 	if (allow_mbufs_in_cluster &&
5274 	    (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0))
5275 		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
5276 	else
5277 		fl->cll_alt.region1 = 0;
5278 	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
5279 }
5280 
5281 static void
5282 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
5283 {
5284 	mtx_lock(&sc->sfl_lock);
5285 	FL_LOCK(fl);
5286 	if ((fl->flags & FL_DOOMED) == 0) {
5287 		fl->flags |= FL_STARVING;
5288 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
5289 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
5290 	}
5291 	FL_UNLOCK(fl);
5292 	mtx_unlock(&sc->sfl_lock);
5293 }
5294 
5295 static void
5296 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
5297 {
5298 	struct sge_wrq *wrq = (void *)eq;
5299 
5300 	atomic_readandclear_int(&eq->equiq);
5301 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
5302 }
5303 
5304 static void
5305 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
5306 {
5307 	struct sge_txq *txq = (void *)eq;
5308 
5309 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
5310 
5311 	atomic_readandclear_int(&eq->equiq);
5312 	mp_ring_check_drainage(txq->r, 0);
5313 	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
5314 }
5315 
5316 static int
5317 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
5318     struct mbuf *m)
5319 {
5320 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
5321 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
5322 	struct adapter *sc = iq->adapter;
5323 	struct sge *s = &sc->sge;
5324 	struct sge_eq *eq;
5325 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
5326 		&handle_wrq_egr_update, &handle_eth_egr_update,
5327 		&handle_wrq_egr_update};
5328 
5329 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5330 	    rss->opcode));
5331 
5332 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
5333 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
5334 
5335 	return (0);
5336 }
5337 
5338 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
5339 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
5340     offsetof(struct cpl_fw6_msg, data));
5341 
5342 static int
5343 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
5344 {
5345 	struct adapter *sc = iq->adapter;
5346 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
5347 
5348 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5349 	    rss->opcode));
5350 
5351 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
5352 		const struct rss_header *rss2;
5353 
5354 		rss2 = (const struct rss_header *)&cpl->data[0];
5355 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
5356 	}
5357 
5358 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
5359 }
5360 
5361 /**
5362  *	t4_handle_wrerr_rpl - process a FW work request error message
5363  *	@adap: the adapter
5364  *	@rpl: start of the FW message
5365  */
5366 static int
5367 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
5368 {
5369 	u8 opcode = *(const u8 *)rpl;
5370 	const struct fw_error_cmd *e = (const void *)rpl;
5371 	unsigned int i;
5372 
5373 	if (opcode != FW_ERROR_CMD) {
5374 		log(LOG_ERR,
5375 		    "%s: Received WRERR_RPL message with opcode %#x\n",
5376 		    device_get_nameunit(adap->dev), opcode);
5377 		return (EINVAL);
5378 	}
5379 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
5380 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
5381 	    "non-fatal");
5382 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
5383 	case FW_ERROR_TYPE_EXCEPTION:
5384 		log(LOG_ERR, "exception info:\n");
5385 		for (i = 0; i < nitems(e->u.exception.info); i++)
5386 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
5387 			    be32toh(e->u.exception.info[i]));
5388 		log(LOG_ERR, "\n");
5389 		break;
5390 	case FW_ERROR_TYPE_HWMODULE:
5391 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
5392 		    be32toh(e->u.hwmodule.regaddr),
5393 		    be32toh(e->u.hwmodule.regval));
5394 		break;
5395 	case FW_ERROR_TYPE_WR:
5396 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
5397 		    be16toh(e->u.wr.cidx),
5398 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
5399 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
5400 		    be32toh(e->u.wr.eqid));
5401 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
5402 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
5403 			    e->u.wr.wrhdr[i]);
5404 		log(LOG_ERR, "\n");
5405 		break;
5406 	case FW_ERROR_TYPE_ACL:
5407 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
5408 		    be16toh(e->u.acl.cidx),
5409 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
5410 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
5411 		    be32toh(e->u.acl.eqid),
5412 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
5413 		    "MAC");
5414 		for (i = 0; i < nitems(e->u.acl.val); i++)
5415 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
5416 		log(LOG_ERR, "\n");
5417 		break;
5418 	default:
5419 		log(LOG_ERR, "type %#x\n",
5420 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
5421 		return (EINVAL);
5422 	}
5423 	return (0);
5424 }
5425 
5426 static int
5427 sysctl_uint16(SYSCTL_HANDLER_ARGS)
5428 {
5429 	uint16_t *id = arg1;
5430 	int i = *id;
5431 
5432 	return sysctl_handle_int(oidp, &i, 0, req);
5433 }
5434 
5435 static int
5436 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
5437 {
5438 	struct sge *s = arg1;
5439 	struct hw_buf_info *hwb = &s->hw_buf_info[0];
5440 	struct sw_zone_info *swz = &s->sw_zone_info[0];
5441 	int i, rc;
5442 	struct sbuf sb;
5443 	char c;
5444 
5445 	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
5446 	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
5447 		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
5448 			c = '*';
5449 		else
5450 			c = '\0';
5451 
5452 		sbuf_printf(&sb, "%u%c ", hwb->size, c);
5453 	}
5454 	sbuf_trim(&sb);
5455 	sbuf_finish(&sb);
5456 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
5457 	sbuf_delete(&sb);
5458 	return (rc);
5459 }
5460 
5461 #ifdef RATELIMIT
5462 /*
5463  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5464  */
5465 static inline u_int
5466 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
5467 {
5468 	u_int n;
5469 
5470 	MPASS(immhdrs > 0);
5471 
5472 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
5473 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
5474 	if (__predict_false(nsegs == 0))
5475 		goto done;
5476 
5477 	nsegs--; /* first segment is part of ulptx_sgl */
5478 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5479 	if (tso)
5480 		n += sizeof(struct cpl_tx_pkt_lso_core);
5481 
5482 done:
5483 	return (howmany(n, 16));
5484 }
5485 
5486 #define ETID_FLOWC_NPARAMS 6
5487 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
5488     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
5489 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
5490 
5491 static int
5492 send_etid_flowc_wr(struct cxgbe_snd_tag *cst, struct port_info *pi,
5493     struct vi_info *vi)
5494 {
5495 	struct wrq_cookie cookie;
5496 	u_int pfvf = G_FW_VIID_PFN(vi->viid) << S_FW_VIID_PFN;
5497 	struct fw_flowc_wr *flowc;
5498 
5499 	mtx_assert(&cst->lock, MA_OWNED);
5500 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
5501 	    EO_FLOWC_PENDING);
5502 
5503 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLOWC_LEN16, &cookie);
5504 	if (__predict_false(flowc == NULL))
5505 		return (ENOMEM);
5506 
5507 	bzero(flowc, ETID_FLOWC_LEN);
5508 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
5509 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
5510 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
5511 	    V_FW_WR_FLOWID(cst->etid));
5512 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
5513 	flowc->mnemval[0].val = htobe32(pfvf);
5514 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
5515 	flowc->mnemval[1].val = htobe32(pi->tx_chan);
5516 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
5517 	flowc->mnemval[2].val = htobe32(pi->tx_chan);
5518 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
5519 	flowc->mnemval[3].val = htobe32(cst->iqid);
5520 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
5521 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
5522 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
5523 	flowc->mnemval[5].val = htobe32(cst->schedcl);
5524 
5525 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
5526 
5527 	cst->flags &= ~EO_FLOWC_PENDING;
5528 	cst->flags |= EO_FLOWC_RPL_PENDING;
5529 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
5530 	cst->tx_credits -= ETID_FLOWC_LEN16;
5531 
5532 	return (0);
5533 }
5534 
5535 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
5536 
5537 void
5538 send_etid_flush_wr(struct cxgbe_snd_tag *cst)
5539 {
5540 	struct fw_flowc_wr *flowc;
5541 	struct wrq_cookie cookie;
5542 
5543 	mtx_assert(&cst->lock, MA_OWNED);
5544 
5545 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLUSH_LEN16, &cookie);
5546 	if (__predict_false(flowc == NULL))
5547 		CXGBE_UNIMPLEMENTED(__func__);
5548 
5549 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
5550 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
5551 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
5552 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
5553 	    V_FW_WR_FLOWID(cst->etid));
5554 
5555 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
5556 
5557 	cst->flags |= EO_FLUSH_RPL_PENDING;
5558 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
5559 	cst->tx_credits -= ETID_FLUSH_LEN16;
5560 	cst->ncompl++;
5561 }
5562 
5563 static void
5564 write_ethofld_wr(struct cxgbe_snd_tag *cst, struct fw_eth_tx_eo_wr *wr,
5565     struct mbuf *m0, int compl)
5566 {
5567 	struct cpl_tx_pkt_core *cpl;
5568 	uint64_t ctrl1;
5569 	uint32_t ctrl;	/* used in many unrelated places */
5570 	int len16, pktlen, nsegs, immhdrs;
5571 	caddr_t dst;
5572 	uintptr_t p;
5573 	struct ulptx_sgl *usgl;
5574 	struct sglist sg;
5575 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
5576 
5577 	mtx_assert(&cst->lock, MA_OWNED);
5578 	M_ASSERTPKTHDR(m0);
5579 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5580 	    m0->m_pkthdr.l4hlen > 0,
5581 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
5582 
5583 	if (needs_udp_csum(m0)) {
5584 		CXGBE_UNIMPLEMENTED("UDP ethofld");
5585 	}
5586 
5587 	len16 = mbuf_eo_len16(m0);
5588 	nsegs = mbuf_eo_nsegs(m0);
5589 	pktlen = m0->m_pkthdr.len;
5590 	ctrl = sizeof(struct cpl_tx_pkt_core);
5591 	if (needs_tso(m0))
5592 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5593 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
5594 	ctrl += immhdrs;
5595 
5596 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
5597 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
5598 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
5599 	    V_FW_WR_FLOWID(cst->etid));
5600 	wr->r3 = 0;
5601 	wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
5602 	wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
5603 	wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
5604 	wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
5605 	wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
5606 	wr->u.tcpseg.r4 = 0;
5607 	wr->u.tcpseg.r5 = 0;
5608 	wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
5609 
5610 	if (needs_tso(m0)) {
5611 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
5612 
5613 		wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
5614 
5615 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
5616 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
5617 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5618 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
5619 			ctrl |= V_LSO_ETHHDR_LEN(1);
5620 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5621 			ctrl |= F_LSO_IPV6;
5622 		lso->lso_ctrl = htobe32(ctrl);
5623 		lso->ipid_ofst = htobe16(0);
5624 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5625 		lso->seqno_offset = htobe32(0);
5626 		lso->len = htobe32(pktlen);
5627 
5628 		cpl = (void *)(lso + 1);
5629 	} else {
5630 		wr->u.tcpseg.mss = htobe16(0xffff);
5631 		cpl = (void *)(wr + 1);
5632 	}
5633 
5634 	/* Checksum offload must be requested for ethofld. */
5635 	ctrl1 = 0;
5636 	MPASS(needs_l4_csum(m0));
5637 
5638 	/* VLAN tag insertion */
5639 	if (needs_vlan_insertion(m0)) {
5640 		ctrl1 |= F_TXPKT_VLAN_VLD |
5641 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5642 	}
5643 
5644 	/* CPL header */
5645 	cpl->ctrl0 = cst->ctrl0;
5646 	cpl->pack = 0;
5647 	cpl->len = htobe16(pktlen);
5648 	cpl->ctrl1 = htobe64(ctrl1);
5649 
5650 	/* Copy Ethernet, IP & TCP hdrs as immediate data */
5651 	p = (uintptr_t)(cpl + 1);
5652 	m_copydata(m0, 0, immhdrs, (void *)p);
5653 
5654 	/* SGL */
5655 	dst = (void *)(cpl + 1);
5656 	if (nsegs > 0) {
5657 		int i, pad;
5658 
5659 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
5660 		p += immhdrs;
5661 		pad = 16 - (immhdrs & 0xf);
5662 		bzero((void *)p, pad);
5663 
5664 		usgl = (void *)(p + pad);
5665 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
5666 		    V_ULPTX_NSGE(nsegs));
5667 
5668 		sglist_init(&sg, nitems(segs), segs);
5669 		for (; m0 != NULL; m0 = m0->m_next) {
5670 			if (__predict_false(m0->m_len == 0))
5671 				continue;
5672 			if (immhdrs >= m0->m_len) {
5673 				immhdrs -= m0->m_len;
5674 				continue;
5675 			}
5676 
5677 			sglist_append(&sg, mtod(m0, char *) + immhdrs,
5678 			    m0->m_len - immhdrs);
5679 			immhdrs = 0;
5680 		}
5681 		MPASS(sg.sg_nseg == nsegs);
5682 
5683 		/*
5684 		 * Zero pad last 8B in case the WR doesn't end on a 16B
5685 		 * boundary.
5686 		 */
5687 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
5688 
5689 		usgl->len0 = htobe32(segs[0].ss_len);
5690 		usgl->addr0 = htobe64(segs[0].ss_paddr);
5691 		for (i = 0; i < nsegs - 1; i++) {
5692 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
5693 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
5694 		}
5695 		if (i & 1)
5696 			usgl->sge[i / 2].len[1] = htobe32(0);
5697 	}
5698 
5699 }
5700 
5701 static void
5702 ethofld_tx(struct cxgbe_snd_tag *cst)
5703 {
5704 	struct mbuf *m;
5705 	struct wrq_cookie cookie;
5706 	int next_credits, compl;
5707 	struct fw_eth_tx_eo_wr *wr;
5708 
5709 	mtx_assert(&cst->lock, MA_OWNED);
5710 
5711 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
5712 		M_ASSERTPKTHDR(m);
5713 
5714 		/* How many len16 credits do we need to send this mbuf. */
5715 		next_credits = mbuf_eo_len16(m);
5716 		MPASS(next_credits > 0);
5717 		if (next_credits > cst->tx_credits) {
5718 			/*
5719 			 * Tx will make progress eventually because there is at
5720 			 * least one outstanding fw4_ack that will return
5721 			 * credits and kick the tx.
5722 			 */
5723 			MPASS(cst->ncompl > 0);
5724 			return;
5725 		}
5726 		wr = start_wrq_wr(cst->eo_txq, next_credits, &cookie);
5727 		if (__predict_false(wr == NULL)) {
5728 			/* XXX: wishful thinking, not a real assertion. */
5729 			MPASS(cst->ncompl > 0);
5730 			return;
5731 		}
5732 		cst->tx_credits -= next_credits;
5733 		cst->tx_nocompl += next_credits;
5734 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
5735 		ETHER_BPF_MTAP(cst->com.ifp, m);
5736 		write_ethofld_wr(cst, wr, m, compl);
5737 		commit_wrq_wr(cst->eo_txq, wr, &cookie);
5738 		if (compl) {
5739 			cst->ncompl++;
5740 			cst->tx_nocompl	= 0;
5741 		}
5742 		(void) mbufq_dequeue(&cst->pending_tx);
5743 		mbufq_enqueue(&cst->pending_fwack, m);
5744 	}
5745 }
5746 
5747 int
5748 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
5749 {
5750 	struct cxgbe_snd_tag *cst;
5751 	int rc;
5752 
5753 	MPASS(m0->m_nextpkt == NULL);
5754 	MPASS(m0->m_pkthdr.snd_tag != NULL);
5755 	cst = mst_to_cst(m0->m_pkthdr.snd_tag);
5756 
5757 	mtx_lock(&cst->lock);
5758 	MPASS(cst->flags & EO_SND_TAG_REF);
5759 
5760 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
5761 		struct vi_info *vi = ifp->if_softc;
5762 		struct port_info *pi = vi->pi;
5763 		struct adapter *sc = pi->adapter;
5764 		const uint32_t rss_mask = vi->rss_size - 1;
5765 		uint32_t rss_hash;
5766 
5767 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
5768 		if (M_HASHTYPE_ISHASH(m0))
5769 			rss_hash = m0->m_pkthdr.flowid;
5770 		else
5771 			rss_hash = arc4random();
5772 		/* We assume RSS hashing */
5773 		cst->iqid = vi->rss[rss_hash & rss_mask];
5774 		cst->eo_txq += rss_hash % vi->nofldtxq;
5775 		rc = send_etid_flowc_wr(cst, pi, vi);
5776 		if (rc != 0)
5777 			goto done;
5778 	}
5779 
5780 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
5781 		rc = ENOBUFS;
5782 		goto done;
5783 	}
5784 
5785 	mbufq_enqueue(&cst->pending_tx, m0);
5786 	cst->plen += m0->m_pkthdr.len;
5787 
5788 	ethofld_tx(cst);
5789 	rc = 0;
5790 done:
5791 	mtx_unlock(&cst->lock);
5792 	if (__predict_false(rc != 0))
5793 		m_freem(m0);
5794 	return (rc);
5795 }
5796 
5797 static int
5798 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
5799 {
5800 	struct adapter *sc = iq->adapter;
5801 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
5802 	struct mbuf *m;
5803 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
5804 	struct cxgbe_snd_tag *cst;
5805 	uint8_t credits = cpl->credits;
5806 
5807 	cst = lookup_etid(sc, etid);
5808 	mtx_lock(&cst->lock);
5809 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
5810 		MPASS(credits >= ETID_FLOWC_LEN16);
5811 		credits -= ETID_FLOWC_LEN16;
5812 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
5813 	}
5814 
5815 	KASSERT(cst->ncompl > 0,
5816 	    ("%s: etid %u (%p) wasn't expecting completion.",
5817 	    __func__, etid, cst));
5818 	cst->ncompl--;
5819 
5820 	while (credits > 0) {
5821 		m = mbufq_dequeue(&cst->pending_fwack);
5822 		if (__predict_false(m == NULL)) {
5823 			/*
5824 			 * The remaining credits are for the final flush that
5825 			 * was issued when the tag was freed by the kernel.
5826 			 */
5827 			MPASS((cst->flags &
5828 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
5829 			    EO_FLUSH_RPL_PENDING);
5830 			MPASS(credits == ETID_FLUSH_LEN16);
5831 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
5832 			MPASS(cst->ncompl == 0);
5833 
5834 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
5835 			cst->tx_credits += cpl->credits;
5836 freetag:
5837 			cxgbe_snd_tag_free_locked(cst);
5838 			return (0);	/* cst is gone. */
5839 		}
5840 		KASSERT(m != NULL,
5841 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
5842 		    credits));
5843 		KASSERT(credits >= mbuf_eo_len16(m),
5844 		    ("%s: too few credits (%u, %u, %u)", __func__,
5845 		    cpl->credits, credits, mbuf_eo_len16(m)));
5846 		credits -= mbuf_eo_len16(m);
5847 		cst->plen -= m->m_pkthdr.len;
5848 		m_freem(m);
5849 	}
5850 
5851 	cst->tx_credits += cpl->credits;
5852 	MPASS(cst->tx_credits <= cst->tx_total);
5853 
5854 	m = mbufq_first(&cst->pending_tx);
5855 	if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
5856 		ethofld_tx(cst);
5857 
5858 	if (__predict_false((cst->flags & EO_SND_TAG_REF) == 0) &&
5859 	    cst->ncompl == 0) {
5860 		if (cst->tx_credits == cst->tx_total)
5861 			goto freetag;
5862 		else {
5863 			MPASS((cst->flags & EO_FLUSH_RPL_PENDING) == 0);
5864 			send_etid_flush_wr(cst);
5865 		}
5866 	}
5867 
5868 	mtx_unlock(&cst->lock);
5869 
5870 	return (0);
5871 }
5872 #endif
5873