xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 7d4374f65f7b3df3d2567029c510f2e1576f0f69)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_kern_tls.h"
36 #include "opt_ratelimit.h"
37 
38 #include <sys/types.h>
39 #include <sys/eventhandler.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/malloc.h>
45 #include <sys/queue.h>
46 #include <sys/sbuf.h>
47 #include <sys/taskqueue.h>
48 #include <sys/time.h>
49 #include <sys/sglist.h>
50 #include <sys/sysctl.h>
51 #include <sys/smp.h>
52 #include <sys/socketvar.h>
53 #include <sys/counter.h>
54 #include <net/bpf.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_vlan_var.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/ip6.h>
61 #include <netinet/tcp.h>
62 #include <netinet/udp.h>
63 #include <machine/in_cksum.h>
64 #include <machine/md_var.h>
65 #include <vm/vm.h>
66 #include <vm/pmap.h>
67 #ifdef DEV_NETMAP
68 #include <machine/bus.h>
69 #include <sys/selinfo.h>
70 #include <net/if_var.h>
71 #include <net/netmap.h>
72 #include <dev/netmap/netmap_kern.h>
73 #endif
74 
75 #include "common/common.h"
76 #include "common/t4_regs.h"
77 #include "common/t4_regs_values.h"
78 #include "common/t4_msg.h"
79 #include "t4_l2t.h"
80 #include "t4_mp_ring.h"
81 
82 #ifdef T4_PKT_TIMESTAMP
83 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
84 #else
85 #define RX_COPY_THRESHOLD MINCLSIZE
86 #endif
87 
88 /* Internal mbuf flags stored in PH_loc.eight[1]. */
89 #define	MC_NOMAP		0x01
90 #define	MC_RAW_WR		0x02
91 #define	MC_TLS			0x04
92 
93 /*
94  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
95  * 0-7 are valid values.
96  */
97 static int fl_pktshift = 0;
98 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
99     "payload DMA offset in rx buffer (bytes)");
100 
101 /*
102  * Pad ethernet payload up to this boundary.
103  * -1: driver should figure out a good value.
104  *  0: disable padding.
105  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
106  */
107 int fl_pad = -1;
108 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
109     "payload pad boundary (bytes)");
110 
111 /*
112  * Status page length.
113  * -1: driver should figure out a good value.
114  *  64 or 128 are the only other valid values.
115  */
116 static int spg_len = -1;
117 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
118     "status page size (bytes)");
119 
120 /*
121  * Congestion drops.
122  * -1: no congestion feedback (not recommended).
123  *  0: backpressure the channel instead of dropping packets right away.
124  *  1: no backpressure, drop packets for the congested queue immediately.
125  */
126 static int cong_drop = 0;
127 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
128     "Congestion control for RX queues (0 = backpressure, 1 = drop");
129 
130 /*
131  * Deliver multiple frames in the same free list buffer if they fit.
132  * -1: let the driver decide whether to enable buffer packing or not.
133  *  0: disable buffer packing.
134  *  1: enable buffer packing.
135  */
136 static int buffer_packing = -1;
137 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
138     0, "Enable buffer packing");
139 
140 /*
141  * Start next frame in a packed buffer at this boundary.
142  * -1: driver should figure out a good value.
143  * T4: driver will ignore this and use the same value as fl_pad above.
144  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
145  */
146 static int fl_pack = -1;
147 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
148     "payload pack boundary (bytes)");
149 
150 /*
151  * Largest rx cluster size that the driver is allowed to allocate.
152  */
153 static int largest_rx_cluster = MJUM16BYTES;
154 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
155     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
156 
157 /*
158  * Size of cluster allocation that's most likely to succeed.  The driver will
159  * fall back to this size if it fails to allocate clusters larger than this.
160  */
161 static int safest_rx_cluster = PAGE_SIZE;
162 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
163     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
164 
165 #ifdef RATELIMIT
166 /*
167  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
168  * for rewriting.  -1 and 0-3 are all valid values.
169  * -1: hardware should leave the TCP timestamps alone.
170  * 0: 1ms
171  * 1: 100us
172  * 2: 10us
173  * 3: 1us
174  */
175 static int tsclk = -1;
176 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
177     "Control TCP timestamp rewriting when using pacing");
178 
179 static int eo_max_backlog = 1024 * 1024;
180 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
181     0, "Maximum backlog of ratelimited data per flow");
182 #endif
183 
184 /*
185  * The interrupt holdoff timers are multiplied by this value on T6+.
186  * 1 and 3-17 (both inclusive) are legal values.
187  */
188 static int tscale = 1;
189 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
190     "Interrupt holdoff timer scale on T6+");
191 
192 /*
193  * Number of LRO entries in the lro_ctrl structure per rx queue.
194  */
195 static int lro_entries = TCP_LRO_ENTRIES;
196 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
197     "Number of LRO entries per RX queue");
198 
199 /*
200  * This enables presorting of frames before they're fed into tcp_lro_rx.
201  */
202 static int lro_mbufs = 0;
203 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
204     "Enable presorting of LRO frames");
205 
206 static int service_iq(struct sge_iq *, int);
207 static int service_iq_fl(struct sge_iq *, int);
208 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
209 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
210     u_int);
211 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
212 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
213 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
214     uint16_t, char *);
215 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
216     bus_addr_t *, void **);
217 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
218     void *);
219 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
220     int, int);
221 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
222 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
223     struct sge_iq *);
224 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
225     struct sysctl_oid *, struct sge_fl *);
226 static int alloc_fwq(struct adapter *);
227 static int free_fwq(struct adapter *);
228 static int alloc_ctrlq(struct adapter *, struct sge_wrq *, int,
229     struct sysctl_oid *);
230 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
231     struct sysctl_oid *);
232 static int free_rxq(struct vi_info *, struct sge_rxq *);
233 #ifdef TCP_OFFLOAD
234 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
235     struct sysctl_oid *);
236 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
237 #endif
238 #ifdef DEV_NETMAP
239 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
240     struct sysctl_oid *);
241 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
242 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
243     struct sysctl_oid *);
244 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
245 #endif
246 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
247 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
248 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
249 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
250 #endif
251 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
252 static int free_eq(struct adapter *, struct sge_eq *);
253 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
254     struct sysctl_oid *);
255 static int free_wrq(struct adapter *, struct sge_wrq *);
256 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
257     struct sysctl_oid *);
258 static int free_txq(struct vi_info *, struct sge_txq *);
259 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
260 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
261 static int refill_fl(struct adapter *, struct sge_fl *, int);
262 static void refill_sfl(void *);
263 static int alloc_fl_sdesc(struct sge_fl *);
264 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
265 static int find_refill_source(struct adapter *, int, bool);
266 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
267 
268 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
269 static inline u_int txpkt_len16(u_int, u_int);
270 static inline u_int txpkt_vm_len16(u_int, u_int);
271 static inline u_int txpkts0_len16(u_int);
272 static inline u_int txpkts1_len16(void);
273 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
274 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
275     u_int);
276 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
277     struct mbuf *);
278 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
279     int, bool *);
280 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
281     int, bool *);
282 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
283 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
284 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
285 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
286 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
287 static inline uint16_t read_hw_cidx(struct sge_eq *);
288 static inline u_int reclaimable_tx_desc(struct sge_eq *);
289 static inline u_int total_available_tx_desc(struct sge_eq *);
290 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
291 static void tx_reclaim(void *, int);
292 static __be64 get_flit(struct sglist_seg *, int, int);
293 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
294     struct mbuf *);
295 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
296     struct mbuf *);
297 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
298 static void wrq_tx_drain(void *, int);
299 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
300 
301 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
302 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
303 #ifdef RATELIMIT
304 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
305 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
306     struct mbuf *);
307 #endif
308 
309 static counter_u64_t extfree_refs;
310 static counter_u64_t extfree_rels;
311 
312 an_handler_t t4_an_handler;
313 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
314 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
315 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
316 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
317 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
318 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
319 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
320 
321 void
322 t4_register_an_handler(an_handler_t h)
323 {
324 	uintptr_t *loc;
325 
326 	MPASS(h == NULL || t4_an_handler == NULL);
327 
328 	loc = (uintptr_t *)&t4_an_handler;
329 	atomic_store_rel_ptr(loc, (uintptr_t)h);
330 }
331 
332 void
333 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
334 {
335 	uintptr_t *loc;
336 
337 	MPASS(type < nitems(t4_fw_msg_handler));
338 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
339 	/*
340 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
341 	 * handler dispatch table.  Reject any attempt to install a handler for
342 	 * this subtype.
343 	 */
344 	MPASS(type != FW_TYPE_RSSCPL);
345 	MPASS(type != FW6_TYPE_RSSCPL);
346 
347 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
348 	atomic_store_rel_ptr(loc, (uintptr_t)h);
349 }
350 
351 void
352 t4_register_cpl_handler(int opcode, cpl_handler_t h)
353 {
354 	uintptr_t *loc;
355 
356 	MPASS(opcode < nitems(t4_cpl_handler));
357 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
358 
359 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
360 	atomic_store_rel_ptr(loc, (uintptr_t)h);
361 }
362 
363 static int
364 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
365     struct mbuf *m)
366 {
367 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
368 	u_int tid;
369 	int cookie;
370 
371 	MPASS(m == NULL);
372 
373 	tid = GET_TID(cpl);
374 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
375 		/*
376 		 * The return code for filter-write is put in the CPL cookie so
377 		 * we have to rely on the hardware tid (is_ftid) to determine
378 		 * that this is a response to a filter.
379 		 */
380 		cookie = CPL_COOKIE_FILTER;
381 	} else {
382 		cookie = G_COOKIE(cpl->cookie);
383 	}
384 	MPASS(cookie > CPL_COOKIE_RESERVED);
385 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
386 
387 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
388 }
389 
390 static int
391 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
392     struct mbuf *m)
393 {
394 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
395 	unsigned int cookie;
396 
397 	MPASS(m == NULL);
398 
399 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
400 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
401 }
402 
403 static int
404 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
405     struct mbuf *m)
406 {
407 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
408 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
409 
410 	MPASS(m == NULL);
411 	MPASS(cookie != CPL_COOKIE_RESERVED);
412 
413 	return (act_open_rpl_handlers[cookie](iq, rss, m));
414 }
415 
416 static int
417 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
418     struct mbuf *m)
419 {
420 	struct adapter *sc = iq->adapter;
421 	u_int cookie;
422 
423 	MPASS(m == NULL);
424 	if (is_hashfilter(sc))
425 		cookie = CPL_COOKIE_HASHFILTER;
426 	else
427 		cookie = CPL_COOKIE_TOM;
428 
429 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
430 }
431 
432 static int
433 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
434 {
435 	struct adapter *sc = iq->adapter;
436 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
437 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
438 	u_int cookie;
439 
440 	MPASS(m == NULL);
441 	if (is_etid(sc, tid))
442 		cookie = CPL_COOKIE_ETHOFLD;
443 	else
444 		cookie = CPL_COOKIE_TOM;
445 
446 	return (fw4_ack_handlers[cookie](iq, rss, m));
447 }
448 
449 static void
450 t4_init_shared_cpl_handlers(void)
451 {
452 
453 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
454 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
455 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
456 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
457 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
458 }
459 
460 void
461 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
462 {
463 	uintptr_t *loc;
464 
465 	MPASS(opcode < nitems(t4_cpl_handler));
466 	MPASS(cookie > CPL_COOKIE_RESERVED);
467 	MPASS(cookie < NUM_CPL_COOKIES);
468 	MPASS(t4_cpl_handler[opcode] != NULL);
469 
470 	switch (opcode) {
471 	case CPL_SET_TCB_RPL:
472 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
473 		break;
474 	case CPL_L2T_WRITE_RPL:
475 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
476 		break;
477 	case CPL_ACT_OPEN_RPL:
478 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
479 		break;
480 	case CPL_ABORT_RPL_RSS:
481 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
482 		break;
483 	case CPL_FW4_ACK:
484 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
485 		break;
486 	default:
487 		MPASS(0);
488 		return;
489 	}
490 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
491 	atomic_store_rel_ptr(loc, (uintptr_t)h);
492 }
493 
494 /*
495  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
496  */
497 void
498 t4_sge_modload(void)
499 {
500 
501 	if (fl_pktshift < 0 || fl_pktshift > 7) {
502 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
503 		    " using 0 instead.\n", fl_pktshift);
504 		fl_pktshift = 0;
505 	}
506 
507 	if (spg_len != 64 && spg_len != 128) {
508 		int len;
509 
510 #if defined(__i386__) || defined(__amd64__)
511 		len = cpu_clflush_line_size > 64 ? 128 : 64;
512 #else
513 		len = 64;
514 #endif
515 		if (spg_len != -1) {
516 			printf("Invalid hw.cxgbe.spg_len value (%d),"
517 			    " using %d instead.\n", spg_len, len);
518 		}
519 		spg_len = len;
520 	}
521 
522 	if (cong_drop < -1 || cong_drop > 1) {
523 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
524 		    " using 0 instead.\n", cong_drop);
525 		cong_drop = 0;
526 	}
527 
528 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
529 		printf("Invalid hw.cxgbe.tscale value (%d),"
530 		    " using 1 instead.\n", tscale);
531 		tscale = 1;
532 	}
533 
534 	extfree_refs = counter_u64_alloc(M_WAITOK);
535 	extfree_rels = counter_u64_alloc(M_WAITOK);
536 	counter_u64_zero(extfree_refs);
537 	counter_u64_zero(extfree_rels);
538 
539 	t4_init_shared_cpl_handlers();
540 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
541 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
542 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
543 #ifdef RATELIMIT
544 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
545 	    CPL_COOKIE_ETHOFLD);
546 #endif
547 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
548 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
549 }
550 
551 void
552 t4_sge_modunload(void)
553 {
554 
555 	counter_u64_free(extfree_refs);
556 	counter_u64_free(extfree_rels);
557 }
558 
559 uint64_t
560 t4_sge_extfree_refs(void)
561 {
562 	uint64_t refs, rels;
563 
564 	rels = counter_u64_fetch(extfree_rels);
565 	refs = counter_u64_fetch(extfree_refs);
566 
567 	return (refs - rels);
568 }
569 
570 /* max 4096 */
571 #define MAX_PACK_BOUNDARY 512
572 
573 static inline void
574 setup_pad_and_pack_boundaries(struct adapter *sc)
575 {
576 	uint32_t v, m;
577 	int pad, pack, pad_shift;
578 
579 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
580 	    X_INGPADBOUNDARY_SHIFT;
581 	pad = fl_pad;
582 	if (fl_pad < (1 << pad_shift) ||
583 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
584 	    !powerof2(fl_pad)) {
585 		/*
586 		 * If there is any chance that we might use buffer packing and
587 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
588 		 * it to the minimum allowed in all other cases.
589 		 */
590 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
591 
592 		/*
593 		 * For fl_pad = 0 we'll still write a reasonable value to the
594 		 * register but all the freelists will opt out of padding.
595 		 * We'll complain here only if the user tried to set it to a
596 		 * value greater than 0 that was invalid.
597 		 */
598 		if (fl_pad > 0) {
599 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
600 			    " (%d), using %d instead.\n", fl_pad, pad);
601 		}
602 	}
603 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
604 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
605 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
606 
607 	if (is_t4(sc)) {
608 		if (fl_pack != -1 && fl_pack != pad) {
609 			/* Complain but carry on. */
610 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
611 			    " using %d instead.\n", fl_pack, pad);
612 		}
613 		return;
614 	}
615 
616 	pack = fl_pack;
617 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
618 	    !powerof2(fl_pack)) {
619 		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
620 			pack = MAX_PACK_BOUNDARY;
621 		else
622 			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
623 		MPASS(powerof2(pack));
624 		if (pack < 16)
625 			pack = 16;
626 		if (pack == 32)
627 			pack = 64;
628 		if (pack > 4096)
629 			pack = 4096;
630 		if (fl_pack != -1) {
631 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
632 			    " (%d), using %d instead.\n", fl_pack, pack);
633 		}
634 	}
635 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
636 	if (pack == 16)
637 		v = V_INGPACKBOUNDARY(0);
638 	else
639 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
640 
641 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
642 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
643 }
644 
645 /*
646  * adap->params.vpd.cclk must be set up before this is called.
647  */
648 void
649 t4_tweak_chip_settings(struct adapter *sc)
650 {
651 	int i, reg;
652 	uint32_t v, m;
653 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
654 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
655 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
656 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
657 	static int sw_buf_sizes[] = {
658 		MCLBYTES,
659 #if MJUMPAGESIZE != MCLBYTES
660 		MJUMPAGESIZE,
661 #endif
662 		MJUM9BYTES,
663 		MJUM16BYTES
664 	};
665 
666 	KASSERT(sc->flags & MASTER_PF,
667 	    ("%s: trying to change chip settings when not master.", __func__));
668 
669 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
670 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
671 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
672 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
673 
674 	setup_pad_and_pack_boundaries(sc);
675 
676 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
677 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
678 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
679 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
680 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
681 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
682 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
683 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
684 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
685 
686 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
687 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
688 	reg = A_SGE_FL_BUFFER_SIZE2;
689 	for (i = 0; i < nitems(sw_buf_sizes); i++) {
690 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
691 		t4_write_reg(sc, reg, sw_buf_sizes[i]);
692 		reg += 4;
693 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
694 		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
695 		reg += 4;
696 	}
697 
698 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
699 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
700 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
701 
702 	KASSERT(intr_timer[0] <= timer_max,
703 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
704 	    timer_max));
705 	for (i = 1; i < nitems(intr_timer); i++) {
706 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
707 		    ("%s: timers not listed in increasing order (%d)",
708 		    __func__, i));
709 
710 		while (intr_timer[i] > timer_max) {
711 			if (i == nitems(intr_timer) - 1) {
712 				intr_timer[i] = timer_max;
713 				break;
714 			}
715 			intr_timer[i] += intr_timer[i - 1];
716 			intr_timer[i] /= 2;
717 		}
718 	}
719 
720 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
721 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
722 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
723 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
724 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
725 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
726 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
727 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
728 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
729 
730 	if (chip_id(sc) >= CHELSIO_T6) {
731 		m = V_TSCALE(M_TSCALE);
732 		if (tscale == 1)
733 			v = 0;
734 		else
735 			v = V_TSCALE(tscale - 2);
736 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
737 
738 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
739 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
740 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
741 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
742 			v &= ~m;
743 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
744 			    V_WRTHRTHRESH(16);
745 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
746 		}
747 	}
748 
749 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
750 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
751 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
752 
753 	/*
754 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
755 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
756 	 * may have to deal with is MAXPHYS + 1 page.
757 	 */
758 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
759 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
760 
761 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
762 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
763 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
764 
765 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
766 	    F_RESETDDPOFFSET;
767 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
768 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
769 }
770 
771 /*
772  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
773  * address mut be 16B aligned.  If padding is in use the buffer's start and end
774  * need to be aligned to the pad boundary as well.  We'll just make sure that
775  * the size is a multiple of the pad boundary here, it is up to the buffer
776  * allocation code to make sure the start of the buffer is aligned.
777  */
778 static inline int
779 hwsz_ok(struct adapter *sc, int hwsz)
780 {
781 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
782 
783 	return (hwsz >= 64 && (hwsz & mask) == 0);
784 }
785 
786 /*
787  * XXX: driver really should be able to deal with unexpected settings.
788  */
789 int
790 t4_read_chip_settings(struct adapter *sc)
791 {
792 	struct sge *s = &sc->sge;
793 	struct sge_params *sp = &sc->params.sge;
794 	int i, j, n, rc = 0;
795 	uint32_t m, v, r;
796 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
797 	static int sw_buf_sizes[] = {	/* Sorted by size */
798 		MCLBYTES,
799 #if MJUMPAGESIZE != MCLBYTES
800 		MJUMPAGESIZE,
801 #endif
802 		MJUM9BYTES,
803 		MJUM16BYTES
804 	};
805 	struct rx_buf_info *rxb;
806 
807 	m = F_RXPKTCPLMODE;
808 	v = F_RXPKTCPLMODE;
809 	r = sc->params.sge.sge_control;
810 	if ((r & m) != v) {
811 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
812 		rc = EINVAL;
813 	}
814 
815 	/*
816 	 * If this changes then every single use of PAGE_SHIFT in the driver
817 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
818 	 */
819 	if (sp->page_shift != PAGE_SHIFT) {
820 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
821 		rc = EINVAL;
822 	}
823 
824 	s->safe_zidx = -1;
825 	rxb = &s->rx_buf_info[0];
826 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
827 		rxb->size1 = sw_buf_sizes[i];
828 		rxb->zone = m_getzone(rxb->size1);
829 		rxb->type = m_gettype(rxb->size1);
830 		rxb->size2 = 0;
831 		rxb->hwidx1 = -1;
832 		rxb->hwidx2 = -1;
833 		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
834 			int hwsize = sp->sge_fl_buffer_size[j];
835 
836 			if (!hwsz_ok(sc, hwsize))
837 				continue;
838 
839 			/* hwidx for size1 */
840 			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
841 				rxb->hwidx1 = j;
842 
843 			/* hwidx for size2 (buffer packing) */
844 			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
845 				continue;
846 			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
847 			if (n == 0) {
848 				rxb->hwidx2 = j;
849 				rxb->size2 = hwsize;
850 				break;	/* stop looking */
851 			}
852 			if (rxb->hwidx2 != -1) {
853 				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
854 				    hwsize - CL_METADATA_SIZE) {
855 					rxb->hwidx2 = j;
856 					rxb->size2 = hwsize;
857 				}
858 			} else if (n <= 2 * CL_METADATA_SIZE) {
859 				rxb->hwidx2 = j;
860 				rxb->size2 = hwsize;
861 			}
862 		}
863 		if (rxb->hwidx2 != -1)
864 			sc->flags |= BUF_PACKING_OK;
865 		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
866 			s->safe_zidx = i;
867 	}
868 
869 	if (sc->flags & IS_VF)
870 		return (0);
871 
872 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
873 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
874 	if (r != v) {
875 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
876 		rc = EINVAL;
877 	}
878 
879 	m = v = F_TDDPTAGTCB;
880 	r = t4_read_reg(sc, A_ULP_RX_CTL);
881 	if ((r & m) != v) {
882 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
883 		rc = EINVAL;
884 	}
885 
886 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
887 	    F_RESETDDPOFFSET;
888 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
889 	r = t4_read_reg(sc, A_TP_PARA_REG5);
890 	if ((r & m) != v) {
891 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
892 		rc = EINVAL;
893 	}
894 
895 	t4_init_tp_params(sc, 1);
896 
897 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
898 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
899 
900 	return (rc);
901 }
902 
903 int
904 t4_create_dma_tag(struct adapter *sc)
905 {
906 	int rc;
907 
908 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
909 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
910 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
911 	    NULL, &sc->dmat);
912 	if (rc != 0) {
913 		device_printf(sc->dev,
914 		    "failed to create main DMA tag: %d\n", rc);
915 	}
916 
917 	return (rc);
918 }
919 
920 void
921 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
922     struct sysctl_oid_list *children)
923 {
924 	struct sge_params *sp = &sc->params.sge;
925 
926 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
927 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
928 	    sysctl_bufsizes, "A", "freelist buffer sizes");
929 
930 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
931 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
932 
933 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
934 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
935 
936 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
937 	    NULL, sp->spg_len, "status page size (bytes)");
938 
939 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
940 	    NULL, cong_drop, "congestion drop setting");
941 
942 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
943 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
944 }
945 
946 int
947 t4_destroy_dma_tag(struct adapter *sc)
948 {
949 	if (sc->dmat)
950 		bus_dma_tag_destroy(sc->dmat);
951 
952 	return (0);
953 }
954 
955 /*
956  * Allocate and initialize the firmware event queue, control queues, and special
957  * purpose rx queues owned by the adapter.
958  *
959  * Returns errno on failure.  Resources allocated up to that point may still be
960  * allocated.  Caller is responsible for cleanup in case this function fails.
961  */
962 int
963 t4_setup_adapter_queues(struct adapter *sc)
964 {
965 	struct sysctl_oid *oid;
966 	struct sysctl_oid_list *children;
967 	int rc, i;
968 
969 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
970 
971 	sysctl_ctx_init(&sc->ctx);
972 	sc->flags |= ADAP_SYSCTL_CTX;
973 
974 	/*
975 	 * Firmware event queue
976 	 */
977 	rc = alloc_fwq(sc);
978 	if (rc != 0)
979 		return (rc);
980 
981 	/*
982 	 * That's all for the VF driver.
983 	 */
984 	if (sc->flags & IS_VF)
985 		return (rc);
986 
987 	oid = device_get_sysctl_tree(sc->dev);
988 	children = SYSCTL_CHILDREN(oid);
989 
990 	/*
991 	 * XXX: General purpose rx queues, one per port.
992 	 */
993 
994 	/*
995 	 * Control queues, one per port.
996 	 */
997 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "ctrlq",
998 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
999 	for_each_port(sc, i) {
1000 		struct sge_wrq *ctrlq = &sc->sge.ctrlq[i];
1001 
1002 		rc = alloc_ctrlq(sc, ctrlq, i, oid);
1003 		if (rc != 0)
1004 			return (rc);
1005 	}
1006 
1007 	return (rc);
1008 }
1009 
1010 /*
1011  * Idempotent
1012  */
1013 int
1014 t4_teardown_adapter_queues(struct adapter *sc)
1015 {
1016 	int i;
1017 
1018 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1019 
1020 	/* Do this before freeing the queue */
1021 	if (sc->flags & ADAP_SYSCTL_CTX) {
1022 		sysctl_ctx_free(&sc->ctx);
1023 		sc->flags &= ~ADAP_SYSCTL_CTX;
1024 	}
1025 
1026 	if (!(sc->flags & IS_VF)) {
1027 		for_each_port(sc, i)
1028 			free_wrq(sc, &sc->sge.ctrlq[i]);
1029 	}
1030 	free_fwq(sc);
1031 
1032 	return (0);
1033 }
1034 
1035 /* Maximum payload that could arrive with a single iq descriptor. */
1036 static inline int
1037 max_rx_payload(struct adapter *sc, struct ifnet *ifp, const bool ofld)
1038 {
1039 	int maxp;
1040 
1041 	/* large enough even when hw VLAN extraction is disabled */
1042 	maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1043 	    ETHER_VLAN_ENCAP_LEN + ifp->if_mtu;
1044 	if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1045 	    maxp < sc->params.tp.max_rx_pdu)
1046 		maxp = sc->params.tp.max_rx_pdu;
1047 	return (maxp);
1048 }
1049 
1050 int
1051 t4_setup_vi_queues(struct vi_info *vi)
1052 {
1053 	int rc = 0, i, intr_idx, iqidx;
1054 	struct sge_rxq *rxq;
1055 	struct sge_txq *txq;
1056 #ifdef TCP_OFFLOAD
1057 	struct sge_ofld_rxq *ofld_rxq;
1058 #endif
1059 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1060 	struct sge_wrq *ofld_txq;
1061 #endif
1062 #ifdef DEV_NETMAP
1063 	int saved_idx;
1064 	struct sge_nm_rxq *nm_rxq;
1065 	struct sge_nm_txq *nm_txq;
1066 #endif
1067 	char name[16];
1068 	struct port_info *pi = vi->pi;
1069 	struct adapter *sc = pi->adapter;
1070 	struct ifnet *ifp = vi->ifp;
1071 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
1072 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1073 	int maxp;
1074 
1075 	/* Interrupt vector to start from (when using multiple vectors) */
1076 	intr_idx = vi->first_intr;
1077 
1078 #ifdef DEV_NETMAP
1079 	saved_idx = intr_idx;
1080 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1081 
1082 		/* netmap is supported with direct interrupts only. */
1083 		MPASS(!forwarding_intr_to_fwq(sc));
1084 
1085 		/*
1086 		 * We don't have buffers to back the netmap rx queues
1087 		 * right now so we create the queues in a way that
1088 		 * doesn't set off any congestion signal in the chip.
1089 		 */
1090 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1091 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queues");
1092 		for_each_nm_rxq(vi, i, nm_rxq) {
1093 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1094 			if (rc != 0)
1095 				goto done;
1096 			intr_idx++;
1097 		}
1098 
1099 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1100 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queues");
1101 		for_each_nm_txq(vi, i, nm_txq) {
1102 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1103 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid);
1104 			if (rc != 0)
1105 				goto done;
1106 		}
1107 	}
1108 
1109 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1110 	intr_idx = saved_idx;
1111 #endif
1112 
1113 	/*
1114 	 * Allocate rx queues first because a default iqid is required when
1115 	 * creating a tx queue.
1116 	 */
1117 	maxp = max_rx_payload(sc, ifp, false);
1118 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1119 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queues");
1120 	for_each_rxq(vi, i, rxq) {
1121 
1122 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1123 
1124 		snprintf(name, sizeof(name), "%s rxq%d-fl",
1125 		    device_get_nameunit(vi->dev), i);
1126 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1127 
1128 		rc = alloc_rxq(vi, rxq,
1129 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1130 		if (rc != 0)
1131 			goto done;
1132 		intr_idx++;
1133 	}
1134 #ifdef DEV_NETMAP
1135 	if (ifp->if_capabilities & IFCAP_NETMAP)
1136 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1137 #endif
1138 #ifdef TCP_OFFLOAD
1139 	maxp = max_rx_payload(sc, ifp, true);
1140 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1141 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queues for offloaded TCP connections");
1142 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1143 
1144 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
1145 		    vi->qsize_rxq);
1146 
1147 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1148 		    device_get_nameunit(vi->dev), i);
1149 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1150 
1151 		rc = alloc_ofld_rxq(vi, ofld_rxq,
1152 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1153 		if (rc != 0)
1154 			goto done;
1155 		intr_idx++;
1156 	}
1157 #endif
1158 
1159 	/*
1160 	 * Now the tx queues.
1161 	 */
1162 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq",
1163 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queues");
1164 	for_each_txq(vi, i, txq) {
1165 		iqidx = vi->first_rxq + (i % vi->nrxq);
1166 		snprintf(name, sizeof(name), "%s txq%d",
1167 		    device_get_nameunit(vi->dev), i);
1168 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
1169 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1170 
1171 		rc = alloc_txq(vi, txq, i, oid);
1172 		if (rc != 0)
1173 			goto done;
1174 	}
1175 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1176 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1177 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queues for TOE/ETHOFLD");
1178 	for_each_ofld_txq(vi, i, ofld_txq) {
1179 		struct sysctl_oid *oid2;
1180 
1181 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1182 		    device_get_nameunit(vi->dev), i);
1183 		if (vi->nofldrxq > 0) {
1184 			iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq);
1185 			init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq,
1186 			    pi->tx_chan, sc->sge.ofld_rxq[iqidx].iq.cntxt_id,
1187 			    name);
1188 		} else {
1189 			iqidx = vi->first_rxq + (i % vi->nrxq);
1190 			init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq,
1191 			    pi->tx_chan, sc->sge.rxq[iqidx].iq.cntxt_id, name);
1192 		}
1193 
1194 		snprintf(name, sizeof(name), "%d", i);
1195 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1196 		    name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
1197 
1198 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1199 		if (rc != 0)
1200 			goto done;
1201 	}
1202 #endif
1203 done:
1204 	if (rc)
1205 		t4_teardown_vi_queues(vi);
1206 
1207 	return (rc);
1208 }
1209 
1210 /*
1211  * Idempotent
1212  */
1213 int
1214 t4_teardown_vi_queues(struct vi_info *vi)
1215 {
1216 	int i;
1217 	struct sge_rxq *rxq;
1218 	struct sge_txq *txq;
1219 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1220 	struct port_info *pi = vi->pi;
1221 	struct adapter *sc = pi->adapter;
1222 	struct sge_wrq *ofld_txq;
1223 #endif
1224 #ifdef TCP_OFFLOAD
1225 	struct sge_ofld_rxq *ofld_rxq;
1226 #endif
1227 #ifdef DEV_NETMAP
1228 	struct sge_nm_rxq *nm_rxq;
1229 	struct sge_nm_txq *nm_txq;
1230 #endif
1231 
1232 	/* Do this before freeing the queues */
1233 	if (vi->flags & VI_SYSCTL_CTX) {
1234 		sysctl_ctx_free(&vi->ctx);
1235 		vi->flags &= ~VI_SYSCTL_CTX;
1236 	}
1237 
1238 #ifdef DEV_NETMAP
1239 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1240 		for_each_nm_txq(vi, i, nm_txq) {
1241 			free_nm_txq(vi, nm_txq);
1242 		}
1243 
1244 		for_each_nm_rxq(vi, i, nm_rxq) {
1245 			free_nm_rxq(vi, nm_rxq);
1246 		}
1247 	}
1248 #endif
1249 
1250 	/*
1251 	 * Take down all the tx queues first, as they reference the rx queues
1252 	 * (for egress updates, etc.).
1253 	 */
1254 
1255 	for_each_txq(vi, i, txq) {
1256 		free_txq(vi, txq);
1257 	}
1258 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1259 	for_each_ofld_txq(vi, i, ofld_txq) {
1260 		free_wrq(sc, ofld_txq);
1261 	}
1262 #endif
1263 
1264 	/*
1265 	 * Then take down the rx queues.
1266 	 */
1267 
1268 	for_each_rxq(vi, i, rxq) {
1269 		free_rxq(vi, rxq);
1270 	}
1271 #ifdef TCP_OFFLOAD
1272 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1273 		free_ofld_rxq(vi, ofld_rxq);
1274 	}
1275 #endif
1276 
1277 	return (0);
1278 }
1279 
1280 /*
1281  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1282  * unusual scenario.
1283  *
1284  * a) Deals with errors, if any.
1285  * b) Services firmware event queue, which is taking interrupts for all other
1286  *    queues.
1287  */
1288 void
1289 t4_intr_all(void *arg)
1290 {
1291 	struct adapter *sc = arg;
1292 	struct sge_iq *fwq = &sc->sge.fwq;
1293 
1294 	MPASS(sc->intr_count == 1);
1295 
1296 	if (sc->intr_type == INTR_INTX)
1297 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1298 
1299 	t4_intr_err(arg);
1300 	t4_intr_evt(fwq);
1301 }
1302 
1303 /*
1304  * Interrupt handler for errors (installed directly when multiple interrupts are
1305  * being used, or called by t4_intr_all).
1306  */
1307 void
1308 t4_intr_err(void *arg)
1309 {
1310 	struct adapter *sc = arg;
1311 	uint32_t v;
1312 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1313 
1314 	if (sc->flags & ADAP_ERR)
1315 		return;
1316 
1317 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1318 	if (v & F_PFSW) {
1319 		sc->swintr++;
1320 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1321 	}
1322 
1323 	t4_slow_intr_handler(sc, verbose);
1324 }
1325 
1326 /*
1327  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1328  * such queue right now.
1329  */
1330 void
1331 t4_intr_evt(void *arg)
1332 {
1333 	struct sge_iq *iq = arg;
1334 
1335 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1336 		service_iq(iq, 0);
1337 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1338 	}
1339 }
1340 
1341 /*
1342  * Interrupt handler for iq+fl queues.
1343  */
1344 void
1345 t4_intr(void *arg)
1346 {
1347 	struct sge_iq *iq = arg;
1348 
1349 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1350 		service_iq_fl(iq, 0);
1351 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1352 	}
1353 }
1354 
1355 #ifdef DEV_NETMAP
1356 /*
1357  * Interrupt handler for netmap rx queues.
1358  */
1359 void
1360 t4_nm_intr(void *arg)
1361 {
1362 	struct sge_nm_rxq *nm_rxq = arg;
1363 
1364 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1365 		service_nm_rxq(nm_rxq);
1366 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1367 	}
1368 }
1369 
1370 /*
1371  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1372  */
1373 void
1374 t4_vi_intr(void *arg)
1375 {
1376 	struct irq *irq = arg;
1377 
1378 	MPASS(irq->nm_rxq != NULL);
1379 	t4_nm_intr(irq->nm_rxq);
1380 
1381 	MPASS(irq->rxq != NULL);
1382 	t4_intr(irq->rxq);
1383 }
1384 #endif
1385 
1386 /*
1387  * Deals with interrupts on an iq-only (no freelist) queue.
1388  */
1389 static int
1390 service_iq(struct sge_iq *iq, int budget)
1391 {
1392 	struct sge_iq *q;
1393 	struct adapter *sc = iq->adapter;
1394 	struct iq_desc *d = &iq->desc[iq->cidx];
1395 	int ndescs = 0, limit;
1396 	int rsp_type;
1397 	uint32_t lq;
1398 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1399 
1400 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1401 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1402 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1403 	    iq->flags));
1404 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1405 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1406 
1407 	limit = budget ? budget : iq->qsize / 16;
1408 
1409 	/*
1410 	 * We always come back and check the descriptor ring for new indirect
1411 	 * interrupts and other responses after running a single handler.
1412 	 */
1413 	for (;;) {
1414 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1415 
1416 			rmb();
1417 
1418 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1419 			lq = be32toh(d->rsp.pldbuflen_qid);
1420 
1421 			switch (rsp_type) {
1422 			case X_RSPD_TYPE_FLBUF:
1423 				panic("%s: data for an iq (%p) with no freelist",
1424 				    __func__, iq);
1425 
1426 				/* NOTREACHED */
1427 
1428 			case X_RSPD_TYPE_CPL:
1429 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1430 				    ("%s: bad opcode %02x.", __func__,
1431 				    d->rss.opcode));
1432 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1433 				break;
1434 
1435 			case X_RSPD_TYPE_INTR:
1436 				/*
1437 				 * There are 1K interrupt-capable queues (qids 0
1438 				 * through 1023).  A response type indicating a
1439 				 * forwarded interrupt with a qid >= 1K is an
1440 				 * iWARP async notification.
1441 				 */
1442 				if (__predict_true(lq >= 1024)) {
1443 					t4_an_handler(iq, &d->rsp);
1444 					break;
1445 				}
1446 
1447 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1448 				    sc->sge.iq_base];
1449 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1450 				    IQS_BUSY)) {
1451 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1452 						(void) atomic_cmpset_int(&q->state,
1453 						    IQS_BUSY, IQS_IDLE);
1454 					} else {
1455 						STAILQ_INSERT_TAIL(&iql, q,
1456 						    link);
1457 					}
1458 				}
1459 				break;
1460 
1461 			default:
1462 				KASSERT(0,
1463 				    ("%s: illegal response type %d on iq %p",
1464 				    __func__, rsp_type, iq));
1465 				log(LOG_ERR,
1466 				    "%s: illegal response type %d on iq %p",
1467 				    device_get_nameunit(sc->dev), rsp_type, iq);
1468 				break;
1469 			}
1470 
1471 			d++;
1472 			if (__predict_false(++iq->cidx == iq->sidx)) {
1473 				iq->cidx = 0;
1474 				iq->gen ^= F_RSPD_GEN;
1475 				d = &iq->desc[0];
1476 			}
1477 			if (__predict_false(++ndescs == limit)) {
1478 				t4_write_reg(sc, sc->sge_gts_reg,
1479 				    V_CIDXINC(ndescs) |
1480 				    V_INGRESSQID(iq->cntxt_id) |
1481 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1482 				ndescs = 0;
1483 
1484 				if (budget) {
1485 					return (EINPROGRESS);
1486 				}
1487 			}
1488 		}
1489 
1490 		if (STAILQ_EMPTY(&iql))
1491 			break;
1492 
1493 		/*
1494 		 * Process the head only, and send it to the back of the list if
1495 		 * it's still not done.
1496 		 */
1497 		q = STAILQ_FIRST(&iql);
1498 		STAILQ_REMOVE_HEAD(&iql, link);
1499 		if (service_iq_fl(q, q->qsize / 8) == 0)
1500 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1501 		else
1502 			STAILQ_INSERT_TAIL(&iql, q, link);
1503 	}
1504 
1505 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1506 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1507 
1508 	return (0);
1509 }
1510 
1511 static inline int
1512 sort_before_lro(struct lro_ctrl *lro)
1513 {
1514 
1515 	return (lro->lro_mbuf_max != 0);
1516 }
1517 
1518 static inline uint64_t
1519 last_flit_to_ns(struct adapter *sc, uint64_t lf)
1520 {
1521 	uint64_t n = be64toh(lf) & 0xfffffffffffffff;	/* 60b, not 64b. */
1522 
1523 	if (n > UINT64_MAX / 1000000)
1524 		return (n / sc->params.vpd.cclk * 1000000);
1525 	else
1526 		return (n * 1000000 / sc->params.vpd.cclk);
1527 }
1528 
1529 static inline void
1530 move_to_next_rxbuf(struct sge_fl *fl)
1531 {
1532 
1533 	fl->rx_offset = 0;
1534 	if (__predict_false((++fl->cidx & 7) == 0)) {
1535 		uint16_t cidx = fl->cidx >> 3;
1536 
1537 		if (__predict_false(cidx == fl->sidx))
1538 			fl->cidx = cidx = 0;
1539 		fl->hw_cidx = cidx;
1540 	}
1541 }
1542 
1543 /*
1544  * Deals with interrupts on an iq+fl queue.
1545  */
1546 static int
1547 service_iq_fl(struct sge_iq *iq, int budget)
1548 {
1549 	struct sge_rxq *rxq = iq_to_rxq(iq);
1550 	struct sge_fl *fl;
1551 	struct adapter *sc = iq->adapter;
1552 	struct iq_desc *d = &iq->desc[iq->cidx];
1553 	int ndescs, limit;
1554 	int rsp_type, starved;
1555 	uint32_t lq;
1556 	uint16_t fl_hw_cidx;
1557 	struct mbuf *m0;
1558 #if defined(INET) || defined(INET6)
1559 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1560 	struct lro_ctrl *lro = &rxq->lro;
1561 #endif
1562 
1563 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1564 	MPASS(iq->flags & IQ_HAS_FL);
1565 
1566 	ndescs = 0;
1567 #if defined(INET) || defined(INET6)
1568 	if (iq->flags & IQ_ADJ_CREDIT) {
1569 		MPASS(sort_before_lro(lro));
1570 		iq->flags &= ~IQ_ADJ_CREDIT;
1571 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1572 			tcp_lro_flush_all(lro);
1573 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1574 			    V_INGRESSQID((u32)iq->cntxt_id) |
1575 			    V_SEINTARM(iq->intr_params));
1576 			return (0);
1577 		}
1578 		ndescs = 1;
1579 	}
1580 #else
1581 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1582 #endif
1583 
1584 	limit = budget ? budget : iq->qsize / 16;
1585 	fl = &rxq->fl;
1586 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1587 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1588 
1589 		rmb();
1590 
1591 		m0 = NULL;
1592 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1593 		lq = be32toh(d->rsp.pldbuflen_qid);
1594 
1595 		switch (rsp_type) {
1596 		case X_RSPD_TYPE_FLBUF:
1597 			if (lq & F_RSPD_NEWBUF) {
1598 				if (fl->rx_offset > 0)
1599 					move_to_next_rxbuf(fl);
1600 				lq = G_RSPD_LEN(lq);
1601 			}
1602 			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1603 				FL_LOCK(fl);
1604 				refill_fl(sc, fl, 64);
1605 				FL_UNLOCK(fl);
1606 				fl_hw_cidx = fl->hw_cidx;
1607 			}
1608 
1609 			if (d->rss.opcode == CPL_RX_PKT) {
1610 				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1611 					break;
1612 				goto out;
1613 			}
1614 			m0 = get_fl_payload(sc, fl, lq);
1615 			if (__predict_false(m0 == NULL))
1616 				goto out;
1617 
1618 			/* fall through */
1619 
1620 		case X_RSPD_TYPE_CPL:
1621 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1622 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1623 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1624 			break;
1625 
1626 		case X_RSPD_TYPE_INTR:
1627 
1628 			/*
1629 			 * There are 1K interrupt-capable queues (qids 0
1630 			 * through 1023).  A response type indicating a
1631 			 * forwarded interrupt with a qid >= 1K is an
1632 			 * iWARP async notification.  That is the only
1633 			 * acceptable indirect interrupt on this queue.
1634 			 */
1635 			if (__predict_false(lq < 1024)) {
1636 				panic("%s: indirect interrupt on iq_fl %p "
1637 				    "with qid %u", __func__, iq, lq);
1638 			}
1639 
1640 			t4_an_handler(iq, &d->rsp);
1641 			break;
1642 
1643 		default:
1644 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1645 			    __func__, rsp_type, iq));
1646 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1647 			    device_get_nameunit(sc->dev), rsp_type, iq);
1648 			break;
1649 		}
1650 
1651 		d++;
1652 		if (__predict_false(++iq->cidx == iq->sidx)) {
1653 			iq->cidx = 0;
1654 			iq->gen ^= F_RSPD_GEN;
1655 			d = &iq->desc[0];
1656 		}
1657 		if (__predict_false(++ndescs == limit)) {
1658 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1659 			    V_INGRESSQID(iq->cntxt_id) |
1660 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1661 
1662 #if defined(INET) || defined(INET6)
1663 			if (iq->flags & IQ_LRO_ENABLED &&
1664 			    !sort_before_lro(lro) &&
1665 			    sc->lro_timeout != 0) {
1666 				tcp_lro_flush_inactive(lro, &lro_timeout);
1667 			}
1668 #endif
1669 			if (budget)
1670 				return (EINPROGRESS);
1671 			ndescs = 0;
1672 		}
1673 	}
1674 out:
1675 #if defined(INET) || defined(INET6)
1676 	if (iq->flags & IQ_LRO_ENABLED) {
1677 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1678 			MPASS(sort_before_lro(lro));
1679 			/* hold back one credit and don't flush LRO state */
1680 			iq->flags |= IQ_ADJ_CREDIT;
1681 			ndescs--;
1682 		} else {
1683 			tcp_lro_flush_all(lro);
1684 		}
1685 	}
1686 #endif
1687 
1688 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1689 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1690 
1691 	FL_LOCK(fl);
1692 	starved = refill_fl(sc, fl, 64);
1693 	FL_UNLOCK(fl);
1694 	if (__predict_false(starved != 0))
1695 		add_fl_to_sfl(sc, fl);
1696 
1697 	return (0);
1698 }
1699 
1700 static inline struct cluster_metadata *
1701 cl_metadata(struct fl_sdesc *sd)
1702 {
1703 
1704 	return ((void *)(sd->cl + sd->moff));
1705 }
1706 
1707 static void
1708 rxb_free(struct mbuf *m)
1709 {
1710 	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1711 
1712 	uma_zfree(clm->zone, clm->cl);
1713 	counter_u64_add(extfree_rels, 1);
1714 }
1715 
1716 /*
1717  * The mbuf returned comes from zone_muf and carries the payload in one of these
1718  * ways
1719  * a) complete frame inside the mbuf
1720  * b) m_cljset (for clusters without metadata)
1721  * d) m_extaddref (cluster with metadata)
1722  */
1723 static struct mbuf *
1724 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1725     int remaining)
1726 {
1727 	struct mbuf *m;
1728 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1729 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1730 	struct cluster_metadata *clm;
1731 	int len, blen;
1732 	caddr_t payload;
1733 
1734 	if (fl->flags & FL_BUF_PACKING) {
1735 		u_int l, pad;
1736 
1737 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1738 		len = min(remaining, blen);
1739 		payload = sd->cl + fl->rx_offset;
1740 
1741 		l = fr_offset + len;
1742 		pad = roundup2(l, fl->buf_boundary) - l;
1743 		if (fl->rx_offset + len + pad < rxb->size2)
1744 			blen = len + pad;
1745 		MPASS(fl->rx_offset + blen <= rxb->size2);
1746 	} else {
1747 		MPASS(fl->rx_offset == 0);	/* not packing */
1748 		blen = rxb->size1;
1749 		len = min(remaining, blen);
1750 		payload = sd->cl;
1751 	}
1752 
1753 	if (fr_offset == 0) {
1754 		m = m_gethdr(M_NOWAIT, MT_DATA);
1755 		if (__predict_false(m == NULL))
1756 			return (NULL);
1757 		m->m_pkthdr.len = remaining;
1758 	} else {
1759 		m = m_get(M_NOWAIT, MT_DATA);
1760 		if (__predict_false(m == NULL))
1761 			return (NULL);
1762 	}
1763 	m->m_len = len;
1764 
1765 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1766 		/* copy data to mbuf */
1767 		bcopy(payload, mtod(m, caddr_t), len);
1768 		if (fl->flags & FL_BUF_PACKING) {
1769 			fl->rx_offset += blen;
1770 			MPASS(fl->rx_offset <= rxb->size2);
1771 			if (fl->rx_offset < rxb->size2)
1772 				return (m);	/* without advancing the cidx */
1773 		}
1774 	} else if (fl->flags & FL_BUF_PACKING) {
1775 		clm = cl_metadata(sd);
1776 		if (sd->nmbuf++ == 0) {
1777 			clm->refcount = 1;
1778 			clm->zone = rxb->zone;
1779 			clm->cl = sd->cl;
1780 			counter_u64_add(extfree_refs, 1);
1781 		}
1782 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1783 		    NULL);
1784 
1785 		fl->rx_offset += blen;
1786 		MPASS(fl->rx_offset <= rxb->size2);
1787 		if (fl->rx_offset < rxb->size2)
1788 			return (m);	/* without advancing the cidx */
1789 	} else {
1790 		m_cljset(m, sd->cl, rxb->type);
1791 		sd->cl = NULL;	/* consumed, not a recycle candidate */
1792 	}
1793 
1794 	move_to_next_rxbuf(fl);
1795 
1796 	return (m);
1797 }
1798 
1799 static struct mbuf *
1800 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1801 {
1802 	struct mbuf *m0, *m, **pnext;
1803 	u_int remaining;
1804 
1805 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1806 		M_ASSERTPKTHDR(fl->m0);
1807 		MPASS(fl->m0->m_pkthdr.len == plen);
1808 		MPASS(fl->remaining < plen);
1809 
1810 		m0 = fl->m0;
1811 		pnext = fl->pnext;
1812 		remaining = fl->remaining;
1813 		fl->flags &= ~FL_BUF_RESUME;
1814 		goto get_segment;
1815 	}
1816 
1817 	/*
1818 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1819 	 * 'len' and it may span multiple hw buffers.
1820 	 */
1821 
1822 	m0 = get_scatter_segment(sc, fl, 0, plen);
1823 	if (m0 == NULL)
1824 		return (NULL);
1825 	remaining = plen - m0->m_len;
1826 	pnext = &m0->m_next;
1827 	while (remaining > 0) {
1828 get_segment:
1829 		MPASS(fl->rx_offset == 0);
1830 		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1831 		if (__predict_false(m == NULL)) {
1832 			fl->m0 = m0;
1833 			fl->pnext = pnext;
1834 			fl->remaining = remaining;
1835 			fl->flags |= FL_BUF_RESUME;
1836 			return (NULL);
1837 		}
1838 		*pnext = m;
1839 		pnext = &m->m_next;
1840 		remaining -= m->m_len;
1841 	}
1842 	*pnext = NULL;
1843 
1844 	M_ASSERTPKTHDR(m0);
1845 	return (m0);
1846 }
1847 
1848 static int
1849 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1850     int remaining)
1851 {
1852 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1853 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1854 	int len, blen;
1855 
1856 	if (fl->flags & FL_BUF_PACKING) {
1857 		u_int l, pad;
1858 
1859 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1860 		len = min(remaining, blen);
1861 
1862 		l = fr_offset + len;
1863 		pad = roundup2(l, fl->buf_boundary) - l;
1864 		if (fl->rx_offset + len + pad < rxb->size2)
1865 			blen = len + pad;
1866 		fl->rx_offset += blen;
1867 		MPASS(fl->rx_offset <= rxb->size2);
1868 		if (fl->rx_offset < rxb->size2)
1869 			return (len);	/* without advancing the cidx */
1870 	} else {
1871 		MPASS(fl->rx_offset == 0);	/* not packing */
1872 		blen = rxb->size1;
1873 		len = min(remaining, blen);
1874 	}
1875 	move_to_next_rxbuf(fl);
1876 	return (len);
1877 }
1878 
1879 static inline void
1880 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1881 {
1882 	int remaining, fr_offset, len;
1883 
1884 	fr_offset = 0;
1885 	remaining = plen;
1886 	while (remaining > 0) {
1887 		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1888 		fr_offset += len;
1889 		remaining -= len;
1890 	}
1891 }
1892 
1893 static inline int
1894 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1895 {
1896 	int len;
1897 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1898 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1899 
1900 	if (fl->flags & FL_BUF_PACKING)
1901 		len = rxb->size2 - fl->rx_offset;
1902 	else
1903 		len = rxb->size1;
1904 
1905 	return (min(plen, len));
1906 }
1907 
1908 static int
1909 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1910     u_int plen)
1911 {
1912 	struct mbuf *m0;
1913 	struct ifnet *ifp = rxq->ifp;
1914 	struct sge_fl *fl = &rxq->fl;
1915 	struct vi_info *vi = ifp->if_softc;
1916 	const struct cpl_rx_pkt *cpl;
1917 #if defined(INET) || defined(INET6)
1918 	struct lro_ctrl *lro = &rxq->lro;
1919 #endif
1920 	static const int sw_hashtype[4][2] = {
1921 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1922 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1923 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1924 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1925 	};
1926 
1927 	MPASS(plen > sc->params.sge.fl_pktshift);
1928 	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
1929 	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
1930 		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1931 		caddr_t frame;
1932 		int rc, slen;
1933 
1934 		slen = get_segment_len(sc, fl, plen) -
1935 		    sc->params.sge.fl_pktshift;
1936 		frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
1937 		CURVNET_SET_QUIET(ifp->if_vnet);
1938 		rc = pfil_run_hooks(vi->pfil, frame, ifp,
1939 		    slen | PFIL_MEMPTR | PFIL_IN, NULL);
1940 		CURVNET_RESTORE();
1941 		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
1942 			skip_fl_payload(sc, fl, plen);
1943 			return (0);
1944 		}
1945 		if (rc == PFIL_REALLOCED) {
1946 			skip_fl_payload(sc, fl, plen);
1947 			m0 = pfil_mem2mbuf(frame);
1948 			goto have_mbuf;
1949 		}
1950 	}
1951 
1952 	m0 = get_fl_payload(sc, fl, plen);
1953 	if (__predict_false(m0 == NULL))
1954 		return (ENOMEM);
1955 
1956 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1957 	m0->m_len -= sc->params.sge.fl_pktshift;
1958 	m0->m_data += sc->params.sge.fl_pktshift;
1959 
1960 have_mbuf:
1961 	m0->m_pkthdr.rcvif = ifp;
1962 	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
1963 	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
1964 
1965 	cpl = (const void *)(&d->rss + 1);
1966 	if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) {
1967 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1968 		    cpl->l2info & htobe32(F_RXF_IP)) {
1969 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1970 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1971 			rxq->rxcsum++;
1972 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1973 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1974 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1975 			    CSUM_PSEUDO_HDR);
1976 			rxq->rxcsum++;
1977 		}
1978 
1979 		if (__predict_false(cpl->ip_frag))
1980 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1981 		else
1982 			m0->m_pkthdr.csum_data = 0xffff;
1983 	}
1984 
1985 	if (cpl->vlan_ex) {
1986 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1987 		m0->m_flags |= M_VLANTAG;
1988 		rxq->vlan_extraction++;
1989 	}
1990 
1991 	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
1992 		/*
1993 		 * Fill up rcv_tstmp but do not set M_TSTMP.
1994 		 * rcv_tstmp is not in the format that the
1995 		 * kernel expects and we don't want to mislead
1996 		 * it.  For now this is only for custom code
1997 		 * that knows how to interpret cxgbe's stamp.
1998 		 */
1999 		m0->m_pkthdr.rcv_tstmp =
2000 		    last_flit_to_ns(sc, d->rsp.u.last_flit);
2001 #ifdef notyet
2002 		m0->m_flags |= M_TSTMP;
2003 #endif
2004 	}
2005 
2006 #ifdef NUMA
2007 	m0->m_pkthdr.numa_domain = ifp->if_numa_domain;
2008 #endif
2009 #if defined(INET) || defined(INET6)
2010 	if (rxq->iq.flags & IQ_LRO_ENABLED &&
2011 	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2012 	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2013 		if (sort_before_lro(lro)) {
2014 			tcp_lro_queue_mbuf(lro, m0);
2015 			return (0); /* queued for sort, then LRO */
2016 		}
2017 		if (tcp_lro_rx(lro, m0, 0) == 0)
2018 			return (0); /* queued for LRO */
2019 	}
2020 #endif
2021 	ifp->if_input(ifp, m0);
2022 
2023 	return (0);
2024 }
2025 
2026 /*
2027  * Must drain the wrq or make sure that someone else will.
2028  */
2029 static void
2030 wrq_tx_drain(void *arg, int n)
2031 {
2032 	struct sge_wrq *wrq = arg;
2033 	struct sge_eq *eq = &wrq->eq;
2034 
2035 	EQ_LOCK(eq);
2036 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2037 		drain_wrq_wr_list(wrq->adapter, wrq);
2038 	EQ_UNLOCK(eq);
2039 }
2040 
2041 static void
2042 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2043 {
2044 	struct sge_eq *eq = &wrq->eq;
2045 	u_int available, dbdiff;	/* # of hardware descriptors */
2046 	u_int n;
2047 	struct wrqe *wr;
2048 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2049 
2050 	EQ_LOCK_ASSERT_OWNED(eq);
2051 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2052 	wr = STAILQ_FIRST(&wrq->wr_list);
2053 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2054 	MPASS(eq->pidx == eq->dbidx);
2055 	dbdiff = 0;
2056 
2057 	do {
2058 		eq->cidx = read_hw_cidx(eq);
2059 		if (eq->pidx == eq->cidx)
2060 			available = eq->sidx - 1;
2061 		else
2062 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2063 
2064 		MPASS(wr->wrq == wrq);
2065 		n = howmany(wr->wr_len, EQ_ESIZE);
2066 		if (available < n)
2067 			break;
2068 
2069 		dst = (void *)&eq->desc[eq->pidx];
2070 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2071 			/* Won't wrap, won't end exactly at the status page. */
2072 			bcopy(&wr->wr[0], dst, wr->wr_len);
2073 			eq->pidx += n;
2074 		} else {
2075 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2076 
2077 			bcopy(&wr->wr[0], dst, first_portion);
2078 			if (wr->wr_len > first_portion) {
2079 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2080 				    wr->wr_len - first_portion);
2081 			}
2082 			eq->pidx = n - (eq->sidx - eq->pidx);
2083 		}
2084 		wrq->tx_wrs_copied++;
2085 
2086 		if (available < eq->sidx / 4 &&
2087 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2088 				/*
2089 				 * XXX: This is not 100% reliable with some
2090 				 * types of WRs.  But this is a very unusual
2091 				 * situation for an ofld/ctrl queue anyway.
2092 				 */
2093 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2094 			    F_FW_WR_EQUEQ);
2095 		}
2096 
2097 		dbdiff += n;
2098 		if (dbdiff >= 16) {
2099 			ring_eq_db(sc, eq, dbdiff);
2100 			dbdiff = 0;
2101 		}
2102 
2103 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2104 		free_wrqe(wr);
2105 		MPASS(wrq->nwr_pending > 0);
2106 		wrq->nwr_pending--;
2107 		MPASS(wrq->ndesc_needed >= n);
2108 		wrq->ndesc_needed -= n;
2109 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2110 
2111 	if (dbdiff)
2112 		ring_eq_db(sc, eq, dbdiff);
2113 }
2114 
2115 /*
2116  * Doesn't fail.  Holds on to work requests it can't send right away.
2117  */
2118 void
2119 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2120 {
2121 #ifdef INVARIANTS
2122 	struct sge_eq *eq = &wrq->eq;
2123 #endif
2124 
2125 	EQ_LOCK_ASSERT_OWNED(eq);
2126 	MPASS(wr != NULL);
2127 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2128 	MPASS((wr->wr_len & 0x7) == 0);
2129 
2130 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2131 	wrq->nwr_pending++;
2132 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2133 
2134 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2135 		return;	/* commit_wrq_wr will drain wr_list as well. */
2136 
2137 	drain_wrq_wr_list(sc, wrq);
2138 
2139 	/* Doorbell must have caught up to the pidx. */
2140 	MPASS(eq->pidx == eq->dbidx);
2141 }
2142 
2143 void
2144 t4_update_fl_bufsize(struct ifnet *ifp)
2145 {
2146 	struct vi_info *vi = ifp->if_softc;
2147 	struct adapter *sc = vi->adapter;
2148 	struct sge_rxq *rxq;
2149 #ifdef TCP_OFFLOAD
2150 	struct sge_ofld_rxq *ofld_rxq;
2151 #endif
2152 	struct sge_fl *fl;
2153 	int i, maxp;
2154 
2155 	maxp = max_rx_payload(sc, ifp, false);
2156 	for_each_rxq(vi, i, rxq) {
2157 		fl = &rxq->fl;
2158 
2159 		FL_LOCK(fl);
2160 		fl->zidx = find_refill_source(sc, maxp,
2161 		    fl->flags & FL_BUF_PACKING);
2162 		FL_UNLOCK(fl);
2163 	}
2164 #ifdef TCP_OFFLOAD
2165 	maxp = max_rx_payload(sc, ifp, true);
2166 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2167 		fl = &ofld_rxq->fl;
2168 
2169 		FL_LOCK(fl);
2170 		fl->zidx = find_refill_source(sc, maxp,
2171 		    fl->flags & FL_BUF_PACKING);
2172 		FL_UNLOCK(fl);
2173 	}
2174 #endif
2175 }
2176 
2177 static inline int
2178 mbuf_nsegs(struct mbuf *m)
2179 {
2180 
2181 	M_ASSERTPKTHDR(m);
2182 	KASSERT(m->m_pkthdr.l5hlen > 0,
2183 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2184 
2185 	return (m->m_pkthdr.l5hlen);
2186 }
2187 
2188 static inline void
2189 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2190 {
2191 
2192 	M_ASSERTPKTHDR(m);
2193 	m->m_pkthdr.l5hlen = nsegs;
2194 }
2195 
2196 static inline int
2197 mbuf_cflags(struct mbuf *m)
2198 {
2199 
2200 	M_ASSERTPKTHDR(m);
2201 	return (m->m_pkthdr.PH_loc.eight[4]);
2202 }
2203 
2204 static inline void
2205 set_mbuf_cflags(struct mbuf *m, uint8_t flags)
2206 {
2207 
2208 	M_ASSERTPKTHDR(m);
2209 	m->m_pkthdr.PH_loc.eight[4] = flags;
2210 }
2211 
2212 static inline int
2213 mbuf_len16(struct mbuf *m)
2214 {
2215 	int n;
2216 
2217 	M_ASSERTPKTHDR(m);
2218 	n = m->m_pkthdr.PH_loc.eight[0];
2219 	if (!(mbuf_cflags(m) & MC_TLS))
2220 		MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2221 
2222 	return (n);
2223 }
2224 
2225 static inline void
2226 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2227 {
2228 
2229 	M_ASSERTPKTHDR(m);
2230 	m->m_pkthdr.PH_loc.eight[0] = len16;
2231 }
2232 
2233 #ifdef RATELIMIT
2234 static inline int
2235 mbuf_eo_nsegs(struct mbuf *m)
2236 {
2237 
2238 	M_ASSERTPKTHDR(m);
2239 	return (m->m_pkthdr.PH_loc.eight[1]);
2240 }
2241 
2242 static inline void
2243 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2244 {
2245 
2246 	M_ASSERTPKTHDR(m);
2247 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2248 }
2249 
2250 static inline int
2251 mbuf_eo_len16(struct mbuf *m)
2252 {
2253 	int n;
2254 
2255 	M_ASSERTPKTHDR(m);
2256 	n = m->m_pkthdr.PH_loc.eight[2];
2257 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2258 
2259 	return (n);
2260 }
2261 
2262 static inline void
2263 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2264 {
2265 
2266 	M_ASSERTPKTHDR(m);
2267 	m->m_pkthdr.PH_loc.eight[2] = len16;
2268 }
2269 
2270 static inline int
2271 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2272 {
2273 
2274 	M_ASSERTPKTHDR(m);
2275 	return (m->m_pkthdr.PH_loc.eight[3]);
2276 }
2277 
2278 static inline void
2279 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2280 {
2281 
2282 	M_ASSERTPKTHDR(m);
2283 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2284 }
2285 
2286 static inline int
2287 needs_eo(struct cxgbe_snd_tag *cst)
2288 {
2289 
2290 	return (cst != NULL && cst->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2291 }
2292 #endif
2293 
2294 /*
2295  * Try to allocate an mbuf to contain a raw work request.  To make it
2296  * easy to construct the work request, don't allocate a chain but a
2297  * single mbuf.
2298  */
2299 struct mbuf *
2300 alloc_wr_mbuf(int len, int how)
2301 {
2302 	struct mbuf *m;
2303 
2304 	if (len <= MHLEN)
2305 		m = m_gethdr(how, MT_DATA);
2306 	else if (len <= MCLBYTES)
2307 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2308 	else
2309 		m = NULL;
2310 	if (m == NULL)
2311 		return (NULL);
2312 	m->m_pkthdr.len = len;
2313 	m->m_len = len;
2314 	set_mbuf_cflags(m, MC_RAW_WR);
2315 	set_mbuf_len16(m, howmany(len, 16));
2316 	return (m);
2317 }
2318 
2319 static inline int
2320 needs_hwcsum(struct mbuf *m)
2321 {
2322 
2323 	M_ASSERTPKTHDR(m);
2324 
2325 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_IP |
2326 	    CSUM_TSO | CSUM_UDP_IPV6 | CSUM_TCP_IPV6));
2327 }
2328 
2329 static inline int
2330 needs_tso(struct mbuf *m)
2331 {
2332 
2333 	M_ASSERTPKTHDR(m);
2334 
2335 	return (m->m_pkthdr.csum_flags & CSUM_TSO);
2336 }
2337 
2338 static inline int
2339 needs_l3_csum(struct mbuf *m)
2340 {
2341 
2342 	M_ASSERTPKTHDR(m);
2343 
2344 	return (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO));
2345 }
2346 
2347 static inline int
2348 needs_tcp_csum(struct mbuf *m)
2349 {
2350 
2351 	M_ASSERTPKTHDR(m);
2352 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_TCP_IPV6 | CSUM_TSO));
2353 }
2354 
2355 #ifdef RATELIMIT
2356 static inline int
2357 needs_l4_csum(struct mbuf *m)
2358 {
2359 
2360 	M_ASSERTPKTHDR(m);
2361 
2362 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2363 	    CSUM_TCP_IPV6 | CSUM_TSO));
2364 }
2365 
2366 static inline int
2367 needs_udp_csum(struct mbuf *m)
2368 {
2369 
2370 	M_ASSERTPKTHDR(m);
2371 	return (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_UDP_IPV6));
2372 }
2373 #endif
2374 
2375 static inline int
2376 needs_vlan_insertion(struct mbuf *m)
2377 {
2378 
2379 	M_ASSERTPKTHDR(m);
2380 
2381 	return (m->m_flags & M_VLANTAG);
2382 }
2383 
2384 static void *
2385 m_advance(struct mbuf **pm, int *poffset, int len)
2386 {
2387 	struct mbuf *m = *pm;
2388 	int offset = *poffset;
2389 	uintptr_t p = 0;
2390 
2391 	MPASS(len > 0);
2392 
2393 	for (;;) {
2394 		if (offset + len < m->m_len) {
2395 			offset += len;
2396 			p = mtod(m, uintptr_t) + offset;
2397 			break;
2398 		}
2399 		len -= m->m_len - offset;
2400 		m = m->m_next;
2401 		offset = 0;
2402 		MPASS(m != NULL);
2403 	}
2404 	*poffset = offset;
2405 	*pm = m;
2406 	return ((void *)p);
2407 }
2408 
2409 static inline int
2410 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2411 {
2412 	vm_paddr_t paddr;
2413 	int i, len, off, pglen, pgoff, seglen, segoff;
2414 	int nsegs = 0;
2415 
2416 	M_ASSERTEXTPG(m);
2417 	off = mtod(m, vm_offset_t);
2418 	len = m->m_len;
2419 	off += skip;
2420 	len -= skip;
2421 
2422 	if (m->m_epg_hdrlen != 0) {
2423 		if (off >= m->m_epg_hdrlen) {
2424 			off -= m->m_epg_hdrlen;
2425 		} else {
2426 			seglen = m->m_epg_hdrlen - off;
2427 			segoff = off;
2428 			seglen = min(seglen, len);
2429 			off = 0;
2430 			len -= seglen;
2431 			paddr = pmap_kextract(
2432 			    (vm_offset_t)&m->m_epg_hdr[segoff]);
2433 			if (*nextaddr != paddr)
2434 				nsegs++;
2435 			*nextaddr = paddr + seglen;
2436 		}
2437 	}
2438 	pgoff = m->m_epg_1st_off;
2439 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2440 		pglen = m_epg_pagelen(m, i, pgoff);
2441 		if (off >= pglen) {
2442 			off -= pglen;
2443 			pgoff = 0;
2444 			continue;
2445 		}
2446 		seglen = pglen - off;
2447 		segoff = pgoff + off;
2448 		off = 0;
2449 		seglen = min(seglen, len);
2450 		len -= seglen;
2451 		paddr = m->m_epg_pa[i] + segoff;
2452 		if (*nextaddr != paddr)
2453 			nsegs++;
2454 		*nextaddr = paddr + seglen;
2455 		pgoff = 0;
2456 	};
2457 	if (len != 0) {
2458 		seglen = min(len, m->m_epg_trllen - off);
2459 		len -= seglen;
2460 		paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2461 		if (*nextaddr != paddr)
2462 			nsegs++;
2463 		*nextaddr = paddr + seglen;
2464 	}
2465 
2466 	return (nsegs);
2467 }
2468 
2469 
2470 /*
2471  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2472  * must have at least one mbuf that's not empty.  It is possible for this
2473  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2474  */
2475 static inline int
2476 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2477 {
2478 	vm_paddr_t nextaddr, paddr;
2479 	vm_offset_t va;
2480 	int len, nsegs;
2481 
2482 	M_ASSERTPKTHDR(m);
2483 	MPASS(m->m_pkthdr.len > 0);
2484 	MPASS(m->m_pkthdr.len >= skip);
2485 
2486 	nsegs = 0;
2487 	nextaddr = 0;
2488 	for (; m; m = m->m_next) {
2489 		len = m->m_len;
2490 		if (__predict_false(len == 0))
2491 			continue;
2492 		if (skip >= len) {
2493 			skip -= len;
2494 			continue;
2495 		}
2496 		if ((m->m_flags & M_EXTPG) != 0) {
2497 			*cflags |= MC_NOMAP;
2498 			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2499 			skip = 0;
2500 			continue;
2501 		}
2502 		va = mtod(m, vm_offset_t) + skip;
2503 		len -= skip;
2504 		skip = 0;
2505 		paddr = pmap_kextract(va);
2506 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2507 		if (paddr == nextaddr)
2508 			nsegs--;
2509 		nextaddr = pmap_kextract(va + len - 1) + 1;
2510 	}
2511 
2512 	return (nsegs);
2513 }
2514 
2515 /*
2516  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2517  * a) caller can assume it's been freed if this function returns with an error.
2518  * b) it may get defragged up if the gather list is too long for the hardware.
2519  */
2520 int
2521 parse_pkt(struct adapter *sc, struct mbuf **mp)
2522 {
2523 	struct mbuf *m0 = *mp, *m;
2524 	int rc, nsegs, defragged = 0, offset;
2525 	struct ether_header *eh;
2526 	void *l3hdr;
2527 #if defined(INET) || defined(INET6)
2528 	struct tcphdr *tcp;
2529 #endif
2530 #if defined(KERN_TLS) || defined(RATELIMIT)
2531 	struct cxgbe_snd_tag *cst;
2532 #endif
2533 	uint16_t eh_type;
2534 	uint8_t cflags;
2535 
2536 	cflags = 0;
2537 	M_ASSERTPKTHDR(m0);
2538 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2539 		rc = EINVAL;
2540 fail:
2541 		m_freem(m0);
2542 		*mp = NULL;
2543 		return (rc);
2544 	}
2545 restart:
2546 	/*
2547 	 * First count the number of gather list segments in the payload.
2548 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2549 	 */
2550 	M_ASSERTPKTHDR(m0);
2551 	MPASS(m0->m_pkthdr.len > 0);
2552 	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2553 #if defined(KERN_TLS) || defined(RATELIMIT)
2554 	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2555 		cst = mst_to_cst(m0->m_pkthdr.snd_tag);
2556 	else
2557 		cst = NULL;
2558 #endif
2559 #ifdef KERN_TLS
2560 	if (cst != NULL && cst->type == IF_SND_TAG_TYPE_TLS) {
2561 		int len16;
2562 
2563 		cflags |= MC_TLS;
2564 		set_mbuf_cflags(m0, cflags);
2565 		rc = t6_ktls_parse_pkt(m0, &nsegs, &len16);
2566 		if (rc != 0)
2567 			goto fail;
2568 		set_mbuf_nsegs(m0, nsegs);
2569 		set_mbuf_len16(m0, len16);
2570 		return (0);
2571 	}
2572 #endif
2573 	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2574 		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2575 			rc = EFBIG;
2576 			goto fail;
2577 		}
2578 		*mp = m0 = m;	/* update caller's copy after defrag */
2579 		goto restart;
2580 	}
2581 
2582 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2583 	    !(cflags & MC_NOMAP))) {
2584 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2585 		if (m0 == NULL) {
2586 			/* Should have left well enough alone. */
2587 			rc = EFBIG;
2588 			goto fail;
2589 		}
2590 		*mp = m0;	/* update caller's copy after pullup */
2591 		goto restart;
2592 	}
2593 	set_mbuf_nsegs(m0, nsegs);
2594 	set_mbuf_cflags(m0, cflags);
2595 	if (sc->flags & IS_VF)
2596 		set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0)));
2597 	else
2598 		set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2599 
2600 #ifdef RATELIMIT
2601 	/*
2602 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2603 	 * checksumming is enabled.  needs_l4_csum happens to check for all the
2604 	 * right things.
2605 	 */
2606 	if (__predict_false(needs_eo(cst) && !needs_l4_csum(m0))) {
2607 		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2608 		m0->m_pkthdr.snd_tag = NULL;
2609 		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2610 		cst = NULL;
2611 	}
2612 #endif
2613 
2614 	if (!needs_hwcsum(m0)
2615 #ifdef RATELIMIT
2616    		 && !needs_eo(cst)
2617 #endif
2618 	)
2619 		return (0);
2620 
2621 	m = m0;
2622 	eh = mtod(m, struct ether_header *);
2623 	eh_type = ntohs(eh->ether_type);
2624 	if (eh_type == ETHERTYPE_VLAN) {
2625 		struct ether_vlan_header *evh = (void *)eh;
2626 
2627 		eh_type = ntohs(evh->evl_proto);
2628 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2629 	} else
2630 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2631 
2632 	offset = 0;
2633 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2634 
2635 	switch (eh_type) {
2636 #ifdef INET6
2637 	case ETHERTYPE_IPV6:
2638 	{
2639 		struct ip6_hdr *ip6 = l3hdr;
2640 
2641 		MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP);
2642 
2643 		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2644 		break;
2645 	}
2646 #endif
2647 #ifdef INET
2648 	case ETHERTYPE_IP:
2649 	{
2650 		struct ip *ip = l3hdr;
2651 
2652 		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2653 		break;
2654 	}
2655 #endif
2656 	default:
2657 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2658 		    " with the same INET/INET6 options as the kernel.",
2659 		    __func__, eh_type);
2660 	}
2661 
2662 #if defined(INET) || defined(INET6)
2663 	if (needs_tcp_csum(m0)) {
2664 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2665 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2666 #ifdef RATELIMIT
2667 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2668 			set_mbuf_eo_tsclk_tsoff(m0,
2669 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2670 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2671 		} else
2672 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2673 	} else if (needs_udp_csum(m0)) {
2674 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2675 #endif
2676 	}
2677 #ifdef RATELIMIT
2678 	if (needs_eo(cst)) {
2679 		u_int immhdrs;
2680 
2681 		/* EO WRs have the headers in the WR and not the GL. */
2682 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2683 		    m0->m_pkthdr.l4hlen;
2684 		cflags = 0;
2685 		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2686 		MPASS(cflags == mbuf_cflags(m0));
2687 		set_mbuf_eo_nsegs(m0, nsegs);
2688 		set_mbuf_eo_len16(m0,
2689 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2690 	}
2691 #endif
2692 #endif
2693 	MPASS(m0 == *mp);
2694 	return (0);
2695 }
2696 
2697 void *
2698 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2699 {
2700 	struct sge_eq *eq = &wrq->eq;
2701 	struct adapter *sc = wrq->adapter;
2702 	int ndesc, available;
2703 	struct wrqe *wr;
2704 	void *w;
2705 
2706 	MPASS(len16 > 0);
2707 	ndesc = tx_len16_to_desc(len16);
2708 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2709 
2710 	EQ_LOCK(eq);
2711 
2712 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2713 		drain_wrq_wr_list(sc, wrq);
2714 
2715 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2716 slowpath:
2717 		EQ_UNLOCK(eq);
2718 		wr = alloc_wrqe(len16 * 16, wrq);
2719 		if (__predict_false(wr == NULL))
2720 			return (NULL);
2721 		cookie->pidx = -1;
2722 		cookie->ndesc = ndesc;
2723 		return (&wr->wr);
2724 	}
2725 
2726 	eq->cidx = read_hw_cidx(eq);
2727 	if (eq->pidx == eq->cidx)
2728 		available = eq->sidx - 1;
2729 	else
2730 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2731 	if (available < ndesc)
2732 		goto slowpath;
2733 
2734 	cookie->pidx = eq->pidx;
2735 	cookie->ndesc = ndesc;
2736 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2737 
2738 	w = &eq->desc[eq->pidx];
2739 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2740 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2741 		w = &wrq->ss[0];
2742 		wrq->ss_pidx = cookie->pidx;
2743 		wrq->ss_len = len16 * 16;
2744 	}
2745 
2746 	EQ_UNLOCK(eq);
2747 
2748 	return (w);
2749 }
2750 
2751 void
2752 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2753 {
2754 	struct sge_eq *eq = &wrq->eq;
2755 	struct adapter *sc = wrq->adapter;
2756 	int ndesc, pidx;
2757 	struct wrq_cookie *prev, *next;
2758 
2759 	if (cookie->pidx == -1) {
2760 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2761 
2762 		t4_wrq_tx(sc, wr);
2763 		return;
2764 	}
2765 
2766 	if (__predict_false(w == &wrq->ss[0])) {
2767 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2768 
2769 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2770 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2771 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2772 		wrq->tx_wrs_ss++;
2773 	} else
2774 		wrq->tx_wrs_direct++;
2775 
2776 	EQ_LOCK(eq);
2777 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2778 	pidx = cookie->pidx;
2779 	MPASS(pidx >= 0 && pidx < eq->sidx);
2780 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2781 	next = TAILQ_NEXT(cookie, link);
2782 	if (prev == NULL) {
2783 		MPASS(pidx == eq->dbidx);
2784 		if (next == NULL || ndesc >= 16) {
2785 			int available;
2786 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2787 
2788 			/*
2789 			 * Note that the WR via which we'll request tx updates
2790 			 * is at pidx and not eq->pidx, which has moved on
2791 			 * already.
2792 			 */
2793 			dst = (void *)&eq->desc[pidx];
2794 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2795 			if (available < eq->sidx / 4 &&
2796 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2797 				/*
2798 				 * XXX: This is not 100% reliable with some
2799 				 * types of WRs.  But this is a very unusual
2800 				 * situation for an ofld/ctrl queue anyway.
2801 				 */
2802 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2803 				    F_FW_WR_EQUEQ);
2804 			}
2805 
2806 			ring_eq_db(wrq->adapter, eq, ndesc);
2807 		} else {
2808 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2809 			next->pidx = pidx;
2810 			next->ndesc += ndesc;
2811 		}
2812 	} else {
2813 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2814 		prev->ndesc += ndesc;
2815 	}
2816 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2817 
2818 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2819 		drain_wrq_wr_list(sc, wrq);
2820 
2821 #ifdef INVARIANTS
2822 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2823 		/* Doorbell must have caught up to the pidx. */
2824 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2825 	}
2826 #endif
2827 	EQ_UNLOCK(eq);
2828 }
2829 
2830 static u_int
2831 can_resume_eth_tx(struct mp_ring *r)
2832 {
2833 	struct sge_eq *eq = r->cookie;
2834 
2835 	return (total_available_tx_desc(eq) > eq->sidx / 8);
2836 }
2837 
2838 static inline bool
2839 cannot_use_txpkts(struct mbuf *m)
2840 {
2841 	/* maybe put a GL limit too, to avoid silliness? */
2842 
2843 	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
2844 }
2845 
2846 static inline int
2847 discard_tx(struct sge_eq *eq)
2848 {
2849 
2850 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
2851 }
2852 
2853 static inline int
2854 wr_can_update_eq(void *p)
2855 {
2856 	struct fw_eth_tx_pkts_wr *wr = p;
2857 
2858 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
2859 	case FW_ULPTX_WR:
2860 	case FW_ETH_TX_PKT_WR:
2861 	case FW_ETH_TX_PKTS_WR:
2862 	case FW_ETH_TX_PKTS2_WR:
2863 	case FW_ETH_TX_PKT_VM_WR:
2864 	case FW_ETH_TX_PKTS_VM_WR:
2865 		return (1);
2866 	default:
2867 		return (0);
2868 	}
2869 }
2870 
2871 static inline void
2872 set_txupdate_flags(struct sge_txq *txq, u_int avail,
2873     struct fw_eth_tx_pkt_wr *wr)
2874 {
2875 	struct sge_eq *eq = &txq->eq;
2876 	struct txpkts *txp = &txq->txp;
2877 
2878 	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
2879 	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2880 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
2881 		eq->equeqidx = eq->pidx;
2882 	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2883 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2884 		eq->equeqidx = eq->pidx;
2885 	}
2886 }
2887 
2888 /*
2889  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2890  * be consumed.  Return the actual number consumed.  0 indicates a stall.
2891  */
2892 static u_int
2893 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
2894 {
2895 	struct sge_txq *txq = r->cookie;
2896 	struct ifnet *ifp = txq->ifp;
2897 	struct sge_eq *eq = &txq->eq;
2898 	struct txpkts *txp = &txq->txp;
2899 	struct vi_info *vi = ifp->if_softc;
2900 	struct adapter *sc = vi->adapter;
2901 	u_int total, remaining;		/* # of packets */
2902 	u_int n, avail, dbdiff;		/* # of hardware descriptors */
2903 	int i, rc;
2904 	struct mbuf *m0;
2905 	bool snd;
2906 	void *wr;	/* start of the last WR written to the ring */
2907 
2908 	TXQ_LOCK_ASSERT_OWNED(txq);
2909 
2910 	remaining = IDXDIFF(pidx, cidx, r->size);
2911 	if (__predict_false(discard_tx(eq))) {
2912 		for (i = 0; i < txp->npkt; i++)
2913 			m_freem(txp->mb[i]);
2914 		txp->npkt = 0;
2915 		while (cidx != pidx) {
2916 			m0 = r->items[cidx];
2917 			m_freem(m0);
2918 			if (++cidx == r->size)
2919 				cidx = 0;
2920 		}
2921 		reclaim_tx_descs(txq, eq->sidx);
2922 		*coalescing = false;
2923 		return (remaining);	/* emptied */
2924 	}
2925 
2926 	/* How many hardware descriptors do we have readily available. */
2927 	if (eq->pidx == eq->cidx) {
2928 		avail = eq->sidx - 1;
2929 		if (txp->score++ >= 5)
2930 			txp->score = 5;	/* tx is completely idle, reset. */
2931 	} else
2932 		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2933 
2934 	total = 0;
2935 	if (remaining == 0) {
2936 		if (txp->score-- == 1)	/* egr_update had to drain txpkts */
2937 			txp->score = 1;
2938 		goto send_txpkts;
2939 	}
2940 
2941 	dbdiff = 0;
2942 	MPASS(remaining > 0);
2943 	while (remaining > 0) {
2944 		m0 = r->items[cidx];
2945 		M_ASSERTPKTHDR(m0);
2946 		MPASS(m0->m_nextpkt == NULL);
2947 
2948 		if (avail < 2 * SGE_MAX_WR_NDESC)
2949 			avail += reclaim_tx_descs(txq, 64);
2950 
2951 		if (txp->npkt > 0 || remaining > 1 || txp->score > 3 ||
2952 		    atomic_load_int(&txq->eq.equiq) != 0) {
2953 			if (sc->flags & IS_VF)
2954 				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
2955 			else
2956 				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
2957 		} else {
2958 			snd = false;
2959 			rc = EINVAL;
2960 		}
2961 		if (snd) {
2962 			MPASS(txp->npkt > 0);
2963 			for (i = 0; i < txp->npkt; i++)
2964 				ETHER_BPF_MTAP(ifp, txp->mb[i]);
2965 			if (txp->npkt > 1) {
2966 				if (txp->score++ >= 10)
2967 					txp->score = 10;
2968 				MPASS(avail >= tx_len16_to_desc(txp->len16));
2969 				if (sc->flags & IS_VF)
2970 					n = write_txpkts_vm_wr(sc, txq);
2971 				else
2972 					n = write_txpkts_wr(sc, txq);
2973 			} else {
2974 				MPASS(avail >=
2975 				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
2976 				if (sc->flags & IS_VF)
2977 					n = write_txpkt_vm_wr(sc, txq,
2978 					    txp->mb[0]);
2979 				else
2980 					n = write_txpkt_wr(sc, txq, txp->mb[0],
2981 					    avail);
2982 			}
2983 			MPASS(n <= SGE_MAX_WR_NDESC);
2984 			avail -= n;
2985 			dbdiff += n;
2986 			wr = &eq->desc[eq->pidx];
2987 			IDXINCR(eq->pidx, n, eq->sidx);
2988 			txp->npkt = 0;	/* emptied */
2989 		}
2990 		if (rc == 0) {
2991 			/* m0 was coalesced into txq->txpkts. */
2992 			goto next_mbuf;
2993 		}
2994 		if (rc == EAGAIN) {
2995 			/*
2996 			 * m0 is suitable for tx coalescing but could not be
2997 			 * combined with the existing txq->txpkts, which has now
2998 			 * been transmitted.  Start a new txpkts with m0.
2999 			 */
3000 			MPASS(snd);
3001 			MPASS(txp->npkt == 0);
3002 			continue;
3003 		}
3004 
3005 		MPASS(rc != 0 && rc != EAGAIN);
3006 		MPASS(txp->npkt == 0);
3007 
3008 		n = tx_len16_to_desc(mbuf_len16(m0));
3009 		if (__predict_false(avail < n)) {
3010 			avail += reclaim_tx_descs(txq, min(n, 32));
3011 			if (avail < n)
3012 				break;	/* out of descriptors */
3013 		}
3014 
3015 		wr = &eq->desc[eq->pidx];
3016 		if (mbuf_cflags(m0) & MC_RAW_WR) {
3017 			n = write_raw_wr(txq, wr, m0, avail);
3018 #ifdef KERN_TLS
3019 		} else if (mbuf_cflags(m0) & MC_TLS) {
3020 			ETHER_BPF_MTAP(ifp, m0);
3021 			n = t6_ktls_write_wr(txq, wr, m0, mbuf_nsegs(m0),
3022 			    avail);
3023 #endif
3024 		} else {
3025 			ETHER_BPF_MTAP(ifp, m0);
3026 			if (sc->flags & IS_VF)
3027 				n = write_txpkt_vm_wr(sc, txq, m0);
3028 			else
3029 				n = write_txpkt_wr(sc, txq, m0, avail);
3030 		}
3031 		MPASS(n >= 1 && n <= avail);
3032 		if (!(mbuf_cflags(m0) & MC_TLS))
3033 			MPASS(n <= SGE_MAX_WR_NDESC);
3034 
3035 		avail -= n;
3036 		dbdiff += n;
3037 		IDXINCR(eq->pidx, n, eq->sidx);
3038 
3039 		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3040 			if (wr_can_update_eq(wr))
3041 				set_txupdate_flags(txq, avail, wr);
3042 			ring_eq_db(sc, eq, dbdiff);
3043 			avail += reclaim_tx_descs(txq, 32);
3044 			dbdiff = 0;
3045 		}
3046 next_mbuf:
3047 		total++;
3048 		remaining--;
3049 		if (__predict_false(++cidx == r->size))
3050 			cidx = 0;
3051 	}
3052 	if (dbdiff != 0) {
3053 		if (wr_can_update_eq(wr))
3054 			set_txupdate_flags(txq, avail, wr);
3055 		ring_eq_db(sc, eq, dbdiff);
3056 		reclaim_tx_descs(txq, 32);
3057 	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3058 	    atomic_load_int(&txq->eq.equiq) == 0) {
3059 		/*
3060 		 * If nothing was submitted to the chip for tx (it was coalesced
3061 		 * into txpkts instead) and there is no tx update outstanding
3062 		 * then we need to send txpkts now.
3063 		 */
3064 send_txpkts:
3065 		MPASS(txp->npkt > 0);
3066 		for (i = 0; i < txp->npkt; i++)
3067 			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3068 		if (txp->npkt > 1) {
3069 			MPASS(avail >= tx_len16_to_desc(txp->len16));
3070 			if (sc->flags & IS_VF)
3071 				n = write_txpkts_vm_wr(sc, txq);
3072 			else
3073 				n = write_txpkts_wr(sc, txq);
3074 		} else {
3075 			MPASS(avail >=
3076 			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3077 			if (sc->flags & IS_VF)
3078 				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3079 			else
3080 				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3081 		}
3082 		MPASS(n <= SGE_MAX_WR_NDESC);
3083 		wr = &eq->desc[eq->pidx];
3084 		IDXINCR(eq->pidx, n, eq->sidx);
3085 		txp->npkt = 0;	/* emptied */
3086 
3087 		MPASS(wr_can_update_eq(wr));
3088 		set_txupdate_flags(txq, avail - n, wr);
3089 		ring_eq_db(sc, eq, n);
3090 		reclaim_tx_descs(txq, 32);
3091 	}
3092 	*coalescing = txp->npkt > 0;
3093 
3094 	return (total);
3095 }
3096 
3097 static inline void
3098 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3099     int qsize)
3100 {
3101 
3102 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3103 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3104 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3105 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3106 
3107 	iq->flags = 0;
3108 	iq->adapter = sc;
3109 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3110 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3111 	if (pktc_idx >= 0) {
3112 		iq->intr_params |= F_QINTR_CNT_EN;
3113 		iq->intr_pktc_idx = pktc_idx;
3114 	}
3115 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3116 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3117 }
3118 
3119 static inline void
3120 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3121 {
3122 
3123 	fl->qsize = qsize;
3124 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3125 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3126 	if (sc->flags & BUF_PACKING_OK &&
3127 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3128 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3129 		fl->flags |= FL_BUF_PACKING;
3130 	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3131 	fl->safe_zidx = sc->sge.safe_zidx;
3132 }
3133 
3134 static inline void
3135 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3136     uint8_t tx_chan, uint16_t iqid, char *name)
3137 {
3138 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
3139 
3140 	eq->flags = eqtype & EQ_TYPEMASK;
3141 	eq->tx_chan = tx_chan;
3142 	eq->iqid = iqid;
3143 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3144 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3145 }
3146 
3147 static int
3148 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3149     bus_dmamap_t *map, bus_addr_t *pa, void **va)
3150 {
3151 	int rc;
3152 
3153 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3154 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3155 	if (rc != 0) {
3156 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
3157 		goto done;
3158 	}
3159 
3160 	rc = bus_dmamem_alloc(*tag, va,
3161 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3162 	if (rc != 0) {
3163 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
3164 		goto done;
3165 	}
3166 
3167 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3168 	if (rc != 0) {
3169 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
3170 		goto done;
3171 	}
3172 done:
3173 	if (rc)
3174 		free_ring(sc, *tag, *map, *pa, *va);
3175 
3176 	return (rc);
3177 }
3178 
3179 static int
3180 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3181     bus_addr_t pa, void *va)
3182 {
3183 	if (pa)
3184 		bus_dmamap_unload(tag, map);
3185 	if (va)
3186 		bus_dmamem_free(tag, va, map);
3187 	if (tag)
3188 		bus_dma_tag_destroy(tag);
3189 
3190 	return (0);
3191 }
3192 
3193 /*
3194  * Allocates the ring for an ingress queue and an optional freelist.  If the
3195  * freelist is specified it will be allocated and then associated with the
3196  * ingress queue.
3197  *
3198  * Returns errno on failure.  Resources allocated up to that point may still be
3199  * allocated.  Caller is responsible for cleanup in case this function fails.
3200  *
3201  * If the ingress queue will take interrupts directly then the intr_idx
3202  * specifies the vector, starting from 0.  -1 means the interrupts for this
3203  * queue should be forwarded to the fwq.
3204  */
3205 static int
3206 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3207     int intr_idx, int cong)
3208 {
3209 	int rc, i, cntxt_id;
3210 	size_t len;
3211 	struct fw_iq_cmd c;
3212 	struct port_info *pi = vi->pi;
3213 	struct adapter *sc = iq->adapter;
3214 	struct sge_params *sp = &sc->params.sge;
3215 	__be32 v = 0;
3216 
3217 	len = iq->qsize * IQ_ESIZE;
3218 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3219 	    (void **)&iq->desc);
3220 	if (rc != 0)
3221 		return (rc);
3222 
3223 	bzero(&c, sizeof(c));
3224 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3225 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3226 	    V_FW_IQ_CMD_VFN(0));
3227 
3228 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3229 	    FW_LEN16(c));
3230 
3231 	/* Special handling for firmware event queue */
3232 	if (iq == &sc->sge.fwq)
3233 		v |= F_FW_IQ_CMD_IQASYNCH;
3234 
3235 	if (intr_idx < 0) {
3236 		/* Forwarded interrupts, all headed to fwq */
3237 		v |= F_FW_IQ_CMD_IQANDST;
3238 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3239 	} else {
3240 		KASSERT(intr_idx < sc->intr_count,
3241 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
3242 		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
3243 	}
3244 
3245 	c.type_to_iqandstindex = htobe32(v |
3246 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3247 	    V_FW_IQ_CMD_VIID(vi->viid) |
3248 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3249 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
3250 	    F_FW_IQ_CMD_IQGTSMODE |
3251 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3252 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3253 	c.iqsize = htobe16(iq->qsize);
3254 	c.iqaddr = htobe64(iq->ba);
3255 	if (cong >= 0)
3256 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3257 
3258 	if (fl) {
3259 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3260 
3261 		len = fl->qsize * EQ_ESIZE;
3262 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3263 		    &fl->ba, (void **)&fl->desc);
3264 		if (rc)
3265 			return (rc);
3266 
3267 		/* Allocate space for one software descriptor per buffer. */
3268 		rc = alloc_fl_sdesc(fl);
3269 		if (rc != 0) {
3270 			device_printf(sc->dev,
3271 			    "failed to setup fl software descriptors: %d\n",
3272 			    rc);
3273 			return (rc);
3274 		}
3275 
3276 		if (fl->flags & FL_BUF_PACKING) {
3277 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3278 			fl->buf_boundary = sp->pack_boundary;
3279 		} else {
3280 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3281 			fl->buf_boundary = 16;
3282 		}
3283 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3284 			fl->buf_boundary = sp->pad_boundary;
3285 
3286 		c.iqns_to_fl0congen |=
3287 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3288 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3289 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3290 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3291 			    0));
3292 		if (cong >= 0) {
3293 			c.iqns_to_fl0congen |=
3294 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
3295 				    F_FW_IQ_CMD_FL0CONGCIF |
3296 				    F_FW_IQ_CMD_FL0CONGEN);
3297 		}
3298 		c.fl0dcaen_to_fl0cidxfthresh =
3299 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3300 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3301 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3302 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3303 		c.fl0size = htobe16(fl->qsize);
3304 		c.fl0addr = htobe64(fl->ba);
3305 	}
3306 
3307 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3308 	if (rc != 0) {
3309 		device_printf(sc->dev,
3310 		    "failed to create ingress queue: %d\n", rc);
3311 		return (rc);
3312 	}
3313 
3314 	iq->cidx = 0;
3315 	iq->gen = F_RSPD_GEN;
3316 	iq->intr_next = iq->intr_params;
3317 	iq->cntxt_id = be16toh(c.iqid);
3318 	iq->abs_id = be16toh(c.physiqid);
3319 	iq->flags |= IQ_ALLOCATED;
3320 
3321 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3322 	if (cntxt_id >= sc->sge.niq) {
3323 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3324 		    cntxt_id, sc->sge.niq - 1);
3325 	}
3326 	sc->sge.iqmap[cntxt_id] = iq;
3327 
3328 	if (fl) {
3329 		u_int qid;
3330 
3331 		iq->flags |= IQ_HAS_FL;
3332 		fl->cntxt_id = be16toh(c.fl0id);
3333 		fl->pidx = fl->cidx = 0;
3334 
3335 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3336 		if (cntxt_id >= sc->sge.neq) {
3337 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3338 			    __func__, cntxt_id, sc->sge.neq - 1);
3339 		}
3340 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3341 
3342 		qid = fl->cntxt_id;
3343 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3344 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3345 			uint32_t mask = (1 << s_qpp) - 1;
3346 			volatile uint8_t *udb;
3347 
3348 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3349 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3350 			qid &= mask;
3351 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3352 				udb += qid << UDBS_SEG_SHIFT;
3353 				qid = 0;
3354 			}
3355 			fl->udb = (volatile void *)udb;
3356 		}
3357 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3358 
3359 		FL_LOCK(fl);
3360 		/* Enough to make sure the SGE doesn't think it's starved */
3361 		refill_fl(sc, fl, fl->lowat);
3362 		FL_UNLOCK(fl);
3363 	}
3364 
3365 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) {
3366 		uint32_t param, val;
3367 
3368 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3369 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3370 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
3371 		if (cong == 0)
3372 			val = 1 << 19;
3373 		else {
3374 			val = 2 << 19;
3375 			for (i = 0; i < 4; i++) {
3376 				if (cong & (1 << i))
3377 					val |= 1 << (i << 2);
3378 			}
3379 		}
3380 
3381 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3382 		if (rc != 0) {
3383 			/* report error but carry on */
3384 			device_printf(sc->dev,
3385 			    "failed to set congestion manager context for "
3386 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
3387 		}
3388 	}
3389 
3390 	/* Enable IQ interrupts */
3391 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3392 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3393 	    V_INGRESSQID(iq->cntxt_id));
3394 
3395 	return (0);
3396 }
3397 
3398 static int
3399 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3400 {
3401 	int rc;
3402 	struct adapter *sc = iq->adapter;
3403 	device_t dev;
3404 
3405 	if (sc == NULL)
3406 		return (0);	/* nothing to do */
3407 
3408 	dev = vi ? vi->dev : sc->dev;
3409 
3410 	if (iq->flags & IQ_ALLOCATED) {
3411 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
3412 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
3413 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
3414 		if (rc != 0) {
3415 			device_printf(dev,
3416 			    "failed to free queue %p: %d\n", iq, rc);
3417 			return (rc);
3418 		}
3419 		iq->flags &= ~IQ_ALLOCATED;
3420 	}
3421 
3422 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3423 
3424 	bzero(iq, sizeof(*iq));
3425 
3426 	if (fl) {
3427 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
3428 		    fl->desc);
3429 
3430 		if (fl->sdesc)
3431 			free_fl_sdesc(sc, fl);
3432 
3433 		if (mtx_initialized(&fl->fl_lock))
3434 			mtx_destroy(&fl->fl_lock);
3435 
3436 		bzero(fl, sizeof(*fl));
3437 	}
3438 
3439 	return (0);
3440 }
3441 
3442 static void
3443 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3444     struct sge_iq *iq)
3445 {
3446 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3447 
3448 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3449 	    "bus address of descriptor ring");
3450 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3451 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3452 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3453 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &iq->abs_id, 0,
3454 	    sysctl_uint16, "I", "absolute id of the queue");
3455 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3456 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &iq->cntxt_id, 0,
3457 	    sysctl_uint16, "I", "SGE context id of the queue");
3458 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3459 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &iq->cidx, 0,
3460 	    sysctl_uint16, "I", "consumer index");
3461 }
3462 
3463 static void
3464 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3465     struct sysctl_oid *oid, struct sge_fl *fl)
3466 {
3467 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3468 
3469 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3470 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3471 	children = SYSCTL_CHILDREN(oid);
3472 
3473 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3474 	    &fl->ba, "bus address of descriptor ring");
3475 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3476 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3477 	    "desc ring size in bytes");
3478 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3479 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &fl->cntxt_id, 0,
3480 	    sysctl_uint16, "I", "SGE context id of the freelist");
3481 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3482 	    fl_pad ? 1 : 0, "padding enabled");
3483 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3484 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3485 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3486 	    0, "consumer index");
3487 	if (fl->flags & FL_BUF_PACKING) {
3488 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3489 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3490 	}
3491 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3492 	    0, "producer index");
3493 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3494 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3495 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3496 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3497 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3498 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3499 }
3500 
3501 static int
3502 alloc_fwq(struct adapter *sc)
3503 {
3504 	int rc, intr_idx;
3505 	struct sge_iq *fwq = &sc->sge.fwq;
3506 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
3507 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3508 
3509 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
3510 	if (sc->flags & IS_VF)
3511 		intr_idx = 0;
3512 	else
3513 		intr_idx = sc->intr_count > 1 ? 1 : 0;
3514 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
3515 	if (rc != 0) {
3516 		device_printf(sc->dev,
3517 		    "failed to create firmware event queue: %d\n", rc);
3518 		return (rc);
3519 	}
3520 
3521 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq",
3522 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
3523 	add_iq_sysctls(&sc->ctx, oid, fwq);
3524 
3525 	return (0);
3526 }
3527 
3528 static int
3529 free_fwq(struct adapter *sc)
3530 {
3531 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
3532 }
3533 
3534 static int
3535 alloc_ctrlq(struct adapter *sc, struct sge_wrq *ctrlq, int idx,
3536     struct sysctl_oid *oid)
3537 {
3538 	int rc;
3539 	char name[16];
3540 	struct sysctl_oid_list *children;
3541 
3542 	snprintf(name, sizeof(name), "%s ctrlq%d", device_get_nameunit(sc->dev),
3543 	    idx);
3544 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[idx]->tx_chan,
3545 	    sc->sge.fwq.cntxt_id, name);
3546 
3547 	children = SYSCTL_CHILDREN(oid);
3548 	snprintf(name, sizeof(name), "%d", idx);
3549 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, name,
3550 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ctrl queue");
3551 	rc = alloc_wrq(sc, NULL, ctrlq, oid);
3552 
3553 	return (rc);
3554 }
3555 
3556 int
3557 tnl_cong(struct port_info *pi, int drop)
3558 {
3559 
3560 	if (drop == -1)
3561 		return (-1);
3562 	else if (drop == 1)
3563 		return (0);
3564 	else
3565 		return (pi->rx_e_chan_map);
3566 }
3567 
3568 static int
3569 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
3570     struct sysctl_oid *oid)
3571 {
3572 	int rc;
3573 	struct adapter *sc = vi->adapter;
3574 	struct sysctl_oid_list *children;
3575 	char name[16];
3576 
3577 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
3578 	    tnl_cong(vi->pi, cong_drop));
3579 	if (rc != 0)
3580 		return (rc);
3581 
3582 	if (idx == 0)
3583 		sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3584 	else
3585 		KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3586 		    ("iq_base mismatch"));
3587 	KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3588 	    ("PF with non-zero iq_base"));
3589 
3590 	/*
3591 	 * The freelist is just barely above the starvation threshold right now,
3592 	 * fill it up a bit more.
3593 	 */
3594 	FL_LOCK(&rxq->fl);
3595 	refill_fl(sc, &rxq->fl, 128);
3596 	FL_UNLOCK(&rxq->fl);
3597 
3598 #if defined(INET) || defined(INET6)
3599 	rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs);
3600 	if (rc != 0)
3601 		return (rc);
3602 	MPASS(rxq->lro.ifp == vi->ifp);	/* also indicates LRO init'ed */
3603 
3604 	if (vi->ifp->if_capenable & IFCAP_LRO)
3605 		rxq->iq.flags |= IQ_LRO_ENABLED;
3606 #endif
3607 	if (vi->ifp->if_capenable & IFCAP_HWRXTSTMP)
3608 		rxq->iq.flags |= IQ_RX_TIMESTAMP;
3609 	rxq->ifp = vi->ifp;
3610 
3611 	children = SYSCTL_CHILDREN(oid);
3612 
3613 	snprintf(name, sizeof(name), "%d", idx);
3614 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name,
3615 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queue");
3616 	children = SYSCTL_CHILDREN(oid);
3617 
3618 	add_iq_sysctls(&vi->ctx, oid, &rxq->iq);
3619 #if defined(INET) || defined(INET6)
3620 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3621 	    &rxq->lro.lro_queued, 0, NULL);
3622 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3623 	    &rxq->lro.lro_flushed, 0, NULL);
3624 #endif
3625 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3626 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3627 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3628 	    CTLFLAG_RD, &rxq->vlan_extraction,
3629 	    "# of times hardware extracted 802.1Q tag");
3630 
3631 	add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl);
3632 
3633 	return (rc);
3634 }
3635 
3636 static int
3637 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3638 {
3639 	int rc;
3640 
3641 #if defined(INET) || defined(INET6)
3642 	if (rxq->lro.ifp) {
3643 		tcp_lro_free(&rxq->lro);
3644 		rxq->lro.ifp = NULL;
3645 	}
3646 #endif
3647 
3648 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3649 	if (rc == 0)
3650 		bzero(rxq, sizeof(*rxq));
3651 
3652 	return (rc);
3653 }
3654 
3655 #ifdef TCP_OFFLOAD
3656 static int
3657 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3658     int intr_idx, int idx, struct sysctl_oid *oid)
3659 {
3660 	struct port_info *pi = vi->pi;
3661 	int rc;
3662 	struct sysctl_oid_list *children;
3663 	char name[16];
3664 
3665 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0);
3666 	if (rc != 0)
3667 		return (rc);
3668 
3669 	children = SYSCTL_CHILDREN(oid);
3670 
3671 	snprintf(name, sizeof(name), "%d", idx);
3672 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name,
3673 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queue");
3674 	add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq);
3675 	add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl);
3676 
3677 	return (rc);
3678 }
3679 
3680 static int
3681 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3682 {
3683 	int rc;
3684 
3685 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3686 	if (rc == 0)
3687 		bzero(ofld_rxq, sizeof(*ofld_rxq));
3688 
3689 	return (rc);
3690 }
3691 #endif
3692 
3693 #ifdef DEV_NETMAP
3694 static int
3695 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3696     int idx, struct sysctl_oid *oid)
3697 {
3698 	int rc;
3699 	struct sysctl_oid_list *children;
3700 	struct sysctl_ctx_list *ctx;
3701 	char name[16];
3702 	size_t len;
3703 	struct adapter *sc = vi->adapter;
3704 	struct netmap_adapter *na = NA(vi->ifp);
3705 
3706 	MPASS(na != NULL);
3707 
3708 	len = vi->qsize_rxq * IQ_ESIZE;
3709 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3710 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3711 	if (rc != 0)
3712 		return (rc);
3713 
3714 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3715 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3716 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3717 	if (rc != 0)
3718 		return (rc);
3719 
3720 	nm_rxq->vi = vi;
3721 	nm_rxq->nid = idx;
3722 	nm_rxq->iq_cidx = 0;
3723 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3724 	nm_rxq->iq_gen = F_RSPD_GEN;
3725 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3726 	nm_rxq->fl_sidx = na->num_rx_desc;
3727 	nm_rxq->fl_sidx2 = nm_rxq->fl_sidx;	/* copy for rxsync cacheline */
3728 	nm_rxq->intr_idx = intr_idx;
3729 	nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID;
3730 
3731 	ctx = &vi->ctx;
3732 	children = SYSCTL_CHILDREN(oid);
3733 
3734 	snprintf(name, sizeof(name), "%d", idx);
3735 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name,
3736 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queue");
3737 	children = SYSCTL_CHILDREN(oid);
3738 
3739 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3740 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &nm_rxq->iq_abs_id,
3741 	    0, sysctl_uint16, "I", "absolute id of the queue");
3742 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3743 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &nm_rxq->iq_cntxt_id,
3744 	    0, sysctl_uint16, "I", "SGE context id of the queue");
3745 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3746 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &nm_rxq->iq_cidx, 0,
3747 	    sysctl_uint16, "I", "consumer index");
3748 
3749 	children = SYSCTL_CHILDREN(oid);
3750 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3751 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3752 	children = SYSCTL_CHILDREN(oid);
3753 
3754 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3755 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &nm_rxq->fl_cntxt_id,
3756 	    0, sysctl_uint16, "I", "SGE context id of the freelist");
3757 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3758 	    &nm_rxq->fl_cidx, 0, "consumer index");
3759 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3760 	    &nm_rxq->fl_pidx, 0, "producer index");
3761 
3762 	return (rc);
3763 }
3764 
3765 
3766 static int
3767 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3768 {
3769 	struct adapter *sc = vi->adapter;
3770 
3771 	if (vi->flags & VI_INIT_DONE)
3772 		MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID);
3773 	else
3774 		MPASS(nm_rxq->iq_cntxt_id == 0);
3775 
3776 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3777 	    nm_rxq->iq_desc);
3778 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3779 	    nm_rxq->fl_desc);
3780 
3781 	return (0);
3782 }
3783 
3784 static int
3785 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3786     struct sysctl_oid *oid)
3787 {
3788 	int rc;
3789 	size_t len;
3790 	struct port_info *pi = vi->pi;
3791 	struct adapter *sc = pi->adapter;
3792 	struct netmap_adapter *na = NA(vi->ifp);
3793 	char name[16];
3794 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3795 
3796 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3797 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3798 	    &nm_txq->ba, (void **)&nm_txq->desc);
3799 	if (rc)
3800 		return (rc);
3801 
3802 	nm_txq->pidx = nm_txq->cidx = 0;
3803 	nm_txq->sidx = na->num_tx_desc;
3804 	nm_txq->nid = idx;
3805 	nm_txq->iqidx = iqidx;
3806 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3807 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
3808 	    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
3809 	if (sc->params.fw_vers >= FW_VERSION32(1, 24, 11, 0))
3810 		nm_txq->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR));
3811 	else
3812 		nm_txq->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3813 	nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID;
3814 
3815 	snprintf(name, sizeof(name), "%d", idx);
3816 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name,
3817 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queue");
3818 	children = SYSCTL_CHILDREN(oid);
3819 
3820 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3821 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3822 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3823 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &nm_txq->cidx, 0,
3824 	    sysctl_uint16, "I", "consumer index");
3825 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3826 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &nm_txq->pidx, 0,
3827 	    sysctl_uint16, "I", "producer index");
3828 
3829 	return (rc);
3830 }
3831 
3832 static int
3833 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3834 {
3835 	struct adapter *sc = vi->adapter;
3836 
3837 	if (vi->flags & VI_INIT_DONE)
3838 		MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID);
3839 	else
3840 		MPASS(nm_txq->cntxt_id == 0);
3841 
3842 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3843 	    nm_txq->desc);
3844 
3845 	return (0);
3846 }
3847 #endif
3848 
3849 /*
3850  * Returns a reasonable automatic cidx flush threshold for a given queue size.
3851  */
3852 static u_int
3853 qsize_to_fthresh(int qsize)
3854 {
3855 	u_int fthresh;
3856 
3857 	while (!powerof2(qsize))
3858 		qsize++;
3859 	fthresh = ilog2(qsize);
3860 	if (fthresh > X_CIDXFLUSHTHRESH_128)
3861 		fthresh = X_CIDXFLUSHTHRESH_128;
3862 
3863 	return (fthresh);
3864 }
3865 
3866 static int
3867 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3868 {
3869 	int rc, cntxt_id;
3870 	struct fw_eq_ctrl_cmd c;
3871 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3872 
3873 	bzero(&c, sizeof(c));
3874 
3875 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3876 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3877 	    V_FW_EQ_CTRL_CMD_VFN(0));
3878 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3879 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3880 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3881 	c.physeqid_pkd = htobe32(0);
3882 	c.fetchszm_to_iqid =
3883 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3884 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3885 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3886 	c.dcaen_to_eqsize =
3887 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3888 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
3889 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3890 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
3891 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3892 	c.eqaddr = htobe64(eq->ba);
3893 
3894 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3895 	if (rc != 0) {
3896 		device_printf(sc->dev,
3897 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3898 		return (rc);
3899 	}
3900 	eq->flags |= EQ_ALLOCATED;
3901 
3902 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3903 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3904 	if (cntxt_id >= sc->sge.neq)
3905 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3906 		cntxt_id, sc->sge.neq - 1);
3907 	sc->sge.eqmap[cntxt_id] = eq;
3908 
3909 	return (rc);
3910 }
3911 
3912 static int
3913 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3914 {
3915 	int rc, cntxt_id;
3916 	struct fw_eq_eth_cmd c;
3917 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3918 
3919 	bzero(&c, sizeof(c));
3920 
3921 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3922 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3923 	    V_FW_EQ_ETH_CMD_VFN(0));
3924 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3925 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3926 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3927 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3928 	c.fetchszm_to_iqid =
3929 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3930 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3931 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3932 	c.dcaen_to_eqsize =
3933 	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3934 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
3935 		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3936 		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3937 	c.eqaddr = htobe64(eq->ba);
3938 
3939 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3940 	if (rc != 0) {
3941 		device_printf(vi->dev,
3942 		    "failed to create Ethernet egress queue: %d\n", rc);
3943 		return (rc);
3944 	}
3945 	eq->flags |= EQ_ALLOCATED;
3946 
3947 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3948 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
3949 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3950 	if (cntxt_id >= sc->sge.neq)
3951 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3952 		cntxt_id, sc->sge.neq - 1);
3953 	sc->sge.eqmap[cntxt_id] = eq;
3954 
3955 	return (rc);
3956 }
3957 
3958 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3959 static int
3960 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3961 {
3962 	int rc, cntxt_id;
3963 	struct fw_eq_ofld_cmd c;
3964 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3965 
3966 	bzero(&c, sizeof(c));
3967 
3968 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3969 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3970 	    V_FW_EQ_OFLD_CMD_VFN(0));
3971 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3972 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3973 	c.fetchszm_to_iqid =
3974 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3975 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3976 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3977 	c.dcaen_to_eqsize =
3978 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3979 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
3980 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3981 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
3982 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3983 	c.eqaddr = htobe64(eq->ba);
3984 
3985 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3986 	if (rc != 0) {
3987 		device_printf(vi->dev,
3988 		    "failed to create egress queue for TCP offload: %d\n", rc);
3989 		return (rc);
3990 	}
3991 	eq->flags |= EQ_ALLOCATED;
3992 
3993 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3994 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3995 	if (cntxt_id >= sc->sge.neq)
3996 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3997 		cntxt_id, sc->sge.neq - 1);
3998 	sc->sge.eqmap[cntxt_id] = eq;
3999 
4000 	return (rc);
4001 }
4002 #endif
4003 
4004 static int
4005 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4006 {
4007 	int rc, qsize;
4008 	size_t len;
4009 
4010 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
4011 
4012 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4013 	len = qsize * EQ_ESIZE;
4014 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
4015 	    &eq->ba, (void **)&eq->desc);
4016 	if (rc)
4017 		return (rc);
4018 
4019 	eq->pidx = eq->cidx = eq->dbidx = 0;
4020 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4021 	eq->equeqidx = 0;
4022 	eq->doorbells = sc->doorbells;
4023 
4024 	switch (eq->flags & EQ_TYPEMASK) {
4025 	case EQ_CTRL:
4026 		rc = ctrl_eq_alloc(sc, eq);
4027 		break;
4028 
4029 	case EQ_ETH:
4030 		rc = eth_eq_alloc(sc, vi, eq);
4031 		break;
4032 
4033 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4034 	case EQ_OFLD:
4035 		rc = ofld_eq_alloc(sc, vi, eq);
4036 		break;
4037 #endif
4038 
4039 	default:
4040 		panic("%s: invalid eq type %d.", __func__,
4041 		    eq->flags & EQ_TYPEMASK);
4042 	}
4043 	if (rc != 0) {
4044 		device_printf(sc->dev,
4045 		    "failed to allocate egress queue(%d): %d\n",
4046 		    eq->flags & EQ_TYPEMASK, rc);
4047 	}
4048 
4049 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4050 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4051 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4052 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4053 		uint32_t mask = (1 << s_qpp) - 1;
4054 		volatile uint8_t *udb;
4055 
4056 		udb = sc->udbs_base + UDBS_DB_OFFSET;
4057 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4058 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4059 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4060 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
4061 		else {
4062 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4063 			eq->udb_qid = 0;
4064 		}
4065 		eq->udb = (volatile void *)udb;
4066 	}
4067 
4068 	return (rc);
4069 }
4070 
4071 static int
4072 free_eq(struct adapter *sc, struct sge_eq *eq)
4073 {
4074 	int rc;
4075 
4076 	if (eq->flags & EQ_ALLOCATED) {
4077 		switch (eq->flags & EQ_TYPEMASK) {
4078 		case EQ_CTRL:
4079 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
4080 			    eq->cntxt_id);
4081 			break;
4082 
4083 		case EQ_ETH:
4084 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
4085 			    eq->cntxt_id);
4086 			break;
4087 
4088 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4089 		case EQ_OFLD:
4090 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
4091 			    eq->cntxt_id);
4092 			break;
4093 #endif
4094 
4095 		default:
4096 			panic("%s: invalid eq type %d.", __func__,
4097 			    eq->flags & EQ_TYPEMASK);
4098 		}
4099 		if (rc != 0) {
4100 			device_printf(sc->dev,
4101 			    "failed to free egress queue (%d): %d\n",
4102 			    eq->flags & EQ_TYPEMASK, rc);
4103 			return (rc);
4104 		}
4105 		eq->flags &= ~EQ_ALLOCATED;
4106 	}
4107 
4108 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4109 
4110 	if (mtx_initialized(&eq->eq_lock))
4111 		mtx_destroy(&eq->eq_lock);
4112 
4113 	bzero(eq, sizeof(*eq));
4114 	return (0);
4115 }
4116 
4117 static int
4118 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4119     struct sysctl_oid *oid)
4120 {
4121 	int rc;
4122 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
4123 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4124 
4125 	rc = alloc_eq(sc, vi, &wrq->eq);
4126 	if (rc)
4127 		return (rc);
4128 
4129 	wrq->adapter = sc;
4130 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4131 	TAILQ_INIT(&wrq->incomplete_wrs);
4132 	STAILQ_INIT(&wrq->wr_list);
4133 	wrq->nwr_pending = 0;
4134 	wrq->ndesc_needed = 0;
4135 
4136 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
4137 	    &wrq->eq.ba, "bus address of descriptor ring");
4138 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4139 	    wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len,
4140 	    "desc ring size in bytes");
4141 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4142 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
4143 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
4144 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &wrq->eq.cidx, 0,
4145 	    sysctl_uint16, "I", "consumer index");
4146 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
4147 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &wrq->eq.pidx, 0,
4148 	    sysctl_uint16, "I", "producer index");
4149 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4150 	    wrq->eq.sidx, "status page index");
4151 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4152 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4153 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4154 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4155 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4156 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4157 
4158 	return (rc);
4159 }
4160 
4161 static int
4162 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4163 {
4164 	int rc;
4165 
4166 	rc = free_eq(sc, &wrq->eq);
4167 	if (rc)
4168 		return (rc);
4169 
4170 	bzero(wrq, sizeof(*wrq));
4171 	return (0);
4172 }
4173 
4174 static int
4175 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
4176     struct sysctl_oid *oid)
4177 {
4178 	int rc;
4179 	struct port_info *pi = vi->pi;
4180 	struct adapter *sc = pi->adapter;
4181 	struct sge_eq *eq = &txq->eq;
4182 	struct txpkts *txp;
4183 	char name[16];
4184 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4185 
4186 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
4187 	    M_CXGBE, &eq->eq_lock, M_WAITOK);
4188 	if (rc != 0) {
4189 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
4190 		return (rc);
4191 	}
4192 
4193 	rc = alloc_eq(sc, vi, eq);
4194 	if (rc != 0) {
4195 		mp_ring_free(txq->r);
4196 		txq->r = NULL;
4197 		return (rc);
4198 	}
4199 
4200 	/* Can't fail after this point. */
4201 
4202 	if (idx == 0)
4203 		sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4204 	else
4205 		KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4206 		    ("eq_base mismatch"));
4207 	KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4208 	    ("PF with non-zero eq_base"));
4209 
4210 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4211 	txq->ifp = vi->ifp;
4212 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4213 	if (sc->flags & IS_VF)
4214 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4215 		    V_TXPKT_INTF(pi->tx_chan));
4216 	else
4217 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4218 		    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4219 		    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4220 	txq->tc_idx = -1;
4221 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4222 	    M_ZERO | M_WAITOK);
4223 
4224 	txp = &txq->txp;
4225 	txp->score = 5;
4226 	MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4227 	txq->txp.max_npkt = min(nitems(txp->mb),
4228 	    sc->params.max_pkts_per_eth_tx_pkts_wr);
4229 
4230 	snprintf(name, sizeof(name), "%d", idx);
4231 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name,
4232 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queue");
4233 	children = SYSCTL_CHILDREN(oid);
4234 
4235 	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
4236 	    &eq->ba, "bus address of descriptor ring");
4237 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4238 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4239 	    "desc ring size in bytes");
4240 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4241 	    &eq->abs_id, 0, "absolute id of the queue");
4242 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4243 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4244 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
4245 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &eq->cidx, 0,
4246 	    sysctl_uint16, "I", "consumer index");
4247 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
4248 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, &eq->pidx, 0,
4249 	    sysctl_uint16, "I", "producer index");
4250 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4251 	    eq->sidx, "status page index");
4252 
4253 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
4254 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, vi, idx, sysctl_tc,
4255 	    "I", "traffic class (-1 means none)");
4256 
4257 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4258 	    &txq->txcsum, "# of times hardware assisted with checksum");
4259 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
4260 	    CTLFLAG_RD, &txq->vlan_insertion,
4261 	    "# of times hardware inserted 802.1Q tag");
4262 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4263 	    &txq->tso_wrs, "# of TSO work requests");
4264 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4265 	    &txq->imm_wrs, "# of work requests with immediate data");
4266 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4267 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4268 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4269 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4270 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
4271 	    CTLFLAG_RD, &txq->txpkts0_wrs,
4272 	    "# of txpkts (type 0) work requests");
4273 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
4274 	    CTLFLAG_RD, &txq->txpkts1_wrs,
4275 	    "# of txpkts (type 1) work requests");
4276 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
4277 	    CTLFLAG_RD, &txq->txpkts0_pkts,
4278 	    "# of frames tx'd using type0 txpkts work requests");
4279 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
4280 	    CTLFLAG_RD, &txq->txpkts1_pkts,
4281 	    "# of frames tx'd using type1 txpkts work requests");
4282 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4283 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4284 
4285 #ifdef KERN_TLS
4286 	if (sc->flags & KERN_TLS_OK) {
4287 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4288 		    "kern_tls_records", CTLFLAG_RD, &txq->kern_tls_records,
4289 		    "# of NIC TLS records transmitted");
4290 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4291 		    "kern_tls_short", CTLFLAG_RD, &txq->kern_tls_short,
4292 		    "# of short NIC TLS records transmitted");
4293 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4294 		    "kern_tls_partial", CTLFLAG_RD, &txq->kern_tls_partial,
4295 		    "# of partial NIC TLS records transmitted");
4296 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4297 		    "kern_tls_full", CTLFLAG_RD, &txq->kern_tls_full,
4298 		    "# of full NIC TLS records transmitted");
4299 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4300 		    "kern_tls_octets", CTLFLAG_RD, &txq->kern_tls_octets,
4301 		    "# of payload octets in transmitted NIC TLS records");
4302 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4303 		    "kern_tls_waste", CTLFLAG_RD, &txq->kern_tls_waste,
4304 		    "# of octets DMAd but not transmitted in NIC TLS records");
4305 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4306 		    "kern_tls_options", CTLFLAG_RD, &txq->kern_tls_options,
4307 		    "# of NIC TLS options-only packets transmitted");
4308 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4309 		    "kern_tls_header", CTLFLAG_RD, &txq->kern_tls_header,
4310 		    "# of NIC TLS header-only packets transmitted");
4311 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4312 		    "kern_tls_fin", CTLFLAG_RD, &txq->kern_tls_fin,
4313 		    "# of NIC TLS FIN-only packets transmitted");
4314 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4315 		    "kern_tls_fin_short", CTLFLAG_RD, &txq->kern_tls_fin_short,
4316 		    "# of NIC TLS padded FIN packets on short TLS records");
4317 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4318 		    "kern_tls_cbc", CTLFLAG_RD, &txq->kern_tls_cbc,
4319 		    "# of NIC TLS sessions using AES-CBC");
4320 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4321 		    "kern_tls_gcm", CTLFLAG_RD, &txq->kern_tls_gcm,
4322 		    "# of NIC TLS sessions using AES-GCM");
4323 	}
4324 #endif
4325 	mp_ring_sysctls(txq->r, &vi->ctx, children);
4326 
4327 	return (0);
4328 }
4329 
4330 static int
4331 free_txq(struct vi_info *vi, struct sge_txq *txq)
4332 {
4333 	int rc;
4334 	struct adapter *sc = vi->adapter;
4335 	struct sge_eq *eq = &txq->eq;
4336 
4337 	rc = free_eq(sc, eq);
4338 	if (rc)
4339 		return (rc);
4340 
4341 	sglist_free(txq->gl);
4342 	free(txq->sdesc, M_CXGBE);
4343 	mp_ring_free(txq->r);
4344 
4345 	bzero(txq, sizeof(*txq));
4346 	return (0);
4347 }
4348 
4349 static void
4350 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4351 {
4352 	bus_addr_t *ba = arg;
4353 
4354 	KASSERT(nseg == 1,
4355 	    ("%s meant for single segment mappings only.", __func__));
4356 
4357 	*ba = error ? 0 : segs->ds_addr;
4358 }
4359 
4360 static inline void
4361 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4362 {
4363 	uint32_t n, v;
4364 
4365 	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
4366 	MPASS(n > 0);
4367 
4368 	wmb();
4369 	v = fl->dbval | V_PIDX(n);
4370 	if (fl->udb)
4371 		*fl->udb = htole32(v);
4372 	else
4373 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4374 	IDXINCR(fl->dbidx, n, fl->sidx);
4375 }
4376 
4377 /*
4378  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4379  * recycled do not count towards this allocation budget.
4380  *
4381  * Returns non-zero to indicate that this freelist should be added to the list
4382  * of starving freelists.
4383  */
4384 static int
4385 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4386 {
4387 	__be64 *d;
4388 	struct fl_sdesc *sd;
4389 	uintptr_t pa;
4390 	caddr_t cl;
4391 	struct rx_buf_info *rxb;
4392 	struct cluster_metadata *clm;
4393 	uint16_t max_pidx;
4394 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
4395 
4396 	FL_LOCK_ASSERT_OWNED(fl);
4397 
4398 	/*
4399 	 * We always stop at the beginning of the hardware descriptor that's just
4400 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
4401 	 * which would mean an empty freelist to the chip.
4402 	 */
4403 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
4404 	if (fl->pidx == max_pidx * 8)
4405 		return (0);
4406 
4407 	d = &fl->desc[fl->pidx];
4408 	sd = &fl->sdesc[fl->pidx];
4409 
4410 	while (n > 0) {
4411 
4412 		if (sd->cl != NULL) {
4413 
4414 			if (sd->nmbuf == 0) {
4415 				/*
4416 				 * Fast recycle without involving any atomics on
4417 				 * the cluster's metadata (if the cluster has
4418 				 * metadata).  This happens when all frames
4419 				 * received in the cluster were small enough to
4420 				 * fit within a single mbuf each.
4421 				 */
4422 				fl->cl_fast_recycled++;
4423 				goto recycled;
4424 			}
4425 
4426 			/*
4427 			 * Cluster is guaranteed to have metadata.  Clusters
4428 			 * without metadata always take the fast recycle path
4429 			 * when they're recycled.
4430 			 */
4431 			clm = cl_metadata(sd);
4432 			MPASS(clm != NULL);
4433 
4434 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4435 				fl->cl_recycled++;
4436 				counter_u64_add(extfree_rels, 1);
4437 				goto recycled;
4438 			}
4439 			sd->cl = NULL;	/* gave up my reference */
4440 		}
4441 		MPASS(sd->cl == NULL);
4442 		rxb = &sc->sge.rx_buf_info[fl->zidx];
4443 		cl = uma_zalloc(rxb->zone, M_NOWAIT);
4444 		if (__predict_false(cl == NULL)) {
4445 			if (fl->zidx != fl->safe_zidx) {
4446 				rxb = &sc->sge.rx_buf_info[fl->safe_zidx];
4447 				cl = uma_zalloc(rxb->zone, M_NOWAIT);
4448 			}
4449 			if (cl == NULL)
4450 				break;
4451 		}
4452 		fl->cl_allocated++;
4453 		n--;
4454 
4455 		pa = pmap_kextract((vm_offset_t)cl);
4456 		sd->cl = cl;
4457 		sd->zidx = fl->zidx;
4458 
4459 		if (fl->flags & FL_BUF_PACKING) {
4460 			*d = htobe64(pa | rxb->hwidx2);
4461 			sd->moff = rxb->size2;
4462 		} else {
4463 			*d = htobe64(pa | rxb->hwidx1);
4464 			sd->moff = 0;
4465 		}
4466 recycled:
4467 		sd->nmbuf = 0;
4468 		d++;
4469 		sd++;
4470 		if (__predict_false((++fl->pidx & 7) == 0)) {
4471 			uint16_t pidx = fl->pidx >> 3;
4472 
4473 			if (__predict_false(pidx == fl->sidx)) {
4474 				fl->pidx = 0;
4475 				pidx = 0;
4476 				sd = fl->sdesc;
4477 				d = fl->desc;
4478 			}
4479 			if (n < 8 || pidx == max_pidx)
4480 				break;
4481 
4482 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
4483 				ring_fl_db(sc, fl);
4484 		}
4485 	}
4486 
4487 	if ((fl->pidx >> 3) != fl->dbidx)
4488 		ring_fl_db(sc, fl);
4489 
4490 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
4491 }
4492 
4493 /*
4494  * Attempt to refill all starving freelists.
4495  */
4496 static void
4497 refill_sfl(void *arg)
4498 {
4499 	struct adapter *sc = arg;
4500 	struct sge_fl *fl, *fl_temp;
4501 
4502 	mtx_assert(&sc->sfl_lock, MA_OWNED);
4503 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
4504 		FL_LOCK(fl);
4505 		refill_fl(sc, fl, 64);
4506 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
4507 			TAILQ_REMOVE(&sc->sfl, fl, link);
4508 			fl->flags &= ~FL_STARVING;
4509 		}
4510 		FL_UNLOCK(fl);
4511 	}
4512 
4513 	if (!TAILQ_EMPTY(&sc->sfl))
4514 		callout_schedule(&sc->sfl_callout, hz / 5);
4515 }
4516 
4517 static int
4518 alloc_fl_sdesc(struct sge_fl *fl)
4519 {
4520 
4521 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
4522 	    M_ZERO | M_WAITOK);
4523 
4524 	return (0);
4525 }
4526 
4527 static void
4528 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
4529 {
4530 	struct fl_sdesc *sd;
4531 	struct cluster_metadata *clm;
4532 	int i;
4533 
4534 	sd = fl->sdesc;
4535 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
4536 		if (sd->cl == NULL)
4537 			continue;
4538 
4539 		if (sd->nmbuf == 0)
4540 			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
4541 		else if (fl->flags & FL_BUF_PACKING) {
4542 			clm = cl_metadata(sd);
4543 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4544 				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
4545 				    sd->cl);
4546 				counter_u64_add(extfree_rels, 1);
4547 			}
4548 		}
4549 		sd->cl = NULL;
4550 	}
4551 
4552 	free(fl->sdesc, M_CXGBE);
4553 	fl->sdesc = NULL;
4554 }
4555 
4556 static inline void
4557 get_pkt_gl(struct mbuf *m, struct sglist *gl)
4558 {
4559 	int rc;
4560 
4561 	M_ASSERTPKTHDR(m);
4562 
4563 	sglist_reset(gl);
4564 	rc = sglist_append_mbuf(gl, m);
4565 	if (__predict_false(rc != 0)) {
4566 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
4567 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
4568 	}
4569 
4570 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
4571 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
4572 	    mbuf_nsegs(m), gl->sg_nseg));
4573 	KASSERT(gl->sg_nseg > 0 &&
4574 	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
4575 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
4576 		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
4577 }
4578 
4579 /*
4580  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
4581  */
4582 static inline u_int
4583 txpkt_len16(u_int nsegs, u_int tso)
4584 {
4585 	u_int n;
4586 
4587 	MPASS(nsegs > 0);
4588 
4589 	nsegs--; /* first segment is part of ulptx_sgl */
4590 	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
4591 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4592 	if (tso)
4593 		n += sizeof(struct cpl_tx_pkt_lso_core);
4594 
4595 	return (howmany(n, 16));
4596 }
4597 
4598 /*
4599  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
4600  * request header.
4601  */
4602 static inline u_int
4603 txpkt_vm_len16(u_int nsegs, u_int tso)
4604 {
4605 	u_int n;
4606 
4607 	MPASS(nsegs > 0);
4608 
4609 	nsegs--; /* first segment is part of ulptx_sgl */
4610 	n = sizeof(struct fw_eth_tx_pkt_vm_wr) +
4611 	    sizeof(struct cpl_tx_pkt_core) +
4612 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4613 	if (tso)
4614 		n += sizeof(struct cpl_tx_pkt_lso_core);
4615 
4616 	return (howmany(n, 16));
4617 }
4618 
4619 /*
4620  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
4621  * request header.
4622  */
4623 static inline u_int
4624 txpkts0_len16(u_int nsegs)
4625 {
4626 	u_int n;
4627 
4628 	MPASS(nsegs > 0);
4629 
4630 	nsegs--; /* first segment is part of ulptx_sgl */
4631 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
4632 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
4633 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
4634 
4635 	return (howmany(n, 16));
4636 }
4637 
4638 /*
4639  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
4640  * request header.
4641  */
4642 static inline u_int
4643 txpkts1_len16(void)
4644 {
4645 	u_int n;
4646 
4647 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
4648 
4649 	return (howmany(n, 16));
4650 }
4651 
4652 static inline u_int
4653 imm_payload(u_int ndesc)
4654 {
4655 	u_int n;
4656 
4657 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
4658 	    sizeof(struct cpl_tx_pkt_core);
4659 
4660 	return (n);
4661 }
4662 
4663 static inline uint64_t
4664 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
4665 {
4666 	uint64_t ctrl;
4667 	int csum_type;
4668 
4669 	M_ASSERTPKTHDR(m);
4670 
4671 	if (needs_hwcsum(m) == 0)
4672 		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
4673 
4674 	ctrl = 0;
4675 	if (needs_l3_csum(m) == 0)
4676 		ctrl |= F_TXPKT_IPCSUM_DIS;
4677 	switch (m->m_pkthdr.csum_flags &
4678 	    (CSUM_IP_TCP | CSUM_IP_UDP | CSUM_IP6_TCP | CSUM_IP6_UDP)) {
4679 	case CSUM_IP_TCP:
4680 		csum_type = TX_CSUM_TCPIP;
4681 		break;
4682 	case CSUM_IP_UDP:
4683 		csum_type = TX_CSUM_UDPIP;
4684 		break;
4685 	case CSUM_IP6_TCP:
4686 		csum_type = TX_CSUM_TCPIP6;
4687 		break;
4688 	case CSUM_IP6_UDP:
4689 		csum_type = TX_CSUM_UDPIP6;
4690 		break;
4691 	default:
4692 		/* needs_hwcsum told us that at least some hwcsum is needed. */
4693 		MPASS(ctrl == 0);
4694 		MPASS(m->m_pkthdr.csum_flags & CSUM_IP);
4695 		ctrl |= F_TXPKT_L4CSUM_DIS;
4696 		csum_type = TX_CSUM_IP;
4697 		break;
4698 	}
4699 
4700 	MPASS(m->m_pkthdr.l2hlen > 0);
4701 	MPASS(m->m_pkthdr.l3hlen > 0);
4702 	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) |
4703 	    V_TXPKT_IPHDR_LEN(m->m_pkthdr.l3hlen);
4704 	if (chip_id(sc) <= CHELSIO_T5)
4705 		ctrl |= V_TXPKT_ETHHDR_LEN(m->m_pkthdr.l2hlen - ETHER_HDR_LEN);
4706 	else
4707 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(m->m_pkthdr.l2hlen - ETHER_HDR_LEN);
4708 
4709 	return (ctrl);
4710 }
4711 
4712 #define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
4713 
4714 /*
4715  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
4716  * software descriptor, and advance the pidx.  It is guaranteed that enough
4717  * descriptors are available.
4718  *
4719  * The return value is the # of hardware descriptors used.
4720  */
4721 static u_int
4722 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
4723 {
4724 	struct sge_eq *eq;
4725 	struct fw_eth_tx_pkt_vm_wr *wr;
4726 	struct tx_sdesc *txsd;
4727 	struct cpl_tx_pkt_core *cpl;
4728 	uint32_t ctrl;	/* used in many unrelated places */
4729 	uint64_t ctrl1;
4730 	int len16, ndesc, pktlen, nsegs;
4731 	caddr_t dst;
4732 
4733 	TXQ_LOCK_ASSERT_OWNED(txq);
4734 	M_ASSERTPKTHDR(m0);
4735 
4736 	len16 = mbuf_len16(m0);
4737 	nsegs = mbuf_nsegs(m0);
4738 	pktlen = m0->m_pkthdr.len;
4739 	ctrl = sizeof(struct cpl_tx_pkt_core);
4740 	if (needs_tso(m0))
4741 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4742 	ndesc = tx_len16_to_desc(len16);
4743 
4744 	/* Firmware work request header */
4745 	eq = &txq->eq;
4746 	wr = (void *)&eq->desc[eq->pidx];
4747 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
4748 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4749 
4750 	ctrl = V_FW_WR_LEN16(len16);
4751 	wr->equiq_to_len16 = htobe32(ctrl);
4752 	wr->r3[0] = 0;
4753 	wr->r3[1] = 0;
4754 
4755 	/*
4756 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
4757 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
4758 	 * simpler to always copy it rather than making it
4759 	 * conditional.  Also, it seems that we do not have to set
4760 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
4761 	 */
4762 	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
4763 
4764 	if (needs_tso(m0)) {
4765 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4766 
4767 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4768 		    m0->m_pkthdr.l4hlen > 0,
4769 		    ("%s: mbuf %p needs TSO but missing header lengths",
4770 			__func__, m0));
4771 
4772 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4773 		    F_LSO_LAST_SLICE | V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
4774 			ETHER_HDR_LEN) >> 2) |
4775 		    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
4776 		    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4777 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4778 			ctrl |= F_LSO_IPV6;
4779 
4780 		lso->lso_ctrl = htobe32(ctrl);
4781 		lso->ipid_ofst = htobe16(0);
4782 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4783 		lso->seqno_offset = htobe32(0);
4784 		lso->len = htobe32(pktlen);
4785 
4786 		cpl = (void *)(lso + 1);
4787 
4788 		txq->tso_wrs++;
4789 	} else
4790 		cpl = (void *)(wr + 1);
4791 
4792 	/* Checksum offload */
4793 	ctrl1 = csum_to_ctrl(sc, m0);
4794 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
4795 		txq->txcsum++;	/* some hardware assistance provided */
4796 
4797 	/* VLAN tag insertion */
4798 	if (needs_vlan_insertion(m0)) {
4799 		ctrl1 |= F_TXPKT_VLAN_VLD |
4800 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4801 		txq->vlan_insertion++;
4802 	}
4803 
4804 	/* CPL header */
4805 	cpl->ctrl0 = txq->cpl_ctrl0;
4806 	cpl->pack = 0;
4807 	cpl->len = htobe16(pktlen);
4808 	cpl->ctrl1 = htobe64(ctrl1);
4809 
4810 	/* SGL */
4811 	dst = (void *)(cpl + 1);
4812 
4813 	/*
4814 	 * A packet using TSO will use up an entire descriptor for the
4815 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
4816 	 * If this descriptor is the last descriptor in the ring, wrap
4817 	 * around to the front of the ring explicitly for the start of
4818 	 * the sgl.
4819 	 */
4820 	if (dst == (void *)&eq->desc[eq->sidx]) {
4821 		dst = (void *)&eq->desc[0];
4822 		write_gl_to_txd(txq, m0, &dst, 0);
4823 	} else
4824 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4825 	txq->sgl_wrs++;
4826 	txq->txpkt_wrs++;
4827 
4828 	txsd = &txq->sdesc[eq->pidx];
4829 	txsd->m = m0;
4830 	txsd->desc_used = ndesc;
4831 
4832 	return (ndesc);
4833 }
4834 
4835 /*
4836  * Write a raw WR to the hardware descriptors, update the software
4837  * descriptor, and advance the pidx.  It is guaranteed that enough
4838  * descriptors are available.
4839  *
4840  * The return value is the # of hardware descriptors used.
4841  */
4842 static u_int
4843 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
4844 {
4845 	struct sge_eq *eq = &txq->eq;
4846 	struct tx_sdesc *txsd;
4847 	struct mbuf *m;
4848 	caddr_t dst;
4849 	int len16, ndesc;
4850 
4851 	len16 = mbuf_len16(m0);
4852 	ndesc = tx_len16_to_desc(len16);
4853 	MPASS(ndesc <= available);
4854 
4855 	dst = wr;
4856 	for (m = m0; m != NULL; m = m->m_next)
4857 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4858 
4859 	txq->raw_wrs++;
4860 
4861 	txsd = &txq->sdesc[eq->pidx];
4862 	txsd->m = m0;
4863 	txsd->desc_used = ndesc;
4864 
4865 	return (ndesc);
4866 }
4867 
4868 /*
4869  * Write a txpkt WR for this packet to the hardware descriptors, update the
4870  * software descriptor, and advance the pidx.  It is guaranteed that enough
4871  * descriptors are available.
4872  *
4873  * The return value is the # of hardware descriptors used.
4874  */
4875 static u_int
4876 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
4877     u_int available)
4878 {
4879 	struct sge_eq *eq;
4880 	struct fw_eth_tx_pkt_wr *wr;
4881 	struct tx_sdesc *txsd;
4882 	struct cpl_tx_pkt_core *cpl;
4883 	uint32_t ctrl;	/* used in many unrelated places */
4884 	uint64_t ctrl1;
4885 	int len16, ndesc, pktlen, nsegs;
4886 	caddr_t dst;
4887 
4888 	TXQ_LOCK_ASSERT_OWNED(txq);
4889 	M_ASSERTPKTHDR(m0);
4890 
4891 	len16 = mbuf_len16(m0);
4892 	nsegs = mbuf_nsegs(m0);
4893 	pktlen = m0->m_pkthdr.len;
4894 	ctrl = sizeof(struct cpl_tx_pkt_core);
4895 	if (needs_tso(m0))
4896 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4897 	else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
4898 	    available >= 2) {
4899 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
4900 		ctrl += pktlen;
4901 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
4902 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
4903 		nsegs = 0;
4904 	}
4905 	ndesc = tx_len16_to_desc(len16);
4906 	MPASS(ndesc <= available);
4907 
4908 	/* Firmware work request header */
4909 	eq = &txq->eq;
4910 	wr = (void *)&eq->desc[eq->pidx];
4911 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
4912 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4913 
4914 	ctrl = V_FW_WR_LEN16(len16);
4915 	wr->equiq_to_len16 = htobe32(ctrl);
4916 	wr->r3 = 0;
4917 
4918 	if (needs_tso(m0)) {
4919 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4920 
4921 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4922 		    m0->m_pkthdr.l4hlen > 0,
4923 		    ("%s: mbuf %p needs TSO but missing header lengths",
4924 			__func__, m0));
4925 
4926 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4927 		    F_LSO_LAST_SLICE | V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
4928 			ETHER_HDR_LEN) >> 2) |
4929 		    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
4930 		    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4931 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4932 			ctrl |= F_LSO_IPV6;
4933 
4934 		lso->lso_ctrl = htobe32(ctrl);
4935 		lso->ipid_ofst = htobe16(0);
4936 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4937 		lso->seqno_offset = htobe32(0);
4938 		lso->len = htobe32(pktlen);
4939 
4940 		cpl = (void *)(lso + 1);
4941 
4942 		txq->tso_wrs++;
4943 	} else
4944 		cpl = (void *)(wr + 1);
4945 
4946 	/* Checksum offload */
4947 	ctrl1 = csum_to_ctrl(sc, m0);
4948 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
4949 		txq->txcsum++;	/* some hardware assistance provided */
4950 
4951 	/* VLAN tag insertion */
4952 	if (needs_vlan_insertion(m0)) {
4953 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4954 		txq->vlan_insertion++;
4955 	}
4956 
4957 	/* CPL header */
4958 	cpl->ctrl0 = txq->cpl_ctrl0;
4959 	cpl->pack = 0;
4960 	cpl->len = htobe16(pktlen);
4961 	cpl->ctrl1 = htobe64(ctrl1);
4962 
4963 	/* SGL */
4964 	dst = (void *)(cpl + 1);
4965 	if (nsegs > 0) {
4966 
4967 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4968 		txq->sgl_wrs++;
4969 	} else {
4970 		struct mbuf *m;
4971 
4972 		for (m = m0; m != NULL; m = m->m_next) {
4973 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4974 #ifdef INVARIANTS
4975 			pktlen -= m->m_len;
4976 #endif
4977 		}
4978 #ifdef INVARIANTS
4979 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
4980 #endif
4981 		txq->imm_wrs++;
4982 	}
4983 
4984 	txq->txpkt_wrs++;
4985 
4986 	txsd = &txq->sdesc[eq->pidx];
4987 	txsd->m = m0;
4988 	txsd->desc_used = ndesc;
4989 
4990 	return (ndesc);
4991 }
4992 
4993 static inline bool
4994 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
4995 {
4996 	int len;
4997 
4998 	MPASS(txp->npkt > 0);
4999 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5000 
5001 	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5002 		len = VM_TX_L2HDR_LEN;
5003 	else
5004 		len = sizeof(struct ether_header);
5005 
5006 	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5007 }
5008 
5009 static inline void
5010 save_l2hdr(struct txpkts *txp, struct mbuf *m)
5011 {
5012 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5013 
5014 	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5015 }
5016 
5017 static int
5018 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5019     int avail, bool *send)
5020 {
5021 	struct txpkts *txp = &txq->txp;
5022 
5023 	MPASS(sc->flags & IS_VF);
5024 
5025 	/* Cannot have TSO and coalesce at the same time. */
5026 	if (cannot_use_txpkts(m)) {
5027 cannot_coalesce:
5028 		*send = txp->npkt > 0;
5029 		return (EINVAL);
5030 	}
5031 
5032 	/* VF allows coalescing of type 1 (1 GL) only */
5033 	if (mbuf_nsegs(m) > 1)
5034 		goto cannot_coalesce;
5035 
5036 	*send = false;
5037 	if (txp->npkt > 0) {
5038 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5039 		MPASS(txp->npkt < txp->max_npkt);
5040 		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5041 
5042 		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5043 retry_after_send:
5044 			*send = true;
5045 			return (EAGAIN);
5046 		}
5047 		if (m->m_pkthdr.len + txp->plen > 65535)
5048 			goto retry_after_send;
5049 		if (cmp_l2hdr(txp, m))
5050 			goto retry_after_send;
5051 
5052 		txp->len16 += txpkts1_len16();
5053 		txp->plen += m->m_pkthdr.len;
5054 		txp->mb[txp->npkt++] = m;
5055 		if (txp->npkt == txp->max_npkt)
5056 			*send = true;
5057 	} else {
5058 		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5059 		    txpkts1_len16();
5060 		if (tx_len16_to_desc(txp->len16) > avail)
5061 			goto cannot_coalesce;
5062 		txp->npkt = 1;
5063 		txp->wr_type = 1;
5064 		txp->plen = m->m_pkthdr.len;
5065 		txp->mb[0] = m;
5066 		save_l2hdr(txp, m);
5067 	}
5068 	return (0);
5069 }
5070 
5071 static int
5072 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5073     int avail, bool *send)
5074 {
5075 	struct txpkts *txp = &txq->txp;
5076 	int nsegs;
5077 
5078 	MPASS(!(sc->flags & IS_VF));
5079 
5080 	/* Cannot have TSO and coalesce at the same time. */
5081 	if (cannot_use_txpkts(m)) {
5082 cannot_coalesce:
5083 		*send = txp->npkt > 0;
5084 		return (EINVAL);
5085 	}
5086 
5087 	*send = false;
5088 	nsegs = mbuf_nsegs(m);
5089 	if (txp->npkt == 0) {
5090 		if (m->m_pkthdr.len > 65535)
5091 			goto cannot_coalesce;
5092 		if (nsegs > 1) {
5093 			txp->wr_type = 0;
5094 			txp->len16 =
5095 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5096 			    txpkts0_len16(nsegs);
5097 		} else {
5098 			txp->wr_type = 1;
5099 			txp->len16 =
5100 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5101 			    txpkts1_len16();
5102 		}
5103 		if (tx_len16_to_desc(txp->len16) > avail)
5104 			goto cannot_coalesce;
5105 		txp->npkt = 1;
5106 		txp->plen = m->m_pkthdr.len;
5107 		txp->mb[0] = m;
5108 	} else {
5109 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5110 		MPASS(txp->npkt < txp->max_npkt);
5111 
5112 		if (m->m_pkthdr.len + txp->plen > 65535) {
5113 retry_after_send:
5114 			*send = true;
5115 			return (EAGAIN);
5116 		}
5117 
5118 		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5119 		if (txp->wr_type == 0) {
5120 			if (tx_len16_to_desc(txp->len16 +
5121 			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
5122 				goto retry_after_send;
5123 			txp->len16 += txpkts0_len16(nsegs);
5124 		} else {
5125 			if (nsegs != 1)
5126 				goto retry_after_send;
5127 			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
5128 			    avail)
5129 				goto retry_after_send;
5130 			txp->len16 += txpkts1_len16();
5131 		}
5132 
5133 		txp->plen += m->m_pkthdr.len;
5134 		txp->mb[txp->npkt++] = m;
5135 		if (txp->npkt == txp->max_npkt)
5136 			*send = true;
5137 	}
5138 	return (0);
5139 }
5140 
5141 /*
5142  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
5143  * the software descriptor, and advance the pidx.  It is guaranteed that enough
5144  * descriptors are available.
5145  *
5146  * The return value is the # of hardware descriptors used.
5147  */
5148 static u_int
5149 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
5150 {
5151 	const struct txpkts *txp = &txq->txp;
5152 	struct sge_eq *eq = &txq->eq;
5153 	struct fw_eth_tx_pkts_wr *wr;
5154 	struct tx_sdesc *txsd;
5155 	struct cpl_tx_pkt_core *cpl;
5156 	uint64_t ctrl1;
5157 	int ndesc, i, checkwrap;
5158 	struct mbuf *m, *last;
5159 	void *flitp;
5160 
5161 	TXQ_LOCK_ASSERT_OWNED(txq);
5162 	MPASS(txp->npkt > 0);
5163 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5164 
5165 	wr = (void *)&eq->desc[eq->pidx];
5166 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
5167 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5168 	wr->plen = htobe16(txp->plen);
5169 	wr->npkt = txp->npkt;
5170 	wr->r3 = 0;
5171 	wr->type = txp->wr_type;
5172 	flitp = wr + 1;
5173 
5174 	/*
5175 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
5176 	 * set then we know the WR is going to wrap around somewhere.  We'll
5177 	 * check for that at appropriate points.
5178 	 */
5179 	ndesc = tx_len16_to_desc(txp->len16);
5180 	last = NULL;
5181 	checkwrap = eq->sidx - ndesc < eq->pidx;
5182 	for (i = 0; i < txp->npkt; i++) {
5183 		m = txp->mb[i];
5184 		if (txp->wr_type == 0) {
5185 			struct ulp_txpkt *ulpmc;
5186 			struct ulptx_idata *ulpsc;
5187 
5188 			/* ULP master command */
5189 			ulpmc = flitp;
5190 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
5191 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
5192 			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
5193 
5194 			/* ULP subcommand */
5195 			ulpsc = (void *)(ulpmc + 1);
5196 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
5197 			    F_ULP_TX_SC_MORE);
5198 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
5199 
5200 			cpl = (void *)(ulpsc + 1);
5201 			if (checkwrap &&
5202 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
5203 				cpl = (void *)&eq->desc[0];
5204 		} else {
5205 			cpl = flitp;
5206 		}
5207 
5208 		/* Checksum offload */
5209 		ctrl1 = csum_to_ctrl(sc, m);
5210 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5211 			txq->txcsum++;	/* some hardware assistance provided */
5212 
5213 		/* VLAN tag insertion */
5214 		if (needs_vlan_insertion(m)) {
5215 			ctrl1 |= F_TXPKT_VLAN_VLD |
5216 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5217 			txq->vlan_insertion++;
5218 		}
5219 
5220 		/* CPL header */
5221 		cpl->ctrl0 = txq->cpl_ctrl0;
5222 		cpl->pack = 0;
5223 		cpl->len = htobe16(m->m_pkthdr.len);
5224 		cpl->ctrl1 = htobe64(ctrl1);
5225 
5226 		flitp = cpl + 1;
5227 		if (checkwrap &&
5228 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5229 			flitp = (void *)&eq->desc[0];
5230 
5231 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
5232 
5233 		if (last != NULL)
5234 			last->m_nextpkt = m;
5235 		last = m;
5236 	}
5237 
5238 	txq->sgl_wrs++;
5239 	if (txp->wr_type == 0) {
5240 		txq->txpkts0_pkts += txp->npkt;
5241 		txq->txpkts0_wrs++;
5242 	} else {
5243 		txq->txpkts1_pkts += txp->npkt;
5244 		txq->txpkts1_wrs++;
5245 	}
5246 
5247 	txsd = &txq->sdesc[eq->pidx];
5248 	txsd->m = txp->mb[0];
5249 	txsd->desc_used = ndesc;
5250 
5251 	return (ndesc);
5252 }
5253 
5254 static u_int
5255 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
5256 {
5257 	const struct txpkts *txp = &txq->txp;
5258 	struct sge_eq *eq = &txq->eq;
5259 	struct fw_eth_tx_pkts_vm_wr *wr;
5260 	struct tx_sdesc *txsd;
5261 	struct cpl_tx_pkt_core *cpl;
5262 	uint64_t ctrl1;
5263 	int ndesc, i;
5264 	struct mbuf *m, *last;
5265 	void *flitp;
5266 
5267 	TXQ_LOCK_ASSERT_OWNED(txq);
5268 	MPASS(txp->npkt > 0);
5269 	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5270 	MPASS(txp->mb[0] != NULL);
5271 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5272 
5273 	wr = (void *)&eq->desc[eq->pidx];
5274 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
5275 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5276 	wr->r3 = 0;
5277 	wr->plen = htobe16(txp->plen);
5278 	wr->npkt = txp->npkt;
5279 	wr->r4 = 0;
5280 	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
5281 	flitp = wr + 1;
5282 
5283 	/*
5284 	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
5285 	 * the WR will take 32B so we check for the end of the descriptor ring
5286 	 * before writing odd mbufs (mb[1], 3, 5, ..)
5287 	 */
5288 	ndesc = tx_len16_to_desc(txp->len16);
5289 	last = NULL;
5290 	for (i = 0; i < txp->npkt; i++) {
5291 		m = txp->mb[i];
5292 		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5293 			flitp = &eq->desc[0];
5294 		cpl = flitp;
5295 
5296 		/* Checksum offload */
5297 		ctrl1 = csum_to_ctrl(sc, m);
5298 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5299 			txq->txcsum++;	/* some hardware assistance provided */
5300 
5301 		/* VLAN tag insertion */
5302 		if (needs_vlan_insertion(m)) {
5303 			ctrl1 |= F_TXPKT_VLAN_VLD |
5304 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5305 			txq->vlan_insertion++;
5306 		}
5307 
5308 		/* CPL header */
5309 		cpl->ctrl0 = txq->cpl_ctrl0;
5310 		cpl->pack = 0;
5311 		cpl->len = htobe16(m->m_pkthdr.len);
5312 		cpl->ctrl1 = htobe64(ctrl1);
5313 
5314 		flitp = cpl + 1;
5315 		MPASS(mbuf_nsegs(m) == 1);
5316 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
5317 
5318 		if (last != NULL)
5319 			last->m_nextpkt = m;
5320 		last = m;
5321 	}
5322 
5323 	txq->sgl_wrs++;
5324 	txq->txpkts1_pkts += txp->npkt;
5325 	txq->txpkts1_wrs++;
5326 
5327 	txsd = &txq->sdesc[eq->pidx];
5328 	txsd->m = txp->mb[0];
5329 	txsd->desc_used = ndesc;
5330 
5331 	return (ndesc);
5332 }
5333 
5334 /*
5335  * If the SGL ends on an address that is not 16 byte aligned, this function will
5336  * add a 0 filled flit at the end.
5337  */
5338 static void
5339 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
5340 {
5341 	struct sge_eq *eq = &txq->eq;
5342 	struct sglist *gl = txq->gl;
5343 	struct sglist_seg *seg;
5344 	__be64 *flitp, *wrap;
5345 	struct ulptx_sgl *usgl;
5346 	int i, nflits, nsegs;
5347 
5348 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
5349 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
5350 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5351 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5352 
5353 	get_pkt_gl(m, gl);
5354 	nsegs = gl->sg_nseg;
5355 	MPASS(nsegs > 0);
5356 
5357 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
5358 	flitp = (__be64 *)(*to);
5359 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
5360 	seg = &gl->sg_segs[0];
5361 	usgl = (void *)flitp;
5362 
5363 	/*
5364 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
5365 	 * ring, so we're at least 16 bytes away from the status page.  There is
5366 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
5367 	 */
5368 
5369 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
5370 	    V_ULPTX_NSGE(nsegs));
5371 	usgl->len0 = htobe32(seg->ss_len);
5372 	usgl->addr0 = htobe64(seg->ss_paddr);
5373 	seg++;
5374 
5375 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
5376 
5377 		/* Won't wrap around at all */
5378 
5379 		for (i = 0; i < nsegs - 1; i++, seg++) {
5380 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
5381 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
5382 		}
5383 		if (i & 1)
5384 			usgl->sge[i / 2].len[1] = htobe32(0);
5385 		flitp += nflits;
5386 	} else {
5387 
5388 		/* Will wrap somewhere in the rest of the SGL */
5389 
5390 		/* 2 flits already written, write the rest flit by flit */
5391 		flitp = (void *)(usgl + 1);
5392 		for (i = 0; i < nflits - 2; i++) {
5393 			if (flitp == wrap)
5394 				flitp = (void *)eq->desc;
5395 			*flitp++ = get_flit(seg, nsegs - 1, i);
5396 		}
5397 	}
5398 
5399 	if (nflits & 1) {
5400 		MPASS(((uintptr_t)flitp) & 0xf);
5401 		*flitp++ = 0;
5402 	}
5403 
5404 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
5405 	if (__predict_false(flitp == wrap))
5406 		*to = (void *)eq->desc;
5407 	else
5408 		*to = (void *)flitp;
5409 }
5410 
5411 static inline void
5412 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
5413 {
5414 
5415 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5416 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5417 
5418 	if (__predict_true((uintptr_t)(*to) + len <=
5419 	    (uintptr_t)&eq->desc[eq->sidx])) {
5420 		bcopy(from, *to, len);
5421 		(*to) += len;
5422 	} else {
5423 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
5424 
5425 		bcopy(from, *to, portion);
5426 		from += portion;
5427 		portion = len - portion;	/* remaining */
5428 		bcopy(from, (void *)eq->desc, portion);
5429 		(*to) = (caddr_t)eq->desc + portion;
5430 	}
5431 }
5432 
5433 static inline void
5434 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
5435 {
5436 	u_int db;
5437 
5438 	MPASS(n > 0);
5439 
5440 	db = eq->doorbells;
5441 	if (n > 1)
5442 		clrbit(&db, DOORBELL_WCWR);
5443 	wmb();
5444 
5445 	switch (ffs(db) - 1) {
5446 	case DOORBELL_UDB:
5447 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
5448 		break;
5449 
5450 	case DOORBELL_WCWR: {
5451 		volatile uint64_t *dst, *src;
5452 		int i;
5453 
5454 		/*
5455 		 * Queues whose 128B doorbell segment fits in the page do not
5456 		 * use relative qid (udb_qid is always 0).  Only queues with
5457 		 * doorbell segments can do WCWR.
5458 		 */
5459 		KASSERT(eq->udb_qid == 0 && n == 1,
5460 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
5461 		    __func__, eq->doorbells, n, eq->dbidx, eq));
5462 
5463 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
5464 		    UDBS_DB_OFFSET);
5465 		i = eq->dbidx;
5466 		src = (void *)&eq->desc[i];
5467 		while (src != (void *)&eq->desc[i + 1])
5468 			*dst++ = *src++;
5469 		wmb();
5470 		break;
5471 	}
5472 
5473 	case DOORBELL_UDBWC:
5474 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
5475 		wmb();
5476 		break;
5477 
5478 	case DOORBELL_KDB:
5479 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
5480 		    V_QID(eq->cntxt_id) | V_PIDX(n));
5481 		break;
5482 	}
5483 
5484 	IDXINCR(eq->dbidx, n, eq->sidx);
5485 }
5486 
5487 static inline u_int
5488 reclaimable_tx_desc(struct sge_eq *eq)
5489 {
5490 	uint16_t hw_cidx;
5491 
5492 	hw_cidx = read_hw_cidx(eq);
5493 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
5494 }
5495 
5496 static inline u_int
5497 total_available_tx_desc(struct sge_eq *eq)
5498 {
5499 	uint16_t hw_cidx, pidx;
5500 
5501 	hw_cidx = read_hw_cidx(eq);
5502 	pidx = eq->pidx;
5503 
5504 	if (pidx == hw_cidx)
5505 		return (eq->sidx - 1);
5506 	else
5507 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
5508 }
5509 
5510 static inline uint16_t
5511 read_hw_cidx(struct sge_eq *eq)
5512 {
5513 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5514 	uint16_t cidx = spg->cidx;	/* stable snapshot */
5515 
5516 	return (be16toh(cidx));
5517 }
5518 
5519 /*
5520  * Reclaim 'n' descriptors approximately.
5521  */
5522 static u_int
5523 reclaim_tx_descs(struct sge_txq *txq, u_int n)
5524 {
5525 	struct tx_sdesc *txsd;
5526 	struct sge_eq *eq = &txq->eq;
5527 	u_int can_reclaim, reclaimed;
5528 
5529 	TXQ_LOCK_ASSERT_OWNED(txq);
5530 	MPASS(n > 0);
5531 
5532 	reclaimed = 0;
5533 	can_reclaim = reclaimable_tx_desc(eq);
5534 	while (can_reclaim && reclaimed < n) {
5535 		int ndesc;
5536 		struct mbuf *m, *nextpkt;
5537 
5538 		txsd = &txq->sdesc[eq->cidx];
5539 		ndesc = txsd->desc_used;
5540 
5541 		/* Firmware doesn't return "partial" credits. */
5542 		KASSERT(can_reclaim >= ndesc,
5543 		    ("%s: unexpected number of credits: %d, %d",
5544 		    __func__, can_reclaim, ndesc));
5545 		KASSERT(ndesc != 0,
5546 		    ("%s: descriptor with no credits: cidx %d",
5547 		    __func__, eq->cidx));
5548 
5549 		for (m = txsd->m; m != NULL; m = nextpkt) {
5550 			nextpkt = m->m_nextpkt;
5551 			m->m_nextpkt = NULL;
5552 			m_freem(m);
5553 		}
5554 		reclaimed += ndesc;
5555 		can_reclaim -= ndesc;
5556 		IDXINCR(eq->cidx, ndesc, eq->sidx);
5557 	}
5558 
5559 	return (reclaimed);
5560 }
5561 
5562 static void
5563 tx_reclaim(void *arg, int n)
5564 {
5565 	struct sge_txq *txq = arg;
5566 	struct sge_eq *eq = &txq->eq;
5567 
5568 	do {
5569 		if (TXQ_TRYLOCK(txq) == 0)
5570 			break;
5571 		n = reclaim_tx_descs(txq, 32);
5572 		if (eq->cidx == eq->pidx)
5573 			eq->equeqidx = eq->pidx;
5574 		TXQ_UNLOCK(txq);
5575 	} while (n > 0);
5576 }
5577 
5578 static __be64
5579 get_flit(struct sglist_seg *segs, int nsegs, int idx)
5580 {
5581 	int i = (idx / 3) * 2;
5582 
5583 	switch (idx % 3) {
5584 	case 0: {
5585 		uint64_t rc;
5586 
5587 		rc = (uint64_t)segs[i].ss_len << 32;
5588 		if (i + 1 < nsegs)
5589 			rc |= (uint64_t)(segs[i + 1].ss_len);
5590 
5591 		return (htobe64(rc));
5592 	}
5593 	case 1:
5594 		return (htobe64(segs[i].ss_paddr));
5595 	case 2:
5596 		return (htobe64(segs[i + 1].ss_paddr));
5597 	}
5598 
5599 	return (0);
5600 }
5601 
5602 static int
5603 find_refill_source(struct adapter *sc, int maxp, bool packing)
5604 {
5605 	int i, zidx = -1;
5606 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
5607 
5608 	if (packing) {
5609 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
5610 			if (rxb->hwidx2 == -1)
5611 				continue;
5612 			if (rxb->size1 < PAGE_SIZE &&
5613 			    rxb->size1 < largest_rx_cluster)
5614 				continue;
5615 			if (rxb->size1 > largest_rx_cluster)
5616 				break;
5617 			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
5618 			if (rxb->size2 >= maxp)
5619 				return (i);
5620 			zidx = i;
5621 		}
5622 	} else {
5623 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
5624 			if (rxb->hwidx1 == -1)
5625 				continue;
5626 			if (rxb->size1 > largest_rx_cluster)
5627 				break;
5628 			if (rxb->size1 >= maxp)
5629 				return (i);
5630 			zidx = i;
5631 		}
5632 	}
5633 
5634 	return (zidx);
5635 }
5636 
5637 static void
5638 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
5639 {
5640 	mtx_lock(&sc->sfl_lock);
5641 	FL_LOCK(fl);
5642 	if ((fl->flags & FL_DOOMED) == 0) {
5643 		fl->flags |= FL_STARVING;
5644 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
5645 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
5646 	}
5647 	FL_UNLOCK(fl);
5648 	mtx_unlock(&sc->sfl_lock);
5649 }
5650 
5651 static void
5652 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
5653 {
5654 	struct sge_wrq *wrq = (void *)eq;
5655 
5656 	atomic_readandclear_int(&eq->equiq);
5657 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
5658 }
5659 
5660 static void
5661 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
5662 {
5663 	struct sge_txq *txq = (void *)eq;
5664 
5665 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
5666 
5667 	atomic_readandclear_int(&eq->equiq);
5668 	if (mp_ring_is_idle(txq->r))
5669 		taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
5670 	else
5671 		mp_ring_check_drainage(txq->r, 64);
5672 }
5673 
5674 static int
5675 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
5676     struct mbuf *m)
5677 {
5678 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
5679 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
5680 	struct adapter *sc = iq->adapter;
5681 	struct sge *s = &sc->sge;
5682 	struct sge_eq *eq;
5683 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
5684 		&handle_wrq_egr_update, &handle_eth_egr_update,
5685 		&handle_wrq_egr_update};
5686 
5687 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5688 	    rss->opcode));
5689 
5690 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
5691 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
5692 
5693 	return (0);
5694 }
5695 
5696 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
5697 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
5698     offsetof(struct cpl_fw6_msg, data));
5699 
5700 static int
5701 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
5702 {
5703 	struct adapter *sc = iq->adapter;
5704 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
5705 
5706 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5707 	    rss->opcode));
5708 
5709 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
5710 		const struct rss_header *rss2;
5711 
5712 		rss2 = (const struct rss_header *)&cpl->data[0];
5713 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
5714 	}
5715 
5716 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
5717 }
5718 
5719 /**
5720  *	t4_handle_wrerr_rpl - process a FW work request error message
5721  *	@adap: the adapter
5722  *	@rpl: start of the FW message
5723  */
5724 static int
5725 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
5726 {
5727 	u8 opcode = *(const u8 *)rpl;
5728 	const struct fw_error_cmd *e = (const void *)rpl;
5729 	unsigned int i;
5730 
5731 	if (opcode != FW_ERROR_CMD) {
5732 		log(LOG_ERR,
5733 		    "%s: Received WRERR_RPL message with opcode %#x\n",
5734 		    device_get_nameunit(adap->dev), opcode);
5735 		return (EINVAL);
5736 	}
5737 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
5738 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
5739 	    "non-fatal");
5740 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
5741 	case FW_ERROR_TYPE_EXCEPTION:
5742 		log(LOG_ERR, "exception info:\n");
5743 		for (i = 0; i < nitems(e->u.exception.info); i++)
5744 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
5745 			    be32toh(e->u.exception.info[i]));
5746 		log(LOG_ERR, "\n");
5747 		break;
5748 	case FW_ERROR_TYPE_HWMODULE:
5749 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
5750 		    be32toh(e->u.hwmodule.regaddr),
5751 		    be32toh(e->u.hwmodule.regval));
5752 		break;
5753 	case FW_ERROR_TYPE_WR:
5754 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
5755 		    be16toh(e->u.wr.cidx),
5756 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
5757 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
5758 		    be32toh(e->u.wr.eqid));
5759 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
5760 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
5761 			    e->u.wr.wrhdr[i]);
5762 		log(LOG_ERR, "\n");
5763 		break;
5764 	case FW_ERROR_TYPE_ACL:
5765 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
5766 		    be16toh(e->u.acl.cidx),
5767 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
5768 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
5769 		    be32toh(e->u.acl.eqid),
5770 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
5771 		    "MAC");
5772 		for (i = 0; i < nitems(e->u.acl.val); i++)
5773 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
5774 		log(LOG_ERR, "\n");
5775 		break;
5776 	default:
5777 		log(LOG_ERR, "type %#x\n",
5778 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
5779 		return (EINVAL);
5780 	}
5781 	return (0);
5782 }
5783 
5784 static int
5785 sysctl_uint16(SYSCTL_HANDLER_ARGS)
5786 {
5787 	uint16_t *id = arg1;
5788 	int i = *id;
5789 
5790 	return sysctl_handle_int(oidp, &i, 0, req);
5791 }
5792 
5793 static inline bool
5794 bufidx_used(struct adapter *sc, int idx)
5795 {
5796 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
5797 	int i;
5798 
5799 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
5800 		if (rxb->size1 > largest_rx_cluster)
5801 			continue;
5802 		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
5803 			return (true);
5804 	}
5805 
5806 	return (false);
5807 }
5808 
5809 static int
5810 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
5811 {
5812 	struct adapter *sc = arg1;
5813 	struct sge_params *sp = &sc->params.sge;
5814 	int i, rc;
5815 	struct sbuf sb;
5816 	char c;
5817 
5818 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
5819 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
5820 		if (bufidx_used(sc, i))
5821 			c = '*';
5822 		else
5823 			c = '\0';
5824 
5825 		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
5826 	}
5827 	sbuf_trim(&sb);
5828 	sbuf_finish(&sb);
5829 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
5830 	sbuf_delete(&sb);
5831 	return (rc);
5832 }
5833 
5834 #ifdef RATELIMIT
5835 /*
5836  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5837  */
5838 static inline u_int
5839 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
5840 {
5841 	u_int n;
5842 
5843 	MPASS(immhdrs > 0);
5844 
5845 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
5846 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
5847 	if (__predict_false(nsegs == 0))
5848 		goto done;
5849 
5850 	nsegs--; /* first segment is part of ulptx_sgl */
5851 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5852 	if (tso)
5853 		n += sizeof(struct cpl_tx_pkt_lso_core);
5854 
5855 done:
5856 	return (howmany(n, 16));
5857 }
5858 
5859 #define ETID_FLOWC_NPARAMS 6
5860 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
5861     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
5862 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
5863 
5864 static int
5865 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
5866     struct vi_info *vi)
5867 {
5868 	struct wrq_cookie cookie;
5869 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
5870 	struct fw_flowc_wr *flowc;
5871 
5872 	mtx_assert(&cst->lock, MA_OWNED);
5873 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
5874 	    EO_FLOWC_PENDING);
5875 
5876 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLOWC_LEN16, &cookie);
5877 	if (__predict_false(flowc == NULL))
5878 		return (ENOMEM);
5879 
5880 	bzero(flowc, ETID_FLOWC_LEN);
5881 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
5882 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
5883 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
5884 	    V_FW_WR_FLOWID(cst->etid));
5885 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
5886 	flowc->mnemval[0].val = htobe32(pfvf);
5887 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
5888 	flowc->mnemval[1].val = htobe32(pi->tx_chan);
5889 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
5890 	flowc->mnemval[2].val = htobe32(pi->tx_chan);
5891 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
5892 	flowc->mnemval[3].val = htobe32(cst->iqid);
5893 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
5894 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
5895 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
5896 	flowc->mnemval[5].val = htobe32(cst->schedcl);
5897 
5898 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
5899 
5900 	cst->flags &= ~EO_FLOWC_PENDING;
5901 	cst->flags |= EO_FLOWC_RPL_PENDING;
5902 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
5903 	cst->tx_credits -= ETID_FLOWC_LEN16;
5904 
5905 	return (0);
5906 }
5907 
5908 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
5909 
5910 void
5911 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
5912 {
5913 	struct fw_flowc_wr *flowc;
5914 	struct wrq_cookie cookie;
5915 
5916 	mtx_assert(&cst->lock, MA_OWNED);
5917 
5918 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLUSH_LEN16, &cookie);
5919 	if (__predict_false(flowc == NULL))
5920 		CXGBE_UNIMPLEMENTED(__func__);
5921 
5922 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
5923 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
5924 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
5925 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
5926 	    V_FW_WR_FLOWID(cst->etid));
5927 
5928 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
5929 
5930 	cst->flags |= EO_FLUSH_RPL_PENDING;
5931 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
5932 	cst->tx_credits -= ETID_FLUSH_LEN16;
5933 	cst->ncompl++;
5934 }
5935 
5936 static void
5937 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
5938     struct mbuf *m0, int compl)
5939 {
5940 	struct cpl_tx_pkt_core *cpl;
5941 	uint64_t ctrl1;
5942 	uint32_t ctrl;	/* used in many unrelated places */
5943 	int len16, pktlen, nsegs, immhdrs;
5944 	caddr_t dst;
5945 	uintptr_t p;
5946 	struct ulptx_sgl *usgl;
5947 	struct sglist sg;
5948 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
5949 
5950 	mtx_assert(&cst->lock, MA_OWNED);
5951 	M_ASSERTPKTHDR(m0);
5952 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5953 	    m0->m_pkthdr.l4hlen > 0,
5954 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
5955 
5956 	len16 = mbuf_eo_len16(m0);
5957 	nsegs = mbuf_eo_nsegs(m0);
5958 	pktlen = m0->m_pkthdr.len;
5959 	ctrl = sizeof(struct cpl_tx_pkt_core);
5960 	if (needs_tso(m0))
5961 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5962 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
5963 	ctrl += immhdrs;
5964 
5965 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
5966 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
5967 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
5968 	    V_FW_WR_FLOWID(cst->etid));
5969 	wr->r3 = 0;
5970 	if (needs_udp_csum(m0)) {
5971 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
5972 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
5973 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
5974 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
5975 		wr->u.udpseg.rtplen = 0;
5976 		wr->u.udpseg.r4 = 0;
5977 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
5978 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
5979 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
5980 		cpl = (void *)(wr + 1);
5981 	} else {
5982 		MPASS(needs_tcp_csum(m0));
5983 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
5984 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
5985 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
5986 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
5987 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
5988 		wr->u.tcpseg.r4 = 0;
5989 		wr->u.tcpseg.r5 = 0;
5990 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
5991 
5992 		if (needs_tso(m0)) {
5993 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
5994 
5995 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
5996 
5997 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5998 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5999 			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6000 				ETHER_HDR_LEN) >> 2) |
6001 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6002 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6003 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6004 				ctrl |= F_LSO_IPV6;
6005 			lso->lso_ctrl = htobe32(ctrl);
6006 			lso->ipid_ofst = htobe16(0);
6007 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6008 			lso->seqno_offset = htobe32(0);
6009 			lso->len = htobe32(pktlen);
6010 
6011 			cpl = (void *)(lso + 1);
6012 		} else {
6013 			wr->u.tcpseg.mss = htobe16(0xffff);
6014 			cpl = (void *)(wr + 1);
6015 		}
6016 	}
6017 
6018 	/* Checksum offload must be requested for ethofld. */
6019 	MPASS(needs_l4_csum(m0));
6020 	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6021 
6022 	/* VLAN tag insertion */
6023 	if (needs_vlan_insertion(m0)) {
6024 		ctrl1 |= F_TXPKT_VLAN_VLD |
6025 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6026 	}
6027 
6028 	/* CPL header */
6029 	cpl->ctrl0 = cst->ctrl0;
6030 	cpl->pack = 0;
6031 	cpl->len = htobe16(pktlen);
6032 	cpl->ctrl1 = htobe64(ctrl1);
6033 
6034 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6035 	p = (uintptr_t)(cpl + 1);
6036 	m_copydata(m0, 0, immhdrs, (void *)p);
6037 
6038 	/* SGL */
6039 	dst = (void *)(cpl + 1);
6040 	if (nsegs > 0) {
6041 		int i, pad;
6042 
6043 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6044 		p += immhdrs;
6045 		pad = 16 - (immhdrs & 0xf);
6046 		bzero((void *)p, pad);
6047 
6048 		usgl = (void *)(p + pad);
6049 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6050 		    V_ULPTX_NSGE(nsegs));
6051 
6052 		sglist_init(&sg, nitems(segs), segs);
6053 		for (; m0 != NULL; m0 = m0->m_next) {
6054 			if (__predict_false(m0->m_len == 0))
6055 				continue;
6056 			if (immhdrs >= m0->m_len) {
6057 				immhdrs -= m0->m_len;
6058 				continue;
6059 			}
6060 			if (m0->m_flags & M_EXTPG)
6061 				sglist_append_mbuf_epg(&sg, m0,
6062 				    mtod(m0, vm_offset_t), m0->m_len);
6063                         else
6064 				sglist_append(&sg, mtod(m0, char *) + immhdrs,
6065 				    m0->m_len - immhdrs);
6066 			immhdrs = 0;
6067 		}
6068 		MPASS(sg.sg_nseg == nsegs);
6069 
6070 		/*
6071 		 * Zero pad last 8B in case the WR doesn't end on a 16B
6072 		 * boundary.
6073 		 */
6074 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6075 
6076 		usgl->len0 = htobe32(segs[0].ss_len);
6077 		usgl->addr0 = htobe64(segs[0].ss_paddr);
6078 		for (i = 0; i < nsegs - 1; i++) {
6079 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6080 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6081 		}
6082 		if (i & 1)
6083 			usgl->sge[i / 2].len[1] = htobe32(0);
6084 	}
6085 
6086 }
6087 
6088 static void
6089 ethofld_tx(struct cxgbe_rate_tag *cst)
6090 {
6091 	struct mbuf *m;
6092 	struct wrq_cookie cookie;
6093 	int next_credits, compl;
6094 	struct fw_eth_tx_eo_wr *wr;
6095 
6096 	mtx_assert(&cst->lock, MA_OWNED);
6097 
6098 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6099 		M_ASSERTPKTHDR(m);
6100 
6101 		/* How many len16 credits do we need to send this mbuf. */
6102 		next_credits = mbuf_eo_len16(m);
6103 		MPASS(next_credits > 0);
6104 		if (next_credits > cst->tx_credits) {
6105 			/*
6106 			 * Tx will make progress eventually because there is at
6107 			 * least one outstanding fw4_ack that will return
6108 			 * credits and kick the tx.
6109 			 */
6110 			MPASS(cst->ncompl > 0);
6111 			return;
6112 		}
6113 		wr = start_wrq_wr(cst->eo_txq, next_credits, &cookie);
6114 		if (__predict_false(wr == NULL)) {
6115 			/* XXX: wishful thinking, not a real assertion. */
6116 			MPASS(cst->ncompl > 0);
6117 			return;
6118 		}
6119 		cst->tx_credits -= next_credits;
6120 		cst->tx_nocompl += next_credits;
6121 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
6122 		ETHER_BPF_MTAP(cst->com.com.ifp, m);
6123 		write_ethofld_wr(cst, wr, m, compl);
6124 		commit_wrq_wr(cst->eo_txq, wr, &cookie);
6125 		if (compl) {
6126 			cst->ncompl++;
6127 			cst->tx_nocompl	= 0;
6128 		}
6129 		(void) mbufq_dequeue(&cst->pending_tx);
6130 
6131 		/*
6132 		 * Drop the mbuf's reference on the tag now rather
6133 		 * than waiting until m_freem().  This ensures that
6134 		 * cxgbe_rate_tag_free gets called when the inp drops
6135 		 * its reference on the tag and there are no more
6136 		 * mbufs in the pending_tx queue and can flush any
6137 		 * pending requests.  Otherwise if the last mbuf
6138 		 * doesn't request a completion the etid will never be
6139 		 * released.
6140 		 */
6141 		m->m_pkthdr.snd_tag = NULL;
6142 		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
6143 		m_snd_tag_rele(&cst->com.com);
6144 
6145 		mbufq_enqueue(&cst->pending_fwack, m);
6146 	}
6147 }
6148 
6149 int
6150 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
6151 {
6152 	struct cxgbe_rate_tag *cst;
6153 	int rc;
6154 
6155 	MPASS(m0->m_nextpkt == NULL);
6156 	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
6157 	MPASS(m0->m_pkthdr.snd_tag != NULL);
6158 	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
6159 
6160 	mtx_lock(&cst->lock);
6161 	MPASS(cst->flags & EO_SND_TAG_REF);
6162 
6163 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
6164 		struct vi_info *vi = ifp->if_softc;
6165 		struct port_info *pi = vi->pi;
6166 		struct adapter *sc = pi->adapter;
6167 		const uint32_t rss_mask = vi->rss_size - 1;
6168 		uint32_t rss_hash;
6169 
6170 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
6171 		if (M_HASHTYPE_ISHASH(m0))
6172 			rss_hash = m0->m_pkthdr.flowid;
6173 		else
6174 			rss_hash = arc4random();
6175 		/* We assume RSS hashing */
6176 		cst->iqid = vi->rss[rss_hash & rss_mask];
6177 		cst->eo_txq += rss_hash % vi->nofldtxq;
6178 		rc = send_etid_flowc_wr(cst, pi, vi);
6179 		if (rc != 0)
6180 			goto done;
6181 	}
6182 
6183 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
6184 		rc = ENOBUFS;
6185 		goto done;
6186 	}
6187 
6188 	mbufq_enqueue(&cst->pending_tx, m0);
6189 	cst->plen += m0->m_pkthdr.len;
6190 
6191 	/*
6192 	 * Hold an extra reference on the tag while generating work
6193 	 * requests to ensure that we don't try to free the tag during
6194 	 * ethofld_tx() in case we are sending the final mbuf after
6195 	 * the inp was freed.
6196 	 */
6197 	m_snd_tag_ref(&cst->com.com);
6198 	ethofld_tx(cst);
6199 	mtx_unlock(&cst->lock);
6200 	m_snd_tag_rele(&cst->com.com);
6201 	return (0);
6202 
6203 done:
6204 	mtx_unlock(&cst->lock);
6205 	if (__predict_false(rc != 0))
6206 		m_freem(m0);
6207 	return (rc);
6208 }
6209 
6210 static int
6211 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
6212 {
6213 	struct adapter *sc = iq->adapter;
6214 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
6215 	struct mbuf *m;
6216 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
6217 	struct cxgbe_rate_tag *cst;
6218 	uint8_t credits = cpl->credits;
6219 
6220 	cst = lookup_etid(sc, etid);
6221 	mtx_lock(&cst->lock);
6222 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
6223 		MPASS(credits >= ETID_FLOWC_LEN16);
6224 		credits -= ETID_FLOWC_LEN16;
6225 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
6226 	}
6227 
6228 	KASSERT(cst->ncompl > 0,
6229 	    ("%s: etid %u (%p) wasn't expecting completion.",
6230 	    __func__, etid, cst));
6231 	cst->ncompl--;
6232 
6233 	while (credits > 0) {
6234 		m = mbufq_dequeue(&cst->pending_fwack);
6235 		if (__predict_false(m == NULL)) {
6236 			/*
6237 			 * The remaining credits are for the final flush that
6238 			 * was issued when the tag was freed by the kernel.
6239 			 */
6240 			MPASS((cst->flags &
6241 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
6242 			    EO_FLUSH_RPL_PENDING);
6243 			MPASS(credits == ETID_FLUSH_LEN16);
6244 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
6245 			MPASS(cst->ncompl == 0);
6246 
6247 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
6248 			cst->tx_credits += cpl->credits;
6249 			cxgbe_rate_tag_free_locked(cst);
6250 			return (0);	/* cst is gone. */
6251 		}
6252 		KASSERT(m != NULL,
6253 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
6254 		    credits));
6255 		KASSERT(credits >= mbuf_eo_len16(m),
6256 		    ("%s: too few credits (%u, %u, %u)", __func__,
6257 		    cpl->credits, credits, mbuf_eo_len16(m)));
6258 		credits -= mbuf_eo_len16(m);
6259 		cst->plen -= m->m_pkthdr.len;
6260 		m_freem(m);
6261 	}
6262 
6263 	cst->tx_credits += cpl->credits;
6264 	MPASS(cst->tx_credits <= cst->tx_total);
6265 
6266 	if (cst->flags & EO_SND_TAG_REF) {
6267 		/*
6268 		 * As with ethofld_transmit(), hold an extra reference
6269 		 * so that the tag is stable across ethold_tx().
6270 		 */
6271 		m_snd_tag_ref(&cst->com.com);
6272 		m = mbufq_first(&cst->pending_tx);
6273 		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
6274 			ethofld_tx(cst);
6275 		mtx_unlock(&cst->lock);
6276 		m_snd_tag_rele(&cst->com.com);
6277 	} else {
6278 		/*
6279 		 * There shouldn't be any pending packets if the tag
6280 		 * was freed by the kernel since any pending packet
6281 		 * should hold a reference to the tag.
6282 		 */
6283 		MPASS(mbufq_first(&cst->pending_tx) == NULL);
6284 		mtx_unlock(&cst->lock);
6285 	}
6286 
6287 	return (0);
6288 }
6289 #endif
6290