xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 730cecb05aaf016ac52ef7cfc691ccec3a0408cd)
1 /*-
2  * Copyright (c) 2011 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #include <sys/types.h>
35 #include <sys/mbuf.h>
36 #include <sys/socket.h>
37 #include <sys/kernel.h>
38 #include <sys/kdb.h>
39 #include <sys/malloc.h>
40 #include <sys/queue.h>
41 #include <sys/taskqueue.h>
42 #include <sys/sysctl.h>
43 #include <sys/smp.h>
44 #include <net/bpf.h>
45 #include <net/ethernet.h>
46 #include <net/if.h>
47 #include <net/if_vlan_var.h>
48 #include <netinet/in.h>
49 #include <netinet/ip.h>
50 #include <netinet/ip6.h>
51 #include <netinet/tcp.h>
52 
53 #include "common/common.h"
54 #include "common/t4_regs.h"
55 #include "common/t4_regs_values.h"
56 #include "common/t4_msg.h"
57 
58 struct fl_buf_info {
59 	int size;
60 	int type;
61 	uma_zone_t zone;
62 };
63 
64 /* Filled up by t4_sge_modload */
65 static struct fl_buf_info fl_buf_info[FL_BUF_SIZES];
66 
67 #define FL_BUF_SIZE(x)	(fl_buf_info[x].size)
68 #define FL_BUF_TYPE(x)	(fl_buf_info[x].type)
69 #define FL_BUF_ZONE(x)	(fl_buf_info[x].zone)
70 
71 /*
72  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
73  * 0-7 are valid values.
74  */
75 static int fl_pktshift = 2;
76 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
77 
78 /*
79  * Pad ethernet payload up to this boundary.
80  * -1: driver should figure out a good value.
81  *  Any power of 2, from 32 to 4096 (both inclusive) is a valid value.
82  */
83 static int fl_pad = -1;
84 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
85 
86 /*
87  * Status page length.
88  * -1: driver should figure out a good value.
89  *  64 or 128 are the only other valid values.
90  */
91 static int spg_len = -1;
92 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
93 
94 /*
95  * Congestion drops.
96  * -1: no congestion feedback (not recommended).
97  *  0: backpressure the channel instead of dropping packets right away.
98  *  1: no backpressure, drop packets for the congested queue immediately.
99  */
100 static int cong_drop = 0;
101 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
102 
103 /* Used to track coalesced tx work request */
104 struct txpkts {
105 	uint64_t *flitp;	/* ptr to flit where next pkt should start */
106 	uint8_t npkt;		/* # of packets in this work request */
107 	uint8_t nflits;		/* # of flits used by this work request */
108 	uint16_t plen;		/* total payload (sum of all packets) */
109 };
110 
111 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
112 struct sgl {
113 	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
114 	int nflits;		/* # of flits needed for the SGL */
115 	bus_dma_segment_t seg[TX_SGL_SEGS];
116 };
117 
118 static int service_iq(struct sge_iq *, int);
119 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t,
120     int *);
121 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
122 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
123     int);
124 static inline void init_fl(struct sge_fl *, int, int, char *);
125 static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
126     char *);
127 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
128     bus_addr_t *, void **);
129 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
130     void *);
131 static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
132     int, int);
133 static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
134 static int alloc_fwq(struct adapter *);
135 static int free_fwq(struct adapter *);
136 static int alloc_mgmtq(struct adapter *);
137 static int free_mgmtq(struct adapter *);
138 static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
139     struct sysctl_oid *);
140 static int free_rxq(struct port_info *, struct sge_rxq *);
141 #ifdef TCP_OFFLOAD
142 static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
143     struct sysctl_oid *);
144 static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
145 #endif
146 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
147 static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
148 #ifdef TCP_OFFLOAD
149 static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
150 #endif
151 static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
152 static int free_eq(struct adapter *, struct sge_eq *);
153 static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
154     struct sysctl_oid *);
155 static int free_wrq(struct adapter *, struct sge_wrq *);
156 static int alloc_txq(struct port_info *, struct sge_txq *, int,
157     struct sysctl_oid *);
158 static int free_txq(struct port_info *, struct sge_txq *);
159 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
160 static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
161 static inline void iq_next(struct sge_iq *);
162 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
163 static int refill_fl(struct adapter *, struct sge_fl *, int);
164 static void refill_sfl(void *);
165 static int alloc_fl_sdesc(struct sge_fl *);
166 static void free_fl_sdesc(struct sge_fl *);
167 static void set_fl_tag_idx(struct sge_fl *, int);
168 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
169 
170 static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
171 static int free_pkt_sgl(struct sge_txq *, struct sgl *);
172 static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
173     struct sgl *);
174 static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
175     struct mbuf *, struct sgl *);
176 static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
177 static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
178     struct txpkts *, struct mbuf *, struct sgl *);
179 static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
180 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
181 static inline void ring_eq_db(struct adapter *, struct sge_eq *);
182 static inline int reclaimable(struct sge_eq *);
183 static int reclaim_tx_descs(struct sge_txq *, int, int);
184 static void write_eqflush_wr(struct sge_eq *);
185 static __be64 get_flit(bus_dma_segment_t *, int, int);
186 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
187     struct mbuf *);
188 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
189     struct mbuf *);
190 
191 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
192 
193 #if defined(__i386__) || defined(__amd64__)
194 extern u_int cpu_clflush_line_size;
195 #endif
196 
197 /*
198  * Called on MOD_LOAD.  Fills up fl_buf_info[] and validates/calculates the SGE
199  * tunables.
200  */
201 void
202 t4_sge_modload(void)
203 {
204 	int i;
205 	int bufsize[FL_BUF_SIZES] = {
206 		MCLBYTES,
207 #if MJUMPAGESIZE != MCLBYTES
208 		MJUMPAGESIZE,
209 #endif
210 		MJUM9BYTES,
211 		MJUM16BYTES
212 	};
213 
214 	for (i = 0; i < FL_BUF_SIZES; i++) {
215 		FL_BUF_SIZE(i) = bufsize[i];
216 		FL_BUF_TYPE(i) = m_gettype(bufsize[i]);
217 		FL_BUF_ZONE(i) = m_getzone(bufsize[i]);
218 	}
219 
220 	if (fl_pktshift < 0 || fl_pktshift > 7) {
221 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
222 		    " using 2 instead.\n", fl_pktshift);
223 		fl_pktshift = 2;
224 	}
225 
226 	if (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad)) {
227 		int pad;
228 
229 #if defined(__i386__) || defined(__amd64__)
230 		pad = max(cpu_clflush_line_size, 32);
231 #else
232 		pad = max(CACHE_LINE_SIZE, 32);
233 #endif
234 		pad = min(pad, 4096);
235 
236 		if (fl_pad != -1) {
237 			printf("Invalid hw.cxgbe.fl_pad value (%d),"
238 			    " using %d instead.\n", fl_pad, pad);
239 		}
240 		fl_pad = pad;
241 	}
242 
243 	if (spg_len != 64 && spg_len != 128) {
244 		int len;
245 
246 #if defined(__i386__) || defined(__amd64__)
247 		len = cpu_clflush_line_size > 64 ? 128 : 64;
248 #else
249 		len = 64;
250 #endif
251 		if (spg_len != -1) {
252 			printf("Invalid hw.cxgbe.spg_len value (%d),"
253 			    " using %d instead.\n", spg_len, len);
254 		}
255 		spg_len = len;
256 	}
257 
258 	if (cong_drop < -1 || cong_drop > 1) {
259 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
260 		    " using 0 instead.\n", cong_drop);
261 		cong_drop = 0;
262 	}
263 }
264 
265 /**
266  *	t4_sge_init - initialize SGE
267  *	@sc: the adapter
268  *
269  *	Performs SGE initialization needed every time after a chip reset.
270  *	We do not initialize any of the queues here, instead the driver
271  *	top-level must request them individually.
272  */
273 int
274 t4_sge_init(struct adapter *sc)
275 {
276 	struct sge *s = &sc->sge;
277 	int i, rc = 0;
278 	uint32_t ctrl_mask, ctrl_val, hpsize, v;
279 
280 	ctrl_mask = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE |
281 	    V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
282 	    F_EGRSTATUSPAGESIZE;
283 	ctrl_val = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
284 	    V_INGPADBOUNDARY(ilog2(fl_pad) - 5) |
285 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
286 
287 	hpsize = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
288 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
289 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
290 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
291 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
292 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
293 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
294 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
295 
296 	if (sc->flags & MASTER_PF) {
297 		int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
298 		int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
299 
300 		t4_set_reg_field(sc, A_SGE_CONTROL, ctrl_mask, ctrl_val);
301 		t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, hpsize);
302 		for (i = 0; i < FL_BUF_SIZES; i++) {
303 			t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
304 			    FL_BUF_SIZE(i));
305 		}
306 
307 		t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD,
308 		    V_THRESHOLD_0(intr_pktcount[0]) |
309 		    V_THRESHOLD_1(intr_pktcount[1]) |
310 		    V_THRESHOLD_2(intr_pktcount[2]) |
311 		    V_THRESHOLD_3(intr_pktcount[3]));
312 
313 		t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1,
314 		    V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
315 		    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])));
316 		t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3,
317 		    V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
318 		    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])));
319 		t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5,
320 		    V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
321 		    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])));
322 
323 		if (cong_drop == 0) {
324 			t4_set_reg_field(sc, A_TP_PARA_REG3, F_TUNNELCNGDROP0 |
325 			    F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
326 			    F_TUNNELCNGDROP3, 0);
327 		}
328 	}
329 
330 	v = t4_read_reg(sc, A_SGE_CONTROL);
331 	if ((v & ctrl_mask) != ctrl_val) {
332 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", v);
333 		rc = EINVAL;
334 	}
335 
336 	v = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
337 	if (v != hpsize) {
338 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", v);
339 		rc = EINVAL;
340 	}
341 
342 	for (i = 0; i < FL_BUF_SIZES; i++) {
343 		v = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
344 		if (v != FL_BUF_SIZE(i)) {
345 			device_printf(sc->dev,
346 			    "invalid SGE_FL_BUFFER_SIZE[%d](0x%x)\n", i, v);
347 			rc = EINVAL;
348 		}
349 	}
350 
351 	v = t4_read_reg(sc, A_SGE_CONM_CTRL);
352 	s->fl_starve_threshold = G_EGRTHRESHOLD(v) * 2 + 1;
353 
354 	v = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
355 	sc->sge.counter_val[0] = G_THRESHOLD_0(v);
356 	sc->sge.counter_val[1] = G_THRESHOLD_1(v);
357 	sc->sge.counter_val[2] = G_THRESHOLD_2(v);
358 	sc->sge.counter_val[3] = G_THRESHOLD_3(v);
359 
360 	v = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
361 	sc->sge.timer_val[0] = G_TIMERVALUE0(v) / core_ticks_per_usec(sc);
362 	sc->sge.timer_val[1] = G_TIMERVALUE1(v) / core_ticks_per_usec(sc);
363 	v = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
364 	sc->sge.timer_val[2] = G_TIMERVALUE2(v) / core_ticks_per_usec(sc);
365 	sc->sge.timer_val[3] = G_TIMERVALUE3(v) / core_ticks_per_usec(sc);
366 	v = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
367 	sc->sge.timer_val[4] = G_TIMERVALUE4(v) / core_ticks_per_usec(sc);
368 	sc->sge.timer_val[5] = G_TIMERVALUE5(v) / core_ticks_per_usec(sc);
369 
370 	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
371 	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
372 	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
373 	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
374 
375 	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
376 
377 	return (rc);
378 }
379 
380 int
381 t4_create_dma_tag(struct adapter *sc)
382 {
383 	int rc;
384 
385 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
386 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
387 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
388 	    NULL, &sc->dmat);
389 	if (rc != 0) {
390 		device_printf(sc->dev,
391 		    "failed to create main DMA tag: %d\n", rc);
392 	}
393 
394 	return (rc);
395 }
396 
397 int
398 t4_destroy_dma_tag(struct adapter *sc)
399 {
400 	if (sc->dmat)
401 		bus_dma_tag_destroy(sc->dmat);
402 
403 	return (0);
404 }
405 
406 /*
407  * Allocate and initialize the firmware event queue and the management queue.
408  *
409  * Returns errno on failure.  Resources allocated up to that point may still be
410  * allocated.  Caller is responsible for cleanup in case this function fails.
411  */
412 int
413 t4_setup_adapter_queues(struct adapter *sc)
414 {
415 	int rc;
416 
417 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
418 
419 	sysctl_ctx_init(&sc->ctx);
420 	sc->flags |= ADAP_SYSCTL_CTX;
421 
422 	/*
423 	 * Firmware event queue
424 	 */
425 	rc = alloc_fwq(sc);
426 	if (rc != 0)
427 		return (rc);
428 
429 	/*
430 	 * Management queue.  This is just a control queue that uses the fwq as
431 	 * its associated iq.
432 	 */
433 	rc = alloc_mgmtq(sc);
434 
435 	return (rc);
436 }
437 
438 /*
439  * Idempotent
440  */
441 int
442 t4_teardown_adapter_queues(struct adapter *sc)
443 {
444 
445 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
446 
447 	/* Do this before freeing the queue */
448 	if (sc->flags & ADAP_SYSCTL_CTX) {
449 		sysctl_ctx_free(&sc->ctx);
450 		sc->flags &= ~ADAP_SYSCTL_CTX;
451 	}
452 
453 	free_mgmtq(sc);
454 	free_fwq(sc);
455 
456 	return (0);
457 }
458 
459 static inline int
460 first_vector(struct port_info *pi)
461 {
462 	struct adapter *sc = pi->adapter;
463 	int rc = T4_EXTRA_INTR, i;
464 
465 	if (sc->intr_count == 1)
466 		return (0);
467 
468 	for_each_port(sc, i) {
469 		struct port_info *p = sc->port[i];
470 
471 		if (i == pi->port_id)
472 			break;
473 
474 #ifdef TCP_OFFLOAD
475 		if (sc->flags & INTR_DIRECT)
476 			rc += p->nrxq + p->nofldrxq;
477 		else
478 			rc += max(p->nrxq, p->nofldrxq);
479 #else
480 		/*
481 		 * Not compiled with offload support and intr_count > 1.  Only
482 		 * NIC queues exist and they'd better be taking direct
483 		 * interrupts.
484 		 */
485 		KASSERT(sc->flags & INTR_DIRECT,
486 		    ("%s: intr_count %d, !INTR_DIRECT", __func__,
487 		    sc->intr_count));
488 
489 		rc += p->nrxq;
490 #endif
491 	}
492 
493 	return (rc);
494 }
495 
496 /*
497  * Given an arbitrary "index," come up with an iq that can be used by other
498  * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
499  * The iq returned is guaranteed to be something that takes direct interrupts.
500  */
501 static struct sge_iq *
502 port_intr_iq(struct port_info *pi, int idx)
503 {
504 	struct adapter *sc = pi->adapter;
505 	struct sge *s = &sc->sge;
506 	struct sge_iq *iq = NULL;
507 
508 	if (sc->intr_count == 1)
509 		return (&sc->sge.fwq);
510 
511 #ifdef TCP_OFFLOAD
512 	if (sc->flags & INTR_DIRECT) {
513 		idx %= pi->nrxq + pi->nofldrxq;
514 
515 		if (idx >= pi->nrxq) {
516 			idx -= pi->nrxq;
517 			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
518 		} else
519 			iq = &s->rxq[pi->first_rxq + idx].iq;
520 
521 	} else {
522 		idx %= max(pi->nrxq, pi->nofldrxq);
523 
524 		if (pi->nrxq >= pi->nofldrxq)
525 			iq = &s->rxq[pi->first_rxq + idx].iq;
526 		else
527 			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
528 	}
529 #else
530 	/*
531 	 * Not compiled with offload support and intr_count > 1.  Only NIC
532 	 * queues exist and they'd better be taking direct interrupts.
533 	 */
534 	KASSERT(sc->flags & INTR_DIRECT,
535 	    ("%s: intr_count %d, !INTR_DIRECT", __func__, sc->intr_count));
536 
537 	idx %= pi->nrxq;
538 	iq = &s->rxq[pi->first_rxq + idx].iq;
539 #endif
540 
541 	KASSERT(iq->flags & IQ_INTR, ("%s: EDOOFUS", __func__));
542 	return (iq);
543 }
544 
545 static inline int
546 mtu_to_bufsize(int mtu)
547 {
548 	int bufsize;
549 
550 	/* large enough for a frame even when VLAN extraction is disabled */
551 	bufsize = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + mtu;
552 	bufsize = roundup(bufsize + fl_pktshift, fl_pad);
553 
554 	return (bufsize);
555 }
556 
557 int
558 t4_setup_port_queues(struct port_info *pi)
559 {
560 	int rc = 0, i, j, intr_idx, iqid;
561 	struct sge_rxq *rxq;
562 	struct sge_txq *txq;
563 	struct sge_wrq *ctrlq;
564 #ifdef TCP_OFFLOAD
565 	struct sge_ofld_rxq *ofld_rxq;
566 	struct sge_wrq *ofld_txq;
567 	struct sysctl_oid *oid2 = NULL;
568 #endif
569 	char name[16];
570 	struct adapter *sc = pi->adapter;
571 	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
572 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
573 	int bufsize = mtu_to_bufsize(pi->ifp->if_mtu);
574 
575 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD,
576 	    NULL, "rx queues");
577 
578 #ifdef TCP_OFFLOAD
579 	if (is_offload(sc)) {
580 		oid2 = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
581 		    CTLFLAG_RD, NULL,
582 		    "rx queues for offloaded TCP connections");
583 	}
584 #endif
585 
586 	/* Interrupt vector to start from (when using multiple vectors) */
587 	intr_idx = first_vector(pi);
588 
589 	/*
590 	 * First pass over all rx queues (NIC and TOE):
591 	 * a) initialize iq and fl
592 	 * b) allocate queue iff it will take direct interrupts.
593 	 */
594 	for_each_rxq(pi, i, rxq) {
595 
596 		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq,
597 		    RX_IQ_ESIZE);
598 
599 		snprintf(name, sizeof(name), "%s rxq%d-fl",
600 		    device_get_nameunit(pi->dev), i);
601 		init_fl(&rxq->fl, pi->qsize_rxq / 8, bufsize, name);
602 
603 		if (sc->flags & INTR_DIRECT
604 #ifdef TCP_OFFLOAD
605 		    || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq)
606 #endif
607 		   ) {
608 			rxq->iq.flags |= IQ_INTR;
609 			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
610 			if (rc != 0)
611 				goto done;
612 			intr_idx++;
613 		}
614 	}
615 
616 #ifdef TCP_OFFLOAD
617 	for_each_ofld_rxq(pi, i, ofld_rxq) {
618 
619 		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
620 		    pi->qsize_rxq, RX_IQ_ESIZE);
621 
622 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
623 		    device_get_nameunit(pi->dev), i);
624 		init_fl(&ofld_rxq->fl, pi->qsize_rxq / 8, OFLD_BUF_SIZE, name);
625 
626 		if (sc->flags & INTR_DIRECT ||
627 		    (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) {
628 			ofld_rxq->iq.flags |= IQ_INTR;
629 			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
630 			if (rc != 0)
631 				goto done;
632 			intr_idx++;
633 		}
634 	}
635 #endif
636 
637 	/*
638 	 * Second pass over all rx queues (NIC and TOE).  The queues forwarding
639 	 * their interrupts are allocated now.
640 	 */
641 	j = 0;
642 	for_each_rxq(pi, i, rxq) {
643 		if (rxq->iq.flags & IQ_INTR)
644 			continue;
645 
646 		intr_idx = port_intr_iq(pi, j)->abs_id;
647 
648 		rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
649 		if (rc != 0)
650 			goto done;
651 		j++;
652 	}
653 
654 #ifdef TCP_OFFLOAD
655 	for_each_ofld_rxq(pi, i, ofld_rxq) {
656 		if (ofld_rxq->iq.flags & IQ_INTR)
657 			continue;
658 
659 		intr_idx = port_intr_iq(pi, j)->abs_id;
660 
661 		rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
662 		if (rc != 0)
663 			goto done;
664 		j++;
665 	}
666 #endif
667 
668 	/*
669 	 * Now the tx queues.  Only one pass needed.
670 	 */
671 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
672 	    NULL, "tx queues");
673 	j = 0;
674 	for_each_txq(pi, i, txq) {
675 		uint16_t iqid;
676 
677 		iqid = port_intr_iq(pi, j)->cntxt_id;
678 
679 		snprintf(name, sizeof(name), "%s txq%d",
680 		    device_get_nameunit(pi->dev), i);
681 		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
682 		    name);
683 
684 		rc = alloc_txq(pi, txq, i, oid);
685 		if (rc != 0)
686 			goto done;
687 		j++;
688 	}
689 
690 #ifdef TCP_OFFLOAD
691 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
692 	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
693 	for_each_ofld_txq(pi, i, ofld_txq) {
694 		uint16_t iqid;
695 
696 		iqid = port_intr_iq(pi, j)->cntxt_id;
697 
698 		snprintf(name, sizeof(name), "%s ofld_txq%d",
699 		    device_get_nameunit(pi->dev), i);
700 		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
701 		    iqid, name);
702 
703 		snprintf(name, sizeof(name), "%d", i);
704 		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
705 		    name, CTLFLAG_RD, NULL, "offload tx queue");
706 
707 		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
708 		if (rc != 0)
709 			goto done;
710 		j++;
711 	}
712 #endif
713 
714 	/*
715 	 * Finally, the control queue.
716 	 */
717 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
718 	    NULL, "ctrl queue");
719 	ctrlq = &sc->sge.ctrlq[pi->port_id];
720 	iqid = port_intr_iq(pi, 0)->cntxt_id;
721 	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
722 	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
723 	rc = alloc_wrq(sc, pi, ctrlq, oid);
724 
725 done:
726 	if (rc)
727 		t4_teardown_port_queues(pi);
728 
729 	return (rc);
730 }
731 
732 /*
733  * Idempotent
734  */
735 int
736 t4_teardown_port_queues(struct port_info *pi)
737 {
738 	int i;
739 	struct adapter *sc = pi->adapter;
740 	struct sge_rxq *rxq;
741 	struct sge_txq *txq;
742 #ifdef TCP_OFFLOAD
743 	struct sge_ofld_rxq *ofld_rxq;
744 	struct sge_wrq *ofld_txq;
745 #endif
746 
747 	/* Do this before freeing the queues */
748 	if (pi->flags & PORT_SYSCTL_CTX) {
749 		sysctl_ctx_free(&pi->ctx);
750 		pi->flags &= ~PORT_SYSCTL_CTX;
751 	}
752 
753 	/*
754 	 * Take down all the tx queues first, as they reference the rx queues
755 	 * (for egress updates, etc.).
756 	 */
757 
758 	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
759 
760 	for_each_txq(pi, i, txq) {
761 		free_txq(pi, txq);
762 	}
763 
764 #ifdef TCP_OFFLOAD
765 	for_each_ofld_txq(pi, i, ofld_txq) {
766 		free_wrq(sc, ofld_txq);
767 	}
768 #endif
769 
770 	/*
771 	 * Then take down the rx queues that forward their interrupts, as they
772 	 * reference other rx queues.
773 	 */
774 
775 	for_each_rxq(pi, i, rxq) {
776 		if ((rxq->iq.flags & IQ_INTR) == 0)
777 			free_rxq(pi, rxq);
778 	}
779 
780 #ifdef TCP_OFFLOAD
781 	for_each_ofld_rxq(pi, i, ofld_rxq) {
782 		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
783 			free_ofld_rxq(pi, ofld_rxq);
784 	}
785 #endif
786 
787 	/*
788 	 * Then take down the rx queues that take direct interrupts.
789 	 */
790 
791 	for_each_rxq(pi, i, rxq) {
792 		if (rxq->iq.flags & IQ_INTR)
793 			free_rxq(pi, rxq);
794 	}
795 
796 #ifdef TCP_OFFLOAD
797 	for_each_ofld_rxq(pi, i, ofld_rxq) {
798 		if (ofld_rxq->iq.flags & IQ_INTR)
799 			free_ofld_rxq(pi, ofld_rxq);
800 	}
801 #endif
802 
803 	return (0);
804 }
805 
806 /*
807  * Deals with errors and the firmware event queue.  All data rx queues forward
808  * their interrupt to the firmware event queue.
809  */
810 void
811 t4_intr_all(void *arg)
812 {
813 	struct adapter *sc = arg;
814 	struct sge_iq *fwq = &sc->sge.fwq;
815 
816 	t4_intr_err(arg);
817 	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
818 		service_iq(fwq, 0);
819 		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
820 	}
821 }
822 
823 /* Deals with error interrupts */
824 void
825 t4_intr_err(void *arg)
826 {
827 	struct adapter *sc = arg;
828 
829 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
830 	t4_slow_intr_handler(sc);
831 }
832 
833 void
834 t4_intr_evt(void *arg)
835 {
836 	struct sge_iq *iq = arg;
837 
838 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
839 		service_iq(iq, 0);
840 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
841 	}
842 }
843 
844 void
845 t4_intr(void *arg)
846 {
847 	struct sge_iq *iq = arg;
848 
849 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
850 		service_iq(iq, 0);
851 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
852 	}
853 }
854 
855 /*
856  * Deals with anything and everything on the given ingress queue.
857  */
858 static int
859 service_iq(struct sge_iq *iq, int budget)
860 {
861 	struct sge_iq *q;
862 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
863 	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
864 	struct adapter *sc = iq->adapter;
865 	struct rsp_ctrl *ctrl;
866 	const struct rss_header *rss;
867 	int ndescs = 0, limit, fl_bufs_used = 0;
868 	int rsp_type;
869 	uint32_t lq;
870 	struct mbuf *m0;
871 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
872 
873 	limit = budget ? budget : iq->qsize / 8;
874 
875 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
876 
877 	/*
878 	 * We always come back and check the descriptor ring for new indirect
879 	 * interrupts and other responses after running a single handler.
880 	 */
881 	for (;;) {
882 		while (is_new_response(iq, &ctrl)) {
883 
884 			rmb();
885 
886 			m0 = NULL;
887 			rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
888 			lq = be32toh(ctrl->pldbuflen_qid);
889 			rss = (const void *)iq->cdesc;
890 
891 			switch (rsp_type) {
892 			case X_RSPD_TYPE_FLBUF:
893 
894 				KASSERT(iq->flags & IQ_HAS_FL,
895 				    ("%s: data for an iq (%p) with no freelist",
896 				    __func__, iq));
897 
898 				m0 = get_fl_payload(sc, fl, lq, &fl_bufs_used);
899 #ifdef T4_PKT_TIMESTAMP
900 				/*
901 				 * 60 bit timestamp for the payload is
902 				 * *(uint64_t *)m0->m_pktdat.  Note that it is
903 				 * in the leading free-space in the mbuf.  The
904 				 * kernel can clobber it during a pullup,
905 				 * m_copymdata, etc.  You need to make sure that
906 				 * the mbuf reaches you unmolested if you care
907 				 * about the timestamp.
908 				 */
909 				*(uint64_t *)m0->m_pktdat =
910 				    be64toh(ctrl->u.last_flit) &
911 				    0xfffffffffffffff;
912 #endif
913 
914 				/* fall through */
915 
916 			case X_RSPD_TYPE_CPL:
917 				KASSERT(rss->opcode < NUM_CPL_CMDS,
918 				    ("%s: bad opcode %02x.", __func__,
919 				    rss->opcode));
920 				sc->cpl_handler[rss->opcode](iq, rss, m0);
921 				break;
922 
923 			case X_RSPD_TYPE_INTR:
924 
925 				/*
926 				 * Interrupts should be forwarded only to queues
927 				 * that are not forwarding their interrupts.
928 				 * This means service_iq can recurse but only 1
929 				 * level deep.
930 				 */
931 				KASSERT(budget == 0,
932 				    ("%s: budget %u, rsp_type %u", __func__,
933 				    budget, rsp_type));
934 
935 				q = sc->sge.iqmap[lq - sc->sge.iq_start];
936 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
937 				    IQS_BUSY)) {
938 					if (service_iq(q, q->qsize / 8) == 0) {
939 						atomic_cmpset_int(&q->state,
940 						    IQS_BUSY, IQS_IDLE);
941 					} else {
942 						STAILQ_INSERT_TAIL(&iql, q,
943 						    link);
944 					}
945 				}
946 				break;
947 
948 			default:
949 				sc->an_handler(iq, ctrl);
950 				break;
951 			}
952 
953 			iq_next(iq);
954 			if (++ndescs == limit) {
955 				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
956 				    V_CIDXINC(ndescs) |
957 				    V_INGRESSQID(iq->cntxt_id) |
958 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
959 				ndescs = 0;
960 
961 				if (fl_bufs_used > 0) {
962 					FL_LOCK(fl);
963 					fl->needed += fl_bufs_used;
964 					refill_fl(sc, fl, fl->cap / 8);
965 					FL_UNLOCK(fl);
966 					fl_bufs_used = 0;
967 				}
968 
969 				if (budget)
970 					return (EINPROGRESS);
971 			}
972 		}
973 
974 		if (STAILQ_EMPTY(&iql))
975 			break;
976 
977 		/*
978 		 * Process the head only, and send it to the back of the list if
979 		 * it's still not done.
980 		 */
981 		q = STAILQ_FIRST(&iql);
982 		STAILQ_REMOVE_HEAD(&iql, link);
983 		if (service_iq(q, q->qsize / 8) == 0)
984 			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
985 		else
986 			STAILQ_INSERT_TAIL(&iql, q, link);
987 	}
988 
989 #if defined(INET) || defined(INET6)
990 	if (iq->flags & IQ_LRO_ENABLED) {
991 		struct lro_ctrl *lro = &rxq->lro;
992 		struct lro_entry *l;
993 
994 		while (!SLIST_EMPTY(&lro->lro_active)) {
995 			l = SLIST_FIRST(&lro->lro_active);
996 			SLIST_REMOVE_HEAD(&lro->lro_active, next);
997 			tcp_lro_flush(lro, l);
998 		}
999 	}
1000 #endif
1001 
1002 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1003 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1004 
1005 	if (iq->flags & IQ_HAS_FL) {
1006 		int starved;
1007 
1008 		FL_LOCK(fl);
1009 		fl->needed += fl_bufs_used;
1010 		starved = refill_fl(sc, fl, fl->cap / 4);
1011 		FL_UNLOCK(fl);
1012 		if (__predict_false(starved != 0))
1013 			add_fl_to_sfl(sc, fl);
1014 	}
1015 
1016 	return (0);
1017 }
1018 
1019 static struct mbuf *
1020 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1021     int *fl_bufs_used)
1022 {
1023 	struct mbuf *m0, *m;
1024 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1025 	unsigned int nbuf, len;
1026 
1027 	/*
1028 	 * No assertion for the fl lock because we don't need it.  This routine
1029 	 * is called only from the rx interrupt handler and it only updates
1030 	 * fl->cidx.  (Contrast that with fl->pidx/fl->needed which could be
1031 	 * updated in the rx interrupt handler or the starvation helper routine.
1032 	 * That's why code that manipulates fl->pidx/fl->needed needs the fl
1033 	 * lock but this routine does not).
1034 	 */
1035 
1036 	if (__predict_false((len_newbuf & F_RSPD_NEWBUF) == 0))
1037 		panic("%s: cannot handle packed frames", __func__);
1038 	len = G_RSPD_LEN(len_newbuf);
1039 
1040 	m0 = sd->m;
1041 	sd->m = NULL;	/* consumed */
1042 
1043 	bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD);
1044 	m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR);
1045 #ifdef T4_PKT_TIMESTAMP
1046 	/* Leave room for a timestamp */
1047 	m0->m_data += 8;
1048 #endif
1049 
1050 	if (len < RX_COPY_THRESHOLD) {
1051 		/* copy data to mbuf, buffer will be recycled */
1052 		bcopy(sd->cl, mtod(m0, caddr_t), len);
1053 		m0->m_len = len;
1054 	} else {
1055 		bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
1056 		m_cljset(m0, sd->cl, FL_BUF_TYPE(sd->tag_idx));
1057 		sd->cl = NULL;	/* consumed */
1058 		m0->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
1059 	}
1060 	m0->m_pkthdr.len = len;
1061 
1062 	sd++;
1063 	if (__predict_false(++fl->cidx == fl->cap)) {
1064 		sd = fl->sdesc;
1065 		fl->cidx = 0;
1066 	}
1067 
1068 	m = m0;
1069 	len -= m->m_len;
1070 	nbuf = 1;	/* # of fl buffers used */
1071 
1072 	while (len > 0) {
1073 		m->m_next = sd->m;
1074 		sd->m = NULL;	/* consumed */
1075 		m = m->m_next;
1076 
1077 		bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map,
1078 		    BUS_DMASYNC_POSTREAD);
1079 
1080 		m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0);
1081 		if (len <= MLEN) {
1082 			bcopy(sd->cl, mtod(m, caddr_t), len);
1083 			m->m_len = len;
1084 		} else {
1085 			bus_dmamap_unload(fl->tag[sd->tag_idx],
1086 			    sd->map);
1087 			m_cljset(m, sd->cl, FL_BUF_TYPE(sd->tag_idx));
1088 			sd->cl = NULL;	/* consumed */
1089 			m->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
1090 		}
1091 
1092 		sd++;
1093 		if (__predict_false(++fl->cidx == fl->cap)) {
1094 			sd = fl->sdesc;
1095 			fl->cidx = 0;
1096 		}
1097 
1098 		len -= m->m_len;
1099 		nbuf++;
1100 	}
1101 
1102 	(*fl_bufs_used) += nbuf;
1103 
1104 	return (m0);
1105 }
1106 
1107 static int
1108 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1109 {
1110 	struct sge_rxq *rxq = iq_to_rxq(iq);
1111 	struct ifnet *ifp = rxq->ifp;
1112 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1113 #if defined(INET) || defined(INET6)
1114 	struct lro_ctrl *lro = &rxq->lro;
1115 #endif
1116 
1117 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1118 	    rss->opcode));
1119 
1120 	m0->m_pkthdr.len -= fl_pktshift;
1121 	m0->m_len -= fl_pktshift;
1122 	m0->m_data += fl_pktshift;
1123 
1124 	m0->m_pkthdr.rcvif = ifp;
1125 	m0->m_flags |= M_FLOWID;
1126 	m0->m_pkthdr.flowid = rss->hash_val;
1127 
1128 	if (cpl->csum_calc && !cpl->err_vec) {
1129 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1130 		    cpl->l2info & htobe32(F_RXF_IP)) {
1131 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1132 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1133 			rxq->rxcsum++;
1134 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1135 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1136 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1137 			    CSUM_PSEUDO_HDR);
1138 			rxq->rxcsum++;
1139 		}
1140 
1141 		if (__predict_false(cpl->ip_frag))
1142 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1143 		else
1144 			m0->m_pkthdr.csum_data = 0xffff;
1145 	}
1146 
1147 	if (cpl->vlan_ex) {
1148 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1149 		m0->m_flags |= M_VLANTAG;
1150 		rxq->vlan_extraction++;
1151 	}
1152 
1153 #if defined(INET) || defined(INET6)
1154 	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1155 	    iq->flags & IQ_LRO_ENABLED &&
1156 	    tcp_lro_rx(lro, m0, 0) == 0) {
1157 		/* queued for LRO */
1158 	} else
1159 #endif
1160 	ifp->if_input(ifp, m0);
1161 
1162 	return (0);
1163 }
1164 
1165 /*
1166  * Doesn't fail.  Holds on to work requests it can't send right away.
1167  */
1168 void
1169 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1170 {
1171 	struct sge_eq *eq = &wrq->eq;
1172 	int can_reclaim;
1173 	caddr_t dst;
1174 
1175 	TXQ_LOCK_ASSERT_OWNED(wrq);
1176 #ifdef TCP_OFFLOAD
1177 	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1178 	    (eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1179 	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1180 #else
1181 	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1182 	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1183 #endif
1184 
1185 	if (__predict_true(wr != NULL))
1186 		STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1187 
1188 	can_reclaim = reclaimable(eq);
1189 	if (__predict_false(eq->flags & EQ_STALLED)) {
1190 		if (can_reclaim < tx_resume_threshold(eq))
1191 			return;
1192 		eq->flags &= ~EQ_STALLED;
1193 		eq->unstalled++;
1194 	}
1195 	eq->cidx += can_reclaim;
1196 	eq->avail += can_reclaim;
1197 	if (__predict_false(eq->cidx >= eq->cap))
1198 		eq->cidx -= eq->cap;
1199 
1200 	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
1201 		int ndesc;
1202 
1203 		if (__predict_false(wr->wr_len < 0 ||
1204 		    wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) {
1205 
1206 #ifdef INVARIANTS
1207 			panic("%s: work request with length %d", __func__,
1208 			    wr->wr_len);
1209 #endif
1210 #ifdef KDB
1211 			kdb_backtrace();
1212 #endif
1213 			log(LOG_ERR, "%s: %s work request with length %d",
1214 			    device_get_nameunit(sc->dev), __func__, wr->wr_len);
1215 			STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1216 			free_wrqe(wr);
1217 			continue;
1218 		}
1219 
1220 		ndesc = howmany(wr->wr_len, EQ_ESIZE);
1221 		if (eq->avail < ndesc) {
1222 			wrq->no_desc++;
1223 			break;
1224 		}
1225 
1226 		dst = (void *)&eq->desc[eq->pidx];
1227 		copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len);
1228 
1229 		eq->pidx += ndesc;
1230 		eq->avail -= ndesc;
1231 		if (__predict_false(eq->pidx >= eq->cap))
1232 			eq->pidx -= eq->cap;
1233 
1234 		eq->pending += ndesc;
1235 		if (eq->pending > 16)
1236 			ring_eq_db(sc, eq);
1237 
1238 		wrq->tx_wrs++;
1239 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1240 		free_wrqe(wr);
1241 
1242 		if (eq->avail < 8) {
1243 			can_reclaim = reclaimable(eq);
1244 			eq->cidx += can_reclaim;
1245 			eq->avail += can_reclaim;
1246 			if (__predict_false(eq->cidx >= eq->cap))
1247 				eq->cidx -= eq->cap;
1248 		}
1249 	}
1250 
1251 	if (eq->pending)
1252 		ring_eq_db(sc, eq);
1253 
1254 	if (wr != NULL) {
1255 		eq->flags |= EQ_STALLED;
1256 		if (callout_pending(&eq->tx_callout) == 0)
1257 			callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1258 	}
1259 }
1260 
1261 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1262 #define TXPKTS_PKT_HDR ((\
1263     sizeof(struct ulp_txpkt) + \
1264     sizeof(struct ulptx_idata) + \
1265     sizeof(struct cpl_tx_pkt_core) \
1266     ) / 8)
1267 
1268 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1269 #define TXPKTS_WR_HDR (\
1270     sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
1271     TXPKTS_PKT_HDR)
1272 
1273 /* Header of a tx WR, before SGL of first packet (in flits) */
1274 #define TXPKT_WR_HDR ((\
1275     sizeof(struct fw_eth_tx_pkt_wr) + \
1276     sizeof(struct cpl_tx_pkt_core) \
1277     ) / 8 )
1278 
1279 /* Header of a tx LSO WR, before SGL of first packet (in flits) */
1280 #define TXPKT_LSO_WR_HDR ((\
1281     sizeof(struct fw_eth_tx_pkt_wr) + \
1282     sizeof(struct cpl_tx_pkt_lso_core) + \
1283     sizeof(struct cpl_tx_pkt_core) \
1284     ) / 8 )
1285 
1286 int
1287 t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
1288 {
1289 	struct port_info *pi = (void *)ifp->if_softc;
1290 	struct adapter *sc = pi->adapter;
1291 	struct sge_eq *eq = &txq->eq;
1292 	struct buf_ring *br = txq->br;
1293 	struct mbuf *next;
1294 	int rc, coalescing, can_reclaim;
1295 	struct txpkts txpkts;
1296 	struct sgl sgl;
1297 
1298 	TXQ_LOCK_ASSERT_OWNED(txq);
1299 	KASSERT(m, ("%s: called with nothing to do.", __func__));
1300 	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
1301 	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1302 
1303 	prefetch(&eq->desc[eq->pidx]);
1304 	prefetch(&txq->sdesc[eq->pidx]);
1305 
1306 	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
1307 	coalescing = 0;
1308 
1309 	can_reclaim = reclaimable(eq);
1310 	if (__predict_false(eq->flags & EQ_STALLED)) {
1311 		if (can_reclaim < tx_resume_threshold(eq)) {
1312 			txq->m = m;
1313 			return (0);
1314 		}
1315 		eq->flags &= ~EQ_STALLED;
1316 		eq->unstalled++;
1317 	}
1318 
1319 	if (__predict_false(eq->flags & EQ_DOOMED)) {
1320 		m_freem(m);
1321 		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
1322 			m_freem(m);
1323 		return (ENETDOWN);
1324 	}
1325 
1326 	if (eq->avail < 8 && can_reclaim)
1327 		reclaim_tx_descs(txq, can_reclaim, 32);
1328 
1329 	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
1330 
1331 		if (eq->avail < 8)
1332 			break;
1333 
1334 		next = m->m_nextpkt;
1335 		m->m_nextpkt = NULL;
1336 
1337 		if (next || buf_ring_peek(br))
1338 			coalescing = 1;
1339 
1340 		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
1341 		if (rc != 0) {
1342 			if (rc == ENOMEM) {
1343 
1344 				/* Short of resources, suspend tx */
1345 
1346 				m->m_nextpkt = next;
1347 				break;
1348 			}
1349 
1350 			/*
1351 			 * Unrecoverable error for this packet, throw it away
1352 			 * and move on to the next.  get_pkt_sgl may already
1353 			 * have freed m (it will be NULL in that case and the
1354 			 * m_freem here is still safe).
1355 			 */
1356 
1357 			m_freem(m);
1358 			continue;
1359 		}
1360 
1361 		if (coalescing &&
1362 		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
1363 
1364 			/* Successfully absorbed into txpkts */
1365 
1366 			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
1367 			goto doorbell;
1368 		}
1369 
1370 		/*
1371 		 * We weren't coalescing to begin with, or current frame could
1372 		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1373 		 * given to it can't be coalesced).  Either way there should be
1374 		 * nothing in txpkts.
1375 		 */
1376 		KASSERT(txpkts.npkt == 0,
1377 		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
1378 
1379 		/* We're sending out individual packets now */
1380 		coalescing = 0;
1381 
1382 		if (eq->avail < 8)
1383 			reclaim_tx_descs(txq, 0, 8);
1384 		rc = write_txpkt_wr(pi, txq, m, &sgl);
1385 		if (rc != 0) {
1386 
1387 			/* Short of hardware descriptors, suspend tx */
1388 
1389 			/*
1390 			 * This is an unlikely but expensive failure.  We've
1391 			 * done all the hard work (DMA mappings etc.) and now we
1392 			 * can't send out the packet.  What's worse, we have to
1393 			 * spend even more time freeing up everything in sgl.
1394 			 */
1395 			txq->no_desc++;
1396 			free_pkt_sgl(txq, &sgl);
1397 
1398 			m->m_nextpkt = next;
1399 			break;
1400 		}
1401 
1402 		ETHER_BPF_MTAP(ifp, m);
1403 		if (sgl.nsegs == 0)
1404 			m_freem(m);
1405 doorbell:
1406 		if (eq->pending >= 64)
1407 		    ring_eq_db(sc, eq);
1408 
1409 		can_reclaim = reclaimable(eq);
1410 		if (can_reclaim >= 32)
1411 			reclaim_tx_descs(txq, can_reclaim, 64);
1412 	}
1413 
1414 	if (txpkts.npkt > 0)
1415 		write_txpkts_wr(txq, &txpkts);
1416 
1417 	/*
1418 	 * m not NULL means there was an error but we haven't thrown it away.
1419 	 * This can happen when we're short of tx descriptors (no_desc) or maybe
1420 	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
1421 	 * will get things going again.
1422 	 */
1423 	if (m && !(eq->flags & EQ_CRFLUSHED)) {
1424 		struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
1425 
1426 		/*
1427 		 * If EQ_CRFLUSHED is not set then we know we have at least one
1428 		 * available descriptor because any WR that reduces eq->avail to
1429 		 * 0 also sets EQ_CRFLUSHED.
1430 		 */
1431 		KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
1432 
1433 		txsd->desc_used = 1;
1434 		txsd->credits = 0;
1435 		write_eqflush_wr(eq);
1436 	}
1437 	txq->m = m;
1438 
1439 	if (eq->pending)
1440 		ring_eq_db(sc, eq);
1441 
1442 	reclaim_tx_descs(txq, 0, 128);
1443 
1444 	if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
1445 		callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1446 
1447 	return (0);
1448 }
1449 
1450 void
1451 t4_update_fl_bufsize(struct ifnet *ifp)
1452 {
1453 	struct port_info *pi = ifp->if_softc;
1454 	struct sge_rxq *rxq;
1455 	struct sge_fl *fl;
1456 	int i, bufsize = mtu_to_bufsize(ifp->if_mtu);
1457 
1458 	for_each_rxq(pi, i, rxq) {
1459 		fl = &rxq->fl;
1460 
1461 		FL_LOCK(fl);
1462 		set_fl_tag_idx(fl, bufsize);
1463 		FL_UNLOCK(fl);
1464 	}
1465 }
1466 
1467 int
1468 can_resume_tx(struct sge_eq *eq)
1469 {
1470 	return (reclaimable(eq) >= tx_resume_threshold(eq));
1471 }
1472 
1473 static inline void
1474 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
1475     int qsize, int esize)
1476 {
1477 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
1478 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
1479 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
1480 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
1481 
1482 	iq->flags = 0;
1483 	iq->adapter = sc;
1484 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
1485 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
1486 	if (pktc_idx >= 0) {
1487 		iq->intr_params |= F_QINTR_CNT_EN;
1488 		iq->intr_pktc_idx = pktc_idx;
1489 	}
1490 	iq->qsize = roundup(qsize, 16);		/* See FW_IQ_CMD/iqsize */
1491 	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
1492 }
1493 
1494 static inline void
1495 init_fl(struct sge_fl *fl, int qsize, int bufsize, char *name)
1496 {
1497 	fl->qsize = qsize;
1498 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
1499 	set_fl_tag_idx(fl, bufsize);
1500 }
1501 
1502 static inline void
1503 init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
1504     uint16_t iqid, char *name)
1505 {
1506 	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
1507 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
1508 
1509 	eq->flags = eqtype & EQ_TYPEMASK;
1510 	eq->tx_chan = tx_chan;
1511 	eq->iqid = iqid;
1512 	eq->qsize = qsize;
1513 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
1514 
1515 	TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
1516 	callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
1517 }
1518 
1519 static int
1520 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
1521     bus_dmamap_t *map, bus_addr_t *pa, void **va)
1522 {
1523 	int rc;
1524 
1525 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
1526 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
1527 	if (rc != 0) {
1528 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
1529 		goto done;
1530 	}
1531 
1532 	rc = bus_dmamem_alloc(*tag, va,
1533 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
1534 	if (rc != 0) {
1535 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
1536 		goto done;
1537 	}
1538 
1539 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
1540 	if (rc != 0) {
1541 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
1542 		goto done;
1543 	}
1544 done:
1545 	if (rc)
1546 		free_ring(sc, *tag, *map, *pa, *va);
1547 
1548 	return (rc);
1549 }
1550 
1551 static int
1552 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
1553     bus_addr_t pa, void *va)
1554 {
1555 	if (pa)
1556 		bus_dmamap_unload(tag, map);
1557 	if (va)
1558 		bus_dmamem_free(tag, va, map);
1559 	if (tag)
1560 		bus_dma_tag_destroy(tag);
1561 
1562 	return (0);
1563 }
1564 
1565 /*
1566  * Allocates the ring for an ingress queue and an optional freelist.  If the
1567  * freelist is specified it will be allocated and then associated with the
1568  * ingress queue.
1569  *
1570  * Returns errno on failure.  Resources allocated up to that point may still be
1571  * allocated.  Caller is responsible for cleanup in case this function fails.
1572  *
1573  * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
1574  * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
1575  * the abs_id of the ingress queue to which its interrupts should be forwarded.
1576  */
1577 static int
1578 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
1579     int intr_idx, int cong)
1580 {
1581 	int rc, i, cntxt_id;
1582 	size_t len;
1583 	struct fw_iq_cmd c;
1584 	struct adapter *sc = iq->adapter;
1585 	__be32 v = 0;
1586 
1587 	len = iq->qsize * iq->esize;
1588 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
1589 	    (void **)&iq->desc);
1590 	if (rc != 0)
1591 		return (rc);
1592 
1593 	bzero(&c, sizeof(c));
1594 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1595 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
1596 	    V_FW_IQ_CMD_VFN(0));
1597 
1598 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1599 	    FW_LEN16(c));
1600 
1601 	/* Special handling for firmware event queue */
1602 	if (iq == &sc->sge.fwq)
1603 		v |= F_FW_IQ_CMD_IQASYNCH;
1604 
1605 	if (iq->flags & IQ_INTR) {
1606 		KASSERT(intr_idx < sc->intr_count,
1607 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
1608 	} else
1609 		v |= F_FW_IQ_CMD_IQANDST;
1610 	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
1611 
1612 	c.type_to_iqandstindex = htobe32(v |
1613 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1614 	    V_FW_IQ_CMD_VIID(pi->viid) |
1615 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
1616 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1617 	    F_FW_IQ_CMD_IQGTSMODE |
1618 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
1619 	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
1620 	c.iqsize = htobe16(iq->qsize);
1621 	c.iqaddr = htobe64(iq->ba);
1622 	if (cong >= 0)
1623 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
1624 
1625 	if (fl) {
1626 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
1627 
1628 		for (i = 0; i < FL_BUF_SIZES; i++) {
1629 
1630 			/*
1631 			 * A freelist buffer must be 16 byte aligned as the SGE
1632 			 * uses the low 4 bits of the bus addr to figure out the
1633 			 * buffer size.
1634 			 */
1635 			rc = bus_dma_tag_create(sc->dmat, 16, 0,
1636 			    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1637 			    FL_BUF_SIZE(i), 1, FL_BUF_SIZE(i), BUS_DMA_ALLOCNOW,
1638 			    NULL, NULL, &fl->tag[i]);
1639 			if (rc != 0) {
1640 				device_printf(sc->dev,
1641 				    "failed to create fl DMA tag[%d]: %d\n",
1642 				    i, rc);
1643 				return (rc);
1644 			}
1645 		}
1646 		len = fl->qsize * RX_FL_ESIZE;
1647 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
1648 		    &fl->ba, (void **)&fl->desc);
1649 		if (rc)
1650 			return (rc);
1651 
1652 		/* Allocate space for one software descriptor per buffer. */
1653 		fl->cap = (fl->qsize - spg_len / RX_FL_ESIZE) * 8;
1654 		FL_LOCK(fl);
1655 		rc = alloc_fl_sdesc(fl);
1656 		FL_UNLOCK(fl);
1657 		if (rc != 0) {
1658 			device_printf(sc->dev,
1659 			    "failed to setup fl software descriptors: %d\n",
1660 			    rc);
1661 			return (rc);
1662 		}
1663 		fl->needed = fl->cap;
1664 		fl->lowat = roundup(sc->sge.fl_starve_threshold, 8);
1665 
1666 		c.iqns_to_fl0congen |=
1667 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1668 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
1669 			F_FW_IQ_CMD_FL0PADEN);
1670 		if (cong >= 0) {
1671 			c.iqns_to_fl0congen |=
1672 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1673 				    F_FW_IQ_CMD_FL0CONGCIF |
1674 				    F_FW_IQ_CMD_FL0CONGEN);
1675 		}
1676 		c.fl0dcaen_to_fl0cidxfthresh =
1677 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
1678 			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
1679 		c.fl0size = htobe16(fl->qsize);
1680 		c.fl0addr = htobe64(fl->ba);
1681 	}
1682 
1683 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
1684 	if (rc != 0) {
1685 		device_printf(sc->dev,
1686 		    "failed to create ingress queue: %d\n", rc);
1687 		return (rc);
1688 	}
1689 
1690 	iq->cdesc = iq->desc;
1691 	iq->cidx = 0;
1692 	iq->gen = 1;
1693 	iq->intr_next = iq->intr_params;
1694 	iq->cntxt_id = be16toh(c.iqid);
1695 	iq->abs_id = be16toh(c.physiqid);
1696 	iq->flags |= IQ_ALLOCATED;
1697 
1698 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
1699 	if (cntxt_id >= sc->sge.niq) {
1700 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
1701 		    cntxt_id, sc->sge.niq - 1);
1702 	}
1703 	sc->sge.iqmap[cntxt_id] = iq;
1704 
1705 	if (fl) {
1706 		fl->cntxt_id = be16toh(c.fl0id);
1707 		fl->pidx = fl->cidx = 0;
1708 
1709 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
1710 		if (cntxt_id >= sc->sge.neq) {
1711 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
1712 			    __func__, cntxt_id, sc->sge.neq - 1);
1713 		}
1714 		sc->sge.eqmap[cntxt_id] = (void *)fl;
1715 
1716 		FL_LOCK(fl);
1717 		/* Enough to make sure the SGE doesn't think it's starved */
1718 		refill_fl(sc, fl, fl->lowat);
1719 		FL_UNLOCK(fl);
1720 
1721 		iq->flags |= IQ_HAS_FL;
1722 	}
1723 
1724 	/* Enable IQ interrupts */
1725 	atomic_store_rel_int(&iq->state, IQS_IDLE);
1726 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
1727 	    V_INGRESSQID(iq->cntxt_id));
1728 
1729 	return (0);
1730 }
1731 
1732 static int
1733 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
1734 {
1735 	int i, rc;
1736 	struct adapter *sc = iq->adapter;
1737 	device_t dev;
1738 
1739 	if (sc == NULL)
1740 		return (0);	/* nothing to do */
1741 
1742 	dev = pi ? pi->dev : sc->dev;
1743 
1744 	if (iq->flags & IQ_ALLOCATED) {
1745 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
1746 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
1747 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
1748 		if (rc != 0) {
1749 			device_printf(dev,
1750 			    "failed to free queue %p: %d\n", iq, rc);
1751 			return (rc);
1752 		}
1753 		iq->flags &= ~IQ_ALLOCATED;
1754 	}
1755 
1756 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
1757 
1758 	bzero(iq, sizeof(*iq));
1759 
1760 	if (fl) {
1761 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
1762 		    fl->desc);
1763 
1764 		if (fl->sdesc) {
1765 			FL_LOCK(fl);
1766 			free_fl_sdesc(fl);
1767 			FL_UNLOCK(fl);
1768 		}
1769 
1770 		if (mtx_initialized(&fl->fl_lock))
1771 			mtx_destroy(&fl->fl_lock);
1772 
1773 		for (i = 0; i < FL_BUF_SIZES; i++) {
1774 			if (fl->tag[i])
1775 				bus_dma_tag_destroy(fl->tag[i]);
1776 		}
1777 
1778 		bzero(fl, sizeof(*fl));
1779 	}
1780 
1781 	return (0);
1782 }
1783 
1784 static int
1785 alloc_fwq(struct adapter *sc)
1786 {
1787 	int rc, intr_idx;
1788 	struct sge_iq *fwq = &sc->sge.fwq;
1789 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
1790 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1791 
1792 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
1793 	fwq->flags |= IQ_INTR;	/* always */
1794 	intr_idx = sc->intr_count > 1 ? 1 : 0;
1795 	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
1796 	if (rc != 0) {
1797 		device_printf(sc->dev,
1798 		    "failed to create firmware event queue: %d\n", rc);
1799 		return (rc);
1800 	}
1801 
1802 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
1803 	    NULL, "firmware event queue");
1804 	children = SYSCTL_CHILDREN(oid);
1805 
1806 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
1807 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
1808 	    "absolute id of the queue");
1809 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
1810 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
1811 	    "SGE context id of the queue");
1812 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
1813 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
1814 	    "consumer index");
1815 
1816 	return (0);
1817 }
1818 
1819 static int
1820 free_fwq(struct adapter *sc)
1821 {
1822 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
1823 }
1824 
1825 static int
1826 alloc_mgmtq(struct adapter *sc)
1827 {
1828 	int rc;
1829 	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
1830 	char name[16];
1831 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
1832 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1833 
1834 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
1835 	    NULL, "management queue");
1836 
1837 	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
1838 	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
1839 	    sc->sge.fwq.cntxt_id, name);
1840 	rc = alloc_wrq(sc, NULL, mgmtq, oid);
1841 	if (rc != 0) {
1842 		device_printf(sc->dev,
1843 		    "failed to create management queue: %d\n", rc);
1844 		return (rc);
1845 	}
1846 
1847 	return (0);
1848 }
1849 
1850 static int
1851 free_mgmtq(struct adapter *sc)
1852 {
1853 
1854 	return free_wrq(sc, &sc->sge.mgmtq);
1855 }
1856 
1857 static inline int
1858 tnl_cong(struct port_info *pi)
1859 {
1860 
1861 	if (cong_drop == -1)
1862 		return (-1);
1863 	else if (cong_drop == 1)
1864 		return (0);
1865 	else
1866 		return (1 << pi->tx_chan);
1867 }
1868 
1869 static int
1870 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
1871     struct sysctl_oid *oid)
1872 {
1873 	int rc;
1874 	struct sysctl_oid_list *children;
1875 	char name[16];
1876 
1877 	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
1878 	if (rc != 0)
1879 		return (rc);
1880 
1881 	FL_LOCK(&rxq->fl);
1882 	refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8);
1883 	FL_UNLOCK(&rxq->fl);
1884 
1885 #if defined(INET) || defined(INET6)
1886 	rc = tcp_lro_init(&rxq->lro);
1887 	if (rc != 0)
1888 		return (rc);
1889 	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
1890 
1891 	if (pi->ifp->if_capenable & IFCAP_LRO)
1892 		rxq->iq.flags |= IQ_LRO_ENABLED;
1893 #endif
1894 	rxq->ifp = pi->ifp;
1895 
1896 	children = SYSCTL_CHILDREN(oid);
1897 
1898 	snprintf(name, sizeof(name), "%d", idx);
1899 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
1900 	    NULL, "rx queue");
1901 	children = SYSCTL_CHILDREN(oid);
1902 
1903 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
1904 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
1905 	    "absolute id of the queue");
1906 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
1907 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
1908 	    "SGE context id of the queue");
1909 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
1910 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
1911 	    "consumer index");
1912 #if defined(INET) || defined(INET6)
1913 	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
1914 	    &rxq->lro.lro_queued, 0, NULL);
1915 	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
1916 	    &rxq->lro.lro_flushed, 0, NULL);
1917 #endif
1918 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
1919 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
1920 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
1921 	    CTLFLAG_RD, &rxq->vlan_extraction,
1922 	    "# of times hardware extracted 802.1Q tag");
1923 
1924 	children = SYSCTL_CHILDREN(oid);
1925 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD,
1926 	    NULL, "freelist");
1927 	children = SYSCTL_CHILDREN(oid);
1928 
1929 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
1930 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->fl.cntxt_id, 0, sysctl_uint16, "I",
1931 	    "SGE context id of the queue");
1932 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
1933 	    &rxq->fl.cidx, 0, "consumer index");
1934 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
1935 	    &rxq->fl.pidx, 0, "producer index");
1936 
1937 	return (rc);
1938 }
1939 
1940 static int
1941 free_rxq(struct port_info *pi, struct sge_rxq *rxq)
1942 {
1943 	int rc;
1944 
1945 #if defined(INET) || defined(INET6)
1946 	if (rxq->lro.ifp) {
1947 		tcp_lro_free(&rxq->lro);
1948 		rxq->lro.ifp = NULL;
1949 	}
1950 #endif
1951 
1952 	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
1953 	if (rc == 0)
1954 		bzero(rxq, sizeof(*rxq));
1955 
1956 	return (rc);
1957 }
1958 
1959 #ifdef TCP_OFFLOAD
1960 static int
1961 alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
1962     int intr_idx, int idx, struct sysctl_oid *oid)
1963 {
1964 	int rc;
1965 	struct sysctl_oid_list *children;
1966 	char name[16];
1967 
1968 	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
1969 	    1 << pi->tx_chan);
1970 	if (rc != 0)
1971 		return (rc);
1972 
1973 	children = SYSCTL_CHILDREN(oid);
1974 
1975 	snprintf(name, sizeof(name), "%d", idx);
1976 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
1977 	    NULL, "rx queue");
1978 	children = SYSCTL_CHILDREN(oid);
1979 
1980 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
1981 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
1982 	    "I", "absolute id of the queue");
1983 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
1984 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
1985 	    "I", "SGE context id of the queue");
1986 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
1987 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
1988 	    "consumer index");
1989 
1990 	children = SYSCTL_CHILDREN(oid);
1991 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD,
1992 	    NULL, "freelist");
1993 	children = SYSCTL_CHILDREN(oid);
1994 
1995 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
1996 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->fl.cntxt_id, 0, sysctl_uint16,
1997 	    "I", "SGE context id of the queue");
1998 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
1999 	    &ofld_rxq->fl.cidx, 0, "consumer index");
2000 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2001 	    &ofld_rxq->fl.pidx, 0, "producer index");
2002 
2003 	return (rc);
2004 }
2005 
2006 static int
2007 free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
2008 {
2009 	int rc;
2010 
2011 	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
2012 	if (rc == 0)
2013 		bzero(ofld_rxq, sizeof(*ofld_rxq));
2014 
2015 	return (rc);
2016 }
2017 #endif
2018 
2019 static int
2020 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
2021 {
2022 	int rc, cntxt_id;
2023 	struct fw_eq_ctrl_cmd c;
2024 
2025 	bzero(&c, sizeof(c));
2026 
2027 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2028 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
2029 	    V_FW_EQ_CTRL_CMD_VFN(0));
2030 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
2031 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2032 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
2033 	c.physeqid_pkd = htobe32(0);
2034 	c.fetchszm_to_iqid =
2035 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2036 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
2037 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
2038 	c.dcaen_to_eqsize =
2039 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2040 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2041 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2042 		V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
2043 	c.eqaddr = htobe64(eq->ba);
2044 
2045 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2046 	if (rc != 0) {
2047 		device_printf(sc->dev,
2048 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
2049 		return (rc);
2050 	}
2051 	eq->flags |= EQ_ALLOCATED;
2052 
2053 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
2054 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2055 	if (cntxt_id >= sc->sge.neq)
2056 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2057 		cntxt_id, sc->sge.neq - 1);
2058 	sc->sge.eqmap[cntxt_id] = eq;
2059 
2060 	return (rc);
2061 }
2062 
2063 static int
2064 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2065 {
2066 	int rc, cntxt_id;
2067 	struct fw_eq_eth_cmd c;
2068 
2069 	bzero(&c, sizeof(c));
2070 
2071 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2072 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
2073 	    V_FW_EQ_ETH_CMD_VFN(0));
2074 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
2075 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2076 	c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
2077 	c.fetchszm_to_iqid =
2078 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2079 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
2080 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
2081 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2082 		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2083 		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2084 		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
2085 	c.eqaddr = htobe64(eq->ba);
2086 
2087 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2088 	if (rc != 0) {
2089 		device_printf(pi->dev,
2090 		    "failed to create Ethernet egress queue: %d\n", rc);
2091 		return (rc);
2092 	}
2093 	eq->flags |= EQ_ALLOCATED;
2094 
2095 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
2096 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2097 	if (cntxt_id >= sc->sge.neq)
2098 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2099 		cntxt_id, sc->sge.neq - 1);
2100 	sc->sge.eqmap[cntxt_id] = eq;
2101 
2102 	return (rc);
2103 }
2104 
2105 #ifdef TCP_OFFLOAD
2106 static int
2107 ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2108 {
2109 	int rc, cntxt_id;
2110 	struct fw_eq_ofld_cmd c;
2111 
2112 	bzero(&c, sizeof(c));
2113 
2114 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
2115 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
2116 	    V_FW_EQ_OFLD_CMD_VFN(0));
2117 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
2118 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2119 	c.fetchszm_to_iqid =
2120 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2121 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
2122 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
2123 	c.dcaen_to_eqsize =
2124 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2125 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2126 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2127 		V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
2128 	c.eqaddr = htobe64(eq->ba);
2129 
2130 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2131 	if (rc != 0) {
2132 		device_printf(pi->dev,
2133 		    "failed to create egress queue for TCP offload: %d\n", rc);
2134 		return (rc);
2135 	}
2136 	eq->flags |= EQ_ALLOCATED;
2137 
2138 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
2139 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2140 	if (cntxt_id >= sc->sge.neq)
2141 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2142 		cntxt_id, sc->sge.neq - 1);
2143 	sc->sge.eqmap[cntxt_id] = eq;
2144 
2145 	return (rc);
2146 }
2147 #endif
2148 
2149 static int
2150 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2151 {
2152 	int rc;
2153 	size_t len;
2154 
2155 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
2156 
2157 	len = eq->qsize * EQ_ESIZE;
2158 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
2159 	    &eq->ba, (void **)&eq->desc);
2160 	if (rc)
2161 		return (rc);
2162 
2163 	eq->cap = eq->qsize - spg_len / EQ_ESIZE;
2164 	eq->spg = (void *)&eq->desc[eq->cap];
2165 	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
2166 	eq->pidx = eq->cidx = 0;
2167 
2168 	switch (eq->flags & EQ_TYPEMASK) {
2169 	case EQ_CTRL:
2170 		rc = ctrl_eq_alloc(sc, eq);
2171 		break;
2172 
2173 	case EQ_ETH:
2174 		rc = eth_eq_alloc(sc, pi, eq);
2175 		break;
2176 
2177 #ifdef TCP_OFFLOAD
2178 	case EQ_OFLD:
2179 		rc = ofld_eq_alloc(sc, pi, eq);
2180 		break;
2181 #endif
2182 
2183 	default:
2184 		panic("%s: invalid eq type %d.", __func__,
2185 		    eq->flags & EQ_TYPEMASK);
2186 	}
2187 	if (rc != 0) {
2188 		device_printf(sc->dev,
2189 		    "failed to allocate egress queue(%d): %d",
2190 		    eq->flags & EQ_TYPEMASK, rc);
2191 	}
2192 
2193 	eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
2194 
2195 	return (rc);
2196 }
2197 
2198 static int
2199 free_eq(struct adapter *sc, struct sge_eq *eq)
2200 {
2201 	int rc;
2202 
2203 	if (eq->flags & EQ_ALLOCATED) {
2204 		switch (eq->flags & EQ_TYPEMASK) {
2205 		case EQ_CTRL:
2206 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
2207 			    eq->cntxt_id);
2208 			break;
2209 
2210 		case EQ_ETH:
2211 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
2212 			    eq->cntxt_id);
2213 			break;
2214 
2215 #ifdef TCP_OFFLOAD
2216 		case EQ_OFLD:
2217 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
2218 			    eq->cntxt_id);
2219 			break;
2220 #endif
2221 
2222 		default:
2223 			panic("%s: invalid eq type %d.", __func__,
2224 			    eq->flags & EQ_TYPEMASK);
2225 		}
2226 		if (rc != 0) {
2227 			device_printf(sc->dev,
2228 			    "failed to free egress queue (%d): %d\n",
2229 			    eq->flags & EQ_TYPEMASK, rc);
2230 			return (rc);
2231 		}
2232 		eq->flags &= ~EQ_ALLOCATED;
2233 	}
2234 
2235 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
2236 
2237 	if (mtx_initialized(&eq->eq_lock))
2238 		mtx_destroy(&eq->eq_lock);
2239 
2240 	bzero(eq, sizeof(*eq));
2241 	return (0);
2242 }
2243 
2244 static int
2245 alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
2246     struct sysctl_oid *oid)
2247 {
2248 	int rc;
2249 	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
2250 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2251 
2252 	rc = alloc_eq(sc, pi, &wrq->eq);
2253 	if (rc)
2254 		return (rc);
2255 
2256 	wrq->adapter = sc;
2257 	STAILQ_INIT(&wrq->wr_list);
2258 
2259 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2260 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
2261 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2262 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
2263 	    "consumer index");
2264 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
2265 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
2266 	    "producer index");
2267 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
2268 	    &wrq->tx_wrs, "# of work requests");
2269 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2270 	    &wrq->no_desc, 0,
2271 	    "# of times queue ran out of hardware descriptors");
2272 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
2273 	    &wrq->eq.unstalled, 0, "# of times queue recovered after stall");
2274 
2275 
2276 	return (rc);
2277 }
2278 
2279 static int
2280 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
2281 {
2282 	int rc;
2283 
2284 	rc = free_eq(sc, &wrq->eq);
2285 	if (rc)
2286 		return (rc);
2287 
2288 	bzero(wrq, sizeof(*wrq));
2289 	return (0);
2290 }
2291 
2292 static int
2293 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
2294     struct sysctl_oid *oid)
2295 {
2296 	int rc;
2297 	struct adapter *sc = pi->adapter;
2298 	struct sge_eq *eq = &txq->eq;
2299 	char name[16];
2300 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2301 
2302 	rc = alloc_eq(sc, pi, eq);
2303 	if (rc)
2304 		return (rc);
2305 
2306 	txq->ifp = pi->ifp;
2307 
2308 	txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
2309 	    M_ZERO | M_WAITOK);
2310 	txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
2311 
2312 	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
2313 	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
2314 	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
2315 	if (rc != 0) {
2316 		device_printf(sc->dev,
2317 		    "failed to create tx DMA tag: %d\n", rc);
2318 		return (rc);
2319 	}
2320 
2321 	/*
2322 	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
2323 	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
2324 	 * sized for the worst case.
2325 	 */
2326 	rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
2327 	    M_WAITOK);
2328 	if (rc != 0) {
2329 		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
2330 		return (rc);
2331 	}
2332 
2333 	snprintf(name, sizeof(name), "%d", idx);
2334 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2335 	    NULL, "tx queue");
2336 	children = SYSCTL_CHILDREN(oid);
2337 
2338 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2339 	    &eq->cntxt_id, 0, "SGE context id of the queue");
2340 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2341 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
2342 	    "consumer index");
2343 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
2344 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
2345 	    "producer index");
2346 
2347 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
2348 	    &txq->txcsum, "# of times hardware assisted with checksum");
2349 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
2350 	    CTLFLAG_RD, &txq->vlan_insertion,
2351 	    "# of times hardware inserted 802.1Q tag");
2352 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
2353 	    &txq->tso_wrs, "# of TSO work requests");
2354 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
2355 	    &txq->imm_wrs, "# of work requests with immediate data");
2356 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
2357 	    &txq->sgl_wrs, "# of work requests with direct SGL");
2358 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
2359 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
2360 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
2361 	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
2362 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
2363 	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
2364 
2365 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD,
2366 	    &txq->br->br_drops, "# of drops in the buf_ring for this queue");
2367 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
2368 	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
2369 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2370 	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
2371 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
2372 	    &eq->egr_update, 0, "egress update notifications from the SGE");
2373 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
2374 	    &eq->unstalled, 0, "# of times txq recovered after stall");
2375 
2376 	return (rc);
2377 }
2378 
2379 static int
2380 free_txq(struct port_info *pi, struct sge_txq *txq)
2381 {
2382 	int rc;
2383 	struct adapter *sc = pi->adapter;
2384 	struct sge_eq *eq = &txq->eq;
2385 
2386 	rc = free_eq(sc, eq);
2387 	if (rc)
2388 		return (rc);
2389 
2390 	free(txq->sdesc, M_CXGBE);
2391 
2392 	if (txq->txmaps.maps)
2393 		t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
2394 
2395 	buf_ring_free(txq->br, M_CXGBE);
2396 
2397 	if (txq->tx_tag)
2398 		bus_dma_tag_destroy(txq->tx_tag);
2399 
2400 	bzero(txq, sizeof(*txq));
2401 	return (0);
2402 }
2403 
2404 static void
2405 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2406 {
2407 	bus_addr_t *ba = arg;
2408 
2409 	KASSERT(nseg == 1,
2410 	    ("%s meant for single segment mappings only.", __func__));
2411 
2412 	*ba = error ? 0 : segs->ds_addr;
2413 }
2414 
2415 static inline bool
2416 is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
2417 {
2418 	*ctrl = (void *)((uintptr_t)iq->cdesc +
2419 	    (iq->esize - sizeof(struct rsp_ctrl)));
2420 
2421 	return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
2422 }
2423 
2424 static inline void
2425 iq_next(struct sge_iq *iq)
2426 {
2427 	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
2428 	if (__predict_false(++iq->cidx == iq->qsize - 1)) {
2429 		iq->cidx = 0;
2430 		iq->gen ^= 1;
2431 		iq->cdesc = iq->desc;
2432 	}
2433 }
2434 
2435 #define FL_HW_IDX(x) ((x) >> 3)
2436 static inline void
2437 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
2438 {
2439 	int ndesc = fl->pending / 8;
2440 
2441 	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
2442 		ndesc--;	/* hold back one credit */
2443 
2444 	if (ndesc <= 0)
2445 		return;		/* nothing to do */
2446 
2447 	wmb();
2448 
2449 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), F_DBPRIO |
2450 	    V_QID(fl->cntxt_id) | V_PIDX(ndesc));
2451 	fl->pending -= ndesc * 8;
2452 }
2453 
2454 /*
2455  * Fill up the freelist by upto nbufs and maybe ring its doorbell.
2456  *
2457  * Returns non-zero to indicate that it should be added to the list of starving
2458  * freelists.
2459  */
2460 static int
2461 refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
2462 {
2463 	__be64 *d = &fl->desc[fl->pidx];
2464 	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
2465 	bus_dma_tag_t tag;
2466 	bus_addr_t pa;
2467 	caddr_t cl;
2468 	int rc;
2469 
2470 	FL_LOCK_ASSERT_OWNED(fl);
2471 
2472 	if (nbufs > fl->needed)
2473 		nbufs = fl->needed;
2474 
2475 	while (nbufs--) {
2476 
2477 		if (sd->cl != NULL) {
2478 
2479 			/*
2480 			 * This happens when a frame small enough to fit
2481 			 * entirely in an mbuf was received in cl last time.
2482 			 * We'd held on to cl and can reuse it now.  Note that
2483 			 * we reuse a cluster of the old size if fl->tag_idx is
2484 			 * no longer the same as sd->tag_idx.
2485 			 */
2486 
2487 			KASSERT(*d == sd->ba_tag,
2488 			    ("%s: recyling problem at pidx %d",
2489 			    __func__, fl->pidx));
2490 
2491 			d++;
2492 			goto recycled;
2493 		}
2494 
2495 
2496 		if (fl->tag_idx != sd->tag_idx) {
2497 			bus_dmamap_t map;
2498 			bus_dma_tag_t newtag = fl->tag[fl->tag_idx];
2499 			bus_dma_tag_t oldtag = fl->tag[sd->tag_idx];
2500 
2501 			/*
2502 			 * An MTU change can get us here.  Discard the old map
2503 			 * which was created with the old tag, but only if
2504 			 * we're able to get a new one.
2505 			 */
2506 			rc = bus_dmamap_create(newtag, 0, &map);
2507 			if (rc == 0) {
2508 				bus_dmamap_destroy(oldtag, sd->map);
2509 				sd->map = map;
2510 				sd->tag_idx = fl->tag_idx;
2511 			}
2512 		}
2513 
2514 		tag = fl->tag[sd->tag_idx];
2515 
2516 		cl = m_cljget(NULL, M_NOWAIT, FL_BUF_SIZE(sd->tag_idx));
2517 		if (cl == NULL)
2518 			break;
2519 
2520 		rc = bus_dmamap_load(tag, sd->map, cl, FL_BUF_SIZE(sd->tag_idx),
2521 		    oneseg_dma_callback, &pa, 0);
2522 		if (rc != 0 || pa == 0) {
2523 			fl->dmamap_failed++;
2524 			uma_zfree(FL_BUF_ZONE(sd->tag_idx), cl);
2525 			break;
2526 		}
2527 
2528 		sd->cl = cl;
2529 		*d++ = htobe64(pa | sd->tag_idx);
2530 
2531 #ifdef INVARIANTS
2532 		sd->ba_tag = htobe64(pa | sd->tag_idx);
2533 #endif
2534 
2535 recycled:
2536 		/* sd->m is never recycled, should always be NULL */
2537 		KASSERT(sd->m == NULL, ("%s: stray mbuf", __func__));
2538 
2539 		sd->m = m_gethdr(M_NOWAIT, MT_NOINIT);
2540 		if (sd->m == NULL)
2541 			break;
2542 
2543 		fl->pending++;
2544 		fl->needed--;
2545 		sd++;
2546 		if (++fl->pidx == fl->cap) {
2547 			fl->pidx = 0;
2548 			sd = fl->sdesc;
2549 			d = fl->desc;
2550 		}
2551 	}
2552 
2553 	if (fl->pending >= 8)
2554 		ring_fl_db(sc, fl);
2555 
2556 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
2557 }
2558 
2559 /*
2560  * Attempt to refill all starving freelists.
2561  */
2562 static void
2563 refill_sfl(void *arg)
2564 {
2565 	struct adapter *sc = arg;
2566 	struct sge_fl *fl, *fl_temp;
2567 
2568 	mtx_lock(&sc->sfl_lock);
2569 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
2570 		FL_LOCK(fl);
2571 		refill_fl(sc, fl, 64);
2572 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
2573 			TAILQ_REMOVE(&sc->sfl, fl, link);
2574 			fl->flags &= ~FL_STARVING;
2575 		}
2576 		FL_UNLOCK(fl);
2577 	}
2578 
2579 	if (!TAILQ_EMPTY(&sc->sfl))
2580 		callout_schedule(&sc->sfl_callout, hz / 5);
2581 	mtx_unlock(&sc->sfl_lock);
2582 }
2583 
2584 static int
2585 alloc_fl_sdesc(struct sge_fl *fl)
2586 {
2587 	struct fl_sdesc *sd;
2588 	bus_dma_tag_t tag;
2589 	int i, rc;
2590 
2591 	FL_LOCK_ASSERT_OWNED(fl);
2592 
2593 	fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
2594 	    M_ZERO | M_WAITOK);
2595 
2596 	tag = fl->tag[fl->tag_idx];
2597 	sd = fl->sdesc;
2598 	for (i = 0; i < fl->cap; i++, sd++) {
2599 
2600 		sd->tag_idx = fl->tag_idx;
2601 		rc = bus_dmamap_create(tag, 0, &sd->map);
2602 		if (rc != 0)
2603 			goto failed;
2604 	}
2605 
2606 	return (0);
2607 failed:
2608 	while (--i >= 0) {
2609 		sd--;
2610 		bus_dmamap_destroy(tag, sd->map);
2611 		if (sd->m) {
2612 			m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0);
2613 			m_free(sd->m);
2614 			sd->m = NULL;
2615 		}
2616 	}
2617 	KASSERT(sd == fl->sdesc, ("%s: EDOOFUS", __func__));
2618 
2619 	free(fl->sdesc, M_CXGBE);
2620 	fl->sdesc = NULL;
2621 
2622 	return (rc);
2623 }
2624 
2625 static void
2626 free_fl_sdesc(struct sge_fl *fl)
2627 {
2628 	struct fl_sdesc *sd;
2629 	int i;
2630 
2631 	FL_LOCK_ASSERT_OWNED(fl);
2632 
2633 	sd = fl->sdesc;
2634 	for (i = 0; i < fl->cap; i++, sd++) {
2635 
2636 		if (sd->m) {
2637 			m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0);
2638 			m_free(sd->m);
2639 			sd->m = NULL;
2640 		}
2641 
2642 		if (sd->cl) {
2643 			bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
2644 			uma_zfree(FL_BUF_ZONE(sd->tag_idx), sd->cl);
2645 			sd->cl = NULL;
2646 		}
2647 
2648 		bus_dmamap_destroy(fl->tag[sd->tag_idx], sd->map);
2649 	}
2650 
2651 	free(fl->sdesc, M_CXGBE);
2652 	fl->sdesc = NULL;
2653 }
2654 
2655 int
2656 t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
2657     int flags)
2658 {
2659 	struct tx_map *txm;
2660 	int i, rc;
2661 
2662 	txmaps->map_total = txmaps->map_avail = count;
2663 	txmaps->map_cidx = txmaps->map_pidx = 0;
2664 
2665 	txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
2666 	    M_ZERO | flags);
2667 
2668 	txm = txmaps->maps;
2669 	for (i = 0; i < count; i++, txm++) {
2670 		rc = bus_dmamap_create(tx_tag, 0, &txm->map);
2671 		if (rc != 0)
2672 			goto failed;
2673 	}
2674 
2675 	return (0);
2676 failed:
2677 	while (--i >= 0) {
2678 		txm--;
2679 		bus_dmamap_destroy(tx_tag, txm->map);
2680 	}
2681 	KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
2682 
2683 	free(txmaps->maps, M_CXGBE);
2684 	txmaps->maps = NULL;
2685 
2686 	return (rc);
2687 }
2688 
2689 void
2690 t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
2691 {
2692 	struct tx_map *txm;
2693 	int i;
2694 
2695 	txm = txmaps->maps;
2696 	for (i = 0; i < txmaps->map_total; i++, txm++) {
2697 
2698 		if (txm->m) {
2699 			bus_dmamap_unload(tx_tag, txm->map);
2700 			m_freem(txm->m);
2701 			txm->m = NULL;
2702 		}
2703 
2704 		bus_dmamap_destroy(tx_tag, txm->map);
2705 	}
2706 
2707 	free(txmaps->maps, M_CXGBE);
2708 	txmaps->maps = NULL;
2709 }
2710 
2711 /*
2712  * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
2713  * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
2714  * of immediate data.
2715  */
2716 #define IMM_LEN ( \
2717       2 * EQ_ESIZE \
2718     - sizeof(struct fw_eth_tx_pkt_wr) \
2719     - sizeof(struct cpl_tx_pkt_core))
2720 
2721 /*
2722  * Returns non-zero on failure, no need to cleanup anything in that case.
2723  *
2724  * Note 1: We always try to defrag the mbuf if required and return EFBIG only
2725  * if the resulting chain still won't fit in a tx descriptor.
2726  *
2727  * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
2728  * does not have the TCP header in it.
2729  */
2730 static int
2731 get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
2732     int sgl_only)
2733 {
2734 	struct mbuf *m = *fp;
2735 	struct tx_maps *txmaps;
2736 	struct tx_map *txm;
2737 	int rc, defragged = 0, n;
2738 
2739 	TXQ_LOCK_ASSERT_OWNED(txq);
2740 
2741 	if (m->m_pkthdr.tso_segsz)
2742 		sgl_only = 1;	/* Do not allow immediate data with LSO */
2743 
2744 start:	sgl->nsegs = 0;
2745 
2746 	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
2747 		return (0);	/* nsegs = 0 tells caller to use imm. tx */
2748 
2749 	txmaps = &txq->txmaps;
2750 	if (txmaps->map_avail == 0) {
2751 		txq->no_dmamap++;
2752 		return (ENOMEM);
2753 	}
2754 	txm = &txmaps->maps[txmaps->map_pidx];
2755 
2756 	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
2757 		*fp = m_pullup(m, 50);
2758 		m = *fp;
2759 		if (m == NULL)
2760 			return (ENOBUFS);
2761 	}
2762 
2763 	rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
2764 	    &sgl->nsegs, BUS_DMA_NOWAIT);
2765 	if (rc == EFBIG && defragged == 0) {
2766 		m = m_defrag(m, M_NOWAIT);
2767 		if (m == NULL)
2768 			return (EFBIG);
2769 
2770 		defragged = 1;
2771 		*fp = m;
2772 		goto start;
2773 	}
2774 	if (rc != 0)
2775 		return (rc);
2776 
2777 	txm->m = m;
2778 	txmaps->map_avail--;
2779 	if (++txmaps->map_pidx == txmaps->map_total)
2780 		txmaps->map_pidx = 0;
2781 
2782 	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
2783 	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
2784 
2785 	/*
2786 	 * Store the # of flits required to hold this frame's SGL in nflits.  An
2787 	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
2788 	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
2789 	 * then len1 must be set to 0.
2790 	 */
2791 	n = sgl->nsegs - 1;
2792 	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
2793 
2794 	return (0);
2795 }
2796 
2797 
2798 /*
2799  * Releases all the txq resources used up in the specified sgl.
2800  */
2801 static int
2802 free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
2803 {
2804 	struct tx_maps *txmaps;
2805 	struct tx_map *txm;
2806 
2807 	TXQ_LOCK_ASSERT_OWNED(txq);
2808 
2809 	if (sgl->nsegs == 0)
2810 		return (0);	/* didn't use any map */
2811 
2812 	txmaps = &txq->txmaps;
2813 
2814 	/* 1 pkt uses exactly 1 map, back it out */
2815 
2816 	txmaps->map_avail++;
2817 	if (txmaps->map_pidx > 0)
2818 		txmaps->map_pidx--;
2819 	else
2820 		txmaps->map_pidx = txmaps->map_total - 1;
2821 
2822 	txm = &txmaps->maps[txmaps->map_pidx];
2823 	bus_dmamap_unload(txq->tx_tag, txm->map);
2824 	txm->m = NULL;
2825 
2826 	return (0);
2827 }
2828 
2829 static int
2830 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
2831     struct sgl *sgl)
2832 {
2833 	struct sge_eq *eq = &txq->eq;
2834 	struct fw_eth_tx_pkt_wr *wr;
2835 	struct cpl_tx_pkt_core *cpl;
2836 	uint32_t ctrl;	/* used in many unrelated places */
2837 	uint64_t ctrl1;
2838 	int nflits, ndesc, pktlen;
2839 	struct tx_sdesc *txsd;
2840 	caddr_t dst;
2841 
2842 	TXQ_LOCK_ASSERT_OWNED(txq);
2843 
2844 	pktlen = m->m_pkthdr.len;
2845 
2846 	/*
2847 	 * Do we have enough flits to send this frame out?
2848 	 */
2849 	ctrl = sizeof(struct cpl_tx_pkt_core);
2850 	if (m->m_pkthdr.tso_segsz) {
2851 		nflits = TXPKT_LSO_WR_HDR;
2852 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
2853 	} else
2854 		nflits = TXPKT_WR_HDR;
2855 	if (sgl->nsegs > 0)
2856 		nflits += sgl->nflits;
2857 	else {
2858 		nflits += howmany(pktlen, 8);
2859 		ctrl += pktlen;
2860 	}
2861 	ndesc = howmany(nflits, 8);
2862 	if (ndesc > eq->avail)
2863 		return (ENOMEM);
2864 
2865 	/* Firmware work request header */
2866 	wr = (void *)&eq->desc[eq->pidx];
2867 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
2868 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
2869 	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
2870 	if (eq->avail == ndesc) {
2871 		if (!(eq->flags & EQ_CRFLUSHED)) {
2872 			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2873 			eq->flags |= EQ_CRFLUSHED;
2874 		}
2875 		eq->flags |= EQ_STALLED;
2876 	}
2877 
2878 	wr->equiq_to_len16 = htobe32(ctrl);
2879 	wr->r3 = 0;
2880 
2881 	if (m->m_pkthdr.tso_segsz) {
2882 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2883 		struct ether_header *eh;
2884 		void *l3hdr;
2885 #if defined(INET) || defined(INET6)
2886 		struct tcphdr *tcp;
2887 #endif
2888 		uint16_t eh_type;
2889 
2890 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
2891 		    F_LSO_LAST_SLICE;
2892 
2893 		eh = mtod(m, struct ether_header *);
2894 		eh_type = ntohs(eh->ether_type);
2895 		if (eh_type == ETHERTYPE_VLAN) {
2896 			struct ether_vlan_header *evh = (void *)eh;
2897 
2898 			ctrl |= V_LSO_ETHHDR_LEN(1);
2899 			l3hdr = evh + 1;
2900 			eh_type = ntohs(evh->evl_proto);
2901 		} else
2902 			l3hdr = eh + 1;
2903 
2904 		switch (eh_type) {
2905 #ifdef INET6
2906 		case ETHERTYPE_IPV6:
2907 		{
2908 			struct ip6_hdr *ip6 = l3hdr;
2909 
2910 			/*
2911 			 * XXX-BZ For now we do not pretend to support
2912 			 * IPv6 extension headers.
2913 			 */
2914 			KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO "
2915 			    "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt));
2916 			tcp = (struct tcphdr *)(ip6 + 1);
2917 			ctrl |= F_LSO_IPV6;
2918 			ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) |
2919 			    V_LSO_TCPHDR_LEN(tcp->th_off);
2920 			break;
2921 		}
2922 #endif
2923 #ifdef INET
2924 		case ETHERTYPE_IP:
2925 		{
2926 			struct ip *ip = l3hdr;
2927 
2928 			tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
2929 			ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
2930 			    V_LSO_TCPHDR_LEN(tcp->th_off);
2931 			break;
2932 		}
2933 #endif
2934 		default:
2935 			panic("%s: CSUM_TSO but no supported IP version "
2936 			    "(0x%04x)", __func__, eh_type);
2937 		}
2938 
2939 		lso->lso_ctrl = htobe32(ctrl);
2940 		lso->ipid_ofst = htobe16(0);
2941 		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
2942 		lso->seqno_offset = htobe32(0);
2943 		lso->len = htobe32(pktlen);
2944 
2945 		cpl = (void *)(lso + 1);
2946 
2947 		txq->tso_wrs++;
2948 	} else
2949 		cpl = (void *)(wr + 1);
2950 
2951 	/* Checksum offload */
2952 	ctrl1 = 0;
2953 	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
2954 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
2955 	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2956 	    CSUM_TCP_IPV6 | CSUM_TSO)))
2957 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
2958 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
2959 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
2960 		txq->txcsum++;	/* some hardware assistance provided */
2961 
2962 	/* VLAN tag insertion */
2963 	if (m->m_flags & M_VLANTAG) {
2964 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
2965 		txq->vlan_insertion++;
2966 	}
2967 
2968 	/* CPL header */
2969 	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2970 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2971 	cpl->pack = 0;
2972 	cpl->len = htobe16(pktlen);
2973 	cpl->ctrl1 = htobe64(ctrl1);
2974 
2975 	/* Software descriptor */
2976 	txsd = &txq->sdesc[eq->pidx];
2977 	txsd->desc_used = ndesc;
2978 
2979 	eq->pending += ndesc;
2980 	eq->avail -= ndesc;
2981 	eq->pidx += ndesc;
2982 	if (eq->pidx >= eq->cap)
2983 		eq->pidx -= eq->cap;
2984 
2985 	/* SGL */
2986 	dst = (void *)(cpl + 1);
2987 	if (sgl->nsegs > 0) {
2988 		txsd->credits = 1;
2989 		txq->sgl_wrs++;
2990 		write_sgl_to_txd(eq, sgl, &dst);
2991 	} else {
2992 		txsd->credits = 0;
2993 		txq->imm_wrs++;
2994 		for (; m; m = m->m_next) {
2995 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
2996 #ifdef INVARIANTS
2997 			pktlen -= m->m_len;
2998 #endif
2999 		}
3000 #ifdef INVARIANTS
3001 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3002 #endif
3003 
3004 	}
3005 
3006 	txq->txpkt_wrs++;
3007 	return (0);
3008 }
3009 
3010 /*
3011  * Returns 0 to indicate that m has been accepted into a coalesced tx work
3012  * request.  It has either been folded into txpkts or txpkts was flushed and m
3013  * has started a new coalesced work request (as the first frame in a fresh
3014  * txpkts).
3015  *
3016  * Returns non-zero to indicate a failure - caller is responsible for
3017  * transmitting m, if there was anything in txpkts it has been flushed.
3018  */
3019 static int
3020 add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
3021     struct mbuf *m, struct sgl *sgl)
3022 {
3023 	struct sge_eq *eq = &txq->eq;
3024 	int can_coalesce;
3025 	struct tx_sdesc *txsd;
3026 	int flits;
3027 
3028 	TXQ_LOCK_ASSERT_OWNED(txq);
3029 
3030 	KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
3031 
3032 	if (txpkts->npkt > 0) {
3033 		flits = TXPKTS_PKT_HDR + sgl->nflits;
3034 		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3035 		    txpkts->nflits + flits <= TX_WR_FLITS &&
3036 		    txpkts->nflits + flits <= eq->avail * 8 &&
3037 		    txpkts->plen + m->m_pkthdr.len < 65536;
3038 
3039 		if (can_coalesce) {
3040 			txpkts->npkt++;
3041 			txpkts->nflits += flits;
3042 			txpkts->plen += m->m_pkthdr.len;
3043 
3044 			txsd = &txq->sdesc[eq->pidx];
3045 			txsd->credits++;
3046 
3047 			return (0);
3048 		}
3049 
3050 		/*
3051 		 * Couldn't coalesce m into txpkts.  The first order of business
3052 		 * is to send txpkts on its way.  Then we'll revisit m.
3053 		 */
3054 		write_txpkts_wr(txq, txpkts);
3055 	}
3056 
3057 	/*
3058 	 * Check if we can start a new coalesced tx work request with m as
3059 	 * the first packet in it.
3060 	 */
3061 
3062 	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
3063 
3064 	flits = TXPKTS_WR_HDR + sgl->nflits;
3065 	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3066 	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
3067 
3068 	if (can_coalesce == 0)
3069 		return (EINVAL);
3070 
3071 	/*
3072 	 * Start a fresh coalesced tx WR with m as the first frame in it.
3073 	 */
3074 	txpkts->npkt = 1;
3075 	txpkts->nflits = flits;
3076 	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
3077 	txpkts->plen = m->m_pkthdr.len;
3078 
3079 	txsd = &txq->sdesc[eq->pidx];
3080 	txsd->credits = 1;
3081 
3082 	return (0);
3083 }
3084 
3085 /*
3086  * Note that write_txpkts_wr can never run out of hardware descriptors (but
3087  * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
3088  * coalescing only if sufficient hardware descriptors are available.
3089  */
3090 static void
3091 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
3092 {
3093 	struct sge_eq *eq = &txq->eq;
3094 	struct fw_eth_tx_pkts_wr *wr;
3095 	struct tx_sdesc *txsd;
3096 	uint32_t ctrl;
3097 	int ndesc;
3098 
3099 	TXQ_LOCK_ASSERT_OWNED(txq);
3100 
3101 	ndesc = howmany(txpkts->nflits, 8);
3102 
3103 	wr = (void *)&eq->desc[eq->pidx];
3104 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3105 	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
3106 	if (eq->avail == ndesc) {
3107 		if (!(eq->flags & EQ_CRFLUSHED)) {
3108 			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3109 			eq->flags |= EQ_CRFLUSHED;
3110 		}
3111 		eq->flags |= EQ_STALLED;
3112 	}
3113 	wr->equiq_to_len16 = htobe32(ctrl);
3114 	wr->plen = htobe16(txpkts->plen);
3115 	wr->npkt = txpkts->npkt;
3116 	wr->r3 = wr->type = 0;
3117 
3118 	/* Everything else already written */
3119 
3120 	txsd = &txq->sdesc[eq->pidx];
3121 	txsd->desc_used = ndesc;
3122 
3123 	KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
3124 
3125 	eq->pending += ndesc;
3126 	eq->avail -= ndesc;
3127 	eq->pidx += ndesc;
3128 	if (eq->pidx >= eq->cap)
3129 		eq->pidx -= eq->cap;
3130 
3131 	txq->txpkts_pkts += txpkts->npkt;
3132 	txq->txpkts_wrs++;
3133 	txpkts->npkt = 0;	/* emptied */
3134 }
3135 
3136 static inline void
3137 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
3138     struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
3139 {
3140 	struct ulp_txpkt *ulpmc;
3141 	struct ulptx_idata *ulpsc;
3142 	struct cpl_tx_pkt_core *cpl;
3143 	struct sge_eq *eq = &txq->eq;
3144 	uintptr_t flitp, start, end;
3145 	uint64_t ctrl;
3146 	caddr_t dst;
3147 
3148 	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
3149 
3150 	start = (uintptr_t)eq->desc;
3151 	end = (uintptr_t)eq->spg;
3152 
3153 	/* Checksum offload */
3154 	ctrl = 0;
3155 	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3156 		ctrl |= F_TXPKT_IPCSUM_DIS;
3157 	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3158 	    CSUM_TCP_IPV6 | CSUM_TSO)))
3159 		ctrl |= F_TXPKT_L4CSUM_DIS;
3160 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3161 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3162 		txq->txcsum++;	/* some hardware assistance provided */
3163 
3164 	/* VLAN tag insertion */
3165 	if (m->m_flags & M_VLANTAG) {
3166 		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3167 		txq->vlan_insertion++;
3168 	}
3169 
3170 	/*
3171 	 * The previous packet's SGL must have ended at a 16 byte boundary (this
3172 	 * is required by the firmware/hardware).  It follows that flitp cannot
3173 	 * wrap around between the ULPTX master command and ULPTX subcommand (8
3174 	 * bytes each), and that it can not wrap around in the middle of the
3175 	 * cpl_tx_pkt_core either.
3176 	 */
3177 	flitp = (uintptr_t)txpkts->flitp;
3178 	KASSERT((flitp & 0xf) == 0,
3179 	    ("%s: last SGL did not end at 16 byte boundary: %p",
3180 	    __func__, txpkts->flitp));
3181 
3182 	/* ULP master command */
3183 	ulpmc = (void *)flitp;
3184 	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
3185 	    V_ULP_TXPKT_FID(eq->iqid));
3186 	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
3187 	    sizeof(*cpl) + 8 * sgl->nflits, 16));
3188 
3189 	/* ULP subcommand */
3190 	ulpsc = (void *)(ulpmc + 1);
3191 	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3192 	    F_ULP_TX_SC_MORE);
3193 	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
3194 
3195 	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
3196 	if (flitp == end)
3197 		flitp = start;
3198 
3199 	/* CPL_TX_PKT */
3200 	cpl = (void *)flitp;
3201 	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3202 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3203 	cpl->pack = 0;
3204 	cpl->len = htobe16(m->m_pkthdr.len);
3205 	cpl->ctrl1 = htobe64(ctrl);
3206 
3207 	flitp += sizeof(*cpl);
3208 	if (flitp == end)
3209 		flitp = start;
3210 
3211 	/* SGL for this frame */
3212 	dst = (caddr_t)flitp;
3213 	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
3214 	txpkts->flitp = (void *)dst;
3215 
3216 	KASSERT(((uintptr_t)dst & 0xf) == 0,
3217 	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
3218 }
3219 
3220 /*
3221  * If the SGL ends on an address that is not 16 byte aligned, this function will
3222  * add a 0 filled flit at the end.  It returns 1 in that case.
3223  */
3224 static int
3225 write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
3226 {
3227 	__be64 *flitp, *end;
3228 	struct ulptx_sgl *usgl;
3229 	bus_dma_segment_t *seg;
3230 	int i, padded;
3231 
3232 	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
3233 	    ("%s: bad SGL - nsegs=%d, nflits=%d",
3234 	    __func__, sgl->nsegs, sgl->nflits));
3235 
3236 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
3237 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
3238 
3239 	flitp = (__be64 *)(*to);
3240 	end = flitp + sgl->nflits;
3241 	seg = &sgl->seg[0];
3242 	usgl = (void *)flitp;
3243 
3244 	/*
3245 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
3246 	 * ring, so we're at least 16 bytes away from the status page.  There is
3247 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
3248 	 */
3249 
3250 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
3251 	    V_ULPTX_NSGE(sgl->nsegs));
3252 	usgl->len0 = htobe32(seg->ds_len);
3253 	usgl->addr0 = htobe64(seg->ds_addr);
3254 	seg++;
3255 
3256 	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
3257 
3258 		/* Won't wrap around at all */
3259 
3260 		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
3261 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
3262 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
3263 		}
3264 		if (i & 1)
3265 			usgl->sge[i / 2].len[1] = htobe32(0);
3266 	} else {
3267 
3268 		/* Will wrap somewhere in the rest of the SGL */
3269 
3270 		/* 2 flits already written, write the rest flit by flit */
3271 		flitp = (void *)(usgl + 1);
3272 		for (i = 0; i < sgl->nflits - 2; i++) {
3273 			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
3274 				flitp = (void *)eq->desc;
3275 			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
3276 		}
3277 		end = flitp;
3278 	}
3279 
3280 	if ((uintptr_t)end & 0xf) {
3281 		*(uint64_t *)end = 0;
3282 		end++;
3283 		padded = 1;
3284 	} else
3285 		padded = 0;
3286 
3287 	if ((uintptr_t)end == (uintptr_t)eq->spg)
3288 		*to = (void *)eq->desc;
3289 	else
3290 		*to = (void *)end;
3291 
3292 	return (padded);
3293 }
3294 
3295 static inline void
3296 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
3297 {
3298 	if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) {
3299 		bcopy(from, *to, len);
3300 		(*to) += len;
3301 	} else {
3302 		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
3303 
3304 		bcopy(from, *to, portion);
3305 		from += portion;
3306 		portion = len - portion;	/* remaining */
3307 		bcopy(from, (void *)eq->desc, portion);
3308 		(*to) = (caddr_t)eq->desc + portion;
3309 	}
3310 }
3311 
3312 static inline void
3313 ring_eq_db(struct adapter *sc, struct sge_eq *eq)
3314 {
3315 	wmb();
3316 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
3317 	    V_QID(eq->cntxt_id) | V_PIDX(eq->pending));
3318 	eq->pending = 0;
3319 }
3320 
3321 static inline int
3322 reclaimable(struct sge_eq *eq)
3323 {
3324 	unsigned int cidx;
3325 
3326 	cidx = eq->spg->cidx;	/* stable snapshot */
3327 	cidx = be16toh(cidx);
3328 
3329 	if (cidx >= eq->cidx)
3330 		return (cidx - eq->cidx);
3331 	else
3332 		return (cidx + eq->cap - eq->cidx);
3333 }
3334 
3335 /*
3336  * There are "can_reclaim" tx descriptors ready to be reclaimed.  Reclaim as
3337  * many as possible but stop when there are around "n" mbufs to free.
3338  *
3339  * The actual number reclaimed is provided as the return value.
3340  */
3341 static int
3342 reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
3343 {
3344 	struct tx_sdesc *txsd;
3345 	struct tx_maps *txmaps;
3346 	struct tx_map *txm;
3347 	unsigned int reclaimed, maps;
3348 	struct sge_eq *eq = &txq->eq;
3349 
3350 	TXQ_LOCK_ASSERT_OWNED(txq);
3351 
3352 	if (can_reclaim == 0)
3353 		can_reclaim = reclaimable(eq);
3354 
3355 	maps = reclaimed = 0;
3356 	while (can_reclaim && maps < n) {
3357 		int ndesc;
3358 
3359 		txsd = &txq->sdesc[eq->cidx];
3360 		ndesc = txsd->desc_used;
3361 
3362 		/* Firmware doesn't return "partial" credits. */
3363 		KASSERT(can_reclaim >= ndesc,
3364 		    ("%s: unexpected number of credits: %d, %d",
3365 		    __func__, can_reclaim, ndesc));
3366 
3367 		maps += txsd->credits;
3368 
3369 		reclaimed += ndesc;
3370 		can_reclaim -= ndesc;
3371 
3372 		eq->cidx += ndesc;
3373 		if (__predict_false(eq->cidx >= eq->cap))
3374 			eq->cidx -= eq->cap;
3375 	}
3376 
3377 	txmaps = &txq->txmaps;
3378 	txm = &txmaps->maps[txmaps->map_cidx];
3379 	if (maps)
3380 		prefetch(txm->m);
3381 
3382 	eq->avail += reclaimed;
3383 	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
3384 	    ("%s: too many descriptors available", __func__));
3385 
3386 	txmaps->map_avail += maps;
3387 	KASSERT(txmaps->map_avail <= txmaps->map_total,
3388 	    ("%s: too many maps available", __func__));
3389 
3390 	while (maps--) {
3391 		struct tx_map *next;
3392 
3393 		next = txm + 1;
3394 		if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
3395 			next = txmaps->maps;
3396 		prefetch(next->m);
3397 
3398 		bus_dmamap_unload(txq->tx_tag, txm->map);
3399 		m_freem(txm->m);
3400 		txm->m = NULL;
3401 
3402 		txm = next;
3403 		if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
3404 			txmaps->map_cidx = 0;
3405 	}
3406 
3407 	return (reclaimed);
3408 }
3409 
3410 static void
3411 write_eqflush_wr(struct sge_eq *eq)
3412 {
3413 	struct fw_eq_flush_wr *wr;
3414 
3415 	EQ_LOCK_ASSERT_OWNED(eq);
3416 	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
3417 	KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
3418 
3419 	wr = (void *)&eq->desc[eq->pidx];
3420 	bzero(wr, sizeof(*wr));
3421 	wr->opcode = FW_EQ_FLUSH_WR;
3422 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
3423 	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3424 
3425 	eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
3426 	eq->pending++;
3427 	eq->avail--;
3428 	if (++eq->pidx == eq->cap)
3429 		eq->pidx = 0;
3430 }
3431 
3432 static __be64
3433 get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
3434 {
3435 	int i = (idx / 3) * 2;
3436 
3437 	switch (idx % 3) {
3438 	case 0: {
3439 		__be64 rc;
3440 
3441 		rc = htobe32(sgl[i].ds_len);
3442 		if (i + 1 < nsegs)
3443 			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
3444 
3445 		return (rc);
3446 	}
3447 	case 1:
3448 		return htobe64(sgl[i].ds_addr);
3449 	case 2:
3450 		return htobe64(sgl[i + 1].ds_addr);
3451 	}
3452 
3453 	return (0);
3454 }
3455 
3456 static void
3457 set_fl_tag_idx(struct sge_fl *fl, int bufsize)
3458 {
3459 	int i;
3460 
3461 	for (i = 0; i < FL_BUF_SIZES - 1; i++) {
3462 		if (FL_BUF_SIZE(i) >= bufsize)
3463 			break;
3464 	}
3465 
3466 	fl->tag_idx = i;
3467 }
3468 
3469 static void
3470 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
3471 {
3472 	mtx_lock(&sc->sfl_lock);
3473 	FL_LOCK(fl);
3474 	if ((fl->flags & FL_DOOMED) == 0) {
3475 		fl->flags |= FL_STARVING;
3476 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
3477 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
3478 	}
3479 	FL_UNLOCK(fl);
3480 	mtx_unlock(&sc->sfl_lock);
3481 }
3482 
3483 static int
3484 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
3485     struct mbuf *m)
3486 {
3487 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
3488 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
3489 	struct adapter *sc = iq->adapter;
3490 	struct sge *s = &sc->sge;
3491 	struct sge_eq *eq;
3492 
3493 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
3494 	    rss->opcode));
3495 
3496 	eq = s->eqmap[qid - s->eq_start];
3497 	EQ_LOCK(eq);
3498 	KASSERT(eq->flags & EQ_CRFLUSHED,
3499 	    ("%s: unsolicited egress update", __func__));
3500 	eq->flags &= ~EQ_CRFLUSHED;
3501 	eq->egr_update++;
3502 
3503 	if (__predict_false(eq->flags & EQ_DOOMED))
3504 		wakeup_one(eq);
3505 	else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
3506 		taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
3507 	EQ_UNLOCK(eq);
3508 
3509 	return (0);
3510 }
3511 
3512 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
3513 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
3514     offsetof(struct cpl_fw6_msg, data));
3515 
3516 static int
3517 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
3518 {
3519 	struct adapter *sc = iq->adapter;
3520 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
3521 
3522 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
3523 	    rss->opcode));
3524 
3525 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
3526 		const struct rss_header *rss2;
3527 
3528 		rss2 = (const struct rss_header *)&cpl->data[0];
3529 		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
3530 	}
3531 
3532 	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
3533 }
3534 
3535 static int
3536 sysctl_uint16(SYSCTL_HANDLER_ARGS)
3537 {
3538 	uint16_t *id = arg1;
3539 	int i = *id;
3540 
3541 	return sysctl_handle_int(oidp, &i, 0, req);
3542 }
3543