xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 656d68a711952ac2b92ed258502978c5ba1dbc73)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_kern_tls.h"
36 #include "opt_ratelimit.h"
37 
38 #include <sys/types.h>
39 #include <sys/eventhandler.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/malloc.h>
45 #include <sys/msan.h>
46 #include <sys/queue.h>
47 #include <sys/sbuf.h>
48 #include <sys/taskqueue.h>
49 #include <sys/time.h>
50 #include <sys/sglist.h>
51 #include <sys/sysctl.h>
52 #include <sys/smp.h>
53 #include <sys/socketvar.h>
54 #include <sys/counter.h>
55 #include <net/bpf.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_vlan_var.h>
59 #include <net/if_vxlan.h>
60 #include <netinet/in.h>
61 #include <netinet/ip.h>
62 #include <netinet/ip6.h>
63 #include <netinet/tcp.h>
64 #include <netinet/udp.h>
65 #include <machine/in_cksum.h>
66 #include <machine/md_var.h>
67 #include <vm/vm.h>
68 #include <vm/pmap.h>
69 #ifdef DEV_NETMAP
70 #include <machine/bus.h>
71 #include <sys/selinfo.h>
72 #include <net/if_var.h>
73 #include <net/netmap.h>
74 #include <dev/netmap/netmap_kern.h>
75 #endif
76 
77 #include "common/common.h"
78 #include "common/t4_regs.h"
79 #include "common/t4_regs_values.h"
80 #include "common/t4_msg.h"
81 #include "t4_l2t.h"
82 #include "t4_mp_ring.h"
83 
84 #ifdef T4_PKT_TIMESTAMP
85 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
86 #else
87 #define RX_COPY_THRESHOLD MINCLSIZE
88 #endif
89 
90 /* Internal mbuf flags stored in PH_loc.eight[1]. */
91 #define	MC_NOMAP		0x01
92 #define	MC_RAW_WR		0x02
93 #define	MC_TLS			0x04
94 
95 /*
96  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
97  * 0-7 are valid values.
98  */
99 static int fl_pktshift = 0;
100 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
101     "payload DMA offset in rx buffer (bytes)");
102 
103 /*
104  * Pad ethernet payload up to this boundary.
105  * -1: driver should figure out a good value.
106  *  0: disable padding.
107  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
108  */
109 int fl_pad = -1;
110 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
111     "payload pad boundary (bytes)");
112 
113 /*
114  * Status page length.
115  * -1: driver should figure out a good value.
116  *  64 or 128 are the only other valid values.
117  */
118 static int spg_len = -1;
119 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
120     "status page size (bytes)");
121 
122 /*
123  * Congestion drops.
124  * -1: no congestion feedback (not recommended).
125  *  0: backpressure the channel instead of dropping packets right away.
126  *  1: no backpressure, drop packets for the congested queue immediately.
127  */
128 static int cong_drop = 0;
129 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
130     "Congestion control for RX queues (0 = backpressure, 1 = drop");
131 
132 /*
133  * Deliver multiple frames in the same free list buffer if they fit.
134  * -1: let the driver decide whether to enable buffer packing or not.
135  *  0: disable buffer packing.
136  *  1: enable buffer packing.
137  */
138 static int buffer_packing = -1;
139 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
140     0, "Enable buffer packing");
141 
142 /*
143  * Start next frame in a packed buffer at this boundary.
144  * -1: driver should figure out a good value.
145  * T4: driver will ignore this and use the same value as fl_pad above.
146  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
147  */
148 static int fl_pack = -1;
149 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
150     "payload pack boundary (bytes)");
151 
152 /*
153  * Largest rx cluster size that the driver is allowed to allocate.
154  */
155 static int largest_rx_cluster = MJUM16BYTES;
156 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
157     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
158 
159 /*
160  * Size of cluster allocation that's most likely to succeed.  The driver will
161  * fall back to this size if it fails to allocate clusters larger than this.
162  */
163 static int safest_rx_cluster = PAGE_SIZE;
164 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
165     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
166 
167 #ifdef RATELIMIT
168 /*
169  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
170  * for rewriting.  -1 and 0-3 are all valid values.
171  * -1: hardware should leave the TCP timestamps alone.
172  * 0: 1ms
173  * 1: 100us
174  * 2: 10us
175  * 3: 1us
176  */
177 static int tsclk = -1;
178 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
179     "Control TCP timestamp rewriting when using pacing");
180 
181 static int eo_max_backlog = 1024 * 1024;
182 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
183     0, "Maximum backlog of ratelimited data per flow");
184 #endif
185 
186 /*
187  * The interrupt holdoff timers are multiplied by this value on T6+.
188  * 1 and 3-17 (both inclusive) are legal values.
189  */
190 static int tscale = 1;
191 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
192     "Interrupt holdoff timer scale on T6+");
193 
194 /*
195  * Number of LRO entries in the lro_ctrl structure per rx queue.
196  */
197 static int lro_entries = TCP_LRO_ENTRIES;
198 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
199     "Number of LRO entries per RX queue");
200 
201 /*
202  * This enables presorting of frames before they're fed into tcp_lro_rx.
203  */
204 static int lro_mbufs = 0;
205 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
206     "Enable presorting of LRO frames");
207 
208 static counter_u64_t pullups;
209 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
210     "Number of mbuf pullups performed");
211 
212 static counter_u64_t defrags;
213 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
214     "Number of mbuf defrags performed");
215 
216 static int t4_tx_coalesce = 1;
217 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
218     "tx coalescing allowed");
219 
220 /*
221  * The driver will make aggressive attempts at tx coalescing if it sees these
222  * many packets eligible for coalescing in quick succession, with no more than
223  * the specified gap in between the eth_tx calls that delivered the packets.
224  */
225 static int t4_tx_coalesce_pkts = 32;
226 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
227     &t4_tx_coalesce_pkts, 0,
228     "# of consecutive packets (1 - 255) that will trigger tx coalescing");
229 static int t4_tx_coalesce_gap = 5;
230 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
231     &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
232 
233 static int service_iq(struct sge_iq *, int);
234 static int service_iq_fl(struct sge_iq *, int);
235 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
236 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
237     u_int);
238 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
239     int, int);
240 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
241 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
242     struct sge_iq *, char *);
243 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
244     struct sysctl_ctx_list *, struct sysctl_oid *);
245 static void free_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
246 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
247     struct sge_iq *);
248 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
249     struct sysctl_oid *, struct sge_fl *);
250 static int alloc_iq_fl_hwq(struct vi_info *, struct sge_iq *, struct sge_fl *);
251 static int free_iq_fl_hwq(struct adapter *, struct sge_iq *, struct sge_fl *);
252 static int alloc_fwq(struct adapter *);
253 static void free_fwq(struct adapter *);
254 static int alloc_ctrlq(struct adapter *, int);
255 static void free_ctrlq(struct adapter *, int);
256 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, int);
257 static void free_rxq(struct vi_info *, struct sge_rxq *);
258 static void add_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
259     struct sge_rxq *);
260 #ifdef TCP_OFFLOAD
261 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
262     int);
263 static void free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
264 static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
265     struct sge_ofld_rxq *);
266 #endif
267 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
268 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
269 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
270 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
271 #endif
272 static int alloc_eq(struct adapter *, struct sge_eq *, struct sysctl_ctx_list *,
273     struct sysctl_oid *);
274 static void free_eq(struct adapter *, struct sge_eq *);
275 static void add_eq_sysctls(struct adapter *, struct sysctl_ctx_list *,
276     struct sysctl_oid *, struct sge_eq *);
277 static int alloc_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
278 static int free_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
279 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
280     struct sysctl_ctx_list *, struct sysctl_oid *);
281 static void free_wrq(struct adapter *, struct sge_wrq *);
282 static void add_wrq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
283     struct sge_wrq *);
284 static int alloc_txq(struct vi_info *, struct sge_txq *, int);
285 static void free_txq(struct vi_info *, struct sge_txq *);
286 static void add_txq_sysctls(struct vi_info *, struct sysctl_ctx_list *,
287     struct sysctl_oid *, struct sge_txq *);
288 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
289 static int alloc_ofld_txq(struct vi_info *, struct sge_ofld_txq *, int);
290 static void free_ofld_txq(struct vi_info *, struct sge_ofld_txq *);
291 static void add_ofld_txq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
292     struct sge_ofld_txq *);
293 #endif
294 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
295 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
296 static int refill_fl(struct adapter *, struct sge_fl *, int);
297 static void refill_sfl(void *);
298 static int find_refill_source(struct adapter *, int, bool);
299 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
300 
301 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
302 static inline u_int txpkt_len16(u_int, const u_int);
303 static inline u_int txpkt_vm_len16(u_int, const u_int);
304 static inline void calculate_mbuf_len16(struct mbuf *, bool);
305 static inline u_int txpkts0_len16(u_int);
306 static inline u_int txpkts1_len16(void);
307 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
308 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
309     u_int);
310 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
311     struct mbuf *);
312 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
313     int, bool *);
314 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
315     int, bool *);
316 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
317 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
318 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
319 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
320 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
321 static inline uint16_t read_hw_cidx(struct sge_eq *);
322 static inline u_int reclaimable_tx_desc(struct sge_eq *);
323 static inline u_int total_available_tx_desc(struct sge_eq *);
324 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
325 static void tx_reclaim(void *, int);
326 static __be64 get_flit(struct sglist_seg *, int, int);
327 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
328     struct mbuf *);
329 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
330     struct mbuf *);
331 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
332 static void wrq_tx_drain(void *, int);
333 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
334 
335 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
336 #ifdef RATELIMIT
337 #if defined(INET) || defined(INET6)
338 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
339 #endif
340 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
341     struct mbuf *);
342 #endif
343 
344 static counter_u64_t extfree_refs;
345 static counter_u64_t extfree_rels;
346 
347 an_handler_t t4_an_handler;
348 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
349 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
350 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
351 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
352 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
353 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
354 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
355 
356 void
357 t4_register_an_handler(an_handler_t h)
358 {
359 	uintptr_t *loc;
360 
361 	MPASS(h == NULL || t4_an_handler == NULL);
362 
363 	loc = (uintptr_t *)&t4_an_handler;
364 	atomic_store_rel_ptr(loc, (uintptr_t)h);
365 }
366 
367 void
368 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
369 {
370 	uintptr_t *loc;
371 
372 	MPASS(type < nitems(t4_fw_msg_handler));
373 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
374 	/*
375 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
376 	 * handler dispatch table.  Reject any attempt to install a handler for
377 	 * this subtype.
378 	 */
379 	MPASS(type != FW_TYPE_RSSCPL);
380 	MPASS(type != FW6_TYPE_RSSCPL);
381 
382 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
383 	atomic_store_rel_ptr(loc, (uintptr_t)h);
384 }
385 
386 void
387 t4_register_cpl_handler(int opcode, cpl_handler_t h)
388 {
389 	uintptr_t *loc;
390 
391 	MPASS(opcode < nitems(t4_cpl_handler));
392 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
393 
394 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
395 	atomic_store_rel_ptr(loc, (uintptr_t)h);
396 }
397 
398 static int
399 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
400     struct mbuf *m)
401 {
402 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
403 	u_int tid;
404 	int cookie;
405 
406 	MPASS(m == NULL);
407 
408 	tid = GET_TID(cpl);
409 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
410 		/*
411 		 * The return code for filter-write is put in the CPL cookie so
412 		 * we have to rely on the hardware tid (is_ftid) to determine
413 		 * that this is a response to a filter.
414 		 */
415 		cookie = CPL_COOKIE_FILTER;
416 	} else {
417 		cookie = G_COOKIE(cpl->cookie);
418 	}
419 	MPASS(cookie > CPL_COOKIE_RESERVED);
420 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
421 
422 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
423 }
424 
425 static int
426 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
427     struct mbuf *m)
428 {
429 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
430 	unsigned int cookie;
431 
432 	MPASS(m == NULL);
433 
434 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
435 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
436 }
437 
438 static int
439 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
440     struct mbuf *m)
441 {
442 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
443 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
444 
445 	MPASS(m == NULL);
446 	MPASS(cookie != CPL_COOKIE_RESERVED);
447 
448 	return (act_open_rpl_handlers[cookie](iq, rss, m));
449 }
450 
451 static int
452 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
453     struct mbuf *m)
454 {
455 	struct adapter *sc = iq->adapter;
456 	u_int cookie;
457 
458 	MPASS(m == NULL);
459 	if (is_hashfilter(sc))
460 		cookie = CPL_COOKIE_HASHFILTER;
461 	else
462 		cookie = CPL_COOKIE_TOM;
463 
464 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
465 }
466 
467 static int
468 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
469 {
470 	struct adapter *sc = iq->adapter;
471 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
472 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
473 	u_int cookie;
474 
475 	MPASS(m == NULL);
476 	if (is_etid(sc, tid))
477 		cookie = CPL_COOKIE_ETHOFLD;
478 	else
479 		cookie = CPL_COOKIE_TOM;
480 
481 	return (fw4_ack_handlers[cookie](iq, rss, m));
482 }
483 
484 static void
485 t4_init_shared_cpl_handlers(void)
486 {
487 
488 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
489 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
490 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
491 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
492 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
493 }
494 
495 void
496 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
497 {
498 	uintptr_t *loc;
499 
500 	MPASS(opcode < nitems(t4_cpl_handler));
501 	MPASS(cookie > CPL_COOKIE_RESERVED);
502 	MPASS(cookie < NUM_CPL_COOKIES);
503 	MPASS(t4_cpl_handler[opcode] != NULL);
504 
505 	switch (opcode) {
506 	case CPL_SET_TCB_RPL:
507 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
508 		break;
509 	case CPL_L2T_WRITE_RPL:
510 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
511 		break;
512 	case CPL_ACT_OPEN_RPL:
513 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
514 		break;
515 	case CPL_ABORT_RPL_RSS:
516 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
517 		break;
518 	case CPL_FW4_ACK:
519 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
520 		break;
521 	default:
522 		MPASS(0);
523 		return;
524 	}
525 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
526 	atomic_store_rel_ptr(loc, (uintptr_t)h);
527 }
528 
529 /*
530  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
531  */
532 void
533 t4_sge_modload(void)
534 {
535 
536 	if (fl_pktshift < 0 || fl_pktshift > 7) {
537 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
538 		    " using 0 instead.\n", fl_pktshift);
539 		fl_pktshift = 0;
540 	}
541 
542 	if (spg_len != 64 && spg_len != 128) {
543 		int len;
544 
545 #if defined(__i386__) || defined(__amd64__)
546 		len = cpu_clflush_line_size > 64 ? 128 : 64;
547 #else
548 		len = 64;
549 #endif
550 		if (spg_len != -1) {
551 			printf("Invalid hw.cxgbe.spg_len value (%d),"
552 			    " using %d instead.\n", spg_len, len);
553 		}
554 		spg_len = len;
555 	}
556 
557 	if (cong_drop < -1 || cong_drop > 1) {
558 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
559 		    " using 0 instead.\n", cong_drop);
560 		cong_drop = 0;
561 	}
562 
563 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
564 		printf("Invalid hw.cxgbe.tscale value (%d),"
565 		    " using 1 instead.\n", tscale);
566 		tscale = 1;
567 	}
568 
569 	if (largest_rx_cluster != MCLBYTES &&
570 #if MJUMPAGESIZE != MCLBYTES
571 	    largest_rx_cluster != MJUMPAGESIZE &&
572 #endif
573 	    largest_rx_cluster != MJUM9BYTES &&
574 	    largest_rx_cluster != MJUM16BYTES) {
575 		printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
576 		    " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
577 		largest_rx_cluster = MJUM16BYTES;
578 	}
579 
580 	if (safest_rx_cluster != MCLBYTES &&
581 #if MJUMPAGESIZE != MCLBYTES
582 	    safest_rx_cluster != MJUMPAGESIZE &&
583 #endif
584 	    safest_rx_cluster != MJUM9BYTES &&
585 	    safest_rx_cluster != MJUM16BYTES) {
586 		printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
587 		    " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
588 		safest_rx_cluster = MJUMPAGESIZE;
589 	}
590 
591 	extfree_refs = counter_u64_alloc(M_WAITOK);
592 	extfree_rels = counter_u64_alloc(M_WAITOK);
593 	pullups = counter_u64_alloc(M_WAITOK);
594 	defrags = counter_u64_alloc(M_WAITOK);
595 	counter_u64_zero(extfree_refs);
596 	counter_u64_zero(extfree_rels);
597 	counter_u64_zero(pullups);
598 	counter_u64_zero(defrags);
599 
600 	t4_init_shared_cpl_handlers();
601 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
602 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
603 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
604 #ifdef RATELIMIT
605 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
606 	    CPL_COOKIE_ETHOFLD);
607 #endif
608 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
609 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
610 }
611 
612 void
613 t4_sge_modunload(void)
614 {
615 
616 	counter_u64_free(extfree_refs);
617 	counter_u64_free(extfree_rels);
618 	counter_u64_free(pullups);
619 	counter_u64_free(defrags);
620 }
621 
622 uint64_t
623 t4_sge_extfree_refs(void)
624 {
625 	uint64_t refs, rels;
626 
627 	rels = counter_u64_fetch(extfree_rels);
628 	refs = counter_u64_fetch(extfree_refs);
629 
630 	return (refs - rels);
631 }
632 
633 /* max 4096 */
634 #define MAX_PACK_BOUNDARY 512
635 
636 static inline void
637 setup_pad_and_pack_boundaries(struct adapter *sc)
638 {
639 	uint32_t v, m;
640 	int pad, pack, pad_shift;
641 
642 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
643 	    X_INGPADBOUNDARY_SHIFT;
644 	pad = fl_pad;
645 	if (fl_pad < (1 << pad_shift) ||
646 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
647 	    !powerof2(fl_pad)) {
648 		/*
649 		 * If there is any chance that we might use buffer packing and
650 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
651 		 * it to the minimum allowed in all other cases.
652 		 */
653 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
654 
655 		/*
656 		 * For fl_pad = 0 we'll still write a reasonable value to the
657 		 * register but all the freelists will opt out of padding.
658 		 * We'll complain here only if the user tried to set it to a
659 		 * value greater than 0 that was invalid.
660 		 */
661 		if (fl_pad > 0) {
662 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
663 			    " (%d), using %d instead.\n", fl_pad, pad);
664 		}
665 	}
666 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
667 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
668 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
669 
670 	if (is_t4(sc)) {
671 		if (fl_pack != -1 && fl_pack != pad) {
672 			/* Complain but carry on. */
673 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
674 			    " using %d instead.\n", fl_pack, pad);
675 		}
676 		return;
677 	}
678 
679 	pack = fl_pack;
680 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
681 	    !powerof2(fl_pack)) {
682 		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
683 			pack = MAX_PACK_BOUNDARY;
684 		else
685 			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
686 		MPASS(powerof2(pack));
687 		if (pack < 16)
688 			pack = 16;
689 		if (pack == 32)
690 			pack = 64;
691 		if (pack > 4096)
692 			pack = 4096;
693 		if (fl_pack != -1) {
694 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
695 			    " (%d), using %d instead.\n", fl_pack, pack);
696 		}
697 	}
698 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
699 	if (pack == 16)
700 		v = V_INGPACKBOUNDARY(0);
701 	else
702 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
703 
704 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
705 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
706 }
707 
708 /*
709  * adap->params.vpd.cclk must be set up before this is called.
710  */
711 void
712 t4_tweak_chip_settings(struct adapter *sc)
713 {
714 	int i, reg;
715 	uint32_t v, m;
716 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
717 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
718 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
719 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
720 	static int sw_buf_sizes[] = {
721 		MCLBYTES,
722 #if MJUMPAGESIZE != MCLBYTES
723 		MJUMPAGESIZE,
724 #endif
725 		MJUM9BYTES,
726 		MJUM16BYTES
727 	};
728 
729 	KASSERT(sc->flags & MASTER_PF,
730 	    ("%s: trying to change chip settings when not master.", __func__));
731 
732 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
733 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
734 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
735 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
736 
737 	setup_pad_and_pack_boundaries(sc);
738 
739 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
740 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
741 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
742 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
743 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
744 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
745 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
746 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
747 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
748 
749 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
750 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
751 	reg = A_SGE_FL_BUFFER_SIZE2;
752 	for (i = 0; i < nitems(sw_buf_sizes); i++) {
753 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
754 		t4_write_reg(sc, reg, sw_buf_sizes[i]);
755 		reg += 4;
756 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
757 		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
758 		reg += 4;
759 	}
760 
761 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
762 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
763 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
764 
765 	KASSERT(intr_timer[0] <= timer_max,
766 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
767 	    timer_max));
768 	for (i = 1; i < nitems(intr_timer); i++) {
769 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
770 		    ("%s: timers not listed in increasing order (%d)",
771 		    __func__, i));
772 
773 		while (intr_timer[i] > timer_max) {
774 			if (i == nitems(intr_timer) - 1) {
775 				intr_timer[i] = timer_max;
776 				break;
777 			}
778 			intr_timer[i] += intr_timer[i - 1];
779 			intr_timer[i] /= 2;
780 		}
781 	}
782 
783 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
784 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
785 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
786 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
787 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
788 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
789 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
790 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
791 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
792 
793 	if (chip_id(sc) >= CHELSIO_T6) {
794 		m = V_TSCALE(M_TSCALE);
795 		if (tscale == 1)
796 			v = 0;
797 		else
798 			v = V_TSCALE(tscale - 2);
799 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
800 
801 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
802 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
803 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
804 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
805 			v &= ~m;
806 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
807 			    V_WRTHRTHRESH(16);
808 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
809 		}
810 	}
811 
812 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
813 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
814 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
815 
816 	/*
817 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
818 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
819 	 * may have to deal with is MAXPHYS + 1 page.
820 	 */
821 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
822 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
823 
824 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
825 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
826 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
827 
828 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
829 	    F_RESETDDPOFFSET;
830 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
831 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
832 }
833 
834 /*
835  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
836  * address mut be 16B aligned.  If padding is in use the buffer's start and end
837  * need to be aligned to the pad boundary as well.  We'll just make sure that
838  * the size is a multiple of the pad boundary here, it is up to the buffer
839  * allocation code to make sure the start of the buffer is aligned.
840  */
841 static inline int
842 hwsz_ok(struct adapter *sc, int hwsz)
843 {
844 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
845 
846 	return (hwsz >= 64 && (hwsz & mask) == 0);
847 }
848 
849 /*
850  * Initialize the rx buffer sizes and figure out which zones the buffers will
851  * be allocated from.
852  */
853 void
854 t4_init_rx_buf_info(struct adapter *sc)
855 {
856 	struct sge *s = &sc->sge;
857 	struct sge_params *sp = &sc->params.sge;
858 	int i, j, n;
859 	static int sw_buf_sizes[] = {	/* Sorted by size */
860 		MCLBYTES,
861 #if MJUMPAGESIZE != MCLBYTES
862 		MJUMPAGESIZE,
863 #endif
864 		MJUM9BYTES,
865 		MJUM16BYTES
866 	};
867 	struct rx_buf_info *rxb;
868 
869 	s->safe_zidx = -1;
870 	rxb = &s->rx_buf_info[0];
871 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
872 		rxb->size1 = sw_buf_sizes[i];
873 		rxb->zone = m_getzone(rxb->size1);
874 		rxb->type = m_gettype(rxb->size1);
875 		rxb->size2 = 0;
876 		rxb->hwidx1 = -1;
877 		rxb->hwidx2 = -1;
878 		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
879 			int hwsize = sp->sge_fl_buffer_size[j];
880 
881 			if (!hwsz_ok(sc, hwsize))
882 				continue;
883 
884 			/* hwidx for size1 */
885 			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
886 				rxb->hwidx1 = j;
887 
888 			/* hwidx for size2 (buffer packing) */
889 			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
890 				continue;
891 			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
892 			if (n == 0) {
893 				rxb->hwidx2 = j;
894 				rxb->size2 = hwsize;
895 				break;	/* stop looking */
896 			}
897 			if (rxb->hwidx2 != -1) {
898 				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
899 				    hwsize - CL_METADATA_SIZE) {
900 					rxb->hwidx2 = j;
901 					rxb->size2 = hwsize;
902 				}
903 			} else if (n <= 2 * CL_METADATA_SIZE) {
904 				rxb->hwidx2 = j;
905 				rxb->size2 = hwsize;
906 			}
907 		}
908 		if (rxb->hwidx2 != -1)
909 			sc->flags |= BUF_PACKING_OK;
910 		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
911 			s->safe_zidx = i;
912 	}
913 }
914 
915 /*
916  * Verify some basic SGE settings for the PF and VF driver, and other
917  * miscellaneous settings for the PF driver.
918  */
919 int
920 t4_verify_chip_settings(struct adapter *sc)
921 {
922 	struct sge_params *sp = &sc->params.sge;
923 	uint32_t m, v, r;
924 	int rc = 0;
925 	const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
926 
927 	m = F_RXPKTCPLMODE;
928 	v = F_RXPKTCPLMODE;
929 	r = sp->sge_control;
930 	if ((r & m) != v) {
931 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
932 		rc = EINVAL;
933 	}
934 
935 	/*
936 	 * If this changes then every single use of PAGE_SHIFT in the driver
937 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
938 	 */
939 	if (sp->page_shift != PAGE_SHIFT) {
940 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
941 		rc = EINVAL;
942 	}
943 
944 	if (sc->flags & IS_VF)
945 		return (0);
946 
947 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
948 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
949 	if (r != v) {
950 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
951 		if (sc->vres.ddp.size != 0)
952 			rc = EINVAL;
953 	}
954 
955 	m = v = F_TDDPTAGTCB;
956 	r = t4_read_reg(sc, A_ULP_RX_CTL);
957 	if ((r & m) != v) {
958 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
959 		if (sc->vres.ddp.size != 0)
960 			rc = EINVAL;
961 	}
962 
963 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
964 	    F_RESETDDPOFFSET;
965 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
966 	r = t4_read_reg(sc, A_TP_PARA_REG5);
967 	if ((r & m) != v) {
968 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
969 		if (sc->vres.ddp.size != 0)
970 			rc = EINVAL;
971 	}
972 
973 	return (rc);
974 }
975 
976 int
977 t4_create_dma_tag(struct adapter *sc)
978 {
979 	int rc;
980 
981 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
982 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
983 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
984 	    NULL, &sc->dmat);
985 	if (rc != 0) {
986 		device_printf(sc->dev,
987 		    "failed to create main DMA tag: %d\n", rc);
988 	}
989 
990 	return (rc);
991 }
992 
993 void
994 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
995     struct sysctl_oid_list *children)
996 {
997 	struct sge_params *sp = &sc->params.sge;
998 
999 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
1000 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
1001 	    sysctl_bufsizes, "A", "freelist buffer sizes");
1002 
1003 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
1004 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
1005 
1006 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
1007 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
1008 
1009 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
1010 	    NULL, sp->spg_len, "status page size (bytes)");
1011 
1012 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
1013 	    NULL, cong_drop, "congestion drop setting");
1014 
1015 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
1016 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1017 }
1018 
1019 int
1020 t4_destroy_dma_tag(struct adapter *sc)
1021 {
1022 	if (sc->dmat)
1023 		bus_dma_tag_destroy(sc->dmat);
1024 
1025 	return (0);
1026 }
1027 
1028 /*
1029  * Allocate and initialize the firmware event queue, control queues, and special
1030  * purpose rx queues owned by the adapter.
1031  *
1032  * Returns errno on failure.  Resources allocated up to that point may still be
1033  * allocated.  Caller is responsible for cleanup in case this function fails.
1034  */
1035 int
1036 t4_setup_adapter_queues(struct adapter *sc)
1037 {
1038 	int rc, i;
1039 
1040 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1041 
1042 	/*
1043 	 * Firmware event queue
1044 	 */
1045 	rc = alloc_fwq(sc);
1046 	if (rc != 0)
1047 		return (rc);
1048 
1049 	/*
1050 	 * That's all for the VF driver.
1051 	 */
1052 	if (sc->flags & IS_VF)
1053 		return (rc);
1054 
1055 	/*
1056 	 * XXX: General purpose rx queues, one per port.
1057 	 */
1058 
1059 	/*
1060 	 * Control queues, one per port.
1061 	 */
1062 	for_each_port(sc, i) {
1063 		rc = alloc_ctrlq(sc, i);
1064 		if (rc != 0)
1065 			return (rc);
1066 	}
1067 
1068 	return (rc);
1069 }
1070 
1071 /*
1072  * Idempotent
1073  */
1074 int
1075 t4_teardown_adapter_queues(struct adapter *sc)
1076 {
1077 	int i;
1078 
1079 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1080 
1081 	if (sc->sge.ctrlq != NULL) {
1082 		MPASS(!(sc->flags & IS_VF));	/* VFs don't allocate ctrlq. */
1083 		for_each_port(sc, i)
1084 			free_ctrlq(sc, i);
1085 	}
1086 	free_fwq(sc);
1087 
1088 	return (0);
1089 }
1090 
1091 /* Maximum payload that could arrive with a single iq descriptor. */
1092 static inline int
1093 max_rx_payload(struct adapter *sc, struct ifnet *ifp, const bool ofld)
1094 {
1095 	int maxp;
1096 
1097 	/* large enough even when hw VLAN extraction is disabled */
1098 	maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1099 	    ETHER_VLAN_ENCAP_LEN + ifp->if_mtu;
1100 	if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1101 	    maxp < sc->params.tp.max_rx_pdu)
1102 		maxp = sc->params.tp.max_rx_pdu;
1103 	return (maxp);
1104 }
1105 
1106 int
1107 t4_setup_vi_queues(struct vi_info *vi)
1108 {
1109 	int rc = 0, i, intr_idx;
1110 	struct sge_rxq *rxq;
1111 	struct sge_txq *txq;
1112 #ifdef TCP_OFFLOAD
1113 	struct sge_ofld_rxq *ofld_rxq;
1114 #endif
1115 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1116 	struct sge_ofld_txq *ofld_txq;
1117 #endif
1118 #ifdef DEV_NETMAP
1119 	int saved_idx, iqidx;
1120 	struct sge_nm_rxq *nm_rxq;
1121 	struct sge_nm_txq *nm_txq;
1122 #endif
1123 	struct adapter *sc = vi->adapter;
1124 	struct ifnet *ifp = vi->ifp;
1125 	int maxp;
1126 
1127 	/* Interrupt vector to start from (when using multiple vectors) */
1128 	intr_idx = vi->first_intr;
1129 
1130 #ifdef DEV_NETMAP
1131 	saved_idx = intr_idx;
1132 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1133 
1134 		/* netmap is supported with direct interrupts only. */
1135 		MPASS(!forwarding_intr_to_fwq(sc));
1136 		MPASS(vi->first_intr >= 0);
1137 
1138 		/*
1139 		 * We don't have buffers to back the netmap rx queues
1140 		 * right now so we create the queues in a way that
1141 		 * doesn't set off any congestion signal in the chip.
1142 		 */
1143 		for_each_nm_rxq(vi, i, nm_rxq) {
1144 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i);
1145 			if (rc != 0)
1146 				goto done;
1147 			intr_idx++;
1148 		}
1149 
1150 		for_each_nm_txq(vi, i, nm_txq) {
1151 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1152 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i);
1153 			if (rc != 0)
1154 				goto done;
1155 		}
1156 	}
1157 
1158 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1159 	intr_idx = saved_idx;
1160 #endif
1161 
1162 	/*
1163 	 * Allocate rx queues first because a default iqid is required when
1164 	 * creating a tx queue.
1165 	 */
1166 	maxp = max_rx_payload(sc, ifp, false);
1167 	for_each_rxq(vi, i, rxq) {
1168 		rc = alloc_rxq(vi, rxq, i, intr_idx, maxp);
1169 		if (rc != 0)
1170 			goto done;
1171 		if (!forwarding_intr_to_fwq(sc))
1172 			intr_idx++;
1173 	}
1174 #ifdef DEV_NETMAP
1175 	if (ifp->if_capabilities & IFCAP_NETMAP)
1176 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1177 #endif
1178 #ifdef TCP_OFFLOAD
1179 	maxp = max_rx_payload(sc, ifp, true);
1180 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1181 		rc = alloc_ofld_rxq(vi, ofld_rxq, i, intr_idx, maxp);
1182 		if (rc != 0)
1183 			goto done;
1184 		if (!forwarding_intr_to_fwq(sc))
1185 			intr_idx++;
1186 	}
1187 #endif
1188 
1189 	/*
1190 	 * Now the tx queues.
1191 	 */
1192 	for_each_txq(vi, i, txq) {
1193 		rc = alloc_txq(vi, txq, i);
1194 		if (rc != 0)
1195 			goto done;
1196 	}
1197 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1198 	for_each_ofld_txq(vi, i, ofld_txq) {
1199 		rc = alloc_ofld_txq(vi, ofld_txq, i);
1200 		if (rc != 0)
1201 			goto done;
1202 	}
1203 #endif
1204 done:
1205 	if (rc)
1206 		t4_teardown_vi_queues(vi);
1207 
1208 	return (rc);
1209 }
1210 
1211 /*
1212  * Idempotent
1213  */
1214 int
1215 t4_teardown_vi_queues(struct vi_info *vi)
1216 {
1217 	int i;
1218 	struct sge_rxq *rxq;
1219 	struct sge_txq *txq;
1220 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1221 	struct sge_ofld_txq *ofld_txq;
1222 #endif
1223 #ifdef TCP_OFFLOAD
1224 	struct sge_ofld_rxq *ofld_rxq;
1225 #endif
1226 #ifdef DEV_NETMAP
1227 	struct sge_nm_rxq *nm_rxq;
1228 	struct sge_nm_txq *nm_txq;
1229 #endif
1230 
1231 #ifdef DEV_NETMAP
1232 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1233 		for_each_nm_txq(vi, i, nm_txq) {
1234 			free_nm_txq(vi, nm_txq);
1235 		}
1236 
1237 		for_each_nm_rxq(vi, i, nm_rxq) {
1238 			free_nm_rxq(vi, nm_rxq);
1239 		}
1240 	}
1241 #endif
1242 
1243 	/*
1244 	 * Take down all the tx queues first, as they reference the rx queues
1245 	 * (for egress updates, etc.).
1246 	 */
1247 
1248 	for_each_txq(vi, i, txq) {
1249 		free_txq(vi, txq);
1250 	}
1251 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1252 	for_each_ofld_txq(vi, i, ofld_txq) {
1253 		free_ofld_txq(vi, ofld_txq);
1254 	}
1255 #endif
1256 
1257 	/*
1258 	 * Then take down the rx queues.
1259 	 */
1260 
1261 	for_each_rxq(vi, i, rxq) {
1262 		free_rxq(vi, rxq);
1263 	}
1264 #ifdef TCP_OFFLOAD
1265 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1266 		free_ofld_rxq(vi, ofld_rxq);
1267 	}
1268 #endif
1269 
1270 	return (0);
1271 }
1272 
1273 /*
1274  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1275  * unusual scenario.
1276  *
1277  * a) Deals with errors, if any.
1278  * b) Services firmware event queue, which is taking interrupts for all other
1279  *    queues.
1280  */
1281 void
1282 t4_intr_all(void *arg)
1283 {
1284 	struct adapter *sc = arg;
1285 	struct sge_iq *fwq = &sc->sge.fwq;
1286 
1287 	MPASS(sc->intr_count == 1);
1288 
1289 	if (sc->intr_type == INTR_INTX)
1290 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1291 
1292 	t4_intr_err(arg);
1293 	t4_intr_evt(fwq);
1294 }
1295 
1296 /*
1297  * Interrupt handler for errors (installed directly when multiple interrupts are
1298  * being used, or called by t4_intr_all).
1299  */
1300 void
1301 t4_intr_err(void *arg)
1302 {
1303 	struct adapter *sc = arg;
1304 	uint32_t v;
1305 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1306 
1307 	if (atomic_load_int(&sc->error_flags) & ADAP_FATAL_ERR)
1308 		return;
1309 
1310 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1311 	if (v & F_PFSW) {
1312 		sc->swintr++;
1313 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1314 	}
1315 
1316 	if (t4_slow_intr_handler(sc, verbose))
1317 		t4_fatal_err(sc, false);
1318 }
1319 
1320 /*
1321  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1322  * such queue right now.
1323  */
1324 void
1325 t4_intr_evt(void *arg)
1326 {
1327 	struct sge_iq *iq = arg;
1328 
1329 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1330 		service_iq(iq, 0);
1331 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1332 	}
1333 }
1334 
1335 /*
1336  * Interrupt handler for iq+fl queues.
1337  */
1338 void
1339 t4_intr(void *arg)
1340 {
1341 	struct sge_iq *iq = arg;
1342 
1343 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1344 		service_iq_fl(iq, 0);
1345 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1346 	}
1347 }
1348 
1349 #ifdef DEV_NETMAP
1350 /*
1351  * Interrupt handler for netmap rx queues.
1352  */
1353 void
1354 t4_nm_intr(void *arg)
1355 {
1356 	struct sge_nm_rxq *nm_rxq = arg;
1357 
1358 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1359 		service_nm_rxq(nm_rxq);
1360 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1361 	}
1362 }
1363 
1364 /*
1365  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1366  */
1367 void
1368 t4_vi_intr(void *arg)
1369 {
1370 	struct irq *irq = arg;
1371 
1372 	MPASS(irq->nm_rxq != NULL);
1373 	t4_nm_intr(irq->nm_rxq);
1374 
1375 	MPASS(irq->rxq != NULL);
1376 	t4_intr(irq->rxq);
1377 }
1378 #endif
1379 
1380 /*
1381  * Deals with interrupts on an iq-only (no freelist) queue.
1382  */
1383 static int
1384 service_iq(struct sge_iq *iq, int budget)
1385 {
1386 	struct sge_iq *q;
1387 	struct adapter *sc = iq->adapter;
1388 	struct iq_desc *d = &iq->desc[iq->cidx];
1389 	int ndescs = 0, limit;
1390 	int rsp_type;
1391 	uint32_t lq;
1392 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1393 
1394 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1395 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1396 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1397 	    iq->flags));
1398 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1399 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1400 
1401 	limit = budget ? budget : iq->qsize / 16;
1402 
1403 	/*
1404 	 * We always come back and check the descriptor ring for new indirect
1405 	 * interrupts and other responses after running a single handler.
1406 	 */
1407 	for (;;) {
1408 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1409 
1410 			rmb();
1411 
1412 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1413 			lq = be32toh(d->rsp.pldbuflen_qid);
1414 
1415 			switch (rsp_type) {
1416 			case X_RSPD_TYPE_FLBUF:
1417 				panic("%s: data for an iq (%p) with no freelist",
1418 				    __func__, iq);
1419 
1420 				/* NOTREACHED */
1421 
1422 			case X_RSPD_TYPE_CPL:
1423 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1424 				    ("%s: bad opcode %02x.", __func__,
1425 				    d->rss.opcode));
1426 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1427 				break;
1428 
1429 			case X_RSPD_TYPE_INTR:
1430 				/*
1431 				 * There are 1K interrupt-capable queues (qids 0
1432 				 * through 1023).  A response type indicating a
1433 				 * forwarded interrupt with a qid >= 1K is an
1434 				 * iWARP async notification.
1435 				 */
1436 				if (__predict_true(lq >= 1024)) {
1437 					t4_an_handler(iq, &d->rsp);
1438 					break;
1439 				}
1440 
1441 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1442 				    sc->sge.iq_base];
1443 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1444 				    IQS_BUSY)) {
1445 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1446 						(void) atomic_cmpset_int(&q->state,
1447 						    IQS_BUSY, IQS_IDLE);
1448 					} else {
1449 						STAILQ_INSERT_TAIL(&iql, q,
1450 						    link);
1451 					}
1452 				}
1453 				break;
1454 
1455 			default:
1456 				KASSERT(0,
1457 				    ("%s: illegal response type %d on iq %p",
1458 				    __func__, rsp_type, iq));
1459 				log(LOG_ERR,
1460 				    "%s: illegal response type %d on iq %p",
1461 				    device_get_nameunit(sc->dev), rsp_type, iq);
1462 				break;
1463 			}
1464 
1465 			d++;
1466 			if (__predict_false(++iq->cidx == iq->sidx)) {
1467 				iq->cidx = 0;
1468 				iq->gen ^= F_RSPD_GEN;
1469 				d = &iq->desc[0];
1470 			}
1471 			if (__predict_false(++ndescs == limit)) {
1472 				t4_write_reg(sc, sc->sge_gts_reg,
1473 				    V_CIDXINC(ndescs) |
1474 				    V_INGRESSQID(iq->cntxt_id) |
1475 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1476 				ndescs = 0;
1477 
1478 				if (budget) {
1479 					return (EINPROGRESS);
1480 				}
1481 			}
1482 		}
1483 
1484 		if (STAILQ_EMPTY(&iql))
1485 			break;
1486 
1487 		/*
1488 		 * Process the head only, and send it to the back of the list if
1489 		 * it's still not done.
1490 		 */
1491 		q = STAILQ_FIRST(&iql);
1492 		STAILQ_REMOVE_HEAD(&iql, link);
1493 		if (service_iq_fl(q, q->qsize / 8) == 0)
1494 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1495 		else
1496 			STAILQ_INSERT_TAIL(&iql, q, link);
1497 	}
1498 
1499 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1500 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1501 
1502 	return (0);
1503 }
1504 
1505 #if defined(INET) || defined(INET6)
1506 static inline int
1507 sort_before_lro(struct lro_ctrl *lro)
1508 {
1509 
1510 	return (lro->lro_mbuf_max != 0);
1511 }
1512 #endif
1513 
1514 static inline uint64_t
1515 last_flit_to_ns(struct adapter *sc, uint64_t lf)
1516 {
1517 	uint64_t n = be64toh(lf) & 0xfffffffffffffff;	/* 60b, not 64b. */
1518 
1519 	if (n > UINT64_MAX / 1000000)
1520 		return (n / sc->params.vpd.cclk * 1000000);
1521 	else
1522 		return (n * 1000000 / sc->params.vpd.cclk);
1523 }
1524 
1525 static inline void
1526 move_to_next_rxbuf(struct sge_fl *fl)
1527 {
1528 
1529 	fl->rx_offset = 0;
1530 	if (__predict_false((++fl->cidx & 7) == 0)) {
1531 		uint16_t cidx = fl->cidx >> 3;
1532 
1533 		if (__predict_false(cidx == fl->sidx))
1534 			fl->cidx = cidx = 0;
1535 		fl->hw_cidx = cidx;
1536 	}
1537 }
1538 
1539 /*
1540  * Deals with interrupts on an iq+fl queue.
1541  */
1542 static int
1543 service_iq_fl(struct sge_iq *iq, int budget)
1544 {
1545 	struct sge_rxq *rxq = iq_to_rxq(iq);
1546 	struct sge_fl *fl;
1547 	struct adapter *sc = iq->adapter;
1548 	struct iq_desc *d = &iq->desc[iq->cidx];
1549 	int ndescs, limit;
1550 	int rsp_type, starved;
1551 	uint32_t lq;
1552 	uint16_t fl_hw_cidx;
1553 	struct mbuf *m0;
1554 #if defined(INET) || defined(INET6)
1555 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1556 	struct lro_ctrl *lro = &rxq->lro;
1557 #endif
1558 
1559 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1560 	MPASS(iq->flags & IQ_HAS_FL);
1561 
1562 	ndescs = 0;
1563 #if defined(INET) || defined(INET6)
1564 	if (iq->flags & IQ_ADJ_CREDIT) {
1565 		MPASS(sort_before_lro(lro));
1566 		iq->flags &= ~IQ_ADJ_CREDIT;
1567 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1568 			tcp_lro_flush_all(lro);
1569 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1570 			    V_INGRESSQID((u32)iq->cntxt_id) |
1571 			    V_SEINTARM(iq->intr_params));
1572 			return (0);
1573 		}
1574 		ndescs = 1;
1575 	}
1576 #else
1577 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1578 #endif
1579 
1580 	limit = budget ? budget : iq->qsize / 16;
1581 	fl = &rxq->fl;
1582 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1583 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1584 
1585 		rmb();
1586 
1587 		m0 = NULL;
1588 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1589 		lq = be32toh(d->rsp.pldbuflen_qid);
1590 
1591 		switch (rsp_type) {
1592 		case X_RSPD_TYPE_FLBUF:
1593 			if (lq & F_RSPD_NEWBUF) {
1594 				if (fl->rx_offset > 0)
1595 					move_to_next_rxbuf(fl);
1596 				lq = G_RSPD_LEN(lq);
1597 			}
1598 			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1599 				FL_LOCK(fl);
1600 				refill_fl(sc, fl, 64);
1601 				FL_UNLOCK(fl);
1602 				fl_hw_cidx = fl->hw_cidx;
1603 			}
1604 
1605 			if (d->rss.opcode == CPL_RX_PKT) {
1606 				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1607 					break;
1608 				goto out;
1609 			}
1610 			m0 = get_fl_payload(sc, fl, lq);
1611 			if (__predict_false(m0 == NULL))
1612 				goto out;
1613 
1614 			/* fall through */
1615 
1616 		case X_RSPD_TYPE_CPL:
1617 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1618 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1619 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1620 			break;
1621 
1622 		case X_RSPD_TYPE_INTR:
1623 
1624 			/*
1625 			 * There are 1K interrupt-capable queues (qids 0
1626 			 * through 1023).  A response type indicating a
1627 			 * forwarded interrupt with a qid >= 1K is an
1628 			 * iWARP async notification.  That is the only
1629 			 * acceptable indirect interrupt on this queue.
1630 			 */
1631 			if (__predict_false(lq < 1024)) {
1632 				panic("%s: indirect interrupt on iq_fl %p "
1633 				    "with qid %u", __func__, iq, lq);
1634 			}
1635 
1636 			t4_an_handler(iq, &d->rsp);
1637 			break;
1638 
1639 		default:
1640 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1641 			    __func__, rsp_type, iq));
1642 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1643 			    device_get_nameunit(sc->dev), rsp_type, iq);
1644 			break;
1645 		}
1646 
1647 		d++;
1648 		if (__predict_false(++iq->cidx == iq->sidx)) {
1649 			iq->cidx = 0;
1650 			iq->gen ^= F_RSPD_GEN;
1651 			d = &iq->desc[0];
1652 		}
1653 		if (__predict_false(++ndescs == limit)) {
1654 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1655 			    V_INGRESSQID(iq->cntxt_id) |
1656 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1657 
1658 #if defined(INET) || defined(INET6)
1659 			if (iq->flags & IQ_LRO_ENABLED &&
1660 			    !sort_before_lro(lro) &&
1661 			    sc->lro_timeout != 0) {
1662 				tcp_lro_flush_inactive(lro, &lro_timeout);
1663 			}
1664 #endif
1665 			if (budget)
1666 				return (EINPROGRESS);
1667 			ndescs = 0;
1668 		}
1669 	}
1670 out:
1671 #if defined(INET) || defined(INET6)
1672 	if (iq->flags & IQ_LRO_ENABLED) {
1673 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1674 			MPASS(sort_before_lro(lro));
1675 			/* hold back one credit and don't flush LRO state */
1676 			iq->flags |= IQ_ADJ_CREDIT;
1677 			ndescs--;
1678 		} else {
1679 			tcp_lro_flush_all(lro);
1680 		}
1681 	}
1682 #endif
1683 
1684 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1685 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1686 
1687 	FL_LOCK(fl);
1688 	starved = refill_fl(sc, fl, 64);
1689 	FL_UNLOCK(fl);
1690 	if (__predict_false(starved != 0))
1691 		add_fl_to_sfl(sc, fl);
1692 
1693 	return (0);
1694 }
1695 
1696 static inline struct cluster_metadata *
1697 cl_metadata(struct fl_sdesc *sd)
1698 {
1699 
1700 	return ((void *)(sd->cl + sd->moff));
1701 }
1702 
1703 static void
1704 rxb_free(struct mbuf *m)
1705 {
1706 	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1707 
1708 	uma_zfree(clm->zone, clm->cl);
1709 	counter_u64_add(extfree_rels, 1);
1710 }
1711 
1712 /*
1713  * The mbuf returned comes from zone_muf and carries the payload in one of these
1714  * ways
1715  * a) complete frame inside the mbuf
1716  * b) m_cljset (for clusters without metadata)
1717  * d) m_extaddref (cluster with metadata)
1718  */
1719 static struct mbuf *
1720 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1721     int remaining)
1722 {
1723 	struct mbuf *m;
1724 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1725 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1726 	struct cluster_metadata *clm;
1727 	int len, blen;
1728 	caddr_t payload;
1729 
1730 	if (fl->flags & FL_BUF_PACKING) {
1731 		u_int l, pad;
1732 
1733 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1734 		len = min(remaining, blen);
1735 		payload = sd->cl + fl->rx_offset;
1736 
1737 		l = fr_offset + len;
1738 		pad = roundup2(l, fl->buf_boundary) - l;
1739 		if (fl->rx_offset + len + pad < rxb->size2)
1740 			blen = len + pad;
1741 		MPASS(fl->rx_offset + blen <= rxb->size2);
1742 	} else {
1743 		MPASS(fl->rx_offset == 0);	/* not packing */
1744 		blen = rxb->size1;
1745 		len = min(remaining, blen);
1746 		payload = sd->cl;
1747 	}
1748 
1749 	if (fr_offset == 0) {
1750 		m = m_gethdr(M_NOWAIT, MT_DATA);
1751 		if (__predict_false(m == NULL))
1752 			return (NULL);
1753 		m->m_pkthdr.len = remaining;
1754 	} else {
1755 		m = m_get(M_NOWAIT, MT_DATA);
1756 		if (__predict_false(m == NULL))
1757 			return (NULL);
1758 	}
1759 	m->m_len = len;
1760 	kmsan_mark(payload, len, KMSAN_STATE_INITED);
1761 
1762 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1763 		/* copy data to mbuf */
1764 		bcopy(payload, mtod(m, caddr_t), len);
1765 		if (fl->flags & FL_BUF_PACKING) {
1766 			fl->rx_offset += blen;
1767 			MPASS(fl->rx_offset <= rxb->size2);
1768 			if (fl->rx_offset < rxb->size2)
1769 				return (m);	/* without advancing the cidx */
1770 		}
1771 	} else if (fl->flags & FL_BUF_PACKING) {
1772 		clm = cl_metadata(sd);
1773 		if (sd->nmbuf++ == 0) {
1774 			clm->refcount = 1;
1775 			clm->zone = rxb->zone;
1776 			clm->cl = sd->cl;
1777 			counter_u64_add(extfree_refs, 1);
1778 		}
1779 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1780 		    NULL);
1781 
1782 		fl->rx_offset += blen;
1783 		MPASS(fl->rx_offset <= rxb->size2);
1784 		if (fl->rx_offset < rxb->size2)
1785 			return (m);	/* without advancing the cidx */
1786 	} else {
1787 		m_cljset(m, sd->cl, rxb->type);
1788 		sd->cl = NULL;	/* consumed, not a recycle candidate */
1789 	}
1790 
1791 	move_to_next_rxbuf(fl);
1792 
1793 	return (m);
1794 }
1795 
1796 static struct mbuf *
1797 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1798 {
1799 	struct mbuf *m0, *m, **pnext;
1800 	u_int remaining;
1801 
1802 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1803 		M_ASSERTPKTHDR(fl->m0);
1804 		MPASS(fl->m0->m_pkthdr.len == plen);
1805 		MPASS(fl->remaining < plen);
1806 
1807 		m0 = fl->m0;
1808 		pnext = fl->pnext;
1809 		remaining = fl->remaining;
1810 		fl->flags &= ~FL_BUF_RESUME;
1811 		goto get_segment;
1812 	}
1813 
1814 	/*
1815 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1816 	 * 'len' and it may span multiple hw buffers.
1817 	 */
1818 
1819 	m0 = get_scatter_segment(sc, fl, 0, plen);
1820 	if (m0 == NULL)
1821 		return (NULL);
1822 	remaining = plen - m0->m_len;
1823 	pnext = &m0->m_next;
1824 	while (remaining > 0) {
1825 get_segment:
1826 		MPASS(fl->rx_offset == 0);
1827 		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1828 		if (__predict_false(m == NULL)) {
1829 			fl->m0 = m0;
1830 			fl->pnext = pnext;
1831 			fl->remaining = remaining;
1832 			fl->flags |= FL_BUF_RESUME;
1833 			return (NULL);
1834 		}
1835 		*pnext = m;
1836 		pnext = &m->m_next;
1837 		remaining -= m->m_len;
1838 	}
1839 	*pnext = NULL;
1840 
1841 	M_ASSERTPKTHDR(m0);
1842 	return (m0);
1843 }
1844 
1845 static int
1846 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1847     int remaining)
1848 {
1849 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1850 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1851 	int len, blen;
1852 
1853 	if (fl->flags & FL_BUF_PACKING) {
1854 		u_int l, pad;
1855 
1856 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1857 		len = min(remaining, blen);
1858 
1859 		l = fr_offset + len;
1860 		pad = roundup2(l, fl->buf_boundary) - l;
1861 		if (fl->rx_offset + len + pad < rxb->size2)
1862 			blen = len + pad;
1863 		fl->rx_offset += blen;
1864 		MPASS(fl->rx_offset <= rxb->size2);
1865 		if (fl->rx_offset < rxb->size2)
1866 			return (len);	/* without advancing the cidx */
1867 	} else {
1868 		MPASS(fl->rx_offset == 0);	/* not packing */
1869 		blen = rxb->size1;
1870 		len = min(remaining, blen);
1871 	}
1872 	move_to_next_rxbuf(fl);
1873 	return (len);
1874 }
1875 
1876 static inline void
1877 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1878 {
1879 	int remaining, fr_offset, len;
1880 
1881 	fr_offset = 0;
1882 	remaining = plen;
1883 	while (remaining > 0) {
1884 		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1885 		fr_offset += len;
1886 		remaining -= len;
1887 	}
1888 }
1889 
1890 static inline int
1891 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1892 {
1893 	int len;
1894 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1895 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1896 
1897 	if (fl->flags & FL_BUF_PACKING)
1898 		len = rxb->size2 - fl->rx_offset;
1899 	else
1900 		len = rxb->size1;
1901 
1902 	return (min(plen, len));
1903 }
1904 
1905 static int
1906 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1907     u_int plen)
1908 {
1909 	struct mbuf *m0;
1910 	struct ifnet *ifp = rxq->ifp;
1911 	struct sge_fl *fl = &rxq->fl;
1912 	struct vi_info *vi = ifp->if_softc;
1913 	const struct cpl_rx_pkt *cpl;
1914 #if defined(INET) || defined(INET6)
1915 	struct lro_ctrl *lro = &rxq->lro;
1916 #endif
1917 	uint16_t err_vec, tnl_type, tnlhdr_len;
1918 	static const int sw_hashtype[4][2] = {
1919 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1920 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1921 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1922 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1923 	};
1924 	static const int sw_csum_flags[2][2] = {
1925 		{
1926 			/* IP, inner IP */
1927 			CSUM_ENCAP_VXLAN |
1928 			    CSUM_L3_CALC | CSUM_L3_VALID |
1929 			    CSUM_L4_CALC | CSUM_L4_VALID |
1930 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1931 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1932 
1933 			/* IP, inner IP6 */
1934 			CSUM_ENCAP_VXLAN |
1935 			    CSUM_L3_CALC | CSUM_L3_VALID |
1936 			    CSUM_L4_CALC | CSUM_L4_VALID |
1937 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1938 		},
1939 		{
1940 			/* IP6, inner IP */
1941 			CSUM_ENCAP_VXLAN |
1942 			    CSUM_L4_CALC | CSUM_L4_VALID |
1943 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1944 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1945 
1946 			/* IP6, inner IP6 */
1947 			CSUM_ENCAP_VXLAN |
1948 			    CSUM_L4_CALC | CSUM_L4_VALID |
1949 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1950 		},
1951 	};
1952 
1953 	MPASS(plen > sc->params.sge.fl_pktshift);
1954 	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
1955 	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
1956 		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1957 		caddr_t frame;
1958 		int rc, slen;
1959 
1960 		slen = get_segment_len(sc, fl, plen) -
1961 		    sc->params.sge.fl_pktshift;
1962 		frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
1963 		CURVNET_SET_QUIET(ifp->if_vnet);
1964 		rc = pfil_run_hooks(vi->pfil, frame, ifp,
1965 		    slen | PFIL_MEMPTR | PFIL_IN, NULL);
1966 		CURVNET_RESTORE();
1967 		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
1968 			skip_fl_payload(sc, fl, plen);
1969 			return (0);
1970 		}
1971 		if (rc == PFIL_REALLOCED) {
1972 			skip_fl_payload(sc, fl, plen);
1973 			m0 = pfil_mem2mbuf(frame);
1974 			goto have_mbuf;
1975 		}
1976 	}
1977 
1978 	m0 = get_fl_payload(sc, fl, plen);
1979 	if (__predict_false(m0 == NULL))
1980 		return (ENOMEM);
1981 
1982 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1983 	m0->m_len -= sc->params.sge.fl_pktshift;
1984 	m0->m_data += sc->params.sge.fl_pktshift;
1985 
1986 have_mbuf:
1987 	m0->m_pkthdr.rcvif = ifp;
1988 	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
1989 	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
1990 
1991 	cpl = (const void *)(&d->rss + 1);
1992 	if (sc->params.tp.rx_pkt_encap) {
1993 		const uint16_t ev = be16toh(cpl->err_vec);
1994 
1995 		err_vec = G_T6_COMPR_RXERR_VEC(ev);
1996 		tnl_type = G_T6_RX_TNL_TYPE(ev);
1997 		tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
1998 	} else {
1999 		err_vec = be16toh(cpl->err_vec);
2000 		tnl_type = 0;
2001 		tnlhdr_len = 0;
2002 	}
2003 	if (cpl->csum_calc && err_vec == 0) {
2004 		int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
2005 
2006 		/* checksum(s) calculated and found to be correct. */
2007 
2008 		MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
2009 		    (cpl->l2info & htobe32(F_RXF_IP6)));
2010 		m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2011 		if (tnl_type == 0) {
2012 	    		if (!ipv6 && ifp->if_capenable & IFCAP_RXCSUM) {
2013 				m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2014 				    CSUM_L3_VALID | CSUM_L4_CALC |
2015 				    CSUM_L4_VALID;
2016 			} else if (ipv6 && ifp->if_capenable & IFCAP_RXCSUM_IPV6) {
2017 				m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2018 				    CSUM_L4_VALID;
2019 			}
2020 			rxq->rxcsum++;
2021 		} else {
2022 			MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
2023 
2024 			M_HASHTYPE_SETINNER(m0);
2025 			if (__predict_false(cpl->ip_frag)) {
2026 				/*
2027 				 * csum_data is for the inner frame (which is an
2028 				 * IP fragment) and is not 0xffff.  There is no
2029 				 * way to pass the inner csum_data to the stack.
2030 				 * We don't want the stack to use the inner
2031 				 * csum_data to validate the outer frame or it
2032 				 * will get rejected.  So we fix csum_data here
2033 				 * and let sw do the checksum of inner IP
2034 				 * fragments.
2035 				 *
2036 				 * XXX: Need 32b for csum_data2 in an rx mbuf.
2037 				 * Maybe stuff it into rcv_tstmp?
2038 				 */
2039 				m0->m_pkthdr.csum_data = 0xffff;
2040 				if (ipv6) {
2041 					m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2042 					    CSUM_L4_VALID;
2043 				} else {
2044 					m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2045 					    CSUM_L3_VALID | CSUM_L4_CALC |
2046 					    CSUM_L4_VALID;
2047 				}
2048 			} else {
2049 				int outer_ipv6;
2050 
2051 				MPASS(m0->m_pkthdr.csum_data == 0xffff);
2052 
2053 				outer_ipv6 = tnlhdr_len >=
2054 				    sizeof(struct ether_header) +
2055 				    sizeof(struct ip6_hdr);
2056 				m0->m_pkthdr.csum_flags =
2057 				    sw_csum_flags[outer_ipv6][ipv6];
2058 			}
2059 			rxq->vxlan_rxcsum++;
2060 		}
2061 	}
2062 
2063 	if (cpl->vlan_ex) {
2064 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2065 		m0->m_flags |= M_VLANTAG;
2066 		rxq->vlan_extraction++;
2067 	}
2068 
2069 	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
2070 		/*
2071 		 * Fill up rcv_tstmp but do not set M_TSTMP.
2072 		 * rcv_tstmp is not in the format that the
2073 		 * kernel expects and we don't want to mislead
2074 		 * it.  For now this is only for custom code
2075 		 * that knows how to interpret cxgbe's stamp.
2076 		 */
2077 		m0->m_pkthdr.rcv_tstmp =
2078 		    last_flit_to_ns(sc, d->rsp.u.last_flit);
2079 #ifdef notyet
2080 		m0->m_flags |= M_TSTMP;
2081 #endif
2082 	}
2083 
2084 #ifdef NUMA
2085 	m0->m_pkthdr.numa_domain = ifp->if_numa_domain;
2086 #endif
2087 #if defined(INET) || defined(INET6)
2088 	if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
2089 	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2090 	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2091 		if (sort_before_lro(lro)) {
2092 			tcp_lro_queue_mbuf(lro, m0);
2093 			return (0); /* queued for sort, then LRO */
2094 		}
2095 		if (tcp_lro_rx(lro, m0, 0) == 0)
2096 			return (0); /* queued for LRO */
2097 	}
2098 #endif
2099 	ifp->if_input(ifp, m0);
2100 
2101 	return (0);
2102 }
2103 
2104 /*
2105  * Must drain the wrq or make sure that someone else will.
2106  */
2107 static void
2108 wrq_tx_drain(void *arg, int n)
2109 {
2110 	struct sge_wrq *wrq = arg;
2111 	struct sge_eq *eq = &wrq->eq;
2112 
2113 	EQ_LOCK(eq);
2114 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2115 		drain_wrq_wr_list(wrq->adapter, wrq);
2116 	EQ_UNLOCK(eq);
2117 }
2118 
2119 static void
2120 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2121 {
2122 	struct sge_eq *eq = &wrq->eq;
2123 	u_int available, dbdiff;	/* # of hardware descriptors */
2124 	u_int n;
2125 	struct wrqe *wr;
2126 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2127 
2128 	EQ_LOCK_ASSERT_OWNED(eq);
2129 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2130 	wr = STAILQ_FIRST(&wrq->wr_list);
2131 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2132 	MPASS(eq->pidx == eq->dbidx);
2133 	dbdiff = 0;
2134 
2135 	do {
2136 		eq->cidx = read_hw_cidx(eq);
2137 		if (eq->pidx == eq->cidx)
2138 			available = eq->sidx - 1;
2139 		else
2140 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2141 
2142 		MPASS(wr->wrq == wrq);
2143 		n = howmany(wr->wr_len, EQ_ESIZE);
2144 		if (available < n)
2145 			break;
2146 
2147 		dst = (void *)&eq->desc[eq->pidx];
2148 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2149 			/* Won't wrap, won't end exactly at the status page. */
2150 			bcopy(&wr->wr[0], dst, wr->wr_len);
2151 			eq->pidx += n;
2152 		} else {
2153 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2154 
2155 			bcopy(&wr->wr[0], dst, first_portion);
2156 			if (wr->wr_len > first_portion) {
2157 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2158 				    wr->wr_len - first_portion);
2159 			}
2160 			eq->pidx = n - (eq->sidx - eq->pidx);
2161 		}
2162 		wrq->tx_wrs_copied++;
2163 
2164 		if (available < eq->sidx / 4 &&
2165 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2166 				/*
2167 				 * XXX: This is not 100% reliable with some
2168 				 * types of WRs.  But this is a very unusual
2169 				 * situation for an ofld/ctrl queue anyway.
2170 				 */
2171 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2172 			    F_FW_WR_EQUEQ);
2173 		}
2174 
2175 		dbdiff += n;
2176 		if (dbdiff >= 16) {
2177 			ring_eq_db(sc, eq, dbdiff);
2178 			dbdiff = 0;
2179 		}
2180 
2181 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2182 		free_wrqe(wr);
2183 		MPASS(wrq->nwr_pending > 0);
2184 		wrq->nwr_pending--;
2185 		MPASS(wrq->ndesc_needed >= n);
2186 		wrq->ndesc_needed -= n;
2187 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2188 
2189 	if (dbdiff)
2190 		ring_eq_db(sc, eq, dbdiff);
2191 }
2192 
2193 /*
2194  * Doesn't fail.  Holds on to work requests it can't send right away.
2195  */
2196 void
2197 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2198 {
2199 #ifdef INVARIANTS
2200 	struct sge_eq *eq = &wrq->eq;
2201 #endif
2202 
2203 	EQ_LOCK_ASSERT_OWNED(eq);
2204 	MPASS(wr != NULL);
2205 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2206 	MPASS((wr->wr_len & 0x7) == 0);
2207 
2208 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2209 	wrq->nwr_pending++;
2210 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2211 
2212 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2213 		return;	/* commit_wrq_wr will drain wr_list as well. */
2214 
2215 	drain_wrq_wr_list(sc, wrq);
2216 
2217 	/* Doorbell must have caught up to the pidx. */
2218 	MPASS(eq->pidx == eq->dbidx);
2219 }
2220 
2221 void
2222 t4_update_fl_bufsize(struct ifnet *ifp)
2223 {
2224 	struct vi_info *vi = ifp->if_softc;
2225 	struct adapter *sc = vi->adapter;
2226 	struct sge_rxq *rxq;
2227 #ifdef TCP_OFFLOAD
2228 	struct sge_ofld_rxq *ofld_rxq;
2229 #endif
2230 	struct sge_fl *fl;
2231 	int i, maxp;
2232 
2233 	maxp = max_rx_payload(sc, ifp, false);
2234 	for_each_rxq(vi, i, rxq) {
2235 		fl = &rxq->fl;
2236 
2237 		FL_LOCK(fl);
2238 		fl->zidx = find_refill_source(sc, maxp,
2239 		    fl->flags & FL_BUF_PACKING);
2240 		FL_UNLOCK(fl);
2241 	}
2242 #ifdef TCP_OFFLOAD
2243 	maxp = max_rx_payload(sc, ifp, true);
2244 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2245 		fl = &ofld_rxq->fl;
2246 
2247 		FL_LOCK(fl);
2248 		fl->zidx = find_refill_source(sc, maxp,
2249 		    fl->flags & FL_BUF_PACKING);
2250 		FL_UNLOCK(fl);
2251 	}
2252 #endif
2253 }
2254 
2255 static inline int
2256 mbuf_nsegs(struct mbuf *m)
2257 {
2258 
2259 	M_ASSERTPKTHDR(m);
2260 	KASSERT(m->m_pkthdr.inner_l5hlen > 0,
2261 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2262 
2263 	return (m->m_pkthdr.inner_l5hlen);
2264 }
2265 
2266 static inline void
2267 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2268 {
2269 
2270 	M_ASSERTPKTHDR(m);
2271 	m->m_pkthdr.inner_l5hlen = nsegs;
2272 }
2273 
2274 static inline int
2275 mbuf_cflags(struct mbuf *m)
2276 {
2277 
2278 	M_ASSERTPKTHDR(m);
2279 	return (m->m_pkthdr.PH_loc.eight[4]);
2280 }
2281 
2282 static inline void
2283 set_mbuf_cflags(struct mbuf *m, uint8_t flags)
2284 {
2285 
2286 	M_ASSERTPKTHDR(m);
2287 	m->m_pkthdr.PH_loc.eight[4] = flags;
2288 }
2289 
2290 static inline int
2291 mbuf_len16(struct mbuf *m)
2292 {
2293 	int n;
2294 
2295 	M_ASSERTPKTHDR(m);
2296 	n = m->m_pkthdr.PH_loc.eight[0];
2297 	if (!(mbuf_cflags(m) & MC_TLS))
2298 		MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2299 
2300 	return (n);
2301 }
2302 
2303 static inline void
2304 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2305 {
2306 
2307 	M_ASSERTPKTHDR(m);
2308 	if (!(mbuf_cflags(m) & MC_TLS))
2309 		MPASS(len16 > 0 && len16 <= SGE_MAX_WR_LEN / 16);
2310 	m->m_pkthdr.PH_loc.eight[0] = len16;
2311 }
2312 
2313 #ifdef RATELIMIT
2314 static inline int
2315 mbuf_eo_nsegs(struct mbuf *m)
2316 {
2317 
2318 	M_ASSERTPKTHDR(m);
2319 	return (m->m_pkthdr.PH_loc.eight[1]);
2320 }
2321 
2322 #if defined(INET) || defined(INET6)
2323 static inline void
2324 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2325 {
2326 
2327 	M_ASSERTPKTHDR(m);
2328 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2329 }
2330 #endif
2331 
2332 static inline int
2333 mbuf_eo_len16(struct mbuf *m)
2334 {
2335 	int n;
2336 
2337 	M_ASSERTPKTHDR(m);
2338 	n = m->m_pkthdr.PH_loc.eight[2];
2339 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2340 
2341 	return (n);
2342 }
2343 
2344 #if defined(INET) || defined(INET6)
2345 static inline void
2346 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2347 {
2348 
2349 	M_ASSERTPKTHDR(m);
2350 	m->m_pkthdr.PH_loc.eight[2] = len16;
2351 }
2352 #endif
2353 
2354 static inline int
2355 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2356 {
2357 
2358 	M_ASSERTPKTHDR(m);
2359 	return (m->m_pkthdr.PH_loc.eight[3]);
2360 }
2361 
2362 #if defined(INET) || defined(INET6)
2363 static inline void
2364 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2365 {
2366 
2367 	M_ASSERTPKTHDR(m);
2368 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2369 }
2370 #endif
2371 
2372 static inline int
2373 needs_eo(struct m_snd_tag *mst)
2374 {
2375 
2376 	return (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2377 }
2378 #endif
2379 
2380 /*
2381  * Try to allocate an mbuf to contain a raw work request.  To make it
2382  * easy to construct the work request, don't allocate a chain but a
2383  * single mbuf.
2384  */
2385 struct mbuf *
2386 alloc_wr_mbuf(int len, int how)
2387 {
2388 	struct mbuf *m;
2389 
2390 	if (len <= MHLEN)
2391 		m = m_gethdr(how, MT_DATA);
2392 	else if (len <= MCLBYTES)
2393 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2394 	else
2395 		m = NULL;
2396 	if (m == NULL)
2397 		return (NULL);
2398 	m->m_pkthdr.len = len;
2399 	m->m_len = len;
2400 	set_mbuf_cflags(m, MC_RAW_WR);
2401 	set_mbuf_len16(m, howmany(len, 16));
2402 	return (m);
2403 }
2404 
2405 static inline bool
2406 needs_hwcsum(struct mbuf *m)
2407 {
2408 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
2409 	    CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2410 	    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
2411 	    CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
2412 	    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
2413 
2414 	M_ASSERTPKTHDR(m);
2415 
2416 	return (m->m_pkthdr.csum_flags & csum_flags);
2417 }
2418 
2419 static inline bool
2420 needs_tso(struct mbuf *m)
2421 {
2422 	const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
2423 	    CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2424 
2425 	M_ASSERTPKTHDR(m);
2426 
2427 	return (m->m_pkthdr.csum_flags & csum_flags);
2428 }
2429 
2430 static inline bool
2431 needs_vxlan_csum(struct mbuf *m)
2432 {
2433 
2434 	M_ASSERTPKTHDR(m);
2435 
2436 	return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
2437 }
2438 
2439 static inline bool
2440 needs_vxlan_tso(struct mbuf *m)
2441 {
2442 	const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
2443 	    CSUM_INNER_IP6_TSO;
2444 
2445 	M_ASSERTPKTHDR(m);
2446 
2447 	return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
2448 	    (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
2449 }
2450 
2451 #if defined(INET) || defined(INET6)
2452 static inline bool
2453 needs_inner_tcp_csum(struct mbuf *m)
2454 {
2455 	const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2456 
2457 	M_ASSERTPKTHDR(m);
2458 
2459 	return (m->m_pkthdr.csum_flags & csum_flags);
2460 }
2461 #endif
2462 
2463 static inline bool
2464 needs_l3_csum(struct mbuf *m)
2465 {
2466 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
2467 	    CSUM_INNER_IP_TSO;
2468 
2469 	M_ASSERTPKTHDR(m);
2470 
2471 	return (m->m_pkthdr.csum_flags & csum_flags);
2472 }
2473 
2474 static inline bool
2475 needs_outer_tcp_csum(struct mbuf *m)
2476 {
2477 	const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
2478 	    CSUM_IP6_TSO;
2479 
2480 	M_ASSERTPKTHDR(m);
2481 
2482 	return (m->m_pkthdr.csum_flags & csum_flags);
2483 }
2484 
2485 #ifdef RATELIMIT
2486 static inline bool
2487 needs_outer_l4_csum(struct mbuf *m)
2488 {
2489 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
2490 	    CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
2491 
2492 	M_ASSERTPKTHDR(m);
2493 
2494 	return (m->m_pkthdr.csum_flags & csum_flags);
2495 }
2496 
2497 static inline bool
2498 needs_outer_udp_csum(struct mbuf *m)
2499 {
2500 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
2501 
2502 	M_ASSERTPKTHDR(m);
2503 
2504 	return (m->m_pkthdr.csum_flags & csum_flags);
2505 }
2506 #endif
2507 
2508 static inline bool
2509 needs_vlan_insertion(struct mbuf *m)
2510 {
2511 
2512 	M_ASSERTPKTHDR(m);
2513 
2514 	return (m->m_flags & M_VLANTAG);
2515 }
2516 
2517 #if defined(INET) || defined(INET6)
2518 static void *
2519 m_advance(struct mbuf **pm, int *poffset, int len)
2520 {
2521 	struct mbuf *m = *pm;
2522 	int offset = *poffset;
2523 	uintptr_t p = 0;
2524 
2525 	MPASS(len > 0);
2526 
2527 	for (;;) {
2528 		if (offset + len < m->m_len) {
2529 			offset += len;
2530 			p = mtod(m, uintptr_t) + offset;
2531 			break;
2532 		}
2533 		len -= m->m_len - offset;
2534 		m = m->m_next;
2535 		offset = 0;
2536 		MPASS(m != NULL);
2537 	}
2538 	*poffset = offset;
2539 	*pm = m;
2540 	return ((void *)p);
2541 }
2542 #endif
2543 
2544 static inline int
2545 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2546 {
2547 	vm_paddr_t paddr;
2548 	int i, len, off, pglen, pgoff, seglen, segoff;
2549 	int nsegs = 0;
2550 
2551 	M_ASSERTEXTPG(m);
2552 	off = mtod(m, vm_offset_t);
2553 	len = m->m_len;
2554 	off += skip;
2555 	len -= skip;
2556 
2557 	if (m->m_epg_hdrlen != 0) {
2558 		if (off >= m->m_epg_hdrlen) {
2559 			off -= m->m_epg_hdrlen;
2560 		} else {
2561 			seglen = m->m_epg_hdrlen - off;
2562 			segoff = off;
2563 			seglen = min(seglen, len);
2564 			off = 0;
2565 			len -= seglen;
2566 			paddr = pmap_kextract(
2567 			    (vm_offset_t)&m->m_epg_hdr[segoff]);
2568 			if (*nextaddr != paddr)
2569 				nsegs++;
2570 			*nextaddr = paddr + seglen;
2571 		}
2572 	}
2573 	pgoff = m->m_epg_1st_off;
2574 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2575 		pglen = m_epg_pagelen(m, i, pgoff);
2576 		if (off >= pglen) {
2577 			off -= pglen;
2578 			pgoff = 0;
2579 			continue;
2580 		}
2581 		seglen = pglen - off;
2582 		segoff = pgoff + off;
2583 		off = 0;
2584 		seglen = min(seglen, len);
2585 		len -= seglen;
2586 		paddr = m->m_epg_pa[i] + segoff;
2587 		if (*nextaddr != paddr)
2588 			nsegs++;
2589 		*nextaddr = paddr + seglen;
2590 		pgoff = 0;
2591 	};
2592 	if (len != 0) {
2593 		seglen = min(len, m->m_epg_trllen - off);
2594 		len -= seglen;
2595 		paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2596 		if (*nextaddr != paddr)
2597 			nsegs++;
2598 		*nextaddr = paddr + seglen;
2599 	}
2600 
2601 	return (nsegs);
2602 }
2603 
2604 
2605 /*
2606  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2607  * must have at least one mbuf that's not empty.  It is possible for this
2608  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2609  */
2610 static inline int
2611 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2612 {
2613 	vm_paddr_t nextaddr, paddr;
2614 	vm_offset_t va;
2615 	int len, nsegs;
2616 
2617 	M_ASSERTPKTHDR(m);
2618 	MPASS(m->m_pkthdr.len > 0);
2619 	MPASS(m->m_pkthdr.len >= skip);
2620 
2621 	nsegs = 0;
2622 	nextaddr = 0;
2623 	for (; m; m = m->m_next) {
2624 		len = m->m_len;
2625 		if (__predict_false(len == 0))
2626 			continue;
2627 		if (skip >= len) {
2628 			skip -= len;
2629 			continue;
2630 		}
2631 		if ((m->m_flags & M_EXTPG) != 0) {
2632 			*cflags |= MC_NOMAP;
2633 			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2634 			skip = 0;
2635 			continue;
2636 		}
2637 		va = mtod(m, vm_offset_t) + skip;
2638 		len -= skip;
2639 		skip = 0;
2640 		paddr = pmap_kextract(va);
2641 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2642 		if (paddr == nextaddr)
2643 			nsegs--;
2644 		nextaddr = pmap_kextract(va + len - 1) + 1;
2645 	}
2646 
2647 	return (nsegs);
2648 }
2649 
2650 /*
2651  * The maximum number of segments that can fit in a WR.
2652  */
2653 static int
2654 max_nsegs_allowed(struct mbuf *m, bool vm_wr)
2655 {
2656 
2657 	if (vm_wr) {
2658 		if (needs_tso(m))
2659 			return (TX_SGL_SEGS_VM_TSO);
2660 		return (TX_SGL_SEGS_VM);
2661 	}
2662 
2663 	if (needs_tso(m)) {
2664 		if (needs_vxlan_tso(m))
2665 			return (TX_SGL_SEGS_VXLAN_TSO);
2666 		else
2667 			return (TX_SGL_SEGS_TSO);
2668 	}
2669 
2670 	return (TX_SGL_SEGS);
2671 }
2672 
2673 static struct timeval txerr_ratecheck = {0};
2674 static const struct timeval txerr_interval = {3, 0};
2675 
2676 /*
2677  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2678  * a) caller can assume it's been freed if this function returns with an error.
2679  * b) it may get defragged up if the gather list is too long for the hardware.
2680  */
2681 int
2682 parse_pkt(struct mbuf **mp, bool vm_wr)
2683 {
2684 	struct mbuf *m0 = *mp, *m;
2685 	int rc, nsegs, defragged = 0;
2686 	struct ether_header *eh;
2687 #ifdef INET
2688 	void *l3hdr;
2689 #endif
2690 #if defined(INET) || defined(INET6)
2691 	int offset;
2692 	struct tcphdr *tcp;
2693 #endif
2694 #if defined(KERN_TLS) || defined(RATELIMIT)
2695 	struct m_snd_tag *mst;
2696 #endif
2697 	uint16_t eh_type;
2698 	uint8_t cflags;
2699 
2700 	cflags = 0;
2701 	M_ASSERTPKTHDR(m0);
2702 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2703 		rc = EINVAL;
2704 fail:
2705 		m_freem(m0);
2706 		*mp = NULL;
2707 		return (rc);
2708 	}
2709 restart:
2710 	/*
2711 	 * First count the number of gather list segments in the payload.
2712 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2713 	 */
2714 	M_ASSERTPKTHDR(m0);
2715 	MPASS(m0->m_pkthdr.len > 0);
2716 	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2717 #if defined(KERN_TLS) || defined(RATELIMIT)
2718 	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2719 		mst = m0->m_pkthdr.snd_tag;
2720 	else
2721 		mst = NULL;
2722 #endif
2723 #ifdef KERN_TLS
2724 	if (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_TLS) {
2725 		int len16;
2726 
2727 		cflags |= MC_TLS;
2728 		set_mbuf_cflags(m0, cflags);
2729 		rc = t6_ktls_parse_pkt(m0, &nsegs, &len16);
2730 		if (rc != 0)
2731 			goto fail;
2732 		set_mbuf_nsegs(m0, nsegs);
2733 		set_mbuf_len16(m0, len16);
2734 		return (0);
2735 	}
2736 #endif
2737 	if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
2738 		if (defragged++ > 0) {
2739 			rc = EFBIG;
2740 			goto fail;
2741 		}
2742 		counter_u64_add(defrags, 1);
2743 		if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
2744 			rc = ENOMEM;
2745 			goto fail;
2746 		}
2747 		*mp = m0 = m;	/* update caller's copy after defrag */
2748 		goto restart;
2749 	}
2750 
2751 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2752 	    !(cflags & MC_NOMAP))) {
2753 		counter_u64_add(pullups, 1);
2754 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2755 		if (m0 == NULL) {
2756 			/* Should have left well enough alone. */
2757 			rc = EFBIG;
2758 			goto fail;
2759 		}
2760 		*mp = m0;	/* update caller's copy after pullup */
2761 		goto restart;
2762 	}
2763 	set_mbuf_nsegs(m0, nsegs);
2764 	set_mbuf_cflags(m0, cflags);
2765 	calculate_mbuf_len16(m0, vm_wr);
2766 
2767 #ifdef RATELIMIT
2768 	/*
2769 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2770 	 * checksumming is enabled.  needs_outer_l4_csum happens to check for
2771 	 * all the right things.
2772 	 */
2773 	if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
2774 		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2775 		m0->m_pkthdr.snd_tag = NULL;
2776 		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2777 		mst = NULL;
2778 	}
2779 #endif
2780 
2781 	if (!needs_hwcsum(m0)
2782 #ifdef RATELIMIT
2783    		 && !needs_eo(mst)
2784 #endif
2785 	)
2786 		return (0);
2787 
2788 	m = m0;
2789 	eh = mtod(m, struct ether_header *);
2790 	eh_type = ntohs(eh->ether_type);
2791 	if (eh_type == ETHERTYPE_VLAN) {
2792 		struct ether_vlan_header *evh = (void *)eh;
2793 
2794 		eh_type = ntohs(evh->evl_proto);
2795 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2796 	} else
2797 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2798 
2799 #if defined(INET) || defined(INET6)
2800 	offset = 0;
2801 #ifdef INET
2802 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2803 #else
2804 	m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2805 #endif
2806 #endif
2807 
2808 	switch (eh_type) {
2809 #ifdef INET6
2810 	case ETHERTYPE_IPV6:
2811 		m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
2812 		break;
2813 #endif
2814 #ifdef INET
2815 	case ETHERTYPE_IP:
2816 	{
2817 		struct ip *ip = l3hdr;
2818 
2819 		if (needs_vxlan_csum(m0)) {
2820 			/* Driver will do the outer IP hdr checksum. */
2821 			ip->ip_sum = 0;
2822 			if (needs_vxlan_tso(m0)) {
2823 				const uint16_t ipl = ip->ip_len;
2824 
2825 				ip->ip_len = 0;
2826 				ip->ip_sum = ~in_cksum_hdr(ip);
2827 				ip->ip_len = ipl;
2828 			} else
2829 				ip->ip_sum = in_cksum_hdr(ip);
2830 		}
2831 		m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
2832 		break;
2833 	}
2834 #endif
2835 	default:
2836 		if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2837 			log(LOG_ERR, "%s: ethertype 0x%04x unknown.  "
2838 			    "if_cxgbe must be compiled with the same "
2839 			    "INET/INET6 options as the kernel.\n", __func__,
2840 			    eh_type);
2841 		}
2842 		rc = EINVAL;
2843 		goto fail;
2844 	}
2845 
2846 #if defined(INET) || defined(INET6)
2847 	if (needs_vxlan_csum(m0)) {
2848 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2849 		m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
2850 
2851 		/* Inner headers. */
2852 		eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
2853 		    sizeof(struct udphdr) + sizeof(struct vxlan_header));
2854 		eh_type = ntohs(eh->ether_type);
2855 		if (eh_type == ETHERTYPE_VLAN) {
2856 			struct ether_vlan_header *evh = (void *)eh;
2857 
2858 			eh_type = ntohs(evh->evl_proto);
2859 			m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
2860 		} else
2861 			m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
2862 #ifdef INET
2863 		l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2864 #else
2865 		m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2866 #endif
2867 
2868 		switch (eh_type) {
2869 #ifdef INET6
2870 		case ETHERTYPE_IPV6:
2871 			m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
2872 			break;
2873 #endif
2874 #ifdef INET
2875 		case ETHERTYPE_IP:
2876 		{
2877 			struct ip *ip = l3hdr;
2878 
2879 			m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
2880 			break;
2881 		}
2882 #endif
2883 		default:
2884 			if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2885 				log(LOG_ERR, "%s: VXLAN hw offload requested"
2886 				    "with unknown ethertype 0x%04x.  if_cxgbe "
2887 				    "must be compiled with the same INET/INET6 "
2888 				    "options as the kernel.\n", __func__,
2889 				    eh_type);
2890 			}
2891 			rc = EINVAL;
2892 			goto fail;
2893 		}
2894 		if (needs_inner_tcp_csum(m0)) {
2895 			tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
2896 			m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
2897 		}
2898 		MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
2899 		m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
2900 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
2901 		    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
2902 		    CSUM_ENCAP_VXLAN;
2903 	}
2904 
2905 	if (needs_outer_tcp_csum(m0)) {
2906 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2907 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2908 #ifdef RATELIMIT
2909 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2910 			set_mbuf_eo_tsclk_tsoff(m0,
2911 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2912 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2913 		} else
2914 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2915 	} else if (needs_outer_udp_csum(m0)) {
2916 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2917 #endif
2918 	}
2919 #ifdef RATELIMIT
2920 	if (needs_eo(mst)) {
2921 		u_int immhdrs;
2922 
2923 		/* EO WRs have the headers in the WR and not the GL. */
2924 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2925 		    m0->m_pkthdr.l4hlen;
2926 		cflags = 0;
2927 		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2928 		MPASS(cflags == mbuf_cflags(m0));
2929 		set_mbuf_eo_nsegs(m0, nsegs);
2930 		set_mbuf_eo_len16(m0,
2931 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2932 	}
2933 #endif
2934 #endif
2935 	MPASS(m0 == *mp);
2936 	return (0);
2937 }
2938 
2939 void *
2940 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2941 {
2942 	struct sge_eq *eq = &wrq->eq;
2943 	struct adapter *sc = wrq->adapter;
2944 	int ndesc, available;
2945 	struct wrqe *wr;
2946 	void *w;
2947 
2948 	MPASS(len16 > 0);
2949 	ndesc = tx_len16_to_desc(len16);
2950 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2951 
2952 	EQ_LOCK(eq);
2953 
2954 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2955 		drain_wrq_wr_list(sc, wrq);
2956 
2957 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2958 slowpath:
2959 		EQ_UNLOCK(eq);
2960 		wr = alloc_wrqe(len16 * 16, wrq);
2961 		if (__predict_false(wr == NULL))
2962 			return (NULL);
2963 		cookie->pidx = -1;
2964 		cookie->ndesc = ndesc;
2965 		return (&wr->wr);
2966 	}
2967 
2968 	eq->cidx = read_hw_cidx(eq);
2969 	if (eq->pidx == eq->cidx)
2970 		available = eq->sidx - 1;
2971 	else
2972 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2973 	if (available < ndesc)
2974 		goto slowpath;
2975 
2976 	cookie->pidx = eq->pidx;
2977 	cookie->ndesc = ndesc;
2978 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2979 
2980 	w = &eq->desc[eq->pidx];
2981 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2982 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2983 		w = &wrq->ss[0];
2984 		wrq->ss_pidx = cookie->pidx;
2985 		wrq->ss_len = len16 * 16;
2986 	}
2987 
2988 	EQ_UNLOCK(eq);
2989 
2990 	return (w);
2991 }
2992 
2993 void
2994 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2995 {
2996 	struct sge_eq *eq = &wrq->eq;
2997 	struct adapter *sc = wrq->adapter;
2998 	int ndesc, pidx;
2999 	struct wrq_cookie *prev, *next;
3000 
3001 	if (cookie->pidx == -1) {
3002 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
3003 
3004 		t4_wrq_tx(sc, wr);
3005 		return;
3006 	}
3007 
3008 	if (__predict_false(w == &wrq->ss[0])) {
3009 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
3010 
3011 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
3012 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
3013 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
3014 		wrq->tx_wrs_ss++;
3015 	} else
3016 		wrq->tx_wrs_direct++;
3017 
3018 	EQ_LOCK(eq);
3019 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
3020 	pidx = cookie->pidx;
3021 	MPASS(pidx >= 0 && pidx < eq->sidx);
3022 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
3023 	next = TAILQ_NEXT(cookie, link);
3024 	if (prev == NULL) {
3025 		MPASS(pidx == eq->dbidx);
3026 		if (next == NULL || ndesc >= 16) {
3027 			int available;
3028 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
3029 
3030 			/*
3031 			 * Note that the WR via which we'll request tx updates
3032 			 * is at pidx and not eq->pidx, which has moved on
3033 			 * already.
3034 			 */
3035 			dst = (void *)&eq->desc[pidx];
3036 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3037 			if (available < eq->sidx / 4 &&
3038 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3039 				/*
3040 				 * XXX: This is not 100% reliable with some
3041 				 * types of WRs.  But this is a very unusual
3042 				 * situation for an ofld/ctrl queue anyway.
3043 				 */
3044 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
3045 				    F_FW_WR_EQUEQ);
3046 			}
3047 
3048 			ring_eq_db(wrq->adapter, eq, ndesc);
3049 		} else {
3050 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
3051 			next->pidx = pidx;
3052 			next->ndesc += ndesc;
3053 		}
3054 	} else {
3055 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
3056 		prev->ndesc += ndesc;
3057 	}
3058 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
3059 
3060 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
3061 		drain_wrq_wr_list(sc, wrq);
3062 
3063 #ifdef INVARIANTS
3064 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
3065 		/* Doorbell must have caught up to the pidx. */
3066 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
3067 	}
3068 #endif
3069 	EQ_UNLOCK(eq);
3070 }
3071 
3072 static u_int
3073 can_resume_eth_tx(struct mp_ring *r)
3074 {
3075 	struct sge_eq *eq = r->cookie;
3076 
3077 	return (total_available_tx_desc(eq) > eq->sidx / 8);
3078 }
3079 
3080 static inline bool
3081 cannot_use_txpkts(struct mbuf *m)
3082 {
3083 	/* maybe put a GL limit too, to avoid silliness? */
3084 
3085 	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
3086 }
3087 
3088 static inline int
3089 discard_tx(struct sge_eq *eq)
3090 {
3091 
3092 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
3093 }
3094 
3095 static inline int
3096 wr_can_update_eq(void *p)
3097 {
3098 	struct fw_eth_tx_pkts_wr *wr = p;
3099 
3100 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
3101 	case FW_ULPTX_WR:
3102 	case FW_ETH_TX_PKT_WR:
3103 	case FW_ETH_TX_PKTS_WR:
3104 	case FW_ETH_TX_PKTS2_WR:
3105 	case FW_ETH_TX_PKT_VM_WR:
3106 	case FW_ETH_TX_PKTS_VM_WR:
3107 		return (1);
3108 	default:
3109 		return (0);
3110 	}
3111 }
3112 
3113 static inline void
3114 set_txupdate_flags(struct sge_txq *txq, u_int avail,
3115     struct fw_eth_tx_pkt_wr *wr)
3116 {
3117 	struct sge_eq *eq = &txq->eq;
3118 	struct txpkts *txp = &txq->txp;
3119 
3120 	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
3121 	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3122 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3123 		eq->equeqidx = eq->pidx;
3124 	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
3125 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3126 		eq->equeqidx = eq->pidx;
3127 	}
3128 }
3129 
3130 #if defined(__i386__) || defined(__amd64__)
3131 extern uint64_t tsc_freq;
3132 #endif
3133 
3134 static inline bool
3135 record_eth_tx_time(struct sge_txq *txq)
3136 {
3137 	const uint64_t cycles = get_cyclecount();
3138 	const uint64_t last_tx = txq->last_tx;
3139 #if defined(__i386__) || defined(__amd64__)
3140 	const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
3141 #else
3142 	const uint64_t itg = 0;
3143 #endif
3144 
3145 	MPASS(cycles >= last_tx);
3146 	txq->last_tx = cycles;
3147 	return (cycles - last_tx < itg);
3148 }
3149 
3150 /*
3151  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
3152  * be consumed.  Return the actual number consumed.  0 indicates a stall.
3153  */
3154 static u_int
3155 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
3156 {
3157 	struct sge_txq *txq = r->cookie;
3158 	struct ifnet *ifp = txq->ifp;
3159 	struct sge_eq *eq = &txq->eq;
3160 	struct txpkts *txp = &txq->txp;
3161 	struct vi_info *vi = ifp->if_softc;
3162 	struct adapter *sc = vi->adapter;
3163 	u_int total, remaining;		/* # of packets */
3164 	u_int n, avail, dbdiff;		/* # of hardware descriptors */
3165 	int i, rc;
3166 	struct mbuf *m0;
3167 	bool snd, recent_tx;
3168 	void *wr;	/* start of the last WR written to the ring */
3169 
3170 	TXQ_LOCK_ASSERT_OWNED(txq);
3171 	recent_tx = record_eth_tx_time(txq);
3172 
3173 	remaining = IDXDIFF(pidx, cidx, r->size);
3174 	if (__predict_false(discard_tx(eq))) {
3175 		for (i = 0; i < txp->npkt; i++)
3176 			m_freem(txp->mb[i]);
3177 		txp->npkt = 0;
3178 		while (cidx != pidx) {
3179 			m0 = r->items[cidx];
3180 			m_freem(m0);
3181 			if (++cidx == r->size)
3182 				cidx = 0;
3183 		}
3184 		reclaim_tx_descs(txq, eq->sidx);
3185 		*coalescing = false;
3186 		return (remaining);	/* emptied */
3187 	}
3188 
3189 	/* How many hardware descriptors do we have readily available. */
3190 	if (eq->pidx == eq->cidx)
3191 		avail = eq->sidx - 1;
3192 	else
3193 		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3194 
3195 	total = 0;
3196 	if (remaining == 0) {
3197 		txp->score = 0;
3198 		txq->txpkts_flush++;
3199 		goto send_txpkts;
3200 	}
3201 
3202 	dbdiff = 0;
3203 	MPASS(remaining > 0);
3204 	while (remaining > 0) {
3205 		m0 = r->items[cidx];
3206 		M_ASSERTPKTHDR(m0);
3207 		MPASS(m0->m_nextpkt == NULL);
3208 
3209 		if (avail < 2 * SGE_MAX_WR_NDESC)
3210 			avail += reclaim_tx_descs(txq, 64);
3211 
3212 		if (t4_tx_coalesce == 0 && txp->npkt == 0)
3213 			goto skip_coalescing;
3214 		if (cannot_use_txpkts(m0))
3215 			txp->score = 0;
3216 		else if (recent_tx) {
3217 			if (++txp->score == 0)
3218 				txp->score = UINT8_MAX;
3219 		} else
3220 			txp->score = 1;
3221 		if (txp->npkt > 0 || remaining > 1 ||
3222 		    txp->score >= t4_tx_coalesce_pkts ||
3223 		    atomic_load_int(&txq->eq.equiq) != 0) {
3224 			if (vi->flags & TX_USES_VM_WR)
3225 				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
3226 			else
3227 				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
3228 		} else {
3229 			snd = false;
3230 			rc = EINVAL;
3231 		}
3232 		if (snd) {
3233 			MPASS(txp->npkt > 0);
3234 			for (i = 0; i < txp->npkt; i++)
3235 				ETHER_BPF_MTAP(ifp, txp->mb[i]);
3236 			if (txp->npkt > 1) {
3237 				MPASS(avail >= tx_len16_to_desc(txp->len16));
3238 				if (vi->flags & TX_USES_VM_WR)
3239 					n = write_txpkts_vm_wr(sc, txq);
3240 				else
3241 					n = write_txpkts_wr(sc, txq);
3242 			} else {
3243 				MPASS(avail >=
3244 				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3245 				if (vi->flags & TX_USES_VM_WR)
3246 					n = write_txpkt_vm_wr(sc, txq,
3247 					    txp->mb[0]);
3248 				else
3249 					n = write_txpkt_wr(sc, txq, txp->mb[0],
3250 					    avail);
3251 			}
3252 			MPASS(n <= SGE_MAX_WR_NDESC);
3253 			avail -= n;
3254 			dbdiff += n;
3255 			wr = &eq->desc[eq->pidx];
3256 			IDXINCR(eq->pidx, n, eq->sidx);
3257 			txp->npkt = 0;	/* emptied */
3258 		}
3259 		if (rc == 0) {
3260 			/* m0 was coalesced into txq->txpkts. */
3261 			goto next_mbuf;
3262 		}
3263 		if (rc == EAGAIN) {
3264 			/*
3265 			 * m0 is suitable for tx coalescing but could not be
3266 			 * combined with the existing txq->txpkts, which has now
3267 			 * been transmitted.  Start a new txpkts with m0.
3268 			 */
3269 			MPASS(snd);
3270 			MPASS(txp->npkt == 0);
3271 			continue;
3272 		}
3273 
3274 		MPASS(rc != 0 && rc != EAGAIN);
3275 		MPASS(txp->npkt == 0);
3276 skip_coalescing:
3277 		n = tx_len16_to_desc(mbuf_len16(m0));
3278 		if (__predict_false(avail < n)) {
3279 			avail += reclaim_tx_descs(txq, min(n, 32));
3280 			if (avail < n)
3281 				break;	/* out of descriptors */
3282 		}
3283 
3284 		wr = &eq->desc[eq->pidx];
3285 		if (mbuf_cflags(m0) & MC_RAW_WR) {
3286 			n = write_raw_wr(txq, wr, m0, avail);
3287 #ifdef KERN_TLS
3288 		} else if (mbuf_cflags(m0) & MC_TLS) {
3289 			ETHER_BPF_MTAP(ifp, m0);
3290 			n = t6_ktls_write_wr(txq, wr, m0, mbuf_nsegs(m0),
3291 			    avail);
3292 #endif
3293 		} else {
3294 			ETHER_BPF_MTAP(ifp, m0);
3295 			if (vi->flags & TX_USES_VM_WR)
3296 				n = write_txpkt_vm_wr(sc, txq, m0);
3297 			else
3298 				n = write_txpkt_wr(sc, txq, m0, avail);
3299 		}
3300 		MPASS(n >= 1 && n <= avail);
3301 		if (!(mbuf_cflags(m0) & MC_TLS))
3302 			MPASS(n <= SGE_MAX_WR_NDESC);
3303 
3304 		avail -= n;
3305 		dbdiff += n;
3306 		IDXINCR(eq->pidx, n, eq->sidx);
3307 
3308 		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3309 			if (wr_can_update_eq(wr))
3310 				set_txupdate_flags(txq, avail, wr);
3311 			ring_eq_db(sc, eq, dbdiff);
3312 			avail += reclaim_tx_descs(txq, 32);
3313 			dbdiff = 0;
3314 		}
3315 next_mbuf:
3316 		total++;
3317 		remaining--;
3318 		if (__predict_false(++cidx == r->size))
3319 			cidx = 0;
3320 	}
3321 	if (dbdiff != 0) {
3322 		if (wr_can_update_eq(wr))
3323 			set_txupdate_flags(txq, avail, wr);
3324 		ring_eq_db(sc, eq, dbdiff);
3325 		reclaim_tx_descs(txq, 32);
3326 	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3327 	    atomic_load_int(&txq->eq.equiq) == 0) {
3328 		/*
3329 		 * If nothing was submitted to the chip for tx (it was coalesced
3330 		 * into txpkts instead) and there is no tx update outstanding
3331 		 * then we need to send txpkts now.
3332 		 */
3333 send_txpkts:
3334 		MPASS(txp->npkt > 0);
3335 		for (i = 0; i < txp->npkt; i++)
3336 			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3337 		if (txp->npkt > 1) {
3338 			MPASS(avail >= tx_len16_to_desc(txp->len16));
3339 			if (vi->flags & TX_USES_VM_WR)
3340 				n = write_txpkts_vm_wr(sc, txq);
3341 			else
3342 				n = write_txpkts_wr(sc, txq);
3343 		} else {
3344 			MPASS(avail >=
3345 			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3346 			if (vi->flags & TX_USES_VM_WR)
3347 				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3348 			else
3349 				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3350 		}
3351 		MPASS(n <= SGE_MAX_WR_NDESC);
3352 		wr = &eq->desc[eq->pidx];
3353 		IDXINCR(eq->pidx, n, eq->sidx);
3354 		txp->npkt = 0;	/* emptied */
3355 
3356 		MPASS(wr_can_update_eq(wr));
3357 		set_txupdate_flags(txq, avail - n, wr);
3358 		ring_eq_db(sc, eq, n);
3359 		reclaim_tx_descs(txq, 32);
3360 	}
3361 	*coalescing = txp->npkt > 0;
3362 
3363 	return (total);
3364 }
3365 
3366 static inline void
3367 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3368     int qsize, int intr_idx, int cong)
3369 {
3370 
3371 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3372 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3373 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3374 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3375 	KASSERT(intr_idx >= -1 && intr_idx < sc->intr_count,
3376 	    ("%s: bad intr_idx %d", __func__, intr_idx));
3377 
3378 	iq->flags = 0;
3379 	iq->state = IQS_DISABLED;
3380 	iq->adapter = sc;
3381 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3382 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3383 	if (pktc_idx >= 0) {
3384 		iq->intr_params |= F_QINTR_CNT_EN;
3385 		iq->intr_pktc_idx = pktc_idx;
3386 	}
3387 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3388 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3389 	iq->intr_idx = intr_idx;
3390 	iq->cong = cong;
3391 }
3392 
3393 static inline void
3394 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3395 {
3396 	struct sge_params *sp = &sc->params.sge;
3397 
3398 	fl->qsize = qsize;
3399 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3400 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3401 	mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3402 	if (sc->flags & BUF_PACKING_OK &&
3403 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3404 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3405 		fl->flags |= FL_BUF_PACKING;
3406 	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3407 	fl->safe_zidx = sc->sge.safe_zidx;
3408 	if (fl->flags & FL_BUF_PACKING) {
3409 		fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3410 		fl->buf_boundary = sp->pack_boundary;
3411 	} else {
3412 		fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3413 		fl->buf_boundary = 16;
3414 	}
3415 	if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3416 		fl->buf_boundary = sp->pad_boundary;
3417 }
3418 
3419 static inline void
3420 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3421     uint8_t tx_chan, struct sge_iq *iq, char *name)
3422 {
3423 	KASSERT(eqtype >= EQ_CTRL && eqtype <= EQ_OFLD,
3424 	    ("%s: bad qtype %d", __func__, eqtype));
3425 
3426 	eq->type = eqtype;
3427 	eq->tx_chan = tx_chan;
3428 	eq->iq = iq;
3429 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3430 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3431 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3432 }
3433 
3434 int
3435 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3436     bus_dmamap_t *map, bus_addr_t *pa, void **va)
3437 {
3438 	int rc;
3439 
3440 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3441 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3442 	if (rc != 0) {
3443 		CH_ERR(sc, "cannot allocate DMA tag: %d\n", rc);
3444 		goto done;
3445 	}
3446 
3447 	rc = bus_dmamem_alloc(*tag, va,
3448 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3449 	if (rc != 0) {
3450 		CH_ERR(sc, "cannot allocate DMA memory: %d\n", rc);
3451 		goto done;
3452 	}
3453 
3454 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3455 	if (rc != 0) {
3456 		CH_ERR(sc, "cannot load DMA map: %d\n", rc);
3457 		goto done;
3458 	}
3459 done:
3460 	if (rc)
3461 		free_ring(sc, *tag, *map, *pa, *va);
3462 
3463 	return (rc);
3464 }
3465 
3466 int
3467 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3468     bus_addr_t pa, void *va)
3469 {
3470 	if (pa)
3471 		bus_dmamap_unload(tag, map);
3472 	if (va)
3473 		bus_dmamem_free(tag, va, map);
3474 	if (tag)
3475 		bus_dma_tag_destroy(tag);
3476 
3477 	return (0);
3478 }
3479 
3480 /*
3481  * Allocates the software resources (mainly memory and sysctl nodes) for an
3482  * ingress queue and an optional freelist.
3483  *
3484  * Sets IQ_SW_ALLOCATED and returns 0 on success.
3485  */
3486 static int
3487 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3488     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
3489 {
3490 	int rc;
3491 	size_t len;
3492 	struct adapter *sc = vi->adapter;
3493 
3494 	MPASS(!(iq->flags & IQ_SW_ALLOCATED));
3495 
3496 	len = iq->qsize * IQ_ESIZE;
3497 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3498 	    (void **)&iq->desc);
3499 	if (rc != 0)
3500 		return (rc);
3501 
3502 	if (fl) {
3503 		len = fl->qsize * EQ_ESIZE;
3504 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3505 		    &fl->ba, (void **)&fl->desc);
3506 		if (rc) {
3507 			free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba,
3508 			    iq->desc);
3509 			return (rc);
3510 		}
3511 
3512 		/* Allocate space for one software descriptor per buffer. */
3513 		fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc),
3514 		    M_CXGBE, M_ZERO | M_WAITOK);
3515 
3516 		add_fl_sysctls(sc, ctx, oid, fl);
3517 		iq->flags |= IQ_HAS_FL;
3518 	}
3519 	add_iq_sysctls(ctx, oid, iq);
3520 	iq->flags |= IQ_SW_ALLOCATED;
3521 
3522 	return (0);
3523 }
3524 
3525 /*
3526  * Frees all software resources (memory and locks) associated with an ingress
3527  * queue and an optional freelist.
3528  */
3529 static void
3530 free_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3531 {
3532 	MPASS(iq->flags & IQ_SW_ALLOCATED);
3533 
3534 	if (fl) {
3535 		MPASS(iq->flags & IQ_HAS_FL);
3536 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc);
3537 		free_fl_buffers(sc, fl);
3538 		free(fl->sdesc, M_CXGBE);
3539 		mtx_destroy(&fl->fl_lock);
3540 		bzero(fl, sizeof(*fl));
3541 	}
3542 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3543 	bzero(iq, sizeof(*iq));
3544 }
3545 
3546 /*
3547  * Allocates a hardware ingress queue and an optional freelist that will be
3548  * associated with it.
3549  *
3550  * Returns errno on failure.  Resources allocated up to that point may still be
3551  * allocated.  Caller is responsible for cleanup in case this function fails.
3552  */
3553 static int
3554 alloc_iq_fl_hwq(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3555 {
3556 	int rc, i, cntxt_id;
3557 	struct fw_iq_cmd c;
3558 	struct adapter *sc = vi->adapter;
3559 	__be32 v = 0;
3560 
3561 	MPASS (!(iq->flags & IQ_HW_ALLOCATED));
3562 
3563 	bzero(&c, sizeof(c));
3564 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3565 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3566 	    V_FW_IQ_CMD_VFN(0));
3567 
3568 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3569 	    FW_LEN16(c));
3570 
3571 	/* Special handling for firmware event queue */
3572 	if (iq == &sc->sge.fwq)
3573 		v |= F_FW_IQ_CMD_IQASYNCH;
3574 
3575 	if (iq->intr_idx < 0) {
3576 		/* Forwarded interrupts, all headed to fwq */
3577 		v |= F_FW_IQ_CMD_IQANDST;
3578 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3579 	} else {
3580 		KASSERT(iq->intr_idx < sc->intr_count,
3581 		    ("%s: invalid direct intr_idx %d", __func__, iq->intr_idx));
3582 		v |= V_FW_IQ_CMD_IQANDSTINDEX(iq->intr_idx);
3583 	}
3584 
3585 	bzero(iq->desc, iq->qsize * IQ_ESIZE);
3586 	c.type_to_iqandstindex = htobe32(v |
3587 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3588 	    V_FW_IQ_CMD_VIID(vi->viid) |
3589 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3590 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(vi->pi->tx_chan) |
3591 	    F_FW_IQ_CMD_IQGTSMODE |
3592 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3593 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3594 	c.iqsize = htobe16(iq->qsize);
3595 	c.iqaddr = htobe64(iq->ba);
3596 	if (iq->cong >= 0)
3597 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3598 
3599 	if (fl) {
3600 		bzero(fl->desc, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len);
3601 		c.iqns_to_fl0congen |=
3602 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3603 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3604 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3605 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3606 			    0));
3607 		if (iq->cong >= 0) {
3608 			c.iqns_to_fl0congen |=
3609 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(iq->cong) |
3610 				    F_FW_IQ_CMD_FL0CONGCIF |
3611 				    F_FW_IQ_CMD_FL0CONGEN);
3612 		}
3613 		c.fl0dcaen_to_fl0cidxfthresh =
3614 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3615 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3616 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3617 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3618 		c.fl0size = htobe16(fl->qsize);
3619 		c.fl0addr = htobe64(fl->ba);
3620 	}
3621 
3622 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3623 	if (rc != 0) {
3624 		CH_ERR(sc, "failed to create hw ingress queue: %d\n", rc);
3625 		return (rc);
3626 	}
3627 
3628 	iq->cidx = 0;
3629 	iq->gen = F_RSPD_GEN;
3630 	iq->cntxt_id = be16toh(c.iqid);
3631 	iq->abs_id = be16toh(c.physiqid);
3632 
3633 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3634 	if (cntxt_id >= sc->sge.iqmap_sz) {
3635 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3636 		    cntxt_id, sc->sge.iqmap_sz - 1);
3637 	}
3638 	sc->sge.iqmap[cntxt_id] = iq;
3639 
3640 	if (fl) {
3641 		u_int qid;
3642 #ifdef INVARIANTS
3643 		MPASS(!(fl->flags & FL_BUF_RESUME));
3644 		for (i = 0; i < fl->sidx * 8; i++)
3645 			MPASS(fl->sdesc[i].cl == NULL);
3646 #endif
3647 		fl->cntxt_id = be16toh(c.fl0id);
3648 		fl->pidx = fl->cidx = fl->hw_cidx = fl->dbidx = 0;
3649 		fl->rx_offset = 0;
3650 		fl->flags &= ~(FL_STARVING | FL_DOOMED);
3651 
3652 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3653 		if (cntxt_id >= sc->sge.eqmap_sz) {
3654 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3655 			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
3656 		}
3657 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3658 
3659 		qid = fl->cntxt_id;
3660 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3661 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3662 			uint32_t mask = (1 << s_qpp) - 1;
3663 			volatile uint8_t *udb;
3664 
3665 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3666 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3667 			qid &= mask;
3668 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3669 				udb += qid << UDBS_SEG_SHIFT;
3670 				qid = 0;
3671 			}
3672 			fl->udb = (volatile void *)udb;
3673 		}
3674 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3675 
3676 		FL_LOCK(fl);
3677 		/* Enough to make sure the SGE doesn't think it's starved */
3678 		refill_fl(sc, fl, fl->lowat);
3679 		FL_UNLOCK(fl);
3680 	}
3681 
3682 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && iq->cong >= 0) {
3683 		uint32_t param, val;
3684 
3685 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3686 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3687 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
3688 		if (iq->cong == 0)
3689 			val = 1 << 19;
3690 		else {
3691 			val = 2 << 19;
3692 			for (i = 0; i < 4; i++) {
3693 				if (iq->cong & (1 << i))
3694 					val |= 1 << (i << 2);
3695 			}
3696 		}
3697 
3698 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3699 		if (rc != 0) {
3700 			/* report error but carry on */
3701 			CH_ERR(sc, "failed to set congestion manager context "
3702 			    "for ingress queue %d: %d\n", iq->cntxt_id, rc);
3703 		}
3704 	}
3705 
3706 	/* Enable IQ interrupts */
3707 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3708 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3709 	    V_INGRESSQID(iq->cntxt_id));
3710 
3711 	iq->flags |= IQ_HW_ALLOCATED;
3712 
3713 	return (0);
3714 }
3715 
3716 static int
3717 free_iq_fl_hwq(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3718 {
3719 	int rc;
3720 
3721 	MPASS(iq->flags & IQ_HW_ALLOCATED);
3722 	rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3723 	    iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
3724 	if (rc != 0) {
3725 		CH_ERR(sc, "failed to free iq %p: %d\n", iq, rc);
3726 		return (rc);
3727 	}
3728 	iq->flags &= ~IQ_HW_ALLOCATED;
3729 
3730 	return (0);
3731 }
3732 
3733 static void
3734 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3735     struct sge_iq *iq)
3736 {
3737 	struct sysctl_oid_list *children;
3738 
3739 	if (ctx == NULL || oid == NULL)
3740 		return;
3741 
3742 	children = SYSCTL_CHILDREN(oid);
3743 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3744 	    "bus address of descriptor ring");
3745 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3746 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3747 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3748 	    &iq->abs_id, 0, "absolute id of the queue");
3749 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3750 	    &iq->cntxt_id, 0, "SGE context id of the queue");
3751 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &iq->cidx,
3752 	    0, "consumer index");
3753 }
3754 
3755 static void
3756 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3757     struct sysctl_oid *oid, struct sge_fl *fl)
3758 {
3759 	struct sysctl_oid_list *children;
3760 
3761 	if (ctx == NULL || oid == NULL)
3762 		return;
3763 
3764 	children = SYSCTL_CHILDREN(oid);
3765 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3766 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3767 	children = SYSCTL_CHILDREN(oid);
3768 
3769 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3770 	    &fl->ba, "bus address of descriptor ring");
3771 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3772 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3773 	    "desc ring size in bytes");
3774 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3775 	    &fl->cntxt_id, 0, "SGE context id of the freelist");
3776 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3777 	    fl_pad ? 1 : 0, "padding enabled");
3778 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3779 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3780 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3781 	    0, "consumer index");
3782 	if (fl->flags & FL_BUF_PACKING) {
3783 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3784 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3785 	}
3786 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3787 	    0, "producer index");
3788 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3789 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3790 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3791 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3792 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3793 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3794 }
3795 
3796 /*
3797  * Idempotent.
3798  */
3799 static int
3800 alloc_fwq(struct adapter *sc)
3801 {
3802 	int rc, intr_idx;
3803 	struct sge_iq *fwq = &sc->sge.fwq;
3804 	struct vi_info *vi = &sc->port[0]->vi[0];
3805 
3806 	if (!(fwq->flags & IQ_SW_ALLOCATED)) {
3807 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3808 
3809 		if (sc->flags & IS_VF)
3810 			intr_idx = 0;
3811 		else
3812 			intr_idx = sc->intr_count > 1 ? 1 : 0;
3813 		init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, intr_idx, -1);
3814 		rc = alloc_iq_fl(vi, fwq, NULL, &sc->ctx, sc->fwq_oid);
3815 		if (rc != 0) {
3816 			CH_ERR(sc, "failed to allocate fwq: %d\n", rc);
3817 			return (rc);
3818 		}
3819 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3820 	}
3821 
3822 	if (!(fwq->flags & IQ_HW_ALLOCATED)) {
3823 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3824 
3825 		rc = alloc_iq_fl_hwq(vi, fwq, NULL);
3826 		if (rc != 0) {
3827 			CH_ERR(sc, "failed to create hw fwq: %d\n", rc);
3828 			return (rc);
3829 		}
3830 		MPASS(fwq->flags & IQ_HW_ALLOCATED);
3831 	}
3832 
3833 	return (0);
3834 }
3835 
3836 /*
3837  * Idempotent.
3838  */
3839 static void
3840 free_fwq(struct adapter *sc)
3841 {
3842 	struct sge_iq *fwq = &sc->sge.fwq;
3843 
3844 	if (fwq->flags & IQ_HW_ALLOCATED) {
3845 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3846 		free_iq_fl_hwq(sc, fwq, NULL);
3847 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3848 	}
3849 
3850 	if (fwq->flags & IQ_SW_ALLOCATED) {
3851 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3852 		free_iq_fl(sc, fwq, NULL);
3853 		MPASS(!(fwq->flags & IQ_SW_ALLOCATED));
3854 	}
3855 }
3856 
3857 /*
3858  * Idempotent.
3859  */
3860 static int
3861 alloc_ctrlq(struct adapter *sc, int idx)
3862 {
3863 	int rc;
3864 	char name[16];
3865 	struct sysctl_oid *oid;
3866 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3867 
3868 	MPASS(idx < sc->params.nports);
3869 
3870 	if (!(ctrlq->eq.flags & EQ_SW_ALLOCATED)) {
3871 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3872 
3873 		snprintf(name, sizeof(name), "%d", idx);
3874 		oid = SYSCTL_ADD_NODE(&sc->ctx, SYSCTL_CHILDREN(sc->ctrlq_oid),
3875 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3876 		    "ctrl queue");
3877 
3878 		snprintf(name, sizeof(name), "%s ctrlq%d",
3879 		    device_get_nameunit(sc->dev), idx);
3880 		init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE,
3881 		    sc->port[idx]->tx_chan, &sc->sge.fwq, name);
3882 		rc = alloc_wrq(sc, NULL, ctrlq, &sc->ctx, oid);
3883 		if (rc != 0) {
3884 			CH_ERR(sc, "failed to allocate ctrlq%d: %d\n", idx, rc);
3885 			sysctl_remove_oid(oid, 1, 1);
3886 			return (rc);
3887 		}
3888 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3889 	}
3890 
3891 	if (!(ctrlq->eq.flags & EQ_HW_ALLOCATED)) {
3892 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3893 
3894 		rc = alloc_eq_hwq(sc, NULL, &ctrlq->eq);
3895 		if (rc != 0) {
3896 			CH_ERR(sc, "failed to create hw ctrlq%d: %d\n", idx, rc);
3897 			return (rc);
3898 		}
3899 		MPASS(ctrlq->eq.flags & EQ_HW_ALLOCATED);
3900 	}
3901 
3902 	return (0);
3903 }
3904 
3905 /*
3906  * Idempotent.
3907  */
3908 static void
3909 free_ctrlq(struct adapter *sc, int idx)
3910 {
3911 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3912 
3913 	if (ctrlq->eq.flags & EQ_HW_ALLOCATED) {
3914 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3915 		free_eq_hwq(sc, NULL, &ctrlq->eq);
3916 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3917 	}
3918 
3919 	if (ctrlq->eq.flags & EQ_SW_ALLOCATED) {
3920 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3921 		free_wrq(sc, ctrlq);
3922 		MPASS(!(ctrlq->eq.flags & EQ_SW_ALLOCATED));
3923 	}
3924 }
3925 
3926 int
3927 tnl_cong(struct port_info *pi, int drop)
3928 {
3929 
3930 	if (drop == -1)
3931 		return (-1);
3932 	else if (drop == 1)
3933 		return (0);
3934 	else
3935 		return (pi->rx_e_chan_map);
3936 }
3937 
3938 /*
3939  * Idempotent.
3940  */
3941 static int
3942 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int idx, int intr_idx,
3943     int maxp)
3944 {
3945 	int rc;
3946 	struct adapter *sc = vi->adapter;
3947 	struct ifnet *ifp = vi->ifp;
3948 	struct sysctl_oid *oid;
3949 	char name[16];
3950 
3951 	if (!(rxq->iq.flags & IQ_SW_ALLOCATED)) {
3952 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
3953 #if defined(INET) || defined(INET6)
3954 		rc = tcp_lro_init_args(&rxq->lro, ifp, lro_entries, lro_mbufs);
3955 		if (rc != 0)
3956 			return (rc);
3957 		MPASS(rxq->lro.ifp == ifp);	/* also indicates LRO init'ed */
3958 #endif
3959 		rxq->ifp = ifp;
3960 
3961 		snprintf(name, sizeof(name), "%d", idx);
3962 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->rxq_oid),
3963 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3964 		    "rx queue");
3965 
3966 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq,
3967 		    intr_idx, tnl_cong(vi->pi, cong_drop));
3968 #if defined(INET) || defined(INET6)
3969 		if (ifp->if_capenable & IFCAP_LRO)
3970 			rxq->iq.flags |= IQ_LRO_ENABLED;
3971 #endif
3972 		if (ifp->if_capenable & IFCAP_HWRXTSTMP)
3973 			rxq->iq.flags |= IQ_RX_TIMESTAMP;
3974 		snprintf(name, sizeof(name), "%s rxq%d-fl",
3975 		    device_get_nameunit(vi->dev), idx);
3976 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
3977 		rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, &vi->ctx, oid);
3978 		if (rc != 0) {
3979 			CH_ERR(vi, "failed to allocate rxq%d: %d\n", idx, rc);
3980 			sysctl_remove_oid(oid, 1, 1);
3981 #if defined(INET) || defined(INET6)
3982 			tcp_lro_free(&rxq->lro);
3983 			rxq->lro.ifp = NULL;
3984 #endif
3985 			return (rc);
3986 		}
3987 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
3988 		add_rxq_sysctls(&vi->ctx, oid, rxq);
3989 	}
3990 
3991 	if (!(rxq->iq.flags & IQ_HW_ALLOCATED)) {
3992 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
3993 		rc = alloc_iq_fl_hwq(vi, &rxq->iq, &rxq->fl);
3994 		if (rc != 0) {
3995 			CH_ERR(vi, "failed to create hw rxq%d: %d\n", idx, rc);
3996 			return (rc);
3997 		}
3998 		MPASS(rxq->iq.flags & IQ_HW_ALLOCATED);
3999 
4000 		if (idx == 0)
4001 			sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
4002 		else
4003 			KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
4004 			    ("iq_base mismatch"));
4005 		KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
4006 		    ("PF with non-zero iq_base"));
4007 
4008 		/*
4009 		 * The freelist is just barely above the starvation threshold
4010 		 * right now, fill it up a bit more.
4011 		 */
4012 		FL_LOCK(&rxq->fl);
4013 		refill_fl(sc, &rxq->fl, 128);
4014 		FL_UNLOCK(&rxq->fl);
4015 	}
4016 
4017 	return (0);
4018 }
4019 
4020 /*
4021  * Idempotent.
4022  */
4023 static void
4024 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
4025 {
4026 	if (rxq->iq.flags & IQ_HW_ALLOCATED) {
4027 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4028 		free_iq_fl_hwq(vi->adapter, &rxq->iq, &rxq->fl);
4029 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4030 	}
4031 
4032 	if (rxq->iq.flags & IQ_SW_ALLOCATED) {
4033 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4034 #if defined(INET) || defined(INET6)
4035 		tcp_lro_free(&rxq->lro);
4036 #endif
4037 		free_iq_fl(vi->adapter, &rxq->iq, &rxq->fl);
4038 		MPASS(!(rxq->iq.flags & IQ_SW_ALLOCATED));
4039 		bzero(rxq, sizeof(*rxq));
4040 	}
4041 }
4042 
4043 static void
4044 add_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4045     struct sge_rxq *rxq)
4046 {
4047 	struct sysctl_oid_list *children;
4048 
4049 	if (ctx == NULL || oid == NULL)
4050 		return;
4051 
4052 	children = SYSCTL_CHILDREN(oid);
4053 #if defined(INET) || defined(INET6)
4054 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
4055 	    &rxq->lro.lro_queued, 0, NULL);
4056 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
4057 	    &rxq->lro.lro_flushed, 0, NULL);
4058 #endif
4059 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
4060 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
4061 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD,
4062 	    &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag");
4063 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_rxcsum", CTLFLAG_RD,
4064 	    &rxq->vxlan_rxcsum,
4065 	    "# of times hardware assisted with inner checksum (VXLAN)");
4066 }
4067 
4068 #ifdef TCP_OFFLOAD
4069 /*
4070  * Idempotent.
4071  */
4072 static int
4073 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int idx,
4074     int intr_idx, int maxp)
4075 {
4076 	int rc;
4077 	struct adapter *sc = vi->adapter;
4078 	struct sysctl_oid *oid;
4079 	char name[16];
4080 
4081 	if (!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)) {
4082 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4083 
4084 		snprintf(name, sizeof(name), "%d", idx);
4085 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4086 		    SYSCTL_CHILDREN(vi->ofld_rxq_oid), OID_AUTO, name,
4087 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload rx queue");
4088 
4089 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
4090 		    vi->qsize_rxq, intr_idx, 0);
4091 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
4092 		    device_get_nameunit(vi->dev), idx);
4093 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
4094 		rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, &vi->ctx,
4095 		    oid);
4096 		if (rc != 0) {
4097 			CH_ERR(vi, "failed to allocate ofld_rxq%d: %d\n", idx,
4098 			    rc);
4099 			sysctl_remove_oid(oid, 1, 1);
4100 			return (rc);
4101 		}
4102 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4103 		ofld_rxq->rx_iscsi_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
4104 		ofld_rxq->rx_iscsi_ddp_setup_error =
4105 		    counter_u64_alloc(M_WAITOK);
4106 		add_ofld_rxq_sysctls(&vi->ctx, oid, ofld_rxq);
4107 	}
4108 
4109 	if (!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)) {
4110 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4111 		rc = alloc_iq_fl_hwq(vi, &ofld_rxq->iq, &ofld_rxq->fl);
4112 		if (rc != 0) {
4113 			CH_ERR(vi, "failed to create hw ofld_rxq%d: %d\n", idx,
4114 			    rc);
4115 			return (rc);
4116 		}
4117 		MPASS(ofld_rxq->iq.flags & IQ_HW_ALLOCATED);
4118 	}
4119 	return (rc);
4120 }
4121 
4122 /*
4123  * Idempotent.
4124  */
4125 static void
4126 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
4127 {
4128 	if (ofld_rxq->iq.flags & IQ_HW_ALLOCATED) {
4129 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4130 		free_iq_fl_hwq(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4131 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4132 	}
4133 
4134 	if (ofld_rxq->iq.flags & IQ_SW_ALLOCATED) {
4135 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4136 		free_iq_fl(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4137 		MPASS(!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED));
4138 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_ok);
4139 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_error);
4140 		bzero(ofld_rxq, sizeof(*ofld_rxq));
4141 	}
4142 }
4143 
4144 static void
4145 add_ofld_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4146     struct sge_ofld_rxq *ofld_rxq)
4147 {
4148 	struct sysctl_oid_list *children;
4149 
4150 	if (ctx == NULL || oid == NULL)
4151 		return;
4152 
4153 	children = SYSCTL_CHILDREN(oid);
4154 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4155 	    "rx_toe_tls_records", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_records,
4156 	    "# of TOE TLS records received");
4157 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4158 	    "rx_toe_tls_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_octets,
4159 	    "# of payload octets in received TOE TLS records");
4160 
4161 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "iscsi",
4162 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE iSCSI statistics");
4163 	children = SYSCTL_CHILDREN(oid);
4164 
4165 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
4166 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_ok,
4167 	    "# of times DDP buffer was setup successfully.");
4168 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
4169 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_error,
4170 	    "# of times DDP buffer setup failed.");
4171 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_octets",
4172 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_octets, 0,
4173 	    "# of octets placed directly");
4174 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_pdus",
4175 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_pdus, 0,
4176 	    "# of PDUs with data placed directly.");
4177 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_octets",
4178 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_octets, 0,
4179 	    "# of data octets delivered in freelist");
4180 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_pdus",
4181 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_pdus, 0,
4182 	    "# of PDUs with data delivered in freelist");
4183 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "padding_errors",
4184 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_padding_errors, 0,
4185 	    "# of PDUs with invalid padding");
4186 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "header_digest_errors",
4187 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_header_digest_errors, 0,
4188 	    "# of PDUs with invalid header digests");
4189 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "data_digest_errors",
4190 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_data_digest_errors, 0,
4191 	    "# of PDUs with invalid data digests");
4192 }
4193 #endif
4194 
4195 /*
4196  * Returns a reasonable automatic cidx flush threshold for a given queue size.
4197  */
4198 static u_int
4199 qsize_to_fthresh(int qsize)
4200 {
4201 	u_int fthresh;
4202 
4203 	while (!powerof2(qsize))
4204 		qsize++;
4205 	fthresh = ilog2(qsize);
4206 	if (fthresh > X_CIDXFLUSHTHRESH_128)
4207 		fthresh = X_CIDXFLUSHTHRESH_128;
4208 
4209 	return (fthresh);
4210 }
4211 
4212 static int
4213 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
4214 {
4215 	int rc, cntxt_id;
4216 	struct fw_eq_ctrl_cmd c;
4217 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4218 
4219 	bzero(&c, sizeof(c));
4220 
4221 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
4222 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
4223 	    V_FW_EQ_CTRL_CMD_VFN(0));
4224 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
4225 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
4226 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
4227 	c.physeqid_pkd = htobe32(0);
4228 	c.fetchszm_to_iqid =
4229 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4230 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
4231 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
4232 	c.dcaen_to_eqsize =
4233 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4234 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4235 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4236 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4237 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
4238 	c.eqaddr = htobe64(eq->ba);
4239 
4240 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4241 	if (rc != 0) {
4242 		CH_ERR(sc, "failed to create hw ctrlq for tx_chan %d: %d\n",
4243 		    eq->tx_chan, rc);
4244 		return (rc);
4245 	}
4246 
4247 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
4248 	eq->abs_id = G_FW_EQ_CTRL_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4249 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4250 	if (cntxt_id >= sc->sge.eqmap_sz)
4251 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4252 		cntxt_id, sc->sge.eqmap_sz - 1);
4253 	sc->sge.eqmap[cntxt_id] = eq;
4254 
4255 	return (rc);
4256 }
4257 
4258 static int
4259 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4260 {
4261 	int rc, cntxt_id;
4262 	struct fw_eq_eth_cmd c;
4263 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4264 
4265 	bzero(&c, sizeof(c));
4266 
4267 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
4268 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
4269 	    V_FW_EQ_ETH_CMD_VFN(0));
4270 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
4271 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
4272 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
4273 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
4274 	c.fetchszm_to_iqid =
4275 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
4276 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
4277 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
4278 	c.dcaen_to_eqsize =
4279 	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4280 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4281 		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4282 		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
4283 	c.eqaddr = htobe64(eq->ba);
4284 
4285 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4286 	if (rc != 0) {
4287 		device_printf(vi->dev,
4288 		    "failed to create Ethernet egress queue: %d\n", rc);
4289 		return (rc);
4290 	}
4291 
4292 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
4293 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4294 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4295 	if (cntxt_id >= sc->sge.eqmap_sz)
4296 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4297 		cntxt_id, sc->sge.eqmap_sz - 1);
4298 	sc->sge.eqmap[cntxt_id] = eq;
4299 
4300 	return (rc);
4301 }
4302 
4303 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4304 static int
4305 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4306 {
4307 	int rc, cntxt_id;
4308 	struct fw_eq_ofld_cmd c;
4309 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4310 
4311 	bzero(&c, sizeof(c));
4312 
4313 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
4314 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
4315 	    V_FW_EQ_OFLD_CMD_VFN(0));
4316 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
4317 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
4318 	c.fetchszm_to_iqid =
4319 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4320 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
4321 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
4322 	c.dcaen_to_eqsize =
4323 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4324 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4325 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4326 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4327 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
4328 	c.eqaddr = htobe64(eq->ba);
4329 
4330 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4331 	if (rc != 0) {
4332 		device_printf(vi->dev,
4333 		    "failed to create egress queue for TCP offload: %d\n", rc);
4334 		return (rc);
4335 	}
4336 
4337 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
4338 	eq->abs_id = G_FW_EQ_OFLD_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4339 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4340 	if (cntxt_id >= sc->sge.eqmap_sz)
4341 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4342 		cntxt_id, sc->sge.eqmap_sz - 1);
4343 	sc->sge.eqmap[cntxt_id] = eq;
4344 
4345 	return (rc);
4346 }
4347 #endif
4348 
4349 /* SW only */
4350 static int
4351 alloc_eq(struct adapter *sc, struct sge_eq *eq, struct sysctl_ctx_list *ctx,
4352     struct sysctl_oid *oid)
4353 {
4354 	int rc, qsize;
4355 	size_t len;
4356 
4357 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4358 
4359 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4360 	len = qsize * EQ_ESIZE;
4361 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba,
4362 	    (void **)&eq->desc);
4363 	if (rc)
4364 		return (rc);
4365 	if (ctx != NULL && oid != NULL)
4366 		add_eq_sysctls(sc, ctx, oid, eq);
4367 	eq->flags |= EQ_SW_ALLOCATED;
4368 
4369 	return (0);
4370 }
4371 
4372 /* SW only */
4373 static void
4374 free_eq(struct adapter *sc, struct sge_eq *eq)
4375 {
4376 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4377 	if (eq->type == EQ_ETH)
4378 		MPASS(eq->pidx == eq->cidx);
4379 
4380 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4381 	mtx_destroy(&eq->eq_lock);
4382 	bzero(eq, sizeof(*eq));
4383 }
4384 
4385 static void
4386 add_eq_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
4387     struct sysctl_oid *oid, struct sge_eq *eq)
4388 {
4389 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4390 
4391 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba,
4392 	    "bus address of descriptor ring");
4393 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4394 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4395 	    "desc ring size in bytes");
4396 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4397 	    &eq->abs_id, 0, "absolute id of the queue");
4398 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4399 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4400 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &eq->cidx,
4401 	    0, "consumer index");
4402 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &eq->pidx,
4403 	    0, "producer index");
4404 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4405 	    eq->sidx, "status page index");
4406 }
4407 
4408 static int
4409 alloc_eq_hwq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4410 {
4411 	int rc;
4412 
4413 	MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4414 
4415 	eq->iqid = eq->iq->cntxt_id;
4416 	eq->pidx = eq->cidx = eq->dbidx = 0;
4417 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4418 	eq->equeqidx = 0;
4419 	eq->doorbells = sc->doorbells;
4420 	bzero(eq->desc, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len);
4421 
4422 	switch (eq->type) {
4423 	case EQ_CTRL:
4424 		rc = ctrl_eq_alloc(sc, eq);
4425 		break;
4426 
4427 	case EQ_ETH:
4428 		rc = eth_eq_alloc(sc, vi, eq);
4429 		break;
4430 
4431 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4432 	case EQ_OFLD:
4433 		rc = ofld_eq_alloc(sc, vi, eq);
4434 		break;
4435 #endif
4436 
4437 	default:
4438 		panic("%s: invalid eq type %d.", __func__, eq->type);
4439 	}
4440 	if (rc != 0) {
4441 		CH_ERR(sc, "failed to allocate egress queue(%d): %d\n",
4442 		    eq->type, rc);
4443 		return (rc);
4444 	}
4445 
4446 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4447 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4448 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4449 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4450 		uint32_t mask = (1 << s_qpp) - 1;
4451 		volatile uint8_t *udb;
4452 
4453 		udb = sc->udbs_base + UDBS_DB_OFFSET;
4454 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4455 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4456 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4457 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
4458 		else {
4459 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4460 			eq->udb_qid = 0;
4461 		}
4462 		eq->udb = (volatile void *)udb;
4463 	}
4464 
4465 	eq->flags |= EQ_HW_ALLOCATED;
4466 	return (0);
4467 }
4468 
4469 static int
4470 free_eq_hwq(struct adapter *sc, struct vi_info *vi __unused, struct sge_eq *eq)
4471 {
4472 	int rc;
4473 
4474 	MPASS(eq->flags & EQ_HW_ALLOCATED);
4475 
4476 	switch (eq->type) {
4477 	case EQ_CTRL:
4478 		rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4479 		break;
4480 	case EQ_ETH:
4481 		rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4482 		break;
4483 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4484 	case EQ_OFLD:
4485 		rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4486 		break;
4487 #endif
4488 	default:
4489 		panic("%s: invalid eq type %d.", __func__, eq->type);
4490 	}
4491 	if (rc != 0) {
4492 		CH_ERR(sc, "failed to free eq (type %d): %d\n", eq->type, rc);
4493 		return (rc);
4494 	}
4495 	eq->flags &= ~EQ_HW_ALLOCATED;
4496 
4497 	return (0);
4498 }
4499 
4500 static int
4501 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4502     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
4503 {
4504 	struct sge_eq *eq = &wrq->eq;
4505 	int rc;
4506 
4507 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4508 
4509 	rc = alloc_eq(sc, eq, ctx, oid);
4510 	if (rc)
4511 		return (rc);
4512 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4513 	/* Can't fail after this. */
4514 
4515 	wrq->adapter = sc;
4516 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4517 	TAILQ_INIT(&wrq->incomplete_wrs);
4518 	STAILQ_INIT(&wrq->wr_list);
4519 	wrq->nwr_pending = 0;
4520 	wrq->ndesc_needed = 0;
4521 	add_wrq_sysctls(ctx, oid, wrq);
4522 
4523 	return (0);
4524 }
4525 
4526 static void
4527 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4528 {
4529 	free_eq(sc, &wrq->eq);
4530 	MPASS(wrq->nwr_pending == 0);
4531 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
4532 	MPASS(STAILQ_EMPTY(&wrq->wr_list));
4533 	bzero(wrq, sizeof(*wrq));
4534 }
4535 
4536 static void
4537 add_wrq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4538     struct sge_wrq *wrq)
4539 {
4540 	struct sysctl_oid_list *children;
4541 
4542 	if (ctx == NULL || oid == NULL)
4543 		return;
4544 
4545 	children = SYSCTL_CHILDREN(oid);
4546 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4547 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4548 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4549 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4550 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4551 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4552 }
4553 
4554 /*
4555  * Idempotent.
4556  */
4557 static int
4558 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx)
4559 {
4560 	int rc, iqidx;
4561 	struct port_info *pi = vi->pi;
4562 	struct adapter *sc = vi->adapter;
4563 	struct sge_eq *eq = &txq->eq;
4564 	struct txpkts *txp;
4565 	char name[16];
4566 	struct sysctl_oid *oid;
4567 
4568 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4569 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4570 
4571 		snprintf(name, sizeof(name), "%d", idx);
4572 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->txq_oid),
4573 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4574 		    "tx queue");
4575 
4576 		iqidx = vi->first_rxq + (idx % vi->nrxq);
4577 		snprintf(name, sizeof(name), "%s txq%d",
4578 		    device_get_nameunit(vi->dev), idx);
4579 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
4580 		    &sc->sge.rxq[iqidx].iq, name);
4581 
4582 		rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx,
4583 		    can_resume_eth_tx, M_CXGBE, &eq->eq_lock, M_WAITOK);
4584 		if (rc != 0) {
4585 			CH_ERR(vi, "failed to allocate mp_ring for txq%d: %d\n",
4586 			    idx, rc);
4587 failed:
4588 			sysctl_remove_oid(oid, 1, 1);
4589 			return (rc);
4590 		}
4591 
4592 		rc = alloc_eq(sc, eq, &vi->ctx, oid);
4593 		if (rc) {
4594 			CH_ERR(vi, "failed to allocate txq%d: %d\n", idx, rc);
4595 			mp_ring_free(txq->r);
4596 			goto failed;
4597 		}
4598 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4599 		/* Can't fail after this point. */
4600 
4601 		TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4602 		txq->ifp = vi->ifp;
4603 		txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4604 		txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4605 		    M_ZERO | M_WAITOK);
4606 
4607 		add_txq_sysctls(vi, &vi->ctx, oid, txq);
4608 	}
4609 
4610 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4611 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4612 		rc = alloc_eq_hwq(sc, vi, eq);
4613 		if (rc != 0) {
4614 			CH_ERR(vi, "failed to create hw txq%d: %d\n", idx, rc);
4615 			return (rc);
4616 		}
4617 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4618 		/* Can't fail after this point. */
4619 
4620 		if (idx == 0)
4621 			sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4622 		else
4623 			KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4624 			    ("eq_base mismatch"));
4625 		KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4626 		    ("PF with non-zero eq_base"));
4627 
4628 		txp = &txq->txp;
4629 		MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4630 		txq->txp.max_npkt = min(nitems(txp->mb),
4631 		    sc->params.max_pkts_per_eth_tx_pkts_wr);
4632 		if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
4633 			txq->txp.max_npkt--;
4634 
4635 		if (vi->flags & TX_USES_VM_WR)
4636 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4637 			    V_TXPKT_INTF(pi->tx_chan));
4638 		else
4639 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4640 			    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4641 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4642 
4643 		txq->tc_idx = -1;
4644 	}
4645 
4646 	return (0);
4647 }
4648 
4649 /*
4650  * Idempotent.
4651  */
4652 static void
4653 free_txq(struct vi_info *vi, struct sge_txq *txq)
4654 {
4655 	struct adapter *sc = vi->adapter;
4656 	struct sge_eq *eq = &txq->eq;
4657 
4658 	if (eq->flags & EQ_HW_ALLOCATED) {
4659 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4660 		free_eq_hwq(sc, NULL, eq);
4661 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4662 	}
4663 
4664 	if (eq->flags & EQ_SW_ALLOCATED) {
4665 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4666 		sglist_free(txq->gl);
4667 		free(txq->sdesc, M_CXGBE);
4668 		mp_ring_free(txq->r);
4669 		free_eq(sc, eq);
4670 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4671 		bzero(txq, sizeof(*txq));
4672 	}
4673 }
4674 
4675 static void
4676 add_txq_sysctls(struct vi_info *vi, struct sysctl_ctx_list *ctx,
4677     struct sysctl_oid *oid, struct sge_txq *txq)
4678 {
4679 	struct adapter *sc;
4680 	struct sysctl_oid_list *children;
4681 
4682 	if (ctx == NULL || oid == NULL)
4683 		return;
4684 
4685 	sc = vi->adapter;
4686 	children = SYSCTL_CHILDREN(oid);
4687 
4688 	mp_ring_sysctls(txq->r, ctx, children);
4689 
4690 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tc",
4691 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, txq - sc->sge.txq,
4692 	    sysctl_tc, "I", "traffic class (-1 means none)");
4693 
4694 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4695 	    &txq->txcsum, "# of times hardware assisted with checksum");
4696 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD,
4697 	    &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag");
4698 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4699 	    &txq->tso_wrs, "# of TSO work requests");
4700 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4701 	    &txq->imm_wrs, "# of work requests with immediate data");
4702 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4703 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4704 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4705 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4706 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD,
4707 	    &txq->txpkts0_wrs, "# of txpkts (type 0) work requests");
4708 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD,
4709 	    &txq->txpkts1_wrs, "# of txpkts (type 1) work requests");
4710 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD,
4711 	    &txq->txpkts0_pkts,
4712 	    "# of frames tx'd using type0 txpkts work requests");
4713 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD,
4714 	    &txq->txpkts1_pkts,
4715 	    "# of frames tx'd using type1 txpkts work requests");
4716 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts_flush", CTLFLAG_RD,
4717 	    &txq->txpkts_flush,
4718 	    "# of times txpkts had to be flushed out by an egress-update");
4719 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4720 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4721 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_tso_wrs", CTLFLAG_RD,
4722 	    &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
4723 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_txcsum", CTLFLAG_RD,
4724 	    &txq->vxlan_txcsum,
4725 	    "# of times hardware assisted with inner checksums (VXLAN)");
4726 
4727 #ifdef KERN_TLS
4728 	if (is_ktls(sc)) {
4729 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_records",
4730 		    CTLFLAG_RD, &txq->kern_tls_records,
4731 		    "# of NIC TLS records transmitted");
4732 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_short",
4733 		    CTLFLAG_RD, &txq->kern_tls_short,
4734 		    "# of short NIC TLS records transmitted");
4735 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_partial",
4736 		    CTLFLAG_RD, &txq->kern_tls_partial,
4737 		    "# of partial NIC TLS records transmitted");
4738 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_full",
4739 		    CTLFLAG_RD, &txq->kern_tls_full,
4740 		    "# of full NIC TLS records transmitted");
4741 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_octets",
4742 		    CTLFLAG_RD, &txq->kern_tls_octets,
4743 		    "# of payload octets in transmitted NIC TLS records");
4744 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_waste",
4745 		    CTLFLAG_RD, &txq->kern_tls_waste,
4746 		    "# of octets DMAd but not transmitted in NIC TLS records");
4747 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_options",
4748 		    CTLFLAG_RD, &txq->kern_tls_options,
4749 		    "# of NIC TLS options-only packets transmitted");
4750 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_header",
4751 		    CTLFLAG_RD, &txq->kern_tls_header,
4752 		    "# of NIC TLS header-only packets transmitted");
4753 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin",
4754 		    CTLFLAG_RD, &txq->kern_tls_fin,
4755 		    "# of NIC TLS FIN-only packets transmitted");
4756 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin_short",
4757 		    CTLFLAG_RD, &txq->kern_tls_fin_short,
4758 		    "# of NIC TLS padded FIN packets on short TLS records");
4759 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_cbc",
4760 		    CTLFLAG_RD, &txq->kern_tls_cbc,
4761 		    "# of NIC TLS sessions using AES-CBC");
4762 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_gcm",
4763 		    CTLFLAG_RD, &txq->kern_tls_gcm,
4764 		    "# of NIC TLS sessions using AES-GCM");
4765 	}
4766 #endif
4767 }
4768 
4769 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4770 /*
4771  * Idempotent.
4772  */
4773 static int
4774 alloc_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq, int idx)
4775 {
4776 	struct sysctl_oid *oid;
4777 	struct port_info *pi = vi->pi;
4778 	struct adapter *sc = vi->adapter;
4779 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4780 	int rc, iqidx;
4781 	char name[16];
4782 
4783 	MPASS(idx >= 0);
4784 	MPASS(idx < vi->nofldtxq);
4785 
4786 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4787 		snprintf(name, sizeof(name), "%d", idx);
4788 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4789 		    SYSCTL_CHILDREN(vi->ofld_txq_oid), OID_AUTO, name,
4790 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
4791 
4792 		snprintf(name, sizeof(name), "%s ofld_txq%d",
4793 		    device_get_nameunit(vi->dev), idx);
4794 		if (vi->nofldrxq > 0) {
4795 			iqidx = vi->first_ofld_rxq + (idx % vi->nofldrxq);
4796 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
4797 			    &sc->sge.ofld_rxq[iqidx].iq, name);
4798 		} else {
4799 			iqidx = vi->first_rxq + (idx % vi->nrxq);
4800 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
4801 			    &sc->sge.rxq[iqidx].iq, name);
4802 		}
4803 
4804 		rc = alloc_wrq(sc, vi, &ofld_txq->wrq, &vi->ctx, oid);
4805 		if (rc != 0) {
4806 			CH_ERR(vi, "failed to allocate ofld_txq%d: %d\n", idx,
4807 			    rc);
4808 			sysctl_remove_oid(oid, 1, 1);
4809 			return (rc);
4810 		}
4811 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4812 		/* Can't fail after this point. */
4813 
4814 		ofld_txq->tx_iscsi_pdus = counter_u64_alloc(M_WAITOK);
4815 		ofld_txq->tx_iscsi_octets = counter_u64_alloc(M_WAITOK);
4816 		ofld_txq->tx_iscsi_iso_wrs = counter_u64_alloc(M_WAITOK);
4817 		ofld_txq->tx_toe_tls_records = counter_u64_alloc(M_WAITOK);
4818 		ofld_txq->tx_toe_tls_octets = counter_u64_alloc(M_WAITOK);
4819 		add_ofld_txq_sysctls(&vi->ctx, oid, ofld_txq);
4820 	}
4821 
4822 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4823 		rc = alloc_eq_hwq(sc, vi, eq);
4824 		if (rc != 0) {
4825 			CH_ERR(vi, "failed to create hw ofld_txq%d: %d\n", idx,
4826 			    rc);
4827 			return (rc);
4828 		}
4829 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4830 	}
4831 
4832 	return (0);
4833 }
4834 
4835 /*
4836  * Idempotent.
4837  */
4838 static void
4839 free_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq)
4840 {
4841 	struct adapter *sc = vi->adapter;
4842 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4843 
4844 	if (eq->flags & EQ_HW_ALLOCATED) {
4845 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4846 		free_eq_hwq(sc, NULL, eq);
4847 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4848 	}
4849 
4850 	if (eq->flags & EQ_SW_ALLOCATED) {
4851 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4852 		counter_u64_free(ofld_txq->tx_iscsi_pdus);
4853 		counter_u64_free(ofld_txq->tx_iscsi_octets);
4854 		counter_u64_free(ofld_txq->tx_iscsi_iso_wrs);
4855 		counter_u64_free(ofld_txq->tx_toe_tls_records);
4856 		counter_u64_free(ofld_txq->tx_toe_tls_octets);
4857 		free_wrq(sc, &ofld_txq->wrq);
4858 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4859 		bzero(ofld_txq, sizeof(*ofld_txq));
4860 	}
4861 }
4862 
4863 static void
4864 add_ofld_txq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4865     struct sge_ofld_txq *ofld_txq)
4866 {
4867 	struct sysctl_oid_list *children;
4868 
4869 	if (ctx == NULL || oid == NULL)
4870 		return;
4871 
4872 	children = SYSCTL_CHILDREN(oid);
4873 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_pdus",
4874 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_pdus,
4875 	    "# of iSCSI PDUs transmitted");
4876 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_octets",
4877 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_octets,
4878 	    "# of payload octets in transmitted iSCSI PDUs");
4879 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_iso_wrs",
4880 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_iso_wrs,
4881 	    "# of iSCSI segmentation offload work requests");
4882 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_records",
4883 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_records,
4884 	    "# of TOE TLS records transmitted");
4885 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_octets",
4886 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_octets,
4887 	    "# of payload octets in transmitted TOE TLS records");
4888 }
4889 #endif
4890 
4891 static void
4892 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4893 {
4894 	bus_addr_t *ba = arg;
4895 
4896 	KASSERT(nseg == 1,
4897 	    ("%s meant for single segment mappings only.", __func__));
4898 
4899 	*ba = error ? 0 : segs->ds_addr;
4900 }
4901 
4902 static inline void
4903 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4904 {
4905 	uint32_t n, v;
4906 
4907 	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
4908 	MPASS(n > 0);
4909 
4910 	wmb();
4911 	v = fl->dbval | V_PIDX(n);
4912 	if (fl->udb)
4913 		*fl->udb = htole32(v);
4914 	else
4915 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4916 	IDXINCR(fl->dbidx, n, fl->sidx);
4917 }
4918 
4919 /*
4920  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4921  * recycled do not count towards this allocation budget.
4922  *
4923  * Returns non-zero to indicate that this freelist should be added to the list
4924  * of starving freelists.
4925  */
4926 static int
4927 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4928 {
4929 	__be64 *d;
4930 	struct fl_sdesc *sd;
4931 	uintptr_t pa;
4932 	caddr_t cl;
4933 	struct rx_buf_info *rxb;
4934 	struct cluster_metadata *clm;
4935 	uint16_t max_pidx, zidx = fl->zidx;
4936 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
4937 
4938 	FL_LOCK_ASSERT_OWNED(fl);
4939 
4940 	/*
4941 	 * We always stop at the beginning of the hardware descriptor that's just
4942 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
4943 	 * which would mean an empty freelist to the chip.
4944 	 */
4945 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
4946 	if (fl->pidx == max_pidx * 8)
4947 		return (0);
4948 
4949 	d = &fl->desc[fl->pidx];
4950 	sd = &fl->sdesc[fl->pidx];
4951 	rxb = &sc->sge.rx_buf_info[zidx];
4952 
4953 	while (n > 0) {
4954 
4955 		if (sd->cl != NULL) {
4956 
4957 			if (sd->nmbuf == 0) {
4958 				/*
4959 				 * Fast recycle without involving any atomics on
4960 				 * the cluster's metadata (if the cluster has
4961 				 * metadata).  This happens when all frames
4962 				 * received in the cluster were small enough to
4963 				 * fit within a single mbuf each.
4964 				 */
4965 				fl->cl_fast_recycled++;
4966 				goto recycled;
4967 			}
4968 
4969 			/*
4970 			 * Cluster is guaranteed to have metadata.  Clusters
4971 			 * without metadata always take the fast recycle path
4972 			 * when they're recycled.
4973 			 */
4974 			clm = cl_metadata(sd);
4975 			MPASS(clm != NULL);
4976 
4977 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4978 				fl->cl_recycled++;
4979 				counter_u64_add(extfree_rels, 1);
4980 				goto recycled;
4981 			}
4982 			sd->cl = NULL;	/* gave up my reference */
4983 		}
4984 		MPASS(sd->cl == NULL);
4985 		cl = uma_zalloc(rxb->zone, M_NOWAIT);
4986 		if (__predict_false(cl == NULL)) {
4987 			if (zidx != fl->safe_zidx) {
4988 				zidx = fl->safe_zidx;
4989 				rxb = &sc->sge.rx_buf_info[zidx];
4990 				cl = uma_zalloc(rxb->zone, M_NOWAIT);
4991 			}
4992 			if (cl == NULL)
4993 				break;
4994 		}
4995 		fl->cl_allocated++;
4996 		n--;
4997 
4998 		pa = pmap_kextract((vm_offset_t)cl);
4999 		sd->cl = cl;
5000 		sd->zidx = zidx;
5001 
5002 		if (fl->flags & FL_BUF_PACKING) {
5003 			*d = htobe64(pa | rxb->hwidx2);
5004 			sd->moff = rxb->size2;
5005 		} else {
5006 			*d = htobe64(pa | rxb->hwidx1);
5007 			sd->moff = 0;
5008 		}
5009 recycled:
5010 		sd->nmbuf = 0;
5011 		d++;
5012 		sd++;
5013 		if (__predict_false((++fl->pidx & 7) == 0)) {
5014 			uint16_t pidx = fl->pidx >> 3;
5015 
5016 			if (__predict_false(pidx == fl->sidx)) {
5017 				fl->pidx = 0;
5018 				pidx = 0;
5019 				sd = fl->sdesc;
5020 				d = fl->desc;
5021 			}
5022 			if (n < 8 || pidx == max_pidx)
5023 				break;
5024 
5025 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
5026 				ring_fl_db(sc, fl);
5027 		}
5028 	}
5029 
5030 	if ((fl->pidx >> 3) != fl->dbidx)
5031 		ring_fl_db(sc, fl);
5032 
5033 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
5034 }
5035 
5036 /*
5037  * Attempt to refill all starving freelists.
5038  */
5039 static void
5040 refill_sfl(void *arg)
5041 {
5042 	struct adapter *sc = arg;
5043 	struct sge_fl *fl, *fl_temp;
5044 
5045 	mtx_assert(&sc->sfl_lock, MA_OWNED);
5046 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
5047 		FL_LOCK(fl);
5048 		refill_fl(sc, fl, 64);
5049 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
5050 			TAILQ_REMOVE(&sc->sfl, fl, link);
5051 			fl->flags &= ~FL_STARVING;
5052 		}
5053 		FL_UNLOCK(fl);
5054 	}
5055 
5056 	if (!TAILQ_EMPTY(&sc->sfl))
5057 		callout_schedule(&sc->sfl_callout, hz / 5);
5058 }
5059 
5060 /*
5061  * Release the driver's reference on all buffers in the given freelist.  Buffers
5062  * with kernel references cannot be freed and will prevent the driver from being
5063  * unloaded safely.
5064  */
5065 void
5066 free_fl_buffers(struct adapter *sc, struct sge_fl *fl)
5067 {
5068 	struct fl_sdesc *sd;
5069 	struct cluster_metadata *clm;
5070 	int i;
5071 
5072 	sd = fl->sdesc;
5073 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
5074 		if (sd->cl == NULL)
5075 			continue;
5076 
5077 		if (sd->nmbuf == 0)
5078 			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
5079 		else if (fl->flags & FL_BUF_PACKING) {
5080 			clm = cl_metadata(sd);
5081 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5082 				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
5083 				    sd->cl);
5084 				counter_u64_add(extfree_rels, 1);
5085 			}
5086 		}
5087 		sd->cl = NULL;
5088 	}
5089 
5090 	if (fl->flags & FL_BUF_RESUME) {
5091 		m_freem(fl->m0);
5092 		fl->flags &= ~FL_BUF_RESUME;
5093 	}
5094 }
5095 
5096 static inline void
5097 get_pkt_gl(struct mbuf *m, struct sglist *gl)
5098 {
5099 	int rc;
5100 
5101 	M_ASSERTPKTHDR(m);
5102 
5103 	sglist_reset(gl);
5104 	rc = sglist_append_mbuf(gl, m);
5105 	if (__predict_false(rc != 0)) {
5106 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
5107 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
5108 	}
5109 
5110 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
5111 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
5112 	    mbuf_nsegs(m), gl->sg_nseg));
5113 #if 0	/* vm_wr not readily available here. */
5114 	KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
5115 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
5116 		gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
5117 #endif
5118 }
5119 
5120 /*
5121  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5122  */
5123 static inline u_int
5124 txpkt_len16(u_int nsegs, const u_int extra)
5125 {
5126 	u_int n;
5127 
5128 	MPASS(nsegs > 0);
5129 
5130 	nsegs--; /* first segment is part of ulptx_sgl */
5131 	n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
5132 	    sizeof(struct cpl_tx_pkt_core) +
5133 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5134 
5135 	return (howmany(n, 16));
5136 }
5137 
5138 /*
5139  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
5140  * request header.
5141  */
5142 static inline u_int
5143 txpkt_vm_len16(u_int nsegs, const u_int extra)
5144 {
5145 	u_int n;
5146 
5147 	MPASS(nsegs > 0);
5148 
5149 	nsegs--; /* first segment is part of ulptx_sgl */
5150 	n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
5151 	    sizeof(struct cpl_tx_pkt_core) +
5152 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5153 
5154 	return (howmany(n, 16));
5155 }
5156 
5157 static inline void
5158 calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
5159 {
5160 	const int lso = sizeof(struct cpl_tx_pkt_lso_core);
5161 	const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
5162 
5163 	if (vm_wr) {
5164 		if (needs_tso(m))
5165 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
5166 		else
5167 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
5168 		return;
5169 	}
5170 
5171 	if (needs_tso(m)) {
5172 		if (needs_vxlan_tso(m))
5173 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
5174 		else
5175 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
5176 	} else
5177 		set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
5178 }
5179 
5180 /*
5181  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
5182  * request header.
5183  */
5184 static inline u_int
5185 txpkts0_len16(u_int nsegs)
5186 {
5187 	u_int n;
5188 
5189 	MPASS(nsegs > 0);
5190 
5191 	nsegs--; /* first segment is part of ulptx_sgl */
5192 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
5193 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
5194 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
5195 
5196 	return (howmany(n, 16));
5197 }
5198 
5199 /*
5200  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
5201  * request header.
5202  */
5203 static inline u_int
5204 txpkts1_len16(void)
5205 {
5206 	u_int n;
5207 
5208 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
5209 
5210 	return (howmany(n, 16));
5211 }
5212 
5213 static inline u_int
5214 imm_payload(u_int ndesc)
5215 {
5216 	u_int n;
5217 
5218 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
5219 	    sizeof(struct cpl_tx_pkt_core);
5220 
5221 	return (n);
5222 }
5223 
5224 static inline uint64_t
5225 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
5226 {
5227 	uint64_t ctrl;
5228 	int csum_type, l2hlen, l3hlen;
5229 	int x, y;
5230 	static const int csum_types[3][2] = {
5231 		{TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
5232 		{TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
5233 		{TX_CSUM_IP, 0}
5234 	};
5235 
5236 	M_ASSERTPKTHDR(m);
5237 
5238 	if (!needs_hwcsum(m))
5239 		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
5240 
5241 	MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
5242 	MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
5243 
5244 	if (needs_vxlan_csum(m)) {
5245 		MPASS(m->m_pkthdr.l4hlen > 0);
5246 		MPASS(m->m_pkthdr.l5hlen > 0);
5247 		MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
5248 		MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
5249 
5250 		l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
5251 		    m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
5252 		    m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
5253 		l3hlen = m->m_pkthdr.inner_l3hlen;
5254 	} else {
5255 		l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
5256 		l3hlen = m->m_pkthdr.l3hlen;
5257 	}
5258 
5259 	ctrl = 0;
5260 	if (!needs_l3_csum(m))
5261 		ctrl |= F_TXPKT_IPCSUM_DIS;
5262 
5263 	if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
5264 	    CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
5265 		x = 0;	/* TCP */
5266 	else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
5267 	    CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
5268 		x = 1;	/* UDP */
5269 	else
5270 		x = 2;
5271 
5272 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
5273 	    CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
5274 		y = 0;	/* IPv4 */
5275 	else {
5276 		MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
5277 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
5278 		y = 1;	/* IPv6 */
5279 	}
5280 	/*
5281 	 * needs_hwcsum returned true earlier so there must be some kind of
5282 	 * checksum to calculate.
5283 	 */
5284 	csum_type = csum_types[x][y];
5285 	MPASS(csum_type != 0);
5286 	if (csum_type == TX_CSUM_IP)
5287 		ctrl |= F_TXPKT_L4CSUM_DIS;
5288 	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
5289 	if (chip_id(sc) <= CHELSIO_T5)
5290 		ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
5291 	else
5292 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
5293 
5294 	return (ctrl);
5295 }
5296 
5297 static inline void *
5298 write_lso_cpl(void *cpl, struct mbuf *m0)
5299 {
5300 	struct cpl_tx_pkt_lso_core *lso;
5301 	uint32_t ctrl;
5302 
5303 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5304 	    m0->m_pkthdr.l4hlen > 0,
5305 	    ("%s: mbuf %p needs TSO but missing header lengths",
5306 		__func__, m0));
5307 
5308 	ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5309 	    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5310 	    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5311 	    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5312 	    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5313 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5314 		ctrl |= F_LSO_IPV6;
5315 
5316 	lso = cpl;
5317 	lso->lso_ctrl = htobe32(ctrl);
5318 	lso->ipid_ofst = htobe16(0);
5319 	lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5320 	lso->seqno_offset = htobe32(0);
5321 	lso->len = htobe32(m0->m_pkthdr.len);
5322 
5323 	return (lso + 1);
5324 }
5325 
5326 static void *
5327 write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
5328 {
5329 	struct cpl_tx_tnl_lso *tnl_lso = cpl;
5330 	uint32_t ctrl;
5331 
5332 	KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
5333 	    m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
5334 	    m0->m_pkthdr.inner_l5hlen > 0,
5335 	    ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
5336 		__func__, m0));
5337 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5338 	    m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
5339 	    ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
5340 		__func__, m0));
5341 
5342 	/* Outer headers. */
5343 	ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
5344 	    F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
5345 	    V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
5346 		(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5347 	    V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
5348 	    F_CPL_TX_TNL_LSO_IPLENSETOUT;
5349 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5350 		ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
5351 	else {
5352 		ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
5353 		    F_CPL_TX_TNL_LSO_IPIDINCOUT;
5354 	}
5355 	tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
5356 	tnl_lso->IpIdOffsetOut = 0;
5357 	tnl_lso->UdpLenSetOut_to_TnlHdrLen =
5358 		htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
5359 		    F_CPL_TX_TNL_LSO_UDPLENSETOUT |
5360 		    V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
5361 			m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
5362 			m0->m_pkthdr.l5hlen) |
5363 		    V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
5364 	tnl_lso->r1 = 0;
5365 
5366 	/* Inner headers. */
5367 	ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
5368 	    (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
5369 	    V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
5370 	    V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
5371 	if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
5372 		ctrl |= F_CPL_TX_TNL_LSO_IPV6;
5373 	tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
5374 	tnl_lso->IpIdOffset = 0;
5375 	tnl_lso->IpIdSplit_to_Mss =
5376 	    htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
5377 	tnl_lso->TCPSeqOffset = 0;
5378 	tnl_lso->EthLenOffset_Size =
5379 	    htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
5380 
5381 	return (tnl_lso + 1);
5382 }
5383 
5384 #define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
5385 
5386 /*
5387  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
5388  * software descriptor, and advance the pidx.  It is guaranteed that enough
5389  * descriptors are available.
5390  *
5391  * The return value is the # of hardware descriptors used.
5392  */
5393 static u_int
5394 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
5395 {
5396 	struct sge_eq *eq;
5397 	struct fw_eth_tx_pkt_vm_wr *wr;
5398 	struct tx_sdesc *txsd;
5399 	struct cpl_tx_pkt_core *cpl;
5400 	uint32_t ctrl;	/* used in many unrelated places */
5401 	uint64_t ctrl1;
5402 	int len16, ndesc, pktlen;
5403 	caddr_t dst;
5404 
5405 	TXQ_LOCK_ASSERT_OWNED(txq);
5406 	M_ASSERTPKTHDR(m0);
5407 
5408 	len16 = mbuf_len16(m0);
5409 	pktlen = m0->m_pkthdr.len;
5410 	ctrl = sizeof(struct cpl_tx_pkt_core);
5411 	if (needs_tso(m0))
5412 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5413 	ndesc = tx_len16_to_desc(len16);
5414 
5415 	/* Firmware work request header */
5416 	eq = &txq->eq;
5417 	wr = (void *)&eq->desc[eq->pidx];
5418 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
5419 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5420 
5421 	ctrl = V_FW_WR_LEN16(len16);
5422 	wr->equiq_to_len16 = htobe32(ctrl);
5423 	wr->r3[0] = 0;
5424 	wr->r3[1] = 0;
5425 
5426 	/*
5427 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
5428 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
5429 	 * simpler to always copy it rather than making it
5430 	 * conditional.  Also, it seems that we do not have to set
5431 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
5432 	 */
5433 	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
5434 
5435 	if (needs_tso(m0)) {
5436 		cpl = write_lso_cpl(wr + 1, m0);
5437 		txq->tso_wrs++;
5438 	} else
5439 		cpl = (void *)(wr + 1);
5440 
5441 	/* Checksum offload */
5442 	ctrl1 = csum_to_ctrl(sc, m0);
5443 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5444 		txq->txcsum++;	/* some hardware assistance provided */
5445 
5446 	/* VLAN tag insertion */
5447 	if (needs_vlan_insertion(m0)) {
5448 		ctrl1 |= F_TXPKT_VLAN_VLD |
5449 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5450 		txq->vlan_insertion++;
5451 	}
5452 
5453 	/* CPL header */
5454 	cpl->ctrl0 = txq->cpl_ctrl0;
5455 	cpl->pack = 0;
5456 	cpl->len = htobe16(pktlen);
5457 	cpl->ctrl1 = htobe64(ctrl1);
5458 
5459 	/* SGL */
5460 	dst = (void *)(cpl + 1);
5461 
5462 	/*
5463 	 * A packet using TSO will use up an entire descriptor for the
5464 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
5465 	 * If this descriptor is the last descriptor in the ring, wrap
5466 	 * around to the front of the ring explicitly for the start of
5467 	 * the sgl.
5468 	 */
5469 	if (dst == (void *)&eq->desc[eq->sidx]) {
5470 		dst = (void *)&eq->desc[0];
5471 		write_gl_to_txd(txq, m0, &dst, 0);
5472 	} else
5473 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5474 	txq->sgl_wrs++;
5475 	txq->txpkt_wrs++;
5476 
5477 	txsd = &txq->sdesc[eq->pidx];
5478 	txsd->m = m0;
5479 	txsd->desc_used = ndesc;
5480 
5481 	return (ndesc);
5482 }
5483 
5484 /*
5485  * Write a raw WR to the hardware descriptors, update the software
5486  * descriptor, and advance the pidx.  It is guaranteed that enough
5487  * descriptors are available.
5488  *
5489  * The return value is the # of hardware descriptors used.
5490  */
5491 static u_int
5492 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
5493 {
5494 	struct sge_eq *eq = &txq->eq;
5495 	struct tx_sdesc *txsd;
5496 	struct mbuf *m;
5497 	caddr_t dst;
5498 	int len16, ndesc;
5499 
5500 	len16 = mbuf_len16(m0);
5501 	ndesc = tx_len16_to_desc(len16);
5502 	MPASS(ndesc <= available);
5503 
5504 	dst = wr;
5505 	for (m = m0; m != NULL; m = m->m_next)
5506 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5507 
5508 	txq->raw_wrs++;
5509 
5510 	txsd = &txq->sdesc[eq->pidx];
5511 	txsd->m = m0;
5512 	txsd->desc_used = ndesc;
5513 
5514 	return (ndesc);
5515 }
5516 
5517 /*
5518  * Write a txpkt WR for this packet to the hardware descriptors, update the
5519  * software descriptor, and advance the pidx.  It is guaranteed that enough
5520  * descriptors are available.
5521  *
5522  * The return value is the # of hardware descriptors used.
5523  */
5524 static u_int
5525 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
5526     u_int available)
5527 {
5528 	struct sge_eq *eq;
5529 	struct fw_eth_tx_pkt_wr *wr;
5530 	struct tx_sdesc *txsd;
5531 	struct cpl_tx_pkt_core *cpl;
5532 	uint32_t ctrl;	/* used in many unrelated places */
5533 	uint64_t ctrl1;
5534 	int len16, ndesc, pktlen, nsegs;
5535 	caddr_t dst;
5536 
5537 	TXQ_LOCK_ASSERT_OWNED(txq);
5538 	M_ASSERTPKTHDR(m0);
5539 
5540 	len16 = mbuf_len16(m0);
5541 	nsegs = mbuf_nsegs(m0);
5542 	pktlen = m0->m_pkthdr.len;
5543 	ctrl = sizeof(struct cpl_tx_pkt_core);
5544 	if (needs_tso(m0)) {
5545 		if (needs_vxlan_tso(m0))
5546 			ctrl += sizeof(struct cpl_tx_tnl_lso);
5547 		else
5548 			ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5549 	} else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
5550 	    available >= 2) {
5551 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
5552 		ctrl += pktlen;
5553 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
5554 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
5555 		nsegs = 0;
5556 	}
5557 	ndesc = tx_len16_to_desc(len16);
5558 	MPASS(ndesc <= available);
5559 
5560 	/* Firmware work request header */
5561 	eq = &txq->eq;
5562 	wr = (void *)&eq->desc[eq->pidx];
5563 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
5564 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5565 
5566 	ctrl = V_FW_WR_LEN16(len16);
5567 	wr->equiq_to_len16 = htobe32(ctrl);
5568 	wr->r3 = 0;
5569 
5570 	if (needs_tso(m0)) {
5571 		if (needs_vxlan_tso(m0)) {
5572 			cpl = write_tnl_lso_cpl(wr + 1, m0);
5573 			txq->vxlan_tso_wrs++;
5574 		} else {
5575 			cpl = write_lso_cpl(wr + 1, m0);
5576 			txq->tso_wrs++;
5577 		}
5578 	} else
5579 		cpl = (void *)(wr + 1);
5580 
5581 	/* Checksum offload */
5582 	ctrl1 = csum_to_ctrl(sc, m0);
5583 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5584 		/* some hardware assistance provided */
5585 		if (needs_vxlan_csum(m0))
5586 			txq->vxlan_txcsum++;
5587 		else
5588 			txq->txcsum++;
5589 	}
5590 
5591 	/* VLAN tag insertion */
5592 	if (needs_vlan_insertion(m0)) {
5593 		ctrl1 |= F_TXPKT_VLAN_VLD |
5594 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5595 		txq->vlan_insertion++;
5596 	}
5597 
5598 	/* CPL header */
5599 	cpl->ctrl0 = txq->cpl_ctrl0;
5600 	cpl->pack = 0;
5601 	cpl->len = htobe16(pktlen);
5602 	cpl->ctrl1 = htobe64(ctrl1);
5603 
5604 	/* SGL */
5605 	dst = (void *)(cpl + 1);
5606 	if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
5607 		dst = (caddr_t)&eq->desc[0];
5608 	if (nsegs > 0) {
5609 
5610 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5611 		txq->sgl_wrs++;
5612 	} else {
5613 		struct mbuf *m;
5614 
5615 		for (m = m0; m != NULL; m = m->m_next) {
5616 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5617 #ifdef INVARIANTS
5618 			pktlen -= m->m_len;
5619 #endif
5620 		}
5621 #ifdef INVARIANTS
5622 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
5623 #endif
5624 		txq->imm_wrs++;
5625 	}
5626 
5627 	txq->txpkt_wrs++;
5628 
5629 	txsd = &txq->sdesc[eq->pidx];
5630 	txsd->m = m0;
5631 	txsd->desc_used = ndesc;
5632 
5633 	return (ndesc);
5634 }
5635 
5636 static inline bool
5637 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
5638 {
5639 	int len;
5640 
5641 	MPASS(txp->npkt > 0);
5642 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5643 
5644 	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5645 		len = VM_TX_L2HDR_LEN;
5646 	else
5647 		len = sizeof(struct ether_header);
5648 
5649 	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5650 }
5651 
5652 static inline void
5653 save_l2hdr(struct txpkts *txp, struct mbuf *m)
5654 {
5655 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5656 
5657 	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5658 }
5659 
5660 static int
5661 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5662     int avail, bool *send)
5663 {
5664 	struct txpkts *txp = &txq->txp;
5665 
5666 	/* Cannot have TSO and coalesce at the same time. */
5667 	if (cannot_use_txpkts(m)) {
5668 cannot_coalesce:
5669 		*send = txp->npkt > 0;
5670 		return (EINVAL);
5671 	}
5672 
5673 	/* VF allows coalescing of type 1 (1 GL) only */
5674 	if (mbuf_nsegs(m) > 1)
5675 		goto cannot_coalesce;
5676 
5677 	*send = false;
5678 	if (txp->npkt > 0) {
5679 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5680 		MPASS(txp->npkt < txp->max_npkt);
5681 		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5682 
5683 		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5684 retry_after_send:
5685 			*send = true;
5686 			return (EAGAIN);
5687 		}
5688 		if (m->m_pkthdr.len + txp->plen > 65535)
5689 			goto retry_after_send;
5690 		if (cmp_l2hdr(txp, m))
5691 			goto retry_after_send;
5692 
5693 		txp->len16 += txpkts1_len16();
5694 		txp->plen += m->m_pkthdr.len;
5695 		txp->mb[txp->npkt++] = m;
5696 		if (txp->npkt == txp->max_npkt)
5697 			*send = true;
5698 	} else {
5699 		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5700 		    txpkts1_len16();
5701 		if (tx_len16_to_desc(txp->len16) > avail)
5702 			goto cannot_coalesce;
5703 		txp->npkt = 1;
5704 		txp->wr_type = 1;
5705 		txp->plen = m->m_pkthdr.len;
5706 		txp->mb[0] = m;
5707 		save_l2hdr(txp, m);
5708 	}
5709 	return (0);
5710 }
5711 
5712 static int
5713 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5714     int avail, bool *send)
5715 {
5716 	struct txpkts *txp = &txq->txp;
5717 	int nsegs;
5718 
5719 	MPASS(!(sc->flags & IS_VF));
5720 
5721 	/* Cannot have TSO and coalesce at the same time. */
5722 	if (cannot_use_txpkts(m)) {
5723 cannot_coalesce:
5724 		*send = txp->npkt > 0;
5725 		return (EINVAL);
5726 	}
5727 
5728 	*send = false;
5729 	nsegs = mbuf_nsegs(m);
5730 	if (txp->npkt == 0) {
5731 		if (m->m_pkthdr.len > 65535)
5732 			goto cannot_coalesce;
5733 		if (nsegs > 1) {
5734 			txp->wr_type = 0;
5735 			txp->len16 =
5736 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5737 			    txpkts0_len16(nsegs);
5738 		} else {
5739 			txp->wr_type = 1;
5740 			txp->len16 =
5741 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5742 			    txpkts1_len16();
5743 		}
5744 		if (tx_len16_to_desc(txp->len16) > avail)
5745 			goto cannot_coalesce;
5746 		txp->npkt = 1;
5747 		txp->plen = m->m_pkthdr.len;
5748 		txp->mb[0] = m;
5749 	} else {
5750 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5751 		MPASS(txp->npkt < txp->max_npkt);
5752 
5753 		if (m->m_pkthdr.len + txp->plen > 65535) {
5754 retry_after_send:
5755 			*send = true;
5756 			return (EAGAIN);
5757 		}
5758 
5759 		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5760 		if (txp->wr_type == 0) {
5761 			if (tx_len16_to_desc(txp->len16 +
5762 			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
5763 				goto retry_after_send;
5764 			txp->len16 += txpkts0_len16(nsegs);
5765 		} else {
5766 			if (nsegs != 1)
5767 				goto retry_after_send;
5768 			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
5769 			    avail)
5770 				goto retry_after_send;
5771 			txp->len16 += txpkts1_len16();
5772 		}
5773 
5774 		txp->plen += m->m_pkthdr.len;
5775 		txp->mb[txp->npkt++] = m;
5776 		if (txp->npkt == txp->max_npkt)
5777 			*send = true;
5778 	}
5779 	return (0);
5780 }
5781 
5782 /*
5783  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
5784  * the software descriptor, and advance the pidx.  It is guaranteed that enough
5785  * descriptors are available.
5786  *
5787  * The return value is the # of hardware descriptors used.
5788  */
5789 static u_int
5790 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
5791 {
5792 	const struct txpkts *txp = &txq->txp;
5793 	struct sge_eq *eq = &txq->eq;
5794 	struct fw_eth_tx_pkts_wr *wr;
5795 	struct tx_sdesc *txsd;
5796 	struct cpl_tx_pkt_core *cpl;
5797 	uint64_t ctrl1;
5798 	int ndesc, i, checkwrap;
5799 	struct mbuf *m, *last;
5800 	void *flitp;
5801 
5802 	TXQ_LOCK_ASSERT_OWNED(txq);
5803 	MPASS(txp->npkt > 0);
5804 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5805 
5806 	wr = (void *)&eq->desc[eq->pidx];
5807 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
5808 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5809 	wr->plen = htobe16(txp->plen);
5810 	wr->npkt = txp->npkt;
5811 	wr->r3 = 0;
5812 	wr->type = txp->wr_type;
5813 	flitp = wr + 1;
5814 
5815 	/*
5816 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
5817 	 * set then we know the WR is going to wrap around somewhere.  We'll
5818 	 * check for that at appropriate points.
5819 	 */
5820 	ndesc = tx_len16_to_desc(txp->len16);
5821 	last = NULL;
5822 	checkwrap = eq->sidx - ndesc < eq->pidx;
5823 	for (i = 0; i < txp->npkt; i++) {
5824 		m = txp->mb[i];
5825 		if (txp->wr_type == 0) {
5826 			struct ulp_txpkt *ulpmc;
5827 			struct ulptx_idata *ulpsc;
5828 
5829 			/* ULP master command */
5830 			ulpmc = flitp;
5831 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
5832 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
5833 			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
5834 
5835 			/* ULP subcommand */
5836 			ulpsc = (void *)(ulpmc + 1);
5837 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
5838 			    F_ULP_TX_SC_MORE);
5839 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
5840 
5841 			cpl = (void *)(ulpsc + 1);
5842 			if (checkwrap &&
5843 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
5844 				cpl = (void *)&eq->desc[0];
5845 		} else {
5846 			cpl = flitp;
5847 		}
5848 
5849 		/* Checksum offload */
5850 		ctrl1 = csum_to_ctrl(sc, m);
5851 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5852 			/* some hardware assistance provided */
5853 			if (needs_vxlan_csum(m))
5854 				txq->vxlan_txcsum++;
5855 			else
5856 				txq->txcsum++;
5857 		}
5858 
5859 		/* VLAN tag insertion */
5860 		if (needs_vlan_insertion(m)) {
5861 			ctrl1 |= F_TXPKT_VLAN_VLD |
5862 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5863 			txq->vlan_insertion++;
5864 		}
5865 
5866 		/* CPL header */
5867 		cpl->ctrl0 = txq->cpl_ctrl0;
5868 		cpl->pack = 0;
5869 		cpl->len = htobe16(m->m_pkthdr.len);
5870 		cpl->ctrl1 = htobe64(ctrl1);
5871 
5872 		flitp = cpl + 1;
5873 		if (checkwrap &&
5874 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5875 			flitp = (void *)&eq->desc[0];
5876 
5877 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
5878 
5879 		if (last != NULL)
5880 			last->m_nextpkt = m;
5881 		last = m;
5882 	}
5883 
5884 	txq->sgl_wrs++;
5885 	if (txp->wr_type == 0) {
5886 		txq->txpkts0_pkts += txp->npkt;
5887 		txq->txpkts0_wrs++;
5888 	} else {
5889 		txq->txpkts1_pkts += txp->npkt;
5890 		txq->txpkts1_wrs++;
5891 	}
5892 
5893 	txsd = &txq->sdesc[eq->pidx];
5894 	txsd->m = txp->mb[0];
5895 	txsd->desc_used = ndesc;
5896 
5897 	return (ndesc);
5898 }
5899 
5900 static u_int
5901 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
5902 {
5903 	const struct txpkts *txp = &txq->txp;
5904 	struct sge_eq *eq = &txq->eq;
5905 	struct fw_eth_tx_pkts_vm_wr *wr;
5906 	struct tx_sdesc *txsd;
5907 	struct cpl_tx_pkt_core *cpl;
5908 	uint64_t ctrl1;
5909 	int ndesc, i;
5910 	struct mbuf *m, *last;
5911 	void *flitp;
5912 
5913 	TXQ_LOCK_ASSERT_OWNED(txq);
5914 	MPASS(txp->npkt > 0);
5915 	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5916 	MPASS(txp->mb[0] != NULL);
5917 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5918 
5919 	wr = (void *)&eq->desc[eq->pidx];
5920 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
5921 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5922 	wr->r3 = 0;
5923 	wr->plen = htobe16(txp->plen);
5924 	wr->npkt = txp->npkt;
5925 	wr->r4 = 0;
5926 	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
5927 	flitp = wr + 1;
5928 
5929 	/*
5930 	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
5931 	 * the WR will take 32B so we check for the end of the descriptor ring
5932 	 * before writing odd mbufs (mb[1], 3, 5, ..)
5933 	 */
5934 	ndesc = tx_len16_to_desc(txp->len16);
5935 	last = NULL;
5936 	for (i = 0; i < txp->npkt; i++) {
5937 		m = txp->mb[i];
5938 		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5939 			flitp = &eq->desc[0];
5940 		cpl = flitp;
5941 
5942 		/* Checksum offload */
5943 		ctrl1 = csum_to_ctrl(sc, m);
5944 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5945 			txq->txcsum++;	/* some hardware assistance provided */
5946 
5947 		/* VLAN tag insertion */
5948 		if (needs_vlan_insertion(m)) {
5949 			ctrl1 |= F_TXPKT_VLAN_VLD |
5950 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5951 			txq->vlan_insertion++;
5952 		}
5953 
5954 		/* CPL header */
5955 		cpl->ctrl0 = txq->cpl_ctrl0;
5956 		cpl->pack = 0;
5957 		cpl->len = htobe16(m->m_pkthdr.len);
5958 		cpl->ctrl1 = htobe64(ctrl1);
5959 
5960 		flitp = cpl + 1;
5961 		MPASS(mbuf_nsegs(m) == 1);
5962 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
5963 
5964 		if (last != NULL)
5965 			last->m_nextpkt = m;
5966 		last = m;
5967 	}
5968 
5969 	txq->sgl_wrs++;
5970 	txq->txpkts1_pkts += txp->npkt;
5971 	txq->txpkts1_wrs++;
5972 
5973 	txsd = &txq->sdesc[eq->pidx];
5974 	txsd->m = txp->mb[0];
5975 	txsd->desc_used = ndesc;
5976 
5977 	return (ndesc);
5978 }
5979 
5980 /*
5981  * If the SGL ends on an address that is not 16 byte aligned, this function will
5982  * add a 0 filled flit at the end.
5983  */
5984 static void
5985 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
5986 {
5987 	struct sge_eq *eq = &txq->eq;
5988 	struct sglist *gl = txq->gl;
5989 	struct sglist_seg *seg;
5990 	__be64 *flitp, *wrap;
5991 	struct ulptx_sgl *usgl;
5992 	int i, nflits, nsegs;
5993 
5994 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
5995 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
5996 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5997 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5998 
5999 	get_pkt_gl(m, gl);
6000 	nsegs = gl->sg_nseg;
6001 	MPASS(nsegs > 0);
6002 
6003 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
6004 	flitp = (__be64 *)(*to);
6005 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
6006 	seg = &gl->sg_segs[0];
6007 	usgl = (void *)flitp;
6008 
6009 	/*
6010 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
6011 	 * ring, so we're at least 16 bytes away from the status page.  There is
6012 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
6013 	 */
6014 
6015 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6016 	    V_ULPTX_NSGE(nsegs));
6017 	usgl->len0 = htobe32(seg->ss_len);
6018 	usgl->addr0 = htobe64(seg->ss_paddr);
6019 	seg++;
6020 
6021 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
6022 
6023 		/* Won't wrap around at all */
6024 
6025 		for (i = 0; i < nsegs - 1; i++, seg++) {
6026 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
6027 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
6028 		}
6029 		if (i & 1)
6030 			usgl->sge[i / 2].len[1] = htobe32(0);
6031 		flitp += nflits;
6032 	} else {
6033 
6034 		/* Will wrap somewhere in the rest of the SGL */
6035 
6036 		/* 2 flits already written, write the rest flit by flit */
6037 		flitp = (void *)(usgl + 1);
6038 		for (i = 0; i < nflits - 2; i++) {
6039 			if (flitp == wrap)
6040 				flitp = (void *)eq->desc;
6041 			*flitp++ = get_flit(seg, nsegs - 1, i);
6042 		}
6043 	}
6044 
6045 	if (nflits & 1) {
6046 		MPASS(((uintptr_t)flitp) & 0xf);
6047 		*flitp++ = 0;
6048 	}
6049 
6050 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
6051 	if (__predict_false(flitp == wrap))
6052 		*to = (void *)eq->desc;
6053 	else
6054 		*to = (void *)flitp;
6055 }
6056 
6057 static inline void
6058 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
6059 {
6060 
6061 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6062 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6063 
6064 	if (__predict_true((uintptr_t)(*to) + len <=
6065 	    (uintptr_t)&eq->desc[eq->sidx])) {
6066 		bcopy(from, *to, len);
6067 		(*to) += len;
6068 	} else {
6069 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
6070 
6071 		bcopy(from, *to, portion);
6072 		from += portion;
6073 		portion = len - portion;	/* remaining */
6074 		bcopy(from, (void *)eq->desc, portion);
6075 		(*to) = (caddr_t)eq->desc + portion;
6076 	}
6077 }
6078 
6079 static inline void
6080 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
6081 {
6082 	u_int db;
6083 
6084 	MPASS(n > 0);
6085 
6086 	db = eq->doorbells;
6087 	if (n > 1)
6088 		clrbit(&db, DOORBELL_WCWR);
6089 	wmb();
6090 
6091 	switch (ffs(db) - 1) {
6092 	case DOORBELL_UDB:
6093 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6094 		break;
6095 
6096 	case DOORBELL_WCWR: {
6097 		volatile uint64_t *dst, *src;
6098 		int i;
6099 
6100 		/*
6101 		 * Queues whose 128B doorbell segment fits in the page do not
6102 		 * use relative qid (udb_qid is always 0).  Only queues with
6103 		 * doorbell segments can do WCWR.
6104 		 */
6105 		KASSERT(eq->udb_qid == 0 && n == 1,
6106 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
6107 		    __func__, eq->doorbells, n, eq->dbidx, eq));
6108 
6109 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
6110 		    UDBS_DB_OFFSET);
6111 		i = eq->dbidx;
6112 		src = (void *)&eq->desc[i];
6113 		while (src != (void *)&eq->desc[i + 1])
6114 			*dst++ = *src++;
6115 		wmb();
6116 		break;
6117 	}
6118 
6119 	case DOORBELL_UDBWC:
6120 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6121 		wmb();
6122 		break;
6123 
6124 	case DOORBELL_KDB:
6125 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
6126 		    V_QID(eq->cntxt_id) | V_PIDX(n));
6127 		break;
6128 	}
6129 
6130 	IDXINCR(eq->dbidx, n, eq->sidx);
6131 }
6132 
6133 static inline u_int
6134 reclaimable_tx_desc(struct sge_eq *eq)
6135 {
6136 	uint16_t hw_cidx;
6137 
6138 	hw_cidx = read_hw_cidx(eq);
6139 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
6140 }
6141 
6142 static inline u_int
6143 total_available_tx_desc(struct sge_eq *eq)
6144 {
6145 	uint16_t hw_cidx, pidx;
6146 
6147 	hw_cidx = read_hw_cidx(eq);
6148 	pidx = eq->pidx;
6149 
6150 	if (pidx == hw_cidx)
6151 		return (eq->sidx - 1);
6152 	else
6153 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
6154 }
6155 
6156 static inline uint16_t
6157 read_hw_cidx(struct sge_eq *eq)
6158 {
6159 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6160 	uint16_t cidx = spg->cidx;	/* stable snapshot */
6161 
6162 	return (be16toh(cidx));
6163 }
6164 
6165 /*
6166  * Reclaim 'n' descriptors approximately.
6167  */
6168 static u_int
6169 reclaim_tx_descs(struct sge_txq *txq, u_int n)
6170 {
6171 	struct tx_sdesc *txsd;
6172 	struct sge_eq *eq = &txq->eq;
6173 	u_int can_reclaim, reclaimed;
6174 
6175 	TXQ_LOCK_ASSERT_OWNED(txq);
6176 	MPASS(n > 0);
6177 
6178 	reclaimed = 0;
6179 	can_reclaim = reclaimable_tx_desc(eq);
6180 	while (can_reclaim && reclaimed < n) {
6181 		int ndesc;
6182 		struct mbuf *m, *nextpkt;
6183 
6184 		txsd = &txq->sdesc[eq->cidx];
6185 		ndesc = txsd->desc_used;
6186 
6187 		/* Firmware doesn't return "partial" credits. */
6188 		KASSERT(can_reclaim >= ndesc,
6189 		    ("%s: unexpected number of credits: %d, %d",
6190 		    __func__, can_reclaim, ndesc));
6191 		KASSERT(ndesc != 0,
6192 		    ("%s: descriptor with no credits: cidx %d",
6193 		    __func__, eq->cidx));
6194 
6195 		for (m = txsd->m; m != NULL; m = nextpkt) {
6196 			nextpkt = m->m_nextpkt;
6197 			m->m_nextpkt = NULL;
6198 			m_freem(m);
6199 		}
6200 		reclaimed += ndesc;
6201 		can_reclaim -= ndesc;
6202 		IDXINCR(eq->cidx, ndesc, eq->sidx);
6203 	}
6204 
6205 	return (reclaimed);
6206 }
6207 
6208 static void
6209 tx_reclaim(void *arg, int n)
6210 {
6211 	struct sge_txq *txq = arg;
6212 	struct sge_eq *eq = &txq->eq;
6213 
6214 	do {
6215 		if (TXQ_TRYLOCK(txq) == 0)
6216 			break;
6217 		n = reclaim_tx_descs(txq, 32);
6218 		if (eq->cidx == eq->pidx)
6219 			eq->equeqidx = eq->pidx;
6220 		TXQ_UNLOCK(txq);
6221 	} while (n > 0);
6222 }
6223 
6224 static __be64
6225 get_flit(struct sglist_seg *segs, int nsegs, int idx)
6226 {
6227 	int i = (idx / 3) * 2;
6228 
6229 	switch (idx % 3) {
6230 	case 0: {
6231 		uint64_t rc;
6232 
6233 		rc = (uint64_t)segs[i].ss_len << 32;
6234 		if (i + 1 < nsegs)
6235 			rc |= (uint64_t)(segs[i + 1].ss_len);
6236 
6237 		return (htobe64(rc));
6238 	}
6239 	case 1:
6240 		return (htobe64(segs[i].ss_paddr));
6241 	case 2:
6242 		return (htobe64(segs[i + 1].ss_paddr));
6243 	}
6244 
6245 	return (0);
6246 }
6247 
6248 static int
6249 find_refill_source(struct adapter *sc, int maxp, bool packing)
6250 {
6251 	int i, zidx = -1;
6252 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6253 
6254 	if (packing) {
6255 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6256 			if (rxb->hwidx2 == -1)
6257 				continue;
6258 			if (rxb->size1 < PAGE_SIZE &&
6259 			    rxb->size1 < largest_rx_cluster)
6260 				continue;
6261 			if (rxb->size1 > largest_rx_cluster)
6262 				break;
6263 			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
6264 			if (rxb->size2 >= maxp)
6265 				return (i);
6266 			zidx = i;
6267 		}
6268 	} else {
6269 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6270 			if (rxb->hwidx1 == -1)
6271 				continue;
6272 			if (rxb->size1 > largest_rx_cluster)
6273 				break;
6274 			if (rxb->size1 >= maxp)
6275 				return (i);
6276 			zidx = i;
6277 		}
6278 	}
6279 
6280 	return (zidx);
6281 }
6282 
6283 static void
6284 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
6285 {
6286 	mtx_lock(&sc->sfl_lock);
6287 	FL_LOCK(fl);
6288 	if ((fl->flags & FL_DOOMED) == 0) {
6289 		fl->flags |= FL_STARVING;
6290 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
6291 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
6292 	}
6293 	FL_UNLOCK(fl);
6294 	mtx_unlock(&sc->sfl_lock);
6295 }
6296 
6297 static void
6298 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
6299 {
6300 	struct sge_wrq *wrq = (void *)eq;
6301 
6302 	atomic_readandclear_int(&eq->equiq);
6303 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
6304 }
6305 
6306 static void
6307 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
6308 {
6309 	struct sge_txq *txq = (void *)eq;
6310 
6311 	MPASS(eq->type == EQ_ETH);
6312 
6313 	atomic_readandclear_int(&eq->equiq);
6314 	if (mp_ring_is_idle(txq->r))
6315 		taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
6316 	else
6317 		mp_ring_check_drainage(txq->r, 64);
6318 }
6319 
6320 static int
6321 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
6322     struct mbuf *m)
6323 {
6324 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
6325 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
6326 	struct adapter *sc = iq->adapter;
6327 	struct sge *s = &sc->sge;
6328 	struct sge_eq *eq;
6329 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
6330 		&handle_wrq_egr_update, &handle_eth_egr_update,
6331 		&handle_wrq_egr_update};
6332 
6333 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6334 	    rss->opcode));
6335 
6336 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
6337 	(*h[eq->type])(sc, eq);
6338 
6339 	return (0);
6340 }
6341 
6342 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
6343 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
6344     offsetof(struct cpl_fw6_msg, data));
6345 
6346 static int
6347 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
6348 {
6349 	struct adapter *sc = iq->adapter;
6350 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
6351 
6352 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6353 	    rss->opcode));
6354 
6355 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
6356 		const struct rss_header *rss2;
6357 
6358 		rss2 = (const struct rss_header *)&cpl->data[0];
6359 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
6360 	}
6361 
6362 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
6363 }
6364 
6365 /**
6366  *	t4_handle_wrerr_rpl - process a FW work request error message
6367  *	@adap: the adapter
6368  *	@rpl: start of the FW message
6369  */
6370 static int
6371 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
6372 {
6373 	u8 opcode = *(const u8 *)rpl;
6374 	const struct fw_error_cmd *e = (const void *)rpl;
6375 	unsigned int i;
6376 
6377 	if (opcode != FW_ERROR_CMD) {
6378 		log(LOG_ERR,
6379 		    "%s: Received WRERR_RPL message with opcode %#x\n",
6380 		    device_get_nameunit(adap->dev), opcode);
6381 		return (EINVAL);
6382 	}
6383 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
6384 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
6385 	    "non-fatal");
6386 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
6387 	case FW_ERROR_TYPE_EXCEPTION:
6388 		log(LOG_ERR, "exception info:\n");
6389 		for (i = 0; i < nitems(e->u.exception.info); i++)
6390 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
6391 			    be32toh(e->u.exception.info[i]));
6392 		log(LOG_ERR, "\n");
6393 		break;
6394 	case FW_ERROR_TYPE_HWMODULE:
6395 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
6396 		    be32toh(e->u.hwmodule.regaddr),
6397 		    be32toh(e->u.hwmodule.regval));
6398 		break;
6399 	case FW_ERROR_TYPE_WR:
6400 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
6401 		    be16toh(e->u.wr.cidx),
6402 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
6403 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
6404 		    be32toh(e->u.wr.eqid));
6405 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
6406 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
6407 			    e->u.wr.wrhdr[i]);
6408 		log(LOG_ERR, "\n");
6409 		break;
6410 	case FW_ERROR_TYPE_ACL:
6411 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
6412 		    be16toh(e->u.acl.cidx),
6413 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
6414 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
6415 		    be32toh(e->u.acl.eqid),
6416 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
6417 		    "MAC");
6418 		for (i = 0; i < nitems(e->u.acl.val); i++)
6419 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
6420 		log(LOG_ERR, "\n");
6421 		break;
6422 	default:
6423 		log(LOG_ERR, "type %#x\n",
6424 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
6425 		return (EINVAL);
6426 	}
6427 	return (0);
6428 }
6429 
6430 static inline bool
6431 bufidx_used(struct adapter *sc, int idx)
6432 {
6433 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6434 	int i;
6435 
6436 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6437 		if (rxb->size1 > largest_rx_cluster)
6438 			continue;
6439 		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
6440 			return (true);
6441 	}
6442 
6443 	return (false);
6444 }
6445 
6446 static int
6447 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
6448 {
6449 	struct adapter *sc = arg1;
6450 	struct sge_params *sp = &sc->params.sge;
6451 	int i, rc;
6452 	struct sbuf sb;
6453 	char c;
6454 
6455 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
6456 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
6457 		if (bufidx_used(sc, i))
6458 			c = '*';
6459 		else
6460 			c = '\0';
6461 
6462 		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
6463 	}
6464 	sbuf_trim(&sb);
6465 	sbuf_finish(&sb);
6466 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
6467 	sbuf_delete(&sb);
6468 	return (rc);
6469 }
6470 
6471 #ifdef RATELIMIT
6472 #if defined(INET) || defined(INET6)
6473 /*
6474  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
6475  */
6476 static inline u_int
6477 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
6478 {
6479 	u_int n;
6480 
6481 	MPASS(immhdrs > 0);
6482 
6483 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
6484 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
6485 	if (__predict_false(nsegs == 0))
6486 		goto done;
6487 
6488 	nsegs--; /* first segment is part of ulptx_sgl */
6489 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
6490 	if (tso)
6491 		n += sizeof(struct cpl_tx_pkt_lso_core);
6492 
6493 done:
6494 	return (howmany(n, 16));
6495 }
6496 #endif
6497 
6498 #define ETID_FLOWC_NPARAMS 6
6499 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
6500     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
6501 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
6502 
6503 static int
6504 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
6505     struct vi_info *vi)
6506 {
6507 	struct wrq_cookie cookie;
6508 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
6509 	struct fw_flowc_wr *flowc;
6510 
6511 	mtx_assert(&cst->lock, MA_OWNED);
6512 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
6513 	    EO_FLOWC_PENDING);
6514 
6515 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLOWC_LEN16, &cookie);
6516 	if (__predict_false(flowc == NULL))
6517 		return (ENOMEM);
6518 
6519 	bzero(flowc, ETID_FLOWC_LEN);
6520 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6521 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
6522 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
6523 	    V_FW_WR_FLOWID(cst->etid));
6524 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
6525 	flowc->mnemval[0].val = htobe32(pfvf);
6526 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
6527 	flowc->mnemval[1].val = htobe32(pi->tx_chan);
6528 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
6529 	flowc->mnemval[2].val = htobe32(pi->tx_chan);
6530 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
6531 	flowc->mnemval[3].val = htobe32(cst->iqid);
6532 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
6533 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
6534 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
6535 	flowc->mnemval[5].val = htobe32(cst->schedcl);
6536 
6537 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6538 
6539 	cst->flags &= ~EO_FLOWC_PENDING;
6540 	cst->flags |= EO_FLOWC_RPL_PENDING;
6541 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
6542 	cst->tx_credits -= ETID_FLOWC_LEN16;
6543 
6544 	return (0);
6545 }
6546 
6547 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
6548 
6549 void
6550 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
6551 {
6552 	struct fw_flowc_wr *flowc;
6553 	struct wrq_cookie cookie;
6554 
6555 	mtx_assert(&cst->lock, MA_OWNED);
6556 
6557 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLUSH_LEN16, &cookie);
6558 	if (__predict_false(flowc == NULL))
6559 		CXGBE_UNIMPLEMENTED(__func__);
6560 
6561 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
6562 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6563 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
6564 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
6565 	    V_FW_WR_FLOWID(cst->etid));
6566 
6567 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6568 
6569 	cst->flags |= EO_FLUSH_RPL_PENDING;
6570 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
6571 	cst->tx_credits -= ETID_FLUSH_LEN16;
6572 	cst->ncompl++;
6573 }
6574 
6575 static void
6576 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
6577     struct mbuf *m0, int compl)
6578 {
6579 	struct cpl_tx_pkt_core *cpl;
6580 	uint64_t ctrl1;
6581 	uint32_t ctrl;	/* used in many unrelated places */
6582 	int len16, pktlen, nsegs, immhdrs;
6583 	uintptr_t p;
6584 	struct ulptx_sgl *usgl;
6585 	struct sglist sg;
6586 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
6587 
6588 	mtx_assert(&cst->lock, MA_OWNED);
6589 	M_ASSERTPKTHDR(m0);
6590 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
6591 	    m0->m_pkthdr.l4hlen > 0,
6592 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
6593 
6594 	len16 = mbuf_eo_len16(m0);
6595 	nsegs = mbuf_eo_nsegs(m0);
6596 	pktlen = m0->m_pkthdr.len;
6597 	ctrl = sizeof(struct cpl_tx_pkt_core);
6598 	if (needs_tso(m0))
6599 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
6600 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
6601 	ctrl += immhdrs;
6602 
6603 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
6604 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
6605 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
6606 	    V_FW_WR_FLOWID(cst->etid));
6607 	wr->r3 = 0;
6608 	if (needs_outer_udp_csum(m0)) {
6609 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
6610 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
6611 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6612 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
6613 		wr->u.udpseg.rtplen = 0;
6614 		wr->u.udpseg.r4 = 0;
6615 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
6616 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
6617 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
6618 		cpl = (void *)(wr + 1);
6619 	} else {
6620 		MPASS(needs_outer_tcp_csum(m0));
6621 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
6622 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
6623 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6624 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
6625 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
6626 		wr->u.tcpseg.r4 = 0;
6627 		wr->u.tcpseg.r5 = 0;
6628 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
6629 
6630 		if (needs_tso(m0)) {
6631 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
6632 
6633 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
6634 
6635 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
6636 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
6637 			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6638 				ETHER_HDR_LEN) >> 2) |
6639 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6640 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6641 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6642 				ctrl |= F_LSO_IPV6;
6643 			lso->lso_ctrl = htobe32(ctrl);
6644 			lso->ipid_ofst = htobe16(0);
6645 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6646 			lso->seqno_offset = htobe32(0);
6647 			lso->len = htobe32(pktlen);
6648 
6649 			cpl = (void *)(lso + 1);
6650 		} else {
6651 			wr->u.tcpseg.mss = htobe16(0xffff);
6652 			cpl = (void *)(wr + 1);
6653 		}
6654 	}
6655 
6656 	/* Checksum offload must be requested for ethofld. */
6657 	MPASS(needs_outer_l4_csum(m0));
6658 	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6659 
6660 	/* VLAN tag insertion */
6661 	if (needs_vlan_insertion(m0)) {
6662 		ctrl1 |= F_TXPKT_VLAN_VLD |
6663 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6664 	}
6665 
6666 	/* CPL header */
6667 	cpl->ctrl0 = cst->ctrl0;
6668 	cpl->pack = 0;
6669 	cpl->len = htobe16(pktlen);
6670 	cpl->ctrl1 = htobe64(ctrl1);
6671 
6672 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6673 	p = (uintptr_t)(cpl + 1);
6674 	m_copydata(m0, 0, immhdrs, (void *)p);
6675 
6676 	/* SGL */
6677 	if (nsegs > 0) {
6678 		int i, pad;
6679 
6680 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6681 		p += immhdrs;
6682 		pad = 16 - (immhdrs & 0xf);
6683 		bzero((void *)p, pad);
6684 
6685 		usgl = (void *)(p + pad);
6686 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6687 		    V_ULPTX_NSGE(nsegs));
6688 
6689 		sglist_init(&sg, nitems(segs), segs);
6690 		for (; m0 != NULL; m0 = m0->m_next) {
6691 			if (__predict_false(m0->m_len == 0))
6692 				continue;
6693 			if (immhdrs >= m0->m_len) {
6694 				immhdrs -= m0->m_len;
6695 				continue;
6696 			}
6697 			if (m0->m_flags & M_EXTPG)
6698 				sglist_append_mbuf_epg(&sg, m0,
6699 				    mtod(m0, vm_offset_t), m0->m_len);
6700                         else
6701 				sglist_append(&sg, mtod(m0, char *) + immhdrs,
6702 				    m0->m_len - immhdrs);
6703 			immhdrs = 0;
6704 		}
6705 		MPASS(sg.sg_nseg == nsegs);
6706 
6707 		/*
6708 		 * Zero pad last 8B in case the WR doesn't end on a 16B
6709 		 * boundary.
6710 		 */
6711 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6712 
6713 		usgl->len0 = htobe32(segs[0].ss_len);
6714 		usgl->addr0 = htobe64(segs[0].ss_paddr);
6715 		for (i = 0; i < nsegs - 1; i++) {
6716 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6717 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6718 		}
6719 		if (i & 1)
6720 			usgl->sge[i / 2].len[1] = htobe32(0);
6721 	}
6722 
6723 }
6724 
6725 static void
6726 ethofld_tx(struct cxgbe_rate_tag *cst)
6727 {
6728 	struct mbuf *m;
6729 	struct wrq_cookie cookie;
6730 	int next_credits, compl;
6731 	struct fw_eth_tx_eo_wr *wr;
6732 
6733 	mtx_assert(&cst->lock, MA_OWNED);
6734 
6735 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6736 		M_ASSERTPKTHDR(m);
6737 
6738 		/* How many len16 credits do we need to send this mbuf. */
6739 		next_credits = mbuf_eo_len16(m);
6740 		MPASS(next_credits > 0);
6741 		if (next_credits > cst->tx_credits) {
6742 			/*
6743 			 * Tx will make progress eventually because there is at
6744 			 * least one outstanding fw4_ack that will return
6745 			 * credits and kick the tx.
6746 			 */
6747 			MPASS(cst->ncompl > 0);
6748 			return;
6749 		}
6750 		wr = start_wrq_wr(&cst->eo_txq->wrq, next_credits, &cookie);
6751 		if (__predict_false(wr == NULL)) {
6752 			/* XXX: wishful thinking, not a real assertion. */
6753 			MPASS(cst->ncompl > 0);
6754 			return;
6755 		}
6756 		cst->tx_credits -= next_credits;
6757 		cst->tx_nocompl += next_credits;
6758 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
6759 		ETHER_BPF_MTAP(cst->com.ifp, m);
6760 		write_ethofld_wr(cst, wr, m, compl);
6761 		commit_wrq_wr(&cst->eo_txq->wrq, wr, &cookie);
6762 		if (compl) {
6763 			cst->ncompl++;
6764 			cst->tx_nocompl	= 0;
6765 		}
6766 		(void) mbufq_dequeue(&cst->pending_tx);
6767 
6768 		/*
6769 		 * Drop the mbuf's reference on the tag now rather
6770 		 * than waiting until m_freem().  This ensures that
6771 		 * cxgbe_rate_tag_free gets called when the inp drops
6772 		 * its reference on the tag and there are no more
6773 		 * mbufs in the pending_tx queue and can flush any
6774 		 * pending requests.  Otherwise if the last mbuf
6775 		 * doesn't request a completion the etid will never be
6776 		 * released.
6777 		 */
6778 		m->m_pkthdr.snd_tag = NULL;
6779 		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
6780 		m_snd_tag_rele(&cst->com);
6781 
6782 		mbufq_enqueue(&cst->pending_fwack, m);
6783 	}
6784 }
6785 
6786 int
6787 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
6788 {
6789 	struct cxgbe_rate_tag *cst;
6790 	int rc;
6791 
6792 	MPASS(m0->m_nextpkt == NULL);
6793 	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
6794 	MPASS(m0->m_pkthdr.snd_tag != NULL);
6795 	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
6796 
6797 	mtx_lock(&cst->lock);
6798 	MPASS(cst->flags & EO_SND_TAG_REF);
6799 
6800 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
6801 		struct vi_info *vi = ifp->if_softc;
6802 		struct port_info *pi = vi->pi;
6803 		struct adapter *sc = pi->adapter;
6804 		const uint32_t rss_mask = vi->rss_size - 1;
6805 		uint32_t rss_hash;
6806 
6807 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
6808 		if (M_HASHTYPE_ISHASH(m0))
6809 			rss_hash = m0->m_pkthdr.flowid;
6810 		else
6811 			rss_hash = arc4random();
6812 		/* We assume RSS hashing */
6813 		cst->iqid = vi->rss[rss_hash & rss_mask];
6814 		cst->eo_txq += rss_hash % vi->nofldtxq;
6815 		rc = send_etid_flowc_wr(cst, pi, vi);
6816 		if (rc != 0)
6817 			goto done;
6818 	}
6819 
6820 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
6821 		rc = ENOBUFS;
6822 		goto done;
6823 	}
6824 
6825 	mbufq_enqueue(&cst->pending_tx, m0);
6826 	cst->plen += m0->m_pkthdr.len;
6827 
6828 	/*
6829 	 * Hold an extra reference on the tag while generating work
6830 	 * requests to ensure that we don't try to free the tag during
6831 	 * ethofld_tx() in case we are sending the final mbuf after
6832 	 * the inp was freed.
6833 	 */
6834 	m_snd_tag_ref(&cst->com);
6835 	ethofld_tx(cst);
6836 	mtx_unlock(&cst->lock);
6837 	m_snd_tag_rele(&cst->com);
6838 	return (0);
6839 
6840 done:
6841 	mtx_unlock(&cst->lock);
6842 	if (__predict_false(rc != 0))
6843 		m_freem(m0);
6844 	return (rc);
6845 }
6846 
6847 static int
6848 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
6849 {
6850 	struct adapter *sc = iq->adapter;
6851 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
6852 	struct mbuf *m;
6853 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
6854 	struct cxgbe_rate_tag *cst;
6855 	uint8_t credits = cpl->credits;
6856 
6857 	cst = lookup_etid(sc, etid);
6858 	mtx_lock(&cst->lock);
6859 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
6860 		MPASS(credits >= ETID_FLOWC_LEN16);
6861 		credits -= ETID_FLOWC_LEN16;
6862 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
6863 	}
6864 
6865 	KASSERT(cst->ncompl > 0,
6866 	    ("%s: etid %u (%p) wasn't expecting completion.",
6867 	    __func__, etid, cst));
6868 	cst->ncompl--;
6869 
6870 	while (credits > 0) {
6871 		m = mbufq_dequeue(&cst->pending_fwack);
6872 		if (__predict_false(m == NULL)) {
6873 			/*
6874 			 * The remaining credits are for the final flush that
6875 			 * was issued when the tag was freed by the kernel.
6876 			 */
6877 			MPASS((cst->flags &
6878 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
6879 			    EO_FLUSH_RPL_PENDING);
6880 			MPASS(credits == ETID_FLUSH_LEN16);
6881 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
6882 			MPASS(cst->ncompl == 0);
6883 
6884 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
6885 			cst->tx_credits += cpl->credits;
6886 			cxgbe_rate_tag_free_locked(cst);
6887 			return (0);	/* cst is gone. */
6888 		}
6889 		KASSERT(m != NULL,
6890 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
6891 		    credits));
6892 		KASSERT(credits >= mbuf_eo_len16(m),
6893 		    ("%s: too few credits (%u, %u, %u)", __func__,
6894 		    cpl->credits, credits, mbuf_eo_len16(m)));
6895 		credits -= mbuf_eo_len16(m);
6896 		cst->plen -= m->m_pkthdr.len;
6897 		m_freem(m);
6898 	}
6899 
6900 	cst->tx_credits += cpl->credits;
6901 	MPASS(cst->tx_credits <= cst->tx_total);
6902 
6903 	if (cst->flags & EO_SND_TAG_REF) {
6904 		/*
6905 		 * As with ethofld_transmit(), hold an extra reference
6906 		 * so that the tag is stable across ethold_tx().
6907 		 */
6908 		m_snd_tag_ref(&cst->com);
6909 		m = mbufq_first(&cst->pending_tx);
6910 		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
6911 			ethofld_tx(cst);
6912 		mtx_unlock(&cst->lock);
6913 		m_snd_tag_rele(&cst->com);
6914 	} else {
6915 		/*
6916 		 * There shouldn't be any pending packets if the tag
6917 		 * was freed by the kernel since any pending packet
6918 		 * should hold a reference to the tag.
6919 		 */
6920 		MPASS(mbufq_first(&cst->pending_tx) == NULL);
6921 		mtx_unlock(&cst->lock);
6922 	}
6923 
6924 	return (0);
6925 }
6926 #endif
6927