xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 5fa29797910346fc0c54829bd979856e83b9b7ea)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ratelimit.h"
36 
37 #include <sys/types.h>
38 #include <sys/eventhandler.h>
39 #include <sys/mbuf.h>
40 #include <sys/socket.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/queue.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 #include <sys/time.h>
47 #include <sys/sglist.h>
48 #include <sys/sysctl.h>
49 #include <sys/smp.h>
50 #include <sys/counter.h>
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_vlan_var.h>
55 #include <netinet/in.h>
56 #include <netinet/ip.h>
57 #include <netinet/ip6.h>
58 #include <netinet/tcp.h>
59 #include <netinet/udp.h>
60 #include <machine/in_cksum.h>
61 #include <machine/md_var.h>
62 #include <vm/vm.h>
63 #include <vm/pmap.h>
64 #ifdef DEV_NETMAP
65 #include <machine/bus.h>
66 #include <sys/selinfo.h>
67 #include <net/if_var.h>
68 #include <net/netmap.h>
69 #include <dev/netmap/netmap_kern.h>
70 #endif
71 
72 #include "common/common.h"
73 #include "common/t4_regs.h"
74 #include "common/t4_regs_values.h"
75 #include "common/t4_msg.h"
76 #include "t4_l2t.h"
77 #include "t4_mp_ring.h"
78 
79 #ifdef T4_PKT_TIMESTAMP
80 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
81 #else
82 #define RX_COPY_THRESHOLD MINCLSIZE
83 #endif
84 
85 /*
86  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
87  * 0-7 are valid values.
88  */
89 static int fl_pktshift = 0;
90 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
91 
92 /*
93  * Pad ethernet payload up to this boundary.
94  * -1: driver should figure out a good value.
95  *  0: disable padding.
96  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
97  */
98 int fl_pad = -1;
99 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
100 
101 /*
102  * Status page length.
103  * -1: driver should figure out a good value.
104  *  64 or 128 are the only other valid values.
105  */
106 static int spg_len = -1;
107 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
108 
109 /*
110  * Congestion drops.
111  * -1: no congestion feedback (not recommended).
112  *  0: backpressure the channel instead of dropping packets right away.
113  *  1: no backpressure, drop packets for the congested queue immediately.
114  */
115 static int cong_drop = 0;
116 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
117 
118 /*
119  * Deliver multiple frames in the same free list buffer if they fit.
120  * -1: let the driver decide whether to enable buffer packing or not.
121  *  0: disable buffer packing.
122  *  1: enable buffer packing.
123  */
124 static int buffer_packing = -1;
125 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
126 
127 /*
128  * Start next frame in a packed buffer at this boundary.
129  * -1: driver should figure out a good value.
130  * T4: driver will ignore this and use the same value as fl_pad above.
131  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
132  */
133 static int fl_pack = -1;
134 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
135 
136 /*
137  * Allow the driver to create mbuf(s) in a cluster allocated for rx.
138  * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
139  * 1: ok to create mbuf(s) within a cluster if there is room.
140  */
141 static int allow_mbufs_in_cluster = 1;
142 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
143 
144 /*
145  * Largest rx cluster size that the driver is allowed to allocate.
146  */
147 static int largest_rx_cluster = MJUM16BYTES;
148 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
149 
150 /*
151  * Size of cluster allocation that's most likely to succeed.  The driver will
152  * fall back to this size if it fails to allocate clusters larger than this.
153  */
154 static int safest_rx_cluster = PAGE_SIZE;
155 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
156 
157 #ifdef RATELIMIT
158 /*
159  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
160  * for rewriting.  -1 and 0-3 are all valid values.
161  * -1: hardware should leave the TCP timestamps alone.
162  * 0: 1ms
163  * 1: 100us
164  * 2: 10us
165  * 3: 1us
166  */
167 static int tsclk = -1;
168 TUNABLE_INT("hw.cxgbe.tsclk", &tsclk);
169 
170 static int eo_max_backlog = 1024 * 1024;
171 TUNABLE_INT("hw.cxgbe.eo_max_backlog", &eo_max_backlog);
172 #endif
173 
174 /*
175  * The interrupt holdoff timers are multiplied by this value on T6+.
176  * 1 and 3-17 (both inclusive) are legal values.
177  */
178 static int tscale = 1;
179 TUNABLE_INT("hw.cxgbe.tscale", &tscale);
180 
181 /*
182  * Number of LRO entries in the lro_ctrl structure per rx queue.
183  */
184 static int lro_entries = TCP_LRO_ENTRIES;
185 TUNABLE_INT("hw.cxgbe.lro_entries", &lro_entries);
186 
187 /*
188  * This enables presorting of frames before they're fed into tcp_lro_rx.
189  */
190 static int lro_mbufs = 0;
191 TUNABLE_INT("hw.cxgbe.lro_mbufs", &lro_mbufs);
192 
193 struct txpkts {
194 	u_int wr_type;		/* type 0 or type 1 */
195 	u_int npkt;		/* # of packets in this work request */
196 	u_int plen;		/* total payload (sum of all packets) */
197 	u_int len16;		/* # of 16B pieces used by this work request */
198 };
199 
200 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
201 struct sgl {
202 	struct sglist sg;
203 	struct sglist_seg seg[TX_SGL_SEGS];
204 };
205 
206 static int service_iq(struct sge_iq *, int);
207 static int service_iq_fl(struct sge_iq *, int);
208 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
209 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
210 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
211 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
212 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
213     uint16_t, char *);
214 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
215     bus_addr_t *, void **);
216 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
217     void *);
218 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
219     int, int);
220 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
221 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
222     struct sge_iq *);
223 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
224     struct sysctl_oid *, struct sge_fl *);
225 static int alloc_fwq(struct adapter *);
226 static int free_fwq(struct adapter *);
227 static int alloc_ctrlq(struct adapter *, struct sge_wrq *, int,
228     struct sysctl_oid *);
229 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
230     struct sysctl_oid *);
231 static int free_rxq(struct vi_info *, struct sge_rxq *);
232 #ifdef TCP_OFFLOAD
233 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
234     struct sysctl_oid *);
235 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
236 #endif
237 #ifdef DEV_NETMAP
238 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
239     struct sysctl_oid *);
240 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
241 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
242     struct sysctl_oid *);
243 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
244 #endif
245 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
246 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
247 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
248 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
249 #endif
250 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
251 static int free_eq(struct adapter *, struct sge_eq *);
252 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
253     struct sysctl_oid *);
254 static int free_wrq(struct adapter *, struct sge_wrq *);
255 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
256     struct sysctl_oid *);
257 static int free_txq(struct vi_info *, struct sge_txq *);
258 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
259 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
260 static int refill_fl(struct adapter *, struct sge_fl *, int);
261 static void refill_sfl(void *);
262 static int alloc_fl_sdesc(struct sge_fl *);
263 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
264 static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
265 static void find_safe_refill_source(struct adapter *, struct sge_fl *);
266 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
267 
268 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
269 static inline u_int txpkt_len16(u_int, u_int);
270 static inline u_int txpkt_vm_len16(u_int, u_int);
271 static inline u_int txpkts0_len16(u_int);
272 static inline u_int txpkts1_len16(void);
273 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
274     struct mbuf *, u_int);
275 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
276     struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int);
277 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
278 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
279 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
280     struct mbuf *, const struct txpkts *, u_int);
281 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
282 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
283 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
284 static inline uint16_t read_hw_cidx(struct sge_eq *);
285 static inline u_int reclaimable_tx_desc(struct sge_eq *);
286 static inline u_int total_available_tx_desc(struct sge_eq *);
287 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
288 static void tx_reclaim(void *, int);
289 static __be64 get_flit(struct sglist_seg *, int, int);
290 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
291     struct mbuf *);
292 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
293     struct mbuf *);
294 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
295 static void wrq_tx_drain(void *, int);
296 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
297 
298 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
299 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
300 #ifdef RATELIMIT
301 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
302 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
303     struct mbuf *);
304 #endif
305 
306 static counter_u64_t extfree_refs;
307 static counter_u64_t extfree_rels;
308 
309 an_handler_t t4_an_handler;
310 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
311 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
312 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
313 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
314 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
315 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
316 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
317 
318 void
319 t4_register_an_handler(an_handler_t h)
320 {
321 	uintptr_t *loc;
322 
323 	MPASS(h == NULL || t4_an_handler == NULL);
324 
325 	loc = (uintptr_t *)&t4_an_handler;
326 	atomic_store_rel_ptr(loc, (uintptr_t)h);
327 }
328 
329 void
330 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
331 {
332 	uintptr_t *loc;
333 
334 	MPASS(type < nitems(t4_fw_msg_handler));
335 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
336 	/*
337 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
338 	 * handler dispatch table.  Reject any attempt to install a handler for
339 	 * this subtype.
340 	 */
341 	MPASS(type != FW_TYPE_RSSCPL);
342 	MPASS(type != FW6_TYPE_RSSCPL);
343 
344 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
345 	atomic_store_rel_ptr(loc, (uintptr_t)h);
346 }
347 
348 void
349 t4_register_cpl_handler(int opcode, cpl_handler_t h)
350 {
351 	uintptr_t *loc;
352 
353 	MPASS(opcode < nitems(t4_cpl_handler));
354 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
355 
356 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
357 	atomic_store_rel_ptr(loc, (uintptr_t)h);
358 }
359 
360 static int
361 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
362     struct mbuf *m)
363 {
364 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
365 	u_int tid;
366 	int cookie;
367 
368 	MPASS(m == NULL);
369 
370 	tid = GET_TID(cpl);
371 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
372 		/*
373 		 * The return code for filter-write is put in the CPL cookie so
374 		 * we have to rely on the hardware tid (is_ftid) to determine
375 		 * that this is a response to a filter.
376 		 */
377 		cookie = CPL_COOKIE_FILTER;
378 	} else {
379 		cookie = G_COOKIE(cpl->cookie);
380 	}
381 	MPASS(cookie > CPL_COOKIE_RESERVED);
382 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
383 
384 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
385 }
386 
387 static int
388 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
389     struct mbuf *m)
390 {
391 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
392 	unsigned int cookie;
393 
394 	MPASS(m == NULL);
395 
396 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
397 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
398 }
399 
400 static int
401 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
402     struct mbuf *m)
403 {
404 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
405 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
406 
407 	MPASS(m == NULL);
408 	MPASS(cookie != CPL_COOKIE_RESERVED);
409 
410 	return (act_open_rpl_handlers[cookie](iq, rss, m));
411 }
412 
413 static int
414 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
415     struct mbuf *m)
416 {
417 	struct adapter *sc = iq->adapter;
418 	u_int cookie;
419 
420 	MPASS(m == NULL);
421 	if (is_hashfilter(sc))
422 		cookie = CPL_COOKIE_HASHFILTER;
423 	else
424 		cookie = CPL_COOKIE_TOM;
425 
426 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
427 }
428 
429 static int
430 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
431 {
432 	struct adapter *sc = iq->adapter;
433 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
434 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
435 	u_int cookie;
436 
437 	MPASS(m == NULL);
438 	if (is_etid(sc, tid))
439 		cookie = CPL_COOKIE_ETHOFLD;
440 	else
441 		cookie = CPL_COOKIE_TOM;
442 
443 	return (fw4_ack_handlers[cookie](iq, rss, m));
444 }
445 
446 static void
447 t4_init_shared_cpl_handlers(void)
448 {
449 
450 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
451 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
452 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
453 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
454 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
455 }
456 
457 void
458 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
459 {
460 	uintptr_t *loc;
461 
462 	MPASS(opcode < nitems(t4_cpl_handler));
463 	MPASS(cookie > CPL_COOKIE_RESERVED);
464 	MPASS(cookie < NUM_CPL_COOKIES);
465 	MPASS(t4_cpl_handler[opcode] != NULL);
466 
467 	switch (opcode) {
468 	case CPL_SET_TCB_RPL:
469 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
470 		break;
471 	case CPL_L2T_WRITE_RPL:
472 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
473 		break;
474 	case CPL_ACT_OPEN_RPL:
475 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
476 		break;
477 	case CPL_ABORT_RPL_RSS:
478 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
479 		break;
480 	case CPL_FW4_ACK:
481 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
482 		break;
483 	default:
484 		MPASS(0);
485 		return;
486 	}
487 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
488 	atomic_store_rel_ptr(loc, (uintptr_t)h);
489 }
490 
491 /*
492  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
493  */
494 void
495 t4_sge_modload(void)
496 {
497 
498 	if (fl_pktshift < 0 || fl_pktshift > 7) {
499 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
500 		    " using 0 instead.\n", fl_pktshift);
501 		fl_pktshift = 0;
502 	}
503 
504 	if (spg_len != 64 && spg_len != 128) {
505 		int len;
506 
507 #if defined(__i386__) || defined(__amd64__)
508 		len = cpu_clflush_line_size > 64 ? 128 : 64;
509 #else
510 		len = 64;
511 #endif
512 		if (spg_len != -1) {
513 			printf("Invalid hw.cxgbe.spg_len value (%d),"
514 			    " using %d instead.\n", spg_len, len);
515 		}
516 		spg_len = len;
517 	}
518 
519 	if (cong_drop < -1 || cong_drop > 1) {
520 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
521 		    " using 0 instead.\n", cong_drop);
522 		cong_drop = 0;
523 	}
524 
525 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
526 		printf("Invalid hw.cxgbe.tscale value (%d),"
527 		    " using 1 instead.\n", tscale);
528 		tscale = 1;
529 	}
530 
531 	extfree_refs = counter_u64_alloc(M_WAITOK);
532 	extfree_rels = counter_u64_alloc(M_WAITOK);
533 	counter_u64_zero(extfree_refs);
534 	counter_u64_zero(extfree_rels);
535 
536 	t4_init_shared_cpl_handlers();
537 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
538 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
539 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
540 	t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx);
541 #ifdef RATELIMIT
542 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
543 	    CPL_COOKIE_ETHOFLD);
544 #endif
545 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
546 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
547 }
548 
549 void
550 t4_sge_modunload(void)
551 {
552 
553 	counter_u64_free(extfree_refs);
554 	counter_u64_free(extfree_rels);
555 }
556 
557 uint64_t
558 t4_sge_extfree_refs(void)
559 {
560 	uint64_t refs, rels;
561 
562 	rels = counter_u64_fetch(extfree_rels);
563 	refs = counter_u64_fetch(extfree_refs);
564 
565 	return (refs - rels);
566 }
567 
568 static inline void
569 setup_pad_and_pack_boundaries(struct adapter *sc)
570 {
571 	uint32_t v, m;
572 	int pad, pack, pad_shift;
573 
574 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
575 	    X_INGPADBOUNDARY_SHIFT;
576 	pad = fl_pad;
577 	if (fl_pad < (1 << pad_shift) ||
578 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
579 	    !powerof2(fl_pad)) {
580 		/*
581 		 * If there is any chance that we might use buffer packing and
582 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
583 		 * it to the minimum allowed in all other cases.
584 		 */
585 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
586 
587 		/*
588 		 * For fl_pad = 0 we'll still write a reasonable value to the
589 		 * register but all the freelists will opt out of padding.
590 		 * We'll complain here only if the user tried to set it to a
591 		 * value greater than 0 that was invalid.
592 		 */
593 		if (fl_pad > 0) {
594 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
595 			    " (%d), using %d instead.\n", fl_pad, pad);
596 		}
597 	}
598 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
599 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
600 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
601 
602 	if (is_t4(sc)) {
603 		if (fl_pack != -1 && fl_pack != pad) {
604 			/* Complain but carry on. */
605 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
606 			    " using %d instead.\n", fl_pack, pad);
607 		}
608 		return;
609 	}
610 
611 	pack = fl_pack;
612 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
613 	    !powerof2(fl_pack)) {
614 		pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
615 		MPASS(powerof2(pack));
616 		if (pack < 16)
617 			pack = 16;
618 		if (pack == 32)
619 			pack = 64;
620 		if (pack > 4096)
621 			pack = 4096;
622 		if (fl_pack != -1) {
623 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
624 			    " (%d), using %d instead.\n", fl_pack, pack);
625 		}
626 	}
627 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
628 	if (pack == 16)
629 		v = V_INGPACKBOUNDARY(0);
630 	else
631 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
632 
633 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
634 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
635 }
636 
637 /*
638  * adap->params.vpd.cclk must be set up before this is called.
639  */
640 void
641 t4_tweak_chip_settings(struct adapter *sc)
642 {
643 	int i;
644 	uint32_t v, m;
645 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
646 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
647 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
648 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
649 	static int sge_flbuf_sizes[] = {
650 		MCLBYTES,
651 #if MJUMPAGESIZE != MCLBYTES
652 		MJUMPAGESIZE,
653 		MJUMPAGESIZE - CL_METADATA_SIZE,
654 		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
655 #endif
656 		MJUM9BYTES,
657 		MJUM16BYTES,
658 		MCLBYTES - MSIZE - CL_METADATA_SIZE,
659 		MJUM9BYTES - CL_METADATA_SIZE,
660 		MJUM16BYTES - CL_METADATA_SIZE,
661 	};
662 
663 	KASSERT(sc->flags & MASTER_PF,
664 	    ("%s: trying to change chip settings when not master.", __func__));
665 
666 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
667 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
668 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
669 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
670 
671 	setup_pad_and_pack_boundaries(sc);
672 
673 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
674 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
675 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
676 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
677 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
678 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
679 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
680 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
681 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
682 
683 	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
684 	    ("%s: hw buffer size table too big", __func__));
685 	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
686 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
687 		    sge_flbuf_sizes[i]);
688 	}
689 
690 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
691 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
692 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
693 
694 	KASSERT(intr_timer[0] <= timer_max,
695 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
696 	    timer_max));
697 	for (i = 1; i < nitems(intr_timer); i++) {
698 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
699 		    ("%s: timers not listed in increasing order (%d)",
700 		    __func__, i));
701 
702 		while (intr_timer[i] > timer_max) {
703 			if (i == nitems(intr_timer) - 1) {
704 				intr_timer[i] = timer_max;
705 				break;
706 			}
707 			intr_timer[i] += intr_timer[i - 1];
708 			intr_timer[i] /= 2;
709 		}
710 	}
711 
712 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
713 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
714 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
715 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
716 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
717 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
718 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
719 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
720 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
721 
722 	if (chip_id(sc) >= CHELSIO_T6) {
723 		m = V_TSCALE(M_TSCALE);
724 		if (tscale == 1)
725 			v = 0;
726 		else
727 			v = V_TSCALE(tscale - 2);
728 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
729 
730 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
731 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
732 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
733 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
734 			v &= ~m;
735 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
736 			    V_WRTHRTHRESH(16);
737 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
738 		}
739 	}
740 
741 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
742 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
743 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
744 
745 	/*
746 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
747 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
748 	 * may have to deal with is MAXPHYS + 1 page.
749 	 */
750 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
751 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
752 
753 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
754 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
755 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
756 
757 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
758 	    F_RESETDDPOFFSET;
759 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
760 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
761 }
762 
763 /*
764  * SGE wants the buffer to be at least 64B and then a multiple of 16.  If
765  * padding is in use, the buffer's start and end need to be aligned to the pad
766  * boundary as well.  We'll just make sure that the size is a multiple of the
767  * boundary here, it is up to the buffer allocation code to make sure the start
768  * of the buffer is aligned as well.
769  */
770 static inline int
771 hwsz_ok(struct adapter *sc, int hwsz)
772 {
773 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
774 
775 	return (hwsz >= 64 && (hwsz & mask) == 0);
776 }
777 
778 /*
779  * XXX: driver really should be able to deal with unexpected settings.
780  */
781 int
782 t4_read_chip_settings(struct adapter *sc)
783 {
784 	struct sge *s = &sc->sge;
785 	struct sge_params *sp = &sc->params.sge;
786 	int i, j, n, rc = 0;
787 	uint32_t m, v, r;
788 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
789 	static int sw_buf_sizes[] = {	/* Sorted by size */
790 		MCLBYTES,
791 #if MJUMPAGESIZE != MCLBYTES
792 		MJUMPAGESIZE,
793 #endif
794 		MJUM9BYTES,
795 		MJUM16BYTES
796 	};
797 	struct sw_zone_info *swz, *safe_swz;
798 	struct hw_buf_info *hwb;
799 
800 	m = F_RXPKTCPLMODE;
801 	v = F_RXPKTCPLMODE;
802 	r = sc->params.sge.sge_control;
803 	if ((r & m) != v) {
804 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
805 		rc = EINVAL;
806 	}
807 
808 	/*
809 	 * If this changes then every single use of PAGE_SHIFT in the driver
810 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
811 	 */
812 	if (sp->page_shift != PAGE_SHIFT) {
813 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
814 		rc = EINVAL;
815 	}
816 
817 	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
818 	hwb = &s->hw_buf_info[0];
819 	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
820 		r = sc->params.sge.sge_fl_buffer_size[i];
821 		hwb->size = r;
822 		hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
823 		hwb->next = -1;
824 	}
825 
826 	/*
827 	 * Create a sorted list in decreasing order of hw buffer sizes (and so
828 	 * increasing order of spare area) for each software zone.
829 	 *
830 	 * If padding is enabled then the start and end of the buffer must align
831 	 * to the pad boundary; if packing is enabled then they must align with
832 	 * the pack boundary as well.  Allocations from the cluster zones are
833 	 * aligned to min(size, 4K), so the buffer starts at that alignment and
834 	 * ends at hwb->size alignment.  If mbuf inlining is allowed the
835 	 * starting alignment will be reduced to MSIZE and the driver will
836 	 * exercise appropriate caution when deciding on the best buffer layout
837 	 * to use.
838 	 */
839 	n = 0;	/* no usable buffer size to begin with */
840 	swz = &s->sw_zone_info[0];
841 	safe_swz = NULL;
842 	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
843 		int8_t head = -1, tail = -1;
844 
845 		swz->size = sw_buf_sizes[i];
846 		swz->zone = m_getzone(swz->size);
847 		swz->type = m_gettype(swz->size);
848 
849 		if (swz->size < PAGE_SIZE) {
850 			MPASS(powerof2(swz->size));
851 			if (fl_pad && (swz->size % sp->pad_boundary != 0))
852 				continue;
853 		}
854 
855 		if (swz->size == safest_rx_cluster)
856 			safe_swz = swz;
857 
858 		hwb = &s->hw_buf_info[0];
859 		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
860 			if (hwb->zidx != -1 || hwb->size > swz->size)
861 				continue;
862 #ifdef INVARIANTS
863 			if (fl_pad)
864 				MPASS(hwb->size % sp->pad_boundary == 0);
865 #endif
866 			hwb->zidx = i;
867 			if (head == -1)
868 				head = tail = j;
869 			else if (hwb->size < s->hw_buf_info[tail].size) {
870 				s->hw_buf_info[tail].next = j;
871 				tail = j;
872 			} else {
873 				int8_t *cur;
874 				struct hw_buf_info *t;
875 
876 				for (cur = &head; *cur != -1; cur = &t->next) {
877 					t = &s->hw_buf_info[*cur];
878 					if (hwb->size == t->size) {
879 						hwb->zidx = -2;
880 						break;
881 					}
882 					if (hwb->size > t->size) {
883 						hwb->next = *cur;
884 						*cur = j;
885 						break;
886 					}
887 				}
888 			}
889 		}
890 		swz->head_hwidx = head;
891 		swz->tail_hwidx = tail;
892 
893 		if (tail != -1) {
894 			n++;
895 			if (swz->size - s->hw_buf_info[tail].size >=
896 			    CL_METADATA_SIZE)
897 				sc->flags |= BUF_PACKING_OK;
898 		}
899 	}
900 	if (n == 0) {
901 		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
902 		rc = EINVAL;
903 	}
904 
905 	s->safe_hwidx1 = -1;
906 	s->safe_hwidx2 = -1;
907 	if (safe_swz != NULL) {
908 		s->safe_hwidx1 = safe_swz->head_hwidx;
909 		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
910 			int spare;
911 
912 			hwb = &s->hw_buf_info[i];
913 #ifdef INVARIANTS
914 			if (fl_pad)
915 				MPASS(hwb->size % sp->pad_boundary == 0);
916 #endif
917 			spare = safe_swz->size - hwb->size;
918 			if (spare >= CL_METADATA_SIZE) {
919 				s->safe_hwidx2 = i;
920 				break;
921 			}
922 		}
923 	}
924 
925 	if (sc->flags & IS_VF)
926 		return (0);
927 
928 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
929 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
930 	if (r != v) {
931 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
932 		rc = EINVAL;
933 	}
934 
935 	m = v = F_TDDPTAGTCB;
936 	r = t4_read_reg(sc, A_ULP_RX_CTL);
937 	if ((r & m) != v) {
938 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
939 		rc = EINVAL;
940 	}
941 
942 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
943 	    F_RESETDDPOFFSET;
944 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
945 	r = t4_read_reg(sc, A_TP_PARA_REG5);
946 	if ((r & m) != v) {
947 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
948 		rc = EINVAL;
949 	}
950 
951 	t4_init_tp_params(sc, 1);
952 
953 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
954 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
955 
956 	return (rc);
957 }
958 
959 int
960 t4_create_dma_tag(struct adapter *sc)
961 {
962 	int rc;
963 
964 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
965 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
966 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
967 	    NULL, &sc->dmat);
968 	if (rc != 0) {
969 		device_printf(sc->dev,
970 		    "failed to create main DMA tag: %d\n", rc);
971 	}
972 
973 	return (rc);
974 }
975 
976 void
977 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
978     struct sysctl_oid_list *children)
979 {
980 	struct sge_params *sp = &sc->params.sge;
981 
982 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
983 	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
984 	    "freelist buffer sizes");
985 
986 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
987 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
988 
989 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
990 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
991 
992 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
993 	    NULL, sp->spg_len, "status page size (bytes)");
994 
995 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
996 	    NULL, cong_drop, "congestion drop setting");
997 
998 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
999 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1000 }
1001 
1002 int
1003 t4_destroy_dma_tag(struct adapter *sc)
1004 {
1005 	if (sc->dmat)
1006 		bus_dma_tag_destroy(sc->dmat);
1007 
1008 	return (0);
1009 }
1010 
1011 /*
1012  * Allocate and initialize the firmware event queue, control queues, and special
1013  * purpose rx queues owned by the adapter.
1014  *
1015  * Returns errno on failure.  Resources allocated up to that point may still be
1016  * allocated.  Caller is responsible for cleanup in case this function fails.
1017  */
1018 int
1019 t4_setup_adapter_queues(struct adapter *sc)
1020 {
1021 	struct sysctl_oid *oid;
1022 	struct sysctl_oid_list *children;
1023 	int rc, i;
1024 
1025 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1026 
1027 	sysctl_ctx_init(&sc->ctx);
1028 	sc->flags |= ADAP_SYSCTL_CTX;
1029 
1030 	/*
1031 	 * Firmware event queue
1032 	 */
1033 	rc = alloc_fwq(sc);
1034 	if (rc != 0)
1035 		return (rc);
1036 
1037 	/*
1038 	 * That's all for the VF driver.
1039 	 */
1040 	if (sc->flags & IS_VF)
1041 		return (rc);
1042 
1043 	oid = device_get_sysctl_tree(sc->dev);
1044 	children = SYSCTL_CHILDREN(oid);
1045 
1046 	/*
1047 	 * XXX: General purpose rx queues, one per port.
1048 	 */
1049 
1050 	/*
1051 	 * Control queues, one per port.
1052 	 */
1053 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "ctrlq",
1054 	    CTLFLAG_RD, NULL, "control queues");
1055 	for_each_port(sc, i) {
1056 		struct sge_wrq *ctrlq = &sc->sge.ctrlq[i];
1057 
1058 		rc = alloc_ctrlq(sc, ctrlq, i, oid);
1059 		if (rc != 0)
1060 			return (rc);
1061 	}
1062 
1063 	return (rc);
1064 }
1065 
1066 /*
1067  * Idempotent
1068  */
1069 int
1070 t4_teardown_adapter_queues(struct adapter *sc)
1071 {
1072 	int i;
1073 
1074 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1075 
1076 	/* Do this before freeing the queue */
1077 	if (sc->flags & ADAP_SYSCTL_CTX) {
1078 		sysctl_ctx_free(&sc->ctx);
1079 		sc->flags &= ~ADAP_SYSCTL_CTX;
1080 	}
1081 
1082 	if (!(sc->flags & IS_VF)) {
1083 		for_each_port(sc, i)
1084 			free_wrq(sc, &sc->sge.ctrlq[i]);
1085 	}
1086 	free_fwq(sc);
1087 
1088 	return (0);
1089 }
1090 
1091 /* Maximum payload that can be delivered with a single iq descriptor */
1092 static inline int
1093 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
1094 {
1095 	int payload;
1096 
1097 #ifdef TCP_OFFLOAD
1098 	if (toe) {
1099 		int rxcs = G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2));
1100 
1101 		/* Note that COP can set rx_coalesce on/off per connection. */
1102 		payload = max(mtu, rxcs);
1103 	} else {
1104 #endif
1105 		/* large enough even when hw VLAN extraction is disabled */
1106 		payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1107 		    ETHER_VLAN_ENCAP_LEN + mtu;
1108 #ifdef TCP_OFFLOAD
1109 	}
1110 #endif
1111 
1112 	return (payload);
1113 }
1114 
1115 int
1116 t4_setup_vi_queues(struct vi_info *vi)
1117 {
1118 	int rc = 0, i, intr_idx, iqidx;
1119 	struct sge_rxq *rxq;
1120 	struct sge_txq *txq;
1121 #ifdef TCP_OFFLOAD
1122 	struct sge_ofld_rxq *ofld_rxq;
1123 #endif
1124 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1125 	struct sge_wrq *ofld_txq;
1126 #endif
1127 #ifdef DEV_NETMAP
1128 	int saved_idx;
1129 	struct sge_nm_rxq *nm_rxq;
1130 	struct sge_nm_txq *nm_txq;
1131 #endif
1132 	char name[16];
1133 	struct port_info *pi = vi->pi;
1134 	struct adapter *sc = pi->adapter;
1135 	struct ifnet *ifp = vi->ifp;
1136 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
1137 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1138 	int maxp, mtu = ifp->if_mtu;
1139 
1140 	/* Interrupt vector to start from (when using multiple vectors) */
1141 	intr_idx = vi->first_intr;
1142 
1143 #ifdef DEV_NETMAP
1144 	saved_idx = intr_idx;
1145 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1146 
1147 		/* netmap is supported with direct interrupts only. */
1148 		MPASS(!forwarding_intr_to_fwq(sc));
1149 
1150 		/*
1151 		 * We don't have buffers to back the netmap rx queues
1152 		 * right now so we create the queues in a way that
1153 		 * doesn't set off any congestion signal in the chip.
1154 		 */
1155 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1156 		    CTLFLAG_RD, NULL, "rx queues");
1157 		for_each_nm_rxq(vi, i, nm_rxq) {
1158 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1159 			if (rc != 0)
1160 				goto done;
1161 			intr_idx++;
1162 		}
1163 
1164 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1165 		    CTLFLAG_RD, NULL, "tx queues");
1166 		for_each_nm_txq(vi, i, nm_txq) {
1167 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1168 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid);
1169 			if (rc != 0)
1170 				goto done;
1171 		}
1172 	}
1173 
1174 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1175 	intr_idx = saved_idx;
1176 #endif
1177 
1178 	/*
1179 	 * Allocate rx queues first because a default iqid is required when
1180 	 * creating a tx queue.
1181 	 */
1182 	maxp = mtu_to_max_payload(sc, mtu, 0);
1183 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1184 	    CTLFLAG_RD, NULL, "rx queues");
1185 	for_each_rxq(vi, i, rxq) {
1186 
1187 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1188 
1189 		snprintf(name, sizeof(name), "%s rxq%d-fl",
1190 		    device_get_nameunit(vi->dev), i);
1191 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1192 
1193 		rc = alloc_rxq(vi, rxq,
1194 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1195 		if (rc != 0)
1196 			goto done;
1197 		intr_idx++;
1198 	}
1199 #ifdef DEV_NETMAP
1200 	if (ifp->if_capabilities & IFCAP_NETMAP)
1201 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1202 #endif
1203 #ifdef TCP_OFFLOAD
1204 	maxp = mtu_to_max_payload(sc, mtu, 1);
1205 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1206 	    CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections");
1207 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1208 
1209 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
1210 		    vi->qsize_rxq);
1211 
1212 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1213 		    device_get_nameunit(vi->dev), i);
1214 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1215 
1216 		rc = alloc_ofld_rxq(vi, ofld_rxq,
1217 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1218 		if (rc != 0)
1219 			goto done;
1220 		intr_idx++;
1221 	}
1222 #endif
1223 
1224 	/*
1225 	 * Now the tx queues.
1226 	 */
1227 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1228 	    NULL, "tx queues");
1229 	for_each_txq(vi, i, txq) {
1230 		iqidx = vi->first_rxq + (i % vi->nrxq);
1231 		snprintf(name, sizeof(name), "%s txq%d",
1232 		    device_get_nameunit(vi->dev), i);
1233 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
1234 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1235 
1236 		rc = alloc_txq(vi, txq, i, oid);
1237 		if (rc != 0)
1238 			goto done;
1239 	}
1240 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1241 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1242 	    CTLFLAG_RD, NULL, "tx queues for TOE/ETHOFLD");
1243 	for_each_ofld_txq(vi, i, ofld_txq) {
1244 		struct sysctl_oid *oid2;
1245 
1246 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1247 		    device_get_nameunit(vi->dev), i);
1248 #ifdef TCP_OFFLOAD
1249 		iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq);
1250 		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1251 		    sc->sge.ofld_rxq[iqidx].iq.cntxt_id, name);
1252 #else
1253 		iqidx = vi->first_rxq + (i % vi->nrxq);
1254 		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1255 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1256 #endif
1257 
1258 		snprintf(name, sizeof(name), "%d", i);
1259 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1260 		    name, CTLFLAG_RD, NULL, "offload tx queue");
1261 
1262 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1263 		if (rc != 0)
1264 			goto done;
1265 	}
1266 #endif
1267 done:
1268 	if (rc)
1269 		t4_teardown_vi_queues(vi);
1270 
1271 	return (rc);
1272 }
1273 
1274 /*
1275  * Idempotent
1276  */
1277 int
1278 t4_teardown_vi_queues(struct vi_info *vi)
1279 {
1280 	int i;
1281 	struct sge_rxq *rxq;
1282 	struct sge_txq *txq;
1283 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1284 	struct port_info *pi = vi->pi;
1285 	struct adapter *sc = pi->adapter;
1286 	struct sge_wrq *ofld_txq;
1287 #endif
1288 #ifdef TCP_OFFLOAD
1289 	struct sge_ofld_rxq *ofld_rxq;
1290 #endif
1291 #ifdef DEV_NETMAP
1292 	struct sge_nm_rxq *nm_rxq;
1293 	struct sge_nm_txq *nm_txq;
1294 #endif
1295 
1296 	/* Do this before freeing the queues */
1297 	if (vi->flags & VI_SYSCTL_CTX) {
1298 		sysctl_ctx_free(&vi->ctx);
1299 		vi->flags &= ~VI_SYSCTL_CTX;
1300 	}
1301 
1302 #ifdef DEV_NETMAP
1303 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1304 		for_each_nm_txq(vi, i, nm_txq) {
1305 			free_nm_txq(vi, nm_txq);
1306 		}
1307 
1308 		for_each_nm_rxq(vi, i, nm_rxq) {
1309 			free_nm_rxq(vi, nm_rxq);
1310 		}
1311 	}
1312 #endif
1313 
1314 	/*
1315 	 * Take down all the tx queues first, as they reference the rx queues
1316 	 * (for egress updates, etc.).
1317 	 */
1318 
1319 	for_each_txq(vi, i, txq) {
1320 		free_txq(vi, txq);
1321 	}
1322 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1323 	for_each_ofld_txq(vi, i, ofld_txq) {
1324 		free_wrq(sc, ofld_txq);
1325 	}
1326 #endif
1327 
1328 	/*
1329 	 * Then take down the rx queues.
1330 	 */
1331 
1332 	for_each_rxq(vi, i, rxq) {
1333 		free_rxq(vi, rxq);
1334 	}
1335 #ifdef TCP_OFFLOAD
1336 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1337 		free_ofld_rxq(vi, ofld_rxq);
1338 	}
1339 #endif
1340 
1341 	return (0);
1342 }
1343 
1344 /*
1345  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1346  * unusual scenario.
1347  *
1348  * a) Deals with errors, if any.
1349  * b) Services firmware event queue, which is taking interrupts for all other
1350  *    queues.
1351  */
1352 void
1353 t4_intr_all(void *arg)
1354 {
1355 	struct adapter *sc = arg;
1356 	struct sge_iq *fwq = &sc->sge.fwq;
1357 
1358 	MPASS(sc->intr_count == 1);
1359 
1360 	t4_intr_err(arg);
1361 	t4_intr_evt(fwq);
1362 }
1363 
1364 /*
1365  * Interrupt handler for errors (installed directly when multiple interrupts are
1366  * being used, or called by t4_intr_all).
1367  */
1368 void
1369 t4_intr_err(void *arg)
1370 {
1371 	struct adapter *sc = arg;
1372 
1373 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1374 	t4_slow_intr_handler(sc);
1375 }
1376 
1377 /*
1378  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1379  * such queue right now.
1380  */
1381 void
1382 t4_intr_evt(void *arg)
1383 {
1384 	struct sge_iq *iq = arg;
1385 
1386 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1387 		service_iq(iq, 0);
1388 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1389 	}
1390 }
1391 
1392 /*
1393  * Interrupt handler for iq+fl queues.
1394  */
1395 void
1396 t4_intr(void *arg)
1397 {
1398 	struct sge_iq *iq = arg;
1399 
1400 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1401 		service_iq_fl(iq, 0);
1402 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1403 	}
1404 }
1405 
1406 #ifdef DEV_NETMAP
1407 /*
1408  * Interrupt handler for netmap rx queues.
1409  */
1410 void
1411 t4_nm_intr(void *arg)
1412 {
1413 	struct sge_nm_rxq *nm_rxq = arg;
1414 
1415 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1416 		service_nm_rxq(nm_rxq);
1417 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1418 	}
1419 }
1420 
1421 /*
1422  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1423  */
1424 void
1425 t4_vi_intr(void *arg)
1426 {
1427 	struct irq *irq = arg;
1428 
1429 	MPASS(irq->nm_rxq != NULL);
1430 	t4_nm_intr(irq->nm_rxq);
1431 
1432 	MPASS(irq->rxq != NULL);
1433 	t4_intr(irq->rxq);
1434 }
1435 #endif
1436 
1437 /*
1438  * Deals with interrupts on an iq-only (no freelist) queue.
1439  */
1440 static int
1441 service_iq(struct sge_iq *iq, int budget)
1442 {
1443 	struct sge_iq *q;
1444 	struct adapter *sc = iq->adapter;
1445 	struct iq_desc *d = &iq->desc[iq->cidx];
1446 	int ndescs = 0, limit;
1447 	int rsp_type;
1448 	uint32_t lq;
1449 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1450 
1451 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1452 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1453 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1454 	    iq->flags));
1455 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1456 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1457 
1458 	limit = budget ? budget : iq->qsize / 16;
1459 
1460 	/*
1461 	 * We always come back and check the descriptor ring for new indirect
1462 	 * interrupts and other responses after running a single handler.
1463 	 */
1464 	for (;;) {
1465 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1466 
1467 			rmb();
1468 
1469 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1470 			lq = be32toh(d->rsp.pldbuflen_qid);
1471 
1472 			switch (rsp_type) {
1473 			case X_RSPD_TYPE_FLBUF:
1474 				panic("%s: data for an iq (%p) with no freelist",
1475 				    __func__, iq);
1476 
1477 				/* NOTREACHED */
1478 
1479 			case X_RSPD_TYPE_CPL:
1480 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1481 				    ("%s: bad opcode %02x.", __func__,
1482 				    d->rss.opcode));
1483 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1484 				break;
1485 
1486 			case X_RSPD_TYPE_INTR:
1487 				/*
1488 				 * There are 1K interrupt-capable queues (qids 0
1489 				 * through 1023).  A response type indicating a
1490 				 * forwarded interrupt with a qid >= 1K is an
1491 				 * iWARP async notification.
1492 				 */
1493 				if (__predict_true(lq >= 1024)) {
1494 					t4_an_handler(iq, &d->rsp);
1495 					break;
1496 				}
1497 
1498 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1499 				    sc->sge.iq_base];
1500 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1501 				    IQS_BUSY)) {
1502 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1503 						(void) atomic_cmpset_int(&q->state,
1504 						    IQS_BUSY, IQS_IDLE);
1505 					} else {
1506 						STAILQ_INSERT_TAIL(&iql, q,
1507 						    link);
1508 					}
1509 				}
1510 				break;
1511 
1512 			default:
1513 				KASSERT(0,
1514 				    ("%s: illegal response type %d on iq %p",
1515 				    __func__, rsp_type, iq));
1516 				log(LOG_ERR,
1517 				    "%s: illegal response type %d on iq %p",
1518 				    device_get_nameunit(sc->dev), rsp_type, iq);
1519 				break;
1520 			}
1521 
1522 			d++;
1523 			if (__predict_false(++iq->cidx == iq->sidx)) {
1524 				iq->cidx = 0;
1525 				iq->gen ^= F_RSPD_GEN;
1526 				d = &iq->desc[0];
1527 			}
1528 			if (__predict_false(++ndescs == limit)) {
1529 				t4_write_reg(sc, sc->sge_gts_reg,
1530 				    V_CIDXINC(ndescs) |
1531 				    V_INGRESSQID(iq->cntxt_id) |
1532 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1533 				ndescs = 0;
1534 
1535 				if (budget) {
1536 					return (EINPROGRESS);
1537 				}
1538 			}
1539 		}
1540 
1541 		if (STAILQ_EMPTY(&iql))
1542 			break;
1543 
1544 		/*
1545 		 * Process the head only, and send it to the back of the list if
1546 		 * it's still not done.
1547 		 */
1548 		q = STAILQ_FIRST(&iql);
1549 		STAILQ_REMOVE_HEAD(&iql, link);
1550 		if (service_iq_fl(q, q->qsize / 8) == 0)
1551 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1552 		else
1553 			STAILQ_INSERT_TAIL(&iql, q, link);
1554 	}
1555 
1556 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1557 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1558 
1559 	return (0);
1560 }
1561 
1562 static inline int
1563 sort_before_lro(struct lro_ctrl *lro)
1564 {
1565 
1566 	return (lro->lro_mbuf_max != 0);
1567 }
1568 
1569 static inline uint64_t
1570 last_flit_to_ns(struct adapter *sc, uint64_t lf)
1571 {
1572 	uint64_t n = be64toh(lf) & 0xfffffffffffffff;	/* 60b, not 64b. */
1573 
1574 	if (n > UINT64_MAX / 1000000)
1575 		return (n / sc->params.vpd.cclk * 1000000);
1576 	else
1577 		return (n * 1000000 / sc->params.vpd.cclk);
1578 }
1579 
1580 /*
1581  * Deals with interrupts on an iq+fl queue.
1582  */
1583 static int
1584 service_iq_fl(struct sge_iq *iq, int budget)
1585 {
1586 	struct sge_rxq *rxq = iq_to_rxq(iq);
1587 	struct sge_fl *fl;
1588 	struct adapter *sc = iq->adapter;
1589 	struct iq_desc *d = &iq->desc[iq->cidx];
1590 	int ndescs = 0, limit;
1591 	int rsp_type, refill, starved;
1592 	uint32_t lq;
1593 	uint16_t fl_hw_cidx;
1594 	struct mbuf *m0;
1595 #if defined(INET) || defined(INET6)
1596 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1597 	struct lro_ctrl *lro = &rxq->lro;
1598 #endif
1599 
1600 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1601 	MPASS(iq->flags & IQ_HAS_FL);
1602 
1603 	limit = budget ? budget : iq->qsize / 16;
1604 	fl = &rxq->fl;
1605 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1606 
1607 #if defined(INET) || defined(INET6)
1608 	if (iq->flags & IQ_ADJ_CREDIT) {
1609 		MPASS(sort_before_lro(lro));
1610 		iq->flags &= ~IQ_ADJ_CREDIT;
1611 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1612 			tcp_lro_flush_all(lro);
1613 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1614 			    V_INGRESSQID((u32)iq->cntxt_id) |
1615 			    V_SEINTARM(iq->intr_params));
1616 			return (0);
1617 		}
1618 		ndescs = 1;
1619 	}
1620 #else
1621 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1622 #endif
1623 
1624 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1625 
1626 		rmb();
1627 
1628 		refill = 0;
1629 		m0 = NULL;
1630 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1631 		lq = be32toh(d->rsp.pldbuflen_qid);
1632 
1633 		switch (rsp_type) {
1634 		case X_RSPD_TYPE_FLBUF:
1635 
1636 			m0 = get_fl_payload(sc, fl, lq);
1637 			if (__predict_false(m0 == NULL))
1638 				goto out;
1639 			refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1640 
1641 			if (iq->flags & IQ_RX_TIMESTAMP) {
1642 				/*
1643 				 * Fill up rcv_tstmp but do not set M_TSTMP.
1644 				 * rcv_tstmp is not in the format that the
1645 				 * kernel expects and we don't want to mislead
1646 				 * it.  For now this is only for custom code
1647 				 * that knows how to interpret cxgbe's stamp.
1648 				 */
1649 				m0->m_pkthdr.rcv_tstmp =
1650 				    last_flit_to_ns(sc, d->rsp.u.last_flit);
1651 #ifdef notyet
1652 				m0->m_flags |= M_TSTMP;
1653 #endif
1654 			}
1655 
1656 			/* fall through */
1657 
1658 		case X_RSPD_TYPE_CPL:
1659 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1660 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1661 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1662 			break;
1663 
1664 		case X_RSPD_TYPE_INTR:
1665 
1666 			/*
1667 			 * There are 1K interrupt-capable queues (qids 0
1668 			 * through 1023).  A response type indicating a
1669 			 * forwarded interrupt with a qid >= 1K is an
1670 			 * iWARP async notification.  That is the only
1671 			 * acceptable indirect interrupt on this queue.
1672 			 */
1673 			if (__predict_false(lq < 1024)) {
1674 				panic("%s: indirect interrupt on iq_fl %p "
1675 				    "with qid %u", __func__, iq, lq);
1676 			}
1677 
1678 			t4_an_handler(iq, &d->rsp);
1679 			break;
1680 
1681 		default:
1682 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1683 			    __func__, rsp_type, iq));
1684 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1685 			    device_get_nameunit(sc->dev), rsp_type, iq);
1686 			break;
1687 		}
1688 
1689 		d++;
1690 		if (__predict_false(++iq->cidx == iq->sidx)) {
1691 			iq->cidx = 0;
1692 			iq->gen ^= F_RSPD_GEN;
1693 			d = &iq->desc[0];
1694 		}
1695 		if (__predict_false(++ndescs == limit)) {
1696 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1697 			    V_INGRESSQID(iq->cntxt_id) |
1698 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1699 			ndescs = 0;
1700 
1701 #if defined(INET) || defined(INET6)
1702 			if (iq->flags & IQ_LRO_ENABLED &&
1703 			    !sort_before_lro(lro) &&
1704 			    sc->lro_timeout != 0) {
1705 				tcp_lro_flush_inactive(lro, &lro_timeout);
1706 			}
1707 #endif
1708 			if (budget) {
1709 				FL_LOCK(fl);
1710 				refill_fl(sc, fl, 32);
1711 				FL_UNLOCK(fl);
1712 
1713 				return (EINPROGRESS);
1714 			}
1715 		}
1716 		if (refill) {
1717 			FL_LOCK(fl);
1718 			refill_fl(sc, fl, 32);
1719 			FL_UNLOCK(fl);
1720 			fl_hw_cidx = fl->hw_cidx;
1721 		}
1722 	}
1723 out:
1724 #if defined(INET) || defined(INET6)
1725 	if (iq->flags & IQ_LRO_ENABLED) {
1726 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1727 			MPASS(sort_before_lro(lro));
1728 			/* hold back one credit and don't flush LRO state */
1729 			iq->flags |= IQ_ADJ_CREDIT;
1730 			ndescs--;
1731 		} else {
1732 			tcp_lro_flush_all(lro);
1733 		}
1734 	}
1735 #endif
1736 
1737 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1738 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1739 
1740 	FL_LOCK(fl);
1741 	starved = refill_fl(sc, fl, 64);
1742 	FL_UNLOCK(fl);
1743 	if (__predict_false(starved != 0))
1744 		add_fl_to_sfl(sc, fl);
1745 
1746 	return (0);
1747 }
1748 
1749 static inline int
1750 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1751 {
1752 	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1753 
1754 	if (rc)
1755 		MPASS(cll->region3 >= CL_METADATA_SIZE);
1756 
1757 	return (rc);
1758 }
1759 
1760 static inline struct cluster_metadata *
1761 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1762     caddr_t cl)
1763 {
1764 
1765 	if (cl_has_metadata(fl, cll)) {
1766 		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1767 
1768 		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1769 	}
1770 	return (NULL);
1771 }
1772 
1773 static void
1774 rxb_free(struct mbuf *m)
1775 {
1776 	uma_zone_t zone = m->m_ext.ext_arg1;
1777 	void *cl = m->m_ext.ext_arg2;
1778 
1779 	uma_zfree(zone, cl);
1780 	counter_u64_add(extfree_rels, 1);
1781 }
1782 
1783 /*
1784  * The mbuf returned by this function could be allocated from zone_mbuf or
1785  * constructed in spare room in the cluster.
1786  *
1787  * The mbuf carries the payload in one of these ways
1788  * a) frame inside the mbuf (mbuf from zone_mbuf)
1789  * b) m_cljset (for clusters without metadata) zone_mbuf
1790  * c) m_extaddref (cluster with metadata) inline mbuf
1791  * d) m_extaddref (cluster with metadata) zone_mbuf
1792  */
1793 static struct mbuf *
1794 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1795     int remaining)
1796 {
1797 	struct mbuf *m;
1798 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1799 	struct cluster_layout *cll = &sd->cll;
1800 	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1801 	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1802 	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1803 	int len, blen;
1804 	caddr_t payload;
1805 
1806 	blen = hwb->size - fl->rx_offset;	/* max possible in this buf */
1807 	len = min(remaining, blen);
1808 	payload = sd->cl + cll->region1 + fl->rx_offset;
1809 	if (fl->flags & FL_BUF_PACKING) {
1810 		const u_int l = fr_offset + len;
1811 		const u_int pad = roundup2(l, fl->buf_boundary) - l;
1812 
1813 		if (fl->rx_offset + len + pad < hwb->size)
1814 			blen = len + pad;
1815 		MPASS(fl->rx_offset + blen <= hwb->size);
1816 	} else {
1817 		MPASS(fl->rx_offset == 0);	/* not packing */
1818 	}
1819 
1820 
1821 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1822 
1823 		/*
1824 		 * Copy payload into a freshly allocated mbuf.
1825 		 */
1826 
1827 		m = fr_offset == 0 ?
1828 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1829 		if (m == NULL)
1830 			return (NULL);
1831 		fl->mbuf_allocated++;
1832 
1833 		/* copy data to mbuf */
1834 		bcopy(payload, mtod(m, caddr_t), len);
1835 
1836 	} else if (sd->nmbuf * MSIZE < cll->region1) {
1837 
1838 		/*
1839 		 * There's spare room in the cluster for an mbuf.  Create one
1840 		 * and associate it with the payload that's in the cluster.
1841 		 */
1842 
1843 		MPASS(clm != NULL);
1844 		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1845 		/* No bzero required */
1846 		if (m_init(m, M_NOWAIT, MT_DATA,
1847 		    fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
1848 			return (NULL);
1849 		fl->mbuf_inlined++;
1850 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
1851 		    swz->zone, sd->cl);
1852 		if (sd->nmbuf++ == 0)
1853 			counter_u64_add(extfree_refs, 1);
1854 
1855 	} else {
1856 
1857 		/*
1858 		 * Grab an mbuf from zone_mbuf and associate it with the
1859 		 * payload in the cluster.
1860 		 */
1861 
1862 		m = fr_offset == 0 ?
1863 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1864 		if (m == NULL)
1865 			return (NULL);
1866 		fl->mbuf_allocated++;
1867 		if (clm != NULL) {
1868 			m_extaddref(m, payload, blen, &clm->refcount,
1869 			    rxb_free, swz->zone, sd->cl);
1870 			if (sd->nmbuf++ == 0)
1871 				counter_u64_add(extfree_refs, 1);
1872 		} else {
1873 			m_cljset(m, sd->cl, swz->type);
1874 			sd->cl = NULL;	/* consumed, not a recycle candidate */
1875 		}
1876 	}
1877 	if (fr_offset == 0)
1878 		m->m_pkthdr.len = remaining;
1879 	m->m_len = len;
1880 
1881 	if (fl->flags & FL_BUF_PACKING) {
1882 		fl->rx_offset += blen;
1883 		MPASS(fl->rx_offset <= hwb->size);
1884 		if (fl->rx_offset < hwb->size)
1885 			return (m);	/* without advancing the cidx */
1886 	}
1887 
1888 	if (__predict_false(++fl->cidx % 8 == 0)) {
1889 		uint16_t cidx = fl->cidx / 8;
1890 
1891 		if (__predict_false(cidx == fl->sidx))
1892 			fl->cidx = cidx = 0;
1893 		fl->hw_cidx = cidx;
1894 	}
1895 	fl->rx_offset = 0;
1896 
1897 	return (m);
1898 }
1899 
1900 static struct mbuf *
1901 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1902 {
1903 	struct mbuf *m0, *m, **pnext;
1904 	u_int remaining;
1905 	const u_int total = G_RSPD_LEN(len_newbuf);
1906 
1907 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1908 		M_ASSERTPKTHDR(fl->m0);
1909 		MPASS(fl->m0->m_pkthdr.len == total);
1910 		MPASS(fl->remaining < total);
1911 
1912 		m0 = fl->m0;
1913 		pnext = fl->pnext;
1914 		remaining = fl->remaining;
1915 		fl->flags &= ~FL_BUF_RESUME;
1916 		goto get_segment;
1917 	}
1918 
1919 	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1920 		fl->rx_offset = 0;
1921 		if (__predict_false(++fl->cidx % 8 == 0)) {
1922 			uint16_t cidx = fl->cidx / 8;
1923 
1924 			if (__predict_false(cidx == fl->sidx))
1925 				fl->cidx = cidx = 0;
1926 			fl->hw_cidx = cidx;
1927 		}
1928 	}
1929 
1930 	/*
1931 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1932 	 * 'len' and it may span multiple hw buffers.
1933 	 */
1934 
1935 	m0 = get_scatter_segment(sc, fl, 0, total);
1936 	if (m0 == NULL)
1937 		return (NULL);
1938 	remaining = total - m0->m_len;
1939 	pnext = &m0->m_next;
1940 	while (remaining > 0) {
1941 get_segment:
1942 		MPASS(fl->rx_offset == 0);
1943 		m = get_scatter_segment(sc, fl, total - remaining, remaining);
1944 		if (__predict_false(m == NULL)) {
1945 			fl->m0 = m0;
1946 			fl->pnext = pnext;
1947 			fl->remaining = remaining;
1948 			fl->flags |= FL_BUF_RESUME;
1949 			return (NULL);
1950 		}
1951 		*pnext = m;
1952 		pnext = &m->m_next;
1953 		remaining -= m->m_len;
1954 	}
1955 	*pnext = NULL;
1956 
1957 	M_ASSERTPKTHDR(m0);
1958 	return (m0);
1959 }
1960 
1961 static int
1962 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1963 {
1964 	struct sge_rxq *rxq = iq_to_rxq(iq);
1965 	struct ifnet *ifp = rxq->ifp;
1966 	struct adapter *sc = iq->adapter;
1967 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1968 #if defined(INET) || defined(INET6)
1969 	struct lro_ctrl *lro = &rxq->lro;
1970 #endif
1971 	static const int sw_hashtype[4][2] = {
1972 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1973 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1974 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1975 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1976 	};
1977 
1978 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1979 	    rss->opcode));
1980 
1981 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1982 	m0->m_len -= sc->params.sge.fl_pktshift;
1983 	m0->m_data += sc->params.sge.fl_pktshift;
1984 
1985 	m0->m_pkthdr.rcvif = ifp;
1986 	M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
1987 	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1988 
1989 	if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) {
1990 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1991 		    cpl->l2info & htobe32(F_RXF_IP)) {
1992 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1993 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1994 			rxq->rxcsum++;
1995 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1996 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1997 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1998 			    CSUM_PSEUDO_HDR);
1999 			rxq->rxcsum++;
2000 		}
2001 
2002 		if (__predict_false(cpl->ip_frag))
2003 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2004 		else
2005 			m0->m_pkthdr.csum_data = 0xffff;
2006 	}
2007 
2008 	if (cpl->vlan_ex) {
2009 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2010 		m0->m_flags |= M_VLANTAG;
2011 		rxq->vlan_extraction++;
2012 	}
2013 
2014 #if defined(INET) || defined(INET6)
2015 	if (iq->flags & IQ_LRO_ENABLED) {
2016 		if (sort_before_lro(lro)) {
2017 			tcp_lro_queue_mbuf(lro, m0);
2018 			return (0); /* queued for sort, then LRO */
2019 		}
2020 		if (tcp_lro_rx(lro, m0, 0) == 0)
2021 			return (0); /* queued for LRO */
2022 	}
2023 #endif
2024 	ifp->if_input(ifp, m0);
2025 
2026 	return (0);
2027 }
2028 
2029 /*
2030  * Must drain the wrq or make sure that someone else will.
2031  */
2032 static void
2033 wrq_tx_drain(void *arg, int n)
2034 {
2035 	struct sge_wrq *wrq = arg;
2036 	struct sge_eq *eq = &wrq->eq;
2037 
2038 	EQ_LOCK(eq);
2039 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2040 		drain_wrq_wr_list(wrq->adapter, wrq);
2041 	EQ_UNLOCK(eq);
2042 }
2043 
2044 static void
2045 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2046 {
2047 	struct sge_eq *eq = &wrq->eq;
2048 	u_int available, dbdiff;	/* # of hardware descriptors */
2049 	u_int n;
2050 	struct wrqe *wr;
2051 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2052 
2053 	EQ_LOCK_ASSERT_OWNED(eq);
2054 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2055 	wr = STAILQ_FIRST(&wrq->wr_list);
2056 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2057 	MPASS(eq->pidx == eq->dbidx);
2058 	dbdiff = 0;
2059 
2060 	do {
2061 		eq->cidx = read_hw_cidx(eq);
2062 		if (eq->pidx == eq->cidx)
2063 			available = eq->sidx - 1;
2064 		else
2065 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2066 
2067 		MPASS(wr->wrq == wrq);
2068 		n = howmany(wr->wr_len, EQ_ESIZE);
2069 		if (available < n)
2070 			break;
2071 
2072 		dst = (void *)&eq->desc[eq->pidx];
2073 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2074 			/* Won't wrap, won't end exactly at the status page. */
2075 			bcopy(&wr->wr[0], dst, wr->wr_len);
2076 			eq->pidx += n;
2077 		} else {
2078 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2079 
2080 			bcopy(&wr->wr[0], dst, first_portion);
2081 			if (wr->wr_len > first_portion) {
2082 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2083 				    wr->wr_len - first_portion);
2084 			}
2085 			eq->pidx = n - (eq->sidx - eq->pidx);
2086 		}
2087 		wrq->tx_wrs_copied++;
2088 
2089 		if (available < eq->sidx / 4 &&
2090 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2091 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2092 			    F_FW_WR_EQUEQ);
2093 			eq->equeqidx = eq->pidx;
2094 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2095 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2096 			eq->equeqidx = eq->pidx;
2097 		}
2098 
2099 		dbdiff += n;
2100 		if (dbdiff >= 16) {
2101 			ring_eq_db(sc, eq, dbdiff);
2102 			dbdiff = 0;
2103 		}
2104 
2105 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2106 		free_wrqe(wr);
2107 		MPASS(wrq->nwr_pending > 0);
2108 		wrq->nwr_pending--;
2109 		MPASS(wrq->ndesc_needed >= n);
2110 		wrq->ndesc_needed -= n;
2111 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2112 
2113 	if (dbdiff)
2114 		ring_eq_db(sc, eq, dbdiff);
2115 }
2116 
2117 /*
2118  * Doesn't fail.  Holds on to work requests it can't send right away.
2119  */
2120 void
2121 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2122 {
2123 #ifdef INVARIANTS
2124 	struct sge_eq *eq = &wrq->eq;
2125 #endif
2126 
2127 	EQ_LOCK_ASSERT_OWNED(eq);
2128 	MPASS(wr != NULL);
2129 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2130 	MPASS((wr->wr_len & 0x7) == 0);
2131 
2132 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2133 	wrq->nwr_pending++;
2134 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2135 
2136 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2137 		return;	/* commit_wrq_wr will drain wr_list as well. */
2138 
2139 	drain_wrq_wr_list(sc, wrq);
2140 
2141 	/* Doorbell must have caught up to the pidx. */
2142 	MPASS(eq->pidx == eq->dbidx);
2143 }
2144 
2145 void
2146 t4_update_fl_bufsize(struct ifnet *ifp)
2147 {
2148 	struct vi_info *vi = ifp->if_softc;
2149 	struct adapter *sc = vi->pi->adapter;
2150 	struct sge_rxq *rxq;
2151 #ifdef TCP_OFFLOAD
2152 	struct sge_ofld_rxq *ofld_rxq;
2153 #endif
2154 	struct sge_fl *fl;
2155 	int i, maxp, mtu = ifp->if_mtu;
2156 
2157 	maxp = mtu_to_max_payload(sc, mtu, 0);
2158 	for_each_rxq(vi, i, rxq) {
2159 		fl = &rxq->fl;
2160 
2161 		FL_LOCK(fl);
2162 		find_best_refill_source(sc, fl, maxp);
2163 		FL_UNLOCK(fl);
2164 	}
2165 #ifdef TCP_OFFLOAD
2166 	maxp = mtu_to_max_payload(sc, mtu, 1);
2167 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2168 		fl = &ofld_rxq->fl;
2169 
2170 		FL_LOCK(fl);
2171 		find_best_refill_source(sc, fl, maxp);
2172 		FL_UNLOCK(fl);
2173 	}
2174 #endif
2175 }
2176 
2177 static inline int
2178 mbuf_nsegs(struct mbuf *m)
2179 {
2180 
2181 	M_ASSERTPKTHDR(m);
2182 	KASSERT(m->m_pkthdr.l5hlen > 0,
2183 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2184 
2185 	return (m->m_pkthdr.l5hlen);
2186 }
2187 
2188 static inline void
2189 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2190 {
2191 
2192 	M_ASSERTPKTHDR(m);
2193 	m->m_pkthdr.l5hlen = nsegs;
2194 }
2195 
2196 static inline int
2197 mbuf_len16(struct mbuf *m)
2198 {
2199 	int n;
2200 
2201 	M_ASSERTPKTHDR(m);
2202 	n = m->m_pkthdr.PH_loc.eight[0];
2203 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2204 
2205 	return (n);
2206 }
2207 
2208 static inline void
2209 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2210 {
2211 
2212 	M_ASSERTPKTHDR(m);
2213 	m->m_pkthdr.PH_loc.eight[0] = len16;
2214 }
2215 
2216 #ifdef RATELIMIT
2217 static inline int
2218 mbuf_eo_nsegs(struct mbuf *m)
2219 {
2220 
2221 	M_ASSERTPKTHDR(m);
2222 	return (m->m_pkthdr.PH_loc.eight[1]);
2223 }
2224 
2225 static inline void
2226 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2227 {
2228 
2229 	M_ASSERTPKTHDR(m);
2230 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2231 }
2232 
2233 static inline int
2234 mbuf_eo_len16(struct mbuf *m)
2235 {
2236 	int n;
2237 
2238 	M_ASSERTPKTHDR(m);
2239 	n = m->m_pkthdr.PH_loc.eight[2];
2240 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2241 
2242 	return (n);
2243 }
2244 
2245 static inline void
2246 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2247 {
2248 
2249 	M_ASSERTPKTHDR(m);
2250 	m->m_pkthdr.PH_loc.eight[2] = len16;
2251 }
2252 
2253 static inline int
2254 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2255 {
2256 
2257 	M_ASSERTPKTHDR(m);
2258 	return (m->m_pkthdr.PH_loc.eight[3]);
2259 }
2260 
2261 static inline void
2262 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2263 {
2264 
2265 	M_ASSERTPKTHDR(m);
2266 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2267 }
2268 
2269 static inline int
2270 needs_eo(struct mbuf *m)
2271 {
2272 
2273 	return (m->m_pkthdr.snd_tag != NULL);
2274 }
2275 #endif
2276 
2277 static inline int
2278 needs_tso(struct mbuf *m)
2279 {
2280 
2281 	M_ASSERTPKTHDR(m);
2282 
2283 	return (m->m_pkthdr.csum_flags & CSUM_TSO);
2284 }
2285 
2286 static inline int
2287 needs_l3_csum(struct mbuf *m)
2288 {
2289 
2290 	M_ASSERTPKTHDR(m);
2291 
2292 	return (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO));
2293 }
2294 
2295 static inline int
2296 needs_l4_csum(struct mbuf *m)
2297 {
2298 
2299 	M_ASSERTPKTHDR(m);
2300 
2301 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2302 	    CSUM_TCP_IPV6 | CSUM_TSO));
2303 }
2304 
2305 static inline int
2306 needs_tcp_csum(struct mbuf *m)
2307 {
2308 
2309 	M_ASSERTPKTHDR(m);
2310 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_TCP_IPV6 | CSUM_TSO));
2311 }
2312 
2313 #ifdef RATELIMIT
2314 static inline int
2315 needs_udp_csum(struct mbuf *m)
2316 {
2317 
2318 	M_ASSERTPKTHDR(m);
2319 	return (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_UDP_IPV6));
2320 }
2321 #endif
2322 
2323 static inline int
2324 needs_vlan_insertion(struct mbuf *m)
2325 {
2326 
2327 	M_ASSERTPKTHDR(m);
2328 
2329 	return (m->m_flags & M_VLANTAG);
2330 }
2331 
2332 static void *
2333 m_advance(struct mbuf **pm, int *poffset, int len)
2334 {
2335 	struct mbuf *m = *pm;
2336 	int offset = *poffset;
2337 	uintptr_t p = 0;
2338 
2339 	MPASS(len > 0);
2340 
2341 	for (;;) {
2342 		if (offset + len < m->m_len) {
2343 			offset += len;
2344 			p = mtod(m, uintptr_t) + offset;
2345 			break;
2346 		}
2347 		len -= m->m_len - offset;
2348 		m = m->m_next;
2349 		offset = 0;
2350 		MPASS(m != NULL);
2351 	}
2352 	*poffset = offset;
2353 	*pm = m;
2354 	return ((void *)p);
2355 }
2356 
2357 /*
2358  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2359  * must have at least one mbuf that's not empty.  It is possible for this
2360  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2361  */
2362 static inline int
2363 count_mbuf_nsegs(struct mbuf *m, int skip)
2364 {
2365 	vm_paddr_t lastb, next;
2366 	vm_offset_t va;
2367 	int len, nsegs;
2368 
2369 	M_ASSERTPKTHDR(m);
2370 	MPASS(m->m_pkthdr.len > 0);
2371 	MPASS(m->m_pkthdr.len >= skip);
2372 
2373 	nsegs = 0;
2374 	lastb = 0;
2375 	for (; m; m = m->m_next) {
2376 
2377 		len = m->m_len;
2378 		if (__predict_false(len == 0))
2379 			continue;
2380 		if (skip >= len) {
2381 			skip -= len;
2382 			continue;
2383 		}
2384 		va = mtod(m, vm_offset_t) + skip;
2385 		len -= skip;
2386 		skip = 0;
2387 		next = pmap_kextract(va);
2388 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2389 		if (lastb + 1 == next)
2390 			nsegs--;
2391 		lastb = pmap_kextract(va + len - 1);
2392 	}
2393 
2394 	return (nsegs);
2395 }
2396 
2397 /*
2398  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2399  * a) caller can assume it's been freed if this function returns with an error.
2400  * b) it may get defragged up if the gather list is too long for the hardware.
2401  */
2402 int
2403 parse_pkt(struct adapter *sc, struct mbuf **mp)
2404 {
2405 	struct mbuf *m0 = *mp, *m;
2406 	int rc, nsegs, defragged = 0, offset;
2407 	struct ether_header *eh;
2408 	void *l3hdr;
2409 #if defined(INET) || defined(INET6)
2410 	struct tcphdr *tcp;
2411 #endif
2412 	uint16_t eh_type;
2413 
2414 	M_ASSERTPKTHDR(m0);
2415 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2416 		rc = EINVAL;
2417 fail:
2418 		m_freem(m0);
2419 		*mp = NULL;
2420 		return (rc);
2421 	}
2422 restart:
2423 	/*
2424 	 * First count the number of gather list segments in the payload.
2425 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2426 	 */
2427 	M_ASSERTPKTHDR(m0);
2428 	MPASS(m0->m_pkthdr.len > 0);
2429 	nsegs = count_mbuf_nsegs(m0, 0);
2430 	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2431 		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2432 			rc = EFBIG;
2433 			goto fail;
2434 		}
2435 		*mp = m0 = m;	/* update caller's copy after defrag */
2436 		goto restart;
2437 	}
2438 
2439 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
2440 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2441 		if (m0 == NULL) {
2442 			/* Should have left well enough alone. */
2443 			rc = EFBIG;
2444 			goto fail;
2445 		}
2446 		*mp = m0;	/* update caller's copy after pullup */
2447 		goto restart;
2448 	}
2449 	set_mbuf_nsegs(m0, nsegs);
2450 	if (sc->flags & IS_VF)
2451 		set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0)));
2452 	else
2453 		set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2454 
2455 #ifdef RATELIMIT
2456 	/*
2457 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2458 	 * checksumming is enabled.  needs_l4_csum happens to check for all the
2459 	 * right things.
2460 	 */
2461 	if (__predict_false(needs_eo(m0) && !needs_l4_csum(m0)))
2462 		m0->m_pkthdr.snd_tag = NULL;
2463 #endif
2464 
2465 	if (!needs_tso(m0) &&
2466 #ifdef RATELIMIT
2467 	    !needs_eo(m0) &&
2468 #endif
2469 	    !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0))))
2470 		return (0);
2471 
2472 	m = m0;
2473 	eh = mtod(m, struct ether_header *);
2474 	eh_type = ntohs(eh->ether_type);
2475 	if (eh_type == ETHERTYPE_VLAN) {
2476 		struct ether_vlan_header *evh = (void *)eh;
2477 
2478 		eh_type = ntohs(evh->evl_proto);
2479 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2480 	} else
2481 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2482 
2483 	offset = 0;
2484 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2485 
2486 	switch (eh_type) {
2487 #ifdef INET6
2488 	case ETHERTYPE_IPV6:
2489 	{
2490 		struct ip6_hdr *ip6 = l3hdr;
2491 
2492 		MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP);
2493 
2494 		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2495 		break;
2496 	}
2497 #endif
2498 #ifdef INET
2499 	case ETHERTYPE_IP:
2500 	{
2501 		struct ip *ip = l3hdr;
2502 
2503 		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2504 		break;
2505 	}
2506 #endif
2507 	default:
2508 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2509 		    " with the same INET/INET6 options as the kernel.",
2510 		    __func__, eh_type);
2511 	}
2512 
2513 #if defined(INET) || defined(INET6)
2514 	if (needs_tcp_csum(m0)) {
2515 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2516 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2517 #ifdef RATELIMIT
2518 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2519 			set_mbuf_eo_tsclk_tsoff(m0,
2520 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2521 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2522 		} else
2523 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2524 	} else if (needs_udp_csum(m)) {
2525 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2526 #endif
2527 	}
2528 #ifdef RATELIMIT
2529 	if (needs_eo(m0)) {
2530 		u_int immhdrs;
2531 
2532 		/* EO WRs have the headers in the WR and not the GL. */
2533 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2534 		    m0->m_pkthdr.l4hlen;
2535 		nsegs = count_mbuf_nsegs(m0, immhdrs);
2536 		set_mbuf_eo_nsegs(m0, nsegs);
2537 		set_mbuf_eo_len16(m0,
2538 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2539 	}
2540 #endif
2541 #endif
2542 	MPASS(m0 == *mp);
2543 	return (0);
2544 }
2545 
2546 void *
2547 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2548 {
2549 	struct sge_eq *eq = &wrq->eq;
2550 	struct adapter *sc = wrq->adapter;
2551 	int ndesc, available;
2552 	struct wrqe *wr;
2553 	void *w;
2554 
2555 	MPASS(len16 > 0);
2556 	ndesc = howmany(len16, EQ_ESIZE / 16);
2557 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2558 
2559 	EQ_LOCK(eq);
2560 
2561 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2562 		drain_wrq_wr_list(sc, wrq);
2563 
2564 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2565 slowpath:
2566 		EQ_UNLOCK(eq);
2567 		wr = alloc_wrqe(len16 * 16, wrq);
2568 		if (__predict_false(wr == NULL))
2569 			return (NULL);
2570 		cookie->pidx = -1;
2571 		cookie->ndesc = ndesc;
2572 		return (&wr->wr);
2573 	}
2574 
2575 	eq->cidx = read_hw_cidx(eq);
2576 	if (eq->pidx == eq->cidx)
2577 		available = eq->sidx - 1;
2578 	else
2579 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2580 	if (available < ndesc)
2581 		goto slowpath;
2582 
2583 	cookie->pidx = eq->pidx;
2584 	cookie->ndesc = ndesc;
2585 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2586 
2587 	w = &eq->desc[eq->pidx];
2588 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2589 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2590 		w = &wrq->ss[0];
2591 		wrq->ss_pidx = cookie->pidx;
2592 		wrq->ss_len = len16 * 16;
2593 	}
2594 
2595 	EQ_UNLOCK(eq);
2596 
2597 	return (w);
2598 }
2599 
2600 void
2601 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2602 {
2603 	struct sge_eq *eq = &wrq->eq;
2604 	struct adapter *sc = wrq->adapter;
2605 	int ndesc, pidx;
2606 	struct wrq_cookie *prev, *next;
2607 
2608 	if (cookie->pidx == -1) {
2609 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2610 
2611 		t4_wrq_tx(sc, wr);
2612 		return;
2613 	}
2614 
2615 	if (__predict_false(w == &wrq->ss[0])) {
2616 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2617 
2618 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2619 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2620 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2621 		wrq->tx_wrs_ss++;
2622 	} else
2623 		wrq->tx_wrs_direct++;
2624 
2625 	EQ_LOCK(eq);
2626 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2627 	pidx = cookie->pidx;
2628 	MPASS(pidx >= 0 && pidx < eq->sidx);
2629 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2630 	next = TAILQ_NEXT(cookie, link);
2631 	if (prev == NULL) {
2632 		MPASS(pidx == eq->dbidx);
2633 		if (next == NULL || ndesc >= 16) {
2634 			int available;
2635 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2636 
2637 			/*
2638 			 * Note that the WR via which we'll request tx updates
2639 			 * is at pidx and not eq->pidx, which has moved on
2640 			 * already.
2641 			 */
2642 			dst = (void *)&eq->desc[pidx];
2643 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2644 			if (available < eq->sidx / 4 &&
2645 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2646 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2647 				    F_FW_WR_EQUEQ);
2648 				eq->equeqidx = pidx;
2649 			} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2650 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2651 				eq->equeqidx = pidx;
2652 			}
2653 
2654 			ring_eq_db(wrq->adapter, eq, ndesc);
2655 		} else {
2656 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2657 			next->pidx = pidx;
2658 			next->ndesc += ndesc;
2659 		}
2660 	} else {
2661 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2662 		prev->ndesc += ndesc;
2663 	}
2664 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2665 
2666 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2667 		drain_wrq_wr_list(sc, wrq);
2668 
2669 #ifdef INVARIANTS
2670 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2671 		/* Doorbell must have caught up to the pidx. */
2672 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2673 	}
2674 #endif
2675 	EQ_UNLOCK(eq);
2676 }
2677 
2678 static u_int
2679 can_resume_eth_tx(struct mp_ring *r)
2680 {
2681 	struct sge_eq *eq = r->cookie;
2682 
2683 	return (total_available_tx_desc(eq) > eq->sidx / 8);
2684 }
2685 
2686 static inline int
2687 cannot_use_txpkts(struct mbuf *m)
2688 {
2689 	/* maybe put a GL limit too, to avoid silliness? */
2690 
2691 	return (needs_tso(m));
2692 }
2693 
2694 static inline int
2695 discard_tx(struct sge_eq *eq)
2696 {
2697 
2698 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
2699 }
2700 
2701 /*
2702  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2703  * be consumed.  Return the actual number consumed.  0 indicates a stall.
2704  */
2705 static u_int
2706 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2707 {
2708 	struct sge_txq *txq = r->cookie;
2709 	struct sge_eq *eq = &txq->eq;
2710 	struct ifnet *ifp = txq->ifp;
2711 	struct vi_info *vi = ifp->if_softc;
2712 	struct port_info *pi = vi->pi;
2713 	struct adapter *sc = pi->adapter;
2714 	u_int total, remaining;		/* # of packets */
2715 	u_int available, dbdiff;	/* # of hardware descriptors */
2716 	u_int n, next_cidx;
2717 	struct mbuf *m0, *tail;
2718 	struct txpkts txp;
2719 	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2720 
2721 	remaining = IDXDIFF(pidx, cidx, r->size);
2722 	MPASS(remaining > 0);	/* Must not be called without work to do. */
2723 	total = 0;
2724 
2725 	TXQ_LOCK(txq);
2726 	if (__predict_false(discard_tx(eq))) {
2727 		while (cidx != pidx) {
2728 			m0 = r->items[cidx];
2729 			m_freem(m0);
2730 			if (++cidx == r->size)
2731 				cidx = 0;
2732 		}
2733 		reclaim_tx_descs(txq, 2048);
2734 		total = remaining;
2735 		goto done;
2736 	}
2737 
2738 	/* How many hardware descriptors do we have readily available. */
2739 	if (eq->pidx == eq->cidx)
2740 		available = eq->sidx - 1;
2741 	else
2742 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2743 	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2744 
2745 	while (remaining > 0) {
2746 
2747 		m0 = r->items[cidx];
2748 		M_ASSERTPKTHDR(m0);
2749 		MPASS(m0->m_nextpkt == NULL);
2750 
2751 		if (available < SGE_MAX_WR_NDESC) {
2752 			available += reclaim_tx_descs(txq, 64);
2753 			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2754 				break;	/* out of descriptors */
2755 		}
2756 
2757 		next_cidx = cidx + 1;
2758 		if (__predict_false(next_cidx == r->size))
2759 			next_cidx = 0;
2760 
2761 		wr = (void *)&eq->desc[eq->pidx];
2762 		if (sc->flags & IS_VF) {
2763 			total++;
2764 			remaining--;
2765 			ETHER_BPF_MTAP(ifp, m0);
2766 			n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0,
2767 			    available);
2768 		} else if (remaining > 1 &&
2769 		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2770 
2771 			/* pkts at cidx, next_cidx should both be in txp. */
2772 			MPASS(txp.npkt == 2);
2773 			tail = r->items[next_cidx];
2774 			MPASS(tail->m_nextpkt == NULL);
2775 			ETHER_BPF_MTAP(ifp, m0);
2776 			ETHER_BPF_MTAP(ifp, tail);
2777 			m0->m_nextpkt = tail;
2778 
2779 			if (__predict_false(++next_cidx == r->size))
2780 				next_cidx = 0;
2781 
2782 			while (next_cidx != pidx) {
2783 				if (add_to_txpkts(r->items[next_cidx], &txp,
2784 				    available) != 0)
2785 					break;
2786 				tail->m_nextpkt = r->items[next_cidx];
2787 				tail = tail->m_nextpkt;
2788 				ETHER_BPF_MTAP(ifp, tail);
2789 				if (__predict_false(++next_cidx == r->size))
2790 					next_cidx = 0;
2791 			}
2792 
2793 			n = write_txpkts_wr(txq, wr, m0, &txp, available);
2794 			total += txp.npkt;
2795 			remaining -= txp.npkt;
2796 		} else {
2797 			total++;
2798 			remaining--;
2799 			ETHER_BPF_MTAP(ifp, m0);
2800 			n = write_txpkt_wr(txq, (void *)wr, m0, available);
2801 		}
2802 		MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
2803 
2804 		available -= n;
2805 		dbdiff += n;
2806 		IDXINCR(eq->pidx, n, eq->sidx);
2807 
2808 		if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2809 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2810 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2811 			    F_FW_WR_EQUEQ);
2812 			eq->equeqidx = eq->pidx;
2813 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2814 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2815 			eq->equeqidx = eq->pidx;
2816 		}
2817 
2818 		if (dbdiff >= 16 && remaining >= 4) {
2819 			ring_eq_db(sc, eq, dbdiff);
2820 			available += reclaim_tx_descs(txq, 4 * dbdiff);
2821 			dbdiff = 0;
2822 		}
2823 
2824 		cidx = next_cidx;
2825 	}
2826 	if (dbdiff != 0) {
2827 		ring_eq_db(sc, eq, dbdiff);
2828 		reclaim_tx_descs(txq, 32);
2829 	}
2830 done:
2831 	TXQ_UNLOCK(txq);
2832 
2833 	return (total);
2834 }
2835 
2836 static inline void
2837 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2838     int qsize)
2839 {
2840 
2841 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2842 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2843 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2844 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2845 
2846 	iq->flags = 0;
2847 	iq->adapter = sc;
2848 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2849 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2850 	if (pktc_idx >= 0) {
2851 		iq->intr_params |= F_QINTR_CNT_EN;
2852 		iq->intr_pktc_idx = pktc_idx;
2853 	}
2854 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2855 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
2856 }
2857 
2858 static inline void
2859 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
2860 {
2861 
2862 	fl->qsize = qsize;
2863 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2864 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2865 	if (sc->flags & BUF_PACKING_OK &&
2866 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
2867 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
2868 		fl->flags |= FL_BUF_PACKING;
2869 	find_best_refill_source(sc, fl, maxp);
2870 	find_safe_refill_source(sc, fl);
2871 }
2872 
2873 static inline void
2874 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
2875     uint8_t tx_chan, uint16_t iqid, char *name)
2876 {
2877 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2878 
2879 	eq->flags = eqtype & EQ_TYPEMASK;
2880 	eq->tx_chan = tx_chan;
2881 	eq->iqid = iqid;
2882 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2883 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2884 }
2885 
2886 static int
2887 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2888     bus_dmamap_t *map, bus_addr_t *pa, void **va)
2889 {
2890 	int rc;
2891 
2892 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2893 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2894 	if (rc != 0) {
2895 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2896 		goto done;
2897 	}
2898 
2899 	rc = bus_dmamem_alloc(*tag, va,
2900 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2901 	if (rc != 0) {
2902 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2903 		goto done;
2904 	}
2905 
2906 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2907 	if (rc != 0) {
2908 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2909 		goto done;
2910 	}
2911 done:
2912 	if (rc)
2913 		free_ring(sc, *tag, *map, *pa, *va);
2914 
2915 	return (rc);
2916 }
2917 
2918 static int
2919 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2920     bus_addr_t pa, void *va)
2921 {
2922 	if (pa)
2923 		bus_dmamap_unload(tag, map);
2924 	if (va)
2925 		bus_dmamem_free(tag, va, map);
2926 	if (tag)
2927 		bus_dma_tag_destroy(tag);
2928 
2929 	return (0);
2930 }
2931 
2932 /*
2933  * Allocates the ring for an ingress queue and an optional freelist.  If the
2934  * freelist is specified it will be allocated and then associated with the
2935  * ingress queue.
2936  *
2937  * Returns errno on failure.  Resources allocated up to that point may still be
2938  * allocated.  Caller is responsible for cleanup in case this function fails.
2939  *
2940  * If the ingress queue will take interrupts directly then the intr_idx
2941  * specifies the vector, starting from 0.  -1 means the interrupts for this
2942  * queue should be forwarded to the fwq.
2943  */
2944 static int
2945 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
2946     int intr_idx, int cong)
2947 {
2948 	int rc, i, cntxt_id;
2949 	size_t len;
2950 	struct fw_iq_cmd c;
2951 	struct port_info *pi = vi->pi;
2952 	struct adapter *sc = iq->adapter;
2953 	struct sge_params *sp = &sc->params.sge;
2954 	__be32 v = 0;
2955 
2956 	len = iq->qsize * IQ_ESIZE;
2957 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2958 	    (void **)&iq->desc);
2959 	if (rc != 0)
2960 		return (rc);
2961 
2962 	bzero(&c, sizeof(c));
2963 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2964 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2965 	    V_FW_IQ_CMD_VFN(0));
2966 
2967 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2968 	    FW_LEN16(c));
2969 
2970 	/* Special handling for firmware event queue */
2971 	if (iq == &sc->sge.fwq)
2972 		v |= F_FW_IQ_CMD_IQASYNCH;
2973 
2974 	if (intr_idx < 0) {
2975 		/* Forwarded interrupts, all headed to fwq */
2976 		v |= F_FW_IQ_CMD_IQANDST;
2977 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
2978 	} else {
2979 		KASSERT(intr_idx < sc->intr_count,
2980 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2981 		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2982 	}
2983 
2984 	c.type_to_iqandstindex = htobe32(v |
2985 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2986 	    V_FW_IQ_CMD_VIID(vi->viid) |
2987 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2988 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2989 	    F_FW_IQ_CMD_IQGTSMODE |
2990 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2991 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2992 	c.iqsize = htobe16(iq->qsize);
2993 	c.iqaddr = htobe64(iq->ba);
2994 	if (cong >= 0)
2995 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2996 
2997 	if (fl) {
2998 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2999 
3000 		len = fl->qsize * EQ_ESIZE;
3001 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3002 		    &fl->ba, (void **)&fl->desc);
3003 		if (rc)
3004 			return (rc);
3005 
3006 		/* Allocate space for one software descriptor per buffer. */
3007 		rc = alloc_fl_sdesc(fl);
3008 		if (rc != 0) {
3009 			device_printf(sc->dev,
3010 			    "failed to setup fl software descriptors: %d\n",
3011 			    rc);
3012 			return (rc);
3013 		}
3014 
3015 		if (fl->flags & FL_BUF_PACKING) {
3016 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3017 			fl->buf_boundary = sp->pack_boundary;
3018 		} else {
3019 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3020 			fl->buf_boundary = 16;
3021 		}
3022 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3023 			fl->buf_boundary = sp->pad_boundary;
3024 
3025 		c.iqns_to_fl0congen |=
3026 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3027 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3028 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3029 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3030 			    0));
3031 		if (cong >= 0) {
3032 			c.iqns_to_fl0congen |=
3033 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
3034 				    F_FW_IQ_CMD_FL0CONGCIF |
3035 				    F_FW_IQ_CMD_FL0CONGEN);
3036 		}
3037 		c.fl0dcaen_to_fl0cidxfthresh =
3038 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3039 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) |
3040 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3041 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3042 		c.fl0size = htobe16(fl->qsize);
3043 		c.fl0addr = htobe64(fl->ba);
3044 	}
3045 
3046 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3047 	if (rc != 0) {
3048 		device_printf(sc->dev,
3049 		    "failed to create ingress queue: %d\n", rc);
3050 		return (rc);
3051 	}
3052 
3053 	iq->cidx = 0;
3054 	iq->gen = F_RSPD_GEN;
3055 	iq->intr_next = iq->intr_params;
3056 	iq->cntxt_id = be16toh(c.iqid);
3057 	iq->abs_id = be16toh(c.physiqid);
3058 	iq->flags |= IQ_ALLOCATED;
3059 
3060 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3061 	if (cntxt_id >= sc->sge.niq) {
3062 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3063 		    cntxt_id, sc->sge.niq - 1);
3064 	}
3065 	sc->sge.iqmap[cntxt_id] = iq;
3066 
3067 	if (fl) {
3068 		u_int qid;
3069 
3070 		iq->flags |= IQ_HAS_FL;
3071 		fl->cntxt_id = be16toh(c.fl0id);
3072 		fl->pidx = fl->cidx = 0;
3073 
3074 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3075 		if (cntxt_id >= sc->sge.neq) {
3076 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3077 			    __func__, cntxt_id, sc->sge.neq - 1);
3078 		}
3079 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3080 
3081 		qid = fl->cntxt_id;
3082 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3083 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3084 			uint32_t mask = (1 << s_qpp) - 1;
3085 			volatile uint8_t *udb;
3086 
3087 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3088 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3089 			qid &= mask;
3090 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3091 				udb += qid << UDBS_SEG_SHIFT;
3092 				qid = 0;
3093 			}
3094 			fl->udb = (volatile void *)udb;
3095 		}
3096 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3097 
3098 		FL_LOCK(fl);
3099 		/* Enough to make sure the SGE doesn't think it's starved */
3100 		refill_fl(sc, fl, fl->lowat);
3101 		FL_UNLOCK(fl);
3102 	}
3103 
3104 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) {
3105 		uint32_t param, val;
3106 
3107 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3108 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3109 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
3110 		if (cong == 0)
3111 			val = 1 << 19;
3112 		else {
3113 			val = 2 << 19;
3114 			for (i = 0; i < 4; i++) {
3115 				if (cong & (1 << i))
3116 					val |= 1 << (i << 2);
3117 			}
3118 		}
3119 
3120 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3121 		if (rc != 0) {
3122 			/* report error but carry on */
3123 			device_printf(sc->dev,
3124 			    "failed to set congestion manager context for "
3125 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
3126 		}
3127 	}
3128 
3129 	/* Enable IQ interrupts */
3130 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3131 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3132 	    V_INGRESSQID(iq->cntxt_id));
3133 
3134 	return (0);
3135 }
3136 
3137 static int
3138 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3139 {
3140 	int rc;
3141 	struct adapter *sc = iq->adapter;
3142 	device_t dev;
3143 
3144 	if (sc == NULL)
3145 		return (0);	/* nothing to do */
3146 
3147 	dev = vi ? vi->dev : sc->dev;
3148 
3149 	if (iq->flags & IQ_ALLOCATED) {
3150 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
3151 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
3152 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
3153 		if (rc != 0) {
3154 			device_printf(dev,
3155 			    "failed to free queue %p: %d\n", iq, rc);
3156 			return (rc);
3157 		}
3158 		iq->flags &= ~IQ_ALLOCATED;
3159 	}
3160 
3161 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3162 
3163 	bzero(iq, sizeof(*iq));
3164 
3165 	if (fl) {
3166 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
3167 		    fl->desc);
3168 
3169 		if (fl->sdesc)
3170 			free_fl_sdesc(sc, fl);
3171 
3172 		if (mtx_initialized(&fl->fl_lock))
3173 			mtx_destroy(&fl->fl_lock);
3174 
3175 		bzero(fl, sizeof(*fl));
3176 	}
3177 
3178 	return (0);
3179 }
3180 
3181 static void
3182 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3183     struct sge_iq *iq)
3184 {
3185 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3186 
3187 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3188 	    "bus address of descriptor ring");
3189 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3190 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3191 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3192 	    CTLTYPE_INT | CTLFLAG_RD, &iq->abs_id, 0, sysctl_uint16, "I",
3193 	    "absolute id of the queue");
3194 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3195 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cntxt_id, 0, sysctl_uint16, "I",
3196 	    "SGE context id of the queue");
3197 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3198 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cidx, 0, sysctl_uint16, "I",
3199 	    "consumer index");
3200 }
3201 
3202 static void
3203 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3204     struct sysctl_oid *oid, struct sge_fl *fl)
3205 {
3206 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3207 
3208 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3209 	    "freelist");
3210 	children = SYSCTL_CHILDREN(oid);
3211 
3212 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3213 	    &fl->ba, "bus address of descriptor ring");
3214 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3215 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3216 	    "desc ring size in bytes");
3217 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3218 	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
3219 	    "SGE context id of the freelist");
3220 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3221 	    fl_pad ? 1 : 0, "padding enabled");
3222 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3223 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3224 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3225 	    0, "consumer index");
3226 	if (fl->flags & FL_BUF_PACKING) {
3227 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3228 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3229 	}
3230 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3231 	    0, "producer index");
3232 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
3233 	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
3234 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
3235 	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
3236 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3237 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3238 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3239 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3240 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3241 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3242 }
3243 
3244 static int
3245 alloc_fwq(struct adapter *sc)
3246 {
3247 	int rc, intr_idx;
3248 	struct sge_iq *fwq = &sc->sge.fwq;
3249 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
3250 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3251 
3252 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
3253 	if (sc->flags & IS_VF)
3254 		intr_idx = 0;
3255 	else
3256 		intr_idx = sc->intr_count > 1 ? 1 : 0;
3257 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
3258 	if (rc != 0) {
3259 		device_printf(sc->dev,
3260 		    "failed to create firmware event queue: %d\n", rc);
3261 		return (rc);
3262 	}
3263 
3264 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
3265 	    NULL, "firmware event queue");
3266 	add_iq_sysctls(&sc->ctx, oid, fwq);
3267 
3268 	return (0);
3269 }
3270 
3271 static int
3272 free_fwq(struct adapter *sc)
3273 {
3274 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
3275 }
3276 
3277 static int
3278 alloc_ctrlq(struct adapter *sc, struct sge_wrq *ctrlq, int idx,
3279     struct sysctl_oid *oid)
3280 {
3281 	int rc;
3282 	char name[16];
3283 	struct sysctl_oid_list *children;
3284 
3285 	snprintf(name, sizeof(name), "%s ctrlq%d", device_get_nameunit(sc->dev),
3286 	    idx);
3287 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[idx]->tx_chan,
3288 	    sc->sge.fwq.cntxt_id, name);
3289 
3290 	children = SYSCTL_CHILDREN(oid);
3291 	snprintf(name, sizeof(name), "%d", idx);
3292 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3293 	    NULL, "ctrl queue");
3294 	rc = alloc_wrq(sc, NULL, ctrlq, oid);
3295 
3296 	return (rc);
3297 }
3298 
3299 int
3300 tnl_cong(struct port_info *pi, int drop)
3301 {
3302 
3303 	if (drop == -1)
3304 		return (-1);
3305 	else if (drop == 1)
3306 		return (0);
3307 	else
3308 		return (pi->rx_e_chan_map);
3309 }
3310 
3311 static int
3312 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
3313     struct sysctl_oid *oid)
3314 {
3315 	int rc;
3316 	struct adapter *sc = vi->pi->adapter;
3317 	struct sysctl_oid_list *children;
3318 	char name[16];
3319 
3320 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
3321 	    tnl_cong(vi->pi, cong_drop));
3322 	if (rc != 0)
3323 		return (rc);
3324 
3325 	if (idx == 0)
3326 		sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3327 	else
3328 		KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3329 		    ("iq_base mismatch"));
3330 	KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3331 	    ("PF with non-zero iq_base"));
3332 
3333 	/*
3334 	 * The freelist is just barely above the starvation threshold right now,
3335 	 * fill it up a bit more.
3336 	 */
3337 	FL_LOCK(&rxq->fl);
3338 	refill_fl(sc, &rxq->fl, 128);
3339 	FL_UNLOCK(&rxq->fl);
3340 
3341 #if defined(INET) || defined(INET6)
3342 	rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs);
3343 	if (rc != 0)
3344 		return (rc);
3345 	MPASS(rxq->lro.ifp == vi->ifp);	/* also indicates LRO init'ed */
3346 
3347 	if (vi->ifp->if_capenable & IFCAP_LRO)
3348 		rxq->iq.flags |= IQ_LRO_ENABLED;
3349 #endif
3350 	rxq->ifp = vi->ifp;
3351 
3352 	children = SYSCTL_CHILDREN(oid);
3353 
3354 	snprintf(name, sizeof(name), "%d", idx);
3355 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3356 	    NULL, "rx queue");
3357 	children = SYSCTL_CHILDREN(oid);
3358 
3359 	add_iq_sysctls(&vi->ctx, oid, &rxq->iq);
3360 #if defined(INET) || defined(INET6)
3361 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3362 	    &rxq->lro.lro_queued, 0, NULL);
3363 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3364 	    &rxq->lro.lro_flushed, 0, NULL);
3365 #endif
3366 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3367 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3368 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3369 	    CTLFLAG_RD, &rxq->vlan_extraction,
3370 	    "# of times hardware extracted 802.1Q tag");
3371 
3372 	add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl);
3373 
3374 	return (rc);
3375 }
3376 
3377 static int
3378 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3379 {
3380 	int rc;
3381 
3382 #if defined(INET) || defined(INET6)
3383 	if (rxq->lro.ifp) {
3384 		tcp_lro_free(&rxq->lro);
3385 		rxq->lro.ifp = NULL;
3386 	}
3387 #endif
3388 
3389 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3390 	if (rc == 0)
3391 		bzero(rxq, sizeof(*rxq));
3392 
3393 	return (rc);
3394 }
3395 
3396 #ifdef TCP_OFFLOAD
3397 static int
3398 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3399     int intr_idx, int idx, struct sysctl_oid *oid)
3400 {
3401 	struct port_info *pi = vi->pi;
3402 	int rc;
3403 	struct sysctl_oid_list *children;
3404 	char name[16];
3405 
3406 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0);
3407 	if (rc != 0)
3408 		return (rc);
3409 
3410 	children = SYSCTL_CHILDREN(oid);
3411 
3412 	snprintf(name, sizeof(name), "%d", idx);
3413 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3414 	    NULL, "rx queue");
3415 	add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq);
3416 	add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl);
3417 
3418 	return (rc);
3419 }
3420 
3421 static int
3422 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3423 {
3424 	int rc;
3425 
3426 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3427 	if (rc == 0)
3428 		bzero(ofld_rxq, sizeof(*ofld_rxq));
3429 
3430 	return (rc);
3431 }
3432 #endif
3433 
3434 #ifdef DEV_NETMAP
3435 static int
3436 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3437     int idx, struct sysctl_oid *oid)
3438 {
3439 	int rc;
3440 	struct sysctl_oid_list *children;
3441 	struct sysctl_ctx_list *ctx;
3442 	char name[16];
3443 	size_t len;
3444 	struct adapter *sc = vi->pi->adapter;
3445 	struct netmap_adapter *na = NA(vi->ifp);
3446 
3447 	MPASS(na != NULL);
3448 
3449 	len = vi->qsize_rxq * IQ_ESIZE;
3450 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3451 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3452 	if (rc != 0)
3453 		return (rc);
3454 
3455 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3456 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3457 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3458 	if (rc != 0)
3459 		return (rc);
3460 
3461 	nm_rxq->vi = vi;
3462 	nm_rxq->nid = idx;
3463 	nm_rxq->iq_cidx = 0;
3464 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3465 	nm_rxq->iq_gen = F_RSPD_GEN;
3466 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3467 	nm_rxq->fl_sidx = na->num_rx_desc;
3468 	nm_rxq->intr_idx = intr_idx;
3469 	nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID;
3470 
3471 	ctx = &vi->ctx;
3472 	children = SYSCTL_CHILDREN(oid);
3473 
3474 	snprintf(name, sizeof(name), "%d", idx);
3475 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3476 	    "rx queue");
3477 	children = SYSCTL_CHILDREN(oid);
3478 
3479 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3480 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3481 	    "I", "absolute id of the queue");
3482 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3483 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3484 	    "I", "SGE context id of the queue");
3485 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3486 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3487 	    "consumer index");
3488 
3489 	children = SYSCTL_CHILDREN(oid);
3490 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3491 	    "freelist");
3492 	children = SYSCTL_CHILDREN(oid);
3493 
3494 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3495 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3496 	    "I", "SGE context id of the freelist");
3497 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3498 	    &nm_rxq->fl_cidx, 0, "consumer index");
3499 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3500 	    &nm_rxq->fl_pidx, 0, "producer index");
3501 
3502 	return (rc);
3503 }
3504 
3505 
3506 static int
3507 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3508 {
3509 	struct adapter *sc = vi->pi->adapter;
3510 
3511 	if (vi->flags & VI_INIT_DONE)
3512 		MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID);
3513 	else
3514 		MPASS(nm_rxq->iq_cntxt_id == 0);
3515 
3516 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3517 	    nm_rxq->iq_desc);
3518 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3519 	    nm_rxq->fl_desc);
3520 
3521 	return (0);
3522 }
3523 
3524 static int
3525 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3526     struct sysctl_oid *oid)
3527 {
3528 	int rc;
3529 	size_t len;
3530 	struct port_info *pi = vi->pi;
3531 	struct adapter *sc = pi->adapter;
3532 	struct netmap_adapter *na = NA(vi->ifp);
3533 	char name[16];
3534 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3535 
3536 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3537 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3538 	    &nm_txq->ba, (void **)&nm_txq->desc);
3539 	if (rc)
3540 		return (rc);
3541 
3542 	nm_txq->pidx = nm_txq->cidx = 0;
3543 	nm_txq->sidx = na->num_tx_desc;
3544 	nm_txq->nid = idx;
3545 	nm_txq->iqidx = iqidx;
3546 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3547 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) |
3548 	    V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) |
3549 	    V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid)));
3550 	nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID;
3551 
3552 	snprintf(name, sizeof(name), "%d", idx);
3553 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3554 	    NULL, "netmap tx queue");
3555 	children = SYSCTL_CHILDREN(oid);
3556 
3557 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3558 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3559 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3560 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3561 	    "consumer index");
3562 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3563 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3564 	    "producer index");
3565 
3566 	return (rc);
3567 }
3568 
3569 static int
3570 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3571 {
3572 	struct adapter *sc = vi->pi->adapter;
3573 
3574 	if (vi->flags & VI_INIT_DONE)
3575 		MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID);
3576 	else
3577 		MPASS(nm_txq->cntxt_id == 0);
3578 
3579 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3580 	    nm_txq->desc);
3581 
3582 	return (0);
3583 }
3584 #endif
3585 
3586 static int
3587 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3588 {
3589 	int rc, cntxt_id;
3590 	struct fw_eq_ctrl_cmd c;
3591 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3592 
3593 	bzero(&c, sizeof(c));
3594 
3595 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3596 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3597 	    V_FW_EQ_CTRL_CMD_VFN(0));
3598 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3599 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3600 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3601 	c.physeqid_pkd = htobe32(0);
3602 	c.fetchszm_to_iqid =
3603 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3604 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3605 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3606 	c.dcaen_to_eqsize =
3607 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3608 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3609 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
3610 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3611 	c.eqaddr = htobe64(eq->ba);
3612 
3613 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3614 	if (rc != 0) {
3615 		device_printf(sc->dev,
3616 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3617 		return (rc);
3618 	}
3619 	eq->flags |= EQ_ALLOCATED;
3620 
3621 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3622 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3623 	if (cntxt_id >= sc->sge.neq)
3624 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3625 		cntxt_id, sc->sge.neq - 1);
3626 	sc->sge.eqmap[cntxt_id] = eq;
3627 
3628 	return (rc);
3629 }
3630 
3631 static int
3632 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3633 {
3634 	int rc, cntxt_id;
3635 	struct fw_eq_eth_cmd c;
3636 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3637 
3638 	bzero(&c, sizeof(c));
3639 
3640 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3641 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3642 	    V_FW_EQ_ETH_CMD_VFN(0));
3643 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3644 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3645 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3646 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3647 	c.fetchszm_to_iqid =
3648 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3649 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3650 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3651 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3652 	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3653 	    V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3654 	c.eqaddr = htobe64(eq->ba);
3655 
3656 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3657 	if (rc != 0) {
3658 		device_printf(vi->dev,
3659 		    "failed to create Ethernet egress queue: %d\n", rc);
3660 		return (rc);
3661 	}
3662 	eq->flags |= EQ_ALLOCATED;
3663 
3664 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3665 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
3666 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3667 	if (cntxt_id >= sc->sge.neq)
3668 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3669 		cntxt_id, sc->sge.neq - 1);
3670 	sc->sge.eqmap[cntxt_id] = eq;
3671 
3672 	return (rc);
3673 }
3674 
3675 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3676 static int
3677 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3678 {
3679 	int rc, cntxt_id;
3680 	struct fw_eq_ofld_cmd c;
3681 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3682 
3683 	bzero(&c, sizeof(c));
3684 
3685 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3686 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3687 	    V_FW_EQ_OFLD_CMD_VFN(0));
3688 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3689 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3690 	c.fetchszm_to_iqid =
3691 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3692 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3693 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3694 	c.dcaen_to_eqsize =
3695 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3696 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3697 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3698 	c.eqaddr = htobe64(eq->ba);
3699 
3700 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3701 	if (rc != 0) {
3702 		device_printf(vi->dev,
3703 		    "failed to create egress queue for TCP offload: %d\n", rc);
3704 		return (rc);
3705 	}
3706 	eq->flags |= EQ_ALLOCATED;
3707 
3708 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3709 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3710 	if (cntxt_id >= sc->sge.neq)
3711 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3712 		cntxt_id, sc->sge.neq - 1);
3713 	sc->sge.eqmap[cntxt_id] = eq;
3714 
3715 	return (rc);
3716 }
3717 #endif
3718 
3719 static int
3720 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3721 {
3722 	int rc, qsize;
3723 	size_t len;
3724 
3725 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3726 
3727 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3728 	len = qsize * EQ_ESIZE;
3729 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3730 	    &eq->ba, (void **)&eq->desc);
3731 	if (rc)
3732 		return (rc);
3733 
3734 	eq->pidx = eq->cidx = 0;
3735 	eq->equeqidx = eq->dbidx = 0;
3736 	eq->doorbells = sc->doorbells;
3737 
3738 	switch (eq->flags & EQ_TYPEMASK) {
3739 	case EQ_CTRL:
3740 		rc = ctrl_eq_alloc(sc, eq);
3741 		break;
3742 
3743 	case EQ_ETH:
3744 		rc = eth_eq_alloc(sc, vi, eq);
3745 		break;
3746 
3747 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3748 	case EQ_OFLD:
3749 		rc = ofld_eq_alloc(sc, vi, eq);
3750 		break;
3751 #endif
3752 
3753 	default:
3754 		panic("%s: invalid eq type %d.", __func__,
3755 		    eq->flags & EQ_TYPEMASK);
3756 	}
3757 	if (rc != 0) {
3758 		device_printf(sc->dev,
3759 		    "failed to allocate egress queue(%d): %d\n",
3760 		    eq->flags & EQ_TYPEMASK, rc);
3761 	}
3762 
3763 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3764 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3765 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3766 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3767 		uint32_t mask = (1 << s_qpp) - 1;
3768 		volatile uint8_t *udb;
3769 
3770 		udb = sc->udbs_base + UDBS_DB_OFFSET;
3771 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3772 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3773 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3774 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3775 		else {
3776 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3777 			eq->udb_qid = 0;
3778 		}
3779 		eq->udb = (volatile void *)udb;
3780 	}
3781 
3782 	return (rc);
3783 }
3784 
3785 static int
3786 free_eq(struct adapter *sc, struct sge_eq *eq)
3787 {
3788 	int rc;
3789 
3790 	if (eq->flags & EQ_ALLOCATED) {
3791 		switch (eq->flags & EQ_TYPEMASK) {
3792 		case EQ_CTRL:
3793 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3794 			    eq->cntxt_id);
3795 			break;
3796 
3797 		case EQ_ETH:
3798 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3799 			    eq->cntxt_id);
3800 			break;
3801 
3802 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3803 		case EQ_OFLD:
3804 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3805 			    eq->cntxt_id);
3806 			break;
3807 #endif
3808 
3809 		default:
3810 			panic("%s: invalid eq type %d.", __func__,
3811 			    eq->flags & EQ_TYPEMASK);
3812 		}
3813 		if (rc != 0) {
3814 			device_printf(sc->dev,
3815 			    "failed to free egress queue (%d): %d\n",
3816 			    eq->flags & EQ_TYPEMASK, rc);
3817 			return (rc);
3818 		}
3819 		eq->flags &= ~EQ_ALLOCATED;
3820 	}
3821 
3822 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3823 
3824 	if (mtx_initialized(&eq->eq_lock))
3825 		mtx_destroy(&eq->eq_lock);
3826 
3827 	bzero(eq, sizeof(*eq));
3828 	return (0);
3829 }
3830 
3831 static int
3832 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
3833     struct sysctl_oid *oid)
3834 {
3835 	int rc;
3836 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
3837 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3838 
3839 	rc = alloc_eq(sc, vi, &wrq->eq);
3840 	if (rc)
3841 		return (rc);
3842 
3843 	wrq->adapter = sc;
3844 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
3845 	TAILQ_INIT(&wrq->incomplete_wrs);
3846 	STAILQ_INIT(&wrq->wr_list);
3847 	wrq->nwr_pending = 0;
3848 	wrq->ndesc_needed = 0;
3849 
3850 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3851 	    &wrq->eq.ba, "bus address of descriptor ring");
3852 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3853 	    wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len,
3854 	    "desc ring size in bytes");
3855 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3856 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3857 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3858 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3859 	    "consumer index");
3860 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3861 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3862 	    "producer index");
3863 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3864 	    wrq->eq.sidx, "status page index");
3865 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
3866 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
3867 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
3868 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
3869 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
3870 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
3871 
3872 	return (rc);
3873 }
3874 
3875 static int
3876 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3877 {
3878 	int rc;
3879 
3880 	rc = free_eq(sc, &wrq->eq);
3881 	if (rc)
3882 		return (rc);
3883 
3884 	bzero(wrq, sizeof(*wrq));
3885 	return (0);
3886 }
3887 
3888 static int
3889 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
3890     struct sysctl_oid *oid)
3891 {
3892 	int rc;
3893 	struct port_info *pi = vi->pi;
3894 	struct adapter *sc = pi->adapter;
3895 	struct sge_eq *eq = &txq->eq;
3896 	char name[16];
3897 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3898 
3899 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
3900 	    M_CXGBE, M_WAITOK);
3901 	if (rc != 0) {
3902 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
3903 		return (rc);
3904 	}
3905 
3906 	rc = alloc_eq(sc, vi, eq);
3907 	if (rc != 0) {
3908 		mp_ring_free(txq->r);
3909 		txq->r = NULL;
3910 		return (rc);
3911 	}
3912 
3913 	/* Can't fail after this point. */
3914 
3915 	if (idx == 0)
3916 		sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
3917 	else
3918 		KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
3919 		    ("eq_base mismatch"));
3920 	KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
3921 	    ("PF with non-zero eq_base"));
3922 
3923 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
3924 	txq->ifp = vi->ifp;
3925 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
3926 	if (sc->flags & IS_VF)
3927 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
3928 		    V_TXPKT_INTF(pi->tx_chan));
3929 	else
3930 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3931 		    V_TXPKT_INTF(pi->tx_chan) |
3932 		    V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) |
3933 		    V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) |
3934 		    V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid)));
3935 	txq->tc_idx = -1;
3936 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
3937 	    M_ZERO | M_WAITOK);
3938 
3939 	snprintf(name, sizeof(name), "%d", idx);
3940 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3941 	    NULL, "tx queue");
3942 	children = SYSCTL_CHILDREN(oid);
3943 
3944 	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3945 	    &eq->ba, "bus address of descriptor ring");
3946 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3947 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3948 	    "desc ring size in bytes");
3949 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3950 	    &eq->abs_id, 0, "absolute id of the queue");
3951 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3952 	    &eq->cntxt_id, 0, "SGE context id of the queue");
3953 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3954 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3955 	    "consumer index");
3956 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3957 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3958 	    "producer index");
3959 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3960 	    eq->sidx, "status page index");
3961 
3962 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
3963 	    CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I",
3964 	    "traffic class (-1 means none)");
3965 
3966 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3967 	    &txq->txcsum, "# of times hardware assisted with checksum");
3968 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
3969 	    CTLFLAG_RD, &txq->vlan_insertion,
3970 	    "# of times hardware inserted 802.1Q tag");
3971 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3972 	    &txq->tso_wrs, "# of TSO work requests");
3973 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3974 	    &txq->imm_wrs, "# of work requests with immediate data");
3975 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3976 	    &txq->sgl_wrs, "# of work requests with direct SGL");
3977 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3978 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3979 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
3980 	    CTLFLAG_RD, &txq->txpkts0_wrs,
3981 	    "# of txpkts (type 0) work requests");
3982 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
3983 	    CTLFLAG_RD, &txq->txpkts1_wrs,
3984 	    "# of txpkts (type 1) work requests");
3985 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
3986 	    CTLFLAG_RD, &txq->txpkts0_pkts,
3987 	    "# of frames tx'd using type0 txpkts work requests");
3988 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
3989 	    CTLFLAG_RD, &txq->txpkts1_pkts,
3990 	    "# of frames tx'd using type1 txpkts work requests");
3991 
3992 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
3993 	    CTLFLAG_RD, &txq->r->enqueues,
3994 	    "# of enqueues to the mp_ring for this queue");
3995 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
3996 	    CTLFLAG_RD, &txq->r->drops,
3997 	    "# of drops in the mp_ring for this queue");
3998 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
3999 	    CTLFLAG_RD, &txq->r->starts,
4000 	    "# of normal consumer starts in the mp_ring for this queue");
4001 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
4002 	    CTLFLAG_RD, &txq->r->stalls,
4003 	    "# of consumer stalls in the mp_ring for this queue");
4004 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
4005 	    CTLFLAG_RD, &txq->r->restarts,
4006 	    "# of consumer restarts in the mp_ring for this queue");
4007 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
4008 	    CTLFLAG_RD, &txq->r->abdications,
4009 	    "# of consumer abdications in the mp_ring for this queue");
4010 
4011 	return (0);
4012 }
4013 
4014 static int
4015 free_txq(struct vi_info *vi, struct sge_txq *txq)
4016 {
4017 	int rc;
4018 	struct adapter *sc = vi->pi->adapter;
4019 	struct sge_eq *eq = &txq->eq;
4020 
4021 	rc = free_eq(sc, eq);
4022 	if (rc)
4023 		return (rc);
4024 
4025 	sglist_free(txq->gl);
4026 	free(txq->sdesc, M_CXGBE);
4027 	mp_ring_free(txq->r);
4028 
4029 	bzero(txq, sizeof(*txq));
4030 	return (0);
4031 }
4032 
4033 static void
4034 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4035 {
4036 	bus_addr_t *ba = arg;
4037 
4038 	KASSERT(nseg == 1,
4039 	    ("%s meant for single segment mappings only.", __func__));
4040 
4041 	*ba = error ? 0 : segs->ds_addr;
4042 }
4043 
4044 static inline void
4045 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4046 {
4047 	uint32_t n, v;
4048 
4049 	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
4050 	MPASS(n > 0);
4051 
4052 	wmb();
4053 	v = fl->dbval | V_PIDX(n);
4054 	if (fl->udb)
4055 		*fl->udb = htole32(v);
4056 	else
4057 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4058 	IDXINCR(fl->dbidx, n, fl->sidx);
4059 }
4060 
4061 /*
4062  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4063  * recycled do not count towards this allocation budget.
4064  *
4065  * Returns non-zero to indicate that this freelist should be added to the list
4066  * of starving freelists.
4067  */
4068 static int
4069 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4070 {
4071 	__be64 *d;
4072 	struct fl_sdesc *sd;
4073 	uintptr_t pa;
4074 	caddr_t cl;
4075 	struct cluster_layout *cll;
4076 	struct sw_zone_info *swz;
4077 	struct cluster_metadata *clm;
4078 	uint16_t max_pidx;
4079 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
4080 
4081 	FL_LOCK_ASSERT_OWNED(fl);
4082 
4083 	/*
4084 	 * We always stop at the beginning of the hardware descriptor that's just
4085 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
4086 	 * which would mean an empty freelist to the chip.
4087 	 */
4088 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
4089 	if (fl->pidx == max_pidx * 8)
4090 		return (0);
4091 
4092 	d = &fl->desc[fl->pidx];
4093 	sd = &fl->sdesc[fl->pidx];
4094 	cll = &fl->cll_def;	/* default layout */
4095 	swz = &sc->sge.sw_zone_info[cll->zidx];
4096 
4097 	while (n > 0) {
4098 
4099 		if (sd->cl != NULL) {
4100 
4101 			if (sd->nmbuf == 0) {
4102 				/*
4103 				 * Fast recycle without involving any atomics on
4104 				 * the cluster's metadata (if the cluster has
4105 				 * metadata).  This happens when all frames
4106 				 * received in the cluster were small enough to
4107 				 * fit within a single mbuf each.
4108 				 */
4109 				fl->cl_fast_recycled++;
4110 #ifdef INVARIANTS
4111 				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
4112 				if (clm != NULL)
4113 					MPASS(clm->refcount == 1);
4114 #endif
4115 				goto recycled_fast;
4116 			}
4117 
4118 			/*
4119 			 * Cluster is guaranteed to have metadata.  Clusters
4120 			 * without metadata always take the fast recycle path
4121 			 * when they're recycled.
4122 			 */
4123 			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
4124 			MPASS(clm != NULL);
4125 
4126 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4127 				fl->cl_recycled++;
4128 				counter_u64_add(extfree_rels, 1);
4129 				goto recycled;
4130 			}
4131 			sd->cl = NULL;	/* gave up my reference */
4132 		}
4133 		MPASS(sd->cl == NULL);
4134 alloc:
4135 		cl = uma_zalloc(swz->zone, M_NOWAIT);
4136 		if (__predict_false(cl == NULL)) {
4137 			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
4138 			    fl->cll_def.zidx == fl->cll_alt.zidx)
4139 				break;
4140 
4141 			/* fall back to the safe zone */
4142 			cll = &fl->cll_alt;
4143 			swz = &sc->sge.sw_zone_info[cll->zidx];
4144 			goto alloc;
4145 		}
4146 		fl->cl_allocated++;
4147 		n--;
4148 
4149 		pa = pmap_kextract((vm_offset_t)cl);
4150 		pa += cll->region1;
4151 		sd->cl = cl;
4152 		sd->cll = *cll;
4153 		*d = htobe64(pa | cll->hwidx);
4154 		clm = cl_metadata(sc, fl, cll, cl);
4155 		if (clm != NULL) {
4156 recycled:
4157 #ifdef INVARIANTS
4158 			clm->sd = sd;
4159 #endif
4160 			clm->refcount = 1;
4161 		}
4162 		sd->nmbuf = 0;
4163 recycled_fast:
4164 		d++;
4165 		sd++;
4166 		if (__predict_false(++fl->pidx % 8 == 0)) {
4167 			uint16_t pidx = fl->pidx / 8;
4168 
4169 			if (__predict_false(pidx == fl->sidx)) {
4170 				fl->pidx = 0;
4171 				pidx = 0;
4172 				sd = fl->sdesc;
4173 				d = fl->desc;
4174 			}
4175 			if (pidx == max_pidx)
4176 				break;
4177 
4178 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
4179 				ring_fl_db(sc, fl);
4180 		}
4181 	}
4182 
4183 	if (fl->pidx / 8 != fl->dbidx)
4184 		ring_fl_db(sc, fl);
4185 
4186 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
4187 }
4188 
4189 /*
4190  * Attempt to refill all starving freelists.
4191  */
4192 static void
4193 refill_sfl(void *arg)
4194 {
4195 	struct adapter *sc = arg;
4196 	struct sge_fl *fl, *fl_temp;
4197 
4198 	mtx_assert(&sc->sfl_lock, MA_OWNED);
4199 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
4200 		FL_LOCK(fl);
4201 		refill_fl(sc, fl, 64);
4202 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
4203 			TAILQ_REMOVE(&sc->sfl, fl, link);
4204 			fl->flags &= ~FL_STARVING;
4205 		}
4206 		FL_UNLOCK(fl);
4207 	}
4208 
4209 	if (!TAILQ_EMPTY(&sc->sfl))
4210 		callout_schedule(&sc->sfl_callout, hz / 5);
4211 }
4212 
4213 static int
4214 alloc_fl_sdesc(struct sge_fl *fl)
4215 {
4216 
4217 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
4218 	    M_ZERO | M_WAITOK);
4219 
4220 	return (0);
4221 }
4222 
4223 static void
4224 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
4225 {
4226 	struct fl_sdesc *sd;
4227 	struct cluster_metadata *clm;
4228 	struct cluster_layout *cll;
4229 	int i;
4230 
4231 	sd = fl->sdesc;
4232 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
4233 		if (sd->cl == NULL)
4234 			continue;
4235 
4236 		cll = &sd->cll;
4237 		clm = cl_metadata(sc, fl, cll, sd->cl);
4238 		if (sd->nmbuf == 0)
4239 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
4240 		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4241 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
4242 			counter_u64_add(extfree_rels, 1);
4243 		}
4244 		sd->cl = NULL;
4245 	}
4246 
4247 	free(fl->sdesc, M_CXGBE);
4248 	fl->sdesc = NULL;
4249 }
4250 
4251 static inline void
4252 get_pkt_gl(struct mbuf *m, struct sglist *gl)
4253 {
4254 	int rc;
4255 
4256 	M_ASSERTPKTHDR(m);
4257 
4258 	sglist_reset(gl);
4259 	rc = sglist_append_mbuf(gl, m);
4260 	if (__predict_false(rc != 0)) {
4261 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
4262 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
4263 	}
4264 
4265 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
4266 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
4267 	    mbuf_nsegs(m), gl->sg_nseg));
4268 	KASSERT(gl->sg_nseg > 0 &&
4269 	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
4270 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
4271 		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
4272 }
4273 
4274 /*
4275  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
4276  */
4277 static inline u_int
4278 txpkt_len16(u_int nsegs, u_int tso)
4279 {
4280 	u_int n;
4281 
4282 	MPASS(nsegs > 0);
4283 
4284 	nsegs--; /* first segment is part of ulptx_sgl */
4285 	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
4286 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4287 	if (tso)
4288 		n += sizeof(struct cpl_tx_pkt_lso_core);
4289 
4290 	return (howmany(n, 16));
4291 }
4292 
4293 /*
4294  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
4295  * request header.
4296  */
4297 static inline u_int
4298 txpkt_vm_len16(u_int nsegs, u_int tso)
4299 {
4300 	u_int n;
4301 
4302 	MPASS(nsegs > 0);
4303 
4304 	nsegs--; /* first segment is part of ulptx_sgl */
4305 	n = sizeof(struct fw_eth_tx_pkt_vm_wr) +
4306 	    sizeof(struct cpl_tx_pkt_core) +
4307 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4308 	if (tso)
4309 		n += sizeof(struct cpl_tx_pkt_lso_core);
4310 
4311 	return (howmany(n, 16));
4312 }
4313 
4314 /*
4315  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
4316  * request header.
4317  */
4318 static inline u_int
4319 txpkts0_len16(u_int nsegs)
4320 {
4321 	u_int n;
4322 
4323 	MPASS(nsegs > 0);
4324 
4325 	nsegs--; /* first segment is part of ulptx_sgl */
4326 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
4327 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
4328 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
4329 
4330 	return (howmany(n, 16));
4331 }
4332 
4333 /*
4334  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
4335  * request header.
4336  */
4337 static inline u_int
4338 txpkts1_len16(void)
4339 {
4340 	u_int n;
4341 
4342 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
4343 
4344 	return (howmany(n, 16));
4345 }
4346 
4347 static inline u_int
4348 imm_payload(u_int ndesc)
4349 {
4350 	u_int n;
4351 
4352 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
4353 	    sizeof(struct cpl_tx_pkt_core);
4354 
4355 	return (n);
4356 }
4357 
4358 /*
4359  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
4360  * software descriptor, and advance the pidx.  It is guaranteed that enough
4361  * descriptors are available.
4362  *
4363  * The return value is the # of hardware descriptors used.
4364  */
4365 static u_int
4366 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq,
4367     struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available)
4368 {
4369 	struct sge_eq *eq = &txq->eq;
4370 	struct tx_sdesc *txsd;
4371 	struct cpl_tx_pkt_core *cpl;
4372 	uint32_t ctrl;	/* used in many unrelated places */
4373 	uint64_t ctrl1;
4374 	int csum_type, len16, ndesc, pktlen, nsegs;
4375 	caddr_t dst;
4376 
4377 	TXQ_LOCK_ASSERT_OWNED(txq);
4378 	M_ASSERTPKTHDR(m0);
4379 	MPASS(available > 0 && available < eq->sidx);
4380 
4381 	len16 = mbuf_len16(m0);
4382 	nsegs = mbuf_nsegs(m0);
4383 	pktlen = m0->m_pkthdr.len;
4384 	ctrl = sizeof(struct cpl_tx_pkt_core);
4385 	if (needs_tso(m0))
4386 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4387 	ndesc = howmany(len16, EQ_ESIZE / 16);
4388 	MPASS(ndesc <= available);
4389 
4390 	/* Firmware work request header */
4391 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4392 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
4393 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4394 
4395 	ctrl = V_FW_WR_LEN16(len16);
4396 	wr->equiq_to_len16 = htobe32(ctrl);
4397 	wr->r3[0] = 0;
4398 	wr->r3[1] = 0;
4399 
4400 	/*
4401 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
4402 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
4403 	 * simpler to always copy it rather than making it
4404 	 * conditional.  Also, it seems that we do not have to set
4405 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
4406 	 */
4407 	m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst);
4408 
4409 	csum_type = -1;
4410 	if (needs_tso(m0)) {
4411 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4412 
4413 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4414 		    m0->m_pkthdr.l4hlen > 0,
4415 		    ("%s: mbuf %p needs TSO but missing header lengths",
4416 			__func__, m0));
4417 
4418 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4419 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4420 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4421 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4422 			ctrl |= V_LSO_ETHHDR_LEN(1);
4423 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4424 			ctrl |= F_LSO_IPV6;
4425 
4426 		lso->lso_ctrl = htobe32(ctrl);
4427 		lso->ipid_ofst = htobe16(0);
4428 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4429 		lso->seqno_offset = htobe32(0);
4430 		lso->len = htobe32(pktlen);
4431 
4432 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4433 			csum_type = TX_CSUM_TCPIP6;
4434 		else
4435 			csum_type = TX_CSUM_TCPIP;
4436 
4437 		cpl = (void *)(lso + 1);
4438 
4439 		txq->tso_wrs++;
4440 	} else {
4441 		if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP)
4442 			csum_type = TX_CSUM_TCPIP;
4443 		else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP)
4444 			csum_type = TX_CSUM_UDPIP;
4445 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP)
4446 			csum_type = TX_CSUM_TCPIP6;
4447 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP)
4448 			csum_type = TX_CSUM_UDPIP6;
4449 #if defined(INET)
4450 		else if (m0->m_pkthdr.csum_flags & CSUM_IP) {
4451 			/*
4452 			 * XXX: The firmware appears to stomp on the
4453 			 * fragment/flags field of the IP header when
4454 			 * using TX_CSUM_IP.  Fall back to doing
4455 			 * software checksums.
4456 			 */
4457 			u_short *sump;
4458 			struct mbuf *m;
4459 			int offset;
4460 
4461 			m = m0;
4462 			offset = 0;
4463 			sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen +
4464 			    offsetof(struct ip, ip_sum));
4465 			*sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen +
4466 			    m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen);
4467 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
4468 		}
4469 #endif
4470 
4471 		cpl = (void *)(wr + 1);
4472 	}
4473 
4474 	/* Checksum offload */
4475 	ctrl1 = 0;
4476 	if (needs_l3_csum(m0) == 0)
4477 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4478 	if (csum_type >= 0) {
4479 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0,
4480 	    ("%s: mbuf %p needs checksum offload but missing header lengths",
4481 			__func__, m0));
4482 
4483 		if (chip_id(sc) <= CHELSIO_T5) {
4484 			ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4485 			    ETHER_HDR_LEN);
4486 		} else {
4487 			ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4488 			    ETHER_HDR_LEN);
4489 		}
4490 		ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen);
4491 		ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type);
4492 	} else
4493 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4494 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4495 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4496 		txq->txcsum++;	/* some hardware assistance provided */
4497 
4498 	/* VLAN tag insertion */
4499 	if (needs_vlan_insertion(m0)) {
4500 		ctrl1 |= F_TXPKT_VLAN_VLD |
4501 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4502 		txq->vlan_insertion++;
4503 	}
4504 
4505 	/* CPL header */
4506 	cpl->ctrl0 = txq->cpl_ctrl0;
4507 	cpl->pack = 0;
4508 	cpl->len = htobe16(pktlen);
4509 	cpl->ctrl1 = htobe64(ctrl1);
4510 
4511 	/* SGL */
4512 	dst = (void *)(cpl + 1);
4513 
4514 	/*
4515 	 * A packet using TSO will use up an entire descriptor for the
4516 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
4517 	 * If this descriptor is the last descriptor in the ring, wrap
4518 	 * around to the front of the ring explicitly for the start of
4519 	 * the sgl.
4520 	 */
4521 	if (dst == (void *)&eq->desc[eq->sidx]) {
4522 		dst = (void *)&eq->desc[0];
4523 		write_gl_to_txd(txq, m0, &dst, 0);
4524 	} else
4525 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4526 	txq->sgl_wrs++;
4527 
4528 	txq->txpkt_wrs++;
4529 
4530 	txsd = &txq->sdesc[eq->pidx];
4531 	txsd->m = m0;
4532 	txsd->desc_used = ndesc;
4533 
4534 	return (ndesc);
4535 }
4536 
4537 /*
4538  * Write a txpkt WR for this packet to the hardware descriptors, update the
4539  * software descriptor, and advance the pidx.  It is guaranteed that enough
4540  * descriptors are available.
4541  *
4542  * The return value is the # of hardware descriptors used.
4543  */
4544 static u_int
4545 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
4546     struct mbuf *m0, u_int available)
4547 {
4548 	struct sge_eq *eq = &txq->eq;
4549 	struct tx_sdesc *txsd;
4550 	struct cpl_tx_pkt_core *cpl;
4551 	uint32_t ctrl;	/* used in many unrelated places */
4552 	uint64_t ctrl1;
4553 	int len16, ndesc, pktlen, nsegs;
4554 	caddr_t dst;
4555 
4556 	TXQ_LOCK_ASSERT_OWNED(txq);
4557 	M_ASSERTPKTHDR(m0);
4558 	MPASS(available > 0 && available < eq->sidx);
4559 
4560 	len16 = mbuf_len16(m0);
4561 	nsegs = mbuf_nsegs(m0);
4562 	pktlen = m0->m_pkthdr.len;
4563 	ctrl = sizeof(struct cpl_tx_pkt_core);
4564 	if (needs_tso(m0))
4565 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4566 	else if (pktlen <= imm_payload(2) && available >= 2) {
4567 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
4568 		ctrl += pktlen;
4569 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
4570 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
4571 		nsegs = 0;
4572 	}
4573 	ndesc = howmany(len16, EQ_ESIZE / 16);
4574 	MPASS(ndesc <= available);
4575 
4576 	/* Firmware work request header */
4577 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4578 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
4579 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4580 
4581 	ctrl = V_FW_WR_LEN16(len16);
4582 	wr->equiq_to_len16 = htobe32(ctrl);
4583 	wr->r3 = 0;
4584 
4585 	if (needs_tso(m0)) {
4586 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4587 
4588 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4589 		    m0->m_pkthdr.l4hlen > 0,
4590 		    ("%s: mbuf %p needs TSO but missing header lengths",
4591 			__func__, m0));
4592 
4593 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4594 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4595 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4596 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4597 			ctrl |= V_LSO_ETHHDR_LEN(1);
4598 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4599 			ctrl |= F_LSO_IPV6;
4600 
4601 		lso->lso_ctrl = htobe32(ctrl);
4602 		lso->ipid_ofst = htobe16(0);
4603 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4604 		lso->seqno_offset = htobe32(0);
4605 		lso->len = htobe32(pktlen);
4606 
4607 		cpl = (void *)(lso + 1);
4608 
4609 		txq->tso_wrs++;
4610 	} else
4611 		cpl = (void *)(wr + 1);
4612 
4613 	/* Checksum offload */
4614 	ctrl1 = 0;
4615 	if (needs_l3_csum(m0) == 0)
4616 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4617 	if (needs_l4_csum(m0) == 0)
4618 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4619 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4620 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4621 		txq->txcsum++;	/* some hardware assistance provided */
4622 
4623 	/* VLAN tag insertion */
4624 	if (needs_vlan_insertion(m0)) {
4625 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4626 		txq->vlan_insertion++;
4627 	}
4628 
4629 	/* CPL header */
4630 	cpl->ctrl0 = txq->cpl_ctrl0;
4631 	cpl->pack = 0;
4632 	cpl->len = htobe16(pktlen);
4633 	cpl->ctrl1 = htobe64(ctrl1);
4634 
4635 	/* SGL */
4636 	dst = (void *)(cpl + 1);
4637 	if (nsegs > 0) {
4638 
4639 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4640 		txq->sgl_wrs++;
4641 	} else {
4642 		struct mbuf *m;
4643 
4644 		for (m = m0; m != NULL; m = m->m_next) {
4645 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4646 #ifdef INVARIANTS
4647 			pktlen -= m->m_len;
4648 #endif
4649 		}
4650 #ifdef INVARIANTS
4651 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
4652 #endif
4653 		txq->imm_wrs++;
4654 	}
4655 
4656 	txq->txpkt_wrs++;
4657 
4658 	txsd = &txq->sdesc[eq->pidx];
4659 	txsd->m = m0;
4660 	txsd->desc_used = ndesc;
4661 
4662 	return (ndesc);
4663 }
4664 
4665 static int
4666 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
4667 {
4668 	u_int needed, nsegs1, nsegs2, l1, l2;
4669 
4670 	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
4671 		return (1);
4672 
4673 	nsegs1 = mbuf_nsegs(m);
4674 	nsegs2 = mbuf_nsegs(n);
4675 	if (nsegs1 + nsegs2 == 2) {
4676 		txp->wr_type = 1;
4677 		l1 = l2 = txpkts1_len16();
4678 	} else {
4679 		txp->wr_type = 0;
4680 		l1 = txpkts0_len16(nsegs1);
4681 		l2 = txpkts0_len16(nsegs2);
4682 	}
4683 	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
4684 	needed = howmany(txp->len16, EQ_ESIZE / 16);
4685 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4686 		return (1);
4687 
4688 	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
4689 	if (txp->plen > 65535)
4690 		return (1);
4691 
4692 	txp->npkt = 2;
4693 	set_mbuf_len16(m, l1);
4694 	set_mbuf_len16(n, l2);
4695 
4696 	return (0);
4697 }
4698 
4699 static int
4700 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
4701 {
4702 	u_int plen, len16, needed, nsegs;
4703 
4704 	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
4705 
4706 	nsegs = mbuf_nsegs(m);
4707 	if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
4708 		return (1);
4709 
4710 	plen = txp->plen + m->m_pkthdr.len;
4711 	if (plen > 65535)
4712 		return (1);
4713 
4714 	if (txp->wr_type == 0)
4715 		len16 = txpkts0_len16(nsegs);
4716 	else
4717 		len16 = txpkts1_len16();
4718 	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4719 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4720 		return (1);
4721 
4722 	txp->npkt++;
4723 	txp->plen = plen;
4724 	txp->len16 += len16;
4725 	set_mbuf_len16(m, len16);
4726 
4727 	return (0);
4728 }
4729 
4730 /*
4731  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
4732  * the software descriptor, and advance the pidx.  It is guaranteed that enough
4733  * descriptors are available.
4734  *
4735  * The return value is the # of hardware descriptors used.
4736  */
4737 static u_int
4738 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
4739     struct mbuf *m0, const struct txpkts *txp, u_int available)
4740 {
4741 	struct sge_eq *eq = &txq->eq;
4742 	struct tx_sdesc *txsd;
4743 	struct cpl_tx_pkt_core *cpl;
4744 	uint32_t ctrl;
4745 	uint64_t ctrl1;
4746 	int ndesc, checkwrap;
4747 	struct mbuf *m;
4748 	void *flitp;
4749 
4750 	TXQ_LOCK_ASSERT_OWNED(txq);
4751 	MPASS(txp->npkt > 0);
4752 	MPASS(txp->plen < 65536);
4753 	MPASS(m0 != NULL);
4754 	MPASS(m0->m_nextpkt != NULL);
4755 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
4756 	MPASS(available > 0 && available < eq->sidx);
4757 
4758 	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
4759 	MPASS(ndesc <= available);
4760 
4761 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4762 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4763 	ctrl = V_FW_WR_LEN16(txp->len16);
4764 	wr->equiq_to_len16 = htobe32(ctrl);
4765 	wr->plen = htobe16(txp->plen);
4766 	wr->npkt = txp->npkt;
4767 	wr->r3 = 0;
4768 	wr->type = txp->wr_type;
4769 	flitp = wr + 1;
4770 
4771 	/*
4772 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
4773 	 * set then we know the WR is going to wrap around somewhere.  We'll
4774 	 * check for that at appropriate points.
4775 	 */
4776 	checkwrap = eq->sidx - ndesc < eq->pidx;
4777 	for (m = m0; m != NULL; m = m->m_nextpkt) {
4778 		if (txp->wr_type == 0) {
4779 			struct ulp_txpkt *ulpmc;
4780 			struct ulptx_idata *ulpsc;
4781 
4782 			/* ULP master command */
4783 			ulpmc = flitp;
4784 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
4785 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
4786 			ulpmc->len = htobe32(mbuf_len16(m));
4787 
4788 			/* ULP subcommand */
4789 			ulpsc = (void *)(ulpmc + 1);
4790 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
4791 			    F_ULP_TX_SC_MORE);
4792 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
4793 
4794 			cpl = (void *)(ulpsc + 1);
4795 			if (checkwrap &&
4796 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
4797 				cpl = (void *)&eq->desc[0];
4798 		} else {
4799 			cpl = flitp;
4800 		}
4801 
4802 		/* Checksum offload */
4803 		ctrl1 = 0;
4804 		if (needs_l3_csum(m) == 0)
4805 			ctrl1 |= F_TXPKT_IPCSUM_DIS;
4806 		if (needs_l4_csum(m) == 0)
4807 			ctrl1 |= F_TXPKT_L4CSUM_DIS;
4808 		if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4809 		    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4810 			txq->txcsum++;	/* some hardware assistance provided */
4811 
4812 		/* VLAN tag insertion */
4813 		if (needs_vlan_insertion(m)) {
4814 			ctrl1 |= F_TXPKT_VLAN_VLD |
4815 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
4816 			txq->vlan_insertion++;
4817 		}
4818 
4819 		/* CPL header */
4820 		cpl->ctrl0 = txq->cpl_ctrl0;
4821 		cpl->pack = 0;
4822 		cpl->len = htobe16(m->m_pkthdr.len);
4823 		cpl->ctrl1 = htobe64(ctrl1);
4824 
4825 		flitp = cpl + 1;
4826 		if (checkwrap &&
4827 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
4828 			flitp = (void *)&eq->desc[0];
4829 
4830 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
4831 
4832 	}
4833 
4834 	if (txp->wr_type == 0) {
4835 		txq->txpkts0_pkts += txp->npkt;
4836 		txq->txpkts0_wrs++;
4837 	} else {
4838 		txq->txpkts1_pkts += txp->npkt;
4839 		txq->txpkts1_wrs++;
4840 	}
4841 
4842 	txsd = &txq->sdesc[eq->pidx];
4843 	txsd->m = m0;
4844 	txsd->desc_used = ndesc;
4845 
4846 	return (ndesc);
4847 }
4848 
4849 /*
4850  * If the SGL ends on an address that is not 16 byte aligned, this function will
4851  * add a 0 filled flit at the end.
4852  */
4853 static void
4854 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
4855 {
4856 	struct sge_eq *eq = &txq->eq;
4857 	struct sglist *gl = txq->gl;
4858 	struct sglist_seg *seg;
4859 	__be64 *flitp, *wrap;
4860 	struct ulptx_sgl *usgl;
4861 	int i, nflits, nsegs;
4862 
4863 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4864 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4865 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4866 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4867 
4868 	get_pkt_gl(m, gl);
4869 	nsegs = gl->sg_nseg;
4870 	MPASS(nsegs > 0);
4871 
4872 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
4873 	flitp = (__be64 *)(*to);
4874 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
4875 	seg = &gl->sg_segs[0];
4876 	usgl = (void *)flitp;
4877 
4878 	/*
4879 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4880 	 * ring, so we're at least 16 bytes away from the status page.  There is
4881 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4882 	 */
4883 
4884 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4885 	    V_ULPTX_NSGE(nsegs));
4886 	usgl->len0 = htobe32(seg->ss_len);
4887 	usgl->addr0 = htobe64(seg->ss_paddr);
4888 	seg++;
4889 
4890 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
4891 
4892 		/* Won't wrap around at all */
4893 
4894 		for (i = 0; i < nsegs - 1; i++, seg++) {
4895 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
4896 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
4897 		}
4898 		if (i & 1)
4899 			usgl->sge[i / 2].len[1] = htobe32(0);
4900 		flitp += nflits;
4901 	} else {
4902 
4903 		/* Will wrap somewhere in the rest of the SGL */
4904 
4905 		/* 2 flits already written, write the rest flit by flit */
4906 		flitp = (void *)(usgl + 1);
4907 		for (i = 0; i < nflits - 2; i++) {
4908 			if (flitp == wrap)
4909 				flitp = (void *)eq->desc;
4910 			*flitp++ = get_flit(seg, nsegs - 1, i);
4911 		}
4912 	}
4913 
4914 	if (nflits & 1) {
4915 		MPASS(((uintptr_t)flitp) & 0xf);
4916 		*flitp++ = 0;
4917 	}
4918 
4919 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
4920 	if (__predict_false(flitp == wrap))
4921 		*to = (void *)eq->desc;
4922 	else
4923 		*to = (void *)flitp;
4924 }
4925 
4926 static inline void
4927 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4928 {
4929 
4930 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4931 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4932 
4933 	if (__predict_true((uintptr_t)(*to) + len <=
4934 	    (uintptr_t)&eq->desc[eq->sidx])) {
4935 		bcopy(from, *to, len);
4936 		(*to) += len;
4937 	} else {
4938 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
4939 
4940 		bcopy(from, *to, portion);
4941 		from += portion;
4942 		portion = len - portion;	/* remaining */
4943 		bcopy(from, (void *)eq->desc, portion);
4944 		(*to) = (caddr_t)eq->desc + portion;
4945 	}
4946 }
4947 
4948 static inline void
4949 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
4950 {
4951 	u_int db;
4952 
4953 	MPASS(n > 0);
4954 
4955 	db = eq->doorbells;
4956 	if (n > 1)
4957 		clrbit(&db, DOORBELL_WCWR);
4958 	wmb();
4959 
4960 	switch (ffs(db) - 1) {
4961 	case DOORBELL_UDB:
4962 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4963 		break;
4964 
4965 	case DOORBELL_WCWR: {
4966 		volatile uint64_t *dst, *src;
4967 		int i;
4968 
4969 		/*
4970 		 * Queues whose 128B doorbell segment fits in the page do not
4971 		 * use relative qid (udb_qid is always 0).  Only queues with
4972 		 * doorbell segments can do WCWR.
4973 		 */
4974 		KASSERT(eq->udb_qid == 0 && n == 1,
4975 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4976 		    __func__, eq->doorbells, n, eq->dbidx, eq));
4977 
4978 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4979 		    UDBS_DB_OFFSET);
4980 		i = eq->dbidx;
4981 		src = (void *)&eq->desc[i];
4982 		while (src != (void *)&eq->desc[i + 1])
4983 			*dst++ = *src++;
4984 		wmb();
4985 		break;
4986 	}
4987 
4988 	case DOORBELL_UDBWC:
4989 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4990 		wmb();
4991 		break;
4992 
4993 	case DOORBELL_KDB:
4994 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
4995 		    V_QID(eq->cntxt_id) | V_PIDX(n));
4996 		break;
4997 	}
4998 
4999 	IDXINCR(eq->dbidx, n, eq->sidx);
5000 }
5001 
5002 static inline u_int
5003 reclaimable_tx_desc(struct sge_eq *eq)
5004 {
5005 	uint16_t hw_cidx;
5006 
5007 	hw_cidx = read_hw_cidx(eq);
5008 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
5009 }
5010 
5011 static inline u_int
5012 total_available_tx_desc(struct sge_eq *eq)
5013 {
5014 	uint16_t hw_cidx, pidx;
5015 
5016 	hw_cidx = read_hw_cidx(eq);
5017 	pidx = eq->pidx;
5018 
5019 	if (pidx == hw_cidx)
5020 		return (eq->sidx - 1);
5021 	else
5022 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
5023 }
5024 
5025 static inline uint16_t
5026 read_hw_cidx(struct sge_eq *eq)
5027 {
5028 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5029 	uint16_t cidx = spg->cidx;	/* stable snapshot */
5030 
5031 	return (be16toh(cidx));
5032 }
5033 
5034 /*
5035  * Reclaim 'n' descriptors approximately.
5036  */
5037 static u_int
5038 reclaim_tx_descs(struct sge_txq *txq, u_int n)
5039 {
5040 	struct tx_sdesc *txsd;
5041 	struct sge_eq *eq = &txq->eq;
5042 	u_int can_reclaim, reclaimed;
5043 
5044 	TXQ_LOCK_ASSERT_OWNED(txq);
5045 	MPASS(n > 0);
5046 
5047 	reclaimed = 0;
5048 	can_reclaim = reclaimable_tx_desc(eq);
5049 	while (can_reclaim && reclaimed < n) {
5050 		int ndesc;
5051 		struct mbuf *m, *nextpkt;
5052 
5053 		txsd = &txq->sdesc[eq->cidx];
5054 		ndesc = txsd->desc_used;
5055 
5056 		/* Firmware doesn't return "partial" credits. */
5057 		KASSERT(can_reclaim >= ndesc,
5058 		    ("%s: unexpected number of credits: %d, %d",
5059 		    __func__, can_reclaim, ndesc));
5060 
5061 		for (m = txsd->m; m != NULL; m = nextpkt) {
5062 			nextpkt = m->m_nextpkt;
5063 			m->m_nextpkt = NULL;
5064 			m_freem(m);
5065 		}
5066 		reclaimed += ndesc;
5067 		can_reclaim -= ndesc;
5068 		IDXINCR(eq->cidx, ndesc, eq->sidx);
5069 	}
5070 
5071 	return (reclaimed);
5072 }
5073 
5074 static void
5075 tx_reclaim(void *arg, int n)
5076 {
5077 	struct sge_txq *txq = arg;
5078 	struct sge_eq *eq = &txq->eq;
5079 
5080 	do {
5081 		if (TXQ_TRYLOCK(txq) == 0)
5082 			break;
5083 		n = reclaim_tx_descs(txq, 32);
5084 		if (eq->cidx == eq->pidx)
5085 			eq->equeqidx = eq->pidx;
5086 		TXQ_UNLOCK(txq);
5087 	} while (n > 0);
5088 }
5089 
5090 static __be64
5091 get_flit(struct sglist_seg *segs, int nsegs, int idx)
5092 {
5093 	int i = (idx / 3) * 2;
5094 
5095 	switch (idx % 3) {
5096 	case 0: {
5097 		uint64_t rc;
5098 
5099 		rc = (uint64_t)segs[i].ss_len << 32;
5100 		if (i + 1 < nsegs)
5101 			rc |= (uint64_t)(segs[i + 1].ss_len);
5102 
5103 		return (htobe64(rc));
5104 	}
5105 	case 1:
5106 		return (htobe64(segs[i].ss_paddr));
5107 	case 2:
5108 		return (htobe64(segs[i + 1].ss_paddr));
5109 	}
5110 
5111 	return (0);
5112 }
5113 
5114 static void
5115 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
5116 {
5117 	int8_t zidx, hwidx, idx;
5118 	uint16_t region1, region3;
5119 	int spare, spare_needed, n;
5120 	struct sw_zone_info *swz;
5121 	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
5122 
5123 	/*
5124 	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
5125 	 * large enough for the max payload and cluster metadata.  Otherwise
5126 	 * settle for the largest bufsize that leaves enough room in the cluster
5127 	 * for metadata.
5128 	 *
5129 	 * Without buffer packing: Look for the smallest zone which has a
5130 	 * bufsize large enough for the max payload.  Settle for the largest
5131 	 * bufsize available if there's nothing big enough for max payload.
5132 	 */
5133 	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
5134 	swz = &sc->sge.sw_zone_info[0];
5135 	hwidx = -1;
5136 	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
5137 		if (swz->size > largest_rx_cluster) {
5138 			if (__predict_true(hwidx != -1))
5139 				break;
5140 
5141 			/*
5142 			 * This is a misconfiguration.  largest_rx_cluster is
5143 			 * preventing us from finding a refill source.  See
5144 			 * dev.t5nex.<n>.buffer_sizes to figure out why.
5145 			 */
5146 			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
5147 			    " refill source for fl %p (dma %u).  Ignored.\n",
5148 			    largest_rx_cluster, fl, maxp);
5149 		}
5150 		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
5151 			hwb = &hwb_list[idx];
5152 			spare = swz->size - hwb->size;
5153 			if (spare < spare_needed)
5154 				continue;
5155 
5156 			hwidx = idx;		/* best option so far */
5157 			if (hwb->size >= maxp) {
5158 
5159 				if ((fl->flags & FL_BUF_PACKING) == 0)
5160 					goto done; /* stop looking (not packing) */
5161 
5162 				if (swz->size >= safest_rx_cluster)
5163 					goto done; /* stop looking (packing) */
5164 			}
5165 			break;		/* keep looking, next zone */
5166 		}
5167 	}
5168 done:
5169 	/* A usable hwidx has been located. */
5170 	MPASS(hwidx != -1);
5171 	hwb = &hwb_list[hwidx];
5172 	zidx = hwb->zidx;
5173 	swz = &sc->sge.sw_zone_info[zidx];
5174 	region1 = 0;
5175 	region3 = swz->size - hwb->size;
5176 
5177 	/*
5178 	 * Stay within this zone and see if there is a better match when mbuf
5179 	 * inlining is allowed.  Remember that the hwidx's are sorted in
5180 	 * decreasing order of size (so in increasing order of spare area).
5181 	 */
5182 	for (idx = hwidx; idx != -1; idx = hwb->next) {
5183 		hwb = &hwb_list[idx];
5184 		spare = swz->size - hwb->size;
5185 
5186 		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
5187 			break;
5188 
5189 		/*
5190 		 * Do not inline mbufs if doing so would violate the pad/pack
5191 		 * boundary alignment requirement.
5192 		 */
5193 		if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0)
5194 			continue;
5195 		if (fl->flags & FL_BUF_PACKING &&
5196 		    (MSIZE % sc->params.sge.pack_boundary) != 0)
5197 			continue;
5198 
5199 		if (spare < CL_METADATA_SIZE + MSIZE)
5200 			continue;
5201 		n = (spare - CL_METADATA_SIZE) / MSIZE;
5202 		if (n > howmany(hwb->size, maxp))
5203 			break;
5204 
5205 		hwidx = idx;
5206 		if (fl->flags & FL_BUF_PACKING) {
5207 			region1 = n * MSIZE;
5208 			region3 = spare - region1;
5209 		} else {
5210 			region1 = MSIZE;
5211 			region3 = spare - region1;
5212 			break;
5213 		}
5214 	}
5215 
5216 	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
5217 	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
5218 	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
5219 	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
5220 	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
5221 	    sc->sge.sw_zone_info[zidx].size,
5222 	    ("%s: bad buffer layout for fl %p, maxp %d. "
5223 		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5224 		sc->sge.sw_zone_info[zidx].size, region1,
5225 		sc->sge.hw_buf_info[hwidx].size, region3));
5226 	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
5227 		KASSERT(region3 >= CL_METADATA_SIZE,
5228 		    ("%s: no room for metadata.  fl %p, maxp %d; "
5229 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5230 		    sc->sge.sw_zone_info[zidx].size, region1,
5231 		    sc->sge.hw_buf_info[hwidx].size, region3));
5232 		KASSERT(region1 % MSIZE == 0,
5233 		    ("%s: bad mbuf region for fl %p, maxp %d. "
5234 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5235 		    sc->sge.sw_zone_info[zidx].size, region1,
5236 		    sc->sge.hw_buf_info[hwidx].size, region3));
5237 	}
5238 
5239 	fl->cll_def.zidx = zidx;
5240 	fl->cll_def.hwidx = hwidx;
5241 	fl->cll_def.region1 = region1;
5242 	fl->cll_def.region3 = region3;
5243 }
5244 
5245 static void
5246 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
5247 {
5248 	struct sge *s = &sc->sge;
5249 	struct hw_buf_info *hwb;
5250 	struct sw_zone_info *swz;
5251 	int spare;
5252 	int8_t hwidx;
5253 
5254 	if (fl->flags & FL_BUF_PACKING)
5255 		hwidx = s->safe_hwidx2;	/* with room for metadata */
5256 	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
5257 		hwidx = s->safe_hwidx2;
5258 		hwb = &s->hw_buf_info[hwidx];
5259 		swz = &s->sw_zone_info[hwb->zidx];
5260 		spare = swz->size - hwb->size;
5261 
5262 		/* no good if there isn't room for an mbuf as well */
5263 		if (spare < CL_METADATA_SIZE + MSIZE)
5264 			hwidx = s->safe_hwidx1;
5265 	} else
5266 		hwidx = s->safe_hwidx1;
5267 
5268 	if (hwidx == -1) {
5269 		/* No fallback source */
5270 		fl->cll_alt.hwidx = -1;
5271 		fl->cll_alt.zidx = -1;
5272 
5273 		return;
5274 	}
5275 
5276 	hwb = &s->hw_buf_info[hwidx];
5277 	swz = &s->sw_zone_info[hwb->zidx];
5278 	spare = swz->size - hwb->size;
5279 	fl->cll_alt.hwidx = hwidx;
5280 	fl->cll_alt.zidx = hwb->zidx;
5281 	if (allow_mbufs_in_cluster &&
5282 	    (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0))
5283 		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
5284 	else
5285 		fl->cll_alt.region1 = 0;
5286 	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
5287 }
5288 
5289 static void
5290 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
5291 {
5292 	mtx_lock(&sc->sfl_lock);
5293 	FL_LOCK(fl);
5294 	if ((fl->flags & FL_DOOMED) == 0) {
5295 		fl->flags |= FL_STARVING;
5296 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
5297 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
5298 	}
5299 	FL_UNLOCK(fl);
5300 	mtx_unlock(&sc->sfl_lock);
5301 }
5302 
5303 static void
5304 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
5305 {
5306 	struct sge_wrq *wrq = (void *)eq;
5307 
5308 	atomic_readandclear_int(&eq->equiq);
5309 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
5310 }
5311 
5312 static void
5313 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
5314 {
5315 	struct sge_txq *txq = (void *)eq;
5316 
5317 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
5318 
5319 	atomic_readandclear_int(&eq->equiq);
5320 	mp_ring_check_drainage(txq->r, 0);
5321 	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
5322 }
5323 
5324 static int
5325 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
5326     struct mbuf *m)
5327 {
5328 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
5329 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
5330 	struct adapter *sc = iq->adapter;
5331 	struct sge *s = &sc->sge;
5332 	struct sge_eq *eq;
5333 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
5334 		&handle_wrq_egr_update, &handle_eth_egr_update,
5335 		&handle_wrq_egr_update};
5336 
5337 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5338 	    rss->opcode));
5339 
5340 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
5341 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
5342 
5343 	return (0);
5344 }
5345 
5346 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
5347 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
5348     offsetof(struct cpl_fw6_msg, data));
5349 
5350 static int
5351 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
5352 {
5353 	struct adapter *sc = iq->adapter;
5354 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
5355 
5356 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5357 	    rss->opcode));
5358 
5359 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
5360 		const struct rss_header *rss2;
5361 
5362 		rss2 = (const struct rss_header *)&cpl->data[0];
5363 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
5364 	}
5365 
5366 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
5367 }
5368 
5369 /**
5370  *	t4_handle_wrerr_rpl - process a FW work request error message
5371  *	@adap: the adapter
5372  *	@rpl: start of the FW message
5373  */
5374 static int
5375 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
5376 {
5377 	u8 opcode = *(const u8 *)rpl;
5378 	const struct fw_error_cmd *e = (const void *)rpl;
5379 	unsigned int i;
5380 
5381 	if (opcode != FW_ERROR_CMD) {
5382 		log(LOG_ERR,
5383 		    "%s: Received WRERR_RPL message with opcode %#x\n",
5384 		    device_get_nameunit(adap->dev), opcode);
5385 		return (EINVAL);
5386 	}
5387 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
5388 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
5389 	    "non-fatal");
5390 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
5391 	case FW_ERROR_TYPE_EXCEPTION:
5392 		log(LOG_ERR, "exception info:\n");
5393 		for (i = 0; i < nitems(e->u.exception.info); i++)
5394 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
5395 			    be32toh(e->u.exception.info[i]));
5396 		log(LOG_ERR, "\n");
5397 		break;
5398 	case FW_ERROR_TYPE_HWMODULE:
5399 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
5400 		    be32toh(e->u.hwmodule.regaddr),
5401 		    be32toh(e->u.hwmodule.regval));
5402 		break;
5403 	case FW_ERROR_TYPE_WR:
5404 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
5405 		    be16toh(e->u.wr.cidx),
5406 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
5407 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
5408 		    be32toh(e->u.wr.eqid));
5409 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
5410 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
5411 			    e->u.wr.wrhdr[i]);
5412 		log(LOG_ERR, "\n");
5413 		break;
5414 	case FW_ERROR_TYPE_ACL:
5415 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
5416 		    be16toh(e->u.acl.cidx),
5417 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
5418 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
5419 		    be32toh(e->u.acl.eqid),
5420 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
5421 		    "MAC");
5422 		for (i = 0; i < nitems(e->u.acl.val); i++)
5423 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
5424 		log(LOG_ERR, "\n");
5425 		break;
5426 	default:
5427 		log(LOG_ERR, "type %#x\n",
5428 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
5429 		return (EINVAL);
5430 	}
5431 	return (0);
5432 }
5433 
5434 static int
5435 sysctl_uint16(SYSCTL_HANDLER_ARGS)
5436 {
5437 	uint16_t *id = arg1;
5438 	int i = *id;
5439 
5440 	return sysctl_handle_int(oidp, &i, 0, req);
5441 }
5442 
5443 static int
5444 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
5445 {
5446 	struct sge *s = arg1;
5447 	struct hw_buf_info *hwb = &s->hw_buf_info[0];
5448 	struct sw_zone_info *swz = &s->sw_zone_info[0];
5449 	int i, rc;
5450 	struct sbuf sb;
5451 	char c;
5452 
5453 	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
5454 	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
5455 		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
5456 			c = '*';
5457 		else
5458 			c = '\0';
5459 
5460 		sbuf_printf(&sb, "%u%c ", hwb->size, c);
5461 	}
5462 	sbuf_trim(&sb);
5463 	sbuf_finish(&sb);
5464 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
5465 	sbuf_delete(&sb);
5466 	return (rc);
5467 }
5468 
5469 #ifdef RATELIMIT
5470 /*
5471  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5472  */
5473 static inline u_int
5474 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
5475 {
5476 	u_int n;
5477 
5478 	MPASS(immhdrs > 0);
5479 
5480 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
5481 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
5482 	if (__predict_false(nsegs == 0))
5483 		goto done;
5484 
5485 	nsegs--; /* first segment is part of ulptx_sgl */
5486 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5487 	if (tso)
5488 		n += sizeof(struct cpl_tx_pkt_lso_core);
5489 
5490 done:
5491 	return (howmany(n, 16));
5492 }
5493 
5494 #define ETID_FLOWC_NPARAMS 6
5495 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
5496     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
5497 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
5498 
5499 static int
5500 send_etid_flowc_wr(struct cxgbe_snd_tag *cst, struct port_info *pi,
5501     struct vi_info *vi)
5502 {
5503 	struct wrq_cookie cookie;
5504 	u_int pfvf = G_FW_VIID_PFN(vi->viid) << S_FW_VIID_PFN;
5505 	struct fw_flowc_wr *flowc;
5506 
5507 	mtx_assert(&cst->lock, MA_OWNED);
5508 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
5509 	    EO_FLOWC_PENDING);
5510 
5511 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLOWC_LEN16, &cookie);
5512 	if (__predict_false(flowc == NULL))
5513 		return (ENOMEM);
5514 
5515 	bzero(flowc, ETID_FLOWC_LEN);
5516 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
5517 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
5518 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
5519 	    V_FW_WR_FLOWID(cst->etid));
5520 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
5521 	flowc->mnemval[0].val = htobe32(pfvf);
5522 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
5523 	flowc->mnemval[1].val = htobe32(pi->tx_chan);
5524 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
5525 	flowc->mnemval[2].val = htobe32(pi->tx_chan);
5526 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
5527 	flowc->mnemval[3].val = htobe32(cst->iqid);
5528 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
5529 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
5530 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
5531 	flowc->mnemval[5].val = htobe32(cst->schedcl);
5532 
5533 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
5534 
5535 	cst->flags &= ~EO_FLOWC_PENDING;
5536 	cst->flags |= EO_FLOWC_RPL_PENDING;
5537 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
5538 	cst->tx_credits -= ETID_FLOWC_LEN16;
5539 
5540 	return (0);
5541 }
5542 
5543 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
5544 
5545 void
5546 send_etid_flush_wr(struct cxgbe_snd_tag *cst)
5547 {
5548 	struct fw_flowc_wr *flowc;
5549 	struct wrq_cookie cookie;
5550 
5551 	mtx_assert(&cst->lock, MA_OWNED);
5552 
5553 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLUSH_LEN16, &cookie);
5554 	if (__predict_false(flowc == NULL))
5555 		CXGBE_UNIMPLEMENTED(__func__);
5556 
5557 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
5558 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
5559 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
5560 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
5561 	    V_FW_WR_FLOWID(cst->etid));
5562 
5563 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
5564 
5565 	cst->flags |= EO_FLUSH_RPL_PENDING;
5566 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
5567 	cst->tx_credits -= ETID_FLUSH_LEN16;
5568 	cst->ncompl++;
5569 }
5570 
5571 static void
5572 write_ethofld_wr(struct cxgbe_snd_tag *cst, struct fw_eth_tx_eo_wr *wr,
5573     struct mbuf *m0, int compl)
5574 {
5575 	struct cpl_tx_pkt_core *cpl;
5576 	uint64_t ctrl1;
5577 	uint32_t ctrl;	/* used in many unrelated places */
5578 	int len16, pktlen, nsegs, immhdrs;
5579 	caddr_t dst;
5580 	uintptr_t p;
5581 	struct ulptx_sgl *usgl;
5582 	struct sglist sg;
5583 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
5584 
5585 	mtx_assert(&cst->lock, MA_OWNED);
5586 	M_ASSERTPKTHDR(m0);
5587 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5588 	    m0->m_pkthdr.l4hlen > 0,
5589 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
5590 
5591 	if (needs_udp_csum(m0)) {
5592 		CXGBE_UNIMPLEMENTED("UDP ethofld");
5593 	}
5594 
5595 	len16 = mbuf_eo_len16(m0);
5596 	nsegs = mbuf_eo_nsegs(m0);
5597 	pktlen = m0->m_pkthdr.len;
5598 	ctrl = sizeof(struct cpl_tx_pkt_core);
5599 	if (needs_tso(m0))
5600 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5601 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
5602 	ctrl += immhdrs;
5603 
5604 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
5605 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
5606 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
5607 	    V_FW_WR_FLOWID(cst->etid));
5608 	wr->r3 = 0;
5609 	wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
5610 	wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
5611 	wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
5612 	wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
5613 	wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
5614 	wr->u.tcpseg.r4 = 0;
5615 	wr->u.tcpseg.r5 = 0;
5616 	wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
5617 
5618 	if (needs_tso(m0)) {
5619 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
5620 
5621 		wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
5622 
5623 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
5624 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
5625 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5626 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
5627 			ctrl |= V_LSO_ETHHDR_LEN(1);
5628 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5629 			ctrl |= F_LSO_IPV6;
5630 		lso->lso_ctrl = htobe32(ctrl);
5631 		lso->ipid_ofst = htobe16(0);
5632 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5633 		lso->seqno_offset = htobe32(0);
5634 		lso->len = htobe32(pktlen);
5635 
5636 		cpl = (void *)(lso + 1);
5637 	} else {
5638 		wr->u.tcpseg.mss = htobe16(0xffff);
5639 		cpl = (void *)(wr + 1);
5640 	}
5641 
5642 	/* Checksum offload must be requested for ethofld. */
5643 	ctrl1 = 0;
5644 	MPASS(needs_l4_csum(m0));
5645 
5646 	/* VLAN tag insertion */
5647 	if (needs_vlan_insertion(m0)) {
5648 		ctrl1 |= F_TXPKT_VLAN_VLD |
5649 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5650 	}
5651 
5652 	/* CPL header */
5653 	cpl->ctrl0 = cst->ctrl0;
5654 	cpl->pack = 0;
5655 	cpl->len = htobe16(pktlen);
5656 	cpl->ctrl1 = htobe64(ctrl1);
5657 
5658 	/* Copy Ethernet, IP & TCP hdrs as immediate data */
5659 	p = (uintptr_t)(cpl + 1);
5660 	m_copydata(m0, 0, immhdrs, (void *)p);
5661 
5662 	/* SGL */
5663 	dst = (void *)(cpl + 1);
5664 	if (nsegs > 0) {
5665 		int i, pad;
5666 
5667 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
5668 		p += immhdrs;
5669 		pad = 16 - (immhdrs & 0xf);
5670 		bzero((void *)p, pad);
5671 
5672 		usgl = (void *)(p + pad);
5673 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
5674 		    V_ULPTX_NSGE(nsegs));
5675 
5676 		sglist_init(&sg, nitems(segs), segs);
5677 		for (; m0 != NULL; m0 = m0->m_next) {
5678 			if (__predict_false(m0->m_len == 0))
5679 				continue;
5680 			if (immhdrs >= m0->m_len) {
5681 				immhdrs -= m0->m_len;
5682 				continue;
5683 			}
5684 
5685 			sglist_append(&sg, mtod(m0, char *) + immhdrs,
5686 			    m0->m_len - immhdrs);
5687 			immhdrs = 0;
5688 		}
5689 		MPASS(sg.sg_nseg == nsegs);
5690 
5691 		/*
5692 		 * Zero pad last 8B in case the WR doesn't end on a 16B
5693 		 * boundary.
5694 		 */
5695 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
5696 
5697 		usgl->len0 = htobe32(segs[0].ss_len);
5698 		usgl->addr0 = htobe64(segs[0].ss_paddr);
5699 		for (i = 0; i < nsegs - 1; i++) {
5700 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
5701 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
5702 		}
5703 		if (i & 1)
5704 			usgl->sge[i / 2].len[1] = htobe32(0);
5705 	}
5706 
5707 }
5708 
5709 static void
5710 ethofld_tx(struct cxgbe_snd_tag *cst)
5711 {
5712 	struct mbuf *m;
5713 	struct wrq_cookie cookie;
5714 	int next_credits, compl;
5715 	struct fw_eth_tx_eo_wr *wr;
5716 
5717 	mtx_assert(&cst->lock, MA_OWNED);
5718 
5719 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
5720 		M_ASSERTPKTHDR(m);
5721 
5722 		/* How many len16 credits do we need to send this mbuf. */
5723 		next_credits = mbuf_eo_len16(m);
5724 		MPASS(next_credits > 0);
5725 		if (next_credits > cst->tx_credits) {
5726 			/*
5727 			 * Tx will make progress eventually because there is at
5728 			 * least one outstanding fw4_ack that will return
5729 			 * credits and kick the tx.
5730 			 */
5731 			MPASS(cst->ncompl > 0);
5732 			return;
5733 		}
5734 		wr = start_wrq_wr(cst->eo_txq, next_credits, &cookie);
5735 		if (__predict_false(wr == NULL)) {
5736 			/* XXX: wishful thinking, not a real assertion. */
5737 			MPASS(cst->ncompl > 0);
5738 			return;
5739 		}
5740 		cst->tx_credits -= next_credits;
5741 		cst->tx_nocompl += next_credits;
5742 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
5743 		ETHER_BPF_MTAP(cst->com.ifp, m);
5744 		write_ethofld_wr(cst, wr, m, compl);
5745 		commit_wrq_wr(cst->eo_txq, wr, &cookie);
5746 		if (compl) {
5747 			cst->ncompl++;
5748 			cst->tx_nocompl	= 0;
5749 		}
5750 		(void) mbufq_dequeue(&cst->pending_tx);
5751 		mbufq_enqueue(&cst->pending_fwack, m);
5752 	}
5753 }
5754 
5755 int
5756 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
5757 {
5758 	struct cxgbe_snd_tag *cst;
5759 	int rc;
5760 
5761 	MPASS(m0->m_nextpkt == NULL);
5762 	MPASS(m0->m_pkthdr.snd_tag != NULL);
5763 	cst = mst_to_cst(m0->m_pkthdr.snd_tag);
5764 
5765 	mtx_lock(&cst->lock);
5766 	MPASS(cst->flags & EO_SND_TAG_REF);
5767 
5768 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
5769 		struct vi_info *vi = ifp->if_softc;
5770 		struct port_info *pi = vi->pi;
5771 		struct adapter *sc = pi->adapter;
5772 		const uint32_t rss_mask = vi->rss_size - 1;
5773 		uint32_t rss_hash;
5774 
5775 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
5776 		if (M_HASHTYPE_ISHASH(m0))
5777 			rss_hash = m0->m_pkthdr.flowid;
5778 		else
5779 			rss_hash = arc4random();
5780 		/* We assume RSS hashing */
5781 		cst->iqid = vi->rss[rss_hash & rss_mask];
5782 		cst->eo_txq += rss_hash % vi->nofldtxq;
5783 		rc = send_etid_flowc_wr(cst, pi, vi);
5784 		if (rc != 0)
5785 			goto done;
5786 	}
5787 
5788 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
5789 		rc = ENOBUFS;
5790 		goto done;
5791 	}
5792 
5793 	mbufq_enqueue(&cst->pending_tx, m0);
5794 	cst->plen += m0->m_pkthdr.len;
5795 
5796 	ethofld_tx(cst);
5797 	rc = 0;
5798 done:
5799 	mtx_unlock(&cst->lock);
5800 	if (__predict_false(rc != 0))
5801 		m_freem(m0);
5802 	return (rc);
5803 }
5804 
5805 static int
5806 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
5807 {
5808 	struct adapter *sc = iq->adapter;
5809 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
5810 	struct mbuf *m;
5811 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
5812 	struct cxgbe_snd_tag *cst;
5813 	uint8_t credits = cpl->credits;
5814 
5815 	cst = lookup_etid(sc, etid);
5816 	mtx_lock(&cst->lock);
5817 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
5818 		MPASS(credits >= ETID_FLOWC_LEN16);
5819 		credits -= ETID_FLOWC_LEN16;
5820 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
5821 	}
5822 
5823 	KASSERT(cst->ncompl > 0,
5824 	    ("%s: etid %u (%p) wasn't expecting completion.",
5825 	    __func__, etid, cst));
5826 	cst->ncompl--;
5827 
5828 	while (credits > 0) {
5829 		m = mbufq_dequeue(&cst->pending_fwack);
5830 		if (__predict_false(m == NULL)) {
5831 			/*
5832 			 * The remaining credits are for the final flush that
5833 			 * was issued when the tag was freed by the kernel.
5834 			 */
5835 			MPASS((cst->flags &
5836 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
5837 			    EO_FLUSH_RPL_PENDING);
5838 			MPASS(credits == ETID_FLUSH_LEN16);
5839 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
5840 			MPASS(cst->ncompl == 0);
5841 
5842 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
5843 			cst->tx_credits += cpl->credits;
5844 freetag:
5845 			cxgbe_snd_tag_free_locked(cst);
5846 			return (0);	/* cst is gone. */
5847 		}
5848 		KASSERT(m != NULL,
5849 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
5850 		    credits));
5851 		KASSERT(credits >= mbuf_eo_len16(m),
5852 		    ("%s: too few credits (%u, %u, %u)", __func__,
5853 		    cpl->credits, credits, mbuf_eo_len16(m)));
5854 		credits -= mbuf_eo_len16(m);
5855 		cst->plen -= m->m_pkthdr.len;
5856 		m_freem(m);
5857 	}
5858 
5859 	cst->tx_credits += cpl->credits;
5860 	MPASS(cst->tx_credits <= cst->tx_total);
5861 
5862 	m = mbufq_first(&cst->pending_tx);
5863 	if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
5864 		ethofld_tx(cst);
5865 
5866 	if (__predict_false((cst->flags & EO_SND_TAG_REF) == 0) &&
5867 	    cst->ncompl == 0) {
5868 		if (cst->tx_credits == cst->tx_total)
5869 			goto freetag;
5870 		else {
5871 			MPASS((cst->flags & EO_FLUSH_RPL_PENDING) == 0);
5872 			send_etid_flush_wr(cst);
5873 		}
5874 	}
5875 
5876 	mtx_unlock(&cst->lock);
5877 
5878 	return (0);
5879 }
5880 #endif
5881