xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 5dcd9c10612684d1c823670cbb5b4715028784e7)
1 /*-
2  * Copyright (c) 2011 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 
33 #include <sys/types.h>
34 #include <sys/mbuf.h>
35 #include <sys/socket.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #include <net/bpf.h>
39 #include <net/ethernet.h>
40 #include <net/if.h>
41 #include <net/if_vlan_var.h>
42 #include <netinet/in.h>
43 #include <netinet/ip.h>
44 #include <netinet/tcp.h>
45 
46 #include "common/common.h"
47 #include "common/t4_regs.h"
48 #include "common/t4_regs_values.h"
49 #include "common/t4_msg.h"
50 #include "common/t4fw_interface.h"
51 
52 struct fl_buf_info {
53 	int size;
54 	int type;
55 	uma_zone_t zone;
56 };
57 
58 /* t4_sge_init will fill up the zone */
59 static struct fl_buf_info fl_buf_info[FL_BUF_SIZES] = {
60 	{ MCLBYTES, EXT_CLUSTER, NULL},
61 	{ MJUMPAGESIZE, EXT_JUMBOP, NULL},
62 	{ MJUM9BYTES, EXT_JUMBO9, NULL},
63 	{ MJUM16BYTES, EXT_JUMBO16, NULL}
64 };
65 #define FL_BUF_SIZE(x)	(fl_buf_info[x].size)
66 #define FL_BUF_TYPE(x)	(fl_buf_info[x].type)
67 #define FL_BUF_ZONE(x)	(fl_buf_info[x].zone)
68 
69 enum {
70 	FL_PKTSHIFT = 2
71 };
72 
73 #define FL_ALIGN	min(CACHE_LINE_SIZE, 32)
74 #if CACHE_LINE_SIZE > 64
75 #define SPG_LEN		128
76 #else
77 #define SPG_LEN		64
78 #endif
79 
80 /* Used to track coalesced tx work request */
81 struct txpkts {
82 	uint64_t *flitp;	/* ptr to flit where next pkt should start */
83 	uint8_t npkt;		/* # of packets in this work request */
84 	uint8_t nflits;		/* # of flits used by this work request */
85 	uint16_t plen;		/* total payload (sum of all packets) */
86 };
87 
88 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
89 struct sgl {
90 	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
91 	int nflits;		/* # of flits needed for the SGL */
92 	bus_dma_segment_t seg[TX_SGL_SEGS];
93 };
94 
95 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
96     int, iq_intr_handler_t *, char *);
97 static inline void init_fl(struct sge_fl *, int, char *);
98 static inline void init_txq(struct sge_txq *, int, char *);
99 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
100     bus_addr_t *, void **);
101 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
102     void *);
103 static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
104     int);
105 static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
106 static int alloc_iq(struct sge_iq *, int);
107 static int free_iq(struct sge_iq *);
108 static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int);
109 static int free_rxq(struct port_info *, struct sge_rxq *);
110 static int alloc_txq(struct port_info *, struct sge_txq *, int);
111 static int free_txq(struct port_info *, struct sge_txq *);
112 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
113 static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
114 static inline void iq_next(struct sge_iq *);
115 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
116 static void refill_fl(struct sge_fl *, int);
117 static int alloc_fl_sdesc(struct sge_fl *);
118 static void free_fl_sdesc(struct sge_fl *);
119 static int alloc_eq_maps(struct sge_eq *);
120 static void free_eq_maps(struct sge_eq *);
121 static struct mbuf *get_fl_sdesc_data(struct sge_fl *, int, int);
122 static void set_fl_tag_idx(struct sge_fl *, int);
123 
124 static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
125 static int free_pkt_sgl(struct sge_txq *, struct sgl *);
126 static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
127     struct sgl *);
128 static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
129     struct mbuf *, struct sgl *);
130 static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
131 static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
132     struct txpkts *, struct mbuf *, struct sgl *);
133 static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
134 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
135 static inline void ring_tx_db(struct adapter *, struct sge_eq *);
136 static int reclaim_tx_descs(struct sge_eq *, int, int);
137 static void write_eqflush_wr(struct sge_eq *);
138 static __be64 get_flit(bus_dma_segment_t *, int, int);
139 
140 /**
141  *	t4_sge_init - initialize SGE
142  *	@sc: the adapter
143  *
144  *	Performs SGE initialization needed every time after a chip reset.
145  *	We do not initialize any of the queues here, instead the driver
146  *	top-level must request them individually.
147  */
148 void
149 t4_sge_init(struct adapter *sc)
150 {
151 	struct sge *s = &sc->sge;
152 	int i;
153 
154 	FL_BUF_ZONE(0) = zone_clust;
155 	FL_BUF_ZONE(1) = zone_jumbop;
156 	FL_BUF_ZONE(2) = zone_jumbo9;
157 	FL_BUF_ZONE(3) = zone_jumbo16;
158 
159 	t4_set_reg_field(sc, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT) |
160 			 V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
161 			 F_EGRSTATUSPAGESIZE,
162 			 V_INGPADBOUNDARY(ilog2(FL_ALIGN) - 5) |
163 			 V_PKTSHIFT(FL_PKTSHIFT) |
164 			 F_RXPKTCPLMODE |
165 			 V_EGRSTATUSPAGESIZE(SPG_LEN == 128));
166 	t4_set_reg_field(sc, A_SGE_HOST_PAGE_SIZE,
167 			 V_HOSTPAGESIZEPF0(M_HOSTPAGESIZEPF0),
168 			 V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10));
169 
170 	for (i = 0; i < FL_BUF_SIZES; i++) {
171 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
172 		    FL_BUF_SIZE(i));
173 	}
174 
175 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD,
176 		     V_THRESHOLD_0(s->counter_val[0]) |
177 		     V_THRESHOLD_1(s->counter_val[1]) |
178 		     V_THRESHOLD_2(s->counter_val[2]) |
179 		     V_THRESHOLD_3(s->counter_val[3]));
180 
181 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1,
182 		     V_TIMERVALUE0(us_to_core_ticks(sc, s->timer_val[0])) |
183 		     V_TIMERVALUE1(us_to_core_ticks(sc, s->timer_val[1])));
184 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3,
185 		     V_TIMERVALUE2(us_to_core_ticks(sc, s->timer_val[2])) |
186 		     V_TIMERVALUE3(us_to_core_ticks(sc, s->timer_val[3])));
187 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5,
188 		     V_TIMERVALUE4(us_to_core_ticks(sc, s->timer_val[4])) |
189 		     V_TIMERVALUE5(us_to_core_ticks(sc, s->timer_val[5])));
190 }
191 
192 int
193 t4_create_dma_tag(struct adapter *sc)
194 {
195 	int rc;
196 
197 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
198 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
199 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
200 	    NULL, &sc->dmat);
201 	if (rc != 0) {
202 		device_printf(sc->dev,
203 		    "failed to create main DMA tag: %d\n", rc);
204 	}
205 
206 	return (rc);
207 }
208 
209 int
210 t4_destroy_dma_tag(struct adapter *sc)
211 {
212 	if (sc->dmat)
213 		bus_dma_tag_destroy(sc->dmat);
214 
215 	return (0);
216 }
217 
218 /*
219  * Allocate and initialize the firmware event queue and the forwarded interrupt
220  * queues, if any.  The adapter owns all these queues as they are not associated
221  * with any particular port.
222  *
223  * Returns errno on failure.  Resources allocated up to that point may still be
224  * allocated.  Caller is responsible for cleanup in case this function fails.
225  */
226 int
227 t4_setup_adapter_iqs(struct adapter *sc)
228 {
229 	int i, rc;
230 	struct sge_iq *iq, *fwq;
231 	iq_intr_handler_t *handler;
232 	char name[16];
233 
234 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
235 
236 	fwq = &sc->sge.fwq;
237 	if (sc->flags & INTR_FWD) {
238 		iq = &sc->sge.fiq[0];
239 
240 		/*
241 		 * Forwarded interrupt queues - allocate 1 if there's only 1
242 		 * vector available, one less than the number of vectors
243 		 * otherwise (the first vector is reserved for the error
244 		 * interrupt in that case).
245 		 */
246 		i = sc->intr_count > 1 ? 1 : 0;
247 		for (; i < sc->intr_count; i++, iq++) {
248 
249 			snprintf(name, sizeof(name), "%s fiq%d",
250 			    device_get_nameunit(sc->dev), i);
251 			init_iq(iq, sc, 0, 0, (sc->sge.nrxq + 1) * 2, 16, NULL,
252 			    name);
253 
254 			rc = alloc_iq(iq, i);
255 			if (rc != 0) {
256 				device_printf(sc->dev,
257 				    "failed to create fwd intr queue %d: %d\n",
258 				    i, rc);
259 				return (rc);
260 			}
261 		}
262 
263 		handler = t4_intr_evt;
264 		i = 0;	/* forward fwq's interrupt to the first fiq */
265 	} else {
266 		handler = NULL;
267 		i = 1;	/* fwq should use vector 1 (0 is used by error) */
268 	}
269 
270 	snprintf(name, sizeof(name), "%s fwq", device_get_nameunit(sc->dev));
271 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE, handler, name);
272 	rc = alloc_iq(fwq, i);
273 	if (rc != 0) {
274 		device_printf(sc->dev,
275 		    "failed to create firmware event queue: %d\n", rc);
276 	}
277 
278 	return (rc);
279 }
280 
281 /*
282  * Idempotent
283  */
284 int
285 t4_teardown_adapter_iqs(struct adapter *sc)
286 {
287 	int i;
288 	struct sge_iq *iq;
289 
290 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
291 
292 	iq = &sc->sge.fwq;
293 	free_iq(iq);
294 	if (sc->flags & INTR_FWD) {
295 		for (i = 0; i < NFIQ(sc); i++) {
296 			iq = &sc->sge.fiq[i];
297 			free_iq(iq);
298 		}
299 	}
300 
301 	return (0);
302 }
303 
304 int
305 t4_setup_eth_queues(struct port_info *pi)
306 {
307 	int rc = 0, i, intr_idx;
308 	struct sge_rxq *rxq;
309 	struct sge_txq *txq;
310 	char name[16];
311 	struct adapter *sc = pi->adapter;
312 
313 	if (sysctl_ctx_init(&pi->ctx) == 0) {
314 		struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
315 		struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
316 
317 		pi->oid_rxq = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO,
318 		    "rxq", CTLFLAG_RD, NULL, "rx queues");
319 		pi->oid_txq = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO,
320 		    "txq", CTLFLAG_RD, NULL, "tx queues");
321 	}
322 
323 	for_each_rxq(pi, i, rxq) {
324 
325 		snprintf(name, sizeof(name), "%s rxq%d-iq",
326 		    device_get_nameunit(pi->dev), i);
327 		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
328 		    pi->qsize_rxq, RX_IQ_ESIZE,
329 		    sc->flags & INTR_FWD ? t4_intr_data: NULL, name);
330 
331 		snprintf(name, sizeof(name), "%s rxq%d-fl",
332 		    device_get_nameunit(pi->dev), i);
333 		init_fl(&rxq->fl, pi->qsize_rxq / 8, name);
334 
335 		if (sc->flags & INTR_FWD)
336 			intr_idx = (pi->first_rxq + i) % NFIQ(sc);
337 		else
338 			intr_idx = pi->first_rxq + i + 2;
339 
340 		rc = alloc_rxq(pi, rxq, intr_idx, i);
341 		if (rc != 0)
342 			goto done;
343 
344 		intr_idx++;
345 	}
346 
347 	for_each_txq(pi, i, txq) {
348 
349 		snprintf(name, sizeof(name), "%s txq%d",
350 		    device_get_nameunit(pi->dev), i);
351 		init_txq(txq, pi->qsize_txq, name);
352 
353 		rc = alloc_txq(pi, txq, i);
354 		if (rc != 0)
355 			goto done;
356 	}
357 
358 done:
359 	if (rc)
360 		t4_teardown_eth_queues(pi);
361 
362 	return (rc);
363 }
364 
365 /*
366  * Idempotent
367  */
368 int
369 t4_teardown_eth_queues(struct port_info *pi)
370 {
371 	int i;
372 	struct sge_rxq *rxq;
373 	struct sge_txq *txq;
374 
375 	/* Do this before freeing the queues */
376 	if (pi->oid_txq || pi->oid_rxq) {
377 		sysctl_ctx_free(&pi->ctx);
378 		pi->oid_txq = pi->oid_rxq = NULL;
379 	}
380 
381 	for_each_txq(pi, i, txq) {
382 		free_txq(pi, txq);
383 	}
384 
385 	for_each_rxq(pi, i, rxq) {
386 		free_rxq(pi, rxq);
387 	}
388 
389 	return (0);
390 }
391 
392 /* Deals with errors and forwarded interrupts */
393 void
394 t4_intr_all(void *arg)
395 {
396 	struct adapter *sc = arg;
397 
398 	t4_intr_err(arg);
399 	t4_intr_fwd(&sc->sge.fiq[0]);
400 }
401 
402 /* Deals with forwarded interrupts on the given ingress queue */
403 void
404 t4_intr_fwd(void *arg)
405 {
406 	struct sge_iq *iq = arg, *q;
407 	struct adapter *sc = iq->adapter;
408 	struct rsp_ctrl *ctrl;
409 	int ndesc_pending = 0, ndesc_total = 0;
410 	int qid;
411 
412 	IQ_LOCK(iq);
413 	while (is_new_response(iq, &ctrl)) {
414 
415 		rmb();
416 
417 		/* Only interrupt muxing expected on this queue */
418 		KASSERT(G_RSPD_TYPE(ctrl->u.type_gen) == X_RSPD_TYPE_INTR,
419 		    ("unexpected event on forwarded interrupt queue: %x",
420 		    G_RSPD_TYPE(ctrl->u.type_gen)));
421 
422 		qid = ntohl(ctrl->pldbuflen_qid) - sc->sge.iq_start;
423 		q = sc->sge.iqmap[qid];
424 
425 		q->handler(q);
426 
427 		ndesc_total++;
428 		if (++ndesc_pending >= iq->qsize / 4) {
429 			t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
430 			    V_CIDXINC(ndesc_pending) |
431 			    V_INGRESSQID(iq->cntxt_id) |
432 			    V_SEINTARM(
433 				V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
434 			ndesc_pending = 0;
435 		}
436 
437 		iq_next(iq);
438 	}
439 	IQ_UNLOCK(iq);
440 
441 	if (ndesc_total > 0) {
442 		t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
443 		    V_CIDXINC(ndesc_pending) | V_INGRESSQID((u32)iq->cntxt_id) |
444 		    V_SEINTARM(iq->intr_params));
445 	}
446 }
447 
448 /* Deals with error interrupts */
449 void
450 t4_intr_err(void *arg)
451 {
452 	struct adapter *sc = arg;
453 
454 	if (sc->intr_type == 1)
455 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
456 
457 	t4_slow_intr_handler(sc);
458 }
459 
460 /* Deals with the firmware event queue */
461 void
462 t4_intr_evt(void *arg)
463 {
464 	struct sge_iq *iq = arg;
465 	struct adapter *sc = iq->adapter;
466 	struct rsp_ctrl *ctrl;
467 	const struct rss_header *rss;
468 	int ndesc_pending = 0, ndesc_total = 0;
469 
470 	KASSERT(iq == &sc->sge.fwq, ("%s: unexpected ingress queue", __func__));
471 
472 	IQ_LOCK(iq);
473 	while (is_new_response(iq, &ctrl)) {
474 
475 		rmb();
476 
477 		rss = (const void *)iq->cdesc;
478 
479 		/* Should only get CPL on this queue */
480 		KASSERT(G_RSPD_TYPE(ctrl->u.type_gen) == X_RSPD_TYPE_CPL,
481 		    ("%s: unexpected type %d", __func__,
482 		    G_RSPD_TYPE(ctrl->u.type_gen)));
483 
484 		switch (rss->opcode) {
485 		case CPL_FW4_MSG:
486 		case CPL_FW6_MSG: {
487 			const struct cpl_fw6_msg *cpl;
488 
489 			cpl = (const void *)(rss + 1);
490 			if (cpl->type == FW6_TYPE_CMD_RPL)
491 				t4_handle_fw_rpl(sc, cpl->data);
492 
493 			break;
494 			}
495 		case CPL_SGE_EGR_UPDATE: {
496 			const struct cpl_sge_egr_update *cpl;
497 			unsigned int qid;
498 			struct sge *s = &sc->sge;
499 			struct sge_txq *txq;
500 
501 			cpl = (const void *)(rss + 1);
502 			qid = G_EGR_QID(ntohl(cpl->opcode_qid));
503 			txq = (void *)s->eqmap[qid - s->eq_start];
504 			txq->egr_update++;
505 
506 			/* XXX: wake up stalled tx */
507 
508 			break;
509 			}
510 
511 		default:
512 			device_printf(sc->dev,
513 			    "can't handle CPL opcode %d.", rss->opcode);
514 		}
515 
516 		ndesc_total++;
517 		if (++ndesc_pending >= iq->qsize / 4) {
518 			t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
519 			    V_CIDXINC(ndesc_pending) |
520 			    V_INGRESSQID(iq->cntxt_id) |
521 			    V_SEINTARM(
522 				V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
523 			ndesc_pending = 0;
524 		}
525 		iq_next(iq);
526 	}
527 	IQ_UNLOCK(iq);
528 
529 	if (ndesc_total > 0) {
530 		t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
531 		    V_CIDXINC(ndesc_pending) | V_INGRESSQID(iq->cntxt_id) |
532 		    V_SEINTARM(iq->intr_params));
533 	}
534 }
535 
536 void
537 t4_intr_data(void *arg)
538 {
539 	struct sge_rxq *rxq = arg;
540 	struct sge_iq *iq = arg;
541 	struct rsp_ctrl *ctrl;
542 	struct sge_fl *fl = &rxq->fl;
543 	struct port_info *pi = rxq->port;
544 	struct ifnet *ifp = pi->ifp;
545 	struct adapter *sc = pi->adapter;
546 	const struct rss_header *rss;
547 	const struct cpl_rx_pkt *cpl;
548 	int ndescs = 0, rsp_type;
549 	uint32_t len;
550 	struct mbuf *m0, *m;
551 #ifdef INET
552 	struct lro_ctrl *lro = &rxq->lro;
553 	struct lro_entry *l;
554 #endif
555 
556 	IQ_LOCK(iq);
557 	iq->intr_next = iq->intr_params;
558 	while (is_new_response(iq, &ctrl)) {
559 
560 		rmb();
561 
562 		rss = (const void *)iq->cdesc;
563 		cpl = (const void *)(rss + 1);
564 
565 		rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
566 
567 		if (__predict_false(rsp_type == X_RSPD_TYPE_CPL)) {
568 			const struct cpl_sge_egr_update *p = (const void *)cpl;
569 			unsigned int qid = G_EGR_QID(ntohl(p->opcode_qid));
570 
571 			KASSERT(cpl->opcode == CPL_SGE_EGR_UPDATE,
572 			    ("unexpected opcode on data ingress queue: %x",
573 			    cpl->opcode));
574 
575 			/* XXX: noone's waiting to be woken up... */
576 			wakeup(sc->sge.eqmap[qid - sc->sge.eq_start]);
577 
578 			ndescs++;
579 			iq_next(iq);
580 
581 			continue;
582 		}
583 
584 		KASSERT(G_RSPD_TYPE(ctrl->u.type_gen) == X_RSPD_TYPE_FLBUF,
585 		    ("unexpected event on data ingress queue: %x",
586 		    G_RSPD_TYPE(ctrl->u.type_gen)));
587 
588 		len = be32toh(ctrl->pldbuflen_qid);
589 
590 		KASSERT(len & F_RSPD_NEWBUF,
591 		    ("%s: T4 misconfigured to pack buffers.", __func__));
592 
593 		len = G_RSPD_LEN(len);
594 		m0 = get_fl_sdesc_data(fl, len, M_PKTHDR);
595 		if (m0 == NULL) {
596 			iq->intr_next = V_QINTR_TIMER_IDX(SGE_NTIMERS - 1);
597 			break;
598 		}
599 
600 		len -= FL_PKTSHIFT;
601 		m0->m_len -= FL_PKTSHIFT;
602 		m0->m_data += FL_PKTSHIFT;
603 
604 		m0->m_pkthdr.len = len;
605 		m0->m_pkthdr.rcvif = ifp;
606 		m0->m_flags |= M_FLOWID;
607 		m0->m_pkthdr.flowid = rss->hash_val;
608 
609 		if (cpl->csum_calc && !cpl->err_vec &&
610 		    ifp->if_capenable & IFCAP_RXCSUM) {
611 			m0->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
612 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
613 			if (cpl->ip_frag)
614 				m0->m_pkthdr.csum_data = be16toh(cpl->csum);
615 			else
616 				m0->m_pkthdr.csum_data = 0xffff;
617 			rxq->rxcsum++;
618 		}
619 
620 		if (cpl->vlan_ex) {
621 			m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
622 			m0->m_flags |= M_VLANTAG;
623 			rxq->vlan_extraction++;
624 		}
625 
626 		len -= m0->m_len;
627 		m = m0;
628 		while (len) {
629 			m->m_next = get_fl_sdesc_data(fl, len, 0);
630 			if (m->m_next == NULL)
631 				CXGBE_UNIMPLEMENTED("mbuf recovery");
632 
633 			m = m->m_next;
634 			len -= m->m_len;
635 		}
636 #ifdef INET
637 		if (cpl->l2info & htobe32(F_RXF_LRO) &&
638 		    rxq->flags & RXQ_LRO_ENABLED &&
639 		    tcp_lro_rx(lro, m0, 0) == 0) {
640 			/* queued for LRO */
641 		} else
642 #endif
643 			(*ifp->if_input)(ifp, m0);
644 
645 		FL_LOCK(fl);
646 		if (fl->needed >= 32) {
647 			refill_fl(fl, 64);
648 			if (fl->pending >= 32)
649 				ring_fl_db(sc, fl);
650 		}
651 		FL_UNLOCK(fl);
652 
653 		ndescs++;
654 		iq_next(iq);
655 
656 		if (ndescs > 32) {
657 			t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
658 			    V_CIDXINC(ndescs) |
659 			    V_INGRESSQID((u32)iq->cntxt_id) |
660 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
661 			ndescs = 0;
662 		}
663 	}
664 
665 #ifdef INET
666 	while (!SLIST_EMPTY(&lro->lro_active)) {
667 		l = SLIST_FIRST(&lro->lro_active);
668 		SLIST_REMOVE_HEAD(&lro->lro_active, next);
669 		tcp_lro_flush(lro, l);
670 	}
671 #endif
672 
673 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
674 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
675 
676 	IQ_UNLOCK(iq);
677 
678 	FL_LOCK(fl);
679 	if (fl->needed) {
680 		refill_fl(fl, -1);
681 		if (fl->pending >= 8)
682 			ring_fl_db(sc, fl);
683 	}
684 	FL_UNLOCK(fl);
685 }
686 
687 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
688 #define TXPKTS_PKT_HDR ((\
689     sizeof(struct ulp_txpkt) + \
690     sizeof(struct ulptx_idata) + \
691     sizeof(struct cpl_tx_pkt_core) \
692     ) / 8)
693 
694 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */
695 #define TXPKTS_WR_HDR (\
696     sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
697     TXPKTS_PKT_HDR)
698 
699 /* Header of a tx WR, before SGL of first packet (in flits) */
700 #define TXPKT_WR_HDR ((\
701     sizeof(struct fw_eth_tx_pkt_wr) + \
702     sizeof(struct cpl_tx_pkt_core) \
703     ) / 8 )
704 
705 /* Header of a tx LSO WR, before SGL of first packet (in flits) */
706 #define TXPKT_LSO_WR_HDR ((\
707     sizeof(struct fw_eth_tx_pkt_wr) + \
708     sizeof(struct cpl_tx_pkt_lso) + \
709     sizeof(struct cpl_tx_pkt_core) \
710     ) / 8 )
711 
712 int
713 t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
714 {
715 	struct port_info *pi = (void *)ifp->if_softc;
716 	struct adapter *sc = pi->adapter;
717 	struct sge_eq *eq = &txq->eq;
718 	struct buf_ring *br = eq->br;
719 	struct mbuf *next;
720 	int rc, coalescing;
721 	struct txpkts txpkts;
722 	struct sgl sgl;
723 
724 	TXQ_LOCK_ASSERT_OWNED(txq);
725 	KASSERT(m, ("%s: called with nothing to do.", __func__));
726 
727 	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
728 	coalescing = 0;
729 
730 	prefetch(&eq->sdesc[eq->pidx]);
731 	prefetch(&eq->desc[eq->pidx]);
732 	prefetch(&eq->maps[eq->map_pidx]);
733 
734 	if (eq->avail < 8)
735 		reclaim_tx_descs(eq, 1, 8);
736 
737 	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
738 
739 		if (eq->avail < 8)
740 			break;
741 
742 		next = m->m_nextpkt;
743 		m->m_nextpkt = NULL;
744 
745 		if (next || buf_ring_peek(br))
746 			coalescing = 1;
747 
748 		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
749 		if (rc != 0) {
750 			if (rc == ENOMEM) {
751 
752 				/* Short of resources, suspend tx */
753 
754 				m->m_nextpkt = next;
755 				break;
756 			}
757 
758 			/*
759 			 * Unrecoverable error for this packet, throw it away
760 			 * and move on to the next.  get_pkt_sgl may already
761 			 * have freed m (it will be NULL in that case and the
762 			 * m_freem here is still safe).
763 			 */
764 
765 			m_freem(m);
766 			continue;
767 		}
768 
769 		if (coalescing &&
770 		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
771 
772 			/* Successfully absorbed into txpkts */
773 
774 			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
775 			goto doorbell;
776 		}
777 
778 		/*
779 		 * We weren't coalescing to begin with, or current frame could
780 		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
781 		 * given to it can't be coalesced).  Either way there should be
782 		 * nothing in txpkts.
783 		 */
784 		KASSERT(txpkts.npkt == 0,
785 		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
786 
787 		/* We're sending out individual packets now */
788 		coalescing = 0;
789 
790 		if (eq->avail < 8)
791 			reclaim_tx_descs(eq, 1, 8);
792 		rc = write_txpkt_wr(pi, txq, m, &sgl);
793 		if (rc != 0) {
794 
795 			/* Short of hardware descriptors, suspend tx */
796 
797 			/*
798 			 * This is an unlikely but expensive failure.  We've
799 			 * done all the hard work (DMA mappings etc.) and now we
800 			 * can't send out the packet.  What's worse, we have to
801 			 * spend even more time freeing up everything in sgl.
802 			 */
803 			txq->no_desc++;
804 			free_pkt_sgl(txq, &sgl);
805 
806 			m->m_nextpkt = next;
807 			break;
808 		}
809 
810 		ETHER_BPF_MTAP(ifp, m);
811 		if (sgl.nsegs == 0)
812 			m_freem(m);
813 
814 doorbell:
815 		/* Fewer and fewer doorbells as the queue fills up */
816 		if (eq->pending >= (1 << (fls(eq->qsize - eq->avail) / 2)))
817 		    ring_tx_db(sc, eq);
818 		reclaim_tx_descs(eq, 16, 32);
819 	}
820 
821 	if (txpkts.npkt > 0)
822 		write_txpkts_wr(txq, &txpkts);
823 
824 	/*
825 	 * m not NULL means there was an error but we haven't thrown it away.
826 	 * This can happen when we're short of tx descriptors (no_desc) or maybe
827 	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
828 	 * will get things going again.
829 	 *
830 	 * If eq->avail is already 0 we know a credit flush was requested in the
831 	 * WR that reduced it to 0 so we don't need another flush (we don't have
832 	 * any descriptor for a flush WR anyway, duh).
833 	 */
834 	if (m && eq->avail > 0)
835 		write_eqflush_wr(eq);
836 	txq->m = m;
837 
838 	if (eq->pending)
839 		ring_tx_db(sc, eq);
840 
841 	reclaim_tx_descs(eq, 16, eq->qsize);
842 
843 	return (0);
844 }
845 
846 void
847 t4_update_fl_bufsize(struct ifnet *ifp)
848 {
849 	struct port_info *pi = ifp->if_softc;
850 	struct sge_rxq *rxq;
851 	struct sge_fl *fl;
852 	int i;
853 
854 	for_each_rxq(pi, i, rxq) {
855 		fl = &rxq->fl;
856 
857 		FL_LOCK(fl);
858 		set_fl_tag_idx(fl, ifp->if_mtu);
859 		FL_UNLOCK(fl);
860 	}
861 }
862 
863 /*
864  * A non-NULL handler indicates this iq will not receive direct interrupts, the
865  * handler will be invoked by a forwarded interrupt queue.
866  */
867 static inline void
868 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
869     int qsize, int esize, iq_intr_handler_t *handler, char *name)
870 {
871 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
872 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
873 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
874 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
875 
876 	iq->flags = 0;
877 	iq->adapter = sc;
878 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx) |
879 	    V_QINTR_CNT_EN(pktc_idx >= 0);
880 	iq->intr_pktc_idx = pktc_idx;
881 	iq->qsize = roundup(qsize, 16);		/* See FW_IQ_CMD/iqsize */
882 	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
883 	iq->handler = handler;
884 	strlcpy(iq->lockname, name, sizeof(iq->lockname));
885 }
886 
887 static inline void
888 init_fl(struct sge_fl *fl, int qsize, char *name)
889 {
890 	fl->qsize = qsize;
891 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
892 }
893 
894 static inline void
895 init_txq(struct sge_txq *txq, int qsize, char *name)
896 {
897 	txq->eq.qsize = qsize;
898 	strlcpy(txq->eq.lockname, name, sizeof(txq->eq.lockname));
899 }
900 
901 static int
902 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
903     bus_dmamap_t *map, bus_addr_t *pa, void **va)
904 {
905 	int rc;
906 
907 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
908 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
909 	if (rc != 0) {
910 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
911 		goto done;
912 	}
913 
914 	rc = bus_dmamem_alloc(*tag, va,
915 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
916 	if (rc != 0) {
917 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
918 		goto done;
919 	}
920 
921 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
922 	if (rc != 0) {
923 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
924 		goto done;
925 	}
926 done:
927 	if (rc)
928 		free_ring(sc, *tag, *map, *pa, *va);
929 
930 	return (rc);
931 }
932 
933 static int
934 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
935     bus_addr_t pa, void *va)
936 {
937 	if (pa)
938 		bus_dmamap_unload(tag, map);
939 	if (va)
940 		bus_dmamem_free(tag, va, map);
941 	if (tag)
942 		bus_dma_tag_destroy(tag);
943 
944 	return (0);
945 }
946 
947 /*
948  * Allocates the ring for an ingress queue and an optional freelist.  If the
949  * freelist is specified it will be allocated and then associated with the
950  * ingress queue.
951  *
952  * Returns errno on failure.  Resources allocated up to that point may still be
953  * allocated.  Caller is responsible for cleanup in case this function fails.
954  *
955  * If the ingress queue will take interrupts directly (iq->handler == NULL) then
956  * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
957  * the index of the queue to which its interrupts will be forwarded.
958  */
959 static int
960 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
961     int intr_idx)
962 {
963 	int rc, i, cntxt_id;
964 	size_t len;
965 	struct fw_iq_cmd c;
966 	struct adapter *sc = iq->adapter;
967 	__be32 v = 0;
968 
969 	/* The adapter queues are nominally allocated in port[0]'s name */
970 	if (pi == NULL)
971 		pi = sc->port[0];
972 
973 	mtx_init(&iq->iq_lock, iq->lockname, NULL, MTX_DEF);
974 
975 	len = iq->qsize * iq->esize;
976 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
977 	    (void **)&iq->desc);
978 	if (rc != 0)
979 		return (rc);
980 
981 	bzero(&c, sizeof(c));
982 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
983 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
984 	    V_FW_IQ_CMD_VFN(0));
985 
986 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
987 	    FW_LEN16(c));
988 
989 	/* Special handling for firmware event queue */
990 	if (iq == &sc->sge.fwq)
991 		v |= F_FW_IQ_CMD_IQASYNCH;
992 
993 	if (iq->handler) {
994 		KASSERT(intr_idx < NFIQ(sc),
995 		    ("%s: invalid indirect intr_idx %d", __func__, intr_idx));
996 		v |= F_FW_IQ_CMD_IQANDST;
997 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fiq[intr_idx].abs_id);
998 	} else {
999 		KASSERT(intr_idx < sc->intr_count,
1000 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
1001 		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
1002 	}
1003 
1004 	c.type_to_iqandstindex = htobe32(v |
1005 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1006 	    V_FW_IQ_CMD_VIID(pi->viid) |
1007 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
1008 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1009 	    F_FW_IQ_CMD_IQGTSMODE |
1010 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
1011 	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
1012 	c.iqsize = htobe16(iq->qsize);
1013 	c.iqaddr = htobe64(iq->ba);
1014 
1015 	if (fl) {
1016 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
1017 
1018 		for (i = 0; i < FL_BUF_SIZES; i++) {
1019 
1020 			/*
1021 			 * A freelist buffer must be 16 byte aligned as the SGE
1022 			 * uses the low 4 bits of the bus addr to figure out the
1023 			 * buffer size.
1024 			 */
1025 			rc = bus_dma_tag_create(sc->dmat, 16, 0,
1026 			    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1027 			    FL_BUF_SIZE(i), 1, FL_BUF_SIZE(i), BUS_DMA_ALLOCNOW,
1028 			    NULL, NULL, &fl->tag[i]);
1029 			if (rc != 0) {
1030 				device_printf(sc->dev,
1031 				    "failed to create fl DMA tag[%d]: %d\n",
1032 				    i, rc);
1033 				return (rc);
1034 			}
1035 		}
1036 		len = fl->qsize * RX_FL_ESIZE;
1037 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
1038 		    &fl->ba, (void **)&fl->desc);
1039 		if (rc)
1040 			return (rc);
1041 
1042 		/* Allocate space for one software descriptor per buffer. */
1043 		fl->cap = (fl->qsize - SPG_LEN / RX_FL_ESIZE) * 8;
1044 		FL_LOCK(fl);
1045 		set_fl_tag_idx(fl, pi->ifp->if_mtu);
1046 		rc = alloc_fl_sdesc(fl);
1047 		FL_UNLOCK(fl);
1048 		if (rc != 0) {
1049 			device_printf(sc->dev,
1050 			    "failed to setup fl software descriptors: %d\n",
1051 			    rc);
1052 			return (rc);
1053 		}
1054 		fl->needed = fl->cap - 1; /* one less to avoid cidx = pidx */
1055 
1056 		c.iqns_to_fl0congen =
1057 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE));
1058 		c.fl0dcaen_to_fl0cidxfthresh =
1059 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
1060 			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
1061 		c.fl0size = htobe16(fl->qsize);
1062 		c.fl0addr = htobe64(fl->ba);
1063 	}
1064 
1065 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
1066 	if (rc != 0) {
1067 		device_printf(sc->dev,
1068 		    "failed to create ingress queue: %d\n", rc);
1069 		return (rc);
1070 	}
1071 
1072 	iq->cdesc = iq->desc;
1073 	iq->cidx = 0;
1074 	iq->gen = 1;
1075 	iq->intr_next = iq->intr_params;
1076 	iq->cntxt_id = be16toh(c.iqid);
1077 	iq->abs_id = be16toh(c.physiqid);
1078 	iq->flags |= (IQ_ALLOCATED | IQ_STARTED);
1079 
1080 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
1081 	KASSERT(cntxt_id < sc->sge.niq,
1082 	    ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
1083 	    cntxt_id, sc->sge.niq - 1));
1084 	sc->sge.iqmap[cntxt_id] = iq;
1085 
1086 	if (fl) {
1087 		fl->cntxt_id = be16toh(c.fl0id);
1088 		fl->pidx = fl->cidx = 0;
1089 
1090 		cntxt_id = iq->cntxt_id - sc->sge.eq_start;
1091 		KASSERT(cntxt_id < sc->sge.neq,
1092 		    ("%s: fl->cntxt_id (%d) more than the max (%d)", __func__,
1093 		    cntxt_id, sc->sge.neq - 1));
1094 		sc->sge.eqmap[cntxt_id] = (void *)fl;
1095 
1096 		FL_LOCK(fl);
1097 		refill_fl(fl, -1);
1098 		if (fl->pending >= 8)
1099 			ring_fl_db(sc, fl);
1100 		FL_UNLOCK(fl);
1101 	}
1102 
1103 	/* Enable IQ interrupts */
1104 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
1105 	    V_INGRESSQID(iq->cntxt_id));
1106 
1107 	return (0);
1108 }
1109 
1110 /*
1111  * This can be called with the iq/fl in any state - fully allocated and
1112  * functional, partially allocated, even all-zeroed out.
1113  */
1114 static int
1115 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
1116 {
1117 	int i, rc;
1118 	struct adapter *sc = iq->adapter;
1119 	device_t dev;
1120 
1121 	if (sc == NULL)
1122 		return (0);	/* nothing to do */
1123 
1124 	dev = pi ? pi->dev : sc->dev;
1125 
1126 	if (iq->flags & IQ_STARTED) {
1127 		rc = -t4_iq_start_stop(sc, sc->mbox, 0, sc->pf, 0,
1128 		    iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
1129 		if (rc != 0) {
1130 			device_printf(dev,
1131 			    "failed to stop queue %p: %d\n", iq, rc);
1132 			return (rc);
1133 		}
1134 		iq->flags &= ~IQ_STARTED;
1135 	}
1136 
1137 	if (iq->flags & IQ_ALLOCATED) {
1138 
1139 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
1140 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
1141 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
1142 		if (rc != 0) {
1143 			device_printf(dev,
1144 			    "failed to free queue %p: %d\n", iq, rc);
1145 			return (rc);
1146 		}
1147 		iq->flags &= ~IQ_ALLOCATED;
1148 	}
1149 
1150 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
1151 
1152 	if (mtx_initialized(&iq->iq_lock))
1153 		mtx_destroy(&iq->iq_lock);
1154 
1155 	bzero(iq, sizeof(*iq));
1156 
1157 	if (fl) {
1158 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
1159 		    fl->desc);
1160 
1161 		if (fl->sdesc) {
1162 			FL_LOCK(fl);
1163 			free_fl_sdesc(fl);
1164 			FL_UNLOCK(fl);
1165 		}
1166 
1167 		if (mtx_initialized(&fl->fl_lock))
1168 			mtx_destroy(&fl->fl_lock);
1169 
1170 		for (i = 0; i < FL_BUF_SIZES; i++) {
1171 			if (fl->tag[i])
1172 				bus_dma_tag_destroy(fl->tag[i]);
1173 		}
1174 
1175 		bzero(fl, sizeof(*fl));
1176 	}
1177 
1178 	return (0);
1179 }
1180 
1181 static int
1182 alloc_iq(struct sge_iq *iq, int intr_idx)
1183 {
1184 	return alloc_iq_fl(NULL, iq, NULL, intr_idx);
1185 }
1186 
1187 static int
1188 free_iq(struct sge_iq *iq)
1189 {
1190 	return free_iq_fl(NULL, iq, NULL);
1191 }
1192 
1193 static int
1194 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx)
1195 {
1196 	int rc;
1197 	struct sysctl_oid *oid;
1198 	struct sysctl_oid_list *children;
1199 	char name[16];
1200 
1201 	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx);
1202 	if (rc != 0)
1203 		return (rc);
1204 
1205 #ifdef INET
1206 	rc = tcp_lro_init(&rxq->lro);
1207 	if (rc != 0)
1208 		return (rc);
1209 	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
1210 
1211 	if (pi->ifp->if_capenable & IFCAP_LRO)
1212 		rxq->flags |= RXQ_LRO_ENABLED;
1213 #endif
1214 	rxq->port = pi;
1215 
1216 	children = SYSCTL_CHILDREN(pi->oid_rxq);
1217 
1218 	snprintf(name, sizeof(name), "%d", idx);
1219 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
1220 	    NULL, "rx queue");
1221 	children = SYSCTL_CHILDREN(oid);
1222 
1223 	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
1224 	    &rxq->lro.lro_queued, 0, NULL);
1225 	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
1226 	    &rxq->lro.lro_flushed, 0, NULL);
1227 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
1228 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
1229 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
1230 	    CTLFLAG_RD, &rxq->vlan_extraction,
1231 	    "# of times hardware extracted 802.1Q tag");
1232 
1233 	return (rc);
1234 }
1235 
1236 static int
1237 free_rxq(struct port_info *pi, struct sge_rxq *rxq)
1238 {
1239 	int rc;
1240 
1241 #ifdef INET
1242 	if (rxq->lro.ifp) {
1243 		tcp_lro_free(&rxq->lro);
1244 		rxq->lro.ifp = NULL;
1245 	}
1246 #endif
1247 
1248 	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
1249 	if (rc == 0)
1250 		bzero(rxq, sizeof(*rxq));
1251 
1252 	return (rc);
1253 }
1254 
1255 static int
1256 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx)
1257 {
1258 	int rc, cntxt_id;
1259 	size_t len;
1260 	struct adapter *sc = pi->adapter;
1261 	struct fw_eq_eth_cmd c;
1262 	struct sge_eq *eq = &txq->eq;
1263 	char name[16];
1264 	struct sysctl_oid *oid;
1265 	struct sysctl_oid_list *children;
1266 
1267 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
1268 
1269 	len = eq->qsize * TX_EQ_ESIZE;
1270 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
1271 	    &eq->ba, (void **)&eq->desc);
1272 	if (rc)
1273 		return (rc);
1274 
1275 	eq->cap = eq->qsize - SPG_LEN / TX_EQ_ESIZE;
1276 	eq->spg = (void *)&eq->desc[eq->cap];
1277 	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
1278 	eq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
1279 	    M_ZERO | M_WAITOK);
1280 	eq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
1281 
1282 	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
1283 	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
1284 	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &eq->tx_tag);
1285 	if (rc != 0) {
1286 		device_printf(sc->dev,
1287 		    "failed to create tx DMA tag: %d\n", rc);
1288 		return (rc);
1289 	}
1290 
1291 	rc = alloc_eq_maps(eq);
1292 	if (rc != 0) {
1293 		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
1294 		return (rc);
1295 	}
1296 
1297 	bzero(&c, sizeof(c));
1298 
1299 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
1300 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
1301 	    V_FW_EQ_ETH_CMD_VFN(0));
1302 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
1303 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
1304 	c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
1305 	c.fetchszm_to_iqid =
1306 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1307 		V_FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
1308 		V_FW_EQ_ETH_CMD_IQID(sc->sge.rxq[pi->first_rxq].iq.cntxt_id));
1309 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1310 		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1311 		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1312 		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
1313 	c.eqaddr = htobe64(eq->ba);
1314 
1315 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
1316 	if (rc != 0) {
1317 		device_printf(pi->dev,
1318 		    "failed to create egress queue: %d\n", rc);
1319 		return (rc);
1320 	}
1321 
1322 	eq->pidx = eq->cidx = 0;
1323 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
1324 	eq->flags |= (EQ_ALLOCATED | EQ_STARTED);
1325 
1326 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1327 	KASSERT(cntxt_id < sc->sge.neq,
1328 	    ("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1329 	    cntxt_id, sc->sge.neq - 1));
1330 	sc->sge.eqmap[cntxt_id] = eq;
1331 
1332 	children = SYSCTL_CHILDREN(pi->oid_txq);
1333 
1334 	snprintf(name, sizeof(name), "%d", idx);
1335 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
1336 	    NULL, "tx queue");
1337 	children = SYSCTL_CHILDREN(oid);
1338 
1339 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
1340 	    &txq->txcsum, "# of times hardware assisted with checksum");
1341 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
1342 	    CTLFLAG_RD, &txq->vlan_insertion,
1343 	    "# of times hardware inserted 802.1Q tag");
1344 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
1345 	    &txq->tso_wrs, "# of IPv4 TSO work requests");
1346 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
1347 	    &txq->imm_wrs, "# of work requests with immediate data");
1348 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
1349 	    &txq->sgl_wrs, "# of work requests with direct SGL");
1350 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
1351 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
1352 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
1353 	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
1354 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
1355 	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
1356 
1357 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
1358 	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
1359 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
1360 	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
1361 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
1362 	    &txq->egr_update, 0, "egress update notifications from the SGE");
1363 
1364 	return (rc);
1365 }
1366 
1367 static int
1368 free_txq(struct port_info *pi, struct sge_txq *txq)
1369 {
1370 	int rc;
1371 	struct adapter *sc = pi->adapter;
1372 	struct sge_eq *eq = &txq->eq;
1373 
1374 	if (eq->flags & (EQ_ALLOCATED | EQ_STARTED)) {
1375 		rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
1376 		if (rc != 0) {
1377 			device_printf(pi->dev,
1378 			    "failed to free egress queue %p: %d\n", eq, rc);
1379 			return (rc);
1380 		}
1381 		eq->flags &= ~(EQ_ALLOCATED | EQ_STARTED);
1382 	}
1383 
1384 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
1385 
1386 	free(eq->sdesc, M_CXGBE);
1387 
1388 	if (eq->maps)
1389 		free_eq_maps(eq);
1390 
1391 	buf_ring_free(eq->br, M_CXGBE);
1392 
1393 	if (eq->tx_tag)
1394 		bus_dma_tag_destroy(eq->tx_tag);
1395 
1396 	if (mtx_initialized(&eq->eq_lock))
1397 		mtx_destroy(&eq->eq_lock);
1398 
1399 	bzero(txq, sizeof(*txq));
1400 	return (0);
1401 }
1402 
1403 static void
1404 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1405 {
1406 	bus_addr_t *ba = arg;
1407 
1408 	KASSERT(nseg == 1,
1409 	    ("%s meant for single segment mappings only.", __func__));
1410 
1411 	*ba = error ? 0 : segs->ds_addr;
1412 }
1413 
1414 static inline bool
1415 is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
1416 {
1417 	*ctrl = (void *)((uintptr_t)iq->cdesc +
1418 	    (iq->esize - sizeof(struct rsp_ctrl)));
1419 
1420 	return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
1421 }
1422 
1423 static inline void
1424 iq_next(struct sge_iq *iq)
1425 {
1426 	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
1427 	if (__predict_false(++iq->cidx == iq->qsize - 1)) {
1428 		iq->cidx = 0;
1429 		iq->gen ^= 1;
1430 		iq->cdesc = iq->desc;
1431 	}
1432 }
1433 
1434 static inline void
1435 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
1436 {
1437 	int ndesc = fl->pending / 8;
1438 
1439 	/* Caller responsible for ensuring there's something useful to do */
1440 	KASSERT(ndesc > 0, ("%s called with no useful work to do.", __func__));
1441 
1442 	wmb();
1443 
1444 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), F_DBPRIO |
1445 	    V_QID(fl->cntxt_id) | V_PIDX(ndesc));
1446 
1447 	fl->pending &= 7;
1448 }
1449 
1450 static void
1451 refill_fl(struct sge_fl *fl, int nbufs)
1452 {
1453 	__be64 *d = &fl->desc[fl->pidx];
1454 	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
1455 	bus_dma_tag_t tag;
1456 	bus_addr_t pa;
1457 	caddr_t cl;
1458 	int rc;
1459 
1460 	FL_LOCK_ASSERT_OWNED(fl);
1461 
1462 	if (nbufs < 0 || nbufs > fl->needed)
1463 		nbufs = fl->needed;
1464 
1465 	while (nbufs--) {
1466 
1467 		if (sd->cl != NULL) {
1468 
1469 			/*
1470 			 * This happens when a frame small enough to fit
1471 			 * entirely in an mbuf was received in cl last time.
1472 			 * We'd held on to cl and can reuse it now.  Note that
1473 			 * we reuse a cluster of the old size if fl->tag_idx is
1474 			 * no longer the same as sd->tag_idx.
1475 			 */
1476 
1477 			KASSERT(*d == sd->ba_tag,
1478 			    ("%s: recyling problem at pidx %d",
1479 			    __func__, fl->pidx));
1480 
1481 			d++;
1482 			goto recycled;
1483 		}
1484 
1485 
1486 		if (fl->tag_idx != sd->tag_idx) {
1487 			bus_dmamap_t map;
1488 			bus_dma_tag_t newtag = fl->tag[fl->tag_idx];
1489 			bus_dma_tag_t oldtag = fl->tag[sd->tag_idx];
1490 
1491 			/*
1492 			 * An MTU change can get us here.  Discard the old map
1493 			 * which was created with the old tag, but only if
1494 			 * we're able to get a new one.
1495 			 */
1496 			rc = bus_dmamap_create(newtag, 0, &map);
1497 			if (rc == 0) {
1498 				bus_dmamap_destroy(oldtag, sd->map);
1499 				sd->map = map;
1500 				sd->tag_idx = fl->tag_idx;
1501 			}
1502 		}
1503 
1504 		tag = fl->tag[sd->tag_idx];
1505 
1506 		cl = m_cljget(NULL, M_NOWAIT, FL_BUF_SIZE(sd->tag_idx));
1507 		if (cl == NULL)
1508 			break;
1509 
1510 		rc = bus_dmamap_load(tag, sd->map, cl,
1511 		    FL_BUF_SIZE(sd->tag_idx), oneseg_dma_callback,
1512 		    &pa, 0);
1513 		if (rc != 0 || pa == 0) {
1514 			fl->dmamap_failed++;
1515 			uma_zfree(FL_BUF_ZONE(sd->tag_idx), cl);
1516 			break;
1517 		}
1518 
1519 		sd->cl = cl;
1520 		*d++ = htobe64(pa | sd->tag_idx);
1521 
1522 #ifdef INVARIANTS
1523 		sd->ba_tag = htobe64(pa | sd->tag_idx);
1524 #endif
1525 
1526 recycled:	fl->pending++;
1527 		fl->needed--;
1528 		sd++;
1529 		if (++fl->pidx == fl->cap) {
1530 			fl->pidx = 0;
1531 			sd = fl->sdesc;
1532 			d = fl->desc;
1533 		}
1534 
1535 		/* No harm if gethdr fails, we'll retry after rx */
1536 		if (sd->m == NULL)
1537 			sd->m = m_gethdr(M_NOWAIT, MT_NOINIT);
1538 	}
1539 }
1540 
1541 static int
1542 alloc_fl_sdesc(struct sge_fl *fl)
1543 {
1544 	struct fl_sdesc *sd;
1545 	bus_dma_tag_t tag;
1546 	int i, rc;
1547 
1548 	FL_LOCK_ASSERT_OWNED(fl);
1549 
1550 	fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
1551 	    M_ZERO | M_WAITOK);
1552 
1553 	tag = fl->tag[fl->tag_idx];
1554 	sd = fl->sdesc;
1555 	for (i = 0; i < fl->cap; i++, sd++) {
1556 
1557 		sd->tag_idx = fl->tag_idx;
1558 		rc = bus_dmamap_create(tag, 0, &sd->map);
1559 		if (rc != 0)
1560 			goto failed;
1561 
1562 		/* Doesn't matter if this succeeds or not */
1563 		sd->m = m_gethdr(M_NOWAIT, MT_NOINIT);
1564 	}
1565 
1566 	return (0);
1567 failed:
1568 	while (--i >= 0) {
1569 		sd--;
1570 		bus_dmamap_destroy(tag, sd->map);
1571 		if (sd->m) {
1572 			m_init(sd->m, zone_mbuf, MLEN, M_NOWAIT, MT_DATA, 0);
1573 			m_free(sd->m);
1574 			sd->m = NULL;
1575 		}
1576 	}
1577 	KASSERT(sd == fl->sdesc, ("%s: EDOOFUS", __func__));
1578 
1579 	free(fl->sdesc, M_CXGBE);
1580 	fl->sdesc = NULL;
1581 
1582 	return (rc);
1583 }
1584 
1585 static void
1586 free_fl_sdesc(struct sge_fl *fl)
1587 {
1588 	struct fl_sdesc *sd;
1589 	int i;
1590 
1591 	FL_LOCK_ASSERT_OWNED(fl);
1592 
1593 	sd = fl->sdesc;
1594 	for (i = 0; i < fl->cap; i++, sd++) {
1595 
1596 		if (sd->m) {
1597 			m_init(sd->m, zone_mbuf, MLEN, M_NOWAIT, MT_DATA, 0);
1598 			m_free(sd->m);
1599 			sd->m = NULL;
1600 		}
1601 
1602 		if (sd->cl) {
1603 			bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
1604 			uma_zfree(FL_BUF_ZONE(sd->tag_idx), sd->cl);
1605 			sd->cl = NULL;
1606 		}
1607 
1608 		bus_dmamap_destroy(fl->tag[sd->tag_idx], sd->map);
1609 	}
1610 
1611 	free(fl->sdesc, M_CXGBE);
1612 	fl->sdesc = NULL;
1613 }
1614 
1615 static int
1616 alloc_eq_maps(struct sge_eq *eq)
1617 {
1618 	struct tx_map *txm;
1619 	int i, rc, count;
1620 
1621 	/*
1622 	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
1623 	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
1624 	 * sized for the worst case.
1625 	 */
1626 	count = eq->qsize * 10 / 8;
1627 	eq->map_total = eq->map_avail = count;
1628 	eq->map_cidx = eq->map_pidx = 0;
1629 
1630 	eq->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
1631 	    M_ZERO | M_WAITOK);
1632 
1633 	txm = eq->maps;
1634 	for (i = 0; i < count; i++, txm++) {
1635 		rc = bus_dmamap_create(eq->tx_tag, 0, &txm->map);
1636 		if (rc != 0)
1637 			goto failed;
1638 	}
1639 
1640 	return (0);
1641 failed:
1642 	while (--i >= 0) {
1643 		txm--;
1644 		bus_dmamap_destroy(eq->tx_tag, txm->map);
1645 	}
1646 	KASSERT(txm == eq->maps, ("%s: EDOOFUS", __func__));
1647 
1648 	free(eq->maps, M_CXGBE);
1649 	eq->maps = NULL;
1650 
1651 	return (rc);
1652 }
1653 
1654 static void
1655 free_eq_maps(struct sge_eq *eq)
1656 {
1657 	struct tx_map *txm;
1658 	int i;
1659 
1660 	txm = eq->maps;
1661 	for (i = 0; i < eq->map_total; i++, txm++) {
1662 
1663 		if (txm->m) {
1664 			bus_dmamap_unload(eq->tx_tag, txm->map);
1665 			m_freem(txm->m);
1666 			txm->m = NULL;
1667 		}
1668 
1669 		bus_dmamap_destroy(eq->tx_tag, txm->map);
1670 	}
1671 
1672 	free(eq->maps, M_CXGBE);
1673 	eq->maps = NULL;
1674 }
1675 
1676 /*
1677  * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
1678  * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
1679  * of immediate data.
1680  */
1681 #define IMM_LEN ( \
1682       2 * TX_EQ_ESIZE \
1683     - sizeof(struct fw_eth_tx_pkt_wr) \
1684     - sizeof(struct cpl_tx_pkt_core))
1685 
1686 /*
1687  * Returns non-zero on failure, no need to cleanup anything in that case.
1688  *
1689  * Note 1: We always try to defrag the mbuf if required and return EFBIG only
1690  * if the resulting chain still won't fit in a tx descriptor.
1691  *
1692  * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
1693  * does not have the TCP header in it.
1694  */
1695 static int
1696 get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
1697     int sgl_only)
1698 {
1699 	struct mbuf *m = *fp;
1700 	struct sge_eq *eq = &txq->eq;
1701 	struct tx_map *txm;
1702 	int rc, defragged = 0, n;
1703 
1704 	TXQ_LOCK_ASSERT_OWNED(txq);
1705 
1706 	if (m->m_pkthdr.tso_segsz)
1707 		sgl_only = 1;	/* Do not allow immediate data with LSO */
1708 
1709 start:	sgl->nsegs = 0;
1710 
1711 	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
1712 		return (0);	/* nsegs = 0 tells caller to use imm. tx */
1713 
1714 	if (eq->map_avail == 0) {
1715 		txq->no_dmamap++;
1716 		return (ENOMEM);
1717 	}
1718 	txm = &eq->maps[eq->map_pidx];
1719 
1720 	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
1721 		*fp = m_pullup(m, 50);
1722 		m = *fp;
1723 		if (m == NULL)
1724 			return (ENOBUFS);
1725 	}
1726 
1727 	rc = bus_dmamap_load_mbuf_sg(eq->tx_tag, txm->map, m, sgl->seg,
1728 	    &sgl->nsegs, BUS_DMA_NOWAIT);
1729 	if (rc == EFBIG && defragged == 0) {
1730 		m = m_defrag(m, M_DONTWAIT);
1731 		if (m == NULL)
1732 			return (EFBIG);
1733 
1734 		defragged = 1;
1735 		*fp = m;
1736 		goto start;
1737 	}
1738 	if (rc != 0)
1739 		return (rc);
1740 
1741 	txm->m = m;
1742 	eq->map_avail--;
1743 	if (++eq->map_pidx == eq->map_total)
1744 		eq->map_pidx = 0;
1745 
1746 	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
1747 	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
1748 
1749 	/*
1750 	 * Store the # of flits required to hold this frame's SGL in nflits.  An
1751 	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
1752 	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
1753 	 * then len1 must be set to 0.
1754 	 */
1755 	n = sgl->nsegs - 1;
1756 	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
1757 
1758 	return (0);
1759 }
1760 
1761 
1762 /*
1763  * Releases all the txq resources used up in the specified sgl.
1764  */
1765 static int
1766 free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
1767 {
1768 	struct sge_eq *eq = &txq->eq;
1769 	struct tx_map *txm;
1770 
1771 	TXQ_LOCK_ASSERT_OWNED(txq);
1772 
1773 	if (sgl->nsegs == 0)
1774 		return (0);	/* didn't use any map */
1775 
1776 	/* 1 pkt uses exactly 1 map, back it out */
1777 
1778 	eq->map_avail++;
1779 	if (eq->map_pidx > 0)
1780 		eq->map_pidx--;
1781 	else
1782 		eq->map_pidx = eq->map_total - 1;
1783 
1784 	txm = &eq->maps[eq->map_pidx];
1785 	bus_dmamap_unload(eq->tx_tag, txm->map);
1786 	txm->m = NULL;
1787 
1788 	return (0);
1789 }
1790 
1791 static int
1792 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
1793     struct sgl *sgl)
1794 {
1795 	struct sge_eq *eq = &txq->eq;
1796 	struct fw_eth_tx_pkt_wr *wr;
1797 	struct cpl_tx_pkt_core *cpl;
1798 	uint32_t ctrl;	/* used in many unrelated places */
1799 	uint64_t ctrl1;
1800 	int nflits, ndesc;
1801 	struct tx_sdesc *txsd;
1802 	caddr_t dst;
1803 
1804 	TXQ_LOCK_ASSERT_OWNED(txq);
1805 
1806 	/*
1807 	 * Do we have enough flits to send this frame out?
1808 	 */
1809 	ctrl = sizeof(struct cpl_tx_pkt_core);
1810 	if (m->m_pkthdr.tso_segsz) {
1811 		nflits = TXPKT_LSO_WR_HDR;
1812 		ctrl += sizeof(struct cpl_tx_pkt_lso);
1813 	} else
1814 		nflits = TXPKT_WR_HDR;
1815 	if (sgl->nsegs > 0)
1816 		nflits += sgl->nflits;
1817 	else {
1818 		nflits += howmany(m->m_pkthdr.len, 8);
1819 		ctrl += m->m_pkthdr.len;
1820 	}
1821 	ndesc = howmany(nflits, 8);
1822 	if (ndesc > eq->avail)
1823 		return (ENOMEM);
1824 
1825 	/* Firmware work request header */
1826 	wr = (void *)&eq->desc[eq->pidx];
1827 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
1828 	    V_FW_WR_IMMDLEN(ctrl));
1829 	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
1830 	if (eq->avail == ndesc)
1831 		ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
1832 	wr->equiq_to_len16 = htobe32(ctrl);
1833 	wr->r3 = 0;
1834 
1835 	if (m->m_pkthdr.tso_segsz) {
1836 		struct cpl_tx_pkt_lso *lso = (void *)(wr + 1);
1837 		struct ether_header *eh;
1838 		struct ip *ip;
1839 		struct tcphdr *tcp;
1840 
1841 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
1842 		    F_LSO_LAST_SLICE;
1843 
1844 		eh = mtod(m, struct ether_header *);
1845 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1846 			ctrl |= V_LSO_ETHHDR_LEN(1);
1847 			ip = (void *)((struct ether_vlan_header *)eh + 1);
1848 		} else
1849 			ip = (void *)(eh + 1);
1850 
1851 		tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
1852 		ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
1853 		    V_LSO_TCPHDR_LEN(tcp->th_off);
1854 
1855 		lso->lso_ctrl = htobe32(ctrl);
1856 		lso->ipid_ofst = htobe16(0);
1857 		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
1858 		lso->seqno_offset = htobe32(0);
1859 		lso->len = htobe32(m->m_pkthdr.len);
1860 
1861 		cpl = (void *)(lso + 1);
1862 
1863 		txq->tso_wrs++;
1864 	} else
1865 		cpl = (void *)(wr + 1);
1866 
1867 	/* Checksum offload */
1868 	ctrl1 = 0;
1869 	if (!(m->m_pkthdr.csum_flags & CSUM_IP))
1870 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
1871 	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)))
1872 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
1873 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP))
1874 		txq->txcsum++;	/* some hardware assistance provided */
1875 
1876 	/* VLAN tag insertion */
1877 	if (m->m_flags & M_VLANTAG) {
1878 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
1879 		txq->vlan_insertion++;
1880 	}
1881 
1882 	/* CPL header */
1883 	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
1884 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
1885 	cpl->pack = 0;
1886 	cpl->len = htobe16(m->m_pkthdr.len);
1887 	cpl->ctrl1 = htobe64(ctrl1);
1888 
1889 	/* Software descriptor */
1890 	txsd = &eq->sdesc[eq->pidx];
1891 	txsd->desc_used = ndesc;
1892 
1893 	eq->pending += ndesc;
1894 	eq->avail -= ndesc;
1895 	eq->pidx += ndesc;
1896 	if (eq->pidx >= eq->cap)
1897 		eq->pidx -= eq->cap;
1898 
1899 	/* SGL */
1900 	dst = (void *)(cpl + 1);
1901 	if (sgl->nsegs > 0) {
1902 		txsd->map_used = 1;
1903 		txq->sgl_wrs++;
1904 		write_sgl_to_txd(eq, sgl, &dst);
1905 	} else {
1906 		txsd->map_used = 0;
1907 		txq->imm_wrs++;
1908 		for (; m; m = m->m_next) {
1909 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
1910 		}
1911 	}
1912 
1913 	txq->txpkt_wrs++;
1914 	return (0);
1915 }
1916 
1917 /*
1918  * Returns 0 to indicate that m has been accepted into a coalesced tx work
1919  * request.  It has either been folded into txpkts or txpkts was flushed and m
1920  * has started a new coalesced work request (as the first frame in a fresh
1921  * txpkts).
1922  *
1923  * Returns non-zero to indicate a failure - caller is responsible for
1924  * transmitting m, if there was anything in txpkts it has been flushed.
1925  */
1926 static int
1927 add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
1928     struct mbuf *m, struct sgl *sgl)
1929 {
1930 	struct sge_eq *eq = &txq->eq;
1931 	int can_coalesce;
1932 	struct tx_sdesc *txsd;
1933 	int flits;
1934 
1935 	TXQ_LOCK_ASSERT_OWNED(txq);
1936 
1937 	if (txpkts->npkt > 0) {
1938 		flits = TXPKTS_PKT_HDR + sgl->nflits;
1939 		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
1940 		    txpkts->nflits + flits <= TX_WR_FLITS &&
1941 		    txpkts->nflits + flits <= eq->avail * 8 &&
1942 		    txpkts->plen + m->m_pkthdr.len < 65536;
1943 
1944 		if (can_coalesce) {
1945 			txpkts->npkt++;
1946 			txpkts->nflits += flits;
1947 			txpkts->plen += m->m_pkthdr.len;
1948 
1949 			txsd = &eq->sdesc[eq->pidx];
1950 			txsd->map_used++;
1951 
1952 			return (0);
1953 		}
1954 
1955 		/*
1956 		 * Couldn't coalesce m into txpkts.  The first order of business
1957 		 * is to send txpkts on its way.  Then we'll revisit m.
1958 		 */
1959 		write_txpkts_wr(txq, txpkts);
1960 	}
1961 
1962 	/*
1963 	 * Check if we can start a new coalesced tx work request with m as
1964 	 * the first packet in it.
1965 	 */
1966 
1967 	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
1968 
1969 	flits = TXPKTS_WR_HDR + sgl->nflits;
1970 	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
1971 	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
1972 
1973 	if (can_coalesce == 0)
1974 		return (EINVAL);
1975 
1976 	/*
1977 	 * Start a fresh coalesced tx WR with m as the first frame in it.
1978 	 */
1979 	txpkts->npkt = 1;
1980 	txpkts->nflits = flits;
1981 	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
1982 	txpkts->plen = m->m_pkthdr.len;
1983 
1984 	txsd = &eq->sdesc[eq->pidx];
1985 	txsd->map_used = 1;
1986 
1987 	return (0);
1988 }
1989 
1990 /*
1991  * Note that write_txpkts_wr can never run out of hardware descriptors (but
1992  * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
1993  * coalescing only if sufficient hardware descriptors are available.
1994  */
1995 static void
1996 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
1997 {
1998 	struct sge_eq *eq = &txq->eq;
1999 	struct fw_eth_tx_pkts_wr *wr;
2000 	struct tx_sdesc *txsd;
2001 	uint32_t ctrl;
2002 	int ndesc;
2003 
2004 	TXQ_LOCK_ASSERT_OWNED(txq);
2005 
2006 	ndesc = howmany(txpkts->nflits, 8);
2007 
2008 	wr = (void *)&eq->desc[eq->pidx];
2009 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR) |
2010 	    V_FW_WR_IMMDLEN(0)); /* immdlen does not matter in this WR */
2011 	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
2012 	if (eq->avail == ndesc)
2013 		ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2014 	wr->equiq_to_len16 = htobe32(ctrl);
2015 	wr->plen = htobe16(txpkts->plen);
2016 	wr->npkt = txpkts->npkt;
2017 	wr->r3 = wr->r4 = 0;
2018 
2019 	/* Everything else already written */
2020 
2021 	txsd = &eq->sdesc[eq->pidx];
2022 	txsd->desc_used = ndesc;
2023 
2024 	KASSERT(eq->avail >= ndesc, ("%s: out ouf descriptors", __func__));
2025 
2026 	eq->pending += ndesc;
2027 	eq->avail -= ndesc;
2028 	eq->pidx += ndesc;
2029 	if (eq->pidx >= eq->cap)
2030 		eq->pidx -= eq->cap;
2031 
2032 	txq->txpkts_pkts += txpkts->npkt;
2033 	txq->txpkts_wrs++;
2034 	txpkts->npkt = 0;	/* emptied */
2035 }
2036 
2037 static inline void
2038 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
2039     struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
2040 {
2041 	struct ulp_txpkt *ulpmc;
2042 	struct ulptx_idata *ulpsc;
2043 	struct cpl_tx_pkt_core *cpl;
2044 	struct sge_eq *eq = &txq->eq;
2045 	uintptr_t flitp, start, end;
2046 	uint64_t ctrl;
2047 	caddr_t dst;
2048 
2049 	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
2050 
2051 	start = (uintptr_t)eq->desc;
2052 	end = (uintptr_t)eq->spg;
2053 
2054 	/* Checksum offload */
2055 	ctrl = 0;
2056 	if (!(m->m_pkthdr.csum_flags & CSUM_IP))
2057 		ctrl |= F_TXPKT_IPCSUM_DIS;
2058 	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)))
2059 		ctrl |= F_TXPKT_L4CSUM_DIS;
2060 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP))
2061 		txq->txcsum++;	/* some hardware assistance provided */
2062 
2063 	/* VLAN tag insertion */
2064 	if (m->m_flags & M_VLANTAG) {
2065 		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
2066 		txq->vlan_insertion++;
2067 	}
2068 
2069 	/*
2070 	 * The previous packet's SGL must have ended at a 16 byte boundary (this
2071 	 * is required by the firmware/hardware).  It follows that flitp cannot
2072 	 * wrap around between the ULPTX master command and ULPTX subcommand (8
2073 	 * bytes each), and that it can not wrap around in the middle of the
2074 	 * cpl_tx_pkt_core either.
2075 	 */
2076 	flitp = (uintptr_t)txpkts->flitp;
2077 	KASSERT((flitp & 0xf) == 0,
2078 	    ("%s: last SGL did not end at 16 byte boundary: %p",
2079 	    __func__, txpkts->flitp));
2080 
2081 	/* ULP master command */
2082 	ulpmc = (void *)flitp;
2083 	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
2084 	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
2085 	    sizeof(*cpl) + 8 * sgl->nflits, 16));
2086 
2087 	/* ULP subcommand */
2088 	ulpsc = (void *)(ulpmc + 1);
2089 	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
2090 	    F_ULP_TX_SC_MORE);
2091 	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
2092 
2093 	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
2094 	if (flitp == end)
2095 		flitp = start;
2096 
2097 	/* CPL_TX_PKT */
2098 	cpl = (void *)flitp;
2099 	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2100 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2101 	cpl->pack = 0;
2102 	cpl->len = htobe16(m->m_pkthdr.len);
2103 	cpl->ctrl1 = htobe64(ctrl);
2104 
2105 	flitp += sizeof(*cpl);
2106 	if (flitp == end)
2107 		flitp = start;
2108 
2109 	/* SGL for this frame */
2110 	dst = (caddr_t)flitp;
2111 	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
2112 	txpkts->flitp = (void *)dst;
2113 
2114 	KASSERT(((uintptr_t)dst & 0xf) == 0,
2115 	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
2116 }
2117 
2118 /*
2119  * If the SGL ends on an address that is not 16 byte aligned, this function will
2120  * add a 0 filled flit at the end.  It returns 1 in that case.
2121  */
2122 static int
2123 write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
2124 {
2125 	__be64 *flitp, *end;
2126 	struct ulptx_sgl *usgl;
2127 	bus_dma_segment_t *seg;
2128 	int i, padded;
2129 
2130 	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
2131 	    ("%s: bad SGL - nsegs=%d, nflits=%d",
2132 	    __func__, sgl->nsegs, sgl->nflits));
2133 
2134 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
2135 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
2136 
2137 	flitp = (__be64 *)(*to);
2138 	end = flitp + sgl->nflits;
2139 	seg = &sgl->seg[0];
2140 	usgl = (void *)flitp;
2141 
2142 	/*
2143 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
2144 	 * ring, so we're at least 16 bytes away from the status page.  There is
2145 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
2146 	 */
2147 
2148 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
2149 	    V_ULPTX_NSGE(sgl->nsegs));
2150 	usgl->len0 = htobe32(seg->ds_len);
2151 	usgl->addr0 = htobe64(seg->ds_addr);
2152 	seg++;
2153 
2154 	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
2155 
2156 		/* Won't wrap around at all */
2157 
2158 		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
2159 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
2160 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
2161 		}
2162 		if (i & 1)
2163 			usgl->sge[i / 2].len[1] = htobe32(0);
2164 	} else {
2165 
2166 		/* Will wrap somewhere in the rest of the SGL */
2167 
2168 		/* 2 flits already written, write the rest flit by flit */
2169 		flitp = (void *)(usgl + 1);
2170 		for (i = 0; i < sgl->nflits - 2; i++) {
2171 			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
2172 				flitp = (void *)eq->desc;
2173 			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
2174 		}
2175 		end = flitp;
2176 	}
2177 
2178 	if ((uintptr_t)end & 0xf) {
2179 		*(uint64_t *)end = 0;
2180 		end++;
2181 		padded = 1;
2182 	} else
2183 		padded = 0;
2184 
2185 	if ((uintptr_t)end == (uintptr_t)eq->spg)
2186 		*to = (void *)eq->desc;
2187 	else
2188 		*to = (void *)end;
2189 
2190 	return (padded);
2191 }
2192 
2193 static inline void
2194 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
2195 {
2196 	if ((uintptr_t)(*to) + len <= (uintptr_t)eq->spg) {
2197 		bcopy(from, *to, len);
2198 		(*to) += len;
2199 	} else {
2200 		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
2201 
2202 		bcopy(from, *to, portion);
2203 		from += portion;
2204 		portion = len - portion;	/* remaining */
2205 		bcopy(from, (void *)eq->desc, portion);
2206 		(*to) = (caddr_t)eq->desc + portion;
2207 	}
2208 }
2209 
2210 static inline void
2211 ring_tx_db(struct adapter *sc, struct sge_eq *eq)
2212 {
2213 	wmb();
2214 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
2215 	    V_QID(eq->cntxt_id) | V_PIDX(eq->pending));
2216 	eq->pending = 0;
2217 }
2218 
2219 static int
2220 reclaim_tx_descs(struct sge_eq *eq, int atleast, int howmany)
2221 {
2222 	struct tx_sdesc *txsd;
2223 	struct tx_map *txm, *next_txm;
2224 	unsigned int cidx, can_reclaim, reclaimed, maps, next_map_cidx;
2225 
2226 	EQ_LOCK_ASSERT_OWNED(eq);
2227 
2228 	cidx = eq->spg->cidx;	/* stable snapshot */
2229 	cidx = be16_to_cpu(cidx);
2230 
2231 	if (cidx >= eq->cidx)
2232 		can_reclaim = cidx - eq->cidx;
2233 	else
2234 		can_reclaim = cidx + eq->cap - eq->cidx;
2235 
2236 	if (can_reclaim < atleast)
2237 		return (0);
2238 
2239 	next_map_cidx = eq->map_cidx;
2240 	next_txm = txm = &eq->maps[next_map_cidx];
2241 	prefetch(txm);
2242 
2243 	maps = reclaimed = 0;
2244 	do {
2245 		int ndesc;
2246 
2247 		txsd = &eq->sdesc[eq->cidx];
2248 		ndesc = txsd->desc_used;
2249 
2250 		/* Firmware doesn't return "partial" credits. */
2251 		KASSERT(can_reclaim >= ndesc,
2252 		    ("%s: unexpected number of credits: %d, %d",
2253 		    __func__, can_reclaim, ndesc));
2254 
2255 		maps += txsd->map_used;
2256 		reclaimed += ndesc;
2257 
2258 		eq->cidx += ndesc;
2259 		if (eq->cidx >= eq->cap)
2260 			eq->cidx -= eq->cap;
2261 
2262 		can_reclaim -= ndesc;
2263 
2264 	} while (can_reclaim && reclaimed < howmany);
2265 
2266 	eq->avail += reclaimed;
2267 	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
2268 	    ("%s: too many descriptors available", __func__));
2269 
2270 	eq->map_avail += maps;
2271 	KASSERT(eq->map_avail <= eq->map_total,
2272 	    ("%s: too many maps available", __func__));
2273 
2274 	prefetch(txm->m);
2275 	while (maps--) {
2276 		next_txm++;
2277 		if (++next_map_cidx == eq->map_total) {
2278 			next_map_cidx = 0;
2279 			next_txm = eq->maps;
2280 		}
2281 		prefetch(next_txm->m);
2282 
2283 		bus_dmamap_unload(eq->tx_tag, txm->map);
2284 		m_freem(txm->m);
2285 		txm->m = NULL;
2286 
2287 		txm = next_txm;
2288 	}
2289 	eq->map_cidx = next_map_cidx;
2290 
2291 	return (reclaimed);
2292 }
2293 
2294 static void
2295 write_eqflush_wr(struct sge_eq *eq)
2296 {
2297 	struct fw_eq_flush_wr *wr;
2298 	struct tx_sdesc *txsd;
2299 
2300 	EQ_LOCK_ASSERT_OWNED(eq);
2301 	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
2302 
2303 	wr = (void *)&eq->desc[eq->pidx];
2304 	bzero(wr, sizeof(*wr));
2305 	wr->opcode = FW_EQ_FLUSH_WR;
2306 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
2307 	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
2308 
2309 	txsd = &eq->sdesc[eq->pidx];
2310 	txsd->desc_used = 1;
2311 	txsd->map_used = 0;
2312 
2313 	eq->pending++;
2314 	eq->avail--;
2315 	if (++eq->pidx == eq->cap)
2316 		eq->pidx = 0;
2317 }
2318 
2319 static __be64
2320 get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
2321 {
2322 	int i = (idx / 3) * 2;
2323 
2324 	switch (idx % 3) {
2325 	case 0: {
2326 		__be64 rc;
2327 
2328 		rc = htobe32(sgl[i].ds_len);
2329 		if (i + 1 < nsegs)
2330 			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
2331 
2332 		return (rc);
2333 	}
2334 	case 1:
2335 		return htobe64(sgl[i].ds_addr);
2336 	case 2:
2337 		return htobe64(sgl[i + 1].ds_addr);
2338 	}
2339 
2340 	return (0);
2341 }
2342 
2343 static struct mbuf *
2344 get_fl_sdesc_data(struct sge_fl *fl, int len, int flags)
2345 {
2346 	struct fl_sdesc *sd;
2347 	struct mbuf *m;
2348 
2349 	sd = &fl->sdesc[fl->cidx];
2350 	FL_LOCK(fl);
2351 	if (++fl->cidx == fl->cap)
2352 		fl->cidx = 0;
2353 	fl->needed++;
2354 	FL_UNLOCK(fl);
2355 
2356 	m = sd->m;
2357 	if (m == NULL) {
2358 		m = m_gethdr(M_NOWAIT, MT_NOINIT);
2359 		if (m == NULL)
2360 			return (NULL);
2361 	}
2362 	sd->m = NULL;	/* consumed */
2363 
2364 	bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD);
2365 	m_init(m, zone_mbuf, MLEN, M_NOWAIT, MT_DATA, flags);
2366 	if ((flags && len < MINCLSIZE) || (!flags && len <= MLEN))
2367 		bcopy(sd->cl, mtod(m, caddr_t), len);
2368 	else {
2369 		bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
2370 		m_cljset(m, sd->cl, FL_BUF_TYPE(sd->tag_idx));
2371 		sd->cl = NULL;	/* consumed */
2372 	}
2373 
2374 	m->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
2375 
2376 	return (m);
2377 }
2378 
2379 static void
2380 set_fl_tag_idx(struct sge_fl *fl, int mtu)
2381 {
2382 	int i;
2383 
2384 	FL_LOCK_ASSERT_OWNED(fl);
2385 
2386 	for (i = 0; i < FL_BUF_SIZES - 1; i++) {
2387 		if (FL_BUF_SIZE(i) >= (mtu + FL_PKTSHIFT))
2388 			break;
2389 	}
2390 
2391 	fl->tag_idx = i;
2392 }
2393