xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 53071ed1c96db7f89defc99c95b0ad1031d48f45)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_kern_tls.h"
36 #include "opt_ratelimit.h"
37 
38 #include <sys/types.h>
39 #include <sys/eventhandler.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/malloc.h>
45 #include <sys/queue.h>
46 #include <sys/sbuf.h>
47 #include <sys/taskqueue.h>
48 #include <sys/time.h>
49 #include <sys/sglist.h>
50 #include <sys/sysctl.h>
51 #include <sys/smp.h>
52 #include <sys/socketvar.h>
53 #include <sys/counter.h>
54 #include <net/bpf.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_vlan_var.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/ip6.h>
61 #include <netinet/tcp.h>
62 #include <netinet/udp.h>
63 #include <machine/in_cksum.h>
64 #include <machine/md_var.h>
65 #include <vm/vm.h>
66 #include <vm/pmap.h>
67 #ifdef DEV_NETMAP
68 #include <machine/bus.h>
69 #include <sys/selinfo.h>
70 #include <net/if_var.h>
71 #include <net/netmap.h>
72 #include <dev/netmap/netmap_kern.h>
73 #endif
74 
75 #include "common/common.h"
76 #include "common/t4_regs.h"
77 #include "common/t4_regs_values.h"
78 #include "common/t4_msg.h"
79 #include "t4_l2t.h"
80 #include "t4_mp_ring.h"
81 
82 #ifdef T4_PKT_TIMESTAMP
83 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
84 #else
85 #define RX_COPY_THRESHOLD MINCLSIZE
86 #endif
87 
88 /* Internal mbuf flags stored in PH_loc.eight[1]. */
89 #define	MC_NOMAP		0x01
90 #define	MC_RAW_WR		0x02
91 #define	MC_TLS			0x04
92 
93 /*
94  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
95  * 0-7 are valid values.
96  */
97 static int fl_pktshift = 0;
98 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
99     "payload DMA offset in rx buffer (bytes)");
100 
101 /*
102  * Pad ethernet payload up to this boundary.
103  * -1: driver should figure out a good value.
104  *  0: disable padding.
105  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
106  */
107 int fl_pad = -1;
108 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
109     "payload pad boundary (bytes)");
110 
111 /*
112  * Status page length.
113  * -1: driver should figure out a good value.
114  *  64 or 128 are the only other valid values.
115  */
116 static int spg_len = -1;
117 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
118     "status page size (bytes)");
119 
120 /*
121  * Congestion drops.
122  * -1: no congestion feedback (not recommended).
123  *  0: backpressure the channel instead of dropping packets right away.
124  *  1: no backpressure, drop packets for the congested queue immediately.
125  */
126 static int cong_drop = 0;
127 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
128     "Congestion control for RX queues (0 = backpressure, 1 = drop");
129 
130 /*
131  * Deliver multiple frames in the same free list buffer if they fit.
132  * -1: let the driver decide whether to enable buffer packing or not.
133  *  0: disable buffer packing.
134  *  1: enable buffer packing.
135  */
136 static int buffer_packing = -1;
137 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
138     0, "Enable buffer packing");
139 
140 /*
141  * Start next frame in a packed buffer at this boundary.
142  * -1: driver should figure out a good value.
143  * T4: driver will ignore this and use the same value as fl_pad above.
144  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
145  */
146 static int fl_pack = -1;
147 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
148     "payload pack boundary (bytes)");
149 
150 /*
151  * Largest rx cluster size that the driver is allowed to allocate.
152  */
153 static int largest_rx_cluster = MJUM16BYTES;
154 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
155     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
156 
157 /*
158  * Size of cluster allocation that's most likely to succeed.  The driver will
159  * fall back to this size if it fails to allocate clusters larger than this.
160  */
161 static int safest_rx_cluster = PAGE_SIZE;
162 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
163     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
164 
165 #ifdef RATELIMIT
166 /*
167  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
168  * for rewriting.  -1 and 0-3 are all valid values.
169  * -1: hardware should leave the TCP timestamps alone.
170  * 0: 1ms
171  * 1: 100us
172  * 2: 10us
173  * 3: 1us
174  */
175 static int tsclk = -1;
176 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
177     "Control TCP timestamp rewriting when using pacing");
178 
179 static int eo_max_backlog = 1024 * 1024;
180 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
181     0, "Maximum backlog of ratelimited data per flow");
182 #endif
183 
184 /*
185  * The interrupt holdoff timers are multiplied by this value on T6+.
186  * 1 and 3-17 (both inclusive) are legal values.
187  */
188 static int tscale = 1;
189 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
190     "Interrupt holdoff timer scale on T6+");
191 
192 /*
193  * Number of LRO entries in the lro_ctrl structure per rx queue.
194  */
195 static int lro_entries = TCP_LRO_ENTRIES;
196 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
197     "Number of LRO entries per RX queue");
198 
199 /*
200  * This enables presorting of frames before they're fed into tcp_lro_rx.
201  */
202 static int lro_mbufs = 0;
203 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
204     "Enable presorting of LRO frames");
205 
206 struct txpkts {
207 	u_int wr_type;		/* type 0 or type 1 */
208 	u_int npkt;		/* # of packets in this work request */
209 	u_int plen;		/* total payload (sum of all packets) */
210 	u_int len16;		/* # of 16B pieces used by this work request */
211 };
212 
213 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
214 struct sgl {
215 	struct sglist sg;
216 	struct sglist_seg seg[TX_SGL_SEGS];
217 };
218 
219 static int service_iq(struct sge_iq *, int);
220 static int service_iq_fl(struct sge_iq *, int);
221 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
222 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
223     u_int);
224 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
225 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
226 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
227     uint16_t, char *);
228 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
229     bus_addr_t *, void **);
230 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
231     void *);
232 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
233     int, int);
234 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
235 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
236     struct sge_iq *);
237 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
238     struct sysctl_oid *, struct sge_fl *);
239 static int alloc_fwq(struct adapter *);
240 static int free_fwq(struct adapter *);
241 static int alloc_ctrlq(struct adapter *, struct sge_wrq *, int,
242     struct sysctl_oid *);
243 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
244     struct sysctl_oid *);
245 static int free_rxq(struct vi_info *, struct sge_rxq *);
246 #ifdef TCP_OFFLOAD
247 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
248     struct sysctl_oid *);
249 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
250 #endif
251 #ifdef DEV_NETMAP
252 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
253     struct sysctl_oid *);
254 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
255 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
256     struct sysctl_oid *);
257 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
258 #endif
259 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
260 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
261 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
262 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
263 #endif
264 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
265 static int free_eq(struct adapter *, struct sge_eq *);
266 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
267     struct sysctl_oid *);
268 static int free_wrq(struct adapter *, struct sge_wrq *);
269 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
270     struct sysctl_oid *);
271 static int free_txq(struct vi_info *, struct sge_txq *);
272 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
273 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
274 static int refill_fl(struct adapter *, struct sge_fl *, int);
275 static void refill_sfl(void *);
276 static int alloc_fl_sdesc(struct sge_fl *);
277 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
278 static int find_refill_source(struct adapter *, int, bool);
279 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
280 
281 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
282 static inline u_int txpkt_len16(u_int, u_int);
283 static inline u_int txpkt_vm_len16(u_int, u_int);
284 static inline u_int txpkts0_len16(u_int);
285 static inline u_int txpkts1_len16(void);
286 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
287 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *,
288     struct fw_eth_tx_pkt_wr *, struct mbuf *, u_int);
289 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
290     struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int);
291 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
292 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
293 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *,
294     struct fw_eth_tx_pkts_wr *, struct mbuf *, const struct txpkts *, u_int);
295 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
296 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
297 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
298 static inline uint16_t read_hw_cidx(struct sge_eq *);
299 static inline u_int reclaimable_tx_desc(struct sge_eq *);
300 static inline u_int total_available_tx_desc(struct sge_eq *);
301 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
302 static void tx_reclaim(void *, int);
303 static __be64 get_flit(struct sglist_seg *, int, int);
304 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
305     struct mbuf *);
306 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
307     struct mbuf *);
308 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
309 static void wrq_tx_drain(void *, int);
310 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
311 
312 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
313 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
314 #ifdef RATELIMIT
315 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
316 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
317     struct mbuf *);
318 #endif
319 
320 static counter_u64_t extfree_refs;
321 static counter_u64_t extfree_rels;
322 
323 an_handler_t t4_an_handler;
324 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
325 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
326 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
327 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
328 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
329 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
330 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
331 
332 void
333 t4_register_an_handler(an_handler_t h)
334 {
335 	uintptr_t *loc;
336 
337 	MPASS(h == NULL || t4_an_handler == NULL);
338 
339 	loc = (uintptr_t *)&t4_an_handler;
340 	atomic_store_rel_ptr(loc, (uintptr_t)h);
341 }
342 
343 void
344 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
345 {
346 	uintptr_t *loc;
347 
348 	MPASS(type < nitems(t4_fw_msg_handler));
349 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
350 	/*
351 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
352 	 * handler dispatch table.  Reject any attempt to install a handler for
353 	 * this subtype.
354 	 */
355 	MPASS(type != FW_TYPE_RSSCPL);
356 	MPASS(type != FW6_TYPE_RSSCPL);
357 
358 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
359 	atomic_store_rel_ptr(loc, (uintptr_t)h);
360 }
361 
362 void
363 t4_register_cpl_handler(int opcode, cpl_handler_t h)
364 {
365 	uintptr_t *loc;
366 
367 	MPASS(opcode < nitems(t4_cpl_handler));
368 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
369 
370 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
371 	atomic_store_rel_ptr(loc, (uintptr_t)h);
372 }
373 
374 static int
375 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
376     struct mbuf *m)
377 {
378 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
379 	u_int tid;
380 	int cookie;
381 
382 	MPASS(m == NULL);
383 
384 	tid = GET_TID(cpl);
385 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
386 		/*
387 		 * The return code for filter-write is put in the CPL cookie so
388 		 * we have to rely on the hardware tid (is_ftid) to determine
389 		 * that this is a response to a filter.
390 		 */
391 		cookie = CPL_COOKIE_FILTER;
392 	} else {
393 		cookie = G_COOKIE(cpl->cookie);
394 	}
395 	MPASS(cookie > CPL_COOKIE_RESERVED);
396 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
397 
398 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
399 }
400 
401 static int
402 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
403     struct mbuf *m)
404 {
405 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
406 	unsigned int cookie;
407 
408 	MPASS(m == NULL);
409 
410 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
411 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
412 }
413 
414 static int
415 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
416     struct mbuf *m)
417 {
418 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
419 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
420 
421 	MPASS(m == NULL);
422 	MPASS(cookie != CPL_COOKIE_RESERVED);
423 
424 	return (act_open_rpl_handlers[cookie](iq, rss, m));
425 }
426 
427 static int
428 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
429     struct mbuf *m)
430 {
431 	struct adapter *sc = iq->adapter;
432 	u_int cookie;
433 
434 	MPASS(m == NULL);
435 	if (is_hashfilter(sc))
436 		cookie = CPL_COOKIE_HASHFILTER;
437 	else
438 		cookie = CPL_COOKIE_TOM;
439 
440 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
441 }
442 
443 static int
444 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
445 {
446 	struct adapter *sc = iq->adapter;
447 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
448 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
449 	u_int cookie;
450 
451 	MPASS(m == NULL);
452 	if (is_etid(sc, tid))
453 		cookie = CPL_COOKIE_ETHOFLD;
454 	else
455 		cookie = CPL_COOKIE_TOM;
456 
457 	return (fw4_ack_handlers[cookie](iq, rss, m));
458 }
459 
460 static void
461 t4_init_shared_cpl_handlers(void)
462 {
463 
464 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
465 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
466 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
467 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
468 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
469 }
470 
471 void
472 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
473 {
474 	uintptr_t *loc;
475 
476 	MPASS(opcode < nitems(t4_cpl_handler));
477 	MPASS(cookie > CPL_COOKIE_RESERVED);
478 	MPASS(cookie < NUM_CPL_COOKIES);
479 	MPASS(t4_cpl_handler[opcode] != NULL);
480 
481 	switch (opcode) {
482 	case CPL_SET_TCB_RPL:
483 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
484 		break;
485 	case CPL_L2T_WRITE_RPL:
486 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
487 		break;
488 	case CPL_ACT_OPEN_RPL:
489 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
490 		break;
491 	case CPL_ABORT_RPL_RSS:
492 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
493 		break;
494 	case CPL_FW4_ACK:
495 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
496 		break;
497 	default:
498 		MPASS(0);
499 		return;
500 	}
501 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
502 	atomic_store_rel_ptr(loc, (uintptr_t)h);
503 }
504 
505 /*
506  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
507  */
508 void
509 t4_sge_modload(void)
510 {
511 
512 	if (fl_pktshift < 0 || fl_pktshift > 7) {
513 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
514 		    " using 0 instead.\n", fl_pktshift);
515 		fl_pktshift = 0;
516 	}
517 
518 	if (spg_len != 64 && spg_len != 128) {
519 		int len;
520 
521 #if defined(__i386__) || defined(__amd64__)
522 		len = cpu_clflush_line_size > 64 ? 128 : 64;
523 #else
524 		len = 64;
525 #endif
526 		if (spg_len != -1) {
527 			printf("Invalid hw.cxgbe.spg_len value (%d),"
528 			    " using %d instead.\n", spg_len, len);
529 		}
530 		spg_len = len;
531 	}
532 
533 	if (cong_drop < -1 || cong_drop > 1) {
534 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
535 		    " using 0 instead.\n", cong_drop);
536 		cong_drop = 0;
537 	}
538 
539 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
540 		printf("Invalid hw.cxgbe.tscale value (%d),"
541 		    " using 1 instead.\n", tscale);
542 		tscale = 1;
543 	}
544 
545 	extfree_refs = counter_u64_alloc(M_WAITOK);
546 	extfree_rels = counter_u64_alloc(M_WAITOK);
547 	counter_u64_zero(extfree_refs);
548 	counter_u64_zero(extfree_rels);
549 
550 	t4_init_shared_cpl_handlers();
551 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
552 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
553 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
554 #ifdef RATELIMIT
555 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
556 	    CPL_COOKIE_ETHOFLD);
557 #endif
558 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
559 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
560 }
561 
562 void
563 t4_sge_modunload(void)
564 {
565 
566 	counter_u64_free(extfree_refs);
567 	counter_u64_free(extfree_rels);
568 }
569 
570 uint64_t
571 t4_sge_extfree_refs(void)
572 {
573 	uint64_t refs, rels;
574 
575 	rels = counter_u64_fetch(extfree_rels);
576 	refs = counter_u64_fetch(extfree_refs);
577 
578 	return (refs - rels);
579 }
580 
581 /* max 4096 */
582 #define MAX_PACK_BOUNDARY 512
583 
584 static inline void
585 setup_pad_and_pack_boundaries(struct adapter *sc)
586 {
587 	uint32_t v, m;
588 	int pad, pack, pad_shift;
589 
590 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
591 	    X_INGPADBOUNDARY_SHIFT;
592 	pad = fl_pad;
593 	if (fl_pad < (1 << pad_shift) ||
594 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
595 	    !powerof2(fl_pad)) {
596 		/*
597 		 * If there is any chance that we might use buffer packing and
598 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
599 		 * it to the minimum allowed in all other cases.
600 		 */
601 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
602 
603 		/*
604 		 * For fl_pad = 0 we'll still write a reasonable value to the
605 		 * register but all the freelists will opt out of padding.
606 		 * We'll complain here only if the user tried to set it to a
607 		 * value greater than 0 that was invalid.
608 		 */
609 		if (fl_pad > 0) {
610 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
611 			    " (%d), using %d instead.\n", fl_pad, pad);
612 		}
613 	}
614 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
615 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
616 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
617 
618 	if (is_t4(sc)) {
619 		if (fl_pack != -1 && fl_pack != pad) {
620 			/* Complain but carry on. */
621 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
622 			    " using %d instead.\n", fl_pack, pad);
623 		}
624 		return;
625 	}
626 
627 	pack = fl_pack;
628 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
629 	    !powerof2(fl_pack)) {
630 		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
631 			pack = MAX_PACK_BOUNDARY;
632 		else
633 			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
634 		MPASS(powerof2(pack));
635 		if (pack < 16)
636 			pack = 16;
637 		if (pack == 32)
638 			pack = 64;
639 		if (pack > 4096)
640 			pack = 4096;
641 		if (fl_pack != -1) {
642 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
643 			    " (%d), using %d instead.\n", fl_pack, pack);
644 		}
645 	}
646 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
647 	if (pack == 16)
648 		v = V_INGPACKBOUNDARY(0);
649 	else
650 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
651 
652 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
653 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
654 }
655 
656 /*
657  * adap->params.vpd.cclk must be set up before this is called.
658  */
659 void
660 t4_tweak_chip_settings(struct adapter *sc)
661 {
662 	int i, reg;
663 	uint32_t v, m;
664 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
665 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
666 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
667 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
668 	static int sw_buf_sizes[] = {
669 		MCLBYTES,
670 #if MJUMPAGESIZE != MCLBYTES
671 		MJUMPAGESIZE,
672 #endif
673 		MJUM9BYTES,
674 		MJUM16BYTES
675 	};
676 
677 	KASSERT(sc->flags & MASTER_PF,
678 	    ("%s: trying to change chip settings when not master.", __func__));
679 
680 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
681 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
682 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
683 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
684 
685 	setup_pad_and_pack_boundaries(sc);
686 
687 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
688 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
689 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
690 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
691 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
692 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
693 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
694 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
695 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
696 
697 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
698 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
699 	reg = A_SGE_FL_BUFFER_SIZE2;
700 	for (i = 0; i < nitems(sw_buf_sizes); i++) {
701 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
702 		t4_write_reg(sc, reg, sw_buf_sizes[i]);
703 		reg += 4;
704 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
705 		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
706 		reg += 4;
707 	}
708 
709 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
710 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
711 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
712 
713 	KASSERT(intr_timer[0] <= timer_max,
714 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
715 	    timer_max));
716 	for (i = 1; i < nitems(intr_timer); i++) {
717 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
718 		    ("%s: timers not listed in increasing order (%d)",
719 		    __func__, i));
720 
721 		while (intr_timer[i] > timer_max) {
722 			if (i == nitems(intr_timer) - 1) {
723 				intr_timer[i] = timer_max;
724 				break;
725 			}
726 			intr_timer[i] += intr_timer[i - 1];
727 			intr_timer[i] /= 2;
728 		}
729 	}
730 
731 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
732 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
733 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
734 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
735 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
736 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
737 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
738 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
739 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
740 
741 	if (chip_id(sc) >= CHELSIO_T6) {
742 		m = V_TSCALE(M_TSCALE);
743 		if (tscale == 1)
744 			v = 0;
745 		else
746 			v = V_TSCALE(tscale - 2);
747 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
748 
749 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
750 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
751 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
752 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
753 			v &= ~m;
754 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
755 			    V_WRTHRTHRESH(16);
756 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
757 		}
758 	}
759 
760 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
761 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
762 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
763 
764 	/*
765 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
766 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
767 	 * may have to deal with is MAXPHYS + 1 page.
768 	 */
769 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
770 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
771 
772 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
773 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
774 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
775 
776 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
777 	    F_RESETDDPOFFSET;
778 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
779 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
780 }
781 
782 /*
783  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
784  * address mut be 16B aligned.  If padding is in use the buffer's start and end
785  * need to be aligned to the pad boundary as well.  We'll just make sure that
786  * the size is a multiple of the pad boundary here, it is up to the buffer
787  * allocation code to make sure the start of the buffer is aligned.
788  */
789 static inline int
790 hwsz_ok(struct adapter *sc, int hwsz)
791 {
792 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
793 
794 	return (hwsz >= 64 && (hwsz & mask) == 0);
795 }
796 
797 /*
798  * XXX: driver really should be able to deal with unexpected settings.
799  */
800 int
801 t4_read_chip_settings(struct adapter *sc)
802 {
803 	struct sge *s = &sc->sge;
804 	struct sge_params *sp = &sc->params.sge;
805 	int i, j, n, rc = 0;
806 	uint32_t m, v, r;
807 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
808 	static int sw_buf_sizes[] = {	/* Sorted by size */
809 		MCLBYTES,
810 #if MJUMPAGESIZE != MCLBYTES
811 		MJUMPAGESIZE,
812 #endif
813 		MJUM9BYTES,
814 		MJUM16BYTES
815 	};
816 	struct rx_buf_info *rxb;
817 
818 	m = F_RXPKTCPLMODE;
819 	v = F_RXPKTCPLMODE;
820 	r = sc->params.sge.sge_control;
821 	if ((r & m) != v) {
822 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
823 		rc = EINVAL;
824 	}
825 
826 	/*
827 	 * If this changes then every single use of PAGE_SHIFT in the driver
828 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
829 	 */
830 	if (sp->page_shift != PAGE_SHIFT) {
831 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
832 		rc = EINVAL;
833 	}
834 
835 	s->safe_zidx = -1;
836 	rxb = &s->rx_buf_info[0];
837 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
838 		rxb->size1 = sw_buf_sizes[i];
839 		rxb->zone = m_getzone(rxb->size1);
840 		rxb->type = m_gettype(rxb->size1);
841 		rxb->size2 = 0;
842 		rxb->hwidx1 = -1;
843 		rxb->hwidx2 = -1;
844 		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
845 			int hwsize = sp->sge_fl_buffer_size[j];
846 
847 			if (!hwsz_ok(sc, hwsize))
848 				continue;
849 
850 			/* hwidx for size1 */
851 			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
852 				rxb->hwidx1 = j;
853 
854 			/* hwidx for size2 (buffer packing) */
855 			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
856 				continue;
857 			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
858 			if (n == 0) {
859 				rxb->hwidx2 = j;
860 				rxb->size2 = hwsize;
861 				break;	/* stop looking */
862 			}
863 			if (rxb->hwidx2 != -1) {
864 				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
865 				    hwsize - CL_METADATA_SIZE) {
866 					rxb->hwidx2 = j;
867 					rxb->size2 = hwsize;
868 				}
869 			} else if (n <= 2 * CL_METADATA_SIZE) {
870 				rxb->hwidx2 = j;
871 				rxb->size2 = hwsize;
872 			}
873 		}
874 		if (rxb->hwidx2 != -1)
875 			sc->flags |= BUF_PACKING_OK;
876 		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
877 			s->safe_zidx = i;
878 	}
879 
880 	if (sc->flags & IS_VF)
881 		return (0);
882 
883 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
884 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
885 	if (r != v) {
886 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
887 		rc = EINVAL;
888 	}
889 
890 	m = v = F_TDDPTAGTCB;
891 	r = t4_read_reg(sc, A_ULP_RX_CTL);
892 	if ((r & m) != v) {
893 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
894 		rc = EINVAL;
895 	}
896 
897 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
898 	    F_RESETDDPOFFSET;
899 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
900 	r = t4_read_reg(sc, A_TP_PARA_REG5);
901 	if ((r & m) != v) {
902 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
903 		rc = EINVAL;
904 	}
905 
906 	t4_init_tp_params(sc, 1);
907 
908 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
909 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
910 
911 	return (rc);
912 }
913 
914 int
915 t4_create_dma_tag(struct adapter *sc)
916 {
917 	int rc;
918 
919 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
920 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
921 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
922 	    NULL, &sc->dmat);
923 	if (rc != 0) {
924 		device_printf(sc->dev,
925 		    "failed to create main DMA tag: %d\n", rc);
926 	}
927 
928 	return (rc);
929 }
930 
931 void
932 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
933     struct sysctl_oid_list *children)
934 {
935 	struct sge_params *sp = &sc->params.sge;
936 
937 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
938 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_bufsizes, "A",
939 	    "freelist buffer sizes");
940 
941 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
942 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
943 
944 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
945 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
946 
947 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
948 	    NULL, sp->spg_len, "status page size (bytes)");
949 
950 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
951 	    NULL, cong_drop, "congestion drop setting");
952 
953 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
954 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
955 }
956 
957 int
958 t4_destroy_dma_tag(struct adapter *sc)
959 {
960 	if (sc->dmat)
961 		bus_dma_tag_destroy(sc->dmat);
962 
963 	return (0);
964 }
965 
966 /*
967  * Allocate and initialize the firmware event queue, control queues, and special
968  * purpose rx queues owned by the adapter.
969  *
970  * Returns errno on failure.  Resources allocated up to that point may still be
971  * allocated.  Caller is responsible for cleanup in case this function fails.
972  */
973 int
974 t4_setup_adapter_queues(struct adapter *sc)
975 {
976 	struct sysctl_oid *oid;
977 	struct sysctl_oid_list *children;
978 	int rc, i;
979 
980 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
981 
982 	sysctl_ctx_init(&sc->ctx);
983 	sc->flags |= ADAP_SYSCTL_CTX;
984 
985 	/*
986 	 * Firmware event queue
987 	 */
988 	rc = alloc_fwq(sc);
989 	if (rc != 0)
990 		return (rc);
991 
992 	/*
993 	 * That's all for the VF driver.
994 	 */
995 	if (sc->flags & IS_VF)
996 		return (rc);
997 
998 	oid = device_get_sysctl_tree(sc->dev);
999 	children = SYSCTL_CHILDREN(oid);
1000 
1001 	/*
1002 	 * XXX: General purpose rx queues, one per port.
1003 	 */
1004 
1005 	/*
1006 	 * Control queues, one per port.
1007 	 */
1008 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "ctrlq",
1009 	    CTLFLAG_RD, NULL, "control queues");
1010 	for_each_port(sc, i) {
1011 		struct sge_wrq *ctrlq = &sc->sge.ctrlq[i];
1012 
1013 		rc = alloc_ctrlq(sc, ctrlq, i, oid);
1014 		if (rc != 0)
1015 			return (rc);
1016 	}
1017 
1018 	return (rc);
1019 }
1020 
1021 /*
1022  * Idempotent
1023  */
1024 int
1025 t4_teardown_adapter_queues(struct adapter *sc)
1026 {
1027 	int i;
1028 
1029 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1030 
1031 	/* Do this before freeing the queue */
1032 	if (sc->flags & ADAP_SYSCTL_CTX) {
1033 		sysctl_ctx_free(&sc->ctx);
1034 		sc->flags &= ~ADAP_SYSCTL_CTX;
1035 	}
1036 
1037 	if (!(sc->flags & IS_VF)) {
1038 		for_each_port(sc, i)
1039 			free_wrq(sc, &sc->sge.ctrlq[i]);
1040 	}
1041 	free_fwq(sc);
1042 
1043 	return (0);
1044 }
1045 
1046 /* Maximum payload that can be delivered with a single iq descriptor */
1047 static inline int
1048 mtu_to_max_payload(struct adapter *sc, int mtu)
1049 {
1050 
1051 	/* large enough even when hw VLAN extraction is disabled */
1052 	return (sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1053 	    ETHER_VLAN_ENCAP_LEN + mtu);
1054 }
1055 
1056 int
1057 t4_setup_vi_queues(struct vi_info *vi)
1058 {
1059 	int rc = 0, i, intr_idx, iqidx;
1060 	struct sge_rxq *rxq;
1061 	struct sge_txq *txq;
1062 #ifdef TCP_OFFLOAD
1063 	struct sge_ofld_rxq *ofld_rxq;
1064 #endif
1065 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1066 	struct sge_wrq *ofld_txq;
1067 #endif
1068 #ifdef DEV_NETMAP
1069 	int saved_idx;
1070 	struct sge_nm_rxq *nm_rxq;
1071 	struct sge_nm_txq *nm_txq;
1072 #endif
1073 	char name[16];
1074 	struct port_info *pi = vi->pi;
1075 	struct adapter *sc = pi->adapter;
1076 	struct ifnet *ifp = vi->ifp;
1077 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
1078 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1079 	int maxp, mtu = ifp->if_mtu;
1080 
1081 	/* Interrupt vector to start from (when using multiple vectors) */
1082 	intr_idx = vi->first_intr;
1083 
1084 #ifdef DEV_NETMAP
1085 	saved_idx = intr_idx;
1086 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1087 
1088 		/* netmap is supported with direct interrupts only. */
1089 		MPASS(!forwarding_intr_to_fwq(sc));
1090 
1091 		/*
1092 		 * We don't have buffers to back the netmap rx queues
1093 		 * right now so we create the queues in a way that
1094 		 * doesn't set off any congestion signal in the chip.
1095 		 */
1096 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1097 		    CTLFLAG_RD, NULL, "rx queues");
1098 		for_each_nm_rxq(vi, i, nm_rxq) {
1099 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1100 			if (rc != 0)
1101 				goto done;
1102 			intr_idx++;
1103 		}
1104 
1105 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1106 		    CTLFLAG_RD, NULL, "tx queues");
1107 		for_each_nm_txq(vi, i, nm_txq) {
1108 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1109 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid);
1110 			if (rc != 0)
1111 				goto done;
1112 		}
1113 	}
1114 
1115 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1116 	intr_idx = saved_idx;
1117 #endif
1118 
1119 	/*
1120 	 * Allocate rx queues first because a default iqid is required when
1121 	 * creating a tx queue.
1122 	 */
1123 	maxp = mtu_to_max_payload(sc, mtu);
1124 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1125 	    CTLFLAG_RD, NULL, "rx queues");
1126 	for_each_rxq(vi, i, rxq) {
1127 
1128 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1129 
1130 		snprintf(name, sizeof(name), "%s rxq%d-fl",
1131 		    device_get_nameunit(vi->dev), i);
1132 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1133 
1134 		rc = alloc_rxq(vi, rxq,
1135 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1136 		if (rc != 0)
1137 			goto done;
1138 		intr_idx++;
1139 	}
1140 #ifdef DEV_NETMAP
1141 	if (ifp->if_capabilities & IFCAP_NETMAP)
1142 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1143 #endif
1144 #ifdef TCP_OFFLOAD
1145 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1146 	    CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections");
1147 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1148 
1149 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
1150 		    vi->qsize_rxq);
1151 
1152 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1153 		    device_get_nameunit(vi->dev), i);
1154 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1155 
1156 		rc = alloc_ofld_rxq(vi, ofld_rxq,
1157 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1158 		if (rc != 0)
1159 			goto done;
1160 		intr_idx++;
1161 	}
1162 #endif
1163 
1164 	/*
1165 	 * Now the tx queues.
1166 	 */
1167 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1168 	    NULL, "tx queues");
1169 	for_each_txq(vi, i, txq) {
1170 		iqidx = vi->first_rxq + (i % vi->nrxq);
1171 		snprintf(name, sizeof(name), "%s txq%d",
1172 		    device_get_nameunit(vi->dev), i);
1173 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
1174 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1175 
1176 		rc = alloc_txq(vi, txq, i, oid);
1177 		if (rc != 0)
1178 			goto done;
1179 	}
1180 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1181 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1182 	    CTLFLAG_RD, NULL, "tx queues for TOE/ETHOFLD");
1183 	for_each_ofld_txq(vi, i, ofld_txq) {
1184 		struct sysctl_oid *oid2;
1185 
1186 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1187 		    device_get_nameunit(vi->dev), i);
1188 		if (vi->nofldrxq > 0) {
1189 			iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq);
1190 			init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq,
1191 			    pi->tx_chan, sc->sge.ofld_rxq[iqidx].iq.cntxt_id,
1192 			    name);
1193 		} else {
1194 			iqidx = vi->first_rxq + (i % vi->nrxq);
1195 			init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq,
1196 			    pi->tx_chan, sc->sge.rxq[iqidx].iq.cntxt_id, name);
1197 		}
1198 
1199 		snprintf(name, sizeof(name), "%d", i);
1200 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1201 		    name, CTLFLAG_RD, NULL, "offload tx queue");
1202 
1203 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1204 		if (rc != 0)
1205 			goto done;
1206 	}
1207 #endif
1208 done:
1209 	if (rc)
1210 		t4_teardown_vi_queues(vi);
1211 
1212 	return (rc);
1213 }
1214 
1215 /*
1216  * Idempotent
1217  */
1218 int
1219 t4_teardown_vi_queues(struct vi_info *vi)
1220 {
1221 	int i;
1222 	struct sge_rxq *rxq;
1223 	struct sge_txq *txq;
1224 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1225 	struct port_info *pi = vi->pi;
1226 	struct adapter *sc = pi->adapter;
1227 	struct sge_wrq *ofld_txq;
1228 #endif
1229 #ifdef TCP_OFFLOAD
1230 	struct sge_ofld_rxq *ofld_rxq;
1231 #endif
1232 #ifdef DEV_NETMAP
1233 	struct sge_nm_rxq *nm_rxq;
1234 	struct sge_nm_txq *nm_txq;
1235 #endif
1236 
1237 	/* Do this before freeing the queues */
1238 	if (vi->flags & VI_SYSCTL_CTX) {
1239 		sysctl_ctx_free(&vi->ctx);
1240 		vi->flags &= ~VI_SYSCTL_CTX;
1241 	}
1242 
1243 #ifdef DEV_NETMAP
1244 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1245 		for_each_nm_txq(vi, i, nm_txq) {
1246 			free_nm_txq(vi, nm_txq);
1247 		}
1248 
1249 		for_each_nm_rxq(vi, i, nm_rxq) {
1250 			free_nm_rxq(vi, nm_rxq);
1251 		}
1252 	}
1253 #endif
1254 
1255 	/*
1256 	 * Take down all the tx queues first, as they reference the rx queues
1257 	 * (for egress updates, etc.).
1258 	 */
1259 
1260 	for_each_txq(vi, i, txq) {
1261 		free_txq(vi, txq);
1262 	}
1263 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1264 	for_each_ofld_txq(vi, i, ofld_txq) {
1265 		free_wrq(sc, ofld_txq);
1266 	}
1267 #endif
1268 
1269 	/*
1270 	 * Then take down the rx queues.
1271 	 */
1272 
1273 	for_each_rxq(vi, i, rxq) {
1274 		free_rxq(vi, rxq);
1275 	}
1276 #ifdef TCP_OFFLOAD
1277 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1278 		free_ofld_rxq(vi, ofld_rxq);
1279 	}
1280 #endif
1281 
1282 	return (0);
1283 }
1284 
1285 /*
1286  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1287  * unusual scenario.
1288  *
1289  * a) Deals with errors, if any.
1290  * b) Services firmware event queue, which is taking interrupts for all other
1291  *    queues.
1292  */
1293 void
1294 t4_intr_all(void *arg)
1295 {
1296 	struct adapter *sc = arg;
1297 	struct sge_iq *fwq = &sc->sge.fwq;
1298 
1299 	MPASS(sc->intr_count == 1);
1300 
1301 	if (sc->intr_type == INTR_INTX)
1302 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1303 
1304 	t4_intr_err(arg);
1305 	t4_intr_evt(fwq);
1306 }
1307 
1308 /*
1309  * Interrupt handler for errors (installed directly when multiple interrupts are
1310  * being used, or called by t4_intr_all).
1311  */
1312 void
1313 t4_intr_err(void *arg)
1314 {
1315 	struct adapter *sc = arg;
1316 	uint32_t v;
1317 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1318 
1319 	if (sc->flags & ADAP_ERR)
1320 		return;
1321 
1322 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1323 	if (v & F_PFSW) {
1324 		sc->swintr++;
1325 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1326 	}
1327 
1328 	t4_slow_intr_handler(sc, verbose);
1329 }
1330 
1331 /*
1332  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1333  * such queue right now.
1334  */
1335 void
1336 t4_intr_evt(void *arg)
1337 {
1338 	struct sge_iq *iq = arg;
1339 
1340 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1341 		service_iq(iq, 0);
1342 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1343 	}
1344 }
1345 
1346 /*
1347  * Interrupt handler for iq+fl queues.
1348  */
1349 void
1350 t4_intr(void *arg)
1351 {
1352 	struct sge_iq *iq = arg;
1353 
1354 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1355 		service_iq_fl(iq, 0);
1356 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1357 	}
1358 }
1359 
1360 #ifdef DEV_NETMAP
1361 /*
1362  * Interrupt handler for netmap rx queues.
1363  */
1364 void
1365 t4_nm_intr(void *arg)
1366 {
1367 	struct sge_nm_rxq *nm_rxq = arg;
1368 
1369 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1370 		service_nm_rxq(nm_rxq);
1371 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1372 	}
1373 }
1374 
1375 /*
1376  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1377  */
1378 void
1379 t4_vi_intr(void *arg)
1380 {
1381 	struct irq *irq = arg;
1382 
1383 	MPASS(irq->nm_rxq != NULL);
1384 	t4_nm_intr(irq->nm_rxq);
1385 
1386 	MPASS(irq->rxq != NULL);
1387 	t4_intr(irq->rxq);
1388 }
1389 #endif
1390 
1391 /*
1392  * Deals with interrupts on an iq-only (no freelist) queue.
1393  */
1394 static int
1395 service_iq(struct sge_iq *iq, int budget)
1396 {
1397 	struct sge_iq *q;
1398 	struct adapter *sc = iq->adapter;
1399 	struct iq_desc *d = &iq->desc[iq->cidx];
1400 	int ndescs = 0, limit;
1401 	int rsp_type;
1402 	uint32_t lq;
1403 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1404 
1405 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1406 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1407 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1408 	    iq->flags));
1409 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1410 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1411 
1412 	limit = budget ? budget : iq->qsize / 16;
1413 
1414 	/*
1415 	 * We always come back and check the descriptor ring for new indirect
1416 	 * interrupts and other responses after running a single handler.
1417 	 */
1418 	for (;;) {
1419 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1420 
1421 			rmb();
1422 
1423 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1424 			lq = be32toh(d->rsp.pldbuflen_qid);
1425 
1426 			switch (rsp_type) {
1427 			case X_RSPD_TYPE_FLBUF:
1428 				panic("%s: data for an iq (%p) with no freelist",
1429 				    __func__, iq);
1430 
1431 				/* NOTREACHED */
1432 
1433 			case X_RSPD_TYPE_CPL:
1434 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1435 				    ("%s: bad opcode %02x.", __func__,
1436 				    d->rss.opcode));
1437 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1438 				break;
1439 
1440 			case X_RSPD_TYPE_INTR:
1441 				/*
1442 				 * There are 1K interrupt-capable queues (qids 0
1443 				 * through 1023).  A response type indicating a
1444 				 * forwarded interrupt with a qid >= 1K is an
1445 				 * iWARP async notification.
1446 				 */
1447 				if (__predict_true(lq >= 1024)) {
1448 					t4_an_handler(iq, &d->rsp);
1449 					break;
1450 				}
1451 
1452 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1453 				    sc->sge.iq_base];
1454 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1455 				    IQS_BUSY)) {
1456 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1457 						(void) atomic_cmpset_int(&q->state,
1458 						    IQS_BUSY, IQS_IDLE);
1459 					} else {
1460 						STAILQ_INSERT_TAIL(&iql, q,
1461 						    link);
1462 					}
1463 				}
1464 				break;
1465 
1466 			default:
1467 				KASSERT(0,
1468 				    ("%s: illegal response type %d on iq %p",
1469 				    __func__, rsp_type, iq));
1470 				log(LOG_ERR,
1471 				    "%s: illegal response type %d on iq %p",
1472 				    device_get_nameunit(sc->dev), rsp_type, iq);
1473 				break;
1474 			}
1475 
1476 			d++;
1477 			if (__predict_false(++iq->cidx == iq->sidx)) {
1478 				iq->cidx = 0;
1479 				iq->gen ^= F_RSPD_GEN;
1480 				d = &iq->desc[0];
1481 			}
1482 			if (__predict_false(++ndescs == limit)) {
1483 				t4_write_reg(sc, sc->sge_gts_reg,
1484 				    V_CIDXINC(ndescs) |
1485 				    V_INGRESSQID(iq->cntxt_id) |
1486 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1487 				ndescs = 0;
1488 
1489 				if (budget) {
1490 					return (EINPROGRESS);
1491 				}
1492 			}
1493 		}
1494 
1495 		if (STAILQ_EMPTY(&iql))
1496 			break;
1497 
1498 		/*
1499 		 * Process the head only, and send it to the back of the list if
1500 		 * it's still not done.
1501 		 */
1502 		q = STAILQ_FIRST(&iql);
1503 		STAILQ_REMOVE_HEAD(&iql, link);
1504 		if (service_iq_fl(q, q->qsize / 8) == 0)
1505 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1506 		else
1507 			STAILQ_INSERT_TAIL(&iql, q, link);
1508 	}
1509 
1510 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1511 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1512 
1513 	return (0);
1514 }
1515 
1516 static inline int
1517 sort_before_lro(struct lro_ctrl *lro)
1518 {
1519 
1520 	return (lro->lro_mbuf_max != 0);
1521 }
1522 
1523 static inline uint64_t
1524 last_flit_to_ns(struct adapter *sc, uint64_t lf)
1525 {
1526 	uint64_t n = be64toh(lf) & 0xfffffffffffffff;	/* 60b, not 64b. */
1527 
1528 	if (n > UINT64_MAX / 1000000)
1529 		return (n / sc->params.vpd.cclk * 1000000);
1530 	else
1531 		return (n * 1000000 / sc->params.vpd.cclk);
1532 }
1533 
1534 static inline void
1535 move_to_next_rxbuf(struct sge_fl *fl)
1536 {
1537 
1538 	fl->rx_offset = 0;
1539 	if (__predict_false((++fl->cidx & 7) == 0)) {
1540 		uint16_t cidx = fl->cidx >> 3;
1541 
1542 		if (__predict_false(cidx == fl->sidx))
1543 			fl->cidx = cidx = 0;
1544 		fl->hw_cidx = cidx;
1545 	}
1546 }
1547 
1548 /*
1549  * Deals with interrupts on an iq+fl queue.
1550  */
1551 static int
1552 service_iq_fl(struct sge_iq *iq, int budget)
1553 {
1554 	struct sge_rxq *rxq = iq_to_rxq(iq);
1555 	struct sge_fl *fl;
1556 	struct adapter *sc = iq->adapter;
1557 	struct iq_desc *d = &iq->desc[iq->cidx];
1558 	int ndescs, limit;
1559 	int rsp_type, starved;
1560 	uint32_t lq;
1561 	uint16_t fl_hw_cidx;
1562 	struct mbuf *m0;
1563 #if defined(INET) || defined(INET6)
1564 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1565 	struct lro_ctrl *lro = &rxq->lro;
1566 #endif
1567 
1568 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1569 	MPASS(iq->flags & IQ_HAS_FL);
1570 
1571 	ndescs = 0;
1572 #if defined(INET) || defined(INET6)
1573 	if (iq->flags & IQ_ADJ_CREDIT) {
1574 		MPASS(sort_before_lro(lro));
1575 		iq->flags &= ~IQ_ADJ_CREDIT;
1576 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1577 			tcp_lro_flush_all(lro);
1578 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1579 			    V_INGRESSQID((u32)iq->cntxt_id) |
1580 			    V_SEINTARM(iq->intr_params));
1581 			return (0);
1582 		}
1583 		ndescs = 1;
1584 	}
1585 #else
1586 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1587 #endif
1588 
1589 	limit = budget ? budget : iq->qsize / 16;
1590 	fl = &rxq->fl;
1591 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1592 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1593 
1594 		rmb();
1595 
1596 		m0 = NULL;
1597 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1598 		lq = be32toh(d->rsp.pldbuflen_qid);
1599 
1600 		switch (rsp_type) {
1601 		case X_RSPD_TYPE_FLBUF:
1602 			if (lq & F_RSPD_NEWBUF) {
1603 				if (fl->rx_offset > 0)
1604 					move_to_next_rxbuf(fl);
1605 				lq = G_RSPD_LEN(lq);
1606 			}
1607 			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1608 				FL_LOCK(fl);
1609 				refill_fl(sc, fl, 64);
1610 				FL_UNLOCK(fl);
1611 				fl_hw_cidx = fl->hw_cidx;
1612 			}
1613 
1614 			if (d->rss.opcode == CPL_RX_PKT) {
1615 				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1616 					break;
1617 				goto out;
1618 			}
1619 			m0 = get_fl_payload(sc, fl, lq);
1620 			if (__predict_false(m0 == NULL))
1621 				goto out;
1622 
1623 			/* fall through */
1624 
1625 		case X_RSPD_TYPE_CPL:
1626 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1627 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1628 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1629 			break;
1630 
1631 		case X_RSPD_TYPE_INTR:
1632 
1633 			/*
1634 			 * There are 1K interrupt-capable queues (qids 0
1635 			 * through 1023).  A response type indicating a
1636 			 * forwarded interrupt with a qid >= 1K is an
1637 			 * iWARP async notification.  That is the only
1638 			 * acceptable indirect interrupt on this queue.
1639 			 */
1640 			if (__predict_false(lq < 1024)) {
1641 				panic("%s: indirect interrupt on iq_fl %p "
1642 				    "with qid %u", __func__, iq, lq);
1643 			}
1644 
1645 			t4_an_handler(iq, &d->rsp);
1646 			break;
1647 
1648 		default:
1649 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1650 			    __func__, rsp_type, iq));
1651 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1652 			    device_get_nameunit(sc->dev), rsp_type, iq);
1653 			break;
1654 		}
1655 
1656 		d++;
1657 		if (__predict_false(++iq->cidx == iq->sidx)) {
1658 			iq->cidx = 0;
1659 			iq->gen ^= F_RSPD_GEN;
1660 			d = &iq->desc[0];
1661 		}
1662 		if (__predict_false(++ndescs == limit)) {
1663 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1664 			    V_INGRESSQID(iq->cntxt_id) |
1665 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1666 
1667 #if defined(INET) || defined(INET6)
1668 			if (iq->flags & IQ_LRO_ENABLED &&
1669 			    !sort_before_lro(lro) &&
1670 			    sc->lro_timeout != 0) {
1671 				tcp_lro_flush_inactive(lro, &lro_timeout);
1672 			}
1673 #endif
1674 			if (budget)
1675 				return (EINPROGRESS);
1676 			ndescs = 0;
1677 		}
1678 	}
1679 out:
1680 #if defined(INET) || defined(INET6)
1681 	if (iq->flags & IQ_LRO_ENABLED) {
1682 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1683 			MPASS(sort_before_lro(lro));
1684 			/* hold back one credit and don't flush LRO state */
1685 			iq->flags |= IQ_ADJ_CREDIT;
1686 			ndescs--;
1687 		} else {
1688 			tcp_lro_flush_all(lro);
1689 		}
1690 	}
1691 #endif
1692 
1693 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1694 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1695 
1696 	FL_LOCK(fl);
1697 	starved = refill_fl(sc, fl, 64);
1698 	FL_UNLOCK(fl);
1699 	if (__predict_false(starved != 0))
1700 		add_fl_to_sfl(sc, fl);
1701 
1702 	return (0);
1703 }
1704 
1705 static inline struct cluster_metadata *
1706 cl_metadata(struct fl_sdesc *sd)
1707 {
1708 
1709 	return ((void *)(sd->cl + sd->moff));
1710 }
1711 
1712 static void
1713 rxb_free(struct mbuf *m)
1714 {
1715 	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1716 
1717 	uma_zfree(clm->zone, clm->cl);
1718 	counter_u64_add(extfree_rels, 1);
1719 }
1720 
1721 /*
1722  * The mbuf returned comes from zone_muf and carries the payload in one of these
1723  * ways
1724  * a) complete frame inside the mbuf
1725  * b) m_cljset (for clusters without metadata)
1726  * d) m_extaddref (cluster with metadata)
1727  */
1728 static struct mbuf *
1729 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1730     int remaining)
1731 {
1732 	struct mbuf *m;
1733 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1734 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1735 	struct cluster_metadata *clm;
1736 	int len, blen;
1737 	caddr_t payload;
1738 
1739 	if (fl->flags & FL_BUF_PACKING) {
1740 		u_int l, pad;
1741 
1742 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1743 		len = min(remaining, blen);
1744 		payload = sd->cl + fl->rx_offset;
1745 
1746 		l = fr_offset + len;
1747 		pad = roundup2(l, fl->buf_boundary) - l;
1748 		if (fl->rx_offset + len + pad < rxb->size2)
1749 			blen = len + pad;
1750 		MPASS(fl->rx_offset + blen <= rxb->size2);
1751 	} else {
1752 		MPASS(fl->rx_offset == 0);	/* not packing */
1753 		blen = rxb->size1;
1754 		len = min(remaining, blen);
1755 		payload = sd->cl;
1756 	}
1757 
1758 	if (fr_offset == 0) {
1759 		m = m_gethdr(M_NOWAIT, MT_DATA);
1760 		if (__predict_false(m == NULL))
1761 			return (NULL);
1762 		m->m_pkthdr.len = remaining;
1763 	} else {
1764 		m = m_get(M_NOWAIT, MT_DATA);
1765 		if (__predict_false(m == NULL))
1766 			return (NULL);
1767 	}
1768 	m->m_len = len;
1769 
1770 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1771 		/* copy data to mbuf */
1772 		bcopy(payload, mtod(m, caddr_t), len);
1773 		if (fl->flags & FL_BUF_PACKING) {
1774 			fl->rx_offset += blen;
1775 			MPASS(fl->rx_offset <= rxb->size2);
1776 			if (fl->rx_offset < rxb->size2)
1777 				return (m);	/* without advancing the cidx */
1778 		}
1779 	} else if (fl->flags & FL_BUF_PACKING) {
1780 		clm = cl_metadata(sd);
1781 		if (sd->nmbuf++ == 0) {
1782 			clm->refcount = 1;
1783 			clm->zone = rxb->zone;
1784 			clm->cl = sd->cl;
1785 			counter_u64_add(extfree_refs, 1);
1786 		}
1787 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1788 		    NULL);
1789 
1790 		fl->rx_offset += blen;
1791 		MPASS(fl->rx_offset <= rxb->size2);
1792 		if (fl->rx_offset < rxb->size2)
1793 			return (m);	/* without advancing the cidx */
1794 	} else {
1795 		m_cljset(m, sd->cl, rxb->type);
1796 		sd->cl = NULL;	/* consumed, not a recycle candidate */
1797 	}
1798 
1799 	move_to_next_rxbuf(fl);
1800 
1801 	return (m);
1802 }
1803 
1804 static struct mbuf *
1805 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1806 {
1807 	struct mbuf *m0, *m, **pnext;
1808 	u_int remaining;
1809 
1810 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1811 		M_ASSERTPKTHDR(fl->m0);
1812 		MPASS(fl->m0->m_pkthdr.len == plen);
1813 		MPASS(fl->remaining < plen);
1814 
1815 		m0 = fl->m0;
1816 		pnext = fl->pnext;
1817 		remaining = fl->remaining;
1818 		fl->flags &= ~FL_BUF_RESUME;
1819 		goto get_segment;
1820 	}
1821 
1822 	/*
1823 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1824 	 * 'len' and it may span multiple hw buffers.
1825 	 */
1826 
1827 	m0 = get_scatter_segment(sc, fl, 0, plen);
1828 	if (m0 == NULL)
1829 		return (NULL);
1830 	remaining = plen - m0->m_len;
1831 	pnext = &m0->m_next;
1832 	while (remaining > 0) {
1833 get_segment:
1834 		MPASS(fl->rx_offset == 0);
1835 		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1836 		if (__predict_false(m == NULL)) {
1837 			fl->m0 = m0;
1838 			fl->pnext = pnext;
1839 			fl->remaining = remaining;
1840 			fl->flags |= FL_BUF_RESUME;
1841 			return (NULL);
1842 		}
1843 		*pnext = m;
1844 		pnext = &m->m_next;
1845 		remaining -= m->m_len;
1846 	}
1847 	*pnext = NULL;
1848 
1849 	M_ASSERTPKTHDR(m0);
1850 	return (m0);
1851 }
1852 
1853 static int
1854 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1855     int remaining)
1856 {
1857 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1858 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1859 	int len, blen;
1860 
1861 	if (fl->flags & FL_BUF_PACKING) {
1862 		u_int l, pad;
1863 
1864 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1865 		len = min(remaining, blen);
1866 
1867 		l = fr_offset + len;
1868 		pad = roundup2(l, fl->buf_boundary) - l;
1869 		if (fl->rx_offset + len + pad < rxb->size2)
1870 			blen = len + pad;
1871 		fl->rx_offset += blen;
1872 		MPASS(fl->rx_offset <= rxb->size2);
1873 		if (fl->rx_offset < rxb->size2)
1874 			return (len);	/* without advancing the cidx */
1875 	} else {
1876 		MPASS(fl->rx_offset == 0);	/* not packing */
1877 		blen = rxb->size1;
1878 		len = min(remaining, blen);
1879 	}
1880 	move_to_next_rxbuf(fl);
1881 	return (len);
1882 }
1883 
1884 static inline void
1885 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1886 {
1887 	int remaining, fr_offset, len;
1888 
1889 	fr_offset = 0;
1890 	remaining = plen;
1891 	while (remaining > 0) {
1892 		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1893 		fr_offset += len;
1894 		remaining -= len;
1895 	}
1896 }
1897 
1898 static inline int
1899 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1900 {
1901 	int len;
1902 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1903 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1904 
1905 	if (fl->flags & FL_BUF_PACKING)
1906 		len = rxb->size2 - fl->rx_offset;
1907 	else
1908 		len = rxb->size1;
1909 
1910 	return (min(plen, len));
1911 }
1912 
1913 static int
1914 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1915     u_int plen)
1916 {
1917 	struct mbuf *m0;
1918 	struct ifnet *ifp = rxq->ifp;
1919 	struct sge_fl *fl = &rxq->fl;
1920 	struct vi_info *vi = ifp->if_softc;
1921 	const struct cpl_rx_pkt *cpl;
1922 #if defined(INET) || defined(INET6)
1923 	struct lro_ctrl *lro = &rxq->lro;
1924 #endif
1925 	static const int sw_hashtype[4][2] = {
1926 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1927 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1928 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1929 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1930 	};
1931 
1932 	MPASS(plen > sc->params.sge.fl_pktshift);
1933 	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
1934 	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
1935 		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1936 		caddr_t frame;
1937 		int rc, slen;
1938 
1939 		slen = get_segment_len(sc, fl, plen) -
1940 		    sc->params.sge.fl_pktshift;
1941 		frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
1942 		CURVNET_SET_QUIET(ifp->if_vnet);
1943 		rc = pfil_run_hooks(vi->pfil, frame, ifp,
1944 		    slen | PFIL_MEMPTR | PFIL_IN, NULL);
1945 		CURVNET_RESTORE();
1946 		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
1947 			skip_fl_payload(sc, fl, plen);
1948 			return (0);
1949 		}
1950 		if (rc == PFIL_REALLOCED) {
1951 			skip_fl_payload(sc, fl, plen);
1952 			m0 = pfil_mem2mbuf(frame);
1953 			goto have_mbuf;
1954 		}
1955 	}
1956 
1957 	m0 = get_fl_payload(sc, fl, plen);
1958 	if (__predict_false(m0 == NULL))
1959 		return (ENOMEM);
1960 
1961 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1962 	m0->m_len -= sc->params.sge.fl_pktshift;
1963 	m0->m_data += sc->params.sge.fl_pktshift;
1964 
1965 have_mbuf:
1966 	m0->m_pkthdr.rcvif = ifp;
1967 	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
1968 	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
1969 
1970 	cpl = (const void *)(&d->rss + 1);
1971 	if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) {
1972 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1973 		    cpl->l2info & htobe32(F_RXF_IP)) {
1974 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1975 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1976 			rxq->rxcsum++;
1977 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1978 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1979 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1980 			    CSUM_PSEUDO_HDR);
1981 			rxq->rxcsum++;
1982 		}
1983 
1984 		if (__predict_false(cpl->ip_frag))
1985 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1986 		else
1987 			m0->m_pkthdr.csum_data = 0xffff;
1988 	}
1989 
1990 	if (cpl->vlan_ex) {
1991 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1992 		m0->m_flags |= M_VLANTAG;
1993 		rxq->vlan_extraction++;
1994 	}
1995 
1996 	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
1997 		/*
1998 		 * Fill up rcv_tstmp but do not set M_TSTMP.
1999 		 * rcv_tstmp is not in the format that the
2000 		 * kernel expects and we don't want to mislead
2001 		 * it.  For now this is only for custom code
2002 		 * that knows how to interpret cxgbe's stamp.
2003 		 */
2004 		m0->m_pkthdr.rcv_tstmp =
2005 		    last_flit_to_ns(sc, d->rsp.u.last_flit);
2006 #ifdef notyet
2007 		m0->m_flags |= M_TSTMP;
2008 #endif
2009 	}
2010 
2011 #ifdef NUMA
2012 	m0->m_pkthdr.numa_domain = ifp->if_numa_domain;
2013 #endif
2014 #if defined(INET) || defined(INET6)
2015 	if (rxq->iq.flags & IQ_LRO_ENABLED &&
2016 	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2017 	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2018 		if (sort_before_lro(lro)) {
2019 			tcp_lro_queue_mbuf(lro, m0);
2020 			return (0); /* queued for sort, then LRO */
2021 		}
2022 		if (tcp_lro_rx(lro, m0, 0) == 0)
2023 			return (0); /* queued for LRO */
2024 	}
2025 #endif
2026 	ifp->if_input(ifp, m0);
2027 
2028 	return (0);
2029 }
2030 
2031 /*
2032  * Must drain the wrq or make sure that someone else will.
2033  */
2034 static void
2035 wrq_tx_drain(void *arg, int n)
2036 {
2037 	struct sge_wrq *wrq = arg;
2038 	struct sge_eq *eq = &wrq->eq;
2039 
2040 	EQ_LOCK(eq);
2041 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2042 		drain_wrq_wr_list(wrq->adapter, wrq);
2043 	EQ_UNLOCK(eq);
2044 }
2045 
2046 static void
2047 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2048 {
2049 	struct sge_eq *eq = &wrq->eq;
2050 	u_int available, dbdiff;	/* # of hardware descriptors */
2051 	u_int n;
2052 	struct wrqe *wr;
2053 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2054 
2055 	EQ_LOCK_ASSERT_OWNED(eq);
2056 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2057 	wr = STAILQ_FIRST(&wrq->wr_list);
2058 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2059 	MPASS(eq->pidx == eq->dbidx);
2060 	dbdiff = 0;
2061 
2062 	do {
2063 		eq->cidx = read_hw_cidx(eq);
2064 		if (eq->pidx == eq->cidx)
2065 			available = eq->sidx - 1;
2066 		else
2067 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2068 
2069 		MPASS(wr->wrq == wrq);
2070 		n = howmany(wr->wr_len, EQ_ESIZE);
2071 		if (available < n)
2072 			break;
2073 
2074 		dst = (void *)&eq->desc[eq->pidx];
2075 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2076 			/* Won't wrap, won't end exactly at the status page. */
2077 			bcopy(&wr->wr[0], dst, wr->wr_len);
2078 			eq->pidx += n;
2079 		} else {
2080 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2081 
2082 			bcopy(&wr->wr[0], dst, first_portion);
2083 			if (wr->wr_len > first_portion) {
2084 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2085 				    wr->wr_len - first_portion);
2086 			}
2087 			eq->pidx = n - (eq->sidx - eq->pidx);
2088 		}
2089 		wrq->tx_wrs_copied++;
2090 
2091 		if (available < eq->sidx / 4 &&
2092 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2093 				/*
2094 				 * XXX: This is not 100% reliable with some
2095 				 * types of WRs.  But this is a very unusual
2096 				 * situation for an ofld/ctrl queue anyway.
2097 				 */
2098 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2099 			    F_FW_WR_EQUEQ);
2100 		}
2101 
2102 		dbdiff += n;
2103 		if (dbdiff >= 16) {
2104 			ring_eq_db(sc, eq, dbdiff);
2105 			dbdiff = 0;
2106 		}
2107 
2108 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2109 		free_wrqe(wr);
2110 		MPASS(wrq->nwr_pending > 0);
2111 		wrq->nwr_pending--;
2112 		MPASS(wrq->ndesc_needed >= n);
2113 		wrq->ndesc_needed -= n;
2114 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2115 
2116 	if (dbdiff)
2117 		ring_eq_db(sc, eq, dbdiff);
2118 }
2119 
2120 /*
2121  * Doesn't fail.  Holds on to work requests it can't send right away.
2122  */
2123 void
2124 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2125 {
2126 #ifdef INVARIANTS
2127 	struct sge_eq *eq = &wrq->eq;
2128 #endif
2129 
2130 	EQ_LOCK_ASSERT_OWNED(eq);
2131 	MPASS(wr != NULL);
2132 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2133 	MPASS((wr->wr_len & 0x7) == 0);
2134 
2135 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2136 	wrq->nwr_pending++;
2137 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2138 
2139 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2140 		return;	/* commit_wrq_wr will drain wr_list as well. */
2141 
2142 	drain_wrq_wr_list(sc, wrq);
2143 
2144 	/* Doorbell must have caught up to the pidx. */
2145 	MPASS(eq->pidx == eq->dbidx);
2146 }
2147 
2148 void
2149 t4_update_fl_bufsize(struct ifnet *ifp)
2150 {
2151 	struct vi_info *vi = ifp->if_softc;
2152 	struct adapter *sc = vi->pi->adapter;
2153 	struct sge_rxq *rxq;
2154 #ifdef TCP_OFFLOAD
2155 	struct sge_ofld_rxq *ofld_rxq;
2156 #endif
2157 	struct sge_fl *fl;
2158 	int i, maxp, mtu = ifp->if_mtu;
2159 
2160 	maxp = mtu_to_max_payload(sc, mtu);
2161 	for_each_rxq(vi, i, rxq) {
2162 		fl = &rxq->fl;
2163 
2164 		FL_LOCK(fl);
2165 		fl->zidx = find_refill_source(sc, maxp,
2166 		    fl->flags & FL_BUF_PACKING);
2167 		FL_UNLOCK(fl);
2168 	}
2169 #ifdef TCP_OFFLOAD
2170 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2171 		fl = &ofld_rxq->fl;
2172 
2173 		FL_LOCK(fl);
2174 		fl->zidx = find_refill_source(sc, maxp,
2175 		    fl->flags & FL_BUF_PACKING);
2176 		FL_UNLOCK(fl);
2177 	}
2178 #endif
2179 }
2180 
2181 static inline int
2182 mbuf_nsegs(struct mbuf *m)
2183 {
2184 
2185 	M_ASSERTPKTHDR(m);
2186 	KASSERT(m->m_pkthdr.l5hlen > 0,
2187 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2188 
2189 	return (m->m_pkthdr.l5hlen);
2190 }
2191 
2192 static inline void
2193 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2194 {
2195 
2196 	M_ASSERTPKTHDR(m);
2197 	m->m_pkthdr.l5hlen = nsegs;
2198 }
2199 
2200 static inline int
2201 mbuf_cflags(struct mbuf *m)
2202 {
2203 
2204 	M_ASSERTPKTHDR(m);
2205 	return (m->m_pkthdr.PH_loc.eight[4]);
2206 }
2207 
2208 static inline void
2209 set_mbuf_cflags(struct mbuf *m, uint8_t flags)
2210 {
2211 
2212 	M_ASSERTPKTHDR(m);
2213 	m->m_pkthdr.PH_loc.eight[4] = flags;
2214 }
2215 
2216 static inline int
2217 mbuf_len16(struct mbuf *m)
2218 {
2219 	int n;
2220 
2221 	M_ASSERTPKTHDR(m);
2222 	n = m->m_pkthdr.PH_loc.eight[0];
2223 	if (!(mbuf_cflags(m) & MC_TLS))
2224 		MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2225 
2226 	return (n);
2227 }
2228 
2229 static inline void
2230 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2231 {
2232 
2233 	M_ASSERTPKTHDR(m);
2234 	m->m_pkthdr.PH_loc.eight[0] = len16;
2235 }
2236 
2237 #ifdef RATELIMIT
2238 static inline int
2239 mbuf_eo_nsegs(struct mbuf *m)
2240 {
2241 
2242 	M_ASSERTPKTHDR(m);
2243 	return (m->m_pkthdr.PH_loc.eight[1]);
2244 }
2245 
2246 static inline void
2247 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2248 {
2249 
2250 	M_ASSERTPKTHDR(m);
2251 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2252 }
2253 
2254 static inline int
2255 mbuf_eo_len16(struct mbuf *m)
2256 {
2257 	int n;
2258 
2259 	M_ASSERTPKTHDR(m);
2260 	n = m->m_pkthdr.PH_loc.eight[2];
2261 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2262 
2263 	return (n);
2264 }
2265 
2266 static inline void
2267 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2268 {
2269 
2270 	M_ASSERTPKTHDR(m);
2271 	m->m_pkthdr.PH_loc.eight[2] = len16;
2272 }
2273 
2274 static inline int
2275 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2276 {
2277 
2278 	M_ASSERTPKTHDR(m);
2279 	return (m->m_pkthdr.PH_loc.eight[3]);
2280 }
2281 
2282 static inline void
2283 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2284 {
2285 
2286 	M_ASSERTPKTHDR(m);
2287 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2288 }
2289 
2290 static inline int
2291 needs_eo(struct cxgbe_snd_tag *cst)
2292 {
2293 
2294 	return (cst != NULL && cst->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2295 }
2296 #endif
2297 
2298 /*
2299  * Try to allocate an mbuf to contain a raw work request.  To make it
2300  * easy to construct the work request, don't allocate a chain but a
2301  * single mbuf.
2302  */
2303 struct mbuf *
2304 alloc_wr_mbuf(int len, int how)
2305 {
2306 	struct mbuf *m;
2307 
2308 	if (len <= MHLEN)
2309 		m = m_gethdr(how, MT_DATA);
2310 	else if (len <= MCLBYTES)
2311 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2312 	else
2313 		m = NULL;
2314 	if (m == NULL)
2315 		return (NULL);
2316 	m->m_pkthdr.len = len;
2317 	m->m_len = len;
2318 	set_mbuf_cflags(m, MC_RAW_WR);
2319 	set_mbuf_len16(m, howmany(len, 16));
2320 	return (m);
2321 }
2322 
2323 static inline int
2324 needs_hwcsum(struct mbuf *m)
2325 {
2326 
2327 	M_ASSERTPKTHDR(m);
2328 
2329 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_IP |
2330 	    CSUM_TSO | CSUM_UDP_IPV6 | CSUM_TCP_IPV6));
2331 }
2332 
2333 static inline int
2334 needs_tso(struct mbuf *m)
2335 {
2336 
2337 	M_ASSERTPKTHDR(m);
2338 
2339 	return (m->m_pkthdr.csum_flags & CSUM_TSO);
2340 }
2341 
2342 static inline int
2343 needs_l3_csum(struct mbuf *m)
2344 {
2345 
2346 	M_ASSERTPKTHDR(m);
2347 
2348 	return (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO));
2349 }
2350 
2351 static inline int
2352 needs_tcp_csum(struct mbuf *m)
2353 {
2354 
2355 	M_ASSERTPKTHDR(m);
2356 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_TCP_IPV6 | CSUM_TSO));
2357 }
2358 
2359 #ifdef RATELIMIT
2360 static inline int
2361 needs_l4_csum(struct mbuf *m)
2362 {
2363 
2364 	M_ASSERTPKTHDR(m);
2365 
2366 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2367 	    CSUM_TCP_IPV6 | CSUM_TSO));
2368 }
2369 
2370 static inline int
2371 needs_udp_csum(struct mbuf *m)
2372 {
2373 
2374 	M_ASSERTPKTHDR(m);
2375 	return (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_UDP_IPV6));
2376 }
2377 #endif
2378 
2379 static inline int
2380 needs_vlan_insertion(struct mbuf *m)
2381 {
2382 
2383 	M_ASSERTPKTHDR(m);
2384 
2385 	return (m->m_flags & M_VLANTAG);
2386 }
2387 
2388 static void *
2389 m_advance(struct mbuf **pm, int *poffset, int len)
2390 {
2391 	struct mbuf *m = *pm;
2392 	int offset = *poffset;
2393 	uintptr_t p = 0;
2394 
2395 	MPASS(len > 0);
2396 
2397 	for (;;) {
2398 		if (offset + len < m->m_len) {
2399 			offset += len;
2400 			p = mtod(m, uintptr_t) + offset;
2401 			break;
2402 		}
2403 		len -= m->m_len - offset;
2404 		m = m->m_next;
2405 		offset = 0;
2406 		MPASS(m != NULL);
2407 	}
2408 	*poffset = offset;
2409 	*pm = m;
2410 	return ((void *)p);
2411 }
2412 
2413 static inline int
2414 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2415 {
2416 	struct mbuf_ext_pgs *ext_pgs;
2417 	vm_paddr_t paddr;
2418 	int i, len, off, pglen, pgoff, seglen, segoff;
2419 	int nsegs = 0;
2420 
2421 	MBUF_EXT_PGS_ASSERT(m);
2422 	ext_pgs = m->m_ext.ext_pgs;
2423 	off = mtod(m, vm_offset_t);
2424 	len = m->m_len;
2425 	off += skip;
2426 	len -= skip;
2427 
2428 	if (ext_pgs->hdr_len != 0) {
2429 		if (off >= ext_pgs->hdr_len) {
2430 			off -= ext_pgs->hdr_len;
2431 		} else {
2432 			seglen = ext_pgs->hdr_len - off;
2433 			segoff = off;
2434 			seglen = min(seglen, len);
2435 			off = 0;
2436 			len -= seglen;
2437 			paddr = pmap_kextract(
2438 			    (vm_offset_t)&ext_pgs->hdr[segoff]);
2439 			if (*nextaddr != paddr)
2440 				nsegs++;
2441 			*nextaddr = paddr + seglen;
2442 		}
2443 	}
2444 	pgoff = ext_pgs->first_pg_off;
2445 	for (i = 0; i < ext_pgs->npgs && len > 0; i++) {
2446 		pglen = mbuf_ext_pg_len(ext_pgs, i, pgoff);
2447 		if (off >= pglen) {
2448 			off -= pglen;
2449 			pgoff = 0;
2450 			continue;
2451 		}
2452 		seglen = pglen - off;
2453 		segoff = pgoff + off;
2454 		off = 0;
2455 		seglen = min(seglen, len);
2456 		len -= seglen;
2457 		paddr = ext_pgs->pa[i] + segoff;
2458 		if (*nextaddr != paddr)
2459 			nsegs++;
2460 		*nextaddr = paddr + seglen;
2461 		pgoff = 0;
2462 	};
2463 	if (len != 0) {
2464 		seglen = min(len, ext_pgs->trail_len - off);
2465 		len -= seglen;
2466 		paddr = pmap_kextract((vm_offset_t)&ext_pgs->trail[off]);
2467 		if (*nextaddr != paddr)
2468 			nsegs++;
2469 		*nextaddr = paddr + seglen;
2470 	}
2471 
2472 	return (nsegs);
2473 }
2474 
2475 
2476 /*
2477  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2478  * must have at least one mbuf that's not empty.  It is possible for this
2479  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2480  */
2481 static inline int
2482 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2483 {
2484 	vm_paddr_t nextaddr, paddr;
2485 	vm_offset_t va;
2486 	int len, nsegs;
2487 
2488 	M_ASSERTPKTHDR(m);
2489 	MPASS(m->m_pkthdr.len > 0);
2490 	MPASS(m->m_pkthdr.len >= skip);
2491 
2492 	nsegs = 0;
2493 	nextaddr = 0;
2494 	for (; m; m = m->m_next) {
2495 		len = m->m_len;
2496 		if (__predict_false(len == 0))
2497 			continue;
2498 		if (skip >= len) {
2499 			skip -= len;
2500 			continue;
2501 		}
2502 		if ((m->m_flags & M_NOMAP) != 0) {
2503 			*cflags |= MC_NOMAP;
2504 			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2505 			skip = 0;
2506 			continue;
2507 		}
2508 		va = mtod(m, vm_offset_t) + skip;
2509 		len -= skip;
2510 		skip = 0;
2511 		paddr = pmap_kextract(va);
2512 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2513 		if (paddr == nextaddr)
2514 			nsegs--;
2515 		nextaddr = pmap_kextract(va + len - 1) + 1;
2516 	}
2517 
2518 	return (nsegs);
2519 }
2520 
2521 /*
2522  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2523  * a) caller can assume it's been freed if this function returns with an error.
2524  * b) it may get defragged up if the gather list is too long for the hardware.
2525  */
2526 int
2527 parse_pkt(struct adapter *sc, struct mbuf **mp)
2528 {
2529 	struct mbuf *m0 = *mp, *m;
2530 	int rc, nsegs, defragged = 0, offset;
2531 	struct ether_header *eh;
2532 	void *l3hdr;
2533 #if defined(INET) || defined(INET6)
2534 	struct tcphdr *tcp;
2535 #endif
2536 #if defined(KERN_TLS) || defined(RATELIMIT)
2537 	struct cxgbe_snd_tag *cst;
2538 #endif
2539 	uint16_t eh_type;
2540 	uint8_t cflags;
2541 
2542 	cflags = 0;
2543 	M_ASSERTPKTHDR(m0);
2544 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2545 		rc = EINVAL;
2546 fail:
2547 		m_freem(m0);
2548 		*mp = NULL;
2549 		return (rc);
2550 	}
2551 restart:
2552 	/*
2553 	 * First count the number of gather list segments in the payload.
2554 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2555 	 */
2556 	M_ASSERTPKTHDR(m0);
2557 	MPASS(m0->m_pkthdr.len > 0);
2558 	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2559 #if defined(KERN_TLS) || defined(RATELIMIT)
2560 	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2561 		cst = mst_to_cst(m0->m_pkthdr.snd_tag);
2562 	else
2563 		cst = NULL;
2564 #endif
2565 #ifdef KERN_TLS
2566 	if (cst != NULL && cst->type == IF_SND_TAG_TYPE_TLS) {
2567 		int len16;
2568 
2569 		cflags |= MC_TLS;
2570 		set_mbuf_cflags(m0, cflags);
2571 		rc = t6_ktls_parse_pkt(m0, &nsegs, &len16);
2572 		if (rc != 0)
2573 			goto fail;
2574 		set_mbuf_nsegs(m0, nsegs);
2575 		set_mbuf_len16(m0, len16);
2576 		return (0);
2577 	}
2578 #endif
2579 	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2580 		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2581 			rc = EFBIG;
2582 			goto fail;
2583 		}
2584 		*mp = m0 = m;	/* update caller's copy after defrag */
2585 		goto restart;
2586 	}
2587 
2588 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2589 	    !(cflags & MC_NOMAP))) {
2590 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2591 		if (m0 == NULL) {
2592 			/* Should have left well enough alone. */
2593 			rc = EFBIG;
2594 			goto fail;
2595 		}
2596 		*mp = m0;	/* update caller's copy after pullup */
2597 		goto restart;
2598 	}
2599 	set_mbuf_nsegs(m0, nsegs);
2600 	set_mbuf_cflags(m0, cflags);
2601 	if (sc->flags & IS_VF)
2602 		set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0)));
2603 	else
2604 		set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2605 
2606 #ifdef RATELIMIT
2607 	/*
2608 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2609 	 * checksumming is enabled.  needs_l4_csum happens to check for all the
2610 	 * right things.
2611 	 */
2612 	if (__predict_false(needs_eo(cst) && !needs_l4_csum(m0))) {
2613 		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2614 		m0->m_pkthdr.snd_tag = NULL;
2615 		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2616 		cst = NULL;
2617 	}
2618 #endif
2619 
2620 	if (!needs_hwcsum(m0)
2621 #ifdef RATELIMIT
2622    		 && !needs_eo(cst)
2623 #endif
2624 	)
2625 		return (0);
2626 
2627 	m = m0;
2628 	eh = mtod(m, struct ether_header *);
2629 	eh_type = ntohs(eh->ether_type);
2630 	if (eh_type == ETHERTYPE_VLAN) {
2631 		struct ether_vlan_header *evh = (void *)eh;
2632 
2633 		eh_type = ntohs(evh->evl_proto);
2634 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2635 	} else
2636 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2637 
2638 	offset = 0;
2639 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2640 
2641 	switch (eh_type) {
2642 #ifdef INET6
2643 	case ETHERTYPE_IPV6:
2644 	{
2645 		struct ip6_hdr *ip6 = l3hdr;
2646 
2647 		MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP);
2648 
2649 		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2650 		break;
2651 	}
2652 #endif
2653 #ifdef INET
2654 	case ETHERTYPE_IP:
2655 	{
2656 		struct ip *ip = l3hdr;
2657 
2658 		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2659 		break;
2660 	}
2661 #endif
2662 	default:
2663 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2664 		    " with the same INET/INET6 options as the kernel.",
2665 		    __func__, eh_type);
2666 	}
2667 
2668 #if defined(INET) || defined(INET6)
2669 	if (needs_tcp_csum(m0)) {
2670 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2671 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2672 #ifdef RATELIMIT
2673 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2674 			set_mbuf_eo_tsclk_tsoff(m0,
2675 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2676 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2677 		} else
2678 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2679 	} else if (needs_udp_csum(m0)) {
2680 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2681 #endif
2682 	}
2683 #ifdef RATELIMIT
2684 	if (needs_eo(cst)) {
2685 		u_int immhdrs;
2686 
2687 		/* EO WRs have the headers in the WR and not the GL. */
2688 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2689 		    m0->m_pkthdr.l4hlen;
2690 		cflags = 0;
2691 		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2692 		MPASS(cflags == mbuf_cflags(m0));
2693 		set_mbuf_eo_nsegs(m0, nsegs);
2694 		set_mbuf_eo_len16(m0,
2695 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2696 	}
2697 #endif
2698 #endif
2699 	MPASS(m0 == *mp);
2700 	return (0);
2701 }
2702 
2703 void *
2704 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2705 {
2706 	struct sge_eq *eq = &wrq->eq;
2707 	struct adapter *sc = wrq->adapter;
2708 	int ndesc, available;
2709 	struct wrqe *wr;
2710 	void *w;
2711 
2712 	MPASS(len16 > 0);
2713 	ndesc = howmany(len16, EQ_ESIZE / 16);
2714 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2715 
2716 	EQ_LOCK(eq);
2717 
2718 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2719 		drain_wrq_wr_list(sc, wrq);
2720 
2721 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2722 slowpath:
2723 		EQ_UNLOCK(eq);
2724 		wr = alloc_wrqe(len16 * 16, wrq);
2725 		if (__predict_false(wr == NULL))
2726 			return (NULL);
2727 		cookie->pidx = -1;
2728 		cookie->ndesc = ndesc;
2729 		return (&wr->wr);
2730 	}
2731 
2732 	eq->cidx = read_hw_cidx(eq);
2733 	if (eq->pidx == eq->cidx)
2734 		available = eq->sidx - 1;
2735 	else
2736 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2737 	if (available < ndesc)
2738 		goto slowpath;
2739 
2740 	cookie->pidx = eq->pidx;
2741 	cookie->ndesc = ndesc;
2742 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2743 
2744 	w = &eq->desc[eq->pidx];
2745 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2746 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2747 		w = &wrq->ss[0];
2748 		wrq->ss_pidx = cookie->pidx;
2749 		wrq->ss_len = len16 * 16;
2750 	}
2751 
2752 	EQ_UNLOCK(eq);
2753 
2754 	return (w);
2755 }
2756 
2757 void
2758 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2759 {
2760 	struct sge_eq *eq = &wrq->eq;
2761 	struct adapter *sc = wrq->adapter;
2762 	int ndesc, pidx;
2763 	struct wrq_cookie *prev, *next;
2764 
2765 	if (cookie->pidx == -1) {
2766 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2767 
2768 		t4_wrq_tx(sc, wr);
2769 		return;
2770 	}
2771 
2772 	if (__predict_false(w == &wrq->ss[0])) {
2773 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2774 
2775 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2776 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2777 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2778 		wrq->tx_wrs_ss++;
2779 	} else
2780 		wrq->tx_wrs_direct++;
2781 
2782 	EQ_LOCK(eq);
2783 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2784 	pidx = cookie->pidx;
2785 	MPASS(pidx >= 0 && pidx < eq->sidx);
2786 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2787 	next = TAILQ_NEXT(cookie, link);
2788 	if (prev == NULL) {
2789 		MPASS(pidx == eq->dbidx);
2790 		if (next == NULL || ndesc >= 16) {
2791 			int available;
2792 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2793 
2794 			/*
2795 			 * Note that the WR via which we'll request tx updates
2796 			 * is at pidx and not eq->pidx, which has moved on
2797 			 * already.
2798 			 */
2799 			dst = (void *)&eq->desc[pidx];
2800 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2801 			if (available < eq->sidx / 4 &&
2802 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2803 				/*
2804 				 * XXX: This is not 100% reliable with some
2805 				 * types of WRs.  But this is a very unusual
2806 				 * situation for an ofld/ctrl queue anyway.
2807 				 */
2808 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2809 				    F_FW_WR_EQUEQ);
2810 			}
2811 
2812 			ring_eq_db(wrq->adapter, eq, ndesc);
2813 		} else {
2814 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2815 			next->pidx = pidx;
2816 			next->ndesc += ndesc;
2817 		}
2818 	} else {
2819 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2820 		prev->ndesc += ndesc;
2821 	}
2822 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2823 
2824 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2825 		drain_wrq_wr_list(sc, wrq);
2826 
2827 #ifdef INVARIANTS
2828 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2829 		/* Doorbell must have caught up to the pidx. */
2830 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2831 	}
2832 #endif
2833 	EQ_UNLOCK(eq);
2834 }
2835 
2836 static u_int
2837 can_resume_eth_tx(struct mp_ring *r)
2838 {
2839 	struct sge_eq *eq = r->cookie;
2840 
2841 	return (total_available_tx_desc(eq) > eq->sidx / 8);
2842 }
2843 
2844 static inline int
2845 cannot_use_txpkts(struct mbuf *m)
2846 {
2847 	/* maybe put a GL limit too, to avoid silliness? */
2848 
2849 	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
2850 }
2851 
2852 static inline int
2853 discard_tx(struct sge_eq *eq)
2854 {
2855 
2856 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
2857 }
2858 
2859 static inline int
2860 wr_can_update_eq(struct fw_eth_tx_pkts_wr *wr)
2861 {
2862 
2863 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
2864 	case FW_ULPTX_WR:
2865 	case FW_ETH_TX_PKT_WR:
2866 	case FW_ETH_TX_PKTS_WR:
2867 	case FW_ETH_TX_PKTS2_WR:
2868 	case FW_ETH_TX_PKT_VM_WR:
2869 		return (1);
2870 	default:
2871 		return (0);
2872 	}
2873 }
2874 
2875 /*
2876  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2877  * be consumed.  Return the actual number consumed.  0 indicates a stall.
2878  */
2879 static u_int
2880 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2881 {
2882 	struct sge_txq *txq = r->cookie;
2883 	struct sge_eq *eq = &txq->eq;
2884 	struct ifnet *ifp = txq->ifp;
2885 	struct vi_info *vi = ifp->if_softc;
2886 	struct port_info *pi = vi->pi;
2887 	struct adapter *sc = pi->adapter;
2888 	u_int total, remaining;		/* # of packets */
2889 	u_int available, dbdiff;	/* # of hardware descriptors */
2890 	u_int n, next_cidx;
2891 	struct mbuf *m0, *tail;
2892 	struct txpkts txp;
2893 	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2894 
2895 	remaining = IDXDIFF(pidx, cidx, r->size);
2896 	MPASS(remaining > 0);	/* Must not be called without work to do. */
2897 	total = 0;
2898 
2899 	TXQ_LOCK(txq);
2900 	if (__predict_false(discard_tx(eq))) {
2901 		while (cidx != pidx) {
2902 			m0 = r->items[cidx];
2903 			m_freem(m0);
2904 			if (++cidx == r->size)
2905 				cidx = 0;
2906 		}
2907 		reclaim_tx_descs(txq, 2048);
2908 		total = remaining;
2909 		goto done;
2910 	}
2911 
2912 	/* How many hardware descriptors do we have readily available. */
2913 	if (eq->pidx == eq->cidx)
2914 		available = eq->sidx - 1;
2915 	else
2916 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2917 	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2918 
2919 	while (remaining > 0) {
2920 
2921 		m0 = r->items[cidx];
2922 		M_ASSERTPKTHDR(m0);
2923 		MPASS(m0->m_nextpkt == NULL);
2924 
2925 		if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16)) {
2926 			MPASS(howmany(mbuf_len16(m0), EQ_ESIZE / 16) <= 64);
2927 			available += reclaim_tx_descs(txq, 64);
2928 			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2929 				break;	/* out of descriptors */
2930 		}
2931 
2932 		next_cidx = cidx + 1;
2933 		if (__predict_false(next_cidx == r->size))
2934 			next_cidx = 0;
2935 
2936 		wr = (void *)&eq->desc[eq->pidx];
2937 		if (mbuf_cflags(m0) & MC_RAW_WR) {
2938 			total++;
2939 			remaining--;
2940 			n = write_raw_wr(txq, (void *)wr, m0, available);
2941 #ifdef KERN_TLS
2942 		} else if (mbuf_cflags(m0) & MC_TLS) {
2943 			total++;
2944 			remaining--;
2945 			ETHER_BPF_MTAP(ifp, m0);
2946 			n = t6_ktls_write_wr(txq,(void *)wr, m0,
2947 			    mbuf_nsegs(m0), available);
2948 #endif
2949 		} else if (sc->flags & IS_VF) {
2950 			total++;
2951 			remaining--;
2952 			ETHER_BPF_MTAP(ifp, m0);
2953 			n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0,
2954 			    available);
2955 		} else if (remaining > 1 &&
2956 		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2957 
2958 			/* pkts at cidx, next_cidx should both be in txp. */
2959 			MPASS(txp.npkt == 2);
2960 			tail = r->items[next_cidx];
2961 			MPASS(tail->m_nextpkt == NULL);
2962 			ETHER_BPF_MTAP(ifp, m0);
2963 			ETHER_BPF_MTAP(ifp, tail);
2964 			m0->m_nextpkt = tail;
2965 
2966 			if (__predict_false(++next_cidx == r->size))
2967 				next_cidx = 0;
2968 
2969 			while (next_cidx != pidx) {
2970 				if (add_to_txpkts(r->items[next_cidx], &txp,
2971 				    available) != 0)
2972 					break;
2973 				tail->m_nextpkt = r->items[next_cidx];
2974 				tail = tail->m_nextpkt;
2975 				ETHER_BPF_MTAP(ifp, tail);
2976 				if (__predict_false(++next_cidx == r->size))
2977 					next_cidx = 0;
2978 			}
2979 
2980 			n = write_txpkts_wr(sc, txq, wr, m0, &txp, available);
2981 			total += txp.npkt;
2982 			remaining -= txp.npkt;
2983 		} else {
2984 			total++;
2985 			remaining--;
2986 			ETHER_BPF_MTAP(ifp, m0);
2987 			n = write_txpkt_wr(sc, txq, (void *)wr, m0, available);
2988 		}
2989 		MPASS(n >= 1 && n <= available);
2990 		if (!(mbuf_cflags(m0) & MC_TLS))
2991 			MPASS(n <= SGE_MAX_WR_NDESC);
2992 
2993 		available -= n;
2994 		dbdiff += n;
2995 		IDXINCR(eq->pidx, n, eq->sidx);
2996 
2997 		if (wr_can_update_eq(wr)) {
2998 			if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2999 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3000 				wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
3001 				    F_FW_WR_EQUEQ);
3002 				eq->equeqidx = eq->pidx;
3003 			} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >=
3004 			    32) {
3005 				wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3006 				eq->equeqidx = eq->pidx;
3007 			}
3008 		}
3009 
3010 		if (dbdiff >= 16 && remaining >= 4) {
3011 			ring_eq_db(sc, eq, dbdiff);
3012 			available += reclaim_tx_descs(txq, 4 * dbdiff);
3013 			dbdiff = 0;
3014 		}
3015 
3016 		cidx = next_cidx;
3017 	}
3018 	if (dbdiff != 0) {
3019 		ring_eq_db(sc, eq, dbdiff);
3020 		reclaim_tx_descs(txq, 32);
3021 	}
3022 done:
3023 	TXQ_UNLOCK(txq);
3024 
3025 	return (total);
3026 }
3027 
3028 static inline void
3029 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3030     int qsize)
3031 {
3032 
3033 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3034 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3035 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3036 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3037 
3038 	iq->flags = 0;
3039 	iq->adapter = sc;
3040 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3041 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3042 	if (pktc_idx >= 0) {
3043 		iq->intr_params |= F_QINTR_CNT_EN;
3044 		iq->intr_pktc_idx = pktc_idx;
3045 	}
3046 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3047 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3048 }
3049 
3050 static inline void
3051 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3052 {
3053 
3054 	fl->qsize = qsize;
3055 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3056 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3057 	if (sc->flags & BUF_PACKING_OK &&
3058 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3059 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3060 		fl->flags |= FL_BUF_PACKING;
3061 	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3062 	fl->safe_zidx = sc->sge.safe_zidx;
3063 }
3064 
3065 static inline void
3066 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3067     uint8_t tx_chan, uint16_t iqid, char *name)
3068 {
3069 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
3070 
3071 	eq->flags = eqtype & EQ_TYPEMASK;
3072 	eq->tx_chan = tx_chan;
3073 	eq->iqid = iqid;
3074 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3075 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3076 }
3077 
3078 static int
3079 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3080     bus_dmamap_t *map, bus_addr_t *pa, void **va)
3081 {
3082 	int rc;
3083 
3084 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3085 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3086 	if (rc != 0) {
3087 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
3088 		goto done;
3089 	}
3090 
3091 	rc = bus_dmamem_alloc(*tag, va,
3092 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3093 	if (rc != 0) {
3094 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
3095 		goto done;
3096 	}
3097 
3098 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3099 	if (rc != 0) {
3100 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
3101 		goto done;
3102 	}
3103 done:
3104 	if (rc)
3105 		free_ring(sc, *tag, *map, *pa, *va);
3106 
3107 	return (rc);
3108 }
3109 
3110 static int
3111 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3112     bus_addr_t pa, void *va)
3113 {
3114 	if (pa)
3115 		bus_dmamap_unload(tag, map);
3116 	if (va)
3117 		bus_dmamem_free(tag, va, map);
3118 	if (tag)
3119 		bus_dma_tag_destroy(tag);
3120 
3121 	return (0);
3122 }
3123 
3124 /*
3125  * Allocates the ring for an ingress queue and an optional freelist.  If the
3126  * freelist is specified it will be allocated and then associated with the
3127  * ingress queue.
3128  *
3129  * Returns errno on failure.  Resources allocated up to that point may still be
3130  * allocated.  Caller is responsible for cleanup in case this function fails.
3131  *
3132  * If the ingress queue will take interrupts directly then the intr_idx
3133  * specifies the vector, starting from 0.  -1 means the interrupts for this
3134  * queue should be forwarded to the fwq.
3135  */
3136 static int
3137 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3138     int intr_idx, int cong)
3139 {
3140 	int rc, i, cntxt_id;
3141 	size_t len;
3142 	struct fw_iq_cmd c;
3143 	struct port_info *pi = vi->pi;
3144 	struct adapter *sc = iq->adapter;
3145 	struct sge_params *sp = &sc->params.sge;
3146 	__be32 v = 0;
3147 
3148 	len = iq->qsize * IQ_ESIZE;
3149 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3150 	    (void **)&iq->desc);
3151 	if (rc != 0)
3152 		return (rc);
3153 
3154 	bzero(&c, sizeof(c));
3155 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3156 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3157 	    V_FW_IQ_CMD_VFN(0));
3158 
3159 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3160 	    FW_LEN16(c));
3161 
3162 	/* Special handling for firmware event queue */
3163 	if (iq == &sc->sge.fwq)
3164 		v |= F_FW_IQ_CMD_IQASYNCH;
3165 
3166 	if (intr_idx < 0) {
3167 		/* Forwarded interrupts, all headed to fwq */
3168 		v |= F_FW_IQ_CMD_IQANDST;
3169 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3170 	} else {
3171 		KASSERT(intr_idx < sc->intr_count,
3172 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
3173 		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
3174 	}
3175 
3176 	c.type_to_iqandstindex = htobe32(v |
3177 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3178 	    V_FW_IQ_CMD_VIID(vi->viid) |
3179 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3180 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
3181 	    F_FW_IQ_CMD_IQGTSMODE |
3182 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3183 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3184 	c.iqsize = htobe16(iq->qsize);
3185 	c.iqaddr = htobe64(iq->ba);
3186 	if (cong >= 0)
3187 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3188 
3189 	if (fl) {
3190 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3191 
3192 		len = fl->qsize * EQ_ESIZE;
3193 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3194 		    &fl->ba, (void **)&fl->desc);
3195 		if (rc)
3196 			return (rc);
3197 
3198 		/* Allocate space for one software descriptor per buffer. */
3199 		rc = alloc_fl_sdesc(fl);
3200 		if (rc != 0) {
3201 			device_printf(sc->dev,
3202 			    "failed to setup fl software descriptors: %d\n",
3203 			    rc);
3204 			return (rc);
3205 		}
3206 
3207 		if (fl->flags & FL_BUF_PACKING) {
3208 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3209 			fl->buf_boundary = sp->pack_boundary;
3210 		} else {
3211 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3212 			fl->buf_boundary = 16;
3213 		}
3214 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3215 			fl->buf_boundary = sp->pad_boundary;
3216 
3217 		c.iqns_to_fl0congen |=
3218 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3219 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3220 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3221 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3222 			    0));
3223 		if (cong >= 0) {
3224 			c.iqns_to_fl0congen |=
3225 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
3226 				    F_FW_IQ_CMD_FL0CONGCIF |
3227 				    F_FW_IQ_CMD_FL0CONGEN);
3228 		}
3229 		c.fl0dcaen_to_fl0cidxfthresh =
3230 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3231 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3232 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3233 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3234 		c.fl0size = htobe16(fl->qsize);
3235 		c.fl0addr = htobe64(fl->ba);
3236 	}
3237 
3238 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3239 	if (rc != 0) {
3240 		device_printf(sc->dev,
3241 		    "failed to create ingress queue: %d\n", rc);
3242 		return (rc);
3243 	}
3244 
3245 	iq->cidx = 0;
3246 	iq->gen = F_RSPD_GEN;
3247 	iq->intr_next = iq->intr_params;
3248 	iq->cntxt_id = be16toh(c.iqid);
3249 	iq->abs_id = be16toh(c.physiqid);
3250 	iq->flags |= IQ_ALLOCATED;
3251 
3252 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3253 	if (cntxt_id >= sc->sge.niq) {
3254 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3255 		    cntxt_id, sc->sge.niq - 1);
3256 	}
3257 	sc->sge.iqmap[cntxt_id] = iq;
3258 
3259 	if (fl) {
3260 		u_int qid;
3261 
3262 		iq->flags |= IQ_HAS_FL;
3263 		fl->cntxt_id = be16toh(c.fl0id);
3264 		fl->pidx = fl->cidx = 0;
3265 
3266 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3267 		if (cntxt_id >= sc->sge.neq) {
3268 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3269 			    __func__, cntxt_id, sc->sge.neq - 1);
3270 		}
3271 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3272 
3273 		qid = fl->cntxt_id;
3274 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3275 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3276 			uint32_t mask = (1 << s_qpp) - 1;
3277 			volatile uint8_t *udb;
3278 
3279 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3280 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3281 			qid &= mask;
3282 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3283 				udb += qid << UDBS_SEG_SHIFT;
3284 				qid = 0;
3285 			}
3286 			fl->udb = (volatile void *)udb;
3287 		}
3288 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3289 
3290 		FL_LOCK(fl);
3291 		/* Enough to make sure the SGE doesn't think it's starved */
3292 		refill_fl(sc, fl, fl->lowat);
3293 		FL_UNLOCK(fl);
3294 	}
3295 
3296 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) {
3297 		uint32_t param, val;
3298 
3299 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3300 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3301 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
3302 		if (cong == 0)
3303 			val = 1 << 19;
3304 		else {
3305 			val = 2 << 19;
3306 			for (i = 0; i < 4; i++) {
3307 				if (cong & (1 << i))
3308 					val |= 1 << (i << 2);
3309 			}
3310 		}
3311 
3312 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3313 		if (rc != 0) {
3314 			/* report error but carry on */
3315 			device_printf(sc->dev,
3316 			    "failed to set congestion manager context for "
3317 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
3318 		}
3319 	}
3320 
3321 	/* Enable IQ interrupts */
3322 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3323 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3324 	    V_INGRESSQID(iq->cntxt_id));
3325 
3326 	return (0);
3327 }
3328 
3329 static int
3330 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3331 {
3332 	int rc;
3333 	struct adapter *sc = iq->adapter;
3334 	device_t dev;
3335 
3336 	if (sc == NULL)
3337 		return (0);	/* nothing to do */
3338 
3339 	dev = vi ? vi->dev : sc->dev;
3340 
3341 	if (iq->flags & IQ_ALLOCATED) {
3342 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
3343 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
3344 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
3345 		if (rc != 0) {
3346 			device_printf(dev,
3347 			    "failed to free queue %p: %d\n", iq, rc);
3348 			return (rc);
3349 		}
3350 		iq->flags &= ~IQ_ALLOCATED;
3351 	}
3352 
3353 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3354 
3355 	bzero(iq, sizeof(*iq));
3356 
3357 	if (fl) {
3358 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
3359 		    fl->desc);
3360 
3361 		if (fl->sdesc)
3362 			free_fl_sdesc(sc, fl);
3363 
3364 		if (mtx_initialized(&fl->fl_lock))
3365 			mtx_destroy(&fl->fl_lock);
3366 
3367 		bzero(fl, sizeof(*fl));
3368 	}
3369 
3370 	return (0);
3371 }
3372 
3373 static void
3374 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3375     struct sge_iq *iq)
3376 {
3377 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3378 
3379 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3380 	    "bus address of descriptor ring");
3381 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3382 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3383 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3384 	    CTLTYPE_INT | CTLFLAG_RD, &iq->abs_id, 0, sysctl_uint16, "I",
3385 	    "absolute id of the queue");
3386 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3387 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cntxt_id, 0, sysctl_uint16, "I",
3388 	    "SGE context id of the queue");
3389 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3390 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cidx, 0, sysctl_uint16, "I",
3391 	    "consumer index");
3392 }
3393 
3394 static void
3395 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3396     struct sysctl_oid *oid, struct sge_fl *fl)
3397 {
3398 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3399 
3400 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3401 	    "freelist");
3402 	children = SYSCTL_CHILDREN(oid);
3403 
3404 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3405 	    &fl->ba, "bus address of descriptor ring");
3406 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3407 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3408 	    "desc ring size in bytes");
3409 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3410 	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
3411 	    "SGE context id of the freelist");
3412 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3413 	    fl_pad ? 1 : 0, "padding enabled");
3414 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3415 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3416 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3417 	    0, "consumer index");
3418 	if (fl->flags & FL_BUF_PACKING) {
3419 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3420 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3421 	}
3422 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3423 	    0, "producer index");
3424 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3425 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3426 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3427 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3428 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3429 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3430 }
3431 
3432 static int
3433 alloc_fwq(struct adapter *sc)
3434 {
3435 	int rc, intr_idx;
3436 	struct sge_iq *fwq = &sc->sge.fwq;
3437 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
3438 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3439 
3440 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
3441 	if (sc->flags & IS_VF)
3442 		intr_idx = 0;
3443 	else
3444 		intr_idx = sc->intr_count > 1 ? 1 : 0;
3445 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
3446 	if (rc != 0) {
3447 		device_printf(sc->dev,
3448 		    "failed to create firmware event queue: %d\n", rc);
3449 		return (rc);
3450 	}
3451 
3452 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
3453 	    NULL, "firmware event queue");
3454 	add_iq_sysctls(&sc->ctx, oid, fwq);
3455 
3456 	return (0);
3457 }
3458 
3459 static int
3460 free_fwq(struct adapter *sc)
3461 {
3462 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
3463 }
3464 
3465 static int
3466 alloc_ctrlq(struct adapter *sc, struct sge_wrq *ctrlq, int idx,
3467     struct sysctl_oid *oid)
3468 {
3469 	int rc;
3470 	char name[16];
3471 	struct sysctl_oid_list *children;
3472 
3473 	snprintf(name, sizeof(name), "%s ctrlq%d", device_get_nameunit(sc->dev),
3474 	    idx);
3475 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[idx]->tx_chan,
3476 	    sc->sge.fwq.cntxt_id, name);
3477 
3478 	children = SYSCTL_CHILDREN(oid);
3479 	snprintf(name, sizeof(name), "%d", idx);
3480 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3481 	    NULL, "ctrl queue");
3482 	rc = alloc_wrq(sc, NULL, ctrlq, oid);
3483 
3484 	return (rc);
3485 }
3486 
3487 int
3488 tnl_cong(struct port_info *pi, int drop)
3489 {
3490 
3491 	if (drop == -1)
3492 		return (-1);
3493 	else if (drop == 1)
3494 		return (0);
3495 	else
3496 		return (pi->rx_e_chan_map);
3497 }
3498 
3499 static int
3500 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
3501     struct sysctl_oid *oid)
3502 {
3503 	int rc;
3504 	struct adapter *sc = vi->pi->adapter;
3505 	struct sysctl_oid_list *children;
3506 	char name[16];
3507 
3508 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
3509 	    tnl_cong(vi->pi, cong_drop));
3510 	if (rc != 0)
3511 		return (rc);
3512 
3513 	if (idx == 0)
3514 		sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3515 	else
3516 		KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3517 		    ("iq_base mismatch"));
3518 	KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3519 	    ("PF with non-zero iq_base"));
3520 
3521 	/*
3522 	 * The freelist is just barely above the starvation threshold right now,
3523 	 * fill it up a bit more.
3524 	 */
3525 	FL_LOCK(&rxq->fl);
3526 	refill_fl(sc, &rxq->fl, 128);
3527 	FL_UNLOCK(&rxq->fl);
3528 
3529 #if defined(INET) || defined(INET6)
3530 	rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs);
3531 	if (rc != 0)
3532 		return (rc);
3533 	MPASS(rxq->lro.ifp == vi->ifp);	/* also indicates LRO init'ed */
3534 
3535 	if (vi->ifp->if_capenable & IFCAP_LRO)
3536 		rxq->iq.flags |= IQ_LRO_ENABLED;
3537 #endif
3538 	if (vi->ifp->if_capenable & IFCAP_HWRXTSTMP)
3539 		rxq->iq.flags |= IQ_RX_TIMESTAMP;
3540 	rxq->ifp = vi->ifp;
3541 
3542 	children = SYSCTL_CHILDREN(oid);
3543 
3544 	snprintf(name, sizeof(name), "%d", idx);
3545 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3546 	    NULL, "rx queue");
3547 	children = SYSCTL_CHILDREN(oid);
3548 
3549 	add_iq_sysctls(&vi->ctx, oid, &rxq->iq);
3550 #if defined(INET) || defined(INET6)
3551 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3552 	    &rxq->lro.lro_queued, 0, NULL);
3553 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3554 	    &rxq->lro.lro_flushed, 0, NULL);
3555 #endif
3556 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3557 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3558 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3559 	    CTLFLAG_RD, &rxq->vlan_extraction,
3560 	    "# of times hardware extracted 802.1Q tag");
3561 
3562 	add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl);
3563 
3564 	return (rc);
3565 }
3566 
3567 static int
3568 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3569 {
3570 	int rc;
3571 
3572 #if defined(INET) || defined(INET6)
3573 	if (rxq->lro.ifp) {
3574 		tcp_lro_free(&rxq->lro);
3575 		rxq->lro.ifp = NULL;
3576 	}
3577 #endif
3578 
3579 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3580 	if (rc == 0)
3581 		bzero(rxq, sizeof(*rxq));
3582 
3583 	return (rc);
3584 }
3585 
3586 #ifdef TCP_OFFLOAD
3587 static int
3588 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3589     int intr_idx, int idx, struct sysctl_oid *oid)
3590 {
3591 	struct port_info *pi = vi->pi;
3592 	int rc;
3593 	struct sysctl_oid_list *children;
3594 	char name[16];
3595 
3596 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0);
3597 	if (rc != 0)
3598 		return (rc);
3599 
3600 	children = SYSCTL_CHILDREN(oid);
3601 
3602 	snprintf(name, sizeof(name), "%d", idx);
3603 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3604 	    NULL, "rx queue");
3605 	add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq);
3606 	add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl);
3607 
3608 	return (rc);
3609 }
3610 
3611 static int
3612 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3613 {
3614 	int rc;
3615 
3616 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3617 	if (rc == 0)
3618 		bzero(ofld_rxq, sizeof(*ofld_rxq));
3619 
3620 	return (rc);
3621 }
3622 #endif
3623 
3624 #ifdef DEV_NETMAP
3625 static int
3626 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3627     int idx, struct sysctl_oid *oid)
3628 {
3629 	int rc;
3630 	struct sysctl_oid_list *children;
3631 	struct sysctl_ctx_list *ctx;
3632 	char name[16];
3633 	size_t len;
3634 	struct adapter *sc = vi->pi->adapter;
3635 	struct netmap_adapter *na = NA(vi->ifp);
3636 
3637 	MPASS(na != NULL);
3638 
3639 	len = vi->qsize_rxq * IQ_ESIZE;
3640 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3641 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3642 	if (rc != 0)
3643 		return (rc);
3644 
3645 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3646 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3647 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3648 	if (rc != 0)
3649 		return (rc);
3650 
3651 	nm_rxq->vi = vi;
3652 	nm_rxq->nid = idx;
3653 	nm_rxq->iq_cidx = 0;
3654 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3655 	nm_rxq->iq_gen = F_RSPD_GEN;
3656 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3657 	nm_rxq->fl_sidx = na->num_rx_desc;
3658 	nm_rxq->intr_idx = intr_idx;
3659 	nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID;
3660 
3661 	ctx = &vi->ctx;
3662 	children = SYSCTL_CHILDREN(oid);
3663 
3664 	snprintf(name, sizeof(name), "%d", idx);
3665 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3666 	    "rx queue");
3667 	children = SYSCTL_CHILDREN(oid);
3668 
3669 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3670 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3671 	    "I", "absolute id of the queue");
3672 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3673 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3674 	    "I", "SGE context id of the queue");
3675 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3676 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3677 	    "consumer index");
3678 
3679 	children = SYSCTL_CHILDREN(oid);
3680 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3681 	    "freelist");
3682 	children = SYSCTL_CHILDREN(oid);
3683 
3684 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3685 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3686 	    "I", "SGE context id of the freelist");
3687 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3688 	    &nm_rxq->fl_cidx, 0, "consumer index");
3689 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3690 	    &nm_rxq->fl_pidx, 0, "producer index");
3691 
3692 	return (rc);
3693 }
3694 
3695 
3696 static int
3697 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3698 {
3699 	struct adapter *sc = vi->pi->adapter;
3700 
3701 	if (vi->flags & VI_INIT_DONE)
3702 		MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID);
3703 	else
3704 		MPASS(nm_rxq->iq_cntxt_id == 0);
3705 
3706 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3707 	    nm_rxq->iq_desc);
3708 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3709 	    nm_rxq->fl_desc);
3710 
3711 	return (0);
3712 }
3713 
3714 static int
3715 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3716     struct sysctl_oid *oid)
3717 {
3718 	int rc;
3719 	size_t len;
3720 	struct port_info *pi = vi->pi;
3721 	struct adapter *sc = pi->adapter;
3722 	struct netmap_adapter *na = NA(vi->ifp);
3723 	char name[16];
3724 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3725 
3726 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3727 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3728 	    &nm_txq->ba, (void **)&nm_txq->desc);
3729 	if (rc)
3730 		return (rc);
3731 
3732 	nm_txq->pidx = nm_txq->cidx = 0;
3733 	nm_txq->sidx = na->num_tx_desc;
3734 	nm_txq->nid = idx;
3735 	nm_txq->iqidx = iqidx;
3736 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3737 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
3738 	    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
3739 	if (sc->params.fw_vers >= FW_VERSION32(1, 24, 11, 0))
3740 		nm_txq->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR));
3741 	else
3742 		nm_txq->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3743 	nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID;
3744 
3745 	snprintf(name, sizeof(name), "%d", idx);
3746 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3747 	    NULL, "netmap tx queue");
3748 	children = SYSCTL_CHILDREN(oid);
3749 
3750 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3751 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3752 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3753 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3754 	    "consumer index");
3755 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3756 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3757 	    "producer index");
3758 
3759 	return (rc);
3760 }
3761 
3762 static int
3763 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3764 {
3765 	struct adapter *sc = vi->pi->adapter;
3766 
3767 	if (vi->flags & VI_INIT_DONE)
3768 		MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID);
3769 	else
3770 		MPASS(nm_txq->cntxt_id == 0);
3771 
3772 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3773 	    nm_txq->desc);
3774 
3775 	return (0);
3776 }
3777 #endif
3778 
3779 /*
3780  * Returns a reasonable automatic cidx flush threshold for a given queue size.
3781  */
3782 static u_int
3783 qsize_to_fthresh(int qsize)
3784 {
3785 	u_int fthresh;
3786 
3787 	while (!powerof2(qsize))
3788 		qsize++;
3789 	fthresh = ilog2(qsize);
3790 	if (fthresh > X_CIDXFLUSHTHRESH_128)
3791 		fthresh = X_CIDXFLUSHTHRESH_128;
3792 
3793 	return (fthresh);
3794 }
3795 
3796 static int
3797 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3798 {
3799 	int rc, cntxt_id;
3800 	struct fw_eq_ctrl_cmd c;
3801 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3802 
3803 	bzero(&c, sizeof(c));
3804 
3805 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3806 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3807 	    V_FW_EQ_CTRL_CMD_VFN(0));
3808 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3809 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3810 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3811 	c.physeqid_pkd = htobe32(0);
3812 	c.fetchszm_to_iqid =
3813 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3814 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3815 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3816 	c.dcaen_to_eqsize =
3817 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3818 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
3819 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3820 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
3821 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3822 	c.eqaddr = htobe64(eq->ba);
3823 
3824 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3825 	if (rc != 0) {
3826 		device_printf(sc->dev,
3827 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3828 		return (rc);
3829 	}
3830 	eq->flags |= EQ_ALLOCATED;
3831 
3832 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3833 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3834 	if (cntxt_id >= sc->sge.neq)
3835 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3836 		cntxt_id, sc->sge.neq - 1);
3837 	sc->sge.eqmap[cntxt_id] = eq;
3838 
3839 	return (rc);
3840 }
3841 
3842 static int
3843 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3844 {
3845 	int rc, cntxt_id;
3846 	struct fw_eq_eth_cmd c;
3847 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3848 
3849 	bzero(&c, sizeof(c));
3850 
3851 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3852 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3853 	    V_FW_EQ_ETH_CMD_VFN(0));
3854 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3855 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3856 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3857 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3858 	c.fetchszm_to_iqid =
3859 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3860 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3861 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3862 	c.dcaen_to_eqsize =
3863 	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3864 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
3865 		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3866 		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3867 	c.eqaddr = htobe64(eq->ba);
3868 
3869 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3870 	if (rc != 0) {
3871 		device_printf(vi->dev,
3872 		    "failed to create Ethernet egress queue: %d\n", rc);
3873 		return (rc);
3874 	}
3875 	eq->flags |= EQ_ALLOCATED;
3876 
3877 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3878 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
3879 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3880 	if (cntxt_id >= sc->sge.neq)
3881 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3882 		cntxt_id, sc->sge.neq - 1);
3883 	sc->sge.eqmap[cntxt_id] = eq;
3884 
3885 	return (rc);
3886 }
3887 
3888 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3889 static int
3890 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3891 {
3892 	int rc, cntxt_id;
3893 	struct fw_eq_ofld_cmd c;
3894 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3895 
3896 	bzero(&c, sizeof(c));
3897 
3898 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3899 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3900 	    V_FW_EQ_OFLD_CMD_VFN(0));
3901 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3902 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3903 	c.fetchszm_to_iqid =
3904 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3905 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3906 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3907 	c.dcaen_to_eqsize =
3908 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3909 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
3910 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3911 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
3912 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3913 	c.eqaddr = htobe64(eq->ba);
3914 
3915 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3916 	if (rc != 0) {
3917 		device_printf(vi->dev,
3918 		    "failed to create egress queue for TCP offload: %d\n", rc);
3919 		return (rc);
3920 	}
3921 	eq->flags |= EQ_ALLOCATED;
3922 
3923 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3924 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3925 	if (cntxt_id >= sc->sge.neq)
3926 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3927 		cntxt_id, sc->sge.neq - 1);
3928 	sc->sge.eqmap[cntxt_id] = eq;
3929 
3930 	return (rc);
3931 }
3932 #endif
3933 
3934 static int
3935 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3936 {
3937 	int rc, qsize;
3938 	size_t len;
3939 
3940 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3941 
3942 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3943 	len = qsize * EQ_ESIZE;
3944 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3945 	    &eq->ba, (void **)&eq->desc);
3946 	if (rc)
3947 		return (rc);
3948 
3949 	eq->pidx = eq->cidx = eq->dbidx = 0;
3950 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
3951 	eq->equeqidx = 0;
3952 	eq->doorbells = sc->doorbells;
3953 
3954 	switch (eq->flags & EQ_TYPEMASK) {
3955 	case EQ_CTRL:
3956 		rc = ctrl_eq_alloc(sc, eq);
3957 		break;
3958 
3959 	case EQ_ETH:
3960 		rc = eth_eq_alloc(sc, vi, eq);
3961 		break;
3962 
3963 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3964 	case EQ_OFLD:
3965 		rc = ofld_eq_alloc(sc, vi, eq);
3966 		break;
3967 #endif
3968 
3969 	default:
3970 		panic("%s: invalid eq type %d.", __func__,
3971 		    eq->flags & EQ_TYPEMASK);
3972 	}
3973 	if (rc != 0) {
3974 		device_printf(sc->dev,
3975 		    "failed to allocate egress queue(%d): %d\n",
3976 		    eq->flags & EQ_TYPEMASK, rc);
3977 	}
3978 
3979 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3980 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3981 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3982 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3983 		uint32_t mask = (1 << s_qpp) - 1;
3984 		volatile uint8_t *udb;
3985 
3986 		udb = sc->udbs_base + UDBS_DB_OFFSET;
3987 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3988 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3989 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3990 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3991 		else {
3992 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3993 			eq->udb_qid = 0;
3994 		}
3995 		eq->udb = (volatile void *)udb;
3996 	}
3997 
3998 	return (rc);
3999 }
4000 
4001 static int
4002 free_eq(struct adapter *sc, struct sge_eq *eq)
4003 {
4004 	int rc;
4005 
4006 	if (eq->flags & EQ_ALLOCATED) {
4007 		switch (eq->flags & EQ_TYPEMASK) {
4008 		case EQ_CTRL:
4009 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
4010 			    eq->cntxt_id);
4011 			break;
4012 
4013 		case EQ_ETH:
4014 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
4015 			    eq->cntxt_id);
4016 			break;
4017 
4018 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4019 		case EQ_OFLD:
4020 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
4021 			    eq->cntxt_id);
4022 			break;
4023 #endif
4024 
4025 		default:
4026 			panic("%s: invalid eq type %d.", __func__,
4027 			    eq->flags & EQ_TYPEMASK);
4028 		}
4029 		if (rc != 0) {
4030 			device_printf(sc->dev,
4031 			    "failed to free egress queue (%d): %d\n",
4032 			    eq->flags & EQ_TYPEMASK, rc);
4033 			return (rc);
4034 		}
4035 		eq->flags &= ~EQ_ALLOCATED;
4036 	}
4037 
4038 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4039 
4040 	if (mtx_initialized(&eq->eq_lock))
4041 		mtx_destroy(&eq->eq_lock);
4042 
4043 	bzero(eq, sizeof(*eq));
4044 	return (0);
4045 }
4046 
4047 static int
4048 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4049     struct sysctl_oid *oid)
4050 {
4051 	int rc;
4052 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
4053 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4054 
4055 	rc = alloc_eq(sc, vi, &wrq->eq);
4056 	if (rc)
4057 		return (rc);
4058 
4059 	wrq->adapter = sc;
4060 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4061 	TAILQ_INIT(&wrq->incomplete_wrs);
4062 	STAILQ_INIT(&wrq->wr_list);
4063 	wrq->nwr_pending = 0;
4064 	wrq->ndesc_needed = 0;
4065 
4066 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
4067 	    &wrq->eq.ba, "bus address of descriptor ring");
4068 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4069 	    wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len,
4070 	    "desc ring size in bytes");
4071 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4072 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
4073 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
4074 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
4075 	    "consumer index");
4076 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
4077 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
4078 	    "producer index");
4079 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4080 	    wrq->eq.sidx, "status page index");
4081 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4082 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4083 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4084 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4085 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4086 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4087 
4088 	return (rc);
4089 }
4090 
4091 static int
4092 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4093 {
4094 	int rc;
4095 
4096 	rc = free_eq(sc, &wrq->eq);
4097 	if (rc)
4098 		return (rc);
4099 
4100 	bzero(wrq, sizeof(*wrq));
4101 	return (0);
4102 }
4103 
4104 static int
4105 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
4106     struct sysctl_oid *oid)
4107 {
4108 	int rc;
4109 	struct port_info *pi = vi->pi;
4110 	struct adapter *sc = pi->adapter;
4111 	struct sge_eq *eq = &txq->eq;
4112 	char name[16];
4113 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4114 
4115 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
4116 	    M_CXGBE, M_WAITOK);
4117 	if (rc != 0) {
4118 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
4119 		return (rc);
4120 	}
4121 
4122 	rc = alloc_eq(sc, vi, eq);
4123 	if (rc != 0) {
4124 		mp_ring_free(txq->r);
4125 		txq->r = NULL;
4126 		return (rc);
4127 	}
4128 
4129 	/* Can't fail after this point. */
4130 
4131 	if (idx == 0)
4132 		sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4133 	else
4134 		KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4135 		    ("eq_base mismatch"));
4136 	KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4137 	    ("PF with non-zero eq_base"));
4138 
4139 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4140 	txq->ifp = vi->ifp;
4141 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4142 	if (sc->flags & IS_VF)
4143 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4144 		    V_TXPKT_INTF(pi->tx_chan));
4145 	else
4146 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4147 		    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4148 		    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4149 	txq->tc_idx = -1;
4150 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4151 	    M_ZERO | M_WAITOK);
4152 
4153 	snprintf(name, sizeof(name), "%d", idx);
4154 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
4155 	    NULL, "tx queue");
4156 	children = SYSCTL_CHILDREN(oid);
4157 
4158 	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
4159 	    &eq->ba, "bus address of descriptor ring");
4160 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4161 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4162 	    "desc ring size in bytes");
4163 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4164 	    &eq->abs_id, 0, "absolute id of the queue");
4165 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4166 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4167 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
4168 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
4169 	    "consumer index");
4170 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
4171 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
4172 	    "producer index");
4173 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4174 	    eq->sidx, "status page index");
4175 
4176 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
4177 	    CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I",
4178 	    "traffic class (-1 means none)");
4179 
4180 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4181 	    &txq->txcsum, "# of times hardware assisted with checksum");
4182 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
4183 	    CTLFLAG_RD, &txq->vlan_insertion,
4184 	    "# of times hardware inserted 802.1Q tag");
4185 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4186 	    &txq->tso_wrs, "# of TSO work requests");
4187 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4188 	    &txq->imm_wrs, "# of work requests with immediate data");
4189 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4190 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4191 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4192 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4193 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
4194 	    CTLFLAG_RD, &txq->txpkts0_wrs,
4195 	    "# of txpkts (type 0) work requests");
4196 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
4197 	    CTLFLAG_RD, &txq->txpkts1_wrs,
4198 	    "# of txpkts (type 1) work requests");
4199 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
4200 	    CTLFLAG_RD, &txq->txpkts0_pkts,
4201 	    "# of frames tx'd using type0 txpkts work requests");
4202 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
4203 	    CTLFLAG_RD, &txq->txpkts1_pkts,
4204 	    "# of frames tx'd using type1 txpkts work requests");
4205 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4206 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4207 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tls_wrs", CTLFLAG_RD,
4208 	    &txq->tls_wrs, "# of TLS work requests (TLS records)");
4209 
4210 #ifdef KERN_TLS
4211 	if (sc->flags & KERN_TLS_OK) {
4212 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4213 		    "kern_tls_records", CTLFLAG_RD, &txq->kern_tls_records,
4214 		    "# of NIC TLS records transmitted");
4215 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4216 		    "kern_tls_short", CTLFLAG_RD, &txq->kern_tls_short,
4217 		    "# of short NIC TLS records transmitted");
4218 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4219 		    "kern_tls_partial", CTLFLAG_RD, &txq->kern_tls_partial,
4220 		    "# of partial NIC TLS records transmitted");
4221 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4222 		    "kern_tls_full", CTLFLAG_RD, &txq->kern_tls_full,
4223 		    "# of full NIC TLS records transmitted");
4224 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4225 		    "kern_tls_octets", CTLFLAG_RD, &txq->kern_tls_octets,
4226 		    "# of payload octets in transmitted NIC TLS records");
4227 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4228 		    "kern_tls_waste", CTLFLAG_RD, &txq->kern_tls_waste,
4229 		    "# of octets DMAd but not transmitted in NIC TLS records");
4230 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4231 		    "kern_tls_options", CTLFLAG_RD, &txq->kern_tls_options,
4232 		    "# of NIC TLS options-only packets transmitted");
4233 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4234 		    "kern_tls_header", CTLFLAG_RD, &txq->kern_tls_header,
4235 		    "# of NIC TLS header-only packets transmitted");
4236 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4237 		    "kern_tls_fin", CTLFLAG_RD, &txq->kern_tls_fin,
4238 		    "# of NIC TLS FIN-only packets transmitted");
4239 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4240 		    "kern_tls_fin_short", CTLFLAG_RD, &txq->kern_tls_fin_short,
4241 		    "# of NIC TLS padded FIN packets on short TLS records");
4242 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4243 		    "kern_tls_cbc", CTLFLAG_RD, &txq->kern_tls_cbc,
4244 		    "# of NIC TLS sessions using AES-CBC");
4245 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4246 		    "kern_tls_gcm", CTLFLAG_RD, &txq->kern_tls_gcm,
4247 		    "# of NIC TLS sessions using AES-GCM");
4248 	}
4249 #endif
4250 
4251 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
4252 	    CTLFLAG_RD, &txq->r->enqueues,
4253 	    "# of enqueues to the mp_ring for this queue");
4254 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
4255 	    CTLFLAG_RD, &txq->r->drops,
4256 	    "# of drops in the mp_ring for this queue");
4257 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
4258 	    CTLFLAG_RD, &txq->r->starts,
4259 	    "# of normal consumer starts in the mp_ring for this queue");
4260 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
4261 	    CTLFLAG_RD, &txq->r->stalls,
4262 	    "# of consumer stalls in the mp_ring for this queue");
4263 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
4264 	    CTLFLAG_RD, &txq->r->restarts,
4265 	    "# of consumer restarts in the mp_ring for this queue");
4266 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
4267 	    CTLFLAG_RD, &txq->r->abdications,
4268 	    "# of consumer abdications in the mp_ring for this queue");
4269 
4270 	return (0);
4271 }
4272 
4273 static int
4274 free_txq(struct vi_info *vi, struct sge_txq *txq)
4275 {
4276 	int rc;
4277 	struct adapter *sc = vi->pi->adapter;
4278 	struct sge_eq *eq = &txq->eq;
4279 
4280 	rc = free_eq(sc, eq);
4281 	if (rc)
4282 		return (rc);
4283 
4284 	sglist_free(txq->gl);
4285 	free(txq->sdesc, M_CXGBE);
4286 	mp_ring_free(txq->r);
4287 
4288 	bzero(txq, sizeof(*txq));
4289 	return (0);
4290 }
4291 
4292 static void
4293 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4294 {
4295 	bus_addr_t *ba = arg;
4296 
4297 	KASSERT(nseg == 1,
4298 	    ("%s meant for single segment mappings only.", __func__));
4299 
4300 	*ba = error ? 0 : segs->ds_addr;
4301 }
4302 
4303 static inline void
4304 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4305 {
4306 	uint32_t n, v;
4307 
4308 	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
4309 	MPASS(n > 0);
4310 
4311 	wmb();
4312 	v = fl->dbval | V_PIDX(n);
4313 	if (fl->udb)
4314 		*fl->udb = htole32(v);
4315 	else
4316 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4317 	IDXINCR(fl->dbidx, n, fl->sidx);
4318 }
4319 
4320 /*
4321  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4322  * recycled do not count towards this allocation budget.
4323  *
4324  * Returns non-zero to indicate that this freelist should be added to the list
4325  * of starving freelists.
4326  */
4327 static int
4328 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4329 {
4330 	__be64 *d;
4331 	struct fl_sdesc *sd;
4332 	uintptr_t pa;
4333 	caddr_t cl;
4334 	struct rx_buf_info *rxb;
4335 	struct cluster_metadata *clm;
4336 	uint16_t max_pidx;
4337 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
4338 
4339 	FL_LOCK_ASSERT_OWNED(fl);
4340 
4341 	/*
4342 	 * We always stop at the beginning of the hardware descriptor that's just
4343 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
4344 	 * which would mean an empty freelist to the chip.
4345 	 */
4346 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
4347 	if (fl->pidx == max_pidx * 8)
4348 		return (0);
4349 
4350 	d = &fl->desc[fl->pidx];
4351 	sd = &fl->sdesc[fl->pidx];
4352 
4353 	while (n > 0) {
4354 
4355 		if (sd->cl != NULL) {
4356 
4357 			if (sd->nmbuf == 0) {
4358 				/*
4359 				 * Fast recycle without involving any atomics on
4360 				 * the cluster's metadata (if the cluster has
4361 				 * metadata).  This happens when all frames
4362 				 * received in the cluster were small enough to
4363 				 * fit within a single mbuf each.
4364 				 */
4365 				fl->cl_fast_recycled++;
4366 				goto recycled;
4367 			}
4368 
4369 			/*
4370 			 * Cluster is guaranteed to have metadata.  Clusters
4371 			 * without metadata always take the fast recycle path
4372 			 * when they're recycled.
4373 			 */
4374 			clm = cl_metadata(sd);
4375 			MPASS(clm != NULL);
4376 
4377 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4378 				fl->cl_recycled++;
4379 				counter_u64_add(extfree_rels, 1);
4380 				goto recycled;
4381 			}
4382 			sd->cl = NULL;	/* gave up my reference */
4383 		}
4384 		MPASS(sd->cl == NULL);
4385 		rxb = &sc->sge.rx_buf_info[fl->zidx];
4386 		cl = uma_zalloc(rxb->zone, M_NOWAIT);
4387 		if (__predict_false(cl == NULL) && fl->zidx != fl->safe_zidx) {
4388 			rxb = &sc->sge.rx_buf_info[fl->safe_zidx];
4389 			cl = uma_zalloc(rxb->zone, M_NOWAIT);
4390 			if (__predict_false(cl == NULL))
4391 				break;
4392 		}
4393 		fl->cl_allocated++;
4394 		n--;
4395 
4396 		pa = pmap_kextract((vm_offset_t)cl);
4397 		sd->cl = cl;
4398 		sd->zidx = fl->zidx;
4399 
4400 		if (fl->flags & FL_BUF_PACKING) {
4401 			*d = htobe64(pa | rxb->hwidx2);
4402 			sd->moff = rxb->size2;
4403 		} else {
4404 			*d = htobe64(pa | rxb->hwidx1);
4405 			sd->moff = 0;
4406 		}
4407 recycled:
4408 		sd->nmbuf = 0;
4409 		d++;
4410 		sd++;
4411 		if (__predict_false((++fl->pidx & 7) == 0)) {
4412 			uint16_t pidx = fl->pidx >> 3;
4413 
4414 			if (__predict_false(pidx == fl->sidx)) {
4415 				fl->pidx = 0;
4416 				pidx = 0;
4417 				sd = fl->sdesc;
4418 				d = fl->desc;
4419 			}
4420 			if (n < 8 || pidx == max_pidx)
4421 				break;
4422 
4423 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
4424 				ring_fl_db(sc, fl);
4425 		}
4426 	}
4427 
4428 	if ((fl->pidx >> 3) != fl->dbidx)
4429 		ring_fl_db(sc, fl);
4430 
4431 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
4432 }
4433 
4434 /*
4435  * Attempt to refill all starving freelists.
4436  */
4437 static void
4438 refill_sfl(void *arg)
4439 {
4440 	struct adapter *sc = arg;
4441 	struct sge_fl *fl, *fl_temp;
4442 
4443 	mtx_assert(&sc->sfl_lock, MA_OWNED);
4444 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
4445 		FL_LOCK(fl);
4446 		refill_fl(sc, fl, 64);
4447 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
4448 			TAILQ_REMOVE(&sc->sfl, fl, link);
4449 			fl->flags &= ~FL_STARVING;
4450 		}
4451 		FL_UNLOCK(fl);
4452 	}
4453 
4454 	if (!TAILQ_EMPTY(&sc->sfl))
4455 		callout_schedule(&sc->sfl_callout, hz / 5);
4456 }
4457 
4458 static int
4459 alloc_fl_sdesc(struct sge_fl *fl)
4460 {
4461 
4462 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
4463 	    M_ZERO | M_WAITOK);
4464 
4465 	return (0);
4466 }
4467 
4468 static void
4469 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
4470 {
4471 	struct fl_sdesc *sd;
4472 	struct cluster_metadata *clm;
4473 	int i;
4474 
4475 	sd = fl->sdesc;
4476 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
4477 		if (sd->cl == NULL)
4478 			continue;
4479 
4480 		if (sd->nmbuf == 0)
4481 			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
4482 		else if (fl->flags & FL_BUF_PACKING) {
4483 			clm = cl_metadata(sd);
4484 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4485 				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
4486 				    sd->cl);
4487 				counter_u64_add(extfree_rels, 1);
4488 			}
4489 		}
4490 		sd->cl = NULL;
4491 	}
4492 
4493 	free(fl->sdesc, M_CXGBE);
4494 	fl->sdesc = NULL;
4495 }
4496 
4497 static inline void
4498 get_pkt_gl(struct mbuf *m, struct sglist *gl)
4499 {
4500 	int rc;
4501 
4502 	M_ASSERTPKTHDR(m);
4503 
4504 	sglist_reset(gl);
4505 	rc = sglist_append_mbuf(gl, m);
4506 	if (__predict_false(rc != 0)) {
4507 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
4508 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
4509 	}
4510 
4511 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
4512 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
4513 	    mbuf_nsegs(m), gl->sg_nseg));
4514 	KASSERT(gl->sg_nseg > 0 &&
4515 	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
4516 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
4517 		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
4518 }
4519 
4520 /*
4521  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
4522  */
4523 static inline u_int
4524 txpkt_len16(u_int nsegs, u_int tso)
4525 {
4526 	u_int n;
4527 
4528 	MPASS(nsegs > 0);
4529 
4530 	nsegs--; /* first segment is part of ulptx_sgl */
4531 	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
4532 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4533 	if (tso)
4534 		n += sizeof(struct cpl_tx_pkt_lso_core);
4535 
4536 	return (howmany(n, 16));
4537 }
4538 
4539 /*
4540  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
4541  * request header.
4542  */
4543 static inline u_int
4544 txpkt_vm_len16(u_int nsegs, u_int tso)
4545 {
4546 	u_int n;
4547 
4548 	MPASS(nsegs > 0);
4549 
4550 	nsegs--; /* first segment is part of ulptx_sgl */
4551 	n = sizeof(struct fw_eth_tx_pkt_vm_wr) +
4552 	    sizeof(struct cpl_tx_pkt_core) +
4553 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4554 	if (tso)
4555 		n += sizeof(struct cpl_tx_pkt_lso_core);
4556 
4557 	return (howmany(n, 16));
4558 }
4559 
4560 /*
4561  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
4562  * request header.
4563  */
4564 static inline u_int
4565 txpkts0_len16(u_int nsegs)
4566 {
4567 	u_int n;
4568 
4569 	MPASS(nsegs > 0);
4570 
4571 	nsegs--; /* first segment is part of ulptx_sgl */
4572 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
4573 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
4574 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
4575 
4576 	return (howmany(n, 16));
4577 }
4578 
4579 /*
4580  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
4581  * request header.
4582  */
4583 static inline u_int
4584 txpkts1_len16(void)
4585 {
4586 	u_int n;
4587 
4588 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
4589 
4590 	return (howmany(n, 16));
4591 }
4592 
4593 static inline u_int
4594 imm_payload(u_int ndesc)
4595 {
4596 	u_int n;
4597 
4598 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
4599 	    sizeof(struct cpl_tx_pkt_core);
4600 
4601 	return (n);
4602 }
4603 
4604 static inline uint64_t
4605 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
4606 {
4607 	uint64_t ctrl;
4608 	int csum_type;
4609 
4610 	M_ASSERTPKTHDR(m);
4611 
4612 	if (needs_hwcsum(m) == 0)
4613 		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
4614 
4615 	ctrl = 0;
4616 	if (needs_l3_csum(m) == 0)
4617 		ctrl |= F_TXPKT_IPCSUM_DIS;
4618 	switch (m->m_pkthdr.csum_flags &
4619 	    (CSUM_IP_TCP | CSUM_IP_UDP | CSUM_IP6_TCP | CSUM_IP6_UDP)) {
4620 	case CSUM_IP_TCP:
4621 		csum_type = TX_CSUM_TCPIP;
4622 		break;
4623 	case CSUM_IP_UDP:
4624 		csum_type = TX_CSUM_UDPIP;
4625 		break;
4626 	case CSUM_IP6_TCP:
4627 		csum_type = TX_CSUM_TCPIP6;
4628 		break;
4629 	case CSUM_IP6_UDP:
4630 		csum_type = TX_CSUM_UDPIP6;
4631 		break;
4632 	default:
4633 		/* needs_hwcsum told us that at least some hwcsum is needed. */
4634 		MPASS(ctrl == 0);
4635 		MPASS(m->m_pkthdr.csum_flags & CSUM_IP);
4636 		ctrl |= F_TXPKT_L4CSUM_DIS;
4637 		csum_type = TX_CSUM_IP;
4638 		break;
4639 	}
4640 
4641 	MPASS(m->m_pkthdr.l2hlen > 0);
4642 	MPASS(m->m_pkthdr.l3hlen > 0);
4643 	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) |
4644 	    V_TXPKT_IPHDR_LEN(m->m_pkthdr.l3hlen);
4645 	if (chip_id(sc) <= CHELSIO_T5)
4646 		ctrl |= V_TXPKT_ETHHDR_LEN(m->m_pkthdr.l2hlen - ETHER_HDR_LEN);
4647 	else
4648 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(m->m_pkthdr.l2hlen - ETHER_HDR_LEN);
4649 
4650 	return (ctrl);
4651 }
4652 
4653 /*
4654  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
4655  * software descriptor, and advance the pidx.  It is guaranteed that enough
4656  * descriptors are available.
4657  *
4658  * The return value is the # of hardware descriptors used.
4659  */
4660 static u_int
4661 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq,
4662     struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available)
4663 {
4664 	struct sge_eq *eq = &txq->eq;
4665 	struct tx_sdesc *txsd;
4666 	struct cpl_tx_pkt_core *cpl;
4667 	uint32_t ctrl;	/* used in many unrelated places */
4668 	uint64_t ctrl1;
4669 	int len16, ndesc, pktlen, nsegs;
4670 	caddr_t dst;
4671 
4672 	TXQ_LOCK_ASSERT_OWNED(txq);
4673 	M_ASSERTPKTHDR(m0);
4674 	MPASS(available > 0 && available < eq->sidx);
4675 
4676 	len16 = mbuf_len16(m0);
4677 	nsegs = mbuf_nsegs(m0);
4678 	pktlen = m0->m_pkthdr.len;
4679 	ctrl = sizeof(struct cpl_tx_pkt_core);
4680 	if (needs_tso(m0))
4681 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4682 	ndesc = howmany(len16, EQ_ESIZE / 16);
4683 	MPASS(ndesc <= available);
4684 
4685 	/* Firmware work request header */
4686 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4687 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
4688 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4689 
4690 	ctrl = V_FW_WR_LEN16(len16);
4691 	wr->equiq_to_len16 = htobe32(ctrl);
4692 	wr->r3[0] = 0;
4693 	wr->r3[1] = 0;
4694 
4695 	/*
4696 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
4697 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
4698 	 * simpler to always copy it rather than making it
4699 	 * conditional.  Also, it seems that we do not have to set
4700 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
4701 	 */
4702 	m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst);
4703 
4704 	if (needs_tso(m0)) {
4705 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4706 
4707 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4708 		    m0->m_pkthdr.l4hlen > 0,
4709 		    ("%s: mbuf %p needs TSO but missing header lengths",
4710 			__func__, m0));
4711 
4712 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4713 		    F_LSO_LAST_SLICE | V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
4714 			ETHER_HDR_LEN) >> 2) |
4715 		    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
4716 		    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4717 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4718 			ctrl |= F_LSO_IPV6;
4719 
4720 		lso->lso_ctrl = htobe32(ctrl);
4721 		lso->ipid_ofst = htobe16(0);
4722 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4723 		lso->seqno_offset = htobe32(0);
4724 		lso->len = htobe32(pktlen);
4725 
4726 		cpl = (void *)(lso + 1);
4727 
4728 		txq->tso_wrs++;
4729 	} else
4730 		cpl = (void *)(wr + 1);
4731 
4732 	/* Checksum offload */
4733 	ctrl1 = csum_to_ctrl(sc, m0);
4734 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
4735 		txq->txcsum++;	/* some hardware assistance provided */
4736 
4737 	/* VLAN tag insertion */
4738 	if (needs_vlan_insertion(m0)) {
4739 		ctrl1 |= F_TXPKT_VLAN_VLD |
4740 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4741 		txq->vlan_insertion++;
4742 	}
4743 
4744 	/* CPL header */
4745 	cpl->ctrl0 = txq->cpl_ctrl0;
4746 	cpl->pack = 0;
4747 	cpl->len = htobe16(pktlen);
4748 	cpl->ctrl1 = htobe64(ctrl1);
4749 
4750 	/* SGL */
4751 	dst = (void *)(cpl + 1);
4752 
4753 	/*
4754 	 * A packet using TSO will use up an entire descriptor for the
4755 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
4756 	 * If this descriptor is the last descriptor in the ring, wrap
4757 	 * around to the front of the ring explicitly for the start of
4758 	 * the sgl.
4759 	 */
4760 	if (dst == (void *)&eq->desc[eq->sidx]) {
4761 		dst = (void *)&eq->desc[0];
4762 		write_gl_to_txd(txq, m0, &dst, 0);
4763 	} else
4764 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4765 	txq->sgl_wrs++;
4766 
4767 	txq->txpkt_wrs++;
4768 
4769 	txsd = &txq->sdesc[eq->pidx];
4770 	txsd->m = m0;
4771 	txsd->desc_used = ndesc;
4772 
4773 	return (ndesc);
4774 }
4775 
4776 /*
4777  * Write a raw WR to the hardware descriptors, update the software
4778  * descriptor, and advance the pidx.  It is guaranteed that enough
4779  * descriptors are available.
4780  *
4781  * The return value is the # of hardware descriptors used.
4782  */
4783 static u_int
4784 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
4785 {
4786 	struct sge_eq *eq = &txq->eq;
4787 	struct tx_sdesc *txsd;
4788 	struct mbuf *m;
4789 	caddr_t dst;
4790 	int len16, ndesc;
4791 
4792 	len16 = mbuf_len16(m0);
4793 	ndesc = howmany(len16, EQ_ESIZE / 16);
4794 	MPASS(ndesc <= available);
4795 
4796 	dst = wr;
4797 	for (m = m0; m != NULL; m = m->m_next)
4798 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4799 
4800 	txq->raw_wrs++;
4801 
4802 	txsd = &txq->sdesc[eq->pidx];
4803 	txsd->m = m0;
4804 	txsd->desc_used = ndesc;
4805 
4806 	return (ndesc);
4807 }
4808 
4809 /*
4810  * Write a txpkt WR for this packet to the hardware descriptors, update the
4811  * software descriptor, and advance the pidx.  It is guaranteed that enough
4812  * descriptors are available.
4813  *
4814  * The return value is the # of hardware descriptors used.
4815  */
4816 static u_int
4817 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq,
4818     struct fw_eth_tx_pkt_wr *wr, struct mbuf *m0, u_int available)
4819 {
4820 	struct sge_eq *eq = &txq->eq;
4821 	struct tx_sdesc *txsd;
4822 	struct cpl_tx_pkt_core *cpl;
4823 	uint32_t ctrl;	/* used in many unrelated places */
4824 	uint64_t ctrl1;
4825 	int len16, ndesc, pktlen, nsegs;
4826 	caddr_t dst;
4827 
4828 	TXQ_LOCK_ASSERT_OWNED(txq);
4829 	M_ASSERTPKTHDR(m0);
4830 	MPASS(available > 0 && available < eq->sidx);
4831 
4832 	len16 = mbuf_len16(m0);
4833 	nsegs = mbuf_nsegs(m0);
4834 	pktlen = m0->m_pkthdr.len;
4835 	ctrl = sizeof(struct cpl_tx_pkt_core);
4836 	if (needs_tso(m0))
4837 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4838 	else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
4839 	    available >= 2) {
4840 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
4841 		ctrl += pktlen;
4842 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
4843 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
4844 		nsegs = 0;
4845 	}
4846 	ndesc = howmany(len16, EQ_ESIZE / 16);
4847 	MPASS(ndesc <= available);
4848 
4849 	/* Firmware work request header */
4850 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4851 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
4852 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4853 
4854 	ctrl = V_FW_WR_LEN16(len16);
4855 	wr->equiq_to_len16 = htobe32(ctrl);
4856 	wr->r3 = 0;
4857 
4858 	if (needs_tso(m0)) {
4859 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4860 
4861 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4862 		    m0->m_pkthdr.l4hlen > 0,
4863 		    ("%s: mbuf %p needs TSO but missing header lengths",
4864 			__func__, m0));
4865 
4866 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4867 		    F_LSO_LAST_SLICE | V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
4868 			ETHER_HDR_LEN) >> 2) |
4869 		    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
4870 		    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4871 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4872 			ctrl |= F_LSO_IPV6;
4873 
4874 		lso->lso_ctrl = htobe32(ctrl);
4875 		lso->ipid_ofst = htobe16(0);
4876 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4877 		lso->seqno_offset = htobe32(0);
4878 		lso->len = htobe32(pktlen);
4879 
4880 		cpl = (void *)(lso + 1);
4881 
4882 		txq->tso_wrs++;
4883 	} else
4884 		cpl = (void *)(wr + 1);
4885 
4886 	/* Checksum offload */
4887 	ctrl1 = csum_to_ctrl(sc, m0);
4888 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
4889 		txq->txcsum++;	/* some hardware assistance provided */
4890 
4891 	/* VLAN tag insertion */
4892 	if (needs_vlan_insertion(m0)) {
4893 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4894 		txq->vlan_insertion++;
4895 	}
4896 
4897 	/* CPL header */
4898 	cpl->ctrl0 = txq->cpl_ctrl0;
4899 	cpl->pack = 0;
4900 	cpl->len = htobe16(pktlen);
4901 	cpl->ctrl1 = htobe64(ctrl1);
4902 
4903 	/* SGL */
4904 	dst = (void *)(cpl + 1);
4905 	if (nsegs > 0) {
4906 
4907 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4908 		txq->sgl_wrs++;
4909 	} else {
4910 		struct mbuf *m;
4911 
4912 		for (m = m0; m != NULL; m = m->m_next) {
4913 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4914 #ifdef INVARIANTS
4915 			pktlen -= m->m_len;
4916 #endif
4917 		}
4918 #ifdef INVARIANTS
4919 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
4920 #endif
4921 		txq->imm_wrs++;
4922 	}
4923 
4924 	txq->txpkt_wrs++;
4925 
4926 	txsd = &txq->sdesc[eq->pidx];
4927 	txsd->m = m0;
4928 	txsd->desc_used = ndesc;
4929 
4930 	return (ndesc);
4931 }
4932 
4933 static int
4934 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
4935 {
4936 	u_int needed, nsegs1, nsegs2, l1, l2;
4937 
4938 	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
4939 		return (1);
4940 
4941 	nsegs1 = mbuf_nsegs(m);
4942 	nsegs2 = mbuf_nsegs(n);
4943 	if (nsegs1 + nsegs2 == 2) {
4944 		txp->wr_type = 1;
4945 		l1 = l2 = txpkts1_len16();
4946 	} else {
4947 		txp->wr_type = 0;
4948 		l1 = txpkts0_len16(nsegs1);
4949 		l2 = txpkts0_len16(nsegs2);
4950 	}
4951 	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
4952 	needed = howmany(txp->len16, EQ_ESIZE / 16);
4953 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4954 		return (1);
4955 
4956 	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
4957 	if (txp->plen > 65535)
4958 		return (1);
4959 
4960 	txp->npkt = 2;
4961 	set_mbuf_len16(m, l1);
4962 	set_mbuf_len16(n, l2);
4963 
4964 	return (0);
4965 }
4966 
4967 static int
4968 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
4969 {
4970 	u_int plen, len16, needed, nsegs;
4971 
4972 	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
4973 
4974 	if (cannot_use_txpkts(m))
4975 		return (1);
4976 
4977 	nsegs = mbuf_nsegs(m);
4978 	if (txp->wr_type == 1 && nsegs != 1)
4979 		return (1);
4980 
4981 	plen = txp->plen + m->m_pkthdr.len;
4982 	if (plen > 65535)
4983 		return (1);
4984 
4985 	if (txp->wr_type == 0)
4986 		len16 = txpkts0_len16(nsegs);
4987 	else
4988 		len16 = txpkts1_len16();
4989 	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4990 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4991 		return (1);
4992 
4993 	txp->npkt++;
4994 	txp->plen = plen;
4995 	txp->len16 += len16;
4996 	set_mbuf_len16(m, len16);
4997 
4998 	return (0);
4999 }
5000 
5001 /*
5002  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
5003  * the software descriptor, and advance the pidx.  It is guaranteed that enough
5004  * descriptors are available.
5005  *
5006  * The return value is the # of hardware descriptors used.
5007  */
5008 static u_int
5009 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq,
5010     struct fw_eth_tx_pkts_wr *wr, struct mbuf *m0, const struct txpkts *txp,
5011     u_int available)
5012 {
5013 	struct sge_eq *eq = &txq->eq;
5014 	struct tx_sdesc *txsd;
5015 	struct cpl_tx_pkt_core *cpl;
5016 	uint32_t ctrl;
5017 	uint64_t ctrl1;
5018 	int ndesc, checkwrap;
5019 	struct mbuf *m;
5020 	void *flitp;
5021 
5022 	TXQ_LOCK_ASSERT_OWNED(txq);
5023 	MPASS(txp->npkt > 0);
5024 	MPASS(txp->plen < 65536);
5025 	MPASS(m0 != NULL);
5026 	MPASS(m0->m_nextpkt != NULL);
5027 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5028 	MPASS(available > 0 && available < eq->sidx);
5029 
5030 	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
5031 	MPASS(ndesc <= available);
5032 
5033 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
5034 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
5035 	ctrl = V_FW_WR_LEN16(txp->len16);
5036 	wr->equiq_to_len16 = htobe32(ctrl);
5037 	wr->plen = htobe16(txp->plen);
5038 	wr->npkt = txp->npkt;
5039 	wr->r3 = 0;
5040 	wr->type = txp->wr_type;
5041 	flitp = wr + 1;
5042 
5043 	/*
5044 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
5045 	 * set then we know the WR is going to wrap around somewhere.  We'll
5046 	 * check for that at appropriate points.
5047 	 */
5048 	checkwrap = eq->sidx - ndesc < eq->pidx;
5049 	for (m = m0; m != NULL; m = m->m_nextpkt) {
5050 		if (txp->wr_type == 0) {
5051 			struct ulp_txpkt *ulpmc;
5052 			struct ulptx_idata *ulpsc;
5053 
5054 			/* ULP master command */
5055 			ulpmc = flitp;
5056 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
5057 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
5058 			ulpmc->len = htobe32(mbuf_len16(m));
5059 
5060 			/* ULP subcommand */
5061 			ulpsc = (void *)(ulpmc + 1);
5062 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
5063 			    F_ULP_TX_SC_MORE);
5064 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
5065 
5066 			cpl = (void *)(ulpsc + 1);
5067 			if (checkwrap &&
5068 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
5069 				cpl = (void *)&eq->desc[0];
5070 		} else {
5071 			cpl = flitp;
5072 		}
5073 
5074 		/* Checksum offload */
5075 		ctrl1 = csum_to_ctrl(sc, m);
5076 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5077 			txq->txcsum++;	/* some hardware assistance provided */
5078 
5079 		/* VLAN tag insertion */
5080 		if (needs_vlan_insertion(m)) {
5081 			ctrl1 |= F_TXPKT_VLAN_VLD |
5082 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5083 			txq->vlan_insertion++;
5084 		}
5085 
5086 		/* CPL header */
5087 		cpl->ctrl0 = txq->cpl_ctrl0;
5088 		cpl->pack = 0;
5089 		cpl->len = htobe16(m->m_pkthdr.len);
5090 		cpl->ctrl1 = htobe64(ctrl1);
5091 
5092 		flitp = cpl + 1;
5093 		if (checkwrap &&
5094 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5095 			flitp = (void *)&eq->desc[0];
5096 
5097 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
5098 
5099 	}
5100 
5101 	if (txp->wr_type == 0) {
5102 		txq->txpkts0_pkts += txp->npkt;
5103 		txq->txpkts0_wrs++;
5104 	} else {
5105 		txq->txpkts1_pkts += txp->npkt;
5106 		txq->txpkts1_wrs++;
5107 	}
5108 
5109 	txsd = &txq->sdesc[eq->pidx];
5110 	txsd->m = m0;
5111 	txsd->desc_used = ndesc;
5112 
5113 	return (ndesc);
5114 }
5115 
5116 /*
5117  * If the SGL ends on an address that is not 16 byte aligned, this function will
5118  * add a 0 filled flit at the end.
5119  */
5120 static void
5121 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
5122 {
5123 	struct sge_eq *eq = &txq->eq;
5124 	struct sglist *gl = txq->gl;
5125 	struct sglist_seg *seg;
5126 	__be64 *flitp, *wrap;
5127 	struct ulptx_sgl *usgl;
5128 	int i, nflits, nsegs;
5129 
5130 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
5131 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
5132 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5133 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5134 
5135 	get_pkt_gl(m, gl);
5136 	nsegs = gl->sg_nseg;
5137 	MPASS(nsegs > 0);
5138 
5139 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
5140 	flitp = (__be64 *)(*to);
5141 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
5142 	seg = &gl->sg_segs[0];
5143 	usgl = (void *)flitp;
5144 
5145 	/*
5146 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
5147 	 * ring, so we're at least 16 bytes away from the status page.  There is
5148 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
5149 	 */
5150 
5151 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
5152 	    V_ULPTX_NSGE(nsegs));
5153 	usgl->len0 = htobe32(seg->ss_len);
5154 	usgl->addr0 = htobe64(seg->ss_paddr);
5155 	seg++;
5156 
5157 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
5158 
5159 		/* Won't wrap around at all */
5160 
5161 		for (i = 0; i < nsegs - 1; i++, seg++) {
5162 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
5163 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
5164 		}
5165 		if (i & 1)
5166 			usgl->sge[i / 2].len[1] = htobe32(0);
5167 		flitp += nflits;
5168 	} else {
5169 
5170 		/* Will wrap somewhere in the rest of the SGL */
5171 
5172 		/* 2 flits already written, write the rest flit by flit */
5173 		flitp = (void *)(usgl + 1);
5174 		for (i = 0; i < nflits - 2; i++) {
5175 			if (flitp == wrap)
5176 				flitp = (void *)eq->desc;
5177 			*flitp++ = get_flit(seg, nsegs - 1, i);
5178 		}
5179 	}
5180 
5181 	if (nflits & 1) {
5182 		MPASS(((uintptr_t)flitp) & 0xf);
5183 		*flitp++ = 0;
5184 	}
5185 
5186 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
5187 	if (__predict_false(flitp == wrap))
5188 		*to = (void *)eq->desc;
5189 	else
5190 		*to = (void *)flitp;
5191 }
5192 
5193 static inline void
5194 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
5195 {
5196 
5197 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5198 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5199 
5200 	if (__predict_true((uintptr_t)(*to) + len <=
5201 	    (uintptr_t)&eq->desc[eq->sidx])) {
5202 		bcopy(from, *to, len);
5203 		(*to) += len;
5204 	} else {
5205 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
5206 
5207 		bcopy(from, *to, portion);
5208 		from += portion;
5209 		portion = len - portion;	/* remaining */
5210 		bcopy(from, (void *)eq->desc, portion);
5211 		(*to) = (caddr_t)eq->desc + portion;
5212 	}
5213 }
5214 
5215 static inline void
5216 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
5217 {
5218 	u_int db;
5219 
5220 	MPASS(n > 0);
5221 
5222 	db = eq->doorbells;
5223 	if (n > 1)
5224 		clrbit(&db, DOORBELL_WCWR);
5225 	wmb();
5226 
5227 	switch (ffs(db) - 1) {
5228 	case DOORBELL_UDB:
5229 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
5230 		break;
5231 
5232 	case DOORBELL_WCWR: {
5233 		volatile uint64_t *dst, *src;
5234 		int i;
5235 
5236 		/*
5237 		 * Queues whose 128B doorbell segment fits in the page do not
5238 		 * use relative qid (udb_qid is always 0).  Only queues with
5239 		 * doorbell segments can do WCWR.
5240 		 */
5241 		KASSERT(eq->udb_qid == 0 && n == 1,
5242 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
5243 		    __func__, eq->doorbells, n, eq->dbidx, eq));
5244 
5245 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
5246 		    UDBS_DB_OFFSET);
5247 		i = eq->dbidx;
5248 		src = (void *)&eq->desc[i];
5249 		while (src != (void *)&eq->desc[i + 1])
5250 			*dst++ = *src++;
5251 		wmb();
5252 		break;
5253 	}
5254 
5255 	case DOORBELL_UDBWC:
5256 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
5257 		wmb();
5258 		break;
5259 
5260 	case DOORBELL_KDB:
5261 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
5262 		    V_QID(eq->cntxt_id) | V_PIDX(n));
5263 		break;
5264 	}
5265 
5266 	IDXINCR(eq->dbidx, n, eq->sidx);
5267 }
5268 
5269 static inline u_int
5270 reclaimable_tx_desc(struct sge_eq *eq)
5271 {
5272 	uint16_t hw_cidx;
5273 
5274 	hw_cidx = read_hw_cidx(eq);
5275 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
5276 }
5277 
5278 static inline u_int
5279 total_available_tx_desc(struct sge_eq *eq)
5280 {
5281 	uint16_t hw_cidx, pidx;
5282 
5283 	hw_cidx = read_hw_cidx(eq);
5284 	pidx = eq->pidx;
5285 
5286 	if (pidx == hw_cidx)
5287 		return (eq->sidx - 1);
5288 	else
5289 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
5290 }
5291 
5292 static inline uint16_t
5293 read_hw_cidx(struct sge_eq *eq)
5294 {
5295 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5296 	uint16_t cidx = spg->cidx;	/* stable snapshot */
5297 
5298 	return (be16toh(cidx));
5299 }
5300 
5301 /*
5302  * Reclaim 'n' descriptors approximately.
5303  */
5304 static u_int
5305 reclaim_tx_descs(struct sge_txq *txq, u_int n)
5306 {
5307 	struct tx_sdesc *txsd;
5308 	struct sge_eq *eq = &txq->eq;
5309 	u_int can_reclaim, reclaimed;
5310 
5311 	TXQ_LOCK_ASSERT_OWNED(txq);
5312 	MPASS(n > 0);
5313 
5314 	reclaimed = 0;
5315 	can_reclaim = reclaimable_tx_desc(eq);
5316 	while (can_reclaim && reclaimed < n) {
5317 		int ndesc;
5318 		struct mbuf *m, *nextpkt;
5319 
5320 		txsd = &txq->sdesc[eq->cidx];
5321 		ndesc = txsd->desc_used;
5322 
5323 		/* Firmware doesn't return "partial" credits. */
5324 		KASSERT(can_reclaim >= ndesc,
5325 		    ("%s: unexpected number of credits: %d, %d",
5326 		    __func__, can_reclaim, ndesc));
5327 		KASSERT(ndesc != 0,
5328 		    ("%s: descriptor with no credits: cidx %d",
5329 		    __func__, eq->cidx));
5330 
5331 		for (m = txsd->m; m != NULL; m = nextpkt) {
5332 			nextpkt = m->m_nextpkt;
5333 			m->m_nextpkt = NULL;
5334 			m_freem(m);
5335 		}
5336 		reclaimed += ndesc;
5337 		can_reclaim -= ndesc;
5338 		IDXINCR(eq->cidx, ndesc, eq->sidx);
5339 	}
5340 
5341 	return (reclaimed);
5342 }
5343 
5344 static void
5345 tx_reclaim(void *arg, int n)
5346 {
5347 	struct sge_txq *txq = arg;
5348 	struct sge_eq *eq = &txq->eq;
5349 
5350 	do {
5351 		if (TXQ_TRYLOCK(txq) == 0)
5352 			break;
5353 		n = reclaim_tx_descs(txq, 32);
5354 		if (eq->cidx == eq->pidx)
5355 			eq->equeqidx = eq->pidx;
5356 		TXQ_UNLOCK(txq);
5357 	} while (n > 0);
5358 }
5359 
5360 static __be64
5361 get_flit(struct sglist_seg *segs, int nsegs, int idx)
5362 {
5363 	int i = (idx / 3) * 2;
5364 
5365 	switch (idx % 3) {
5366 	case 0: {
5367 		uint64_t rc;
5368 
5369 		rc = (uint64_t)segs[i].ss_len << 32;
5370 		if (i + 1 < nsegs)
5371 			rc |= (uint64_t)(segs[i + 1].ss_len);
5372 
5373 		return (htobe64(rc));
5374 	}
5375 	case 1:
5376 		return (htobe64(segs[i].ss_paddr));
5377 	case 2:
5378 		return (htobe64(segs[i + 1].ss_paddr));
5379 	}
5380 
5381 	return (0);
5382 }
5383 
5384 static int
5385 find_refill_source(struct adapter *sc, int maxp, bool packing)
5386 {
5387 	int i, zidx = -1;
5388 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
5389 
5390 	if (packing) {
5391 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
5392 			if (rxb->hwidx2 == -1)
5393 				continue;
5394 			if (rxb->size1 < PAGE_SIZE &&
5395 			    rxb->size1 < largest_rx_cluster)
5396 				continue;
5397 			if (rxb->size1 > largest_rx_cluster)
5398 				break;
5399 			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
5400 			if (rxb->size2 >= maxp)
5401 				return (i);
5402 			zidx = i;
5403 		}
5404 	} else {
5405 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
5406 			if (rxb->hwidx1 == -1)
5407 				continue;
5408 			if (rxb->size1 > largest_rx_cluster)
5409 				break;
5410 			if (rxb->size1 >= maxp)
5411 				return (i);
5412 			zidx = i;
5413 		}
5414 	}
5415 
5416 	return (zidx);
5417 }
5418 
5419 static void
5420 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
5421 {
5422 	mtx_lock(&sc->sfl_lock);
5423 	FL_LOCK(fl);
5424 	if ((fl->flags & FL_DOOMED) == 0) {
5425 		fl->flags |= FL_STARVING;
5426 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
5427 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
5428 	}
5429 	FL_UNLOCK(fl);
5430 	mtx_unlock(&sc->sfl_lock);
5431 }
5432 
5433 static void
5434 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
5435 {
5436 	struct sge_wrq *wrq = (void *)eq;
5437 
5438 	atomic_readandclear_int(&eq->equiq);
5439 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
5440 }
5441 
5442 static void
5443 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
5444 {
5445 	struct sge_txq *txq = (void *)eq;
5446 
5447 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
5448 
5449 	atomic_readandclear_int(&eq->equiq);
5450 	mp_ring_check_drainage(txq->r, 0);
5451 	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
5452 }
5453 
5454 static int
5455 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
5456     struct mbuf *m)
5457 {
5458 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
5459 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
5460 	struct adapter *sc = iq->adapter;
5461 	struct sge *s = &sc->sge;
5462 	struct sge_eq *eq;
5463 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
5464 		&handle_wrq_egr_update, &handle_eth_egr_update,
5465 		&handle_wrq_egr_update};
5466 
5467 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5468 	    rss->opcode));
5469 
5470 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
5471 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
5472 
5473 	return (0);
5474 }
5475 
5476 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
5477 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
5478     offsetof(struct cpl_fw6_msg, data));
5479 
5480 static int
5481 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
5482 {
5483 	struct adapter *sc = iq->adapter;
5484 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
5485 
5486 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5487 	    rss->opcode));
5488 
5489 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
5490 		const struct rss_header *rss2;
5491 
5492 		rss2 = (const struct rss_header *)&cpl->data[0];
5493 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
5494 	}
5495 
5496 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
5497 }
5498 
5499 /**
5500  *	t4_handle_wrerr_rpl - process a FW work request error message
5501  *	@adap: the adapter
5502  *	@rpl: start of the FW message
5503  */
5504 static int
5505 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
5506 {
5507 	u8 opcode = *(const u8 *)rpl;
5508 	const struct fw_error_cmd *e = (const void *)rpl;
5509 	unsigned int i;
5510 
5511 	if (opcode != FW_ERROR_CMD) {
5512 		log(LOG_ERR,
5513 		    "%s: Received WRERR_RPL message with opcode %#x\n",
5514 		    device_get_nameunit(adap->dev), opcode);
5515 		return (EINVAL);
5516 	}
5517 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
5518 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
5519 	    "non-fatal");
5520 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
5521 	case FW_ERROR_TYPE_EXCEPTION:
5522 		log(LOG_ERR, "exception info:\n");
5523 		for (i = 0; i < nitems(e->u.exception.info); i++)
5524 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
5525 			    be32toh(e->u.exception.info[i]));
5526 		log(LOG_ERR, "\n");
5527 		break;
5528 	case FW_ERROR_TYPE_HWMODULE:
5529 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
5530 		    be32toh(e->u.hwmodule.regaddr),
5531 		    be32toh(e->u.hwmodule.regval));
5532 		break;
5533 	case FW_ERROR_TYPE_WR:
5534 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
5535 		    be16toh(e->u.wr.cidx),
5536 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
5537 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
5538 		    be32toh(e->u.wr.eqid));
5539 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
5540 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
5541 			    e->u.wr.wrhdr[i]);
5542 		log(LOG_ERR, "\n");
5543 		break;
5544 	case FW_ERROR_TYPE_ACL:
5545 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
5546 		    be16toh(e->u.acl.cidx),
5547 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
5548 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
5549 		    be32toh(e->u.acl.eqid),
5550 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
5551 		    "MAC");
5552 		for (i = 0; i < nitems(e->u.acl.val); i++)
5553 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
5554 		log(LOG_ERR, "\n");
5555 		break;
5556 	default:
5557 		log(LOG_ERR, "type %#x\n",
5558 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
5559 		return (EINVAL);
5560 	}
5561 	return (0);
5562 }
5563 
5564 static int
5565 sysctl_uint16(SYSCTL_HANDLER_ARGS)
5566 {
5567 	uint16_t *id = arg1;
5568 	int i = *id;
5569 
5570 	return sysctl_handle_int(oidp, &i, 0, req);
5571 }
5572 
5573 static inline bool
5574 bufidx_used(struct adapter *sc, int idx)
5575 {
5576 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
5577 	int i;
5578 
5579 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
5580 		if (rxb->size1 > largest_rx_cluster)
5581 			continue;
5582 		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
5583 			return (true);
5584 	}
5585 
5586 	return (false);
5587 }
5588 
5589 static int
5590 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
5591 {
5592 	struct adapter *sc = arg1;
5593 	struct sge_params *sp = &sc->params.sge;
5594 	int i, rc;
5595 	struct sbuf sb;
5596 	char c;
5597 
5598 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
5599 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
5600 		if (bufidx_used(sc, i))
5601 			c = '*';
5602 		else
5603 			c = '\0';
5604 
5605 		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
5606 	}
5607 	sbuf_trim(&sb);
5608 	sbuf_finish(&sb);
5609 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
5610 	sbuf_delete(&sb);
5611 	return (rc);
5612 }
5613 
5614 #ifdef RATELIMIT
5615 /*
5616  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5617  */
5618 static inline u_int
5619 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
5620 {
5621 	u_int n;
5622 
5623 	MPASS(immhdrs > 0);
5624 
5625 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
5626 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
5627 	if (__predict_false(nsegs == 0))
5628 		goto done;
5629 
5630 	nsegs--; /* first segment is part of ulptx_sgl */
5631 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5632 	if (tso)
5633 		n += sizeof(struct cpl_tx_pkt_lso_core);
5634 
5635 done:
5636 	return (howmany(n, 16));
5637 }
5638 
5639 #define ETID_FLOWC_NPARAMS 6
5640 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
5641     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
5642 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
5643 
5644 static int
5645 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
5646     struct vi_info *vi)
5647 {
5648 	struct wrq_cookie cookie;
5649 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
5650 	struct fw_flowc_wr *flowc;
5651 
5652 	mtx_assert(&cst->lock, MA_OWNED);
5653 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
5654 	    EO_FLOWC_PENDING);
5655 
5656 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLOWC_LEN16, &cookie);
5657 	if (__predict_false(flowc == NULL))
5658 		return (ENOMEM);
5659 
5660 	bzero(flowc, ETID_FLOWC_LEN);
5661 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
5662 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
5663 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
5664 	    V_FW_WR_FLOWID(cst->etid));
5665 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
5666 	flowc->mnemval[0].val = htobe32(pfvf);
5667 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
5668 	flowc->mnemval[1].val = htobe32(pi->tx_chan);
5669 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
5670 	flowc->mnemval[2].val = htobe32(pi->tx_chan);
5671 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
5672 	flowc->mnemval[3].val = htobe32(cst->iqid);
5673 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
5674 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
5675 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
5676 	flowc->mnemval[5].val = htobe32(cst->schedcl);
5677 
5678 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
5679 
5680 	cst->flags &= ~EO_FLOWC_PENDING;
5681 	cst->flags |= EO_FLOWC_RPL_PENDING;
5682 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
5683 	cst->tx_credits -= ETID_FLOWC_LEN16;
5684 
5685 	return (0);
5686 }
5687 
5688 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
5689 
5690 void
5691 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
5692 {
5693 	struct fw_flowc_wr *flowc;
5694 	struct wrq_cookie cookie;
5695 
5696 	mtx_assert(&cst->lock, MA_OWNED);
5697 
5698 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLUSH_LEN16, &cookie);
5699 	if (__predict_false(flowc == NULL))
5700 		CXGBE_UNIMPLEMENTED(__func__);
5701 
5702 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
5703 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
5704 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
5705 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
5706 	    V_FW_WR_FLOWID(cst->etid));
5707 
5708 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
5709 
5710 	cst->flags |= EO_FLUSH_RPL_PENDING;
5711 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
5712 	cst->tx_credits -= ETID_FLUSH_LEN16;
5713 	cst->ncompl++;
5714 }
5715 
5716 static void
5717 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
5718     struct mbuf *m0, int compl)
5719 {
5720 	struct cpl_tx_pkt_core *cpl;
5721 	uint64_t ctrl1;
5722 	uint32_t ctrl;	/* used in many unrelated places */
5723 	int len16, pktlen, nsegs, immhdrs;
5724 	caddr_t dst;
5725 	uintptr_t p;
5726 	struct ulptx_sgl *usgl;
5727 	struct sglist sg;
5728 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
5729 
5730 	mtx_assert(&cst->lock, MA_OWNED);
5731 	M_ASSERTPKTHDR(m0);
5732 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5733 	    m0->m_pkthdr.l4hlen > 0,
5734 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
5735 
5736 	len16 = mbuf_eo_len16(m0);
5737 	nsegs = mbuf_eo_nsegs(m0);
5738 	pktlen = m0->m_pkthdr.len;
5739 	ctrl = sizeof(struct cpl_tx_pkt_core);
5740 	if (needs_tso(m0))
5741 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5742 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
5743 	ctrl += immhdrs;
5744 
5745 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
5746 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
5747 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
5748 	    V_FW_WR_FLOWID(cst->etid));
5749 	wr->r3 = 0;
5750 	if (needs_udp_csum(m0)) {
5751 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
5752 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
5753 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
5754 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
5755 		wr->u.udpseg.rtplen = 0;
5756 		wr->u.udpseg.r4 = 0;
5757 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
5758 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
5759 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
5760 		cpl = (void *)(wr + 1);
5761 	} else {
5762 		MPASS(needs_tcp_csum(m0));
5763 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
5764 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
5765 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
5766 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
5767 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
5768 		wr->u.tcpseg.r4 = 0;
5769 		wr->u.tcpseg.r5 = 0;
5770 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
5771 
5772 		if (needs_tso(m0)) {
5773 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
5774 
5775 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
5776 
5777 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5778 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5779 			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
5780 				ETHER_HDR_LEN) >> 2) |
5781 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5782 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5783 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5784 				ctrl |= F_LSO_IPV6;
5785 			lso->lso_ctrl = htobe32(ctrl);
5786 			lso->ipid_ofst = htobe16(0);
5787 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5788 			lso->seqno_offset = htobe32(0);
5789 			lso->len = htobe32(pktlen);
5790 
5791 			cpl = (void *)(lso + 1);
5792 		} else {
5793 			wr->u.tcpseg.mss = htobe16(0xffff);
5794 			cpl = (void *)(wr + 1);
5795 		}
5796 	}
5797 
5798 	/* Checksum offload must be requested for ethofld. */
5799 	MPASS(needs_l4_csum(m0));
5800 	ctrl1 = csum_to_ctrl(cst->adapter, m0);
5801 
5802 	/* VLAN tag insertion */
5803 	if (needs_vlan_insertion(m0)) {
5804 		ctrl1 |= F_TXPKT_VLAN_VLD |
5805 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5806 	}
5807 
5808 	/* CPL header */
5809 	cpl->ctrl0 = cst->ctrl0;
5810 	cpl->pack = 0;
5811 	cpl->len = htobe16(pktlen);
5812 	cpl->ctrl1 = htobe64(ctrl1);
5813 
5814 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
5815 	p = (uintptr_t)(cpl + 1);
5816 	m_copydata(m0, 0, immhdrs, (void *)p);
5817 
5818 	/* SGL */
5819 	dst = (void *)(cpl + 1);
5820 	if (nsegs > 0) {
5821 		int i, pad;
5822 
5823 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
5824 		p += immhdrs;
5825 		pad = 16 - (immhdrs & 0xf);
5826 		bzero((void *)p, pad);
5827 
5828 		usgl = (void *)(p + pad);
5829 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
5830 		    V_ULPTX_NSGE(nsegs));
5831 
5832 		sglist_init(&sg, nitems(segs), segs);
5833 		for (; m0 != NULL; m0 = m0->m_next) {
5834 			if (__predict_false(m0->m_len == 0))
5835 				continue;
5836 			if (immhdrs >= m0->m_len) {
5837 				immhdrs -= m0->m_len;
5838 				continue;
5839 			}
5840 
5841 			sglist_append(&sg, mtod(m0, char *) + immhdrs,
5842 			    m0->m_len - immhdrs);
5843 			immhdrs = 0;
5844 		}
5845 		MPASS(sg.sg_nseg == nsegs);
5846 
5847 		/*
5848 		 * Zero pad last 8B in case the WR doesn't end on a 16B
5849 		 * boundary.
5850 		 */
5851 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
5852 
5853 		usgl->len0 = htobe32(segs[0].ss_len);
5854 		usgl->addr0 = htobe64(segs[0].ss_paddr);
5855 		for (i = 0; i < nsegs - 1; i++) {
5856 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
5857 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
5858 		}
5859 		if (i & 1)
5860 			usgl->sge[i / 2].len[1] = htobe32(0);
5861 	}
5862 
5863 }
5864 
5865 static void
5866 ethofld_tx(struct cxgbe_rate_tag *cst)
5867 {
5868 	struct mbuf *m;
5869 	struct wrq_cookie cookie;
5870 	int next_credits, compl;
5871 	struct fw_eth_tx_eo_wr *wr;
5872 
5873 	mtx_assert(&cst->lock, MA_OWNED);
5874 
5875 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
5876 		M_ASSERTPKTHDR(m);
5877 
5878 		/* How many len16 credits do we need to send this mbuf. */
5879 		next_credits = mbuf_eo_len16(m);
5880 		MPASS(next_credits > 0);
5881 		if (next_credits > cst->tx_credits) {
5882 			/*
5883 			 * Tx will make progress eventually because there is at
5884 			 * least one outstanding fw4_ack that will return
5885 			 * credits and kick the tx.
5886 			 */
5887 			MPASS(cst->ncompl > 0);
5888 			return;
5889 		}
5890 		wr = start_wrq_wr(cst->eo_txq, next_credits, &cookie);
5891 		if (__predict_false(wr == NULL)) {
5892 			/* XXX: wishful thinking, not a real assertion. */
5893 			MPASS(cst->ncompl > 0);
5894 			return;
5895 		}
5896 		cst->tx_credits -= next_credits;
5897 		cst->tx_nocompl += next_credits;
5898 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
5899 		ETHER_BPF_MTAP(cst->com.com.ifp, m);
5900 		write_ethofld_wr(cst, wr, m, compl);
5901 		commit_wrq_wr(cst->eo_txq, wr, &cookie);
5902 		if (compl) {
5903 			cst->ncompl++;
5904 			cst->tx_nocompl	= 0;
5905 		}
5906 		(void) mbufq_dequeue(&cst->pending_tx);
5907 
5908 		/*
5909 		 * Drop the mbuf's reference on the tag now rather
5910 		 * than waiting until m_freem().  This ensures that
5911 		 * cxgbe_rate_tag_free gets called when the inp drops
5912 		 * its reference on the tag and there are no more
5913 		 * mbufs in the pending_tx queue and can flush any
5914 		 * pending requests.  Otherwise if the last mbuf
5915 		 * doesn't request a completion the etid will never be
5916 		 * released.
5917 		 */
5918 		m->m_pkthdr.snd_tag = NULL;
5919 		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
5920 		m_snd_tag_rele(&cst->com.com);
5921 
5922 		mbufq_enqueue(&cst->pending_fwack, m);
5923 	}
5924 }
5925 
5926 int
5927 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
5928 {
5929 	struct cxgbe_rate_tag *cst;
5930 	int rc;
5931 
5932 	MPASS(m0->m_nextpkt == NULL);
5933 	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
5934 	MPASS(m0->m_pkthdr.snd_tag != NULL);
5935 	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
5936 
5937 	mtx_lock(&cst->lock);
5938 	MPASS(cst->flags & EO_SND_TAG_REF);
5939 
5940 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
5941 		struct vi_info *vi = ifp->if_softc;
5942 		struct port_info *pi = vi->pi;
5943 		struct adapter *sc = pi->adapter;
5944 		const uint32_t rss_mask = vi->rss_size - 1;
5945 		uint32_t rss_hash;
5946 
5947 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
5948 		if (M_HASHTYPE_ISHASH(m0))
5949 			rss_hash = m0->m_pkthdr.flowid;
5950 		else
5951 			rss_hash = arc4random();
5952 		/* We assume RSS hashing */
5953 		cst->iqid = vi->rss[rss_hash & rss_mask];
5954 		cst->eo_txq += rss_hash % vi->nofldtxq;
5955 		rc = send_etid_flowc_wr(cst, pi, vi);
5956 		if (rc != 0)
5957 			goto done;
5958 	}
5959 
5960 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
5961 		rc = ENOBUFS;
5962 		goto done;
5963 	}
5964 
5965 	mbufq_enqueue(&cst->pending_tx, m0);
5966 	cst->plen += m0->m_pkthdr.len;
5967 
5968 	/*
5969 	 * Hold an extra reference on the tag while generating work
5970 	 * requests to ensure that we don't try to free the tag during
5971 	 * ethofld_tx() in case we are sending the final mbuf after
5972 	 * the inp was freed.
5973 	 */
5974 	m_snd_tag_ref(&cst->com.com);
5975 	ethofld_tx(cst);
5976 	mtx_unlock(&cst->lock);
5977 	m_snd_tag_rele(&cst->com.com);
5978 	return (0);
5979 
5980 done:
5981 	mtx_unlock(&cst->lock);
5982 	if (__predict_false(rc != 0))
5983 		m_freem(m0);
5984 	return (rc);
5985 }
5986 
5987 static int
5988 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
5989 {
5990 	struct adapter *sc = iq->adapter;
5991 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
5992 	struct mbuf *m;
5993 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
5994 	struct cxgbe_rate_tag *cst;
5995 	uint8_t credits = cpl->credits;
5996 
5997 	cst = lookup_etid(sc, etid);
5998 	mtx_lock(&cst->lock);
5999 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
6000 		MPASS(credits >= ETID_FLOWC_LEN16);
6001 		credits -= ETID_FLOWC_LEN16;
6002 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
6003 	}
6004 
6005 	KASSERT(cst->ncompl > 0,
6006 	    ("%s: etid %u (%p) wasn't expecting completion.",
6007 	    __func__, etid, cst));
6008 	cst->ncompl--;
6009 
6010 	while (credits > 0) {
6011 		m = mbufq_dequeue(&cst->pending_fwack);
6012 		if (__predict_false(m == NULL)) {
6013 			/*
6014 			 * The remaining credits are for the final flush that
6015 			 * was issued when the tag was freed by the kernel.
6016 			 */
6017 			MPASS((cst->flags &
6018 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
6019 			    EO_FLUSH_RPL_PENDING);
6020 			MPASS(credits == ETID_FLUSH_LEN16);
6021 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
6022 			MPASS(cst->ncompl == 0);
6023 
6024 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
6025 			cst->tx_credits += cpl->credits;
6026 			cxgbe_rate_tag_free_locked(cst);
6027 			return (0);	/* cst is gone. */
6028 		}
6029 		KASSERT(m != NULL,
6030 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
6031 		    credits));
6032 		KASSERT(credits >= mbuf_eo_len16(m),
6033 		    ("%s: too few credits (%u, %u, %u)", __func__,
6034 		    cpl->credits, credits, mbuf_eo_len16(m)));
6035 		credits -= mbuf_eo_len16(m);
6036 		cst->plen -= m->m_pkthdr.len;
6037 		m_freem(m);
6038 	}
6039 
6040 	cst->tx_credits += cpl->credits;
6041 	MPASS(cst->tx_credits <= cst->tx_total);
6042 
6043 	if (cst->flags & EO_SND_TAG_REF) {
6044 		/*
6045 		 * As with ethofld_transmit(), hold an extra reference
6046 		 * so that the tag is stable across ethold_tx().
6047 		 */
6048 		m_snd_tag_ref(&cst->com.com);
6049 		m = mbufq_first(&cst->pending_tx);
6050 		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
6051 			ethofld_tx(cst);
6052 		mtx_unlock(&cst->lock);
6053 		m_snd_tag_rele(&cst->com.com);
6054 	} else {
6055 		/*
6056 		 * There shouldn't be any pending packets if the tag
6057 		 * was freed by the kernel since any pending packet
6058 		 * should hold a reference to the tag.
6059 		 */
6060 		MPASS(mbufq_first(&cst->pending_tx) == NULL);
6061 		mtx_unlock(&cst->lock);
6062 	}
6063 
6064 	return (0);
6065 }
6066 #endif
6067