xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 500f4659d7c8947082dba040a1d58e7d228f8d44)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_kern_tls.h"
36 #include "opt_ratelimit.h"
37 
38 #include <sys/types.h>
39 #include <sys/eventhandler.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/malloc.h>
45 #include <sys/queue.h>
46 #include <sys/sbuf.h>
47 #include <sys/taskqueue.h>
48 #include <sys/time.h>
49 #include <sys/sglist.h>
50 #include <sys/sysctl.h>
51 #include <sys/smp.h>
52 #include <sys/socketvar.h>
53 #include <sys/counter.h>
54 #include <net/bpf.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_vlan_var.h>
58 #include <net/if_vxlan.h>
59 #include <netinet/in.h>
60 #include <netinet/ip.h>
61 #include <netinet/ip6.h>
62 #include <netinet/tcp.h>
63 #include <netinet/udp.h>
64 #include <machine/in_cksum.h>
65 #include <machine/md_var.h>
66 #include <vm/vm.h>
67 #include <vm/pmap.h>
68 #ifdef DEV_NETMAP
69 #include <machine/bus.h>
70 #include <sys/selinfo.h>
71 #include <net/if_var.h>
72 #include <net/netmap.h>
73 #include <dev/netmap/netmap_kern.h>
74 #endif
75 
76 #include "common/common.h"
77 #include "common/t4_regs.h"
78 #include "common/t4_regs_values.h"
79 #include "common/t4_msg.h"
80 #include "t4_l2t.h"
81 #include "t4_mp_ring.h"
82 
83 #ifdef T4_PKT_TIMESTAMP
84 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
85 #else
86 #define RX_COPY_THRESHOLD MINCLSIZE
87 #endif
88 
89 /* Internal mbuf flags stored in PH_loc.eight[1]. */
90 #define	MC_NOMAP		0x01
91 #define	MC_RAW_WR		0x02
92 #define	MC_TLS			0x04
93 
94 /*
95  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
96  * 0-7 are valid values.
97  */
98 static int fl_pktshift = 0;
99 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
100     "payload DMA offset in rx buffer (bytes)");
101 
102 /*
103  * Pad ethernet payload up to this boundary.
104  * -1: driver should figure out a good value.
105  *  0: disable padding.
106  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
107  */
108 int fl_pad = -1;
109 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
110     "payload pad boundary (bytes)");
111 
112 /*
113  * Status page length.
114  * -1: driver should figure out a good value.
115  *  64 or 128 are the only other valid values.
116  */
117 static int spg_len = -1;
118 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
119     "status page size (bytes)");
120 
121 /*
122  * Congestion drops.
123  * -1: no congestion feedback (not recommended).
124  *  0: backpressure the channel instead of dropping packets right away.
125  *  1: no backpressure, drop packets for the congested queue immediately.
126  */
127 static int cong_drop = 0;
128 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
129     "Congestion control for RX queues (0 = backpressure, 1 = drop");
130 
131 /*
132  * Deliver multiple frames in the same free list buffer if they fit.
133  * -1: let the driver decide whether to enable buffer packing or not.
134  *  0: disable buffer packing.
135  *  1: enable buffer packing.
136  */
137 static int buffer_packing = -1;
138 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
139     0, "Enable buffer packing");
140 
141 /*
142  * Start next frame in a packed buffer at this boundary.
143  * -1: driver should figure out a good value.
144  * T4: driver will ignore this and use the same value as fl_pad above.
145  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
146  */
147 static int fl_pack = -1;
148 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
149     "payload pack boundary (bytes)");
150 
151 /*
152  * Largest rx cluster size that the driver is allowed to allocate.
153  */
154 static int largest_rx_cluster = MJUM16BYTES;
155 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
156     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
157 
158 /*
159  * Size of cluster allocation that's most likely to succeed.  The driver will
160  * fall back to this size if it fails to allocate clusters larger than this.
161  */
162 static int safest_rx_cluster = PAGE_SIZE;
163 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
164     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
165 
166 #ifdef RATELIMIT
167 /*
168  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
169  * for rewriting.  -1 and 0-3 are all valid values.
170  * -1: hardware should leave the TCP timestamps alone.
171  * 0: 1ms
172  * 1: 100us
173  * 2: 10us
174  * 3: 1us
175  */
176 static int tsclk = -1;
177 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
178     "Control TCP timestamp rewriting when using pacing");
179 
180 static int eo_max_backlog = 1024 * 1024;
181 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
182     0, "Maximum backlog of ratelimited data per flow");
183 #endif
184 
185 /*
186  * The interrupt holdoff timers are multiplied by this value on T6+.
187  * 1 and 3-17 (both inclusive) are legal values.
188  */
189 static int tscale = 1;
190 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
191     "Interrupt holdoff timer scale on T6+");
192 
193 /*
194  * Number of LRO entries in the lro_ctrl structure per rx queue.
195  */
196 static int lro_entries = TCP_LRO_ENTRIES;
197 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
198     "Number of LRO entries per RX queue");
199 
200 /*
201  * This enables presorting of frames before they're fed into tcp_lro_rx.
202  */
203 static int lro_mbufs = 0;
204 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
205     "Enable presorting of LRO frames");
206 
207 static counter_u64_t pullups;
208 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
209     "Number of mbuf pullups performed");
210 
211 static counter_u64_t defrags;
212 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
213     "Number of mbuf defrags performed");
214 
215 static int t4_tx_coalesce = 1;
216 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
217     "tx coalescing allowed");
218 
219 /*
220  * The driver will make aggressive attempts at tx coalescing if it sees these
221  * many packets eligible for coalescing in quick succession, with no more than
222  * the specified gap in between the eth_tx calls that delivered the packets.
223  */
224 static int t4_tx_coalesce_pkts = 32;
225 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
226     &t4_tx_coalesce_pkts, 0,
227     "# of consecutive packets (1 - 255) that will trigger tx coalescing");
228 static int t4_tx_coalesce_gap = 5;
229 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
230     &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
231 
232 static int service_iq(struct sge_iq *, int);
233 static int service_iq_fl(struct sge_iq *, int);
234 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
235 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
236     u_int);
237 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
238 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
239 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
240     uint16_t, char *);
241 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
242     int, int);
243 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
244 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
245     struct sge_iq *);
246 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
247     struct sysctl_oid *, struct sge_fl *);
248 static int alloc_fwq(struct adapter *);
249 static int free_fwq(struct adapter *);
250 static int alloc_ctrlq(struct adapter *, struct sge_wrq *, int,
251     struct sysctl_oid *);
252 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
253     struct sysctl_oid *);
254 static int free_rxq(struct vi_info *, struct sge_rxq *);
255 #ifdef TCP_OFFLOAD
256 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
257     struct sysctl_oid *);
258 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
259 #endif
260 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
261 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
262 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
263 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
264 #endif
265 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
266 static int free_eq(struct adapter *, struct sge_eq *);
267 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
268     struct sysctl_oid *);
269 static int free_wrq(struct adapter *, struct sge_wrq *);
270 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
271     struct sysctl_oid *);
272 static int free_txq(struct vi_info *, struct sge_txq *);
273 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
274 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
275 static int refill_fl(struct adapter *, struct sge_fl *, int);
276 static void refill_sfl(void *);
277 static int alloc_fl_sdesc(struct sge_fl *);
278 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
279 static int find_refill_source(struct adapter *, int, bool);
280 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
281 
282 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
283 static inline u_int txpkt_len16(u_int, const u_int);
284 static inline u_int txpkt_vm_len16(u_int, const u_int);
285 static inline void calculate_mbuf_len16(struct mbuf *, bool);
286 static inline u_int txpkts0_len16(u_int);
287 static inline u_int txpkts1_len16(void);
288 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
289 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
290     u_int);
291 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
292     struct mbuf *);
293 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
294     int, bool *);
295 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
296     int, bool *);
297 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
298 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
299 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
300 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
301 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
302 static inline uint16_t read_hw_cidx(struct sge_eq *);
303 static inline u_int reclaimable_tx_desc(struct sge_eq *);
304 static inline u_int total_available_tx_desc(struct sge_eq *);
305 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
306 static void tx_reclaim(void *, int);
307 static __be64 get_flit(struct sglist_seg *, int, int);
308 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
309     struct mbuf *);
310 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
311     struct mbuf *);
312 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
313 static void wrq_tx_drain(void *, int);
314 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
315 
316 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
317 #ifdef RATELIMIT
318 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
319 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
320     struct mbuf *);
321 #endif
322 
323 static counter_u64_t extfree_refs;
324 static counter_u64_t extfree_rels;
325 
326 an_handler_t t4_an_handler;
327 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
328 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
329 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
330 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
331 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
332 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
333 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
334 
335 void
336 t4_register_an_handler(an_handler_t h)
337 {
338 	uintptr_t *loc;
339 
340 	MPASS(h == NULL || t4_an_handler == NULL);
341 
342 	loc = (uintptr_t *)&t4_an_handler;
343 	atomic_store_rel_ptr(loc, (uintptr_t)h);
344 }
345 
346 void
347 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
348 {
349 	uintptr_t *loc;
350 
351 	MPASS(type < nitems(t4_fw_msg_handler));
352 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
353 	/*
354 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
355 	 * handler dispatch table.  Reject any attempt to install a handler for
356 	 * this subtype.
357 	 */
358 	MPASS(type != FW_TYPE_RSSCPL);
359 	MPASS(type != FW6_TYPE_RSSCPL);
360 
361 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
362 	atomic_store_rel_ptr(loc, (uintptr_t)h);
363 }
364 
365 void
366 t4_register_cpl_handler(int opcode, cpl_handler_t h)
367 {
368 	uintptr_t *loc;
369 
370 	MPASS(opcode < nitems(t4_cpl_handler));
371 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
372 
373 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
374 	atomic_store_rel_ptr(loc, (uintptr_t)h);
375 }
376 
377 static int
378 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
379     struct mbuf *m)
380 {
381 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
382 	u_int tid;
383 	int cookie;
384 
385 	MPASS(m == NULL);
386 
387 	tid = GET_TID(cpl);
388 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
389 		/*
390 		 * The return code for filter-write is put in the CPL cookie so
391 		 * we have to rely on the hardware tid (is_ftid) to determine
392 		 * that this is a response to a filter.
393 		 */
394 		cookie = CPL_COOKIE_FILTER;
395 	} else {
396 		cookie = G_COOKIE(cpl->cookie);
397 	}
398 	MPASS(cookie > CPL_COOKIE_RESERVED);
399 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
400 
401 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
402 }
403 
404 static int
405 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
406     struct mbuf *m)
407 {
408 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
409 	unsigned int cookie;
410 
411 	MPASS(m == NULL);
412 
413 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
414 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
415 }
416 
417 static int
418 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
419     struct mbuf *m)
420 {
421 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
422 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
423 
424 	MPASS(m == NULL);
425 	MPASS(cookie != CPL_COOKIE_RESERVED);
426 
427 	return (act_open_rpl_handlers[cookie](iq, rss, m));
428 }
429 
430 static int
431 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
432     struct mbuf *m)
433 {
434 	struct adapter *sc = iq->adapter;
435 	u_int cookie;
436 
437 	MPASS(m == NULL);
438 	if (is_hashfilter(sc))
439 		cookie = CPL_COOKIE_HASHFILTER;
440 	else
441 		cookie = CPL_COOKIE_TOM;
442 
443 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
444 }
445 
446 static int
447 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
448 {
449 	struct adapter *sc = iq->adapter;
450 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
451 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
452 	u_int cookie;
453 
454 	MPASS(m == NULL);
455 	if (is_etid(sc, tid))
456 		cookie = CPL_COOKIE_ETHOFLD;
457 	else
458 		cookie = CPL_COOKIE_TOM;
459 
460 	return (fw4_ack_handlers[cookie](iq, rss, m));
461 }
462 
463 static void
464 t4_init_shared_cpl_handlers(void)
465 {
466 
467 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
468 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
469 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
470 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
471 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
472 }
473 
474 void
475 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
476 {
477 	uintptr_t *loc;
478 
479 	MPASS(opcode < nitems(t4_cpl_handler));
480 	MPASS(cookie > CPL_COOKIE_RESERVED);
481 	MPASS(cookie < NUM_CPL_COOKIES);
482 	MPASS(t4_cpl_handler[opcode] != NULL);
483 
484 	switch (opcode) {
485 	case CPL_SET_TCB_RPL:
486 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
487 		break;
488 	case CPL_L2T_WRITE_RPL:
489 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
490 		break;
491 	case CPL_ACT_OPEN_RPL:
492 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
493 		break;
494 	case CPL_ABORT_RPL_RSS:
495 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
496 		break;
497 	case CPL_FW4_ACK:
498 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
499 		break;
500 	default:
501 		MPASS(0);
502 		return;
503 	}
504 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
505 	atomic_store_rel_ptr(loc, (uintptr_t)h);
506 }
507 
508 /*
509  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
510  */
511 void
512 t4_sge_modload(void)
513 {
514 
515 	if (fl_pktshift < 0 || fl_pktshift > 7) {
516 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
517 		    " using 0 instead.\n", fl_pktshift);
518 		fl_pktshift = 0;
519 	}
520 
521 	if (spg_len != 64 && spg_len != 128) {
522 		int len;
523 
524 #if defined(__i386__) || defined(__amd64__)
525 		len = cpu_clflush_line_size > 64 ? 128 : 64;
526 #else
527 		len = 64;
528 #endif
529 		if (spg_len != -1) {
530 			printf("Invalid hw.cxgbe.spg_len value (%d),"
531 			    " using %d instead.\n", spg_len, len);
532 		}
533 		spg_len = len;
534 	}
535 
536 	if (cong_drop < -1 || cong_drop > 1) {
537 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
538 		    " using 0 instead.\n", cong_drop);
539 		cong_drop = 0;
540 	}
541 
542 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
543 		printf("Invalid hw.cxgbe.tscale value (%d),"
544 		    " using 1 instead.\n", tscale);
545 		tscale = 1;
546 	}
547 
548 	if (largest_rx_cluster != MCLBYTES &&
549 #if MJUMPAGESIZE != MCLBYTES
550 	    largest_rx_cluster != MJUMPAGESIZE &&
551 #endif
552 	    largest_rx_cluster != MJUM9BYTES &&
553 	    largest_rx_cluster != MJUM16BYTES) {
554 		printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
555 		    " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
556 		largest_rx_cluster = MJUM16BYTES;
557 	}
558 
559 	if (safest_rx_cluster != MCLBYTES &&
560 #if MJUMPAGESIZE != MCLBYTES
561 	    safest_rx_cluster != MJUMPAGESIZE &&
562 #endif
563 	    safest_rx_cluster != MJUM9BYTES &&
564 	    safest_rx_cluster != MJUM16BYTES) {
565 		printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
566 		    " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
567 		safest_rx_cluster = MJUMPAGESIZE;
568 	}
569 
570 	extfree_refs = counter_u64_alloc(M_WAITOK);
571 	extfree_rels = counter_u64_alloc(M_WAITOK);
572 	pullups = counter_u64_alloc(M_WAITOK);
573 	defrags = counter_u64_alloc(M_WAITOK);
574 	counter_u64_zero(extfree_refs);
575 	counter_u64_zero(extfree_rels);
576 	counter_u64_zero(pullups);
577 	counter_u64_zero(defrags);
578 
579 	t4_init_shared_cpl_handlers();
580 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
581 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
582 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
583 #ifdef RATELIMIT
584 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
585 	    CPL_COOKIE_ETHOFLD);
586 #endif
587 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
588 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
589 }
590 
591 void
592 t4_sge_modunload(void)
593 {
594 
595 	counter_u64_free(extfree_refs);
596 	counter_u64_free(extfree_rels);
597 	counter_u64_free(pullups);
598 	counter_u64_free(defrags);
599 }
600 
601 uint64_t
602 t4_sge_extfree_refs(void)
603 {
604 	uint64_t refs, rels;
605 
606 	rels = counter_u64_fetch(extfree_rels);
607 	refs = counter_u64_fetch(extfree_refs);
608 
609 	return (refs - rels);
610 }
611 
612 /* max 4096 */
613 #define MAX_PACK_BOUNDARY 512
614 
615 static inline void
616 setup_pad_and_pack_boundaries(struct adapter *sc)
617 {
618 	uint32_t v, m;
619 	int pad, pack, pad_shift;
620 
621 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
622 	    X_INGPADBOUNDARY_SHIFT;
623 	pad = fl_pad;
624 	if (fl_pad < (1 << pad_shift) ||
625 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
626 	    !powerof2(fl_pad)) {
627 		/*
628 		 * If there is any chance that we might use buffer packing and
629 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
630 		 * it to the minimum allowed in all other cases.
631 		 */
632 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
633 
634 		/*
635 		 * For fl_pad = 0 we'll still write a reasonable value to the
636 		 * register but all the freelists will opt out of padding.
637 		 * We'll complain here only if the user tried to set it to a
638 		 * value greater than 0 that was invalid.
639 		 */
640 		if (fl_pad > 0) {
641 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
642 			    " (%d), using %d instead.\n", fl_pad, pad);
643 		}
644 	}
645 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
646 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
647 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
648 
649 	if (is_t4(sc)) {
650 		if (fl_pack != -1 && fl_pack != pad) {
651 			/* Complain but carry on. */
652 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
653 			    " using %d instead.\n", fl_pack, pad);
654 		}
655 		return;
656 	}
657 
658 	pack = fl_pack;
659 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
660 	    !powerof2(fl_pack)) {
661 		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
662 			pack = MAX_PACK_BOUNDARY;
663 		else
664 			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
665 		MPASS(powerof2(pack));
666 		if (pack < 16)
667 			pack = 16;
668 		if (pack == 32)
669 			pack = 64;
670 		if (pack > 4096)
671 			pack = 4096;
672 		if (fl_pack != -1) {
673 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
674 			    " (%d), using %d instead.\n", fl_pack, pack);
675 		}
676 	}
677 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
678 	if (pack == 16)
679 		v = V_INGPACKBOUNDARY(0);
680 	else
681 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
682 
683 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
684 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
685 }
686 
687 /*
688  * adap->params.vpd.cclk must be set up before this is called.
689  */
690 void
691 t4_tweak_chip_settings(struct adapter *sc)
692 {
693 	int i, reg;
694 	uint32_t v, m;
695 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
696 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
697 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
698 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
699 	static int sw_buf_sizes[] = {
700 		MCLBYTES,
701 #if MJUMPAGESIZE != MCLBYTES
702 		MJUMPAGESIZE,
703 #endif
704 		MJUM9BYTES,
705 		MJUM16BYTES
706 	};
707 
708 	KASSERT(sc->flags & MASTER_PF,
709 	    ("%s: trying to change chip settings when not master.", __func__));
710 
711 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
712 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
713 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
714 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
715 
716 	setup_pad_and_pack_boundaries(sc);
717 
718 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
719 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
720 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
721 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
722 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
723 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
724 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
725 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
726 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
727 
728 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
729 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
730 	reg = A_SGE_FL_BUFFER_SIZE2;
731 	for (i = 0; i < nitems(sw_buf_sizes); i++) {
732 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
733 		t4_write_reg(sc, reg, sw_buf_sizes[i]);
734 		reg += 4;
735 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
736 		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
737 		reg += 4;
738 	}
739 
740 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
741 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
742 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
743 
744 	KASSERT(intr_timer[0] <= timer_max,
745 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
746 	    timer_max));
747 	for (i = 1; i < nitems(intr_timer); i++) {
748 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
749 		    ("%s: timers not listed in increasing order (%d)",
750 		    __func__, i));
751 
752 		while (intr_timer[i] > timer_max) {
753 			if (i == nitems(intr_timer) - 1) {
754 				intr_timer[i] = timer_max;
755 				break;
756 			}
757 			intr_timer[i] += intr_timer[i - 1];
758 			intr_timer[i] /= 2;
759 		}
760 	}
761 
762 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
763 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
764 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
765 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
766 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
767 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
768 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
769 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
770 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
771 
772 	if (chip_id(sc) >= CHELSIO_T6) {
773 		m = V_TSCALE(M_TSCALE);
774 		if (tscale == 1)
775 			v = 0;
776 		else
777 			v = V_TSCALE(tscale - 2);
778 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
779 
780 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
781 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
782 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
783 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
784 			v &= ~m;
785 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
786 			    V_WRTHRTHRESH(16);
787 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
788 		}
789 	}
790 
791 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
792 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
793 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
794 
795 	/*
796 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
797 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
798 	 * may have to deal with is MAXPHYS + 1 page.
799 	 */
800 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
801 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
802 
803 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
804 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
805 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
806 
807 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
808 	    F_RESETDDPOFFSET;
809 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
810 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
811 }
812 
813 /*
814  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
815  * address mut be 16B aligned.  If padding is in use the buffer's start and end
816  * need to be aligned to the pad boundary as well.  We'll just make sure that
817  * the size is a multiple of the pad boundary here, it is up to the buffer
818  * allocation code to make sure the start of the buffer is aligned.
819  */
820 static inline int
821 hwsz_ok(struct adapter *sc, int hwsz)
822 {
823 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
824 
825 	return (hwsz >= 64 && (hwsz & mask) == 0);
826 }
827 
828 /*
829  * Initialize the rx buffer sizes and figure out which zones the buffers will
830  * be allocated from.
831  */
832 void
833 t4_init_rx_buf_info(struct adapter *sc)
834 {
835 	struct sge *s = &sc->sge;
836 	struct sge_params *sp = &sc->params.sge;
837 	int i, j, n;
838 	static int sw_buf_sizes[] = {	/* Sorted by size */
839 		MCLBYTES,
840 #if MJUMPAGESIZE != MCLBYTES
841 		MJUMPAGESIZE,
842 #endif
843 		MJUM9BYTES,
844 		MJUM16BYTES
845 	};
846 	struct rx_buf_info *rxb;
847 
848 	s->safe_zidx = -1;
849 	rxb = &s->rx_buf_info[0];
850 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
851 		rxb->size1 = sw_buf_sizes[i];
852 		rxb->zone = m_getzone(rxb->size1);
853 		rxb->type = m_gettype(rxb->size1);
854 		rxb->size2 = 0;
855 		rxb->hwidx1 = -1;
856 		rxb->hwidx2 = -1;
857 		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
858 			int hwsize = sp->sge_fl_buffer_size[j];
859 
860 			if (!hwsz_ok(sc, hwsize))
861 				continue;
862 
863 			/* hwidx for size1 */
864 			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
865 				rxb->hwidx1 = j;
866 
867 			/* hwidx for size2 (buffer packing) */
868 			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
869 				continue;
870 			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
871 			if (n == 0) {
872 				rxb->hwidx2 = j;
873 				rxb->size2 = hwsize;
874 				break;	/* stop looking */
875 			}
876 			if (rxb->hwidx2 != -1) {
877 				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
878 				    hwsize - CL_METADATA_SIZE) {
879 					rxb->hwidx2 = j;
880 					rxb->size2 = hwsize;
881 				}
882 			} else if (n <= 2 * CL_METADATA_SIZE) {
883 				rxb->hwidx2 = j;
884 				rxb->size2 = hwsize;
885 			}
886 		}
887 		if (rxb->hwidx2 != -1)
888 			sc->flags |= BUF_PACKING_OK;
889 		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
890 			s->safe_zidx = i;
891 	}
892 }
893 
894 /*
895  * Verify some basic SGE settings for the PF and VF driver, and other
896  * miscellaneous settings for the PF driver.
897  */
898 int
899 t4_verify_chip_settings(struct adapter *sc)
900 {
901 	struct sge_params *sp = &sc->params.sge;
902 	uint32_t m, v, r;
903 	int rc = 0;
904 	const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
905 
906 	m = F_RXPKTCPLMODE;
907 	v = F_RXPKTCPLMODE;
908 	r = sp->sge_control;
909 	if ((r & m) != v) {
910 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
911 		rc = EINVAL;
912 	}
913 
914 	/*
915 	 * If this changes then every single use of PAGE_SHIFT in the driver
916 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
917 	 */
918 	if (sp->page_shift != PAGE_SHIFT) {
919 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
920 		rc = EINVAL;
921 	}
922 
923 	if (sc->flags & IS_VF)
924 		return (0);
925 
926 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
927 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
928 	if (r != v) {
929 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
930 		if (sc->vres.ddp.size != 0)
931 			rc = EINVAL;
932 	}
933 
934 	m = v = F_TDDPTAGTCB;
935 	r = t4_read_reg(sc, A_ULP_RX_CTL);
936 	if ((r & m) != v) {
937 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
938 		if (sc->vres.ddp.size != 0)
939 			rc = EINVAL;
940 	}
941 
942 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
943 	    F_RESETDDPOFFSET;
944 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
945 	r = t4_read_reg(sc, A_TP_PARA_REG5);
946 	if ((r & m) != v) {
947 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
948 		if (sc->vres.ddp.size != 0)
949 			rc = EINVAL;
950 	}
951 
952 	return (rc);
953 }
954 
955 int
956 t4_create_dma_tag(struct adapter *sc)
957 {
958 	int rc;
959 
960 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
961 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
962 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
963 	    NULL, &sc->dmat);
964 	if (rc != 0) {
965 		device_printf(sc->dev,
966 		    "failed to create main DMA tag: %d\n", rc);
967 	}
968 
969 	return (rc);
970 }
971 
972 void
973 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
974     struct sysctl_oid_list *children)
975 {
976 	struct sge_params *sp = &sc->params.sge;
977 
978 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
979 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
980 	    sysctl_bufsizes, "A", "freelist buffer sizes");
981 
982 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
983 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
984 
985 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
986 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
987 
988 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
989 	    NULL, sp->spg_len, "status page size (bytes)");
990 
991 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
992 	    NULL, cong_drop, "congestion drop setting");
993 
994 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
995 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
996 }
997 
998 int
999 t4_destroy_dma_tag(struct adapter *sc)
1000 {
1001 	if (sc->dmat)
1002 		bus_dma_tag_destroy(sc->dmat);
1003 
1004 	return (0);
1005 }
1006 
1007 /*
1008  * Allocate and initialize the firmware event queue, control queues, and special
1009  * purpose rx queues owned by the adapter.
1010  *
1011  * Returns errno on failure.  Resources allocated up to that point may still be
1012  * allocated.  Caller is responsible for cleanup in case this function fails.
1013  */
1014 int
1015 t4_setup_adapter_queues(struct adapter *sc)
1016 {
1017 	struct sysctl_oid *oid;
1018 	struct sysctl_oid_list *children;
1019 	int rc, i;
1020 
1021 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1022 
1023 	sysctl_ctx_init(&sc->ctx);
1024 	sc->flags |= ADAP_SYSCTL_CTX;
1025 
1026 	/*
1027 	 * Firmware event queue
1028 	 */
1029 	rc = alloc_fwq(sc);
1030 	if (rc != 0)
1031 		return (rc);
1032 
1033 	/*
1034 	 * That's all for the VF driver.
1035 	 */
1036 	if (sc->flags & IS_VF)
1037 		return (rc);
1038 
1039 	oid = device_get_sysctl_tree(sc->dev);
1040 	children = SYSCTL_CHILDREN(oid);
1041 
1042 	/*
1043 	 * XXX: General purpose rx queues, one per port.
1044 	 */
1045 
1046 	/*
1047 	 * Control queues, one per port.
1048 	 */
1049 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "ctrlq",
1050 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1051 	for_each_port(sc, i) {
1052 		struct sge_wrq *ctrlq = &sc->sge.ctrlq[i];
1053 
1054 		rc = alloc_ctrlq(sc, ctrlq, i, oid);
1055 		if (rc != 0)
1056 			return (rc);
1057 	}
1058 
1059 	return (rc);
1060 }
1061 
1062 /*
1063  * Idempotent
1064  */
1065 int
1066 t4_teardown_adapter_queues(struct adapter *sc)
1067 {
1068 	int i;
1069 
1070 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1071 
1072 	/* Do this before freeing the queue */
1073 	if (sc->flags & ADAP_SYSCTL_CTX) {
1074 		sysctl_ctx_free(&sc->ctx);
1075 		sc->flags &= ~ADAP_SYSCTL_CTX;
1076 	}
1077 
1078 	if (!(sc->flags & IS_VF)) {
1079 		for_each_port(sc, i)
1080 			free_wrq(sc, &sc->sge.ctrlq[i]);
1081 	}
1082 	free_fwq(sc);
1083 
1084 	return (0);
1085 }
1086 
1087 /* Maximum payload that could arrive with a single iq descriptor. */
1088 static inline int
1089 max_rx_payload(struct adapter *sc, struct ifnet *ifp, const bool ofld)
1090 {
1091 	int maxp;
1092 
1093 	/* large enough even when hw VLAN extraction is disabled */
1094 	maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1095 	    ETHER_VLAN_ENCAP_LEN + ifp->if_mtu;
1096 	if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1097 	    maxp < sc->params.tp.max_rx_pdu)
1098 		maxp = sc->params.tp.max_rx_pdu;
1099 	return (maxp);
1100 }
1101 
1102 int
1103 t4_setup_vi_queues(struct vi_info *vi)
1104 {
1105 	int rc = 0, i, intr_idx, iqidx;
1106 	struct sge_rxq *rxq;
1107 	struct sge_txq *txq;
1108 #ifdef TCP_OFFLOAD
1109 	struct sge_ofld_rxq *ofld_rxq;
1110 #endif
1111 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1112 	struct sge_wrq *ofld_txq;
1113 #endif
1114 #ifdef DEV_NETMAP
1115 	int saved_idx;
1116 	struct sge_nm_rxq *nm_rxq;
1117 	struct sge_nm_txq *nm_txq;
1118 #endif
1119 	char name[16];
1120 	struct port_info *pi = vi->pi;
1121 	struct adapter *sc = pi->adapter;
1122 	struct ifnet *ifp = vi->ifp;
1123 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
1124 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1125 	int maxp;
1126 
1127 	/* Interrupt vector to start from (when using multiple vectors) */
1128 	intr_idx = vi->first_intr;
1129 
1130 #ifdef DEV_NETMAP
1131 	saved_idx = intr_idx;
1132 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1133 
1134 		/* netmap is supported with direct interrupts only. */
1135 		MPASS(!forwarding_intr_to_fwq(sc));
1136 
1137 		/*
1138 		 * We don't have buffers to back the netmap rx queues
1139 		 * right now so we create the queues in a way that
1140 		 * doesn't set off any congestion signal in the chip.
1141 		 */
1142 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1143 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queues");
1144 		for_each_nm_rxq(vi, i, nm_rxq) {
1145 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1146 			if (rc != 0)
1147 				goto done;
1148 			intr_idx++;
1149 		}
1150 
1151 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1152 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queues");
1153 		for_each_nm_txq(vi, i, nm_txq) {
1154 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1155 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid);
1156 			if (rc != 0)
1157 				goto done;
1158 		}
1159 	}
1160 
1161 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1162 	intr_idx = saved_idx;
1163 #endif
1164 
1165 	/*
1166 	 * Allocate rx queues first because a default iqid is required when
1167 	 * creating a tx queue.
1168 	 */
1169 	maxp = max_rx_payload(sc, ifp, false);
1170 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1171 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queues");
1172 	for_each_rxq(vi, i, rxq) {
1173 
1174 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1175 
1176 		snprintf(name, sizeof(name), "%s rxq%d-fl",
1177 		    device_get_nameunit(vi->dev), i);
1178 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1179 
1180 		rc = alloc_rxq(vi, rxq,
1181 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1182 		if (rc != 0)
1183 			goto done;
1184 		intr_idx++;
1185 	}
1186 #ifdef DEV_NETMAP
1187 	if (ifp->if_capabilities & IFCAP_NETMAP)
1188 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1189 #endif
1190 #ifdef TCP_OFFLOAD
1191 	maxp = max_rx_payload(sc, ifp, true);
1192 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1193 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queues for offloaded TCP connections");
1194 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1195 
1196 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
1197 		    vi->qsize_rxq);
1198 
1199 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1200 		    device_get_nameunit(vi->dev), i);
1201 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1202 
1203 		rc = alloc_ofld_rxq(vi, ofld_rxq,
1204 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1205 		if (rc != 0)
1206 			goto done;
1207 		intr_idx++;
1208 	}
1209 #endif
1210 
1211 	/*
1212 	 * Now the tx queues.
1213 	 */
1214 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq",
1215 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queues");
1216 	for_each_txq(vi, i, txq) {
1217 		iqidx = vi->first_rxq + (i % vi->nrxq);
1218 		snprintf(name, sizeof(name), "%s txq%d",
1219 		    device_get_nameunit(vi->dev), i);
1220 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
1221 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1222 
1223 		rc = alloc_txq(vi, txq, i, oid);
1224 		if (rc != 0)
1225 			goto done;
1226 	}
1227 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1228 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1229 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queues for TOE/ETHOFLD");
1230 	for_each_ofld_txq(vi, i, ofld_txq) {
1231 		struct sysctl_oid *oid2;
1232 
1233 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1234 		    device_get_nameunit(vi->dev), i);
1235 		if (vi->nofldrxq > 0) {
1236 			iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq);
1237 			init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq,
1238 			    pi->tx_chan, sc->sge.ofld_rxq[iqidx].iq.cntxt_id,
1239 			    name);
1240 		} else {
1241 			iqidx = vi->first_rxq + (i % vi->nrxq);
1242 			init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq,
1243 			    pi->tx_chan, sc->sge.rxq[iqidx].iq.cntxt_id, name);
1244 		}
1245 
1246 		snprintf(name, sizeof(name), "%d", i);
1247 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1248 		    name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
1249 
1250 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1251 		if (rc != 0)
1252 			goto done;
1253 	}
1254 #endif
1255 done:
1256 	if (rc)
1257 		t4_teardown_vi_queues(vi);
1258 
1259 	return (rc);
1260 }
1261 
1262 /*
1263  * Idempotent
1264  */
1265 int
1266 t4_teardown_vi_queues(struct vi_info *vi)
1267 {
1268 	int i;
1269 	struct sge_rxq *rxq;
1270 	struct sge_txq *txq;
1271 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1272 	struct port_info *pi = vi->pi;
1273 	struct adapter *sc = pi->adapter;
1274 	struct sge_wrq *ofld_txq;
1275 #endif
1276 #ifdef TCP_OFFLOAD
1277 	struct sge_ofld_rxq *ofld_rxq;
1278 #endif
1279 #ifdef DEV_NETMAP
1280 	struct sge_nm_rxq *nm_rxq;
1281 	struct sge_nm_txq *nm_txq;
1282 #endif
1283 
1284 	/* Do this before freeing the queues */
1285 	if (vi->flags & VI_SYSCTL_CTX) {
1286 		sysctl_ctx_free(&vi->ctx);
1287 		vi->flags &= ~VI_SYSCTL_CTX;
1288 	}
1289 
1290 #ifdef DEV_NETMAP
1291 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1292 		for_each_nm_txq(vi, i, nm_txq) {
1293 			free_nm_txq(vi, nm_txq);
1294 		}
1295 
1296 		for_each_nm_rxq(vi, i, nm_rxq) {
1297 			free_nm_rxq(vi, nm_rxq);
1298 		}
1299 	}
1300 #endif
1301 
1302 	/*
1303 	 * Take down all the tx queues first, as they reference the rx queues
1304 	 * (for egress updates, etc.).
1305 	 */
1306 
1307 	for_each_txq(vi, i, txq) {
1308 		free_txq(vi, txq);
1309 	}
1310 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1311 	for_each_ofld_txq(vi, i, ofld_txq) {
1312 		free_wrq(sc, ofld_txq);
1313 	}
1314 #endif
1315 
1316 	/*
1317 	 * Then take down the rx queues.
1318 	 */
1319 
1320 	for_each_rxq(vi, i, rxq) {
1321 		free_rxq(vi, rxq);
1322 	}
1323 #ifdef TCP_OFFLOAD
1324 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1325 		free_ofld_rxq(vi, ofld_rxq);
1326 	}
1327 #endif
1328 
1329 	return (0);
1330 }
1331 
1332 /*
1333  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1334  * unusual scenario.
1335  *
1336  * a) Deals with errors, if any.
1337  * b) Services firmware event queue, which is taking interrupts for all other
1338  *    queues.
1339  */
1340 void
1341 t4_intr_all(void *arg)
1342 {
1343 	struct adapter *sc = arg;
1344 	struct sge_iq *fwq = &sc->sge.fwq;
1345 
1346 	MPASS(sc->intr_count == 1);
1347 
1348 	if (sc->intr_type == INTR_INTX)
1349 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1350 
1351 	t4_intr_err(arg);
1352 	t4_intr_evt(fwq);
1353 }
1354 
1355 /*
1356  * Interrupt handler for errors (installed directly when multiple interrupts are
1357  * being used, or called by t4_intr_all).
1358  */
1359 void
1360 t4_intr_err(void *arg)
1361 {
1362 	struct adapter *sc = arg;
1363 	uint32_t v;
1364 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1365 
1366 	if (sc->flags & ADAP_ERR)
1367 		return;
1368 
1369 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1370 	if (v & F_PFSW) {
1371 		sc->swintr++;
1372 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1373 	}
1374 
1375 	t4_slow_intr_handler(sc, verbose);
1376 }
1377 
1378 /*
1379  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1380  * such queue right now.
1381  */
1382 void
1383 t4_intr_evt(void *arg)
1384 {
1385 	struct sge_iq *iq = arg;
1386 
1387 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1388 		service_iq(iq, 0);
1389 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1390 	}
1391 }
1392 
1393 /*
1394  * Interrupt handler for iq+fl queues.
1395  */
1396 void
1397 t4_intr(void *arg)
1398 {
1399 	struct sge_iq *iq = arg;
1400 
1401 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1402 		service_iq_fl(iq, 0);
1403 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1404 	}
1405 }
1406 
1407 #ifdef DEV_NETMAP
1408 /*
1409  * Interrupt handler for netmap rx queues.
1410  */
1411 void
1412 t4_nm_intr(void *arg)
1413 {
1414 	struct sge_nm_rxq *nm_rxq = arg;
1415 
1416 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1417 		service_nm_rxq(nm_rxq);
1418 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1419 	}
1420 }
1421 
1422 /*
1423  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1424  */
1425 void
1426 t4_vi_intr(void *arg)
1427 {
1428 	struct irq *irq = arg;
1429 
1430 	MPASS(irq->nm_rxq != NULL);
1431 	t4_nm_intr(irq->nm_rxq);
1432 
1433 	MPASS(irq->rxq != NULL);
1434 	t4_intr(irq->rxq);
1435 }
1436 #endif
1437 
1438 /*
1439  * Deals with interrupts on an iq-only (no freelist) queue.
1440  */
1441 static int
1442 service_iq(struct sge_iq *iq, int budget)
1443 {
1444 	struct sge_iq *q;
1445 	struct adapter *sc = iq->adapter;
1446 	struct iq_desc *d = &iq->desc[iq->cidx];
1447 	int ndescs = 0, limit;
1448 	int rsp_type;
1449 	uint32_t lq;
1450 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1451 
1452 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1453 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1454 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1455 	    iq->flags));
1456 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1457 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1458 
1459 	limit = budget ? budget : iq->qsize / 16;
1460 
1461 	/*
1462 	 * We always come back and check the descriptor ring for new indirect
1463 	 * interrupts and other responses after running a single handler.
1464 	 */
1465 	for (;;) {
1466 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1467 
1468 			rmb();
1469 
1470 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1471 			lq = be32toh(d->rsp.pldbuflen_qid);
1472 
1473 			switch (rsp_type) {
1474 			case X_RSPD_TYPE_FLBUF:
1475 				panic("%s: data for an iq (%p) with no freelist",
1476 				    __func__, iq);
1477 
1478 				/* NOTREACHED */
1479 
1480 			case X_RSPD_TYPE_CPL:
1481 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1482 				    ("%s: bad opcode %02x.", __func__,
1483 				    d->rss.opcode));
1484 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1485 				break;
1486 
1487 			case X_RSPD_TYPE_INTR:
1488 				/*
1489 				 * There are 1K interrupt-capable queues (qids 0
1490 				 * through 1023).  A response type indicating a
1491 				 * forwarded interrupt with a qid >= 1K is an
1492 				 * iWARP async notification.
1493 				 */
1494 				if (__predict_true(lq >= 1024)) {
1495 					t4_an_handler(iq, &d->rsp);
1496 					break;
1497 				}
1498 
1499 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1500 				    sc->sge.iq_base];
1501 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1502 				    IQS_BUSY)) {
1503 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1504 						(void) atomic_cmpset_int(&q->state,
1505 						    IQS_BUSY, IQS_IDLE);
1506 					} else {
1507 						STAILQ_INSERT_TAIL(&iql, q,
1508 						    link);
1509 					}
1510 				}
1511 				break;
1512 
1513 			default:
1514 				KASSERT(0,
1515 				    ("%s: illegal response type %d on iq %p",
1516 				    __func__, rsp_type, iq));
1517 				log(LOG_ERR,
1518 				    "%s: illegal response type %d on iq %p",
1519 				    device_get_nameunit(sc->dev), rsp_type, iq);
1520 				break;
1521 			}
1522 
1523 			d++;
1524 			if (__predict_false(++iq->cidx == iq->sidx)) {
1525 				iq->cidx = 0;
1526 				iq->gen ^= F_RSPD_GEN;
1527 				d = &iq->desc[0];
1528 			}
1529 			if (__predict_false(++ndescs == limit)) {
1530 				t4_write_reg(sc, sc->sge_gts_reg,
1531 				    V_CIDXINC(ndescs) |
1532 				    V_INGRESSQID(iq->cntxt_id) |
1533 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1534 				ndescs = 0;
1535 
1536 				if (budget) {
1537 					return (EINPROGRESS);
1538 				}
1539 			}
1540 		}
1541 
1542 		if (STAILQ_EMPTY(&iql))
1543 			break;
1544 
1545 		/*
1546 		 * Process the head only, and send it to the back of the list if
1547 		 * it's still not done.
1548 		 */
1549 		q = STAILQ_FIRST(&iql);
1550 		STAILQ_REMOVE_HEAD(&iql, link);
1551 		if (service_iq_fl(q, q->qsize / 8) == 0)
1552 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1553 		else
1554 			STAILQ_INSERT_TAIL(&iql, q, link);
1555 	}
1556 
1557 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1558 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1559 
1560 	return (0);
1561 }
1562 
1563 static inline int
1564 sort_before_lro(struct lro_ctrl *lro)
1565 {
1566 
1567 	return (lro->lro_mbuf_max != 0);
1568 }
1569 
1570 static inline uint64_t
1571 last_flit_to_ns(struct adapter *sc, uint64_t lf)
1572 {
1573 	uint64_t n = be64toh(lf) & 0xfffffffffffffff;	/* 60b, not 64b. */
1574 
1575 	if (n > UINT64_MAX / 1000000)
1576 		return (n / sc->params.vpd.cclk * 1000000);
1577 	else
1578 		return (n * 1000000 / sc->params.vpd.cclk);
1579 }
1580 
1581 static inline void
1582 move_to_next_rxbuf(struct sge_fl *fl)
1583 {
1584 
1585 	fl->rx_offset = 0;
1586 	if (__predict_false((++fl->cidx & 7) == 0)) {
1587 		uint16_t cidx = fl->cidx >> 3;
1588 
1589 		if (__predict_false(cidx == fl->sidx))
1590 			fl->cidx = cidx = 0;
1591 		fl->hw_cidx = cidx;
1592 	}
1593 }
1594 
1595 /*
1596  * Deals with interrupts on an iq+fl queue.
1597  */
1598 static int
1599 service_iq_fl(struct sge_iq *iq, int budget)
1600 {
1601 	struct sge_rxq *rxq = iq_to_rxq(iq);
1602 	struct sge_fl *fl;
1603 	struct adapter *sc = iq->adapter;
1604 	struct iq_desc *d = &iq->desc[iq->cidx];
1605 	int ndescs, limit;
1606 	int rsp_type, starved;
1607 	uint32_t lq;
1608 	uint16_t fl_hw_cidx;
1609 	struct mbuf *m0;
1610 #if defined(INET) || defined(INET6)
1611 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1612 	struct lro_ctrl *lro = &rxq->lro;
1613 #endif
1614 
1615 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1616 	MPASS(iq->flags & IQ_HAS_FL);
1617 
1618 	ndescs = 0;
1619 #if defined(INET) || defined(INET6)
1620 	if (iq->flags & IQ_ADJ_CREDIT) {
1621 		MPASS(sort_before_lro(lro));
1622 		iq->flags &= ~IQ_ADJ_CREDIT;
1623 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1624 			tcp_lro_flush_all(lro);
1625 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1626 			    V_INGRESSQID((u32)iq->cntxt_id) |
1627 			    V_SEINTARM(iq->intr_params));
1628 			return (0);
1629 		}
1630 		ndescs = 1;
1631 	}
1632 #else
1633 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1634 #endif
1635 
1636 	limit = budget ? budget : iq->qsize / 16;
1637 	fl = &rxq->fl;
1638 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1639 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1640 
1641 		rmb();
1642 
1643 		m0 = NULL;
1644 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1645 		lq = be32toh(d->rsp.pldbuflen_qid);
1646 
1647 		switch (rsp_type) {
1648 		case X_RSPD_TYPE_FLBUF:
1649 			if (lq & F_RSPD_NEWBUF) {
1650 				if (fl->rx_offset > 0)
1651 					move_to_next_rxbuf(fl);
1652 				lq = G_RSPD_LEN(lq);
1653 			}
1654 			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1655 				FL_LOCK(fl);
1656 				refill_fl(sc, fl, 64);
1657 				FL_UNLOCK(fl);
1658 				fl_hw_cidx = fl->hw_cidx;
1659 			}
1660 
1661 			if (d->rss.opcode == CPL_RX_PKT) {
1662 				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1663 					break;
1664 				goto out;
1665 			}
1666 			m0 = get_fl_payload(sc, fl, lq);
1667 			if (__predict_false(m0 == NULL))
1668 				goto out;
1669 
1670 			/* fall through */
1671 
1672 		case X_RSPD_TYPE_CPL:
1673 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1674 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1675 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1676 			break;
1677 
1678 		case X_RSPD_TYPE_INTR:
1679 
1680 			/*
1681 			 * There are 1K interrupt-capable queues (qids 0
1682 			 * through 1023).  A response type indicating a
1683 			 * forwarded interrupt with a qid >= 1K is an
1684 			 * iWARP async notification.  That is the only
1685 			 * acceptable indirect interrupt on this queue.
1686 			 */
1687 			if (__predict_false(lq < 1024)) {
1688 				panic("%s: indirect interrupt on iq_fl %p "
1689 				    "with qid %u", __func__, iq, lq);
1690 			}
1691 
1692 			t4_an_handler(iq, &d->rsp);
1693 			break;
1694 
1695 		default:
1696 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1697 			    __func__, rsp_type, iq));
1698 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1699 			    device_get_nameunit(sc->dev), rsp_type, iq);
1700 			break;
1701 		}
1702 
1703 		d++;
1704 		if (__predict_false(++iq->cidx == iq->sidx)) {
1705 			iq->cidx = 0;
1706 			iq->gen ^= F_RSPD_GEN;
1707 			d = &iq->desc[0];
1708 		}
1709 		if (__predict_false(++ndescs == limit)) {
1710 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1711 			    V_INGRESSQID(iq->cntxt_id) |
1712 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1713 
1714 #if defined(INET) || defined(INET6)
1715 			if (iq->flags & IQ_LRO_ENABLED &&
1716 			    !sort_before_lro(lro) &&
1717 			    sc->lro_timeout != 0) {
1718 				tcp_lro_flush_inactive(lro, &lro_timeout);
1719 			}
1720 #endif
1721 			if (budget)
1722 				return (EINPROGRESS);
1723 			ndescs = 0;
1724 		}
1725 	}
1726 out:
1727 #if defined(INET) || defined(INET6)
1728 	if (iq->flags & IQ_LRO_ENABLED) {
1729 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1730 			MPASS(sort_before_lro(lro));
1731 			/* hold back one credit and don't flush LRO state */
1732 			iq->flags |= IQ_ADJ_CREDIT;
1733 			ndescs--;
1734 		} else {
1735 			tcp_lro_flush_all(lro);
1736 		}
1737 	}
1738 #endif
1739 
1740 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1741 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1742 
1743 	FL_LOCK(fl);
1744 	starved = refill_fl(sc, fl, 64);
1745 	FL_UNLOCK(fl);
1746 	if (__predict_false(starved != 0))
1747 		add_fl_to_sfl(sc, fl);
1748 
1749 	return (0);
1750 }
1751 
1752 static inline struct cluster_metadata *
1753 cl_metadata(struct fl_sdesc *sd)
1754 {
1755 
1756 	return ((void *)(sd->cl + sd->moff));
1757 }
1758 
1759 static void
1760 rxb_free(struct mbuf *m)
1761 {
1762 	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1763 
1764 	uma_zfree(clm->zone, clm->cl);
1765 	counter_u64_add(extfree_rels, 1);
1766 }
1767 
1768 /*
1769  * The mbuf returned comes from zone_muf and carries the payload in one of these
1770  * ways
1771  * a) complete frame inside the mbuf
1772  * b) m_cljset (for clusters without metadata)
1773  * d) m_extaddref (cluster with metadata)
1774  */
1775 static struct mbuf *
1776 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1777     int remaining)
1778 {
1779 	struct mbuf *m;
1780 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1781 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1782 	struct cluster_metadata *clm;
1783 	int len, blen;
1784 	caddr_t payload;
1785 
1786 	if (fl->flags & FL_BUF_PACKING) {
1787 		u_int l, pad;
1788 
1789 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1790 		len = min(remaining, blen);
1791 		payload = sd->cl + fl->rx_offset;
1792 
1793 		l = fr_offset + len;
1794 		pad = roundup2(l, fl->buf_boundary) - l;
1795 		if (fl->rx_offset + len + pad < rxb->size2)
1796 			blen = len + pad;
1797 		MPASS(fl->rx_offset + blen <= rxb->size2);
1798 	} else {
1799 		MPASS(fl->rx_offset == 0);	/* not packing */
1800 		blen = rxb->size1;
1801 		len = min(remaining, blen);
1802 		payload = sd->cl;
1803 	}
1804 
1805 	if (fr_offset == 0) {
1806 		m = m_gethdr(M_NOWAIT, MT_DATA);
1807 		if (__predict_false(m == NULL))
1808 			return (NULL);
1809 		m->m_pkthdr.len = remaining;
1810 	} else {
1811 		m = m_get(M_NOWAIT, MT_DATA);
1812 		if (__predict_false(m == NULL))
1813 			return (NULL);
1814 	}
1815 	m->m_len = len;
1816 
1817 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1818 		/* copy data to mbuf */
1819 		bcopy(payload, mtod(m, caddr_t), len);
1820 		if (fl->flags & FL_BUF_PACKING) {
1821 			fl->rx_offset += blen;
1822 			MPASS(fl->rx_offset <= rxb->size2);
1823 			if (fl->rx_offset < rxb->size2)
1824 				return (m);	/* without advancing the cidx */
1825 		}
1826 	} else if (fl->flags & FL_BUF_PACKING) {
1827 		clm = cl_metadata(sd);
1828 		if (sd->nmbuf++ == 0) {
1829 			clm->refcount = 1;
1830 			clm->zone = rxb->zone;
1831 			clm->cl = sd->cl;
1832 			counter_u64_add(extfree_refs, 1);
1833 		}
1834 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1835 		    NULL);
1836 
1837 		fl->rx_offset += blen;
1838 		MPASS(fl->rx_offset <= rxb->size2);
1839 		if (fl->rx_offset < rxb->size2)
1840 			return (m);	/* without advancing the cidx */
1841 	} else {
1842 		m_cljset(m, sd->cl, rxb->type);
1843 		sd->cl = NULL;	/* consumed, not a recycle candidate */
1844 	}
1845 
1846 	move_to_next_rxbuf(fl);
1847 
1848 	return (m);
1849 }
1850 
1851 static struct mbuf *
1852 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1853 {
1854 	struct mbuf *m0, *m, **pnext;
1855 	u_int remaining;
1856 
1857 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1858 		M_ASSERTPKTHDR(fl->m0);
1859 		MPASS(fl->m0->m_pkthdr.len == plen);
1860 		MPASS(fl->remaining < plen);
1861 
1862 		m0 = fl->m0;
1863 		pnext = fl->pnext;
1864 		remaining = fl->remaining;
1865 		fl->flags &= ~FL_BUF_RESUME;
1866 		goto get_segment;
1867 	}
1868 
1869 	/*
1870 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1871 	 * 'len' and it may span multiple hw buffers.
1872 	 */
1873 
1874 	m0 = get_scatter_segment(sc, fl, 0, plen);
1875 	if (m0 == NULL)
1876 		return (NULL);
1877 	remaining = plen - m0->m_len;
1878 	pnext = &m0->m_next;
1879 	while (remaining > 0) {
1880 get_segment:
1881 		MPASS(fl->rx_offset == 0);
1882 		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1883 		if (__predict_false(m == NULL)) {
1884 			fl->m0 = m0;
1885 			fl->pnext = pnext;
1886 			fl->remaining = remaining;
1887 			fl->flags |= FL_BUF_RESUME;
1888 			return (NULL);
1889 		}
1890 		*pnext = m;
1891 		pnext = &m->m_next;
1892 		remaining -= m->m_len;
1893 	}
1894 	*pnext = NULL;
1895 
1896 	M_ASSERTPKTHDR(m0);
1897 	return (m0);
1898 }
1899 
1900 static int
1901 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1902     int remaining)
1903 {
1904 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1905 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1906 	int len, blen;
1907 
1908 	if (fl->flags & FL_BUF_PACKING) {
1909 		u_int l, pad;
1910 
1911 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1912 		len = min(remaining, blen);
1913 
1914 		l = fr_offset + len;
1915 		pad = roundup2(l, fl->buf_boundary) - l;
1916 		if (fl->rx_offset + len + pad < rxb->size2)
1917 			blen = len + pad;
1918 		fl->rx_offset += blen;
1919 		MPASS(fl->rx_offset <= rxb->size2);
1920 		if (fl->rx_offset < rxb->size2)
1921 			return (len);	/* without advancing the cidx */
1922 	} else {
1923 		MPASS(fl->rx_offset == 0);	/* not packing */
1924 		blen = rxb->size1;
1925 		len = min(remaining, blen);
1926 	}
1927 	move_to_next_rxbuf(fl);
1928 	return (len);
1929 }
1930 
1931 static inline void
1932 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1933 {
1934 	int remaining, fr_offset, len;
1935 
1936 	fr_offset = 0;
1937 	remaining = plen;
1938 	while (remaining > 0) {
1939 		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1940 		fr_offset += len;
1941 		remaining -= len;
1942 	}
1943 }
1944 
1945 static inline int
1946 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1947 {
1948 	int len;
1949 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1950 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1951 
1952 	if (fl->flags & FL_BUF_PACKING)
1953 		len = rxb->size2 - fl->rx_offset;
1954 	else
1955 		len = rxb->size1;
1956 
1957 	return (min(plen, len));
1958 }
1959 
1960 static int
1961 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1962     u_int plen)
1963 {
1964 	struct mbuf *m0;
1965 	struct ifnet *ifp = rxq->ifp;
1966 	struct sge_fl *fl = &rxq->fl;
1967 	struct vi_info *vi = ifp->if_softc;
1968 	const struct cpl_rx_pkt *cpl;
1969 #if defined(INET) || defined(INET6)
1970 	struct lro_ctrl *lro = &rxq->lro;
1971 #endif
1972 	uint16_t err_vec, tnl_type, tnlhdr_len;
1973 	static const int sw_hashtype[4][2] = {
1974 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1975 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1976 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1977 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1978 	};
1979 	static const int sw_csum_flags[2][2] = {
1980 		{
1981 			/* IP, inner IP */
1982 			CSUM_ENCAP_VXLAN |
1983 			    CSUM_L3_CALC | CSUM_L3_VALID |
1984 			    CSUM_L4_CALC | CSUM_L4_VALID |
1985 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1986 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1987 
1988 			/* IP, inner IP6 */
1989 			CSUM_ENCAP_VXLAN |
1990 			    CSUM_L3_CALC | CSUM_L3_VALID |
1991 			    CSUM_L4_CALC | CSUM_L4_VALID |
1992 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1993 		},
1994 		{
1995 			/* IP6, inner IP */
1996 			CSUM_ENCAP_VXLAN |
1997 			    CSUM_L4_CALC | CSUM_L4_VALID |
1998 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1999 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
2000 
2001 			/* IP6, inner IP6 */
2002 			CSUM_ENCAP_VXLAN |
2003 			    CSUM_L4_CALC | CSUM_L4_VALID |
2004 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
2005 		},
2006 	};
2007 
2008 	MPASS(plen > sc->params.sge.fl_pktshift);
2009 	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
2010 	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
2011 		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
2012 		caddr_t frame;
2013 		int rc, slen;
2014 
2015 		slen = get_segment_len(sc, fl, plen) -
2016 		    sc->params.sge.fl_pktshift;
2017 		frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
2018 		CURVNET_SET_QUIET(ifp->if_vnet);
2019 		rc = pfil_run_hooks(vi->pfil, frame, ifp,
2020 		    slen | PFIL_MEMPTR | PFIL_IN, NULL);
2021 		CURVNET_RESTORE();
2022 		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
2023 			skip_fl_payload(sc, fl, plen);
2024 			return (0);
2025 		}
2026 		if (rc == PFIL_REALLOCED) {
2027 			skip_fl_payload(sc, fl, plen);
2028 			m0 = pfil_mem2mbuf(frame);
2029 			goto have_mbuf;
2030 		}
2031 	}
2032 
2033 	m0 = get_fl_payload(sc, fl, plen);
2034 	if (__predict_false(m0 == NULL))
2035 		return (ENOMEM);
2036 
2037 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
2038 	m0->m_len -= sc->params.sge.fl_pktshift;
2039 	m0->m_data += sc->params.sge.fl_pktshift;
2040 
2041 have_mbuf:
2042 	m0->m_pkthdr.rcvif = ifp;
2043 	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
2044 	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
2045 
2046 	cpl = (const void *)(&d->rss + 1);
2047 	if (sc->params.tp.rx_pkt_encap) {
2048 		const uint16_t ev = be16toh(cpl->err_vec);
2049 
2050 		err_vec = G_T6_COMPR_RXERR_VEC(ev);
2051 		tnl_type = G_T6_RX_TNL_TYPE(ev);
2052 		tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
2053 	} else {
2054 		err_vec = be16toh(cpl->err_vec);
2055 		tnl_type = 0;
2056 		tnlhdr_len = 0;
2057 	}
2058 	if (cpl->csum_calc && err_vec == 0) {
2059 		int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
2060 
2061 		/* checksum(s) calculated and found to be correct. */
2062 
2063 		MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
2064 		    (cpl->l2info & htobe32(F_RXF_IP6)));
2065 		m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2066 		if (tnl_type == 0) {
2067 	    		if (!ipv6 && ifp->if_capenable & IFCAP_RXCSUM) {
2068 				m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2069 				    CSUM_L3_VALID | CSUM_L4_CALC |
2070 				    CSUM_L4_VALID;
2071 			} else if (ipv6 && ifp->if_capenable & IFCAP_RXCSUM_IPV6) {
2072 				m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2073 				    CSUM_L4_VALID;
2074 			}
2075 			rxq->rxcsum++;
2076 		} else {
2077 			MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
2078 			if (__predict_false(cpl->ip_frag)) {
2079 				/*
2080 				 * csum_data is for the inner frame (which is an
2081 				 * IP fragment) and is not 0xffff.  There is no
2082 				 * way to pass the inner csum_data to the stack.
2083 				 * We don't want the stack to use the inner
2084 				 * csum_data to validate the outer frame or it
2085 				 * will get rejected.  So we fix csum_data here
2086 				 * and let sw do the checksum of inner IP
2087 				 * fragments.
2088 				 *
2089 				 * XXX: Need 32b for csum_data2 in an rx mbuf.
2090 				 * Maybe stuff it into rcv_tstmp?
2091 				 */
2092 				m0->m_pkthdr.csum_data = 0xffff;
2093 				if (ipv6) {
2094 					m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2095 					    CSUM_L4_VALID;
2096 				} else {
2097 					m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2098 					    CSUM_L3_VALID | CSUM_L4_CALC |
2099 					    CSUM_L4_VALID;
2100 				}
2101 			} else {
2102 				int outer_ipv6;
2103 
2104 				MPASS(m0->m_pkthdr.csum_data == 0xffff);
2105 
2106 				outer_ipv6 = tnlhdr_len >=
2107 				    sizeof(struct ether_header) +
2108 				    sizeof(struct ip6_hdr);
2109 				m0->m_pkthdr.csum_flags =
2110 				    sw_csum_flags[outer_ipv6][ipv6];
2111 			}
2112 			rxq->vxlan_rxcsum++;
2113 		}
2114 	}
2115 
2116 	if (cpl->vlan_ex) {
2117 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2118 		m0->m_flags |= M_VLANTAG;
2119 		rxq->vlan_extraction++;
2120 	}
2121 
2122 	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
2123 		/*
2124 		 * Fill up rcv_tstmp but do not set M_TSTMP.
2125 		 * rcv_tstmp is not in the format that the
2126 		 * kernel expects and we don't want to mislead
2127 		 * it.  For now this is only for custom code
2128 		 * that knows how to interpret cxgbe's stamp.
2129 		 */
2130 		m0->m_pkthdr.rcv_tstmp =
2131 		    last_flit_to_ns(sc, d->rsp.u.last_flit);
2132 #ifdef notyet
2133 		m0->m_flags |= M_TSTMP;
2134 #endif
2135 	}
2136 
2137 #ifdef NUMA
2138 	m0->m_pkthdr.numa_domain = ifp->if_numa_domain;
2139 #endif
2140 #if defined(INET) || defined(INET6)
2141 	if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
2142 	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2143 	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2144 		if (sort_before_lro(lro)) {
2145 			tcp_lro_queue_mbuf(lro, m0);
2146 			return (0); /* queued for sort, then LRO */
2147 		}
2148 		if (tcp_lro_rx(lro, m0, 0) == 0)
2149 			return (0); /* queued for LRO */
2150 	}
2151 #endif
2152 	ifp->if_input(ifp, m0);
2153 
2154 	return (0);
2155 }
2156 
2157 /*
2158  * Must drain the wrq or make sure that someone else will.
2159  */
2160 static void
2161 wrq_tx_drain(void *arg, int n)
2162 {
2163 	struct sge_wrq *wrq = arg;
2164 	struct sge_eq *eq = &wrq->eq;
2165 
2166 	EQ_LOCK(eq);
2167 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2168 		drain_wrq_wr_list(wrq->adapter, wrq);
2169 	EQ_UNLOCK(eq);
2170 }
2171 
2172 static void
2173 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2174 {
2175 	struct sge_eq *eq = &wrq->eq;
2176 	u_int available, dbdiff;	/* # of hardware descriptors */
2177 	u_int n;
2178 	struct wrqe *wr;
2179 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2180 
2181 	EQ_LOCK_ASSERT_OWNED(eq);
2182 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2183 	wr = STAILQ_FIRST(&wrq->wr_list);
2184 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2185 	MPASS(eq->pidx == eq->dbidx);
2186 	dbdiff = 0;
2187 
2188 	do {
2189 		eq->cidx = read_hw_cidx(eq);
2190 		if (eq->pidx == eq->cidx)
2191 			available = eq->sidx - 1;
2192 		else
2193 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2194 
2195 		MPASS(wr->wrq == wrq);
2196 		n = howmany(wr->wr_len, EQ_ESIZE);
2197 		if (available < n)
2198 			break;
2199 
2200 		dst = (void *)&eq->desc[eq->pidx];
2201 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2202 			/* Won't wrap, won't end exactly at the status page. */
2203 			bcopy(&wr->wr[0], dst, wr->wr_len);
2204 			eq->pidx += n;
2205 		} else {
2206 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2207 
2208 			bcopy(&wr->wr[0], dst, first_portion);
2209 			if (wr->wr_len > first_portion) {
2210 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2211 				    wr->wr_len - first_portion);
2212 			}
2213 			eq->pidx = n - (eq->sidx - eq->pidx);
2214 		}
2215 		wrq->tx_wrs_copied++;
2216 
2217 		if (available < eq->sidx / 4 &&
2218 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2219 				/*
2220 				 * XXX: This is not 100% reliable with some
2221 				 * types of WRs.  But this is a very unusual
2222 				 * situation for an ofld/ctrl queue anyway.
2223 				 */
2224 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2225 			    F_FW_WR_EQUEQ);
2226 		}
2227 
2228 		dbdiff += n;
2229 		if (dbdiff >= 16) {
2230 			ring_eq_db(sc, eq, dbdiff);
2231 			dbdiff = 0;
2232 		}
2233 
2234 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2235 		free_wrqe(wr);
2236 		MPASS(wrq->nwr_pending > 0);
2237 		wrq->nwr_pending--;
2238 		MPASS(wrq->ndesc_needed >= n);
2239 		wrq->ndesc_needed -= n;
2240 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2241 
2242 	if (dbdiff)
2243 		ring_eq_db(sc, eq, dbdiff);
2244 }
2245 
2246 /*
2247  * Doesn't fail.  Holds on to work requests it can't send right away.
2248  */
2249 void
2250 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2251 {
2252 #ifdef INVARIANTS
2253 	struct sge_eq *eq = &wrq->eq;
2254 #endif
2255 
2256 	EQ_LOCK_ASSERT_OWNED(eq);
2257 	MPASS(wr != NULL);
2258 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2259 	MPASS((wr->wr_len & 0x7) == 0);
2260 
2261 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2262 	wrq->nwr_pending++;
2263 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2264 
2265 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2266 		return;	/* commit_wrq_wr will drain wr_list as well. */
2267 
2268 	drain_wrq_wr_list(sc, wrq);
2269 
2270 	/* Doorbell must have caught up to the pidx. */
2271 	MPASS(eq->pidx == eq->dbidx);
2272 }
2273 
2274 void
2275 t4_update_fl_bufsize(struct ifnet *ifp)
2276 {
2277 	struct vi_info *vi = ifp->if_softc;
2278 	struct adapter *sc = vi->adapter;
2279 	struct sge_rxq *rxq;
2280 #ifdef TCP_OFFLOAD
2281 	struct sge_ofld_rxq *ofld_rxq;
2282 #endif
2283 	struct sge_fl *fl;
2284 	int i, maxp;
2285 
2286 	maxp = max_rx_payload(sc, ifp, false);
2287 	for_each_rxq(vi, i, rxq) {
2288 		fl = &rxq->fl;
2289 
2290 		FL_LOCK(fl);
2291 		fl->zidx = find_refill_source(sc, maxp,
2292 		    fl->flags & FL_BUF_PACKING);
2293 		FL_UNLOCK(fl);
2294 	}
2295 #ifdef TCP_OFFLOAD
2296 	maxp = max_rx_payload(sc, ifp, true);
2297 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2298 		fl = &ofld_rxq->fl;
2299 
2300 		FL_LOCK(fl);
2301 		fl->zidx = find_refill_source(sc, maxp,
2302 		    fl->flags & FL_BUF_PACKING);
2303 		FL_UNLOCK(fl);
2304 	}
2305 #endif
2306 }
2307 
2308 static inline int
2309 mbuf_nsegs(struct mbuf *m)
2310 {
2311 
2312 	M_ASSERTPKTHDR(m);
2313 	KASSERT(m->m_pkthdr.inner_l5hlen > 0,
2314 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2315 
2316 	return (m->m_pkthdr.inner_l5hlen);
2317 }
2318 
2319 static inline void
2320 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2321 {
2322 
2323 	M_ASSERTPKTHDR(m);
2324 	m->m_pkthdr.inner_l5hlen = nsegs;
2325 }
2326 
2327 static inline int
2328 mbuf_cflags(struct mbuf *m)
2329 {
2330 
2331 	M_ASSERTPKTHDR(m);
2332 	return (m->m_pkthdr.PH_loc.eight[4]);
2333 }
2334 
2335 static inline void
2336 set_mbuf_cflags(struct mbuf *m, uint8_t flags)
2337 {
2338 
2339 	M_ASSERTPKTHDR(m);
2340 	m->m_pkthdr.PH_loc.eight[4] = flags;
2341 }
2342 
2343 static inline int
2344 mbuf_len16(struct mbuf *m)
2345 {
2346 	int n;
2347 
2348 	M_ASSERTPKTHDR(m);
2349 	n = m->m_pkthdr.PH_loc.eight[0];
2350 	if (!(mbuf_cflags(m) & MC_TLS))
2351 		MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2352 
2353 	return (n);
2354 }
2355 
2356 static inline void
2357 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2358 {
2359 
2360 	M_ASSERTPKTHDR(m);
2361 	if (!(mbuf_cflags(m) & MC_TLS))
2362 		MPASS(len16 > 0 && len16 <= SGE_MAX_WR_LEN / 16);
2363 	m->m_pkthdr.PH_loc.eight[0] = len16;
2364 }
2365 
2366 #ifdef RATELIMIT
2367 static inline int
2368 mbuf_eo_nsegs(struct mbuf *m)
2369 {
2370 
2371 	M_ASSERTPKTHDR(m);
2372 	return (m->m_pkthdr.PH_loc.eight[1]);
2373 }
2374 
2375 static inline void
2376 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2377 {
2378 
2379 	M_ASSERTPKTHDR(m);
2380 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2381 }
2382 
2383 static inline int
2384 mbuf_eo_len16(struct mbuf *m)
2385 {
2386 	int n;
2387 
2388 	M_ASSERTPKTHDR(m);
2389 	n = m->m_pkthdr.PH_loc.eight[2];
2390 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2391 
2392 	return (n);
2393 }
2394 
2395 static inline void
2396 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2397 {
2398 
2399 	M_ASSERTPKTHDR(m);
2400 	m->m_pkthdr.PH_loc.eight[2] = len16;
2401 }
2402 
2403 static inline int
2404 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2405 {
2406 
2407 	M_ASSERTPKTHDR(m);
2408 	return (m->m_pkthdr.PH_loc.eight[3]);
2409 }
2410 
2411 static inline void
2412 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2413 {
2414 
2415 	M_ASSERTPKTHDR(m);
2416 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2417 }
2418 
2419 static inline int
2420 needs_eo(struct m_snd_tag *mst)
2421 {
2422 
2423 	return (mst != NULL && mst->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2424 }
2425 #endif
2426 
2427 /*
2428  * Try to allocate an mbuf to contain a raw work request.  To make it
2429  * easy to construct the work request, don't allocate a chain but a
2430  * single mbuf.
2431  */
2432 struct mbuf *
2433 alloc_wr_mbuf(int len, int how)
2434 {
2435 	struct mbuf *m;
2436 
2437 	if (len <= MHLEN)
2438 		m = m_gethdr(how, MT_DATA);
2439 	else if (len <= MCLBYTES)
2440 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2441 	else
2442 		m = NULL;
2443 	if (m == NULL)
2444 		return (NULL);
2445 	m->m_pkthdr.len = len;
2446 	m->m_len = len;
2447 	set_mbuf_cflags(m, MC_RAW_WR);
2448 	set_mbuf_len16(m, howmany(len, 16));
2449 	return (m);
2450 }
2451 
2452 static inline bool
2453 needs_hwcsum(struct mbuf *m)
2454 {
2455 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
2456 	    CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2457 	    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
2458 	    CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
2459 	    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
2460 
2461 	M_ASSERTPKTHDR(m);
2462 
2463 	return (m->m_pkthdr.csum_flags & csum_flags);
2464 }
2465 
2466 static inline bool
2467 needs_tso(struct mbuf *m)
2468 {
2469 	const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
2470 	    CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2471 
2472 	M_ASSERTPKTHDR(m);
2473 
2474 	return (m->m_pkthdr.csum_flags & csum_flags);
2475 }
2476 
2477 static inline bool
2478 needs_vxlan_csum(struct mbuf *m)
2479 {
2480 
2481 	M_ASSERTPKTHDR(m);
2482 
2483 	return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
2484 }
2485 
2486 static inline bool
2487 needs_vxlan_tso(struct mbuf *m)
2488 {
2489 	const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
2490 	    CSUM_INNER_IP6_TSO;
2491 
2492 	M_ASSERTPKTHDR(m);
2493 
2494 	return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
2495 	    (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
2496 }
2497 
2498 static inline bool
2499 needs_inner_tcp_csum(struct mbuf *m)
2500 {
2501 	const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2502 
2503 	M_ASSERTPKTHDR(m);
2504 
2505 	return (m->m_pkthdr.csum_flags & csum_flags);
2506 }
2507 
2508 static inline bool
2509 needs_l3_csum(struct mbuf *m)
2510 {
2511 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
2512 	    CSUM_INNER_IP_TSO;
2513 
2514 	M_ASSERTPKTHDR(m);
2515 
2516 	return (m->m_pkthdr.csum_flags & csum_flags);
2517 }
2518 
2519 static inline bool
2520 needs_outer_tcp_csum(struct mbuf *m)
2521 {
2522 	const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
2523 	    CSUM_IP6_TSO;
2524 
2525 	M_ASSERTPKTHDR(m);
2526 
2527 	return (m->m_pkthdr.csum_flags & csum_flags);
2528 }
2529 
2530 #ifdef RATELIMIT
2531 static inline bool
2532 needs_outer_l4_csum(struct mbuf *m)
2533 {
2534 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
2535 	    CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
2536 
2537 	M_ASSERTPKTHDR(m);
2538 
2539 	return (m->m_pkthdr.csum_flags & csum_flags);
2540 }
2541 
2542 static inline bool
2543 needs_outer_udp_csum(struct mbuf *m)
2544 {
2545 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
2546 
2547 	M_ASSERTPKTHDR(m);
2548 
2549 	return (m->m_pkthdr.csum_flags & csum_flags);
2550 }
2551 #endif
2552 
2553 static inline bool
2554 needs_vlan_insertion(struct mbuf *m)
2555 {
2556 
2557 	M_ASSERTPKTHDR(m);
2558 
2559 	return (m->m_flags & M_VLANTAG);
2560 }
2561 
2562 static void *
2563 m_advance(struct mbuf **pm, int *poffset, int len)
2564 {
2565 	struct mbuf *m = *pm;
2566 	int offset = *poffset;
2567 	uintptr_t p = 0;
2568 
2569 	MPASS(len > 0);
2570 
2571 	for (;;) {
2572 		if (offset + len < m->m_len) {
2573 			offset += len;
2574 			p = mtod(m, uintptr_t) + offset;
2575 			break;
2576 		}
2577 		len -= m->m_len - offset;
2578 		m = m->m_next;
2579 		offset = 0;
2580 		MPASS(m != NULL);
2581 	}
2582 	*poffset = offset;
2583 	*pm = m;
2584 	return ((void *)p);
2585 }
2586 
2587 static inline int
2588 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2589 {
2590 	vm_paddr_t paddr;
2591 	int i, len, off, pglen, pgoff, seglen, segoff;
2592 	int nsegs = 0;
2593 
2594 	M_ASSERTEXTPG(m);
2595 	off = mtod(m, vm_offset_t);
2596 	len = m->m_len;
2597 	off += skip;
2598 	len -= skip;
2599 
2600 	if (m->m_epg_hdrlen != 0) {
2601 		if (off >= m->m_epg_hdrlen) {
2602 			off -= m->m_epg_hdrlen;
2603 		} else {
2604 			seglen = m->m_epg_hdrlen - off;
2605 			segoff = off;
2606 			seglen = min(seglen, len);
2607 			off = 0;
2608 			len -= seglen;
2609 			paddr = pmap_kextract(
2610 			    (vm_offset_t)&m->m_epg_hdr[segoff]);
2611 			if (*nextaddr != paddr)
2612 				nsegs++;
2613 			*nextaddr = paddr + seglen;
2614 		}
2615 	}
2616 	pgoff = m->m_epg_1st_off;
2617 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2618 		pglen = m_epg_pagelen(m, i, pgoff);
2619 		if (off >= pglen) {
2620 			off -= pglen;
2621 			pgoff = 0;
2622 			continue;
2623 		}
2624 		seglen = pglen - off;
2625 		segoff = pgoff + off;
2626 		off = 0;
2627 		seglen = min(seglen, len);
2628 		len -= seglen;
2629 		paddr = m->m_epg_pa[i] + segoff;
2630 		if (*nextaddr != paddr)
2631 			nsegs++;
2632 		*nextaddr = paddr + seglen;
2633 		pgoff = 0;
2634 	};
2635 	if (len != 0) {
2636 		seglen = min(len, m->m_epg_trllen - off);
2637 		len -= seglen;
2638 		paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2639 		if (*nextaddr != paddr)
2640 			nsegs++;
2641 		*nextaddr = paddr + seglen;
2642 	}
2643 
2644 	return (nsegs);
2645 }
2646 
2647 
2648 /*
2649  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2650  * must have at least one mbuf that's not empty.  It is possible for this
2651  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2652  */
2653 static inline int
2654 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2655 {
2656 	vm_paddr_t nextaddr, paddr;
2657 	vm_offset_t va;
2658 	int len, nsegs;
2659 
2660 	M_ASSERTPKTHDR(m);
2661 	MPASS(m->m_pkthdr.len > 0);
2662 	MPASS(m->m_pkthdr.len >= skip);
2663 
2664 	nsegs = 0;
2665 	nextaddr = 0;
2666 	for (; m; m = m->m_next) {
2667 		len = m->m_len;
2668 		if (__predict_false(len == 0))
2669 			continue;
2670 		if (skip >= len) {
2671 			skip -= len;
2672 			continue;
2673 		}
2674 		if ((m->m_flags & M_EXTPG) != 0) {
2675 			*cflags |= MC_NOMAP;
2676 			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2677 			skip = 0;
2678 			continue;
2679 		}
2680 		va = mtod(m, vm_offset_t) + skip;
2681 		len -= skip;
2682 		skip = 0;
2683 		paddr = pmap_kextract(va);
2684 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2685 		if (paddr == nextaddr)
2686 			nsegs--;
2687 		nextaddr = pmap_kextract(va + len - 1) + 1;
2688 	}
2689 
2690 	return (nsegs);
2691 }
2692 
2693 /*
2694  * The maximum number of segments that can fit in a WR.
2695  */
2696 static int
2697 max_nsegs_allowed(struct mbuf *m, bool vm_wr)
2698 {
2699 
2700 	if (vm_wr) {
2701 		if (needs_tso(m))
2702 			return (TX_SGL_SEGS_VM_TSO);
2703 		return (TX_SGL_SEGS_VM);
2704 	}
2705 
2706 	if (needs_tso(m)) {
2707 		if (needs_vxlan_tso(m))
2708 			return (TX_SGL_SEGS_VXLAN_TSO);
2709 		else
2710 			return (TX_SGL_SEGS_TSO);
2711 	}
2712 
2713 	return (TX_SGL_SEGS);
2714 }
2715 
2716 /*
2717  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2718  * a) caller can assume it's been freed if this function returns with an error.
2719  * b) it may get defragged up if the gather list is too long for the hardware.
2720  */
2721 int
2722 parse_pkt(struct mbuf **mp, bool vm_wr)
2723 {
2724 	struct mbuf *m0 = *mp, *m;
2725 	int rc, nsegs, defragged = 0, offset;
2726 	struct ether_header *eh;
2727 	void *l3hdr;
2728 #if defined(INET) || defined(INET6)
2729 	struct tcphdr *tcp;
2730 #endif
2731 #if defined(KERN_TLS) || defined(RATELIMIT)
2732 	struct m_snd_tag *mst;
2733 #endif
2734 	uint16_t eh_type;
2735 	uint8_t cflags;
2736 
2737 	cflags = 0;
2738 	M_ASSERTPKTHDR(m0);
2739 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2740 		rc = EINVAL;
2741 fail:
2742 		m_freem(m0);
2743 		*mp = NULL;
2744 		return (rc);
2745 	}
2746 restart:
2747 	/*
2748 	 * First count the number of gather list segments in the payload.
2749 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2750 	 */
2751 	M_ASSERTPKTHDR(m0);
2752 	MPASS(m0->m_pkthdr.len > 0);
2753 	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2754 #if defined(KERN_TLS) || defined(RATELIMIT)
2755 	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2756 		mst = m0->m_pkthdr.snd_tag;
2757 	else
2758 		mst = NULL;
2759 #endif
2760 #ifdef KERN_TLS
2761 	if (mst != NULL && mst->type == IF_SND_TAG_TYPE_TLS) {
2762 		int len16;
2763 
2764 		cflags |= MC_TLS;
2765 		set_mbuf_cflags(m0, cflags);
2766 		rc = t6_ktls_parse_pkt(m0, &nsegs, &len16);
2767 		if (rc != 0)
2768 			goto fail;
2769 		set_mbuf_nsegs(m0, nsegs);
2770 		set_mbuf_len16(m0, len16);
2771 		return (0);
2772 	}
2773 #endif
2774 	if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
2775 		if (defragged++ > 0) {
2776 			rc = EFBIG;
2777 			goto fail;
2778 		}
2779 		counter_u64_add(defrags, 1);
2780 		if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
2781 			rc = ENOMEM;
2782 			goto fail;
2783 		}
2784 		*mp = m0 = m;	/* update caller's copy after defrag */
2785 		goto restart;
2786 	}
2787 
2788 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2789 	    !(cflags & MC_NOMAP))) {
2790 		counter_u64_add(pullups, 1);
2791 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2792 		if (m0 == NULL) {
2793 			/* Should have left well enough alone. */
2794 			rc = EFBIG;
2795 			goto fail;
2796 		}
2797 		*mp = m0;	/* update caller's copy after pullup */
2798 		goto restart;
2799 	}
2800 	set_mbuf_nsegs(m0, nsegs);
2801 	set_mbuf_cflags(m0, cflags);
2802 	calculate_mbuf_len16(m0, vm_wr);
2803 
2804 #ifdef RATELIMIT
2805 	/*
2806 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2807 	 * checksumming is enabled.  needs_outer_l4_csum happens to check for
2808 	 * all the right things.
2809 	 */
2810 	if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
2811 		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2812 		m0->m_pkthdr.snd_tag = NULL;
2813 		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2814 		mst = NULL;
2815 	}
2816 #endif
2817 
2818 	if (!needs_hwcsum(m0)
2819 #ifdef RATELIMIT
2820    		 && !needs_eo(mst)
2821 #endif
2822 	)
2823 		return (0);
2824 
2825 	m = m0;
2826 	eh = mtod(m, struct ether_header *);
2827 	eh_type = ntohs(eh->ether_type);
2828 	if (eh_type == ETHERTYPE_VLAN) {
2829 		struct ether_vlan_header *evh = (void *)eh;
2830 
2831 		eh_type = ntohs(evh->evl_proto);
2832 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2833 	} else
2834 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2835 
2836 	offset = 0;
2837 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2838 
2839 	switch (eh_type) {
2840 #ifdef INET6
2841 	case ETHERTYPE_IPV6:
2842 		m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
2843 		break;
2844 #endif
2845 #ifdef INET
2846 	case ETHERTYPE_IP:
2847 	{
2848 		struct ip *ip = l3hdr;
2849 
2850 		if (needs_vxlan_csum(m0)) {
2851 			/* Driver will do the outer IP hdr checksum. */
2852 			ip->ip_sum = 0;
2853 			if (needs_vxlan_tso(m0)) {
2854 				const uint16_t ipl = ip->ip_len;
2855 
2856 				ip->ip_len = 0;
2857 				ip->ip_sum = ~in_cksum_hdr(ip);
2858 				ip->ip_len = ipl;
2859 			} else
2860 				ip->ip_sum = in_cksum_hdr(ip);
2861 		}
2862 		m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
2863 		break;
2864 	}
2865 #endif
2866 	default:
2867 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2868 		    " with the same INET/INET6 options as the kernel.",
2869 		    __func__, eh_type);
2870 	}
2871 
2872 	if (needs_vxlan_csum(m0)) {
2873 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2874 		m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
2875 
2876 		/* Inner headers. */
2877 		eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
2878 		    sizeof(struct udphdr) + sizeof(struct vxlan_header));
2879 		eh_type = ntohs(eh->ether_type);
2880 		if (eh_type == ETHERTYPE_VLAN) {
2881 			struct ether_vlan_header *evh = (void *)eh;
2882 
2883 			eh_type = ntohs(evh->evl_proto);
2884 			m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
2885 		} else
2886 			m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
2887 		l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2888 
2889 		switch (eh_type) {
2890 #ifdef INET6
2891 		case ETHERTYPE_IPV6:
2892 			m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
2893 			break;
2894 #endif
2895 #ifdef INET
2896 		case ETHERTYPE_IP:
2897 		{
2898 			struct ip *ip = l3hdr;
2899 
2900 			m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
2901 			break;
2902 		}
2903 #endif
2904 		default:
2905 			panic("%s: VXLAN hw offload requested with unknown "
2906 			    "ethertype 0x%04x.  if_cxgbe must be compiled"
2907 			    " with the same INET/INET6 options as the kernel.",
2908 			    __func__, eh_type);
2909 		}
2910 #if defined(INET) || defined(INET6)
2911 		if (needs_inner_tcp_csum(m0)) {
2912 			tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
2913 			m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
2914 		}
2915 #endif
2916 		MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
2917 		m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
2918 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
2919 		    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
2920 		    CSUM_ENCAP_VXLAN;
2921 	}
2922 
2923 #if defined(INET) || defined(INET6)
2924 	if (needs_outer_tcp_csum(m0)) {
2925 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2926 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2927 #ifdef RATELIMIT
2928 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2929 			set_mbuf_eo_tsclk_tsoff(m0,
2930 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2931 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2932 		} else
2933 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2934 	} else if (needs_outer_udp_csum(m0)) {
2935 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2936 #endif
2937 	}
2938 #ifdef RATELIMIT
2939 	if (needs_eo(mst)) {
2940 		u_int immhdrs;
2941 
2942 		/* EO WRs have the headers in the WR and not the GL. */
2943 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2944 		    m0->m_pkthdr.l4hlen;
2945 		cflags = 0;
2946 		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2947 		MPASS(cflags == mbuf_cflags(m0));
2948 		set_mbuf_eo_nsegs(m0, nsegs);
2949 		set_mbuf_eo_len16(m0,
2950 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2951 	}
2952 #endif
2953 #endif
2954 	MPASS(m0 == *mp);
2955 	return (0);
2956 }
2957 
2958 void *
2959 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2960 {
2961 	struct sge_eq *eq = &wrq->eq;
2962 	struct adapter *sc = wrq->adapter;
2963 	int ndesc, available;
2964 	struct wrqe *wr;
2965 	void *w;
2966 
2967 	MPASS(len16 > 0);
2968 	ndesc = tx_len16_to_desc(len16);
2969 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2970 
2971 	EQ_LOCK(eq);
2972 
2973 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2974 		drain_wrq_wr_list(sc, wrq);
2975 
2976 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2977 slowpath:
2978 		EQ_UNLOCK(eq);
2979 		wr = alloc_wrqe(len16 * 16, wrq);
2980 		if (__predict_false(wr == NULL))
2981 			return (NULL);
2982 		cookie->pidx = -1;
2983 		cookie->ndesc = ndesc;
2984 		return (&wr->wr);
2985 	}
2986 
2987 	eq->cidx = read_hw_cidx(eq);
2988 	if (eq->pidx == eq->cidx)
2989 		available = eq->sidx - 1;
2990 	else
2991 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2992 	if (available < ndesc)
2993 		goto slowpath;
2994 
2995 	cookie->pidx = eq->pidx;
2996 	cookie->ndesc = ndesc;
2997 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2998 
2999 	w = &eq->desc[eq->pidx];
3000 	IDXINCR(eq->pidx, ndesc, eq->sidx);
3001 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
3002 		w = &wrq->ss[0];
3003 		wrq->ss_pidx = cookie->pidx;
3004 		wrq->ss_len = len16 * 16;
3005 	}
3006 
3007 	EQ_UNLOCK(eq);
3008 
3009 	return (w);
3010 }
3011 
3012 void
3013 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
3014 {
3015 	struct sge_eq *eq = &wrq->eq;
3016 	struct adapter *sc = wrq->adapter;
3017 	int ndesc, pidx;
3018 	struct wrq_cookie *prev, *next;
3019 
3020 	if (cookie->pidx == -1) {
3021 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
3022 
3023 		t4_wrq_tx(sc, wr);
3024 		return;
3025 	}
3026 
3027 	if (__predict_false(w == &wrq->ss[0])) {
3028 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
3029 
3030 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
3031 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
3032 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
3033 		wrq->tx_wrs_ss++;
3034 	} else
3035 		wrq->tx_wrs_direct++;
3036 
3037 	EQ_LOCK(eq);
3038 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
3039 	pidx = cookie->pidx;
3040 	MPASS(pidx >= 0 && pidx < eq->sidx);
3041 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
3042 	next = TAILQ_NEXT(cookie, link);
3043 	if (prev == NULL) {
3044 		MPASS(pidx == eq->dbidx);
3045 		if (next == NULL || ndesc >= 16) {
3046 			int available;
3047 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
3048 
3049 			/*
3050 			 * Note that the WR via which we'll request tx updates
3051 			 * is at pidx and not eq->pidx, which has moved on
3052 			 * already.
3053 			 */
3054 			dst = (void *)&eq->desc[pidx];
3055 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3056 			if (available < eq->sidx / 4 &&
3057 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3058 				/*
3059 				 * XXX: This is not 100% reliable with some
3060 				 * types of WRs.  But this is a very unusual
3061 				 * situation for an ofld/ctrl queue anyway.
3062 				 */
3063 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
3064 				    F_FW_WR_EQUEQ);
3065 			}
3066 
3067 			ring_eq_db(wrq->adapter, eq, ndesc);
3068 		} else {
3069 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
3070 			next->pidx = pidx;
3071 			next->ndesc += ndesc;
3072 		}
3073 	} else {
3074 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
3075 		prev->ndesc += ndesc;
3076 	}
3077 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
3078 
3079 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
3080 		drain_wrq_wr_list(sc, wrq);
3081 
3082 #ifdef INVARIANTS
3083 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
3084 		/* Doorbell must have caught up to the pidx. */
3085 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
3086 	}
3087 #endif
3088 	EQ_UNLOCK(eq);
3089 }
3090 
3091 static u_int
3092 can_resume_eth_tx(struct mp_ring *r)
3093 {
3094 	struct sge_eq *eq = r->cookie;
3095 
3096 	return (total_available_tx_desc(eq) > eq->sidx / 8);
3097 }
3098 
3099 static inline bool
3100 cannot_use_txpkts(struct mbuf *m)
3101 {
3102 	/* maybe put a GL limit too, to avoid silliness? */
3103 
3104 	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
3105 }
3106 
3107 static inline int
3108 discard_tx(struct sge_eq *eq)
3109 {
3110 
3111 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
3112 }
3113 
3114 static inline int
3115 wr_can_update_eq(void *p)
3116 {
3117 	struct fw_eth_tx_pkts_wr *wr = p;
3118 
3119 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
3120 	case FW_ULPTX_WR:
3121 	case FW_ETH_TX_PKT_WR:
3122 	case FW_ETH_TX_PKTS_WR:
3123 	case FW_ETH_TX_PKTS2_WR:
3124 	case FW_ETH_TX_PKT_VM_WR:
3125 	case FW_ETH_TX_PKTS_VM_WR:
3126 		return (1);
3127 	default:
3128 		return (0);
3129 	}
3130 }
3131 
3132 static inline void
3133 set_txupdate_flags(struct sge_txq *txq, u_int avail,
3134     struct fw_eth_tx_pkt_wr *wr)
3135 {
3136 	struct sge_eq *eq = &txq->eq;
3137 	struct txpkts *txp = &txq->txp;
3138 
3139 	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
3140 	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3141 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3142 		eq->equeqidx = eq->pidx;
3143 	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
3144 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3145 		eq->equeqidx = eq->pidx;
3146 	}
3147 }
3148 
3149 #if defined(__i386__) || defined(__amd64__)
3150 extern uint64_t tsc_freq;
3151 #endif
3152 
3153 static inline bool
3154 record_eth_tx_time(struct sge_txq *txq)
3155 {
3156 	const uint64_t cycles = get_cyclecount();
3157 	const uint64_t last_tx = txq->last_tx;
3158 #if defined(__i386__) || defined(__amd64__)
3159 	const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
3160 #else
3161 	const uint64_t itg = 0;
3162 #endif
3163 
3164 	MPASS(cycles >= last_tx);
3165 	txq->last_tx = cycles;
3166 	return (cycles - last_tx < itg);
3167 }
3168 
3169 /*
3170  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
3171  * be consumed.  Return the actual number consumed.  0 indicates a stall.
3172  */
3173 static u_int
3174 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
3175 {
3176 	struct sge_txq *txq = r->cookie;
3177 	struct ifnet *ifp = txq->ifp;
3178 	struct sge_eq *eq = &txq->eq;
3179 	struct txpkts *txp = &txq->txp;
3180 	struct vi_info *vi = ifp->if_softc;
3181 	struct adapter *sc = vi->adapter;
3182 	u_int total, remaining;		/* # of packets */
3183 	u_int n, avail, dbdiff;		/* # of hardware descriptors */
3184 	int i, rc;
3185 	struct mbuf *m0;
3186 	bool snd, recent_tx;
3187 	void *wr;	/* start of the last WR written to the ring */
3188 
3189 	TXQ_LOCK_ASSERT_OWNED(txq);
3190 	recent_tx = record_eth_tx_time(txq);
3191 
3192 	remaining = IDXDIFF(pidx, cidx, r->size);
3193 	if (__predict_false(discard_tx(eq))) {
3194 		for (i = 0; i < txp->npkt; i++)
3195 			m_freem(txp->mb[i]);
3196 		txp->npkt = 0;
3197 		while (cidx != pidx) {
3198 			m0 = r->items[cidx];
3199 			m_freem(m0);
3200 			if (++cidx == r->size)
3201 				cidx = 0;
3202 		}
3203 		reclaim_tx_descs(txq, eq->sidx);
3204 		*coalescing = false;
3205 		return (remaining);	/* emptied */
3206 	}
3207 
3208 	/* How many hardware descriptors do we have readily available. */
3209 	if (eq->pidx == eq->cidx)
3210 		avail = eq->sidx - 1;
3211 	else
3212 		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3213 
3214 	total = 0;
3215 	if (remaining == 0) {
3216 		txp->score = 0;
3217 		txq->txpkts_flush++;
3218 		goto send_txpkts;
3219 	}
3220 
3221 	dbdiff = 0;
3222 	MPASS(remaining > 0);
3223 	while (remaining > 0) {
3224 		m0 = r->items[cidx];
3225 		M_ASSERTPKTHDR(m0);
3226 		MPASS(m0->m_nextpkt == NULL);
3227 
3228 		if (avail < 2 * SGE_MAX_WR_NDESC)
3229 			avail += reclaim_tx_descs(txq, 64);
3230 
3231 		if (t4_tx_coalesce == 0 && txp->npkt == 0)
3232 			goto skip_coalescing;
3233 		if (cannot_use_txpkts(m0))
3234 			txp->score = 0;
3235 		else if (recent_tx) {
3236 			if (++txp->score == 0)
3237 				txp->score = UINT8_MAX;
3238 		} else
3239 			txp->score = 1;
3240 		if (txp->npkt > 0 || remaining > 1 ||
3241 		    txp->score >= t4_tx_coalesce_pkts ||
3242 		    atomic_load_int(&txq->eq.equiq) != 0) {
3243 			if (vi->flags & TX_USES_VM_WR)
3244 				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
3245 			else
3246 				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
3247 		} else {
3248 			snd = false;
3249 			rc = EINVAL;
3250 		}
3251 		if (snd) {
3252 			MPASS(txp->npkt > 0);
3253 			for (i = 0; i < txp->npkt; i++)
3254 				ETHER_BPF_MTAP(ifp, txp->mb[i]);
3255 			if (txp->npkt > 1) {
3256 				MPASS(avail >= tx_len16_to_desc(txp->len16));
3257 				if (vi->flags & TX_USES_VM_WR)
3258 					n = write_txpkts_vm_wr(sc, txq);
3259 				else
3260 					n = write_txpkts_wr(sc, txq);
3261 			} else {
3262 				MPASS(avail >=
3263 				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3264 				if (vi->flags & TX_USES_VM_WR)
3265 					n = write_txpkt_vm_wr(sc, txq,
3266 					    txp->mb[0]);
3267 				else
3268 					n = write_txpkt_wr(sc, txq, txp->mb[0],
3269 					    avail);
3270 			}
3271 			MPASS(n <= SGE_MAX_WR_NDESC);
3272 			avail -= n;
3273 			dbdiff += n;
3274 			wr = &eq->desc[eq->pidx];
3275 			IDXINCR(eq->pidx, n, eq->sidx);
3276 			txp->npkt = 0;	/* emptied */
3277 		}
3278 		if (rc == 0) {
3279 			/* m0 was coalesced into txq->txpkts. */
3280 			goto next_mbuf;
3281 		}
3282 		if (rc == EAGAIN) {
3283 			/*
3284 			 * m0 is suitable for tx coalescing but could not be
3285 			 * combined with the existing txq->txpkts, which has now
3286 			 * been transmitted.  Start a new txpkts with m0.
3287 			 */
3288 			MPASS(snd);
3289 			MPASS(txp->npkt == 0);
3290 			continue;
3291 		}
3292 
3293 		MPASS(rc != 0 && rc != EAGAIN);
3294 		MPASS(txp->npkt == 0);
3295 skip_coalescing:
3296 		n = tx_len16_to_desc(mbuf_len16(m0));
3297 		if (__predict_false(avail < n)) {
3298 			avail += reclaim_tx_descs(txq, min(n, 32));
3299 			if (avail < n)
3300 				break;	/* out of descriptors */
3301 		}
3302 
3303 		wr = &eq->desc[eq->pidx];
3304 		if (mbuf_cflags(m0) & MC_RAW_WR) {
3305 			n = write_raw_wr(txq, wr, m0, avail);
3306 #ifdef KERN_TLS
3307 		} else if (mbuf_cflags(m0) & MC_TLS) {
3308 			ETHER_BPF_MTAP(ifp, m0);
3309 			n = t6_ktls_write_wr(txq, wr, m0, mbuf_nsegs(m0),
3310 			    avail);
3311 #endif
3312 		} else {
3313 			ETHER_BPF_MTAP(ifp, m0);
3314 			if (vi->flags & TX_USES_VM_WR)
3315 				n = write_txpkt_vm_wr(sc, txq, m0);
3316 			else
3317 				n = write_txpkt_wr(sc, txq, m0, avail);
3318 		}
3319 		MPASS(n >= 1 && n <= avail);
3320 		if (!(mbuf_cflags(m0) & MC_TLS))
3321 			MPASS(n <= SGE_MAX_WR_NDESC);
3322 
3323 		avail -= n;
3324 		dbdiff += n;
3325 		IDXINCR(eq->pidx, n, eq->sidx);
3326 
3327 		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3328 			if (wr_can_update_eq(wr))
3329 				set_txupdate_flags(txq, avail, wr);
3330 			ring_eq_db(sc, eq, dbdiff);
3331 			avail += reclaim_tx_descs(txq, 32);
3332 			dbdiff = 0;
3333 		}
3334 next_mbuf:
3335 		total++;
3336 		remaining--;
3337 		if (__predict_false(++cidx == r->size))
3338 			cidx = 0;
3339 	}
3340 	if (dbdiff != 0) {
3341 		if (wr_can_update_eq(wr))
3342 			set_txupdate_flags(txq, avail, wr);
3343 		ring_eq_db(sc, eq, dbdiff);
3344 		reclaim_tx_descs(txq, 32);
3345 	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3346 	    atomic_load_int(&txq->eq.equiq) == 0) {
3347 		/*
3348 		 * If nothing was submitted to the chip for tx (it was coalesced
3349 		 * into txpkts instead) and there is no tx update outstanding
3350 		 * then we need to send txpkts now.
3351 		 */
3352 send_txpkts:
3353 		MPASS(txp->npkt > 0);
3354 		for (i = 0; i < txp->npkt; i++)
3355 			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3356 		if (txp->npkt > 1) {
3357 			MPASS(avail >= tx_len16_to_desc(txp->len16));
3358 			if (vi->flags & TX_USES_VM_WR)
3359 				n = write_txpkts_vm_wr(sc, txq);
3360 			else
3361 				n = write_txpkts_wr(sc, txq);
3362 		} else {
3363 			MPASS(avail >=
3364 			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3365 			if (vi->flags & TX_USES_VM_WR)
3366 				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3367 			else
3368 				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3369 		}
3370 		MPASS(n <= SGE_MAX_WR_NDESC);
3371 		wr = &eq->desc[eq->pidx];
3372 		IDXINCR(eq->pidx, n, eq->sidx);
3373 		txp->npkt = 0;	/* emptied */
3374 
3375 		MPASS(wr_can_update_eq(wr));
3376 		set_txupdate_flags(txq, avail - n, wr);
3377 		ring_eq_db(sc, eq, n);
3378 		reclaim_tx_descs(txq, 32);
3379 	}
3380 	*coalescing = txp->npkt > 0;
3381 
3382 	return (total);
3383 }
3384 
3385 static inline void
3386 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3387     int qsize)
3388 {
3389 
3390 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3391 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3392 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3393 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3394 
3395 	iq->flags = 0;
3396 	iq->adapter = sc;
3397 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3398 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3399 	if (pktc_idx >= 0) {
3400 		iq->intr_params |= F_QINTR_CNT_EN;
3401 		iq->intr_pktc_idx = pktc_idx;
3402 	}
3403 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3404 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3405 }
3406 
3407 static inline void
3408 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3409 {
3410 
3411 	fl->qsize = qsize;
3412 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3413 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3414 	if (sc->flags & BUF_PACKING_OK &&
3415 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3416 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3417 		fl->flags |= FL_BUF_PACKING;
3418 	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3419 	fl->safe_zidx = sc->sge.safe_zidx;
3420 }
3421 
3422 static inline void
3423 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3424     uint8_t tx_chan, uint16_t iqid, char *name)
3425 {
3426 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
3427 
3428 	eq->flags = eqtype & EQ_TYPEMASK;
3429 	eq->tx_chan = tx_chan;
3430 	eq->iqid = iqid;
3431 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3432 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3433 }
3434 
3435 int
3436 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3437     bus_dmamap_t *map, bus_addr_t *pa, void **va)
3438 {
3439 	int rc;
3440 
3441 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3442 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3443 	if (rc != 0) {
3444 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
3445 		goto done;
3446 	}
3447 
3448 	rc = bus_dmamem_alloc(*tag, va,
3449 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3450 	if (rc != 0) {
3451 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
3452 		goto done;
3453 	}
3454 
3455 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3456 	if (rc != 0) {
3457 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
3458 		goto done;
3459 	}
3460 done:
3461 	if (rc)
3462 		free_ring(sc, *tag, *map, *pa, *va);
3463 
3464 	return (rc);
3465 }
3466 
3467 int
3468 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3469     bus_addr_t pa, void *va)
3470 {
3471 	if (pa)
3472 		bus_dmamap_unload(tag, map);
3473 	if (va)
3474 		bus_dmamem_free(tag, va, map);
3475 	if (tag)
3476 		bus_dma_tag_destroy(tag);
3477 
3478 	return (0);
3479 }
3480 
3481 /*
3482  * Allocates the ring for an ingress queue and an optional freelist.  If the
3483  * freelist is specified it will be allocated and then associated with the
3484  * ingress queue.
3485  *
3486  * Returns errno on failure.  Resources allocated up to that point may still be
3487  * allocated.  Caller is responsible for cleanup in case this function fails.
3488  *
3489  * If the ingress queue will take interrupts directly then the intr_idx
3490  * specifies the vector, starting from 0.  -1 means the interrupts for this
3491  * queue should be forwarded to the fwq.
3492  */
3493 static int
3494 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3495     int intr_idx, int cong)
3496 {
3497 	int rc, i, cntxt_id;
3498 	size_t len;
3499 	struct fw_iq_cmd c;
3500 	struct port_info *pi = vi->pi;
3501 	struct adapter *sc = iq->adapter;
3502 	struct sge_params *sp = &sc->params.sge;
3503 	__be32 v = 0;
3504 
3505 	len = iq->qsize * IQ_ESIZE;
3506 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3507 	    (void **)&iq->desc);
3508 	if (rc != 0)
3509 		return (rc);
3510 
3511 	bzero(&c, sizeof(c));
3512 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3513 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3514 	    V_FW_IQ_CMD_VFN(0));
3515 
3516 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3517 	    FW_LEN16(c));
3518 
3519 	/* Special handling for firmware event queue */
3520 	if (iq == &sc->sge.fwq)
3521 		v |= F_FW_IQ_CMD_IQASYNCH;
3522 
3523 	if (intr_idx < 0) {
3524 		/* Forwarded interrupts, all headed to fwq */
3525 		v |= F_FW_IQ_CMD_IQANDST;
3526 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3527 	} else {
3528 		KASSERT(intr_idx < sc->intr_count,
3529 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
3530 		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
3531 	}
3532 
3533 	c.type_to_iqandstindex = htobe32(v |
3534 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3535 	    V_FW_IQ_CMD_VIID(vi->viid) |
3536 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3537 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
3538 	    F_FW_IQ_CMD_IQGTSMODE |
3539 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3540 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3541 	c.iqsize = htobe16(iq->qsize);
3542 	c.iqaddr = htobe64(iq->ba);
3543 	if (cong >= 0)
3544 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3545 
3546 	if (fl) {
3547 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3548 
3549 		len = fl->qsize * EQ_ESIZE;
3550 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3551 		    &fl->ba, (void **)&fl->desc);
3552 		if (rc)
3553 			return (rc);
3554 
3555 		/* Allocate space for one software descriptor per buffer. */
3556 		rc = alloc_fl_sdesc(fl);
3557 		if (rc != 0) {
3558 			device_printf(sc->dev,
3559 			    "failed to setup fl software descriptors: %d\n",
3560 			    rc);
3561 			return (rc);
3562 		}
3563 
3564 		if (fl->flags & FL_BUF_PACKING) {
3565 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3566 			fl->buf_boundary = sp->pack_boundary;
3567 		} else {
3568 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3569 			fl->buf_boundary = 16;
3570 		}
3571 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3572 			fl->buf_boundary = sp->pad_boundary;
3573 
3574 		c.iqns_to_fl0congen |=
3575 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3576 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3577 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3578 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3579 			    0));
3580 		if (cong >= 0) {
3581 			c.iqns_to_fl0congen |=
3582 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
3583 				    F_FW_IQ_CMD_FL0CONGCIF |
3584 				    F_FW_IQ_CMD_FL0CONGEN);
3585 		}
3586 		c.fl0dcaen_to_fl0cidxfthresh =
3587 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3588 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3589 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3590 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3591 		c.fl0size = htobe16(fl->qsize);
3592 		c.fl0addr = htobe64(fl->ba);
3593 	}
3594 
3595 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3596 	if (rc != 0) {
3597 		device_printf(sc->dev,
3598 		    "failed to create ingress queue: %d\n", rc);
3599 		return (rc);
3600 	}
3601 
3602 	iq->cidx = 0;
3603 	iq->gen = F_RSPD_GEN;
3604 	iq->intr_next = iq->intr_params;
3605 	iq->cntxt_id = be16toh(c.iqid);
3606 	iq->abs_id = be16toh(c.physiqid);
3607 	iq->flags |= IQ_ALLOCATED;
3608 
3609 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3610 	if (cntxt_id >= sc->sge.iqmap_sz) {
3611 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3612 		    cntxt_id, sc->sge.iqmap_sz - 1);
3613 	}
3614 	sc->sge.iqmap[cntxt_id] = iq;
3615 
3616 	if (fl) {
3617 		u_int qid;
3618 
3619 		iq->flags |= IQ_HAS_FL;
3620 		fl->cntxt_id = be16toh(c.fl0id);
3621 		fl->pidx = fl->cidx = 0;
3622 
3623 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3624 		if (cntxt_id >= sc->sge.eqmap_sz) {
3625 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3626 			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
3627 		}
3628 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3629 
3630 		qid = fl->cntxt_id;
3631 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3632 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3633 			uint32_t mask = (1 << s_qpp) - 1;
3634 			volatile uint8_t *udb;
3635 
3636 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3637 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3638 			qid &= mask;
3639 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3640 				udb += qid << UDBS_SEG_SHIFT;
3641 				qid = 0;
3642 			}
3643 			fl->udb = (volatile void *)udb;
3644 		}
3645 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3646 
3647 		FL_LOCK(fl);
3648 		/* Enough to make sure the SGE doesn't think it's starved */
3649 		refill_fl(sc, fl, fl->lowat);
3650 		FL_UNLOCK(fl);
3651 	}
3652 
3653 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) {
3654 		uint32_t param, val;
3655 
3656 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3657 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3658 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
3659 		if (cong == 0)
3660 			val = 1 << 19;
3661 		else {
3662 			val = 2 << 19;
3663 			for (i = 0; i < 4; i++) {
3664 				if (cong & (1 << i))
3665 					val |= 1 << (i << 2);
3666 			}
3667 		}
3668 
3669 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3670 		if (rc != 0) {
3671 			/* report error but carry on */
3672 			device_printf(sc->dev,
3673 			    "failed to set congestion manager context for "
3674 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
3675 		}
3676 	}
3677 
3678 	/* Enable IQ interrupts */
3679 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3680 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3681 	    V_INGRESSQID(iq->cntxt_id));
3682 
3683 	return (0);
3684 }
3685 
3686 static int
3687 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3688 {
3689 	int rc;
3690 	struct adapter *sc = iq->adapter;
3691 	device_t dev;
3692 
3693 	if (sc == NULL)
3694 		return (0);	/* nothing to do */
3695 
3696 	dev = vi ? vi->dev : sc->dev;
3697 
3698 	if (iq->flags & IQ_ALLOCATED) {
3699 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
3700 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
3701 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
3702 		if (rc != 0) {
3703 			device_printf(dev,
3704 			    "failed to free queue %p: %d\n", iq, rc);
3705 			return (rc);
3706 		}
3707 		iq->flags &= ~IQ_ALLOCATED;
3708 	}
3709 
3710 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3711 
3712 	bzero(iq, sizeof(*iq));
3713 
3714 	if (fl) {
3715 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
3716 		    fl->desc);
3717 
3718 		if (fl->sdesc)
3719 			free_fl_sdesc(sc, fl);
3720 
3721 		if (mtx_initialized(&fl->fl_lock))
3722 			mtx_destroy(&fl->fl_lock);
3723 
3724 		bzero(fl, sizeof(*fl));
3725 	}
3726 
3727 	return (0);
3728 }
3729 
3730 static void
3731 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3732     struct sge_iq *iq)
3733 {
3734 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3735 
3736 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3737 	    "bus address of descriptor ring");
3738 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3739 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3740 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3741 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &iq->abs_id, 0,
3742 	    sysctl_uint16, "I", "absolute id of the queue");
3743 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3744 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &iq->cntxt_id, 0,
3745 	    sysctl_uint16, "I", "SGE context id of the queue");
3746 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3747 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &iq->cidx, 0,
3748 	    sysctl_uint16, "I", "consumer index");
3749 }
3750 
3751 static void
3752 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3753     struct sysctl_oid *oid, struct sge_fl *fl)
3754 {
3755 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3756 
3757 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3758 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3759 	children = SYSCTL_CHILDREN(oid);
3760 
3761 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3762 	    &fl->ba, "bus address of descriptor ring");
3763 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3764 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3765 	    "desc ring size in bytes");
3766 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3767 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &fl->cntxt_id, 0,
3768 	    sysctl_uint16, "I", "SGE context id of the freelist");
3769 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3770 	    fl_pad ? 1 : 0, "padding enabled");
3771 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3772 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3773 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3774 	    0, "consumer index");
3775 	if (fl->flags & FL_BUF_PACKING) {
3776 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3777 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3778 	}
3779 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3780 	    0, "producer index");
3781 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3782 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3783 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3784 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3785 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3786 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3787 }
3788 
3789 static int
3790 alloc_fwq(struct adapter *sc)
3791 {
3792 	int rc, intr_idx;
3793 	struct sge_iq *fwq = &sc->sge.fwq;
3794 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
3795 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3796 
3797 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
3798 	if (sc->flags & IS_VF)
3799 		intr_idx = 0;
3800 	else
3801 		intr_idx = sc->intr_count > 1 ? 1 : 0;
3802 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
3803 	if (rc != 0) {
3804 		device_printf(sc->dev,
3805 		    "failed to create firmware event queue: %d\n", rc);
3806 		return (rc);
3807 	}
3808 
3809 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq",
3810 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
3811 	add_iq_sysctls(&sc->ctx, oid, fwq);
3812 
3813 	return (0);
3814 }
3815 
3816 static int
3817 free_fwq(struct adapter *sc)
3818 {
3819 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
3820 }
3821 
3822 static int
3823 alloc_ctrlq(struct adapter *sc, struct sge_wrq *ctrlq, int idx,
3824     struct sysctl_oid *oid)
3825 {
3826 	int rc;
3827 	char name[16];
3828 	struct sysctl_oid_list *children;
3829 
3830 	snprintf(name, sizeof(name), "%s ctrlq%d", device_get_nameunit(sc->dev),
3831 	    idx);
3832 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[idx]->tx_chan,
3833 	    sc->sge.fwq.cntxt_id, name);
3834 
3835 	children = SYSCTL_CHILDREN(oid);
3836 	snprintf(name, sizeof(name), "%d", idx);
3837 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, name,
3838 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ctrl queue");
3839 	rc = alloc_wrq(sc, NULL, ctrlq, oid);
3840 
3841 	return (rc);
3842 }
3843 
3844 int
3845 tnl_cong(struct port_info *pi, int drop)
3846 {
3847 
3848 	if (drop == -1)
3849 		return (-1);
3850 	else if (drop == 1)
3851 		return (0);
3852 	else
3853 		return (pi->rx_e_chan_map);
3854 }
3855 
3856 static int
3857 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
3858     struct sysctl_oid *oid)
3859 {
3860 	int rc;
3861 	struct adapter *sc = vi->adapter;
3862 	struct sysctl_oid_list *children;
3863 	char name[16];
3864 
3865 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
3866 	    tnl_cong(vi->pi, cong_drop));
3867 	if (rc != 0)
3868 		return (rc);
3869 
3870 	if (idx == 0)
3871 		sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3872 	else
3873 		KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3874 		    ("iq_base mismatch"));
3875 	KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3876 	    ("PF with non-zero iq_base"));
3877 
3878 	/*
3879 	 * The freelist is just barely above the starvation threshold right now,
3880 	 * fill it up a bit more.
3881 	 */
3882 	FL_LOCK(&rxq->fl);
3883 	refill_fl(sc, &rxq->fl, 128);
3884 	FL_UNLOCK(&rxq->fl);
3885 
3886 #if defined(INET) || defined(INET6)
3887 	rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs);
3888 	if (rc != 0)
3889 		return (rc);
3890 	MPASS(rxq->lro.ifp == vi->ifp);	/* also indicates LRO init'ed */
3891 
3892 	if (vi->ifp->if_capenable & IFCAP_LRO)
3893 		rxq->iq.flags |= IQ_LRO_ENABLED;
3894 #endif
3895 	if (vi->ifp->if_capenable & IFCAP_HWRXTSTMP)
3896 		rxq->iq.flags |= IQ_RX_TIMESTAMP;
3897 	rxq->ifp = vi->ifp;
3898 
3899 	children = SYSCTL_CHILDREN(oid);
3900 
3901 	snprintf(name, sizeof(name), "%d", idx);
3902 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name,
3903 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queue");
3904 	children = SYSCTL_CHILDREN(oid);
3905 
3906 	add_iq_sysctls(&vi->ctx, oid, &rxq->iq);
3907 #if defined(INET) || defined(INET6)
3908 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3909 	    &rxq->lro.lro_queued, 0, NULL);
3910 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3911 	    &rxq->lro.lro_flushed, 0, NULL);
3912 #endif
3913 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3914 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3915 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3916 	    CTLFLAG_RD, &rxq->vlan_extraction,
3917 	    "# of times hardware extracted 802.1Q tag");
3918 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vxlan_rxcsum",
3919 	    CTLFLAG_RD, &rxq->vxlan_rxcsum,
3920 	    "# of times hardware assisted with inner checksum (VXLAN) ");
3921 
3922 	add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl);
3923 
3924 	return (rc);
3925 }
3926 
3927 static int
3928 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3929 {
3930 	int rc;
3931 
3932 #if defined(INET) || defined(INET6)
3933 	if (rxq->lro.ifp) {
3934 		tcp_lro_free(&rxq->lro);
3935 		rxq->lro.ifp = NULL;
3936 	}
3937 #endif
3938 
3939 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3940 	if (rc == 0)
3941 		bzero(rxq, sizeof(*rxq));
3942 
3943 	return (rc);
3944 }
3945 
3946 #ifdef TCP_OFFLOAD
3947 static int
3948 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3949     int intr_idx, int idx, struct sysctl_oid *oid)
3950 {
3951 	struct port_info *pi = vi->pi;
3952 	int rc;
3953 	struct sysctl_oid_list *children;
3954 	char name[16];
3955 
3956 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0);
3957 	if (rc != 0)
3958 		return (rc);
3959 
3960 	children = SYSCTL_CHILDREN(oid);
3961 
3962 	snprintf(name, sizeof(name), "%d", idx);
3963 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name,
3964 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queue");
3965 	add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq);
3966 	add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl);
3967 
3968 	return (rc);
3969 }
3970 
3971 static int
3972 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3973 {
3974 	int rc;
3975 
3976 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3977 	if (rc == 0)
3978 		bzero(ofld_rxq, sizeof(*ofld_rxq));
3979 
3980 	return (rc);
3981 }
3982 #endif
3983 
3984 /*
3985  * Returns a reasonable automatic cidx flush threshold for a given queue size.
3986  */
3987 static u_int
3988 qsize_to_fthresh(int qsize)
3989 {
3990 	u_int fthresh;
3991 
3992 	while (!powerof2(qsize))
3993 		qsize++;
3994 	fthresh = ilog2(qsize);
3995 	if (fthresh > X_CIDXFLUSHTHRESH_128)
3996 		fthresh = X_CIDXFLUSHTHRESH_128;
3997 
3998 	return (fthresh);
3999 }
4000 
4001 static int
4002 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
4003 {
4004 	int rc, cntxt_id;
4005 	struct fw_eq_ctrl_cmd c;
4006 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4007 
4008 	bzero(&c, sizeof(c));
4009 
4010 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
4011 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
4012 	    V_FW_EQ_CTRL_CMD_VFN(0));
4013 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
4014 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
4015 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
4016 	c.physeqid_pkd = htobe32(0);
4017 	c.fetchszm_to_iqid =
4018 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4019 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
4020 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
4021 	c.dcaen_to_eqsize =
4022 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4023 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4024 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4025 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4026 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
4027 	c.eqaddr = htobe64(eq->ba);
4028 
4029 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4030 	if (rc != 0) {
4031 		device_printf(sc->dev,
4032 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
4033 		return (rc);
4034 	}
4035 	eq->flags |= EQ_ALLOCATED;
4036 
4037 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
4038 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4039 	if (cntxt_id >= sc->sge.eqmap_sz)
4040 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4041 		cntxt_id, sc->sge.eqmap_sz - 1);
4042 	sc->sge.eqmap[cntxt_id] = eq;
4043 
4044 	return (rc);
4045 }
4046 
4047 static int
4048 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4049 {
4050 	int rc, cntxt_id;
4051 	struct fw_eq_eth_cmd c;
4052 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4053 
4054 	bzero(&c, sizeof(c));
4055 
4056 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
4057 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
4058 	    V_FW_EQ_ETH_CMD_VFN(0));
4059 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
4060 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
4061 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
4062 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
4063 	c.fetchszm_to_iqid =
4064 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
4065 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
4066 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
4067 	c.dcaen_to_eqsize =
4068 	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4069 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4070 		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4071 		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
4072 	c.eqaddr = htobe64(eq->ba);
4073 
4074 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4075 	if (rc != 0) {
4076 		device_printf(vi->dev,
4077 		    "failed to create Ethernet egress queue: %d\n", rc);
4078 		return (rc);
4079 	}
4080 	eq->flags |= EQ_ALLOCATED;
4081 
4082 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
4083 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4084 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4085 	if (cntxt_id >= sc->sge.eqmap_sz)
4086 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4087 		cntxt_id, sc->sge.eqmap_sz - 1);
4088 	sc->sge.eqmap[cntxt_id] = eq;
4089 
4090 	return (rc);
4091 }
4092 
4093 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4094 static int
4095 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4096 {
4097 	int rc, cntxt_id;
4098 	struct fw_eq_ofld_cmd c;
4099 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4100 
4101 	bzero(&c, sizeof(c));
4102 
4103 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
4104 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
4105 	    V_FW_EQ_OFLD_CMD_VFN(0));
4106 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
4107 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
4108 	c.fetchszm_to_iqid =
4109 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4110 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
4111 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
4112 	c.dcaen_to_eqsize =
4113 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4114 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4115 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4116 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4117 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
4118 	c.eqaddr = htobe64(eq->ba);
4119 
4120 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4121 	if (rc != 0) {
4122 		device_printf(vi->dev,
4123 		    "failed to create egress queue for TCP offload: %d\n", rc);
4124 		return (rc);
4125 	}
4126 	eq->flags |= EQ_ALLOCATED;
4127 
4128 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
4129 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4130 	if (cntxt_id >= sc->sge.eqmap_sz)
4131 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4132 		cntxt_id, sc->sge.eqmap_sz - 1);
4133 	sc->sge.eqmap[cntxt_id] = eq;
4134 
4135 	return (rc);
4136 }
4137 #endif
4138 
4139 static int
4140 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4141 {
4142 	int rc, qsize;
4143 	size_t len;
4144 
4145 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
4146 
4147 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4148 	len = qsize * EQ_ESIZE;
4149 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
4150 	    &eq->ba, (void **)&eq->desc);
4151 	if (rc)
4152 		return (rc);
4153 
4154 	eq->pidx = eq->cidx = eq->dbidx = 0;
4155 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4156 	eq->equeqidx = 0;
4157 	eq->doorbells = sc->doorbells;
4158 
4159 	switch (eq->flags & EQ_TYPEMASK) {
4160 	case EQ_CTRL:
4161 		rc = ctrl_eq_alloc(sc, eq);
4162 		break;
4163 
4164 	case EQ_ETH:
4165 		rc = eth_eq_alloc(sc, vi, eq);
4166 		break;
4167 
4168 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4169 	case EQ_OFLD:
4170 		rc = ofld_eq_alloc(sc, vi, eq);
4171 		break;
4172 #endif
4173 
4174 	default:
4175 		panic("%s: invalid eq type %d.", __func__,
4176 		    eq->flags & EQ_TYPEMASK);
4177 	}
4178 	if (rc != 0) {
4179 		device_printf(sc->dev,
4180 		    "failed to allocate egress queue(%d): %d\n",
4181 		    eq->flags & EQ_TYPEMASK, rc);
4182 	}
4183 
4184 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4185 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4186 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4187 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4188 		uint32_t mask = (1 << s_qpp) - 1;
4189 		volatile uint8_t *udb;
4190 
4191 		udb = sc->udbs_base + UDBS_DB_OFFSET;
4192 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4193 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4194 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4195 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
4196 		else {
4197 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4198 			eq->udb_qid = 0;
4199 		}
4200 		eq->udb = (volatile void *)udb;
4201 	}
4202 
4203 	return (rc);
4204 }
4205 
4206 static int
4207 free_eq(struct adapter *sc, struct sge_eq *eq)
4208 {
4209 	int rc;
4210 
4211 	if (eq->flags & EQ_ALLOCATED) {
4212 		switch (eq->flags & EQ_TYPEMASK) {
4213 		case EQ_CTRL:
4214 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
4215 			    eq->cntxt_id);
4216 			break;
4217 
4218 		case EQ_ETH:
4219 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
4220 			    eq->cntxt_id);
4221 			break;
4222 
4223 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4224 		case EQ_OFLD:
4225 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
4226 			    eq->cntxt_id);
4227 			break;
4228 #endif
4229 
4230 		default:
4231 			panic("%s: invalid eq type %d.", __func__,
4232 			    eq->flags & EQ_TYPEMASK);
4233 		}
4234 		if (rc != 0) {
4235 			device_printf(sc->dev,
4236 			    "failed to free egress queue (%d): %d\n",
4237 			    eq->flags & EQ_TYPEMASK, rc);
4238 			return (rc);
4239 		}
4240 		eq->flags &= ~EQ_ALLOCATED;
4241 	}
4242 
4243 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4244 
4245 	if (mtx_initialized(&eq->eq_lock))
4246 		mtx_destroy(&eq->eq_lock);
4247 
4248 	bzero(eq, sizeof(*eq));
4249 	return (0);
4250 }
4251 
4252 static int
4253 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4254     struct sysctl_oid *oid)
4255 {
4256 	int rc;
4257 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
4258 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4259 
4260 	rc = alloc_eq(sc, vi, &wrq->eq);
4261 	if (rc)
4262 		return (rc);
4263 
4264 	wrq->adapter = sc;
4265 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4266 	TAILQ_INIT(&wrq->incomplete_wrs);
4267 	STAILQ_INIT(&wrq->wr_list);
4268 	wrq->nwr_pending = 0;
4269 	wrq->ndesc_needed = 0;
4270 
4271 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
4272 	    &wrq->eq.ba, "bus address of descriptor ring");
4273 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4274 	    wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len,
4275 	    "desc ring size in bytes");
4276 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4277 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
4278 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
4279 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &wrq->eq.cidx, 0,
4280 	    sysctl_uint16, "I", "consumer index");
4281 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
4282 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &wrq->eq.pidx, 0,
4283 	    sysctl_uint16, "I", "producer index");
4284 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4285 	    wrq->eq.sidx, "status page index");
4286 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4287 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4288 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4289 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4290 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4291 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4292 
4293 	return (rc);
4294 }
4295 
4296 static int
4297 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4298 {
4299 	int rc;
4300 
4301 	rc = free_eq(sc, &wrq->eq);
4302 	if (rc)
4303 		return (rc);
4304 
4305 	bzero(wrq, sizeof(*wrq));
4306 	return (0);
4307 }
4308 
4309 static int
4310 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
4311     struct sysctl_oid *oid)
4312 {
4313 	int rc;
4314 	struct port_info *pi = vi->pi;
4315 	struct adapter *sc = pi->adapter;
4316 	struct sge_eq *eq = &txq->eq;
4317 	struct txpkts *txp;
4318 	char name[16];
4319 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4320 
4321 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
4322 	    M_CXGBE, &eq->eq_lock, M_WAITOK);
4323 	if (rc != 0) {
4324 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
4325 		return (rc);
4326 	}
4327 
4328 	rc = alloc_eq(sc, vi, eq);
4329 	if (rc != 0) {
4330 		mp_ring_free(txq->r);
4331 		txq->r = NULL;
4332 		return (rc);
4333 	}
4334 
4335 	/* Can't fail after this point. */
4336 
4337 	if (idx == 0)
4338 		sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4339 	else
4340 		KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4341 		    ("eq_base mismatch"));
4342 	KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4343 	    ("PF with non-zero eq_base"));
4344 
4345 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4346 	txq->ifp = vi->ifp;
4347 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4348 	if (vi->flags & TX_USES_VM_WR)
4349 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4350 		    V_TXPKT_INTF(pi->tx_chan));
4351 	else
4352 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4353 		    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4354 		    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4355 	txq->tc_idx = -1;
4356 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4357 	    M_ZERO | M_WAITOK);
4358 
4359 	txp = &txq->txp;
4360 	MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4361 	txq->txp.max_npkt = min(nitems(txp->mb),
4362 	    sc->params.max_pkts_per_eth_tx_pkts_wr);
4363 	if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
4364 		txq->txp.max_npkt--;
4365 
4366 	snprintf(name, sizeof(name), "%d", idx);
4367 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name,
4368 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queue");
4369 	children = SYSCTL_CHILDREN(oid);
4370 
4371 	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
4372 	    &eq->ba, "bus address of descriptor ring");
4373 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4374 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4375 	    "desc ring size in bytes");
4376 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4377 	    &eq->abs_id, 0, "absolute id of the queue");
4378 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4379 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4380 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
4381 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &eq->cidx, 0,
4382 	    sysctl_uint16, "I", "consumer index");
4383 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
4384 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &eq->pidx, 0,
4385 	    sysctl_uint16, "I", "producer index");
4386 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4387 	    eq->sidx, "status page index");
4388 
4389 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
4390 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, idx, sysctl_tc,
4391 	    "I", "traffic class (-1 means none)");
4392 
4393 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4394 	    &txq->txcsum, "# of times hardware assisted with checksum");
4395 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
4396 	    CTLFLAG_RD, &txq->vlan_insertion,
4397 	    "# of times hardware inserted 802.1Q tag");
4398 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4399 	    &txq->tso_wrs, "# of TSO work requests");
4400 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4401 	    &txq->imm_wrs, "# of work requests with immediate data");
4402 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4403 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4404 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4405 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4406 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
4407 	    CTLFLAG_RD, &txq->txpkts0_wrs,
4408 	    "# of txpkts (type 0) work requests");
4409 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
4410 	    CTLFLAG_RD, &txq->txpkts1_wrs,
4411 	    "# of txpkts (type 1) work requests");
4412 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
4413 	    CTLFLAG_RD, &txq->txpkts0_pkts,
4414 	    "# of frames tx'd using type0 txpkts work requests");
4415 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
4416 	    CTLFLAG_RD, &txq->txpkts1_pkts,
4417 	    "# of frames tx'd using type1 txpkts work requests");
4418 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts_flush",
4419 	    CTLFLAG_RD, &txq->txpkts_flush,
4420 	    "# of times txpkts had to be flushed out by an egress-update");
4421 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4422 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4423 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vxlan_tso_wrs",
4424 	    CTLFLAG_RD, &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
4425 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vxlan_txcsum",
4426 	    CTLFLAG_RD, &txq->vxlan_txcsum,
4427 	    "# of times hardware assisted with inner checksums (VXLAN)");
4428 
4429 #ifdef KERN_TLS
4430 	if (sc->flags & KERN_TLS_OK) {
4431 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4432 		    "kern_tls_records", CTLFLAG_RD, &txq->kern_tls_records,
4433 		    "# of NIC TLS records transmitted");
4434 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4435 		    "kern_tls_short", CTLFLAG_RD, &txq->kern_tls_short,
4436 		    "# of short NIC TLS records transmitted");
4437 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4438 		    "kern_tls_partial", CTLFLAG_RD, &txq->kern_tls_partial,
4439 		    "# of partial NIC TLS records transmitted");
4440 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4441 		    "kern_tls_full", CTLFLAG_RD, &txq->kern_tls_full,
4442 		    "# of full NIC TLS records transmitted");
4443 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4444 		    "kern_tls_octets", CTLFLAG_RD, &txq->kern_tls_octets,
4445 		    "# of payload octets in transmitted NIC TLS records");
4446 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4447 		    "kern_tls_waste", CTLFLAG_RD, &txq->kern_tls_waste,
4448 		    "# of octets DMAd but not transmitted in NIC TLS records");
4449 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4450 		    "kern_tls_options", CTLFLAG_RD, &txq->kern_tls_options,
4451 		    "# of NIC TLS options-only packets transmitted");
4452 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4453 		    "kern_tls_header", CTLFLAG_RD, &txq->kern_tls_header,
4454 		    "# of NIC TLS header-only packets transmitted");
4455 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4456 		    "kern_tls_fin", CTLFLAG_RD, &txq->kern_tls_fin,
4457 		    "# of NIC TLS FIN-only packets transmitted");
4458 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4459 		    "kern_tls_fin_short", CTLFLAG_RD, &txq->kern_tls_fin_short,
4460 		    "# of NIC TLS padded FIN packets on short TLS records");
4461 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4462 		    "kern_tls_cbc", CTLFLAG_RD, &txq->kern_tls_cbc,
4463 		    "# of NIC TLS sessions using AES-CBC");
4464 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4465 		    "kern_tls_gcm", CTLFLAG_RD, &txq->kern_tls_gcm,
4466 		    "# of NIC TLS sessions using AES-GCM");
4467 	}
4468 #endif
4469 	mp_ring_sysctls(txq->r, &vi->ctx, children);
4470 
4471 	return (0);
4472 }
4473 
4474 static int
4475 free_txq(struct vi_info *vi, struct sge_txq *txq)
4476 {
4477 	int rc;
4478 	struct adapter *sc = vi->adapter;
4479 	struct sge_eq *eq = &txq->eq;
4480 
4481 	rc = free_eq(sc, eq);
4482 	if (rc)
4483 		return (rc);
4484 
4485 	sglist_free(txq->gl);
4486 	free(txq->sdesc, M_CXGBE);
4487 	mp_ring_free(txq->r);
4488 
4489 	bzero(txq, sizeof(*txq));
4490 	return (0);
4491 }
4492 
4493 static void
4494 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4495 {
4496 	bus_addr_t *ba = arg;
4497 
4498 	KASSERT(nseg == 1,
4499 	    ("%s meant for single segment mappings only.", __func__));
4500 
4501 	*ba = error ? 0 : segs->ds_addr;
4502 }
4503 
4504 static inline void
4505 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4506 {
4507 	uint32_t n, v;
4508 
4509 	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
4510 	MPASS(n > 0);
4511 
4512 	wmb();
4513 	v = fl->dbval | V_PIDX(n);
4514 	if (fl->udb)
4515 		*fl->udb = htole32(v);
4516 	else
4517 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4518 	IDXINCR(fl->dbidx, n, fl->sidx);
4519 }
4520 
4521 /*
4522  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4523  * recycled do not count towards this allocation budget.
4524  *
4525  * Returns non-zero to indicate that this freelist should be added to the list
4526  * of starving freelists.
4527  */
4528 static int
4529 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4530 {
4531 	__be64 *d;
4532 	struct fl_sdesc *sd;
4533 	uintptr_t pa;
4534 	caddr_t cl;
4535 	struct rx_buf_info *rxb;
4536 	struct cluster_metadata *clm;
4537 	uint16_t max_pidx, zidx = fl->zidx;
4538 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
4539 
4540 	FL_LOCK_ASSERT_OWNED(fl);
4541 
4542 	/*
4543 	 * We always stop at the beginning of the hardware descriptor that's just
4544 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
4545 	 * which would mean an empty freelist to the chip.
4546 	 */
4547 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
4548 	if (fl->pidx == max_pidx * 8)
4549 		return (0);
4550 
4551 	d = &fl->desc[fl->pidx];
4552 	sd = &fl->sdesc[fl->pidx];
4553 	rxb = &sc->sge.rx_buf_info[zidx];
4554 
4555 	while (n > 0) {
4556 
4557 		if (sd->cl != NULL) {
4558 
4559 			if (sd->nmbuf == 0) {
4560 				/*
4561 				 * Fast recycle without involving any atomics on
4562 				 * the cluster's metadata (if the cluster has
4563 				 * metadata).  This happens when all frames
4564 				 * received in the cluster were small enough to
4565 				 * fit within a single mbuf each.
4566 				 */
4567 				fl->cl_fast_recycled++;
4568 				goto recycled;
4569 			}
4570 
4571 			/*
4572 			 * Cluster is guaranteed to have metadata.  Clusters
4573 			 * without metadata always take the fast recycle path
4574 			 * when they're recycled.
4575 			 */
4576 			clm = cl_metadata(sd);
4577 			MPASS(clm != NULL);
4578 
4579 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4580 				fl->cl_recycled++;
4581 				counter_u64_add(extfree_rels, 1);
4582 				goto recycled;
4583 			}
4584 			sd->cl = NULL;	/* gave up my reference */
4585 		}
4586 		MPASS(sd->cl == NULL);
4587 		cl = uma_zalloc(rxb->zone, M_NOWAIT);
4588 		if (__predict_false(cl == NULL)) {
4589 			if (zidx != fl->safe_zidx) {
4590 				zidx = fl->safe_zidx;
4591 				rxb = &sc->sge.rx_buf_info[zidx];
4592 				cl = uma_zalloc(rxb->zone, M_NOWAIT);
4593 			}
4594 			if (cl == NULL)
4595 				break;
4596 		}
4597 		fl->cl_allocated++;
4598 		n--;
4599 
4600 		pa = pmap_kextract((vm_offset_t)cl);
4601 		sd->cl = cl;
4602 		sd->zidx = zidx;
4603 
4604 		if (fl->flags & FL_BUF_PACKING) {
4605 			*d = htobe64(pa | rxb->hwidx2);
4606 			sd->moff = rxb->size2;
4607 		} else {
4608 			*d = htobe64(pa | rxb->hwidx1);
4609 			sd->moff = 0;
4610 		}
4611 recycled:
4612 		sd->nmbuf = 0;
4613 		d++;
4614 		sd++;
4615 		if (__predict_false((++fl->pidx & 7) == 0)) {
4616 			uint16_t pidx = fl->pidx >> 3;
4617 
4618 			if (__predict_false(pidx == fl->sidx)) {
4619 				fl->pidx = 0;
4620 				pidx = 0;
4621 				sd = fl->sdesc;
4622 				d = fl->desc;
4623 			}
4624 			if (n < 8 || pidx == max_pidx)
4625 				break;
4626 
4627 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
4628 				ring_fl_db(sc, fl);
4629 		}
4630 	}
4631 
4632 	if ((fl->pidx >> 3) != fl->dbidx)
4633 		ring_fl_db(sc, fl);
4634 
4635 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
4636 }
4637 
4638 /*
4639  * Attempt to refill all starving freelists.
4640  */
4641 static void
4642 refill_sfl(void *arg)
4643 {
4644 	struct adapter *sc = arg;
4645 	struct sge_fl *fl, *fl_temp;
4646 
4647 	mtx_assert(&sc->sfl_lock, MA_OWNED);
4648 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
4649 		FL_LOCK(fl);
4650 		refill_fl(sc, fl, 64);
4651 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
4652 			TAILQ_REMOVE(&sc->sfl, fl, link);
4653 			fl->flags &= ~FL_STARVING;
4654 		}
4655 		FL_UNLOCK(fl);
4656 	}
4657 
4658 	if (!TAILQ_EMPTY(&sc->sfl))
4659 		callout_schedule(&sc->sfl_callout, hz / 5);
4660 }
4661 
4662 static int
4663 alloc_fl_sdesc(struct sge_fl *fl)
4664 {
4665 
4666 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
4667 	    M_ZERO | M_WAITOK);
4668 
4669 	return (0);
4670 }
4671 
4672 static void
4673 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
4674 {
4675 	struct fl_sdesc *sd;
4676 	struct cluster_metadata *clm;
4677 	int i;
4678 
4679 	sd = fl->sdesc;
4680 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
4681 		if (sd->cl == NULL)
4682 			continue;
4683 
4684 		if (sd->nmbuf == 0)
4685 			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
4686 		else if (fl->flags & FL_BUF_PACKING) {
4687 			clm = cl_metadata(sd);
4688 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4689 				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
4690 				    sd->cl);
4691 				counter_u64_add(extfree_rels, 1);
4692 			}
4693 		}
4694 		sd->cl = NULL;
4695 	}
4696 
4697 	free(fl->sdesc, M_CXGBE);
4698 	fl->sdesc = NULL;
4699 }
4700 
4701 static inline void
4702 get_pkt_gl(struct mbuf *m, struct sglist *gl)
4703 {
4704 	int rc;
4705 
4706 	M_ASSERTPKTHDR(m);
4707 
4708 	sglist_reset(gl);
4709 	rc = sglist_append_mbuf(gl, m);
4710 	if (__predict_false(rc != 0)) {
4711 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
4712 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
4713 	}
4714 
4715 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
4716 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
4717 	    mbuf_nsegs(m), gl->sg_nseg));
4718 #if 0	/* vm_wr not readily available here. */
4719 	KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
4720 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
4721 		gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
4722 #endif
4723 }
4724 
4725 /*
4726  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
4727  */
4728 static inline u_int
4729 txpkt_len16(u_int nsegs, const u_int extra)
4730 {
4731 	u_int n;
4732 
4733 	MPASS(nsegs > 0);
4734 
4735 	nsegs--; /* first segment is part of ulptx_sgl */
4736 	n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
4737 	    sizeof(struct cpl_tx_pkt_core) +
4738 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4739 
4740 	return (howmany(n, 16));
4741 }
4742 
4743 /*
4744  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
4745  * request header.
4746  */
4747 static inline u_int
4748 txpkt_vm_len16(u_int nsegs, const u_int extra)
4749 {
4750 	u_int n;
4751 
4752 	MPASS(nsegs > 0);
4753 
4754 	nsegs--; /* first segment is part of ulptx_sgl */
4755 	n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
4756 	    sizeof(struct cpl_tx_pkt_core) +
4757 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4758 
4759 	return (howmany(n, 16));
4760 }
4761 
4762 static inline void
4763 calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
4764 {
4765 	const int lso = sizeof(struct cpl_tx_pkt_lso_core);
4766 	const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
4767 
4768 	if (vm_wr) {
4769 		if (needs_tso(m))
4770 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
4771 		else
4772 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
4773 		return;
4774 	}
4775 
4776 	if (needs_tso(m)) {
4777 		if (needs_vxlan_tso(m))
4778 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
4779 		else
4780 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
4781 	} else
4782 		set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
4783 }
4784 
4785 /*
4786  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
4787  * request header.
4788  */
4789 static inline u_int
4790 txpkts0_len16(u_int nsegs)
4791 {
4792 	u_int n;
4793 
4794 	MPASS(nsegs > 0);
4795 
4796 	nsegs--; /* first segment is part of ulptx_sgl */
4797 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
4798 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
4799 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
4800 
4801 	return (howmany(n, 16));
4802 }
4803 
4804 /*
4805  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
4806  * request header.
4807  */
4808 static inline u_int
4809 txpkts1_len16(void)
4810 {
4811 	u_int n;
4812 
4813 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
4814 
4815 	return (howmany(n, 16));
4816 }
4817 
4818 static inline u_int
4819 imm_payload(u_int ndesc)
4820 {
4821 	u_int n;
4822 
4823 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
4824 	    sizeof(struct cpl_tx_pkt_core);
4825 
4826 	return (n);
4827 }
4828 
4829 static inline uint64_t
4830 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
4831 {
4832 	uint64_t ctrl;
4833 	int csum_type, l2hlen, l3hlen;
4834 	int x, y;
4835 	static const int csum_types[3][2] = {
4836 		{TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
4837 		{TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
4838 		{TX_CSUM_IP, 0}
4839 	};
4840 
4841 	M_ASSERTPKTHDR(m);
4842 
4843 	if (!needs_hwcsum(m))
4844 		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
4845 
4846 	MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
4847 	MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
4848 
4849 	if (needs_vxlan_csum(m)) {
4850 		MPASS(m->m_pkthdr.l4hlen > 0);
4851 		MPASS(m->m_pkthdr.l5hlen > 0);
4852 		MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
4853 		MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
4854 
4855 		l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
4856 		    m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
4857 		    m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
4858 		l3hlen = m->m_pkthdr.inner_l3hlen;
4859 	} else {
4860 		l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
4861 		l3hlen = m->m_pkthdr.l3hlen;
4862 	}
4863 
4864 	ctrl = 0;
4865 	if (!needs_l3_csum(m))
4866 		ctrl |= F_TXPKT_IPCSUM_DIS;
4867 
4868 	if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
4869 	    CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
4870 		x = 0;	/* TCP */
4871 	else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
4872 	    CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
4873 		x = 1;	/* UDP */
4874 	else
4875 		x = 2;
4876 
4877 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
4878 	    CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
4879 		y = 0;	/* IPv4 */
4880 	else {
4881 		MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
4882 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
4883 		y = 1;	/* IPv6 */
4884 	}
4885 	/*
4886 	 * needs_hwcsum returned true earlier so there must be some kind of
4887 	 * checksum to calculate.
4888 	 */
4889 	csum_type = csum_types[x][y];
4890 	MPASS(csum_type != 0);
4891 	if (csum_type == TX_CSUM_IP)
4892 		ctrl |= F_TXPKT_L4CSUM_DIS;
4893 	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
4894 	if (chip_id(sc) <= CHELSIO_T5)
4895 		ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
4896 	else
4897 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
4898 
4899 	return (ctrl);
4900 }
4901 
4902 static inline void *
4903 write_lso_cpl(void *cpl, struct mbuf *m0)
4904 {
4905 	struct cpl_tx_pkt_lso_core *lso;
4906 	uint32_t ctrl;
4907 
4908 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4909 	    m0->m_pkthdr.l4hlen > 0,
4910 	    ("%s: mbuf %p needs TSO but missing header lengths",
4911 		__func__, m0));
4912 
4913 	ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
4914 	    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
4915 	    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
4916 	    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
4917 	    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4918 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4919 		ctrl |= F_LSO_IPV6;
4920 
4921 	lso = cpl;
4922 	lso->lso_ctrl = htobe32(ctrl);
4923 	lso->ipid_ofst = htobe16(0);
4924 	lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4925 	lso->seqno_offset = htobe32(0);
4926 	lso->len = htobe32(m0->m_pkthdr.len);
4927 
4928 	return (lso + 1);
4929 }
4930 
4931 static void *
4932 write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
4933 {
4934 	struct cpl_tx_tnl_lso *tnl_lso = cpl;
4935 	uint32_t ctrl;
4936 
4937 	KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
4938 	    m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
4939 	    m0->m_pkthdr.inner_l5hlen > 0,
4940 	    ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
4941 		__func__, m0));
4942 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4943 	    m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
4944 	    ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
4945 		__func__, m0));
4946 
4947 	/* Outer headers. */
4948 	ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
4949 	    F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
4950 	    V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
4951 		(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
4952 	    V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
4953 	    F_CPL_TX_TNL_LSO_IPLENSETOUT;
4954 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4955 		ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
4956 	else {
4957 		ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
4958 		    F_CPL_TX_TNL_LSO_IPIDINCOUT;
4959 	}
4960 	tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
4961 	tnl_lso->IpIdOffsetOut = 0;
4962 	tnl_lso->UdpLenSetOut_to_TnlHdrLen =
4963 		htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
4964 		    F_CPL_TX_TNL_LSO_UDPLENSETOUT |
4965 		    V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
4966 			m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
4967 			m0->m_pkthdr.l5hlen) |
4968 		    V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
4969 	tnl_lso->r1 = 0;
4970 
4971 	/* Inner headers. */
4972 	ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
4973 	    (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
4974 	    V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
4975 	    V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
4976 	if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
4977 		ctrl |= F_CPL_TX_TNL_LSO_IPV6;
4978 	tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
4979 	tnl_lso->IpIdOffset = 0;
4980 	tnl_lso->IpIdSplit_to_Mss =
4981 	    htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
4982 	tnl_lso->TCPSeqOffset = 0;
4983 	tnl_lso->EthLenOffset_Size =
4984 	    htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
4985 
4986 	return (tnl_lso + 1);
4987 }
4988 
4989 #define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
4990 
4991 /*
4992  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
4993  * software descriptor, and advance the pidx.  It is guaranteed that enough
4994  * descriptors are available.
4995  *
4996  * The return value is the # of hardware descriptors used.
4997  */
4998 static u_int
4999 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
5000 {
5001 	struct sge_eq *eq;
5002 	struct fw_eth_tx_pkt_vm_wr *wr;
5003 	struct tx_sdesc *txsd;
5004 	struct cpl_tx_pkt_core *cpl;
5005 	uint32_t ctrl;	/* used in many unrelated places */
5006 	uint64_t ctrl1;
5007 	int len16, ndesc, pktlen, nsegs;
5008 	caddr_t dst;
5009 
5010 	TXQ_LOCK_ASSERT_OWNED(txq);
5011 	M_ASSERTPKTHDR(m0);
5012 
5013 	len16 = mbuf_len16(m0);
5014 	nsegs = mbuf_nsegs(m0);
5015 	pktlen = m0->m_pkthdr.len;
5016 	ctrl = sizeof(struct cpl_tx_pkt_core);
5017 	if (needs_tso(m0))
5018 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5019 	ndesc = tx_len16_to_desc(len16);
5020 
5021 	/* Firmware work request header */
5022 	eq = &txq->eq;
5023 	wr = (void *)&eq->desc[eq->pidx];
5024 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
5025 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5026 
5027 	ctrl = V_FW_WR_LEN16(len16);
5028 	wr->equiq_to_len16 = htobe32(ctrl);
5029 	wr->r3[0] = 0;
5030 	wr->r3[1] = 0;
5031 
5032 	/*
5033 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
5034 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
5035 	 * simpler to always copy it rather than making it
5036 	 * conditional.  Also, it seems that we do not have to set
5037 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
5038 	 */
5039 	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
5040 
5041 	if (needs_tso(m0)) {
5042 		cpl = write_lso_cpl(wr + 1, m0);
5043 		txq->tso_wrs++;
5044 	} else
5045 		cpl = (void *)(wr + 1);
5046 
5047 	/* Checksum offload */
5048 	ctrl1 = csum_to_ctrl(sc, m0);
5049 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5050 		txq->txcsum++;	/* some hardware assistance provided */
5051 
5052 	/* VLAN tag insertion */
5053 	if (needs_vlan_insertion(m0)) {
5054 		ctrl1 |= F_TXPKT_VLAN_VLD |
5055 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5056 		txq->vlan_insertion++;
5057 	}
5058 
5059 	/* CPL header */
5060 	cpl->ctrl0 = txq->cpl_ctrl0;
5061 	cpl->pack = 0;
5062 	cpl->len = htobe16(pktlen);
5063 	cpl->ctrl1 = htobe64(ctrl1);
5064 
5065 	/* SGL */
5066 	dst = (void *)(cpl + 1);
5067 
5068 	/*
5069 	 * A packet using TSO will use up an entire descriptor for the
5070 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
5071 	 * If this descriptor is the last descriptor in the ring, wrap
5072 	 * around to the front of the ring explicitly for the start of
5073 	 * the sgl.
5074 	 */
5075 	if (dst == (void *)&eq->desc[eq->sidx]) {
5076 		dst = (void *)&eq->desc[0];
5077 		write_gl_to_txd(txq, m0, &dst, 0);
5078 	} else
5079 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5080 	txq->sgl_wrs++;
5081 	txq->txpkt_wrs++;
5082 
5083 	txsd = &txq->sdesc[eq->pidx];
5084 	txsd->m = m0;
5085 	txsd->desc_used = ndesc;
5086 
5087 	return (ndesc);
5088 }
5089 
5090 /*
5091  * Write a raw WR to the hardware descriptors, update the software
5092  * descriptor, and advance the pidx.  It is guaranteed that enough
5093  * descriptors are available.
5094  *
5095  * The return value is the # of hardware descriptors used.
5096  */
5097 static u_int
5098 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
5099 {
5100 	struct sge_eq *eq = &txq->eq;
5101 	struct tx_sdesc *txsd;
5102 	struct mbuf *m;
5103 	caddr_t dst;
5104 	int len16, ndesc;
5105 
5106 	len16 = mbuf_len16(m0);
5107 	ndesc = tx_len16_to_desc(len16);
5108 	MPASS(ndesc <= available);
5109 
5110 	dst = wr;
5111 	for (m = m0; m != NULL; m = m->m_next)
5112 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5113 
5114 	txq->raw_wrs++;
5115 
5116 	txsd = &txq->sdesc[eq->pidx];
5117 	txsd->m = m0;
5118 	txsd->desc_used = ndesc;
5119 
5120 	return (ndesc);
5121 }
5122 
5123 /*
5124  * Write a txpkt WR for this packet to the hardware descriptors, update the
5125  * software descriptor, and advance the pidx.  It is guaranteed that enough
5126  * descriptors are available.
5127  *
5128  * The return value is the # of hardware descriptors used.
5129  */
5130 static u_int
5131 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
5132     u_int available)
5133 {
5134 	struct sge_eq *eq;
5135 	struct fw_eth_tx_pkt_wr *wr;
5136 	struct tx_sdesc *txsd;
5137 	struct cpl_tx_pkt_core *cpl;
5138 	uint32_t ctrl;	/* used in many unrelated places */
5139 	uint64_t ctrl1;
5140 	int len16, ndesc, pktlen, nsegs;
5141 	caddr_t dst;
5142 
5143 	TXQ_LOCK_ASSERT_OWNED(txq);
5144 	M_ASSERTPKTHDR(m0);
5145 
5146 	len16 = mbuf_len16(m0);
5147 	nsegs = mbuf_nsegs(m0);
5148 	pktlen = m0->m_pkthdr.len;
5149 	ctrl = sizeof(struct cpl_tx_pkt_core);
5150 	if (needs_tso(m0)) {
5151 		if (needs_vxlan_tso(m0))
5152 			ctrl += sizeof(struct cpl_tx_tnl_lso);
5153 		else
5154 			ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5155 	} else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
5156 	    available >= 2) {
5157 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
5158 		ctrl += pktlen;
5159 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
5160 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
5161 		nsegs = 0;
5162 	}
5163 	ndesc = tx_len16_to_desc(len16);
5164 	MPASS(ndesc <= available);
5165 
5166 	/* Firmware work request header */
5167 	eq = &txq->eq;
5168 	wr = (void *)&eq->desc[eq->pidx];
5169 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
5170 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5171 
5172 	ctrl = V_FW_WR_LEN16(len16);
5173 	wr->equiq_to_len16 = htobe32(ctrl);
5174 	wr->r3 = 0;
5175 
5176 	if (needs_tso(m0)) {
5177 		if (needs_vxlan_tso(m0)) {
5178 			cpl = write_tnl_lso_cpl(wr + 1, m0);
5179 			txq->vxlan_tso_wrs++;
5180 		} else {
5181 			cpl = write_lso_cpl(wr + 1, m0);
5182 			txq->tso_wrs++;
5183 		}
5184 	} else
5185 		cpl = (void *)(wr + 1);
5186 
5187 	/* Checksum offload */
5188 	ctrl1 = csum_to_ctrl(sc, m0);
5189 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5190 		/* some hardware assistance provided */
5191 		if (needs_vxlan_csum(m0))
5192 			txq->vxlan_txcsum++;
5193 		else
5194 			txq->txcsum++;
5195 	}
5196 
5197 	/* VLAN tag insertion */
5198 	if (needs_vlan_insertion(m0)) {
5199 		ctrl1 |= F_TXPKT_VLAN_VLD |
5200 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5201 		txq->vlan_insertion++;
5202 	}
5203 
5204 	/* CPL header */
5205 	cpl->ctrl0 = txq->cpl_ctrl0;
5206 	cpl->pack = 0;
5207 	cpl->len = htobe16(pktlen);
5208 	cpl->ctrl1 = htobe64(ctrl1);
5209 
5210 	/* SGL */
5211 	dst = (void *)(cpl + 1);
5212 	if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
5213 		dst = (caddr_t)&eq->desc[0];
5214 	if (nsegs > 0) {
5215 
5216 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5217 		txq->sgl_wrs++;
5218 	} else {
5219 		struct mbuf *m;
5220 
5221 		for (m = m0; m != NULL; m = m->m_next) {
5222 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5223 #ifdef INVARIANTS
5224 			pktlen -= m->m_len;
5225 #endif
5226 		}
5227 #ifdef INVARIANTS
5228 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
5229 #endif
5230 		txq->imm_wrs++;
5231 	}
5232 
5233 	txq->txpkt_wrs++;
5234 
5235 	txsd = &txq->sdesc[eq->pidx];
5236 	txsd->m = m0;
5237 	txsd->desc_used = ndesc;
5238 
5239 	return (ndesc);
5240 }
5241 
5242 static inline bool
5243 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
5244 {
5245 	int len;
5246 
5247 	MPASS(txp->npkt > 0);
5248 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5249 
5250 	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5251 		len = VM_TX_L2HDR_LEN;
5252 	else
5253 		len = sizeof(struct ether_header);
5254 
5255 	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5256 }
5257 
5258 static inline void
5259 save_l2hdr(struct txpkts *txp, struct mbuf *m)
5260 {
5261 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5262 
5263 	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5264 }
5265 
5266 static int
5267 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5268     int avail, bool *send)
5269 {
5270 	struct txpkts *txp = &txq->txp;
5271 
5272 	/* Cannot have TSO and coalesce at the same time. */
5273 	if (cannot_use_txpkts(m)) {
5274 cannot_coalesce:
5275 		*send = txp->npkt > 0;
5276 		return (EINVAL);
5277 	}
5278 
5279 	/* VF allows coalescing of type 1 (1 GL) only */
5280 	if (mbuf_nsegs(m) > 1)
5281 		goto cannot_coalesce;
5282 
5283 	*send = false;
5284 	if (txp->npkt > 0) {
5285 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5286 		MPASS(txp->npkt < txp->max_npkt);
5287 		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5288 
5289 		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5290 retry_after_send:
5291 			*send = true;
5292 			return (EAGAIN);
5293 		}
5294 		if (m->m_pkthdr.len + txp->plen > 65535)
5295 			goto retry_after_send;
5296 		if (cmp_l2hdr(txp, m))
5297 			goto retry_after_send;
5298 
5299 		txp->len16 += txpkts1_len16();
5300 		txp->plen += m->m_pkthdr.len;
5301 		txp->mb[txp->npkt++] = m;
5302 		if (txp->npkt == txp->max_npkt)
5303 			*send = true;
5304 	} else {
5305 		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5306 		    txpkts1_len16();
5307 		if (tx_len16_to_desc(txp->len16) > avail)
5308 			goto cannot_coalesce;
5309 		txp->npkt = 1;
5310 		txp->wr_type = 1;
5311 		txp->plen = m->m_pkthdr.len;
5312 		txp->mb[0] = m;
5313 		save_l2hdr(txp, m);
5314 	}
5315 	return (0);
5316 }
5317 
5318 static int
5319 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5320     int avail, bool *send)
5321 {
5322 	struct txpkts *txp = &txq->txp;
5323 	int nsegs;
5324 
5325 	MPASS(!(sc->flags & IS_VF));
5326 
5327 	/* Cannot have TSO and coalesce at the same time. */
5328 	if (cannot_use_txpkts(m)) {
5329 cannot_coalesce:
5330 		*send = txp->npkt > 0;
5331 		return (EINVAL);
5332 	}
5333 
5334 	*send = false;
5335 	nsegs = mbuf_nsegs(m);
5336 	if (txp->npkt == 0) {
5337 		if (m->m_pkthdr.len > 65535)
5338 			goto cannot_coalesce;
5339 		if (nsegs > 1) {
5340 			txp->wr_type = 0;
5341 			txp->len16 =
5342 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5343 			    txpkts0_len16(nsegs);
5344 		} else {
5345 			txp->wr_type = 1;
5346 			txp->len16 =
5347 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5348 			    txpkts1_len16();
5349 		}
5350 		if (tx_len16_to_desc(txp->len16) > avail)
5351 			goto cannot_coalesce;
5352 		txp->npkt = 1;
5353 		txp->plen = m->m_pkthdr.len;
5354 		txp->mb[0] = m;
5355 	} else {
5356 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5357 		MPASS(txp->npkt < txp->max_npkt);
5358 
5359 		if (m->m_pkthdr.len + txp->plen > 65535) {
5360 retry_after_send:
5361 			*send = true;
5362 			return (EAGAIN);
5363 		}
5364 
5365 		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5366 		if (txp->wr_type == 0) {
5367 			if (tx_len16_to_desc(txp->len16 +
5368 			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
5369 				goto retry_after_send;
5370 			txp->len16 += txpkts0_len16(nsegs);
5371 		} else {
5372 			if (nsegs != 1)
5373 				goto retry_after_send;
5374 			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
5375 			    avail)
5376 				goto retry_after_send;
5377 			txp->len16 += txpkts1_len16();
5378 		}
5379 
5380 		txp->plen += m->m_pkthdr.len;
5381 		txp->mb[txp->npkt++] = m;
5382 		if (txp->npkt == txp->max_npkt)
5383 			*send = true;
5384 	}
5385 	return (0);
5386 }
5387 
5388 /*
5389  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
5390  * the software descriptor, and advance the pidx.  It is guaranteed that enough
5391  * descriptors are available.
5392  *
5393  * The return value is the # of hardware descriptors used.
5394  */
5395 static u_int
5396 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
5397 {
5398 	const struct txpkts *txp = &txq->txp;
5399 	struct sge_eq *eq = &txq->eq;
5400 	struct fw_eth_tx_pkts_wr *wr;
5401 	struct tx_sdesc *txsd;
5402 	struct cpl_tx_pkt_core *cpl;
5403 	uint64_t ctrl1;
5404 	int ndesc, i, checkwrap;
5405 	struct mbuf *m, *last;
5406 	void *flitp;
5407 
5408 	TXQ_LOCK_ASSERT_OWNED(txq);
5409 	MPASS(txp->npkt > 0);
5410 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5411 
5412 	wr = (void *)&eq->desc[eq->pidx];
5413 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
5414 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5415 	wr->plen = htobe16(txp->plen);
5416 	wr->npkt = txp->npkt;
5417 	wr->r3 = 0;
5418 	wr->type = txp->wr_type;
5419 	flitp = wr + 1;
5420 
5421 	/*
5422 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
5423 	 * set then we know the WR is going to wrap around somewhere.  We'll
5424 	 * check for that at appropriate points.
5425 	 */
5426 	ndesc = tx_len16_to_desc(txp->len16);
5427 	last = NULL;
5428 	checkwrap = eq->sidx - ndesc < eq->pidx;
5429 	for (i = 0; i < txp->npkt; i++) {
5430 		m = txp->mb[i];
5431 		if (txp->wr_type == 0) {
5432 			struct ulp_txpkt *ulpmc;
5433 			struct ulptx_idata *ulpsc;
5434 
5435 			/* ULP master command */
5436 			ulpmc = flitp;
5437 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
5438 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
5439 			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
5440 
5441 			/* ULP subcommand */
5442 			ulpsc = (void *)(ulpmc + 1);
5443 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
5444 			    F_ULP_TX_SC_MORE);
5445 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
5446 
5447 			cpl = (void *)(ulpsc + 1);
5448 			if (checkwrap &&
5449 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
5450 				cpl = (void *)&eq->desc[0];
5451 		} else {
5452 			cpl = flitp;
5453 		}
5454 
5455 		/* Checksum offload */
5456 		ctrl1 = csum_to_ctrl(sc, m);
5457 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5458 			/* some hardware assistance provided */
5459 			if (needs_vxlan_csum(m))
5460 				txq->vxlan_txcsum++;
5461 			else
5462 				txq->txcsum++;
5463 		}
5464 
5465 		/* VLAN tag insertion */
5466 		if (needs_vlan_insertion(m)) {
5467 			ctrl1 |= F_TXPKT_VLAN_VLD |
5468 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5469 			txq->vlan_insertion++;
5470 		}
5471 
5472 		/* CPL header */
5473 		cpl->ctrl0 = txq->cpl_ctrl0;
5474 		cpl->pack = 0;
5475 		cpl->len = htobe16(m->m_pkthdr.len);
5476 		cpl->ctrl1 = htobe64(ctrl1);
5477 
5478 		flitp = cpl + 1;
5479 		if (checkwrap &&
5480 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5481 			flitp = (void *)&eq->desc[0];
5482 
5483 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
5484 
5485 		if (last != NULL)
5486 			last->m_nextpkt = m;
5487 		last = m;
5488 	}
5489 
5490 	txq->sgl_wrs++;
5491 	if (txp->wr_type == 0) {
5492 		txq->txpkts0_pkts += txp->npkt;
5493 		txq->txpkts0_wrs++;
5494 	} else {
5495 		txq->txpkts1_pkts += txp->npkt;
5496 		txq->txpkts1_wrs++;
5497 	}
5498 
5499 	txsd = &txq->sdesc[eq->pidx];
5500 	txsd->m = txp->mb[0];
5501 	txsd->desc_used = ndesc;
5502 
5503 	return (ndesc);
5504 }
5505 
5506 static u_int
5507 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
5508 {
5509 	const struct txpkts *txp = &txq->txp;
5510 	struct sge_eq *eq = &txq->eq;
5511 	struct fw_eth_tx_pkts_vm_wr *wr;
5512 	struct tx_sdesc *txsd;
5513 	struct cpl_tx_pkt_core *cpl;
5514 	uint64_t ctrl1;
5515 	int ndesc, i;
5516 	struct mbuf *m, *last;
5517 	void *flitp;
5518 
5519 	TXQ_LOCK_ASSERT_OWNED(txq);
5520 	MPASS(txp->npkt > 0);
5521 	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5522 	MPASS(txp->mb[0] != NULL);
5523 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5524 
5525 	wr = (void *)&eq->desc[eq->pidx];
5526 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
5527 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5528 	wr->r3 = 0;
5529 	wr->plen = htobe16(txp->plen);
5530 	wr->npkt = txp->npkt;
5531 	wr->r4 = 0;
5532 	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
5533 	flitp = wr + 1;
5534 
5535 	/*
5536 	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
5537 	 * the WR will take 32B so we check for the end of the descriptor ring
5538 	 * before writing odd mbufs (mb[1], 3, 5, ..)
5539 	 */
5540 	ndesc = tx_len16_to_desc(txp->len16);
5541 	last = NULL;
5542 	for (i = 0; i < txp->npkt; i++) {
5543 		m = txp->mb[i];
5544 		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5545 			flitp = &eq->desc[0];
5546 		cpl = flitp;
5547 
5548 		/* Checksum offload */
5549 		ctrl1 = csum_to_ctrl(sc, m);
5550 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5551 			txq->txcsum++;	/* some hardware assistance provided */
5552 
5553 		/* VLAN tag insertion */
5554 		if (needs_vlan_insertion(m)) {
5555 			ctrl1 |= F_TXPKT_VLAN_VLD |
5556 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5557 			txq->vlan_insertion++;
5558 		}
5559 
5560 		/* CPL header */
5561 		cpl->ctrl0 = txq->cpl_ctrl0;
5562 		cpl->pack = 0;
5563 		cpl->len = htobe16(m->m_pkthdr.len);
5564 		cpl->ctrl1 = htobe64(ctrl1);
5565 
5566 		flitp = cpl + 1;
5567 		MPASS(mbuf_nsegs(m) == 1);
5568 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
5569 
5570 		if (last != NULL)
5571 			last->m_nextpkt = m;
5572 		last = m;
5573 	}
5574 
5575 	txq->sgl_wrs++;
5576 	txq->txpkts1_pkts += txp->npkt;
5577 	txq->txpkts1_wrs++;
5578 
5579 	txsd = &txq->sdesc[eq->pidx];
5580 	txsd->m = txp->mb[0];
5581 	txsd->desc_used = ndesc;
5582 
5583 	return (ndesc);
5584 }
5585 
5586 /*
5587  * If the SGL ends on an address that is not 16 byte aligned, this function will
5588  * add a 0 filled flit at the end.
5589  */
5590 static void
5591 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
5592 {
5593 	struct sge_eq *eq = &txq->eq;
5594 	struct sglist *gl = txq->gl;
5595 	struct sglist_seg *seg;
5596 	__be64 *flitp, *wrap;
5597 	struct ulptx_sgl *usgl;
5598 	int i, nflits, nsegs;
5599 
5600 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
5601 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
5602 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5603 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5604 
5605 	get_pkt_gl(m, gl);
5606 	nsegs = gl->sg_nseg;
5607 	MPASS(nsegs > 0);
5608 
5609 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
5610 	flitp = (__be64 *)(*to);
5611 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
5612 	seg = &gl->sg_segs[0];
5613 	usgl = (void *)flitp;
5614 
5615 	/*
5616 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
5617 	 * ring, so we're at least 16 bytes away from the status page.  There is
5618 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
5619 	 */
5620 
5621 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
5622 	    V_ULPTX_NSGE(nsegs));
5623 	usgl->len0 = htobe32(seg->ss_len);
5624 	usgl->addr0 = htobe64(seg->ss_paddr);
5625 	seg++;
5626 
5627 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
5628 
5629 		/* Won't wrap around at all */
5630 
5631 		for (i = 0; i < nsegs - 1; i++, seg++) {
5632 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
5633 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
5634 		}
5635 		if (i & 1)
5636 			usgl->sge[i / 2].len[1] = htobe32(0);
5637 		flitp += nflits;
5638 	} else {
5639 
5640 		/* Will wrap somewhere in the rest of the SGL */
5641 
5642 		/* 2 flits already written, write the rest flit by flit */
5643 		flitp = (void *)(usgl + 1);
5644 		for (i = 0; i < nflits - 2; i++) {
5645 			if (flitp == wrap)
5646 				flitp = (void *)eq->desc;
5647 			*flitp++ = get_flit(seg, nsegs - 1, i);
5648 		}
5649 	}
5650 
5651 	if (nflits & 1) {
5652 		MPASS(((uintptr_t)flitp) & 0xf);
5653 		*flitp++ = 0;
5654 	}
5655 
5656 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
5657 	if (__predict_false(flitp == wrap))
5658 		*to = (void *)eq->desc;
5659 	else
5660 		*to = (void *)flitp;
5661 }
5662 
5663 static inline void
5664 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
5665 {
5666 
5667 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5668 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5669 
5670 	if (__predict_true((uintptr_t)(*to) + len <=
5671 	    (uintptr_t)&eq->desc[eq->sidx])) {
5672 		bcopy(from, *to, len);
5673 		(*to) += len;
5674 	} else {
5675 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
5676 
5677 		bcopy(from, *to, portion);
5678 		from += portion;
5679 		portion = len - portion;	/* remaining */
5680 		bcopy(from, (void *)eq->desc, portion);
5681 		(*to) = (caddr_t)eq->desc + portion;
5682 	}
5683 }
5684 
5685 static inline void
5686 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
5687 {
5688 	u_int db;
5689 
5690 	MPASS(n > 0);
5691 
5692 	db = eq->doorbells;
5693 	if (n > 1)
5694 		clrbit(&db, DOORBELL_WCWR);
5695 	wmb();
5696 
5697 	switch (ffs(db) - 1) {
5698 	case DOORBELL_UDB:
5699 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
5700 		break;
5701 
5702 	case DOORBELL_WCWR: {
5703 		volatile uint64_t *dst, *src;
5704 		int i;
5705 
5706 		/*
5707 		 * Queues whose 128B doorbell segment fits in the page do not
5708 		 * use relative qid (udb_qid is always 0).  Only queues with
5709 		 * doorbell segments can do WCWR.
5710 		 */
5711 		KASSERT(eq->udb_qid == 0 && n == 1,
5712 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
5713 		    __func__, eq->doorbells, n, eq->dbidx, eq));
5714 
5715 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
5716 		    UDBS_DB_OFFSET);
5717 		i = eq->dbidx;
5718 		src = (void *)&eq->desc[i];
5719 		while (src != (void *)&eq->desc[i + 1])
5720 			*dst++ = *src++;
5721 		wmb();
5722 		break;
5723 	}
5724 
5725 	case DOORBELL_UDBWC:
5726 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
5727 		wmb();
5728 		break;
5729 
5730 	case DOORBELL_KDB:
5731 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
5732 		    V_QID(eq->cntxt_id) | V_PIDX(n));
5733 		break;
5734 	}
5735 
5736 	IDXINCR(eq->dbidx, n, eq->sidx);
5737 }
5738 
5739 static inline u_int
5740 reclaimable_tx_desc(struct sge_eq *eq)
5741 {
5742 	uint16_t hw_cidx;
5743 
5744 	hw_cidx = read_hw_cidx(eq);
5745 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
5746 }
5747 
5748 static inline u_int
5749 total_available_tx_desc(struct sge_eq *eq)
5750 {
5751 	uint16_t hw_cidx, pidx;
5752 
5753 	hw_cidx = read_hw_cidx(eq);
5754 	pidx = eq->pidx;
5755 
5756 	if (pidx == hw_cidx)
5757 		return (eq->sidx - 1);
5758 	else
5759 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
5760 }
5761 
5762 static inline uint16_t
5763 read_hw_cidx(struct sge_eq *eq)
5764 {
5765 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5766 	uint16_t cidx = spg->cidx;	/* stable snapshot */
5767 
5768 	return (be16toh(cidx));
5769 }
5770 
5771 /*
5772  * Reclaim 'n' descriptors approximately.
5773  */
5774 static u_int
5775 reclaim_tx_descs(struct sge_txq *txq, u_int n)
5776 {
5777 	struct tx_sdesc *txsd;
5778 	struct sge_eq *eq = &txq->eq;
5779 	u_int can_reclaim, reclaimed;
5780 
5781 	TXQ_LOCK_ASSERT_OWNED(txq);
5782 	MPASS(n > 0);
5783 
5784 	reclaimed = 0;
5785 	can_reclaim = reclaimable_tx_desc(eq);
5786 	while (can_reclaim && reclaimed < n) {
5787 		int ndesc;
5788 		struct mbuf *m, *nextpkt;
5789 
5790 		txsd = &txq->sdesc[eq->cidx];
5791 		ndesc = txsd->desc_used;
5792 
5793 		/* Firmware doesn't return "partial" credits. */
5794 		KASSERT(can_reclaim >= ndesc,
5795 		    ("%s: unexpected number of credits: %d, %d",
5796 		    __func__, can_reclaim, ndesc));
5797 		KASSERT(ndesc != 0,
5798 		    ("%s: descriptor with no credits: cidx %d",
5799 		    __func__, eq->cidx));
5800 
5801 		for (m = txsd->m; m != NULL; m = nextpkt) {
5802 			nextpkt = m->m_nextpkt;
5803 			m->m_nextpkt = NULL;
5804 			m_freem(m);
5805 		}
5806 		reclaimed += ndesc;
5807 		can_reclaim -= ndesc;
5808 		IDXINCR(eq->cidx, ndesc, eq->sidx);
5809 	}
5810 
5811 	return (reclaimed);
5812 }
5813 
5814 static void
5815 tx_reclaim(void *arg, int n)
5816 {
5817 	struct sge_txq *txq = arg;
5818 	struct sge_eq *eq = &txq->eq;
5819 
5820 	do {
5821 		if (TXQ_TRYLOCK(txq) == 0)
5822 			break;
5823 		n = reclaim_tx_descs(txq, 32);
5824 		if (eq->cidx == eq->pidx)
5825 			eq->equeqidx = eq->pidx;
5826 		TXQ_UNLOCK(txq);
5827 	} while (n > 0);
5828 }
5829 
5830 static __be64
5831 get_flit(struct sglist_seg *segs, int nsegs, int idx)
5832 {
5833 	int i = (idx / 3) * 2;
5834 
5835 	switch (idx % 3) {
5836 	case 0: {
5837 		uint64_t rc;
5838 
5839 		rc = (uint64_t)segs[i].ss_len << 32;
5840 		if (i + 1 < nsegs)
5841 			rc |= (uint64_t)(segs[i + 1].ss_len);
5842 
5843 		return (htobe64(rc));
5844 	}
5845 	case 1:
5846 		return (htobe64(segs[i].ss_paddr));
5847 	case 2:
5848 		return (htobe64(segs[i + 1].ss_paddr));
5849 	}
5850 
5851 	return (0);
5852 }
5853 
5854 static int
5855 find_refill_source(struct adapter *sc, int maxp, bool packing)
5856 {
5857 	int i, zidx = -1;
5858 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
5859 
5860 	if (packing) {
5861 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
5862 			if (rxb->hwidx2 == -1)
5863 				continue;
5864 			if (rxb->size1 < PAGE_SIZE &&
5865 			    rxb->size1 < largest_rx_cluster)
5866 				continue;
5867 			if (rxb->size1 > largest_rx_cluster)
5868 				break;
5869 			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
5870 			if (rxb->size2 >= maxp)
5871 				return (i);
5872 			zidx = i;
5873 		}
5874 	} else {
5875 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
5876 			if (rxb->hwidx1 == -1)
5877 				continue;
5878 			if (rxb->size1 > largest_rx_cluster)
5879 				break;
5880 			if (rxb->size1 >= maxp)
5881 				return (i);
5882 			zidx = i;
5883 		}
5884 	}
5885 
5886 	return (zidx);
5887 }
5888 
5889 static void
5890 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
5891 {
5892 	mtx_lock(&sc->sfl_lock);
5893 	FL_LOCK(fl);
5894 	if ((fl->flags & FL_DOOMED) == 0) {
5895 		fl->flags |= FL_STARVING;
5896 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
5897 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
5898 	}
5899 	FL_UNLOCK(fl);
5900 	mtx_unlock(&sc->sfl_lock);
5901 }
5902 
5903 static void
5904 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
5905 {
5906 	struct sge_wrq *wrq = (void *)eq;
5907 
5908 	atomic_readandclear_int(&eq->equiq);
5909 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
5910 }
5911 
5912 static void
5913 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
5914 {
5915 	struct sge_txq *txq = (void *)eq;
5916 
5917 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
5918 
5919 	atomic_readandclear_int(&eq->equiq);
5920 	if (mp_ring_is_idle(txq->r))
5921 		taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
5922 	else
5923 		mp_ring_check_drainage(txq->r, 64);
5924 }
5925 
5926 static int
5927 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
5928     struct mbuf *m)
5929 {
5930 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
5931 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
5932 	struct adapter *sc = iq->adapter;
5933 	struct sge *s = &sc->sge;
5934 	struct sge_eq *eq;
5935 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
5936 		&handle_wrq_egr_update, &handle_eth_egr_update,
5937 		&handle_wrq_egr_update};
5938 
5939 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5940 	    rss->opcode));
5941 
5942 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
5943 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
5944 
5945 	return (0);
5946 }
5947 
5948 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
5949 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
5950     offsetof(struct cpl_fw6_msg, data));
5951 
5952 static int
5953 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
5954 {
5955 	struct adapter *sc = iq->adapter;
5956 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
5957 
5958 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5959 	    rss->opcode));
5960 
5961 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
5962 		const struct rss_header *rss2;
5963 
5964 		rss2 = (const struct rss_header *)&cpl->data[0];
5965 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
5966 	}
5967 
5968 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
5969 }
5970 
5971 /**
5972  *	t4_handle_wrerr_rpl - process a FW work request error message
5973  *	@adap: the adapter
5974  *	@rpl: start of the FW message
5975  */
5976 static int
5977 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
5978 {
5979 	u8 opcode = *(const u8 *)rpl;
5980 	const struct fw_error_cmd *e = (const void *)rpl;
5981 	unsigned int i;
5982 
5983 	if (opcode != FW_ERROR_CMD) {
5984 		log(LOG_ERR,
5985 		    "%s: Received WRERR_RPL message with opcode %#x\n",
5986 		    device_get_nameunit(adap->dev), opcode);
5987 		return (EINVAL);
5988 	}
5989 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
5990 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
5991 	    "non-fatal");
5992 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
5993 	case FW_ERROR_TYPE_EXCEPTION:
5994 		log(LOG_ERR, "exception info:\n");
5995 		for (i = 0; i < nitems(e->u.exception.info); i++)
5996 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
5997 			    be32toh(e->u.exception.info[i]));
5998 		log(LOG_ERR, "\n");
5999 		break;
6000 	case FW_ERROR_TYPE_HWMODULE:
6001 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
6002 		    be32toh(e->u.hwmodule.regaddr),
6003 		    be32toh(e->u.hwmodule.regval));
6004 		break;
6005 	case FW_ERROR_TYPE_WR:
6006 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
6007 		    be16toh(e->u.wr.cidx),
6008 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
6009 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
6010 		    be32toh(e->u.wr.eqid));
6011 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
6012 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
6013 			    e->u.wr.wrhdr[i]);
6014 		log(LOG_ERR, "\n");
6015 		break;
6016 	case FW_ERROR_TYPE_ACL:
6017 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
6018 		    be16toh(e->u.acl.cidx),
6019 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
6020 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
6021 		    be32toh(e->u.acl.eqid),
6022 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
6023 		    "MAC");
6024 		for (i = 0; i < nitems(e->u.acl.val); i++)
6025 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
6026 		log(LOG_ERR, "\n");
6027 		break;
6028 	default:
6029 		log(LOG_ERR, "type %#x\n",
6030 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
6031 		return (EINVAL);
6032 	}
6033 	return (0);
6034 }
6035 
6036 int
6037 sysctl_uint16(SYSCTL_HANDLER_ARGS)
6038 {
6039 	uint16_t *id = arg1;
6040 	int i = *id;
6041 
6042 	return sysctl_handle_int(oidp, &i, 0, req);
6043 }
6044 
6045 static inline bool
6046 bufidx_used(struct adapter *sc, int idx)
6047 {
6048 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6049 	int i;
6050 
6051 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6052 		if (rxb->size1 > largest_rx_cluster)
6053 			continue;
6054 		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
6055 			return (true);
6056 	}
6057 
6058 	return (false);
6059 }
6060 
6061 static int
6062 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
6063 {
6064 	struct adapter *sc = arg1;
6065 	struct sge_params *sp = &sc->params.sge;
6066 	int i, rc;
6067 	struct sbuf sb;
6068 	char c;
6069 
6070 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
6071 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
6072 		if (bufidx_used(sc, i))
6073 			c = '*';
6074 		else
6075 			c = '\0';
6076 
6077 		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
6078 	}
6079 	sbuf_trim(&sb);
6080 	sbuf_finish(&sb);
6081 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
6082 	sbuf_delete(&sb);
6083 	return (rc);
6084 }
6085 
6086 #ifdef RATELIMIT
6087 /*
6088  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
6089  */
6090 static inline u_int
6091 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
6092 {
6093 	u_int n;
6094 
6095 	MPASS(immhdrs > 0);
6096 
6097 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
6098 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
6099 	if (__predict_false(nsegs == 0))
6100 		goto done;
6101 
6102 	nsegs--; /* first segment is part of ulptx_sgl */
6103 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
6104 	if (tso)
6105 		n += sizeof(struct cpl_tx_pkt_lso_core);
6106 
6107 done:
6108 	return (howmany(n, 16));
6109 }
6110 
6111 #define ETID_FLOWC_NPARAMS 6
6112 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
6113     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
6114 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
6115 
6116 static int
6117 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
6118     struct vi_info *vi)
6119 {
6120 	struct wrq_cookie cookie;
6121 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
6122 	struct fw_flowc_wr *flowc;
6123 
6124 	mtx_assert(&cst->lock, MA_OWNED);
6125 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
6126 	    EO_FLOWC_PENDING);
6127 
6128 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLOWC_LEN16, &cookie);
6129 	if (__predict_false(flowc == NULL))
6130 		return (ENOMEM);
6131 
6132 	bzero(flowc, ETID_FLOWC_LEN);
6133 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6134 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
6135 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
6136 	    V_FW_WR_FLOWID(cst->etid));
6137 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
6138 	flowc->mnemval[0].val = htobe32(pfvf);
6139 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
6140 	flowc->mnemval[1].val = htobe32(pi->tx_chan);
6141 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
6142 	flowc->mnemval[2].val = htobe32(pi->tx_chan);
6143 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
6144 	flowc->mnemval[3].val = htobe32(cst->iqid);
6145 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
6146 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
6147 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
6148 	flowc->mnemval[5].val = htobe32(cst->schedcl);
6149 
6150 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
6151 
6152 	cst->flags &= ~EO_FLOWC_PENDING;
6153 	cst->flags |= EO_FLOWC_RPL_PENDING;
6154 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
6155 	cst->tx_credits -= ETID_FLOWC_LEN16;
6156 
6157 	return (0);
6158 }
6159 
6160 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
6161 
6162 void
6163 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
6164 {
6165 	struct fw_flowc_wr *flowc;
6166 	struct wrq_cookie cookie;
6167 
6168 	mtx_assert(&cst->lock, MA_OWNED);
6169 
6170 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLUSH_LEN16, &cookie);
6171 	if (__predict_false(flowc == NULL))
6172 		CXGBE_UNIMPLEMENTED(__func__);
6173 
6174 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
6175 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6176 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
6177 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
6178 	    V_FW_WR_FLOWID(cst->etid));
6179 
6180 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
6181 
6182 	cst->flags |= EO_FLUSH_RPL_PENDING;
6183 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
6184 	cst->tx_credits -= ETID_FLUSH_LEN16;
6185 	cst->ncompl++;
6186 }
6187 
6188 static void
6189 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
6190     struct mbuf *m0, int compl)
6191 {
6192 	struct cpl_tx_pkt_core *cpl;
6193 	uint64_t ctrl1;
6194 	uint32_t ctrl;	/* used in many unrelated places */
6195 	int len16, pktlen, nsegs, immhdrs;
6196 	caddr_t dst;
6197 	uintptr_t p;
6198 	struct ulptx_sgl *usgl;
6199 	struct sglist sg;
6200 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
6201 
6202 	mtx_assert(&cst->lock, MA_OWNED);
6203 	M_ASSERTPKTHDR(m0);
6204 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
6205 	    m0->m_pkthdr.l4hlen > 0,
6206 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
6207 
6208 	len16 = mbuf_eo_len16(m0);
6209 	nsegs = mbuf_eo_nsegs(m0);
6210 	pktlen = m0->m_pkthdr.len;
6211 	ctrl = sizeof(struct cpl_tx_pkt_core);
6212 	if (needs_tso(m0))
6213 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
6214 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
6215 	ctrl += immhdrs;
6216 
6217 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
6218 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
6219 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
6220 	    V_FW_WR_FLOWID(cst->etid));
6221 	wr->r3 = 0;
6222 	if (needs_outer_udp_csum(m0)) {
6223 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
6224 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
6225 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6226 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
6227 		wr->u.udpseg.rtplen = 0;
6228 		wr->u.udpseg.r4 = 0;
6229 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
6230 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
6231 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
6232 		cpl = (void *)(wr + 1);
6233 	} else {
6234 		MPASS(needs_outer_tcp_csum(m0));
6235 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
6236 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
6237 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6238 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
6239 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
6240 		wr->u.tcpseg.r4 = 0;
6241 		wr->u.tcpseg.r5 = 0;
6242 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
6243 
6244 		if (needs_tso(m0)) {
6245 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
6246 
6247 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
6248 
6249 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
6250 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
6251 			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6252 				ETHER_HDR_LEN) >> 2) |
6253 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6254 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6255 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6256 				ctrl |= F_LSO_IPV6;
6257 			lso->lso_ctrl = htobe32(ctrl);
6258 			lso->ipid_ofst = htobe16(0);
6259 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6260 			lso->seqno_offset = htobe32(0);
6261 			lso->len = htobe32(pktlen);
6262 
6263 			cpl = (void *)(lso + 1);
6264 		} else {
6265 			wr->u.tcpseg.mss = htobe16(0xffff);
6266 			cpl = (void *)(wr + 1);
6267 		}
6268 	}
6269 
6270 	/* Checksum offload must be requested for ethofld. */
6271 	MPASS(needs_outer_l4_csum(m0));
6272 	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6273 
6274 	/* VLAN tag insertion */
6275 	if (needs_vlan_insertion(m0)) {
6276 		ctrl1 |= F_TXPKT_VLAN_VLD |
6277 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6278 	}
6279 
6280 	/* CPL header */
6281 	cpl->ctrl0 = cst->ctrl0;
6282 	cpl->pack = 0;
6283 	cpl->len = htobe16(pktlen);
6284 	cpl->ctrl1 = htobe64(ctrl1);
6285 
6286 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6287 	p = (uintptr_t)(cpl + 1);
6288 	m_copydata(m0, 0, immhdrs, (void *)p);
6289 
6290 	/* SGL */
6291 	dst = (void *)(cpl + 1);
6292 	if (nsegs > 0) {
6293 		int i, pad;
6294 
6295 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6296 		p += immhdrs;
6297 		pad = 16 - (immhdrs & 0xf);
6298 		bzero((void *)p, pad);
6299 
6300 		usgl = (void *)(p + pad);
6301 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6302 		    V_ULPTX_NSGE(nsegs));
6303 
6304 		sglist_init(&sg, nitems(segs), segs);
6305 		for (; m0 != NULL; m0 = m0->m_next) {
6306 			if (__predict_false(m0->m_len == 0))
6307 				continue;
6308 			if (immhdrs >= m0->m_len) {
6309 				immhdrs -= m0->m_len;
6310 				continue;
6311 			}
6312 			if (m0->m_flags & M_EXTPG)
6313 				sglist_append_mbuf_epg(&sg, m0,
6314 				    mtod(m0, vm_offset_t), m0->m_len);
6315                         else
6316 				sglist_append(&sg, mtod(m0, char *) + immhdrs,
6317 				    m0->m_len - immhdrs);
6318 			immhdrs = 0;
6319 		}
6320 		MPASS(sg.sg_nseg == nsegs);
6321 
6322 		/*
6323 		 * Zero pad last 8B in case the WR doesn't end on a 16B
6324 		 * boundary.
6325 		 */
6326 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6327 
6328 		usgl->len0 = htobe32(segs[0].ss_len);
6329 		usgl->addr0 = htobe64(segs[0].ss_paddr);
6330 		for (i = 0; i < nsegs - 1; i++) {
6331 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6332 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6333 		}
6334 		if (i & 1)
6335 			usgl->sge[i / 2].len[1] = htobe32(0);
6336 	}
6337 
6338 }
6339 
6340 static void
6341 ethofld_tx(struct cxgbe_rate_tag *cst)
6342 {
6343 	struct mbuf *m;
6344 	struct wrq_cookie cookie;
6345 	int next_credits, compl;
6346 	struct fw_eth_tx_eo_wr *wr;
6347 
6348 	mtx_assert(&cst->lock, MA_OWNED);
6349 
6350 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6351 		M_ASSERTPKTHDR(m);
6352 
6353 		/* How many len16 credits do we need to send this mbuf. */
6354 		next_credits = mbuf_eo_len16(m);
6355 		MPASS(next_credits > 0);
6356 		if (next_credits > cst->tx_credits) {
6357 			/*
6358 			 * Tx will make progress eventually because there is at
6359 			 * least one outstanding fw4_ack that will return
6360 			 * credits and kick the tx.
6361 			 */
6362 			MPASS(cst->ncompl > 0);
6363 			return;
6364 		}
6365 		wr = start_wrq_wr(cst->eo_txq, next_credits, &cookie);
6366 		if (__predict_false(wr == NULL)) {
6367 			/* XXX: wishful thinking, not a real assertion. */
6368 			MPASS(cst->ncompl > 0);
6369 			return;
6370 		}
6371 		cst->tx_credits -= next_credits;
6372 		cst->tx_nocompl += next_credits;
6373 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
6374 		ETHER_BPF_MTAP(cst->com.ifp, m);
6375 		write_ethofld_wr(cst, wr, m, compl);
6376 		commit_wrq_wr(cst->eo_txq, wr, &cookie);
6377 		if (compl) {
6378 			cst->ncompl++;
6379 			cst->tx_nocompl	= 0;
6380 		}
6381 		(void) mbufq_dequeue(&cst->pending_tx);
6382 
6383 		/*
6384 		 * Drop the mbuf's reference on the tag now rather
6385 		 * than waiting until m_freem().  This ensures that
6386 		 * cxgbe_rate_tag_free gets called when the inp drops
6387 		 * its reference on the tag and there are no more
6388 		 * mbufs in the pending_tx queue and can flush any
6389 		 * pending requests.  Otherwise if the last mbuf
6390 		 * doesn't request a completion the etid will never be
6391 		 * released.
6392 		 */
6393 		m->m_pkthdr.snd_tag = NULL;
6394 		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
6395 		m_snd_tag_rele(&cst->com);
6396 
6397 		mbufq_enqueue(&cst->pending_fwack, m);
6398 	}
6399 }
6400 
6401 int
6402 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
6403 {
6404 	struct cxgbe_rate_tag *cst;
6405 	int rc;
6406 
6407 	MPASS(m0->m_nextpkt == NULL);
6408 	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
6409 	MPASS(m0->m_pkthdr.snd_tag != NULL);
6410 	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
6411 
6412 	mtx_lock(&cst->lock);
6413 	MPASS(cst->flags & EO_SND_TAG_REF);
6414 
6415 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
6416 		struct vi_info *vi = ifp->if_softc;
6417 		struct port_info *pi = vi->pi;
6418 		struct adapter *sc = pi->adapter;
6419 		const uint32_t rss_mask = vi->rss_size - 1;
6420 		uint32_t rss_hash;
6421 
6422 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
6423 		if (M_HASHTYPE_ISHASH(m0))
6424 			rss_hash = m0->m_pkthdr.flowid;
6425 		else
6426 			rss_hash = arc4random();
6427 		/* We assume RSS hashing */
6428 		cst->iqid = vi->rss[rss_hash & rss_mask];
6429 		cst->eo_txq += rss_hash % vi->nofldtxq;
6430 		rc = send_etid_flowc_wr(cst, pi, vi);
6431 		if (rc != 0)
6432 			goto done;
6433 	}
6434 
6435 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
6436 		rc = ENOBUFS;
6437 		goto done;
6438 	}
6439 
6440 	mbufq_enqueue(&cst->pending_tx, m0);
6441 	cst->plen += m0->m_pkthdr.len;
6442 
6443 	/*
6444 	 * Hold an extra reference on the tag while generating work
6445 	 * requests to ensure that we don't try to free the tag during
6446 	 * ethofld_tx() in case we are sending the final mbuf after
6447 	 * the inp was freed.
6448 	 */
6449 	m_snd_tag_ref(&cst->com);
6450 	ethofld_tx(cst);
6451 	mtx_unlock(&cst->lock);
6452 	m_snd_tag_rele(&cst->com);
6453 	return (0);
6454 
6455 done:
6456 	mtx_unlock(&cst->lock);
6457 	if (__predict_false(rc != 0))
6458 		m_freem(m0);
6459 	return (rc);
6460 }
6461 
6462 static int
6463 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
6464 {
6465 	struct adapter *sc = iq->adapter;
6466 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
6467 	struct mbuf *m;
6468 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
6469 	struct cxgbe_rate_tag *cst;
6470 	uint8_t credits = cpl->credits;
6471 
6472 	cst = lookup_etid(sc, etid);
6473 	mtx_lock(&cst->lock);
6474 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
6475 		MPASS(credits >= ETID_FLOWC_LEN16);
6476 		credits -= ETID_FLOWC_LEN16;
6477 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
6478 	}
6479 
6480 	KASSERT(cst->ncompl > 0,
6481 	    ("%s: etid %u (%p) wasn't expecting completion.",
6482 	    __func__, etid, cst));
6483 	cst->ncompl--;
6484 
6485 	while (credits > 0) {
6486 		m = mbufq_dequeue(&cst->pending_fwack);
6487 		if (__predict_false(m == NULL)) {
6488 			/*
6489 			 * The remaining credits are for the final flush that
6490 			 * was issued when the tag was freed by the kernel.
6491 			 */
6492 			MPASS((cst->flags &
6493 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
6494 			    EO_FLUSH_RPL_PENDING);
6495 			MPASS(credits == ETID_FLUSH_LEN16);
6496 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
6497 			MPASS(cst->ncompl == 0);
6498 
6499 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
6500 			cst->tx_credits += cpl->credits;
6501 			cxgbe_rate_tag_free_locked(cst);
6502 			return (0);	/* cst is gone. */
6503 		}
6504 		KASSERT(m != NULL,
6505 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
6506 		    credits));
6507 		KASSERT(credits >= mbuf_eo_len16(m),
6508 		    ("%s: too few credits (%u, %u, %u)", __func__,
6509 		    cpl->credits, credits, mbuf_eo_len16(m)));
6510 		credits -= mbuf_eo_len16(m);
6511 		cst->plen -= m->m_pkthdr.len;
6512 		m_freem(m);
6513 	}
6514 
6515 	cst->tx_credits += cpl->credits;
6516 	MPASS(cst->tx_credits <= cst->tx_total);
6517 
6518 	if (cst->flags & EO_SND_TAG_REF) {
6519 		/*
6520 		 * As with ethofld_transmit(), hold an extra reference
6521 		 * so that the tag is stable across ethold_tx().
6522 		 */
6523 		m_snd_tag_ref(&cst->com);
6524 		m = mbufq_first(&cst->pending_tx);
6525 		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
6526 			ethofld_tx(cst);
6527 		mtx_unlock(&cst->lock);
6528 		m_snd_tag_rele(&cst->com);
6529 	} else {
6530 		/*
6531 		 * There shouldn't be any pending packets if the tag
6532 		 * was freed by the kernel since any pending packet
6533 		 * should hold a reference to the tag.
6534 		 */
6535 		MPASS(mbufq_first(&cst->pending_tx) == NULL);
6536 		mtx_unlock(&cst->lock);
6537 	}
6538 
6539 	return (0);
6540 }
6541 #endif
6542