xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 4e1ef62a367de01ccb7156bfe6ec2d613d6eb860)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ratelimit.h"
36 
37 #include <sys/types.h>
38 #include <sys/eventhandler.h>
39 #include <sys/mbuf.h>
40 #include <sys/socket.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/queue.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 #include <sys/time.h>
47 #include <sys/sglist.h>
48 #include <sys/sysctl.h>
49 #include <sys/smp.h>
50 #include <sys/counter.h>
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_vlan_var.h>
55 #include <netinet/in.h>
56 #include <netinet/ip.h>
57 #include <netinet/ip6.h>
58 #include <netinet/tcp.h>
59 #include <netinet/udp.h>
60 #include <machine/in_cksum.h>
61 #include <machine/md_var.h>
62 #include <vm/vm.h>
63 #include <vm/pmap.h>
64 #ifdef DEV_NETMAP
65 #include <machine/bus.h>
66 #include <sys/selinfo.h>
67 #include <net/if_var.h>
68 #include <net/netmap.h>
69 #include <dev/netmap/netmap_kern.h>
70 #endif
71 
72 #include "common/common.h"
73 #include "common/t4_regs.h"
74 #include "common/t4_regs_values.h"
75 #include "common/t4_msg.h"
76 #include "t4_l2t.h"
77 #include "t4_mp_ring.h"
78 
79 #ifdef T4_PKT_TIMESTAMP
80 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
81 #else
82 #define RX_COPY_THRESHOLD MINCLSIZE
83 #endif
84 
85 /*
86  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
87  * 0-7 are valid values.
88  */
89 static int fl_pktshift = 0;
90 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
91 
92 /*
93  * Pad ethernet payload up to this boundary.
94  * -1: driver should figure out a good value.
95  *  0: disable padding.
96  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
97  */
98 int fl_pad = -1;
99 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
100 
101 /*
102  * Status page length.
103  * -1: driver should figure out a good value.
104  *  64 or 128 are the only other valid values.
105  */
106 static int spg_len = -1;
107 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
108 
109 /*
110  * Congestion drops.
111  * -1: no congestion feedback (not recommended).
112  *  0: backpressure the channel instead of dropping packets right away.
113  *  1: no backpressure, drop packets for the congested queue immediately.
114  */
115 static int cong_drop = 0;
116 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
117 
118 /*
119  * Deliver multiple frames in the same free list buffer if they fit.
120  * -1: let the driver decide whether to enable buffer packing or not.
121  *  0: disable buffer packing.
122  *  1: enable buffer packing.
123  */
124 static int buffer_packing = -1;
125 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
126 
127 /*
128  * Start next frame in a packed buffer at this boundary.
129  * -1: driver should figure out a good value.
130  * T4: driver will ignore this and use the same value as fl_pad above.
131  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
132  */
133 static int fl_pack = -1;
134 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
135 
136 /*
137  * Allow the driver to create mbuf(s) in a cluster allocated for rx.
138  * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
139  * 1: ok to create mbuf(s) within a cluster if there is room.
140  */
141 static int allow_mbufs_in_cluster = 1;
142 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
143 
144 /*
145  * Largest rx cluster size that the driver is allowed to allocate.
146  */
147 static int largest_rx_cluster = MJUM16BYTES;
148 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
149 
150 /*
151  * Size of cluster allocation that's most likely to succeed.  The driver will
152  * fall back to this size if it fails to allocate clusters larger than this.
153  */
154 static int safest_rx_cluster = PAGE_SIZE;
155 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
156 
157 #ifdef RATELIMIT
158 /*
159  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
160  * for rewriting.  -1 and 0-3 are all valid values.
161  * -1: hardware should leave the TCP timestamps alone.
162  * 0: 1ms
163  * 1: 100us
164  * 2: 10us
165  * 3: 1us
166  */
167 static int tsclk = -1;
168 TUNABLE_INT("hw.cxgbe.tsclk", &tsclk);
169 
170 static int eo_max_backlog = 1024 * 1024;
171 TUNABLE_INT("hw.cxgbe.eo_max_backlog", &eo_max_backlog);
172 #endif
173 
174 /*
175  * The interrupt holdoff timers are multiplied by this value on T6+.
176  * 1 and 3-17 (both inclusive) are legal values.
177  */
178 static int tscale = 1;
179 TUNABLE_INT("hw.cxgbe.tscale", &tscale);
180 
181 /*
182  * Number of LRO entries in the lro_ctrl structure per rx queue.
183  */
184 static int lro_entries = TCP_LRO_ENTRIES;
185 TUNABLE_INT("hw.cxgbe.lro_entries", &lro_entries);
186 
187 /*
188  * This enables presorting of frames before they're fed into tcp_lro_rx.
189  */
190 static int lro_mbufs = 0;
191 TUNABLE_INT("hw.cxgbe.lro_mbufs", &lro_mbufs);
192 
193 struct txpkts {
194 	u_int wr_type;		/* type 0 or type 1 */
195 	u_int npkt;		/* # of packets in this work request */
196 	u_int plen;		/* total payload (sum of all packets) */
197 	u_int len16;		/* # of 16B pieces used by this work request */
198 };
199 
200 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
201 struct sgl {
202 	struct sglist sg;
203 	struct sglist_seg seg[TX_SGL_SEGS];
204 };
205 
206 static int service_iq(struct sge_iq *, int);
207 static int service_iq_fl(struct sge_iq *, int);
208 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
209 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
210 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
211 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
212 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
213     uint16_t, char *);
214 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
215     bus_addr_t *, void **);
216 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
217     void *);
218 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
219     int, int);
220 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
221 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
222     struct sge_iq *);
223 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
224     struct sysctl_oid *, struct sge_fl *);
225 static int alloc_fwq(struct adapter *);
226 static int free_fwq(struct adapter *);
227 static int alloc_ctrlq(struct adapter *, struct sge_wrq *, int,
228     struct sysctl_oid *);
229 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
230     struct sysctl_oid *);
231 static int free_rxq(struct vi_info *, struct sge_rxq *);
232 #ifdef TCP_OFFLOAD
233 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
234     struct sysctl_oid *);
235 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
236 #endif
237 #ifdef DEV_NETMAP
238 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
239     struct sysctl_oid *);
240 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
241 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
242     struct sysctl_oid *);
243 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
244 #endif
245 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
246 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
247 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
248 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
249 #endif
250 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
251 static int free_eq(struct adapter *, struct sge_eq *);
252 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
253     struct sysctl_oid *);
254 static int free_wrq(struct adapter *, struct sge_wrq *);
255 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
256     struct sysctl_oid *);
257 static int free_txq(struct vi_info *, struct sge_txq *);
258 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
259 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
260 static int refill_fl(struct adapter *, struct sge_fl *, int);
261 static void refill_sfl(void *);
262 static int alloc_fl_sdesc(struct sge_fl *);
263 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
264 static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
265 static void find_safe_refill_source(struct adapter *, struct sge_fl *);
266 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
267 
268 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
269 static inline u_int txpkt_len16(u_int, u_int);
270 static inline u_int txpkt_vm_len16(u_int, u_int);
271 static inline u_int txpkts0_len16(u_int);
272 static inline u_int txpkts1_len16(void);
273 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
274     struct mbuf *, u_int);
275 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
276     struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int);
277 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
278 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
279 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
280     struct mbuf *, const struct txpkts *, u_int);
281 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
282 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
283 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
284 static inline uint16_t read_hw_cidx(struct sge_eq *);
285 static inline u_int reclaimable_tx_desc(struct sge_eq *);
286 static inline u_int total_available_tx_desc(struct sge_eq *);
287 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
288 static void tx_reclaim(void *, int);
289 static __be64 get_flit(struct sglist_seg *, int, int);
290 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
291     struct mbuf *);
292 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
293     struct mbuf *);
294 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
295 static void wrq_tx_drain(void *, int);
296 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
297 
298 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
299 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
300 #ifdef RATELIMIT
301 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
302 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
303     struct mbuf *);
304 #endif
305 
306 static counter_u64_t extfree_refs;
307 static counter_u64_t extfree_rels;
308 
309 an_handler_t t4_an_handler;
310 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
311 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
312 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
313 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
314 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
315 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
316 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
317 
318 void
319 t4_register_an_handler(an_handler_t h)
320 {
321 	uintptr_t *loc;
322 
323 	MPASS(h == NULL || t4_an_handler == NULL);
324 
325 	loc = (uintptr_t *)&t4_an_handler;
326 	atomic_store_rel_ptr(loc, (uintptr_t)h);
327 }
328 
329 void
330 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
331 {
332 	uintptr_t *loc;
333 
334 	MPASS(type < nitems(t4_fw_msg_handler));
335 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
336 	/*
337 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
338 	 * handler dispatch table.  Reject any attempt to install a handler for
339 	 * this subtype.
340 	 */
341 	MPASS(type != FW_TYPE_RSSCPL);
342 	MPASS(type != FW6_TYPE_RSSCPL);
343 
344 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
345 	atomic_store_rel_ptr(loc, (uintptr_t)h);
346 }
347 
348 void
349 t4_register_cpl_handler(int opcode, cpl_handler_t h)
350 {
351 	uintptr_t *loc;
352 
353 	MPASS(opcode < nitems(t4_cpl_handler));
354 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
355 
356 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
357 	atomic_store_rel_ptr(loc, (uintptr_t)h);
358 }
359 
360 static int
361 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
362     struct mbuf *m)
363 {
364 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
365 	u_int tid;
366 	int cookie;
367 
368 	MPASS(m == NULL);
369 
370 	tid = GET_TID(cpl);
371 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
372 		/*
373 		 * The return code for filter-write is put in the CPL cookie so
374 		 * we have to rely on the hardware tid (is_ftid) to determine
375 		 * that this is a response to a filter.
376 		 */
377 		cookie = CPL_COOKIE_FILTER;
378 	} else {
379 		cookie = G_COOKIE(cpl->cookie);
380 	}
381 	MPASS(cookie > CPL_COOKIE_RESERVED);
382 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
383 
384 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
385 }
386 
387 static int
388 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
389     struct mbuf *m)
390 {
391 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
392 	unsigned int cookie;
393 
394 	MPASS(m == NULL);
395 
396 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
397 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
398 }
399 
400 static int
401 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
402     struct mbuf *m)
403 {
404 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
405 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
406 
407 	MPASS(m == NULL);
408 	MPASS(cookie != CPL_COOKIE_RESERVED);
409 
410 	return (act_open_rpl_handlers[cookie](iq, rss, m));
411 }
412 
413 static int
414 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
415     struct mbuf *m)
416 {
417 	struct adapter *sc = iq->adapter;
418 	u_int cookie;
419 
420 	MPASS(m == NULL);
421 	if (is_hashfilter(sc))
422 		cookie = CPL_COOKIE_HASHFILTER;
423 	else
424 		cookie = CPL_COOKIE_TOM;
425 
426 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
427 }
428 
429 static int
430 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
431 {
432 	struct adapter *sc = iq->adapter;
433 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
434 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
435 	u_int cookie;
436 
437 	MPASS(m == NULL);
438 	if (is_etid(sc, tid))
439 		cookie = CPL_COOKIE_ETHOFLD;
440 	else
441 		cookie = CPL_COOKIE_TOM;
442 
443 	return (fw4_ack_handlers[cookie](iq, rss, m));
444 }
445 
446 static void
447 t4_init_shared_cpl_handlers(void)
448 {
449 
450 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
451 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
452 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
453 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
454 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
455 }
456 
457 void
458 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
459 {
460 	uintptr_t *loc;
461 
462 	MPASS(opcode < nitems(t4_cpl_handler));
463 	MPASS(cookie > CPL_COOKIE_RESERVED);
464 	MPASS(cookie < NUM_CPL_COOKIES);
465 	MPASS(t4_cpl_handler[opcode] != NULL);
466 
467 	switch (opcode) {
468 	case CPL_SET_TCB_RPL:
469 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
470 		break;
471 	case CPL_L2T_WRITE_RPL:
472 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
473 		break;
474 	case CPL_ACT_OPEN_RPL:
475 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
476 		break;
477 	case CPL_ABORT_RPL_RSS:
478 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
479 		break;
480 	case CPL_FW4_ACK:
481 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
482 		break;
483 	default:
484 		MPASS(0);
485 		return;
486 	}
487 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
488 	atomic_store_rel_ptr(loc, (uintptr_t)h);
489 }
490 
491 /*
492  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
493  */
494 void
495 t4_sge_modload(void)
496 {
497 
498 	if (fl_pktshift < 0 || fl_pktshift > 7) {
499 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
500 		    " using 0 instead.\n", fl_pktshift);
501 		fl_pktshift = 0;
502 	}
503 
504 	if (spg_len != 64 && spg_len != 128) {
505 		int len;
506 
507 #if defined(__i386__) || defined(__amd64__)
508 		len = cpu_clflush_line_size > 64 ? 128 : 64;
509 #else
510 		len = 64;
511 #endif
512 		if (spg_len != -1) {
513 			printf("Invalid hw.cxgbe.spg_len value (%d),"
514 			    " using %d instead.\n", spg_len, len);
515 		}
516 		spg_len = len;
517 	}
518 
519 	if (cong_drop < -1 || cong_drop > 1) {
520 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
521 		    " using 0 instead.\n", cong_drop);
522 		cong_drop = 0;
523 	}
524 
525 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
526 		printf("Invalid hw.cxgbe.tscale value (%d),"
527 		    " using 1 instead.\n", tscale);
528 		tscale = 1;
529 	}
530 
531 	extfree_refs = counter_u64_alloc(M_WAITOK);
532 	extfree_rels = counter_u64_alloc(M_WAITOK);
533 	counter_u64_zero(extfree_refs);
534 	counter_u64_zero(extfree_rels);
535 
536 	t4_init_shared_cpl_handlers();
537 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
538 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
539 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
540 	t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx);
541 #ifdef RATELIMIT
542 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
543 	    CPL_COOKIE_ETHOFLD);
544 #endif
545 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
546 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
547 }
548 
549 void
550 t4_sge_modunload(void)
551 {
552 
553 	counter_u64_free(extfree_refs);
554 	counter_u64_free(extfree_rels);
555 }
556 
557 uint64_t
558 t4_sge_extfree_refs(void)
559 {
560 	uint64_t refs, rels;
561 
562 	rels = counter_u64_fetch(extfree_rels);
563 	refs = counter_u64_fetch(extfree_refs);
564 
565 	return (refs - rels);
566 }
567 
568 static inline void
569 setup_pad_and_pack_boundaries(struct adapter *sc)
570 {
571 	uint32_t v, m;
572 	int pad, pack, pad_shift;
573 
574 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
575 	    X_INGPADBOUNDARY_SHIFT;
576 	pad = fl_pad;
577 	if (fl_pad < (1 << pad_shift) ||
578 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
579 	    !powerof2(fl_pad)) {
580 		/*
581 		 * If there is any chance that we might use buffer packing and
582 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
583 		 * it to the minimum allowed in all other cases.
584 		 */
585 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
586 
587 		/*
588 		 * For fl_pad = 0 we'll still write a reasonable value to the
589 		 * register but all the freelists will opt out of padding.
590 		 * We'll complain here only if the user tried to set it to a
591 		 * value greater than 0 that was invalid.
592 		 */
593 		if (fl_pad > 0) {
594 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
595 			    " (%d), using %d instead.\n", fl_pad, pad);
596 		}
597 	}
598 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
599 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
600 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
601 
602 	if (is_t4(sc)) {
603 		if (fl_pack != -1 && fl_pack != pad) {
604 			/* Complain but carry on. */
605 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
606 			    " using %d instead.\n", fl_pack, pad);
607 		}
608 		return;
609 	}
610 
611 	pack = fl_pack;
612 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
613 	    !powerof2(fl_pack)) {
614 		pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
615 		MPASS(powerof2(pack));
616 		if (pack < 16)
617 			pack = 16;
618 		if (pack == 32)
619 			pack = 64;
620 		if (pack > 4096)
621 			pack = 4096;
622 		if (fl_pack != -1) {
623 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
624 			    " (%d), using %d instead.\n", fl_pack, pack);
625 		}
626 	}
627 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
628 	if (pack == 16)
629 		v = V_INGPACKBOUNDARY(0);
630 	else
631 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
632 
633 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
634 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
635 }
636 
637 /*
638  * adap->params.vpd.cclk must be set up before this is called.
639  */
640 void
641 t4_tweak_chip_settings(struct adapter *sc)
642 {
643 	int i;
644 	uint32_t v, m;
645 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
646 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
647 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
648 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
649 	static int sge_flbuf_sizes[] = {
650 		MCLBYTES,
651 #if MJUMPAGESIZE != MCLBYTES
652 		MJUMPAGESIZE,
653 		MJUMPAGESIZE - CL_METADATA_SIZE,
654 		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
655 #endif
656 		MJUM9BYTES,
657 		MJUM16BYTES,
658 		MCLBYTES - MSIZE - CL_METADATA_SIZE,
659 		MJUM9BYTES - CL_METADATA_SIZE,
660 		MJUM16BYTES - CL_METADATA_SIZE,
661 	};
662 
663 	KASSERT(sc->flags & MASTER_PF,
664 	    ("%s: trying to change chip settings when not master.", __func__));
665 
666 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
667 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
668 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
669 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
670 
671 	setup_pad_and_pack_boundaries(sc);
672 
673 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
674 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
675 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
676 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
677 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
678 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
679 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
680 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
681 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
682 
683 	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
684 	    ("%s: hw buffer size table too big", __func__));
685 	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
686 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
687 		    sge_flbuf_sizes[i]);
688 	}
689 
690 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
691 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
692 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
693 
694 	KASSERT(intr_timer[0] <= timer_max,
695 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
696 	    timer_max));
697 	for (i = 1; i < nitems(intr_timer); i++) {
698 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
699 		    ("%s: timers not listed in increasing order (%d)",
700 		    __func__, i));
701 
702 		while (intr_timer[i] > timer_max) {
703 			if (i == nitems(intr_timer) - 1) {
704 				intr_timer[i] = timer_max;
705 				break;
706 			}
707 			intr_timer[i] += intr_timer[i - 1];
708 			intr_timer[i] /= 2;
709 		}
710 	}
711 
712 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
713 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
714 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
715 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
716 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
717 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
718 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
719 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
720 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
721 
722 	if (chip_id(sc) >= CHELSIO_T6) {
723 		m = V_TSCALE(M_TSCALE);
724 		if (tscale == 1)
725 			v = 0;
726 		else
727 			v = V_TSCALE(tscale - 2);
728 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
729 
730 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
731 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
732 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
733 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
734 			v &= ~m;
735 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
736 			    V_WRTHRTHRESH(16);
737 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
738 		}
739 	}
740 
741 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
742 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
743 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
744 
745 	/*
746 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
747 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
748 	 * may have to deal with is MAXPHYS + 1 page.
749 	 */
750 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
751 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
752 
753 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
754 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
755 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
756 
757 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
758 	    F_RESETDDPOFFSET;
759 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
760 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
761 }
762 
763 /*
764  * SGE wants the buffer to be at least 64B and then a multiple of 16.  If
765  * padding is in use, the buffer's start and end need to be aligned to the pad
766  * boundary as well.  We'll just make sure that the size is a multiple of the
767  * boundary here, it is up to the buffer allocation code to make sure the start
768  * of the buffer is aligned as well.
769  */
770 static inline int
771 hwsz_ok(struct adapter *sc, int hwsz)
772 {
773 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
774 
775 	return (hwsz >= 64 && (hwsz & mask) == 0);
776 }
777 
778 /*
779  * XXX: driver really should be able to deal with unexpected settings.
780  */
781 int
782 t4_read_chip_settings(struct adapter *sc)
783 {
784 	struct sge *s = &sc->sge;
785 	struct sge_params *sp = &sc->params.sge;
786 	int i, j, n, rc = 0;
787 	uint32_t m, v, r;
788 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
789 	static int sw_buf_sizes[] = {	/* Sorted by size */
790 		MCLBYTES,
791 #if MJUMPAGESIZE != MCLBYTES
792 		MJUMPAGESIZE,
793 #endif
794 		MJUM9BYTES,
795 		MJUM16BYTES
796 	};
797 	struct sw_zone_info *swz, *safe_swz;
798 	struct hw_buf_info *hwb;
799 
800 	m = F_RXPKTCPLMODE;
801 	v = F_RXPKTCPLMODE;
802 	r = sc->params.sge.sge_control;
803 	if ((r & m) != v) {
804 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
805 		rc = EINVAL;
806 	}
807 
808 	/*
809 	 * If this changes then every single use of PAGE_SHIFT in the driver
810 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
811 	 */
812 	if (sp->page_shift != PAGE_SHIFT) {
813 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
814 		rc = EINVAL;
815 	}
816 
817 	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
818 	hwb = &s->hw_buf_info[0];
819 	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
820 		r = sc->params.sge.sge_fl_buffer_size[i];
821 		hwb->size = r;
822 		hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
823 		hwb->next = -1;
824 	}
825 
826 	/*
827 	 * Create a sorted list in decreasing order of hw buffer sizes (and so
828 	 * increasing order of spare area) for each software zone.
829 	 *
830 	 * If padding is enabled then the start and end of the buffer must align
831 	 * to the pad boundary; if packing is enabled then they must align with
832 	 * the pack boundary as well.  Allocations from the cluster zones are
833 	 * aligned to min(size, 4K), so the buffer starts at that alignment and
834 	 * ends at hwb->size alignment.  If mbuf inlining is allowed the
835 	 * starting alignment will be reduced to MSIZE and the driver will
836 	 * exercise appropriate caution when deciding on the best buffer layout
837 	 * to use.
838 	 */
839 	n = 0;	/* no usable buffer size to begin with */
840 	swz = &s->sw_zone_info[0];
841 	safe_swz = NULL;
842 	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
843 		int8_t head = -1, tail = -1;
844 
845 		swz->size = sw_buf_sizes[i];
846 		swz->zone = m_getzone(swz->size);
847 		swz->type = m_gettype(swz->size);
848 
849 		if (swz->size < PAGE_SIZE) {
850 			MPASS(powerof2(swz->size));
851 			if (fl_pad && (swz->size % sp->pad_boundary != 0))
852 				continue;
853 		}
854 
855 		if (swz->size == safest_rx_cluster)
856 			safe_swz = swz;
857 
858 		hwb = &s->hw_buf_info[0];
859 		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
860 			if (hwb->zidx != -1 || hwb->size > swz->size)
861 				continue;
862 #ifdef INVARIANTS
863 			if (fl_pad)
864 				MPASS(hwb->size % sp->pad_boundary == 0);
865 #endif
866 			hwb->zidx = i;
867 			if (head == -1)
868 				head = tail = j;
869 			else if (hwb->size < s->hw_buf_info[tail].size) {
870 				s->hw_buf_info[tail].next = j;
871 				tail = j;
872 			} else {
873 				int8_t *cur;
874 				struct hw_buf_info *t;
875 
876 				for (cur = &head; *cur != -1; cur = &t->next) {
877 					t = &s->hw_buf_info[*cur];
878 					if (hwb->size == t->size) {
879 						hwb->zidx = -2;
880 						break;
881 					}
882 					if (hwb->size > t->size) {
883 						hwb->next = *cur;
884 						*cur = j;
885 						break;
886 					}
887 				}
888 			}
889 		}
890 		swz->head_hwidx = head;
891 		swz->tail_hwidx = tail;
892 
893 		if (tail != -1) {
894 			n++;
895 			if (swz->size - s->hw_buf_info[tail].size >=
896 			    CL_METADATA_SIZE)
897 				sc->flags |= BUF_PACKING_OK;
898 		}
899 	}
900 	if (n == 0) {
901 		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
902 		rc = EINVAL;
903 	}
904 
905 	s->safe_hwidx1 = -1;
906 	s->safe_hwidx2 = -1;
907 	if (safe_swz != NULL) {
908 		s->safe_hwidx1 = safe_swz->head_hwidx;
909 		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
910 			int spare;
911 
912 			hwb = &s->hw_buf_info[i];
913 #ifdef INVARIANTS
914 			if (fl_pad)
915 				MPASS(hwb->size % sp->pad_boundary == 0);
916 #endif
917 			spare = safe_swz->size - hwb->size;
918 			if (spare >= CL_METADATA_SIZE) {
919 				s->safe_hwidx2 = i;
920 				break;
921 			}
922 		}
923 	}
924 
925 	if (sc->flags & IS_VF)
926 		return (0);
927 
928 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
929 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
930 	if (r != v) {
931 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
932 		rc = EINVAL;
933 	}
934 
935 	m = v = F_TDDPTAGTCB;
936 	r = t4_read_reg(sc, A_ULP_RX_CTL);
937 	if ((r & m) != v) {
938 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
939 		rc = EINVAL;
940 	}
941 
942 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
943 	    F_RESETDDPOFFSET;
944 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
945 	r = t4_read_reg(sc, A_TP_PARA_REG5);
946 	if ((r & m) != v) {
947 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
948 		rc = EINVAL;
949 	}
950 
951 	t4_init_tp_params(sc, 1);
952 
953 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
954 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
955 
956 	return (rc);
957 }
958 
959 int
960 t4_create_dma_tag(struct adapter *sc)
961 {
962 	int rc;
963 
964 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
965 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
966 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
967 	    NULL, &sc->dmat);
968 	if (rc != 0) {
969 		device_printf(sc->dev,
970 		    "failed to create main DMA tag: %d\n", rc);
971 	}
972 
973 	return (rc);
974 }
975 
976 void
977 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
978     struct sysctl_oid_list *children)
979 {
980 	struct sge_params *sp = &sc->params.sge;
981 
982 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
983 	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
984 	    "freelist buffer sizes");
985 
986 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
987 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
988 
989 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
990 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
991 
992 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
993 	    NULL, sp->spg_len, "status page size (bytes)");
994 
995 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
996 	    NULL, cong_drop, "congestion drop setting");
997 
998 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
999 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1000 }
1001 
1002 int
1003 t4_destroy_dma_tag(struct adapter *sc)
1004 {
1005 	if (sc->dmat)
1006 		bus_dma_tag_destroy(sc->dmat);
1007 
1008 	return (0);
1009 }
1010 
1011 /*
1012  * Allocate and initialize the firmware event queue, control queues, and special
1013  * purpose rx queues owned by the adapter.
1014  *
1015  * Returns errno on failure.  Resources allocated up to that point may still be
1016  * allocated.  Caller is responsible for cleanup in case this function fails.
1017  */
1018 int
1019 t4_setup_adapter_queues(struct adapter *sc)
1020 {
1021 	struct sysctl_oid *oid;
1022 	struct sysctl_oid_list *children;
1023 	int rc, i;
1024 
1025 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1026 
1027 	sysctl_ctx_init(&sc->ctx);
1028 	sc->flags |= ADAP_SYSCTL_CTX;
1029 
1030 	/*
1031 	 * Firmware event queue
1032 	 */
1033 	rc = alloc_fwq(sc);
1034 	if (rc != 0)
1035 		return (rc);
1036 
1037 	/*
1038 	 * That's all for the VF driver.
1039 	 */
1040 	if (sc->flags & IS_VF)
1041 		return (rc);
1042 
1043 	oid = device_get_sysctl_tree(sc->dev);
1044 	children = SYSCTL_CHILDREN(oid);
1045 
1046 	/*
1047 	 * XXX: General purpose rx queues, one per port.
1048 	 */
1049 
1050 	/*
1051 	 * Control queues, one per port.
1052 	 */
1053 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "ctrlq",
1054 	    CTLFLAG_RD, NULL, "control queues");
1055 	for_each_port(sc, i) {
1056 		struct sge_wrq *ctrlq = &sc->sge.ctrlq[i];
1057 
1058 		rc = alloc_ctrlq(sc, ctrlq, i, oid);
1059 		if (rc != 0)
1060 			return (rc);
1061 	}
1062 
1063 	return (rc);
1064 }
1065 
1066 /*
1067  * Idempotent
1068  */
1069 int
1070 t4_teardown_adapter_queues(struct adapter *sc)
1071 {
1072 	int i;
1073 
1074 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1075 
1076 	/* Do this before freeing the queue */
1077 	if (sc->flags & ADAP_SYSCTL_CTX) {
1078 		sysctl_ctx_free(&sc->ctx);
1079 		sc->flags &= ~ADAP_SYSCTL_CTX;
1080 	}
1081 
1082 	for_each_port(sc, i)
1083 		free_wrq(sc, &sc->sge.ctrlq[i]);
1084 	free_fwq(sc);
1085 
1086 	return (0);
1087 }
1088 
1089 /* Maximum payload that can be delivered with a single iq descriptor */
1090 static inline int
1091 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
1092 {
1093 	int payload;
1094 
1095 #ifdef TCP_OFFLOAD
1096 	if (toe) {
1097 		int rxcs = G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2));
1098 
1099 		/* Note that COP can set rx_coalesce on/off per connection. */
1100 		payload = max(mtu, rxcs);
1101 	} else {
1102 #endif
1103 		/* large enough even when hw VLAN extraction is disabled */
1104 		payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1105 		    ETHER_VLAN_ENCAP_LEN + mtu;
1106 #ifdef TCP_OFFLOAD
1107 	}
1108 #endif
1109 
1110 	return (payload);
1111 }
1112 
1113 int
1114 t4_setup_vi_queues(struct vi_info *vi)
1115 {
1116 	int rc = 0, i, intr_idx, iqidx;
1117 	struct sge_rxq *rxq;
1118 	struct sge_txq *txq;
1119 #ifdef TCP_OFFLOAD
1120 	struct sge_ofld_rxq *ofld_rxq;
1121 #endif
1122 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1123 	struct sge_wrq *ofld_txq;
1124 #endif
1125 #ifdef DEV_NETMAP
1126 	int saved_idx;
1127 	struct sge_nm_rxq *nm_rxq;
1128 	struct sge_nm_txq *nm_txq;
1129 #endif
1130 	char name[16];
1131 	struct port_info *pi = vi->pi;
1132 	struct adapter *sc = pi->adapter;
1133 	struct ifnet *ifp = vi->ifp;
1134 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
1135 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1136 	int maxp, mtu = ifp->if_mtu;
1137 
1138 	/* Interrupt vector to start from (when using multiple vectors) */
1139 	intr_idx = vi->first_intr;
1140 
1141 #ifdef DEV_NETMAP
1142 	saved_idx = intr_idx;
1143 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1144 
1145 		/* netmap is supported with direct interrupts only. */
1146 		MPASS(!forwarding_intr_to_fwq(sc));
1147 
1148 		/*
1149 		 * We don't have buffers to back the netmap rx queues
1150 		 * right now so we create the queues in a way that
1151 		 * doesn't set off any congestion signal in the chip.
1152 		 */
1153 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1154 		    CTLFLAG_RD, NULL, "rx queues");
1155 		for_each_nm_rxq(vi, i, nm_rxq) {
1156 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1157 			if (rc != 0)
1158 				goto done;
1159 			intr_idx++;
1160 		}
1161 
1162 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1163 		    CTLFLAG_RD, NULL, "tx queues");
1164 		for_each_nm_txq(vi, i, nm_txq) {
1165 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1166 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid);
1167 			if (rc != 0)
1168 				goto done;
1169 		}
1170 	}
1171 
1172 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1173 	intr_idx = saved_idx;
1174 #endif
1175 
1176 	/*
1177 	 * Allocate rx queues first because a default iqid is required when
1178 	 * creating a tx queue.
1179 	 */
1180 	maxp = mtu_to_max_payload(sc, mtu, 0);
1181 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1182 	    CTLFLAG_RD, NULL, "rx queues");
1183 	for_each_rxq(vi, i, rxq) {
1184 
1185 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1186 
1187 		snprintf(name, sizeof(name), "%s rxq%d-fl",
1188 		    device_get_nameunit(vi->dev), i);
1189 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1190 
1191 		rc = alloc_rxq(vi, rxq,
1192 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1193 		if (rc != 0)
1194 			goto done;
1195 		intr_idx++;
1196 	}
1197 #ifdef DEV_NETMAP
1198 	if (ifp->if_capabilities & IFCAP_NETMAP)
1199 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1200 #endif
1201 #ifdef TCP_OFFLOAD
1202 	maxp = mtu_to_max_payload(sc, mtu, 1);
1203 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1204 	    CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections");
1205 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1206 
1207 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
1208 		    vi->qsize_rxq);
1209 
1210 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1211 		    device_get_nameunit(vi->dev), i);
1212 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1213 
1214 		rc = alloc_ofld_rxq(vi, ofld_rxq,
1215 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1216 		if (rc != 0)
1217 			goto done;
1218 		intr_idx++;
1219 	}
1220 #endif
1221 
1222 	/*
1223 	 * Now the tx queues.
1224 	 */
1225 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1226 	    NULL, "tx queues");
1227 	for_each_txq(vi, i, txq) {
1228 		iqidx = vi->first_rxq + (i % vi->nrxq);
1229 		snprintf(name, sizeof(name), "%s txq%d",
1230 		    device_get_nameunit(vi->dev), i);
1231 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
1232 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1233 
1234 		rc = alloc_txq(vi, txq, i, oid);
1235 		if (rc != 0)
1236 			goto done;
1237 	}
1238 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1239 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1240 	    CTLFLAG_RD, NULL, "tx queues for TOE/ETHOFLD");
1241 	for_each_ofld_txq(vi, i, ofld_txq) {
1242 		struct sysctl_oid *oid2;
1243 
1244 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1245 		    device_get_nameunit(vi->dev), i);
1246 #ifdef TCP_OFFLOAD
1247 		iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq);
1248 		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1249 		    sc->sge.ofld_rxq[iqidx].iq.cntxt_id, name);
1250 #else
1251 		iqidx = vi->first_rxq + (i % vi->nrxq);
1252 		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1253 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1254 #endif
1255 
1256 		snprintf(name, sizeof(name), "%d", i);
1257 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1258 		    name, CTLFLAG_RD, NULL, "offload tx queue");
1259 
1260 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1261 		if (rc != 0)
1262 			goto done;
1263 	}
1264 #endif
1265 done:
1266 	if (rc)
1267 		t4_teardown_vi_queues(vi);
1268 
1269 	return (rc);
1270 }
1271 
1272 /*
1273  * Idempotent
1274  */
1275 int
1276 t4_teardown_vi_queues(struct vi_info *vi)
1277 {
1278 	int i;
1279 	struct sge_rxq *rxq;
1280 	struct sge_txq *txq;
1281 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1282 	struct port_info *pi = vi->pi;
1283 	struct adapter *sc = pi->adapter;
1284 	struct sge_wrq *ofld_txq;
1285 #endif
1286 #ifdef TCP_OFFLOAD
1287 	struct sge_ofld_rxq *ofld_rxq;
1288 #endif
1289 #ifdef DEV_NETMAP
1290 	struct sge_nm_rxq *nm_rxq;
1291 	struct sge_nm_txq *nm_txq;
1292 #endif
1293 
1294 	/* Do this before freeing the queues */
1295 	if (vi->flags & VI_SYSCTL_CTX) {
1296 		sysctl_ctx_free(&vi->ctx);
1297 		vi->flags &= ~VI_SYSCTL_CTX;
1298 	}
1299 
1300 #ifdef DEV_NETMAP
1301 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1302 		for_each_nm_txq(vi, i, nm_txq) {
1303 			free_nm_txq(vi, nm_txq);
1304 		}
1305 
1306 		for_each_nm_rxq(vi, i, nm_rxq) {
1307 			free_nm_rxq(vi, nm_rxq);
1308 		}
1309 	}
1310 #endif
1311 
1312 	/*
1313 	 * Take down all the tx queues first, as they reference the rx queues
1314 	 * (for egress updates, etc.).
1315 	 */
1316 
1317 	for_each_txq(vi, i, txq) {
1318 		free_txq(vi, txq);
1319 	}
1320 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1321 	for_each_ofld_txq(vi, i, ofld_txq) {
1322 		free_wrq(sc, ofld_txq);
1323 	}
1324 #endif
1325 
1326 	/*
1327 	 * Then take down the rx queues.
1328 	 */
1329 
1330 	for_each_rxq(vi, i, rxq) {
1331 		free_rxq(vi, rxq);
1332 	}
1333 #ifdef TCP_OFFLOAD
1334 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1335 		free_ofld_rxq(vi, ofld_rxq);
1336 	}
1337 #endif
1338 
1339 	return (0);
1340 }
1341 
1342 /*
1343  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1344  * unusual scenario.
1345  *
1346  * a) Deals with errors, if any.
1347  * b) Services firmware event queue, which is taking interrupts for all other
1348  *    queues.
1349  */
1350 void
1351 t4_intr_all(void *arg)
1352 {
1353 	struct adapter *sc = arg;
1354 	struct sge_iq *fwq = &sc->sge.fwq;
1355 
1356 	MPASS(sc->intr_count == 1);
1357 
1358 	t4_intr_err(arg);
1359 	t4_intr_evt(fwq);
1360 }
1361 
1362 /*
1363  * Interrupt handler for errors (installed directly when multiple interrupts are
1364  * being used, or called by t4_intr_all).
1365  */
1366 void
1367 t4_intr_err(void *arg)
1368 {
1369 	struct adapter *sc = arg;
1370 
1371 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1372 	t4_slow_intr_handler(sc);
1373 }
1374 
1375 /*
1376  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1377  * such queue right now.
1378  */
1379 void
1380 t4_intr_evt(void *arg)
1381 {
1382 	struct sge_iq *iq = arg;
1383 
1384 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1385 		service_iq(iq, 0);
1386 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1387 	}
1388 }
1389 
1390 /*
1391  * Interrupt handler for iq+fl queues.
1392  */
1393 void
1394 t4_intr(void *arg)
1395 {
1396 	struct sge_iq *iq = arg;
1397 
1398 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1399 		service_iq_fl(iq, 0);
1400 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1401 	}
1402 }
1403 
1404 #ifdef DEV_NETMAP
1405 /*
1406  * Interrupt handler for netmap rx queues.
1407  */
1408 void
1409 t4_nm_intr(void *arg)
1410 {
1411 	struct sge_nm_rxq *nm_rxq = arg;
1412 
1413 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1414 		service_nm_rxq(nm_rxq);
1415 		atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1416 	}
1417 }
1418 
1419 /*
1420  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1421  */
1422 void
1423 t4_vi_intr(void *arg)
1424 {
1425 	struct irq *irq = arg;
1426 
1427 	MPASS(irq->nm_rxq != NULL);
1428 	t4_nm_intr(irq->nm_rxq);
1429 
1430 	MPASS(irq->rxq != NULL);
1431 	t4_intr(irq->rxq);
1432 }
1433 #endif
1434 
1435 /*
1436  * Deals with interrupts on an iq-only (no freelist) queue.
1437  */
1438 static int
1439 service_iq(struct sge_iq *iq, int budget)
1440 {
1441 	struct sge_iq *q;
1442 	struct adapter *sc = iq->adapter;
1443 	struct iq_desc *d = &iq->desc[iq->cidx];
1444 	int ndescs = 0, limit;
1445 	int rsp_type;
1446 	uint32_t lq;
1447 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1448 
1449 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1450 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1451 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1452 	    iq->flags));
1453 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1454 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1455 
1456 	limit = budget ? budget : iq->qsize / 16;
1457 
1458 	/*
1459 	 * We always come back and check the descriptor ring for new indirect
1460 	 * interrupts and other responses after running a single handler.
1461 	 */
1462 	for (;;) {
1463 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1464 
1465 			rmb();
1466 
1467 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1468 			lq = be32toh(d->rsp.pldbuflen_qid);
1469 
1470 			switch (rsp_type) {
1471 			case X_RSPD_TYPE_FLBUF:
1472 				panic("%s: data for an iq (%p) with no freelist",
1473 				    __func__, iq);
1474 
1475 				/* NOTREACHED */
1476 
1477 			case X_RSPD_TYPE_CPL:
1478 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1479 				    ("%s: bad opcode %02x.", __func__,
1480 				    d->rss.opcode));
1481 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1482 				break;
1483 
1484 			case X_RSPD_TYPE_INTR:
1485 				/*
1486 				 * There are 1K interrupt-capable queues (qids 0
1487 				 * through 1023).  A response type indicating a
1488 				 * forwarded interrupt with a qid >= 1K is an
1489 				 * iWARP async notification.
1490 				 */
1491 				if (__predict_true(lq >= 1024)) {
1492 					t4_an_handler(iq, &d->rsp);
1493 					break;
1494 				}
1495 
1496 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1497 				    sc->sge.iq_base];
1498 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1499 				    IQS_BUSY)) {
1500 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1501 						atomic_cmpset_int(&q->state,
1502 						    IQS_BUSY, IQS_IDLE);
1503 					} else {
1504 						STAILQ_INSERT_TAIL(&iql, q,
1505 						    link);
1506 					}
1507 				}
1508 				break;
1509 
1510 			default:
1511 				KASSERT(0,
1512 				    ("%s: illegal response type %d on iq %p",
1513 				    __func__, rsp_type, iq));
1514 				log(LOG_ERR,
1515 				    "%s: illegal response type %d on iq %p",
1516 				    device_get_nameunit(sc->dev), rsp_type, iq);
1517 				break;
1518 			}
1519 
1520 			d++;
1521 			if (__predict_false(++iq->cidx == iq->sidx)) {
1522 				iq->cidx = 0;
1523 				iq->gen ^= F_RSPD_GEN;
1524 				d = &iq->desc[0];
1525 			}
1526 			if (__predict_false(++ndescs == limit)) {
1527 				t4_write_reg(sc, sc->sge_gts_reg,
1528 				    V_CIDXINC(ndescs) |
1529 				    V_INGRESSQID(iq->cntxt_id) |
1530 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1531 				ndescs = 0;
1532 
1533 				if (budget) {
1534 					return (EINPROGRESS);
1535 				}
1536 			}
1537 		}
1538 
1539 		if (STAILQ_EMPTY(&iql))
1540 			break;
1541 
1542 		/*
1543 		 * Process the head only, and send it to the back of the list if
1544 		 * it's still not done.
1545 		 */
1546 		q = STAILQ_FIRST(&iql);
1547 		STAILQ_REMOVE_HEAD(&iql, link);
1548 		if (service_iq_fl(q, q->qsize / 8) == 0)
1549 			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1550 		else
1551 			STAILQ_INSERT_TAIL(&iql, q, link);
1552 	}
1553 
1554 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1555 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1556 
1557 	return (0);
1558 }
1559 
1560 static inline int
1561 sort_before_lro(struct lro_ctrl *lro)
1562 {
1563 
1564 	return (lro->lro_mbuf_max != 0);
1565 }
1566 
1567 static inline uint64_t
1568 last_flit_to_ns(struct adapter *sc, uint64_t lf)
1569 {
1570 	uint64_t n = be64toh(lf) & 0xfffffffffffffff;	/* 60b, not 64b. */
1571 
1572 	if (n > UINT64_MAX / 1000000)
1573 		return (n / sc->params.vpd.cclk * 1000000);
1574 	else
1575 		return (n * 1000000 / sc->params.vpd.cclk);
1576 }
1577 
1578 /*
1579  * Deals with interrupts on an iq+fl queue.
1580  */
1581 static int
1582 service_iq_fl(struct sge_iq *iq, int budget)
1583 {
1584 	struct sge_rxq *rxq = iq_to_rxq(iq);
1585 	struct sge_fl *fl;
1586 	struct adapter *sc = iq->adapter;
1587 	struct iq_desc *d = &iq->desc[iq->cidx];
1588 	int ndescs = 0, limit;
1589 	int rsp_type, refill, starved;
1590 	uint32_t lq;
1591 	uint16_t fl_hw_cidx;
1592 	struct mbuf *m0;
1593 #if defined(INET) || defined(INET6)
1594 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1595 	struct lro_ctrl *lro = &rxq->lro;
1596 #endif
1597 
1598 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1599 	MPASS(iq->flags & IQ_HAS_FL);
1600 
1601 	limit = budget ? budget : iq->qsize / 16;
1602 	fl = &rxq->fl;
1603 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1604 
1605 #if defined(INET) || defined(INET6)
1606 	if (iq->flags & IQ_ADJ_CREDIT) {
1607 		MPASS(sort_before_lro(lro));
1608 		iq->flags &= ~IQ_ADJ_CREDIT;
1609 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1610 			tcp_lro_flush_all(lro);
1611 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1612 			    V_INGRESSQID((u32)iq->cntxt_id) |
1613 			    V_SEINTARM(iq->intr_params));
1614 			return (0);
1615 		}
1616 		ndescs = 1;
1617 	}
1618 #else
1619 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1620 #endif
1621 
1622 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1623 
1624 		rmb();
1625 
1626 		refill = 0;
1627 		m0 = NULL;
1628 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1629 		lq = be32toh(d->rsp.pldbuflen_qid);
1630 
1631 		switch (rsp_type) {
1632 		case X_RSPD_TYPE_FLBUF:
1633 
1634 			m0 = get_fl_payload(sc, fl, lq);
1635 			if (__predict_false(m0 == NULL))
1636 				goto out;
1637 			refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1638 
1639 			if (iq->flags & IQ_RX_TIMESTAMP) {
1640 				/*
1641 				 * Fill up rcv_tstmp but do not set M_TSTMP.
1642 				 * rcv_tstmp is not in the format that the
1643 				 * kernel expects and we don't want to mislead
1644 				 * it.  For now this is only for custom code
1645 				 * that knows how to interpret cxgbe's stamp.
1646 				 */
1647 				m0->m_pkthdr.rcv_tstmp =
1648 				    last_flit_to_ns(sc, d->rsp.u.last_flit);
1649 #ifdef notyet
1650 				m0->m_flags |= M_TSTMP;
1651 #endif
1652 			}
1653 
1654 			/* fall through */
1655 
1656 		case X_RSPD_TYPE_CPL:
1657 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1658 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1659 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1660 			break;
1661 
1662 		case X_RSPD_TYPE_INTR:
1663 
1664 			/*
1665 			 * There are 1K interrupt-capable queues (qids 0
1666 			 * through 1023).  A response type indicating a
1667 			 * forwarded interrupt with a qid >= 1K is an
1668 			 * iWARP async notification.  That is the only
1669 			 * acceptable indirect interrupt on this queue.
1670 			 */
1671 			if (__predict_false(lq < 1024)) {
1672 				panic("%s: indirect interrupt on iq_fl %p "
1673 				    "with qid %u", __func__, iq, lq);
1674 			}
1675 
1676 			t4_an_handler(iq, &d->rsp);
1677 			break;
1678 
1679 		default:
1680 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1681 			    __func__, rsp_type, iq));
1682 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1683 			    device_get_nameunit(sc->dev), rsp_type, iq);
1684 			break;
1685 		}
1686 
1687 		d++;
1688 		if (__predict_false(++iq->cidx == iq->sidx)) {
1689 			iq->cidx = 0;
1690 			iq->gen ^= F_RSPD_GEN;
1691 			d = &iq->desc[0];
1692 		}
1693 		if (__predict_false(++ndescs == limit)) {
1694 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1695 			    V_INGRESSQID(iq->cntxt_id) |
1696 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1697 			ndescs = 0;
1698 
1699 #if defined(INET) || defined(INET6)
1700 			if (iq->flags & IQ_LRO_ENABLED &&
1701 			    !sort_before_lro(lro) &&
1702 			    sc->lro_timeout != 0) {
1703 				tcp_lro_flush_inactive(lro, &lro_timeout);
1704 			}
1705 #endif
1706 			if (budget) {
1707 				FL_LOCK(fl);
1708 				refill_fl(sc, fl, 32);
1709 				FL_UNLOCK(fl);
1710 
1711 				return (EINPROGRESS);
1712 			}
1713 		}
1714 		if (refill) {
1715 			FL_LOCK(fl);
1716 			refill_fl(sc, fl, 32);
1717 			FL_UNLOCK(fl);
1718 			fl_hw_cidx = fl->hw_cidx;
1719 		}
1720 	}
1721 out:
1722 #if defined(INET) || defined(INET6)
1723 	if (iq->flags & IQ_LRO_ENABLED) {
1724 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1725 			MPASS(sort_before_lro(lro));
1726 			/* hold back one credit and don't flush LRO state */
1727 			iq->flags |= IQ_ADJ_CREDIT;
1728 			ndescs--;
1729 		} else {
1730 			tcp_lro_flush_all(lro);
1731 		}
1732 	}
1733 #endif
1734 
1735 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1736 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1737 
1738 	FL_LOCK(fl);
1739 	starved = refill_fl(sc, fl, 64);
1740 	FL_UNLOCK(fl);
1741 	if (__predict_false(starved != 0))
1742 		add_fl_to_sfl(sc, fl);
1743 
1744 	return (0);
1745 }
1746 
1747 static inline int
1748 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1749 {
1750 	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1751 
1752 	if (rc)
1753 		MPASS(cll->region3 >= CL_METADATA_SIZE);
1754 
1755 	return (rc);
1756 }
1757 
1758 static inline struct cluster_metadata *
1759 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1760     caddr_t cl)
1761 {
1762 
1763 	if (cl_has_metadata(fl, cll)) {
1764 		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1765 
1766 		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1767 	}
1768 	return (NULL);
1769 }
1770 
1771 static void
1772 rxb_free(struct mbuf *m)
1773 {
1774 	uma_zone_t zone = m->m_ext.ext_arg1;
1775 	void *cl = m->m_ext.ext_arg2;
1776 
1777 	uma_zfree(zone, cl);
1778 	counter_u64_add(extfree_rels, 1);
1779 }
1780 
1781 /*
1782  * The mbuf returned by this function could be allocated from zone_mbuf or
1783  * constructed in spare room in the cluster.
1784  *
1785  * The mbuf carries the payload in one of these ways
1786  * a) frame inside the mbuf (mbuf from zone_mbuf)
1787  * b) m_cljset (for clusters without metadata) zone_mbuf
1788  * c) m_extaddref (cluster with metadata) inline mbuf
1789  * d) m_extaddref (cluster with metadata) zone_mbuf
1790  */
1791 static struct mbuf *
1792 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1793     int remaining)
1794 {
1795 	struct mbuf *m;
1796 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1797 	struct cluster_layout *cll = &sd->cll;
1798 	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1799 	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1800 	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1801 	int len, blen;
1802 	caddr_t payload;
1803 
1804 	blen = hwb->size - fl->rx_offset;	/* max possible in this buf */
1805 	len = min(remaining, blen);
1806 	payload = sd->cl + cll->region1 + fl->rx_offset;
1807 	if (fl->flags & FL_BUF_PACKING) {
1808 		const u_int l = fr_offset + len;
1809 		const u_int pad = roundup2(l, fl->buf_boundary) - l;
1810 
1811 		if (fl->rx_offset + len + pad < hwb->size)
1812 			blen = len + pad;
1813 		MPASS(fl->rx_offset + blen <= hwb->size);
1814 	} else {
1815 		MPASS(fl->rx_offset == 0);	/* not packing */
1816 	}
1817 
1818 
1819 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1820 
1821 		/*
1822 		 * Copy payload into a freshly allocated mbuf.
1823 		 */
1824 
1825 		m = fr_offset == 0 ?
1826 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1827 		if (m == NULL)
1828 			return (NULL);
1829 		fl->mbuf_allocated++;
1830 
1831 		/* copy data to mbuf */
1832 		bcopy(payload, mtod(m, caddr_t), len);
1833 
1834 	} else if (sd->nmbuf * MSIZE < cll->region1) {
1835 
1836 		/*
1837 		 * There's spare room in the cluster for an mbuf.  Create one
1838 		 * and associate it with the payload that's in the cluster.
1839 		 */
1840 
1841 		MPASS(clm != NULL);
1842 		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1843 		/* No bzero required */
1844 		if (m_init(m, M_NOWAIT, MT_DATA,
1845 		    fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
1846 			return (NULL);
1847 		fl->mbuf_inlined++;
1848 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
1849 		    swz->zone, sd->cl);
1850 		if (sd->nmbuf++ == 0)
1851 			counter_u64_add(extfree_refs, 1);
1852 
1853 	} else {
1854 
1855 		/*
1856 		 * Grab an mbuf from zone_mbuf and associate it with the
1857 		 * payload in the cluster.
1858 		 */
1859 
1860 		m = fr_offset == 0 ?
1861 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1862 		if (m == NULL)
1863 			return (NULL);
1864 		fl->mbuf_allocated++;
1865 		if (clm != NULL) {
1866 			m_extaddref(m, payload, blen, &clm->refcount,
1867 			    rxb_free, swz->zone, sd->cl);
1868 			if (sd->nmbuf++ == 0)
1869 				counter_u64_add(extfree_refs, 1);
1870 		} else {
1871 			m_cljset(m, sd->cl, swz->type);
1872 			sd->cl = NULL;	/* consumed, not a recycle candidate */
1873 		}
1874 	}
1875 	if (fr_offset == 0)
1876 		m->m_pkthdr.len = remaining;
1877 	m->m_len = len;
1878 
1879 	if (fl->flags & FL_BUF_PACKING) {
1880 		fl->rx_offset += blen;
1881 		MPASS(fl->rx_offset <= hwb->size);
1882 		if (fl->rx_offset < hwb->size)
1883 			return (m);	/* without advancing the cidx */
1884 	}
1885 
1886 	if (__predict_false(++fl->cidx % 8 == 0)) {
1887 		uint16_t cidx = fl->cidx / 8;
1888 
1889 		if (__predict_false(cidx == fl->sidx))
1890 			fl->cidx = cidx = 0;
1891 		fl->hw_cidx = cidx;
1892 	}
1893 	fl->rx_offset = 0;
1894 
1895 	return (m);
1896 }
1897 
1898 static struct mbuf *
1899 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1900 {
1901 	struct mbuf *m0, *m, **pnext;
1902 	u_int remaining;
1903 	const u_int total = G_RSPD_LEN(len_newbuf);
1904 
1905 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1906 		M_ASSERTPKTHDR(fl->m0);
1907 		MPASS(fl->m0->m_pkthdr.len == total);
1908 		MPASS(fl->remaining < total);
1909 
1910 		m0 = fl->m0;
1911 		pnext = fl->pnext;
1912 		remaining = fl->remaining;
1913 		fl->flags &= ~FL_BUF_RESUME;
1914 		goto get_segment;
1915 	}
1916 
1917 	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1918 		fl->rx_offset = 0;
1919 		if (__predict_false(++fl->cidx % 8 == 0)) {
1920 			uint16_t cidx = fl->cidx / 8;
1921 
1922 			if (__predict_false(cidx == fl->sidx))
1923 				fl->cidx = cidx = 0;
1924 			fl->hw_cidx = cidx;
1925 		}
1926 	}
1927 
1928 	/*
1929 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1930 	 * 'len' and it may span multiple hw buffers.
1931 	 */
1932 
1933 	m0 = get_scatter_segment(sc, fl, 0, total);
1934 	if (m0 == NULL)
1935 		return (NULL);
1936 	remaining = total - m0->m_len;
1937 	pnext = &m0->m_next;
1938 	while (remaining > 0) {
1939 get_segment:
1940 		MPASS(fl->rx_offset == 0);
1941 		m = get_scatter_segment(sc, fl, total - remaining, remaining);
1942 		if (__predict_false(m == NULL)) {
1943 			fl->m0 = m0;
1944 			fl->pnext = pnext;
1945 			fl->remaining = remaining;
1946 			fl->flags |= FL_BUF_RESUME;
1947 			return (NULL);
1948 		}
1949 		*pnext = m;
1950 		pnext = &m->m_next;
1951 		remaining -= m->m_len;
1952 	}
1953 	*pnext = NULL;
1954 
1955 	M_ASSERTPKTHDR(m0);
1956 	return (m0);
1957 }
1958 
1959 static int
1960 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1961 {
1962 	struct sge_rxq *rxq = iq_to_rxq(iq);
1963 	struct ifnet *ifp = rxq->ifp;
1964 	struct adapter *sc = iq->adapter;
1965 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1966 #if defined(INET) || defined(INET6)
1967 	struct lro_ctrl *lro = &rxq->lro;
1968 #endif
1969 	static const int sw_hashtype[4][2] = {
1970 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1971 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1972 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1973 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1974 	};
1975 
1976 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1977 	    rss->opcode));
1978 
1979 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1980 	m0->m_len -= sc->params.sge.fl_pktshift;
1981 	m0->m_data += sc->params.sge.fl_pktshift;
1982 
1983 	m0->m_pkthdr.rcvif = ifp;
1984 	M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
1985 	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1986 
1987 	if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) {
1988 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1989 		    cpl->l2info & htobe32(F_RXF_IP)) {
1990 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1991 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1992 			rxq->rxcsum++;
1993 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1994 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1995 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1996 			    CSUM_PSEUDO_HDR);
1997 			rxq->rxcsum++;
1998 		}
1999 
2000 		if (__predict_false(cpl->ip_frag))
2001 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2002 		else
2003 			m0->m_pkthdr.csum_data = 0xffff;
2004 	}
2005 
2006 	if (cpl->vlan_ex) {
2007 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2008 		m0->m_flags |= M_VLANTAG;
2009 		rxq->vlan_extraction++;
2010 	}
2011 
2012 #if defined(INET) || defined(INET6)
2013 	if (iq->flags & IQ_LRO_ENABLED) {
2014 		if (sort_before_lro(lro)) {
2015 			tcp_lro_queue_mbuf(lro, m0);
2016 			return (0); /* queued for sort, then LRO */
2017 		}
2018 		if (tcp_lro_rx(lro, m0, 0) == 0)
2019 			return (0); /* queued for LRO */
2020 	}
2021 #endif
2022 	ifp->if_input(ifp, m0);
2023 
2024 	return (0);
2025 }
2026 
2027 /*
2028  * Must drain the wrq or make sure that someone else will.
2029  */
2030 static void
2031 wrq_tx_drain(void *arg, int n)
2032 {
2033 	struct sge_wrq *wrq = arg;
2034 	struct sge_eq *eq = &wrq->eq;
2035 
2036 	EQ_LOCK(eq);
2037 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2038 		drain_wrq_wr_list(wrq->adapter, wrq);
2039 	EQ_UNLOCK(eq);
2040 }
2041 
2042 static void
2043 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2044 {
2045 	struct sge_eq *eq = &wrq->eq;
2046 	u_int available, dbdiff;	/* # of hardware descriptors */
2047 	u_int n;
2048 	struct wrqe *wr;
2049 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2050 
2051 	EQ_LOCK_ASSERT_OWNED(eq);
2052 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2053 	wr = STAILQ_FIRST(&wrq->wr_list);
2054 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2055 	MPASS(eq->pidx == eq->dbidx);
2056 	dbdiff = 0;
2057 
2058 	do {
2059 		eq->cidx = read_hw_cidx(eq);
2060 		if (eq->pidx == eq->cidx)
2061 			available = eq->sidx - 1;
2062 		else
2063 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2064 
2065 		MPASS(wr->wrq == wrq);
2066 		n = howmany(wr->wr_len, EQ_ESIZE);
2067 		if (available < n)
2068 			break;
2069 
2070 		dst = (void *)&eq->desc[eq->pidx];
2071 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2072 			/* Won't wrap, won't end exactly at the status page. */
2073 			bcopy(&wr->wr[0], dst, wr->wr_len);
2074 			eq->pidx += n;
2075 		} else {
2076 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2077 
2078 			bcopy(&wr->wr[0], dst, first_portion);
2079 			if (wr->wr_len > first_portion) {
2080 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2081 				    wr->wr_len - first_portion);
2082 			}
2083 			eq->pidx = n - (eq->sidx - eq->pidx);
2084 		}
2085 		wrq->tx_wrs_copied++;
2086 
2087 		if (available < eq->sidx / 4 &&
2088 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2089 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2090 			    F_FW_WR_EQUEQ);
2091 			eq->equeqidx = eq->pidx;
2092 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2093 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2094 			eq->equeqidx = eq->pidx;
2095 		}
2096 
2097 		dbdiff += n;
2098 		if (dbdiff >= 16) {
2099 			ring_eq_db(sc, eq, dbdiff);
2100 			dbdiff = 0;
2101 		}
2102 
2103 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2104 		free_wrqe(wr);
2105 		MPASS(wrq->nwr_pending > 0);
2106 		wrq->nwr_pending--;
2107 		MPASS(wrq->ndesc_needed >= n);
2108 		wrq->ndesc_needed -= n;
2109 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2110 
2111 	if (dbdiff)
2112 		ring_eq_db(sc, eq, dbdiff);
2113 }
2114 
2115 /*
2116  * Doesn't fail.  Holds on to work requests it can't send right away.
2117  */
2118 void
2119 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2120 {
2121 #ifdef INVARIANTS
2122 	struct sge_eq *eq = &wrq->eq;
2123 #endif
2124 
2125 	EQ_LOCK_ASSERT_OWNED(eq);
2126 	MPASS(wr != NULL);
2127 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2128 	MPASS((wr->wr_len & 0x7) == 0);
2129 
2130 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2131 	wrq->nwr_pending++;
2132 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2133 
2134 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2135 		return;	/* commit_wrq_wr will drain wr_list as well. */
2136 
2137 	drain_wrq_wr_list(sc, wrq);
2138 
2139 	/* Doorbell must have caught up to the pidx. */
2140 	MPASS(eq->pidx == eq->dbidx);
2141 }
2142 
2143 void
2144 t4_update_fl_bufsize(struct ifnet *ifp)
2145 {
2146 	struct vi_info *vi = ifp->if_softc;
2147 	struct adapter *sc = vi->pi->adapter;
2148 	struct sge_rxq *rxq;
2149 #ifdef TCP_OFFLOAD
2150 	struct sge_ofld_rxq *ofld_rxq;
2151 #endif
2152 	struct sge_fl *fl;
2153 	int i, maxp, mtu = ifp->if_mtu;
2154 
2155 	maxp = mtu_to_max_payload(sc, mtu, 0);
2156 	for_each_rxq(vi, i, rxq) {
2157 		fl = &rxq->fl;
2158 
2159 		FL_LOCK(fl);
2160 		find_best_refill_source(sc, fl, maxp);
2161 		FL_UNLOCK(fl);
2162 	}
2163 #ifdef TCP_OFFLOAD
2164 	maxp = mtu_to_max_payload(sc, mtu, 1);
2165 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2166 		fl = &ofld_rxq->fl;
2167 
2168 		FL_LOCK(fl);
2169 		find_best_refill_source(sc, fl, maxp);
2170 		FL_UNLOCK(fl);
2171 	}
2172 #endif
2173 }
2174 
2175 static inline int
2176 mbuf_nsegs(struct mbuf *m)
2177 {
2178 
2179 	M_ASSERTPKTHDR(m);
2180 	KASSERT(m->m_pkthdr.l5hlen > 0,
2181 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2182 
2183 	return (m->m_pkthdr.l5hlen);
2184 }
2185 
2186 static inline void
2187 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2188 {
2189 
2190 	M_ASSERTPKTHDR(m);
2191 	m->m_pkthdr.l5hlen = nsegs;
2192 }
2193 
2194 static inline int
2195 mbuf_len16(struct mbuf *m)
2196 {
2197 	int n;
2198 
2199 	M_ASSERTPKTHDR(m);
2200 	n = m->m_pkthdr.PH_loc.eight[0];
2201 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2202 
2203 	return (n);
2204 }
2205 
2206 static inline void
2207 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2208 {
2209 
2210 	M_ASSERTPKTHDR(m);
2211 	m->m_pkthdr.PH_loc.eight[0] = len16;
2212 }
2213 
2214 #ifdef RATELIMIT
2215 static inline int
2216 mbuf_eo_nsegs(struct mbuf *m)
2217 {
2218 
2219 	M_ASSERTPKTHDR(m);
2220 	return (m->m_pkthdr.PH_loc.eight[1]);
2221 }
2222 
2223 static inline void
2224 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2225 {
2226 
2227 	M_ASSERTPKTHDR(m);
2228 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2229 }
2230 
2231 static inline int
2232 mbuf_eo_len16(struct mbuf *m)
2233 {
2234 	int n;
2235 
2236 	M_ASSERTPKTHDR(m);
2237 	n = m->m_pkthdr.PH_loc.eight[2];
2238 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2239 
2240 	return (n);
2241 }
2242 
2243 static inline void
2244 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2245 {
2246 
2247 	M_ASSERTPKTHDR(m);
2248 	m->m_pkthdr.PH_loc.eight[2] = len16;
2249 }
2250 
2251 static inline int
2252 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2253 {
2254 
2255 	M_ASSERTPKTHDR(m);
2256 	return (m->m_pkthdr.PH_loc.eight[3]);
2257 }
2258 
2259 static inline void
2260 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2261 {
2262 
2263 	M_ASSERTPKTHDR(m);
2264 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2265 }
2266 
2267 static inline int
2268 needs_eo(struct mbuf *m)
2269 {
2270 
2271 	return (m->m_pkthdr.snd_tag != NULL);
2272 }
2273 #endif
2274 
2275 static inline int
2276 needs_tso(struct mbuf *m)
2277 {
2278 
2279 	M_ASSERTPKTHDR(m);
2280 
2281 	return (m->m_pkthdr.csum_flags & CSUM_TSO);
2282 }
2283 
2284 static inline int
2285 needs_l3_csum(struct mbuf *m)
2286 {
2287 
2288 	M_ASSERTPKTHDR(m);
2289 
2290 	return (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO));
2291 }
2292 
2293 static inline int
2294 needs_l4_csum(struct mbuf *m)
2295 {
2296 
2297 	M_ASSERTPKTHDR(m);
2298 
2299 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2300 	    CSUM_TCP_IPV6 | CSUM_TSO));
2301 }
2302 
2303 static inline int
2304 needs_tcp_csum(struct mbuf *m)
2305 {
2306 
2307 	M_ASSERTPKTHDR(m);
2308 	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_TCP_IPV6 | CSUM_TSO));
2309 }
2310 
2311 #ifdef RATELIMIT
2312 static inline int
2313 needs_udp_csum(struct mbuf *m)
2314 {
2315 
2316 	M_ASSERTPKTHDR(m);
2317 	return (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_UDP_IPV6));
2318 }
2319 #endif
2320 
2321 static inline int
2322 needs_vlan_insertion(struct mbuf *m)
2323 {
2324 
2325 	M_ASSERTPKTHDR(m);
2326 
2327 	return (m->m_flags & M_VLANTAG);
2328 }
2329 
2330 static void *
2331 m_advance(struct mbuf **pm, int *poffset, int len)
2332 {
2333 	struct mbuf *m = *pm;
2334 	int offset = *poffset;
2335 	uintptr_t p = 0;
2336 
2337 	MPASS(len > 0);
2338 
2339 	for (;;) {
2340 		if (offset + len < m->m_len) {
2341 			offset += len;
2342 			p = mtod(m, uintptr_t) + offset;
2343 			break;
2344 		}
2345 		len -= m->m_len - offset;
2346 		m = m->m_next;
2347 		offset = 0;
2348 		MPASS(m != NULL);
2349 	}
2350 	*poffset = offset;
2351 	*pm = m;
2352 	return ((void *)p);
2353 }
2354 
2355 /*
2356  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2357  * must have at least one mbuf that's not empty.  It is possible for this
2358  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2359  */
2360 static inline int
2361 count_mbuf_nsegs(struct mbuf *m, int skip)
2362 {
2363 	vm_paddr_t lastb, next;
2364 	vm_offset_t va;
2365 	int len, nsegs;
2366 
2367 	M_ASSERTPKTHDR(m);
2368 	MPASS(m->m_pkthdr.len > 0);
2369 	MPASS(m->m_pkthdr.len >= skip);
2370 
2371 	nsegs = 0;
2372 	lastb = 0;
2373 	for (; m; m = m->m_next) {
2374 
2375 		len = m->m_len;
2376 		if (__predict_false(len == 0))
2377 			continue;
2378 		if (skip >= len) {
2379 			skip -= len;
2380 			continue;
2381 		}
2382 		va = mtod(m, vm_offset_t) + skip;
2383 		len -= skip;
2384 		skip = 0;
2385 		next = pmap_kextract(va);
2386 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2387 		if (lastb + 1 == next)
2388 			nsegs--;
2389 		lastb = pmap_kextract(va + len - 1);
2390 	}
2391 
2392 	return (nsegs);
2393 }
2394 
2395 /*
2396  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2397  * a) caller can assume it's been freed if this function returns with an error.
2398  * b) it may get defragged up if the gather list is too long for the hardware.
2399  */
2400 int
2401 parse_pkt(struct adapter *sc, struct mbuf **mp)
2402 {
2403 	struct mbuf *m0 = *mp, *m;
2404 	int rc, nsegs, defragged = 0, offset;
2405 	struct ether_header *eh;
2406 	void *l3hdr;
2407 #if defined(INET) || defined(INET6)
2408 	struct tcphdr *tcp;
2409 #endif
2410 	uint16_t eh_type;
2411 
2412 	M_ASSERTPKTHDR(m0);
2413 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2414 		rc = EINVAL;
2415 fail:
2416 		m_freem(m0);
2417 		*mp = NULL;
2418 		return (rc);
2419 	}
2420 restart:
2421 	/*
2422 	 * First count the number of gather list segments in the payload.
2423 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2424 	 */
2425 	M_ASSERTPKTHDR(m0);
2426 	MPASS(m0->m_pkthdr.len > 0);
2427 	nsegs = count_mbuf_nsegs(m0, 0);
2428 	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2429 		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2430 			rc = EFBIG;
2431 			goto fail;
2432 		}
2433 		*mp = m0 = m;	/* update caller's copy after defrag */
2434 		goto restart;
2435 	}
2436 
2437 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
2438 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2439 		if (m0 == NULL) {
2440 			/* Should have left well enough alone. */
2441 			rc = EFBIG;
2442 			goto fail;
2443 		}
2444 		*mp = m0;	/* update caller's copy after pullup */
2445 		goto restart;
2446 	}
2447 	set_mbuf_nsegs(m0, nsegs);
2448 	if (sc->flags & IS_VF)
2449 		set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0)));
2450 	else
2451 		set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2452 
2453 #ifdef RATELIMIT
2454 	/*
2455 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2456 	 * checksumming is enabled.  needs_l4_csum happens to check for all the
2457 	 * right things.
2458 	 */
2459 	if (__predict_false(needs_eo(m0) && !needs_l4_csum(m0)))
2460 		m0->m_pkthdr.snd_tag = NULL;
2461 #endif
2462 
2463 	if (!needs_tso(m0) &&
2464 #ifdef RATELIMIT
2465 	    !needs_eo(m0) &&
2466 #endif
2467 	    !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0))))
2468 		return (0);
2469 
2470 	m = m0;
2471 	eh = mtod(m, struct ether_header *);
2472 	eh_type = ntohs(eh->ether_type);
2473 	if (eh_type == ETHERTYPE_VLAN) {
2474 		struct ether_vlan_header *evh = (void *)eh;
2475 
2476 		eh_type = ntohs(evh->evl_proto);
2477 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2478 	} else
2479 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2480 
2481 	offset = 0;
2482 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2483 
2484 	switch (eh_type) {
2485 #ifdef INET6
2486 	case ETHERTYPE_IPV6:
2487 	{
2488 		struct ip6_hdr *ip6 = l3hdr;
2489 
2490 		MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP);
2491 
2492 		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2493 		break;
2494 	}
2495 #endif
2496 #ifdef INET
2497 	case ETHERTYPE_IP:
2498 	{
2499 		struct ip *ip = l3hdr;
2500 
2501 		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2502 		break;
2503 	}
2504 #endif
2505 	default:
2506 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2507 		    " with the same INET/INET6 options as the kernel.",
2508 		    __func__, eh_type);
2509 	}
2510 
2511 #if defined(INET) || defined(INET6)
2512 	if (needs_tcp_csum(m0)) {
2513 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2514 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2515 #ifdef RATELIMIT
2516 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2517 			set_mbuf_eo_tsclk_tsoff(m0,
2518 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2519 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2520 		} else
2521 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2522 	} else if (needs_udp_csum(m)) {
2523 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2524 #endif
2525 	}
2526 #ifdef RATELIMIT
2527 	if (needs_eo(m0)) {
2528 		u_int immhdrs;
2529 
2530 		/* EO WRs have the headers in the WR and not the GL. */
2531 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2532 		    m0->m_pkthdr.l4hlen;
2533 		nsegs = count_mbuf_nsegs(m0, immhdrs);
2534 		set_mbuf_eo_nsegs(m0, nsegs);
2535 		set_mbuf_eo_len16(m0,
2536 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2537 	}
2538 #endif
2539 #endif
2540 	MPASS(m0 == *mp);
2541 	return (0);
2542 }
2543 
2544 void *
2545 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2546 {
2547 	struct sge_eq *eq = &wrq->eq;
2548 	struct adapter *sc = wrq->adapter;
2549 	int ndesc, available;
2550 	struct wrqe *wr;
2551 	void *w;
2552 
2553 	MPASS(len16 > 0);
2554 	ndesc = howmany(len16, EQ_ESIZE / 16);
2555 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2556 
2557 	EQ_LOCK(eq);
2558 
2559 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2560 		drain_wrq_wr_list(sc, wrq);
2561 
2562 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2563 slowpath:
2564 		EQ_UNLOCK(eq);
2565 		wr = alloc_wrqe(len16 * 16, wrq);
2566 		if (__predict_false(wr == NULL))
2567 			return (NULL);
2568 		cookie->pidx = -1;
2569 		cookie->ndesc = ndesc;
2570 		return (&wr->wr);
2571 	}
2572 
2573 	eq->cidx = read_hw_cidx(eq);
2574 	if (eq->pidx == eq->cidx)
2575 		available = eq->sidx - 1;
2576 	else
2577 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2578 	if (available < ndesc)
2579 		goto slowpath;
2580 
2581 	cookie->pidx = eq->pidx;
2582 	cookie->ndesc = ndesc;
2583 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2584 
2585 	w = &eq->desc[eq->pidx];
2586 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2587 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2588 		w = &wrq->ss[0];
2589 		wrq->ss_pidx = cookie->pidx;
2590 		wrq->ss_len = len16 * 16;
2591 	}
2592 
2593 	EQ_UNLOCK(eq);
2594 
2595 	return (w);
2596 }
2597 
2598 void
2599 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2600 {
2601 	struct sge_eq *eq = &wrq->eq;
2602 	struct adapter *sc = wrq->adapter;
2603 	int ndesc, pidx;
2604 	struct wrq_cookie *prev, *next;
2605 
2606 	if (cookie->pidx == -1) {
2607 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2608 
2609 		t4_wrq_tx(sc, wr);
2610 		return;
2611 	}
2612 
2613 	if (__predict_false(w == &wrq->ss[0])) {
2614 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2615 
2616 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2617 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2618 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2619 		wrq->tx_wrs_ss++;
2620 	} else
2621 		wrq->tx_wrs_direct++;
2622 
2623 	EQ_LOCK(eq);
2624 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2625 	pidx = cookie->pidx;
2626 	MPASS(pidx >= 0 && pidx < eq->sidx);
2627 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2628 	next = TAILQ_NEXT(cookie, link);
2629 	if (prev == NULL) {
2630 		MPASS(pidx == eq->dbidx);
2631 		if (next == NULL || ndesc >= 16) {
2632 			int available;
2633 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2634 
2635 			/*
2636 			 * Note that the WR via which we'll request tx updates
2637 			 * is at pidx and not eq->pidx, which has moved on
2638 			 * already.
2639 			 */
2640 			dst = (void *)&eq->desc[pidx];
2641 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2642 			if (available < eq->sidx / 4 &&
2643 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2644 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2645 				    F_FW_WR_EQUEQ);
2646 				eq->equeqidx = pidx;
2647 			} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2648 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2649 				eq->equeqidx = pidx;
2650 			}
2651 
2652 			ring_eq_db(wrq->adapter, eq, ndesc);
2653 		} else {
2654 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2655 			next->pidx = pidx;
2656 			next->ndesc += ndesc;
2657 		}
2658 	} else {
2659 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2660 		prev->ndesc += ndesc;
2661 	}
2662 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2663 
2664 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2665 		drain_wrq_wr_list(sc, wrq);
2666 
2667 #ifdef INVARIANTS
2668 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2669 		/* Doorbell must have caught up to the pidx. */
2670 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2671 	}
2672 #endif
2673 	EQ_UNLOCK(eq);
2674 }
2675 
2676 static u_int
2677 can_resume_eth_tx(struct mp_ring *r)
2678 {
2679 	struct sge_eq *eq = r->cookie;
2680 
2681 	return (total_available_tx_desc(eq) > eq->sidx / 8);
2682 }
2683 
2684 static inline int
2685 cannot_use_txpkts(struct mbuf *m)
2686 {
2687 	/* maybe put a GL limit too, to avoid silliness? */
2688 
2689 	return (needs_tso(m));
2690 }
2691 
2692 static inline int
2693 discard_tx(struct sge_eq *eq)
2694 {
2695 
2696 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
2697 }
2698 
2699 /*
2700  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2701  * be consumed.  Return the actual number consumed.  0 indicates a stall.
2702  */
2703 static u_int
2704 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2705 {
2706 	struct sge_txq *txq = r->cookie;
2707 	struct sge_eq *eq = &txq->eq;
2708 	struct ifnet *ifp = txq->ifp;
2709 	struct vi_info *vi = ifp->if_softc;
2710 	struct port_info *pi = vi->pi;
2711 	struct adapter *sc = pi->adapter;
2712 	u_int total, remaining;		/* # of packets */
2713 	u_int available, dbdiff;	/* # of hardware descriptors */
2714 	u_int n, next_cidx;
2715 	struct mbuf *m0, *tail;
2716 	struct txpkts txp;
2717 	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2718 
2719 	remaining = IDXDIFF(pidx, cidx, r->size);
2720 	MPASS(remaining > 0);	/* Must not be called without work to do. */
2721 	total = 0;
2722 
2723 	TXQ_LOCK(txq);
2724 	if (__predict_false(discard_tx(eq))) {
2725 		while (cidx != pidx) {
2726 			m0 = r->items[cidx];
2727 			m_freem(m0);
2728 			if (++cidx == r->size)
2729 				cidx = 0;
2730 		}
2731 		reclaim_tx_descs(txq, 2048);
2732 		total = remaining;
2733 		goto done;
2734 	}
2735 
2736 	/* How many hardware descriptors do we have readily available. */
2737 	if (eq->pidx == eq->cidx)
2738 		available = eq->sidx - 1;
2739 	else
2740 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2741 	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2742 
2743 	while (remaining > 0) {
2744 
2745 		m0 = r->items[cidx];
2746 		M_ASSERTPKTHDR(m0);
2747 		MPASS(m0->m_nextpkt == NULL);
2748 
2749 		if (available < SGE_MAX_WR_NDESC) {
2750 			available += reclaim_tx_descs(txq, 64);
2751 			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2752 				break;	/* out of descriptors */
2753 		}
2754 
2755 		next_cidx = cidx + 1;
2756 		if (__predict_false(next_cidx == r->size))
2757 			next_cidx = 0;
2758 
2759 		wr = (void *)&eq->desc[eq->pidx];
2760 		if (sc->flags & IS_VF) {
2761 			total++;
2762 			remaining--;
2763 			ETHER_BPF_MTAP(ifp, m0);
2764 			n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0,
2765 			    available);
2766 		} else if (remaining > 1 &&
2767 		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2768 
2769 			/* pkts at cidx, next_cidx should both be in txp. */
2770 			MPASS(txp.npkt == 2);
2771 			tail = r->items[next_cidx];
2772 			MPASS(tail->m_nextpkt == NULL);
2773 			ETHER_BPF_MTAP(ifp, m0);
2774 			ETHER_BPF_MTAP(ifp, tail);
2775 			m0->m_nextpkt = tail;
2776 
2777 			if (__predict_false(++next_cidx == r->size))
2778 				next_cidx = 0;
2779 
2780 			while (next_cidx != pidx) {
2781 				if (add_to_txpkts(r->items[next_cidx], &txp,
2782 				    available) != 0)
2783 					break;
2784 				tail->m_nextpkt = r->items[next_cidx];
2785 				tail = tail->m_nextpkt;
2786 				ETHER_BPF_MTAP(ifp, tail);
2787 				if (__predict_false(++next_cidx == r->size))
2788 					next_cidx = 0;
2789 			}
2790 
2791 			n = write_txpkts_wr(txq, wr, m0, &txp, available);
2792 			total += txp.npkt;
2793 			remaining -= txp.npkt;
2794 		} else {
2795 			total++;
2796 			remaining--;
2797 			ETHER_BPF_MTAP(ifp, m0);
2798 			n = write_txpkt_wr(txq, (void *)wr, m0, available);
2799 		}
2800 		MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
2801 
2802 		available -= n;
2803 		dbdiff += n;
2804 		IDXINCR(eq->pidx, n, eq->sidx);
2805 
2806 		if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2807 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2808 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2809 			    F_FW_WR_EQUEQ);
2810 			eq->equeqidx = eq->pidx;
2811 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2812 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2813 			eq->equeqidx = eq->pidx;
2814 		}
2815 
2816 		if (dbdiff >= 16 && remaining >= 4) {
2817 			ring_eq_db(sc, eq, dbdiff);
2818 			available += reclaim_tx_descs(txq, 4 * dbdiff);
2819 			dbdiff = 0;
2820 		}
2821 
2822 		cidx = next_cidx;
2823 	}
2824 	if (dbdiff != 0) {
2825 		ring_eq_db(sc, eq, dbdiff);
2826 		reclaim_tx_descs(txq, 32);
2827 	}
2828 done:
2829 	TXQ_UNLOCK(txq);
2830 
2831 	return (total);
2832 }
2833 
2834 static inline void
2835 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2836     int qsize)
2837 {
2838 
2839 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2840 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2841 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2842 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2843 
2844 	iq->flags = 0;
2845 	iq->adapter = sc;
2846 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2847 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2848 	if (pktc_idx >= 0) {
2849 		iq->intr_params |= F_QINTR_CNT_EN;
2850 		iq->intr_pktc_idx = pktc_idx;
2851 	}
2852 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2853 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
2854 }
2855 
2856 static inline void
2857 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
2858 {
2859 
2860 	fl->qsize = qsize;
2861 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2862 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2863 	if (sc->flags & BUF_PACKING_OK &&
2864 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
2865 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
2866 		fl->flags |= FL_BUF_PACKING;
2867 	find_best_refill_source(sc, fl, maxp);
2868 	find_safe_refill_source(sc, fl);
2869 }
2870 
2871 static inline void
2872 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
2873     uint8_t tx_chan, uint16_t iqid, char *name)
2874 {
2875 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2876 
2877 	eq->flags = eqtype & EQ_TYPEMASK;
2878 	eq->tx_chan = tx_chan;
2879 	eq->iqid = iqid;
2880 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2881 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2882 }
2883 
2884 static int
2885 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2886     bus_dmamap_t *map, bus_addr_t *pa, void **va)
2887 {
2888 	int rc;
2889 
2890 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2891 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2892 	if (rc != 0) {
2893 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2894 		goto done;
2895 	}
2896 
2897 	rc = bus_dmamem_alloc(*tag, va,
2898 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2899 	if (rc != 0) {
2900 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2901 		goto done;
2902 	}
2903 
2904 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2905 	if (rc != 0) {
2906 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2907 		goto done;
2908 	}
2909 done:
2910 	if (rc)
2911 		free_ring(sc, *tag, *map, *pa, *va);
2912 
2913 	return (rc);
2914 }
2915 
2916 static int
2917 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2918     bus_addr_t pa, void *va)
2919 {
2920 	if (pa)
2921 		bus_dmamap_unload(tag, map);
2922 	if (va)
2923 		bus_dmamem_free(tag, va, map);
2924 	if (tag)
2925 		bus_dma_tag_destroy(tag);
2926 
2927 	return (0);
2928 }
2929 
2930 /*
2931  * Allocates the ring for an ingress queue and an optional freelist.  If the
2932  * freelist is specified it will be allocated and then associated with the
2933  * ingress queue.
2934  *
2935  * Returns errno on failure.  Resources allocated up to that point may still be
2936  * allocated.  Caller is responsible for cleanup in case this function fails.
2937  *
2938  * If the ingress queue will take interrupts directly then the intr_idx
2939  * specifies the vector, starting from 0.  -1 means the interrupts for this
2940  * queue should be forwarded to the fwq.
2941  */
2942 static int
2943 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
2944     int intr_idx, int cong)
2945 {
2946 	int rc, i, cntxt_id;
2947 	size_t len;
2948 	struct fw_iq_cmd c;
2949 	struct port_info *pi = vi->pi;
2950 	struct adapter *sc = iq->adapter;
2951 	struct sge_params *sp = &sc->params.sge;
2952 	__be32 v = 0;
2953 
2954 	len = iq->qsize * IQ_ESIZE;
2955 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2956 	    (void **)&iq->desc);
2957 	if (rc != 0)
2958 		return (rc);
2959 
2960 	bzero(&c, sizeof(c));
2961 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2962 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2963 	    V_FW_IQ_CMD_VFN(0));
2964 
2965 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2966 	    FW_LEN16(c));
2967 
2968 	/* Special handling for firmware event queue */
2969 	if (iq == &sc->sge.fwq)
2970 		v |= F_FW_IQ_CMD_IQASYNCH;
2971 
2972 	if (intr_idx < 0) {
2973 		/* Forwarded interrupts, all headed to fwq */
2974 		v |= F_FW_IQ_CMD_IQANDST;
2975 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
2976 	} else {
2977 		KASSERT(intr_idx < sc->intr_count,
2978 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2979 		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2980 	}
2981 
2982 	c.type_to_iqandstindex = htobe32(v |
2983 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2984 	    V_FW_IQ_CMD_VIID(vi->viid) |
2985 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2986 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2987 	    F_FW_IQ_CMD_IQGTSMODE |
2988 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2989 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2990 	c.iqsize = htobe16(iq->qsize);
2991 	c.iqaddr = htobe64(iq->ba);
2992 	if (cong >= 0)
2993 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2994 
2995 	if (fl) {
2996 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2997 
2998 		len = fl->qsize * EQ_ESIZE;
2999 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3000 		    &fl->ba, (void **)&fl->desc);
3001 		if (rc)
3002 			return (rc);
3003 
3004 		/* Allocate space for one software descriptor per buffer. */
3005 		rc = alloc_fl_sdesc(fl);
3006 		if (rc != 0) {
3007 			device_printf(sc->dev,
3008 			    "failed to setup fl software descriptors: %d\n",
3009 			    rc);
3010 			return (rc);
3011 		}
3012 
3013 		if (fl->flags & FL_BUF_PACKING) {
3014 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3015 			fl->buf_boundary = sp->pack_boundary;
3016 		} else {
3017 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3018 			fl->buf_boundary = 16;
3019 		}
3020 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3021 			fl->buf_boundary = sp->pad_boundary;
3022 
3023 		c.iqns_to_fl0congen |=
3024 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3025 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3026 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3027 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3028 			    0));
3029 		if (cong >= 0) {
3030 			c.iqns_to_fl0congen |=
3031 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
3032 				    F_FW_IQ_CMD_FL0CONGCIF |
3033 				    F_FW_IQ_CMD_FL0CONGEN);
3034 		}
3035 		c.fl0dcaen_to_fl0cidxfthresh =
3036 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3037 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) |
3038 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3039 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3040 		c.fl0size = htobe16(fl->qsize);
3041 		c.fl0addr = htobe64(fl->ba);
3042 	}
3043 
3044 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3045 	if (rc != 0) {
3046 		device_printf(sc->dev,
3047 		    "failed to create ingress queue: %d\n", rc);
3048 		return (rc);
3049 	}
3050 
3051 	iq->cidx = 0;
3052 	iq->gen = F_RSPD_GEN;
3053 	iq->intr_next = iq->intr_params;
3054 	iq->cntxt_id = be16toh(c.iqid);
3055 	iq->abs_id = be16toh(c.physiqid);
3056 	iq->flags |= IQ_ALLOCATED;
3057 
3058 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3059 	if (cntxt_id >= sc->sge.niq) {
3060 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3061 		    cntxt_id, sc->sge.niq - 1);
3062 	}
3063 	sc->sge.iqmap[cntxt_id] = iq;
3064 
3065 	if (fl) {
3066 		u_int qid;
3067 
3068 		iq->flags |= IQ_HAS_FL;
3069 		fl->cntxt_id = be16toh(c.fl0id);
3070 		fl->pidx = fl->cidx = 0;
3071 
3072 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3073 		if (cntxt_id >= sc->sge.neq) {
3074 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3075 			    __func__, cntxt_id, sc->sge.neq - 1);
3076 		}
3077 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3078 
3079 		qid = fl->cntxt_id;
3080 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3081 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3082 			uint32_t mask = (1 << s_qpp) - 1;
3083 			volatile uint8_t *udb;
3084 
3085 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3086 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3087 			qid &= mask;
3088 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3089 				udb += qid << UDBS_SEG_SHIFT;
3090 				qid = 0;
3091 			}
3092 			fl->udb = (volatile void *)udb;
3093 		}
3094 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3095 
3096 		FL_LOCK(fl);
3097 		/* Enough to make sure the SGE doesn't think it's starved */
3098 		refill_fl(sc, fl, fl->lowat);
3099 		FL_UNLOCK(fl);
3100 	}
3101 
3102 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) {
3103 		uint32_t param, val;
3104 
3105 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3106 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3107 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
3108 		if (cong == 0)
3109 			val = 1 << 19;
3110 		else {
3111 			val = 2 << 19;
3112 			for (i = 0; i < 4; i++) {
3113 				if (cong & (1 << i))
3114 					val |= 1 << (i << 2);
3115 			}
3116 		}
3117 
3118 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3119 		if (rc != 0) {
3120 			/* report error but carry on */
3121 			device_printf(sc->dev,
3122 			    "failed to set congestion manager context for "
3123 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
3124 		}
3125 	}
3126 
3127 	/* Enable IQ interrupts */
3128 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3129 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3130 	    V_INGRESSQID(iq->cntxt_id));
3131 
3132 	return (0);
3133 }
3134 
3135 static int
3136 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3137 {
3138 	int rc;
3139 	struct adapter *sc = iq->adapter;
3140 	device_t dev;
3141 
3142 	if (sc == NULL)
3143 		return (0);	/* nothing to do */
3144 
3145 	dev = vi ? vi->dev : sc->dev;
3146 
3147 	if (iq->flags & IQ_ALLOCATED) {
3148 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
3149 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
3150 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
3151 		if (rc != 0) {
3152 			device_printf(dev,
3153 			    "failed to free queue %p: %d\n", iq, rc);
3154 			return (rc);
3155 		}
3156 		iq->flags &= ~IQ_ALLOCATED;
3157 	}
3158 
3159 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3160 
3161 	bzero(iq, sizeof(*iq));
3162 
3163 	if (fl) {
3164 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
3165 		    fl->desc);
3166 
3167 		if (fl->sdesc)
3168 			free_fl_sdesc(sc, fl);
3169 
3170 		if (mtx_initialized(&fl->fl_lock))
3171 			mtx_destroy(&fl->fl_lock);
3172 
3173 		bzero(fl, sizeof(*fl));
3174 	}
3175 
3176 	return (0);
3177 }
3178 
3179 static void
3180 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3181     struct sge_iq *iq)
3182 {
3183 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3184 
3185 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3186 	    "bus address of descriptor ring");
3187 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3188 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3189 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3190 	    CTLTYPE_INT | CTLFLAG_RD, &iq->abs_id, 0, sysctl_uint16, "I",
3191 	    "absolute id of the queue");
3192 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3193 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cntxt_id, 0, sysctl_uint16, "I",
3194 	    "SGE context id of the queue");
3195 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3196 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cidx, 0, sysctl_uint16, "I",
3197 	    "consumer index");
3198 }
3199 
3200 static void
3201 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3202     struct sysctl_oid *oid, struct sge_fl *fl)
3203 {
3204 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3205 
3206 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3207 	    "freelist");
3208 	children = SYSCTL_CHILDREN(oid);
3209 
3210 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3211 	    &fl->ba, "bus address of descriptor ring");
3212 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3213 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3214 	    "desc ring size in bytes");
3215 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3216 	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
3217 	    "SGE context id of the freelist");
3218 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3219 	    fl_pad ? 1 : 0, "padding enabled");
3220 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3221 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3222 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3223 	    0, "consumer index");
3224 	if (fl->flags & FL_BUF_PACKING) {
3225 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3226 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3227 	}
3228 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3229 	    0, "producer index");
3230 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
3231 	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
3232 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
3233 	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
3234 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3235 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3236 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3237 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3238 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3239 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3240 }
3241 
3242 static int
3243 alloc_fwq(struct adapter *sc)
3244 {
3245 	int rc, intr_idx;
3246 	struct sge_iq *fwq = &sc->sge.fwq;
3247 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
3248 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3249 
3250 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
3251 	if (sc->flags & IS_VF)
3252 		intr_idx = 0;
3253 	else
3254 		intr_idx = sc->intr_count > 1 ? 1 : 0;
3255 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
3256 	if (rc != 0) {
3257 		device_printf(sc->dev,
3258 		    "failed to create firmware event queue: %d\n", rc);
3259 		return (rc);
3260 	}
3261 
3262 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
3263 	    NULL, "firmware event queue");
3264 	add_iq_sysctls(&sc->ctx, oid, fwq);
3265 
3266 	return (0);
3267 }
3268 
3269 static int
3270 free_fwq(struct adapter *sc)
3271 {
3272 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
3273 }
3274 
3275 static int
3276 alloc_ctrlq(struct adapter *sc, struct sge_wrq *ctrlq, int idx,
3277     struct sysctl_oid *oid)
3278 {
3279 	int rc;
3280 	char name[16];
3281 	struct sysctl_oid_list *children;
3282 
3283 	snprintf(name, sizeof(name), "%s ctrlq%d", device_get_nameunit(sc->dev),
3284 	    idx);
3285 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[idx]->tx_chan,
3286 	    sc->sge.fwq.cntxt_id, name);
3287 
3288 	children = SYSCTL_CHILDREN(oid);
3289 	snprintf(name, sizeof(name), "%d", idx);
3290 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3291 	    NULL, "ctrl queue");
3292 	rc = alloc_wrq(sc, NULL, ctrlq, oid);
3293 
3294 	return (rc);
3295 }
3296 
3297 int
3298 tnl_cong(struct port_info *pi, int drop)
3299 {
3300 
3301 	if (drop == -1)
3302 		return (-1);
3303 	else if (drop == 1)
3304 		return (0);
3305 	else
3306 		return (pi->rx_e_chan_map);
3307 }
3308 
3309 static int
3310 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
3311     struct sysctl_oid *oid)
3312 {
3313 	int rc;
3314 	struct adapter *sc = vi->pi->adapter;
3315 	struct sysctl_oid_list *children;
3316 	char name[16];
3317 
3318 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
3319 	    tnl_cong(vi->pi, cong_drop));
3320 	if (rc != 0)
3321 		return (rc);
3322 
3323 	if (idx == 0)
3324 		sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3325 	else
3326 		KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3327 		    ("iq_base mismatch"));
3328 	KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3329 	    ("PF with non-zero iq_base"));
3330 
3331 	/*
3332 	 * The freelist is just barely above the starvation threshold right now,
3333 	 * fill it up a bit more.
3334 	 */
3335 	FL_LOCK(&rxq->fl);
3336 	refill_fl(sc, &rxq->fl, 128);
3337 	FL_UNLOCK(&rxq->fl);
3338 
3339 #if defined(INET) || defined(INET6)
3340 	rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs);
3341 	if (rc != 0)
3342 		return (rc);
3343 	MPASS(rxq->lro.ifp == vi->ifp);	/* also indicates LRO init'ed */
3344 
3345 	if (vi->ifp->if_capenable & IFCAP_LRO)
3346 		rxq->iq.flags |= IQ_LRO_ENABLED;
3347 #endif
3348 	rxq->ifp = vi->ifp;
3349 
3350 	children = SYSCTL_CHILDREN(oid);
3351 
3352 	snprintf(name, sizeof(name), "%d", idx);
3353 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3354 	    NULL, "rx queue");
3355 	children = SYSCTL_CHILDREN(oid);
3356 
3357 	add_iq_sysctls(&vi->ctx, oid, &rxq->iq);
3358 #if defined(INET) || defined(INET6)
3359 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3360 	    &rxq->lro.lro_queued, 0, NULL);
3361 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3362 	    &rxq->lro.lro_flushed, 0, NULL);
3363 #endif
3364 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3365 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3366 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3367 	    CTLFLAG_RD, &rxq->vlan_extraction,
3368 	    "# of times hardware extracted 802.1Q tag");
3369 
3370 	add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl);
3371 
3372 	return (rc);
3373 }
3374 
3375 static int
3376 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3377 {
3378 	int rc;
3379 
3380 #if defined(INET) || defined(INET6)
3381 	if (rxq->lro.ifp) {
3382 		tcp_lro_free(&rxq->lro);
3383 		rxq->lro.ifp = NULL;
3384 	}
3385 #endif
3386 
3387 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3388 	if (rc == 0)
3389 		bzero(rxq, sizeof(*rxq));
3390 
3391 	return (rc);
3392 }
3393 
3394 #ifdef TCP_OFFLOAD
3395 static int
3396 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3397     int intr_idx, int idx, struct sysctl_oid *oid)
3398 {
3399 	struct port_info *pi = vi->pi;
3400 	int rc;
3401 	struct sysctl_oid_list *children;
3402 	char name[16];
3403 
3404 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0);
3405 	if (rc != 0)
3406 		return (rc);
3407 
3408 	children = SYSCTL_CHILDREN(oid);
3409 
3410 	snprintf(name, sizeof(name), "%d", idx);
3411 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3412 	    NULL, "rx queue");
3413 	add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq);
3414 	add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl);
3415 
3416 	return (rc);
3417 }
3418 
3419 static int
3420 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3421 {
3422 	int rc;
3423 
3424 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3425 	if (rc == 0)
3426 		bzero(ofld_rxq, sizeof(*ofld_rxq));
3427 
3428 	return (rc);
3429 }
3430 #endif
3431 
3432 #ifdef DEV_NETMAP
3433 static int
3434 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3435     int idx, struct sysctl_oid *oid)
3436 {
3437 	int rc;
3438 	struct sysctl_oid_list *children;
3439 	struct sysctl_ctx_list *ctx;
3440 	char name[16];
3441 	size_t len;
3442 	struct adapter *sc = vi->pi->adapter;
3443 	struct netmap_adapter *na = NA(vi->ifp);
3444 
3445 	MPASS(na != NULL);
3446 
3447 	len = vi->qsize_rxq * IQ_ESIZE;
3448 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3449 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3450 	if (rc != 0)
3451 		return (rc);
3452 
3453 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3454 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3455 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3456 	if (rc != 0)
3457 		return (rc);
3458 
3459 	nm_rxq->vi = vi;
3460 	nm_rxq->nid = idx;
3461 	nm_rxq->iq_cidx = 0;
3462 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3463 	nm_rxq->iq_gen = F_RSPD_GEN;
3464 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3465 	nm_rxq->fl_sidx = na->num_rx_desc;
3466 	nm_rxq->intr_idx = intr_idx;
3467 	nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID;
3468 
3469 	ctx = &vi->ctx;
3470 	children = SYSCTL_CHILDREN(oid);
3471 
3472 	snprintf(name, sizeof(name), "%d", idx);
3473 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3474 	    "rx queue");
3475 	children = SYSCTL_CHILDREN(oid);
3476 
3477 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3478 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3479 	    "I", "absolute id of the queue");
3480 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3481 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3482 	    "I", "SGE context id of the queue");
3483 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3484 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3485 	    "consumer index");
3486 
3487 	children = SYSCTL_CHILDREN(oid);
3488 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3489 	    "freelist");
3490 	children = SYSCTL_CHILDREN(oid);
3491 
3492 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3493 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3494 	    "I", "SGE context id of the freelist");
3495 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3496 	    &nm_rxq->fl_cidx, 0, "consumer index");
3497 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3498 	    &nm_rxq->fl_pidx, 0, "producer index");
3499 
3500 	return (rc);
3501 }
3502 
3503 
3504 static int
3505 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3506 {
3507 	struct adapter *sc = vi->pi->adapter;
3508 
3509 	if (vi->flags & VI_INIT_DONE)
3510 		MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID);
3511 	else
3512 		MPASS(nm_rxq->iq_cntxt_id == 0);
3513 
3514 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3515 	    nm_rxq->iq_desc);
3516 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3517 	    nm_rxq->fl_desc);
3518 
3519 	return (0);
3520 }
3521 
3522 static int
3523 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3524     struct sysctl_oid *oid)
3525 {
3526 	int rc;
3527 	size_t len;
3528 	struct port_info *pi = vi->pi;
3529 	struct adapter *sc = pi->adapter;
3530 	struct netmap_adapter *na = NA(vi->ifp);
3531 	char name[16];
3532 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3533 
3534 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3535 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3536 	    &nm_txq->ba, (void **)&nm_txq->desc);
3537 	if (rc)
3538 		return (rc);
3539 
3540 	nm_txq->pidx = nm_txq->cidx = 0;
3541 	nm_txq->sidx = na->num_tx_desc;
3542 	nm_txq->nid = idx;
3543 	nm_txq->iqidx = iqidx;
3544 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3545 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) |
3546 	    V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) |
3547 	    V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid)));
3548 	nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID;
3549 
3550 	snprintf(name, sizeof(name), "%d", idx);
3551 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3552 	    NULL, "netmap tx queue");
3553 	children = SYSCTL_CHILDREN(oid);
3554 
3555 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3556 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3557 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3558 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3559 	    "consumer index");
3560 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3561 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3562 	    "producer index");
3563 
3564 	return (rc);
3565 }
3566 
3567 static int
3568 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3569 {
3570 	struct adapter *sc = vi->pi->adapter;
3571 
3572 	if (vi->flags & VI_INIT_DONE)
3573 		MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID);
3574 	else
3575 		MPASS(nm_txq->cntxt_id == 0);
3576 
3577 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3578 	    nm_txq->desc);
3579 
3580 	return (0);
3581 }
3582 #endif
3583 
3584 static int
3585 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3586 {
3587 	int rc, cntxt_id;
3588 	struct fw_eq_ctrl_cmd c;
3589 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3590 
3591 	bzero(&c, sizeof(c));
3592 
3593 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3594 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3595 	    V_FW_EQ_CTRL_CMD_VFN(0));
3596 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3597 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3598 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3599 	c.physeqid_pkd = htobe32(0);
3600 	c.fetchszm_to_iqid =
3601 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3602 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3603 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3604 	c.dcaen_to_eqsize =
3605 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3606 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3607 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
3608 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3609 	c.eqaddr = htobe64(eq->ba);
3610 
3611 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3612 	if (rc != 0) {
3613 		device_printf(sc->dev,
3614 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3615 		return (rc);
3616 	}
3617 	eq->flags |= EQ_ALLOCATED;
3618 
3619 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3620 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3621 	if (cntxt_id >= sc->sge.neq)
3622 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3623 		cntxt_id, sc->sge.neq - 1);
3624 	sc->sge.eqmap[cntxt_id] = eq;
3625 
3626 	return (rc);
3627 }
3628 
3629 static int
3630 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3631 {
3632 	int rc, cntxt_id;
3633 	struct fw_eq_eth_cmd c;
3634 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3635 
3636 	bzero(&c, sizeof(c));
3637 
3638 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3639 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3640 	    V_FW_EQ_ETH_CMD_VFN(0));
3641 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3642 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3643 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3644 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3645 	c.fetchszm_to_iqid =
3646 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3647 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3648 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3649 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3650 	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3651 	    V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3652 	c.eqaddr = htobe64(eq->ba);
3653 
3654 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3655 	if (rc != 0) {
3656 		device_printf(vi->dev,
3657 		    "failed to create Ethernet egress queue: %d\n", rc);
3658 		return (rc);
3659 	}
3660 	eq->flags |= EQ_ALLOCATED;
3661 
3662 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3663 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
3664 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3665 	if (cntxt_id >= sc->sge.neq)
3666 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3667 		cntxt_id, sc->sge.neq - 1);
3668 	sc->sge.eqmap[cntxt_id] = eq;
3669 
3670 	return (rc);
3671 }
3672 
3673 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3674 static int
3675 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3676 {
3677 	int rc, cntxt_id;
3678 	struct fw_eq_ofld_cmd c;
3679 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3680 
3681 	bzero(&c, sizeof(c));
3682 
3683 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3684 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3685 	    V_FW_EQ_OFLD_CMD_VFN(0));
3686 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3687 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3688 	c.fetchszm_to_iqid =
3689 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3690 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3691 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3692 	c.dcaen_to_eqsize =
3693 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3694 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3695 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3696 	c.eqaddr = htobe64(eq->ba);
3697 
3698 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3699 	if (rc != 0) {
3700 		device_printf(vi->dev,
3701 		    "failed to create egress queue for TCP offload: %d\n", rc);
3702 		return (rc);
3703 	}
3704 	eq->flags |= EQ_ALLOCATED;
3705 
3706 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3707 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3708 	if (cntxt_id >= sc->sge.neq)
3709 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3710 		cntxt_id, sc->sge.neq - 1);
3711 	sc->sge.eqmap[cntxt_id] = eq;
3712 
3713 	return (rc);
3714 }
3715 #endif
3716 
3717 static int
3718 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3719 {
3720 	int rc, qsize;
3721 	size_t len;
3722 
3723 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3724 
3725 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3726 	len = qsize * EQ_ESIZE;
3727 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3728 	    &eq->ba, (void **)&eq->desc);
3729 	if (rc)
3730 		return (rc);
3731 
3732 	eq->pidx = eq->cidx = 0;
3733 	eq->equeqidx = eq->dbidx = 0;
3734 	eq->doorbells = sc->doorbells;
3735 
3736 	switch (eq->flags & EQ_TYPEMASK) {
3737 	case EQ_CTRL:
3738 		rc = ctrl_eq_alloc(sc, eq);
3739 		break;
3740 
3741 	case EQ_ETH:
3742 		rc = eth_eq_alloc(sc, vi, eq);
3743 		break;
3744 
3745 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3746 	case EQ_OFLD:
3747 		rc = ofld_eq_alloc(sc, vi, eq);
3748 		break;
3749 #endif
3750 
3751 	default:
3752 		panic("%s: invalid eq type %d.", __func__,
3753 		    eq->flags & EQ_TYPEMASK);
3754 	}
3755 	if (rc != 0) {
3756 		device_printf(sc->dev,
3757 		    "failed to allocate egress queue(%d): %d\n",
3758 		    eq->flags & EQ_TYPEMASK, rc);
3759 	}
3760 
3761 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3762 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3763 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3764 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3765 		uint32_t mask = (1 << s_qpp) - 1;
3766 		volatile uint8_t *udb;
3767 
3768 		udb = sc->udbs_base + UDBS_DB_OFFSET;
3769 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3770 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3771 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3772 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3773 		else {
3774 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3775 			eq->udb_qid = 0;
3776 		}
3777 		eq->udb = (volatile void *)udb;
3778 	}
3779 
3780 	return (rc);
3781 }
3782 
3783 static int
3784 free_eq(struct adapter *sc, struct sge_eq *eq)
3785 {
3786 	int rc;
3787 
3788 	if (eq->flags & EQ_ALLOCATED) {
3789 		switch (eq->flags & EQ_TYPEMASK) {
3790 		case EQ_CTRL:
3791 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3792 			    eq->cntxt_id);
3793 			break;
3794 
3795 		case EQ_ETH:
3796 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3797 			    eq->cntxt_id);
3798 			break;
3799 
3800 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3801 		case EQ_OFLD:
3802 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3803 			    eq->cntxt_id);
3804 			break;
3805 #endif
3806 
3807 		default:
3808 			panic("%s: invalid eq type %d.", __func__,
3809 			    eq->flags & EQ_TYPEMASK);
3810 		}
3811 		if (rc != 0) {
3812 			device_printf(sc->dev,
3813 			    "failed to free egress queue (%d): %d\n",
3814 			    eq->flags & EQ_TYPEMASK, rc);
3815 			return (rc);
3816 		}
3817 		eq->flags &= ~EQ_ALLOCATED;
3818 	}
3819 
3820 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3821 
3822 	if (mtx_initialized(&eq->eq_lock))
3823 		mtx_destroy(&eq->eq_lock);
3824 
3825 	bzero(eq, sizeof(*eq));
3826 	return (0);
3827 }
3828 
3829 static int
3830 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
3831     struct sysctl_oid *oid)
3832 {
3833 	int rc;
3834 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
3835 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3836 
3837 	rc = alloc_eq(sc, vi, &wrq->eq);
3838 	if (rc)
3839 		return (rc);
3840 
3841 	wrq->adapter = sc;
3842 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
3843 	TAILQ_INIT(&wrq->incomplete_wrs);
3844 	STAILQ_INIT(&wrq->wr_list);
3845 	wrq->nwr_pending = 0;
3846 	wrq->ndesc_needed = 0;
3847 
3848 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3849 	    &wrq->eq.ba, "bus address of descriptor ring");
3850 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3851 	    wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len,
3852 	    "desc ring size in bytes");
3853 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3854 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3855 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3856 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3857 	    "consumer index");
3858 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3859 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3860 	    "producer index");
3861 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3862 	    wrq->eq.sidx, "status page index");
3863 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
3864 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
3865 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
3866 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
3867 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
3868 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
3869 
3870 	return (rc);
3871 }
3872 
3873 static int
3874 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3875 {
3876 	int rc;
3877 
3878 	rc = free_eq(sc, &wrq->eq);
3879 	if (rc)
3880 		return (rc);
3881 
3882 	bzero(wrq, sizeof(*wrq));
3883 	return (0);
3884 }
3885 
3886 static int
3887 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
3888     struct sysctl_oid *oid)
3889 {
3890 	int rc;
3891 	struct port_info *pi = vi->pi;
3892 	struct adapter *sc = pi->adapter;
3893 	struct sge_eq *eq = &txq->eq;
3894 	char name[16];
3895 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3896 
3897 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
3898 	    M_CXGBE, M_WAITOK);
3899 	if (rc != 0) {
3900 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
3901 		return (rc);
3902 	}
3903 
3904 	rc = alloc_eq(sc, vi, eq);
3905 	if (rc != 0) {
3906 		mp_ring_free(txq->r);
3907 		txq->r = NULL;
3908 		return (rc);
3909 	}
3910 
3911 	/* Can't fail after this point. */
3912 
3913 	if (idx == 0)
3914 		sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
3915 	else
3916 		KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
3917 		    ("eq_base mismatch"));
3918 	KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
3919 	    ("PF with non-zero eq_base"));
3920 
3921 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
3922 	txq->ifp = vi->ifp;
3923 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
3924 	if (sc->flags & IS_VF)
3925 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
3926 		    V_TXPKT_INTF(pi->tx_chan));
3927 	else
3928 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3929 		    V_TXPKT_INTF(pi->tx_chan) |
3930 		    V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) |
3931 		    V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) |
3932 		    V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid)));
3933 	txq->tc_idx = -1;
3934 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
3935 	    M_ZERO | M_WAITOK);
3936 
3937 	snprintf(name, sizeof(name), "%d", idx);
3938 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3939 	    NULL, "tx queue");
3940 	children = SYSCTL_CHILDREN(oid);
3941 
3942 	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3943 	    &eq->ba, "bus address of descriptor ring");
3944 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3945 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3946 	    "desc ring size in bytes");
3947 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3948 	    &eq->abs_id, 0, "absolute id of the queue");
3949 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3950 	    &eq->cntxt_id, 0, "SGE context id of the queue");
3951 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3952 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3953 	    "consumer index");
3954 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3955 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3956 	    "producer index");
3957 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3958 	    eq->sidx, "status page index");
3959 
3960 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
3961 	    CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I",
3962 	    "traffic class (-1 means none)");
3963 
3964 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3965 	    &txq->txcsum, "# of times hardware assisted with checksum");
3966 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
3967 	    CTLFLAG_RD, &txq->vlan_insertion,
3968 	    "# of times hardware inserted 802.1Q tag");
3969 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3970 	    &txq->tso_wrs, "# of TSO work requests");
3971 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3972 	    &txq->imm_wrs, "# of work requests with immediate data");
3973 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3974 	    &txq->sgl_wrs, "# of work requests with direct SGL");
3975 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3976 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3977 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
3978 	    CTLFLAG_RD, &txq->txpkts0_wrs,
3979 	    "# of txpkts (type 0) work requests");
3980 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
3981 	    CTLFLAG_RD, &txq->txpkts1_wrs,
3982 	    "# of txpkts (type 1) work requests");
3983 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
3984 	    CTLFLAG_RD, &txq->txpkts0_pkts,
3985 	    "# of frames tx'd using type0 txpkts work requests");
3986 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
3987 	    CTLFLAG_RD, &txq->txpkts1_pkts,
3988 	    "# of frames tx'd using type1 txpkts work requests");
3989 
3990 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
3991 	    CTLFLAG_RD, &txq->r->enqueues,
3992 	    "# of enqueues to the mp_ring for this queue");
3993 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
3994 	    CTLFLAG_RD, &txq->r->drops,
3995 	    "# of drops in the mp_ring for this queue");
3996 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
3997 	    CTLFLAG_RD, &txq->r->starts,
3998 	    "# of normal consumer starts in the mp_ring for this queue");
3999 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
4000 	    CTLFLAG_RD, &txq->r->stalls,
4001 	    "# of consumer stalls in the mp_ring for this queue");
4002 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
4003 	    CTLFLAG_RD, &txq->r->restarts,
4004 	    "# of consumer restarts in the mp_ring for this queue");
4005 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
4006 	    CTLFLAG_RD, &txq->r->abdications,
4007 	    "# of consumer abdications in the mp_ring for this queue");
4008 
4009 	return (0);
4010 }
4011 
4012 static int
4013 free_txq(struct vi_info *vi, struct sge_txq *txq)
4014 {
4015 	int rc;
4016 	struct adapter *sc = vi->pi->adapter;
4017 	struct sge_eq *eq = &txq->eq;
4018 
4019 	rc = free_eq(sc, eq);
4020 	if (rc)
4021 		return (rc);
4022 
4023 	sglist_free(txq->gl);
4024 	free(txq->sdesc, M_CXGBE);
4025 	mp_ring_free(txq->r);
4026 
4027 	bzero(txq, sizeof(*txq));
4028 	return (0);
4029 }
4030 
4031 static void
4032 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4033 {
4034 	bus_addr_t *ba = arg;
4035 
4036 	KASSERT(nseg == 1,
4037 	    ("%s meant for single segment mappings only.", __func__));
4038 
4039 	*ba = error ? 0 : segs->ds_addr;
4040 }
4041 
4042 static inline void
4043 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4044 {
4045 	uint32_t n, v;
4046 
4047 	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
4048 	MPASS(n > 0);
4049 
4050 	wmb();
4051 	v = fl->dbval | V_PIDX(n);
4052 	if (fl->udb)
4053 		*fl->udb = htole32(v);
4054 	else
4055 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4056 	IDXINCR(fl->dbidx, n, fl->sidx);
4057 }
4058 
4059 /*
4060  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4061  * recycled do not count towards this allocation budget.
4062  *
4063  * Returns non-zero to indicate that this freelist should be added to the list
4064  * of starving freelists.
4065  */
4066 static int
4067 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4068 {
4069 	__be64 *d;
4070 	struct fl_sdesc *sd;
4071 	uintptr_t pa;
4072 	caddr_t cl;
4073 	struct cluster_layout *cll;
4074 	struct sw_zone_info *swz;
4075 	struct cluster_metadata *clm;
4076 	uint16_t max_pidx;
4077 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
4078 
4079 	FL_LOCK_ASSERT_OWNED(fl);
4080 
4081 	/*
4082 	 * We always stop at the beginning of the hardware descriptor that's just
4083 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
4084 	 * which would mean an empty freelist to the chip.
4085 	 */
4086 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
4087 	if (fl->pidx == max_pidx * 8)
4088 		return (0);
4089 
4090 	d = &fl->desc[fl->pidx];
4091 	sd = &fl->sdesc[fl->pidx];
4092 	cll = &fl->cll_def;	/* default layout */
4093 	swz = &sc->sge.sw_zone_info[cll->zidx];
4094 
4095 	while (n > 0) {
4096 
4097 		if (sd->cl != NULL) {
4098 
4099 			if (sd->nmbuf == 0) {
4100 				/*
4101 				 * Fast recycle without involving any atomics on
4102 				 * the cluster's metadata (if the cluster has
4103 				 * metadata).  This happens when all frames
4104 				 * received in the cluster were small enough to
4105 				 * fit within a single mbuf each.
4106 				 */
4107 				fl->cl_fast_recycled++;
4108 #ifdef INVARIANTS
4109 				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
4110 				if (clm != NULL)
4111 					MPASS(clm->refcount == 1);
4112 #endif
4113 				goto recycled_fast;
4114 			}
4115 
4116 			/*
4117 			 * Cluster is guaranteed to have metadata.  Clusters
4118 			 * without metadata always take the fast recycle path
4119 			 * when they're recycled.
4120 			 */
4121 			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
4122 			MPASS(clm != NULL);
4123 
4124 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4125 				fl->cl_recycled++;
4126 				counter_u64_add(extfree_rels, 1);
4127 				goto recycled;
4128 			}
4129 			sd->cl = NULL;	/* gave up my reference */
4130 		}
4131 		MPASS(sd->cl == NULL);
4132 alloc:
4133 		cl = uma_zalloc(swz->zone, M_NOWAIT);
4134 		if (__predict_false(cl == NULL)) {
4135 			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
4136 			    fl->cll_def.zidx == fl->cll_alt.zidx)
4137 				break;
4138 
4139 			/* fall back to the safe zone */
4140 			cll = &fl->cll_alt;
4141 			swz = &sc->sge.sw_zone_info[cll->zidx];
4142 			goto alloc;
4143 		}
4144 		fl->cl_allocated++;
4145 		n--;
4146 
4147 		pa = pmap_kextract((vm_offset_t)cl);
4148 		pa += cll->region1;
4149 		sd->cl = cl;
4150 		sd->cll = *cll;
4151 		*d = htobe64(pa | cll->hwidx);
4152 		clm = cl_metadata(sc, fl, cll, cl);
4153 		if (clm != NULL) {
4154 recycled:
4155 #ifdef INVARIANTS
4156 			clm->sd = sd;
4157 #endif
4158 			clm->refcount = 1;
4159 		}
4160 		sd->nmbuf = 0;
4161 recycled_fast:
4162 		d++;
4163 		sd++;
4164 		if (__predict_false(++fl->pidx % 8 == 0)) {
4165 			uint16_t pidx = fl->pidx / 8;
4166 
4167 			if (__predict_false(pidx == fl->sidx)) {
4168 				fl->pidx = 0;
4169 				pidx = 0;
4170 				sd = fl->sdesc;
4171 				d = fl->desc;
4172 			}
4173 			if (pidx == max_pidx)
4174 				break;
4175 
4176 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
4177 				ring_fl_db(sc, fl);
4178 		}
4179 	}
4180 
4181 	if (fl->pidx / 8 != fl->dbidx)
4182 		ring_fl_db(sc, fl);
4183 
4184 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
4185 }
4186 
4187 /*
4188  * Attempt to refill all starving freelists.
4189  */
4190 static void
4191 refill_sfl(void *arg)
4192 {
4193 	struct adapter *sc = arg;
4194 	struct sge_fl *fl, *fl_temp;
4195 
4196 	mtx_assert(&sc->sfl_lock, MA_OWNED);
4197 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
4198 		FL_LOCK(fl);
4199 		refill_fl(sc, fl, 64);
4200 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
4201 			TAILQ_REMOVE(&sc->sfl, fl, link);
4202 			fl->flags &= ~FL_STARVING;
4203 		}
4204 		FL_UNLOCK(fl);
4205 	}
4206 
4207 	if (!TAILQ_EMPTY(&sc->sfl))
4208 		callout_schedule(&sc->sfl_callout, hz / 5);
4209 }
4210 
4211 static int
4212 alloc_fl_sdesc(struct sge_fl *fl)
4213 {
4214 
4215 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
4216 	    M_ZERO | M_WAITOK);
4217 
4218 	return (0);
4219 }
4220 
4221 static void
4222 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
4223 {
4224 	struct fl_sdesc *sd;
4225 	struct cluster_metadata *clm;
4226 	struct cluster_layout *cll;
4227 	int i;
4228 
4229 	sd = fl->sdesc;
4230 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
4231 		if (sd->cl == NULL)
4232 			continue;
4233 
4234 		cll = &sd->cll;
4235 		clm = cl_metadata(sc, fl, cll, sd->cl);
4236 		if (sd->nmbuf == 0)
4237 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
4238 		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4239 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
4240 			counter_u64_add(extfree_rels, 1);
4241 		}
4242 		sd->cl = NULL;
4243 	}
4244 
4245 	free(fl->sdesc, M_CXGBE);
4246 	fl->sdesc = NULL;
4247 }
4248 
4249 static inline void
4250 get_pkt_gl(struct mbuf *m, struct sglist *gl)
4251 {
4252 	int rc;
4253 
4254 	M_ASSERTPKTHDR(m);
4255 
4256 	sglist_reset(gl);
4257 	rc = sglist_append_mbuf(gl, m);
4258 	if (__predict_false(rc != 0)) {
4259 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
4260 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
4261 	}
4262 
4263 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
4264 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
4265 	    mbuf_nsegs(m), gl->sg_nseg));
4266 	KASSERT(gl->sg_nseg > 0 &&
4267 	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
4268 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
4269 		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
4270 }
4271 
4272 /*
4273  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
4274  */
4275 static inline u_int
4276 txpkt_len16(u_int nsegs, u_int tso)
4277 {
4278 	u_int n;
4279 
4280 	MPASS(nsegs > 0);
4281 
4282 	nsegs--; /* first segment is part of ulptx_sgl */
4283 	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
4284 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4285 	if (tso)
4286 		n += sizeof(struct cpl_tx_pkt_lso_core);
4287 
4288 	return (howmany(n, 16));
4289 }
4290 
4291 /*
4292  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
4293  * request header.
4294  */
4295 static inline u_int
4296 txpkt_vm_len16(u_int nsegs, u_int tso)
4297 {
4298 	u_int n;
4299 
4300 	MPASS(nsegs > 0);
4301 
4302 	nsegs--; /* first segment is part of ulptx_sgl */
4303 	n = sizeof(struct fw_eth_tx_pkt_vm_wr) +
4304 	    sizeof(struct cpl_tx_pkt_core) +
4305 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4306 	if (tso)
4307 		n += sizeof(struct cpl_tx_pkt_lso_core);
4308 
4309 	return (howmany(n, 16));
4310 }
4311 
4312 /*
4313  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
4314  * request header.
4315  */
4316 static inline u_int
4317 txpkts0_len16(u_int nsegs)
4318 {
4319 	u_int n;
4320 
4321 	MPASS(nsegs > 0);
4322 
4323 	nsegs--; /* first segment is part of ulptx_sgl */
4324 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
4325 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
4326 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
4327 
4328 	return (howmany(n, 16));
4329 }
4330 
4331 /*
4332  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
4333  * request header.
4334  */
4335 static inline u_int
4336 txpkts1_len16(void)
4337 {
4338 	u_int n;
4339 
4340 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
4341 
4342 	return (howmany(n, 16));
4343 }
4344 
4345 static inline u_int
4346 imm_payload(u_int ndesc)
4347 {
4348 	u_int n;
4349 
4350 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
4351 	    sizeof(struct cpl_tx_pkt_core);
4352 
4353 	return (n);
4354 }
4355 
4356 /*
4357  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
4358  * software descriptor, and advance the pidx.  It is guaranteed that enough
4359  * descriptors are available.
4360  *
4361  * The return value is the # of hardware descriptors used.
4362  */
4363 static u_int
4364 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq,
4365     struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available)
4366 {
4367 	struct sge_eq *eq = &txq->eq;
4368 	struct tx_sdesc *txsd;
4369 	struct cpl_tx_pkt_core *cpl;
4370 	uint32_t ctrl;	/* used in many unrelated places */
4371 	uint64_t ctrl1;
4372 	int csum_type, len16, ndesc, pktlen, nsegs;
4373 	caddr_t dst;
4374 
4375 	TXQ_LOCK_ASSERT_OWNED(txq);
4376 	M_ASSERTPKTHDR(m0);
4377 	MPASS(available > 0 && available < eq->sidx);
4378 
4379 	len16 = mbuf_len16(m0);
4380 	nsegs = mbuf_nsegs(m0);
4381 	pktlen = m0->m_pkthdr.len;
4382 	ctrl = sizeof(struct cpl_tx_pkt_core);
4383 	if (needs_tso(m0))
4384 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4385 	ndesc = howmany(len16, EQ_ESIZE / 16);
4386 	MPASS(ndesc <= available);
4387 
4388 	/* Firmware work request header */
4389 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4390 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
4391 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4392 
4393 	ctrl = V_FW_WR_LEN16(len16);
4394 	wr->equiq_to_len16 = htobe32(ctrl);
4395 	wr->r3[0] = 0;
4396 	wr->r3[1] = 0;
4397 
4398 	/*
4399 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
4400 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
4401 	 * simpler to always copy it rather than making it
4402 	 * conditional.  Also, it seems that we do not have to set
4403 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
4404 	 */
4405 	m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst);
4406 
4407 	csum_type = -1;
4408 	if (needs_tso(m0)) {
4409 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4410 
4411 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4412 		    m0->m_pkthdr.l4hlen > 0,
4413 		    ("%s: mbuf %p needs TSO but missing header lengths",
4414 			__func__, m0));
4415 
4416 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4417 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4418 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4419 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4420 			ctrl |= V_LSO_ETHHDR_LEN(1);
4421 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4422 			ctrl |= F_LSO_IPV6;
4423 
4424 		lso->lso_ctrl = htobe32(ctrl);
4425 		lso->ipid_ofst = htobe16(0);
4426 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4427 		lso->seqno_offset = htobe32(0);
4428 		lso->len = htobe32(pktlen);
4429 
4430 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4431 			csum_type = TX_CSUM_TCPIP6;
4432 		else
4433 			csum_type = TX_CSUM_TCPIP;
4434 
4435 		cpl = (void *)(lso + 1);
4436 
4437 		txq->tso_wrs++;
4438 	} else {
4439 		if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP)
4440 			csum_type = TX_CSUM_TCPIP;
4441 		else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP)
4442 			csum_type = TX_CSUM_UDPIP;
4443 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP)
4444 			csum_type = TX_CSUM_TCPIP6;
4445 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP)
4446 			csum_type = TX_CSUM_UDPIP6;
4447 #if defined(INET)
4448 		else if (m0->m_pkthdr.csum_flags & CSUM_IP) {
4449 			/*
4450 			 * XXX: The firmware appears to stomp on the
4451 			 * fragment/flags field of the IP header when
4452 			 * using TX_CSUM_IP.  Fall back to doing
4453 			 * software checksums.
4454 			 */
4455 			u_short *sump;
4456 			struct mbuf *m;
4457 			int offset;
4458 
4459 			m = m0;
4460 			offset = 0;
4461 			sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen +
4462 			    offsetof(struct ip, ip_sum));
4463 			*sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen +
4464 			    m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen);
4465 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
4466 		}
4467 #endif
4468 
4469 		cpl = (void *)(wr + 1);
4470 	}
4471 
4472 	/* Checksum offload */
4473 	ctrl1 = 0;
4474 	if (needs_l3_csum(m0) == 0)
4475 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4476 	if (csum_type >= 0) {
4477 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0,
4478 	    ("%s: mbuf %p needs checksum offload but missing header lengths",
4479 			__func__, m0));
4480 
4481 		if (chip_id(sc) <= CHELSIO_T5) {
4482 			ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4483 			    ETHER_HDR_LEN);
4484 		} else {
4485 			ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4486 			    ETHER_HDR_LEN);
4487 		}
4488 		ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen);
4489 		ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type);
4490 	} else
4491 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4492 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4493 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4494 		txq->txcsum++;	/* some hardware assistance provided */
4495 
4496 	/* VLAN tag insertion */
4497 	if (needs_vlan_insertion(m0)) {
4498 		ctrl1 |= F_TXPKT_VLAN_VLD |
4499 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4500 		txq->vlan_insertion++;
4501 	}
4502 
4503 	/* CPL header */
4504 	cpl->ctrl0 = txq->cpl_ctrl0;
4505 	cpl->pack = 0;
4506 	cpl->len = htobe16(pktlen);
4507 	cpl->ctrl1 = htobe64(ctrl1);
4508 
4509 	/* SGL */
4510 	dst = (void *)(cpl + 1);
4511 
4512 	/*
4513 	 * A packet using TSO will use up an entire descriptor for the
4514 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
4515 	 * If this descriptor is the last descriptor in the ring, wrap
4516 	 * around to the front of the ring explicitly for the start of
4517 	 * the sgl.
4518 	 */
4519 	if (dst == (void *)&eq->desc[eq->sidx]) {
4520 		dst = (void *)&eq->desc[0];
4521 		write_gl_to_txd(txq, m0, &dst, 0);
4522 	} else
4523 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4524 	txq->sgl_wrs++;
4525 
4526 	txq->txpkt_wrs++;
4527 
4528 	txsd = &txq->sdesc[eq->pidx];
4529 	txsd->m = m0;
4530 	txsd->desc_used = ndesc;
4531 
4532 	return (ndesc);
4533 }
4534 
4535 /*
4536  * Write a txpkt WR for this packet to the hardware descriptors, update the
4537  * software descriptor, and advance the pidx.  It is guaranteed that enough
4538  * descriptors are available.
4539  *
4540  * The return value is the # of hardware descriptors used.
4541  */
4542 static u_int
4543 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
4544     struct mbuf *m0, u_int available)
4545 {
4546 	struct sge_eq *eq = &txq->eq;
4547 	struct tx_sdesc *txsd;
4548 	struct cpl_tx_pkt_core *cpl;
4549 	uint32_t ctrl;	/* used in many unrelated places */
4550 	uint64_t ctrl1;
4551 	int len16, ndesc, pktlen, nsegs;
4552 	caddr_t dst;
4553 
4554 	TXQ_LOCK_ASSERT_OWNED(txq);
4555 	M_ASSERTPKTHDR(m0);
4556 	MPASS(available > 0 && available < eq->sidx);
4557 
4558 	len16 = mbuf_len16(m0);
4559 	nsegs = mbuf_nsegs(m0);
4560 	pktlen = m0->m_pkthdr.len;
4561 	ctrl = sizeof(struct cpl_tx_pkt_core);
4562 	if (needs_tso(m0))
4563 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4564 	else if (pktlen <= imm_payload(2) && available >= 2) {
4565 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
4566 		ctrl += pktlen;
4567 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
4568 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
4569 		nsegs = 0;
4570 	}
4571 	ndesc = howmany(len16, EQ_ESIZE / 16);
4572 	MPASS(ndesc <= available);
4573 
4574 	/* Firmware work request header */
4575 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4576 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
4577 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4578 
4579 	ctrl = V_FW_WR_LEN16(len16);
4580 	wr->equiq_to_len16 = htobe32(ctrl);
4581 	wr->r3 = 0;
4582 
4583 	if (needs_tso(m0)) {
4584 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4585 
4586 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4587 		    m0->m_pkthdr.l4hlen > 0,
4588 		    ("%s: mbuf %p needs TSO but missing header lengths",
4589 			__func__, m0));
4590 
4591 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4592 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4593 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4594 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4595 			ctrl |= V_LSO_ETHHDR_LEN(1);
4596 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4597 			ctrl |= F_LSO_IPV6;
4598 
4599 		lso->lso_ctrl = htobe32(ctrl);
4600 		lso->ipid_ofst = htobe16(0);
4601 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4602 		lso->seqno_offset = htobe32(0);
4603 		lso->len = htobe32(pktlen);
4604 
4605 		cpl = (void *)(lso + 1);
4606 
4607 		txq->tso_wrs++;
4608 	} else
4609 		cpl = (void *)(wr + 1);
4610 
4611 	/* Checksum offload */
4612 	ctrl1 = 0;
4613 	if (needs_l3_csum(m0) == 0)
4614 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4615 	if (needs_l4_csum(m0) == 0)
4616 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4617 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4618 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4619 		txq->txcsum++;	/* some hardware assistance provided */
4620 
4621 	/* VLAN tag insertion */
4622 	if (needs_vlan_insertion(m0)) {
4623 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4624 		txq->vlan_insertion++;
4625 	}
4626 
4627 	/* CPL header */
4628 	cpl->ctrl0 = txq->cpl_ctrl0;
4629 	cpl->pack = 0;
4630 	cpl->len = htobe16(pktlen);
4631 	cpl->ctrl1 = htobe64(ctrl1);
4632 
4633 	/* SGL */
4634 	dst = (void *)(cpl + 1);
4635 	if (nsegs > 0) {
4636 
4637 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4638 		txq->sgl_wrs++;
4639 	} else {
4640 		struct mbuf *m;
4641 
4642 		for (m = m0; m != NULL; m = m->m_next) {
4643 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4644 #ifdef INVARIANTS
4645 			pktlen -= m->m_len;
4646 #endif
4647 		}
4648 #ifdef INVARIANTS
4649 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
4650 #endif
4651 		txq->imm_wrs++;
4652 	}
4653 
4654 	txq->txpkt_wrs++;
4655 
4656 	txsd = &txq->sdesc[eq->pidx];
4657 	txsd->m = m0;
4658 	txsd->desc_used = ndesc;
4659 
4660 	return (ndesc);
4661 }
4662 
4663 static int
4664 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
4665 {
4666 	u_int needed, nsegs1, nsegs2, l1, l2;
4667 
4668 	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
4669 		return (1);
4670 
4671 	nsegs1 = mbuf_nsegs(m);
4672 	nsegs2 = mbuf_nsegs(n);
4673 	if (nsegs1 + nsegs2 == 2) {
4674 		txp->wr_type = 1;
4675 		l1 = l2 = txpkts1_len16();
4676 	} else {
4677 		txp->wr_type = 0;
4678 		l1 = txpkts0_len16(nsegs1);
4679 		l2 = txpkts0_len16(nsegs2);
4680 	}
4681 	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
4682 	needed = howmany(txp->len16, EQ_ESIZE / 16);
4683 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4684 		return (1);
4685 
4686 	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
4687 	if (txp->plen > 65535)
4688 		return (1);
4689 
4690 	txp->npkt = 2;
4691 	set_mbuf_len16(m, l1);
4692 	set_mbuf_len16(n, l2);
4693 
4694 	return (0);
4695 }
4696 
4697 static int
4698 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
4699 {
4700 	u_int plen, len16, needed, nsegs;
4701 
4702 	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
4703 
4704 	nsegs = mbuf_nsegs(m);
4705 	if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
4706 		return (1);
4707 
4708 	plen = txp->plen + m->m_pkthdr.len;
4709 	if (plen > 65535)
4710 		return (1);
4711 
4712 	if (txp->wr_type == 0)
4713 		len16 = txpkts0_len16(nsegs);
4714 	else
4715 		len16 = txpkts1_len16();
4716 	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4717 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4718 		return (1);
4719 
4720 	txp->npkt++;
4721 	txp->plen = plen;
4722 	txp->len16 += len16;
4723 	set_mbuf_len16(m, len16);
4724 
4725 	return (0);
4726 }
4727 
4728 /*
4729  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
4730  * the software descriptor, and advance the pidx.  It is guaranteed that enough
4731  * descriptors are available.
4732  *
4733  * The return value is the # of hardware descriptors used.
4734  */
4735 static u_int
4736 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
4737     struct mbuf *m0, const struct txpkts *txp, u_int available)
4738 {
4739 	struct sge_eq *eq = &txq->eq;
4740 	struct tx_sdesc *txsd;
4741 	struct cpl_tx_pkt_core *cpl;
4742 	uint32_t ctrl;
4743 	uint64_t ctrl1;
4744 	int ndesc, checkwrap;
4745 	struct mbuf *m;
4746 	void *flitp;
4747 
4748 	TXQ_LOCK_ASSERT_OWNED(txq);
4749 	MPASS(txp->npkt > 0);
4750 	MPASS(txp->plen < 65536);
4751 	MPASS(m0 != NULL);
4752 	MPASS(m0->m_nextpkt != NULL);
4753 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
4754 	MPASS(available > 0 && available < eq->sidx);
4755 
4756 	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
4757 	MPASS(ndesc <= available);
4758 
4759 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4760 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4761 	ctrl = V_FW_WR_LEN16(txp->len16);
4762 	wr->equiq_to_len16 = htobe32(ctrl);
4763 	wr->plen = htobe16(txp->plen);
4764 	wr->npkt = txp->npkt;
4765 	wr->r3 = 0;
4766 	wr->type = txp->wr_type;
4767 	flitp = wr + 1;
4768 
4769 	/*
4770 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
4771 	 * set then we know the WR is going to wrap around somewhere.  We'll
4772 	 * check for that at appropriate points.
4773 	 */
4774 	checkwrap = eq->sidx - ndesc < eq->pidx;
4775 	for (m = m0; m != NULL; m = m->m_nextpkt) {
4776 		if (txp->wr_type == 0) {
4777 			struct ulp_txpkt *ulpmc;
4778 			struct ulptx_idata *ulpsc;
4779 
4780 			/* ULP master command */
4781 			ulpmc = flitp;
4782 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
4783 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
4784 			ulpmc->len = htobe32(mbuf_len16(m));
4785 
4786 			/* ULP subcommand */
4787 			ulpsc = (void *)(ulpmc + 1);
4788 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
4789 			    F_ULP_TX_SC_MORE);
4790 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
4791 
4792 			cpl = (void *)(ulpsc + 1);
4793 			if (checkwrap &&
4794 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
4795 				cpl = (void *)&eq->desc[0];
4796 		} else {
4797 			cpl = flitp;
4798 		}
4799 
4800 		/* Checksum offload */
4801 		ctrl1 = 0;
4802 		if (needs_l3_csum(m) == 0)
4803 			ctrl1 |= F_TXPKT_IPCSUM_DIS;
4804 		if (needs_l4_csum(m) == 0)
4805 			ctrl1 |= F_TXPKT_L4CSUM_DIS;
4806 		if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4807 		    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4808 			txq->txcsum++;	/* some hardware assistance provided */
4809 
4810 		/* VLAN tag insertion */
4811 		if (needs_vlan_insertion(m)) {
4812 			ctrl1 |= F_TXPKT_VLAN_VLD |
4813 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
4814 			txq->vlan_insertion++;
4815 		}
4816 
4817 		/* CPL header */
4818 		cpl->ctrl0 = txq->cpl_ctrl0;
4819 		cpl->pack = 0;
4820 		cpl->len = htobe16(m->m_pkthdr.len);
4821 		cpl->ctrl1 = htobe64(ctrl1);
4822 
4823 		flitp = cpl + 1;
4824 		if (checkwrap &&
4825 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
4826 			flitp = (void *)&eq->desc[0];
4827 
4828 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
4829 
4830 	}
4831 
4832 	if (txp->wr_type == 0) {
4833 		txq->txpkts0_pkts += txp->npkt;
4834 		txq->txpkts0_wrs++;
4835 	} else {
4836 		txq->txpkts1_pkts += txp->npkt;
4837 		txq->txpkts1_wrs++;
4838 	}
4839 
4840 	txsd = &txq->sdesc[eq->pidx];
4841 	txsd->m = m0;
4842 	txsd->desc_used = ndesc;
4843 
4844 	return (ndesc);
4845 }
4846 
4847 /*
4848  * If the SGL ends on an address that is not 16 byte aligned, this function will
4849  * add a 0 filled flit at the end.
4850  */
4851 static void
4852 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
4853 {
4854 	struct sge_eq *eq = &txq->eq;
4855 	struct sglist *gl = txq->gl;
4856 	struct sglist_seg *seg;
4857 	__be64 *flitp, *wrap;
4858 	struct ulptx_sgl *usgl;
4859 	int i, nflits, nsegs;
4860 
4861 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4862 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4863 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4864 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4865 
4866 	get_pkt_gl(m, gl);
4867 	nsegs = gl->sg_nseg;
4868 	MPASS(nsegs > 0);
4869 
4870 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
4871 	flitp = (__be64 *)(*to);
4872 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
4873 	seg = &gl->sg_segs[0];
4874 	usgl = (void *)flitp;
4875 
4876 	/*
4877 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4878 	 * ring, so we're at least 16 bytes away from the status page.  There is
4879 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4880 	 */
4881 
4882 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4883 	    V_ULPTX_NSGE(nsegs));
4884 	usgl->len0 = htobe32(seg->ss_len);
4885 	usgl->addr0 = htobe64(seg->ss_paddr);
4886 	seg++;
4887 
4888 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
4889 
4890 		/* Won't wrap around at all */
4891 
4892 		for (i = 0; i < nsegs - 1; i++, seg++) {
4893 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
4894 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
4895 		}
4896 		if (i & 1)
4897 			usgl->sge[i / 2].len[1] = htobe32(0);
4898 		flitp += nflits;
4899 	} else {
4900 
4901 		/* Will wrap somewhere in the rest of the SGL */
4902 
4903 		/* 2 flits already written, write the rest flit by flit */
4904 		flitp = (void *)(usgl + 1);
4905 		for (i = 0; i < nflits - 2; i++) {
4906 			if (flitp == wrap)
4907 				flitp = (void *)eq->desc;
4908 			*flitp++ = get_flit(seg, nsegs - 1, i);
4909 		}
4910 	}
4911 
4912 	if (nflits & 1) {
4913 		MPASS(((uintptr_t)flitp) & 0xf);
4914 		*flitp++ = 0;
4915 	}
4916 
4917 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
4918 	if (__predict_false(flitp == wrap))
4919 		*to = (void *)eq->desc;
4920 	else
4921 		*to = (void *)flitp;
4922 }
4923 
4924 static inline void
4925 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4926 {
4927 
4928 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4929 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4930 
4931 	if (__predict_true((uintptr_t)(*to) + len <=
4932 	    (uintptr_t)&eq->desc[eq->sidx])) {
4933 		bcopy(from, *to, len);
4934 		(*to) += len;
4935 	} else {
4936 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
4937 
4938 		bcopy(from, *to, portion);
4939 		from += portion;
4940 		portion = len - portion;	/* remaining */
4941 		bcopy(from, (void *)eq->desc, portion);
4942 		(*to) = (caddr_t)eq->desc + portion;
4943 	}
4944 }
4945 
4946 static inline void
4947 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
4948 {
4949 	u_int db;
4950 
4951 	MPASS(n > 0);
4952 
4953 	db = eq->doorbells;
4954 	if (n > 1)
4955 		clrbit(&db, DOORBELL_WCWR);
4956 	wmb();
4957 
4958 	switch (ffs(db) - 1) {
4959 	case DOORBELL_UDB:
4960 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4961 		break;
4962 
4963 	case DOORBELL_WCWR: {
4964 		volatile uint64_t *dst, *src;
4965 		int i;
4966 
4967 		/*
4968 		 * Queues whose 128B doorbell segment fits in the page do not
4969 		 * use relative qid (udb_qid is always 0).  Only queues with
4970 		 * doorbell segments can do WCWR.
4971 		 */
4972 		KASSERT(eq->udb_qid == 0 && n == 1,
4973 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4974 		    __func__, eq->doorbells, n, eq->dbidx, eq));
4975 
4976 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4977 		    UDBS_DB_OFFSET);
4978 		i = eq->dbidx;
4979 		src = (void *)&eq->desc[i];
4980 		while (src != (void *)&eq->desc[i + 1])
4981 			*dst++ = *src++;
4982 		wmb();
4983 		break;
4984 	}
4985 
4986 	case DOORBELL_UDBWC:
4987 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4988 		wmb();
4989 		break;
4990 
4991 	case DOORBELL_KDB:
4992 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
4993 		    V_QID(eq->cntxt_id) | V_PIDX(n));
4994 		break;
4995 	}
4996 
4997 	IDXINCR(eq->dbidx, n, eq->sidx);
4998 }
4999 
5000 static inline u_int
5001 reclaimable_tx_desc(struct sge_eq *eq)
5002 {
5003 	uint16_t hw_cidx;
5004 
5005 	hw_cidx = read_hw_cidx(eq);
5006 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
5007 }
5008 
5009 static inline u_int
5010 total_available_tx_desc(struct sge_eq *eq)
5011 {
5012 	uint16_t hw_cidx, pidx;
5013 
5014 	hw_cidx = read_hw_cidx(eq);
5015 	pidx = eq->pidx;
5016 
5017 	if (pidx == hw_cidx)
5018 		return (eq->sidx - 1);
5019 	else
5020 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
5021 }
5022 
5023 static inline uint16_t
5024 read_hw_cidx(struct sge_eq *eq)
5025 {
5026 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5027 	uint16_t cidx = spg->cidx;	/* stable snapshot */
5028 
5029 	return (be16toh(cidx));
5030 }
5031 
5032 /*
5033  * Reclaim 'n' descriptors approximately.
5034  */
5035 static u_int
5036 reclaim_tx_descs(struct sge_txq *txq, u_int n)
5037 {
5038 	struct tx_sdesc *txsd;
5039 	struct sge_eq *eq = &txq->eq;
5040 	u_int can_reclaim, reclaimed;
5041 
5042 	TXQ_LOCK_ASSERT_OWNED(txq);
5043 	MPASS(n > 0);
5044 
5045 	reclaimed = 0;
5046 	can_reclaim = reclaimable_tx_desc(eq);
5047 	while (can_reclaim && reclaimed < n) {
5048 		int ndesc;
5049 		struct mbuf *m, *nextpkt;
5050 
5051 		txsd = &txq->sdesc[eq->cidx];
5052 		ndesc = txsd->desc_used;
5053 
5054 		/* Firmware doesn't return "partial" credits. */
5055 		KASSERT(can_reclaim >= ndesc,
5056 		    ("%s: unexpected number of credits: %d, %d",
5057 		    __func__, can_reclaim, ndesc));
5058 
5059 		for (m = txsd->m; m != NULL; m = nextpkt) {
5060 			nextpkt = m->m_nextpkt;
5061 			m->m_nextpkt = NULL;
5062 			m_freem(m);
5063 		}
5064 		reclaimed += ndesc;
5065 		can_reclaim -= ndesc;
5066 		IDXINCR(eq->cidx, ndesc, eq->sidx);
5067 	}
5068 
5069 	return (reclaimed);
5070 }
5071 
5072 static void
5073 tx_reclaim(void *arg, int n)
5074 {
5075 	struct sge_txq *txq = arg;
5076 	struct sge_eq *eq = &txq->eq;
5077 
5078 	do {
5079 		if (TXQ_TRYLOCK(txq) == 0)
5080 			break;
5081 		n = reclaim_tx_descs(txq, 32);
5082 		if (eq->cidx == eq->pidx)
5083 			eq->equeqidx = eq->pidx;
5084 		TXQ_UNLOCK(txq);
5085 	} while (n > 0);
5086 }
5087 
5088 static __be64
5089 get_flit(struct sglist_seg *segs, int nsegs, int idx)
5090 {
5091 	int i = (idx / 3) * 2;
5092 
5093 	switch (idx % 3) {
5094 	case 0: {
5095 		uint64_t rc;
5096 
5097 		rc = (uint64_t)segs[i].ss_len << 32;
5098 		if (i + 1 < nsegs)
5099 			rc |= (uint64_t)(segs[i + 1].ss_len);
5100 
5101 		return (htobe64(rc));
5102 	}
5103 	case 1:
5104 		return (htobe64(segs[i].ss_paddr));
5105 	case 2:
5106 		return (htobe64(segs[i + 1].ss_paddr));
5107 	}
5108 
5109 	return (0);
5110 }
5111 
5112 static void
5113 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
5114 {
5115 	int8_t zidx, hwidx, idx;
5116 	uint16_t region1, region3;
5117 	int spare, spare_needed, n;
5118 	struct sw_zone_info *swz;
5119 	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
5120 
5121 	/*
5122 	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
5123 	 * large enough for the max payload and cluster metadata.  Otherwise
5124 	 * settle for the largest bufsize that leaves enough room in the cluster
5125 	 * for metadata.
5126 	 *
5127 	 * Without buffer packing: Look for the smallest zone which has a
5128 	 * bufsize large enough for the max payload.  Settle for the largest
5129 	 * bufsize available if there's nothing big enough for max payload.
5130 	 */
5131 	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
5132 	swz = &sc->sge.sw_zone_info[0];
5133 	hwidx = -1;
5134 	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
5135 		if (swz->size > largest_rx_cluster) {
5136 			if (__predict_true(hwidx != -1))
5137 				break;
5138 
5139 			/*
5140 			 * This is a misconfiguration.  largest_rx_cluster is
5141 			 * preventing us from finding a refill source.  See
5142 			 * dev.t5nex.<n>.buffer_sizes to figure out why.
5143 			 */
5144 			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
5145 			    " refill source for fl %p (dma %u).  Ignored.\n",
5146 			    largest_rx_cluster, fl, maxp);
5147 		}
5148 		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
5149 			hwb = &hwb_list[idx];
5150 			spare = swz->size - hwb->size;
5151 			if (spare < spare_needed)
5152 				continue;
5153 
5154 			hwidx = idx;		/* best option so far */
5155 			if (hwb->size >= maxp) {
5156 
5157 				if ((fl->flags & FL_BUF_PACKING) == 0)
5158 					goto done; /* stop looking (not packing) */
5159 
5160 				if (swz->size >= safest_rx_cluster)
5161 					goto done; /* stop looking (packing) */
5162 			}
5163 			break;		/* keep looking, next zone */
5164 		}
5165 	}
5166 done:
5167 	/* A usable hwidx has been located. */
5168 	MPASS(hwidx != -1);
5169 	hwb = &hwb_list[hwidx];
5170 	zidx = hwb->zidx;
5171 	swz = &sc->sge.sw_zone_info[zidx];
5172 	region1 = 0;
5173 	region3 = swz->size - hwb->size;
5174 
5175 	/*
5176 	 * Stay within this zone and see if there is a better match when mbuf
5177 	 * inlining is allowed.  Remember that the hwidx's are sorted in
5178 	 * decreasing order of size (so in increasing order of spare area).
5179 	 */
5180 	for (idx = hwidx; idx != -1; idx = hwb->next) {
5181 		hwb = &hwb_list[idx];
5182 		spare = swz->size - hwb->size;
5183 
5184 		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
5185 			break;
5186 
5187 		/*
5188 		 * Do not inline mbufs if doing so would violate the pad/pack
5189 		 * boundary alignment requirement.
5190 		 */
5191 		if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0)
5192 			continue;
5193 		if (fl->flags & FL_BUF_PACKING &&
5194 		    (MSIZE % sc->params.sge.pack_boundary) != 0)
5195 			continue;
5196 
5197 		if (spare < CL_METADATA_SIZE + MSIZE)
5198 			continue;
5199 		n = (spare - CL_METADATA_SIZE) / MSIZE;
5200 		if (n > howmany(hwb->size, maxp))
5201 			break;
5202 
5203 		hwidx = idx;
5204 		if (fl->flags & FL_BUF_PACKING) {
5205 			region1 = n * MSIZE;
5206 			region3 = spare - region1;
5207 		} else {
5208 			region1 = MSIZE;
5209 			region3 = spare - region1;
5210 			break;
5211 		}
5212 	}
5213 
5214 	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
5215 	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
5216 	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
5217 	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
5218 	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
5219 	    sc->sge.sw_zone_info[zidx].size,
5220 	    ("%s: bad buffer layout for fl %p, maxp %d. "
5221 		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5222 		sc->sge.sw_zone_info[zidx].size, region1,
5223 		sc->sge.hw_buf_info[hwidx].size, region3));
5224 	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
5225 		KASSERT(region3 >= CL_METADATA_SIZE,
5226 		    ("%s: no room for metadata.  fl %p, maxp %d; "
5227 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5228 		    sc->sge.sw_zone_info[zidx].size, region1,
5229 		    sc->sge.hw_buf_info[hwidx].size, region3));
5230 		KASSERT(region1 % MSIZE == 0,
5231 		    ("%s: bad mbuf region for fl %p, maxp %d. "
5232 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5233 		    sc->sge.sw_zone_info[zidx].size, region1,
5234 		    sc->sge.hw_buf_info[hwidx].size, region3));
5235 	}
5236 
5237 	fl->cll_def.zidx = zidx;
5238 	fl->cll_def.hwidx = hwidx;
5239 	fl->cll_def.region1 = region1;
5240 	fl->cll_def.region3 = region3;
5241 }
5242 
5243 static void
5244 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
5245 {
5246 	struct sge *s = &sc->sge;
5247 	struct hw_buf_info *hwb;
5248 	struct sw_zone_info *swz;
5249 	int spare;
5250 	int8_t hwidx;
5251 
5252 	if (fl->flags & FL_BUF_PACKING)
5253 		hwidx = s->safe_hwidx2;	/* with room for metadata */
5254 	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
5255 		hwidx = s->safe_hwidx2;
5256 		hwb = &s->hw_buf_info[hwidx];
5257 		swz = &s->sw_zone_info[hwb->zidx];
5258 		spare = swz->size - hwb->size;
5259 
5260 		/* no good if there isn't room for an mbuf as well */
5261 		if (spare < CL_METADATA_SIZE + MSIZE)
5262 			hwidx = s->safe_hwidx1;
5263 	} else
5264 		hwidx = s->safe_hwidx1;
5265 
5266 	if (hwidx == -1) {
5267 		/* No fallback source */
5268 		fl->cll_alt.hwidx = -1;
5269 		fl->cll_alt.zidx = -1;
5270 
5271 		return;
5272 	}
5273 
5274 	hwb = &s->hw_buf_info[hwidx];
5275 	swz = &s->sw_zone_info[hwb->zidx];
5276 	spare = swz->size - hwb->size;
5277 	fl->cll_alt.hwidx = hwidx;
5278 	fl->cll_alt.zidx = hwb->zidx;
5279 	if (allow_mbufs_in_cluster &&
5280 	    (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0))
5281 		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
5282 	else
5283 		fl->cll_alt.region1 = 0;
5284 	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
5285 }
5286 
5287 static void
5288 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
5289 {
5290 	mtx_lock(&sc->sfl_lock);
5291 	FL_LOCK(fl);
5292 	if ((fl->flags & FL_DOOMED) == 0) {
5293 		fl->flags |= FL_STARVING;
5294 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
5295 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
5296 	}
5297 	FL_UNLOCK(fl);
5298 	mtx_unlock(&sc->sfl_lock);
5299 }
5300 
5301 static void
5302 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
5303 {
5304 	struct sge_wrq *wrq = (void *)eq;
5305 
5306 	atomic_readandclear_int(&eq->equiq);
5307 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
5308 }
5309 
5310 static void
5311 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
5312 {
5313 	struct sge_txq *txq = (void *)eq;
5314 
5315 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
5316 
5317 	atomic_readandclear_int(&eq->equiq);
5318 	mp_ring_check_drainage(txq->r, 0);
5319 	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
5320 }
5321 
5322 static int
5323 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
5324     struct mbuf *m)
5325 {
5326 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
5327 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
5328 	struct adapter *sc = iq->adapter;
5329 	struct sge *s = &sc->sge;
5330 	struct sge_eq *eq;
5331 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
5332 		&handle_wrq_egr_update, &handle_eth_egr_update,
5333 		&handle_wrq_egr_update};
5334 
5335 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5336 	    rss->opcode));
5337 
5338 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
5339 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
5340 
5341 	return (0);
5342 }
5343 
5344 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
5345 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
5346     offsetof(struct cpl_fw6_msg, data));
5347 
5348 static int
5349 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
5350 {
5351 	struct adapter *sc = iq->adapter;
5352 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
5353 
5354 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5355 	    rss->opcode));
5356 
5357 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
5358 		const struct rss_header *rss2;
5359 
5360 		rss2 = (const struct rss_header *)&cpl->data[0];
5361 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
5362 	}
5363 
5364 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
5365 }
5366 
5367 /**
5368  *	t4_handle_wrerr_rpl - process a FW work request error message
5369  *	@adap: the adapter
5370  *	@rpl: start of the FW message
5371  */
5372 static int
5373 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
5374 {
5375 	u8 opcode = *(const u8 *)rpl;
5376 	const struct fw_error_cmd *e = (const void *)rpl;
5377 	unsigned int i;
5378 
5379 	if (opcode != FW_ERROR_CMD) {
5380 		log(LOG_ERR,
5381 		    "%s: Received WRERR_RPL message with opcode %#x\n",
5382 		    device_get_nameunit(adap->dev), opcode);
5383 		return (EINVAL);
5384 	}
5385 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
5386 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
5387 	    "non-fatal");
5388 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
5389 	case FW_ERROR_TYPE_EXCEPTION:
5390 		log(LOG_ERR, "exception info:\n");
5391 		for (i = 0; i < nitems(e->u.exception.info); i++)
5392 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
5393 			    be32toh(e->u.exception.info[i]));
5394 		log(LOG_ERR, "\n");
5395 		break;
5396 	case FW_ERROR_TYPE_HWMODULE:
5397 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
5398 		    be32toh(e->u.hwmodule.regaddr),
5399 		    be32toh(e->u.hwmodule.regval));
5400 		break;
5401 	case FW_ERROR_TYPE_WR:
5402 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
5403 		    be16toh(e->u.wr.cidx),
5404 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
5405 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
5406 		    be32toh(e->u.wr.eqid));
5407 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
5408 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
5409 			    e->u.wr.wrhdr[i]);
5410 		log(LOG_ERR, "\n");
5411 		break;
5412 	case FW_ERROR_TYPE_ACL:
5413 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
5414 		    be16toh(e->u.acl.cidx),
5415 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
5416 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
5417 		    be32toh(e->u.acl.eqid),
5418 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
5419 		    "MAC");
5420 		for (i = 0; i < nitems(e->u.acl.val); i++)
5421 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
5422 		log(LOG_ERR, "\n");
5423 		break;
5424 	default:
5425 		log(LOG_ERR, "type %#x\n",
5426 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
5427 		return (EINVAL);
5428 	}
5429 	return (0);
5430 }
5431 
5432 static int
5433 sysctl_uint16(SYSCTL_HANDLER_ARGS)
5434 {
5435 	uint16_t *id = arg1;
5436 	int i = *id;
5437 
5438 	return sysctl_handle_int(oidp, &i, 0, req);
5439 }
5440 
5441 static int
5442 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
5443 {
5444 	struct sge *s = arg1;
5445 	struct hw_buf_info *hwb = &s->hw_buf_info[0];
5446 	struct sw_zone_info *swz = &s->sw_zone_info[0];
5447 	int i, rc;
5448 	struct sbuf sb;
5449 	char c;
5450 
5451 	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
5452 	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
5453 		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
5454 			c = '*';
5455 		else
5456 			c = '\0';
5457 
5458 		sbuf_printf(&sb, "%u%c ", hwb->size, c);
5459 	}
5460 	sbuf_trim(&sb);
5461 	sbuf_finish(&sb);
5462 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
5463 	sbuf_delete(&sb);
5464 	return (rc);
5465 }
5466 
5467 #ifdef RATELIMIT
5468 /*
5469  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5470  */
5471 static inline u_int
5472 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
5473 {
5474 	u_int n;
5475 
5476 	MPASS(immhdrs > 0);
5477 
5478 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
5479 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
5480 	if (__predict_false(nsegs == 0))
5481 		goto done;
5482 
5483 	nsegs--; /* first segment is part of ulptx_sgl */
5484 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5485 	if (tso)
5486 		n += sizeof(struct cpl_tx_pkt_lso_core);
5487 
5488 done:
5489 	return (howmany(n, 16));
5490 }
5491 
5492 #define ETID_FLOWC_NPARAMS 6
5493 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
5494     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
5495 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
5496 
5497 static int
5498 send_etid_flowc_wr(struct cxgbe_snd_tag *cst, struct port_info *pi,
5499     struct vi_info *vi)
5500 {
5501 	struct wrq_cookie cookie;
5502 	u_int pfvf = G_FW_VIID_PFN(vi->viid) << S_FW_VIID_PFN;
5503 	struct fw_flowc_wr *flowc;
5504 
5505 	mtx_assert(&cst->lock, MA_OWNED);
5506 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
5507 	    EO_FLOWC_PENDING);
5508 
5509 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLOWC_LEN16, &cookie);
5510 	if (__predict_false(flowc == NULL))
5511 		return (ENOMEM);
5512 
5513 	bzero(flowc, ETID_FLOWC_LEN);
5514 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
5515 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
5516 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
5517 	    V_FW_WR_FLOWID(cst->etid));
5518 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
5519 	flowc->mnemval[0].val = htobe32(pfvf);
5520 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
5521 	flowc->mnemval[1].val = htobe32(pi->tx_chan);
5522 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
5523 	flowc->mnemval[2].val = htobe32(pi->tx_chan);
5524 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
5525 	flowc->mnemval[3].val = htobe32(cst->iqid);
5526 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
5527 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
5528 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
5529 	flowc->mnemval[5].val = htobe32(cst->schedcl);
5530 
5531 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
5532 
5533 	cst->flags &= ~EO_FLOWC_PENDING;
5534 	cst->flags |= EO_FLOWC_RPL_PENDING;
5535 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
5536 	cst->tx_credits -= ETID_FLOWC_LEN16;
5537 
5538 	return (0);
5539 }
5540 
5541 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
5542 
5543 void
5544 send_etid_flush_wr(struct cxgbe_snd_tag *cst)
5545 {
5546 	struct fw_flowc_wr *flowc;
5547 	struct wrq_cookie cookie;
5548 
5549 	mtx_assert(&cst->lock, MA_OWNED);
5550 
5551 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLUSH_LEN16, &cookie);
5552 	if (__predict_false(flowc == NULL))
5553 		CXGBE_UNIMPLEMENTED(__func__);
5554 
5555 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
5556 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
5557 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
5558 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
5559 	    V_FW_WR_FLOWID(cst->etid));
5560 
5561 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
5562 
5563 	cst->flags |= EO_FLUSH_RPL_PENDING;
5564 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
5565 	cst->tx_credits -= ETID_FLUSH_LEN16;
5566 	cst->ncompl++;
5567 }
5568 
5569 static void
5570 write_ethofld_wr(struct cxgbe_snd_tag *cst, struct fw_eth_tx_eo_wr *wr,
5571     struct mbuf *m0, int compl)
5572 {
5573 	struct cpl_tx_pkt_core *cpl;
5574 	uint64_t ctrl1;
5575 	uint32_t ctrl;	/* used in many unrelated places */
5576 	int len16, pktlen, nsegs, immhdrs;
5577 	caddr_t dst;
5578 	uintptr_t p;
5579 	struct ulptx_sgl *usgl;
5580 	struct sglist sg;
5581 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
5582 
5583 	mtx_assert(&cst->lock, MA_OWNED);
5584 	M_ASSERTPKTHDR(m0);
5585 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5586 	    m0->m_pkthdr.l4hlen > 0,
5587 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
5588 
5589 	if (needs_udp_csum(m0)) {
5590 		CXGBE_UNIMPLEMENTED("UDP ethofld");
5591 	}
5592 
5593 	len16 = mbuf_eo_len16(m0);
5594 	nsegs = mbuf_eo_nsegs(m0);
5595 	pktlen = m0->m_pkthdr.len;
5596 	ctrl = sizeof(struct cpl_tx_pkt_core);
5597 	if (needs_tso(m0))
5598 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5599 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
5600 	ctrl += immhdrs;
5601 
5602 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
5603 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
5604 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
5605 	    V_FW_WR_FLOWID(cst->etid));
5606 	wr->r3 = 0;
5607 	wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
5608 	wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
5609 	wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
5610 	wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
5611 	wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
5612 	wr->u.tcpseg.r4 = 0;
5613 	wr->u.tcpseg.r5 = 0;
5614 	wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
5615 
5616 	if (needs_tso(m0)) {
5617 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
5618 
5619 		wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
5620 
5621 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
5622 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
5623 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5624 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
5625 			ctrl |= V_LSO_ETHHDR_LEN(1);
5626 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5627 			ctrl |= F_LSO_IPV6;
5628 		lso->lso_ctrl = htobe32(ctrl);
5629 		lso->ipid_ofst = htobe16(0);
5630 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5631 		lso->seqno_offset = htobe32(0);
5632 		lso->len = htobe32(pktlen);
5633 
5634 		cpl = (void *)(lso + 1);
5635 	} else {
5636 		wr->u.tcpseg.mss = htobe16(0xffff);
5637 		cpl = (void *)(wr + 1);
5638 	}
5639 
5640 	/* Checksum offload must be requested for ethofld. */
5641 	ctrl1 = 0;
5642 	MPASS(needs_l4_csum(m0));
5643 
5644 	/* VLAN tag insertion */
5645 	if (needs_vlan_insertion(m0)) {
5646 		ctrl1 |= F_TXPKT_VLAN_VLD |
5647 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5648 	}
5649 
5650 	/* CPL header */
5651 	cpl->ctrl0 = cst->ctrl0;
5652 	cpl->pack = 0;
5653 	cpl->len = htobe16(pktlen);
5654 	cpl->ctrl1 = htobe64(ctrl1);
5655 
5656 	/* Copy Ethernet, IP & TCP hdrs as immediate data */
5657 	p = (uintptr_t)(cpl + 1);
5658 	m_copydata(m0, 0, immhdrs, (void *)p);
5659 
5660 	/* SGL */
5661 	dst = (void *)(cpl + 1);
5662 	if (nsegs > 0) {
5663 		int i, pad;
5664 
5665 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
5666 		p += immhdrs;
5667 		pad = 16 - (immhdrs & 0xf);
5668 		bzero((void *)p, pad);
5669 
5670 		usgl = (void *)(p + pad);
5671 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
5672 		    V_ULPTX_NSGE(nsegs));
5673 
5674 		sglist_init(&sg, nitems(segs), segs);
5675 		for (; m0 != NULL; m0 = m0->m_next) {
5676 			if (__predict_false(m0->m_len == 0))
5677 				continue;
5678 			if (immhdrs >= m0->m_len) {
5679 				immhdrs -= m0->m_len;
5680 				continue;
5681 			}
5682 
5683 			sglist_append(&sg, mtod(m0, char *) + immhdrs,
5684 			    m0->m_len - immhdrs);
5685 			immhdrs = 0;
5686 		}
5687 		MPASS(sg.sg_nseg == nsegs);
5688 
5689 		/*
5690 		 * Zero pad last 8B in case the WR doesn't end on a 16B
5691 		 * boundary.
5692 		 */
5693 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
5694 
5695 		usgl->len0 = htobe32(segs[0].ss_len);
5696 		usgl->addr0 = htobe64(segs[0].ss_paddr);
5697 		for (i = 0; i < nsegs - 1; i++) {
5698 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
5699 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
5700 		}
5701 		if (i & 1)
5702 			usgl->sge[i / 2].len[1] = htobe32(0);
5703 	}
5704 
5705 }
5706 
5707 static void
5708 ethofld_tx(struct cxgbe_snd_tag *cst)
5709 {
5710 	struct mbuf *m;
5711 	struct wrq_cookie cookie;
5712 	int next_credits, compl;
5713 	struct fw_eth_tx_eo_wr *wr;
5714 
5715 	mtx_assert(&cst->lock, MA_OWNED);
5716 
5717 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
5718 		M_ASSERTPKTHDR(m);
5719 
5720 		/* How many len16 credits do we need to send this mbuf. */
5721 		next_credits = mbuf_eo_len16(m);
5722 		MPASS(next_credits > 0);
5723 		if (next_credits > cst->tx_credits) {
5724 			/*
5725 			 * Tx will make progress eventually because there is at
5726 			 * least one outstanding fw4_ack that will return
5727 			 * credits and kick the tx.
5728 			 */
5729 			MPASS(cst->ncompl > 0);
5730 			return;
5731 		}
5732 		wr = start_wrq_wr(cst->eo_txq, next_credits, &cookie);
5733 		if (__predict_false(wr == NULL)) {
5734 			/* XXX: wishful thinking, not a real assertion. */
5735 			MPASS(cst->ncompl > 0);
5736 			return;
5737 		}
5738 		cst->tx_credits -= next_credits;
5739 		cst->tx_nocompl += next_credits;
5740 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
5741 		ETHER_BPF_MTAP(cst->com.ifp, m);
5742 		write_ethofld_wr(cst, wr, m, compl);
5743 		commit_wrq_wr(cst->eo_txq, wr, &cookie);
5744 		if (compl) {
5745 			cst->ncompl++;
5746 			cst->tx_nocompl	= 0;
5747 		}
5748 		(void) mbufq_dequeue(&cst->pending_tx);
5749 		mbufq_enqueue(&cst->pending_fwack, m);
5750 	}
5751 }
5752 
5753 int
5754 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
5755 {
5756 	struct cxgbe_snd_tag *cst;
5757 	int rc;
5758 
5759 	MPASS(m0->m_nextpkt == NULL);
5760 	MPASS(m0->m_pkthdr.snd_tag != NULL);
5761 	cst = mst_to_cst(m0->m_pkthdr.snd_tag);
5762 
5763 	mtx_lock(&cst->lock);
5764 	MPASS(cst->flags & EO_SND_TAG_REF);
5765 
5766 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
5767 		struct vi_info *vi = ifp->if_softc;
5768 		struct port_info *pi = vi->pi;
5769 		struct adapter *sc = pi->adapter;
5770 		const uint32_t rss_mask = vi->rss_size - 1;
5771 		uint32_t rss_hash;
5772 
5773 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
5774 		if (M_HASHTYPE_ISHASH(m0))
5775 			rss_hash = m0->m_pkthdr.flowid;
5776 		else
5777 			rss_hash = arc4random();
5778 		/* We assume RSS hashing */
5779 		cst->iqid = vi->rss[rss_hash & rss_mask];
5780 		cst->eo_txq += rss_hash % vi->nofldtxq;
5781 		rc = send_etid_flowc_wr(cst, pi, vi);
5782 		if (rc != 0)
5783 			goto done;
5784 	}
5785 
5786 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
5787 		rc = ENOBUFS;
5788 		goto done;
5789 	}
5790 
5791 	mbufq_enqueue(&cst->pending_tx, m0);
5792 	cst->plen += m0->m_pkthdr.len;
5793 
5794 	ethofld_tx(cst);
5795 	rc = 0;
5796 done:
5797 	mtx_unlock(&cst->lock);
5798 	if (__predict_false(rc != 0))
5799 		m_freem(m0);
5800 	return (rc);
5801 }
5802 
5803 static int
5804 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
5805 {
5806 	struct adapter *sc = iq->adapter;
5807 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
5808 	struct mbuf *m;
5809 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
5810 	struct cxgbe_snd_tag *cst;
5811 	uint8_t credits = cpl->credits;
5812 
5813 	cst = lookup_etid(sc, etid);
5814 	mtx_lock(&cst->lock);
5815 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
5816 		MPASS(credits >= ETID_FLOWC_LEN16);
5817 		credits -= ETID_FLOWC_LEN16;
5818 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
5819 	}
5820 
5821 	KASSERT(cst->ncompl > 0,
5822 	    ("%s: etid %u (%p) wasn't expecting completion.",
5823 	    __func__, etid, cst));
5824 	cst->ncompl--;
5825 
5826 	while (credits > 0) {
5827 		m = mbufq_dequeue(&cst->pending_fwack);
5828 		if (__predict_false(m == NULL)) {
5829 			/*
5830 			 * The remaining credits are for the final flush that
5831 			 * was issued when the tag was freed by the kernel.
5832 			 */
5833 			MPASS((cst->flags &
5834 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
5835 			    EO_FLUSH_RPL_PENDING);
5836 			MPASS(credits == ETID_FLUSH_LEN16);
5837 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
5838 			MPASS(cst->ncompl == 0);
5839 
5840 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
5841 			cst->tx_credits += cpl->credits;
5842 freetag:
5843 			cxgbe_snd_tag_free_locked(cst);
5844 			return (0);	/* cst is gone. */
5845 		}
5846 		KASSERT(m != NULL,
5847 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
5848 		    credits));
5849 		KASSERT(credits >= mbuf_eo_len16(m),
5850 		    ("%s: too few credits (%u, %u, %u)", __func__,
5851 		    cpl->credits, credits, mbuf_eo_len16(m)));
5852 		credits -= mbuf_eo_len16(m);
5853 		cst->plen -= m->m_pkthdr.len;
5854 		m_freem(m);
5855 	}
5856 
5857 	cst->tx_credits += cpl->credits;
5858 	MPASS(cst->tx_credits <= cst->tx_total);
5859 
5860 	m = mbufq_first(&cst->pending_tx);
5861 	if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
5862 		ethofld_tx(cst);
5863 
5864 	if (__predict_false((cst->flags & EO_SND_TAG_REF) == 0) &&
5865 	    cst->ncompl == 0) {
5866 		if (cst->tx_credits == cst->tx_total)
5867 			goto freetag;
5868 		else {
5869 			MPASS((cst->flags & EO_FLUSH_RPL_PENDING) == 0);
5870 			send_etid_flush_wr(cst);
5871 		}
5872 	}
5873 
5874 	mtx_unlock(&cst->lock);
5875 
5876 	return (0);
5877 }
5878 #endif
5879