1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ratelimit.h" 36 37 #include <sys/types.h> 38 #include <sys/eventhandler.h> 39 #include <sys/mbuf.h> 40 #include <sys/socket.h> 41 #include <sys/kernel.h> 42 #include <sys/malloc.h> 43 #include <sys/queue.h> 44 #include <sys/sbuf.h> 45 #include <sys/taskqueue.h> 46 #include <sys/time.h> 47 #include <sys/sglist.h> 48 #include <sys/sysctl.h> 49 #include <sys/smp.h> 50 #include <sys/counter.h> 51 #include <net/bpf.h> 52 #include <net/ethernet.h> 53 #include <net/if.h> 54 #include <net/if_vlan_var.h> 55 #include <netinet/in.h> 56 #include <netinet/ip.h> 57 #include <netinet/ip6.h> 58 #include <netinet/tcp.h> 59 #include <netinet/udp.h> 60 #include <machine/in_cksum.h> 61 #include <machine/md_var.h> 62 #include <vm/vm.h> 63 #include <vm/pmap.h> 64 #ifdef DEV_NETMAP 65 #include <machine/bus.h> 66 #include <sys/selinfo.h> 67 #include <net/if_var.h> 68 #include <net/netmap.h> 69 #include <dev/netmap/netmap_kern.h> 70 #endif 71 72 #include "common/common.h" 73 #include "common/t4_regs.h" 74 #include "common/t4_regs_values.h" 75 #include "common/t4_msg.h" 76 #include "t4_l2t.h" 77 #include "t4_mp_ring.h" 78 79 #ifdef T4_PKT_TIMESTAMP 80 #define RX_COPY_THRESHOLD (MINCLSIZE - 8) 81 #else 82 #define RX_COPY_THRESHOLD MINCLSIZE 83 #endif 84 85 /* 86 * Ethernet frames are DMA'd at this byte offset into the freelist buffer. 87 * 0-7 are valid values. 88 */ 89 static int fl_pktshift = 0; 90 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift); 91 92 /* 93 * Pad ethernet payload up to this boundary. 94 * -1: driver should figure out a good value. 95 * 0: disable padding. 96 * Any power of 2 from 32 to 4096 (both inclusive) is also a valid value. 97 */ 98 int fl_pad = -1; 99 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad); 100 101 /* 102 * Status page length. 103 * -1: driver should figure out a good value. 104 * 64 or 128 are the only other valid values. 105 */ 106 static int spg_len = -1; 107 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len); 108 109 /* 110 * Congestion drops. 111 * -1: no congestion feedback (not recommended). 112 * 0: backpressure the channel instead of dropping packets right away. 113 * 1: no backpressure, drop packets for the congested queue immediately. 114 */ 115 static int cong_drop = 0; 116 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop); 117 118 /* 119 * Deliver multiple frames in the same free list buffer if they fit. 120 * -1: let the driver decide whether to enable buffer packing or not. 121 * 0: disable buffer packing. 122 * 1: enable buffer packing. 123 */ 124 static int buffer_packing = -1; 125 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing); 126 127 /* 128 * Start next frame in a packed buffer at this boundary. 129 * -1: driver should figure out a good value. 130 * T4: driver will ignore this and use the same value as fl_pad above. 131 * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value. 132 */ 133 static int fl_pack = -1; 134 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack); 135 136 /* 137 * Allow the driver to create mbuf(s) in a cluster allocated for rx. 138 * 0: never; always allocate mbufs from the zone_mbuf UMA zone. 139 * 1: ok to create mbuf(s) within a cluster if there is room. 140 */ 141 static int allow_mbufs_in_cluster = 1; 142 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster); 143 144 /* 145 * Largest rx cluster size that the driver is allowed to allocate. 146 */ 147 static int largest_rx_cluster = MJUM16BYTES; 148 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster); 149 150 /* 151 * Size of cluster allocation that's most likely to succeed. The driver will 152 * fall back to this size if it fails to allocate clusters larger than this. 153 */ 154 static int safest_rx_cluster = PAGE_SIZE; 155 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster); 156 157 #ifdef RATELIMIT 158 /* 159 * Knob to control TCP timestamp rewriting, and the granularity of the tick used 160 * for rewriting. -1 and 0-3 are all valid values. 161 * -1: hardware should leave the TCP timestamps alone. 162 * 0: 1ms 163 * 1: 100us 164 * 2: 10us 165 * 3: 1us 166 */ 167 static int tsclk = -1; 168 TUNABLE_INT("hw.cxgbe.tsclk", &tsclk); 169 170 static int eo_max_backlog = 1024 * 1024; 171 TUNABLE_INT("hw.cxgbe.eo_max_backlog", &eo_max_backlog); 172 #endif 173 174 /* 175 * The interrupt holdoff timers are multiplied by this value on T6+. 176 * 1 and 3-17 (both inclusive) are legal values. 177 */ 178 static int tscale = 1; 179 TUNABLE_INT("hw.cxgbe.tscale", &tscale); 180 181 /* 182 * Number of LRO entries in the lro_ctrl structure per rx queue. 183 */ 184 static int lro_entries = TCP_LRO_ENTRIES; 185 TUNABLE_INT("hw.cxgbe.lro_entries", &lro_entries); 186 187 /* 188 * This enables presorting of frames before they're fed into tcp_lro_rx. 189 */ 190 static int lro_mbufs = 0; 191 TUNABLE_INT("hw.cxgbe.lro_mbufs", &lro_mbufs); 192 193 struct txpkts { 194 u_int wr_type; /* type 0 or type 1 */ 195 u_int npkt; /* # of packets in this work request */ 196 u_int plen; /* total payload (sum of all packets) */ 197 u_int len16; /* # of 16B pieces used by this work request */ 198 }; 199 200 /* A packet's SGL. This + m_pkthdr has all info needed for tx */ 201 struct sgl { 202 struct sglist sg; 203 struct sglist_seg seg[TX_SGL_SEGS]; 204 }; 205 206 static int service_iq(struct sge_iq *, int); 207 static int service_iq_fl(struct sge_iq *, int); 208 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t); 209 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *); 210 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int); 211 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *); 212 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t, 213 uint16_t, char *); 214 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, 215 bus_addr_t *, void **); 216 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, 217 void *); 218 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *, 219 int, int); 220 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *); 221 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *, 222 struct sge_iq *); 223 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *, 224 struct sysctl_oid *, struct sge_fl *); 225 static int alloc_fwq(struct adapter *); 226 static int free_fwq(struct adapter *); 227 static int alloc_ctrlq(struct adapter *, struct sge_wrq *, int, 228 struct sysctl_oid *); 229 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, 230 struct sysctl_oid *); 231 static int free_rxq(struct vi_info *, struct sge_rxq *); 232 #ifdef TCP_OFFLOAD 233 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int, 234 struct sysctl_oid *); 235 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *); 236 #endif 237 #ifdef DEV_NETMAP 238 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int, 239 struct sysctl_oid *); 240 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *); 241 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int, 242 struct sysctl_oid *); 243 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *); 244 #endif 245 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *); 246 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 247 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 248 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 249 #endif 250 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *); 251 static int free_eq(struct adapter *, struct sge_eq *); 252 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *, 253 struct sysctl_oid *); 254 static int free_wrq(struct adapter *, struct sge_wrq *); 255 static int alloc_txq(struct vi_info *, struct sge_txq *, int, 256 struct sysctl_oid *); 257 static int free_txq(struct vi_info *, struct sge_txq *); 258 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); 259 static inline void ring_fl_db(struct adapter *, struct sge_fl *); 260 static int refill_fl(struct adapter *, struct sge_fl *, int); 261 static void refill_sfl(void *); 262 static int alloc_fl_sdesc(struct sge_fl *); 263 static void free_fl_sdesc(struct adapter *, struct sge_fl *); 264 static void find_best_refill_source(struct adapter *, struct sge_fl *, int); 265 static void find_safe_refill_source(struct adapter *, struct sge_fl *); 266 static void add_fl_to_sfl(struct adapter *, struct sge_fl *); 267 268 static inline void get_pkt_gl(struct mbuf *, struct sglist *); 269 static inline u_int txpkt_len16(u_int, u_int); 270 static inline u_int txpkt_vm_len16(u_int, u_int); 271 static inline u_int txpkts0_len16(u_int); 272 static inline u_int txpkts1_len16(void); 273 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *, 274 struct mbuf *, u_int); 275 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *, 276 struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int); 277 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int); 278 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int); 279 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *, 280 struct mbuf *, const struct txpkts *, u_int); 281 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int); 282 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); 283 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int); 284 static inline uint16_t read_hw_cidx(struct sge_eq *); 285 static inline u_int reclaimable_tx_desc(struct sge_eq *); 286 static inline u_int total_available_tx_desc(struct sge_eq *); 287 static u_int reclaim_tx_descs(struct sge_txq *, u_int); 288 static void tx_reclaim(void *, int); 289 static __be64 get_flit(struct sglist_seg *, int, int); 290 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, 291 struct mbuf *); 292 static int handle_fw_msg(struct sge_iq *, const struct rss_header *, 293 struct mbuf *); 294 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *); 295 static void wrq_tx_drain(void *, int); 296 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *); 297 298 static int sysctl_uint16(SYSCTL_HANDLER_ARGS); 299 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS); 300 #ifdef RATELIMIT 301 static inline u_int txpkt_eo_len16(u_int, u_int, u_int); 302 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *, 303 struct mbuf *); 304 #endif 305 306 static counter_u64_t extfree_refs; 307 static counter_u64_t extfree_rels; 308 309 an_handler_t t4_an_handler; 310 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES]; 311 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS]; 312 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES]; 313 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES]; 314 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES]; 315 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES]; 316 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES]; 317 318 void 319 t4_register_an_handler(an_handler_t h) 320 { 321 uintptr_t *loc; 322 323 MPASS(h == NULL || t4_an_handler == NULL); 324 325 loc = (uintptr_t *)&t4_an_handler; 326 atomic_store_rel_ptr(loc, (uintptr_t)h); 327 } 328 329 void 330 t4_register_fw_msg_handler(int type, fw_msg_handler_t h) 331 { 332 uintptr_t *loc; 333 334 MPASS(type < nitems(t4_fw_msg_handler)); 335 MPASS(h == NULL || t4_fw_msg_handler[type] == NULL); 336 /* 337 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL 338 * handler dispatch table. Reject any attempt to install a handler for 339 * this subtype. 340 */ 341 MPASS(type != FW_TYPE_RSSCPL); 342 MPASS(type != FW6_TYPE_RSSCPL); 343 344 loc = (uintptr_t *)&t4_fw_msg_handler[type]; 345 atomic_store_rel_ptr(loc, (uintptr_t)h); 346 } 347 348 void 349 t4_register_cpl_handler(int opcode, cpl_handler_t h) 350 { 351 uintptr_t *loc; 352 353 MPASS(opcode < nitems(t4_cpl_handler)); 354 MPASS(h == NULL || t4_cpl_handler[opcode] == NULL); 355 356 loc = (uintptr_t *)&t4_cpl_handler[opcode]; 357 atomic_store_rel_ptr(loc, (uintptr_t)h); 358 } 359 360 static int 361 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss, 362 struct mbuf *m) 363 { 364 const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); 365 u_int tid; 366 int cookie; 367 368 MPASS(m == NULL); 369 370 tid = GET_TID(cpl); 371 if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) { 372 /* 373 * The return code for filter-write is put in the CPL cookie so 374 * we have to rely on the hardware tid (is_ftid) to determine 375 * that this is a response to a filter. 376 */ 377 cookie = CPL_COOKIE_FILTER; 378 } else { 379 cookie = G_COOKIE(cpl->cookie); 380 } 381 MPASS(cookie > CPL_COOKIE_RESERVED); 382 MPASS(cookie < nitems(set_tcb_rpl_handlers)); 383 384 return (set_tcb_rpl_handlers[cookie](iq, rss, m)); 385 } 386 387 static int 388 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss, 389 struct mbuf *m) 390 { 391 const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1); 392 unsigned int cookie; 393 394 MPASS(m == NULL); 395 396 cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER; 397 return (l2t_write_rpl_handlers[cookie](iq, rss, m)); 398 } 399 400 static int 401 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss, 402 struct mbuf *m) 403 { 404 const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1); 405 u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status))); 406 407 MPASS(m == NULL); 408 MPASS(cookie != CPL_COOKIE_RESERVED); 409 410 return (act_open_rpl_handlers[cookie](iq, rss, m)); 411 } 412 413 static int 414 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss, 415 struct mbuf *m) 416 { 417 struct adapter *sc = iq->adapter; 418 u_int cookie; 419 420 MPASS(m == NULL); 421 if (is_hashfilter(sc)) 422 cookie = CPL_COOKIE_HASHFILTER; 423 else 424 cookie = CPL_COOKIE_TOM; 425 426 return (abort_rpl_rss_handlers[cookie](iq, rss, m)); 427 } 428 429 static int 430 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 431 { 432 struct adapter *sc = iq->adapter; 433 const struct cpl_fw4_ack *cpl = (const void *)(rss + 1); 434 unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl))); 435 u_int cookie; 436 437 MPASS(m == NULL); 438 if (is_etid(sc, tid)) 439 cookie = CPL_COOKIE_ETHOFLD; 440 else 441 cookie = CPL_COOKIE_TOM; 442 443 return (fw4_ack_handlers[cookie](iq, rss, m)); 444 } 445 446 static void 447 t4_init_shared_cpl_handlers(void) 448 { 449 450 t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler); 451 t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler); 452 t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler); 453 t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler); 454 t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler); 455 } 456 457 void 458 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie) 459 { 460 uintptr_t *loc; 461 462 MPASS(opcode < nitems(t4_cpl_handler)); 463 MPASS(cookie > CPL_COOKIE_RESERVED); 464 MPASS(cookie < NUM_CPL_COOKIES); 465 MPASS(t4_cpl_handler[opcode] != NULL); 466 467 switch (opcode) { 468 case CPL_SET_TCB_RPL: 469 loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie]; 470 break; 471 case CPL_L2T_WRITE_RPL: 472 loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie]; 473 break; 474 case CPL_ACT_OPEN_RPL: 475 loc = (uintptr_t *)&act_open_rpl_handlers[cookie]; 476 break; 477 case CPL_ABORT_RPL_RSS: 478 loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie]; 479 break; 480 case CPL_FW4_ACK: 481 loc = (uintptr_t *)&fw4_ack_handlers[cookie]; 482 break; 483 default: 484 MPASS(0); 485 return; 486 } 487 MPASS(h == NULL || *loc == (uintptr_t)NULL); 488 atomic_store_rel_ptr(loc, (uintptr_t)h); 489 } 490 491 /* 492 * Called on MOD_LOAD. Validates and calculates the SGE tunables. 493 */ 494 void 495 t4_sge_modload(void) 496 { 497 498 if (fl_pktshift < 0 || fl_pktshift > 7) { 499 printf("Invalid hw.cxgbe.fl_pktshift value (%d)," 500 " using 0 instead.\n", fl_pktshift); 501 fl_pktshift = 0; 502 } 503 504 if (spg_len != 64 && spg_len != 128) { 505 int len; 506 507 #if defined(__i386__) || defined(__amd64__) 508 len = cpu_clflush_line_size > 64 ? 128 : 64; 509 #else 510 len = 64; 511 #endif 512 if (spg_len != -1) { 513 printf("Invalid hw.cxgbe.spg_len value (%d)," 514 " using %d instead.\n", spg_len, len); 515 } 516 spg_len = len; 517 } 518 519 if (cong_drop < -1 || cong_drop > 1) { 520 printf("Invalid hw.cxgbe.cong_drop value (%d)," 521 " using 0 instead.\n", cong_drop); 522 cong_drop = 0; 523 } 524 525 if (tscale != 1 && (tscale < 3 || tscale > 17)) { 526 printf("Invalid hw.cxgbe.tscale value (%d)," 527 " using 1 instead.\n", tscale); 528 tscale = 1; 529 } 530 531 extfree_refs = counter_u64_alloc(M_WAITOK); 532 extfree_rels = counter_u64_alloc(M_WAITOK); 533 counter_u64_zero(extfree_refs); 534 counter_u64_zero(extfree_rels); 535 536 t4_init_shared_cpl_handlers(); 537 t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg); 538 t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg); 539 t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update); 540 t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx); 541 #ifdef RATELIMIT 542 t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack, 543 CPL_COOKIE_ETHOFLD); 544 #endif 545 t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl); 546 t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl); 547 } 548 549 void 550 t4_sge_modunload(void) 551 { 552 553 counter_u64_free(extfree_refs); 554 counter_u64_free(extfree_rels); 555 } 556 557 uint64_t 558 t4_sge_extfree_refs(void) 559 { 560 uint64_t refs, rels; 561 562 rels = counter_u64_fetch(extfree_rels); 563 refs = counter_u64_fetch(extfree_refs); 564 565 return (refs - rels); 566 } 567 568 static inline void 569 setup_pad_and_pack_boundaries(struct adapter *sc) 570 { 571 uint32_t v, m; 572 int pad, pack, pad_shift; 573 574 pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT : 575 X_INGPADBOUNDARY_SHIFT; 576 pad = fl_pad; 577 if (fl_pad < (1 << pad_shift) || 578 fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) || 579 !powerof2(fl_pad)) { 580 /* 581 * If there is any chance that we might use buffer packing and 582 * the chip is a T4, then pick 64 as the pad/pack boundary. Set 583 * it to the minimum allowed in all other cases. 584 */ 585 pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift; 586 587 /* 588 * For fl_pad = 0 we'll still write a reasonable value to the 589 * register but all the freelists will opt out of padding. 590 * We'll complain here only if the user tried to set it to a 591 * value greater than 0 that was invalid. 592 */ 593 if (fl_pad > 0) { 594 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value" 595 " (%d), using %d instead.\n", fl_pad, pad); 596 } 597 } 598 m = V_INGPADBOUNDARY(M_INGPADBOUNDARY); 599 v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift); 600 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 601 602 if (is_t4(sc)) { 603 if (fl_pack != -1 && fl_pack != pad) { 604 /* Complain but carry on. */ 605 device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored," 606 " using %d instead.\n", fl_pack, pad); 607 } 608 return; 609 } 610 611 pack = fl_pack; 612 if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 || 613 !powerof2(fl_pack)) { 614 pack = max(sc->params.pci.mps, CACHE_LINE_SIZE); 615 MPASS(powerof2(pack)); 616 if (pack < 16) 617 pack = 16; 618 if (pack == 32) 619 pack = 64; 620 if (pack > 4096) 621 pack = 4096; 622 if (fl_pack != -1) { 623 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value" 624 " (%d), using %d instead.\n", fl_pack, pack); 625 } 626 } 627 m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY); 628 if (pack == 16) 629 v = V_INGPACKBOUNDARY(0); 630 else 631 v = V_INGPACKBOUNDARY(ilog2(pack) - 5); 632 633 MPASS(!is_t4(sc)); /* T4 doesn't have SGE_CONTROL2 */ 634 t4_set_reg_field(sc, A_SGE_CONTROL2, m, v); 635 } 636 637 /* 638 * adap->params.vpd.cclk must be set up before this is called. 639 */ 640 void 641 t4_tweak_chip_settings(struct adapter *sc) 642 { 643 int i; 644 uint32_t v, m; 645 int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; 646 int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk; 647 int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ 648 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 649 static int sge_flbuf_sizes[] = { 650 MCLBYTES, 651 #if MJUMPAGESIZE != MCLBYTES 652 MJUMPAGESIZE, 653 MJUMPAGESIZE - CL_METADATA_SIZE, 654 MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE, 655 #endif 656 MJUM9BYTES, 657 MJUM16BYTES, 658 MCLBYTES - MSIZE - CL_METADATA_SIZE, 659 MJUM9BYTES - CL_METADATA_SIZE, 660 MJUM16BYTES - CL_METADATA_SIZE, 661 }; 662 663 KASSERT(sc->flags & MASTER_PF, 664 ("%s: trying to change chip settings when not master.", __func__)); 665 666 m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE; 667 v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | 668 V_EGRSTATUSPAGESIZE(spg_len == 128); 669 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 670 671 setup_pad_and_pack_boundaries(sc); 672 673 v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | 674 V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | 675 V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | 676 V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | 677 V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | 678 V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | 679 V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | 680 V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); 681 t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v); 682 683 KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES, 684 ("%s: hw buffer size table too big", __func__)); 685 for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) { 686 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i), 687 sge_flbuf_sizes[i]); 688 } 689 690 v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) | 691 V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]); 692 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v); 693 694 KASSERT(intr_timer[0] <= timer_max, 695 ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0], 696 timer_max)); 697 for (i = 1; i < nitems(intr_timer); i++) { 698 KASSERT(intr_timer[i] >= intr_timer[i - 1], 699 ("%s: timers not listed in increasing order (%d)", 700 __func__, i)); 701 702 while (intr_timer[i] > timer_max) { 703 if (i == nitems(intr_timer) - 1) { 704 intr_timer[i] = timer_max; 705 break; 706 } 707 intr_timer[i] += intr_timer[i - 1]; 708 intr_timer[i] /= 2; 709 } 710 } 711 712 v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) | 713 V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])); 714 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v); 715 v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) | 716 V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])); 717 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v); 718 v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) | 719 V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])); 720 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v); 721 722 if (chip_id(sc) >= CHELSIO_T6) { 723 m = V_TSCALE(M_TSCALE); 724 if (tscale == 1) 725 v = 0; 726 else 727 v = V_TSCALE(tscale - 2); 728 t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v); 729 730 if (sc->debug_flags & DF_DISABLE_TCB_CACHE) { 731 m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN | 732 V_WRTHRTHRESH(M_WRTHRTHRESH); 733 t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1); 734 v &= ~m; 735 v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN | 736 V_WRTHRTHRESH(16); 737 t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1); 738 } 739 } 740 741 /* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */ 742 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 743 t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v); 744 745 /* 746 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP. These have been 747 * chosen with MAXPHYS = 128K in mind. The largest DDP buffer that we 748 * may have to deal with is MAXPHYS + 1 page. 749 */ 750 v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4); 751 t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v); 752 753 /* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */ 754 m = v = F_TDDPTAGTCB | F_ISCSITAGTCB; 755 t4_set_reg_field(sc, A_ULP_RX_CTL, m, v); 756 757 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 758 F_RESETDDPOFFSET; 759 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 760 t4_set_reg_field(sc, A_TP_PARA_REG5, m, v); 761 } 762 763 /* 764 * SGE wants the buffer to be at least 64B and then a multiple of 16. If 765 * padding is in use, the buffer's start and end need to be aligned to the pad 766 * boundary as well. We'll just make sure that the size is a multiple of the 767 * boundary here, it is up to the buffer allocation code to make sure the start 768 * of the buffer is aligned as well. 769 */ 770 static inline int 771 hwsz_ok(struct adapter *sc, int hwsz) 772 { 773 int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1; 774 775 return (hwsz >= 64 && (hwsz & mask) == 0); 776 } 777 778 /* 779 * XXX: driver really should be able to deal with unexpected settings. 780 */ 781 int 782 t4_read_chip_settings(struct adapter *sc) 783 { 784 struct sge *s = &sc->sge; 785 struct sge_params *sp = &sc->params.sge; 786 int i, j, n, rc = 0; 787 uint32_t m, v, r; 788 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 789 static int sw_buf_sizes[] = { /* Sorted by size */ 790 MCLBYTES, 791 #if MJUMPAGESIZE != MCLBYTES 792 MJUMPAGESIZE, 793 #endif 794 MJUM9BYTES, 795 MJUM16BYTES 796 }; 797 struct sw_zone_info *swz, *safe_swz; 798 struct hw_buf_info *hwb; 799 800 m = F_RXPKTCPLMODE; 801 v = F_RXPKTCPLMODE; 802 r = sc->params.sge.sge_control; 803 if ((r & m) != v) { 804 device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r); 805 rc = EINVAL; 806 } 807 808 /* 809 * If this changes then every single use of PAGE_SHIFT in the driver 810 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift. 811 */ 812 if (sp->page_shift != PAGE_SHIFT) { 813 device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r); 814 rc = EINVAL; 815 } 816 817 /* Filter out unusable hw buffer sizes entirely (mark with -2). */ 818 hwb = &s->hw_buf_info[0]; 819 for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) { 820 r = sc->params.sge.sge_fl_buffer_size[i]; 821 hwb->size = r; 822 hwb->zidx = hwsz_ok(sc, r) ? -1 : -2; 823 hwb->next = -1; 824 } 825 826 /* 827 * Create a sorted list in decreasing order of hw buffer sizes (and so 828 * increasing order of spare area) for each software zone. 829 * 830 * If padding is enabled then the start and end of the buffer must align 831 * to the pad boundary; if packing is enabled then they must align with 832 * the pack boundary as well. Allocations from the cluster zones are 833 * aligned to min(size, 4K), so the buffer starts at that alignment and 834 * ends at hwb->size alignment. If mbuf inlining is allowed the 835 * starting alignment will be reduced to MSIZE and the driver will 836 * exercise appropriate caution when deciding on the best buffer layout 837 * to use. 838 */ 839 n = 0; /* no usable buffer size to begin with */ 840 swz = &s->sw_zone_info[0]; 841 safe_swz = NULL; 842 for (i = 0; i < SW_ZONE_SIZES; i++, swz++) { 843 int8_t head = -1, tail = -1; 844 845 swz->size = sw_buf_sizes[i]; 846 swz->zone = m_getzone(swz->size); 847 swz->type = m_gettype(swz->size); 848 849 if (swz->size < PAGE_SIZE) { 850 MPASS(powerof2(swz->size)); 851 if (fl_pad && (swz->size % sp->pad_boundary != 0)) 852 continue; 853 } 854 855 if (swz->size == safest_rx_cluster) 856 safe_swz = swz; 857 858 hwb = &s->hw_buf_info[0]; 859 for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) { 860 if (hwb->zidx != -1 || hwb->size > swz->size) 861 continue; 862 #ifdef INVARIANTS 863 if (fl_pad) 864 MPASS(hwb->size % sp->pad_boundary == 0); 865 #endif 866 hwb->zidx = i; 867 if (head == -1) 868 head = tail = j; 869 else if (hwb->size < s->hw_buf_info[tail].size) { 870 s->hw_buf_info[tail].next = j; 871 tail = j; 872 } else { 873 int8_t *cur; 874 struct hw_buf_info *t; 875 876 for (cur = &head; *cur != -1; cur = &t->next) { 877 t = &s->hw_buf_info[*cur]; 878 if (hwb->size == t->size) { 879 hwb->zidx = -2; 880 break; 881 } 882 if (hwb->size > t->size) { 883 hwb->next = *cur; 884 *cur = j; 885 break; 886 } 887 } 888 } 889 } 890 swz->head_hwidx = head; 891 swz->tail_hwidx = tail; 892 893 if (tail != -1) { 894 n++; 895 if (swz->size - s->hw_buf_info[tail].size >= 896 CL_METADATA_SIZE) 897 sc->flags |= BUF_PACKING_OK; 898 } 899 } 900 if (n == 0) { 901 device_printf(sc->dev, "no usable SGE FL buffer size.\n"); 902 rc = EINVAL; 903 } 904 905 s->safe_hwidx1 = -1; 906 s->safe_hwidx2 = -1; 907 if (safe_swz != NULL) { 908 s->safe_hwidx1 = safe_swz->head_hwidx; 909 for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) { 910 int spare; 911 912 hwb = &s->hw_buf_info[i]; 913 #ifdef INVARIANTS 914 if (fl_pad) 915 MPASS(hwb->size % sp->pad_boundary == 0); 916 #endif 917 spare = safe_swz->size - hwb->size; 918 if (spare >= CL_METADATA_SIZE) { 919 s->safe_hwidx2 = i; 920 break; 921 } 922 } 923 } 924 925 if (sc->flags & IS_VF) 926 return (0); 927 928 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 929 r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ); 930 if (r != v) { 931 device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r); 932 rc = EINVAL; 933 } 934 935 m = v = F_TDDPTAGTCB; 936 r = t4_read_reg(sc, A_ULP_RX_CTL); 937 if ((r & m) != v) { 938 device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r); 939 rc = EINVAL; 940 } 941 942 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 943 F_RESETDDPOFFSET; 944 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 945 r = t4_read_reg(sc, A_TP_PARA_REG5); 946 if ((r & m) != v) { 947 device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r); 948 rc = EINVAL; 949 } 950 951 t4_init_tp_params(sc, 1); 952 953 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 954 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 955 956 return (rc); 957 } 958 959 int 960 t4_create_dma_tag(struct adapter *sc) 961 { 962 int rc; 963 964 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, 965 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, 966 BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, 967 NULL, &sc->dmat); 968 if (rc != 0) { 969 device_printf(sc->dev, 970 "failed to create main DMA tag: %d\n", rc); 971 } 972 973 return (rc); 974 } 975 976 void 977 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 978 struct sysctl_oid_list *children) 979 { 980 struct sge_params *sp = &sc->params.sge; 981 982 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes", 983 CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A", 984 "freelist buffer sizes"); 985 986 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD, 987 NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)"); 988 989 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD, 990 NULL, sp->pad_boundary, "payload pad boundary (bytes)"); 991 992 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD, 993 NULL, sp->spg_len, "status page size (bytes)"); 994 995 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD, 996 NULL, cong_drop, "congestion drop setting"); 997 998 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD, 999 NULL, sp->pack_boundary, "payload pack boundary (bytes)"); 1000 } 1001 1002 int 1003 t4_destroy_dma_tag(struct adapter *sc) 1004 { 1005 if (sc->dmat) 1006 bus_dma_tag_destroy(sc->dmat); 1007 1008 return (0); 1009 } 1010 1011 /* 1012 * Allocate and initialize the firmware event queue, control queues, and special 1013 * purpose rx queues owned by the adapter. 1014 * 1015 * Returns errno on failure. Resources allocated up to that point may still be 1016 * allocated. Caller is responsible for cleanup in case this function fails. 1017 */ 1018 int 1019 t4_setup_adapter_queues(struct adapter *sc) 1020 { 1021 struct sysctl_oid *oid; 1022 struct sysctl_oid_list *children; 1023 int rc, i; 1024 1025 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 1026 1027 sysctl_ctx_init(&sc->ctx); 1028 sc->flags |= ADAP_SYSCTL_CTX; 1029 1030 /* 1031 * Firmware event queue 1032 */ 1033 rc = alloc_fwq(sc); 1034 if (rc != 0) 1035 return (rc); 1036 1037 /* 1038 * That's all for the VF driver. 1039 */ 1040 if (sc->flags & IS_VF) 1041 return (rc); 1042 1043 oid = device_get_sysctl_tree(sc->dev); 1044 children = SYSCTL_CHILDREN(oid); 1045 1046 /* 1047 * XXX: General purpose rx queues, one per port. 1048 */ 1049 1050 /* 1051 * Control queues, one per port. 1052 */ 1053 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "ctrlq", 1054 CTLFLAG_RD, NULL, "control queues"); 1055 for_each_port(sc, i) { 1056 struct sge_wrq *ctrlq = &sc->sge.ctrlq[i]; 1057 1058 rc = alloc_ctrlq(sc, ctrlq, i, oid); 1059 if (rc != 0) 1060 return (rc); 1061 } 1062 1063 return (rc); 1064 } 1065 1066 /* 1067 * Idempotent 1068 */ 1069 int 1070 t4_teardown_adapter_queues(struct adapter *sc) 1071 { 1072 int i; 1073 1074 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 1075 1076 /* Do this before freeing the queue */ 1077 if (sc->flags & ADAP_SYSCTL_CTX) { 1078 sysctl_ctx_free(&sc->ctx); 1079 sc->flags &= ~ADAP_SYSCTL_CTX; 1080 } 1081 1082 for_each_port(sc, i) 1083 free_wrq(sc, &sc->sge.ctrlq[i]); 1084 free_fwq(sc); 1085 1086 return (0); 1087 } 1088 1089 /* Maximum payload that can be delivered with a single iq descriptor */ 1090 static inline int 1091 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe) 1092 { 1093 int payload; 1094 1095 #ifdef TCP_OFFLOAD 1096 if (toe) { 1097 int rxcs = G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)); 1098 1099 /* Note that COP can set rx_coalesce on/off per connection. */ 1100 payload = max(mtu, rxcs); 1101 } else { 1102 #endif 1103 /* large enough even when hw VLAN extraction is disabled */ 1104 payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN + 1105 ETHER_VLAN_ENCAP_LEN + mtu; 1106 #ifdef TCP_OFFLOAD 1107 } 1108 #endif 1109 1110 return (payload); 1111 } 1112 1113 int 1114 t4_setup_vi_queues(struct vi_info *vi) 1115 { 1116 int rc = 0, i, intr_idx, iqidx; 1117 struct sge_rxq *rxq; 1118 struct sge_txq *txq; 1119 #ifdef TCP_OFFLOAD 1120 struct sge_ofld_rxq *ofld_rxq; 1121 #endif 1122 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1123 struct sge_wrq *ofld_txq; 1124 #endif 1125 #ifdef DEV_NETMAP 1126 int saved_idx; 1127 struct sge_nm_rxq *nm_rxq; 1128 struct sge_nm_txq *nm_txq; 1129 #endif 1130 char name[16]; 1131 struct port_info *pi = vi->pi; 1132 struct adapter *sc = pi->adapter; 1133 struct ifnet *ifp = vi->ifp; 1134 struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev); 1135 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 1136 int maxp, mtu = ifp->if_mtu; 1137 1138 /* Interrupt vector to start from (when using multiple vectors) */ 1139 intr_idx = vi->first_intr; 1140 1141 #ifdef DEV_NETMAP 1142 saved_idx = intr_idx; 1143 if (ifp->if_capabilities & IFCAP_NETMAP) { 1144 1145 /* netmap is supported with direct interrupts only. */ 1146 MPASS(!forwarding_intr_to_fwq(sc)); 1147 1148 /* 1149 * We don't have buffers to back the netmap rx queues 1150 * right now so we create the queues in a way that 1151 * doesn't set off any congestion signal in the chip. 1152 */ 1153 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq", 1154 CTLFLAG_RD, NULL, "rx queues"); 1155 for_each_nm_rxq(vi, i, nm_rxq) { 1156 rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid); 1157 if (rc != 0) 1158 goto done; 1159 intr_idx++; 1160 } 1161 1162 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq", 1163 CTLFLAG_RD, NULL, "tx queues"); 1164 for_each_nm_txq(vi, i, nm_txq) { 1165 iqidx = vi->first_nm_rxq + (i % vi->nnmrxq); 1166 rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid); 1167 if (rc != 0) 1168 goto done; 1169 } 1170 } 1171 1172 /* Normal rx queues and netmap rx queues share the same interrupts. */ 1173 intr_idx = saved_idx; 1174 #endif 1175 1176 /* 1177 * Allocate rx queues first because a default iqid is required when 1178 * creating a tx queue. 1179 */ 1180 maxp = mtu_to_max_payload(sc, mtu, 0); 1181 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", 1182 CTLFLAG_RD, NULL, "rx queues"); 1183 for_each_rxq(vi, i, rxq) { 1184 1185 init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq); 1186 1187 snprintf(name, sizeof(name), "%s rxq%d-fl", 1188 device_get_nameunit(vi->dev), i); 1189 init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name); 1190 1191 rc = alloc_rxq(vi, rxq, 1192 forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid); 1193 if (rc != 0) 1194 goto done; 1195 intr_idx++; 1196 } 1197 #ifdef DEV_NETMAP 1198 if (ifp->if_capabilities & IFCAP_NETMAP) 1199 intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq); 1200 #endif 1201 #ifdef TCP_OFFLOAD 1202 maxp = mtu_to_max_payload(sc, mtu, 1); 1203 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq", 1204 CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections"); 1205 for_each_ofld_rxq(vi, i, ofld_rxq) { 1206 1207 init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx, 1208 vi->qsize_rxq); 1209 1210 snprintf(name, sizeof(name), "%s ofld_rxq%d-fl", 1211 device_get_nameunit(vi->dev), i); 1212 init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name); 1213 1214 rc = alloc_ofld_rxq(vi, ofld_rxq, 1215 forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid); 1216 if (rc != 0) 1217 goto done; 1218 intr_idx++; 1219 } 1220 #endif 1221 1222 /* 1223 * Now the tx queues. 1224 */ 1225 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD, 1226 NULL, "tx queues"); 1227 for_each_txq(vi, i, txq) { 1228 iqidx = vi->first_rxq + (i % vi->nrxq); 1229 snprintf(name, sizeof(name), "%s txq%d", 1230 device_get_nameunit(vi->dev), i); 1231 init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, 1232 sc->sge.rxq[iqidx].iq.cntxt_id, name); 1233 1234 rc = alloc_txq(vi, txq, i, oid); 1235 if (rc != 0) 1236 goto done; 1237 } 1238 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1239 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq", 1240 CTLFLAG_RD, NULL, "tx queues for TOE/ETHOFLD"); 1241 for_each_ofld_txq(vi, i, ofld_txq) { 1242 struct sysctl_oid *oid2; 1243 1244 snprintf(name, sizeof(name), "%s ofld_txq%d", 1245 device_get_nameunit(vi->dev), i); 1246 #ifdef TCP_OFFLOAD 1247 iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq); 1248 init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan, 1249 sc->sge.ofld_rxq[iqidx].iq.cntxt_id, name); 1250 #else 1251 iqidx = vi->first_rxq + (i % vi->nrxq); 1252 init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan, 1253 sc->sge.rxq[iqidx].iq.cntxt_id, name); 1254 #endif 1255 1256 snprintf(name, sizeof(name), "%d", i); 1257 oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1258 name, CTLFLAG_RD, NULL, "offload tx queue"); 1259 1260 rc = alloc_wrq(sc, vi, ofld_txq, oid2); 1261 if (rc != 0) 1262 goto done; 1263 } 1264 #endif 1265 done: 1266 if (rc) 1267 t4_teardown_vi_queues(vi); 1268 1269 return (rc); 1270 } 1271 1272 /* 1273 * Idempotent 1274 */ 1275 int 1276 t4_teardown_vi_queues(struct vi_info *vi) 1277 { 1278 int i; 1279 struct sge_rxq *rxq; 1280 struct sge_txq *txq; 1281 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1282 struct port_info *pi = vi->pi; 1283 struct adapter *sc = pi->adapter; 1284 struct sge_wrq *ofld_txq; 1285 #endif 1286 #ifdef TCP_OFFLOAD 1287 struct sge_ofld_rxq *ofld_rxq; 1288 #endif 1289 #ifdef DEV_NETMAP 1290 struct sge_nm_rxq *nm_rxq; 1291 struct sge_nm_txq *nm_txq; 1292 #endif 1293 1294 /* Do this before freeing the queues */ 1295 if (vi->flags & VI_SYSCTL_CTX) { 1296 sysctl_ctx_free(&vi->ctx); 1297 vi->flags &= ~VI_SYSCTL_CTX; 1298 } 1299 1300 #ifdef DEV_NETMAP 1301 if (vi->ifp->if_capabilities & IFCAP_NETMAP) { 1302 for_each_nm_txq(vi, i, nm_txq) { 1303 free_nm_txq(vi, nm_txq); 1304 } 1305 1306 for_each_nm_rxq(vi, i, nm_rxq) { 1307 free_nm_rxq(vi, nm_rxq); 1308 } 1309 } 1310 #endif 1311 1312 /* 1313 * Take down all the tx queues first, as they reference the rx queues 1314 * (for egress updates, etc.). 1315 */ 1316 1317 for_each_txq(vi, i, txq) { 1318 free_txq(vi, txq); 1319 } 1320 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1321 for_each_ofld_txq(vi, i, ofld_txq) { 1322 free_wrq(sc, ofld_txq); 1323 } 1324 #endif 1325 1326 /* 1327 * Then take down the rx queues. 1328 */ 1329 1330 for_each_rxq(vi, i, rxq) { 1331 free_rxq(vi, rxq); 1332 } 1333 #ifdef TCP_OFFLOAD 1334 for_each_ofld_rxq(vi, i, ofld_rxq) { 1335 free_ofld_rxq(vi, ofld_rxq); 1336 } 1337 #endif 1338 1339 return (0); 1340 } 1341 1342 /* 1343 * Interrupt handler when the driver is using only 1 interrupt. This is a very 1344 * unusual scenario. 1345 * 1346 * a) Deals with errors, if any. 1347 * b) Services firmware event queue, which is taking interrupts for all other 1348 * queues. 1349 */ 1350 void 1351 t4_intr_all(void *arg) 1352 { 1353 struct adapter *sc = arg; 1354 struct sge_iq *fwq = &sc->sge.fwq; 1355 1356 MPASS(sc->intr_count == 1); 1357 1358 t4_intr_err(arg); 1359 t4_intr_evt(fwq); 1360 } 1361 1362 /* 1363 * Interrupt handler for errors (installed directly when multiple interrupts are 1364 * being used, or called by t4_intr_all). 1365 */ 1366 void 1367 t4_intr_err(void *arg) 1368 { 1369 struct adapter *sc = arg; 1370 1371 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); 1372 t4_slow_intr_handler(sc); 1373 } 1374 1375 /* 1376 * Interrupt handler for iq-only queues. The firmware event queue is the only 1377 * such queue right now. 1378 */ 1379 void 1380 t4_intr_evt(void *arg) 1381 { 1382 struct sge_iq *iq = arg; 1383 1384 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1385 service_iq(iq, 0); 1386 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1387 } 1388 } 1389 1390 /* 1391 * Interrupt handler for iq+fl queues. 1392 */ 1393 void 1394 t4_intr(void *arg) 1395 { 1396 struct sge_iq *iq = arg; 1397 1398 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1399 service_iq_fl(iq, 0); 1400 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1401 } 1402 } 1403 1404 #ifdef DEV_NETMAP 1405 /* 1406 * Interrupt handler for netmap rx queues. 1407 */ 1408 void 1409 t4_nm_intr(void *arg) 1410 { 1411 struct sge_nm_rxq *nm_rxq = arg; 1412 1413 if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) { 1414 service_nm_rxq(nm_rxq); 1415 atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON); 1416 } 1417 } 1418 1419 /* 1420 * Interrupt handler for vectors shared between NIC and netmap rx queues. 1421 */ 1422 void 1423 t4_vi_intr(void *arg) 1424 { 1425 struct irq *irq = arg; 1426 1427 MPASS(irq->nm_rxq != NULL); 1428 t4_nm_intr(irq->nm_rxq); 1429 1430 MPASS(irq->rxq != NULL); 1431 t4_intr(irq->rxq); 1432 } 1433 #endif 1434 1435 /* 1436 * Deals with interrupts on an iq-only (no freelist) queue. 1437 */ 1438 static int 1439 service_iq(struct sge_iq *iq, int budget) 1440 { 1441 struct sge_iq *q; 1442 struct adapter *sc = iq->adapter; 1443 struct iq_desc *d = &iq->desc[iq->cidx]; 1444 int ndescs = 0, limit; 1445 int rsp_type; 1446 uint32_t lq; 1447 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); 1448 1449 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); 1450 KASSERT((iq->flags & IQ_HAS_FL) == 0, 1451 ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq, 1452 iq->flags)); 1453 MPASS((iq->flags & IQ_ADJ_CREDIT) == 0); 1454 MPASS((iq->flags & IQ_LRO_ENABLED) == 0); 1455 1456 limit = budget ? budget : iq->qsize / 16; 1457 1458 /* 1459 * We always come back and check the descriptor ring for new indirect 1460 * interrupts and other responses after running a single handler. 1461 */ 1462 for (;;) { 1463 while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { 1464 1465 rmb(); 1466 1467 rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); 1468 lq = be32toh(d->rsp.pldbuflen_qid); 1469 1470 switch (rsp_type) { 1471 case X_RSPD_TYPE_FLBUF: 1472 panic("%s: data for an iq (%p) with no freelist", 1473 __func__, iq); 1474 1475 /* NOTREACHED */ 1476 1477 case X_RSPD_TYPE_CPL: 1478 KASSERT(d->rss.opcode < NUM_CPL_CMDS, 1479 ("%s: bad opcode %02x.", __func__, 1480 d->rss.opcode)); 1481 t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL); 1482 break; 1483 1484 case X_RSPD_TYPE_INTR: 1485 /* 1486 * There are 1K interrupt-capable queues (qids 0 1487 * through 1023). A response type indicating a 1488 * forwarded interrupt with a qid >= 1K is an 1489 * iWARP async notification. 1490 */ 1491 if (__predict_true(lq >= 1024)) { 1492 t4_an_handler(iq, &d->rsp); 1493 break; 1494 } 1495 1496 q = sc->sge.iqmap[lq - sc->sge.iq_start - 1497 sc->sge.iq_base]; 1498 if (atomic_cmpset_int(&q->state, IQS_IDLE, 1499 IQS_BUSY)) { 1500 if (service_iq_fl(q, q->qsize / 16) == 0) { 1501 atomic_cmpset_int(&q->state, 1502 IQS_BUSY, IQS_IDLE); 1503 } else { 1504 STAILQ_INSERT_TAIL(&iql, q, 1505 link); 1506 } 1507 } 1508 break; 1509 1510 default: 1511 KASSERT(0, 1512 ("%s: illegal response type %d on iq %p", 1513 __func__, rsp_type, iq)); 1514 log(LOG_ERR, 1515 "%s: illegal response type %d on iq %p", 1516 device_get_nameunit(sc->dev), rsp_type, iq); 1517 break; 1518 } 1519 1520 d++; 1521 if (__predict_false(++iq->cidx == iq->sidx)) { 1522 iq->cidx = 0; 1523 iq->gen ^= F_RSPD_GEN; 1524 d = &iq->desc[0]; 1525 } 1526 if (__predict_false(++ndescs == limit)) { 1527 t4_write_reg(sc, sc->sge_gts_reg, 1528 V_CIDXINC(ndescs) | 1529 V_INGRESSQID(iq->cntxt_id) | 1530 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 1531 ndescs = 0; 1532 1533 if (budget) { 1534 return (EINPROGRESS); 1535 } 1536 } 1537 } 1538 1539 if (STAILQ_EMPTY(&iql)) 1540 break; 1541 1542 /* 1543 * Process the head only, and send it to the back of the list if 1544 * it's still not done. 1545 */ 1546 q = STAILQ_FIRST(&iql); 1547 STAILQ_REMOVE_HEAD(&iql, link); 1548 if (service_iq_fl(q, q->qsize / 8) == 0) 1549 atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); 1550 else 1551 STAILQ_INSERT_TAIL(&iql, q, link); 1552 } 1553 1554 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | 1555 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); 1556 1557 return (0); 1558 } 1559 1560 static inline int 1561 sort_before_lro(struct lro_ctrl *lro) 1562 { 1563 1564 return (lro->lro_mbuf_max != 0); 1565 } 1566 1567 static inline uint64_t 1568 last_flit_to_ns(struct adapter *sc, uint64_t lf) 1569 { 1570 uint64_t n = be64toh(lf) & 0xfffffffffffffff; /* 60b, not 64b. */ 1571 1572 if (n > UINT64_MAX / 1000000) 1573 return (n / sc->params.vpd.cclk * 1000000); 1574 else 1575 return (n * 1000000 / sc->params.vpd.cclk); 1576 } 1577 1578 /* 1579 * Deals with interrupts on an iq+fl queue. 1580 */ 1581 static int 1582 service_iq_fl(struct sge_iq *iq, int budget) 1583 { 1584 struct sge_rxq *rxq = iq_to_rxq(iq); 1585 struct sge_fl *fl; 1586 struct adapter *sc = iq->adapter; 1587 struct iq_desc *d = &iq->desc[iq->cidx]; 1588 int ndescs = 0, limit; 1589 int rsp_type, refill, starved; 1590 uint32_t lq; 1591 uint16_t fl_hw_cidx; 1592 struct mbuf *m0; 1593 #if defined(INET) || defined(INET6) 1594 const struct timeval lro_timeout = {0, sc->lro_timeout}; 1595 struct lro_ctrl *lro = &rxq->lro; 1596 #endif 1597 1598 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); 1599 MPASS(iq->flags & IQ_HAS_FL); 1600 1601 limit = budget ? budget : iq->qsize / 16; 1602 fl = &rxq->fl; 1603 fl_hw_cidx = fl->hw_cidx; /* stable snapshot */ 1604 1605 #if defined(INET) || defined(INET6) 1606 if (iq->flags & IQ_ADJ_CREDIT) { 1607 MPASS(sort_before_lro(lro)); 1608 iq->flags &= ~IQ_ADJ_CREDIT; 1609 if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) { 1610 tcp_lro_flush_all(lro); 1611 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) | 1612 V_INGRESSQID((u32)iq->cntxt_id) | 1613 V_SEINTARM(iq->intr_params)); 1614 return (0); 1615 } 1616 ndescs = 1; 1617 } 1618 #else 1619 MPASS((iq->flags & IQ_ADJ_CREDIT) == 0); 1620 #endif 1621 1622 while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { 1623 1624 rmb(); 1625 1626 refill = 0; 1627 m0 = NULL; 1628 rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); 1629 lq = be32toh(d->rsp.pldbuflen_qid); 1630 1631 switch (rsp_type) { 1632 case X_RSPD_TYPE_FLBUF: 1633 1634 m0 = get_fl_payload(sc, fl, lq); 1635 if (__predict_false(m0 == NULL)) 1636 goto out; 1637 refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2; 1638 1639 if (iq->flags & IQ_RX_TIMESTAMP) { 1640 /* 1641 * Fill up rcv_tstmp but do not set M_TSTMP. 1642 * rcv_tstmp is not in the format that the 1643 * kernel expects and we don't want to mislead 1644 * it. For now this is only for custom code 1645 * that knows how to interpret cxgbe's stamp. 1646 */ 1647 m0->m_pkthdr.rcv_tstmp = 1648 last_flit_to_ns(sc, d->rsp.u.last_flit); 1649 #ifdef notyet 1650 m0->m_flags |= M_TSTMP; 1651 #endif 1652 } 1653 1654 /* fall through */ 1655 1656 case X_RSPD_TYPE_CPL: 1657 KASSERT(d->rss.opcode < NUM_CPL_CMDS, 1658 ("%s: bad opcode %02x.", __func__, d->rss.opcode)); 1659 t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0); 1660 break; 1661 1662 case X_RSPD_TYPE_INTR: 1663 1664 /* 1665 * There are 1K interrupt-capable queues (qids 0 1666 * through 1023). A response type indicating a 1667 * forwarded interrupt with a qid >= 1K is an 1668 * iWARP async notification. That is the only 1669 * acceptable indirect interrupt on this queue. 1670 */ 1671 if (__predict_false(lq < 1024)) { 1672 panic("%s: indirect interrupt on iq_fl %p " 1673 "with qid %u", __func__, iq, lq); 1674 } 1675 1676 t4_an_handler(iq, &d->rsp); 1677 break; 1678 1679 default: 1680 KASSERT(0, ("%s: illegal response type %d on iq %p", 1681 __func__, rsp_type, iq)); 1682 log(LOG_ERR, "%s: illegal response type %d on iq %p", 1683 device_get_nameunit(sc->dev), rsp_type, iq); 1684 break; 1685 } 1686 1687 d++; 1688 if (__predict_false(++iq->cidx == iq->sidx)) { 1689 iq->cidx = 0; 1690 iq->gen ^= F_RSPD_GEN; 1691 d = &iq->desc[0]; 1692 } 1693 if (__predict_false(++ndescs == limit)) { 1694 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | 1695 V_INGRESSQID(iq->cntxt_id) | 1696 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 1697 ndescs = 0; 1698 1699 #if defined(INET) || defined(INET6) 1700 if (iq->flags & IQ_LRO_ENABLED && 1701 !sort_before_lro(lro) && 1702 sc->lro_timeout != 0) { 1703 tcp_lro_flush_inactive(lro, &lro_timeout); 1704 } 1705 #endif 1706 if (budget) { 1707 FL_LOCK(fl); 1708 refill_fl(sc, fl, 32); 1709 FL_UNLOCK(fl); 1710 1711 return (EINPROGRESS); 1712 } 1713 } 1714 if (refill) { 1715 FL_LOCK(fl); 1716 refill_fl(sc, fl, 32); 1717 FL_UNLOCK(fl); 1718 fl_hw_cidx = fl->hw_cidx; 1719 } 1720 } 1721 out: 1722 #if defined(INET) || defined(INET6) 1723 if (iq->flags & IQ_LRO_ENABLED) { 1724 if (ndescs > 0 && lro->lro_mbuf_count > 8) { 1725 MPASS(sort_before_lro(lro)); 1726 /* hold back one credit and don't flush LRO state */ 1727 iq->flags |= IQ_ADJ_CREDIT; 1728 ndescs--; 1729 } else { 1730 tcp_lro_flush_all(lro); 1731 } 1732 } 1733 #endif 1734 1735 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | 1736 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); 1737 1738 FL_LOCK(fl); 1739 starved = refill_fl(sc, fl, 64); 1740 FL_UNLOCK(fl); 1741 if (__predict_false(starved != 0)) 1742 add_fl_to_sfl(sc, fl); 1743 1744 return (0); 1745 } 1746 1747 static inline int 1748 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll) 1749 { 1750 int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0; 1751 1752 if (rc) 1753 MPASS(cll->region3 >= CL_METADATA_SIZE); 1754 1755 return (rc); 1756 } 1757 1758 static inline struct cluster_metadata * 1759 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll, 1760 caddr_t cl) 1761 { 1762 1763 if (cl_has_metadata(fl, cll)) { 1764 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1765 1766 return ((struct cluster_metadata *)(cl + swz->size) - 1); 1767 } 1768 return (NULL); 1769 } 1770 1771 static void 1772 rxb_free(struct mbuf *m) 1773 { 1774 uma_zone_t zone = m->m_ext.ext_arg1; 1775 void *cl = m->m_ext.ext_arg2; 1776 1777 uma_zfree(zone, cl); 1778 counter_u64_add(extfree_rels, 1); 1779 } 1780 1781 /* 1782 * The mbuf returned by this function could be allocated from zone_mbuf or 1783 * constructed in spare room in the cluster. 1784 * 1785 * The mbuf carries the payload in one of these ways 1786 * a) frame inside the mbuf (mbuf from zone_mbuf) 1787 * b) m_cljset (for clusters without metadata) zone_mbuf 1788 * c) m_extaddref (cluster with metadata) inline mbuf 1789 * d) m_extaddref (cluster with metadata) zone_mbuf 1790 */ 1791 static struct mbuf * 1792 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset, 1793 int remaining) 1794 { 1795 struct mbuf *m; 1796 struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; 1797 struct cluster_layout *cll = &sd->cll; 1798 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1799 struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx]; 1800 struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl); 1801 int len, blen; 1802 caddr_t payload; 1803 1804 blen = hwb->size - fl->rx_offset; /* max possible in this buf */ 1805 len = min(remaining, blen); 1806 payload = sd->cl + cll->region1 + fl->rx_offset; 1807 if (fl->flags & FL_BUF_PACKING) { 1808 const u_int l = fr_offset + len; 1809 const u_int pad = roundup2(l, fl->buf_boundary) - l; 1810 1811 if (fl->rx_offset + len + pad < hwb->size) 1812 blen = len + pad; 1813 MPASS(fl->rx_offset + blen <= hwb->size); 1814 } else { 1815 MPASS(fl->rx_offset == 0); /* not packing */ 1816 } 1817 1818 1819 if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) { 1820 1821 /* 1822 * Copy payload into a freshly allocated mbuf. 1823 */ 1824 1825 m = fr_offset == 0 ? 1826 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1827 if (m == NULL) 1828 return (NULL); 1829 fl->mbuf_allocated++; 1830 1831 /* copy data to mbuf */ 1832 bcopy(payload, mtod(m, caddr_t), len); 1833 1834 } else if (sd->nmbuf * MSIZE < cll->region1) { 1835 1836 /* 1837 * There's spare room in the cluster for an mbuf. Create one 1838 * and associate it with the payload that's in the cluster. 1839 */ 1840 1841 MPASS(clm != NULL); 1842 m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE); 1843 /* No bzero required */ 1844 if (m_init(m, M_NOWAIT, MT_DATA, 1845 fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE)) 1846 return (NULL); 1847 fl->mbuf_inlined++; 1848 m_extaddref(m, payload, blen, &clm->refcount, rxb_free, 1849 swz->zone, sd->cl); 1850 if (sd->nmbuf++ == 0) 1851 counter_u64_add(extfree_refs, 1); 1852 1853 } else { 1854 1855 /* 1856 * Grab an mbuf from zone_mbuf and associate it with the 1857 * payload in the cluster. 1858 */ 1859 1860 m = fr_offset == 0 ? 1861 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1862 if (m == NULL) 1863 return (NULL); 1864 fl->mbuf_allocated++; 1865 if (clm != NULL) { 1866 m_extaddref(m, payload, blen, &clm->refcount, 1867 rxb_free, swz->zone, sd->cl); 1868 if (sd->nmbuf++ == 0) 1869 counter_u64_add(extfree_refs, 1); 1870 } else { 1871 m_cljset(m, sd->cl, swz->type); 1872 sd->cl = NULL; /* consumed, not a recycle candidate */ 1873 } 1874 } 1875 if (fr_offset == 0) 1876 m->m_pkthdr.len = remaining; 1877 m->m_len = len; 1878 1879 if (fl->flags & FL_BUF_PACKING) { 1880 fl->rx_offset += blen; 1881 MPASS(fl->rx_offset <= hwb->size); 1882 if (fl->rx_offset < hwb->size) 1883 return (m); /* without advancing the cidx */ 1884 } 1885 1886 if (__predict_false(++fl->cidx % 8 == 0)) { 1887 uint16_t cidx = fl->cidx / 8; 1888 1889 if (__predict_false(cidx == fl->sidx)) 1890 fl->cidx = cidx = 0; 1891 fl->hw_cidx = cidx; 1892 } 1893 fl->rx_offset = 0; 1894 1895 return (m); 1896 } 1897 1898 static struct mbuf * 1899 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf) 1900 { 1901 struct mbuf *m0, *m, **pnext; 1902 u_int remaining; 1903 const u_int total = G_RSPD_LEN(len_newbuf); 1904 1905 if (__predict_false(fl->flags & FL_BUF_RESUME)) { 1906 M_ASSERTPKTHDR(fl->m0); 1907 MPASS(fl->m0->m_pkthdr.len == total); 1908 MPASS(fl->remaining < total); 1909 1910 m0 = fl->m0; 1911 pnext = fl->pnext; 1912 remaining = fl->remaining; 1913 fl->flags &= ~FL_BUF_RESUME; 1914 goto get_segment; 1915 } 1916 1917 if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) { 1918 fl->rx_offset = 0; 1919 if (__predict_false(++fl->cidx % 8 == 0)) { 1920 uint16_t cidx = fl->cidx / 8; 1921 1922 if (__predict_false(cidx == fl->sidx)) 1923 fl->cidx = cidx = 0; 1924 fl->hw_cidx = cidx; 1925 } 1926 } 1927 1928 /* 1929 * Payload starts at rx_offset in the current hw buffer. Its length is 1930 * 'len' and it may span multiple hw buffers. 1931 */ 1932 1933 m0 = get_scatter_segment(sc, fl, 0, total); 1934 if (m0 == NULL) 1935 return (NULL); 1936 remaining = total - m0->m_len; 1937 pnext = &m0->m_next; 1938 while (remaining > 0) { 1939 get_segment: 1940 MPASS(fl->rx_offset == 0); 1941 m = get_scatter_segment(sc, fl, total - remaining, remaining); 1942 if (__predict_false(m == NULL)) { 1943 fl->m0 = m0; 1944 fl->pnext = pnext; 1945 fl->remaining = remaining; 1946 fl->flags |= FL_BUF_RESUME; 1947 return (NULL); 1948 } 1949 *pnext = m; 1950 pnext = &m->m_next; 1951 remaining -= m->m_len; 1952 } 1953 *pnext = NULL; 1954 1955 M_ASSERTPKTHDR(m0); 1956 return (m0); 1957 } 1958 1959 static int 1960 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) 1961 { 1962 struct sge_rxq *rxq = iq_to_rxq(iq); 1963 struct ifnet *ifp = rxq->ifp; 1964 struct adapter *sc = iq->adapter; 1965 const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); 1966 #if defined(INET) || defined(INET6) 1967 struct lro_ctrl *lro = &rxq->lro; 1968 #endif 1969 static const int sw_hashtype[4][2] = { 1970 {M_HASHTYPE_NONE, M_HASHTYPE_NONE}, 1971 {M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6}, 1972 {M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6}, 1973 {M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6}, 1974 }; 1975 1976 KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__, 1977 rss->opcode)); 1978 1979 m0->m_pkthdr.len -= sc->params.sge.fl_pktshift; 1980 m0->m_len -= sc->params.sge.fl_pktshift; 1981 m0->m_data += sc->params.sge.fl_pktshift; 1982 1983 m0->m_pkthdr.rcvif = ifp; 1984 M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]); 1985 m0->m_pkthdr.flowid = be32toh(rss->hash_val); 1986 1987 if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) { 1988 if (ifp->if_capenable & IFCAP_RXCSUM && 1989 cpl->l2info & htobe32(F_RXF_IP)) { 1990 m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED | 1991 CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 1992 rxq->rxcsum++; 1993 } else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 && 1994 cpl->l2info & htobe32(F_RXF_IP6)) { 1995 m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 | 1996 CSUM_PSEUDO_HDR); 1997 rxq->rxcsum++; 1998 } 1999 2000 if (__predict_false(cpl->ip_frag)) 2001 m0->m_pkthdr.csum_data = be16toh(cpl->csum); 2002 else 2003 m0->m_pkthdr.csum_data = 0xffff; 2004 } 2005 2006 if (cpl->vlan_ex) { 2007 m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); 2008 m0->m_flags |= M_VLANTAG; 2009 rxq->vlan_extraction++; 2010 } 2011 2012 #if defined(INET) || defined(INET6) 2013 if (iq->flags & IQ_LRO_ENABLED) { 2014 if (sort_before_lro(lro)) { 2015 tcp_lro_queue_mbuf(lro, m0); 2016 return (0); /* queued for sort, then LRO */ 2017 } 2018 if (tcp_lro_rx(lro, m0, 0) == 0) 2019 return (0); /* queued for LRO */ 2020 } 2021 #endif 2022 ifp->if_input(ifp, m0); 2023 2024 return (0); 2025 } 2026 2027 /* 2028 * Must drain the wrq or make sure that someone else will. 2029 */ 2030 static void 2031 wrq_tx_drain(void *arg, int n) 2032 { 2033 struct sge_wrq *wrq = arg; 2034 struct sge_eq *eq = &wrq->eq; 2035 2036 EQ_LOCK(eq); 2037 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 2038 drain_wrq_wr_list(wrq->adapter, wrq); 2039 EQ_UNLOCK(eq); 2040 } 2041 2042 static void 2043 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq) 2044 { 2045 struct sge_eq *eq = &wrq->eq; 2046 u_int available, dbdiff; /* # of hardware descriptors */ 2047 u_int n; 2048 struct wrqe *wr; 2049 struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ 2050 2051 EQ_LOCK_ASSERT_OWNED(eq); 2052 MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs)); 2053 wr = STAILQ_FIRST(&wrq->wr_list); 2054 MPASS(wr != NULL); /* Must be called with something useful to do */ 2055 MPASS(eq->pidx == eq->dbidx); 2056 dbdiff = 0; 2057 2058 do { 2059 eq->cidx = read_hw_cidx(eq); 2060 if (eq->pidx == eq->cidx) 2061 available = eq->sidx - 1; 2062 else 2063 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2064 2065 MPASS(wr->wrq == wrq); 2066 n = howmany(wr->wr_len, EQ_ESIZE); 2067 if (available < n) 2068 break; 2069 2070 dst = (void *)&eq->desc[eq->pidx]; 2071 if (__predict_true(eq->sidx - eq->pidx > n)) { 2072 /* Won't wrap, won't end exactly at the status page. */ 2073 bcopy(&wr->wr[0], dst, wr->wr_len); 2074 eq->pidx += n; 2075 } else { 2076 int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE; 2077 2078 bcopy(&wr->wr[0], dst, first_portion); 2079 if (wr->wr_len > first_portion) { 2080 bcopy(&wr->wr[first_portion], &eq->desc[0], 2081 wr->wr_len - first_portion); 2082 } 2083 eq->pidx = n - (eq->sidx - eq->pidx); 2084 } 2085 wrq->tx_wrs_copied++; 2086 2087 if (available < eq->sidx / 4 && 2088 atomic_cmpset_int(&eq->equiq, 0, 1)) { 2089 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 2090 F_FW_WR_EQUEQ); 2091 eq->equeqidx = eq->pidx; 2092 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 2093 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 2094 eq->equeqidx = eq->pidx; 2095 } 2096 2097 dbdiff += n; 2098 if (dbdiff >= 16) { 2099 ring_eq_db(sc, eq, dbdiff); 2100 dbdiff = 0; 2101 } 2102 2103 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 2104 free_wrqe(wr); 2105 MPASS(wrq->nwr_pending > 0); 2106 wrq->nwr_pending--; 2107 MPASS(wrq->ndesc_needed >= n); 2108 wrq->ndesc_needed -= n; 2109 } while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL); 2110 2111 if (dbdiff) 2112 ring_eq_db(sc, eq, dbdiff); 2113 } 2114 2115 /* 2116 * Doesn't fail. Holds on to work requests it can't send right away. 2117 */ 2118 void 2119 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr) 2120 { 2121 #ifdef INVARIANTS 2122 struct sge_eq *eq = &wrq->eq; 2123 #endif 2124 2125 EQ_LOCK_ASSERT_OWNED(eq); 2126 MPASS(wr != NULL); 2127 MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN); 2128 MPASS((wr->wr_len & 0x7) == 0); 2129 2130 STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link); 2131 wrq->nwr_pending++; 2132 wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE); 2133 2134 if (!TAILQ_EMPTY(&wrq->incomplete_wrs)) 2135 return; /* commit_wrq_wr will drain wr_list as well. */ 2136 2137 drain_wrq_wr_list(sc, wrq); 2138 2139 /* Doorbell must have caught up to the pidx. */ 2140 MPASS(eq->pidx == eq->dbidx); 2141 } 2142 2143 void 2144 t4_update_fl_bufsize(struct ifnet *ifp) 2145 { 2146 struct vi_info *vi = ifp->if_softc; 2147 struct adapter *sc = vi->pi->adapter; 2148 struct sge_rxq *rxq; 2149 #ifdef TCP_OFFLOAD 2150 struct sge_ofld_rxq *ofld_rxq; 2151 #endif 2152 struct sge_fl *fl; 2153 int i, maxp, mtu = ifp->if_mtu; 2154 2155 maxp = mtu_to_max_payload(sc, mtu, 0); 2156 for_each_rxq(vi, i, rxq) { 2157 fl = &rxq->fl; 2158 2159 FL_LOCK(fl); 2160 find_best_refill_source(sc, fl, maxp); 2161 FL_UNLOCK(fl); 2162 } 2163 #ifdef TCP_OFFLOAD 2164 maxp = mtu_to_max_payload(sc, mtu, 1); 2165 for_each_ofld_rxq(vi, i, ofld_rxq) { 2166 fl = &ofld_rxq->fl; 2167 2168 FL_LOCK(fl); 2169 find_best_refill_source(sc, fl, maxp); 2170 FL_UNLOCK(fl); 2171 } 2172 #endif 2173 } 2174 2175 static inline int 2176 mbuf_nsegs(struct mbuf *m) 2177 { 2178 2179 M_ASSERTPKTHDR(m); 2180 KASSERT(m->m_pkthdr.l5hlen > 0, 2181 ("%s: mbuf %p missing information on # of segments.", __func__, m)); 2182 2183 return (m->m_pkthdr.l5hlen); 2184 } 2185 2186 static inline void 2187 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs) 2188 { 2189 2190 M_ASSERTPKTHDR(m); 2191 m->m_pkthdr.l5hlen = nsegs; 2192 } 2193 2194 static inline int 2195 mbuf_len16(struct mbuf *m) 2196 { 2197 int n; 2198 2199 M_ASSERTPKTHDR(m); 2200 n = m->m_pkthdr.PH_loc.eight[0]; 2201 MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16); 2202 2203 return (n); 2204 } 2205 2206 static inline void 2207 set_mbuf_len16(struct mbuf *m, uint8_t len16) 2208 { 2209 2210 M_ASSERTPKTHDR(m); 2211 m->m_pkthdr.PH_loc.eight[0] = len16; 2212 } 2213 2214 #ifdef RATELIMIT 2215 static inline int 2216 mbuf_eo_nsegs(struct mbuf *m) 2217 { 2218 2219 M_ASSERTPKTHDR(m); 2220 return (m->m_pkthdr.PH_loc.eight[1]); 2221 } 2222 2223 static inline void 2224 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs) 2225 { 2226 2227 M_ASSERTPKTHDR(m); 2228 m->m_pkthdr.PH_loc.eight[1] = nsegs; 2229 } 2230 2231 static inline int 2232 mbuf_eo_len16(struct mbuf *m) 2233 { 2234 int n; 2235 2236 M_ASSERTPKTHDR(m); 2237 n = m->m_pkthdr.PH_loc.eight[2]; 2238 MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16); 2239 2240 return (n); 2241 } 2242 2243 static inline void 2244 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16) 2245 { 2246 2247 M_ASSERTPKTHDR(m); 2248 m->m_pkthdr.PH_loc.eight[2] = len16; 2249 } 2250 2251 static inline int 2252 mbuf_eo_tsclk_tsoff(struct mbuf *m) 2253 { 2254 2255 M_ASSERTPKTHDR(m); 2256 return (m->m_pkthdr.PH_loc.eight[3]); 2257 } 2258 2259 static inline void 2260 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff) 2261 { 2262 2263 M_ASSERTPKTHDR(m); 2264 m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff; 2265 } 2266 2267 static inline int 2268 needs_eo(struct mbuf *m) 2269 { 2270 2271 return (m->m_pkthdr.snd_tag != NULL); 2272 } 2273 #endif 2274 2275 static inline int 2276 needs_tso(struct mbuf *m) 2277 { 2278 2279 M_ASSERTPKTHDR(m); 2280 2281 return (m->m_pkthdr.csum_flags & CSUM_TSO); 2282 } 2283 2284 static inline int 2285 needs_l3_csum(struct mbuf *m) 2286 { 2287 2288 M_ASSERTPKTHDR(m); 2289 2290 return (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)); 2291 } 2292 2293 static inline int 2294 needs_l4_csum(struct mbuf *m) 2295 { 2296 2297 M_ASSERTPKTHDR(m); 2298 2299 return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | 2300 CSUM_TCP_IPV6 | CSUM_TSO)); 2301 } 2302 2303 static inline int 2304 needs_tcp_csum(struct mbuf *m) 2305 { 2306 2307 M_ASSERTPKTHDR(m); 2308 return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_TCP_IPV6 | CSUM_TSO)); 2309 } 2310 2311 #ifdef RATELIMIT 2312 static inline int 2313 needs_udp_csum(struct mbuf *m) 2314 { 2315 2316 M_ASSERTPKTHDR(m); 2317 return (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_UDP_IPV6)); 2318 } 2319 #endif 2320 2321 static inline int 2322 needs_vlan_insertion(struct mbuf *m) 2323 { 2324 2325 M_ASSERTPKTHDR(m); 2326 2327 return (m->m_flags & M_VLANTAG); 2328 } 2329 2330 static void * 2331 m_advance(struct mbuf **pm, int *poffset, int len) 2332 { 2333 struct mbuf *m = *pm; 2334 int offset = *poffset; 2335 uintptr_t p = 0; 2336 2337 MPASS(len > 0); 2338 2339 for (;;) { 2340 if (offset + len < m->m_len) { 2341 offset += len; 2342 p = mtod(m, uintptr_t) + offset; 2343 break; 2344 } 2345 len -= m->m_len - offset; 2346 m = m->m_next; 2347 offset = 0; 2348 MPASS(m != NULL); 2349 } 2350 *poffset = offset; 2351 *pm = m; 2352 return ((void *)p); 2353 } 2354 2355 /* 2356 * Can deal with empty mbufs in the chain that have m_len = 0, but the chain 2357 * must have at least one mbuf that's not empty. It is possible for this 2358 * routine to return 0 if skip accounts for all the contents of the mbuf chain. 2359 */ 2360 static inline int 2361 count_mbuf_nsegs(struct mbuf *m, int skip) 2362 { 2363 vm_paddr_t lastb, next; 2364 vm_offset_t va; 2365 int len, nsegs; 2366 2367 M_ASSERTPKTHDR(m); 2368 MPASS(m->m_pkthdr.len > 0); 2369 MPASS(m->m_pkthdr.len >= skip); 2370 2371 nsegs = 0; 2372 lastb = 0; 2373 for (; m; m = m->m_next) { 2374 2375 len = m->m_len; 2376 if (__predict_false(len == 0)) 2377 continue; 2378 if (skip >= len) { 2379 skip -= len; 2380 continue; 2381 } 2382 va = mtod(m, vm_offset_t) + skip; 2383 len -= skip; 2384 skip = 0; 2385 next = pmap_kextract(va); 2386 nsegs += sglist_count((void *)(uintptr_t)va, len); 2387 if (lastb + 1 == next) 2388 nsegs--; 2389 lastb = pmap_kextract(va + len - 1); 2390 } 2391 2392 return (nsegs); 2393 } 2394 2395 /* 2396 * Analyze the mbuf to determine its tx needs. The mbuf passed in may change: 2397 * a) caller can assume it's been freed if this function returns with an error. 2398 * b) it may get defragged up if the gather list is too long for the hardware. 2399 */ 2400 int 2401 parse_pkt(struct adapter *sc, struct mbuf **mp) 2402 { 2403 struct mbuf *m0 = *mp, *m; 2404 int rc, nsegs, defragged = 0, offset; 2405 struct ether_header *eh; 2406 void *l3hdr; 2407 #if defined(INET) || defined(INET6) 2408 struct tcphdr *tcp; 2409 #endif 2410 uint16_t eh_type; 2411 2412 M_ASSERTPKTHDR(m0); 2413 if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) { 2414 rc = EINVAL; 2415 fail: 2416 m_freem(m0); 2417 *mp = NULL; 2418 return (rc); 2419 } 2420 restart: 2421 /* 2422 * First count the number of gather list segments in the payload. 2423 * Defrag the mbuf if nsegs exceeds the hardware limit. 2424 */ 2425 M_ASSERTPKTHDR(m0); 2426 MPASS(m0->m_pkthdr.len > 0); 2427 nsegs = count_mbuf_nsegs(m0, 0); 2428 if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) { 2429 if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) { 2430 rc = EFBIG; 2431 goto fail; 2432 } 2433 *mp = m0 = m; /* update caller's copy after defrag */ 2434 goto restart; 2435 } 2436 2437 if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) { 2438 m0 = m_pullup(m0, m0->m_pkthdr.len); 2439 if (m0 == NULL) { 2440 /* Should have left well enough alone. */ 2441 rc = EFBIG; 2442 goto fail; 2443 } 2444 *mp = m0; /* update caller's copy after pullup */ 2445 goto restart; 2446 } 2447 set_mbuf_nsegs(m0, nsegs); 2448 if (sc->flags & IS_VF) 2449 set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0))); 2450 else 2451 set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0))); 2452 2453 #ifdef RATELIMIT 2454 /* 2455 * Ethofld is limited to TCP and UDP for now, and only when L4 hw 2456 * checksumming is enabled. needs_l4_csum happens to check for all the 2457 * right things. 2458 */ 2459 if (__predict_false(needs_eo(m0) && !needs_l4_csum(m0))) 2460 m0->m_pkthdr.snd_tag = NULL; 2461 #endif 2462 2463 if (!needs_tso(m0) && 2464 #ifdef RATELIMIT 2465 !needs_eo(m0) && 2466 #endif 2467 !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0)))) 2468 return (0); 2469 2470 m = m0; 2471 eh = mtod(m, struct ether_header *); 2472 eh_type = ntohs(eh->ether_type); 2473 if (eh_type == ETHERTYPE_VLAN) { 2474 struct ether_vlan_header *evh = (void *)eh; 2475 2476 eh_type = ntohs(evh->evl_proto); 2477 m0->m_pkthdr.l2hlen = sizeof(*evh); 2478 } else 2479 m0->m_pkthdr.l2hlen = sizeof(*eh); 2480 2481 offset = 0; 2482 l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen); 2483 2484 switch (eh_type) { 2485 #ifdef INET6 2486 case ETHERTYPE_IPV6: 2487 { 2488 struct ip6_hdr *ip6 = l3hdr; 2489 2490 MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP); 2491 2492 m0->m_pkthdr.l3hlen = sizeof(*ip6); 2493 break; 2494 } 2495 #endif 2496 #ifdef INET 2497 case ETHERTYPE_IP: 2498 { 2499 struct ip *ip = l3hdr; 2500 2501 m0->m_pkthdr.l3hlen = ip->ip_hl * 4; 2502 break; 2503 } 2504 #endif 2505 default: 2506 panic("%s: ethertype 0x%04x unknown. if_cxgbe must be compiled" 2507 " with the same INET/INET6 options as the kernel.", 2508 __func__, eh_type); 2509 } 2510 2511 #if defined(INET) || defined(INET6) 2512 if (needs_tcp_csum(m0)) { 2513 tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen); 2514 m0->m_pkthdr.l4hlen = tcp->th_off * 4; 2515 #ifdef RATELIMIT 2516 if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) { 2517 set_mbuf_eo_tsclk_tsoff(m0, 2518 V_FW_ETH_TX_EO_WR_TSCLK(tsclk) | 2519 V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1)); 2520 } else 2521 set_mbuf_eo_tsclk_tsoff(m0, 0); 2522 } else if (needs_udp_csum(m)) { 2523 m0->m_pkthdr.l4hlen = sizeof(struct udphdr); 2524 #endif 2525 } 2526 #ifdef RATELIMIT 2527 if (needs_eo(m0)) { 2528 u_int immhdrs; 2529 2530 /* EO WRs have the headers in the WR and not the GL. */ 2531 immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + 2532 m0->m_pkthdr.l4hlen; 2533 nsegs = count_mbuf_nsegs(m0, immhdrs); 2534 set_mbuf_eo_nsegs(m0, nsegs); 2535 set_mbuf_eo_len16(m0, 2536 txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0))); 2537 } 2538 #endif 2539 #endif 2540 MPASS(m0 == *mp); 2541 return (0); 2542 } 2543 2544 void * 2545 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie) 2546 { 2547 struct sge_eq *eq = &wrq->eq; 2548 struct adapter *sc = wrq->adapter; 2549 int ndesc, available; 2550 struct wrqe *wr; 2551 void *w; 2552 2553 MPASS(len16 > 0); 2554 ndesc = howmany(len16, EQ_ESIZE / 16); 2555 MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC); 2556 2557 EQ_LOCK(eq); 2558 2559 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 2560 drain_wrq_wr_list(sc, wrq); 2561 2562 if (!STAILQ_EMPTY(&wrq->wr_list)) { 2563 slowpath: 2564 EQ_UNLOCK(eq); 2565 wr = alloc_wrqe(len16 * 16, wrq); 2566 if (__predict_false(wr == NULL)) 2567 return (NULL); 2568 cookie->pidx = -1; 2569 cookie->ndesc = ndesc; 2570 return (&wr->wr); 2571 } 2572 2573 eq->cidx = read_hw_cidx(eq); 2574 if (eq->pidx == eq->cidx) 2575 available = eq->sidx - 1; 2576 else 2577 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2578 if (available < ndesc) 2579 goto slowpath; 2580 2581 cookie->pidx = eq->pidx; 2582 cookie->ndesc = ndesc; 2583 TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link); 2584 2585 w = &eq->desc[eq->pidx]; 2586 IDXINCR(eq->pidx, ndesc, eq->sidx); 2587 if (__predict_false(cookie->pidx + ndesc > eq->sidx)) { 2588 w = &wrq->ss[0]; 2589 wrq->ss_pidx = cookie->pidx; 2590 wrq->ss_len = len16 * 16; 2591 } 2592 2593 EQ_UNLOCK(eq); 2594 2595 return (w); 2596 } 2597 2598 void 2599 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie) 2600 { 2601 struct sge_eq *eq = &wrq->eq; 2602 struct adapter *sc = wrq->adapter; 2603 int ndesc, pidx; 2604 struct wrq_cookie *prev, *next; 2605 2606 if (cookie->pidx == -1) { 2607 struct wrqe *wr = __containerof(w, struct wrqe, wr); 2608 2609 t4_wrq_tx(sc, wr); 2610 return; 2611 } 2612 2613 if (__predict_false(w == &wrq->ss[0])) { 2614 int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE; 2615 2616 MPASS(wrq->ss_len > n); /* WR had better wrap around. */ 2617 bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n); 2618 bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n); 2619 wrq->tx_wrs_ss++; 2620 } else 2621 wrq->tx_wrs_direct++; 2622 2623 EQ_LOCK(eq); 2624 ndesc = cookie->ndesc; /* Can be more than SGE_MAX_WR_NDESC here. */ 2625 pidx = cookie->pidx; 2626 MPASS(pidx >= 0 && pidx < eq->sidx); 2627 prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link); 2628 next = TAILQ_NEXT(cookie, link); 2629 if (prev == NULL) { 2630 MPASS(pidx == eq->dbidx); 2631 if (next == NULL || ndesc >= 16) { 2632 int available; 2633 struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ 2634 2635 /* 2636 * Note that the WR via which we'll request tx updates 2637 * is at pidx and not eq->pidx, which has moved on 2638 * already. 2639 */ 2640 dst = (void *)&eq->desc[pidx]; 2641 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2642 if (available < eq->sidx / 4 && 2643 atomic_cmpset_int(&eq->equiq, 0, 1)) { 2644 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 2645 F_FW_WR_EQUEQ); 2646 eq->equeqidx = pidx; 2647 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 2648 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 2649 eq->equeqidx = pidx; 2650 } 2651 2652 ring_eq_db(wrq->adapter, eq, ndesc); 2653 } else { 2654 MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc); 2655 next->pidx = pidx; 2656 next->ndesc += ndesc; 2657 } 2658 } else { 2659 MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc); 2660 prev->ndesc += ndesc; 2661 } 2662 TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link); 2663 2664 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 2665 drain_wrq_wr_list(sc, wrq); 2666 2667 #ifdef INVARIANTS 2668 if (TAILQ_EMPTY(&wrq->incomplete_wrs)) { 2669 /* Doorbell must have caught up to the pidx. */ 2670 MPASS(wrq->eq.pidx == wrq->eq.dbidx); 2671 } 2672 #endif 2673 EQ_UNLOCK(eq); 2674 } 2675 2676 static u_int 2677 can_resume_eth_tx(struct mp_ring *r) 2678 { 2679 struct sge_eq *eq = r->cookie; 2680 2681 return (total_available_tx_desc(eq) > eq->sidx / 8); 2682 } 2683 2684 static inline int 2685 cannot_use_txpkts(struct mbuf *m) 2686 { 2687 /* maybe put a GL limit too, to avoid silliness? */ 2688 2689 return (needs_tso(m)); 2690 } 2691 2692 static inline int 2693 discard_tx(struct sge_eq *eq) 2694 { 2695 2696 return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED); 2697 } 2698 2699 /* 2700 * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to 2701 * be consumed. Return the actual number consumed. 0 indicates a stall. 2702 */ 2703 static u_int 2704 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx) 2705 { 2706 struct sge_txq *txq = r->cookie; 2707 struct sge_eq *eq = &txq->eq; 2708 struct ifnet *ifp = txq->ifp; 2709 struct vi_info *vi = ifp->if_softc; 2710 struct port_info *pi = vi->pi; 2711 struct adapter *sc = pi->adapter; 2712 u_int total, remaining; /* # of packets */ 2713 u_int available, dbdiff; /* # of hardware descriptors */ 2714 u_int n, next_cidx; 2715 struct mbuf *m0, *tail; 2716 struct txpkts txp; 2717 struct fw_eth_tx_pkts_wr *wr; /* any fw WR struct will do */ 2718 2719 remaining = IDXDIFF(pidx, cidx, r->size); 2720 MPASS(remaining > 0); /* Must not be called without work to do. */ 2721 total = 0; 2722 2723 TXQ_LOCK(txq); 2724 if (__predict_false(discard_tx(eq))) { 2725 while (cidx != pidx) { 2726 m0 = r->items[cidx]; 2727 m_freem(m0); 2728 if (++cidx == r->size) 2729 cidx = 0; 2730 } 2731 reclaim_tx_descs(txq, 2048); 2732 total = remaining; 2733 goto done; 2734 } 2735 2736 /* How many hardware descriptors do we have readily available. */ 2737 if (eq->pidx == eq->cidx) 2738 available = eq->sidx - 1; 2739 else 2740 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2741 dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx); 2742 2743 while (remaining > 0) { 2744 2745 m0 = r->items[cidx]; 2746 M_ASSERTPKTHDR(m0); 2747 MPASS(m0->m_nextpkt == NULL); 2748 2749 if (available < SGE_MAX_WR_NDESC) { 2750 available += reclaim_tx_descs(txq, 64); 2751 if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16)) 2752 break; /* out of descriptors */ 2753 } 2754 2755 next_cidx = cidx + 1; 2756 if (__predict_false(next_cidx == r->size)) 2757 next_cidx = 0; 2758 2759 wr = (void *)&eq->desc[eq->pidx]; 2760 if (sc->flags & IS_VF) { 2761 total++; 2762 remaining--; 2763 ETHER_BPF_MTAP(ifp, m0); 2764 n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0, 2765 available); 2766 } else if (remaining > 1 && 2767 try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) { 2768 2769 /* pkts at cidx, next_cidx should both be in txp. */ 2770 MPASS(txp.npkt == 2); 2771 tail = r->items[next_cidx]; 2772 MPASS(tail->m_nextpkt == NULL); 2773 ETHER_BPF_MTAP(ifp, m0); 2774 ETHER_BPF_MTAP(ifp, tail); 2775 m0->m_nextpkt = tail; 2776 2777 if (__predict_false(++next_cidx == r->size)) 2778 next_cidx = 0; 2779 2780 while (next_cidx != pidx) { 2781 if (add_to_txpkts(r->items[next_cidx], &txp, 2782 available) != 0) 2783 break; 2784 tail->m_nextpkt = r->items[next_cidx]; 2785 tail = tail->m_nextpkt; 2786 ETHER_BPF_MTAP(ifp, tail); 2787 if (__predict_false(++next_cidx == r->size)) 2788 next_cidx = 0; 2789 } 2790 2791 n = write_txpkts_wr(txq, wr, m0, &txp, available); 2792 total += txp.npkt; 2793 remaining -= txp.npkt; 2794 } else { 2795 total++; 2796 remaining--; 2797 ETHER_BPF_MTAP(ifp, m0); 2798 n = write_txpkt_wr(txq, (void *)wr, m0, available); 2799 } 2800 MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC); 2801 2802 available -= n; 2803 dbdiff += n; 2804 IDXINCR(eq->pidx, n, eq->sidx); 2805 2806 if (total_available_tx_desc(eq) < eq->sidx / 4 && 2807 atomic_cmpset_int(&eq->equiq, 0, 1)) { 2808 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 2809 F_FW_WR_EQUEQ); 2810 eq->equeqidx = eq->pidx; 2811 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 2812 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 2813 eq->equeqidx = eq->pidx; 2814 } 2815 2816 if (dbdiff >= 16 && remaining >= 4) { 2817 ring_eq_db(sc, eq, dbdiff); 2818 available += reclaim_tx_descs(txq, 4 * dbdiff); 2819 dbdiff = 0; 2820 } 2821 2822 cidx = next_cidx; 2823 } 2824 if (dbdiff != 0) { 2825 ring_eq_db(sc, eq, dbdiff); 2826 reclaim_tx_descs(txq, 32); 2827 } 2828 done: 2829 TXQ_UNLOCK(txq); 2830 2831 return (total); 2832 } 2833 2834 static inline void 2835 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, 2836 int qsize) 2837 { 2838 2839 KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, 2840 ("%s: bad tmr_idx %d", __func__, tmr_idx)); 2841 KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ 2842 ("%s: bad pktc_idx %d", __func__, pktc_idx)); 2843 2844 iq->flags = 0; 2845 iq->adapter = sc; 2846 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); 2847 iq->intr_pktc_idx = SGE_NCOUNTERS - 1; 2848 if (pktc_idx >= 0) { 2849 iq->intr_params |= F_QINTR_CNT_EN; 2850 iq->intr_pktc_idx = pktc_idx; 2851 } 2852 iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */ 2853 iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE; 2854 } 2855 2856 static inline void 2857 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name) 2858 { 2859 2860 fl->qsize = qsize; 2861 fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 2862 strlcpy(fl->lockname, name, sizeof(fl->lockname)); 2863 if (sc->flags & BUF_PACKING_OK && 2864 ((!is_t4(sc) && buffer_packing) || /* T5+: enabled unless 0 */ 2865 (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */ 2866 fl->flags |= FL_BUF_PACKING; 2867 find_best_refill_source(sc, fl, maxp); 2868 find_safe_refill_source(sc, fl); 2869 } 2870 2871 static inline void 2872 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize, 2873 uint8_t tx_chan, uint16_t iqid, char *name) 2874 { 2875 KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype)); 2876 2877 eq->flags = eqtype & EQ_TYPEMASK; 2878 eq->tx_chan = tx_chan; 2879 eq->iqid = iqid; 2880 eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 2881 strlcpy(eq->lockname, name, sizeof(eq->lockname)); 2882 } 2883 2884 static int 2885 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, 2886 bus_dmamap_t *map, bus_addr_t *pa, void **va) 2887 { 2888 int rc; 2889 2890 rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, 2891 BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); 2892 if (rc != 0) { 2893 device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc); 2894 goto done; 2895 } 2896 2897 rc = bus_dmamem_alloc(*tag, va, 2898 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); 2899 if (rc != 0) { 2900 device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc); 2901 goto done; 2902 } 2903 2904 rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); 2905 if (rc != 0) { 2906 device_printf(sc->dev, "cannot load DMA map: %d\n", rc); 2907 goto done; 2908 } 2909 done: 2910 if (rc) 2911 free_ring(sc, *tag, *map, *pa, *va); 2912 2913 return (rc); 2914 } 2915 2916 static int 2917 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, 2918 bus_addr_t pa, void *va) 2919 { 2920 if (pa) 2921 bus_dmamap_unload(tag, map); 2922 if (va) 2923 bus_dmamem_free(tag, va, map); 2924 if (tag) 2925 bus_dma_tag_destroy(tag); 2926 2927 return (0); 2928 } 2929 2930 /* 2931 * Allocates the ring for an ingress queue and an optional freelist. If the 2932 * freelist is specified it will be allocated and then associated with the 2933 * ingress queue. 2934 * 2935 * Returns errno on failure. Resources allocated up to that point may still be 2936 * allocated. Caller is responsible for cleanup in case this function fails. 2937 * 2938 * If the ingress queue will take interrupts directly then the intr_idx 2939 * specifies the vector, starting from 0. -1 means the interrupts for this 2940 * queue should be forwarded to the fwq. 2941 */ 2942 static int 2943 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl, 2944 int intr_idx, int cong) 2945 { 2946 int rc, i, cntxt_id; 2947 size_t len; 2948 struct fw_iq_cmd c; 2949 struct port_info *pi = vi->pi; 2950 struct adapter *sc = iq->adapter; 2951 struct sge_params *sp = &sc->params.sge; 2952 __be32 v = 0; 2953 2954 len = iq->qsize * IQ_ESIZE; 2955 rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, 2956 (void **)&iq->desc); 2957 if (rc != 0) 2958 return (rc); 2959 2960 bzero(&c, sizeof(c)); 2961 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 2962 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | 2963 V_FW_IQ_CMD_VFN(0)); 2964 2965 c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | 2966 FW_LEN16(c)); 2967 2968 /* Special handling for firmware event queue */ 2969 if (iq == &sc->sge.fwq) 2970 v |= F_FW_IQ_CMD_IQASYNCH; 2971 2972 if (intr_idx < 0) { 2973 /* Forwarded interrupts, all headed to fwq */ 2974 v |= F_FW_IQ_CMD_IQANDST; 2975 v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id); 2976 } else { 2977 KASSERT(intr_idx < sc->intr_count, 2978 ("%s: invalid direct intr_idx %d", __func__, intr_idx)); 2979 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); 2980 } 2981 2982 c.type_to_iqandstindex = htobe32(v | 2983 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 2984 V_FW_IQ_CMD_VIID(vi->viid) | 2985 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); 2986 c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 2987 F_FW_IQ_CMD_IQGTSMODE | 2988 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | 2989 V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4)); 2990 c.iqsize = htobe16(iq->qsize); 2991 c.iqaddr = htobe64(iq->ba); 2992 if (cong >= 0) 2993 c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN); 2994 2995 if (fl) { 2996 mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); 2997 2998 len = fl->qsize * EQ_ESIZE; 2999 rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, 3000 &fl->ba, (void **)&fl->desc); 3001 if (rc) 3002 return (rc); 3003 3004 /* Allocate space for one software descriptor per buffer. */ 3005 rc = alloc_fl_sdesc(fl); 3006 if (rc != 0) { 3007 device_printf(sc->dev, 3008 "failed to setup fl software descriptors: %d\n", 3009 rc); 3010 return (rc); 3011 } 3012 3013 if (fl->flags & FL_BUF_PACKING) { 3014 fl->lowat = roundup2(sp->fl_starve_threshold2, 8); 3015 fl->buf_boundary = sp->pack_boundary; 3016 } else { 3017 fl->lowat = roundup2(sp->fl_starve_threshold, 8); 3018 fl->buf_boundary = 16; 3019 } 3020 if (fl_pad && fl->buf_boundary < sp->pad_boundary) 3021 fl->buf_boundary = sp->pad_boundary; 3022 3023 c.iqns_to_fl0congen |= 3024 htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | 3025 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | 3026 (fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) | 3027 (fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN : 3028 0)); 3029 if (cong >= 0) { 3030 c.iqns_to_fl0congen |= 3031 htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | 3032 F_FW_IQ_CMD_FL0CONGCIF | 3033 F_FW_IQ_CMD_FL0CONGEN); 3034 } 3035 c.fl0dcaen_to_fl0cidxfthresh = 3036 htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ? 3037 X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) | 3038 V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ? 3039 X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B)); 3040 c.fl0size = htobe16(fl->qsize); 3041 c.fl0addr = htobe64(fl->ba); 3042 } 3043 3044 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3045 if (rc != 0) { 3046 device_printf(sc->dev, 3047 "failed to create ingress queue: %d\n", rc); 3048 return (rc); 3049 } 3050 3051 iq->cidx = 0; 3052 iq->gen = F_RSPD_GEN; 3053 iq->intr_next = iq->intr_params; 3054 iq->cntxt_id = be16toh(c.iqid); 3055 iq->abs_id = be16toh(c.physiqid); 3056 iq->flags |= IQ_ALLOCATED; 3057 3058 cntxt_id = iq->cntxt_id - sc->sge.iq_start; 3059 if (cntxt_id >= sc->sge.niq) { 3060 panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, 3061 cntxt_id, sc->sge.niq - 1); 3062 } 3063 sc->sge.iqmap[cntxt_id] = iq; 3064 3065 if (fl) { 3066 u_int qid; 3067 3068 iq->flags |= IQ_HAS_FL; 3069 fl->cntxt_id = be16toh(c.fl0id); 3070 fl->pidx = fl->cidx = 0; 3071 3072 cntxt_id = fl->cntxt_id - sc->sge.eq_start; 3073 if (cntxt_id >= sc->sge.neq) { 3074 panic("%s: fl->cntxt_id (%d) more than the max (%d)", 3075 __func__, cntxt_id, sc->sge.neq - 1); 3076 } 3077 sc->sge.eqmap[cntxt_id] = (void *)fl; 3078 3079 qid = fl->cntxt_id; 3080 if (isset(&sc->doorbells, DOORBELL_UDB)) { 3081 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 3082 uint32_t mask = (1 << s_qpp) - 1; 3083 volatile uint8_t *udb; 3084 3085 udb = sc->udbs_base + UDBS_DB_OFFSET; 3086 udb += (qid >> s_qpp) << PAGE_SHIFT; 3087 qid &= mask; 3088 if (qid < PAGE_SIZE / UDBS_SEG_SIZE) { 3089 udb += qid << UDBS_SEG_SHIFT; 3090 qid = 0; 3091 } 3092 fl->udb = (volatile void *)udb; 3093 } 3094 fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db; 3095 3096 FL_LOCK(fl); 3097 /* Enough to make sure the SGE doesn't think it's starved */ 3098 refill_fl(sc, fl, fl->lowat); 3099 FL_UNLOCK(fl); 3100 } 3101 3102 if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) { 3103 uint32_t param, val; 3104 3105 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 3106 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 3107 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id); 3108 if (cong == 0) 3109 val = 1 << 19; 3110 else { 3111 val = 2 << 19; 3112 for (i = 0; i < 4; i++) { 3113 if (cong & (1 << i)) 3114 val |= 1 << (i << 2); 3115 } 3116 } 3117 3118 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3119 if (rc != 0) { 3120 /* report error but carry on */ 3121 device_printf(sc->dev, 3122 "failed to set congestion manager context for " 3123 "ingress queue %d: %d\n", iq->cntxt_id, rc); 3124 } 3125 } 3126 3127 /* Enable IQ interrupts */ 3128 atomic_store_rel_int(&iq->state, IQS_IDLE); 3129 t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) | 3130 V_INGRESSQID(iq->cntxt_id)); 3131 3132 return (0); 3133 } 3134 3135 static int 3136 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl) 3137 { 3138 int rc; 3139 struct adapter *sc = iq->adapter; 3140 device_t dev; 3141 3142 if (sc == NULL) 3143 return (0); /* nothing to do */ 3144 3145 dev = vi ? vi->dev : sc->dev; 3146 3147 if (iq->flags & IQ_ALLOCATED) { 3148 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, 3149 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, 3150 fl ? fl->cntxt_id : 0xffff, 0xffff); 3151 if (rc != 0) { 3152 device_printf(dev, 3153 "failed to free queue %p: %d\n", iq, rc); 3154 return (rc); 3155 } 3156 iq->flags &= ~IQ_ALLOCATED; 3157 } 3158 3159 free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); 3160 3161 bzero(iq, sizeof(*iq)); 3162 3163 if (fl) { 3164 free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, 3165 fl->desc); 3166 3167 if (fl->sdesc) 3168 free_fl_sdesc(sc, fl); 3169 3170 if (mtx_initialized(&fl->fl_lock)) 3171 mtx_destroy(&fl->fl_lock); 3172 3173 bzero(fl, sizeof(*fl)); 3174 } 3175 3176 return (0); 3177 } 3178 3179 static void 3180 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, 3181 struct sge_iq *iq) 3182 { 3183 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3184 3185 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba, 3186 "bus address of descriptor ring"); 3187 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3188 iq->qsize * IQ_ESIZE, "descriptor ring size in bytes"); 3189 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", 3190 CTLTYPE_INT | CTLFLAG_RD, &iq->abs_id, 0, sysctl_uint16, "I", 3191 "absolute id of the queue"); 3192 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3193 CTLTYPE_INT | CTLFLAG_RD, &iq->cntxt_id, 0, sysctl_uint16, "I", 3194 "SGE context id of the queue"); 3195 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3196 CTLTYPE_INT | CTLFLAG_RD, &iq->cidx, 0, sysctl_uint16, "I", 3197 "consumer index"); 3198 } 3199 3200 static void 3201 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 3202 struct sysctl_oid *oid, struct sge_fl *fl) 3203 { 3204 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3205 3206 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 3207 "freelist"); 3208 children = SYSCTL_CHILDREN(oid); 3209 3210 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 3211 &fl->ba, "bus address of descriptor ring"); 3212 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3213 fl->sidx * EQ_ESIZE + sc->params.sge.spg_len, 3214 "desc ring size in bytes"); 3215 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3216 CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I", 3217 "SGE context id of the freelist"); 3218 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL, 3219 fl_pad ? 1 : 0, "padding enabled"); 3220 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL, 3221 fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled"); 3222 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx, 3223 0, "consumer index"); 3224 if (fl->flags & FL_BUF_PACKING) { 3225 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset", 3226 CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset"); 3227 } 3228 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx, 3229 0, "producer index"); 3230 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated", 3231 CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated"); 3232 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined", 3233 CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters"); 3234 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated", 3235 CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated"); 3236 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled", 3237 CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled"); 3238 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled", 3239 CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)"); 3240 } 3241 3242 static int 3243 alloc_fwq(struct adapter *sc) 3244 { 3245 int rc, intr_idx; 3246 struct sge_iq *fwq = &sc->sge.fwq; 3247 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 3248 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3249 3250 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE); 3251 if (sc->flags & IS_VF) 3252 intr_idx = 0; 3253 else 3254 intr_idx = sc->intr_count > 1 ? 1 : 0; 3255 rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1); 3256 if (rc != 0) { 3257 device_printf(sc->dev, 3258 "failed to create firmware event queue: %d\n", rc); 3259 return (rc); 3260 } 3261 3262 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD, 3263 NULL, "firmware event queue"); 3264 add_iq_sysctls(&sc->ctx, oid, fwq); 3265 3266 return (0); 3267 } 3268 3269 static int 3270 free_fwq(struct adapter *sc) 3271 { 3272 return free_iq_fl(NULL, &sc->sge.fwq, NULL); 3273 } 3274 3275 static int 3276 alloc_ctrlq(struct adapter *sc, struct sge_wrq *ctrlq, int idx, 3277 struct sysctl_oid *oid) 3278 { 3279 int rc; 3280 char name[16]; 3281 struct sysctl_oid_list *children; 3282 3283 snprintf(name, sizeof(name), "%s ctrlq%d", device_get_nameunit(sc->dev), 3284 idx); 3285 init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[idx]->tx_chan, 3286 sc->sge.fwq.cntxt_id, name); 3287 3288 children = SYSCTL_CHILDREN(oid); 3289 snprintf(name, sizeof(name), "%d", idx); 3290 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3291 NULL, "ctrl queue"); 3292 rc = alloc_wrq(sc, NULL, ctrlq, oid); 3293 3294 return (rc); 3295 } 3296 3297 int 3298 tnl_cong(struct port_info *pi, int drop) 3299 { 3300 3301 if (drop == -1) 3302 return (-1); 3303 else if (drop == 1) 3304 return (0); 3305 else 3306 return (pi->rx_e_chan_map); 3307 } 3308 3309 static int 3310 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx, 3311 struct sysctl_oid *oid) 3312 { 3313 int rc; 3314 struct adapter *sc = vi->pi->adapter; 3315 struct sysctl_oid_list *children; 3316 char name[16]; 3317 3318 rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx, 3319 tnl_cong(vi->pi, cong_drop)); 3320 if (rc != 0) 3321 return (rc); 3322 3323 if (idx == 0) 3324 sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id; 3325 else 3326 KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id, 3327 ("iq_base mismatch")); 3328 KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF, 3329 ("PF with non-zero iq_base")); 3330 3331 /* 3332 * The freelist is just barely above the starvation threshold right now, 3333 * fill it up a bit more. 3334 */ 3335 FL_LOCK(&rxq->fl); 3336 refill_fl(sc, &rxq->fl, 128); 3337 FL_UNLOCK(&rxq->fl); 3338 3339 #if defined(INET) || defined(INET6) 3340 rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs); 3341 if (rc != 0) 3342 return (rc); 3343 MPASS(rxq->lro.ifp == vi->ifp); /* also indicates LRO init'ed */ 3344 3345 if (vi->ifp->if_capenable & IFCAP_LRO) 3346 rxq->iq.flags |= IQ_LRO_ENABLED; 3347 #endif 3348 rxq->ifp = vi->ifp; 3349 3350 children = SYSCTL_CHILDREN(oid); 3351 3352 snprintf(name, sizeof(name), "%d", idx); 3353 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3354 NULL, "rx queue"); 3355 children = SYSCTL_CHILDREN(oid); 3356 3357 add_iq_sysctls(&vi->ctx, oid, &rxq->iq); 3358 #if defined(INET) || defined(INET6) 3359 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, 3360 &rxq->lro.lro_queued, 0, NULL); 3361 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, 3362 &rxq->lro.lro_flushed, 0, NULL); 3363 #endif 3364 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, 3365 &rxq->rxcsum, "# of times hardware assisted with checksum"); 3366 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction", 3367 CTLFLAG_RD, &rxq->vlan_extraction, 3368 "# of times hardware extracted 802.1Q tag"); 3369 3370 add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl); 3371 3372 return (rc); 3373 } 3374 3375 static int 3376 free_rxq(struct vi_info *vi, struct sge_rxq *rxq) 3377 { 3378 int rc; 3379 3380 #if defined(INET) || defined(INET6) 3381 if (rxq->lro.ifp) { 3382 tcp_lro_free(&rxq->lro); 3383 rxq->lro.ifp = NULL; 3384 } 3385 #endif 3386 3387 rc = free_iq_fl(vi, &rxq->iq, &rxq->fl); 3388 if (rc == 0) 3389 bzero(rxq, sizeof(*rxq)); 3390 3391 return (rc); 3392 } 3393 3394 #ifdef TCP_OFFLOAD 3395 static int 3396 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, 3397 int intr_idx, int idx, struct sysctl_oid *oid) 3398 { 3399 struct port_info *pi = vi->pi; 3400 int rc; 3401 struct sysctl_oid_list *children; 3402 char name[16]; 3403 3404 rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0); 3405 if (rc != 0) 3406 return (rc); 3407 3408 children = SYSCTL_CHILDREN(oid); 3409 3410 snprintf(name, sizeof(name), "%d", idx); 3411 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3412 NULL, "rx queue"); 3413 add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq); 3414 add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl); 3415 3416 return (rc); 3417 } 3418 3419 static int 3420 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq) 3421 { 3422 int rc; 3423 3424 rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl); 3425 if (rc == 0) 3426 bzero(ofld_rxq, sizeof(*ofld_rxq)); 3427 3428 return (rc); 3429 } 3430 #endif 3431 3432 #ifdef DEV_NETMAP 3433 static int 3434 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx, 3435 int idx, struct sysctl_oid *oid) 3436 { 3437 int rc; 3438 struct sysctl_oid_list *children; 3439 struct sysctl_ctx_list *ctx; 3440 char name[16]; 3441 size_t len; 3442 struct adapter *sc = vi->pi->adapter; 3443 struct netmap_adapter *na = NA(vi->ifp); 3444 3445 MPASS(na != NULL); 3446 3447 len = vi->qsize_rxq * IQ_ESIZE; 3448 rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map, 3449 &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc); 3450 if (rc != 0) 3451 return (rc); 3452 3453 len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len; 3454 rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map, 3455 &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc); 3456 if (rc != 0) 3457 return (rc); 3458 3459 nm_rxq->vi = vi; 3460 nm_rxq->nid = idx; 3461 nm_rxq->iq_cidx = 0; 3462 nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE; 3463 nm_rxq->iq_gen = F_RSPD_GEN; 3464 nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0; 3465 nm_rxq->fl_sidx = na->num_rx_desc; 3466 nm_rxq->intr_idx = intr_idx; 3467 nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID; 3468 3469 ctx = &vi->ctx; 3470 children = SYSCTL_CHILDREN(oid); 3471 3472 snprintf(name, sizeof(name), "%d", idx); 3473 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, 3474 "rx queue"); 3475 children = SYSCTL_CHILDREN(oid); 3476 3477 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", 3478 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16, 3479 "I", "absolute id of the queue"); 3480 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3481 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16, 3482 "I", "SGE context id of the queue"); 3483 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3484 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I", 3485 "consumer index"); 3486 3487 children = SYSCTL_CHILDREN(oid); 3488 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 3489 "freelist"); 3490 children = SYSCTL_CHILDREN(oid); 3491 3492 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3493 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16, 3494 "I", "SGE context id of the freelist"); 3495 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, 3496 &nm_rxq->fl_cidx, 0, "consumer index"); 3497 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, 3498 &nm_rxq->fl_pidx, 0, "producer index"); 3499 3500 return (rc); 3501 } 3502 3503 3504 static int 3505 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq) 3506 { 3507 struct adapter *sc = vi->pi->adapter; 3508 3509 if (vi->flags & VI_INIT_DONE) 3510 MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID); 3511 else 3512 MPASS(nm_rxq->iq_cntxt_id == 0); 3513 3514 free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba, 3515 nm_rxq->iq_desc); 3516 free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba, 3517 nm_rxq->fl_desc); 3518 3519 return (0); 3520 } 3521 3522 static int 3523 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx, 3524 struct sysctl_oid *oid) 3525 { 3526 int rc; 3527 size_t len; 3528 struct port_info *pi = vi->pi; 3529 struct adapter *sc = pi->adapter; 3530 struct netmap_adapter *na = NA(vi->ifp); 3531 char name[16]; 3532 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3533 3534 len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len; 3535 rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map, 3536 &nm_txq->ba, (void **)&nm_txq->desc); 3537 if (rc) 3538 return (rc); 3539 3540 nm_txq->pidx = nm_txq->cidx = 0; 3541 nm_txq->sidx = na->num_tx_desc; 3542 nm_txq->nid = idx; 3543 nm_txq->iqidx = iqidx; 3544 nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3545 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) | 3546 V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) | 3547 V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid))); 3548 nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID; 3549 3550 snprintf(name, sizeof(name), "%d", idx); 3551 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3552 NULL, "netmap tx queue"); 3553 children = SYSCTL_CHILDREN(oid); 3554 3555 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3556 &nm_txq->cntxt_id, 0, "SGE context id of the queue"); 3557 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3558 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I", 3559 "consumer index"); 3560 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 3561 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I", 3562 "producer index"); 3563 3564 return (rc); 3565 } 3566 3567 static int 3568 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq) 3569 { 3570 struct adapter *sc = vi->pi->adapter; 3571 3572 if (vi->flags & VI_INIT_DONE) 3573 MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID); 3574 else 3575 MPASS(nm_txq->cntxt_id == 0); 3576 3577 free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba, 3578 nm_txq->desc); 3579 3580 return (0); 3581 } 3582 #endif 3583 3584 static int 3585 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) 3586 { 3587 int rc, cntxt_id; 3588 struct fw_eq_ctrl_cmd c; 3589 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3590 3591 bzero(&c, sizeof(c)); 3592 3593 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | 3594 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | 3595 V_FW_EQ_CTRL_CMD_VFN(0)); 3596 c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC | 3597 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 3598 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); 3599 c.physeqid_pkd = htobe32(0); 3600 c.fetchszm_to_iqid = 3601 htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 3602 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | 3603 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); 3604 c.dcaen_to_eqsize = 3605 htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3606 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3607 V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 3608 V_FW_EQ_CTRL_CMD_EQSIZE(qsize)); 3609 c.eqaddr = htobe64(eq->ba); 3610 3611 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3612 if (rc != 0) { 3613 device_printf(sc->dev, 3614 "failed to create control queue %d: %d\n", eq->tx_chan, rc); 3615 return (rc); 3616 } 3617 eq->flags |= EQ_ALLOCATED; 3618 3619 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid)); 3620 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3621 if (cntxt_id >= sc->sge.neq) 3622 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3623 cntxt_id, sc->sge.neq - 1); 3624 sc->sge.eqmap[cntxt_id] = eq; 3625 3626 return (rc); 3627 } 3628 3629 static int 3630 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3631 { 3632 int rc, cntxt_id; 3633 struct fw_eq_eth_cmd c; 3634 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3635 3636 bzero(&c, sizeof(c)); 3637 3638 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | 3639 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | 3640 V_FW_EQ_ETH_CMD_VFN(0)); 3641 c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | 3642 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 3643 c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE | 3644 F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid)); 3645 c.fetchszm_to_iqid = 3646 htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3647 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | 3648 V_FW_EQ_ETH_CMD_IQID(eq->iqid)); 3649 c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3650 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3651 V_FW_EQ_ETH_CMD_EQSIZE(qsize)); 3652 c.eqaddr = htobe64(eq->ba); 3653 3654 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3655 if (rc != 0) { 3656 device_printf(vi->dev, 3657 "failed to create Ethernet egress queue: %d\n", rc); 3658 return (rc); 3659 } 3660 eq->flags |= EQ_ALLOCATED; 3661 3662 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); 3663 eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd)); 3664 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3665 if (cntxt_id >= sc->sge.neq) 3666 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3667 cntxt_id, sc->sge.neq - 1); 3668 sc->sge.eqmap[cntxt_id] = eq; 3669 3670 return (rc); 3671 } 3672 3673 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 3674 static int 3675 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3676 { 3677 int rc, cntxt_id; 3678 struct fw_eq_ofld_cmd c; 3679 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3680 3681 bzero(&c, sizeof(c)); 3682 3683 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | 3684 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | 3685 V_FW_EQ_OFLD_CMD_VFN(0)); 3686 c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | 3687 F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 3688 c.fetchszm_to_iqid = 3689 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3690 V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | 3691 F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); 3692 c.dcaen_to_eqsize = 3693 htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3694 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3695 V_FW_EQ_OFLD_CMD_EQSIZE(qsize)); 3696 c.eqaddr = htobe64(eq->ba); 3697 3698 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3699 if (rc != 0) { 3700 device_printf(vi->dev, 3701 "failed to create egress queue for TCP offload: %d\n", rc); 3702 return (rc); 3703 } 3704 eq->flags |= EQ_ALLOCATED; 3705 3706 eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd)); 3707 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3708 if (cntxt_id >= sc->sge.neq) 3709 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3710 cntxt_id, sc->sge.neq - 1); 3711 sc->sge.eqmap[cntxt_id] = eq; 3712 3713 return (rc); 3714 } 3715 #endif 3716 3717 static int 3718 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3719 { 3720 int rc, qsize; 3721 size_t len; 3722 3723 mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); 3724 3725 qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3726 len = qsize * EQ_ESIZE; 3727 rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, 3728 &eq->ba, (void **)&eq->desc); 3729 if (rc) 3730 return (rc); 3731 3732 eq->pidx = eq->cidx = 0; 3733 eq->equeqidx = eq->dbidx = 0; 3734 eq->doorbells = sc->doorbells; 3735 3736 switch (eq->flags & EQ_TYPEMASK) { 3737 case EQ_CTRL: 3738 rc = ctrl_eq_alloc(sc, eq); 3739 break; 3740 3741 case EQ_ETH: 3742 rc = eth_eq_alloc(sc, vi, eq); 3743 break; 3744 3745 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 3746 case EQ_OFLD: 3747 rc = ofld_eq_alloc(sc, vi, eq); 3748 break; 3749 #endif 3750 3751 default: 3752 panic("%s: invalid eq type %d.", __func__, 3753 eq->flags & EQ_TYPEMASK); 3754 } 3755 if (rc != 0) { 3756 device_printf(sc->dev, 3757 "failed to allocate egress queue(%d): %d\n", 3758 eq->flags & EQ_TYPEMASK, rc); 3759 } 3760 3761 if (isset(&eq->doorbells, DOORBELL_UDB) || 3762 isset(&eq->doorbells, DOORBELL_UDBWC) || 3763 isset(&eq->doorbells, DOORBELL_WCWR)) { 3764 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 3765 uint32_t mask = (1 << s_qpp) - 1; 3766 volatile uint8_t *udb; 3767 3768 udb = sc->udbs_base + UDBS_DB_OFFSET; 3769 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */ 3770 eq->udb_qid = eq->cntxt_id & mask; /* id in page */ 3771 if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE) 3772 clrbit(&eq->doorbells, DOORBELL_WCWR); 3773 else { 3774 udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */ 3775 eq->udb_qid = 0; 3776 } 3777 eq->udb = (volatile void *)udb; 3778 } 3779 3780 return (rc); 3781 } 3782 3783 static int 3784 free_eq(struct adapter *sc, struct sge_eq *eq) 3785 { 3786 int rc; 3787 3788 if (eq->flags & EQ_ALLOCATED) { 3789 switch (eq->flags & EQ_TYPEMASK) { 3790 case EQ_CTRL: 3791 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, 3792 eq->cntxt_id); 3793 break; 3794 3795 case EQ_ETH: 3796 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, 3797 eq->cntxt_id); 3798 break; 3799 3800 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 3801 case EQ_OFLD: 3802 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, 3803 eq->cntxt_id); 3804 break; 3805 #endif 3806 3807 default: 3808 panic("%s: invalid eq type %d.", __func__, 3809 eq->flags & EQ_TYPEMASK); 3810 } 3811 if (rc != 0) { 3812 device_printf(sc->dev, 3813 "failed to free egress queue (%d): %d\n", 3814 eq->flags & EQ_TYPEMASK, rc); 3815 return (rc); 3816 } 3817 eq->flags &= ~EQ_ALLOCATED; 3818 } 3819 3820 free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); 3821 3822 if (mtx_initialized(&eq->eq_lock)) 3823 mtx_destroy(&eq->eq_lock); 3824 3825 bzero(eq, sizeof(*eq)); 3826 return (0); 3827 } 3828 3829 static int 3830 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq, 3831 struct sysctl_oid *oid) 3832 { 3833 int rc; 3834 struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx; 3835 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3836 3837 rc = alloc_eq(sc, vi, &wrq->eq); 3838 if (rc) 3839 return (rc); 3840 3841 wrq->adapter = sc; 3842 TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq); 3843 TAILQ_INIT(&wrq->incomplete_wrs); 3844 STAILQ_INIT(&wrq->wr_list); 3845 wrq->nwr_pending = 0; 3846 wrq->ndesc_needed = 0; 3847 3848 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 3849 &wrq->eq.ba, "bus address of descriptor ring"); 3850 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3851 wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len, 3852 "desc ring size in bytes"); 3853 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3854 &wrq->eq.cntxt_id, 0, "SGE context id of the queue"); 3855 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3856 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I", 3857 "consumer index"); 3858 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx", 3859 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I", 3860 "producer index"); 3861 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL, 3862 wrq->eq.sidx, "status page index"); 3863 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD, 3864 &wrq->tx_wrs_direct, "# of work requests (direct)"); 3865 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD, 3866 &wrq->tx_wrs_copied, "# of work requests (copied)"); 3867 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD, 3868 &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)"); 3869 3870 return (rc); 3871 } 3872 3873 static int 3874 free_wrq(struct adapter *sc, struct sge_wrq *wrq) 3875 { 3876 int rc; 3877 3878 rc = free_eq(sc, &wrq->eq); 3879 if (rc) 3880 return (rc); 3881 3882 bzero(wrq, sizeof(*wrq)); 3883 return (0); 3884 } 3885 3886 static int 3887 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx, 3888 struct sysctl_oid *oid) 3889 { 3890 int rc; 3891 struct port_info *pi = vi->pi; 3892 struct adapter *sc = pi->adapter; 3893 struct sge_eq *eq = &txq->eq; 3894 char name[16]; 3895 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3896 3897 rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx, 3898 M_CXGBE, M_WAITOK); 3899 if (rc != 0) { 3900 device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc); 3901 return (rc); 3902 } 3903 3904 rc = alloc_eq(sc, vi, eq); 3905 if (rc != 0) { 3906 mp_ring_free(txq->r); 3907 txq->r = NULL; 3908 return (rc); 3909 } 3910 3911 /* Can't fail after this point. */ 3912 3913 if (idx == 0) 3914 sc->sge.eq_base = eq->abs_id - eq->cntxt_id; 3915 else 3916 KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id, 3917 ("eq_base mismatch")); 3918 KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF, 3919 ("PF with non-zero eq_base")); 3920 3921 TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq); 3922 txq->ifp = vi->ifp; 3923 txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK); 3924 if (sc->flags & IS_VF) 3925 txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 3926 V_TXPKT_INTF(pi->tx_chan)); 3927 else 3928 txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3929 V_TXPKT_INTF(pi->tx_chan) | 3930 V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) | 3931 V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) | 3932 V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid))); 3933 txq->tc_idx = -1; 3934 txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE, 3935 M_ZERO | M_WAITOK); 3936 3937 snprintf(name, sizeof(name), "%d", idx); 3938 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3939 NULL, "tx queue"); 3940 children = SYSCTL_CHILDREN(oid); 3941 3942 SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 3943 &eq->ba, "bus address of descriptor ring"); 3944 SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3945 eq->sidx * EQ_ESIZE + sc->params.sge.spg_len, 3946 "desc ring size in bytes"); 3947 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD, 3948 &eq->abs_id, 0, "absolute id of the queue"); 3949 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3950 &eq->cntxt_id, 0, "SGE context id of the queue"); 3951 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3952 CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I", 3953 "consumer index"); 3954 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 3955 CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I", 3956 "producer index"); 3957 SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL, 3958 eq->sidx, "status page index"); 3959 3960 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc", 3961 CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I", 3962 "traffic class (-1 means none)"); 3963 3964 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, 3965 &txq->txcsum, "# of times hardware assisted with checksum"); 3966 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion", 3967 CTLFLAG_RD, &txq->vlan_insertion, 3968 "# of times hardware inserted 802.1Q tag"); 3969 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, 3970 &txq->tso_wrs, "# of TSO work requests"); 3971 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, 3972 &txq->imm_wrs, "# of work requests with immediate data"); 3973 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, 3974 &txq->sgl_wrs, "# of work requests with direct SGL"); 3975 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, 3976 &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); 3977 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs", 3978 CTLFLAG_RD, &txq->txpkts0_wrs, 3979 "# of txpkts (type 0) work requests"); 3980 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs", 3981 CTLFLAG_RD, &txq->txpkts1_wrs, 3982 "# of txpkts (type 1) work requests"); 3983 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts", 3984 CTLFLAG_RD, &txq->txpkts0_pkts, 3985 "# of frames tx'd using type0 txpkts work requests"); 3986 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts", 3987 CTLFLAG_RD, &txq->txpkts1_pkts, 3988 "# of frames tx'd using type1 txpkts work requests"); 3989 3990 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues", 3991 CTLFLAG_RD, &txq->r->enqueues, 3992 "# of enqueues to the mp_ring for this queue"); 3993 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops", 3994 CTLFLAG_RD, &txq->r->drops, 3995 "# of drops in the mp_ring for this queue"); 3996 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts", 3997 CTLFLAG_RD, &txq->r->starts, 3998 "# of normal consumer starts in the mp_ring for this queue"); 3999 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls", 4000 CTLFLAG_RD, &txq->r->stalls, 4001 "# of consumer stalls in the mp_ring for this queue"); 4002 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts", 4003 CTLFLAG_RD, &txq->r->restarts, 4004 "# of consumer restarts in the mp_ring for this queue"); 4005 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications", 4006 CTLFLAG_RD, &txq->r->abdications, 4007 "# of consumer abdications in the mp_ring for this queue"); 4008 4009 return (0); 4010 } 4011 4012 static int 4013 free_txq(struct vi_info *vi, struct sge_txq *txq) 4014 { 4015 int rc; 4016 struct adapter *sc = vi->pi->adapter; 4017 struct sge_eq *eq = &txq->eq; 4018 4019 rc = free_eq(sc, eq); 4020 if (rc) 4021 return (rc); 4022 4023 sglist_free(txq->gl); 4024 free(txq->sdesc, M_CXGBE); 4025 mp_ring_free(txq->r); 4026 4027 bzero(txq, sizeof(*txq)); 4028 return (0); 4029 } 4030 4031 static void 4032 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) 4033 { 4034 bus_addr_t *ba = arg; 4035 4036 KASSERT(nseg == 1, 4037 ("%s meant for single segment mappings only.", __func__)); 4038 4039 *ba = error ? 0 : segs->ds_addr; 4040 } 4041 4042 static inline void 4043 ring_fl_db(struct adapter *sc, struct sge_fl *fl) 4044 { 4045 uint32_t n, v; 4046 4047 n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx); 4048 MPASS(n > 0); 4049 4050 wmb(); 4051 v = fl->dbval | V_PIDX(n); 4052 if (fl->udb) 4053 *fl->udb = htole32(v); 4054 else 4055 t4_write_reg(sc, sc->sge_kdoorbell_reg, v); 4056 IDXINCR(fl->dbidx, n, fl->sidx); 4057 } 4058 4059 /* 4060 * Fills up the freelist by allocating up to 'n' buffers. Buffers that are 4061 * recycled do not count towards this allocation budget. 4062 * 4063 * Returns non-zero to indicate that this freelist should be added to the list 4064 * of starving freelists. 4065 */ 4066 static int 4067 refill_fl(struct adapter *sc, struct sge_fl *fl, int n) 4068 { 4069 __be64 *d; 4070 struct fl_sdesc *sd; 4071 uintptr_t pa; 4072 caddr_t cl; 4073 struct cluster_layout *cll; 4074 struct sw_zone_info *swz; 4075 struct cluster_metadata *clm; 4076 uint16_t max_pidx; 4077 uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */ 4078 4079 FL_LOCK_ASSERT_OWNED(fl); 4080 4081 /* 4082 * We always stop at the beginning of the hardware descriptor that's just 4083 * before the one with the hw cidx. This is to avoid hw pidx = hw cidx, 4084 * which would mean an empty freelist to the chip. 4085 */ 4086 max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1; 4087 if (fl->pidx == max_pidx * 8) 4088 return (0); 4089 4090 d = &fl->desc[fl->pidx]; 4091 sd = &fl->sdesc[fl->pidx]; 4092 cll = &fl->cll_def; /* default layout */ 4093 swz = &sc->sge.sw_zone_info[cll->zidx]; 4094 4095 while (n > 0) { 4096 4097 if (sd->cl != NULL) { 4098 4099 if (sd->nmbuf == 0) { 4100 /* 4101 * Fast recycle without involving any atomics on 4102 * the cluster's metadata (if the cluster has 4103 * metadata). This happens when all frames 4104 * received in the cluster were small enough to 4105 * fit within a single mbuf each. 4106 */ 4107 fl->cl_fast_recycled++; 4108 #ifdef INVARIANTS 4109 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 4110 if (clm != NULL) 4111 MPASS(clm->refcount == 1); 4112 #endif 4113 goto recycled_fast; 4114 } 4115 4116 /* 4117 * Cluster is guaranteed to have metadata. Clusters 4118 * without metadata always take the fast recycle path 4119 * when they're recycled. 4120 */ 4121 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 4122 MPASS(clm != NULL); 4123 4124 if (atomic_fetchadd_int(&clm->refcount, -1) == 1) { 4125 fl->cl_recycled++; 4126 counter_u64_add(extfree_rels, 1); 4127 goto recycled; 4128 } 4129 sd->cl = NULL; /* gave up my reference */ 4130 } 4131 MPASS(sd->cl == NULL); 4132 alloc: 4133 cl = uma_zalloc(swz->zone, M_NOWAIT); 4134 if (__predict_false(cl == NULL)) { 4135 if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 || 4136 fl->cll_def.zidx == fl->cll_alt.zidx) 4137 break; 4138 4139 /* fall back to the safe zone */ 4140 cll = &fl->cll_alt; 4141 swz = &sc->sge.sw_zone_info[cll->zidx]; 4142 goto alloc; 4143 } 4144 fl->cl_allocated++; 4145 n--; 4146 4147 pa = pmap_kextract((vm_offset_t)cl); 4148 pa += cll->region1; 4149 sd->cl = cl; 4150 sd->cll = *cll; 4151 *d = htobe64(pa | cll->hwidx); 4152 clm = cl_metadata(sc, fl, cll, cl); 4153 if (clm != NULL) { 4154 recycled: 4155 #ifdef INVARIANTS 4156 clm->sd = sd; 4157 #endif 4158 clm->refcount = 1; 4159 } 4160 sd->nmbuf = 0; 4161 recycled_fast: 4162 d++; 4163 sd++; 4164 if (__predict_false(++fl->pidx % 8 == 0)) { 4165 uint16_t pidx = fl->pidx / 8; 4166 4167 if (__predict_false(pidx == fl->sidx)) { 4168 fl->pidx = 0; 4169 pidx = 0; 4170 sd = fl->sdesc; 4171 d = fl->desc; 4172 } 4173 if (pidx == max_pidx) 4174 break; 4175 4176 if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4) 4177 ring_fl_db(sc, fl); 4178 } 4179 } 4180 4181 if (fl->pidx / 8 != fl->dbidx) 4182 ring_fl_db(sc, fl); 4183 4184 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); 4185 } 4186 4187 /* 4188 * Attempt to refill all starving freelists. 4189 */ 4190 static void 4191 refill_sfl(void *arg) 4192 { 4193 struct adapter *sc = arg; 4194 struct sge_fl *fl, *fl_temp; 4195 4196 mtx_assert(&sc->sfl_lock, MA_OWNED); 4197 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { 4198 FL_LOCK(fl); 4199 refill_fl(sc, fl, 64); 4200 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { 4201 TAILQ_REMOVE(&sc->sfl, fl, link); 4202 fl->flags &= ~FL_STARVING; 4203 } 4204 FL_UNLOCK(fl); 4205 } 4206 4207 if (!TAILQ_EMPTY(&sc->sfl)) 4208 callout_schedule(&sc->sfl_callout, hz / 5); 4209 } 4210 4211 static int 4212 alloc_fl_sdesc(struct sge_fl *fl) 4213 { 4214 4215 fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE, 4216 M_ZERO | M_WAITOK); 4217 4218 return (0); 4219 } 4220 4221 static void 4222 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl) 4223 { 4224 struct fl_sdesc *sd; 4225 struct cluster_metadata *clm; 4226 struct cluster_layout *cll; 4227 int i; 4228 4229 sd = fl->sdesc; 4230 for (i = 0; i < fl->sidx * 8; i++, sd++) { 4231 if (sd->cl == NULL) 4232 continue; 4233 4234 cll = &sd->cll; 4235 clm = cl_metadata(sc, fl, cll, sd->cl); 4236 if (sd->nmbuf == 0) 4237 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 4238 else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) { 4239 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 4240 counter_u64_add(extfree_rels, 1); 4241 } 4242 sd->cl = NULL; 4243 } 4244 4245 free(fl->sdesc, M_CXGBE); 4246 fl->sdesc = NULL; 4247 } 4248 4249 static inline void 4250 get_pkt_gl(struct mbuf *m, struct sglist *gl) 4251 { 4252 int rc; 4253 4254 M_ASSERTPKTHDR(m); 4255 4256 sglist_reset(gl); 4257 rc = sglist_append_mbuf(gl, m); 4258 if (__predict_false(rc != 0)) { 4259 panic("%s: mbuf %p (%d segs) was vetted earlier but now fails " 4260 "with %d.", __func__, m, mbuf_nsegs(m), rc); 4261 } 4262 4263 KASSERT(gl->sg_nseg == mbuf_nsegs(m), 4264 ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m, 4265 mbuf_nsegs(m), gl->sg_nseg)); 4266 KASSERT(gl->sg_nseg > 0 && 4267 gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS), 4268 ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__, 4269 gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)); 4270 } 4271 4272 /* 4273 * len16 for a txpkt WR with a GL. Includes the firmware work request header. 4274 */ 4275 static inline u_int 4276 txpkt_len16(u_int nsegs, u_int tso) 4277 { 4278 u_int n; 4279 4280 MPASS(nsegs > 0); 4281 4282 nsegs--; /* first segment is part of ulptx_sgl */ 4283 n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) + 4284 sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 4285 if (tso) 4286 n += sizeof(struct cpl_tx_pkt_lso_core); 4287 4288 return (howmany(n, 16)); 4289 } 4290 4291 /* 4292 * len16 for a txpkt_vm WR with a GL. Includes the firmware work 4293 * request header. 4294 */ 4295 static inline u_int 4296 txpkt_vm_len16(u_int nsegs, u_int tso) 4297 { 4298 u_int n; 4299 4300 MPASS(nsegs > 0); 4301 4302 nsegs--; /* first segment is part of ulptx_sgl */ 4303 n = sizeof(struct fw_eth_tx_pkt_vm_wr) + 4304 sizeof(struct cpl_tx_pkt_core) + 4305 sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 4306 if (tso) 4307 n += sizeof(struct cpl_tx_pkt_lso_core); 4308 4309 return (howmany(n, 16)); 4310 } 4311 4312 /* 4313 * len16 for a txpkts type 0 WR with a GL. Does not include the firmware work 4314 * request header. 4315 */ 4316 static inline u_int 4317 txpkts0_len16(u_int nsegs) 4318 { 4319 u_int n; 4320 4321 MPASS(nsegs > 0); 4322 4323 nsegs--; /* first segment is part of ulptx_sgl */ 4324 n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) + 4325 sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 4326 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 4327 4328 return (howmany(n, 16)); 4329 } 4330 4331 /* 4332 * len16 for a txpkts type 1 WR with a GL. Does not include the firmware work 4333 * request header. 4334 */ 4335 static inline u_int 4336 txpkts1_len16(void) 4337 { 4338 u_int n; 4339 4340 n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl); 4341 4342 return (howmany(n, 16)); 4343 } 4344 4345 static inline u_int 4346 imm_payload(u_int ndesc) 4347 { 4348 u_int n; 4349 4350 n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) - 4351 sizeof(struct cpl_tx_pkt_core); 4352 4353 return (n); 4354 } 4355 4356 /* 4357 * Write a VM txpkt WR for this packet to the hardware descriptors, update the 4358 * software descriptor, and advance the pidx. It is guaranteed that enough 4359 * descriptors are available. 4360 * 4361 * The return value is the # of hardware descriptors used. 4362 */ 4363 static u_int 4364 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, 4365 struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available) 4366 { 4367 struct sge_eq *eq = &txq->eq; 4368 struct tx_sdesc *txsd; 4369 struct cpl_tx_pkt_core *cpl; 4370 uint32_t ctrl; /* used in many unrelated places */ 4371 uint64_t ctrl1; 4372 int csum_type, len16, ndesc, pktlen, nsegs; 4373 caddr_t dst; 4374 4375 TXQ_LOCK_ASSERT_OWNED(txq); 4376 M_ASSERTPKTHDR(m0); 4377 MPASS(available > 0 && available < eq->sidx); 4378 4379 len16 = mbuf_len16(m0); 4380 nsegs = mbuf_nsegs(m0); 4381 pktlen = m0->m_pkthdr.len; 4382 ctrl = sizeof(struct cpl_tx_pkt_core); 4383 if (needs_tso(m0)) 4384 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 4385 ndesc = howmany(len16, EQ_ESIZE / 16); 4386 MPASS(ndesc <= available); 4387 4388 /* Firmware work request header */ 4389 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4390 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) | 4391 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 4392 4393 ctrl = V_FW_WR_LEN16(len16); 4394 wr->equiq_to_len16 = htobe32(ctrl); 4395 wr->r3[0] = 0; 4396 wr->r3[1] = 0; 4397 4398 /* 4399 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci. 4400 * vlantci is ignored unless the ethtype is 0x8100, so it's 4401 * simpler to always copy it rather than making it 4402 * conditional. Also, it seems that we do not have to set 4403 * vlantci or fake the ethtype when doing VLAN tag insertion. 4404 */ 4405 m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst); 4406 4407 csum_type = -1; 4408 if (needs_tso(m0)) { 4409 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 4410 4411 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 4412 m0->m_pkthdr.l4hlen > 0, 4413 ("%s: mbuf %p needs TSO but missing header lengths", 4414 __func__, m0)); 4415 4416 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 4417 F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) 4418 | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 4419 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 4420 ctrl |= V_LSO_ETHHDR_LEN(1); 4421 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4422 ctrl |= F_LSO_IPV6; 4423 4424 lso->lso_ctrl = htobe32(ctrl); 4425 lso->ipid_ofst = htobe16(0); 4426 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 4427 lso->seqno_offset = htobe32(0); 4428 lso->len = htobe32(pktlen); 4429 4430 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4431 csum_type = TX_CSUM_TCPIP6; 4432 else 4433 csum_type = TX_CSUM_TCPIP; 4434 4435 cpl = (void *)(lso + 1); 4436 4437 txq->tso_wrs++; 4438 } else { 4439 if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP) 4440 csum_type = TX_CSUM_TCPIP; 4441 else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP) 4442 csum_type = TX_CSUM_UDPIP; 4443 else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP) 4444 csum_type = TX_CSUM_TCPIP6; 4445 else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP) 4446 csum_type = TX_CSUM_UDPIP6; 4447 #if defined(INET) 4448 else if (m0->m_pkthdr.csum_flags & CSUM_IP) { 4449 /* 4450 * XXX: The firmware appears to stomp on the 4451 * fragment/flags field of the IP header when 4452 * using TX_CSUM_IP. Fall back to doing 4453 * software checksums. 4454 */ 4455 u_short *sump; 4456 struct mbuf *m; 4457 int offset; 4458 4459 m = m0; 4460 offset = 0; 4461 sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen + 4462 offsetof(struct ip, ip_sum)); 4463 *sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen + 4464 m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen); 4465 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 4466 } 4467 #endif 4468 4469 cpl = (void *)(wr + 1); 4470 } 4471 4472 /* Checksum offload */ 4473 ctrl1 = 0; 4474 if (needs_l3_csum(m0) == 0) 4475 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4476 if (csum_type >= 0) { 4477 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0, 4478 ("%s: mbuf %p needs checksum offload but missing header lengths", 4479 __func__, m0)); 4480 4481 if (chip_id(sc) <= CHELSIO_T5) { 4482 ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen - 4483 ETHER_HDR_LEN); 4484 } else { 4485 ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen - 4486 ETHER_HDR_LEN); 4487 } 4488 ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen); 4489 ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type); 4490 } else 4491 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4492 if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4493 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4494 txq->txcsum++; /* some hardware assistance provided */ 4495 4496 /* VLAN tag insertion */ 4497 if (needs_vlan_insertion(m0)) { 4498 ctrl1 |= F_TXPKT_VLAN_VLD | 4499 V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 4500 txq->vlan_insertion++; 4501 } 4502 4503 /* CPL header */ 4504 cpl->ctrl0 = txq->cpl_ctrl0; 4505 cpl->pack = 0; 4506 cpl->len = htobe16(pktlen); 4507 cpl->ctrl1 = htobe64(ctrl1); 4508 4509 /* SGL */ 4510 dst = (void *)(cpl + 1); 4511 4512 /* 4513 * A packet using TSO will use up an entire descriptor for the 4514 * firmware work request header, LSO CPL, and TX_PKT_XT CPL. 4515 * If this descriptor is the last descriptor in the ring, wrap 4516 * around to the front of the ring explicitly for the start of 4517 * the sgl. 4518 */ 4519 if (dst == (void *)&eq->desc[eq->sidx]) { 4520 dst = (void *)&eq->desc[0]; 4521 write_gl_to_txd(txq, m0, &dst, 0); 4522 } else 4523 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); 4524 txq->sgl_wrs++; 4525 4526 txq->txpkt_wrs++; 4527 4528 txsd = &txq->sdesc[eq->pidx]; 4529 txsd->m = m0; 4530 txsd->desc_used = ndesc; 4531 4532 return (ndesc); 4533 } 4534 4535 /* 4536 * Write a txpkt WR for this packet to the hardware descriptors, update the 4537 * software descriptor, and advance the pidx. It is guaranteed that enough 4538 * descriptors are available. 4539 * 4540 * The return value is the # of hardware descriptors used. 4541 */ 4542 static u_int 4543 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr, 4544 struct mbuf *m0, u_int available) 4545 { 4546 struct sge_eq *eq = &txq->eq; 4547 struct tx_sdesc *txsd; 4548 struct cpl_tx_pkt_core *cpl; 4549 uint32_t ctrl; /* used in many unrelated places */ 4550 uint64_t ctrl1; 4551 int len16, ndesc, pktlen, nsegs; 4552 caddr_t dst; 4553 4554 TXQ_LOCK_ASSERT_OWNED(txq); 4555 M_ASSERTPKTHDR(m0); 4556 MPASS(available > 0 && available < eq->sidx); 4557 4558 len16 = mbuf_len16(m0); 4559 nsegs = mbuf_nsegs(m0); 4560 pktlen = m0->m_pkthdr.len; 4561 ctrl = sizeof(struct cpl_tx_pkt_core); 4562 if (needs_tso(m0)) 4563 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 4564 else if (pktlen <= imm_payload(2) && available >= 2) { 4565 /* Immediate data. Recalculate len16 and set nsegs to 0. */ 4566 ctrl += pktlen; 4567 len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) + 4568 sizeof(struct cpl_tx_pkt_core) + pktlen, 16); 4569 nsegs = 0; 4570 } 4571 ndesc = howmany(len16, EQ_ESIZE / 16); 4572 MPASS(ndesc <= available); 4573 4574 /* Firmware work request header */ 4575 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4576 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | 4577 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 4578 4579 ctrl = V_FW_WR_LEN16(len16); 4580 wr->equiq_to_len16 = htobe32(ctrl); 4581 wr->r3 = 0; 4582 4583 if (needs_tso(m0)) { 4584 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 4585 4586 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 4587 m0->m_pkthdr.l4hlen > 0, 4588 ("%s: mbuf %p needs TSO but missing header lengths", 4589 __func__, m0)); 4590 4591 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 4592 F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) 4593 | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 4594 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 4595 ctrl |= V_LSO_ETHHDR_LEN(1); 4596 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4597 ctrl |= F_LSO_IPV6; 4598 4599 lso->lso_ctrl = htobe32(ctrl); 4600 lso->ipid_ofst = htobe16(0); 4601 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 4602 lso->seqno_offset = htobe32(0); 4603 lso->len = htobe32(pktlen); 4604 4605 cpl = (void *)(lso + 1); 4606 4607 txq->tso_wrs++; 4608 } else 4609 cpl = (void *)(wr + 1); 4610 4611 /* Checksum offload */ 4612 ctrl1 = 0; 4613 if (needs_l3_csum(m0) == 0) 4614 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4615 if (needs_l4_csum(m0) == 0) 4616 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4617 if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4618 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4619 txq->txcsum++; /* some hardware assistance provided */ 4620 4621 /* VLAN tag insertion */ 4622 if (needs_vlan_insertion(m0)) { 4623 ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 4624 txq->vlan_insertion++; 4625 } 4626 4627 /* CPL header */ 4628 cpl->ctrl0 = txq->cpl_ctrl0; 4629 cpl->pack = 0; 4630 cpl->len = htobe16(pktlen); 4631 cpl->ctrl1 = htobe64(ctrl1); 4632 4633 /* SGL */ 4634 dst = (void *)(cpl + 1); 4635 if (nsegs > 0) { 4636 4637 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); 4638 txq->sgl_wrs++; 4639 } else { 4640 struct mbuf *m; 4641 4642 for (m = m0; m != NULL; m = m->m_next) { 4643 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); 4644 #ifdef INVARIANTS 4645 pktlen -= m->m_len; 4646 #endif 4647 } 4648 #ifdef INVARIANTS 4649 KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen)); 4650 #endif 4651 txq->imm_wrs++; 4652 } 4653 4654 txq->txpkt_wrs++; 4655 4656 txsd = &txq->sdesc[eq->pidx]; 4657 txsd->m = m0; 4658 txsd->desc_used = ndesc; 4659 4660 return (ndesc); 4661 } 4662 4663 static int 4664 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available) 4665 { 4666 u_int needed, nsegs1, nsegs2, l1, l2; 4667 4668 if (cannot_use_txpkts(m) || cannot_use_txpkts(n)) 4669 return (1); 4670 4671 nsegs1 = mbuf_nsegs(m); 4672 nsegs2 = mbuf_nsegs(n); 4673 if (nsegs1 + nsegs2 == 2) { 4674 txp->wr_type = 1; 4675 l1 = l2 = txpkts1_len16(); 4676 } else { 4677 txp->wr_type = 0; 4678 l1 = txpkts0_len16(nsegs1); 4679 l2 = txpkts0_len16(nsegs2); 4680 } 4681 txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2; 4682 needed = howmany(txp->len16, EQ_ESIZE / 16); 4683 if (needed > SGE_MAX_WR_NDESC || needed > available) 4684 return (1); 4685 4686 txp->plen = m->m_pkthdr.len + n->m_pkthdr.len; 4687 if (txp->plen > 65535) 4688 return (1); 4689 4690 txp->npkt = 2; 4691 set_mbuf_len16(m, l1); 4692 set_mbuf_len16(n, l2); 4693 4694 return (0); 4695 } 4696 4697 static int 4698 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available) 4699 { 4700 u_int plen, len16, needed, nsegs; 4701 4702 MPASS(txp->wr_type == 0 || txp->wr_type == 1); 4703 4704 nsegs = mbuf_nsegs(m); 4705 if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1)) 4706 return (1); 4707 4708 plen = txp->plen + m->m_pkthdr.len; 4709 if (plen > 65535) 4710 return (1); 4711 4712 if (txp->wr_type == 0) 4713 len16 = txpkts0_len16(nsegs); 4714 else 4715 len16 = txpkts1_len16(); 4716 needed = howmany(txp->len16 + len16, EQ_ESIZE / 16); 4717 if (needed > SGE_MAX_WR_NDESC || needed > available) 4718 return (1); 4719 4720 txp->npkt++; 4721 txp->plen = plen; 4722 txp->len16 += len16; 4723 set_mbuf_len16(m, len16); 4724 4725 return (0); 4726 } 4727 4728 /* 4729 * Write a txpkts WR for the packets in txp to the hardware descriptors, update 4730 * the software descriptor, and advance the pidx. It is guaranteed that enough 4731 * descriptors are available. 4732 * 4733 * The return value is the # of hardware descriptors used. 4734 */ 4735 static u_int 4736 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr, 4737 struct mbuf *m0, const struct txpkts *txp, u_int available) 4738 { 4739 struct sge_eq *eq = &txq->eq; 4740 struct tx_sdesc *txsd; 4741 struct cpl_tx_pkt_core *cpl; 4742 uint32_t ctrl; 4743 uint64_t ctrl1; 4744 int ndesc, checkwrap; 4745 struct mbuf *m; 4746 void *flitp; 4747 4748 TXQ_LOCK_ASSERT_OWNED(txq); 4749 MPASS(txp->npkt > 0); 4750 MPASS(txp->plen < 65536); 4751 MPASS(m0 != NULL); 4752 MPASS(m0->m_nextpkt != NULL); 4753 MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16)); 4754 MPASS(available > 0 && available < eq->sidx); 4755 4756 ndesc = howmany(txp->len16, EQ_ESIZE / 16); 4757 MPASS(ndesc <= available); 4758 4759 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4760 wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)); 4761 ctrl = V_FW_WR_LEN16(txp->len16); 4762 wr->equiq_to_len16 = htobe32(ctrl); 4763 wr->plen = htobe16(txp->plen); 4764 wr->npkt = txp->npkt; 4765 wr->r3 = 0; 4766 wr->type = txp->wr_type; 4767 flitp = wr + 1; 4768 4769 /* 4770 * At this point we are 16B into a hardware descriptor. If checkwrap is 4771 * set then we know the WR is going to wrap around somewhere. We'll 4772 * check for that at appropriate points. 4773 */ 4774 checkwrap = eq->sidx - ndesc < eq->pidx; 4775 for (m = m0; m != NULL; m = m->m_nextpkt) { 4776 if (txp->wr_type == 0) { 4777 struct ulp_txpkt *ulpmc; 4778 struct ulptx_idata *ulpsc; 4779 4780 /* ULP master command */ 4781 ulpmc = flitp; 4782 ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) | 4783 V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid)); 4784 ulpmc->len = htobe32(mbuf_len16(m)); 4785 4786 /* ULP subcommand */ 4787 ulpsc = (void *)(ulpmc + 1); 4788 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) | 4789 F_ULP_TX_SC_MORE); 4790 ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); 4791 4792 cpl = (void *)(ulpsc + 1); 4793 if (checkwrap && 4794 (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx]) 4795 cpl = (void *)&eq->desc[0]; 4796 } else { 4797 cpl = flitp; 4798 } 4799 4800 /* Checksum offload */ 4801 ctrl1 = 0; 4802 if (needs_l3_csum(m) == 0) 4803 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4804 if (needs_l4_csum(m) == 0) 4805 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4806 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4807 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4808 txq->txcsum++; /* some hardware assistance provided */ 4809 4810 /* VLAN tag insertion */ 4811 if (needs_vlan_insertion(m)) { 4812 ctrl1 |= F_TXPKT_VLAN_VLD | 4813 V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); 4814 txq->vlan_insertion++; 4815 } 4816 4817 /* CPL header */ 4818 cpl->ctrl0 = txq->cpl_ctrl0; 4819 cpl->pack = 0; 4820 cpl->len = htobe16(m->m_pkthdr.len); 4821 cpl->ctrl1 = htobe64(ctrl1); 4822 4823 flitp = cpl + 1; 4824 if (checkwrap && 4825 (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx]) 4826 flitp = (void *)&eq->desc[0]; 4827 4828 write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap); 4829 4830 } 4831 4832 if (txp->wr_type == 0) { 4833 txq->txpkts0_pkts += txp->npkt; 4834 txq->txpkts0_wrs++; 4835 } else { 4836 txq->txpkts1_pkts += txp->npkt; 4837 txq->txpkts1_wrs++; 4838 } 4839 4840 txsd = &txq->sdesc[eq->pidx]; 4841 txsd->m = m0; 4842 txsd->desc_used = ndesc; 4843 4844 return (ndesc); 4845 } 4846 4847 /* 4848 * If the SGL ends on an address that is not 16 byte aligned, this function will 4849 * add a 0 filled flit at the end. 4850 */ 4851 static void 4852 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap) 4853 { 4854 struct sge_eq *eq = &txq->eq; 4855 struct sglist *gl = txq->gl; 4856 struct sglist_seg *seg; 4857 __be64 *flitp, *wrap; 4858 struct ulptx_sgl *usgl; 4859 int i, nflits, nsegs; 4860 4861 KASSERT(((uintptr_t)(*to) & 0xf) == 0, 4862 ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); 4863 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 4864 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 4865 4866 get_pkt_gl(m, gl); 4867 nsegs = gl->sg_nseg; 4868 MPASS(nsegs > 0); 4869 4870 nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2; 4871 flitp = (__be64 *)(*to); 4872 wrap = (__be64 *)(&eq->desc[eq->sidx]); 4873 seg = &gl->sg_segs[0]; 4874 usgl = (void *)flitp; 4875 4876 /* 4877 * We start at a 16 byte boundary somewhere inside the tx descriptor 4878 * ring, so we're at least 16 bytes away from the status page. There is 4879 * no chance of a wrap around in the middle of usgl (which is 16 bytes). 4880 */ 4881 4882 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 4883 V_ULPTX_NSGE(nsegs)); 4884 usgl->len0 = htobe32(seg->ss_len); 4885 usgl->addr0 = htobe64(seg->ss_paddr); 4886 seg++; 4887 4888 if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) { 4889 4890 /* Won't wrap around at all */ 4891 4892 for (i = 0; i < nsegs - 1; i++, seg++) { 4893 usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len); 4894 usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr); 4895 } 4896 if (i & 1) 4897 usgl->sge[i / 2].len[1] = htobe32(0); 4898 flitp += nflits; 4899 } else { 4900 4901 /* Will wrap somewhere in the rest of the SGL */ 4902 4903 /* 2 flits already written, write the rest flit by flit */ 4904 flitp = (void *)(usgl + 1); 4905 for (i = 0; i < nflits - 2; i++) { 4906 if (flitp == wrap) 4907 flitp = (void *)eq->desc; 4908 *flitp++ = get_flit(seg, nsegs - 1, i); 4909 } 4910 } 4911 4912 if (nflits & 1) { 4913 MPASS(((uintptr_t)flitp) & 0xf); 4914 *flitp++ = 0; 4915 } 4916 4917 MPASS((((uintptr_t)flitp) & 0xf) == 0); 4918 if (__predict_false(flitp == wrap)) 4919 *to = (void *)eq->desc; 4920 else 4921 *to = (void *)flitp; 4922 } 4923 4924 static inline void 4925 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) 4926 { 4927 4928 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 4929 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 4930 4931 if (__predict_true((uintptr_t)(*to) + len <= 4932 (uintptr_t)&eq->desc[eq->sidx])) { 4933 bcopy(from, *to, len); 4934 (*to) += len; 4935 } else { 4936 int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to); 4937 4938 bcopy(from, *to, portion); 4939 from += portion; 4940 portion = len - portion; /* remaining */ 4941 bcopy(from, (void *)eq->desc, portion); 4942 (*to) = (caddr_t)eq->desc + portion; 4943 } 4944 } 4945 4946 static inline void 4947 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n) 4948 { 4949 u_int db; 4950 4951 MPASS(n > 0); 4952 4953 db = eq->doorbells; 4954 if (n > 1) 4955 clrbit(&db, DOORBELL_WCWR); 4956 wmb(); 4957 4958 switch (ffs(db) - 1) { 4959 case DOORBELL_UDB: 4960 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 4961 break; 4962 4963 case DOORBELL_WCWR: { 4964 volatile uint64_t *dst, *src; 4965 int i; 4966 4967 /* 4968 * Queues whose 128B doorbell segment fits in the page do not 4969 * use relative qid (udb_qid is always 0). Only queues with 4970 * doorbell segments can do WCWR. 4971 */ 4972 KASSERT(eq->udb_qid == 0 && n == 1, 4973 ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p", 4974 __func__, eq->doorbells, n, eq->dbidx, eq)); 4975 4976 dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET - 4977 UDBS_DB_OFFSET); 4978 i = eq->dbidx; 4979 src = (void *)&eq->desc[i]; 4980 while (src != (void *)&eq->desc[i + 1]) 4981 *dst++ = *src++; 4982 wmb(); 4983 break; 4984 } 4985 4986 case DOORBELL_UDBWC: 4987 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 4988 wmb(); 4989 break; 4990 4991 case DOORBELL_KDB: 4992 t4_write_reg(sc, sc->sge_kdoorbell_reg, 4993 V_QID(eq->cntxt_id) | V_PIDX(n)); 4994 break; 4995 } 4996 4997 IDXINCR(eq->dbidx, n, eq->sidx); 4998 } 4999 5000 static inline u_int 5001 reclaimable_tx_desc(struct sge_eq *eq) 5002 { 5003 uint16_t hw_cidx; 5004 5005 hw_cidx = read_hw_cidx(eq); 5006 return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx)); 5007 } 5008 5009 static inline u_int 5010 total_available_tx_desc(struct sge_eq *eq) 5011 { 5012 uint16_t hw_cidx, pidx; 5013 5014 hw_cidx = read_hw_cidx(eq); 5015 pidx = eq->pidx; 5016 5017 if (pidx == hw_cidx) 5018 return (eq->sidx - 1); 5019 else 5020 return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1); 5021 } 5022 5023 static inline uint16_t 5024 read_hw_cidx(struct sge_eq *eq) 5025 { 5026 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 5027 uint16_t cidx = spg->cidx; /* stable snapshot */ 5028 5029 return (be16toh(cidx)); 5030 } 5031 5032 /* 5033 * Reclaim 'n' descriptors approximately. 5034 */ 5035 static u_int 5036 reclaim_tx_descs(struct sge_txq *txq, u_int n) 5037 { 5038 struct tx_sdesc *txsd; 5039 struct sge_eq *eq = &txq->eq; 5040 u_int can_reclaim, reclaimed; 5041 5042 TXQ_LOCK_ASSERT_OWNED(txq); 5043 MPASS(n > 0); 5044 5045 reclaimed = 0; 5046 can_reclaim = reclaimable_tx_desc(eq); 5047 while (can_reclaim && reclaimed < n) { 5048 int ndesc; 5049 struct mbuf *m, *nextpkt; 5050 5051 txsd = &txq->sdesc[eq->cidx]; 5052 ndesc = txsd->desc_used; 5053 5054 /* Firmware doesn't return "partial" credits. */ 5055 KASSERT(can_reclaim >= ndesc, 5056 ("%s: unexpected number of credits: %d, %d", 5057 __func__, can_reclaim, ndesc)); 5058 5059 for (m = txsd->m; m != NULL; m = nextpkt) { 5060 nextpkt = m->m_nextpkt; 5061 m->m_nextpkt = NULL; 5062 m_freem(m); 5063 } 5064 reclaimed += ndesc; 5065 can_reclaim -= ndesc; 5066 IDXINCR(eq->cidx, ndesc, eq->sidx); 5067 } 5068 5069 return (reclaimed); 5070 } 5071 5072 static void 5073 tx_reclaim(void *arg, int n) 5074 { 5075 struct sge_txq *txq = arg; 5076 struct sge_eq *eq = &txq->eq; 5077 5078 do { 5079 if (TXQ_TRYLOCK(txq) == 0) 5080 break; 5081 n = reclaim_tx_descs(txq, 32); 5082 if (eq->cidx == eq->pidx) 5083 eq->equeqidx = eq->pidx; 5084 TXQ_UNLOCK(txq); 5085 } while (n > 0); 5086 } 5087 5088 static __be64 5089 get_flit(struct sglist_seg *segs, int nsegs, int idx) 5090 { 5091 int i = (idx / 3) * 2; 5092 5093 switch (idx % 3) { 5094 case 0: { 5095 uint64_t rc; 5096 5097 rc = (uint64_t)segs[i].ss_len << 32; 5098 if (i + 1 < nsegs) 5099 rc |= (uint64_t)(segs[i + 1].ss_len); 5100 5101 return (htobe64(rc)); 5102 } 5103 case 1: 5104 return (htobe64(segs[i].ss_paddr)); 5105 case 2: 5106 return (htobe64(segs[i + 1].ss_paddr)); 5107 } 5108 5109 return (0); 5110 } 5111 5112 static void 5113 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp) 5114 { 5115 int8_t zidx, hwidx, idx; 5116 uint16_t region1, region3; 5117 int spare, spare_needed, n; 5118 struct sw_zone_info *swz; 5119 struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0]; 5120 5121 /* 5122 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize 5123 * large enough for the max payload and cluster metadata. Otherwise 5124 * settle for the largest bufsize that leaves enough room in the cluster 5125 * for metadata. 5126 * 5127 * Without buffer packing: Look for the smallest zone which has a 5128 * bufsize large enough for the max payload. Settle for the largest 5129 * bufsize available if there's nothing big enough for max payload. 5130 */ 5131 spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0; 5132 swz = &sc->sge.sw_zone_info[0]; 5133 hwidx = -1; 5134 for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) { 5135 if (swz->size > largest_rx_cluster) { 5136 if (__predict_true(hwidx != -1)) 5137 break; 5138 5139 /* 5140 * This is a misconfiguration. largest_rx_cluster is 5141 * preventing us from finding a refill source. See 5142 * dev.t5nex.<n>.buffer_sizes to figure out why. 5143 */ 5144 device_printf(sc->dev, "largest_rx_cluster=%u leaves no" 5145 " refill source for fl %p (dma %u). Ignored.\n", 5146 largest_rx_cluster, fl, maxp); 5147 } 5148 for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) { 5149 hwb = &hwb_list[idx]; 5150 spare = swz->size - hwb->size; 5151 if (spare < spare_needed) 5152 continue; 5153 5154 hwidx = idx; /* best option so far */ 5155 if (hwb->size >= maxp) { 5156 5157 if ((fl->flags & FL_BUF_PACKING) == 0) 5158 goto done; /* stop looking (not packing) */ 5159 5160 if (swz->size >= safest_rx_cluster) 5161 goto done; /* stop looking (packing) */ 5162 } 5163 break; /* keep looking, next zone */ 5164 } 5165 } 5166 done: 5167 /* A usable hwidx has been located. */ 5168 MPASS(hwidx != -1); 5169 hwb = &hwb_list[hwidx]; 5170 zidx = hwb->zidx; 5171 swz = &sc->sge.sw_zone_info[zidx]; 5172 region1 = 0; 5173 region3 = swz->size - hwb->size; 5174 5175 /* 5176 * Stay within this zone and see if there is a better match when mbuf 5177 * inlining is allowed. Remember that the hwidx's are sorted in 5178 * decreasing order of size (so in increasing order of spare area). 5179 */ 5180 for (idx = hwidx; idx != -1; idx = hwb->next) { 5181 hwb = &hwb_list[idx]; 5182 spare = swz->size - hwb->size; 5183 5184 if (allow_mbufs_in_cluster == 0 || hwb->size < maxp) 5185 break; 5186 5187 /* 5188 * Do not inline mbufs if doing so would violate the pad/pack 5189 * boundary alignment requirement. 5190 */ 5191 if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0) 5192 continue; 5193 if (fl->flags & FL_BUF_PACKING && 5194 (MSIZE % sc->params.sge.pack_boundary) != 0) 5195 continue; 5196 5197 if (spare < CL_METADATA_SIZE + MSIZE) 5198 continue; 5199 n = (spare - CL_METADATA_SIZE) / MSIZE; 5200 if (n > howmany(hwb->size, maxp)) 5201 break; 5202 5203 hwidx = idx; 5204 if (fl->flags & FL_BUF_PACKING) { 5205 region1 = n * MSIZE; 5206 region3 = spare - region1; 5207 } else { 5208 region1 = MSIZE; 5209 region3 = spare - region1; 5210 break; 5211 } 5212 } 5213 5214 KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES, 5215 ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp)); 5216 KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES, 5217 ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp)); 5218 KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 == 5219 sc->sge.sw_zone_info[zidx].size, 5220 ("%s: bad buffer layout for fl %p, maxp %d. " 5221 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 5222 sc->sge.sw_zone_info[zidx].size, region1, 5223 sc->sge.hw_buf_info[hwidx].size, region3)); 5224 if (fl->flags & FL_BUF_PACKING || region1 > 0) { 5225 KASSERT(region3 >= CL_METADATA_SIZE, 5226 ("%s: no room for metadata. fl %p, maxp %d; " 5227 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 5228 sc->sge.sw_zone_info[zidx].size, region1, 5229 sc->sge.hw_buf_info[hwidx].size, region3)); 5230 KASSERT(region1 % MSIZE == 0, 5231 ("%s: bad mbuf region for fl %p, maxp %d. " 5232 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 5233 sc->sge.sw_zone_info[zidx].size, region1, 5234 sc->sge.hw_buf_info[hwidx].size, region3)); 5235 } 5236 5237 fl->cll_def.zidx = zidx; 5238 fl->cll_def.hwidx = hwidx; 5239 fl->cll_def.region1 = region1; 5240 fl->cll_def.region3 = region3; 5241 } 5242 5243 static void 5244 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl) 5245 { 5246 struct sge *s = &sc->sge; 5247 struct hw_buf_info *hwb; 5248 struct sw_zone_info *swz; 5249 int spare; 5250 int8_t hwidx; 5251 5252 if (fl->flags & FL_BUF_PACKING) 5253 hwidx = s->safe_hwidx2; /* with room for metadata */ 5254 else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) { 5255 hwidx = s->safe_hwidx2; 5256 hwb = &s->hw_buf_info[hwidx]; 5257 swz = &s->sw_zone_info[hwb->zidx]; 5258 spare = swz->size - hwb->size; 5259 5260 /* no good if there isn't room for an mbuf as well */ 5261 if (spare < CL_METADATA_SIZE + MSIZE) 5262 hwidx = s->safe_hwidx1; 5263 } else 5264 hwidx = s->safe_hwidx1; 5265 5266 if (hwidx == -1) { 5267 /* No fallback source */ 5268 fl->cll_alt.hwidx = -1; 5269 fl->cll_alt.zidx = -1; 5270 5271 return; 5272 } 5273 5274 hwb = &s->hw_buf_info[hwidx]; 5275 swz = &s->sw_zone_info[hwb->zidx]; 5276 spare = swz->size - hwb->size; 5277 fl->cll_alt.hwidx = hwidx; 5278 fl->cll_alt.zidx = hwb->zidx; 5279 if (allow_mbufs_in_cluster && 5280 (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0)) 5281 fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE; 5282 else 5283 fl->cll_alt.region1 = 0; 5284 fl->cll_alt.region3 = spare - fl->cll_alt.region1; 5285 } 5286 5287 static void 5288 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) 5289 { 5290 mtx_lock(&sc->sfl_lock); 5291 FL_LOCK(fl); 5292 if ((fl->flags & FL_DOOMED) == 0) { 5293 fl->flags |= FL_STARVING; 5294 TAILQ_INSERT_TAIL(&sc->sfl, fl, link); 5295 callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc); 5296 } 5297 FL_UNLOCK(fl); 5298 mtx_unlock(&sc->sfl_lock); 5299 } 5300 5301 static void 5302 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq) 5303 { 5304 struct sge_wrq *wrq = (void *)eq; 5305 5306 atomic_readandclear_int(&eq->equiq); 5307 taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task); 5308 } 5309 5310 static void 5311 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq) 5312 { 5313 struct sge_txq *txq = (void *)eq; 5314 5315 MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH); 5316 5317 atomic_readandclear_int(&eq->equiq); 5318 mp_ring_check_drainage(txq->r, 0); 5319 taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task); 5320 } 5321 5322 static int 5323 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, 5324 struct mbuf *m) 5325 { 5326 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); 5327 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); 5328 struct adapter *sc = iq->adapter; 5329 struct sge *s = &sc->sge; 5330 struct sge_eq *eq; 5331 static void (*h[])(struct adapter *, struct sge_eq *) = {NULL, 5332 &handle_wrq_egr_update, &handle_eth_egr_update, 5333 &handle_wrq_egr_update}; 5334 5335 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 5336 rss->opcode)); 5337 5338 eq = s->eqmap[qid - s->eq_start - s->eq_base]; 5339 (*h[eq->flags & EQ_TYPEMASK])(sc, eq); 5340 5341 return (0); 5342 } 5343 5344 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */ 5345 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \ 5346 offsetof(struct cpl_fw6_msg, data)); 5347 5348 static int 5349 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 5350 { 5351 struct adapter *sc = iq->adapter; 5352 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); 5353 5354 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 5355 rss->opcode)); 5356 5357 if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) { 5358 const struct rss_header *rss2; 5359 5360 rss2 = (const struct rss_header *)&cpl->data[0]; 5361 return (t4_cpl_handler[rss2->opcode](iq, rss2, m)); 5362 } 5363 5364 return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0])); 5365 } 5366 5367 /** 5368 * t4_handle_wrerr_rpl - process a FW work request error message 5369 * @adap: the adapter 5370 * @rpl: start of the FW message 5371 */ 5372 static int 5373 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl) 5374 { 5375 u8 opcode = *(const u8 *)rpl; 5376 const struct fw_error_cmd *e = (const void *)rpl; 5377 unsigned int i; 5378 5379 if (opcode != FW_ERROR_CMD) { 5380 log(LOG_ERR, 5381 "%s: Received WRERR_RPL message with opcode %#x\n", 5382 device_get_nameunit(adap->dev), opcode); 5383 return (EINVAL); 5384 } 5385 log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev), 5386 G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" : 5387 "non-fatal"); 5388 switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) { 5389 case FW_ERROR_TYPE_EXCEPTION: 5390 log(LOG_ERR, "exception info:\n"); 5391 for (i = 0; i < nitems(e->u.exception.info); i++) 5392 log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ", 5393 be32toh(e->u.exception.info[i])); 5394 log(LOG_ERR, "\n"); 5395 break; 5396 case FW_ERROR_TYPE_HWMODULE: 5397 log(LOG_ERR, "HW module regaddr %08x regval %08x\n", 5398 be32toh(e->u.hwmodule.regaddr), 5399 be32toh(e->u.hwmodule.regval)); 5400 break; 5401 case FW_ERROR_TYPE_WR: 5402 log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n", 5403 be16toh(e->u.wr.cidx), 5404 G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)), 5405 G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)), 5406 be32toh(e->u.wr.eqid)); 5407 for (i = 0; i < nitems(e->u.wr.wrhdr); i++) 5408 log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ", 5409 e->u.wr.wrhdr[i]); 5410 log(LOG_ERR, "\n"); 5411 break; 5412 case FW_ERROR_TYPE_ACL: 5413 log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s", 5414 be16toh(e->u.acl.cidx), 5415 G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)), 5416 G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)), 5417 be32toh(e->u.acl.eqid), 5418 G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" : 5419 "MAC"); 5420 for (i = 0; i < nitems(e->u.acl.val); i++) 5421 log(LOG_ERR, " %02x", e->u.acl.val[i]); 5422 log(LOG_ERR, "\n"); 5423 break; 5424 default: 5425 log(LOG_ERR, "type %#x\n", 5426 G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))); 5427 return (EINVAL); 5428 } 5429 return (0); 5430 } 5431 5432 static int 5433 sysctl_uint16(SYSCTL_HANDLER_ARGS) 5434 { 5435 uint16_t *id = arg1; 5436 int i = *id; 5437 5438 return sysctl_handle_int(oidp, &i, 0, req); 5439 } 5440 5441 static int 5442 sysctl_bufsizes(SYSCTL_HANDLER_ARGS) 5443 { 5444 struct sge *s = arg1; 5445 struct hw_buf_info *hwb = &s->hw_buf_info[0]; 5446 struct sw_zone_info *swz = &s->sw_zone_info[0]; 5447 int i, rc; 5448 struct sbuf sb; 5449 char c; 5450 5451 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 5452 for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) { 5453 if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster) 5454 c = '*'; 5455 else 5456 c = '\0'; 5457 5458 sbuf_printf(&sb, "%u%c ", hwb->size, c); 5459 } 5460 sbuf_trim(&sb); 5461 sbuf_finish(&sb); 5462 rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 5463 sbuf_delete(&sb); 5464 return (rc); 5465 } 5466 5467 #ifdef RATELIMIT 5468 /* 5469 * len16 for a txpkt WR with a GL. Includes the firmware work request header. 5470 */ 5471 static inline u_int 5472 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso) 5473 { 5474 u_int n; 5475 5476 MPASS(immhdrs > 0); 5477 5478 n = roundup2(sizeof(struct fw_eth_tx_eo_wr) + 5479 sizeof(struct cpl_tx_pkt_core) + immhdrs, 16); 5480 if (__predict_false(nsegs == 0)) 5481 goto done; 5482 5483 nsegs--; /* first segment is part of ulptx_sgl */ 5484 n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 5485 if (tso) 5486 n += sizeof(struct cpl_tx_pkt_lso_core); 5487 5488 done: 5489 return (howmany(n, 16)); 5490 } 5491 5492 #define ETID_FLOWC_NPARAMS 6 5493 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \ 5494 ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16)) 5495 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16)) 5496 5497 static int 5498 send_etid_flowc_wr(struct cxgbe_snd_tag *cst, struct port_info *pi, 5499 struct vi_info *vi) 5500 { 5501 struct wrq_cookie cookie; 5502 u_int pfvf = G_FW_VIID_PFN(vi->viid) << S_FW_VIID_PFN; 5503 struct fw_flowc_wr *flowc; 5504 5505 mtx_assert(&cst->lock, MA_OWNED); 5506 MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) == 5507 EO_FLOWC_PENDING); 5508 5509 flowc = start_wrq_wr(cst->eo_txq, ETID_FLOWC_LEN16, &cookie); 5510 if (__predict_false(flowc == NULL)) 5511 return (ENOMEM); 5512 5513 bzero(flowc, ETID_FLOWC_LEN); 5514 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | 5515 V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0)); 5516 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) | 5517 V_FW_WR_FLOWID(cst->etid)); 5518 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 5519 flowc->mnemval[0].val = htobe32(pfvf); 5520 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 5521 flowc->mnemval[1].val = htobe32(pi->tx_chan); 5522 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 5523 flowc->mnemval[2].val = htobe32(pi->tx_chan); 5524 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 5525 flowc->mnemval[3].val = htobe32(cst->iqid); 5526 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE; 5527 flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED); 5528 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 5529 flowc->mnemval[5].val = htobe32(cst->schedcl); 5530 5531 commit_wrq_wr(cst->eo_txq, flowc, &cookie); 5532 5533 cst->flags &= ~EO_FLOWC_PENDING; 5534 cst->flags |= EO_FLOWC_RPL_PENDING; 5535 MPASS(cst->tx_credits >= ETID_FLOWC_LEN16); /* flowc is first WR. */ 5536 cst->tx_credits -= ETID_FLOWC_LEN16; 5537 5538 return (0); 5539 } 5540 5541 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16)) 5542 5543 void 5544 send_etid_flush_wr(struct cxgbe_snd_tag *cst) 5545 { 5546 struct fw_flowc_wr *flowc; 5547 struct wrq_cookie cookie; 5548 5549 mtx_assert(&cst->lock, MA_OWNED); 5550 5551 flowc = start_wrq_wr(cst->eo_txq, ETID_FLUSH_LEN16, &cookie); 5552 if (__predict_false(flowc == NULL)) 5553 CXGBE_UNIMPLEMENTED(__func__); 5554 5555 bzero(flowc, ETID_FLUSH_LEN16 * 16); 5556 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | 5557 V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL); 5558 flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) | 5559 V_FW_WR_FLOWID(cst->etid)); 5560 5561 commit_wrq_wr(cst->eo_txq, flowc, &cookie); 5562 5563 cst->flags |= EO_FLUSH_RPL_PENDING; 5564 MPASS(cst->tx_credits >= ETID_FLUSH_LEN16); 5565 cst->tx_credits -= ETID_FLUSH_LEN16; 5566 cst->ncompl++; 5567 } 5568 5569 static void 5570 write_ethofld_wr(struct cxgbe_snd_tag *cst, struct fw_eth_tx_eo_wr *wr, 5571 struct mbuf *m0, int compl) 5572 { 5573 struct cpl_tx_pkt_core *cpl; 5574 uint64_t ctrl1; 5575 uint32_t ctrl; /* used in many unrelated places */ 5576 int len16, pktlen, nsegs, immhdrs; 5577 caddr_t dst; 5578 uintptr_t p; 5579 struct ulptx_sgl *usgl; 5580 struct sglist sg; 5581 struct sglist_seg segs[38]; /* XXX: find real limit. XXX: get off the stack */ 5582 5583 mtx_assert(&cst->lock, MA_OWNED); 5584 M_ASSERTPKTHDR(m0); 5585 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 5586 m0->m_pkthdr.l4hlen > 0, 5587 ("%s: ethofld mbuf %p is missing header lengths", __func__, m0)); 5588 5589 if (needs_udp_csum(m0)) { 5590 CXGBE_UNIMPLEMENTED("UDP ethofld"); 5591 } 5592 5593 len16 = mbuf_eo_len16(m0); 5594 nsegs = mbuf_eo_nsegs(m0); 5595 pktlen = m0->m_pkthdr.len; 5596 ctrl = sizeof(struct cpl_tx_pkt_core); 5597 if (needs_tso(m0)) 5598 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 5599 immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen; 5600 ctrl += immhdrs; 5601 5602 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) | 5603 V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl)); 5604 wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) | 5605 V_FW_WR_FLOWID(cst->etid)); 5606 wr->r3 = 0; 5607 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG; 5608 wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen; 5609 wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen); 5610 wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen; 5611 wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0); 5612 wr->u.tcpseg.r4 = 0; 5613 wr->u.tcpseg.r5 = 0; 5614 wr->u.tcpseg.plen = htobe32(pktlen - immhdrs); 5615 5616 if (needs_tso(m0)) { 5617 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 5618 5619 wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz); 5620 5621 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 5622 F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) 5623 | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 5624 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 5625 ctrl |= V_LSO_ETHHDR_LEN(1); 5626 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 5627 ctrl |= F_LSO_IPV6; 5628 lso->lso_ctrl = htobe32(ctrl); 5629 lso->ipid_ofst = htobe16(0); 5630 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 5631 lso->seqno_offset = htobe32(0); 5632 lso->len = htobe32(pktlen); 5633 5634 cpl = (void *)(lso + 1); 5635 } else { 5636 wr->u.tcpseg.mss = htobe16(0xffff); 5637 cpl = (void *)(wr + 1); 5638 } 5639 5640 /* Checksum offload must be requested for ethofld. */ 5641 ctrl1 = 0; 5642 MPASS(needs_l4_csum(m0)); 5643 5644 /* VLAN tag insertion */ 5645 if (needs_vlan_insertion(m0)) { 5646 ctrl1 |= F_TXPKT_VLAN_VLD | 5647 V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 5648 } 5649 5650 /* CPL header */ 5651 cpl->ctrl0 = cst->ctrl0; 5652 cpl->pack = 0; 5653 cpl->len = htobe16(pktlen); 5654 cpl->ctrl1 = htobe64(ctrl1); 5655 5656 /* Copy Ethernet, IP & TCP hdrs as immediate data */ 5657 p = (uintptr_t)(cpl + 1); 5658 m_copydata(m0, 0, immhdrs, (void *)p); 5659 5660 /* SGL */ 5661 dst = (void *)(cpl + 1); 5662 if (nsegs > 0) { 5663 int i, pad; 5664 5665 /* zero-pad upto next 16Byte boundary, if not 16Byte aligned */ 5666 p += immhdrs; 5667 pad = 16 - (immhdrs & 0xf); 5668 bzero((void *)p, pad); 5669 5670 usgl = (void *)(p + pad); 5671 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 5672 V_ULPTX_NSGE(nsegs)); 5673 5674 sglist_init(&sg, nitems(segs), segs); 5675 for (; m0 != NULL; m0 = m0->m_next) { 5676 if (__predict_false(m0->m_len == 0)) 5677 continue; 5678 if (immhdrs >= m0->m_len) { 5679 immhdrs -= m0->m_len; 5680 continue; 5681 } 5682 5683 sglist_append(&sg, mtod(m0, char *) + immhdrs, 5684 m0->m_len - immhdrs); 5685 immhdrs = 0; 5686 } 5687 MPASS(sg.sg_nseg == nsegs); 5688 5689 /* 5690 * Zero pad last 8B in case the WR doesn't end on a 16B 5691 * boundary. 5692 */ 5693 *(uint64_t *)((char *)wr + len16 * 16 - 8) = 0; 5694 5695 usgl->len0 = htobe32(segs[0].ss_len); 5696 usgl->addr0 = htobe64(segs[0].ss_paddr); 5697 for (i = 0; i < nsegs - 1; i++) { 5698 usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len); 5699 usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr); 5700 } 5701 if (i & 1) 5702 usgl->sge[i / 2].len[1] = htobe32(0); 5703 } 5704 5705 } 5706 5707 static void 5708 ethofld_tx(struct cxgbe_snd_tag *cst) 5709 { 5710 struct mbuf *m; 5711 struct wrq_cookie cookie; 5712 int next_credits, compl; 5713 struct fw_eth_tx_eo_wr *wr; 5714 5715 mtx_assert(&cst->lock, MA_OWNED); 5716 5717 while ((m = mbufq_first(&cst->pending_tx)) != NULL) { 5718 M_ASSERTPKTHDR(m); 5719 5720 /* How many len16 credits do we need to send this mbuf. */ 5721 next_credits = mbuf_eo_len16(m); 5722 MPASS(next_credits > 0); 5723 if (next_credits > cst->tx_credits) { 5724 /* 5725 * Tx will make progress eventually because there is at 5726 * least one outstanding fw4_ack that will return 5727 * credits and kick the tx. 5728 */ 5729 MPASS(cst->ncompl > 0); 5730 return; 5731 } 5732 wr = start_wrq_wr(cst->eo_txq, next_credits, &cookie); 5733 if (__predict_false(wr == NULL)) { 5734 /* XXX: wishful thinking, not a real assertion. */ 5735 MPASS(cst->ncompl > 0); 5736 return; 5737 } 5738 cst->tx_credits -= next_credits; 5739 cst->tx_nocompl += next_credits; 5740 compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2; 5741 ETHER_BPF_MTAP(cst->com.ifp, m); 5742 write_ethofld_wr(cst, wr, m, compl); 5743 commit_wrq_wr(cst->eo_txq, wr, &cookie); 5744 if (compl) { 5745 cst->ncompl++; 5746 cst->tx_nocompl = 0; 5747 } 5748 (void) mbufq_dequeue(&cst->pending_tx); 5749 mbufq_enqueue(&cst->pending_fwack, m); 5750 } 5751 } 5752 5753 int 5754 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0) 5755 { 5756 struct cxgbe_snd_tag *cst; 5757 int rc; 5758 5759 MPASS(m0->m_nextpkt == NULL); 5760 MPASS(m0->m_pkthdr.snd_tag != NULL); 5761 cst = mst_to_cst(m0->m_pkthdr.snd_tag); 5762 5763 mtx_lock(&cst->lock); 5764 MPASS(cst->flags & EO_SND_TAG_REF); 5765 5766 if (__predict_false(cst->flags & EO_FLOWC_PENDING)) { 5767 struct vi_info *vi = ifp->if_softc; 5768 struct port_info *pi = vi->pi; 5769 struct adapter *sc = pi->adapter; 5770 const uint32_t rss_mask = vi->rss_size - 1; 5771 uint32_t rss_hash; 5772 5773 cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq]; 5774 if (M_HASHTYPE_ISHASH(m0)) 5775 rss_hash = m0->m_pkthdr.flowid; 5776 else 5777 rss_hash = arc4random(); 5778 /* We assume RSS hashing */ 5779 cst->iqid = vi->rss[rss_hash & rss_mask]; 5780 cst->eo_txq += rss_hash % vi->nofldtxq; 5781 rc = send_etid_flowc_wr(cst, pi, vi); 5782 if (rc != 0) 5783 goto done; 5784 } 5785 5786 if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) { 5787 rc = ENOBUFS; 5788 goto done; 5789 } 5790 5791 mbufq_enqueue(&cst->pending_tx, m0); 5792 cst->plen += m0->m_pkthdr.len; 5793 5794 ethofld_tx(cst); 5795 rc = 0; 5796 done: 5797 mtx_unlock(&cst->lock); 5798 if (__predict_false(rc != 0)) 5799 m_freem(m0); 5800 return (rc); 5801 } 5802 5803 static int 5804 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) 5805 { 5806 struct adapter *sc = iq->adapter; 5807 const struct cpl_fw4_ack *cpl = (const void *)(rss + 1); 5808 struct mbuf *m; 5809 u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl))); 5810 struct cxgbe_snd_tag *cst; 5811 uint8_t credits = cpl->credits; 5812 5813 cst = lookup_etid(sc, etid); 5814 mtx_lock(&cst->lock); 5815 if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) { 5816 MPASS(credits >= ETID_FLOWC_LEN16); 5817 credits -= ETID_FLOWC_LEN16; 5818 cst->flags &= ~EO_FLOWC_RPL_PENDING; 5819 } 5820 5821 KASSERT(cst->ncompl > 0, 5822 ("%s: etid %u (%p) wasn't expecting completion.", 5823 __func__, etid, cst)); 5824 cst->ncompl--; 5825 5826 while (credits > 0) { 5827 m = mbufq_dequeue(&cst->pending_fwack); 5828 if (__predict_false(m == NULL)) { 5829 /* 5830 * The remaining credits are for the final flush that 5831 * was issued when the tag was freed by the kernel. 5832 */ 5833 MPASS((cst->flags & 5834 (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) == 5835 EO_FLUSH_RPL_PENDING); 5836 MPASS(credits == ETID_FLUSH_LEN16); 5837 MPASS(cst->tx_credits + cpl->credits == cst->tx_total); 5838 MPASS(cst->ncompl == 0); 5839 5840 cst->flags &= ~EO_FLUSH_RPL_PENDING; 5841 cst->tx_credits += cpl->credits; 5842 freetag: 5843 cxgbe_snd_tag_free_locked(cst); 5844 return (0); /* cst is gone. */ 5845 } 5846 KASSERT(m != NULL, 5847 ("%s: too many credits (%u, %u)", __func__, cpl->credits, 5848 credits)); 5849 KASSERT(credits >= mbuf_eo_len16(m), 5850 ("%s: too few credits (%u, %u, %u)", __func__, 5851 cpl->credits, credits, mbuf_eo_len16(m))); 5852 credits -= mbuf_eo_len16(m); 5853 cst->plen -= m->m_pkthdr.len; 5854 m_freem(m); 5855 } 5856 5857 cst->tx_credits += cpl->credits; 5858 MPASS(cst->tx_credits <= cst->tx_total); 5859 5860 m = mbufq_first(&cst->pending_tx); 5861 if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m)) 5862 ethofld_tx(cst); 5863 5864 if (__predict_false((cst->flags & EO_SND_TAG_REF) == 0) && 5865 cst->ncompl == 0) { 5866 if (cst->tx_credits == cst->tx_total) 5867 goto freetag; 5868 else { 5869 MPASS((cst->flags & EO_FLUSH_RPL_PENDING) == 0); 5870 send_etid_flush_wr(cst); 5871 } 5872 } 5873 5874 mtx_unlock(&cst->lock); 5875 5876 return (0); 5877 } 5878 #endif 5879