xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 4a27bf128b108d90412190c06a54ebac36a8ca2e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_kern_tls.h"
36 #include "opt_ratelimit.h"
37 
38 #include <sys/types.h>
39 #include <sys/eventhandler.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/malloc.h>
45 #include <sys/queue.h>
46 #include <sys/sbuf.h>
47 #include <sys/taskqueue.h>
48 #include <sys/time.h>
49 #include <sys/sglist.h>
50 #include <sys/sysctl.h>
51 #include <sys/smp.h>
52 #include <sys/socketvar.h>
53 #include <sys/counter.h>
54 #include <net/bpf.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_vlan_var.h>
58 #include <net/if_vxlan.h>
59 #include <netinet/in.h>
60 #include <netinet/ip.h>
61 #include <netinet/ip6.h>
62 #include <netinet/tcp.h>
63 #include <netinet/udp.h>
64 #include <machine/in_cksum.h>
65 #include <machine/md_var.h>
66 #include <vm/vm.h>
67 #include <vm/pmap.h>
68 #ifdef DEV_NETMAP
69 #include <machine/bus.h>
70 #include <sys/selinfo.h>
71 #include <net/if_var.h>
72 #include <net/netmap.h>
73 #include <dev/netmap/netmap_kern.h>
74 #endif
75 
76 #include "common/common.h"
77 #include "common/t4_regs.h"
78 #include "common/t4_regs_values.h"
79 #include "common/t4_msg.h"
80 #include "t4_l2t.h"
81 #include "t4_mp_ring.h"
82 
83 #ifdef T4_PKT_TIMESTAMP
84 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
85 #else
86 #define RX_COPY_THRESHOLD MINCLSIZE
87 #endif
88 
89 /* Internal mbuf flags stored in PH_loc.eight[1]. */
90 #define	MC_NOMAP		0x01
91 #define	MC_RAW_WR		0x02
92 #define	MC_TLS			0x04
93 
94 /*
95  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
96  * 0-7 are valid values.
97  */
98 static int fl_pktshift = 0;
99 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
100     "payload DMA offset in rx buffer (bytes)");
101 
102 /*
103  * Pad ethernet payload up to this boundary.
104  * -1: driver should figure out a good value.
105  *  0: disable padding.
106  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
107  */
108 int fl_pad = -1;
109 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
110     "payload pad boundary (bytes)");
111 
112 /*
113  * Status page length.
114  * -1: driver should figure out a good value.
115  *  64 or 128 are the only other valid values.
116  */
117 static int spg_len = -1;
118 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
119     "status page size (bytes)");
120 
121 /*
122  * Congestion drops.
123  * -1: no congestion feedback (not recommended).
124  *  0: backpressure the channel instead of dropping packets right away.
125  *  1: no backpressure, drop packets for the congested queue immediately.
126  */
127 static int cong_drop = 0;
128 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
129     "Congestion control for RX queues (0 = backpressure, 1 = drop");
130 
131 /*
132  * Deliver multiple frames in the same free list buffer if they fit.
133  * -1: let the driver decide whether to enable buffer packing or not.
134  *  0: disable buffer packing.
135  *  1: enable buffer packing.
136  */
137 static int buffer_packing = -1;
138 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
139     0, "Enable buffer packing");
140 
141 /*
142  * Start next frame in a packed buffer at this boundary.
143  * -1: driver should figure out a good value.
144  * T4: driver will ignore this and use the same value as fl_pad above.
145  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
146  */
147 static int fl_pack = -1;
148 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
149     "payload pack boundary (bytes)");
150 
151 /*
152  * Largest rx cluster size that the driver is allowed to allocate.
153  */
154 static int largest_rx_cluster = MJUM16BYTES;
155 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
156     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
157 
158 /*
159  * Size of cluster allocation that's most likely to succeed.  The driver will
160  * fall back to this size if it fails to allocate clusters larger than this.
161  */
162 static int safest_rx_cluster = PAGE_SIZE;
163 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
164     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
165 
166 #ifdef RATELIMIT
167 /*
168  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
169  * for rewriting.  -1 and 0-3 are all valid values.
170  * -1: hardware should leave the TCP timestamps alone.
171  * 0: 1ms
172  * 1: 100us
173  * 2: 10us
174  * 3: 1us
175  */
176 static int tsclk = -1;
177 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
178     "Control TCP timestamp rewriting when using pacing");
179 
180 static int eo_max_backlog = 1024 * 1024;
181 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
182     0, "Maximum backlog of ratelimited data per flow");
183 #endif
184 
185 /*
186  * The interrupt holdoff timers are multiplied by this value on T6+.
187  * 1 and 3-17 (both inclusive) are legal values.
188  */
189 static int tscale = 1;
190 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
191     "Interrupt holdoff timer scale on T6+");
192 
193 /*
194  * Number of LRO entries in the lro_ctrl structure per rx queue.
195  */
196 static int lro_entries = TCP_LRO_ENTRIES;
197 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
198     "Number of LRO entries per RX queue");
199 
200 /*
201  * This enables presorting of frames before they're fed into tcp_lro_rx.
202  */
203 static int lro_mbufs = 0;
204 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
205     "Enable presorting of LRO frames");
206 
207 static counter_u64_t pullups;
208 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
209     "Number of mbuf pullups performed");
210 
211 static counter_u64_t defrags;
212 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
213     "Number of mbuf defrags performed");
214 
215 static int t4_tx_coalesce = 1;
216 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
217     "tx coalescing allowed");
218 
219 /*
220  * The driver will make aggressive attempts at tx coalescing if it sees these
221  * many packets eligible for coalescing in quick succession, with no more than
222  * the specified gap in between the eth_tx calls that delivered the packets.
223  */
224 static int t4_tx_coalesce_pkts = 32;
225 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
226     &t4_tx_coalesce_pkts, 0,
227     "# of consecutive packets (1 - 255) that will trigger tx coalescing");
228 static int t4_tx_coalesce_gap = 5;
229 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
230     &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
231 
232 static int service_iq(struct sge_iq *, int);
233 static int service_iq_fl(struct sge_iq *, int);
234 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
235 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
236     u_int);
237 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
238     int, int);
239 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
240 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
241     struct sge_iq *, char *);
242 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
243     struct sysctl_ctx_list *, struct sysctl_oid *);
244 static void free_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
245 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
246     struct sge_iq *);
247 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
248     struct sysctl_oid *, struct sge_fl *);
249 static int alloc_iq_fl_hwq(struct vi_info *, struct sge_iq *, struct sge_fl *);
250 static int free_iq_fl_hwq(struct adapter *, struct sge_iq *, struct sge_fl *);
251 static int alloc_fwq(struct adapter *);
252 static void free_fwq(struct adapter *);
253 static int alloc_ctrlq(struct adapter *, int);
254 static void free_ctrlq(struct adapter *, int);
255 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, int);
256 static void free_rxq(struct vi_info *, struct sge_rxq *);
257 static void add_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
258     struct sge_rxq *);
259 #ifdef TCP_OFFLOAD
260 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
261     int);
262 static void free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
263 static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
264     struct sge_ofld_rxq *);
265 #endif
266 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
267 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
268 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
269 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
270 #endif
271 static int alloc_eq(struct adapter *, struct sge_eq *, struct sysctl_ctx_list *,
272     struct sysctl_oid *);
273 static void free_eq(struct adapter *, struct sge_eq *);
274 static void add_eq_sysctls(struct adapter *, struct sysctl_ctx_list *,
275     struct sysctl_oid *, struct sge_eq *);
276 static int alloc_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
277 static int free_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
278 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
279     struct sysctl_ctx_list *, struct sysctl_oid *);
280 static void free_wrq(struct adapter *, struct sge_wrq *);
281 static void add_wrq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
282     struct sge_wrq *);
283 static int alloc_txq(struct vi_info *, struct sge_txq *, int);
284 static void free_txq(struct vi_info *, struct sge_txq *);
285 static void add_txq_sysctls(struct vi_info *, struct sysctl_ctx_list *,
286     struct sysctl_oid *, struct sge_txq *);
287 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
288 static int alloc_ofld_txq(struct vi_info *, struct sge_ofld_txq *, int);
289 static void free_ofld_txq(struct vi_info *, struct sge_ofld_txq *);
290 static void add_ofld_txq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
291     struct sge_ofld_txq *);
292 #endif
293 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
294 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
295 static int refill_fl(struct adapter *, struct sge_fl *, int);
296 static void refill_sfl(void *);
297 static int find_refill_source(struct adapter *, int, bool);
298 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
299 
300 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
301 static inline u_int txpkt_len16(u_int, const u_int);
302 static inline u_int txpkt_vm_len16(u_int, const u_int);
303 static inline void calculate_mbuf_len16(struct mbuf *, bool);
304 static inline u_int txpkts0_len16(u_int);
305 static inline u_int txpkts1_len16(void);
306 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
307 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
308     u_int);
309 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
310     struct mbuf *);
311 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
312     int, bool *);
313 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
314     int, bool *);
315 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
316 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
317 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
318 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
319 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
320 static inline uint16_t read_hw_cidx(struct sge_eq *);
321 static inline u_int reclaimable_tx_desc(struct sge_eq *);
322 static inline u_int total_available_tx_desc(struct sge_eq *);
323 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
324 static void tx_reclaim(void *, int);
325 static __be64 get_flit(struct sglist_seg *, int, int);
326 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
327     struct mbuf *);
328 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
329     struct mbuf *);
330 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
331 static void wrq_tx_drain(void *, int);
332 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
333 
334 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
335 #ifdef RATELIMIT
336 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
337 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
338     struct mbuf *);
339 #endif
340 
341 static counter_u64_t extfree_refs;
342 static counter_u64_t extfree_rels;
343 
344 an_handler_t t4_an_handler;
345 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
346 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
347 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
348 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
349 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
350 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
351 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
352 
353 void
354 t4_register_an_handler(an_handler_t h)
355 {
356 	uintptr_t *loc;
357 
358 	MPASS(h == NULL || t4_an_handler == NULL);
359 
360 	loc = (uintptr_t *)&t4_an_handler;
361 	atomic_store_rel_ptr(loc, (uintptr_t)h);
362 }
363 
364 void
365 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
366 {
367 	uintptr_t *loc;
368 
369 	MPASS(type < nitems(t4_fw_msg_handler));
370 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
371 	/*
372 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
373 	 * handler dispatch table.  Reject any attempt to install a handler for
374 	 * this subtype.
375 	 */
376 	MPASS(type != FW_TYPE_RSSCPL);
377 	MPASS(type != FW6_TYPE_RSSCPL);
378 
379 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
380 	atomic_store_rel_ptr(loc, (uintptr_t)h);
381 }
382 
383 void
384 t4_register_cpl_handler(int opcode, cpl_handler_t h)
385 {
386 	uintptr_t *loc;
387 
388 	MPASS(opcode < nitems(t4_cpl_handler));
389 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
390 
391 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
392 	atomic_store_rel_ptr(loc, (uintptr_t)h);
393 }
394 
395 static int
396 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
397     struct mbuf *m)
398 {
399 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
400 	u_int tid;
401 	int cookie;
402 
403 	MPASS(m == NULL);
404 
405 	tid = GET_TID(cpl);
406 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
407 		/*
408 		 * The return code for filter-write is put in the CPL cookie so
409 		 * we have to rely on the hardware tid (is_ftid) to determine
410 		 * that this is a response to a filter.
411 		 */
412 		cookie = CPL_COOKIE_FILTER;
413 	} else {
414 		cookie = G_COOKIE(cpl->cookie);
415 	}
416 	MPASS(cookie > CPL_COOKIE_RESERVED);
417 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
418 
419 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
420 }
421 
422 static int
423 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
424     struct mbuf *m)
425 {
426 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
427 	unsigned int cookie;
428 
429 	MPASS(m == NULL);
430 
431 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
432 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
433 }
434 
435 static int
436 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
437     struct mbuf *m)
438 {
439 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
440 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
441 
442 	MPASS(m == NULL);
443 	MPASS(cookie != CPL_COOKIE_RESERVED);
444 
445 	return (act_open_rpl_handlers[cookie](iq, rss, m));
446 }
447 
448 static int
449 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
450     struct mbuf *m)
451 {
452 	struct adapter *sc = iq->adapter;
453 	u_int cookie;
454 
455 	MPASS(m == NULL);
456 	if (is_hashfilter(sc))
457 		cookie = CPL_COOKIE_HASHFILTER;
458 	else
459 		cookie = CPL_COOKIE_TOM;
460 
461 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
462 }
463 
464 static int
465 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
466 {
467 	struct adapter *sc = iq->adapter;
468 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
469 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
470 	u_int cookie;
471 
472 	MPASS(m == NULL);
473 	if (is_etid(sc, tid))
474 		cookie = CPL_COOKIE_ETHOFLD;
475 	else
476 		cookie = CPL_COOKIE_TOM;
477 
478 	return (fw4_ack_handlers[cookie](iq, rss, m));
479 }
480 
481 static void
482 t4_init_shared_cpl_handlers(void)
483 {
484 
485 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
486 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
487 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
488 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
489 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
490 }
491 
492 void
493 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
494 {
495 	uintptr_t *loc;
496 
497 	MPASS(opcode < nitems(t4_cpl_handler));
498 	MPASS(cookie > CPL_COOKIE_RESERVED);
499 	MPASS(cookie < NUM_CPL_COOKIES);
500 	MPASS(t4_cpl_handler[opcode] != NULL);
501 
502 	switch (opcode) {
503 	case CPL_SET_TCB_RPL:
504 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
505 		break;
506 	case CPL_L2T_WRITE_RPL:
507 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
508 		break;
509 	case CPL_ACT_OPEN_RPL:
510 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
511 		break;
512 	case CPL_ABORT_RPL_RSS:
513 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
514 		break;
515 	case CPL_FW4_ACK:
516 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
517 		break;
518 	default:
519 		MPASS(0);
520 		return;
521 	}
522 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
523 	atomic_store_rel_ptr(loc, (uintptr_t)h);
524 }
525 
526 /*
527  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
528  */
529 void
530 t4_sge_modload(void)
531 {
532 
533 	if (fl_pktshift < 0 || fl_pktshift > 7) {
534 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
535 		    " using 0 instead.\n", fl_pktshift);
536 		fl_pktshift = 0;
537 	}
538 
539 	if (spg_len != 64 && spg_len != 128) {
540 		int len;
541 
542 #if defined(__i386__) || defined(__amd64__)
543 		len = cpu_clflush_line_size > 64 ? 128 : 64;
544 #else
545 		len = 64;
546 #endif
547 		if (spg_len != -1) {
548 			printf("Invalid hw.cxgbe.spg_len value (%d),"
549 			    " using %d instead.\n", spg_len, len);
550 		}
551 		spg_len = len;
552 	}
553 
554 	if (cong_drop < -1 || cong_drop > 1) {
555 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
556 		    " using 0 instead.\n", cong_drop);
557 		cong_drop = 0;
558 	}
559 
560 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
561 		printf("Invalid hw.cxgbe.tscale value (%d),"
562 		    " using 1 instead.\n", tscale);
563 		tscale = 1;
564 	}
565 
566 	if (largest_rx_cluster != MCLBYTES &&
567 #if MJUMPAGESIZE != MCLBYTES
568 	    largest_rx_cluster != MJUMPAGESIZE &&
569 #endif
570 	    largest_rx_cluster != MJUM9BYTES &&
571 	    largest_rx_cluster != MJUM16BYTES) {
572 		printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
573 		    " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
574 		largest_rx_cluster = MJUM16BYTES;
575 	}
576 
577 	if (safest_rx_cluster != MCLBYTES &&
578 #if MJUMPAGESIZE != MCLBYTES
579 	    safest_rx_cluster != MJUMPAGESIZE &&
580 #endif
581 	    safest_rx_cluster != MJUM9BYTES &&
582 	    safest_rx_cluster != MJUM16BYTES) {
583 		printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
584 		    " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
585 		safest_rx_cluster = MJUMPAGESIZE;
586 	}
587 
588 	extfree_refs = counter_u64_alloc(M_WAITOK);
589 	extfree_rels = counter_u64_alloc(M_WAITOK);
590 	pullups = counter_u64_alloc(M_WAITOK);
591 	defrags = counter_u64_alloc(M_WAITOK);
592 	counter_u64_zero(extfree_refs);
593 	counter_u64_zero(extfree_rels);
594 	counter_u64_zero(pullups);
595 	counter_u64_zero(defrags);
596 
597 	t4_init_shared_cpl_handlers();
598 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
599 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
600 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
601 #ifdef RATELIMIT
602 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
603 	    CPL_COOKIE_ETHOFLD);
604 #endif
605 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
606 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
607 }
608 
609 void
610 t4_sge_modunload(void)
611 {
612 
613 	counter_u64_free(extfree_refs);
614 	counter_u64_free(extfree_rels);
615 	counter_u64_free(pullups);
616 	counter_u64_free(defrags);
617 }
618 
619 uint64_t
620 t4_sge_extfree_refs(void)
621 {
622 	uint64_t refs, rels;
623 
624 	rels = counter_u64_fetch(extfree_rels);
625 	refs = counter_u64_fetch(extfree_refs);
626 
627 	return (refs - rels);
628 }
629 
630 /* max 4096 */
631 #define MAX_PACK_BOUNDARY 512
632 
633 static inline void
634 setup_pad_and_pack_boundaries(struct adapter *sc)
635 {
636 	uint32_t v, m;
637 	int pad, pack, pad_shift;
638 
639 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
640 	    X_INGPADBOUNDARY_SHIFT;
641 	pad = fl_pad;
642 	if (fl_pad < (1 << pad_shift) ||
643 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
644 	    !powerof2(fl_pad)) {
645 		/*
646 		 * If there is any chance that we might use buffer packing and
647 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
648 		 * it to the minimum allowed in all other cases.
649 		 */
650 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
651 
652 		/*
653 		 * For fl_pad = 0 we'll still write a reasonable value to the
654 		 * register but all the freelists will opt out of padding.
655 		 * We'll complain here only if the user tried to set it to a
656 		 * value greater than 0 that was invalid.
657 		 */
658 		if (fl_pad > 0) {
659 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
660 			    " (%d), using %d instead.\n", fl_pad, pad);
661 		}
662 	}
663 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
664 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
665 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
666 
667 	if (is_t4(sc)) {
668 		if (fl_pack != -1 && fl_pack != pad) {
669 			/* Complain but carry on. */
670 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
671 			    " using %d instead.\n", fl_pack, pad);
672 		}
673 		return;
674 	}
675 
676 	pack = fl_pack;
677 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
678 	    !powerof2(fl_pack)) {
679 		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
680 			pack = MAX_PACK_BOUNDARY;
681 		else
682 			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
683 		MPASS(powerof2(pack));
684 		if (pack < 16)
685 			pack = 16;
686 		if (pack == 32)
687 			pack = 64;
688 		if (pack > 4096)
689 			pack = 4096;
690 		if (fl_pack != -1) {
691 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
692 			    " (%d), using %d instead.\n", fl_pack, pack);
693 		}
694 	}
695 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
696 	if (pack == 16)
697 		v = V_INGPACKBOUNDARY(0);
698 	else
699 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
700 
701 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
702 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
703 }
704 
705 /*
706  * adap->params.vpd.cclk must be set up before this is called.
707  */
708 void
709 t4_tweak_chip_settings(struct adapter *sc)
710 {
711 	int i, reg;
712 	uint32_t v, m;
713 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
714 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
715 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
716 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
717 	static int sw_buf_sizes[] = {
718 		MCLBYTES,
719 #if MJUMPAGESIZE != MCLBYTES
720 		MJUMPAGESIZE,
721 #endif
722 		MJUM9BYTES,
723 		MJUM16BYTES
724 	};
725 
726 	KASSERT(sc->flags & MASTER_PF,
727 	    ("%s: trying to change chip settings when not master.", __func__));
728 
729 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
730 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
731 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
732 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
733 
734 	setup_pad_and_pack_boundaries(sc);
735 
736 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
737 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
738 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
739 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
740 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
741 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
742 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
743 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
744 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
745 
746 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
747 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
748 	reg = A_SGE_FL_BUFFER_SIZE2;
749 	for (i = 0; i < nitems(sw_buf_sizes); i++) {
750 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
751 		t4_write_reg(sc, reg, sw_buf_sizes[i]);
752 		reg += 4;
753 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
754 		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
755 		reg += 4;
756 	}
757 
758 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
759 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
760 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
761 
762 	KASSERT(intr_timer[0] <= timer_max,
763 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
764 	    timer_max));
765 	for (i = 1; i < nitems(intr_timer); i++) {
766 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
767 		    ("%s: timers not listed in increasing order (%d)",
768 		    __func__, i));
769 
770 		while (intr_timer[i] > timer_max) {
771 			if (i == nitems(intr_timer) - 1) {
772 				intr_timer[i] = timer_max;
773 				break;
774 			}
775 			intr_timer[i] += intr_timer[i - 1];
776 			intr_timer[i] /= 2;
777 		}
778 	}
779 
780 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
781 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
782 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
783 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
784 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
785 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
786 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
787 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
788 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
789 
790 	if (chip_id(sc) >= CHELSIO_T6) {
791 		m = V_TSCALE(M_TSCALE);
792 		if (tscale == 1)
793 			v = 0;
794 		else
795 			v = V_TSCALE(tscale - 2);
796 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
797 
798 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
799 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
800 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
801 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
802 			v &= ~m;
803 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
804 			    V_WRTHRTHRESH(16);
805 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
806 		}
807 	}
808 
809 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
810 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
811 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
812 
813 	/*
814 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
815 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
816 	 * may have to deal with is MAXPHYS + 1 page.
817 	 */
818 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
819 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
820 
821 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
822 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
823 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
824 
825 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
826 	    F_RESETDDPOFFSET;
827 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
828 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
829 }
830 
831 /*
832  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
833  * address mut be 16B aligned.  If padding is in use the buffer's start and end
834  * need to be aligned to the pad boundary as well.  We'll just make sure that
835  * the size is a multiple of the pad boundary here, it is up to the buffer
836  * allocation code to make sure the start of the buffer is aligned.
837  */
838 static inline int
839 hwsz_ok(struct adapter *sc, int hwsz)
840 {
841 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
842 
843 	return (hwsz >= 64 && (hwsz & mask) == 0);
844 }
845 
846 /*
847  * Initialize the rx buffer sizes and figure out which zones the buffers will
848  * be allocated from.
849  */
850 void
851 t4_init_rx_buf_info(struct adapter *sc)
852 {
853 	struct sge *s = &sc->sge;
854 	struct sge_params *sp = &sc->params.sge;
855 	int i, j, n;
856 	static int sw_buf_sizes[] = {	/* Sorted by size */
857 		MCLBYTES,
858 #if MJUMPAGESIZE != MCLBYTES
859 		MJUMPAGESIZE,
860 #endif
861 		MJUM9BYTES,
862 		MJUM16BYTES
863 	};
864 	struct rx_buf_info *rxb;
865 
866 	s->safe_zidx = -1;
867 	rxb = &s->rx_buf_info[0];
868 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
869 		rxb->size1 = sw_buf_sizes[i];
870 		rxb->zone = m_getzone(rxb->size1);
871 		rxb->type = m_gettype(rxb->size1);
872 		rxb->size2 = 0;
873 		rxb->hwidx1 = -1;
874 		rxb->hwidx2 = -1;
875 		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
876 			int hwsize = sp->sge_fl_buffer_size[j];
877 
878 			if (!hwsz_ok(sc, hwsize))
879 				continue;
880 
881 			/* hwidx for size1 */
882 			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
883 				rxb->hwidx1 = j;
884 
885 			/* hwidx for size2 (buffer packing) */
886 			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
887 				continue;
888 			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
889 			if (n == 0) {
890 				rxb->hwidx2 = j;
891 				rxb->size2 = hwsize;
892 				break;	/* stop looking */
893 			}
894 			if (rxb->hwidx2 != -1) {
895 				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
896 				    hwsize - CL_METADATA_SIZE) {
897 					rxb->hwidx2 = j;
898 					rxb->size2 = hwsize;
899 				}
900 			} else if (n <= 2 * CL_METADATA_SIZE) {
901 				rxb->hwidx2 = j;
902 				rxb->size2 = hwsize;
903 			}
904 		}
905 		if (rxb->hwidx2 != -1)
906 			sc->flags |= BUF_PACKING_OK;
907 		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
908 			s->safe_zidx = i;
909 	}
910 }
911 
912 /*
913  * Verify some basic SGE settings for the PF and VF driver, and other
914  * miscellaneous settings for the PF driver.
915  */
916 int
917 t4_verify_chip_settings(struct adapter *sc)
918 {
919 	struct sge_params *sp = &sc->params.sge;
920 	uint32_t m, v, r;
921 	int rc = 0;
922 	const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
923 
924 	m = F_RXPKTCPLMODE;
925 	v = F_RXPKTCPLMODE;
926 	r = sp->sge_control;
927 	if ((r & m) != v) {
928 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
929 		rc = EINVAL;
930 	}
931 
932 	/*
933 	 * If this changes then every single use of PAGE_SHIFT in the driver
934 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
935 	 */
936 	if (sp->page_shift != PAGE_SHIFT) {
937 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
938 		rc = EINVAL;
939 	}
940 
941 	if (sc->flags & IS_VF)
942 		return (0);
943 
944 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
945 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
946 	if (r != v) {
947 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
948 		if (sc->vres.ddp.size != 0)
949 			rc = EINVAL;
950 	}
951 
952 	m = v = F_TDDPTAGTCB;
953 	r = t4_read_reg(sc, A_ULP_RX_CTL);
954 	if ((r & m) != v) {
955 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
956 		if (sc->vres.ddp.size != 0)
957 			rc = EINVAL;
958 	}
959 
960 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
961 	    F_RESETDDPOFFSET;
962 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
963 	r = t4_read_reg(sc, A_TP_PARA_REG5);
964 	if ((r & m) != v) {
965 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
966 		if (sc->vres.ddp.size != 0)
967 			rc = EINVAL;
968 	}
969 
970 	return (rc);
971 }
972 
973 int
974 t4_create_dma_tag(struct adapter *sc)
975 {
976 	int rc;
977 
978 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
979 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
980 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
981 	    NULL, &sc->dmat);
982 	if (rc != 0) {
983 		device_printf(sc->dev,
984 		    "failed to create main DMA tag: %d\n", rc);
985 	}
986 
987 	return (rc);
988 }
989 
990 void
991 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
992     struct sysctl_oid_list *children)
993 {
994 	struct sge_params *sp = &sc->params.sge;
995 
996 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
997 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
998 	    sysctl_bufsizes, "A", "freelist buffer sizes");
999 
1000 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
1001 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
1002 
1003 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
1004 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
1005 
1006 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
1007 	    NULL, sp->spg_len, "status page size (bytes)");
1008 
1009 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
1010 	    NULL, cong_drop, "congestion drop setting");
1011 
1012 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
1013 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1014 }
1015 
1016 int
1017 t4_destroy_dma_tag(struct adapter *sc)
1018 {
1019 	if (sc->dmat)
1020 		bus_dma_tag_destroy(sc->dmat);
1021 
1022 	return (0);
1023 }
1024 
1025 /*
1026  * Allocate and initialize the firmware event queue, control queues, and special
1027  * purpose rx queues owned by the adapter.
1028  *
1029  * Returns errno on failure.  Resources allocated up to that point may still be
1030  * allocated.  Caller is responsible for cleanup in case this function fails.
1031  */
1032 int
1033 t4_setup_adapter_queues(struct adapter *sc)
1034 {
1035 	int rc, i;
1036 
1037 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1038 
1039 	/*
1040 	 * Firmware event queue
1041 	 */
1042 	rc = alloc_fwq(sc);
1043 	if (rc != 0)
1044 		return (rc);
1045 
1046 	/*
1047 	 * That's all for the VF driver.
1048 	 */
1049 	if (sc->flags & IS_VF)
1050 		return (rc);
1051 
1052 	/*
1053 	 * XXX: General purpose rx queues, one per port.
1054 	 */
1055 
1056 	/*
1057 	 * Control queues, one per port.
1058 	 */
1059 	for_each_port(sc, i) {
1060 		rc = alloc_ctrlq(sc, i);
1061 		if (rc != 0)
1062 			return (rc);
1063 	}
1064 
1065 	return (rc);
1066 }
1067 
1068 /*
1069  * Idempotent
1070  */
1071 int
1072 t4_teardown_adapter_queues(struct adapter *sc)
1073 {
1074 	int i;
1075 
1076 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1077 
1078 	if (!(sc->flags & IS_VF)) {
1079 		for_each_port(sc, i)
1080 			free_ctrlq(sc, i);
1081 	}
1082 	free_fwq(sc);
1083 
1084 	return (0);
1085 }
1086 
1087 /* Maximum payload that could arrive with a single iq descriptor. */
1088 static inline int
1089 max_rx_payload(struct adapter *sc, struct ifnet *ifp, const bool ofld)
1090 {
1091 	int maxp;
1092 
1093 	/* large enough even when hw VLAN extraction is disabled */
1094 	maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1095 	    ETHER_VLAN_ENCAP_LEN + ifp->if_mtu;
1096 	if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1097 	    maxp < sc->params.tp.max_rx_pdu)
1098 		maxp = sc->params.tp.max_rx_pdu;
1099 	return (maxp);
1100 }
1101 
1102 int
1103 t4_setup_vi_queues(struct vi_info *vi)
1104 {
1105 	int rc = 0, i, intr_idx;
1106 	struct sge_rxq *rxq;
1107 	struct sge_txq *txq;
1108 #ifdef TCP_OFFLOAD
1109 	struct sge_ofld_rxq *ofld_rxq;
1110 #endif
1111 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1112 	struct sge_ofld_txq *ofld_txq;
1113 #endif
1114 #ifdef DEV_NETMAP
1115 	int saved_idx, iqidx;
1116 	struct sge_nm_rxq *nm_rxq;
1117 	struct sge_nm_txq *nm_txq;
1118 #endif
1119 	struct adapter *sc = vi->adapter;
1120 	struct ifnet *ifp = vi->ifp;
1121 	int maxp;
1122 
1123 	/* Interrupt vector to start from (when using multiple vectors) */
1124 	intr_idx = vi->first_intr;
1125 
1126 #ifdef DEV_NETMAP
1127 	saved_idx = intr_idx;
1128 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1129 
1130 		/* netmap is supported with direct interrupts only. */
1131 		MPASS(!forwarding_intr_to_fwq(sc));
1132 		MPASS(vi->first_intr >= 0);
1133 
1134 		/*
1135 		 * We don't have buffers to back the netmap rx queues
1136 		 * right now so we create the queues in a way that
1137 		 * doesn't set off any congestion signal in the chip.
1138 		 */
1139 		for_each_nm_rxq(vi, i, nm_rxq) {
1140 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i);
1141 			if (rc != 0)
1142 				goto done;
1143 			intr_idx++;
1144 		}
1145 
1146 		for_each_nm_txq(vi, i, nm_txq) {
1147 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1148 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i);
1149 			if (rc != 0)
1150 				goto done;
1151 		}
1152 	}
1153 
1154 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1155 	intr_idx = saved_idx;
1156 #endif
1157 
1158 	/*
1159 	 * Allocate rx queues first because a default iqid is required when
1160 	 * creating a tx queue.
1161 	 */
1162 	maxp = max_rx_payload(sc, ifp, false);
1163 	for_each_rxq(vi, i, rxq) {
1164 		rc = alloc_rxq(vi, rxq, i, intr_idx, maxp);
1165 		if (rc != 0)
1166 			goto done;
1167 		if (!forwarding_intr_to_fwq(sc))
1168 			intr_idx++;
1169 	}
1170 #ifdef DEV_NETMAP
1171 	if (ifp->if_capabilities & IFCAP_NETMAP)
1172 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1173 #endif
1174 #ifdef TCP_OFFLOAD
1175 	maxp = max_rx_payload(sc, ifp, true);
1176 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1177 		rc = alloc_ofld_rxq(vi, ofld_rxq, i, intr_idx, maxp);
1178 		if (rc != 0)
1179 			goto done;
1180 		if (!forwarding_intr_to_fwq(sc))
1181 			intr_idx++;
1182 	}
1183 #endif
1184 
1185 	/*
1186 	 * Now the tx queues.
1187 	 */
1188 	for_each_txq(vi, i, txq) {
1189 		rc = alloc_txq(vi, txq, i);
1190 		if (rc != 0)
1191 			goto done;
1192 	}
1193 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1194 	for_each_ofld_txq(vi, i, ofld_txq) {
1195 		rc = alloc_ofld_txq(vi, ofld_txq, i);
1196 		if (rc != 0)
1197 			goto done;
1198 	}
1199 #endif
1200 done:
1201 	if (rc)
1202 		t4_teardown_vi_queues(vi);
1203 
1204 	return (rc);
1205 }
1206 
1207 /*
1208  * Idempotent
1209  */
1210 int
1211 t4_teardown_vi_queues(struct vi_info *vi)
1212 {
1213 	int i;
1214 	struct sge_rxq *rxq;
1215 	struct sge_txq *txq;
1216 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1217 	struct sge_ofld_txq *ofld_txq;
1218 #endif
1219 #ifdef TCP_OFFLOAD
1220 	struct sge_ofld_rxq *ofld_rxq;
1221 #endif
1222 #ifdef DEV_NETMAP
1223 	struct sge_nm_rxq *nm_rxq;
1224 	struct sge_nm_txq *nm_txq;
1225 #endif
1226 
1227 #ifdef DEV_NETMAP
1228 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1229 		for_each_nm_txq(vi, i, nm_txq) {
1230 			free_nm_txq(vi, nm_txq);
1231 		}
1232 
1233 		for_each_nm_rxq(vi, i, nm_rxq) {
1234 			free_nm_rxq(vi, nm_rxq);
1235 		}
1236 	}
1237 #endif
1238 
1239 	/*
1240 	 * Take down all the tx queues first, as they reference the rx queues
1241 	 * (for egress updates, etc.).
1242 	 */
1243 
1244 	for_each_txq(vi, i, txq) {
1245 		free_txq(vi, txq);
1246 	}
1247 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1248 	for_each_ofld_txq(vi, i, ofld_txq) {
1249 		free_ofld_txq(vi, ofld_txq);
1250 	}
1251 #endif
1252 
1253 	/*
1254 	 * Then take down the rx queues.
1255 	 */
1256 
1257 	for_each_rxq(vi, i, rxq) {
1258 		free_rxq(vi, rxq);
1259 	}
1260 #ifdef TCP_OFFLOAD
1261 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1262 		free_ofld_rxq(vi, ofld_rxq);
1263 	}
1264 #endif
1265 
1266 	return (0);
1267 }
1268 
1269 /*
1270  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1271  * unusual scenario.
1272  *
1273  * a) Deals with errors, if any.
1274  * b) Services firmware event queue, which is taking interrupts for all other
1275  *    queues.
1276  */
1277 void
1278 t4_intr_all(void *arg)
1279 {
1280 	struct adapter *sc = arg;
1281 	struct sge_iq *fwq = &sc->sge.fwq;
1282 
1283 	MPASS(sc->intr_count == 1);
1284 
1285 	if (sc->intr_type == INTR_INTX)
1286 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1287 
1288 	t4_intr_err(arg);
1289 	t4_intr_evt(fwq);
1290 }
1291 
1292 /*
1293  * Interrupt handler for errors (installed directly when multiple interrupts are
1294  * being used, or called by t4_intr_all).
1295  */
1296 void
1297 t4_intr_err(void *arg)
1298 {
1299 	struct adapter *sc = arg;
1300 	uint32_t v;
1301 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1302 
1303 	if (sc->flags & ADAP_ERR)
1304 		return;
1305 
1306 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1307 	if (v & F_PFSW) {
1308 		sc->swintr++;
1309 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1310 	}
1311 
1312 	t4_slow_intr_handler(sc, verbose);
1313 }
1314 
1315 /*
1316  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1317  * such queue right now.
1318  */
1319 void
1320 t4_intr_evt(void *arg)
1321 {
1322 	struct sge_iq *iq = arg;
1323 
1324 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1325 		service_iq(iq, 0);
1326 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1327 	}
1328 }
1329 
1330 /*
1331  * Interrupt handler for iq+fl queues.
1332  */
1333 void
1334 t4_intr(void *arg)
1335 {
1336 	struct sge_iq *iq = arg;
1337 
1338 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1339 		service_iq_fl(iq, 0);
1340 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1341 	}
1342 }
1343 
1344 #ifdef DEV_NETMAP
1345 /*
1346  * Interrupt handler for netmap rx queues.
1347  */
1348 void
1349 t4_nm_intr(void *arg)
1350 {
1351 	struct sge_nm_rxq *nm_rxq = arg;
1352 
1353 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1354 		service_nm_rxq(nm_rxq);
1355 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1356 	}
1357 }
1358 
1359 /*
1360  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1361  */
1362 void
1363 t4_vi_intr(void *arg)
1364 {
1365 	struct irq *irq = arg;
1366 
1367 	MPASS(irq->nm_rxq != NULL);
1368 	t4_nm_intr(irq->nm_rxq);
1369 
1370 	MPASS(irq->rxq != NULL);
1371 	t4_intr(irq->rxq);
1372 }
1373 #endif
1374 
1375 /*
1376  * Deals with interrupts on an iq-only (no freelist) queue.
1377  */
1378 static int
1379 service_iq(struct sge_iq *iq, int budget)
1380 {
1381 	struct sge_iq *q;
1382 	struct adapter *sc = iq->adapter;
1383 	struct iq_desc *d = &iq->desc[iq->cidx];
1384 	int ndescs = 0, limit;
1385 	int rsp_type;
1386 	uint32_t lq;
1387 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1388 
1389 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1390 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1391 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1392 	    iq->flags));
1393 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1394 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1395 
1396 	limit = budget ? budget : iq->qsize / 16;
1397 
1398 	/*
1399 	 * We always come back and check the descriptor ring for new indirect
1400 	 * interrupts and other responses after running a single handler.
1401 	 */
1402 	for (;;) {
1403 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1404 
1405 			rmb();
1406 
1407 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1408 			lq = be32toh(d->rsp.pldbuflen_qid);
1409 
1410 			switch (rsp_type) {
1411 			case X_RSPD_TYPE_FLBUF:
1412 				panic("%s: data for an iq (%p) with no freelist",
1413 				    __func__, iq);
1414 
1415 				/* NOTREACHED */
1416 
1417 			case X_RSPD_TYPE_CPL:
1418 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1419 				    ("%s: bad opcode %02x.", __func__,
1420 				    d->rss.opcode));
1421 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1422 				break;
1423 
1424 			case X_RSPD_TYPE_INTR:
1425 				/*
1426 				 * There are 1K interrupt-capable queues (qids 0
1427 				 * through 1023).  A response type indicating a
1428 				 * forwarded interrupt with a qid >= 1K is an
1429 				 * iWARP async notification.
1430 				 */
1431 				if (__predict_true(lq >= 1024)) {
1432 					t4_an_handler(iq, &d->rsp);
1433 					break;
1434 				}
1435 
1436 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1437 				    sc->sge.iq_base];
1438 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1439 				    IQS_BUSY)) {
1440 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1441 						(void) atomic_cmpset_int(&q->state,
1442 						    IQS_BUSY, IQS_IDLE);
1443 					} else {
1444 						STAILQ_INSERT_TAIL(&iql, q,
1445 						    link);
1446 					}
1447 				}
1448 				break;
1449 
1450 			default:
1451 				KASSERT(0,
1452 				    ("%s: illegal response type %d on iq %p",
1453 				    __func__, rsp_type, iq));
1454 				log(LOG_ERR,
1455 				    "%s: illegal response type %d on iq %p",
1456 				    device_get_nameunit(sc->dev), rsp_type, iq);
1457 				break;
1458 			}
1459 
1460 			d++;
1461 			if (__predict_false(++iq->cidx == iq->sidx)) {
1462 				iq->cidx = 0;
1463 				iq->gen ^= F_RSPD_GEN;
1464 				d = &iq->desc[0];
1465 			}
1466 			if (__predict_false(++ndescs == limit)) {
1467 				t4_write_reg(sc, sc->sge_gts_reg,
1468 				    V_CIDXINC(ndescs) |
1469 				    V_INGRESSQID(iq->cntxt_id) |
1470 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1471 				ndescs = 0;
1472 
1473 				if (budget) {
1474 					return (EINPROGRESS);
1475 				}
1476 			}
1477 		}
1478 
1479 		if (STAILQ_EMPTY(&iql))
1480 			break;
1481 
1482 		/*
1483 		 * Process the head only, and send it to the back of the list if
1484 		 * it's still not done.
1485 		 */
1486 		q = STAILQ_FIRST(&iql);
1487 		STAILQ_REMOVE_HEAD(&iql, link);
1488 		if (service_iq_fl(q, q->qsize / 8) == 0)
1489 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1490 		else
1491 			STAILQ_INSERT_TAIL(&iql, q, link);
1492 	}
1493 
1494 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1495 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1496 
1497 	return (0);
1498 }
1499 
1500 static inline int
1501 sort_before_lro(struct lro_ctrl *lro)
1502 {
1503 
1504 	return (lro->lro_mbuf_max != 0);
1505 }
1506 
1507 static inline uint64_t
1508 last_flit_to_ns(struct adapter *sc, uint64_t lf)
1509 {
1510 	uint64_t n = be64toh(lf) & 0xfffffffffffffff;	/* 60b, not 64b. */
1511 
1512 	if (n > UINT64_MAX / 1000000)
1513 		return (n / sc->params.vpd.cclk * 1000000);
1514 	else
1515 		return (n * 1000000 / sc->params.vpd.cclk);
1516 }
1517 
1518 static inline void
1519 move_to_next_rxbuf(struct sge_fl *fl)
1520 {
1521 
1522 	fl->rx_offset = 0;
1523 	if (__predict_false((++fl->cidx & 7) == 0)) {
1524 		uint16_t cidx = fl->cidx >> 3;
1525 
1526 		if (__predict_false(cidx == fl->sidx))
1527 			fl->cidx = cidx = 0;
1528 		fl->hw_cidx = cidx;
1529 	}
1530 }
1531 
1532 /*
1533  * Deals with interrupts on an iq+fl queue.
1534  */
1535 static int
1536 service_iq_fl(struct sge_iq *iq, int budget)
1537 {
1538 	struct sge_rxq *rxq = iq_to_rxq(iq);
1539 	struct sge_fl *fl;
1540 	struct adapter *sc = iq->adapter;
1541 	struct iq_desc *d = &iq->desc[iq->cidx];
1542 	int ndescs, limit;
1543 	int rsp_type, starved;
1544 	uint32_t lq;
1545 	uint16_t fl_hw_cidx;
1546 	struct mbuf *m0;
1547 #if defined(INET) || defined(INET6)
1548 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1549 	struct lro_ctrl *lro = &rxq->lro;
1550 #endif
1551 
1552 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1553 	MPASS(iq->flags & IQ_HAS_FL);
1554 
1555 	ndescs = 0;
1556 #if defined(INET) || defined(INET6)
1557 	if (iq->flags & IQ_ADJ_CREDIT) {
1558 		MPASS(sort_before_lro(lro));
1559 		iq->flags &= ~IQ_ADJ_CREDIT;
1560 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1561 			tcp_lro_flush_all(lro);
1562 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1563 			    V_INGRESSQID((u32)iq->cntxt_id) |
1564 			    V_SEINTARM(iq->intr_params));
1565 			return (0);
1566 		}
1567 		ndescs = 1;
1568 	}
1569 #else
1570 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1571 #endif
1572 
1573 	limit = budget ? budget : iq->qsize / 16;
1574 	fl = &rxq->fl;
1575 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1576 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1577 
1578 		rmb();
1579 
1580 		m0 = NULL;
1581 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1582 		lq = be32toh(d->rsp.pldbuflen_qid);
1583 
1584 		switch (rsp_type) {
1585 		case X_RSPD_TYPE_FLBUF:
1586 			if (lq & F_RSPD_NEWBUF) {
1587 				if (fl->rx_offset > 0)
1588 					move_to_next_rxbuf(fl);
1589 				lq = G_RSPD_LEN(lq);
1590 			}
1591 			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1592 				FL_LOCK(fl);
1593 				refill_fl(sc, fl, 64);
1594 				FL_UNLOCK(fl);
1595 				fl_hw_cidx = fl->hw_cidx;
1596 			}
1597 
1598 			if (d->rss.opcode == CPL_RX_PKT) {
1599 				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1600 					break;
1601 				goto out;
1602 			}
1603 			m0 = get_fl_payload(sc, fl, lq);
1604 			if (__predict_false(m0 == NULL))
1605 				goto out;
1606 
1607 			/* fall through */
1608 
1609 		case X_RSPD_TYPE_CPL:
1610 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1611 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1612 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1613 			break;
1614 
1615 		case X_RSPD_TYPE_INTR:
1616 
1617 			/*
1618 			 * There are 1K interrupt-capable queues (qids 0
1619 			 * through 1023).  A response type indicating a
1620 			 * forwarded interrupt with a qid >= 1K is an
1621 			 * iWARP async notification.  That is the only
1622 			 * acceptable indirect interrupt on this queue.
1623 			 */
1624 			if (__predict_false(lq < 1024)) {
1625 				panic("%s: indirect interrupt on iq_fl %p "
1626 				    "with qid %u", __func__, iq, lq);
1627 			}
1628 
1629 			t4_an_handler(iq, &d->rsp);
1630 			break;
1631 
1632 		default:
1633 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1634 			    __func__, rsp_type, iq));
1635 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1636 			    device_get_nameunit(sc->dev), rsp_type, iq);
1637 			break;
1638 		}
1639 
1640 		d++;
1641 		if (__predict_false(++iq->cidx == iq->sidx)) {
1642 			iq->cidx = 0;
1643 			iq->gen ^= F_RSPD_GEN;
1644 			d = &iq->desc[0];
1645 		}
1646 		if (__predict_false(++ndescs == limit)) {
1647 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1648 			    V_INGRESSQID(iq->cntxt_id) |
1649 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1650 
1651 #if defined(INET) || defined(INET6)
1652 			if (iq->flags & IQ_LRO_ENABLED &&
1653 			    !sort_before_lro(lro) &&
1654 			    sc->lro_timeout != 0) {
1655 				tcp_lro_flush_inactive(lro, &lro_timeout);
1656 			}
1657 #endif
1658 			if (budget)
1659 				return (EINPROGRESS);
1660 			ndescs = 0;
1661 		}
1662 	}
1663 out:
1664 #if defined(INET) || defined(INET6)
1665 	if (iq->flags & IQ_LRO_ENABLED) {
1666 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1667 			MPASS(sort_before_lro(lro));
1668 			/* hold back one credit and don't flush LRO state */
1669 			iq->flags |= IQ_ADJ_CREDIT;
1670 			ndescs--;
1671 		} else {
1672 			tcp_lro_flush_all(lro);
1673 		}
1674 	}
1675 #endif
1676 
1677 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1678 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1679 
1680 	FL_LOCK(fl);
1681 	starved = refill_fl(sc, fl, 64);
1682 	FL_UNLOCK(fl);
1683 	if (__predict_false(starved != 0))
1684 		add_fl_to_sfl(sc, fl);
1685 
1686 	return (0);
1687 }
1688 
1689 static inline struct cluster_metadata *
1690 cl_metadata(struct fl_sdesc *sd)
1691 {
1692 
1693 	return ((void *)(sd->cl + sd->moff));
1694 }
1695 
1696 static void
1697 rxb_free(struct mbuf *m)
1698 {
1699 	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1700 
1701 	uma_zfree(clm->zone, clm->cl);
1702 	counter_u64_add(extfree_rels, 1);
1703 }
1704 
1705 /*
1706  * The mbuf returned comes from zone_muf and carries the payload in one of these
1707  * ways
1708  * a) complete frame inside the mbuf
1709  * b) m_cljset (for clusters without metadata)
1710  * d) m_extaddref (cluster with metadata)
1711  */
1712 static struct mbuf *
1713 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1714     int remaining)
1715 {
1716 	struct mbuf *m;
1717 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1718 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1719 	struct cluster_metadata *clm;
1720 	int len, blen;
1721 	caddr_t payload;
1722 
1723 	if (fl->flags & FL_BUF_PACKING) {
1724 		u_int l, pad;
1725 
1726 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1727 		len = min(remaining, blen);
1728 		payload = sd->cl + fl->rx_offset;
1729 
1730 		l = fr_offset + len;
1731 		pad = roundup2(l, fl->buf_boundary) - l;
1732 		if (fl->rx_offset + len + pad < rxb->size2)
1733 			blen = len + pad;
1734 		MPASS(fl->rx_offset + blen <= rxb->size2);
1735 	} else {
1736 		MPASS(fl->rx_offset == 0);	/* not packing */
1737 		blen = rxb->size1;
1738 		len = min(remaining, blen);
1739 		payload = sd->cl;
1740 	}
1741 
1742 	if (fr_offset == 0) {
1743 		m = m_gethdr(M_NOWAIT, MT_DATA);
1744 		if (__predict_false(m == NULL))
1745 			return (NULL);
1746 		m->m_pkthdr.len = remaining;
1747 	} else {
1748 		m = m_get(M_NOWAIT, MT_DATA);
1749 		if (__predict_false(m == NULL))
1750 			return (NULL);
1751 	}
1752 	m->m_len = len;
1753 
1754 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1755 		/* copy data to mbuf */
1756 		bcopy(payload, mtod(m, caddr_t), len);
1757 		if (fl->flags & FL_BUF_PACKING) {
1758 			fl->rx_offset += blen;
1759 			MPASS(fl->rx_offset <= rxb->size2);
1760 			if (fl->rx_offset < rxb->size2)
1761 				return (m);	/* without advancing the cidx */
1762 		}
1763 	} else if (fl->flags & FL_BUF_PACKING) {
1764 		clm = cl_metadata(sd);
1765 		if (sd->nmbuf++ == 0) {
1766 			clm->refcount = 1;
1767 			clm->zone = rxb->zone;
1768 			clm->cl = sd->cl;
1769 			counter_u64_add(extfree_refs, 1);
1770 		}
1771 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1772 		    NULL);
1773 
1774 		fl->rx_offset += blen;
1775 		MPASS(fl->rx_offset <= rxb->size2);
1776 		if (fl->rx_offset < rxb->size2)
1777 			return (m);	/* without advancing the cidx */
1778 	} else {
1779 		m_cljset(m, sd->cl, rxb->type);
1780 		sd->cl = NULL;	/* consumed, not a recycle candidate */
1781 	}
1782 
1783 	move_to_next_rxbuf(fl);
1784 
1785 	return (m);
1786 }
1787 
1788 static struct mbuf *
1789 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1790 {
1791 	struct mbuf *m0, *m, **pnext;
1792 	u_int remaining;
1793 
1794 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1795 		M_ASSERTPKTHDR(fl->m0);
1796 		MPASS(fl->m0->m_pkthdr.len == plen);
1797 		MPASS(fl->remaining < plen);
1798 
1799 		m0 = fl->m0;
1800 		pnext = fl->pnext;
1801 		remaining = fl->remaining;
1802 		fl->flags &= ~FL_BUF_RESUME;
1803 		goto get_segment;
1804 	}
1805 
1806 	/*
1807 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1808 	 * 'len' and it may span multiple hw buffers.
1809 	 */
1810 
1811 	m0 = get_scatter_segment(sc, fl, 0, plen);
1812 	if (m0 == NULL)
1813 		return (NULL);
1814 	remaining = plen - m0->m_len;
1815 	pnext = &m0->m_next;
1816 	while (remaining > 0) {
1817 get_segment:
1818 		MPASS(fl->rx_offset == 0);
1819 		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1820 		if (__predict_false(m == NULL)) {
1821 			fl->m0 = m0;
1822 			fl->pnext = pnext;
1823 			fl->remaining = remaining;
1824 			fl->flags |= FL_BUF_RESUME;
1825 			return (NULL);
1826 		}
1827 		*pnext = m;
1828 		pnext = &m->m_next;
1829 		remaining -= m->m_len;
1830 	}
1831 	*pnext = NULL;
1832 
1833 	M_ASSERTPKTHDR(m0);
1834 	return (m0);
1835 }
1836 
1837 static int
1838 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1839     int remaining)
1840 {
1841 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1842 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1843 	int len, blen;
1844 
1845 	if (fl->flags & FL_BUF_PACKING) {
1846 		u_int l, pad;
1847 
1848 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1849 		len = min(remaining, blen);
1850 
1851 		l = fr_offset + len;
1852 		pad = roundup2(l, fl->buf_boundary) - l;
1853 		if (fl->rx_offset + len + pad < rxb->size2)
1854 			blen = len + pad;
1855 		fl->rx_offset += blen;
1856 		MPASS(fl->rx_offset <= rxb->size2);
1857 		if (fl->rx_offset < rxb->size2)
1858 			return (len);	/* without advancing the cidx */
1859 	} else {
1860 		MPASS(fl->rx_offset == 0);	/* not packing */
1861 		blen = rxb->size1;
1862 		len = min(remaining, blen);
1863 	}
1864 	move_to_next_rxbuf(fl);
1865 	return (len);
1866 }
1867 
1868 static inline void
1869 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1870 {
1871 	int remaining, fr_offset, len;
1872 
1873 	fr_offset = 0;
1874 	remaining = plen;
1875 	while (remaining > 0) {
1876 		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1877 		fr_offset += len;
1878 		remaining -= len;
1879 	}
1880 }
1881 
1882 static inline int
1883 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1884 {
1885 	int len;
1886 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1887 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1888 
1889 	if (fl->flags & FL_BUF_PACKING)
1890 		len = rxb->size2 - fl->rx_offset;
1891 	else
1892 		len = rxb->size1;
1893 
1894 	return (min(plen, len));
1895 }
1896 
1897 static int
1898 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1899     u_int plen)
1900 {
1901 	struct mbuf *m0;
1902 	struct ifnet *ifp = rxq->ifp;
1903 	struct sge_fl *fl = &rxq->fl;
1904 	struct vi_info *vi = ifp->if_softc;
1905 	const struct cpl_rx_pkt *cpl;
1906 #if defined(INET) || defined(INET6)
1907 	struct lro_ctrl *lro = &rxq->lro;
1908 #endif
1909 	uint16_t err_vec, tnl_type, tnlhdr_len;
1910 	static const int sw_hashtype[4][2] = {
1911 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1912 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1913 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1914 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1915 	};
1916 	static const int sw_csum_flags[2][2] = {
1917 		{
1918 			/* IP, inner IP */
1919 			CSUM_ENCAP_VXLAN |
1920 			    CSUM_L3_CALC | CSUM_L3_VALID |
1921 			    CSUM_L4_CALC | CSUM_L4_VALID |
1922 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1923 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1924 
1925 			/* IP, inner IP6 */
1926 			CSUM_ENCAP_VXLAN |
1927 			    CSUM_L3_CALC | CSUM_L3_VALID |
1928 			    CSUM_L4_CALC | CSUM_L4_VALID |
1929 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1930 		},
1931 		{
1932 			/* IP6, inner IP */
1933 			CSUM_ENCAP_VXLAN |
1934 			    CSUM_L4_CALC | CSUM_L4_VALID |
1935 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1936 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1937 
1938 			/* IP6, inner IP6 */
1939 			CSUM_ENCAP_VXLAN |
1940 			    CSUM_L4_CALC | CSUM_L4_VALID |
1941 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1942 		},
1943 	};
1944 
1945 	MPASS(plen > sc->params.sge.fl_pktshift);
1946 	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
1947 	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
1948 		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1949 		caddr_t frame;
1950 		int rc, slen;
1951 
1952 		slen = get_segment_len(sc, fl, plen) -
1953 		    sc->params.sge.fl_pktshift;
1954 		frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
1955 		CURVNET_SET_QUIET(ifp->if_vnet);
1956 		rc = pfil_run_hooks(vi->pfil, frame, ifp,
1957 		    slen | PFIL_MEMPTR | PFIL_IN, NULL);
1958 		CURVNET_RESTORE();
1959 		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
1960 			skip_fl_payload(sc, fl, plen);
1961 			return (0);
1962 		}
1963 		if (rc == PFIL_REALLOCED) {
1964 			skip_fl_payload(sc, fl, plen);
1965 			m0 = pfil_mem2mbuf(frame);
1966 			goto have_mbuf;
1967 		}
1968 	}
1969 
1970 	m0 = get_fl_payload(sc, fl, plen);
1971 	if (__predict_false(m0 == NULL))
1972 		return (ENOMEM);
1973 
1974 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1975 	m0->m_len -= sc->params.sge.fl_pktshift;
1976 	m0->m_data += sc->params.sge.fl_pktshift;
1977 
1978 have_mbuf:
1979 	m0->m_pkthdr.rcvif = ifp;
1980 	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
1981 	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
1982 
1983 	cpl = (const void *)(&d->rss + 1);
1984 	if (sc->params.tp.rx_pkt_encap) {
1985 		const uint16_t ev = be16toh(cpl->err_vec);
1986 
1987 		err_vec = G_T6_COMPR_RXERR_VEC(ev);
1988 		tnl_type = G_T6_RX_TNL_TYPE(ev);
1989 		tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
1990 	} else {
1991 		err_vec = be16toh(cpl->err_vec);
1992 		tnl_type = 0;
1993 		tnlhdr_len = 0;
1994 	}
1995 	if (cpl->csum_calc && err_vec == 0) {
1996 		int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
1997 
1998 		/* checksum(s) calculated and found to be correct. */
1999 
2000 		MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
2001 		    (cpl->l2info & htobe32(F_RXF_IP6)));
2002 		m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2003 		if (tnl_type == 0) {
2004 	    		if (!ipv6 && ifp->if_capenable & IFCAP_RXCSUM) {
2005 				m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2006 				    CSUM_L3_VALID | CSUM_L4_CALC |
2007 				    CSUM_L4_VALID;
2008 			} else if (ipv6 && ifp->if_capenable & IFCAP_RXCSUM_IPV6) {
2009 				m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2010 				    CSUM_L4_VALID;
2011 			}
2012 			rxq->rxcsum++;
2013 		} else {
2014 			MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
2015 
2016 			M_HASHTYPE_SETINNER(m0);
2017 			if (__predict_false(cpl->ip_frag)) {
2018 				/*
2019 				 * csum_data is for the inner frame (which is an
2020 				 * IP fragment) and is not 0xffff.  There is no
2021 				 * way to pass the inner csum_data to the stack.
2022 				 * We don't want the stack to use the inner
2023 				 * csum_data to validate the outer frame or it
2024 				 * will get rejected.  So we fix csum_data here
2025 				 * and let sw do the checksum of inner IP
2026 				 * fragments.
2027 				 *
2028 				 * XXX: Need 32b for csum_data2 in an rx mbuf.
2029 				 * Maybe stuff it into rcv_tstmp?
2030 				 */
2031 				m0->m_pkthdr.csum_data = 0xffff;
2032 				if (ipv6) {
2033 					m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2034 					    CSUM_L4_VALID;
2035 				} else {
2036 					m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2037 					    CSUM_L3_VALID | CSUM_L4_CALC |
2038 					    CSUM_L4_VALID;
2039 				}
2040 			} else {
2041 				int outer_ipv6;
2042 
2043 				MPASS(m0->m_pkthdr.csum_data == 0xffff);
2044 
2045 				outer_ipv6 = tnlhdr_len >=
2046 				    sizeof(struct ether_header) +
2047 				    sizeof(struct ip6_hdr);
2048 				m0->m_pkthdr.csum_flags =
2049 				    sw_csum_flags[outer_ipv6][ipv6];
2050 			}
2051 			rxq->vxlan_rxcsum++;
2052 		}
2053 	}
2054 
2055 	if (cpl->vlan_ex) {
2056 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2057 		m0->m_flags |= M_VLANTAG;
2058 		rxq->vlan_extraction++;
2059 	}
2060 
2061 	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
2062 		/*
2063 		 * Fill up rcv_tstmp but do not set M_TSTMP.
2064 		 * rcv_tstmp is not in the format that the
2065 		 * kernel expects and we don't want to mislead
2066 		 * it.  For now this is only for custom code
2067 		 * that knows how to interpret cxgbe's stamp.
2068 		 */
2069 		m0->m_pkthdr.rcv_tstmp =
2070 		    last_flit_to_ns(sc, d->rsp.u.last_flit);
2071 #ifdef notyet
2072 		m0->m_flags |= M_TSTMP;
2073 #endif
2074 	}
2075 
2076 #ifdef NUMA
2077 	m0->m_pkthdr.numa_domain = ifp->if_numa_domain;
2078 #endif
2079 #if defined(INET) || defined(INET6)
2080 	if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
2081 	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2082 	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2083 		if (sort_before_lro(lro)) {
2084 			tcp_lro_queue_mbuf(lro, m0);
2085 			return (0); /* queued for sort, then LRO */
2086 		}
2087 		if (tcp_lro_rx(lro, m0, 0) == 0)
2088 			return (0); /* queued for LRO */
2089 	}
2090 #endif
2091 	ifp->if_input(ifp, m0);
2092 
2093 	return (0);
2094 }
2095 
2096 /*
2097  * Must drain the wrq or make sure that someone else will.
2098  */
2099 static void
2100 wrq_tx_drain(void *arg, int n)
2101 {
2102 	struct sge_wrq *wrq = arg;
2103 	struct sge_eq *eq = &wrq->eq;
2104 
2105 	EQ_LOCK(eq);
2106 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2107 		drain_wrq_wr_list(wrq->adapter, wrq);
2108 	EQ_UNLOCK(eq);
2109 }
2110 
2111 static void
2112 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2113 {
2114 	struct sge_eq *eq = &wrq->eq;
2115 	u_int available, dbdiff;	/* # of hardware descriptors */
2116 	u_int n;
2117 	struct wrqe *wr;
2118 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2119 
2120 	EQ_LOCK_ASSERT_OWNED(eq);
2121 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2122 	wr = STAILQ_FIRST(&wrq->wr_list);
2123 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2124 	MPASS(eq->pidx == eq->dbidx);
2125 	dbdiff = 0;
2126 
2127 	do {
2128 		eq->cidx = read_hw_cidx(eq);
2129 		if (eq->pidx == eq->cidx)
2130 			available = eq->sidx - 1;
2131 		else
2132 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2133 
2134 		MPASS(wr->wrq == wrq);
2135 		n = howmany(wr->wr_len, EQ_ESIZE);
2136 		if (available < n)
2137 			break;
2138 
2139 		dst = (void *)&eq->desc[eq->pidx];
2140 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2141 			/* Won't wrap, won't end exactly at the status page. */
2142 			bcopy(&wr->wr[0], dst, wr->wr_len);
2143 			eq->pidx += n;
2144 		} else {
2145 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2146 
2147 			bcopy(&wr->wr[0], dst, first_portion);
2148 			if (wr->wr_len > first_portion) {
2149 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2150 				    wr->wr_len - first_portion);
2151 			}
2152 			eq->pidx = n - (eq->sidx - eq->pidx);
2153 		}
2154 		wrq->tx_wrs_copied++;
2155 
2156 		if (available < eq->sidx / 4 &&
2157 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2158 				/*
2159 				 * XXX: This is not 100% reliable with some
2160 				 * types of WRs.  But this is a very unusual
2161 				 * situation for an ofld/ctrl queue anyway.
2162 				 */
2163 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2164 			    F_FW_WR_EQUEQ);
2165 		}
2166 
2167 		dbdiff += n;
2168 		if (dbdiff >= 16) {
2169 			ring_eq_db(sc, eq, dbdiff);
2170 			dbdiff = 0;
2171 		}
2172 
2173 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2174 		free_wrqe(wr);
2175 		MPASS(wrq->nwr_pending > 0);
2176 		wrq->nwr_pending--;
2177 		MPASS(wrq->ndesc_needed >= n);
2178 		wrq->ndesc_needed -= n;
2179 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2180 
2181 	if (dbdiff)
2182 		ring_eq_db(sc, eq, dbdiff);
2183 }
2184 
2185 /*
2186  * Doesn't fail.  Holds on to work requests it can't send right away.
2187  */
2188 void
2189 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2190 {
2191 #ifdef INVARIANTS
2192 	struct sge_eq *eq = &wrq->eq;
2193 #endif
2194 
2195 	EQ_LOCK_ASSERT_OWNED(eq);
2196 	MPASS(wr != NULL);
2197 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2198 	MPASS((wr->wr_len & 0x7) == 0);
2199 
2200 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2201 	wrq->nwr_pending++;
2202 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2203 
2204 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2205 		return;	/* commit_wrq_wr will drain wr_list as well. */
2206 
2207 	drain_wrq_wr_list(sc, wrq);
2208 
2209 	/* Doorbell must have caught up to the pidx. */
2210 	MPASS(eq->pidx == eq->dbidx);
2211 }
2212 
2213 void
2214 t4_update_fl_bufsize(struct ifnet *ifp)
2215 {
2216 	struct vi_info *vi = ifp->if_softc;
2217 	struct adapter *sc = vi->adapter;
2218 	struct sge_rxq *rxq;
2219 #ifdef TCP_OFFLOAD
2220 	struct sge_ofld_rxq *ofld_rxq;
2221 #endif
2222 	struct sge_fl *fl;
2223 	int i, maxp;
2224 
2225 	maxp = max_rx_payload(sc, ifp, false);
2226 	for_each_rxq(vi, i, rxq) {
2227 		fl = &rxq->fl;
2228 
2229 		FL_LOCK(fl);
2230 		fl->zidx = find_refill_source(sc, maxp,
2231 		    fl->flags & FL_BUF_PACKING);
2232 		FL_UNLOCK(fl);
2233 	}
2234 #ifdef TCP_OFFLOAD
2235 	maxp = max_rx_payload(sc, ifp, true);
2236 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2237 		fl = &ofld_rxq->fl;
2238 
2239 		FL_LOCK(fl);
2240 		fl->zidx = find_refill_source(sc, maxp,
2241 		    fl->flags & FL_BUF_PACKING);
2242 		FL_UNLOCK(fl);
2243 	}
2244 #endif
2245 }
2246 
2247 static inline int
2248 mbuf_nsegs(struct mbuf *m)
2249 {
2250 
2251 	M_ASSERTPKTHDR(m);
2252 	KASSERT(m->m_pkthdr.inner_l5hlen > 0,
2253 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2254 
2255 	return (m->m_pkthdr.inner_l5hlen);
2256 }
2257 
2258 static inline void
2259 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2260 {
2261 
2262 	M_ASSERTPKTHDR(m);
2263 	m->m_pkthdr.inner_l5hlen = nsegs;
2264 }
2265 
2266 static inline int
2267 mbuf_cflags(struct mbuf *m)
2268 {
2269 
2270 	M_ASSERTPKTHDR(m);
2271 	return (m->m_pkthdr.PH_loc.eight[4]);
2272 }
2273 
2274 static inline void
2275 set_mbuf_cflags(struct mbuf *m, uint8_t flags)
2276 {
2277 
2278 	M_ASSERTPKTHDR(m);
2279 	m->m_pkthdr.PH_loc.eight[4] = flags;
2280 }
2281 
2282 static inline int
2283 mbuf_len16(struct mbuf *m)
2284 {
2285 	int n;
2286 
2287 	M_ASSERTPKTHDR(m);
2288 	n = m->m_pkthdr.PH_loc.eight[0];
2289 	if (!(mbuf_cflags(m) & MC_TLS))
2290 		MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2291 
2292 	return (n);
2293 }
2294 
2295 static inline void
2296 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2297 {
2298 
2299 	M_ASSERTPKTHDR(m);
2300 	if (!(mbuf_cflags(m) & MC_TLS))
2301 		MPASS(len16 > 0 && len16 <= SGE_MAX_WR_LEN / 16);
2302 	m->m_pkthdr.PH_loc.eight[0] = len16;
2303 }
2304 
2305 #ifdef RATELIMIT
2306 static inline int
2307 mbuf_eo_nsegs(struct mbuf *m)
2308 {
2309 
2310 	M_ASSERTPKTHDR(m);
2311 	return (m->m_pkthdr.PH_loc.eight[1]);
2312 }
2313 
2314 static inline void
2315 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2316 {
2317 
2318 	M_ASSERTPKTHDR(m);
2319 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2320 }
2321 
2322 static inline int
2323 mbuf_eo_len16(struct mbuf *m)
2324 {
2325 	int n;
2326 
2327 	M_ASSERTPKTHDR(m);
2328 	n = m->m_pkthdr.PH_loc.eight[2];
2329 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2330 
2331 	return (n);
2332 }
2333 
2334 static inline void
2335 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2336 {
2337 
2338 	M_ASSERTPKTHDR(m);
2339 	m->m_pkthdr.PH_loc.eight[2] = len16;
2340 }
2341 
2342 static inline int
2343 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2344 {
2345 
2346 	M_ASSERTPKTHDR(m);
2347 	return (m->m_pkthdr.PH_loc.eight[3]);
2348 }
2349 
2350 static inline void
2351 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2352 {
2353 
2354 	M_ASSERTPKTHDR(m);
2355 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2356 }
2357 
2358 static inline int
2359 needs_eo(struct m_snd_tag *mst)
2360 {
2361 
2362 	return (mst != NULL && mst->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2363 }
2364 #endif
2365 
2366 /*
2367  * Try to allocate an mbuf to contain a raw work request.  To make it
2368  * easy to construct the work request, don't allocate a chain but a
2369  * single mbuf.
2370  */
2371 struct mbuf *
2372 alloc_wr_mbuf(int len, int how)
2373 {
2374 	struct mbuf *m;
2375 
2376 	if (len <= MHLEN)
2377 		m = m_gethdr(how, MT_DATA);
2378 	else if (len <= MCLBYTES)
2379 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2380 	else
2381 		m = NULL;
2382 	if (m == NULL)
2383 		return (NULL);
2384 	m->m_pkthdr.len = len;
2385 	m->m_len = len;
2386 	set_mbuf_cflags(m, MC_RAW_WR);
2387 	set_mbuf_len16(m, howmany(len, 16));
2388 	return (m);
2389 }
2390 
2391 static inline bool
2392 needs_hwcsum(struct mbuf *m)
2393 {
2394 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
2395 	    CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2396 	    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
2397 	    CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
2398 	    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
2399 
2400 	M_ASSERTPKTHDR(m);
2401 
2402 	return (m->m_pkthdr.csum_flags & csum_flags);
2403 }
2404 
2405 static inline bool
2406 needs_tso(struct mbuf *m)
2407 {
2408 	const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
2409 	    CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2410 
2411 	M_ASSERTPKTHDR(m);
2412 
2413 	return (m->m_pkthdr.csum_flags & csum_flags);
2414 }
2415 
2416 static inline bool
2417 needs_vxlan_csum(struct mbuf *m)
2418 {
2419 
2420 	M_ASSERTPKTHDR(m);
2421 
2422 	return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
2423 }
2424 
2425 static inline bool
2426 needs_vxlan_tso(struct mbuf *m)
2427 {
2428 	const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
2429 	    CSUM_INNER_IP6_TSO;
2430 
2431 	M_ASSERTPKTHDR(m);
2432 
2433 	return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
2434 	    (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
2435 }
2436 
2437 static inline bool
2438 needs_inner_tcp_csum(struct mbuf *m)
2439 {
2440 	const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2441 
2442 	M_ASSERTPKTHDR(m);
2443 
2444 	return (m->m_pkthdr.csum_flags & csum_flags);
2445 }
2446 
2447 static inline bool
2448 needs_l3_csum(struct mbuf *m)
2449 {
2450 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
2451 	    CSUM_INNER_IP_TSO;
2452 
2453 	M_ASSERTPKTHDR(m);
2454 
2455 	return (m->m_pkthdr.csum_flags & csum_flags);
2456 }
2457 
2458 static inline bool
2459 needs_outer_tcp_csum(struct mbuf *m)
2460 {
2461 	const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
2462 	    CSUM_IP6_TSO;
2463 
2464 	M_ASSERTPKTHDR(m);
2465 
2466 	return (m->m_pkthdr.csum_flags & csum_flags);
2467 }
2468 
2469 #ifdef RATELIMIT
2470 static inline bool
2471 needs_outer_l4_csum(struct mbuf *m)
2472 {
2473 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
2474 	    CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
2475 
2476 	M_ASSERTPKTHDR(m);
2477 
2478 	return (m->m_pkthdr.csum_flags & csum_flags);
2479 }
2480 
2481 static inline bool
2482 needs_outer_udp_csum(struct mbuf *m)
2483 {
2484 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
2485 
2486 	M_ASSERTPKTHDR(m);
2487 
2488 	return (m->m_pkthdr.csum_flags & csum_flags);
2489 }
2490 #endif
2491 
2492 static inline bool
2493 needs_vlan_insertion(struct mbuf *m)
2494 {
2495 
2496 	M_ASSERTPKTHDR(m);
2497 
2498 	return (m->m_flags & M_VLANTAG);
2499 }
2500 
2501 static void *
2502 m_advance(struct mbuf **pm, int *poffset, int len)
2503 {
2504 	struct mbuf *m = *pm;
2505 	int offset = *poffset;
2506 	uintptr_t p = 0;
2507 
2508 	MPASS(len > 0);
2509 
2510 	for (;;) {
2511 		if (offset + len < m->m_len) {
2512 			offset += len;
2513 			p = mtod(m, uintptr_t) + offset;
2514 			break;
2515 		}
2516 		len -= m->m_len - offset;
2517 		m = m->m_next;
2518 		offset = 0;
2519 		MPASS(m != NULL);
2520 	}
2521 	*poffset = offset;
2522 	*pm = m;
2523 	return ((void *)p);
2524 }
2525 
2526 static inline int
2527 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2528 {
2529 	vm_paddr_t paddr;
2530 	int i, len, off, pglen, pgoff, seglen, segoff;
2531 	int nsegs = 0;
2532 
2533 	M_ASSERTEXTPG(m);
2534 	off = mtod(m, vm_offset_t);
2535 	len = m->m_len;
2536 	off += skip;
2537 	len -= skip;
2538 
2539 	if (m->m_epg_hdrlen != 0) {
2540 		if (off >= m->m_epg_hdrlen) {
2541 			off -= m->m_epg_hdrlen;
2542 		} else {
2543 			seglen = m->m_epg_hdrlen - off;
2544 			segoff = off;
2545 			seglen = min(seglen, len);
2546 			off = 0;
2547 			len -= seglen;
2548 			paddr = pmap_kextract(
2549 			    (vm_offset_t)&m->m_epg_hdr[segoff]);
2550 			if (*nextaddr != paddr)
2551 				nsegs++;
2552 			*nextaddr = paddr + seglen;
2553 		}
2554 	}
2555 	pgoff = m->m_epg_1st_off;
2556 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2557 		pglen = m_epg_pagelen(m, i, pgoff);
2558 		if (off >= pglen) {
2559 			off -= pglen;
2560 			pgoff = 0;
2561 			continue;
2562 		}
2563 		seglen = pglen - off;
2564 		segoff = pgoff + off;
2565 		off = 0;
2566 		seglen = min(seglen, len);
2567 		len -= seglen;
2568 		paddr = m->m_epg_pa[i] + segoff;
2569 		if (*nextaddr != paddr)
2570 			nsegs++;
2571 		*nextaddr = paddr + seglen;
2572 		pgoff = 0;
2573 	};
2574 	if (len != 0) {
2575 		seglen = min(len, m->m_epg_trllen - off);
2576 		len -= seglen;
2577 		paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2578 		if (*nextaddr != paddr)
2579 			nsegs++;
2580 		*nextaddr = paddr + seglen;
2581 	}
2582 
2583 	return (nsegs);
2584 }
2585 
2586 
2587 /*
2588  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2589  * must have at least one mbuf that's not empty.  It is possible for this
2590  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2591  */
2592 static inline int
2593 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2594 {
2595 	vm_paddr_t nextaddr, paddr;
2596 	vm_offset_t va;
2597 	int len, nsegs;
2598 
2599 	M_ASSERTPKTHDR(m);
2600 	MPASS(m->m_pkthdr.len > 0);
2601 	MPASS(m->m_pkthdr.len >= skip);
2602 
2603 	nsegs = 0;
2604 	nextaddr = 0;
2605 	for (; m; m = m->m_next) {
2606 		len = m->m_len;
2607 		if (__predict_false(len == 0))
2608 			continue;
2609 		if (skip >= len) {
2610 			skip -= len;
2611 			continue;
2612 		}
2613 		if ((m->m_flags & M_EXTPG) != 0) {
2614 			*cflags |= MC_NOMAP;
2615 			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2616 			skip = 0;
2617 			continue;
2618 		}
2619 		va = mtod(m, vm_offset_t) + skip;
2620 		len -= skip;
2621 		skip = 0;
2622 		paddr = pmap_kextract(va);
2623 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2624 		if (paddr == nextaddr)
2625 			nsegs--;
2626 		nextaddr = pmap_kextract(va + len - 1) + 1;
2627 	}
2628 
2629 	return (nsegs);
2630 }
2631 
2632 /*
2633  * The maximum number of segments that can fit in a WR.
2634  */
2635 static int
2636 max_nsegs_allowed(struct mbuf *m, bool vm_wr)
2637 {
2638 
2639 	if (vm_wr) {
2640 		if (needs_tso(m))
2641 			return (TX_SGL_SEGS_VM_TSO);
2642 		return (TX_SGL_SEGS_VM);
2643 	}
2644 
2645 	if (needs_tso(m)) {
2646 		if (needs_vxlan_tso(m))
2647 			return (TX_SGL_SEGS_VXLAN_TSO);
2648 		else
2649 			return (TX_SGL_SEGS_TSO);
2650 	}
2651 
2652 	return (TX_SGL_SEGS);
2653 }
2654 
2655 static struct timeval txerr_ratecheck = {0};
2656 static const struct timeval txerr_interval = {3, 0};
2657 
2658 /*
2659  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2660  * a) caller can assume it's been freed if this function returns with an error.
2661  * b) it may get defragged up if the gather list is too long for the hardware.
2662  */
2663 int
2664 parse_pkt(struct mbuf **mp, bool vm_wr)
2665 {
2666 	struct mbuf *m0 = *mp, *m;
2667 	int rc, nsegs, defragged = 0, offset;
2668 	struct ether_header *eh;
2669 	void *l3hdr;
2670 #if defined(INET) || defined(INET6)
2671 	struct tcphdr *tcp;
2672 #endif
2673 #if defined(KERN_TLS) || defined(RATELIMIT)
2674 	struct m_snd_tag *mst;
2675 #endif
2676 	uint16_t eh_type;
2677 	uint8_t cflags;
2678 
2679 	cflags = 0;
2680 	M_ASSERTPKTHDR(m0);
2681 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2682 		rc = EINVAL;
2683 fail:
2684 		m_freem(m0);
2685 		*mp = NULL;
2686 		return (rc);
2687 	}
2688 restart:
2689 	/*
2690 	 * First count the number of gather list segments in the payload.
2691 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2692 	 */
2693 	M_ASSERTPKTHDR(m0);
2694 	MPASS(m0->m_pkthdr.len > 0);
2695 	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2696 #if defined(KERN_TLS) || defined(RATELIMIT)
2697 	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2698 		mst = m0->m_pkthdr.snd_tag;
2699 	else
2700 		mst = NULL;
2701 #endif
2702 #ifdef KERN_TLS
2703 	if (mst != NULL && mst->type == IF_SND_TAG_TYPE_TLS) {
2704 		int len16;
2705 
2706 		cflags |= MC_TLS;
2707 		set_mbuf_cflags(m0, cflags);
2708 		rc = t6_ktls_parse_pkt(m0, &nsegs, &len16);
2709 		if (rc != 0)
2710 			goto fail;
2711 		set_mbuf_nsegs(m0, nsegs);
2712 		set_mbuf_len16(m0, len16);
2713 		return (0);
2714 	}
2715 #endif
2716 	if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
2717 		if (defragged++ > 0) {
2718 			rc = EFBIG;
2719 			goto fail;
2720 		}
2721 		counter_u64_add(defrags, 1);
2722 		if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
2723 			rc = ENOMEM;
2724 			goto fail;
2725 		}
2726 		*mp = m0 = m;	/* update caller's copy after defrag */
2727 		goto restart;
2728 	}
2729 
2730 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2731 	    !(cflags & MC_NOMAP))) {
2732 		counter_u64_add(pullups, 1);
2733 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2734 		if (m0 == NULL) {
2735 			/* Should have left well enough alone. */
2736 			rc = EFBIG;
2737 			goto fail;
2738 		}
2739 		*mp = m0;	/* update caller's copy after pullup */
2740 		goto restart;
2741 	}
2742 	set_mbuf_nsegs(m0, nsegs);
2743 	set_mbuf_cflags(m0, cflags);
2744 	calculate_mbuf_len16(m0, vm_wr);
2745 
2746 #ifdef RATELIMIT
2747 	/*
2748 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2749 	 * checksumming is enabled.  needs_outer_l4_csum happens to check for
2750 	 * all the right things.
2751 	 */
2752 	if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
2753 		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2754 		m0->m_pkthdr.snd_tag = NULL;
2755 		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2756 		mst = NULL;
2757 	}
2758 #endif
2759 
2760 	if (!needs_hwcsum(m0)
2761 #ifdef RATELIMIT
2762    		 && !needs_eo(mst)
2763 #endif
2764 	)
2765 		return (0);
2766 
2767 	m = m0;
2768 	eh = mtod(m, struct ether_header *);
2769 	eh_type = ntohs(eh->ether_type);
2770 	if (eh_type == ETHERTYPE_VLAN) {
2771 		struct ether_vlan_header *evh = (void *)eh;
2772 
2773 		eh_type = ntohs(evh->evl_proto);
2774 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2775 	} else
2776 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2777 
2778 	offset = 0;
2779 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2780 
2781 	switch (eh_type) {
2782 #ifdef INET6
2783 	case ETHERTYPE_IPV6:
2784 		m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
2785 		break;
2786 #endif
2787 #ifdef INET
2788 	case ETHERTYPE_IP:
2789 	{
2790 		struct ip *ip = l3hdr;
2791 
2792 		if (needs_vxlan_csum(m0)) {
2793 			/* Driver will do the outer IP hdr checksum. */
2794 			ip->ip_sum = 0;
2795 			if (needs_vxlan_tso(m0)) {
2796 				const uint16_t ipl = ip->ip_len;
2797 
2798 				ip->ip_len = 0;
2799 				ip->ip_sum = ~in_cksum_hdr(ip);
2800 				ip->ip_len = ipl;
2801 			} else
2802 				ip->ip_sum = in_cksum_hdr(ip);
2803 		}
2804 		m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
2805 		break;
2806 	}
2807 #endif
2808 	default:
2809 		if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2810 			log(LOG_ERR, "%s: ethertype 0x%04x unknown.  "
2811 			    "if_cxgbe must be compiled with the same "
2812 			    "INET/INET6 options as the kernel.\n", __func__,
2813 			    eh_type);
2814 		}
2815 		rc = EINVAL;
2816 		goto fail;
2817 	}
2818 
2819 	if (needs_vxlan_csum(m0)) {
2820 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2821 		m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
2822 
2823 		/* Inner headers. */
2824 		eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
2825 		    sizeof(struct udphdr) + sizeof(struct vxlan_header));
2826 		eh_type = ntohs(eh->ether_type);
2827 		if (eh_type == ETHERTYPE_VLAN) {
2828 			struct ether_vlan_header *evh = (void *)eh;
2829 
2830 			eh_type = ntohs(evh->evl_proto);
2831 			m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
2832 		} else
2833 			m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
2834 		l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2835 
2836 		switch (eh_type) {
2837 #ifdef INET6
2838 		case ETHERTYPE_IPV6:
2839 			m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
2840 			break;
2841 #endif
2842 #ifdef INET
2843 		case ETHERTYPE_IP:
2844 		{
2845 			struct ip *ip = l3hdr;
2846 
2847 			m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
2848 			break;
2849 		}
2850 #endif
2851 		default:
2852 			if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2853 				log(LOG_ERR, "%s: VXLAN hw offload requested"
2854 				    "with unknown ethertype 0x%04x.  if_cxgbe "
2855 				    "must be compiled with the same INET/INET6 "
2856 				    "options as the kernel.\n", __func__,
2857 				    eh_type);
2858 			}
2859 			rc = EINVAL;
2860 			goto fail;
2861 		}
2862 #if defined(INET) || defined(INET6)
2863 		if (needs_inner_tcp_csum(m0)) {
2864 			tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
2865 			m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
2866 		}
2867 #endif
2868 		MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
2869 		m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
2870 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
2871 		    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
2872 		    CSUM_ENCAP_VXLAN;
2873 	}
2874 
2875 #if defined(INET) || defined(INET6)
2876 	if (needs_outer_tcp_csum(m0)) {
2877 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2878 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2879 #ifdef RATELIMIT
2880 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2881 			set_mbuf_eo_tsclk_tsoff(m0,
2882 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2883 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2884 		} else
2885 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2886 	} else if (needs_outer_udp_csum(m0)) {
2887 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2888 #endif
2889 	}
2890 #ifdef RATELIMIT
2891 	if (needs_eo(mst)) {
2892 		u_int immhdrs;
2893 
2894 		/* EO WRs have the headers in the WR and not the GL. */
2895 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2896 		    m0->m_pkthdr.l4hlen;
2897 		cflags = 0;
2898 		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2899 		MPASS(cflags == mbuf_cflags(m0));
2900 		set_mbuf_eo_nsegs(m0, nsegs);
2901 		set_mbuf_eo_len16(m0,
2902 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2903 	}
2904 #endif
2905 #endif
2906 	MPASS(m0 == *mp);
2907 	return (0);
2908 }
2909 
2910 void *
2911 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2912 {
2913 	struct sge_eq *eq = &wrq->eq;
2914 	struct adapter *sc = wrq->adapter;
2915 	int ndesc, available;
2916 	struct wrqe *wr;
2917 	void *w;
2918 
2919 	MPASS(len16 > 0);
2920 	ndesc = tx_len16_to_desc(len16);
2921 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2922 
2923 	EQ_LOCK(eq);
2924 
2925 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2926 		drain_wrq_wr_list(sc, wrq);
2927 
2928 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2929 slowpath:
2930 		EQ_UNLOCK(eq);
2931 		wr = alloc_wrqe(len16 * 16, wrq);
2932 		if (__predict_false(wr == NULL))
2933 			return (NULL);
2934 		cookie->pidx = -1;
2935 		cookie->ndesc = ndesc;
2936 		return (&wr->wr);
2937 	}
2938 
2939 	eq->cidx = read_hw_cidx(eq);
2940 	if (eq->pidx == eq->cidx)
2941 		available = eq->sidx - 1;
2942 	else
2943 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2944 	if (available < ndesc)
2945 		goto slowpath;
2946 
2947 	cookie->pidx = eq->pidx;
2948 	cookie->ndesc = ndesc;
2949 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2950 
2951 	w = &eq->desc[eq->pidx];
2952 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2953 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2954 		w = &wrq->ss[0];
2955 		wrq->ss_pidx = cookie->pidx;
2956 		wrq->ss_len = len16 * 16;
2957 	}
2958 
2959 	EQ_UNLOCK(eq);
2960 
2961 	return (w);
2962 }
2963 
2964 void
2965 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2966 {
2967 	struct sge_eq *eq = &wrq->eq;
2968 	struct adapter *sc = wrq->adapter;
2969 	int ndesc, pidx;
2970 	struct wrq_cookie *prev, *next;
2971 
2972 	if (cookie->pidx == -1) {
2973 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2974 
2975 		t4_wrq_tx(sc, wr);
2976 		return;
2977 	}
2978 
2979 	if (__predict_false(w == &wrq->ss[0])) {
2980 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2981 
2982 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2983 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2984 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2985 		wrq->tx_wrs_ss++;
2986 	} else
2987 		wrq->tx_wrs_direct++;
2988 
2989 	EQ_LOCK(eq);
2990 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2991 	pidx = cookie->pidx;
2992 	MPASS(pidx >= 0 && pidx < eq->sidx);
2993 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2994 	next = TAILQ_NEXT(cookie, link);
2995 	if (prev == NULL) {
2996 		MPASS(pidx == eq->dbidx);
2997 		if (next == NULL || ndesc >= 16) {
2998 			int available;
2999 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
3000 
3001 			/*
3002 			 * Note that the WR via which we'll request tx updates
3003 			 * is at pidx and not eq->pidx, which has moved on
3004 			 * already.
3005 			 */
3006 			dst = (void *)&eq->desc[pidx];
3007 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3008 			if (available < eq->sidx / 4 &&
3009 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3010 				/*
3011 				 * XXX: This is not 100% reliable with some
3012 				 * types of WRs.  But this is a very unusual
3013 				 * situation for an ofld/ctrl queue anyway.
3014 				 */
3015 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
3016 				    F_FW_WR_EQUEQ);
3017 			}
3018 
3019 			ring_eq_db(wrq->adapter, eq, ndesc);
3020 		} else {
3021 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
3022 			next->pidx = pidx;
3023 			next->ndesc += ndesc;
3024 		}
3025 	} else {
3026 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
3027 		prev->ndesc += ndesc;
3028 	}
3029 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
3030 
3031 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
3032 		drain_wrq_wr_list(sc, wrq);
3033 
3034 #ifdef INVARIANTS
3035 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
3036 		/* Doorbell must have caught up to the pidx. */
3037 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
3038 	}
3039 #endif
3040 	EQ_UNLOCK(eq);
3041 }
3042 
3043 static u_int
3044 can_resume_eth_tx(struct mp_ring *r)
3045 {
3046 	struct sge_eq *eq = r->cookie;
3047 
3048 	return (total_available_tx_desc(eq) > eq->sidx / 8);
3049 }
3050 
3051 static inline bool
3052 cannot_use_txpkts(struct mbuf *m)
3053 {
3054 	/* maybe put a GL limit too, to avoid silliness? */
3055 
3056 	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
3057 }
3058 
3059 static inline int
3060 discard_tx(struct sge_eq *eq)
3061 {
3062 
3063 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
3064 }
3065 
3066 static inline int
3067 wr_can_update_eq(void *p)
3068 {
3069 	struct fw_eth_tx_pkts_wr *wr = p;
3070 
3071 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
3072 	case FW_ULPTX_WR:
3073 	case FW_ETH_TX_PKT_WR:
3074 	case FW_ETH_TX_PKTS_WR:
3075 	case FW_ETH_TX_PKTS2_WR:
3076 	case FW_ETH_TX_PKT_VM_WR:
3077 	case FW_ETH_TX_PKTS_VM_WR:
3078 		return (1);
3079 	default:
3080 		return (0);
3081 	}
3082 }
3083 
3084 static inline void
3085 set_txupdate_flags(struct sge_txq *txq, u_int avail,
3086     struct fw_eth_tx_pkt_wr *wr)
3087 {
3088 	struct sge_eq *eq = &txq->eq;
3089 	struct txpkts *txp = &txq->txp;
3090 
3091 	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
3092 	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3093 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3094 		eq->equeqidx = eq->pidx;
3095 	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
3096 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3097 		eq->equeqidx = eq->pidx;
3098 	}
3099 }
3100 
3101 #if defined(__i386__) || defined(__amd64__)
3102 extern uint64_t tsc_freq;
3103 #endif
3104 
3105 static inline bool
3106 record_eth_tx_time(struct sge_txq *txq)
3107 {
3108 	const uint64_t cycles = get_cyclecount();
3109 	const uint64_t last_tx = txq->last_tx;
3110 #if defined(__i386__) || defined(__amd64__)
3111 	const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
3112 #else
3113 	const uint64_t itg = 0;
3114 #endif
3115 
3116 	MPASS(cycles >= last_tx);
3117 	txq->last_tx = cycles;
3118 	return (cycles - last_tx < itg);
3119 }
3120 
3121 /*
3122  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
3123  * be consumed.  Return the actual number consumed.  0 indicates a stall.
3124  */
3125 static u_int
3126 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
3127 {
3128 	struct sge_txq *txq = r->cookie;
3129 	struct ifnet *ifp = txq->ifp;
3130 	struct sge_eq *eq = &txq->eq;
3131 	struct txpkts *txp = &txq->txp;
3132 	struct vi_info *vi = ifp->if_softc;
3133 	struct adapter *sc = vi->adapter;
3134 	u_int total, remaining;		/* # of packets */
3135 	u_int n, avail, dbdiff;		/* # of hardware descriptors */
3136 	int i, rc;
3137 	struct mbuf *m0;
3138 	bool snd, recent_tx;
3139 	void *wr;	/* start of the last WR written to the ring */
3140 
3141 	TXQ_LOCK_ASSERT_OWNED(txq);
3142 	recent_tx = record_eth_tx_time(txq);
3143 
3144 	remaining = IDXDIFF(pidx, cidx, r->size);
3145 	if (__predict_false(discard_tx(eq))) {
3146 		for (i = 0; i < txp->npkt; i++)
3147 			m_freem(txp->mb[i]);
3148 		txp->npkt = 0;
3149 		while (cidx != pidx) {
3150 			m0 = r->items[cidx];
3151 			m_freem(m0);
3152 			if (++cidx == r->size)
3153 				cidx = 0;
3154 		}
3155 		reclaim_tx_descs(txq, eq->sidx);
3156 		*coalescing = false;
3157 		return (remaining);	/* emptied */
3158 	}
3159 
3160 	/* How many hardware descriptors do we have readily available. */
3161 	if (eq->pidx == eq->cidx)
3162 		avail = eq->sidx - 1;
3163 	else
3164 		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3165 
3166 	total = 0;
3167 	if (remaining == 0) {
3168 		txp->score = 0;
3169 		txq->txpkts_flush++;
3170 		goto send_txpkts;
3171 	}
3172 
3173 	dbdiff = 0;
3174 	MPASS(remaining > 0);
3175 	while (remaining > 0) {
3176 		m0 = r->items[cidx];
3177 		M_ASSERTPKTHDR(m0);
3178 		MPASS(m0->m_nextpkt == NULL);
3179 
3180 		if (avail < 2 * SGE_MAX_WR_NDESC)
3181 			avail += reclaim_tx_descs(txq, 64);
3182 
3183 		if (t4_tx_coalesce == 0 && txp->npkt == 0)
3184 			goto skip_coalescing;
3185 		if (cannot_use_txpkts(m0))
3186 			txp->score = 0;
3187 		else if (recent_tx) {
3188 			if (++txp->score == 0)
3189 				txp->score = UINT8_MAX;
3190 		} else
3191 			txp->score = 1;
3192 		if (txp->npkt > 0 || remaining > 1 ||
3193 		    txp->score >= t4_tx_coalesce_pkts ||
3194 		    atomic_load_int(&txq->eq.equiq) != 0) {
3195 			if (vi->flags & TX_USES_VM_WR)
3196 				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
3197 			else
3198 				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
3199 		} else {
3200 			snd = false;
3201 			rc = EINVAL;
3202 		}
3203 		if (snd) {
3204 			MPASS(txp->npkt > 0);
3205 			for (i = 0; i < txp->npkt; i++)
3206 				ETHER_BPF_MTAP(ifp, txp->mb[i]);
3207 			if (txp->npkt > 1) {
3208 				MPASS(avail >= tx_len16_to_desc(txp->len16));
3209 				if (vi->flags & TX_USES_VM_WR)
3210 					n = write_txpkts_vm_wr(sc, txq);
3211 				else
3212 					n = write_txpkts_wr(sc, txq);
3213 			} else {
3214 				MPASS(avail >=
3215 				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3216 				if (vi->flags & TX_USES_VM_WR)
3217 					n = write_txpkt_vm_wr(sc, txq,
3218 					    txp->mb[0]);
3219 				else
3220 					n = write_txpkt_wr(sc, txq, txp->mb[0],
3221 					    avail);
3222 			}
3223 			MPASS(n <= SGE_MAX_WR_NDESC);
3224 			avail -= n;
3225 			dbdiff += n;
3226 			wr = &eq->desc[eq->pidx];
3227 			IDXINCR(eq->pidx, n, eq->sidx);
3228 			txp->npkt = 0;	/* emptied */
3229 		}
3230 		if (rc == 0) {
3231 			/* m0 was coalesced into txq->txpkts. */
3232 			goto next_mbuf;
3233 		}
3234 		if (rc == EAGAIN) {
3235 			/*
3236 			 * m0 is suitable for tx coalescing but could not be
3237 			 * combined with the existing txq->txpkts, which has now
3238 			 * been transmitted.  Start a new txpkts with m0.
3239 			 */
3240 			MPASS(snd);
3241 			MPASS(txp->npkt == 0);
3242 			continue;
3243 		}
3244 
3245 		MPASS(rc != 0 && rc != EAGAIN);
3246 		MPASS(txp->npkt == 0);
3247 skip_coalescing:
3248 		n = tx_len16_to_desc(mbuf_len16(m0));
3249 		if (__predict_false(avail < n)) {
3250 			avail += reclaim_tx_descs(txq, min(n, 32));
3251 			if (avail < n)
3252 				break;	/* out of descriptors */
3253 		}
3254 
3255 		wr = &eq->desc[eq->pidx];
3256 		if (mbuf_cflags(m0) & MC_RAW_WR) {
3257 			n = write_raw_wr(txq, wr, m0, avail);
3258 #ifdef KERN_TLS
3259 		} else if (mbuf_cflags(m0) & MC_TLS) {
3260 			ETHER_BPF_MTAP(ifp, m0);
3261 			n = t6_ktls_write_wr(txq, wr, m0, mbuf_nsegs(m0),
3262 			    avail);
3263 #endif
3264 		} else {
3265 			ETHER_BPF_MTAP(ifp, m0);
3266 			if (vi->flags & TX_USES_VM_WR)
3267 				n = write_txpkt_vm_wr(sc, txq, m0);
3268 			else
3269 				n = write_txpkt_wr(sc, txq, m0, avail);
3270 		}
3271 		MPASS(n >= 1 && n <= avail);
3272 		if (!(mbuf_cflags(m0) & MC_TLS))
3273 			MPASS(n <= SGE_MAX_WR_NDESC);
3274 
3275 		avail -= n;
3276 		dbdiff += n;
3277 		IDXINCR(eq->pidx, n, eq->sidx);
3278 
3279 		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3280 			if (wr_can_update_eq(wr))
3281 				set_txupdate_flags(txq, avail, wr);
3282 			ring_eq_db(sc, eq, dbdiff);
3283 			avail += reclaim_tx_descs(txq, 32);
3284 			dbdiff = 0;
3285 		}
3286 next_mbuf:
3287 		total++;
3288 		remaining--;
3289 		if (__predict_false(++cidx == r->size))
3290 			cidx = 0;
3291 	}
3292 	if (dbdiff != 0) {
3293 		if (wr_can_update_eq(wr))
3294 			set_txupdate_flags(txq, avail, wr);
3295 		ring_eq_db(sc, eq, dbdiff);
3296 		reclaim_tx_descs(txq, 32);
3297 	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3298 	    atomic_load_int(&txq->eq.equiq) == 0) {
3299 		/*
3300 		 * If nothing was submitted to the chip for tx (it was coalesced
3301 		 * into txpkts instead) and there is no tx update outstanding
3302 		 * then we need to send txpkts now.
3303 		 */
3304 send_txpkts:
3305 		MPASS(txp->npkt > 0);
3306 		for (i = 0; i < txp->npkt; i++)
3307 			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3308 		if (txp->npkt > 1) {
3309 			MPASS(avail >= tx_len16_to_desc(txp->len16));
3310 			if (vi->flags & TX_USES_VM_WR)
3311 				n = write_txpkts_vm_wr(sc, txq);
3312 			else
3313 				n = write_txpkts_wr(sc, txq);
3314 		} else {
3315 			MPASS(avail >=
3316 			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3317 			if (vi->flags & TX_USES_VM_WR)
3318 				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3319 			else
3320 				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3321 		}
3322 		MPASS(n <= SGE_MAX_WR_NDESC);
3323 		wr = &eq->desc[eq->pidx];
3324 		IDXINCR(eq->pidx, n, eq->sidx);
3325 		txp->npkt = 0;	/* emptied */
3326 
3327 		MPASS(wr_can_update_eq(wr));
3328 		set_txupdate_flags(txq, avail - n, wr);
3329 		ring_eq_db(sc, eq, n);
3330 		reclaim_tx_descs(txq, 32);
3331 	}
3332 	*coalescing = txp->npkt > 0;
3333 
3334 	return (total);
3335 }
3336 
3337 static inline void
3338 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3339     int qsize, int intr_idx, int cong)
3340 {
3341 
3342 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3343 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3344 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3345 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3346 	KASSERT(intr_idx >= -1 && intr_idx < sc->intr_count,
3347 	    ("%s: bad intr_idx %d", __func__, intr_idx));
3348 
3349 	iq->flags = 0;
3350 	iq->state = IQS_DISABLED;
3351 	iq->adapter = sc;
3352 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3353 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3354 	if (pktc_idx >= 0) {
3355 		iq->intr_params |= F_QINTR_CNT_EN;
3356 		iq->intr_pktc_idx = pktc_idx;
3357 	}
3358 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3359 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3360 	iq->intr_idx = intr_idx;
3361 	iq->cong = cong;
3362 }
3363 
3364 static inline void
3365 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3366 {
3367 	struct sge_params *sp = &sc->params.sge;
3368 
3369 	fl->qsize = qsize;
3370 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3371 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3372 	mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3373 	if (sc->flags & BUF_PACKING_OK &&
3374 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3375 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3376 		fl->flags |= FL_BUF_PACKING;
3377 	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3378 	fl->safe_zidx = sc->sge.safe_zidx;
3379 	if (fl->flags & FL_BUF_PACKING) {
3380 		fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3381 		fl->buf_boundary = sp->pack_boundary;
3382 	} else {
3383 		fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3384 		fl->buf_boundary = 16;
3385 	}
3386 	if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3387 		fl->buf_boundary = sp->pad_boundary;
3388 }
3389 
3390 static inline void
3391 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3392     uint8_t tx_chan, struct sge_iq *iq, char *name)
3393 {
3394 	KASSERT(eqtype >= EQ_CTRL && eqtype <= EQ_OFLD,
3395 	    ("%s: bad qtype %d", __func__, eqtype));
3396 
3397 	eq->type = eqtype;
3398 	eq->tx_chan = tx_chan;
3399 	eq->iq = iq;
3400 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3401 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3402 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3403 }
3404 
3405 int
3406 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3407     bus_dmamap_t *map, bus_addr_t *pa, void **va)
3408 {
3409 	int rc;
3410 
3411 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3412 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3413 	if (rc != 0) {
3414 		CH_ERR(sc, "cannot allocate DMA tag: %d\n", rc);
3415 		goto done;
3416 	}
3417 
3418 	rc = bus_dmamem_alloc(*tag, va,
3419 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3420 	if (rc != 0) {
3421 		CH_ERR(sc, "cannot allocate DMA memory: %d\n", rc);
3422 		goto done;
3423 	}
3424 
3425 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3426 	if (rc != 0) {
3427 		CH_ERR(sc, "cannot load DMA map: %d\n", rc);
3428 		goto done;
3429 	}
3430 done:
3431 	if (rc)
3432 		free_ring(sc, *tag, *map, *pa, *va);
3433 
3434 	return (rc);
3435 }
3436 
3437 int
3438 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3439     bus_addr_t pa, void *va)
3440 {
3441 	if (pa)
3442 		bus_dmamap_unload(tag, map);
3443 	if (va)
3444 		bus_dmamem_free(tag, va, map);
3445 	if (tag)
3446 		bus_dma_tag_destroy(tag);
3447 
3448 	return (0);
3449 }
3450 
3451 /*
3452  * Allocates the software resources (mainly memory and sysctl nodes) for an
3453  * ingress queue and an optional freelist.
3454  *
3455  * Sets IQ_SW_ALLOCATED and returns 0 on success.
3456  */
3457 static int
3458 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3459     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
3460 {
3461 	int rc;
3462 	size_t len;
3463 	struct adapter *sc = vi->adapter;
3464 
3465 	MPASS(!(iq->flags & IQ_SW_ALLOCATED));
3466 
3467 	len = iq->qsize * IQ_ESIZE;
3468 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3469 	    (void **)&iq->desc);
3470 	if (rc != 0)
3471 		return (rc);
3472 
3473 	if (fl) {
3474 		len = fl->qsize * EQ_ESIZE;
3475 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3476 		    &fl->ba, (void **)&fl->desc);
3477 		if (rc) {
3478 			free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba,
3479 			    iq->desc);
3480 			return (rc);
3481 		}
3482 
3483 		/* Allocate space for one software descriptor per buffer. */
3484 		fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc),
3485 		    M_CXGBE, M_ZERO | M_WAITOK);
3486 
3487 		add_fl_sysctls(sc, ctx, oid, fl);
3488 		iq->flags |= IQ_HAS_FL;
3489 	}
3490 	add_iq_sysctls(ctx, oid, iq);
3491 	iq->flags |= IQ_SW_ALLOCATED;
3492 
3493 	return (0);
3494 }
3495 
3496 /*
3497  * Frees all software resources (memory and locks) associated with an ingress
3498  * queue and an optional freelist.
3499  */
3500 static void
3501 free_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3502 {
3503 	MPASS(iq->flags & IQ_SW_ALLOCATED);
3504 
3505 	if (fl) {
3506 		MPASS(iq->flags & IQ_HAS_FL);
3507 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc);
3508 		free_fl_buffers(sc, fl);
3509 		free(fl->sdesc, M_CXGBE);
3510 		mtx_destroy(&fl->fl_lock);
3511 		bzero(fl, sizeof(*fl));
3512 	}
3513 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3514 	bzero(iq, sizeof(*iq));
3515 }
3516 
3517 /*
3518  * Allocates a hardware ingress queue and an optional freelist that will be
3519  * associated with it.
3520  *
3521  * Returns errno on failure.  Resources allocated up to that point may still be
3522  * allocated.  Caller is responsible for cleanup in case this function fails.
3523  */
3524 static int
3525 alloc_iq_fl_hwq(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3526 {
3527 	int rc, i, cntxt_id;
3528 	struct fw_iq_cmd c;
3529 	struct adapter *sc = vi->adapter;
3530 	__be32 v = 0;
3531 
3532 	MPASS (!(iq->flags & IQ_HW_ALLOCATED));
3533 
3534 	bzero(&c, sizeof(c));
3535 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3536 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3537 	    V_FW_IQ_CMD_VFN(0));
3538 
3539 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3540 	    FW_LEN16(c));
3541 
3542 	/* Special handling for firmware event queue */
3543 	if (iq == &sc->sge.fwq)
3544 		v |= F_FW_IQ_CMD_IQASYNCH;
3545 
3546 	if (iq->intr_idx < 0) {
3547 		/* Forwarded interrupts, all headed to fwq */
3548 		v |= F_FW_IQ_CMD_IQANDST;
3549 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3550 	} else {
3551 		KASSERT(iq->intr_idx < sc->intr_count,
3552 		    ("%s: invalid direct intr_idx %d", __func__, iq->intr_idx));
3553 		v |= V_FW_IQ_CMD_IQANDSTINDEX(iq->intr_idx);
3554 	}
3555 
3556 	bzero(iq->desc, iq->qsize * IQ_ESIZE);
3557 	c.type_to_iqandstindex = htobe32(v |
3558 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3559 	    V_FW_IQ_CMD_VIID(vi->viid) |
3560 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3561 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(vi->pi->tx_chan) |
3562 	    F_FW_IQ_CMD_IQGTSMODE |
3563 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3564 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3565 	c.iqsize = htobe16(iq->qsize);
3566 	c.iqaddr = htobe64(iq->ba);
3567 	if (iq->cong >= 0)
3568 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3569 
3570 	if (fl) {
3571 		bzero(fl->desc, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len);
3572 		c.iqns_to_fl0congen |=
3573 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3574 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3575 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3576 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3577 			    0));
3578 		if (iq->cong >= 0) {
3579 			c.iqns_to_fl0congen |=
3580 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(iq->cong) |
3581 				    F_FW_IQ_CMD_FL0CONGCIF |
3582 				    F_FW_IQ_CMD_FL0CONGEN);
3583 		}
3584 		c.fl0dcaen_to_fl0cidxfthresh =
3585 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3586 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3587 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3588 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3589 		c.fl0size = htobe16(fl->qsize);
3590 		c.fl0addr = htobe64(fl->ba);
3591 	}
3592 
3593 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3594 	if (rc != 0) {
3595 		CH_ERR(sc, "failed to create hw ingress queue: %d\n", rc);
3596 		return (rc);
3597 	}
3598 
3599 	iq->cidx = 0;
3600 	iq->gen = F_RSPD_GEN;
3601 	iq->cntxt_id = be16toh(c.iqid);
3602 	iq->abs_id = be16toh(c.physiqid);
3603 
3604 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3605 	if (cntxt_id >= sc->sge.iqmap_sz) {
3606 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3607 		    cntxt_id, sc->sge.iqmap_sz - 1);
3608 	}
3609 	sc->sge.iqmap[cntxt_id] = iq;
3610 
3611 	if (fl) {
3612 		u_int qid;
3613 #ifdef INVARIANTS
3614 		MPASS(!(fl->flags & FL_BUF_RESUME));
3615 		for (i = 0; i < fl->sidx * 8; i++)
3616 			MPASS(fl->sdesc[i].cl == NULL);
3617 #endif
3618 		fl->cntxt_id = be16toh(c.fl0id);
3619 		fl->pidx = fl->cidx = fl->hw_cidx = fl->dbidx = 0;
3620 		fl->rx_offset = 0;
3621 		fl->flags &= ~(FL_STARVING | FL_DOOMED);
3622 
3623 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3624 		if (cntxt_id >= sc->sge.eqmap_sz) {
3625 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3626 			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
3627 		}
3628 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3629 
3630 		qid = fl->cntxt_id;
3631 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3632 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3633 			uint32_t mask = (1 << s_qpp) - 1;
3634 			volatile uint8_t *udb;
3635 
3636 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3637 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3638 			qid &= mask;
3639 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3640 				udb += qid << UDBS_SEG_SHIFT;
3641 				qid = 0;
3642 			}
3643 			fl->udb = (volatile void *)udb;
3644 		}
3645 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3646 
3647 		FL_LOCK(fl);
3648 		/* Enough to make sure the SGE doesn't think it's starved */
3649 		refill_fl(sc, fl, fl->lowat);
3650 		FL_UNLOCK(fl);
3651 	}
3652 
3653 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && iq->cong >= 0) {
3654 		uint32_t param, val;
3655 
3656 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3657 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3658 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
3659 		if (iq->cong == 0)
3660 			val = 1 << 19;
3661 		else {
3662 			val = 2 << 19;
3663 			for (i = 0; i < 4; i++) {
3664 				if (iq->cong & (1 << i))
3665 					val |= 1 << (i << 2);
3666 			}
3667 		}
3668 
3669 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3670 		if (rc != 0) {
3671 			/* report error but carry on */
3672 			CH_ERR(sc, "failed to set congestion manager context "
3673 			    "for ingress queue %d: %d\n", iq->cntxt_id, rc);
3674 		}
3675 	}
3676 
3677 	/* Enable IQ interrupts */
3678 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3679 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3680 	    V_INGRESSQID(iq->cntxt_id));
3681 
3682 	iq->flags |= IQ_HW_ALLOCATED;
3683 
3684 	return (0);
3685 }
3686 
3687 static int
3688 free_iq_fl_hwq(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3689 {
3690 	int rc;
3691 
3692 	MPASS(iq->flags & IQ_HW_ALLOCATED);
3693 	rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3694 	    iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
3695 	if (rc != 0) {
3696 		CH_ERR(sc, "failed to free iq %p: %d\n", iq, rc);
3697 		return (rc);
3698 	}
3699 	iq->flags &= ~IQ_HW_ALLOCATED;
3700 
3701 	return (0);
3702 }
3703 
3704 static void
3705 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3706     struct sge_iq *iq)
3707 {
3708 	struct sysctl_oid_list *children;
3709 
3710 	if (ctx == NULL || oid == NULL)
3711 		return;
3712 
3713 	children = SYSCTL_CHILDREN(oid);
3714 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3715 	    "bus address of descriptor ring");
3716 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3717 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3718 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3719 	    &iq->abs_id, 0, "absolute id of the queue");
3720 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3721 	    &iq->cntxt_id, 0, "SGE context id of the queue");
3722 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &iq->cidx,
3723 	    0, "consumer index");
3724 }
3725 
3726 static void
3727 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3728     struct sysctl_oid *oid, struct sge_fl *fl)
3729 {
3730 	struct sysctl_oid_list *children;
3731 
3732 	if (ctx == NULL || oid == NULL)
3733 		return;
3734 
3735 	children = SYSCTL_CHILDREN(oid);
3736 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3737 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3738 	children = SYSCTL_CHILDREN(oid);
3739 
3740 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3741 	    &fl->ba, "bus address of descriptor ring");
3742 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3743 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3744 	    "desc ring size in bytes");
3745 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3746 	    &fl->cntxt_id, 0, "SGE context id of the freelist");
3747 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3748 	    fl_pad ? 1 : 0, "padding enabled");
3749 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3750 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3751 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3752 	    0, "consumer index");
3753 	if (fl->flags & FL_BUF_PACKING) {
3754 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3755 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3756 	}
3757 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3758 	    0, "producer index");
3759 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3760 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3761 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3762 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3763 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3764 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3765 }
3766 
3767 /*
3768  * Idempotent.
3769  */
3770 static int
3771 alloc_fwq(struct adapter *sc)
3772 {
3773 	int rc, intr_idx;
3774 	struct sge_iq *fwq = &sc->sge.fwq;
3775 	struct vi_info *vi = &sc->port[0]->vi[0];
3776 
3777 	if (!(fwq->flags & IQ_SW_ALLOCATED)) {
3778 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3779 
3780 		if (sc->flags & IS_VF)
3781 			intr_idx = 0;
3782 		else
3783 			intr_idx = sc->intr_count > 1 ? 1 : 0;
3784 		init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, intr_idx, -1);
3785 		rc = alloc_iq_fl(vi, fwq, NULL, &sc->ctx, sc->fwq_oid);
3786 		if (rc != 0) {
3787 			CH_ERR(sc, "failed to allocate fwq: %d\n", rc);
3788 			return (rc);
3789 		}
3790 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3791 	}
3792 
3793 	if (!(fwq->flags & IQ_HW_ALLOCATED)) {
3794 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3795 
3796 		rc = alloc_iq_fl_hwq(vi, fwq, NULL);
3797 		if (rc != 0) {
3798 			CH_ERR(sc, "failed to create hw fwq: %d\n", rc);
3799 			return (rc);
3800 		}
3801 		MPASS(fwq->flags & IQ_HW_ALLOCATED);
3802 	}
3803 
3804 	return (0);
3805 }
3806 
3807 /*
3808  * Idempotent.
3809  */
3810 static void
3811 free_fwq(struct adapter *sc)
3812 {
3813 	struct sge_iq *fwq = &sc->sge.fwq;
3814 
3815 	if (fwq->flags & IQ_HW_ALLOCATED) {
3816 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3817 		free_iq_fl_hwq(sc, fwq, NULL);
3818 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3819 	}
3820 
3821 	if (fwq->flags & IQ_SW_ALLOCATED) {
3822 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3823 		free_iq_fl(sc, fwq, NULL);
3824 		MPASS(!(fwq->flags & IQ_SW_ALLOCATED));
3825 	}
3826 }
3827 
3828 /*
3829  * Idempotent.
3830  */
3831 static int
3832 alloc_ctrlq(struct adapter *sc, int idx)
3833 {
3834 	int rc;
3835 	char name[16];
3836 	struct sysctl_oid *oid;
3837 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3838 
3839 	MPASS(idx < sc->params.nports);
3840 
3841 	if (!(ctrlq->eq.flags & EQ_SW_ALLOCATED)) {
3842 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3843 
3844 		snprintf(name, sizeof(name), "%d", idx);
3845 		oid = SYSCTL_ADD_NODE(&sc->ctx, SYSCTL_CHILDREN(sc->ctrlq_oid),
3846 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3847 		    "ctrl queue");
3848 
3849 		snprintf(name, sizeof(name), "%s ctrlq%d",
3850 		    device_get_nameunit(sc->dev), idx);
3851 		init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE,
3852 		    sc->port[idx]->tx_chan, &sc->sge.fwq, name);
3853 		rc = alloc_wrq(sc, NULL, ctrlq, &sc->ctx, oid);
3854 		if (rc != 0) {
3855 			CH_ERR(sc, "failed to allocate ctrlq%d: %d\n", idx, rc);
3856 			sysctl_remove_oid(oid, 1, 1);
3857 			return (rc);
3858 		}
3859 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3860 	}
3861 
3862 	if (!(ctrlq->eq.flags & EQ_HW_ALLOCATED)) {
3863 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3864 
3865 		rc = alloc_eq_hwq(sc, NULL, &ctrlq->eq);
3866 		if (rc != 0) {
3867 			CH_ERR(sc, "failed to create hw ctrlq%d: %d\n", idx, rc);
3868 			return (rc);
3869 		}
3870 		MPASS(ctrlq->eq.flags & EQ_HW_ALLOCATED);
3871 	}
3872 
3873 	return (0);
3874 }
3875 
3876 /*
3877  * Idempotent.
3878  */
3879 static void
3880 free_ctrlq(struct adapter *sc, int idx)
3881 {
3882 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3883 
3884 	if (ctrlq->eq.flags & EQ_HW_ALLOCATED) {
3885 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3886 		free_eq_hwq(sc, NULL, &ctrlq->eq);
3887 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3888 	}
3889 
3890 	if (ctrlq->eq.flags & EQ_SW_ALLOCATED) {
3891 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3892 		free_wrq(sc, ctrlq);
3893 		MPASS(!(ctrlq->eq.flags & EQ_SW_ALLOCATED));
3894 	}
3895 }
3896 
3897 int
3898 tnl_cong(struct port_info *pi, int drop)
3899 {
3900 
3901 	if (drop == -1)
3902 		return (-1);
3903 	else if (drop == 1)
3904 		return (0);
3905 	else
3906 		return (pi->rx_e_chan_map);
3907 }
3908 
3909 /*
3910  * Idempotent.
3911  */
3912 static int
3913 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int idx, int intr_idx,
3914     int maxp)
3915 {
3916 	int rc;
3917 	struct adapter *sc = vi->adapter;
3918 	struct ifnet *ifp = vi->ifp;
3919 	struct sysctl_oid *oid;
3920 	char name[16];
3921 
3922 	if (!(rxq->iq.flags & IQ_SW_ALLOCATED)) {
3923 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
3924 #if defined(INET) || defined(INET6)
3925 		rc = tcp_lro_init_args(&rxq->lro, ifp, lro_entries, lro_mbufs);
3926 		if (rc != 0)
3927 			return (rc);
3928 		MPASS(rxq->lro.ifp == ifp);	/* also indicates LRO init'ed */
3929 
3930 		if (ifp->if_capenable & IFCAP_LRO)
3931 			rxq->iq.flags |= IQ_LRO_ENABLED;
3932 #endif
3933 		if (ifp->if_capenable & IFCAP_HWRXTSTMP)
3934 			rxq->iq.flags |= IQ_RX_TIMESTAMP;
3935 		rxq->ifp = ifp;
3936 
3937 		snprintf(name, sizeof(name), "%d", idx);
3938 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->rxq_oid),
3939 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3940 		    "rx queue");
3941 
3942 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq,
3943 		    intr_idx, tnl_cong(vi->pi, cong_drop));
3944 		snprintf(name, sizeof(name), "%s rxq%d-fl",
3945 		    device_get_nameunit(vi->dev), idx);
3946 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
3947 		rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, &vi->ctx, oid);
3948 		if (rc != 0) {
3949 			CH_ERR(vi, "failed to allocate rxq%d: %d\n", idx, rc);
3950 			sysctl_remove_oid(oid, 1, 1);
3951 #if defined(INET) || defined(INET6)
3952 			tcp_lro_free(&rxq->lro);
3953 			rxq->lro.ifp = NULL;
3954 #endif
3955 			return (rc);
3956 		}
3957 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
3958 		add_rxq_sysctls(&vi->ctx, oid, rxq);
3959 	}
3960 
3961 	if (!(rxq->iq.flags & IQ_HW_ALLOCATED)) {
3962 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
3963 		rc = alloc_iq_fl_hwq(vi, &rxq->iq, &rxq->fl);
3964 		if (rc != 0) {
3965 			CH_ERR(vi, "failed to create hw rxq%d: %d\n", idx, rc);
3966 			return (rc);
3967 		}
3968 		MPASS(rxq->iq.flags & IQ_HW_ALLOCATED);
3969 
3970 		if (idx == 0)
3971 			sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3972 		else
3973 			KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3974 			    ("iq_base mismatch"));
3975 		KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3976 		    ("PF with non-zero iq_base"));
3977 
3978 		/*
3979 		 * The freelist is just barely above the starvation threshold
3980 		 * right now, fill it up a bit more.
3981 		 */
3982 		FL_LOCK(&rxq->fl);
3983 		refill_fl(sc, &rxq->fl, 128);
3984 		FL_UNLOCK(&rxq->fl);
3985 	}
3986 
3987 	return (0);
3988 }
3989 
3990 /*
3991  * Idempotent.
3992  */
3993 static void
3994 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3995 {
3996 	if (rxq->iq.flags & IQ_HW_ALLOCATED) {
3997 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
3998 		free_iq_fl_hwq(vi->adapter, &rxq->iq, &rxq->fl);
3999 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4000 	}
4001 
4002 	if (rxq->iq.flags & IQ_SW_ALLOCATED) {
4003 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4004 #if defined(INET) || defined(INET6)
4005 		tcp_lro_free(&rxq->lro);
4006 #endif
4007 		free_iq_fl(vi->adapter, &rxq->iq, &rxq->fl);
4008 		MPASS(!(rxq->iq.flags & IQ_SW_ALLOCATED));
4009 		bzero(rxq, sizeof(*rxq));
4010 	}
4011 }
4012 
4013 static void
4014 add_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4015     struct sge_rxq *rxq)
4016 {
4017 	struct sysctl_oid_list *children;
4018 
4019 	if (ctx == NULL || oid == NULL)
4020 		return;
4021 
4022 	children = SYSCTL_CHILDREN(oid);
4023 #if defined(INET) || defined(INET6)
4024 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
4025 	    &rxq->lro.lro_queued, 0, NULL);
4026 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
4027 	    &rxq->lro.lro_flushed, 0, NULL);
4028 #endif
4029 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
4030 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
4031 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD,
4032 	    &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag");
4033 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_rxcsum", CTLFLAG_RD,
4034 	    &rxq->vxlan_rxcsum,
4035 	    "# of times hardware assisted with inner checksum (VXLAN)");
4036 }
4037 
4038 #ifdef TCP_OFFLOAD
4039 /*
4040  * Idempotent.
4041  */
4042 static int
4043 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int idx,
4044     int intr_idx, int maxp)
4045 {
4046 	int rc;
4047 	struct adapter *sc = vi->adapter;
4048 	struct sysctl_oid *oid;
4049 	char name[16];
4050 
4051 	if (!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)) {
4052 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4053 
4054 		snprintf(name, sizeof(name), "%d", idx);
4055 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4056 		    SYSCTL_CHILDREN(vi->ofld_rxq_oid), OID_AUTO, name,
4057 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload rx queue");
4058 
4059 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
4060 		    vi->qsize_rxq, intr_idx, 0);
4061 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
4062 		    device_get_nameunit(vi->dev), idx);
4063 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
4064 		rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, &vi->ctx,
4065 		    oid);
4066 		if (rc != 0) {
4067 			CH_ERR(vi, "failed to allocate ofld_rxq%d: %d\n", idx,
4068 			    rc);
4069 			sysctl_remove_oid(oid, 1, 1);
4070 			return (rc);
4071 		}
4072 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4073 		ofld_rxq->rx_iscsi_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
4074 		ofld_rxq->rx_iscsi_ddp_setup_error =
4075 		    counter_u64_alloc(M_WAITOK);
4076 		add_ofld_rxq_sysctls(&vi->ctx, oid, ofld_rxq);
4077 	}
4078 
4079 	if (!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)) {
4080 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4081 		rc = alloc_iq_fl_hwq(vi, &ofld_rxq->iq, &ofld_rxq->fl);
4082 		if (rc != 0) {
4083 			CH_ERR(vi, "failed to create hw ofld_rxq%d: %d\n", idx,
4084 			    rc);
4085 			return (rc);
4086 		}
4087 		MPASS(ofld_rxq->iq.flags & IQ_HW_ALLOCATED);
4088 	}
4089 	return (rc);
4090 }
4091 
4092 /*
4093  * Idempotent.
4094  */
4095 static void
4096 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
4097 {
4098 	if (ofld_rxq->iq.flags & IQ_HW_ALLOCATED) {
4099 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4100 		free_iq_fl_hwq(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4101 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4102 	}
4103 
4104 	if (ofld_rxq->iq.flags & IQ_SW_ALLOCATED) {
4105 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4106 		free_iq_fl(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4107 		MPASS(!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED));
4108 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_ok);
4109 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_error);
4110 		bzero(ofld_rxq, sizeof(*ofld_rxq));
4111 	}
4112 }
4113 
4114 static void
4115 add_ofld_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4116     struct sge_ofld_rxq *ofld_rxq)
4117 {
4118 	struct sysctl_oid_list *children;
4119 
4120 	if (ctx == NULL || oid == NULL)
4121 		return;
4122 
4123 	children = SYSCTL_CHILDREN(oid);
4124 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4125 	    "rx_toe_tls_records", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_records,
4126 	    "# of TOE TLS records received");
4127 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4128 	    "rx_toe_tls_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_octets,
4129 	    "# of payload octets in received TOE TLS records");
4130 
4131 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "iscsi",
4132 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE iSCSI statistics");
4133 	children = SYSCTL_CHILDREN(oid);
4134 
4135 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
4136 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_ok,
4137 	    "# of times DDP buffer was setup successfully.");
4138 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
4139 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_error,
4140 	    "# of times DDP buffer setup failed.");
4141 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_octets",
4142 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_octets, 0,
4143 	    "# of octets placed directly");
4144 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_pdus",
4145 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_pdus, 0,
4146 	    "# of PDUs with data placed directly.");
4147 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_octets",
4148 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_octets, 0,
4149 	    "# of data octets delivered in freelist");
4150 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_pdus",
4151 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_pdus, 0,
4152 	    "# of PDUs with data delivered in freelist");
4153 }
4154 #endif
4155 
4156 /*
4157  * Returns a reasonable automatic cidx flush threshold for a given queue size.
4158  */
4159 static u_int
4160 qsize_to_fthresh(int qsize)
4161 {
4162 	u_int fthresh;
4163 
4164 	while (!powerof2(qsize))
4165 		qsize++;
4166 	fthresh = ilog2(qsize);
4167 	if (fthresh > X_CIDXFLUSHTHRESH_128)
4168 		fthresh = X_CIDXFLUSHTHRESH_128;
4169 
4170 	return (fthresh);
4171 }
4172 
4173 static int
4174 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
4175 {
4176 	int rc, cntxt_id;
4177 	struct fw_eq_ctrl_cmd c;
4178 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4179 
4180 	bzero(&c, sizeof(c));
4181 
4182 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
4183 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
4184 	    V_FW_EQ_CTRL_CMD_VFN(0));
4185 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
4186 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
4187 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
4188 	c.physeqid_pkd = htobe32(0);
4189 	c.fetchszm_to_iqid =
4190 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4191 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
4192 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
4193 	c.dcaen_to_eqsize =
4194 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4195 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4196 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4197 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4198 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
4199 	c.eqaddr = htobe64(eq->ba);
4200 
4201 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4202 	if (rc != 0) {
4203 		CH_ERR(sc, "failed to create hw ctrlq for tx_chan %d: %d\n",
4204 		    eq->tx_chan, rc);
4205 		return (rc);
4206 	}
4207 
4208 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
4209 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4210 	if (cntxt_id >= sc->sge.eqmap_sz)
4211 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4212 		cntxt_id, sc->sge.eqmap_sz - 1);
4213 	sc->sge.eqmap[cntxt_id] = eq;
4214 
4215 	return (rc);
4216 }
4217 
4218 static int
4219 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4220 {
4221 	int rc, cntxt_id;
4222 	struct fw_eq_eth_cmd c;
4223 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4224 
4225 	bzero(&c, sizeof(c));
4226 
4227 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
4228 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
4229 	    V_FW_EQ_ETH_CMD_VFN(0));
4230 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
4231 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
4232 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
4233 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
4234 	c.fetchszm_to_iqid =
4235 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
4236 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
4237 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
4238 	c.dcaen_to_eqsize =
4239 	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4240 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4241 		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4242 		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
4243 	c.eqaddr = htobe64(eq->ba);
4244 
4245 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4246 	if (rc != 0) {
4247 		device_printf(vi->dev,
4248 		    "failed to create Ethernet egress queue: %d\n", rc);
4249 		return (rc);
4250 	}
4251 
4252 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
4253 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4254 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4255 	if (cntxt_id >= sc->sge.eqmap_sz)
4256 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4257 		cntxt_id, sc->sge.eqmap_sz - 1);
4258 	sc->sge.eqmap[cntxt_id] = eq;
4259 
4260 	return (rc);
4261 }
4262 
4263 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4264 static int
4265 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4266 {
4267 	int rc, cntxt_id;
4268 	struct fw_eq_ofld_cmd c;
4269 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4270 
4271 	bzero(&c, sizeof(c));
4272 
4273 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
4274 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
4275 	    V_FW_EQ_OFLD_CMD_VFN(0));
4276 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
4277 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
4278 	c.fetchszm_to_iqid =
4279 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4280 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
4281 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
4282 	c.dcaen_to_eqsize =
4283 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4284 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4285 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4286 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4287 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
4288 	c.eqaddr = htobe64(eq->ba);
4289 
4290 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4291 	if (rc != 0) {
4292 		device_printf(vi->dev,
4293 		    "failed to create egress queue for TCP offload: %d\n", rc);
4294 		return (rc);
4295 	}
4296 
4297 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
4298 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4299 	if (cntxt_id >= sc->sge.eqmap_sz)
4300 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4301 		cntxt_id, sc->sge.eqmap_sz - 1);
4302 	sc->sge.eqmap[cntxt_id] = eq;
4303 
4304 	return (rc);
4305 }
4306 #endif
4307 
4308 /* SW only */
4309 static int
4310 alloc_eq(struct adapter *sc, struct sge_eq *eq, struct sysctl_ctx_list *ctx,
4311     struct sysctl_oid *oid)
4312 {
4313 	int rc, qsize;
4314 	size_t len;
4315 
4316 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4317 
4318 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4319 	len = qsize * EQ_ESIZE;
4320 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba,
4321 	    (void **)&eq->desc);
4322 	if (rc)
4323 		return (rc);
4324 	if (ctx != NULL && oid != NULL)
4325 		add_eq_sysctls(sc, ctx, oid, eq);
4326 	eq->flags |= EQ_SW_ALLOCATED;
4327 
4328 	return (0);
4329 }
4330 
4331 /* SW only */
4332 static void
4333 free_eq(struct adapter *sc, struct sge_eq *eq)
4334 {
4335 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4336 	MPASS(eq->pidx == eq->cidx);
4337 
4338 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4339 	mtx_destroy(&eq->eq_lock);
4340 	bzero(eq, sizeof(*eq));
4341 }
4342 
4343 static void
4344 add_eq_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
4345     struct sysctl_oid *oid, struct sge_eq *eq)
4346 {
4347 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4348 
4349 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba,
4350 	    "bus address of descriptor ring");
4351 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4352 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4353 	    "desc ring size in bytes");
4354 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4355 	    &eq->abs_id, 0, "absolute id of the queue");
4356 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4357 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4358 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &eq->cidx,
4359 	    0, "consumer index");
4360 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &eq->pidx,
4361 	    0, "producer index");
4362 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4363 	    eq->sidx, "status page index");
4364 }
4365 
4366 static int
4367 alloc_eq_hwq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4368 {
4369 	int rc;
4370 
4371 	MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4372 
4373 	eq->iqid = eq->iq->cntxt_id;
4374 	eq->pidx = eq->cidx = eq->dbidx = 0;
4375 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4376 	eq->equeqidx = 0;
4377 	eq->doorbells = sc->doorbells;
4378 	bzero(eq->desc, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len);
4379 
4380 	switch (eq->type) {
4381 	case EQ_CTRL:
4382 		rc = ctrl_eq_alloc(sc, eq);
4383 		break;
4384 
4385 	case EQ_ETH:
4386 		rc = eth_eq_alloc(sc, vi, eq);
4387 		break;
4388 
4389 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4390 	case EQ_OFLD:
4391 		rc = ofld_eq_alloc(sc, vi, eq);
4392 		break;
4393 #endif
4394 
4395 	default:
4396 		panic("%s: invalid eq type %d.", __func__, eq->type);
4397 	}
4398 	if (rc != 0) {
4399 		CH_ERR(sc, "failed to allocate egress queue(%d): %d\n",
4400 		    eq->type, rc);
4401 		return (rc);
4402 	}
4403 
4404 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4405 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4406 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4407 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4408 		uint32_t mask = (1 << s_qpp) - 1;
4409 		volatile uint8_t *udb;
4410 
4411 		udb = sc->udbs_base + UDBS_DB_OFFSET;
4412 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4413 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4414 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4415 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
4416 		else {
4417 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4418 			eq->udb_qid = 0;
4419 		}
4420 		eq->udb = (volatile void *)udb;
4421 	}
4422 
4423 	eq->flags |= EQ_HW_ALLOCATED;
4424 	return (0);
4425 }
4426 
4427 static int
4428 free_eq_hwq(struct adapter *sc, struct vi_info *vi __unused, struct sge_eq *eq)
4429 {
4430 	int rc;
4431 
4432 	MPASS(eq->flags & EQ_HW_ALLOCATED);
4433 
4434 	switch (eq->type) {
4435 	case EQ_CTRL:
4436 		rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4437 		break;
4438 	case EQ_ETH:
4439 		rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4440 		break;
4441 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4442 	case EQ_OFLD:
4443 		rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4444 		break;
4445 #endif
4446 	default:
4447 		panic("%s: invalid eq type %d.", __func__, eq->type);
4448 	}
4449 	if (rc != 0) {
4450 		CH_ERR(sc, "failed to free eq (type %d): %d\n", eq->type, rc);
4451 		return (rc);
4452 	}
4453 	eq->flags &= ~EQ_HW_ALLOCATED;
4454 
4455 	return (0);
4456 }
4457 
4458 static int
4459 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4460     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
4461 {
4462 	struct sge_eq *eq = &wrq->eq;
4463 	int rc;
4464 
4465 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4466 
4467 	rc = alloc_eq(sc, eq, ctx, oid);
4468 	if (rc)
4469 		return (rc);
4470 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4471 	/* Can't fail after this. */
4472 
4473 	wrq->adapter = sc;
4474 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4475 	TAILQ_INIT(&wrq->incomplete_wrs);
4476 	STAILQ_INIT(&wrq->wr_list);
4477 	wrq->nwr_pending = 0;
4478 	wrq->ndesc_needed = 0;
4479 	add_wrq_sysctls(ctx, oid, wrq);
4480 
4481 	return (0);
4482 }
4483 
4484 static void
4485 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4486 {
4487 	free_eq(sc, &wrq->eq);
4488 	MPASS(wrq->nwr_pending == 0);
4489 	bzero(wrq, sizeof(*wrq));
4490 }
4491 
4492 static void
4493 add_wrq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4494     struct sge_wrq *wrq)
4495 {
4496 	struct sysctl_oid_list *children;
4497 
4498 	if (ctx == NULL || oid == NULL)
4499 		return;
4500 
4501 	children = SYSCTL_CHILDREN(oid);
4502 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4503 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4504 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4505 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4506 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4507 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4508 }
4509 
4510 /*
4511  * Idempotent.
4512  */
4513 static int
4514 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx)
4515 {
4516 	int rc, iqidx;
4517 	struct port_info *pi = vi->pi;
4518 	struct adapter *sc = vi->adapter;
4519 	struct sge_eq *eq = &txq->eq;
4520 	struct txpkts *txp;
4521 	char name[16];
4522 	struct sysctl_oid *oid;
4523 
4524 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4525 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4526 
4527 		snprintf(name, sizeof(name), "%d", idx);
4528 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->txq_oid),
4529 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4530 		    "tx queue");
4531 
4532 		iqidx = vi->first_rxq + (idx % vi->nrxq);
4533 		snprintf(name, sizeof(name), "%s txq%d",
4534 		    device_get_nameunit(vi->dev), idx);
4535 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
4536 		    &sc->sge.rxq[iqidx].iq, name);
4537 
4538 		rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx,
4539 		    can_resume_eth_tx, M_CXGBE, &eq->eq_lock, M_WAITOK);
4540 		if (rc != 0) {
4541 			CH_ERR(vi, "failed to allocate mp_ring for txq%d: %d\n",
4542 			    idx, rc);
4543 failed:
4544 			sysctl_remove_oid(oid, 1, 1);
4545 			return (rc);
4546 		}
4547 
4548 		rc = alloc_eq(sc, eq, &vi->ctx, oid);
4549 		if (rc) {
4550 			CH_ERR(vi, "failed to allocate txq%d: %d\n", idx, rc);
4551 			mp_ring_free(txq->r);
4552 			goto failed;
4553 		}
4554 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4555 		/* Can't fail after this point. */
4556 
4557 		TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4558 		txq->ifp = vi->ifp;
4559 		txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4560 		txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4561 		    M_ZERO | M_WAITOK);
4562 
4563 		add_txq_sysctls(vi, &vi->ctx, oid, txq);
4564 	}
4565 
4566 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4567 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4568 		rc = alloc_eq_hwq(sc, vi, eq);
4569 		if (rc != 0) {
4570 			CH_ERR(vi, "failed to create hw txq%d: %d\n", idx, rc);
4571 			return (rc);
4572 		}
4573 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4574 		/* Can't fail after this point. */
4575 
4576 		if (idx == 0)
4577 			sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4578 		else
4579 			KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4580 			    ("eq_base mismatch"));
4581 		KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4582 		    ("PF with non-zero eq_base"));
4583 
4584 		txp = &txq->txp;
4585 		MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4586 		txq->txp.max_npkt = min(nitems(txp->mb),
4587 		    sc->params.max_pkts_per_eth_tx_pkts_wr);
4588 		if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
4589 			txq->txp.max_npkt--;
4590 
4591 		if (vi->flags & TX_USES_VM_WR)
4592 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4593 			    V_TXPKT_INTF(pi->tx_chan));
4594 		else
4595 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4596 			    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4597 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4598 
4599 		txq->tc_idx = -1;
4600 	}
4601 
4602 	return (0);
4603 }
4604 
4605 /*
4606  * Idempotent.
4607  */
4608 static void
4609 free_txq(struct vi_info *vi, struct sge_txq *txq)
4610 {
4611 	struct adapter *sc = vi->adapter;
4612 	struct sge_eq *eq = &txq->eq;
4613 
4614 	if (eq->flags & EQ_HW_ALLOCATED) {
4615 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4616 		free_eq_hwq(sc, NULL, eq);
4617 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4618 	}
4619 
4620 	if (eq->flags & EQ_SW_ALLOCATED) {
4621 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4622 		sglist_free(txq->gl);
4623 		free(txq->sdesc, M_CXGBE);
4624 		mp_ring_free(txq->r);
4625 		free_eq(sc, eq);
4626 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4627 		bzero(txq, sizeof(*txq));
4628 	}
4629 }
4630 
4631 static void
4632 add_txq_sysctls(struct vi_info *vi, struct sysctl_ctx_list *ctx,
4633     struct sysctl_oid *oid, struct sge_txq *txq)
4634 {
4635 	struct adapter *sc;
4636 	struct sysctl_oid_list *children;
4637 
4638 	if (ctx == NULL || oid == NULL)
4639 		return;
4640 
4641 	sc = vi->adapter;
4642 	children = SYSCTL_CHILDREN(oid);
4643 
4644 	mp_ring_sysctls(txq->r, ctx, children);
4645 
4646 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tc",
4647 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, txq - sc->sge.txq,
4648 	    sysctl_tc, "I", "traffic class (-1 means none)");
4649 
4650 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4651 	    &txq->txcsum, "# of times hardware assisted with checksum");
4652 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD,
4653 	    &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag");
4654 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4655 	    &txq->tso_wrs, "# of TSO work requests");
4656 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4657 	    &txq->imm_wrs, "# of work requests with immediate data");
4658 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4659 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4660 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4661 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4662 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD,
4663 	    &txq->txpkts0_wrs, "# of txpkts (type 0) work requests");
4664 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD,
4665 	    &txq->txpkts1_wrs, "# of txpkts (type 1) work requests");
4666 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD,
4667 	    &txq->txpkts0_pkts,
4668 	    "# of frames tx'd using type0 txpkts work requests");
4669 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD,
4670 	    &txq->txpkts1_pkts,
4671 	    "# of frames tx'd using type1 txpkts work requests");
4672 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts_flush", CTLFLAG_RD,
4673 	    &txq->txpkts_flush,
4674 	    "# of times txpkts had to be flushed out by an egress-update");
4675 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4676 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4677 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_tso_wrs", CTLFLAG_RD,
4678 	    &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
4679 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_txcsum", CTLFLAG_RD,
4680 	    &txq->vxlan_txcsum,
4681 	    "# of times hardware assisted with inner checksums (VXLAN)");
4682 
4683 #ifdef KERN_TLS
4684 	if (is_ktls(sc)) {
4685 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_records",
4686 		    CTLFLAG_RD, &txq->kern_tls_records,
4687 		    "# of NIC TLS records transmitted");
4688 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_short",
4689 		    CTLFLAG_RD, &txq->kern_tls_short,
4690 		    "# of short NIC TLS records transmitted");
4691 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_partial",
4692 		    CTLFLAG_RD, &txq->kern_tls_partial,
4693 		    "# of partial NIC TLS records transmitted");
4694 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_full",
4695 		    CTLFLAG_RD, &txq->kern_tls_full,
4696 		    "# of full NIC TLS records transmitted");
4697 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_octets",
4698 		    CTLFLAG_RD, &txq->kern_tls_octets,
4699 		    "# of payload octets in transmitted NIC TLS records");
4700 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_waste",
4701 		    CTLFLAG_RD, &txq->kern_tls_waste,
4702 		    "# of octets DMAd but not transmitted in NIC TLS records");
4703 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_options",
4704 		    CTLFLAG_RD, &txq->kern_tls_options,
4705 		    "# of NIC TLS options-only packets transmitted");
4706 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_header",
4707 		    CTLFLAG_RD, &txq->kern_tls_header,
4708 		    "# of NIC TLS header-only packets transmitted");
4709 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin",
4710 		    CTLFLAG_RD, &txq->kern_tls_fin,
4711 		    "# of NIC TLS FIN-only packets transmitted");
4712 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin_short",
4713 		    CTLFLAG_RD, &txq->kern_tls_fin_short,
4714 		    "# of NIC TLS padded FIN packets on short TLS records");
4715 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_cbc",
4716 		    CTLFLAG_RD, &txq->kern_tls_cbc,
4717 		    "# of NIC TLS sessions using AES-CBC");
4718 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_gcm",
4719 		    CTLFLAG_RD, &txq->kern_tls_gcm,
4720 		    "# of NIC TLS sessions using AES-GCM");
4721 	}
4722 #endif
4723 }
4724 
4725 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4726 /*
4727  * Idempotent.
4728  */
4729 static int
4730 alloc_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq, int idx)
4731 {
4732 	struct sysctl_oid *oid;
4733 	struct port_info *pi = vi->pi;
4734 	struct adapter *sc = vi->adapter;
4735 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4736 	int rc, iqidx;
4737 	char name[16];
4738 
4739 	MPASS(idx >= 0);
4740 	MPASS(idx < vi->nofldtxq);
4741 
4742 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4743 		snprintf(name, sizeof(name), "%d", idx);
4744 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4745 		    SYSCTL_CHILDREN(vi->ofld_txq_oid), OID_AUTO, name,
4746 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
4747 
4748 		snprintf(name, sizeof(name), "%s ofld_txq%d",
4749 		    device_get_nameunit(vi->dev), idx);
4750 		if (vi->nofldrxq > 0) {
4751 			iqidx = vi->first_ofld_rxq + (idx % vi->nofldrxq);
4752 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
4753 			    &sc->sge.ofld_rxq[iqidx].iq, name);
4754 		} else {
4755 			iqidx = vi->first_rxq + (idx % vi->nrxq);
4756 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
4757 			    &sc->sge.rxq[iqidx].iq, name);
4758 		}
4759 
4760 		rc = alloc_wrq(sc, vi, &ofld_txq->wrq, &vi->ctx, oid);
4761 		if (rc != 0) {
4762 			CH_ERR(vi, "failed to allocate ofld_txq%d: %d\n", idx,
4763 			    rc);
4764 			sysctl_remove_oid(oid, 1, 1);
4765 			return (rc);
4766 		}
4767 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4768 		/* Can't fail after this point. */
4769 
4770 		ofld_txq->tx_iscsi_pdus = counter_u64_alloc(M_WAITOK);
4771 		ofld_txq->tx_iscsi_octets = counter_u64_alloc(M_WAITOK);
4772 		ofld_txq->tx_toe_tls_records = counter_u64_alloc(M_WAITOK);
4773 		ofld_txq->tx_toe_tls_octets = counter_u64_alloc(M_WAITOK);
4774 		add_ofld_txq_sysctls(&vi->ctx, oid, ofld_txq);
4775 	}
4776 
4777 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4778 		rc = alloc_eq_hwq(sc, vi, eq);
4779 		if (rc != 0) {
4780 			CH_ERR(vi, "failed to create hw ofld_txq%d: %d\n", idx,
4781 			    rc);
4782 			return (rc);
4783 		}
4784 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4785 	}
4786 
4787 	return (0);
4788 }
4789 
4790 /*
4791  * Idempotent.
4792  */
4793 static void
4794 free_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq)
4795 {
4796 	struct adapter *sc = vi->adapter;
4797 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4798 
4799 	if (eq->flags & EQ_HW_ALLOCATED) {
4800 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4801 		free_eq_hwq(sc, NULL, eq);
4802 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4803 	}
4804 
4805 	if (eq->flags & EQ_SW_ALLOCATED) {
4806 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4807 		counter_u64_free(ofld_txq->tx_iscsi_pdus);
4808 		counter_u64_free(ofld_txq->tx_iscsi_octets);
4809 		counter_u64_free(ofld_txq->tx_toe_tls_records);
4810 		counter_u64_free(ofld_txq->tx_toe_tls_octets);
4811 		free_wrq(sc, &ofld_txq->wrq);
4812 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4813 		bzero(ofld_txq, sizeof(*ofld_txq));
4814 	}
4815 }
4816 
4817 static void
4818 add_ofld_txq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4819     struct sge_ofld_txq *ofld_txq)
4820 {
4821 	struct sysctl_oid_list *children;
4822 
4823 	if (ctx == NULL || oid == NULL)
4824 		return;
4825 
4826 	children = SYSCTL_CHILDREN(oid);
4827 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_pdus",
4828 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_pdus,
4829 	    "# of iSCSI PDUs transmitted");
4830 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_octets",
4831 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_octets,
4832 	    "# of payload octets in transmitted iSCSI PDUs");
4833 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_records",
4834 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_records,
4835 	    "# of TOE TLS records transmitted");
4836 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_octets",
4837 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_octets,
4838 	    "# of payload octets in transmitted TOE TLS records");
4839 }
4840 #endif
4841 
4842 static void
4843 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4844 {
4845 	bus_addr_t *ba = arg;
4846 
4847 	KASSERT(nseg == 1,
4848 	    ("%s meant for single segment mappings only.", __func__));
4849 
4850 	*ba = error ? 0 : segs->ds_addr;
4851 }
4852 
4853 static inline void
4854 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4855 {
4856 	uint32_t n, v;
4857 
4858 	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
4859 	MPASS(n > 0);
4860 
4861 	wmb();
4862 	v = fl->dbval | V_PIDX(n);
4863 	if (fl->udb)
4864 		*fl->udb = htole32(v);
4865 	else
4866 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4867 	IDXINCR(fl->dbidx, n, fl->sidx);
4868 }
4869 
4870 /*
4871  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4872  * recycled do not count towards this allocation budget.
4873  *
4874  * Returns non-zero to indicate that this freelist should be added to the list
4875  * of starving freelists.
4876  */
4877 static int
4878 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4879 {
4880 	__be64 *d;
4881 	struct fl_sdesc *sd;
4882 	uintptr_t pa;
4883 	caddr_t cl;
4884 	struct rx_buf_info *rxb;
4885 	struct cluster_metadata *clm;
4886 	uint16_t max_pidx, zidx = fl->zidx;
4887 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
4888 
4889 	FL_LOCK_ASSERT_OWNED(fl);
4890 
4891 	/*
4892 	 * We always stop at the beginning of the hardware descriptor that's just
4893 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
4894 	 * which would mean an empty freelist to the chip.
4895 	 */
4896 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
4897 	if (fl->pidx == max_pidx * 8)
4898 		return (0);
4899 
4900 	d = &fl->desc[fl->pidx];
4901 	sd = &fl->sdesc[fl->pidx];
4902 	rxb = &sc->sge.rx_buf_info[zidx];
4903 
4904 	while (n > 0) {
4905 
4906 		if (sd->cl != NULL) {
4907 
4908 			if (sd->nmbuf == 0) {
4909 				/*
4910 				 * Fast recycle without involving any atomics on
4911 				 * the cluster's metadata (if the cluster has
4912 				 * metadata).  This happens when all frames
4913 				 * received in the cluster were small enough to
4914 				 * fit within a single mbuf each.
4915 				 */
4916 				fl->cl_fast_recycled++;
4917 				goto recycled;
4918 			}
4919 
4920 			/*
4921 			 * Cluster is guaranteed to have metadata.  Clusters
4922 			 * without metadata always take the fast recycle path
4923 			 * when they're recycled.
4924 			 */
4925 			clm = cl_metadata(sd);
4926 			MPASS(clm != NULL);
4927 
4928 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4929 				fl->cl_recycled++;
4930 				counter_u64_add(extfree_rels, 1);
4931 				goto recycled;
4932 			}
4933 			sd->cl = NULL;	/* gave up my reference */
4934 		}
4935 		MPASS(sd->cl == NULL);
4936 		cl = uma_zalloc(rxb->zone, M_NOWAIT);
4937 		if (__predict_false(cl == NULL)) {
4938 			if (zidx != fl->safe_zidx) {
4939 				zidx = fl->safe_zidx;
4940 				rxb = &sc->sge.rx_buf_info[zidx];
4941 				cl = uma_zalloc(rxb->zone, M_NOWAIT);
4942 			}
4943 			if (cl == NULL)
4944 				break;
4945 		}
4946 		fl->cl_allocated++;
4947 		n--;
4948 
4949 		pa = pmap_kextract((vm_offset_t)cl);
4950 		sd->cl = cl;
4951 		sd->zidx = zidx;
4952 
4953 		if (fl->flags & FL_BUF_PACKING) {
4954 			*d = htobe64(pa | rxb->hwidx2);
4955 			sd->moff = rxb->size2;
4956 		} else {
4957 			*d = htobe64(pa | rxb->hwidx1);
4958 			sd->moff = 0;
4959 		}
4960 recycled:
4961 		sd->nmbuf = 0;
4962 		d++;
4963 		sd++;
4964 		if (__predict_false((++fl->pidx & 7) == 0)) {
4965 			uint16_t pidx = fl->pidx >> 3;
4966 
4967 			if (__predict_false(pidx == fl->sidx)) {
4968 				fl->pidx = 0;
4969 				pidx = 0;
4970 				sd = fl->sdesc;
4971 				d = fl->desc;
4972 			}
4973 			if (n < 8 || pidx == max_pidx)
4974 				break;
4975 
4976 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
4977 				ring_fl_db(sc, fl);
4978 		}
4979 	}
4980 
4981 	if ((fl->pidx >> 3) != fl->dbidx)
4982 		ring_fl_db(sc, fl);
4983 
4984 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
4985 }
4986 
4987 /*
4988  * Attempt to refill all starving freelists.
4989  */
4990 static void
4991 refill_sfl(void *arg)
4992 {
4993 	struct adapter *sc = arg;
4994 	struct sge_fl *fl, *fl_temp;
4995 
4996 	mtx_assert(&sc->sfl_lock, MA_OWNED);
4997 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
4998 		FL_LOCK(fl);
4999 		refill_fl(sc, fl, 64);
5000 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
5001 			TAILQ_REMOVE(&sc->sfl, fl, link);
5002 			fl->flags &= ~FL_STARVING;
5003 		}
5004 		FL_UNLOCK(fl);
5005 	}
5006 
5007 	if (!TAILQ_EMPTY(&sc->sfl))
5008 		callout_schedule(&sc->sfl_callout, hz / 5);
5009 }
5010 
5011 /*
5012  * Release the driver's reference on all buffers in the given freelist.  Buffers
5013  * with kernel references cannot be freed and will prevent the driver from being
5014  * unloaded safely.
5015  */
5016 void
5017 free_fl_buffers(struct adapter *sc, struct sge_fl *fl)
5018 {
5019 	struct fl_sdesc *sd;
5020 	struct cluster_metadata *clm;
5021 	int i;
5022 
5023 	sd = fl->sdesc;
5024 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
5025 		if (sd->cl == NULL)
5026 			continue;
5027 
5028 		if (sd->nmbuf == 0)
5029 			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
5030 		else if (fl->flags & FL_BUF_PACKING) {
5031 			clm = cl_metadata(sd);
5032 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5033 				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
5034 				    sd->cl);
5035 				counter_u64_add(extfree_rels, 1);
5036 			}
5037 		}
5038 		sd->cl = NULL;
5039 	}
5040 
5041 	if (fl->flags & FL_BUF_RESUME) {
5042 		m_freem(fl->m0);
5043 		fl->flags &= ~FL_BUF_RESUME;
5044 	}
5045 }
5046 
5047 static inline void
5048 get_pkt_gl(struct mbuf *m, struct sglist *gl)
5049 {
5050 	int rc;
5051 
5052 	M_ASSERTPKTHDR(m);
5053 
5054 	sglist_reset(gl);
5055 	rc = sglist_append_mbuf(gl, m);
5056 	if (__predict_false(rc != 0)) {
5057 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
5058 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
5059 	}
5060 
5061 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
5062 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
5063 	    mbuf_nsegs(m), gl->sg_nseg));
5064 #if 0	/* vm_wr not readily available here. */
5065 	KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
5066 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
5067 		gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
5068 #endif
5069 }
5070 
5071 /*
5072  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5073  */
5074 static inline u_int
5075 txpkt_len16(u_int nsegs, const u_int extra)
5076 {
5077 	u_int n;
5078 
5079 	MPASS(nsegs > 0);
5080 
5081 	nsegs--; /* first segment is part of ulptx_sgl */
5082 	n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
5083 	    sizeof(struct cpl_tx_pkt_core) +
5084 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5085 
5086 	return (howmany(n, 16));
5087 }
5088 
5089 /*
5090  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
5091  * request header.
5092  */
5093 static inline u_int
5094 txpkt_vm_len16(u_int nsegs, const u_int extra)
5095 {
5096 	u_int n;
5097 
5098 	MPASS(nsegs > 0);
5099 
5100 	nsegs--; /* first segment is part of ulptx_sgl */
5101 	n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
5102 	    sizeof(struct cpl_tx_pkt_core) +
5103 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5104 
5105 	return (howmany(n, 16));
5106 }
5107 
5108 static inline void
5109 calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
5110 {
5111 	const int lso = sizeof(struct cpl_tx_pkt_lso_core);
5112 	const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
5113 
5114 	if (vm_wr) {
5115 		if (needs_tso(m))
5116 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
5117 		else
5118 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
5119 		return;
5120 	}
5121 
5122 	if (needs_tso(m)) {
5123 		if (needs_vxlan_tso(m))
5124 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
5125 		else
5126 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
5127 	} else
5128 		set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
5129 }
5130 
5131 /*
5132  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
5133  * request header.
5134  */
5135 static inline u_int
5136 txpkts0_len16(u_int nsegs)
5137 {
5138 	u_int n;
5139 
5140 	MPASS(nsegs > 0);
5141 
5142 	nsegs--; /* first segment is part of ulptx_sgl */
5143 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
5144 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
5145 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
5146 
5147 	return (howmany(n, 16));
5148 }
5149 
5150 /*
5151  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
5152  * request header.
5153  */
5154 static inline u_int
5155 txpkts1_len16(void)
5156 {
5157 	u_int n;
5158 
5159 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
5160 
5161 	return (howmany(n, 16));
5162 }
5163 
5164 static inline u_int
5165 imm_payload(u_int ndesc)
5166 {
5167 	u_int n;
5168 
5169 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
5170 	    sizeof(struct cpl_tx_pkt_core);
5171 
5172 	return (n);
5173 }
5174 
5175 static inline uint64_t
5176 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
5177 {
5178 	uint64_t ctrl;
5179 	int csum_type, l2hlen, l3hlen;
5180 	int x, y;
5181 	static const int csum_types[3][2] = {
5182 		{TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
5183 		{TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
5184 		{TX_CSUM_IP, 0}
5185 	};
5186 
5187 	M_ASSERTPKTHDR(m);
5188 
5189 	if (!needs_hwcsum(m))
5190 		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
5191 
5192 	MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
5193 	MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
5194 
5195 	if (needs_vxlan_csum(m)) {
5196 		MPASS(m->m_pkthdr.l4hlen > 0);
5197 		MPASS(m->m_pkthdr.l5hlen > 0);
5198 		MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
5199 		MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
5200 
5201 		l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
5202 		    m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
5203 		    m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
5204 		l3hlen = m->m_pkthdr.inner_l3hlen;
5205 	} else {
5206 		l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
5207 		l3hlen = m->m_pkthdr.l3hlen;
5208 	}
5209 
5210 	ctrl = 0;
5211 	if (!needs_l3_csum(m))
5212 		ctrl |= F_TXPKT_IPCSUM_DIS;
5213 
5214 	if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
5215 	    CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
5216 		x = 0;	/* TCP */
5217 	else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
5218 	    CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
5219 		x = 1;	/* UDP */
5220 	else
5221 		x = 2;
5222 
5223 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
5224 	    CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
5225 		y = 0;	/* IPv4 */
5226 	else {
5227 		MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
5228 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
5229 		y = 1;	/* IPv6 */
5230 	}
5231 	/*
5232 	 * needs_hwcsum returned true earlier so there must be some kind of
5233 	 * checksum to calculate.
5234 	 */
5235 	csum_type = csum_types[x][y];
5236 	MPASS(csum_type != 0);
5237 	if (csum_type == TX_CSUM_IP)
5238 		ctrl |= F_TXPKT_L4CSUM_DIS;
5239 	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
5240 	if (chip_id(sc) <= CHELSIO_T5)
5241 		ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
5242 	else
5243 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
5244 
5245 	return (ctrl);
5246 }
5247 
5248 static inline void *
5249 write_lso_cpl(void *cpl, struct mbuf *m0)
5250 {
5251 	struct cpl_tx_pkt_lso_core *lso;
5252 	uint32_t ctrl;
5253 
5254 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5255 	    m0->m_pkthdr.l4hlen > 0,
5256 	    ("%s: mbuf %p needs TSO but missing header lengths",
5257 		__func__, m0));
5258 
5259 	ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5260 	    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5261 	    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5262 	    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5263 	    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5264 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5265 		ctrl |= F_LSO_IPV6;
5266 
5267 	lso = cpl;
5268 	lso->lso_ctrl = htobe32(ctrl);
5269 	lso->ipid_ofst = htobe16(0);
5270 	lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5271 	lso->seqno_offset = htobe32(0);
5272 	lso->len = htobe32(m0->m_pkthdr.len);
5273 
5274 	return (lso + 1);
5275 }
5276 
5277 static void *
5278 write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
5279 {
5280 	struct cpl_tx_tnl_lso *tnl_lso = cpl;
5281 	uint32_t ctrl;
5282 
5283 	KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
5284 	    m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
5285 	    m0->m_pkthdr.inner_l5hlen > 0,
5286 	    ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
5287 		__func__, m0));
5288 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5289 	    m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
5290 	    ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
5291 		__func__, m0));
5292 
5293 	/* Outer headers. */
5294 	ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
5295 	    F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
5296 	    V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
5297 		(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5298 	    V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
5299 	    F_CPL_TX_TNL_LSO_IPLENSETOUT;
5300 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5301 		ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
5302 	else {
5303 		ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
5304 		    F_CPL_TX_TNL_LSO_IPIDINCOUT;
5305 	}
5306 	tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
5307 	tnl_lso->IpIdOffsetOut = 0;
5308 	tnl_lso->UdpLenSetOut_to_TnlHdrLen =
5309 		htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
5310 		    F_CPL_TX_TNL_LSO_UDPLENSETOUT |
5311 		    V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
5312 			m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
5313 			m0->m_pkthdr.l5hlen) |
5314 		    V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
5315 	tnl_lso->r1 = 0;
5316 
5317 	/* Inner headers. */
5318 	ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
5319 	    (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
5320 	    V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
5321 	    V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
5322 	if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
5323 		ctrl |= F_CPL_TX_TNL_LSO_IPV6;
5324 	tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
5325 	tnl_lso->IpIdOffset = 0;
5326 	tnl_lso->IpIdSplit_to_Mss =
5327 	    htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
5328 	tnl_lso->TCPSeqOffset = 0;
5329 	tnl_lso->EthLenOffset_Size =
5330 	    htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
5331 
5332 	return (tnl_lso + 1);
5333 }
5334 
5335 #define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
5336 
5337 /*
5338  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
5339  * software descriptor, and advance the pidx.  It is guaranteed that enough
5340  * descriptors are available.
5341  *
5342  * The return value is the # of hardware descriptors used.
5343  */
5344 static u_int
5345 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
5346 {
5347 	struct sge_eq *eq;
5348 	struct fw_eth_tx_pkt_vm_wr *wr;
5349 	struct tx_sdesc *txsd;
5350 	struct cpl_tx_pkt_core *cpl;
5351 	uint32_t ctrl;	/* used in many unrelated places */
5352 	uint64_t ctrl1;
5353 	int len16, ndesc, pktlen, nsegs;
5354 	caddr_t dst;
5355 
5356 	TXQ_LOCK_ASSERT_OWNED(txq);
5357 	M_ASSERTPKTHDR(m0);
5358 
5359 	len16 = mbuf_len16(m0);
5360 	nsegs = mbuf_nsegs(m0);
5361 	pktlen = m0->m_pkthdr.len;
5362 	ctrl = sizeof(struct cpl_tx_pkt_core);
5363 	if (needs_tso(m0))
5364 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5365 	ndesc = tx_len16_to_desc(len16);
5366 
5367 	/* Firmware work request header */
5368 	eq = &txq->eq;
5369 	wr = (void *)&eq->desc[eq->pidx];
5370 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
5371 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5372 
5373 	ctrl = V_FW_WR_LEN16(len16);
5374 	wr->equiq_to_len16 = htobe32(ctrl);
5375 	wr->r3[0] = 0;
5376 	wr->r3[1] = 0;
5377 
5378 	/*
5379 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
5380 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
5381 	 * simpler to always copy it rather than making it
5382 	 * conditional.  Also, it seems that we do not have to set
5383 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
5384 	 */
5385 	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
5386 
5387 	if (needs_tso(m0)) {
5388 		cpl = write_lso_cpl(wr + 1, m0);
5389 		txq->tso_wrs++;
5390 	} else
5391 		cpl = (void *)(wr + 1);
5392 
5393 	/* Checksum offload */
5394 	ctrl1 = csum_to_ctrl(sc, m0);
5395 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5396 		txq->txcsum++;	/* some hardware assistance provided */
5397 
5398 	/* VLAN tag insertion */
5399 	if (needs_vlan_insertion(m0)) {
5400 		ctrl1 |= F_TXPKT_VLAN_VLD |
5401 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5402 		txq->vlan_insertion++;
5403 	}
5404 
5405 	/* CPL header */
5406 	cpl->ctrl0 = txq->cpl_ctrl0;
5407 	cpl->pack = 0;
5408 	cpl->len = htobe16(pktlen);
5409 	cpl->ctrl1 = htobe64(ctrl1);
5410 
5411 	/* SGL */
5412 	dst = (void *)(cpl + 1);
5413 
5414 	/*
5415 	 * A packet using TSO will use up an entire descriptor for the
5416 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
5417 	 * If this descriptor is the last descriptor in the ring, wrap
5418 	 * around to the front of the ring explicitly for the start of
5419 	 * the sgl.
5420 	 */
5421 	if (dst == (void *)&eq->desc[eq->sidx]) {
5422 		dst = (void *)&eq->desc[0];
5423 		write_gl_to_txd(txq, m0, &dst, 0);
5424 	} else
5425 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5426 	txq->sgl_wrs++;
5427 	txq->txpkt_wrs++;
5428 
5429 	txsd = &txq->sdesc[eq->pidx];
5430 	txsd->m = m0;
5431 	txsd->desc_used = ndesc;
5432 
5433 	return (ndesc);
5434 }
5435 
5436 /*
5437  * Write a raw WR to the hardware descriptors, update the software
5438  * descriptor, and advance the pidx.  It is guaranteed that enough
5439  * descriptors are available.
5440  *
5441  * The return value is the # of hardware descriptors used.
5442  */
5443 static u_int
5444 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
5445 {
5446 	struct sge_eq *eq = &txq->eq;
5447 	struct tx_sdesc *txsd;
5448 	struct mbuf *m;
5449 	caddr_t dst;
5450 	int len16, ndesc;
5451 
5452 	len16 = mbuf_len16(m0);
5453 	ndesc = tx_len16_to_desc(len16);
5454 	MPASS(ndesc <= available);
5455 
5456 	dst = wr;
5457 	for (m = m0; m != NULL; m = m->m_next)
5458 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5459 
5460 	txq->raw_wrs++;
5461 
5462 	txsd = &txq->sdesc[eq->pidx];
5463 	txsd->m = m0;
5464 	txsd->desc_used = ndesc;
5465 
5466 	return (ndesc);
5467 }
5468 
5469 /*
5470  * Write a txpkt WR for this packet to the hardware descriptors, update the
5471  * software descriptor, and advance the pidx.  It is guaranteed that enough
5472  * descriptors are available.
5473  *
5474  * The return value is the # of hardware descriptors used.
5475  */
5476 static u_int
5477 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
5478     u_int available)
5479 {
5480 	struct sge_eq *eq;
5481 	struct fw_eth_tx_pkt_wr *wr;
5482 	struct tx_sdesc *txsd;
5483 	struct cpl_tx_pkt_core *cpl;
5484 	uint32_t ctrl;	/* used in many unrelated places */
5485 	uint64_t ctrl1;
5486 	int len16, ndesc, pktlen, nsegs;
5487 	caddr_t dst;
5488 
5489 	TXQ_LOCK_ASSERT_OWNED(txq);
5490 	M_ASSERTPKTHDR(m0);
5491 
5492 	len16 = mbuf_len16(m0);
5493 	nsegs = mbuf_nsegs(m0);
5494 	pktlen = m0->m_pkthdr.len;
5495 	ctrl = sizeof(struct cpl_tx_pkt_core);
5496 	if (needs_tso(m0)) {
5497 		if (needs_vxlan_tso(m0))
5498 			ctrl += sizeof(struct cpl_tx_tnl_lso);
5499 		else
5500 			ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5501 	} else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
5502 	    available >= 2) {
5503 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
5504 		ctrl += pktlen;
5505 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
5506 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
5507 		nsegs = 0;
5508 	}
5509 	ndesc = tx_len16_to_desc(len16);
5510 	MPASS(ndesc <= available);
5511 
5512 	/* Firmware work request header */
5513 	eq = &txq->eq;
5514 	wr = (void *)&eq->desc[eq->pidx];
5515 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
5516 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5517 
5518 	ctrl = V_FW_WR_LEN16(len16);
5519 	wr->equiq_to_len16 = htobe32(ctrl);
5520 	wr->r3 = 0;
5521 
5522 	if (needs_tso(m0)) {
5523 		if (needs_vxlan_tso(m0)) {
5524 			cpl = write_tnl_lso_cpl(wr + 1, m0);
5525 			txq->vxlan_tso_wrs++;
5526 		} else {
5527 			cpl = write_lso_cpl(wr + 1, m0);
5528 			txq->tso_wrs++;
5529 		}
5530 	} else
5531 		cpl = (void *)(wr + 1);
5532 
5533 	/* Checksum offload */
5534 	ctrl1 = csum_to_ctrl(sc, m0);
5535 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5536 		/* some hardware assistance provided */
5537 		if (needs_vxlan_csum(m0))
5538 			txq->vxlan_txcsum++;
5539 		else
5540 			txq->txcsum++;
5541 	}
5542 
5543 	/* VLAN tag insertion */
5544 	if (needs_vlan_insertion(m0)) {
5545 		ctrl1 |= F_TXPKT_VLAN_VLD |
5546 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5547 		txq->vlan_insertion++;
5548 	}
5549 
5550 	/* CPL header */
5551 	cpl->ctrl0 = txq->cpl_ctrl0;
5552 	cpl->pack = 0;
5553 	cpl->len = htobe16(pktlen);
5554 	cpl->ctrl1 = htobe64(ctrl1);
5555 
5556 	/* SGL */
5557 	dst = (void *)(cpl + 1);
5558 	if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
5559 		dst = (caddr_t)&eq->desc[0];
5560 	if (nsegs > 0) {
5561 
5562 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5563 		txq->sgl_wrs++;
5564 	} else {
5565 		struct mbuf *m;
5566 
5567 		for (m = m0; m != NULL; m = m->m_next) {
5568 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5569 #ifdef INVARIANTS
5570 			pktlen -= m->m_len;
5571 #endif
5572 		}
5573 #ifdef INVARIANTS
5574 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
5575 #endif
5576 		txq->imm_wrs++;
5577 	}
5578 
5579 	txq->txpkt_wrs++;
5580 
5581 	txsd = &txq->sdesc[eq->pidx];
5582 	txsd->m = m0;
5583 	txsd->desc_used = ndesc;
5584 
5585 	return (ndesc);
5586 }
5587 
5588 static inline bool
5589 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
5590 {
5591 	int len;
5592 
5593 	MPASS(txp->npkt > 0);
5594 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5595 
5596 	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5597 		len = VM_TX_L2HDR_LEN;
5598 	else
5599 		len = sizeof(struct ether_header);
5600 
5601 	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5602 }
5603 
5604 static inline void
5605 save_l2hdr(struct txpkts *txp, struct mbuf *m)
5606 {
5607 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5608 
5609 	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5610 }
5611 
5612 static int
5613 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5614     int avail, bool *send)
5615 {
5616 	struct txpkts *txp = &txq->txp;
5617 
5618 	/* Cannot have TSO and coalesce at the same time. */
5619 	if (cannot_use_txpkts(m)) {
5620 cannot_coalesce:
5621 		*send = txp->npkt > 0;
5622 		return (EINVAL);
5623 	}
5624 
5625 	/* VF allows coalescing of type 1 (1 GL) only */
5626 	if (mbuf_nsegs(m) > 1)
5627 		goto cannot_coalesce;
5628 
5629 	*send = false;
5630 	if (txp->npkt > 0) {
5631 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5632 		MPASS(txp->npkt < txp->max_npkt);
5633 		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5634 
5635 		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5636 retry_after_send:
5637 			*send = true;
5638 			return (EAGAIN);
5639 		}
5640 		if (m->m_pkthdr.len + txp->plen > 65535)
5641 			goto retry_after_send;
5642 		if (cmp_l2hdr(txp, m))
5643 			goto retry_after_send;
5644 
5645 		txp->len16 += txpkts1_len16();
5646 		txp->plen += m->m_pkthdr.len;
5647 		txp->mb[txp->npkt++] = m;
5648 		if (txp->npkt == txp->max_npkt)
5649 			*send = true;
5650 	} else {
5651 		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5652 		    txpkts1_len16();
5653 		if (tx_len16_to_desc(txp->len16) > avail)
5654 			goto cannot_coalesce;
5655 		txp->npkt = 1;
5656 		txp->wr_type = 1;
5657 		txp->plen = m->m_pkthdr.len;
5658 		txp->mb[0] = m;
5659 		save_l2hdr(txp, m);
5660 	}
5661 	return (0);
5662 }
5663 
5664 static int
5665 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5666     int avail, bool *send)
5667 {
5668 	struct txpkts *txp = &txq->txp;
5669 	int nsegs;
5670 
5671 	MPASS(!(sc->flags & IS_VF));
5672 
5673 	/* Cannot have TSO and coalesce at the same time. */
5674 	if (cannot_use_txpkts(m)) {
5675 cannot_coalesce:
5676 		*send = txp->npkt > 0;
5677 		return (EINVAL);
5678 	}
5679 
5680 	*send = false;
5681 	nsegs = mbuf_nsegs(m);
5682 	if (txp->npkt == 0) {
5683 		if (m->m_pkthdr.len > 65535)
5684 			goto cannot_coalesce;
5685 		if (nsegs > 1) {
5686 			txp->wr_type = 0;
5687 			txp->len16 =
5688 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5689 			    txpkts0_len16(nsegs);
5690 		} else {
5691 			txp->wr_type = 1;
5692 			txp->len16 =
5693 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5694 			    txpkts1_len16();
5695 		}
5696 		if (tx_len16_to_desc(txp->len16) > avail)
5697 			goto cannot_coalesce;
5698 		txp->npkt = 1;
5699 		txp->plen = m->m_pkthdr.len;
5700 		txp->mb[0] = m;
5701 	} else {
5702 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5703 		MPASS(txp->npkt < txp->max_npkt);
5704 
5705 		if (m->m_pkthdr.len + txp->plen > 65535) {
5706 retry_after_send:
5707 			*send = true;
5708 			return (EAGAIN);
5709 		}
5710 
5711 		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5712 		if (txp->wr_type == 0) {
5713 			if (tx_len16_to_desc(txp->len16 +
5714 			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
5715 				goto retry_after_send;
5716 			txp->len16 += txpkts0_len16(nsegs);
5717 		} else {
5718 			if (nsegs != 1)
5719 				goto retry_after_send;
5720 			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
5721 			    avail)
5722 				goto retry_after_send;
5723 			txp->len16 += txpkts1_len16();
5724 		}
5725 
5726 		txp->plen += m->m_pkthdr.len;
5727 		txp->mb[txp->npkt++] = m;
5728 		if (txp->npkt == txp->max_npkt)
5729 			*send = true;
5730 	}
5731 	return (0);
5732 }
5733 
5734 /*
5735  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
5736  * the software descriptor, and advance the pidx.  It is guaranteed that enough
5737  * descriptors are available.
5738  *
5739  * The return value is the # of hardware descriptors used.
5740  */
5741 static u_int
5742 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
5743 {
5744 	const struct txpkts *txp = &txq->txp;
5745 	struct sge_eq *eq = &txq->eq;
5746 	struct fw_eth_tx_pkts_wr *wr;
5747 	struct tx_sdesc *txsd;
5748 	struct cpl_tx_pkt_core *cpl;
5749 	uint64_t ctrl1;
5750 	int ndesc, i, checkwrap;
5751 	struct mbuf *m, *last;
5752 	void *flitp;
5753 
5754 	TXQ_LOCK_ASSERT_OWNED(txq);
5755 	MPASS(txp->npkt > 0);
5756 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5757 
5758 	wr = (void *)&eq->desc[eq->pidx];
5759 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
5760 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5761 	wr->plen = htobe16(txp->plen);
5762 	wr->npkt = txp->npkt;
5763 	wr->r3 = 0;
5764 	wr->type = txp->wr_type;
5765 	flitp = wr + 1;
5766 
5767 	/*
5768 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
5769 	 * set then we know the WR is going to wrap around somewhere.  We'll
5770 	 * check for that at appropriate points.
5771 	 */
5772 	ndesc = tx_len16_to_desc(txp->len16);
5773 	last = NULL;
5774 	checkwrap = eq->sidx - ndesc < eq->pidx;
5775 	for (i = 0; i < txp->npkt; i++) {
5776 		m = txp->mb[i];
5777 		if (txp->wr_type == 0) {
5778 			struct ulp_txpkt *ulpmc;
5779 			struct ulptx_idata *ulpsc;
5780 
5781 			/* ULP master command */
5782 			ulpmc = flitp;
5783 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
5784 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
5785 			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
5786 
5787 			/* ULP subcommand */
5788 			ulpsc = (void *)(ulpmc + 1);
5789 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
5790 			    F_ULP_TX_SC_MORE);
5791 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
5792 
5793 			cpl = (void *)(ulpsc + 1);
5794 			if (checkwrap &&
5795 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
5796 				cpl = (void *)&eq->desc[0];
5797 		} else {
5798 			cpl = flitp;
5799 		}
5800 
5801 		/* Checksum offload */
5802 		ctrl1 = csum_to_ctrl(sc, m);
5803 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5804 			/* some hardware assistance provided */
5805 			if (needs_vxlan_csum(m))
5806 				txq->vxlan_txcsum++;
5807 			else
5808 				txq->txcsum++;
5809 		}
5810 
5811 		/* VLAN tag insertion */
5812 		if (needs_vlan_insertion(m)) {
5813 			ctrl1 |= F_TXPKT_VLAN_VLD |
5814 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5815 			txq->vlan_insertion++;
5816 		}
5817 
5818 		/* CPL header */
5819 		cpl->ctrl0 = txq->cpl_ctrl0;
5820 		cpl->pack = 0;
5821 		cpl->len = htobe16(m->m_pkthdr.len);
5822 		cpl->ctrl1 = htobe64(ctrl1);
5823 
5824 		flitp = cpl + 1;
5825 		if (checkwrap &&
5826 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5827 			flitp = (void *)&eq->desc[0];
5828 
5829 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
5830 
5831 		if (last != NULL)
5832 			last->m_nextpkt = m;
5833 		last = m;
5834 	}
5835 
5836 	txq->sgl_wrs++;
5837 	if (txp->wr_type == 0) {
5838 		txq->txpkts0_pkts += txp->npkt;
5839 		txq->txpkts0_wrs++;
5840 	} else {
5841 		txq->txpkts1_pkts += txp->npkt;
5842 		txq->txpkts1_wrs++;
5843 	}
5844 
5845 	txsd = &txq->sdesc[eq->pidx];
5846 	txsd->m = txp->mb[0];
5847 	txsd->desc_used = ndesc;
5848 
5849 	return (ndesc);
5850 }
5851 
5852 static u_int
5853 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
5854 {
5855 	const struct txpkts *txp = &txq->txp;
5856 	struct sge_eq *eq = &txq->eq;
5857 	struct fw_eth_tx_pkts_vm_wr *wr;
5858 	struct tx_sdesc *txsd;
5859 	struct cpl_tx_pkt_core *cpl;
5860 	uint64_t ctrl1;
5861 	int ndesc, i;
5862 	struct mbuf *m, *last;
5863 	void *flitp;
5864 
5865 	TXQ_LOCK_ASSERT_OWNED(txq);
5866 	MPASS(txp->npkt > 0);
5867 	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5868 	MPASS(txp->mb[0] != NULL);
5869 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5870 
5871 	wr = (void *)&eq->desc[eq->pidx];
5872 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
5873 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5874 	wr->r3 = 0;
5875 	wr->plen = htobe16(txp->plen);
5876 	wr->npkt = txp->npkt;
5877 	wr->r4 = 0;
5878 	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
5879 	flitp = wr + 1;
5880 
5881 	/*
5882 	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
5883 	 * the WR will take 32B so we check for the end of the descriptor ring
5884 	 * before writing odd mbufs (mb[1], 3, 5, ..)
5885 	 */
5886 	ndesc = tx_len16_to_desc(txp->len16);
5887 	last = NULL;
5888 	for (i = 0; i < txp->npkt; i++) {
5889 		m = txp->mb[i];
5890 		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5891 			flitp = &eq->desc[0];
5892 		cpl = flitp;
5893 
5894 		/* Checksum offload */
5895 		ctrl1 = csum_to_ctrl(sc, m);
5896 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5897 			txq->txcsum++;	/* some hardware assistance provided */
5898 
5899 		/* VLAN tag insertion */
5900 		if (needs_vlan_insertion(m)) {
5901 			ctrl1 |= F_TXPKT_VLAN_VLD |
5902 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5903 			txq->vlan_insertion++;
5904 		}
5905 
5906 		/* CPL header */
5907 		cpl->ctrl0 = txq->cpl_ctrl0;
5908 		cpl->pack = 0;
5909 		cpl->len = htobe16(m->m_pkthdr.len);
5910 		cpl->ctrl1 = htobe64(ctrl1);
5911 
5912 		flitp = cpl + 1;
5913 		MPASS(mbuf_nsegs(m) == 1);
5914 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
5915 
5916 		if (last != NULL)
5917 			last->m_nextpkt = m;
5918 		last = m;
5919 	}
5920 
5921 	txq->sgl_wrs++;
5922 	txq->txpkts1_pkts += txp->npkt;
5923 	txq->txpkts1_wrs++;
5924 
5925 	txsd = &txq->sdesc[eq->pidx];
5926 	txsd->m = txp->mb[0];
5927 	txsd->desc_used = ndesc;
5928 
5929 	return (ndesc);
5930 }
5931 
5932 /*
5933  * If the SGL ends on an address that is not 16 byte aligned, this function will
5934  * add a 0 filled flit at the end.
5935  */
5936 static void
5937 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
5938 {
5939 	struct sge_eq *eq = &txq->eq;
5940 	struct sglist *gl = txq->gl;
5941 	struct sglist_seg *seg;
5942 	__be64 *flitp, *wrap;
5943 	struct ulptx_sgl *usgl;
5944 	int i, nflits, nsegs;
5945 
5946 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
5947 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
5948 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5949 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5950 
5951 	get_pkt_gl(m, gl);
5952 	nsegs = gl->sg_nseg;
5953 	MPASS(nsegs > 0);
5954 
5955 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
5956 	flitp = (__be64 *)(*to);
5957 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
5958 	seg = &gl->sg_segs[0];
5959 	usgl = (void *)flitp;
5960 
5961 	/*
5962 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
5963 	 * ring, so we're at least 16 bytes away from the status page.  There is
5964 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
5965 	 */
5966 
5967 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
5968 	    V_ULPTX_NSGE(nsegs));
5969 	usgl->len0 = htobe32(seg->ss_len);
5970 	usgl->addr0 = htobe64(seg->ss_paddr);
5971 	seg++;
5972 
5973 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
5974 
5975 		/* Won't wrap around at all */
5976 
5977 		for (i = 0; i < nsegs - 1; i++, seg++) {
5978 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
5979 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
5980 		}
5981 		if (i & 1)
5982 			usgl->sge[i / 2].len[1] = htobe32(0);
5983 		flitp += nflits;
5984 	} else {
5985 
5986 		/* Will wrap somewhere in the rest of the SGL */
5987 
5988 		/* 2 flits already written, write the rest flit by flit */
5989 		flitp = (void *)(usgl + 1);
5990 		for (i = 0; i < nflits - 2; i++) {
5991 			if (flitp == wrap)
5992 				flitp = (void *)eq->desc;
5993 			*flitp++ = get_flit(seg, nsegs - 1, i);
5994 		}
5995 	}
5996 
5997 	if (nflits & 1) {
5998 		MPASS(((uintptr_t)flitp) & 0xf);
5999 		*flitp++ = 0;
6000 	}
6001 
6002 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
6003 	if (__predict_false(flitp == wrap))
6004 		*to = (void *)eq->desc;
6005 	else
6006 		*to = (void *)flitp;
6007 }
6008 
6009 static inline void
6010 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
6011 {
6012 
6013 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6014 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6015 
6016 	if (__predict_true((uintptr_t)(*to) + len <=
6017 	    (uintptr_t)&eq->desc[eq->sidx])) {
6018 		bcopy(from, *to, len);
6019 		(*to) += len;
6020 	} else {
6021 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
6022 
6023 		bcopy(from, *to, portion);
6024 		from += portion;
6025 		portion = len - portion;	/* remaining */
6026 		bcopy(from, (void *)eq->desc, portion);
6027 		(*to) = (caddr_t)eq->desc + portion;
6028 	}
6029 }
6030 
6031 static inline void
6032 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
6033 {
6034 	u_int db;
6035 
6036 	MPASS(n > 0);
6037 
6038 	db = eq->doorbells;
6039 	if (n > 1)
6040 		clrbit(&db, DOORBELL_WCWR);
6041 	wmb();
6042 
6043 	switch (ffs(db) - 1) {
6044 	case DOORBELL_UDB:
6045 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6046 		break;
6047 
6048 	case DOORBELL_WCWR: {
6049 		volatile uint64_t *dst, *src;
6050 		int i;
6051 
6052 		/*
6053 		 * Queues whose 128B doorbell segment fits in the page do not
6054 		 * use relative qid (udb_qid is always 0).  Only queues with
6055 		 * doorbell segments can do WCWR.
6056 		 */
6057 		KASSERT(eq->udb_qid == 0 && n == 1,
6058 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
6059 		    __func__, eq->doorbells, n, eq->dbidx, eq));
6060 
6061 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
6062 		    UDBS_DB_OFFSET);
6063 		i = eq->dbidx;
6064 		src = (void *)&eq->desc[i];
6065 		while (src != (void *)&eq->desc[i + 1])
6066 			*dst++ = *src++;
6067 		wmb();
6068 		break;
6069 	}
6070 
6071 	case DOORBELL_UDBWC:
6072 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6073 		wmb();
6074 		break;
6075 
6076 	case DOORBELL_KDB:
6077 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
6078 		    V_QID(eq->cntxt_id) | V_PIDX(n));
6079 		break;
6080 	}
6081 
6082 	IDXINCR(eq->dbidx, n, eq->sidx);
6083 }
6084 
6085 static inline u_int
6086 reclaimable_tx_desc(struct sge_eq *eq)
6087 {
6088 	uint16_t hw_cidx;
6089 
6090 	hw_cidx = read_hw_cidx(eq);
6091 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
6092 }
6093 
6094 static inline u_int
6095 total_available_tx_desc(struct sge_eq *eq)
6096 {
6097 	uint16_t hw_cidx, pidx;
6098 
6099 	hw_cidx = read_hw_cidx(eq);
6100 	pidx = eq->pidx;
6101 
6102 	if (pidx == hw_cidx)
6103 		return (eq->sidx - 1);
6104 	else
6105 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
6106 }
6107 
6108 static inline uint16_t
6109 read_hw_cidx(struct sge_eq *eq)
6110 {
6111 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6112 	uint16_t cidx = spg->cidx;	/* stable snapshot */
6113 
6114 	return (be16toh(cidx));
6115 }
6116 
6117 /*
6118  * Reclaim 'n' descriptors approximately.
6119  */
6120 static u_int
6121 reclaim_tx_descs(struct sge_txq *txq, u_int n)
6122 {
6123 	struct tx_sdesc *txsd;
6124 	struct sge_eq *eq = &txq->eq;
6125 	u_int can_reclaim, reclaimed;
6126 
6127 	TXQ_LOCK_ASSERT_OWNED(txq);
6128 	MPASS(n > 0);
6129 
6130 	reclaimed = 0;
6131 	can_reclaim = reclaimable_tx_desc(eq);
6132 	while (can_reclaim && reclaimed < n) {
6133 		int ndesc;
6134 		struct mbuf *m, *nextpkt;
6135 
6136 		txsd = &txq->sdesc[eq->cidx];
6137 		ndesc = txsd->desc_used;
6138 
6139 		/* Firmware doesn't return "partial" credits. */
6140 		KASSERT(can_reclaim >= ndesc,
6141 		    ("%s: unexpected number of credits: %d, %d",
6142 		    __func__, can_reclaim, ndesc));
6143 		KASSERT(ndesc != 0,
6144 		    ("%s: descriptor with no credits: cidx %d",
6145 		    __func__, eq->cidx));
6146 
6147 		for (m = txsd->m; m != NULL; m = nextpkt) {
6148 			nextpkt = m->m_nextpkt;
6149 			m->m_nextpkt = NULL;
6150 			m_freem(m);
6151 		}
6152 		reclaimed += ndesc;
6153 		can_reclaim -= ndesc;
6154 		IDXINCR(eq->cidx, ndesc, eq->sidx);
6155 	}
6156 
6157 	return (reclaimed);
6158 }
6159 
6160 static void
6161 tx_reclaim(void *arg, int n)
6162 {
6163 	struct sge_txq *txq = arg;
6164 	struct sge_eq *eq = &txq->eq;
6165 
6166 	do {
6167 		if (TXQ_TRYLOCK(txq) == 0)
6168 			break;
6169 		n = reclaim_tx_descs(txq, 32);
6170 		if (eq->cidx == eq->pidx)
6171 			eq->equeqidx = eq->pidx;
6172 		TXQ_UNLOCK(txq);
6173 	} while (n > 0);
6174 }
6175 
6176 static __be64
6177 get_flit(struct sglist_seg *segs, int nsegs, int idx)
6178 {
6179 	int i = (idx / 3) * 2;
6180 
6181 	switch (idx % 3) {
6182 	case 0: {
6183 		uint64_t rc;
6184 
6185 		rc = (uint64_t)segs[i].ss_len << 32;
6186 		if (i + 1 < nsegs)
6187 			rc |= (uint64_t)(segs[i + 1].ss_len);
6188 
6189 		return (htobe64(rc));
6190 	}
6191 	case 1:
6192 		return (htobe64(segs[i].ss_paddr));
6193 	case 2:
6194 		return (htobe64(segs[i + 1].ss_paddr));
6195 	}
6196 
6197 	return (0);
6198 }
6199 
6200 static int
6201 find_refill_source(struct adapter *sc, int maxp, bool packing)
6202 {
6203 	int i, zidx = -1;
6204 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6205 
6206 	if (packing) {
6207 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6208 			if (rxb->hwidx2 == -1)
6209 				continue;
6210 			if (rxb->size1 < PAGE_SIZE &&
6211 			    rxb->size1 < largest_rx_cluster)
6212 				continue;
6213 			if (rxb->size1 > largest_rx_cluster)
6214 				break;
6215 			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
6216 			if (rxb->size2 >= maxp)
6217 				return (i);
6218 			zidx = i;
6219 		}
6220 	} else {
6221 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6222 			if (rxb->hwidx1 == -1)
6223 				continue;
6224 			if (rxb->size1 > largest_rx_cluster)
6225 				break;
6226 			if (rxb->size1 >= maxp)
6227 				return (i);
6228 			zidx = i;
6229 		}
6230 	}
6231 
6232 	return (zidx);
6233 }
6234 
6235 static void
6236 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
6237 {
6238 	mtx_lock(&sc->sfl_lock);
6239 	FL_LOCK(fl);
6240 	if ((fl->flags & FL_DOOMED) == 0) {
6241 		fl->flags |= FL_STARVING;
6242 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
6243 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
6244 	}
6245 	FL_UNLOCK(fl);
6246 	mtx_unlock(&sc->sfl_lock);
6247 }
6248 
6249 static void
6250 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
6251 {
6252 	struct sge_wrq *wrq = (void *)eq;
6253 
6254 	atomic_readandclear_int(&eq->equiq);
6255 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
6256 }
6257 
6258 static void
6259 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
6260 {
6261 	struct sge_txq *txq = (void *)eq;
6262 
6263 	MPASS(eq->type == EQ_ETH);
6264 
6265 	atomic_readandclear_int(&eq->equiq);
6266 	if (mp_ring_is_idle(txq->r))
6267 		taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
6268 	else
6269 		mp_ring_check_drainage(txq->r, 64);
6270 }
6271 
6272 static int
6273 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
6274     struct mbuf *m)
6275 {
6276 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
6277 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
6278 	struct adapter *sc = iq->adapter;
6279 	struct sge *s = &sc->sge;
6280 	struct sge_eq *eq;
6281 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
6282 		&handle_wrq_egr_update, &handle_eth_egr_update,
6283 		&handle_wrq_egr_update};
6284 
6285 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6286 	    rss->opcode));
6287 
6288 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
6289 	(*h[eq->type])(sc, eq);
6290 
6291 	return (0);
6292 }
6293 
6294 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
6295 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
6296     offsetof(struct cpl_fw6_msg, data));
6297 
6298 static int
6299 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
6300 {
6301 	struct adapter *sc = iq->adapter;
6302 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
6303 
6304 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6305 	    rss->opcode));
6306 
6307 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
6308 		const struct rss_header *rss2;
6309 
6310 		rss2 = (const struct rss_header *)&cpl->data[0];
6311 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
6312 	}
6313 
6314 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
6315 }
6316 
6317 /**
6318  *	t4_handle_wrerr_rpl - process a FW work request error message
6319  *	@adap: the adapter
6320  *	@rpl: start of the FW message
6321  */
6322 static int
6323 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
6324 {
6325 	u8 opcode = *(const u8 *)rpl;
6326 	const struct fw_error_cmd *e = (const void *)rpl;
6327 	unsigned int i;
6328 
6329 	if (opcode != FW_ERROR_CMD) {
6330 		log(LOG_ERR,
6331 		    "%s: Received WRERR_RPL message with opcode %#x\n",
6332 		    device_get_nameunit(adap->dev), opcode);
6333 		return (EINVAL);
6334 	}
6335 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
6336 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
6337 	    "non-fatal");
6338 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
6339 	case FW_ERROR_TYPE_EXCEPTION:
6340 		log(LOG_ERR, "exception info:\n");
6341 		for (i = 0; i < nitems(e->u.exception.info); i++)
6342 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
6343 			    be32toh(e->u.exception.info[i]));
6344 		log(LOG_ERR, "\n");
6345 		break;
6346 	case FW_ERROR_TYPE_HWMODULE:
6347 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
6348 		    be32toh(e->u.hwmodule.regaddr),
6349 		    be32toh(e->u.hwmodule.regval));
6350 		break;
6351 	case FW_ERROR_TYPE_WR:
6352 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
6353 		    be16toh(e->u.wr.cidx),
6354 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
6355 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
6356 		    be32toh(e->u.wr.eqid));
6357 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
6358 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
6359 			    e->u.wr.wrhdr[i]);
6360 		log(LOG_ERR, "\n");
6361 		break;
6362 	case FW_ERROR_TYPE_ACL:
6363 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
6364 		    be16toh(e->u.acl.cidx),
6365 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
6366 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
6367 		    be32toh(e->u.acl.eqid),
6368 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
6369 		    "MAC");
6370 		for (i = 0; i < nitems(e->u.acl.val); i++)
6371 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
6372 		log(LOG_ERR, "\n");
6373 		break;
6374 	default:
6375 		log(LOG_ERR, "type %#x\n",
6376 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
6377 		return (EINVAL);
6378 	}
6379 	return (0);
6380 }
6381 
6382 static inline bool
6383 bufidx_used(struct adapter *sc, int idx)
6384 {
6385 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6386 	int i;
6387 
6388 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6389 		if (rxb->size1 > largest_rx_cluster)
6390 			continue;
6391 		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
6392 			return (true);
6393 	}
6394 
6395 	return (false);
6396 }
6397 
6398 static int
6399 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
6400 {
6401 	struct adapter *sc = arg1;
6402 	struct sge_params *sp = &sc->params.sge;
6403 	int i, rc;
6404 	struct sbuf sb;
6405 	char c;
6406 
6407 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
6408 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
6409 		if (bufidx_used(sc, i))
6410 			c = '*';
6411 		else
6412 			c = '\0';
6413 
6414 		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
6415 	}
6416 	sbuf_trim(&sb);
6417 	sbuf_finish(&sb);
6418 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
6419 	sbuf_delete(&sb);
6420 	return (rc);
6421 }
6422 
6423 #ifdef RATELIMIT
6424 /*
6425  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
6426  */
6427 static inline u_int
6428 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
6429 {
6430 	u_int n;
6431 
6432 	MPASS(immhdrs > 0);
6433 
6434 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
6435 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
6436 	if (__predict_false(nsegs == 0))
6437 		goto done;
6438 
6439 	nsegs--; /* first segment is part of ulptx_sgl */
6440 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
6441 	if (tso)
6442 		n += sizeof(struct cpl_tx_pkt_lso_core);
6443 
6444 done:
6445 	return (howmany(n, 16));
6446 }
6447 
6448 #define ETID_FLOWC_NPARAMS 6
6449 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
6450     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
6451 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
6452 
6453 static int
6454 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
6455     struct vi_info *vi)
6456 {
6457 	struct wrq_cookie cookie;
6458 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
6459 	struct fw_flowc_wr *flowc;
6460 
6461 	mtx_assert(&cst->lock, MA_OWNED);
6462 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
6463 	    EO_FLOWC_PENDING);
6464 
6465 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLOWC_LEN16, &cookie);
6466 	if (__predict_false(flowc == NULL))
6467 		return (ENOMEM);
6468 
6469 	bzero(flowc, ETID_FLOWC_LEN);
6470 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6471 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
6472 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
6473 	    V_FW_WR_FLOWID(cst->etid));
6474 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
6475 	flowc->mnemval[0].val = htobe32(pfvf);
6476 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
6477 	flowc->mnemval[1].val = htobe32(pi->tx_chan);
6478 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
6479 	flowc->mnemval[2].val = htobe32(pi->tx_chan);
6480 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
6481 	flowc->mnemval[3].val = htobe32(cst->iqid);
6482 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
6483 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
6484 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
6485 	flowc->mnemval[5].val = htobe32(cst->schedcl);
6486 
6487 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6488 
6489 	cst->flags &= ~EO_FLOWC_PENDING;
6490 	cst->flags |= EO_FLOWC_RPL_PENDING;
6491 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
6492 	cst->tx_credits -= ETID_FLOWC_LEN16;
6493 
6494 	return (0);
6495 }
6496 
6497 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
6498 
6499 void
6500 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
6501 {
6502 	struct fw_flowc_wr *flowc;
6503 	struct wrq_cookie cookie;
6504 
6505 	mtx_assert(&cst->lock, MA_OWNED);
6506 
6507 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLUSH_LEN16, &cookie);
6508 	if (__predict_false(flowc == NULL))
6509 		CXGBE_UNIMPLEMENTED(__func__);
6510 
6511 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
6512 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6513 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
6514 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
6515 	    V_FW_WR_FLOWID(cst->etid));
6516 
6517 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6518 
6519 	cst->flags |= EO_FLUSH_RPL_PENDING;
6520 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
6521 	cst->tx_credits -= ETID_FLUSH_LEN16;
6522 	cst->ncompl++;
6523 }
6524 
6525 static void
6526 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
6527     struct mbuf *m0, int compl)
6528 {
6529 	struct cpl_tx_pkt_core *cpl;
6530 	uint64_t ctrl1;
6531 	uint32_t ctrl;	/* used in many unrelated places */
6532 	int len16, pktlen, nsegs, immhdrs;
6533 	caddr_t dst;
6534 	uintptr_t p;
6535 	struct ulptx_sgl *usgl;
6536 	struct sglist sg;
6537 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
6538 
6539 	mtx_assert(&cst->lock, MA_OWNED);
6540 	M_ASSERTPKTHDR(m0);
6541 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
6542 	    m0->m_pkthdr.l4hlen > 0,
6543 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
6544 
6545 	len16 = mbuf_eo_len16(m0);
6546 	nsegs = mbuf_eo_nsegs(m0);
6547 	pktlen = m0->m_pkthdr.len;
6548 	ctrl = sizeof(struct cpl_tx_pkt_core);
6549 	if (needs_tso(m0))
6550 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
6551 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
6552 	ctrl += immhdrs;
6553 
6554 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
6555 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
6556 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
6557 	    V_FW_WR_FLOWID(cst->etid));
6558 	wr->r3 = 0;
6559 	if (needs_outer_udp_csum(m0)) {
6560 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
6561 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
6562 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6563 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
6564 		wr->u.udpseg.rtplen = 0;
6565 		wr->u.udpseg.r4 = 0;
6566 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
6567 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
6568 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
6569 		cpl = (void *)(wr + 1);
6570 	} else {
6571 		MPASS(needs_outer_tcp_csum(m0));
6572 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
6573 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
6574 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6575 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
6576 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
6577 		wr->u.tcpseg.r4 = 0;
6578 		wr->u.tcpseg.r5 = 0;
6579 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
6580 
6581 		if (needs_tso(m0)) {
6582 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
6583 
6584 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
6585 
6586 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
6587 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
6588 			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6589 				ETHER_HDR_LEN) >> 2) |
6590 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6591 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6592 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6593 				ctrl |= F_LSO_IPV6;
6594 			lso->lso_ctrl = htobe32(ctrl);
6595 			lso->ipid_ofst = htobe16(0);
6596 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6597 			lso->seqno_offset = htobe32(0);
6598 			lso->len = htobe32(pktlen);
6599 
6600 			cpl = (void *)(lso + 1);
6601 		} else {
6602 			wr->u.tcpseg.mss = htobe16(0xffff);
6603 			cpl = (void *)(wr + 1);
6604 		}
6605 	}
6606 
6607 	/* Checksum offload must be requested for ethofld. */
6608 	MPASS(needs_outer_l4_csum(m0));
6609 	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6610 
6611 	/* VLAN tag insertion */
6612 	if (needs_vlan_insertion(m0)) {
6613 		ctrl1 |= F_TXPKT_VLAN_VLD |
6614 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6615 	}
6616 
6617 	/* CPL header */
6618 	cpl->ctrl0 = cst->ctrl0;
6619 	cpl->pack = 0;
6620 	cpl->len = htobe16(pktlen);
6621 	cpl->ctrl1 = htobe64(ctrl1);
6622 
6623 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6624 	p = (uintptr_t)(cpl + 1);
6625 	m_copydata(m0, 0, immhdrs, (void *)p);
6626 
6627 	/* SGL */
6628 	dst = (void *)(cpl + 1);
6629 	if (nsegs > 0) {
6630 		int i, pad;
6631 
6632 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6633 		p += immhdrs;
6634 		pad = 16 - (immhdrs & 0xf);
6635 		bzero((void *)p, pad);
6636 
6637 		usgl = (void *)(p + pad);
6638 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6639 		    V_ULPTX_NSGE(nsegs));
6640 
6641 		sglist_init(&sg, nitems(segs), segs);
6642 		for (; m0 != NULL; m0 = m0->m_next) {
6643 			if (__predict_false(m0->m_len == 0))
6644 				continue;
6645 			if (immhdrs >= m0->m_len) {
6646 				immhdrs -= m0->m_len;
6647 				continue;
6648 			}
6649 			if (m0->m_flags & M_EXTPG)
6650 				sglist_append_mbuf_epg(&sg, m0,
6651 				    mtod(m0, vm_offset_t), m0->m_len);
6652                         else
6653 				sglist_append(&sg, mtod(m0, char *) + immhdrs,
6654 				    m0->m_len - immhdrs);
6655 			immhdrs = 0;
6656 		}
6657 		MPASS(sg.sg_nseg == nsegs);
6658 
6659 		/*
6660 		 * Zero pad last 8B in case the WR doesn't end on a 16B
6661 		 * boundary.
6662 		 */
6663 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6664 
6665 		usgl->len0 = htobe32(segs[0].ss_len);
6666 		usgl->addr0 = htobe64(segs[0].ss_paddr);
6667 		for (i = 0; i < nsegs - 1; i++) {
6668 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6669 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6670 		}
6671 		if (i & 1)
6672 			usgl->sge[i / 2].len[1] = htobe32(0);
6673 	}
6674 
6675 }
6676 
6677 static void
6678 ethofld_tx(struct cxgbe_rate_tag *cst)
6679 {
6680 	struct mbuf *m;
6681 	struct wrq_cookie cookie;
6682 	int next_credits, compl;
6683 	struct fw_eth_tx_eo_wr *wr;
6684 
6685 	mtx_assert(&cst->lock, MA_OWNED);
6686 
6687 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6688 		M_ASSERTPKTHDR(m);
6689 
6690 		/* How many len16 credits do we need to send this mbuf. */
6691 		next_credits = mbuf_eo_len16(m);
6692 		MPASS(next_credits > 0);
6693 		if (next_credits > cst->tx_credits) {
6694 			/*
6695 			 * Tx will make progress eventually because there is at
6696 			 * least one outstanding fw4_ack that will return
6697 			 * credits and kick the tx.
6698 			 */
6699 			MPASS(cst->ncompl > 0);
6700 			return;
6701 		}
6702 		wr = start_wrq_wr(&cst->eo_txq->wrq, next_credits, &cookie);
6703 		if (__predict_false(wr == NULL)) {
6704 			/* XXX: wishful thinking, not a real assertion. */
6705 			MPASS(cst->ncompl > 0);
6706 			return;
6707 		}
6708 		cst->tx_credits -= next_credits;
6709 		cst->tx_nocompl += next_credits;
6710 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
6711 		ETHER_BPF_MTAP(cst->com.ifp, m);
6712 		write_ethofld_wr(cst, wr, m, compl);
6713 		commit_wrq_wr(&cst->eo_txq->wrq, wr, &cookie);
6714 		if (compl) {
6715 			cst->ncompl++;
6716 			cst->tx_nocompl	= 0;
6717 		}
6718 		(void) mbufq_dequeue(&cst->pending_tx);
6719 
6720 		/*
6721 		 * Drop the mbuf's reference on the tag now rather
6722 		 * than waiting until m_freem().  This ensures that
6723 		 * cxgbe_rate_tag_free gets called when the inp drops
6724 		 * its reference on the tag and there are no more
6725 		 * mbufs in the pending_tx queue and can flush any
6726 		 * pending requests.  Otherwise if the last mbuf
6727 		 * doesn't request a completion the etid will never be
6728 		 * released.
6729 		 */
6730 		m->m_pkthdr.snd_tag = NULL;
6731 		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
6732 		m_snd_tag_rele(&cst->com);
6733 
6734 		mbufq_enqueue(&cst->pending_fwack, m);
6735 	}
6736 }
6737 
6738 int
6739 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
6740 {
6741 	struct cxgbe_rate_tag *cst;
6742 	int rc;
6743 
6744 	MPASS(m0->m_nextpkt == NULL);
6745 	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
6746 	MPASS(m0->m_pkthdr.snd_tag != NULL);
6747 	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
6748 
6749 	mtx_lock(&cst->lock);
6750 	MPASS(cst->flags & EO_SND_TAG_REF);
6751 
6752 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
6753 		struct vi_info *vi = ifp->if_softc;
6754 		struct port_info *pi = vi->pi;
6755 		struct adapter *sc = pi->adapter;
6756 		const uint32_t rss_mask = vi->rss_size - 1;
6757 		uint32_t rss_hash;
6758 
6759 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
6760 		if (M_HASHTYPE_ISHASH(m0))
6761 			rss_hash = m0->m_pkthdr.flowid;
6762 		else
6763 			rss_hash = arc4random();
6764 		/* We assume RSS hashing */
6765 		cst->iqid = vi->rss[rss_hash & rss_mask];
6766 		cst->eo_txq += rss_hash % vi->nofldtxq;
6767 		rc = send_etid_flowc_wr(cst, pi, vi);
6768 		if (rc != 0)
6769 			goto done;
6770 	}
6771 
6772 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
6773 		rc = ENOBUFS;
6774 		goto done;
6775 	}
6776 
6777 	mbufq_enqueue(&cst->pending_tx, m0);
6778 	cst->plen += m0->m_pkthdr.len;
6779 
6780 	/*
6781 	 * Hold an extra reference on the tag while generating work
6782 	 * requests to ensure that we don't try to free the tag during
6783 	 * ethofld_tx() in case we are sending the final mbuf after
6784 	 * the inp was freed.
6785 	 */
6786 	m_snd_tag_ref(&cst->com);
6787 	ethofld_tx(cst);
6788 	mtx_unlock(&cst->lock);
6789 	m_snd_tag_rele(&cst->com);
6790 	return (0);
6791 
6792 done:
6793 	mtx_unlock(&cst->lock);
6794 	if (__predict_false(rc != 0))
6795 		m_freem(m0);
6796 	return (rc);
6797 }
6798 
6799 static int
6800 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
6801 {
6802 	struct adapter *sc = iq->adapter;
6803 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
6804 	struct mbuf *m;
6805 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
6806 	struct cxgbe_rate_tag *cst;
6807 	uint8_t credits = cpl->credits;
6808 
6809 	cst = lookup_etid(sc, etid);
6810 	mtx_lock(&cst->lock);
6811 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
6812 		MPASS(credits >= ETID_FLOWC_LEN16);
6813 		credits -= ETID_FLOWC_LEN16;
6814 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
6815 	}
6816 
6817 	KASSERT(cst->ncompl > 0,
6818 	    ("%s: etid %u (%p) wasn't expecting completion.",
6819 	    __func__, etid, cst));
6820 	cst->ncompl--;
6821 
6822 	while (credits > 0) {
6823 		m = mbufq_dequeue(&cst->pending_fwack);
6824 		if (__predict_false(m == NULL)) {
6825 			/*
6826 			 * The remaining credits are for the final flush that
6827 			 * was issued when the tag was freed by the kernel.
6828 			 */
6829 			MPASS((cst->flags &
6830 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
6831 			    EO_FLUSH_RPL_PENDING);
6832 			MPASS(credits == ETID_FLUSH_LEN16);
6833 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
6834 			MPASS(cst->ncompl == 0);
6835 
6836 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
6837 			cst->tx_credits += cpl->credits;
6838 			cxgbe_rate_tag_free_locked(cst);
6839 			return (0);	/* cst is gone. */
6840 		}
6841 		KASSERT(m != NULL,
6842 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
6843 		    credits));
6844 		KASSERT(credits >= mbuf_eo_len16(m),
6845 		    ("%s: too few credits (%u, %u, %u)", __func__,
6846 		    cpl->credits, credits, mbuf_eo_len16(m)));
6847 		credits -= mbuf_eo_len16(m);
6848 		cst->plen -= m->m_pkthdr.len;
6849 		m_freem(m);
6850 	}
6851 
6852 	cst->tx_credits += cpl->credits;
6853 	MPASS(cst->tx_credits <= cst->tx_total);
6854 
6855 	if (cst->flags & EO_SND_TAG_REF) {
6856 		/*
6857 		 * As with ethofld_transmit(), hold an extra reference
6858 		 * so that the tag is stable across ethold_tx().
6859 		 */
6860 		m_snd_tag_ref(&cst->com);
6861 		m = mbufq_first(&cst->pending_tx);
6862 		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
6863 			ethofld_tx(cst);
6864 		mtx_unlock(&cst->lock);
6865 		m_snd_tag_rele(&cst->com);
6866 	} else {
6867 		/*
6868 		 * There shouldn't be any pending packets if the tag
6869 		 * was freed by the kernel since any pending packet
6870 		 * should hold a reference to the tag.
6871 		 */
6872 		MPASS(mbufq_first(&cst->pending_tx) == NULL);
6873 		mtx_unlock(&cst->lock);
6874 	}
6875 
6876 	return (0);
6877 }
6878 #endif
6879