xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 47dd1d1b619cc035b82b49a91a25544309ff95ae)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 
36 #include <sys/types.h>
37 #include <sys/eventhandler.h>
38 #include <sys/mbuf.h>
39 #include <sys/socket.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/queue.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 #include <sys/time.h>
46 #include <sys/sglist.h>
47 #include <sys/sysctl.h>
48 #include <sys/smp.h>
49 #include <sys/counter.h>
50 #include <net/bpf.h>
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_vlan_var.h>
54 #include <netinet/in.h>
55 #include <netinet/ip.h>
56 #include <netinet/ip6.h>
57 #include <netinet/tcp.h>
58 #include <machine/in_cksum.h>
59 #include <machine/md_var.h>
60 #include <vm/vm.h>
61 #include <vm/pmap.h>
62 #ifdef DEV_NETMAP
63 #include <machine/bus.h>
64 #include <sys/selinfo.h>
65 #include <net/if_var.h>
66 #include <net/netmap.h>
67 #include <dev/netmap/netmap_kern.h>
68 #endif
69 
70 #include "common/common.h"
71 #include "common/t4_regs.h"
72 #include "common/t4_regs_values.h"
73 #include "common/t4_msg.h"
74 #include "t4_l2t.h"
75 #include "t4_mp_ring.h"
76 
77 #ifdef T4_PKT_TIMESTAMP
78 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
79 #else
80 #define RX_COPY_THRESHOLD MINCLSIZE
81 #endif
82 
83 /*
84  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
85  * 0-7 are valid values.
86  */
87 static int fl_pktshift = 2;
88 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
89 
90 /*
91  * Pad ethernet payload up to this boundary.
92  * -1: driver should figure out a good value.
93  *  0: disable padding.
94  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
95  */
96 int fl_pad = -1;
97 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
98 
99 /*
100  * Status page length.
101  * -1: driver should figure out a good value.
102  *  64 or 128 are the only other valid values.
103  */
104 static int spg_len = -1;
105 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
106 
107 /*
108  * Congestion drops.
109  * -1: no congestion feedback (not recommended).
110  *  0: backpressure the channel instead of dropping packets right away.
111  *  1: no backpressure, drop packets for the congested queue immediately.
112  */
113 static int cong_drop = 0;
114 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
115 
116 /*
117  * Deliver multiple frames in the same free list buffer if they fit.
118  * -1: let the driver decide whether to enable buffer packing or not.
119  *  0: disable buffer packing.
120  *  1: enable buffer packing.
121  */
122 static int buffer_packing = -1;
123 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
124 
125 /*
126  * Start next frame in a packed buffer at this boundary.
127  * -1: driver should figure out a good value.
128  * T4: driver will ignore this and use the same value as fl_pad above.
129  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
130  */
131 static int fl_pack = -1;
132 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
133 
134 /*
135  * Allow the driver to create mbuf(s) in a cluster allocated for rx.
136  * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
137  * 1: ok to create mbuf(s) within a cluster if there is room.
138  */
139 static int allow_mbufs_in_cluster = 1;
140 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
141 
142 /*
143  * Largest rx cluster size that the driver is allowed to allocate.
144  */
145 static int largest_rx_cluster = MJUM16BYTES;
146 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
147 
148 /*
149  * Size of cluster allocation that's most likely to succeed.  The driver will
150  * fall back to this size if it fails to allocate clusters larger than this.
151  */
152 static int safest_rx_cluster = PAGE_SIZE;
153 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
154 
155 /*
156  * The interrupt holdoff timers are multiplied by this value on T6+.
157  * 1 and 3-17 (both inclusive) are legal values.
158  */
159 static int tscale = 1;
160 TUNABLE_INT("hw.cxgbe.tscale", &tscale);
161 
162 /*
163  * Number of LRO entries in the lro_ctrl structure per rx queue.
164  */
165 static int lro_entries = TCP_LRO_ENTRIES;
166 TUNABLE_INT("hw.cxgbe.lro_entries", &lro_entries);
167 
168 /*
169  * This enables presorting of frames before they're fed into tcp_lro_rx.
170  */
171 static int lro_mbufs = 0;
172 TUNABLE_INT("hw.cxgbe.lro_mbufs", &lro_mbufs);
173 
174 struct txpkts {
175 	u_int wr_type;		/* type 0 or type 1 */
176 	u_int npkt;		/* # of packets in this work request */
177 	u_int plen;		/* total payload (sum of all packets) */
178 	u_int len16;		/* # of 16B pieces used by this work request */
179 };
180 
181 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
182 struct sgl {
183 	struct sglist sg;
184 	struct sglist_seg seg[TX_SGL_SEGS];
185 };
186 
187 static int service_iq(struct sge_iq *, int);
188 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
189 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
190 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
191 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
192 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
193     uint16_t, char *);
194 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
195     bus_addr_t *, void **);
196 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
197     void *);
198 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
199     int, int);
200 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
201 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
202     struct sge_iq *);
203 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
204     struct sysctl_oid *, struct sge_fl *);
205 static int alloc_fwq(struct adapter *);
206 static int free_fwq(struct adapter *);
207 static int alloc_mgmtq(struct adapter *);
208 static int free_mgmtq(struct adapter *);
209 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
210     struct sysctl_oid *);
211 static int free_rxq(struct vi_info *, struct sge_rxq *);
212 #ifdef TCP_OFFLOAD
213 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
214     struct sysctl_oid *);
215 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
216 #endif
217 #ifdef DEV_NETMAP
218 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
219     struct sysctl_oid *);
220 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
221 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
222     struct sysctl_oid *);
223 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
224 #endif
225 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
226 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
227 #ifdef TCP_OFFLOAD
228 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
229 #endif
230 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
231 static int free_eq(struct adapter *, struct sge_eq *);
232 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
233     struct sysctl_oid *);
234 static int free_wrq(struct adapter *, struct sge_wrq *);
235 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
236     struct sysctl_oid *);
237 static int free_txq(struct vi_info *, struct sge_txq *);
238 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
239 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
240 static int refill_fl(struct adapter *, struct sge_fl *, int);
241 static void refill_sfl(void *);
242 static int alloc_fl_sdesc(struct sge_fl *);
243 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
244 static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
245 static void find_safe_refill_source(struct adapter *, struct sge_fl *);
246 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
247 
248 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
249 static inline u_int txpkt_len16(u_int, u_int);
250 static inline u_int txpkt_vm_len16(u_int, u_int);
251 static inline u_int txpkts0_len16(u_int);
252 static inline u_int txpkts1_len16(void);
253 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
254     struct mbuf *, u_int);
255 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
256     struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int);
257 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
258 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
259 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
260     struct mbuf *, const struct txpkts *, u_int);
261 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
262 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
263 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
264 static inline uint16_t read_hw_cidx(struct sge_eq *);
265 static inline u_int reclaimable_tx_desc(struct sge_eq *);
266 static inline u_int total_available_tx_desc(struct sge_eq *);
267 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
268 static void tx_reclaim(void *, int);
269 static __be64 get_flit(struct sglist_seg *, int, int);
270 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
271     struct mbuf *);
272 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
273     struct mbuf *);
274 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
275 static void wrq_tx_drain(void *, int);
276 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
277 
278 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
279 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
280 static int sysctl_tc(SYSCTL_HANDLER_ARGS);
281 
282 static counter_u64_t extfree_refs;
283 static counter_u64_t extfree_rels;
284 
285 an_handler_t t4_an_handler;
286 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
287 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
288 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
289 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
290 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
291 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
292 
293 void
294 t4_register_an_handler(an_handler_t h)
295 {
296 	uintptr_t *loc;
297 
298 	MPASS(h == NULL || t4_an_handler == NULL);
299 
300 	loc = (uintptr_t *)&t4_an_handler;
301 	atomic_store_rel_ptr(loc, (uintptr_t)h);
302 }
303 
304 void
305 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
306 {
307 	uintptr_t *loc;
308 
309 	MPASS(type < nitems(t4_fw_msg_handler));
310 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
311 	/*
312 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
313 	 * handler dispatch table.  Reject any attempt to install a handler for
314 	 * this subtype.
315 	 */
316 	MPASS(type != FW_TYPE_RSSCPL);
317 	MPASS(type != FW6_TYPE_RSSCPL);
318 
319 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
320 	atomic_store_rel_ptr(loc, (uintptr_t)h);
321 }
322 
323 void
324 t4_register_cpl_handler(int opcode, cpl_handler_t h)
325 {
326 	uintptr_t *loc;
327 
328 	MPASS(opcode < nitems(t4_cpl_handler));
329 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
330 
331 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
332 	atomic_store_rel_ptr(loc, (uintptr_t)h);
333 }
334 
335 static int
336 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
337     struct mbuf *m)
338 {
339 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
340 	u_int tid;
341 	int cookie;
342 
343 	MPASS(m == NULL);
344 
345 	tid = GET_TID(cpl);
346 	if (is_ftid(iq->adapter, tid)) {
347 		/*
348 		 * The return code for filter-write is put in the CPL cookie so
349 		 * we have to rely on the hardware tid (is_ftid) to determine
350 		 * that this is a response to a filter.
351 		 */
352 		cookie = CPL_COOKIE_FILTER;
353 	} else {
354 		cookie = G_COOKIE(cpl->cookie);
355 	}
356 	MPASS(cookie > CPL_COOKIE_RESERVED);
357 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
358 
359 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
360 }
361 
362 static int
363 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
364     struct mbuf *m)
365 {
366 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
367 	unsigned int cookie;
368 
369 	MPASS(m == NULL);
370 
371 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
372 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
373 }
374 
375 static int
376 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
377     struct mbuf *m)
378 {
379 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
380 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
381 
382 	MPASS(m == NULL);
383 	MPASS(cookie != CPL_COOKIE_RESERVED);
384 
385 	return (act_open_rpl_handlers[cookie](iq, rss, m));
386 }
387 
388 static int
389 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
390     struct mbuf *m)
391 {
392 	struct adapter *sc = iq->adapter;
393 	u_int cookie;
394 
395 	MPASS(m == NULL);
396 	if (is_hashfilter(sc))
397 		cookie = CPL_COOKIE_HASHFILTER;
398 	else
399 		cookie = CPL_COOKIE_TOM;
400 
401 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
402 }
403 
404 static void
405 t4_init_shared_cpl_handlers(void)
406 {
407 
408 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
409 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
410 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
411 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
412 }
413 
414 void
415 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
416 {
417 	uintptr_t *loc;
418 
419 	MPASS(opcode < nitems(t4_cpl_handler));
420 	MPASS(cookie > CPL_COOKIE_RESERVED);
421 	MPASS(cookie < NUM_CPL_COOKIES);
422 	MPASS(t4_cpl_handler[opcode] != NULL);
423 
424 	switch (opcode) {
425 	case CPL_SET_TCB_RPL:
426 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
427 		break;
428 	case CPL_L2T_WRITE_RPL:
429 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
430 		break;
431 	case CPL_ACT_OPEN_RPL:
432 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
433 		break;
434 	case CPL_ABORT_RPL_RSS:
435 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
436 		break;
437 	default:
438 		MPASS(0);
439 		return;
440 	}
441 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
442 	atomic_store_rel_ptr(loc, (uintptr_t)h);
443 }
444 
445 /*
446  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
447  */
448 void
449 t4_sge_modload(void)
450 {
451 
452 	if (fl_pktshift < 0 || fl_pktshift > 7) {
453 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
454 		    " using 2 instead.\n", fl_pktshift);
455 		fl_pktshift = 2;
456 	}
457 
458 	if (spg_len != 64 && spg_len != 128) {
459 		int len;
460 
461 #if defined(__i386__) || defined(__amd64__)
462 		len = cpu_clflush_line_size > 64 ? 128 : 64;
463 #else
464 		len = 64;
465 #endif
466 		if (spg_len != -1) {
467 			printf("Invalid hw.cxgbe.spg_len value (%d),"
468 			    " using %d instead.\n", spg_len, len);
469 		}
470 		spg_len = len;
471 	}
472 
473 	if (cong_drop < -1 || cong_drop > 1) {
474 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
475 		    " using 0 instead.\n", cong_drop);
476 		cong_drop = 0;
477 	}
478 
479 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
480 		printf("Invalid hw.cxgbe.tscale value (%d),"
481 		    " using 1 instead.\n", tscale);
482 		tscale = 1;
483 	}
484 
485 	extfree_refs = counter_u64_alloc(M_WAITOK);
486 	extfree_rels = counter_u64_alloc(M_WAITOK);
487 	counter_u64_zero(extfree_refs);
488 	counter_u64_zero(extfree_rels);
489 
490 	t4_init_shared_cpl_handlers();
491 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
492 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
493 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
494 	t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx);
495 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
496 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
497 }
498 
499 void
500 t4_sge_modunload(void)
501 {
502 
503 	counter_u64_free(extfree_refs);
504 	counter_u64_free(extfree_rels);
505 }
506 
507 uint64_t
508 t4_sge_extfree_refs(void)
509 {
510 	uint64_t refs, rels;
511 
512 	rels = counter_u64_fetch(extfree_rels);
513 	refs = counter_u64_fetch(extfree_refs);
514 
515 	return (refs - rels);
516 }
517 
518 static inline void
519 setup_pad_and_pack_boundaries(struct adapter *sc)
520 {
521 	uint32_t v, m;
522 	int pad, pack, pad_shift;
523 
524 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
525 	    X_INGPADBOUNDARY_SHIFT;
526 	pad = fl_pad;
527 	if (fl_pad < (1 << pad_shift) ||
528 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
529 	    !powerof2(fl_pad)) {
530 		/*
531 		 * If there is any chance that we might use buffer packing and
532 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
533 		 * it to the minimum allowed in all other cases.
534 		 */
535 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
536 
537 		/*
538 		 * For fl_pad = 0 we'll still write a reasonable value to the
539 		 * register but all the freelists will opt out of padding.
540 		 * We'll complain here only if the user tried to set it to a
541 		 * value greater than 0 that was invalid.
542 		 */
543 		if (fl_pad > 0) {
544 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
545 			    " (%d), using %d instead.\n", fl_pad, pad);
546 		}
547 	}
548 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
549 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
550 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
551 
552 	if (is_t4(sc)) {
553 		if (fl_pack != -1 && fl_pack != pad) {
554 			/* Complain but carry on. */
555 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
556 			    " using %d instead.\n", fl_pack, pad);
557 		}
558 		return;
559 	}
560 
561 	pack = fl_pack;
562 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
563 	    !powerof2(fl_pack)) {
564 		pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
565 		MPASS(powerof2(pack));
566 		if (pack < 16)
567 			pack = 16;
568 		if (pack == 32)
569 			pack = 64;
570 		if (pack > 4096)
571 			pack = 4096;
572 		if (fl_pack != -1) {
573 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
574 			    " (%d), using %d instead.\n", fl_pack, pack);
575 		}
576 	}
577 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
578 	if (pack == 16)
579 		v = V_INGPACKBOUNDARY(0);
580 	else
581 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
582 
583 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
584 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
585 }
586 
587 /*
588  * adap->params.vpd.cclk must be set up before this is called.
589  */
590 void
591 t4_tweak_chip_settings(struct adapter *sc)
592 {
593 	int i;
594 	uint32_t v, m;
595 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
596 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
597 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
598 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
599 	static int sge_flbuf_sizes[] = {
600 		MCLBYTES,
601 #if MJUMPAGESIZE != MCLBYTES
602 		MJUMPAGESIZE,
603 		MJUMPAGESIZE - CL_METADATA_SIZE,
604 		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
605 #endif
606 		MJUM9BYTES,
607 		MJUM16BYTES,
608 		MCLBYTES - MSIZE - CL_METADATA_SIZE,
609 		MJUM9BYTES - CL_METADATA_SIZE,
610 		MJUM16BYTES - CL_METADATA_SIZE,
611 	};
612 
613 	KASSERT(sc->flags & MASTER_PF,
614 	    ("%s: trying to change chip settings when not master.", __func__));
615 
616 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
617 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
618 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
619 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
620 
621 	setup_pad_and_pack_boundaries(sc);
622 
623 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
624 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
625 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
626 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
627 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
628 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
629 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
630 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
631 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
632 
633 	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
634 	    ("%s: hw buffer size table too big", __func__));
635 	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
636 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
637 		    sge_flbuf_sizes[i]);
638 	}
639 
640 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
641 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
642 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
643 
644 	KASSERT(intr_timer[0] <= timer_max,
645 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
646 	    timer_max));
647 	for (i = 1; i < nitems(intr_timer); i++) {
648 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
649 		    ("%s: timers not listed in increasing order (%d)",
650 		    __func__, i));
651 
652 		while (intr_timer[i] > timer_max) {
653 			if (i == nitems(intr_timer) - 1) {
654 				intr_timer[i] = timer_max;
655 				break;
656 			}
657 			intr_timer[i] += intr_timer[i - 1];
658 			intr_timer[i] /= 2;
659 		}
660 	}
661 
662 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
663 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
664 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
665 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
666 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
667 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
668 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
669 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
670 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
671 
672 	if (chip_id(sc) >= CHELSIO_T6) {
673 		m = V_TSCALE(M_TSCALE);
674 		if (tscale == 1)
675 			v = 0;
676 		else
677 			v = V_TSCALE(tscale - 2);
678 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
679 
680 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
681 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
682 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
683 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
684 			v &= ~m;
685 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
686 			    V_WRTHRTHRESH(16);
687 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
688 		}
689 	}
690 
691 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
692 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
693 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
694 
695 	/*
696 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
697 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
698 	 * may have to deal with is MAXPHYS + 1 page.
699 	 */
700 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
701 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
702 
703 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
704 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
705 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
706 
707 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
708 	    F_RESETDDPOFFSET;
709 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
710 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
711 }
712 
713 /*
714  * SGE wants the buffer to be at least 64B and then a multiple of 16.  If
715  * padding is in use, the buffer's start and end need to be aligned to the pad
716  * boundary as well.  We'll just make sure that the size is a multiple of the
717  * boundary here, it is up to the buffer allocation code to make sure the start
718  * of the buffer is aligned as well.
719  */
720 static inline int
721 hwsz_ok(struct adapter *sc, int hwsz)
722 {
723 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
724 
725 	return (hwsz >= 64 && (hwsz & mask) == 0);
726 }
727 
728 /*
729  * XXX: driver really should be able to deal with unexpected settings.
730  */
731 int
732 t4_read_chip_settings(struct adapter *sc)
733 {
734 	struct sge *s = &sc->sge;
735 	struct sge_params *sp = &sc->params.sge;
736 	int i, j, n, rc = 0;
737 	uint32_t m, v, r;
738 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
739 	static int sw_buf_sizes[] = {	/* Sorted by size */
740 		MCLBYTES,
741 #if MJUMPAGESIZE != MCLBYTES
742 		MJUMPAGESIZE,
743 #endif
744 		MJUM9BYTES,
745 		MJUM16BYTES
746 	};
747 	struct sw_zone_info *swz, *safe_swz;
748 	struct hw_buf_info *hwb;
749 
750 	m = F_RXPKTCPLMODE;
751 	v = F_RXPKTCPLMODE;
752 	r = sc->params.sge.sge_control;
753 	if ((r & m) != v) {
754 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
755 		rc = EINVAL;
756 	}
757 
758 	/*
759 	 * If this changes then every single use of PAGE_SHIFT in the driver
760 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
761 	 */
762 	if (sp->page_shift != PAGE_SHIFT) {
763 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
764 		rc = EINVAL;
765 	}
766 
767 	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
768 	hwb = &s->hw_buf_info[0];
769 	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
770 		r = sc->params.sge.sge_fl_buffer_size[i];
771 		hwb->size = r;
772 		hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
773 		hwb->next = -1;
774 	}
775 
776 	/*
777 	 * Create a sorted list in decreasing order of hw buffer sizes (and so
778 	 * increasing order of spare area) for each software zone.
779 	 *
780 	 * If padding is enabled then the start and end of the buffer must align
781 	 * to the pad boundary; if packing is enabled then they must align with
782 	 * the pack boundary as well.  Allocations from the cluster zones are
783 	 * aligned to min(size, 4K), so the buffer starts at that alignment and
784 	 * ends at hwb->size alignment.  If mbuf inlining is allowed the
785 	 * starting alignment will be reduced to MSIZE and the driver will
786 	 * exercise appropriate caution when deciding on the best buffer layout
787 	 * to use.
788 	 */
789 	n = 0;	/* no usable buffer size to begin with */
790 	swz = &s->sw_zone_info[0];
791 	safe_swz = NULL;
792 	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
793 		int8_t head = -1, tail = -1;
794 
795 		swz->size = sw_buf_sizes[i];
796 		swz->zone = m_getzone(swz->size);
797 		swz->type = m_gettype(swz->size);
798 
799 		if (swz->size < PAGE_SIZE) {
800 			MPASS(powerof2(swz->size));
801 			if (fl_pad && (swz->size % sp->pad_boundary != 0))
802 				continue;
803 		}
804 
805 		if (swz->size == safest_rx_cluster)
806 			safe_swz = swz;
807 
808 		hwb = &s->hw_buf_info[0];
809 		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
810 			if (hwb->zidx != -1 || hwb->size > swz->size)
811 				continue;
812 #ifdef INVARIANTS
813 			if (fl_pad)
814 				MPASS(hwb->size % sp->pad_boundary == 0);
815 #endif
816 			hwb->zidx = i;
817 			if (head == -1)
818 				head = tail = j;
819 			else if (hwb->size < s->hw_buf_info[tail].size) {
820 				s->hw_buf_info[tail].next = j;
821 				tail = j;
822 			} else {
823 				int8_t *cur;
824 				struct hw_buf_info *t;
825 
826 				for (cur = &head; *cur != -1; cur = &t->next) {
827 					t = &s->hw_buf_info[*cur];
828 					if (hwb->size == t->size) {
829 						hwb->zidx = -2;
830 						break;
831 					}
832 					if (hwb->size > t->size) {
833 						hwb->next = *cur;
834 						*cur = j;
835 						break;
836 					}
837 				}
838 			}
839 		}
840 		swz->head_hwidx = head;
841 		swz->tail_hwidx = tail;
842 
843 		if (tail != -1) {
844 			n++;
845 			if (swz->size - s->hw_buf_info[tail].size >=
846 			    CL_METADATA_SIZE)
847 				sc->flags |= BUF_PACKING_OK;
848 		}
849 	}
850 	if (n == 0) {
851 		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
852 		rc = EINVAL;
853 	}
854 
855 	s->safe_hwidx1 = -1;
856 	s->safe_hwidx2 = -1;
857 	if (safe_swz != NULL) {
858 		s->safe_hwidx1 = safe_swz->head_hwidx;
859 		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
860 			int spare;
861 
862 			hwb = &s->hw_buf_info[i];
863 #ifdef INVARIANTS
864 			if (fl_pad)
865 				MPASS(hwb->size % sp->pad_boundary == 0);
866 #endif
867 			spare = safe_swz->size - hwb->size;
868 			if (spare >= CL_METADATA_SIZE) {
869 				s->safe_hwidx2 = i;
870 				break;
871 			}
872 		}
873 	}
874 
875 	if (sc->flags & IS_VF)
876 		return (0);
877 
878 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
879 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
880 	if (r != v) {
881 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
882 		rc = EINVAL;
883 	}
884 
885 	m = v = F_TDDPTAGTCB;
886 	r = t4_read_reg(sc, A_ULP_RX_CTL);
887 	if ((r & m) != v) {
888 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
889 		rc = EINVAL;
890 	}
891 
892 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
893 	    F_RESETDDPOFFSET;
894 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
895 	r = t4_read_reg(sc, A_TP_PARA_REG5);
896 	if ((r & m) != v) {
897 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
898 		rc = EINVAL;
899 	}
900 
901 	t4_init_tp_params(sc, 1);
902 
903 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
904 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
905 
906 	return (rc);
907 }
908 
909 int
910 t4_create_dma_tag(struct adapter *sc)
911 {
912 	int rc;
913 
914 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
915 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
916 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
917 	    NULL, &sc->dmat);
918 	if (rc != 0) {
919 		device_printf(sc->dev,
920 		    "failed to create main DMA tag: %d\n", rc);
921 	}
922 
923 	return (rc);
924 }
925 
926 void
927 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
928     struct sysctl_oid_list *children)
929 {
930 	struct sge_params *sp = &sc->params.sge;
931 
932 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
933 	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
934 	    "freelist buffer sizes");
935 
936 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
937 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
938 
939 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
940 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
941 
942 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
943 	    NULL, sp->spg_len, "status page size (bytes)");
944 
945 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
946 	    NULL, cong_drop, "congestion drop setting");
947 
948 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
949 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
950 }
951 
952 int
953 t4_destroy_dma_tag(struct adapter *sc)
954 {
955 	if (sc->dmat)
956 		bus_dma_tag_destroy(sc->dmat);
957 
958 	return (0);
959 }
960 
961 /*
962  * Allocate and initialize the firmware event queue and the management queue.
963  *
964  * Returns errno on failure.  Resources allocated up to that point may still be
965  * allocated.  Caller is responsible for cleanup in case this function fails.
966  */
967 int
968 t4_setup_adapter_queues(struct adapter *sc)
969 {
970 	int rc;
971 
972 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
973 
974 	sysctl_ctx_init(&sc->ctx);
975 	sc->flags |= ADAP_SYSCTL_CTX;
976 
977 	/*
978 	 * Firmware event queue
979 	 */
980 	rc = alloc_fwq(sc);
981 	if (rc != 0)
982 		return (rc);
983 
984 	/*
985 	 * Management queue.  This is just a control queue that uses the fwq as
986 	 * its associated iq.
987 	 */
988 	if (!(sc->flags & IS_VF))
989 		rc = alloc_mgmtq(sc);
990 
991 	return (rc);
992 }
993 
994 /*
995  * Idempotent
996  */
997 int
998 t4_teardown_adapter_queues(struct adapter *sc)
999 {
1000 
1001 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1002 
1003 	/* Do this before freeing the queue */
1004 	if (sc->flags & ADAP_SYSCTL_CTX) {
1005 		sysctl_ctx_free(&sc->ctx);
1006 		sc->flags &= ~ADAP_SYSCTL_CTX;
1007 	}
1008 
1009 	free_mgmtq(sc);
1010 	free_fwq(sc);
1011 
1012 	return (0);
1013 }
1014 
1015 /* Maximum payload that can be delivered with a single iq descriptor */
1016 static inline int
1017 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
1018 {
1019 	int payload;
1020 
1021 #ifdef TCP_OFFLOAD
1022 	if (toe) {
1023 		int rxcs = G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2));
1024 
1025 		/* Note that COP can set rx_coalesce on/off per connection. */
1026 		payload = max(mtu, rxcs);
1027 	} else {
1028 #endif
1029 		/* large enough even when hw VLAN extraction is disabled */
1030 		payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1031 		    ETHER_VLAN_ENCAP_LEN + mtu;
1032 #ifdef TCP_OFFLOAD
1033 	}
1034 #endif
1035 
1036 	return (payload);
1037 }
1038 
1039 int
1040 t4_setup_vi_queues(struct vi_info *vi)
1041 {
1042 	int rc = 0, i, intr_idx, iqidx;
1043 	struct sge_rxq *rxq;
1044 	struct sge_txq *txq;
1045 	struct sge_wrq *ctrlq;
1046 #ifdef TCP_OFFLOAD
1047 	struct sge_ofld_rxq *ofld_rxq;
1048 	struct sge_wrq *ofld_txq;
1049 #endif
1050 #ifdef DEV_NETMAP
1051 	int saved_idx;
1052 	struct sge_nm_rxq *nm_rxq;
1053 	struct sge_nm_txq *nm_txq;
1054 #endif
1055 	char name[16];
1056 	struct port_info *pi = vi->pi;
1057 	struct adapter *sc = pi->adapter;
1058 	struct ifnet *ifp = vi->ifp;
1059 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
1060 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1061 	int maxp, mtu = ifp->if_mtu;
1062 
1063 	/* Interrupt vector to start from (when using multiple vectors) */
1064 	intr_idx = vi->first_intr;
1065 
1066 #ifdef DEV_NETMAP
1067 	saved_idx = intr_idx;
1068 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1069 
1070 		/* netmap is supported with direct interrupts only. */
1071 		MPASS(!forwarding_intr_to_fwq(sc));
1072 
1073 		/*
1074 		 * We don't have buffers to back the netmap rx queues
1075 		 * right now so we create the queues in a way that
1076 		 * doesn't set off any congestion signal in the chip.
1077 		 */
1078 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1079 		    CTLFLAG_RD, NULL, "rx queues");
1080 		for_each_nm_rxq(vi, i, nm_rxq) {
1081 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1082 			if (rc != 0)
1083 				goto done;
1084 			intr_idx++;
1085 		}
1086 
1087 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1088 		    CTLFLAG_RD, NULL, "tx queues");
1089 		for_each_nm_txq(vi, i, nm_txq) {
1090 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1091 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid);
1092 			if (rc != 0)
1093 				goto done;
1094 		}
1095 	}
1096 
1097 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1098 	intr_idx = saved_idx;
1099 #endif
1100 
1101 	/*
1102 	 * Allocate rx queues first because a default iqid is required when
1103 	 * creating a tx queue.
1104 	 */
1105 	maxp = mtu_to_max_payload(sc, mtu, 0);
1106 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1107 	    CTLFLAG_RD, NULL, "rx queues");
1108 	for_each_rxq(vi, i, rxq) {
1109 
1110 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1111 
1112 		snprintf(name, sizeof(name), "%s rxq%d-fl",
1113 		    device_get_nameunit(vi->dev), i);
1114 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1115 
1116 		rc = alloc_rxq(vi, rxq,
1117 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1118 		if (rc != 0)
1119 			goto done;
1120 		intr_idx++;
1121 	}
1122 #ifdef DEV_NETMAP
1123 	if (ifp->if_capabilities & IFCAP_NETMAP)
1124 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1125 #endif
1126 #ifdef TCP_OFFLOAD
1127 	maxp = mtu_to_max_payload(sc, mtu, 1);
1128 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1129 	    CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections");
1130 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1131 
1132 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
1133 		    vi->qsize_rxq);
1134 
1135 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1136 		    device_get_nameunit(vi->dev), i);
1137 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1138 
1139 		rc = alloc_ofld_rxq(vi, ofld_rxq,
1140 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1141 		if (rc != 0)
1142 			goto done;
1143 		intr_idx++;
1144 	}
1145 #endif
1146 
1147 	/*
1148 	 * Now the tx queues.
1149 	 */
1150 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1151 	    NULL, "tx queues");
1152 	for_each_txq(vi, i, txq) {
1153 		iqidx = vi->first_rxq + (i % vi->nrxq);
1154 		snprintf(name, sizeof(name), "%s txq%d",
1155 		    device_get_nameunit(vi->dev), i);
1156 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
1157 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1158 
1159 		rc = alloc_txq(vi, txq, i, oid);
1160 		if (rc != 0)
1161 			goto done;
1162 	}
1163 #ifdef TCP_OFFLOAD
1164 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1165 	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1166 	for_each_ofld_txq(vi, i, ofld_txq) {
1167 		struct sysctl_oid *oid2;
1168 
1169 		iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq);
1170 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1171 		    device_get_nameunit(vi->dev), i);
1172 		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1173 		    sc->sge.ofld_rxq[iqidx].iq.cntxt_id, name);
1174 
1175 		snprintf(name, sizeof(name), "%d", i);
1176 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1177 		    name, CTLFLAG_RD, NULL, "offload tx queue");
1178 
1179 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1180 		if (rc != 0)
1181 			goto done;
1182 	}
1183 #endif
1184 
1185 	/*
1186 	 * Finally, the control queue.
1187 	 */
1188 	if (!IS_MAIN_VI(vi) || sc->flags & IS_VF)
1189 		goto done;
1190 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1191 	    NULL, "ctrl queue");
1192 	ctrlq = &sc->sge.ctrlq[pi->port_id];
1193 	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev));
1194 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan,
1195 	    sc->sge.rxq[vi->first_rxq].iq.cntxt_id, name);
1196 	rc = alloc_wrq(sc, vi, ctrlq, oid);
1197 
1198 done:
1199 	if (rc)
1200 		t4_teardown_vi_queues(vi);
1201 
1202 	return (rc);
1203 }
1204 
1205 /*
1206  * Idempotent
1207  */
1208 int
1209 t4_teardown_vi_queues(struct vi_info *vi)
1210 {
1211 	int i;
1212 	struct port_info *pi = vi->pi;
1213 	struct adapter *sc = pi->adapter;
1214 	struct sge_rxq *rxq;
1215 	struct sge_txq *txq;
1216 #ifdef TCP_OFFLOAD
1217 	struct sge_ofld_rxq *ofld_rxq;
1218 	struct sge_wrq *ofld_txq;
1219 #endif
1220 #ifdef DEV_NETMAP
1221 	struct sge_nm_rxq *nm_rxq;
1222 	struct sge_nm_txq *nm_txq;
1223 #endif
1224 
1225 	/* Do this before freeing the queues */
1226 	if (vi->flags & VI_SYSCTL_CTX) {
1227 		sysctl_ctx_free(&vi->ctx);
1228 		vi->flags &= ~VI_SYSCTL_CTX;
1229 	}
1230 
1231 #ifdef DEV_NETMAP
1232 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1233 		for_each_nm_txq(vi, i, nm_txq) {
1234 			free_nm_txq(vi, nm_txq);
1235 		}
1236 
1237 		for_each_nm_rxq(vi, i, nm_rxq) {
1238 			free_nm_rxq(vi, nm_rxq);
1239 		}
1240 	}
1241 #endif
1242 
1243 	/*
1244 	 * Take down all the tx queues first, as they reference the rx queues
1245 	 * (for egress updates, etc.).
1246 	 */
1247 
1248 	if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
1249 		free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1250 
1251 	for_each_txq(vi, i, txq) {
1252 		free_txq(vi, txq);
1253 	}
1254 #ifdef TCP_OFFLOAD
1255 	for_each_ofld_txq(vi, i, ofld_txq) {
1256 		free_wrq(sc, ofld_txq);
1257 	}
1258 #endif
1259 
1260 	/*
1261 	 * Then take down the rx queues.
1262 	 */
1263 
1264 	for_each_rxq(vi, i, rxq) {
1265 		free_rxq(vi, rxq);
1266 	}
1267 #ifdef TCP_OFFLOAD
1268 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1269 		free_ofld_rxq(vi, ofld_rxq);
1270 	}
1271 #endif
1272 
1273 	return (0);
1274 }
1275 
1276 /*
1277  * Deals with errors and the firmware event queue.  All data rx queues forward
1278  * their interrupt to the firmware event queue.
1279  */
1280 void
1281 t4_intr_all(void *arg)
1282 {
1283 	struct adapter *sc = arg;
1284 	struct sge_iq *fwq = &sc->sge.fwq;
1285 
1286 	t4_intr_err(arg);
1287 	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1288 		service_iq(fwq, 0);
1289 		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1290 	}
1291 }
1292 
1293 /* Deals with error interrupts */
1294 void
1295 t4_intr_err(void *arg)
1296 {
1297 	struct adapter *sc = arg;
1298 
1299 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1300 	t4_slow_intr_handler(sc);
1301 }
1302 
1303 void
1304 t4_intr_evt(void *arg)
1305 {
1306 	struct sge_iq *iq = arg;
1307 
1308 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1309 		service_iq(iq, 0);
1310 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1311 	}
1312 }
1313 
1314 void
1315 t4_intr(void *arg)
1316 {
1317 	struct sge_iq *iq = arg;
1318 
1319 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1320 		service_iq(iq, 0);
1321 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1322 	}
1323 }
1324 
1325 void
1326 t4_vi_intr(void *arg)
1327 {
1328 	struct irq *irq = arg;
1329 
1330 #ifdef DEV_NETMAP
1331 	if (atomic_cmpset_int(&irq->nm_state, NM_ON, NM_BUSY)) {
1332 		t4_nm_intr(irq->nm_rxq);
1333 		atomic_cmpset_int(&irq->nm_state, NM_BUSY, NM_ON);
1334 	}
1335 #endif
1336 	if (irq->rxq != NULL)
1337 		t4_intr(irq->rxq);
1338 }
1339 
1340 static inline int
1341 sort_before_lro(struct lro_ctrl *lro)
1342 {
1343 
1344 	return (lro->lro_mbuf_max != 0);
1345 }
1346 
1347 /*
1348  * Deals with anything and everything on the given ingress queue.
1349  */
1350 static int
1351 service_iq(struct sge_iq *iq, int budget)
1352 {
1353 	struct sge_iq *q;
1354 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1355 	struct sge_fl *fl;			/* Use iff IQ_HAS_FL */
1356 	struct adapter *sc = iq->adapter;
1357 	struct iq_desc *d = &iq->desc[iq->cidx];
1358 	int ndescs = 0, limit;
1359 	int rsp_type, refill;
1360 	uint32_t lq;
1361 	uint16_t fl_hw_cidx;
1362 	struct mbuf *m0;
1363 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1364 #if defined(INET) || defined(INET6)
1365 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1366 	struct lro_ctrl *lro = &rxq->lro;
1367 #endif
1368 
1369 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1370 
1371 	limit = budget ? budget : iq->qsize / 16;
1372 
1373 	if (iq->flags & IQ_HAS_FL) {
1374 		fl = &rxq->fl;
1375 		fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1376 	} else {
1377 		fl = NULL;
1378 		fl_hw_cidx = 0;			/* to silence gcc warning */
1379 	}
1380 
1381 #if defined(INET) || defined(INET6)
1382 	if (iq->flags & IQ_ADJ_CREDIT) {
1383 		MPASS(sort_before_lro(lro));
1384 		iq->flags &= ~IQ_ADJ_CREDIT;
1385 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1386 			tcp_lro_flush_all(lro);
1387 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1388 			    V_INGRESSQID((u32)iq->cntxt_id) |
1389 			    V_SEINTARM(iq->intr_params));
1390 			return (0);
1391 		}
1392 		ndescs = 1;
1393 	}
1394 #else
1395 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1396 #endif
1397 
1398 	/*
1399 	 * We always come back and check the descriptor ring for new indirect
1400 	 * interrupts and other responses after running a single handler.
1401 	 */
1402 	for (;;) {
1403 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1404 
1405 			rmb();
1406 
1407 			refill = 0;
1408 			m0 = NULL;
1409 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1410 			lq = be32toh(d->rsp.pldbuflen_qid);
1411 
1412 			switch (rsp_type) {
1413 			case X_RSPD_TYPE_FLBUF:
1414 
1415 				KASSERT(iq->flags & IQ_HAS_FL,
1416 				    ("%s: data for an iq (%p) with no freelist",
1417 				    __func__, iq));
1418 
1419 				m0 = get_fl_payload(sc, fl, lq);
1420 				if (__predict_false(m0 == NULL))
1421 					goto process_iql;
1422 				refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1423 #ifdef T4_PKT_TIMESTAMP
1424 				/*
1425 				 * 60 bit timestamp for the payload is
1426 				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1427 				 * in the leading free-space in the mbuf.  The
1428 				 * kernel can clobber it during a pullup,
1429 				 * m_copymdata, etc.  You need to make sure that
1430 				 * the mbuf reaches you unmolested if you care
1431 				 * about the timestamp.
1432 				 */
1433 				*(uint64_t *)m0->m_pktdat =
1434 				    be64toh(ctrl->u.last_flit) &
1435 				    0xfffffffffffffff;
1436 #endif
1437 
1438 				/* fall through */
1439 
1440 			case X_RSPD_TYPE_CPL:
1441 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1442 				    ("%s: bad opcode %02x.", __func__,
1443 				    d->rss.opcode));
1444 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1445 				break;
1446 
1447 			case X_RSPD_TYPE_INTR:
1448 
1449 				/*
1450 				 * Interrupts should be forwarded only to queues
1451 				 * that are not forwarding their interrupts.
1452 				 * This means service_iq can recurse but only 1
1453 				 * level deep.
1454 				 */
1455 				KASSERT(budget == 0,
1456 				    ("%s: budget %u, rsp_type %u", __func__,
1457 				    budget, rsp_type));
1458 
1459 				/*
1460 				 * There are 1K interrupt-capable queues (qids 0
1461 				 * through 1023).  A response type indicating a
1462 				 * forwarded interrupt with a qid >= 1K is an
1463 				 * iWARP async notification.
1464 				 */
1465 				if (lq >= 1024) {
1466                                         t4_an_handler(iq, &d->rsp);
1467                                         break;
1468                                 }
1469 
1470 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1471 				    sc->sge.iq_base];
1472 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1473 				    IQS_BUSY)) {
1474 					if (service_iq(q, q->qsize / 16) == 0) {
1475 						atomic_cmpset_int(&q->state,
1476 						    IQS_BUSY, IQS_IDLE);
1477 					} else {
1478 						STAILQ_INSERT_TAIL(&iql, q,
1479 						    link);
1480 					}
1481 				}
1482 				break;
1483 
1484 			default:
1485 				KASSERT(0,
1486 				    ("%s: illegal response type %d on iq %p",
1487 				    __func__, rsp_type, iq));
1488 				log(LOG_ERR,
1489 				    "%s: illegal response type %d on iq %p",
1490 				    device_get_nameunit(sc->dev), rsp_type, iq);
1491 				break;
1492 			}
1493 
1494 			d++;
1495 			if (__predict_false(++iq->cidx == iq->sidx)) {
1496 				iq->cidx = 0;
1497 				iq->gen ^= F_RSPD_GEN;
1498 				d = &iq->desc[0];
1499 			}
1500 			if (__predict_false(++ndescs == limit)) {
1501 				t4_write_reg(sc, sc->sge_gts_reg,
1502 				    V_CIDXINC(ndescs) |
1503 				    V_INGRESSQID(iq->cntxt_id) |
1504 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1505 				ndescs = 0;
1506 
1507 #if defined(INET) || defined(INET6)
1508 				if (iq->flags & IQ_LRO_ENABLED &&
1509 				    !sort_before_lro(lro) &&
1510 				    sc->lro_timeout != 0) {
1511 					tcp_lro_flush_inactive(lro,
1512 					    &lro_timeout);
1513 				}
1514 #endif
1515 
1516 				if (budget) {
1517 					if (iq->flags & IQ_HAS_FL) {
1518 						FL_LOCK(fl);
1519 						refill_fl(sc, fl, 32);
1520 						FL_UNLOCK(fl);
1521 					}
1522 					return (EINPROGRESS);
1523 				}
1524 			}
1525 			if (refill) {
1526 				FL_LOCK(fl);
1527 				refill_fl(sc, fl, 32);
1528 				FL_UNLOCK(fl);
1529 				fl_hw_cidx = fl->hw_cidx;
1530 			}
1531 		}
1532 
1533 process_iql:
1534 		if (STAILQ_EMPTY(&iql))
1535 			break;
1536 
1537 		/*
1538 		 * Process the head only, and send it to the back of the list if
1539 		 * it's still not done.
1540 		 */
1541 		q = STAILQ_FIRST(&iql);
1542 		STAILQ_REMOVE_HEAD(&iql, link);
1543 		if (service_iq(q, q->qsize / 8) == 0)
1544 			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1545 		else
1546 			STAILQ_INSERT_TAIL(&iql, q, link);
1547 	}
1548 
1549 #if defined(INET) || defined(INET6)
1550 	if (iq->flags & IQ_LRO_ENABLED) {
1551 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1552 			MPASS(sort_before_lro(lro));
1553 			/* hold back one credit and don't flush LRO state */
1554 			iq->flags |= IQ_ADJ_CREDIT;
1555 			ndescs--;
1556 		} else {
1557 			tcp_lro_flush_all(lro);
1558 		}
1559 	}
1560 #endif
1561 
1562 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1563 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1564 
1565 	if (iq->flags & IQ_HAS_FL) {
1566 		int starved;
1567 
1568 		FL_LOCK(fl);
1569 		starved = refill_fl(sc, fl, 64);
1570 		FL_UNLOCK(fl);
1571 		if (__predict_false(starved != 0))
1572 			add_fl_to_sfl(sc, fl);
1573 	}
1574 
1575 	return (0);
1576 }
1577 
1578 static inline int
1579 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1580 {
1581 	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1582 
1583 	if (rc)
1584 		MPASS(cll->region3 >= CL_METADATA_SIZE);
1585 
1586 	return (rc);
1587 }
1588 
1589 static inline struct cluster_metadata *
1590 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1591     caddr_t cl)
1592 {
1593 
1594 	if (cl_has_metadata(fl, cll)) {
1595 		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1596 
1597 		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1598 	}
1599 	return (NULL);
1600 }
1601 
1602 static void
1603 rxb_free(struct mbuf *m)
1604 {
1605 	uma_zone_t zone = m->m_ext.ext_arg1;
1606 	void *cl = m->m_ext.ext_arg2;
1607 
1608 	uma_zfree(zone, cl);
1609 	counter_u64_add(extfree_rels, 1);
1610 }
1611 
1612 /*
1613  * The mbuf returned by this function could be allocated from zone_mbuf or
1614  * constructed in spare room in the cluster.
1615  *
1616  * The mbuf carries the payload in one of these ways
1617  * a) frame inside the mbuf (mbuf from zone_mbuf)
1618  * b) m_cljset (for clusters without metadata) zone_mbuf
1619  * c) m_extaddref (cluster with metadata) inline mbuf
1620  * d) m_extaddref (cluster with metadata) zone_mbuf
1621  */
1622 static struct mbuf *
1623 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1624     int remaining)
1625 {
1626 	struct mbuf *m;
1627 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1628 	struct cluster_layout *cll = &sd->cll;
1629 	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1630 	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1631 	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1632 	int len, blen;
1633 	caddr_t payload;
1634 
1635 	blen = hwb->size - fl->rx_offset;	/* max possible in this buf */
1636 	len = min(remaining, blen);
1637 	payload = sd->cl + cll->region1 + fl->rx_offset;
1638 	if (fl->flags & FL_BUF_PACKING) {
1639 		const u_int l = fr_offset + len;
1640 		const u_int pad = roundup2(l, fl->buf_boundary) - l;
1641 
1642 		if (fl->rx_offset + len + pad < hwb->size)
1643 			blen = len + pad;
1644 		MPASS(fl->rx_offset + blen <= hwb->size);
1645 	} else {
1646 		MPASS(fl->rx_offset == 0);	/* not packing */
1647 	}
1648 
1649 
1650 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1651 
1652 		/*
1653 		 * Copy payload into a freshly allocated mbuf.
1654 		 */
1655 
1656 		m = fr_offset == 0 ?
1657 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1658 		if (m == NULL)
1659 			return (NULL);
1660 		fl->mbuf_allocated++;
1661 #ifdef T4_PKT_TIMESTAMP
1662 		/* Leave room for a timestamp */
1663 		m->m_data += 8;
1664 #endif
1665 		/* copy data to mbuf */
1666 		bcopy(payload, mtod(m, caddr_t), len);
1667 
1668 	} else if (sd->nmbuf * MSIZE < cll->region1) {
1669 
1670 		/*
1671 		 * There's spare room in the cluster for an mbuf.  Create one
1672 		 * and associate it with the payload that's in the cluster.
1673 		 */
1674 
1675 		MPASS(clm != NULL);
1676 		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1677 		/* No bzero required */
1678 		if (m_init(m, M_NOWAIT, MT_DATA,
1679 		    fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
1680 			return (NULL);
1681 		fl->mbuf_inlined++;
1682 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
1683 		    swz->zone, sd->cl);
1684 		if (sd->nmbuf++ == 0)
1685 			counter_u64_add(extfree_refs, 1);
1686 
1687 	} else {
1688 
1689 		/*
1690 		 * Grab an mbuf from zone_mbuf and associate it with the
1691 		 * payload in the cluster.
1692 		 */
1693 
1694 		m = fr_offset == 0 ?
1695 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1696 		if (m == NULL)
1697 			return (NULL);
1698 		fl->mbuf_allocated++;
1699 		if (clm != NULL) {
1700 			m_extaddref(m, payload, blen, &clm->refcount,
1701 			    rxb_free, swz->zone, sd->cl);
1702 			if (sd->nmbuf++ == 0)
1703 				counter_u64_add(extfree_refs, 1);
1704 		} else {
1705 			m_cljset(m, sd->cl, swz->type);
1706 			sd->cl = NULL;	/* consumed, not a recycle candidate */
1707 		}
1708 	}
1709 	if (fr_offset == 0)
1710 		m->m_pkthdr.len = remaining;
1711 	m->m_len = len;
1712 
1713 	if (fl->flags & FL_BUF_PACKING) {
1714 		fl->rx_offset += blen;
1715 		MPASS(fl->rx_offset <= hwb->size);
1716 		if (fl->rx_offset < hwb->size)
1717 			return (m);	/* without advancing the cidx */
1718 	}
1719 
1720 	if (__predict_false(++fl->cidx % 8 == 0)) {
1721 		uint16_t cidx = fl->cidx / 8;
1722 
1723 		if (__predict_false(cidx == fl->sidx))
1724 			fl->cidx = cidx = 0;
1725 		fl->hw_cidx = cidx;
1726 	}
1727 	fl->rx_offset = 0;
1728 
1729 	return (m);
1730 }
1731 
1732 static struct mbuf *
1733 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1734 {
1735 	struct mbuf *m0, *m, **pnext;
1736 	u_int remaining;
1737 	const u_int total = G_RSPD_LEN(len_newbuf);
1738 
1739 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1740 		M_ASSERTPKTHDR(fl->m0);
1741 		MPASS(fl->m0->m_pkthdr.len == total);
1742 		MPASS(fl->remaining < total);
1743 
1744 		m0 = fl->m0;
1745 		pnext = fl->pnext;
1746 		remaining = fl->remaining;
1747 		fl->flags &= ~FL_BUF_RESUME;
1748 		goto get_segment;
1749 	}
1750 
1751 	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1752 		fl->rx_offset = 0;
1753 		if (__predict_false(++fl->cidx % 8 == 0)) {
1754 			uint16_t cidx = fl->cidx / 8;
1755 
1756 			if (__predict_false(cidx == fl->sidx))
1757 				fl->cidx = cidx = 0;
1758 			fl->hw_cidx = cidx;
1759 		}
1760 	}
1761 
1762 	/*
1763 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1764 	 * 'len' and it may span multiple hw buffers.
1765 	 */
1766 
1767 	m0 = get_scatter_segment(sc, fl, 0, total);
1768 	if (m0 == NULL)
1769 		return (NULL);
1770 	remaining = total - m0->m_len;
1771 	pnext = &m0->m_next;
1772 	while (remaining > 0) {
1773 get_segment:
1774 		MPASS(fl->rx_offset == 0);
1775 		m = get_scatter_segment(sc, fl, total - remaining, remaining);
1776 		if (__predict_false(m == NULL)) {
1777 			fl->m0 = m0;
1778 			fl->pnext = pnext;
1779 			fl->remaining = remaining;
1780 			fl->flags |= FL_BUF_RESUME;
1781 			return (NULL);
1782 		}
1783 		*pnext = m;
1784 		pnext = &m->m_next;
1785 		remaining -= m->m_len;
1786 	}
1787 	*pnext = NULL;
1788 
1789 	M_ASSERTPKTHDR(m0);
1790 	return (m0);
1791 }
1792 
1793 static int
1794 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1795 {
1796 	struct sge_rxq *rxq = iq_to_rxq(iq);
1797 	struct ifnet *ifp = rxq->ifp;
1798 	struct adapter *sc = iq->adapter;
1799 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1800 #if defined(INET) || defined(INET6)
1801 	struct lro_ctrl *lro = &rxq->lro;
1802 #endif
1803 	static const int sw_hashtype[4][2] = {
1804 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1805 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1806 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1807 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1808 	};
1809 
1810 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1811 	    rss->opcode));
1812 
1813 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1814 	m0->m_len -= sc->params.sge.fl_pktshift;
1815 	m0->m_data += sc->params.sge.fl_pktshift;
1816 
1817 	m0->m_pkthdr.rcvif = ifp;
1818 	M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
1819 	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1820 
1821 	if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) {
1822 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1823 		    cpl->l2info & htobe32(F_RXF_IP)) {
1824 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1825 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1826 			rxq->rxcsum++;
1827 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1828 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1829 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1830 			    CSUM_PSEUDO_HDR);
1831 			rxq->rxcsum++;
1832 		}
1833 
1834 		if (__predict_false(cpl->ip_frag))
1835 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1836 		else
1837 			m0->m_pkthdr.csum_data = 0xffff;
1838 	}
1839 
1840 	if (cpl->vlan_ex) {
1841 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1842 		m0->m_flags |= M_VLANTAG;
1843 		rxq->vlan_extraction++;
1844 	}
1845 
1846 #if defined(INET) || defined(INET6)
1847 	if (iq->flags & IQ_LRO_ENABLED) {
1848 		if (sort_before_lro(lro)) {
1849 			tcp_lro_queue_mbuf(lro, m0);
1850 			return (0); /* queued for sort, then LRO */
1851 		}
1852 		if (tcp_lro_rx(lro, m0, 0) == 0)
1853 			return (0); /* queued for LRO */
1854 	}
1855 #endif
1856 	ifp->if_input(ifp, m0);
1857 
1858 	return (0);
1859 }
1860 
1861 /*
1862  * Must drain the wrq or make sure that someone else will.
1863  */
1864 static void
1865 wrq_tx_drain(void *arg, int n)
1866 {
1867 	struct sge_wrq *wrq = arg;
1868 	struct sge_eq *eq = &wrq->eq;
1869 
1870 	EQ_LOCK(eq);
1871 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
1872 		drain_wrq_wr_list(wrq->adapter, wrq);
1873 	EQ_UNLOCK(eq);
1874 }
1875 
1876 static void
1877 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
1878 {
1879 	struct sge_eq *eq = &wrq->eq;
1880 	u_int available, dbdiff;	/* # of hardware descriptors */
1881 	u_int n;
1882 	struct wrqe *wr;
1883 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
1884 
1885 	EQ_LOCK_ASSERT_OWNED(eq);
1886 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
1887 	wr = STAILQ_FIRST(&wrq->wr_list);
1888 	MPASS(wr != NULL);	/* Must be called with something useful to do */
1889 	MPASS(eq->pidx == eq->dbidx);
1890 	dbdiff = 0;
1891 
1892 	do {
1893 		eq->cidx = read_hw_cidx(eq);
1894 		if (eq->pidx == eq->cidx)
1895 			available = eq->sidx - 1;
1896 		else
1897 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
1898 
1899 		MPASS(wr->wrq == wrq);
1900 		n = howmany(wr->wr_len, EQ_ESIZE);
1901 		if (available < n)
1902 			break;
1903 
1904 		dst = (void *)&eq->desc[eq->pidx];
1905 		if (__predict_true(eq->sidx - eq->pidx > n)) {
1906 			/* Won't wrap, won't end exactly at the status page. */
1907 			bcopy(&wr->wr[0], dst, wr->wr_len);
1908 			eq->pidx += n;
1909 		} else {
1910 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
1911 
1912 			bcopy(&wr->wr[0], dst, first_portion);
1913 			if (wr->wr_len > first_portion) {
1914 				bcopy(&wr->wr[first_portion], &eq->desc[0],
1915 				    wr->wr_len - first_portion);
1916 			}
1917 			eq->pidx = n - (eq->sidx - eq->pidx);
1918 		}
1919 		wrq->tx_wrs_copied++;
1920 
1921 		if (available < eq->sidx / 4 &&
1922 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
1923 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
1924 			    F_FW_WR_EQUEQ);
1925 			eq->equeqidx = eq->pidx;
1926 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
1927 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
1928 			eq->equeqidx = eq->pidx;
1929 		}
1930 
1931 		dbdiff += n;
1932 		if (dbdiff >= 16) {
1933 			ring_eq_db(sc, eq, dbdiff);
1934 			dbdiff = 0;
1935 		}
1936 
1937 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1938 		free_wrqe(wr);
1939 		MPASS(wrq->nwr_pending > 0);
1940 		wrq->nwr_pending--;
1941 		MPASS(wrq->ndesc_needed >= n);
1942 		wrq->ndesc_needed -= n;
1943 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
1944 
1945 	if (dbdiff)
1946 		ring_eq_db(sc, eq, dbdiff);
1947 }
1948 
1949 /*
1950  * Doesn't fail.  Holds on to work requests it can't send right away.
1951  */
1952 void
1953 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1954 {
1955 #ifdef INVARIANTS
1956 	struct sge_eq *eq = &wrq->eq;
1957 #endif
1958 
1959 	EQ_LOCK_ASSERT_OWNED(eq);
1960 	MPASS(wr != NULL);
1961 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
1962 	MPASS((wr->wr_len & 0x7) == 0);
1963 
1964 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1965 	wrq->nwr_pending++;
1966 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
1967 
1968 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
1969 		return;	/* commit_wrq_wr will drain wr_list as well. */
1970 
1971 	drain_wrq_wr_list(sc, wrq);
1972 
1973 	/* Doorbell must have caught up to the pidx. */
1974 	MPASS(eq->pidx == eq->dbidx);
1975 }
1976 
1977 void
1978 t4_update_fl_bufsize(struct ifnet *ifp)
1979 {
1980 	struct vi_info *vi = ifp->if_softc;
1981 	struct adapter *sc = vi->pi->adapter;
1982 	struct sge_rxq *rxq;
1983 #ifdef TCP_OFFLOAD
1984 	struct sge_ofld_rxq *ofld_rxq;
1985 #endif
1986 	struct sge_fl *fl;
1987 	int i, maxp, mtu = ifp->if_mtu;
1988 
1989 	maxp = mtu_to_max_payload(sc, mtu, 0);
1990 	for_each_rxq(vi, i, rxq) {
1991 		fl = &rxq->fl;
1992 
1993 		FL_LOCK(fl);
1994 		find_best_refill_source(sc, fl, maxp);
1995 		FL_UNLOCK(fl);
1996 	}
1997 #ifdef TCP_OFFLOAD
1998 	maxp = mtu_to_max_payload(sc, mtu, 1);
1999 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2000 		fl = &ofld_rxq->fl;
2001 
2002 		FL_LOCK(fl);
2003 		find_best_refill_source(sc, fl, maxp);
2004 		FL_UNLOCK(fl);
2005 	}
2006 #endif
2007 }
2008 
2009 static inline int
2010 mbuf_nsegs(struct mbuf *m)
2011 {
2012 
2013 	M_ASSERTPKTHDR(m);
2014 	KASSERT(m->m_pkthdr.l5hlen > 0,
2015 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2016 
2017 	return (m->m_pkthdr.l5hlen);
2018 }
2019 
2020 static inline void
2021 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2022 {
2023 
2024 	M_ASSERTPKTHDR(m);
2025 	m->m_pkthdr.l5hlen = nsegs;
2026 }
2027 
2028 static inline int
2029 mbuf_len16(struct mbuf *m)
2030 {
2031 	int n;
2032 
2033 	M_ASSERTPKTHDR(m);
2034 	n = m->m_pkthdr.PH_loc.eight[0];
2035 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2036 
2037 	return (n);
2038 }
2039 
2040 static inline void
2041 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2042 {
2043 
2044 	M_ASSERTPKTHDR(m);
2045 	m->m_pkthdr.PH_loc.eight[0] = len16;
2046 }
2047 
2048 static inline int
2049 needs_tso(struct mbuf *m)
2050 {
2051 
2052 	M_ASSERTPKTHDR(m);
2053 
2054 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
2055 		KASSERT(m->m_pkthdr.tso_segsz > 0,
2056 		    ("%s: TSO requested in mbuf %p but MSS not provided",
2057 		    __func__, m));
2058 		return (1);
2059 	}
2060 
2061 	return (0);
2062 }
2063 
2064 static inline int
2065 needs_l3_csum(struct mbuf *m)
2066 {
2067 
2068 	M_ASSERTPKTHDR(m);
2069 
2070 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
2071 		return (1);
2072 	return (0);
2073 }
2074 
2075 static inline int
2076 needs_l4_csum(struct mbuf *m)
2077 {
2078 
2079 	M_ASSERTPKTHDR(m);
2080 
2081 	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2082 	    CSUM_TCP_IPV6 | CSUM_TSO))
2083 		return (1);
2084 	return (0);
2085 }
2086 
2087 static inline int
2088 needs_vlan_insertion(struct mbuf *m)
2089 {
2090 
2091 	M_ASSERTPKTHDR(m);
2092 
2093 	if (m->m_flags & M_VLANTAG) {
2094 		KASSERT(m->m_pkthdr.ether_vtag != 0,
2095 		    ("%s: HWVLAN requested in mbuf %p but tag not provided",
2096 		    __func__, m));
2097 		return (1);
2098 	}
2099 	return (0);
2100 }
2101 
2102 static void *
2103 m_advance(struct mbuf **pm, int *poffset, int len)
2104 {
2105 	struct mbuf *m = *pm;
2106 	int offset = *poffset;
2107 	uintptr_t p = 0;
2108 
2109 	MPASS(len > 0);
2110 
2111 	for (;;) {
2112 		if (offset + len < m->m_len) {
2113 			offset += len;
2114 			p = mtod(m, uintptr_t) + offset;
2115 			break;
2116 		}
2117 		len -= m->m_len - offset;
2118 		m = m->m_next;
2119 		offset = 0;
2120 		MPASS(m != NULL);
2121 	}
2122 	*poffset = offset;
2123 	*pm = m;
2124 	return ((void *)p);
2125 }
2126 
2127 /*
2128  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2129  * must have at least one mbuf that's not empty.
2130  */
2131 static inline int
2132 count_mbuf_nsegs(struct mbuf *m)
2133 {
2134 	vm_paddr_t lastb, next;
2135 	vm_offset_t va;
2136 	int len, nsegs;
2137 
2138 	MPASS(m != NULL);
2139 
2140 	nsegs = 0;
2141 	lastb = 0;
2142 	for (; m; m = m->m_next) {
2143 
2144 		len = m->m_len;
2145 		if (__predict_false(len == 0))
2146 			continue;
2147 		va = mtod(m, vm_offset_t);
2148 		next = pmap_kextract(va);
2149 		nsegs += sglist_count(m->m_data, len);
2150 		if (lastb + 1 == next)
2151 			nsegs--;
2152 		lastb = pmap_kextract(va + len - 1);
2153 	}
2154 
2155 	MPASS(nsegs > 0);
2156 	return (nsegs);
2157 }
2158 
2159 /*
2160  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2161  * a) caller can assume it's been freed if this function returns with an error.
2162  * b) it may get defragged up if the gather list is too long for the hardware.
2163  */
2164 int
2165 parse_pkt(struct adapter *sc, struct mbuf **mp)
2166 {
2167 	struct mbuf *m0 = *mp, *m;
2168 	int rc, nsegs, defragged = 0, offset;
2169 	struct ether_header *eh;
2170 	void *l3hdr;
2171 #if defined(INET) || defined(INET6)
2172 	struct tcphdr *tcp;
2173 #endif
2174 	uint16_t eh_type;
2175 
2176 	M_ASSERTPKTHDR(m0);
2177 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2178 		rc = EINVAL;
2179 fail:
2180 		m_freem(m0);
2181 		*mp = NULL;
2182 		return (rc);
2183 	}
2184 restart:
2185 	/*
2186 	 * First count the number of gather list segments in the payload.
2187 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2188 	 */
2189 	M_ASSERTPKTHDR(m0);
2190 	MPASS(m0->m_pkthdr.len > 0);
2191 	nsegs = count_mbuf_nsegs(m0);
2192 	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2193 		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2194 			rc = EFBIG;
2195 			goto fail;
2196 		}
2197 		*mp = m0 = m;	/* update caller's copy after defrag */
2198 		goto restart;
2199 	}
2200 
2201 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
2202 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2203 		if (m0 == NULL) {
2204 			/* Should have left well enough alone. */
2205 			rc = EFBIG;
2206 			goto fail;
2207 		}
2208 		*mp = m0;	/* update caller's copy after pullup */
2209 		goto restart;
2210 	}
2211 	set_mbuf_nsegs(m0, nsegs);
2212 	if (sc->flags & IS_VF)
2213 		set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0)));
2214 	else
2215 		set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2216 
2217 	if (!needs_tso(m0) &&
2218 	    !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0))))
2219 		return (0);
2220 
2221 	m = m0;
2222 	eh = mtod(m, struct ether_header *);
2223 	eh_type = ntohs(eh->ether_type);
2224 	if (eh_type == ETHERTYPE_VLAN) {
2225 		struct ether_vlan_header *evh = (void *)eh;
2226 
2227 		eh_type = ntohs(evh->evl_proto);
2228 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2229 	} else
2230 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2231 
2232 	offset = 0;
2233 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2234 
2235 	switch (eh_type) {
2236 #ifdef INET6
2237 	case ETHERTYPE_IPV6:
2238 	{
2239 		struct ip6_hdr *ip6 = l3hdr;
2240 
2241 		MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP);
2242 
2243 		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2244 		break;
2245 	}
2246 #endif
2247 #ifdef INET
2248 	case ETHERTYPE_IP:
2249 	{
2250 		struct ip *ip = l3hdr;
2251 
2252 		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2253 		break;
2254 	}
2255 #endif
2256 	default:
2257 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2258 		    " with the same INET/INET6 options as the kernel.",
2259 		    __func__, eh_type);
2260 	}
2261 
2262 #if defined(INET) || defined(INET6)
2263 	if (needs_tso(m0)) {
2264 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2265 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2266 	}
2267 #endif
2268 	MPASS(m0 == *mp);
2269 	return (0);
2270 }
2271 
2272 void *
2273 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2274 {
2275 	struct sge_eq *eq = &wrq->eq;
2276 	struct adapter *sc = wrq->adapter;
2277 	int ndesc, available;
2278 	struct wrqe *wr;
2279 	void *w;
2280 
2281 	MPASS(len16 > 0);
2282 	ndesc = howmany(len16, EQ_ESIZE / 16);
2283 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2284 
2285 	EQ_LOCK(eq);
2286 
2287 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2288 		drain_wrq_wr_list(sc, wrq);
2289 
2290 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2291 slowpath:
2292 		EQ_UNLOCK(eq);
2293 		wr = alloc_wrqe(len16 * 16, wrq);
2294 		if (__predict_false(wr == NULL))
2295 			return (NULL);
2296 		cookie->pidx = -1;
2297 		cookie->ndesc = ndesc;
2298 		return (&wr->wr);
2299 	}
2300 
2301 	eq->cidx = read_hw_cidx(eq);
2302 	if (eq->pidx == eq->cidx)
2303 		available = eq->sidx - 1;
2304 	else
2305 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2306 	if (available < ndesc)
2307 		goto slowpath;
2308 
2309 	cookie->pidx = eq->pidx;
2310 	cookie->ndesc = ndesc;
2311 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2312 
2313 	w = &eq->desc[eq->pidx];
2314 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2315 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2316 		w = &wrq->ss[0];
2317 		wrq->ss_pidx = cookie->pidx;
2318 		wrq->ss_len = len16 * 16;
2319 	}
2320 
2321 	EQ_UNLOCK(eq);
2322 
2323 	return (w);
2324 }
2325 
2326 void
2327 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2328 {
2329 	struct sge_eq *eq = &wrq->eq;
2330 	struct adapter *sc = wrq->adapter;
2331 	int ndesc, pidx;
2332 	struct wrq_cookie *prev, *next;
2333 
2334 	if (cookie->pidx == -1) {
2335 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2336 
2337 		t4_wrq_tx(sc, wr);
2338 		return;
2339 	}
2340 
2341 	if (__predict_false(w == &wrq->ss[0])) {
2342 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2343 
2344 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2345 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2346 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2347 		wrq->tx_wrs_ss++;
2348 	} else
2349 		wrq->tx_wrs_direct++;
2350 
2351 	EQ_LOCK(eq);
2352 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2353 	pidx = cookie->pidx;
2354 	MPASS(pidx >= 0 && pidx < eq->sidx);
2355 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2356 	next = TAILQ_NEXT(cookie, link);
2357 	if (prev == NULL) {
2358 		MPASS(pidx == eq->dbidx);
2359 		if (next == NULL || ndesc >= 16)
2360 			ring_eq_db(wrq->adapter, eq, ndesc);
2361 		else {
2362 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2363 			next->pidx = pidx;
2364 			next->ndesc += ndesc;
2365 		}
2366 	} else {
2367 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2368 		prev->ndesc += ndesc;
2369 	}
2370 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2371 
2372 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2373 		drain_wrq_wr_list(sc, wrq);
2374 
2375 #ifdef INVARIANTS
2376 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2377 		/* Doorbell must have caught up to the pidx. */
2378 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2379 	}
2380 #endif
2381 	EQ_UNLOCK(eq);
2382 }
2383 
2384 static u_int
2385 can_resume_eth_tx(struct mp_ring *r)
2386 {
2387 	struct sge_eq *eq = r->cookie;
2388 
2389 	return (total_available_tx_desc(eq) > eq->sidx / 8);
2390 }
2391 
2392 static inline int
2393 cannot_use_txpkts(struct mbuf *m)
2394 {
2395 	/* maybe put a GL limit too, to avoid silliness? */
2396 
2397 	return (needs_tso(m));
2398 }
2399 
2400 static inline int
2401 discard_tx(struct sge_eq *eq)
2402 {
2403 
2404 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
2405 }
2406 
2407 /*
2408  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2409  * be consumed.  Return the actual number consumed.  0 indicates a stall.
2410  */
2411 static u_int
2412 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2413 {
2414 	struct sge_txq *txq = r->cookie;
2415 	struct sge_eq *eq = &txq->eq;
2416 	struct ifnet *ifp = txq->ifp;
2417 	struct vi_info *vi = ifp->if_softc;
2418 	struct port_info *pi = vi->pi;
2419 	struct adapter *sc = pi->adapter;
2420 	u_int total, remaining;		/* # of packets */
2421 	u_int available, dbdiff;	/* # of hardware descriptors */
2422 	u_int n, next_cidx;
2423 	struct mbuf *m0, *tail;
2424 	struct txpkts txp;
2425 	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2426 
2427 	remaining = IDXDIFF(pidx, cidx, r->size);
2428 	MPASS(remaining > 0);	/* Must not be called without work to do. */
2429 	total = 0;
2430 
2431 	TXQ_LOCK(txq);
2432 	if (__predict_false(discard_tx(eq))) {
2433 		while (cidx != pidx) {
2434 			m0 = r->items[cidx];
2435 			m_freem(m0);
2436 			if (++cidx == r->size)
2437 				cidx = 0;
2438 		}
2439 		reclaim_tx_descs(txq, 2048);
2440 		total = remaining;
2441 		goto done;
2442 	}
2443 
2444 	/* How many hardware descriptors do we have readily available. */
2445 	if (eq->pidx == eq->cidx)
2446 		available = eq->sidx - 1;
2447 	else
2448 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2449 	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2450 
2451 	while (remaining > 0) {
2452 
2453 		m0 = r->items[cidx];
2454 		M_ASSERTPKTHDR(m0);
2455 		MPASS(m0->m_nextpkt == NULL);
2456 
2457 		if (available < SGE_MAX_WR_NDESC) {
2458 			available += reclaim_tx_descs(txq, 64);
2459 			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2460 				break;	/* out of descriptors */
2461 		}
2462 
2463 		next_cidx = cidx + 1;
2464 		if (__predict_false(next_cidx == r->size))
2465 			next_cidx = 0;
2466 
2467 		wr = (void *)&eq->desc[eq->pidx];
2468 		if (sc->flags & IS_VF) {
2469 			total++;
2470 			remaining--;
2471 			ETHER_BPF_MTAP(ifp, m0);
2472 			n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0,
2473 			    available);
2474 		} else if (remaining > 1 &&
2475 		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2476 
2477 			/* pkts at cidx, next_cidx should both be in txp. */
2478 			MPASS(txp.npkt == 2);
2479 			tail = r->items[next_cidx];
2480 			MPASS(tail->m_nextpkt == NULL);
2481 			ETHER_BPF_MTAP(ifp, m0);
2482 			ETHER_BPF_MTAP(ifp, tail);
2483 			m0->m_nextpkt = tail;
2484 
2485 			if (__predict_false(++next_cidx == r->size))
2486 				next_cidx = 0;
2487 
2488 			while (next_cidx != pidx) {
2489 				if (add_to_txpkts(r->items[next_cidx], &txp,
2490 				    available) != 0)
2491 					break;
2492 				tail->m_nextpkt = r->items[next_cidx];
2493 				tail = tail->m_nextpkt;
2494 				ETHER_BPF_MTAP(ifp, tail);
2495 				if (__predict_false(++next_cidx == r->size))
2496 					next_cidx = 0;
2497 			}
2498 
2499 			n = write_txpkts_wr(txq, wr, m0, &txp, available);
2500 			total += txp.npkt;
2501 			remaining -= txp.npkt;
2502 		} else {
2503 			total++;
2504 			remaining--;
2505 			ETHER_BPF_MTAP(ifp, m0);
2506 			n = write_txpkt_wr(txq, (void *)wr, m0, available);
2507 		}
2508 		MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
2509 
2510 		available -= n;
2511 		dbdiff += n;
2512 		IDXINCR(eq->pidx, n, eq->sidx);
2513 
2514 		if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2515 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2516 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2517 			    F_FW_WR_EQUEQ);
2518 			eq->equeqidx = eq->pidx;
2519 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2520 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2521 			eq->equeqidx = eq->pidx;
2522 		}
2523 
2524 		if (dbdiff >= 16 && remaining >= 4) {
2525 			ring_eq_db(sc, eq, dbdiff);
2526 			available += reclaim_tx_descs(txq, 4 * dbdiff);
2527 			dbdiff = 0;
2528 		}
2529 
2530 		cidx = next_cidx;
2531 	}
2532 	if (dbdiff != 0) {
2533 		ring_eq_db(sc, eq, dbdiff);
2534 		reclaim_tx_descs(txq, 32);
2535 	}
2536 done:
2537 	TXQ_UNLOCK(txq);
2538 
2539 	return (total);
2540 }
2541 
2542 static inline void
2543 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2544     int qsize)
2545 {
2546 
2547 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2548 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2549 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2550 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2551 
2552 	iq->flags = 0;
2553 	iq->adapter = sc;
2554 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2555 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2556 	if (pktc_idx >= 0) {
2557 		iq->intr_params |= F_QINTR_CNT_EN;
2558 		iq->intr_pktc_idx = pktc_idx;
2559 	}
2560 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2561 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
2562 }
2563 
2564 static inline void
2565 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
2566 {
2567 
2568 	fl->qsize = qsize;
2569 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2570 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2571 	if (sc->flags & BUF_PACKING_OK &&
2572 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
2573 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
2574 		fl->flags |= FL_BUF_PACKING;
2575 	find_best_refill_source(sc, fl, maxp);
2576 	find_safe_refill_source(sc, fl);
2577 }
2578 
2579 static inline void
2580 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
2581     uint8_t tx_chan, uint16_t iqid, char *name)
2582 {
2583 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2584 
2585 	eq->flags = eqtype & EQ_TYPEMASK;
2586 	eq->tx_chan = tx_chan;
2587 	eq->iqid = iqid;
2588 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2589 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2590 }
2591 
2592 static int
2593 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2594     bus_dmamap_t *map, bus_addr_t *pa, void **va)
2595 {
2596 	int rc;
2597 
2598 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2599 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2600 	if (rc != 0) {
2601 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2602 		goto done;
2603 	}
2604 
2605 	rc = bus_dmamem_alloc(*tag, va,
2606 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2607 	if (rc != 0) {
2608 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2609 		goto done;
2610 	}
2611 
2612 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2613 	if (rc != 0) {
2614 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2615 		goto done;
2616 	}
2617 done:
2618 	if (rc)
2619 		free_ring(sc, *tag, *map, *pa, *va);
2620 
2621 	return (rc);
2622 }
2623 
2624 static int
2625 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2626     bus_addr_t pa, void *va)
2627 {
2628 	if (pa)
2629 		bus_dmamap_unload(tag, map);
2630 	if (va)
2631 		bus_dmamem_free(tag, va, map);
2632 	if (tag)
2633 		bus_dma_tag_destroy(tag);
2634 
2635 	return (0);
2636 }
2637 
2638 /*
2639  * Allocates the ring for an ingress queue and an optional freelist.  If the
2640  * freelist is specified it will be allocated and then associated with the
2641  * ingress queue.
2642  *
2643  * Returns errno on failure.  Resources allocated up to that point may still be
2644  * allocated.  Caller is responsible for cleanup in case this function fails.
2645  *
2646  * If the ingress queue will take interrupts directly then the intr_idx
2647  * specifies the vector, starting from 0.  -1 means the interrupts for this
2648  * queue should be forwarded to the fwq.
2649  */
2650 static int
2651 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
2652     int intr_idx, int cong)
2653 {
2654 	int rc, i, cntxt_id;
2655 	size_t len;
2656 	struct fw_iq_cmd c;
2657 	struct port_info *pi = vi->pi;
2658 	struct adapter *sc = iq->adapter;
2659 	struct sge_params *sp = &sc->params.sge;
2660 	__be32 v = 0;
2661 
2662 	len = iq->qsize * IQ_ESIZE;
2663 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2664 	    (void **)&iq->desc);
2665 	if (rc != 0)
2666 		return (rc);
2667 
2668 	bzero(&c, sizeof(c));
2669 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2670 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2671 	    V_FW_IQ_CMD_VFN(0));
2672 
2673 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2674 	    FW_LEN16(c));
2675 
2676 	/* Special handling for firmware event queue */
2677 	if (iq == &sc->sge.fwq)
2678 		v |= F_FW_IQ_CMD_IQASYNCH;
2679 
2680 	if (intr_idx < 0) {
2681 		/* Forwarded interrupts, all headed to fwq */
2682 		v |= F_FW_IQ_CMD_IQANDST;
2683 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
2684 	} else {
2685 		KASSERT(intr_idx < sc->intr_count,
2686 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2687 		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2688 	}
2689 
2690 	c.type_to_iqandstindex = htobe32(v |
2691 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2692 	    V_FW_IQ_CMD_VIID(vi->viid) |
2693 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2694 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2695 	    F_FW_IQ_CMD_IQGTSMODE |
2696 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2697 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2698 	c.iqsize = htobe16(iq->qsize);
2699 	c.iqaddr = htobe64(iq->ba);
2700 	if (cong >= 0)
2701 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2702 
2703 	if (fl) {
2704 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2705 
2706 		len = fl->qsize * EQ_ESIZE;
2707 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2708 		    &fl->ba, (void **)&fl->desc);
2709 		if (rc)
2710 			return (rc);
2711 
2712 		/* Allocate space for one software descriptor per buffer. */
2713 		rc = alloc_fl_sdesc(fl);
2714 		if (rc != 0) {
2715 			device_printf(sc->dev,
2716 			    "failed to setup fl software descriptors: %d\n",
2717 			    rc);
2718 			return (rc);
2719 		}
2720 
2721 		if (fl->flags & FL_BUF_PACKING) {
2722 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
2723 			fl->buf_boundary = sp->pack_boundary;
2724 		} else {
2725 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
2726 			fl->buf_boundary = 16;
2727 		}
2728 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
2729 			fl->buf_boundary = sp->pad_boundary;
2730 
2731 		c.iqns_to_fl0congen |=
2732 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2733 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2734 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2735 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2736 			    0));
2737 		if (cong >= 0) {
2738 			c.iqns_to_fl0congen |=
2739 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2740 				    F_FW_IQ_CMD_FL0CONGCIF |
2741 				    F_FW_IQ_CMD_FL0CONGEN);
2742 		}
2743 		c.fl0dcaen_to_fl0cidxfthresh =
2744 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
2745 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) |
2746 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
2747 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
2748 		c.fl0size = htobe16(fl->qsize);
2749 		c.fl0addr = htobe64(fl->ba);
2750 	}
2751 
2752 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2753 	if (rc != 0) {
2754 		device_printf(sc->dev,
2755 		    "failed to create ingress queue: %d\n", rc);
2756 		return (rc);
2757 	}
2758 
2759 	iq->cidx = 0;
2760 	iq->gen = F_RSPD_GEN;
2761 	iq->intr_next = iq->intr_params;
2762 	iq->cntxt_id = be16toh(c.iqid);
2763 	iq->abs_id = be16toh(c.physiqid);
2764 	iq->flags |= IQ_ALLOCATED;
2765 
2766 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2767 	if (cntxt_id >= sc->sge.niq) {
2768 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2769 		    cntxt_id, sc->sge.niq - 1);
2770 	}
2771 	sc->sge.iqmap[cntxt_id] = iq;
2772 
2773 	if (fl) {
2774 		u_int qid;
2775 
2776 		iq->flags |= IQ_HAS_FL;
2777 		fl->cntxt_id = be16toh(c.fl0id);
2778 		fl->pidx = fl->cidx = 0;
2779 
2780 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2781 		if (cntxt_id >= sc->sge.neq) {
2782 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2783 			    __func__, cntxt_id, sc->sge.neq - 1);
2784 		}
2785 		sc->sge.eqmap[cntxt_id] = (void *)fl;
2786 
2787 		qid = fl->cntxt_id;
2788 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
2789 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
2790 			uint32_t mask = (1 << s_qpp) - 1;
2791 			volatile uint8_t *udb;
2792 
2793 			udb = sc->udbs_base + UDBS_DB_OFFSET;
2794 			udb += (qid >> s_qpp) << PAGE_SHIFT;
2795 			qid &= mask;
2796 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
2797 				udb += qid << UDBS_SEG_SHIFT;
2798 				qid = 0;
2799 			}
2800 			fl->udb = (volatile void *)udb;
2801 		}
2802 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
2803 
2804 		FL_LOCK(fl);
2805 		/* Enough to make sure the SGE doesn't think it's starved */
2806 		refill_fl(sc, fl, fl->lowat);
2807 		FL_UNLOCK(fl);
2808 	}
2809 
2810 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) {
2811 		uint32_t param, val;
2812 
2813 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2814 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2815 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2816 		if (cong == 0)
2817 			val = 1 << 19;
2818 		else {
2819 			val = 2 << 19;
2820 			for (i = 0; i < 4; i++) {
2821 				if (cong & (1 << i))
2822 					val |= 1 << (i << 2);
2823 			}
2824 		}
2825 
2826 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2827 		if (rc != 0) {
2828 			/* report error but carry on */
2829 			device_printf(sc->dev,
2830 			    "failed to set congestion manager context for "
2831 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2832 		}
2833 	}
2834 
2835 	/* Enable IQ interrupts */
2836 	atomic_store_rel_int(&iq->state, IQS_IDLE);
2837 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
2838 	    V_INGRESSQID(iq->cntxt_id));
2839 
2840 	return (0);
2841 }
2842 
2843 static int
2844 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
2845 {
2846 	int rc;
2847 	struct adapter *sc = iq->adapter;
2848 	device_t dev;
2849 
2850 	if (sc == NULL)
2851 		return (0);	/* nothing to do */
2852 
2853 	dev = vi ? vi->dev : sc->dev;
2854 
2855 	if (iq->flags & IQ_ALLOCATED) {
2856 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2857 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2858 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2859 		if (rc != 0) {
2860 			device_printf(dev,
2861 			    "failed to free queue %p: %d\n", iq, rc);
2862 			return (rc);
2863 		}
2864 		iq->flags &= ~IQ_ALLOCATED;
2865 	}
2866 
2867 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2868 
2869 	bzero(iq, sizeof(*iq));
2870 
2871 	if (fl) {
2872 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2873 		    fl->desc);
2874 
2875 		if (fl->sdesc)
2876 			free_fl_sdesc(sc, fl);
2877 
2878 		if (mtx_initialized(&fl->fl_lock))
2879 			mtx_destroy(&fl->fl_lock);
2880 
2881 		bzero(fl, sizeof(*fl));
2882 	}
2883 
2884 	return (0);
2885 }
2886 
2887 static void
2888 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2889     struct sge_iq *iq)
2890 {
2891 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2892 
2893 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
2894 	    "bus address of descriptor ring");
2895 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
2896 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
2897 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
2898 	    CTLTYPE_INT | CTLFLAG_RD, &iq->abs_id, 0, sysctl_uint16, "I",
2899 	    "absolute id of the queue");
2900 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2901 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cntxt_id, 0, sysctl_uint16, "I",
2902 	    "SGE context id of the queue");
2903 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2904 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cidx, 0, sysctl_uint16, "I",
2905 	    "consumer index");
2906 }
2907 
2908 static void
2909 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
2910     struct sysctl_oid *oid, struct sge_fl *fl)
2911 {
2912 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2913 
2914 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2915 	    "freelist");
2916 	children = SYSCTL_CHILDREN(oid);
2917 
2918 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
2919 	    &fl->ba, "bus address of descriptor ring");
2920 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
2921 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
2922 	    "desc ring size in bytes");
2923 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2924 	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2925 	    "SGE context id of the freelist");
2926 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
2927 	    fl_pad ? 1 : 0, "padding enabled");
2928 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
2929 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
2930 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2931 	    0, "consumer index");
2932 	if (fl->flags & FL_BUF_PACKING) {
2933 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2934 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2935 	}
2936 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2937 	    0, "producer index");
2938 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2939 	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2940 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2941 	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2942 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2943 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2944 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2945 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2946 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2947 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2948 }
2949 
2950 static int
2951 alloc_fwq(struct adapter *sc)
2952 {
2953 	int rc, intr_idx;
2954 	struct sge_iq *fwq = &sc->sge.fwq;
2955 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2956 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2957 
2958 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
2959 	if (sc->flags & IS_VF)
2960 		intr_idx = 0;
2961 	else
2962 		intr_idx = sc->intr_count > 1 ? 1 : 0;
2963 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
2964 	if (rc != 0) {
2965 		device_printf(sc->dev,
2966 		    "failed to create firmware event queue: %d\n", rc);
2967 		return (rc);
2968 	}
2969 
2970 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2971 	    NULL, "firmware event queue");
2972 	add_iq_sysctls(&sc->ctx, oid, fwq);
2973 
2974 	return (0);
2975 }
2976 
2977 static int
2978 free_fwq(struct adapter *sc)
2979 {
2980 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2981 }
2982 
2983 static int
2984 alloc_mgmtq(struct adapter *sc)
2985 {
2986 	int rc;
2987 	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2988 	char name[16];
2989 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2990 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2991 
2992 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2993 	    NULL, "management queue");
2994 
2995 	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2996 	init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2997 	    sc->sge.fwq.cntxt_id, name);
2998 	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2999 	if (rc != 0) {
3000 		device_printf(sc->dev,
3001 		    "failed to create management queue: %d\n", rc);
3002 		return (rc);
3003 	}
3004 
3005 	return (0);
3006 }
3007 
3008 static int
3009 free_mgmtq(struct adapter *sc)
3010 {
3011 
3012 	return free_wrq(sc, &sc->sge.mgmtq);
3013 }
3014 
3015 int
3016 tnl_cong(struct port_info *pi, int drop)
3017 {
3018 
3019 	if (drop == -1)
3020 		return (-1);
3021 	else if (drop == 1)
3022 		return (0);
3023 	else
3024 		return (pi->rx_e_chan_map);
3025 }
3026 
3027 static int
3028 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
3029     struct sysctl_oid *oid)
3030 {
3031 	int rc;
3032 	struct adapter *sc = vi->pi->adapter;
3033 	struct sysctl_oid_list *children;
3034 	char name[16];
3035 
3036 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
3037 	    tnl_cong(vi->pi, cong_drop));
3038 	if (rc != 0)
3039 		return (rc);
3040 
3041 	if (idx == 0)
3042 		sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3043 	else
3044 		KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3045 		    ("iq_base mismatch"));
3046 	KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3047 	    ("PF with non-zero iq_base"));
3048 
3049 	/*
3050 	 * The freelist is just barely above the starvation threshold right now,
3051 	 * fill it up a bit more.
3052 	 */
3053 	FL_LOCK(&rxq->fl);
3054 	refill_fl(sc, &rxq->fl, 128);
3055 	FL_UNLOCK(&rxq->fl);
3056 
3057 #if defined(INET) || defined(INET6)
3058 	rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs);
3059 	if (rc != 0)
3060 		return (rc);
3061 	MPASS(rxq->lro.ifp == vi->ifp);	/* also indicates LRO init'ed */
3062 
3063 	if (vi->ifp->if_capenable & IFCAP_LRO)
3064 		rxq->iq.flags |= IQ_LRO_ENABLED;
3065 #endif
3066 	rxq->ifp = vi->ifp;
3067 
3068 	children = SYSCTL_CHILDREN(oid);
3069 
3070 	snprintf(name, sizeof(name), "%d", idx);
3071 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3072 	    NULL, "rx queue");
3073 	children = SYSCTL_CHILDREN(oid);
3074 
3075 	add_iq_sysctls(&vi->ctx, oid, &rxq->iq);
3076 #if defined(INET) || defined(INET6)
3077 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3078 	    &rxq->lro.lro_queued, 0, NULL);
3079 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3080 	    &rxq->lro.lro_flushed, 0, NULL);
3081 #endif
3082 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3083 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3084 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3085 	    CTLFLAG_RD, &rxq->vlan_extraction,
3086 	    "# of times hardware extracted 802.1Q tag");
3087 
3088 	add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl);
3089 
3090 	return (rc);
3091 }
3092 
3093 static int
3094 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3095 {
3096 	int rc;
3097 
3098 #if defined(INET) || defined(INET6)
3099 	if (rxq->lro.ifp) {
3100 		tcp_lro_free(&rxq->lro);
3101 		rxq->lro.ifp = NULL;
3102 	}
3103 #endif
3104 
3105 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3106 	if (rc == 0)
3107 		bzero(rxq, sizeof(*rxq));
3108 
3109 	return (rc);
3110 }
3111 
3112 #ifdef TCP_OFFLOAD
3113 static int
3114 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3115     int intr_idx, int idx, struct sysctl_oid *oid)
3116 {
3117 	struct port_info *pi = vi->pi;
3118 	int rc;
3119 	struct sysctl_oid_list *children;
3120 	char name[16];
3121 
3122 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0);
3123 	if (rc != 0)
3124 		return (rc);
3125 
3126 	children = SYSCTL_CHILDREN(oid);
3127 
3128 	snprintf(name, sizeof(name), "%d", idx);
3129 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3130 	    NULL, "rx queue");
3131 	add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq);
3132 	add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl);
3133 
3134 	return (rc);
3135 }
3136 
3137 static int
3138 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3139 {
3140 	int rc;
3141 
3142 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3143 	if (rc == 0)
3144 		bzero(ofld_rxq, sizeof(*ofld_rxq));
3145 
3146 	return (rc);
3147 }
3148 #endif
3149 
3150 #ifdef DEV_NETMAP
3151 static int
3152 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3153     int idx, struct sysctl_oid *oid)
3154 {
3155 	int rc;
3156 	struct sysctl_oid_list *children;
3157 	struct sysctl_ctx_list *ctx;
3158 	char name[16];
3159 	size_t len;
3160 	struct adapter *sc = vi->pi->adapter;
3161 	struct netmap_adapter *na = NA(vi->ifp);
3162 
3163 	MPASS(na != NULL);
3164 
3165 	len = vi->qsize_rxq * IQ_ESIZE;
3166 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3167 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3168 	if (rc != 0)
3169 		return (rc);
3170 
3171 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3172 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3173 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3174 	if (rc != 0)
3175 		return (rc);
3176 
3177 	nm_rxq->vi = vi;
3178 	nm_rxq->nid = idx;
3179 	nm_rxq->iq_cidx = 0;
3180 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3181 	nm_rxq->iq_gen = F_RSPD_GEN;
3182 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3183 	nm_rxq->fl_sidx = na->num_rx_desc;
3184 	nm_rxq->intr_idx = intr_idx;
3185 	nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID;
3186 
3187 	ctx = &vi->ctx;
3188 	children = SYSCTL_CHILDREN(oid);
3189 
3190 	snprintf(name, sizeof(name), "%d", idx);
3191 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3192 	    "rx queue");
3193 	children = SYSCTL_CHILDREN(oid);
3194 
3195 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3196 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3197 	    "I", "absolute id of the queue");
3198 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3199 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3200 	    "I", "SGE context id of the queue");
3201 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3202 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3203 	    "consumer index");
3204 
3205 	children = SYSCTL_CHILDREN(oid);
3206 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3207 	    "freelist");
3208 	children = SYSCTL_CHILDREN(oid);
3209 
3210 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3211 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3212 	    "I", "SGE context id of the freelist");
3213 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3214 	    &nm_rxq->fl_cidx, 0, "consumer index");
3215 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3216 	    &nm_rxq->fl_pidx, 0, "producer index");
3217 
3218 	return (rc);
3219 }
3220 
3221 
3222 static int
3223 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3224 {
3225 	struct adapter *sc = vi->pi->adapter;
3226 
3227 	if (vi->flags & VI_INIT_DONE)
3228 		MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID);
3229 	else
3230 		MPASS(nm_rxq->iq_cntxt_id == 0);
3231 
3232 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3233 	    nm_rxq->iq_desc);
3234 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3235 	    nm_rxq->fl_desc);
3236 
3237 	return (0);
3238 }
3239 
3240 static int
3241 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3242     struct sysctl_oid *oid)
3243 {
3244 	int rc;
3245 	size_t len;
3246 	struct port_info *pi = vi->pi;
3247 	struct adapter *sc = pi->adapter;
3248 	struct netmap_adapter *na = NA(vi->ifp);
3249 	char name[16];
3250 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3251 
3252 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3253 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3254 	    &nm_txq->ba, (void **)&nm_txq->desc);
3255 	if (rc)
3256 		return (rc);
3257 
3258 	nm_txq->pidx = nm_txq->cidx = 0;
3259 	nm_txq->sidx = na->num_tx_desc;
3260 	nm_txq->nid = idx;
3261 	nm_txq->iqidx = iqidx;
3262 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3263 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) |
3264 	    V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) |
3265 	    V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid)));
3266 	nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID;
3267 
3268 	snprintf(name, sizeof(name), "%d", idx);
3269 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3270 	    NULL, "netmap tx queue");
3271 	children = SYSCTL_CHILDREN(oid);
3272 
3273 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3274 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3275 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3276 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3277 	    "consumer index");
3278 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3279 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3280 	    "producer index");
3281 
3282 	return (rc);
3283 }
3284 
3285 static int
3286 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3287 {
3288 	struct adapter *sc = vi->pi->adapter;
3289 
3290 	if (vi->flags & VI_INIT_DONE)
3291 		MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID);
3292 	else
3293 		MPASS(nm_txq->cntxt_id == 0);
3294 
3295 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3296 	    nm_txq->desc);
3297 
3298 	return (0);
3299 }
3300 #endif
3301 
3302 static int
3303 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3304 {
3305 	int rc, cntxt_id;
3306 	struct fw_eq_ctrl_cmd c;
3307 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3308 
3309 	bzero(&c, sizeof(c));
3310 
3311 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3312 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3313 	    V_FW_EQ_CTRL_CMD_VFN(0));
3314 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3315 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3316 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3317 	c.physeqid_pkd = htobe32(0);
3318 	c.fetchszm_to_iqid =
3319 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3320 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3321 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3322 	c.dcaen_to_eqsize =
3323 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3324 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3325 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
3326 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3327 	c.eqaddr = htobe64(eq->ba);
3328 
3329 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3330 	if (rc != 0) {
3331 		device_printf(sc->dev,
3332 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3333 		return (rc);
3334 	}
3335 	eq->flags |= EQ_ALLOCATED;
3336 
3337 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3338 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3339 	if (cntxt_id >= sc->sge.neq)
3340 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3341 		cntxt_id, sc->sge.neq - 1);
3342 	sc->sge.eqmap[cntxt_id] = eq;
3343 
3344 	return (rc);
3345 }
3346 
3347 static int
3348 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3349 {
3350 	int rc, cntxt_id;
3351 	struct fw_eq_eth_cmd c;
3352 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3353 
3354 	bzero(&c, sizeof(c));
3355 
3356 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3357 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3358 	    V_FW_EQ_ETH_CMD_VFN(0));
3359 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3360 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3361 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3362 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3363 	c.fetchszm_to_iqid =
3364 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3365 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3366 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3367 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3368 	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3369 	    V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3370 	c.eqaddr = htobe64(eq->ba);
3371 
3372 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3373 	if (rc != 0) {
3374 		device_printf(vi->dev,
3375 		    "failed to create Ethernet egress queue: %d\n", rc);
3376 		return (rc);
3377 	}
3378 	eq->flags |= EQ_ALLOCATED;
3379 
3380 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3381 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
3382 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3383 	if (cntxt_id >= sc->sge.neq)
3384 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3385 		cntxt_id, sc->sge.neq - 1);
3386 	sc->sge.eqmap[cntxt_id] = eq;
3387 
3388 	return (rc);
3389 }
3390 
3391 #ifdef TCP_OFFLOAD
3392 static int
3393 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3394 {
3395 	int rc, cntxt_id;
3396 	struct fw_eq_ofld_cmd c;
3397 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3398 
3399 	bzero(&c, sizeof(c));
3400 
3401 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3402 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3403 	    V_FW_EQ_OFLD_CMD_VFN(0));
3404 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3405 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3406 	c.fetchszm_to_iqid =
3407 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3408 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3409 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3410 	c.dcaen_to_eqsize =
3411 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3412 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3413 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3414 	c.eqaddr = htobe64(eq->ba);
3415 
3416 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3417 	if (rc != 0) {
3418 		device_printf(vi->dev,
3419 		    "failed to create egress queue for TCP offload: %d\n", rc);
3420 		return (rc);
3421 	}
3422 	eq->flags |= EQ_ALLOCATED;
3423 
3424 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3425 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3426 	if (cntxt_id >= sc->sge.neq)
3427 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3428 		cntxt_id, sc->sge.neq - 1);
3429 	sc->sge.eqmap[cntxt_id] = eq;
3430 
3431 	return (rc);
3432 }
3433 #endif
3434 
3435 static int
3436 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3437 {
3438 	int rc, qsize;
3439 	size_t len;
3440 
3441 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3442 
3443 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3444 	len = qsize * EQ_ESIZE;
3445 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3446 	    &eq->ba, (void **)&eq->desc);
3447 	if (rc)
3448 		return (rc);
3449 
3450 	eq->pidx = eq->cidx = 0;
3451 	eq->equeqidx = eq->dbidx = 0;
3452 	eq->doorbells = sc->doorbells;
3453 
3454 	switch (eq->flags & EQ_TYPEMASK) {
3455 	case EQ_CTRL:
3456 		rc = ctrl_eq_alloc(sc, eq);
3457 		break;
3458 
3459 	case EQ_ETH:
3460 		rc = eth_eq_alloc(sc, vi, eq);
3461 		break;
3462 
3463 #ifdef TCP_OFFLOAD
3464 	case EQ_OFLD:
3465 		rc = ofld_eq_alloc(sc, vi, eq);
3466 		break;
3467 #endif
3468 
3469 	default:
3470 		panic("%s: invalid eq type %d.", __func__,
3471 		    eq->flags & EQ_TYPEMASK);
3472 	}
3473 	if (rc != 0) {
3474 		device_printf(sc->dev,
3475 		    "failed to allocate egress queue(%d): %d\n",
3476 		    eq->flags & EQ_TYPEMASK, rc);
3477 	}
3478 
3479 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3480 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3481 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3482 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3483 		uint32_t mask = (1 << s_qpp) - 1;
3484 		volatile uint8_t *udb;
3485 
3486 		udb = sc->udbs_base + UDBS_DB_OFFSET;
3487 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3488 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3489 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3490 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3491 		else {
3492 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3493 			eq->udb_qid = 0;
3494 		}
3495 		eq->udb = (volatile void *)udb;
3496 	}
3497 
3498 	return (rc);
3499 }
3500 
3501 static int
3502 free_eq(struct adapter *sc, struct sge_eq *eq)
3503 {
3504 	int rc;
3505 
3506 	if (eq->flags & EQ_ALLOCATED) {
3507 		switch (eq->flags & EQ_TYPEMASK) {
3508 		case EQ_CTRL:
3509 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3510 			    eq->cntxt_id);
3511 			break;
3512 
3513 		case EQ_ETH:
3514 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3515 			    eq->cntxt_id);
3516 			break;
3517 
3518 #ifdef TCP_OFFLOAD
3519 		case EQ_OFLD:
3520 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3521 			    eq->cntxt_id);
3522 			break;
3523 #endif
3524 
3525 		default:
3526 			panic("%s: invalid eq type %d.", __func__,
3527 			    eq->flags & EQ_TYPEMASK);
3528 		}
3529 		if (rc != 0) {
3530 			device_printf(sc->dev,
3531 			    "failed to free egress queue (%d): %d\n",
3532 			    eq->flags & EQ_TYPEMASK, rc);
3533 			return (rc);
3534 		}
3535 		eq->flags &= ~EQ_ALLOCATED;
3536 	}
3537 
3538 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3539 
3540 	if (mtx_initialized(&eq->eq_lock))
3541 		mtx_destroy(&eq->eq_lock);
3542 
3543 	bzero(eq, sizeof(*eq));
3544 	return (0);
3545 }
3546 
3547 static int
3548 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
3549     struct sysctl_oid *oid)
3550 {
3551 	int rc;
3552 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
3553 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3554 
3555 	rc = alloc_eq(sc, vi, &wrq->eq);
3556 	if (rc)
3557 		return (rc);
3558 
3559 	wrq->adapter = sc;
3560 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
3561 	TAILQ_INIT(&wrq->incomplete_wrs);
3562 	STAILQ_INIT(&wrq->wr_list);
3563 	wrq->nwr_pending = 0;
3564 	wrq->ndesc_needed = 0;
3565 
3566 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3567 	    &wrq->eq.ba, "bus address of descriptor ring");
3568 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3569 	    wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len,
3570 	    "desc ring size in bytes");
3571 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3572 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3573 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3574 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3575 	    "consumer index");
3576 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3577 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3578 	    "producer index");
3579 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3580 	    wrq->eq.sidx, "status page index");
3581 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
3582 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
3583 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
3584 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
3585 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
3586 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
3587 
3588 	return (rc);
3589 }
3590 
3591 static int
3592 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3593 {
3594 	int rc;
3595 
3596 	rc = free_eq(sc, &wrq->eq);
3597 	if (rc)
3598 		return (rc);
3599 
3600 	bzero(wrq, sizeof(*wrq));
3601 	return (0);
3602 }
3603 
3604 static int
3605 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
3606     struct sysctl_oid *oid)
3607 {
3608 	int rc;
3609 	struct port_info *pi = vi->pi;
3610 	struct adapter *sc = pi->adapter;
3611 	struct sge_eq *eq = &txq->eq;
3612 	char name[16];
3613 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3614 
3615 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
3616 	    M_CXGBE, M_WAITOK);
3617 	if (rc != 0) {
3618 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
3619 		return (rc);
3620 	}
3621 
3622 	rc = alloc_eq(sc, vi, eq);
3623 	if (rc != 0) {
3624 		mp_ring_free(txq->r);
3625 		txq->r = NULL;
3626 		return (rc);
3627 	}
3628 
3629 	/* Can't fail after this point. */
3630 
3631 	if (idx == 0)
3632 		sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
3633 	else
3634 		KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
3635 		    ("eq_base mismatch"));
3636 	KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
3637 	    ("PF with non-zero eq_base"));
3638 
3639 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
3640 	txq->ifp = vi->ifp;
3641 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
3642 	if (sc->flags & IS_VF)
3643 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
3644 		    V_TXPKT_INTF(pi->tx_chan));
3645 	else
3646 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3647 		    V_TXPKT_INTF(pi->tx_chan) |
3648 		    V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) |
3649 		    V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) |
3650 		    V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid)));
3651 	txq->tc_idx = -1;
3652 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
3653 	    M_ZERO | M_WAITOK);
3654 
3655 	snprintf(name, sizeof(name), "%d", idx);
3656 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3657 	    NULL, "tx queue");
3658 	children = SYSCTL_CHILDREN(oid);
3659 
3660 	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3661 	    &eq->ba, "bus address of descriptor ring");
3662 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3663 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3664 	    "desc ring size in bytes");
3665 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3666 	    &eq->abs_id, 0, "absolute id of the queue");
3667 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3668 	    &eq->cntxt_id, 0, "SGE context id of the queue");
3669 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3670 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3671 	    "consumer index");
3672 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3673 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3674 	    "producer index");
3675 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3676 	    eq->sidx, "status page index");
3677 
3678 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
3679 	    CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I",
3680 	    "traffic class (-1 means none)");
3681 
3682 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3683 	    &txq->txcsum, "# of times hardware assisted with checksum");
3684 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
3685 	    CTLFLAG_RD, &txq->vlan_insertion,
3686 	    "# of times hardware inserted 802.1Q tag");
3687 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3688 	    &txq->tso_wrs, "# of TSO work requests");
3689 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3690 	    &txq->imm_wrs, "# of work requests with immediate data");
3691 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3692 	    &txq->sgl_wrs, "# of work requests with direct SGL");
3693 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3694 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3695 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
3696 	    CTLFLAG_RD, &txq->txpkts0_wrs,
3697 	    "# of txpkts (type 0) work requests");
3698 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
3699 	    CTLFLAG_RD, &txq->txpkts1_wrs,
3700 	    "# of txpkts (type 1) work requests");
3701 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
3702 	    CTLFLAG_RD, &txq->txpkts0_pkts,
3703 	    "# of frames tx'd using type0 txpkts work requests");
3704 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
3705 	    CTLFLAG_RD, &txq->txpkts1_pkts,
3706 	    "# of frames tx'd using type1 txpkts work requests");
3707 
3708 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
3709 	    CTLFLAG_RD, &txq->r->enqueues,
3710 	    "# of enqueues to the mp_ring for this queue");
3711 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
3712 	    CTLFLAG_RD, &txq->r->drops,
3713 	    "# of drops in the mp_ring for this queue");
3714 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
3715 	    CTLFLAG_RD, &txq->r->starts,
3716 	    "# of normal consumer starts in the mp_ring for this queue");
3717 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
3718 	    CTLFLAG_RD, &txq->r->stalls,
3719 	    "# of consumer stalls in the mp_ring for this queue");
3720 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
3721 	    CTLFLAG_RD, &txq->r->restarts,
3722 	    "# of consumer restarts in the mp_ring for this queue");
3723 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
3724 	    CTLFLAG_RD, &txq->r->abdications,
3725 	    "# of consumer abdications in the mp_ring for this queue");
3726 
3727 	return (0);
3728 }
3729 
3730 static int
3731 free_txq(struct vi_info *vi, struct sge_txq *txq)
3732 {
3733 	int rc;
3734 	struct adapter *sc = vi->pi->adapter;
3735 	struct sge_eq *eq = &txq->eq;
3736 
3737 	rc = free_eq(sc, eq);
3738 	if (rc)
3739 		return (rc);
3740 
3741 	sglist_free(txq->gl);
3742 	free(txq->sdesc, M_CXGBE);
3743 	mp_ring_free(txq->r);
3744 
3745 	bzero(txq, sizeof(*txq));
3746 	return (0);
3747 }
3748 
3749 static void
3750 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3751 {
3752 	bus_addr_t *ba = arg;
3753 
3754 	KASSERT(nseg == 1,
3755 	    ("%s meant for single segment mappings only.", __func__));
3756 
3757 	*ba = error ? 0 : segs->ds_addr;
3758 }
3759 
3760 static inline void
3761 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3762 {
3763 	uint32_t n, v;
3764 
3765 	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
3766 	MPASS(n > 0);
3767 
3768 	wmb();
3769 	v = fl->dbval | V_PIDX(n);
3770 	if (fl->udb)
3771 		*fl->udb = htole32(v);
3772 	else
3773 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
3774 	IDXINCR(fl->dbidx, n, fl->sidx);
3775 }
3776 
3777 /*
3778  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
3779  * recycled do not count towards this allocation budget.
3780  *
3781  * Returns non-zero to indicate that this freelist should be added to the list
3782  * of starving freelists.
3783  */
3784 static int
3785 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
3786 {
3787 	__be64 *d;
3788 	struct fl_sdesc *sd;
3789 	uintptr_t pa;
3790 	caddr_t cl;
3791 	struct cluster_layout *cll;
3792 	struct sw_zone_info *swz;
3793 	struct cluster_metadata *clm;
3794 	uint16_t max_pidx;
3795 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
3796 
3797 	FL_LOCK_ASSERT_OWNED(fl);
3798 
3799 	/*
3800 	 * We always stop at the beginning of the hardware descriptor that's just
3801 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
3802 	 * which would mean an empty freelist to the chip.
3803 	 */
3804 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
3805 	if (fl->pidx == max_pidx * 8)
3806 		return (0);
3807 
3808 	d = &fl->desc[fl->pidx];
3809 	sd = &fl->sdesc[fl->pidx];
3810 	cll = &fl->cll_def;	/* default layout */
3811 	swz = &sc->sge.sw_zone_info[cll->zidx];
3812 
3813 	while (n > 0) {
3814 
3815 		if (sd->cl != NULL) {
3816 
3817 			if (sd->nmbuf == 0) {
3818 				/*
3819 				 * Fast recycle without involving any atomics on
3820 				 * the cluster's metadata (if the cluster has
3821 				 * metadata).  This happens when all frames
3822 				 * received in the cluster were small enough to
3823 				 * fit within a single mbuf each.
3824 				 */
3825 				fl->cl_fast_recycled++;
3826 #ifdef INVARIANTS
3827 				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3828 				if (clm != NULL)
3829 					MPASS(clm->refcount == 1);
3830 #endif
3831 				goto recycled_fast;
3832 			}
3833 
3834 			/*
3835 			 * Cluster is guaranteed to have metadata.  Clusters
3836 			 * without metadata always take the fast recycle path
3837 			 * when they're recycled.
3838 			 */
3839 			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3840 			MPASS(clm != NULL);
3841 
3842 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3843 				fl->cl_recycled++;
3844 				counter_u64_add(extfree_rels, 1);
3845 				goto recycled;
3846 			}
3847 			sd->cl = NULL;	/* gave up my reference */
3848 		}
3849 		MPASS(sd->cl == NULL);
3850 alloc:
3851 		cl = uma_zalloc(swz->zone, M_NOWAIT);
3852 		if (__predict_false(cl == NULL)) {
3853 			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3854 			    fl->cll_def.zidx == fl->cll_alt.zidx)
3855 				break;
3856 
3857 			/* fall back to the safe zone */
3858 			cll = &fl->cll_alt;
3859 			swz = &sc->sge.sw_zone_info[cll->zidx];
3860 			goto alloc;
3861 		}
3862 		fl->cl_allocated++;
3863 		n--;
3864 
3865 		pa = pmap_kextract((vm_offset_t)cl);
3866 		pa += cll->region1;
3867 		sd->cl = cl;
3868 		sd->cll = *cll;
3869 		*d = htobe64(pa | cll->hwidx);
3870 		clm = cl_metadata(sc, fl, cll, cl);
3871 		if (clm != NULL) {
3872 recycled:
3873 #ifdef INVARIANTS
3874 			clm->sd = sd;
3875 #endif
3876 			clm->refcount = 1;
3877 		}
3878 		sd->nmbuf = 0;
3879 recycled_fast:
3880 		d++;
3881 		sd++;
3882 		if (__predict_false(++fl->pidx % 8 == 0)) {
3883 			uint16_t pidx = fl->pidx / 8;
3884 
3885 			if (__predict_false(pidx == fl->sidx)) {
3886 				fl->pidx = 0;
3887 				pidx = 0;
3888 				sd = fl->sdesc;
3889 				d = fl->desc;
3890 			}
3891 			if (pidx == max_pidx)
3892 				break;
3893 
3894 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
3895 				ring_fl_db(sc, fl);
3896 		}
3897 	}
3898 
3899 	if (fl->pidx / 8 != fl->dbidx)
3900 		ring_fl_db(sc, fl);
3901 
3902 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3903 }
3904 
3905 /*
3906  * Attempt to refill all starving freelists.
3907  */
3908 static void
3909 refill_sfl(void *arg)
3910 {
3911 	struct adapter *sc = arg;
3912 	struct sge_fl *fl, *fl_temp;
3913 
3914 	mtx_assert(&sc->sfl_lock, MA_OWNED);
3915 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3916 		FL_LOCK(fl);
3917 		refill_fl(sc, fl, 64);
3918 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3919 			TAILQ_REMOVE(&sc->sfl, fl, link);
3920 			fl->flags &= ~FL_STARVING;
3921 		}
3922 		FL_UNLOCK(fl);
3923 	}
3924 
3925 	if (!TAILQ_EMPTY(&sc->sfl))
3926 		callout_schedule(&sc->sfl_callout, hz / 5);
3927 }
3928 
3929 static int
3930 alloc_fl_sdesc(struct sge_fl *fl)
3931 {
3932 
3933 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
3934 	    M_ZERO | M_WAITOK);
3935 
3936 	return (0);
3937 }
3938 
3939 static void
3940 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3941 {
3942 	struct fl_sdesc *sd;
3943 	struct cluster_metadata *clm;
3944 	struct cluster_layout *cll;
3945 	int i;
3946 
3947 	sd = fl->sdesc;
3948 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
3949 		if (sd->cl == NULL)
3950 			continue;
3951 
3952 		cll = &sd->cll;
3953 		clm = cl_metadata(sc, fl, cll, sd->cl);
3954 		if (sd->nmbuf == 0)
3955 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3956 		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3957 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3958 			counter_u64_add(extfree_rels, 1);
3959 		}
3960 		sd->cl = NULL;
3961 	}
3962 
3963 	free(fl->sdesc, M_CXGBE);
3964 	fl->sdesc = NULL;
3965 }
3966 
3967 static inline void
3968 get_pkt_gl(struct mbuf *m, struct sglist *gl)
3969 {
3970 	int rc;
3971 
3972 	M_ASSERTPKTHDR(m);
3973 
3974 	sglist_reset(gl);
3975 	rc = sglist_append_mbuf(gl, m);
3976 	if (__predict_false(rc != 0)) {
3977 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
3978 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
3979 	}
3980 
3981 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
3982 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
3983 	    mbuf_nsegs(m), gl->sg_nseg));
3984 	KASSERT(gl->sg_nseg > 0 &&
3985 	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
3986 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
3987 		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
3988 }
3989 
3990 /*
3991  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
3992  */
3993 static inline u_int
3994 txpkt_len16(u_int nsegs, u_int tso)
3995 {
3996 	u_int n;
3997 
3998 	MPASS(nsegs > 0);
3999 
4000 	nsegs--; /* first segment is part of ulptx_sgl */
4001 	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
4002 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4003 	if (tso)
4004 		n += sizeof(struct cpl_tx_pkt_lso_core);
4005 
4006 	return (howmany(n, 16));
4007 }
4008 
4009 /*
4010  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
4011  * request header.
4012  */
4013 static inline u_int
4014 txpkt_vm_len16(u_int nsegs, u_int tso)
4015 {
4016 	u_int n;
4017 
4018 	MPASS(nsegs > 0);
4019 
4020 	nsegs--; /* first segment is part of ulptx_sgl */
4021 	n = sizeof(struct fw_eth_tx_pkt_vm_wr) +
4022 	    sizeof(struct cpl_tx_pkt_core) +
4023 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4024 	if (tso)
4025 		n += sizeof(struct cpl_tx_pkt_lso_core);
4026 
4027 	return (howmany(n, 16));
4028 }
4029 
4030 /*
4031  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
4032  * request header.
4033  */
4034 static inline u_int
4035 txpkts0_len16(u_int nsegs)
4036 {
4037 	u_int n;
4038 
4039 	MPASS(nsegs > 0);
4040 
4041 	nsegs--; /* first segment is part of ulptx_sgl */
4042 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
4043 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
4044 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
4045 
4046 	return (howmany(n, 16));
4047 }
4048 
4049 /*
4050  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
4051  * request header.
4052  */
4053 static inline u_int
4054 txpkts1_len16(void)
4055 {
4056 	u_int n;
4057 
4058 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
4059 
4060 	return (howmany(n, 16));
4061 }
4062 
4063 static inline u_int
4064 imm_payload(u_int ndesc)
4065 {
4066 	u_int n;
4067 
4068 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
4069 	    sizeof(struct cpl_tx_pkt_core);
4070 
4071 	return (n);
4072 }
4073 
4074 /*
4075  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
4076  * software descriptor, and advance the pidx.  It is guaranteed that enough
4077  * descriptors are available.
4078  *
4079  * The return value is the # of hardware descriptors used.
4080  */
4081 static u_int
4082 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq,
4083     struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available)
4084 {
4085 	struct sge_eq *eq = &txq->eq;
4086 	struct tx_sdesc *txsd;
4087 	struct cpl_tx_pkt_core *cpl;
4088 	uint32_t ctrl;	/* used in many unrelated places */
4089 	uint64_t ctrl1;
4090 	int csum_type, len16, ndesc, pktlen, nsegs;
4091 	caddr_t dst;
4092 
4093 	TXQ_LOCK_ASSERT_OWNED(txq);
4094 	M_ASSERTPKTHDR(m0);
4095 	MPASS(available > 0 && available < eq->sidx);
4096 
4097 	len16 = mbuf_len16(m0);
4098 	nsegs = mbuf_nsegs(m0);
4099 	pktlen = m0->m_pkthdr.len;
4100 	ctrl = sizeof(struct cpl_tx_pkt_core);
4101 	if (needs_tso(m0))
4102 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4103 	ndesc = howmany(len16, EQ_ESIZE / 16);
4104 	MPASS(ndesc <= available);
4105 
4106 	/* Firmware work request header */
4107 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4108 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
4109 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4110 
4111 	ctrl = V_FW_WR_LEN16(len16);
4112 	wr->equiq_to_len16 = htobe32(ctrl);
4113 	wr->r3[0] = 0;
4114 	wr->r3[1] = 0;
4115 
4116 	/*
4117 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
4118 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
4119 	 * simpler to always copy it rather than making it
4120 	 * conditional.  Also, it seems that we do not have to set
4121 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
4122 	 */
4123 	m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst);
4124 
4125 	csum_type = -1;
4126 	if (needs_tso(m0)) {
4127 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4128 
4129 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4130 		    m0->m_pkthdr.l4hlen > 0,
4131 		    ("%s: mbuf %p needs TSO but missing header lengths",
4132 			__func__, m0));
4133 
4134 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4135 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4136 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4137 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4138 			ctrl |= V_LSO_ETHHDR_LEN(1);
4139 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4140 			ctrl |= F_LSO_IPV6;
4141 
4142 		lso->lso_ctrl = htobe32(ctrl);
4143 		lso->ipid_ofst = htobe16(0);
4144 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4145 		lso->seqno_offset = htobe32(0);
4146 		lso->len = htobe32(pktlen);
4147 
4148 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4149 			csum_type = TX_CSUM_TCPIP6;
4150 		else
4151 			csum_type = TX_CSUM_TCPIP;
4152 
4153 		cpl = (void *)(lso + 1);
4154 
4155 		txq->tso_wrs++;
4156 	} else {
4157 		if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP)
4158 			csum_type = TX_CSUM_TCPIP;
4159 		else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP)
4160 			csum_type = TX_CSUM_UDPIP;
4161 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP)
4162 			csum_type = TX_CSUM_TCPIP6;
4163 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP)
4164 			csum_type = TX_CSUM_UDPIP6;
4165 #if defined(INET)
4166 		else if (m0->m_pkthdr.csum_flags & CSUM_IP) {
4167 			/*
4168 			 * XXX: The firmware appears to stomp on the
4169 			 * fragment/flags field of the IP header when
4170 			 * using TX_CSUM_IP.  Fall back to doing
4171 			 * software checksums.
4172 			 */
4173 			u_short *sump;
4174 			struct mbuf *m;
4175 			int offset;
4176 
4177 			m = m0;
4178 			offset = 0;
4179 			sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen +
4180 			    offsetof(struct ip, ip_sum));
4181 			*sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen +
4182 			    m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen);
4183 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
4184 		}
4185 #endif
4186 
4187 		cpl = (void *)(wr + 1);
4188 	}
4189 
4190 	/* Checksum offload */
4191 	ctrl1 = 0;
4192 	if (needs_l3_csum(m0) == 0)
4193 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4194 	if (csum_type >= 0) {
4195 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0,
4196 	    ("%s: mbuf %p needs checksum offload but missing header lengths",
4197 			__func__, m0));
4198 
4199 		if (chip_id(sc) <= CHELSIO_T5) {
4200 			ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4201 			    ETHER_HDR_LEN);
4202 		} else {
4203 			ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4204 			    ETHER_HDR_LEN);
4205 		}
4206 		ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen);
4207 		ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type);
4208 	} else
4209 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4210 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4211 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4212 		txq->txcsum++;	/* some hardware assistance provided */
4213 
4214 	/* VLAN tag insertion */
4215 	if (needs_vlan_insertion(m0)) {
4216 		ctrl1 |= F_TXPKT_VLAN_VLD |
4217 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4218 		txq->vlan_insertion++;
4219 	}
4220 
4221 	/* CPL header */
4222 	cpl->ctrl0 = txq->cpl_ctrl0;
4223 	cpl->pack = 0;
4224 	cpl->len = htobe16(pktlen);
4225 	cpl->ctrl1 = htobe64(ctrl1);
4226 
4227 	/* SGL */
4228 	dst = (void *)(cpl + 1);
4229 
4230 	/*
4231 	 * A packet using TSO will use up an entire descriptor for the
4232 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
4233 	 * If this descriptor is the last descriptor in the ring, wrap
4234 	 * around to the front of the ring explicitly for the start of
4235 	 * the sgl.
4236 	 */
4237 	if (dst == (void *)&eq->desc[eq->sidx]) {
4238 		dst = (void *)&eq->desc[0];
4239 		write_gl_to_txd(txq, m0, &dst, 0);
4240 	} else
4241 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4242 	txq->sgl_wrs++;
4243 
4244 	txq->txpkt_wrs++;
4245 
4246 	txsd = &txq->sdesc[eq->pidx];
4247 	txsd->m = m0;
4248 	txsd->desc_used = ndesc;
4249 
4250 	return (ndesc);
4251 }
4252 
4253 /*
4254  * Write a txpkt WR for this packet to the hardware descriptors, update the
4255  * software descriptor, and advance the pidx.  It is guaranteed that enough
4256  * descriptors are available.
4257  *
4258  * The return value is the # of hardware descriptors used.
4259  */
4260 static u_int
4261 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
4262     struct mbuf *m0, u_int available)
4263 {
4264 	struct sge_eq *eq = &txq->eq;
4265 	struct tx_sdesc *txsd;
4266 	struct cpl_tx_pkt_core *cpl;
4267 	uint32_t ctrl;	/* used in many unrelated places */
4268 	uint64_t ctrl1;
4269 	int len16, ndesc, pktlen, nsegs;
4270 	caddr_t dst;
4271 
4272 	TXQ_LOCK_ASSERT_OWNED(txq);
4273 	M_ASSERTPKTHDR(m0);
4274 	MPASS(available > 0 && available < eq->sidx);
4275 
4276 	len16 = mbuf_len16(m0);
4277 	nsegs = mbuf_nsegs(m0);
4278 	pktlen = m0->m_pkthdr.len;
4279 	ctrl = sizeof(struct cpl_tx_pkt_core);
4280 	if (needs_tso(m0))
4281 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4282 	else if (pktlen <= imm_payload(2) && available >= 2) {
4283 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
4284 		ctrl += pktlen;
4285 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
4286 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
4287 		nsegs = 0;
4288 	}
4289 	ndesc = howmany(len16, EQ_ESIZE / 16);
4290 	MPASS(ndesc <= available);
4291 
4292 	/* Firmware work request header */
4293 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4294 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
4295 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4296 
4297 	ctrl = V_FW_WR_LEN16(len16);
4298 	wr->equiq_to_len16 = htobe32(ctrl);
4299 	wr->r3 = 0;
4300 
4301 	if (needs_tso(m0)) {
4302 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4303 
4304 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4305 		    m0->m_pkthdr.l4hlen > 0,
4306 		    ("%s: mbuf %p needs TSO but missing header lengths",
4307 			__func__, m0));
4308 
4309 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4310 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4311 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4312 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4313 			ctrl |= V_LSO_ETHHDR_LEN(1);
4314 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4315 			ctrl |= F_LSO_IPV6;
4316 
4317 		lso->lso_ctrl = htobe32(ctrl);
4318 		lso->ipid_ofst = htobe16(0);
4319 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4320 		lso->seqno_offset = htobe32(0);
4321 		lso->len = htobe32(pktlen);
4322 
4323 		cpl = (void *)(lso + 1);
4324 
4325 		txq->tso_wrs++;
4326 	} else
4327 		cpl = (void *)(wr + 1);
4328 
4329 	/* Checksum offload */
4330 	ctrl1 = 0;
4331 	if (needs_l3_csum(m0) == 0)
4332 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4333 	if (needs_l4_csum(m0) == 0)
4334 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4335 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4336 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4337 		txq->txcsum++;	/* some hardware assistance provided */
4338 
4339 	/* VLAN tag insertion */
4340 	if (needs_vlan_insertion(m0)) {
4341 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4342 		txq->vlan_insertion++;
4343 	}
4344 
4345 	/* CPL header */
4346 	cpl->ctrl0 = txq->cpl_ctrl0;
4347 	cpl->pack = 0;
4348 	cpl->len = htobe16(pktlen);
4349 	cpl->ctrl1 = htobe64(ctrl1);
4350 
4351 	/* SGL */
4352 	dst = (void *)(cpl + 1);
4353 	if (nsegs > 0) {
4354 
4355 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4356 		txq->sgl_wrs++;
4357 	} else {
4358 		struct mbuf *m;
4359 
4360 		for (m = m0; m != NULL; m = m->m_next) {
4361 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4362 #ifdef INVARIANTS
4363 			pktlen -= m->m_len;
4364 #endif
4365 		}
4366 #ifdef INVARIANTS
4367 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
4368 #endif
4369 		txq->imm_wrs++;
4370 	}
4371 
4372 	txq->txpkt_wrs++;
4373 
4374 	txsd = &txq->sdesc[eq->pidx];
4375 	txsd->m = m0;
4376 	txsd->desc_used = ndesc;
4377 
4378 	return (ndesc);
4379 }
4380 
4381 static int
4382 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
4383 {
4384 	u_int needed, nsegs1, nsegs2, l1, l2;
4385 
4386 	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
4387 		return (1);
4388 
4389 	nsegs1 = mbuf_nsegs(m);
4390 	nsegs2 = mbuf_nsegs(n);
4391 	if (nsegs1 + nsegs2 == 2) {
4392 		txp->wr_type = 1;
4393 		l1 = l2 = txpkts1_len16();
4394 	} else {
4395 		txp->wr_type = 0;
4396 		l1 = txpkts0_len16(nsegs1);
4397 		l2 = txpkts0_len16(nsegs2);
4398 	}
4399 	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
4400 	needed = howmany(txp->len16, EQ_ESIZE / 16);
4401 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4402 		return (1);
4403 
4404 	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
4405 	if (txp->plen > 65535)
4406 		return (1);
4407 
4408 	txp->npkt = 2;
4409 	set_mbuf_len16(m, l1);
4410 	set_mbuf_len16(n, l2);
4411 
4412 	return (0);
4413 }
4414 
4415 static int
4416 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
4417 {
4418 	u_int plen, len16, needed, nsegs;
4419 
4420 	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
4421 
4422 	nsegs = mbuf_nsegs(m);
4423 	if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
4424 		return (1);
4425 
4426 	plen = txp->plen + m->m_pkthdr.len;
4427 	if (plen > 65535)
4428 		return (1);
4429 
4430 	if (txp->wr_type == 0)
4431 		len16 = txpkts0_len16(nsegs);
4432 	else
4433 		len16 = txpkts1_len16();
4434 	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4435 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4436 		return (1);
4437 
4438 	txp->npkt++;
4439 	txp->plen = plen;
4440 	txp->len16 += len16;
4441 	set_mbuf_len16(m, len16);
4442 
4443 	return (0);
4444 }
4445 
4446 /*
4447  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
4448  * the software descriptor, and advance the pidx.  It is guaranteed that enough
4449  * descriptors are available.
4450  *
4451  * The return value is the # of hardware descriptors used.
4452  */
4453 static u_int
4454 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
4455     struct mbuf *m0, const struct txpkts *txp, u_int available)
4456 {
4457 	struct sge_eq *eq = &txq->eq;
4458 	struct tx_sdesc *txsd;
4459 	struct cpl_tx_pkt_core *cpl;
4460 	uint32_t ctrl;
4461 	uint64_t ctrl1;
4462 	int ndesc, checkwrap;
4463 	struct mbuf *m;
4464 	void *flitp;
4465 
4466 	TXQ_LOCK_ASSERT_OWNED(txq);
4467 	MPASS(txp->npkt > 0);
4468 	MPASS(txp->plen < 65536);
4469 	MPASS(m0 != NULL);
4470 	MPASS(m0->m_nextpkt != NULL);
4471 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
4472 	MPASS(available > 0 && available < eq->sidx);
4473 
4474 	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
4475 	MPASS(ndesc <= available);
4476 
4477 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4478 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4479 	ctrl = V_FW_WR_LEN16(txp->len16);
4480 	wr->equiq_to_len16 = htobe32(ctrl);
4481 	wr->plen = htobe16(txp->plen);
4482 	wr->npkt = txp->npkt;
4483 	wr->r3 = 0;
4484 	wr->type = txp->wr_type;
4485 	flitp = wr + 1;
4486 
4487 	/*
4488 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
4489 	 * set then we know the WR is going to wrap around somewhere.  We'll
4490 	 * check for that at appropriate points.
4491 	 */
4492 	checkwrap = eq->sidx - ndesc < eq->pidx;
4493 	for (m = m0; m != NULL; m = m->m_nextpkt) {
4494 		if (txp->wr_type == 0) {
4495 			struct ulp_txpkt *ulpmc;
4496 			struct ulptx_idata *ulpsc;
4497 
4498 			/* ULP master command */
4499 			ulpmc = flitp;
4500 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
4501 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
4502 			ulpmc->len = htobe32(mbuf_len16(m));
4503 
4504 			/* ULP subcommand */
4505 			ulpsc = (void *)(ulpmc + 1);
4506 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
4507 			    F_ULP_TX_SC_MORE);
4508 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
4509 
4510 			cpl = (void *)(ulpsc + 1);
4511 			if (checkwrap &&
4512 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
4513 				cpl = (void *)&eq->desc[0];
4514 		} else {
4515 			cpl = flitp;
4516 		}
4517 
4518 		/* Checksum offload */
4519 		ctrl1 = 0;
4520 		if (needs_l3_csum(m) == 0)
4521 			ctrl1 |= F_TXPKT_IPCSUM_DIS;
4522 		if (needs_l4_csum(m) == 0)
4523 			ctrl1 |= F_TXPKT_L4CSUM_DIS;
4524 		if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4525 		    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4526 			txq->txcsum++;	/* some hardware assistance provided */
4527 
4528 		/* VLAN tag insertion */
4529 		if (needs_vlan_insertion(m)) {
4530 			ctrl1 |= F_TXPKT_VLAN_VLD |
4531 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
4532 			txq->vlan_insertion++;
4533 		}
4534 
4535 		/* CPL header */
4536 		cpl->ctrl0 = txq->cpl_ctrl0;
4537 		cpl->pack = 0;
4538 		cpl->len = htobe16(m->m_pkthdr.len);
4539 		cpl->ctrl1 = htobe64(ctrl1);
4540 
4541 		flitp = cpl + 1;
4542 		if (checkwrap &&
4543 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
4544 			flitp = (void *)&eq->desc[0];
4545 
4546 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
4547 
4548 	}
4549 
4550 	if (txp->wr_type == 0) {
4551 		txq->txpkts0_pkts += txp->npkt;
4552 		txq->txpkts0_wrs++;
4553 	} else {
4554 		txq->txpkts1_pkts += txp->npkt;
4555 		txq->txpkts1_wrs++;
4556 	}
4557 
4558 	txsd = &txq->sdesc[eq->pidx];
4559 	txsd->m = m0;
4560 	txsd->desc_used = ndesc;
4561 
4562 	return (ndesc);
4563 }
4564 
4565 /*
4566  * If the SGL ends on an address that is not 16 byte aligned, this function will
4567  * add a 0 filled flit at the end.
4568  */
4569 static void
4570 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
4571 {
4572 	struct sge_eq *eq = &txq->eq;
4573 	struct sglist *gl = txq->gl;
4574 	struct sglist_seg *seg;
4575 	__be64 *flitp, *wrap;
4576 	struct ulptx_sgl *usgl;
4577 	int i, nflits, nsegs;
4578 
4579 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4580 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4581 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4582 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4583 
4584 	get_pkt_gl(m, gl);
4585 	nsegs = gl->sg_nseg;
4586 	MPASS(nsegs > 0);
4587 
4588 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
4589 	flitp = (__be64 *)(*to);
4590 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
4591 	seg = &gl->sg_segs[0];
4592 	usgl = (void *)flitp;
4593 
4594 	/*
4595 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4596 	 * ring, so we're at least 16 bytes away from the status page.  There is
4597 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4598 	 */
4599 
4600 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4601 	    V_ULPTX_NSGE(nsegs));
4602 	usgl->len0 = htobe32(seg->ss_len);
4603 	usgl->addr0 = htobe64(seg->ss_paddr);
4604 	seg++;
4605 
4606 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
4607 
4608 		/* Won't wrap around at all */
4609 
4610 		for (i = 0; i < nsegs - 1; i++, seg++) {
4611 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
4612 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
4613 		}
4614 		if (i & 1)
4615 			usgl->sge[i / 2].len[1] = htobe32(0);
4616 		flitp += nflits;
4617 	} else {
4618 
4619 		/* Will wrap somewhere in the rest of the SGL */
4620 
4621 		/* 2 flits already written, write the rest flit by flit */
4622 		flitp = (void *)(usgl + 1);
4623 		for (i = 0; i < nflits - 2; i++) {
4624 			if (flitp == wrap)
4625 				flitp = (void *)eq->desc;
4626 			*flitp++ = get_flit(seg, nsegs - 1, i);
4627 		}
4628 	}
4629 
4630 	if (nflits & 1) {
4631 		MPASS(((uintptr_t)flitp) & 0xf);
4632 		*flitp++ = 0;
4633 	}
4634 
4635 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
4636 	if (__predict_false(flitp == wrap))
4637 		*to = (void *)eq->desc;
4638 	else
4639 		*to = (void *)flitp;
4640 }
4641 
4642 static inline void
4643 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4644 {
4645 
4646 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4647 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4648 
4649 	if (__predict_true((uintptr_t)(*to) + len <=
4650 	    (uintptr_t)&eq->desc[eq->sidx])) {
4651 		bcopy(from, *to, len);
4652 		(*to) += len;
4653 	} else {
4654 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
4655 
4656 		bcopy(from, *to, portion);
4657 		from += portion;
4658 		portion = len - portion;	/* remaining */
4659 		bcopy(from, (void *)eq->desc, portion);
4660 		(*to) = (caddr_t)eq->desc + portion;
4661 	}
4662 }
4663 
4664 static inline void
4665 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
4666 {
4667 	u_int db;
4668 
4669 	MPASS(n > 0);
4670 
4671 	db = eq->doorbells;
4672 	if (n > 1)
4673 		clrbit(&db, DOORBELL_WCWR);
4674 	wmb();
4675 
4676 	switch (ffs(db) - 1) {
4677 	case DOORBELL_UDB:
4678 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4679 		break;
4680 
4681 	case DOORBELL_WCWR: {
4682 		volatile uint64_t *dst, *src;
4683 		int i;
4684 
4685 		/*
4686 		 * Queues whose 128B doorbell segment fits in the page do not
4687 		 * use relative qid (udb_qid is always 0).  Only queues with
4688 		 * doorbell segments can do WCWR.
4689 		 */
4690 		KASSERT(eq->udb_qid == 0 && n == 1,
4691 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4692 		    __func__, eq->doorbells, n, eq->dbidx, eq));
4693 
4694 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4695 		    UDBS_DB_OFFSET);
4696 		i = eq->dbidx;
4697 		src = (void *)&eq->desc[i];
4698 		while (src != (void *)&eq->desc[i + 1])
4699 			*dst++ = *src++;
4700 		wmb();
4701 		break;
4702 	}
4703 
4704 	case DOORBELL_UDBWC:
4705 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4706 		wmb();
4707 		break;
4708 
4709 	case DOORBELL_KDB:
4710 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
4711 		    V_QID(eq->cntxt_id) | V_PIDX(n));
4712 		break;
4713 	}
4714 
4715 	IDXINCR(eq->dbidx, n, eq->sidx);
4716 }
4717 
4718 static inline u_int
4719 reclaimable_tx_desc(struct sge_eq *eq)
4720 {
4721 	uint16_t hw_cidx;
4722 
4723 	hw_cidx = read_hw_cidx(eq);
4724 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
4725 }
4726 
4727 static inline u_int
4728 total_available_tx_desc(struct sge_eq *eq)
4729 {
4730 	uint16_t hw_cidx, pidx;
4731 
4732 	hw_cidx = read_hw_cidx(eq);
4733 	pidx = eq->pidx;
4734 
4735 	if (pidx == hw_cidx)
4736 		return (eq->sidx - 1);
4737 	else
4738 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
4739 }
4740 
4741 static inline uint16_t
4742 read_hw_cidx(struct sge_eq *eq)
4743 {
4744 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4745 	uint16_t cidx = spg->cidx;	/* stable snapshot */
4746 
4747 	return (be16toh(cidx));
4748 }
4749 
4750 /*
4751  * Reclaim 'n' descriptors approximately.
4752  */
4753 static u_int
4754 reclaim_tx_descs(struct sge_txq *txq, u_int n)
4755 {
4756 	struct tx_sdesc *txsd;
4757 	struct sge_eq *eq = &txq->eq;
4758 	u_int can_reclaim, reclaimed;
4759 
4760 	TXQ_LOCK_ASSERT_OWNED(txq);
4761 	MPASS(n > 0);
4762 
4763 	reclaimed = 0;
4764 	can_reclaim = reclaimable_tx_desc(eq);
4765 	while (can_reclaim && reclaimed < n) {
4766 		int ndesc;
4767 		struct mbuf *m, *nextpkt;
4768 
4769 		txsd = &txq->sdesc[eq->cidx];
4770 		ndesc = txsd->desc_used;
4771 
4772 		/* Firmware doesn't return "partial" credits. */
4773 		KASSERT(can_reclaim >= ndesc,
4774 		    ("%s: unexpected number of credits: %d, %d",
4775 		    __func__, can_reclaim, ndesc));
4776 
4777 		for (m = txsd->m; m != NULL; m = nextpkt) {
4778 			nextpkt = m->m_nextpkt;
4779 			m->m_nextpkt = NULL;
4780 			m_freem(m);
4781 		}
4782 		reclaimed += ndesc;
4783 		can_reclaim -= ndesc;
4784 		IDXINCR(eq->cidx, ndesc, eq->sidx);
4785 	}
4786 
4787 	return (reclaimed);
4788 }
4789 
4790 static void
4791 tx_reclaim(void *arg, int n)
4792 {
4793 	struct sge_txq *txq = arg;
4794 	struct sge_eq *eq = &txq->eq;
4795 
4796 	do {
4797 		if (TXQ_TRYLOCK(txq) == 0)
4798 			break;
4799 		n = reclaim_tx_descs(txq, 32);
4800 		if (eq->cidx == eq->pidx)
4801 			eq->equeqidx = eq->pidx;
4802 		TXQ_UNLOCK(txq);
4803 	} while (n > 0);
4804 }
4805 
4806 static __be64
4807 get_flit(struct sglist_seg *segs, int nsegs, int idx)
4808 {
4809 	int i = (idx / 3) * 2;
4810 
4811 	switch (idx % 3) {
4812 	case 0: {
4813 		uint64_t rc;
4814 
4815 		rc = (uint64_t)segs[i].ss_len << 32;
4816 		if (i + 1 < nsegs)
4817 			rc |= (uint64_t)(segs[i + 1].ss_len);
4818 
4819 		return (htobe64(rc));
4820 	}
4821 	case 1:
4822 		return (htobe64(segs[i].ss_paddr));
4823 	case 2:
4824 		return (htobe64(segs[i + 1].ss_paddr));
4825 	}
4826 
4827 	return (0);
4828 }
4829 
4830 static void
4831 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4832 {
4833 	int8_t zidx, hwidx, idx;
4834 	uint16_t region1, region3;
4835 	int spare, spare_needed, n;
4836 	struct sw_zone_info *swz;
4837 	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4838 
4839 	/*
4840 	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4841 	 * large enough for the max payload and cluster metadata.  Otherwise
4842 	 * settle for the largest bufsize that leaves enough room in the cluster
4843 	 * for metadata.
4844 	 *
4845 	 * Without buffer packing: Look for the smallest zone which has a
4846 	 * bufsize large enough for the max payload.  Settle for the largest
4847 	 * bufsize available if there's nothing big enough for max payload.
4848 	 */
4849 	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4850 	swz = &sc->sge.sw_zone_info[0];
4851 	hwidx = -1;
4852 	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4853 		if (swz->size > largest_rx_cluster) {
4854 			if (__predict_true(hwidx != -1))
4855 				break;
4856 
4857 			/*
4858 			 * This is a misconfiguration.  largest_rx_cluster is
4859 			 * preventing us from finding a refill source.  See
4860 			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4861 			 */
4862 			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4863 			    " refill source for fl %p (dma %u).  Ignored.\n",
4864 			    largest_rx_cluster, fl, maxp);
4865 		}
4866 		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4867 			hwb = &hwb_list[idx];
4868 			spare = swz->size - hwb->size;
4869 			if (spare < spare_needed)
4870 				continue;
4871 
4872 			hwidx = idx;		/* best option so far */
4873 			if (hwb->size >= maxp) {
4874 
4875 				if ((fl->flags & FL_BUF_PACKING) == 0)
4876 					goto done; /* stop looking (not packing) */
4877 
4878 				if (swz->size >= safest_rx_cluster)
4879 					goto done; /* stop looking (packing) */
4880 			}
4881 			break;		/* keep looking, next zone */
4882 		}
4883 	}
4884 done:
4885 	/* A usable hwidx has been located. */
4886 	MPASS(hwidx != -1);
4887 	hwb = &hwb_list[hwidx];
4888 	zidx = hwb->zidx;
4889 	swz = &sc->sge.sw_zone_info[zidx];
4890 	region1 = 0;
4891 	region3 = swz->size - hwb->size;
4892 
4893 	/*
4894 	 * Stay within this zone and see if there is a better match when mbuf
4895 	 * inlining is allowed.  Remember that the hwidx's are sorted in
4896 	 * decreasing order of size (so in increasing order of spare area).
4897 	 */
4898 	for (idx = hwidx; idx != -1; idx = hwb->next) {
4899 		hwb = &hwb_list[idx];
4900 		spare = swz->size - hwb->size;
4901 
4902 		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4903 			break;
4904 
4905 		/*
4906 		 * Do not inline mbufs if doing so would violate the pad/pack
4907 		 * boundary alignment requirement.
4908 		 */
4909 		if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0)
4910 			continue;
4911 		if (fl->flags & FL_BUF_PACKING &&
4912 		    (MSIZE % sc->params.sge.pack_boundary) != 0)
4913 			continue;
4914 
4915 		if (spare < CL_METADATA_SIZE + MSIZE)
4916 			continue;
4917 		n = (spare - CL_METADATA_SIZE) / MSIZE;
4918 		if (n > howmany(hwb->size, maxp))
4919 			break;
4920 
4921 		hwidx = idx;
4922 		if (fl->flags & FL_BUF_PACKING) {
4923 			region1 = n * MSIZE;
4924 			region3 = spare - region1;
4925 		} else {
4926 			region1 = MSIZE;
4927 			region3 = spare - region1;
4928 			break;
4929 		}
4930 	}
4931 
4932 	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4933 	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4934 	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4935 	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4936 	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4937 	    sc->sge.sw_zone_info[zidx].size,
4938 	    ("%s: bad buffer layout for fl %p, maxp %d. "
4939 		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4940 		sc->sge.sw_zone_info[zidx].size, region1,
4941 		sc->sge.hw_buf_info[hwidx].size, region3));
4942 	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4943 		KASSERT(region3 >= CL_METADATA_SIZE,
4944 		    ("%s: no room for metadata.  fl %p, maxp %d; "
4945 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4946 		    sc->sge.sw_zone_info[zidx].size, region1,
4947 		    sc->sge.hw_buf_info[hwidx].size, region3));
4948 		KASSERT(region1 % MSIZE == 0,
4949 		    ("%s: bad mbuf region for fl %p, maxp %d. "
4950 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4951 		    sc->sge.sw_zone_info[zidx].size, region1,
4952 		    sc->sge.hw_buf_info[hwidx].size, region3));
4953 	}
4954 
4955 	fl->cll_def.zidx = zidx;
4956 	fl->cll_def.hwidx = hwidx;
4957 	fl->cll_def.region1 = region1;
4958 	fl->cll_def.region3 = region3;
4959 }
4960 
4961 static void
4962 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4963 {
4964 	struct sge *s = &sc->sge;
4965 	struct hw_buf_info *hwb;
4966 	struct sw_zone_info *swz;
4967 	int spare;
4968 	int8_t hwidx;
4969 
4970 	if (fl->flags & FL_BUF_PACKING)
4971 		hwidx = s->safe_hwidx2;	/* with room for metadata */
4972 	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4973 		hwidx = s->safe_hwidx2;
4974 		hwb = &s->hw_buf_info[hwidx];
4975 		swz = &s->sw_zone_info[hwb->zidx];
4976 		spare = swz->size - hwb->size;
4977 
4978 		/* no good if there isn't room for an mbuf as well */
4979 		if (spare < CL_METADATA_SIZE + MSIZE)
4980 			hwidx = s->safe_hwidx1;
4981 	} else
4982 		hwidx = s->safe_hwidx1;
4983 
4984 	if (hwidx == -1) {
4985 		/* No fallback source */
4986 		fl->cll_alt.hwidx = -1;
4987 		fl->cll_alt.zidx = -1;
4988 
4989 		return;
4990 	}
4991 
4992 	hwb = &s->hw_buf_info[hwidx];
4993 	swz = &s->sw_zone_info[hwb->zidx];
4994 	spare = swz->size - hwb->size;
4995 	fl->cll_alt.hwidx = hwidx;
4996 	fl->cll_alt.zidx = hwb->zidx;
4997 	if (allow_mbufs_in_cluster &&
4998 	    (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0))
4999 		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
5000 	else
5001 		fl->cll_alt.region1 = 0;
5002 	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
5003 }
5004 
5005 static void
5006 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
5007 {
5008 	mtx_lock(&sc->sfl_lock);
5009 	FL_LOCK(fl);
5010 	if ((fl->flags & FL_DOOMED) == 0) {
5011 		fl->flags |= FL_STARVING;
5012 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
5013 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
5014 	}
5015 	FL_UNLOCK(fl);
5016 	mtx_unlock(&sc->sfl_lock);
5017 }
5018 
5019 static void
5020 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
5021 {
5022 	struct sge_wrq *wrq = (void *)eq;
5023 
5024 	atomic_readandclear_int(&eq->equiq);
5025 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
5026 }
5027 
5028 static void
5029 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
5030 {
5031 	struct sge_txq *txq = (void *)eq;
5032 
5033 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
5034 
5035 	atomic_readandclear_int(&eq->equiq);
5036 	mp_ring_check_drainage(txq->r, 0);
5037 	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
5038 }
5039 
5040 static int
5041 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
5042     struct mbuf *m)
5043 {
5044 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
5045 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
5046 	struct adapter *sc = iq->adapter;
5047 	struct sge *s = &sc->sge;
5048 	struct sge_eq *eq;
5049 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
5050 		&handle_wrq_egr_update, &handle_eth_egr_update,
5051 		&handle_wrq_egr_update};
5052 
5053 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5054 	    rss->opcode));
5055 
5056 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
5057 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
5058 
5059 	return (0);
5060 }
5061 
5062 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
5063 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
5064     offsetof(struct cpl_fw6_msg, data));
5065 
5066 static int
5067 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
5068 {
5069 	struct adapter *sc = iq->adapter;
5070 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
5071 
5072 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5073 	    rss->opcode));
5074 
5075 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
5076 		const struct rss_header *rss2;
5077 
5078 		rss2 = (const struct rss_header *)&cpl->data[0];
5079 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
5080 	}
5081 
5082 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
5083 }
5084 
5085 /**
5086  *	t4_handle_wrerr_rpl - process a FW work request error message
5087  *	@adap: the adapter
5088  *	@rpl: start of the FW message
5089  */
5090 static int
5091 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
5092 {
5093 	u8 opcode = *(const u8 *)rpl;
5094 	const struct fw_error_cmd *e = (const void *)rpl;
5095 	unsigned int i;
5096 
5097 	if (opcode != FW_ERROR_CMD) {
5098 		log(LOG_ERR,
5099 		    "%s: Received WRERR_RPL message with opcode %#x\n",
5100 		    device_get_nameunit(adap->dev), opcode);
5101 		return (EINVAL);
5102 	}
5103 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
5104 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
5105 	    "non-fatal");
5106 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
5107 	case FW_ERROR_TYPE_EXCEPTION:
5108 		log(LOG_ERR, "exception info:\n");
5109 		for (i = 0; i < nitems(e->u.exception.info); i++)
5110 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
5111 			    be32toh(e->u.exception.info[i]));
5112 		log(LOG_ERR, "\n");
5113 		break;
5114 	case FW_ERROR_TYPE_HWMODULE:
5115 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
5116 		    be32toh(e->u.hwmodule.regaddr),
5117 		    be32toh(e->u.hwmodule.regval));
5118 		break;
5119 	case FW_ERROR_TYPE_WR:
5120 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
5121 		    be16toh(e->u.wr.cidx),
5122 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
5123 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
5124 		    be32toh(e->u.wr.eqid));
5125 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
5126 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
5127 			    e->u.wr.wrhdr[i]);
5128 		log(LOG_ERR, "\n");
5129 		break;
5130 	case FW_ERROR_TYPE_ACL:
5131 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
5132 		    be16toh(e->u.acl.cidx),
5133 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
5134 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
5135 		    be32toh(e->u.acl.eqid),
5136 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
5137 		    "MAC");
5138 		for (i = 0; i < nitems(e->u.acl.val); i++)
5139 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
5140 		log(LOG_ERR, "\n");
5141 		break;
5142 	default:
5143 		log(LOG_ERR, "type %#x\n",
5144 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
5145 		return (EINVAL);
5146 	}
5147 	return (0);
5148 }
5149 
5150 static int
5151 sysctl_uint16(SYSCTL_HANDLER_ARGS)
5152 {
5153 	uint16_t *id = arg1;
5154 	int i = *id;
5155 
5156 	return sysctl_handle_int(oidp, &i, 0, req);
5157 }
5158 
5159 static int
5160 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
5161 {
5162 	struct sge *s = arg1;
5163 	struct hw_buf_info *hwb = &s->hw_buf_info[0];
5164 	struct sw_zone_info *swz = &s->sw_zone_info[0];
5165 	int i, rc;
5166 	struct sbuf sb;
5167 	char c;
5168 
5169 	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
5170 	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
5171 		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
5172 			c = '*';
5173 		else
5174 			c = '\0';
5175 
5176 		sbuf_printf(&sb, "%u%c ", hwb->size, c);
5177 	}
5178 	sbuf_trim(&sb);
5179 	sbuf_finish(&sb);
5180 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
5181 	sbuf_delete(&sb);
5182 	return (rc);
5183 }
5184 
5185 static int
5186 sysctl_tc(SYSCTL_HANDLER_ARGS)
5187 {
5188 	struct vi_info *vi = arg1;
5189 	struct port_info *pi;
5190 	struct adapter *sc;
5191 	struct sge_txq *txq;
5192 	struct tx_cl_rl_params *tc;
5193 	int qidx = arg2, rc, tc_idx;
5194 	uint32_t fw_queue, fw_class;
5195 
5196 	MPASS(qidx >= 0 && qidx < vi->ntxq);
5197 	pi = vi->pi;
5198 	sc = pi->adapter;
5199 	txq = &sc->sge.txq[vi->first_txq + qidx];
5200 
5201 	tc_idx = txq->tc_idx;
5202 	rc = sysctl_handle_int(oidp, &tc_idx, 0, req);
5203 	if (rc != 0 || req->newptr == NULL)
5204 		return (rc);
5205 
5206 	if (sc->flags & IS_VF)
5207 		return (EPERM);
5208 
5209 	/* Note that -1 is legitimate input (it means unbind). */
5210 	if (tc_idx < -1 || tc_idx >= sc->chip_params->nsched_cls)
5211 		return (EINVAL);
5212 
5213 	mtx_lock(&sc->tc_lock);
5214 	if (tc_idx == txq->tc_idx) {
5215 		rc = 0;		/* No change, nothing to do. */
5216 		goto done;
5217 	}
5218 
5219 	fw_queue = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
5220 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) |
5221 	    V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id);
5222 
5223 	if (tc_idx == -1)
5224 		fw_class = 0xffffffff;	/* Unbind. */
5225 	else {
5226 		/*
5227 		 * Bind to a different class.
5228 		 */
5229 		tc = &pi->sched_params->cl_rl[tc_idx];
5230 		if (tc->flags & TX_CLRL_ERROR) {
5231 			/* Previous attempt to set the cl-rl params failed. */
5232 			rc = EIO;
5233 			goto done;
5234 		} else {
5235 			/*
5236 			 * Ok to proceed.  Place a reference on the new class
5237 			 * while still holding on to the reference on the
5238 			 * previous class, if any.
5239 			 */
5240 			fw_class = tc_idx;
5241 			tc->refcount++;
5242 		}
5243 	}
5244 	mtx_unlock(&sc->tc_lock);
5245 
5246 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4stc");
5247 	if (rc)
5248 		return (rc);
5249 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, &fw_class);
5250 	end_synchronized_op(sc, 0);
5251 
5252 	mtx_lock(&sc->tc_lock);
5253 	if (rc == 0) {
5254 		if (txq->tc_idx != -1) {
5255 			tc = &pi->sched_params->cl_rl[txq->tc_idx];
5256 			MPASS(tc->refcount > 0);
5257 			tc->refcount--;
5258 		}
5259 		txq->tc_idx = tc_idx;
5260 	} else if (tc_idx != -1) {
5261 		tc = &pi->sched_params->cl_rl[tc_idx];
5262 		MPASS(tc->refcount > 0);
5263 		tc->refcount--;
5264 	}
5265 done:
5266 	mtx_unlock(&sc->tc_lock);
5267 	return (rc);
5268 }
5269