1 /*- 2 * Copyright (c) 2011 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: Navdeep Parhar <np@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #include <sys/types.h> 35 #include <sys/mbuf.h> 36 #include <sys/socket.h> 37 #include <sys/kernel.h> 38 #include <sys/kdb.h> 39 #include <sys/malloc.h> 40 #include <sys/queue.h> 41 #include <sys/taskqueue.h> 42 #include <sys/time.h> 43 #include <sys/sysctl.h> 44 #include <sys/smp.h> 45 #include <net/bpf.h> 46 #include <net/ethernet.h> 47 #include <net/if.h> 48 #include <net/if_vlan_var.h> 49 #include <netinet/in.h> 50 #include <netinet/ip.h> 51 #include <netinet/ip6.h> 52 #include <netinet/tcp.h> 53 54 #include "common/common.h" 55 #include "common/t4_regs.h" 56 #include "common/t4_regs_values.h" 57 #include "common/t4_msg.h" 58 59 #ifdef T4_PKT_TIMESTAMP 60 #define RX_COPY_THRESHOLD (MINCLSIZE - 8) 61 #else 62 #define RX_COPY_THRESHOLD MINCLSIZE 63 #endif 64 65 /* 66 * Ethernet frames are DMA'd at this byte offset into the freelist buffer. 67 * 0-7 are valid values. 68 */ 69 static int fl_pktshift = 2; 70 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift); 71 72 /* 73 * Pad ethernet payload up to this boundary. 74 * -1: driver should figure out a good value. 75 * 0: disable padding. 76 * Any power of 2 from 32 to 4096 (both inclusive) is also a valid value. 77 */ 78 static int fl_pad = -1; 79 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad); 80 81 /* 82 * Status page length. 83 * -1: driver should figure out a good value. 84 * 64 or 128 are the only other valid values. 85 */ 86 static int spg_len = -1; 87 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len); 88 89 /* 90 * Congestion drops. 91 * -1: no congestion feedback (not recommended). 92 * 0: backpressure the channel instead of dropping packets right away. 93 * 1: no backpressure, drop packets for the congested queue immediately. 94 */ 95 static int cong_drop = 0; 96 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop); 97 98 /* 99 * Deliver multiple frames in the same free list buffer if they fit. 100 * -1: let the driver decide whether to enable buffer packing or not. 101 * 0: disable buffer packing. 102 * 1: enable buffer packing. 103 */ 104 static int buffer_packing = -1; 105 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing); 106 107 /* 108 * Start next frame in a packed buffer at this boundary. 109 * -1: driver should figure out a good value. 110 * T4: 111 * --- 112 * if fl_pad != 0 113 * value specified here will be overridden by fl_pad. 114 * else 115 * power of 2 from 32 to 4096 (both inclusive) is a valid value here. 116 * T5: 117 * --- 118 * 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value. 119 */ 120 static int fl_pack = -1; 121 static int t4_fl_pack; 122 static int t5_fl_pack; 123 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack); 124 125 /* Used to track coalesced tx work request */ 126 struct txpkts { 127 uint64_t *flitp; /* ptr to flit where next pkt should start */ 128 uint8_t npkt; /* # of packets in this work request */ 129 uint8_t nflits; /* # of flits used by this work request */ 130 uint16_t plen; /* total payload (sum of all packets) */ 131 }; 132 133 /* A packet's SGL. This + m_pkthdr has all info needed for tx */ 134 struct sgl { 135 int nsegs; /* # of segments in the SGL, 0 means imm. tx */ 136 int nflits; /* # of flits needed for the SGL */ 137 bus_dma_segment_t seg[TX_SGL_SEGS]; 138 }; 139 140 static int service_iq(struct sge_iq *, int); 141 static struct mbuf *get_fl_payload1(struct adapter *, struct sge_fl *, uint32_t, 142 int *); 143 static struct mbuf *get_fl_payload2(struct adapter *, struct sge_fl *, uint32_t, 144 int *); 145 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *); 146 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int, 147 int); 148 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, int, 149 char *); 150 static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t, 151 char *); 152 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, 153 bus_addr_t *, void **); 154 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, 155 void *); 156 static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *, 157 int, int); 158 static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *); 159 static int alloc_fwq(struct adapter *); 160 static int free_fwq(struct adapter *); 161 static int alloc_mgmtq(struct adapter *); 162 static int free_mgmtq(struct adapter *); 163 static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int, 164 struct sysctl_oid *); 165 static int free_rxq(struct port_info *, struct sge_rxq *); 166 #ifdef TCP_OFFLOAD 167 static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int, 168 struct sysctl_oid *); 169 static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *); 170 #endif 171 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *); 172 static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *); 173 #ifdef TCP_OFFLOAD 174 static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *); 175 #endif 176 static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *); 177 static int free_eq(struct adapter *, struct sge_eq *); 178 static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *, 179 struct sysctl_oid *); 180 static int free_wrq(struct adapter *, struct sge_wrq *); 181 static int alloc_txq(struct port_info *, struct sge_txq *, int, 182 struct sysctl_oid *); 183 static int free_txq(struct port_info *, struct sge_txq *); 184 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); 185 static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **); 186 static inline void iq_next(struct sge_iq *); 187 static inline void ring_fl_db(struct adapter *, struct sge_fl *); 188 static int refill_fl(struct adapter *, struct sge_fl *, int); 189 static void refill_sfl(void *); 190 static int alloc_fl_sdesc(struct sge_fl *); 191 static void free_fl_sdesc(struct adapter *, struct sge_fl *); 192 static void set_fl_tag_idx(struct adapter *, struct sge_fl *, int); 193 static void add_fl_to_sfl(struct adapter *, struct sge_fl *); 194 195 static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int); 196 static int free_pkt_sgl(struct sge_txq *, struct sgl *); 197 static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *, 198 struct sgl *); 199 static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *, 200 struct mbuf *, struct sgl *); 201 static void write_txpkts_wr(struct sge_txq *, struct txpkts *); 202 static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *, 203 struct txpkts *, struct mbuf *, struct sgl *); 204 static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *); 205 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); 206 static inline void ring_eq_db(struct adapter *, struct sge_eq *); 207 static inline int reclaimable(struct sge_eq *); 208 static int reclaim_tx_descs(struct sge_txq *, int, int); 209 static void write_eqflush_wr(struct sge_eq *); 210 static __be64 get_flit(bus_dma_segment_t *, int, int); 211 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, 212 struct mbuf *); 213 static int handle_fw_msg(struct sge_iq *, const struct rss_header *, 214 struct mbuf *); 215 216 static int sysctl_uint16(SYSCTL_HANDLER_ARGS); 217 218 #if defined(__i386__) || defined(__amd64__) 219 extern u_int cpu_clflush_line_size; 220 #endif 221 222 /* 223 * Called on MOD_LOAD. Validates and calculates the SGE tunables. 224 */ 225 void 226 t4_sge_modload(void) 227 { 228 int pad; 229 230 /* set pad to a reasonable powerof2 between 16 and 4096 (inclusive) */ 231 #if defined(__i386__) || defined(__amd64__) 232 pad = max(cpu_clflush_line_size, 16); 233 #else 234 pad = max(CACHE_LINE_SIZE, 16); 235 #endif 236 pad = min(pad, 4096); 237 238 if (fl_pktshift < 0 || fl_pktshift > 7) { 239 printf("Invalid hw.cxgbe.fl_pktshift value (%d)," 240 " using 2 instead.\n", fl_pktshift); 241 fl_pktshift = 2; 242 } 243 244 if (fl_pad != 0 && 245 (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad))) { 246 247 if (fl_pad != -1) { 248 printf("Invalid hw.cxgbe.fl_pad value (%d)," 249 " using %d instead.\n", fl_pad, max(pad, 32)); 250 } 251 fl_pad = max(pad, 32); 252 } 253 254 /* 255 * T4 has the same pad and pack boundary. If a pad boundary is set, 256 * pack boundary must be set to the same value. Otherwise take the 257 * specified value or auto-calculate something reasonable. 258 */ 259 if (fl_pad) 260 t4_fl_pack = fl_pad; 261 else if (fl_pack < 32 || fl_pack > 4096 || !powerof2(fl_pack)) 262 t4_fl_pack = max(pad, 32); 263 else 264 t4_fl_pack = fl_pack; 265 266 /* T5's pack boundary is independent of the pad boundary. */ 267 if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 || 268 !powerof2(fl_pack)) 269 t5_fl_pack = max(pad, 64); 270 else 271 t5_fl_pack = fl_pack; 272 273 if (spg_len != 64 && spg_len != 128) { 274 int len; 275 276 #if defined(__i386__) || defined(__amd64__) 277 len = cpu_clflush_line_size > 64 ? 128 : 64; 278 #else 279 len = 64; 280 #endif 281 if (spg_len != -1) { 282 printf("Invalid hw.cxgbe.spg_len value (%d)," 283 " using %d instead.\n", spg_len, len); 284 } 285 spg_len = len; 286 } 287 288 if (cong_drop < -1 || cong_drop > 1) { 289 printf("Invalid hw.cxgbe.cong_drop value (%d)," 290 " using 0 instead.\n", cong_drop); 291 cong_drop = 0; 292 } 293 } 294 295 void 296 t4_init_sge_cpl_handlers(struct adapter *sc) 297 { 298 299 t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg); 300 t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg); 301 t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update); 302 t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx); 303 t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl); 304 } 305 306 /* 307 * adap->params.vpd.cclk must be set up before this is called. 308 */ 309 void 310 t4_tweak_chip_settings(struct adapter *sc) 311 { 312 int i; 313 uint32_t v, m; 314 int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; 315 int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk; 316 int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ 317 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 318 int sw_flbuf_sizes[] = { 319 MCLBYTES, 320 #if MJUMPAGESIZE != MCLBYTES 321 MJUMPAGESIZE, 322 #endif 323 MJUM9BYTES, 324 MJUM16BYTES, 325 MJUMPAGESIZE - MSIZE 326 }; 327 328 KASSERT(sc->flags & MASTER_PF, 329 ("%s: trying to change chip settings when not master.", __func__)); 330 331 m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE; 332 v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | 333 V_EGRSTATUSPAGESIZE(spg_len == 128); 334 if (is_t4(sc) && (fl_pad || buffer_packing)) { 335 /* t4_fl_pack has the correct value even when fl_pad = 0 */ 336 m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY); 337 v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5); 338 } else if (is_t5(sc) && fl_pad) { 339 m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY); 340 v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5); 341 } 342 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 343 344 if (is_t5(sc) && buffer_packing) { 345 m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY); 346 if (t5_fl_pack == 16) 347 v = V_INGPACKBOUNDARY(0); 348 else 349 v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5); 350 t4_set_reg_field(sc, A_SGE_CONTROL2, m, v); 351 } 352 353 v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | 354 V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | 355 V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | 356 V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | 357 V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | 358 V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | 359 V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | 360 V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); 361 t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v); 362 363 for (i = 0; i < min(nitems(sw_flbuf_sizes), 16); i++) { 364 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i), 365 sw_flbuf_sizes[i]); 366 } 367 368 v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) | 369 V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]); 370 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v); 371 372 KASSERT(intr_timer[0] <= timer_max, 373 ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0], 374 timer_max)); 375 for (i = 1; i < nitems(intr_timer); i++) { 376 KASSERT(intr_timer[i] >= intr_timer[i - 1], 377 ("%s: timers not listed in increasing order (%d)", 378 __func__, i)); 379 380 while (intr_timer[i] > timer_max) { 381 if (i == nitems(intr_timer) - 1) { 382 intr_timer[i] = timer_max; 383 break; 384 } 385 intr_timer[i] += intr_timer[i - 1]; 386 intr_timer[i] /= 2; 387 } 388 } 389 390 v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) | 391 V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])); 392 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v); 393 v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) | 394 V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])); 395 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v); 396 v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) | 397 V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])); 398 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v); 399 400 if (cong_drop == 0) { 401 m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 | 402 F_TUNNELCNGDROP3; 403 t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0); 404 } 405 406 /* 4K, 16K, 64K, 256K DDP "page sizes" */ 407 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 408 t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v); 409 410 m = v = F_TDDPTAGTCB; 411 t4_set_reg_field(sc, A_ULP_RX_CTL, m, v); 412 413 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 414 F_RESETDDPOFFSET; 415 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 416 t4_set_reg_field(sc, A_TP_PARA_REG5, m, v); 417 } 418 419 /* 420 * XXX: driver really should be able to deal with unexpected settings. 421 */ 422 int 423 t4_read_chip_settings(struct adapter *sc) 424 { 425 struct sge *s = &sc->sge; 426 int i, j, n, rc = 0; 427 uint32_t m, v, r; 428 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 429 uint32_t sge_flbuf_sizes[16], sw_flbuf_sizes[] = { 430 MCLBYTES, 431 #if MJUMPAGESIZE != MCLBYTES 432 MJUMPAGESIZE, 433 #endif 434 MJUM9BYTES, 435 MJUM16BYTES 436 }; 437 438 m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE; 439 v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | 440 V_EGRSTATUSPAGESIZE(spg_len == 128); 441 if (is_t4(sc) && (fl_pad || buffer_packing)) { 442 m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY); 443 v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5); 444 } else if (is_t5(sc) && fl_pad) { 445 m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY); 446 v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5); 447 } 448 r = t4_read_reg(sc, A_SGE_CONTROL); 449 if ((r & m) != v) { 450 device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r); 451 rc = EINVAL; 452 } 453 454 if (is_t5(sc) && buffer_packing) { 455 m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY); 456 if (t5_fl_pack == 16) 457 v = V_INGPACKBOUNDARY(0); 458 else 459 v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5); 460 r = t4_read_reg(sc, A_SGE_CONTROL2); 461 if ((r & m) != v) { 462 device_printf(sc->dev, 463 "invalid SGE_CONTROL2(0x%x)\n", r); 464 rc = EINVAL; 465 } 466 } 467 468 v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | 469 V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | 470 V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | 471 V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | 472 V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | 473 V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | 474 V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | 475 V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); 476 r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE); 477 if (r != v) { 478 device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r); 479 rc = EINVAL; 480 } 481 482 /* 483 * Make a list of SGE FL buffer sizes programmed in the chip and tally 484 * it with the FL buffer sizes that we'd like to use. 485 */ 486 n = 0; 487 for (i = 0; i < nitems(sge_flbuf_sizes); i++) { 488 r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i)); 489 sge_flbuf_sizes[i] = r; 490 if (r == MJUMPAGESIZE - MSIZE && 491 (sc->flags & BUF_PACKING_OK) == 0) { 492 sc->flags |= BUF_PACKING_OK; 493 FL_BUF_HWTAG(sc, n) = i; 494 FL_BUF_SIZE(sc, n) = MJUMPAGESIZE - MSIZE; 495 FL_BUF_TYPE(sc, n) = m_gettype(MJUMPAGESIZE); 496 FL_BUF_ZONE(sc, n) = m_getzone(MJUMPAGESIZE); 497 n++; 498 } 499 } 500 for (i = 0; i < nitems(sw_flbuf_sizes); i++) { 501 for (j = 0; j < nitems(sge_flbuf_sizes); j++) { 502 if (sw_flbuf_sizes[i] != sge_flbuf_sizes[j]) 503 continue; 504 FL_BUF_HWTAG(sc, n) = j; 505 FL_BUF_SIZE(sc, n) = sw_flbuf_sizes[i]; 506 FL_BUF_TYPE(sc, n) = m_gettype(sw_flbuf_sizes[i]); 507 FL_BUF_ZONE(sc, n) = m_getzone(sw_flbuf_sizes[i]); 508 n++; 509 break; 510 } 511 } 512 if (n == 0) { 513 device_printf(sc->dev, "no usable SGE FL buffer size.\n"); 514 rc = EINVAL; 515 } else if (n == 1 && (sc->flags & BUF_PACKING_OK)) { 516 device_printf(sc->dev, 517 "no usable SGE FL buffer size when not packing buffers.\n"); 518 rc = EINVAL; 519 } 520 FL_BUF_SIZES(sc) = n; 521 522 r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD); 523 s->counter_val[0] = G_THRESHOLD_0(r); 524 s->counter_val[1] = G_THRESHOLD_1(r); 525 s->counter_val[2] = G_THRESHOLD_2(r); 526 s->counter_val[3] = G_THRESHOLD_3(r); 527 528 r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1); 529 s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc); 530 s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc); 531 r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3); 532 s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc); 533 s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc); 534 r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5); 535 s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc); 536 s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc); 537 538 if (cong_drop == 0) { 539 m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 | 540 F_TUNNELCNGDROP3; 541 r = t4_read_reg(sc, A_TP_PARA_REG3); 542 if (r & m) { 543 device_printf(sc->dev, 544 "invalid TP_PARA_REG3(0x%x)\n", r); 545 rc = EINVAL; 546 } 547 } 548 549 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 550 r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ); 551 if (r != v) { 552 device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r); 553 rc = EINVAL; 554 } 555 556 m = v = F_TDDPTAGTCB; 557 r = t4_read_reg(sc, A_ULP_RX_CTL); 558 if ((r & m) != v) { 559 device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r); 560 rc = EINVAL; 561 } 562 563 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 564 F_RESETDDPOFFSET; 565 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 566 r = t4_read_reg(sc, A_TP_PARA_REG5); 567 if ((r & m) != v) { 568 device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r); 569 rc = EINVAL; 570 } 571 572 r = t4_read_reg(sc, A_SGE_CONM_CTRL); 573 s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1; 574 575 if (is_t5(sc)) { 576 r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF); 577 r >>= S_QUEUESPERPAGEPF0 + 578 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf; 579 s->s_qpp = r & M_QUEUESPERPAGEPF0; 580 } 581 582 t4_init_tp_params(sc); 583 584 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 585 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 586 587 return (rc); 588 } 589 590 int 591 t4_create_dma_tag(struct adapter *sc) 592 { 593 int rc; 594 595 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, 596 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, 597 BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, 598 NULL, &sc->dmat); 599 if (rc != 0) { 600 device_printf(sc->dev, 601 "failed to create main DMA tag: %d\n", rc); 602 } 603 604 return (rc); 605 } 606 607 static inline int 608 enable_buffer_packing(struct adapter *sc) 609 { 610 611 if (sc->flags & BUF_PACKING_OK && 612 ((is_t5(sc) && buffer_packing) || /* 1 or -1 both ok for T5 */ 613 (is_t4(sc) && buffer_packing == 1))) 614 return (1); 615 return (0); 616 } 617 618 void 619 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 620 struct sysctl_oid_list *children) 621 { 622 623 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD, 624 NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)"); 625 626 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD, 627 NULL, fl_pad, "payload pad boundary (bytes)"); 628 629 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD, 630 NULL, spg_len, "status page size (bytes)"); 631 632 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD, 633 NULL, cong_drop, "congestion drop setting"); 634 635 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "buffer_packing", CTLFLAG_RD, 636 NULL, enable_buffer_packing(sc), 637 "pack multiple frames in one fl buffer"); 638 639 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD, 640 NULL, is_t5(sc) ? t5_fl_pack : t4_fl_pack, 641 "payload pack boundary (bytes)"); 642 } 643 644 int 645 t4_destroy_dma_tag(struct adapter *sc) 646 { 647 if (sc->dmat) 648 bus_dma_tag_destroy(sc->dmat); 649 650 return (0); 651 } 652 653 /* 654 * Allocate and initialize the firmware event queue and the management queue. 655 * 656 * Returns errno on failure. Resources allocated up to that point may still be 657 * allocated. Caller is responsible for cleanup in case this function fails. 658 */ 659 int 660 t4_setup_adapter_queues(struct adapter *sc) 661 { 662 int rc; 663 664 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 665 666 sysctl_ctx_init(&sc->ctx); 667 sc->flags |= ADAP_SYSCTL_CTX; 668 669 /* 670 * Firmware event queue 671 */ 672 rc = alloc_fwq(sc); 673 if (rc != 0) 674 return (rc); 675 676 /* 677 * Management queue. This is just a control queue that uses the fwq as 678 * its associated iq. 679 */ 680 rc = alloc_mgmtq(sc); 681 682 return (rc); 683 } 684 685 /* 686 * Idempotent 687 */ 688 int 689 t4_teardown_adapter_queues(struct adapter *sc) 690 { 691 692 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 693 694 /* Do this before freeing the queue */ 695 if (sc->flags & ADAP_SYSCTL_CTX) { 696 sysctl_ctx_free(&sc->ctx); 697 sc->flags &= ~ADAP_SYSCTL_CTX; 698 } 699 700 free_mgmtq(sc); 701 free_fwq(sc); 702 703 return (0); 704 } 705 706 static inline int 707 first_vector(struct port_info *pi) 708 { 709 struct adapter *sc = pi->adapter; 710 int rc = T4_EXTRA_INTR, i; 711 712 if (sc->intr_count == 1) 713 return (0); 714 715 for_each_port(sc, i) { 716 struct port_info *p = sc->port[i]; 717 718 if (i == pi->port_id) 719 break; 720 721 #ifdef TCP_OFFLOAD 722 if (sc->flags & INTR_DIRECT) 723 rc += p->nrxq + p->nofldrxq; 724 else 725 rc += max(p->nrxq, p->nofldrxq); 726 #else 727 /* 728 * Not compiled with offload support and intr_count > 1. Only 729 * NIC queues exist and they'd better be taking direct 730 * interrupts. 731 */ 732 KASSERT(sc->flags & INTR_DIRECT, 733 ("%s: intr_count %d, !INTR_DIRECT", __func__, 734 sc->intr_count)); 735 736 rc += p->nrxq; 737 #endif 738 } 739 740 return (rc); 741 } 742 743 /* 744 * Given an arbitrary "index," come up with an iq that can be used by other 745 * queues (of this port) for interrupt forwarding, SGE egress updates, etc. 746 * The iq returned is guaranteed to be something that takes direct interrupts. 747 */ 748 static struct sge_iq * 749 port_intr_iq(struct port_info *pi, int idx) 750 { 751 struct adapter *sc = pi->adapter; 752 struct sge *s = &sc->sge; 753 struct sge_iq *iq = NULL; 754 755 if (sc->intr_count == 1) 756 return (&sc->sge.fwq); 757 758 #ifdef TCP_OFFLOAD 759 if (sc->flags & INTR_DIRECT) { 760 idx %= pi->nrxq + pi->nofldrxq; 761 762 if (idx >= pi->nrxq) { 763 idx -= pi->nrxq; 764 iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq; 765 } else 766 iq = &s->rxq[pi->first_rxq + idx].iq; 767 768 } else { 769 idx %= max(pi->nrxq, pi->nofldrxq); 770 771 if (pi->nrxq >= pi->nofldrxq) 772 iq = &s->rxq[pi->first_rxq + idx].iq; 773 else 774 iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq; 775 } 776 #else 777 /* 778 * Not compiled with offload support and intr_count > 1. Only NIC 779 * queues exist and they'd better be taking direct interrupts. 780 */ 781 KASSERT(sc->flags & INTR_DIRECT, 782 ("%s: intr_count %d, !INTR_DIRECT", __func__, sc->intr_count)); 783 784 idx %= pi->nrxq; 785 iq = &s->rxq[pi->first_rxq + idx].iq; 786 #endif 787 788 KASSERT(iq->flags & IQ_INTR, ("%s: EDOOFUS", __func__)); 789 return (iq); 790 } 791 792 static inline int 793 mtu_to_bufsize(int mtu) 794 { 795 int bufsize; 796 797 /* large enough for a frame even when VLAN extraction is disabled */ 798 bufsize = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + mtu; 799 bufsize = roundup2(bufsize + fl_pktshift, fl_pad); 800 801 return (bufsize); 802 } 803 804 #ifdef TCP_OFFLOAD 805 static inline int 806 mtu_to_bufsize_toe(struct adapter *sc, int mtu) 807 { 808 809 if (sc->tt.rx_coalesce) 810 return (G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2))); 811 812 return (mtu); 813 } 814 #endif 815 816 int 817 t4_setup_port_queues(struct port_info *pi) 818 { 819 int rc = 0, i, j, intr_idx, iqid; 820 struct sge_rxq *rxq; 821 struct sge_txq *txq; 822 struct sge_wrq *ctrlq; 823 #ifdef TCP_OFFLOAD 824 struct sge_ofld_rxq *ofld_rxq; 825 struct sge_wrq *ofld_txq; 826 struct sysctl_oid *oid2 = NULL; 827 #endif 828 char name[16]; 829 struct adapter *sc = pi->adapter; 830 struct ifnet *ifp = pi->ifp; 831 struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev); 832 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 833 int bufsize, pack; 834 835 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD, 836 NULL, "rx queues"); 837 838 #ifdef TCP_OFFLOAD 839 if (is_offload(sc)) { 840 oid2 = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq", 841 CTLFLAG_RD, NULL, 842 "rx queues for offloaded TCP connections"); 843 } 844 #endif 845 846 /* Interrupt vector to start from (when using multiple vectors) */ 847 intr_idx = first_vector(pi); 848 849 /* 850 * First pass over all rx queues (NIC and TOE): 851 * a) initialize iq and fl 852 * b) allocate queue iff it will take direct interrupts. 853 */ 854 bufsize = mtu_to_bufsize(ifp->if_mtu); 855 pack = enable_buffer_packing(sc); 856 for_each_rxq(pi, i, rxq) { 857 858 init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq, 859 RX_IQ_ESIZE); 860 861 snprintf(name, sizeof(name), "%s rxq%d-fl", 862 device_get_nameunit(pi->dev), i); 863 init_fl(sc, &rxq->fl, pi->qsize_rxq / 8, bufsize, pack, name); 864 865 if (sc->flags & INTR_DIRECT 866 #ifdef TCP_OFFLOAD 867 || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq) 868 #endif 869 ) { 870 rxq->iq.flags |= IQ_INTR; 871 rc = alloc_rxq(pi, rxq, intr_idx, i, oid); 872 if (rc != 0) 873 goto done; 874 intr_idx++; 875 } 876 } 877 878 #ifdef TCP_OFFLOAD 879 bufsize = mtu_to_bufsize_toe(sc, ifp->if_mtu); 880 pack = 0; /* XXX: think about this some more */ 881 for_each_ofld_rxq(pi, i, ofld_rxq) { 882 883 init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, 884 pi->qsize_rxq, RX_IQ_ESIZE); 885 886 snprintf(name, sizeof(name), "%s ofld_rxq%d-fl", 887 device_get_nameunit(pi->dev), i); 888 init_fl(sc, &ofld_rxq->fl, pi->qsize_rxq / 8, bufsize, pack, 889 name); 890 891 if (sc->flags & INTR_DIRECT || 892 (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) { 893 ofld_rxq->iq.flags |= IQ_INTR; 894 rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2); 895 if (rc != 0) 896 goto done; 897 intr_idx++; 898 } 899 } 900 #endif 901 902 /* 903 * Second pass over all rx queues (NIC and TOE). The queues forwarding 904 * their interrupts are allocated now. 905 */ 906 j = 0; 907 for_each_rxq(pi, i, rxq) { 908 if (rxq->iq.flags & IQ_INTR) 909 continue; 910 911 intr_idx = port_intr_iq(pi, j)->abs_id; 912 913 rc = alloc_rxq(pi, rxq, intr_idx, i, oid); 914 if (rc != 0) 915 goto done; 916 j++; 917 } 918 919 #ifdef TCP_OFFLOAD 920 for_each_ofld_rxq(pi, i, ofld_rxq) { 921 if (ofld_rxq->iq.flags & IQ_INTR) 922 continue; 923 924 intr_idx = port_intr_iq(pi, j)->abs_id; 925 926 rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2); 927 if (rc != 0) 928 goto done; 929 j++; 930 } 931 #endif 932 933 /* 934 * Now the tx queues. Only one pass needed. 935 */ 936 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD, 937 NULL, "tx queues"); 938 j = 0; 939 for_each_txq(pi, i, txq) { 940 uint16_t iqid; 941 942 iqid = port_intr_iq(pi, j)->cntxt_id; 943 944 snprintf(name, sizeof(name), "%s txq%d", 945 device_get_nameunit(pi->dev), i); 946 init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid, 947 name); 948 949 rc = alloc_txq(pi, txq, i, oid); 950 if (rc != 0) 951 goto done; 952 j++; 953 } 954 955 #ifdef TCP_OFFLOAD 956 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq", 957 CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections"); 958 for_each_ofld_txq(pi, i, ofld_txq) { 959 uint16_t iqid; 960 961 iqid = port_intr_iq(pi, j)->cntxt_id; 962 963 snprintf(name, sizeof(name), "%s ofld_txq%d", 964 device_get_nameunit(pi->dev), i); 965 init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan, 966 iqid, name); 967 968 snprintf(name, sizeof(name), "%d", i); 969 oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 970 name, CTLFLAG_RD, NULL, "offload tx queue"); 971 972 rc = alloc_wrq(sc, pi, ofld_txq, oid2); 973 if (rc != 0) 974 goto done; 975 j++; 976 } 977 #endif 978 979 /* 980 * Finally, the control queue. 981 */ 982 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD, 983 NULL, "ctrl queue"); 984 ctrlq = &sc->sge.ctrlq[pi->port_id]; 985 iqid = port_intr_iq(pi, 0)->cntxt_id; 986 snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev)); 987 init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name); 988 rc = alloc_wrq(sc, pi, ctrlq, oid); 989 990 done: 991 if (rc) 992 t4_teardown_port_queues(pi); 993 994 return (rc); 995 } 996 997 /* 998 * Idempotent 999 */ 1000 int 1001 t4_teardown_port_queues(struct port_info *pi) 1002 { 1003 int i; 1004 struct adapter *sc = pi->adapter; 1005 struct sge_rxq *rxq; 1006 struct sge_txq *txq; 1007 #ifdef TCP_OFFLOAD 1008 struct sge_ofld_rxq *ofld_rxq; 1009 struct sge_wrq *ofld_txq; 1010 #endif 1011 1012 /* Do this before freeing the queues */ 1013 if (pi->flags & PORT_SYSCTL_CTX) { 1014 sysctl_ctx_free(&pi->ctx); 1015 pi->flags &= ~PORT_SYSCTL_CTX; 1016 } 1017 1018 /* 1019 * Take down all the tx queues first, as they reference the rx queues 1020 * (for egress updates, etc.). 1021 */ 1022 1023 free_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 1024 1025 for_each_txq(pi, i, txq) { 1026 free_txq(pi, txq); 1027 } 1028 1029 #ifdef TCP_OFFLOAD 1030 for_each_ofld_txq(pi, i, ofld_txq) { 1031 free_wrq(sc, ofld_txq); 1032 } 1033 #endif 1034 1035 /* 1036 * Then take down the rx queues that forward their interrupts, as they 1037 * reference other rx queues. 1038 */ 1039 1040 for_each_rxq(pi, i, rxq) { 1041 if ((rxq->iq.flags & IQ_INTR) == 0) 1042 free_rxq(pi, rxq); 1043 } 1044 1045 #ifdef TCP_OFFLOAD 1046 for_each_ofld_rxq(pi, i, ofld_rxq) { 1047 if ((ofld_rxq->iq.flags & IQ_INTR) == 0) 1048 free_ofld_rxq(pi, ofld_rxq); 1049 } 1050 #endif 1051 1052 /* 1053 * Then take down the rx queues that take direct interrupts. 1054 */ 1055 1056 for_each_rxq(pi, i, rxq) { 1057 if (rxq->iq.flags & IQ_INTR) 1058 free_rxq(pi, rxq); 1059 } 1060 1061 #ifdef TCP_OFFLOAD 1062 for_each_ofld_rxq(pi, i, ofld_rxq) { 1063 if (ofld_rxq->iq.flags & IQ_INTR) 1064 free_ofld_rxq(pi, ofld_rxq); 1065 } 1066 #endif 1067 1068 return (0); 1069 } 1070 1071 /* 1072 * Deals with errors and the firmware event queue. All data rx queues forward 1073 * their interrupt to the firmware event queue. 1074 */ 1075 void 1076 t4_intr_all(void *arg) 1077 { 1078 struct adapter *sc = arg; 1079 struct sge_iq *fwq = &sc->sge.fwq; 1080 1081 t4_intr_err(arg); 1082 if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) { 1083 service_iq(fwq, 0); 1084 atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE); 1085 } 1086 } 1087 1088 /* Deals with error interrupts */ 1089 void 1090 t4_intr_err(void *arg) 1091 { 1092 struct adapter *sc = arg; 1093 1094 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); 1095 t4_slow_intr_handler(sc); 1096 } 1097 1098 void 1099 t4_intr_evt(void *arg) 1100 { 1101 struct sge_iq *iq = arg; 1102 1103 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1104 service_iq(iq, 0); 1105 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1106 } 1107 } 1108 1109 void 1110 t4_intr(void *arg) 1111 { 1112 struct sge_iq *iq = arg; 1113 1114 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1115 service_iq(iq, 0); 1116 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1117 } 1118 } 1119 1120 /* 1121 * Deals with anything and everything on the given ingress queue. 1122 */ 1123 static int 1124 service_iq(struct sge_iq *iq, int budget) 1125 { 1126 struct sge_iq *q; 1127 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */ 1128 struct sge_fl *fl = &rxq->fl; /* Use iff IQ_HAS_FL */ 1129 struct adapter *sc = iq->adapter; 1130 struct rsp_ctrl *ctrl; 1131 const struct rss_header *rss; 1132 int ndescs = 0, limit, fl_bufs_used = 0; 1133 int rsp_type; 1134 uint32_t lq; 1135 struct mbuf *m0; 1136 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); 1137 #if defined(INET) || defined(INET6) 1138 const struct timeval lro_timeout = {0, sc->lro_timeout}; 1139 #endif 1140 1141 limit = budget ? budget : iq->qsize / 8; 1142 1143 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); 1144 1145 /* 1146 * We always come back and check the descriptor ring for new indirect 1147 * interrupts and other responses after running a single handler. 1148 */ 1149 for (;;) { 1150 while (is_new_response(iq, &ctrl)) { 1151 1152 rmb(); 1153 1154 m0 = NULL; 1155 rsp_type = G_RSPD_TYPE(ctrl->u.type_gen); 1156 lq = be32toh(ctrl->pldbuflen_qid); 1157 rss = (const void *)iq->cdesc; 1158 1159 switch (rsp_type) { 1160 case X_RSPD_TYPE_FLBUF: 1161 1162 KASSERT(iq->flags & IQ_HAS_FL, 1163 ("%s: data for an iq (%p) with no freelist", 1164 __func__, iq)); 1165 1166 m0 = fl->flags & FL_BUF_PACKING ? 1167 get_fl_payload1(sc, fl, lq, &fl_bufs_used) : 1168 get_fl_payload2(sc, fl, lq, &fl_bufs_used); 1169 1170 if (__predict_false(m0 == NULL)) 1171 goto process_iql; 1172 #ifdef T4_PKT_TIMESTAMP 1173 /* 1174 * 60 bit timestamp for the payload is 1175 * *(uint64_t *)m0->m_pktdat. Note that it is 1176 * in the leading free-space in the mbuf. The 1177 * kernel can clobber it during a pullup, 1178 * m_copymdata, etc. You need to make sure that 1179 * the mbuf reaches you unmolested if you care 1180 * about the timestamp. 1181 */ 1182 *(uint64_t *)m0->m_pktdat = 1183 be64toh(ctrl->u.last_flit) & 1184 0xfffffffffffffff; 1185 #endif 1186 1187 /* fall through */ 1188 1189 case X_RSPD_TYPE_CPL: 1190 KASSERT(rss->opcode < NUM_CPL_CMDS, 1191 ("%s: bad opcode %02x.", __func__, 1192 rss->opcode)); 1193 sc->cpl_handler[rss->opcode](iq, rss, m0); 1194 break; 1195 1196 case X_RSPD_TYPE_INTR: 1197 1198 /* 1199 * Interrupts should be forwarded only to queues 1200 * that are not forwarding their interrupts. 1201 * This means service_iq can recurse but only 1 1202 * level deep. 1203 */ 1204 KASSERT(budget == 0, 1205 ("%s: budget %u, rsp_type %u", __func__, 1206 budget, rsp_type)); 1207 1208 /* 1209 * There are 1K interrupt-capable queues (qids 0 1210 * through 1023). A response type indicating a 1211 * forwarded interrupt with a qid >= 1K is an 1212 * iWARP async notification. 1213 */ 1214 if (lq >= 1024) { 1215 sc->an_handler(iq, ctrl); 1216 break; 1217 } 1218 1219 q = sc->sge.iqmap[lq - sc->sge.iq_start]; 1220 if (atomic_cmpset_int(&q->state, IQS_IDLE, 1221 IQS_BUSY)) { 1222 if (service_iq(q, q->qsize / 8) == 0) { 1223 atomic_cmpset_int(&q->state, 1224 IQS_BUSY, IQS_IDLE); 1225 } else { 1226 STAILQ_INSERT_TAIL(&iql, q, 1227 link); 1228 } 1229 } 1230 break; 1231 1232 default: 1233 KASSERT(0, 1234 ("%s: illegal response type %d on iq %p", 1235 __func__, rsp_type, iq)); 1236 log(LOG_ERR, 1237 "%s: illegal response type %d on iq %p", 1238 device_get_nameunit(sc->dev), rsp_type, iq); 1239 break; 1240 } 1241 1242 iq_next(iq); 1243 if (++ndescs == limit) { 1244 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), 1245 V_CIDXINC(ndescs) | 1246 V_INGRESSQID(iq->cntxt_id) | 1247 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 1248 ndescs = 0; 1249 1250 #if defined(INET) || defined(INET6) 1251 if (iq->flags & IQ_LRO_ENABLED && 1252 sc->lro_timeout != 0) { 1253 tcp_lro_flush_inactive(&rxq->lro, 1254 &lro_timeout); 1255 } 1256 #endif 1257 1258 if (fl_bufs_used > 0) { 1259 FL_LOCK(fl); 1260 fl->needed += fl_bufs_used; 1261 refill_fl(sc, fl, fl->cap / 8); 1262 FL_UNLOCK(fl); 1263 fl_bufs_used = 0; 1264 } 1265 1266 if (budget) 1267 return (EINPROGRESS); 1268 } 1269 } 1270 1271 process_iql: 1272 if (STAILQ_EMPTY(&iql)) 1273 break; 1274 1275 /* 1276 * Process the head only, and send it to the back of the list if 1277 * it's still not done. 1278 */ 1279 q = STAILQ_FIRST(&iql); 1280 STAILQ_REMOVE_HEAD(&iql, link); 1281 if (service_iq(q, q->qsize / 8) == 0) 1282 atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); 1283 else 1284 STAILQ_INSERT_TAIL(&iql, q, link); 1285 } 1286 1287 #if defined(INET) || defined(INET6) 1288 if (iq->flags & IQ_LRO_ENABLED) { 1289 struct lro_ctrl *lro = &rxq->lro; 1290 struct lro_entry *l; 1291 1292 while (!SLIST_EMPTY(&lro->lro_active)) { 1293 l = SLIST_FIRST(&lro->lro_active); 1294 SLIST_REMOVE_HEAD(&lro->lro_active, next); 1295 tcp_lro_flush(lro, l); 1296 } 1297 } 1298 #endif 1299 1300 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) | 1301 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); 1302 1303 if (iq->flags & IQ_HAS_FL) { 1304 int starved; 1305 1306 FL_LOCK(fl); 1307 fl->needed += fl_bufs_used; 1308 starved = refill_fl(sc, fl, fl->cap / 4); 1309 FL_UNLOCK(fl); 1310 if (__predict_false(starved != 0)) 1311 add_fl_to_sfl(sc, fl); 1312 } 1313 1314 return (0); 1315 } 1316 1317 static int 1318 fill_mbuf_stash(struct sge_fl *fl) 1319 { 1320 int i; 1321 1322 for (i = 0; i < nitems(fl->mstash); i++) { 1323 if (fl->mstash[i] == NULL) { 1324 struct mbuf *m; 1325 if ((m = m_get(M_NOWAIT, MT_NOINIT)) == NULL) 1326 return (ENOBUFS); 1327 fl->mstash[i] = m; 1328 } 1329 } 1330 return (0); 1331 } 1332 1333 static struct mbuf * 1334 get_mbuf_from_stash(struct sge_fl *fl) 1335 { 1336 int i; 1337 1338 for (i = 0; i < nitems(fl->mstash); i++) { 1339 if (fl->mstash[i] != NULL) { 1340 struct mbuf *m; 1341 1342 m = fl->mstash[i]; 1343 fl->mstash[i] = NULL; 1344 return (m); 1345 } else 1346 fl->mstash[i] = m_get(M_NOWAIT, MT_NOINIT); 1347 } 1348 1349 return (m_get(M_NOWAIT, MT_NOINIT)); 1350 } 1351 1352 static void 1353 return_mbuf_to_stash(struct sge_fl *fl, struct mbuf *m) 1354 { 1355 int i; 1356 1357 if (m == NULL) 1358 return; 1359 1360 for (i = 0; i < nitems(fl->mstash); i++) { 1361 if (fl->mstash[i] == NULL) { 1362 fl->mstash[i] = m; 1363 return; 1364 } 1365 } 1366 m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0); 1367 m_free(m); 1368 } 1369 1370 /* buf can be any address within the buffer */ 1371 static inline u_int * 1372 find_buf_refcnt(caddr_t buf) 1373 { 1374 uintptr_t ptr = (uintptr_t)buf; 1375 1376 return ((u_int *)((ptr & ~(MJUMPAGESIZE - 1)) + MSIZE - sizeof(u_int))); 1377 } 1378 1379 static inline struct mbuf * 1380 find_buf_mbuf(caddr_t buf) 1381 { 1382 uintptr_t ptr = (uintptr_t)buf; 1383 1384 return ((struct mbuf *)(ptr & ~(MJUMPAGESIZE - 1))); 1385 } 1386 1387 static int 1388 rxb_free(struct mbuf *m, void *arg1, void *arg2) 1389 { 1390 uma_zone_t zone = arg1; 1391 caddr_t cl = arg2; 1392 #ifdef INVARIANTS 1393 u_int refcount; 1394 1395 refcount = *find_buf_refcnt(cl); 1396 KASSERT(refcount == 0, ("%s: cl %p refcount is %u", __func__, 1397 cl - MSIZE, refcount)); 1398 #endif 1399 cl -= MSIZE; 1400 uma_zfree(zone, cl); 1401 1402 return (EXT_FREE_OK); 1403 } 1404 1405 static struct mbuf * 1406 get_fl_payload1(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf, 1407 int *fl_bufs_used) 1408 { 1409 struct mbuf *m0, *m; 1410 struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; 1411 unsigned int nbuf, len; 1412 int pack_boundary = is_t4(sc) ? t4_fl_pack : t5_fl_pack; 1413 1414 /* 1415 * No assertion for the fl lock because we don't need it. This routine 1416 * is called only from the rx interrupt handler and it only updates 1417 * fl->cidx. (Contrast that with fl->pidx/fl->needed which could be 1418 * updated in the rx interrupt handler or the starvation helper routine. 1419 * That's why code that manipulates fl->pidx/fl->needed needs the fl 1420 * lock but this routine does not). 1421 */ 1422 1423 KASSERT(fl->flags & FL_BUF_PACKING, 1424 ("%s: buffer packing disabled for fl %p", __func__, fl)); 1425 1426 len = G_RSPD_LEN(len_newbuf); 1427 1428 if ((len_newbuf & F_RSPD_NEWBUF) == 0) { 1429 KASSERT(fl->rx_offset > 0, 1430 ("%s: packed frame but driver at offset=0", __func__)); 1431 1432 /* A packed frame is guaranteed to fit entirely in this buf. */ 1433 KASSERT(FL_BUF_SIZE(sc, sd->tag_idx) - fl->rx_offset >= len, 1434 ("%s: packing error. bufsz=%u, offset=%u, len=%u", 1435 __func__, FL_BUF_SIZE(sc, sd->tag_idx), fl->rx_offset, 1436 len)); 1437 1438 m0 = get_mbuf_from_stash(fl); 1439 if (m0 == NULL || 1440 m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR) != 0) { 1441 return_mbuf_to_stash(fl, m0); 1442 return (NULL); 1443 } 1444 1445 bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, 1446 BUS_DMASYNC_POSTREAD); 1447 if (len < RX_COPY_THRESHOLD) { 1448 #ifdef T4_PKT_TIMESTAMP 1449 /* Leave room for a timestamp */ 1450 m0->m_data += 8; 1451 #endif 1452 bcopy(sd->cl + fl->rx_offset, mtod(m0, caddr_t), len); 1453 m0->m_pkthdr.len = len; 1454 m0->m_len = len; 1455 } else { 1456 m0->m_pkthdr.len = len; 1457 m0->m_len = len; 1458 m_extaddref(m0, sd->cl + fl->rx_offset, 1459 roundup2(m0->m_len, fl_pad), 1460 find_buf_refcnt(sd->cl), rxb_free, 1461 FL_BUF_ZONE(sc, sd->tag_idx), sd->cl); 1462 } 1463 fl->rx_offset += len; 1464 fl->rx_offset = roundup2(fl->rx_offset, fl_pad); 1465 fl->rx_offset = roundup2(fl->rx_offset, pack_boundary); 1466 if (fl->rx_offset >= FL_BUF_SIZE(sc, sd->tag_idx)) { 1467 fl->rx_offset = 0; 1468 (*fl_bufs_used) += 1; 1469 if (__predict_false(++fl->cidx == fl->cap)) 1470 fl->cidx = 0; 1471 } 1472 1473 return (m0); 1474 } 1475 1476 KASSERT(len_newbuf & F_RSPD_NEWBUF, 1477 ("%s: only new buffer handled here", __func__)); 1478 1479 nbuf = 0; 1480 1481 /* 1482 * Move to the start of the next buffer if we are still in the middle of 1483 * some buffer. This is the case where there was some room left in the 1484 * previous buffer but not enough to fit this frame in its entirety. 1485 */ 1486 if (fl->rx_offset > 0) { 1487 KASSERT(roundup2(len, fl_pad) > FL_BUF_SIZE(sc, sd->tag_idx) - 1488 fl->rx_offset, ("%s: frame (%u bytes) should have fit at " 1489 "cidx %u offset %u bufsize %u", __func__, len, fl->cidx, 1490 fl->rx_offset, FL_BUF_SIZE(sc, sd->tag_idx))); 1491 nbuf++; 1492 fl->rx_offset = 0; 1493 sd++; 1494 if (__predict_false(++fl->cidx == fl->cap)) { 1495 sd = fl->sdesc; 1496 fl->cidx = 0; 1497 } 1498 } 1499 1500 m0 = find_buf_mbuf(sd->cl); 1501 if (m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR | M_NOFREE)) 1502 goto done; 1503 bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD); 1504 m0->m_len = min(len, FL_BUF_SIZE(sc, sd->tag_idx)); 1505 m_extaddref(m0, sd->cl, roundup2(m0->m_len, fl_pad), 1506 find_buf_refcnt(sd->cl), rxb_free, FL_BUF_ZONE(sc, sd->tag_idx), 1507 sd->cl); 1508 m0->m_pkthdr.len = len; 1509 1510 fl->rx_offset = roundup2(m0->m_len, fl_pad); 1511 fl->rx_offset = roundup2(fl->rx_offset, pack_boundary); 1512 if (fl->rx_offset >= FL_BUF_SIZE(sc, sd->tag_idx)) { 1513 fl->rx_offset = 0; 1514 nbuf++; 1515 sd++; 1516 if (__predict_false(++fl->cidx == fl->cap)) { 1517 sd = fl->sdesc; 1518 fl->cidx = 0; 1519 } 1520 } 1521 1522 m = m0; 1523 len -= m->m_len; 1524 1525 while (len > 0) { 1526 m->m_next = find_buf_mbuf(sd->cl); 1527 m = m->m_next; 1528 1529 bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, 1530 BUS_DMASYNC_POSTREAD); 1531 1532 /* m_init for !M_PKTHDR can't fail so don't bother */ 1533 m_init(m, NULL, 0, M_NOWAIT, MT_DATA, M_NOFREE); 1534 m->m_len = min(len, FL_BUF_SIZE(sc, sd->tag_idx)); 1535 m_extaddref(m, sd->cl, roundup2(m->m_len, fl_pad), 1536 find_buf_refcnt(sd->cl), rxb_free, 1537 FL_BUF_ZONE(sc, sd->tag_idx), sd->cl); 1538 1539 fl->rx_offset = roundup2(m->m_len, fl_pad); 1540 fl->rx_offset = roundup2(fl->rx_offset, pack_boundary); 1541 if (fl->rx_offset >= FL_BUF_SIZE(sc, sd->tag_idx)) { 1542 fl->rx_offset = 0; 1543 nbuf++; 1544 sd++; 1545 if (__predict_false(++fl->cidx == fl->cap)) { 1546 sd = fl->sdesc; 1547 fl->cidx = 0; 1548 } 1549 } 1550 1551 len -= m->m_len; 1552 } 1553 done: 1554 (*fl_bufs_used) += nbuf; 1555 return (m0); 1556 } 1557 1558 static struct mbuf * 1559 get_fl_payload2(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf, 1560 int *fl_bufs_used) 1561 { 1562 struct mbuf *m0, *m; 1563 struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; 1564 unsigned int nbuf, len; 1565 1566 /* 1567 * No assertion for the fl lock because we don't need it. This routine 1568 * is called only from the rx interrupt handler and it only updates 1569 * fl->cidx. (Contrast that with fl->pidx/fl->needed which could be 1570 * updated in the rx interrupt handler or the starvation helper routine. 1571 * That's why code that manipulates fl->pidx/fl->needed needs the fl 1572 * lock but this routine does not). 1573 */ 1574 1575 KASSERT((fl->flags & FL_BUF_PACKING) == 0, 1576 ("%s: buffer packing enabled for fl %p", __func__, fl)); 1577 if (__predict_false((len_newbuf & F_RSPD_NEWBUF) == 0)) 1578 panic("%s: cannot handle packed frames", __func__); 1579 len = G_RSPD_LEN(len_newbuf); 1580 1581 /* 1582 * We never want to run out of mbufs in between a frame when a frame 1583 * spans multiple fl buffers. If the fl's mbuf stash isn't full and 1584 * can't be filled up to the brim then fail early. 1585 */ 1586 if (len > FL_BUF_SIZE(sc, sd->tag_idx) && fill_mbuf_stash(fl) != 0) 1587 return (NULL); 1588 1589 m0 = get_mbuf_from_stash(fl); 1590 if (m0 == NULL || 1591 m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR) != 0) { 1592 return_mbuf_to_stash(fl, m0); 1593 return (NULL); 1594 } 1595 1596 bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD); 1597 1598 if (len < RX_COPY_THRESHOLD) { 1599 #ifdef T4_PKT_TIMESTAMP 1600 /* Leave room for a timestamp */ 1601 m0->m_data += 8; 1602 #endif 1603 /* copy data to mbuf, buffer will be recycled */ 1604 bcopy(sd->cl, mtod(m0, caddr_t), len); 1605 m0->m_len = len; 1606 } else { 1607 bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map); 1608 m_cljset(m0, sd->cl, FL_BUF_TYPE(sc, sd->tag_idx)); 1609 sd->cl = NULL; /* consumed */ 1610 m0->m_len = min(len, FL_BUF_SIZE(sc, sd->tag_idx)); 1611 } 1612 m0->m_pkthdr.len = len; 1613 1614 sd++; 1615 if (__predict_false(++fl->cidx == fl->cap)) { 1616 sd = fl->sdesc; 1617 fl->cidx = 0; 1618 } 1619 1620 m = m0; 1621 len -= m->m_len; 1622 nbuf = 1; /* # of fl buffers used */ 1623 1624 while (len > 0) { 1625 /* Can't fail, we checked earlier that the stash was full. */ 1626 m->m_next = get_mbuf_from_stash(fl); 1627 m = m->m_next; 1628 1629 bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, 1630 BUS_DMASYNC_POSTREAD); 1631 1632 /* m_init for !M_PKTHDR can't fail so don't bother */ 1633 m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0); 1634 if (len <= MLEN) { 1635 bcopy(sd->cl, mtod(m, caddr_t), len); 1636 m->m_len = len; 1637 } else { 1638 bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map); 1639 m_cljset(m, sd->cl, FL_BUF_TYPE(sc, sd->tag_idx)); 1640 sd->cl = NULL; /* consumed */ 1641 m->m_len = min(len, FL_BUF_SIZE(sc, sd->tag_idx)); 1642 } 1643 1644 sd++; 1645 if (__predict_false(++fl->cidx == fl->cap)) { 1646 sd = fl->sdesc; 1647 fl->cidx = 0; 1648 } 1649 1650 len -= m->m_len; 1651 nbuf++; 1652 } 1653 1654 (*fl_bufs_used) += nbuf; 1655 1656 return (m0); 1657 } 1658 1659 static int 1660 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) 1661 { 1662 struct sge_rxq *rxq = iq_to_rxq(iq); 1663 struct ifnet *ifp = rxq->ifp; 1664 const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); 1665 #if defined(INET) || defined(INET6) 1666 struct lro_ctrl *lro = &rxq->lro; 1667 #endif 1668 1669 KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__, 1670 rss->opcode)); 1671 1672 m0->m_pkthdr.len -= fl_pktshift; 1673 m0->m_len -= fl_pktshift; 1674 m0->m_data += fl_pktshift; 1675 1676 m0->m_pkthdr.rcvif = ifp; 1677 m0->m_flags |= M_FLOWID; 1678 m0->m_pkthdr.flowid = rss->hash_val; 1679 1680 if (cpl->csum_calc && !cpl->err_vec) { 1681 if (ifp->if_capenable & IFCAP_RXCSUM && 1682 cpl->l2info & htobe32(F_RXF_IP)) { 1683 m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED | 1684 CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 1685 rxq->rxcsum++; 1686 } else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 && 1687 cpl->l2info & htobe32(F_RXF_IP6)) { 1688 m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 | 1689 CSUM_PSEUDO_HDR); 1690 rxq->rxcsum++; 1691 } 1692 1693 if (__predict_false(cpl->ip_frag)) 1694 m0->m_pkthdr.csum_data = be16toh(cpl->csum); 1695 else 1696 m0->m_pkthdr.csum_data = 0xffff; 1697 } 1698 1699 if (cpl->vlan_ex) { 1700 m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); 1701 m0->m_flags |= M_VLANTAG; 1702 rxq->vlan_extraction++; 1703 } 1704 1705 #if defined(INET) || defined(INET6) 1706 if (cpl->l2info & htobe32(F_RXF_LRO) && 1707 iq->flags & IQ_LRO_ENABLED && 1708 tcp_lro_rx(lro, m0, 0) == 0) { 1709 /* queued for LRO */ 1710 } else 1711 #endif 1712 ifp->if_input(ifp, m0); 1713 1714 return (0); 1715 } 1716 1717 /* 1718 * Doesn't fail. Holds on to work requests it can't send right away. 1719 */ 1720 void 1721 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr) 1722 { 1723 struct sge_eq *eq = &wrq->eq; 1724 int can_reclaim; 1725 caddr_t dst; 1726 1727 TXQ_LOCK_ASSERT_OWNED(wrq); 1728 #ifdef TCP_OFFLOAD 1729 KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD || 1730 (eq->flags & EQ_TYPEMASK) == EQ_CTRL, 1731 ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK)); 1732 #else 1733 KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL, 1734 ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK)); 1735 #endif 1736 1737 if (__predict_true(wr != NULL)) 1738 STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link); 1739 1740 can_reclaim = reclaimable(eq); 1741 if (__predict_false(eq->flags & EQ_STALLED)) { 1742 if (can_reclaim < tx_resume_threshold(eq)) 1743 return; 1744 eq->flags &= ~EQ_STALLED; 1745 eq->unstalled++; 1746 } 1747 eq->cidx += can_reclaim; 1748 eq->avail += can_reclaim; 1749 if (__predict_false(eq->cidx >= eq->cap)) 1750 eq->cidx -= eq->cap; 1751 1752 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) { 1753 int ndesc; 1754 1755 if (__predict_false(wr->wr_len < 0 || 1756 wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) { 1757 1758 #ifdef INVARIANTS 1759 panic("%s: work request with length %d", __func__, 1760 wr->wr_len); 1761 #endif 1762 #ifdef KDB 1763 kdb_backtrace(); 1764 #endif 1765 log(LOG_ERR, "%s: %s work request with length %d", 1766 device_get_nameunit(sc->dev), __func__, wr->wr_len); 1767 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 1768 free_wrqe(wr); 1769 continue; 1770 } 1771 1772 ndesc = howmany(wr->wr_len, EQ_ESIZE); 1773 if (eq->avail < ndesc) { 1774 wrq->no_desc++; 1775 break; 1776 } 1777 1778 dst = (void *)&eq->desc[eq->pidx]; 1779 copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len); 1780 1781 eq->pidx += ndesc; 1782 eq->avail -= ndesc; 1783 if (__predict_false(eq->pidx >= eq->cap)) 1784 eq->pidx -= eq->cap; 1785 1786 eq->pending += ndesc; 1787 if (eq->pending >= 8) 1788 ring_eq_db(sc, eq); 1789 1790 wrq->tx_wrs++; 1791 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 1792 free_wrqe(wr); 1793 1794 if (eq->avail < 8) { 1795 can_reclaim = reclaimable(eq); 1796 eq->cidx += can_reclaim; 1797 eq->avail += can_reclaim; 1798 if (__predict_false(eq->cidx >= eq->cap)) 1799 eq->cidx -= eq->cap; 1800 } 1801 } 1802 1803 if (eq->pending) 1804 ring_eq_db(sc, eq); 1805 1806 if (wr != NULL) { 1807 eq->flags |= EQ_STALLED; 1808 if (callout_pending(&eq->tx_callout) == 0) 1809 callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq); 1810 } 1811 } 1812 1813 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */ 1814 #define TXPKTS_PKT_HDR ((\ 1815 sizeof(struct ulp_txpkt) + \ 1816 sizeof(struct ulptx_idata) + \ 1817 sizeof(struct cpl_tx_pkt_core) \ 1818 ) / 8) 1819 1820 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */ 1821 #define TXPKTS_WR_HDR (\ 1822 sizeof(struct fw_eth_tx_pkts_wr) / 8 + \ 1823 TXPKTS_PKT_HDR) 1824 1825 /* Header of a tx WR, before SGL of first packet (in flits) */ 1826 #define TXPKT_WR_HDR ((\ 1827 sizeof(struct fw_eth_tx_pkt_wr) + \ 1828 sizeof(struct cpl_tx_pkt_core) \ 1829 ) / 8 ) 1830 1831 /* Header of a tx LSO WR, before SGL of first packet (in flits) */ 1832 #define TXPKT_LSO_WR_HDR ((\ 1833 sizeof(struct fw_eth_tx_pkt_wr) + \ 1834 sizeof(struct cpl_tx_pkt_lso_core) + \ 1835 sizeof(struct cpl_tx_pkt_core) \ 1836 ) / 8 ) 1837 1838 int 1839 t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m) 1840 { 1841 struct port_info *pi = (void *)ifp->if_softc; 1842 struct adapter *sc = pi->adapter; 1843 struct sge_eq *eq = &txq->eq; 1844 struct buf_ring *br = txq->br; 1845 struct mbuf *next; 1846 int rc, coalescing, can_reclaim; 1847 struct txpkts txpkts; 1848 struct sgl sgl; 1849 1850 TXQ_LOCK_ASSERT_OWNED(txq); 1851 KASSERT(m, ("%s: called with nothing to do.", __func__)); 1852 KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH, 1853 ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK)); 1854 1855 prefetch(&eq->desc[eq->pidx]); 1856 prefetch(&txq->sdesc[eq->pidx]); 1857 1858 txpkts.npkt = 0;/* indicates there's nothing in txpkts */ 1859 coalescing = 0; 1860 1861 can_reclaim = reclaimable(eq); 1862 if (__predict_false(eq->flags & EQ_STALLED)) { 1863 if (can_reclaim < tx_resume_threshold(eq)) { 1864 txq->m = m; 1865 return (0); 1866 } 1867 eq->flags &= ~EQ_STALLED; 1868 eq->unstalled++; 1869 } 1870 1871 if (__predict_false(eq->flags & EQ_DOOMED)) { 1872 m_freem(m); 1873 while ((m = buf_ring_dequeue_sc(txq->br)) != NULL) 1874 m_freem(m); 1875 return (ENETDOWN); 1876 } 1877 1878 if (eq->avail < 8 && can_reclaim) 1879 reclaim_tx_descs(txq, can_reclaim, 32); 1880 1881 for (; m; m = next ? next : drbr_dequeue(ifp, br)) { 1882 1883 if (eq->avail < 8) 1884 break; 1885 1886 next = m->m_nextpkt; 1887 m->m_nextpkt = NULL; 1888 1889 if (next || buf_ring_peek(br)) 1890 coalescing = 1; 1891 1892 rc = get_pkt_sgl(txq, &m, &sgl, coalescing); 1893 if (rc != 0) { 1894 if (rc == ENOMEM) { 1895 1896 /* Short of resources, suspend tx */ 1897 1898 m->m_nextpkt = next; 1899 break; 1900 } 1901 1902 /* 1903 * Unrecoverable error for this packet, throw it away 1904 * and move on to the next. get_pkt_sgl may already 1905 * have freed m (it will be NULL in that case and the 1906 * m_freem here is still safe). 1907 */ 1908 1909 m_freem(m); 1910 continue; 1911 } 1912 1913 if (coalescing && 1914 add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) { 1915 1916 /* Successfully absorbed into txpkts */ 1917 1918 write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl); 1919 goto doorbell; 1920 } 1921 1922 /* 1923 * We weren't coalescing to begin with, or current frame could 1924 * not be coalesced (add_to_txpkts flushes txpkts if a frame 1925 * given to it can't be coalesced). Either way there should be 1926 * nothing in txpkts. 1927 */ 1928 KASSERT(txpkts.npkt == 0, 1929 ("%s: txpkts not empty: %d", __func__, txpkts.npkt)); 1930 1931 /* We're sending out individual packets now */ 1932 coalescing = 0; 1933 1934 if (eq->avail < 8) 1935 reclaim_tx_descs(txq, 0, 8); 1936 rc = write_txpkt_wr(pi, txq, m, &sgl); 1937 if (rc != 0) { 1938 1939 /* Short of hardware descriptors, suspend tx */ 1940 1941 /* 1942 * This is an unlikely but expensive failure. We've 1943 * done all the hard work (DMA mappings etc.) and now we 1944 * can't send out the packet. What's worse, we have to 1945 * spend even more time freeing up everything in sgl. 1946 */ 1947 txq->no_desc++; 1948 free_pkt_sgl(txq, &sgl); 1949 1950 m->m_nextpkt = next; 1951 break; 1952 } 1953 1954 ETHER_BPF_MTAP(ifp, m); 1955 if (sgl.nsegs == 0) 1956 m_freem(m); 1957 doorbell: 1958 if (eq->pending >= 8) 1959 ring_eq_db(sc, eq); 1960 1961 can_reclaim = reclaimable(eq); 1962 if (can_reclaim >= 32) 1963 reclaim_tx_descs(txq, can_reclaim, 64); 1964 } 1965 1966 if (txpkts.npkt > 0) 1967 write_txpkts_wr(txq, &txpkts); 1968 1969 /* 1970 * m not NULL means there was an error but we haven't thrown it away. 1971 * This can happen when we're short of tx descriptors (no_desc) or maybe 1972 * even DMA maps (no_dmamap). Either way, a credit flush and reclaim 1973 * will get things going again. 1974 */ 1975 if (m && !(eq->flags & EQ_CRFLUSHED)) { 1976 struct tx_sdesc *txsd = &txq->sdesc[eq->pidx]; 1977 1978 /* 1979 * If EQ_CRFLUSHED is not set then we know we have at least one 1980 * available descriptor because any WR that reduces eq->avail to 1981 * 0 also sets EQ_CRFLUSHED. 1982 */ 1983 KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__)); 1984 1985 txsd->desc_used = 1; 1986 txsd->credits = 0; 1987 write_eqflush_wr(eq); 1988 } 1989 txq->m = m; 1990 1991 if (eq->pending) 1992 ring_eq_db(sc, eq); 1993 1994 reclaim_tx_descs(txq, 0, 128); 1995 1996 if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0) 1997 callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq); 1998 1999 return (0); 2000 } 2001 2002 void 2003 t4_update_fl_bufsize(struct ifnet *ifp) 2004 { 2005 struct port_info *pi = ifp->if_softc; 2006 struct adapter *sc = pi->adapter; 2007 struct sge_rxq *rxq; 2008 #ifdef TCP_OFFLOAD 2009 struct sge_ofld_rxq *ofld_rxq; 2010 #endif 2011 struct sge_fl *fl; 2012 int i, bufsize; 2013 2014 bufsize = mtu_to_bufsize(ifp->if_mtu); 2015 for_each_rxq(pi, i, rxq) { 2016 fl = &rxq->fl; 2017 2018 FL_LOCK(fl); 2019 set_fl_tag_idx(sc, fl, bufsize); 2020 FL_UNLOCK(fl); 2021 } 2022 #ifdef TCP_OFFLOAD 2023 bufsize = mtu_to_bufsize_toe(pi->adapter, ifp->if_mtu); 2024 for_each_ofld_rxq(pi, i, ofld_rxq) { 2025 fl = &ofld_rxq->fl; 2026 2027 FL_LOCK(fl); 2028 set_fl_tag_idx(sc, fl, bufsize); 2029 FL_UNLOCK(fl); 2030 } 2031 #endif 2032 } 2033 2034 int 2035 can_resume_tx(struct sge_eq *eq) 2036 { 2037 return (reclaimable(eq) >= tx_resume_threshold(eq)); 2038 } 2039 2040 static inline void 2041 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, 2042 int qsize, int esize) 2043 { 2044 KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, 2045 ("%s: bad tmr_idx %d", __func__, tmr_idx)); 2046 KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ 2047 ("%s: bad pktc_idx %d", __func__, pktc_idx)); 2048 2049 iq->flags = 0; 2050 iq->adapter = sc; 2051 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); 2052 iq->intr_pktc_idx = SGE_NCOUNTERS - 1; 2053 if (pktc_idx >= 0) { 2054 iq->intr_params |= F_QINTR_CNT_EN; 2055 iq->intr_pktc_idx = pktc_idx; 2056 } 2057 iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */ 2058 iq->esize = max(esize, 16); /* See FW_IQ_CMD/iqesize */ 2059 } 2060 2061 static inline void 2062 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int bufsize, int pack, 2063 char *name) 2064 { 2065 2066 fl->qsize = qsize; 2067 strlcpy(fl->lockname, name, sizeof(fl->lockname)); 2068 if (pack) 2069 fl->flags |= FL_BUF_PACKING; 2070 set_fl_tag_idx(sc, fl, bufsize); 2071 } 2072 2073 static inline void 2074 init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan, 2075 uint16_t iqid, char *name) 2076 { 2077 KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan)); 2078 KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype)); 2079 2080 eq->flags = eqtype & EQ_TYPEMASK; 2081 eq->tx_chan = tx_chan; 2082 eq->iqid = iqid; 2083 eq->qsize = qsize; 2084 strlcpy(eq->lockname, name, sizeof(eq->lockname)); 2085 2086 TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq); 2087 callout_init(&eq->tx_callout, CALLOUT_MPSAFE); 2088 } 2089 2090 static int 2091 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, 2092 bus_dmamap_t *map, bus_addr_t *pa, void **va) 2093 { 2094 int rc; 2095 2096 rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, 2097 BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); 2098 if (rc != 0) { 2099 device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc); 2100 goto done; 2101 } 2102 2103 rc = bus_dmamem_alloc(*tag, va, 2104 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); 2105 if (rc != 0) { 2106 device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc); 2107 goto done; 2108 } 2109 2110 rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); 2111 if (rc != 0) { 2112 device_printf(sc->dev, "cannot load DMA map: %d\n", rc); 2113 goto done; 2114 } 2115 done: 2116 if (rc) 2117 free_ring(sc, *tag, *map, *pa, *va); 2118 2119 return (rc); 2120 } 2121 2122 static int 2123 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, 2124 bus_addr_t pa, void *va) 2125 { 2126 if (pa) 2127 bus_dmamap_unload(tag, map); 2128 if (va) 2129 bus_dmamem_free(tag, va, map); 2130 if (tag) 2131 bus_dma_tag_destroy(tag); 2132 2133 return (0); 2134 } 2135 2136 /* 2137 * Allocates the ring for an ingress queue and an optional freelist. If the 2138 * freelist is specified it will be allocated and then associated with the 2139 * ingress queue. 2140 * 2141 * Returns errno on failure. Resources allocated up to that point may still be 2142 * allocated. Caller is responsible for cleanup in case this function fails. 2143 * 2144 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then 2145 * the intr_idx specifies the vector, starting from 0. Otherwise it specifies 2146 * the abs_id of the ingress queue to which its interrupts should be forwarded. 2147 */ 2148 static int 2149 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl, 2150 int intr_idx, int cong) 2151 { 2152 int rc, i, cntxt_id; 2153 size_t len; 2154 struct fw_iq_cmd c; 2155 struct adapter *sc = iq->adapter; 2156 __be32 v = 0; 2157 2158 len = iq->qsize * iq->esize; 2159 rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, 2160 (void **)&iq->desc); 2161 if (rc != 0) 2162 return (rc); 2163 2164 bzero(&c, sizeof(c)); 2165 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 2166 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | 2167 V_FW_IQ_CMD_VFN(0)); 2168 2169 c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | 2170 FW_LEN16(c)); 2171 2172 /* Special handling for firmware event queue */ 2173 if (iq == &sc->sge.fwq) 2174 v |= F_FW_IQ_CMD_IQASYNCH; 2175 2176 if (iq->flags & IQ_INTR) { 2177 KASSERT(intr_idx < sc->intr_count, 2178 ("%s: invalid direct intr_idx %d", __func__, intr_idx)); 2179 } else 2180 v |= F_FW_IQ_CMD_IQANDST; 2181 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); 2182 2183 c.type_to_iqandstindex = htobe32(v | 2184 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 2185 V_FW_IQ_CMD_VIID(pi->viid) | 2186 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); 2187 c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 2188 F_FW_IQ_CMD_IQGTSMODE | 2189 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | 2190 V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4)); 2191 c.iqsize = htobe16(iq->qsize); 2192 c.iqaddr = htobe64(iq->ba); 2193 if (cong >= 0) 2194 c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN); 2195 2196 if (fl) { 2197 mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); 2198 2199 for (i = 0; i < FL_BUF_SIZES(sc); i++) { 2200 2201 /* 2202 * A freelist buffer must be 16 byte aligned as the SGE 2203 * uses the low 4 bits of the bus addr to figure out the 2204 * buffer size. 2205 */ 2206 rc = bus_dma_tag_create(sc->dmat, 16, 0, 2207 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 2208 FL_BUF_SIZE(sc, i), 1, FL_BUF_SIZE(sc, i), 2209 BUS_DMA_ALLOCNOW, NULL, NULL, &fl->tag[i]); 2210 if (rc != 0) { 2211 device_printf(sc->dev, 2212 "failed to create fl DMA tag[%d]: %d\n", 2213 i, rc); 2214 return (rc); 2215 } 2216 } 2217 len = fl->qsize * RX_FL_ESIZE; 2218 rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, 2219 &fl->ba, (void **)&fl->desc); 2220 if (rc) 2221 return (rc); 2222 2223 /* Allocate space for one software descriptor per buffer. */ 2224 fl->cap = (fl->qsize - spg_len / RX_FL_ESIZE) * 8; 2225 rc = alloc_fl_sdesc(fl); 2226 if (rc != 0) { 2227 device_printf(sc->dev, 2228 "failed to setup fl software descriptors: %d\n", 2229 rc); 2230 return (rc); 2231 } 2232 fl->needed = fl->cap; 2233 fl->lowat = roundup2(sc->sge.fl_starve_threshold, 8); 2234 2235 c.iqns_to_fl0congen |= 2236 htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | 2237 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | 2238 (fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) | 2239 (fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN : 2240 0)); 2241 if (cong >= 0) { 2242 c.iqns_to_fl0congen |= 2243 htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | 2244 F_FW_IQ_CMD_FL0CONGCIF | 2245 F_FW_IQ_CMD_FL0CONGEN); 2246 } 2247 c.fl0dcaen_to_fl0cidxfthresh = 2248 htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) | 2249 V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B)); 2250 c.fl0size = htobe16(fl->qsize); 2251 c.fl0addr = htobe64(fl->ba); 2252 } 2253 2254 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2255 if (rc != 0) { 2256 device_printf(sc->dev, 2257 "failed to create ingress queue: %d\n", rc); 2258 return (rc); 2259 } 2260 2261 iq->cdesc = iq->desc; 2262 iq->cidx = 0; 2263 iq->gen = 1; 2264 iq->intr_next = iq->intr_params; 2265 iq->cntxt_id = be16toh(c.iqid); 2266 iq->abs_id = be16toh(c.physiqid); 2267 iq->flags |= IQ_ALLOCATED; 2268 2269 cntxt_id = iq->cntxt_id - sc->sge.iq_start; 2270 if (cntxt_id >= sc->sge.niq) { 2271 panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, 2272 cntxt_id, sc->sge.niq - 1); 2273 } 2274 sc->sge.iqmap[cntxt_id] = iq; 2275 2276 if (fl) { 2277 fl->cntxt_id = be16toh(c.fl0id); 2278 fl->pidx = fl->cidx = 0; 2279 2280 cntxt_id = fl->cntxt_id - sc->sge.eq_start; 2281 if (cntxt_id >= sc->sge.neq) { 2282 panic("%s: fl->cntxt_id (%d) more than the max (%d)", 2283 __func__, cntxt_id, sc->sge.neq - 1); 2284 } 2285 sc->sge.eqmap[cntxt_id] = (void *)fl; 2286 2287 FL_LOCK(fl); 2288 /* Enough to make sure the SGE doesn't think it's starved */ 2289 refill_fl(sc, fl, fl->lowat); 2290 FL_UNLOCK(fl); 2291 2292 iq->flags |= IQ_HAS_FL; 2293 } 2294 2295 if (is_t5(sc) && cong >= 0) { 2296 uint32_t param, val; 2297 2298 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 2299 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 2300 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id); 2301 if (cong == 0) 2302 val = 1 << 19; 2303 else { 2304 val = 2 << 19; 2305 for (i = 0; i < 4; i++) { 2306 if (cong & (1 << i)) 2307 val |= 1 << (i << 2); 2308 } 2309 } 2310 2311 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 2312 if (rc != 0) { 2313 /* report error but carry on */ 2314 device_printf(sc->dev, 2315 "failed to set congestion manager context for " 2316 "ingress queue %d: %d\n", iq->cntxt_id, rc); 2317 } 2318 } 2319 2320 /* Enable IQ interrupts */ 2321 atomic_store_rel_int(&iq->state, IQS_IDLE); 2322 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) | 2323 V_INGRESSQID(iq->cntxt_id)); 2324 2325 return (0); 2326 } 2327 2328 static int 2329 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl) 2330 { 2331 int i, rc; 2332 struct adapter *sc = iq->adapter; 2333 device_t dev; 2334 2335 if (sc == NULL) 2336 return (0); /* nothing to do */ 2337 2338 dev = pi ? pi->dev : sc->dev; 2339 2340 if (iq->flags & IQ_ALLOCATED) { 2341 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, 2342 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, 2343 fl ? fl->cntxt_id : 0xffff, 0xffff); 2344 if (rc != 0) { 2345 device_printf(dev, 2346 "failed to free queue %p: %d\n", iq, rc); 2347 return (rc); 2348 } 2349 iq->flags &= ~IQ_ALLOCATED; 2350 } 2351 2352 free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); 2353 2354 bzero(iq, sizeof(*iq)); 2355 2356 if (fl) { 2357 free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, 2358 fl->desc); 2359 2360 if (fl->sdesc) 2361 free_fl_sdesc(sc, fl); 2362 2363 for (i = 0; i < nitems(fl->mstash); i++) { 2364 struct mbuf *m = fl->mstash[i]; 2365 2366 if (m != NULL) { 2367 m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0); 2368 m_free(m); 2369 } 2370 } 2371 2372 if (mtx_initialized(&fl->fl_lock)) 2373 mtx_destroy(&fl->fl_lock); 2374 2375 for (i = 0; i < FL_BUF_SIZES(sc); i++) { 2376 if (fl->tag[i]) 2377 bus_dma_tag_destroy(fl->tag[i]); 2378 } 2379 2380 bzero(fl, sizeof(*fl)); 2381 } 2382 2383 return (0); 2384 } 2385 2386 static int 2387 alloc_fwq(struct adapter *sc) 2388 { 2389 int rc, intr_idx; 2390 struct sge_iq *fwq = &sc->sge.fwq; 2391 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 2392 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2393 2394 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE); 2395 fwq->flags |= IQ_INTR; /* always */ 2396 intr_idx = sc->intr_count > 1 ? 1 : 0; 2397 rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1); 2398 if (rc != 0) { 2399 device_printf(sc->dev, 2400 "failed to create firmware event queue: %d\n", rc); 2401 return (rc); 2402 } 2403 2404 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD, 2405 NULL, "firmware event queue"); 2406 children = SYSCTL_CHILDREN(oid); 2407 2408 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id", 2409 CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I", 2410 "absolute id of the queue"); 2411 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id", 2412 CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I", 2413 "SGE context id of the queue"); 2414 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx", 2415 CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I", 2416 "consumer index"); 2417 2418 return (0); 2419 } 2420 2421 static int 2422 free_fwq(struct adapter *sc) 2423 { 2424 return free_iq_fl(NULL, &sc->sge.fwq, NULL); 2425 } 2426 2427 static int 2428 alloc_mgmtq(struct adapter *sc) 2429 { 2430 int rc; 2431 struct sge_wrq *mgmtq = &sc->sge.mgmtq; 2432 char name[16]; 2433 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 2434 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2435 2436 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD, 2437 NULL, "management queue"); 2438 2439 snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev)); 2440 init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan, 2441 sc->sge.fwq.cntxt_id, name); 2442 rc = alloc_wrq(sc, NULL, mgmtq, oid); 2443 if (rc != 0) { 2444 device_printf(sc->dev, 2445 "failed to create management queue: %d\n", rc); 2446 return (rc); 2447 } 2448 2449 return (0); 2450 } 2451 2452 static int 2453 free_mgmtq(struct adapter *sc) 2454 { 2455 2456 return free_wrq(sc, &sc->sge.mgmtq); 2457 } 2458 2459 static inline int 2460 tnl_cong(struct port_info *pi) 2461 { 2462 2463 if (cong_drop == -1) 2464 return (-1); 2465 else if (cong_drop == 1) 2466 return (0); 2467 else 2468 return (1 << pi->tx_chan); 2469 } 2470 2471 static int 2472 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx, 2473 struct sysctl_oid *oid) 2474 { 2475 int rc; 2476 struct sysctl_oid_list *children; 2477 char name[16]; 2478 2479 rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi)); 2480 if (rc != 0) 2481 return (rc); 2482 2483 FL_LOCK(&rxq->fl); 2484 refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8); 2485 FL_UNLOCK(&rxq->fl); 2486 2487 #if defined(INET) || defined(INET6) 2488 rc = tcp_lro_init(&rxq->lro); 2489 if (rc != 0) 2490 return (rc); 2491 rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */ 2492 2493 if (pi->ifp->if_capenable & IFCAP_LRO) 2494 rxq->iq.flags |= IQ_LRO_ENABLED; 2495 #endif 2496 rxq->ifp = pi->ifp; 2497 2498 children = SYSCTL_CHILDREN(oid); 2499 2500 snprintf(name, sizeof(name), "%d", idx); 2501 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 2502 NULL, "rx queue"); 2503 children = SYSCTL_CHILDREN(oid); 2504 2505 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id", 2506 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I", 2507 "absolute id of the queue"); 2508 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id", 2509 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I", 2510 "SGE context id of the queue"); 2511 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx", 2512 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I", 2513 "consumer index"); 2514 #if defined(INET) || defined(INET6) 2515 SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, 2516 &rxq->lro.lro_queued, 0, NULL); 2517 SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, 2518 &rxq->lro.lro_flushed, 0, NULL); 2519 #endif 2520 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, 2521 &rxq->rxcsum, "# of times hardware assisted with checksum"); 2522 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction", 2523 CTLFLAG_RD, &rxq->vlan_extraction, 2524 "# of times hardware extracted 802.1Q tag"); 2525 2526 children = SYSCTL_CHILDREN(oid); 2527 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD, 2528 NULL, "freelist"); 2529 children = SYSCTL_CHILDREN(oid); 2530 2531 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id", 2532 CTLTYPE_INT | CTLFLAG_RD, &rxq->fl.cntxt_id, 0, sysctl_uint16, "I", 2533 "SGE context id of the queue"); 2534 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, 2535 &rxq->fl.cidx, 0, "consumer index"); 2536 if (rxq->fl.flags & FL_BUF_PACKING) { 2537 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "rx_offset", 2538 CTLFLAG_RD, &rxq->fl.rx_offset, 0, "packing rx offset"); 2539 } 2540 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, 2541 &rxq->fl.pidx, 0, "producer index"); 2542 2543 return (rc); 2544 } 2545 2546 static int 2547 free_rxq(struct port_info *pi, struct sge_rxq *rxq) 2548 { 2549 int rc; 2550 2551 #if defined(INET) || defined(INET6) 2552 if (rxq->lro.ifp) { 2553 tcp_lro_free(&rxq->lro); 2554 rxq->lro.ifp = NULL; 2555 } 2556 #endif 2557 2558 rc = free_iq_fl(pi, &rxq->iq, &rxq->fl); 2559 if (rc == 0) 2560 bzero(rxq, sizeof(*rxq)); 2561 2562 return (rc); 2563 } 2564 2565 #ifdef TCP_OFFLOAD 2566 static int 2567 alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq, 2568 int intr_idx, int idx, struct sysctl_oid *oid) 2569 { 2570 int rc; 2571 struct sysctl_oid_list *children; 2572 char name[16]; 2573 2574 rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 2575 1 << pi->tx_chan); 2576 if (rc != 0) 2577 return (rc); 2578 2579 children = SYSCTL_CHILDREN(oid); 2580 2581 snprintf(name, sizeof(name), "%d", idx); 2582 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 2583 NULL, "rx queue"); 2584 children = SYSCTL_CHILDREN(oid); 2585 2586 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id", 2587 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16, 2588 "I", "absolute id of the queue"); 2589 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id", 2590 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16, 2591 "I", "SGE context id of the queue"); 2592 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx", 2593 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I", 2594 "consumer index"); 2595 2596 children = SYSCTL_CHILDREN(oid); 2597 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD, 2598 NULL, "freelist"); 2599 children = SYSCTL_CHILDREN(oid); 2600 2601 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id", 2602 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->fl.cntxt_id, 0, sysctl_uint16, 2603 "I", "SGE context id of the queue"); 2604 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, 2605 &ofld_rxq->fl.cidx, 0, "consumer index"); 2606 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, 2607 &ofld_rxq->fl.pidx, 0, "producer index"); 2608 2609 return (rc); 2610 } 2611 2612 static int 2613 free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq) 2614 { 2615 int rc; 2616 2617 rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl); 2618 if (rc == 0) 2619 bzero(ofld_rxq, sizeof(*ofld_rxq)); 2620 2621 return (rc); 2622 } 2623 #endif 2624 2625 static int 2626 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) 2627 { 2628 int rc, cntxt_id; 2629 struct fw_eq_ctrl_cmd c; 2630 2631 bzero(&c, sizeof(c)); 2632 2633 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | 2634 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | 2635 V_FW_EQ_CTRL_CMD_VFN(0)); 2636 c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC | 2637 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 2638 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */ 2639 c.physeqid_pkd = htobe32(0); 2640 c.fetchszm_to_iqid = 2641 htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 2642 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | 2643 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); 2644 c.dcaen_to_eqsize = 2645 htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 2646 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 2647 V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 2648 V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize)); 2649 c.eqaddr = htobe64(eq->ba); 2650 2651 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2652 if (rc != 0) { 2653 device_printf(sc->dev, 2654 "failed to create control queue %d: %d\n", eq->tx_chan, rc); 2655 return (rc); 2656 } 2657 eq->flags |= EQ_ALLOCATED; 2658 2659 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid)); 2660 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 2661 if (cntxt_id >= sc->sge.neq) 2662 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 2663 cntxt_id, sc->sge.neq - 1); 2664 sc->sge.eqmap[cntxt_id] = eq; 2665 2666 return (rc); 2667 } 2668 2669 static int 2670 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) 2671 { 2672 int rc, cntxt_id; 2673 struct fw_eq_eth_cmd c; 2674 2675 bzero(&c, sizeof(c)); 2676 2677 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | 2678 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | 2679 V_FW_EQ_ETH_CMD_VFN(0)); 2680 c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | 2681 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 2682 c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid)); 2683 c.fetchszm_to_iqid = 2684 htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 2685 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | 2686 V_FW_EQ_ETH_CMD_IQID(eq->iqid)); 2687 c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 2688 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 2689 V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 2690 V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize)); 2691 c.eqaddr = htobe64(eq->ba); 2692 2693 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2694 if (rc != 0) { 2695 device_printf(pi->dev, 2696 "failed to create Ethernet egress queue: %d\n", rc); 2697 return (rc); 2698 } 2699 eq->flags |= EQ_ALLOCATED; 2700 2701 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); 2702 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 2703 if (cntxt_id >= sc->sge.neq) 2704 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 2705 cntxt_id, sc->sge.neq - 1); 2706 sc->sge.eqmap[cntxt_id] = eq; 2707 2708 return (rc); 2709 } 2710 2711 #ifdef TCP_OFFLOAD 2712 static int 2713 ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) 2714 { 2715 int rc, cntxt_id; 2716 struct fw_eq_ofld_cmd c; 2717 2718 bzero(&c, sizeof(c)); 2719 2720 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | 2721 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | 2722 V_FW_EQ_OFLD_CMD_VFN(0)); 2723 c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | 2724 F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 2725 c.fetchszm_to_iqid = 2726 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 2727 V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | 2728 F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); 2729 c.dcaen_to_eqsize = 2730 htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 2731 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 2732 V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 2733 V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize)); 2734 c.eqaddr = htobe64(eq->ba); 2735 2736 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2737 if (rc != 0) { 2738 device_printf(pi->dev, 2739 "failed to create egress queue for TCP offload: %d\n", rc); 2740 return (rc); 2741 } 2742 eq->flags |= EQ_ALLOCATED; 2743 2744 eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd)); 2745 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 2746 if (cntxt_id >= sc->sge.neq) 2747 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 2748 cntxt_id, sc->sge.neq - 1); 2749 sc->sge.eqmap[cntxt_id] = eq; 2750 2751 return (rc); 2752 } 2753 #endif 2754 2755 static int 2756 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) 2757 { 2758 int rc; 2759 size_t len; 2760 2761 mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); 2762 2763 len = eq->qsize * EQ_ESIZE; 2764 rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, 2765 &eq->ba, (void **)&eq->desc); 2766 if (rc) 2767 return (rc); 2768 2769 eq->cap = eq->qsize - spg_len / EQ_ESIZE; 2770 eq->spg = (void *)&eq->desc[eq->cap]; 2771 eq->avail = eq->cap - 1; /* one less to avoid cidx = pidx */ 2772 eq->pidx = eq->cidx = 0; 2773 eq->doorbells = sc->doorbells; 2774 2775 switch (eq->flags & EQ_TYPEMASK) { 2776 case EQ_CTRL: 2777 rc = ctrl_eq_alloc(sc, eq); 2778 break; 2779 2780 case EQ_ETH: 2781 rc = eth_eq_alloc(sc, pi, eq); 2782 break; 2783 2784 #ifdef TCP_OFFLOAD 2785 case EQ_OFLD: 2786 rc = ofld_eq_alloc(sc, pi, eq); 2787 break; 2788 #endif 2789 2790 default: 2791 panic("%s: invalid eq type %d.", __func__, 2792 eq->flags & EQ_TYPEMASK); 2793 } 2794 if (rc != 0) { 2795 device_printf(sc->dev, 2796 "failed to allocate egress queue(%d): %d", 2797 eq->flags & EQ_TYPEMASK, rc); 2798 } 2799 2800 eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus; 2801 2802 if (isset(&eq->doorbells, DOORBELL_UDB) || 2803 isset(&eq->doorbells, DOORBELL_UDBWC) || 2804 isset(&eq->doorbells, DOORBELL_WCWR)) { 2805 uint32_t s_qpp = sc->sge.s_qpp; 2806 uint32_t mask = (1 << s_qpp) - 1; 2807 volatile uint8_t *udb; 2808 2809 udb = sc->udbs_base + UDBS_DB_OFFSET; 2810 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */ 2811 eq->udb_qid = eq->cntxt_id & mask; /* id in page */ 2812 if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE) 2813 clrbit(&eq->doorbells, DOORBELL_WCWR); 2814 else { 2815 udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */ 2816 eq->udb_qid = 0; 2817 } 2818 eq->udb = (volatile void *)udb; 2819 } 2820 2821 return (rc); 2822 } 2823 2824 static int 2825 free_eq(struct adapter *sc, struct sge_eq *eq) 2826 { 2827 int rc; 2828 2829 if (eq->flags & EQ_ALLOCATED) { 2830 switch (eq->flags & EQ_TYPEMASK) { 2831 case EQ_CTRL: 2832 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, 2833 eq->cntxt_id); 2834 break; 2835 2836 case EQ_ETH: 2837 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, 2838 eq->cntxt_id); 2839 break; 2840 2841 #ifdef TCP_OFFLOAD 2842 case EQ_OFLD: 2843 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, 2844 eq->cntxt_id); 2845 break; 2846 #endif 2847 2848 default: 2849 panic("%s: invalid eq type %d.", __func__, 2850 eq->flags & EQ_TYPEMASK); 2851 } 2852 if (rc != 0) { 2853 device_printf(sc->dev, 2854 "failed to free egress queue (%d): %d\n", 2855 eq->flags & EQ_TYPEMASK, rc); 2856 return (rc); 2857 } 2858 eq->flags &= ~EQ_ALLOCATED; 2859 } 2860 2861 free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); 2862 2863 if (mtx_initialized(&eq->eq_lock)) 2864 mtx_destroy(&eq->eq_lock); 2865 2866 bzero(eq, sizeof(*eq)); 2867 return (0); 2868 } 2869 2870 static int 2871 alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq, 2872 struct sysctl_oid *oid) 2873 { 2874 int rc; 2875 struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx; 2876 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2877 2878 rc = alloc_eq(sc, pi, &wrq->eq); 2879 if (rc) 2880 return (rc); 2881 2882 wrq->adapter = sc; 2883 STAILQ_INIT(&wrq->wr_list); 2884 2885 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 2886 &wrq->eq.cntxt_id, 0, "SGE context id of the queue"); 2887 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 2888 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I", 2889 "consumer index"); 2890 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx", 2891 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I", 2892 "producer index"); 2893 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD, 2894 &wrq->tx_wrs, "# of work requests"); 2895 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD, 2896 &wrq->no_desc, 0, 2897 "# of times queue ran out of hardware descriptors"); 2898 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD, 2899 &wrq->eq.unstalled, 0, "# of times queue recovered after stall"); 2900 2901 2902 return (rc); 2903 } 2904 2905 static int 2906 free_wrq(struct adapter *sc, struct sge_wrq *wrq) 2907 { 2908 int rc; 2909 2910 rc = free_eq(sc, &wrq->eq); 2911 if (rc) 2912 return (rc); 2913 2914 bzero(wrq, sizeof(*wrq)); 2915 return (0); 2916 } 2917 2918 static int 2919 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx, 2920 struct sysctl_oid *oid) 2921 { 2922 int rc; 2923 struct adapter *sc = pi->adapter; 2924 struct sge_eq *eq = &txq->eq; 2925 char name[16]; 2926 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2927 2928 rc = alloc_eq(sc, pi, eq); 2929 if (rc) 2930 return (rc); 2931 2932 txq->ifp = pi->ifp; 2933 2934 txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE, 2935 M_ZERO | M_WAITOK); 2936 txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock); 2937 2938 rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR, 2939 BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS, 2940 BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag); 2941 if (rc != 0) { 2942 device_printf(sc->dev, 2943 "failed to create tx DMA tag: %d\n", rc); 2944 return (rc); 2945 } 2946 2947 /* 2948 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE 2949 * limit for any WR). txq->no_dmamap events shouldn't occur if maps is 2950 * sized for the worst case. 2951 */ 2952 rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8, 2953 M_WAITOK); 2954 if (rc != 0) { 2955 device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc); 2956 return (rc); 2957 } 2958 2959 snprintf(name, sizeof(name), "%d", idx); 2960 oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 2961 NULL, "tx queue"); 2962 children = SYSCTL_CHILDREN(oid); 2963 2964 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 2965 &eq->cntxt_id, 0, "SGE context id of the queue"); 2966 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx", 2967 CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I", 2968 "consumer index"); 2969 SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx", 2970 CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I", 2971 "producer index"); 2972 2973 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, 2974 &txq->txcsum, "# of times hardware assisted with checksum"); 2975 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion", 2976 CTLFLAG_RD, &txq->vlan_insertion, 2977 "# of times hardware inserted 802.1Q tag"); 2978 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, 2979 &txq->tso_wrs, "# of TSO work requests"); 2980 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, 2981 &txq->imm_wrs, "# of work requests with immediate data"); 2982 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, 2983 &txq->sgl_wrs, "# of work requests with direct SGL"); 2984 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, 2985 &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); 2986 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD, 2987 &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)"); 2988 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD, 2989 &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests"); 2990 2991 SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD, 2992 &txq->br->br_drops, "# of drops in the buf_ring for this queue"); 2993 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD, 2994 &txq->no_dmamap, 0, "# of times txq ran out of DMA maps"); 2995 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD, 2996 &txq->no_desc, 0, "# of times txq ran out of hardware descriptors"); 2997 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD, 2998 &eq->egr_update, 0, "egress update notifications from the SGE"); 2999 SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD, 3000 &eq->unstalled, 0, "# of times txq recovered after stall"); 3001 3002 return (rc); 3003 } 3004 3005 static int 3006 free_txq(struct port_info *pi, struct sge_txq *txq) 3007 { 3008 int rc; 3009 struct adapter *sc = pi->adapter; 3010 struct sge_eq *eq = &txq->eq; 3011 3012 rc = free_eq(sc, eq); 3013 if (rc) 3014 return (rc); 3015 3016 free(txq->sdesc, M_CXGBE); 3017 3018 if (txq->txmaps.maps) 3019 t4_free_tx_maps(&txq->txmaps, txq->tx_tag); 3020 3021 buf_ring_free(txq->br, M_CXGBE); 3022 3023 if (txq->tx_tag) 3024 bus_dma_tag_destroy(txq->tx_tag); 3025 3026 bzero(txq, sizeof(*txq)); 3027 return (0); 3028 } 3029 3030 static void 3031 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) 3032 { 3033 bus_addr_t *ba = arg; 3034 3035 KASSERT(nseg == 1, 3036 ("%s meant for single segment mappings only.", __func__)); 3037 3038 *ba = error ? 0 : segs->ds_addr; 3039 } 3040 3041 static inline bool 3042 is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl) 3043 { 3044 *ctrl = (void *)((uintptr_t)iq->cdesc + 3045 (iq->esize - sizeof(struct rsp_ctrl))); 3046 3047 return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen); 3048 } 3049 3050 static inline void 3051 iq_next(struct sge_iq *iq) 3052 { 3053 iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize); 3054 if (__predict_false(++iq->cidx == iq->qsize - 1)) { 3055 iq->cidx = 0; 3056 iq->gen ^= 1; 3057 iq->cdesc = iq->desc; 3058 } 3059 } 3060 3061 #define FL_HW_IDX(x) ((x) >> 3) 3062 static inline void 3063 ring_fl_db(struct adapter *sc, struct sge_fl *fl) 3064 { 3065 int ndesc = fl->pending / 8; 3066 uint32_t v; 3067 3068 if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx)) 3069 ndesc--; /* hold back one credit */ 3070 3071 if (ndesc <= 0) 3072 return; /* nothing to do */ 3073 3074 v = F_DBPRIO | V_QID(fl->cntxt_id) | V_PIDX(ndesc); 3075 if (is_t5(sc)) 3076 v |= F_DBTYPE; 3077 3078 wmb(); 3079 3080 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v); 3081 fl->pending -= ndesc * 8; 3082 } 3083 3084 /* 3085 * Fill up the freelist by upto nbufs and maybe ring its doorbell. 3086 * 3087 * Returns non-zero to indicate that it should be added to the list of starving 3088 * freelists. 3089 */ 3090 static int 3091 refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs) 3092 { 3093 __be64 *d = &fl->desc[fl->pidx]; 3094 struct fl_sdesc *sd = &fl->sdesc[fl->pidx]; 3095 bus_dma_tag_t tag; 3096 bus_addr_t pa; 3097 caddr_t cl; 3098 int rc; 3099 3100 FL_LOCK_ASSERT_OWNED(fl); 3101 #ifdef INVARIANTS 3102 if (fl->flags & FL_BUF_PACKING) 3103 KASSERT(sd->tag_idx == 0, 3104 ("%s: expected tag 0 but found tag %d at pidx %u instead", 3105 __func__, sd->tag_idx, fl->pidx)); 3106 #endif 3107 3108 if (nbufs > fl->needed) 3109 nbufs = fl->needed; 3110 3111 while (nbufs--) { 3112 3113 if (sd->cl != NULL) { 3114 3115 KASSERT(*d == sd->ba_hwtag, 3116 ("%s: recyling problem at pidx %d", 3117 __func__, fl->pidx)); 3118 3119 if (fl->flags & FL_BUF_PACKING) { 3120 u_int *refcount = find_buf_refcnt(sd->cl); 3121 3122 if (atomic_fetchadd_int(refcount, -1) == 1) { 3123 *refcount = 1; /* reinstate */ 3124 d++; 3125 goto recycled; 3126 } 3127 sd->cl = NULL; /* gave up my reference */ 3128 } else { 3129 /* 3130 * This happens when a frame small enough to fit 3131 * entirely in an mbuf was received in cl last 3132 * time. We'd held on to cl and can reuse it 3133 * now. Note that we reuse a cluster of the old 3134 * size if fl->tag_idx is no longer the same as 3135 * sd->tag_idx. 3136 */ 3137 d++; 3138 goto recycled; 3139 } 3140 } 3141 3142 if (__predict_false(fl->tag_idx != sd->tag_idx)) { 3143 bus_dmamap_t map; 3144 bus_dma_tag_t newtag = fl->tag[fl->tag_idx]; 3145 bus_dma_tag_t oldtag = fl->tag[sd->tag_idx]; 3146 3147 /* 3148 * An MTU change can get us here. Discard the old map 3149 * which was created with the old tag, but only if 3150 * we're able to get a new one. 3151 */ 3152 rc = bus_dmamap_create(newtag, 0, &map); 3153 if (rc == 0) { 3154 bus_dmamap_destroy(oldtag, sd->map); 3155 sd->map = map; 3156 sd->tag_idx = fl->tag_idx; 3157 } 3158 } 3159 3160 tag = fl->tag[sd->tag_idx]; 3161 3162 cl = uma_zalloc(FL_BUF_ZONE(sc, sd->tag_idx), M_NOWAIT); 3163 if (cl == NULL) 3164 break; 3165 if (fl->flags & FL_BUF_PACKING) { 3166 *find_buf_refcnt(cl) = 1; 3167 cl += MSIZE; 3168 } 3169 3170 rc = bus_dmamap_load(tag, sd->map, cl, 3171 FL_BUF_SIZE(sc, sd->tag_idx), oneseg_dma_callback, &pa, 0); 3172 if (rc != 0 || pa == 0) { 3173 fl->dmamap_failed++; 3174 if (fl->flags & FL_BUF_PACKING) 3175 cl -= MSIZE; 3176 uma_zfree(FL_BUF_ZONE(sc, sd->tag_idx), cl); 3177 break; 3178 } 3179 3180 sd->cl = cl; 3181 *d++ = htobe64(pa | FL_BUF_HWTAG(sc, sd->tag_idx)); 3182 3183 #ifdef INVARIANTS 3184 sd->ba_hwtag = htobe64(pa | FL_BUF_HWTAG(sc, sd->tag_idx)); 3185 #endif 3186 3187 recycled: 3188 fl->pending++; 3189 fl->needed--; 3190 sd++; 3191 if (++fl->pidx == fl->cap) { 3192 fl->pidx = 0; 3193 sd = fl->sdesc; 3194 d = fl->desc; 3195 } 3196 } 3197 3198 if (fl->pending >= 8) 3199 ring_fl_db(sc, fl); 3200 3201 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); 3202 } 3203 3204 /* 3205 * Attempt to refill all starving freelists. 3206 */ 3207 static void 3208 refill_sfl(void *arg) 3209 { 3210 struct adapter *sc = arg; 3211 struct sge_fl *fl, *fl_temp; 3212 3213 mtx_lock(&sc->sfl_lock); 3214 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { 3215 FL_LOCK(fl); 3216 refill_fl(sc, fl, 64); 3217 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { 3218 TAILQ_REMOVE(&sc->sfl, fl, link); 3219 fl->flags &= ~FL_STARVING; 3220 } 3221 FL_UNLOCK(fl); 3222 } 3223 3224 if (!TAILQ_EMPTY(&sc->sfl)) 3225 callout_schedule(&sc->sfl_callout, hz / 5); 3226 mtx_unlock(&sc->sfl_lock); 3227 } 3228 3229 static int 3230 alloc_fl_sdesc(struct sge_fl *fl) 3231 { 3232 struct fl_sdesc *sd; 3233 bus_dma_tag_t tag; 3234 int i, rc; 3235 3236 fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE, 3237 M_ZERO | M_WAITOK); 3238 3239 tag = fl->tag[fl->tag_idx]; 3240 sd = fl->sdesc; 3241 for (i = 0; i < fl->cap; i++, sd++) { 3242 3243 sd->tag_idx = fl->tag_idx; 3244 rc = bus_dmamap_create(tag, 0, &sd->map); 3245 if (rc != 0) 3246 goto failed; 3247 } 3248 3249 return (0); 3250 failed: 3251 while (--i >= 0) { 3252 sd--; 3253 bus_dmamap_destroy(tag, sd->map); 3254 } 3255 KASSERT(sd == fl->sdesc, ("%s: EDOOFUS", __func__)); 3256 3257 free(fl->sdesc, M_CXGBE); 3258 fl->sdesc = NULL; 3259 3260 return (rc); 3261 } 3262 3263 static void 3264 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl) 3265 { 3266 struct fl_sdesc *sd; 3267 int i; 3268 3269 sd = fl->sdesc; 3270 for (i = 0; i < fl->cap; i++, sd++) { 3271 3272 if (sd->cl) { 3273 bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map); 3274 uma_zfree(FL_BUF_ZONE(sc, sd->tag_idx), sd->cl); 3275 sd->cl = NULL; 3276 } 3277 3278 bus_dmamap_destroy(fl->tag[sd->tag_idx], sd->map); 3279 } 3280 3281 free(fl->sdesc, M_CXGBE); 3282 fl->sdesc = NULL; 3283 } 3284 3285 int 3286 t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count, 3287 int flags) 3288 { 3289 struct tx_map *txm; 3290 int i, rc; 3291 3292 txmaps->map_total = txmaps->map_avail = count; 3293 txmaps->map_cidx = txmaps->map_pidx = 0; 3294 3295 txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE, 3296 M_ZERO | flags); 3297 3298 txm = txmaps->maps; 3299 for (i = 0; i < count; i++, txm++) { 3300 rc = bus_dmamap_create(tx_tag, 0, &txm->map); 3301 if (rc != 0) 3302 goto failed; 3303 } 3304 3305 return (0); 3306 failed: 3307 while (--i >= 0) { 3308 txm--; 3309 bus_dmamap_destroy(tx_tag, txm->map); 3310 } 3311 KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__)); 3312 3313 free(txmaps->maps, M_CXGBE); 3314 txmaps->maps = NULL; 3315 3316 return (rc); 3317 } 3318 3319 void 3320 t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag) 3321 { 3322 struct tx_map *txm; 3323 int i; 3324 3325 txm = txmaps->maps; 3326 for (i = 0; i < txmaps->map_total; i++, txm++) { 3327 3328 if (txm->m) { 3329 bus_dmamap_unload(tx_tag, txm->map); 3330 m_freem(txm->m); 3331 txm->m = NULL; 3332 } 3333 3334 bus_dmamap_destroy(tx_tag, txm->map); 3335 } 3336 3337 free(txmaps->maps, M_CXGBE); 3338 txmaps->maps = NULL; 3339 } 3340 3341 /* 3342 * We'll do immediate data tx for non-TSO, but only when not coalescing. We're 3343 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes 3344 * of immediate data. 3345 */ 3346 #define IMM_LEN ( \ 3347 2 * EQ_ESIZE \ 3348 - sizeof(struct fw_eth_tx_pkt_wr) \ 3349 - sizeof(struct cpl_tx_pkt_core)) 3350 3351 /* 3352 * Returns non-zero on failure, no need to cleanup anything in that case. 3353 * 3354 * Note 1: We always try to defrag the mbuf if required and return EFBIG only 3355 * if the resulting chain still won't fit in a tx descriptor. 3356 * 3357 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf 3358 * does not have the TCP header in it. 3359 */ 3360 static int 3361 get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl, 3362 int sgl_only) 3363 { 3364 struct mbuf *m = *fp; 3365 struct tx_maps *txmaps; 3366 struct tx_map *txm; 3367 int rc, defragged = 0, n; 3368 3369 TXQ_LOCK_ASSERT_OWNED(txq); 3370 3371 if (m->m_pkthdr.tso_segsz) 3372 sgl_only = 1; /* Do not allow immediate data with LSO */ 3373 3374 start: sgl->nsegs = 0; 3375 3376 if (m->m_pkthdr.len <= IMM_LEN && !sgl_only) 3377 return (0); /* nsegs = 0 tells caller to use imm. tx */ 3378 3379 txmaps = &txq->txmaps; 3380 if (txmaps->map_avail == 0) { 3381 txq->no_dmamap++; 3382 return (ENOMEM); 3383 } 3384 txm = &txmaps->maps[txmaps->map_pidx]; 3385 3386 if (m->m_pkthdr.tso_segsz && m->m_len < 50) { 3387 *fp = m_pullup(m, 50); 3388 m = *fp; 3389 if (m == NULL) 3390 return (ENOBUFS); 3391 } 3392 3393 rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg, 3394 &sgl->nsegs, BUS_DMA_NOWAIT); 3395 if (rc == EFBIG && defragged == 0) { 3396 m = m_defrag(m, M_NOWAIT); 3397 if (m == NULL) 3398 return (EFBIG); 3399 3400 defragged = 1; 3401 *fp = m; 3402 goto start; 3403 } 3404 if (rc != 0) 3405 return (rc); 3406 3407 txm->m = m; 3408 txmaps->map_avail--; 3409 if (++txmaps->map_pidx == txmaps->map_total) 3410 txmaps->map_pidx = 0; 3411 3412 KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS, 3413 ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs)); 3414 3415 /* 3416 * Store the # of flits required to hold this frame's SGL in nflits. An 3417 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by 3418 * multiple (len0 + len1, addr0, addr1) tuples. If addr1 is not used 3419 * then len1 must be set to 0. 3420 */ 3421 n = sgl->nsegs - 1; 3422 sgl->nflits = (3 * n) / 2 + (n & 1) + 2; 3423 3424 return (0); 3425 } 3426 3427 3428 /* 3429 * Releases all the txq resources used up in the specified sgl. 3430 */ 3431 static int 3432 free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl) 3433 { 3434 struct tx_maps *txmaps; 3435 struct tx_map *txm; 3436 3437 TXQ_LOCK_ASSERT_OWNED(txq); 3438 3439 if (sgl->nsegs == 0) 3440 return (0); /* didn't use any map */ 3441 3442 txmaps = &txq->txmaps; 3443 3444 /* 1 pkt uses exactly 1 map, back it out */ 3445 3446 txmaps->map_avail++; 3447 if (txmaps->map_pidx > 0) 3448 txmaps->map_pidx--; 3449 else 3450 txmaps->map_pidx = txmaps->map_total - 1; 3451 3452 txm = &txmaps->maps[txmaps->map_pidx]; 3453 bus_dmamap_unload(txq->tx_tag, txm->map); 3454 txm->m = NULL; 3455 3456 return (0); 3457 } 3458 3459 static int 3460 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m, 3461 struct sgl *sgl) 3462 { 3463 struct sge_eq *eq = &txq->eq; 3464 struct fw_eth_tx_pkt_wr *wr; 3465 struct cpl_tx_pkt_core *cpl; 3466 uint32_t ctrl; /* used in many unrelated places */ 3467 uint64_t ctrl1; 3468 int nflits, ndesc, pktlen; 3469 struct tx_sdesc *txsd; 3470 caddr_t dst; 3471 3472 TXQ_LOCK_ASSERT_OWNED(txq); 3473 3474 pktlen = m->m_pkthdr.len; 3475 3476 /* 3477 * Do we have enough flits to send this frame out? 3478 */ 3479 ctrl = sizeof(struct cpl_tx_pkt_core); 3480 if (m->m_pkthdr.tso_segsz) { 3481 nflits = TXPKT_LSO_WR_HDR; 3482 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 3483 } else 3484 nflits = TXPKT_WR_HDR; 3485 if (sgl->nsegs > 0) 3486 nflits += sgl->nflits; 3487 else { 3488 nflits += howmany(pktlen, 8); 3489 ctrl += pktlen; 3490 } 3491 ndesc = howmany(nflits, 8); 3492 if (ndesc > eq->avail) 3493 return (ENOMEM); 3494 3495 /* Firmware work request header */ 3496 wr = (void *)&eq->desc[eq->pidx]; 3497 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | 3498 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 3499 ctrl = V_FW_WR_LEN16(howmany(nflits, 2)); 3500 if (eq->avail == ndesc) { 3501 if (!(eq->flags & EQ_CRFLUSHED)) { 3502 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ; 3503 eq->flags |= EQ_CRFLUSHED; 3504 } 3505 eq->flags |= EQ_STALLED; 3506 } 3507 3508 wr->equiq_to_len16 = htobe32(ctrl); 3509 wr->r3 = 0; 3510 3511 if (m->m_pkthdr.tso_segsz) { 3512 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 3513 struct ether_header *eh; 3514 void *l3hdr; 3515 #if defined(INET) || defined(INET6) 3516 struct tcphdr *tcp; 3517 #endif 3518 uint16_t eh_type; 3519 3520 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 3521 F_LSO_LAST_SLICE; 3522 3523 eh = mtod(m, struct ether_header *); 3524 eh_type = ntohs(eh->ether_type); 3525 if (eh_type == ETHERTYPE_VLAN) { 3526 struct ether_vlan_header *evh = (void *)eh; 3527 3528 ctrl |= V_LSO_ETHHDR_LEN(1); 3529 l3hdr = evh + 1; 3530 eh_type = ntohs(evh->evl_proto); 3531 } else 3532 l3hdr = eh + 1; 3533 3534 switch (eh_type) { 3535 #ifdef INET6 3536 case ETHERTYPE_IPV6: 3537 { 3538 struct ip6_hdr *ip6 = l3hdr; 3539 3540 /* 3541 * XXX-BZ For now we do not pretend to support 3542 * IPv6 extension headers. 3543 */ 3544 KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO " 3545 "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt)); 3546 tcp = (struct tcphdr *)(ip6 + 1); 3547 ctrl |= F_LSO_IPV6; 3548 ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) | 3549 V_LSO_TCPHDR_LEN(tcp->th_off); 3550 break; 3551 } 3552 #endif 3553 #ifdef INET 3554 case ETHERTYPE_IP: 3555 { 3556 struct ip *ip = l3hdr; 3557 3558 tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4); 3559 ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) | 3560 V_LSO_TCPHDR_LEN(tcp->th_off); 3561 break; 3562 } 3563 #endif 3564 default: 3565 panic("%s: CSUM_TSO but no supported IP version " 3566 "(0x%04x)", __func__, eh_type); 3567 } 3568 3569 lso->lso_ctrl = htobe32(ctrl); 3570 lso->ipid_ofst = htobe16(0); 3571 lso->mss = htobe16(m->m_pkthdr.tso_segsz); 3572 lso->seqno_offset = htobe32(0); 3573 lso->len = htobe32(pktlen); 3574 3575 cpl = (void *)(lso + 1); 3576 3577 txq->tso_wrs++; 3578 } else 3579 cpl = (void *)(wr + 1); 3580 3581 /* Checksum offload */ 3582 ctrl1 = 0; 3583 if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))) 3584 ctrl1 |= F_TXPKT_IPCSUM_DIS; 3585 if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | 3586 CSUM_TCP_IPV6 | CSUM_TSO))) 3587 ctrl1 |= F_TXPKT_L4CSUM_DIS; 3588 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 3589 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 3590 txq->txcsum++; /* some hardware assistance provided */ 3591 3592 /* VLAN tag insertion */ 3593 if (m->m_flags & M_VLANTAG) { 3594 ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); 3595 txq->vlan_insertion++; 3596 } 3597 3598 /* CPL header */ 3599 cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3600 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf)); 3601 cpl->pack = 0; 3602 cpl->len = htobe16(pktlen); 3603 cpl->ctrl1 = htobe64(ctrl1); 3604 3605 /* Software descriptor */ 3606 txsd = &txq->sdesc[eq->pidx]; 3607 txsd->desc_used = ndesc; 3608 3609 eq->pending += ndesc; 3610 eq->avail -= ndesc; 3611 eq->pidx += ndesc; 3612 if (eq->pidx >= eq->cap) 3613 eq->pidx -= eq->cap; 3614 3615 /* SGL */ 3616 dst = (void *)(cpl + 1); 3617 if (sgl->nsegs > 0) { 3618 txsd->credits = 1; 3619 txq->sgl_wrs++; 3620 write_sgl_to_txd(eq, sgl, &dst); 3621 } else { 3622 txsd->credits = 0; 3623 txq->imm_wrs++; 3624 for (; m; m = m->m_next) { 3625 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); 3626 #ifdef INVARIANTS 3627 pktlen -= m->m_len; 3628 #endif 3629 } 3630 #ifdef INVARIANTS 3631 KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen)); 3632 #endif 3633 3634 } 3635 3636 txq->txpkt_wrs++; 3637 return (0); 3638 } 3639 3640 /* 3641 * Returns 0 to indicate that m has been accepted into a coalesced tx work 3642 * request. It has either been folded into txpkts or txpkts was flushed and m 3643 * has started a new coalesced work request (as the first frame in a fresh 3644 * txpkts). 3645 * 3646 * Returns non-zero to indicate a failure - caller is responsible for 3647 * transmitting m, if there was anything in txpkts it has been flushed. 3648 */ 3649 static int 3650 add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts, 3651 struct mbuf *m, struct sgl *sgl) 3652 { 3653 struct sge_eq *eq = &txq->eq; 3654 int can_coalesce; 3655 struct tx_sdesc *txsd; 3656 int flits; 3657 3658 TXQ_LOCK_ASSERT_OWNED(txq); 3659 3660 KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__)); 3661 3662 if (txpkts->npkt > 0) { 3663 flits = TXPKTS_PKT_HDR + sgl->nflits; 3664 can_coalesce = m->m_pkthdr.tso_segsz == 0 && 3665 txpkts->nflits + flits <= TX_WR_FLITS && 3666 txpkts->nflits + flits <= eq->avail * 8 && 3667 txpkts->plen + m->m_pkthdr.len < 65536; 3668 3669 if (can_coalesce) { 3670 txpkts->npkt++; 3671 txpkts->nflits += flits; 3672 txpkts->plen += m->m_pkthdr.len; 3673 3674 txsd = &txq->sdesc[eq->pidx]; 3675 txsd->credits++; 3676 3677 return (0); 3678 } 3679 3680 /* 3681 * Couldn't coalesce m into txpkts. The first order of business 3682 * is to send txpkts on its way. Then we'll revisit m. 3683 */ 3684 write_txpkts_wr(txq, txpkts); 3685 } 3686 3687 /* 3688 * Check if we can start a new coalesced tx work request with m as 3689 * the first packet in it. 3690 */ 3691 3692 KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__)); 3693 3694 flits = TXPKTS_WR_HDR + sgl->nflits; 3695 can_coalesce = m->m_pkthdr.tso_segsz == 0 && 3696 flits <= eq->avail * 8 && flits <= TX_WR_FLITS; 3697 3698 if (can_coalesce == 0) 3699 return (EINVAL); 3700 3701 /* 3702 * Start a fresh coalesced tx WR with m as the first frame in it. 3703 */ 3704 txpkts->npkt = 1; 3705 txpkts->nflits = flits; 3706 txpkts->flitp = &eq->desc[eq->pidx].flit[2]; 3707 txpkts->plen = m->m_pkthdr.len; 3708 3709 txsd = &txq->sdesc[eq->pidx]; 3710 txsd->credits = 1; 3711 3712 return (0); 3713 } 3714 3715 /* 3716 * Note that write_txpkts_wr can never run out of hardware descriptors (but 3717 * write_txpkt_wr can). add_to_txpkts ensures that a frame is accepted for 3718 * coalescing only if sufficient hardware descriptors are available. 3719 */ 3720 static void 3721 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts) 3722 { 3723 struct sge_eq *eq = &txq->eq; 3724 struct fw_eth_tx_pkts_wr *wr; 3725 struct tx_sdesc *txsd; 3726 uint32_t ctrl; 3727 int ndesc; 3728 3729 TXQ_LOCK_ASSERT_OWNED(txq); 3730 3731 ndesc = howmany(txpkts->nflits, 8); 3732 3733 wr = (void *)&eq->desc[eq->pidx]; 3734 wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)); 3735 ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2)); 3736 if (eq->avail == ndesc) { 3737 if (!(eq->flags & EQ_CRFLUSHED)) { 3738 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ; 3739 eq->flags |= EQ_CRFLUSHED; 3740 } 3741 eq->flags |= EQ_STALLED; 3742 } 3743 wr->equiq_to_len16 = htobe32(ctrl); 3744 wr->plen = htobe16(txpkts->plen); 3745 wr->npkt = txpkts->npkt; 3746 wr->r3 = wr->type = 0; 3747 3748 /* Everything else already written */ 3749 3750 txsd = &txq->sdesc[eq->pidx]; 3751 txsd->desc_used = ndesc; 3752 3753 KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__)); 3754 3755 eq->pending += ndesc; 3756 eq->avail -= ndesc; 3757 eq->pidx += ndesc; 3758 if (eq->pidx >= eq->cap) 3759 eq->pidx -= eq->cap; 3760 3761 txq->txpkts_pkts += txpkts->npkt; 3762 txq->txpkts_wrs++; 3763 txpkts->npkt = 0; /* emptied */ 3764 } 3765 3766 static inline void 3767 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq, 3768 struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl) 3769 { 3770 struct ulp_txpkt *ulpmc; 3771 struct ulptx_idata *ulpsc; 3772 struct cpl_tx_pkt_core *cpl; 3773 struct sge_eq *eq = &txq->eq; 3774 uintptr_t flitp, start, end; 3775 uint64_t ctrl; 3776 caddr_t dst; 3777 3778 KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__)); 3779 3780 start = (uintptr_t)eq->desc; 3781 end = (uintptr_t)eq->spg; 3782 3783 /* Checksum offload */ 3784 ctrl = 0; 3785 if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))) 3786 ctrl |= F_TXPKT_IPCSUM_DIS; 3787 if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | 3788 CSUM_TCP_IPV6 | CSUM_TSO))) 3789 ctrl |= F_TXPKT_L4CSUM_DIS; 3790 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 3791 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 3792 txq->txcsum++; /* some hardware assistance provided */ 3793 3794 /* VLAN tag insertion */ 3795 if (m->m_flags & M_VLANTAG) { 3796 ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); 3797 txq->vlan_insertion++; 3798 } 3799 3800 /* 3801 * The previous packet's SGL must have ended at a 16 byte boundary (this 3802 * is required by the firmware/hardware). It follows that flitp cannot 3803 * wrap around between the ULPTX master command and ULPTX subcommand (8 3804 * bytes each), and that it can not wrap around in the middle of the 3805 * cpl_tx_pkt_core either. 3806 */ 3807 flitp = (uintptr_t)txpkts->flitp; 3808 KASSERT((flitp & 0xf) == 0, 3809 ("%s: last SGL did not end at 16 byte boundary: %p", 3810 __func__, txpkts->flitp)); 3811 3812 /* ULP master command */ 3813 ulpmc = (void *)flitp; 3814 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) | 3815 V_ULP_TXPKT_FID(eq->iqid)); 3816 ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) + 3817 sizeof(*cpl) + 8 * sgl->nflits, 16)); 3818 3819 /* ULP subcommand */ 3820 ulpsc = (void *)(ulpmc + 1); 3821 ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) | 3822 F_ULP_TX_SC_MORE); 3823 ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); 3824 3825 flitp += sizeof(*ulpmc) + sizeof(*ulpsc); 3826 if (flitp == end) 3827 flitp = start; 3828 3829 /* CPL_TX_PKT */ 3830 cpl = (void *)flitp; 3831 cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3832 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf)); 3833 cpl->pack = 0; 3834 cpl->len = htobe16(m->m_pkthdr.len); 3835 cpl->ctrl1 = htobe64(ctrl); 3836 3837 flitp += sizeof(*cpl); 3838 if (flitp == end) 3839 flitp = start; 3840 3841 /* SGL for this frame */ 3842 dst = (caddr_t)flitp; 3843 txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst); 3844 txpkts->flitp = (void *)dst; 3845 3846 KASSERT(((uintptr_t)dst & 0xf) == 0, 3847 ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst)); 3848 } 3849 3850 /* 3851 * If the SGL ends on an address that is not 16 byte aligned, this function will 3852 * add a 0 filled flit at the end. It returns 1 in that case. 3853 */ 3854 static int 3855 write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to) 3856 { 3857 __be64 *flitp, *end; 3858 struct ulptx_sgl *usgl; 3859 bus_dma_segment_t *seg; 3860 int i, padded; 3861 3862 KASSERT(sgl->nsegs > 0 && sgl->nflits > 0, 3863 ("%s: bad SGL - nsegs=%d, nflits=%d", 3864 __func__, sgl->nsegs, sgl->nflits)); 3865 3866 KASSERT(((uintptr_t)(*to) & 0xf) == 0, 3867 ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); 3868 3869 flitp = (__be64 *)(*to); 3870 end = flitp + sgl->nflits; 3871 seg = &sgl->seg[0]; 3872 usgl = (void *)flitp; 3873 3874 /* 3875 * We start at a 16 byte boundary somewhere inside the tx descriptor 3876 * ring, so we're at least 16 bytes away from the status page. There is 3877 * no chance of a wrap around in the middle of usgl (which is 16 bytes). 3878 */ 3879 3880 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 3881 V_ULPTX_NSGE(sgl->nsegs)); 3882 usgl->len0 = htobe32(seg->ds_len); 3883 usgl->addr0 = htobe64(seg->ds_addr); 3884 seg++; 3885 3886 if ((uintptr_t)end <= (uintptr_t)eq->spg) { 3887 3888 /* Won't wrap around at all */ 3889 3890 for (i = 0; i < sgl->nsegs - 1; i++, seg++) { 3891 usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len); 3892 usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr); 3893 } 3894 if (i & 1) 3895 usgl->sge[i / 2].len[1] = htobe32(0); 3896 } else { 3897 3898 /* Will wrap somewhere in the rest of the SGL */ 3899 3900 /* 2 flits already written, write the rest flit by flit */ 3901 flitp = (void *)(usgl + 1); 3902 for (i = 0; i < sgl->nflits - 2; i++) { 3903 if ((uintptr_t)flitp == (uintptr_t)eq->spg) 3904 flitp = (void *)eq->desc; 3905 *flitp++ = get_flit(seg, sgl->nsegs - 1, i); 3906 } 3907 end = flitp; 3908 } 3909 3910 if ((uintptr_t)end & 0xf) { 3911 *(uint64_t *)end = 0; 3912 end++; 3913 padded = 1; 3914 } else 3915 padded = 0; 3916 3917 if ((uintptr_t)end == (uintptr_t)eq->spg) 3918 *to = (void *)eq->desc; 3919 else 3920 *to = (void *)end; 3921 3922 return (padded); 3923 } 3924 3925 static inline void 3926 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) 3927 { 3928 if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) { 3929 bcopy(from, *to, len); 3930 (*to) += len; 3931 } else { 3932 int portion = (uintptr_t)eq->spg - (uintptr_t)(*to); 3933 3934 bcopy(from, *to, portion); 3935 from += portion; 3936 portion = len - portion; /* remaining */ 3937 bcopy(from, (void *)eq->desc, portion); 3938 (*to) = (caddr_t)eq->desc + portion; 3939 } 3940 } 3941 3942 static inline void 3943 ring_eq_db(struct adapter *sc, struct sge_eq *eq) 3944 { 3945 u_int db, pending; 3946 3947 db = eq->doorbells; 3948 pending = eq->pending; 3949 if (pending > 1) 3950 clrbit(&db, DOORBELL_WCWR); 3951 eq->pending = 0; 3952 wmb(); 3953 3954 switch (ffs(db) - 1) { 3955 case DOORBELL_UDB: 3956 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending)); 3957 return; 3958 3959 case DOORBELL_WCWR: { 3960 volatile uint64_t *dst, *src; 3961 int i; 3962 3963 /* 3964 * Queues whose 128B doorbell segment fits in the page do not 3965 * use relative qid (udb_qid is always 0). Only queues with 3966 * doorbell segments can do WCWR. 3967 */ 3968 KASSERT(eq->udb_qid == 0 && pending == 1, 3969 ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p", 3970 __func__, eq->doorbells, pending, eq->pidx, eq)); 3971 3972 dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET - 3973 UDBS_DB_OFFSET); 3974 i = eq->pidx ? eq->pidx - 1 : eq->cap - 1; 3975 src = (void *)&eq->desc[i]; 3976 while (src != (void *)&eq->desc[i + 1]) 3977 *dst++ = *src++; 3978 wmb(); 3979 return; 3980 } 3981 3982 case DOORBELL_UDBWC: 3983 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending)); 3984 wmb(); 3985 return; 3986 3987 case DOORBELL_KDB: 3988 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), 3989 V_QID(eq->cntxt_id) | V_PIDX(pending)); 3990 return; 3991 } 3992 } 3993 3994 static inline int 3995 reclaimable(struct sge_eq *eq) 3996 { 3997 unsigned int cidx; 3998 3999 cidx = eq->spg->cidx; /* stable snapshot */ 4000 cidx = be16toh(cidx); 4001 4002 if (cidx >= eq->cidx) 4003 return (cidx - eq->cidx); 4004 else 4005 return (cidx + eq->cap - eq->cidx); 4006 } 4007 4008 /* 4009 * There are "can_reclaim" tx descriptors ready to be reclaimed. Reclaim as 4010 * many as possible but stop when there are around "n" mbufs to free. 4011 * 4012 * The actual number reclaimed is provided as the return value. 4013 */ 4014 static int 4015 reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n) 4016 { 4017 struct tx_sdesc *txsd; 4018 struct tx_maps *txmaps; 4019 struct tx_map *txm; 4020 unsigned int reclaimed, maps; 4021 struct sge_eq *eq = &txq->eq; 4022 4023 TXQ_LOCK_ASSERT_OWNED(txq); 4024 4025 if (can_reclaim == 0) 4026 can_reclaim = reclaimable(eq); 4027 4028 maps = reclaimed = 0; 4029 while (can_reclaim && maps < n) { 4030 int ndesc; 4031 4032 txsd = &txq->sdesc[eq->cidx]; 4033 ndesc = txsd->desc_used; 4034 4035 /* Firmware doesn't return "partial" credits. */ 4036 KASSERT(can_reclaim >= ndesc, 4037 ("%s: unexpected number of credits: %d, %d", 4038 __func__, can_reclaim, ndesc)); 4039 4040 maps += txsd->credits; 4041 4042 reclaimed += ndesc; 4043 can_reclaim -= ndesc; 4044 4045 eq->cidx += ndesc; 4046 if (__predict_false(eq->cidx >= eq->cap)) 4047 eq->cidx -= eq->cap; 4048 } 4049 4050 txmaps = &txq->txmaps; 4051 txm = &txmaps->maps[txmaps->map_cidx]; 4052 if (maps) 4053 prefetch(txm->m); 4054 4055 eq->avail += reclaimed; 4056 KASSERT(eq->avail < eq->cap, /* avail tops out at (cap - 1) */ 4057 ("%s: too many descriptors available", __func__)); 4058 4059 txmaps->map_avail += maps; 4060 KASSERT(txmaps->map_avail <= txmaps->map_total, 4061 ("%s: too many maps available", __func__)); 4062 4063 while (maps--) { 4064 struct tx_map *next; 4065 4066 next = txm + 1; 4067 if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total)) 4068 next = txmaps->maps; 4069 prefetch(next->m); 4070 4071 bus_dmamap_unload(txq->tx_tag, txm->map); 4072 m_freem(txm->m); 4073 txm->m = NULL; 4074 4075 txm = next; 4076 if (__predict_false(++txmaps->map_cidx == txmaps->map_total)) 4077 txmaps->map_cidx = 0; 4078 } 4079 4080 return (reclaimed); 4081 } 4082 4083 static void 4084 write_eqflush_wr(struct sge_eq *eq) 4085 { 4086 struct fw_eq_flush_wr *wr; 4087 4088 EQ_LOCK_ASSERT_OWNED(eq); 4089 KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__)); 4090 KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__)); 4091 4092 wr = (void *)&eq->desc[eq->pidx]; 4093 bzero(wr, sizeof(*wr)); 4094 wr->opcode = FW_EQ_FLUSH_WR; 4095 wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) | 4096 F_FW_WR_EQUEQ | F_FW_WR_EQUIQ); 4097 4098 eq->flags |= (EQ_CRFLUSHED | EQ_STALLED); 4099 eq->pending++; 4100 eq->avail--; 4101 if (++eq->pidx == eq->cap) 4102 eq->pidx = 0; 4103 } 4104 4105 static __be64 4106 get_flit(bus_dma_segment_t *sgl, int nsegs, int idx) 4107 { 4108 int i = (idx / 3) * 2; 4109 4110 switch (idx % 3) { 4111 case 0: { 4112 __be64 rc; 4113 4114 rc = htobe32(sgl[i].ds_len); 4115 if (i + 1 < nsegs) 4116 rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32; 4117 4118 return (rc); 4119 } 4120 case 1: 4121 return htobe64(sgl[i].ds_addr); 4122 case 2: 4123 return htobe64(sgl[i + 1].ds_addr); 4124 } 4125 4126 return (0); 4127 } 4128 4129 /* 4130 * Find an SGE FL buffer size to use for the given bufsize. Look for the the 4131 * smallest size that is large enough to hold bufsize or pick the largest size 4132 * if all sizes are less than bufsize. 4133 */ 4134 static void 4135 set_fl_tag_idx(struct adapter *sc, struct sge_fl *fl, int bufsize) 4136 { 4137 int i, largest, best, delta, start; 4138 4139 if (fl->flags & FL_BUF_PACKING) { 4140 fl->tag_idx = 0; /* first tag is the one for packing */ 4141 return; 4142 } 4143 4144 start = sc->flags & BUF_PACKING_OK ? 1 : 0; 4145 delta = FL_BUF_SIZE(sc, start) - bufsize; 4146 if (delta == 0) { 4147 fl->tag_idx = start; /* ideal fit, look no further */ 4148 return; 4149 } 4150 best = start; 4151 largest = start; 4152 4153 for (i = start + 1; i < FL_BUF_SIZES(sc); i++) { 4154 int d, fl_buf_size; 4155 4156 fl_buf_size = FL_BUF_SIZE(sc, i); 4157 d = fl_buf_size - bufsize; 4158 4159 if (d == 0) { 4160 fl->tag_idx = i; /* ideal fit, look no further */ 4161 return; 4162 } 4163 if (fl_buf_size > FL_BUF_SIZE(sc, largest)) 4164 largest = i; 4165 if (d > 0 && (delta < 0 || delta > d)) { 4166 delta = d; 4167 best = i; 4168 } 4169 } 4170 4171 if (delta > 0) 4172 fl->tag_idx = best; /* Found a buf bigger than bufsize */ 4173 else 4174 fl->tag_idx = largest; /* No buf large enough for bufsize */ 4175 } 4176 4177 static void 4178 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) 4179 { 4180 mtx_lock(&sc->sfl_lock); 4181 FL_LOCK(fl); 4182 if ((fl->flags & FL_DOOMED) == 0) { 4183 fl->flags |= FL_STARVING; 4184 TAILQ_INSERT_TAIL(&sc->sfl, fl, link); 4185 callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc); 4186 } 4187 FL_UNLOCK(fl); 4188 mtx_unlock(&sc->sfl_lock); 4189 } 4190 4191 static int 4192 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, 4193 struct mbuf *m) 4194 { 4195 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); 4196 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); 4197 struct adapter *sc = iq->adapter; 4198 struct sge *s = &sc->sge; 4199 struct sge_eq *eq; 4200 4201 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 4202 rss->opcode)); 4203 4204 eq = s->eqmap[qid - s->eq_start]; 4205 EQ_LOCK(eq); 4206 KASSERT(eq->flags & EQ_CRFLUSHED, 4207 ("%s: unsolicited egress update", __func__)); 4208 eq->flags &= ~EQ_CRFLUSHED; 4209 eq->egr_update++; 4210 4211 if (__predict_false(eq->flags & EQ_DOOMED)) 4212 wakeup_one(eq); 4213 else if (eq->flags & EQ_STALLED && can_resume_tx(eq)) 4214 taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task); 4215 EQ_UNLOCK(eq); 4216 4217 return (0); 4218 } 4219 4220 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */ 4221 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \ 4222 offsetof(struct cpl_fw6_msg, data)); 4223 4224 static int 4225 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 4226 { 4227 struct adapter *sc = iq->adapter; 4228 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); 4229 4230 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 4231 rss->opcode)); 4232 4233 if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) { 4234 const struct rss_header *rss2; 4235 4236 rss2 = (const struct rss_header *)&cpl->data[0]; 4237 return (sc->cpl_handler[rss2->opcode](iq, rss2, m)); 4238 } 4239 4240 return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0])); 4241 } 4242 4243 static int 4244 sysctl_uint16(SYSCTL_HANDLER_ARGS) 4245 { 4246 uint16_t *id = arg1; 4247 int i = *id; 4248 4249 return sysctl_handle_int(oidp, &i, 0, req); 4250 } 4251