xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 3fc9e2c36555140de248a0b4def91bbfa44d7c2c)
1 /*-
2  * Copyright (c) 2011 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #include <sys/types.h>
35 #include <sys/mbuf.h>
36 #include <sys/socket.h>
37 #include <sys/kernel.h>
38 #include <sys/kdb.h>
39 #include <sys/malloc.h>
40 #include <sys/queue.h>
41 #include <sys/taskqueue.h>
42 #include <sys/time.h>
43 #include <sys/sysctl.h>
44 #include <sys/smp.h>
45 #include <net/bpf.h>
46 #include <net/ethernet.h>
47 #include <net/if.h>
48 #include <net/if_vlan_var.h>
49 #include <netinet/in.h>
50 #include <netinet/ip.h>
51 #include <netinet/ip6.h>
52 #include <netinet/tcp.h>
53 
54 #include "common/common.h"
55 #include "common/t4_regs.h"
56 #include "common/t4_regs_values.h"
57 #include "common/t4_msg.h"
58 
59 #ifdef T4_PKT_TIMESTAMP
60 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
61 #else
62 #define RX_COPY_THRESHOLD MINCLSIZE
63 #endif
64 
65 /*
66  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
67  * 0-7 are valid values.
68  */
69 static int fl_pktshift = 2;
70 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
71 
72 /*
73  * Pad ethernet payload up to this boundary.
74  * -1: driver should figure out a good value.
75  *  0: disable padding.
76  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
77  */
78 static int fl_pad = -1;
79 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
80 
81 /*
82  * Status page length.
83  * -1: driver should figure out a good value.
84  *  64 or 128 are the only other valid values.
85  */
86 static int spg_len = -1;
87 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
88 
89 /*
90  * Congestion drops.
91  * -1: no congestion feedback (not recommended).
92  *  0: backpressure the channel instead of dropping packets right away.
93  *  1: no backpressure, drop packets for the congested queue immediately.
94  */
95 static int cong_drop = 0;
96 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
97 
98 /*
99  * Deliver multiple frames in the same free list buffer if they fit.
100  * -1: let the driver decide whether to enable buffer packing or not.
101  *  0: disable buffer packing.
102  *  1: enable buffer packing.
103  */
104 static int buffer_packing = -1;
105 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
106 
107 /*
108  * Start next frame in a packed buffer at this boundary.
109  * -1: driver should figure out a good value.
110  * T4:
111  * ---
112  * if fl_pad != 0
113  * 	value specified here will be overridden by fl_pad.
114  * else
115  * 	power of 2 from 32 to 4096 (both inclusive) is a valid value here.
116  * T5:
117  * ---
118  * 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
119  */
120 static int fl_pack = -1;
121 static int t4_fl_pack;
122 static int t5_fl_pack;
123 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
124 
125 /* Used to track coalesced tx work request */
126 struct txpkts {
127 	uint64_t *flitp;	/* ptr to flit where next pkt should start */
128 	uint8_t npkt;		/* # of packets in this work request */
129 	uint8_t nflits;		/* # of flits used by this work request */
130 	uint16_t plen;		/* total payload (sum of all packets) */
131 };
132 
133 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
134 struct sgl {
135 	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
136 	int nflits;		/* # of flits needed for the SGL */
137 	bus_dma_segment_t seg[TX_SGL_SEGS];
138 };
139 
140 static int service_iq(struct sge_iq *, int);
141 static struct mbuf *get_fl_payload1(struct adapter *, struct sge_fl *, uint32_t,
142     int *);
143 static struct mbuf *get_fl_payload2(struct adapter *, struct sge_fl *, uint32_t,
144     int *);
145 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
146 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
147     int);
148 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, int,
149     char *);
150 static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
151     char *);
152 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
153     bus_addr_t *, void **);
154 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
155     void *);
156 static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
157     int, int);
158 static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
159 static int alloc_fwq(struct adapter *);
160 static int free_fwq(struct adapter *);
161 static int alloc_mgmtq(struct adapter *);
162 static int free_mgmtq(struct adapter *);
163 static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
164     struct sysctl_oid *);
165 static int free_rxq(struct port_info *, struct sge_rxq *);
166 #ifdef TCP_OFFLOAD
167 static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
168     struct sysctl_oid *);
169 static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
170 #endif
171 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
172 static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
173 #ifdef TCP_OFFLOAD
174 static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
175 #endif
176 static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
177 static int free_eq(struct adapter *, struct sge_eq *);
178 static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
179     struct sysctl_oid *);
180 static int free_wrq(struct adapter *, struct sge_wrq *);
181 static int alloc_txq(struct port_info *, struct sge_txq *, int,
182     struct sysctl_oid *);
183 static int free_txq(struct port_info *, struct sge_txq *);
184 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
185 static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
186 static inline void iq_next(struct sge_iq *);
187 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
188 static int refill_fl(struct adapter *, struct sge_fl *, int);
189 static void refill_sfl(void *);
190 static int alloc_fl_sdesc(struct sge_fl *);
191 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
192 static void set_fl_tag_idx(struct adapter *, struct sge_fl *, int);
193 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
194 
195 static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
196 static int free_pkt_sgl(struct sge_txq *, struct sgl *);
197 static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
198     struct sgl *);
199 static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
200     struct mbuf *, struct sgl *);
201 static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
202 static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
203     struct txpkts *, struct mbuf *, struct sgl *);
204 static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
205 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
206 static inline void ring_eq_db(struct adapter *, struct sge_eq *);
207 static inline int reclaimable(struct sge_eq *);
208 static int reclaim_tx_descs(struct sge_txq *, int, int);
209 static void write_eqflush_wr(struct sge_eq *);
210 static __be64 get_flit(bus_dma_segment_t *, int, int);
211 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
212     struct mbuf *);
213 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
214     struct mbuf *);
215 
216 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
217 
218 #if defined(__i386__) || defined(__amd64__)
219 extern u_int cpu_clflush_line_size;
220 #endif
221 
222 /*
223  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
224  */
225 void
226 t4_sge_modload(void)
227 {
228 	int pad;
229 
230 	/* set pad to a reasonable powerof2 between 16 and 4096 (inclusive) */
231 #if defined(__i386__) || defined(__amd64__)
232 	pad = max(cpu_clflush_line_size, 16);
233 #else
234 	pad = max(CACHE_LINE_SIZE, 16);
235 #endif
236 	pad = min(pad, 4096);
237 
238 	if (fl_pktshift < 0 || fl_pktshift > 7) {
239 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
240 		    " using 2 instead.\n", fl_pktshift);
241 		fl_pktshift = 2;
242 	}
243 
244 	if (fl_pad != 0 &&
245 	    (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad))) {
246 
247 		if (fl_pad != -1) {
248 			printf("Invalid hw.cxgbe.fl_pad value (%d),"
249 			    " using %d instead.\n", fl_pad, max(pad, 32));
250 		}
251 		fl_pad = max(pad, 32);
252 	}
253 
254 	/*
255 	 * T4 has the same pad and pack boundary.  If a pad boundary is set,
256 	 * pack boundary must be set to the same value.  Otherwise take the
257 	 * specified value or auto-calculate something reasonable.
258 	 */
259 	if (fl_pad)
260 		t4_fl_pack = fl_pad;
261 	else if (fl_pack < 32 || fl_pack > 4096 || !powerof2(fl_pack))
262 		t4_fl_pack = max(pad, 32);
263 	else
264 		t4_fl_pack = fl_pack;
265 
266 	/* T5's pack boundary is independent of the pad boundary. */
267 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
268 	    !powerof2(fl_pack))
269 	       t5_fl_pack = max(pad, 64);
270 	else
271 	       t5_fl_pack = fl_pack;
272 
273 	if (spg_len != 64 && spg_len != 128) {
274 		int len;
275 
276 #if defined(__i386__) || defined(__amd64__)
277 		len = cpu_clflush_line_size > 64 ? 128 : 64;
278 #else
279 		len = 64;
280 #endif
281 		if (spg_len != -1) {
282 			printf("Invalid hw.cxgbe.spg_len value (%d),"
283 			    " using %d instead.\n", spg_len, len);
284 		}
285 		spg_len = len;
286 	}
287 
288 	if (cong_drop < -1 || cong_drop > 1) {
289 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
290 		    " using 0 instead.\n", cong_drop);
291 		cong_drop = 0;
292 	}
293 }
294 
295 void
296 t4_init_sge_cpl_handlers(struct adapter *sc)
297 {
298 
299 	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
300 	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
301 	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
302 	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
303 	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
304 }
305 
306 /*
307  * adap->params.vpd.cclk must be set up before this is called.
308  */
309 void
310 t4_tweak_chip_settings(struct adapter *sc)
311 {
312 	int i;
313 	uint32_t v, m;
314 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
315 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
316 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
317 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
318 	int sw_flbuf_sizes[] = {
319 		MCLBYTES,
320 #if MJUMPAGESIZE != MCLBYTES
321 		MJUMPAGESIZE,
322 #endif
323 		MJUM9BYTES,
324 		MJUM16BYTES,
325 		MJUMPAGESIZE - MSIZE
326 	};
327 
328 	KASSERT(sc->flags & MASTER_PF,
329 	    ("%s: trying to change chip settings when not master.", __func__));
330 
331 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
332 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
333 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
334 	if (is_t4(sc) && (fl_pad || buffer_packing)) {
335 		/* t4_fl_pack has the correct value even when fl_pad = 0 */
336 		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
337 		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
338 	} else if (is_t5(sc) && fl_pad) {
339 		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
340 		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
341 	}
342 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
343 
344 	if (is_t5(sc) && buffer_packing) {
345 		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
346 		if (t5_fl_pack == 16)
347 			v = V_INGPACKBOUNDARY(0);
348 		else
349 			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
350 		t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
351 	}
352 
353 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
354 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
355 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
356 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
357 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
358 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
359 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
360 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
361 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
362 
363 	for (i = 0; i < min(nitems(sw_flbuf_sizes), 16); i++) {
364 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
365 		    sw_flbuf_sizes[i]);
366 	}
367 
368 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
369 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
370 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
371 
372 	KASSERT(intr_timer[0] <= timer_max,
373 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
374 	    timer_max));
375 	for (i = 1; i < nitems(intr_timer); i++) {
376 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
377 		    ("%s: timers not listed in increasing order (%d)",
378 		    __func__, i));
379 
380 		while (intr_timer[i] > timer_max) {
381 			if (i == nitems(intr_timer) - 1) {
382 				intr_timer[i] = timer_max;
383 				break;
384 			}
385 			intr_timer[i] += intr_timer[i - 1];
386 			intr_timer[i] /= 2;
387 		}
388 	}
389 
390 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
391 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
392 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
393 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
394 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
395 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
396 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
397 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
398 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
399 
400 	if (cong_drop == 0) {
401 		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
402 		    F_TUNNELCNGDROP3;
403 		t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0);
404 	}
405 
406 	/* 4K, 16K, 64K, 256K DDP "page sizes" */
407 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
408 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
409 
410 	m = v = F_TDDPTAGTCB;
411 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
412 
413 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
414 	    F_RESETDDPOFFSET;
415 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
416 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
417 }
418 
419 /*
420  * XXX: driver really should be able to deal with unexpected settings.
421  */
422 int
423 t4_read_chip_settings(struct adapter *sc)
424 {
425 	struct sge *s = &sc->sge;
426 	int i, j, n, rc = 0;
427 	uint32_t m, v, r;
428 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
429 	uint32_t sge_flbuf_sizes[16], sw_flbuf_sizes[] = {
430 		MCLBYTES,
431 #if MJUMPAGESIZE != MCLBYTES
432 		MJUMPAGESIZE,
433 #endif
434 		MJUM9BYTES,
435 		MJUM16BYTES
436 	};
437 
438 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
439 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
440 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
441 	if (is_t4(sc) && (fl_pad || buffer_packing)) {
442 		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
443 		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
444 	} else if (is_t5(sc) && fl_pad) {
445 		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
446 		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
447 	}
448 	r = t4_read_reg(sc, A_SGE_CONTROL);
449 	if ((r & m) != v) {
450 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
451 		rc = EINVAL;
452 	}
453 
454 	if (is_t5(sc) && buffer_packing) {
455 		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
456 		if (t5_fl_pack == 16)
457 			v = V_INGPACKBOUNDARY(0);
458 		else
459 			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
460 		r = t4_read_reg(sc, A_SGE_CONTROL2);
461 		if ((r & m) != v) {
462 			device_printf(sc->dev,
463 			    "invalid SGE_CONTROL2(0x%x)\n", r);
464 			rc = EINVAL;
465 		}
466 	}
467 
468 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
469 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
470 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
471 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
472 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
473 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
474 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
475 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
476 	r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
477 	if (r != v) {
478 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
479 		rc = EINVAL;
480 	}
481 
482 	/*
483 	 * Make a list of SGE FL buffer sizes programmed in the chip and tally
484 	 * it with the FL buffer sizes that we'd like to use.
485 	 */
486 	n = 0;
487 	for (i = 0; i < nitems(sge_flbuf_sizes); i++) {
488 		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
489 		sge_flbuf_sizes[i] = r;
490 		if (r == MJUMPAGESIZE - MSIZE &&
491 		    (sc->flags & BUF_PACKING_OK) == 0) {
492 			sc->flags |= BUF_PACKING_OK;
493 			FL_BUF_HWTAG(sc, n) = i;
494 			FL_BUF_SIZE(sc, n) = MJUMPAGESIZE - MSIZE;
495 			FL_BUF_TYPE(sc, n) = m_gettype(MJUMPAGESIZE);
496 			FL_BUF_ZONE(sc, n) = m_getzone(MJUMPAGESIZE);
497 			n++;
498 		}
499 	}
500 	for (i = 0; i < nitems(sw_flbuf_sizes); i++) {
501 		for (j = 0; j < nitems(sge_flbuf_sizes); j++) {
502 			if (sw_flbuf_sizes[i] != sge_flbuf_sizes[j])
503 				continue;
504 			FL_BUF_HWTAG(sc, n) = j;
505 			FL_BUF_SIZE(sc, n) = sw_flbuf_sizes[i];
506 			FL_BUF_TYPE(sc, n) = m_gettype(sw_flbuf_sizes[i]);
507 			FL_BUF_ZONE(sc, n) = m_getzone(sw_flbuf_sizes[i]);
508 			n++;
509 			break;
510 		}
511 	}
512 	if (n == 0) {
513 		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
514 		rc = EINVAL;
515 	} else if (n == 1 && (sc->flags & BUF_PACKING_OK)) {
516 		device_printf(sc->dev,
517 		    "no usable SGE FL buffer size when not packing buffers.\n");
518 		rc = EINVAL;
519 	}
520 	FL_BUF_SIZES(sc) = n;
521 
522 	r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
523 	s->counter_val[0] = G_THRESHOLD_0(r);
524 	s->counter_val[1] = G_THRESHOLD_1(r);
525 	s->counter_val[2] = G_THRESHOLD_2(r);
526 	s->counter_val[3] = G_THRESHOLD_3(r);
527 
528 	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
529 	s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
530 	s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
531 	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
532 	s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
533 	s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
534 	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
535 	s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
536 	s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
537 
538 	if (cong_drop == 0) {
539 		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
540 		    F_TUNNELCNGDROP3;
541 		r = t4_read_reg(sc, A_TP_PARA_REG3);
542 		if (r & m) {
543 			device_printf(sc->dev,
544 			    "invalid TP_PARA_REG3(0x%x)\n", r);
545 			rc = EINVAL;
546 		}
547 	}
548 
549 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
550 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
551 	if (r != v) {
552 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
553 		rc = EINVAL;
554 	}
555 
556 	m = v = F_TDDPTAGTCB;
557 	r = t4_read_reg(sc, A_ULP_RX_CTL);
558 	if ((r & m) != v) {
559 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
560 		rc = EINVAL;
561 	}
562 
563 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
564 	    F_RESETDDPOFFSET;
565 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
566 	r = t4_read_reg(sc, A_TP_PARA_REG5);
567 	if ((r & m) != v) {
568 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
569 		rc = EINVAL;
570 	}
571 
572 	r = t4_read_reg(sc, A_SGE_CONM_CTRL);
573 	s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
574 
575 	if (is_t5(sc)) {
576 		r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
577 		r >>= S_QUEUESPERPAGEPF0 +
578 		    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
579 		s->s_qpp = r & M_QUEUESPERPAGEPF0;
580 	}
581 
582 	t4_init_tp_params(sc);
583 
584 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
585 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
586 
587 	return (rc);
588 }
589 
590 int
591 t4_create_dma_tag(struct adapter *sc)
592 {
593 	int rc;
594 
595 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
596 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
597 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
598 	    NULL, &sc->dmat);
599 	if (rc != 0) {
600 		device_printf(sc->dev,
601 		    "failed to create main DMA tag: %d\n", rc);
602 	}
603 
604 	return (rc);
605 }
606 
607 static inline int
608 enable_buffer_packing(struct adapter *sc)
609 {
610 
611 	if (sc->flags & BUF_PACKING_OK &&
612 	    ((is_t5(sc) && buffer_packing) ||	/* 1 or -1 both ok for T5 */
613 	    (is_t4(sc) && buffer_packing == 1)))
614 		return (1);
615 	return (0);
616 }
617 
618 void
619 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
620     struct sysctl_oid_list *children)
621 {
622 
623 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
624 	    NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)");
625 
626 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
627 	    NULL, fl_pad, "payload pad boundary (bytes)");
628 
629 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
630 	    NULL, spg_len, "status page size (bytes)");
631 
632 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
633 	    NULL, cong_drop, "congestion drop setting");
634 
635 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "buffer_packing", CTLFLAG_RD,
636 	    NULL, enable_buffer_packing(sc),
637 	    "pack multiple frames in one fl buffer");
638 
639 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
640 	    NULL, is_t5(sc) ? t5_fl_pack : t4_fl_pack,
641 	    "payload pack boundary (bytes)");
642 }
643 
644 int
645 t4_destroy_dma_tag(struct adapter *sc)
646 {
647 	if (sc->dmat)
648 		bus_dma_tag_destroy(sc->dmat);
649 
650 	return (0);
651 }
652 
653 /*
654  * Allocate and initialize the firmware event queue and the management queue.
655  *
656  * Returns errno on failure.  Resources allocated up to that point may still be
657  * allocated.  Caller is responsible for cleanup in case this function fails.
658  */
659 int
660 t4_setup_adapter_queues(struct adapter *sc)
661 {
662 	int rc;
663 
664 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
665 
666 	sysctl_ctx_init(&sc->ctx);
667 	sc->flags |= ADAP_SYSCTL_CTX;
668 
669 	/*
670 	 * Firmware event queue
671 	 */
672 	rc = alloc_fwq(sc);
673 	if (rc != 0)
674 		return (rc);
675 
676 	/*
677 	 * Management queue.  This is just a control queue that uses the fwq as
678 	 * its associated iq.
679 	 */
680 	rc = alloc_mgmtq(sc);
681 
682 	return (rc);
683 }
684 
685 /*
686  * Idempotent
687  */
688 int
689 t4_teardown_adapter_queues(struct adapter *sc)
690 {
691 
692 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
693 
694 	/* Do this before freeing the queue */
695 	if (sc->flags & ADAP_SYSCTL_CTX) {
696 		sysctl_ctx_free(&sc->ctx);
697 		sc->flags &= ~ADAP_SYSCTL_CTX;
698 	}
699 
700 	free_mgmtq(sc);
701 	free_fwq(sc);
702 
703 	return (0);
704 }
705 
706 static inline int
707 first_vector(struct port_info *pi)
708 {
709 	struct adapter *sc = pi->adapter;
710 	int rc = T4_EXTRA_INTR, i;
711 
712 	if (sc->intr_count == 1)
713 		return (0);
714 
715 	for_each_port(sc, i) {
716 		struct port_info *p = sc->port[i];
717 
718 		if (i == pi->port_id)
719 			break;
720 
721 #ifdef TCP_OFFLOAD
722 		if (sc->flags & INTR_DIRECT)
723 			rc += p->nrxq + p->nofldrxq;
724 		else
725 			rc += max(p->nrxq, p->nofldrxq);
726 #else
727 		/*
728 		 * Not compiled with offload support and intr_count > 1.  Only
729 		 * NIC queues exist and they'd better be taking direct
730 		 * interrupts.
731 		 */
732 		KASSERT(sc->flags & INTR_DIRECT,
733 		    ("%s: intr_count %d, !INTR_DIRECT", __func__,
734 		    sc->intr_count));
735 
736 		rc += p->nrxq;
737 #endif
738 	}
739 
740 	return (rc);
741 }
742 
743 /*
744  * Given an arbitrary "index," come up with an iq that can be used by other
745  * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
746  * The iq returned is guaranteed to be something that takes direct interrupts.
747  */
748 static struct sge_iq *
749 port_intr_iq(struct port_info *pi, int idx)
750 {
751 	struct adapter *sc = pi->adapter;
752 	struct sge *s = &sc->sge;
753 	struct sge_iq *iq = NULL;
754 
755 	if (sc->intr_count == 1)
756 		return (&sc->sge.fwq);
757 
758 #ifdef TCP_OFFLOAD
759 	if (sc->flags & INTR_DIRECT) {
760 		idx %= pi->nrxq + pi->nofldrxq;
761 
762 		if (idx >= pi->nrxq) {
763 			idx -= pi->nrxq;
764 			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
765 		} else
766 			iq = &s->rxq[pi->first_rxq + idx].iq;
767 
768 	} else {
769 		idx %= max(pi->nrxq, pi->nofldrxq);
770 
771 		if (pi->nrxq >= pi->nofldrxq)
772 			iq = &s->rxq[pi->first_rxq + idx].iq;
773 		else
774 			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
775 	}
776 #else
777 	/*
778 	 * Not compiled with offload support and intr_count > 1.  Only NIC
779 	 * queues exist and they'd better be taking direct interrupts.
780 	 */
781 	KASSERT(sc->flags & INTR_DIRECT,
782 	    ("%s: intr_count %d, !INTR_DIRECT", __func__, sc->intr_count));
783 
784 	idx %= pi->nrxq;
785 	iq = &s->rxq[pi->first_rxq + idx].iq;
786 #endif
787 
788 	KASSERT(iq->flags & IQ_INTR, ("%s: EDOOFUS", __func__));
789 	return (iq);
790 }
791 
792 static inline int
793 mtu_to_bufsize(int mtu)
794 {
795 	int bufsize;
796 
797 	/* large enough for a frame even when VLAN extraction is disabled */
798 	bufsize = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + mtu;
799 	bufsize = roundup2(bufsize + fl_pktshift, fl_pad);
800 
801 	return (bufsize);
802 }
803 
804 #ifdef TCP_OFFLOAD
805 static inline int
806 mtu_to_bufsize_toe(struct adapter *sc, int mtu)
807 {
808 
809 	if (sc->tt.rx_coalesce)
810 		return (G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)));
811 
812 	return (mtu);
813 }
814 #endif
815 
816 int
817 t4_setup_port_queues(struct port_info *pi)
818 {
819 	int rc = 0, i, j, intr_idx, iqid;
820 	struct sge_rxq *rxq;
821 	struct sge_txq *txq;
822 	struct sge_wrq *ctrlq;
823 #ifdef TCP_OFFLOAD
824 	struct sge_ofld_rxq *ofld_rxq;
825 	struct sge_wrq *ofld_txq;
826 	struct sysctl_oid *oid2 = NULL;
827 #endif
828 	char name[16];
829 	struct adapter *sc = pi->adapter;
830 	struct ifnet *ifp = pi->ifp;
831 	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
832 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
833 	int bufsize, pack;
834 
835 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD,
836 	    NULL, "rx queues");
837 
838 #ifdef TCP_OFFLOAD
839 	if (is_offload(sc)) {
840 		oid2 = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
841 		    CTLFLAG_RD, NULL,
842 		    "rx queues for offloaded TCP connections");
843 	}
844 #endif
845 
846 	/* Interrupt vector to start from (when using multiple vectors) */
847 	intr_idx = first_vector(pi);
848 
849 	/*
850 	 * First pass over all rx queues (NIC and TOE):
851 	 * a) initialize iq and fl
852 	 * b) allocate queue iff it will take direct interrupts.
853 	 */
854 	bufsize = mtu_to_bufsize(ifp->if_mtu);
855 	pack = enable_buffer_packing(sc);
856 	for_each_rxq(pi, i, rxq) {
857 
858 		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq,
859 		    RX_IQ_ESIZE);
860 
861 		snprintf(name, sizeof(name), "%s rxq%d-fl",
862 		    device_get_nameunit(pi->dev), i);
863 		init_fl(sc, &rxq->fl, pi->qsize_rxq / 8, bufsize, pack, name);
864 
865 		if (sc->flags & INTR_DIRECT
866 #ifdef TCP_OFFLOAD
867 		    || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq)
868 #endif
869 		   ) {
870 			rxq->iq.flags |= IQ_INTR;
871 			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
872 			if (rc != 0)
873 				goto done;
874 			intr_idx++;
875 		}
876 	}
877 
878 #ifdef TCP_OFFLOAD
879 	bufsize = mtu_to_bufsize_toe(sc, ifp->if_mtu);
880 	pack = 0;	/* XXX: think about this some more */
881 	for_each_ofld_rxq(pi, i, ofld_rxq) {
882 
883 		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
884 		    pi->qsize_rxq, RX_IQ_ESIZE);
885 
886 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
887 		    device_get_nameunit(pi->dev), i);
888 		init_fl(sc, &ofld_rxq->fl, pi->qsize_rxq / 8, bufsize, pack,
889 		    name);
890 
891 		if (sc->flags & INTR_DIRECT ||
892 		    (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) {
893 			ofld_rxq->iq.flags |= IQ_INTR;
894 			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
895 			if (rc != 0)
896 				goto done;
897 			intr_idx++;
898 		}
899 	}
900 #endif
901 
902 	/*
903 	 * Second pass over all rx queues (NIC and TOE).  The queues forwarding
904 	 * their interrupts are allocated now.
905 	 */
906 	j = 0;
907 	for_each_rxq(pi, i, rxq) {
908 		if (rxq->iq.flags & IQ_INTR)
909 			continue;
910 
911 		intr_idx = port_intr_iq(pi, j)->abs_id;
912 
913 		rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
914 		if (rc != 0)
915 			goto done;
916 		j++;
917 	}
918 
919 #ifdef TCP_OFFLOAD
920 	for_each_ofld_rxq(pi, i, ofld_rxq) {
921 		if (ofld_rxq->iq.flags & IQ_INTR)
922 			continue;
923 
924 		intr_idx = port_intr_iq(pi, j)->abs_id;
925 
926 		rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
927 		if (rc != 0)
928 			goto done;
929 		j++;
930 	}
931 #endif
932 
933 	/*
934 	 * Now the tx queues.  Only one pass needed.
935 	 */
936 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
937 	    NULL, "tx queues");
938 	j = 0;
939 	for_each_txq(pi, i, txq) {
940 		uint16_t iqid;
941 
942 		iqid = port_intr_iq(pi, j)->cntxt_id;
943 
944 		snprintf(name, sizeof(name), "%s txq%d",
945 		    device_get_nameunit(pi->dev), i);
946 		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
947 		    name);
948 
949 		rc = alloc_txq(pi, txq, i, oid);
950 		if (rc != 0)
951 			goto done;
952 		j++;
953 	}
954 
955 #ifdef TCP_OFFLOAD
956 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
957 	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
958 	for_each_ofld_txq(pi, i, ofld_txq) {
959 		uint16_t iqid;
960 
961 		iqid = port_intr_iq(pi, j)->cntxt_id;
962 
963 		snprintf(name, sizeof(name), "%s ofld_txq%d",
964 		    device_get_nameunit(pi->dev), i);
965 		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
966 		    iqid, name);
967 
968 		snprintf(name, sizeof(name), "%d", i);
969 		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
970 		    name, CTLFLAG_RD, NULL, "offload tx queue");
971 
972 		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
973 		if (rc != 0)
974 			goto done;
975 		j++;
976 	}
977 #endif
978 
979 	/*
980 	 * Finally, the control queue.
981 	 */
982 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
983 	    NULL, "ctrl queue");
984 	ctrlq = &sc->sge.ctrlq[pi->port_id];
985 	iqid = port_intr_iq(pi, 0)->cntxt_id;
986 	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
987 	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
988 	rc = alloc_wrq(sc, pi, ctrlq, oid);
989 
990 done:
991 	if (rc)
992 		t4_teardown_port_queues(pi);
993 
994 	return (rc);
995 }
996 
997 /*
998  * Idempotent
999  */
1000 int
1001 t4_teardown_port_queues(struct port_info *pi)
1002 {
1003 	int i;
1004 	struct adapter *sc = pi->adapter;
1005 	struct sge_rxq *rxq;
1006 	struct sge_txq *txq;
1007 #ifdef TCP_OFFLOAD
1008 	struct sge_ofld_rxq *ofld_rxq;
1009 	struct sge_wrq *ofld_txq;
1010 #endif
1011 
1012 	/* Do this before freeing the queues */
1013 	if (pi->flags & PORT_SYSCTL_CTX) {
1014 		sysctl_ctx_free(&pi->ctx);
1015 		pi->flags &= ~PORT_SYSCTL_CTX;
1016 	}
1017 
1018 	/*
1019 	 * Take down all the tx queues first, as they reference the rx queues
1020 	 * (for egress updates, etc.).
1021 	 */
1022 
1023 	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1024 
1025 	for_each_txq(pi, i, txq) {
1026 		free_txq(pi, txq);
1027 	}
1028 
1029 #ifdef TCP_OFFLOAD
1030 	for_each_ofld_txq(pi, i, ofld_txq) {
1031 		free_wrq(sc, ofld_txq);
1032 	}
1033 #endif
1034 
1035 	/*
1036 	 * Then take down the rx queues that forward their interrupts, as they
1037 	 * reference other rx queues.
1038 	 */
1039 
1040 	for_each_rxq(pi, i, rxq) {
1041 		if ((rxq->iq.flags & IQ_INTR) == 0)
1042 			free_rxq(pi, rxq);
1043 	}
1044 
1045 #ifdef TCP_OFFLOAD
1046 	for_each_ofld_rxq(pi, i, ofld_rxq) {
1047 		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1048 			free_ofld_rxq(pi, ofld_rxq);
1049 	}
1050 #endif
1051 
1052 	/*
1053 	 * Then take down the rx queues that take direct interrupts.
1054 	 */
1055 
1056 	for_each_rxq(pi, i, rxq) {
1057 		if (rxq->iq.flags & IQ_INTR)
1058 			free_rxq(pi, rxq);
1059 	}
1060 
1061 #ifdef TCP_OFFLOAD
1062 	for_each_ofld_rxq(pi, i, ofld_rxq) {
1063 		if (ofld_rxq->iq.flags & IQ_INTR)
1064 			free_ofld_rxq(pi, ofld_rxq);
1065 	}
1066 #endif
1067 
1068 	return (0);
1069 }
1070 
1071 /*
1072  * Deals with errors and the firmware event queue.  All data rx queues forward
1073  * their interrupt to the firmware event queue.
1074  */
1075 void
1076 t4_intr_all(void *arg)
1077 {
1078 	struct adapter *sc = arg;
1079 	struct sge_iq *fwq = &sc->sge.fwq;
1080 
1081 	t4_intr_err(arg);
1082 	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1083 		service_iq(fwq, 0);
1084 		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1085 	}
1086 }
1087 
1088 /* Deals with error interrupts */
1089 void
1090 t4_intr_err(void *arg)
1091 {
1092 	struct adapter *sc = arg;
1093 
1094 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1095 	t4_slow_intr_handler(sc);
1096 }
1097 
1098 void
1099 t4_intr_evt(void *arg)
1100 {
1101 	struct sge_iq *iq = arg;
1102 
1103 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1104 		service_iq(iq, 0);
1105 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1106 	}
1107 }
1108 
1109 void
1110 t4_intr(void *arg)
1111 {
1112 	struct sge_iq *iq = arg;
1113 
1114 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1115 		service_iq(iq, 0);
1116 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1117 	}
1118 }
1119 
1120 /*
1121  * Deals with anything and everything on the given ingress queue.
1122  */
1123 static int
1124 service_iq(struct sge_iq *iq, int budget)
1125 {
1126 	struct sge_iq *q;
1127 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1128 	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
1129 	struct adapter *sc = iq->adapter;
1130 	struct rsp_ctrl *ctrl;
1131 	const struct rss_header *rss;
1132 	int ndescs = 0, limit, fl_bufs_used = 0;
1133 	int rsp_type;
1134 	uint32_t lq;
1135 	struct mbuf *m0;
1136 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1137 #if defined(INET) || defined(INET6)
1138 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1139 #endif
1140 
1141 	limit = budget ? budget : iq->qsize / 8;
1142 
1143 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1144 
1145 	/*
1146 	 * We always come back and check the descriptor ring for new indirect
1147 	 * interrupts and other responses after running a single handler.
1148 	 */
1149 	for (;;) {
1150 		while (is_new_response(iq, &ctrl)) {
1151 
1152 			rmb();
1153 
1154 			m0 = NULL;
1155 			rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
1156 			lq = be32toh(ctrl->pldbuflen_qid);
1157 			rss = (const void *)iq->cdesc;
1158 
1159 			switch (rsp_type) {
1160 			case X_RSPD_TYPE_FLBUF:
1161 
1162 				KASSERT(iq->flags & IQ_HAS_FL,
1163 				    ("%s: data for an iq (%p) with no freelist",
1164 				    __func__, iq));
1165 
1166 				m0 = fl->flags & FL_BUF_PACKING ?
1167 				    get_fl_payload1(sc, fl, lq, &fl_bufs_used) :
1168 				    get_fl_payload2(sc, fl, lq, &fl_bufs_used);
1169 
1170 				if (__predict_false(m0 == NULL))
1171 					goto process_iql;
1172 #ifdef T4_PKT_TIMESTAMP
1173 				/*
1174 				 * 60 bit timestamp for the payload is
1175 				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1176 				 * in the leading free-space in the mbuf.  The
1177 				 * kernel can clobber it during a pullup,
1178 				 * m_copymdata, etc.  You need to make sure that
1179 				 * the mbuf reaches you unmolested if you care
1180 				 * about the timestamp.
1181 				 */
1182 				*(uint64_t *)m0->m_pktdat =
1183 				    be64toh(ctrl->u.last_flit) &
1184 				    0xfffffffffffffff;
1185 #endif
1186 
1187 				/* fall through */
1188 
1189 			case X_RSPD_TYPE_CPL:
1190 				KASSERT(rss->opcode < NUM_CPL_CMDS,
1191 				    ("%s: bad opcode %02x.", __func__,
1192 				    rss->opcode));
1193 				sc->cpl_handler[rss->opcode](iq, rss, m0);
1194 				break;
1195 
1196 			case X_RSPD_TYPE_INTR:
1197 
1198 				/*
1199 				 * Interrupts should be forwarded only to queues
1200 				 * that are not forwarding their interrupts.
1201 				 * This means service_iq can recurse but only 1
1202 				 * level deep.
1203 				 */
1204 				KASSERT(budget == 0,
1205 				    ("%s: budget %u, rsp_type %u", __func__,
1206 				    budget, rsp_type));
1207 
1208 				/*
1209 				 * There are 1K interrupt-capable queues (qids 0
1210 				 * through 1023).  A response type indicating a
1211 				 * forwarded interrupt with a qid >= 1K is an
1212 				 * iWARP async notification.
1213 				 */
1214 				if (lq >= 1024) {
1215                                         sc->an_handler(iq, ctrl);
1216                                         break;
1217                                 }
1218 
1219 				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1220 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1221 				    IQS_BUSY)) {
1222 					if (service_iq(q, q->qsize / 8) == 0) {
1223 						atomic_cmpset_int(&q->state,
1224 						    IQS_BUSY, IQS_IDLE);
1225 					} else {
1226 						STAILQ_INSERT_TAIL(&iql, q,
1227 						    link);
1228 					}
1229 				}
1230 				break;
1231 
1232 			default:
1233 				KASSERT(0,
1234 				    ("%s: illegal response type %d on iq %p",
1235 				    __func__, rsp_type, iq));
1236 				log(LOG_ERR,
1237 				    "%s: illegal response type %d on iq %p",
1238 				    device_get_nameunit(sc->dev), rsp_type, iq);
1239 				break;
1240 			}
1241 
1242 			iq_next(iq);
1243 			if (++ndescs == limit) {
1244 				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1245 				    V_CIDXINC(ndescs) |
1246 				    V_INGRESSQID(iq->cntxt_id) |
1247 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1248 				ndescs = 0;
1249 
1250 #if defined(INET) || defined(INET6)
1251 				if (iq->flags & IQ_LRO_ENABLED &&
1252 				    sc->lro_timeout != 0) {
1253 					tcp_lro_flush_inactive(&rxq->lro,
1254 					    &lro_timeout);
1255 				}
1256 #endif
1257 
1258 				if (fl_bufs_used > 0) {
1259 					FL_LOCK(fl);
1260 					fl->needed += fl_bufs_used;
1261 					refill_fl(sc, fl, fl->cap / 8);
1262 					FL_UNLOCK(fl);
1263 					fl_bufs_used = 0;
1264 				}
1265 
1266 				if (budget)
1267 					return (EINPROGRESS);
1268 			}
1269 		}
1270 
1271 process_iql:
1272 		if (STAILQ_EMPTY(&iql))
1273 			break;
1274 
1275 		/*
1276 		 * Process the head only, and send it to the back of the list if
1277 		 * it's still not done.
1278 		 */
1279 		q = STAILQ_FIRST(&iql);
1280 		STAILQ_REMOVE_HEAD(&iql, link);
1281 		if (service_iq(q, q->qsize / 8) == 0)
1282 			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1283 		else
1284 			STAILQ_INSERT_TAIL(&iql, q, link);
1285 	}
1286 
1287 #if defined(INET) || defined(INET6)
1288 	if (iq->flags & IQ_LRO_ENABLED) {
1289 		struct lro_ctrl *lro = &rxq->lro;
1290 		struct lro_entry *l;
1291 
1292 		while (!SLIST_EMPTY(&lro->lro_active)) {
1293 			l = SLIST_FIRST(&lro->lro_active);
1294 			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1295 			tcp_lro_flush(lro, l);
1296 		}
1297 	}
1298 #endif
1299 
1300 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1301 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1302 
1303 	if (iq->flags & IQ_HAS_FL) {
1304 		int starved;
1305 
1306 		FL_LOCK(fl);
1307 		fl->needed += fl_bufs_used;
1308 		starved = refill_fl(sc, fl, fl->cap / 4);
1309 		FL_UNLOCK(fl);
1310 		if (__predict_false(starved != 0))
1311 			add_fl_to_sfl(sc, fl);
1312 	}
1313 
1314 	return (0);
1315 }
1316 
1317 static int
1318 fill_mbuf_stash(struct sge_fl *fl)
1319 {
1320 	int i;
1321 
1322 	for (i = 0; i < nitems(fl->mstash); i++) {
1323 		if (fl->mstash[i] == NULL) {
1324 			struct mbuf *m;
1325 			if ((m = m_get(M_NOWAIT, MT_NOINIT)) == NULL)
1326 				return (ENOBUFS);
1327 			fl->mstash[i] = m;
1328 		}
1329 	}
1330 	return (0);
1331 }
1332 
1333 static struct mbuf *
1334 get_mbuf_from_stash(struct sge_fl *fl)
1335 {
1336 	int i;
1337 
1338 	for (i = 0; i < nitems(fl->mstash); i++) {
1339 		if (fl->mstash[i] != NULL) {
1340 			struct mbuf *m;
1341 
1342 			m = fl->mstash[i];
1343 			fl->mstash[i] = NULL;
1344 			return (m);
1345 		} else
1346 			fl->mstash[i] = m_get(M_NOWAIT, MT_NOINIT);
1347 	}
1348 
1349 	return (m_get(M_NOWAIT, MT_NOINIT));
1350 }
1351 
1352 static void
1353 return_mbuf_to_stash(struct sge_fl *fl, struct mbuf *m)
1354 {
1355 	int i;
1356 
1357 	if (m == NULL)
1358 		return;
1359 
1360 	for (i = 0; i < nitems(fl->mstash); i++) {
1361 		if (fl->mstash[i] == NULL) {
1362 			fl->mstash[i] = m;
1363 			return;
1364 		}
1365 	}
1366 	m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0);
1367 	m_free(m);
1368 }
1369 
1370 /* buf can be any address within the buffer */
1371 static inline u_int *
1372 find_buf_refcnt(caddr_t buf)
1373 {
1374 	uintptr_t ptr = (uintptr_t)buf;
1375 
1376 	return ((u_int *)((ptr & ~(MJUMPAGESIZE - 1)) + MSIZE - sizeof(u_int)));
1377 }
1378 
1379 static inline struct mbuf *
1380 find_buf_mbuf(caddr_t buf)
1381 {
1382 	uintptr_t ptr = (uintptr_t)buf;
1383 
1384 	return ((struct mbuf *)(ptr & ~(MJUMPAGESIZE - 1)));
1385 }
1386 
1387 static int
1388 rxb_free(struct mbuf *m, void *arg1, void *arg2)
1389 {
1390 	uma_zone_t zone = arg1;
1391 	caddr_t cl = arg2;
1392 #ifdef INVARIANTS
1393 	u_int refcount;
1394 
1395 	refcount = *find_buf_refcnt(cl);
1396 	KASSERT(refcount == 0, ("%s: cl %p refcount is %u", __func__,
1397 	    cl - MSIZE, refcount));
1398 #endif
1399 	cl -= MSIZE;
1400 	uma_zfree(zone, cl);
1401 
1402 	return (EXT_FREE_OK);
1403 }
1404 
1405 static struct mbuf *
1406 get_fl_payload1(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1407     int *fl_bufs_used)
1408 {
1409 	struct mbuf *m0, *m;
1410 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1411 	unsigned int nbuf, len;
1412 	int pack_boundary = is_t4(sc) ? t4_fl_pack : t5_fl_pack;
1413 
1414 	/*
1415 	 * No assertion for the fl lock because we don't need it.  This routine
1416 	 * is called only from the rx interrupt handler and it only updates
1417 	 * fl->cidx.  (Contrast that with fl->pidx/fl->needed which could be
1418 	 * updated in the rx interrupt handler or the starvation helper routine.
1419 	 * That's why code that manipulates fl->pidx/fl->needed needs the fl
1420 	 * lock but this routine does not).
1421 	 */
1422 
1423 	KASSERT(fl->flags & FL_BUF_PACKING,
1424 	    ("%s: buffer packing disabled for fl %p", __func__, fl));
1425 
1426 	len = G_RSPD_LEN(len_newbuf);
1427 
1428 	if ((len_newbuf & F_RSPD_NEWBUF) == 0) {
1429 		KASSERT(fl->rx_offset > 0,
1430 		    ("%s: packed frame but driver at offset=0", __func__));
1431 
1432 		/* A packed frame is guaranteed to fit entirely in this buf. */
1433 		KASSERT(FL_BUF_SIZE(sc, sd->tag_idx) - fl->rx_offset >= len,
1434 		    ("%s: packing error.  bufsz=%u, offset=%u, len=%u",
1435 		    __func__, FL_BUF_SIZE(sc, sd->tag_idx), fl->rx_offset,
1436 		    len));
1437 
1438 		m0 = get_mbuf_from_stash(fl);
1439 		if (m0 == NULL ||
1440 		    m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR) != 0) {
1441 			return_mbuf_to_stash(fl, m0);
1442 			return (NULL);
1443 		}
1444 
1445 		bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map,
1446 		    BUS_DMASYNC_POSTREAD);
1447 		if (len < RX_COPY_THRESHOLD) {
1448 #ifdef T4_PKT_TIMESTAMP
1449 			/* Leave room for a timestamp */
1450 			m0->m_data += 8;
1451 #endif
1452 			bcopy(sd->cl + fl->rx_offset, mtod(m0, caddr_t), len);
1453 			m0->m_pkthdr.len = len;
1454 			m0->m_len = len;
1455 		} else {
1456 			m0->m_pkthdr.len = len;
1457 			m0->m_len = len;
1458 			m_extaddref(m0, sd->cl + fl->rx_offset,
1459 			    roundup2(m0->m_len, fl_pad),
1460 			    find_buf_refcnt(sd->cl), rxb_free,
1461 			    FL_BUF_ZONE(sc, sd->tag_idx), sd->cl);
1462 		}
1463 		fl->rx_offset += len;
1464 		fl->rx_offset = roundup2(fl->rx_offset, fl_pad);
1465 		fl->rx_offset = roundup2(fl->rx_offset, pack_boundary);
1466 		if (fl->rx_offset >= FL_BUF_SIZE(sc, sd->tag_idx)) {
1467 			fl->rx_offset = 0;
1468 			(*fl_bufs_used) += 1;
1469 			if (__predict_false(++fl->cidx == fl->cap))
1470 				fl->cidx = 0;
1471 		}
1472 
1473 		return (m0);
1474 	}
1475 
1476 	KASSERT(len_newbuf & F_RSPD_NEWBUF,
1477 	    ("%s: only new buffer handled here", __func__));
1478 
1479 	nbuf = 0;
1480 
1481 	/*
1482 	 * Move to the start of the next buffer if we are still in the middle of
1483 	 * some buffer.  This is the case where there was some room left in the
1484 	 * previous buffer but not enough to fit this frame in its entirety.
1485 	 */
1486 	if (fl->rx_offset > 0) {
1487 		KASSERT(roundup2(len, fl_pad) > FL_BUF_SIZE(sc, sd->tag_idx) -
1488 		    fl->rx_offset, ("%s: frame (%u bytes) should have fit at "
1489 		    "cidx %u offset %u bufsize %u", __func__, len, fl->cidx,
1490 		    fl->rx_offset, FL_BUF_SIZE(sc, sd->tag_idx)));
1491 		nbuf++;
1492 		fl->rx_offset = 0;
1493 		sd++;
1494 		if (__predict_false(++fl->cidx == fl->cap)) {
1495 			sd = fl->sdesc;
1496 			fl->cidx = 0;
1497 		}
1498 	}
1499 
1500 	m0 = find_buf_mbuf(sd->cl);
1501 	if (m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR | M_NOFREE))
1502 		goto done;
1503 	bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD);
1504 	m0->m_len = min(len, FL_BUF_SIZE(sc, sd->tag_idx));
1505 	m_extaddref(m0, sd->cl, roundup2(m0->m_len, fl_pad),
1506 	    find_buf_refcnt(sd->cl), rxb_free, FL_BUF_ZONE(sc, sd->tag_idx),
1507 	    sd->cl);
1508 	m0->m_pkthdr.len = len;
1509 
1510 	fl->rx_offset = roundup2(m0->m_len, fl_pad);
1511 	fl->rx_offset = roundup2(fl->rx_offset, pack_boundary);
1512 	if (fl->rx_offset >= FL_BUF_SIZE(sc, sd->tag_idx)) {
1513 		fl->rx_offset = 0;
1514 		nbuf++;
1515 		sd++;
1516 		if (__predict_false(++fl->cidx == fl->cap)) {
1517 			sd = fl->sdesc;
1518 			fl->cidx = 0;
1519 		}
1520 	}
1521 
1522 	m = m0;
1523 	len -= m->m_len;
1524 
1525 	while (len > 0) {
1526 		m->m_next = find_buf_mbuf(sd->cl);
1527 		m = m->m_next;
1528 
1529 		bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map,
1530 		    BUS_DMASYNC_POSTREAD);
1531 
1532 		/* m_init for !M_PKTHDR can't fail so don't bother */
1533 		m_init(m, NULL, 0, M_NOWAIT, MT_DATA, M_NOFREE);
1534 		m->m_len = min(len, FL_BUF_SIZE(sc, sd->tag_idx));
1535 		m_extaddref(m, sd->cl, roundup2(m->m_len, fl_pad),
1536 		    find_buf_refcnt(sd->cl), rxb_free,
1537 		    FL_BUF_ZONE(sc, sd->tag_idx), sd->cl);
1538 
1539 		fl->rx_offset = roundup2(m->m_len, fl_pad);
1540 		fl->rx_offset = roundup2(fl->rx_offset, pack_boundary);
1541 		if (fl->rx_offset >= FL_BUF_SIZE(sc, sd->tag_idx)) {
1542 			fl->rx_offset = 0;
1543 			nbuf++;
1544 			sd++;
1545 			if (__predict_false(++fl->cidx == fl->cap)) {
1546 				sd = fl->sdesc;
1547 				fl->cidx = 0;
1548 			}
1549 		}
1550 
1551 		len -= m->m_len;
1552 	}
1553 done:
1554 	(*fl_bufs_used) += nbuf;
1555 	return (m0);
1556 }
1557 
1558 static struct mbuf *
1559 get_fl_payload2(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1560     int *fl_bufs_used)
1561 {
1562 	struct mbuf *m0, *m;
1563 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1564 	unsigned int nbuf, len;
1565 
1566 	/*
1567 	 * No assertion for the fl lock because we don't need it.  This routine
1568 	 * is called only from the rx interrupt handler and it only updates
1569 	 * fl->cidx.  (Contrast that with fl->pidx/fl->needed which could be
1570 	 * updated in the rx interrupt handler or the starvation helper routine.
1571 	 * That's why code that manipulates fl->pidx/fl->needed needs the fl
1572 	 * lock but this routine does not).
1573 	 */
1574 
1575 	KASSERT((fl->flags & FL_BUF_PACKING) == 0,
1576 	    ("%s: buffer packing enabled for fl %p", __func__, fl));
1577 	if (__predict_false((len_newbuf & F_RSPD_NEWBUF) == 0))
1578 		panic("%s: cannot handle packed frames", __func__);
1579 	len = G_RSPD_LEN(len_newbuf);
1580 
1581 	/*
1582 	 * We never want to run out of mbufs in between a frame when a frame
1583 	 * spans multiple fl buffers.  If the fl's mbuf stash isn't full and
1584 	 * can't be filled up to the brim then fail early.
1585 	 */
1586 	if (len > FL_BUF_SIZE(sc, sd->tag_idx) && fill_mbuf_stash(fl) != 0)
1587 		return (NULL);
1588 
1589 	m0 = get_mbuf_from_stash(fl);
1590 	if (m0 == NULL ||
1591 	    m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR) != 0) {
1592 		return_mbuf_to_stash(fl, m0);
1593 		return (NULL);
1594 	}
1595 
1596 	bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD);
1597 
1598 	if (len < RX_COPY_THRESHOLD) {
1599 #ifdef T4_PKT_TIMESTAMP
1600 		/* Leave room for a timestamp */
1601 		m0->m_data += 8;
1602 #endif
1603 		/* copy data to mbuf, buffer will be recycled */
1604 		bcopy(sd->cl, mtod(m0, caddr_t), len);
1605 		m0->m_len = len;
1606 	} else {
1607 		bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
1608 		m_cljset(m0, sd->cl, FL_BUF_TYPE(sc, sd->tag_idx));
1609 		sd->cl = NULL;	/* consumed */
1610 		m0->m_len = min(len, FL_BUF_SIZE(sc, sd->tag_idx));
1611 	}
1612 	m0->m_pkthdr.len = len;
1613 
1614 	sd++;
1615 	if (__predict_false(++fl->cidx == fl->cap)) {
1616 		sd = fl->sdesc;
1617 		fl->cidx = 0;
1618 	}
1619 
1620 	m = m0;
1621 	len -= m->m_len;
1622 	nbuf = 1;	/* # of fl buffers used */
1623 
1624 	while (len > 0) {
1625 		/* Can't fail, we checked earlier that the stash was full. */
1626 		m->m_next = get_mbuf_from_stash(fl);
1627 		m = m->m_next;
1628 
1629 		bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map,
1630 		    BUS_DMASYNC_POSTREAD);
1631 
1632 		/* m_init for !M_PKTHDR can't fail so don't bother */
1633 		m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0);
1634 		if (len <= MLEN) {
1635 			bcopy(sd->cl, mtod(m, caddr_t), len);
1636 			m->m_len = len;
1637 		} else {
1638 			bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
1639 			m_cljset(m, sd->cl, FL_BUF_TYPE(sc, sd->tag_idx));
1640 			sd->cl = NULL;	/* consumed */
1641 			m->m_len = min(len, FL_BUF_SIZE(sc, sd->tag_idx));
1642 		}
1643 
1644 		sd++;
1645 		if (__predict_false(++fl->cidx == fl->cap)) {
1646 			sd = fl->sdesc;
1647 			fl->cidx = 0;
1648 		}
1649 
1650 		len -= m->m_len;
1651 		nbuf++;
1652 	}
1653 
1654 	(*fl_bufs_used) += nbuf;
1655 
1656 	return (m0);
1657 }
1658 
1659 static int
1660 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1661 {
1662 	struct sge_rxq *rxq = iq_to_rxq(iq);
1663 	struct ifnet *ifp = rxq->ifp;
1664 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1665 #if defined(INET) || defined(INET6)
1666 	struct lro_ctrl *lro = &rxq->lro;
1667 #endif
1668 
1669 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1670 	    rss->opcode));
1671 
1672 	m0->m_pkthdr.len -= fl_pktshift;
1673 	m0->m_len -= fl_pktshift;
1674 	m0->m_data += fl_pktshift;
1675 
1676 	m0->m_pkthdr.rcvif = ifp;
1677 	m0->m_flags |= M_FLOWID;
1678 	m0->m_pkthdr.flowid = rss->hash_val;
1679 
1680 	if (cpl->csum_calc && !cpl->err_vec) {
1681 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1682 		    cpl->l2info & htobe32(F_RXF_IP)) {
1683 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1684 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1685 			rxq->rxcsum++;
1686 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1687 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1688 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1689 			    CSUM_PSEUDO_HDR);
1690 			rxq->rxcsum++;
1691 		}
1692 
1693 		if (__predict_false(cpl->ip_frag))
1694 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1695 		else
1696 			m0->m_pkthdr.csum_data = 0xffff;
1697 	}
1698 
1699 	if (cpl->vlan_ex) {
1700 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1701 		m0->m_flags |= M_VLANTAG;
1702 		rxq->vlan_extraction++;
1703 	}
1704 
1705 #if defined(INET) || defined(INET6)
1706 	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1707 	    iq->flags & IQ_LRO_ENABLED &&
1708 	    tcp_lro_rx(lro, m0, 0) == 0) {
1709 		/* queued for LRO */
1710 	} else
1711 #endif
1712 	ifp->if_input(ifp, m0);
1713 
1714 	return (0);
1715 }
1716 
1717 /*
1718  * Doesn't fail.  Holds on to work requests it can't send right away.
1719  */
1720 void
1721 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1722 {
1723 	struct sge_eq *eq = &wrq->eq;
1724 	int can_reclaim;
1725 	caddr_t dst;
1726 
1727 	TXQ_LOCK_ASSERT_OWNED(wrq);
1728 #ifdef TCP_OFFLOAD
1729 	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1730 	    (eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1731 	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1732 #else
1733 	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1734 	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1735 #endif
1736 
1737 	if (__predict_true(wr != NULL))
1738 		STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1739 
1740 	can_reclaim = reclaimable(eq);
1741 	if (__predict_false(eq->flags & EQ_STALLED)) {
1742 		if (can_reclaim < tx_resume_threshold(eq))
1743 			return;
1744 		eq->flags &= ~EQ_STALLED;
1745 		eq->unstalled++;
1746 	}
1747 	eq->cidx += can_reclaim;
1748 	eq->avail += can_reclaim;
1749 	if (__predict_false(eq->cidx >= eq->cap))
1750 		eq->cidx -= eq->cap;
1751 
1752 	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
1753 		int ndesc;
1754 
1755 		if (__predict_false(wr->wr_len < 0 ||
1756 		    wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) {
1757 
1758 #ifdef INVARIANTS
1759 			panic("%s: work request with length %d", __func__,
1760 			    wr->wr_len);
1761 #endif
1762 #ifdef KDB
1763 			kdb_backtrace();
1764 #endif
1765 			log(LOG_ERR, "%s: %s work request with length %d",
1766 			    device_get_nameunit(sc->dev), __func__, wr->wr_len);
1767 			STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1768 			free_wrqe(wr);
1769 			continue;
1770 		}
1771 
1772 		ndesc = howmany(wr->wr_len, EQ_ESIZE);
1773 		if (eq->avail < ndesc) {
1774 			wrq->no_desc++;
1775 			break;
1776 		}
1777 
1778 		dst = (void *)&eq->desc[eq->pidx];
1779 		copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len);
1780 
1781 		eq->pidx += ndesc;
1782 		eq->avail -= ndesc;
1783 		if (__predict_false(eq->pidx >= eq->cap))
1784 			eq->pidx -= eq->cap;
1785 
1786 		eq->pending += ndesc;
1787 		if (eq->pending >= 8)
1788 			ring_eq_db(sc, eq);
1789 
1790 		wrq->tx_wrs++;
1791 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1792 		free_wrqe(wr);
1793 
1794 		if (eq->avail < 8) {
1795 			can_reclaim = reclaimable(eq);
1796 			eq->cidx += can_reclaim;
1797 			eq->avail += can_reclaim;
1798 			if (__predict_false(eq->cidx >= eq->cap))
1799 				eq->cidx -= eq->cap;
1800 		}
1801 	}
1802 
1803 	if (eq->pending)
1804 		ring_eq_db(sc, eq);
1805 
1806 	if (wr != NULL) {
1807 		eq->flags |= EQ_STALLED;
1808 		if (callout_pending(&eq->tx_callout) == 0)
1809 			callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1810 	}
1811 }
1812 
1813 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1814 #define TXPKTS_PKT_HDR ((\
1815     sizeof(struct ulp_txpkt) + \
1816     sizeof(struct ulptx_idata) + \
1817     sizeof(struct cpl_tx_pkt_core) \
1818     ) / 8)
1819 
1820 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1821 #define TXPKTS_WR_HDR (\
1822     sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
1823     TXPKTS_PKT_HDR)
1824 
1825 /* Header of a tx WR, before SGL of first packet (in flits) */
1826 #define TXPKT_WR_HDR ((\
1827     sizeof(struct fw_eth_tx_pkt_wr) + \
1828     sizeof(struct cpl_tx_pkt_core) \
1829     ) / 8 )
1830 
1831 /* Header of a tx LSO WR, before SGL of first packet (in flits) */
1832 #define TXPKT_LSO_WR_HDR ((\
1833     sizeof(struct fw_eth_tx_pkt_wr) + \
1834     sizeof(struct cpl_tx_pkt_lso_core) + \
1835     sizeof(struct cpl_tx_pkt_core) \
1836     ) / 8 )
1837 
1838 int
1839 t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
1840 {
1841 	struct port_info *pi = (void *)ifp->if_softc;
1842 	struct adapter *sc = pi->adapter;
1843 	struct sge_eq *eq = &txq->eq;
1844 	struct buf_ring *br = txq->br;
1845 	struct mbuf *next;
1846 	int rc, coalescing, can_reclaim;
1847 	struct txpkts txpkts;
1848 	struct sgl sgl;
1849 
1850 	TXQ_LOCK_ASSERT_OWNED(txq);
1851 	KASSERT(m, ("%s: called with nothing to do.", __func__));
1852 	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
1853 	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1854 
1855 	prefetch(&eq->desc[eq->pidx]);
1856 	prefetch(&txq->sdesc[eq->pidx]);
1857 
1858 	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
1859 	coalescing = 0;
1860 
1861 	can_reclaim = reclaimable(eq);
1862 	if (__predict_false(eq->flags & EQ_STALLED)) {
1863 		if (can_reclaim < tx_resume_threshold(eq)) {
1864 			txq->m = m;
1865 			return (0);
1866 		}
1867 		eq->flags &= ~EQ_STALLED;
1868 		eq->unstalled++;
1869 	}
1870 
1871 	if (__predict_false(eq->flags & EQ_DOOMED)) {
1872 		m_freem(m);
1873 		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
1874 			m_freem(m);
1875 		return (ENETDOWN);
1876 	}
1877 
1878 	if (eq->avail < 8 && can_reclaim)
1879 		reclaim_tx_descs(txq, can_reclaim, 32);
1880 
1881 	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
1882 
1883 		if (eq->avail < 8)
1884 			break;
1885 
1886 		next = m->m_nextpkt;
1887 		m->m_nextpkt = NULL;
1888 
1889 		if (next || buf_ring_peek(br))
1890 			coalescing = 1;
1891 
1892 		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
1893 		if (rc != 0) {
1894 			if (rc == ENOMEM) {
1895 
1896 				/* Short of resources, suspend tx */
1897 
1898 				m->m_nextpkt = next;
1899 				break;
1900 			}
1901 
1902 			/*
1903 			 * Unrecoverable error for this packet, throw it away
1904 			 * and move on to the next.  get_pkt_sgl may already
1905 			 * have freed m (it will be NULL in that case and the
1906 			 * m_freem here is still safe).
1907 			 */
1908 
1909 			m_freem(m);
1910 			continue;
1911 		}
1912 
1913 		if (coalescing &&
1914 		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
1915 
1916 			/* Successfully absorbed into txpkts */
1917 
1918 			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
1919 			goto doorbell;
1920 		}
1921 
1922 		/*
1923 		 * We weren't coalescing to begin with, or current frame could
1924 		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1925 		 * given to it can't be coalesced).  Either way there should be
1926 		 * nothing in txpkts.
1927 		 */
1928 		KASSERT(txpkts.npkt == 0,
1929 		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
1930 
1931 		/* We're sending out individual packets now */
1932 		coalescing = 0;
1933 
1934 		if (eq->avail < 8)
1935 			reclaim_tx_descs(txq, 0, 8);
1936 		rc = write_txpkt_wr(pi, txq, m, &sgl);
1937 		if (rc != 0) {
1938 
1939 			/* Short of hardware descriptors, suspend tx */
1940 
1941 			/*
1942 			 * This is an unlikely but expensive failure.  We've
1943 			 * done all the hard work (DMA mappings etc.) and now we
1944 			 * can't send out the packet.  What's worse, we have to
1945 			 * spend even more time freeing up everything in sgl.
1946 			 */
1947 			txq->no_desc++;
1948 			free_pkt_sgl(txq, &sgl);
1949 
1950 			m->m_nextpkt = next;
1951 			break;
1952 		}
1953 
1954 		ETHER_BPF_MTAP(ifp, m);
1955 		if (sgl.nsegs == 0)
1956 			m_freem(m);
1957 doorbell:
1958 		if (eq->pending >= 8)
1959 			ring_eq_db(sc, eq);
1960 
1961 		can_reclaim = reclaimable(eq);
1962 		if (can_reclaim >= 32)
1963 			reclaim_tx_descs(txq, can_reclaim, 64);
1964 	}
1965 
1966 	if (txpkts.npkt > 0)
1967 		write_txpkts_wr(txq, &txpkts);
1968 
1969 	/*
1970 	 * m not NULL means there was an error but we haven't thrown it away.
1971 	 * This can happen when we're short of tx descriptors (no_desc) or maybe
1972 	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
1973 	 * will get things going again.
1974 	 */
1975 	if (m && !(eq->flags & EQ_CRFLUSHED)) {
1976 		struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
1977 
1978 		/*
1979 		 * If EQ_CRFLUSHED is not set then we know we have at least one
1980 		 * available descriptor because any WR that reduces eq->avail to
1981 		 * 0 also sets EQ_CRFLUSHED.
1982 		 */
1983 		KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
1984 
1985 		txsd->desc_used = 1;
1986 		txsd->credits = 0;
1987 		write_eqflush_wr(eq);
1988 	}
1989 	txq->m = m;
1990 
1991 	if (eq->pending)
1992 		ring_eq_db(sc, eq);
1993 
1994 	reclaim_tx_descs(txq, 0, 128);
1995 
1996 	if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
1997 		callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1998 
1999 	return (0);
2000 }
2001 
2002 void
2003 t4_update_fl_bufsize(struct ifnet *ifp)
2004 {
2005 	struct port_info *pi = ifp->if_softc;
2006 	struct adapter *sc = pi->adapter;
2007 	struct sge_rxq *rxq;
2008 #ifdef TCP_OFFLOAD
2009 	struct sge_ofld_rxq *ofld_rxq;
2010 #endif
2011 	struct sge_fl *fl;
2012 	int i, bufsize;
2013 
2014 	bufsize = mtu_to_bufsize(ifp->if_mtu);
2015 	for_each_rxq(pi, i, rxq) {
2016 		fl = &rxq->fl;
2017 
2018 		FL_LOCK(fl);
2019 		set_fl_tag_idx(sc, fl, bufsize);
2020 		FL_UNLOCK(fl);
2021 	}
2022 #ifdef TCP_OFFLOAD
2023 	bufsize = mtu_to_bufsize_toe(pi->adapter, ifp->if_mtu);
2024 	for_each_ofld_rxq(pi, i, ofld_rxq) {
2025 		fl = &ofld_rxq->fl;
2026 
2027 		FL_LOCK(fl);
2028 		set_fl_tag_idx(sc, fl, bufsize);
2029 		FL_UNLOCK(fl);
2030 	}
2031 #endif
2032 }
2033 
2034 int
2035 can_resume_tx(struct sge_eq *eq)
2036 {
2037 	return (reclaimable(eq) >= tx_resume_threshold(eq));
2038 }
2039 
2040 static inline void
2041 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2042     int qsize, int esize)
2043 {
2044 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2045 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2046 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2047 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2048 
2049 	iq->flags = 0;
2050 	iq->adapter = sc;
2051 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2052 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2053 	if (pktc_idx >= 0) {
2054 		iq->intr_params |= F_QINTR_CNT_EN;
2055 		iq->intr_pktc_idx = pktc_idx;
2056 	}
2057 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2058 	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
2059 }
2060 
2061 static inline void
2062 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int bufsize, int pack,
2063     char *name)
2064 {
2065 
2066 	fl->qsize = qsize;
2067 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2068 	if (pack)
2069 		fl->flags |= FL_BUF_PACKING;
2070 	set_fl_tag_idx(sc, fl, bufsize);
2071 }
2072 
2073 static inline void
2074 init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
2075     uint16_t iqid, char *name)
2076 {
2077 	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
2078 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2079 
2080 	eq->flags = eqtype & EQ_TYPEMASK;
2081 	eq->tx_chan = tx_chan;
2082 	eq->iqid = iqid;
2083 	eq->qsize = qsize;
2084 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2085 
2086 	TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
2087 	callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
2088 }
2089 
2090 static int
2091 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2092     bus_dmamap_t *map, bus_addr_t *pa, void **va)
2093 {
2094 	int rc;
2095 
2096 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2097 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2098 	if (rc != 0) {
2099 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2100 		goto done;
2101 	}
2102 
2103 	rc = bus_dmamem_alloc(*tag, va,
2104 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2105 	if (rc != 0) {
2106 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2107 		goto done;
2108 	}
2109 
2110 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2111 	if (rc != 0) {
2112 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2113 		goto done;
2114 	}
2115 done:
2116 	if (rc)
2117 		free_ring(sc, *tag, *map, *pa, *va);
2118 
2119 	return (rc);
2120 }
2121 
2122 static int
2123 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2124     bus_addr_t pa, void *va)
2125 {
2126 	if (pa)
2127 		bus_dmamap_unload(tag, map);
2128 	if (va)
2129 		bus_dmamem_free(tag, va, map);
2130 	if (tag)
2131 		bus_dma_tag_destroy(tag);
2132 
2133 	return (0);
2134 }
2135 
2136 /*
2137  * Allocates the ring for an ingress queue and an optional freelist.  If the
2138  * freelist is specified it will be allocated and then associated with the
2139  * ingress queue.
2140  *
2141  * Returns errno on failure.  Resources allocated up to that point may still be
2142  * allocated.  Caller is responsible for cleanup in case this function fails.
2143  *
2144  * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2145  * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2146  * the abs_id of the ingress queue to which its interrupts should be forwarded.
2147  */
2148 static int
2149 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
2150     int intr_idx, int cong)
2151 {
2152 	int rc, i, cntxt_id;
2153 	size_t len;
2154 	struct fw_iq_cmd c;
2155 	struct adapter *sc = iq->adapter;
2156 	__be32 v = 0;
2157 
2158 	len = iq->qsize * iq->esize;
2159 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2160 	    (void **)&iq->desc);
2161 	if (rc != 0)
2162 		return (rc);
2163 
2164 	bzero(&c, sizeof(c));
2165 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2166 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2167 	    V_FW_IQ_CMD_VFN(0));
2168 
2169 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2170 	    FW_LEN16(c));
2171 
2172 	/* Special handling for firmware event queue */
2173 	if (iq == &sc->sge.fwq)
2174 		v |= F_FW_IQ_CMD_IQASYNCH;
2175 
2176 	if (iq->flags & IQ_INTR) {
2177 		KASSERT(intr_idx < sc->intr_count,
2178 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2179 	} else
2180 		v |= F_FW_IQ_CMD_IQANDST;
2181 	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2182 
2183 	c.type_to_iqandstindex = htobe32(v |
2184 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2185 	    V_FW_IQ_CMD_VIID(pi->viid) |
2186 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2187 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2188 	    F_FW_IQ_CMD_IQGTSMODE |
2189 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2190 	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
2191 	c.iqsize = htobe16(iq->qsize);
2192 	c.iqaddr = htobe64(iq->ba);
2193 	if (cong >= 0)
2194 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2195 
2196 	if (fl) {
2197 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2198 
2199 		for (i = 0; i < FL_BUF_SIZES(sc); i++) {
2200 
2201 			/*
2202 			 * A freelist buffer must be 16 byte aligned as the SGE
2203 			 * uses the low 4 bits of the bus addr to figure out the
2204 			 * buffer size.
2205 			 */
2206 			rc = bus_dma_tag_create(sc->dmat, 16, 0,
2207 			    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2208 			    FL_BUF_SIZE(sc, i), 1, FL_BUF_SIZE(sc, i),
2209 			    BUS_DMA_ALLOCNOW, NULL, NULL, &fl->tag[i]);
2210 			if (rc != 0) {
2211 				device_printf(sc->dev,
2212 				    "failed to create fl DMA tag[%d]: %d\n",
2213 				    i, rc);
2214 				return (rc);
2215 			}
2216 		}
2217 		len = fl->qsize * RX_FL_ESIZE;
2218 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2219 		    &fl->ba, (void **)&fl->desc);
2220 		if (rc)
2221 			return (rc);
2222 
2223 		/* Allocate space for one software descriptor per buffer. */
2224 		fl->cap = (fl->qsize - spg_len / RX_FL_ESIZE) * 8;
2225 		rc = alloc_fl_sdesc(fl);
2226 		if (rc != 0) {
2227 			device_printf(sc->dev,
2228 			    "failed to setup fl software descriptors: %d\n",
2229 			    rc);
2230 			return (rc);
2231 		}
2232 		fl->needed = fl->cap;
2233 		fl->lowat = roundup2(sc->sge.fl_starve_threshold, 8);
2234 
2235 		c.iqns_to_fl0congen |=
2236 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2237 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2238 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2239 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2240 			    0));
2241 		if (cong >= 0) {
2242 			c.iqns_to_fl0congen |=
2243 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2244 				    F_FW_IQ_CMD_FL0CONGCIF |
2245 				    F_FW_IQ_CMD_FL0CONGEN);
2246 		}
2247 		c.fl0dcaen_to_fl0cidxfthresh =
2248 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
2249 			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2250 		c.fl0size = htobe16(fl->qsize);
2251 		c.fl0addr = htobe64(fl->ba);
2252 	}
2253 
2254 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2255 	if (rc != 0) {
2256 		device_printf(sc->dev,
2257 		    "failed to create ingress queue: %d\n", rc);
2258 		return (rc);
2259 	}
2260 
2261 	iq->cdesc = iq->desc;
2262 	iq->cidx = 0;
2263 	iq->gen = 1;
2264 	iq->intr_next = iq->intr_params;
2265 	iq->cntxt_id = be16toh(c.iqid);
2266 	iq->abs_id = be16toh(c.physiqid);
2267 	iq->flags |= IQ_ALLOCATED;
2268 
2269 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2270 	if (cntxt_id >= sc->sge.niq) {
2271 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2272 		    cntxt_id, sc->sge.niq - 1);
2273 	}
2274 	sc->sge.iqmap[cntxt_id] = iq;
2275 
2276 	if (fl) {
2277 		fl->cntxt_id = be16toh(c.fl0id);
2278 		fl->pidx = fl->cidx = 0;
2279 
2280 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2281 		if (cntxt_id >= sc->sge.neq) {
2282 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2283 			    __func__, cntxt_id, sc->sge.neq - 1);
2284 		}
2285 		sc->sge.eqmap[cntxt_id] = (void *)fl;
2286 
2287 		FL_LOCK(fl);
2288 		/* Enough to make sure the SGE doesn't think it's starved */
2289 		refill_fl(sc, fl, fl->lowat);
2290 		FL_UNLOCK(fl);
2291 
2292 		iq->flags |= IQ_HAS_FL;
2293 	}
2294 
2295 	if (is_t5(sc) && cong >= 0) {
2296 		uint32_t param, val;
2297 
2298 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2299 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2300 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2301 		if (cong == 0)
2302 			val = 1 << 19;
2303 		else {
2304 			val = 2 << 19;
2305 			for (i = 0; i < 4; i++) {
2306 				if (cong & (1 << i))
2307 					val |= 1 << (i << 2);
2308 			}
2309 		}
2310 
2311 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2312 		if (rc != 0) {
2313 			/* report error but carry on */
2314 			device_printf(sc->dev,
2315 			    "failed to set congestion manager context for "
2316 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2317 		}
2318 	}
2319 
2320 	/* Enable IQ interrupts */
2321 	atomic_store_rel_int(&iq->state, IQS_IDLE);
2322 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2323 	    V_INGRESSQID(iq->cntxt_id));
2324 
2325 	return (0);
2326 }
2327 
2328 static int
2329 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
2330 {
2331 	int i, rc;
2332 	struct adapter *sc = iq->adapter;
2333 	device_t dev;
2334 
2335 	if (sc == NULL)
2336 		return (0);	/* nothing to do */
2337 
2338 	dev = pi ? pi->dev : sc->dev;
2339 
2340 	if (iq->flags & IQ_ALLOCATED) {
2341 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2342 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2343 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2344 		if (rc != 0) {
2345 			device_printf(dev,
2346 			    "failed to free queue %p: %d\n", iq, rc);
2347 			return (rc);
2348 		}
2349 		iq->flags &= ~IQ_ALLOCATED;
2350 	}
2351 
2352 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2353 
2354 	bzero(iq, sizeof(*iq));
2355 
2356 	if (fl) {
2357 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2358 		    fl->desc);
2359 
2360 		if (fl->sdesc)
2361 			free_fl_sdesc(sc, fl);
2362 
2363 		for (i = 0; i < nitems(fl->mstash); i++) {
2364 			struct mbuf *m = fl->mstash[i];
2365 
2366 			if (m != NULL) {
2367 				m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0);
2368 				m_free(m);
2369 			}
2370 		}
2371 
2372 		if (mtx_initialized(&fl->fl_lock))
2373 			mtx_destroy(&fl->fl_lock);
2374 
2375 		for (i = 0; i < FL_BUF_SIZES(sc); i++) {
2376 			if (fl->tag[i])
2377 				bus_dma_tag_destroy(fl->tag[i]);
2378 		}
2379 
2380 		bzero(fl, sizeof(*fl));
2381 	}
2382 
2383 	return (0);
2384 }
2385 
2386 static int
2387 alloc_fwq(struct adapter *sc)
2388 {
2389 	int rc, intr_idx;
2390 	struct sge_iq *fwq = &sc->sge.fwq;
2391 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2392 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2393 
2394 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
2395 	fwq->flags |= IQ_INTR;	/* always */
2396 	intr_idx = sc->intr_count > 1 ? 1 : 0;
2397 	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
2398 	if (rc != 0) {
2399 		device_printf(sc->dev,
2400 		    "failed to create firmware event queue: %d\n", rc);
2401 		return (rc);
2402 	}
2403 
2404 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2405 	    NULL, "firmware event queue");
2406 	children = SYSCTL_CHILDREN(oid);
2407 
2408 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2409 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2410 	    "absolute id of the queue");
2411 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2412 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2413 	    "SGE context id of the queue");
2414 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2415 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2416 	    "consumer index");
2417 
2418 	return (0);
2419 }
2420 
2421 static int
2422 free_fwq(struct adapter *sc)
2423 {
2424 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2425 }
2426 
2427 static int
2428 alloc_mgmtq(struct adapter *sc)
2429 {
2430 	int rc;
2431 	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2432 	char name[16];
2433 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2434 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2435 
2436 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2437 	    NULL, "management queue");
2438 
2439 	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2440 	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2441 	    sc->sge.fwq.cntxt_id, name);
2442 	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2443 	if (rc != 0) {
2444 		device_printf(sc->dev,
2445 		    "failed to create management queue: %d\n", rc);
2446 		return (rc);
2447 	}
2448 
2449 	return (0);
2450 }
2451 
2452 static int
2453 free_mgmtq(struct adapter *sc)
2454 {
2455 
2456 	return free_wrq(sc, &sc->sge.mgmtq);
2457 }
2458 
2459 static inline int
2460 tnl_cong(struct port_info *pi)
2461 {
2462 
2463 	if (cong_drop == -1)
2464 		return (-1);
2465 	else if (cong_drop == 1)
2466 		return (0);
2467 	else
2468 		return (1 << pi->tx_chan);
2469 }
2470 
2471 static int
2472 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
2473     struct sysctl_oid *oid)
2474 {
2475 	int rc;
2476 	struct sysctl_oid_list *children;
2477 	char name[16];
2478 
2479 	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
2480 	if (rc != 0)
2481 		return (rc);
2482 
2483 	FL_LOCK(&rxq->fl);
2484 	refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8);
2485 	FL_UNLOCK(&rxq->fl);
2486 
2487 #if defined(INET) || defined(INET6)
2488 	rc = tcp_lro_init(&rxq->lro);
2489 	if (rc != 0)
2490 		return (rc);
2491 	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
2492 
2493 	if (pi->ifp->if_capenable & IFCAP_LRO)
2494 		rxq->iq.flags |= IQ_LRO_ENABLED;
2495 #endif
2496 	rxq->ifp = pi->ifp;
2497 
2498 	children = SYSCTL_CHILDREN(oid);
2499 
2500 	snprintf(name, sizeof(name), "%d", idx);
2501 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2502 	    NULL, "rx queue");
2503 	children = SYSCTL_CHILDREN(oid);
2504 
2505 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2506 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2507 	    "absolute id of the queue");
2508 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2509 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2510 	    "SGE context id of the queue");
2511 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2512 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2513 	    "consumer index");
2514 #if defined(INET) || defined(INET6)
2515 	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2516 	    &rxq->lro.lro_queued, 0, NULL);
2517 	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2518 	    &rxq->lro.lro_flushed, 0, NULL);
2519 #endif
2520 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2521 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2522 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
2523 	    CTLFLAG_RD, &rxq->vlan_extraction,
2524 	    "# of times hardware extracted 802.1Q tag");
2525 
2526 	children = SYSCTL_CHILDREN(oid);
2527 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD,
2528 	    NULL, "freelist");
2529 	children = SYSCTL_CHILDREN(oid);
2530 
2531 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2532 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->fl.cntxt_id, 0, sysctl_uint16, "I",
2533 	    "SGE context id of the queue");
2534 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
2535 	    &rxq->fl.cidx, 0, "consumer index");
2536 	if (rxq->fl.flags & FL_BUF_PACKING) {
2537 		SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "rx_offset",
2538 		    CTLFLAG_RD, &rxq->fl.rx_offset, 0, "packing rx offset");
2539 	}
2540 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2541 	    &rxq->fl.pidx, 0, "producer index");
2542 
2543 	return (rc);
2544 }
2545 
2546 static int
2547 free_rxq(struct port_info *pi, struct sge_rxq *rxq)
2548 {
2549 	int rc;
2550 
2551 #if defined(INET) || defined(INET6)
2552 	if (rxq->lro.ifp) {
2553 		tcp_lro_free(&rxq->lro);
2554 		rxq->lro.ifp = NULL;
2555 	}
2556 #endif
2557 
2558 	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
2559 	if (rc == 0)
2560 		bzero(rxq, sizeof(*rxq));
2561 
2562 	return (rc);
2563 }
2564 
2565 #ifdef TCP_OFFLOAD
2566 static int
2567 alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
2568     int intr_idx, int idx, struct sysctl_oid *oid)
2569 {
2570 	int rc;
2571 	struct sysctl_oid_list *children;
2572 	char name[16];
2573 
2574 	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2575 	    1 << pi->tx_chan);
2576 	if (rc != 0)
2577 		return (rc);
2578 
2579 	children = SYSCTL_CHILDREN(oid);
2580 
2581 	snprintf(name, sizeof(name), "%d", idx);
2582 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2583 	    NULL, "rx queue");
2584 	children = SYSCTL_CHILDREN(oid);
2585 
2586 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2587 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
2588 	    "I", "absolute id of the queue");
2589 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2590 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
2591 	    "I", "SGE context id of the queue");
2592 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2593 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
2594 	    "consumer index");
2595 
2596 	children = SYSCTL_CHILDREN(oid);
2597 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD,
2598 	    NULL, "freelist");
2599 	children = SYSCTL_CHILDREN(oid);
2600 
2601 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2602 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->fl.cntxt_id, 0, sysctl_uint16,
2603 	    "I", "SGE context id of the queue");
2604 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
2605 	    &ofld_rxq->fl.cidx, 0, "consumer index");
2606 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2607 	    &ofld_rxq->fl.pidx, 0, "producer index");
2608 
2609 	return (rc);
2610 }
2611 
2612 static int
2613 free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
2614 {
2615 	int rc;
2616 
2617 	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
2618 	if (rc == 0)
2619 		bzero(ofld_rxq, sizeof(*ofld_rxq));
2620 
2621 	return (rc);
2622 }
2623 #endif
2624 
2625 static int
2626 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
2627 {
2628 	int rc, cntxt_id;
2629 	struct fw_eq_ctrl_cmd c;
2630 
2631 	bzero(&c, sizeof(c));
2632 
2633 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2634 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
2635 	    V_FW_EQ_CTRL_CMD_VFN(0));
2636 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
2637 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2638 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
2639 	c.physeqid_pkd = htobe32(0);
2640 	c.fetchszm_to_iqid =
2641 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2642 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
2643 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
2644 	c.dcaen_to_eqsize =
2645 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2646 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2647 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2648 		V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
2649 	c.eqaddr = htobe64(eq->ba);
2650 
2651 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2652 	if (rc != 0) {
2653 		device_printf(sc->dev,
2654 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
2655 		return (rc);
2656 	}
2657 	eq->flags |= EQ_ALLOCATED;
2658 
2659 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
2660 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2661 	if (cntxt_id >= sc->sge.neq)
2662 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2663 		cntxt_id, sc->sge.neq - 1);
2664 	sc->sge.eqmap[cntxt_id] = eq;
2665 
2666 	return (rc);
2667 }
2668 
2669 static int
2670 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2671 {
2672 	int rc, cntxt_id;
2673 	struct fw_eq_eth_cmd c;
2674 
2675 	bzero(&c, sizeof(c));
2676 
2677 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2678 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
2679 	    V_FW_EQ_ETH_CMD_VFN(0));
2680 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
2681 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2682 	c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
2683 	c.fetchszm_to_iqid =
2684 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2685 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
2686 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
2687 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2688 		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2689 		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2690 		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
2691 	c.eqaddr = htobe64(eq->ba);
2692 
2693 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2694 	if (rc != 0) {
2695 		device_printf(pi->dev,
2696 		    "failed to create Ethernet egress queue: %d\n", rc);
2697 		return (rc);
2698 	}
2699 	eq->flags |= EQ_ALLOCATED;
2700 
2701 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
2702 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2703 	if (cntxt_id >= sc->sge.neq)
2704 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2705 		cntxt_id, sc->sge.neq - 1);
2706 	sc->sge.eqmap[cntxt_id] = eq;
2707 
2708 	return (rc);
2709 }
2710 
2711 #ifdef TCP_OFFLOAD
2712 static int
2713 ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2714 {
2715 	int rc, cntxt_id;
2716 	struct fw_eq_ofld_cmd c;
2717 
2718 	bzero(&c, sizeof(c));
2719 
2720 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
2721 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
2722 	    V_FW_EQ_OFLD_CMD_VFN(0));
2723 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
2724 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2725 	c.fetchszm_to_iqid =
2726 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2727 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
2728 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
2729 	c.dcaen_to_eqsize =
2730 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2731 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2732 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2733 		V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
2734 	c.eqaddr = htobe64(eq->ba);
2735 
2736 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2737 	if (rc != 0) {
2738 		device_printf(pi->dev,
2739 		    "failed to create egress queue for TCP offload: %d\n", rc);
2740 		return (rc);
2741 	}
2742 	eq->flags |= EQ_ALLOCATED;
2743 
2744 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
2745 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2746 	if (cntxt_id >= sc->sge.neq)
2747 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2748 		cntxt_id, sc->sge.neq - 1);
2749 	sc->sge.eqmap[cntxt_id] = eq;
2750 
2751 	return (rc);
2752 }
2753 #endif
2754 
2755 static int
2756 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2757 {
2758 	int rc;
2759 	size_t len;
2760 
2761 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
2762 
2763 	len = eq->qsize * EQ_ESIZE;
2764 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
2765 	    &eq->ba, (void **)&eq->desc);
2766 	if (rc)
2767 		return (rc);
2768 
2769 	eq->cap = eq->qsize - spg_len / EQ_ESIZE;
2770 	eq->spg = (void *)&eq->desc[eq->cap];
2771 	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
2772 	eq->pidx = eq->cidx = 0;
2773 	eq->doorbells = sc->doorbells;
2774 
2775 	switch (eq->flags & EQ_TYPEMASK) {
2776 	case EQ_CTRL:
2777 		rc = ctrl_eq_alloc(sc, eq);
2778 		break;
2779 
2780 	case EQ_ETH:
2781 		rc = eth_eq_alloc(sc, pi, eq);
2782 		break;
2783 
2784 #ifdef TCP_OFFLOAD
2785 	case EQ_OFLD:
2786 		rc = ofld_eq_alloc(sc, pi, eq);
2787 		break;
2788 #endif
2789 
2790 	default:
2791 		panic("%s: invalid eq type %d.", __func__,
2792 		    eq->flags & EQ_TYPEMASK);
2793 	}
2794 	if (rc != 0) {
2795 		device_printf(sc->dev,
2796 		    "failed to allocate egress queue(%d): %d",
2797 		    eq->flags & EQ_TYPEMASK, rc);
2798 	}
2799 
2800 	eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
2801 
2802 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
2803 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
2804 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
2805 		uint32_t s_qpp = sc->sge.s_qpp;
2806 		uint32_t mask = (1 << s_qpp) - 1;
2807 		volatile uint8_t *udb;
2808 
2809 		udb = sc->udbs_base + UDBS_DB_OFFSET;
2810 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
2811 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
2812 		if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
2813 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
2814 		else {
2815 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
2816 			eq->udb_qid = 0;
2817 		}
2818 		eq->udb = (volatile void *)udb;
2819 	}
2820 
2821 	return (rc);
2822 }
2823 
2824 static int
2825 free_eq(struct adapter *sc, struct sge_eq *eq)
2826 {
2827 	int rc;
2828 
2829 	if (eq->flags & EQ_ALLOCATED) {
2830 		switch (eq->flags & EQ_TYPEMASK) {
2831 		case EQ_CTRL:
2832 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
2833 			    eq->cntxt_id);
2834 			break;
2835 
2836 		case EQ_ETH:
2837 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
2838 			    eq->cntxt_id);
2839 			break;
2840 
2841 #ifdef TCP_OFFLOAD
2842 		case EQ_OFLD:
2843 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
2844 			    eq->cntxt_id);
2845 			break;
2846 #endif
2847 
2848 		default:
2849 			panic("%s: invalid eq type %d.", __func__,
2850 			    eq->flags & EQ_TYPEMASK);
2851 		}
2852 		if (rc != 0) {
2853 			device_printf(sc->dev,
2854 			    "failed to free egress queue (%d): %d\n",
2855 			    eq->flags & EQ_TYPEMASK, rc);
2856 			return (rc);
2857 		}
2858 		eq->flags &= ~EQ_ALLOCATED;
2859 	}
2860 
2861 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
2862 
2863 	if (mtx_initialized(&eq->eq_lock))
2864 		mtx_destroy(&eq->eq_lock);
2865 
2866 	bzero(eq, sizeof(*eq));
2867 	return (0);
2868 }
2869 
2870 static int
2871 alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
2872     struct sysctl_oid *oid)
2873 {
2874 	int rc;
2875 	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
2876 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2877 
2878 	rc = alloc_eq(sc, pi, &wrq->eq);
2879 	if (rc)
2880 		return (rc);
2881 
2882 	wrq->adapter = sc;
2883 	STAILQ_INIT(&wrq->wr_list);
2884 
2885 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2886 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
2887 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2888 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
2889 	    "consumer index");
2890 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
2891 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
2892 	    "producer index");
2893 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
2894 	    &wrq->tx_wrs, "# of work requests");
2895 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2896 	    &wrq->no_desc, 0,
2897 	    "# of times queue ran out of hardware descriptors");
2898 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
2899 	    &wrq->eq.unstalled, 0, "# of times queue recovered after stall");
2900 
2901 
2902 	return (rc);
2903 }
2904 
2905 static int
2906 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
2907 {
2908 	int rc;
2909 
2910 	rc = free_eq(sc, &wrq->eq);
2911 	if (rc)
2912 		return (rc);
2913 
2914 	bzero(wrq, sizeof(*wrq));
2915 	return (0);
2916 }
2917 
2918 static int
2919 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
2920     struct sysctl_oid *oid)
2921 {
2922 	int rc;
2923 	struct adapter *sc = pi->adapter;
2924 	struct sge_eq *eq = &txq->eq;
2925 	char name[16];
2926 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2927 
2928 	rc = alloc_eq(sc, pi, eq);
2929 	if (rc)
2930 		return (rc);
2931 
2932 	txq->ifp = pi->ifp;
2933 
2934 	txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
2935 	    M_ZERO | M_WAITOK);
2936 	txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
2937 
2938 	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
2939 	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
2940 	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
2941 	if (rc != 0) {
2942 		device_printf(sc->dev,
2943 		    "failed to create tx DMA tag: %d\n", rc);
2944 		return (rc);
2945 	}
2946 
2947 	/*
2948 	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
2949 	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
2950 	 * sized for the worst case.
2951 	 */
2952 	rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
2953 	    M_WAITOK);
2954 	if (rc != 0) {
2955 		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
2956 		return (rc);
2957 	}
2958 
2959 	snprintf(name, sizeof(name), "%d", idx);
2960 	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2961 	    NULL, "tx queue");
2962 	children = SYSCTL_CHILDREN(oid);
2963 
2964 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2965 	    &eq->cntxt_id, 0, "SGE context id of the queue");
2966 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2967 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
2968 	    "consumer index");
2969 	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
2970 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
2971 	    "producer index");
2972 
2973 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
2974 	    &txq->txcsum, "# of times hardware assisted with checksum");
2975 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
2976 	    CTLFLAG_RD, &txq->vlan_insertion,
2977 	    "# of times hardware inserted 802.1Q tag");
2978 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
2979 	    &txq->tso_wrs, "# of TSO work requests");
2980 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
2981 	    &txq->imm_wrs, "# of work requests with immediate data");
2982 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
2983 	    &txq->sgl_wrs, "# of work requests with direct SGL");
2984 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
2985 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
2986 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
2987 	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
2988 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
2989 	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
2990 
2991 	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD,
2992 	    &txq->br->br_drops, "# of drops in the buf_ring for this queue");
2993 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
2994 	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
2995 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2996 	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
2997 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
2998 	    &eq->egr_update, 0, "egress update notifications from the SGE");
2999 	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3000 	    &eq->unstalled, 0, "# of times txq recovered after stall");
3001 
3002 	return (rc);
3003 }
3004 
3005 static int
3006 free_txq(struct port_info *pi, struct sge_txq *txq)
3007 {
3008 	int rc;
3009 	struct adapter *sc = pi->adapter;
3010 	struct sge_eq *eq = &txq->eq;
3011 
3012 	rc = free_eq(sc, eq);
3013 	if (rc)
3014 		return (rc);
3015 
3016 	free(txq->sdesc, M_CXGBE);
3017 
3018 	if (txq->txmaps.maps)
3019 		t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
3020 
3021 	buf_ring_free(txq->br, M_CXGBE);
3022 
3023 	if (txq->tx_tag)
3024 		bus_dma_tag_destroy(txq->tx_tag);
3025 
3026 	bzero(txq, sizeof(*txq));
3027 	return (0);
3028 }
3029 
3030 static void
3031 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3032 {
3033 	bus_addr_t *ba = arg;
3034 
3035 	KASSERT(nseg == 1,
3036 	    ("%s meant for single segment mappings only.", __func__));
3037 
3038 	*ba = error ? 0 : segs->ds_addr;
3039 }
3040 
3041 static inline bool
3042 is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
3043 {
3044 	*ctrl = (void *)((uintptr_t)iq->cdesc +
3045 	    (iq->esize - sizeof(struct rsp_ctrl)));
3046 
3047 	return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
3048 }
3049 
3050 static inline void
3051 iq_next(struct sge_iq *iq)
3052 {
3053 	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
3054 	if (__predict_false(++iq->cidx == iq->qsize - 1)) {
3055 		iq->cidx = 0;
3056 		iq->gen ^= 1;
3057 		iq->cdesc = iq->desc;
3058 	}
3059 }
3060 
3061 #define FL_HW_IDX(x) ((x) >> 3)
3062 static inline void
3063 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3064 {
3065 	int ndesc = fl->pending / 8;
3066 	uint32_t v;
3067 
3068 	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
3069 		ndesc--;	/* hold back one credit */
3070 
3071 	if (ndesc <= 0)
3072 		return;		/* nothing to do */
3073 
3074 	v = F_DBPRIO | V_QID(fl->cntxt_id) | V_PIDX(ndesc);
3075 	if (is_t5(sc))
3076 		v |= F_DBTYPE;
3077 
3078 	wmb();
3079 
3080 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3081 	fl->pending -= ndesc * 8;
3082 }
3083 
3084 /*
3085  * Fill up the freelist by upto nbufs and maybe ring its doorbell.
3086  *
3087  * Returns non-zero to indicate that it should be added to the list of starving
3088  * freelists.
3089  */
3090 static int
3091 refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
3092 {
3093 	__be64 *d = &fl->desc[fl->pidx];
3094 	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
3095 	bus_dma_tag_t tag;
3096 	bus_addr_t pa;
3097 	caddr_t cl;
3098 	int rc;
3099 
3100 	FL_LOCK_ASSERT_OWNED(fl);
3101 #ifdef INVARIANTS
3102 	if (fl->flags & FL_BUF_PACKING)
3103 		KASSERT(sd->tag_idx == 0,
3104 		    ("%s: expected tag 0 but found tag %d at pidx %u instead",
3105 		    __func__, sd->tag_idx, fl->pidx));
3106 #endif
3107 
3108 	if (nbufs > fl->needed)
3109 		nbufs = fl->needed;
3110 
3111 	while (nbufs--) {
3112 
3113 		if (sd->cl != NULL) {
3114 
3115 			KASSERT(*d == sd->ba_hwtag,
3116 			    ("%s: recyling problem at pidx %d",
3117 			    __func__, fl->pidx));
3118 
3119 			if (fl->flags & FL_BUF_PACKING) {
3120 				u_int *refcount = find_buf_refcnt(sd->cl);
3121 
3122 				if (atomic_fetchadd_int(refcount, -1) == 1) {
3123 					*refcount = 1;	/* reinstate */
3124 					d++;
3125 					goto recycled;
3126 				}
3127 				sd->cl = NULL;	/* gave up my reference */
3128 			} else {
3129 				/*
3130 				 * This happens when a frame small enough to fit
3131 				 * entirely in an mbuf was received in cl last
3132 				 * time.  We'd held on to cl and can reuse it
3133 				 * now.  Note that we reuse a cluster of the old
3134 				 * size if fl->tag_idx is no longer the same as
3135 				 * sd->tag_idx.
3136 				 */
3137 				d++;
3138 				goto recycled;
3139 			}
3140 		}
3141 
3142 		if (__predict_false(fl->tag_idx != sd->tag_idx)) {
3143 			bus_dmamap_t map;
3144 			bus_dma_tag_t newtag = fl->tag[fl->tag_idx];
3145 			bus_dma_tag_t oldtag = fl->tag[sd->tag_idx];
3146 
3147 			/*
3148 			 * An MTU change can get us here.  Discard the old map
3149 			 * which was created with the old tag, but only if
3150 			 * we're able to get a new one.
3151 			 */
3152 			rc = bus_dmamap_create(newtag, 0, &map);
3153 			if (rc == 0) {
3154 				bus_dmamap_destroy(oldtag, sd->map);
3155 				sd->map = map;
3156 				sd->tag_idx = fl->tag_idx;
3157 			}
3158 		}
3159 
3160 		tag = fl->tag[sd->tag_idx];
3161 
3162 		cl = uma_zalloc(FL_BUF_ZONE(sc, sd->tag_idx), M_NOWAIT);
3163 		if (cl == NULL)
3164 			break;
3165 		if (fl->flags & FL_BUF_PACKING) {
3166 			*find_buf_refcnt(cl) = 1;
3167 			cl += MSIZE;
3168 		}
3169 
3170 		rc = bus_dmamap_load(tag, sd->map, cl,
3171 		    FL_BUF_SIZE(sc, sd->tag_idx), oneseg_dma_callback, &pa, 0);
3172 		if (rc != 0 || pa == 0) {
3173 			fl->dmamap_failed++;
3174 			if (fl->flags & FL_BUF_PACKING)
3175 				cl -= MSIZE;
3176 			uma_zfree(FL_BUF_ZONE(sc, sd->tag_idx), cl);
3177 			break;
3178 		}
3179 
3180 		sd->cl = cl;
3181 		*d++ = htobe64(pa | FL_BUF_HWTAG(sc, sd->tag_idx));
3182 
3183 #ifdef INVARIANTS
3184 		sd->ba_hwtag = htobe64(pa | FL_BUF_HWTAG(sc, sd->tag_idx));
3185 #endif
3186 
3187 recycled:
3188 		fl->pending++;
3189 		fl->needed--;
3190 		sd++;
3191 		if (++fl->pidx == fl->cap) {
3192 			fl->pidx = 0;
3193 			sd = fl->sdesc;
3194 			d = fl->desc;
3195 		}
3196 	}
3197 
3198 	if (fl->pending >= 8)
3199 		ring_fl_db(sc, fl);
3200 
3201 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3202 }
3203 
3204 /*
3205  * Attempt to refill all starving freelists.
3206  */
3207 static void
3208 refill_sfl(void *arg)
3209 {
3210 	struct adapter *sc = arg;
3211 	struct sge_fl *fl, *fl_temp;
3212 
3213 	mtx_lock(&sc->sfl_lock);
3214 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3215 		FL_LOCK(fl);
3216 		refill_fl(sc, fl, 64);
3217 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3218 			TAILQ_REMOVE(&sc->sfl, fl, link);
3219 			fl->flags &= ~FL_STARVING;
3220 		}
3221 		FL_UNLOCK(fl);
3222 	}
3223 
3224 	if (!TAILQ_EMPTY(&sc->sfl))
3225 		callout_schedule(&sc->sfl_callout, hz / 5);
3226 	mtx_unlock(&sc->sfl_lock);
3227 }
3228 
3229 static int
3230 alloc_fl_sdesc(struct sge_fl *fl)
3231 {
3232 	struct fl_sdesc *sd;
3233 	bus_dma_tag_t tag;
3234 	int i, rc;
3235 
3236 	fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
3237 	    M_ZERO | M_WAITOK);
3238 
3239 	tag = fl->tag[fl->tag_idx];
3240 	sd = fl->sdesc;
3241 	for (i = 0; i < fl->cap; i++, sd++) {
3242 
3243 		sd->tag_idx = fl->tag_idx;
3244 		rc = bus_dmamap_create(tag, 0, &sd->map);
3245 		if (rc != 0)
3246 			goto failed;
3247 	}
3248 
3249 	return (0);
3250 failed:
3251 	while (--i >= 0) {
3252 		sd--;
3253 		bus_dmamap_destroy(tag, sd->map);
3254 	}
3255 	KASSERT(sd == fl->sdesc, ("%s: EDOOFUS", __func__));
3256 
3257 	free(fl->sdesc, M_CXGBE);
3258 	fl->sdesc = NULL;
3259 
3260 	return (rc);
3261 }
3262 
3263 static void
3264 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3265 {
3266 	struct fl_sdesc *sd;
3267 	int i;
3268 
3269 	sd = fl->sdesc;
3270 	for (i = 0; i < fl->cap; i++, sd++) {
3271 
3272 		if (sd->cl) {
3273 			bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
3274 			uma_zfree(FL_BUF_ZONE(sc, sd->tag_idx), sd->cl);
3275 			sd->cl = NULL;
3276 		}
3277 
3278 		bus_dmamap_destroy(fl->tag[sd->tag_idx], sd->map);
3279 	}
3280 
3281 	free(fl->sdesc, M_CXGBE);
3282 	fl->sdesc = NULL;
3283 }
3284 
3285 int
3286 t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
3287     int flags)
3288 {
3289 	struct tx_map *txm;
3290 	int i, rc;
3291 
3292 	txmaps->map_total = txmaps->map_avail = count;
3293 	txmaps->map_cidx = txmaps->map_pidx = 0;
3294 
3295 	txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
3296 	    M_ZERO | flags);
3297 
3298 	txm = txmaps->maps;
3299 	for (i = 0; i < count; i++, txm++) {
3300 		rc = bus_dmamap_create(tx_tag, 0, &txm->map);
3301 		if (rc != 0)
3302 			goto failed;
3303 	}
3304 
3305 	return (0);
3306 failed:
3307 	while (--i >= 0) {
3308 		txm--;
3309 		bus_dmamap_destroy(tx_tag, txm->map);
3310 	}
3311 	KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
3312 
3313 	free(txmaps->maps, M_CXGBE);
3314 	txmaps->maps = NULL;
3315 
3316 	return (rc);
3317 }
3318 
3319 void
3320 t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
3321 {
3322 	struct tx_map *txm;
3323 	int i;
3324 
3325 	txm = txmaps->maps;
3326 	for (i = 0; i < txmaps->map_total; i++, txm++) {
3327 
3328 		if (txm->m) {
3329 			bus_dmamap_unload(tx_tag, txm->map);
3330 			m_freem(txm->m);
3331 			txm->m = NULL;
3332 		}
3333 
3334 		bus_dmamap_destroy(tx_tag, txm->map);
3335 	}
3336 
3337 	free(txmaps->maps, M_CXGBE);
3338 	txmaps->maps = NULL;
3339 }
3340 
3341 /*
3342  * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
3343  * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
3344  * of immediate data.
3345  */
3346 #define IMM_LEN ( \
3347       2 * EQ_ESIZE \
3348     - sizeof(struct fw_eth_tx_pkt_wr) \
3349     - sizeof(struct cpl_tx_pkt_core))
3350 
3351 /*
3352  * Returns non-zero on failure, no need to cleanup anything in that case.
3353  *
3354  * Note 1: We always try to defrag the mbuf if required and return EFBIG only
3355  * if the resulting chain still won't fit in a tx descriptor.
3356  *
3357  * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
3358  * does not have the TCP header in it.
3359  */
3360 static int
3361 get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
3362     int sgl_only)
3363 {
3364 	struct mbuf *m = *fp;
3365 	struct tx_maps *txmaps;
3366 	struct tx_map *txm;
3367 	int rc, defragged = 0, n;
3368 
3369 	TXQ_LOCK_ASSERT_OWNED(txq);
3370 
3371 	if (m->m_pkthdr.tso_segsz)
3372 		sgl_only = 1;	/* Do not allow immediate data with LSO */
3373 
3374 start:	sgl->nsegs = 0;
3375 
3376 	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
3377 		return (0);	/* nsegs = 0 tells caller to use imm. tx */
3378 
3379 	txmaps = &txq->txmaps;
3380 	if (txmaps->map_avail == 0) {
3381 		txq->no_dmamap++;
3382 		return (ENOMEM);
3383 	}
3384 	txm = &txmaps->maps[txmaps->map_pidx];
3385 
3386 	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
3387 		*fp = m_pullup(m, 50);
3388 		m = *fp;
3389 		if (m == NULL)
3390 			return (ENOBUFS);
3391 	}
3392 
3393 	rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
3394 	    &sgl->nsegs, BUS_DMA_NOWAIT);
3395 	if (rc == EFBIG && defragged == 0) {
3396 		m = m_defrag(m, M_NOWAIT);
3397 		if (m == NULL)
3398 			return (EFBIG);
3399 
3400 		defragged = 1;
3401 		*fp = m;
3402 		goto start;
3403 	}
3404 	if (rc != 0)
3405 		return (rc);
3406 
3407 	txm->m = m;
3408 	txmaps->map_avail--;
3409 	if (++txmaps->map_pidx == txmaps->map_total)
3410 		txmaps->map_pidx = 0;
3411 
3412 	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
3413 	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
3414 
3415 	/*
3416 	 * Store the # of flits required to hold this frame's SGL in nflits.  An
3417 	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
3418 	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
3419 	 * then len1 must be set to 0.
3420 	 */
3421 	n = sgl->nsegs - 1;
3422 	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
3423 
3424 	return (0);
3425 }
3426 
3427 
3428 /*
3429  * Releases all the txq resources used up in the specified sgl.
3430  */
3431 static int
3432 free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
3433 {
3434 	struct tx_maps *txmaps;
3435 	struct tx_map *txm;
3436 
3437 	TXQ_LOCK_ASSERT_OWNED(txq);
3438 
3439 	if (sgl->nsegs == 0)
3440 		return (0);	/* didn't use any map */
3441 
3442 	txmaps = &txq->txmaps;
3443 
3444 	/* 1 pkt uses exactly 1 map, back it out */
3445 
3446 	txmaps->map_avail++;
3447 	if (txmaps->map_pidx > 0)
3448 		txmaps->map_pidx--;
3449 	else
3450 		txmaps->map_pidx = txmaps->map_total - 1;
3451 
3452 	txm = &txmaps->maps[txmaps->map_pidx];
3453 	bus_dmamap_unload(txq->tx_tag, txm->map);
3454 	txm->m = NULL;
3455 
3456 	return (0);
3457 }
3458 
3459 static int
3460 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
3461     struct sgl *sgl)
3462 {
3463 	struct sge_eq *eq = &txq->eq;
3464 	struct fw_eth_tx_pkt_wr *wr;
3465 	struct cpl_tx_pkt_core *cpl;
3466 	uint32_t ctrl;	/* used in many unrelated places */
3467 	uint64_t ctrl1;
3468 	int nflits, ndesc, pktlen;
3469 	struct tx_sdesc *txsd;
3470 	caddr_t dst;
3471 
3472 	TXQ_LOCK_ASSERT_OWNED(txq);
3473 
3474 	pktlen = m->m_pkthdr.len;
3475 
3476 	/*
3477 	 * Do we have enough flits to send this frame out?
3478 	 */
3479 	ctrl = sizeof(struct cpl_tx_pkt_core);
3480 	if (m->m_pkthdr.tso_segsz) {
3481 		nflits = TXPKT_LSO_WR_HDR;
3482 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3483 	} else
3484 		nflits = TXPKT_WR_HDR;
3485 	if (sgl->nsegs > 0)
3486 		nflits += sgl->nflits;
3487 	else {
3488 		nflits += howmany(pktlen, 8);
3489 		ctrl += pktlen;
3490 	}
3491 	ndesc = howmany(nflits, 8);
3492 	if (ndesc > eq->avail)
3493 		return (ENOMEM);
3494 
3495 	/* Firmware work request header */
3496 	wr = (void *)&eq->desc[eq->pidx];
3497 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3498 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3499 	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
3500 	if (eq->avail == ndesc) {
3501 		if (!(eq->flags & EQ_CRFLUSHED)) {
3502 			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3503 			eq->flags |= EQ_CRFLUSHED;
3504 		}
3505 		eq->flags |= EQ_STALLED;
3506 	}
3507 
3508 	wr->equiq_to_len16 = htobe32(ctrl);
3509 	wr->r3 = 0;
3510 
3511 	if (m->m_pkthdr.tso_segsz) {
3512 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3513 		struct ether_header *eh;
3514 		void *l3hdr;
3515 #if defined(INET) || defined(INET6)
3516 		struct tcphdr *tcp;
3517 #endif
3518 		uint16_t eh_type;
3519 
3520 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3521 		    F_LSO_LAST_SLICE;
3522 
3523 		eh = mtod(m, struct ether_header *);
3524 		eh_type = ntohs(eh->ether_type);
3525 		if (eh_type == ETHERTYPE_VLAN) {
3526 			struct ether_vlan_header *evh = (void *)eh;
3527 
3528 			ctrl |= V_LSO_ETHHDR_LEN(1);
3529 			l3hdr = evh + 1;
3530 			eh_type = ntohs(evh->evl_proto);
3531 		} else
3532 			l3hdr = eh + 1;
3533 
3534 		switch (eh_type) {
3535 #ifdef INET6
3536 		case ETHERTYPE_IPV6:
3537 		{
3538 			struct ip6_hdr *ip6 = l3hdr;
3539 
3540 			/*
3541 			 * XXX-BZ For now we do not pretend to support
3542 			 * IPv6 extension headers.
3543 			 */
3544 			KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO "
3545 			    "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt));
3546 			tcp = (struct tcphdr *)(ip6 + 1);
3547 			ctrl |= F_LSO_IPV6;
3548 			ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) |
3549 			    V_LSO_TCPHDR_LEN(tcp->th_off);
3550 			break;
3551 		}
3552 #endif
3553 #ifdef INET
3554 		case ETHERTYPE_IP:
3555 		{
3556 			struct ip *ip = l3hdr;
3557 
3558 			tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
3559 			ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
3560 			    V_LSO_TCPHDR_LEN(tcp->th_off);
3561 			break;
3562 		}
3563 #endif
3564 		default:
3565 			panic("%s: CSUM_TSO but no supported IP version "
3566 			    "(0x%04x)", __func__, eh_type);
3567 		}
3568 
3569 		lso->lso_ctrl = htobe32(ctrl);
3570 		lso->ipid_ofst = htobe16(0);
3571 		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
3572 		lso->seqno_offset = htobe32(0);
3573 		lso->len = htobe32(pktlen);
3574 
3575 		cpl = (void *)(lso + 1);
3576 
3577 		txq->tso_wrs++;
3578 	} else
3579 		cpl = (void *)(wr + 1);
3580 
3581 	/* Checksum offload */
3582 	ctrl1 = 0;
3583 	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3584 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3585 	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3586 	    CSUM_TCP_IPV6 | CSUM_TSO)))
3587 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3588 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3589 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3590 		txq->txcsum++;	/* some hardware assistance provided */
3591 
3592 	/* VLAN tag insertion */
3593 	if (m->m_flags & M_VLANTAG) {
3594 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3595 		txq->vlan_insertion++;
3596 	}
3597 
3598 	/* CPL header */
3599 	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3600 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3601 	cpl->pack = 0;
3602 	cpl->len = htobe16(pktlen);
3603 	cpl->ctrl1 = htobe64(ctrl1);
3604 
3605 	/* Software descriptor */
3606 	txsd = &txq->sdesc[eq->pidx];
3607 	txsd->desc_used = ndesc;
3608 
3609 	eq->pending += ndesc;
3610 	eq->avail -= ndesc;
3611 	eq->pidx += ndesc;
3612 	if (eq->pidx >= eq->cap)
3613 		eq->pidx -= eq->cap;
3614 
3615 	/* SGL */
3616 	dst = (void *)(cpl + 1);
3617 	if (sgl->nsegs > 0) {
3618 		txsd->credits = 1;
3619 		txq->sgl_wrs++;
3620 		write_sgl_to_txd(eq, sgl, &dst);
3621 	} else {
3622 		txsd->credits = 0;
3623 		txq->imm_wrs++;
3624 		for (; m; m = m->m_next) {
3625 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3626 #ifdef INVARIANTS
3627 			pktlen -= m->m_len;
3628 #endif
3629 		}
3630 #ifdef INVARIANTS
3631 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3632 #endif
3633 
3634 	}
3635 
3636 	txq->txpkt_wrs++;
3637 	return (0);
3638 }
3639 
3640 /*
3641  * Returns 0 to indicate that m has been accepted into a coalesced tx work
3642  * request.  It has either been folded into txpkts or txpkts was flushed and m
3643  * has started a new coalesced work request (as the first frame in a fresh
3644  * txpkts).
3645  *
3646  * Returns non-zero to indicate a failure - caller is responsible for
3647  * transmitting m, if there was anything in txpkts it has been flushed.
3648  */
3649 static int
3650 add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
3651     struct mbuf *m, struct sgl *sgl)
3652 {
3653 	struct sge_eq *eq = &txq->eq;
3654 	int can_coalesce;
3655 	struct tx_sdesc *txsd;
3656 	int flits;
3657 
3658 	TXQ_LOCK_ASSERT_OWNED(txq);
3659 
3660 	KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
3661 
3662 	if (txpkts->npkt > 0) {
3663 		flits = TXPKTS_PKT_HDR + sgl->nflits;
3664 		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3665 		    txpkts->nflits + flits <= TX_WR_FLITS &&
3666 		    txpkts->nflits + flits <= eq->avail * 8 &&
3667 		    txpkts->plen + m->m_pkthdr.len < 65536;
3668 
3669 		if (can_coalesce) {
3670 			txpkts->npkt++;
3671 			txpkts->nflits += flits;
3672 			txpkts->plen += m->m_pkthdr.len;
3673 
3674 			txsd = &txq->sdesc[eq->pidx];
3675 			txsd->credits++;
3676 
3677 			return (0);
3678 		}
3679 
3680 		/*
3681 		 * Couldn't coalesce m into txpkts.  The first order of business
3682 		 * is to send txpkts on its way.  Then we'll revisit m.
3683 		 */
3684 		write_txpkts_wr(txq, txpkts);
3685 	}
3686 
3687 	/*
3688 	 * Check if we can start a new coalesced tx work request with m as
3689 	 * the first packet in it.
3690 	 */
3691 
3692 	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
3693 
3694 	flits = TXPKTS_WR_HDR + sgl->nflits;
3695 	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3696 	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
3697 
3698 	if (can_coalesce == 0)
3699 		return (EINVAL);
3700 
3701 	/*
3702 	 * Start a fresh coalesced tx WR with m as the first frame in it.
3703 	 */
3704 	txpkts->npkt = 1;
3705 	txpkts->nflits = flits;
3706 	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
3707 	txpkts->plen = m->m_pkthdr.len;
3708 
3709 	txsd = &txq->sdesc[eq->pidx];
3710 	txsd->credits = 1;
3711 
3712 	return (0);
3713 }
3714 
3715 /*
3716  * Note that write_txpkts_wr can never run out of hardware descriptors (but
3717  * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
3718  * coalescing only if sufficient hardware descriptors are available.
3719  */
3720 static void
3721 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
3722 {
3723 	struct sge_eq *eq = &txq->eq;
3724 	struct fw_eth_tx_pkts_wr *wr;
3725 	struct tx_sdesc *txsd;
3726 	uint32_t ctrl;
3727 	int ndesc;
3728 
3729 	TXQ_LOCK_ASSERT_OWNED(txq);
3730 
3731 	ndesc = howmany(txpkts->nflits, 8);
3732 
3733 	wr = (void *)&eq->desc[eq->pidx];
3734 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3735 	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
3736 	if (eq->avail == ndesc) {
3737 		if (!(eq->flags & EQ_CRFLUSHED)) {
3738 			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3739 			eq->flags |= EQ_CRFLUSHED;
3740 		}
3741 		eq->flags |= EQ_STALLED;
3742 	}
3743 	wr->equiq_to_len16 = htobe32(ctrl);
3744 	wr->plen = htobe16(txpkts->plen);
3745 	wr->npkt = txpkts->npkt;
3746 	wr->r3 = wr->type = 0;
3747 
3748 	/* Everything else already written */
3749 
3750 	txsd = &txq->sdesc[eq->pidx];
3751 	txsd->desc_used = ndesc;
3752 
3753 	KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
3754 
3755 	eq->pending += ndesc;
3756 	eq->avail -= ndesc;
3757 	eq->pidx += ndesc;
3758 	if (eq->pidx >= eq->cap)
3759 		eq->pidx -= eq->cap;
3760 
3761 	txq->txpkts_pkts += txpkts->npkt;
3762 	txq->txpkts_wrs++;
3763 	txpkts->npkt = 0;	/* emptied */
3764 }
3765 
3766 static inline void
3767 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
3768     struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
3769 {
3770 	struct ulp_txpkt *ulpmc;
3771 	struct ulptx_idata *ulpsc;
3772 	struct cpl_tx_pkt_core *cpl;
3773 	struct sge_eq *eq = &txq->eq;
3774 	uintptr_t flitp, start, end;
3775 	uint64_t ctrl;
3776 	caddr_t dst;
3777 
3778 	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
3779 
3780 	start = (uintptr_t)eq->desc;
3781 	end = (uintptr_t)eq->spg;
3782 
3783 	/* Checksum offload */
3784 	ctrl = 0;
3785 	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3786 		ctrl |= F_TXPKT_IPCSUM_DIS;
3787 	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3788 	    CSUM_TCP_IPV6 | CSUM_TSO)))
3789 		ctrl |= F_TXPKT_L4CSUM_DIS;
3790 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3791 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3792 		txq->txcsum++;	/* some hardware assistance provided */
3793 
3794 	/* VLAN tag insertion */
3795 	if (m->m_flags & M_VLANTAG) {
3796 		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3797 		txq->vlan_insertion++;
3798 	}
3799 
3800 	/*
3801 	 * The previous packet's SGL must have ended at a 16 byte boundary (this
3802 	 * is required by the firmware/hardware).  It follows that flitp cannot
3803 	 * wrap around between the ULPTX master command and ULPTX subcommand (8
3804 	 * bytes each), and that it can not wrap around in the middle of the
3805 	 * cpl_tx_pkt_core either.
3806 	 */
3807 	flitp = (uintptr_t)txpkts->flitp;
3808 	KASSERT((flitp & 0xf) == 0,
3809 	    ("%s: last SGL did not end at 16 byte boundary: %p",
3810 	    __func__, txpkts->flitp));
3811 
3812 	/* ULP master command */
3813 	ulpmc = (void *)flitp;
3814 	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
3815 	    V_ULP_TXPKT_FID(eq->iqid));
3816 	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
3817 	    sizeof(*cpl) + 8 * sgl->nflits, 16));
3818 
3819 	/* ULP subcommand */
3820 	ulpsc = (void *)(ulpmc + 1);
3821 	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3822 	    F_ULP_TX_SC_MORE);
3823 	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
3824 
3825 	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
3826 	if (flitp == end)
3827 		flitp = start;
3828 
3829 	/* CPL_TX_PKT */
3830 	cpl = (void *)flitp;
3831 	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3832 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3833 	cpl->pack = 0;
3834 	cpl->len = htobe16(m->m_pkthdr.len);
3835 	cpl->ctrl1 = htobe64(ctrl);
3836 
3837 	flitp += sizeof(*cpl);
3838 	if (flitp == end)
3839 		flitp = start;
3840 
3841 	/* SGL for this frame */
3842 	dst = (caddr_t)flitp;
3843 	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
3844 	txpkts->flitp = (void *)dst;
3845 
3846 	KASSERT(((uintptr_t)dst & 0xf) == 0,
3847 	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
3848 }
3849 
3850 /*
3851  * If the SGL ends on an address that is not 16 byte aligned, this function will
3852  * add a 0 filled flit at the end.  It returns 1 in that case.
3853  */
3854 static int
3855 write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
3856 {
3857 	__be64 *flitp, *end;
3858 	struct ulptx_sgl *usgl;
3859 	bus_dma_segment_t *seg;
3860 	int i, padded;
3861 
3862 	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
3863 	    ("%s: bad SGL - nsegs=%d, nflits=%d",
3864 	    __func__, sgl->nsegs, sgl->nflits));
3865 
3866 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
3867 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
3868 
3869 	flitp = (__be64 *)(*to);
3870 	end = flitp + sgl->nflits;
3871 	seg = &sgl->seg[0];
3872 	usgl = (void *)flitp;
3873 
3874 	/*
3875 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
3876 	 * ring, so we're at least 16 bytes away from the status page.  There is
3877 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
3878 	 */
3879 
3880 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
3881 	    V_ULPTX_NSGE(sgl->nsegs));
3882 	usgl->len0 = htobe32(seg->ds_len);
3883 	usgl->addr0 = htobe64(seg->ds_addr);
3884 	seg++;
3885 
3886 	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
3887 
3888 		/* Won't wrap around at all */
3889 
3890 		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
3891 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
3892 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
3893 		}
3894 		if (i & 1)
3895 			usgl->sge[i / 2].len[1] = htobe32(0);
3896 	} else {
3897 
3898 		/* Will wrap somewhere in the rest of the SGL */
3899 
3900 		/* 2 flits already written, write the rest flit by flit */
3901 		flitp = (void *)(usgl + 1);
3902 		for (i = 0; i < sgl->nflits - 2; i++) {
3903 			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
3904 				flitp = (void *)eq->desc;
3905 			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
3906 		}
3907 		end = flitp;
3908 	}
3909 
3910 	if ((uintptr_t)end & 0xf) {
3911 		*(uint64_t *)end = 0;
3912 		end++;
3913 		padded = 1;
3914 	} else
3915 		padded = 0;
3916 
3917 	if ((uintptr_t)end == (uintptr_t)eq->spg)
3918 		*to = (void *)eq->desc;
3919 	else
3920 		*to = (void *)end;
3921 
3922 	return (padded);
3923 }
3924 
3925 static inline void
3926 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
3927 {
3928 	if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) {
3929 		bcopy(from, *to, len);
3930 		(*to) += len;
3931 	} else {
3932 		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
3933 
3934 		bcopy(from, *to, portion);
3935 		from += portion;
3936 		portion = len - portion;	/* remaining */
3937 		bcopy(from, (void *)eq->desc, portion);
3938 		(*to) = (caddr_t)eq->desc + portion;
3939 	}
3940 }
3941 
3942 static inline void
3943 ring_eq_db(struct adapter *sc, struct sge_eq *eq)
3944 {
3945 	u_int db, pending;
3946 
3947 	db = eq->doorbells;
3948 	pending = eq->pending;
3949 	if (pending > 1)
3950 		clrbit(&db, DOORBELL_WCWR);
3951 	eq->pending = 0;
3952 	wmb();
3953 
3954 	switch (ffs(db) - 1) {
3955 	case DOORBELL_UDB:
3956 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
3957 		return;
3958 
3959 	case DOORBELL_WCWR: {
3960 		volatile uint64_t *dst, *src;
3961 		int i;
3962 
3963 		/*
3964 		 * Queues whose 128B doorbell segment fits in the page do not
3965 		 * use relative qid (udb_qid is always 0).  Only queues with
3966 		 * doorbell segments can do WCWR.
3967 		 */
3968 		KASSERT(eq->udb_qid == 0 && pending == 1,
3969 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
3970 		    __func__, eq->doorbells, pending, eq->pidx, eq));
3971 
3972 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
3973 		    UDBS_DB_OFFSET);
3974 		i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
3975 		src = (void *)&eq->desc[i];
3976 		while (src != (void *)&eq->desc[i + 1])
3977 			*dst++ = *src++;
3978 		wmb();
3979 		return;
3980 	}
3981 
3982 	case DOORBELL_UDBWC:
3983 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
3984 		wmb();
3985 		return;
3986 
3987 	case DOORBELL_KDB:
3988 		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
3989 		    V_QID(eq->cntxt_id) | V_PIDX(pending));
3990 		return;
3991 	}
3992 }
3993 
3994 static inline int
3995 reclaimable(struct sge_eq *eq)
3996 {
3997 	unsigned int cidx;
3998 
3999 	cidx = eq->spg->cidx;	/* stable snapshot */
4000 	cidx = be16toh(cidx);
4001 
4002 	if (cidx >= eq->cidx)
4003 		return (cidx - eq->cidx);
4004 	else
4005 		return (cidx + eq->cap - eq->cidx);
4006 }
4007 
4008 /*
4009  * There are "can_reclaim" tx descriptors ready to be reclaimed.  Reclaim as
4010  * many as possible but stop when there are around "n" mbufs to free.
4011  *
4012  * The actual number reclaimed is provided as the return value.
4013  */
4014 static int
4015 reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
4016 {
4017 	struct tx_sdesc *txsd;
4018 	struct tx_maps *txmaps;
4019 	struct tx_map *txm;
4020 	unsigned int reclaimed, maps;
4021 	struct sge_eq *eq = &txq->eq;
4022 
4023 	TXQ_LOCK_ASSERT_OWNED(txq);
4024 
4025 	if (can_reclaim == 0)
4026 		can_reclaim = reclaimable(eq);
4027 
4028 	maps = reclaimed = 0;
4029 	while (can_reclaim && maps < n) {
4030 		int ndesc;
4031 
4032 		txsd = &txq->sdesc[eq->cidx];
4033 		ndesc = txsd->desc_used;
4034 
4035 		/* Firmware doesn't return "partial" credits. */
4036 		KASSERT(can_reclaim >= ndesc,
4037 		    ("%s: unexpected number of credits: %d, %d",
4038 		    __func__, can_reclaim, ndesc));
4039 
4040 		maps += txsd->credits;
4041 
4042 		reclaimed += ndesc;
4043 		can_reclaim -= ndesc;
4044 
4045 		eq->cidx += ndesc;
4046 		if (__predict_false(eq->cidx >= eq->cap))
4047 			eq->cidx -= eq->cap;
4048 	}
4049 
4050 	txmaps = &txq->txmaps;
4051 	txm = &txmaps->maps[txmaps->map_cidx];
4052 	if (maps)
4053 		prefetch(txm->m);
4054 
4055 	eq->avail += reclaimed;
4056 	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
4057 	    ("%s: too many descriptors available", __func__));
4058 
4059 	txmaps->map_avail += maps;
4060 	KASSERT(txmaps->map_avail <= txmaps->map_total,
4061 	    ("%s: too many maps available", __func__));
4062 
4063 	while (maps--) {
4064 		struct tx_map *next;
4065 
4066 		next = txm + 1;
4067 		if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
4068 			next = txmaps->maps;
4069 		prefetch(next->m);
4070 
4071 		bus_dmamap_unload(txq->tx_tag, txm->map);
4072 		m_freem(txm->m);
4073 		txm->m = NULL;
4074 
4075 		txm = next;
4076 		if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
4077 			txmaps->map_cidx = 0;
4078 	}
4079 
4080 	return (reclaimed);
4081 }
4082 
4083 static void
4084 write_eqflush_wr(struct sge_eq *eq)
4085 {
4086 	struct fw_eq_flush_wr *wr;
4087 
4088 	EQ_LOCK_ASSERT_OWNED(eq);
4089 	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
4090 	KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
4091 
4092 	wr = (void *)&eq->desc[eq->pidx];
4093 	bzero(wr, sizeof(*wr));
4094 	wr->opcode = FW_EQ_FLUSH_WR;
4095 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
4096 	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
4097 
4098 	eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
4099 	eq->pending++;
4100 	eq->avail--;
4101 	if (++eq->pidx == eq->cap)
4102 		eq->pidx = 0;
4103 }
4104 
4105 static __be64
4106 get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
4107 {
4108 	int i = (idx / 3) * 2;
4109 
4110 	switch (idx % 3) {
4111 	case 0: {
4112 		__be64 rc;
4113 
4114 		rc = htobe32(sgl[i].ds_len);
4115 		if (i + 1 < nsegs)
4116 			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
4117 
4118 		return (rc);
4119 	}
4120 	case 1:
4121 		return htobe64(sgl[i].ds_addr);
4122 	case 2:
4123 		return htobe64(sgl[i + 1].ds_addr);
4124 	}
4125 
4126 	return (0);
4127 }
4128 
4129 /*
4130  * Find an SGE FL buffer size to use for the given bufsize.  Look for the the
4131  * smallest size that is large enough to hold bufsize or pick the largest size
4132  * if all sizes are less than bufsize.
4133  */
4134 static void
4135 set_fl_tag_idx(struct adapter *sc, struct sge_fl *fl, int bufsize)
4136 {
4137 	int i, largest, best, delta, start;
4138 
4139 	if (fl->flags & FL_BUF_PACKING) {
4140 		fl->tag_idx = 0;	/* first tag is the one for packing */
4141 		return;
4142 	}
4143 
4144 	start = sc->flags & BUF_PACKING_OK ? 1 : 0;
4145 	delta = FL_BUF_SIZE(sc, start) - bufsize;
4146 	if (delta == 0) {
4147 		fl->tag_idx = start;	/* ideal fit, look no further */
4148 		return;
4149 	}
4150 	best = start;
4151 	largest = start;
4152 
4153 	for (i = start + 1; i < FL_BUF_SIZES(sc); i++) {
4154 		int d, fl_buf_size;
4155 
4156 		fl_buf_size = FL_BUF_SIZE(sc, i);
4157 		d = fl_buf_size - bufsize;
4158 
4159 		if (d == 0) {
4160 			fl->tag_idx = i;	/* ideal fit, look no further */
4161 			return;
4162 		}
4163 		if (fl_buf_size > FL_BUF_SIZE(sc, largest))
4164 			largest = i;
4165 		if (d > 0 && (delta < 0 || delta > d)) {
4166 			delta = d;
4167 			best = i;
4168 		}
4169 	}
4170 
4171 	if (delta > 0)
4172 		fl->tag_idx = best;	/* Found a buf bigger than bufsize */
4173 	else
4174 		fl->tag_idx = largest;	/* No buf large enough for bufsize */
4175 }
4176 
4177 static void
4178 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4179 {
4180 	mtx_lock(&sc->sfl_lock);
4181 	FL_LOCK(fl);
4182 	if ((fl->flags & FL_DOOMED) == 0) {
4183 		fl->flags |= FL_STARVING;
4184 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4185 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4186 	}
4187 	FL_UNLOCK(fl);
4188 	mtx_unlock(&sc->sfl_lock);
4189 }
4190 
4191 static int
4192 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4193     struct mbuf *m)
4194 {
4195 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4196 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4197 	struct adapter *sc = iq->adapter;
4198 	struct sge *s = &sc->sge;
4199 	struct sge_eq *eq;
4200 
4201 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4202 	    rss->opcode));
4203 
4204 	eq = s->eqmap[qid - s->eq_start];
4205 	EQ_LOCK(eq);
4206 	KASSERT(eq->flags & EQ_CRFLUSHED,
4207 	    ("%s: unsolicited egress update", __func__));
4208 	eq->flags &= ~EQ_CRFLUSHED;
4209 	eq->egr_update++;
4210 
4211 	if (__predict_false(eq->flags & EQ_DOOMED))
4212 		wakeup_one(eq);
4213 	else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
4214 		taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
4215 	EQ_UNLOCK(eq);
4216 
4217 	return (0);
4218 }
4219 
4220 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4221 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4222     offsetof(struct cpl_fw6_msg, data));
4223 
4224 static int
4225 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4226 {
4227 	struct adapter *sc = iq->adapter;
4228 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4229 
4230 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4231 	    rss->opcode));
4232 
4233 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4234 		const struct rss_header *rss2;
4235 
4236 		rss2 = (const struct rss_header *)&cpl->data[0];
4237 		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
4238 	}
4239 
4240 	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4241 }
4242 
4243 static int
4244 sysctl_uint16(SYSCTL_HANDLER_ARGS)
4245 {
4246 	uint16_t *id = arg1;
4247 	int i = *id;
4248 
4249 	return sysctl_handle_int(oidp, &i, 0, req);
4250 }
4251