1 /*- 2 * Copyright (c) 2011 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: Navdeep Parhar <np@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #include <sys/types.h> 35 #include <sys/eventhandler.h> 36 #include <sys/mbuf.h> 37 #include <sys/socket.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/queue.h> 41 #include <sys/sbuf.h> 42 #include <sys/taskqueue.h> 43 #include <sys/time.h> 44 #include <sys/sglist.h> 45 #include <sys/sysctl.h> 46 #include <sys/smp.h> 47 #include <sys/counter.h> 48 #include <net/bpf.h> 49 #include <net/ethernet.h> 50 #include <net/if.h> 51 #include <net/if_vlan_var.h> 52 #include <netinet/in.h> 53 #include <netinet/ip.h> 54 #include <netinet/ip6.h> 55 #include <netinet/tcp.h> 56 #include <machine/md_var.h> 57 #include <vm/vm.h> 58 #include <vm/pmap.h> 59 #ifdef DEV_NETMAP 60 #include <machine/bus.h> 61 #include <sys/selinfo.h> 62 #include <net/if_var.h> 63 #include <net/netmap.h> 64 #include <dev/netmap/netmap_kern.h> 65 #endif 66 67 #include "common/common.h" 68 #include "common/t4_regs.h" 69 #include "common/t4_regs_values.h" 70 #include "common/t4_msg.h" 71 #include "t4_mp_ring.h" 72 73 #ifdef T4_PKT_TIMESTAMP 74 #define RX_COPY_THRESHOLD (MINCLSIZE - 8) 75 #else 76 #define RX_COPY_THRESHOLD MINCLSIZE 77 #endif 78 79 /* 80 * Ethernet frames are DMA'd at this byte offset into the freelist buffer. 81 * 0-7 are valid values. 82 */ 83 int fl_pktshift = 2; 84 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift); 85 86 /* 87 * Pad ethernet payload up to this boundary. 88 * -1: driver should figure out a good value. 89 * 0: disable padding. 90 * Any power of 2 from 32 to 4096 (both inclusive) is also a valid value. 91 */ 92 int fl_pad = -1; 93 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad); 94 95 /* 96 * Status page length. 97 * -1: driver should figure out a good value. 98 * 64 or 128 are the only other valid values. 99 */ 100 int spg_len = -1; 101 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len); 102 103 /* 104 * Congestion drops. 105 * -1: no congestion feedback (not recommended). 106 * 0: backpressure the channel instead of dropping packets right away. 107 * 1: no backpressure, drop packets for the congested queue immediately. 108 */ 109 static int cong_drop = 0; 110 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop); 111 112 /* 113 * Deliver multiple frames in the same free list buffer if they fit. 114 * -1: let the driver decide whether to enable buffer packing or not. 115 * 0: disable buffer packing. 116 * 1: enable buffer packing. 117 */ 118 static int buffer_packing = -1; 119 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing); 120 121 /* 122 * Start next frame in a packed buffer at this boundary. 123 * -1: driver should figure out a good value. 124 * T4: driver will ignore this and use the same value as fl_pad above. 125 * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value. 126 */ 127 static int fl_pack = -1; 128 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack); 129 130 /* 131 * Allow the driver to create mbuf(s) in a cluster allocated for rx. 132 * 0: never; always allocate mbufs from the zone_mbuf UMA zone. 133 * 1: ok to create mbuf(s) within a cluster if there is room. 134 */ 135 static int allow_mbufs_in_cluster = 1; 136 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster); 137 138 /* 139 * Largest rx cluster size that the driver is allowed to allocate. 140 */ 141 static int largest_rx_cluster = MJUM16BYTES; 142 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster); 143 144 /* 145 * Size of cluster allocation that's most likely to succeed. The driver will 146 * fall back to this size if it fails to allocate clusters larger than this. 147 */ 148 static int safest_rx_cluster = PAGE_SIZE; 149 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster); 150 151 struct txpkts { 152 u_int wr_type; /* type 0 or type 1 */ 153 u_int npkt; /* # of packets in this work request */ 154 u_int plen; /* total payload (sum of all packets) */ 155 u_int len16; /* # of 16B pieces used by this work request */ 156 }; 157 158 /* A packet's SGL. This + m_pkthdr has all info needed for tx */ 159 struct sgl { 160 struct sglist sg; 161 struct sglist_seg seg[TX_SGL_SEGS]; 162 }; 163 164 static int service_iq(struct sge_iq *, int); 165 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t); 166 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *); 167 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int); 168 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *); 169 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t, 170 uint16_t, char *); 171 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, 172 bus_addr_t *, void **); 173 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, 174 void *); 175 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *, 176 int, int); 177 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *); 178 static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *, 179 struct sge_fl *); 180 static int alloc_fwq(struct adapter *); 181 static int free_fwq(struct adapter *); 182 static int alloc_mgmtq(struct adapter *); 183 static int free_mgmtq(struct adapter *); 184 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, 185 struct sysctl_oid *); 186 static int free_rxq(struct vi_info *, struct sge_rxq *); 187 #ifdef TCP_OFFLOAD 188 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int, 189 struct sysctl_oid *); 190 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *); 191 #endif 192 #ifdef DEV_NETMAP 193 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int, 194 struct sysctl_oid *); 195 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *); 196 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int, 197 struct sysctl_oid *); 198 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *); 199 #endif 200 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *); 201 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 202 #ifdef TCP_OFFLOAD 203 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 204 #endif 205 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *); 206 static int free_eq(struct adapter *, struct sge_eq *); 207 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *, 208 struct sysctl_oid *); 209 static int free_wrq(struct adapter *, struct sge_wrq *); 210 static int alloc_txq(struct vi_info *, struct sge_txq *, int, 211 struct sysctl_oid *); 212 static int free_txq(struct vi_info *, struct sge_txq *); 213 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); 214 static inline void ring_fl_db(struct adapter *, struct sge_fl *); 215 static int refill_fl(struct adapter *, struct sge_fl *, int); 216 static void refill_sfl(void *); 217 static int alloc_fl_sdesc(struct sge_fl *); 218 static void free_fl_sdesc(struct adapter *, struct sge_fl *); 219 static void find_best_refill_source(struct adapter *, struct sge_fl *, int); 220 static void find_safe_refill_source(struct adapter *, struct sge_fl *); 221 static void add_fl_to_sfl(struct adapter *, struct sge_fl *); 222 223 static inline void get_pkt_gl(struct mbuf *, struct sglist *); 224 static inline u_int txpkt_len16(u_int, u_int); 225 static inline u_int txpkts0_len16(u_int); 226 static inline u_int txpkts1_len16(void); 227 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *, 228 struct mbuf *, u_int); 229 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int); 230 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int); 231 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *, 232 struct mbuf *, const struct txpkts *, u_int); 233 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int); 234 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); 235 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int); 236 static inline uint16_t read_hw_cidx(struct sge_eq *); 237 static inline u_int reclaimable_tx_desc(struct sge_eq *); 238 static inline u_int total_available_tx_desc(struct sge_eq *); 239 static u_int reclaim_tx_descs(struct sge_txq *, u_int); 240 static void tx_reclaim(void *, int); 241 static __be64 get_flit(struct sglist_seg *, int, int); 242 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, 243 struct mbuf *); 244 static int handle_fw_msg(struct sge_iq *, const struct rss_header *, 245 struct mbuf *); 246 static void wrq_tx_drain(void *, int); 247 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *); 248 249 static int sysctl_uint16(SYSCTL_HANDLER_ARGS); 250 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS); 251 static int sysctl_tc(SYSCTL_HANDLER_ARGS); 252 253 static counter_u64_t extfree_refs; 254 static counter_u64_t extfree_rels; 255 256 /* 257 * Called on MOD_LOAD. Validates and calculates the SGE tunables. 258 */ 259 void 260 t4_sge_modload(void) 261 { 262 263 if (fl_pktshift < 0 || fl_pktshift > 7) { 264 printf("Invalid hw.cxgbe.fl_pktshift value (%d)," 265 " using 2 instead.\n", fl_pktshift); 266 fl_pktshift = 2; 267 } 268 269 if (spg_len != 64 && spg_len != 128) { 270 int len; 271 272 #if defined(__i386__) || defined(__amd64__) 273 len = cpu_clflush_line_size > 64 ? 128 : 64; 274 #else 275 len = 64; 276 #endif 277 if (spg_len != -1) { 278 printf("Invalid hw.cxgbe.spg_len value (%d)," 279 " using %d instead.\n", spg_len, len); 280 } 281 spg_len = len; 282 } 283 284 if (cong_drop < -1 || cong_drop > 1) { 285 printf("Invalid hw.cxgbe.cong_drop value (%d)," 286 " using 0 instead.\n", cong_drop); 287 cong_drop = 0; 288 } 289 290 extfree_refs = counter_u64_alloc(M_WAITOK); 291 extfree_rels = counter_u64_alloc(M_WAITOK); 292 counter_u64_zero(extfree_refs); 293 counter_u64_zero(extfree_rels); 294 } 295 296 void 297 t4_sge_modunload(void) 298 { 299 300 counter_u64_free(extfree_refs); 301 counter_u64_free(extfree_rels); 302 } 303 304 uint64_t 305 t4_sge_extfree_refs(void) 306 { 307 uint64_t refs, rels; 308 309 rels = counter_u64_fetch(extfree_rels); 310 refs = counter_u64_fetch(extfree_refs); 311 312 return (refs - rels); 313 } 314 315 void 316 t4_init_sge_cpl_handlers(struct adapter *sc) 317 { 318 319 t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg); 320 t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg); 321 t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update); 322 t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx); 323 t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl); 324 } 325 326 static inline void 327 setup_pad_and_pack_boundaries(struct adapter *sc) 328 { 329 uint32_t v, m; 330 int pad, pack; 331 332 pad = fl_pad; 333 if (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad)) { 334 /* 335 * If there is any chance that we might use buffer packing and 336 * the chip is a T4, then pick 64 as the pad/pack boundary. Set 337 * it to 32 in all other cases. 338 */ 339 pad = is_t4(sc) && buffer_packing ? 64 : 32; 340 341 /* 342 * For fl_pad = 0 we'll still write a reasonable value to the 343 * register but all the freelists will opt out of padding. 344 * We'll complain here only if the user tried to set it to a 345 * value greater than 0 that was invalid. 346 */ 347 if (fl_pad > 0) { 348 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value" 349 " (%d), using %d instead.\n", fl_pad, pad); 350 } 351 } 352 m = V_INGPADBOUNDARY(M_INGPADBOUNDARY); 353 v = V_INGPADBOUNDARY(ilog2(pad) - 5); 354 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 355 356 if (is_t4(sc)) { 357 if (fl_pack != -1 && fl_pack != pad) { 358 /* Complain but carry on. */ 359 device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored," 360 " using %d instead.\n", fl_pack, pad); 361 } 362 return; 363 } 364 365 pack = fl_pack; 366 if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 || 367 !powerof2(fl_pack)) { 368 pack = max(sc->params.pci.mps, CACHE_LINE_SIZE); 369 MPASS(powerof2(pack)); 370 if (pack < 16) 371 pack = 16; 372 if (pack == 32) 373 pack = 64; 374 if (pack > 4096) 375 pack = 4096; 376 if (fl_pack != -1) { 377 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value" 378 " (%d), using %d instead.\n", fl_pack, pack); 379 } 380 } 381 m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY); 382 if (pack == 16) 383 v = V_INGPACKBOUNDARY(0); 384 else 385 v = V_INGPACKBOUNDARY(ilog2(pack) - 5); 386 387 MPASS(!is_t4(sc)); /* T4 doesn't have SGE_CONTROL2 */ 388 t4_set_reg_field(sc, A_SGE_CONTROL2, m, v); 389 } 390 391 /* 392 * adap->params.vpd.cclk must be set up before this is called. 393 */ 394 void 395 t4_tweak_chip_settings(struct adapter *sc) 396 { 397 int i; 398 uint32_t v, m; 399 int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; 400 int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk; 401 int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ 402 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 403 static int sge_flbuf_sizes[] = { 404 MCLBYTES, 405 #if MJUMPAGESIZE != MCLBYTES 406 MJUMPAGESIZE, 407 MJUMPAGESIZE - CL_METADATA_SIZE, 408 MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE, 409 #endif 410 MJUM9BYTES, 411 MJUM16BYTES, 412 MCLBYTES - MSIZE - CL_METADATA_SIZE, 413 MJUM9BYTES - CL_METADATA_SIZE, 414 MJUM16BYTES - CL_METADATA_SIZE, 415 }; 416 417 KASSERT(sc->flags & MASTER_PF, 418 ("%s: trying to change chip settings when not master.", __func__)); 419 420 m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE; 421 v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | 422 V_EGRSTATUSPAGESIZE(spg_len == 128); 423 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 424 425 setup_pad_and_pack_boundaries(sc); 426 427 v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | 428 V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | 429 V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | 430 V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | 431 V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | 432 V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | 433 V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | 434 V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); 435 t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v); 436 437 KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES, 438 ("%s: hw buffer size table too big", __func__)); 439 for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) { 440 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i), 441 sge_flbuf_sizes[i]); 442 } 443 444 v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) | 445 V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]); 446 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v); 447 448 KASSERT(intr_timer[0] <= timer_max, 449 ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0], 450 timer_max)); 451 for (i = 1; i < nitems(intr_timer); i++) { 452 KASSERT(intr_timer[i] >= intr_timer[i - 1], 453 ("%s: timers not listed in increasing order (%d)", 454 __func__, i)); 455 456 while (intr_timer[i] > timer_max) { 457 if (i == nitems(intr_timer) - 1) { 458 intr_timer[i] = timer_max; 459 break; 460 } 461 intr_timer[i] += intr_timer[i - 1]; 462 intr_timer[i] /= 2; 463 } 464 } 465 466 v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) | 467 V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])); 468 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v); 469 v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) | 470 V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])); 471 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v); 472 v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) | 473 V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])); 474 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v); 475 476 /* 4K, 16K, 64K, 256K DDP "page sizes" */ 477 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 478 t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v); 479 480 m = v = F_TDDPTAGTCB; 481 t4_set_reg_field(sc, A_ULP_RX_CTL, m, v); 482 483 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 484 F_RESETDDPOFFSET; 485 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 486 t4_set_reg_field(sc, A_TP_PARA_REG5, m, v); 487 } 488 489 /* 490 * SGE wants the buffer to be at least 64B and then a multiple of 16. If 491 * padding is is use the buffer's start and end need to be aligned to the pad 492 * boundary as well. We'll just make sure that the size is a multiple of the 493 * boundary here, it is up to the buffer allocation code to make sure the start 494 * of the buffer is aligned as well. 495 */ 496 static inline int 497 hwsz_ok(struct adapter *sc, int hwsz) 498 { 499 int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1; 500 501 return (hwsz >= 64 && (hwsz & mask) == 0); 502 } 503 504 /* 505 * XXX: driver really should be able to deal with unexpected settings. 506 */ 507 int 508 t4_read_chip_settings(struct adapter *sc) 509 { 510 struct sge *s = &sc->sge; 511 struct sge_params *sp = &sc->params.sge; 512 int i, j, n, rc = 0; 513 uint32_t m, v, r; 514 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 515 static int sw_buf_sizes[] = { /* Sorted by size */ 516 MCLBYTES, 517 #if MJUMPAGESIZE != MCLBYTES 518 MJUMPAGESIZE, 519 #endif 520 MJUM9BYTES, 521 MJUM16BYTES 522 }; 523 struct sw_zone_info *swz, *safe_swz; 524 struct hw_buf_info *hwb; 525 526 t4_init_sge_params(sc); 527 528 m = F_RXPKTCPLMODE; 529 v = F_RXPKTCPLMODE; 530 r = t4_read_reg(sc, A_SGE_CONTROL); 531 if ((r & m) != v) { 532 device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r); 533 rc = EINVAL; 534 } 535 536 /* 537 * If this changes then every single use of PAGE_SHIFT in the driver 538 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift. 539 */ 540 if (sp->page_shift != PAGE_SHIFT) { 541 device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r); 542 rc = EINVAL; 543 } 544 545 /* Filter out unusable hw buffer sizes entirely (mark with -2). */ 546 hwb = &s->hw_buf_info[0]; 547 for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) { 548 r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i)); 549 hwb->size = r; 550 hwb->zidx = hwsz_ok(sc, r) ? -1 : -2; 551 hwb->next = -1; 552 } 553 554 /* 555 * Create a sorted list in decreasing order of hw buffer sizes (and so 556 * increasing order of spare area) for each software zone. 557 * 558 * If padding is enabled then the start and end of the buffer must align 559 * to the pad boundary; if packing is enabled then they must align with 560 * the pack boundary as well. Allocations from the cluster zones are 561 * aligned to min(size, 4K), so the buffer starts at that alignment and 562 * ends at hwb->size alignment. If mbuf inlining is allowed the 563 * starting alignment will be reduced to MSIZE and the driver will 564 * exercise appropriate caution when deciding on the best buffer layout 565 * to use. 566 */ 567 n = 0; /* no usable buffer size to begin with */ 568 swz = &s->sw_zone_info[0]; 569 safe_swz = NULL; 570 for (i = 0; i < SW_ZONE_SIZES; i++, swz++) { 571 int8_t head = -1, tail = -1; 572 573 swz->size = sw_buf_sizes[i]; 574 swz->zone = m_getzone(swz->size); 575 swz->type = m_gettype(swz->size); 576 577 if (swz->size < PAGE_SIZE) { 578 MPASS(powerof2(swz->size)); 579 if (fl_pad && (swz->size % sp->pad_boundary != 0)) 580 continue; 581 } 582 583 if (swz->size == safest_rx_cluster) 584 safe_swz = swz; 585 586 hwb = &s->hw_buf_info[0]; 587 for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) { 588 if (hwb->zidx != -1 || hwb->size > swz->size) 589 continue; 590 #ifdef INVARIANTS 591 if (fl_pad) 592 MPASS(hwb->size % sp->pad_boundary == 0); 593 #endif 594 hwb->zidx = i; 595 if (head == -1) 596 head = tail = j; 597 else if (hwb->size < s->hw_buf_info[tail].size) { 598 s->hw_buf_info[tail].next = j; 599 tail = j; 600 } else { 601 int8_t *cur; 602 struct hw_buf_info *t; 603 604 for (cur = &head; *cur != -1; cur = &t->next) { 605 t = &s->hw_buf_info[*cur]; 606 if (hwb->size == t->size) { 607 hwb->zidx = -2; 608 break; 609 } 610 if (hwb->size > t->size) { 611 hwb->next = *cur; 612 *cur = j; 613 break; 614 } 615 } 616 } 617 } 618 swz->head_hwidx = head; 619 swz->tail_hwidx = tail; 620 621 if (tail != -1) { 622 n++; 623 if (swz->size - s->hw_buf_info[tail].size >= 624 CL_METADATA_SIZE) 625 sc->flags |= BUF_PACKING_OK; 626 } 627 } 628 if (n == 0) { 629 device_printf(sc->dev, "no usable SGE FL buffer size.\n"); 630 rc = EINVAL; 631 } 632 633 s->safe_hwidx1 = -1; 634 s->safe_hwidx2 = -1; 635 if (safe_swz != NULL) { 636 s->safe_hwidx1 = safe_swz->head_hwidx; 637 for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) { 638 int spare; 639 640 hwb = &s->hw_buf_info[i]; 641 #ifdef INVARIANTS 642 if (fl_pad) 643 MPASS(hwb->size % sp->pad_boundary == 0); 644 #endif 645 spare = safe_swz->size - hwb->size; 646 if (spare >= CL_METADATA_SIZE) { 647 s->safe_hwidx2 = i; 648 break; 649 } 650 } 651 } 652 653 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 654 r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ); 655 if (r != v) { 656 device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r); 657 rc = EINVAL; 658 } 659 660 m = v = F_TDDPTAGTCB; 661 r = t4_read_reg(sc, A_ULP_RX_CTL); 662 if ((r & m) != v) { 663 device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r); 664 rc = EINVAL; 665 } 666 667 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 668 F_RESETDDPOFFSET; 669 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 670 r = t4_read_reg(sc, A_TP_PARA_REG5); 671 if ((r & m) != v) { 672 device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r); 673 rc = EINVAL; 674 } 675 676 t4_init_tp_params(sc); 677 678 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 679 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 680 681 return (rc); 682 } 683 684 int 685 t4_create_dma_tag(struct adapter *sc) 686 { 687 int rc; 688 689 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, 690 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, 691 BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, 692 NULL, &sc->dmat); 693 if (rc != 0) { 694 device_printf(sc->dev, 695 "failed to create main DMA tag: %d\n", rc); 696 } 697 698 return (rc); 699 } 700 701 void 702 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 703 struct sysctl_oid_list *children) 704 { 705 struct sge_params *sp = &sc->params.sge; 706 707 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes", 708 CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A", 709 "freelist buffer sizes"); 710 711 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD, 712 NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)"); 713 714 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD, 715 NULL, sp->pad_boundary, "payload pad boundary (bytes)"); 716 717 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD, 718 NULL, sp->spg_len, "status page size (bytes)"); 719 720 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD, 721 NULL, cong_drop, "congestion drop setting"); 722 723 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD, 724 NULL, sp->pack_boundary, "payload pack boundary (bytes)"); 725 } 726 727 int 728 t4_destroy_dma_tag(struct adapter *sc) 729 { 730 if (sc->dmat) 731 bus_dma_tag_destroy(sc->dmat); 732 733 return (0); 734 } 735 736 /* 737 * Allocate and initialize the firmware event queue and the management queue. 738 * 739 * Returns errno on failure. Resources allocated up to that point may still be 740 * allocated. Caller is responsible for cleanup in case this function fails. 741 */ 742 int 743 t4_setup_adapter_queues(struct adapter *sc) 744 { 745 int rc; 746 747 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 748 749 sysctl_ctx_init(&sc->ctx); 750 sc->flags |= ADAP_SYSCTL_CTX; 751 752 /* 753 * Firmware event queue 754 */ 755 rc = alloc_fwq(sc); 756 if (rc != 0) 757 return (rc); 758 759 /* 760 * Management queue. This is just a control queue that uses the fwq as 761 * its associated iq. 762 */ 763 rc = alloc_mgmtq(sc); 764 765 return (rc); 766 } 767 768 /* 769 * Idempotent 770 */ 771 int 772 t4_teardown_adapter_queues(struct adapter *sc) 773 { 774 775 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 776 777 /* Do this before freeing the queue */ 778 if (sc->flags & ADAP_SYSCTL_CTX) { 779 sysctl_ctx_free(&sc->ctx); 780 sc->flags &= ~ADAP_SYSCTL_CTX; 781 } 782 783 free_mgmtq(sc); 784 free_fwq(sc); 785 786 return (0); 787 } 788 789 static inline int 790 first_vector(struct vi_info *vi) 791 { 792 struct adapter *sc = vi->pi->adapter; 793 794 if (sc->intr_count == 1) 795 return (0); 796 797 return (vi->first_intr); 798 } 799 800 /* 801 * Given an arbitrary "index," come up with an iq that can be used by other 802 * queues (of this VI) for interrupt forwarding, SGE egress updates, etc. 803 * The iq returned is guaranteed to be something that takes direct interrupts. 804 */ 805 static struct sge_iq * 806 vi_intr_iq(struct vi_info *vi, int idx) 807 { 808 struct adapter *sc = vi->pi->adapter; 809 struct sge *s = &sc->sge; 810 struct sge_iq *iq = NULL; 811 int nintr, i; 812 813 if (sc->intr_count == 1) 814 return (&sc->sge.fwq); 815 816 KASSERT(!(vi->flags & VI_NETMAP), 817 ("%s: called on netmap VI", __func__)); 818 nintr = vi->nintr; 819 KASSERT(nintr != 0, 820 ("%s: vi %p has no exclusive interrupts, total interrupts = %d", 821 __func__, vi, sc->intr_count)); 822 i = idx % nintr; 823 824 if (vi->flags & INTR_RXQ) { 825 if (i < vi->nrxq) { 826 iq = &s->rxq[vi->first_rxq + i].iq; 827 goto done; 828 } 829 i -= vi->nrxq; 830 } 831 #ifdef TCP_OFFLOAD 832 if (vi->flags & INTR_OFLD_RXQ) { 833 if (i < vi->nofldrxq) { 834 iq = &s->ofld_rxq[vi->first_ofld_rxq + i].iq; 835 goto done; 836 } 837 i -= vi->nofldrxq; 838 } 839 #endif 840 panic("%s: vi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__, 841 vi, vi->flags & INTR_ALL, idx, nintr); 842 done: 843 MPASS(iq != NULL); 844 KASSERT(iq->flags & IQ_INTR, 845 ("%s: iq %p (vi %p, intr_flags 0x%lx, idx %d)", __func__, iq, vi, 846 vi->flags & INTR_ALL, idx)); 847 return (iq); 848 } 849 850 /* Maximum payload that can be delivered with a single iq descriptor */ 851 static inline int 852 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe) 853 { 854 int payload; 855 856 #ifdef TCP_OFFLOAD 857 if (toe) { 858 payload = sc->tt.rx_coalesce ? 859 G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu; 860 } else { 861 #endif 862 /* large enough even when hw VLAN extraction is disabled */ 863 payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN + 864 ETHER_VLAN_ENCAP_LEN + mtu; 865 #ifdef TCP_OFFLOAD 866 } 867 #endif 868 869 return (payload); 870 } 871 872 int 873 t4_setup_vi_queues(struct vi_info *vi) 874 { 875 int rc = 0, i, j, intr_idx, iqid; 876 struct sge_rxq *rxq; 877 struct sge_txq *txq; 878 struct sge_wrq *ctrlq; 879 #ifdef TCP_OFFLOAD 880 struct sge_ofld_rxq *ofld_rxq; 881 struct sge_wrq *ofld_txq; 882 #endif 883 #ifdef DEV_NETMAP 884 struct sge_nm_rxq *nm_rxq; 885 struct sge_nm_txq *nm_txq; 886 #endif 887 char name[16]; 888 struct port_info *pi = vi->pi; 889 struct adapter *sc = pi->adapter; 890 struct ifnet *ifp = vi->ifp; 891 struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev); 892 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 893 int maxp, mtu = ifp->if_mtu; 894 895 /* Interrupt vector to start from (when using multiple vectors) */ 896 intr_idx = first_vector(vi); 897 898 #ifdef DEV_NETMAP 899 if (vi->flags & VI_NETMAP) { 900 /* 901 * We don't have buffers to back the netmap rx queues 902 * right now so we create the queues in a way that 903 * doesn't set off any congestion signal in the chip. 904 */ 905 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", 906 CTLFLAG_RD, NULL, "rx queues"); 907 for_each_nm_rxq(vi, i, nm_rxq) { 908 rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid); 909 if (rc != 0) 910 goto done; 911 intr_idx++; 912 } 913 914 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", 915 CTLFLAG_RD, NULL, "tx queues"); 916 for_each_nm_txq(vi, i, nm_txq) { 917 iqid = vi->first_rxq + (i % vi->nrxq); 918 rc = alloc_nm_txq(vi, nm_txq, iqid, i, oid); 919 if (rc != 0) 920 goto done; 921 } 922 goto done; 923 } 924 #endif 925 926 /* 927 * First pass over all NIC and TOE rx queues: 928 * a) initialize iq and fl 929 * b) allocate queue iff it will take direct interrupts. 930 */ 931 maxp = mtu_to_max_payload(sc, mtu, 0); 932 if (vi->flags & INTR_RXQ) { 933 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", 934 CTLFLAG_RD, NULL, "rx queues"); 935 } 936 for_each_rxq(vi, i, rxq) { 937 938 init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq); 939 940 snprintf(name, sizeof(name), "%s rxq%d-fl", 941 device_get_nameunit(vi->dev), i); 942 init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name); 943 944 if (vi->flags & INTR_RXQ) { 945 rxq->iq.flags |= IQ_INTR; 946 rc = alloc_rxq(vi, rxq, intr_idx, i, oid); 947 if (rc != 0) 948 goto done; 949 intr_idx++; 950 } 951 } 952 #ifdef TCP_OFFLOAD 953 maxp = mtu_to_max_payload(sc, mtu, 1); 954 if (vi->flags & INTR_OFLD_RXQ) { 955 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq", 956 CTLFLAG_RD, NULL, 957 "rx queues for offloaded TCP connections"); 958 } 959 for_each_ofld_rxq(vi, i, ofld_rxq) { 960 961 init_iq(&ofld_rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, 962 vi->qsize_rxq); 963 964 snprintf(name, sizeof(name), "%s ofld_rxq%d-fl", 965 device_get_nameunit(vi->dev), i); 966 init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name); 967 968 if (vi->flags & INTR_OFLD_RXQ) { 969 ofld_rxq->iq.flags |= IQ_INTR; 970 rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid); 971 if (rc != 0) 972 goto done; 973 intr_idx++; 974 } 975 } 976 #endif 977 978 /* 979 * Second pass over all NIC and TOE rx queues. The queues forwarding 980 * their interrupts are allocated now. 981 */ 982 j = 0; 983 if (!(vi->flags & INTR_RXQ)) { 984 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", 985 CTLFLAG_RD, NULL, "rx queues"); 986 for_each_rxq(vi, i, rxq) { 987 MPASS(!(rxq->iq.flags & IQ_INTR)); 988 989 intr_idx = vi_intr_iq(vi, j)->abs_id; 990 991 rc = alloc_rxq(vi, rxq, intr_idx, i, oid); 992 if (rc != 0) 993 goto done; 994 j++; 995 } 996 } 997 #ifdef TCP_OFFLOAD 998 if (vi->nofldrxq != 0 && !(vi->flags & INTR_OFLD_RXQ)) { 999 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq", 1000 CTLFLAG_RD, NULL, 1001 "rx queues for offloaded TCP connections"); 1002 for_each_ofld_rxq(vi, i, ofld_rxq) { 1003 MPASS(!(ofld_rxq->iq.flags & IQ_INTR)); 1004 1005 intr_idx = vi_intr_iq(vi, j)->abs_id; 1006 1007 rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid); 1008 if (rc != 0) 1009 goto done; 1010 j++; 1011 } 1012 } 1013 #endif 1014 1015 /* 1016 * Now the tx queues. Only one pass needed. 1017 */ 1018 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD, 1019 NULL, "tx queues"); 1020 j = 0; 1021 for_each_txq(vi, i, txq) { 1022 iqid = vi_intr_iq(vi, j)->cntxt_id; 1023 snprintf(name, sizeof(name), "%s txq%d", 1024 device_get_nameunit(vi->dev), i); 1025 init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, iqid, 1026 name); 1027 1028 rc = alloc_txq(vi, txq, i, oid); 1029 if (rc != 0) 1030 goto done; 1031 j++; 1032 } 1033 #ifdef TCP_OFFLOAD 1034 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq", 1035 CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections"); 1036 for_each_ofld_txq(vi, i, ofld_txq) { 1037 struct sysctl_oid *oid2; 1038 1039 iqid = vi_intr_iq(vi, j)->cntxt_id; 1040 snprintf(name, sizeof(name), "%s ofld_txq%d", 1041 device_get_nameunit(vi->dev), i); 1042 init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan, 1043 iqid, name); 1044 1045 snprintf(name, sizeof(name), "%d", i); 1046 oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1047 name, CTLFLAG_RD, NULL, "offload tx queue"); 1048 1049 rc = alloc_wrq(sc, vi, ofld_txq, oid2); 1050 if (rc != 0) 1051 goto done; 1052 j++; 1053 } 1054 #endif 1055 1056 /* 1057 * Finally, the control queue. 1058 */ 1059 if (!IS_MAIN_VI(vi)) 1060 goto done; 1061 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD, 1062 NULL, "ctrl queue"); 1063 ctrlq = &sc->sge.ctrlq[pi->port_id]; 1064 iqid = vi_intr_iq(vi, 0)->cntxt_id; 1065 snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev)); 1066 init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, 1067 name); 1068 rc = alloc_wrq(sc, vi, ctrlq, oid); 1069 1070 done: 1071 if (rc) 1072 t4_teardown_vi_queues(vi); 1073 1074 return (rc); 1075 } 1076 1077 /* 1078 * Idempotent 1079 */ 1080 int 1081 t4_teardown_vi_queues(struct vi_info *vi) 1082 { 1083 int i; 1084 struct port_info *pi = vi->pi; 1085 struct adapter *sc = pi->adapter; 1086 struct sge_rxq *rxq; 1087 struct sge_txq *txq; 1088 #ifdef TCP_OFFLOAD 1089 struct sge_ofld_rxq *ofld_rxq; 1090 struct sge_wrq *ofld_txq; 1091 #endif 1092 #ifdef DEV_NETMAP 1093 struct sge_nm_rxq *nm_rxq; 1094 struct sge_nm_txq *nm_txq; 1095 #endif 1096 1097 /* Do this before freeing the queues */ 1098 if (vi->flags & VI_SYSCTL_CTX) { 1099 sysctl_ctx_free(&vi->ctx); 1100 vi->flags &= ~VI_SYSCTL_CTX; 1101 } 1102 1103 #ifdef DEV_NETMAP 1104 if (vi->flags & VI_NETMAP) { 1105 for_each_nm_txq(vi, i, nm_txq) { 1106 free_nm_txq(vi, nm_txq); 1107 } 1108 1109 for_each_nm_rxq(vi, i, nm_rxq) { 1110 free_nm_rxq(vi, nm_rxq); 1111 } 1112 return (0); 1113 } 1114 #endif 1115 1116 /* 1117 * Take down all the tx queues first, as they reference the rx queues 1118 * (for egress updates, etc.). 1119 */ 1120 1121 if (IS_MAIN_VI(vi)) 1122 free_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 1123 1124 for_each_txq(vi, i, txq) { 1125 free_txq(vi, txq); 1126 } 1127 #ifdef TCP_OFFLOAD 1128 for_each_ofld_txq(vi, i, ofld_txq) { 1129 free_wrq(sc, ofld_txq); 1130 } 1131 #endif 1132 1133 /* 1134 * Then take down the rx queues that forward their interrupts, as they 1135 * reference other rx queues. 1136 */ 1137 1138 for_each_rxq(vi, i, rxq) { 1139 if ((rxq->iq.flags & IQ_INTR) == 0) 1140 free_rxq(vi, rxq); 1141 } 1142 #ifdef TCP_OFFLOAD 1143 for_each_ofld_rxq(vi, i, ofld_rxq) { 1144 if ((ofld_rxq->iq.flags & IQ_INTR) == 0) 1145 free_ofld_rxq(vi, ofld_rxq); 1146 } 1147 #endif 1148 1149 /* 1150 * Then take down the rx queues that take direct interrupts. 1151 */ 1152 1153 for_each_rxq(vi, i, rxq) { 1154 if (rxq->iq.flags & IQ_INTR) 1155 free_rxq(vi, rxq); 1156 } 1157 #ifdef TCP_OFFLOAD 1158 for_each_ofld_rxq(vi, i, ofld_rxq) { 1159 if (ofld_rxq->iq.flags & IQ_INTR) 1160 free_ofld_rxq(vi, ofld_rxq); 1161 } 1162 #endif 1163 1164 return (0); 1165 } 1166 1167 /* 1168 * Deals with errors and the firmware event queue. All data rx queues forward 1169 * their interrupt to the firmware event queue. 1170 */ 1171 void 1172 t4_intr_all(void *arg) 1173 { 1174 struct adapter *sc = arg; 1175 struct sge_iq *fwq = &sc->sge.fwq; 1176 1177 t4_intr_err(arg); 1178 if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) { 1179 service_iq(fwq, 0); 1180 atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE); 1181 } 1182 } 1183 1184 /* Deals with error interrupts */ 1185 void 1186 t4_intr_err(void *arg) 1187 { 1188 struct adapter *sc = arg; 1189 1190 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); 1191 t4_slow_intr_handler(sc); 1192 } 1193 1194 void 1195 t4_intr_evt(void *arg) 1196 { 1197 struct sge_iq *iq = arg; 1198 1199 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1200 service_iq(iq, 0); 1201 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1202 } 1203 } 1204 1205 void 1206 t4_intr(void *arg) 1207 { 1208 struct sge_iq *iq = arg; 1209 1210 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1211 service_iq(iq, 0); 1212 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1213 } 1214 } 1215 1216 /* 1217 * Deals with anything and everything on the given ingress queue. 1218 */ 1219 static int 1220 service_iq(struct sge_iq *iq, int budget) 1221 { 1222 struct sge_iq *q; 1223 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */ 1224 struct sge_fl *fl; /* Use iff IQ_HAS_FL */ 1225 struct adapter *sc = iq->adapter; 1226 struct iq_desc *d = &iq->desc[iq->cidx]; 1227 int ndescs = 0, limit; 1228 int rsp_type, refill; 1229 uint32_t lq; 1230 uint16_t fl_hw_cidx; 1231 struct mbuf *m0; 1232 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); 1233 #if defined(INET) || defined(INET6) 1234 const struct timeval lro_timeout = {0, sc->lro_timeout}; 1235 #endif 1236 1237 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); 1238 1239 limit = budget ? budget : iq->qsize / 16; 1240 1241 if (iq->flags & IQ_HAS_FL) { 1242 fl = &rxq->fl; 1243 fl_hw_cidx = fl->hw_cidx; /* stable snapshot */ 1244 } else { 1245 fl = NULL; 1246 fl_hw_cidx = 0; /* to silence gcc warning */ 1247 } 1248 1249 /* 1250 * We always come back and check the descriptor ring for new indirect 1251 * interrupts and other responses after running a single handler. 1252 */ 1253 for (;;) { 1254 while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { 1255 1256 rmb(); 1257 1258 refill = 0; 1259 m0 = NULL; 1260 rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); 1261 lq = be32toh(d->rsp.pldbuflen_qid); 1262 1263 switch (rsp_type) { 1264 case X_RSPD_TYPE_FLBUF: 1265 1266 KASSERT(iq->flags & IQ_HAS_FL, 1267 ("%s: data for an iq (%p) with no freelist", 1268 __func__, iq)); 1269 1270 m0 = get_fl_payload(sc, fl, lq); 1271 if (__predict_false(m0 == NULL)) 1272 goto process_iql; 1273 refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2; 1274 #ifdef T4_PKT_TIMESTAMP 1275 /* 1276 * 60 bit timestamp for the payload is 1277 * *(uint64_t *)m0->m_pktdat. Note that it is 1278 * in the leading free-space in the mbuf. The 1279 * kernel can clobber it during a pullup, 1280 * m_copymdata, etc. You need to make sure that 1281 * the mbuf reaches you unmolested if you care 1282 * about the timestamp. 1283 */ 1284 *(uint64_t *)m0->m_pktdat = 1285 be64toh(ctrl->u.last_flit) & 1286 0xfffffffffffffff; 1287 #endif 1288 1289 /* fall through */ 1290 1291 case X_RSPD_TYPE_CPL: 1292 KASSERT(d->rss.opcode < NUM_CPL_CMDS, 1293 ("%s: bad opcode %02x.", __func__, 1294 d->rss.opcode)); 1295 sc->cpl_handler[d->rss.opcode](iq, &d->rss, m0); 1296 break; 1297 1298 case X_RSPD_TYPE_INTR: 1299 1300 /* 1301 * Interrupts should be forwarded only to queues 1302 * that are not forwarding their interrupts. 1303 * This means service_iq can recurse but only 1 1304 * level deep. 1305 */ 1306 KASSERT(budget == 0, 1307 ("%s: budget %u, rsp_type %u", __func__, 1308 budget, rsp_type)); 1309 1310 /* 1311 * There are 1K interrupt-capable queues (qids 0 1312 * through 1023). A response type indicating a 1313 * forwarded interrupt with a qid >= 1K is an 1314 * iWARP async notification. 1315 */ 1316 if (lq >= 1024) { 1317 sc->an_handler(iq, &d->rsp); 1318 break; 1319 } 1320 1321 q = sc->sge.iqmap[lq - sc->sge.iq_start]; 1322 if (atomic_cmpset_int(&q->state, IQS_IDLE, 1323 IQS_BUSY)) { 1324 if (service_iq(q, q->qsize / 16) == 0) { 1325 atomic_cmpset_int(&q->state, 1326 IQS_BUSY, IQS_IDLE); 1327 } else { 1328 STAILQ_INSERT_TAIL(&iql, q, 1329 link); 1330 } 1331 } 1332 break; 1333 1334 default: 1335 KASSERT(0, 1336 ("%s: illegal response type %d on iq %p", 1337 __func__, rsp_type, iq)); 1338 log(LOG_ERR, 1339 "%s: illegal response type %d on iq %p", 1340 device_get_nameunit(sc->dev), rsp_type, iq); 1341 break; 1342 } 1343 1344 d++; 1345 if (__predict_false(++iq->cidx == iq->sidx)) { 1346 iq->cidx = 0; 1347 iq->gen ^= F_RSPD_GEN; 1348 d = &iq->desc[0]; 1349 } 1350 if (__predict_false(++ndescs == limit)) { 1351 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), 1352 V_CIDXINC(ndescs) | 1353 V_INGRESSQID(iq->cntxt_id) | 1354 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 1355 ndescs = 0; 1356 1357 #if defined(INET) || defined(INET6) 1358 if (iq->flags & IQ_LRO_ENABLED && 1359 sc->lro_timeout != 0) { 1360 tcp_lro_flush_inactive(&rxq->lro, 1361 &lro_timeout); 1362 } 1363 #endif 1364 1365 if (budget) { 1366 if (iq->flags & IQ_HAS_FL) { 1367 FL_LOCK(fl); 1368 refill_fl(sc, fl, 32); 1369 FL_UNLOCK(fl); 1370 } 1371 return (EINPROGRESS); 1372 } 1373 } 1374 if (refill) { 1375 FL_LOCK(fl); 1376 refill_fl(sc, fl, 32); 1377 FL_UNLOCK(fl); 1378 fl_hw_cidx = fl->hw_cidx; 1379 } 1380 } 1381 1382 process_iql: 1383 if (STAILQ_EMPTY(&iql)) 1384 break; 1385 1386 /* 1387 * Process the head only, and send it to the back of the list if 1388 * it's still not done. 1389 */ 1390 q = STAILQ_FIRST(&iql); 1391 STAILQ_REMOVE_HEAD(&iql, link); 1392 if (service_iq(q, q->qsize / 8) == 0) 1393 atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); 1394 else 1395 STAILQ_INSERT_TAIL(&iql, q, link); 1396 } 1397 1398 #if defined(INET) || defined(INET6) 1399 if (iq->flags & IQ_LRO_ENABLED) { 1400 struct lro_ctrl *lro = &rxq->lro; 1401 1402 tcp_lro_flush_all(lro); 1403 } 1404 #endif 1405 1406 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) | 1407 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); 1408 1409 if (iq->flags & IQ_HAS_FL) { 1410 int starved; 1411 1412 FL_LOCK(fl); 1413 starved = refill_fl(sc, fl, 64); 1414 FL_UNLOCK(fl); 1415 if (__predict_false(starved != 0)) 1416 add_fl_to_sfl(sc, fl); 1417 } 1418 1419 return (0); 1420 } 1421 1422 static inline int 1423 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll) 1424 { 1425 int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0; 1426 1427 if (rc) 1428 MPASS(cll->region3 >= CL_METADATA_SIZE); 1429 1430 return (rc); 1431 } 1432 1433 static inline struct cluster_metadata * 1434 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll, 1435 caddr_t cl) 1436 { 1437 1438 if (cl_has_metadata(fl, cll)) { 1439 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1440 1441 return ((struct cluster_metadata *)(cl + swz->size) - 1); 1442 } 1443 return (NULL); 1444 } 1445 1446 static void 1447 rxb_free(struct mbuf *m, void *arg1, void *arg2) 1448 { 1449 uma_zone_t zone = arg1; 1450 caddr_t cl = arg2; 1451 1452 uma_zfree(zone, cl); 1453 counter_u64_add(extfree_rels, 1); 1454 } 1455 1456 /* 1457 * The mbuf returned by this function could be allocated from zone_mbuf or 1458 * constructed in spare room in the cluster. 1459 * 1460 * The mbuf carries the payload in one of these ways 1461 * a) frame inside the mbuf (mbuf from zone_mbuf) 1462 * b) m_cljset (for clusters without metadata) zone_mbuf 1463 * c) m_extaddref (cluster with metadata) inline mbuf 1464 * d) m_extaddref (cluster with metadata) zone_mbuf 1465 */ 1466 static struct mbuf * 1467 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset, 1468 int remaining) 1469 { 1470 struct mbuf *m; 1471 struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; 1472 struct cluster_layout *cll = &sd->cll; 1473 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1474 struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx]; 1475 struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl); 1476 int len, blen; 1477 caddr_t payload; 1478 1479 blen = hwb->size - fl->rx_offset; /* max possible in this buf */ 1480 len = min(remaining, blen); 1481 payload = sd->cl + cll->region1 + fl->rx_offset; 1482 if (fl->flags & FL_BUF_PACKING) { 1483 const u_int l = fr_offset + len; 1484 const u_int pad = roundup2(l, fl->buf_boundary) - l; 1485 1486 if (fl->rx_offset + len + pad < hwb->size) 1487 blen = len + pad; 1488 MPASS(fl->rx_offset + blen <= hwb->size); 1489 } else { 1490 MPASS(fl->rx_offset == 0); /* not packing */ 1491 } 1492 1493 1494 if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) { 1495 1496 /* 1497 * Copy payload into a freshly allocated mbuf. 1498 */ 1499 1500 m = fr_offset == 0 ? 1501 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1502 if (m == NULL) 1503 return (NULL); 1504 fl->mbuf_allocated++; 1505 #ifdef T4_PKT_TIMESTAMP 1506 /* Leave room for a timestamp */ 1507 m->m_data += 8; 1508 #endif 1509 /* copy data to mbuf */ 1510 bcopy(payload, mtod(m, caddr_t), len); 1511 1512 } else if (sd->nmbuf * MSIZE < cll->region1) { 1513 1514 /* 1515 * There's spare room in the cluster for an mbuf. Create one 1516 * and associate it with the payload that's in the cluster. 1517 */ 1518 1519 MPASS(clm != NULL); 1520 m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE); 1521 /* No bzero required */ 1522 if (m_init(m, M_NOWAIT, MT_DATA, 1523 fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE)) 1524 return (NULL); 1525 fl->mbuf_inlined++; 1526 m_extaddref(m, payload, blen, &clm->refcount, rxb_free, 1527 swz->zone, sd->cl); 1528 if (sd->nmbuf++ == 0) 1529 counter_u64_add(extfree_refs, 1); 1530 1531 } else { 1532 1533 /* 1534 * Grab an mbuf from zone_mbuf and associate it with the 1535 * payload in the cluster. 1536 */ 1537 1538 m = fr_offset == 0 ? 1539 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1540 if (m == NULL) 1541 return (NULL); 1542 fl->mbuf_allocated++; 1543 if (clm != NULL) { 1544 m_extaddref(m, payload, blen, &clm->refcount, 1545 rxb_free, swz->zone, sd->cl); 1546 if (sd->nmbuf++ == 0) 1547 counter_u64_add(extfree_refs, 1); 1548 } else { 1549 m_cljset(m, sd->cl, swz->type); 1550 sd->cl = NULL; /* consumed, not a recycle candidate */ 1551 } 1552 } 1553 if (fr_offset == 0) 1554 m->m_pkthdr.len = remaining; 1555 m->m_len = len; 1556 1557 if (fl->flags & FL_BUF_PACKING) { 1558 fl->rx_offset += blen; 1559 MPASS(fl->rx_offset <= hwb->size); 1560 if (fl->rx_offset < hwb->size) 1561 return (m); /* without advancing the cidx */ 1562 } 1563 1564 if (__predict_false(++fl->cidx % 8 == 0)) { 1565 uint16_t cidx = fl->cidx / 8; 1566 1567 if (__predict_false(cidx == fl->sidx)) 1568 fl->cidx = cidx = 0; 1569 fl->hw_cidx = cidx; 1570 } 1571 fl->rx_offset = 0; 1572 1573 return (m); 1574 } 1575 1576 static struct mbuf * 1577 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf) 1578 { 1579 struct mbuf *m0, *m, **pnext; 1580 u_int remaining; 1581 const u_int total = G_RSPD_LEN(len_newbuf); 1582 1583 if (__predict_false(fl->flags & FL_BUF_RESUME)) { 1584 M_ASSERTPKTHDR(fl->m0); 1585 MPASS(fl->m0->m_pkthdr.len == total); 1586 MPASS(fl->remaining < total); 1587 1588 m0 = fl->m0; 1589 pnext = fl->pnext; 1590 remaining = fl->remaining; 1591 fl->flags &= ~FL_BUF_RESUME; 1592 goto get_segment; 1593 } 1594 1595 if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) { 1596 fl->rx_offset = 0; 1597 if (__predict_false(++fl->cidx % 8 == 0)) { 1598 uint16_t cidx = fl->cidx / 8; 1599 1600 if (__predict_false(cidx == fl->sidx)) 1601 fl->cidx = cidx = 0; 1602 fl->hw_cidx = cidx; 1603 } 1604 } 1605 1606 /* 1607 * Payload starts at rx_offset in the current hw buffer. Its length is 1608 * 'len' and it may span multiple hw buffers. 1609 */ 1610 1611 m0 = get_scatter_segment(sc, fl, 0, total); 1612 if (m0 == NULL) 1613 return (NULL); 1614 remaining = total - m0->m_len; 1615 pnext = &m0->m_next; 1616 while (remaining > 0) { 1617 get_segment: 1618 MPASS(fl->rx_offset == 0); 1619 m = get_scatter_segment(sc, fl, total - remaining, remaining); 1620 if (__predict_false(m == NULL)) { 1621 fl->m0 = m0; 1622 fl->pnext = pnext; 1623 fl->remaining = remaining; 1624 fl->flags |= FL_BUF_RESUME; 1625 return (NULL); 1626 } 1627 *pnext = m; 1628 pnext = &m->m_next; 1629 remaining -= m->m_len; 1630 } 1631 *pnext = NULL; 1632 1633 M_ASSERTPKTHDR(m0); 1634 return (m0); 1635 } 1636 1637 static int 1638 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) 1639 { 1640 struct sge_rxq *rxq = iq_to_rxq(iq); 1641 struct ifnet *ifp = rxq->ifp; 1642 struct adapter *sc = iq->adapter; 1643 const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); 1644 #if defined(INET) || defined(INET6) 1645 struct lro_ctrl *lro = &rxq->lro; 1646 #endif 1647 static const int sw_hashtype[4][2] = { 1648 {M_HASHTYPE_NONE, M_HASHTYPE_NONE}, 1649 {M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6}, 1650 {M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6}, 1651 {M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6}, 1652 }; 1653 1654 KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__, 1655 rss->opcode)); 1656 1657 m0->m_pkthdr.len -= sc->params.sge.fl_pktshift; 1658 m0->m_len -= sc->params.sge.fl_pktshift; 1659 m0->m_data += sc->params.sge.fl_pktshift; 1660 1661 m0->m_pkthdr.rcvif = ifp; 1662 M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]); 1663 m0->m_pkthdr.flowid = be32toh(rss->hash_val); 1664 1665 if (cpl->csum_calc && !cpl->err_vec) { 1666 if (ifp->if_capenable & IFCAP_RXCSUM && 1667 cpl->l2info & htobe32(F_RXF_IP)) { 1668 m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED | 1669 CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 1670 rxq->rxcsum++; 1671 } else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 && 1672 cpl->l2info & htobe32(F_RXF_IP6)) { 1673 m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 | 1674 CSUM_PSEUDO_HDR); 1675 rxq->rxcsum++; 1676 } 1677 1678 if (__predict_false(cpl->ip_frag)) 1679 m0->m_pkthdr.csum_data = be16toh(cpl->csum); 1680 else 1681 m0->m_pkthdr.csum_data = 0xffff; 1682 } 1683 1684 if (cpl->vlan_ex) { 1685 m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); 1686 m0->m_flags |= M_VLANTAG; 1687 rxq->vlan_extraction++; 1688 } 1689 1690 #if defined(INET) || defined(INET6) 1691 if (cpl->l2info & htobe32(F_RXF_LRO) && 1692 iq->flags & IQ_LRO_ENABLED && 1693 tcp_lro_rx(lro, m0, 0) == 0) { 1694 /* queued for LRO */ 1695 } else 1696 #endif 1697 ifp->if_input(ifp, m0); 1698 1699 return (0); 1700 } 1701 1702 /* 1703 * Must drain the wrq or make sure that someone else will. 1704 */ 1705 static void 1706 wrq_tx_drain(void *arg, int n) 1707 { 1708 struct sge_wrq *wrq = arg; 1709 struct sge_eq *eq = &wrq->eq; 1710 1711 EQ_LOCK(eq); 1712 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 1713 drain_wrq_wr_list(wrq->adapter, wrq); 1714 EQ_UNLOCK(eq); 1715 } 1716 1717 static void 1718 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq) 1719 { 1720 struct sge_eq *eq = &wrq->eq; 1721 u_int available, dbdiff; /* # of hardware descriptors */ 1722 u_int n; 1723 struct wrqe *wr; 1724 struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ 1725 1726 EQ_LOCK_ASSERT_OWNED(eq); 1727 MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs)); 1728 wr = STAILQ_FIRST(&wrq->wr_list); 1729 MPASS(wr != NULL); /* Must be called with something useful to do */ 1730 MPASS(eq->pidx == eq->dbidx); 1731 dbdiff = 0; 1732 1733 do { 1734 eq->cidx = read_hw_cidx(eq); 1735 if (eq->pidx == eq->cidx) 1736 available = eq->sidx - 1; 1737 else 1738 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 1739 1740 MPASS(wr->wrq == wrq); 1741 n = howmany(wr->wr_len, EQ_ESIZE); 1742 if (available < n) 1743 break; 1744 1745 dst = (void *)&eq->desc[eq->pidx]; 1746 if (__predict_true(eq->sidx - eq->pidx > n)) { 1747 /* Won't wrap, won't end exactly at the status page. */ 1748 bcopy(&wr->wr[0], dst, wr->wr_len); 1749 eq->pidx += n; 1750 } else { 1751 int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE; 1752 1753 bcopy(&wr->wr[0], dst, first_portion); 1754 if (wr->wr_len > first_portion) { 1755 bcopy(&wr->wr[first_portion], &eq->desc[0], 1756 wr->wr_len - first_portion); 1757 } 1758 eq->pidx = n - (eq->sidx - eq->pidx); 1759 } 1760 1761 if (available < eq->sidx / 4 && 1762 atomic_cmpset_int(&eq->equiq, 0, 1)) { 1763 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 1764 F_FW_WR_EQUEQ); 1765 eq->equeqidx = eq->pidx; 1766 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 1767 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 1768 eq->equeqidx = eq->pidx; 1769 } 1770 1771 dbdiff += n; 1772 if (dbdiff >= 16) { 1773 ring_eq_db(sc, eq, dbdiff); 1774 dbdiff = 0; 1775 } 1776 1777 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 1778 free_wrqe(wr); 1779 MPASS(wrq->nwr_pending > 0); 1780 wrq->nwr_pending--; 1781 MPASS(wrq->ndesc_needed >= n); 1782 wrq->ndesc_needed -= n; 1783 } while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL); 1784 1785 if (dbdiff) 1786 ring_eq_db(sc, eq, dbdiff); 1787 } 1788 1789 /* 1790 * Doesn't fail. Holds on to work requests it can't send right away. 1791 */ 1792 void 1793 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr) 1794 { 1795 #ifdef INVARIANTS 1796 struct sge_eq *eq = &wrq->eq; 1797 #endif 1798 1799 EQ_LOCK_ASSERT_OWNED(eq); 1800 MPASS(wr != NULL); 1801 MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN); 1802 MPASS((wr->wr_len & 0x7) == 0); 1803 1804 STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link); 1805 wrq->nwr_pending++; 1806 wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE); 1807 1808 if (!TAILQ_EMPTY(&wrq->incomplete_wrs)) 1809 return; /* commit_wrq_wr will drain wr_list as well. */ 1810 1811 drain_wrq_wr_list(sc, wrq); 1812 1813 /* Doorbell must have caught up to the pidx. */ 1814 MPASS(eq->pidx == eq->dbidx); 1815 } 1816 1817 void 1818 t4_update_fl_bufsize(struct ifnet *ifp) 1819 { 1820 struct vi_info *vi = ifp->if_softc; 1821 struct adapter *sc = vi->pi->adapter; 1822 struct sge_rxq *rxq; 1823 #ifdef TCP_OFFLOAD 1824 struct sge_ofld_rxq *ofld_rxq; 1825 #endif 1826 struct sge_fl *fl; 1827 int i, maxp, mtu = ifp->if_mtu; 1828 1829 maxp = mtu_to_max_payload(sc, mtu, 0); 1830 for_each_rxq(vi, i, rxq) { 1831 fl = &rxq->fl; 1832 1833 FL_LOCK(fl); 1834 find_best_refill_source(sc, fl, maxp); 1835 FL_UNLOCK(fl); 1836 } 1837 #ifdef TCP_OFFLOAD 1838 maxp = mtu_to_max_payload(sc, mtu, 1); 1839 for_each_ofld_rxq(vi, i, ofld_rxq) { 1840 fl = &ofld_rxq->fl; 1841 1842 FL_LOCK(fl); 1843 find_best_refill_source(sc, fl, maxp); 1844 FL_UNLOCK(fl); 1845 } 1846 #endif 1847 } 1848 1849 static inline int 1850 mbuf_nsegs(struct mbuf *m) 1851 { 1852 1853 M_ASSERTPKTHDR(m); 1854 KASSERT(m->m_pkthdr.l5hlen > 0, 1855 ("%s: mbuf %p missing information on # of segments.", __func__, m)); 1856 1857 return (m->m_pkthdr.l5hlen); 1858 } 1859 1860 static inline void 1861 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs) 1862 { 1863 1864 M_ASSERTPKTHDR(m); 1865 m->m_pkthdr.l5hlen = nsegs; 1866 } 1867 1868 static inline int 1869 mbuf_len16(struct mbuf *m) 1870 { 1871 int n; 1872 1873 M_ASSERTPKTHDR(m); 1874 n = m->m_pkthdr.PH_loc.eight[0]; 1875 MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16); 1876 1877 return (n); 1878 } 1879 1880 static inline void 1881 set_mbuf_len16(struct mbuf *m, uint8_t len16) 1882 { 1883 1884 M_ASSERTPKTHDR(m); 1885 m->m_pkthdr.PH_loc.eight[0] = len16; 1886 } 1887 1888 static inline int 1889 needs_tso(struct mbuf *m) 1890 { 1891 1892 M_ASSERTPKTHDR(m); 1893 1894 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1895 KASSERT(m->m_pkthdr.tso_segsz > 0, 1896 ("%s: TSO requested in mbuf %p but MSS not provided", 1897 __func__, m)); 1898 return (1); 1899 } 1900 1901 return (0); 1902 } 1903 1904 static inline int 1905 needs_l3_csum(struct mbuf *m) 1906 { 1907 1908 M_ASSERTPKTHDR(m); 1909 1910 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)) 1911 return (1); 1912 return (0); 1913 } 1914 1915 static inline int 1916 needs_l4_csum(struct mbuf *m) 1917 { 1918 1919 M_ASSERTPKTHDR(m); 1920 1921 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | 1922 CSUM_TCP_IPV6 | CSUM_TSO)) 1923 return (1); 1924 return (0); 1925 } 1926 1927 static inline int 1928 needs_vlan_insertion(struct mbuf *m) 1929 { 1930 1931 M_ASSERTPKTHDR(m); 1932 1933 if (m->m_flags & M_VLANTAG) { 1934 KASSERT(m->m_pkthdr.ether_vtag != 0, 1935 ("%s: HWVLAN requested in mbuf %p but tag not provided", 1936 __func__, m)); 1937 return (1); 1938 } 1939 return (0); 1940 } 1941 1942 static void * 1943 m_advance(struct mbuf **pm, int *poffset, int len) 1944 { 1945 struct mbuf *m = *pm; 1946 int offset = *poffset; 1947 uintptr_t p = 0; 1948 1949 MPASS(len > 0); 1950 1951 while (len) { 1952 if (offset + len < m->m_len) { 1953 offset += len; 1954 p = mtod(m, uintptr_t) + offset; 1955 break; 1956 } 1957 len -= m->m_len - offset; 1958 m = m->m_next; 1959 offset = 0; 1960 MPASS(m != NULL); 1961 } 1962 *poffset = offset; 1963 *pm = m; 1964 return ((void *)p); 1965 } 1966 1967 static inline int 1968 same_paddr(char *a, char *b) 1969 { 1970 1971 if (a == b) 1972 return (1); 1973 else if (a != NULL && b != NULL) { 1974 vm_offset_t x = (vm_offset_t)a; 1975 vm_offset_t y = (vm_offset_t)b; 1976 1977 if ((x & PAGE_MASK) == (y & PAGE_MASK) && 1978 pmap_kextract(x) == pmap_kextract(y)) 1979 return (1); 1980 } 1981 1982 return (0); 1983 } 1984 1985 /* 1986 * Can deal with empty mbufs in the chain that have m_len = 0, but the chain 1987 * must have at least one mbuf that's not empty. 1988 */ 1989 static inline int 1990 count_mbuf_nsegs(struct mbuf *m) 1991 { 1992 char *prev_end, *start; 1993 int len, nsegs; 1994 1995 MPASS(m != NULL); 1996 1997 nsegs = 0; 1998 prev_end = NULL; 1999 for (; m; m = m->m_next) { 2000 2001 len = m->m_len; 2002 if (__predict_false(len == 0)) 2003 continue; 2004 start = mtod(m, char *); 2005 2006 nsegs += sglist_count(start, len); 2007 if (same_paddr(prev_end, start)) 2008 nsegs--; 2009 prev_end = start + len; 2010 } 2011 2012 MPASS(nsegs > 0); 2013 return (nsegs); 2014 } 2015 2016 /* 2017 * Analyze the mbuf to determine its tx needs. The mbuf passed in may change: 2018 * a) caller can assume it's been freed if this function returns with an error. 2019 * b) it may get defragged up if the gather list is too long for the hardware. 2020 */ 2021 int 2022 parse_pkt(struct mbuf **mp) 2023 { 2024 struct mbuf *m0 = *mp, *m; 2025 int rc, nsegs, defragged = 0, offset; 2026 struct ether_header *eh; 2027 void *l3hdr; 2028 #if defined(INET) || defined(INET6) 2029 struct tcphdr *tcp; 2030 #endif 2031 uint16_t eh_type; 2032 2033 M_ASSERTPKTHDR(m0); 2034 if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) { 2035 rc = EINVAL; 2036 fail: 2037 m_freem(m0); 2038 *mp = NULL; 2039 return (rc); 2040 } 2041 restart: 2042 /* 2043 * First count the number of gather list segments in the payload. 2044 * Defrag the mbuf if nsegs exceeds the hardware limit. 2045 */ 2046 M_ASSERTPKTHDR(m0); 2047 MPASS(m0->m_pkthdr.len > 0); 2048 nsegs = count_mbuf_nsegs(m0); 2049 if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) { 2050 if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) { 2051 rc = EFBIG; 2052 goto fail; 2053 } 2054 *mp = m0 = m; /* update caller's copy after defrag */ 2055 goto restart; 2056 } 2057 2058 if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) { 2059 m0 = m_pullup(m0, m0->m_pkthdr.len); 2060 if (m0 == NULL) { 2061 /* Should have left well enough alone. */ 2062 rc = EFBIG; 2063 goto fail; 2064 } 2065 *mp = m0; /* update caller's copy after pullup */ 2066 goto restart; 2067 } 2068 set_mbuf_nsegs(m0, nsegs); 2069 set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0))); 2070 2071 if (!needs_tso(m0)) 2072 return (0); 2073 2074 m = m0; 2075 eh = mtod(m, struct ether_header *); 2076 eh_type = ntohs(eh->ether_type); 2077 if (eh_type == ETHERTYPE_VLAN) { 2078 struct ether_vlan_header *evh = (void *)eh; 2079 2080 eh_type = ntohs(evh->evl_proto); 2081 m0->m_pkthdr.l2hlen = sizeof(*evh); 2082 } else 2083 m0->m_pkthdr.l2hlen = sizeof(*eh); 2084 2085 offset = 0; 2086 l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen); 2087 2088 switch (eh_type) { 2089 #ifdef INET6 2090 case ETHERTYPE_IPV6: 2091 { 2092 struct ip6_hdr *ip6 = l3hdr; 2093 2094 MPASS(ip6->ip6_nxt == IPPROTO_TCP); 2095 2096 m0->m_pkthdr.l3hlen = sizeof(*ip6); 2097 break; 2098 } 2099 #endif 2100 #ifdef INET 2101 case ETHERTYPE_IP: 2102 { 2103 struct ip *ip = l3hdr; 2104 2105 m0->m_pkthdr.l3hlen = ip->ip_hl * 4; 2106 break; 2107 } 2108 #endif 2109 default: 2110 panic("%s: ethertype 0x%04x unknown. if_cxgbe must be compiled" 2111 " with the same INET/INET6 options as the kernel.", 2112 __func__, eh_type); 2113 } 2114 2115 #if defined(INET) || defined(INET6) 2116 tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen); 2117 m0->m_pkthdr.l4hlen = tcp->th_off * 4; 2118 #endif 2119 MPASS(m0 == *mp); 2120 return (0); 2121 } 2122 2123 void * 2124 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie) 2125 { 2126 struct sge_eq *eq = &wrq->eq; 2127 struct adapter *sc = wrq->adapter; 2128 int ndesc, available; 2129 struct wrqe *wr; 2130 void *w; 2131 2132 MPASS(len16 > 0); 2133 ndesc = howmany(len16, EQ_ESIZE / 16); 2134 MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC); 2135 2136 EQ_LOCK(eq); 2137 2138 if (!STAILQ_EMPTY(&wrq->wr_list)) 2139 drain_wrq_wr_list(sc, wrq); 2140 2141 if (!STAILQ_EMPTY(&wrq->wr_list)) { 2142 slowpath: 2143 EQ_UNLOCK(eq); 2144 wr = alloc_wrqe(len16 * 16, wrq); 2145 if (__predict_false(wr == NULL)) 2146 return (NULL); 2147 cookie->pidx = -1; 2148 cookie->ndesc = ndesc; 2149 return (&wr->wr); 2150 } 2151 2152 eq->cidx = read_hw_cidx(eq); 2153 if (eq->pidx == eq->cidx) 2154 available = eq->sidx - 1; 2155 else 2156 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2157 if (available < ndesc) 2158 goto slowpath; 2159 2160 cookie->pidx = eq->pidx; 2161 cookie->ndesc = ndesc; 2162 TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link); 2163 2164 w = &eq->desc[eq->pidx]; 2165 IDXINCR(eq->pidx, ndesc, eq->sidx); 2166 if (__predict_false(eq->pidx < ndesc - 1)) { 2167 w = &wrq->ss[0]; 2168 wrq->ss_pidx = cookie->pidx; 2169 wrq->ss_len = len16 * 16; 2170 } 2171 2172 EQ_UNLOCK(eq); 2173 2174 return (w); 2175 } 2176 2177 void 2178 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie) 2179 { 2180 struct sge_eq *eq = &wrq->eq; 2181 struct adapter *sc = wrq->adapter; 2182 int ndesc, pidx; 2183 struct wrq_cookie *prev, *next; 2184 2185 if (cookie->pidx == -1) { 2186 struct wrqe *wr = __containerof(w, struct wrqe, wr); 2187 2188 t4_wrq_tx(sc, wr); 2189 return; 2190 } 2191 2192 ndesc = cookie->ndesc; /* Can be more than SGE_MAX_WR_NDESC here. */ 2193 pidx = cookie->pidx; 2194 MPASS(pidx >= 0 && pidx < eq->sidx); 2195 if (__predict_false(w == &wrq->ss[0])) { 2196 int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE; 2197 2198 MPASS(wrq->ss_len > n); /* WR had better wrap around. */ 2199 bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n); 2200 bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n); 2201 wrq->tx_wrs_ss++; 2202 } else 2203 wrq->tx_wrs_direct++; 2204 2205 EQ_LOCK(eq); 2206 prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link); 2207 next = TAILQ_NEXT(cookie, link); 2208 if (prev == NULL) { 2209 MPASS(pidx == eq->dbidx); 2210 if (next == NULL || ndesc >= 16) 2211 ring_eq_db(wrq->adapter, eq, ndesc); 2212 else { 2213 MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc); 2214 next->pidx = pidx; 2215 next->ndesc += ndesc; 2216 } 2217 } else { 2218 MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc); 2219 prev->ndesc += ndesc; 2220 } 2221 TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link); 2222 2223 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 2224 drain_wrq_wr_list(sc, wrq); 2225 2226 #ifdef INVARIANTS 2227 if (TAILQ_EMPTY(&wrq->incomplete_wrs)) { 2228 /* Doorbell must have caught up to the pidx. */ 2229 MPASS(wrq->eq.pidx == wrq->eq.dbidx); 2230 } 2231 #endif 2232 EQ_UNLOCK(eq); 2233 } 2234 2235 static u_int 2236 can_resume_eth_tx(struct mp_ring *r) 2237 { 2238 struct sge_eq *eq = r->cookie; 2239 2240 return (total_available_tx_desc(eq) > eq->sidx / 8); 2241 } 2242 2243 static inline int 2244 cannot_use_txpkts(struct mbuf *m) 2245 { 2246 /* maybe put a GL limit too, to avoid silliness? */ 2247 2248 return (needs_tso(m)); 2249 } 2250 2251 /* 2252 * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to 2253 * be consumed. Return the actual number consumed. 0 indicates a stall. 2254 */ 2255 static u_int 2256 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx) 2257 { 2258 struct sge_txq *txq = r->cookie; 2259 struct sge_eq *eq = &txq->eq; 2260 struct ifnet *ifp = txq->ifp; 2261 struct vi_info *vi = ifp->if_softc; 2262 struct port_info *pi = vi->pi; 2263 struct adapter *sc = pi->adapter; 2264 u_int total, remaining; /* # of packets */ 2265 u_int available, dbdiff; /* # of hardware descriptors */ 2266 u_int n, next_cidx; 2267 struct mbuf *m0, *tail; 2268 struct txpkts txp; 2269 struct fw_eth_tx_pkts_wr *wr; /* any fw WR struct will do */ 2270 2271 remaining = IDXDIFF(pidx, cidx, r->size); 2272 MPASS(remaining > 0); /* Must not be called without work to do. */ 2273 total = 0; 2274 2275 TXQ_LOCK(txq); 2276 if (__predict_false((eq->flags & EQ_ENABLED) == 0)) { 2277 while (cidx != pidx) { 2278 m0 = r->items[cidx]; 2279 m_freem(m0); 2280 if (++cidx == r->size) 2281 cidx = 0; 2282 } 2283 reclaim_tx_descs(txq, 2048); 2284 total = remaining; 2285 goto done; 2286 } 2287 2288 /* How many hardware descriptors do we have readily available. */ 2289 if (eq->pidx == eq->cidx) 2290 available = eq->sidx - 1; 2291 else 2292 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2293 dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx); 2294 2295 while (remaining > 0) { 2296 2297 m0 = r->items[cidx]; 2298 M_ASSERTPKTHDR(m0); 2299 MPASS(m0->m_nextpkt == NULL); 2300 2301 if (available < SGE_MAX_WR_NDESC) { 2302 available += reclaim_tx_descs(txq, 64); 2303 if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16)) 2304 break; /* out of descriptors */ 2305 } 2306 2307 next_cidx = cidx + 1; 2308 if (__predict_false(next_cidx == r->size)) 2309 next_cidx = 0; 2310 2311 wr = (void *)&eq->desc[eq->pidx]; 2312 if (remaining > 1 && 2313 try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) { 2314 2315 /* pkts at cidx, next_cidx should both be in txp. */ 2316 MPASS(txp.npkt == 2); 2317 tail = r->items[next_cidx]; 2318 MPASS(tail->m_nextpkt == NULL); 2319 ETHER_BPF_MTAP(ifp, m0); 2320 ETHER_BPF_MTAP(ifp, tail); 2321 m0->m_nextpkt = tail; 2322 2323 if (__predict_false(++next_cidx == r->size)) 2324 next_cidx = 0; 2325 2326 while (next_cidx != pidx) { 2327 if (add_to_txpkts(r->items[next_cidx], &txp, 2328 available) != 0) 2329 break; 2330 tail->m_nextpkt = r->items[next_cidx]; 2331 tail = tail->m_nextpkt; 2332 ETHER_BPF_MTAP(ifp, tail); 2333 if (__predict_false(++next_cidx == r->size)) 2334 next_cidx = 0; 2335 } 2336 2337 n = write_txpkts_wr(txq, wr, m0, &txp, available); 2338 total += txp.npkt; 2339 remaining -= txp.npkt; 2340 } else { 2341 total++; 2342 remaining--; 2343 ETHER_BPF_MTAP(ifp, m0); 2344 n = write_txpkt_wr(txq, (void *)wr, m0, available); 2345 } 2346 MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC); 2347 2348 available -= n; 2349 dbdiff += n; 2350 IDXINCR(eq->pidx, n, eq->sidx); 2351 2352 if (total_available_tx_desc(eq) < eq->sidx / 4 && 2353 atomic_cmpset_int(&eq->equiq, 0, 1)) { 2354 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 2355 F_FW_WR_EQUEQ); 2356 eq->equeqidx = eq->pidx; 2357 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 2358 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 2359 eq->equeqidx = eq->pidx; 2360 } 2361 2362 if (dbdiff >= 16 && remaining >= 4) { 2363 ring_eq_db(sc, eq, dbdiff); 2364 available += reclaim_tx_descs(txq, 4 * dbdiff); 2365 dbdiff = 0; 2366 } 2367 2368 cidx = next_cidx; 2369 } 2370 if (dbdiff != 0) { 2371 ring_eq_db(sc, eq, dbdiff); 2372 reclaim_tx_descs(txq, 32); 2373 } 2374 done: 2375 TXQ_UNLOCK(txq); 2376 2377 return (total); 2378 } 2379 2380 static inline void 2381 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, 2382 int qsize) 2383 { 2384 2385 KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, 2386 ("%s: bad tmr_idx %d", __func__, tmr_idx)); 2387 KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ 2388 ("%s: bad pktc_idx %d", __func__, pktc_idx)); 2389 2390 iq->flags = 0; 2391 iq->adapter = sc; 2392 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); 2393 iq->intr_pktc_idx = SGE_NCOUNTERS - 1; 2394 if (pktc_idx >= 0) { 2395 iq->intr_params |= F_QINTR_CNT_EN; 2396 iq->intr_pktc_idx = pktc_idx; 2397 } 2398 iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */ 2399 iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE; 2400 } 2401 2402 static inline void 2403 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name) 2404 { 2405 2406 fl->qsize = qsize; 2407 fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 2408 strlcpy(fl->lockname, name, sizeof(fl->lockname)); 2409 if (sc->flags & BUF_PACKING_OK && 2410 ((!is_t4(sc) && buffer_packing) || /* T5+: enabled unless 0 */ 2411 (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */ 2412 fl->flags |= FL_BUF_PACKING; 2413 find_best_refill_source(sc, fl, maxp); 2414 find_safe_refill_source(sc, fl); 2415 } 2416 2417 static inline void 2418 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize, 2419 uint8_t tx_chan, uint16_t iqid, char *name) 2420 { 2421 KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype)); 2422 2423 eq->flags = eqtype & EQ_TYPEMASK; 2424 eq->tx_chan = tx_chan; 2425 eq->iqid = iqid; 2426 eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 2427 strlcpy(eq->lockname, name, sizeof(eq->lockname)); 2428 } 2429 2430 static int 2431 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, 2432 bus_dmamap_t *map, bus_addr_t *pa, void **va) 2433 { 2434 int rc; 2435 2436 rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, 2437 BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); 2438 if (rc != 0) { 2439 device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc); 2440 goto done; 2441 } 2442 2443 rc = bus_dmamem_alloc(*tag, va, 2444 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); 2445 if (rc != 0) { 2446 device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc); 2447 goto done; 2448 } 2449 2450 rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); 2451 if (rc != 0) { 2452 device_printf(sc->dev, "cannot load DMA map: %d\n", rc); 2453 goto done; 2454 } 2455 done: 2456 if (rc) 2457 free_ring(sc, *tag, *map, *pa, *va); 2458 2459 return (rc); 2460 } 2461 2462 static int 2463 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, 2464 bus_addr_t pa, void *va) 2465 { 2466 if (pa) 2467 bus_dmamap_unload(tag, map); 2468 if (va) 2469 bus_dmamem_free(tag, va, map); 2470 if (tag) 2471 bus_dma_tag_destroy(tag); 2472 2473 return (0); 2474 } 2475 2476 /* 2477 * Allocates the ring for an ingress queue and an optional freelist. If the 2478 * freelist is specified it will be allocated and then associated with the 2479 * ingress queue. 2480 * 2481 * Returns errno on failure. Resources allocated up to that point may still be 2482 * allocated. Caller is responsible for cleanup in case this function fails. 2483 * 2484 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then 2485 * the intr_idx specifies the vector, starting from 0. Otherwise it specifies 2486 * the abs_id of the ingress queue to which its interrupts should be forwarded. 2487 */ 2488 static int 2489 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl, 2490 int intr_idx, int cong) 2491 { 2492 int rc, i, cntxt_id; 2493 size_t len; 2494 struct fw_iq_cmd c; 2495 struct port_info *pi = vi->pi; 2496 struct adapter *sc = iq->adapter; 2497 struct sge_params *sp = &sc->params.sge; 2498 __be32 v = 0; 2499 2500 len = iq->qsize * IQ_ESIZE; 2501 rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, 2502 (void **)&iq->desc); 2503 if (rc != 0) 2504 return (rc); 2505 2506 bzero(&c, sizeof(c)); 2507 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 2508 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | 2509 V_FW_IQ_CMD_VFN(0)); 2510 2511 c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | 2512 FW_LEN16(c)); 2513 2514 /* Special handling for firmware event queue */ 2515 if (iq == &sc->sge.fwq) 2516 v |= F_FW_IQ_CMD_IQASYNCH; 2517 2518 if (iq->flags & IQ_INTR) { 2519 KASSERT(intr_idx < sc->intr_count, 2520 ("%s: invalid direct intr_idx %d", __func__, intr_idx)); 2521 } else 2522 v |= F_FW_IQ_CMD_IQANDST; 2523 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); 2524 2525 c.type_to_iqandstindex = htobe32(v | 2526 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 2527 V_FW_IQ_CMD_VIID(vi->viid) | 2528 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); 2529 c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 2530 F_FW_IQ_CMD_IQGTSMODE | 2531 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | 2532 V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4)); 2533 c.iqsize = htobe16(iq->qsize); 2534 c.iqaddr = htobe64(iq->ba); 2535 if (cong >= 0) 2536 c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN); 2537 2538 if (fl) { 2539 mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); 2540 2541 len = fl->qsize * EQ_ESIZE; 2542 rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, 2543 &fl->ba, (void **)&fl->desc); 2544 if (rc) 2545 return (rc); 2546 2547 /* Allocate space for one software descriptor per buffer. */ 2548 rc = alloc_fl_sdesc(fl); 2549 if (rc != 0) { 2550 device_printf(sc->dev, 2551 "failed to setup fl software descriptors: %d\n", 2552 rc); 2553 return (rc); 2554 } 2555 2556 if (fl->flags & FL_BUF_PACKING) { 2557 fl->lowat = roundup2(sp->fl_starve_threshold2, 8); 2558 fl->buf_boundary = sp->pack_boundary; 2559 } else { 2560 fl->lowat = roundup2(sp->fl_starve_threshold, 8); 2561 fl->buf_boundary = 16; 2562 } 2563 if (fl_pad && fl->buf_boundary < sp->pad_boundary) 2564 fl->buf_boundary = sp->pad_boundary; 2565 2566 c.iqns_to_fl0congen |= 2567 htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | 2568 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | 2569 (fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) | 2570 (fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN : 2571 0)); 2572 if (cong >= 0) { 2573 c.iqns_to_fl0congen |= 2574 htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | 2575 F_FW_IQ_CMD_FL0CONGCIF | 2576 F_FW_IQ_CMD_FL0CONGEN); 2577 } 2578 c.fl0dcaen_to_fl0cidxfthresh = 2579 htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_128B) | 2580 V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B)); 2581 c.fl0size = htobe16(fl->qsize); 2582 c.fl0addr = htobe64(fl->ba); 2583 } 2584 2585 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2586 if (rc != 0) { 2587 device_printf(sc->dev, 2588 "failed to create ingress queue: %d\n", rc); 2589 return (rc); 2590 } 2591 2592 iq->cidx = 0; 2593 iq->gen = F_RSPD_GEN; 2594 iq->intr_next = iq->intr_params; 2595 iq->cntxt_id = be16toh(c.iqid); 2596 iq->abs_id = be16toh(c.physiqid); 2597 iq->flags |= IQ_ALLOCATED; 2598 2599 cntxt_id = iq->cntxt_id - sc->sge.iq_start; 2600 if (cntxt_id >= sc->sge.niq) { 2601 panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, 2602 cntxt_id, sc->sge.niq - 1); 2603 } 2604 sc->sge.iqmap[cntxt_id] = iq; 2605 2606 if (fl) { 2607 u_int qid; 2608 2609 iq->flags |= IQ_HAS_FL; 2610 fl->cntxt_id = be16toh(c.fl0id); 2611 fl->pidx = fl->cidx = 0; 2612 2613 cntxt_id = fl->cntxt_id - sc->sge.eq_start; 2614 if (cntxt_id >= sc->sge.neq) { 2615 panic("%s: fl->cntxt_id (%d) more than the max (%d)", 2616 __func__, cntxt_id, sc->sge.neq - 1); 2617 } 2618 sc->sge.eqmap[cntxt_id] = (void *)fl; 2619 2620 qid = fl->cntxt_id; 2621 if (isset(&sc->doorbells, DOORBELL_UDB)) { 2622 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 2623 uint32_t mask = (1 << s_qpp) - 1; 2624 volatile uint8_t *udb; 2625 2626 udb = sc->udbs_base + UDBS_DB_OFFSET; 2627 udb += (qid >> s_qpp) << PAGE_SHIFT; 2628 qid &= mask; 2629 if (qid < PAGE_SIZE / UDBS_SEG_SIZE) { 2630 udb += qid << UDBS_SEG_SHIFT; 2631 qid = 0; 2632 } 2633 fl->udb = (volatile void *)udb; 2634 } 2635 fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db; 2636 2637 FL_LOCK(fl); 2638 /* Enough to make sure the SGE doesn't think it's starved */ 2639 refill_fl(sc, fl, fl->lowat); 2640 FL_UNLOCK(fl); 2641 } 2642 2643 if (is_t5(sc) && cong >= 0) { 2644 uint32_t param, val; 2645 2646 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 2647 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 2648 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id); 2649 if (cong == 0) 2650 val = 1 << 19; 2651 else { 2652 val = 2 << 19; 2653 for (i = 0; i < 4; i++) { 2654 if (cong & (1 << i)) 2655 val |= 1 << (i << 2); 2656 } 2657 } 2658 2659 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 2660 if (rc != 0) { 2661 /* report error but carry on */ 2662 device_printf(sc->dev, 2663 "failed to set congestion manager context for " 2664 "ingress queue %d: %d\n", iq->cntxt_id, rc); 2665 } 2666 } 2667 2668 /* Enable IQ interrupts */ 2669 atomic_store_rel_int(&iq->state, IQS_IDLE); 2670 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) | 2671 V_INGRESSQID(iq->cntxt_id)); 2672 2673 return (0); 2674 } 2675 2676 static int 2677 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl) 2678 { 2679 int rc; 2680 struct adapter *sc = iq->adapter; 2681 device_t dev; 2682 2683 if (sc == NULL) 2684 return (0); /* nothing to do */ 2685 2686 dev = vi ? vi->dev : sc->dev; 2687 2688 if (iq->flags & IQ_ALLOCATED) { 2689 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, 2690 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, 2691 fl ? fl->cntxt_id : 0xffff, 0xffff); 2692 if (rc != 0) { 2693 device_printf(dev, 2694 "failed to free queue %p: %d\n", iq, rc); 2695 return (rc); 2696 } 2697 iq->flags &= ~IQ_ALLOCATED; 2698 } 2699 2700 free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); 2701 2702 bzero(iq, sizeof(*iq)); 2703 2704 if (fl) { 2705 free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, 2706 fl->desc); 2707 2708 if (fl->sdesc) 2709 free_fl_sdesc(sc, fl); 2710 2711 if (mtx_initialized(&fl->fl_lock)) 2712 mtx_destroy(&fl->fl_lock); 2713 2714 bzero(fl, sizeof(*fl)); 2715 } 2716 2717 return (0); 2718 } 2719 2720 static void 2721 add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, 2722 struct sge_fl *fl) 2723 { 2724 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2725 2726 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 2727 "freelist"); 2728 children = SYSCTL_CHILDREN(oid); 2729 2730 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 2731 CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I", 2732 "SGE context id of the freelist"); 2733 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL, 2734 fl_pad ? 1 : 0, "padding enabled"); 2735 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL, 2736 fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled"); 2737 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx, 2738 0, "consumer index"); 2739 if (fl->flags & FL_BUF_PACKING) { 2740 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset", 2741 CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset"); 2742 } 2743 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx, 2744 0, "producer index"); 2745 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated", 2746 CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated"); 2747 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined", 2748 CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters"); 2749 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated", 2750 CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated"); 2751 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled", 2752 CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled"); 2753 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled", 2754 CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)"); 2755 } 2756 2757 static int 2758 alloc_fwq(struct adapter *sc) 2759 { 2760 int rc, intr_idx; 2761 struct sge_iq *fwq = &sc->sge.fwq; 2762 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 2763 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2764 2765 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE); 2766 fwq->flags |= IQ_INTR; /* always */ 2767 intr_idx = sc->intr_count > 1 ? 1 : 0; 2768 rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1); 2769 if (rc != 0) { 2770 device_printf(sc->dev, 2771 "failed to create firmware event queue: %d\n", rc); 2772 return (rc); 2773 } 2774 2775 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD, 2776 NULL, "firmware event queue"); 2777 children = SYSCTL_CHILDREN(oid); 2778 2779 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id", 2780 CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I", 2781 "absolute id of the queue"); 2782 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id", 2783 CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I", 2784 "SGE context id of the queue"); 2785 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx", 2786 CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I", 2787 "consumer index"); 2788 2789 return (0); 2790 } 2791 2792 static int 2793 free_fwq(struct adapter *sc) 2794 { 2795 return free_iq_fl(NULL, &sc->sge.fwq, NULL); 2796 } 2797 2798 static int 2799 alloc_mgmtq(struct adapter *sc) 2800 { 2801 int rc; 2802 struct sge_wrq *mgmtq = &sc->sge.mgmtq; 2803 char name[16]; 2804 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 2805 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2806 2807 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD, 2808 NULL, "management queue"); 2809 2810 snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev)); 2811 init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan, 2812 sc->sge.fwq.cntxt_id, name); 2813 rc = alloc_wrq(sc, NULL, mgmtq, oid); 2814 if (rc != 0) { 2815 device_printf(sc->dev, 2816 "failed to create management queue: %d\n", rc); 2817 return (rc); 2818 } 2819 2820 return (0); 2821 } 2822 2823 static int 2824 free_mgmtq(struct adapter *sc) 2825 { 2826 2827 return free_wrq(sc, &sc->sge.mgmtq); 2828 } 2829 2830 int 2831 tnl_cong(struct port_info *pi, int drop) 2832 { 2833 2834 if (drop == -1) 2835 return (-1); 2836 else if (drop == 1) 2837 return (0); 2838 else 2839 return (pi->rx_chan_map); 2840 } 2841 2842 static int 2843 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx, 2844 struct sysctl_oid *oid) 2845 { 2846 int rc; 2847 struct sysctl_oid_list *children; 2848 char name[16]; 2849 2850 rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx, 2851 tnl_cong(vi->pi, cong_drop)); 2852 if (rc != 0) 2853 return (rc); 2854 2855 /* 2856 * The freelist is just barely above the starvation threshold right now, 2857 * fill it up a bit more. 2858 */ 2859 FL_LOCK(&rxq->fl); 2860 refill_fl(vi->pi->adapter, &rxq->fl, 128); 2861 FL_UNLOCK(&rxq->fl); 2862 2863 #if defined(INET) || defined(INET6) 2864 rc = tcp_lro_init(&rxq->lro); 2865 if (rc != 0) 2866 return (rc); 2867 rxq->lro.ifp = vi->ifp; /* also indicates LRO init'ed */ 2868 2869 if (vi->ifp->if_capenable & IFCAP_LRO) 2870 rxq->iq.flags |= IQ_LRO_ENABLED; 2871 #endif 2872 rxq->ifp = vi->ifp; 2873 2874 children = SYSCTL_CHILDREN(oid); 2875 2876 snprintf(name, sizeof(name), "%d", idx); 2877 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 2878 NULL, "rx queue"); 2879 children = SYSCTL_CHILDREN(oid); 2880 2881 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id", 2882 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I", 2883 "absolute id of the queue"); 2884 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id", 2885 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I", 2886 "SGE context id of the queue"); 2887 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 2888 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I", 2889 "consumer index"); 2890 #if defined(INET) || defined(INET6) 2891 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, 2892 &rxq->lro.lro_queued, 0, NULL); 2893 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, 2894 &rxq->lro.lro_flushed, 0, NULL); 2895 #endif 2896 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, 2897 &rxq->rxcsum, "# of times hardware assisted with checksum"); 2898 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction", 2899 CTLFLAG_RD, &rxq->vlan_extraction, 2900 "# of times hardware extracted 802.1Q tag"); 2901 2902 add_fl_sysctls(&vi->ctx, oid, &rxq->fl); 2903 2904 return (rc); 2905 } 2906 2907 static int 2908 free_rxq(struct vi_info *vi, struct sge_rxq *rxq) 2909 { 2910 int rc; 2911 2912 #if defined(INET) || defined(INET6) 2913 if (rxq->lro.ifp) { 2914 tcp_lro_free(&rxq->lro); 2915 rxq->lro.ifp = NULL; 2916 } 2917 #endif 2918 2919 rc = free_iq_fl(vi, &rxq->iq, &rxq->fl); 2920 if (rc == 0) 2921 bzero(rxq, sizeof(*rxq)); 2922 2923 return (rc); 2924 } 2925 2926 #ifdef TCP_OFFLOAD 2927 static int 2928 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, 2929 int intr_idx, int idx, struct sysctl_oid *oid) 2930 { 2931 int rc; 2932 struct sysctl_oid_list *children; 2933 char name[16]; 2934 2935 rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 2936 vi->pi->rx_chan_map); 2937 if (rc != 0) 2938 return (rc); 2939 2940 children = SYSCTL_CHILDREN(oid); 2941 2942 snprintf(name, sizeof(name), "%d", idx); 2943 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 2944 NULL, "rx queue"); 2945 children = SYSCTL_CHILDREN(oid); 2946 2947 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id", 2948 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16, 2949 "I", "absolute id of the queue"); 2950 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id", 2951 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16, 2952 "I", "SGE context id of the queue"); 2953 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 2954 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I", 2955 "consumer index"); 2956 2957 add_fl_sysctls(&vi->ctx, oid, &ofld_rxq->fl); 2958 2959 return (rc); 2960 } 2961 2962 static int 2963 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq) 2964 { 2965 int rc; 2966 2967 rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl); 2968 if (rc == 0) 2969 bzero(ofld_rxq, sizeof(*ofld_rxq)); 2970 2971 return (rc); 2972 } 2973 #endif 2974 2975 #ifdef DEV_NETMAP 2976 static int 2977 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx, 2978 int idx, struct sysctl_oid *oid) 2979 { 2980 int rc; 2981 struct sysctl_oid_list *children; 2982 struct sysctl_ctx_list *ctx; 2983 char name[16]; 2984 size_t len; 2985 struct adapter *sc = vi->pi->adapter; 2986 struct netmap_adapter *na = NA(vi->ifp); 2987 2988 MPASS(na != NULL); 2989 2990 len = vi->qsize_rxq * IQ_ESIZE; 2991 rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map, 2992 &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc); 2993 if (rc != 0) 2994 return (rc); 2995 2996 len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len; 2997 rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map, 2998 &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc); 2999 if (rc != 0) 3000 return (rc); 3001 3002 nm_rxq->vi = vi; 3003 nm_rxq->nid = idx; 3004 nm_rxq->iq_cidx = 0; 3005 nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE; 3006 nm_rxq->iq_gen = F_RSPD_GEN; 3007 nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0; 3008 nm_rxq->fl_sidx = na->num_rx_desc; 3009 nm_rxq->intr_idx = intr_idx; 3010 3011 ctx = &vi->ctx; 3012 children = SYSCTL_CHILDREN(oid); 3013 3014 snprintf(name, sizeof(name), "%d", idx); 3015 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, 3016 "rx queue"); 3017 children = SYSCTL_CHILDREN(oid); 3018 3019 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", 3020 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16, 3021 "I", "absolute id of the queue"); 3022 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3023 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16, 3024 "I", "SGE context id of the queue"); 3025 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3026 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I", 3027 "consumer index"); 3028 3029 children = SYSCTL_CHILDREN(oid); 3030 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 3031 "freelist"); 3032 children = SYSCTL_CHILDREN(oid); 3033 3034 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3035 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16, 3036 "I", "SGE context id of the freelist"); 3037 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, 3038 &nm_rxq->fl_cidx, 0, "consumer index"); 3039 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, 3040 &nm_rxq->fl_pidx, 0, "producer index"); 3041 3042 return (rc); 3043 } 3044 3045 3046 static int 3047 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq) 3048 { 3049 struct adapter *sc = vi->pi->adapter; 3050 3051 free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba, 3052 nm_rxq->iq_desc); 3053 free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba, 3054 nm_rxq->fl_desc); 3055 3056 return (0); 3057 } 3058 3059 static int 3060 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx, 3061 struct sysctl_oid *oid) 3062 { 3063 int rc; 3064 size_t len; 3065 struct port_info *pi = vi->pi; 3066 struct adapter *sc = pi->adapter; 3067 struct netmap_adapter *na = NA(vi->ifp); 3068 char name[16]; 3069 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3070 3071 len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len; 3072 rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map, 3073 &nm_txq->ba, (void **)&nm_txq->desc); 3074 if (rc) 3075 return (rc); 3076 3077 nm_txq->pidx = nm_txq->cidx = 0; 3078 nm_txq->sidx = na->num_tx_desc; 3079 nm_txq->nid = idx; 3080 nm_txq->iqidx = iqidx; 3081 nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3082 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) | 3083 V_TXPKT_VF(vi->viid)); 3084 3085 snprintf(name, sizeof(name), "%d", idx); 3086 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3087 NULL, "netmap tx queue"); 3088 children = SYSCTL_CHILDREN(oid); 3089 3090 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3091 &nm_txq->cntxt_id, 0, "SGE context id of the queue"); 3092 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3093 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I", 3094 "consumer index"); 3095 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 3096 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I", 3097 "producer index"); 3098 3099 return (rc); 3100 } 3101 3102 static int 3103 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq) 3104 { 3105 struct adapter *sc = vi->pi->adapter; 3106 3107 free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba, 3108 nm_txq->desc); 3109 3110 return (0); 3111 } 3112 #endif 3113 3114 static int 3115 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) 3116 { 3117 int rc, cntxt_id; 3118 struct fw_eq_ctrl_cmd c; 3119 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3120 3121 bzero(&c, sizeof(c)); 3122 3123 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | 3124 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | 3125 V_FW_EQ_CTRL_CMD_VFN(0)); 3126 c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC | 3127 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 3128 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); 3129 c.physeqid_pkd = htobe32(0); 3130 c.fetchszm_to_iqid = 3131 htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3132 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | 3133 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); 3134 c.dcaen_to_eqsize = 3135 htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3136 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3137 V_FW_EQ_CTRL_CMD_EQSIZE(qsize)); 3138 c.eqaddr = htobe64(eq->ba); 3139 3140 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3141 if (rc != 0) { 3142 device_printf(sc->dev, 3143 "failed to create control queue %d: %d\n", eq->tx_chan, rc); 3144 return (rc); 3145 } 3146 eq->flags |= EQ_ALLOCATED; 3147 3148 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid)); 3149 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3150 if (cntxt_id >= sc->sge.neq) 3151 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3152 cntxt_id, sc->sge.neq - 1); 3153 sc->sge.eqmap[cntxt_id] = eq; 3154 3155 return (rc); 3156 } 3157 3158 static int 3159 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3160 { 3161 int rc, cntxt_id; 3162 struct fw_eq_eth_cmd c; 3163 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3164 3165 bzero(&c, sizeof(c)); 3166 3167 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | 3168 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | 3169 V_FW_EQ_ETH_CMD_VFN(0)); 3170 c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | 3171 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 3172 c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE | 3173 F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid)); 3174 c.fetchszm_to_iqid = 3175 htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3176 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | 3177 V_FW_EQ_ETH_CMD_IQID(eq->iqid)); 3178 c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3179 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3180 V_FW_EQ_ETH_CMD_EQSIZE(qsize)); 3181 c.eqaddr = htobe64(eq->ba); 3182 3183 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3184 if (rc != 0) { 3185 device_printf(vi->dev, 3186 "failed to create Ethernet egress queue: %d\n", rc); 3187 return (rc); 3188 } 3189 eq->flags |= EQ_ALLOCATED; 3190 3191 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); 3192 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3193 if (cntxt_id >= sc->sge.neq) 3194 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3195 cntxt_id, sc->sge.neq - 1); 3196 sc->sge.eqmap[cntxt_id] = eq; 3197 3198 return (rc); 3199 } 3200 3201 #ifdef TCP_OFFLOAD 3202 static int 3203 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3204 { 3205 int rc, cntxt_id; 3206 struct fw_eq_ofld_cmd c; 3207 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3208 3209 bzero(&c, sizeof(c)); 3210 3211 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | 3212 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | 3213 V_FW_EQ_OFLD_CMD_VFN(0)); 3214 c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | 3215 F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 3216 c.fetchszm_to_iqid = 3217 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3218 V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | 3219 F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); 3220 c.dcaen_to_eqsize = 3221 htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3222 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3223 V_FW_EQ_OFLD_CMD_EQSIZE(qsize)); 3224 c.eqaddr = htobe64(eq->ba); 3225 3226 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3227 if (rc != 0) { 3228 device_printf(vi->dev, 3229 "failed to create egress queue for TCP offload: %d\n", rc); 3230 return (rc); 3231 } 3232 eq->flags |= EQ_ALLOCATED; 3233 3234 eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd)); 3235 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3236 if (cntxt_id >= sc->sge.neq) 3237 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3238 cntxt_id, sc->sge.neq - 1); 3239 sc->sge.eqmap[cntxt_id] = eq; 3240 3241 return (rc); 3242 } 3243 #endif 3244 3245 static int 3246 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3247 { 3248 int rc, qsize; 3249 size_t len; 3250 3251 mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); 3252 3253 qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3254 len = qsize * EQ_ESIZE; 3255 rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, 3256 &eq->ba, (void **)&eq->desc); 3257 if (rc) 3258 return (rc); 3259 3260 eq->pidx = eq->cidx = 0; 3261 eq->equeqidx = eq->dbidx = 0; 3262 eq->doorbells = sc->doorbells; 3263 3264 switch (eq->flags & EQ_TYPEMASK) { 3265 case EQ_CTRL: 3266 rc = ctrl_eq_alloc(sc, eq); 3267 break; 3268 3269 case EQ_ETH: 3270 rc = eth_eq_alloc(sc, vi, eq); 3271 break; 3272 3273 #ifdef TCP_OFFLOAD 3274 case EQ_OFLD: 3275 rc = ofld_eq_alloc(sc, vi, eq); 3276 break; 3277 #endif 3278 3279 default: 3280 panic("%s: invalid eq type %d.", __func__, 3281 eq->flags & EQ_TYPEMASK); 3282 } 3283 if (rc != 0) { 3284 device_printf(sc->dev, 3285 "failed to allocate egress queue(%d): %d\n", 3286 eq->flags & EQ_TYPEMASK, rc); 3287 } 3288 3289 if (isset(&eq->doorbells, DOORBELL_UDB) || 3290 isset(&eq->doorbells, DOORBELL_UDBWC) || 3291 isset(&eq->doorbells, DOORBELL_WCWR)) { 3292 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 3293 uint32_t mask = (1 << s_qpp) - 1; 3294 volatile uint8_t *udb; 3295 3296 udb = sc->udbs_base + UDBS_DB_OFFSET; 3297 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */ 3298 eq->udb_qid = eq->cntxt_id & mask; /* id in page */ 3299 if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE) 3300 clrbit(&eq->doorbells, DOORBELL_WCWR); 3301 else { 3302 udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */ 3303 eq->udb_qid = 0; 3304 } 3305 eq->udb = (volatile void *)udb; 3306 } 3307 3308 return (rc); 3309 } 3310 3311 static int 3312 free_eq(struct adapter *sc, struct sge_eq *eq) 3313 { 3314 int rc; 3315 3316 if (eq->flags & EQ_ALLOCATED) { 3317 switch (eq->flags & EQ_TYPEMASK) { 3318 case EQ_CTRL: 3319 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, 3320 eq->cntxt_id); 3321 break; 3322 3323 case EQ_ETH: 3324 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, 3325 eq->cntxt_id); 3326 break; 3327 3328 #ifdef TCP_OFFLOAD 3329 case EQ_OFLD: 3330 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, 3331 eq->cntxt_id); 3332 break; 3333 #endif 3334 3335 default: 3336 panic("%s: invalid eq type %d.", __func__, 3337 eq->flags & EQ_TYPEMASK); 3338 } 3339 if (rc != 0) { 3340 device_printf(sc->dev, 3341 "failed to free egress queue (%d): %d\n", 3342 eq->flags & EQ_TYPEMASK, rc); 3343 return (rc); 3344 } 3345 eq->flags &= ~EQ_ALLOCATED; 3346 } 3347 3348 free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); 3349 3350 if (mtx_initialized(&eq->eq_lock)) 3351 mtx_destroy(&eq->eq_lock); 3352 3353 bzero(eq, sizeof(*eq)); 3354 return (0); 3355 } 3356 3357 static int 3358 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq, 3359 struct sysctl_oid *oid) 3360 { 3361 int rc; 3362 struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx; 3363 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3364 3365 rc = alloc_eq(sc, vi, &wrq->eq); 3366 if (rc) 3367 return (rc); 3368 3369 wrq->adapter = sc; 3370 TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq); 3371 TAILQ_INIT(&wrq->incomplete_wrs); 3372 STAILQ_INIT(&wrq->wr_list); 3373 wrq->nwr_pending = 0; 3374 wrq->ndesc_needed = 0; 3375 3376 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3377 &wrq->eq.cntxt_id, 0, "SGE context id of the queue"); 3378 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3379 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I", 3380 "consumer index"); 3381 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx", 3382 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I", 3383 "producer index"); 3384 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD, 3385 &wrq->tx_wrs_direct, "# of work requests (direct)"); 3386 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD, 3387 &wrq->tx_wrs_copied, "# of work requests (copied)"); 3388 3389 return (rc); 3390 } 3391 3392 static int 3393 free_wrq(struct adapter *sc, struct sge_wrq *wrq) 3394 { 3395 int rc; 3396 3397 rc = free_eq(sc, &wrq->eq); 3398 if (rc) 3399 return (rc); 3400 3401 bzero(wrq, sizeof(*wrq)); 3402 return (0); 3403 } 3404 3405 static int 3406 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx, 3407 struct sysctl_oid *oid) 3408 { 3409 int rc; 3410 struct port_info *pi = vi->pi; 3411 struct adapter *sc = pi->adapter; 3412 struct sge_eq *eq = &txq->eq; 3413 char name[16]; 3414 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3415 3416 rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx, 3417 M_CXGBE, M_WAITOK); 3418 if (rc != 0) { 3419 device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc); 3420 return (rc); 3421 } 3422 3423 rc = alloc_eq(sc, vi, eq); 3424 if (rc != 0) { 3425 mp_ring_free(txq->r); 3426 txq->r = NULL; 3427 return (rc); 3428 } 3429 3430 /* Can't fail after this point. */ 3431 3432 TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq); 3433 txq->ifp = vi->ifp; 3434 txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK); 3435 txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3436 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) | 3437 V_TXPKT_VF(vi->viid)); 3438 txq->tc_idx = -1; 3439 txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE, 3440 M_ZERO | M_WAITOK); 3441 3442 snprintf(name, sizeof(name), "%d", idx); 3443 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3444 NULL, "tx queue"); 3445 children = SYSCTL_CHILDREN(oid); 3446 3447 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3448 &eq->cntxt_id, 0, "SGE context id of the queue"); 3449 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3450 CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I", 3451 "consumer index"); 3452 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 3453 CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I", 3454 "producer index"); 3455 3456 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc", 3457 CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I", 3458 "traffic class (-1 means none)"); 3459 3460 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, 3461 &txq->txcsum, "# of times hardware assisted with checksum"); 3462 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion", 3463 CTLFLAG_RD, &txq->vlan_insertion, 3464 "# of times hardware inserted 802.1Q tag"); 3465 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, 3466 &txq->tso_wrs, "# of TSO work requests"); 3467 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, 3468 &txq->imm_wrs, "# of work requests with immediate data"); 3469 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, 3470 &txq->sgl_wrs, "# of work requests with direct SGL"); 3471 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, 3472 &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); 3473 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs", 3474 CTLFLAG_RD, &txq->txpkts0_wrs, 3475 "# of txpkts (type 0) work requests"); 3476 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs", 3477 CTLFLAG_RD, &txq->txpkts1_wrs, 3478 "# of txpkts (type 1) work requests"); 3479 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts", 3480 CTLFLAG_RD, &txq->txpkts0_pkts, 3481 "# of frames tx'd using type0 txpkts work requests"); 3482 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts", 3483 CTLFLAG_RD, &txq->txpkts1_pkts, 3484 "# of frames tx'd using type1 txpkts work requests"); 3485 3486 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues", 3487 CTLFLAG_RD, &txq->r->enqueues, 3488 "# of enqueues to the mp_ring for this queue"); 3489 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops", 3490 CTLFLAG_RD, &txq->r->drops, 3491 "# of drops in the mp_ring for this queue"); 3492 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts", 3493 CTLFLAG_RD, &txq->r->starts, 3494 "# of normal consumer starts in the mp_ring for this queue"); 3495 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls", 3496 CTLFLAG_RD, &txq->r->stalls, 3497 "# of consumer stalls in the mp_ring for this queue"); 3498 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts", 3499 CTLFLAG_RD, &txq->r->restarts, 3500 "# of consumer restarts in the mp_ring for this queue"); 3501 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications", 3502 CTLFLAG_RD, &txq->r->abdications, 3503 "# of consumer abdications in the mp_ring for this queue"); 3504 3505 return (0); 3506 } 3507 3508 static int 3509 free_txq(struct vi_info *vi, struct sge_txq *txq) 3510 { 3511 int rc; 3512 struct adapter *sc = vi->pi->adapter; 3513 struct sge_eq *eq = &txq->eq; 3514 3515 rc = free_eq(sc, eq); 3516 if (rc) 3517 return (rc); 3518 3519 sglist_free(txq->gl); 3520 free(txq->sdesc, M_CXGBE); 3521 mp_ring_free(txq->r); 3522 3523 bzero(txq, sizeof(*txq)); 3524 return (0); 3525 } 3526 3527 static void 3528 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) 3529 { 3530 bus_addr_t *ba = arg; 3531 3532 KASSERT(nseg == 1, 3533 ("%s meant for single segment mappings only.", __func__)); 3534 3535 *ba = error ? 0 : segs->ds_addr; 3536 } 3537 3538 static inline void 3539 ring_fl_db(struct adapter *sc, struct sge_fl *fl) 3540 { 3541 uint32_t n, v; 3542 3543 n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx); 3544 MPASS(n > 0); 3545 3546 wmb(); 3547 v = fl->dbval | V_PIDX(n); 3548 if (fl->udb) 3549 *fl->udb = htole32(v); 3550 else 3551 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v); 3552 IDXINCR(fl->dbidx, n, fl->sidx); 3553 } 3554 3555 /* 3556 * Fills up the freelist by allocating up to 'n' buffers. Buffers that are 3557 * recycled do not count towards this allocation budget. 3558 * 3559 * Returns non-zero to indicate that this freelist should be added to the list 3560 * of starving freelists. 3561 */ 3562 static int 3563 refill_fl(struct adapter *sc, struct sge_fl *fl, int n) 3564 { 3565 __be64 *d; 3566 struct fl_sdesc *sd; 3567 uintptr_t pa; 3568 caddr_t cl; 3569 struct cluster_layout *cll; 3570 struct sw_zone_info *swz; 3571 struct cluster_metadata *clm; 3572 uint16_t max_pidx; 3573 uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */ 3574 3575 FL_LOCK_ASSERT_OWNED(fl); 3576 3577 /* 3578 * We always stop at the beginning of the hardware descriptor that's just 3579 * before the one with the hw cidx. This is to avoid hw pidx = hw cidx, 3580 * which would mean an empty freelist to the chip. 3581 */ 3582 max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1; 3583 if (fl->pidx == max_pidx * 8) 3584 return (0); 3585 3586 d = &fl->desc[fl->pidx]; 3587 sd = &fl->sdesc[fl->pidx]; 3588 cll = &fl->cll_def; /* default layout */ 3589 swz = &sc->sge.sw_zone_info[cll->zidx]; 3590 3591 while (n > 0) { 3592 3593 if (sd->cl != NULL) { 3594 3595 if (sd->nmbuf == 0) { 3596 /* 3597 * Fast recycle without involving any atomics on 3598 * the cluster's metadata (if the cluster has 3599 * metadata). This happens when all frames 3600 * received in the cluster were small enough to 3601 * fit within a single mbuf each. 3602 */ 3603 fl->cl_fast_recycled++; 3604 #ifdef INVARIANTS 3605 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 3606 if (clm != NULL) 3607 MPASS(clm->refcount == 1); 3608 #endif 3609 goto recycled_fast; 3610 } 3611 3612 /* 3613 * Cluster is guaranteed to have metadata. Clusters 3614 * without metadata always take the fast recycle path 3615 * when they're recycled. 3616 */ 3617 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 3618 MPASS(clm != NULL); 3619 3620 if (atomic_fetchadd_int(&clm->refcount, -1) == 1) { 3621 fl->cl_recycled++; 3622 counter_u64_add(extfree_rels, 1); 3623 goto recycled; 3624 } 3625 sd->cl = NULL; /* gave up my reference */ 3626 } 3627 MPASS(sd->cl == NULL); 3628 alloc: 3629 cl = uma_zalloc(swz->zone, M_NOWAIT); 3630 if (__predict_false(cl == NULL)) { 3631 if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 || 3632 fl->cll_def.zidx == fl->cll_alt.zidx) 3633 break; 3634 3635 /* fall back to the safe zone */ 3636 cll = &fl->cll_alt; 3637 swz = &sc->sge.sw_zone_info[cll->zidx]; 3638 goto alloc; 3639 } 3640 fl->cl_allocated++; 3641 n--; 3642 3643 pa = pmap_kextract((vm_offset_t)cl); 3644 pa += cll->region1; 3645 sd->cl = cl; 3646 sd->cll = *cll; 3647 *d = htobe64(pa | cll->hwidx); 3648 clm = cl_metadata(sc, fl, cll, cl); 3649 if (clm != NULL) { 3650 recycled: 3651 #ifdef INVARIANTS 3652 clm->sd = sd; 3653 #endif 3654 clm->refcount = 1; 3655 } 3656 sd->nmbuf = 0; 3657 recycled_fast: 3658 d++; 3659 sd++; 3660 if (__predict_false(++fl->pidx % 8 == 0)) { 3661 uint16_t pidx = fl->pidx / 8; 3662 3663 if (__predict_false(pidx == fl->sidx)) { 3664 fl->pidx = 0; 3665 pidx = 0; 3666 sd = fl->sdesc; 3667 d = fl->desc; 3668 } 3669 if (pidx == max_pidx) 3670 break; 3671 3672 if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4) 3673 ring_fl_db(sc, fl); 3674 } 3675 } 3676 3677 if (fl->pidx / 8 != fl->dbidx) 3678 ring_fl_db(sc, fl); 3679 3680 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); 3681 } 3682 3683 /* 3684 * Attempt to refill all starving freelists. 3685 */ 3686 static void 3687 refill_sfl(void *arg) 3688 { 3689 struct adapter *sc = arg; 3690 struct sge_fl *fl, *fl_temp; 3691 3692 mtx_assert(&sc->sfl_lock, MA_OWNED); 3693 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { 3694 FL_LOCK(fl); 3695 refill_fl(sc, fl, 64); 3696 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { 3697 TAILQ_REMOVE(&sc->sfl, fl, link); 3698 fl->flags &= ~FL_STARVING; 3699 } 3700 FL_UNLOCK(fl); 3701 } 3702 3703 if (!TAILQ_EMPTY(&sc->sfl)) 3704 callout_schedule(&sc->sfl_callout, hz / 5); 3705 } 3706 3707 static int 3708 alloc_fl_sdesc(struct sge_fl *fl) 3709 { 3710 3711 fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE, 3712 M_ZERO | M_WAITOK); 3713 3714 return (0); 3715 } 3716 3717 static void 3718 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl) 3719 { 3720 struct fl_sdesc *sd; 3721 struct cluster_metadata *clm; 3722 struct cluster_layout *cll; 3723 int i; 3724 3725 sd = fl->sdesc; 3726 for (i = 0; i < fl->sidx * 8; i++, sd++) { 3727 if (sd->cl == NULL) 3728 continue; 3729 3730 cll = &sd->cll; 3731 clm = cl_metadata(sc, fl, cll, sd->cl); 3732 if (sd->nmbuf == 0) 3733 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 3734 else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) { 3735 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 3736 counter_u64_add(extfree_rels, 1); 3737 } 3738 sd->cl = NULL; 3739 } 3740 3741 free(fl->sdesc, M_CXGBE); 3742 fl->sdesc = NULL; 3743 } 3744 3745 static inline void 3746 get_pkt_gl(struct mbuf *m, struct sglist *gl) 3747 { 3748 int rc; 3749 3750 M_ASSERTPKTHDR(m); 3751 3752 sglist_reset(gl); 3753 rc = sglist_append_mbuf(gl, m); 3754 if (__predict_false(rc != 0)) { 3755 panic("%s: mbuf %p (%d segs) was vetted earlier but now fails " 3756 "with %d.", __func__, m, mbuf_nsegs(m), rc); 3757 } 3758 3759 KASSERT(gl->sg_nseg == mbuf_nsegs(m), 3760 ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m, 3761 mbuf_nsegs(m), gl->sg_nseg)); 3762 KASSERT(gl->sg_nseg > 0 && 3763 gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS), 3764 ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__, 3765 gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)); 3766 } 3767 3768 /* 3769 * len16 for a txpkt WR with a GL. Includes the firmware work request header. 3770 */ 3771 static inline u_int 3772 txpkt_len16(u_int nsegs, u_int tso) 3773 { 3774 u_int n; 3775 3776 MPASS(nsegs > 0); 3777 3778 nsegs--; /* first segment is part of ulptx_sgl */ 3779 n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) + 3780 sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 3781 if (tso) 3782 n += sizeof(struct cpl_tx_pkt_lso_core); 3783 3784 return (howmany(n, 16)); 3785 } 3786 3787 /* 3788 * len16 for a txpkts type 0 WR with a GL. Does not include the firmware work 3789 * request header. 3790 */ 3791 static inline u_int 3792 txpkts0_len16(u_int nsegs) 3793 { 3794 u_int n; 3795 3796 MPASS(nsegs > 0); 3797 3798 nsegs--; /* first segment is part of ulptx_sgl */ 3799 n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) + 3800 sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 3801 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 3802 3803 return (howmany(n, 16)); 3804 } 3805 3806 /* 3807 * len16 for a txpkts type 1 WR with a GL. Does not include the firmware work 3808 * request header. 3809 */ 3810 static inline u_int 3811 txpkts1_len16(void) 3812 { 3813 u_int n; 3814 3815 n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl); 3816 3817 return (howmany(n, 16)); 3818 } 3819 3820 static inline u_int 3821 imm_payload(u_int ndesc) 3822 { 3823 u_int n; 3824 3825 n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) - 3826 sizeof(struct cpl_tx_pkt_core); 3827 3828 return (n); 3829 } 3830 3831 /* 3832 * Write a txpkt WR for this packet to the hardware descriptors, update the 3833 * software descriptor, and advance the pidx. It is guaranteed that enough 3834 * descriptors are available. 3835 * 3836 * The return value is the # of hardware descriptors used. 3837 */ 3838 static u_int 3839 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr, 3840 struct mbuf *m0, u_int available) 3841 { 3842 struct sge_eq *eq = &txq->eq; 3843 struct tx_sdesc *txsd; 3844 struct cpl_tx_pkt_core *cpl; 3845 uint32_t ctrl; /* used in many unrelated places */ 3846 uint64_t ctrl1; 3847 int len16, ndesc, pktlen, nsegs; 3848 caddr_t dst; 3849 3850 TXQ_LOCK_ASSERT_OWNED(txq); 3851 M_ASSERTPKTHDR(m0); 3852 MPASS(available > 0 && available < eq->sidx); 3853 3854 len16 = mbuf_len16(m0); 3855 nsegs = mbuf_nsegs(m0); 3856 pktlen = m0->m_pkthdr.len; 3857 ctrl = sizeof(struct cpl_tx_pkt_core); 3858 if (needs_tso(m0)) 3859 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 3860 else if (pktlen <= imm_payload(2) && available >= 2) { 3861 /* Immediate data. Recalculate len16 and set nsegs to 0. */ 3862 ctrl += pktlen; 3863 len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) + 3864 sizeof(struct cpl_tx_pkt_core) + pktlen, 16); 3865 nsegs = 0; 3866 } 3867 ndesc = howmany(len16, EQ_ESIZE / 16); 3868 MPASS(ndesc <= available); 3869 3870 /* Firmware work request header */ 3871 MPASS(wr == (void *)&eq->desc[eq->pidx]); 3872 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | 3873 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 3874 3875 ctrl = V_FW_WR_LEN16(len16); 3876 wr->equiq_to_len16 = htobe32(ctrl); 3877 wr->r3 = 0; 3878 3879 if (needs_tso(m0)) { 3880 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 3881 3882 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 3883 m0->m_pkthdr.l4hlen > 0, 3884 ("%s: mbuf %p needs TSO but missing header lengths", 3885 __func__, m0)); 3886 3887 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 3888 F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) 3889 | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 3890 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 3891 ctrl |= V_LSO_ETHHDR_LEN(1); 3892 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 3893 ctrl |= F_LSO_IPV6; 3894 3895 lso->lso_ctrl = htobe32(ctrl); 3896 lso->ipid_ofst = htobe16(0); 3897 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 3898 lso->seqno_offset = htobe32(0); 3899 lso->len = htobe32(pktlen); 3900 3901 cpl = (void *)(lso + 1); 3902 3903 txq->tso_wrs++; 3904 } else 3905 cpl = (void *)(wr + 1); 3906 3907 /* Checksum offload */ 3908 ctrl1 = 0; 3909 if (needs_l3_csum(m0) == 0) 3910 ctrl1 |= F_TXPKT_IPCSUM_DIS; 3911 if (needs_l4_csum(m0) == 0) 3912 ctrl1 |= F_TXPKT_L4CSUM_DIS; 3913 if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 3914 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 3915 txq->txcsum++; /* some hardware assistance provided */ 3916 3917 /* VLAN tag insertion */ 3918 if (needs_vlan_insertion(m0)) { 3919 ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 3920 txq->vlan_insertion++; 3921 } 3922 3923 /* CPL header */ 3924 cpl->ctrl0 = txq->cpl_ctrl0; 3925 cpl->pack = 0; 3926 cpl->len = htobe16(pktlen); 3927 cpl->ctrl1 = htobe64(ctrl1); 3928 3929 /* SGL */ 3930 dst = (void *)(cpl + 1); 3931 if (nsegs > 0) { 3932 3933 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); 3934 txq->sgl_wrs++; 3935 } else { 3936 struct mbuf *m; 3937 3938 for (m = m0; m != NULL; m = m->m_next) { 3939 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); 3940 #ifdef INVARIANTS 3941 pktlen -= m->m_len; 3942 #endif 3943 } 3944 #ifdef INVARIANTS 3945 KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen)); 3946 #endif 3947 txq->imm_wrs++; 3948 } 3949 3950 txq->txpkt_wrs++; 3951 3952 txsd = &txq->sdesc[eq->pidx]; 3953 txsd->m = m0; 3954 txsd->desc_used = ndesc; 3955 3956 return (ndesc); 3957 } 3958 3959 static int 3960 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available) 3961 { 3962 u_int needed, nsegs1, nsegs2, l1, l2; 3963 3964 if (cannot_use_txpkts(m) || cannot_use_txpkts(n)) 3965 return (1); 3966 3967 nsegs1 = mbuf_nsegs(m); 3968 nsegs2 = mbuf_nsegs(n); 3969 if (nsegs1 + nsegs2 == 2) { 3970 txp->wr_type = 1; 3971 l1 = l2 = txpkts1_len16(); 3972 } else { 3973 txp->wr_type = 0; 3974 l1 = txpkts0_len16(nsegs1); 3975 l2 = txpkts0_len16(nsegs2); 3976 } 3977 txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2; 3978 needed = howmany(txp->len16, EQ_ESIZE / 16); 3979 if (needed > SGE_MAX_WR_NDESC || needed > available) 3980 return (1); 3981 3982 txp->plen = m->m_pkthdr.len + n->m_pkthdr.len; 3983 if (txp->plen > 65535) 3984 return (1); 3985 3986 txp->npkt = 2; 3987 set_mbuf_len16(m, l1); 3988 set_mbuf_len16(n, l2); 3989 3990 return (0); 3991 } 3992 3993 static int 3994 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available) 3995 { 3996 u_int plen, len16, needed, nsegs; 3997 3998 MPASS(txp->wr_type == 0 || txp->wr_type == 1); 3999 4000 nsegs = mbuf_nsegs(m); 4001 if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1)) 4002 return (1); 4003 4004 plen = txp->plen + m->m_pkthdr.len; 4005 if (plen > 65535) 4006 return (1); 4007 4008 if (txp->wr_type == 0) 4009 len16 = txpkts0_len16(nsegs); 4010 else 4011 len16 = txpkts1_len16(); 4012 needed = howmany(txp->len16 + len16, EQ_ESIZE / 16); 4013 if (needed > SGE_MAX_WR_NDESC || needed > available) 4014 return (1); 4015 4016 txp->npkt++; 4017 txp->plen = plen; 4018 txp->len16 += len16; 4019 set_mbuf_len16(m, len16); 4020 4021 return (0); 4022 } 4023 4024 /* 4025 * Write a txpkts WR for the packets in txp to the hardware descriptors, update 4026 * the software descriptor, and advance the pidx. It is guaranteed that enough 4027 * descriptors are available. 4028 * 4029 * The return value is the # of hardware descriptors used. 4030 */ 4031 static u_int 4032 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr, 4033 struct mbuf *m0, const struct txpkts *txp, u_int available) 4034 { 4035 struct sge_eq *eq = &txq->eq; 4036 struct tx_sdesc *txsd; 4037 struct cpl_tx_pkt_core *cpl; 4038 uint32_t ctrl; 4039 uint64_t ctrl1; 4040 int ndesc, checkwrap; 4041 struct mbuf *m; 4042 void *flitp; 4043 4044 TXQ_LOCK_ASSERT_OWNED(txq); 4045 MPASS(txp->npkt > 0); 4046 MPASS(txp->plen < 65536); 4047 MPASS(m0 != NULL); 4048 MPASS(m0->m_nextpkt != NULL); 4049 MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16)); 4050 MPASS(available > 0 && available < eq->sidx); 4051 4052 ndesc = howmany(txp->len16, EQ_ESIZE / 16); 4053 MPASS(ndesc <= available); 4054 4055 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4056 wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)); 4057 ctrl = V_FW_WR_LEN16(txp->len16); 4058 wr->equiq_to_len16 = htobe32(ctrl); 4059 wr->plen = htobe16(txp->plen); 4060 wr->npkt = txp->npkt; 4061 wr->r3 = 0; 4062 wr->type = txp->wr_type; 4063 flitp = wr + 1; 4064 4065 /* 4066 * At this point we are 16B into a hardware descriptor. If checkwrap is 4067 * set then we know the WR is going to wrap around somewhere. We'll 4068 * check for that at appropriate points. 4069 */ 4070 checkwrap = eq->sidx - ndesc < eq->pidx; 4071 for (m = m0; m != NULL; m = m->m_nextpkt) { 4072 if (txp->wr_type == 0) { 4073 struct ulp_txpkt *ulpmc; 4074 struct ulptx_idata *ulpsc; 4075 4076 /* ULP master command */ 4077 ulpmc = flitp; 4078 ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) | 4079 V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid)); 4080 ulpmc->len = htobe32(mbuf_len16(m)); 4081 4082 /* ULP subcommand */ 4083 ulpsc = (void *)(ulpmc + 1); 4084 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) | 4085 F_ULP_TX_SC_MORE); 4086 ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); 4087 4088 cpl = (void *)(ulpsc + 1); 4089 if (checkwrap && 4090 (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx]) 4091 cpl = (void *)&eq->desc[0]; 4092 txq->txpkts0_pkts += txp->npkt; 4093 txq->txpkts0_wrs++; 4094 } else { 4095 cpl = flitp; 4096 txq->txpkts1_pkts += txp->npkt; 4097 txq->txpkts1_wrs++; 4098 } 4099 4100 /* Checksum offload */ 4101 ctrl1 = 0; 4102 if (needs_l3_csum(m) == 0) 4103 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4104 if (needs_l4_csum(m) == 0) 4105 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4106 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4107 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4108 txq->txcsum++; /* some hardware assistance provided */ 4109 4110 /* VLAN tag insertion */ 4111 if (needs_vlan_insertion(m)) { 4112 ctrl1 |= F_TXPKT_VLAN_VLD | 4113 V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); 4114 txq->vlan_insertion++; 4115 } 4116 4117 /* CPL header */ 4118 cpl->ctrl0 = txq->cpl_ctrl0; 4119 cpl->pack = 0; 4120 cpl->len = htobe16(m->m_pkthdr.len); 4121 cpl->ctrl1 = htobe64(ctrl1); 4122 4123 flitp = cpl + 1; 4124 if (checkwrap && 4125 (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx]) 4126 flitp = (void *)&eq->desc[0]; 4127 4128 write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap); 4129 4130 } 4131 4132 txsd = &txq->sdesc[eq->pidx]; 4133 txsd->m = m0; 4134 txsd->desc_used = ndesc; 4135 4136 return (ndesc); 4137 } 4138 4139 /* 4140 * If the SGL ends on an address that is not 16 byte aligned, this function will 4141 * add a 0 filled flit at the end. 4142 */ 4143 static void 4144 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap) 4145 { 4146 struct sge_eq *eq = &txq->eq; 4147 struct sglist *gl = txq->gl; 4148 struct sglist_seg *seg; 4149 __be64 *flitp, *wrap; 4150 struct ulptx_sgl *usgl; 4151 int i, nflits, nsegs; 4152 4153 KASSERT(((uintptr_t)(*to) & 0xf) == 0, 4154 ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); 4155 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 4156 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 4157 4158 get_pkt_gl(m, gl); 4159 nsegs = gl->sg_nseg; 4160 MPASS(nsegs > 0); 4161 4162 nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2; 4163 flitp = (__be64 *)(*to); 4164 wrap = (__be64 *)(&eq->desc[eq->sidx]); 4165 seg = &gl->sg_segs[0]; 4166 usgl = (void *)flitp; 4167 4168 /* 4169 * We start at a 16 byte boundary somewhere inside the tx descriptor 4170 * ring, so we're at least 16 bytes away from the status page. There is 4171 * no chance of a wrap around in the middle of usgl (which is 16 bytes). 4172 */ 4173 4174 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 4175 V_ULPTX_NSGE(nsegs)); 4176 usgl->len0 = htobe32(seg->ss_len); 4177 usgl->addr0 = htobe64(seg->ss_paddr); 4178 seg++; 4179 4180 if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) { 4181 4182 /* Won't wrap around at all */ 4183 4184 for (i = 0; i < nsegs - 1; i++, seg++) { 4185 usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len); 4186 usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr); 4187 } 4188 if (i & 1) 4189 usgl->sge[i / 2].len[1] = htobe32(0); 4190 flitp += nflits; 4191 } else { 4192 4193 /* Will wrap somewhere in the rest of the SGL */ 4194 4195 /* 2 flits already written, write the rest flit by flit */ 4196 flitp = (void *)(usgl + 1); 4197 for (i = 0; i < nflits - 2; i++) { 4198 if (flitp == wrap) 4199 flitp = (void *)eq->desc; 4200 *flitp++ = get_flit(seg, nsegs - 1, i); 4201 } 4202 } 4203 4204 if (nflits & 1) { 4205 MPASS(((uintptr_t)flitp) & 0xf); 4206 *flitp++ = 0; 4207 } 4208 4209 MPASS((((uintptr_t)flitp) & 0xf) == 0); 4210 if (__predict_false(flitp == wrap)) 4211 *to = (void *)eq->desc; 4212 else 4213 *to = (void *)flitp; 4214 } 4215 4216 static inline void 4217 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) 4218 { 4219 4220 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 4221 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 4222 4223 if (__predict_true((uintptr_t)(*to) + len <= 4224 (uintptr_t)&eq->desc[eq->sidx])) { 4225 bcopy(from, *to, len); 4226 (*to) += len; 4227 } else { 4228 int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to); 4229 4230 bcopy(from, *to, portion); 4231 from += portion; 4232 portion = len - portion; /* remaining */ 4233 bcopy(from, (void *)eq->desc, portion); 4234 (*to) = (caddr_t)eq->desc + portion; 4235 } 4236 } 4237 4238 static inline void 4239 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n) 4240 { 4241 u_int db; 4242 4243 MPASS(n > 0); 4244 4245 db = eq->doorbells; 4246 if (n > 1) 4247 clrbit(&db, DOORBELL_WCWR); 4248 wmb(); 4249 4250 switch (ffs(db) - 1) { 4251 case DOORBELL_UDB: 4252 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 4253 break; 4254 4255 case DOORBELL_WCWR: { 4256 volatile uint64_t *dst, *src; 4257 int i; 4258 4259 /* 4260 * Queues whose 128B doorbell segment fits in the page do not 4261 * use relative qid (udb_qid is always 0). Only queues with 4262 * doorbell segments can do WCWR. 4263 */ 4264 KASSERT(eq->udb_qid == 0 && n == 1, 4265 ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p", 4266 __func__, eq->doorbells, n, eq->dbidx, eq)); 4267 4268 dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET - 4269 UDBS_DB_OFFSET); 4270 i = eq->dbidx; 4271 src = (void *)&eq->desc[i]; 4272 while (src != (void *)&eq->desc[i + 1]) 4273 *dst++ = *src++; 4274 wmb(); 4275 break; 4276 } 4277 4278 case DOORBELL_UDBWC: 4279 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 4280 wmb(); 4281 break; 4282 4283 case DOORBELL_KDB: 4284 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), 4285 V_QID(eq->cntxt_id) | V_PIDX(n)); 4286 break; 4287 } 4288 4289 IDXINCR(eq->dbidx, n, eq->sidx); 4290 } 4291 4292 static inline u_int 4293 reclaimable_tx_desc(struct sge_eq *eq) 4294 { 4295 uint16_t hw_cidx; 4296 4297 hw_cidx = read_hw_cidx(eq); 4298 return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx)); 4299 } 4300 4301 static inline u_int 4302 total_available_tx_desc(struct sge_eq *eq) 4303 { 4304 uint16_t hw_cidx, pidx; 4305 4306 hw_cidx = read_hw_cidx(eq); 4307 pidx = eq->pidx; 4308 4309 if (pidx == hw_cidx) 4310 return (eq->sidx - 1); 4311 else 4312 return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1); 4313 } 4314 4315 static inline uint16_t 4316 read_hw_cidx(struct sge_eq *eq) 4317 { 4318 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 4319 uint16_t cidx = spg->cidx; /* stable snapshot */ 4320 4321 return (be16toh(cidx)); 4322 } 4323 4324 /* 4325 * Reclaim 'n' descriptors approximately. 4326 */ 4327 static u_int 4328 reclaim_tx_descs(struct sge_txq *txq, u_int n) 4329 { 4330 struct tx_sdesc *txsd; 4331 struct sge_eq *eq = &txq->eq; 4332 u_int can_reclaim, reclaimed; 4333 4334 TXQ_LOCK_ASSERT_OWNED(txq); 4335 MPASS(n > 0); 4336 4337 reclaimed = 0; 4338 can_reclaim = reclaimable_tx_desc(eq); 4339 while (can_reclaim && reclaimed < n) { 4340 int ndesc; 4341 struct mbuf *m, *nextpkt; 4342 4343 txsd = &txq->sdesc[eq->cidx]; 4344 ndesc = txsd->desc_used; 4345 4346 /* Firmware doesn't return "partial" credits. */ 4347 KASSERT(can_reclaim >= ndesc, 4348 ("%s: unexpected number of credits: %d, %d", 4349 __func__, can_reclaim, ndesc)); 4350 4351 for (m = txsd->m; m != NULL; m = nextpkt) { 4352 nextpkt = m->m_nextpkt; 4353 m->m_nextpkt = NULL; 4354 m_freem(m); 4355 } 4356 reclaimed += ndesc; 4357 can_reclaim -= ndesc; 4358 IDXINCR(eq->cidx, ndesc, eq->sidx); 4359 } 4360 4361 return (reclaimed); 4362 } 4363 4364 static void 4365 tx_reclaim(void *arg, int n) 4366 { 4367 struct sge_txq *txq = arg; 4368 struct sge_eq *eq = &txq->eq; 4369 4370 do { 4371 if (TXQ_TRYLOCK(txq) == 0) 4372 break; 4373 n = reclaim_tx_descs(txq, 32); 4374 if (eq->cidx == eq->pidx) 4375 eq->equeqidx = eq->pidx; 4376 TXQ_UNLOCK(txq); 4377 } while (n > 0); 4378 } 4379 4380 static __be64 4381 get_flit(struct sglist_seg *segs, int nsegs, int idx) 4382 { 4383 int i = (idx / 3) * 2; 4384 4385 switch (idx % 3) { 4386 case 0: { 4387 __be64 rc; 4388 4389 rc = htobe32(segs[i].ss_len); 4390 if (i + 1 < nsegs) 4391 rc |= (uint64_t)htobe32(segs[i + 1].ss_len) << 32; 4392 4393 return (rc); 4394 } 4395 case 1: 4396 return (htobe64(segs[i].ss_paddr)); 4397 case 2: 4398 return (htobe64(segs[i + 1].ss_paddr)); 4399 } 4400 4401 return (0); 4402 } 4403 4404 static void 4405 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp) 4406 { 4407 int8_t zidx, hwidx, idx; 4408 uint16_t region1, region3; 4409 int spare, spare_needed, n; 4410 struct sw_zone_info *swz; 4411 struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0]; 4412 4413 /* 4414 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize 4415 * large enough for the max payload and cluster metadata. Otherwise 4416 * settle for the largest bufsize that leaves enough room in the cluster 4417 * for metadata. 4418 * 4419 * Without buffer packing: Look for the smallest zone which has a 4420 * bufsize large enough for the max payload. Settle for the largest 4421 * bufsize available if there's nothing big enough for max payload. 4422 */ 4423 spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0; 4424 swz = &sc->sge.sw_zone_info[0]; 4425 hwidx = -1; 4426 for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) { 4427 if (swz->size > largest_rx_cluster) { 4428 if (__predict_true(hwidx != -1)) 4429 break; 4430 4431 /* 4432 * This is a misconfiguration. largest_rx_cluster is 4433 * preventing us from finding a refill source. See 4434 * dev.t5nex.<n>.buffer_sizes to figure out why. 4435 */ 4436 device_printf(sc->dev, "largest_rx_cluster=%u leaves no" 4437 " refill source for fl %p (dma %u). Ignored.\n", 4438 largest_rx_cluster, fl, maxp); 4439 } 4440 for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) { 4441 hwb = &hwb_list[idx]; 4442 spare = swz->size - hwb->size; 4443 if (spare < spare_needed) 4444 continue; 4445 4446 hwidx = idx; /* best option so far */ 4447 if (hwb->size >= maxp) { 4448 4449 if ((fl->flags & FL_BUF_PACKING) == 0) 4450 goto done; /* stop looking (not packing) */ 4451 4452 if (swz->size >= safest_rx_cluster) 4453 goto done; /* stop looking (packing) */ 4454 } 4455 break; /* keep looking, next zone */ 4456 } 4457 } 4458 done: 4459 /* A usable hwidx has been located. */ 4460 MPASS(hwidx != -1); 4461 hwb = &hwb_list[hwidx]; 4462 zidx = hwb->zidx; 4463 swz = &sc->sge.sw_zone_info[zidx]; 4464 region1 = 0; 4465 region3 = swz->size - hwb->size; 4466 4467 /* 4468 * Stay within this zone and see if there is a better match when mbuf 4469 * inlining is allowed. Remember that the hwidx's are sorted in 4470 * decreasing order of size (so in increasing order of spare area). 4471 */ 4472 for (idx = hwidx; idx != -1; idx = hwb->next) { 4473 hwb = &hwb_list[idx]; 4474 spare = swz->size - hwb->size; 4475 4476 if (allow_mbufs_in_cluster == 0 || hwb->size < maxp) 4477 break; 4478 4479 /* 4480 * Do not inline mbufs if doing so would violate the pad/pack 4481 * boundary alignment requirement. 4482 */ 4483 if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0) 4484 continue; 4485 if (fl->flags & FL_BUF_PACKING && 4486 (MSIZE % sc->params.sge.pack_boundary) != 0) 4487 continue; 4488 4489 if (spare < CL_METADATA_SIZE + MSIZE) 4490 continue; 4491 n = (spare - CL_METADATA_SIZE) / MSIZE; 4492 if (n > howmany(hwb->size, maxp)) 4493 break; 4494 4495 hwidx = idx; 4496 if (fl->flags & FL_BUF_PACKING) { 4497 region1 = n * MSIZE; 4498 region3 = spare - region1; 4499 } else { 4500 region1 = MSIZE; 4501 region3 = spare - region1; 4502 break; 4503 } 4504 } 4505 4506 KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES, 4507 ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp)); 4508 KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES, 4509 ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp)); 4510 KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 == 4511 sc->sge.sw_zone_info[zidx].size, 4512 ("%s: bad buffer layout for fl %p, maxp %d. " 4513 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4514 sc->sge.sw_zone_info[zidx].size, region1, 4515 sc->sge.hw_buf_info[hwidx].size, region3)); 4516 if (fl->flags & FL_BUF_PACKING || region1 > 0) { 4517 KASSERT(region3 >= CL_METADATA_SIZE, 4518 ("%s: no room for metadata. fl %p, maxp %d; " 4519 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4520 sc->sge.sw_zone_info[zidx].size, region1, 4521 sc->sge.hw_buf_info[hwidx].size, region3)); 4522 KASSERT(region1 % MSIZE == 0, 4523 ("%s: bad mbuf region for fl %p, maxp %d. " 4524 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4525 sc->sge.sw_zone_info[zidx].size, region1, 4526 sc->sge.hw_buf_info[hwidx].size, region3)); 4527 } 4528 4529 fl->cll_def.zidx = zidx; 4530 fl->cll_def.hwidx = hwidx; 4531 fl->cll_def.region1 = region1; 4532 fl->cll_def.region3 = region3; 4533 } 4534 4535 static void 4536 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl) 4537 { 4538 struct sge *s = &sc->sge; 4539 struct hw_buf_info *hwb; 4540 struct sw_zone_info *swz; 4541 int spare; 4542 int8_t hwidx; 4543 4544 if (fl->flags & FL_BUF_PACKING) 4545 hwidx = s->safe_hwidx2; /* with room for metadata */ 4546 else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) { 4547 hwidx = s->safe_hwidx2; 4548 hwb = &s->hw_buf_info[hwidx]; 4549 swz = &s->sw_zone_info[hwb->zidx]; 4550 spare = swz->size - hwb->size; 4551 4552 /* no good if there isn't room for an mbuf as well */ 4553 if (spare < CL_METADATA_SIZE + MSIZE) 4554 hwidx = s->safe_hwidx1; 4555 } else 4556 hwidx = s->safe_hwidx1; 4557 4558 if (hwidx == -1) { 4559 /* No fallback source */ 4560 fl->cll_alt.hwidx = -1; 4561 fl->cll_alt.zidx = -1; 4562 4563 return; 4564 } 4565 4566 hwb = &s->hw_buf_info[hwidx]; 4567 swz = &s->sw_zone_info[hwb->zidx]; 4568 spare = swz->size - hwb->size; 4569 fl->cll_alt.hwidx = hwidx; 4570 fl->cll_alt.zidx = hwb->zidx; 4571 if (allow_mbufs_in_cluster && 4572 (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0)) 4573 fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE; 4574 else 4575 fl->cll_alt.region1 = 0; 4576 fl->cll_alt.region3 = spare - fl->cll_alt.region1; 4577 } 4578 4579 static void 4580 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) 4581 { 4582 mtx_lock(&sc->sfl_lock); 4583 FL_LOCK(fl); 4584 if ((fl->flags & FL_DOOMED) == 0) { 4585 fl->flags |= FL_STARVING; 4586 TAILQ_INSERT_TAIL(&sc->sfl, fl, link); 4587 callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc); 4588 } 4589 FL_UNLOCK(fl); 4590 mtx_unlock(&sc->sfl_lock); 4591 } 4592 4593 static void 4594 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq) 4595 { 4596 struct sge_wrq *wrq = (void *)eq; 4597 4598 atomic_readandclear_int(&eq->equiq); 4599 taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task); 4600 } 4601 4602 static void 4603 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq) 4604 { 4605 struct sge_txq *txq = (void *)eq; 4606 4607 MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH); 4608 4609 atomic_readandclear_int(&eq->equiq); 4610 mp_ring_check_drainage(txq->r, 0); 4611 taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task); 4612 } 4613 4614 static int 4615 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, 4616 struct mbuf *m) 4617 { 4618 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); 4619 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); 4620 struct adapter *sc = iq->adapter; 4621 struct sge *s = &sc->sge; 4622 struct sge_eq *eq; 4623 static void (*h[])(struct adapter *, struct sge_eq *) = {NULL, 4624 &handle_wrq_egr_update, &handle_eth_egr_update, 4625 &handle_wrq_egr_update}; 4626 4627 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 4628 rss->opcode)); 4629 4630 eq = s->eqmap[qid - s->eq_start]; 4631 (*h[eq->flags & EQ_TYPEMASK])(sc, eq); 4632 4633 return (0); 4634 } 4635 4636 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */ 4637 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \ 4638 offsetof(struct cpl_fw6_msg, data)); 4639 4640 static int 4641 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 4642 { 4643 struct adapter *sc = iq->adapter; 4644 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); 4645 4646 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 4647 rss->opcode)); 4648 4649 if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) { 4650 const struct rss_header *rss2; 4651 4652 rss2 = (const struct rss_header *)&cpl->data[0]; 4653 return (sc->cpl_handler[rss2->opcode](iq, rss2, m)); 4654 } 4655 4656 return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0])); 4657 } 4658 4659 static int 4660 sysctl_uint16(SYSCTL_HANDLER_ARGS) 4661 { 4662 uint16_t *id = arg1; 4663 int i = *id; 4664 4665 return sysctl_handle_int(oidp, &i, 0, req); 4666 } 4667 4668 static int 4669 sysctl_bufsizes(SYSCTL_HANDLER_ARGS) 4670 { 4671 struct sge *s = arg1; 4672 struct hw_buf_info *hwb = &s->hw_buf_info[0]; 4673 struct sw_zone_info *swz = &s->sw_zone_info[0]; 4674 int i, rc; 4675 struct sbuf sb; 4676 char c; 4677 4678 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 4679 for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) { 4680 if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster) 4681 c = '*'; 4682 else 4683 c = '\0'; 4684 4685 sbuf_printf(&sb, "%u%c ", hwb->size, c); 4686 } 4687 sbuf_trim(&sb); 4688 sbuf_finish(&sb); 4689 rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 4690 sbuf_delete(&sb); 4691 return (rc); 4692 } 4693 4694 static int 4695 sysctl_tc(SYSCTL_HANDLER_ARGS) 4696 { 4697 struct vi_info *vi = arg1; 4698 struct port_info *pi; 4699 struct adapter *sc; 4700 struct sge_txq *txq; 4701 struct tx_sched_class *tc; 4702 int qidx = arg2, rc, tc_idx; 4703 uint32_t fw_queue, fw_class; 4704 4705 MPASS(qidx >= 0 && qidx < vi->ntxq); 4706 pi = vi->pi; 4707 sc = pi->adapter; 4708 txq = &sc->sge.txq[vi->first_txq + qidx]; 4709 4710 tc_idx = txq->tc_idx; 4711 rc = sysctl_handle_int(oidp, &tc_idx, 0, req); 4712 if (rc != 0 || req->newptr == NULL) 4713 return (rc); 4714 4715 /* Note that -1 is legitimate input (it means unbind). */ 4716 if (tc_idx < -1 || tc_idx >= sc->chip_params->nsched_cls) 4717 return (EINVAL); 4718 4719 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4stc"); 4720 if (rc) 4721 return (rc); 4722 4723 if (tc_idx == txq->tc_idx) { 4724 rc = 0; /* No change, nothing to do. */ 4725 goto done; 4726 } 4727 4728 fw_queue = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 4729 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) | 4730 V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id); 4731 4732 if (tc_idx == -1) 4733 fw_class = 0xffffffff; /* Unbind. */ 4734 else { 4735 /* 4736 * Bind to a different class. Ethernet txq's are only allowed 4737 * to bind to cl-rl mode-class for now. XXX: too restrictive. 4738 */ 4739 tc = &pi->tc[tc_idx]; 4740 if (tc->flags & TX_SC_OK && 4741 tc->params.level == SCHED_CLASS_LEVEL_CL_RL && 4742 tc->params.mode == SCHED_CLASS_MODE_CLASS) { 4743 /* Ok to proceed. */ 4744 fw_class = tc_idx; 4745 } else { 4746 rc = tc->flags & TX_SC_OK ? EBUSY : ENXIO; 4747 goto done; 4748 } 4749 } 4750 4751 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, &fw_class); 4752 if (rc == 0) { 4753 if (txq->tc_idx != -1) { 4754 tc = &pi->tc[txq->tc_idx]; 4755 MPASS(tc->refcount > 0); 4756 tc->refcount--; 4757 } 4758 if (tc_idx != -1) { 4759 tc = &pi->tc[tc_idx]; 4760 tc->refcount++; 4761 } 4762 txq->tc_idx = tc_idx; 4763 } 4764 done: 4765 end_synchronized_op(sc, 0); 4766 return (rc); 4767 } 4768