xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 3f68b24e10aeb1a1cd85f2d349da44138d52c501)
1 /*-
2  * Copyright (c) 2011 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #include <sys/types.h>
35 #include <sys/eventhandler.h>
36 #include <sys/mbuf.h>
37 #include <sys/socket.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/queue.h>
41 #include <sys/sbuf.h>
42 #include <sys/taskqueue.h>
43 #include <sys/time.h>
44 #include <sys/sglist.h>
45 #include <sys/sysctl.h>
46 #include <sys/smp.h>
47 #include <sys/counter.h>
48 #include <net/bpf.h>
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/if_vlan_var.h>
52 #include <netinet/in.h>
53 #include <netinet/ip.h>
54 #include <netinet/ip6.h>
55 #include <netinet/tcp.h>
56 #include <machine/md_var.h>
57 #include <vm/vm.h>
58 #include <vm/pmap.h>
59 #ifdef DEV_NETMAP
60 #include <machine/bus.h>
61 #include <sys/selinfo.h>
62 #include <net/if_var.h>
63 #include <net/netmap.h>
64 #include <dev/netmap/netmap_kern.h>
65 #endif
66 
67 #include "common/common.h"
68 #include "common/t4_regs.h"
69 #include "common/t4_regs_values.h"
70 #include "common/t4_msg.h"
71 #include "t4_mp_ring.h"
72 
73 #ifdef T4_PKT_TIMESTAMP
74 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
75 #else
76 #define RX_COPY_THRESHOLD MINCLSIZE
77 #endif
78 
79 /*
80  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
81  * 0-7 are valid values.
82  */
83 int fl_pktshift = 2;
84 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
85 
86 /*
87  * Pad ethernet payload up to this boundary.
88  * -1: driver should figure out a good value.
89  *  0: disable padding.
90  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
91  */
92 int fl_pad = -1;
93 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
94 
95 /*
96  * Status page length.
97  * -1: driver should figure out a good value.
98  *  64 or 128 are the only other valid values.
99  */
100 int spg_len = -1;
101 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
102 
103 /*
104  * Congestion drops.
105  * -1: no congestion feedback (not recommended).
106  *  0: backpressure the channel instead of dropping packets right away.
107  *  1: no backpressure, drop packets for the congested queue immediately.
108  */
109 static int cong_drop = 0;
110 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
111 
112 /*
113  * Deliver multiple frames in the same free list buffer if they fit.
114  * -1: let the driver decide whether to enable buffer packing or not.
115  *  0: disable buffer packing.
116  *  1: enable buffer packing.
117  */
118 static int buffer_packing = -1;
119 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
120 
121 /*
122  * Start next frame in a packed buffer at this boundary.
123  * -1: driver should figure out a good value.
124  * T4: driver will ignore this and use the same value as fl_pad above.
125  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
126  */
127 static int fl_pack = -1;
128 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
129 
130 /*
131  * Allow the driver to create mbuf(s) in a cluster allocated for rx.
132  * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
133  * 1: ok to create mbuf(s) within a cluster if there is room.
134  */
135 static int allow_mbufs_in_cluster = 1;
136 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
137 
138 /*
139  * Largest rx cluster size that the driver is allowed to allocate.
140  */
141 static int largest_rx_cluster = MJUM16BYTES;
142 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
143 
144 /*
145  * Size of cluster allocation that's most likely to succeed.  The driver will
146  * fall back to this size if it fails to allocate clusters larger than this.
147  */
148 static int safest_rx_cluster = PAGE_SIZE;
149 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
150 
151 struct txpkts {
152 	u_int wr_type;		/* type 0 or type 1 */
153 	u_int npkt;		/* # of packets in this work request */
154 	u_int plen;		/* total payload (sum of all packets) */
155 	u_int len16;		/* # of 16B pieces used by this work request */
156 };
157 
158 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
159 struct sgl {
160 	struct sglist sg;
161 	struct sglist_seg seg[TX_SGL_SEGS];
162 };
163 
164 static int service_iq(struct sge_iq *, int);
165 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
166 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
167 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
168 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
169 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
170     uint16_t, char *);
171 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
172     bus_addr_t *, void **);
173 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
174     void *);
175 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
176     int, int);
177 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
178 static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
179     struct sge_fl *);
180 static int alloc_fwq(struct adapter *);
181 static int free_fwq(struct adapter *);
182 static int alloc_mgmtq(struct adapter *);
183 static int free_mgmtq(struct adapter *);
184 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
185     struct sysctl_oid *);
186 static int free_rxq(struct vi_info *, struct sge_rxq *);
187 #ifdef TCP_OFFLOAD
188 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
189     struct sysctl_oid *);
190 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
191 #endif
192 #ifdef DEV_NETMAP
193 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
194     struct sysctl_oid *);
195 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
196 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
197     struct sysctl_oid *);
198 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
199 #endif
200 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
201 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
202 #ifdef TCP_OFFLOAD
203 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
204 #endif
205 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
206 static int free_eq(struct adapter *, struct sge_eq *);
207 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
208     struct sysctl_oid *);
209 static int free_wrq(struct adapter *, struct sge_wrq *);
210 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
211     struct sysctl_oid *);
212 static int free_txq(struct vi_info *, struct sge_txq *);
213 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
214 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
215 static int refill_fl(struct adapter *, struct sge_fl *, int);
216 static void refill_sfl(void *);
217 static int alloc_fl_sdesc(struct sge_fl *);
218 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
219 static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
220 static void find_safe_refill_source(struct adapter *, struct sge_fl *);
221 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
222 
223 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
224 static inline u_int txpkt_len16(u_int, u_int);
225 static inline u_int txpkts0_len16(u_int);
226 static inline u_int txpkts1_len16(void);
227 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
228     struct mbuf *, u_int);
229 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
230 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
231 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
232     struct mbuf *, const struct txpkts *, u_int);
233 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
234 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
235 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
236 static inline uint16_t read_hw_cidx(struct sge_eq *);
237 static inline u_int reclaimable_tx_desc(struct sge_eq *);
238 static inline u_int total_available_tx_desc(struct sge_eq *);
239 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
240 static void tx_reclaim(void *, int);
241 static __be64 get_flit(struct sglist_seg *, int, int);
242 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
243     struct mbuf *);
244 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
245     struct mbuf *);
246 static void wrq_tx_drain(void *, int);
247 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
248 
249 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
250 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
251 static int sysctl_tc(SYSCTL_HANDLER_ARGS);
252 
253 static counter_u64_t extfree_refs;
254 static counter_u64_t extfree_rels;
255 
256 /*
257  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
258  */
259 void
260 t4_sge_modload(void)
261 {
262 
263 	if (fl_pktshift < 0 || fl_pktshift > 7) {
264 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
265 		    " using 2 instead.\n", fl_pktshift);
266 		fl_pktshift = 2;
267 	}
268 
269 	if (spg_len != 64 && spg_len != 128) {
270 		int len;
271 
272 #if defined(__i386__) || defined(__amd64__)
273 		len = cpu_clflush_line_size > 64 ? 128 : 64;
274 #else
275 		len = 64;
276 #endif
277 		if (spg_len != -1) {
278 			printf("Invalid hw.cxgbe.spg_len value (%d),"
279 			    " using %d instead.\n", spg_len, len);
280 		}
281 		spg_len = len;
282 	}
283 
284 	if (cong_drop < -1 || cong_drop > 1) {
285 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
286 		    " using 0 instead.\n", cong_drop);
287 		cong_drop = 0;
288 	}
289 
290 	extfree_refs = counter_u64_alloc(M_WAITOK);
291 	extfree_rels = counter_u64_alloc(M_WAITOK);
292 	counter_u64_zero(extfree_refs);
293 	counter_u64_zero(extfree_rels);
294 }
295 
296 void
297 t4_sge_modunload(void)
298 {
299 
300 	counter_u64_free(extfree_refs);
301 	counter_u64_free(extfree_rels);
302 }
303 
304 uint64_t
305 t4_sge_extfree_refs(void)
306 {
307 	uint64_t refs, rels;
308 
309 	rels = counter_u64_fetch(extfree_rels);
310 	refs = counter_u64_fetch(extfree_refs);
311 
312 	return (refs - rels);
313 }
314 
315 void
316 t4_init_sge_cpl_handlers(struct adapter *sc)
317 {
318 
319 	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
320 	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
321 	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
322 	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
323 	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
324 }
325 
326 static inline void
327 setup_pad_and_pack_boundaries(struct adapter *sc)
328 {
329 	uint32_t v, m;
330 	int pad, pack;
331 
332 	pad = fl_pad;
333 	if (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad)) {
334 		/*
335 		 * If there is any chance that we might use buffer packing and
336 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
337 		 * it to 32 in all other cases.
338 		 */
339 		pad = is_t4(sc) && buffer_packing ? 64 : 32;
340 
341 		/*
342 		 * For fl_pad = 0 we'll still write a reasonable value to the
343 		 * register but all the freelists will opt out of padding.
344 		 * We'll complain here only if the user tried to set it to a
345 		 * value greater than 0 that was invalid.
346 		 */
347 		if (fl_pad > 0) {
348 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
349 			    " (%d), using %d instead.\n", fl_pad, pad);
350 		}
351 	}
352 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
353 	v = V_INGPADBOUNDARY(ilog2(pad) - 5);
354 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
355 
356 	if (is_t4(sc)) {
357 		if (fl_pack != -1 && fl_pack != pad) {
358 			/* Complain but carry on. */
359 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
360 			    " using %d instead.\n", fl_pack, pad);
361 		}
362 		return;
363 	}
364 
365 	pack = fl_pack;
366 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
367 	    !powerof2(fl_pack)) {
368 		pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
369 		MPASS(powerof2(pack));
370 		if (pack < 16)
371 			pack = 16;
372 		if (pack == 32)
373 			pack = 64;
374 		if (pack > 4096)
375 			pack = 4096;
376 		if (fl_pack != -1) {
377 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
378 			    " (%d), using %d instead.\n", fl_pack, pack);
379 		}
380 	}
381 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
382 	if (pack == 16)
383 		v = V_INGPACKBOUNDARY(0);
384 	else
385 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
386 
387 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
388 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
389 }
390 
391 /*
392  * adap->params.vpd.cclk must be set up before this is called.
393  */
394 void
395 t4_tweak_chip_settings(struct adapter *sc)
396 {
397 	int i;
398 	uint32_t v, m;
399 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
400 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
401 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
402 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
403 	static int sge_flbuf_sizes[] = {
404 		MCLBYTES,
405 #if MJUMPAGESIZE != MCLBYTES
406 		MJUMPAGESIZE,
407 		MJUMPAGESIZE - CL_METADATA_SIZE,
408 		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
409 #endif
410 		MJUM9BYTES,
411 		MJUM16BYTES,
412 		MCLBYTES - MSIZE - CL_METADATA_SIZE,
413 		MJUM9BYTES - CL_METADATA_SIZE,
414 		MJUM16BYTES - CL_METADATA_SIZE,
415 	};
416 
417 	KASSERT(sc->flags & MASTER_PF,
418 	    ("%s: trying to change chip settings when not master.", __func__));
419 
420 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
421 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
422 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
423 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
424 
425 	setup_pad_and_pack_boundaries(sc);
426 
427 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
428 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
429 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
430 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
431 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
432 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
433 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
434 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
435 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
436 
437 	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
438 	    ("%s: hw buffer size table too big", __func__));
439 	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
440 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
441 		    sge_flbuf_sizes[i]);
442 	}
443 
444 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
445 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
446 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
447 
448 	KASSERT(intr_timer[0] <= timer_max,
449 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
450 	    timer_max));
451 	for (i = 1; i < nitems(intr_timer); i++) {
452 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
453 		    ("%s: timers not listed in increasing order (%d)",
454 		    __func__, i));
455 
456 		while (intr_timer[i] > timer_max) {
457 			if (i == nitems(intr_timer) - 1) {
458 				intr_timer[i] = timer_max;
459 				break;
460 			}
461 			intr_timer[i] += intr_timer[i - 1];
462 			intr_timer[i] /= 2;
463 		}
464 	}
465 
466 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
467 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
468 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
469 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
470 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
471 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
472 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
473 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
474 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
475 
476 	/* 4K, 16K, 64K, 256K DDP "page sizes" */
477 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
478 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
479 
480 	m = v = F_TDDPTAGTCB;
481 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
482 
483 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
484 	    F_RESETDDPOFFSET;
485 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
486 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
487 }
488 
489 /*
490  * SGE wants the buffer to be at least 64B and then a multiple of 16.  If
491  * padding is is use the buffer's start and end need to be aligned to the pad
492  * boundary as well.  We'll just make sure that the size is a multiple of the
493  * boundary here, it is up to the buffer allocation code to make sure the start
494  * of the buffer is aligned as well.
495  */
496 static inline int
497 hwsz_ok(struct adapter *sc, int hwsz)
498 {
499 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
500 
501 	return (hwsz >= 64 && (hwsz & mask) == 0);
502 }
503 
504 /*
505  * XXX: driver really should be able to deal with unexpected settings.
506  */
507 int
508 t4_read_chip_settings(struct adapter *sc)
509 {
510 	struct sge *s = &sc->sge;
511 	struct sge_params *sp = &sc->params.sge;
512 	int i, j, n, rc = 0;
513 	uint32_t m, v, r;
514 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
515 	static int sw_buf_sizes[] = {	/* Sorted by size */
516 		MCLBYTES,
517 #if MJUMPAGESIZE != MCLBYTES
518 		MJUMPAGESIZE,
519 #endif
520 		MJUM9BYTES,
521 		MJUM16BYTES
522 	};
523 	struct sw_zone_info *swz, *safe_swz;
524 	struct hw_buf_info *hwb;
525 
526 	t4_init_sge_params(sc);
527 
528 	m = F_RXPKTCPLMODE;
529 	v = F_RXPKTCPLMODE;
530 	r = t4_read_reg(sc, A_SGE_CONTROL);
531 	if ((r & m) != v) {
532 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
533 		rc = EINVAL;
534 	}
535 
536 	/*
537 	 * If this changes then every single use of PAGE_SHIFT in the driver
538 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
539 	 */
540 	if (sp->page_shift != PAGE_SHIFT) {
541 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
542 		rc = EINVAL;
543 	}
544 
545 	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
546 	hwb = &s->hw_buf_info[0];
547 	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
548 		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
549 		hwb->size = r;
550 		hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
551 		hwb->next = -1;
552 	}
553 
554 	/*
555 	 * Create a sorted list in decreasing order of hw buffer sizes (and so
556 	 * increasing order of spare area) for each software zone.
557 	 *
558 	 * If padding is enabled then the start and end of the buffer must align
559 	 * to the pad boundary; if packing is enabled then they must align with
560 	 * the pack boundary as well.  Allocations from the cluster zones are
561 	 * aligned to min(size, 4K), so the buffer starts at that alignment and
562 	 * ends at hwb->size alignment.  If mbuf inlining is allowed the
563 	 * starting alignment will be reduced to MSIZE and the driver will
564 	 * exercise appropriate caution when deciding on the best buffer layout
565 	 * to use.
566 	 */
567 	n = 0;	/* no usable buffer size to begin with */
568 	swz = &s->sw_zone_info[0];
569 	safe_swz = NULL;
570 	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
571 		int8_t head = -1, tail = -1;
572 
573 		swz->size = sw_buf_sizes[i];
574 		swz->zone = m_getzone(swz->size);
575 		swz->type = m_gettype(swz->size);
576 
577 		if (swz->size < PAGE_SIZE) {
578 			MPASS(powerof2(swz->size));
579 			if (fl_pad && (swz->size % sp->pad_boundary != 0))
580 				continue;
581 		}
582 
583 		if (swz->size == safest_rx_cluster)
584 			safe_swz = swz;
585 
586 		hwb = &s->hw_buf_info[0];
587 		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
588 			if (hwb->zidx != -1 || hwb->size > swz->size)
589 				continue;
590 #ifdef INVARIANTS
591 			if (fl_pad)
592 				MPASS(hwb->size % sp->pad_boundary == 0);
593 #endif
594 			hwb->zidx = i;
595 			if (head == -1)
596 				head = tail = j;
597 			else if (hwb->size < s->hw_buf_info[tail].size) {
598 				s->hw_buf_info[tail].next = j;
599 				tail = j;
600 			} else {
601 				int8_t *cur;
602 				struct hw_buf_info *t;
603 
604 				for (cur = &head; *cur != -1; cur = &t->next) {
605 					t = &s->hw_buf_info[*cur];
606 					if (hwb->size == t->size) {
607 						hwb->zidx = -2;
608 						break;
609 					}
610 					if (hwb->size > t->size) {
611 						hwb->next = *cur;
612 						*cur = j;
613 						break;
614 					}
615 				}
616 			}
617 		}
618 		swz->head_hwidx = head;
619 		swz->tail_hwidx = tail;
620 
621 		if (tail != -1) {
622 			n++;
623 			if (swz->size - s->hw_buf_info[tail].size >=
624 			    CL_METADATA_SIZE)
625 				sc->flags |= BUF_PACKING_OK;
626 		}
627 	}
628 	if (n == 0) {
629 		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
630 		rc = EINVAL;
631 	}
632 
633 	s->safe_hwidx1 = -1;
634 	s->safe_hwidx2 = -1;
635 	if (safe_swz != NULL) {
636 		s->safe_hwidx1 = safe_swz->head_hwidx;
637 		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
638 			int spare;
639 
640 			hwb = &s->hw_buf_info[i];
641 #ifdef INVARIANTS
642 			if (fl_pad)
643 				MPASS(hwb->size % sp->pad_boundary == 0);
644 #endif
645 			spare = safe_swz->size - hwb->size;
646 			if (spare >= CL_METADATA_SIZE) {
647 				s->safe_hwidx2 = i;
648 				break;
649 			}
650 		}
651 	}
652 
653 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
654 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
655 	if (r != v) {
656 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
657 		rc = EINVAL;
658 	}
659 
660 	m = v = F_TDDPTAGTCB;
661 	r = t4_read_reg(sc, A_ULP_RX_CTL);
662 	if ((r & m) != v) {
663 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
664 		rc = EINVAL;
665 	}
666 
667 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
668 	    F_RESETDDPOFFSET;
669 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
670 	r = t4_read_reg(sc, A_TP_PARA_REG5);
671 	if ((r & m) != v) {
672 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
673 		rc = EINVAL;
674 	}
675 
676 	t4_init_tp_params(sc);
677 
678 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
679 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
680 
681 	return (rc);
682 }
683 
684 int
685 t4_create_dma_tag(struct adapter *sc)
686 {
687 	int rc;
688 
689 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
690 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
691 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
692 	    NULL, &sc->dmat);
693 	if (rc != 0) {
694 		device_printf(sc->dev,
695 		    "failed to create main DMA tag: %d\n", rc);
696 	}
697 
698 	return (rc);
699 }
700 
701 void
702 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
703     struct sysctl_oid_list *children)
704 {
705 	struct sge_params *sp = &sc->params.sge;
706 
707 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
708 	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
709 	    "freelist buffer sizes");
710 
711 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
712 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
713 
714 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
715 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
716 
717 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
718 	    NULL, sp->spg_len, "status page size (bytes)");
719 
720 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
721 	    NULL, cong_drop, "congestion drop setting");
722 
723 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
724 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
725 }
726 
727 int
728 t4_destroy_dma_tag(struct adapter *sc)
729 {
730 	if (sc->dmat)
731 		bus_dma_tag_destroy(sc->dmat);
732 
733 	return (0);
734 }
735 
736 /*
737  * Allocate and initialize the firmware event queue and the management queue.
738  *
739  * Returns errno on failure.  Resources allocated up to that point may still be
740  * allocated.  Caller is responsible for cleanup in case this function fails.
741  */
742 int
743 t4_setup_adapter_queues(struct adapter *sc)
744 {
745 	int rc;
746 
747 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
748 
749 	sysctl_ctx_init(&sc->ctx);
750 	sc->flags |= ADAP_SYSCTL_CTX;
751 
752 	/*
753 	 * Firmware event queue
754 	 */
755 	rc = alloc_fwq(sc);
756 	if (rc != 0)
757 		return (rc);
758 
759 	/*
760 	 * Management queue.  This is just a control queue that uses the fwq as
761 	 * its associated iq.
762 	 */
763 	rc = alloc_mgmtq(sc);
764 
765 	return (rc);
766 }
767 
768 /*
769  * Idempotent
770  */
771 int
772 t4_teardown_adapter_queues(struct adapter *sc)
773 {
774 
775 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
776 
777 	/* Do this before freeing the queue */
778 	if (sc->flags & ADAP_SYSCTL_CTX) {
779 		sysctl_ctx_free(&sc->ctx);
780 		sc->flags &= ~ADAP_SYSCTL_CTX;
781 	}
782 
783 	free_mgmtq(sc);
784 	free_fwq(sc);
785 
786 	return (0);
787 }
788 
789 static inline int
790 first_vector(struct vi_info *vi)
791 {
792 	struct adapter *sc = vi->pi->adapter;
793 
794 	if (sc->intr_count == 1)
795 		return (0);
796 
797 	return (vi->first_intr);
798 }
799 
800 /*
801  * Given an arbitrary "index," come up with an iq that can be used by other
802  * queues (of this VI) for interrupt forwarding, SGE egress updates, etc.
803  * The iq returned is guaranteed to be something that takes direct interrupts.
804  */
805 static struct sge_iq *
806 vi_intr_iq(struct vi_info *vi, int idx)
807 {
808 	struct adapter *sc = vi->pi->adapter;
809 	struct sge *s = &sc->sge;
810 	struct sge_iq *iq = NULL;
811 	int nintr, i;
812 
813 	if (sc->intr_count == 1)
814 		return (&sc->sge.fwq);
815 
816 	KASSERT(!(vi->flags & VI_NETMAP),
817 	    ("%s: called on netmap VI", __func__));
818 	nintr = vi->nintr;
819 	KASSERT(nintr != 0,
820 	    ("%s: vi %p has no exclusive interrupts, total interrupts = %d",
821 	    __func__, vi, sc->intr_count));
822 	i = idx % nintr;
823 
824 	if (vi->flags & INTR_RXQ) {
825 	       	if (i < vi->nrxq) {
826 			iq = &s->rxq[vi->first_rxq + i].iq;
827 			goto done;
828 		}
829 		i -= vi->nrxq;
830 	}
831 #ifdef TCP_OFFLOAD
832 	if (vi->flags & INTR_OFLD_RXQ) {
833 	       	if (i < vi->nofldrxq) {
834 			iq = &s->ofld_rxq[vi->first_ofld_rxq + i].iq;
835 			goto done;
836 		}
837 		i -= vi->nofldrxq;
838 	}
839 #endif
840 	panic("%s: vi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
841 	    vi, vi->flags & INTR_ALL, idx, nintr);
842 done:
843 	MPASS(iq != NULL);
844 	KASSERT(iq->flags & IQ_INTR,
845 	    ("%s: iq %p (vi %p, intr_flags 0x%lx, idx %d)", __func__, iq, vi,
846 	    vi->flags & INTR_ALL, idx));
847 	return (iq);
848 }
849 
850 /* Maximum payload that can be delivered with a single iq descriptor */
851 static inline int
852 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
853 {
854 	int payload;
855 
856 #ifdef TCP_OFFLOAD
857 	if (toe) {
858 		payload = sc->tt.rx_coalesce ?
859 		    G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
860 	} else {
861 #endif
862 		/* large enough even when hw VLAN extraction is disabled */
863 		payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
864 		    ETHER_VLAN_ENCAP_LEN + mtu;
865 #ifdef TCP_OFFLOAD
866 	}
867 #endif
868 
869 	return (payload);
870 }
871 
872 int
873 t4_setup_vi_queues(struct vi_info *vi)
874 {
875 	int rc = 0, i, j, intr_idx, iqid;
876 	struct sge_rxq *rxq;
877 	struct sge_txq *txq;
878 	struct sge_wrq *ctrlq;
879 #ifdef TCP_OFFLOAD
880 	struct sge_ofld_rxq *ofld_rxq;
881 	struct sge_wrq *ofld_txq;
882 #endif
883 #ifdef DEV_NETMAP
884 	struct sge_nm_rxq *nm_rxq;
885 	struct sge_nm_txq *nm_txq;
886 #endif
887 	char name[16];
888 	struct port_info *pi = vi->pi;
889 	struct adapter *sc = pi->adapter;
890 	struct ifnet *ifp = vi->ifp;
891 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
892 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
893 	int maxp, mtu = ifp->if_mtu;
894 
895 	/* Interrupt vector to start from (when using multiple vectors) */
896 	intr_idx = first_vector(vi);
897 
898 #ifdef DEV_NETMAP
899 	if (vi->flags & VI_NETMAP) {
900 		/*
901 		 * We don't have buffers to back the netmap rx queues
902 		 * right now so we create the queues in a way that
903 		 * doesn't set off any congestion signal in the chip.
904 		 */
905 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
906 		    CTLFLAG_RD, NULL, "rx queues");
907 		for_each_nm_rxq(vi, i, nm_rxq) {
908 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
909 			if (rc != 0)
910 				goto done;
911 			intr_idx++;
912 		}
913 
914 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq",
915 		    CTLFLAG_RD, NULL, "tx queues");
916 		for_each_nm_txq(vi, i, nm_txq) {
917 			iqid = vi->first_rxq + (i % vi->nrxq);
918 			rc = alloc_nm_txq(vi, nm_txq, iqid, i, oid);
919 			if (rc != 0)
920 				goto done;
921 		}
922 		goto done;
923 	}
924 #endif
925 
926 	/*
927 	 * First pass over all NIC and TOE rx queues:
928 	 * a) initialize iq and fl
929 	 * b) allocate queue iff it will take direct interrupts.
930 	 */
931 	maxp = mtu_to_max_payload(sc, mtu, 0);
932 	if (vi->flags & INTR_RXQ) {
933 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
934 		    CTLFLAG_RD, NULL, "rx queues");
935 	}
936 	for_each_rxq(vi, i, rxq) {
937 
938 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
939 
940 		snprintf(name, sizeof(name), "%s rxq%d-fl",
941 		    device_get_nameunit(vi->dev), i);
942 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
943 
944 		if (vi->flags & INTR_RXQ) {
945 			rxq->iq.flags |= IQ_INTR;
946 			rc = alloc_rxq(vi, rxq, intr_idx, i, oid);
947 			if (rc != 0)
948 				goto done;
949 			intr_idx++;
950 		}
951 	}
952 #ifdef TCP_OFFLOAD
953 	maxp = mtu_to_max_payload(sc, mtu, 1);
954 	if (vi->flags & INTR_OFLD_RXQ) {
955 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
956 		    CTLFLAG_RD, NULL,
957 		    "rx queues for offloaded TCP connections");
958 	}
959 	for_each_ofld_rxq(vi, i, ofld_rxq) {
960 
961 		init_iq(&ofld_rxq->iq, sc, vi->tmr_idx, vi->pktc_idx,
962 		    vi->qsize_rxq);
963 
964 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
965 		    device_get_nameunit(vi->dev), i);
966 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
967 
968 		if (vi->flags & INTR_OFLD_RXQ) {
969 			ofld_rxq->iq.flags |= IQ_INTR;
970 			rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid);
971 			if (rc != 0)
972 				goto done;
973 			intr_idx++;
974 		}
975 	}
976 #endif
977 
978 	/*
979 	 * Second pass over all NIC and TOE rx queues.  The queues forwarding
980 	 * their interrupts are allocated now.
981 	 */
982 	j = 0;
983 	if (!(vi->flags & INTR_RXQ)) {
984 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
985 		    CTLFLAG_RD, NULL, "rx queues");
986 		for_each_rxq(vi, i, rxq) {
987 			MPASS(!(rxq->iq.flags & IQ_INTR));
988 
989 			intr_idx = vi_intr_iq(vi, j)->abs_id;
990 
991 			rc = alloc_rxq(vi, rxq, intr_idx, i, oid);
992 			if (rc != 0)
993 				goto done;
994 			j++;
995 		}
996 	}
997 #ifdef TCP_OFFLOAD
998 	if (vi->nofldrxq != 0 && !(vi->flags & INTR_OFLD_RXQ)) {
999 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1000 		    CTLFLAG_RD, NULL,
1001 		    "rx queues for offloaded TCP connections");
1002 		for_each_ofld_rxq(vi, i, ofld_rxq) {
1003 			MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
1004 
1005 			intr_idx = vi_intr_iq(vi, j)->abs_id;
1006 
1007 			rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid);
1008 			if (rc != 0)
1009 				goto done;
1010 			j++;
1011 		}
1012 	}
1013 #endif
1014 
1015 	/*
1016 	 * Now the tx queues.  Only one pass needed.
1017 	 */
1018 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1019 	    NULL, "tx queues");
1020 	j = 0;
1021 	for_each_txq(vi, i, txq) {
1022 		iqid = vi_intr_iq(vi, j)->cntxt_id;
1023 		snprintf(name, sizeof(name), "%s txq%d",
1024 		    device_get_nameunit(vi->dev), i);
1025 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, iqid,
1026 		    name);
1027 
1028 		rc = alloc_txq(vi, txq, i, oid);
1029 		if (rc != 0)
1030 			goto done;
1031 		j++;
1032 	}
1033 #ifdef TCP_OFFLOAD
1034 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1035 	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1036 	for_each_ofld_txq(vi, i, ofld_txq) {
1037 		struct sysctl_oid *oid2;
1038 
1039 		iqid = vi_intr_iq(vi, j)->cntxt_id;
1040 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1041 		    device_get_nameunit(vi->dev), i);
1042 		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1043 		    iqid, name);
1044 
1045 		snprintf(name, sizeof(name), "%d", i);
1046 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1047 		    name, CTLFLAG_RD, NULL, "offload tx queue");
1048 
1049 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1050 		if (rc != 0)
1051 			goto done;
1052 		j++;
1053 	}
1054 #endif
1055 
1056 	/*
1057 	 * Finally, the control queue.
1058 	 */
1059 	if (!IS_MAIN_VI(vi))
1060 		goto done;
1061 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1062 	    NULL, "ctrl queue");
1063 	ctrlq = &sc->sge.ctrlq[pi->port_id];
1064 	iqid = vi_intr_iq(vi, 0)->cntxt_id;
1065 	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev));
1066 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid,
1067 	    name);
1068 	rc = alloc_wrq(sc, vi, ctrlq, oid);
1069 
1070 done:
1071 	if (rc)
1072 		t4_teardown_vi_queues(vi);
1073 
1074 	return (rc);
1075 }
1076 
1077 /*
1078  * Idempotent
1079  */
1080 int
1081 t4_teardown_vi_queues(struct vi_info *vi)
1082 {
1083 	int i;
1084 	struct port_info *pi = vi->pi;
1085 	struct adapter *sc = pi->adapter;
1086 	struct sge_rxq *rxq;
1087 	struct sge_txq *txq;
1088 #ifdef TCP_OFFLOAD
1089 	struct sge_ofld_rxq *ofld_rxq;
1090 	struct sge_wrq *ofld_txq;
1091 #endif
1092 #ifdef DEV_NETMAP
1093 	struct sge_nm_rxq *nm_rxq;
1094 	struct sge_nm_txq *nm_txq;
1095 #endif
1096 
1097 	/* Do this before freeing the queues */
1098 	if (vi->flags & VI_SYSCTL_CTX) {
1099 		sysctl_ctx_free(&vi->ctx);
1100 		vi->flags &= ~VI_SYSCTL_CTX;
1101 	}
1102 
1103 #ifdef DEV_NETMAP
1104 	if (vi->flags & VI_NETMAP) {
1105 		for_each_nm_txq(vi, i, nm_txq) {
1106 			free_nm_txq(vi, nm_txq);
1107 		}
1108 
1109 		for_each_nm_rxq(vi, i, nm_rxq) {
1110 			free_nm_rxq(vi, nm_rxq);
1111 		}
1112 		return (0);
1113 	}
1114 #endif
1115 
1116 	/*
1117 	 * Take down all the tx queues first, as they reference the rx queues
1118 	 * (for egress updates, etc.).
1119 	 */
1120 
1121 	if (IS_MAIN_VI(vi))
1122 		free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1123 
1124 	for_each_txq(vi, i, txq) {
1125 		free_txq(vi, txq);
1126 	}
1127 #ifdef TCP_OFFLOAD
1128 	for_each_ofld_txq(vi, i, ofld_txq) {
1129 		free_wrq(sc, ofld_txq);
1130 	}
1131 #endif
1132 
1133 	/*
1134 	 * Then take down the rx queues that forward their interrupts, as they
1135 	 * reference other rx queues.
1136 	 */
1137 
1138 	for_each_rxq(vi, i, rxq) {
1139 		if ((rxq->iq.flags & IQ_INTR) == 0)
1140 			free_rxq(vi, rxq);
1141 	}
1142 #ifdef TCP_OFFLOAD
1143 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1144 		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1145 			free_ofld_rxq(vi, ofld_rxq);
1146 	}
1147 #endif
1148 
1149 	/*
1150 	 * Then take down the rx queues that take direct interrupts.
1151 	 */
1152 
1153 	for_each_rxq(vi, i, rxq) {
1154 		if (rxq->iq.flags & IQ_INTR)
1155 			free_rxq(vi, rxq);
1156 	}
1157 #ifdef TCP_OFFLOAD
1158 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1159 		if (ofld_rxq->iq.flags & IQ_INTR)
1160 			free_ofld_rxq(vi, ofld_rxq);
1161 	}
1162 #endif
1163 
1164 	return (0);
1165 }
1166 
1167 /*
1168  * Deals with errors and the firmware event queue.  All data rx queues forward
1169  * their interrupt to the firmware event queue.
1170  */
1171 void
1172 t4_intr_all(void *arg)
1173 {
1174 	struct adapter *sc = arg;
1175 	struct sge_iq *fwq = &sc->sge.fwq;
1176 
1177 	t4_intr_err(arg);
1178 	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1179 		service_iq(fwq, 0);
1180 		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1181 	}
1182 }
1183 
1184 /* Deals with error interrupts */
1185 void
1186 t4_intr_err(void *arg)
1187 {
1188 	struct adapter *sc = arg;
1189 
1190 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1191 	t4_slow_intr_handler(sc);
1192 }
1193 
1194 void
1195 t4_intr_evt(void *arg)
1196 {
1197 	struct sge_iq *iq = arg;
1198 
1199 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1200 		service_iq(iq, 0);
1201 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1202 	}
1203 }
1204 
1205 void
1206 t4_intr(void *arg)
1207 {
1208 	struct sge_iq *iq = arg;
1209 
1210 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1211 		service_iq(iq, 0);
1212 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1213 	}
1214 }
1215 
1216 /*
1217  * Deals with anything and everything on the given ingress queue.
1218  */
1219 static int
1220 service_iq(struct sge_iq *iq, int budget)
1221 {
1222 	struct sge_iq *q;
1223 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1224 	struct sge_fl *fl;			/* Use iff IQ_HAS_FL */
1225 	struct adapter *sc = iq->adapter;
1226 	struct iq_desc *d = &iq->desc[iq->cidx];
1227 	int ndescs = 0, limit;
1228 	int rsp_type, refill;
1229 	uint32_t lq;
1230 	uint16_t fl_hw_cidx;
1231 	struct mbuf *m0;
1232 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1233 #if defined(INET) || defined(INET6)
1234 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1235 #endif
1236 
1237 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1238 
1239 	limit = budget ? budget : iq->qsize / 16;
1240 
1241 	if (iq->flags & IQ_HAS_FL) {
1242 		fl = &rxq->fl;
1243 		fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1244 	} else {
1245 		fl = NULL;
1246 		fl_hw_cidx = 0;			/* to silence gcc warning */
1247 	}
1248 
1249 	/*
1250 	 * We always come back and check the descriptor ring for new indirect
1251 	 * interrupts and other responses after running a single handler.
1252 	 */
1253 	for (;;) {
1254 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1255 
1256 			rmb();
1257 
1258 			refill = 0;
1259 			m0 = NULL;
1260 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1261 			lq = be32toh(d->rsp.pldbuflen_qid);
1262 
1263 			switch (rsp_type) {
1264 			case X_RSPD_TYPE_FLBUF:
1265 
1266 				KASSERT(iq->flags & IQ_HAS_FL,
1267 				    ("%s: data for an iq (%p) with no freelist",
1268 				    __func__, iq));
1269 
1270 				m0 = get_fl_payload(sc, fl, lq);
1271 				if (__predict_false(m0 == NULL))
1272 					goto process_iql;
1273 				refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1274 #ifdef T4_PKT_TIMESTAMP
1275 				/*
1276 				 * 60 bit timestamp for the payload is
1277 				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1278 				 * in the leading free-space in the mbuf.  The
1279 				 * kernel can clobber it during a pullup,
1280 				 * m_copymdata, etc.  You need to make sure that
1281 				 * the mbuf reaches you unmolested if you care
1282 				 * about the timestamp.
1283 				 */
1284 				*(uint64_t *)m0->m_pktdat =
1285 				    be64toh(ctrl->u.last_flit) &
1286 				    0xfffffffffffffff;
1287 #endif
1288 
1289 				/* fall through */
1290 
1291 			case X_RSPD_TYPE_CPL:
1292 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1293 				    ("%s: bad opcode %02x.", __func__,
1294 				    d->rss.opcode));
1295 				sc->cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1296 				break;
1297 
1298 			case X_RSPD_TYPE_INTR:
1299 
1300 				/*
1301 				 * Interrupts should be forwarded only to queues
1302 				 * that are not forwarding their interrupts.
1303 				 * This means service_iq can recurse but only 1
1304 				 * level deep.
1305 				 */
1306 				KASSERT(budget == 0,
1307 				    ("%s: budget %u, rsp_type %u", __func__,
1308 				    budget, rsp_type));
1309 
1310 				/*
1311 				 * There are 1K interrupt-capable queues (qids 0
1312 				 * through 1023).  A response type indicating a
1313 				 * forwarded interrupt with a qid >= 1K is an
1314 				 * iWARP async notification.
1315 				 */
1316 				if (lq >= 1024) {
1317                                         sc->an_handler(iq, &d->rsp);
1318                                         break;
1319                                 }
1320 
1321 				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1322 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1323 				    IQS_BUSY)) {
1324 					if (service_iq(q, q->qsize / 16) == 0) {
1325 						atomic_cmpset_int(&q->state,
1326 						    IQS_BUSY, IQS_IDLE);
1327 					} else {
1328 						STAILQ_INSERT_TAIL(&iql, q,
1329 						    link);
1330 					}
1331 				}
1332 				break;
1333 
1334 			default:
1335 				KASSERT(0,
1336 				    ("%s: illegal response type %d on iq %p",
1337 				    __func__, rsp_type, iq));
1338 				log(LOG_ERR,
1339 				    "%s: illegal response type %d on iq %p",
1340 				    device_get_nameunit(sc->dev), rsp_type, iq);
1341 				break;
1342 			}
1343 
1344 			d++;
1345 			if (__predict_false(++iq->cidx == iq->sidx)) {
1346 				iq->cidx = 0;
1347 				iq->gen ^= F_RSPD_GEN;
1348 				d = &iq->desc[0];
1349 			}
1350 			if (__predict_false(++ndescs == limit)) {
1351 				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1352 				    V_CIDXINC(ndescs) |
1353 				    V_INGRESSQID(iq->cntxt_id) |
1354 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1355 				ndescs = 0;
1356 
1357 #if defined(INET) || defined(INET6)
1358 				if (iq->flags & IQ_LRO_ENABLED &&
1359 				    sc->lro_timeout != 0) {
1360 					tcp_lro_flush_inactive(&rxq->lro,
1361 					    &lro_timeout);
1362 				}
1363 #endif
1364 
1365 				if (budget) {
1366 					if (iq->flags & IQ_HAS_FL) {
1367 						FL_LOCK(fl);
1368 						refill_fl(sc, fl, 32);
1369 						FL_UNLOCK(fl);
1370 					}
1371 					return (EINPROGRESS);
1372 				}
1373 			}
1374 			if (refill) {
1375 				FL_LOCK(fl);
1376 				refill_fl(sc, fl, 32);
1377 				FL_UNLOCK(fl);
1378 				fl_hw_cidx = fl->hw_cidx;
1379 			}
1380 		}
1381 
1382 process_iql:
1383 		if (STAILQ_EMPTY(&iql))
1384 			break;
1385 
1386 		/*
1387 		 * Process the head only, and send it to the back of the list if
1388 		 * it's still not done.
1389 		 */
1390 		q = STAILQ_FIRST(&iql);
1391 		STAILQ_REMOVE_HEAD(&iql, link);
1392 		if (service_iq(q, q->qsize / 8) == 0)
1393 			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1394 		else
1395 			STAILQ_INSERT_TAIL(&iql, q, link);
1396 	}
1397 
1398 #if defined(INET) || defined(INET6)
1399 	if (iq->flags & IQ_LRO_ENABLED) {
1400 		struct lro_ctrl *lro = &rxq->lro;
1401 
1402 		tcp_lro_flush_all(lro);
1403 	}
1404 #endif
1405 
1406 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1407 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1408 
1409 	if (iq->flags & IQ_HAS_FL) {
1410 		int starved;
1411 
1412 		FL_LOCK(fl);
1413 		starved = refill_fl(sc, fl, 64);
1414 		FL_UNLOCK(fl);
1415 		if (__predict_false(starved != 0))
1416 			add_fl_to_sfl(sc, fl);
1417 	}
1418 
1419 	return (0);
1420 }
1421 
1422 static inline int
1423 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1424 {
1425 	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1426 
1427 	if (rc)
1428 		MPASS(cll->region3 >= CL_METADATA_SIZE);
1429 
1430 	return (rc);
1431 }
1432 
1433 static inline struct cluster_metadata *
1434 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1435     caddr_t cl)
1436 {
1437 
1438 	if (cl_has_metadata(fl, cll)) {
1439 		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1440 
1441 		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1442 	}
1443 	return (NULL);
1444 }
1445 
1446 static void
1447 rxb_free(struct mbuf *m, void *arg1, void *arg2)
1448 {
1449 	uma_zone_t zone = arg1;
1450 	caddr_t cl = arg2;
1451 
1452 	uma_zfree(zone, cl);
1453 	counter_u64_add(extfree_rels, 1);
1454 }
1455 
1456 /*
1457  * The mbuf returned by this function could be allocated from zone_mbuf or
1458  * constructed in spare room in the cluster.
1459  *
1460  * The mbuf carries the payload in one of these ways
1461  * a) frame inside the mbuf (mbuf from zone_mbuf)
1462  * b) m_cljset (for clusters without metadata) zone_mbuf
1463  * c) m_extaddref (cluster with metadata) inline mbuf
1464  * d) m_extaddref (cluster with metadata) zone_mbuf
1465  */
1466 static struct mbuf *
1467 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1468     int remaining)
1469 {
1470 	struct mbuf *m;
1471 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1472 	struct cluster_layout *cll = &sd->cll;
1473 	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1474 	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1475 	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1476 	int len, blen;
1477 	caddr_t payload;
1478 
1479 	blen = hwb->size - fl->rx_offset;	/* max possible in this buf */
1480 	len = min(remaining, blen);
1481 	payload = sd->cl + cll->region1 + fl->rx_offset;
1482 	if (fl->flags & FL_BUF_PACKING) {
1483 		const u_int l = fr_offset + len;
1484 		const u_int pad = roundup2(l, fl->buf_boundary) - l;
1485 
1486 		if (fl->rx_offset + len + pad < hwb->size)
1487 			blen = len + pad;
1488 		MPASS(fl->rx_offset + blen <= hwb->size);
1489 	} else {
1490 		MPASS(fl->rx_offset == 0);	/* not packing */
1491 	}
1492 
1493 
1494 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1495 
1496 		/*
1497 		 * Copy payload into a freshly allocated mbuf.
1498 		 */
1499 
1500 		m = fr_offset == 0 ?
1501 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1502 		if (m == NULL)
1503 			return (NULL);
1504 		fl->mbuf_allocated++;
1505 #ifdef T4_PKT_TIMESTAMP
1506 		/* Leave room for a timestamp */
1507 		m->m_data += 8;
1508 #endif
1509 		/* copy data to mbuf */
1510 		bcopy(payload, mtod(m, caddr_t), len);
1511 
1512 	} else if (sd->nmbuf * MSIZE < cll->region1) {
1513 
1514 		/*
1515 		 * There's spare room in the cluster for an mbuf.  Create one
1516 		 * and associate it with the payload that's in the cluster.
1517 		 */
1518 
1519 		MPASS(clm != NULL);
1520 		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1521 		/* No bzero required */
1522 		if (m_init(m, M_NOWAIT, MT_DATA,
1523 		    fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
1524 			return (NULL);
1525 		fl->mbuf_inlined++;
1526 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
1527 		    swz->zone, sd->cl);
1528 		if (sd->nmbuf++ == 0)
1529 			counter_u64_add(extfree_refs, 1);
1530 
1531 	} else {
1532 
1533 		/*
1534 		 * Grab an mbuf from zone_mbuf and associate it with the
1535 		 * payload in the cluster.
1536 		 */
1537 
1538 		m = fr_offset == 0 ?
1539 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1540 		if (m == NULL)
1541 			return (NULL);
1542 		fl->mbuf_allocated++;
1543 		if (clm != NULL) {
1544 			m_extaddref(m, payload, blen, &clm->refcount,
1545 			    rxb_free, swz->zone, sd->cl);
1546 			if (sd->nmbuf++ == 0)
1547 				counter_u64_add(extfree_refs, 1);
1548 		} else {
1549 			m_cljset(m, sd->cl, swz->type);
1550 			sd->cl = NULL;	/* consumed, not a recycle candidate */
1551 		}
1552 	}
1553 	if (fr_offset == 0)
1554 		m->m_pkthdr.len = remaining;
1555 	m->m_len = len;
1556 
1557 	if (fl->flags & FL_BUF_PACKING) {
1558 		fl->rx_offset += blen;
1559 		MPASS(fl->rx_offset <= hwb->size);
1560 		if (fl->rx_offset < hwb->size)
1561 			return (m);	/* without advancing the cidx */
1562 	}
1563 
1564 	if (__predict_false(++fl->cidx % 8 == 0)) {
1565 		uint16_t cidx = fl->cidx / 8;
1566 
1567 		if (__predict_false(cidx == fl->sidx))
1568 			fl->cidx = cidx = 0;
1569 		fl->hw_cidx = cidx;
1570 	}
1571 	fl->rx_offset = 0;
1572 
1573 	return (m);
1574 }
1575 
1576 static struct mbuf *
1577 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1578 {
1579 	struct mbuf *m0, *m, **pnext;
1580 	u_int remaining;
1581 	const u_int total = G_RSPD_LEN(len_newbuf);
1582 
1583 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1584 		M_ASSERTPKTHDR(fl->m0);
1585 		MPASS(fl->m0->m_pkthdr.len == total);
1586 		MPASS(fl->remaining < total);
1587 
1588 		m0 = fl->m0;
1589 		pnext = fl->pnext;
1590 		remaining = fl->remaining;
1591 		fl->flags &= ~FL_BUF_RESUME;
1592 		goto get_segment;
1593 	}
1594 
1595 	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1596 		fl->rx_offset = 0;
1597 		if (__predict_false(++fl->cidx % 8 == 0)) {
1598 			uint16_t cidx = fl->cidx / 8;
1599 
1600 			if (__predict_false(cidx == fl->sidx))
1601 				fl->cidx = cidx = 0;
1602 			fl->hw_cidx = cidx;
1603 		}
1604 	}
1605 
1606 	/*
1607 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1608 	 * 'len' and it may span multiple hw buffers.
1609 	 */
1610 
1611 	m0 = get_scatter_segment(sc, fl, 0, total);
1612 	if (m0 == NULL)
1613 		return (NULL);
1614 	remaining = total - m0->m_len;
1615 	pnext = &m0->m_next;
1616 	while (remaining > 0) {
1617 get_segment:
1618 		MPASS(fl->rx_offset == 0);
1619 		m = get_scatter_segment(sc, fl, total - remaining, remaining);
1620 		if (__predict_false(m == NULL)) {
1621 			fl->m0 = m0;
1622 			fl->pnext = pnext;
1623 			fl->remaining = remaining;
1624 			fl->flags |= FL_BUF_RESUME;
1625 			return (NULL);
1626 		}
1627 		*pnext = m;
1628 		pnext = &m->m_next;
1629 		remaining -= m->m_len;
1630 	}
1631 	*pnext = NULL;
1632 
1633 	M_ASSERTPKTHDR(m0);
1634 	return (m0);
1635 }
1636 
1637 static int
1638 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1639 {
1640 	struct sge_rxq *rxq = iq_to_rxq(iq);
1641 	struct ifnet *ifp = rxq->ifp;
1642 	struct adapter *sc = iq->adapter;
1643 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1644 #if defined(INET) || defined(INET6)
1645 	struct lro_ctrl *lro = &rxq->lro;
1646 #endif
1647 	static const int sw_hashtype[4][2] = {
1648 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1649 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1650 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1651 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1652 	};
1653 
1654 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1655 	    rss->opcode));
1656 
1657 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1658 	m0->m_len -= sc->params.sge.fl_pktshift;
1659 	m0->m_data += sc->params.sge.fl_pktshift;
1660 
1661 	m0->m_pkthdr.rcvif = ifp;
1662 	M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
1663 	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1664 
1665 	if (cpl->csum_calc && !cpl->err_vec) {
1666 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1667 		    cpl->l2info & htobe32(F_RXF_IP)) {
1668 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1669 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1670 			rxq->rxcsum++;
1671 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1672 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1673 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1674 			    CSUM_PSEUDO_HDR);
1675 			rxq->rxcsum++;
1676 		}
1677 
1678 		if (__predict_false(cpl->ip_frag))
1679 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1680 		else
1681 			m0->m_pkthdr.csum_data = 0xffff;
1682 	}
1683 
1684 	if (cpl->vlan_ex) {
1685 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1686 		m0->m_flags |= M_VLANTAG;
1687 		rxq->vlan_extraction++;
1688 	}
1689 
1690 #if defined(INET) || defined(INET6)
1691 	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1692 	    iq->flags & IQ_LRO_ENABLED &&
1693 	    tcp_lro_rx(lro, m0, 0) == 0) {
1694 		/* queued for LRO */
1695 	} else
1696 #endif
1697 	ifp->if_input(ifp, m0);
1698 
1699 	return (0);
1700 }
1701 
1702 /*
1703  * Must drain the wrq or make sure that someone else will.
1704  */
1705 static void
1706 wrq_tx_drain(void *arg, int n)
1707 {
1708 	struct sge_wrq *wrq = arg;
1709 	struct sge_eq *eq = &wrq->eq;
1710 
1711 	EQ_LOCK(eq);
1712 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
1713 		drain_wrq_wr_list(wrq->adapter, wrq);
1714 	EQ_UNLOCK(eq);
1715 }
1716 
1717 static void
1718 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
1719 {
1720 	struct sge_eq *eq = &wrq->eq;
1721 	u_int available, dbdiff;	/* # of hardware descriptors */
1722 	u_int n;
1723 	struct wrqe *wr;
1724 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
1725 
1726 	EQ_LOCK_ASSERT_OWNED(eq);
1727 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
1728 	wr = STAILQ_FIRST(&wrq->wr_list);
1729 	MPASS(wr != NULL);	/* Must be called with something useful to do */
1730 	MPASS(eq->pidx == eq->dbidx);
1731 	dbdiff = 0;
1732 
1733 	do {
1734 		eq->cidx = read_hw_cidx(eq);
1735 		if (eq->pidx == eq->cidx)
1736 			available = eq->sidx - 1;
1737 		else
1738 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
1739 
1740 		MPASS(wr->wrq == wrq);
1741 		n = howmany(wr->wr_len, EQ_ESIZE);
1742 		if (available < n)
1743 			break;
1744 
1745 		dst = (void *)&eq->desc[eq->pidx];
1746 		if (__predict_true(eq->sidx - eq->pidx > n)) {
1747 			/* Won't wrap, won't end exactly at the status page. */
1748 			bcopy(&wr->wr[0], dst, wr->wr_len);
1749 			eq->pidx += n;
1750 		} else {
1751 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
1752 
1753 			bcopy(&wr->wr[0], dst, first_portion);
1754 			if (wr->wr_len > first_portion) {
1755 				bcopy(&wr->wr[first_portion], &eq->desc[0],
1756 				    wr->wr_len - first_portion);
1757 			}
1758 			eq->pidx = n - (eq->sidx - eq->pidx);
1759 		}
1760 
1761 		if (available < eq->sidx / 4 &&
1762 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
1763 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
1764 			    F_FW_WR_EQUEQ);
1765 			eq->equeqidx = eq->pidx;
1766 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
1767 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
1768 			eq->equeqidx = eq->pidx;
1769 		}
1770 
1771 		dbdiff += n;
1772 		if (dbdiff >= 16) {
1773 			ring_eq_db(sc, eq, dbdiff);
1774 			dbdiff = 0;
1775 		}
1776 
1777 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1778 		free_wrqe(wr);
1779 		MPASS(wrq->nwr_pending > 0);
1780 		wrq->nwr_pending--;
1781 		MPASS(wrq->ndesc_needed >= n);
1782 		wrq->ndesc_needed -= n;
1783 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
1784 
1785 	if (dbdiff)
1786 		ring_eq_db(sc, eq, dbdiff);
1787 }
1788 
1789 /*
1790  * Doesn't fail.  Holds on to work requests it can't send right away.
1791  */
1792 void
1793 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1794 {
1795 #ifdef INVARIANTS
1796 	struct sge_eq *eq = &wrq->eq;
1797 #endif
1798 
1799 	EQ_LOCK_ASSERT_OWNED(eq);
1800 	MPASS(wr != NULL);
1801 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
1802 	MPASS((wr->wr_len & 0x7) == 0);
1803 
1804 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1805 	wrq->nwr_pending++;
1806 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
1807 
1808 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
1809 		return;	/* commit_wrq_wr will drain wr_list as well. */
1810 
1811 	drain_wrq_wr_list(sc, wrq);
1812 
1813 	/* Doorbell must have caught up to the pidx. */
1814 	MPASS(eq->pidx == eq->dbidx);
1815 }
1816 
1817 void
1818 t4_update_fl_bufsize(struct ifnet *ifp)
1819 {
1820 	struct vi_info *vi = ifp->if_softc;
1821 	struct adapter *sc = vi->pi->adapter;
1822 	struct sge_rxq *rxq;
1823 #ifdef TCP_OFFLOAD
1824 	struct sge_ofld_rxq *ofld_rxq;
1825 #endif
1826 	struct sge_fl *fl;
1827 	int i, maxp, mtu = ifp->if_mtu;
1828 
1829 	maxp = mtu_to_max_payload(sc, mtu, 0);
1830 	for_each_rxq(vi, i, rxq) {
1831 		fl = &rxq->fl;
1832 
1833 		FL_LOCK(fl);
1834 		find_best_refill_source(sc, fl, maxp);
1835 		FL_UNLOCK(fl);
1836 	}
1837 #ifdef TCP_OFFLOAD
1838 	maxp = mtu_to_max_payload(sc, mtu, 1);
1839 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1840 		fl = &ofld_rxq->fl;
1841 
1842 		FL_LOCK(fl);
1843 		find_best_refill_source(sc, fl, maxp);
1844 		FL_UNLOCK(fl);
1845 	}
1846 #endif
1847 }
1848 
1849 static inline int
1850 mbuf_nsegs(struct mbuf *m)
1851 {
1852 
1853 	M_ASSERTPKTHDR(m);
1854 	KASSERT(m->m_pkthdr.l5hlen > 0,
1855 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
1856 
1857 	return (m->m_pkthdr.l5hlen);
1858 }
1859 
1860 static inline void
1861 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
1862 {
1863 
1864 	M_ASSERTPKTHDR(m);
1865 	m->m_pkthdr.l5hlen = nsegs;
1866 }
1867 
1868 static inline int
1869 mbuf_len16(struct mbuf *m)
1870 {
1871 	int n;
1872 
1873 	M_ASSERTPKTHDR(m);
1874 	n = m->m_pkthdr.PH_loc.eight[0];
1875 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
1876 
1877 	return (n);
1878 }
1879 
1880 static inline void
1881 set_mbuf_len16(struct mbuf *m, uint8_t len16)
1882 {
1883 
1884 	M_ASSERTPKTHDR(m);
1885 	m->m_pkthdr.PH_loc.eight[0] = len16;
1886 }
1887 
1888 static inline int
1889 needs_tso(struct mbuf *m)
1890 {
1891 
1892 	M_ASSERTPKTHDR(m);
1893 
1894 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1895 		KASSERT(m->m_pkthdr.tso_segsz > 0,
1896 		    ("%s: TSO requested in mbuf %p but MSS not provided",
1897 		    __func__, m));
1898 		return (1);
1899 	}
1900 
1901 	return (0);
1902 }
1903 
1904 static inline int
1905 needs_l3_csum(struct mbuf *m)
1906 {
1907 
1908 	M_ASSERTPKTHDR(m);
1909 
1910 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
1911 		return (1);
1912 	return (0);
1913 }
1914 
1915 static inline int
1916 needs_l4_csum(struct mbuf *m)
1917 {
1918 
1919 	M_ASSERTPKTHDR(m);
1920 
1921 	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
1922 	    CSUM_TCP_IPV6 | CSUM_TSO))
1923 		return (1);
1924 	return (0);
1925 }
1926 
1927 static inline int
1928 needs_vlan_insertion(struct mbuf *m)
1929 {
1930 
1931 	M_ASSERTPKTHDR(m);
1932 
1933 	if (m->m_flags & M_VLANTAG) {
1934 		KASSERT(m->m_pkthdr.ether_vtag != 0,
1935 		    ("%s: HWVLAN requested in mbuf %p but tag not provided",
1936 		    __func__, m));
1937 		return (1);
1938 	}
1939 	return (0);
1940 }
1941 
1942 static void *
1943 m_advance(struct mbuf **pm, int *poffset, int len)
1944 {
1945 	struct mbuf *m = *pm;
1946 	int offset = *poffset;
1947 	uintptr_t p = 0;
1948 
1949 	MPASS(len > 0);
1950 
1951 	while (len) {
1952 		if (offset + len < m->m_len) {
1953 			offset += len;
1954 			p = mtod(m, uintptr_t) + offset;
1955 			break;
1956 		}
1957 		len -= m->m_len - offset;
1958 		m = m->m_next;
1959 		offset = 0;
1960 		MPASS(m != NULL);
1961 	}
1962 	*poffset = offset;
1963 	*pm = m;
1964 	return ((void *)p);
1965 }
1966 
1967 static inline int
1968 same_paddr(char *a, char *b)
1969 {
1970 
1971 	if (a == b)
1972 		return (1);
1973 	else if (a != NULL && b != NULL) {
1974 		vm_offset_t x = (vm_offset_t)a;
1975 		vm_offset_t y = (vm_offset_t)b;
1976 
1977 		if ((x & PAGE_MASK) == (y & PAGE_MASK) &&
1978 		    pmap_kextract(x) == pmap_kextract(y))
1979 			return (1);
1980 	}
1981 
1982 	return (0);
1983 }
1984 
1985 /*
1986  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
1987  * must have at least one mbuf that's not empty.
1988  */
1989 static inline int
1990 count_mbuf_nsegs(struct mbuf *m)
1991 {
1992 	char *prev_end, *start;
1993 	int len, nsegs;
1994 
1995 	MPASS(m != NULL);
1996 
1997 	nsegs = 0;
1998 	prev_end = NULL;
1999 	for (; m; m = m->m_next) {
2000 
2001 		len = m->m_len;
2002 		if (__predict_false(len == 0))
2003 			continue;
2004 		start = mtod(m, char *);
2005 
2006 		nsegs += sglist_count(start, len);
2007 		if (same_paddr(prev_end, start))
2008 			nsegs--;
2009 		prev_end = start + len;
2010 	}
2011 
2012 	MPASS(nsegs > 0);
2013 	return (nsegs);
2014 }
2015 
2016 /*
2017  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2018  * a) caller can assume it's been freed if this function returns with an error.
2019  * b) it may get defragged up if the gather list is too long for the hardware.
2020  */
2021 int
2022 parse_pkt(struct mbuf **mp)
2023 {
2024 	struct mbuf *m0 = *mp, *m;
2025 	int rc, nsegs, defragged = 0, offset;
2026 	struct ether_header *eh;
2027 	void *l3hdr;
2028 #if defined(INET) || defined(INET6)
2029 	struct tcphdr *tcp;
2030 #endif
2031 	uint16_t eh_type;
2032 
2033 	M_ASSERTPKTHDR(m0);
2034 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2035 		rc = EINVAL;
2036 fail:
2037 		m_freem(m0);
2038 		*mp = NULL;
2039 		return (rc);
2040 	}
2041 restart:
2042 	/*
2043 	 * First count the number of gather list segments in the payload.
2044 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2045 	 */
2046 	M_ASSERTPKTHDR(m0);
2047 	MPASS(m0->m_pkthdr.len > 0);
2048 	nsegs = count_mbuf_nsegs(m0);
2049 	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2050 		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2051 			rc = EFBIG;
2052 			goto fail;
2053 		}
2054 		*mp = m0 = m;	/* update caller's copy after defrag */
2055 		goto restart;
2056 	}
2057 
2058 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
2059 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2060 		if (m0 == NULL) {
2061 			/* Should have left well enough alone. */
2062 			rc = EFBIG;
2063 			goto fail;
2064 		}
2065 		*mp = m0;	/* update caller's copy after pullup */
2066 		goto restart;
2067 	}
2068 	set_mbuf_nsegs(m0, nsegs);
2069 	set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2070 
2071 	if (!needs_tso(m0))
2072 		return (0);
2073 
2074 	m = m0;
2075 	eh = mtod(m, struct ether_header *);
2076 	eh_type = ntohs(eh->ether_type);
2077 	if (eh_type == ETHERTYPE_VLAN) {
2078 		struct ether_vlan_header *evh = (void *)eh;
2079 
2080 		eh_type = ntohs(evh->evl_proto);
2081 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2082 	} else
2083 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2084 
2085 	offset = 0;
2086 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2087 
2088 	switch (eh_type) {
2089 #ifdef INET6
2090 	case ETHERTYPE_IPV6:
2091 	{
2092 		struct ip6_hdr *ip6 = l3hdr;
2093 
2094 		MPASS(ip6->ip6_nxt == IPPROTO_TCP);
2095 
2096 		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2097 		break;
2098 	}
2099 #endif
2100 #ifdef INET
2101 	case ETHERTYPE_IP:
2102 	{
2103 		struct ip *ip = l3hdr;
2104 
2105 		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2106 		break;
2107 	}
2108 #endif
2109 	default:
2110 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2111 		    " with the same INET/INET6 options as the kernel.",
2112 		    __func__, eh_type);
2113 	}
2114 
2115 #if defined(INET) || defined(INET6)
2116 	tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2117 	m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2118 #endif
2119 	MPASS(m0 == *mp);
2120 	return (0);
2121 }
2122 
2123 void *
2124 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2125 {
2126 	struct sge_eq *eq = &wrq->eq;
2127 	struct adapter *sc = wrq->adapter;
2128 	int ndesc, available;
2129 	struct wrqe *wr;
2130 	void *w;
2131 
2132 	MPASS(len16 > 0);
2133 	ndesc = howmany(len16, EQ_ESIZE / 16);
2134 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2135 
2136 	EQ_LOCK(eq);
2137 
2138 	if (!STAILQ_EMPTY(&wrq->wr_list))
2139 		drain_wrq_wr_list(sc, wrq);
2140 
2141 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2142 slowpath:
2143 		EQ_UNLOCK(eq);
2144 		wr = alloc_wrqe(len16 * 16, wrq);
2145 		if (__predict_false(wr == NULL))
2146 			return (NULL);
2147 		cookie->pidx = -1;
2148 		cookie->ndesc = ndesc;
2149 		return (&wr->wr);
2150 	}
2151 
2152 	eq->cidx = read_hw_cidx(eq);
2153 	if (eq->pidx == eq->cidx)
2154 		available = eq->sidx - 1;
2155 	else
2156 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2157 	if (available < ndesc)
2158 		goto slowpath;
2159 
2160 	cookie->pidx = eq->pidx;
2161 	cookie->ndesc = ndesc;
2162 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2163 
2164 	w = &eq->desc[eq->pidx];
2165 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2166 	if (__predict_false(eq->pidx < ndesc - 1)) {
2167 		w = &wrq->ss[0];
2168 		wrq->ss_pidx = cookie->pidx;
2169 		wrq->ss_len = len16 * 16;
2170 	}
2171 
2172 	EQ_UNLOCK(eq);
2173 
2174 	return (w);
2175 }
2176 
2177 void
2178 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2179 {
2180 	struct sge_eq *eq = &wrq->eq;
2181 	struct adapter *sc = wrq->adapter;
2182 	int ndesc, pidx;
2183 	struct wrq_cookie *prev, *next;
2184 
2185 	if (cookie->pidx == -1) {
2186 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2187 
2188 		t4_wrq_tx(sc, wr);
2189 		return;
2190 	}
2191 
2192 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2193 	pidx = cookie->pidx;
2194 	MPASS(pidx >= 0 && pidx < eq->sidx);
2195 	if (__predict_false(w == &wrq->ss[0])) {
2196 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2197 
2198 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2199 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2200 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2201 		wrq->tx_wrs_ss++;
2202 	} else
2203 		wrq->tx_wrs_direct++;
2204 
2205 	EQ_LOCK(eq);
2206 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2207 	next = TAILQ_NEXT(cookie, link);
2208 	if (prev == NULL) {
2209 		MPASS(pidx == eq->dbidx);
2210 		if (next == NULL || ndesc >= 16)
2211 			ring_eq_db(wrq->adapter, eq, ndesc);
2212 		else {
2213 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2214 			next->pidx = pidx;
2215 			next->ndesc += ndesc;
2216 		}
2217 	} else {
2218 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2219 		prev->ndesc += ndesc;
2220 	}
2221 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2222 
2223 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2224 		drain_wrq_wr_list(sc, wrq);
2225 
2226 #ifdef INVARIANTS
2227 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2228 		/* Doorbell must have caught up to the pidx. */
2229 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2230 	}
2231 #endif
2232 	EQ_UNLOCK(eq);
2233 }
2234 
2235 static u_int
2236 can_resume_eth_tx(struct mp_ring *r)
2237 {
2238 	struct sge_eq *eq = r->cookie;
2239 
2240 	return (total_available_tx_desc(eq) > eq->sidx / 8);
2241 }
2242 
2243 static inline int
2244 cannot_use_txpkts(struct mbuf *m)
2245 {
2246 	/* maybe put a GL limit too, to avoid silliness? */
2247 
2248 	return (needs_tso(m));
2249 }
2250 
2251 /*
2252  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2253  * be consumed.  Return the actual number consumed.  0 indicates a stall.
2254  */
2255 static u_int
2256 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2257 {
2258 	struct sge_txq *txq = r->cookie;
2259 	struct sge_eq *eq = &txq->eq;
2260 	struct ifnet *ifp = txq->ifp;
2261 	struct vi_info *vi = ifp->if_softc;
2262 	struct port_info *pi = vi->pi;
2263 	struct adapter *sc = pi->adapter;
2264 	u_int total, remaining;		/* # of packets */
2265 	u_int available, dbdiff;	/* # of hardware descriptors */
2266 	u_int n, next_cidx;
2267 	struct mbuf *m0, *tail;
2268 	struct txpkts txp;
2269 	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2270 
2271 	remaining = IDXDIFF(pidx, cidx, r->size);
2272 	MPASS(remaining > 0);	/* Must not be called without work to do. */
2273 	total = 0;
2274 
2275 	TXQ_LOCK(txq);
2276 	if (__predict_false((eq->flags & EQ_ENABLED) == 0)) {
2277 		while (cidx != pidx) {
2278 			m0 = r->items[cidx];
2279 			m_freem(m0);
2280 			if (++cidx == r->size)
2281 				cidx = 0;
2282 		}
2283 		reclaim_tx_descs(txq, 2048);
2284 		total = remaining;
2285 		goto done;
2286 	}
2287 
2288 	/* How many hardware descriptors do we have readily available. */
2289 	if (eq->pidx == eq->cidx)
2290 		available = eq->sidx - 1;
2291 	else
2292 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2293 	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2294 
2295 	while (remaining > 0) {
2296 
2297 		m0 = r->items[cidx];
2298 		M_ASSERTPKTHDR(m0);
2299 		MPASS(m0->m_nextpkt == NULL);
2300 
2301 		if (available < SGE_MAX_WR_NDESC) {
2302 			available += reclaim_tx_descs(txq, 64);
2303 			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2304 				break;	/* out of descriptors */
2305 		}
2306 
2307 		next_cidx = cidx + 1;
2308 		if (__predict_false(next_cidx == r->size))
2309 			next_cidx = 0;
2310 
2311 		wr = (void *)&eq->desc[eq->pidx];
2312 		if (remaining > 1 &&
2313 		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2314 
2315 			/* pkts at cidx, next_cidx should both be in txp. */
2316 			MPASS(txp.npkt == 2);
2317 			tail = r->items[next_cidx];
2318 			MPASS(tail->m_nextpkt == NULL);
2319 			ETHER_BPF_MTAP(ifp, m0);
2320 			ETHER_BPF_MTAP(ifp, tail);
2321 			m0->m_nextpkt = tail;
2322 
2323 			if (__predict_false(++next_cidx == r->size))
2324 				next_cidx = 0;
2325 
2326 			while (next_cidx != pidx) {
2327 				if (add_to_txpkts(r->items[next_cidx], &txp,
2328 				    available) != 0)
2329 					break;
2330 				tail->m_nextpkt = r->items[next_cidx];
2331 				tail = tail->m_nextpkt;
2332 				ETHER_BPF_MTAP(ifp, tail);
2333 				if (__predict_false(++next_cidx == r->size))
2334 					next_cidx = 0;
2335 			}
2336 
2337 			n = write_txpkts_wr(txq, wr, m0, &txp, available);
2338 			total += txp.npkt;
2339 			remaining -= txp.npkt;
2340 		} else {
2341 			total++;
2342 			remaining--;
2343 			ETHER_BPF_MTAP(ifp, m0);
2344 			n = write_txpkt_wr(txq, (void *)wr, m0, available);
2345 		}
2346 		MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
2347 
2348 		available -= n;
2349 		dbdiff += n;
2350 		IDXINCR(eq->pidx, n, eq->sidx);
2351 
2352 		if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2353 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2354 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2355 			    F_FW_WR_EQUEQ);
2356 			eq->equeqidx = eq->pidx;
2357 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2358 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2359 			eq->equeqidx = eq->pidx;
2360 		}
2361 
2362 		if (dbdiff >= 16 && remaining >= 4) {
2363 			ring_eq_db(sc, eq, dbdiff);
2364 			available += reclaim_tx_descs(txq, 4 * dbdiff);
2365 			dbdiff = 0;
2366 		}
2367 
2368 		cidx = next_cidx;
2369 	}
2370 	if (dbdiff != 0) {
2371 		ring_eq_db(sc, eq, dbdiff);
2372 		reclaim_tx_descs(txq, 32);
2373 	}
2374 done:
2375 	TXQ_UNLOCK(txq);
2376 
2377 	return (total);
2378 }
2379 
2380 static inline void
2381 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2382     int qsize)
2383 {
2384 
2385 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2386 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2387 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2388 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2389 
2390 	iq->flags = 0;
2391 	iq->adapter = sc;
2392 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2393 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2394 	if (pktc_idx >= 0) {
2395 		iq->intr_params |= F_QINTR_CNT_EN;
2396 		iq->intr_pktc_idx = pktc_idx;
2397 	}
2398 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2399 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
2400 }
2401 
2402 static inline void
2403 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
2404 {
2405 
2406 	fl->qsize = qsize;
2407 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2408 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2409 	if (sc->flags & BUF_PACKING_OK &&
2410 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
2411 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
2412 		fl->flags |= FL_BUF_PACKING;
2413 	find_best_refill_source(sc, fl, maxp);
2414 	find_safe_refill_source(sc, fl);
2415 }
2416 
2417 static inline void
2418 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
2419     uint8_t tx_chan, uint16_t iqid, char *name)
2420 {
2421 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2422 
2423 	eq->flags = eqtype & EQ_TYPEMASK;
2424 	eq->tx_chan = tx_chan;
2425 	eq->iqid = iqid;
2426 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2427 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2428 }
2429 
2430 static int
2431 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2432     bus_dmamap_t *map, bus_addr_t *pa, void **va)
2433 {
2434 	int rc;
2435 
2436 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2437 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2438 	if (rc != 0) {
2439 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2440 		goto done;
2441 	}
2442 
2443 	rc = bus_dmamem_alloc(*tag, va,
2444 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2445 	if (rc != 0) {
2446 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2447 		goto done;
2448 	}
2449 
2450 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2451 	if (rc != 0) {
2452 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2453 		goto done;
2454 	}
2455 done:
2456 	if (rc)
2457 		free_ring(sc, *tag, *map, *pa, *va);
2458 
2459 	return (rc);
2460 }
2461 
2462 static int
2463 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2464     bus_addr_t pa, void *va)
2465 {
2466 	if (pa)
2467 		bus_dmamap_unload(tag, map);
2468 	if (va)
2469 		bus_dmamem_free(tag, va, map);
2470 	if (tag)
2471 		bus_dma_tag_destroy(tag);
2472 
2473 	return (0);
2474 }
2475 
2476 /*
2477  * Allocates the ring for an ingress queue and an optional freelist.  If the
2478  * freelist is specified it will be allocated and then associated with the
2479  * ingress queue.
2480  *
2481  * Returns errno on failure.  Resources allocated up to that point may still be
2482  * allocated.  Caller is responsible for cleanup in case this function fails.
2483  *
2484  * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2485  * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2486  * the abs_id of the ingress queue to which its interrupts should be forwarded.
2487  */
2488 static int
2489 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
2490     int intr_idx, int cong)
2491 {
2492 	int rc, i, cntxt_id;
2493 	size_t len;
2494 	struct fw_iq_cmd c;
2495 	struct port_info *pi = vi->pi;
2496 	struct adapter *sc = iq->adapter;
2497 	struct sge_params *sp = &sc->params.sge;
2498 	__be32 v = 0;
2499 
2500 	len = iq->qsize * IQ_ESIZE;
2501 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2502 	    (void **)&iq->desc);
2503 	if (rc != 0)
2504 		return (rc);
2505 
2506 	bzero(&c, sizeof(c));
2507 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2508 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2509 	    V_FW_IQ_CMD_VFN(0));
2510 
2511 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2512 	    FW_LEN16(c));
2513 
2514 	/* Special handling for firmware event queue */
2515 	if (iq == &sc->sge.fwq)
2516 		v |= F_FW_IQ_CMD_IQASYNCH;
2517 
2518 	if (iq->flags & IQ_INTR) {
2519 		KASSERT(intr_idx < sc->intr_count,
2520 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2521 	} else
2522 		v |= F_FW_IQ_CMD_IQANDST;
2523 	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2524 
2525 	c.type_to_iqandstindex = htobe32(v |
2526 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2527 	    V_FW_IQ_CMD_VIID(vi->viid) |
2528 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2529 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2530 	    F_FW_IQ_CMD_IQGTSMODE |
2531 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2532 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2533 	c.iqsize = htobe16(iq->qsize);
2534 	c.iqaddr = htobe64(iq->ba);
2535 	if (cong >= 0)
2536 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2537 
2538 	if (fl) {
2539 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2540 
2541 		len = fl->qsize * EQ_ESIZE;
2542 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2543 		    &fl->ba, (void **)&fl->desc);
2544 		if (rc)
2545 			return (rc);
2546 
2547 		/* Allocate space for one software descriptor per buffer. */
2548 		rc = alloc_fl_sdesc(fl);
2549 		if (rc != 0) {
2550 			device_printf(sc->dev,
2551 			    "failed to setup fl software descriptors: %d\n",
2552 			    rc);
2553 			return (rc);
2554 		}
2555 
2556 		if (fl->flags & FL_BUF_PACKING) {
2557 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
2558 			fl->buf_boundary = sp->pack_boundary;
2559 		} else {
2560 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
2561 			fl->buf_boundary = 16;
2562 		}
2563 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
2564 			fl->buf_boundary = sp->pad_boundary;
2565 
2566 		c.iqns_to_fl0congen |=
2567 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2568 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2569 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2570 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2571 			    0));
2572 		if (cong >= 0) {
2573 			c.iqns_to_fl0congen |=
2574 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2575 				    F_FW_IQ_CMD_FL0CONGCIF |
2576 				    F_FW_IQ_CMD_FL0CONGEN);
2577 		}
2578 		c.fl0dcaen_to_fl0cidxfthresh =
2579 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_128B) |
2580 			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2581 		c.fl0size = htobe16(fl->qsize);
2582 		c.fl0addr = htobe64(fl->ba);
2583 	}
2584 
2585 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2586 	if (rc != 0) {
2587 		device_printf(sc->dev,
2588 		    "failed to create ingress queue: %d\n", rc);
2589 		return (rc);
2590 	}
2591 
2592 	iq->cidx = 0;
2593 	iq->gen = F_RSPD_GEN;
2594 	iq->intr_next = iq->intr_params;
2595 	iq->cntxt_id = be16toh(c.iqid);
2596 	iq->abs_id = be16toh(c.physiqid);
2597 	iq->flags |= IQ_ALLOCATED;
2598 
2599 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2600 	if (cntxt_id >= sc->sge.niq) {
2601 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2602 		    cntxt_id, sc->sge.niq - 1);
2603 	}
2604 	sc->sge.iqmap[cntxt_id] = iq;
2605 
2606 	if (fl) {
2607 		u_int qid;
2608 
2609 		iq->flags |= IQ_HAS_FL;
2610 		fl->cntxt_id = be16toh(c.fl0id);
2611 		fl->pidx = fl->cidx = 0;
2612 
2613 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2614 		if (cntxt_id >= sc->sge.neq) {
2615 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2616 			    __func__, cntxt_id, sc->sge.neq - 1);
2617 		}
2618 		sc->sge.eqmap[cntxt_id] = (void *)fl;
2619 
2620 		qid = fl->cntxt_id;
2621 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
2622 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
2623 			uint32_t mask = (1 << s_qpp) - 1;
2624 			volatile uint8_t *udb;
2625 
2626 			udb = sc->udbs_base + UDBS_DB_OFFSET;
2627 			udb += (qid >> s_qpp) << PAGE_SHIFT;
2628 			qid &= mask;
2629 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
2630 				udb += qid << UDBS_SEG_SHIFT;
2631 				qid = 0;
2632 			}
2633 			fl->udb = (volatile void *)udb;
2634 		}
2635 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
2636 
2637 		FL_LOCK(fl);
2638 		/* Enough to make sure the SGE doesn't think it's starved */
2639 		refill_fl(sc, fl, fl->lowat);
2640 		FL_UNLOCK(fl);
2641 	}
2642 
2643 	if (is_t5(sc) && cong >= 0) {
2644 		uint32_t param, val;
2645 
2646 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2647 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2648 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2649 		if (cong == 0)
2650 			val = 1 << 19;
2651 		else {
2652 			val = 2 << 19;
2653 			for (i = 0; i < 4; i++) {
2654 				if (cong & (1 << i))
2655 					val |= 1 << (i << 2);
2656 			}
2657 		}
2658 
2659 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2660 		if (rc != 0) {
2661 			/* report error but carry on */
2662 			device_printf(sc->dev,
2663 			    "failed to set congestion manager context for "
2664 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2665 		}
2666 	}
2667 
2668 	/* Enable IQ interrupts */
2669 	atomic_store_rel_int(&iq->state, IQS_IDLE);
2670 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2671 	    V_INGRESSQID(iq->cntxt_id));
2672 
2673 	return (0);
2674 }
2675 
2676 static int
2677 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
2678 {
2679 	int rc;
2680 	struct adapter *sc = iq->adapter;
2681 	device_t dev;
2682 
2683 	if (sc == NULL)
2684 		return (0);	/* nothing to do */
2685 
2686 	dev = vi ? vi->dev : sc->dev;
2687 
2688 	if (iq->flags & IQ_ALLOCATED) {
2689 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2690 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2691 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2692 		if (rc != 0) {
2693 			device_printf(dev,
2694 			    "failed to free queue %p: %d\n", iq, rc);
2695 			return (rc);
2696 		}
2697 		iq->flags &= ~IQ_ALLOCATED;
2698 	}
2699 
2700 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2701 
2702 	bzero(iq, sizeof(*iq));
2703 
2704 	if (fl) {
2705 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2706 		    fl->desc);
2707 
2708 		if (fl->sdesc)
2709 			free_fl_sdesc(sc, fl);
2710 
2711 		if (mtx_initialized(&fl->fl_lock))
2712 			mtx_destroy(&fl->fl_lock);
2713 
2714 		bzero(fl, sizeof(*fl));
2715 	}
2716 
2717 	return (0);
2718 }
2719 
2720 static void
2721 add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2722     struct sge_fl *fl)
2723 {
2724 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2725 
2726 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2727 	    "freelist");
2728 	children = SYSCTL_CHILDREN(oid);
2729 
2730 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2731 	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2732 	    "SGE context id of the freelist");
2733 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
2734 	    fl_pad ? 1 : 0, "padding enabled");
2735 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
2736 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
2737 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2738 	    0, "consumer index");
2739 	if (fl->flags & FL_BUF_PACKING) {
2740 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2741 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2742 	}
2743 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2744 	    0, "producer index");
2745 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2746 	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2747 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2748 	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2749 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2750 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2751 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2752 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2753 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2754 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2755 }
2756 
2757 static int
2758 alloc_fwq(struct adapter *sc)
2759 {
2760 	int rc, intr_idx;
2761 	struct sge_iq *fwq = &sc->sge.fwq;
2762 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2763 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2764 
2765 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
2766 	fwq->flags |= IQ_INTR;	/* always */
2767 	intr_idx = sc->intr_count > 1 ? 1 : 0;
2768 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
2769 	if (rc != 0) {
2770 		device_printf(sc->dev,
2771 		    "failed to create firmware event queue: %d\n", rc);
2772 		return (rc);
2773 	}
2774 
2775 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2776 	    NULL, "firmware event queue");
2777 	children = SYSCTL_CHILDREN(oid);
2778 
2779 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2780 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2781 	    "absolute id of the queue");
2782 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2783 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2784 	    "SGE context id of the queue");
2785 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2786 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2787 	    "consumer index");
2788 
2789 	return (0);
2790 }
2791 
2792 static int
2793 free_fwq(struct adapter *sc)
2794 {
2795 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2796 }
2797 
2798 static int
2799 alloc_mgmtq(struct adapter *sc)
2800 {
2801 	int rc;
2802 	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2803 	char name[16];
2804 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2805 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2806 
2807 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2808 	    NULL, "management queue");
2809 
2810 	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2811 	init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2812 	    sc->sge.fwq.cntxt_id, name);
2813 	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2814 	if (rc != 0) {
2815 		device_printf(sc->dev,
2816 		    "failed to create management queue: %d\n", rc);
2817 		return (rc);
2818 	}
2819 
2820 	return (0);
2821 }
2822 
2823 static int
2824 free_mgmtq(struct adapter *sc)
2825 {
2826 
2827 	return free_wrq(sc, &sc->sge.mgmtq);
2828 }
2829 
2830 int
2831 tnl_cong(struct port_info *pi, int drop)
2832 {
2833 
2834 	if (drop == -1)
2835 		return (-1);
2836 	else if (drop == 1)
2837 		return (0);
2838 	else
2839 		return (pi->rx_chan_map);
2840 }
2841 
2842 static int
2843 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
2844     struct sysctl_oid *oid)
2845 {
2846 	int rc;
2847 	struct sysctl_oid_list *children;
2848 	char name[16];
2849 
2850 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
2851 	    tnl_cong(vi->pi, cong_drop));
2852 	if (rc != 0)
2853 		return (rc);
2854 
2855 	/*
2856 	 * The freelist is just barely above the starvation threshold right now,
2857 	 * fill it up a bit more.
2858 	 */
2859 	FL_LOCK(&rxq->fl);
2860 	refill_fl(vi->pi->adapter, &rxq->fl, 128);
2861 	FL_UNLOCK(&rxq->fl);
2862 
2863 #if defined(INET) || defined(INET6)
2864 	rc = tcp_lro_init(&rxq->lro);
2865 	if (rc != 0)
2866 		return (rc);
2867 	rxq->lro.ifp = vi->ifp; /* also indicates LRO init'ed */
2868 
2869 	if (vi->ifp->if_capenable & IFCAP_LRO)
2870 		rxq->iq.flags |= IQ_LRO_ENABLED;
2871 #endif
2872 	rxq->ifp = vi->ifp;
2873 
2874 	children = SYSCTL_CHILDREN(oid);
2875 
2876 	snprintf(name, sizeof(name), "%d", idx);
2877 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2878 	    NULL, "rx queue");
2879 	children = SYSCTL_CHILDREN(oid);
2880 
2881 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id",
2882 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2883 	    "absolute id of the queue");
2884 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id",
2885 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2886 	    "SGE context id of the queue");
2887 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
2888 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2889 	    "consumer index");
2890 #if defined(INET) || defined(INET6)
2891 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2892 	    &rxq->lro.lro_queued, 0, NULL);
2893 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2894 	    &rxq->lro.lro_flushed, 0, NULL);
2895 #endif
2896 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2897 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2898 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
2899 	    CTLFLAG_RD, &rxq->vlan_extraction,
2900 	    "# of times hardware extracted 802.1Q tag");
2901 
2902 	add_fl_sysctls(&vi->ctx, oid, &rxq->fl);
2903 
2904 	return (rc);
2905 }
2906 
2907 static int
2908 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
2909 {
2910 	int rc;
2911 
2912 #if defined(INET) || defined(INET6)
2913 	if (rxq->lro.ifp) {
2914 		tcp_lro_free(&rxq->lro);
2915 		rxq->lro.ifp = NULL;
2916 	}
2917 #endif
2918 
2919 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
2920 	if (rc == 0)
2921 		bzero(rxq, sizeof(*rxq));
2922 
2923 	return (rc);
2924 }
2925 
2926 #ifdef TCP_OFFLOAD
2927 static int
2928 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
2929     int intr_idx, int idx, struct sysctl_oid *oid)
2930 {
2931 	int rc;
2932 	struct sysctl_oid_list *children;
2933 	char name[16];
2934 
2935 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2936 	    vi->pi->rx_chan_map);
2937 	if (rc != 0)
2938 		return (rc);
2939 
2940 	children = SYSCTL_CHILDREN(oid);
2941 
2942 	snprintf(name, sizeof(name), "%d", idx);
2943 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2944 	    NULL, "rx queue");
2945 	children = SYSCTL_CHILDREN(oid);
2946 
2947 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id",
2948 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
2949 	    "I", "absolute id of the queue");
2950 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id",
2951 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
2952 	    "I", "SGE context id of the queue");
2953 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
2954 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
2955 	    "consumer index");
2956 
2957 	add_fl_sysctls(&vi->ctx, oid, &ofld_rxq->fl);
2958 
2959 	return (rc);
2960 }
2961 
2962 static int
2963 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
2964 {
2965 	int rc;
2966 
2967 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
2968 	if (rc == 0)
2969 		bzero(ofld_rxq, sizeof(*ofld_rxq));
2970 
2971 	return (rc);
2972 }
2973 #endif
2974 
2975 #ifdef DEV_NETMAP
2976 static int
2977 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
2978     int idx, struct sysctl_oid *oid)
2979 {
2980 	int rc;
2981 	struct sysctl_oid_list *children;
2982 	struct sysctl_ctx_list *ctx;
2983 	char name[16];
2984 	size_t len;
2985 	struct adapter *sc = vi->pi->adapter;
2986 	struct netmap_adapter *na = NA(vi->ifp);
2987 
2988 	MPASS(na != NULL);
2989 
2990 	len = vi->qsize_rxq * IQ_ESIZE;
2991 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
2992 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
2993 	if (rc != 0)
2994 		return (rc);
2995 
2996 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
2997 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
2998 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
2999 	if (rc != 0)
3000 		return (rc);
3001 
3002 	nm_rxq->vi = vi;
3003 	nm_rxq->nid = idx;
3004 	nm_rxq->iq_cidx = 0;
3005 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3006 	nm_rxq->iq_gen = F_RSPD_GEN;
3007 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3008 	nm_rxq->fl_sidx = na->num_rx_desc;
3009 	nm_rxq->intr_idx = intr_idx;
3010 
3011 	ctx = &vi->ctx;
3012 	children = SYSCTL_CHILDREN(oid);
3013 
3014 	snprintf(name, sizeof(name), "%d", idx);
3015 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3016 	    "rx queue");
3017 	children = SYSCTL_CHILDREN(oid);
3018 
3019 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3020 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3021 	    "I", "absolute id of the queue");
3022 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3023 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3024 	    "I", "SGE context id of the queue");
3025 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3026 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3027 	    "consumer index");
3028 
3029 	children = SYSCTL_CHILDREN(oid);
3030 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3031 	    "freelist");
3032 	children = SYSCTL_CHILDREN(oid);
3033 
3034 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3035 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3036 	    "I", "SGE context id of the freelist");
3037 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3038 	    &nm_rxq->fl_cidx, 0, "consumer index");
3039 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3040 	    &nm_rxq->fl_pidx, 0, "producer index");
3041 
3042 	return (rc);
3043 }
3044 
3045 
3046 static int
3047 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3048 {
3049 	struct adapter *sc = vi->pi->adapter;
3050 
3051 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3052 	    nm_rxq->iq_desc);
3053 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3054 	    nm_rxq->fl_desc);
3055 
3056 	return (0);
3057 }
3058 
3059 static int
3060 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3061     struct sysctl_oid *oid)
3062 {
3063 	int rc;
3064 	size_t len;
3065 	struct port_info *pi = vi->pi;
3066 	struct adapter *sc = pi->adapter;
3067 	struct netmap_adapter *na = NA(vi->ifp);
3068 	char name[16];
3069 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3070 
3071 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3072 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3073 	    &nm_txq->ba, (void **)&nm_txq->desc);
3074 	if (rc)
3075 		return (rc);
3076 
3077 	nm_txq->pidx = nm_txq->cidx = 0;
3078 	nm_txq->sidx = na->num_tx_desc;
3079 	nm_txq->nid = idx;
3080 	nm_txq->iqidx = iqidx;
3081 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3082 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) |
3083 	    V_TXPKT_VF(vi->viid));
3084 
3085 	snprintf(name, sizeof(name), "%d", idx);
3086 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3087 	    NULL, "netmap tx queue");
3088 	children = SYSCTL_CHILDREN(oid);
3089 
3090 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3091 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3092 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3093 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3094 	    "consumer index");
3095 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3096 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3097 	    "producer index");
3098 
3099 	return (rc);
3100 }
3101 
3102 static int
3103 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3104 {
3105 	struct adapter *sc = vi->pi->adapter;
3106 
3107 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3108 	    nm_txq->desc);
3109 
3110 	return (0);
3111 }
3112 #endif
3113 
3114 static int
3115 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3116 {
3117 	int rc, cntxt_id;
3118 	struct fw_eq_ctrl_cmd c;
3119 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3120 
3121 	bzero(&c, sizeof(c));
3122 
3123 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3124 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3125 	    V_FW_EQ_CTRL_CMD_VFN(0));
3126 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3127 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3128 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3129 	c.physeqid_pkd = htobe32(0);
3130 	c.fetchszm_to_iqid =
3131 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3132 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3133 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3134 	c.dcaen_to_eqsize =
3135 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3136 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3137 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3138 	c.eqaddr = htobe64(eq->ba);
3139 
3140 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3141 	if (rc != 0) {
3142 		device_printf(sc->dev,
3143 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3144 		return (rc);
3145 	}
3146 	eq->flags |= EQ_ALLOCATED;
3147 
3148 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3149 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3150 	if (cntxt_id >= sc->sge.neq)
3151 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3152 		cntxt_id, sc->sge.neq - 1);
3153 	sc->sge.eqmap[cntxt_id] = eq;
3154 
3155 	return (rc);
3156 }
3157 
3158 static int
3159 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3160 {
3161 	int rc, cntxt_id;
3162 	struct fw_eq_eth_cmd c;
3163 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3164 
3165 	bzero(&c, sizeof(c));
3166 
3167 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3168 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3169 	    V_FW_EQ_ETH_CMD_VFN(0));
3170 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3171 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3172 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3173 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3174 	c.fetchszm_to_iqid =
3175 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3176 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3177 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3178 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3179 	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3180 	    V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3181 	c.eqaddr = htobe64(eq->ba);
3182 
3183 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3184 	if (rc != 0) {
3185 		device_printf(vi->dev,
3186 		    "failed to create Ethernet egress queue: %d\n", rc);
3187 		return (rc);
3188 	}
3189 	eq->flags |= EQ_ALLOCATED;
3190 
3191 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3192 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3193 	if (cntxt_id >= sc->sge.neq)
3194 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3195 		cntxt_id, sc->sge.neq - 1);
3196 	sc->sge.eqmap[cntxt_id] = eq;
3197 
3198 	return (rc);
3199 }
3200 
3201 #ifdef TCP_OFFLOAD
3202 static int
3203 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3204 {
3205 	int rc, cntxt_id;
3206 	struct fw_eq_ofld_cmd c;
3207 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3208 
3209 	bzero(&c, sizeof(c));
3210 
3211 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3212 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3213 	    V_FW_EQ_OFLD_CMD_VFN(0));
3214 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3215 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3216 	c.fetchszm_to_iqid =
3217 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3218 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3219 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3220 	c.dcaen_to_eqsize =
3221 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3222 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3223 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3224 	c.eqaddr = htobe64(eq->ba);
3225 
3226 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3227 	if (rc != 0) {
3228 		device_printf(vi->dev,
3229 		    "failed to create egress queue for TCP offload: %d\n", rc);
3230 		return (rc);
3231 	}
3232 	eq->flags |= EQ_ALLOCATED;
3233 
3234 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3235 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3236 	if (cntxt_id >= sc->sge.neq)
3237 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3238 		cntxt_id, sc->sge.neq - 1);
3239 	sc->sge.eqmap[cntxt_id] = eq;
3240 
3241 	return (rc);
3242 }
3243 #endif
3244 
3245 static int
3246 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3247 {
3248 	int rc, qsize;
3249 	size_t len;
3250 
3251 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3252 
3253 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3254 	len = qsize * EQ_ESIZE;
3255 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3256 	    &eq->ba, (void **)&eq->desc);
3257 	if (rc)
3258 		return (rc);
3259 
3260 	eq->pidx = eq->cidx = 0;
3261 	eq->equeqidx = eq->dbidx = 0;
3262 	eq->doorbells = sc->doorbells;
3263 
3264 	switch (eq->flags & EQ_TYPEMASK) {
3265 	case EQ_CTRL:
3266 		rc = ctrl_eq_alloc(sc, eq);
3267 		break;
3268 
3269 	case EQ_ETH:
3270 		rc = eth_eq_alloc(sc, vi, eq);
3271 		break;
3272 
3273 #ifdef TCP_OFFLOAD
3274 	case EQ_OFLD:
3275 		rc = ofld_eq_alloc(sc, vi, eq);
3276 		break;
3277 #endif
3278 
3279 	default:
3280 		panic("%s: invalid eq type %d.", __func__,
3281 		    eq->flags & EQ_TYPEMASK);
3282 	}
3283 	if (rc != 0) {
3284 		device_printf(sc->dev,
3285 		    "failed to allocate egress queue(%d): %d\n",
3286 		    eq->flags & EQ_TYPEMASK, rc);
3287 	}
3288 
3289 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3290 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3291 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3292 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3293 		uint32_t mask = (1 << s_qpp) - 1;
3294 		volatile uint8_t *udb;
3295 
3296 		udb = sc->udbs_base + UDBS_DB_OFFSET;
3297 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3298 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3299 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3300 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3301 		else {
3302 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3303 			eq->udb_qid = 0;
3304 		}
3305 		eq->udb = (volatile void *)udb;
3306 	}
3307 
3308 	return (rc);
3309 }
3310 
3311 static int
3312 free_eq(struct adapter *sc, struct sge_eq *eq)
3313 {
3314 	int rc;
3315 
3316 	if (eq->flags & EQ_ALLOCATED) {
3317 		switch (eq->flags & EQ_TYPEMASK) {
3318 		case EQ_CTRL:
3319 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3320 			    eq->cntxt_id);
3321 			break;
3322 
3323 		case EQ_ETH:
3324 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3325 			    eq->cntxt_id);
3326 			break;
3327 
3328 #ifdef TCP_OFFLOAD
3329 		case EQ_OFLD:
3330 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3331 			    eq->cntxt_id);
3332 			break;
3333 #endif
3334 
3335 		default:
3336 			panic("%s: invalid eq type %d.", __func__,
3337 			    eq->flags & EQ_TYPEMASK);
3338 		}
3339 		if (rc != 0) {
3340 			device_printf(sc->dev,
3341 			    "failed to free egress queue (%d): %d\n",
3342 			    eq->flags & EQ_TYPEMASK, rc);
3343 			return (rc);
3344 		}
3345 		eq->flags &= ~EQ_ALLOCATED;
3346 	}
3347 
3348 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3349 
3350 	if (mtx_initialized(&eq->eq_lock))
3351 		mtx_destroy(&eq->eq_lock);
3352 
3353 	bzero(eq, sizeof(*eq));
3354 	return (0);
3355 }
3356 
3357 static int
3358 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
3359     struct sysctl_oid *oid)
3360 {
3361 	int rc;
3362 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
3363 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3364 
3365 	rc = alloc_eq(sc, vi, &wrq->eq);
3366 	if (rc)
3367 		return (rc);
3368 
3369 	wrq->adapter = sc;
3370 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
3371 	TAILQ_INIT(&wrq->incomplete_wrs);
3372 	STAILQ_INIT(&wrq->wr_list);
3373 	wrq->nwr_pending = 0;
3374 	wrq->ndesc_needed = 0;
3375 
3376 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3377 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3378 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3379 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3380 	    "consumer index");
3381 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3382 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3383 	    "producer index");
3384 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
3385 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
3386 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
3387 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
3388 
3389 	return (rc);
3390 }
3391 
3392 static int
3393 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3394 {
3395 	int rc;
3396 
3397 	rc = free_eq(sc, &wrq->eq);
3398 	if (rc)
3399 		return (rc);
3400 
3401 	bzero(wrq, sizeof(*wrq));
3402 	return (0);
3403 }
3404 
3405 static int
3406 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
3407     struct sysctl_oid *oid)
3408 {
3409 	int rc;
3410 	struct port_info *pi = vi->pi;
3411 	struct adapter *sc = pi->adapter;
3412 	struct sge_eq *eq = &txq->eq;
3413 	char name[16];
3414 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3415 
3416 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
3417 	    M_CXGBE, M_WAITOK);
3418 	if (rc != 0) {
3419 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
3420 		return (rc);
3421 	}
3422 
3423 	rc = alloc_eq(sc, vi, eq);
3424 	if (rc != 0) {
3425 		mp_ring_free(txq->r);
3426 		txq->r = NULL;
3427 		return (rc);
3428 	}
3429 
3430 	/* Can't fail after this point. */
3431 
3432 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
3433 	txq->ifp = vi->ifp;
3434 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
3435 	txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3436 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) |
3437 	    V_TXPKT_VF(vi->viid));
3438 	txq->tc_idx = -1;
3439 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
3440 	    M_ZERO | M_WAITOK);
3441 
3442 	snprintf(name, sizeof(name), "%d", idx);
3443 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3444 	    NULL, "tx queue");
3445 	children = SYSCTL_CHILDREN(oid);
3446 
3447 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3448 	    &eq->cntxt_id, 0, "SGE context id of the queue");
3449 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3450 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3451 	    "consumer index");
3452 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3453 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3454 	    "producer index");
3455 
3456 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
3457 	    CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I",
3458 	    "traffic class (-1 means none)");
3459 
3460 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3461 	    &txq->txcsum, "# of times hardware assisted with checksum");
3462 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
3463 	    CTLFLAG_RD, &txq->vlan_insertion,
3464 	    "# of times hardware inserted 802.1Q tag");
3465 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3466 	    &txq->tso_wrs, "# of TSO work requests");
3467 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3468 	    &txq->imm_wrs, "# of work requests with immediate data");
3469 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3470 	    &txq->sgl_wrs, "# of work requests with direct SGL");
3471 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3472 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3473 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
3474 	    CTLFLAG_RD, &txq->txpkts0_wrs,
3475 	    "# of txpkts (type 0) work requests");
3476 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
3477 	    CTLFLAG_RD, &txq->txpkts1_wrs,
3478 	    "# of txpkts (type 1) work requests");
3479 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
3480 	    CTLFLAG_RD, &txq->txpkts0_pkts,
3481 	    "# of frames tx'd using type0 txpkts work requests");
3482 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
3483 	    CTLFLAG_RD, &txq->txpkts1_pkts,
3484 	    "# of frames tx'd using type1 txpkts work requests");
3485 
3486 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
3487 	    CTLFLAG_RD, &txq->r->enqueues,
3488 	    "# of enqueues to the mp_ring for this queue");
3489 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
3490 	    CTLFLAG_RD, &txq->r->drops,
3491 	    "# of drops in the mp_ring for this queue");
3492 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
3493 	    CTLFLAG_RD, &txq->r->starts,
3494 	    "# of normal consumer starts in the mp_ring for this queue");
3495 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
3496 	    CTLFLAG_RD, &txq->r->stalls,
3497 	    "# of consumer stalls in the mp_ring for this queue");
3498 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
3499 	    CTLFLAG_RD, &txq->r->restarts,
3500 	    "# of consumer restarts in the mp_ring for this queue");
3501 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
3502 	    CTLFLAG_RD, &txq->r->abdications,
3503 	    "# of consumer abdications in the mp_ring for this queue");
3504 
3505 	return (0);
3506 }
3507 
3508 static int
3509 free_txq(struct vi_info *vi, struct sge_txq *txq)
3510 {
3511 	int rc;
3512 	struct adapter *sc = vi->pi->adapter;
3513 	struct sge_eq *eq = &txq->eq;
3514 
3515 	rc = free_eq(sc, eq);
3516 	if (rc)
3517 		return (rc);
3518 
3519 	sglist_free(txq->gl);
3520 	free(txq->sdesc, M_CXGBE);
3521 	mp_ring_free(txq->r);
3522 
3523 	bzero(txq, sizeof(*txq));
3524 	return (0);
3525 }
3526 
3527 static void
3528 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3529 {
3530 	bus_addr_t *ba = arg;
3531 
3532 	KASSERT(nseg == 1,
3533 	    ("%s meant for single segment mappings only.", __func__));
3534 
3535 	*ba = error ? 0 : segs->ds_addr;
3536 }
3537 
3538 static inline void
3539 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3540 {
3541 	uint32_t n, v;
3542 
3543 	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
3544 	MPASS(n > 0);
3545 
3546 	wmb();
3547 	v = fl->dbval | V_PIDX(n);
3548 	if (fl->udb)
3549 		*fl->udb = htole32(v);
3550 	else
3551 		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3552 	IDXINCR(fl->dbidx, n, fl->sidx);
3553 }
3554 
3555 /*
3556  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
3557  * recycled do not count towards this allocation budget.
3558  *
3559  * Returns non-zero to indicate that this freelist should be added to the list
3560  * of starving freelists.
3561  */
3562 static int
3563 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
3564 {
3565 	__be64 *d;
3566 	struct fl_sdesc *sd;
3567 	uintptr_t pa;
3568 	caddr_t cl;
3569 	struct cluster_layout *cll;
3570 	struct sw_zone_info *swz;
3571 	struct cluster_metadata *clm;
3572 	uint16_t max_pidx;
3573 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
3574 
3575 	FL_LOCK_ASSERT_OWNED(fl);
3576 
3577 	/*
3578 	 * We always stop at the beginning of the hardware descriptor that's just
3579 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
3580 	 * which would mean an empty freelist to the chip.
3581 	 */
3582 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
3583 	if (fl->pidx == max_pidx * 8)
3584 		return (0);
3585 
3586 	d = &fl->desc[fl->pidx];
3587 	sd = &fl->sdesc[fl->pidx];
3588 	cll = &fl->cll_def;	/* default layout */
3589 	swz = &sc->sge.sw_zone_info[cll->zidx];
3590 
3591 	while (n > 0) {
3592 
3593 		if (sd->cl != NULL) {
3594 
3595 			if (sd->nmbuf == 0) {
3596 				/*
3597 				 * Fast recycle without involving any atomics on
3598 				 * the cluster's metadata (if the cluster has
3599 				 * metadata).  This happens when all frames
3600 				 * received in the cluster were small enough to
3601 				 * fit within a single mbuf each.
3602 				 */
3603 				fl->cl_fast_recycled++;
3604 #ifdef INVARIANTS
3605 				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3606 				if (clm != NULL)
3607 					MPASS(clm->refcount == 1);
3608 #endif
3609 				goto recycled_fast;
3610 			}
3611 
3612 			/*
3613 			 * Cluster is guaranteed to have metadata.  Clusters
3614 			 * without metadata always take the fast recycle path
3615 			 * when they're recycled.
3616 			 */
3617 			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3618 			MPASS(clm != NULL);
3619 
3620 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3621 				fl->cl_recycled++;
3622 				counter_u64_add(extfree_rels, 1);
3623 				goto recycled;
3624 			}
3625 			sd->cl = NULL;	/* gave up my reference */
3626 		}
3627 		MPASS(sd->cl == NULL);
3628 alloc:
3629 		cl = uma_zalloc(swz->zone, M_NOWAIT);
3630 		if (__predict_false(cl == NULL)) {
3631 			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3632 			    fl->cll_def.zidx == fl->cll_alt.zidx)
3633 				break;
3634 
3635 			/* fall back to the safe zone */
3636 			cll = &fl->cll_alt;
3637 			swz = &sc->sge.sw_zone_info[cll->zidx];
3638 			goto alloc;
3639 		}
3640 		fl->cl_allocated++;
3641 		n--;
3642 
3643 		pa = pmap_kextract((vm_offset_t)cl);
3644 		pa += cll->region1;
3645 		sd->cl = cl;
3646 		sd->cll = *cll;
3647 		*d = htobe64(pa | cll->hwidx);
3648 		clm = cl_metadata(sc, fl, cll, cl);
3649 		if (clm != NULL) {
3650 recycled:
3651 #ifdef INVARIANTS
3652 			clm->sd = sd;
3653 #endif
3654 			clm->refcount = 1;
3655 		}
3656 		sd->nmbuf = 0;
3657 recycled_fast:
3658 		d++;
3659 		sd++;
3660 		if (__predict_false(++fl->pidx % 8 == 0)) {
3661 			uint16_t pidx = fl->pidx / 8;
3662 
3663 			if (__predict_false(pidx == fl->sidx)) {
3664 				fl->pidx = 0;
3665 				pidx = 0;
3666 				sd = fl->sdesc;
3667 				d = fl->desc;
3668 			}
3669 			if (pidx == max_pidx)
3670 				break;
3671 
3672 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
3673 				ring_fl_db(sc, fl);
3674 		}
3675 	}
3676 
3677 	if (fl->pidx / 8 != fl->dbidx)
3678 		ring_fl_db(sc, fl);
3679 
3680 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3681 }
3682 
3683 /*
3684  * Attempt to refill all starving freelists.
3685  */
3686 static void
3687 refill_sfl(void *arg)
3688 {
3689 	struct adapter *sc = arg;
3690 	struct sge_fl *fl, *fl_temp;
3691 
3692 	mtx_assert(&sc->sfl_lock, MA_OWNED);
3693 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3694 		FL_LOCK(fl);
3695 		refill_fl(sc, fl, 64);
3696 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3697 			TAILQ_REMOVE(&sc->sfl, fl, link);
3698 			fl->flags &= ~FL_STARVING;
3699 		}
3700 		FL_UNLOCK(fl);
3701 	}
3702 
3703 	if (!TAILQ_EMPTY(&sc->sfl))
3704 		callout_schedule(&sc->sfl_callout, hz / 5);
3705 }
3706 
3707 static int
3708 alloc_fl_sdesc(struct sge_fl *fl)
3709 {
3710 
3711 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
3712 	    M_ZERO | M_WAITOK);
3713 
3714 	return (0);
3715 }
3716 
3717 static void
3718 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3719 {
3720 	struct fl_sdesc *sd;
3721 	struct cluster_metadata *clm;
3722 	struct cluster_layout *cll;
3723 	int i;
3724 
3725 	sd = fl->sdesc;
3726 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
3727 		if (sd->cl == NULL)
3728 			continue;
3729 
3730 		cll = &sd->cll;
3731 		clm = cl_metadata(sc, fl, cll, sd->cl);
3732 		if (sd->nmbuf == 0)
3733 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3734 		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3735 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3736 			counter_u64_add(extfree_rels, 1);
3737 		}
3738 		sd->cl = NULL;
3739 	}
3740 
3741 	free(fl->sdesc, M_CXGBE);
3742 	fl->sdesc = NULL;
3743 }
3744 
3745 static inline void
3746 get_pkt_gl(struct mbuf *m, struct sglist *gl)
3747 {
3748 	int rc;
3749 
3750 	M_ASSERTPKTHDR(m);
3751 
3752 	sglist_reset(gl);
3753 	rc = sglist_append_mbuf(gl, m);
3754 	if (__predict_false(rc != 0)) {
3755 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
3756 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
3757 	}
3758 
3759 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
3760 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
3761 	    mbuf_nsegs(m), gl->sg_nseg));
3762 	KASSERT(gl->sg_nseg > 0 &&
3763 	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
3764 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
3765 		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
3766 }
3767 
3768 /*
3769  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
3770  */
3771 static inline u_int
3772 txpkt_len16(u_int nsegs, u_int tso)
3773 {
3774 	u_int n;
3775 
3776 	MPASS(nsegs > 0);
3777 
3778 	nsegs--; /* first segment is part of ulptx_sgl */
3779 	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
3780 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
3781 	if (tso)
3782 		n += sizeof(struct cpl_tx_pkt_lso_core);
3783 
3784 	return (howmany(n, 16));
3785 }
3786 
3787 /*
3788  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
3789  * request header.
3790  */
3791 static inline u_int
3792 txpkts0_len16(u_int nsegs)
3793 {
3794 	u_int n;
3795 
3796 	MPASS(nsegs > 0);
3797 
3798 	nsegs--; /* first segment is part of ulptx_sgl */
3799 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
3800 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
3801 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
3802 
3803 	return (howmany(n, 16));
3804 }
3805 
3806 /*
3807  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
3808  * request header.
3809  */
3810 static inline u_int
3811 txpkts1_len16(void)
3812 {
3813 	u_int n;
3814 
3815 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
3816 
3817 	return (howmany(n, 16));
3818 }
3819 
3820 static inline u_int
3821 imm_payload(u_int ndesc)
3822 {
3823 	u_int n;
3824 
3825 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
3826 	    sizeof(struct cpl_tx_pkt_core);
3827 
3828 	return (n);
3829 }
3830 
3831 /*
3832  * Write a txpkt WR for this packet to the hardware descriptors, update the
3833  * software descriptor, and advance the pidx.  It is guaranteed that enough
3834  * descriptors are available.
3835  *
3836  * The return value is the # of hardware descriptors used.
3837  */
3838 static u_int
3839 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
3840     struct mbuf *m0, u_int available)
3841 {
3842 	struct sge_eq *eq = &txq->eq;
3843 	struct tx_sdesc *txsd;
3844 	struct cpl_tx_pkt_core *cpl;
3845 	uint32_t ctrl;	/* used in many unrelated places */
3846 	uint64_t ctrl1;
3847 	int len16, ndesc, pktlen, nsegs;
3848 	caddr_t dst;
3849 
3850 	TXQ_LOCK_ASSERT_OWNED(txq);
3851 	M_ASSERTPKTHDR(m0);
3852 	MPASS(available > 0 && available < eq->sidx);
3853 
3854 	len16 = mbuf_len16(m0);
3855 	nsegs = mbuf_nsegs(m0);
3856 	pktlen = m0->m_pkthdr.len;
3857 	ctrl = sizeof(struct cpl_tx_pkt_core);
3858 	if (needs_tso(m0))
3859 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3860 	else if (pktlen <= imm_payload(2) && available >= 2) {
3861 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
3862 		ctrl += pktlen;
3863 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
3864 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
3865 		nsegs = 0;
3866 	}
3867 	ndesc = howmany(len16, EQ_ESIZE / 16);
3868 	MPASS(ndesc <= available);
3869 
3870 	/* Firmware work request header */
3871 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
3872 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3873 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3874 
3875 	ctrl = V_FW_WR_LEN16(len16);
3876 	wr->equiq_to_len16 = htobe32(ctrl);
3877 	wr->r3 = 0;
3878 
3879 	if (needs_tso(m0)) {
3880 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3881 
3882 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
3883 		    m0->m_pkthdr.l4hlen > 0,
3884 		    ("%s: mbuf %p needs TSO but missing header lengths",
3885 			__func__, m0));
3886 
3887 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3888 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
3889 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
3890 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
3891 			ctrl |= V_LSO_ETHHDR_LEN(1);
3892 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
3893 			ctrl |= F_LSO_IPV6;
3894 
3895 		lso->lso_ctrl = htobe32(ctrl);
3896 		lso->ipid_ofst = htobe16(0);
3897 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
3898 		lso->seqno_offset = htobe32(0);
3899 		lso->len = htobe32(pktlen);
3900 
3901 		cpl = (void *)(lso + 1);
3902 
3903 		txq->tso_wrs++;
3904 	} else
3905 		cpl = (void *)(wr + 1);
3906 
3907 	/* Checksum offload */
3908 	ctrl1 = 0;
3909 	if (needs_l3_csum(m0) == 0)
3910 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3911 	if (needs_l4_csum(m0) == 0)
3912 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3913 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3914 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3915 		txq->txcsum++;	/* some hardware assistance provided */
3916 
3917 	/* VLAN tag insertion */
3918 	if (needs_vlan_insertion(m0)) {
3919 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
3920 		txq->vlan_insertion++;
3921 	}
3922 
3923 	/* CPL header */
3924 	cpl->ctrl0 = txq->cpl_ctrl0;
3925 	cpl->pack = 0;
3926 	cpl->len = htobe16(pktlen);
3927 	cpl->ctrl1 = htobe64(ctrl1);
3928 
3929 	/* SGL */
3930 	dst = (void *)(cpl + 1);
3931 	if (nsegs > 0) {
3932 
3933 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
3934 		txq->sgl_wrs++;
3935 	} else {
3936 		struct mbuf *m;
3937 
3938 		for (m = m0; m != NULL; m = m->m_next) {
3939 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3940 #ifdef INVARIANTS
3941 			pktlen -= m->m_len;
3942 #endif
3943 		}
3944 #ifdef INVARIANTS
3945 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3946 #endif
3947 		txq->imm_wrs++;
3948 	}
3949 
3950 	txq->txpkt_wrs++;
3951 
3952 	txsd = &txq->sdesc[eq->pidx];
3953 	txsd->m = m0;
3954 	txsd->desc_used = ndesc;
3955 
3956 	return (ndesc);
3957 }
3958 
3959 static int
3960 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
3961 {
3962 	u_int needed, nsegs1, nsegs2, l1, l2;
3963 
3964 	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
3965 		return (1);
3966 
3967 	nsegs1 = mbuf_nsegs(m);
3968 	nsegs2 = mbuf_nsegs(n);
3969 	if (nsegs1 + nsegs2 == 2) {
3970 		txp->wr_type = 1;
3971 		l1 = l2 = txpkts1_len16();
3972 	} else {
3973 		txp->wr_type = 0;
3974 		l1 = txpkts0_len16(nsegs1);
3975 		l2 = txpkts0_len16(nsegs2);
3976 	}
3977 	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
3978 	needed = howmany(txp->len16, EQ_ESIZE / 16);
3979 	if (needed > SGE_MAX_WR_NDESC || needed > available)
3980 		return (1);
3981 
3982 	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
3983 	if (txp->plen > 65535)
3984 		return (1);
3985 
3986 	txp->npkt = 2;
3987 	set_mbuf_len16(m, l1);
3988 	set_mbuf_len16(n, l2);
3989 
3990 	return (0);
3991 }
3992 
3993 static int
3994 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
3995 {
3996 	u_int plen, len16, needed, nsegs;
3997 
3998 	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
3999 
4000 	nsegs = mbuf_nsegs(m);
4001 	if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
4002 		return (1);
4003 
4004 	plen = txp->plen + m->m_pkthdr.len;
4005 	if (plen > 65535)
4006 		return (1);
4007 
4008 	if (txp->wr_type == 0)
4009 		len16 = txpkts0_len16(nsegs);
4010 	else
4011 		len16 = txpkts1_len16();
4012 	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4013 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4014 		return (1);
4015 
4016 	txp->npkt++;
4017 	txp->plen = plen;
4018 	txp->len16 += len16;
4019 	set_mbuf_len16(m, len16);
4020 
4021 	return (0);
4022 }
4023 
4024 /*
4025  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
4026  * the software descriptor, and advance the pidx.  It is guaranteed that enough
4027  * descriptors are available.
4028  *
4029  * The return value is the # of hardware descriptors used.
4030  */
4031 static u_int
4032 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
4033     struct mbuf *m0, const struct txpkts *txp, u_int available)
4034 {
4035 	struct sge_eq *eq = &txq->eq;
4036 	struct tx_sdesc *txsd;
4037 	struct cpl_tx_pkt_core *cpl;
4038 	uint32_t ctrl;
4039 	uint64_t ctrl1;
4040 	int ndesc, checkwrap;
4041 	struct mbuf *m;
4042 	void *flitp;
4043 
4044 	TXQ_LOCK_ASSERT_OWNED(txq);
4045 	MPASS(txp->npkt > 0);
4046 	MPASS(txp->plen < 65536);
4047 	MPASS(m0 != NULL);
4048 	MPASS(m0->m_nextpkt != NULL);
4049 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
4050 	MPASS(available > 0 && available < eq->sidx);
4051 
4052 	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
4053 	MPASS(ndesc <= available);
4054 
4055 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4056 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4057 	ctrl = V_FW_WR_LEN16(txp->len16);
4058 	wr->equiq_to_len16 = htobe32(ctrl);
4059 	wr->plen = htobe16(txp->plen);
4060 	wr->npkt = txp->npkt;
4061 	wr->r3 = 0;
4062 	wr->type = txp->wr_type;
4063 	flitp = wr + 1;
4064 
4065 	/*
4066 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
4067 	 * set then we know the WR is going to wrap around somewhere.  We'll
4068 	 * check for that at appropriate points.
4069 	 */
4070 	checkwrap = eq->sidx - ndesc < eq->pidx;
4071 	for (m = m0; m != NULL; m = m->m_nextpkt) {
4072 		if (txp->wr_type == 0) {
4073 			struct ulp_txpkt *ulpmc;
4074 			struct ulptx_idata *ulpsc;
4075 
4076 			/* ULP master command */
4077 			ulpmc = flitp;
4078 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
4079 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
4080 			ulpmc->len = htobe32(mbuf_len16(m));
4081 
4082 			/* ULP subcommand */
4083 			ulpsc = (void *)(ulpmc + 1);
4084 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
4085 			    F_ULP_TX_SC_MORE);
4086 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
4087 
4088 			cpl = (void *)(ulpsc + 1);
4089 			if (checkwrap &&
4090 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
4091 				cpl = (void *)&eq->desc[0];
4092 			txq->txpkts0_pkts += txp->npkt;
4093 			txq->txpkts0_wrs++;
4094 		} else {
4095 			cpl = flitp;
4096 			txq->txpkts1_pkts += txp->npkt;
4097 			txq->txpkts1_wrs++;
4098 		}
4099 
4100 		/* Checksum offload */
4101 		ctrl1 = 0;
4102 		if (needs_l3_csum(m) == 0)
4103 			ctrl1 |= F_TXPKT_IPCSUM_DIS;
4104 		if (needs_l4_csum(m) == 0)
4105 			ctrl1 |= F_TXPKT_L4CSUM_DIS;
4106 		if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4107 		    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4108 			txq->txcsum++;	/* some hardware assistance provided */
4109 
4110 		/* VLAN tag insertion */
4111 		if (needs_vlan_insertion(m)) {
4112 			ctrl1 |= F_TXPKT_VLAN_VLD |
4113 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
4114 			txq->vlan_insertion++;
4115 		}
4116 
4117 		/* CPL header */
4118 		cpl->ctrl0 = txq->cpl_ctrl0;
4119 		cpl->pack = 0;
4120 		cpl->len = htobe16(m->m_pkthdr.len);
4121 		cpl->ctrl1 = htobe64(ctrl1);
4122 
4123 		flitp = cpl + 1;
4124 		if (checkwrap &&
4125 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
4126 			flitp = (void *)&eq->desc[0];
4127 
4128 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
4129 
4130 	}
4131 
4132 	txsd = &txq->sdesc[eq->pidx];
4133 	txsd->m = m0;
4134 	txsd->desc_used = ndesc;
4135 
4136 	return (ndesc);
4137 }
4138 
4139 /*
4140  * If the SGL ends on an address that is not 16 byte aligned, this function will
4141  * add a 0 filled flit at the end.
4142  */
4143 static void
4144 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
4145 {
4146 	struct sge_eq *eq = &txq->eq;
4147 	struct sglist *gl = txq->gl;
4148 	struct sglist_seg *seg;
4149 	__be64 *flitp, *wrap;
4150 	struct ulptx_sgl *usgl;
4151 	int i, nflits, nsegs;
4152 
4153 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4154 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4155 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4156 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4157 
4158 	get_pkt_gl(m, gl);
4159 	nsegs = gl->sg_nseg;
4160 	MPASS(nsegs > 0);
4161 
4162 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
4163 	flitp = (__be64 *)(*to);
4164 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
4165 	seg = &gl->sg_segs[0];
4166 	usgl = (void *)flitp;
4167 
4168 	/*
4169 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4170 	 * ring, so we're at least 16 bytes away from the status page.  There is
4171 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4172 	 */
4173 
4174 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4175 	    V_ULPTX_NSGE(nsegs));
4176 	usgl->len0 = htobe32(seg->ss_len);
4177 	usgl->addr0 = htobe64(seg->ss_paddr);
4178 	seg++;
4179 
4180 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
4181 
4182 		/* Won't wrap around at all */
4183 
4184 		for (i = 0; i < nsegs - 1; i++, seg++) {
4185 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
4186 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
4187 		}
4188 		if (i & 1)
4189 			usgl->sge[i / 2].len[1] = htobe32(0);
4190 		flitp += nflits;
4191 	} else {
4192 
4193 		/* Will wrap somewhere in the rest of the SGL */
4194 
4195 		/* 2 flits already written, write the rest flit by flit */
4196 		flitp = (void *)(usgl + 1);
4197 		for (i = 0; i < nflits - 2; i++) {
4198 			if (flitp == wrap)
4199 				flitp = (void *)eq->desc;
4200 			*flitp++ = get_flit(seg, nsegs - 1, i);
4201 		}
4202 	}
4203 
4204 	if (nflits & 1) {
4205 		MPASS(((uintptr_t)flitp) & 0xf);
4206 		*flitp++ = 0;
4207 	}
4208 
4209 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
4210 	if (__predict_false(flitp == wrap))
4211 		*to = (void *)eq->desc;
4212 	else
4213 		*to = (void *)flitp;
4214 }
4215 
4216 static inline void
4217 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4218 {
4219 
4220 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4221 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4222 
4223 	if (__predict_true((uintptr_t)(*to) + len <=
4224 	    (uintptr_t)&eq->desc[eq->sidx])) {
4225 		bcopy(from, *to, len);
4226 		(*to) += len;
4227 	} else {
4228 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
4229 
4230 		bcopy(from, *to, portion);
4231 		from += portion;
4232 		portion = len - portion;	/* remaining */
4233 		bcopy(from, (void *)eq->desc, portion);
4234 		(*to) = (caddr_t)eq->desc + portion;
4235 	}
4236 }
4237 
4238 static inline void
4239 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
4240 {
4241 	u_int db;
4242 
4243 	MPASS(n > 0);
4244 
4245 	db = eq->doorbells;
4246 	if (n > 1)
4247 		clrbit(&db, DOORBELL_WCWR);
4248 	wmb();
4249 
4250 	switch (ffs(db) - 1) {
4251 	case DOORBELL_UDB:
4252 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4253 		break;
4254 
4255 	case DOORBELL_WCWR: {
4256 		volatile uint64_t *dst, *src;
4257 		int i;
4258 
4259 		/*
4260 		 * Queues whose 128B doorbell segment fits in the page do not
4261 		 * use relative qid (udb_qid is always 0).  Only queues with
4262 		 * doorbell segments can do WCWR.
4263 		 */
4264 		KASSERT(eq->udb_qid == 0 && n == 1,
4265 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4266 		    __func__, eq->doorbells, n, eq->dbidx, eq));
4267 
4268 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4269 		    UDBS_DB_OFFSET);
4270 		i = eq->dbidx;
4271 		src = (void *)&eq->desc[i];
4272 		while (src != (void *)&eq->desc[i + 1])
4273 			*dst++ = *src++;
4274 		wmb();
4275 		break;
4276 	}
4277 
4278 	case DOORBELL_UDBWC:
4279 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4280 		wmb();
4281 		break;
4282 
4283 	case DOORBELL_KDB:
4284 		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
4285 		    V_QID(eq->cntxt_id) | V_PIDX(n));
4286 		break;
4287 	}
4288 
4289 	IDXINCR(eq->dbidx, n, eq->sidx);
4290 }
4291 
4292 static inline u_int
4293 reclaimable_tx_desc(struct sge_eq *eq)
4294 {
4295 	uint16_t hw_cidx;
4296 
4297 	hw_cidx = read_hw_cidx(eq);
4298 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
4299 }
4300 
4301 static inline u_int
4302 total_available_tx_desc(struct sge_eq *eq)
4303 {
4304 	uint16_t hw_cidx, pidx;
4305 
4306 	hw_cidx = read_hw_cidx(eq);
4307 	pidx = eq->pidx;
4308 
4309 	if (pidx == hw_cidx)
4310 		return (eq->sidx - 1);
4311 	else
4312 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
4313 }
4314 
4315 static inline uint16_t
4316 read_hw_cidx(struct sge_eq *eq)
4317 {
4318 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4319 	uint16_t cidx = spg->cidx;	/* stable snapshot */
4320 
4321 	return (be16toh(cidx));
4322 }
4323 
4324 /*
4325  * Reclaim 'n' descriptors approximately.
4326  */
4327 static u_int
4328 reclaim_tx_descs(struct sge_txq *txq, u_int n)
4329 {
4330 	struct tx_sdesc *txsd;
4331 	struct sge_eq *eq = &txq->eq;
4332 	u_int can_reclaim, reclaimed;
4333 
4334 	TXQ_LOCK_ASSERT_OWNED(txq);
4335 	MPASS(n > 0);
4336 
4337 	reclaimed = 0;
4338 	can_reclaim = reclaimable_tx_desc(eq);
4339 	while (can_reclaim && reclaimed < n) {
4340 		int ndesc;
4341 		struct mbuf *m, *nextpkt;
4342 
4343 		txsd = &txq->sdesc[eq->cidx];
4344 		ndesc = txsd->desc_used;
4345 
4346 		/* Firmware doesn't return "partial" credits. */
4347 		KASSERT(can_reclaim >= ndesc,
4348 		    ("%s: unexpected number of credits: %d, %d",
4349 		    __func__, can_reclaim, ndesc));
4350 
4351 		for (m = txsd->m; m != NULL; m = nextpkt) {
4352 			nextpkt = m->m_nextpkt;
4353 			m->m_nextpkt = NULL;
4354 			m_freem(m);
4355 		}
4356 		reclaimed += ndesc;
4357 		can_reclaim -= ndesc;
4358 		IDXINCR(eq->cidx, ndesc, eq->sidx);
4359 	}
4360 
4361 	return (reclaimed);
4362 }
4363 
4364 static void
4365 tx_reclaim(void *arg, int n)
4366 {
4367 	struct sge_txq *txq = arg;
4368 	struct sge_eq *eq = &txq->eq;
4369 
4370 	do {
4371 		if (TXQ_TRYLOCK(txq) == 0)
4372 			break;
4373 		n = reclaim_tx_descs(txq, 32);
4374 		if (eq->cidx == eq->pidx)
4375 			eq->equeqidx = eq->pidx;
4376 		TXQ_UNLOCK(txq);
4377 	} while (n > 0);
4378 }
4379 
4380 static __be64
4381 get_flit(struct sglist_seg *segs, int nsegs, int idx)
4382 {
4383 	int i = (idx / 3) * 2;
4384 
4385 	switch (idx % 3) {
4386 	case 0: {
4387 		__be64 rc;
4388 
4389 		rc = htobe32(segs[i].ss_len);
4390 		if (i + 1 < nsegs)
4391 			rc |= (uint64_t)htobe32(segs[i + 1].ss_len) << 32;
4392 
4393 		return (rc);
4394 	}
4395 	case 1:
4396 		return (htobe64(segs[i].ss_paddr));
4397 	case 2:
4398 		return (htobe64(segs[i + 1].ss_paddr));
4399 	}
4400 
4401 	return (0);
4402 }
4403 
4404 static void
4405 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4406 {
4407 	int8_t zidx, hwidx, idx;
4408 	uint16_t region1, region3;
4409 	int spare, spare_needed, n;
4410 	struct sw_zone_info *swz;
4411 	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4412 
4413 	/*
4414 	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4415 	 * large enough for the max payload and cluster metadata.  Otherwise
4416 	 * settle for the largest bufsize that leaves enough room in the cluster
4417 	 * for metadata.
4418 	 *
4419 	 * Without buffer packing: Look for the smallest zone which has a
4420 	 * bufsize large enough for the max payload.  Settle for the largest
4421 	 * bufsize available if there's nothing big enough for max payload.
4422 	 */
4423 	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4424 	swz = &sc->sge.sw_zone_info[0];
4425 	hwidx = -1;
4426 	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4427 		if (swz->size > largest_rx_cluster) {
4428 			if (__predict_true(hwidx != -1))
4429 				break;
4430 
4431 			/*
4432 			 * This is a misconfiguration.  largest_rx_cluster is
4433 			 * preventing us from finding a refill source.  See
4434 			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4435 			 */
4436 			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4437 			    " refill source for fl %p (dma %u).  Ignored.\n",
4438 			    largest_rx_cluster, fl, maxp);
4439 		}
4440 		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4441 			hwb = &hwb_list[idx];
4442 			spare = swz->size - hwb->size;
4443 			if (spare < spare_needed)
4444 				continue;
4445 
4446 			hwidx = idx;		/* best option so far */
4447 			if (hwb->size >= maxp) {
4448 
4449 				if ((fl->flags & FL_BUF_PACKING) == 0)
4450 					goto done; /* stop looking (not packing) */
4451 
4452 				if (swz->size >= safest_rx_cluster)
4453 					goto done; /* stop looking (packing) */
4454 			}
4455 			break;		/* keep looking, next zone */
4456 		}
4457 	}
4458 done:
4459 	/* A usable hwidx has been located. */
4460 	MPASS(hwidx != -1);
4461 	hwb = &hwb_list[hwidx];
4462 	zidx = hwb->zidx;
4463 	swz = &sc->sge.sw_zone_info[zidx];
4464 	region1 = 0;
4465 	region3 = swz->size - hwb->size;
4466 
4467 	/*
4468 	 * Stay within this zone and see if there is a better match when mbuf
4469 	 * inlining is allowed.  Remember that the hwidx's are sorted in
4470 	 * decreasing order of size (so in increasing order of spare area).
4471 	 */
4472 	for (idx = hwidx; idx != -1; idx = hwb->next) {
4473 		hwb = &hwb_list[idx];
4474 		spare = swz->size - hwb->size;
4475 
4476 		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4477 			break;
4478 
4479 		/*
4480 		 * Do not inline mbufs if doing so would violate the pad/pack
4481 		 * boundary alignment requirement.
4482 		 */
4483 		if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0)
4484 			continue;
4485 		if (fl->flags & FL_BUF_PACKING &&
4486 		    (MSIZE % sc->params.sge.pack_boundary) != 0)
4487 			continue;
4488 
4489 		if (spare < CL_METADATA_SIZE + MSIZE)
4490 			continue;
4491 		n = (spare - CL_METADATA_SIZE) / MSIZE;
4492 		if (n > howmany(hwb->size, maxp))
4493 			break;
4494 
4495 		hwidx = idx;
4496 		if (fl->flags & FL_BUF_PACKING) {
4497 			region1 = n * MSIZE;
4498 			region3 = spare - region1;
4499 		} else {
4500 			region1 = MSIZE;
4501 			region3 = spare - region1;
4502 			break;
4503 		}
4504 	}
4505 
4506 	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4507 	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4508 	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4509 	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4510 	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4511 	    sc->sge.sw_zone_info[zidx].size,
4512 	    ("%s: bad buffer layout for fl %p, maxp %d. "
4513 		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4514 		sc->sge.sw_zone_info[zidx].size, region1,
4515 		sc->sge.hw_buf_info[hwidx].size, region3));
4516 	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4517 		KASSERT(region3 >= CL_METADATA_SIZE,
4518 		    ("%s: no room for metadata.  fl %p, maxp %d; "
4519 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4520 		    sc->sge.sw_zone_info[zidx].size, region1,
4521 		    sc->sge.hw_buf_info[hwidx].size, region3));
4522 		KASSERT(region1 % MSIZE == 0,
4523 		    ("%s: bad mbuf region for fl %p, maxp %d. "
4524 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4525 		    sc->sge.sw_zone_info[zidx].size, region1,
4526 		    sc->sge.hw_buf_info[hwidx].size, region3));
4527 	}
4528 
4529 	fl->cll_def.zidx = zidx;
4530 	fl->cll_def.hwidx = hwidx;
4531 	fl->cll_def.region1 = region1;
4532 	fl->cll_def.region3 = region3;
4533 }
4534 
4535 static void
4536 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4537 {
4538 	struct sge *s = &sc->sge;
4539 	struct hw_buf_info *hwb;
4540 	struct sw_zone_info *swz;
4541 	int spare;
4542 	int8_t hwidx;
4543 
4544 	if (fl->flags & FL_BUF_PACKING)
4545 		hwidx = s->safe_hwidx2;	/* with room for metadata */
4546 	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4547 		hwidx = s->safe_hwidx2;
4548 		hwb = &s->hw_buf_info[hwidx];
4549 		swz = &s->sw_zone_info[hwb->zidx];
4550 		spare = swz->size - hwb->size;
4551 
4552 		/* no good if there isn't room for an mbuf as well */
4553 		if (spare < CL_METADATA_SIZE + MSIZE)
4554 			hwidx = s->safe_hwidx1;
4555 	} else
4556 		hwidx = s->safe_hwidx1;
4557 
4558 	if (hwidx == -1) {
4559 		/* No fallback source */
4560 		fl->cll_alt.hwidx = -1;
4561 		fl->cll_alt.zidx = -1;
4562 
4563 		return;
4564 	}
4565 
4566 	hwb = &s->hw_buf_info[hwidx];
4567 	swz = &s->sw_zone_info[hwb->zidx];
4568 	spare = swz->size - hwb->size;
4569 	fl->cll_alt.hwidx = hwidx;
4570 	fl->cll_alt.zidx = hwb->zidx;
4571 	if (allow_mbufs_in_cluster &&
4572 	    (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0))
4573 		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
4574 	else
4575 		fl->cll_alt.region1 = 0;
4576 	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
4577 }
4578 
4579 static void
4580 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4581 {
4582 	mtx_lock(&sc->sfl_lock);
4583 	FL_LOCK(fl);
4584 	if ((fl->flags & FL_DOOMED) == 0) {
4585 		fl->flags |= FL_STARVING;
4586 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4587 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4588 	}
4589 	FL_UNLOCK(fl);
4590 	mtx_unlock(&sc->sfl_lock);
4591 }
4592 
4593 static void
4594 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
4595 {
4596 	struct sge_wrq *wrq = (void *)eq;
4597 
4598 	atomic_readandclear_int(&eq->equiq);
4599 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
4600 }
4601 
4602 static void
4603 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
4604 {
4605 	struct sge_txq *txq = (void *)eq;
4606 
4607 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
4608 
4609 	atomic_readandclear_int(&eq->equiq);
4610 	mp_ring_check_drainage(txq->r, 0);
4611 	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
4612 }
4613 
4614 static int
4615 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4616     struct mbuf *m)
4617 {
4618 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4619 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4620 	struct adapter *sc = iq->adapter;
4621 	struct sge *s = &sc->sge;
4622 	struct sge_eq *eq;
4623 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
4624 		&handle_wrq_egr_update, &handle_eth_egr_update,
4625 		&handle_wrq_egr_update};
4626 
4627 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4628 	    rss->opcode));
4629 
4630 	eq = s->eqmap[qid - s->eq_start];
4631 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
4632 
4633 	return (0);
4634 }
4635 
4636 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4637 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4638     offsetof(struct cpl_fw6_msg, data));
4639 
4640 static int
4641 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4642 {
4643 	struct adapter *sc = iq->adapter;
4644 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4645 
4646 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4647 	    rss->opcode));
4648 
4649 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4650 		const struct rss_header *rss2;
4651 
4652 		rss2 = (const struct rss_header *)&cpl->data[0];
4653 		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
4654 	}
4655 
4656 	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4657 }
4658 
4659 static int
4660 sysctl_uint16(SYSCTL_HANDLER_ARGS)
4661 {
4662 	uint16_t *id = arg1;
4663 	int i = *id;
4664 
4665 	return sysctl_handle_int(oidp, &i, 0, req);
4666 }
4667 
4668 static int
4669 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
4670 {
4671 	struct sge *s = arg1;
4672 	struct hw_buf_info *hwb = &s->hw_buf_info[0];
4673 	struct sw_zone_info *swz = &s->sw_zone_info[0];
4674 	int i, rc;
4675 	struct sbuf sb;
4676 	char c;
4677 
4678 	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4679 	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
4680 		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
4681 			c = '*';
4682 		else
4683 			c = '\0';
4684 
4685 		sbuf_printf(&sb, "%u%c ", hwb->size, c);
4686 	}
4687 	sbuf_trim(&sb);
4688 	sbuf_finish(&sb);
4689 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4690 	sbuf_delete(&sb);
4691 	return (rc);
4692 }
4693 
4694 static int
4695 sysctl_tc(SYSCTL_HANDLER_ARGS)
4696 {
4697 	struct vi_info *vi = arg1;
4698 	struct port_info *pi;
4699 	struct adapter *sc;
4700 	struct sge_txq *txq;
4701 	struct tx_sched_class *tc;
4702 	int qidx = arg2, rc, tc_idx;
4703 	uint32_t fw_queue, fw_class;
4704 
4705 	MPASS(qidx >= 0 && qidx < vi->ntxq);
4706 	pi = vi->pi;
4707 	sc = pi->adapter;
4708 	txq = &sc->sge.txq[vi->first_txq + qidx];
4709 
4710 	tc_idx = txq->tc_idx;
4711 	rc = sysctl_handle_int(oidp, &tc_idx, 0, req);
4712 	if (rc != 0 || req->newptr == NULL)
4713 		return (rc);
4714 
4715 	/* Note that -1 is legitimate input (it means unbind). */
4716 	if (tc_idx < -1 || tc_idx >= sc->chip_params->nsched_cls)
4717 		return (EINVAL);
4718 
4719 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4stc");
4720 	if (rc)
4721 		return (rc);
4722 
4723 	if (tc_idx == txq->tc_idx) {
4724 		rc = 0;		/* No change, nothing to do. */
4725 		goto done;
4726 	}
4727 
4728 	fw_queue = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
4729 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) |
4730 	    V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id);
4731 
4732 	if (tc_idx == -1)
4733 		fw_class = 0xffffffff;	/* Unbind. */
4734 	else {
4735 		/*
4736 		 * Bind to a different class.  Ethernet txq's are only allowed
4737 		 * to bind to cl-rl mode-class for now.  XXX: too restrictive.
4738 		 */
4739 		tc = &pi->tc[tc_idx];
4740 		if (tc->flags & TX_SC_OK &&
4741 		    tc->params.level == SCHED_CLASS_LEVEL_CL_RL &&
4742 		    tc->params.mode == SCHED_CLASS_MODE_CLASS) {
4743 			/* Ok to proceed. */
4744 			fw_class = tc_idx;
4745 		} else {
4746 			rc = tc->flags & TX_SC_OK ? EBUSY : ENXIO;
4747 			goto done;
4748 		}
4749 	}
4750 
4751 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, &fw_class);
4752 	if (rc == 0) {
4753 		if (txq->tc_idx != -1) {
4754 			tc = &pi->tc[txq->tc_idx];
4755 			MPASS(tc->refcount > 0);
4756 			tc->refcount--;
4757 		}
4758 		if (tc_idx != -1) {
4759 			tc = &pi->tc[tc_idx];
4760 			tc->refcount++;
4761 		}
4762 		txq->tc_idx = tc_idx;
4763 	}
4764 done:
4765 	end_synchronized_op(sc, 0);
4766 	return (rc);
4767 }
4768