1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 36 #include <sys/types.h> 37 #include <sys/eventhandler.h> 38 #include <sys/mbuf.h> 39 #include <sys/socket.h> 40 #include <sys/kernel.h> 41 #include <sys/malloc.h> 42 #include <sys/queue.h> 43 #include <sys/sbuf.h> 44 #include <sys/taskqueue.h> 45 #include <sys/time.h> 46 #include <sys/sglist.h> 47 #include <sys/sysctl.h> 48 #include <sys/smp.h> 49 #include <sys/counter.h> 50 #include <net/bpf.h> 51 #include <net/ethernet.h> 52 #include <net/if.h> 53 #include <net/if_vlan_var.h> 54 #include <netinet/in.h> 55 #include <netinet/ip.h> 56 #include <netinet/ip6.h> 57 #include <netinet/tcp.h> 58 #include <machine/in_cksum.h> 59 #include <machine/md_var.h> 60 #include <vm/vm.h> 61 #include <vm/pmap.h> 62 #ifdef DEV_NETMAP 63 #include <machine/bus.h> 64 #include <sys/selinfo.h> 65 #include <net/if_var.h> 66 #include <net/netmap.h> 67 #include <dev/netmap/netmap_kern.h> 68 #endif 69 70 #include "common/common.h" 71 #include "common/t4_regs.h" 72 #include "common/t4_regs_values.h" 73 #include "common/t4_msg.h" 74 #include "t4_l2t.h" 75 #include "t4_mp_ring.h" 76 77 #ifdef T4_PKT_TIMESTAMP 78 #define RX_COPY_THRESHOLD (MINCLSIZE - 8) 79 #else 80 #define RX_COPY_THRESHOLD MINCLSIZE 81 #endif 82 83 /* 84 * Ethernet frames are DMA'd at this byte offset into the freelist buffer. 85 * 0-7 are valid values. 86 */ 87 static int fl_pktshift = 2; 88 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift); 89 90 /* 91 * Pad ethernet payload up to this boundary. 92 * -1: driver should figure out a good value. 93 * 0: disable padding. 94 * Any power of 2 from 32 to 4096 (both inclusive) is also a valid value. 95 */ 96 int fl_pad = -1; 97 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad); 98 99 /* 100 * Status page length. 101 * -1: driver should figure out a good value. 102 * 64 or 128 are the only other valid values. 103 */ 104 static int spg_len = -1; 105 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len); 106 107 /* 108 * Congestion drops. 109 * -1: no congestion feedback (not recommended). 110 * 0: backpressure the channel instead of dropping packets right away. 111 * 1: no backpressure, drop packets for the congested queue immediately. 112 */ 113 static int cong_drop = 0; 114 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop); 115 116 /* 117 * Deliver multiple frames in the same free list buffer if they fit. 118 * -1: let the driver decide whether to enable buffer packing or not. 119 * 0: disable buffer packing. 120 * 1: enable buffer packing. 121 */ 122 static int buffer_packing = -1; 123 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing); 124 125 /* 126 * Start next frame in a packed buffer at this boundary. 127 * -1: driver should figure out a good value. 128 * T4: driver will ignore this and use the same value as fl_pad above. 129 * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value. 130 */ 131 static int fl_pack = -1; 132 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack); 133 134 /* 135 * Allow the driver to create mbuf(s) in a cluster allocated for rx. 136 * 0: never; always allocate mbufs from the zone_mbuf UMA zone. 137 * 1: ok to create mbuf(s) within a cluster if there is room. 138 */ 139 static int allow_mbufs_in_cluster = 1; 140 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster); 141 142 /* 143 * Largest rx cluster size that the driver is allowed to allocate. 144 */ 145 static int largest_rx_cluster = MJUM16BYTES; 146 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster); 147 148 /* 149 * Size of cluster allocation that's most likely to succeed. The driver will 150 * fall back to this size if it fails to allocate clusters larger than this. 151 */ 152 static int safest_rx_cluster = PAGE_SIZE; 153 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster); 154 155 /* 156 * The interrupt holdoff timers are multiplied by this value on T6+. 157 * 1 and 3-17 (both inclusive) are legal values. 158 */ 159 static int tscale = 1; 160 TUNABLE_INT("hw.cxgbe.tscale", &tscale); 161 162 /* 163 * Number of LRO entries in the lro_ctrl structure per rx queue. 164 */ 165 static int lro_entries = TCP_LRO_ENTRIES; 166 TUNABLE_INT("hw.cxgbe.lro_entries", &lro_entries); 167 168 /* 169 * This enables presorting of frames before they're fed into tcp_lro_rx. 170 */ 171 static int lro_mbufs = 0; 172 TUNABLE_INT("hw.cxgbe.lro_mbufs", &lro_mbufs); 173 174 struct txpkts { 175 u_int wr_type; /* type 0 or type 1 */ 176 u_int npkt; /* # of packets in this work request */ 177 u_int plen; /* total payload (sum of all packets) */ 178 u_int len16; /* # of 16B pieces used by this work request */ 179 }; 180 181 /* A packet's SGL. This + m_pkthdr has all info needed for tx */ 182 struct sgl { 183 struct sglist sg; 184 struct sglist_seg seg[TX_SGL_SEGS]; 185 }; 186 187 static int service_iq(struct sge_iq *, int); 188 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t); 189 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *); 190 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int); 191 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *); 192 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t, 193 uint16_t, char *); 194 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, 195 bus_addr_t *, void **); 196 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, 197 void *); 198 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *, 199 int, int); 200 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *); 201 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *, 202 struct sge_iq *); 203 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *, 204 struct sysctl_oid *, struct sge_fl *); 205 static int alloc_fwq(struct adapter *); 206 static int free_fwq(struct adapter *); 207 static int alloc_mgmtq(struct adapter *); 208 static int free_mgmtq(struct adapter *); 209 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, 210 struct sysctl_oid *); 211 static int free_rxq(struct vi_info *, struct sge_rxq *); 212 #ifdef TCP_OFFLOAD 213 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int, 214 struct sysctl_oid *); 215 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *); 216 #endif 217 #ifdef DEV_NETMAP 218 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int, 219 struct sysctl_oid *); 220 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *); 221 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int, 222 struct sysctl_oid *); 223 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *); 224 #endif 225 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *); 226 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 227 #ifdef TCP_OFFLOAD 228 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 229 #endif 230 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *); 231 static int free_eq(struct adapter *, struct sge_eq *); 232 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *, 233 struct sysctl_oid *); 234 static int free_wrq(struct adapter *, struct sge_wrq *); 235 static int alloc_txq(struct vi_info *, struct sge_txq *, int, 236 struct sysctl_oid *); 237 static int free_txq(struct vi_info *, struct sge_txq *); 238 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); 239 static inline void ring_fl_db(struct adapter *, struct sge_fl *); 240 static int refill_fl(struct adapter *, struct sge_fl *, int); 241 static void refill_sfl(void *); 242 static int alloc_fl_sdesc(struct sge_fl *); 243 static void free_fl_sdesc(struct adapter *, struct sge_fl *); 244 static void find_best_refill_source(struct adapter *, struct sge_fl *, int); 245 static void find_safe_refill_source(struct adapter *, struct sge_fl *); 246 static void add_fl_to_sfl(struct adapter *, struct sge_fl *); 247 248 static inline void get_pkt_gl(struct mbuf *, struct sglist *); 249 static inline u_int txpkt_len16(u_int, u_int); 250 static inline u_int txpkt_vm_len16(u_int, u_int); 251 static inline u_int txpkts0_len16(u_int); 252 static inline u_int txpkts1_len16(void); 253 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *, 254 struct mbuf *, u_int); 255 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *, 256 struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int); 257 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int); 258 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int); 259 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *, 260 struct mbuf *, const struct txpkts *, u_int); 261 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int); 262 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); 263 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int); 264 static inline uint16_t read_hw_cidx(struct sge_eq *); 265 static inline u_int reclaimable_tx_desc(struct sge_eq *); 266 static inline u_int total_available_tx_desc(struct sge_eq *); 267 static u_int reclaim_tx_descs(struct sge_txq *, u_int); 268 static void tx_reclaim(void *, int); 269 static __be64 get_flit(struct sglist_seg *, int, int); 270 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, 271 struct mbuf *); 272 static int handle_fw_msg(struct sge_iq *, const struct rss_header *, 273 struct mbuf *); 274 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *); 275 static void wrq_tx_drain(void *, int); 276 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *); 277 278 static int sysctl_uint16(SYSCTL_HANDLER_ARGS); 279 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS); 280 static int sysctl_tc(SYSCTL_HANDLER_ARGS); 281 282 static counter_u64_t extfree_refs; 283 static counter_u64_t extfree_rels; 284 285 an_handler_t t4_an_handler; 286 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES]; 287 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS]; 288 289 290 static int 291 an_not_handled(struct sge_iq *iq, const struct rsp_ctrl *ctrl) 292 { 293 294 #ifdef INVARIANTS 295 panic("%s: async notification on iq %p (ctrl %p)", __func__, iq, ctrl); 296 #else 297 log(LOG_ERR, "%s: async notification on iq %p (ctrl %p)\n", 298 __func__, iq, ctrl); 299 #endif 300 return (EDOOFUS); 301 } 302 303 int 304 t4_register_an_handler(an_handler_t h) 305 { 306 uintptr_t *loc, new; 307 308 new = h ? (uintptr_t)h : (uintptr_t)an_not_handled; 309 loc = (uintptr_t *) &t4_an_handler; 310 atomic_store_rel_ptr(loc, new); 311 312 return (0); 313 } 314 315 static int 316 fw_msg_not_handled(struct adapter *sc, const __be64 *rpl) 317 { 318 const struct cpl_fw6_msg *cpl = 319 __containerof(rpl, struct cpl_fw6_msg, data[0]); 320 321 #ifdef INVARIANTS 322 panic("%s: fw_msg type %d", __func__, cpl->type); 323 #else 324 log(LOG_ERR, "%s: fw_msg type %d\n", __func__, cpl->type); 325 #endif 326 return (EDOOFUS); 327 } 328 329 int 330 t4_register_fw_msg_handler(int type, fw_msg_handler_t h) 331 { 332 uintptr_t *loc, new; 333 334 if (type >= nitems(t4_fw_msg_handler)) 335 return (EINVAL); 336 337 /* 338 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL 339 * handler dispatch table. Reject any attempt to install a handler for 340 * this subtype. 341 */ 342 if (type == FW_TYPE_RSSCPL || type == FW6_TYPE_RSSCPL) 343 return (EINVAL); 344 345 new = h ? (uintptr_t)h : (uintptr_t)fw_msg_not_handled; 346 loc = (uintptr_t *) &t4_fw_msg_handler[type]; 347 atomic_store_rel_ptr(loc, new); 348 349 return (0); 350 } 351 352 static int 353 cpl_not_handled(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 354 { 355 356 #ifdef INVARIANTS 357 panic("%s: opcode 0x%02x on iq %p with payload %p", 358 __func__, rss->opcode, iq, m); 359 #else 360 log(LOG_ERR, "%s: opcode 0x%02x on iq %p with payload %p\n", 361 __func__, rss->opcode, iq, m); 362 m_freem(m); 363 #endif 364 return (EDOOFUS); 365 } 366 367 int 368 t4_register_cpl_handler(int opcode, cpl_handler_t h) 369 { 370 uintptr_t *loc, new; 371 372 if (opcode >= nitems(t4_cpl_handler)) 373 return (EINVAL); 374 375 new = h ? (uintptr_t)h : (uintptr_t)cpl_not_handled; 376 loc = (uintptr_t *) &t4_cpl_handler[opcode]; 377 atomic_store_rel_ptr(loc, new); 378 379 return (0); 380 } 381 382 /* 383 * Called on MOD_LOAD. Validates and calculates the SGE tunables. 384 */ 385 void 386 t4_sge_modload(void) 387 { 388 int i; 389 390 if (fl_pktshift < 0 || fl_pktshift > 7) { 391 printf("Invalid hw.cxgbe.fl_pktshift value (%d)," 392 " using 2 instead.\n", fl_pktshift); 393 fl_pktshift = 2; 394 } 395 396 if (spg_len != 64 && spg_len != 128) { 397 int len; 398 399 #if defined(__i386__) || defined(__amd64__) 400 len = cpu_clflush_line_size > 64 ? 128 : 64; 401 #else 402 len = 64; 403 #endif 404 if (spg_len != -1) { 405 printf("Invalid hw.cxgbe.spg_len value (%d)," 406 " using %d instead.\n", spg_len, len); 407 } 408 spg_len = len; 409 } 410 411 if (cong_drop < -1 || cong_drop > 1) { 412 printf("Invalid hw.cxgbe.cong_drop value (%d)," 413 " using 0 instead.\n", cong_drop); 414 cong_drop = 0; 415 } 416 417 if (tscale != 1 && (tscale < 3 || tscale > 17)) { 418 printf("Invalid hw.cxgbe.tscale value (%d)," 419 " using 1 instead.\n", tscale); 420 tscale = 1; 421 } 422 423 extfree_refs = counter_u64_alloc(M_WAITOK); 424 extfree_rels = counter_u64_alloc(M_WAITOK); 425 counter_u64_zero(extfree_refs); 426 counter_u64_zero(extfree_rels); 427 428 t4_an_handler = an_not_handled; 429 for (i = 0; i < nitems(t4_fw_msg_handler); i++) 430 t4_fw_msg_handler[i] = fw_msg_not_handled; 431 for (i = 0; i < nitems(t4_cpl_handler); i++) 432 t4_cpl_handler[i] = cpl_not_handled; 433 434 t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg); 435 t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg); 436 t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update); 437 t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx); 438 t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl); 439 t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl); 440 } 441 442 void 443 t4_sge_modunload(void) 444 { 445 446 counter_u64_free(extfree_refs); 447 counter_u64_free(extfree_rels); 448 } 449 450 uint64_t 451 t4_sge_extfree_refs(void) 452 { 453 uint64_t refs, rels; 454 455 rels = counter_u64_fetch(extfree_rels); 456 refs = counter_u64_fetch(extfree_refs); 457 458 return (refs - rels); 459 } 460 461 static inline void 462 setup_pad_and_pack_boundaries(struct adapter *sc) 463 { 464 uint32_t v, m; 465 int pad, pack, pad_shift; 466 467 pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT : 468 X_INGPADBOUNDARY_SHIFT; 469 pad = fl_pad; 470 if (fl_pad < (1 << pad_shift) || 471 fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) || 472 !powerof2(fl_pad)) { 473 /* 474 * If there is any chance that we might use buffer packing and 475 * the chip is a T4, then pick 64 as the pad/pack boundary. Set 476 * it to the minimum allowed in all other cases. 477 */ 478 pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift; 479 480 /* 481 * For fl_pad = 0 we'll still write a reasonable value to the 482 * register but all the freelists will opt out of padding. 483 * We'll complain here only if the user tried to set it to a 484 * value greater than 0 that was invalid. 485 */ 486 if (fl_pad > 0) { 487 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value" 488 " (%d), using %d instead.\n", fl_pad, pad); 489 } 490 } 491 m = V_INGPADBOUNDARY(M_INGPADBOUNDARY); 492 v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift); 493 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 494 495 if (is_t4(sc)) { 496 if (fl_pack != -1 && fl_pack != pad) { 497 /* Complain but carry on. */ 498 device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored," 499 " using %d instead.\n", fl_pack, pad); 500 } 501 return; 502 } 503 504 pack = fl_pack; 505 if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 || 506 !powerof2(fl_pack)) { 507 pack = max(sc->params.pci.mps, CACHE_LINE_SIZE); 508 MPASS(powerof2(pack)); 509 if (pack < 16) 510 pack = 16; 511 if (pack == 32) 512 pack = 64; 513 if (pack > 4096) 514 pack = 4096; 515 if (fl_pack != -1) { 516 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value" 517 " (%d), using %d instead.\n", fl_pack, pack); 518 } 519 } 520 m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY); 521 if (pack == 16) 522 v = V_INGPACKBOUNDARY(0); 523 else 524 v = V_INGPACKBOUNDARY(ilog2(pack) - 5); 525 526 MPASS(!is_t4(sc)); /* T4 doesn't have SGE_CONTROL2 */ 527 t4_set_reg_field(sc, A_SGE_CONTROL2, m, v); 528 } 529 530 /* 531 * adap->params.vpd.cclk must be set up before this is called. 532 */ 533 void 534 t4_tweak_chip_settings(struct adapter *sc) 535 { 536 int i; 537 uint32_t v, m; 538 int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; 539 int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk; 540 int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ 541 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 542 static int sge_flbuf_sizes[] = { 543 MCLBYTES, 544 #if MJUMPAGESIZE != MCLBYTES 545 MJUMPAGESIZE, 546 MJUMPAGESIZE - CL_METADATA_SIZE, 547 MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE, 548 #endif 549 MJUM9BYTES, 550 MJUM16BYTES, 551 MCLBYTES - MSIZE - CL_METADATA_SIZE, 552 MJUM9BYTES - CL_METADATA_SIZE, 553 MJUM16BYTES - CL_METADATA_SIZE, 554 }; 555 556 KASSERT(sc->flags & MASTER_PF, 557 ("%s: trying to change chip settings when not master.", __func__)); 558 559 m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE; 560 v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | 561 V_EGRSTATUSPAGESIZE(spg_len == 128); 562 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 563 564 setup_pad_and_pack_boundaries(sc); 565 566 v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | 567 V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | 568 V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | 569 V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | 570 V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | 571 V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | 572 V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | 573 V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); 574 t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v); 575 576 KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES, 577 ("%s: hw buffer size table too big", __func__)); 578 for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) { 579 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i), 580 sge_flbuf_sizes[i]); 581 } 582 583 v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) | 584 V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]); 585 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v); 586 587 KASSERT(intr_timer[0] <= timer_max, 588 ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0], 589 timer_max)); 590 for (i = 1; i < nitems(intr_timer); i++) { 591 KASSERT(intr_timer[i] >= intr_timer[i - 1], 592 ("%s: timers not listed in increasing order (%d)", 593 __func__, i)); 594 595 while (intr_timer[i] > timer_max) { 596 if (i == nitems(intr_timer) - 1) { 597 intr_timer[i] = timer_max; 598 break; 599 } 600 intr_timer[i] += intr_timer[i - 1]; 601 intr_timer[i] /= 2; 602 } 603 } 604 605 v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) | 606 V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])); 607 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v); 608 v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) | 609 V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])); 610 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v); 611 v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) | 612 V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])); 613 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v); 614 615 if (chip_id(sc) >= CHELSIO_T6) { 616 m = V_TSCALE(M_TSCALE); 617 if (tscale == 1) 618 v = 0; 619 else 620 v = V_TSCALE(tscale - 2); 621 t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v); 622 623 if (sc->debug_flags & DF_DISABLE_TCB_CACHE) { 624 m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN | 625 V_WRTHRTHRESH(M_WRTHRTHRESH); 626 t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1); 627 v &= ~m; 628 v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN | 629 V_WRTHRTHRESH(16); 630 t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1); 631 } 632 } 633 634 /* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */ 635 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 636 t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v); 637 638 /* 639 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP. These have been 640 * chosen with MAXPHYS = 128K in mind. The largest DDP buffer that we 641 * may have to deal with is MAXPHYS + 1 page. 642 */ 643 v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4); 644 t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v); 645 646 /* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */ 647 m = v = F_TDDPTAGTCB | F_ISCSITAGTCB; 648 t4_set_reg_field(sc, A_ULP_RX_CTL, m, v); 649 650 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 651 F_RESETDDPOFFSET; 652 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 653 t4_set_reg_field(sc, A_TP_PARA_REG5, m, v); 654 } 655 656 /* 657 * SGE wants the buffer to be at least 64B and then a multiple of 16. If 658 * padding is in use, the buffer's start and end need to be aligned to the pad 659 * boundary as well. We'll just make sure that the size is a multiple of the 660 * boundary here, it is up to the buffer allocation code to make sure the start 661 * of the buffer is aligned as well. 662 */ 663 static inline int 664 hwsz_ok(struct adapter *sc, int hwsz) 665 { 666 int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1; 667 668 return (hwsz >= 64 && (hwsz & mask) == 0); 669 } 670 671 /* 672 * XXX: driver really should be able to deal with unexpected settings. 673 */ 674 int 675 t4_read_chip_settings(struct adapter *sc) 676 { 677 struct sge *s = &sc->sge; 678 struct sge_params *sp = &sc->params.sge; 679 int i, j, n, rc = 0; 680 uint32_t m, v, r; 681 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 682 static int sw_buf_sizes[] = { /* Sorted by size */ 683 MCLBYTES, 684 #if MJUMPAGESIZE != MCLBYTES 685 MJUMPAGESIZE, 686 #endif 687 MJUM9BYTES, 688 MJUM16BYTES 689 }; 690 struct sw_zone_info *swz, *safe_swz; 691 struct hw_buf_info *hwb; 692 693 m = F_RXPKTCPLMODE; 694 v = F_RXPKTCPLMODE; 695 r = sc->params.sge.sge_control; 696 if ((r & m) != v) { 697 device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r); 698 rc = EINVAL; 699 } 700 701 /* 702 * If this changes then every single use of PAGE_SHIFT in the driver 703 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift. 704 */ 705 if (sp->page_shift != PAGE_SHIFT) { 706 device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r); 707 rc = EINVAL; 708 } 709 710 /* Filter out unusable hw buffer sizes entirely (mark with -2). */ 711 hwb = &s->hw_buf_info[0]; 712 for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) { 713 r = sc->params.sge.sge_fl_buffer_size[i]; 714 hwb->size = r; 715 hwb->zidx = hwsz_ok(sc, r) ? -1 : -2; 716 hwb->next = -1; 717 } 718 719 /* 720 * Create a sorted list in decreasing order of hw buffer sizes (and so 721 * increasing order of spare area) for each software zone. 722 * 723 * If padding is enabled then the start and end of the buffer must align 724 * to the pad boundary; if packing is enabled then they must align with 725 * the pack boundary as well. Allocations from the cluster zones are 726 * aligned to min(size, 4K), so the buffer starts at that alignment and 727 * ends at hwb->size alignment. If mbuf inlining is allowed the 728 * starting alignment will be reduced to MSIZE and the driver will 729 * exercise appropriate caution when deciding on the best buffer layout 730 * to use. 731 */ 732 n = 0; /* no usable buffer size to begin with */ 733 swz = &s->sw_zone_info[0]; 734 safe_swz = NULL; 735 for (i = 0; i < SW_ZONE_SIZES; i++, swz++) { 736 int8_t head = -1, tail = -1; 737 738 swz->size = sw_buf_sizes[i]; 739 swz->zone = m_getzone(swz->size); 740 swz->type = m_gettype(swz->size); 741 742 if (swz->size < PAGE_SIZE) { 743 MPASS(powerof2(swz->size)); 744 if (fl_pad && (swz->size % sp->pad_boundary != 0)) 745 continue; 746 } 747 748 if (swz->size == safest_rx_cluster) 749 safe_swz = swz; 750 751 hwb = &s->hw_buf_info[0]; 752 for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) { 753 if (hwb->zidx != -1 || hwb->size > swz->size) 754 continue; 755 #ifdef INVARIANTS 756 if (fl_pad) 757 MPASS(hwb->size % sp->pad_boundary == 0); 758 #endif 759 hwb->zidx = i; 760 if (head == -1) 761 head = tail = j; 762 else if (hwb->size < s->hw_buf_info[tail].size) { 763 s->hw_buf_info[tail].next = j; 764 tail = j; 765 } else { 766 int8_t *cur; 767 struct hw_buf_info *t; 768 769 for (cur = &head; *cur != -1; cur = &t->next) { 770 t = &s->hw_buf_info[*cur]; 771 if (hwb->size == t->size) { 772 hwb->zidx = -2; 773 break; 774 } 775 if (hwb->size > t->size) { 776 hwb->next = *cur; 777 *cur = j; 778 break; 779 } 780 } 781 } 782 } 783 swz->head_hwidx = head; 784 swz->tail_hwidx = tail; 785 786 if (tail != -1) { 787 n++; 788 if (swz->size - s->hw_buf_info[tail].size >= 789 CL_METADATA_SIZE) 790 sc->flags |= BUF_PACKING_OK; 791 } 792 } 793 if (n == 0) { 794 device_printf(sc->dev, "no usable SGE FL buffer size.\n"); 795 rc = EINVAL; 796 } 797 798 s->safe_hwidx1 = -1; 799 s->safe_hwidx2 = -1; 800 if (safe_swz != NULL) { 801 s->safe_hwidx1 = safe_swz->head_hwidx; 802 for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) { 803 int spare; 804 805 hwb = &s->hw_buf_info[i]; 806 #ifdef INVARIANTS 807 if (fl_pad) 808 MPASS(hwb->size % sp->pad_boundary == 0); 809 #endif 810 spare = safe_swz->size - hwb->size; 811 if (spare >= CL_METADATA_SIZE) { 812 s->safe_hwidx2 = i; 813 break; 814 } 815 } 816 } 817 818 if (sc->flags & IS_VF) 819 return (0); 820 821 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 822 r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ); 823 if (r != v) { 824 device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r); 825 rc = EINVAL; 826 } 827 828 m = v = F_TDDPTAGTCB; 829 r = t4_read_reg(sc, A_ULP_RX_CTL); 830 if ((r & m) != v) { 831 device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r); 832 rc = EINVAL; 833 } 834 835 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 836 F_RESETDDPOFFSET; 837 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 838 r = t4_read_reg(sc, A_TP_PARA_REG5); 839 if ((r & m) != v) { 840 device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r); 841 rc = EINVAL; 842 } 843 844 t4_init_tp_params(sc, 1); 845 846 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 847 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 848 849 return (rc); 850 } 851 852 int 853 t4_create_dma_tag(struct adapter *sc) 854 { 855 int rc; 856 857 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, 858 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, 859 BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, 860 NULL, &sc->dmat); 861 if (rc != 0) { 862 device_printf(sc->dev, 863 "failed to create main DMA tag: %d\n", rc); 864 } 865 866 return (rc); 867 } 868 869 void 870 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 871 struct sysctl_oid_list *children) 872 { 873 struct sge_params *sp = &sc->params.sge; 874 875 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes", 876 CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A", 877 "freelist buffer sizes"); 878 879 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD, 880 NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)"); 881 882 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD, 883 NULL, sp->pad_boundary, "payload pad boundary (bytes)"); 884 885 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD, 886 NULL, sp->spg_len, "status page size (bytes)"); 887 888 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD, 889 NULL, cong_drop, "congestion drop setting"); 890 891 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD, 892 NULL, sp->pack_boundary, "payload pack boundary (bytes)"); 893 } 894 895 int 896 t4_destroy_dma_tag(struct adapter *sc) 897 { 898 if (sc->dmat) 899 bus_dma_tag_destroy(sc->dmat); 900 901 return (0); 902 } 903 904 /* 905 * Allocate and initialize the firmware event queue and the management queue. 906 * 907 * Returns errno on failure. Resources allocated up to that point may still be 908 * allocated. Caller is responsible for cleanup in case this function fails. 909 */ 910 int 911 t4_setup_adapter_queues(struct adapter *sc) 912 { 913 int rc; 914 915 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 916 917 sysctl_ctx_init(&sc->ctx); 918 sc->flags |= ADAP_SYSCTL_CTX; 919 920 /* 921 * Firmware event queue 922 */ 923 rc = alloc_fwq(sc); 924 if (rc != 0) 925 return (rc); 926 927 /* 928 * Management queue. This is just a control queue that uses the fwq as 929 * its associated iq. 930 */ 931 if (!(sc->flags & IS_VF)) 932 rc = alloc_mgmtq(sc); 933 934 return (rc); 935 } 936 937 /* 938 * Idempotent 939 */ 940 int 941 t4_teardown_adapter_queues(struct adapter *sc) 942 { 943 944 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 945 946 /* Do this before freeing the queue */ 947 if (sc->flags & ADAP_SYSCTL_CTX) { 948 sysctl_ctx_free(&sc->ctx); 949 sc->flags &= ~ADAP_SYSCTL_CTX; 950 } 951 952 free_mgmtq(sc); 953 free_fwq(sc); 954 955 return (0); 956 } 957 958 /* Maximum payload that can be delivered with a single iq descriptor */ 959 static inline int 960 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe) 961 { 962 int payload; 963 964 #ifdef TCP_OFFLOAD 965 if (toe) { 966 int rxcs = G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)); 967 968 /* Note that COP can set rx_coalesce on/off per connection. */ 969 payload = max(mtu, rxcs); 970 } else { 971 #endif 972 /* large enough even when hw VLAN extraction is disabled */ 973 payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN + 974 ETHER_VLAN_ENCAP_LEN + mtu; 975 #ifdef TCP_OFFLOAD 976 } 977 #endif 978 979 return (payload); 980 } 981 982 int 983 t4_setup_vi_queues(struct vi_info *vi) 984 { 985 int rc = 0, i, intr_idx, iqidx; 986 struct sge_rxq *rxq; 987 struct sge_txq *txq; 988 struct sge_wrq *ctrlq; 989 #ifdef TCP_OFFLOAD 990 struct sge_ofld_rxq *ofld_rxq; 991 struct sge_wrq *ofld_txq; 992 #endif 993 #ifdef DEV_NETMAP 994 int saved_idx; 995 struct sge_nm_rxq *nm_rxq; 996 struct sge_nm_txq *nm_txq; 997 #endif 998 char name[16]; 999 struct port_info *pi = vi->pi; 1000 struct adapter *sc = pi->adapter; 1001 struct ifnet *ifp = vi->ifp; 1002 struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev); 1003 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 1004 int maxp, mtu = ifp->if_mtu; 1005 1006 /* Interrupt vector to start from (when using multiple vectors) */ 1007 intr_idx = vi->first_intr; 1008 1009 #ifdef DEV_NETMAP 1010 saved_idx = intr_idx; 1011 if (ifp->if_capabilities & IFCAP_NETMAP) { 1012 1013 /* netmap is supported with direct interrupts only. */ 1014 MPASS(!forwarding_intr_to_fwq(sc)); 1015 1016 /* 1017 * We don't have buffers to back the netmap rx queues 1018 * right now so we create the queues in a way that 1019 * doesn't set off any congestion signal in the chip. 1020 */ 1021 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq", 1022 CTLFLAG_RD, NULL, "rx queues"); 1023 for_each_nm_rxq(vi, i, nm_rxq) { 1024 rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid); 1025 if (rc != 0) 1026 goto done; 1027 intr_idx++; 1028 } 1029 1030 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq", 1031 CTLFLAG_RD, NULL, "tx queues"); 1032 for_each_nm_txq(vi, i, nm_txq) { 1033 iqidx = vi->first_nm_rxq + (i % vi->nnmrxq); 1034 rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid); 1035 if (rc != 0) 1036 goto done; 1037 } 1038 } 1039 1040 /* Normal rx queues and netmap rx queues share the same interrupts. */ 1041 intr_idx = saved_idx; 1042 #endif 1043 1044 /* 1045 * Allocate rx queues first because a default iqid is required when 1046 * creating a tx queue. 1047 */ 1048 maxp = mtu_to_max_payload(sc, mtu, 0); 1049 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", 1050 CTLFLAG_RD, NULL, "rx queues"); 1051 for_each_rxq(vi, i, rxq) { 1052 1053 init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq); 1054 1055 snprintf(name, sizeof(name), "%s rxq%d-fl", 1056 device_get_nameunit(vi->dev), i); 1057 init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name); 1058 1059 rc = alloc_rxq(vi, rxq, 1060 forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid); 1061 if (rc != 0) 1062 goto done; 1063 intr_idx++; 1064 } 1065 #ifdef DEV_NETMAP 1066 if (ifp->if_capabilities & IFCAP_NETMAP) 1067 intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq); 1068 #endif 1069 #ifdef TCP_OFFLOAD 1070 maxp = mtu_to_max_payload(sc, mtu, 1); 1071 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq", 1072 CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections"); 1073 for_each_ofld_rxq(vi, i, ofld_rxq) { 1074 1075 init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx, 1076 vi->qsize_rxq); 1077 1078 snprintf(name, sizeof(name), "%s ofld_rxq%d-fl", 1079 device_get_nameunit(vi->dev), i); 1080 init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name); 1081 1082 rc = alloc_ofld_rxq(vi, ofld_rxq, 1083 forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid); 1084 if (rc != 0) 1085 goto done; 1086 intr_idx++; 1087 } 1088 #endif 1089 1090 /* 1091 * Now the tx queues. 1092 */ 1093 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD, 1094 NULL, "tx queues"); 1095 for_each_txq(vi, i, txq) { 1096 iqidx = vi->first_rxq + (i % vi->nrxq); 1097 snprintf(name, sizeof(name), "%s txq%d", 1098 device_get_nameunit(vi->dev), i); 1099 init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, 1100 sc->sge.rxq[iqidx].iq.cntxt_id, name); 1101 1102 rc = alloc_txq(vi, txq, i, oid); 1103 if (rc != 0) 1104 goto done; 1105 } 1106 #ifdef TCP_OFFLOAD 1107 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq", 1108 CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections"); 1109 for_each_ofld_txq(vi, i, ofld_txq) { 1110 struct sysctl_oid *oid2; 1111 1112 iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq); 1113 snprintf(name, sizeof(name), "%s ofld_txq%d", 1114 device_get_nameunit(vi->dev), i); 1115 init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan, 1116 sc->sge.ofld_rxq[iqidx].iq.cntxt_id, name); 1117 1118 snprintf(name, sizeof(name), "%d", i); 1119 oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1120 name, CTLFLAG_RD, NULL, "offload tx queue"); 1121 1122 rc = alloc_wrq(sc, vi, ofld_txq, oid2); 1123 if (rc != 0) 1124 goto done; 1125 } 1126 #endif 1127 1128 /* 1129 * Finally, the control queue. 1130 */ 1131 if (!IS_MAIN_VI(vi) || sc->flags & IS_VF) 1132 goto done; 1133 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD, 1134 NULL, "ctrl queue"); 1135 ctrlq = &sc->sge.ctrlq[pi->port_id]; 1136 snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev)); 1137 init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, 1138 sc->sge.rxq[vi->first_rxq].iq.cntxt_id, name); 1139 rc = alloc_wrq(sc, vi, ctrlq, oid); 1140 1141 done: 1142 if (rc) 1143 t4_teardown_vi_queues(vi); 1144 1145 return (rc); 1146 } 1147 1148 /* 1149 * Idempotent 1150 */ 1151 int 1152 t4_teardown_vi_queues(struct vi_info *vi) 1153 { 1154 int i; 1155 struct port_info *pi = vi->pi; 1156 struct adapter *sc = pi->adapter; 1157 struct sge_rxq *rxq; 1158 struct sge_txq *txq; 1159 #ifdef TCP_OFFLOAD 1160 struct sge_ofld_rxq *ofld_rxq; 1161 struct sge_wrq *ofld_txq; 1162 #endif 1163 #ifdef DEV_NETMAP 1164 struct sge_nm_rxq *nm_rxq; 1165 struct sge_nm_txq *nm_txq; 1166 #endif 1167 1168 /* Do this before freeing the queues */ 1169 if (vi->flags & VI_SYSCTL_CTX) { 1170 sysctl_ctx_free(&vi->ctx); 1171 vi->flags &= ~VI_SYSCTL_CTX; 1172 } 1173 1174 #ifdef DEV_NETMAP 1175 if (vi->ifp->if_capabilities & IFCAP_NETMAP) { 1176 for_each_nm_txq(vi, i, nm_txq) { 1177 free_nm_txq(vi, nm_txq); 1178 } 1179 1180 for_each_nm_rxq(vi, i, nm_rxq) { 1181 free_nm_rxq(vi, nm_rxq); 1182 } 1183 } 1184 #endif 1185 1186 /* 1187 * Take down all the tx queues first, as they reference the rx queues 1188 * (for egress updates, etc.). 1189 */ 1190 1191 if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF)) 1192 free_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 1193 1194 for_each_txq(vi, i, txq) { 1195 free_txq(vi, txq); 1196 } 1197 #ifdef TCP_OFFLOAD 1198 for_each_ofld_txq(vi, i, ofld_txq) { 1199 free_wrq(sc, ofld_txq); 1200 } 1201 #endif 1202 1203 /* 1204 * Then take down the rx queues. 1205 */ 1206 1207 for_each_rxq(vi, i, rxq) { 1208 free_rxq(vi, rxq); 1209 } 1210 #ifdef TCP_OFFLOAD 1211 for_each_ofld_rxq(vi, i, ofld_rxq) { 1212 free_ofld_rxq(vi, ofld_rxq); 1213 } 1214 #endif 1215 1216 return (0); 1217 } 1218 1219 /* 1220 * Deals with errors and the firmware event queue. All data rx queues forward 1221 * their interrupt to the firmware event queue. 1222 */ 1223 void 1224 t4_intr_all(void *arg) 1225 { 1226 struct adapter *sc = arg; 1227 struct sge_iq *fwq = &sc->sge.fwq; 1228 1229 t4_intr_err(arg); 1230 if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) { 1231 service_iq(fwq, 0); 1232 atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE); 1233 } 1234 } 1235 1236 /* Deals with error interrupts */ 1237 void 1238 t4_intr_err(void *arg) 1239 { 1240 struct adapter *sc = arg; 1241 1242 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); 1243 t4_slow_intr_handler(sc); 1244 } 1245 1246 void 1247 t4_intr_evt(void *arg) 1248 { 1249 struct sge_iq *iq = arg; 1250 1251 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1252 service_iq(iq, 0); 1253 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1254 } 1255 } 1256 1257 void 1258 t4_intr(void *arg) 1259 { 1260 struct sge_iq *iq = arg; 1261 1262 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1263 service_iq(iq, 0); 1264 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1265 } 1266 } 1267 1268 void 1269 t4_vi_intr(void *arg) 1270 { 1271 struct irq *irq = arg; 1272 1273 #ifdef DEV_NETMAP 1274 if (atomic_cmpset_int(&irq->nm_state, NM_ON, NM_BUSY)) { 1275 t4_nm_intr(irq->nm_rxq); 1276 atomic_cmpset_int(&irq->nm_state, NM_BUSY, NM_ON); 1277 } 1278 #endif 1279 if (irq->rxq != NULL) 1280 t4_intr(irq->rxq); 1281 } 1282 1283 static inline int 1284 sort_before_lro(struct lro_ctrl *lro) 1285 { 1286 1287 return (lro->lro_mbuf_max != 0); 1288 } 1289 1290 /* 1291 * Deals with anything and everything on the given ingress queue. 1292 */ 1293 static int 1294 service_iq(struct sge_iq *iq, int budget) 1295 { 1296 struct sge_iq *q; 1297 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */ 1298 struct sge_fl *fl; /* Use iff IQ_HAS_FL */ 1299 struct adapter *sc = iq->adapter; 1300 struct iq_desc *d = &iq->desc[iq->cidx]; 1301 int ndescs = 0, limit; 1302 int rsp_type, refill; 1303 uint32_t lq; 1304 uint16_t fl_hw_cidx; 1305 struct mbuf *m0; 1306 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); 1307 #if defined(INET) || defined(INET6) 1308 const struct timeval lro_timeout = {0, sc->lro_timeout}; 1309 struct lro_ctrl *lro = &rxq->lro; 1310 #endif 1311 1312 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); 1313 1314 limit = budget ? budget : iq->qsize / 16; 1315 1316 if (iq->flags & IQ_HAS_FL) { 1317 fl = &rxq->fl; 1318 fl_hw_cidx = fl->hw_cidx; /* stable snapshot */ 1319 } else { 1320 fl = NULL; 1321 fl_hw_cidx = 0; /* to silence gcc warning */ 1322 } 1323 1324 #if defined(INET) || defined(INET6) 1325 if (iq->flags & IQ_ADJ_CREDIT) { 1326 MPASS(sort_before_lro(lro)); 1327 iq->flags &= ~IQ_ADJ_CREDIT; 1328 if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) { 1329 tcp_lro_flush_all(lro); 1330 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) | 1331 V_INGRESSQID((u32)iq->cntxt_id) | 1332 V_SEINTARM(iq->intr_params)); 1333 return (0); 1334 } 1335 ndescs = 1; 1336 } 1337 #else 1338 MPASS((iq->flags & IQ_ADJ_CREDIT) == 0); 1339 #endif 1340 1341 /* 1342 * We always come back and check the descriptor ring for new indirect 1343 * interrupts and other responses after running a single handler. 1344 */ 1345 for (;;) { 1346 while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { 1347 1348 rmb(); 1349 1350 refill = 0; 1351 m0 = NULL; 1352 rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); 1353 lq = be32toh(d->rsp.pldbuflen_qid); 1354 1355 switch (rsp_type) { 1356 case X_RSPD_TYPE_FLBUF: 1357 1358 KASSERT(iq->flags & IQ_HAS_FL, 1359 ("%s: data for an iq (%p) with no freelist", 1360 __func__, iq)); 1361 1362 m0 = get_fl_payload(sc, fl, lq); 1363 if (__predict_false(m0 == NULL)) 1364 goto process_iql; 1365 refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2; 1366 #ifdef T4_PKT_TIMESTAMP 1367 /* 1368 * 60 bit timestamp for the payload is 1369 * *(uint64_t *)m0->m_pktdat. Note that it is 1370 * in the leading free-space in the mbuf. The 1371 * kernel can clobber it during a pullup, 1372 * m_copymdata, etc. You need to make sure that 1373 * the mbuf reaches you unmolested if you care 1374 * about the timestamp. 1375 */ 1376 *(uint64_t *)m0->m_pktdat = 1377 be64toh(ctrl->u.last_flit) & 1378 0xfffffffffffffff; 1379 #endif 1380 1381 /* fall through */ 1382 1383 case X_RSPD_TYPE_CPL: 1384 KASSERT(d->rss.opcode < NUM_CPL_CMDS, 1385 ("%s: bad opcode %02x.", __func__, 1386 d->rss.opcode)); 1387 t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0); 1388 break; 1389 1390 case X_RSPD_TYPE_INTR: 1391 1392 /* 1393 * Interrupts should be forwarded only to queues 1394 * that are not forwarding their interrupts. 1395 * This means service_iq can recurse but only 1 1396 * level deep. 1397 */ 1398 KASSERT(budget == 0, 1399 ("%s: budget %u, rsp_type %u", __func__, 1400 budget, rsp_type)); 1401 1402 /* 1403 * There are 1K interrupt-capable queues (qids 0 1404 * through 1023). A response type indicating a 1405 * forwarded interrupt with a qid >= 1K is an 1406 * iWARP async notification. 1407 */ 1408 if (lq >= 1024) { 1409 t4_an_handler(iq, &d->rsp); 1410 break; 1411 } 1412 1413 q = sc->sge.iqmap[lq - sc->sge.iq_start - 1414 sc->sge.iq_base]; 1415 if (atomic_cmpset_int(&q->state, IQS_IDLE, 1416 IQS_BUSY)) { 1417 if (service_iq(q, q->qsize / 16) == 0) { 1418 atomic_cmpset_int(&q->state, 1419 IQS_BUSY, IQS_IDLE); 1420 } else { 1421 STAILQ_INSERT_TAIL(&iql, q, 1422 link); 1423 } 1424 } 1425 break; 1426 1427 default: 1428 KASSERT(0, 1429 ("%s: illegal response type %d on iq %p", 1430 __func__, rsp_type, iq)); 1431 log(LOG_ERR, 1432 "%s: illegal response type %d on iq %p", 1433 device_get_nameunit(sc->dev), rsp_type, iq); 1434 break; 1435 } 1436 1437 d++; 1438 if (__predict_false(++iq->cidx == iq->sidx)) { 1439 iq->cidx = 0; 1440 iq->gen ^= F_RSPD_GEN; 1441 d = &iq->desc[0]; 1442 } 1443 if (__predict_false(++ndescs == limit)) { 1444 t4_write_reg(sc, sc->sge_gts_reg, 1445 V_CIDXINC(ndescs) | 1446 V_INGRESSQID(iq->cntxt_id) | 1447 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 1448 ndescs = 0; 1449 1450 #if defined(INET) || defined(INET6) 1451 if (iq->flags & IQ_LRO_ENABLED && 1452 !sort_before_lro(lro) && 1453 sc->lro_timeout != 0) { 1454 tcp_lro_flush_inactive(lro, 1455 &lro_timeout); 1456 } 1457 #endif 1458 1459 if (budget) { 1460 if (iq->flags & IQ_HAS_FL) { 1461 FL_LOCK(fl); 1462 refill_fl(sc, fl, 32); 1463 FL_UNLOCK(fl); 1464 } 1465 return (EINPROGRESS); 1466 } 1467 } 1468 if (refill) { 1469 FL_LOCK(fl); 1470 refill_fl(sc, fl, 32); 1471 FL_UNLOCK(fl); 1472 fl_hw_cidx = fl->hw_cidx; 1473 } 1474 } 1475 1476 process_iql: 1477 if (STAILQ_EMPTY(&iql)) 1478 break; 1479 1480 /* 1481 * Process the head only, and send it to the back of the list if 1482 * it's still not done. 1483 */ 1484 q = STAILQ_FIRST(&iql); 1485 STAILQ_REMOVE_HEAD(&iql, link); 1486 if (service_iq(q, q->qsize / 8) == 0) 1487 atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); 1488 else 1489 STAILQ_INSERT_TAIL(&iql, q, link); 1490 } 1491 1492 #if defined(INET) || defined(INET6) 1493 if (iq->flags & IQ_LRO_ENABLED) { 1494 if (ndescs > 0 && lro->lro_mbuf_count > 8) { 1495 MPASS(sort_before_lro(lro)); 1496 /* hold back one credit and don't flush LRO state */ 1497 iq->flags |= IQ_ADJ_CREDIT; 1498 ndescs--; 1499 } else { 1500 tcp_lro_flush_all(lro); 1501 } 1502 } 1503 #endif 1504 1505 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | 1506 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); 1507 1508 if (iq->flags & IQ_HAS_FL) { 1509 int starved; 1510 1511 FL_LOCK(fl); 1512 starved = refill_fl(sc, fl, 64); 1513 FL_UNLOCK(fl); 1514 if (__predict_false(starved != 0)) 1515 add_fl_to_sfl(sc, fl); 1516 } 1517 1518 return (0); 1519 } 1520 1521 static inline int 1522 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll) 1523 { 1524 int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0; 1525 1526 if (rc) 1527 MPASS(cll->region3 >= CL_METADATA_SIZE); 1528 1529 return (rc); 1530 } 1531 1532 static inline struct cluster_metadata * 1533 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll, 1534 caddr_t cl) 1535 { 1536 1537 if (cl_has_metadata(fl, cll)) { 1538 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1539 1540 return ((struct cluster_metadata *)(cl + swz->size) - 1); 1541 } 1542 return (NULL); 1543 } 1544 1545 static void 1546 rxb_free(struct mbuf *m) 1547 { 1548 uma_zone_t zone = m->m_ext.ext_arg1; 1549 void *cl = m->m_ext.ext_arg2; 1550 1551 uma_zfree(zone, cl); 1552 counter_u64_add(extfree_rels, 1); 1553 } 1554 1555 /* 1556 * The mbuf returned by this function could be allocated from zone_mbuf or 1557 * constructed in spare room in the cluster. 1558 * 1559 * The mbuf carries the payload in one of these ways 1560 * a) frame inside the mbuf (mbuf from zone_mbuf) 1561 * b) m_cljset (for clusters without metadata) zone_mbuf 1562 * c) m_extaddref (cluster with metadata) inline mbuf 1563 * d) m_extaddref (cluster with metadata) zone_mbuf 1564 */ 1565 static struct mbuf * 1566 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset, 1567 int remaining) 1568 { 1569 struct mbuf *m; 1570 struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; 1571 struct cluster_layout *cll = &sd->cll; 1572 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1573 struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx]; 1574 struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl); 1575 int len, blen; 1576 caddr_t payload; 1577 1578 blen = hwb->size - fl->rx_offset; /* max possible in this buf */ 1579 len = min(remaining, blen); 1580 payload = sd->cl + cll->region1 + fl->rx_offset; 1581 if (fl->flags & FL_BUF_PACKING) { 1582 const u_int l = fr_offset + len; 1583 const u_int pad = roundup2(l, fl->buf_boundary) - l; 1584 1585 if (fl->rx_offset + len + pad < hwb->size) 1586 blen = len + pad; 1587 MPASS(fl->rx_offset + blen <= hwb->size); 1588 } else { 1589 MPASS(fl->rx_offset == 0); /* not packing */ 1590 } 1591 1592 1593 if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) { 1594 1595 /* 1596 * Copy payload into a freshly allocated mbuf. 1597 */ 1598 1599 m = fr_offset == 0 ? 1600 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1601 if (m == NULL) 1602 return (NULL); 1603 fl->mbuf_allocated++; 1604 #ifdef T4_PKT_TIMESTAMP 1605 /* Leave room for a timestamp */ 1606 m->m_data += 8; 1607 #endif 1608 /* copy data to mbuf */ 1609 bcopy(payload, mtod(m, caddr_t), len); 1610 1611 } else if (sd->nmbuf * MSIZE < cll->region1) { 1612 1613 /* 1614 * There's spare room in the cluster for an mbuf. Create one 1615 * and associate it with the payload that's in the cluster. 1616 */ 1617 1618 MPASS(clm != NULL); 1619 m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE); 1620 /* No bzero required */ 1621 if (m_init(m, M_NOWAIT, MT_DATA, 1622 fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE)) 1623 return (NULL); 1624 fl->mbuf_inlined++; 1625 m_extaddref(m, payload, blen, &clm->refcount, rxb_free, 1626 swz->zone, sd->cl); 1627 if (sd->nmbuf++ == 0) 1628 counter_u64_add(extfree_refs, 1); 1629 1630 } else { 1631 1632 /* 1633 * Grab an mbuf from zone_mbuf and associate it with the 1634 * payload in the cluster. 1635 */ 1636 1637 m = fr_offset == 0 ? 1638 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1639 if (m == NULL) 1640 return (NULL); 1641 fl->mbuf_allocated++; 1642 if (clm != NULL) { 1643 m_extaddref(m, payload, blen, &clm->refcount, 1644 rxb_free, swz->zone, sd->cl); 1645 if (sd->nmbuf++ == 0) 1646 counter_u64_add(extfree_refs, 1); 1647 } else { 1648 m_cljset(m, sd->cl, swz->type); 1649 sd->cl = NULL; /* consumed, not a recycle candidate */ 1650 } 1651 } 1652 if (fr_offset == 0) 1653 m->m_pkthdr.len = remaining; 1654 m->m_len = len; 1655 1656 if (fl->flags & FL_BUF_PACKING) { 1657 fl->rx_offset += blen; 1658 MPASS(fl->rx_offset <= hwb->size); 1659 if (fl->rx_offset < hwb->size) 1660 return (m); /* without advancing the cidx */ 1661 } 1662 1663 if (__predict_false(++fl->cidx % 8 == 0)) { 1664 uint16_t cidx = fl->cidx / 8; 1665 1666 if (__predict_false(cidx == fl->sidx)) 1667 fl->cidx = cidx = 0; 1668 fl->hw_cidx = cidx; 1669 } 1670 fl->rx_offset = 0; 1671 1672 return (m); 1673 } 1674 1675 static struct mbuf * 1676 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf) 1677 { 1678 struct mbuf *m0, *m, **pnext; 1679 u_int remaining; 1680 const u_int total = G_RSPD_LEN(len_newbuf); 1681 1682 if (__predict_false(fl->flags & FL_BUF_RESUME)) { 1683 M_ASSERTPKTHDR(fl->m0); 1684 MPASS(fl->m0->m_pkthdr.len == total); 1685 MPASS(fl->remaining < total); 1686 1687 m0 = fl->m0; 1688 pnext = fl->pnext; 1689 remaining = fl->remaining; 1690 fl->flags &= ~FL_BUF_RESUME; 1691 goto get_segment; 1692 } 1693 1694 if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) { 1695 fl->rx_offset = 0; 1696 if (__predict_false(++fl->cidx % 8 == 0)) { 1697 uint16_t cidx = fl->cidx / 8; 1698 1699 if (__predict_false(cidx == fl->sidx)) 1700 fl->cidx = cidx = 0; 1701 fl->hw_cidx = cidx; 1702 } 1703 } 1704 1705 /* 1706 * Payload starts at rx_offset in the current hw buffer. Its length is 1707 * 'len' and it may span multiple hw buffers. 1708 */ 1709 1710 m0 = get_scatter_segment(sc, fl, 0, total); 1711 if (m0 == NULL) 1712 return (NULL); 1713 remaining = total - m0->m_len; 1714 pnext = &m0->m_next; 1715 while (remaining > 0) { 1716 get_segment: 1717 MPASS(fl->rx_offset == 0); 1718 m = get_scatter_segment(sc, fl, total - remaining, remaining); 1719 if (__predict_false(m == NULL)) { 1720 fl->m0 = m0; 1721 fl->pnext = pnext; 1722 fl->remaining = remaining; 1723 fl->flags |= FL_BUF_RESUME; 1724 return (NULL); 1725 } 1726 *pnext = m; 1727 pnext = &m->m_next; 1728 remaining -= m->m_len; 1729 } 1730 *pnext = NULL; 1731 1732 M_ASSERTPKTHDR(m0); 1733 return (m0); 1734 } 1735 1736 static int 1737 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) 1738 { 1739 struct sge_rxq *rxq = iq_to_rxq(iq); 1740 struct ifnet *ifp = rxq->ifp; 1741 struct adapter *sc = iq->adapter; 1742 const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); 1743 #if defined(INET) || defined(INET6) 1744 struct lro_ctrl *lro = &rxq->lro; 1745 #endif 1746 static const int sw_hashtype[4][2] = { 1747 {M_HASHTYPE_NONE, M_HASHTYPE_NONE}, 1748 {M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6}, 1749 {M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6}, 1750 {M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6}, 1751 }; 1752 1753 KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__, 1754 rss->opcode)); 1755 1756 m0->m_pkthdr.len -= sc->params.sge.fl_pktshift; 1757 m0->m_len -= sc->params.sge.fl_pktshift; 1758 m0->m_data += sc->params.sge.fl_pktshift; 1759 1760 m0->m_pkthdr.rcvif = ifp; 1761 M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]); 1762 m0->m_pkthdr.flowid = be32toh(rss->hash_val); 1763 1764 if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) { 1765 if (ifp->if_capenable & IFCAP_RXCSUM && 1766 cpl->l2info & htobe32(F_RXF_IP)) { 1767 m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED | 1768 CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 1769 rxq->rxcsum++; 1770 } else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 && 1771 cpl->l2info & htobe32(F_RXF_IP6)) { 1772 m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 | 1773 CSUM_PSEUDO_HDR); 1774 rxq->rxcsum++; 1775 } 1776 1777 if (__predict_false(cpl->ip_frag)) 1778 m0->m_pkthdr.csum_data = be16toh(cpl->csum); 1779 else 1780 m0->m_pkthdr.csum_data = 0xffff; 1781 } 1782 1783 if (cpl->vlan_ex) { 1784 m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); 1785 m0->m_flags |= M_VLANTAG; 1786 rxq->vlan_extraction++; 1787 } 1788 1789 #if defined(INET) || defined(INET6) 1790 if (iq->flags & IQ_LRO_ENABLED) { 1791 if (sort_before_lro(lro)) { 1792 tcp_lro_queue_mbuf(lro, m0); 1793 return (0); /* queued for sort, then LRO */ 1794 } 1795 if (tcp_lro_rx(lro, m0, 0) == 0) 1796 return (0); /* queued for LRO */ 1797 } 1798 #endif 1799 ifp->if_input(ifp, m0); 1800 1801 return (0); 1802 } 1803 1804 /* 1805 * Must drain the wrq or make sure that someone else will. 1806 */ 1807 static void 1808 wrq_tx_drain(void *arg, int n) 1809 { 1810 struct sge_wrq *wrq = arg; 1811 struct sge_eq *eq = &wrq->eq; 1812 1813 EQ_LOCK(eq); 1814 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 1815 drain_wrq_wr_list(wrq->adapter, wrq); 1816 EQ_UNLOCK(eq); 1817 } 1818 1819 static void 1820 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq) 1821 { 1822 struct sge_eq *eq = &wrq->eq; 1823 u_int available, dbdiff; /* # of hardware descriptors */ 1824 u_int n; 1825 struct wrqe *wr; 1826 struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ 1827 1828 EQ_LOCK_ASSERT_OWNED(eq); 1829 MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs)); 1830 wr = STAILQ_FIRST(&wrq->wr_list); 1831 MPASS(wr != NULL); /* Must be called with something useful to do */ 1832 MPASS(eq->pidx == eq->dbidx); 1833 dbdiff = 0; 1834 1835 do { 1836 eq->cidx = read_hw_cidx(eq); 1837 if (eq->pidx == eq->cidx) 1838 available = eq->sidx - 1; 1839 else 1840 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 1841 1842 MPASS(wr->wrq == wrq); 1843 n = howmany(wr->wr_len, EQ_ESIZE); 1844 if (available < n) 1845 break; 1846 1847 dst = (void *)&eq->desc[eq->pidx]; 1848 if (__predict_true(eq->sidx - eq->pidx > n)) { 1849 /* Won't wrap, won't end exactly at the status page. */ 1850 bcopy(&wr->wr[0], dst, wr->wr_len); 1851 eq->pidx += n; 1852 } else { 1853 int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE; 1854 1855 bcopy(&wr->wr[0], dst, first_portion); 1856 if (wr->wr_len > first_portion) { 1857 bcopy(&wr->wr[first_portion], &eq->desc[0], 1858 wr->wr_len - first_portion); 1859 } 1860 eq->pidx = n - (eq->sidx - eq->pidx); 1861 } 1862 wrq->tx_wrs_copied++; 1863 1864 if (available < eq->sidx / 4 && 1865 atomic_cmpset_int(&eq->equiq, 0, 1)) { 1866 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 1867 F_FW_WR_EQUEQ); 1868 eq->equeqidx = eq->pidx; 1869 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 1870 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 1871 eq->equeqidx = eq->pidx; 1872 } 1873 1874 dbdiff += n; 1875 if (dbdiff >= 16) { 1876 ring_eq_db(sc, eq, dbdiff); 1877 dbdiff = 0; 1878 } 1879 1880 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 1881 free_wrqe(wr); 1882 MPASS(wrq->nwr_pending > 0); 1883 wrq->nwr_pending--; 1884 MPASS(wrq->ndesc_needed >= n); 1885 wrq->ndesc_needed -= n; 1886 } while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL); 1887 1888 if (dbdiff) 1889 ring_eq_db(sc, eq, dbdiff); 1890 } 1891 1892 /* 1893 * Doesn't fail. Holds on to work requests it can't send right away. 1894 */ 1895 void 1896 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr) 1897 { 1898 #ifdef INVARIANTS 1899 struct sge_eq *eq = &wrq->eq; 1900 #endif 1901 1902 EQ_LOCK_ASSERT_OWNED(eq); 1903 MPASS(wr != NULL); 1904 MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN); 1905 MPASS((wr->wr_len & 0x7) == 0); 1906 1907 STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link); 1908 wrq->nwr_pending++; 1909 wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE); 1910 1911 if (!TAILQ_EMPTY(&wrq->incomplete_wrs)) 1912 return; /* commit_wrq_wr will drain wr_list as well. */ 1913 1914 drain_wrq_wr_list(sc, wrq); 1915 1916 /* Doorbell must have caught up to the pidx. */ 1917 MPASS(eq->pidx == eq->dbidx); 1918 } 1919 1920 void 1921 t4_update_fl_bufsize(struct ifnet *ifp) 1922 { 1923 struct vi_info *vi = ifp->if_softc; 1924 struct adapter *sc = vi->pi->adapter; 1925 struct sge_rxq *rxq; 1926 #ifdef TCP_OFFLOAD 1927 struct sge_ofld_rxq *ofld_rxq; 1928 #endif 1929 struct sge_fl *fl; 1930 int i, maxp, mtu = ifp->if_mtu; 1931 1932 maxp = mtu_to_max_payload(sc, mtu, 0); 1933 for_each_rxq(vi, i, rxq) { 1934 fl = &rxq->fl; 1935 1936 FL_LOCK(fl); 1937 find_best_refill_source(sc, fl, maxp); 1938 FL_UNLOCK(fl); 1939 } 1940 #ifdef TCP_OFFLOAD 1941 maxp = mtu_to_max_payload(sc, mtu, 1); 1942 for_each_ofld_rxq(vi, i, ofld_rxq) { 1943 fl = &ofld_rxq->fl; 1944 1945 FL_LOCK(fl); 1946 find_best_refill_source(sc, fl, maxp); 1947 FL_UNLOCK(fl); 1948 } 1949 #endif 1950 } 1951 1952 static inline int 1953 mbuf_nsegs(struct mbuf *m) 1954 { 1955 1956 M_ASSERTPKTHDR(m); 1957 KASSERT(m->m_pkthdr.l5hlen > 0, 1958 ("%s: mbuf %p missing information on # of segments.", __func__, m)); 1959 1960 return (m->m_pkthdr.l5hlen); 1961 } 1962 1963 static inline void 1964 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs) 1965 { 1966 1967 M_ASSERTPKTHDR(m); 1968 m->m_pkthdr.l5hlen = nsegs; 1969 } 1970 1971 static inline int 1972 mbuf_len16(struct mbuf *m) 1973 { 1974 int n; 1975 1976 M_ASSERTPKTHDR(m); 1977 n = m->m_pkthdr.PH_loc.eight[0]; 1978 MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16); 1979 1980 return (n); 1981 } 1982 1983 static inline void 1984 set_mbuf_len16(struct mbuf *m, uint8_t len16) 1985 { 1986 1987 M_ASSERTPKTHDR(m); 1988 m->m_pkthdr.PH_loc.eight[0] = len16; 1989 } 1990 1991 static inline int 1992 needs_tso(struct mbuf *m) 1993 { 1994 1995 M_ASSERTPKTHDR(m); 1996 1997 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1998 KASSERT(m->m_pkthdr.tso_segsz > 0, 1999 ("%s: TSO requested in mbuf %p but MSS not provided", 2000 __func__, m)); 2001 return (1); 2002 } 2003 2004 return (0); 2005 } 2006 2007 static inline int 2008 needs_l3_csum(struct mbuf *m) 2009 { 2010 2011 M_ASSERTPKTHDR(m); 2012 2013 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)) 2014 return (1); 2015 return (0); 2016 } 2017 2018 static inline int 2019 needs_l4_csum(struct mbuf *m) 2020 { 2021 2022 M_ASSERTPKTHDR(m); 2023 2024 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | 2025 CSUM_TCP_IPV6 | CSUM_TSO)) 2026 return (1); 2027 return (0); 2028 } 2029 2030 static inline int 2031 needs_vlan_insertion(struct mbuf *m) 2032 { 2033 2034 M_ASSERTPKTHDR(m); 2035 2036 if (m->m_flags & M_VLANTAG) { 2037 KASSERT(m->m_pkthdr.ether_vtag != 0, 2038 ("%s: HWVLAN requested in mbuf %p but tag not provided", 2039 __func__, m)); 2040 return (1); 2041 } 2042 return (0); 2043 } 2044 2045 static void * 2046 m_advance(struct mbuf **pm, int *poffset, int len) 2047 { 2048 struct mbuf *m = *pm; 2049 int offset = *poffset; 2050 uintptr_t p = 0; 2051 2052 MPASS(len > 0); 2053 2054 for (;;) { 2055 if (offset + len < m->m_len) { 2056 offset += len; 2057 p = mtod(m, uintptr_t) + offset; 2058 break; 2059 } 2060 len -= m->m_len - offset; 2061 m = m->m_next; 2062 offset = 0; 2063 MPASS(m != NULL); 2064 } 2065 *poffset = offset; 2066 *pm = m; 2067 return ((void *)p); 2068 } 2069 2070 /* 2071 * Can deal with empty mbufs in the chain that have m_len = 0, but the chain 2072 * must have at least one mbuf that's not empty. 2073 */ 2074 static inline int 2075 count_mbuf_nsegs(struct mbuf *m) 2076 { 2077 vm_paddr_t lastb, next; 2078 vm_offset_t va; 2079 int len, nsegs; 2080 2081 MPASS(m != NULL); 2082 2083 nsegs = 0; 2084 lastb = 0; 2085 for (; m; m = m->m_next) { 2086 2087 len = m->m_len; 2088 if (__predict_false(len == 0)) 2089 continue; 2090 va = mtod(m, vm_offset_t); 2091 next = pmap_kextract(va); 2092 nsegs += sglist_count(m->m_data, len); 2093 if (lastb + 1 == next) 2094 nsegs--; 2095 lastb = pmap_kextract(va + len - 1); 2096 } 2097 2098 MPASS(nsegs > 0); 2099 return (nsegs); 2100 } 2101 2102 /* 2103 * Analyze the mbuf to determine its tx needs. The mbuf passed in may change: 2104 * a) caller can assume it's been freed if this function returns with an error. 2105 * b) it may get defragged up if the gather list is too long for the hardware. 2106 */ 2107 int 2108 parse_pkt(struct adapter *sc, struct mbuf **mp) 2109 { 2110 struct mbuf *m0 = *mp, *m; 2111 int rc, nsegs, defragged = 0, offset; 2112 struct ether_header *eh; 2113 void *l3hdr; 2114 #if defined(INET) || defined(INET6) 2115 struct tcphdr *tcp; 2116 #endif 2117 uint16_t eh_type; 2118 2119 M_ASSERTPKTHDR(m0); 2120 if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) { 2121 rc = EINVAL; 2122 fail: 2123 m_freem(m0); 2124 *mp = NULL; 2125 return (rc); 2126 } 2127 restart: 2128 /* 2129 * First count the number of gather list segments in the payload. 2130 * Defrag the mbuf if nsegs exceeds the hardware limit. 2131 */ 2132 M_ASSERTPKTHDR(m0); 2133 MPASS(m0->m_pkthdr.len > 0); 2134 nsegs = count_mbuf_nsegs(m0); 2135 if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) { 2136 if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) { 2137 rc = EFBIG; 2138 goto fail; 2139 } 2140 *mp = m0 = m; /* update caller's copy after defrag */ 2141 goto restart; 2142 } 2143 2144 if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) { 2145 m0 = m_pullup(m0, m0->m_pkthdr.len); 2146 if (m0 == NULL) { 2147 /* Should have left well enough alone. */ 2148 rc = EFBIG; 2149 goto fail; 2150 } 2151 *mp = m0; /* update caller's copy after pullup */ 2152 goto restart; 2153 } 2154 set_mbuf_nsegs(m0, nsegs); 2155 if (sc->flags & IS_VF) 2156 set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0))); 2157 else 2158 set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0))); 2159 2160 if (!needs_tso(m0) && 2161 !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0)))) 2162 return (0); 2163 2164 m = m0; 2165 eh = mtod(m, struct ether_header *); 2166 eh_type = ntohs(eh->ether_type); 2167 if (eh_type == ETHERTYPE_VLAN) { 2168 struct ether_vlan_header *evh = (void *)eh; 2169 2170 eh_type = ntohs(evh->evl_proto); 2171 m0->m_pkthdr.l2hlen = sizeof(*evh); 2172 } else 2173 m0->m_pkthdr.l2hlen = sizeof(*eh); 2174 2175 offset = 0; 2176 l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen); 2177 2178 switch (eh_type) { 2179 #ifdef INET6 2180 case ETHERTYPE_IPV6: 2181 { 2182 struct ip6_hdr *ip6 = l3hdr; 2183 2184 MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP); 2185 2186 m0->m_pkthdr.l3hlen = sizeof(*ip6); 2187 break; 2188 } 2189 #endif 2190 #ifdef INET 2191 case ETHERTYPE_IP: 2192 { 2193 struct ip *ip = l3hdr; 2194 2195 m0->m_pkthdr.l3hlen = ip->ip_hl * 4; 2196 break; 2197 } 2198 #endif 2199 default: 2200 panic("%s: ethertype 0x%04x unknown. if_cxgbe must be compiled" 2201 " with the same INET/INET6 options as the kernel.", 2202 __func__, eh_type); 2203 } 2204 2205 #if defined(INET) || defined(INET6) 2206 if (needs_tso(m0)) { 2207 tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen); 2208 m0->m_pkthdr.l4hlen = tcp->th_off * 4; 2209 } 2210 #endif 2211 MPASS(m0 == *mp); 2212 return (0); 2213 } 2214 2215 void * 2216 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie) 2217 { 2218 struct sge_eq *eq = &wrq->eq; 2219 struct adapter *sc = wrq->adapter; 2220 int ndesc, available; 2221 struct wrqe *wr; 2222 void *w; 2223 2224 MPASS(len16 > 0); 2225 ndesc = howmany(len16, EQ_ESIZE / 16); 2226 MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC); 2227 2228 EQ_LOCK(eq); 2229 2230 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 2231 drain_wrq_wr_list(sc, wrq); 2232 2233 if (!STAILQ_EMPTY(&wrq->wr_list)) { 2234 slowpath: 2235 EQ_UNLOCK(eq); 2236 wr = alloc_wrqe(len16 * 16, wrq); 2237 if (__predict_false(wr == NULL)) 2238 return (NULL); 2239 cookie->pidx = -1; 2240 cookie->ndesc = ndesc; 2241 return (&wr->wr); 2242 } 2243 2244 eq->cidx = read_hw_cidx(eq); 2245 if (eq->pidx == eq->cidx) 2246 available = eq->sidx - 1; 2247 else 2248 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2249 if (available < ndesc) 2250 goto slowpath; 2251 2252 cookie->pidx = eq->pidx; 2253 cookie->ndesc = ndesc; 2254 TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link); 2255 2256 w = &eq->desc[eq->pidx]; 2257 IDXINCR(eq->pidx, ndesc, eq->sidx); 2258 if (__predict_false(cookie->pidx + ndesc > eq->sidx)) { 2259 w = &wrq->ss[0]; 2260 wrq->ss_pidx = cookie->pidx; 2261 wrq->ss_len = len16 * 16; 2262 } 2263 2264 EQ_UNLOCK(eq); 2265 2266 return (w); 2267 } 2268 2269 void 2270 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie) 2271 { 2272 struct sge_eq *eq = &wrq->eq; 2273 struct adapter *sc = wrq->adapter; 2274 int ndesc, pidx; 2275 struct wrq_cookie *prev, *next; 2276 2277 if (cookie->pidx == -1) { 2278 struct wrqe *wr = __containerof(w, struct wrqe, wr); 2279 2280 t4_wrq_tx(sc, wr); 2281 return; 2282 } 2283 2284 if (__predict_false(w == &wrq->ss[0])) { 2285 int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE; 2286 2287 MPASS(wrq->ss_len > n); /* WR had better wrap around. */ 2288 bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n); 2289 bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n); 2290 wrq->tx_wrs_ss++; 2291 } else 2292 wrq->tx_wrs_direct++; 2293 2294 EQ_LOCK(eq); 2295 ndesc = cookie->ndesc; /* Can be more than SGE_MAX_WR_NDESC here. */ 2296 pidx = cookie->pidx; 2297 MPASS(pidx >= 0 && pidx < eq->sidx); 2298 prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link); 2299 next = TAILQ_NEXT(cookie, link); 2300 if (prev == NULL) { 2301 MPASS(pidx == eq->dbidx); 2302 if (next == NULL || ndesc >= 16) 2303 ring_eq_db(wrq->adapter, eq, ndesc); 2304 else { 2305 MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc); 2306 next->pidx = pidx; 2307 next->ndesc += ndesc; 2308 } 2309 } else { 2310 MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc); 2311 prev->ndesc += ndesc; 2312 } 2313 TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link); 2314 2315 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 2316 drain_wrq_wr_list(sc, wrq); 2317 2318 #ifdef INVARIANTS 2319 if (TAILQ_EMPTY(&wrq->incomplete_wrs)) { 2320 /* Doorbell must have caught up to the pidx. */ 2321 MPASS(wrq->eq.pidx == wrq->eq.dbidx); 2322 } 2323 #endif 2324 EQ_UNLOCK(eq); 2325 } 2326 2327 static u_int 2328 can_resume_eth_tx(struct mp_ring *r) 2329 { 2330 struct sge_eq *eq = r->cookie; 2331 2332 return (total_available_tx_desc(eq) > eq->sidx / 8); 2333 } 2334 2335 static inline int 2336 cannot_use_txpkts(struct mbuf *m) 2337 { 2338 /* maybe put a GL limit too, to avoid silliness? */ 2339 2340 return (needs_tso(m)); 2341 } 2342 2343 static inline int 2344 discard_tx(struct sge_eq *eq) 2345 { 2346 2347 return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED); 2348 } 2349 2350 /* 2351 * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to 2352 * be consumed. Return the actual number consumed. 0 indicates a stall. 2353 */ 2354 static u_int 2355 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx) 2356 { 2357 struct sge_txq *txq = r->cookie; 2358 struct sge_eq *eq = &txq->eq; 2359 struct ifnet *ifp = txq->ifp; 2360 struct vi_info *vi = ifp->if_softc; 2361 struct port_info *pi = vi->pi; 2362 struct adapter *sc = pi->adapter; 2363 u_int total, remaining; /* # of packets */ 2364 u_int available, dbdiff; /* # of hardware descriptors */ 2365 u_int n, next_cidx; 2366 struct mbuf *m0, *tail; 2367 struct txpkts txp; 2368 struct fw_eth_tx_pkts_wr *wr; /* any fw WR struct will do */ 2369 2370 remaining = IDXDIFF(pidx, cidx, r->size); 2371 MPASS(remaining > 0); /* Must not be called without work to do. */ 2372 total = 0; 2373 2374 TXQ_LOCK(txq); 2375 if (__predict_false(discard_tx(eq))) { 2376 while (cidx != pidx) { 2377 m0 = r->items[cidx]; 2378 m_freem(m0); 2379 if (++cidx == r->size) 2380 cidx = 0; 2381 } 2382 reclaim_tx_descs(txq, 2048); 2383 total = remaining; 2384 goto done; 2385 } 2386 2387 /* How many hardware descriptors do we have readily available. */ 2388 if (eq->pidx == eq->cidx) 2389 available = eq->sidx - 1; 2390 else 2391 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2392 dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx); 2393 2394 while (remaining > 0) { 2395 2396 m0 = r->items[cidx]; 2397 M_ASSERTPKTHDR(m0); 2398 MPASS(m0->m_nextpkt == NULL); 2399 2400 if (available < SGE_MAX_WR_NDESC) { 2401 available += reclaim_tx_descs(txq, 64); 2402 if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16)) 2403 break; /* out of descriptors */ 2404 } 2405 2406 next_cidx = cidx + 1; 2407 if (__predict_false(next_cidx == r->size)) 2408 next_cidx = 0; 2409 2410 wr = (void *)&eq->desc[eq->pidx]; 2411 if (sc->flags & IS_VF) { 2412 total++; 2413 remaining--; 2414 ETHER_BPF_MTAP(ifp, m0); 2415 n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0, 2416 available); 2417 } else if (remaining > 1 && 2418 try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) { 2419 2420 /* pkts at cidx, next_cidx should both be in txp. */ 2421 MPASS(txp.npkt == 2); 2422 tail = r->items[next_cidx]; 2423 MPASS(tail->m_nextpkt == NULL); 2424 ETHER_BPF_MTAP(ifp, m0); 2425 ETHER_BPF_MTAP(ifp, tail); 2426 m0->m_nextpkt = tail; 2427 2428 if (__predict_false(++next_cidx == r->size)) 2429 next_cidx = 0; 2430 2431 while (next_cidx != pidx) { 2432 if (add_to_txpkts(r->items[next_cidx], &txp, 2433 available) != 0) 2434 break; 2435 tail->m_nextpkt = r->items[next_cidx]; 2436 tail = tail->m_nextpkt; 2437 ETHER_BPF_MTAP(ifp, tail); 2438 if (__predict_false(++next_cidx == r->size)) 2439 next_cidx = 0; 2440 } 2441 2442 n = write_txpkts_wr(txq, wr, m0, &txp, available); 2443 total += txp.npkt; 2444 remaining -= txp.npkt; 2445 } else { 2446 total++; 2447 remaining--; 2448 ETHER_BPF_MTAP(ifp, m0); 2449 n = write_txpkt_wr(txq, (void *)wr, m0, available); 2450 } 2451 MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC); 2452 2453 available -= n; 2454 dbdiff += n; 2455 IDXINCR(eq->pidx, n, eq->sidx); 2456 2457 if (total_available_tx_desc(eq) < eq->sidx / 4 && 2458 atomic_cmpset_int(&eq->equiq, 0, 1)) { 2459 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 2460 F_FW_WR_EQUEQ); 2461 eq->equeqidx = eq->pidx; 2462 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 2463 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 2464 eq->equeqidx = eq->pidx; 2465 } 2466 2467 if (dbdiff >= 16 && remaining >= 4) { 2468 ring_eq_db(sc, eq, dbdiff); 2469 available += reclaim_tx_descs(txq, 4 * dbdiff); 2470 dbdiff = 0; 2471 } 2472 2473 cidx = next_cidx; 2474 } 2475 if (dbdiff != 0) { 2476 ring_eq_db(sc, eq, dbdiff); 2477 reclaim_tx_descs(txq, 32); 2478 } 2479 done: 2480 TXQ_UNLOCK(txq); 2481 2482 return (total); 2483 } 2484 2485 static inline void 2486 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, 2487 int qsize) 2488 { 2489 2490 KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, 2491 ("%s: bad tmr_idx %d", __func__, tmr_idx)); 2492 KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ 2493 ("%s: bad pktc_idx %d", __func__, pktc_idx)); 2494 2495 iq->flags = 0; 2496 iq->adapter = sc; 2497 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); 2498 iq->intr_pktc_idx = SGE_NCOUNTERS - 1; 2499 if (pktc_idx >= 0) { 2500 iq->intr_params |= F_QINTR_CNT_EN; 2501 iq->intr_pktc_idx = pktc_idx; 2502 } 2503 iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */ 2504 iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE; 2505 } 2506 2507 static inline void 2508 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name) 2509 { 2510 2511 fl->qsize = qsize; 2512 fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 2513 strlcpy(fl->lockname, name, sizeof(fl->lockname)); 2514 if (sc->flags & BUF_PACKING_OK && 2515 ((!is_t4(sc) && buffer_packing) || /* T5+: enabled unless 0 */ 2516 (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */ 2517 fl->flags |= FL_BUF_PACKING; 2518 find_best_refill_source(sc, fl, maxp); 2519 find_safe_refill_source(sc, fl); 2520 } 2521 2522 static inline void 2523 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize, 2524 uint8_t tx_chan, uint16_t iqid, char *name) 2525 { 2526 KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype)); 2527 2528 eq->flags = eqtype & EQ_TYPEMASK; 2529 eq->tx_chan = tx_chan; 2530 eq->iqid = iqid; 2531 eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 2532 strlcpy(eq->lockname, name, sizeof(eq->lockname)); 2533 } 2534 2535 static int 2536 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, 2537 bus_dmamap_t *map, bus_addr_t *pa, void **va) 2538 { 2539 int rc; 2540 2541 rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, 2542 BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); 2543 if (rc != 0) { 2544 device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc); 2545 goto done; 2546 } 2547 2548 rc = bus_dmamem_alloc(*tag, va, 2549 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); 2550 if (rc != 0) { 2551 device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc); 2552 goto done; 2553 } 2554 2555 rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); 2556 if (rc != 0) { 2557 device_printf(sc->dev, "cannot load DMA map: %d\n", rc); 2558 goto done; 2559 } 2560 done: 2561 if (rc) 2562 free_ring(sc, *tag, *map, *pa, *va); 2563 2564 return (rc); 2565 } 2566 2567 static int 2568 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, 2569 bus_addr_t pa, void *va) 2570 { 2571 if (pa) 2572 bus_dmamap_unload(tag, map); 2573 if (va) 2574 bus_dmamem_free(tag, va, map); 2575 if (tag) 2576 bus_dma_tag_destroy(tag); 2577 2578 return (0); 2579 } 2580 2581 /* 2582 * Allocates the ring for an ingress queue and an optional freelist. If the 2583 * freelist is specified it will be allocated and then associated with the 2584 * ingress queue. 2585 * 2586 * Returns errno on failure. Resources allocated up to that point may still be 2587 * allocated. Caller is responsible for cleanup in case this function fails. 2588 * 2589 * If the ingress queue will take interrupts directly then the intr_idx 2590 * specifies the vector, starting from 0. -1 means the interrupts for this 2591 * queue should be forwarded to the fwq. 2592 */ 2593 static int 2594 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl, 2595 int intr_idx, int cong) 2596 { 2597 int rc, i, cntxt_id; 2598 size_t len; 2599 struct fw_iq_cmd c; 2600 struct port_info *pi = vi->pi; 2601 struct adapter *sc = iq->adapter; 2602 struct sge_params *sp = &sc->params.sge; 2603 __be32 v = 0; 2604 2605 len = iq->qsize * IQ_ESIZE; 2606 rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, 2607 (void **)&iq->desc); 2608 if (rc != 0) 2609 return (rc); 2610 2611 bzero(&c, sizeof(c)); 2612 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 2613 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | 2614 V_FW_IQ_CMD_VFN(0)); 2615 2616 c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | 2617 FW_LEN16(c)); 2618 2619 /* Special handling for firmware event queue */ 2620 if (iq == &sc->sge.fwq) 2621 v |= F_FW_IQ_CMD_IQASYNCH; 2622 2623 if (intr_idx < 0) { 2624 /* Forwarded interrupts, all headed to fwq */ 2625 v |= F_FW_IQ_CMD_IQANDST; 2626 v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id); 2627 } else { 2628 KASSERT(intr_idx < sc->intr_count, 2629 ("%s: invalid direct intr_idx %d", __func__, intr_idx)); 2630 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); 2631 } 2632 2633 c.type_to_iqandstindex = htobe32(v | 2634 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 2635 V_FW_IQ_CMD_VIID(vi->viid) | 2636 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); 2637 c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 2638 F_FW_IQ_CMD_IQGTSMODE | 2639 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | 2640 V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4)); 2641 c.iqsize = htobe16(iq->qsize); 2642 c.iqaddr = htobe64(iq->ba); 2643 if (cong >= 0) 2644 c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN); 2645 2646 if (fl) { 2647 mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); 2648 2649 len = fl->qsize * EQ_ESIZE; 2650 rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, 2651 &fl->ba, (void **)&fl->desc); 2652 if (rc) 2653 return (rc); 2654 2655 /* Allocate space for one software descriptor per buffer. */ 2656 rc = alloc_fl_sdesc(fl); 2657 if (rc != 0) { 2658 device_printf(sc->dev, 2659 "failed to setup fl software descriptors: %d\n", 2660 rc); 2661 return (rc); 2662 } 2663 2664 if (fl->flags & FL_BUF_PACKING) { 2665 fl->lowat = roundup2(sp->fl_starve_threshold2, 8); 2666 fl->buf_boundary = sp->pack_boundary; 2667 } else { 2668 fl->lowat = roundup2(sp->fl_starve_threshold, 8); 2669 fl->buf_boundary = 16; 2670 } 2671 if (fl_pad && fl->buf_boundary < sp->pad_boundary) 2672 fl->buf_boundary = sp->pad_boundary; 2673 2674 c.iqns_to_fl0congen |= 2675 htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | 2676 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | 2677 (fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) | 2678 (fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN : 2679 0)); 2680 if (cong >= 0) { 2681 c.iqns_to_fl0congen |= 2682 htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | 2683 F_FW_IQ_CMD_FL0CONGCIF | 2684 F_FW_IQ_CMD_FL0CONGEN); 2685 } 2686 c.fl0dcaen_to_fl0cidxfthresh = 2687 htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ? 2688 X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) | 2689 V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ? 2690 X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B)); 2691 c.fl0size = htobe16(fl->qsize); 2692 c.fl0addr = htobe64(fl->ba); 2693 } 2694 2695 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2696 if (rc != 0) { 2697 device_printf(sc->dev, 2698 "failed to create ingress queue: %d\n", rc); 2699 return (rc); 2700 } 2701 2702 iq->cidx = 0; 2703 iq->gen = F_RSPD_GEN; 2704 iq->intr_next = iq->intr_params; 2705 iq->cntxt_id = be16toh(c.iqid); 2706 iq->abs_id = be16toh(c.physiqid); 2707 iq->flags |= IQ_ALLOCATED; 2708 2709 cntxt_id = iq->cntxt_id - sc->sge.iq_start; 2710 if (cntxt_id >= sc->sge.niq) { 2711 panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, 2712 cntxt_id, sc->sge.niq - 1); 2713 } 2714 sc->sge.iqmap[cntxt_id] = iq; 2715 2716 if (fl) { 2717 u_int qid; 2718 2719 iq->flags |= IQ_HAS_FL; 2720 fl->cntxt_id = be16toh(c.fl0id); 2721 fl->pidx = fl->cidx = 0; 2722 2723 cntxt_id = fl->cntxt_id - sc->sge.eq_start; 2724 if (cntxt_id >= sc->sge.neq) { 2725 panic("%s: fl->cntxt_id (%d) more than the max (%d)", 2726 __func__, cntxt_id, sc->sge.neq - 1); 2727 } 2728 sc->sge.eqmap[cntxt_id] = (void *)fl; 2729 2730 qid = fl->cntxt_id; 2731 if (isset(&sc->doorbells, DOORBELL_UDB)) { 2732 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 2733 uint32_t mask = (1 << s_qpp) - 1; 2734 volatile uint8_t *udb; 2735 2736 udb = sc->udbs_base + UDBS_DB_OFFSET; 2737 udb += (qid >> s_qpp) << PAGE_SHIFT; 2738 qid &= mask; 2739 if (qid < PAGE_SIZE / UDBS_SEG_SIZE) { 2740 udb += qid << UDBS_SEG_SHIFT; 2741 qid = 0; 2742 } 2743 fl->udb = (volatile void *)udb; 2744 } 2745 fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db; 2746 2747 FL_LOCK(fl); 2748 /* Enough to make sure the SGE doesn't think it's starved */ 2749 refill_fl(sc, fl, fl->lowat); 2750 FL_UNLOCK(fl); 2751 } 2752 2753 if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) { 2754 uint32_t param, val; 2755 2756 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 2757 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 2758 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id); 2759 if (cong == 0) 2760 val = 1 << 19; 2761 else { 2762 val = 2 << 19; 2763 for (i = 0; i < 4; i++) { 2764 if (cong & (1 << i)) 2765 val |= 1 << (i << 2); 2766 } 2767 } 2768 2769 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 2770 if (rc != 0) { 2771 /* report error but carry on */ 2772 device_printf(sc->dev, 2773 "failed to set congestion manager context for " 2774 "ingress queue %d: %d\n", iq->cntxt_id, rc); 2775 } 2776 } 2777 2778 /* Enable IQ interrupts */ 2779 atomic_store_rel_int(&iq->state, IQS_IDLE); 2780 t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) | 2781 V_INGRESSQID(iq->cntxt_id)); 2782 2783 return (0); 2784 } 2785 2786 static int 2787 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl) 2788 { 2789 int rc; 2790 struct adapter *sc = iq->adapter; 2791 device_t dev; 2792 2793 if (sc == NULL) 2794 return (0); /* nothing to do */ 2795 2796 dev = vi ? vi->dev : sc->dev; 2797 2798 if (iq->flags & IQ_ALLOCATED) { 2799 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, 2800 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, 2801 fl ? fl->cntxt_id : 0xffff, 0xffff); 2802 if (rc != 0) { 2803 device_printf(dev, 2804 "failed to free queue %p: %d\n", iq, rc); 2805 return (rc); 2806 } 2807 iq->flags &= ~IQ_ALLOCATED; 2808 } 2809 2810 free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); 2811 2812 bzero(iq, sizeof(*iq)); 2813 2814 if (fl) { 2815 free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, 2816 fl->desc); 2817 2818 if (fl->sdesc) 2819 free_fl_sdesc(sc, fl); 2820 2821 if (mtx_initialized(&fl->fl_lock)) 2822 mtx_destroy(&fl->fl_lock); 2823 2824 bzero(fl, sizeof(*fl)); 2825 } 2826 2827 return (0); 2828 } 2829 2830 static void 2831 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, 2832 struct sge_iq *iq) 2833 { 2834 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2835 2836 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba, 2837 "bus address of descriptor ring"); 2838 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 2839 iq->qsize * IQ_ESIZE, "descriptor ring size in bytes"); 2840 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", 2841 CTLTYPE_INT | CTLFLAG_RD, &iq->abs_id, 0, sysctl_uint16, "I", 2842 "absolute id of the queue"); 2843 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 2844 CTLTYPE_INT | CTLFLAG_RD, &iq->cntxt_id, 0, sysctl_uint16, "I", 2845 "SGE context id of the queue"); 2846 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 2847 CTLTYPE_INT | CTLFLAG_RD, &iq->cidx, 0, sysctl_uint16, "I", 2848 "consumer index"); 2849 } 2850 2851 static void 2852 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 2853 struct sysctl_oid *oid, struct sge_fl *fl) 2854 { 2855 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2856 2857 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 2858 "freelist"); 2859 children = SYSCTL_CHILDREN(oid); 2860 2861 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 2862 &fl->ba, "bus address of descriptor ring"); 2863 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 2864 fl->sidx * EQ_ESIZE + sc->params.sge.spg_len, 2865 "desc ring size in bytes"); 2866 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 2867 CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I", 2868 "SGE context id of the freelist"); 2869 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL, 2870 fl_pad ? 1 : 0, "padding enabled"); 2871 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL, 2872 fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled"); 2873 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx, 2874 0, "consumer index"); 2875 if (fl->flags & FL_BUF_PACKING) { 2876 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset", 2877 CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset"); 2878 } 2879 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx, 2880 0, "producer index"); 2881 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated", 2882 CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated"); 2883 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined", 2884 CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters"); 2885 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated", 2886 CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated"); 2887 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled", 2888 CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled"); 2889 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled", 2890 CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)"); 2891 } 2892 2893 static int 2894 alloc_fwq(struct adapter *sc) 2895 { 2896 int rc, intr_idx; 2897 struct sge_iq *fwq = &sc->sge.fwq; 2898 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 2899 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2900 2901 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE); 2902 if (sc->flags & IS_VF) 2903 intr_idx = 0; 2904 else { 2905 intr_idx = sc->intr_count > 1 ? 1 : 0; 2906 fwq->set_tcb_rpl = t4_filter_rpl; 2907 fwq->l2t_write_rpl = do_l2t_write_rpl; 2908 } 2909 rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1); 2910 if (rc != 0) { 2911 device_printf(sc->dev, 2912 "failed to create firmware event queue: %d\n", rc); 2913 return (rc); 2914 } 2915 2916 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD, 2917 NULL, "firmware event queue"); 2918 add_iq_sysctls(&sc->ctx, oid, fwq); 2919 2920 return (0); 2921 } 2922 2923 static int 2924 free_fwq(struct adapter *sc) 2925 { 2926 return free_iq_fl(NULL, &sc->sge.fwq, NULL); 2927 } 2928 2929 static int 2930 alloc_mgmtq(struct adapter *sc) 2931 { 2932 int rc; 2933 struct sge_wrq *mgmtq = &sc->sge.mgmtq; 2934 char name[16]; 2935 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 2936 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2937 2938 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD, 2939 NULL, "management queue"); 2940 2941 snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev)); 2942 init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan, 2943 sc->sge.fwq.cntxt_id, name); 2944 rc = alloc_wrq(sc, NULL, mgmtq, oid); 2945 if (rc != 0) { 2946 device_printf(sc->dev, 2947 "failed to create management queue: %d\n", rc); 2948 return (rc); 2949 } 2950 2951 return (0); 2952 } 2953 2954 static int 2955 free_mgmtq(struct adapter *sc) 2956 { 2957 2958 return free_wrq(sc, &sc->sge.mgmtq); 2959 } 2960 2961 int 2962 tnl_cong(struct port_info *pi, int drop) 2963 { 2964 2965 if (drop == -1) 2966 return (-1); 2967 else if (drop == 1) 2968 return (0); 2969 else 2970 return (pi->rx_e_chan_map); 2971 } 2972 2973 static int 2974 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx, 2975 struct sysctl_oid *oid) 2976 { 2977 int rc; 2978 struct adapter *sc = vi->pi->adapter; 2979 struct sysctl_oid_list *children; 2980 char name[16]; 2981 2982 rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx, 2983 tnl_cong(vi->pi, cong_drop)); 2984 if (rc != 0) 2985 return (rc); 2986 2987 if (idx == 0) 2988 sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id; 2989 else 2990 KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id, 2991 ("iq_base mismatch")); 2992 KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF, 2993 ("PF with non-zero iq_base")); 2994 2995 /* 2996 * The freelist is just barely above the starvation threshold right now, 2997 * fill it up a bit more. 2998 */ 2999 FL_LOCK(&rxq->fl); 3000 refill_fl(sc, &rxq->fl, 128); 3001 FL_UNLOCK(&rxq->fl); 3002 3003 #if defined(INET) || defined(INET6) 3004 rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs); 3005 if (rc != 0) 3006 return (rc); 3007 MPASS(rxq->lro.ifp == vi->ifp); /* also indicates LRO init'ed */ 3008 3009 if (vi->ifp->if_capenable & IFCAP_LRO) 3010 rxq->iq.flags |= IQ_LRO_ENABLED; 3011 #endif 3012 rxq->ifp = vi->ifp; 3013 3014 children = SYSCTL_CHILDREN(oid); 3015 3016 snprintf(name, sizeof(name), "%d", idx); 3017 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3018 NULL, "rx queue"); 3019 children = SYSCTL_CHILDREN(oid); 3020 3021 add_iq_sysctls(&vi->ctx, oid, &rxq->iq); 3022 #if defined(INET) || defined(INET6) 3023 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, 3024 &rxq->lro.lro_queued, 0, NULL); 3025 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, 3026 &rxq->lro.lro_flushed, 0, NULL); 3027 #endif 3028 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, 3029 &rxq->rxcsum, "# of times hardware assisted with checksum"); 3030 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction", 3031 CTLFLAG_RD, &rxq->vlan_extraction, 3032 "# of times hardware extracted 802.1Q tag"); 3033 3034 add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl); 3035 3036 return (rc); 3037 } 3038 3039 static int 3040 free_rxq(struct vi_info *vi, struct sge_rxq *rxq) 3041 { 3042 int rc; 3043 3044 #if defined(INET) || defined(INET6) 3045 if (rxq->lro.ifp) { 3046 tcp_lro_free(&rxq->lro); 3047 rxq->lro.ifp = NULL; 3048 } 3049 #endif 3050 3051 rc = free_iq_fl(vi, &rxq->iq, &rxq->fl); 3052 if (rc == 0) 3053 bzero(rxq, sizeof(*rxq)); 3054 3055 return (rc); 3056 } 3057 3058 #ifdef TCP_OFFLOAD 3059 static int 3060 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, 3061 int intr_idx, int idx, struct sysctl_oid *oid) 3062 { 3063 struct port_info *pi = vi->pi; 3064 int rc; 3065 struct sysctl_oid_list *children; 3066 char name[16]; 3067 3068 rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0); 3069 if (rc != 0) 3070 return (rc); 3071 3072 children = SYSCTL_CHILDREN(oid); 3073 3074 snprintf(name, sizeof(name), "%d", idx); 3075 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3076 NULL, "rx queue"); 3077 add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq); 3078 add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl); 3079 3080 return (rc); 3081 } 3082 3083 static int 3084 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq) 3085 { 3086 int rc; 3087 3088 rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl); 3089 if (rc == 0) 3090 bzero(ofld_rxq, sizeof(*ofld_rxq)); 3091 3092 return (rc); 3093 } 3094 #endif 3095 3096 #ifdef DEV_NETMAP 3097 static int 3098 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx, 3099 int idx, struct sysctl_oid *oid) 3100 { 3101 int rc; 3102 struct sysctl_oid_list *children; 3103 struct sysctl_ctx_list *ctx; 3104 char name[16]; 3105 size_t len; 3106 struct adapter *sc = vi->pi->adapter; 3107 struct netmap_adapter *na = NA(vi->ifp); 3108 3109 MPASS(na != NULL); 3110 3111 len = vi->qsize_rxq * IQ_ESIZE; 3112 rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map, 3113 &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc); 3114 if (rc != 0) 3115 return (rc); 3116 3117 len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len; 3118 rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map, 3119 &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc); 3120 if (rc != 0) 3121 return (rc); 3122 3123 nm_rxq->vi = vi; 3124 nm_rxq->nid = idx; 3125 nm_rxq->iq_cidx = 0; 3126 nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE; 3127 nm_rxq->iq_gen = F_RSPD_GEN; 3128 nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0; 3129 nm_rxq->fl_sidx = na->num_rx_desc; 3130 nm_rxq->intr_idx = intr_idx; 3131 nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID; 3132 3133 ctx = &vi->ctx; 3134 children = SYSCTL_CHILDREN(oid); 3135 3136 snprintf(name, sizeof(name), "%d", idx); 3137 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, 3138 "rx queue"); 3139 children = SYSCTL_CHILDREN(oid); 3140 3141 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", 3142 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16, 3143 "I", "absolute id of the queue"); 3144 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3145 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16, 3146 "I", "SGE context id of the queue"); 3147 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3148 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I", 3149 "consumer index"); 3150 3151 children = SYSCTL_CHILDREN(oid); 3152 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 3153 "freelist"); 3154 children = SYSCTL_CHILDREN(oid); 3155 3156 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3157 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16, 3158 "I", "SGE context id of the freelist"); 3159 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, 3160 &nm_rxq->fl_cidx, 0, "consumer index"); 3161 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, 3162 &nm_rxq->fl_pidx, 0, "producer index"); 3163 3164 return (rc); 3165 } 3166 3167 3168 static int 3169 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq) 3170 { 3171 struct adapter *sc = vi->pi->adapter; 3172 3173 if (vi->flags & VI_INIT_DONE) 3174 MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID); 3175 else 3176 MPASS(nm_rxq->iq_cntxt_id == 0); 3177 3178 free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba, 3179 nm_rxq->iq_desc); 3180 free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba, 3181 nm_rxq->fl_desc); 3182 3183 return (0); 3184 } 3185 3186 static int 3187 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx, 3188 struct sysctl_oid *oid) 3189 { 3190 int rc; 3191 size_t len; 3192 struct port_info *pi = vi->pi; 3193 struct adapter *sc = pi->adapter; 3194 struct netmap_adapter *na = NA(vi->ifp); 3195 char name[16]; 3196 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3197 3198 len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len; 3199 rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map, 3200 &nm_txq->ba, (void **)&nm_txq->desc); 3201 if (rc) 3202 return (rc); 3203 3204 nm_txq->pidx = nm_txq->cidx = 0; 3205 nm_txq->sidx = na->num_tx_desc; 3206 nm_txq->nid = idx; 3207 nm_txq->iqidx = iqidx; 3208 nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3209 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) | 3210 V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) | 3211 V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid))); 3212 nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID; 3213 3214 snprintf(name, sizeof(name), "%d", idx); 3215 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3216 NULL, "netmap tx queue"); 3217 children = SYSCTL_CHILDREN(oid); 3218 3219 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3220 &nm_txq->cntxt_id, 0, "SGE context id of the queue"); 3221 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3222 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I", 3223 "consumer index"); 3224 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 3225 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I", 3226 "producer index"); 3227 3228 return (rc); 3229 } 3230 3231 static int 3232 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq) 3233 { 3234 struct adapter *sc = vi->pi->adapter; 3235 3236 if (vi->flags & VI_INIT_DONE) 3237 MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID); 3238 else 3239 MPASS(nm_txq->cntxt_id == 0); 3240 3241 free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba, 3242 nm_txq->desc); 3243 3244 return (0); 3245 } 3246 #endif 3247 3248 static int 3249 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) 3250 { 3251 int rc, cntxt_id; 3252 struct fw_eq_ctrl_cmd c; 3253 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3254 3255 bzero(&c, sizeof(c)); 3256 3257 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | 3258 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | 3259 V_FW_EQ_CTRL_CMD_VFN(0)); 3260 c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC | 3261 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 3262 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); 3263 c.physeqid_pkd = htobe32(0); 3264 c.fetchszm_to_iqid = 3265 htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 3266 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | 3267 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); 3268 c.dcaen_to_eqsize = 3269 htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3270 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3271 V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 3272 V_FW_EQ_CTRL_CMD_EQSIZE(qsize)); 3273 c.eqaddr = htobe64(eq->ba); 3274 3275 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3276 if (rc != 0) { 3277 device_printf(sc->dev, 3278 "failed to create control queue %d: %d\n", eq->tx_chan, rc); 3279 return (rc); 3280 } 3281 eq->flags |= EQ_ALLOCATED; 3282 3283 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid)); 3284 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3285 if (cntxt_id >= sc->sge.neq) 3286 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3287 cntxt_id, sc->sge.neq - 1); 3288 sc->sge.eqmap[cntxt_id] = eq; 3289 3290 return (rc); 3291 } 3292 3293 static int 3294 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3295 { 3296 int rc, cntxt_id; 3297 struct fw_eq_eth_cmd c; 3298 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3299 3300 bzero(&c, sizeof(c)); 3301 3302 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | 3303 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | 3304 V_FW_EQ_ETH_CMD_VFN(0)); 3305 c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | 3306 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 3307 c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE | 3308 F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid)); 3309 c.fetchszm_to_iqid = 3310 htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3311 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | 3312 V_FW_EQ_ETH_CMD_IQID(eq->iqid)); 3313 c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3314 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3315 V_FW_EQ_ETH_CMD_EQSIZE(qsize)); 3316 c.eqaddr = htobe64(eq->ba); 3317 3318 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3319 if (rc != 0) { 3320 device_printf(vi->dev, 3321 "failed to create Ethernet egress queue: %d\n", rc); 3322 return (rc); 3323 } 3324 eq->flags |= EQ_ALLOCATED; 3325 3326 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); 3327 eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd)); 3328 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3329 if (cntxt_id >= sc->sge.neq) 3330 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3331 cntxt_id, sc->sge.neq - 1); 3332 sc->sge.eqmap[cntxt_id] = eq; 3333 3334 return (rc); 3335 } 3336 3337 #ifdef TCP_OFFLOAD 3338 static int 3339 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3340 { 3341 int rc, cntxt_id; 3342 struct fw_eq_ofld_cmd c; 3343 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3344 3345 bzero(&c, sizeof(c)); 3346 3347 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | 3348 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | 3349 V_FW_EQ_OFLD_CMD_VFN(0)); 3350 c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | 3351 F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 3352 c.fetchszm_to_iqid = 3353 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3354 V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | 3355 F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); 3356 c.dcaen_to_eqsize = 3357 htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3358 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3359 V_FW_EQ_OFLD_CMD_EQSIZE(qsize)); 3360 c.eqaddr = htobe64(eq->ba); 3361 3362 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3363 if (rc != 0) { 3364 device_printf(vi->dev, 3365 "failed to create egress queue for TCP offload: %d\n", rc); 3366 return (rc); 3367 } 3368 eq->flags |= EQ_ALLOCATED; 3369 3370 eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd)); 3371 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3372 if (cntxt_id >= sc->sge.neq) 3373 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3374 cntxt_id, sc->sge.neq - 1); 3375 sc->sge.eqmap[cntxt_id] = eq; 3376 3377 return (rc); 3378 } 3379 #endif 3380 3381 static int 3382 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3383 { 3384 int rc, qsize; 3385 size_t len; 3386 3387 mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); 3388 3389 qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3390 len = qsize * EQ_ESIZE; 3391 rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, 3392 &eq->ba, (void **)&eq->desc); 3393 if (rc) 3394 return (rc); 3395 3396 eq->pidx = eq->cidx = 0; 3397 eq->equeqidx = eq->dbidx = 0; 3398 eq->doorbells = sc->doorbells; 3399 3400 switch (eq->flags & EQ_TYPEMASK) { 3401 case EQ_CTRL: 3402 rc = ctrl_eq_alloc(sc, eq); 3403 break; 3404 3405 case EQ_ETH: 3406 rc = eth_eq_alloc(sc, vi, eq); 3407 break; 3408 3409 #ifdef TCP_OFFLOAD 3410 case EQ_OFLD: 3411 rc = ofld_eq_alloc(sc, vi, eq); 3412 break; 3413 #endif 3414 3415 default: 3416 panic("%s: invalid eq type %d.", __func__, 3417 eq->flags & EQ_TYPEMASK); 3418 } 3419 if (rc != 0) { 3420 device_printf(sc->dev, 3421 "failed to allocate egress queue(%d): %d\n", 3422 eq->flags & EQ_TYPEMASK, rc); 3423 } 3424 3425 if (isset(&eq->doorbells, DOORBELL_UDB) || 3426 isset(&eq->doorbells, DOORBELL_UDBWC) || 3427 isset(&eq->doorbells, DOORBELL_WCWR)) { 3428 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 3429 uint32_t mask = (1 << s_qpp) - 1; 3430 volatile uint8_t *udb; 3431 3432 udb = sc->udbs_base + UDBS_DB_OFFSET; 3433 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */ 3434 eq->udb_qid = eq->cntxt_id & mask; /* id in page */ 3435 if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE) 3436 clrbit(&eq->doorbells, DOORBELL_WCWR); 3437 else { 3438 udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */ 3439 eq->udb_qid = 0; 3440 } 3441 eq->udb = (volatile void *)udb; 3442 } 3443 3444 return (rc); 3445 } 3446 3447 static int 3448 free_eq(struct adapter *sc, struct sge_eq *eq) 3449 { 3450 int rc; 3451 3452 if (eq->flags & EQ_ALLOCATED) { 3453 switch (eq->flags & EQ_TYPEMASK) { 3454 case EQ_CTRL: 3455 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, 3456 eq->cntxt_id); 3457 break; 3458 3459 case EQ_ETH: 3460 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, 3461 eq->cntxt_id); 3462 break; 3463 3464 #ifdef TCP_OFFLOAD 3465 case EQ_OFLD: 3466 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, 3467 eq->cntxt_id); 3468 break; 3469 #endif 3470 3471 default: 3472 panic("%s: invalid eq type %d.", __func__, 3473 eq->flags & EQ_TYPEMASK); 3474 } 3475 if (rc != 0) { 3476 device_printf(sc->dev, 3477 "failed to free egress queue (%d): %d\n", 3478 eq->flags & EQ_TYPEMASK, rc); 3479 return (rc); 3480 } 3481 eq->flags &= ~EQ_ALLOCATED; 3482 } 3483 3484 free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); 3485 3486 if (mtx_initialized(&eq->eq_lock)) 3487 mtx_destroy(&eq->eq_lock); 3488 3489 bzero(eq, sizeof(*eq)); 3490 return (0); 3491 } 3492 3493 static int 3494 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq, 3495 struct sysctl_oid *oid) 3496 { 3497 int rc; 3498 struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx; 3499 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3500 3501 rc = alloc_eq(sc, vi, &wrq->eq); 3502 if (rc) 3503 return (rc); 3504 3505 wrq->adapter = sc; 3506 TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq); 3507 TAILQ_INIT(&wrq->incomplete_wrs); 3508 STAILQ_INIT(&wrq->wr_list); 3509 wrq->nwr_pending = 0; 3510 wrq->ndesc_needed = 0; 3511 3512 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 3513 &wrq->eq.ba, "bus address of descriptor ring"); 3514 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3515 wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len, 3516 "desc ring size in bytes"); 3517 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3518 &wrq->eq.cntxt_id, 0, "SGE context id of the queue"); 3519 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3520 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I", 3521 "consumer index"); 3522 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx", 3523 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I", 3524 "producer index"); 3525 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL, 3526 wrq->eq.sidx, "status page index"); 3527 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD, 3528 &wrq->tx_wrs_direct, "# of work requests (direct)"); 3529 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD, 3530 &wrq->tx_wrs_copied, "# of work requests (copied)"); 3531 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD, 3532 &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)"); 3533 3534 return (rc); 3535 } 3536 3537 static int 3538 free_wrq(struct adapter *sc, struct sge_wrq *wrq) 3539 { 3540 int rc; 3541 3542 rc = free_eq(sc, &wrq->eq); 3543 if (rc) 3544 return (rc); 3545 3546 bzero(wrq, sizeof(*wrq)); 3547 return (0); 3548 } 3549 3550 static int 3551 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx, 3552 struct sysctl_oid *oid) 3553 { 3554 int rc; 3555 struct port_info *pi = vi->pi; 3556 struct adapter *sc = pi->adapter; 3557 struct sge_eq *eq = &txq->eq; 3558 char name[16]; 3559 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3560 3561 rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx, 3562 M_CXGBE, M_WAITOK); 3563 if (rc != 0) { 3564 device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc); 3565 return (rc); 3566 } 3567 3568 rc = alloc_eq(sc, vi, eq); 3569 if (rc != 0) { 3570 mp_ring_free(txq->r); 3571 txq->r = NULL; 3572 return (rc); 3573 } 3574 3575 /* Can't fail after this point. */ 3576 3577 if (idx == 0) 3578 sc->sge.eq_base = eq->abs_id - eq->cntxt_id; 3579 else 3580 KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id, 3581 ("eq_base mismatch")); 3582 KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF, 3583 ("PF with non-zero eq_base")); 3584 3585 TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq); 3586 txq->ifp = vi->ifp; 3587 txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK); 3588 if (sc->flags & IS_VF) 3589 txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 3590 V_TXPKT_INTF(pi->tx_chan)); 3591 else 3592 txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3593 V_TXPKT_INTF(pi->tx_chan) | 3594 V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) | 3595 V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) | 3596 V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid))); 3597 txq->tc_idx = -1; 3598 txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE, 3599 M_ZERO | M_WAITOK); 3600 3601 snprintf(name, sizeof(name), "%d", idx); 3602 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3603 NULL, "tx queue"); 3604 children = SYSCTL_CHILDREN(oid); 3605 3606 SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD, 3607 &eq->ba, "bus address of descriptor ring"); 3608 SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, 3609 eq->sidx * EQ_ESIZE + sc->params.sge.spg_len, 3610 "desc ring size in bytes"); 3611 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD, 3612 &eq->abs_id, 0, "absolute id of the queue"); 3613 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3614 &eq->cntxt_id, 0, "SGE context id of the queue"); 3615 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3616 CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I", 3617 "consumer index"); 3618 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 3619 CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I", 3620 "producer index"); 3621 SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL, 3622 eq->sidx, "status page index"); 3623 3624 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc", 3625 CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I", 3626 "traffic class (-1 means none)"); 3627 3628 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, 3629 &txq->txcsum, "# of times hardware assisted with checksum"); 3630 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion", 3631 CTLFLAG_RD, &txq->vlan_insertion, 3632 "# of times hardware inserted 802.1Q tag"); 3633 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, 3634 &txq->tso_wrs, "# of TSO work requests"); 3635 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, 3636 &txq->imm_wrs, "# of work requests with immediate data"); 3637 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, 3638 &txq->sgl_wrs, "# of work requests with direct SGL"); 3639 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, 3640 &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); 3641 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs", 3642 CTLFLAG_RD, &txq->txpkts0_wrs, 3643 "# of txpkts (type 0) work requests"); 3644 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs", 3645 CTLFLAG_RD, &txq->txpkts1_wrs, 3646 "# of txpkts (type 1) work requests"); 3647 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts", 3648 CTLFLAG_RD, &txq->txpkts0_pkts, 3649 "# of frames tx'd using type0 txpkts work requests"); 3650 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts", 3651 CTLFLAG_RD, &txq->txpkts1_pkts, 3652 "# of frames tx'd using type1 txpkts work requests"); 3653 3654 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues", 3655 CTLFLAG_RD, &txq->r->enqueues, 3656 "# of enqueues to the mp_ring for this queue"); 3657 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops", 3658 CTLFLAG_RD, &txq->r->drops, 3659 "# of drops in the mp_ring for this queue"); 3660 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts", 3661 CTLFLAG_RD, &txq->r->starts, 3662 "# of normal consumer starts in the mp_ring for this queue"); 3663 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls", 3664 CTLFLAG_RD, &txq->r->stalls, 3665 "# of consumer stalls in the mp_ring for this queue"); 3666 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts", 3667 CTLFLAG_RD, &txq->r->restarts, 3668 "# of consumer restarts in the mp_ring for this queue"); 3669 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications", 3670 CTLFLAG_RD, &txq->r->abdications, 3671 "# of consumer abdications in the mp_ring for this queue"); 3672 3673 return (0); 3674 } 3675 3676 static int 3677 free_txq(struct vi_info *vi, struct sge_txq *txq) 3678 { 3679 int rc; 3680 struct adapter *sc = vi->pi->adapter; 3681 struct sge_eq *eq = &txq->eq; 3682 3683 rc = free_eq(sc, eq); 3684 if (rc) 3685 return (rc); 3686 3687 sglist_free(txq->gl); 3688 free(txq->sdesc, M_CXGBE); 3689 mp_ring_free(txq->r); 3690 3691 bzero(txq, sizeof(*txq)); 3692 return (0); 3693 } 3694 3695 static void 3696 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) 3697 { 3698 bus_addr_t *ba = arg; 3699 3700 KASSERT(nseg == 1, 3701 ("%s meant for single segment mappings only.", __func__)); 3702 3703 *ba = error ? 0 : segs->ds_addr; 3704 } 3705 3706 static inline void 3707 ring_fl_db(struct adapter *sc, struct sge_fl *fl) 3708 { 3709 uint32_t n, v; 3710 3711 n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx); 3712 MPASS(n > 0); 3713 3714 wmb(); 3715 v = fl->dbval | V_PIDX(n); 3716 if (fl->udb) 3717 *fl->udb = htole32(v); 3718 else 3719 t4_write_reg(sc, sc->sge_kdoorbell_reg, v); 3720 IDXINCR(fl->dbidx, n, fl->sidx); 3721 } 3722 3723 /* 3724 * Fills up the freelist by allocating up to 'n' buffers. Buffers that are 3725 * recycled do not count towards this allocation budget. 3726 * 3727 * Returns non-zero to indicate that this freelist should be added to the list 3728 * of starving freelists. 3729 */ 3730 static int 3731 refill_fl(struct adapter *sc, struct sge_fl *fl, int n) 3732 { 3733 __be64 *d; 3734 struct fl_sdesc *sd; 3735 uintptr_t pa; 3736 caddr_t cl; 3737 struct cluster_layout *cll; 3738 struct sw_zone_info *swz; 3739 struct cluster_metadata *clm; 3740 uint16_t max_pidx; 3741 uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */ 3742 3743 FL_LOCK_ASSERT_OWNED(fl); 3744 3745 /* 3746 * We always stop at the beginning of the hardware descriptor that's just 3747 * before the one with the hw cidx. This is to avoid hw pidx = hw cidx, 3748 * which would mean an empty freelist to the chip. 3749 */ 3750 max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1; 3751 if (fl->pidx == max_pidx * 8) 3752 return (0); 3753 3754 d = &fl->desc[fl->pidx]; 3755 sd = &fl->sdesc[fl->pidx]; 3756 cll = &fl->cll_def; /* default layout */ 3757 swz = &sc->sge.sw_zone_info[cll->zidx]; 3758 3759 while (n > 0) { 3760 3761 if (sd->cl != NULL) { 3762 3763 if (sd->nmbuf == 0) { 3764 /* 3765 * Fast recycle without involving any atomics on 3766 * the cluster's metadata (if the cluster has 3767 * metadata). This happens when all frames 3768 * received in the cluster were small enough to 3769 * fit within a single mbuf each. 3770 */ 3771 fl->cl_fast_recycled++; 3772 #ifdef INVARIANTS 3773 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 3774 if (clm != NULL) 3775 MPASS(clm->refcount == 1); 3776 #endif 3777 goto recycled_fast; 3778 } 3779 3780 /* 3781 * Cluster is guaranteed to have metadata. Clusters 3782 * without metadata always take the fast recycle path 3783 * when they're recycled. 3784 */ 3785 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 3786 MPASS(clm != NULL); 3787 3788 if (atomic_fetchadd_int(&clm->refcount, -1) == 1) { 3789 fl->cl_recycled++; 3790 counter_u64_add(extfree_rels, 1); 3791 goto recycled; 3792 } 3793 sd->cl = NULL; /* gave up my reference */ 3794 } 3795 MPASS(sd->cl == NULL); 3796 alloc: 3797 cl = uma_zalloc(swz->zone, M_NOWAIT); 3798 if (__predict_false(cl == NULL)) { 3799 if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 || 3800 fl->cll_def.zidx == fl->cll_alt.zidx) 3801 break; 3802 3803 /* fall back to the safe zone */ 3804 cll = &fl->cll_alt; 3805 swz = &sc->sge.sw_zone_info[cll->zidx]; 3806 goto alloc; 3807 } 3808 fl->cl_allocated++; 3809 n--; 3810 3811 pa = pmap_kextract((vm_offset_t)cl); 3812 pa += cll->region1; 3813 sd->cl = cl; 3814 sd->cll = *cll; 3815 *d = htobe64(pa | cll->hwidx); 3816 clm = cl_metadata(sc, fl, cll, cl); 3817 if (clm != NULL) { 3818 recycled: 3819 #ifdef INVARIANTS 3820 clm->sd = sd; 3821 #endif 3822 clm->refcount = 1; 3823 } 3824 sd->nmbuf = 0; 3825 recycled_fast: 3826 d++; 3827 sd++; 3828 if (__predict_false(++fl->pidx % 8 == 0)) { 3829 uint16_t pidx = fl->pidx / 8; 3830 3831 if (__predict_false(pidx == fl->sidx)) { 3832 fl->pidx = 0; 3833 pidx = 0; 3834 sd = fl->sdesc; 3835 d = fl->desc; 3836 } 3837 if (pidx == max_pidx) 3838 break; 3839 3840 if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4) 3841 ring_fl_db(sc, fl); 3842 } 3843 } 3844 3845 if (fl->pidx / 8 != fl->dbidx) 3846 ring_fl_db(sc, fl); 3847 3848 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); 3849 } 3850 3851 /* 3852 * Attempt to refill all starving freelists. 3853 */ 3854 static void 3855 refill_sfl(void *arg) 3856 { 3857 struct adapter *sc = arg; 3858 struct sge_fl *fl, *fl_temp; 3859 3860 mtx_assert(&sc->sfl_lock, MA_OWNED); 3861 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { 3862 FL_LOCK(fl); 3863 refill_fl(sc, fl, 64); 3864 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { 3865 TAILQ_REMOVE(&sc->sfl, fl, link); 3866 fl->flags &= ~FL_STARVING; 3867 } 3868 FL_UNLOCK(fl); 3869 } 3870 3871 if (!TAILQ_EMPTY(&sc->sfl)) 3872 callout_schedule(&sc->sfl_callout, hz / 5); 3873 } 3874 3875 static int 3876 alloc_fl_sdesc(struct sge_fl *fl) 3877 { 3878 3879 fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE, 3880 M_ZERO | M_WAITOK); 3881 3882 return (0); 3883 } 3884 3885 static void 3886 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl) 3887 { 3888 struct fl_sdesc *sd; 3889 struct cluster_metadata *clm; 3890 struct cluster_layout *cll; 3891 int i; 3892 3893 sd = fl->sdesc; 3894 for (i = 0; i < fl->sidx * 8; i++, sd++) { 3895 if (sd->cl == NULL) 3896 continue; 3897 3898 cll = &sd->cll; 3899 clm = cl_metadata(sc, fl, cll, sd->cl); 3900 if (sd->nmbuf == 0) 3901 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 3902 else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) { 3903 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 3904 counter_u64_add(extfree_rels, 1); 3905 } 3906 sd->cl = NULL; 3907 } 3908 3909 free(fl->sdesc, M_CXGBE); 3910 fl->sdesc = NULL; 3911 } 3912 3913 static inline void 3914 get_pkt_gl(struct mbuf *m, struct sglist *gl) 3915 { 3916 int rc; 3917 3918 M_ASSERTPKTHDR(m); 3919 3920 sglist_reset(gl); 3921 rc = sglist_append_mbuf(gl, m); 3922 if (__predict_false(rc != 0)) { 3923 panic("%s: mbuf %p (%d segs) was vetted earlier but now fails " 3924 "with %d.", __func__, m, mbuf_nsegs(m), rc); 3925 } 3926 3927 KASSERT(gl->sg_nseg == mbuf_nsegs(m), 3928 ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m, 3929 mbuf_nsegs(m), gl->sg_nseg)); 3930 KASSERT(gl->sg_nseg > 0 && 3931 gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS), 3932 ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__, 3933 gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)); 3934 } 3935 3936 /* 3937 * len16 for a txpkt WR with a GL. Includes the firmware work request header. 3938 */ 3939 static inline u_int 3940 txpkt_len16(u_int nsegs, u_int tso) 3941 { 3942 u_int n; 3943 3944 MPASS(nsegs > 0); 3945 3946 nsegs--; /* first segment is part of ulptx_sgl */ 3947 n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) + 3948 sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 3949 if (tso) 3950 n += sizeof(struct cpl_tx_pkt_lso_core); 3951 3952 return (howmany(n, 16)); 3953 } 3954 3955 /* 3956 * len16 for a txpkt_vm WR with a GL. Includes the firmware work 3957 * request header. 3958 */ 3959 static inline u_int 3960 txpkt_vm_len16(u_int nsegs, u_int tso) 3961 { 3962 u_int n; 3963 3964 MPASS(nsegs > 0); 3965 3966 nsegs--; /* first segment is part of ulptx_sgl */ 3967 n = sizeof(struct fw_eth_tx_pkt_vm_wr) + 3968 sizeof(struct cpl_tx_pkt_core) + 3969 sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 3970 if (tso) 3971 n += sizeof(struct cpl_tx_pkt_lso_core); 3972 3973 return (howmany(n, 16)); 3974 } 3975 3976 /* 3977 * len16 for a txpkts type 0 WR with a GL. Does not include the firmware work 3978 * request header. 3979 */ 3980 static inline u_int 3981 txpkts0_len16(u_int nsegs) 3982 { 3983 u_int n; 3984 3985 MPASS(nsegs > 0); 3986 3987 nsegs--; /* first segment is part of ulptx_sgl */ 3988 n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) + 3989 sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 3990 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 3991 3992 return (howmany(n, 16)); 3993 } 3994 3995 /* 3996 * len16 for a txpkts type 1 WR with a GL. Does not include the firmware work 3997 * request header. 3998 */ 3999 static inline u_int 4000 txpkts1_len16(void) 4001 { 4002 u_int n; 4003 4004 n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl); 4005 4006 return (howmany(n, 16)); 4007 } 4008 4009 static inline u_int 4010 imm_payload(u_int ndesc) 4011 { 4012 u_int n; 4013 4014 n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) - 4015 sizeof(struct cpl_tx_pkt_core); 4016 4017 return (n); 4018 } 4019 4020 /* 4021 * Write a VM txpkt WR for this packet to the hardware descriptors, update the 4022 * software descriptor, and advance the pidx. It is guaranteed that enough 4023 * descriptors are available. 4024 * 4025 * The return value is the # of hardware descriptors used. 4026 */ 4027 static u_int 4028 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, 4029 struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available) 4030 { 4031 struct sge_eq *eq = &txq->eq; 4032 struct tx_sdesc *txsd; 4033 struct cpl_tx_pkt_core *cpl; 4034 uint32_t ctrl; /* used in many unrelated places */ 4035 uint64_t ctrl1; 4036 int csum_type, len16, ndesc, pktlen, nsegs; 4037 caddr_t dst; 4038 4039 TXQ_LOCK_ASSERT_OWNED(txq); 4040 M_ASSERTPKTHDR(m0); 4041 MPASS(available > 0 && available < eq->sidx); 4042 4043 len16 = mbuf_len16(m0); 4044 nsegs = mbuf_nsegs(m0); 4045 pktlen = m0->m_pkthdr.len; 4046 ctrl = sizeof(struct cpl_tx_pkt_core); 4047 if (needs_tso(m0)) 4048 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 4049 ndesc = howmany(len16, EQ_ESIZE / 16); 4050 MPASS(ndesc <= available); 4051 4052 /* Firmware work request header */ 4053 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4054 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) | 4055 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 4056 4057 ctrl = V_FW_WR_LEN16(len16); 4058 wr->equiq_to_len16 = htobe32(ctrl); 4059 wr->r3[0] = 0; 4060 wr->r3[1] = 0; 4061 4062 /* 4063 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci. 4064 * vlantci is ignored unless the ethtype is 0x8100, so it's 4065 * simpler to always copy it rather than making it 4066 * conditional. Also, it seems that we do not have to set 4067 * vlantci or fake the ethtype when doing VLAN tag insertion. 4068 */ 4069 m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst); 4070 4071 csum_type = -1; 4072 if (needs_tso(m0)) { 4073 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 4074 4075 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 4076 m0->m_pkthdr.l4hlen > 0, 4077 ("%s: mbuf %p needs TSO but missing header lengths", 4078 __func__, m0)); 4079 4080 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 4081 F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) 4082 | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 4083 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 4084 ctrl |= V_LSO_ETHHDR_LEN(1); 4085 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4086 ctrl |= F_LSO_IPV6; 4087 4088 lso->lso_ctrl = htobe32(ctrl); 4089 lso->ipid_ofst = htobe16(0); 4090 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 4091 lso->seqno_offset = htobe32(0); 4092 lso->len = htobe32(pktlen); 4093 4094 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4095 csum_type = TX_CSUM_TCPIP6; 4096 else 4097 csum_type = TX_CSUM_TCPIP; 4098 4099 cpl = (void *)(lso + 1); 4100 4101 txq->tso_wrs++; 4102 } else { 4103 if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP) 4104 csum_type = TX_CSUM_TCPIP; 4105 else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP) 4106 csum_type = TX_CSUM_UDPIP; 4107 else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP) 4108 csum_type = TX_CSUM_TCPIP6; 4109 else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP) 4110 csum_type = TX_CSUM_UDPIP6; 4111 #if defined(INET) 4112 else if (m0->m_pkthdr.csum_flags & CSUM_IP) { 4113 /* 4114 * XXX: The firmware appears to stomp on the 4115 * fragment/flags field of the IP header when 4116 * using TX_CSUM_IP. Fall back to doing 4117 * software checksums. 4118 */ 4119 u_short *sump; 4120 struct mbuf *m; 4121 int offset; 4122 4123 m = m0; 4124 offset = 0; 4125 sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen + 4126 offsetof(struct ip, ip_sum)); 4127 *sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen + 4128 m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen); 4129 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 4130 } 4131 #endif 4132 4133 cpl = (void *)(wr + 1); 4134 } 4135 4136 /* Checksum offload */ 4137 ctrl1 = 0; 4138 if (needs_l3_csum(m0) == 0) 4139 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4140 if (csum_type >= 0) { 4141 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0, 4142 ("%s: mbuf %p needs checksum offload but missing header lengths", 4143 __func__, m0)); 4144 4145 if (chip_id(sc) <= CHELSIO_T5) { 4146 ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen - 4147 ETHER_HDR_LEN); 4148 } else { 4149 ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen - 4150 ETHER_HDR_LEN); 4151 } 4152 ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen); 4153 ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type); 4154 } else 4155 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4156 if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4157 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4158 txq->txcsum++; /* some hardware assistance provided */ 4159 4160 /* VLAN tag insertion */ 4161 if (needs_vlan_insertion(m0)) { 4162 ctrl1 |= F_TXPKT_VLAN_VLD | 4163 V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 4164 txq->vlan_insertion++; 4165 } 4166 4167 /* CPL header */ 4168 cpl->ctrl0 = txq->cpl_ctrl0; 4169 cpl->pack = 0; 4170 cpl->len = htobe16(pktlen); 4171 cpl->ctrl1 = htobe64(ctrl1); 4172 4173 /* SGL */ 4174 dst = (void *)(cpl + 1); 4175 4176 /* 4177 * A packet using TSO will use up an entire descriptor for the 4178 * firmware work request header, LSO CPL, and TX_PKT_XT CPL. 4179 * If this descriptor is the last descriptor in the ring, wrap 4180 * around to the front of the ring explicitly for the start of 4181 * the sgl. 4182 */ 4183 if (dst == (void *)&eq->desc[eq->sidx]) { 4184 dst = (void *)&eq->desc[0]; 4185 write_gl_to_txd(txq, m0, &dst, 0); 4186 } else 4187 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); 4188 txq->sgl_wrs++; 4189 4190 txq->txpkt_wrs++; 4191 4192 txsd = &txq->sdesc[eq->pidx]; 4193 txsd->m = m0; 4194 txsd->desc_used = ndesc; 4195 4196 return (ndesc); 4197 } 4198 4199 /* 4200 * Write a txpkt WR for this packet to the hardware descriptors, update the 4201 * software descriptor, and advance the pidx. It is guaranteed that enough 4202 * descriptors are available. 4203 * 4204 * The return value is the # of hardware descriptors used. 4205 */ 4206 static u_int 4207 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr, 4208 struct mbuf *m0, u_int available) 4209 { 4210 struct sge_eq *eq = &txq->eq; 4211 struct tx_sdesc *txsd; 4212 struct cpl_tx_pkt_core *cpl; 4213 uint32_t ctrl; /* used in many unrelated places */ 4214 uint64_t ctrl1; 4215 int len16, ndesc, pktlen, nsegs; 4216 caddr_t dst; 4217 4218 TXQ_LOCK_ASSERT_OWNED(txq); 4219 M_ASSERTPKTHDR(m0); 4220 MPASS(available > 0 && available < eq->sidx); 4221 4222 len16 = mbuf_len16(m0); 4223 nsegs = mbuf_nsegs(m0); 4224 pktlen = m0->m_pkthdr.len; 4225 ctrl = sizeof(struct cpl_tx_pkt_core); 4226 if (needs_tso(m0)) 4227 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 4228 else if (pktlen <= imm_payload(2) && available >= 2) { 4229 /* Immediate data. Recalculate len16 and set nsegs to 0. */ 4230 ctrl += pktlen; 4231 len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) + 4232 sizeof(struct cpl_tx_pkt_core) + pktlen, 16); 4233 nsegs = 0; 4234 } 4235 ndesc = howmany(len16, EQ_ESIZE / 16); 4236 MPASS(ndesc <= available); 4237 4238 /* Firmware work request header */ 4239 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4240 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | 4241 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 4242 4243 ctrl = V_FW_WR_LEN16(len16); 4244 wr->equiq_to_len16 = htobe32(ctrl); 4245 wr->r3 = 0; 4246 4247 if (needs_tso(m0)) { 4248 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 4249 4250 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 4251 m0->m_pkthdr.l4hlen > 0, 4252 ("%s: mbuf %p needs TSO but missing header lengths", 4253 __func__, m0)); 4254 4255 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 4256 F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) 4257 | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 4258 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 4259 ctrl |= V_LSO_ETHHDR_LEN(1); 4260 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 4261 ctrl |= F_LSO_IPV6; 4262 4263 lso->lso_ctrl = htobe32(ctrl); 4264 lso->ipid_ofst = htobe16(0); 4265 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 4266 lso->seqno_offset = htobe32(0); 4267 lso->len = htobe32(pktlen); 4268 4269 cpl = (void *)(lso + 1); 4270 4271 txq->tso_wrs++; 4272 } else 4273 cpl = (void *)(wr + 1); 4274 4275 /* Checksum offload */ 4276 ctrl1 = 0; 4277 if (needs_l3_csum(m0) == 0) 4278 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4279 if (needs_l4_csum(m0) == 0) 4280 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4281 if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4282 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4283 txq->txcsum++; /* some hardware assistance provided */ 4284 4285 /* VLAN tag insertion */ 4286 if (needs_vlan_insertion(m0)) { 4287 ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 4288 txq->vlan_insertion++; 4289 } 4290 4291 /* CPL header */ 4292 cpl->ctrl0 = txq->cpl_ctrl0; 4293 cpl->pack = 0; 4294 cpl->len = htobe16(pktlen); 4295 cpl->ctrl1 = htobe64(ctrl1); 4296 4297 /* SGL */ 4298 dst = (void *)(cpl + 1); 4299 if (nsegs > 0) { 4300 4301 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); 4302 txq->sgl_wrs++; 4303 } else { 4304 struct mbuf *m; 4305 4306 for (m = m0; m != NULL; m = m->m_next) { 4307 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); 4308 #ifdef INVARIANTS 4309 pktlen -= m->m_len; 4310 #endif 4311 } 4312 #ifdef INVARIANTS 4313 KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen)); 4314 #endif 4315 txq->imm_wrs++; 4316 } 4317 4318 txq->txpkt_wrs++; 4319 4320 txsd = &txq->sdesc[eq->pidx]; 4321 txsd->m = m0; 4322 txsd->desc_used = ndesc; 4323 4324 return (ndesc); 4325 } 4326 4327 static int 4328 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available) 4329 { 4330 u_int needed, nsegs1, nsegs2, l1, l2; 4331 4332 if (cannot_use_txpkts(m) || cannot_use_txpkts(n)) 4333 return (1); 4334 4335 nsegs1 = mbuf_nsegs(m); 4336 nsegs2 = mbuf_nsegs(n); 4337 if (nsegs1 + nsegs2 == 2) { 4338 txp->wr_type = 1; 4339 l1 = l2 = txpkts1_len16(); 4340 } else { 4341 txp->wr_type = 0; 4342 l1 = txpkts0_len16(nsegs1); 4343 l2 = txpkts0_len16(nsegs2); 4344 } 4345 txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2; 4346 needed = howmany(txp->len16, EQ_ESIZE / 16); 4347 if (needed > SGE_MAX_WR_NDESC || needed > available) 4348 return (1); 4349 4350 txp->plen = m->m_pkthdr.len + n->m_pkthdr.len; 4351 if (txp->plen > 65535) 4352 return (1); 4353 4354 txp->npkt = 2; 4355 set_mbuf_len16(m, l1); 4356 set_mbuf_len16(n, l2); 4357 4358 return (0); 4359 } 4360 4361 static int 4362 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available) 4363 { 4364 u_int plen, len16, needed, nsegs; 4365 4366 MPASS(txp->wr_type == 0 || txp->wr_type == 1); 4367 4368 nsegs = mbuf_nsegs(m); 4369 if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1)) 4370 return (1); 4371 4372 plen = txp->plen + m->m_pkthdr.len; 4373 if (plen > 65535) 4374 return (1); 4375 4376 if (txp->wr_type == 0) 4377 len16 = txpkts0_len16(nsegs); 4378 else 4379 len16 = txpkts1_len16(); 4380 needed = howmany(txp->len16 + len16, EQ_ESIZE / 16); 4381 if (needed > SGE_MAX_WR_NDESC || needed > available) 4382 return (1); 4383 4384 txp->npkt++; 4385 txp->plen = plen; 4386 txp->len16 += len16; 4387 set_mbuf_len16(m, len16); 4388 4389 return (0); 4390 } 4391 4392 /* 4393 * Write a txpkts WR for the packets in txp to the hardware descriptors, update 4394 * the software descriptor, and advance the pidx. It is guaranteed that enough 4395 * descriptors are available. 4396 * 4397 * The return value is the # of hardware descriptors used. 4398 */ 4399 static u_int 4400 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr, 4401 struct mbuf *m0, const struct txpkts *txp, u_int available) 4402 { 4403 struct sge_eq *eq = &txq->eq; 4404 struct tx_sdesc *txsd; 4405 struct cpl_tx_pkt_core *cpl; 4406 uint32_t ctrl; 4407 uint64_t ctrl1; 4408 int ndesc, checkwrap; 4409 struct mbuf *m; 4410 void *flitp; 4411 4412 TXQ_LOCK_ASSERT_OWNED(txq); 4413 MPASS(txp->npkt > 0); 4414 MPASS(txp->plen < 65536); 4415 MPASS(m0 != NULL); 4416 MPASS(m0->m_nextpkt != NULL); 4417 MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16)); 4418 MPASS(available > 0 && available < eq->sidx); 4419 4420 ndesc = howmany(txp->len16, EQ_ESIZE / 16); 4421 MPASS(ndesc <= available); 4422 4423 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4424 wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)); 4425 ctrl = V_FW_WR_LEN16(txp->len16); 4426 wr->equiq_to_len16 = htobe32(ctrl); 4427 wr->plen = htobe16(txp->plen); 4428 wr->npkt = txp->npkt; 4429 wr->r3 = 0; 4430 wr->type = txp->wr_type; 4431 flitp = wr + 1; 4432 4433 /* 4434 * At this point we are 16B into a hardware descriptor. If checkwrap is 4435 * set then we know the WR is going to wrap around somewhere. We'll 4436 * check for that at appropriate points. 4437 */ 4438 checkwrap = eq->sidx - ndesc < eq->pidx; 4439 for (m = m0; m != NULL; m = m->m_nextpkt) { 4440 if (txp->wr_type == 0) { 4441 struct ulp_txpkt *ulpmc; 4442 struct ulptx_idata *ulpsc; 4443 4444 /* ULP master command */ 4445 ulpmc = flitp; 4446 ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) | 4447 V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid)); 4448 ulpmc->len = htobe32(mbuf_len16(m)); 4449 4450 /* ULP subcommand */ 4451 ulpsc = (void *)(ulpmc + 1); 4452 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) | 4453 F_ULP_TX_SC_MORE); 4454 ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); 4455 4456 cpl = (void *)(ulpsc + 1); 4457 if (checkwrap && 4458 (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx]) 4459 cpl = (void *)&eq->desc[0]; 4460 } else { 4461 cpl = flitp; 4462 } 4463 4464 /* Checksum offload */ 4465 ctrl1 = 0; 4466 if (needs_l3_csum(m) == 0) 4467 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4468 if (needs_l4_csum(m) == 0) 4469 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4470 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4471 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4472 txq->txcsum++; /* some hardware assistance provided */ 4473 4474 /* VLAN tag insertion */ 4475 if (needs_vlan_insertion(m)) { 4476 ctrl1 |= F_TXPKT_VLAN_VLD | 4477 V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); 4478 txq->vlan_insertion++; 4479 } 4480 4481 /* CPL header */ 4482 cpl->ctrl0 = txq->cpl_ctrl0; 4483 cpl->pack = 0; 4484 cpl->len = htobe16(m->m_pkthdr.len); 4485 cpl->ctrl1 = htobe64(ctrl1); 4486 4487 flitp = cpl + 1; 4488 if (checkwrap && 4489 (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx]) 4490 flitp = (void *)&eq->desc[0]; 4491 4492 write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap); 4493 4494 } 4495 4496 if (txp->wr_type == 0) { 4497 txq->txpkts0_pkts += txp->npkt; 4498 txq->txpkts0_wrs++; 4499 } else { 4500 txq->txpkts1_pkts += txp->npkt; 4501 txq->txpkts1_wrs++; 4502 } 4503 4504 txsd = &txq->sdesc[eq->pidx]; 4505 txsd->m = m0; 4506 txsd->desc_used = ndesc; 4507 4508 return (ndesc); 4509 } 4510 4511 /* 4512 * If the SGL ends on an address that is not 16 byte aligned, this function will 4513 * add a 0 filled flit at the end. 4514 */ 4515 static void 4516 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap) 4517 { 4518 struct sge_eq *eq = &txq->eq; 4519 struct sglist *gl = txq->gl; 4520 struct sglist_seg *seg; 4521 __be64 *flitp, *wrap; 4522 struct ulptx_sgl *usgl; 4523 int i, nflits, nsegs; 4524 4525 KASSERT(((uintptr_t)(*to) & 0xf) == 0, 4526 ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); 4527 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 4528 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 4529 4530 get_pkt_gl(m, gl); 4531 nsegs = gl->sg_nseg; 4532 MPASS(nsegs > 0); 4533 4534 nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2; 4535 flitp = (__be64 *)(*to); 4536 wrap = (__be64 *)(&eq->desc[eq->sidx]); 4537 seg = &gl->sg_segs[0]; 4538 usgl = (void *)flitp; 4539 4540 /* 4541 * We start at a 16 byte boundary somewhere inside the tx descriptor 4542 * ring, so we're at least 16 bytes away from the status page. There is 4543 * no chance of a wrap around in the middle of usgl (which is 16 bytes). 4544 */ 4545 4546 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 4547 V_ULPTX_NSGE(nsegs)); 4548 usgl->len0 = htobe32(seg->ss_len); 4549 usgl->addr0 = htobe64(seg->ss_paddr); 4550 seg++; 4551 4552 if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) { 4553 4554 /* Won't wrap around at all */ 4555 4556 for (i = 0; i < nsegs - 1; i++, seg++) { 4557 usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len); 4558 usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr); 4559 } 4560 if (i & 1) 4561 usgl->sge[i / 2].len[1] = htobe32(0); 4562 flitp += nflits; 4563 } else { 4564 4565 /* Will wrap somewhere in the rest of the SGL */ 4566 4567 /* 2 flits already written, write the rest flit by flit */ 4568 flitp = (void *)(usgl + 1); 4569 for (i = 0; i < nflits - 2; i++) { 4570 if (flitp == wrap) 4571 flitp = (void *)eq->desc; 4572 *flitp++ = get_flit(seg, nsegs - 1, i); 4573 } 4574 } 4575 4576 if (nflits & 1) { 4577 MPASS(((uintptr_t)flitp) & 0xf); 4578 *flitp++ = 0; 4579 } 4580 4581 MPASS((((uintptr_t)flitp) & 0xf) == 0); 4582 if (__predict_false(flitp == wrap)) 4583 *to = (void *)eq->desc; 4584 else 4585 *to = (void *)flitp; 4586 } 4587 4588 static inline void 4589 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) 4590 { 4591 4592 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 4593 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 4594 4595 if (__predict_true((uintptr_t)(*to) + len <= 4596 (uintptr_t)&eq->desc[eq->sidx])) { 4597 bcopy(from, *to, len); 4598 (*to) += len; 4599 } else { 4600 int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to); 4601 4602 bcopy(from, *to, portion); 4603 from += portion; 4604 portion = len - portion; /* remaining */ 4605 bcopy(from, (void *)eq->desc, portion); 4606 (*to) = (caddr_t)eq->desc + portion; 4607 } 4608 } 4609 4610 static inline void 4611 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n) 4612 { 4613 u_int db; 4614 4615 MPASS(n > 0); 4616 4617 db = eq->doorbells; 4618 if (n > 1) 4619 clrbit(&db, DOORBELL_WCWR); 4620 wmb(); 4621 4622 switch (ffs(db) - 1) { 4623 case DOORBELL_UDB: 4624 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 4625 break; 4626 4627 case DOORBELL_WCWR: { 4628 volatile uint64_t *dst, *src; 4629 int i; 4630 4631 /* 4632 * Queues whose 128B doorbell segment fits in the page do not 4633 * use relative qid (udb_qid is always 0). Only queues with 4634 * doorbell segments can do WCWR. 4635 */ 4636 KASSERT(eq->udb_qid == 0 && n == 1, 4637 ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p", 4638 __func__, eq->doorbells, n, eq->dbidx, eq)); 4639 4640 dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET - 4641 UDBS_DB_OFFSET); 4642 i = eq->dbidx; 4643 src = (void *)&eq->desc[i]; 4644 while (src != (void *)&eq->desc[i + 1]) 4645 *dst++ = *src++; 4646 wmb(); 4647 break; 4648 } 4649 4650 case DOORBELL_UDBWC: 4651 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 4652 wmb(); 4653 break; 4654 4655 case DOORBELL_KDB: 4656 t4_write_reg(sc, sc->sge_kdoorbell_reg, 4657 V_QID(eq->cntxt_id) | V_PIDX(n)); 4658 break; 4659 } 4660 4661 IDXINCR(eq->dbidx, n, eq->sidx); 4662 } 4663 4664 static inline u_int 4665 reclaimable_tx_desc(struct sge_eq *eq) 4666 { 4667 uint16_t hw_cidx; 4668 4669 hw_cidx = read_hw_cidx(eq); 4670 return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx)); 4671 } 4672 4673 static inline u_int 4674 total_available_tx_desc(struct sge_eq *eq) 4675 { 4676 uint16_t hw_cidx, pidx; 4677 4678 hw_cidx = read_hw_cidx(eq); 4679 pidx = eq->pidx; 4680 4681 if (pidx == hw_cidx) 4682 return (eq->sidx - 1); 4683 else 4684 return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1); 4685 } 4686 4687 static inline uint16_t 4688 read_hw_cidx(struct sge_eq *eq) 4689 { 4690 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 4691 uint16_t cidx = spg->cidx; /* stable snapshot */ 4692 4693 return (be16toh(cidx)); 4694 } 4695 4696 /* 4697 * Reclaim 'n' descriptors approximately. 4698 */ 4699 static u_int 4700 reclaim_tx_descs(struct sge_txq *txq, u_int n) 4701 { 4702 struct tx_sdesc *txsd; 4703 struct sge_eq *eq = &txq->eq; 4704 u_int can_reclaim, reclaimed; 4705 4706 TXQ_LOCK_ASSERT_OWNED(txq); 4707 MPASS(n > 0); 4708 4709 reclaimed = 0; 4710 can_reclaim = reclaimable_tx_desc(eq); 4711 while (can_reclaim && reclaimed < n) { 4712 int ndesc; 4713 struct mbuf *m, *nextpkt; 4714 4715 txsd = &txq->sdesc[eq->cidx]; 4716 ndesc = txsd->desc_used; 4717 4718 /* Firmware doesn't return "partial" credits. */ 4719 KASSERT(can_reclaim >= ndesc, 4720 ("%s: unexpected number of credits: %d, %d", 4721 __func__, can_reclaim, ndesc)); 4722 4723 for (m = txsd->m; m != NULL; m = nextpkt) { 4724 nextpkt = m->m_nextpkt; 4725 m->m_nextpkt = NULL; 4726 m_freem(m); 4727 } 4728 reclaimed += ndesc; 4729 can_reclaim -= ndesc; 4730 IDXINCR(eq->cidx, ndesc, eq->sidx); 4731 } 4732 4733 return (reclaimed); 4734 } 4735 4736 static void 4737 tx_reclaim(void *arg, int n) 4738 { 4739 struct sge_txq *txq = arg; 4740 struct sge_eq *eq = &txq->eq; 4741 4742 do { 4743 if (TXQ_TRYLOCK(txq) == 0) 4744 break; 4745 n = reclaim_tx_descs(txq, 32); 4746 if (eq->cidx == eq->pidx) 4747 eq->equeqidx = eq->pidx; 4748 TXQ_UNLOCK(txq); 4749 } while (n > 0); 4750 } 4751 4752 static __be64 4753 get_flit(struct sglist_seg *segs, int nsegs, int idx) 4754 { 4755 int i = (idx / 3) * 2; 4756 4757 switch (idx % 3) { 4758 case 0: { 4759 uint64_t rc; 4760 4761 rc = (uint64_t)segs[i].ss_len << 32; 4762 if (i + 1 < nsegs) 4763 rc |= (uint64_t)(segs[i + 1].ss_len); 4764 4765 return (htobe64(rc)); 4766 } 4767 case 1: 4768 return (htobe64(segs[i].ss_paddr)); 4769 case 2: 4770 return (htobe64(segs[i + 1].ss_paddr)); 4771 } 4772 4773 return (0); 4774 } 4775 4776 static void 4777 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp) 4778 { 4779 int8_t zidx, hwidx, idx; 4780 uint16_t region1, region3; 4781 int spare, spare_needed, n; 4782 struct sw_zone_info *swz; 4783 struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0]; 4784 4785 /* 4786 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize 4787 * large enough for the max payload and cluster metadata. Otherwise 4788 * settle for the largest bufsize that leaves enough room in the cluster 4789 * for metadata. 4790 * 4791 * Without buffer packing: Look for the smallest zone which has a 4792 * bufsize large enough for the max payload. Settle for the largest 4793 * bufsize available if there's nothing big enough for max payload. 4794 */ 4795 spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0; 4796 swz = &sc->sge.sw_zone_info[0]; 4797 hwidx = -1; 4798 for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) { 4799 if (swz->size > largest_rx_cluster) { 4800 if (__predict_true(hwidx != -1)) 4801 break; 4802 4803 /* 4804 * This is a misconfiguration. largest_rx_cluster is 4805 * preventing us from finding a refill source. See 4806 * dev.t5nex.<n>.buffer_sizes to figure out why. 4807 */ 4808 device_printf(sc->dev, "largest_rx_cluster=%u leaves no" 4809 " refill source for fl %p (dma %u). Ignored.\n", 4810 largest_rx_cluster, fl, maxp); 4811 } 4812 for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) { 4813 hwb = &hwb_list[idx]; 4814 spare = swz->size - hwb->size; 4815 if (spare < spare_needed) 4816 continue; 4817 4818 hwidx = idx; /* best option so far */ 4819 if (hwb->size >= maxp) { 4820 4821 if ((fl->flags & FL_BUF_PACKING) == 0) 4822 goto done; /* stop looking (not packing) */ 4823 4824 if (swz->size >= safest_rx_cluster) 4825 goto done; /* stop looking (packing) */ 4826 } 4827 break; /* keep looking, next zone */ 4828 } 4829 } 4830 done: 4831 /* A usable hwidx has been located. */ 4832 MPASS(hwidx != -1); 4833 hwb = &hwb_list[hwidx]; 4834 zidx = hwb->zidx; 4835 swz = &sc->sge.sw_zone_info[zidx]; 4836 region1 = 0; 4837 region3 = swz->size - hwb->size; 4838 4839 /* 4840 * Stay within this zone and see if there is a better match when mbuf 4841 * inlining is allowed. Remember that the hwidx's are sorted in 4842 * decreasing order of size (so in increasing order of spare area). 4843 */ 4844 for (idx = hwidx; idx != -1; idx = hwb->next) { 4845 hwb = &hwb_list[idx]; 4846 spare = swz->size - hwb->size; 4847 4848 if (allow_mbufs_in_cluster == 0 || hwb->size < maxp) 4849 break; 4850 4851 /* 4852 * Do not inline mbufs if doing so would violate the pad/pack 4853 * boundary alignment requirement. 4854 */ 4855 if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0) 4856 continue; 4857 if (fl->flags & FL_BUF_PACKING && 4858 (MSIZE % sc->params.sge.pack_boundary) != 0) 4859 continue; 4860 4861 if (spare < CL_METADATA_SIZE + MSIZE) 4862 continue; 4863 n = (spare - CL_METADATA_SIZE) / MSIZE; 4864 if (n > howmany(hwb->size, maxp)) 4865 break; 4866 4867 hwidx = idx; 4868 if (fl->flags & FL_BUF_PACKING) { 4869 region1 = n * MSIZE; 4870 region3 = spare - region1; 4871 } else { 4872 region1 = MSIZE; 4873 region3 = spare - region1; 4874 break; 4875 } 4876 } 4877 4878 KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES, 4879 ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp)); 4880 KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES, 4881 ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp)); 4882 KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 == 4883 sc->sge.sw_zone_info[zidx].size, 4884 ("%s: bad buffer layout for fl %p, maxp %d. " 4885 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4886 sc->sge.sw_zone_info[zidx].size, region1, 4887 sc->sge.hw_buf_info[hwidx].size, region3)); 4888 if (fl->flags & FL_BUF_PACKING || region1 > 0) { 4889 KASSERT(region3 >= CL_METADATA_SIZE, 4890 ("%s: no room for metadata. fl %p, maxp %d; " 4891 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4892 sc->sge.sw_zone_info[zidx].size, region1, 4893 sc->sge.hw_buf_info[hwidx].size, region3)); 4894 KASSERT(region1 % MSIZE == 0, 4895 ("%s: bad mbuf region for fl %p, maxp %d. " 4896 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4897 sc->sge.sw_zone_info[zidx].size, region1, 4898 sc->sge.hw_buf_info[hwidx].size, region3)); 4899 } 4900 4901 fl->cll_def.zidx = zidx; 4902 fl->cll_def.hwidx = hwidx; 4903 fl->cll_def.region1 = region1; 4904 fl->cll_def.region3 = region3; 4905 } 4906 4907 static void 4908 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl) 4909 { 4910 struct sge *s = &sc->sge; 4911 struct hw_buf_info *hwb; 4912 struct sw_zone_info *swz; 4913 int spare; 4914 int8_t hwidx; 4915 4916 if (fl->flags & FL_BUF_PACKING) 4917 hwidx = s->safe_hwidx2; /* with room for metadata */ 4918 else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) { 4919 hwidx = s->safe_hwidx2; 4920 hwb = &s->hw_buf_info[hwidx]; 4921 swz = &s->sw_zone_info[hwb->zidx]; 4922 spare = swz->size - hwb->size; 4923 4924 /* no good if there isn't room for an mbuf as well */ 4925 if (spare < CL_METADATA_SIZE + MSIZE) 4926 hwidx = s->safe_hwidx1; 4927 } else 4928 hwidx = s->safe_hwidx1; 4929 4930 if (hwidx == -1) { 4931 /* No fallback source */ 4932 fl->cll_alt.hwidx = -1; 4933 fl->cll_alt.zidx = -1; 4934 4935 return; 4936 } 4937 4938 hwb = &s->hw_buf_info[hwidx]; 4939 swz = &s->sw_zone_info[hwb->zidx]; 4940 spare = swz->size - hwb->size; 4941 fl->cll_alt.hwidx = hwidx; 4942 fl->cll_alt.zidx = hwb->zidx; 4943 if (allow_mbufs_in_cluster && 4944 (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0)) 4945 fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE; 4946 else 4947 fl->cll_alt.region1 = 0; 4948 fl->cll_alt.region3 = spare - fl->cll_alt.region1; 4949 } 4950 4951 static void 4952 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) 4953 { 4954 mtx_lock(&sc->sfl_lock); 4955 FL_LOCK(fl); 4956 if ((fl->flags & FL_DOOMED) == 0) { 4957 fl->flags |= FL_STARVING; 4958 TAILQ_INSERT_TAIL(&sc->sfl, fl, link); 4959 callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc); 4960 } 4961 FL_UNLOCK(fl); 4962 mtx_unlock(&sc->sfl_lock); 4963 } 4964 4965 static void 4966 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq) 4967 { 4968 struct sge_wrq *wrq = (void *)eq; 4969 4970 atomic_readandclear_int(&eq->equiq); 4971 taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task); 4972 } 4973 4974 static void 4975 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq) 4976 { 4977 struct sge_txq *txq = (void *)eq; 4978 4979 MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH); 4980 4981 atomic_readandclear_int(&eq->equiq); 4982 mp_ring_check_drainage(txq->r, 0); 4983 taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task); 4984 } 4985 4986 static int 4987 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, 4988 struct mbuf *m) 4989 { 4990 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); 4991 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); 4992 struct adapter *sc = iq->adapter; 4993 struct sge *s = &sc->sge; 4994 struct sge_eq *eq; 4995 static void (*h[])(struct adapter *, struct sge_eq *) = {NULL, 4996 &handle_wrq_egr_update, &handle_eth_egr_update, 4997 &handle_wrq_egr_update}; 4998 4999 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 5000 rss->opcode)); 5001 5002 eq = s->eqmap[qid - s->eq_start - s->eq_base]; 5003 (*h[eq->flags & EQ_TYPEMASK])(sc, eq); 5004 5005 return (0); 5006 } 5007 5008 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */ 5009 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \ 5010 offsetof(struct cpl_fw6_msg, data)); 5011 5012 static int 5013 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 5014 { 5015 struct adapter *sc = iq->adapter; 5016 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); 5017 5018 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 5019 rss->opcode)); 5020 5021 if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) { 5022 const struct rss_header *rss2; 5023 5024 rss2 = (const struct rss_header *)&cpl->data[0]; 5025 return (t4_cpl_handler[rss2->opcode](iq, rss2, m)); 5026 } 5027 5028 return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0])); 5029 } 5030 5031 /** 5032 * t4_handle_wrerr_rpl - process a FW work request error message 5033 * @adap: the adapter 5034 * @rpl: start of the FW message 5035 */ 5036 static int 5037 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl) 5038 { 5039 u8 opcode = *(const u8 *)rpl; 5040 const struct fw_error_cmd *e = (const void *)rpl; 5041 unsigned int i; 5042 5043 if (opcode != FW_ERROR_CMD) { 5044 log(LOG_ERR, 5045 "%s: Received WRERR_RPL message with opcode %#x\n", 5046 device_get_nameunit(adap->dev), opcode); 5047 return (EINVAL); 5048 } 5049 log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev), 5050 G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" : 5051 "non-fatal"); 5052 switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) { 5053 case FW_ERROR_TYPE_EXCEPTION: 5054 log(LOG_ERR, "exception info:\n"); 5055 for (i = 0; i < nitems(e->u.exception.info); i++) 5056 log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ", 5057 be32toh(e->u.exception.info[i])); 5058 log(LOG_ERR, "\n"); 5059 break; 5060 case FW_ERROR_TYPE_HWMODULE: 5061 log(LOG_ERR, "HW module regaddr %08x regval %08x\n", 5062 be32toh(e->u.hwmodule.regaddr), 5063 be32toh(e->u.hwmodule.regval)); 5064 break; 5065 case FW_ERROR_TYPE_WR: 5066 log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n", 5067 be16toh(e->u.wr.cidx), 5068 G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)), 5069 G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)), 5070 be32toh(e->u.wr.eqid)); 5071 for (i = 0; i < nitems(e->u.wr.wrhdr); i++) 5072 log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ", 5073 e->u.wr.wrhdr[i]); 5074 log(LOG_ERR, "\n"); 5075 break; 5076 case FW_ERROR_TYPE_ACL: 5077 log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s", 5078 be16toh(e->u.acl.cidx), 5079 G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)), 5080 G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)), 5081 be32toh(e->u.acl.eqid), 5082 G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" : 5083 "MAC"); 5084 for (i = 0; i < nitems(e->u.acl.val); i++) 5085 log(LOG_ERR, " %02x", e->u.acl.val[i]); 5086 log(LOG_ERR, "\n"); 5087 break; 5088 default: 5089 log(LOG_ERR, "type %#x\n", 5090 G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))); 5091 return (EINVAL); 5092 } 5093 return (0); 5094 } 5095 5096 static int 5097 sysctl_uint16(SYSCTL_HANDLER_ARGS) 5098 { 5099 uint16_t *id = arg1; 5100 int i = *id; 5101 5102 return sysctl_handle_int(oidp, &i, 0, req); 5103 } 5104 5105 static int 5106 sysctl_bufsizes(SYSCTL_HANDLER_ARGS) 5107 { 5108 struct sge *s = arg1; 5109 struct hw_buf_info *hwb = &s->hw_buf_info[0]; 5110 struct sw_zone_info *swz = &s->sw_zone_info[0]; 5111 int i, rc; 5112 struct sbuf sb; 5113 char c; 5114 5115 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 5116 for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) { 5117 if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster) 5118 c = '*'; 5119 else 5120 c = '\0'; 5121 5122 sbuf_printf(&sb, "%u%c ", hwb->size, c); 5123 } 5124 sbuf_trim(&sb); 5125 sbuf_finish(&sb); 5126 rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 5127 sbuf_delete(&sb); 5128 return (rc); 5129 } 5130 5131 static int 5132 sysctl_tc(SYSCTL_HANDLER_ARGS) 5133 { 5134 struct vi_info *vi = arg1; 5135 struct port_info *pi; 5136 struct adapter *sc; 5137 struct sge_txq *txq; 5138 struct tx_cl_rl_params *tc; 5139 int qidx = arg2, rc, tc_idx; 5140 uint32_t fw_queue, fw_class; 5141 5142 MPASS(qidx >= 0 && qidx < vi->ntxq); 5143 pi = vi->pi; 5144 sc = pi->adapter; 5145 txq = &sc->sge.txq[vi->first_txq + qidx]; 5146 5147 tc_idx = txq->tc_idx; 5148 rc = sysctl_handle_int(oidp, &tc_idx, 0, req); 5149 if (rc != 0 || req->newptr == NULL) 5150 return (rc); 5151 5152 if (sc->flags & IS_VF) 5153 return (EPERM); 5154 5155 /* Note that -1 is legitimate input (it means unbind). */ 5156 if (tc_idx < -1 || tc_idx >= sc->chip_params->nsched_cls) 5157 return (EINVAL); 5158 5159 mtx_lock(&sc->tc_lock); 5160 if (tc_idx == txq->tc_idx) { 5161 rc = 0; /* No change, nothing to do. */ 5162 goto done; 5163 } 5164 5165 fw_queue = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 5166 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) | 5167 V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id); 5168 5169 if (tc_idx == -1) 5170 fw_class = 0xffffffff; /* Unbind. */ 5171 else { 5172 /* 5173 * Bind to a different class. 5174 */ 5175 tc = &pi->sched_params->cl_rl[tc_idx]; 5176 if (tc->flags & TX_CLRL_ERROR) { 5177 /* Previous attempt to set the cl-rl params failed. */ 5178 rc = EIO; 5179 goto done; 5180 } else { 5181 /* 5182 * Ok to proceed. Place a reference on the new class 5183 * while still holding on to the reference on the 5184 * previous class, if any. 5185 */ 5186 fw_class = tc_idx; 5187 tc->refcount++; 5188 } 5189 } 5190 mtx_unlock(&sc->tc_lock); 5191 5192 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4stc"); 5193 if (rc) 5194 return (rc); 5195 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, &fw_class); 5196 end_synchronized_op(sc, 0); 5197 5198 mtx_lock(&sc->tc_lock); 5199 if (rc == 0) { 5200 if (txq->tc_idx != -1) { 5201 tc = &pi->sched_params->cl_rl[txq->tc_idx]; 5202 MPASS(tc->refcount > 0); 5203 tc->refcount--; 5204 } 5205 txq->tc_idx = tc_idx; 5206 } else if (tc_idx != -1) { 5207 tc = &pi->sched_params->cl_rl[tc_idx]; 5208 MPASS(tc->refcount > 0); 5209 tc->refcount--; 5210 } 5211 done: 5212 mtx_unlock(&sc->tc_lock); 5213 return (rc); 5214 } 5215