xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 2a2234c0f41da33b8cfc938e46b54a8234b64135)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 
36 #include <sys/types.h>
37 #include <sys/eventhandler.h>
38 #include <sys/mbuf.h>
39 #include <sys/socket.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/queue.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 #include <sys/time.h>
46 #include <sys/sglist.h>
47 #include <sys/sysctl.h>
48 #include <sys/smp.h>
49 #include <sys/counter.h>
50 #include <net/bpf.h>
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_vlan_var.h>
54 #include <netinet/in.h>
55 #include <netinet/ip.h>
56 #include <netinet/ip6.h>
57 #include <netinet/tcp.h>
58 #include <machine/in_cksum.h>
59 #include <machine/md_var.h>
60 #include <vm/vm.h>
61 #include <vm/pmap.h>
62 #ifdef DEV_NETMAP
63 #include <machine/bus.h>
64 #include <sys/selinfo.h>
65 #include <net/if_var.h>
66 #include <net/netmap.h>
67 #include <dev/netmap/netmap_kern.h>
68 #endif
69 
70 #include "common/common.h"
71 #include "common/t4_regs.h"
72 #include "common/t4_regs_values.h"
73 #include "common/t4_msg.h"
74 #include "t4_l2t.h"
75 #include "t4_mp_ring.h"
76 
77 #ifdef T4_PKT_TIMESTAMP
78 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
79 #else
80 #define RX_COPY_THRESHOLD MINCLSIZE
81 #endif
82 
83 /*
84  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
85  * 0-7 are valid values.
86  */
87 static int fl_pktshift = 2;
88 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
89 
90 /*
91  * Pad ethernet payload up to this boundary.
92  * -1: driver should figure out a good value.
93  *  0: disable padding.
94  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
95  */
96 int fl_pad = -1;
97 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
98 
99 /*
100  * Status page length.
101  * -1: driver should figure out a good value.
102  *  64 or 128 are the only other valid values.
103  */
104 static int spg_len = -1;
105 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
106 
107 /*
108  * Congestion drops.
109  * -1: no congestion feedback (not recommended).
110  *  0: backpressure the channel instead of dropping packets right away.
111  *  1: no backpressure, drop packets for the congested queue immediately.
112  */
113 static int cong_drop = 0;
114 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
115 
116 /*
117  * Deliver multiple frames in the same free list buffer if they fit.
118  * -1: let the driver decide whether to enable buffer packing or not.
119  *  0: disable buffer packing.
120  *  1: enable buffer packing.
121  */
122 static int buffer_packing = -1;
123 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
124 
125 /*
126  * Start next frame in a packed buffer at this boundary.
127  * -1: driver should figure out a good value.
128  * T4: driver will ignore this and use the same value as fl_pad above.
129  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
130  */
131 static int fl_pack = -1;
132 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
133 
134 /*
135  * Allow the driver to create mbuf(s) in a cluster allocated for rx.
136  * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
137  * 1: ok to create mbuf(s) within a cluster if there is room.
138  */
139 static int allow_mbufs_in_cluster = 1;
140 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
141 
142 /*
143  * Largest rx cluster size that the driver is allowed to allocate.
144  */
145 static int largest_rx_cluster = MJUM16BYTES;
146 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
147 
148 /*
149  * Size of cluster allocation that's most likely to succeed.  The driver will
150  * fall back to this size if it fails to allocate clusters larger than this.
151  */
152 static int safest_rx_cluster = PAGE_SIZE;
153 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
154 
155 /*
156  * The interrupt holdoff timers are multiplied by this value on T6+.
157  * 1 and 3-17 (both inclusive) are legal values.
158  */
159 static int tscale = 1;
160 TUNABLE_INT("hw.cxgbe.tscale", &tscale);
161 
162 /*
163  * Number of LRO entries in the lro_ctrl structure per rx queue.
164  */
165 static int lro_entries = TCP_LRO_ENTRIES;
166 TUNABLE_INT("hw.cxgbe.lro_entries", &lro_entries);
167 
168 /*
169  * This enables presorting of frames before they're fed into tcp_lro_rx.
170  */
171 static int lro_mbufs = 0;
172 TUNABLE_INT("hw.cxgbe.lro_mbufs", &lro_mbufs);
173 
174 struct txpkts {
175 	u_int wr_type;		/* type 0 or type 1 */
176 	u_int npkt;		/* # of packets in this work request */
177 	u_int plen;		/* total payload (sum of all packets) */
178 	u_int len16;		/* # of 16B pieces used by this work request */
179 };
180 
181 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
182 struct sgl {
183 	struct sglist sg;
184 	struct sglist_seg seg[TX_SGL_SEGS];
185 };
186 
187 static int service_iq(struct sge_iq *, int);
188 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
189 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
190 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
191 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
192 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
193     uint16_t, char *);
194 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
195     bus_addr_t *, void **);
196 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
197     void *);
198 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
199     int, int);
200 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
201 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
202     struct sge_iq *);
203 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
204     struct sysctl_oid *, struct sge_fl *);
205 static int alloc_fwq(struct adapter *);
206 static int free_fwq(struct adapter *);
207 static int alloc_mgmtq(struct adapter *);
208 static int free_mgmtq(struct adapter *);
209 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
210     struct sysctl_oid *);
211 static int free_rxq(struct vi_info *, struct sge_rxq *);
212 #ifdef TCP_OFFLOAD
213 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
214     struct sysctl_oid *);
215 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
216 #endif
217 #ifdef DEV_NETMAP
218 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
219     struct sysctl_oid *);
220 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
221 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
222     struct sysctl_oid *);
223 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
224 #endif
225 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
226 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
227 #ifdef TCP_OFFLOAD
228 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
229 #endif
230 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
231 static int free_eq(struct adapter *, struct sge_eq *);
232 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
233     struct sysctl_oid *);
234 static int free_wrq(struct adapter *, struct sge_wrq *);
235 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
236     struct sysctl_oid *);
237 static int free_txq(struct vi_info *, struct sge_txq *);
238 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
239 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
240 static int refill_fl(struct adapter *, struct sge_fl *, int);
241 static void refill_sfl(void *);
242 static int alloc_fl_sdesc(struct sge_fl *);
243 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
244 static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
245 static void find_safe_refill_source(struct adapter *, struct sge_fl *);
246 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
247 
248 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
249 static inline u_int txpkt_len16(u_int, u_int);
250 static inline u_int txpkt_vm_len16(u_int, u_int);
251 static inline u_int txpkts0_len16(u_int);
252 static inline u_int txpkts1_len16(void);
253 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
254     struct mbuf *, u_int);
255 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
256     struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int);
257 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
258 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
259 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
260     struct mbuf *, const struct txpkts *, u_int);
261 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
262 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
263 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
264 static inline uint16_t read_hw_cidx(struct sge_eq *);
265 static inline u_int reclaimable_tx_desc(struct sge_eq *);
266 static inline u_int total_available_tx_desc(struct sge_eq *);
267 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
268 static void tx_reclaim(void *, int);
269 static __be64 get_flit(struct sglist_seg *, int, int);
270 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
271     struct mbuf *);
272 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
273     struct mbuf *);
274 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
275 static void wrq_tx_drain(void *, int);
276 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
277 
278 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
279 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
280 static int sysctl_tc(SYSCTL_HANDLER_ARGS);
281 
282 static counter_u64_t extfree_refs;
283 static counter_u64_t extfree_rels;
284 
285 an_handler_t t4_an_handler;
286 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
287 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
288 
289 
290 static int
291 an_not_handled(struct sge_iq *iq, const struct rsp_ctrl *ctrl)
292 {
293 
294 #ifdef INVARIANTS
295 	panic("%s: async notification on iq %p (ctrl %p)", __func__, iq, ctrl);
296 #else
297 	log(LOG_ERR, "%s: async notification on iq %p (ctrl %p)\n",
298 	    __func__, iq, ctrl);
299 #endif
300 	return (EDOOFUS);
301 }
302 
303 int
304 t4_register_an_handler(an_handler_t h)
305 {
306 	uintptr_t *loc, new;
307 
308 	new = h ? (uintptr_t)h : (uintptr_t)an_not_handled;
309 	loc = (uintptr_t *) &t4_an_handler;
310 	atomic_store_rel_ptr(loc, new);
311 
312 	return (0);
313 }
314 
315 static int
316 fw_msg_not_handled(struct adapter *sc, const __be64 *rpl)
317 {
318 	const struct cpl_fw6_msg *cpl =
319 	    __containerof(rpl, struct cpl_fw6_msg, data[0]);
320 
321 #ifdef INVARIANTS
322 	panic("%s: fw_msg type %d", __func__, cpl->type);
323 #else
324 	log(LOG_ERR, "%s: fw_msg type %d\n", __func__, cpl->type);
325 #endif
326 	return (EDOOFUS);
327 }
328 
329 int
330 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
331 {
332 	uintptr_t *loc, new;
333 
334 	if (type >= nitems(t4_fw_msg_handler))
335 		return (EINVAL);
336 
337 	/*
338 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
339 	 * handler dispatch table.  Reject any attempt to install a handler for
340 	 * this subtype.
341 	 */
342 	if (type == FW_TYPE_RSSCPL || type == FW6_TYPE_RSSCPL)
343 		return (EINVAL);
344 
345 	new = h ? (uintptr_t)h : (uintptr_t)fw_msg_not_handled;
346 	loc = (uintptr_t *) &t4_fw_msg_handler[type];
347 	atomic_store_rel_ptr(loc, new);
348 
349 	return (0);
350 }
351 
352 static int
353 cpl_not_handled(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
354 {
355 
356 #ifdef INVARIANTS
357 	panic("%s: opcode 0x%02x on iq %p with payload %p",
358 	    __func__, rss->opcode, iq, m);
359 #else
360 	log(LOG_ERR, "%s: opcode 0x%02x on iq %p with payload %p\n",
361 	    __func__, rss->opcode, iq, m);
362 	m_freem(m);
363 #endif
364 	return (EDOOFUS);
365 }
366 
367 int
368 t4_register_cpl_handler(int opcode, cpl_handler_t h)
369 {
370 	uintptr_t *loc, new;
371 
372 	if (opcode >= nitems(t4_cpl_handler))
373 		return (EINVAL);
374 
375 	new = h ? (uintptr_t)h : (uintptr_t)cpl_not_handled;
376 	loc = (uintptr_t *) &t4_cpl_handler[opcode];
377 	atomic_store_rel_ptr(loc, new);
378 
379 	return (0);
380 }
381 
382 /*
383  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
384  */
385 void
386 t4_sge_modload(void)
387 {
388 	int i;
389 
390 	if (fl_pktshift < 0 || fl_pktshift > 7) {
391 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
392 		    " using 2 instead.\n", fl_pktshift);
393 		fl_pktshift = 2;
394 	}
395 
396 	if (spg_len != 64 && spg_len != 128) {
397 		int len;
398 
399 #if defined(__i386__) || defined(__amd64__)
400 		len = cpu_clflush_line_size > 64 ? 128 : 64;
401 #else
402 		len = 64;
403 #endif
404 		if (spg_len != -1) {
405 			printf("Invalid hw.cxgbe.spg_len value (%d),"
406 			    " using %d instead.\n", spg_len, len);
407 		}
408 		spg_len = len;
409 	}
410 
411 	if (cong_drop < -1 || cong_drop > 1) {
412 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
413 		    " using 0 instead.\n", cong_drop);
414 		cong_drop = 0;
415 	}
416 
417 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
418 		printf("Invalid hw.cxgbe.tscale value (%d),"
419 		    " using 1 instead.\n", tscale);
420 		tscale = 1;
421 	}
422 
423 	extfree_refs = counter_u64_alloc(M_WAITOK);
424 	extfree_rels = counter_u64_alloc(M_WAITOK);
425 	counter_u64_zero(extfree_refs);
426 	counter_u64_zero(extfree_rels);
427 
428 	t4_an_handler = an_not_handled;
429 	for (i = 0; i < nitems(t4_fw_msg_handler); i++)
430 		t4_fw_msg_handler[i] = fw_msg_not_handled;
431 	for (i = 0; i < nitems(t4_cpl_handler); i++)
432 		t4_cpl_handler[i] = cpl_not_handled;
433 
434 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
435 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
436 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
437 	t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx);
438 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
439 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
440 }
441 
442 void
443 t4_sge_modunload(void)
444 {
445 
446 	counter_u64_free(extfree_refs);
447 	counter_u64_free(extfree_rels);
448 }
449 
450 uint64_t
451 t4_sge_extfree_refs(void)
452 {
453 	uint64_t refs, rels;
454 
455 	rels = counter_u64_fetch(extfree_rels);
456 	refs = counter_u64_fetch(extfree_refs);
457 
458 	return (refs - rels);
459 }
460 
461 static inline void
462 setup_pad_and_pack_boundaries(struct adapter *sc)
463 {
464 	uint32_t v, m;
465 	int pad, pack, pad_shift;
466 
467 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
468 	    X_INGPADBOUNDARY_SHIFT;
469 	pad = fl_pad;
470 	if (fl_pad < (1 << pad_shift) ||
471 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
472 	    !powerof2(fl_pad)) {
473 		/*
474 		 * If there is any chance that we might use buffer packing and
475 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
476 		 * it to the minimum allowed in all other cases.
477 		 */
478 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
479 
480 		/*
481 		 * For fl_pad = 0 we'll still write a reasonable value to the
482 		 * register but all the freelists will opt out of padding.
483 		 * We'll complain here only if the user tried to set it to a
484 		 * value greater than 0 that was invalid.
485 		 */
486 		if (fl_pad > 0) {
487 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
488 			    " (%d), using %d instead.\n", fl_pad, pad);
489 		}
490 	}
491 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
492 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
493 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
494 
495 	if (is_t4(sc)) {
496 		if (fl_pack != -1 && fl_pack != pad) {
497 			/* Complain but carry on. */
498 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
499 			    " using %d instead.\n", fl_pack, pad);
500 		}
501 		return;
502 	}
503 
504 	pack = fl_pack;
505 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
506 	    !powerof2(fl_pack)) {
507 		pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
508 		MPASS(powerof2(pack));
509 		if (pack < 16)
510 			pack = 16;
511 		if (pack == 32)
512 			pack = 64;
513 		if (pack > 4096)
514 			pack = 4096;
515 		if (fl_pack != -1) {
516 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
517 			    " (%d), using %d instead.\n", fl_pack, pack);
518 		}
519 	}
520 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
521 	if (pack == 16)
522 		v = V_INGPACKBOUNDARY(0);
523 	else
524 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
525 
526 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
527 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
528 }
529 
530 /*
531  * adap->params.vpd.cclk must be set up before this is called.
532  */
533 void
534 t4_tweak_chip_settings(struct adapter *sc)
535 {
536 	int i;
537 	uint32_t v, m;
538 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
539 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
540 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
541 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
542 	static int sge_flbuf_sizes[] = {
543 		MCLBYTES,
544 #if MJUMPAGESIZE != MCLBYTES
545 		MJUMPAGESIZE,
546 		MJUMPAGESIZE - CL_METADATA_SIZE,
547 		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
548 #endif
549 		MJUM9BYTES,
550 		MJUM16BYTES,
551 		MCLBYTES - MSIZE - CL_METADATA_SIZE,
552 		MJUM9BYTES - CL_METADATA_SIZE,
553 		MJUM16BYTES - CL_METADATA_SIZE,
554 	};
555 
556 	KASSERT(sc->flags & MASTER_PF,
557 	    ("%s: trying to change chip settings when not master.", __func__));
558 
559 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
560 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
561 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
562 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
563 
564 	setup_pad_and_pack_boundaries(sc);
565 
566 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
567 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
568 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
569 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
570 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
571 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
572 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
573 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
574 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
575 
576 	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
577 	    ("%s: hw buffer size table too big", __func__));
578 	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
579 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
580 		    sge_flbuf_sizes[i]);
581 	}
582 
583 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
584 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
585 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
586 
587 	KASSERT(intr_timer[0] <= timer_max,
588 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
589 	    timer_max));
590 	for (i = 1; i < nitems(intr_timer); i++) {
591 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
592 		    ("%s: timers not listed in increasing order (%d)",
593 		    __func__, i));
594 
595 		while (intr_timer[i] > timer_max) {
596 			if (i == nitems(intr_timer) - 1) {
597 				intr_timer[i] = timer_max;
598 				break;
599 			}
600 			intr_timer[i] += intr_timer[i - 1];
601 			intr_timer[i] /= 2;
602 		}
603 	}
604 
605 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
606 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
607 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
608 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
609 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
610 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
611 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
612 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
613 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
614 
615 	if (chip_id(sc) >= CHELSIO_T6) {
616 		m = V_TSCALE(M_TSCALE);
617 		if (tscale == 1)
618 			v = 0;
619 		else
620 			v = V_TSCALE(tscale - 2);
621 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
622 
623 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
624 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
625 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
626 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
627 			v &= ~m;
628 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
629 			    V_WRTHRTHRESH(16);
630 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
631 		}
632 	}
633 
634 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
635 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
636 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
637 
638 	/*
639 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
640 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
641 	 * may have to deal with is MAXPHYS + 1 page.
642 	 */
643 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
644 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
645 
646 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
647 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
648 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
649 
650 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
651 	    F_RESETDDPOFFSET;
652 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
653 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
654 }
655 
656 /*
657  * SGE wants the buffer to be at least 64B and then a multiple of 16.  If
658  * padding is in use, the buffer's start and end need to be aligned to the pad
659  * boundary as well.  We'll just make sure that the size is a multiple of the
660  * boundary here, it is up to the buffer allocation code to make sure the start
661  * of the buffer is aligned as well.
662  */
663 static inline int
664 hwsz_ok(struct adapter *sc, int hwsz)
665 {
666 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
667 
668 	return (hwsz >= 64 && (hwsz & mask) == 0);
669 }
670 
671 /*
672  * XXX: driver really should be able to deal with unexpected settings.
673  */
674 int
675 t4_read_chip_settings(struct adapter *sc)
676 {
677 	struct sge *s = &sc->sge;
678 	struct sge_params *sp = &sc->params.sge;
679 	int i, j, n, rc = 0;
680 	uint32_t m, v, r;
681 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
682 	static int sw_buf_sizes[] = {	/* Sorted by size */
683 		MCLBYTES,
684 #if MJUMPAGESIZE != MCLBYTES
685 		MJUMPAGESIZE,
686 #endif
687 		MJUM9BYTES,
688 		MJUM16BYTES
689 	};
690 	struct sw_zone_info *swz, *safe_swz;
691 	struct hw_buf_info *hwb;
692 
693 	m = F_RXPKTCPLMODE;
694 	v = F_RXPKTCPLMODE;
695 	r = sc->params.sge.sge_control;
696 	if ((r & m) != v) {
697 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
698 		rc = EINVAL;
699 	}
700 
701 	/*
702 	 * If this changes then every single use of PAGE_SHIFT in the driver
703 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
704 	 */
705 	if (sp->page_shift != PAGE_SHIFT) {
706 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
707 		rc = EINVAL;
708 	}
709 
710 	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
711 	hwb = &s->hw_buf_info[0];
712 	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
713 		r = sc->params.sge.sge_fl_buffer_size[i];
714 		hwb->size = r;
715 		hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
716 		hwb->next = -1;
717 	}
718 
719 	/*
720 	 * Create a sorted list in decreasing order of hw buffer sizes (and so
721 	 * increasing order of spare area) for each software zone.
722 	 *
723 	 * If padding is enabled then the start and end of the buffer must align
724 	 * to the pad boundary; if packing is enabled then they must align with
725 	 * the pack boundary as well.  Allocations from the cluster zones are
726 	 * aligned to min(size, 4K), so the buffer starts at that alignment and
727 	 * ends at hwb->size alignment.  If mbuf inlining is allowed the
728 	 * starting alignment will be reduced to MSIZE and the driver will
729 	 * exercise appropriate caution when deciding on the best buffer layout
730 	 * to use.
731 	 */
732 	n = 0;	/* no usable buffer size to begin with */
733 	swz = &s->sw_zone_info[0];
734 	safe_swz = NULL;
735 	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
736 		int8_t head = -1, tail = -1;
737 
738 		swz->size = sw_buf_sizes[i];
739 		swz->zone = m_getzone(swz->size);
740 		swz->type = m_gettype(swz->size);
741 
742 		if (swz->size < PAGE_SIZE) {
743 			MPASS(powerof2(swz->size));
744 			if (fl_pad && (swz->size % sp->pad_boundary != 0))
745 				continue;
746 		}
747 
748 		if (swz->size == safest_rx_cluster)
749 			safe_swz = swz;
750 
751 		hwb = &s->hw_buf_info[0];
752 		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
753 			if (hwb->zidx != -1 || hwb->size > swz->size)
754 				continue;
755 #ifdef INVARIANTS
756 			if (fl_pad)
757 				MPASS(hwb->size % sp->pad_boundary == 0);
758 #endif
759 			hwb->zidx = i;
760 			if (head == -1)
761 				head = tail = j;
762 			else if (hwb->size < s->hw_buf_info[tail].size) {
763 				s->hw_buf_info[tail].next = j;
764 				tail = j;
765 			} else {
766 				int8_t *cur;
767 				struct hw_buf_info *t;
768 
769 				for (cur = &head; *cur != -1; cur = &t->next) {
770 					t = &s->hw_buf_info[*cur];
771 					if (hwb->size == t->size) {
772 						hwb->zidx = -2;
773 						break;
774 					}
775 					if (hwb->size > t->size) {
776 						hwb->next = *cur;
777 						*cur = j;
778 						break;
779 					}
780 				}
781 			}
782 		}
783 		swz->head_hwidx = head;
784 		swz->tail_hwidx = tail;
785 
786 		if (tail != -1) {
787 			n++;
788 			if (swz->size - s->hw_buf_info[tail].size >=
789 			    CL_METADATA_SIZE)
790 				sc->flags |= BUF_PACKING_OK;
791 		}
792 	}
793 	if (n == 0) {
794 		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
795 		rc = EINVAL;
796 	}
797 
798 	s->safe_hwidx1 = -1;
799 	s->safe_hwidx2 = -1;
800 	if (safe_swz != NULL) {
801 		s->safe_hwidx1 = safe_swz->head_hwidx;
802 		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
803 			int spare;
804 
805 			hwb = &s->hw_buf_info[i];
806 #ifdef INVARIANTS
807 			if (fl_pad)
808 				MPASS(hwb->size % sp->pad_boundary == 0);
809 #endif
810 			spare = safe_swz->size - hwb->size;
811 			if (spare >= CL_METADATA_SIZE) {
812 				s->safe_hwidx2 = i;
813 				break;
814 			}
815 		}
816 	}
817 
818 	if (sc->flags & IS_VF)
819 		return (0);
820 
821 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
822 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
823 	if (r != v) {
824 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
825 		rc = EINVAL;
826 	}
827 
828 	m = v = F_TDDPTAGTCB;
829 	r = t4_read_reg(sc, A_ULP_RX_CTL);
830 	if ((r & m) != v) {
831 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
832 		rc = EINVAL;
833 	}
834 
835 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
836 	    F_RESETDDPOFFSET;
837 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
838 	r = t4_read_reg(sc, A_TP_PARA_REG5);
839 	if ((r & m) != v) {
840 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
841 		rc = EINVAL;
842 	}
843 
844 	t4_init_tp_params(sc, 1);
845 
846 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
847 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
848 
849 	return (rc);
850 }
851 
852 int
853 t4_create_dma_tag(struct adapter *sc)
854 {
855 	int rc;
856 
857 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
858 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
859 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
860 	    NULL, &sc->dmat);
861 	if (rc != 0) {
862 		device_printf(sc->dev,
863 		    "failed to create main DMA tag: %d\n", rc);
864 	}
865 
866 	return (rc);
867 }
868 
869 void
870 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
871     struct sysctl_oid_list *children)
872 {
873 	struct sge_params *sp = &sc->params.sge;
874 
875 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
876 	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
877 	    "freelist buffer sizes");
878 
879 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
880 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
881 
882 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
883 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
884 
885 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
886 	    NULL, sp->spg_len, "status page size (bytes)");
887 
888 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
889 	    NULL, cong_drop, "congestion drop setting");
890 
891 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
892 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
893 }
894 
895 int
896 t4_destroy_dma_tag(struct adapter *sc)
897 {
898 	if (sc->dmat)
899 		bus_dma_tag_destroy(sc->dmat);
900 
901 	return (0);
902 }
903 
904 /*
905  * Allocate and initialize the firmware event queue and the management queue.
906  *
907  * Returns errno on failure.  Resources allocated up to that point may still be
908  * allocated.  Caller is responsible for cleanup in case this function fails.
909  */
910 int
911 t4_setup_adapter_queues(struct adapter *sc)
912 {
913 	int rc;
914 
915 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
916 
917 	sysctl_ctx_init(&sc->ctx);
918 	sc->flags |= ADAP_SYSCTL_CTX;
919 
920 	/*
921 	 * Firmware event queue
922 	 */
923 	rc = alloc_fwq(sc);
924 	if (rc != 0)
925 		return (rc);
926 
927 	/*
928 	 * Management queue.  This is just a control queue that uses the fwq as
929 	 * its associated iq.
930 	 */
931 	if (!(sc->flags & IS_VF))
932 		rc = alloc_mgmtq(sc);
933 
934 	return (rc);
935 }
936 
937 /*
938  * Idempotent
939  */
940 int
941 t4_teardown_adapter_queues(struct adapter *sc)
942 {
943 
944 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
945 
946 	/* Do this before freeing the queue */
947 	if (sc->flags & ADAP_SYSCTL_CTX) {
948 		sysctl_ctx_free(&sc->ctx);
949 		sc->flags &= ~ADAP_SYSCTL_CTX;
950 	}
951 
952 	free_mgmtq(sc);
953 	free_fwq(sc);
954 
955 	return (0);
956 }
957 
958 /* Maximum payload that can be delivered with a single iq descriptor */
959 static inline int
960 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
961 {
962 	int payload;
963 
964 #ifdef TCP_OFFLOAD
965 	if (toe) {
966 		int rxcs = G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2));
967 
968 		/* Note that COP can set rx_coalesce on/off per connection. */
969 		payload = max(mtu, rxcs);
970 	} else {
971 #endif
972 		/* large enough even when hw VLAN extraction is disabled */
973 		payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
974 		    ETHER_VLAN_ENCAP_LEN + mtu;
975 #ifdef TCP_OFFLOAD
976 	}
977 #endif
978 
979 	return (payload);
980 }
981 
982 int
983 t4_setup_vi_queues(struct vi_info *vi)
984 {
985 	int rc = 0, i, intr_idx, iqidx;
986 	struct sge_rxq *rxq;
987 	struct sge_txq *txq;
988 	struct sge_wrq *ctrlq;
989 #ifdef TCP_OFFLOAD
990 	struct sge_ofld_rxq *ofld_rxq;
991 	struct sge_wrq *ofld_txq;
992 #endif
993 #ifdef DEV_NETMAP
994 	int saved_idx;
995 	struct sge_nm_rxq *nm_rxq;
996 	struct sge_nm_txq *nm_txq;
997 #endif
998 	char name[16];
999 	struct port_info *pi = vi->pi;
1000 	struct adapter *sc = pi->adapter;
1001 	struct ifnet *ifp = vi->ifp;
1002 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
1003 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1004 	int maxp, mtu = ifp->if_mtu;
1005 
1006 	/* Interrupt vector to start from (when using multiple vectors) */
1007 	intr_idx = vi->first_intr;
1008 
1009 #ifdef DEV_NETMAP
1010 	saved_idx = intr_idx;
1011 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1012 
1013 		/* netmap is supported with direct interrupts only. */
1014 		MPASS(!forwarding_intr_to_fwq(sc));
1015 
1016 		/*
1017 		 * We don't have buffers to back the netmap rx queues
1018 		 * right now so we create the queues in a way that
1019 		 * doesn't set off any congestion signal in the chip.
1020 		 */
1021 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1022 		    CTLFLAG_RD, NULL, "rx queues");
1023 		for_each_nm_rxq(vi, i, nm_rxq) {
1024 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1025 			if (rc != 0)
1026 				goto done;
1027 			intr_idx++;
1028 		}
1029 
1030 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1031 		    CTLFLAG_RD, NULL, "tx queues");
1032 		for_each_nm_txq(vi, i, nm_txq) {
1033 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1034 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid);
1035 			if (rc != 0)
1036 				goto done;
1037 		}
1038 	}
1039 
1040 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1041 	intr_idx = saved_idx;
1042 #endif
1043 
1044 	/*
1045 	 * Allocate rx queues first because a default iqid is required when
1046 	 * creating a tx queue.
1047 	 */
1048 	maxp = mtu_to_max_payload(sc, mtu, 0);
1049 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1050 	    CTLFLAG_RD, NULL, "rx queues");
1051 	for_each_rxq(vi, i, rxq) {
1052 
1053 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1054 
1055 		snprintf(name, sizeof(name), "%s rxq%d-fl",
1056 		    device_get_nameunit(vi->dev), i);
1057 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1058 
1059 		rc = alloc_rxq(vi, rxq,
1060 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1061 		if (rc != 0)
1062 			goto done;
1063 		intr_idx++;
1064 	}
1065 #ifdef DEV_NETMAP
1066 	if (ifp->if_capabilities & IFCAP_NETMAP)
1067 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1068 #endif
1069 #ifdef TCP_OFFLOAD
1070 	maxp = mtu_to_max_payload(sc, mtu, 1);
1071 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1072 	    CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections");
1073 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1074 
1075 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
1076 		    vi->qsize_rxq);
1077 
1078 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1079 		    device_get_nameunit(vi->dev), i);
1080 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1081 
1082 		rc = alloc_ofld_rxq(vi, ofld_rxq,
1083 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1084 		if (rc != 0)
1085 			goto done;
1086 		intr_idx++;
1087 	}
1088 #endif
1089 
1090 	/*
1091 	 * Now the tx queues.
1092 	 */
1093 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1094 	    NULL, "tx queues");
1095 	for_each_txq(vi, i, txq) {
1096 		iqidx = vi->first_rxq + (i % vi->nrxq);
1097 		snprintf(name, sizeof(name), "%s txq%d",
1098 		    device_get_nameunit(vi->dev), i);
1099 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
1100 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1101 
1102 		rc = alloc_txq(vi, txq, i, oid);
1103 		if (rc != 0)
1104 			goto done;
1105 	}
1106 #ifdef TCP_OFFLOAD
1107 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1108 	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1109 	for_each_ofld_txq(vi, i, ofld_txq) {
1110 		struct sysctl_oid *oid2;
1111 
1112 		iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq);
1113 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1114 		    device_get_nameunit(vi->dev), i);
1115 		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1116 		    sc->sge.ofld_rxq[iqidx].iq.cntxt_id, name);
1117 
1118 		snprintf(name, sizeof(name), "%d", i);
1119 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1120 		    name, CTLFLAG_RD, NULL, "offload tx queue");
1121 
1122 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1123 		if (rc != 0)
1124 			goto done;
1125 	}
1126 #endif
1127 
1128 	/*
1129 	 * Finally, the control queue.
1130 	 */
1131 	if (!IS_MAIN_VI(vi) || sc->flags & IS_VF)
1132 		goto done;
1133 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1134 	    NULL, "ctrl queue");
1135 	ctrlq = &sc->sge.ctrlq[pi->port_id];
1136 	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev));
1137 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan,
1138 	    sc->sge.rxq[vi->first_rxq].iq.cntxt_id, name);
1139 	rc = alloc_wrq(sc, vi, ctrlq, oid);
1140 
1141 done:
1142 	if (rc)
1143 		t4_teardown_vi_queues(vi);
1144 
1145 	return (rc);
1146 }
1147 
1148 /*
1149  * Idempotent
1150  */
1151 int
1152 t4_teardown_vi_queues(struct vi_info *vi)
1153 {
1154 	int i;
1155 	struct port_info *pi = vi->pi;
1156 	struct adapter *sc = pi->adapter;
1157 	struct sge_rxq *rxq;
1158 	struct sge_txq *txq;
1159 #ifdef TCP_OFFLOAD
1160 	struct sge_ofld_rxq *ofld_rxq;
1161 	struct sge_wrq *ofld_txq;
1162 #endif
1163 #ifdef DEV_NETMAP
1164 	struct sge_nm_rxq *nm_rxq;
1165 	struct sge_nm_txq *nm_txq;
1166 #endif
1167 
1168 	/* Do this before freeing the queues */
1169 	if (vi->flags & VI_SYSCTL_CTX) {
1170 		sysctl_ctx_free(&vi->ctx);
1171 		vi->flags &= ~VI_SYSCTL_CTX;
1172 	}
1173 
1174 #ifdef DEV_NETMAP
1175 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1176 		for_each_nm_txq(vi, i, nm_txq) {
1177 			free_nm_txq(vi, nm_txq);
1178 		}
1179 
1180 		for_each_nm_rxq(vi, i, nm_rxq) {
1181 			free_nm_rxq(vi, nm_rxq);
1182 		}
1183 	}
1184 #endif
1185 
1186 	/*
1187 	 * Take down all the tx queues first, as they reference the rx queues
1188 	 * (for egress updates, etc.).
1189 	 */
1190 
1191 	if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
1192 		free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1193 
1194 	for_each_txq(vi, i, txq) {
1195 		free_txq(vi, txq);
1196 	}
1197 #ifdef TCP_OFFLOAD
1198 	for_each_ofld_txq(vi, i, ofld_txq) {
1199 		free_wrq(sc, ofld_txq);
1200 	}
1201 #endif
1202 
1203 	/*
1204 	 * Then take down the rx queues.
1205 	 */
1206 
1207 	for_each_rxq(vi, i, rxq) {
1208 		free_rxq(vi, rxq);
1209 	}
1210 #ifdef TCP_OFFLOAD
1211 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1212 		free_ofld_rxq(vi, ofld_rxq);
1213 	}
1214 #endif
1215 
1216 	return (0);
1217 }
1218 
1219 /*
1220  * Deals with errors and the firmware event queue.  All data rx queues forward
1221  * their interrupt to the firmware event queue.
1222  */
1223 void
1224 t4_intr_all(void *arg)
1225 {
1226 	struct adapter *sc = arg;
1227 	struct sge_iq *fwq = &sc->sge.fwq;
1228 
1229 	t4_intr_err(arg);
1230 	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1231 		service_iq(fwq, 0);
1232 		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1233 	}
1234 }
1235 
1236 /* Deals with error interrupts */
1237 void
1238 t4_intr_err(void *arg)
1239 {
1240 	struct adapter *sc = arg;
1241 
1242 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1243 	t4_slow_intr_handler(sc);
1244 }
1245 
1246 void
1247 t4_intr_evt(void *arg)
1248 {
1249 	struct sge_iq *iq = arg;
1250 
1251 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1252 		service_iq(iq, 0);
1253 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1254 	}
1255 }
1256 
1257 void
1258 t4_intr(void *arg)
1259 {
1260 	struct sge_iq *iq = arg;
1261 
1262 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1263 		service_iq(iq, 0);
1264 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1265 	}
1266 }
1267 
1268 void
1269 t4_vi_intr(void *arg)
1270 {
1271 	struct irq *irq = arg;
1272 
1273 #ifdef DEV_NETMAP
1274 	if (atomic_cmpset_int(&irq->nm_state, NM_ON, NM_BUSY)) {
1275 		t4_nm_intr(irq->nm_rxq);
1276 		atomic_cmpset_int(&irq->nm_state, NM_BUSY, NM_ON);
1277 	}
1278 #endif
1279 	if (irq->rxq != NULL)
1280 		t4_intr(irq->rxq);
1281 }
1282 
1283 static inline int
1284 sort_before_lro(struct lro_ctrl *lro)
1285 {
1286 
1287 	return (lro->lro_mbuf_max != 0);
1288 }
1289 
1290 /*
1291  * Deals with anything and everything on the given ingress queue.
1292  */
1293 static int
1294 service_iq(struct sge_iq *iq, int budget)
1295 {
1296 	struct sge_iq *q;
1297 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1298 	struct sge_fl *fl;			/* Use iff IQ_HAS_FL */
1299 	struct adapter *sc = iq->adapter;
1300 	struct iq_desc *d = &iq->desc[iq->cidx];
1301 	int ndescs = 0, limit;
1302 	int rsp_type, refill;
1303 	uint32_t lq;
1304 	uint16_t fl_hw_cidx;
1305 	struct mbuf *m0;
1306 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1307 #if defined(INET) || defined(INET6)
1308 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1309 	struct lro_ctrl *lro = &rxq->lro;
1310 #endif
1311 
1312 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1313 
1314 	limit = budget ? budget : iq->qsize / 16;
1315 
1316 	if (iq->flags & IQ_HAS_FL) {
1317 		fl = &rxq->fl;
1318 		fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1319 	} else {
1320 		fl = NULL;
1321 		fl_hw_cidx = 0;			/* to silence gcc warning */
1322 	}
1323 
1324 #if defined(INET) || defined(INET6)
1325 	if (iq->flags & IQ_ADJ_CREDIT) {
1326 		MPASS(sort_before_lro(lro));
1327 		iq->flags &= ~IQ_ADJ_CREDIT;
1328 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1329 			tcp_lro_flush_all(lro);
1330 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1331 			    V_INGRESSQID((u32)iq->cntxt_id) |
1332 			    V_SEINTARM(iq->intr_params));
1333 			return (0);
1334 		}
1335 		ndescs = 1;
1336 	}
1337 #else
1338 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1339 #endif
1340 
1341 	/*
1342 	 * We always come back and check the descriptor ring for new indirect
1343 	 * interrupts and other responses after running a single handler.
1344 	 */
1345 	for (;;) {
1346 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1347 
1348 			rmb();
1349 
1350 			refill = 0;
1351 			m0 = NULL;
1352 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1353 			lq = be32toh(d->rsp.pldbuflen_qid);
1354 
1355 			switch (rsp_type) {
1356 			case X_RSPD_TYPE_FLBUF:
1357 
1358 				KASSERT(iq->flags & IQ_HAS_FL,
1359 				    ("%s: data for an iq (%p) with no freelist",
1360 				    __func__, iq));
1361 
1362 				m0 = get_fl_payload(sc, fl, lq);
1363 				if (__predict_false(m0 == NULL))
1364 					goto process_iql;
1365 				refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1366 #ifdef T4_PKT_TIMESTAMP
1367 				/*
1368 				 * 60 bit timestamp for the payload is
1369 				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1370 				 * in the leading free-space in the mbuf.  The
1371 				 * kernel can clobber it during a pullup,
1372 				 * m_copymdata, etc.  You need to make sure that
1373 				 * the mbuf reaches you unmolested if you care
1374 				 * about the timestamp.
1375 				 */
1376 				*(uint64_t *)m0->m_pktdat =
1377 				    be64toh(ctrl->u.last_flit) &
1378 				    0xfffffffffffffff;
1379 #endif
1380 
1381 				/* fall through */
1382 
1383 			case X_RSPD_TYPE_CPL:
1384 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1385 				    ("%s: bad opcode %02x.", __func__,
1386 				    d->rss.opcode));
1387 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1388 				break;
1389 
1390 			case X_RSPD_TYPE_INTR:
1391 
1392 				/*
1393 				 * Interrupts should be forwarded only to queues
1394 				 * that are not forwarding their interrupts.
1395 				 * This means service_iq can recurse but only 1
1396 				 * level deep.
1397 				 */
1398 				KASSERT(budget == 0,
1399 				    ("%s: budget %u, rsp_type %u", __func__,
1400 				    budget, rsp_type));
1401 
1402 				/*
1403 				 * There are 1K interrupt-capable queues (qids 0
1404 				 * through 1023).  A response type indicating a
1405 				 * forwarded interrupt with a qid >= 1K is an
1406 				 * iWARP async notification.
1407 				 */
1408 				if (lq >= 1024) {
1409                                         t4_an_handler(iq, &d->rsp);
1410                                         break;
1411                                 }
1412 
1413 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1414 				    sc->sge.iq_base];
1415 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1416 				    IQS_BUSY)) {
1417 					if (service_iq(q, q->qsize / 16) == 0) {
1418 						atomic_cmpset_int(&q->state,
1419 						    IQS_BUSY, IQS_IDLE);
1420 					} else {
1421 						STAILQ_INSERT_TAIL(&iql, q,
1422 						    link);
1423 					}
1424 				}
1425 				break;
1426 
1427 			default:
1428 				KASSERT(0,
1429 				    ("%s: illegal response type %d on iq %p",
1430 				    __func__, rsp_type, iq));
1431 				log(LOG_ERR,
1432 				    "%s: illegal response type %d on iq %p",
1433 				    device_get_nameunit(sc->dev), rsp_type, iq);
1434 				break;
1435 			}
1436 
1437 			d++;
1438 			if (__predict_false(++iq->cidx == iq->sidx)) {
1439 				iq->cidx = 0;
1440 				iq->gen ^= F_RSPD_GEN;
1441 				d = &iq->desc[0];
1442 			}
1443 			if (__predict_false(++ndescs == limit)) {
1444 				t4_write_reg(sc, sc->sge_gts_reg,
1445 				    V_CIDXINC(ndescs) |
1446 				    V_INGRESSQID(iq->cntxt_id) |
1447 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1448 				ndescs = 0;
1449 
1450 #if defined(INET) || defined(INET6)
1451 				if (iq->flags & IQ_LRO_ENABLED &&
1452 				    !sort_before_lro(lro) &&
1453 				    sc->lro_timeout != 0) {
1454 					tcp_lro_flush_inactive(lro,
1455 					    &lro_timeout);
1456 				}
1457 #endif
1458 
1459 				if (budget) {
1460 					if (iq->flags & IQ_HAS_FL) {
1461 						FL_LOCK(fl);
1462 						refill_fl(sc, fl, 32);
1463 						FL_UNLOCK(fl);
1464 					}
1465 					return (EINPROGRESS);
1466 				}
1467 			}
1468 			if (refill) {
1469 				FL_LOCK(fl);
1470 				refill_fl(sc, fl, 32);
1471 				FL_UNLOCK(fl);
1472 				fl_hw_cidx = fl->hw_cidx;
1473 			}
1474 		}
1475 
1476 process_iql:
1477 		if (STAILQ_EMPTY(&iql))
1478 			break;
1479 
1480 		/*
1481 		 * Process the head only, and send it to the back of the list if
1482 		 * it's still not done.
1483 		 */
1484 		q = STAILQ_FIRST(&iql);
1485 		STAILQ_REMOVE_HEAD(&iql, link);
1486 		if (service_iq(q, q->qsize / 8) == 0)
1487 			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1488 		else
1489 			STAILQ_INSERT_TAIL(&iql, q, link);
1490 	}
1491 
1492 #if defined(INET) || defined(INET6)
1493 	if (iq->flags & IQ_LRO_ENABLED) {
1494 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1495 			MPASS(sort_before_lro(lro));
1496 			/* hold back one credit and don't flush LRO state */
1497 			iq->flags |= IQ_ADJ_CREDIT;
1498 			ndescs--;
1499 		} else {
1500 			tcp_lro_flush_all(lro);
1501 		}
1502 	}
1503 #endif
1504 
1505 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1506 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1507 
1508 	if (iq->flags & IQ_HAS_FL) {
1509 		int starved;
1510 
1511 		FL_LOCK(fl);
1512 		starved = refill_fl(sc, fl, 64);
1513 		FL_UNLOCK(fl);
1514 		if (__predict_false(starved != 0))
1515 			add_fl_to_sfl(sc, fl);
1516 	}
1517 
1518 	return (0);
1519 }
1520 
1521 static inline int
1522 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1523 {
1524 	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1525 
1526 	if (rc)
1527 		MPASS(cll->region3 >= CL_METADATA_SIZE);
1528 
1529 	return (rc);
1530 }
1531 
1532 static inline struct cluster_metadata *
1533 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1534     caddr_t cl)
1535 {
1536 
1537 	if (cl_has_metadata(fl, cll)) {
1538 		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1539 
1540 		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1541 	}
1542 	return (NULL);
1543 }
1544 
1545 static void
1546 rxb_free(struct mbuf *m)
1547 {
1548 	uma_zone_t zone = m->m_ext.ext_arg1;
1549 	void *cl = m->m_ext.ext_arg2;
1550 
1551 	uma_zfree(zone, cl);
1552 	counter_u64_add(extfree_rels, 1);
1553 }
1554 
1555 /*
1556  * The mbuf returned by this function could be allocated from zone_mbuf or
1557  * constructed in spare room in the cluster.
1558  *
1559  * The mbuf carries the payload in one of these ways
1560  * a) frame inside the mbuf (mbuf from zone_mbuf)
1561  * b) m_cljset (for clusters without metadata) zone_mbuf
1562  * c) m_extaddref (cluster with metadata) inline mbuf
1563  * d) m_extaddref (cluster with metadata) zone_mbuf
1564  */
1565 static struct mbuf *
1566 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1567     int remaining)
1568 {
1569 	struct mbuf *m;
1570 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1571 	struct cluster_layout *cll = &sd->cll;
1572 	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1573 	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1574 	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1575 	int len, blen;
1576 	caddr_t payload;
1577 
1578 	blen = hwb->size - fl->rx_offset;	/* max possible in this buf */
1579 	len = min(remaining, blen);
1580 	payload = sd->cl + cll->region1 + fl->rx_offset;
1581 	if (fl->flags & FL_BUF_PACKING) {
1582 		const u_int l = fr_offset + len;
1583 		const u_int pad = roundup2(l, fl->buf_boundary) - l;
1584 
1585 		if (fl->rx_offset + len + pad < hwb->size)
1586 			blen = len + pad;
1587 		MPASS(fl->rx_offset + blen <= hwb->size);
1588 	} else {
1589 		MPASS(fl->rx_offset == 0);	/* not packing */
1590 	}
1591 
1592 
1593 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1594 
1595 		/*
1596 		 * Copy payload into a freshly allocated mbuf.
1597 		 */
1598 
1599 		m = fr_offset == 0 ?
1600 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1601 		if (m == NULL)
1602 			return (NULL);
1603 		fl->mbuf_allocated++;
1604 #ifdef T4_PKT_TIMESTAMP
1605 		/* Leave room for a timestamp */
1606 		m->m_data += 8;
1607 #endif
1608 		/* copy data to mbuf */
1609 		bcopy(payload, mtod(m, caddr_t), len);
1610 
1611 	} else if (sd->nmbuf * MSIZE < cll->region1) {
1612 
1613 		/*
1614 		 * There's spare room in the cluster for an mbuf.  Create one
1615 		 * and associate it with the payload that's in the cluster.
1616 		 */
1617 
1618 		MPASS(clm != NULL);
1619 		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1620 		/* No bzero required */
1621 		if (m_init(m, M_NOWAIT, MT_DATA,
1622 		    fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
1623 			return (NULL);
1624 		fl->mbuf_inlined++;
1625 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
1626 		    swz->zone, sd->cl);
1627 		if (sd->nmbuf++ == 0)
1628 			counter_u64_add(extfree_refs, 1);
1629 
1630 	} else {
1631 
1632 		/*
1633 		 * Grab an mbuf from zone_mbuf and associate it with the
1634 		 * payload in the cluster.
1635 		 */
1636 
1637 		m = fr_offset == 0 ?
1638 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1639 		if (m == NULL)
1640 			return (NULL);
1641 		fl->mbuf_allocated++;
1642 		if (clm != NULL) {
1643 			m_extaddref(m, payload, blen, &clm->refcount,
1644 			    rxb_free, swz->zone, sd->cl);
1645 			if (sd->nmbuf++ == 0)
1646 				counter_u64_add(extfree_refs, 1);
1647 		} else {
1648 			m_cljset(m, sd->cl, swz->type);
1649 			sd->cl = NULL;	/* consumed, not a recycle candidate */
1650 		}
1651 	}
1652 	if (fr_offset == 0)
1653 		m->m_pkthdr.len = remaining;
1654 	m->m_len = len;
1655 
1656 	if (fl->flags & FL_BUF_PACKING) {
1657 		fl->rx_offset += blen;
1658 		MPASS(fl->rx_offset <= hwb->size);
1659 		if (fl->rx_offset < hwb->size)
1660 			return (m);	/* without advancing the cidx */
1661 	}
1662 
1663 	if (__predict_false(++fl->cidx % 8 == 0)) {
1664 		uint16_t cidx = fl->cidx / 8;
1665 
1666 		if (__predict_false(cidx == fl->sidx))
1667 			fl->cidx = cidx = 0;
1668 		fl->hw_cidx = cidx;
1669 	}
1670 	fl->rx_offset = 0;
1671 
1672 	return (m);
1673 }
1674 
1675 static struct mbuf *
1676 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1677 {
1678 	struct mbuf *m0, *m, **pnext;
1679 	u_int remaining;
1680 	const u_int total = G_RSPD_LEN(len_newbuf);
1681 
1682 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1683 		M_ASSERTPKTHDR(fl->m0);
1684 		MPASS(fl->m0->m_pkthdr.len == total);
1685 		MPASS(fl->remaining < total);
1686 
1687 		m0 = fl->m0;
1688 		pnext = fl->pnext;
1689 		remaining = fl->remaining;
1690 		fl->flags &= ~FL_BUF_RESUME;
1691 		goto get_segment;
1692 	}
1693 
1694 	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1695 		fl->rx_offset = 0;
1696 		if (__predict_false(++fl->cidx % 8 == 0)) {
1697 			uint16_t cidx = fl->cidx / 8;
1698 
1699 			if (__predict_false(cidx == fl->sidx))
1700 				fl->cidx = cidx = 0;
1701 			fl->hw_cidx = cidx;
1702 		}
1703 	}
1704 
1705 	/*
1706 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1707 	 * 'len' and it may span multiple hw buffers.
1708 	 */
1709 
1710 	m0 = get_scatter_segment(sc, fl, 0, total);
1711 	if (m0 == NULL)
1712 		return (NULL);
1713 	remaining = total - m0->m_len;
1714 	pnext = &m0->m_next;
1715 	while (remaining > 0) {
1716 get_segment:
1717 		MPASS(fl->rx_offset == 0);
1718 		m = get_scatter_segment(sc, fl, total - remaining, remaining);
1719 		if (__predict_false(m == NULL)) {
1720 			fl->m0 = m0;
1721 			fl->pnext = pnext;
1722 			fl->remaining = remaining;
1723 			fl->flags |= FL_BUF_RESUME;
1724 			return (NULL);
1725 		}
1726 		*pnext = m;
1727 		pnext = &m->m_next;
1728 		remaining -= m->m_len;
1729 	}
1730 	*pnext = NULL;
1731 
1732 	M_ASSERTPKTHDR(m0);
1733 	return (m0);
1734 }
1735 
1736 static int
1737 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1738 {
1739 	struct sge_rxq *rxq = iq_to_rxq(iq);
1740 	struct ifnet *ifp = rxq->ifp;
1741 	struct adapter *sc = iq->adapter;
1742 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1743 #if defined(INET) || defined(INET6)
1744 	struct lro_ctrl *lro = &rxq->lro;
1745 #endif
1746 	static const int sw_hashtype[4][2] = {
1747 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1748 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1749 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1750 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1751 	};
1752 
1753 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1754 	    rss->opcode));
1755 
1756 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1757 	m0->m_len -= sc->params.sge.fl_pktshift;
1758 	m0->m_data += sc->params.sge.fl_pktshift;
1759 
1760 	m0->m_pkthdr.rcvif = ifp;
1761 	M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
1762 	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1763 
1764 	if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) {
1765 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1766 		    cpl->l2info & htobe32(F_RXF_IP)) {
1767 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1768 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1769 			rxq->rxcsum++;
1770 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1771 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1772 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1773 			    CSUM_PSEUDO_HDR);
1774 			rxq->rxcsum++;
1775 		}
1776 
1777 		if (__predict_false(cpl->ip_frag))
1778 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1779 		else
1780 			m0->m_pkthdr.csum_data = 0xffff;
1781 	}
1782 
1783 	if (cpl->vlan_ex) {
1784 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1785 		m0->m_flags |= M_VLANTAG;
1786 		rxq->vlan_extraction++;
1787 	}
1788 
1789 #if defined(INET) || defined(INET6)
1790 	if (iq->flags & IQ_LRO_ENABLED) {
1791 		if (sort_before_lro(lro)) {
1792 			tcp_lro_queue_mbuf(lro, m0);
1793 			return (0); /* queued for sort, then LRO */
1794 		}
1795 		if (tcp_lro_rx(lro, m0, 0) == 0)
1796 			return (0); /* queued for LRO */
1797 	}
1798 #endif
1799 	ifp->if_input(ifp, m0);
1800 
1801 	return (0);
1802 }
1803 
1804 /*
1805  * Must drain the wrq or make sure that someone else will.
1806  */
1807 static void
1808 wrq_tx_drain(void *arg, int n)
1809 {
1810 	struct sge_wrq *wrq = arg;
1811 	struct sge_eq *eq = &wrq->eq;
1812 
1813 	EQ_LOCK(eq);
1814 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
1815 		drain_wrq_wr_list(wrq->adapter, wrq);
1816 	EQ_UNLOCK(eq);
1817 }
1818 
1819 static void
1820 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
1821 {
1822 	struct sge_eq *eq = &wrq->eq;
1823 	u_int available, dbdiff;	/* # of hardware descriptors */
1824 	u_int n;
1825 	struct wrqe *wr;
1826 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
1827 
1828 	EQ_LOCK_ASSERT_OWNED(eq);
1829 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
1830 	wr = STAILQ_FIRST(&wrq->wr_list);
1831 	MPASS(wr != NULL);	/* Must be called with something useful to do */
1832 	MPASS(eq->pidx == eq->dbidx);
1833 	dbdiff = 0;
1834 
1835 	do {
1836 		eq->cidx = read_hw_cidx(eq);
1837 		if (eq->pidx == eq->cidx)
1838 			available = eq->sidx - 1;
1839 		else
1840 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
1841 
1842 		MPASS(wr->wrq == wrq);
1843 		n = howmany(wr->wr_len, EQ_ESIZE);
1844 		if (available < n)
1845 			break;
1846 
1847 		dst = (void *)&eq->desc[eq->pidx];
1848 		if (__predict_true(eq->sidx - eq->pidx > n)) {
1849 			/* Won't wrap, won't end exactly at the status page. */
1850 			bcopy(&wr->wr[0], dst, wr->wr_len);
1851 			eq->pidx += n;
1852 		} else {
1853 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
1854 
1855 			bcopy(&wr->wr[0], dst, first_portion);
1856 			if (wr->wr_len > first_portion) {
1857 				bcopy(&wr->wr[first_portion], &eq->desc[0],
1858 				    wr->wr_len - first_portion);
1859 			}
1860 			eq->pidx = n - (eq->sidx - eq->pidx);
1861 		}
1862 		wrq->tx_wrs_copied++;
1863 
1864 		if (available < eq->sidx / 4 &&
1865 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
1866 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
1867 			    F_FW_WR_EQUEQ);
1868 			eq->equeqidx = eq->pidx;
1869 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
1870 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
1871 			eq->equeqidx = eq->pidx;
1872 		}
1873 
1874 		dbdiff += n;
1875 		if (dbdiff >= 16) {
1876 			ring_eq_db(sc, eq, dbdiff);
1877 			dbdiff = 0;
1878 		}
1879 
1880 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1881 		free_wrqe(wr);
1882 		MPASS(wrq->nwr_pending > 0);
1883 		wrq->nwr_pending--;
1884 		MPASS(wrq->ndesc_needed >= n);
1885 		wrq->ndesc_needed -= n;
1886 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
1887 
1888 	if (dbdiff)
1889 		ring_eq_db(sc, eq, dbdiff);
1890 }
1891 
1892 /*
1893  * Doesn't fail.  Holds on to work requests it can't send right away.
1894  */
1895 void
1896 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1897 {
1898 #ifdef INVARIANTS
1899 	struct sge_eq *eq = &wrq->eq;
1900 #endif
1901 
1902 	EQ_LOCK_ASSERT_OWNED(eq);
1903 	MPASS(wr != NULL);
1904 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
1905 	MPASS((wr->wr_len & 0x7) == 0);
1906 
1907 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1908 	wrq->nwr_pending++;
1909 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
1910 
1911 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
1912 		return;	/* commit_wrq_wr will drain wr_list as well. */
1913 
1914 	drain_wrq_wr_list(sc, wrq);
1915 
1916 	/* Doorbell must have caught up to the pidx. */
1917 	MPASS(eq->pidx == eq->dbidx);
1918 }
1919 
1920 void
1921 t4_update_fl_bufsize(struct ifnet *ifp)
1922 {
1923 	struct vi_info *vi = ifp->if_softc;
1924 	struct adapter *sc = vi->pi->adapter;
1925 	struct sge_rxq *rxq;
1926 #ifdef TCP_OFFLOAD
1927 	struct sge_ofld_rxq *ofld_rxq;
1928 #endif
1929 	struct sge_fl *fl;
1930 	int i, maxp, mtu = ifp->if_mtu;
1931 
1932 	maxp = mtu_to_max_payload(sc, mtu, 0);
1933 	for_each_rxq(vi, i, rxq) {
1934 		fl = &rxq->fl;
1935 
1936 		FL_LOCK(fl);
1937 		find_best_refill_source(sc, fl, maxp);
1938 		FL_UNLOCK(fl);
1939 	}
1940 #ifdef TCP_OFFLOAD
1941 	maxp = mtu_to_max_payload(sc, mtu, 1);
1942 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1943 		fl = &ofld_rxq->fl;
1944 
1945 		FL_LOCK(fl);
1946 		find_best_refill_source(sc, fl, maxp);
1947 		FL_UNLOCK(fl);
1948 	}
1949 #endif
1950 }
1951 
1952 static inline int
1953 mbuf_nsegs(struct mbuf *m)
1954 {
1955 
1956 	M_ASSERTPKTHDR(m);
1957 	KASSERT(m->m_pkthdr.l5hlen > 0,
1958 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
1959 
1960 	return (m->m_pkthdr.l5hlen);
1961 }
1962 
1963 static inline void
1964 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
1965 {
1966 
1967 	M_ASSERTPKTHDR(m);
1968 	m->m_pkthdr.l5hlen = nsegs;
1969 }
1970 
1971 static inline int
1972 mbuf_len16(struct mbuf *m)
1973 {
1974 	int n;
1975 
1976 	M_ASSERTPKTHDR(m);
1977 	n = m->m_pkthdr.PH_loc.eight[0];
1978 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
1979 
1980 	return (n);
1981 }
1982 
1983 static inline void
1984 set_mbuf_len16(struct mbuf *m, uint8_t len16)
1985 {
1986 
1987 	M_ASSERTPKTHDR(m);
1988 	m->m_pkthdr.PH_loc.eight[0] = len16;
1989 }
1990 
1991 static inline int
1992 needs_tso(struct mbuf *m)
1993 {
1994 
1995 	M_ASSERTPKTHDR(m);
1996 
1997 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1998 		KASSERT(m->m_pkthdr.tso_segsz > 0,
1999 		    ("%s: TSO requested in mbuf %p but MSS not provided",
2000 		    __func__, m));
2001 		return (1);
2002 	}
2003 
2004 	return (0);
2005 }
2006 
2007 static inline int
2008 needs_l3_csum(struct mbuf *m)
2009 {
2010 
2011 	M_ASSERTPKTHDR(m);
2012 
2013 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
2014 		return (1);
2015 	return (0);
2016 }
2017 
2018 static inline int
2019 needs_l4_csum(struct mbuf *m)
2020 {
2021 
2022 	M_ASSERTPKTHDR(m);
2023 
2024 	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2025 	    CSUM_TCP_IPV6 | CSUM_TSO))
2026 		return (1);
2027 	return (0);
2028 }
2029 
2030 static inline int
2031 needs_vlan_insertion(struct mbuf *m)
2032 {
2033 
2034 	M_ASSERTPKTHDR(m);
2035 
2036 	if (m->m_flags & M_VLANTAG) {
2037 		KASSERT(m->m_pkthdr.ether_vtag != 0,
2038 		    ("%s: HWVLAN requested in mbuf %p but tag not provided",
2039 		    __func__, m));
2040 		return (1);
2041 	}
2042 	return (0);
2043 }
2044 
2045 static void *
2046 m_advance(struct mbuf **pm, int *poffset, int len)
2047 {
2048 	struct mbuf *m = *pm;
2049 	int offset = *poffset;
2050 	uintptr_t p = 0;
2051 
2052 	MPASS(len > 0);
2053 
2054 	for (;;) {
2055 		if (offset + len < m->m_len) {
2056 			offset += len;
2057 			p = mtod(m, uintptr_t) + offset;
2058 			break;
2059 		}
2060 		len -= m->m_len - offset;
2061 		m = m->m_next;
2062 		offset = 0;
2063 		MPASS(m != NULL);
2064 	}
2065 	*poffset = offset;
2066 	*pm = m;
2067 	return ((void *)p);
2068 }
2069 
2070 /*
2071  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2072  * must have at least one mbuf that's not empty.
2073  */
2074 static inline int
2075 count_mbuf_nsegs(struct mbuf *m)
2076 {
2077 	vm_paddr_t lastb, next;
2078 	vm_offset_t va;
2079 	int len, nsegs;
2080 
2081 	MPASS(m != NULL);
2082 
2083 	nsegs = 0;
2084 	lastb = 0;
2085 	for (; m; m = m->m_next) {
2086 
2087 		len = m->m_len;
2088 		if (__predict_false(len == 0))
2089 			continue;
2090 		va = mtod(m, vm_offset_t);
2091 		next = pmap_kextract(va);
2092 		nsegs += sglist_count(m->m_data, len);
2093 		if (lastb + 1 == next)
2094 			nsegs--;
2095 		lastb = pmap_kextract(va + len - 1);
2096 	}
2097 
2098 	MPASS(nsegs > 0);
2099 	return (nsegs);
2100 }
2101 
2102 /*
2103  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2104  * a) caller can assume it's been freed if this function returns with an error.
2105  * b) it may get defragged up if the gather list is too long for the hardware.
2106  */
2107 int
2108 parse_pkt(struct adapter *sc, struct mbuf **mp)
2109 {
2110 	struct mbuf *m0 = *mp, *m;
2111 	int rc, nsegs, defragged = 0, offset;
2112 	struct ether_header *eh;
2113 	void *l3hdr;
2114 #if defined(INET) || defined(INET6)
2115 	struct tcphdr *tcp;
2116 #endif
2117 	uint16_t eh_type;
2118 
2119 	M_ASSERTPKTHDR(m0);
2120 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2121 		rc = EINVAL;
2122 fail:
2123 		m_freem(m0);
2124 		*mp = NULL;
2125 		return (rc);
2126 	}
2127 restart:
2128 	/*
2129 	 * First count the number of gather list segments in the payload.
2130 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2131 	 */
2132 	M_ASSERTPKTHDR(m0);
2133 	MPASS(m0->m_pkthdr.len > 0);
2134 	nsegs = count_mbuf_nsegs(m0);
2135 	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2136 		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2137 			rc = EFBIG;
2138 			goto fail;
2139 		}
2140 		*mp = m0 = m;	/* update caller's copy after defrag */
2141 		goto restart;
2142 	}
2143 
2144 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
2145 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2146 		if (m0 == NULL) {
2147 			/* Should have left well enough alone. */
2148 			rc = EFBIG;
2149 			goto fail;
2150 		}
2151 		*mp = m0;	/* update caller's copy after pullup */
2152 		goto restart;
2153 	}
2154 	set_mbuf_nsegs(m0, nsegs);
2155 	if (sc->flags & IS_VF)
2156 		set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0)));
2157 	else
2158 		set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2159 
2160 	if (!needs_tso(m0) &&
2161 	    !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0))))
2162 		return (0);
2163 
2164 	m = m0;
2165 	eh = mtod(m, struct ether_header *);
2166 	eh_type = ntohs(eh->ether_type);
2167 	if (eh_type == ETHERTYPE_VLAN) {
2168 		struct ether_vlan_header *evh = (void *)eh;
2169 
2170 		eh_type = ntohs(evh->evl_proto);
2171 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2172 	} else
2173 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2174 
2175 	offset = 0;
2176 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2177 
2178 	switch (eh_type) {
2179 #ifdef INET6
2180 	case ETHERTYPE_IPV6:
2181 	{
2182 		struct ip6_hdr *ip6 = l3hdr;
2183 
2184 		MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP);
2185 
2186 		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2187 		break;
2188 	}
2189 #endif
2190 #ifdef INET
2191 	case ETHERTYPE_IP:
2192 	{
2193 		struct ip *ip = l3hdr;
2194 
2195 		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2196 		break;
2197 	}
2198 #endif
2199 	default:
2200 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2201 		    " with the same INET/INET6 options as the kernel.",
2202 		    __func__, eh_type);
2203 	}
2204 
2205 #if defined(INET) || defined(INET6)
2206 	if (needs_tso(m0)) {
2207 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2208 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2209 	}
2210 #endif
2211 	MPASS(m0 == *mp);
2212 	return (0);
2213 }
2214 
2215 void *
2216 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2217 {
2218 	struct sge_eq *eq = &wrq->eq;
2219 	struct adapter *sc = wrq->adapter;
2220 	int ndesc, available;
2221 	struct wrqe *wr;
2222 	void *w;
2223 
2224 	MPASS(len16 > 0);
2225 	ndesc = howmany(len16, EQ_ESIZE / 16);
2226 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2227 
2228 	EQ_LOCK(eq);
2229 
2230 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2231 		drain_wrq_wr_list(sc, wrq);
2232 
2233 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2234 slowpath:
2235 		EQ_UNLOCK(eq);
2236 		wr = alloc_wrqe(len16 * 16, wrq);
2237 		if (__predict_false(wr == NULL))
2238 			return (NULL);
2239 		cookie->pidx = -1;
2240 		cookie->ndesc = ndesc;
2241 		return (&wr->wr);
2242 	}
2243 
2244 	eq->cidx = read_hw_cidx(eq);
2245 	if (eq->pidx == eq->cidx)
2246 		available = eq->sidx - 1;
2247 	else
2248 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2249 	if (available < ndesc)
2250 		goto slowpath;
2251 
2252 	cookie->pidx = eq->pidx;
2253 	cookie->ndesc = ndesc;
2254 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2255 
2256 	w = &eq->desc[eq->pidx];
2257 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2258 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2259 		w = &wrq->ss[0];
2260 		wrq->ss_pidx = cookie->pidx;
2261 		wrq->ss_len = len16 * 16;
2262 	}
2263 
2264 	EQ_UNLOCK(eq);
2265 
2266 	return (w);
2267 }
2268 
2269 void
2270 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2271 {
2272 	struct sge_eq *eq = &wrq->eq;
2273 	struct adapter *sc = wrq->adapter;
2274 	int ndesc, pidx;
2275 	struct wrq_cookie *prev, *next;
2276 
2277 	if (cookie->pidx == -1) {
2278 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2279 
2280 		t4_wrq_tx(sc, wr);
2281 		return;
2282 	}
2283 
2284 	if (__predict_false(w == &wrq->ss[0])) {
2285 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2286 
2287 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2288 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2289 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2290 		wrq->tx_wrs_ss++;
2291 	} else
2292 		wrq->tx_wrs_direct++;
2293 
2294 	EQ_LOCK(eq);
2295 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2296 	pidx = cookie->pidx;
2297 	MPASS(pidx >= 0 && pidx < eq->sidx);
2298 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2299 	next = TAILQ_NEXT(cookie, link);
2300 	if (prev == NULL) {
2301 		MPASS(pidx == eq->dbidx);
2302 		if (next == NULL || ndesc >= 16)
2303 			ring_eq_db(wrq->adapter, eq, ndesc);
2304 		else {
2305 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2306 			next->pidx = pidx;
2307 			next->ndesc += ndesc;
2308 		}
2309 	} else {
2310 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2311 		prev->ndesc += ndesc;
2312 	}
2313 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2314 
2315 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2316 		drain_wrq_wr_list(sc, wrq);
2317 
2318 #ifdef INVARIANTS
2319 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2320 		/* Doorbell must have caught up to the pidx. */
2321 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2322 	}
2323 #endif
2324 	EQ_UNLOCK(eq);
2325 }
2326 
2327 static u_int
2328 can_resume_eth_tx(struct mp_ring *r)
2329 {
2330 	struct sge_eq *eq = r->cookie;
2331 
2332 	return (total_available_tx_desc(eq) > eq->sidx / 8);
2333 }
2334 
2335 static inline int
2336 cannot_use_txpkts(struct mbuf *m)
2337 {
2338 	/* maybe put a GL limit too, to avoid silliness? */
2339 
2340 	return (needs_tso(m));
2341 }
2342 
2343 static inline int
2344 discard_tx(struct sge_eq *eq)
2345 {
2346 
2347 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
2348 }
2349 
2350 /*
2351  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2352  * be consumed.  Return the actual number consumed.  0 indicates a stall.
2353  */
2354 static u_int
2355 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2356 {
2357 	struct sge_txq *txq = r->cookie;
2358 	struct sge_eq *eq = &txq->eq;
2359 	struct ifnet *ifp = txq->ifp;
2360 	struct vi_info *vi = ifp->if_softc;
2361 	struct port_info *pi = vi->pi;
2362 	struct adapter *sc = pi->adapter;
2363 	u_int total, remaining;		/* # of packets */
2364 	u_int available, dbdiff;	/* # of hardware descriptors */
2365 	u_int n, next_cidx;
2366 	struct mbuf *m0, *tail;
2367 	struct txpkts txp;
2368 	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2369 
2370 	remaining = IDXDIFF(pidx, cidx, r->size);
2371 	MPASS(remaining > 0);	/* Must not be called without work to do. */
2372 	total = 0;
2373 
2374 	TXQ_LOCK(txq);
2375 	if (__predict_false(discard_tx(eq))) {
2376 		while (cidx != pidx) {
2377 			m0 = r->items[cidx];
2378 			m_freem(m0);
2379 			if (++cidx == r->size)
2380 				cidx = 0;
2381 		}
2382 		reclaim_tx_descs(txq, 2048);
2383 		total = remaining;
2384 		goto done;
2385 	}
2386 
2387 	/* How many hardware descriptors do we have readily available. */
2388 	if (eq->pidx == eq->cidx)
2389 		available = eq->sidx - 1;
2390 	else
2391 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2392 	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2393 
2394 	while (remaining > 0) {
2395 
2396 		m0 = r->items[cidx];
2397 		M_ASSERTPKTHDR(m0);
2398 		MPASS(m0->m_nextpkt == NULL);
2399 
2400 		if (available < SGE_MAX_WR_NDESC) {
2401 			available += reclaim_tx_descs(txq, 64);
2402 			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2403 				break;	/* out of descriptors */
2404 		}
2405 
2406 		next_cidx = cidx + 1;
2407 		if (__predict_false(next_cidx == r->size))
2408 			next_cidx = 0;
2409 
2410 		wr = (void *)&eq->desc[eq->pidx];
2411 		if (sc->flags & IS_VF) {
2412 			total++;
2413 			remaining--;
2414 			ETHER_BPF_MTAP(ifp, m0);
2415 			n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0,
2416 			    available);
2417 		} else if (remaining > 1 &&
2418 		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2419 
2420 			/* pkts at cidx, next_cidx should both be in txp. */
2421 			MPASS(txp.npkt == 2);
2422 			tail = r->items[next_cidx];
2423 			MPASS(tail->m_nextpkt == NULL);
2424 			ETHER_BPF_MTAP(ifp, m0);
2425 			ETHER_BPF_MTAP(ifp, tail);
2426 			m0->m_nextpkt = tail;
2427 
2428 			if (__predict_false(++next_cidx == r->size))
2429 				next_cidx = 0;
2430 
2431 			while (next_cidx != pidx) {
2432 				if (add_to_txpkts(r->items[next_cidx], &txp,
2433 				    available) != 0)
2434 					break;
2435 				tail->m_nextpkt = r->items[next_cidx];
2436 				tail = tail->m_nextpkt;
2437 				ETHER_BPF_MTAP(ifp, tail);
2438 				if (__predict_false(++next_cidx == r->size))
2439 					next_cidx = 0;
2440 			}
2441 
2442 			n = write_txpkts_wr(txq, wr, m0, &txp, available);
2443 			total += txp.npkt;
2444 			remaining -= txp.npkt;
2445 		} else {
2446 			total++;
2447 			remaining--;
2448 			ETHER_BPF_MTAP(ifp, m0);
2449 			n = write_txpkt_wr(txq, (void *)wr, m0, available);
2450 		}
2451 		MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
2452 
2453 		available -= n;
2454 		dbdiff += n;
2455 		IDXINCR(eq->pidx, n, eq->sidx);
2456 
2457 		if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2458 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2459 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2460 			    F_FW_WR_EQUEQ);
2461 			eq->equeqidx = eq->pidx;
2462 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2463 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2464 			eq->equeqidx = eq->pidx;
2465 		}
2466 
2467 		if (dbdiff >= 16 && remaining >= 4) {
2468 			ring_eq_db(sc, eq, dbdiff);
2469 			available += reclaim_tx_descs(txq, 4 * dbdiff);
2470 			dbdiff = 0;
2471 		}
2472 
2473 		cidx = next_cidx;
2474 	}
2475 	if (dbdiff != 0) {
2476 		ring_eq_db(sc, eq, dbdiff);
2477 		reclaim_tx_descs(txq, 32);
2478 	}
2479 done:
2480 	TXQ_UNLOCK(txq);
2481 
2482 	return (total);
2483 }
2484 
2485 static inline void
2486 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2487     int qsize)
2488 {
2489 
2490 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2491 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2492 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2493 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2494 
2495 	iq->flags = 0;
2496 	iq->adapter = sc;
2497 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2498 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2499 	if (pktc_idx >= 0) {
2500 		iq->intr_params |= F_QINTR_CNT_EN;
2501 		iq->intr_pktc_idx = pktc_idx;
2502 	}
2503 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2504 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
2505 }
2506 
2507 static inline void
2508 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
2509 {
2510 
2511 	fl->qsize = qsize;
2512 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2513 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2514 	if (sc->flags & BUF_PACKING_OK &&
2515 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
2516 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
2517 		fl->flags |= FL_BUF_PACKING;
2518 	find_best_refill_source(sc, fl, maxp);
2519 	find_safe_refill_source(sc, fl);
2520 }
2521 
2522 static inline void
2523 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
2524     uint8_t tx_chan, uint16_t iqid, char *name)
2525 {
2526 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2527 
2528 	eq->flags = eqtype & EQ_TYPEMASK;
2529 	eq->tx_chan = tx_chan;
2530 	eq->iqid = iqid;
2531 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2532 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2533 }
2534 
2535 static int
2536 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2537     bus_dmamap_t *map, bus_addr_t *pa, void **va)
2538 {
2539 	int rc;
2540 
2541 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2542 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2543 	if (rc != 0) {
2544 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2545 		goto done;
2546 	}
2547 
2548 	rc = bus_dmamem_alloc(*tag, va,
2549 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2550 	if (rc != 0) {
2551 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2552 		goto done;
2553 	}
2554 
2555 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2556 	if (rc != 0) {
2557 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2558 		goto done;
2559 	}
2560 done:
2561 	if (rc)
2562 		free_ring(sc, *tag, *map, *pa, *va);
2563 
2564 	return (rc);
2565 }
2566 
2567 static int
2568 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2569     bus_addr_t pa, void *va)
2570 {
2571 	if (pa)
2572 		bus_dmamap_unload(tag, map);
2573 	if (va)
2574 		bus_dmamem_free(tag, va, map);
2575 	if (tag)
2576 		bus_dma_tag_destroy(tag);
2577 
2578 	return (0);
2579 }
2580 
2581 /*
2582  * Allocates the ring for an ingress queue and an optional freelist.  If the
2583  * freelist is specified it will be allocated and then associated with the
2584  * ingress queue.
2585  *
2586  * Returns errno on failure.  Resources allocated up to that point may still be
2587  * allocated.  Caller is responsible for cleanup in case this function fails.
2588  *
2589  * If the ingress queue will take interrupts directly then the intr_idx
2590  * specifies the vector, starting from 0.  -1 means the interrupts for this
2591  * queue should be forwarded to the fwq.
2592  */
2593 static int
2594 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
2595     int intr_idx, int cong)
2596 {
2597 	int rc, i, cntxt_id;
2598 	size_t len;
2599 	struct fw_iq_cmd c;
2600 	struct port_info *pi = vi->pi;
2601 	struct adapter *sc = iq->adapter;
2602 	struct sge_params *sp = &sc->params.sge;
2603 	__be32 v = 0;
2604 
2605 	len = iq->qsize * IQ_ESIZE;
2606 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2607 	    (void **)&iq->desc);
2608 	if (rc != 0)
2609 		return (rc);
2610 
2611 	bzero(&c, sizeof(c));
2612 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2613 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2614 	    V_FW_IQ_CMD_VFN(0));
2615 
2616 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2617 	    FW_LEN16(c));
2618 
2619 	/* Special handling for firmware event queue */
2620 	if (iq == &sc->sge.fwq)
2621 		v |= F_FW_IQ_CMD_IQASYNCH;
2622 
2623 	if (intr_idx < 0) {
2624 		/* Forwarded interrupts, all headed to fwq */
2625 		v |= F_FW_IQ_CMD_IQANDST;
2626 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
2627 	} else {
2628 		KASSERT(intr_idx < sc->intr_count,
2629 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2630 		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2631 	}
2632 
2633 	c.type_to_iqandstindex = htobe32(v |
2634 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2635 	    V_FW_IQ_CMD_VIID(vi->viid) |
2636 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2637 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2638 	    F_FW_IQ_CMD_IQGTSMODE |
2639 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2640 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2641 	c.iqsize = htobe16(iq->qsize);
2642 	c.iqaddr = htobe64(iq->ba);
2643 	if (cong >= 0)
2644 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2645 
2646 	if (fl) {
2647 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2648 
2649 		len = fl->qsize * EQ_ESIZE;
2650 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2651 		    &fl->ba, (void **)&fl->desc);
2652 		if (rc)
2653 			return (rc);
2654 
2655 		/* Allocate space for one software descriptor per buffer. */
2656 		rc = alloc_fl_sdesc(fl);
2657 		if (rc != 0) {
2658 			device_printf(sc->dev,
2659 			    "failed to setup fl software descriptors: %d\n",
2660 			    rc);
2661 			return (rc);
2662 		}
2663 
2664 		if (fl->flags & FL_BUF_PACKING) {
2665 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
2666 			fl->buf_boundary = sp->pack_boundary;
2667 		} else {
2668 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
2669 			fl->buf_boundary = 16;
2670 		}
2671 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
2672 			fl->buf_boundary = sp->pad_boundary;
2673 
2674 		c.iqns_to_fl0congen |=
2675 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2676 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2677 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2678 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2679 			    0));
2680 		if (cong >= 0) {
2681 			c.iqns_to_fl0congen |=
2682 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2683 				    F_FW_IQ_CMD_FL0CONGCIF |
2684 				    F_FW_IQ_CMD_FL0CONGEN);
2685 		}
2686 		c.fl0dcaen_to_fl0cidxfthresh =
2687 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
2688 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) |
2689 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
2690 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
2691 		c.fl0size = htobe16(fl->qsize);
2692 		c.fl0addr = htobe64(fl->ba);
2693 	}
2694 
2695 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2696 	if (rc != 0) {
2697 		device_printf(sc->dev,
2698 		    "failed to create ingress queue: %d\n", rc);
2699 		return (rc);
2700 	}
2701 
2702 	iq->cidx = 0;
2703 	iq->gen = F_RSPD_GEN;
2704 	iq->intr_next = iq->intr_params;
2705 	iq->cntxt_id = be16toh(c.iqid);
2706 	iq->abs_id = be16toh(c.physiqid);
2707 	iq->flags |= IQ_ALLOCATED;
2708 
2709 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2710 	if (cntxt_id >= sc->sge.niq) {
2711 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2712 		    cntxt_id, sc->sge.niq - 1);
2713 	}
2714 	sc->sge.iqmap[cntxt_id] = iq;
2715 
2716 	if (fl) {
2717 		u_int qid;
2718 
2719 		iq->flags |= IQ_HAS_FL;
2720 		fl->cntxt_id = be16toh(c.fl0id);
2721 		fl->pidx = fl->cidx = 0;
2722 
2723 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2724 		if (cntxt_id >= sc->sge.neq) {
2725 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2726 			    __func__, cntxt_id, sc->sge.neq - 1);
2727 		}
2728 		sc->sge.eqmap[cntxt_id] = (void *)fl;
2729 
2730 		qid = fl->cntxt_id;
2731 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
2732 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
2733 			uint32_t mask = (1 << s_qpp) - 1;
2734 			volatile uint8_t *udb;
2735 
2736 			udb = sc->udbs_base + UDBS_DB_OFFSET;
2737 			udb += (qid >> s_qpp) << PAGE_SHIFT;
2738 			qid &= mask;
2739 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
2740 				udb += qid << UDBS_SEG_SHIFT;
2741 				qid = 0;
2742 			}
2743 			fl->udb = (volatile void *)udb;
2744 		}
2745 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
2746 
2747 		FL_LOCK(fl);
2748 		/* Enough to make sure the SGE doesn't think it's starved */
2749 		refill_fl(sc, fl, fl->lowat);
2750 		FL_UNLOCK(fl);
2751 	}
2752 
2753 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) {
2754 		uint32_t param, val;
2755 
2756 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2757 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2758 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2759 		if (cong == 0)
2760 			val = 1 << 19;
2761 		else {
2762 			val = 2 << 19;
2763 			for (i = 0; i < 4; i++) {
2764 				if (cong & (1 << i))
2765 					val |= 1 << (i << 2);
2766 			}
2767 		}
2768 
2769 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2770 		if (rc != 0) {
2771 			/* report error but carry on */
2772 			device_printf(sc->dev,
2773 			    "failed to set congestion manager context for "
2774 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2775 		}
2776 	}
2777 
2778 	/* Enable IQ interrupts */
2779 	atomic_store_rel_int(&iq->state, IQS_IDLE);
2780 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
2781 	    V_INGRESSQID(iq->cntxt_id));
2782 
2783 	return (0);
2784 }
2785 
2786 static int
2787 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
2788 {
2789 	int rc;
2790 	struct adapter *sc = iq->adapter;
2791 	device_t dev;
2792 
2793 	if (sc == NULL)
2794 		return (0);	/* nothing to do */
2795 
2796 	dev = vi ? vi->dev : sc->dev;
2797 
2798 	if (iq->flags & IQ_ALLOCATED) {
2799 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2800 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2801 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2802 		if (rc != 0) {
2803 			device_printf(dev,
2804 			    "failed to free queue %p: %d\n", iq, rc);
2805 			return (rc);
2806 		}
2807 		iq->flags &= ~IQ_ALLOCATED;
2808 	}
2809 
2810 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2811 
2812 	bzero(iq, sizeof(*iq));
2813 
2814 	if (fl) {
2815 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2816 		    fl->desc);
2817 
2818 		if (fl->sdesc)
2819 			free_fl_sdesc(sc, fl);
2820 
2821 		if (mtx_initialized(&fl->fl_lock))
2822 			mtx_destroy(&fl->fl_lock);
2823 
2824 		bzero(fl, sizeof(*fl));
2825 	}
2826 
2827 	return (0);
2828 }
2829 
2830 static void
2831 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2832     struct sge_iq *iq)
2833 {
2834 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2835 
2836 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
2837 	    "bus address of descriptor ring");
2838 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
2839 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
2840 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
2841 	    CTLTYPE_INT | CTLFLAG_RD, &iq->abs_id, 0, sysctl_uint16, "I",
2842 	    "absolute id of the queue");
2843 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2844 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cntxt_id, 0, sysctl_uint16, "I",
2845 	    "SGE context id of the queue");
2846 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2847 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cidx, 0, sysctl_uint16, "I",
2848 	    "consumer index");
2849 }
2850 
2851 static void
2852 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
2853     struct sysctl_oid *oid, struct sge_fl *fl)
2854 {
2855 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2856 
2857 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2858 	    "freelist");
2859 	children = SYSCTL_CHILDREN(oid);
2860 
2861 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
2862 	    &fl->ba, "bus address of descriptor ring");
2863 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
2864 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
2865 	    "desc ring size in bytes");
2866 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2867 	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2868 	    "SGE context id of the freelist");
2869 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
2870 	    fl_pad ? 1 : 0, "padding enabled");
2871 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
2872 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
2873 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2874 	    0, "consumer index");
2875 	if (fl->flags & FL_BUF_PACKING) {
2876 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2877 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2878 	}
2879 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2880 	    0, "producer index");
2881 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2882 	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2883 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2884 	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2885 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2886 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2887 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2888 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2889 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2890 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2891 }
2892 
2893 static int
2894 alloc_fwq(struct adapter *sc)
2895 {
2896 	int rc, intr_idx;
2897 	struct sge_iq *fwq = &sc->sge.fwq;
2898 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2899 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2900 
2901 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
2902 	if (sc->flags & IS_VF)
2903 		intr_idx = 0;
2904 	else {
2905 		intr_idx = sc->intr_count > 1 ? 1 : 0;
2906 		fwq->set_tcb_rpl = t4_filter_rpl;
2907 		fwq->l2t_write_rpl = do_l2t_write_rpl;
2908 	}
2909 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
2910 	if (rc != 0) {
2911 		device_printf(sc->dev,
2912 		    "failed to create firmware event queue: %d\n", rc);
2913 		return (rc);
2914 	}
2915 
2916 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2917 	    NULL, "firmware event queue");
2918 	add_iq_sysctls(&sc->ctx, oid, fwq);
2919 
2920 	return (0);
2921 }
2922 
2923 static int
2924 free_fwq(struct adapter *sc)
2925 {
2926 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2927 }
2928 
2929 static int
2930 alloc_mgmtq(struct adapter *sc)
2931 {
2932 	int rc;
2933 	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2934 	char name[16];
2935 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2936 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2937 
2938 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2939 	    NULL, "management queue");
2940 
2941 	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2942 	init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2943 	    sc->sge.fwq.cntxt_id, name);
2944 	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2945 	if (rc != 0) {
2946 		device_printf(sc->dev,
2947 		    "failed to create management queue: %d\n", rc);
2948 		return (rc);
2949 	}
2950 
2951 	return (0);
2952 }
2953 
2954 static int
2955 free_mgmtq(struct adapter *sc)
2956 {
2957 
2958 	return free_wrq(sc, &sc->sge.mgmtq);
2959 }
2960 
2961 int
2962 tnl_cong(struct port_info *pi, int drop)
2963 {
2964 
2965 	if (drop == -1)
2966 		return (-1);
2967 	else if (drop == 1)
2968 		return (0);
2969 	else
2970 		return (pi->rx_e_chan_map);
2971 }
2972 
2973 static int
2974 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
2975     struct sysctl_oid *oid)
2976 {
2977 	int rc;
2978 	struct adapter *sc = vi->pi->adapter;
2979 	struct sysctl_oid_list *children;
2980 	char name[16];
2981 
2982 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
2983 	    tnl_cong(vi->pi, cong_drop));
2984 	if (rc != 0)
2985 		return (rc);
2986 
2987 	if (idx == 0)
2988 		sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
2989 	else
2990 		KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
2991 		    ("iq_base mismatch"));
2992 	KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
2993 	    ("PF with non-zero iq_base"));
2994 
2995 	/*
2996 	 * The freelist is just barely above the starvation threshold right now,
2997 	 * fill it up a bit more.
2998 	 */
2999 	FL_LOCK(&rxq->fl);
3000 	refill_fl(sc, &rxq->fl, 128);
3001 	FL_UNLOCK(&rxq->fl);
3002 
3003 #if defined(INET) || defined(INET6)
3004 	rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs);
3005 	if (rc != 0)
3006 		return (rc);
3007 	MPASS(rxq->lro.ifp == vi->ifp);	/* also indicates LRO init'ed */
3008 
3009 	if (vi->ifp->if_capenable & IFCAP_LRO)
3010 		rxq->iq.flags |= IQ_LRO_ENABLED;
3011 #endif
3012 	rxq->ifp = vi->ifp;
3013 
3014 	children = SYSCTL_CHILDREN(oid);
3015 
3016 	snprintf(name, sizeof(name), "%d", idx);
3017 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3018 	    NULL, "rx queue");
3019 	children = SYSCTL_CHILDREN(oid);
3020 
3021 	add_iq_sysctls(&vi->ctx, oid, &rxq->iq);
3022 #if defined(INET) || defined(INET6)
3023 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3024 	    &rxq->lro.lro_queued, 0, NULL);
3025 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3026 	    &rxq->lro.lro_flushed, 0, NULL);
3027 #endif
3028 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3029 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3030 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3031 	    CTLFLAG_RD, &rxq->vlan_extraction,
3032 	    "# of times hardware extracted 802.1Q tag");
3033 
3034 	add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl);
3035 
3036 	return (rc);
3037 }
3038 
3039 static int
3040 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3041 {
3042 	int rc;
3043 
3044 #if defined(INET) || defined(INET6)
3045 	if (rxq->lro.ifp) {
3046 		tcp_lro_free(&rxq->lro);
3047 		rxq->lro.ifp = NULL;
3048 	}
3049 #endif
3050 
3051 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3052 	if (rc == 0)
3053 		bzero(rxq, sizeof(*rxq));
3054 
3055 	return (rc);
3056 }
3057 
3058 #ifdef TCP_OFFLOAD
3059 static int
3060 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3061     int intr_idx, int idx, struct sysctl_oid *oid)
3062 {
3063 	struct port_info *pi = vi->pi;
3064 	int rc;
3065 	struct sysctl_oid_list *children;
3066 	char name[16];
3067 
3068 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0);
3069 	if (rc != 0)
3070 		return (rc);
3071 
3072 	children = SYSCTL_CHILDREN(oid);
3073 
3074 	snprintf(name, sizeof(name), "%d", idx);
3075 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3076 	    NULL, "rx queue");
3077 	add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq);
3078 	add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl);
3079 
3080 	return (rc);
3081 }
3082 
3083 static int
3084 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3085 {
3086 	int rc;
3087 
3088 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3089 	if (rc == 0)
3090 		bzero(ofld_rxq, sizeof(*ofld_rxq));
3091 
3092 	return (rc);
3093 }
3094 #endif
3095 
3096 #ifdef DEV_NETMAP
3097 static int
3098 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3099     int idx, struct sysctl_oid *oid)
3100 {
3101 	int rc;
3102 	struct sysctl_oid_list *children;
3103 	struct sysctl_ctx_list *ctx;
3104 	char name[16];
3105 	size_t len;
3106 	struct adapter *sc = vi->pi->adapter;
3107 	struct netmap_adapter *na = NA(vi->ifp);
3108 
3109 	MPASS(na != NULL);
3110 
3111 	len = vi->qsize_rxq * IQ_ESIZE;
3112 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3113 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3114 	if (rc != 0)
3115 		return (rc);
3116 
3117 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3118 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3119 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3120 	if (rc != 0)
3121 		return (rc);
3122 
3123 	nm_rxq->vi = vi;
3124 	nm_rxq->nid = idx;
3125 	nm_rxq->iq_cidx = 0;
3126 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3127 	nm_rxq->iq_gen = F_RSPD_GEN;
3128 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3129 	nm_rxq->fl_sidx = na->num_rx_desc;
3130 	nm_rxq->intr_idx = intr_idx;
3131 	nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID;
3132 
3133 	ctx = &vi->ctx;
3134 	children = SYSCTL_CHILDREN(oid);
3135 
3136 	snprintf(name, sizeof(name), "%d", idx);
3137 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3138 	    "rx queue");
3139 	children = SYSCTL_CHILDREN(oid);
3140 
3141 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3142 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3143 	    "I", "absolute id of the queue");
3144 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3145 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3146 	    "I", "SGE context id of the queue");
3147 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3148 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3149 	    "consumer index");
3150 
3151 	children = SYSCTL_CHILDREN(oid);
3152 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3153 	    "freelist");
3154 	children = SYSCTL_CHILDREN(oid);
3155 
3156 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3157 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3158 	    "I", "SGE context id of the freelist");
3159 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3160 	    &nm_rxq->fl_cidx, 0, "consumer index");
3161 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3162 	    &nm_rxq->fl_pidx, 0, "producer index");
3163 
3164 	return (rc);
3165 }
3166 
3167 
3168 static int
3169 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3170 {
3171 	struct adapter *sc = vi->pi->adapter;
3172 
3173 	if (vi->flags & VI_INIT_DONE)
3174 		MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID);
3175 	else
3176 		MPASS(nm_rxq->iq_cntxt_id == 0);
3177 
3178 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3179 	    nm_rxq->iq_desc);
3180 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3181 	    nm_rxq->fl_desc);
3182 
3183 	return (0);
3184 }
3185 
3186 static int
3187 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3188     struct sysctl_oid *oid)
3189 {
3190 	int rc;
3191 	size_t len;
3192 	struct port_info *pi = vi->pi;
3193 	struct adapter *sc = pi->adapter;
3194 	struct netmap_adapter *na = NA(vi->ifp);
3195 	char name[16];
3196 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3197 
3198 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3199 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3200 	    &nm_txq->ba, (void **)&nm_txq->desc);
3201 	if (rc)
3202 		return (rc);
3203 
3204 	nm_txq->pidx = nm_txq->cidx = 0;
3205 	nm_txq->sidx = na->num_tx_desc;
3206 	nm_txq->nid = idx;
3207 	nm_txq->iqidx = iqidx;
3208 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3209 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) |
3210 	    V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) |
3211 	    V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid)));
3212 	nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID;
3213 
3214 	snprintf(name, sizeof(name), "%d", idx);
3215 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3216 	    NULL, "netmap tx queue");
3217 	children = SYSCTL_CHILDREN(oid);
3218 
3219 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3220 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3221 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3222 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3223 	    "consumer index");
3224 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3225 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3226 	    "producer index");
3227 
3228 	return (rc);
3229 }
3230 
3231 static int
3232 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3233 {
3234 	struct adapter *sc = vi->pi->adapter;
3235 
3236 	if (vi->flags & VI_INIT_DONE)
3237 		MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID);
3238 	else
3239 		MPASS(nm_txq->cntxt_id == 0);
3240 
3241 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3242 	    nm_txq->desc);
3243 
3244 	return (0);
3245 }
3246 #endif
3247 
3248 static int
3249 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3250 {
3251 	int rc, cntxt_id;
3252 	struct fw_eq_ctrl_cmd c;
3253 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3254 
3255 	bzero(&c, sizeof(c));
3256 
3257 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3258 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3259 	    V_FW_EQ_CTRL_CMD_VFN(0));
3260 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3261 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3262 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3263 	c.physeqid_pkd = htobe32(0);
3264 	c.fetchszm_to_iqid =
3265 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3266 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3267 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3268 	c.dcaen_to_eqsize =
3269 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3270 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3271 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
3272 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3273 	c.eqaddr = htobe64(eq->ba);
3274 
3275 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3276 	if (rc != 0) {
3277 		device_printf(sc->dev,
3278 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3279 		return (rc);
3280 	}
3281 	eq->flags |= EQ_ALLOCATED;
3282 
3283 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3284 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3285 	if (cntxt_id >= sc->sge.neq)
3286 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3287 		cntxt_id, sc->sge.neq - 1);
3288 	sc->sge.eqmap[cntxt_id] = eq;
3289 
3290 	return (rc);
3291 }
3292 
3293 static int
3294 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3295 {
3296 	int rc, cntxt_id;
3297 	struct fw_eq_eth_cmd c;
3298 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3299 
3300 	bzero(&c, sizeof(c));
3301 
3302 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3303 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3304 	    V_FW_EQ_ETH_CMD_VFN(0));
3305 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3306 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3307 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3308 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3309 	c.fetchszm_to_iqid =
3310 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3311 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3312 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3313 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3314 	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3315 	    V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3316 	c.eqaddr = htobe64(eq->ba);
3317 
3318 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3319 	if (rc != 0) {
3320 		device_printf(vi->dev,
3321 		    "failed to create Ethernet egress queue: %d\n", rc);
3322 		return (rc);
3323 	}
3324 	eq->flags |= EQ_ALLOCATED;
3325 
3326 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3327 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
3328 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3329 	if (cntxt_id >= sc->sge.neq)
3330 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3331 		cntxt_id, sc->sge.neq - 1);
3332 	sc->sge.eqmap[cntxt_id] = eq;
3333 
3334 	return (rc);
3335 }
3336 
3337 #ifdef TCP_OFFLOAD
3338 static int
3339 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3340 {
3341 	int rc, cntxt_id;
3342 	struct fw_eq_ofld_cmd c;
3343 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3344 
3345 	bzero(&c, sizeof(c));
3346 
3347 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3348 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3349 	    V_FW_EQ_OFLD_CMD_VFN(0));
3350 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3351 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3352 	c.fetchszm_to_iqid =
3353 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3354 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3355 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3356 	c.dcaen_to_eqsize =
3357 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3358 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3359 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3360 	c.eqaddr = htobe64(eq->ba);
3361 
3362 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3363 	if (rc != 0) {
3364 		device_printf(vi->dev,
3365 		    "failed to create egress queue for TCP offload: %d\n", rc);
3366 		return (rc);
3367 	}
3368 	eq->flags |= EQ_ALLOCATED;
3369 
3370 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3371 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3372 	if (cntxt_id >= sc->sge.neq)
3373 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3374 		cntxt_id, sc->sge.neq - 1);
3375 	sc->sge.eqmap[cntxt_id] = eq;
3376 
3377 	return (rc);
3378 }
3379 #endif
3380 
3381 static int
3382 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3383 {
3384 	int rc, qsize;
3385 	size_t len;
3386 
3387 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3388 
3389 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3390 	len = qsize * EQ_ESIZE;
3391 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3392 	    &eq->ba, (void **)&eq->desc);
3393 	if (rc)
3394 		return (rc);
3395 
3396 	eq->pidx = eq->cidx = 0;
3397 	eq->equeqidx = eq->dbidx = 0;
3398 	eq->doorbells = sc->doorbells;
3399 
3400 	switch (eq->flags & EQ_TYPEMASK) {
3401 	case EQ_CTRL:
3402 		rc = ctrl_eq_alloc(sc, eq);
3403 		break;
3404 
3405 	case EQ_ETH:
3406 		rc = eth_eq_alloc(sc, vi, eq);
3407 		break;
3408 
3409 #ifdef TCP_OFFLOAD
3410 	case EQ_OFLD:
3411 		rc = ofld_eq_alloc(sc, vi, eq);
3412 		break;
3413 #endif
3414 
3415 	default:
3416 		panic("%s: invalid eq type %d.", __func__,
3417 		    eq->flags & EQ_TYPEMASK);
3418 	}
3419 	if (rc != 0) {
3420 		device_printf(sc->dev,
3421 		    "failed to allocate egress queue(%d): %d\n",
3422 		    eq->flags & EQ_TYPEMASK, rc);
3423 	}
3424 
3425 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3426 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3427 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3428 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3429 		uint32_t mask = (1 << s_qpp) - 1;
3430 		volatile uint8_t *udb;
3431 
3432 		udb = sc->udbs_base + UDBS_DB_OFFSET;
3433 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3434 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3435 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3436 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3437 		else {
3438 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3439 			eq->udb_qid = 0;
3440 		}
3441 		eq->udb = (volatile void *)udb;
3442 	}
3443 
3444 	return (rc);
3445 }
3446 
3447 static int
3448 free_eq(struct adapter *sc, struct sge_eq *eq)
3449 {
3450 	int rc;
3451 
3452 	if (eq->flags & EQ_ALLOCATED) {
3453 		switch (eq->flags & EQ_TYPEMASK) {
3454 		case EQ_CTRL:
3455 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3456 			    eq->cntxt_id);
3457 			break;
3458 
3459 		case EQ_ETH:
3460 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3461 			    eq->cntxt_id);
3462 			break;
3463 
3464 #ifdef TCP_OFFLOAD
3465 		case EQ_OFLD:
3466 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3467 			    eq->cntxt_id);
3468 			break;
3469 #endif
3470 
3471 		default:
3472 			panic("%s: invalid eq type %d.", __func__,
3473 			    eq->flags & EQ_TYPEMASK);
3474 		}
3475 		if (rc != 0) {
3476 			device_printf(sc->dev,
3477 			    "failed to free egress queue (%d): %d\n",
3478 			    eq->flags & EQ_TYPEMASK, rc);
3479 			return (rc);
3480 		}
3481 		eq->flags &= ~EQ_ALLOCATED;
3482 	}
3483 
3484 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3485 
3486 	if (mtx_initialized(&eq->eq_lock))
3487 		mtx_destroy(&eq->eq_lock);
3488 
3489 	bzero(eq, sizeof(*eq));
3490 	return (0);
3491 }
3492 
3493 static int
3494 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
3495     struct sysctl_oid *oid)
3496 {
3497 	int rc;
3498 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
3499 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3500 
3501 	rc = alloc_eq(sc, vi, &wrq->eq);
3502 	if (rc)
3503 		return (rc);
3504 
3505 	wrq->adapter = sc;
3506 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
3507 	TAILQ_INIT(&wrq->incomplete_wrs);
3508 	STAILQ_INIT(&wrq->wr_list);
3509 	wrq->nwr_pending = 0;
3510 	wrq->ndesc_needed = 0;
3511 
3512 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3513 	    &wrq->eq.ba, "bus address of descriptor ring");
3514 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3515 	    wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len,
3516 	    "desc ring size in bytes");
3517 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3518 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3519 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3520 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3521 	    "consumer index");
3522 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3523 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3524 	    "producer index");
3525 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3526 	    wrq->eq.sidx, "status page index");
3527 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
3528 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
3529 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
3530 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
3531 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
3532 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
3533 
3534 	return (rc);
3535 }
3536 
3537 static int
3538 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3539 {
3540 	int rc;
3541 
3542 	rc = free_eq(sc, &wrq->eq);
3543 	if (rc)
3544 		return (rc);
3545 
3546 	bzero(wrq, sizeof(*wrq));
3547 	return (0);
3548 }
3549 
3550 static int
3551 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
3552     struct sysctl_oid *oid)
3553 {
3554 	int rc;
3555 	struct port_info *pi = vi->pi;
3556 	struct adapter *sc = pi->adapter;
3557 	struct sge_eq *eq = &txq->eq;
3558 	char name[16];
3559 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3560 
3561 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
3562 	    M_CXGBE, M_WAITOK);
3563 	if (rc != 0) {
3564 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
3565 		return (rc);
3566 	}
3567 
3568 	rc = alloc_eq(sc, vi, eq);
3569 	if (rc != 0) {
3570 		mp_ring_free(txq->r);
3571 		txq->r = NULL;
3572 		return (rc);
3573 	}
3574 
3575 	/* Can't fail after this point. */
3576 
3577 	if (idx == 0)
3578 		sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
3579 	else
3580 		KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
3581 		    ("eq_base mismatch"));
3582 	KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
3583 	    ("PF with non-zero eq_base"));
3584 
3585 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
3586 	txq->ifp = vi->ifp;
3587 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
3588 	if (sc->flags & IS_VF)
3589 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
3590 		    V_TXPKT_INTF(pi->tx_chan));
3591 	else
3592 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3593 		    V_TXPKT_INTF(pi->tx_chan) |
3594 		    V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) |
3595 		    V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) |
3596 		    V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid)));
3597 	txq->tc_idx = -1;
3598 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
3599 	    M_ZERO | M_WAITOK);
3600 
3601 	snprintf(name, sizeof(name), "%d", idx);
3602 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3603 	    NULL, "tx queue");
3604 	children = SYSCTL_CHILDREN(oid);
3605 
3606 	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3607 	    &eq->ba, "bus address of descriptor ring");
3608 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3609 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3610 	    "desc ring size in bytes");
3611 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3612 	    &eq->abs_id, 0, "absolute id of the queue");
3613 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3614 	    &eq->cntxt_id, 0, "SGE context id of the queue");
3615 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3616 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3617 	    "consumer index");
3618 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3619 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3620 	    "producer index");
3621 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3622 	    eq->sidx, "status page index");
3623 
3624 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
3625 	    CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I",
3626 	    "traffic class (-1 means none)");
3627 
3628 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3629 	    &txq->txcsum, "# of times hardware assisted with checksum");
3630 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
3631 	    CTLFLAG_RD, &txq->vlan_insertion,
3632 	    "# of times hardware inserted 802.1Q tag");
3633 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3634 	    &txq->tso_wrs, "# of TSO work requests");
3635 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3636 	    &txq->imm_wrs, "# of work requests with immediate data");
3637 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3638 	    &txq->sgl_wrs, "# of work requests with direct SGL");
3639 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3640 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3641 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
3642 	    CTLFLAG_RD, &txq->txpkts0_wrs,
3643 	    "# of txpkts (type 0) work requests");
3644 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
3645 	    CTLFLAG_RD, &txq->txpkts1_wrs,
3646 	    "# of txpkts (type 1) work requests");
3647 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
3648 	    CTLFLAG_RD, &txq->txpkts0_pkts,
3649 	    "# of frames tx'd using type0 txpkts work requests");
3650 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
3651 	    CTLFLAG_RD, &txq->txpkts1_pkts,
3652 	    "# of frames tx'd using type1 txpkts work requests");
3653 
3654 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
3655 	    CTLFLAG_RD, &txq->r->enqueues,
3656 	    "# of enqueues to the mp_ring for this queue");
3657 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
3658 	    CTLFLAG_RD, &txq->r->drops,
3659 	    "# of drops in the mp_ring for this queue");
3660 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
3661 	    CTLFLAG_RD, &txq->r->starts,
3662 	    "# of normal consumer starts in the mp_ring for this queue");
3663 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
3664 	    CTLFLAG_RD, &txq->r->stalls,
3665 	    "# of consumer stalls in the mp_ring for this queue");
3666 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
3667 	    CTLFLAG_RD, &txq->r->restarts,
3668 	    "# of consumer restarts in the mp_ring for this queue");
3669 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
3670 	    CTLFLAG_RD, &txq->r->abdications,
3671 	    "# of consumer abdications in the mp_ring for this queue");
3672 
3673 	return (0);
3674 }
3675 
3676 static int
3677 free_txq(struct vi_info *vi, struct sge_txq *txq)
3678 {
3679 	int rc;
3680 	struct adapter *sc = vi->pi->adapter;
3681 	struct sge_eq *eq = &txq->eq;
3682 
3683 	rc = free_eq(sc, eq);
3684 	if (rc)
3685 		return (rc);
3686 
3687 	sglist_free(txq->gl);
3688 	free(txq->sdesc, M_CXGBE);
3689 	mp_ring_free(txq->r);
3690 
3691 	bzero(txq, sizeof(*txq));
3692 	return (0);
3693 }
3694 
3695 static void
3696 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3697 {
3698 	bus_addr_t *ba = arg;
3699 
3700 	KASSERT(nseg == 1,
3701 	    ("%s meant for single segment mappings only.", __func__));
3702 
3703 	*ba = error ? 0 : segs->ds_addr;
3704 }
3705 
3706 static inline void
3707 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3708 {
3709 	uint32_t n, v;
3710 
3711 	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
3712 	MPASS(n > 0);
3713 
3714 	wmb();
3715 	v = fl->dbval | V_PIDX(n);
3716 	if (fl->udb)
3717 		*fl->udb = htole32(v);
3718 	else
3719 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
3720 	IDXINCR(fl->dbidx, n, fl->sidx);
3721 }
3722 
3723 /*
3724  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
3725  * recycled do not count towards this allocation budget.
3726  *
3727  * Returns non-zero to indicate that this freelist should be added to the list
3728  * of starving freelists.
3729  */
3730 static int
3731 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
3732 {
3733 	__be64 *d;
3734 	struct fl_sdesc *sd;
3735 	uintptr_t pa;
3736 	caddr_t cl;
3737 	struct cluster_layout *cll;
3738 	struct sw_zone_info *swz;
3739 	struct cluster_metadata *clm;
3740 	uint16_t max_pidx;
3741 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
3742 
3743 	FL_LOCK_ASSERT_OWNED(fl);
3744 
3745 	/*
3746 	 * We always stop at the beginning of the hardware descriptor that's just
3747 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
3748 	 * which would mean an empty freelist to the chip.
3749 	 */
3750 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
3751 	if (fl->pidx == max_pidx * 8)
3752 		return (0);
3753 
3754 	d = &fl->desc[fl->pidx];
3755 	sd = &fl->sdesc[fl->pidx];
3756 	cll = &fl->cll_def;	/* default layout */
3757 	swz = &sc->sge.sw_zone_info[cll->zidx];
3758 
3759 	while (n > 0) {
3760 
3761 		if (sd->cl != NULL) {
3762 
3763 			if (sd->nmbuf == 0) {
3764 				/*
3765 				 * Fast recycle without involving any atomics on
3766 				 * the cluster's metadata (if the cluster has
3767 				 * metadata).  This happens when all frames
3768 				 * received in the cluster were small enough to
3769 				 * fit within a single mbuf each.
3770 				 */
3771 				fl->cl_fast_recycled++;
3772 #ifdef INVARIANTS
3773 				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3774 				if (clm != NULL)
3775 					MPASS(clm->refcount == 1);
3776 #endif
3777 				goto recycled_fast;
3778 			}
3779 
3780 			/*
3781 			 * Cluster is guaranteed to have metadata.  Clusters
3782 			 * without metadata always take the fast recycle path
3783 			 * when they're recycled.
3784 			 */
3785 			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3786 			MPASS(clm != NULL);
3787 
3788 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3789 				fl->cl_recycled++;
3790 				counter_u64_add(extfree_rels, 1);
3791 				goto recycled;
3792 			}
3793 			sd->cl = NULL;	/* gave up my reference */
3794 		}
3795 		MPASS(sd->cl == NULL);
3796 alloc:
3797 		cl = uma_zalloc(swz->zone, M_NOWAIT);
3798 		if (__predict_false(cl == NULL)) {
3799 			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3800 			    fl->cll_def.zidx == fl->cll_alt.zidx)
3801 				break;
3802 
3803 			/* fall back to the safe zone */
3804 			cll = &fl->cll_alt;
3805 			swz = &sc->sge.sw_zone_info[cll->zidx];
3806 			goto alloc;
3807 		}
3808 		fl->cl_allocated++;
3809 		n--;
3810 
3811 		pa = pmap_kextract((vm_offset_t)cl);
3812 		pa += cll->region1;
3813 		sd->cl = cl;
3814 		sd->cll = *cll;
3815 		*d = htobe64(pa | cll->hwidx);
3816 		clm = cl_metadata(sc, fl, cll, cl);
3817 		if (clm != NULL) {
3818 recycled:
3819 #ifdef INVARIANTS
3820 			clm->sd = sd;
3821 #endif
3822 			clm->refcount = 1;
3823 		}
3824 		sd->nmbuf = 0;
3825 recycled_fast:
3826 		d++;
3827 		sd++;
3828 		if (__predict_false(++fl->pidx % 8 == 0)) {
3829 			uint16_t pidx = fl->pidx / 8;
3830 
3831 			if (__predict_false(pidx == fl->sidx)) {
3832 				fl->pidx = 0;
3833 				pidx = 0;
3834 				sd = fl->sdesc;
3835 				d = fl->desc;
3836 			}
3837 			if (pidx == max_pidx)
3838 				break;
3839 
3840 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
3841 				ring_fl_db(sc, fl);
3842 		}
3843 	}
3844 
3845 	if (fl->pidx / 8 != fl->dbidx)
3846 		ring_fl_db(sc, fl);
3847 
3848 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3849 }
3850 
3851 /*
3852  * Attempt to refill all starving freelists.
3853  */
3854 static void
3855 refill_sfl(void *arg)
3856 {
3857 	struct adapter *sc = arg;
3858 	struct sge_fl *fl, *fl_temp;
3859 
3860 	mtx_assert(&sc->sfl_lock, MA_OWNED);
3861 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3862 		FL_LOCK(fl);
3863 		refill_fl(sc, fl, 64);
3864 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3865 			TAILQ_REMOVE(&sc->sfl, fl, link);
3866 			fl->flags &= ~FL_STARVING;
3867 		}
3868 		FL_UNLOCK(fl);
3869 	}
3870 
3871 	if (!TAILQ_EMPTY(&sc->sfl))
3872 		callout_schedule(&sc->sfl_callout, hz / 5);
3873 }
3874 
3875 static int
3876 alloc_fl_sdesc(struct sge_fl *fl)
3877 {
3878 
3879 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
3880 	    M_ZERO | M_WAITOK);
3881 
3882 	return (0);
3883 }
3884 
3885 static void
3886 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3887 {
3888 	struct fl_sdesc *sd;
3889 	struct cluster_metadata *clm;
3890 	struct cluster_layout *cll;
3891 	int i;
3892 
3893 	sd = fl->sdesc;
3894 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
3895 		if (sd->cl == NULL)
3896 			continue;
3897 
3898 		cll = &sd->cll;
3899 		clm = cl_metadata(sc, fl, cll, sd->cl);
3900 		if (sd->nmbuf == 0)
3901 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3902 		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3903 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3904 			counter_u64_add(extfree_rels, 1);
3905 		}
3906 		sd->cl = NULL;
3907 	}
3908 
3909 	free(fl->sdesc, M_CXGBE);
3910 	fl->sdesc = NULL;
3911 }
3912 
3913 static inline void
3914 get_pkt_gl(struct mbuf *m, struct sglist *gl)
3915 {
3916 	int rc;
3917 
3918 	M_ASSERTPKTHDR(m);
3919 
3920 	sglist_reset(gl);
3921 	rc = sglist_append_mbuf(gl, m);
3922 	if (__predict_false(rc != 0)) {
3923 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
3924 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
3925 	}
3926 
3927 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
3928 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
3929 	    mbuf_nsegs(m), gl->sg_nseg));
3930 	KASSERT(gl->sg_nseg > 0 &&
3931 	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
3932 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
3933 		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
3934 }
3935 
3936 /*
3937  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
3938  */
3939 static inline u_int
3940 txpkt_len16(u_int nsegs, u_int tso)
3941 {
3942 	u_int n;
3943 
3944 	MPASS(nsegs > 0);
3945 
3946 	nsegs--; /* first segment is part of ulptx_sgl */
3947 	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
3948 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
3949 	if (tso)
3950 		n += sizeof(struct cpl_tx_pkt_lso_core);
3951 
3952 	return (howmany(n, 16));
3953 }
3954 
3955 /*
3956  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
3957  * request header.
3958  */
3959 static inline u_int
3960 txpkt_vm_len16(u_int nsegs, u_int tso)
3961 {
3962 	u_int n;
3963 
3964 	MPASS(nsegs > 0);
3965 
3966 	nsegs--; /* first segment is part of ulptx_sgl */
3967 	n = sizeof(struct fw_eth_tx_pkt_vm_wr) +
3968 	    sizeof(struct cpl_tx_pkt_core) +
3969 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
3970 	if (tso)
3971 		n += sizeof(struct cpl_tx_pkt_lso_core);
3972 
3973 	return (howmany(n, 16));
3974 }
3975 
3976 /*
3977  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
3978  * request header.
3979  */
3980 static inline u_int
3981 txpkts0_len16(u_int nsegs)
3982 {
3983 	u_int n;
3984 
3985 	MPASS(nsegs > 0);
3986 
3987 	nsegs--; /* first segment is part of ulptx_sgl */
3988 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
3989 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
3990 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
3991 
3992 	return (howmany(n, 16));
3993 }
3994 
3995 /*
3996  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
3997  * request header.
3998  */
3999 static inline u_int
4000 txpkts1_len16(void)
4001 {
4002 	u_int n;
4003 
4004 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
4005 
4006 	return (howmany(n, 16));
4007 }
4008 
4009 static inline u_int
4010 imm_payload(u_int ndesc)
4011 {
4012 	u_int n;
4013 
4014 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
4015 	    sizeof(struct cpl_tx_pkt_core);
4016 
4017 	return (n);
4018 }
4019 
4020 /*
4021  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
4022  * software descriptor, and advance the pidx.  It is guaranteed that enough
4023  * descriptors are available.
4024  *
4025  * The return value is the # of hardware descriptors used.
4026  */
4027 static u_int
4028 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq,
4029     struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available)
4030 {
4031 	struct sge_eq *eq = &txq->eq;
4032 	struct tx_sdesc *txsd;
4033 	struct cpl_tx_pkt_core *cpl;
4034 	uint32_t ctrl;	/* used in many unrelated places */
4035 	uint64_t ctrl1;
4036 	int csum_type, len16, ndesc, pktlen, nsegs;
4037 	caddr_t dst;
4038 
4039 	TXQ_LOCK_ASSERT_OWNED(txq);
4040 	M_ASSERTPKTHDR(m0);
4041 	MPASS(available > 0 && available < eq->sidx);
4042 
4043 	len16 = mbuf_len16(m0);
4044 	nsegs = mbuf_nsegs(m0);
4045 	pktlen = m0->m_pkthdr.len;
4046 	ctrl = sizeof(struct cpl_tx_pkt_core);
4047 	if (needs_tso(m0))
4048 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4049 	ndesc = howmany(len16, EQ_ESIZE / 16);
4050 	MPASS(ndesc <= available);
4051 
4052 	/* Firmware work request header */
4053 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4054 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
4055 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4056 
4057 	ctrl = V_FW_WR_LEN16(len16);
4058 	wr->equiq_to_len16 = htobe32(ctrl);
4059 	wr->r3[0] = 0;
4060 	wr->r3[1] = 0;
4061 
4062 	/*
4063 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
4064 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
4065 	 * simpler to always copy it rather than making it
4066 	 * conditional.  Also, it seems that we do not have to set
4067 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
4068 	 */
4069 	m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst);
4070 
4071 	csum_type = -1;
4072 	if (needs_tso(m0)) {
4073 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4074 
4075 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4076 		    m0->m_pkthdr.l4hlen > 0,
4077 		    ("%s: mbuf %p needs TSO but missing header lengths",
4078 			__func__, m0));
4079 
4080 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4081 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4082 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4083 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4084 			ctrl |= V_LSO_ETHHDR_LEN(1);
4085 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4086 			ctrl |= F_LSO_IPV6;
4087 
4088 		lso->lso_ctrl = htobe32(ctrl);
4089 		lso->ipid_ofst = htobe16(0);
4090 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4091 		lso->seqno_offset = htobe32(0);
4092 		lso->len = htobe32(pktlen);
4093 
4094 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4095 			csum_type = TX_CSUM_TCPIP6;
4096 		else
4097 			csum_type = TX_CSUM_TCPIP;
4098 
4099 		cpl = (void *)(lso + 1);
4100 
4101 		txq->tso_wrs++;
4102 	} else {
4103 		if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP)
4104 			csum_type = TX_CSUM_TCPIP;
4105 		else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP)
4106 			csum_type = TX_CSUM_UDPIP;
4107 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP)
4108 			csum_type = TX_CSUM_TCPIP6;
4109 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP)
4110 			csum_type = TX_CSUM_UDPIP6;
4111 #if defined(INET)
4112 		else if (m0->m_pkthdr.csum_flags & CSUM_IP) {
4113 			/*
4114 			 * XXX: The firmware appears to stomp on the
4115 			 * fragment/flags field of the IP header when
4116 			 * using TX_CSUM_IP.  Fall back to doing
4117 			 * software checksums.
4118 			 */
4119 			u_short *sump;
4120 			struct mbuf *m;
4121 			int offset;
4122 
4123 			m = m0;
4124 			offset = 0;
4125 			sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen +
4126 			    offsetof(struct ip, ip_sum));
4127 			*sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen +
4128 			    m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen);
4129 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
4130 		}
4131 #endif
4132 
4133 		cpl = (void *)(wr + 1);
4134 	}
4135 
4136 	/* Checksum offload */
4137 	ctrl1 = 0;
4138 	if (needs_l3_csum(m0) == 0)
4139 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4140 	if (csum_type >= 0) {
4141 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0,
4142 	    ("%s: mbuf %p needs checksum offload but missing header lengths",
4143 			__func__, m0));
4144 
4145 		if (chip_id(sc) <= CHELSIO_T5) {
4146 			ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4147 			    ETHER_HDR_LEN);
4148 		} else {
4149 			ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4150 			    ETHER_HDR_LEN);
4151 		}
4152 		ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen);
4153 		ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type);
4154 	} else
4155 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4156 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4157 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4158 		txq->txcsum++;	/* some hardware assistance provided */
4159 
4160 	/* VLAN tag insertion */
4161 	if (needs_vlan_insertion(m0)) {
4162 		ctrl1 |= F_TXPKT_VLAN_VLD |
4163 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4164 		txq->vlan_insertion++;
4165 	}
4166 
4167 	/* CPL header */
4168 	cpl->ctrl0 = txq->cpl_ctrl0;
4169 	cpl->pack = 0;
4170 	cpl->len = htobe16(pktlen);
4171 	cpl->ctrl1 = htobe64(ctrl1);
4172 
4173 	/* SGL */
4174 	dst = (void *)(cpl + 1);
4175 
4176 	/*
4177 	 * A packet using TSO will use up an entire descriptor for the
4178 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
4179 	 * If this descriptor is the last descriptor in the ring, wrap
4180 	 * around to the front of the ring explicitly for the start of
4181 	 * the sgl.
4182 	 */
4183 	if (dst == (void *)&eq->desc[eq->sidx]) {
4184 		dst = (void *)&eq->desc[0];
4185 		write_gl_to_txd(txq, m0, &dst, 0);
4186 	} else
4187 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4188 	txq->sgl_wrs++;
4189 
4190 	txq->txpkt_wrs++;
4191 
4192 	txsd = &txq->sdesc[eq->pidx];
4193 	txsd->m = m0;
4194 	txsd->desc_used = ndesc;
4195 
4196 	return (ndesc);
4197 }
4198 
4199 /*
4200  * Write a txpkt WR for this packet to the hardware descriptors, update the
4201  * software descriptor, and advance the pidx.  It is guaranteed that enough
4202  * descriptors are available.
4203  *
4204  * The return value is the # of hardware descriptors used.
4205  */
4206 static u_int
4207 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
4208     struct mbuf *m0, u_int available)
4209 {
4210 	struct sge_eq *eq = &txq->eq;
4211 	struct tx_sdesc *txsd;
4212 	struct cpl_tx_pkt_core *cpl;
4213 	uint32_t ctrl;	/* used in many unrelated places */
4214 	uint64_t ctrl1;
4215 	int len16, ndesc, pktlen, nsegs;
4216 	caddr_t dst;
4217 
4218 	TXQ_LOCK_ASSERT_OWNED(txq);
4219 	M_ASSERTPKTHDR(m0);
4220 	MPASS(available > 0 && available < eq->sidx);
4221 
4222 	len16 = mbuf_len16(m0);
4223 	nsegs = mbuf_nsegs(m0);
4224 	pktlen = m0->m_pkthdr.len;
4225 	ctrl = sizeof(struct cpl_tx_pkt_core);
4226 	if (needs_tso(m0))
4227 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4228 	else if (pktlen <= imm_payload(2) && available >= 2) {
4229 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
4230 		ctrl += pktlen;
4231 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
4232 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
4233 		nsegs = 0;
4234 	}
4235 	ndesc = howmany(len16, EQ_ESIZE / 16);
4236 	MPASS(ndesc <= available);
4237 
4238 	/* Firmware work request header */
4239 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4240 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
4241 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4242 
4243 	ctrl = V_FW_WR_LEN16(len16);
4244 	wr->equiq_to_len16 = htobe32(ctrl);
4245 	wr->r3 = 0;
4246 
4247 	if (needs_tso(m0)) {
4248 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4249 
4250 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4251 		    m0->m_pkthdr.l4hlen > 0,
4252 		    ("%s: mbuf %p needs TSO but missing header lengths",
4253 			__func__, m0));
4254 
4255 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4256 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4257 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4258 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4259 			ctrl |= V_LSO_ETHHDR_LEN(1);
4260 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4261 			ctrl |= F_LSO_IPV6;
4262 
4263 		lso->lso_ctrl = htobe32(ctrl);
4264 		lso->ipid_ofst = htobe16(0);
4265 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4266 		lso->seqno_offset = htobe32(0);
4267 		lso->len = htobe32(pktlen);
4268 
4269 		cpl = (void *)(lso + 1);
4270 
4271 		txq->tso_wrs++;
4272 	} else
4273 		cpl = (void *)(wr + 1);
4274 
4275 	/* Checksum offload */
4276 	ctrl1 = 0;
4277 	if (needs_l3_csum(m0) == 0)
4278 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4279 	if (needs_l4_csum(m0) == 0)
4280 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4281 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4282 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4283 		txq->txcsum++;	/* some hardware assistance provided */
4284 
4285 	/* VLAN tag insertion */
4286 	if (needs_vlan_insertion(m0)) {
4287 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4288 		txq->vlan_insertion++;
4289 	}
4290 
4291 	/* CPL header */
4292 	cpl->ctrl0 = txq->cpl_ctrl0;
4293 	cpl->pack = 0;
4294 	cpl->len = htobe16(pktlen);
4295 	cpl->ctrl1 = htobe64(ctrl1);
4296 
4297 	/* SGL */
4298 	dst = (void *)(cpl + 1);
4299 	if (nsegs > 0) {
4300 
4301 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4302 		txq->sgl_wrs++;
4303 	} else {
4304 		struct mbuf *m;
4305 
4306 		for (m = m0; m != NULL; m = m->m_next) {
4307 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4308 #ifdef INVARIANTS
4309 			pktlen -= m->m_len;
4310 #endif
4311 		}
4312 #ifdef INVARIANTS
4313 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
4314 #endif
4315 		txq->imm_wrs++;
4316 	}
4317 
4318 	txq->txpkt_wrs++;
4319 
4320 	txsd = &txq->sdesc[eq->pidx];
4321 	txsd->m = m0;
4322 	txsd->desc_used = ndesc;
4323 
4324 	return (ndesc);
4325 }
4326 
4327 static int
4328 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
4329 {
4330 	u_int needed, nsegs1, nsegs2, l1, l2;
4331 
4332 	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
4333 		return (1);
4334 
4335 	nsegs1 = mbuf_nsegs(m);
4336 	nsegs2 = mbuf_nsegs(n);
4337 	if (nsegs1 + nsegs2 == 2) {
4338 		txp->wr_type = 1;
4339 		l1 = l2 = txpkts1_len16();
4340 	} else {
4341 		txp->wr_type = 0;
4342 		l1 = txpkts0_len16(nsegs1);
4343 		l2 = txpkts0_len16(nsegs2);
4344 	}
4345 	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
4346 	needed = howmany(txp->len16, EQ_ESIZE / 16);
4347 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4348 		return (1);
4349 
4350 	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
4351 	if (txp->plen > 65535)
4352 		return (1);
4353 
4354 	txp->npkt = 2;
4355 	set_mbuf_len16(m, l1);
4356 	set_mbuf_len16(n, l2);
4357 
4358 	return (0);
4359 }
4360 
4361 static int
4362 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
4363 {
4364 	u_int plen, len16, needed, nsegs;
4365 
4366 	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
4367 
4368 	nsegs = mbuf_nsegs(m);
4369 	if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
4370 		return (1);
4371 
4372 	plen = txp->plen + m->m_pkthdr.len;
4373 	if (plen > 65535)
4374 		return (1);
4375 
4376 	if (txp->wr_type == 0)
4377 		len16 = txpkts0_len16(nsegs);
4378 	else
4379 		len16 = txpkts1_len16();
4380 	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4381 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4382 		return (1);
4383 
4384 	txp->npkt++;
4385 	txp->plen = plen;
4386 	txp->len16 += len16;
4387 	set_mbuf_len16(m, len16);
4388 
4389 	return (0);
4390 }
4391 
4392 /*
4393  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
4394  * the software descriptor, and advance the pidx.  It is guaranteed that enough
4395  * descriptors are available.
4396  *
4397  * The return value is the # of hardware descriptors used.
4398  */
4399 static u_int
4400 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
4401     struct mbuf *m0, const struct txpkts *txp, u_int available)
4402 {
4403 	struct sge_eq *eq = &txq->eq;
4404 	struct tx_sdesc *txsd;
4405 	struct cpl_tx_pkt_core *cpl;
4406 	uint32_t ctrl;
4407 	uint64_t ctrl1;
4408 	int ndesc, checkwrap;
4409 	struct mbuf *m;
4410 	void *flitp;
4411 
4412 	TXQ_LOCK_ASSERT_OWNED(txq);
4413 	MPASS(txp->npkt > 0);
4414 	MPASS(txp->plen < 65536);
4415 	MPASS(m0 != NULL);
4416 	MPASS(m0->m_nextpkt != NULL);
4417 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
4418 	MPASS(available > 0 && available < eq->sidx);
4419 
4420 	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
4421 	MPASS(ndesc <= available);
4422 
4423 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4424 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4425 	ctrl = V_FW_WR_LEN16(txp->len16);
4426 	wr->equiq_to_len16 = htobe32(ctrl);
4427 	wr->plen = htobe16(txp->plen);
4428 	wr->npkt = txp->npkt;
4429 	wr->r3 = 0;
4430 	wr->type = txp->wr_type;
4431 	flitp = wr + 1;
4432 
4433 	/*
4434 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
4435 	 * set then we know the WR is going to wrap around somewhere.  We'll
4436 	 * check for that at appropriate points.
4437 	 */
4438 	checkwrap = eq->sidx - ndesc < eq->pidx;
4439 	for (m = m0; m != NULL; m = m->m_nextpkt) {
4440 		if (txp->wr_type == 0) {
4441 			struct ulp_txpkt *ulpmc;
4442 			struct ulptx_idata *ulpsc;
4443 
4444 			/* ULP master command */
4445 			ulpmc = flitp;
4446 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
4447 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
4448 			ulpmc->len = htobe32(mbuf_len16(m));
4449 
4450 			/* ULP subcommand */
4451 			ulpsc = (void *)(ulpmc + 1);
4452 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
4453 			    F_ULP_TX_SC_MORE);
4454 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
4455 
4456 			cpl = (void *)(ulpsc + 1);
4457 			if (checkwrap &&
4458 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
4459 				cpl = (void *)&eq->desc[0];
4460 		} else {
4461 			cpl = flitp;
4462 		}
4463 
4464 		/* Checksum offload */
4465 		ctrl1 = 0;
4466 		if (needs_l3_csum(m) == 0)
4467 			ctrl1 |= F_TXPKT_IPCSUM_DIS;
4468 		if (needs_l4_csum(m) == 0)
4469 			ctrl1 |= F_TXPKT_L4CSUM_DIS;
4470 		if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4471 		    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4472 			txq->txcsum++;	/* some hardware assistance provided */
4473 
4474 		/* VLAN tag insertion */
4475 		if (needs_vlan_insertion(m)) {
4476 			ctrl1 |= F_TXPKT_VLAN_VLD |
4477 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
4478 			txq->vlan_insertion++;
4479 		}
4480 
4481 		/* CPL header */
4482 		cpl->ctrl0 = txq->cpl_ctrl0;
4483 		cpl->pack = 0;
4484 		cpl->len = htobe16(m->m_pkthdr.len);
4485 		cpl->ctrl1 = htobe64(ctrl1);
4486 
4487 		flitp = cpl + 1;
4488 		if (checkwrap &&
4489 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
4490 			flitp = (void *)&eq->desc[0];
4491 
4492 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
4493 
4494 	}
4495 
4496 	if (txp->wr_type == 0) {
4497 		txq->txpkts0_pkts += txp->npkt;
4498 		txq->txpkts0_wrs++;
4499 	} else {
4500 		txq->txpkts1_pkts += txp->npkt;
4501 		txq->txpkts1_wrs++;
4502 	}
4503 
4504 	txsd = &txq->sdesc[eq->pidx];
4505 	txsd->m = m0;
4506 	txsd->desc_used = ndesc;
4507 
4508 	return (ndesc);
4509 }
4510 
4511 /*
4512  * If the SGL ends on an address that is not 16 byte aligned, this function will
4513  * add a 0 filled flit at the end.
4514  */
4515 static void
4516 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
4517 {
4518 	struct sge_eq *eq = &txq->eq;
4519 	struct sglist *gl = txq->gl;
4520 	struct sglist_seg *seg;
4521 	__be64 *flitp, *wrap;
4522 	struct ulptx_sgl *usgl;
4523 	int i, nflits, nsegs;
4524 
4525 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4526 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4527 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4528 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4529 
4530 	get_pkt_gl(m, gl);
4531 	nsegs = gl->sg_nseg;
4532 	MPASS(nsegs > 0);
4533 
4534 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
4535 	flitp = (__be64 *)(*to);
4536 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
4537 	seg = &gl->sg_segs[0];
4538 	usgl = (void *)flitp;
4539 
4540 	/*
4541 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4542 	 * ring, so we're at least 16 bytes away from the status page.  There is
4543 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4544 	 */
4545 
4546 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4547 	    V_ULPTX_NSGE(nsegs));
4548 	usgl->len0 = htobe32(seg->ss_len);
4549 	usgl->addr0 = htobe64(seg->ss_paddr);
4550 	seg++;
4551 
4552 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
4553 
4554 		/* Won't wrap around at all */
4555 
4556 		for (i = 0; i < nsegs - 1; i++, seg++) {
4557 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
4558 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
4559 		}
4560 		if (i & 1)
4561 			usgl->sge[i / 2].len[1] = htobe32(0);
4562 		flitp += nflits;
4563 	} else {
4564 
4565 		/* Will wrap somewhere in the rest of the SGL */
4566 
4567 		/* 2 flits already written, write the rest flit by flit */
4568 		flitp = (void *)(usgl + 1);
4569 		for (i = 0; i < nflits - 2; i++) {
4570 			if (flitp == wrap)
4571 				flitp = (void *)eq->desc;
4572 			*flitp++ = get_flit(seg, nsegs - 1, i);
4573 		}
4574 	}
4575 
4576 	if (nflits & 1) {
4577 		MPASS(((uintptr_t)flitp) & 0xf);
4578 		*flitp++ = 0;
4579 	}
4580 
4581 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
4582 	if (__predict_false(flitp == wrap))
4583 		*to = (void *)eq->desc;
4584 	else
4585 		*to = (void *)flitp;
4586 }
4587 
4588 static inline void
4589 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4590 {
4591 
4592 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4593 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4594 
4595 	if (__predict_true((uintptr_t)(*to) + len <=
4596 	    (uintptr_t)&eq->desc[eq->sidx])) {
4597 		bcopy(from, *to, len);
4598 		(*to) += len;
4599 	} else {
4600 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
4601 
4602 		bcopy(from, *to, portion);
4603 		from += portion;
4604 		portion = len - portion;	/* remaining */
4605 		bcopy(from, (void *)eq->desc, portion);
4606 		(*to) = (caddr_t)eq->desc + portion;
4607 	}
4608 }
4609 
4610 static inline void
4611 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
4612 {
4613 	u_int db;
4614 
4615 	MPASS(n > 0);
4616 
4617 	db = eq->doorbells;
4618 	if (n > 1)
4619 		clrbit(&db, DOORBELL_WCWR);
4620 	wmb();
4621 
4622 	switch (ffs(db) - 1) {
4623 	case DOORBELL_UDB:
4624 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4625 		break;
4626 
4627 	case DOORBELL_WCWR: {
4628 		volatile uint64_t *dst, *src;
4629 		int i;
4630 
4631 		/*
4632 		 * Queues whose 128B doorbell segment fits in the page do not
4633 		 * use relative qid (udb_qid is always 0).  Only queues with
4634 		 * doorbell segments can do WCWR.
4635 		 */
4636 		KASSERT(eq->udb_qid == 0 && n == 1,
4637 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4638 		    __func__, eq->doorbells, n, eq->dbidx, eq));
4639 
4640 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4641 		    UDBS_DB_OFFSET);
4642 		i = eq->dbidx;
4643 		src = (void *)&eq->desc[i];
4644 		while (src != (void *)&eq->desc[i + 1])
4645 			*dst++ = *src++;
4646 		wmb();
4647 		break;
4648 	}
4649 
4650 	case DOORBELL_UDBWC:
4651 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4652 		wmb();
4653 		break;
4654 
4655 	case DOORBELL_KDB:
4656 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
4657 		    V_QID(eq->cntxt_id) | V_PIDX(n));
4658 		break;
4659 	}
4660 
4661 	IDXINCR(eq->dbidx, n, eq->sidx);
4662 }
4663 
4664 static inline u_int
4665 reclaimable_tx_desc(struct sge_eq *eq)
4666 {
4667 	uint16_t hw_cidx;
4668 
4669 	hw_cidx = read_hw_cidx(eq);
4670 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
4671 }
4672 
4673 static inline u_int
4674 total_available_tx_desc(struct sge_eq *eq)
4675 {
4676 	uint16_t hw_cidx, pidx;
4677 
4678 	hw_cidx = read_hw_cidx(eq);
4679 	pidx = eq->pidx;
4680 
4681 	if (pidx == hw_cidx)
4682 		return (eq->sidx - 1);
4683 	else
4684 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
4685 }
4686 
4687 static inline uint16_t
4688 read_hw_cidx(struct sge_eq *eq)
4689 {
4690 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4691 	uint16_t cidx = spg->cidx;	/* stable snapshot */
4692 
4693 	return (be16toh(cidx));
4694 }
4695 
4696 /*
4697  * Reclaim 'n' descriptors approximately.
4698  */
4699 static u_int
4700 reclaim_tx_descs(struct sge_txq *txq, u_int n)
4701 {
4702 	struct tx_sdesc *txsd;
4703 	struct sge_eq *eq = &txq->eq;
4704 	u_int can_reclaim, reclaimed;
4705 
4706 	TXQ_LOCK_ASSERT_OWNED(txq);
4707 	MPASS(n > 0);
4708 
4709 	reclaimed = 0;
4710 	can_reclaim = reclaimable_tx_desc(eq);
4711 	while (can_reclaim && reclaimed < n) {
4712 		int ndesc;
4713 		struct mbuf *m, *nextpkt;
4714 
4715 		txsd = &txq->sdesc[eq->cidx];
4716 		ndesc = txsd->desc_used;
4717 
4718 		/* Firmware doesn't return "partial" credits. */
4719 		KASSERT(can_reclaim >= ndesc,
4720 		    ("%s: unexpected number of credits: %d, %d",
4721 		    __func__, can_reclaim, ndesc));
4722 
4723 		for (m = txsd->m; m != NULL; m = nextpkt) {
4724 			nextpkt = m->m_nextpkt;
4725 			m->m_nextpkt = NULL;
4726 			m_freem(m);
4727 		}
4728 		reclaimed += ndesc;
4729 		can_reclaim -= ndesc;
4730 		IDXINCR(eq->cidx, ndesc, eq->sidx);
4731 	}
4732 
4733 	return (reclaimed);
4734 }
4735 
4736 static void
4737 tx_reclaim(void *arg, int n)
4738 {
4739 	struct sge_txq *txq = arg;
4740 	struct sge_eq *eq = &txq->eq;
4741 
4742 	do {
4743 		if (TXQ_TRYLOCK(txq) == 0)
4744 			break;
4745 		n = reclaim_tx_descs(txq, 32);
4746 		if (eq->cidx == eq->pidx)
4747 			eq->equeqidx = eq->pidx;
4748 		TXQ_UNLOCK(txq);
4749 	} while (n > 0);
4750 }
4751 
4752 static __be64
4753 get_flit(struct sglist_seg *segs, int nsegs, int idx)
4754 {
4755 	int i = (idx / 3) * 2;
4756 
4757 	switch (idx % 3) {
4758 	case 0: {
4759 		uint64_t rc;
4760 
4761 		rc = (uint64_t)segs[i].ss_len << 32;
4762 		if (i + 1 < nsegs)
4763 			rc |= (uint64_t)(segs[i + 1].ss_len);
4764 
4765 		return (htobe64(rc));
4766 	}
4767 	case 1:
4768 		return (htobe64(segs[i].ss_paddr));
4769 	case 2:
4770 		return (htobe64(segs[i + 1].ss_paddr));
4771 	}
4772 
4773 	return (0);
4774 }
4775 
4776 static void
4777 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4778 {
4779 	int8_t zidx, hwidx, idx;
4780 	uint16_t region1, region3;
4781 	int spare, spare_needed, n;
4782 	struct sw_zone_info *swz;
4783 	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4784 
4785 	/*
4786 	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4787 	 * large enough for the max payload and cluster metadata.  Otherwise
4788 	 * settle for the largest bufsize that leaves enough room in the cluster
4789 	 * for metadata.
4790 	 *
4791 	 * Without buffer packing: Look for the smallest zone which has a
4792 	 * bufsize large enough for the max payload.  Settle for the largest
4793 	 * bufsize available if there's nothing big enough for max payload.
4794 	 */
4795 	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4796 	swz = &sc->sge.sw_zone_info[0];
4797 	hwidx = -1;
4798 	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4799 		if (swz->size > largest_rx_cluster) {
4800 			if (__predict_true(hwidx != -1))
4801 				break;
4802 
4803 			/*
4804 			 * This is a misconfiguration.  largest_rx_cluster is
4805 			 * preventing us from finding a refill source.  See
4806 			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4807 			 */
4808 			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4809 			    " refill source for fl %p (dma %u).  Ignored.\n",
4810 			    largest_rx_cluster, fl, maxp);
4811 		}
4812 		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4813 			hwb = &hwb_list[idx];
4814 			spare = swz->size - hwb->size;
4815 			if (spare < spare_needed)
4816 				continue;
4817 
4818 			hwidx = idx;		/* best option so far */
4819 			if (hwb->size >= maxp) {
4820 
4821 				if ((fl->flags & FL_BUF_PACKING) == 0)
4822 					goto done; /* stop looking (not packing) */
4823 
4824 				if (swz->size >= safest_rx_cluster)
4825 					goto done; /* stop looking (packing) */
4826 			}
4827 			break;		/* keep looking, next zone */
4828 		}
4829 	}
4830 done:
4831 	/* A usable hwidx has been located. */
4832 	MPASS(hwidx != -1);
4833 	hwb = &hwb_list[hwidx];
4834 	zidx = hwb->zidx;
4835 	swz = &sc->sge.sw_zone_info[zidx];
4836 	region1 = 0;
4837 	region3 = swz->size - hwb->size;
4838 
4839 	/*
4840 	 * Stay within this zone and see if there is a better match when mbuf
4841 	 * inlining is allowed.  Remember that the hwidx's are sorted in
4842 	 * decreasing order of size (so in increasing order of spare area).
4843 	 */
4844 	for (idx = hwidx; idx != -1; idx = hwb->next) {
4845 		hwb = &hwb_list[idx];
4846 		spare = swz->size - hwb->size;
4847 
4848 		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4849 			break;
4850 
4851 		/*
4852 		 * Do not inline mbufs if doing so would violate the pad/pack
4853 		 * boundary alignment requirement.
4854 		 */
4855 		if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0)
4856 			continue;
4857 		if (fl->flags & FL_BUF_PACKING &&
4858 		    (MSIZE % sc->params.sge.pack_boundary) != 0)
4859 			continue;
4860 
4861 		if (spare < CL_METADATA_SIZE + MSIZE)
4862 			continue;
4863 		n = (spare - CL_METADATA_SIZE) / MSIZE;
4864 		if (n > howmany(hwb->size, maxp))
4865 			break;
4866 
4867 		hwidx = idx;
4868 		if (fl->flags & FL_BUF_PACKING) {
4869 			region1 = n * MSIZE;
4870 			region3 = spare - region1;
4871 		} else {
4872 			region1 = MSIZE;
4873 			region3 = spare - region1;
4874 			break;
4875 		}
4876 	}
4877 
4878 	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4879 	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4880 	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4881 	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4882 	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4883 	    sc->sge.sw_zone_info[zidx].size,
4884 	    ("%s: bad buffer layout for fl %p, maxp %d. "
4885 		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4886 		sc->sge.sw_zone_info[zidx].size, region1,
4887 		sc->sge.hw_buf_info[hwidx].size, region3));
4888 	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4889 		KASSERT(region3 >= CL_METADATA_SIZE,
4890 		    ("%s: no room for metadata.  fl %p, maxp %d; "
4891 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4892 		    sc->sge.sw_zone_info[zidx].size, region1,
4893 		    sc->sge.hw_buf_info[hwidx].size, region3));
4894 		KASSERT(region1 % MSIZE == 0,
4895 		    ("%s: bad mbuf region for fl %p, maxp %d. "
4896 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4897 		    sc->sge.sw_zone_info[zidx].size, region1,
4898 		    sc->sge.hw_buf_info[hwidx].size, region3));
4899 	}
4900 
4901 	fl->cll_def.zidx = zidx;
4902 	fl->cll_def.hwidx = hwidx;
4903 	fl->cll_def.region1 = region1;
4904 	fl->cll_def.region3 = region3;
4905 }
4906 
4907 static void
4908 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4909 {
4910 	struct sge *s = &sc->sge;
4911 	struct hw_buf_info *hwb;
4912 	struct sw_zone_info *swz;
4913 	int spare;
4914 	int8_t hwidx;
4915 
4916 	if (fl->flags & FL_BUF_PACKING)
4917 		hwidx = s->safe_hwidx2;	/* with room for metadata */
4918 	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4919 		hwidx = s->safe_hwidx2;
4920 		hwb = &s->hw_buf_info[hwidx];
4921 		swz = &s->sw_zone_info[hwb->zidx];
4922 		spare = swz->size - hwb->size;
4923 
4924 		/* no good if there isn't room for an mbuf as well */
4925 		if (spare < CL_METADATA_SIZE + MSIZE)
4926 			hwidx = s->safe_hwidx1;
4927 	} else
4928 		hwidx = s->safe_hwidx1;
4929 
4930 	if (hwidx == -1) {
4931 		/* No fallback source */
4932 		fl->cll_alt.hwidx = -1;
4933 		fl->cll_alt.zidx = -1;
4934 
4935 		return;
4936 	}
4937 
4938 	hwb = &s->hw_buf_info[hwidx];
4939 	swz = &s->sw_zone_info[hwb->zidx];
4940 	spare = swz->size - hwb->size;
4941 	fl->cll_alt.hwidx = hwidx;
4942 	fl->cll_alt.zidx = hwb->zidx;
4943 	if (allow_mbufs_in_cluster &&
4944 	    (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0))
4945 		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
4946 	else
4947 		fl->cll_alt.region1 = 0;
4948 	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
4949 }
4950 
4951 static void
4952 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4953 {
4954 	mtx_lock(&sc->sfl_lock);
4955 	FL_LOCK(fl);
4956 	if ((fl->flags & FL_DOOMED) == 0) {
4957 		fl->flags |= FL_STARVING;
4958 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4959 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4960 	}
4961 	FL_UNLOCK(fl);
4962 	mtx_unlock(&sc->sfl_lock);
4963 }
4964 
4965 static void
4966 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
4967 {
4968 	struct sge_wrq *wrq = (void *)eq;
4969 
4970 	atomic_readandclear_int(&eq->equiq);
4971 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
4972 }
4973 
4974 static void
4975 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
4976 {
4977 	struct sge_txq *txq = (void *)eq;
4978 
4979 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
4980 
4981 	atomic_readandclear_int(&eq->equiq);
4982 	mp_ring_check_drainage(txq->r, 0);
4983 	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
4984 }
4985 
4986 static int
4987 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4988     struct mbuf *m)
4989 {
4990 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4991 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4992 	struct adapter *sc = iq->adapter;
4993 	struct sge *s = &sc->sge;
4994 	struct sge_eq *eq;
4995 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
4996 		&handle_wrq_egr_update, &handle_eth_egr_update,
4997 		&handle_wrq_egr_update};
4998 
4999 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5000 	    rss->opcode));
5001 
5002 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
5003 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
5004 
5005 	return (0);
5006 }
5007 
5008 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
5009 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
5010     offsetof(struct cpl_fw6_msg, data));
5011 
5012 static int
5013 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
5014 {
5015 	struct adapter *sc = iq->adapter;
5016 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
5017 
5018 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5019 	    rss->opcode));
5020 
5021 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
5022 		const struct rss_header *rss2;
5023 
5024 		rss2 = (const struct rss_header *)&cpl->data[0];
5025 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
5026 	}
5027 
5028 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
5029 }
5030 
5031 /**
5032  *	t4_handle_wrerr_rpl - process a FW work request error message
5033  *	@adap: the adapter
5034  *	@rpl: start of the FW message
5035  */
5036 static int
5037 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
5038 {
5039 	u8 opcode = *(const u8 *)rpl;
5040 	const struct fw_error_cmd *e = (const void *)rpl;
5041 	unsigned int i;
5042 
5043 	if (opcode != FW_ERROR_CMD) {
5044 		log(LOG_ERR,
5045 		    "%s: Received WRERR_RPL message with opcode %#x\n",
5046 		    device_get_nameunit(adap->dev), opcode);
5047 		return (EINVAL);
5048 	}
5049 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
5050 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
5051 	    "non-fatal");
5052 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
5053 	case FW_ERROR_TYPE_EXCEPTION:
5054 		log(LOG_ERR, "exception info:\n");
5055 		for (i = 0; i < nitems(e->u.exception.info); i++)
5056 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
5057 			    be32toh(e->u.exception.info[i]));
5058 		log(LOG_ERR, "\n");
5059 		break;
5060 	case FW_ERROR_TYPE_HWMODULE:
5061 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
5062 		    be32toh(e->u.hwmodule.regaddr),
5063 		    be32toh(e->u.hwmodule.regval));
5064 		break;
5065 	case FW_ERROR_TYPE_WR:
5066 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
5067 		    be16toh(e->u.wr.cidx),
5068 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
5069 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
5070 		    be32toh(e->u.wr.eqid));
5071 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
5072 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
5073 			    e->u.wr.wrhdr[i]);
5074 		log(LOG_ERR, "\n");
5075 		break;
5076 	case FW_ERROR_TYPE_ACL:
5077 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
5078 		    be16toh(e->u.acl.cidx),
5079 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
5080 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
5081 		    be32toh(e->u.acl.eqid),
5082 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
5083 		    "MAC");
5084 		for (i = 0; i < nitems(e->u.acl.val); i++)
5085 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
5086 		log(LOG_ERR, "\n");
5087 		break;
5088 	default:
5089 		log(LOG_ERR, "type %#x\n",
5090 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
5091 		return (EINVAL);
5092 	}
5093 	return (0);
5094 }
5095 
5096 static int
5097 sysctl_uint16(SYSCTL_HANDLER_ARGS)
5098 {
5099 	uint16_t *id = arg1;
5100 	int i = *id;
5101 
5102 	return sysctl_handle_int(oidp, &i, 0, req);
5103 }
5104 
5105 static int
5106 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
5107 {
5108 	struct sge *s = arg1;
5109 	struct hw_buf_info *hwb = &s->hw_buf_info[0];
5110 	struct sw_zone_info *swz = &s->sw_zone_info[0];
5111 	int i, rc;
5112 	struct sbuf sb;
5113 	char c;
5114 
5115 	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
5116 	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
5117 		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
5118 			c = '*';
5119 		else
5120 			c = '\0';
5121 
5122 		sbuf_printf(&sb, "%u%c ", hwb->size, c);
5123 	}
5124 	sbuf_trim(&sb);
5125 	sbuf_finish(&sb);
5126 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
5127 	sbuf_delete(&sb);
5128 	return (rc);
5129 }
5130 
5131 static int
5132 sysctl_tc(SYSCTL_HANDLER_ARGS)
5133 {
5134 	struct vi_info *vi = arg1;
5135 	struct port_info *pi;
5136 	struct adapter *sc;
5137 	struct sge_txq *txq;
5138 	struct tx_cl_rl_params *tc;
5139 	int qidx = arg2, rc, tc_idx;
5140 	uint32_t fw_queue, fw_class;
5141 
5142 	MPASS(qidx >= 0 && qidx < vi->ntxq);
5143 	pi = vi->pi;
5144 	sc = pi->adapter;
5145 	txq = &sc->sge.txq[vi->first_txq + qidx];
5146 
5147 	tc_idx = txq->tc_idx;
5148 	rc = sysctl_handle_int(oidp, &tc_idx, 0, req);
5149 	if (rc != 0 || req->newptr == NULL)
5150 		return (rc);
5151 
5152 	if (sc->flags & IS_VF)
5153 		return (EPERM);
5154 
5155 	/* Note that -1 is legitimate input (it means unbind). */
5156 	if (tc_idx < -1 || tc_idx >= sc->chip_params->nsched_cls)
5157 		return (EINVAL);
5158 
5159 	mtx_lock(&sc->tc_lock);
5160 	if (tc_idx == txq->tc_idx) {
5161 		rc = 0;		/* No change, nothing to do. */
5162 		goto done;
5163 	}
5164 
5165 	fw_queue = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
5166 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) |
5167 	    V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id);
5168 
5169 	if (tc_idx == -1)
5170 		fw_class = 0xffffffff;	/* Unbind. */
5171 	else {
5172 		/*
5173 		 * Bind to a different class.
5174 		 */
5175 		tc = &pi->sched_params->cl_rl[tc_idx];
5176 		if (tc->flags & TX_CLRL_ERROR) {
5177 			/* Previous attempt to set the cl-rl params failed. */
5178 			rc = EIO;
5179 			goto done;
5180 		} else {
5181 			/*
5182 			 * Ok to proceed.  Place a reference on the new class
5183 			 * while still holding on to the reference on the
5184 			 * previous class, if any.
5185 			 */
5186 			fw_class = tc_idx;
5187 			tc->refcount++;
5188 		}
5189 	}
5190 	mtx_unlock(&sc->tc_lock);
5191 
5192 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4stc");
5193 	if (rc)
5194 		return (rc);
5195 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, &fw_class);
5196 	end_synchronized_op(sc, 0);
5197 
5198 	mtx_lock(&sc->tc_lock);
5199 	if (rc == 0) {
5200 		if (txq->tc_idx != -1) {
5201 			tc = &pi->sched_params->cl_rl[txq->tc_idx];
5202 			MPASS(tc->refcount > 0);
5203 			tc->refcount--;
5204 		}
5205 		txq->tc_idx = tc_idx;
5206 	} else if (tc_idx != -1) {
5207 		tc = &pi->sched_params->cl_rl[tc_idx];
5208 		MPASS(tc->refcount > 0);
5209 		tc->refcount--;
5210 	}
5211 done:
5212 	mtx_unlock(&sc->tc_lock);
5213 	return (rc);
5214 }
5215