1 /*- 2 * Copyright (c) 2011 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: Navdeep Parhar <np@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #include <sys/types.h> 35 #include <sys/eventhandler.h> 36 #include <sys/mbuf.h> 37 #include <sys/socket.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/queue.h> 41 #include <sys/sbuf.h> 42 #include <sys/taskqueue.h> 43 #include <sys/time.h> 44 #include <sys/sglist.h> 45 #include <sys/sysctl.h> 46 #include <sys/smp.h> 47 #include <sys/counter.h> 48 #include <net/bpf.h> 49 #include <net/ethernet.h> 50 #include <net/if.h> 51 #include <net/if_vlan_var.h> 52 #include <netinet/in.h> 53 #include <netinet/ip.h> 54 #include <netinet/ip6.h> 55 #include <netinet/tcp.h> 56 #include <machine/md_var.h> 57 #include <vm/vm.h> 58 #include <vm/pmap.h> 59 #ifdef DEV_NETMAP 60 #include <machine/bus.h> 61 #include <sys/selinfo.h> 62 #include <net/if_var.h> 63 #include <net/netmap.h> 64 #include <dev/netmap/netmap_kern.h> 65 #endif 66 67 #include "common/common.h" 68 #include "common/t4_regs.h" 69 #include "common/t4_regs_values.h" 70 #include "common/t4_msg.h" 71 #include "t4_mp_ring.h" 72 73 #ifdef T4_PKT_TIMESTAMP 74 #define RX_COPY_THRESHOLD (MINCLSIZE - 8) 75 #else 76 #define RX_COPY_THRESHOLD MINCLSIZE 77 #endif 78 79 /* 80 * Ethernet frames are DMA'd at this byte offset into the freelist buffer. 81 * 0-7 are valid values. 82 */ 83 int fl_pktshift = 2; 84 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift); 85 86 /* 87 * Pad ethernet payload up to this boundary. 88 * -1: driver should figure out a good value. 89 * 0: disable padding. 90 * Any power of 2 from 32 to 4096 (both inclusive) is also a valid value. 91 */ 92 int fl_pad = -1; 93 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad); 94 95 /* 96 * Status page length. 97 * -1: driver should figure out a good value. 98 * 64 or 128 are the only other valid values. 99 */ 100 int spg_len = -1; 101 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len); 102 103 /* 104 * Congestion drops. 105 * -1: no congestion feedback (not recommended). 106 * 0: backpressure the channel instead of dropping packets right away. 107 * 1: no backpressure, drop packets for the congested queue immediately. 108 */ 109 static int cong_drop = 0; 110 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop); 111 112 /* 113 * Deliver multiple frames in the same free list buffer if they fit. 114 * -1: let the driver decide whether to enable buffer packing or not. 115 * 0: disable buffer packing. 116 * 1: enable buffer packing. 117 */ 118 static int buffer_packing = -1; 119 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing); 120 121 /* 122 * Start next frame in a packed buffer at this boundary. 123 * -1: driver should figure out a good value. 124 * T4: driver will ignore this and use the same value as fl_pad above. 125 * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value. 126 */ 127 static int fl_pack = -1; 128 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack); 129 130 /* 131 * Allow the driver to create mbuf(s) in a cluster allocated for rx. 132 * 0: never; always allocate mbufs from the zone_mbuf UMA zone. 133 * 1: ok to create mbuf(s) within a cluster if there is room. 134 */ 135 static int allow_mbufs_in_cluster = 1; 136 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster); 137 138 /* 139 * Largest rx cluster size that the driver is allowed to allocate. 140 */ 141 static int largest_rx_cluster = MJUM16BYTES; 142 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster); 143 144 /* 145 * Size of cluster allocation that's most likely to succeed. The driver will 146 * fall back to this size if it fails to allocate clusters larger than this. 147 */ 148 static int safest_rx_cluster = PAGE_SIZE; 149 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster); 150 151 struct txpkts { 152 u_int wr_type; /* type 0 or type 1 */ 153 u_int npkt; /* # of packets in this work request */ 154 u_int plen; /* total payload (sum of all packets) */ 155 u_int len16; /* # of 16B pieces used by this work request */ 156 }; 157 158 /* A packet's SGL. This + m_pkthdr has all info needed for tx */ 159 struct sgl { 160 struct sglist sg; 161 struct sglist_seg seg[TX_SGL_SEGS]; 162 }; 163 164 static int service_iq(struct sge_iq *, int); 165 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t); 166 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *); 167 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int); 168 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *); 169 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t, 170 uint16_t, char *); 171 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, 172 bus_addr_t *, void **); 173 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, 174 void *); 175 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *, 176 int, int); 177 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *); 178 static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *, 179 struct sge_fl *); 180 static int alloc_fwq(struct adapter *); 181 static int free_fwq(struct adapter *); 182 static int alloc_mgmtq(struct adapter *); 183 static int free_mgmtq(struct adapter *); 184 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, 185 struct sysctl_oid *); 186 static int free_rxq(struct vi_info *, struct sge_rxq *); 187 #ifdef TCP_OFFLOAD 188 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int, 189 struct sysctl_oid *); 190 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *); 191 #endif 192 #ifdef DEV_NETMAP 193 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int, 194 struct sysctl_oid *); 195 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *); 196 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int, 197 struct sysctl_oid *); 198 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *); 199 #endif 200 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *); 201 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 202 #ifdef TCP_OFFLOAD 203 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); 204 #endif 205 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *); 206 static int free_eq(struct adapter *, struct sge_eq *); 207 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *, 208 struct sysctl_oid *); 209 static int free_wrq(struct adapter *, struct sge_wrq *); 210 static int alloc_txq(struct vi_info *, struct sge_txq *, int, 211 struct sysctl_oid *); 212 static int free_txq(struct vi_info *, struct sge_txq *); 213 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); 214 static inline void ring_fl_db(struct adapter *, struct sge_fl *); 215 static int refill_fl(struct adapter *, struct sge_fl *, int); 216 static void refill_sfl(void *); 217 static int alloc_fl_sdesc(struct sge_fl *); 218 static void free_fl_sdesc(struct adapter *, struct sge_fl *); 219 static void find_best_refill_source(struct adapter *, struct sge_fl *, int); 220 static void find_safe_refill_source(struct adapter *, struct sge_fl *); 221 static void add_fl_to_sfl(struct adapter *, struct sge_fl *); 222 223 static inline void get_pkt_gl(struct mbuf *, struct sglist *); 224 static inline u_int txpkt_len16(u_int, u_int); 225 static inline u_int txpkts0_len16(u_int); 226 static inline u_int txpkts1_len16(void); 227 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *, 228 struct mbuf *, u_int); 229 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int); 230 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int); 231 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *, 232 struct mbuf *, const struct txpkts *, u_int); 233 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int); 234 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); 235 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int); 236 static inline uint16_t read_hw_cidx(struct sge_eq *); 237 static inline u_int reclaimable_tx_desc(struct sge_eq *); 238 static inline u_int total_available_tx_desc(struct sge_eq *); 239 static u_int reclaim_tx_descs(struct sge_txq *, u_int); 240 static void tx_reclaim(void *, int); 241 static __be64 get_flit(struct sglist_seg *, int, int); 242 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, 243 struct mbuf *); 244 static int handle_fw_msg(struct sge_iq *, const struct rss_header *, 245 struct mbuf *); 246 static void wrq_tx_drain(void *, int); 247 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *); 248 249 static int sysctl_uint16(SYSCTL_HANDLER_ARGS); 250 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS); 251 static int sysctl_tc(SYSCTL_HANDLER_ARGS); 252 253 static counter_u64_t extfree_refs; 254 static counter_u64_t extfree_rels; 255 256 /* 257 * Called on MOD_LOAD. Validates and calculates the SGE tunables. 258 */ 259 void 260 t4_sge_modload(void) 261 { 262 263 if (fl_pktshift < 0 || fl_pktshift > 7) { 264 printf("Invalid hw.cxgbe.fl_pktshift value (%d)," 265 " using 2 instead.\n", fl_pktshift); 266 fl_pktshift = 2; 267 } 268 269 if (spg_len != 64 && spg_len != 128) { 270 int len; 271 272 #if defined(__i386__) || defined(__amd64__) 273 len = cpu_clflush_line_size > 64 ? 128 : 64; 274 #else 275 len = 64; 276 #endif 277 if (spg_len != -1) { 278 printf("Invalid hw.cxgbe.spg_len value (%d)," 279 " using %d instead.\n", spg_len, len); 280 } 281 spg_len = len; 282 } 283 284 if (cong_drop < -1 || cong_drop > 1) { 285 printf("Invalid hw.cxgbe.cong_drop value (%d)," 286 " using 0 instead.\n", cong_drop); 287 cong_drop = 0; 288 } 289 290 extfree_refs = counter_u64_alloc(M_WAITOK); 291 extfree_rels = counter_u64_alloc(M_WAITOK); 292 counter_u64_zero(extfree_refs); 293 counter_u64_zero(extfree_rels); 294 } 295 296 void 297 t4_sge_modunload(void) 298 { 299 300 counter_u64_free(extfree_refs); 301 counter_u64_free(extfree_rels); 302 } 303 304 uint64_t 305 t4_sge_extfree_refs(void) 306 { 307 uint64_t refs, rels; 308 309 rels = counter_u64_fetch(extfree_rels); 310 refs = counter_u64_fetch(extfree_refs); 311 312 return (refs - rels); 313 } 314 315 void 316 t4_init_sge_cpl_handlers(struct adapter *sc) 317 { 318 319 t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg); 320 t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg); 321 t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update); 322 t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx); 323 t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl); 324 } 325 326 static inline void 327 setup_pad_and_pack_boundaries(struct adapter *sc) 328 { 329 uint32_t v, m; 330 int pad, pack; 331 332 pad = fl_pad; 333 if (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad)) { 334 /* 335 * If there is any chance that we might use buffer packing and 336 * the chip is a T4, then pick 64 as the pad/pack boundary. Set 337 * it to 32 in all other cases. 338 */ 339 pad = is_t4(sc) && buffer_packing ? 64 : 32; 340 341 /* 342 * For fl_pad = 0 we'll still write a reasonable value to the 343 * register but all the freelists will opt out of padding. 344 * We'll complain here only if the user tried to set it to a 345 * value greater than 0 that was invalid. 346 */ 347 if (fl_pad > 0) { 348 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value" 349 " (%d), using %d instead.\n", fl_pad, pad); 350 } 351 } 352 m = V_INGPADBOUNDARY(M_INGPADBOUNDARY); 353 v = V_INGPADBOUNDARY(ilog2(pad) - 5); 354 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 355 356 if (is_t4(sc)) { 357 if (fl_pack != -1 && fl_pack != pad) { 358 /* Complain but carry on. */ 359 device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored," 360 " using %d instead.\n", fl_pack, pad); 361 } 362 return; 363 } 364 365 pack = fl_pack; 366 if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 || 367 !powerof2(fl_pack)) { 368 pack = max(sc->params.pci.mps, CACHE_LINE_SIZE); 369 MPASS(powerof2(pack)); 370 if (pack < 16) 371 pack = 16; 372 if (pack == 32) 373 pack = 64; 374 if (pack > 4096) 375 pack = 4096; 376 if (fl_pack != -1) { 377 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value" 378 " (%d), using %d instead.\n", fl_pack, pack); 379 } 380 } 381 m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY); 382 if (pack == 16) 383 v = V_INGPACKBOUNDARY(0); 384 else 385 v = V_INGPACKBOUNDARY(ilog2(pack) - 5); 386 387 MPASS(!is_t4(sc)); /* T4 doesn't have SGE_CONTROL2 */ 388 t4_set_reg_field(sc, A_SGE_CONTROL2, m, v); 389 } 390 391 /* 392 * adap->params.vpd.cclk must be set up before this is called. 393 */ 394 void 395 t4_tweak_chip_settings(struct adapter *sc) 396 { 397 int i; 398 uint32_t v, m; 399 int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; 400 int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk; 401 int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ 402 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 403 static int sge_flbuf_sizes[] = { 404 MCLBYTES, 405 #if MJUMPAGESIZE != MCLBYTES 406 MJUMPAGESIZE, 407 MJUMPAGESIZE - CL_METADATA_SIZE, 408 MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE, 409 #endif 410 MJUM9BYTES, 411 MJUM16BYTES, 412 MCLBYTES - MSIZE - CL_METADATA_SIZE, 413 MJUM9BYTES - CL_METADATA_SIZE, 414 MJUM16BYTES - CL_METADATA_SIZE, 415 }; 416 417 KASSERT(sc->flags & MASTER_PF, 418 ("%s: trying to change chip settings when not master.", __func__)); 419 420 m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE; 421 v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | 422 V_EGRSTATUSPAGESIZE(spg_len == 128); 423 t4_set_reg_field(sc, A_SGE_CONTROL, m, v); 424 425 setup_pad_and_pack_boundaries(sc); 426 427 v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | 428 V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | 429 V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | 430 V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | 431 V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | 432 V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | 433 V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | 434 V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); 435 t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v); 436 437 KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES, 438 ("%s: hw buffer size table too big", __func__)); 439 for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) { 440 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i), 441 sge_flbuf_sizes[i]); 442 } 443 444 v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) | 445 V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]); 446 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v); 447 448 KASSERT(intr_timer[0] <= timer_max, 449 ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0], 450 timer_max)); 451 for (i = 1; i < nitems(intr_timer); i++) { 452 KASSERT(intr_timer[i] >= intr_timer[i - 1], 453 ("%s: timers not listed in increasing order (%d)", 454 __func__, i)); 455 456 while (intr_timer[i] > timer_max) { 457 if (i == nitems(intr_timer) - 1) { 458 intr_timer[i] = timer_max; 459 break; 460 } 461 intr_timer[i] += intr_timer[i - 1]; 462 intr_timer[i] /= 2; 463 } 464 } 465 466 v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) | 467 V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])); 468 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v); 469 v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) | 470 V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])); 471 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v); 472 v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) | 473 V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])); 474 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v); 475 476 /* 4K, 16K, 64K, 256K DDP "page sizes" */ 477 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 478 t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v); 479 480 m = v = F_TDDPTAGTCB; 481 t4_set_reg_field(sc, A_ULP_RX_CTL, m, v); 482 483 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 484 F_RESETDDPOFFSET; 485 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 486 t4_set_reg_field(sc, A_TP_PARA_REG5, m, v); 487 } 488 489 /* 490 * SGE wants the buffer to be at least 64B and then a multiple of 16. If 491 * padding is is use the buffer's start and end need to be aligned to the pad 492 * boundary as well. We'll just make sure that the size is a multiple of the 493 * boundary here, it is up to the buffer allocation code to make sure the start 494 * of the buffer is aligned as well. 495 */ 496 static inline int 497 hwsz_ok(struct adapter *sc, int hwsz) 498 { 499 int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1; 500 501 return (hwsz >= 64 && (hwsz & mask) == 0); 502 } 503 504 /* 505 * XXX: driver really should be able to deal with unexpected settings. 506 */ 507 int 508 t4_read_chip_settings(struct adapter *sc) 509 { 510 struct sge *s = &sc->sge; 511 struct sge_params *sp = &sc->params.sge; 512 int i, j, n, rc = 0; 513 uint32_t m, v, r; 514 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); 515 static int sw_buf_sizes[] = { /* Sorted by size */ 516 MCLBYTES, 517 #if MJUMPAGESIZE != MCLBYTES 518 MJUMPAGESIZE, 519 #endif 520 MJUM9BYTES, 521 MJUM16BYTES 522 }; 523 struct sw_zone_info *swz, *safe_swz; 524 struct hw_buf_info *hwb; 525 526 t4_init_sge_params(sc); 527 528 m = F_RXPKTCPLMODE; 529 v = F_RXPKTCPLMODE; 530 r = t4_read_reg(sc, A_SGE_CONTROL); 531 if ((r & m) != v) { 532 device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r); 533 rc = EINVAL; 534 } 535 536 /* 537 * If this changes then every single use of PAGE_SHIFT in the driver 538 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift. 539 */ 540 if (sp->page_shift != PAGE_SHIFT) { 541 device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r); 542 rc = EINVAL; 543 } 544 545 /* Filter out unusable hw buffer sizes entirely (mark with -2). */ 546 hwb = &s->hw_buf_info[0]; 547 for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) { 548 r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i)); 549 hwb->size = r; 550 hwb->zidx = hwsz_ok(sc, r) ? -1 : -2; 551 hwb->next = -1; 552 } 553 554 /* 555 * Create a sorted list in decreasing order of hw buffer sizes (and so 556 * increasing order of spare area) for each software zone. 557 * 558 * If padding is enabled then the start and end of the buffer must align 559 * to the pad boundary; if packing is enabled then they must align with 560 * the pack boundary as well. Allocations from the cluster zones are 561 * aligned to min(size, 4K), so the buffer starts at that alignment and 562 * ends at hwb->size alignment. If mbuf inlining is allowed the 563 * starting alignment will be reduced to MSIZE and the driver will 564 * exercise appropriate caution when deciding on the best buffer layout 565 * to use. 566 */ 567 n = 0; /* no usable buffer size to begin with */ 568 swz = &s->sw_zone_info[0]; 569 safe_swz = NULL; 570 for (i = 0; i < SW_ZONE_SIZES; i++, swz++) { 571 int8_t head = -1, tail = -1; 572 573 swz->size = sw_buf_sizes[i]; 574 swz->zone = m_getzone(swz->size); 575 swz->type = m_gettype(swz->size); 576 577 if (swz->size < PAGE_SIZE) { 578 MPASS(powerof2(swz->size)); 579 if (fl_pad && (swz->size % sp->pad_boundary != 0)) 580 continue; 581 } 582 583 if (swz->size == safest_rx_cluster) 584 safe_swz = swz; 585 586 hwb = &s->hw_buf_info[0]; 587 for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) { 588 if (hwb->zidx != -1 || hwb->size > swz->size) 589 continue; 590 #ifdef INVARIANTS 591 if (fl_pad) 592 MPASS(hwb->size % sp->pad_boundary == 0); 593 #endif 594 hwb->zidx = i; 595 if (head == -1) 596 head = tail = j; 597 else if (hwb->size < s->hw_buf_info[tail].size) { 598 s->hw_buf_info[tail].next = j; 599 tail = j; 600 } else { 601 int8_t *cur; 602 struct hw_buf_info *t; 603 604 for (cur = &head; *cur != -1; cur = &t->next) { 605 t = &s->hw_buf_info[*cur]; 606 if (hwb->size == t->size) { 607 hwb->zidx = -2; 608 break; 609 } 610 if (hwb->size > t->size) { 611 hwb->next = *cur; 612 *cur = j; 613 break; 614 } 615 } 616 } 617 } 618 swz->head_hwidx = head; 619 swz->tail_hwidx = tail; 620 621 if (tail != -1) { 622 n++; 623 if (swz->size - s->hw_buf_info[tail].size >= 624 CL_METADATA_SIZE) 625 sc->flags |= BUF_PACKING_OK; 626 } 627 } 628 if (n == 0) { 629 device_printf(sc->dev, "no usable SGE FL buffer size.\n"); 630 rc = EINVAL; 631 } 632 633 s->safe_hwidx1 = -1; 634 s->safe_hwidx2 = -1; 635 if (safe_swz != NULL) { 636 s->safe_hwidx1 = safe_swz->head_hwidx; 637 for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) { 638 int spare; 639 640 hwb = &s->hw_buf_info[i]; 641 #ifdef INVARIANTS 642 if (fl_pad) 643 MPASS(hwb->size % sp->pad_boundary == 0); 644 #endif 645 spare = safe_swz->size - hwb->size; 646 if (spare >= CL_METADATA_SIZE) { 647 s->safe_hwidx2 = i; 648 break; 649 } 650 } 651 } 652 653 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); 654 r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ); 655 if (r != v) { 656 device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r); 657 rc = EINVAL; 658 } 659 660 m = v = F_TDDPTAGTCB; 661 r = t4_read_reg(sc, A_ULP_RX_CTL); 662 if ((r & m) != v) { 663 device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r); 664 rc = EINVAL; 665 } 666 667 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | 668 F_RESETDDPOFFSET; 669 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; 670 r = t4_read_reg(sc, A_TP_PARA_REG5); 671 if ((r & m) != v) { 672 device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r); 673 rc = EINVAL; 674 } 675 676 t4_init_tp_params(sc); 677 678 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 679 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 680 681 return (rc); 682 } 683 684 int 685 t4_create_dma_tag(struct adapter *sc) 686 { 687 int rc; 688 689 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, 690 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, 691 BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, 692 NULL, &sc->dmat); 693 if (rc != 0) { 694 device_printf(sc->dev, 695 "failed to create main DMA tag: %d\n", rc); 696 } 697 698 return (rc); 699 } 700 701 void 702 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 703 struct sysctl_oid_list *children) 704 { 705 struct sge_params *sp = &sc->params.sge; 706 707 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes", 708 CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A", 709 "freelist buffer sizes"); 710 711 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD, 712 NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)"); 713 714 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD, 715 NULL, sp->pad_boundary, "payload pad boundary (bytes)"); 716 717 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD, 718 NULL, sp->spg_len, "status page size (bytes)"); 719 720 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD, 721 NULL, cong_drop, "congestion drop setting"); 722 723 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD, 724 NULL, sp->pack_boundary, "payload pack boundary (bytes)"); 725 } 726 727 int 728 t4_destroy_dma_tag(struct adapter *sc) 729 { 730 if (sc->dmat) 731 bus_dma_tag_destroy(sc->dmat); 732 733 return (0); 734 } 735 736 /* 737 * Allocate and initialize the firmware event queue and the management queue. 738 * 739 * Returns errno on failure. Resources allocated up to that point may still be 740 * allocated. Caller is responsible for cleanup in case this function fails. 741 */ 742 int 743 t4_setup_adapter_queues(struct adapter *sc) 744 { 745 int rc; 746 747 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 748 749 sysctl_ctx_init(&sc->ctx); 750 sc->flags |= ADAP_SYSCTL_CTX; 751 752 /* 753 * Firmware event queue 754 */ 755 rc = alloc_fwq(sc); 756 if (rc != 0) 757 return (rc); 758 759 /* 760 * Management queue. This is just a control queue that uses the fwq as 761 * its associated iq. 762 */ 763 rc = alloc_mgmtq(sc); 764 765 return (rc); 766 } 767 768 /* 769 * Idempotent 770 */ 771 int 772 t4_teardown_adapter_queues(struct adapter *sc) 773 { 774 775 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 776 777 /* Do this before freeing the queue */ 778 if (sc->flags & ADAP_SYSCTL_CTX) { 779 sysctl_ctx_free(&sc->ctx); 780 sc->flags &= ~ADAP_SYSCTL_CTX; 781 } 782 783 free_mgmtq(sc); 784 free_fwq(sc); 785 786 return (0); 787 } 788 789 static inline int 790 first_vector(struct vi_info *vi) 791 { 792 struct adapter *sc = vi->pi->adapter; 793 794 if (sc->intr_count == 1) 795 return (0); 796 797 return (vi->first_intr); 798 } 799 800 /* 801 * Given an arbitrary "index," come up with an iq that can be used by other 802 * queues (of this VI) for interrupt forwarding, SGE egress updates, etc. 803 * The iq returned is guaranteed to be something that takes direct interrupts. 804 */ 805 static struct sge_iq * 806 vi_intr_iq(struct vi_info *vi, int idx) 807 { 808 struct adapter *sc = vi->pi->adapter; 809 struct sge *s = &sc->sge; 810 struct sge_iq *iq = NULL; 811 int nintr, i; 812 813 if (sc->intr_count == 1) 814 return (&sc->sge.fwq); 815 816 nintr = vi->nintr; 817 KASSERT(nintr != 0, 818 ("%s: vi %p has no exclusive interrupts, total interrupts = %d", 819 __func__, vi, sc->intr_count)); 820 i = idx % nintr; 821 822 if (vi->flags & INTR_RXQ) { 823 if (i < vi->nrxq) { 824 iq = &s->rxq[vi->first_rxq + i].iq; 825 goto done; 826 } 827 i -= vi->nrxq; 828 } 829 #ifdef TCP_OFFLOAD 830 if (vi->flags & INTR_OFLD_RXQ) { 831 if (i < vi->nofldrxq) { 832 iq = &s->ofld_rxq[vi->first_ofld_rxq + i].iq; 833 goto done; 834 } 835 i -= vi->nofldrxq; 836 } 837 #endif 838 panic("%s: vi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__, 839 vi, vi->flags & INTR_ALL, idx, nintr); 840 done: 841 MPASS(iq != NULL); 842 KASSERT(iq->flags & IQ_INTR, 843 ("%s: iq %p (vi %p, intr_flags 0x%lx, idx %d)", __func__, iq, vi, 844 vi->flags & INTR_ALL, idx)); 845 return (iq); 846 } 847 848 /* Maximum payload that can be delivered with a single iq descriptor */ 849 static inline int 850 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe) 851 { 852 int payload; 853 854 #ifdef TCP_OFFLOAD 855 if (toe) { 856 payload = sc->tt.rx_coalesce ? 857 G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu; 858 } else { 859 #endif 860 /* large enough even when hw VLAN extraction is disabled */ 861 payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN + 862 ETHER_VLAN_ENCAP_LEN + mtu; 863 #ifdef TCP_OFFLOAD 864 } 865 #endif 866 867 return (payload); 868 } 869 870 int 871 t4_setup_vi_queues(struct vi_info *vi) 872 { 873 int rc = 0, i, j, intr_idx, iqid; 874 struct sge_rxq *rxq; 875 struct sge_txq *txq; 876 struct sge_wrq *ctrlq; 877 #ifdef TCP_OFFLOAD 878 struct sge_ofld_rxq *ofld_rxq; 879 struct sge_wrq *ofld_txq; 880 #endif 881 #ifdef DEV_NETMAP 882 int saved_idx; 883 struct sge_nm_rxq *nm_rxq; 884 struct sge_nm_txq *nm_txq; 885 #endif 886 char name[16]; 887 struct port_info *pi = vi->pi; 888 struct adapter *sc = pi->adapter; 889 struct ifnet *ifp = vi->ifp; 890 struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev); 891 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 892 int maxp, mtu = ifp->if_mtu; 893 894 /* Interrupt vector to start from (when using multiple vectors) */ 895 intr_idx = first_vector(vi); 896 897 #ifdef DEV_NETMAP 898 saved_idx = intr_idx; 899 if (ifp->if_capabilities & IFCAP_NETMAP) { 900 901 /* netmap is supported with direct interrupts only. */ 902 MPASS(vi->flags & INTR_RXQ); 903 904 /* 905 * We don't have buffers to back the netmap rx queues 906 * right now so we create the queues in a way that 907 * doesn't set off any congestion signal in the chip. 908 */ 909 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq", 910 CTLFLAG_RD, NULL, "rx queues"); 911 for_each_nm_rxq(vi, i, nm_rxq) { 912 rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid); 913 if (rc != 0) 914 goto done; 915 intr_idx++; 916 } 917 918 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq", 919 CTLFLAG_RD, NULL, "tx queues"); 920 for_each_nm_txq(vi, i, nm_txq) { 921 iqid = vi->first_nm_rxq + (i % vi->nnmrxq); 922 rc = alloc_nm_txq(vi, nm_txq, iqid, i, oid); 923 if (rc != 0) 924 goto done; 925 } 926 } 927 928 /* Normal rx queues and netmap rx queues share the same interrupts. */ 929 intr_idx = saved_idx; 930 #endif 931 932 /* 933 * First pass over all NIC and TOE rx queues: 934 * a) initialize iq and fl 935 * b) allocate queue iff it will take direct interrupts. 936 */ 937 maxp = mtu_to_max_payload(sc, mtu, 0); 938 if (vi->flags & INTR_RXQ) { 939 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", 940 CTLFLAG_RD, NULL, "rx queues"); 941 } 942 for_each_rxq(vi, i, rxq) { 943 944 init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq); 945 946 snprintf(name, sizeof(name), "%s rxq%d-fl", 947 device_get_nameunit(vi->dev), i); 948 init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name); 949 950 if (vi->flags & INTR_RXQ) { 951 rxq->iq.flags |= IQ_INTR; 952 rc = alloc_rxq(vi, rxq, intr_idx, i, oid); 953 if (rc != 0) 954 goto done; 955 intr_idx++; 956 } 957 } 958 #ifdef DEV_NETMAP 959 if (ifp->if_capabilities & IFCAP_NETMAP) 960 intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq); 961 #endif 962 #ifdef TCP_OFFLOAD 963 maxp = mtu_to_max_payload(sc, mtu, 1); 964 if (vi->flags & INTR_OFLD_RXQ) { 965 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq", 966 CTLFLAG_RD, NULL, 967 "rx queues for offloaded TCP connections"); 968 } 969 for_each_ofld_rxq(vi, i, ofld_rxq) { 970 971 init_iq(&ofld_rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, 972 vi->qsize_rxq); 973 974 snprintf(name, sizeof(name), "%s ofld_rxq%d-fl", 975 device_get_nameunit(vi->dev), i); 976 init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name); 977 978 if (vi->flags & INTR_OFLD_RXQ) { 979 ofld_rxq->iq.flags |= IQ_INTR; 980 rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid); 981 if (rc != 0) 982 goto done; 983 intr_idx++; 984 } 985 } 986 #endif 987 988 /* 989 * Second pass over all NIC and TOE rx queues. The queues forwarding 990 * their interrupts are allocated now. 991 */ 992 j = 0; 993 if (!(vi->flags & INTR_RXQ)) { 994 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq", 995 CTLFLAG_RD, NULL, "rx queues"); 996 for_each_rxq(vi, i, rxq) { 997 MPASS(!(rxq->iq.flags & IQ_INTR)); 998 999 intr_idx = vi_intr_iq(vi, j)->abs_id; 1000 1001 rc = alloc_rxq(vi, rxq, intr_idx, i, oid); 1002 if (rc != 0) 1003 goto done; 1004 j++; 1005 } 1006 } 1007 #ifdef TCP_OFFLOAD 1008 if (vi->nofldrxq != 0 && !(vi->flags & INTR_OFLD_RXQ)) { 1009 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq", 1010 CTLFLAG_RD, NULL, 1011 "rx queues for offloaded TCP connections"); 1012 for_each_ofld_rxq(vi, i, ofld_rxq) { 1013 MPASS(!(ofld_rxq->iq.flags & IQ_INTR)); 1014 1015 intr_idx = vi_intr_iq(vi, j)->abs_id; 1016 1017 rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid); 1018 if (rc != 0) 1019 goto done; 1020 j++; 1021 } 1022 } 1023 #endif 1024 1025 /* 1026 * Now the tx queues. Only one pass needed. 1027 */ 1028 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD, 1029 NULL, "tx queues"); 1030 j = 0; 1031 for_each_txq(vi, i, txq) { 1032 iqid = vi_intr_iq(vi, j)->cntxt_id; 1033 snprintf(name, sizeof(name), "%s txq%d", 1034 device_get_nameunit(vi->dev), i); 1035 init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, iqid, 1036 name); 1037 1038 rc = alloc_txq(vi, txq, i, oid); 1039 if (rc != 0) 1040 goto done; 1041 j++; 1042 } 1043 #ifdef TCP_OFFLOAD 1044 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq", 1045 CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections"); 1046 for_each_ofld_txq(vi, i, ofld_txq) { 1047 struct sysctl_oid *oid2; 1048 1049 iqid = vi_intr_iq(vi, j)->cntxt_id; 1050 snprintf(name, sizeof(name), "%s ofld_txq%d", 1051 device_get_nameunit(vi->dev), i); 1052 init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan, 1053 iqid, name); 1054 1055 snprintf(name, sizeof(name), "%d", i); 1056 oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO, 1057 name, CTLFLAG_RD, NULL, "offload tx queue"); 1058 1059 rc = alloc_wrq(sc, vi, ofld_txq, oid2); 1060 if (rc != 0) 1061 goto done; 1062 j++; 1063 } 1064 #endif 1065 1066 /* 1067 * Finally, the control queue. 1068 */ 1069 if (!IS_MAIN_VI(vi)) 1070 goto done; 1071 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD, 1072 NULL, "ctrl queue"); 1073 ctrlq = &sc->sge.ctrlq[pi->port_id]; 1074 iqid = vi_intr_iq(vi, 0)->cntxt_id; 1075 snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev)); 1076 init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, 1077 name); 1078 rc = alloc_wrq(sc, vi, ctrlq, oid); 1079 1080 done: 1081 if (rc) 1082 t4_teardown_vi_queues(vi); 1083 1084 return (rc); 1085 } 1086 1087 /* 1088 * Idempotent 1089 */ 1090 int 1091 t4_teardown_vi_queues(struct vi_info *vi) 1092 { 1093 int i; 1094 struct port_info *pi = vi->pi; 1095 struct adapter *sc = pi->adapter; 1096 struct sge_rxq *rxq; 1097 struct sge_txq *txq; 1098 #ifdef TCP_OFFLOAD 1099 struct sge_ofld_rxq *ofld_rxq; 1100 struct sge_wrq *ofld_txq; 1101 #endif 1102 #ifdef DEV_NETMAP 1103 struct sge_nm_rxq *nm_rxq; 1104 struct sge_nm_txq *nm_txq; 1105 #endif 1106 1107 /* Do this before freeing the queues */ 1108 if (vi->flags & VI_SYSCTL_CTX) { 1109 sysctl_ctx_free(&vi->ctx); 1110 vi->flags &= ~VI_SYSCTL_CTX; 1111 } 1112 1113 #ifdef DEV_NETMAP 1114 if (vi->ifp->if_capabilities & IFCAP_NETMAP) { 1115 for_each_nm_txq(vi, i, nm_txq) { 1116 free_nm_txq(vi, nm_txq); 1117 } 1118 1119 for_each_nm_rxq(vi, i, nm_rxq) { 1120 free_nm_rxq(vi, nm_rxq); 1121 } 1122 } 1123 #endif 1124 1125 /* 1126 * Take down all the tx queues first, as they reference the rx queues 1127 * (for egress updates, etc.). 1128 */ 1129 1130 if (IS_MAIN_VI(vi)) 1131 free_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 1132 1133 for_each_txq(vi, i, txq) { 1134 free_txq(vi, txq); 1135 } 1136 #ifdef TCP_OFFLOAD 1137 for_each_ofld_txq(vi, i, ofld_txq) { 1138 free_wrq(sc, ofld_txq); 1139 } 1140 #endif 1141 1142 /* 1143 * Then take down the rx queues that forward their interrupts, as they 1144 * reference other rx queues. 1145 */ 1146 1147 for_each_rxq(vi, i, rxq) { 1148 if ((rxq->iq.flags & IQ_INTR) == 0) 1149 free_rxq(vi, rxq); 1150 } 1151 #ifdef TCP_OFFLOAD 1152 for_each_ofld_rxq(vi, i, ofld_rxq) { 1153 if ((ofld_rxq->iq.flags & IQ_INTR) == 0) 1154 free_ofld_rxq(vi, ofld_rxq); 1155 } 1156 #endif 1157 1158 /* 1159 * Then take down the rx queues that take direct interrupts. 1160 */ 1161 1162 for_each_rxq(vi, i, rxq) { 1163 if (rxq->iq.flags & IQ_INTR) 1164 free_rxq(vi, rxq); 1165 } 1166 #ifdef TCP_OFFLOAD 1167 for_each_ofld_rxq(vi, i, ofld_rxq) { 1168 if (ofld_rxq->iq.flags & IQ_INTR) 1169 free_ofld_rxq(vi, ofld_rxq); 1170 } 1171 #endif 1172 1173 return (0); 1174 } 1175 1176 /* 1177 * Deals with errors and the firmware event queue. All data rx queues forward 1178 * their interrupt to the firmware event queue. 1179 */ 1180 void 1181 t4_intr_all(void *arg) 1182 { 1183 struct adapter *sc = arg; 1184 struct sge_iq *fwq = &sc->sge.fwq; 1185 1186 t4_intr_err(arg); 1187 if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) { 1188 service_iq(fwq, 0); 1189 atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE); 1190 } 1191 } 1192 1193 /* Deals with error interrupts */ 1194 void 1195 t4_intr_err(void *arg) 1196 { 1197 struct adapter *sc = arg; 1198 1199 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); 1200 t4_slow_intr_handler(sc); 1201 } 1202 1203 void 1204 t4_intr_evt(void *arg) 1205 { 1206 struct sge_iq *iq = arg; 1207 1208 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1209 service_iq(iq, 0); 1210 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1211 } 1212 } 1213 1214 void 1215 t4_intr(void *arg) 1216 { 1217 struct sge_iq *iq = arg; 1218 1219 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { 1220 service_iq(iq, 0); 1221 atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); 1222 } 1223 } 1224 1225 void 1226 t4_vi_intr(void *arg) 1227 { 1228 struct irq *irq = arg; 1229 1230 #ifdef DEV_NETMAP 1231 if (atomic_cmpset_int(&irq->nm_state, NM_ON, NM_BUSY)) { 1232 t4_nm_intr(irq->nm_rxq); 1233 atomic_cmpset_int(&irq->nm_state, NM_BUSY, NM_ON); 1234 } 1235 #endif 1236 if (irq->rxq != NULL) 1237 t4_intr(irq->rxq); 1238 } 1239 1240 /* 1241 * Deals with anything and everything on the given ingress queue. 1242 */ 1243 static int 1244 service_iq(struct sge_iq *iq, int budget) 1245 { 1246 struct sge_iq *q; 1247 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */ 1248 struct sge_fl *fl; /* Use iff IQ_HAS_FL */ 1249 struct adapter *sc = iq->adapter; 1250 struct iq_desc *d = &iq->desc[iq->cidx]; 1251 int ndescs = 0, limit; 1252 int rsp_type, refill; 1253 uint32_t lq; 1254 uint16_t fl_hw_cidx; 1255 struct mbuf *m0; 1256 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); 1257 #if defined(INET) || defined(INET6) 1258 const struct timeval lro_timeout = {0, sc->lro_timeout}; 1259 #endif 1260 1261 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); 1262 1263 limit = budget ? budget : iq->qsize / 16; 1264 1265 if (iq->flags & IQ_HAS_FL) { 1266 fl = &rxq->fl; 1267 fl_hw_cidx = fl->hw_cidx; /* stable snapshot */ 1268 } else { 1269 fl = NULL; 1270 fl_hw_cidx = 0; /* to silence gcc warning */ 1271 } 1272 1273 /* 1274 * We always come back and check the descriptor ring for new indirect 1275 * interrupts and other responses after running a single handler. 1276 */ 1277 for (;;) { 1278 while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { 1279 1280 rmb(); 1281 1282 refill = 0; 1283 m0 = NULL; 1284 rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); 1285 lq = be32toh(d->rsp.pldbuflen_qid); 1286 1287 switch (rsp_type) { 1288 case X_RSPD_TYPE_FLBUF: 1289 1290 KASSERT(iq->flags & IQ_HAS_FL, 1291 ("%s: data for an iq (%p) with no freelist", 1292 __func__, iq)); 1293 1294 m0 = get_fl_payload(sc, fl, lq); 1295 if (__predict_false(m0 == NULL)) 1296 goto process_iql; 1297 refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2; 1298 #ifdef T4_PKT_TIMESTAMP 1299 /* 1300 * 60 bit timestamp for the payload is 1301 * *(uint64_t *)m0->m_pktdat. Note that it is 1302 * in the leading free-space in the mbuf. The 1303 * kernel can clobber it during a pullup, 1304 * m_copymdata, etc. You need to make sure that 1305 * the mbuf reaches you unmolested if you care 1306 * about the timestamp. 1307 */ 1308 *(uint64_t *)m0->m_pktdat = 1309 be64toh(ctrl->u.last_flit) & 1310 0xfffffffffffffff; 1311 #endif 1312 1313 /* fall through */ 1314 1315 case X_RSPD_TYPE_CPL: 1316 KASSERT(d->rss.opcode < NUM_CPL_CMDS, 1317 ("%s: bad opcode %02x.", __func__, 1318 d->rss.opcode)); 1319 sc->cpl_handler[d->rss.opcode](iq, &d->rss, m0); 1320 break; 1321 1322 case X_RSPD_TYPE_INTR: 1323 1324 /* 1325 * Interrupts should be forwarded only to queues 1326 * that are not forwarding their interrupts. 1327 * This means service_iq can recurse but only 1 1328 * level deep. 1329 */ 1330 KASSERT(budget == 0, 1331 ("%s: budget %u, rsp_type %u", __func__, 1332 budget, rsp_type)); 1333 1334 /* 1335 * There are 1K interrupt-capable queues (qids 0 1336 * through 1023). A response type indicating a 1337 * forwarded interrupt with a qid >= 1K is an 1338 * iWARP async notification. 1339 */ 1340 if (lq >= 1024) { 1341 sc->an_handler(iq, &d->rsp); 1342 break; 1343 } 1344 1345 q = sc->sge.iqmap[lq - sc->sge.iq_start]; 1346 if (atomic_cmpset_int(&q->state, IQS_IDLE, 1347 IQS_BUSY)) { 1348 if (service_iq(q, q->qsize / 16) == 0) { 1349 atomic_cmpset_int(&q->state, 1350 IQS_BUSY, IQS_IDLE); 1351 } else { 1352 STAILQ_INSERT_TAIL(&iql, q, 1353 link); 1354 } 1355 } 1356 break; 1357 1358 default: 1359 KASSERT(0, 1360 ("%s: illegal response type %d on iq %p", 1361 __func__, rsp_type, iq)); 1362 log(LOG_ERR, 1363 "%s: illegal response type %d on iq %p", 1364 device_get_nameunit(sc->dev), rsp_type, iq); 1365 break; 1366 } 1367 1368 d++; 1369 if (__predict_false(++iq->cidx == iq->sidx)) { 1370 iq->cidx = 0; 1371 iq->gen ^= F_RSPD_GEN; 1372 d = &iq->desc[0]; 1373 } 1374 if (__predict_false(++ndescs == limit)) { 1375 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), 1376 V_CIDXINC(ndescs) | 1377 V_INGRESSQID(iq->cntxt_id) | 1378 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 1379 ndescs = 0; 1380 1381 #if defined(INET) || defined(INET6) 1382 if (iq->flags & IQ_LRO_ENABLED && 1383 sc->lro_timeout != 0) { 1384 tcp_lro_flush_inactive(&rxq->lro, 1385 &lro_timeout); 1386 } 1387 #endif 1388 1389 if (budget) { 1390 if (iq->flags & IQ_HAS_FL) { 1391 FL_LOCK(fl); 1392 refill_fl(sc, fl, 32); 1393 FL_UNLOCK(fl); 1394 } 1395 return (EINPROGRESS); 1396 } 1397 } 1398 if (refill) { 1399 FL_LOCK(fl); 1400 refill_fl(sc, fl, 32); 1401 FL_UNLOCK(fl); 1402 fl_hw_cidx = fl->hw_cidx; 1403 } 1404 } 1405 1406 process_iql: 1407 if (STAILQ_EMPTY(&iql)) 1408 break; 1409 1410 /* 1411 * Process the head only, and send it to the back of the list if 1412 * it's still not done. 1413 */ 1414 q = STAILQ_FIRST(&iql); 1415 STAILQ_REMOVE_HEAD(&iql, link); 1416 if (service_iq(q, q->qsize / 8) == 0) 1417 atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); 1418 else 1419 STAILQ_INSERT_TAIL(&iql, q, link); 1420 } 1421 1422 #if defined(INET) || defined(INET6) 1423 if (iq->flags & IQ_LRO_ENABLED) { 1424 struct lro_ctrl *lro = &rxq->lro; 1425 1426 tcp_lro_flush_all(lro); 1427 } 1428 #endif 1429 1430 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) | 1431 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); 1432 1433 if (iq->flags & IQ_HAS_FL) { 1434 int starved; 1435 1436 FL_LOCK(fl); 1437 starved = refill_fl(sc, fl, 64); 1438 FL_UNLOCK(fl); 1439 if (__predict_false(starved != 0)) 1440 add_fl_to_sfl(sc, fl); 1441 } 1442 1443 return (0); 1444 } 1445 1446 static inline int 1447 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll) 1448 { 1449 int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0; 1450 1451 if (rc) 1452 MPASS(cll->region3 >= CL_METADATA_SIZE); 1453 1454 return (rc); 1455 } 1456 1457 static inline struct cluster_metadata * 1458 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll, 1459 caddr_t cl) 1460 { 1461 1462 if (cl_has_metadata(fl, cll)) { 1463 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1464 1465 return ((struct cluster_metadata *)(cl + swz->size) - 1); 1466 } 1467 return (NULL); 1468 } 1469 1470 static void 1471 rxb_free(struct mbuf *m, void *arg1, void *arg2) 1472 { 1473 uma_zone_t zone = arg1; 1474 caddr_t cl = arg2; 1475 1476 uma_zfree(zone, cl); 1477 counter_u64_add(extfree_rels, 1); 1478 } 1479 1480 /* 1481 * The mbuf returned by this function could be allocated from zone_mbuf or 1482 * constructed in spare room in the cluster. 1483 * 1484 * The mbuf carries the payload in one of these ways 1485 * a) frame inside the mbuf (mbuf from zone_mbuf) 1486 * b) m_cljset (for clusters without metadata) zone_mbuf 1487 * c) m_extaddref (cluster with metadata) inline mbuf 1488 * d) m_extaddref (cluster with metadata) zone_mbuf 1489 */ 1490 static struct mbuf * 1491 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset, 1492 int remaining) 1493 { 1494 struct mbuf *m; 1495 struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; 1496 struct cluster_layout *cll = &sd->cll; 1497 struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx]; 1498 struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx]; 1499 struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl); 1500 int len, blen; 1501 caddr_t payload; 1502 1503 blen = hwb->size - fl->rx_offset; /* max possible in this buf */ 1504 len = min(remaining, blen); 1505 payload = sd->cl + cll->region1 + fl->rx_offset; 1506 if (fl->flags & FL_BUF_PACKING) { 1507 const u_int l = fr_offset + len; 1508 const u_int pad = roundup2(l, fl->buf_boundary) - l; 1509 1510 if (fl->rx_offset + len + pad < hwb->size) 1511 blen = len + pad; 1512 MPASS(fl->rx_offset + blen <= hwb->size); 1513 } else { 1514 MPASS(fl->rx_offset == 0); /* not packing */ 1515 } 1516 1517 1518 if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) { 1519 1520 /* 1521 * Copy payload into a freshly allocated mbuf. 1522 */ 1523 1524 m = fr_offset == 0 ? 1525 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1526 if (m == NULL) 1527 return (NULL); 1528 fl->mbuf_allocated++; 1529 #ifdef T4_PKT_TIMESTAMP 1530 /* Leave room for a timestamp */ 1531 m->m_data += 8; 1532 #endif 1533 /* copy data to mbuf */ 1534 bcopy(payload, mtod(m, caddr_t), len); 1535 1536 } else if (sd->nmbuf * MSIZE < cll->region1) { 1537 1538 /* 1539 * There's spare room in the cluster for an mbuf. Create one 1540 * and associate it with the payload that's in the cluster. 1541 */ 1542 1543 MPASS(clm != NULL); 1544 m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE); 1545 /* No bzero required */ 1546 if (m_init(m, M_NOWAIT, MT_DATA, 1547 fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE)) 1548 return (NULL); 1549 fl->mbuf_inlined++; 1550 m_extaddref(m, payload, blen, &clm->refcount, rxb_free, 1551 swz->zone, sd->cl); 1552 if (sd->nmbuf++ == 0) 1553 counter_u64_add(extfree_refs, 1); 1554 1555 } else { 1556 1557 /* 1558 * Grab an mbuf from zone_mbuf and associate it with the 1559 * payload in the cluster. 1560 */ 1561 1562 m = fr_offset == 0 ? 1563 m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA); 1564 if (m == NULL) 1565 return (NULL); 1566 fl->mbuf_allocated++; 1567 if (clm != NULL) { 1568 m_extaddref(m, payload, blen, &clm->refcount, 1569 rxb_free, swz->zone, sd->cl); 1570 if (sd->nmbuf++ == 0) 1571 counter_u64_add(extfree_refs, 1); 1572 } else { 1573 m_cljset(m, sd->cl, swz->type); 1574 sd->cl = NULL; /* consumed, not a recycle candidate */ 1575 } 1576 } 1577 if (fr_offset == 0) 1578 m->m_pkthdr.len = remaining; 1579 m->m_len = len; 1580 1581 if (fl->flags & FL_BUF_PACKING) { 1582 fl->rx_offset += blen; 1583 MPASS(fl->rx_offset <= hwb->size); 1584 if (fl->rx_offset < hwb->size) 1585 return (m); /* without advancing the cidx */ 1586 } 1587 1588 if (__predict_false(++fl->cidx % 8 == 0)) { 1589 uint16_t cidx = fl->cidx / 8; 1590 1591 if (__predict_false(cidx == fl->sidx)) 1592 fl->cidx = cidx = 0; 1593 fl->hw_cidx = cidx; 1594 } 1595 fl->rx_offset = 0; 1596 1597 return (m); 1598 } 1599 1600 static struct mbuf * 1601 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf) 1602 { 1603 struct mbuf *m0, *m, **pnext; 1604 u_int remaining; 1605 const u_int total = G_RSPD_LEN(len_newbuf); 1606 1607 if (__predict_false(fl->flags & FL_BUF_RESUME)) { 1608 M_ASSERTPKTHDR(fl->m0); 1609 MPASS(fl->m0->m_pkthdr.len == total); 1610 MPASS(fl->remaining < total); 1611 1612 m0 = fl->m0; 1613 pnext = fl->pnext; 1614 remaining = fl->remaining; 1615 fl->flags &= ~FL_BUF_RESUME; 1616 goto get_segment; 1617 } 1618 1619 if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) { 1620 fl->rx_offset = 0; 1621 if (__predict_false(++fl->cidx % 8 == 0)) { 1622 uint16_t cidx = fl->cidx / 8; 1623 1624 if (__predict_false(cidx == fl->sidx)) 1625 fl->cidx = cidx = 0; 1626 fl->hw_cidx = cidx; 1627 } 1628 } 1629 1630 /* 1631 * Payload starts at rx_offset in the current hw buffer. Its length is 1632 * 'len' and it may span multiple hw buffers. 1633 */ 1634 1635 m0 = get_scatter_segment(sc, fl, 0, total); 1636 if (m0 == NULL) 1637 return (NULL); 1638 remaining = total - m0->m_len; 1639 pnext = &m0->m_next; 1640 while (remaining > 0) { 1641 get_segment: 1642 MPASS(fl->rx_offset == 0); 1643 m = get_scatter_segment(sc, fl, total - remaining, remaining); 1644 if (__predict_false(m == NULL)) { 1645 fl->m0 = m0; 1646 fl->pnext = pnext; 1647 fl->remaining = remaining; 1648 fl->flags |= FL_BUF_RESUME; 1649 return (NULL); 1650 } 1651 *pnext = m; 1652 pnext = &m->m_next; 1653 remaining -= m->m_len; 1654 } 1655 *pnext = NULL; 1656 1657 M_ASSERTPKTHDR(m0); 1658 return (m0); 1659 } 1660 1661 static int 1662 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) 1663 { 1664 struct sge_rxq *rxq = iq_to_rxq(iq); 1665 struct ifnet *ifp = rxq->ifp; 1666 struct adapter *sc = iq->adapter; 1667 const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); 1668 #if defined(INET) || defined(INET6) 1669 struct lro_ctrl *lro = &rxq->lro; 1670 #endif 1671 static const int sw_hashtype[4][2] = { 1672 {M_HASHTYPE_NONE, M_HASHTYPE_NONE}, 1673 {M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6}, 1674 {M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6}, 1675 {M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6}, 1676 }; 1677 1678 KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__, 1679 rss->opcode)); 1680 1681 m0->m_pkthdr.len -= sc->params.sge.fl_pktshift; 1682 m0->m_len -= sc->params.sge.fl_pktshift; 1683 m0->m_data += sc->params.sge.fl_pktshift; 1684 1685 m0->m_pkthdr.rcvif = ifp; 1686 M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]); 1687 m0->m_pkthdr.flowid = be32toh(rss->hash_val); 1688 1689 if (cpl->csum_calc && !cpl->err_vec) { 1690 if (ifp->if_capenable & IFCAP_RXCSUM && 1691 cpl->l2info & htobe32(F_RXF_IP)) { 1692 m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED | 1693 CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 1694 rxq->rxcsum++; 1695 } else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 && 1696 cpl->l2info & htobe32(F_RXF_IP6)) { 1697 m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 | 1698 CSUM_PSEUDO_HDR); 1699 rxq->rxcsum++; 1700 } 1701 1702 if (__predict_false(cpl->ip_frag)) 1703 m0->m_pkthdr.csum_data = be16toh(cpl->csum); 1704 else 1705 m0->m_pkthdr.csum_data = 0xffff; 1706 } 1707 1708 if (cpl->vlan_ex) { 1709 m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); 1710 m0->m_flags |= M_VLANTAG; 1711 rxq->vlan_extraction++; 1712 } 1713 1714 #if defined(INET) || defined(INET6) 1715 if (cpl->l2info & htobe32(F_RXF_LRO) && 1716 iq->flags & IQ_LRO_ENABLED && 1717 tcp_lro_rx(lro, m0, 0) == 0) { 1718 /* queued for LRO */ 1719 } else 1720 #endif 1721 ifp->if_input(ifp, m0); 1722 1723 return (0); 1724 } 1725 1726 /* 1727 * Must drain the wrq or make sure that someone else will. 1728 */ 1729 static void 1730 wrq_tx_drain(void *arg, int n) 1731 { 1732 struct sge_wrq *wrq = arg; 1733 struct sge_eq *eq = &wrq->eq; 1734 1735 EQ_LOCK(eq); 1736 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 1737 drain_wrq_wr_list(wrq->adapter, wrq); 1738 EQ_UNLOCK(eq); 1739 } 1740 1741 static void 1742 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq) 1743 { 1744 struct sge_eq *eq = &wrq->eq; 1745 u_int available, dbdiff; /* # of hardware descriptors */ 1746 u_int n; 1747 struct wrqe *wr; 1748 struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ 1749 1750 EQ_LOCK_ASSERT_OWNED(eq); 1751 MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs)); 1752 wr = STAILQ_FIRST(&wrq->wr_list); 1753 MPASS(wr != NULL); /* Must be called with something useful to do */ 1754 MPASS(eq->pidx == eq->dbidx); 1755 dbdiff = 0; 1756 1757 do { 1758 eq->cidx = read_hw_cidx(eq); 1759 if (eq->pidx == eq->cidx) 1760 available = eq->sidx - 1; 1761 else 1762 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 1763 1764 MPASS(wr->wrq == wrq); 1765 n = howmany(wr->wr_len, EQ_ESIZE); 1766 if (available < n) 1767 break; 1768 1769 dst = (void *)&eq->desc[eq->pidx]; 1770 if (__predict_true(eq->sidx - eq->pidx > n)) { 1771 /* Won't wrap, won't end exactly at the status page. */ 1772 bcopy(&wr->wr[0], dst, wr->wr_len); 1773 eq->pidx += n; 1774 } else { 1775 int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE; 1776 1777 bcopy(&wr->wr[0], dst, first_portion); 1778 if (wr->wr_len > first_portion) { 1779 bcopy(&wr->wr[first_portion], &eq->desc[0], 1780 wr->wr_len - first_portion); 1781 } 1782 eq->pidx = n - (eq->sidx - eq->pidx); 1783 } 1784 1785 if (available < eq->sidx / 4 && 1786 atomic_cmpset_int(&eq->equiq, 0, 1)) { 1787 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 1788 F_FW_WR_EQUEQ); 1789 eq->equeqidx = eq->pidx; 1790 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 1791 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 1792 eq->equeqidx = eq->pidx; 1793 } 1794 1795 dbdiff += n; 1796 if (dbdiff >= 16) { 1797 ring_eq_db(sc, eq, dbdiff); 1798 dbdiff = 0; 1799 } 1800 1801 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 1802 free_wrqe(wr); 1803 MPASS(wrq->nwr_pending > 0); 1804 wrq->nwr_pending--; 1805 MPASS(wrq->ndesc_needed >= n); 1806 wrq->ndesc_needed -= n; 1807 } while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL); 1808 1809 if (dbdiff) 1810 ring_eq_db(sc, eq, dbdiff); 1811 } 1812 1813 /* 1814 * Doesn't fail. Holds on to work requests it can't send right away. 1815 */ 1816 void 1817 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr) 1818 { 1819 #ifdef INVARIANTS 1820 struct sge_eq *eq = &wrq->eq; 1821 #endif 1822 1823 EQ_LOCK_ASSERT_OWNED(eq); 1824 MPASS(wr != NULL); 1825 MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN); 1826 MPASS((wr->wr_len & 0x7) == 0); 1827 1828 STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link); 1829 wrq->nwr_pending++; 1830 wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE); 1831 1832 if (!TAILQ_EMPTY(&wrq->incomplete_wrs)) 1833 return; /* commit_wrq_wr will drain wr_list as well. */ 1834 1835 drain_wrq_wr_list(sc, wrq); 1836 1837 /* Doorbell must have caught up to the pidx. */ 1838 MPASS(eq->pidx == eq->dbidx); 1839 } 1840 1841 void 1842 t4_update_fl_bufsize(struct ifnet *ifp) 1843 { 1844 struct vi_info *vi = ifp->if_softc; 1845 struct adapter *sc = vi->pi->adapter; 1846 struct sge_rxq *rxq; 1847 #ifdef TCP_OFFLOAD 1848 struct sge_ofld_rxq *ofld_rxq; 1849 #endif 1850 struct sge_fl *fl; 1851 int i, maxp, mtu = ifp->if_mtu; 1852 1853 maxp = mtu_to_max_payload(sc, mtu, 0); 1854 for_each_rxq(vi, i, rxq) { 1855 fl = &rxq->fl; 1856 1857 FL_LOCK(fl); 1858 find_best_refill_source(sc, fl, maxp); 1859 FL_UNLOCK(fl); 1860 } 1861 #ifdef TCP_OFFLOAD 1862 maxp = mtu_to_max_payload(sc, mtu, 1); 1863 for_each_ofld_rxq(vi, i, ofld_rxq) { 1864 fl = &ofld_rxq->fl; 1865 1866 FL_LOCK(fl); 1867 find_best_refill_source(sc, fl, maxp); 1868 FL_UNLOCK(fl); 1869 } 1870 #endif 1871 } 1872 1873 static inline int 1874 mbuf_nsegs(struct mbuf *m) 1875 { 1876 1877 M_ASSERTPKTHDR(m); 1878 KASSERT(m->m_pkthdr.l5hlen > 0, 1879 ("%s: mbuf %p missing information on # of segments.", __func__, m)); 1880 1881 return (m->m_pkthdr.l5hlen); 1882 } 1883 1884 static inline void 1885 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs) 1886 { 1887 1888 M_ASSERTPKTHDR(m); 1889 m->m_pkthdr.l5hlen = nsegs; 1890 } 1891 1892 static inline int 1893 mbuf_len16(struct mbuf *m) 1894 { 1895 int n; 1896 1897 M_ASSERTPKTHDR(m); 1898 n = m->m_pkthdr.PH_loc.eight[0]; 1899 MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16); 1900 1901 return (n); 1902 } 1903 1904 static inline void 1905 set_mbuf_len16(struct mbuf *m, uint8_t len16) 1906 { 1907 1908 M_ASSERTPKTHDR(m); 1909 m->m_pkthdr.PH_loc.eight[0] = len16; 1910 } 1911 1912 static inline int 1913 needs_tso(struct mbuf *m) 1914 { 1915 1916 M_ASSERTPKTHDR(m); 1917 1918 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1919 KASSERT(m->m_pkthdr.tso_segsz > 0, 1920 ("%s: TSO requested in mbuf %p but MSS not provided", 1921 __func__, m)); 1922 return (1); 1923 } 1924 1925 return (0); 1926 } 1927 1928 static inline int 1929 needs_l3_csum(struct mbuf *m) 1930 { 1931 1932 M_ASSERTPKTHDR(m); 1933 1934 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)) 1935 return (1); 1936 return (0); 1937 } 1938 1939 static inline int 1940 needs_l4_csum(struct mbuf *m) 1941 { 1942 1943 M_ASSERTPKTHDR(m); 1944 1945 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | 1946 CSUM_TCP_IPV6 | CSUM_TSO)) 1947 return (1); 1948 return (0); 1949 } 1950 1951 static inline int 1952 needs_vlan_insertion(struct mbuf *m) 1953 { 1954 1955 M_ASSERTPKTHDR(m); 1956 1957 if (m->m_flags & M_VLANTAG) { 1958 KASSERT(m->m_pkthdr.ether_vtag != 0, 1959 ("%s: HWVLAN requested in mbuf %p but tag not provided", 1960 __func__, m)); 1961 return (1); 1962 } 1963 return (0); 1964 } 1965 1966 static void * 1967 m_advance(struct mbuf **pm, int *poffset, int len) 1968 { 1969 struct mbuf *m = *pm; 1970 int offset = *poffset; 1971 uintptr_t p = 0; 1972 1973 MPASS(len > 0); 1974 1975 while (len) { 1976 if (offset + len < m->m_len) { 1977 offset += len; 1978 p = mtod(m, uintptr_t) + offset; 1979 break; 1980 } 1981 len -= m->m_len - offset; 1982 m = m->m_next; 1983 offset = 0; 1984 MPASS(m != NULL); 1985 } 1986 *poffset = offset; 1987 *pm = m; 1988 return ((void *)p); 1989 } 1990 1991 static inline int 1992 same_paddr(char *a, char *b) 1993 { 1994 1995 if (a == b) 1996 return (1); 1997 else if (a != NULL && b != NULL) { 1998 vm_offset_t x = (vm_offset_t)a; 1999 vm_offset_t y = (vm_offset_t)b; 2000 2001 if ((x & PAGE_MASK) == (y & PAGE_MASK) && 2002 pmap_kextract(x) == pmap_kextract(y)) 2003 return (1); 2004 } 2005 2006 return (0); 2007 } 2008 2009 /* 2010 * Can deal with empty mbufs in the chain that have m_len = 0, but the chain 2011 * must have at least one mbuf that's not empty. 2012 */ 2013 static inline int 2014 count_mbuf_nsegs(struct mbuf *m) 2015 { 2016 char *prev_end, *start; 2017 int len, nsegs; 2018 2019 MPASS(m != NULL); 2020 2021 nsegs = 0; 2022 prev_end = NULL; 2023 for (; m; m = m->m_next) { 2024 2025 len = m->m_len; 2026 if (__predict_false(len == 0)) 2027 continue; 2028 start = mtod(m, char *); 2029 2030 nsegs += sglist_count(start, len); 2031 if (same_paddr(prev_end, start)) 2032 nsegs--; 2033 prev_end = start + len; 2034 } 2035 2036 MPASS(nsegs > 0); 2037 return (nsegs); 2038 } 2039 2040 /* 2041 * Analyze the mbuf to determine its tx needs. The mbuf passed in may change: 2042 * a) caller can assume it's been freed if this function returns with an error. 2043 * b) it may get defragged up if the gather list is too long for the hardware. 2044 */ 2045 int 2046 parse_pkt(struct mbuf **mp) 2047 { 2048 struct mbuf *m0 = *mp, *m; 2049 int rc, nsegs, defragged = 0, offset; 2050 struct ether_header *eh; 2051 void *l3hdr; 2052 #if defined(INET) || defined(INET6) 2053 struct tcphdr *tcp; 2054 #endif 2055 uint16_t eh_type; 2056 2057 M_ASSERTPKTHDR(m0); 2058 if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) { 2059 rc = EINVAL; 2060 fail: 2061 m_freem(m0); 2062 *mp = NULL; 2063 return (rc); 2064 } 2065 restart: 2066 /* 2067 * First count the number of gather list segments in the payload. 2068 * Defrag the mbuf if nsegs exceeds the hardware limit. 2069 */ 2070 M_ASSERTPKTHDR(m0); 2071 MPASS(m0->m_pkthdr.len > 0); 2072 nsegs = count_mbuf_nsegs(m0); 2073 if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) { 2074 if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) { 2075 rc = EFBIG; 2076 goto fail; 2077 } 2078 *mp = m0 = m; /* update caller's copy after defrag */ 2079 goto restart; 2080 } 2081 2082 if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) { 2083 m0 = m_pullup(m0, m0->m_pkthdr.len); 2084 if (m0 == NULL) { 2085 /* Should have left well enough alone. */ 2086 rc = EFBIG; 2087 goto fail; 2088 } 2089 *mp = m0; /* update caller's copy after pullup */ 2090 goto restart; 2091 } 2092 set_mbuf_nsegs(m0, nsegs); 2093 set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0))); 2094 2095 if (!needs_tso(m0)) 2096 return (0); 2097 2098 m = m0; 2099 eh = mtod(m, struct ether_header *); 2100 eh_type = ntohs(eh->ether_type); 2101 if (eh_type == ETHERTYPE_VLAN) { 2102 struct ether_vlan_header *evh = (void *)eh; 2103 2104 eh_type = ntohs(evh->evl_proto); 2105 m0->m_pkthdr.l2hlen = sizeof(*evh); 2106 } else 2107 m0->m_pkthdr.l2hlen = sizeof(*eh); 2108 2109 offset = 0; 2110 l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen); 2111 2112 switch (eh_type) { 2113 #ifdef INET6 2114 case ETHERTYPE_IPV6: 2115 { 2116 struct ip6_hdr *ip6 = l3hdr; 2117 2118 MPASS(ip6->ip6_nxt == IPPROTO_TCP); 2119 2120 m0->m_pkthdr.l3hlen = sizeof(*ip6); 2121 break; 2122 } 2123 #endif 2124 #ifdef INET 2125 case ETHERTYPE_IP: 2126 { 2127 struct ip *ip = l3hdr; 2128 2129 m0->m_pkthdr.l3hlen = ip->ip_hl * 4; 2130 break; 2131 } 2132 #endif 2133 default: 2134 panic("%s: ethertype 0x%04x unknown. if_cxgbe must be compiled" 2135 " with the same INET/INET6 options as the kernel.", 2136 __func__, eh_type); 2137 } 2138 2139 #if defined(INET) || defined(INET6) 2140 tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen); 2141 m0->m_pkthdr.l4hlen = tcp->th_off * 4; 2142 #endif 2143 MPASS(m0 == *mp); 2144 return (0); 2145 } 2146 2147 void * 2148 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie) 2149 { 2150 struct sge_eq *eq = &wrq->eq; 2151 struct adapter *sc = wrq->adapter; 2152 int ndesc, available; 2153 struct wrqe *wr; 2154 void *w; 2155 2156 MPASS(len16 > 0); 2157 ndesc = howmany(len16, EQ_ESIZE / 16); 2158 MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC); 2159 2160 EQ_LOCK(eq); 2161 2162 if (!STAILQ_EMPTY(&wrq->wr_list)) 2163 drain_wrq_wr_list(sc, wrq); 2164 2165 if (!STAILQ_EMPTY(&wrq->wr_list)) { 2166 slowpath: 2167 EQ_UNLOCK(eq); 2168 wr = alloc_wrqe(len16 * 16, wrq); 2169 if (__predict_false(wr == NULL)) 2170 return (NULL); 2171 cookie->pidx = -1; 2172 cookie->ndesc = ndesc; 2173 return (&wr->wr); 2174 } 2175 2176 eq->cidx = read_hw_cidx(eq); 2177 if (eq->pidx == eq->cidx) 2178 available = eq->sidx - 1; 2179 else 2180 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2181 if (available < ndesc) 2182 goto slowpath; 2183 2184 cookie->pidx = eq->pidx; 2185 cookie->ndesc = ndesc; 2186 TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link); 2187 2188 w = &eq->desc[eq->pidx]; 2189 IDXINCR(eq->pidx, ndesc, eq->sidx); 2190 if (__predict_false(eq->pidx < ndesc - 1)) { 2191 w = &wrq->ss[0]; 2192 wrq->ss_pidx = cookie->pidx; 2193 wrq->ss_len = len16 * 16; 2194 } 2195 2196 EQ_UNLOCK(eq); 2197 2198 return (w); 2199 } 2200 2201 void 2202 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie) 2203 { 2204 struct sge_eq *eq = &wrq->eq; 2205 struct adapter *sc = wrq->adapter; 2206 int ndesc, pidx; 2207 struct wrq_cookie *prev, *next; 2208 2209 if (cookie->pidx == -1) { 2210 struct wrqe *wr = __containerof(w, struct wrqe, wr); 2211 2212 t4_wrq_tx(sc, wr); 2213 return; 2214 } 2215 2216 ndesc = cookie->ndesc; /* Can be more than SGE_MAX_WR_NDESC here. */ 2217 pidx = cookie->pidx; 2218 MPASS(pidx >= 0 && pidx < eq->sidx); 2219 if (__predict_false(w == &wrq->ss[0])) { 2220 int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE; 2221 2222 MPASS(wrq->ss_len > n); /* WR had better wrap around. */ 2223 bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n); 2224 bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n); 2225 wrq->tx_wrs_ss++; 2226 } else 2227 wrq->tx_wrs_direct++; 2228 2229 EQ_LOCK(eq); 2230 prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link); 2231 next = TAILQ_NEXT(cookie, link); 2232 if (prev == NULL) { 2233 MPASS(pidx == eq->dbidx); 2234 if (next == NULL || ndesc >= 16) 2235 ring_eq_db(wrq->adapter, eq, ndesc); 2236 else { 2237 MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc); 2238 next->pidx = pidx; 2239 next->ndesc += ndesc; 2240 } 2241 } else { 2242 MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc); 2243 prev->ndesc += ndesc; 2244 } 2245 TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link); 2246 2247 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) 2248 drain_wrq_wr_list(sc, wrq); 2249 2250 #ifdef INVARIANTS 2251 if (TAILQ_EMPTY(&wrq->incomplete_wrs)) { 2252 /* Doorbell must have caught up to the pidx. */ 2253 MPASS(wrq->eq.pidx == wrq->eq.dbidx); 2254 } 2255 #endif 2256 EQ_UNLOCK(eq); 2257 } 2258 2259 static u_int 2260 can_resume_eth_tx(struct mp_ring *r) 2261 { 2262 struct sge_eq *eq = r->cookie; 2263 2264 return (total_available_tx_desc(eq) > eq->sidx / 8); 2265 } 2266 2267 static inline int 2268 cannot_use_txpkts(struct mbuf *m) 2269 { 2270 /* maybe put a GL limit too, to avoid silliness? */ 2271 2272 return (needs_tso(m)); 2273 } 2274 2275 /* 2276 * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to 2277 * be consumed. Return the actual number consumed. 0 indicates a stall. 2278 */ 2279 static u_int 2280 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx) 2281 { 2282 struct sge_txq *txq = r->cookie; 2283 struct sge_eq *eq = &txq->eq; 2284 struct ifnet *ifp = txq->ifp; 2285 struct vi_info *vi = ifp->if_softc; 2286 struct port_info *pi = vi->pi; 2287 struct adapter *sc = pi->adapter; 2288 u_int total, remaining; /* # of packets */ 2289 u_int available, dbdiff; /* # of hardware descriptors */ 2290 u_int n, next_cidx; 2291 struct mbuf *m0, *tail; 2292 struct txpkts txp; 2293 struct fw_eth_tx_pkts_wr *wr; /* any fw WR struct will do */ 2294 2295 remaining = IDXDIFF(pidx, cidx, r->size); 2296 MPASS(remaining > 0); /* Must not be called without work to do. */ 2297 total = 0; 2298 2299 TXQ_LOCK(txq); 2300 if (__predict_false((eq->flags & EQ_ENABLED) == 0)) { 2301 while (cidx != pidx) { 2302 m0 = r->items[cidx]; 2303 m_freem(m0); 2304 if (++cidx == r->size) 2305 cidx = 0; 2306 } 2307 reclaim_tx_descs(txq, 2048); 2308 total = remaining; 2309 goto done; 2310 } 2311 2312 /* How many hardware descriptors do we have readily available. */ 2313 if (eq->pidx == eq->cidx) 2314 available = eq->sidx - 1; 2315 else 2316 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; 2317 dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx); 2318 2319 while (remaining > 0) { 2320 2321 m0 = r->items[cidx]; 2322 M_ASSERTPKTHDR(m0); 2323 MPASS(m0->m_nextpkt == NULL); 2324 2325 if (available < SGE_MAX_WR_NDESC) { 2326 available += reclaim_tx_descs(txq, 64); 2327 if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16)) 2328 break; /* out of descriptors */ 2329 } 2330 2331 next_cidx = cidx + 1; 2332 if (__predict_false(next_cidx == r->size)) 2333 next_cidx = 0; 2334 2335 wr = (void *)&eq->desc[eq->pidx]; 2336 if (remaining > 1 && 2337 try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) { 2338 2339 /* pkts at cidx, next_cidx should both be in txp. */ 2340 MPASS(txp.npkt == 2); 2341 tail = r->items[next_cidx]; 2342 MPASS(tail->m_nextpkt == NULL); 2343 ETHER_BPF_MTAP(ifp, m0); 2344 ETHER_BPF_MTAP(ifp, tail); 2345 m0->m_nextpkt = tail; 2346 2347 if (__predict_false(++next_cidx == r->size)) 2348 next_cidx = 0; 2349 2350 while (next_cidx != pidx) { 2351 if (add_to_txpkts(r->items[next_cidx], &txp, 2352 available) != 0) 2353 break; 2354 tail->m_nextpkt = r->items[next_cidx]; 2355 tail = tail->m_nextpkt; 2356 ETHER_BPF_MTAP(ifp, tail); 2357 if (__predict_false(++next_cidx == r->size)) 2358 next_cidx = 0; 2359 } 2360 2361 n = write_txpkts_wr(txq, wr, m0, &txp, available); 2362 total += txp.npkt; 2363 remaining -= txp.npkt; 2364 } else { 2365 total++; 2366 remaining--; 2367 ETHER_BPF_MTAP(ifp, m0); 2368 n = write_txpkt_wr(txq, (void *)wr, m0, available); 2369 } 2370 MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC); 2371 2372 available -= n; 2373 dbdiff += n; 2374 IDXINCR(eq->pidx, n, eq->sidx); 2375 2376 if (total_available_tx_desc(eq) < eq->sidx / 4 && 2377 atomic_cmpset_int(&eq->equiq, 0, 1)) { 2378 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | 2379 F_FW_WR_EQUEQ); 2380 eq->equeqidx = eq->pidx; 2381 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { 2382 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); 2383 eq->equeqidx = eq->pidx; 2384 } 2385 2386 if (dbdiff >= 16 && remaining >= 4) { 2387 ring_eq_db(sc, eq, dbdiff); 2388 available += reclaim_tx_descs(txq, 4 * dbdiff); 2389 dbdiff = 0; 2390 } 2391 2392 cidx = next_cidx; 2393 } 2394 if (dbdiff != 0) { 2395 ring_eq_db(sc, eq, dbdiff); 2396 reclaim_tx_descs(txq, 32); 2397 } 2398 done: 2399 TXQ_UNLOCK(txq); 2400 2401 return (total); 2402 } 2403 2404 static inline void 2405 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, 2406 int qsize) 2407 { 2408 2409 KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, 2410 ("%s: bad tmr_idx %d", __func__, tmr_idx)); 2411 KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ 2412 ("%s: bad pktc_idx %d", __func__, pktc_idx)); 2413 2414 iq->flags = 0; 2415 iq->adapter = sc; 2416 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); 2417 iq->intr_pktc_idx = SGE_NCOUNTERS - 1; 2418 if (pktc_idx >= 0) { 2419 iq->intr_params |= F_QINTR_CNT_EN; 2420 iq->intr_pktc_idx = pktc_idx; 2421 } 2422 iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */ 2423 iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE; 2424 } 2425 2426 static inline void 2427 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name) 2428 { 2429 2430 fl->qsize = qsize; 2431 fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 2432 strlcpy(fl->lockname, name, sizeof(fl->lockname)); 2433 if (sc->flags & BUF_PACKING_OK && 2434 ((!is_t4(sc) && buffer_packing) || /* T5+: enabled unless 0 */ 2435 (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */ 2436 fl->flags |= FL_BUF_PACKING; 2437 find_best_refill_source(sc, fl, maxp); 2438 find_safe_refill_source(sc, fl); 2439 } 2440 2441 static inline void 2442 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize, 2443 uint8_t tx_chan, uint16_t iqid, char *name) 2444 { 2445 KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype)); 2446 2447 eq->flags = eqtype & EQ_TYPEMASK; 2448 eq->tx_chan = tx_chan; 2449 eq->iqid = iqid; 2450 eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; 2451 strlcpy(eq->lockname, name, sizeof(eq->lockname)); 2452 } 2453 2454 static int 2455 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, 2456 bus_dmamap_t *map, bus_addr_t *pa, void **va) 2457 { 2458 int rc; 2459 2460 rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, 2461 BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); 2462 if (rc != 0) { 2463 device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc); 2464 goto done; 2465 } 2466 2467 rc = bus_dmamem_alloc(*tag, va, 2468 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); 2469 if (rc != 0) { 2470 device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc); 2471 goto done; 2472 } 2473 2474 rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); 2475 if (rc != 0) { 2476 device_printf(sc->dev, "cannot load DMA map: %d\n", rc); 2477 goto done; 2478 } 2479 done: 2480 if (rc) 2481 free_ring(sc, *tag, *map, *pa, *va); 2482 2483 return (rc); 2484 } 2485 2486 static int 2487 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, 2488 bus_addr_t pa, void *va) 2489 { 2490 if (pa) 2491 bus_dmamap_unload(tag, map); 2492 if (va) 2493 bus_dmamem_free(tag, va, map); 2494 if (tag) 2495 bus_dma_tag_destroy(tag); 2496 2497 return (0); 2498 } 2499 2500 /* 2501 * Allocates the ring for an ingress queue and an optional freelist. If the 2502 * freelist is specified it will be allocated and then associated with the 2503 * ingress queue. 2504 * 2505 * Returns errno on failure. Resources allocated up to that point may still be 2506 * allocated. Caller is responsible for cleanup in case this function fails. 2507 * 2508 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then 2509 * the intr_idx specifies the vector, starting from 0. Otherwise it specifies 2510 * the abs_id of the ingress queue to which its interrupts should be forwarded. 2511 */ 2512 static int 2513 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl, 2514 int intr_idx, int cong) 2515 { 2516 int rc, i, cntxt_id; 2517 size_t len; 2518 struct fw_iq_cmd c; 2519 struct port_info *pi = vi->pi; 2520 struct adapter *sc = iq->adapter; 2521 struct sge_params *sp = &sc->params.sge; 2522 __be32 v = 0; 2523 2524 len = iq->qsize * IQ_ESIZE; 2525 rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, 2526 (void **)&iq->desc); 2527 if (rc != 0) 2528 return (rc); 2529 2530 bzero(&c, sizeof(c)); 2531 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 2532 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | 2533 V_FW_IQ_CMD_VFN(0)); 2534 2535 c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | 2536 FW_LEN16(c)); 2537 2538 /* Special handling for firmware event queue */ 2539 if (iq == &sc->sge.fwq) 2540 v |= F_FW_IQ_CMD_IQASYNCH; 2541 2542 if (iq->flags & IQ_INTR) { 2543 KASSERT(intr_idx < sc->intr_count, 2544 ("%s: invalid direct intr_idx %d", __func__, intr_idx)); 2545 } else 2546 v |= F_FW_IQ_CMD_IQANDST; 2547 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); 2548 2549 c.type_to_iqandstindex = htobe32(v | 2550 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 2551 V_FW_IQ_CMD_VIID(vi->viid) | 2552 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); 2553 c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 2554 F_FW_IQ_CMD_IQGTSMODE | 2555 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | 2556 V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4)); 2557 c.iqsize = htobe16(iq->qsize); 2558 c.iqaddr = htobe64(iq->ba); 2559 if (cong >= 0) 2560 c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN); 2561 2562 if (fl) { 2563 mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); 2564 2565 len = fl->qsize * EQ_ESIZE; 2566 rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, 2567 &fl->ba, (void **)&fl->desc); 2568 if (rc) 2569 return (rc); 2570 2571 /* Allocate space for one software descriptor per buffer. */ 2572 rc = alloc_fl_sdesc(fl); 2573 if (rc != 0) { 2574 device_printf(sc->dev, 2575 "failed to setup fl software descriptors: %d\n", 2576 rc); 2577 return (rc); 2578 } 2579 2580 if (fl->flags & FL_BUF_PACKING) { 2581 fl->lowat = roundup2(sp->fl_starve_threshold2, 8); 2582 fl->buf_boundary = sp->pack_boundary; 2583 } else { 2584 fl->lowat = roundup2(sp->fl_starve_threshold, 8); 2585 fl->buf_boundary = 16; 2586 } 2587 if (fl_pad && fl->buf_boundary < sp->pad_boundary) 2588 fl->buf_boundary = sp->pad_boundary; 2589 2590 c.iqns_to_fl0congen |= 2591 htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | 2592 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | 2593 (fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) | 2594 (fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN : 2595 0)); 2596 if (cong >= 0) { 2597 c.iqns_to_fl0congen |= 2598 htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | 2599 F_FW_IQ_CMD_FL0CONGCIF | 2600 F_FW_IQ_CMD_FL0CONGEN); 2601 } 2602 c.fl0dcaen_to_fl0cidxfthresh = 2603 htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_128B) | 2604 V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B)); 2605 c.fl0size = htobe16(fl->qsize); 2606 c.fl0addr = htobe64(fl->ba); 2607 } 2608 2609 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 2610 if (rc != 0) { 2611 device_printf(sc->dev, 2612 "failed to create ingress queue: %d\n", rc); 2613 return (rc); 2614 } 2615 2616 iq->cidx = 0; 2617 iq->gen = F_RSPD_GEN; 2618 iq->intr_next = iq->intr_params; 2619 iq->cntxt_id = be16toh(c.iqid); 2620 iq->abs_id = be16toh(c.physiqid); 2621 iq->flags |= IQ_ALLOCATED; 2622 2623 cntxt_id = iq->cntxt_id - sc->sge.iq_start; 2624 if (cntxt_id >= sc->sge.niq) { 2625 panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, 2626 cntxt_id, sc->sge.niq - 1); 2627 } 2628 sc->sge.iqmap[cntxt_id] = iq; 2629 2630 if (fl) { 2631 u_int qid; 2632 2633 iq->flags |= IQ_HAS_FL; 2634 fl->cntxt_id = be16toh(c.fl0id); 2635 fl->pidx = fl->cidx = 0; 2636 2637 cntxt_id = fl->cntxt_id - sc->sge.eq_start; 2638 if (cntxt_id >= sc->sge.neq) { 2639 panic("%s: fl->cntxt_id (%d) more than the max (%d)", 2640 __func__, cntxt_id, sc->sge.neq - 1); 2641 } 2642 sc->sge.eqmap[cntxt_id] = (void *)fl; 2643 2644 qid = fl->cntxt_id; 2645 if (isset(&sc->doorbells, DOORBELL_UDB)) { 2646 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 2647 uint32_t mask = (1 << s_qpp) - 1; 2648 volatile uint8_t *udb; 2649 2650 udb = sc->udbs_base + UDBS_DB_OFFSET; 2651 udb += (qid >> s_qpp) << PAGE_SHIFT; 2652 qid &= mask; 2653 if (qid < PAGE_SIZE / UDBS_SEG_SIZE) { 2654 udb += qid << UDBS_SEG_SHIFT; 2655 qid = 0; 2656 } 2657 fl->udb = (volatile void *)udb; 2658 } 2659 fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db; 2660 2661 FL_LOCK(fl); 2662 /* Enough to make sure the SGE doesn't think it's starved */ 2663 refill_fl(sc, fl, fl->lowat); 2664 FL_UNLOCK(fl); 2665 } 2666 2667 if (is_t5(sc) && cong >= 0) { 2668 uint32_t param, val; 2669 2670 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 2671 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 2672 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id); 2673 if (cong == 0) 2674 val = 1 << 19; 2675 else { 2676 val = 2 << 19; 2677 for (i = 0; i < 4; i++) { 2678 if (cong & (1 << i)) 2679 val |= 1 << (i << 2); 2680 } 2681 } 2682 2683 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 2684 if (rc != 0) { 2685 /* report error but carry on */ 2686 device_printf(sc->dev, 2687 "failed to set congestion manager context for " 2688 "ingress queue %d: %d\n", iq->cntxt_id, rc); 2689 } 2690 } 2691 2692 /* Enable IQ interrupts */ 2693 atomic_store_rel_int(&iq->state, IQS_IDLE); 2694 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) | 2695 V_INGRESSQID(iq->cntxt_id)); 2696 2697 return (0); 2698 } 2699 2700 static int 2701 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl) 2702 { 2703 int rc; 2704 struct adapter *sc = iq->adapter; 2705 device_t dev; 2706 2707 if (sc == NULL) 2708 return (0); /* nothing to do */ 2709 2710 dev = vi ? vi->dev : sc->dev; 2711 2712 if (iq->flags & IQ_ALLOCATED) { 2713 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, 2714 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, 2715 fl ? fl->cntxt_id : 0xffff, 0xffff); 2716 if (rc != 0) { 2717 device_printf(dev, 2718 "failed to free queue %p: %d\n", iq, rc); 2719 return (rc); 2720 } 2721 iq->flags &= ~IQ_ALLOCATED; 2722 } 2723 2724 free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); 2725 2726 bzero(iq, sizeof(*iq)); 2727 2728 if (fl) { 2729 free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, 2730 fl->desc); 2731 2732 if (fl->sdesc) 2733 free_fl_sdesc(sc, fl); 2734 2735 if (mtx_initialized(&fl->fl_lock)) 2736 mtx_destroy(&fl->fl_lock); 2737 2738 bzero(fl, sizeof(*fl)); 2739 } 2740 2741 return (0); 2742 } 2743 2744 static void 2745 add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, 2746 struct sge_fl *fl) 2747 { 2748 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2749 2750 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 2751 "freelist"); 2752 children = SYSCTL_CHILDREN(oid); 2753 2754 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 2755 CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I", 2756 "SGE context id of the freelist"); 2757 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL, 2758 fl_pad ? 1 : 0, "padding enabled"); 2759 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL, 2760 fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled"); 2761 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx, 2762 0, "consumer index"); 2763 if (fl->flags & FL_BUF_PACKING) { 2764 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset", 2765 CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset"); 2766 } 2767 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx, 2768 0, "producer index"); 2769 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated", 2770 CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated"); 2771 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined", 2772 CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters"); 2773 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated", 2774 CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated"); 2775 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled", 2776 CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled"); 2777 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled", 2778 CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)"); 2779 } 2780 2781 static int 2782 alloc_fwq(struct adapter *sc) 2783 { 2784 int rc, intr_idx; 2785 struct sge_iq *fwq = &sc->sge.fwq; 2786 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 2787 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2788 2789 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE); 2790 fwq->flags |= IQ_INTR; /* always */ 2791 intr_idx = sc->intr_count > 1 ? 1 : 0; 2792 rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1); 2793 if (rc != 0) { 2794 device_printf(sc->dev, 2795 "failed to create firmware event queue: %d\n", rc); 2796 return (rc); 2797 } 2798 2799 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD, 2800 NULL, "firmware event queue"); 2801 children = SYSCTL_CHILDREN(oid); 2802 2803 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id", 2804 CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I", 2805 "absolute id of the queue"); 2806 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id", 2807 CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I", 2808 "SGE context id of the queue"); 2809 SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx", 2810 CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I", 2811 "consumer index"); 2812 2813 return (0); 2814 } 2815 2816 static int 2817 free_fwq(struct adapter *sc) 2818 { 2819 return free_iq_fl(NULL, &sc->sge.fwq, NULL); 2820 } 2821 2822 static int 2823 alloc_mgmtq(struct adapter *sc) 2824 { 2825 int rc; 2826 struct sge_wrq *mgmtq = &sc->sge.mgmtq; 2827 char name[16]; 2828 struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); 2829 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 2830 2831 oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD, 2832 NULL, "management queue"); 2833 2834 snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev)); 2835 init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan, 2836 sc->sge.fwq.cntxt_id, name); 2837 rc = alloc_wrq(sc, NULL, mgmtq, oid); 2838 if (rc != 0) { 2839 device_printf(sc->dev, 2840 "failed to create management queue: %d\n", rc); 2841 return (rc); 2842 } 2843 2844 return (0); 2845 } 2846 2847 static int 2848 free_mgmtq(struct adapter *sc) 2849 { 2850 2851 return free_wrq(sc, &sc->sge.mgmtq); 2852 } 2853 2854 int 2855 tnl_cong(struct port_info *pi, int drop) 2856 { 2857 2858 if (drop == -1) 2859 return (-1); 2860 else if (drop == 1) 2861 return (0); 2862 else 2863 return (pi->rx_chan_map); 2864 } 2865 2866 static int 2867 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx, 2868 struct sysctl_oid *oid) 2869 { 2870 int rc; 2871 struct sysctl_oid_list *children; 2872 char name[16]; 2873 2874 rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx, 2875 tnl_cong(vi->pi, cong_drop)); 2876 if (rc != 0) 2877 return (rc); 2878 2879 /* 2880 * The freelist is just barely above the starvation threshold right now, 2881 * fill it up a bit more. 2882 */ 2883 FL_LOCK(&rxq->fl); 2884 refill_fl(vi->pi->adapter, &rxq->fl, 128); 2885 FL_UNLOCK(&rxq->fl); 2886 2887 #if defined(INET) || defined(INET6) 2888 rc = tcp_lro_init(&rxq->lro); 2889 if (rc != 0) 2890 return (rc); 2891 rxq->lro.ifp = vi->ifp; /* also indicates LRO init'ed */ 2892 2893 if (vi->ifp->if_capenable & IFCAP_LRO) 2894 rxq->iq.flags |= IQ_LRO_ENABLED; 2895 #endif 2896 rxq->ifp = vi->ifp; 2897 2898 children = SYSCTL_CHILDREN(oid); 2899 2900 snprintf(name, sizeof(name), "%d", idx); 2901 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 2902 NULL, "rx queue"); 2903 children = SYSCTL_CHILDREN(oid); 2904 2905 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id", 2906 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I", 2907 "absolute id of the queue"); 2908 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id", 2909 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I", 2910 "SGE context id of the queue"); 2911 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 2912 CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I", 2913 "consumer index"); 2914 #if defined(INET) || defined(INET6) 2915 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, 2916 &rxq->lro.lro_queued, 0, NULL); 2917 SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, 2918 &rxq->lro.lro_flushed, 0, NULL); 2919 #endif 2920 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, 2921 &rxq->rxcsum, "# of times hardware assisted with checksum"); 2922 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction", 2923 CTLFLAG_RD, &rxq->vlan_extraction, 2924 "# of times hardware extracted 802.1Q tag"); 2925 2926 add_fl_sysctls(&vi->ctx, oid, &rxq->fl); 2927 2928 return (rc); 2929 } 2930 2931 static int 2932 free_rxq(struct vi_info *vi, struct sge_rxq *rxq) 2933 { 2934 int rc; 2935 2936 #if defined(INET) || defined(INET6) 2937 if (rxq->lro.ifp) { 2938 tcp_lro_free(&rxq->lro); 2939 rxq->lro.ifp = NULL; 2940 } 2941 #endif 2942 2943 rc = free_iq_fl(vi, &rxq->iq, &rxq->fl); 2944 if (rc == 0) 2945 bzero(rxq, sizeof(*rxq)); 2946 2947 return (rc); 2948 } 2949 2950 #ifdef TCP_OFFLOAD 2951 static int 2952 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, 2953 int intr_idx, int idx, struct sysctl_oid *oid) 2954 { 2955 int rc; 2956 struct sysctl_oid_list *children; 2957 char name[16]; 2958 2959 rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 2960 vi->pi->rx_chan_map); 2961 if (rc != 0) 2962 return (rc); 2963 2964 children = SYSCTL_CHILDREN(oid); 2965 2966 snprintf(name, sizeof(name), "%d", idx); 2967 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 2968 NULL, "rx queue"); 2969 children = SYSCTL_CHILDREN(oid); 2970 2971 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id", 2972 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16, 2973 "I", "absolute id of the queue"); 2974 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id", 2975 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16, 2976 "I", "SGE context id of the queue"); 2977 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 2978 CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I", 2979 "consumer index"); 2980 2981 add_fl_sysctls(&vi->ctx, oid, &ofld_rxq->fl); 2982 2983 return (rc); 2984 } 2985 2986 static int 2987 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq) 2988 { 2989 int rc; 2990 2991 rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl); 2992 if (rc == 0) 2993 bzero(ofld_rxq, sizeof(*ofld_rxq)); 2994 2995 return (rc); 2996 } 2997 #endif 2998 2999 #ifdef DEV_NETMAP 3000 static int 3001 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx, 3002 int idx, struct sysctl_oid *oid) 3003 { 3004 int rc; 3005 struct sysctl_oid_list *children; 3006 struct sysctl_ctx_list *ctx; 3007 char name[16]; 3008 size_t len; 3009 struct adapter *sc = vi->pi->adapter; 3010 struct netmap_adapter *na = NA(vi->ifp); 3011 3012 MPASS(na != NULL); 3013 3014 len = vi->qsize_rxq * IQ_ESIZE; 3015 rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map, 3016 &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc); 3017 if (rc != 0) 3018 return (rc); 3019 3020 len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len; 3021 rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map, 3022 &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc); 3023 if (rc != 0) 3024 return (rc); 3025 3026 nm_rxq->vi = vi; 3027 nm_rxq->nid = idx; 3028 nm_rxq->iq_cidx = 0; 3029 nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE; 3030 nm_rxq->iq_gen = F_RSPD_GEN; 3031 nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0; 3032 nm_rxq->fl_sidx = na->num_rx_desc; 3033 nm_rxq->intr_idx = intr_idx; 3034 3035 ctx = &vi->ctx; 3036 children = SYSCTL_CHILDREN(oid); 3037 3038 snprintf(name, sizeof(name), "%d", idx); 3039 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, 3040 "rx queue"); 3041 children = SYSCTL_CHILDREN(oid); 3042 3043 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id", 3044 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16, 3045 "I", "absolute id of the queue"); 3046 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3047 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16, 3048 "I", "SGE context id of the queue"); 3049 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3050 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I", 3051 "consumer index"); 3052 3053 children = SYSCTL_CHILDREN(oid); 3054 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, 3055 "freelist"); 3056 children = SYSCTL_CHILDREN(oid); 3057 3058 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id", 3059 CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16, 3060 "I", "SGE context id of the freelist"); 3061 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, 3062 &nm_rxq->fl_cidx, 0, "consumer index"); 3063 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, 3064 &nm_rxq->fl_pidx, 0, "producer index"); 3065 3066 return (rc); 3067 } 3068 3069 3070 static int 3071 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq) 3072 { 3073 struct adapter *sc = vi->pi->adapter; 3074 3075 free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba, 3076 nm_rxq->iq_desc); 3077 free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba, 3078 nm_rxq->fl_desc); 3079 3080 return (0); 3081 } 3082 3083 static int 3084 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx, 3085 struct sysctl_oid *oid) 3086 { 3087 int rc; 3088 size_t len; 3089 struct port_info *pi = vi->pi; 3090 struct adapter *sc = pi->adapter; 3091 struct netmap_adapter *na = NA(vi->ifp); 3092 char name[16]; 3093 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3094 3095 len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len; 3096 rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map, 3097 &nm_txq->ba, (void **)&nm_txq->desc); 3098 if (rc) 3099 return (rc); 3100 3101 nm_txq->pidx = nm_txq->cidx = 0; 3102 nm_txq->sidx = na->num_tx_desc; 3103 nm_txq->nid = idx; 3104 nm_txq->iqidx = iqidx; 3105 nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3106 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) | 3107 V_TXPKT_VF(vi->viid)); 3108 3109 snprintf(name, sizeof(name), "%d", idx); 3110 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3111 NULL, "netmap tx queue"); 3112 children = SYSCTL_CHILDREN(oid); 3113 3114 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3115 &nm_txq->cntxt_id, 0, "SGE context id of the queue"); 3116 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3117 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I", 3118 "consumer index"); 3119 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 3120 CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I", 3121 "producer index"); 3122 3123 return (rc); 3124 } 3125 3126 static int 3127 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq) 3128 { 3129 struct adapter *sc = vi->pi->adapter; 3130 3131 free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba, 3132 nm_txq->desc); 3133 3134 return (0); 3135 } 3136 #endif 3137 3138 static int 3139 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) 3140 { 3141 int rc, cntxt_id; 3142 struct fw_eq_ctrl_cmd c; 3143 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3144 3145 bzero(&c, sizeof(c)); 3146 3147 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | 3148 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | 3149 V_FW_EQ_CTRL_CMD_VFN(0)); 3150 c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC | 3151 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 3152 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); 3153 c.physeqid_pkd = htobe32(0); 3154 c.fetchszm_to_iqid = 3155 htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3156 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | 3157 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); 3158 c.dcaen_to_eqsize = 3159 htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3160 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3161 V_FW_EQ_CTRL_CMD_EQSIZE(qsize)); 3162 c.eqaddr = htobe64(eq->ba); 3163 3164 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3165 if (rc != 0) { 3166 device_printf(sc->dev, 3167 "failed to create control queue %d: %d\n", eq->tx_chan, rc); 3168 return (rc); 3169 } 3170 eq->flags |= EQ_ALLOCATED; 3171 3172 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid)); 3173 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3174 if (cntxt_id >= sc->sge.neq) 3175 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3176 cntxt_id, sc->sge.neq - 1); 3177 sc->sge.eqmap[cntxt_id] = eq; 3178 3179 return (rc); 3180 } 3181 3182 static int 3183 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3184 { 3185 int rc, cntxt_id; 3186 struct fw_eq_eth_cmd c; 3187 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3188 3189 bzero(&c, sizeof(c)); 3190 3191 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | 3192 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | 3193 V_FW_EQ_ETH_CMD_VFN(0)); 3194 c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | 3195 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 3196 c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE | 3197 F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid)); 3198 c.fetchszm_to_iqid = 3199 htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3200 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | 3201 V_FW_EQ_ETH_CMD_IQID(eq->iqid)); 3202 c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3203 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3204 V_FW_EQ_ETH_CMD_EQSIZE(qsize)); 3205 c.eqaddr = htobe64(eq->ba); 3206 3207 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3208 if (rc != 0) { 3209 device_printf(vi->dev, 3210 "failed to create Ethernet egress queue: %d\n", rc); 3211 return (rc); 3212 } 3213 eq->flags |= EQ_ALLOCATED; 3214 3215 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); 3216 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3217 if (cntxt_id >= sc->sge.neq) 3218 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3219 cntxt_id, sc->sge.neq - 1); 3220 sc->sge.eqmap[cntxt_id] = eq; 3221 3222 return (rc); 3223 } 3224 3225 #ifdef TCP_OFFLOAD 3226 static int 3227 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3228 { 3229 int rc, cntxt_id; 3230 struct fw_eq_ofld_cmd c; 3231 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3232 3233 bzero(&c, sizeof(c)); 3234 3235 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | 3236 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | 3237 V_FW_EQ_OFLD_CMD_VFN(0)); 3238 c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | 3239 F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 3240 c.fetchszm_to_iqid = 3241 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 3242 V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | 3243 F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); 3244 c.dcaen_to_eqsize = 3245 htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 3246 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 3247 V_FW_EQ_OFLD_CMD_EQSIZE(qsize)); 3248 c.eqaddr = htobe64(eq->ba); 3249 3250 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); 3251 if (rc != 0) { 3252 device_printf(vi->dev, 3253 "failed to create egress queue for TCP offload: %d\n", rc); 3254 return (rc); 3255 } 3256 eq->flags |= EQ_ALLOCATED; 3257 3258 eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd)); 3259 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 3260 if (cntxt_id >= sc->sge.neq) 3261 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 3262 cntxt_id, sc->sge.neq - 1); 3263 sc->sge.eqmap[cntxt_id] = eq; 3264 3265 return (rc); 3266 } 3267 #endif 3268 3269 static int 3270 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) 3271 { 3272 int rc, qsize; 3273 size_t len; 3274 3275 mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); 3276 3277 qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; 3278 len = qsize * EQ_ESIZE; 3279 rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, 3280 &eq->ba, (void **)&eq->desc); 3281 if (rc) 3282 return (rc); 3283 3284 eq->pidx = eq->cidx = 0; 3285 eq->equeqidx = eq->dbidx = 0; 3286 eq->doorbells = sc->doorbells; 3287 3288 switch (eq->flags & EQ_TYPEMASK) { 3289 case EQ_CTRL: 3290 rc = ctrl_eq_alloc(sc, eq); 3291 break; 3292 3293 case EQ_ETH: 3294 rc = eth_eq_alloc(sc, vi, eq); 3295 break; 3296 3297 #ifdef TCP_OFFLOAD 3298 case EQ_OFLD: 3299 rc = ofld_eq_alloc(sc, vi, eq); 3300 break; 3301 #endif 3302 3303 default: 3304 panic("%s: invalid eq type %d.", __func__, 3305 eq->flags & EQ_TYPEMASK); 3306 } 3307 if (rc != 0) { 3308 device_printf(sc->dev, 3309 "failed to allocate egress queue(%d): %d\n", 3310 eq->flags & EQ_TYPEMASK, rc); 3311 } 3312 3313 if (isset(&eq->doorbells, DOORBELL_UDB) || 3314 isset(&eq->doorbells, DOORBELL_UDBWC) || 3315 isset(&eq->doorbells, DOORBELL_WCWR)) { 3316 uint32_t s_qpp = sc->params.sge.eq_s_qpp; 3317 uint32_t mask = (1 << s_qpp) - 1; 3318 volatile uint8_t *udb; 3319 3320 udb = sc->udbs_base + UDBS_DB_OFFSET; 3321 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */ 3322 eq->udb_qid = eq->cntxt_id & mask; /* id in page */ 3323 if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE) 3324 clrbit(&eq->doorbells, DOORBELL_WCWR); 3325 else { 3326 udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */ 3327 eq->udb_qid = 0; 3328 } 3329 eq->udb = (volatile void *)udb; 3330 } 3331 3332 return (rc); 3333 } 3334 3335 static int 3336 free_eq(struct adapter *sc, struct sge_eq *eq) 3337 { 3338 int rc; 3339 3340 if (eq->flags & EQ_ALLOCATED) { 3341 switch (eq->flags & EQ_TYPEMASK) { 3342 case EQ_CTRL: 3343 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, 3344 eq->cntxt_id); 3345 break; 3346 3347 case EQ_ETH: 3348 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, 3349 eq->cntxt_id); 3350 break; 3351 3352 #ifdef TCP_OFFLOAD 3353 case EQ_OFLD: 3354 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, 3355 eq->cntxt_id); 3356 break; 3357 #endif 3358 3359 default: 3360 panic("%s: invalid eq type %d.", __func__, 3361 eq->flags & EQ_TYPEMASK); 3362 } 3363 if (rc != 0) { 3364 device_printf(sc->dev, 3365 "failed to free egress queue (%d): %d\n", 3366 eq->flags & EQ_TYPEMASK, rc); 3367 return (rc); 3368 } 3369 eq->flags &= ~EQ_ALLOCATED; 3370 } 3371 3372 free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); 3373 3374 if (mtx_initialized(&eq->eq_lock)) 3375 mtx_destroy(&eq->eq_lock); 3376 3377 bzero(eq, sizeof(*eq)); 3378 return (0); 3379 } 3380 3381 static int 3382 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq, 3383 struct sysctl_oid *oid) 3384 { 3385 int rc; 3386 struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx; 3387 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3388 3389 rc = alloc_eq(sc, vi, &wrq->eq); 3390 if (rc) 3391 return (rc); 3392 3393 wrq->adapter = sc; 3394 TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq); 3395 TAILQ_INIT(&wrq->incomplete_wrs); 3396 STAILQ_INIT(&wrq->wr_list); 3397 wrq->nwr_pending = 0; 3398 wrq->ndesc_needed = 0; 3399 3400 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3401 &wrq->eq.cntxt_id, 0, "SGE context id of the queue"); 3402 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", 3403 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I", 3404 "consumer index"); 3405 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx", 3406 CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I", 3407 "producer index"); 3408 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD, 3409 &wrq->tx_wrs_direct, "# of work requests (direct)"); 3410 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD, 3411 &wrq->tx_wrs_copied, "# of work requests (copied)"); 3412 3413 return (rc); 3414 } 3415 3416 static int 3417 free_wrq(struct adapter *sc, struct sge_wrq *wrq) 3418 { 3419 int rc; 3420 3421 rc = free_eq(sc, &wrq->eq); 3422 if (rc) 3423 return (rc); 3424 3425 bzero(wrq, sizeof(*wrq)); 3426 return (0); 3427 } 3428 3429 static int 3430 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx, 3431 struct sysctl_oid *oid) 3432 { 3433 int rc; 3434 struct port_info *pi = vi->pi; 3435 struct adapter *sc = pi->adapter; 3436 struct sge_eq *eq = &txq->eq; 3437 char name[16]; 3438 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); 3439 3440 rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx, 3441 M_CXGBE, M_WAITOK); 3442 if (rc != 0) { 3443 device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc); 3444 return (rc); 3445 } 3446 3447 rc = alloc_eq(sc, vi, eq); 3448 if (rc != 0) { 3449 mp_ring_free(txq->r); 3450 txq->r = NULL; 3451 return (rc); 3452 } 3453 3454 /* Can't fail after this point. */ 3455 3456 TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq); 3457 txq->ifp = vi->ifp; 3458 txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK); 3459 txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3460 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) | 3461 V_TXPKT_VF(vi->viid)); 3462 txq->tc_idx = -1; 3463 txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE, 3464 M_ZERO | M_WAITOK); 3465 3466 snprintf(name, sizeof(name), "%d", idx); 3467 oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD, 3468 NULL, "tx queue"); 3469 children = SYSCTL_CHILDREN(oid); 3470 3471 SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, 3472 &eq->cntxt_id, 0, "SGE context id of the queue"); 3473 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx", 3474 CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I", 3475 "consumer index"); 3476 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx", 3477 CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I", 3478 "producer index"); 3479 3480 SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc", 3481 CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I", 3482 "traffic class (-1 means none)"); 3483 3484 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, 3485 &txq->txcsum, "# of times hardware assisted with checksum"); 3486 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion", 3487 CTLFLAG_RD, &txq->vlan_insertion, 3488 "# of times hardware inserted 802.1Q tag"); 3489 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, 3490 &txq->tso_wrs, "# of TSO work requests"); 3491 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, 3492 &txq->imm_wrs, "# of work requests with immediate data"); 3493 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, 3494 &txq->sgl_wrs, "# of work requests with direct SGL"); 3495 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, 3496 &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); 3497 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs", 3498 CTLFLAG_RD, &txq->txpkts0_wrs, 3499 "# of txpkts (type 0) work requests"); 3500 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs", 3501 CTLFLAG_RD, &txq->txpkts1_wrs, 3502 "# of txpkts (type 1) work requests"); 3503 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts", 3504 CTLFLAG_RD, &txq->txpkts0_pkts, 3505 "# of frames tx'd using type0 txpkts work requests"); 3506 SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts", 3507 CTLFLAG_RD, &txq->txpkts1_pkts, 3508 "# of frames tx'd using type1 txpkts work requests"); 3509 3510 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues", 3511 CTLFLAG_RD, &txq->r->enqueues, 3512 "# of enqueues to the mp_ring for this queue"); 3513 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops", 3514 CTLFLAG_RD, &txq->r->drops, 3515 "# of drops in the mp_ring for this queue"); 3516 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts", 3517 CTLFLAG_RD, &txq->r->starts, 3518 "# of normal consumer starts in the mp_ring for this queue"); 3519 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls", 3520 CTLFLAG_RD, &txq->r->stalls, 3521 "# of consumer stalls in the mp_ring for this queue"); 3522 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts", 3523 CTLFLAG_RD, &txq->r->restarts, 3524 "# of consumer restarts in the mp_ring for this queue"); 3525 SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications", 3526 CTLFLAG_RD, &txq->r->abdications, 3527 "# of consumer abdications in the mp_ring for this queue"); 3528 3529 return (0); 3530 } 3531 3532 static int 3533 free_txq(struct vi_info *vi, struct sge_txq *txq) 3534 { 3535 int rc; 3536 struct adapter *sc = vi->pi->adapter; 3537 struct sge_eq *eq = &txq->eq; 3538 3539 rc = free_eq(sc, eq); 3540 if (rc) 3541 return (rc); 3542 3543 sglist_free(txq->gl); 3544 free(txq->sdesc, M_CXGBE); 3545 mp_ring_free(txq->r); 3546 3547 bzero(txq, sizeof(*txq)); 3548 return (0); 3549 } 3550 3551 static void 3552 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) 3553 { 3554 bus_addr_t *ba = arg; 3555 3556 KASSERT(nseg == 1, 3557 ("%s meant for single segment mappings only.", __func__)); 3558 3559 *ba = error ? 0 : segs->ds_addr; 3560 } 3561 3562 static inline void 3563 ring_fl_db(struct adapter *sc, struct sge_fl *fl) 3564 { 3565 uint32_t n, v; 3566 3567 n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx); 3568 MPASS(n > 0); 3569 3570 wmb(); 3571 v = fl->dbval | V_PIDX(n); 3572 if (fl->udb) 3573 *fl->udb = htole32(v); 3574 else 3575 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v); 3576 IDXINCR(fl->dbidx, n, fl->sidx); 3577 } 3578 3579 /* 3580 * Fills up the freelist by allocating up to 'n' buffers. Buffers that are 3581 * recycled do not count towards this allocation budget. 3582 * 3583 * Returns non-zero to indicate that this freelist should be added to the list 3584 * of starving freelists. 3585 */ 3586 static int 3587 refill_fl(struct adapter *sc, struct sge_fl *fl, int n) 3588 { 3589 __be64 *d; 3590 struct fl_sdesc *sd; 3591 uintptr_t pa; 3592 caddr_t cl; 3593 struct cluster_layout *cll; 3594 struct sw_zone_info *swz; 3595 struct cluster_metadata *clm; 3596 uint16_t max_pidx; 3597 uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */ 3598 3599 FL_LOCK_ASSERT_OWNED(fl); 3600 3601 /* 3602 * We always stop at the beginning of the hardware descriptor that's just 3603 * before the one with the hw cidx. This is to avoid hw pidx = hw cidx, 3604 * which would mean an empty freelist to the chip. 3605 */ 3606 max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1; 3607 if (fl->pidx == max_pidx * 8) 3608 return (0); 3609 3610 d = &fl->desc[fl->pidx]; 3611 sd = &fl->sdesc[fl->pidx]; 3612 cll = &fl->cll_def; /* default layout */ 3613 swz = &sc->sge.sw_zone_info[cll->zidx]; 3614 3615 while (n > 0) { 3616 3617 if (sd->cl != NULL) { 3618 3619 if (sd->nmbuf == 0) { 3620 /* 3621 * Fast recycle without involving any atomics on 3622 * the cluster's metadata (if the cluster has 3623 * metadata). This happens when all frames 3624 * received in the cluster were small enough to 3625 * fit within a single mbuf each. 3626 */ 3627 fl->cl_fast_recycled++; 3628 #ifdef INVARIANTS 3629 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 3630 if (clm != NULL) 3631 MPASS(clm->refcount == 1); 3632 #endif 3633 goto recycled_fast; 3634 } 3635 3636 /* 3637 * Cluster is guaranteed to have metadata. Clusters 3638 * without metadata always take the fast recycle path 3639 * when they're recycled. 3640 */ 3641 clm = cl_metadata(sc, fl, &sd->cll, sd->cl); 3642 MPASS(clm != NULL); 3643 3644 if (atomic_fetchadd_int(&clm->refcount, -1) == 1) { 3645 fl->cl_recycled++; 3646 counter_u64_add(extfree_rels, 1); 3647 goto recycled; 3648 } 3649 sd->cl = NULL; /* gave up my reference */ 3650 } 3651 MPASS(sd->cl == NULL); 3652 alloc: 3653 cl = uma_zalloc(swz->zone, M_NOWAIT); 3654 if (__predict_false(cl == NULL)) { 3655 if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 || 3656 fl->cll_def.zidx == fl->cll_alt.zidx) 3657 break; 3658 3659 /* fall back to the safe zone */ 3660 cll = &fl->cll_alt; 3661 swz = &sc->sge.sw_zone_info[cll->zidx]; 3662 goto alloc; 3663 } 3664 fl->cl_allocated++; 3665 n--; 3666 3667 pa = pmap_kextract((vm_offset_t)cl); 3668 pa += cll->region1; 3669 sd->cl = cl; 3670 sd->cll = *cll; 3671 *d = htobe64(pa | cll->hwidx); 3672 clm = cl_metadata(sc, fl, cll, cl); 3673 if (clm != NULL) { 3674 recycled: 3675 #ifdef INVARIANTS 3676 clm->sd = sd; 3677 #endif 3678 clm->refcount = 1; 3679 } 3680 sd->nmbuf = 0; 3681 recycled_fast: 3682 d++; 3683 sd++; 3684 if (__predict_false(++fl->pidx % 8 == 0)) { 3685 uint16_t pidx = fl->pidx / 8; 3686 3687 if (__predict_false(pidx == fl->sidx)) { 3688 fl->pidx = 0; 3689 pidx = 0; 3690 sd = fl->sdesc; 3691 d = fl->desc; 3692 } 3693 if (pidx == max_pidx) 3694 break; 3695 3696 if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4) 3697 ring_fl_db(sc, fl); 3698 } 3699 } 3700 3701 if (fl->pidx / 8 != fl->dbidx) 3702 ring_fl_db(sc, fl); 3703 3704 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); 3705 } 3706 3707 /* 3708 * Attempt to refill all starving freelists. 3709 */ 3710 static void 3711 refill_sfl(void *arg) 3712 { 3713 struct adapter *sc = arg; 3714 struct sge_fl *fl, *fl_temp; 3715 3716 mtx_assert(&sc->sfl_lock, MA_OWNED); 3717 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { 3718 FL_LOCK(fl); 3719 refill_fl(sc, fl, 64); 3720 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { 3721 TAILQ_REMOVE(&sc->sfl, fl, link); 3722 fl->flags &= ~FL_STARVING; 3723 } 3724 FL_UNLOCK(fl); 3725 } 3726 3727 if (!TAILQ_EMPTY(&sc->sfl)) 3728 callout_schedule(&sc->sfl_callout, hz / 5); 3729 } 3730 3731 static int 3732 alloc_fl_sdesc(struct sge_fl *fl) 3733 { 3734 3735 fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE, 3736 M_ZERO | M_WAITOK); 3737 3738 return (0); 3739 } 3740 3741 static void 3742 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl) 3743 { 3744 struct fl_sdesc *sd; 3745 struct cluster_metadata *clm; 3746 struct cluster_layout *cll; 3747 int i; 3748 3749 sd = fl->sdesc; 3750 for (i = 0; i < fl->sidx * 8; i++, sd++) { 3751 if (sd->cl == NULL) 3752 continue; 3753 3754 cll = &sd->cll; 3755 clm = cl_metadata(sc, fl, cll, sd->cl); 3756 if (sd->nmbuf == 0) 3757 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 3758 else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) { 3759 uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl); 3760 counter_u64_add(extfree_rels, 1); 3761 } 3762 sd->cl = NULL; 3763 } 3764 3765 free(fl->sdesc, M_CXGBE); 3766 fl->sdesc = NULL; 3767 } 3768 3769 static inline void 3770 get_pkt_gl(struct mbuf *m, struct sglist *gl) 3771 { 3772 int rc; 3773 3774 M_ASSERTPKTHDR(m); 3775 3776 sglist_reset(gl); 3777 rc = sglist_append_mbuf(gl, m); 3778 if (__predict_false(rc != 0)) { 3779 panic("%s: mbuf %p (%d segs) was vetted earlier but now fails " 3780 "with %d.", __func__, m, mbuf_nsegs(m), rc); 3781 } 3782 3783 KASSERT(gl->sg_nseg == mbuf_nsegs(m), 3784 ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m, 3785 mbuf_nsegs(m), gl->sg_nseg)); 3786 KASSERT(gl->sg_nseg > 0 && 3787 gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS), 3788 ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__, 3789 gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)); 3790 } 3791 3792 /* 3793 * len16 for a txpkt WR with a GL. Includes the firmware work request header. 3794 */ 3795 static inline u_int 3796 txpkt_len16(u_int nsegs, u_int tso) 3797 { 3798 u_int n; 3799 3800 MPASS(nsegs > 0); 3801 3802 nsegs--; /* first segment is part of ulptx_sgl */ 3803 n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) + 3804 sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 3805 if (tso) 3806 n += sizeof(struct cpl_tx_pkt_lso_core); 3807 3808 return (howmany(n, 16)); 3809 } 3810 3811 /* 3812 * len16 for a txpkts type 0 WR with a GL. Does not include the firmware work 3813 * request header. 3814 */ 3815 static inline u_int 3816 txpkts0_len16(u_int nsegs) 3817 { 3818 u_int n; 3819 3820 MPASS(nsegs > 0); 3821 3822 nsegs--; /* first segment is part of ulptx_sgl */ 3823 n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) + 3824 sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 3825 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 3826 3827 return (howmany(n, 16)); 3828 } 3829 3830 /* 3831 * len16 for a txpkts type 1 WR with a GL. Does not include the firmware work 3832 * request header. 3833 */ 3834 static inline u_int 3835 txpkts1_len16(void) 3836 { 3837 u_int n; 3838 3839 n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl); 3840 3841 return (howmany(n, 16)); 3842 } 3843 3844 static inline u_int 3845 imm_payload(u_int ndesc) 3846 { 3847 u_int n; 3848 3849 n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) - 3850 sizeof(struct cpl_tx_pkt_core); 3851 3852 return (n); 3853 } 3854 3855 /* 3856 * Write a txpkt WR for this packet to the hardware descriptors, update the 3857 * software descriptor, and advance the pidx. It is guaranteed that enough 3858 * descriptors are available. 3859 * 3860 * The return value is the # of hardware descriptors used. 3861 */ 3862 static u_int 3863 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr, 3864 struct mbuf *m0, u_int available) 3865 { 3866 struct sge_eq *eq = &txq->eq; 3867 struct tx_sdesc *txsd; 3868 struct cpl_tx_pkt_core *cpl; 3869 uint32_t ctrl; /* used in many unrelated places */ 3870 uint64_t ctrl1; 3871 int len16, ndesc, pktlen, nsegs; 3872 caddr_t dst; 3873 3874 TXQ_LOCK_ASSERT_OWNED(txq); 3875 M_ASSERTPKTHDR(m0); 3876 MPASS(available > 0 && available < eq->sidx); 3877 3878 len16 = mbuf_len16(m0); 3879 nsegs = mbuf_nsegs(m0); 3880 pktlen = m0->m_pkthdr.len; 3881 ctrl = sizeof(struct cpl_tx_pkt_core); 3882 if (needs_tso(m0)) 3883 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 3884 else if (pktlen <= imm_payload(2) && available >= 2) { 3885 /* Immediate data. Recalculate len16 and set nsegs to 0. */ 3886 ctrl += pktlen; 3887 len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) + 3888 sizeof(struct cpl_tx_pkt_core) + pktlen, 16); 3889 nsegs = 0; 3890 } 3891 ndesc = howmany(len16, EQ_ESIZE / 16); 3892 MPASS(ndesc <= available); 3893 3894 /* Firmware work request header */ 3895 MPASS(wr == (void *)&eq->desc[eq->pidx]); 3896 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | 3897 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); 3898 3899 ctrl = V_FW_WR_LEN16(len16); 3900 wr->equiq_to_len16 = htobe32(ctrl); 3901 wr->r3 = 0; 3902 3903 if (needs_tso(m0)) { 3904 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 3905 3906 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && 3907 m0->m_pkthdr.l4hlen > 0, 3908 ("%s: mbuf %p needs TSO but missing header lengths", 3909 __func__, m0)); 3910 3911 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 3912 F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) 3913 | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); 3914 if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header)) 3915 ctrl |= V_LSO_ETHHDR_LEN(1); 3916 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) 3917 ctrl |= F_LSO_IPV6; 3918 3919 lso->lso_ctrl = htobe32(ctrl); 3920 lso->ipid_ofst = htobe16(0); 3921 lso->mss = htobe16(m0->m_pkthdr.tso_segsz); 3922 lso->seqno_offset = htobe32(0); 3923 lso->len = htobe32(pktlen); 3924 3925 cpl = (void *)(lso + 1); 3926 3927 txq->tso_wrs++; 3928 } else 3929 cpl = (void *)(wr + 1); 3930 3931 /* Checksum offload */ 3932 ctrl1 = 0; 3933 if (needs_l3_csum(m0) == 0) 3934 ctrl1 |= F_TXPKT_IPCSUM_DIS; 3935 if (needs_l4_csum(m0) == 0) 3936 ctrl1 |= F_TXPKT_L4CSUM_DIS; 3937 if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 3938 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 3939 txq->txcsum++; /* some hardware assistance provided */ 3940 3941 /* VLAN tag insertion */ 3942 if (needs_vlan_insertion(m0)) { 3943 ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); 3944 txq->vlan_insertion++; 3945 } 3946 3947 /* CPL header */ 3948 cpl->ctrl0 = txq->cpl_ctrl0; 3949 cpl->pack = 0; 3950 cpl->len = htobe16(pktlen); 3951 cpl->ctrl1 = htobe64(ctrl1); 3952 3953 /* SGL */ 3954 dst = (void *)(cpl + 1); 3955 if (nsegs > 0) { 3956 3957 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); 3958 txq->sgl_wrs++; 3959 } else { 3960 struct mbuf *m; 3961 3962 for (m = m0; m != NULL; m = m->m_next) { 3963 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); 3964 #ifdef INVARIANTS 3965 pktlen -= m->m_len; 3966 #endif 3967 } 3968 #ifdef INVARIANTS 3969 KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen)); 3970 #endif 3971 txq->imm_wrs++; 3972 } 3973 3974 txq->txpkt_wrs++; 3975 3976 txsd = &txq->sdesc[eq->pidx]; 3977 txsd->m = m0; 3978 txsd->desc_used = ndesc; 3979 3980 return (ndesc); 3981 } 3982 3983 static int 3984 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available) 3985 { 3986 u_int needed, nsegs1, nsegs2, l1, l2; 3987 3988 if (cannot_use_txpkts(m) || cannot_use_txpkts(n)) 3989 return (1); 3990 3991 nsegs1 = mbuf_nsegs(m); 3992 nsegs2 = mbuf_nsegs(n); 3993 if (nsegs1 + nsegs2 == 2) { 3994 txp->wr_type = 1; 3995 l1 = l2 = txpkts1_len16(); 3996 } else { 3997 txp->wr_type = 0; 3998 l1 = txpkts0_len16(nsegs1); 3999 l2 = txpkts0_len16(nsegs2); 4000 } 4001 txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2; 4002 needed = howmany(txp->len16, EQ_ESIZE / 16); 4003 if (needed > SGE_MAX_WR_NDESC || needed > available) 4004 return (1); 4005 4006 txp->plen = m->m_pkthdr.len + n->m_pkthdr.len; 4007 if (txp->plen > 65535) 4008 return (1); 4009 4010 txp->npkt = 2; 4011 set_mbuf_len16(m, l1); 4012 set_mbuf_len16(n, l2); 4013 4014 return (0); 4015 } 4016 4017 static int 4018 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available) 4019 { 4020 u_int plen, len16, needed, nsegs; 4021 4022 MPASS(txp->wr_type == 0 || txp->wr_type == 1); 4023 4024 nsegs = mbuf_nsegs(m); 4025 if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1)) 4026 return (1); 4027 4028 plen = txp->plen + m->m_pkthdr.len; 4029 if (plen > 65535) 4030 return (1); 4031 4032 if (txp->wr_type == 0) 4033 len16 = txpkts0_len16(nsegs); 4034 else 4035 len16 = txpkts1_len16(); 4036 needed = howmany(txp->len16 + len16, EQ_ESIZE / 16); 4037 if (needed > SGE_MAX_WR_NDESC || needed > available) 4038 return (1); 4039 4040 txp->npkt++; 4041 txp->plen = plen; 4042 txp->len16 += len16; 4043 set_mbuf_len16(m, len16); 4044 4045 return (0); 4046 } 4047 4048 /* 4049 * Write a txpkts WR for the packets in txp to the hardware descriptors, update 4050 * the software descriptor, and advance the pidx. It is guaranteed that enough 4051 * descriptors are available. 4052 * 4053 * The return value is the # of hardware descriptors used. 4054 */ 4055 static u_int 4056 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr, 4057 struct mbuf *m0, const struct txpkts *txp, u_int available) 4058 { 4059 struct sge_eq *eq = &txq->eq; 4060 struct tx_sdesc *txsd; 4061 struct cpl_tx_pkt_core *cpl; 4062 uint32_t ctrl; 4063 uint64_t ctrl1; 4064 int ndesc, checkwrap; 4065 struct mbuf *m; 4066 void *flitp; 4067 4068 TXQ_LOCK_ASSERT_OWNED(txq); 4069 MPASS(txp->npkt > 0); 4070 MPASS(txp->plen < 65536); 4071 MPASS(m0 != NULL); 4072 MPASS(m0->m_nextpkt != NULL); 4073 MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16)); 4074 MPASS(available > 0 && available < eq->sidx); 4075 4076 ndesc = howmany(txp->len16, EQ_ESIZE / 16); 4077 MPASS(ndesc <= available); 4078 4079 MPASS(wr == (void *)&eq->desc[eq->pidx]); 4080 wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)); 4081 ctrl = V_FW_WR_LEN16(txp->len16); 4082 wr->equiq_to_len16 = htobe32(ctrl); 4083 wr->plen = htobe16(txp->plen); 4084 wr->npkt = txp->npkt; 4085 wr->r3 = 0; 4086 wr->type = txp->wr_type; 4087 flitp = wr + 1; 4088 4089 /* 4090 * At this point we are 16B into a hardware descriptor. If checkwrap is 4091 * set then we know the WR is going to wrap around somewhere. We'll 4092 * check for that at appropriate points. 4093 */ 4094 checkwrap = eq->sidx - ndesc < eq->pidx; 4095 for (m = m0; m != NULL; m = m->m_nextpkt) { 4096 if (txp->wr_type == 0) { 4097 struct ulp_txpkt *ulpmc; 4098 struct ulptx_idata *ulpsc; 4099 4100 /* ULP master command */ 4101 ulpmc = flitp; 4102 ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) | 4103 V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid)); 4104 ulpmc->len = htobe32(mbuf_len16(m)); 4105 4106 /* ULP subcommand */ 4107 ulpsc = (void *)(ulpmc + 1); 4108 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) | 4109 F_ULP_TX_SC_MORE); 4110 ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); 4111 4112 cpl = (void *)(ulpsc + 1); 4113 if (checkwrap && 4114 (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx]) 4115 cpl = (void *)&eq->desc[0]; 4116 txq->txpkts0_pkts += txp->npkt; 4117 txq->txpkts0_wrs++; 4118 } else { 4119 cpl = flitp; 4120 txq->txpkts1_pkts += txp->npkt; 4121 txq->txpkts1_wrs++; 4122 } 4123 4124 /* Checksum offload */ 4125 ctrl1 = 0; 4126 if (needs_l3_csum(m) == 0) 4127 ctrl1 |= F_TXPKT_IPCSUM_DIS; 4128 if (needs_l4_csum(m) == 0) 4129 ctrl1 |= F_TXPKT_L4CSUM_DIS; 4130 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | 4131 CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) 4132 txq->txcsum++; /* some hardware assistance provided */ 4133 4134 /* VLAN tag insertion */ 4135 if (needs_vlan_insertion(m)) { 4136 ctrl1 |= F_TXPKT_VLAN_VLD | 4137 V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); 4138 txq->vlan_insertion++; 4139 } 4140 4141 /* CPL header */ 4142 cpl->ctrl0 = txq->cpl_ctrl0; 4143 cpl->pack = 0; 4144 cpl->len = htobe16(m->m_pkthdr.len); 4145 cpl->ctrl1 = htobe64(ctrl1); 4146 4147 flitp = cpl + 1; 4148 if (checkwrap && 4149 (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx]) 4150 flitp = (void *)&eq->desc[0]; 4151 4152 write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap); 4153 4154 } 4155 4156 txsd = &txq->sdesc[eq->pidx]; 4157 txsd->m = m0; 4158 txsd->desc_used = ndesc; 4159 4160 return (ndesc); 4161 } 4162 4163 /* 4164 * If the SGL ends on an address that is not 16 byte aligned, this function will 4165 * add a 0 filled flit at the end. 4166 */ 4167 static void 4168 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap) 4169 { 4170 struct sge_eq *eq = &txq->eq; 4171 struct sglist *gl = txq->gl; 4172 struct sglist_seg *seg; 4173 __be64 *flitp, *wrap; 4174 struct ulptx_sgl *usgl; 4175 int i, nflits, nsegs; 4176 4177 KASSERT(((uintptr_t)(*to) & 0xf) == 0, 4178 ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); 4179 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 4180 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 4181 4182 get_pkt_gl(m, gl); 4183 nsegs = gl->sg_nseg; 4184 MPASS(nsegs > 0); 4185 4186 nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2; 4187 flitp = (__be64 *)(*to); 4188 wrap = (__be64 *)(&eq->desc[eq->sidx]); 4189 seg = &gl->sg_segs[0]; 4190 usgl = (void *)flitp; 4191 4192 /* 4193 * We start at a 16 byte boundary somewhere inside the tx descriptor 4194 * ring, so we're at least 16 bytes away from the status page. There is 4195 * no chance of a wrap around in the middle of usgl (which is 16 bytes). 4196 */ 4197 4198 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 4199 V_ULPTX_NSGE(nsegs)); 4200 usgl->len0 = htobe32(seg->ss_len); 4201 usgl->addr0 = htobe64(seg->ss_paddr); 4202 seg++; 4203 4204 if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) { 4205 4206 /* Won't wrap around at all */ 4207 4208 for (i = 0; i < nsegs - 1; i++, seg++) { 4209 usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len); 4210 usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr); 4211 } 4212 if (i & 1) 4213 usgl->sge[i / 2].len[1] = htobe32(0); 4214 flitp += nflits; 4215 } else { 4216 4217 /* Will wrap somewhere in the rest of the SGL */ 4218 4219 /* 2 flits already written, write the rest flit by flit */ 4220 flitp = (void *)(usgl + 1); 4221 for (i = 0; i < nflits - 2; i++) { 4222 if (flitp == wrap) 4223 flitp = (void *)eq->desc; 4224 *flitp++ = get_flit(seg, nsegs - 1, i); 4225 } 4226 } 4227 4228 if (nflits & 1) { 4229 MPASS(((uintptr_t)flitp) & 0xf); 4230 *flitp++ = 0; 4231 } 4232 4233 MPASS((((uintptr_t)flitp) & 0xf) == 0); 4234 if (__predict_false(flitp == wrap)) 4235 *to = (void *)eq->desc; 4236 else 4237 *to = (void *)flitp; 4238 } 4239 4240 static inline void 4241 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) 4242 { 4243 4244 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); 4245 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); 4246 4247 if (__predict_true((uintptr_t)(*to) + len <= 4248 (uintptr_t)&eq->desc[eq->sidx])) { 4249 bcopy(from, *to, len); 4250 (*to) += len; 4251 } else { 4252 int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to); 4253 4254 bcopy(from, *to, portion); 4255 from += portion; 4256 portion = len - portion; /* remaining */ 4257 bcopy(from, (void *)eq->desc, portion); 4258 (*to) = (caddr_t)eq->desc + portion; 4259 } 4260 } 4261 4262 static inline void 4263 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n) 4264 { 4265 u_int db; 4266 4267 MPASS(n > 0); 4268 4269 db = eq->doorbells; 4270 if (n > 1) 4271 clrbit(&db, DOORBELL_WCWR); 4272 wmb(); 4273 4274 switch (ffs(db) - 1) { 4275 case DOORBELL_UDB: 4276 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 4277 break; 4278 4279 case DOORBELL_WCWR: { 4280 volatile uint64_t *dst, *src; 4281 int i; 4282 4283 /* 4284 * Queues whose 128B doorbell segment fits in the page do not 4285 * use relative qid (udb_qid is always 0). Only queues with 4286 * doorbell segments can do WCWR. 4287 */ 4288 KASSERT(eq->udb_qid == 0 && n == 1, 4289 ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p", 4290 __func__, eq->doorbells, n, eq->dbidx, eq)); 4291 4292 dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET - 4293 UDBS_DB_OFFSET); 4294 i = eq->dbidx; 4295 src = (void *)&eq->desc[i]; 4296 while (src != (void *)&eq->desc[i + 1]) 4297 *dst++ = *src++; 4298 wmb(); 4299 break; 4300 } 4301 4302 case DOORBELL_UDBWC: 4303 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); 4304 wmb(); 4305 break; 4306 4307 case DOORBELL_KDB: 4308 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), 4309 V_QID(eq->cntxt_id) | V_PIDX(n)); 4310 break; 4311 } 4312 4313 IDXINCR(eq->dbidx, n, eq->sidx); 4314 } 4315 4316 static inline u_int 4317 reclaimable_tx_desc(struct sge_eq *eq) 4318 { 4319 uint16_t hw_cidx; 4320 4321 hw_cidx = read_hw_cidx(eq); 4322 return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx)); 4323 } 4324 4325 static inline u_int 4326 total_available_tx_desc(struct sge_eq *eq) 4327 { 4328 uint16_t hw_cidx, pidx; 4329 4330 hw_cidx = read_hw_cidx(eq); 4331 pidx = eq->pidx; 4332 4333 if (pidx == hw_cidx) 4334 return (eq->sidx - 1); 4335 else 4336 return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1); 4337 } 4338 4339 static inline uint16_t 4340 read_hw_cidx(struct sge_eq *eq) 4341 { 4342 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 4343 uint16_t cidx = spg->cidx; /* stable snapshot */ 4344 4345 return (be16toh(cidx)); 4346 } 4347 4348 /* 4349 * Reclaim 'n' descriptors approximately. 4350 */ 4351 static u_int 4352 reclaim_tx_descs(struct sge_txq *txq, u_int n) 4353 { 4354 struct tx_sdesc *txsd; 4355 struct sge_eq *eq = &txq->eq; 4356 u_int can_reclaim, reclaimed; 4357 4358 TXQ_LOCK_ASSERT_OWNED(txq); 4359 MPASS(n > 0); 4360 4361 reclaimed = 0; 4362 can_reclaim = reclaimable_tx_desc(eq); 4363 while (can_reclaim && reclaimed < n) { 4364 int ndesc; 4365 struct mbuf *m, *nextpkt; 4366 4367 txsd = &txq->sdesc[eq->cidx]; 4368 ndesc = txsd->desc_used; 4369 4370 /* Firmware doesn't return "partial" credits. */ 4371 KASSERT(can_reclaim >= ndesc, 4372 ("%s: unexpected number of credits: %d, %d", 4373 __func__, can_reclaim, ndesc)); 4374 4375 for (m = txsd->m; m != NULL; m = nextpkt) { 4376 nextpkt = m->m_nextpkt; 4377 m->m_nextpkt = NULL; 4378 m_freem(m); 4379 } 4380 reclaimed += ndesc; 4381 can_reclaim -= ndesc; 4382 IDXINCR(eq->cidx, ndesc, eq->sidx); 4383 } 4384 4385 return (reclaimed); 4386 } 4387 4388 static void 4389 tx_reclaim(void *arg, int n) 4390 { 4391 struct sge_txq *txq = arg; 4392 struct sge_eq *eq = &txq->eq; 4393 4394 do { 4395 if (TXQ_TRYLOCK(txq) == 0) 4396 break; 4397 n = reclaim_tx_descs(txq, 32); 4398 if (eq->cidx == eq->pidx) 4399 eq->equeqidx = eq->pidx; 4400 TXQ_UNLOCK(txq); 4401 } while (n > 0); 4402 } 4403 4404 static __be64 4405 get_flit(struct sglist_seg *segs, int nsegs, int idx) 4406 { 4407 int i = (idx / 3) * 2; 4408 4409 switch (idx % 3) { 4410 case 0: { 4411 __be64 rc; 4412 4413 rc = htobe32(segs[i].ss_len); 4414 if (i + 1 < nsegs) 4415 rc |= (uint64_t)htobe32(segs[i + 1].ss_len) << 32; 4416 4417 return (rc); 4418 } 4419 case 1: 4420 return (htobe64(segs[i].ss_paddr)); 4421 case 2: 4422 return (htobe64(segs[i + 1].ss_paddr)); 4423 } 4424 4425 return (0); 4426 } 4427 4428 static void 4429 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp) 4430 { 4431 int8_t zidx, hwidx, idx; 4432 uint16_t region1, region3; 4433 int spare, spare_needed, n; 4434 struct sw_zone_info *swz; 4435 struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0]; 4436 4437 /* 4438 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize 4439 * large enough for the max payload and cluster metadata. Otherwise 4440 * settle for the largest bufsize that leaves enough room in the cluster 4441 * for metadata. 4442 * 4443 * Without buffer packing: Look for the smallest zone which has a 4444 * bufsize large enough for the max payload. Settle for the largest 4445 * bufsize available if there's nothing big enough for max payload. 4446 */ 4447 spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0; 4448 swz = &sc->sge.sw_zone_info[0]; 4449 hwidx = -1; 4450 for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) { 4451 if (swz->size > largest_rx_cluster) { 4452 if (__predict_true(hwidx != -1)) 4453 break; 4454 4455 /* 4456 * This is a misconfiguration. largest_rx_cluster is 4457 * preventing us from finding a refill source. See 4458 * dev.t5nex.<n>.buffer_sizes to figure out why. 4459 */ 4460 device_printf(sc->dev, "largest_rx_cluster=%u leaves no" 4461 " refill source for fl %p (dma %u). Ignored.\n", 4462 largest_rx_cluster, fl, maxp); 4463 } 4464 for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) { 4465 hwb = &hwb_list[idx]; 4466 spare = swz->size - hwb->size; 4467 if (spare < spare_needed) 4468 continue; 4469 4470 hwidx = idx; /* best option so far */ 4471 if (hwb->size >= maxp) { 4472 4473 if ((fl->flags & FL_BUF_PACKING) == 0) 4474 goto done; /* stop looking (not packing) */ 4475 4476 if (swz->size >= safest_rx_cluster) 4477 goto done; /* stop looking (packing) */ 4478 } 4479 break; /* keep looking, next zone */ 4480 } 4481 } 4482 done: 4483 /* A usable hwidx has been located. */ 4484 MPASS(hwidx != -1); 4485 hwb = &hwb_list[hwidx]; 4486 zidx = hwb->zidx; 4487 swz = &sc->sge.sw_zone_info[zidx]; 4488 region1 = 0; 4489 region3 = swz->size - hwb->size; 4490 4491 /* 4492 * Stay within this zone and see if there is a better match when mbuf 4493 * inlining is allowed. Remember that the hwidx's are sorted in 4494 * decreasing order of size (so in increasing order of spare area). 4495 */ 4496 for (idx = hwidx; idx != -1; idx = hwb->next) { 4497 hwb = &hwb_list[idx]; 4498 spare = swz->size - hwb->size; 4499 4500 if (allow_mbufs_in_cluster == 0 || hwb->size < maxp) 4501 break; 4502 4503 /* 4504 * Do not inline mbufs if doing so would violate the pad/pack 4505 * boundary alignment requirement. 4506 */ 4507 if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0) 4508 continue; 4509 if (fl->flags & FL_BUF_PACKING && 4510 (MSIZE % sc->params.sge.pack_boundary) != 0) 4511 continue; 4512 4513 if (spare < CL_METADATA_SIZE + MSIZE) 4514 continue; 4515 n = (spare - CL_METADATA_SIZE) / MSIZE; 4516 if (n > howmany(hwb->size, maxp)) 4517 break; 4518 4519 hwidx = idx; 4520 if (fl->flags & FL_BUF_PACKING) { 4521 region1 = n * MSIZE; 4522 region3 = spare - region1; 4523 } else { 4524 region1 = MSIZE; 4525 region3 = spare - region1; 4526 break; 4527 } 4528 } 4529 4530 KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES, 4531 ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp)); 4532 KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES, 4533 ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp)); 4534 KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 == 4535 sc->sge.sw_zone_info[zidx].size, 4536 ("%s: bad buffer layout for fl %p, maxp %d. " 4537 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4538 sc->sge.sw_zone_info[zidx].size, region1, 4539 sc->sge.hw_buf_info[hwidx].size, region3)); 4540 if (fl->flags & FL_BUF_PACKING || region1 > 0) { 4541 KASSERT(region3 >= CL_METADATA_SIZE, 4542 ("%s: no room for metadata. fl %p, maxp %d; " 4543 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4544 sc->sge.sw_zone_info[zidx].size, region1, 4545 sc->sge.hw_buf_info[hwidx].size, region3)); 4546 KASSERT(region1 % MSIZE == 0, 4547 ("%s: bad mbuf region for fl %p, maxp %d. " 4548 "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp, 4549 sc->sge.sw_zone_info[zidx].size, region1, 4550 sc->sge.hw_buf_info[hwidx].size, region3)); 4551 } 4552 4553 fl->cll_def.zidx = zidx; 4554 fl->cll_def.hwidx = hwidx; 4555 fl->cll_def.region1 = region1; 4556 fl->cll_def.region3 = region3; 4557 } 4558 4559 static void 4560 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl) 4561 { 4562 struct sge *s = &sc->sge; 4563 struct hw_buf_info *hwb; 4564 struct sw_zone_info *swz; 4565 int spare; 4566 int8_t hwidx; 4567 4568 if (fl->flags & FL_BUF_PACKING) 4569 hwidx = s->safe_hwidx2; /* with room for metadata */ 4570 else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) { 4571 hwidx = s->safe_hwidx2; 4572 hwb = &s->hw_buf_info[hwidx]; 4573 swz = &s->sw_zone_info[hwb->zidx]; 4574 spare = swz->size - hwb->size; 4575 4576 /* no good if there isn't room for an mbuf as well */ 4577 if (spare < CL_METADATA_SIZE + MSIZE) 4578 hwidx = s->safe_hwidx1; 4579 } else 4580 hwidx = s->safe_hwidx1; 4581 4582 if (hwidx == -1) { 4583 /* No fallback source */ 4584 fl->cll_alt.hwidx = -1; 4585 fl->cll_alt.zidx = -1; 4586 4587 return; 4588 } 4589 4590 hwb = &s->hw_buf_info[hwidx]; 4591 swz = &s->sw_zone_info[hwb->zidx]; 4592 spare = swz->size - hwb->size; 4593 fl->cll_alt.hwidx = hwidx; 4594 fl->cll_alt.zidx = hwb->zidx; 4595 if (allow_mbufs_in_cluster && 4596 (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0)) 4597 fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE; 4598 else 4599 fl->cll_alt.region1 = 0; 4600 fl->cll_alt.region3 = spare - fl->cll_alt.region1; 4601 } 4602 4603 static void 4604 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) 4605 { 4606 mtx_lock(&sc->sfl_lock); 4607 FL_LOCK(fl); 4608 if ((fl->flags & FL_DOOMED) == 0) { 4609 fl->flags |= FL_STARVING; 4610 TAILQ_INSERT_TAIL(&sc->sfl, fl, link); 4611 callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc); 4612 } 4613 FL_UNLOCK(fl); 4614 mtx_unlock(&sc->sfl_lock); 4615 } 4616 4617 static void 4618 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq) 4619 { 4620 struct sge_wrq *wrq = (void *)eq; 4621 4622 atomic_readandclear_int(&eq->equiq); 4623 taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task); 4624 } 4625 4626 static void 4627 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq) 4628 { 4629 struct sge_txq *txq = (void *)eq; 4630 4631 MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH); 4632 4633 atomic_readandclear_int(&eq->equiq); 4634 mp_ring_check_drainage(txq->r, 0); 4635 taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task); 4636 } 4637 4638 static int 4639 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, 4640 struct mbuf *m) 4641 { 4642 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); 4643 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); 4644 struct adapter *sc = iq->adapter; 4645 struct sge *s = &sc->sge; 4646 struct sge_eq *eq; 4647 static void (*h[])(struct adapter *, struct sge_eq *) = {NULL, 4648 &handle_wrq_egr_update, &handle_eth_egr_update, 4649 &handle_wrq_egr_update}; 4650 4651 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 4652 rss->opcode)); 4653 4654 eq = s->eqmap[qid - s->eq_start]; 4655 (*h[eq->flags & EQ_TYPEMASK])(sc, eq); 4656 4657 return (0); 4658 } 4659 4660 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */ 4661 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \ 4662 offsetof(struct cpl_fw6_msg, data)); 4663 4664 static int 4665 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 4666 { 4667 struct adapter *sc = iq->adapter; 4668 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); 4669 4670 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 4671 rss->opcode)); 4672 4673 if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) { 4674 const struct rss_header *rss2; 4675 4676 rss2 = (const struct rss_header *)&cpl->data[0]; 4677 return (sc->cpl_handler[rss2->opcode](iq, rss2, m)); 4678 } 4679 4680 return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0])); 4681 } 4682 4683 static int 4684 sysctl_uint16(SYSCTL_HANDLER_ARGS) 4685 { 4686 uint16_t *id = arg1; 4687 int i = *id; 4688 4689 return sysctl_handle_int(oidp, &i, 0, req); 4690 } 4691 4692 static int 4693 sysctl_bufsizes(SYSCTL_HANDLER_ARGS) 4694 { 4695 struct sge *s = arg1; 4696 struct hw_buf_info *hwb = &s->hw_buf_info[0]; 4697 struct sw_zone_info *swz = &s->sw_zone_info[0]; 4698 int i, rc; 4699 struct sbuf sb; 4700 char c; 4701 4702 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 4703 for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) { 4704 if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster) 4705 c = '*'; 4706 else 4707 c = '\0'; 4708 4709 sbuf_printf(&sb, "%u%c ", hwb->size, c); 4710 } 4711 sbuf_trim(&sb); 4712 sbuf_finish(&sb); 4713 rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 4714 sbuf_delete(&sb); 4715 return (rc); 4716 } 4717 4718 static int 4719 sysctl_tc(SYSCTL_HANDLER_ARGS) 4720 { 4721 struct vi_info *vi = arg1; 4722 struct port_info *pi; 4723 struct adapter *sc; 4724 struct sge_txq *txq; 4725 struct tx_sched_class *tc; 4726 int qidx = arg2, rc, tc_idx; 4727 uint32_t fw_queue, fw_class; 4728 4729 MPASS(qidx >= 0 && qidx < vi->ntxq); 4730 pi = vi->pi; 4731 sc = pi->adapter; 4732 txq = &sc->sge.txq[vi->first_txq + qidx]; 4733 4734 tc_idx = txq->tc_idx; 4735 rc = sysctl_handle_int(oidp, &tc_idx, 0, req); 4736 if (rc != 0 || req->newptr == NULL) 4737 return (rc); 4738 4739 /* Note that -1 is legitimate input (it means unbind). */ 4740 if (tc_idx < -1 || tc_idx >= sc->chip_params->nsched_cls) 4741 return (EINVAL); 4742 4743 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4stc"); 4744 if (rc) 4745 return (rc); 4746 4747 if (tc_idx == txq->tc_idx) { 4748 rc = 0; /* No change, nothing to do. */ 4749 goto done; 4750 } 4751 4752 fw_queue = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 4753 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) | 4754 V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id); 4755 4756 if (tc_idx == -1) 4757 fw_class = 0xffffffff; /* Unbind. */ 4758 else { 4759 /* 4760 * Bind to a different class. Ethernet txq's are only allowed 4761 * to bind to cl-rl mode-class for now. XXX: too restrictive. 4762 */ 4763 tc = &pi->tc[tc_idx]; 4764 if (tc->flags & TX_SC_OK && 4765 tc->params.level == SCHED_CLASS_LEVEL_CL_RL && 4766 tc->params.mode == SCHED_CLASS_MODE_CLASS) { 4767 /* Ok to proceed. */ 4768 fw_class = tc_idx; 4769 } else { 4770 rc = tc->flags & TX_SC_OK ? EBUSY : ENXIO; 4771 goto done; 4772 } 4773 } 4774 4775 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, &fw_class); 4776 if (rc == 0) { 4777 if (txq->tc_idx != -1) { 4778 tc = &pi->tc[txq->tc_idx]; 4779 MPASS(tc->refcount > 0); 4780 tc->refcount--; 4781 } 4782 if (tc_idx != -1) { 4783 tc = &pi->tc[tc_idx]; 4784 tc->refcount++; 4785 } 4786 txq->tc_idx = tc_idx; 4787 } 4788 done: 4789 end_synchronized_op(sc, 0); 4790 return (rc); 4791 } 4792