xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 282e23f07bf49b4e37aabdcc1c513a788db36d10)
1 /*-
2  * Copyright (c) 2011 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #include <sys/types.h>
35 #include <sys/eventhandler.h>
36 #include <sys/mbuf.h>
37 #include <sys/socket.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/queue.h>
41 #include <sys/sbuf.h>
42 #include <sys/taskqueue.h>
43 #include <sys/time.h>
44 #include <sys/sglist.h>
45 #include <sys/sysctl.h>
46 #include <sys/smp.h>
47 #include <sys/counter.h>
48 #include <net/bpf.h>
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/if_vlan_var.h>
52 #include <netinet/in.h>
53 #include <netinet/ip.h>
54 #include <netinet/ip6.h>
55 #include <netinet/tcp.h>
56 #include <machine/md_var.h>
57 #include <vm/vm.h>
58 #include <vm/pmap.h>
59 #ifdef DEV_NETMAP
60 #include <machine/bus.h>
61 #include <sys/selinfo.h>
62 #include <net/if_var.h>
63 #include <net/netmap.h>
64 #include <dev/netmap/netmap_kern.h>
65 #endif
66 
67 #include "common/common.h"
68 #include "common/t4_regs.h"
69 #include "common/t4_regs_values.h"
70 #include "common/t4_msg.h"
71 #include "t4_mp_ring.h"
72 
73 #ifdef T4_PKT_TIMESTAMP
74 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
75 #else
76 #define RX_COPY_THRESHOLD MINCLSIZE
77 #endif
78 
79 /*
80  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
81  * 0-7 are valid values.
82  */
83 int fl_pktshift = 2;
84 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
85 
86 /*
87  * Pad ethernet payload up to this boundary.
88  * -1: driver should figure out a good value.
89  *  0: disable padding.
90  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
91  */
92 int fl_pad = -1;
93 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
94 
95 /*
96  * Status page length.
97  * -1: driver should figure out a good value.
98  *  64 or 128 are the only other valid values.
99  */
100 int spg_len = -1;
101 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
102 
103 /*
104  * Congestion drops.
105  * -1: no congestion feedback (not recommended).
106  *  0: backpressure the channel instead of dropping packets right away.
107  *  1: no backpressure, drop packets for the congested queue immediately.
108  */
109 static int cong_drop = 0;
110 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
111 
112 /*
113  * Deliver multiple frames in the same free list buffer if they fit.
114  * -1: let the driver decide whether to enable buffer packing or not.
115  *  0: disable buffer packing.
116  *  1: enable buffer packing.
117  */
118 static int buffer_packing = -1;
119 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
120 
121 /*
122  * Start next frame in a packed buffer at this boundary.
123  * -1: driver should figure out a good value.
124  * T4: driver will ignore this and use the same value as fl_pad above.
125  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
126  */
127 static int fl_pack = -1;
128 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
129 
130 /*
131  * Allow the driver to create mbuf(s) in a cluster allocated for rx.
132  * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
133  * 1: ok to create mbuf(s) within a cluster if there is room.
134  */
135 static int allow_mbufs_in_cluster = 1;
136 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
137 
138 /*
139  * Largest rx cluster size that the driver is allowed to allocate.
140  */
141 static int largest_rx_cluster = MJUM16BYTES;
142 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
143 
144 /*
145  * Size of cluster allocation that's most likely to succeed.  The driver will
146  * fall back to this size if it fails to allocate clusters larger than this.
147  */
148 static int safest_rx_cluster = PAGE_SIZE;
149 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
150 
151 struct txpkts {
152 	u_int wr_type;		/* type 0 or type 1 */
153 	u_int npkt;		/* # of packets in this work request */
154 	u_int plen;		/* total payload (sum of all packets) */
155 	u_int len16;		/* # of 16B pieces used by this work request */
156 };
157 
158 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
159 struct sgl {
160 	struct sglist sg;
161 	struct sglist_seg seg[TX_SGL_SEGS];
162 };
163 
164 static int service_iq(struct sge_iq *, int);
165 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
166 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
167 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
168 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
169 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
170     uint16_t, char *);
171 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
172     bus_addr_t *, void **);
173 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
174     void *);
175 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
176     int, int);
177 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
178 static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
179     struct sge_fl *);
180 static int alloc_fwq(struct adapter *);
181 static int free_fwq(struct adapter *);
182 static int alloc_mgmtq(struct adapter *);
183 static int free_mgmtq(struct adapter *);
184 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
185     struct sysctl_oid *);
186 static int free_rxq(struct vi_info *, struct sge_rxq *);
187 #ifdef TCP_OFFLOAD
188 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
189     struct sysctl_oid *);
190 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
191 #endif
192 #ifdef DEV_NETMAP
193 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
194     struct sysctl_oid *);
195 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
196 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
197     struct sysctl_oid *);
198 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
199 #endif
200 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
201 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
202 #ifdef TCP_OFFLOAD
203 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
204 #endif
205 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
206 static int free_eq(struct adapter *, struct sge_eq *);
207 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
208     struct sysctl_oid *);
209 static int free_wrq(struct adapter *, struct sge_wrq *);
210 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
211     struct sysctl_oid *);
212 static int free_txq(struct vi_info *, struct sge_txq *);
213 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
214 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
215 static int refill_fl(struct adapter *, struct sge_fl *, int);
216 static void refill_sfl(void *);
217 static int alloc_fl_sdesc(struct sge_fl *);
218 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
219 static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
220 static void find_safe_refill_source(struct adapter *, struct sge_fl *);
221 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
222 
223 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
224 static inline u_int txpkt_len16(u_int, u_int);
225 static inline u_int txpkts0_len16(u_int);
226 static inline u_int txpkts1_len16(void);
227 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
228     struct mbuf *, u_int);
229 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
230 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
231 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
232     struct mbuf *, const struct txpkts *, u_int);
233 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
234 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
235 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
236 static inline uint16_t read_hw_cidx(struct sge_eq *);
237 static inline u_int reclaimable_tx_desc(struct sge_eq *);
238 static inline u_int total_available_tx_desc(struct sge_eq *);
239 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
240 static void tx_reclaim(void *, int);
241 static __be64 get_flit(struct sglist_seg *, int, int);
242 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
243     struct mbuf *);
244 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
245     struct mbuf *);
246 static void wrq_tx_drain(void *, int);
247 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
248 
249 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
250 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
251 static int sysctl_tc(SYSCTL_HANDLER_ARGS);
252 
253 static counter_u64_t extfree_refs;
254 static counter_u64_t extfree_rels;
255 
256 /*
257  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
258  */
259 void
260 t4_sge_modload(void)
261 {
262 
263 	if (fl_pktshift < 0 || fl_pktshift > 7) {
264 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
265 		    " using 2 instead.\n", fl_pktshift);
266 		fl_pktshift = 2;
267 	}
268 
269 	if (spg_len != 64 && spg_len != 128) {
270 		int len;
271 
272 #if defined(__i386__) || defined(__amd64__)
273 		len = cpu_clflush_line_size > 64 ? 128 : 64;
274 #else
275 		len = 64;
276 #endif
277 		if (spg_len != -1) {
278 			printf("Invalid hw.cxgbe.spg_len value (%d),"
279 			    " using %d instead.\n", spg_len, len);
280 		}
281 		spg_len = len;
282 	}
283 
284 	if (cong_drop < -1 || cong_drop > 1) {
285 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
286 		    " using 0 instead.\n", cong_drop);
287 		cong_drop = 0;
288 	}
289 
290 	extfree_refs = counter_u64_alloc(M_WAITOK);
291 	extfree_rels = counter_u64_alloc(M_WAITOK);
292 	counter_u64_zero(extfree_refs);
293 	counter_u64_zero(extfree_rels);
294 }
295 
296 void
297 t4_sge_modunload(void)
298 {
299 
300 	counter_u64_free(extfree_refs);
301 	counter_u64_free(extfree_rels);
302 }
303 
304 uint64_t
305 t4_sge_extfree_refs(void)
306 {
307 	uint64_t refs, rels;
308 
309 	rels = counter_u64_fetch(extfree_rels);
310 	refs = counter_u64_fetch(extfree_refs);
311 
312 	return (refs - rels);
313 }
314 
315 void
316 t4_init_sge_cpl_handlers(struct adapter *sc)
317 {
318 
319 	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
320 	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
321 	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
322 	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
323 	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
324 }
325 
326 static inline void
327 setup_pad_and_pack_boundaries(struct adapter *sc)
328 {
329 	uint32_t v, m;
330 	int pad, pack;
331 
332 	pad = fl_pad;
333 	if (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad)) {
334 		/*
335 		 * If there is any chance that we might use buffer packing and
336 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
337 		 * it to 32 in all other cases.
338 		 */
339 		pad = is_t4(sc) && buffer_packing ? 64 : 32;
340 
341 		/*
342 		 * For fl_pad = 0 we'll still write a reasonable value to the
343 		 * register but all the freelists will opt out of padding.
344 		 * We'll complain here only if the user tried to set it to a
345 		 * value greater than 0 that was invalid.
346 		 */
347 		if (fl_pad > 0) {
348 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
349 			    " (%d), using %d instead.\n", fl_pad, pad);
350 		}
351 	}
352 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
353 	v = V_INGPADBOUNDARY(ilog2(pad) - 5);
354 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
355 
356 	if (is_t4(sc)) {
357 		if (fl_pack != -1 && fl_pack != pad) {
358 			/* Complain but carry on. */
359 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
360 			    " using %d instead.\n", fl_pack, pad);
361 		}
362 		return;
363 	}
364 
365 	pack = fl_pack;
366 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
367 	    !powerof2(fl_pack)) {
368 		pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
369 		MPASS(powerof2(pack));
370 		if (pack < 16)
371 			pack = 16;
372 		if (pack == 32)
373 			pack = 64;
374 		if (pack > 4096)
375 			pack = 4096;
376 		if (fl_pack != -1) {
377 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
378 			    " (%d), using %d instead.\n", fl_pack, pack);
379 		}
380 	}
381 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
382 	if (pack == 16)
383 		v = V_INGPACKBOUNDARY(0);
384 	else
385 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
386 
387 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
388 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
389 }
390 
391 /*
392  * adap->params.vpd.cclk must be set up before this is called.
393  */
394 void
395 t4_tweak_chip_settings(struct adapter *sc)
396 {
397 	int i;
398 	uint32_t v, m;
399 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
400 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
401 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
402 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
403 	static int sge_flbuf_sizes[] = {
404 		MCLBYTES,
405 #if MJUMPAGESIZE != MCLBYTES
406 		MJUMPAGESIZE,
407 		MJUMPAGESIZE - CL_METADATA_SIZE,
408 		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
409 #endif
410 		MJUM9BYTES,
411 		MJUM16BYTES,
412 		MCLBYTES - MSIZE - CL_METADATA_SIZE,
413 		MJUM9BYTES - CL_METADATA_SIZE,
414 		MJUM16BYTES - CL_METADATA_SIZE,
415 	};
416 
417 	KASSERT(sc->flags & MASTER_PF,
418 	    ("%s: trying to change chip settings when not master.", __func__));
419 
420 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
421 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
422 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
423 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
424 
425 	setup_pad_and_pack_boundaries(sc);
426 
427 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
428 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
429 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
430 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
431 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
432 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
433 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
434 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
435 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
436 
437 	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
438 	    ("%s: hw buffer size table too big", __func__));
439 	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
440 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
441 		    sge_flbuf_sizes[i]);
442 	}
443 
444 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
445 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
446 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
447 
448 	KASSERT(intr_timer[0] <= timer_max,
449 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
450 	    timer_max));
451 	for (i = 1; i < nitems(intr_timer); i++) {
452 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
453 		    ("%s: timers not listed in increasing order (%d)",
454 		    __func__, i));
455 
456 		while (intr_timer[i] > timer_max) {
457 			if (i == nitems(intr_timer) - 1) {
458 				intr_timer[i] = timer_max;
459 				break;
460 			}
461 			intr_timer[i] += intr_timer[i - 1];
462 			intr_timer[i] /= 2;
463 		}
464 	}
465 
466 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
467 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
468 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
469 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
470 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
471 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
472 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
473 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
474 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
475 
476 	/* 4K, 16K, 64K, 256K DDP "page sizes" */
477 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
478 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
479 
480 	m = v = F_TDDPTAGTCB;
481 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
482 
483 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
484 	    F_RESETDDPOFFSET;
485 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
486 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
487 }
488 
489 /*
490  * SGE wants the buffer to be at least 64B and then a multiple of 16.  If
491  * padding is is use the buffer's start and end need to be aligned to the pad
492  * boundary as well.  We'll just make sure that the size is a multiple of the
493  * boundary here, it is up to the buffer allocation code to make sure the start
494  * of the buffer is aligned as well.
495  */
496 static inline int
497 hwsz_ok(struct adapter *sc, int hwsz)
498 {
499 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
500 
501 	return (hwsz >= 64 && (hwsz & mask) == 0);
502 }
503 
504 /*
505  * XXX: driver really should be able to deal with unexpected settings.
506  */
507 int
508 t4_read_chip_settings(struct adapter *sc)
509 {
510 	struct sge *s = &sc->sge;
511 	struct sge_params *sp = &sc->params.sge;
512 	int i, j, n, rc = 0;
513 	uint32_t m, v, r;
514 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
515 	static int sw_buf_sizes[] = {	/* Sorted by size */
516 		MCLBYTES,
517 #if MJUMPAGESIZE != MCLBYTES
518 		MJUMPAGESIZE,
519 #endif
520 		MJUM9BYTES,
521 		MJUM16BYTES
522 	};
523 	struct sw_zone_info *swz, *safe_swz;
524 	struct hw_buf_info *hwb;
525 
526 	t4_init_sge_params(sc);
527 
528 	m = F_RXPKTCPLMODE;
529 	v = F_RXPKTCPLMODE;
530 	r = t4_read_reg(sc, A_SGE_CONTROL);
531 	if ((r & m) != v) {
532 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
533 		rc = EINVAL;
534 	}
535 
536 	/*
537 	 * If this changes then every single use of PAGE_SHIFT in the driver
538 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
539 	 */
540 	if (sp->page_shift != PAGE_SHIFT) {
541 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
542 		rc = EINVAL;
543 	}
544 
545 	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
546 	hwb = &s->hw_buf_info[0];
547 	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
548 		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
549 		hwb->size = r;
550 		hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
551 		hwb->next = -1;
552 	}
553 
554 	/*
555 	 * Create a sorted list in decreasing order of hw buffer sizes (and so
556 	 * increasing order of spare area) for each software zone.
557 	 *
558 	 * If padding is enabled then the start and end of the buffer must align
559 	 * to the pad boundary; if packing is enabled then they must align with
560 	 * the pack boundary as well.  Allocations from the cluster zones are
561 	 * aligned to min(size, 4K), so the buffer starts at that alignment and
562 	 * ends at hwb->size alignment.  If mbuf inlining is allowed the
563 	 * starting alignment will be reduced to MSIZE and the driver will
564 	 * exercise appropriate caution when deciding on the best buffer layout
565 	 * to use.
566 	 */
567 	n = 0;	/* no usable buffer size to begin with */
568 	swz = &s->sw_zone_info[0];
569 	safe_swz = NULL;
570 	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
571 		int8_t head = -1, tail = -1;
572 
573 		swz->size = sw_buf_sizes[i];
574 		swz->zone = m_getzone(swz->size);
575 		swz->type = m_gettype(swz->size);
576 
577 		if (swz->size < PAGE_SIZE) {
578 			MPASS(powerof2(swz->size));
579 			if (fl_pad && (swz->size % sp->pad_boundary != 0))
580 				continue;
581 		}
582 
583 		if (swz->size == safest_rx_cluster)
584 			safe_swz = swz;
585 
586 		hwb = &s->hw_buf_info[0];
587 		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
588 			if (hwb->zidx != -1 || hwb->size > swz->size)
589 				continue;
590 #ifdef INVARIANTS
591 			if (fl_pad)
592 				MPASS(hwb->size % sp->pad_boundary == 0);
593 #endif
594 			hwb->zidx = i;
595 			if (head == -1)
596 				head = tail = j;
597 			else if (hwb->size < s->hw_buf_info[tail].size) {
598 				s->hw_buf_info[tail].next = j;
599 				tail = j;
600 			} else {
601 				int8_t *cur;
602 				struct hw_buf_info *t;
603 
604 				for (cur = &head; *cur != -1; cur = &t->next) {
605 					t = &s->hw_buf_info[*cur];
606 					if (hwb->size == t->size) {
607 						hwb->zidx = -2;
608 						break;
609 					}
610 					if (hwb->size > t->size) {
611 						hwb->next = *cur;
612 						*cur = j;
613 						break;
614 					}
615 				}
616 			}
617 		}
618 		swz->head_hwidx = head;
619 		swz->tail_hwidx = tail;
620 
621 		if (tail != -1) {
622 			n++;
623 			if (swz->size - s->hw_buf_info[tail].size >=
624 			    CL_METADATA_SIZE)
625 				sc->flags |= BUF_PACKING_OK;
626 		}
627 	}
628 	if (n == 0) {
629 		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
630 		rc = EINVAL;
631 	}
632 
633 	s->safe_hwidx1 = -1;
634 	s->safe_hwidx2 = -1;
635 	if (safe_swz != NULL) {
636 		s->safe_hwidx1 = safe_swz->head_hwidx;
637 		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
638 			int spare;
639 
640 			hwb = &s->hw_buf_info[i];
641 #ifdef INVARIANTS
642 			if (fl_pad)
643 				MPASS(hwb->size % sp->pad_boundary == 0);
644 #endif
645 			spare = safe_swz->size - hwb->size;
646 			if (spare >= CL_METADATA_SIZE) {
647 				s->safe_hwidx2 = i;
648 				break;
649 			}
650 		}
651 	}
652 
653 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
654 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
655 	if (r != v) {
656 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
657 		rc = EINVAL;
658 	}
659 
660 	m = v = F_TDDPTAGTCB;
661 	r = t4_read_reg(sc, A_ULP_RX_CTL);
662 	if ((r & m) != v) {
663 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
664 		rc = EINVAL;
665 	}
666 
667 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
668 	    F_RESETDDPOFFSET;
669 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
670 	r = t4_read_reg(sc, A_TP_PARA_REG5);
671 	if ((r & m) != v) {
672 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
673 		rc = EINVAL;
674 	}
675 
676 	t4_init_tp_params(sc);
677 
678 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
679 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
680 
681 	return (rc);
682 }
683 
684 int
685 t4_create_dma_tag(struct adapter *sc)
686 {
687 	int rc;
688 
689 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
690 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
691 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
692 	    NULL, &sc->dmat);
693 	if (rc != 0) {
694 		device_printf(sc->dev,
695 		    "failed to create main DMA tag: %d\n", rc);
696 	}
697 
698 	return (rc);
699 }
700 
701 void
702 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
703     struct sysctl_oid_list *children)
704 {
705 	struct sge_params *sp = &sc->params.sge;
706 
707 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
708 	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
709 	    "freelist buffer sizes");
710 
711 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
712 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
713 
714 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
715 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
716 
717 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
718 	    NULL, sp->spg_len, "status page size (bytes)");
719 
720 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
721 	    NULL, cong_drop, "congestion drop setting");
722 
723 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
724 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
725 }
726 
727 int
728 t4_destroy_dma_tag(struct adapter *sc)
729 {
730 	if (sc->dmat)
731 		bus_dma_tag_destroy(sc->dmat);
732 
733 	return (0);
734 }
735 
736 /*
737  * Allocate and initialize the firmware event queue and the management queue.
738  *
739  * Returns errno on failure.  Resources allocated up to that point may still be
740  * allocated.  Caller is responsible for cleanup in case this function fails.
741  */
742 int
743 t4_setup_adapter_queues(struct adapter *sc)
744 {
745 	int rc;
746 
747 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
748 
749 	sysctl_ctx_init(&sc->ctx);
750 	sc->flags |= ADAP_SYSCTL_CTX;
751 
752 	/*
753 	 * Firmware event queue
754 	 */
755 	rc = alloc_fwq(sc);
756 	if (rc != 0)
757 		return (rc);
758 
759 	/*
760 	 * Management queue.  This is just a control queue that uses the fwq as
761 	 * its associated iq.
762 	 */
763 	rc = alloc_mgmtq(sc);
764 
765 	return (rc);
766 }
767 
768 /*
769  * Idempotent
770  */
771 int
772 t4_teardown_adapter_queues(struct adapter *sc)
773 {
774 
775 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
776 
777 	/* Do this before freeing the queue */
778 	if (sc->flags & ADAP_SYSCTL_CTX) {
779 		sysctl_ctx_free(&sc->ctx);
780 		sc->flags &= ~ADAP_SYSCTL_CTX;
781 	}
782 
783 	free_mgmtq(sc);
784 	free_fwq(sc);
785 
786 	return (0);
787 }
788 
789 static inline int
790 first_vector(struct vi_info *vi)
791 {
792 	struct adapter *sc = vi->pi->adapter;
793 
794 	if (sc->intr_count == 1)
795 		return (0);
796 
797 	return (vi->first_intr);
798 }
799 
800 /*
801  * Given an arbitrary "index," come up with an iq that can be used by other
802  * queues (of this VI) for interrupt forwarding, SGE egress updates, etc.
803  * The iq returned is guaranteed to be something that takes direct interrupts.
804  */
805 static struct sge_iq *
806 vi_intr_iq(struct vi_info *vi, int idx)
807 {
808 	struct adapter *sc = vi->pi->adapter;
809 	struct sge *s = &sc->sge;
810 	struct sge_iq *iq = NULL;
811 	int nintr, i;
812 
813 	if (sc->intr_count == 1)
814 		return (&sc->sge.fwq);
815 
816 	nintr = vi->nintr;
817 	KASSERT(nintr != 0,
818 	    ("%s: vi %p has no exclusive interrupts, total interrupts = %d",
819 	    __func__, vi, sc->intr_count));
820 	i = idx % nintr;
821 
822 	if (vi->flags & INTR_RXQ) {
823 	       	if (i < vi->nrxq) {
824 			iq = &s->rxq[vi->first_rxq + i].iq;
825 			goto done;
826 		}
827 		i -= vi->nrxq;
828 	}
829 #ifdef TCP_OFFLOAD
830 	if (vi->flags & INTR_OFLD_RXQ) {
831 	       	if (i < vi->nofldrxq) {
832 			iq = &s->ofld_rxq[vi->first_ofld_rxq + i].iq;
833 			goto done;
834 		}
835 		i -= vi->nofldrxq;
836 	}
837 #endif
838 	panic("%s: vi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
839 	    vi, vi->flags & INTR_ALL, idx, nintr);
840 done:
841 	MPASS(iq != NULL);
842 	KASSERT(iq->flags & IQ_INTR,
843 	    ("%s: iq %p (vi %p, intr_flags 0x%lx, idx %d)", __func__, iq, vi,
844 	    vi->flags & INTR_ALL, idx));
845 	return (iq);
846 }
847 
848 /* Maximum payload that can be delivered with a single iq descriptor */
849 static inline int
850 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
851 {
852 	int payload;
853 
854 #ifdef TCP_OFFLOAD
855 	if (toe) {
856 		payload = sc->tt.rx_coalesce ?
857 		    G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
858 	} else {
859 #endif
860 		/* large enough even when hw VLAN extraction is disabled */
861 		payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
862 		    ETHER_VLAN_ENCAP_LEN + mtu;
863 #ifdef TCP_OFFLOAD
864 	}
865 #endif
866 
867 	return (payload);
868 }
869 
870 int
871 t4_setup_vi_queues(struct vi_info *vi)
872 {
873 	int rc = 0, i, j, intr_idx, iqid;
874 	struct sge_rxq *rxq;
875 	struct sge_txq *txq;
876 	struct sge_wrq *ctrlq;
877 #ifdef TCP_OFFLOAD
878 	struct sge_ofld_rxq *ofld_rxq;
879 	struct sge_wrq *ofld_txq;
880 #endif
881 #ifdef DEV_NETMAP
882 	int saved_idx;
883 	struct sge_nm_rxq *nm_rxq;
884 	struct sge_nm_txq *nm_txq;
885 #endif
886 	char name[16];
887 	struct port_info *pi = vi->pi;
888 	struct adapter *sc = pi->adapter;
889 	struct ifnet *ifp = vi->ifp;
890 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
891 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
892 	int maxp, mtu = ifp->if_mtu;
893 
894 	/* Interrupt vector to start from (when using multiple vectors) */
895 	intr_idx = first_vector(vi);
896 
897 #ifdef DEV_NETMAP
898 	saved_idx = intr_idx;
899 	if (ifp->if_capabilities & IFCAP_NETMAP) {
900 
901 		/* netmap is supported with direct interrupts only. */
902 		MPASS(vi->flags & INTR_RXQ);
903 
904 		/*
905 		 * We don't have buffers to back the netmap rx queues
906 		 * right now so we create the queues in a way that
907 		 * doesn't set off any congestion signal in the chip.
908 		 */
909 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
910 		    CTLFLAG_RD, NULL, "rx queues");
911 		for_each_nm_rxq(vi, i, nm_rxq) {
912 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
913 			if (rc != 0)
914 				goto done;
915 			intr_idx++;
916 		}
917 
918 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
919 		    CTLFLAG_RD, NULL, "tx queues");
920 		for_each_nm_txq(vi, i, nm_txq) {
921 			iqid = vi->first_nm_rxq + (i % vi->nnmrxq);
922 			rc = alloc_nm_txq(vi, nm_txq, iqid, i, oid);
923 			if (rc != 0)
924 				goto done;
925 		}
926 	}
927 
928 	/* Normal rx queues and netmap rx queues share the same interrupts. */
929 	intr_idx = saved_idx;
930 #endif
931 
932 	/*
933 	 * First pass over all NIC and TOE rx queues:
934 	 * a) initialize iq and fl
935 	 * b) allocate queue iff it will take direct interrupts.
936 	 */
937 	maxp = mtu_to_max_payload(sc, mtu, 0);
938 	if (vi->flags & INTR_RXQ) {
939 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
940 		    CTLFLAG_RD, NULL, "rx queues");
941 	}
942 	for_each_rxq(vi, i, rxq) {
943 
944 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
945 
946 		snprintf(name, sizeof(name), "%s rxq%d-fl",
947 		    device_get_nameunit(vi->dev), i);
948 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
949 
950 		if (vi->flags & INTR_RXQ) {
951 			rxq->iq.flags |= IQ_INTR;
952 			rc = alloc_rxq(vi, rxq, intr_idx, i, oid);
953 			if (rc != 0)
954 				goto done;
955 			intr_idx++;
956 		}
957 	}
958 #ifdef DEV_NETMAP
959 	if (ifp->if_capabilities & IFCAP_NETMAP)
960 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
961 #endif
962 #ifdef TCP_OFFLOAD
963 	maxp = mtu_to_max_payload(sc, mtu, 1);
964 	if (vi->flags & INTR_OFLD_RXQ) {
965 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
966 		    CTLFLAG_RD, NULL,
967 		    "rx queues for offloaded TCP connections");
968 	}
969 	for_each_ofld_rxq(vi, i, ofld_rxq) {
970 
971 		init_iq(&ofld_rxq->iq, sc, vi->tmr_idx, vi->pktc_idx,
972 		    vi->qsize_rxq);
973 
974 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
975 		    device_get_nameunit(vi->dev), i);
976 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
977 
978 		if (vi->flags & INTR_OFLD_RXQ) {
979 			ofld_rxq->iq.flags |= IQ_INTR;
980 			rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid);
981 			if (rc != 0)
982 				goto done;
983 			intr_idx++;
984 		}
985 	}
986 #endif
987 
988 	/*
989 	 * Second pass over all NIC and TOE rx queues.  The queues forwarding
990 	 * their interrupts are allocated now.
991 	 */
992 	j = 0;
993 	if (!(vi->flags & INTR_RXQ)) {
994 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
995 		    CTLFLAG_RD, NULL, "rx queues");
996 		for_each_rxq(vi, i, rxq) {
997 			MPASS(!(rxq->iq.flags & IQ_INTR));
998 
999 			intr_idx = vi_intr_iq(vi, j)->abs_id;
1000 
1001 			rc = alloc_rxq(vi, rxq, intr_idx, i, oid);
1002 			if (rc != 0)
1003 				goto done;
1004 			j++;
1005 		}
1006 	}
1007 #ifdef TCP_OFFLOAD
1008 	if (vi->nofldrxq != 0 && !(vi->flags & INTR_OFLD_RXQ)) {
1009 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1010 		    CTLFLAG_RD, NULL,
1011 		    "rx queues for offloaded TCP connections");
1012 		for_each_ofld_rxq(vi, i, ofld_rxq) {
1013 			MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
1014 
1015 			intr_idx = vi_intr_iq(vi, j)->abs_id;
1016 
1017 			rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid);
1018 			if (rc != 0)
1019 				goto done;
1020 			j++;
1021 		}
1022 	}
1023 #endif
1024 
1025 	/*
1026 	 * Now the tx queues.  Only one pass needed.
1027 	 */
1028 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1029 	    NULL, "tx queues");
1030 	j = 0;
1031 	for_each_txq(vi, i, txq) {
1032 		iqid = vi_intr_iq(vi, j)->cntxt_id;
1033 		snprintf(name, sizeof(name), "%s txq%d",
1034 		    device_get_nameunit(vi->dev), i);
1035 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, iqid,
1036 		    name);
1037 
1038 		rc = alloc_txq(vi, txq, i, oid);
1039 		if (rc != 0)
1040 			goto done;
1041 		j++;
1042 	}
1043 #ifdef TCP_OFFLOAD
1044 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1045 	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1046 	for_each_ofld_txq(vi, i, ofld_txq) {
1047 		struct sysctl_oid *oid2;
1048 
1049 		iqid = vi_intr_iq(vi, j)->cntxt_id;
1050 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1051 		    device_get_nameunit(vi->dev), i);
1052 		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1053 		    iqid, name);
1054 
1055 		snprintf(name, sizeof(name), "%d", i);
1056 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1057 		    name, CTLFLAG_RD, NULL, "offload tx queue");
1058 
1059 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1060 		if (rc != 0)
1061 			goto done;
1062 		j++;
1063 	}
1064 #endif
1065 
1066 	/*
1067 	 * Finally, the control queue.
1068 	 */
1069 	if (!IS_MAIN_VI(vi))
1070 		goto done;
1071 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1072 	    NULL, "ctrl queue");
1073 	ctrlq = &sc->sge.ctrlq[pi->port_id];
1074 	iqid = vi_intr_iq(vi, 0)->cntxt_id;
1075 	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev));
1076 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid,
1077 	    name);
1078 	rc = alloc_wrq(sc, vi, ctrlq, oid);
1079 
1080 done:
1081 	if (rc)
1082 		t4_teardown_vi_queues(vi);
1083 
1084 	return (rc);
1085 }
1086 
1087 /*
1088  * Idempotent
1089  */
1090 int
1091 t4_teardown_vi_queues(struct vi_info *vi)
1092 {
1093 	int i;
1094 	struct port_info *pi = vi->pi;
1095 	struct adapter *sc = pi->adapter;
1096 	struct sge_rxq *rxq;
1097 	struct sge_txq *txq;
1098 #ifdef TCP_OFFLOAD
1099 	struct sge_ofld_rxq *ofld_rxq;
1100 	struct sge_wrq *ofld_txq;
1101 #endif
1102 #ifdef DEV_NETMAP
1103 	struct sge_nm_rxq *nm_rxq;
1104 	struct sge_nm_txq *nm_txq;
1105 #endif
1106 
1107 	/* Do this before freeing the queues */
1108 	if (vi->flags & VI_SYSCTL_CTX) {
1109 		sysctl_ctx_free(&vi->ctx);
1110 		vi->flags &= ~VI_SYSCTL_CTX;
1111 	}
1112 
1113 #ifdef DEV_NETMAP
1114 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1115 		for_each_nm_txq(vi, i, nm_txq) {
1116 			free_nm_txq(vi, nm_txq);
1117 		}
1118 
1119 		for_each_nm_rxq(vi, i, nm_rxq) {
1120 			free_nm_rxq(vi, nm_rxq);
1121 		}
1122 	}
1123 #endif
1124 
1125 	/*
1126 	 * Take down all the tx queues first, as they reference the rx queues
1127 	 * (for egress updates, etc.).
1128 	 */
1129 
1130 	if (IS_MAIN_VI(vi))
1131 		free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1132 
1133 	for_each_txq(vi, i, txq) {
1134 		free_txq(vi, txq);
1135 	}
1136 #ifdef TCP_OFFLOAD
1137 	for_each_ofld_txq(vi, i, ofld_txq) {
1138 		free_wrq(sc, ofld_txq);
1139 	}
1140 #endif
1141 
1142 	/*
1143 	 * Then take down the rx queues that forward their interrupts, as they
1144 	 * reference other rx queues.
1145 	 */
1146 
1147 	for_each_rxq(vi, i, rxq) {
1148 		if ((rxq->iq.flags & IQ_INTR) == 0)
1149 			free_rxq(vi, rxq);
1150 	}
1151 #ifdef TCP_OFFLOAD
1152 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1153 		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1154 			free_ofld_rxq(vi, ofld_rxq);
1155 	}
1156 #endif
1157 
1158 	/*
1159 	 * Then take down the rx queues that take direct interrupts.
1160 	 */
1161 
1162 	for_each_rxq(vi, i, rxq) {
1163 		if (rxq->iq.flags & IQ_INTR)
1164 			free_rxq(vi, rxq);
1165 	}
1166 #ifdef TCP_OFFLOAD
1167 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1168 		if (ofld_rxq->iq.flags & IQ_INTR)
1169 			free_ofld_rxq(vi, ofld_rxq);
1170 	}
1171 #endif
1172 
1173 	return (0);
1174 }
1175 
1176 /*
1177  * Deals with errors and the firmware event queue.  All data rx queues forward
1178  * their interrupt to the firmware event queue.
1179  */
1180 void
1181 t4_intr_all(void *arg)
1182 {
1183 	struct adapter *sc = arg;
1184 	struct sge_iq *fwq = &sc->sge.fwq;
1185 
1186 	t4_intr_err(arg);
1187 	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1188 		service_iq(fwq, 0);
1189 		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1190 	}
1191 }
1192 
1193 /* Deals with error interrupts */
1194 void
1195 t4_intr_err(void *arg)
1196 {
1197 	struct adapter *sc = arg;
1198 
1199 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1200 	t4_slow_intr_handler(sc);
1201 }
1202 
1203 void
1204 t4_intr_evt(void *arg)
1205 {
1206 	struct sge_iq *iq = arg;
1207 
1208 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1209 		service_iq(iq, 0);
1210 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1211 	}
1212 }
1213 
1214 void
1215 t4_intr(void *arg)
1216 {
1217 	struct sge_iq *iq = arg;
1218 
1219 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1220 		service_iq(iq, 0);
1221 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1222 	}
1223 }
1224 
1225 void
1226 t4_vi_intr(void *arg)
1227 {
1228 	struct irq *irq = arg;
1229 
1230 #ifdef DEV_NETMAP
1231 	if (atomic_cmpset_int(&irq->nm_state, NM_ON, NM_BUSY)) {
1232 		t4_nm_intr(irq->nm_rxq);
1233 		atomic_cmpset_int(&irq->nm_state, NM_BUSY, NM_ON);
1234 	}
1235 #endif
1236 	if (irq->rxq != NULL)
1237 		t4_intr(irq->rxq);
1238 }
1239 
1240 /*
1241  * Deals with anything and everything on the given ingress queue.
1242  */
1243 static int
1244 service_iq(struct sge_iq *iq, int budget)
1245 {
1246 	struct sge_iq *q;
1247 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1248 	struct sge_fl *fl;			/* Use iff IQ_HAS_FL */
1249 	struct adapter *sc = iq->adapter;
1250 	struct iq_desc *d = &iq->desc[iq->cidx];
1251 	int ndescs = 0, limit;
1252 	int rsp_type, refill;
1253 	uint32_t lq;
1254 	uint16_t fl_hw_cidx;
1255 	struct mbuf *m0;
1256 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1257 #if defined(INET) || defined(INET6)
1258 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1259 #endif
1260 
1261 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1262 
1263 	limit = budget ? budget : iq->qsize / 16;
1264 
1265 	if (iq->flags & IQ_HAS_FL) {
1266 		fl = &rxq->fl;
1267 		fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1268 	} else {
1269 		fl = NULL;
1270 		fl_hw_cidx = 0;			/* to silence gcc warning */
1271 	}
1272 
1273 	/*
1274 	 * We always come back and check the descriptor ring for new indirect
1275 	 * interrupts and other responses after running a single handler.
1276 	 */
1277 	for (;;) {
1278 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1279 
1280 			rmb();
1281 
1282 			refill = 0;
1283 			m0 = NULL;
1284 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1285 			lq = be32toh(d->rsp.pldbuflen_qid);
1286 
1287 			switch (rsp_type) {
1288 			case X_RSPD_TYPE_FLBUF:
1289 
1290 				KASSERT(iq->flags & IQ_HAS_FL,
1291 				    ("%s: data for an iq (%p) with no freelist",
1292 				    __func__, iq));
1293 
1294 				m0 = get_fl_payload(sc, fl, lq);
1295 				if (__predict_false(m0 == NULL))
1296 					goto process_iql;
1297 				refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1298 #ifdef T4_PKT_TIMESTAMP
1299 				/*
1300 				 * 60 bit timestamp for the payload is
1301 				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1302 				 * in the leading free-space in the mbuf.  The
1303 				 * kernel can clobber it during a pullup,
1304 				 * m_copymdata, etc.  You need to make sure that
1305 				 * the mbuf reaches you unmolested if you care
1306 				 * about the timestamp.
1307 				 */
1308 				*(uint64_t *)m0->m_pktdat =
1309 				    be64toh(ctrl->u.last_flit) &
1310 				    0xfffffffffffffff;
1311 #endif
1312 
1313 				/* fall through */
1314 
1315 			case X_RSPD_TYPE_CPL:
1316 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1317 				    ("%s: bad opcode %02x.", __func__,
1318 				    d->rss.opcode));
1319 				sc->cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1320 				break;
1321 
1322 			case X_RSPD_TYPE_INTR:
1323 
1324 				/*
1325 				 * Interrupts should be forwarded only to queues
1326 				 * that are not forwarding their interrupts.
1327 				 * This means service_iq can recurse but only 1
1328 				 * level deep.
1329 				 */
1330 				KASSERT(budget == 0,
1331 				    ("%s: budget %u, rsp_type %u", __func__,
1332 				    budget, rsp_type));
1333 
1334 				/*
1335 				 * There are 1K interrupt-capable queues (qids 0
1336 				 * through 1023).  A response type indicating a
1337 				 * forwarded interrupt with a qid >= 1K is an
1338 				 * iWARP async notification.
1339 				 */
1340 				if (lq >= 1024) {
1341                                         sc->an_handler(iq, &d->rsp);
1342                                         break;
1343                                 }
1344 
1345 				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1346 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1347 				    IQS_BUSY)) {
1348 					if (service_iq(q, q->qsize / 16) == 0) {
1349 						atomic_cmpset_int(&q->state,
1350 						    IQS_BUSY, IQS_IDLE);
1351 					} else {
1352 						STAILQ_INSERT_TAIL(&iql, q,
1353 						    link);
1354 					}
1355 				}
1356 				break;
1357 
1358 			default:
1359 				KASSERT(0,
1360 				    ("%s: illegal response type %d on iq %p",
1361 				    __func__, rsp_type, iq));
1362 				log(LOG_ERR,
1363 				    "%s: illegal response type %d on iq %p",
1364 				    device_get_nameunit(sc->dev), rsp_type, iq);
1365 				break;
1366 			}
1367 
1368 			d++;
1369 			if (__predict_false(++iq->cidx == iq->sidx)) {
1370 				iq->cidx = 0;
1371 				iq->gen ^= F_RSPD_GEN;
1372 				d = &iq->desc[0];
1373 			}
1374 			if (__predict_false(++ndescs == limit)) {
1375 				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1376 				    V_CIDXINC(ndescs) |
1377 				    V_INGRESSQID(iq->cntxt_id) |
1378 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1379 				ndescs = 0;
1380 
1381 #if defined(INET) || defined(INET6)
1382 				if (iq->flags & IQ_LRO_ENABLED &&
1383 				    sc->lro_timeout != 0) {
1384 					tcp_lro_flush_inactive(&rxq->lro,
1385 					    &lro_timeout);
1386 				}
1387 #endif
1388 
1389 				if (budget) {
1390 					if (iq->flags & IQ_HAS_FL) {
1391 						FL_LOCK(fl);
1392 						refill_fl(sc, fl, 32);
1393 						FL_UNLOCK(fl);
1394 					}
1395 					return (EINPROGRESS);
1396 				}
1397 			}
1398 			if (refill) {
1399 				FL_LOCK(fl);
1400 				refill_fl(sc, fl, 32);
1401 				FL_UNLOCK(fl);
1402 				fl_hw_cidx = fl->hw_cidx;
1403 			}
1404 		}
1405 
1406 process_iql:
1407 		if (STAILQ_EMPTY(&iql))
1408 			break;
1409 
1410 		/*
1411 		 * Process the head only, and send it to the back of the list if
1412 		 * it's still not done.
1413 		 */
1414 		q = STAILQ_FIRST(&iql);
1415 		STAILQ_REMOVE_HEAD(&iql, link);
1416 		if (service_iq(q, q->qsize / 8) == 0)
1417 			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1418 		else
1419 			STAILQ_INSERT_TAIL(&iql, q, link);
1420 	}
1421 
1422 #if defined(INET) || defined(INET6)
1423 	if (iq->flags & IQ_LRO_ENABLED) {
1424 		struct lro_ctrl *lro = &rxq->lro;
1425 
1426 		tcp_lro_flush_all(lro);
1427 	}
1428 #endif
1429 
1430 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1431 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1432 
1433 	if (iq->flags & IQ_HAS_FL) {
1434 		int starved;
1435 
1436 		FL_LOCK(fl);
1437 		starved = refill_fl(sc, fl, 64);
1438 		FL_UNLOCK(fl);
1439 		if (__predict_false(starved != 0))
1440 			add_fl_to_sfl(sc, fl);
1441 	}
1442 
1443 	return (0);
1444 }
1445 
1446 static inline int
1447 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1448 {
1449 	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1450 
1451 	if (rc)
1452 		MPASS(cll->region3 >= CL_METADATA_SIZE);
1453 
1454 	return (rc);
1455 }
1456 
1457 static inline struct cluster_metadata *
1458 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1459     caddr_t cl)
1460 {
1461 
1462 	if (cl_has_metadata(fl, cll)) {
1463 		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1464 
1465 		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1466 	}
1467 	return (NULL);
1468 }
1469 
1470 static void
1471 rxb_free(struct mbuf *m, void *arg1, void *arg2)
1472 {
1473 	uma_zone_t zone = arg1;
1474 	caddr_t cl = arg2;
1475 
1476 	uma_zfree(zone, cl);
1477 	counter_u64_add(extfree_rels, 1);
1478 }
1479 
1480 /*
1481  * The mbuf returned by this function could be allocated from zone_mbuf or
1482  * constructed in spare room in the cluster.
1483  *
1484  * The mbuf carries the payload in one of these ways
1485  * a) frame inside the mbuf (mbuf from zone_mbuf)
1486  * b) m_cljset (for clusters without metadata) zone_mbuf
1487  * c) m_extaddref (cluster with metadata) inline mbuf
1488  * d) m_extaddref (cluster with metadata) zone_mbuf
1489  */
1490 static struct mbuf *
1491 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1492     int remaining)
1493 {
1494 	struct mbuf *m;
1495 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1496 	struct cluster_layout *cll = &sd->cll;
1497 	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1498 	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1499 	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1500 	int len, blen;
1501 	caddr_t payload;
1502 
1503 	blen = hwb->size - fl->rx_offset;	/* max possible in this buf */
1504 	len = min(remaining, blen);
1505 	payload = sd->cl + cll->region1 + fl->rx_offset;
1506 	if (fl->flags & FL_BUF_PACKING) {
1507 		const u_int l = fr_offset + len;
1508 		const u_int pad = roundup2(l, fl->buf_boundary) - l;
1509 
1510 		if (fl->rx_offset + len + pad < hwb->size)
1511 			blen = len + pad;
1512 		MPASS(fl->rx_offset + blen <= hwb->size);
1513 	} else {
1514 		MPASS(fl->rx_offset == 0);	/* not packing */
1515 	}
1516 
1517 
1518 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1519 
1520 		/*
1521 		 * Copy payload into a freshly allocated mbuf.
1522 		 */
1523 
1524 		m = fr_offset == 0 ?
1525 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1526 		if (m == NULL)
1527 			return (NULL);
1528 		fl->mbuf_allocated++;
1529 #ifdef T4_PKT_TIMESTAMP
1530 		/* Leave room for a timestamp */
1531 		m->m_data += 8;
1532 #endif
1533 		/* copy data to mbuf */
1534 		bcopy(payload, mtod(m, caddr_t), len);
1535 
1536 	} else if (sd->nmbuf * MSIZE < cll->region1) {
1537 
1538 		/*
1539 		 * There's spare room in the cluster for an mbuf.  Create one
1540 		 * and associate it with the payload that's in the cluster.
1541 		 */
1542 
1543 		MPASS(clm != NULL);
1544 		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1545 		/* No bzero required */
1546 		if (m_init(m, M_NOWAIT, MT_DATA,
1547 		    fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
1548 			return (NULL);
1549 		fl->mbuf_inlined++;
1550 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
1551 		    swz->zone, sd->cl);
1552 		if (sd->nmbuf++ == 0)
1553 			counter_u64_add(extfree_refs, 1);
1554 
1555 	} else {
1556 
1557 		/*
1558 		 * Grab an mbuf from zone_mbuf and associate it with the
1559 		 * payload in the cluster.
1560 		 */
1561 
1562 		m = fr_offset == 0 ?
1563 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1564 		if (m == NULL)
1565 			return (NULL);
1566 		fl->mbuf_allocated++;
1567 		if (clm != NULL) {
1568 			m_extaddref(m, payload, blen, &clm->refcount,
1569 			    rxb_free, swz->zone, sd->cl);
1570 			if (sd->nmbuf++ == 0)
1571 				counter_u64_add(extfree_refs, 1);
1572 		} else {
1573 			m_cljset(m, sd->cl, swz->type);
1574 			sd->cl = NULL;	/* consumed, not a recycle candidate */
1575 		}
1576 	}
1577 	if (fr_offset == 0)
1578 		m->m_pkthdr.len = remaining;
1579 	m->m_len = len;
1580 
1581 	if (fl->flags & FL_BUF_PACKING) {
1582 		fl->rx_offset += blen;
1583 		MPASS(fl->rx_offset <= hwb->size);
1584 		if (fl->rx_offset < hwb->size)
1585 			return (m);	/* without advancing the cidx */
1586 	}
1587 
1588 	if (__predict_false(++fl->cidx % 8 == 0)) {
1589 		uint16_t cidx = fl->cidx / 8;
1590 
1591 		if (__predict_false(cidx == fl->sidx))
1592 			fl->cidx = cidx = 0;
1593 		fl->hw_cidx = cidx;
1594 	}
1595 	fl->rx_offset = 0;
1596 
1597 	return (m);
1598 }
1599 
1600 static struct mbuf *
1601 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1602 {
1603 	struct mbuf *m0, *m, **pnext;
1604 	u_int remaining;
1605 	const u_int total = G_RSPD_LEN(len_newbuf);
1606 
1607 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1608 		M_ASSERTPKTHDR(fl->m0);
1609 		MPASS(fl->m0->m_pkthdr.len == total);
1610 		MPASS(fl->remaining < total);
1611 
1612 		m0 = fl->m0;
1613 		pnext = fl->pnext;
1614 		remaining = fl->remaining;
1615 		fl->flags &= ~FL_BUF_RESUME;
1616 		goto get_segment;
1617 	}
1618 
1619 	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1620 		fl->rx_offset = 0;
1621 		if (__predict_false(++fl->cidx % 8 == 0)) {
1622 			uint16_t cidx = fl->cidx / 8;
1623 
1624 			if (__predict_false(cidx == fl->sidx))
1625 				fl->cidx = cidx = 0;
1626 			fl->hw_cidx = cidx;
1627 		}
1628 	}
1629 
1630 	/*
1631 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1632 	 * 'len' and it may span multiple hw buffers.
1633 	 */
1634 
1635 	m0 = get_scatter_segment(sc, fl, 0, total);
1636 	if (m0 == NULL)
1637 		return (NULL);
1638 	remaining = total - m0->m_len;
1639 	pnext = &m0->m_next;
1640 	while (remaining > 0) {
1641 get_segment:
1642 		MPASS(fl->rx_offset == 0);
1643 		m = get_scatter_segment(sc, fl, total - remaining, remaining);
1644 		if (__predict_false(m == NULL)) {
1645 			fl->m0 = m0;
1646 			fl->pnext = pnext;
1647 			fl->remaining = remaining;
1648 			fl->flags |= FL_BUF_RESUME;
1649 			return (NULL);
1650 		}
1651 		*pnext = m;
1652 		pnext = &m->m_next;
1653 		remaining -= m->m_len;
1654 	}
1655 	*pnext = NULL;
1656 
1657 	M_ASSERTPKTHDR(m0);
1658 	return (m0);
1659 }
1660 
1661 static int
1662 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1663 {
1664 	struct sge_rxq *rxq = iq_to_rxq(iq);
1665 	struct ifnet *ifp = rxq->ifp;
1666 	struct adapter *sc = iq->adapter;
1667 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1668 #if defined(INET) || defined(INET6)
1669 	struct lro_ctrl *lro = &rxq->lro;
1670 #endif
1671 	static const int sw_hashtype[4][2] = {
1672 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1673 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1674 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1675 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1676 	};
1677 
1678 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1679 	    rss->opcode));
1680 
1681 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1682 	m0->m_len -= sc->params.sge.fl_pktshift;
1683 	m0->m_data += sc->params.sge.fl_pktshift;
1684 
1685 	m0->m_pkthdr.rcvif = ifp;
1686 	M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
1687 	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1688 
1689 	if (cpl->csum_calc && !cpl->err_vec) {
1690 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1691 		    cpl->l2info & htobe32(F_RXF_IP)) {
1692 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1693 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1694 			rxq->rxcsum++;
1695 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1696 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1697 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1698 			    CSUM_PSEUDO_HDR);
1699 			rxq->rxcsum++;
1700 		}
1701 
1702 		if (__predict_false(cpl->ip_frag))
1703 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1704 		else
1705 			m0->m_pkthdr.csum_data = 0xffff;
1706 	}
1707 
1708 	if (cpl->vlan_ex) {
1709 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1710 		m0->m_flags |= M_VLANTAG;
1711 		rxq->vlan_extraction++;
1712 	}
1713 
1714 #if defined(INET) || defined(INET6)
1715 	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1716 	    iq->flags & IQ_LRO_ENABLED &&
1717 	    tcp_lro_rx(lro, m0, 0) == 0) {
1718 		/* queued for LRO */
1719 	} else
1720 #endif
1721 	ifp->if_input(ifp, m0);
1722 
1723 	return (0);
1724 }
1725 
1726 /*
1727  * Must drain the wrq or make sure that someone else will.
1728  */
1729 static void
1730 wrq_tx_drain(void *arg, int n)
1731 {
1732 	struct sge_wrq *wrq = arg;
1733 	struct sge_eq *eq = &wrq->eq;
1734 
1735 	EQ_LOCK(eq);
1736 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
1737 		drain_wrq_wr_list(wrq->adapter, wrq);
1738 	EQ_UNLOCK(eq);
1739 }
1740 
1741 static void
1742 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
1743 {
1744 	struct sge_eq *eq = &wrq->eq;
1745 	u_int available, dbdiff;	/* # of hardware descriptors */
1746 	u_int n;
1747 	struct wrqe *wr;
1748 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
1749 
1750 	EQ_LOCK_ASSERT_OWNED(eq);
1751 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
1752 	wr = STAILQ_FIRST(&wrq->wr_list);
1753 	MPASS(wr != NULL);	/* Must be called with something useful to do */
1754 	MPASS(eq->pidx == eq->dbidx);
1755 	dbdiff = 0;
1756 
1757 	do {
1758 		eq->cidx = read_hw_cidx(eq);
1759 		if (eq->pidx == eq->cidx)
1760 			available = eq->sidx - 1;
1761 		else
1762 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
1763 
1764 		MPASS(wr->wrq == wrq);
1765 		n = howmany(wr->wr_len, EQ_ESIZE);
1766 		if (available < n)
1767 			break;
1768 
1769 		dst = (void *)&eq->desc[eq->pidx];
1770 		if (__predict_true(eq->sidx - eq->pidx > n)) {
1771 			/* Won't wrap, won't end exactly at the status page. */
1772 			bcopy(&wr->wr[0], dst, wr->wr_len);
1773 			eq->pidx += n;
1774 		} else {
1775 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
1776 
1777 			bcopy(&wr->wr[0], dst, first_portion);
1778 			if (wr->wr_len > first_portion) {
1779 				bcopy(&wr->wr[first_portion], &eq->desc[0],
1780 				    wr->wr_len - first_portion);
1781 			}
1782 			eq->pidx = n - (eq->sidx - eq->pidx);
1783 		}
1784 
1785 		if (available < eq->sidx / 4 &&
1786 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
1787 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
1788 			    F_FW_WR_EQUEQ);
1789 			eq->equeqidx = eq->pidx;
1790 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
1791 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
1792 			eq->equeqidx = eq->pidx;
1793 		}
1794 
1795 		dbdiff += n;
1796 		if (dbdiff >= 16) {
1797 			ring_eq_db(sc, eq, dbdiff);
1798 			dbdiff = 0;
1799 		}
1800 
1801 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1802 		free_wrqe(wr);
1803 		MPASS(wrq->nwr_pending > 0);
1804 		wrq->nwr_pending--;
1805 		MPASS(wrq->ndesc_needed >= n);
1806 		wrq->ndesc_needed -= n;
1807 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
1808 
1809 	if (dbdiff)
1810 		ring_eq_db(sc, eq, dbdiff);
1811 }
1812 
1813 /*
1814  * Doesn't fail.  Holds on to work requests it can't send right away.
1815  */
1816 void
1817 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1818 {
1819 #ifdef INVARIANTS
1820 	struct sge_eq *eq = &wrq->eq;
1821 #endif
1822 
1823 	EQ_LOCK_ASSERT_OWNED(eq);
1824 	MPASS(wr != NULL);
1825 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
1826 	MPASS((wr->wr_len & 0x7) == 0);
1827 
1828 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1829 	wrq->nwr_pending++;
1830 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
1831 
1832 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
1833 		return;	/* commit_wrq_wr will drain wr_list as well. */
1834 
1835 	drain_wrq_wr_list(sc, wrq);
1836 
1837 	/* Doorbell must have caught up to the pidx. */
1838 	MPASS(eq->pidx == eq->dbidx);
1839 }
1840 
1841 void
1842 t4_update_fl_bufsize(struct ifnet *ifp)
1843 {
1844 	struct vi_info *vi = ifp->if_softc;
1845 	struct adapter *sc = vi->pi->adapter;
1846 	struct sge_rxq *rxq;
1847 #ifdef TCP_OFFLOAD
1848 	struct sge_ofld_rxq *ofld_rxq;
1849 #endif
1850 	struct sge_fl *fl;
1851 	int i, maxp, mtu = ifp->if_mtu;
1852 
1853 	maxp = mtu_to_max_payload(sc, mtu, 0);
1854 	for_each_rxq(vi, i, rxq) {
1855 		fl = &rxq->fl;
1856 
1857 		FL_LOCK(fl);
1858 		find_best_refill_source(sc, fl, maxp);
1859 		FL_UNLOCK(fl);
1860 	}
1861 #ifdef TCP_OFFLOAD
1862 	maxp = mtu_to_max_payload(sc, mtu, 1);
1863 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1864 		fl = &ofld_rxq->fl;
1865 
1866 		FL_LOCK(fl);
1867 		find_best_refill_source(sc, fl, maxp);
1868 		FL_UNLOCK(fl);
1869 	}
1870 #endif
1871 }
1872 
1873 static inline int
1874 mbuf_nsegs(struct mbuf *m)
1875 {
1876 
1877 	M_ASSERTPKTHDR(m);
1878 	KASSERT(m->m_pkthdr.l5hlen > 0,
1879 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
1880 
1881 	return (m->m_pkthdr.l5hlen);
1882 }
1883 
1884 static inline void
1885 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
1886 {
1887 
1888 	M_ASSERTPKTHDR(m);
1889 	m->m_pkthdr.l5hlen = nsegs;
1890 }
1891 
1892 static inline int
1893 mbuf_len16(struct mbuf *m)
1894 {
1895 	int n;
1896 
1897 	M_ASSERTPKTHDR(m);
1898 	n = m->m_pkthdr.PH_loc.eight[0];
1899 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
1900 
1901 	return (n);
1902 }
1903 
1904 static inline void
1905 set_mbuf_len16(struct mbuf *m, uint8_t len16)
1906 {
1907 
1908 	M_ASSERTPKTHDR(m);
1909 	m->m_pkthdr.PH_loc.eight[0] = len16;
1910 }
1911 
1912 static inline int
1913 needs_tso(struct mbuf *m)
1914 {
1915 
1916 	M_ASSERTPKTHDR(m);
1917 
1918 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1919 		KASSERT(m->m_pkthdr.tso_segsz > 0,
1920 		    ("%s: TSO requested in mbuf %p but MSS not provided",
1921 		    __func__, m));
1922 		return (1);
1923 	}
1924 
1925 	return (0);
1926 }
1927 
1928 static inline int
1929 needs_l3_csum(struct mbuf *m)
1930 {
1931 
1932 	M_ASSERTPKTHDR(m);
1933 
1934 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
1935 		return (1);
1936 	return (0);
1937 }
1938 
1939 static inline int
1940 needs_l4_csum(struct mbuf *m)
1941 {
1942 
1943 	M_ASSERTPKTHDR(m);
1944 
1945 	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
1946 	    CSUM_TCP_IPV6 | CSUM_TSO))
1947 		return (1);
1948 	return (0);
1949 }
1950 
1951 static inline int
1952 needs_vlan_insertion(struct mbuf *m)
1953 {
1954 
1955 	M_ASSERTPKTHDR(m);
1956 
1957 	if (m->m_flags & M_VLANTAG) {
1958 		KASSERT(m->m_pkthdr.ether_vtag != 0,
1959 		    ("%s: HWVLAN requested in mbuf %p but tag not provided",
1960 		    __func__, m));
1961 		return (1);
1962 	}
1963 	return (0);
1964 }
1965 
1966 static void *
1967 m_advance(struct mbuf **pm, int *poffset, int len)
1968 {
1969 	struct mbuf *m = *pm;
1970 	int offset = *poffset;
1971 	uintptr_t p = 0;
1972 
1973 	MPASS(len > 0);
1974 
1975 	while (len) {
1976 		if (offset + len < m->m_len) {
1977 			offset += len;
1978 			p = mtod(m, uintptr_t) + offset;
1979 			break;
1980 		}
1981 		len -= m->m_len - offset;
1982 		m = m->m_next;
1983 		offset = 0;
1984 		MPASS(m != NULL);
1985 	}
1986 	*poffset = offset;
1987 	*pm = m;
1988 	return ((void *)p);
1989 }
1990 
1991 static inline int
1992 same_paddr(char *a, char *b)
1993 {
1994 
1995 	if (a == b)
1996 		return (1);
1997 	else if (a != NULL && b != NULL) {
1998 		vm_offset_t x = (vm_offset_t)a;
1999 		vm_offset_t y = (vm_offset_t)b;
2000 
2001 		if ((x & PAGE_MASK) == (y & PAGE_MASK) &&
2002 		    pmap_kextract(x) == pmap_kextract(y))
2003 			return (1);
2004 	}
2005 
2006 	return (0);
2007 }
2008 
2009 /*
2010  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2011  * must have at least one mbuf that's not empty.
2012  */
2013 static inline int
2014 count_mbuf_nsegs(struct mbuf *m)
2015 {
2016 	char *prev_end, *start;
2017 	int len, nsegs;
2018 
2019 	MPASS(m != NULL);
2020 
2021 	nsegs = 0;
2022 	prev_end = NULL;
2023 	for (; m; m = m->m_next) {
2024 
2025 		len = m->m_len;
2026 		if (__predict_false(len == 0))
2027 			continue;
2028 		start = mtod(m, char *);
2029 
2030 		nsegs += sglist_count(start, len);
2031 		if (same_paddr(prev_end, start))
2032 			nsegs--;
2033 		prev_end = start + len;
2034 	}
2035 
2036 	MPASS(nsegs > 0);
2037 	return (nsegs);
2038 }
2039 
2040 /*
2041  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2042  * a) caller can assume it's been freed if this function returns with an error.
2043  * b) it may get defragged up if the gather list is too long for the hardware.
2044  */
2045 int
2046 parse_pkt(struct mbuf **mp)
2047 {
2048 	struct mbuf *m0 = *mp, *m;
2049 	int rc, nsegs, defragged = 0, offset;
2050 	struct ether_header *eh;
2051 	void *l3hdr;
2052 #if defined(INET) || defined(INET6)
2053 	struct tcphdr *tcp;
2054 #endif
2055 	uint16_t eh_type;
2056 
2057 	M_ASSERTPKTHDR(m0);
2058 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2059 		rc = EINVAL;
2060 fail:
2061 		m_freem(m0);
2062 		*mp = NULL;
2063 		return (rc);
2064 	}
2065 restart:
2066 	/*
2067 	 * First count the number of gather list segments in the payload.
2068 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2069 	 */
2070 	M_ASSERTPKTHDR(m0);
2071 	MPASS(m0->m_pkthdr.len > 0);
2072 	nsegs = count_mbuf_nsegs(m0);
2073 	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2074 		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2075 			rc = EFBIG;
2076 			goto fail;
2077 		}
2078 		*mp = m0 = m;	/* update caller's copy after defrag */
2079 		goto restart;
2080 	}
2081 
2082 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
2083 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2084 		if (m0 == NULL) {
2085 			/* Should have left well enough alone. */
2086 			rc = EFBIG;
2087 			goto fail;
2088 		}
2089 		*mp = m0;	/* update caller's copy after pullup */
2090 		goto restart;
2091 	}
2092 	set_mbuf_nsegs(m0, nsegs);
2093 	set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2094 
2095 	if (!needs_tso(m0))
2096 		return (0);
2097 
2098 	m = m0;
2099 	eh = mtod(m, struct ether_header *);
2100 	eh_type = ntohs(eh->ether_type);
2101 	if (eh_type == ETHERTYPE_VLAN) {
2102 		struct ether_vlan_header *evh = (void *)eh;
2103 
2104 		eh_type = ntohs(evh->evl_proto);
2105 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2106 	} else
2107 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2108 
2109 	offset = 0;
2110 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2111 
2112 	switch (eh_type) {
2113 #ifdef INET6
2114 	case ETHERTYPE_IPV6:
2115 	{
2116 		struct ip6_hdr *ip6 = l3hdr;
2117 
2118 		MPASS(ip6->ip6_nxt == IPPROTO_TCP);
2119 
2120 		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2121 		break;
2122 	}
2123 #endif
2124 #ifdef INET
2125 	case ETHERTYPE_IP:
2126 	{
2127 		struct ip *ip = l3hdr;
2128 
2129 		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2130 		break;
2131 	}
2132 #endif
2133 	default:
2134 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2135 		    " with the same INET/INET6 options as the kernel.",
2136 		    __func__, eh_type);
2137 	}
2138 
2139 #if defined(INET) || defined(INET6)
2140 	tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2141 	m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2142 #endif
2143 	MPASS(m0 == *mp);
2144 	return (0);
2145 }
2146 
2147 void *
2148 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2149 {
2150 	struct sge_eq *eq = &wrq->eq;
2151 	struct adapter *sc = wrq->adapter;
2152 	int ndesc, available;
2153 	struct wrqe *wr;
2154 	void *w;
2155 
2156 	MPASS(len16 > 0);
2157 	ndesc = howmany(len16, EQ_ESIZE / 16);
2158 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2159 
2160 	EQ_LOCK(eq);
2161 
2162 	if (!STAILQ_EMPTY(&wrq->wr_list))
2163 		drain_wrq_wr_list(sc, wrq);
2164 
2165 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2166 slowpath:
2167 		EQ_UNLOCK(eq);
2168 		wr = alloc_wrqe(len16 * 16, wrq);
2169 		if (__predict_false(wr == NULL))
2170 			return (NULL);
2171 		cookie->pidx = -1;
2172 		cookie->ndesc = ndesc;
2173 		return (&wr->wr);
2174 	}
2175 
2176 	eq->cidx = read_hw_cidx(eq);
2177 	if (eq->pidx == eq->cidx)
2178 		available = eq->sidx - 1;
2179 	else
2180 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2181 	if (available < ndesc)
2182 		goto slowpath;
2183 
2184 	cookie->pidx = eq->pidx;
2185 	cookie->ndesc = ndesc;
2186 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2187 
2188 	w = &eq->desc[eq->pidx];
2189 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2190 	if (__predict_false(eq->pidx < ndesc - 1)) {
2191 		w = &wrq->ss[0];
2192 		wrq->ss_pidx = cookie->pidx;
2193 		wrq->ss_len = len16 * 16;
2194 	}
2195 
2196 	EQ_UNLOCK(eq);
2197 
2198 	return (w);
2199 }
2200 
2201 void
2202 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2203 {
2204 	struct sge_eq *eq = &wrq->eq;
2205 	struct adapter *sc = wrq->adapter;
2206 	int ndesc, pidx;
2207 	struct wrq_cookie *prev, *next;
2208 
2209 	if (cookie->pidx == -1) {
2210 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2211 
2212 		t4_wrq_tx(sc, wr);
2213 		return;
2214 	}
2215 
2216 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2217 	pidx = cookie->pidx;
2218 	MPASS(pidx >= 0 && pidx < eq->sidx);
2219 	if (__predict_false(w == &wrq->ss[0])) {
2220 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2221 
2222 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2223 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2224 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2225 		wrq->tx_wrs_ss++;
2226 	} else
2227 		wrq->tx_wrs_direct++;
2228 
2229 	EQ_LOCK(eq);
2230 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2231 	next = TAILQ_NEXT(cookie, link);
2232 	if (prev == NULL) {
2233 		MPASS(pidx == eq->dbidx);
2234 		if (next == NULL || ndesc >= 16)
2235 			ring_eq_db(wrq->adapter, eq, ndesc);
2236 		else {
2237 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2238 			next->pidx = pidx;
2239 			next->ndesc += ndesc;
2240 		}
2241 	} else {
2242 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2243 		prev->ndesc += ndesc;
2244 	}
2245 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2246 
2247 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2248 		drain_wrq_wr_list(sc, wrq);
2249 
2250 #ifdef INVARIANTS
2251 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2252 		/* Doorbell must have caught up to the pidx. */
2253 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2254 	}
2255 #endif
2256 	EQ_UNLOCK(eq);
2257 }
2258 
2259 static u_int
2260 can_resume_eth_tx(struct mp_ring *r)
2261 {
2262 	struct sge_eq *eq = r->cookie;
2263 
2264 	return (total_available_tx_desc(eq) > eq->sidx / 8);
2265 }
2266 
2267 static inline int
2268 cannot_use_txpkts(struct mbuf *m)
2269 {
2270 	/* maybe put a GL limit too, to avoid silliness? */
2271 
2272 	return (needs_tso(m));
2273 }
2274 
2275 /*
2276  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2277  * be consumed.  Return the actual number consumed.  0 indicates a stall.
2278  */
2279 static u_int
2280 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2281 {
2282 	struct sge_txq *txq = r->cookie;
2283 	struct sge_eq *eq = &txq->eq;
2284 	struct ifnet *ifp = txq->ifp;
2285 	struct vi_info *vi = ifp->if_softc;
2286 	struct port_info *pi = vi->pi;
2287 	struct adapter *sc = pi->adapter;
2288 	u_int total, remaining;		/* # of packets */
2289 	u_int available, dbdiff;	/* # of hardware descriptors */
2290 	u_int n, next_cidx;
2291 	struct mbuf *m0, *tail;
2292 	struct txpkts txp;
2293 	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2294 
2295 	remaining = IDXDIFF(pidx, cidx, r->size);
2296 	MPASS(remaining > 0);	/* Must not be called without work to do. */
2297 	total = 0;
2298 
2299 	TXQ_LOCK(txq);
2300 	if (__predict_false((eq->flags & EQ_ENABLED) == 0)) {
2301 		while (cidx != pidx) {
2302 			m0 = r->items[cidx];
2303 			m_freem(m0);
2304 			if (++cidx == r->size)
2305 				cidx = 0;
2306 		}
2307 		reclaim_tx_descs(txq, 2048);
2308 		total = remaining;
2309 		goto done;
2310 	}
2311 
2312 	/* How many hardware descriptors do we have readily available. */
2313 	if (eq->pidx == eq->cidx)
2314 		available = eq->sidx - 1;
2315 	else
2316 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2317 	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2318 
2319 	while (remaining > 0) {
2320 
2321 		m0 = r->items[cidx];
2322 		M_ASSERTPKTHDR(m0);
2323 		MPASS(m0->m_nextpkt == NULL);
2324 
2325 		if (available < SGE_MAX_WR_NDESC) {
2326 			available += reclaim_tx_descs(txq, 64);
2327 			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2328 				break;	/* out of descriptors */
2329 		}
2330 
2331 		next_cidx = cidx + 1;
2332 		if (__predict_false(next_cidx == r->size))
2333 			next_cidx = 0;
2334 
2335 		wr = (void *)&eq->desc[eq->pidx];
2336 		if (remaining > 1 &&
2337 		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2338 
2339 			/* pkts at cidx, next_cidx should both be in txp. */
2340 			MPASS(txp.npkt == 2);
2341 			tail = r->items[next_cidx];
2342 			MPASS(tail->m_nextpkt == NULL);
2343 			ETHER_BPF_MTAP(ifp, m0);
2344 			ETHER_BPF_MTAP(ifp, tail);
2345 			m0->m_nextpkt = tail;
2346 
2347 			if (__predict_false(++next_cidx == r->size))
2348 				next_cidx = 0;
2349 
2350 			while (next_cidx != pidx) {
2351 				if (add_to_txpkts(r->items[next_cidx], &txp,
2352 				    available) != 0)
2353 					break;
2354 				tail->m_nextpkt = r->items[next_cidx];
2355 				tail = tail->m_nextpkt;
2356 				ETHER_BPF_MTAP(ifp, tail);
2357 				if (__predict_false(++next_cidx == r->size))
2358 					next_cidx = 0;
2359 			}
2360 
2361 			n = write_txpkts_wr(txq, wr, m0, &txp, available);
2362 			total += txp.npkt;
2363 			remaining -= txp.npkt;
2364 		} else {
2365 			total++;
2366 			remaining--;
2367 			ETHER_BPF_MTAP(ifp, m0);
2368 			n = write_txpkt_wr(txq, (void *)wr, m0, available);
2369 		}
2370 		MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
2371 
2372 		available -= n;
2373 		dbdiff += n;
2374 		IDXINCR(eq->pidx, n, eq->sidx);
2375 
2376 		if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2377 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2378 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2379 			    F_FW_WR_EQUEQ);
2380 			eq->equeqidx = eq->pidx;
2381 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2382 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2383 			eq->equeqidx = eq->pidx;
2384 		}
2385 
2386 		if (dbdiff >= 16 && remaining >= 4) {
2387 			ring_eq_db(sc, eq, dbdiff);
2388 			available += reclaim_tx_descs(txq, 4 * dbdiff);
2389 			dbdiff = 0;
2390 		}
2391 
2392 		cidx = next_cidx;
2393 	}
2394 	if (dbdiff != 0) {
2395 		ring_eq_db(sc, eq, dbdiff);
2396 		reclaim_tx_descs(txq, 32);
2397 	}
2398 done:
2399 	TXQ_UNLOCK(txq);
2400 
2401 	return (total);
2402 }
2403 
2404 static inline void
2405 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2406     int qsize)
2407 {
2408 
2409 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2410 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2411 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2412 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2413 
2414 	iq->flags = 0;
2415 	iq->adapter = sc;
2416 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2417 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2418 	if (pktc_idx >= 0) {
2419 		iq->intr_params |= F_QINTR_CNT_EN;
2420 		iq->intr_pktc_idx = pktc_idx;
2421 	}
2422 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2423 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
2424 }
2425 
2426 static inline void
2427 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
2428 {
2429 
2430 	fl->qsize = qsize;
2431 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2432 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2433 	if (sc->flags & BUF_PACKING_OK &&
2434 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
2435 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
2436 		fl->flags |= FL_BUF_PACKING;
2437 	find_best_refill_source(sc, fl, maxp);
2438 	find_safe_refill_source(sc, fl);
2439 }
2440 
2441 static inline void
2442 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
2443     uint8_t tx_chan, uint16_t iqid, char *name)
2444 {
2445 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2446 
2447 	eq->flags = eqtype & EQ_TYPEMASK;
2448 	eq->tx_chan = tx_chan;
2449 	eq->iqid = iqid;
2450 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2451 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2452 }
2453 
2454 static int
2455 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2456     bus_dmamap_t *map, bus_addr_t *pa, void **va)
2457 {
2458 	int rc;
2459 
2460 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2461 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2462 	if (rc != 0) {
2463 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2464 		goto done;
2465 	}
2466 
2467 	rc = bus_dmamem_alloc(*tag, va,
2468 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2469 	if (rc != 0) {
2470 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2471 		goto done;
2472 	}
2473 
2474 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2475 	if (rc != 0) {
2476 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2477 		goto done;
2478 	}
2479 done:
2480 	if (rc)
2481 		free_ring(sc, *tag, *map, *pa, *va);
2482 
2483 	return (rc);
2484 }
2485 
2486 static int
2487 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2488     bus_addr_t pa, void *va)
2489 {
2490 	if (pa)
2491 		bus_dmamap_unload(tag, map);
2492 	if (va)
2493 		bus_dmamem_free(tag, va, map);
2494 	if (tag)
2495 		bus_dma_tag_destroy(tag);
2496 
2497 	return (0);
2498 }
2499 
2500 /*
2501  * Allocates the ring for an ingress queue and an optional freelist.  If the
2502  * freelist is specified it will be allocated and then associated with the
2503  * ingress queue.
2504  *
2505  * Returns errno on failure.  Resources allocated up to that point may still be
2506  * allocated.  Caller is responsible for cleanup in case this function fails.
2507  *
2508  * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2509  * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2510  * the abs_id of the ingress queue to which its interrupts should be forwarded.
2511  */
2512 static int
2513 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
2514     int intr_idx, int cong)
2515 {
2516 	int rc, i, cntxt_id;
2517 	size_t len;
2518 	struct fw_iq_cmd c;
2519 	struct port_info *pi = vi->pi;
2520 	struct adapter *sc = iq->adapter;
2521 	struct sge_params *sp = &sc->params.sge;
2522 	__be32 v = 0;
2523 
2524 	len = iq->qsize * IQ_ESIZE;
2525 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2526 	    (void **)&iq->desc);
2527 	if (rc != 0)
2528 		return (rc);
2529 
2530 	bzero(&c, sizeof(c));
2531 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2532 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2533 	    V_FW_IQ_CMD_VFN(0));
2534 
2535 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2536 	    FW_LEN16(c));
2537 
2538 	/* Special handling for firmware event queue */
2539 	if (iq == &sc->sge.fwq)
2540 		v |= F_FW_IQ_CMD_IQASYNCH;
2541 
2542 	if (iq->flags & IQ_INTR) {
2543 		KASSERT(intr_idx < sc->intr_count,
2544 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2545 	} else
2546 		v |= F_FW_IQ_CMD_IQANDST;
2547 	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2548 
2549 	c.type_to_iqandstindex = htobe32(v |
2550 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2551 	    V_FW_IQ_CMD_VIID(vi->viid) |
2552 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2553 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2554 	    F_FW_IQ_CMD_IQGTSMODE |
2555 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2556 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2557 	c.iqsize = htobe16(iq->qsize);
2558 	c.iqaddr = htobe64(iq->ba);
2559 	if (cong >= 0)
2560 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2561 
2562 	if (fl) {
2563 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2564 
2565 		len = fl->qsize * EQ_ESIZE;
2566 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2567 		    &fl->ba, (void **)&fl->desc);
2568 		if (rc)
2569 			return (rc);
2570 
2571 		/* Allocate space for one software descriptor per buffer. */
2572 		rc = alloc_fl_sdesc(fl);
2573 		if (rc != 0) {
2574 			device_printf(sc->dev,
2575 			    "failed to setup fl software descriptors: %d\n",
2576 			    rc);
2577 			return (rc);
2578 		}
2579 
2580 		if (fl->flags & FL_BUF_PACKING) {
2581 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
2582 			fl->buf_boundary = sp->pack_boundary;
2583 		} else {
2584 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
2585 			fl->buf_boundary = 16;
2586 		}
2587 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
2588 			fl->buf_boundary = sp->pad_boundary;
2589 
2590 		c.iqns_to_fl0congen |=
2591 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2592 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2593 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2594 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2595 			    0));
2596 		if (cong >= 0) {
2597 			c.iqns_to_fl0congen |=
2598 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2599 				    F_FW_IQ_CMD_FL0CONGCIF |
2600 				    F_FW_IQ_CMD_FL0CONGEN);
2601 		}
2602 		c.fl0dcaen_to_fl0cidxfthresh =
2603 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_128B) |
2604 			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2605 		c.fl0size = htobe16(fl->qsize);
2606 		c.fl0addr = htobe64(fl->ba);
2607 	}
2608 
2609 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2610 	if (rc != 0) {
2611 		device_printf(sc->dev,
2612 		    "failed to create ingress queue: %d\n", rc);
2613 		return (rc);
2614 	}
2615 
2616 	iq->cidx = 0;
2617 	iq->gen = F_RSPD_GEN;
2618 	iq->intr_next = iq->intr_params;
2619 	iq->cntxt_id = be16toh(c.iqid);
2620 	iq->abs_id = be16toh(c.physiqid);
2621 	iq->flags |= IQ_ALLOCATED;
2622 
2623 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2624 	if (cntxt_id >= sc->sge.niq) {
2625 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2626 		    cntxt_id, sc->sge.niq - 1);
2627 	}
2628 	sc->sge.iqmap[cntxt_id] = iq;
2629 
2630 	if (fl) {
2631 		u_int qid;
2632 
2633 		iq->flags |= IQ_HAS_FL;
2634 		fl->cntxt_id = be16toh(c.fl0id);
2635 		fl->pidx = fl->cidx = 0;
2636 
2637 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2638 		if (cntxt_id >= sc->sge.neq) {
2639 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2640 			    __func__, cntxt_id, sc->sge.neq - 1);
2641 		}
2642 		sc->sge.eqmap[cntxt_id] = (void *)fl;
2643 
2644 		qid = fl->cntxt_id;
2645 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
2646 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
2647 			uint32_t mask = (1 << s_qpp) - 1;
2648 			volatile uint8_t *udb;
2649 
2650 			udb = sc->udbs_base + UDBS_DB_OFFSET;
2651 			udb += (qid >> s_qpp) << PAGE_SHIFT;
2652 			qid &= mask;
2653 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
2654 				udb += qid << UDBS_SEG_SHIFT;
2655 				qid = 0;
2656 			}
2657 			fl->udb = (volatile void *)udb;
2658 		}
2659 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
2660 
2661 		FL_LOCK(fl);
2662 		/* Enough to make sure the SGE doesn't think it's starved */
2663 		refill_fl(sc, fl, fl->lowat);
2664 		FL_UNLOCK(fl);
2665 	}
2666 
2667 	if (is_t5(sc) && cong >= 0) {
2668 		uint32_t param, val;
2669 
2670 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2671 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2672 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2673 		if (cong == 0)
2674 			val = 1 << 19;
2675 		else {
2676 			val = 2 << 19;
2677 			for (i = 0; i < 4; i++) {
2678 				if (cong & (1 << i))
2679 					val |= 1 << (i << 2);
2680 			}
2681 		}
2682 
2683 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2684 		if (rc != 0) {
2685 			/* report error but carry on */
2686 			device_printf(sc->dev,
2687 			    "failed to set congestion manager context for "
2688 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2689 		}
2690 	}
2691 
2692 	/* Enable IQ interrupts */
2693 	atomic_store_rel_int(&iq->state, IQS_IDLE);
2694 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2695 	    V_INGRESSQID(iq->cntxt_id));
2696 
2697 	return (0);
2698 }
2699 
2700 static int
2701 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
2702 {
2703 	int rc;
2704 	struct adapter *sc = iq->adapter;
2705 	device_t dev;
2706 
2707 	if (sc == NULL)
2708 		return (0);	/* nothing to do */
2709 
2710 	dev = vi ? vi->dev : sc->dev;
2711 
2712 	if (iq->flags & IQ_ALLOCATED) {
2713 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2714 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2715 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2716 		if (rc != 0) {
2717 			device_printf(dev,
2718 			    "failed to free queue %p: %d\n", iq, rc);
2719 			return (rc);
2720 		}
2721 		iq->flags &= ~IQ_ALLOCATED;
2722 	}
2723 
2724 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2725 
2726 	bzero(iq, sizeof(*iq));
2727 
2728 	if (fl) {
2729 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2730 		    fl->desc);
2731 
2732 		if (fl->sdesc)
2733 			free_fl_sdesc(sc, fl);
2734 
2735 		if (mtx_initialized(&fl->fl_lock))
2736 			mtx_destroy(&fl->fl_lock);
2737 
2738 		bzero(fl, sizeof(*fl));
2739 	}
2740 
2741 	return (0);
2742 }
2743 
2744 static void
2745 add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2746     struct sge_fl *fl)
2747 {
2748 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2749 
2750 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2751 	    "freelist");
2752 	children = SYSCTL_CHILDREN(oid);
2753 
2754 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2755 	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2756 	    "SGE context id of the freelist");
2757 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
2758 	    fl_pad ? 1 : 0, "padding enabled");
2759 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
2760 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
2761 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2762 	    0, "consumer index");
2763 	if (fl->flags & FL_BUF_PACKING) {
2764 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2765 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2766 	}
2767 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2768 	    0, "producer index");
2769 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2770 	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2771 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2772 	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2773 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2774 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2775 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2776 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2777 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2778 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2779 }
2780 
2781 static int
2782 alloc_fwq(struct adapter *sc)
2783 {
2784 	int rc, intr_idx;
2785 	struct sge_iq *fwq = &sc->sge.fwq;
2786 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2787 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2788 
2789 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
2790 	fwq->flags |= IQ_INTR;	/* always */
2791 	intr_idx = sc->intr_count > 1 ? 1 : 0;
2792 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
2793 	if (rc != 0) {
2794 		device_printf(sc->dev,
2795 		    "failed to create firmware event queue: %d\n", rc);
2796 		return (rc);
2797 	}
2798 
2799 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2800 	    NULL, "firmware event queue");
2801 	children = SYSCTL_CHILDREN(oid);
2802 
2803 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2804 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2805 	    "absolute id of the queue");
2806 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2807 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2808 	    "SGE context id of the queue");
2809 	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2810 	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2811 	    "consumer index");
2812 
2813 	return (0);
2814 }
2815 
2816 static int
2817 free_fwq(struct adapter *sc)
2818 {
2819 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2820 }
2821 
2822 static int
2823 alloc_mgmtq(struct adapter *sc)
2824 {
2825 	int rc;
2826 	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2827 	char name[16];
2828 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2829 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2830 
2831 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2832 	    NULL, "management queue");
2833 
2834 	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2835 	init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2836 	    sc->sge.fwq.cntxt_id, name);
2837 	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2838 	if (rc != 0) {
2839 		device_printf(sc->dev,
2840 		    "failed to create management queue: %d\n", rc);
2841 		return (rc);
2842 	}
2843 
2844 	return (0);
2845 }
2846 
2847 static int
2848 free_mgmtq(struct adapter *sc)
2849 {
2850 
2851 	return free_wrq(sc, &sc->sge.mgmtq);
2852 }
2853 
2854 int
2855 tnl_cong(struct port_info *pi, int drop)
2856 {
2857 
2858 	if (drop == -1)
2859 		return (-1);
2860 	else if (drop == 1)
2861 		return (0);
2862 	else
2863 		return (pi->rx_chan_map);
2864 }
2865 
2866 static int
2867 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
2868     struct sysctl_oid *oid)
2869 {
2870 	int rc;
2871 	struct sysctl_oid_list *children;
2872 	char name[16];
2873 
2874 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
2875 	    tnl_cong(vi->pi, cong_drop));
2876 	if (rc != 0)
2877 		return (rc);
2878 
2879 	/*
2880 	 * The freelist is just barely above the starvation threshold right now,
2881 	 * fill it up a bit more.
2882 	 */
2883 	FL_LOCK(&rxq->fl);
2884 	refill_fl(vi->pi->adapter, &rxq->fl, 128);
2885 	FL_UNLOCK(&rxq->fl);
2886 
2887 #if defined(INET) || defined(INET6)
2888 	rc = tcp_lro_init(&rxq->lro);
2889 	if (rc != 0)
2890 		return (rc);
2891 	rxq->lro.ifp = vi->ifp; /* also indicates LRO init'ed */
2892 
2893 	if (vi->ifp->if_capenable & IFCAP_LRO)
2894 		rxq->iq.flags |= IQ_LRO_ENABLED;
2895 #endif
2896 	rxq->ifp = vi->ifp;
2897 
2898 	children = SYSCTL_CHILDREN(oid);
2899 
2900 	snprintf(name, sizeof(name), "%d", idx);
2901 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2902 	    NULL, "rx queue");
2903 	children = SYSCTL_CHILDREN(oid);
2904 
2905 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id",
2906 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2907 	    "absolute id of the queue");
2908 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id",
2909 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2910 	    "SGE context id of the queue");
2911 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
2912 	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2913 	    "consumer index");
2914 #if defined(INET) || defined(INET6)
2915 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2916 	    &rxq->lro.lro_queued, 0, NULL);
2917 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2918 	    &rxq->lro.lro_flushed, 0, NULL);
2919 #endif
2920 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2921 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2922 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
2923 	    CTLFLAG_RD, &rxq->vlan_extraction,
2924 	    "# of times hardware extracted 802.1Q tag");
2925 
2926 	add_fl_sysctls(&vi->ctx, oid, &rxq->fl);
2927 
2928 	return (rc);
2929 }
2930 
2931 static int
2932 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
2933 {
2934 	int rc;
2935 
2936 #if defined(INET) || defined(INET6)
2937 	if (rxq->lro.ifp) {
2938 		tcp_lro_free(&rxq->lro);
2939 		rxq->lro.ifp = NULL;
2940 	}
2941 #endif
2942 
2943 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
2944 	if (rc == 0)
2945 		bzero(rxq, sizeof(*rxq));
2946 
2947 	return (rc);
2948 }
2949 
2950 #ifdef TCP_OFFLOAD
2951 static int
2952 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
2953     int intr_idx, int idx, struct sysctl_oid *oid)
2954 {
2955 	int rc;
2956 	struct sysctl_oid_list *children;
2957 	char name[16];
2958 
2959 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2960 	    vi->pi->rx_chan_map);
2961 	if (rc != 0)
2962 		return (rc);
2963 
2964 	children = SYSCTL_CHILDREN(oid);
2965 
2966 	snprintf(name, sizeof(name), "%d", idx);
2967 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2968 	    NULL, "rx queue");
2969 	children = SYSCTL_CHILDREN(oid);
2970 
2971 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id",
2972 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
2973 	    "I", "absolute id of the queue");
2974 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id",
2975 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
2976 	    "I", "SGE context id of the queue");
2977 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
2978 	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
2979 	    "consumer index");
2980 
2981 	add_fl_sysctls(&vi->ctx, oid, &ofld_rxq->fl);
2982 
2983 	return (rc);
2984 }
2985 
2986 static int
2987 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
2988 {
2989 	int rc;
2990 
2991 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
2992 	if (rc == 0)
2993 		bzero(ofld_rxq, sizeof(*ofld_rxq));
2994 
2995 	return (rc);
2996 }
2997 #endif
2998 
2999 #ifdef DEV_NETMAP
3000 static int
3001 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3002     int idx, struct sysctl_oid *oid)
3003 {
3004 	int rc;
3005 	struct sysctl_oid_list *children;
3006 	struct sysctl_ctx_list *ctx;
3007 	char name[16];
3008 	size_t len;
3009 	struct adapter *sc = vi->pi->adapter;
3010 	struct netmap_adapter *na = NA(vi->ifp);
3011 
3012 	MPASS(na != NULL);
3013 
3014 	len = vi->qsize_rxq * IQ_ESIZE;
3015 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3016 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3017 	if (rc != 0)
3018 		return (rc);
3019 
3020 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3021 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3022 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3023 	if (rc != 0)
3024 		return (rc);
3025 
3026 	nm_rxq->vi = vi;
3027 	nm_rxq->nid = idx;
3028 	nm_rxq->iq_cidx = 0;
3029 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3030 	nm_rxq->iq_gen = F_RSPD_GEN;
3031 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3032 	nm_rxq->fl_sidx = na->num_rx_desc;
3033 	nm_rxq->intr_idx = intr_idx;
3034 
3035 	ctx = &vi->ctx;
3036 	children = SYSCTL_CHILDREN(oid);
3037 
3038 	snprintf(name, sizeof(name), "%d", idx);
3039 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3040 	    "rx queue");
3041 	children = SYSCTL_CHILDREN(oid);
3042 
3043 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3044 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3045 	    "I", "absolute id of the queue");
3046 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3047 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3048 	    "I", "SGE context id of the queue");
3049 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3050 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3051 	    "consumer index");
3052 
3053 	children = SYSCTL_CHILDREN(oid);
3054 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3055 	    "freelist");
3056 	children = SYSCTL_CHILDREN(oid);
3057 
3058 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3059 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3060 	    "I", "SGE context id of the freelist");
3061 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3062 	    &nm_rxq->fl_cidx, 0, "consumer index");
3063 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3064 	    &nm_rxq->fl_pidx, 0, "producer index");
3065 
3066 	return (rc);
3067 }
3068 
3069 
3070 static int
3071 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3072 {
3073 	struct adapter *sc = vi->pi->adapter;
3074 
3075 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3076 	    nm_rxq->iq_desc);
3077 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3078 	    nm_rxq->fl_desc);
3079 
3080 	return (0);
3081 }
3082 
3083 static int
3084 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3085     struct sysctl_oid *oid)
3086 {
3087 	int rc;
3088 	size_t len;
3089 	struct port_info *pi = vi->pi;
3090 	struct adapter *sc = pi->adapter;
3091 	struct netmap_adapter *na = NA(vi->ifp);
3092 	char name[16];
3093 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3094 
3095 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3096 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3097 	    &nm_txq->ba, (void **)&nm_txq->desc);
3098 	if (rc)
3099 		return (rc);
3100 
3101 	nm_txq->pidx = nm_txq->cidx = 0;
3102 	nm_txq->sidx = na->num_tx_desc;
3103 	nm_txq->nid = idx;
3104 	nm_txq->iqidx = iqidx;
3105 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3106 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) |
3107 	    V_TXPKT_VF(vi->viid));
3108 
3109 	snprintf(name, sizeof(name), "%d", idx);
3110 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3111 	    NULL, "netmap tx queue");
3112 	children = SYSCTL_CHILDREN(oid);
3113 
3114 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3115 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3116 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3117 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3118 	    "consumer index");
3119 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3120 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3121 	    "producer index");
3122 
3123 	return (rc);
3124 }
3125 
3126 static int
3127 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3128 {
3129 	struct adapter *sc = vi->pi->adapter;
3130 
3131 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3132 	    nm_txq->desc);
3133 
3134 	return (0);
3135 }
3136 #endif
3137 
3138 static int
3139 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3140 {
3141 	int rc, cntxt_id;
3142 	struct fw_eq_ctrl_cmd c;
3143 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3144 
3145 	bzero(&c, sizeof(c));
3146 
3147 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3148 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3149 	    V_FW_EQ_CTRL_CMD_VFN(0));
3150 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3151 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3152 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3153 	c.physeqid_pkd = htobe32(0);
3154 	c.fetchszm_to_iqid =
3155 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3156 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3157 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3158 	c.dcaen_to_eqsize =
3159 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3160 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3161 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3162 	c.eqaddr = htobe64(eq->ba);
3163 
3164 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3165 	if (rc != 0) {
3166 		device_printf(sc->dev,
3167 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3168 		return (rc);
3169 	}
3170 	eq->flags |= EQ_ALLOCATED;
3171 
3172 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3173 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3174 	if (cntxt_id >= sc->sge.neq)
3175 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3176 		cntxt_id, sc->sge.neq - 1);
3177 	sc->sge.eqmap[cntxt_id] = eq;
3178 
3179 	return (rc);
3180 }
3181 
3182 static int
3183 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3184 {
3185 	int rc, cntxt_id;
3186 	struct fw_eq_eth_cmd c;
3187 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3188 
3189 	bzero(&c, sizeof(c));
3190 
3191 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3192 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3193 	    V_FW_EQ_ETH_CMD_VFN(0));
3194 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3195 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3196 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3197 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3198 	c.fetchszm_to_iqid =
3199 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3200 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3201 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3202 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3203 	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3204 	    V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3205 	c.eqaddr = htobe64(eq->ba);
3206 
3207 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3208 	if (rc != 0) {
3209 		device_printf(vi->dev,
3210 		    "failed to create Ethernet egress queue: %d\n", rc);
3211 		return (rc);
3212 	}
3213 	eq->flags |= EQ_ALLOCATED;
3214 
3215 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3216 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3217 	if (cntxt_id >= sc->sge.neq)
3218 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3219 		cntxt_id, sc->sge.neq - 1);
3220 	sc->sge.eqmap[cntxt_id] = eq;
3221 
3222 	return (rc);
3223 }
3224 
3225 #ifdef TCP_OFFLOAD
3226 static int
3227 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3228 {
3229 	int rc, cntxt_id;
3230 	struct fw_eq_ofld_cmd c;
3231 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3232 
3233 	bzero(&c, sizeof(c));
3234 
3235 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3236 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3237 	    V_FW_EQ_OFLD_CMD_VFN(0));
3238 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3239 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3240 	c.fetchszm_to_iqid =
3241 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3242 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3243 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3244 	c.dcaen_to_eqsize =
3245 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3246 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3247 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3248 	c.eqaddr = htobe64(eq->ba);
3249 
3250 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3251 	if (rc != 0) {
3252 		device_printf(vi->dev,
3253 		    "failed to create egress queue for TCP offload: %d\n", rc);
3254 		return (rc);
3255 	}
3256 	eq->flags |= EQ_ALLOCATED;
3257 
3258 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3259 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3260 	if (cntxt_id >= sc->sge.neq)
3261 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3262 		cntxt_id, sc->sge.neq - 1);
3263 	sc->sge.eqmap[cntxt_id] = eq;
3264 
3265 	return (rc);
3266 }
3267 #endif
3268 
3269 static int
3270 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3271 {
3272 	int rc, qsize;
3273 	size_t len;
3274 
3275 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3276 
3277 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3278 	len = qsize * EQ_ESIZE;
3279 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3280 	    &eq->ba, (void **)&eq->desc);
3281 	if (rc)
3282 		return (rc);
3283 
3284 	eq->pidx = eq->cidx = 0;
3285 	eq->equeqidx = eq->dbidx = 0;
3286 	eq->doorbells = sc->doorbells;
3287 
3288 	switch (eq->flags & EQ_TYPEMASK) {
3289 	case EQ_CTRL:
3290 		rc = ctrl_eq_alloc(sc, eq);
3291 		break;
3292 
3293 	case EQ_ETH:
3294 		rc = eth_eq_alloc(sc, vi, eq);
3295 		break;
3296 
3297 #ifdef TCP_OFFLOAD
3298 	case EQ_OFLD:
3299 		rc = ofld_eq_alloc(sc, vi, eq);
3300 		break;
3301 #endif
3302 
3303 	default:
3304 		panic("%s: invalid eq type %d.", __func__,
3305 		    eq->flags & EQ_TYPEMASK);
3306 	}
3307 	if (rc != 0) {
3308 		device_printf(sc->dev,
3309 		    "failed to allocate egress queue(%d): %d\n",
3310 		    eq->flags & EQ_TYPEMASK, rc);
3311 	}
3312 
3313 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3314 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3315 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3316 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3317 		uint32_t mask = (1 << s_qpp) - 1;
3318 		volatile uint8_t *udb;
3319 
3320 		udb = sc->udbs_base + UDBS_DB_OFFSET;
3321 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3322 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3323 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3324 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3325 		else {
3326 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3327 			eq->udb_qid = 0;
3328 		}
3329 		eq->udb = (volatile void *)udb;
3330 	}
3331 
3332 	return (rc);
3333 }
3334 
3335 static int
3336 free_eq(struct adapter *sc, struct sge_eq *eq)
3337 {
3338 	int rc;
3339 
3340 	if (eq->flags & EQ_ALLOCATED) {
3341 		switch (eq->flags & EQ_TYPEMASK) {
3342 		case EQ_CTRL:
3343 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3344 			    eq->cntxt_id);
3345 			break;
3346 
3347 		case EQ_ETH:
3348 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3349 			    eq->cntxt_id);
3350 			break;
3351 
3352 #ifdef TCP_OFFLOAD
3353 		case EQ_OFLD:
3354 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3355 			    eq->cntxt_id);
3356 			break;
3357 #endif
3358 
3359 		default:
3360 			panic("%s: invalid eq type %d.", __func__,
3361 			    eq->flags & EQ_TYPEMASK);
3362 		}
3363 		if (rc != 0) {
3364 			device_printf(sc->dev,
3365 			    "failed to free egress queue (%d): %d\n",
3366 			    eq->flags & EQ_TYPEMASK, rc);
3367 			return (rc);
3368 		}
3369 		eq->flags &= ~EQ_ALLOCATED;
3370 	}
3371 
3372 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3373 
3374 	if (mtx_initialized(&eq->eq_lock))
3375 		mtx_destroy(&eq->eq_lock);
3376 
3377 	bzero(eq, sizeof(*eq));
3378 	return (0);
3379 }
3380 
3381 static int
3382 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
3383     struct sysctl_oid *oid)
3384 {
3385 	int rc;
3386 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
3387 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3388 
3389 	rc = alloc_eq(sc, vi, &wrq->eq);
3390 	if (rc)
3391 		return (rc);
3392 
3393 	wrq->adapter = sc;
3394 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
3395 	TAILQ_INIT(&wrq->incomplete_wrs);
3396 	STAILQ_INIT(&wrq->wr_list);
3397 	wrq->nwr_pending = 0;
3398 	wrq->ndesc_needed = 0;
3399 
3400 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3401 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3402 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3403 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3404 	    "consumer index");
3405 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3406 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3407 	    "producer index");
3408 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
3409 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
3410 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
3411 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
3412 
3413 	return (rc);
3414 }
3415 
3416 static int
3417 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3418 {
3419 	int rc;
3420 
3421 	rc = free_eq(sc, &wrq->eq);
3422 	if (rc)
3423 		return (rc);
3424 
3425 	bzero(wrq, sizeof(*wrq));
3426 	return (0);
3427 }
3428 
3429 static int
3430 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
3431     struct sysctl_oid *oid)
3432 {
3433 	int rc;
3434 	struct port_info *pi = vi->pi;
3435 	struct adapter *sc = pi->adapter;
3436 	struct sge_eq *eq = &txq->eq;
3437 	char name[16];
3438 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3439 
3440 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
3441 	    M_CXGBE, M_WAITOK);
3442 	if (rc != 0) {
3443 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
3444 		return (rc);
3445 	}
3446 
3447 	rc = alloc_eq(sc, vi, eq);
3448 	if (rc != 0) {
3449 		mp_ring_free(txq->r);
3450 		txq->r = NULL;
3451 		return (rc);
3452 	}
3453 
3454 	/* Can't fail after this point. */
3455 
3456 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
3457 	txq->ifp = vi->ifp;
3458 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
3459 	txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3460 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) |
3461 	    V_TXPKT_VF(vi->viid));
3462 	txq->tc_idx = -1;
3463 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
3464 	    M_ZERO | M_WAITOK);
3465 
3466 	snprintf(name, sizeof(name), "%d", idx);
3467 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3468 	    NULL, "tx queue");
3469 	children = SYSCTL_CHILDREN(oid);
3470 
3471 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3472 	    &eq->cntxt_id, 0, "SGE context id of the queue");
3473 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3474 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3475 	    "consumer index");
3476 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3477 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3478 	    "producer index");
3479 
3480 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
3481 	    CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I",
3482 	    "traffic class (-1 means none)");
3483 
3484 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3485 	    &txq->txcsum, "# of times hardware assisted with checksum");
3486 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
3487 	    CTLFLAG_RD, &txq->vlan_insertion,
3488 	    "# of times hardware inserted 802.1Q tag");
3489 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3490 	    &txq->tso_wrs, "# of TSO work requests");
3491 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3492 	    &txq->imm_wrs, "# of work requests with immediate data");
3493 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3494 	    &txq->sgl_wrs, "# of work requests with direct SGL");
3495 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3496 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3497 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
3498 	    CTLFLAG_RD, &txq->txpkts0_wrs,
3499 	    "# of txpkts (type 0) work requests");
3500 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
3501 	    CTLFLAG_RD, &txq->txpkts1_wrs,
3502 	    "# of txpkts (type 1) work requests");
3503 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
3504 	    CTLFLAG_RD, &txq->txpkts0_pkts,
3505 	    "# of frames tx'd using type0 txpkts work requests");
3506 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
3507 	    CTLFLAG_RD, &txq->txpkts1_pkts,
3508 	    "# of frames tx'd using type1 txpkts work requests");
3509 
3510 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
3511 	    CTLFLAG_RD, &txq->r->enqueues,
3512 	    "# of enqueues to the mp_ring for this queue");
3513 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
3514 	    CTLFLAG_RD, &txq->r->drops,
3515 	    "# of drops in the mp_ring for this queue");
3516 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
3517 	    CTLFLAG_RD, &txq->r->starts,
3518 	    "# of normal consumer starts in the mp_ring for this queue");
3519 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
3520 	    CTLFLAG_RD, &txq->r->stalls,
3521 	    "# of consumer stalls in the mp_ring for this queue");
3522 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
3523 	    CTLFLAG_RD, &txq->r->restarts,
3524 	    "# of consumer restarts in the mp_ring for this queue");
3525 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
3526 	    CTLFLAG_RD, &txq->r->abdications,
3527 	    "# of consumer abdications in the mp_ring for this queue");
3528 
3529 	return (0);
3530 }
3531 
3532 static int
3533 free_txq(struct vi_info *vi, struct sge_txq *txq)
3534 {
3535 	int rc;
3536 	struct adapter *sc = vi->pi->adapter;
3537 	struct sge_eq *eq = &txq->eq;
3538 
3539 	rc = free_eq(sc, eq);
3540 	if (rc)
3541 		return (rc);
3542 
3543 	sglist_free(txq->gl);
3544 	free(txq->sdesc, M_CXGBE);
3545 	mp_ring_free(txq->r);
3546 
3547 	bzero(txq, sizeof(*txq));
3548 	return (0);
3549 }
3550 
3551 static void
3552 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3553 {
3554 	bus_addr_t *ba = arg;
3555 
3556 	KASSERT(nseg == 1,
3557 	    ("%s meant for single segment mappings only.", __func__));
3558 
3559 	*ba = error ? 0 : segs->ds_addr;
3560 }
3561 
3562 static inline void
3563 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3564 {
3565 	uint32_t n, v;
3566 
3567 	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
3568 	MPASS(n > 0);
3569 
3570 	wmb();
3571 	v = fl->dbval | V_PIDX(n);
3572 	if (fl->udb)
3573 		*fl->udb = htole32(v);
3574 	else
3575 		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3576 	IDXINCR(fl->dbidx, n, fl->sidx);
3577 }
3578 
3579 /*
3580  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
3581  * recycled do not count towards this allocation budget.
3582  *
3583  * Returns non-zero to indicate that this freelist should be added to the list
3584  * of starving freelists.
3585  */
3586 static int
3587 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
3588 {
3589 	__be64 *d;
3590 	struct fl_sdesc *sd;
3591 	uintptr_t pa;
3592 	caddr_t cl;
3593 	struct cluster_layout *cll;
3594 	struct sw_zone_info *swz;
3595 	struct cluster_metadata *clm;
3596 	uint16_t max_pidx;
3597 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
3598 
3599 	FL_LOCK_ASSERT_OWNED(fl);
3600 
3601 	/*
3602 	 * We always stop at the beginning of the hardware descriptor that's just
3603 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
3604 	 * which would mean an empty freelist to the chip.
3605 	 */
3606 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
3607 	if (fl->pidx == max_pidx * 8)
3608 		return (0);
3609 
3610 	d = &fl->desc[fl->pidx];
3611 	sd = &fl->sdesc[fl->pidx];
3612 	cll = &fl->cll_def;	/* default layout */
3613 	swz = &sc->sge.sw_zone_info[cll->zidx];
3614 
3615 	while (n > 0) {
3616 
3617 		if (sd->cl != NULL) {
3618 
3619 			if (sd->nmbuf == 0) {
3620 				/*
3621 				 * Fast recycle without involving any atomics on
3622 				 * the cluster's metadata (if the cluster has
3623 				 * metadata).  This happens when all frames
3624 				 * received in the cluster were small enough to
3625 				 * fit within a single mbuf each.
3626 				 */
3627 				fl->cl_fast_recycled++;
3628 #ifdef INVARIANTS
3629 				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3630 				if (clm != NULL)
3631 					MPASS(clm->refcount == 1);
3632 #endif
3633 				goto recycled_fast;
3634 			}
3635 
3636 			/*
3637 			 * Cluster is guaranteed to have metadata.  Clusters
3638 			 * without metadata always take the fast recycle path
3639 			 * when they're recycled.
3640 			 */
3641 			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3642 			MPASS(clm != NULL);
3643 
3644 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3645 				fl->cl_recycled++;
3646 				counter_u64_add(extfree_rels, 1);
3647 				goto recycled;
3648 			}
3649 			sd->cl = NULL;	/* gave up my reference */
3650 		}
3651 		MPASS(sd->cl == NULL);
3652 alloc:
3653 		cl = uma_zalloc(swz->zone, M_NOWAIT);
3654 		if (__predict_false(cl == NULL)) {
3655 			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3656 			    fl->cll_def.zidx == fl->cll_alt.zidx)
3657 				break;
3658 
3659 			/* fall back to the safe zone */
3660 			cll = &fl->cll_alt;
3661 			swz = &sc->sge.sw_zone_info[cll->zidx];
3662 			goto alloc;
3663 		}
3664 		fl->cl_allocated++;
3665 		n--;
3666 
3667 		pa = pmap_kextract((vm_offset_t)cl);
3668 		pa += cll->region1;
3669 		sd->cl = cl;
3670 		sd->cll = *cll;
3671 		*d = htobe64(pa | cll->hwidx);
3672 		clm = cl_metadata(sc, fl, cll, cl);
3673 		if (clm != NULL) {
3674 recycled:
3675 #ifdef INVARIANTS
3676 			clm->sd = sd;
3677 #endif
3678 			clm->refcount = 1;
3679 		}
3680 		sd->nmbuf = 0;
3681 recycled_fast:
3682 		d++;
3683 		sd++;
3684 		if (__predict_false(++fl->pidx % 8 == 0)) {
3685 			uint16_t pidx = fl->pidx / 8;
3686 
3687 			if (__predict_false(pidx == fl->sidx)) {
3688 				fl->pidx = 0;
3689 				pidx = 0;
3690 				sd = fl->sdesc;
3691 				d = fl->desc;
3692 			}
3693 			if (pidx == max_pidx)
3694 				break;
3695 
3696 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
3697 				ring_fl_db(sc, fl);
3698 		}
3699 	}
3700 
3701 	if (fl->pidx / 8 != fl->dbidx)
3702 		ring_fl_db(sc, fl);
3703 
3704 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3705 }
3706 
3707 /*
3708  * Attempt to refill all starving freelists.
3709  */
3710 static void
3711 refill_sfl(void *arg)
3712 {
3713 	struct adapter *sc = arg;
3714 	struct sge_fl *fl, *fl_temp;
3715 
3716 	mtx_assert(&sc->sfl_lock, MA_OWNED);
3717 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3718 		FL_LOCK(fl);
3719 		refill_fl(sc, fl, 64);
3720 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3721 			TAILQ_REMOVE(&sc->sfl, fl, link);
3722 			fl->flags &= ~FL_STARVING;
3723 		}
3724 		FL_UNLOCK(fl);
3725 	}
3726 
3727 	if (!TAILQ_EMPTY(&sc->sfl))
3728 		callout_schedule(&sc->sfl_callout, hz / 5);
3729 }
3730 
3731 static int
3732 alloc_fl_sdesc(struct sge_fl *fl)
3733 {
3734 
3735 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
3736 	    M_ZERO | M_WAITOK);
3737 
3738 	return (0);
3739 }
3740 
3741 static void
3742 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3743 {
3744 	struct fl_sdesc *sd;
3745 	struct cluster_metadata *clm;
3746 	struct cluster_layout *cll;
3747 	int i;
3748 
3749 	sd = fl->sdesc;
3750 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
3751 		if (sd->cl == NULL)
3752 			continue;
3753 
3754 		cll = &sd->cll;
3755 		clm = cl_metadata(sc, fl, cll, sd->cl);
3756 		if (sd->nmbuf == 0)
3757 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3758 		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3759 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3760 			counter_u64_add(extfree_rels, 1);
3761 		}
3762 		sd->cl = NULL;
3763 	}
3764 
3765 	free(fl->sdesc, M_CXGBE);
3766 	fl->sdesc = NULL;
3767 }
3768 
3769 static inline void
3770 get_pkt_gl(struct mbuf *m, struct sglist *gl)
3771 {
3772 	int rc;
3773 
3774 	M_ASSERTPKTHDR(m);
3775 
3776 	sglist_reset(gl);
3777 	rc = sglist_append_mbuf(gl, m);
3778 	if (__predict_false(rc != 0)) {
3779 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
3780 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
3781 	}
3782 
3783 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
3784 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
3785 	    mbuf_nsegs(m), gl->sg_nseg));
3786 	KASSERT(gl->sg_nseg > 0 &&
3787 	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
3788 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
3789 		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
3790 }
3791 
3792 /*
3793  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
3794  */
3795 static inline u_int
3796 txpkt_len16(u_int nsegs, u_int tso)
3797 {
3798 	u_int n;
3799 
3800 	MPASS(nsegs > 0);
3801 
3802 	nsegs--; /* first segment is part of ulptx_sgl */
3803 	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
3804 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
3805 	if (tso)
3806 		n += sizeof(struct cpl_tx_pkt_lso_core);
3807 
3808 	return (howmany(n, 16));
3809 }
3810 
3811 /*
3812  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
3813  * request header.
3814  */
3815 static inline u_int
3816 txpkts0_len16(u_int nsegs)
3817 {
3818 	u_int n;
3819 
3820 	MPASS(nsegs > 0);
3821 
3822 	nsegs--; /* first segment is part of ulptx_sgl */
3823 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
3824 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
3825 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
3826 
3827 	return (howmany(n, 16));
3828 }
3829 
3830 /*
3831  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
3832  * request header.
3833  */
3834 static inline u_int
3835 txpkts1_len16(void)
3836 {
3837 	u_int n;
3838 
3839 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
3840 
3841 	return (howmany(n, 16));
3842 }
3843 
3844 static inline u_int
3845 imm_payload(u_int ndesc)
3846 {
3847 	u_int n;
3848 
3849 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
3850 	    sizeof(struct cpl_tx_pkt_core);
3851 
3852 	return (n);
3853 }
3854 
3855 /*
3856  * Write a txpkt WR for this packet to the hardware descriptors, update the
3857  * software descriptor, and advance the pidx.  It is guaranteed that enough
3858  * descriptors are available.
3859  *
3860  * The return value is the # of hardware descriptors used.
3861  */
3862 static u_int
3863 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
3864     struct mbuf *m0, u_int available)
3865 {
3866 	struct sge_eq *eq = &txq->eq;
3867 	struct tx_sdesc *txsd;
3868 	struct cpl_tx_pkt_core *cpl;
3869 	uint32_t ctrl;	/* used in many unrelated places */
3870 	uint64_t ctrl1;
3871 	int len16, ndesc, pktlen, nsegs;
3872 	caddr_t dst;
3873 
3874 	TXQ_LOCK_ASSERT_OWNED(txq);
3875 	M_ASSERTPKTHDR(m0);
3876 	MPASS(available > 0 && available < eq->sidx);
3877 
3878 	len16 = mbuf_len16(m0);
3879 	nsegs = mbuf_nsegs(m0);
3880 	pktlen = m0->m_pkthdr.len;
3881 	ctrl = sizeof(struct cpl_tx_pkt_core);
3882 	if (needs_tso(m0))
3883 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3884 	else if (pktlen <= imm_payload(2) && available >= 2) {
3885 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
3886 		ctrl += pktlen;
3887 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
3888 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
3889 		nsegs = 0;
3890 	}
3891 	ndesc = howmany(len16, EQ_ESIZE / 16);
3892 	MPASS(ndesc <= available);
3893 
3894 	/* Firmware work request header */
3895 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
3896 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3897 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3898 
3899 	ctrl = V_FW_WR_LEN16(len16);
3900 	wr->equiq_to_len16 = htobe32(ctrl);
3901 	wr->r3 = 0;
3902 
3903 	if (needs_tso(m0)) {
3904 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3905 
3906 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
3907 		    m0->m_pkthdr.l4hlen > 0,
3908 		    ("%s: mbuf %p needs TSO but missing header lengths",
3909 			__func__, m0));
3910 
3911 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3912 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
3913 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
3914 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
3915 			ctrl |= V_LSO_ETHHDR_LEN(1);
3916 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
3917 			ctrl |= F_LSO_IPV6;
3918 
3919 		lso->lso_ctrl = htobe32(ctrl);
3920 		lso->ipid_ofst = htobe16(0);
3921 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
3922 		lso->seqno_offset = htobe32(0);
3923 		lso->len = htobe32(pktlen);
3924 
3925 		cpl = (void *)(lso + 1);
3926 
3927 		txq->tso_wrs++;
3928 	} else
3929 		cpl = (void *)(wr + 1);
3930 
3931 	/* Checksum offload */
3932 	ctrl1 = 0;
3933 	if (needs_l3_csum(m0) == 0)
3934 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3935 	if (needs_l4_csum(m0) == 0)
3936 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3937 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3938 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3939 		txq->txcsum++;	/* some hardware assistance provided */
3940 
3941 	/* VLAN tag insertion */
3942 	if (needs_vlan_insertion(m0)) {
3943 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
3944 		txq->vlan_insertion++;
3945 	}
3946 
3947 	/* CPL header */
3948 	cpl->ctrl0 = txq->cpl_ctrl0;
3949 	cpl->pack = 0;
3950 	cpl->len = htobe16(pktlen);
3951 	cpl->ctrl1 = htobe64(ctrl1);
3952 
3953 	/* SGL */
3954 	dst = (void *)(cpl + 1);
3955 	if (nsegs > 0) {
3956 
3957 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
3958 		txq->sgl_wrs++;
3959 	} else {
3960 		struct mbuf *m;
3961 
3962 		for (m = m0; m != NULL; m = m->m_next) {
3963 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3964 #ifdef INVARIANTS
3965 			pktlen -= m->m_len;
3966 #endif
3967 		}
3968 #ifdef INVARIANTS
3969 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3970 #endif
3971 		txq->imm_wrs++;
3972 	}
3973 
3974 	txq->txpkt_wrs++;
3975 
3976 	txsd = &txq->sdesc[eq->pidx];
3977 	txsd->m = m0;
3978 	txsd->desc_used = ndesc;
3979 
3980 	return (ndesc);
3981 }
3982 
3983 static int
3984 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
3985 {
3986 	u_int needed, nsegs1, nsegs2, l1, l2;
3987 
3988 	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
3989 		return (1);
3990 
3991 	nsegs1 = mbuf_nsegs(m);
3992 	nsegs2 = mbuf_nsegs(n);
3993 	if (nsegs1 + nsegs2 == 2) {
3994 		txp->wr_type = 1;
3995 		l1 = l2 = txpkts1_len16();
3996 	} else {
3997 		txp->wr_type = 0;
3998 		l1 = txpkts0_len16(nsegs1);
3999 		l2 = txpkts0_len16(nsegs2);
4000 	}
4001 	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
4002 	needed = howmany(txp->len16, EQ_ESIZE / 16);
4003 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4004 		return (1);
4005 
4006 	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
4007 	if (txp->plen > 65535)
4008 		return (1);
4009 
4010 	txp->npkt = 2;
4011 	set_mbuf_len16(m, l1);
4012 	set_mbuf_len16(n, l2);
4013 
4014 	return (0);
4015 }
4016 
4017 static int
4018 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
4019 {
4020 	u_int plen, len16, needed, nsegs;
4021 
4022 	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
4023 
4024 	nsegs = mbuf_nsegs(m);
4025 	if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
4026 		return (1);
4027 
4028 	plen = txp->plen + m->m_pkthdr.len;
4029 	if (plen > 65535)
4030 		return (1);
4031 
4032 	if (txp->wr_type == 0)
4033 		len16 = txpkts0_len16(nsegs);
4034 	else
4035 		len16 = txpkts1_len16();
4036 	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4037 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4038 		return (1);
4039 
4040 	txp->npkt++;
4041 	txp->plen = plen;
4042 	txp->len16 += len16;
4043 	set_mbuf_len16(m, len16);
4044 
4045 	return (0);
4046 }
4047 
4048 /*
4049  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
4050  * the software descriptor, and advance the pidx.  It is guaranteed that enough
4051  * descriptors are available.
4052  *
4053  * The return value is the # of hardware descriptors used.
4054  */
4055 static u_int
4056 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
4057     struct mbuf *m0, const struct txpkts *txp, u_int available)
4058 {
4059 	struct sge_eq *eq = &txq->eq;
4060 	struct tx_sdesc *txsd;
4061 	struct cpl_tx_pkt_core *cpl;
4062 	uint32_t ctrl;
4063 	uint64_t ctrl1;
4064 	int ndesc, checkwrap;
4065 	struct mbuf *m;
4066 	void *flitp;
4067 
4068 	TXQ_LOCK_ASSERT_OWNED(txq);
4069 	MPASS(txp->npkt > 0);
4070 	MPASS(txp->plen < 65536);
4071 	MPASS(m0 != NULL);
4072 	MPASS(m0->m_nextpkt != NULL);
4073 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
4074 	MPASS(available > 0 && available < eq->sidx);
4075 
4076 	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
4077 	MPASS(ndesc <= available);
4078 
4079 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4080 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4081 	ctrl = V_FW_WR_LEN16(txp->len16);
4082 	wr->equiq_to_len16 = htobe32(ctrl);
4083 	wr->plen = htobe16(txp->plen);
4084 	wr->npkt = txp->npkt;
4085 	wr->r3 = 0;
4086 	wr->type = txp->wr_type;
4087 	flitp = wr + 1;
4088 
4089 	/*
4090 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
4091 	 * set then we know the WR is going to wrap around somewhere.  We'll
4092 	 * check for that at appropriate points.
4093 	 */
4094 	checkwrap = eq->sidx - ndesc < eq->pidx;
4095 	for (m = m0; m != NULL; m = m->m_nextpkt) {
4096 		if (txp->wr_type == 0) {
4097 			struct ulp_txpkt *ulpmc;
4098 			struct ulptx_idata *ulpsc;
4099 
4100 			/* ULP master command */
4101 			ulpmc = flitp;
4102 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
4103 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
4104 			ulpmc->len = htobe32(mbuf_len16(m));
4105 
4106 			/* ULP subcommand */
4107 			ulpsc = (void *)(ulpmc + 1);
4108 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
4109 			    F_ULP_TX_SC_MORE);
4110 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
4111 
4112 			cpl = (void *)(ulpsc + 1);
4113 			if (checkwrap &&
4114 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
4115 				cpl = (void *)&eq->desc[0];
4116 			txq->txpkts0_pkts += txp->npkt;
4117 			txq->txpkts0_wrs++;
4118 		} else {
4119 			cpl = flitp;
4120 			txq->txpkts1_pkts += txp->npkt;
4121 			txq->txpkts1_wrs++;
4122 		}
4123 
4124 		/* Checksum offload */
4125 		ctrl1 = 0;
4126 		if (needs_l3_csum(m) == 0)
4127 			ctrl1 |= F_TXPKT_IPCSUM_DIS;
4128 		if (needs_l4_csum(m) == 0)
4129 			ctrl1 |= F_TXPKT_L4CSUM_DIS;
4130 		if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4131 		    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4132 			txq->txcsum++;	/* some hardware assistance provided */
4133 
4134 		/* VLAN tag insertion */
4135 		if (needs_vlan_insertion(m)) {
4136 			ctrl1 |= F_TXPKT_VLAN_VLD |
4137 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
4138 			txq->vlan_insertion++;
4139 		}
4140 
4141 		/* CPL header */
4142 		cpl->ctrl0 = txq->cpl_ctrl0;
4143 		cpl->pack = 0;
4144 		cpl->len = htobe16(m->m_pkthdr.len);
4145 		cpl->ctrl1 = htobe64(ctrl1);
4146 
4147 		flitp = cpl + 1;
4148 		if (checkwrap &&
4149 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
4150 			flitp = (void *)&eq->desc[0];
4151 
4152 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
4153 
4154 	}
4155 
4156 	txsd = &txq->sdesc[eq->pidx];
4157 	txsd->m = m0;
4158 	txsd->desc_used = ndesc;
4159 
4160 	return (ndesc);
4161 }
4162 
4163 /*
4164  * If the SGL ends on an address that is not 16 byte aligned, this function will
4165  * add a 0 filled flit at the end.
4166  */
4167 static void
4168 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
4169 {
4170 	struct sge_eq *eq = &txq->eq;
4171 	struct sglist *gl = txq->gl;
4172 	struct sglist_seg *seg;
4173 	__be64 *flitp, *wrap;
4174 	struct ulptx_sgl *usgl;
4175 	int i, nflits, nsegs;
4176 
4177 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4178 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4179 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4180 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4181 
4182 	get_pkt_gl(m, gl);
4183 	nsegs = gl->sg_nseg;
4184 	MPASS(nsegs > 0);
4185 
4186 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
4187 	flitp = (__be64 *)(*to);
4188 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
4189 	seg = &gl->sg_segs[0];
4190 	usgl = (void *)flitp;
4191 
4192 	/*
4193 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4194 	 * ring, so we're at least 16 bytes away from the status page.  There is
4195 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4196 	 */
4197 
4198 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4199 	    V_ULPTX_NSGE(nsegs));
4200 	usgl->len0 = htobe32(seg->ss_len);
4201 	usgl->addr0 = htobe64(seg->ss_paddr);
4202 	seg++;
4203 
4204 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
4205 
4206 		/* Won't wrap around at all */
4207 
4208 		for (i = 0; i < nsegs - 1; i++, seg++) {
4209 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
4210 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
4211 		}
4212 		if (i & 1)
4213 			usgl->sge[i / 2].len[1] = htobe32(0);
4214 		flitp += nflits;
4215 	} else {
4216 
4217 		/* Will wrap somewhere in the rest of the SGL */
4218 
4219 		/* 2 flits already written, write the rest flit by flit */
4220 		flitp = (void *)(usgl + 1);
4221 		for (i = 0; i < nflits - 2; i++) {
4222 			if (flitp == wrap)
4223 				flitp = (void *)eq->desc;
4224 			*flitp++ = get_flit(seg, nsegs - 1, i);
4225 		}
4226 	}
4227 
4228 	if (nflits & 1) {
4229 		MPASS(((uintptr_t)flitp) & 0xf);
4230 		*flitp++ = 0;
4231 	}
4232 
4233 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
4234 	if (__predict_false(flitp == wrap))
4235 		*to = (void *)eq->desc;
4236 	else
4237 		*to = (void *)flitp;
4238 }
4239 
4240 static inline void
4241 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4242 {
4243 
4244 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4245 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4246 
4247 	if (__predict_true((uintptr_t)(*to) + len <=
4248 	    (uintptr_t)&eq->desc[eq->sidx])) {
4249 		bcopy(from, *to, len);
4250 		(*to) += len;
4251 	} else {
4252 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
4253 
4254 		bcopy(from, *to, portion);
4255 		from += portion;
4256 		portion = len - portion;	/* remaining */
4257 		bcopy(from, (void *)eq->desc, portion);
4258 		(*to) = (caddr_t)eq->desc + portion;
4259 	}
4260 }
4261 
4262 static inline void
4263 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
4264 {
4265 	u_int db;
4266 
4267 	MPASS(n > 0);
4268 
4269 	db = eq->doorbells;
4270 	if (n > 1)
4271 		clrbit(&db, DOORBELL_WCWR);
4272 	wmb();
4273 
4274 	switch (ffs(db) - 1) {
4275 	case DOORBELL_UDB:
4276 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4277 		break;
4278 
4279 	case DOORBELL_WCWR: {
4280 		volatile uint64_t *dst, *src;
4281 		int i;
4282 
4283 		/*
4284 		 * Queues whose 128B doorbell segment fits in the page do not
4285 		 * use relative qid (udb_qid is always 0).  Only queues with
4286 		 * doorbell segments can do WCWR.
4287 		 */
4288 		KASSERT(eq->udb_qid == 0 && n == 1,
4289 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4290 		    __func__, eq->doorbells, n, eq->dbidx, eq));
4291 
4292 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4293 		    UDBS_DB_OFFSET);
4294 		i = eq->dbidx;
4295 		src = (void *)&eq->desc[i];
4296 		while (src != (void *)&eq->desc[i + 1])
4297 			*dst++ = *src++;
4298 		wmb();
4299 		break;
4300 	}
4301 
4302 	case DOORBELL_UDBWC:
4303 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4304 		wmb();
4305 		break;
4306 
4307 	case DOORBELL_KDB:
4308 		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
4309 		    V_QID(eq->cntxt_id) | V_PIDX(n));
4310 		break;
4311 	}
4312 
4313 	IDXINCR(eq->dbidx, n, eq->sidx);
4314 }
4315 
4316 static inline u_int
4317 reclaimable_tx_desc(struct sge_eq *eq)
4318 {
4319 	uint16_t hw_cidx;
4320 
4321 	hw_cidx = read_hw_cidx(eq);
4322 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
4323 }
4324 
4325 static inline u_int
4326 total_available_tx_desc(struct sge_eq *eq)
4327 {
4328 	uint16_t hw_cidx, pidx;
4329 
4330 	hw_cidx = read_hw_cidx(eq);
4331 	pidx = eq->pidx;
4332 
4333 	if (pidx == hw_cidx)
4334 		return (eq->sidx - 1);
4335 	else
4336 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
4337 }
4338 
4339 static inline uint16_t
4340 read_hw_cidx(struct sge_eq *eq)
4341 {
4342 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4343 	uint16_t cidx = spg->cidx;	/* stable snapshot */
4344 
4345 	return (be16toh(cidx));
4346 }
4347 
4348 /*
4349  * Reclaim 'n' descriptors approximately.
4350  */
4351 static u_int
4352 reclaim_tx_descs(struct sge_txq *txq, u_int n)
4353 {
4354 	struct tx_sdesc *txsd;
4355 	struct sge_eq *eq = &txq->eq;
4356 	u_int can_reclaim, reclaimed;
4357 
4358 	TXQ_LOCK_ASSERT_OWNED(txq);
4359 	MPASS(n > 0);
4360 
4361 	reclaimed = 0;
4362 	can_reclaim = reclaimable_tx_desc(eq);
4363 	while (can_reclaim && reclaimed < n) {
4364 		int ndesc;
4365 		struct mbuf *m, *nextpkt;
4366 
4367 		txsd = &txq->sdesc[eq->cidx];
4368 		ndesc = txsd->desc_used;
4369 
4370 		/* Firmware doesn't return "partial" credits. */
4371 		KASSERT(can_reclaim >= ndesc,
4372 		    ("%s: unexpected number of credits: %d, %d",
4373 		    __func__, can_reclaim, ndesc));
4374 
4375 		for (m = txsd->m; m != NULL; m = nextpkt) {
4376 			nextpkt = m->m_nextpkt;
4377 			m->m_nextpkt = NULL;
4378 			m_freem(m);
4379 		}
4380 		reclaimed += ndesc;
4381 		can_reclaim -= ndesc;
4382 		IDXINCR(eq->cidx, ndesc, eq->sidx);
4383 	}
4384 
4385 	return (reclaimed);
4386 }
4387 
4388 static void
4389 tx_reclaim(void *arg, int n)
4390 {
4391 	struct sge_txq *txq = arg;
4392 	struct sge_eq *eq = &txq->eq;
4393 
4394 	do {
4395 		if (TXQ_TRYLOCK(txq) == 0)
4396 			break;
4397 		n = reclaim_tx_descs(txq, 32);
4398 		if (eq->cidx == eq->pidx)
4399 			eq->equeqidx = eq->pidx;
4400 		TXQ_UNLOCK(txq);
4401 	} while (n > 0);
4402 }
4403 
4404 static __be64
4405 get_flit(struct sglist_seg *segs, int nsegs, int idx)
4406 {
4407 	int i = (idx / 3) * 2;
4408 
4409 	switch (idx % 3) {
4410 	case 0: {
4411 		__be64 rc;
4412 
4413 		rc = htobe32(segs[i].ss_len);
4414 		if (i + 1 < nsegs)
4415 			rc |= (uint64_t)htobe32(segs[i + 1].ss_len) << 32;
4416 
4417 		return (rc);
4418 	}
4419 	case 1:
4420 		return (htobe64(segs[i].ss_paddr));
4421 	case 2:
4422 		return (htobe64(segs[i + 1].ss_paddr));
4423 	}
4424 
4425 	return (0);
4426 }
4427 
4428 static void
4429 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4430 {
4431 	int8_t zidx, hwidx, idx;
4432 	uint16_t region1, region3;
4433 	int spare, spare_needed, n;
4434 	struct sw_zone_info *swz;
4435 	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4436 
4437 	/*
4438 	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4439 	 * large enough for the max payload and cluster metadata.  Otherwise
4440 	 * settle for the largest bufsize that leaves enough room in the cluster
4441 	 * for metadata.
4442 	 *
4443 	 * Without buffer packing: Look for the smallest zone which has a
4444 	 * bufsize large enough for the max payload.  Settle for the largest
4445 	 * bufsize available if there's nothing big enough for max payload.
4446 	 */
4447 	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4448 	swz = &sc->sge.sw_zone_info[0];
4449 	hwidx = -1;
4450 	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4451 		if (swz->size > largest_rx_cluster) {
4452 			if (__predict_true(hwidx != -1))
4453 				break;
4454 
4455 			/*
4456 			 * This is a misconfiguration.  largest_rx_cluster is
4457 			 * preventing us from finding a refill source.  See
4458 			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4459 			 */
4460 			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4461 			    " refill source for fl %p (dma %u).  Ignored.\n",
4462 			    largest_rx_cluster, fl, maxp);
4463 		}
4464 		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4465 			hwb = &hwb_list[idx];
4466 			spare = swz->size - hwb->size;
4467 			if (spare < spare_needed)
4468 				continue;
4469 
4470 			hwidx = idx;		/* best option so far */
4471 			if (hwb->size >= maxp) {
4472 
4473 				if ((fl->flags & FL_BUF_PACKING) == 0)
4474 					goto done; /* stop looking (not packing) */
4475 
4476 				if (swz->size >= safest_rx_cluster)
4477 					goto done; /* stop looking (packing) */
4478 			}
4479 			break;		/* keep looking, next zone */
4480 		}
4481 	}
4482 done:
4483 	/* A usable hwidx has been located. */
4484 	MPASS(hwidx != -1);
4485 	hwb = &hwb_list[hwidx];
4486 	zidx = hwb->zidx;
4487 	swz = &sc->sge.sw_zone_info[zidx];
4488 	region1 = 0;
4489 	region3 = swz->size - hwb->size;
4490 
4491 	/*
4492 	 * Stay within this zone and see if there is a better match when mbuf
4493 	 * inlining is allowed.  Remember that the hwidx's are sorted in
4494 	 * decreasing order of size (so in increasing order of spare area).
4495 	 */
4496 	for (idx = hwidx; idx != -1; idx = hwb->next) {
4497 		hwb = &hwb_list[idx];
4498 		spare = swz->size - hwb->size;
4499 
4500 		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4501 			break;
4502 
4503 		/*
4504 		 * Do not inline mbufs if doing so would violate the pad/pack
4505 		 * boundary alignment requirement.
4506 		 */
4507 		if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0)
4508 			continue;
4509 		if (fl->flags & FL_BUF_PACKING &&
4510 		    (MSIZE % sc->params.sge.pack_boundary) != 0)
4511 			continue;
4512 
4513 		if (spare < CL_METADATA_SIZE + MSIZE)
4514 			continue;
4515 		n = (spare - CL_METADATA_SIZE) / MSIZE;
4516 		if (n > howmany(hwb->size, maxp))
4517 			break;
4518 
4519 		hwidx = idx;
4520 		if (fl->flags & FL_BUF_PACKING) {
4521 			region1 = n * MSIZE;
4522 			region3 = spare - region1;
4523 		} else {
4524 			region1 = MSIZE;
4525 			region3 = spare - region1;
4526 			break;
4527 		}
4528 	}
4529 
4530 	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4531 	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4532 	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4533 	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4534 	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4535 	    sc->sge.sw_zone_info[zidx].size,
4536 	    ("%s: bad buffer layout for fl %p, maxp %d. "
4537 		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4538 		sc->sge.sw_zone_info[zidx].size, region1,
4539 		sc->sge.hw_buf_info[hwidx].size, region3));
4540 	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4541 		KASSERT(region3 >= CL_METADATA_SIZE,
4542 		    ("%s: no room for metadata.  fl %p, maxp %d; "
4543 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4544 		    sc->sge.sw_zone_info[zidx].size, region1,
4545 		    sc->sge.hw_buf_info[hwidx].size, region3));
4546 		KASSERT(region1 % MSIZE == 0,
4547 		    ("%s: bad mbuf region for fl %p, maxp %d. "
4548 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4549 		    sc->sge.sw_zone_info[zidx].size, region1,
4550 		    sc->sge.hw_buf_info[hwidx].size, region3));
4551 	}
4552 
4553 	fl->cll_def.zidx = zidx;
4554 	fl->cll_def.hwidx = hwidx;
4555 	fl->cll_def.region1 = region1;
4556 	fl->cll_def.region3 = region3;
4557 }
4558 
4559 static void
4560 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4561 {
4562 	struct sge *s = &sc->sge;
4563 	struct hw_buf_info *hwb;
4564 	struct sw_zone_info *swz;
4565 	int spare;
4566 	int8_t hwidx;
4567 
4568 	if (fl->flags & FL_BUF_PACKING)
4569 		hwidx = s->safe_hwidx2;	/* with room for metadata */
4570 	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4571 		hwidx = s->safe_hwidx2;
4572 		hwb = &s->hw_buf_info[hwidx];
4573 		swz = &s->sw_zone_info[hwb->zidx];
4574 		spare = swz->size - hwb->size;
4575 
4576 		/* no good if there isn't room for an mbuf as well */
4577 		if (spare < CL_METADATA_SIZE + MSIZE)
4578 			hwidx = s->safe_hwidx1;
4579 	} else
4580 		hwidx = s->safe_hwidx1;
4581 
4582 	if (hwidx == -1) {
4583 		/* No fallback source */
4584 		fl->cll_alt.hwidx = -1;
4585 		fl->cll_alt.zidx = -1;
4586 
4587 		return;
4588 	}
4589 
4590 	hwb = &s->hw_buf_info[hwidx];
4591 	swz = &s->sw_zone_info[hwb->zidx];
4592 	spare = swz->size - hwb->size;
4593 	fl->cll_alt.hwidx = hwidx;
4594 	fl->cll_alt.zidx = hwb->zidx;
4595 	if (allow_mbufs_in_cluster &&
4596 	    (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0))
4597 		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
4598 	else
4599 		fl->cll_alt.region1 = 0;
4600 	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
4601 }
4602 
4603 static void
4604 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4605 {
4606 	mtx_lock(&sc->sfl_lock);
4607 	FL_LOCK(fl);
4608 	if ((fl->flags & FL_DOOMED) == 0) {
4609 		fl->flags |= FL_STARVING;
4610 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4611 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4612 	}
4613 	FL_UNLOCK(fl);
4614 	mtx_unlock(&sc->sfl_lock);
4615 }
4616 
4617 static void
4618 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
4619 {
4620 	struct sge_wrq *wrq = (void *)eq;
4621 
4622 	atomic_readandclear_int(&eq->equiq);
4623 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
4624 }
4625 
4626 static void
4627 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
4628 {
4629 	struct sge_txq *txq = (void *)eq;
4630 
4631 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
4632 
4633 	atomic_readandclear_int(&eq->equiq);
4634 	mp_ring_check_drainage(txq->r, 0);
4635 	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
4636 }
4637 
4638 static int
4639 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4640     struct mbuf *m)
4641 {
4642 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4643 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4644 	struct adapter *sc = iq->adapter;
4645 	struct sge *s = &sc->sge;
4646 	struct sge_eq *eq;
4647 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
4648 		&handle_wrq_egr_update, &handle_eth_egr_update,
4649 		&handle_wrq_egr_update};
4650 
4651 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4652 	    rss->opcode));
4653 
4654 	eq = s->eqmap[qid - s->eq_start];
4655 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
4656 
4657 	return (0);
4658 }
4659 
4660 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4661 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4662     offsetof(struct cpl_fw6_msg, data));
4663 
4664 static int
4665 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4666 {
4667 	struct adapter *sc = iq->adapter;
4668 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4669 
4670 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4671 	    rss->opcode));
4672 
4673 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4674 		const struct rss_header *rss2;
4675 
4676 		rss2 = (const struct rss_header *)&cpl->data[0];
4677 		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
4678 	}
4679 
4680 	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4681 }
4682 
4683 static int
4684 sysctl_uint16(SYSCTL_HANDLER_ARGS)
4685 {
4686 	uint16_t *id = arg1;
4687 	int i = *id;
4688 
4689 	return sysctl_handle_int(oidp, &i, 0, req);
4690 }
4691 
4692 static int
4693 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
4694 {
4695 	struct sge *s = arg1;
4696 	struct hw_buf_info *hwb = &s->hw_buf_info[0];
4697 	struct sw_zone_info *swz = &s->sw_zone_info[0];
4698 	int i, rc;
4699 	struct sbuf sb;
4700 	char c;
4701 
4702 	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4703 	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
4704 		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
4705 			c = '*';
4706 		else
4707 			c = '\0';
4708 
4709 		sbuf_printf(&sb, "%u%c ", hwb->size, c);
4710 	}
4711 	sbuf_trim(&sb);
4712 	sbuf_finish(&sb);
4713 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4714 	sbuf_delete(&sb);
4715 	return (rc);
4716 }
4717 
4718 static int
4719 sysctl_tc(SYSCTL_HANDLER_ARGS)
4720 {
4721 	struct vi_info *vi = arg1;
4722 	struct port_info *pi;
4723 	struct adapter *sc;
4724 	struct sge_txq *txq;
4725 	struct tx_sched_class *tc;
4726 	int qidx = arg2, rc, tc_idx;
4727 	uint32_t fw_queue, fw_class;
4728 
4729 	MPASS(qidx >= 0 && qidx < vi->ntxq);
4730 	pi = vi->pi;
4731 	sc = pi->adapter;
4732 	txq = &sc->sge.txq[vi->first_txq + qidx];
4733 
4734 	tc_idx = txq->tc_idx;
4735 	rc = sysctl_handle_int(oidp, &tc_idx, 0, req);
4736 	if (rc != 0 || req->newptr == NULL)
4737 		return (rc);
4738 
4739 	/* Note that -1 is legitimate input (it means unbind). */
4740 	if (tc_idx < -1 || tc_idx >= sc->chip_params->nsched_cls)
4741 		return (EINVAL);
4742 
4743 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4stc");
4744 	if (rc)
4745 		return (rc);
4746 
4747 	if (tc_idx == txq->tc_idx) {
4748 		rc = 0;		/* No change, nothing to do. */
4749 		goto done;
4750 	}
4751 
4752 	fw_queue = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
4753 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) |
4754 	    V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id);
4755 
4756 	if (tc_idx == -1)
4757 		fw_class = 0xffffffff;	/* Unbind. */
4758 	else {
4759 		/*
4760 		 * Bind to a different class.  Ethernet txq's are only allowed
4761 		 * to bind to cl-rl mode-class for now.  XXX: too restrictive.
4762 		 */
4763 		tc = &pi->tc[tc_idx];
4764 		if (tc->flags & TX_SC_OK &&
4765 		    tc->params.level == SCHED_CLASS_LEVEL_CL_RL &&
4766 		    tc->params.mode == SCHED_CLASS_MODE_CLASS) {
4767 			/* Ok to proceed. */
4768 			fw_class = tc_idx;
4769 		} else {
4770 			rc = tc->flags & TX_SC_OK ? EBUSY : ENXIO;
4771 			goto done;
4772 		}
4773 	}
4774 
4775 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, &fw_class);
4776 	if (rc == 0) {
4777 		if (txq->tc_idx != -1) {
4778 			tc = &pi->tc[txq->tc_idx];
4779 			MPASS(tc->refcount > 0);
4780 			tc->refcount--;
4781 		}
4782 		if (tc_idx != -1) {
4783 			tc = &pi->tc[tc_idx];
4784 			tc->refcount++;
4785 		}
4786 		txq->tc_idx = tc_idx;
4787 	}
4788 done:
4789 	end_synchronized_op(sc, 0);
4790 	return (rc);
4791 }
4792