xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 25fb30bd9abc492359ad1f66901a06cb8cd08370)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_kern_tls.h"
36 #include "opt_ratelimit.h"
37 
38 #include <sys/types.h>
39 #include <sys/eventhandler.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/malloc.h>
45 #include <sys/queue.h>
46 #include <sys/sbuf.h>
47 #include <sys/taskqueue.h>
48 #include <sys/time.h>
49 #include <sys/sglist.h>
50 #include <sys/sysctl.h>
51 #include <sys/smp.h>
52 #include <sys/socketvar.h>
53 #include <sys/counter.h>
54 #include <net/bpf.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_vlan_var.h>
58 #include <net/if_vxlan.h>
59 #include <netinet/in.h>
60 #include <netinet/ip.h>
61 #include <netinet/ip6.h>
62 #include <netinet/tcp.h>
63 #include <netinet/udp.h>
64 #include <machine/in_cksum.h>
65 #include <machine/md_var.h>
66 #include <vm/vm.h>
67 #include <vm/pmap.h>
68 #ifdef DEV_NETMAP
69 #include <machine/bus.h>
70 #include <sys/selinfo.h>
71 #include <net/if_var.h>
72 #include <net/netmap.h>
73 #include <dev/netmap/netmap_kern.h>
74 #endif
75 
76 #include "common/common.h"
77 #include "common/t4_regs.h"
78 #include "common/t4_regs_values.h"
79 #include "common/t4_msg.h"
80 #include "t4_l2t.h"
81 #include "t4_mp_ring.h"
82 
83 #ifdef T4_PKT_TIMESTAMP
84 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
85 #else
86 #define RX_COPY_THRESHOLD MINCLSIZE
87 #endif
88 
89 /* Internal mbuf flags stored in PH_loc.eight[1]. */
90 #define	MC_NOMAP		0x01
91 #define	MC_RAW_WR		0x02
92 #define	MC_TLS			0x04
93 
94 /*
95  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
96  * 0-7 are valid values.
97  */
98 static int fl_pktshift = 0;
99 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
100     "payload DMA offset in rx buffer (bytes)");
101 
102 /*
103  * Pad ethernet payload up to this boundary.
104  * -1: driver should figure out a good value.
105  *  0: disable padding.
106  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
107  */
108 int fl_pad = -1;
109 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
110     "payload pad boundary (bytes)");
111 
112 /*
113  * Status page length.
114  * -1: driver should figure out a good value.
115  *  64 or 128 are the only other valid values.
116  */
117 static int spg_len = -1;
118 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
119     "status page size (bytes)");
120 
121 /*
122  * Congestion drops.
123  * -1: no congestion feedback (not recommended).
124  *  0: backpressure the channel instead of dropping packets right away.
125  *  1: no backpressure, drop packets for the congested queue immediately.
126  */
127 static int cong_drop = 0;
128 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
129     "Congestion control for RX queues (0 = backpressure, 1 = drop");
130 
131 /*
132  * Deliver multiple frames in the same free list buffer if they fit.
133  * -1: let the driver decide whether to enable buffer packing or not.
134  *  0: disable buffer packing.
135  *  1: enable buffer packing.
136  */
137 static int buffer_packing = -1;
138 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
139     0, "Enable buffer packing");
140 
141 /*
142  * Start next frame in a packed buffer at this boundary.
143  * -1: driver should figure out a good value.
144  * T4: driver will ignore this and use the same value as fl_pad above.
145  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
146  */
147 static int fl_pack = -1;
148 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
149     "payload pack boundary (bytes)");
150 
151 /*
152  * Largest rx cluster size that the driver is allowed to allocate.
153  */
154 static int largest_rx_cluster = MJUM16BYTES;
155 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
156     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
157 
158 /*
159  * Size of cluster allocation that's most likely to succeed.  The driver will
160  * fall back to this size if it fails to allocate clusters larger than this.
161  */
162 static int safest_rx_cluster = PAGE_SIZE;
163 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
164     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
165 
166 #ifdef RATELIMIT
167 /*
168  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
169  * for rewriting.  -1 and 0-3 are all valid values.
170  * -1: hardware should leave the TCP timestamps alone.
171  * 0: 1ms
172  * 1: 100us
173  * 2: 10us
174  * 3: 1us
175  */
176 static int tsclk = -1;
177 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
178     "Control TCP timestamp rewriting when using pacing");
179 
180 static int eo_max_backlog = 1024 * 1024;
181 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
182     0, "Maximum backlog of ratelimited data per flow");
183 #endif
184 
185 /*
186  * The interrupt holdoff timers are multiplied by this value on T6+.
187  * 1 and 3-17 (both inclusive) are legal values.
188  */
189 static int tscale = 1;
190 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
191     "Interrupt holdoff timer scale on T6+");
192 
193 /*
194  * Number of LRO entries in the lro_ctrl structure per rx queue.
195  */
196 static int lro_entries = TCP_LRO_ENTRIES;
197 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
198     "Number of LRO entries per RX queue");
199 
200 /*
201  * This enables presorting of frames before they're fed into tcp_lro_rx.
202  */
203 static int lro_mbufs = 0;
204 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
205     "Enable presorting of LRO frames");
206 
207 static counter_u64_t pullups;
208 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
209     "Number of mbuf pullups performed");
210 
211 static counter_u64_t defrags;
212 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
213     "Number of mbuf defrags performed");
214 
215 
216 static int service_iq(struct sge_iq *, int);
217 static int service_iq_fl(struct sge_iq *, int);
218 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
219 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
220     u_int);
221 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
222 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
223 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
224     uint16_t, char *);
225 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
226     bus_addr_t *, void **);
227 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
228     void *);
229 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
230     int, int);
231 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
232 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
233     struct sge_iq *);
234 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
235     struct sysctl_oid *, struct sge_fl *);
236 static int alloc_fwq(struct adapter *);
237 static int free_fwq(struct adapter *);
238 static int alloc_ctrlq(struct adapter *, struct sge_wrq *, int,
239     struct sysctl_oid *);
240 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
241     struct sysctl_oid *);
242 static int free_rxq(struct vi_info *, struct sge_rxq *);
243 #ifdef TCP_OFFLOAD
244 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
245     struct sysctl_oid *);
246 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
247 #endif
248 #ifdef DEV_NETMAP
249 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
250     struct sysctl_oid *);
251 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
252 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
253     struct sysctl_oid *);
254 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
255 #endif
256 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
257 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
258 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
259 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
260 #endif
261 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
262 static int free_eq(struct adapter *, struct sge_eq *);
263 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
264     struct sysctl_oid *);
265 static int free_wrq(struct adapter *, struct sge_wrq *);
266 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
267     struct sysctl_oid *);
268 static int free_txq(struct vi_info *, struct sge_txq *);
269 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
270 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
271 static int refill_fl(struct adapter *, struct sge_fl *, int);
272 static void refill_sfl(void *);
273 static int alloc_fl_sdesc(struct sge_fl *);
274 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
275 static int find_refill_source(struct adapter *, int, bool);
276 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
277 
278 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
279 static inline u_int txpkt_len16(u_int, const u_int);
280 static inline u_int txpkt_vm_len16(u_int, const u_int);
281 static inline void calculate_mbuf_len16(struct mbuf *, bool);
282 static inline u_int txpkts0_len16(u_int);
283 static inline u_int txpkts1_len16(void);
284 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
285 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
286     u_int);
287 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
288     struct mbuf *);
289 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
290     int, bool *);
291 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
292     int, bool *);
293 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
294 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
295 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
296 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
297 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
298 static inline uint16_t read_hw_cidx(struct sge_eq *);
299 static inline u_int reclaimable_tx_desc(struct sge_eq *);
300 static inline u_int total_available_tx_desc(struct sge_eq *);
301 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
302 static void tx_reclaim(void *, int);
303 static __be64 get_flit(struct sglist_seg *, int, int);
304 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
305     struct mbuf *);
306 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
307     struct mbuf *);
308 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
309 static void wrq_tx_drain(void *, int);
310 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
311 
312 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
313 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
314 #ifdef RATELIMIT
315 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
316 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
317     struct mbuf *);
318 #endif
319 
320 static counter_u64_t extfree_refs;
321 static counter_u64_t extfree_rels;
322 
323 an_handler_t t4_an_handler;
324 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
325 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
326 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
327 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
328 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
329 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
330 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
331 
332 void
333 t4_register_an_handler(an_handler_t h)
334 {
335 	uintptr_t *loc;
336 
337 	MPASS(h == NULL || t4_an_handler == NULL);
338 
339 	loc = (uintptr_t *)&t4_an_handler;
340 	atomic_store_rel_ptr(loc, (uintptr_t)h);
341 }
342 
343 void
344 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
345 {
346 	uintptr_t *loc;
347 
348 	MPASS(type < nitems(t4_fw_msg_handler));
349 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
350 	/*
351 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
352 	 * handler dispatch table.  Reject any attempt to install a handler for
353 	 * this subtype.
354 	 */
355 	MPASS(type != FW_TYPE_RSSCPL);
356 	MPASS(type != FW6_TYPE_RSSCPL);
357 
358 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
359 	atomic_store_rel_ptr(loc, (uintptr_t)h);
360 }
361 
362 void
363 t4_register_cpl_handler(int opcode, cpl_handler_t h)
364 {
365 	uintptr_t *loc;
366 
367 	MPASS(opcode < nitems(t4_cpl_handler));
368 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
369 
370 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
371 	atomic_store_rel_ptr(loc, (uintptr_t)h);
372 }
373 
374 static int
375 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
376     struct mbuf *m)
377 {
378 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
379 	u_int tid;
380 	int cookie;
381 
382 	MPASS(m == NULL);
383 
384 	tid = GET_TID(cpl);
385 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
386 		/*
387 		 * The return code for filter-write is put in the CPL cookie so
388 		 * we have to rely on the hardware tid (is_ftid) to determine
389 		 * that this is a response to a filter.
390 		 */
391 		cookie = CPL_COOKIE_FILTER;
392 	} else {
393 		cookie = G_COOKIE(cpl->cookie);
394 	}
395 	MPASS(cookie > CPL_COOKIE_RESERVED);
396 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
397 
398 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
399 }
400 
401 static int
402 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
403     struct mbuf *m)
404 {
405 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
406 	unsigned int cookie;
407 
408 	MPASS(m == NULL);
409 
410 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
411 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
412 }
413 
414 static int
415 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
416     struct mbuf *m)
417 {
418 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
419 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
420 
421 	MPASS(m == NULL);
422 	MPASS(cookie != CPL_COOKIE_RESERVED);
423 
424 	return (act_open_rpl_handlers[cookie](iq, rss, m));
425 }
426 
427 static int
428 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
429     struct mbuf *m)
430 {
431 	struct adapter *sc = iq->adapter;
432 	u_int cookie;
433 
434 	MPASS(m == NULL);
435 	if (is_hashfilter(sc))
436 		cookie = CPL_COOKIE_HASHFILTER;
437 	else
438 		cookie = CPL_COOKIE_TOM;
439 
440 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
441 }
442 
443 static int
444 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
445 {
446 	struct adapter *sc = iq->adapter;
447 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
448 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
449 	u_int cookie;
450 
451 	MPASS(m == NULL);
452 	if (is_etid(sc, tid))
453 		cookie = CPL_COOKIE_ETHOFLD;
454 	else
455 		cookie = CPL_COOKIE_TOM;
456 
457 	return (fw4_ack_handlers[cookie](iq, rss, m));
458 }
459 
460 static void
461 t4_init_shared_cpl_handlers(void)
462 {
463 
464 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
465 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
466 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
467 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
468 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
469 }
470 
471 void
472 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
473 {
474 	uintptr_t *loc;
475 
476 	MPASS(opcode < nitems(t4_cpl_handler));
477 	MPASS(cookie > CPL_COOKIE_RESERVED);
478 	MPASS(cookie < NUM_CPL_COOKIES);
479 	MPASS(t4_cpl_handler[opcode] != NULL);
480 
481 	switch (opcode) {
482 	case CPL_SET_TCB_RPL:
483 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
484 		break;
485 	case CPL_L2T_WRITE_RPL:
486 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
487 		break;
488 	case CPL_ACT_OPEN_RPL:
489 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
490 		break;
491 	case CPL_ABORT_RPL_RSS:
492 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
493 		break;
494 	case CPL_FW4_ACK:
495 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
496 		break;
497 	default:
498 		MPASS(0);
499 		return;
500 	}
501 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
502 	atomic_store_rel_ptr(loc, (uintptr_t)h);
503 }
504 
505 /*
506  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
507  */
508 void
509 t4_sge_modload(void)
510 {
511 
512 	if (fl_pktshift < 0 || fl_pktshift > 7) {
513 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
514 		    " using 0 instead.\n", fl_pktshift);
515 		fl_pktshift = 0;
516 	}
517 
518 	if (spg_len != 64 && spg_len != 128) {
519 		int len;
520 
521 #if defined(__i386__) || defined(__amd64__)
522 		len = cpu_clflush_line_size > 64 ? 128 : 64;
523 #else
524 		len = 64;
525 #endif
526 		if (spg_len != -1) {
527 			printf("Invalid hw.cxgbe.spg_len value (%d),"
528 			    " using %d instead.\n", spg_len, len);
529 		}
530 		spg_len = len;
531 	}
532 
533 	if (cong_drop < -1 || cong_drop > 1) {
534 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
535 		    " using 0 instead.\n", cong_drop);
536 		cong_drop = 0;
537 	}
538 
539 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
540 		printf("Invalid hw.cxgbe.tscale value (%d),"
541 		    " using 1 instead.\n", tscale);
542 		tscale = 1;
543 	}
544 
545 	if (largest_rx_cluster != MCLBYTES &&
546 #if MJUMPAGESIZE != MCLBYTES
547 	    largest_rx_cluster != MJUMPAGESIZE &&
548 #endif
549 	    largest_rx_cluster != MJUM9BYTES &&
550 	    largest_rx_cluster != MJUM16BYTES) {
551 		printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
552 		    " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
553 		largest_rx_cluster = MJUM16BYTES;
554 	}
555 
556 	if (safest_rx_cluster != MCLBYTES &&
557 #if MJUMPAGESIZE != MCLBYTES
558 	    safest_rx_cluster != MJUMPAGESIZE &&
559 #endif
560 	    safest_rx_cluster != MJUM9BYTES &&
561 	    safest_rx_cluster != MJUM16BYTES) {
562 		printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
563 		    " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
564 		safest_rx_cluster = MJUMPAGESIZE;
565 	}
566 
567 	extfree_refs = counter_u64_alloc(M_WAITOK);
568 	extfree_rels = counter_u64_alloc(M_WAITOK);
569 	pullups = counter_u64_alloc(M_WAITOK);
570 	defrags = counter_u64_alloc(M_WAITOK);
571 	counter_u64_zero(extfree_refs);
572 	counter_u64_zero(extfree_rels);
573 	counter_u64_zero(pullups);
574 	counter_u64_zero(defrags);
575 
576 	t4_init_shared_cpl_handlers();
577 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
578 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
579 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
580 #ifdef RATELIMIT
581 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
582 	    CPL_COOKIE_ETHOFLD);
583 #endif
584 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
585 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
586 }
587 
588 void
589 t4_sge_modunload(void)
590 {
591 
592 	counter_u64_free(extfree_refs);
593 	counter_u64_free(extfree_rels);
594 	counter_u64_free(pullups);
595 	counter_u64_free(defrags);
596 }
597 
598 uint64_t
599 t4_sge_extfree_refs(void)
600 {
601 	uint64_t refs, rels;
602 
603 	rels = counter_u64_fetch(extfree_rels);
604 	refs = counter_u64_fetch(extfree_refs);
605 
606 	return (refs - rels);
607 }
608 
609 /* max 4096 */
610 #define MAX_PACK_BOUNDARY 512
611 
612 static inline void
613 setup_pad_and_pack_boundaries(struct adapter *sc)
614 {
615 	uint32_t v, m;
616 	int pad, pack, pad_shift;
617 
618 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
619 	    X_INGPADBOUNDARY_SHIFT;
620 	pad = fl_pad;
621 	if (fl_pad < (1 << pad_shift) ||
622 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
623 	    !powerof2(fl_pad)) {
624 		/*
625 		 * If there is any chance that we might use buffer packing and
626 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
627 		 * it to the minimum allowed in all other cases.
628 		 */
629 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
630 
631 		/*
632 		 * For fl_pad = 0 we'll still write a reasonable value to the
633 		 * register but all the freelists will opt out of padding.
634 		 * We'll complain here only if the user tried to set it to a
635 		 * value greater than 0 that was invalid.
636 		 */
637 		if (fl_pad > 0) {
638 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
639 			    " (%d), using %d instead.\n", fl_pad, pad);
640 		}
641 	}
642 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
643 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
644 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
645 
646 	if (is_t4(sc)) {
647 		if (fl_pack != -1 && fl_pack != pad) {
648 			/* Complain but carry on. */
649 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
650 			    " using %d instead.\n", fl_pack, pad);
651 		}
652 		return;
653 	}
654 
655 	pack = fl_pack;
656 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
657 	    !powerof2(fl_pack)) {
658 		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
659 			pack = MAX_PACK_BOUNDARY;
660 		else
661 			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
662 		MPASS(powerof2(pack));
663 		if (pack < 16)
664 			pack = 16;
665 		if (pack == 32)
666 			pack = 64;
667 		if (pack > 4096)
668 			pack = 4096;
669 		if (fl_pack != -1) {
670 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
671 			    " (%d), using %d instead.\n", fl_pack, pack);
672 		}
673 	}
674 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
675 	if (pack == 16)
676 		v = V_INGPACKBOUNDARY(0);
677 	else
678 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
679 
680 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
681 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
682 }
683 
684 /*
685  * adap->params.vpd.cclk must be set up before this is called.
686  */
687 void
688 t4_tweak_chip_settings(struct adapter *sc)
689 {
690 	int i, reg;
691 	uint32_t v, m;
692 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
693 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
694 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
695 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
696 	static int sw_buf_sizes[] = {
697 		MCLBYTES,
698 #if MJUMPAGESIZE != MCLBYTES
699 		MJUMPAGESIZE,
700 #endif
701 		MJUM9BYTES,
702 		MJUM16BYTES
703 	};
704 
705 	KASSERT(sc->flags & MASTER_PF,
706 	    ("%s: trying to change chip settings when not master.", __func__));
707 
708 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
709 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
710 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
711 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
712 
713 	setup_pad_and_pack_boundaries(sc);
714 
715 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
716 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
717 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
718 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
719 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
720 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
721 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
722 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
723 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
724 
725 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
726 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
727 	reg = A_SGE_FL_BUFFER_SIZE2;
728 	for (i = 0; i < nitems(sw_buf_sizes); i++) {
729 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
730 		t4_write_reg(sc, reg, sw_buf_sizes[i]);
731 		reg += 4;
732 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
733 		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
734 		reg += 4;
735 	}
736 
737 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
738 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
739 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
740 
741 	KASSERT(intr_timer[0] <= timer_max,
742 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
743 	    timer_max));
744 	for (i = 1; i < nitems(intr_timer); i++) {
745 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
746 		    ("%s: timers not listed in increasing order (%d)",
747 		    __func__, i));
748 
749 		while (intr_timer[i] > timer_max) {
750 			if (i == nitems(intr_timer) - 1) {
751 				intr_timer[i] = timer_max;
752 				break;
753 			}
754 			intr_timer[i] += intr_timer[i - 1];
755 			intr_timer[i] /= 2;
756 		}
757 	}
758 
759 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
760 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
761 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
762 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
763 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
764 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
765 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
766 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
767 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
768 
769 	if (chip_id(sc) >= CHELSIO_T6) {
770 		m = V_TSCALE(M_TSCALE);
771 		if (tscale == 1)
772 			v = 0;
773 		else
774 			v = V_TSCALE(tscale - 2);
775 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
776 
777 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
778 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
779 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
780 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
781 			v &= ~m;
782 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
783 			    V_WRTHRTHRESH(16);
784 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
785 		}
786 	}
787 
788 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
789 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
790 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
791 
792 	/*
793 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
794 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
795 	 * may have to deal with is MAXPHYS + 1 page.
796 	 */
797 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
798 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
799 
800 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
801 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
802 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
803 
804 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
805 	    F_RESETDDPOFFSET;
806 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
807 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
808 }
809 
810 /*
811  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
812  * address mut be 16B aligned.  If padding is in use the buffer's start and end
813  * need to be aligned to the pad boundary as well.  We'll just make sure that
814  * the size is a multiple of the pad boundary here, it is up to the buffer
815  * allocation code to make sure the start of the buffer is aligned.
816  */
817 static inline int
818 hwsz_ok(struct adapter *sc, int hwsz)
819 {
820 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
821 
822 	return (hwsz >= 64 && (hwsz & mask) == 0);
823 }
824 
825 /*
826  * XXX: driver really should be able to deal with unexpected settings.
827  */
828 int
829 t4_read_chip_settings(struct adapter *sc)
830 {
831 	struct sge *s = &sc->sge;
832 	struct sge_params *sp = &sc->params.sge;
833 	int i, j, n, rc = 0;
834 	uint32_t m, v, r;
835 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
836 	static int sw_buf_sizes[] = {	/* Sorted by size */
837 		MCLBYTES,
838 #if MJUMPAGESIZE != MCLBYTES
839 		MJUMPAGESIZE,
840 #endif
841 		MJUM9BYTES,
842 		MJUM16BYTES
843 	};
844 	struct rx_buf_info *rxb;
845 
846 	m = F_RXPKTCPLMODE;
847 	v = F_RXPKTCPLMODE;
848 	r = sc->params.sge.sge_control;
849 	if ((r & m) != v) {
850 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
851 		rc = EINVAL;
852 	}
853 
854 	/*
855 	 * If this changes then every single use of PAGE_SHIFT in the driver
856 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
857 	 */
858 	if (sp->page_shift != PAGE_SHIFT) {
859 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
860 		rc = EINVAL;
861 	}
862 
863 	s->safe_zidx = -1;
864 	rxb = &s->rx_buf_info[0];
865 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
866 		rxb->size1 = sw_buf_sizes[i];
867 		rxb->zone = m_getzone(rxb->size1);
868 		rxb->type = m_gettype(rxb->size1);
869 		rxb->size2 = 0;
870 		rxb->hwidx1 = -1;
871 		rxb->hwidx2 = -1;
872 		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
873 			int hwsize = sp->sge_fl_buffer_size[j];
874 
875 			if (!hwsz_ok(sc, hwsize))
876 				continue;
877 
878 			/* hwidx for size1 */
879 			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
880 				rxb->hwidx1 = j;
881 
882 			/* hwidx for size2 (buffer packing) */
883 			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
884 				continue;
885 			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
886 			if (n == 0) {
887 				rxb->hwidx2 = j;
888 				rxb->size2 = hwsize;
889 				break;	/* stop looking */
890 			}
891 			if (rxb->hwidx2 != -1) {
892 				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
893 				    hwsize - CL_METADATA_SIZE) {
894 					rxb->hwidx2 = j;
895 					rxb->size2 = hwsize;
896 				}
897 			} else if (n <= 2 * CL_METADATA_SIZE) {
898 				rxb->hwidx2 = j;
899 				rxb->size2 = hwsize;
900 			}
901 		}
902 		if (rxb->hwidx2 != -1)
903 			sc->flags |= BUF_PACKING_OK;
904 		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
905 			s->safe_zidx = i;
906 	}
907 
908 	if (sc->flags & IS_VF)
909 		return (0);
910 
911 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
912 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
913 	if (r != v) {
914 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
915 		rc = EINVAL;
916 	}
917 
918 	m = v = F_TDDPTAGTCB;
919 	r = t4_read_reg(sc, A_ULP_RX_CTL);
920 	if ((r & m) != v) {
921 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
922 		rc = EINVAL;
923 	}
924 
925 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
926 	    F_RESETDDPOFFSET;
927 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
928 	r = t4_read_reg(sc, A_TP_PARA_REG5);
929 	if ((r & m) != v) {
930 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
931 		rc = EINVAL;
932 	}
933 
934 	t4_init_tp_params(sc, 1);
935 
936 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
937 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
938 
939 	return (rc);
940 }
941 
942 int
943 t4_create_dma_tag(struct adapter *sc)
944 {
945 	int rc;
946 
947 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
948 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
949 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
950 	    NULL, &sc->dmat);
951 	if (rc != 0) {
952 		device_printf(sc->dev,
953 		    "failed to create main DMA tag: %d\n", rc);
954 	}
955 
956 	return (rc);
957 }
958 
959 void
960 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
961     struct sysctl_oid_list *children)
962 {
963 	struct sge_params *sp = &sc->params.sge;
964 
965 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
966 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
967 	    sysctl_bufsizes, "A", "freelist buffer sizes");
968 
969 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
970 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
971 
972 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
973 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
974 
975 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
976 	    NULL, sp->spg_len, "status page size (bytes)");
977 
978 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
979 	    NULL, cong_drop, "congestion drop setting");
980 
981 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
982 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
983 }
984 
985 int
986 t4_destroy_dma_tag(struct adapter *sc)
987 {
988 	if (sc->dmat)
989 		bus_dma_tag_destroy(sc->dmat);
990 
991 	return (0);
992 }
993 
994 /*
995  * Allocate and initialize the firmware event queue, control queues, and special
996  * purpose rx queues owned by the adapter.
997  *
998  * Returns errno on failure.  Resources allocated up to that point may still be
999  * allocated.  Caller is responsible for cleanup in case this function fails.
1000  */
1001 int
1002 t4_setup_adapter_queues(struct adapter *sc)
1003 {
1004 	struct sysctl_oid *oid;
1005 	struct sysctl_oid_list *children;
1006 	int rc, i;
1007 
1008 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1009 
1010 	sysctl_ctx_init(&sc->ctx);
1011 	sc->flags |= ADAP_SYSCTL_CTX;
1012 
1013 	/*
1014 	 * Firmware event queue
1015 	 */
1016 	rc = alloc_fwq(sc);
1017 	if (rc != 0)
1018 		return (rc);
1019 
1020 	/*
1021 	 * That's all for the VF driver.
1022 	 */
1023 	if (sc->flags & IS_VF)
1024 		return (rc);
1025 
1026 	oid = device_get_sysctl_tree(sc->dev);
1027 	children = SYSCTL_CHILDREN(oid);
1028 
1029 	/*
1030 	 * XXX: General purpose rx queues, one per port.
1031 	 */
1032 
1033 	/*
1034 	 * Control queues, one per port.
1035 	 */
1036 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "ctrlq",
1037 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1038 	for_each_port(sc, i) {
1039 		struct sge_wrq *ctrlq = &sc->sge.ctrlq[i];
1040 
1041 		rc = alloc_ctrlq(sc, ctrlq, i, oid);
1042 		if (rc != 0)
1043 			return (rc);
1044 	}
1045 
1046 	return (rc);
1047 }
1048 
1049 /*
1050  * Idempotent
1051  */
1052 int
1053 t4_teardown_adapter_queues(struct adapter *sc)
1054 {
1055 	int i;
1056 
1057 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1058 
1059 	/* Do this before freeing the queue */
1060 	if (sc->flags & ADAP_SYSCTL_CTX) {
1061 		sysctl_ctx_free(&sc->ctx);
1062 		sc->flags &= ~ADAP_SYSCTL_CTX;
1063 	}
1064 
1065 	if (!(sc->flags & IS_VF)) {
1066 		for_each_port(sc, i)
1067 			free_wrq(sc, &sc->sge.ctrlq[i]);
1068 	}
1069 	free_fwq(sc);
1070 
1071 	return (0);
1072 }
1073 
1074 /* Maximum payload that could arrive with a single iq descriptor. */
1075 static inline int
1076 max_rx_payload(struct adapter *sc, struct ifnet *ifp, const bool ofld)
1077 {
1078 	int maxp;
1079 
1080 	/* large enough even when hw VLAN extraction is disabled */
1081 	maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1082 	    ETHER_VLAN_ENCAP_LEN + ifp->if_mtu;
1083 	if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1084 	    maxp < sc->params.tp.max_rx_pdu)
1085 		maxp = sc->params.tp.max_rx_pdu;
1086 	return (maxp);
1087 }
1088 
1089 int
1090 t4_setup_vi_queues(struct vi_info *vi)
1091 {
1092 	int rc = 0, i, intr_idx, iqidx;
1093 	struct sge_rxq *rxq;
1094 	struct sge_txq *txq;
1095 #ifdef TCP_OFFLOAD
1096 	struct sge_ofld_rxq *ofld_rxq;
1097 #endif
1098 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1099 	struct sge_wrq *ofld_txq;
1100 #endif
1101 #ifdef DEV_NETMAP
1102 	int saved_idx;
1103 	struct sge_nm_rxq *nm_rxq;
1104 	struct sge_nm_txq *nm_txq;
1105 #endif
1106 	char name[16];
1107 	struct port_info *pi = vi->pi;
1108 	struct adapter *sc = pi->adapter;
1109 	struct ifnet *ifp = vi->ifp;
1110 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
1111 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1112 	int maxp;
1113 
1114 	/* Interrupt vector to start from (when using multiple vectors) */
1115 	intr_idx = vi->first_intr;
1116 
1117 #ifdef DEV_NETMAP
1118 	saved_idx = intr_idx;
1119 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1120 
1121 		/* netmap is supported with direct interrupts only. */
1122 		MPASS(!forwarding_intr_to_fwq(sc));
1123 
1124 		/*
1125 		 * We don't have buffers to back the netmap rx queues
1126 		 * right now so we create the queues in a way that
1127 		 * doesn't set off any congestion signal in the chip.
1128 		 */
1129 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1130 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queues");
1131 		for_each_nm_rxq(vi, i, nm_rxq) {
1132 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1133 			if (rc != 0)
1134 				goto done;
1135 			intr_idx++;
1136 		}
1137 
1138 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1139 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queues");
1140 		for_each_nm_txq(vi, i, nm_txq) {
1141 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1142 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid);
1143 			if (rc != 0)
1144 				goto done;
1145 		}
1146 	}
1147 
1148 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1149 	intr_idx = saved_idx;
1150 #endif
1151 
1152 	/*
1153 	 * Allocate rx queues first because a default iqid is required when
1154 	 * creating a tx queue.
1155 	 */
1156 	maxp = max_rx_payload(sc, ifp, false);
1157 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1158 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queues");
1159 	for_each_rxq(vi, i, rxq) {
1160 
1161 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1162 
1163 		snprintf(name, sizeof(name), "%s rxq%d-fl",
1164 		    device_get_nameunit(vi->dev), i);
1165 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1166 
1167 		rc = alloc_rxq(vi, rxq,
1168 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1169 		if (rc != 0)
1170 			goto done;
1171 		intr_idx++;
1172 	}
1173 #ifdef DEV_NETMAP
1174 	if (ifp->if_capabilities & IFCAP_NETMAP)
1175 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1176 #endif
1177 #ifdef TCP_OFFLOAD
1178 	maxp = max_rx_payload(sc, ifp, true);
1179 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1180 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queues for offloaded TCP connections");
1181 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1182 
1183 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
1184 		    vi->qsize_rxq);
1185 
1186 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1187 		    device_get_nameunit(vi->dev), i);
1188 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1189 
1190 		rc = alloc_ofld_rxq(vi, ofld_rxq,
1191 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1192 		if (rc != 0)
1193 			goto done;
1194 		intr_idx++;
1195 	}
1196 #endif
1197 
1198 	/*
1199 	 * Now the tx queues.
1200 	 */
1201 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq",
1202 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queues");
1203 	for_each_txq(vi, i, txq) {
1204 		iqidx = vi->first_rxq + (i % vi->nrxq);
1205 		snprintf(name, sizeof(name), "%s txq%d",
1206 		    device_get_nameunit(vi->dev), i);
1207 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
1208 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1209 
1210 		rc = alloc_txq(vi, txq, i, oid);
1211 		if (rc != 0)
1212 			goto done;
1213 	}
1214 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1215 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1216 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queues for TOE/ETHOFLD");
1217 	for_each_ofld_txq(vi, i, ofld_txq) {
1218 		struct sysctl_oid *oid2;
1219 
1220 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1221 		    device_get_nameunit(vi->dev), i);
1222 		if (vi->nofldrxq > 0) {
1223 			iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq);
1224 			init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq,
1225 			    pi->tx_chan, sc->sge.ofld_rxq[iqidx].iq.cntxt_id,
1226 			    name);
1227 		} else {
1228 			iqidx = vi->first_rxq + (i % vi->nrxq);
1229 			init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq,
1230 			    pi->tx_chan, sc->sge.rxq[iqidx].iq.cntxt_id, name);
1231 		}
1232 
1233 		snprintf(name, sizeof(name), "%d", i);
1234 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1235 		    name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
1236 
1237 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1238 		if (rc != 0)
1239 			goto done;
1240 	}
1241 #endif
1242 done:
1243 	if (rc)
1244 		t4_teardown_vi_queues(vi);
1245 
1246 	return (rc);
1247 }
1248 
1249 /*
1250  * Idempotent
1251  */
1252 int
1253 t4_teardown_vi_queues(struct vi_info *vi)
1254 {
1255 	int i;
1256 	struct sge_rxq *rxq;
1257 	struct sge_txq *txq;
1258 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1259 	struct port_info *pi = vi->pi;
1260 	struct adapter *sc = pi->adapter;
1261 	struct sge_wrq *ofld_txq;
1262 #endif
1263 #ifdef TCP_OFFLOAD
1264 	struct sge_ofld_rxq *ofld_rxq;
1265 #endif
1266 #ifdef DEV_NETMAP
1267 	struct sge_nm_rxq *nm_rxq;
1268 	struct sge_nm_txq *nm_txq;
1269 #endif
1270 
1271 	/* Do this before freeing the queues */
1272 	if (vi->flags & VI_SYSCTL_CTX) {
1273 		sysctl_ctx_free(&vi->ctx);
1274 		vi->flags &= ~VI_SYSCTL_CTX;
1275 	}
1276 
1277 #ifdef DEV_NETMAP
1278 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1279 		for_each_nm_txq(vi, i, nm_txq) {
1280 			free_nm_txq(vi, nm_txq);
1281 		}
1282 
1283 		for_each_nm_rxq(vi, i, nm_rxq) {
1284 			free_nm_rxq(vi, nm_rxq);
1285 		}
1286 	}
1287 #endif
1288 
1289 	/*
1290 	 * Take down all the tx queues first, as they reference the rx queues
1291 	 * (for egress updates, etc.).
1292 	 */
1293 
1294 	for_each_txq(vi, i, txq) {
1295 		free_txq(vi, txq);
1296 	}
1297 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1298 	for_each_ofld_txq(vi, i, ofld_txq) {
1299 		free_wrq(sc, ofld_txq);
1300 	}
1301 #endif
1302 
1303 	/*
1304 	 * Then take down the rx queues.
1305 	 */
1306 
1307 	for_each_rxq(vi, i, rxq) {
1308 		free_rxq(vi, rxq);
1309 	}
1310 #ifdef TCP_OFFLOAD
1311 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1312 		free_ofld_rxq(vi, ofld_rxq);
1313 	}
1314 #endif
1315 
1316 	return (0);
1317 }
1318 
1319 /*
1320  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1321  * unusual scenario.
1322  *
1323  * a) Deals with errors, if any.
1324  * b) Services firmware event queue, which is taking interrupts for all other
1325  *    queues.
1326  */
1327 void
1328 t4_intr_all(void *arg)
1329 {
1330 	struct adapter *sc = arg;
1331 	struct sge_iq *fwq = &sc->sge.fwq;
1332 
1333 	MPASS(sc->intr_count == 1);
1334 
1335 	if (sc->intr_type == INTR_INTX)
1336 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1337 
1338 	t4_intr_err(arg);
1339 	t4_intr_evt(fwq);
1340 }
1341 
1342 /*
1343  * Interrupt handler for errors (installed directly when multiple interrupts are
1344  * being used, or called by t4_intr_all).
1345  */
1346 void
1347 t4_intr_err(void *arg)
1348 {
1349 	struct adapter *sc = arg;
1350 	uint32_t v;
1351 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1352 
1353 	if (sc->flags & ADAP_ERR)
1354 		return;
1355 
1356 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1357 	if (v & F_PFSW) {
1358 		sc->swintr++;
1359 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1360 	}
1361 
1362 	t4_slow_intr_handler(sc, verbose);
1363 }
1364 
1365 /*
1366  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1367  * such queue right now.
1368  */
1369 void
1370 t4_intr_evt(void *arg)
1371 {
1372 	struct sge_iq *iq = arg;
1373 
1374 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1375 		service_iq(iq, 0);
1376 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1377 	}
1378 }
1379 
1380 /*
1381  * Interrupt handler for iq+fl queues.
1382  */
1383 void
1384 t4_intr(void *arg)
1385 {
1386 	struct sge_iq *iq = arg;
1387 
1388 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1389 		service_iq_fl(iq, 0);
1390 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1391 	}
1392 }
1393 
1394 #ifdef DEV_NETMAP
1395 /*
1396  * Interrupt handler for netmap rx queues.
1397  */
1398 void
1399 t4_nm_intr(void *arg)
1400 {
1401 	struct sge_nm_rxq *nm_rxq = arg;
1402 
1403 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1404 		service_nm_rxq(nm_rxq);
1405 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1406 	}
1407 }
1408 
1409 /*
1410  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1411  */
1412 void
1413 t4_vi_intr(void *arg)
1414 {
1415 	struct irq *irq = arg;
1416 
1417 	MPASS(irq->nm_rxq != NULL);
1418 	t4_nm_intr(irq->nm_rxq);
1419 
1420 	MPASS(irq->rxq != NULL);
1421 	t4_intr(irq->rxq);
1422 }
1423 #endif
1424 
1425 /*
1426  * Deals with interrupts on an iq-only (no freelist) queue.
1427  */
1428 static int
1429 service_iq(struct sge_iq *iq, int budget)
1430 {
1431 	struct sge_iq *q;
1432 	struct adapter *sc = iq->adapter;
1433 	struct iq_desc *d = &iq->desc[iq->cidx];
1434 	int ndescs = 0, limit;
1435 	int rsp_type;
1436 	uint32_t lq;
1437 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1438 
1439 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1440 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1441 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1442 	    iq->flags));
1443 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1444 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1445 
1446 	limit = budget ? budget : iq->qsize / 16;
1447 
1448 	/*
1449 	 * We always come back and check the descriptor ring for new indirect
1450 	 * interrupts and other responses after running a single handler.
1451 	 */
1452 	for (;;) {
1453 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1454 
1455 			rmb();
1456 
1457 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1458 			lq = be32toh(d->rsp.pldbuflen_qid);
1459 
1460 			switch (rsp_type) {
1461 			case X_RSPD_TYPE_FLBUF:
1462 				panic("%s: data for an iq (%p) with no freelist",
1463 				    __func__, iq);
1464 
1465 				/* NOTREACHED */
1466 
1467 			case X_RSPD_TYPE_CPL:
1468 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1469 				    ("%s: bad opcode %02x.", __func__,
1470 				    d->rss.opcode));
1471 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1472 				break;
1473 
1474 			case X_RSPD_TYPE_INTR:
1475 				/*
1476 				 * There are 1K interrupt-capable queues (qids 0
1477 				 * through 1023).  A response type indicating a
1478 				 * forwarded interrupt with a qid >= 1K is an
1479 				 * iWARP async notification.
1480 				 */
1481 				if (__predict_true(lq >= 1024)) {
1482 					t4_an_handler(iq, &d->rsp);
1483 					break;
1484 				}
1485 
1486 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1487 				    sc->sge.iq_base];
1488 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1489 				    IQS_BUSY)) {
1490 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1491 						(void) atomic_cmpset_int(&q->state,
1492 						    IQS_BUSY, IQS_IDLE);
1493 					} else {
1494 						STAILQ_INSERT_TAIL(&iql, q,
1495 						    link);
1496 					}
1497 				}
1498 				break;
1499 
1500 			default:
1501 				KASSERT(0,
1502 				    ("%s: illegal response type %d on iq %p",
1503 				    __func__, rsp_type, iq));
1504 				log(LOG_ERR,
1505 				    "%s: illegal response type %d on iq %p",
1506 				    device_get_nameunit(sc->dev), rsp_type, iq);
1507 				break;
1508 			}
1509 
1510 			d++;
1511 			if (__predict_false(++iq->cidx == iq->sidx)) {
1512 				iq->cidx = 0;
1513 				iq->gen ^= F_RSPD_GEN;
1514 				d = &iq->desc[0];
1515 			}
1516 			if (__predict_false(++ndescs == limit)) {
1517 				t4_write_reg(sc, sc->sge_gts_reg,
1518 				    V_CIDXINC(ndescs) |
1519 				    V_INGRESSQID(iq->cntxt_id) |
1520 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1521 				ndescs = 0;
1522 
1523 				if (budget) {
1524 					return (EINPROGRESS);
1525 				}
1526 			}
1527 		}
1528 
1529 		if (STAILQ_EMPTY(&iql))
1530 			break;
1531 
1532 		/*
1533 		 * Process the head only, and send it to the back of the list if
1534 		 * it's still not done.
1535 		 */
1536 		q = STAILQ_FIRST(&iql);
1537 		STAILQ_REMOVE_HEAD(&iql, link);
1538 		if (service_iq_fl(q, q->qsize / 8) == 0)
1539 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1540 		else
1541 			STAILQ_INSERT_TAIL(&iql, q, link);
1542 	}
1543 
1544 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1545 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1546 
1547 	return (0);
1548 }
1549 
1550 static inline int
1551 sort_before_lro(struct lro_ctrl *lro)
1552 {
1553 
1554 	return (lro->lro_mbuf_max != 0);
1555 }
1556 
1557 static inline uint64_t
1558 last_flit_to_ns(struct adapter *sc, uint64_t lf)
1559 {
1560 	uint64_t n = be64toh(lf) & 0xfffffffffffffff;	/* 60b, not 64b. */
1561 
1562 	if (n > UINT64_MAX / 1000000)
1563 		return (n / sc->params.vpd.cclk * 1000000);
1564 	else
1565 		return (n * 1000000 / sc->params.vpd.cclk);
1566 }
1567 
1568 static inline void
1569 move_to_next_rxbuf(struct sge_fl *fl)
1570 {
1571 
1572 	fl->rx_offset = 0;
1573 	if (__predict_false((++fl->cidx & 7) == 0)) {
1574 		uint16_t cidx = fl->cidx >> 3;
1575 
1576 		if (__predict_false(cidx == fl->sidx))
1577 			fl->cidx = cidx = 0;
1578 		fl->hw_cidx = cidx;
1579 	}
1580 }
1581 
1582 /*
1583  * Deals with interrupts on an iq+fl queue.
1584  */
1585 static int
1586 service_iq_fl(struct sge_iq *iq, int budget)
1587 {
1588 	struct sge_rxq *rxq = iq_to_rxq(iq);
1589 	struct sge_fl *fl;
1590 	struct adapter *sc = iq->adapter;
1591 	struct iq_desc *d = &iq->desc[iq->cidx];
1592 	int ndescs, limit;
1593 	int rsp_type, starved;
1594 	uint32_t lq;
1595 	uint16_t fl_hw_cidx;
1596 	struct mbuf *m0;
1597 #if defined(INET) || defined(INET6)
1598 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1599 	struct lro_ctrl *lro = &rxq->lro;
1600 #endif
1601 
1602 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1603 	MPASS(iq->flags & IQ_HAS_FL);
1604 
1605 	ndescs = 0;
1606 #if defined(INET) || defined(INET6)
1607 	if (iq->flags & IQ_ADJ_CREDIT) {
1608 		MPASS(sort_before_lro(lro));
1609 		iq->flags &= ~IQ_ADJ_CREDIT;
1610 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1611 			tcp_lro_flush_all(lro);
1612 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1613 			    V_INGRESSQID((u32)iq->cntxt_id) |
1614 			    V_SEINTARM(iq->intr_params));
1615 			return (0);
1616 		}
1617 		ndescs = 1;
1618 	}
1619 #else
1620 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1621 #endif
1622 
1623 	limit = budget ? budget : iq->qsize / 16;
1624 	fl = &rxq->fl;
1625 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1626 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1627 
1628 		rmb();
1629 
1630 		m0 = NULL;
1631 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1632 		lq = be32toh(d->rsp.pldbuflen_qid);
1633 
1634 		switch (rsp_type) {
1635 		case X_RSPD_TYPE_FLBUF:
1636 			if (lq & F_RSPD_NEWBUF) {
1637 				if (fl->rx_offset > 0)
1638 					move_to_next_rxbuf(fl);
1639 				lq = G_RSPD_LEN(lq);
1640 			}
1641 			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1642 				FL_LOCK(fl);
1643 				refill_fl(sc, fl, 64);
1644 				FL_UNLOCK(fl);
1645 				fl_hw_cidx = fl->hw_cidx;
1646 			}
1647 
1648 			if (d->rss.opcode == CPL_RX_PKT) {
1649 				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1650 					break;
1651 				goto out;
1652 			}
1653 			m0 = get_fl_payload(sc, fl, lq);
1654 			if (__predict_false(m0 == NULL))
1655 				goto out;
1656 
1657 			/* fall through */
1658 
1659 		case X_RSPD_TYPE_CPL:
1660 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1661 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1662 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1663 			break;
1664 
1665 		case X_RSPD_TYPE_INTR:
1666 
1667 			/*
1668 			 * There are 1K interrupt-capable queues (qids 0
1669 			 * through 1023).  A response type indicating a
1670 			 * forwarded interrupt with a qid >= 1K is an
1671 			 * iWARP async notification.  That is the only
1672 			 * acceptable indirect interrupt on this queue.
1673 			 */
1674 			if (__predict_false(lq < 1024)) {
1675 				panic("%s: indirect interrupt on iq_fl %p "
1676 				    "with qid %u", __func__, iq, lq);
1677 			}
1678 
1679 			t4_an_handler(iq, &d->rsp);
1680 			break;
1681 
1682 		default:
1683 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1684 			    __func__, rsp_type, iq));
1685 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1686 			    device_get_nameunit(sc->dev), rsp_type, iq);
1687 			break;
1688 		}
1689 
1690 		d++;
1691 		if (__predict_false(++iq->cidx == iq->sidx)) {
1692 			iq->cidx = 0;
1693 			iq->gen ^= F_RSPD_GEN;
1694 			d = &iq->desc[0];
1695 		}
1696 		if (__predict_false(++ndescs == limit)) {
1697 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1698 			    V_INGRESSQID(iq->cntxt_id) |
1699 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1700 
1701 #if defined(INET) || defined(INET6)
1702 			if (iq->flags & IQ_LRO_ENABLED &&
1703 			    !sort_before_lro(lro) &&
1704 			    sc->lro_timeout != 0) {
1705 				tcp_lro_flush_inactive(lro, &lro_timeout);
1706 			}
1707 #endif
1708 			if (budget)
1709 				return (EINPROGRESS);
1710 			ndescs = 0;
1711 		}
1712 	}
1713 out:
1714 #if defined(INET) || defined(INET6)
1715 	if (iq->flags & IQ_LRO_ENABLED) {
1716 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1717 			MPASS(sort_before_lro(lro));
1718 			/* hold back one credit and don't flush LRO state */
1719 			iq->flags |= IQ_ADJ_CREDIT;
1720 			ndescs--;
1721 		} else {
1722 			tcp_lro_flush_all(lro);
1723 		}
1724 	}
1725 #endif
1726 
1727 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1728 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1729 
1730 	FL_LOCK(fl);
1731 	starved = refill_fl(sc, fl, 64);
1732 	FL_UNLOCK(fl);
1733 	if (__predict_false(starved != 0))
1734 		add_fl_to_sfl(sc, fl);
1735 
1736 	return (0);
1737 }
1738 
1739 static inline struct cluster_metadata *
1740 cl_metadata(struct fl_sdesc *sd)
1741 {
1742 
1743 	return ((void *)(sd->cl + sd->moff));
1744 }
1745 
1746 static void
1747 rxb_free(struct mbuf *m)
1748 {
1749 	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1750 
1751 	uma_zfree(clm->zone, clm->cl);
1752 	counter_u64_add(extfree_rels, 1);
1753 }
1754 
1755 /*
1756  * The mbuf returned comes from zone_muf and carries the payload in one of these
1757  * ways
1758  * a) complete frame inside the mbuf
1759  * b) m_cljset (for clusters without metadata)
1760  * d) m_extaddref (cluster with metadata)
1761  */
1762 static struct mbuf *
1763 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1764     int remaining)
1765 {
1766 	struct mbuf *m;
1767 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1768 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1769 	struct cluster_metadata *clm;
1770 	int len, blen;
1771 	caddr_t payload;
1772 
1773 	if (fl->flags & FL_BUF_PACKING) {
1774 		u_int l, pad;
1775 
1776 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1777 		len = min(remaining, blen);
1778 		payload = sd->cl + fl->rx_offset;
1779 
1780 		l = fr_offset + len;
1781 		pad = roundup2(l, fl->buf_boundary) - l;
1782 		if (fl->rx_offset + len + pad < rxb->size2)
1783 			blen = len + pad;
1784 		MPASS(fl->rx_offset + blen <= rxb->size2);
1785 	} else {
1786 		MPASS(fl->rx_offset == 0);	/* not packing */
1787 		blen = rxb->size1;
1788 		len = min(remaining, blen);
1789 		payload = sd->cl;
1790 	}
1791 
1792 	if (fr_offset == 0) {
1793 		m = m_gethdr(M_NOWAIT, MT_DATA);
1794 		if (__predict_false(m == NULL))
1795 			return (NULL);
1796 		m->m_pkthdr.len = remaining;
1797 	} else {
1798 		m = m_get(M_NOWAIT, MT_DATA);
1799 		if (__predict_false(m == NULL))
1800 			return (NULL);
1801 	}
1802 	m->m_len = len;
1803 
1804 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1805 		/* copy data to mbuf */
1806 		bcopy(payload, mtod(m, caddr_t), len);
1807 		if (fl->flags & FL_BUF_PACKING) {
1808 			fl->rx_offset += blen;
1809 			MPASS(fl->rx_offset <= rxb->size2);
1810 			if (fl->rx_offset < rxb->size2)
1811 				return (m);	/* without advancing the cidx */
1812 		}
1813 	} else if (fl->flags & FL_BUF_PACKING) {
1814 		clm = cl_metadata(sd);
1815 		if (sd->nmbuf++ == 0) {
1816 			clm->refcount = 1;
1817 			clm->zone = rxb->zone;
1818 			clm->cl = sd->cl;
1819 			counter_u64_add(extfree_refs, 1);
1820 		}
1821 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1822 		    NULL);
1823 
1824 		fl->rx_offset += blen;
1825 		MPASS(fl->rx_offset <= rxb->size2);
1826 		if (fl->rx_offset < rxb->size2)
1827 			return (m);	/* without advancing the cidx */
1828 	} else {
1829 		m_cljset(m, sd->cl, rxb->type);
1830 		sd->cl = NULL;	/* consumed, not a recycle candidate */
1831 	}
1832 
1833 	move_to_next_rxbuf(fl);
1834 
1835 	return (m);
1836 }
1837 
1838 static struct mbuf *
1839 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1840 {
1841 	struct mbuf *m0, *m, **pnext;
1842 	u_int remaining;
1843 
1844 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1845 		M_ASSERTPKTHDR(fl->m0);
1846 		MPASS(fl->m0->m_pkthdr.len == plen);
1847 		MPASS(fl->remaining < plen);
1848 
1849 		m0 = fl->m0;
1850 		pnext = fl->pnext;
1851 		remaining = fl->remaining;
1852 		fl->flags &= ~FL_BUF_RESUME;
1853 		goto get_segment;
1854 	}
1855 
1856 	/*
1857 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1858 	 * 'len' and it may span multiple hw buffers.
1859 	 */
1860 
1861 	m0 = get_scatter_segment(sc, fl, 0, plen);
1862 	if (m0 == NULL)
1863 		return (NULL);
1864 	remaining = plen - m0->m_len;
1865 	pnext = &m0->m_next;
1866 	while (remaining > 0) {
1867 get_segment:
1868 		MPASS(fl->rx_offset == 0);
1869 		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1870 		if (__predict_false(m == NULL)) {
1871 			fl->m0 = m0;
1872 			fl->pnext = pnext;
1873 			fl->remaining = remaining;
1874 			fl->flags |= FL_BUF_RESUME;
1875 			return (NULL);
1876 		}
1877 		*pnext = m;
1878 		pnext = &m->m_next;
1879 		remaining -= m->m_len;
1880 	}
1881 	*pnext = NULL;
1882 
1883 	M_ASSERTPKTHDR(m0);
1884 	return (m0);
1885 }
1886 
1887 static int
1888 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1889     int remaining)
1890 {
1891 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1892 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1893 	int len, blen;
1894 
1895 	if (fl->flags & FL_BUF_PACKING) {
1896 		u_int l, pad;
1897 
1898 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1899 		len = min(remaining, blen);
1900 
1901 		l = fr_offset + len;
1902 		pad = roundup2(l, fl->buf_boundary) - l;
1903 		if (fl->rx_offset + len + pad < rxb->size2)
1904 			blen = len + pad;
1905 		fl->rx_offset += blen;
1906 		MPASS(fl->rx_offset <= rxb->size2);
1907 		if (fl->rx_offset < rxb->size2)
1908 			return (len);	/* without advancing the cidx */
1909 	} else {
1910 		MPASS(fl->rx_offset == 0);	/* not packing */
1911 		blen = rxb->size1;
1912 		len = min(remaining, blen);
1913 	}
1914 	move_to_next_rxbuf(fl);
1915 	return (len);
1916 }
1917 
1918 static inline void
1919 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1920 {
1921 	int remaining, fr_offset, len;
1922 
1923 	fr_offset = 0;
1924 	remaining = plen;
1925 	while (remaining > 0) {
1926 		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1927 		fr_offset += len;
1928 		remaining -= len;
1929 	}
1930 }
1931 
1932 static inline int
1933 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1934 {
1935 	int len;
1936 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1937 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1938 
1939 	if (fl->flags & FL_BUF_PACKING)
1940 		len = rxb->size2 - fl->rx_offset;
1941 	else
1942 		len = rxb->size1;
1943 
1944 	return (min(plen, len));
1945 }
1946 
1947 static int
1948 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1949     u_int plen)
1950 {
1951 	struct mbuf *m0;
1952 	struct ifnet *ifp = rxq->ifp;
1953 	struct sge_fl *fl = &rxq->fl;
1954 	struct vi_info *vi = ifp->if_softc;
1955 	const struct cpl_rx_pkt *cpl;
1956 #if defined(INET) || defined(INET6)
1957 	struct lro_ctrl *lro = &rxq->lro;
1958 #endif
1959 	uint16_t err_vec, tnl_type, tnlhdr_len;
1960 	static const int sw_hashtype[4][2] = {
1961 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1962 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1963 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1964 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1965 	};
1966 	static const int sw_csum_flags[2][2] = {
1967 		{
1968 			/* IP, inner IP */
1969 			CSUM_ENCAP_VXLAN |
1970 			    CSUM_L3_CALC | CSUM_L3_VALID |
1971 			    CSUM_L4_CALC | CSUM_L4_VALID |
1972 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1973 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1974 
1975 			/* IP, inner IP6 */
1976 			CSUM_ENCAP_VXLAN |
1977 			    CSUM_L3_CALC | CSUM_L3_VALID |
1978 			    CSUM_L4_CALC | CSUM_L4_VALID |
1979 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1980 		},
1981 		{
1982 			/* IP6, inner IP */
1983 			CSUM_ENCAP_VXLAN |
1984 			    CSUM_L4_CALC | CSUM_L4_VALID |
1985 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1986 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1987 
1988 			/* IP6, inner IP6 */
1989 			CSUM_ENCAP_VXLAN |
1990 			    CSUM_L4_CALC | CSUM_L4_VALID |
1991 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1992 		},
1993 	};
1994 
1995 	MPASS(plen > sc->params.sge.fl_pktshift);
1996 	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
1997 	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
1998 		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1999 		caddr_t frame;
2000 		int rc, slen;
2001 
2002 		slen = get_segment_len(sc, fl, plen) -
2003 		    sc->params.sge.fl_pktshift;
2004 		frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
2005 		CURVNET_SET_QUIET(ifp->if_vnet);
2006 		rc = pfil_run_hooks(vi->pfil, frame, ifp,
2007 		    slen | PFIL_MEMPTR | PFIL_IN, NULL);
2008 		CURVNET_RESTORE();
2009 		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
2010 			skip_fl_payload(sc, fl, plen);
2011 			return (0);
2012 		}
2013 		if (rc == PFIL_REALLOCED) {
2014 			skip_fl_payload(sc, fl, plen);
2015 			m0 = pfil_mem2mbuf(frame);
2016 			goto have_mbuf;
2017 		}
2018 	}
2019 
2020 	m0 = get_fl_payload(sc, fl, plen);
2021 	if (__predict_false(m0 == NULL))
2022 		return (ENOMEM);
2023 
2024 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
2025 	m0->m_len -= sc->params.sge.fl_pktshift;
2026 	m0->m_data += sc->params.sge.fl_pktshift;
2027 
2028 have_mbuf:
2029 	m0->m_pkthdr.rcvif = ifp;
2030 	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
2031 	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
2032 
2033 	cpl = (const void *)(&d->rss + 1);
2034 	if (sc->params.tp.rx_pkt_encap) {
2035 		const uint16_t ev = be16toh(cpl->err_vec);
2036 
2037 		err_vec = G_T6_COMPR_RXERR_VEC(ev);
2038 		tnl_type = G_T6_RX_TNL_TYPE(ev);
2039 		tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
2040 	} else {
2041 		err_vec = be16toh(cpl->err_vec);
2042 		tnl_type = 0;
2043 		tnlhdr_len = 0;
2044 	}
2045 	if (cpl->csum_calc && err_vec == 0) {
2046 		int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
2047 
2048 		/* checksum(s) calculated and found to be correct. */
2049 
2050 		MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
2051 		    (cpl->l2info & htobe32(F_RXF_IP6)));
2052 		m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2053 		if (tnl_type == 0) {
2054 	    		if (!ipv6 && ifp->if_capenable & IFCAP_RXCSUM) {
2055 				m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2056 				    CSUM_L3_VALID | CSUM_L4_CALC |
2057 				    CSUM_L4_VALID;
2058 			} else if (ipv6 && ifp->if_capenable & IFCAP_RXCSUM_IPV6) {
2059 				m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2060 				    CSUM_L4_VALID;
2061 			}
2062 			rxq->rxcsum++;
2063 		} else {
2064 			MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
2065 			if (__predict_false(cpl->ip_frag)) {
2066 				/*
2067 				 * csum_data is for the inner frame (which is an
2068 				 * IP fragment) and is not 0xffff.  There is no
2069 				 * way to pass the inner csum_data to the stack.
2070 				 * We don't want the stack to use the inner
2071 				 * csum_data to validate the outer frame or it
2072 				 * will get rejected.  So we fix csum_data here
2073 				 * and let sw do the checksum of inner IP
2074 				 * fragments.
2075 				 *
2076 				 * XXX: Need 32b for csum_data2 in an rx mbuf.
2077 				 * Maybe stuff it into rcv_tstmp?
2078 				 */
2079 				m0->m_pkthdr.csum_data = 0xffff;
2080 				if (ipv6) {
2081 					m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2082 					    CSUM_L4_VALID;
2083 				} else {
2084 					m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2085 					    CSUM_L3_VALID | CSUM_L4_CALC |
2086 					    CSUM_L4_VALID;
2087 				}
2088 			} else {
2089 				int outer_ipv6;
2090 
2091 				MPASS(m0->m_pkthdr.csum_data == 0xffff);
2092 
2093 				outer_ipv6 = tnlhdr_len >=
2094 				    sizeof(struct ether_header) +
2095 				    sizeof(struct ip6_hdr);
2096 				m0->m_pkthdr.csum_flags =
2097 				    sw_csum_flags[outer_ipv6][ipv6];
2098 			}
2099 			rxq->vxlan_rxcsum++;
2100 		}
2101 	}
2102 
2103 	if (cpl->vlan_ex) {
2104 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2105 		m0->m_flags |= M_VLANTAG;
2106 		rxq->vlan_extraction++;
2107 	}
2108 
2109 	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
2110 		/*
2111 		 * Fill up rcv_tstmp but do not set M_TSTMP.
2112 		 * rcv_tstmp is not in the format that the
2113 		 * kernel expects and we don't want to mislead
2114 		 * it.  For now this is only for custom code
2115 		 * that knows how to interpret cxgbe's stamp.
2116 		 */
2117 		m0->m_pkthdr.rcv_tstmp =
2118 		    last_flit_to_ns(sc, d->rsp.u.last_flit);
2119 #ifdef notyet
2120 		m0->m_flags |= M_TSTMP;
2121 #endif
2122 	}
2123 
2124 #ifdef NUMA
2125 	m0->m_pkthdr.numa_domain = ifp->if_numa_domain;
2126 #endif
2127 #if defined(INET) || defined(INET6)
2128 	if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
2129 	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2130 	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2131 		if (sort_before_lro(lro)) {
2132 			tcp_lro_queue_mbuf(lro, m0);
2133 			return (0); /* queued for sort, then LRO */
2134 		}
2135 		if (tcp_lro_rx(lro, m0, 0) == 0)
2136 			return (0); /* queued for LRO */
2137 	}
2138 #endif
2139 	ifp->if_input(ifp, m0);
2140 
2141 	return (0);
2142 }
2143 
2144 /*
2145  * Must drain the wrq or make sure that someone else will.
2146  */
2147 static void
2148 wrq_tx_drain(void *arg, int n)
2149 {
2150 	struct sge_wrq *wrq = arg;
2151 	struct sge_eq *eq = &wrq->eq;
2152 
2153 	EQ_LOCK(eq);
2154 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2155 		drain_wrq_wr_list(wrq->adapter, wrq);
2156 	EQ_UNLOCK(eq);
2157 }
2158 
2159 static void
2160 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2161 {
2162 	struct sge_eq *eq = &wrq->eq;
2163 	u_int available, dbdiff;	/* # of hardware descriptors */
2164 	u_int n;
2165 	struct wrqe *wr;
2166 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2167 
2168 	EQ_LOCK_ASSERT_OWNED(eq);
2169 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2170 	wr = STAILQ_FIRST(&wrq->wr_list);
2171 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2172 	MPASS(eq->pidx == eq->dbidx);
2173 	dbdiff = 0;
2174 
2175 	do {
2176 		eq->cidx = read_hw_cidx(eq);
2177 		if (eq->pidx == eq->cidx)
2178 			available = eq->sidx - 1;
2179 		else
2180 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2181 
2182 		MPASS(wr->wrq == wrq);
2183 		n = howmany(wr->wr_len, EQ_ESIZE);
2184 		if (available < n)
2185 			break;
2186 
2187 		dst = (void *)&eq->desc[eq->pidx];
2188 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2189 			/* Won't wrap, won't end exactly at the status page. */
2190 			bcopy(&wr->wr[0], dst, wr->wr_len);
2191 			eq->pidx += n;
2192 		} else {
2193 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2194 
2195 			bcopy(&wr->wr[0], dst, first_portion);
2196 			if (wr->wr_len > first_portion) {
2197 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2198 				    wr->wr_len - first_portion);
2199 			}
2200 			eq->pidx = n - (eq->sidx - eq->pidx);
2201 		}
2202 		wrq->tx_wrs_copied++;
2203 
2204 		if (available < eq->sidx / 4 &&
2205 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2206 				/*
2207 				 * XXX: This is not 100% reliable with some
2208 				 * types of WRs.  But this is a very unusual
2209 				 * situation for an ofld/ctrl queue anyway.
2210 				 */
2211 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2212 			    F_FW_WR_EQUEQ);
2213 		}
2214 
2215 		dbdiff += n;
2216 		if (dbdiff >= 16) {
2217 			ring_eq_db(sc, eq, dbdiff);
2218 			dbdiff = 0;
2219 		}
2220 
2221 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2222 		free_wrqe(wr);
2223 		MPASS(wrq->nwr_pending > 0);
2224 		wrq->nwr_pending--;
2225 		MPASS(wrq->ndesc_needed >= n);
2226 		wrq->ndesc_needed -= n;
2227 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2228 
2229 	if (dbdiff)
2230 		ring_eq_db(sc, eq, dbdiff);
2231 }
2232 
2233 /*
2234  * Doesn't fail.  Holds on to work requests it can't send right away.
2235  */
2236 void
2237 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2238 {
2239 #ifdef INVARIANTS
2240 	struct sge_eq *eq = &wrq->eq;
2241 #endif
2242 
2243 	EQ_LOCK_ASSERT_OWNED(eq);
2244 	MPASS(wr != NULL);
2245 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2246 	MPASS((wr->wr_len & 0x7) == 0);
2247 
2248 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2249 	wrq->nwr_pending++;
2250 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2251 
2252 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2253 		return;	/* commit_wrq_wr will drain wr_list as well. */
2254 
2255 	drain_wrq_wr_list(sc, wrq);
2256 
2257 	/* Doorbell must have caught up to the pidx. */
2258 	MPASS(eq->pidx == eq->dbidx);
2259 }
2260 
2261 void
2262 t4_update_fl_bufsize(struct ifnet *ifp)
2263 {
2264 	struct vi_info *vi = ifp->if_softc;
2265 	struct adapter *sc = vi->adapter;
2266 	struct sge_rxq *rxq;
2267 #ifdef TCP_OFFLOAD
2268 	struct sge_ofld_rxq *ofld_rxq;
2269 #endif
2270 	struct sge_fl *fl;
2271 	int i, maxp;
2272 
2273 	maxp = max_rx_payload(sc, ifp, false);
2274 	for_each_rxq(vi, i, rxq) {
2275 		fl = &rxq->fl;
2276 
2277 		FL_LOCK(fl);
2278 		fl->zidx = find_refill_source(sc, maxp,
2279 		    fl->flags & FL_BUF_PACKING);
2280 		FL_UNLOCK(fl);
2281 	}
2282 #ifdef TCP_OFFLOAD
2283 	maxp = max_rx_payload(sc, ifp, true);
2284 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2285 		fl = &ofld_rxq->fl;
2286 
2287 		FL_LOCK(fl);
2288 		fl->zidx = find_refill_source(sc, maxp,
2289 		    fl->flags & FL_BUF_PACKING);
2290 		FL_UNLOCK(fl);
2291 	}
2292 #endif
2293 }
2294 
2295 static inline int
2296 mbuf_nsegs(struct mbuf *m)
2297 {
2298 
2299 	M_ASSERTPKTHDR(m);
2300 	KASSERT(m->m_pkthdr.inner_l5hlen > 0,
2301 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2302 
2303 	return (m->m_pkthdr.inner_l5hlen);
2304 }
2305 
2306 static inline void
2307 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2308 {
2309 
2310 	M_ASSERTPKTHDR(m);
2311 	m->m_pkthdr.inner_l5hlen = nsegs;
2312 }
2313 
2314 static inline int
2315 mbuf_cflags(struct mbuf *m)
2316 {
2317 
2318 	M_ASSERTPKTHDR(m);
2319 	return (m->m_pkthdr.PH_loc.eight[4]);
2320 }
2321 
2322 static inline void
2323 set_mbuf_cflags(struct mbuf *m, uint8_t flags)
2324 {
2325 
2326 	M_ASSERTPKTHDR(m);
2327 	m->m_pkthdr.PH_loc.eight[4] = flags;
2328 }
2329 
2330 static inline int
2331 mbuf_len16(struct mbuf *m)
2332 {
2333 	int n;
2334 
2335 	M_ASSERTPKTHDR(m);
2336 	n = m->m_pkthdr.PH_loc.eight[0];
2337 	if (!(mbuf_cflags(m) & MC_TLS))
2338 		MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2339 
2340 	return (n);
2341 }
2342 
2343 static inline void
2344 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2345 {
2346 
2347 	M_ASSERTPKTHDR(m);
2348 	if (!(mbuf_cflags(m) & MC_TLS))
2349 		MPASS(len16 > 0 && len16 <= SGE_MAX_WR_LEN / 16);
2350 	m->m_pkthdr.PH_loc.eight[0] = len16;
2351 }
2352 
2353 #ifdef RATELIMIT
2354 static inline int
2355 mbuf_eo_nsegs(struct mbuf *m)
2356 {
2357 
2358 	M_ASSERTPKTHDR(m);
2359 	return (m->m_pkthdr.PH_loc.eight[1]);
2360 }
2361 
2362 static inline void
2363 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2364 {
2365 
2366 	M_ASSERTPKTHDR(m);
2367 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2368 }
2369 
2370 static inline int
2371 mbuf_eo_len16(struct mbuf *m)
2372 {
2373 	int n;
2374 
2375 	M_ASSERTPKTHDR(m);
2376 	n = m->m_pkthdr.PH_loc.eight[2];
2377 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2378 
2379 	return (n);
2380 }
2381 
2382 static inline void
2383 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2384 {
2385 
2386 	M_ASSERTPKTHDR(m);
2387 	m->m_pkthdr.PH_loc.eight[2] = len16;
2388 }
2389 
2390 static inline int
2391 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2392 {
2393 
2394 	M_ASSERTPKTHDR(m);
2395 	return (m->m_pkthdr.PH_loc.eight[3]);
2396 }
2397 
2398 static inline void
2399 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2400 {
2401 
2402 	M_ASSERTPKTHDR(m);
2403 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2404 }
2405 
2406 static inline int
2407 needs_eo(struct m_snd_tag *mst)
2408 {
2409 
2410 	return (mst != NULL && mst->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2411 }
2412 #endif
2413 
2414 /*
2415  * Try to allocate an mbuf to contain a raw work request.  To make it
2416  * easy to construct the work request, don't allocate a chain but a
2417  * single mbuf.
2418  */
2419 struct mbuf *
2420 alloc_wr_mbuf(int len, int how)
2421 {
2422 	struct mbuf *m;
2423 
2424 	if (len <= MHLEN)
2425 		m = m_gethdr(how, MT_DATA);
2426 	else if (len <= MCLBYTES)
2427 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2428 	else
2429 		m = NULL;
2430 	if (m == NULL)
2431 		return (NULL);
2432 	m->m_pkthdr.len = len;
2433 	m->m_len = len;
2434 	set_mbuf_cflags(m, MC_RAW_WR);
2435 	set_mbuf_len16(m, howmany(len, 16));
2436 	return (m);
2437 }
2438 
2439 static inline bool
2440 needs_hwcsum(struct mbuf *m)
2441 {
2442 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
2443 	    CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2444 	    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
2445 	    CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
2446 	    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
2447 
2448 	M_ASSERTPKTHDR(m);
2449 
2450 	return (m->m_pkthdr.csum_flags & csum_flags);
2451 }
2452 
2453 static inline bool
2454 needs_tso(struct mbuf *m)
2455 {
2456 	const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
2457 	    CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2458 
2459 	M_ASSERTPKTHDR(m);
2460 
2461 	return (m->m_pkthdr.csum_flags & csum_flags);
2462 }
2463 
2464 static inline bool
2465 needs_vxlan_csum(struct mbuf *m)
2466 {
2467 
2468 	M_ASSERTPKTHDR(m);
2469 
2470 	return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
2471 }
2472 
2473 static inline bool
2474 needs_vxlan_tso(struct mbuf *m)
2475 {
2476 	const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
2477 	    CSUM_INNER_IP6_TSO;
2478 
2479 	M_ASSERTPKTHDR(m);
2480 
2481 	return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
2482 	    (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
2483 }
2484 
2485 static inline bool
2486 needs_inner_tcp_csum(struct mbuf *m)
2487 {
2488 	const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2489 
2490 	M_ASSERTPKTHDR(m);
2491 
2492 	return (m->m_pkthdr.csum_flags & csum_flags);
2493 }
2494 
2495 static inline bool
2496 needs_l3_csum(struct mbuf *m)
2497 {
2498 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
2499 	    CSUM_INNER_IP_TSO;
2500 
2501 	M_ASSERTPKTHDR(m);
2502 
2503 	return (m->m_pkthdr.csum_flags & csum_flags);
2504 }
2505 
2506 static inline bool
2507 needs_outer_tcp_csum(struct mbuf *m)
2508 {
2509 	const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
2510 	    CSUM_IP6_TSO;
2511 
2512 	M_ASSERTPKTHDR(m);
2513 
2514 	return (m->m_pkthdr.csum_flags & csum_flags);
2515 }
2516 
2517 #ifdef RATELIMIT
2518 static inline bool
2519 needs_outer_l4_csum(struct mbuf *m)
2520 {
2521 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
2522 	    CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
2523 
2524 	M_ASSERTPKTHDR(m);
2525 
2526 	return (m->m_pkthdr.csum_flags & csum_flags);
2527 }
2528 
2529 static inline bool
2530 needs_outer_udp_csum(struct mbuf *m)
2531 {
2532 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
2533 
2534 	M_ASSERTPKTHDR(m);
2535 
2536 	return (m->m_pkthdr.csum_flags & csum_flags);
2537 }
2538 #endif
2539 
2540 static inline bool
2541 needs_vlan_insertion(struct mbuf *m)
2542 {
2543 
2544 	M_ASSERTPKTHDR(m);
2545 
2546 	return (m->m_flags & M_VLANTAG);
2547 }
2548 
2549 static void *
2550 m_advance(struct mbuf **pm, int *poffset, int len)
2551 {
2552 	struct mbuf *m = *pm;
2553 	int offset = *poffset;
2554 	uintptr_t p = 0;
2555 
2556 	MPASS(len > 0);
2557 
2558 	for (;;) {
2559 		if (offset + len < m->m_len) {
2560 			offset += len;
2561 			p = mtod(m, uintptr_t) + offset;
2562 			break;
2563 		}
2564 		len -= m->m_len - offset;
2565 		m = m->m_next;
2566 		offset = 0;
2567 		MPASS(m != NULL);
2568 	}
2569 	*poffset = offset;
2570 	*pm = m;
2571 	return ((void *)p);
2572 }
2573 
2574 static inline int
2575 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2576 {
2577 	vm_paddr_t paddr;
2578 	int i, len, off, pglen, pgoff, seglen, segoff;
2579 	int nsegs = 0;
2580 
2581 	M_ASSERTEXTPG(m);
2582 	off = mtod(m, vm_offset_t);
2583 	len = m->m_len;
2584 	off += skip;
2585 	len -= skip;
2586 
2587 	if (m->m_epg_hdrlen != 0) {
2588 		if (off >= m->m_epg_hdrlen) {
2589 			off -= m->m_epg_hdrlen;
2590 		} else {
2591 			seglen = m->m_epg_hdrlen - off;
2592 			segoff = off;
2593 			seglen = min(seglen, len);
2594 			off = 0;
2595 			len -= seglen;
2596 			paddr = pmap_kextract(
2597 			    (vm_offset_t)&m->m_epg_hdr[segoff]);
2598 			if (*nextaddr != paddr)
2599 				nsegs++;
2600 			*nextaddr = paddr + seglen;
2601 		}
2602 	}
2603 	pgoff = m->m_epg_1st_off;
2604 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2605 		pglen = m_epg_pagelen(m, i, pgoff);
2606 		if (off >= pglen) {
2607 			off -= pglen;
2608 			pgoff = 0;
2609 			continue;
2610 		}
2611 		seglen = pglen - off;
2612 		segoff = pgoff + off;
2613 		off = 0;
2614 		seglen = min(seglen, len);
2615 		len -= seglen;
2616 		paddr = m->m_epg_pa[i] + segoff;
2617 		if (*nextaddr != paddr)
2618 			nsegs++;
2619 		*nextaddr = paddr + seglen;
2620 		pgoff = 0;
2621 	};
2622 	if (len != 0) {
2623 		seglen = min(len, m->m_epg_trllen - off);
2624 		len -= seglen;
2625 		paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2626 		if (*nextaddr != paddr)
2627 			nsegs++;
2628 		*nextaddr = paddr + seglen;
2629 	}
2630 
2631 	return (nsegs);
2632 }
2633 
2634 
2635 /*
2636  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2637  * must have at least one mbuf that's not empty.  It is possible for this
2638  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2639  */
2640 static inline int
2641 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2642 {
2643 	vm_paddr_t nextaddr, paddr;
2644 	vm_offset_t va;
2645 	int len, nsegs;
2646 
2647 	M_ASSERTPKTHDR(m);
2648 	MPASS(m->m_pkthdr.len > 0);
2649 	MPASS(m->m_pkthdr.len >= skip);
2650 
2651 	nsegs = 0;
2652 	nextaddr = 0;
2653 	for (; m; m = m->m_next) {
2654 		len = m->m_len;
2655 		if (__predict_false(len == 0))
2656 			continue;
2657 		if (skip >= len) {
2658 			skip -= len;
2659 			continue;
2660 		}
2661 		if ((m->m_flags & M_EXTPG) != 0) {
2662 			*cflags |= MC_NOMAP;
2663 			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2664 			skip = 0;
2665 			continue;
2666 		}
2667 		va = mtod(m, vm_offset_t) + skip;
2668 		len -= skip;
2669 		skip = 0;
2670 		paddr = pmap_kextract(va);
2671 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2672 		if (paddr == nextaddr)
2673 			nsegs--;
2674 		nextaddr = pmap_kextract(va + len - 1) + 1;
2675 	}
2676 
2677 	return (nsegs);
2678 }
2679 
2680 /*
2681  * The maximum number of segments that can fit in a WR.
2682  */
2683 static int
2684 max_nsegs_allowed(struct mbuf *m, bool vm_wr)
2685 {
2686 
2687 	if (vm_wr) {
2688 		if (needs_tso(m))
2689 			return (TX_SGL_SEGS_VM_TSO);
2690 		return (TX_SGL_SEGS_VM);
2691 	}
2692 
2693 	if (needs_tso(m)) {
2694 		if (needs_vxlan_tso(m))
2695 			return (TX_SGL_SEGS_VXLAN_TSO);
2696 		else
2697 			return (TX_SGL_SEGS_TSO);
2698 	}
2699 
2700 	return (TX_SGL_SEGS);
2701 }
2702 
2703 /*
2704  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2705  * a) caller can assume it's been freed if this function returns with an error.
2706  * b) it may get defragged up if the gather list is too long for the hardware.
2707  */
2708 int
2709 parse_pkt(struct mbuf **mp, bool vm_wr)
2710 {
2711 	struct mbuf *m0 = *mp, *m;
2712 	int rc, nsegs, defragged = 0, offset;
2713 	struct ether_header *eh;
2714 	void *l3hdr;
2715 #if defined(INET) || defined(INET6)
2716 	struct tcphdr *tcp;
2717 #endif
2718 #if defined(KERN_TLS) || defined(RATELIMIT)
2719 	struct m_snd_tag *mst;
2720 #endif
2721 	uint16_t eh_type;
2722 	uint8_t cflags;
2723 
2724 	cflags = 0;
2725 	M_ASSERTPKTHDR(m0);
2726 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2727 		rc = EINVAL;
2728 fail:
2729 		m_freem(m0);
2730 		*mp = NULL;
2731 		return (rc);
2732 	}
2733 restart:
2734 	/*
2735 	 * First count the number of gather list segments in the payload.
2736 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2737 	 */
2738 	M_ASSERTPKTHDR(m0);
2739 	MPASS(m0->m_pkthdr.len > 0);
2740 	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2741 #if defined(KERN_TLS) || defined(RATELIMIT)
2742 	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2743 		mst = m0->m_pkthdr.snd_tag;
2744 	else
2745 		mst = NULL;
2746 #endif
2747 #ifdef KERN_TLS
2748 	if (mst != NULL && mst->type == IF_SND_TAG_TYPE_TLS) {
2749 		int len16;
2750 
2751 		cflags |= MC_TLS;
2752 		set_mbuf_cflags(m0, cflags);
2753 		rc = t6_ktls_parse_pkt(m0, &nsegs, &len16);
2754 		if (rc != 0)
2755 			goto fail;
2756 		set_mbuf_nsegs(m0, nsegs);
2757 		set_mbuf_len16(m0, len16);
2758 		return (0);
2759 	}
2760 #endif
2761 	if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
2762 		if (defragged++ > 0) {
2763 			rc = EFBIG;
2764 			goto fail;
2765 		}
2766 		counter_u64_add(defrags, 1);
2767 		if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
2768 			rc = ENOMEM;
2769 			goto fail;
2770 		}
2771 		*mp = m0 = m;	/* update caller's copy after defrag */
2772 		goto restart;
2773 	}
2774 
2775 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2776 	    !(cflags & MC_NOMAP))) {
2777 		counter_u64_add(pullups, 1);
2778 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2779 		if (m0 == NULL) {
2780 			/* Should have left well enough alone. */
2781 			rc = EFBIG;
2782 			goto fail;
2783 		}
2784 		*mp = m0;	/* update caller's copy after pullup */
2785 		goto restart;
2786 	}
2787 	set_mbuf_nsegs(m0, nsegs);
2788 	set_mbuf_cflags(m0, cflags);
2789 	calculate_mbuf_len16(m0, vm_wr);
2790 
2791 #ifdef RATELIMIT
2792 	/*
2793 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2794 	 * checksumming is enabled.  needs_outer_l4_csum happens to check for
2795 	 * all the right things.
2796 	 */
2797 	if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
2798 		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2799 		m0->m_pkthdr.snd_tag = NULL;
2800 		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2801 		mst = NULL;
2802 	}
2803 #endif
2804 
2805 	if (!needs_hwcsum(m0)
2806 #ifdef RATELIMIT
2807    		 && !needs_eo(mst)
2808 #endif
2809 	)
2810 		return (0);
2811 
2812 	m = m0;
2813 	eh = mtod(m, struct ether_header *);
2814 	eh_type = ntohs(eh->ether_type);
2815 	if (eh_type == ETHERTYPE_VLAN) {
2816 		struct ether_vlan_header *evh = (void *)eh;
2817 
2818 		eh_type = ntohs(evh->evl_proto);
2819 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2820 	} else
2821 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2822 
2823 	offset = 0;
2824 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2825 
2826 	switch (eh_type) {
2827 #ifdef INET6
2828 	case ETHERTYPE_IPV6:
2829 		m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
2830 		break;
2831 #endif
2832 #ifdef INET
2833 	case ETHERTYPE_IP:
2834 	{
2835 		struct ip *ip = l3hdr;
2836 
2837 		if (needs_vxlan_csum(m0)) {
2838 			/* Driver will do the outer IP hdr checksum. */
2839 			ip->ip_sum = 0;
2840 			if (needs_vxlan_tso(m0)) {
2841 				const uint16_t ipl = ip->ip_len;
2842 
2843 				ip->ip_len = 0;
2844 				ip->ip_sum = ~in_cksum_hdr(ip);
2845 				ip->ip_len = ipl;
2846 			} else
2847 				ip->ip_sum = in_cksum_hdr(ip);
2848 		}
2849 		m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
2850 		break;
2851 	}
2852 #endif
2853 	default:
2854 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2855 		    " with the same INET/INET6 options as the kernel.",
2856 		    __func__, eh_type);
2857 	}
2858 
2859 	if (needs_vxlan_csum(m0)) {
2860 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2861 		m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
2862 
2863 		/* Inner headers. */
2864 		eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
2865 		    sizeof(struct udphdr) + sizeof(struct vxlan_header));
2866 		eh_type = ntohs(eh->ether_type);
2867 		if (eh_type == ETHERTYPE_VLAN) {
2868 			struct ether_vlan_header *evh = (void *)eh;
2869 
2870 			eh_type = ntohs(evh->evl_proto);
2871 			m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
2872 		} else
2873 			m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
2874 		l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2875 
2876 		switch (eh_type) {
2877 #ifdef INET6
2878 		case ETHERTYPE_IPV6:
2879 			m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
2880 			break;
2881 #endif
2882 #ifdef INET
2883 		case ETHERTYPE_IP:
2884 		{
2885 			struct ip *ip = l3hdr;
2886 
2887 			m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
2888 			break;
2889 		}
2890 #endif
2891 		default:
2892 			panic("%s: VXLAN hw offload requested with unknown "
2893 			    "ethertype 0x%04x.  if_cxgbe must be compiled"
2894 			    " with the same INET/INET6 options as the kernel.",
2895 			    __func__, eh_type);
2896 		}
2897 #if defined(INET) || defined(INET6)
2898 		if (needs_inner_tcp_csum(m0)) {
2899 			tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
2900 			m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
2901 		}
2902 #endif
2903 		MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
2904 		m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
2905 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
2906 		    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
2907 		    CSUM_ENCAP_VXLAN;
2908 	}
2909 
2910 #if defined(INET) || defined(INET6)
2911 	if (needs_outer_tcp_csum(m0)) {
2912 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2913 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2914 #ifdef RATELIMIT
2915 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2916 			set_mbuf_eo_tsclk_tsoff(m0,
2917 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2918 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2919 		} else
2920 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2921 	} else if (needs_outer_udp_csum(m0)) {
2922 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2923 #endif
2924 	}
2925 #ifdef RATELIMIT
2926 	if (needs_eo(mst)) {
2927 		u_int immhdrs;
2928 
2929 		/* EO WRs have the headers in the WR and not the GL. */
2930 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2931 		    m0->m_pkthdr.l4hlen;
2932 		cflags = 0;
2933 		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2934 		MPASS(cflags == mbuf_cflags(m0));
2935 		set_mbuf_eo_nsegs(m0, nsegs);
2936 		set_mbuf_eo_len16(m0,
2937 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2938 	}
2939 #endif
2940 #endif
2941 	MPASS(m0 == *mp);
2942 	return (0);
2943 }
2944 
2945 void *
2946 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2947 {
2948 	struct sge_eq *eq = &wrq->eq;
2949 	struct adapter *sc = wrq->adapter;
2950 	int ndesc, available;
2951 	struct wrqe *wr;
2952 	void *w;
2953 
2954 	MPASS(len16 > 0);
2955 	ndesc = tx_len16_to_desc(len16);
2956 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2957 
2958 	EQ_LOCK(eq);
2959 
2960 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2961 		drain_wrq_wr_list(sc, wrq);
2962 
2963 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2964 slowpath:
2965 		EQ_UNLOCK(eq);
2966 		wr = alloc_wrqe(len16 * 16, wrq);
2967 		if (__predict_false(wr == NULL))
2968 			return (NULL);
2969 		cookie->pidx = -1;
2970 		cookie->ndesc = ndesc;
2971 		return (&wr->wr);
2972 	}
2973 
2974 	eq->cidx = read_hw_cidx(eq);
2975 	if (eq->pidx == eq->cidx)
2976 		available = eq->sidx - 1;
2977 	else
2978 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2979 	if (available < ndesc)
2980 		goto slowpath;
2981 
2982 	cookie->pidx = eq->pidx;
2983 	cookie->ndesc = ndesc;
2984 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2985 
2986 	w = &eq->desc[eq->pidx];
2987 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2988 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2989 		w = &wrq->ss[0];
2990 		wrq->ss_pidx = cookie->pidx;
2991 		wrq->ss_len = len16 * 16;
2992 	}
2993 
2994 	EQ_UNLOCK(eq);
2995 
2996 	return (w);
2997 }
2998 
2999 void
3000 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
3001 {
3002 	struct sge_eq *eq = &wrq->eq;
3003 	struct adapter *sc = wrq->adapter;
3004 	int ndesc, pidx;
3005 	struct wrq_cookie *prev, *next;
3006 
3007 	if (cookie->pidx == -1) {
3008 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
3009 
3010 		t4_wrq_tx(sc, wr);
3011 		return;
3012 	}
3013 
3014 	if (__predict_false(w == &wrq->ss[0])) {
3015 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
3016 
3017 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
3018 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
3019 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
3020 		wrq->tx_wrs_ss++;
3021 	} else
3022 		wrq->tx_wrs_direct++;
3023 
3024 	EQ_LOCK(eq);
3025 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
3026 	pidx = cookie->pidx;
3027 	MPASS(pidx >= 0 && pidx < eq->sidx);
3028 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
3029 	next = TAILQ_NEXT(cookie, link);
3030 	if (prev == NULL) {
3031 		MPASS(pidx == eq->dbidx);
3032 		if (next == NULL || ndesc >= 16) {
3033 			int available;
3034 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
3035 
3036 			/*
3037 			 * Note that the WR via which we'll request tx updates
3038 			 * is at pidx and not eq->pidx, which has moved on
3039 			 * already.
3040 			 */
3041 			dst = (void *)&eq->desc[pidx];
3042 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3043 			if (available < eq->sidx / 4 &&
3044 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3045 				/*
3046 				 * XXX: This is not 100% reliable with some
3047 				 * types of WRs.  But this is a very unusual
3048 				 * situation for an ofld/ctrl queue anyway.
3049 				 */
3050 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
3051 				    F_FW_WR_EQUEQ);
3052 			}
3053 
3054 			ring_eq_db(wrq->adapter, eq, ndesc);
3055 		} else {
3056 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
3057 			next->pidx = pidx;
3058 			next->ndesc += ndesc;
3059 		}
3060 	} else {
3061 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
3062 		prev->ndesc += ndesc;
3063 	}
3064 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
3065 
3066 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
3067 		drain_wrq_wr_list(sc, wrq);
3068 
3069 #ifdef INVARIANTS
3070 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
3071 		/* Doorbell must have caught up to the pidx. */
3072 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
3073 	}
3074 #endif
3075 	EQ_UNLOCK(eq);
3076 }
3077 
3078 static u_int
3079 can_resume_eth_tx(struct mp_ring *r)
3080 {
3081 	struct sge_eq *eq = r->cookie;
3082 
3083 	return (total_available_tx_desc(eq) > eq->sidx / 8);
3084 }
3085 
3086 static inline bool
3087 cannot_use_txpkts(struct mbuf *m)
3088 {
3089 	/* maybe put a GL limit too, to avoid silliness? */
3090 
3091 	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
3092 }
3093 
3094 static inline int
3095 discard_tx(struct sge_eq *eq)
3096 {
3097 
3098 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
3099 }
3100 
3101 static inline int
3102 wr_can_update_eq(void *p)
3103 {
3104 	struct fw_eth_tx_pkts_wr *wr = p;
3105 
3106 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
3107 	case FW_ULPTX_WR:
3108 	case FW_ETH_TX_PKT_WR:
3109 	case FW_ETH_TX_PKTS_WR:
3110 	case FW_ETH_TX_PKTS2_WR:
3111 	case FW_ETH_TX_PKT_VM_WR:
3112 	case FW_ETH_TX_PKTS_VM_WR:
3113 		return (1);
3114 	default:
3115 		return (0);
3116 	}
3117 }
3118 
3119 static inline void
3120 set_txupdate_flags(struct sge_txq *txq, u_int avail,
3121     struct fw_eth_tx_pkt_wr *wr)
3122 {
3123 	struct sge_eq *eq = &txq->eq;
3124 	struct txpkts *txp = &txq->txp;
3125 
3126 	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
3127 	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3128 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3129 		eq->equeqidx = eq->pidx;
3130 	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
3131 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3132 		eq->equeqidx = eq->pidx;
3133 	}
3134 }
3135 
3136 /*
3137  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
3138  * be consumed.  Return the actual number consumed.  0 indicates a stall.
3139  */
3140 static u_int
3141 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
3142 {
3143 	struct sge_txq *txq = r->cookie;
3144 	struct ifnet *ifp = txq->ifp;
3145 	struct sge_eq *eq = &txq->eq;
3146 	struct txpkts *txp = &txq->txp;
3147 	struct vi_info *vi = ifp->if_softc;
3148 	struct adapter *sc = vi->adapter;
3149 	u_int total, remaining;		/* # of packets */
3150 	u_int n, avail, dbdiff;		/* # of hardware descriptors */
3151 	int i, rc;
3152 	struct mbuf *m0;
3153 	bool snd;
3154 	void *wr;	/* start of the last WR written to the ring */
3155 
3156 	TXQ_LOCK_ASSERT_OWNED(txq);
3157 
3158 	remaining = IDXDIFF(pidx, cidx, r->size);
3159 	if (__predict_false(discard_tx(eq))) {
3160 		for (i = 0; i < txp->npkt; i++)
3161 			m_freem(txp->mb[i]);
3162 		txp->npkt = 0;
3163 		while (cidx != pidx) {
3164 			m0 = r->items[cidx];
3165 			m_freem(m0);
3166 			if (++cidx == r->size)
3167 				cidx = 0;
3168 		}
3169 		reclaim_tx_descs(txq, eq->sidx);
3170 		*coalescing = false;
3171 		return (remaining);	/* emptied */
3172 	}
3173 
3174 	/* How many hardware descriptors do we have readily available. */
3175 	if (eq->pidx == eq->cidx) {
3176 		avail = eq->sidx - 1;
3177 		if (txp->score++ >= 5)
3178 			txp->score = 5;	/* tx is completely idle, reset. */
3179 	} else
3180 		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3181 
3182 	total = 0;
3183 	if (remaining == 0) {
3184 		if (txp->score-- == 1)	/* egr_update had to drain txpkts */
3185 			txp->score = 1;
3186 		goto send_txpkts;
3187 	}
3188 
3189 	dbdiff = 0;
3190 	MPASS(remaining > 0);
3191 	while (remaining > 0) {
3192 		m0 = r->items[cidx];
3193 		M_ASSERTPKTHDR(m0);
3194 		MPASS(m0->m_nextpkt == NULL);
3195 
3196 		if (avail < 2 * SGE_MAX_WR_NDESC)
3197 			avail += reclaim_tx_descs(txq, 64);
3198 
3199 		if (txp->npkt > 0 || remaining > 1 || txp->score > 3 ||
3200 		    atomic_load_int(&txq->eq.equiq) != 0) {
3201 			if (vi->flags & TX_USES_VM_WR)
3202 				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
3203 			else
3204 				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
3205 		} else {
3206 			snd = false;
3207 			rc = EINVAL;
3208 		}
3209 		if (snd) {
3210 			MPASS(txp->npkt > 0);
3211 			for (i = 0; i < txp->npkt; i++)
3212 				ETHER_BPF_MTAP(ifp, txp->mb[i]);
3213 			if (txp->npkt > 1) {
3214 				if (txp->score++ >= 10)
3215 					txp->score = 10;
3216 				MPASS(avail >= tx_len16_to_desc(txp->len16));
3217 				if (vi->flags & TX_USES_VM_WR)
3218 					n = write_txpkts_vm_wr(sc, txq);
3219 				else
3220 					n = write_txpkts_wr(sc, txq);
3221 			} else {
3222 				MPASS(avail >=
3223 				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3224 				if (vi->flags & TX_USES_VM_WR)
3225 					n = write_txpkt_vm_wr(sc, txq,
3226 					    txp->mb[0]);
3227 				else
3228 					n = write_txpkt_wr(sc, txq, txp->mb[0],
3229 					    avail);
3230 			}
3231 			MPASS(n <= SGE_MAX_WR_NDESC);
3232 			avail -= n;
3233 			dbdiff += n;
3234 			wr = &eq->desc[eq->pidx];
3235 			IDXINCR(eq->pidx, n, eq->sidx);
3236 			txp->npkt = 0;	/* emptied */
3237 		}
3238 		if (rc == 0) {
3239 			/* m0 was coalesced into txq->txpkts. */
3240 			goto next_mbuf;
3241 		}
3242 		if (rc == EAGAIN) {
3243 			/*
3244 			 * m0 is suitable for tx coalescing but could not be
3245 			 * combined with the existing txq->txpkts, which has now
3246 			 * been transmitted.  Start a new txpkts with m0.
3247 			 */
3248 			MPASS(snd);
3249 			MPASS(txp->npkt == 0);
3250 			continue;
3251 		}
3252 
3253 		MPASS(rc != 0 && rc != EAGAIN);
3254 		MPASS(txp->npkt == 0);
3255 
3256 		n = tx_len16_to_desc(mbuf_len16(m0));
3257 		if (__predict_false(avail < n)) {
3258 			avail += reclaim_tx_descs(txq, min(n, 32));
3259 			if (avail < n)
3260 				break;	/* out of descriptors */
3261 		}
3262 
3263 		wr = &eq->desc[eq->pidx];
3264 		if (mbuf_cflags(m0) & MC_RAW_WR) {
3265 			n = write_raw_wr(txq, wr, m0, avail);
3266 #ifdef KERN_TLS
3267 		} else if (mbuf_cflags(m0) & MC_TLS) {
3268 			ETHER_BPF_MTAP(ifp, m0);
3269 			n = t6_ktls_write_wr(txq, wr, m0, mbuf_nsegs(m0),
3270 			    avail);
3271 #endif
3272 		} else {
3273 			ETHER_BPF_MTAP(ifp, m0);
3274 			if (vi->flags & TX_USES_VM_WR)
3275 				n = write_txpkt_vm_wr(sc, txq, m0);
3276 			else
3277 				n = write_txpkt_wr(sc, txq, m0, avail);
3278 		}
3279 		MPASS(n >= 1 && n <= avail);
3280 		if (!(mbuf_cflags(m0) & MC_TLS))
3281 			MPASS(n <= SGE_MAX_WR_NDESC);
3282 
3283 		avail -= n;
3284 		dbdiff += n;
3285 		IDXINCR(eq->pidx, n, eq->sidx);
3286 
3287 		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3288 			if (wr_can_update_eq(wr))
3289 				set_txupdate_flags(txq, avail, wr);
3290 			ring_eq_db(sc, eq, dbdiff);
3291 			avail += reclaim_tx_descs(txq, 32);
3292 			dbdiff = 0;
3293 		}
3294 next_mbuf:
3295 		total++;
3296 		remaining--;
3297 		if (__predict_false(++cidx == r->size))
3298 			cidx = 0;
3299 	}
3300 	if (dbdiff != 0) {
3301 		if (wr_can_update_eq(wr))
3302 			set_txupdate_flags(txq, avail, wr);
3303 		ring_eq_db(sc, eq, dbdiff);
3304 		reclaim_tx_descs(txq, 32);
3305 	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3306 	    atomic_load_int(&txq->eq.equiq) == 0) {
3307 		/*
3308 		 * If nothing was submitted to the chip for tx (it was coalesced
3309 		 * into txpkts instead) and there is no tx update outstanding
3310 		 * then we need to send txpkts now.
3311 		 */
3312 send_txpkts:
3313 		MPASS(txp->npkt > 0);
3314 		for (i = 0; i < txp->npkt; i++)
3315 			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3316 		if (txp->npkt > 1) {
3317 			MPASS(avail >= tx_len16_to_desc(txp->len16));
3318 			if (vi->flags & TX_USES_VM_WR)
3319 				n = write_txpkts_vm_wr(sc, txq);
3320 			else
3321 				n = write_txpkts_wr(sc, txq);
3322 		} else {
3323 			MPASS(avail >=
3324 			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3325 			if (vi->flags & TX_USES_VM_WR)
3326 				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3327 			else
3328 				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3329 		}
3330 		MPASS(n <= SGE_MAX_WR_NDESC);
3331 		wr = &eq->desc[eq->pidx];
3332 		IDXINCR(eq->pidx, n, eq->sidx);
3333 		txp->npkt = 0;	/* emptied */
3334 
3335 		MPASS(wr_can_update_eq(wr));
3336 		set_txupdate_flags(txq, avail - n, wr);
3337 		ring_eq_db(sc, eq, n);
3338 		reclaim_tx_descs(txq, 32);
3339 	}
3340 	*coalescing = txp->npkt > 0;
3341 
3342 	return (total);
3343 }
3344 
3345 static inline void
3346 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3347     int qsize)
3348 {
3349 
3350 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3351 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3352 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3353 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3354 
3355 	iq->flags = 0;
3356 	iq->adapter = sc;
3357 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3358 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3359 	if (pktc_idx >= 0) {
3360 		iq->intr_params |= F_QINTR_CNT_EN;
3361 		iq->intr_pktc_idx = pktc_idx;
3362 	}
3363 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3364 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3365 }
3366 
3367 static inline void
3368 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3369 {
3370 
3371 	fl->qsize = qsize;
3372 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3373 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3374 	if (sc->flags & BUF_PACKING_OK &&
3375 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3376 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3377 		fl->flags |= FL_BUF_PACKING;
3378 	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3379 	fl->safe_zidx = sc->sge.safe_zidx;
3380 }
3381 
3382 static inline void
3383 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3384     uint8_t tx_chan, uint16_t iqid, char *name)
3385 {
3386 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
3387 
3388 	eq->flags = eqtype & EQ_TYPEMASK;
3389 	eq->tx_chan = tx_chan;
3390 	eq->iqid = iqid;
3391 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3392 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3393 }
3394 
3395 static int
3396 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3397     bus_dmamap_t *map, bus_addr_t *pa, void **va)
3398 {
3399 	int rc;
3400 
3401 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3402 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3403 	if (rc != 0) {
3404 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
3405 		goto done;
3406 	}
3407 
3408 	rc = bus_dmamem_alloc(*tag, va,
3409 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3410 	if (rc != 0) {
3411 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
3412 		goto done;
3413 	}
3414 
3415 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3416 	if (rc != 0) {
3417 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
3418 		goto done;
3419 	}
3420 done:
3421 	if (rc)
3422 		free_ring(sc, *tag, *map, *pa, *va);
3423 
3424 	return (rc);
3425 }
3426 
3427 static int
3428 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3429     bus_addr_t pa, void *va)
3430 {
3431 	if (pa)
3432 		bus_dmamap_unload(tag, map);
3433 	if (va)
3434 		bus_dmamem_free(tag, va, map);
3435 	if (tag)
3436 		bus_dma_tag_destroy(tag);
3437 
3438 	return (0);
3439 }
3440 
3441 /*
3442  * Allocates the ring for an ingress queue and an optional freelist.  If the
3443  * freelist is specified it will be allocated and then associated with the
3444  * ingress queue.
3445  *
3446  * Returns errno on failure.  Resources allocated up to that point may still be
3447  * allocated.  Caller is responsible for cleanup in case this function fails.
3448  *
3449  * If the ingress queue will take interrupts directly then the intr_idx
3450  * specifies the vector, starting from 0.  -1 means the interrupts for this
3451  * queue should be forwarded to the fwq.
3452  */
3453 static int
3454 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3455     int intr_idx, int cong)
3456 {
3457 	int rc, i, cntxt_id;
3458 	size_t len;
3459 	struct fw_iq_cmd c;
3460 	struct port_info *pi = vi->pi;
3461 	struct adapter *sc = iq->adapter;
3462 	struct sge_params *sp = &sc->params.sge;
3463 	__be32 v = 0;
3464 
3465 	len = iq->qsize * IQ_ESIZE;
3466 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3467 	    (void **)&iq->desc);
3468 	if (rc != 0)
3469 		return (rc);
3470 
3471 	bzero(&c, sizeof(c));
3472 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3473 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3474 	    V_FW_IQ_CMD_VFN(0));
3475 
3476 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3477 	    FW_LEN16(c));
3478 
3479 	/* Special handling for firmware event queue */
3480 	if (iq == &sc->sge.fwq)
3481 		v |= F_FW_IQ_CMD_IQASYNCH;
3482 
3483 	if (intr_idx < 0) {
3484 		/* Forwarded interrupts, all headed to fwq */
3485 		v |= F_FW_IQ_CMD_IQANDST;
3486 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3487 	} else {
3488 		KASSERT(intr_idx < sc->intr_count,
3489 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
3490 		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
3491 	}
3492 
3493 	c.type_to_iqandstindex = htobe32(v |
3494 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3495 	    V_FW_IQ_CMD_VIID(vi->viid) |
3496 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3497 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
3498 	    F_FW_IQ_CMD_IQGTSMODE |
3499 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3500 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3501 	c.iqsize = htobe16(iq->qsize);
3502 	c.iqaddr = htobe64(iq->ba);
3503 	if (cong >= 0)
3504 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3505 
3506 	if (fl) {
3507 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3508 
3509 		len = fl->qsize * EQ_ESIZE;
3510 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3511 		    &fl->ba, (void **)&fl->desc);
3512 		if (rc)
3513 			return (rc);
3514 
3515 		/* Allocate space for one software descriptor per buffer. */
3516 		rc = alloc_fl_sdesc(fl);
3517 		if (rc != 0) {
3518 			device_printf(sc->dev,
3519 			    "failed to setup fl software descriptors: %d\n",
3520 			    rc);
3521 			return (rc);
3522 		}
3523 
3524 		if (fl->flags & FL_BUF_PACKING) {
3525 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3526 			fl->buf_boundary = sp->pack_boundary;
3527 		} else {
3528 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3529 			fl->buf_boundary = 16;
3530 		}
3531 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3532 			fl->buf_boundary = sp->pad_boundary;
3533 
3534 		c.iqns_to_fl0congen |=
3535 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3536 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3537 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3538 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3539 			    0));
3540 		if (cong >= 0) {
3541 			c.iqns_to_fl0congen |=
3542 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
3543 				    F_FW_IQ_CMD_FL0CONGCIF |
3544 				    F_FW_IQ_CMD_FL0CONGEN);
3545 		}
3546 		c.fl0dcaen_to_fl0cidxfthresh =
3547 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3548 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3549 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3550 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3551 		c.fl0size = htobe16(fl->qsize);
3552 		c.fl0addr = htobe64(fl->ba);
3553 	}
3554 
3555 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3556 	if (rc != 0) {
3557 		device_printf(sc->dev,
3558 		    "failed to create ingress queue: %d\n", rc);
3559 		return (rc);
3560 	}
3561 
3562 	iq->cidx = 0;
3563 	iq->gen = F_RSPD_GEN;
3564 	iq->intr_next = iq->intr_params;
3565 	iq->cntxt_id = be16toh(c.iqid);
3566 	iq->abs_id = be16toh(c.physiqid);
3567 	iq->flags |= IQ_ALLOCATED;
3568 
3569 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3570 	if (cntxt_id >= sc->sge.iqmap_sz) {
3571 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3572 		    cntxt_id, sc->sge.iqmap_sz - 1);
3573 	}
3574 	sc->sge.iqmap[cntxt_id] = iq;
3575 
3576 	if (fl) {
3577 		u_int qid;
3578 
3579 		iq->flags |= IQ_HAS_FL;
3580 		fl->cntxt_id = be16toh(c.fl0id);
3581 		fl->pidx = fl->cidx = 0;
3582 
3583 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3584 		if (cntxt_id >= sc->sge.eqmap_sz) {
3585 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3586 			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
3587 		}
3588 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3589 
3590 		qid = fl->cntxt_id;
3591 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3592 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3593 			uint32_t mask = (1 << s_qpp) - 1;
3594 			volatile uint8_t *udb;
3595 
3596 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3597 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3598 			qid &= mask;
3599 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3600 				udb += qid << UDBS_SEG_SHIFT;
3601 				qid = 0;
3602 			}
3603 			fl->udb = (volatile void *)udb;
3604 		}
3605 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3606 
3607 		FL_LOCK(fl);
3608 		/* Enough to make sure the SGE doesn't think it's starved */
3609 		refill_fl(sc, fl, fl->lowat);
3610 		FL_UNLOCK(fl);
3611 	}
3612 
3613 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) {
3614 		uint32_t param, val;
3615 
3616 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3617 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3618 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
3619 		if (cong == 0)
3620 			val = 1 << 19;
3621 		else {
3622 			val = 2 << 19;
3623 			for (i = 0; i < 4; i++) {
3624 				if (cong & (1 << i))
3625 					val |= 1 << (i << 2);
3626 			}
3627 		}
3628 
3629 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3630 		if (rc != 0) {
3631 			/* report error but carry on */
3632 			device_printf(sc->dev,
3633 			    "failed to set congestion manager context for "
3634 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
3635 		}
3636 	}
3637 
3638 	/* Enable IQ interrupts */
3639 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3640 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3641 	    V_INGRESSQID(iq->cntxt_id));
3642 
3643 	return (0);
3644 }
3645 
3646 static int
3647 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3648 {
3649 	int rc;
3650 	struct adapter *sc = iq->adapter;
3651 	device_t dev;
3652 
3653 	if (sc == NULL)
3654 		return (0);	/* nothing to do */
3655 
3656 	dev = vi ? vi->dev : sc->dev;
3657 
3658 	if (iq->flags & IQ_ALLOCATED) {
3659 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
3660 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
3661 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
3662 		if (rc != 0) {
3663 			device_printf(dev,
3664 			    "failed to free queue %p: %d\n", iq, rc);
3665 			return (rc);
3666 		}
3667 		iq->flags &= ~IQ_ALLOCATED;
3668 	}
3669 
3670 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3671 
3672 	bzero(iq, sizeof(*iq));
3673 
3674 	if (fl) {
3675 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
3676 		    fl->desc);
3677 
3678 		if (fl->sdesc)
3679 			free_fl_sdesc(sc, fl);
3680 
3681 		if (mtx_initialized(&fl->fl_lock))
3682 			mtx_destroy(&fl->fl_lock);
3683 
3684 		bzero(fl, sizeof(*fl));
3685 	}
3686 
3687 	return (0);
3688 }
3689 
3690 static void
3691 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3692     struct sge_iq *iq)
3693 {
3694 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3695 
3696 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3697 	    "bus address of descriptor ring");
3698 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3699 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3700 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3701 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &iq->abs_id, 0,
3702 	    sysctl_uint16, "I", "absolute id of the queue");
3703 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3704 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &iq->cntxt_id, 0,
3705 	    sysctl_uint16, "I", "SGE context id of the queue");
3706 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3707 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &iq->cidx, 0,
3708 	    sysctl_uint16, "I", "consumer index");
3709 }
3710 
3711 static void
3712 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3713     struct sysctl_oid *oid, struct sge_fl *fl)
3714 {
3715 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3716 
3717 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3718 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3719 	children = SYSCTL_CHILDREN(oid);
3720 
3721 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3722 	    &fl->ba, "bus address of descriptor ring");
3723 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3724 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3725 	    "desc ring size in bytes");
3726 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3727 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &fl->cntxt_id, 0,
3728 	    sysctl_uint16, "I", "SGE context id of the freelist");
3729 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3730 	    fl_pad ? 1 : 0, "padding enabled");
3731 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3732 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3733 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3734 	    0, "consumer index");
3735 	if (fl->flags & FL_BUF_PACKING) {
3736 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3737 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3738 	}
3739 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3740 	    0, "producer index");
3741 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3742 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3743 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3744 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3745 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3746 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3747 }
3748 
3749 static int
3750 alloc_fwq(struct adapter *sc)
3751 {
3752 	int rc, intr_idx;
3753 	struct sge_iq *fwq = &sc->sge.fwq;
3754 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
3755 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3756 
3757 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
3758 	if (sc->flags & IS_VF)
3759 		intr_idx = 0;
3760 	else
3761 		intr_idx = sc->intr_count > 1 ? 1 : 0;
3762 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
3763 	if (rc != 0) {
3764 		device_printf(sc->dev,
3765 		    "failed to create firmware event queue: %d\n", rc);
3766 		return (rc);
3767 	}
3768 
3769 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq",
3770 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
3771 	add_iq_sysctls(&sc->ctx, oid, fwq);
3772 
3773 	return (0);
3774 }
3775 
3776 static int
3777 free_fwq(struct adapter *sc)
3778 {
3779 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
3780 }
3781 
3782 static int
3783 alloc_ctrlq(struct adapter *sc, struct sge_wrq *ctrlq, int idx,
3784     struct sysctl_oid *oid)
3785 {
3786 	int rc;
3787 	char name[16];
3788 	struct sysctl_oid_list *children;
3789 
3790 	snprintf(name, sizeof(name), "%s ctrlq%d", device_get_nameunit(sc->dev),
3791 	    idx);
3792 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[idx]->tx_chan,
3793 	    sc->sge.fwq.cntxt_id, name);
3794 
3795 	children = SYSCTL_CHILDREN(oid);
3796 	snprintf(name, sizeof(name), "%d", idx);
3797 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, name,
3798 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ctrl queue");
3799 	rc = alloc_wrq(sc, NULL, ctrlq, oid);
3800 
3801 	return (rc);
3802 }
3803 
3804 int
3805 tnl_cong(struct port_info *pi, int drop)
3806 {
3807 
3808 	if (drop == -1)
3809 		return (-1);
3810 	else if (drop == 1)
3811 		return (0);
3812 	else
3813 		return (pi->rx_e_chan_map);
3814 }
3815 
3816 static int
3817 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
3818     struct sysctl_oid *oid)
3819 {
3820 	int rc;
3821 	struct adapter *sc = vi->adapter;
3822 	struct sysctl_oid_list *children;
3823 	char name[16];
3824 
3825 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
3826 	    tnl_cong(vi->pi, cong_drop));
3827 	if (rc != 0)
3828 		return (rc);
3829 
3830 	if (idx == 0)
3831 		sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3832 	else
3833 		KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3834 		    ("iq_base mismatch"));
3835 	KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3836 	    ("PF with non-zero iq_base"));
3837 
3838 	/*
3839 	 * The freelist is just barely above the starvation threshold right now,
3840 	 * fill it up a bit more.
3841 	 */
3842 	FL_LOCK(&rxq->fl);
3843 	refill_fl(sc, &rxq->fl, 128);
3844 	FL_UNLOCK(&rxq->fl);
3845 
3846 #if defined(INET) || defined(INET6)
3847 	rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs);
3848 	if (rc != 0)
3849 		return (rc);
3850 	MPASS(rxq->lro.ifp == vi->ifp);	/* also indicates LRO init'ed */
3851 
3852 	if (vi->ifp->if_capenable & IFCAP_LRO)
3853 		rxq->iq.flags |= IQ_LRO_ENABLED;
3854 #endif
3855 	if (vi->ifp->if_capenable & IFCAP_HWRXTSTMP)
3856 		rxq->iq.flags |= IQ_RX_TIMESTAMP;
3857 	rxq->ifp = vi->ifp;
3858 
3859 	children = SYSCTL_CHILDREN(oid);
3860 
3861 	snprintf(name, sizeof(name), "%d", idx);
3862 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name,
3863 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queue");
3864 	children = SYSCTL_CHILDREN(oid);
3865 
3866 	add_iq_sysctls(&vi->ctx, oid, &rxq->iq);
3867 #if defined(INET) || defined(INET6)
3868 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3869 	    &rxq->lro.lro_queued, 0, NULL);
3870 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3871 	    &rxq->lro.lro_flushed, 0, NULL);
3872 #endif
3873 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3874 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3875 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3876 	    CTLFLAG_RD, &rxq->vlan_extraction,
3877 	    "# of times hardware extracted 802.1Q tag");
3878 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vxlan_rxcsum",
3879 	    CTLFLAG_RD, &rxq->vxlan_rxcsum,
3880 	    "# of times hardware assisted with inner checksum (VXLAN) ");
3881 
3882 	add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl);
3883 
3884 	return (rc);
3885 }
3886 
3887 static int
3888 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3889 {
3890 	int rc;
3891 
3892 #if defined(INET) || defined(INET6)
3893 	if (rxq->lro.ifp) {
3894 		tcp_lro_free(&rxq->lro);
3895 		rxq->lro.ifp = NULL;
3896 	}
3897 #endif
3898 
3899 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3900 	if (rc == 0)
3901 		bzero(rxq, sizeof(*rxq));
3902 
3903 	return (rc);
3904 }
3905 
3906 #ifdef TCP_OFFLOAD
3907 static int
3908 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3909     int intr_idx, int idx, struct sysctl_oid *oid)
3910 {
3911 	struct port_info *pi = vi->pi;
3912 	int rc;
3913 	struct sysctl_oid_list *children;
3914 	char name[16];
3915 
3916 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0);
3917 	if (rc != 0)
3918 		return (rc);
3919 
3920 	children = SYSCTL_CHILDREN(oid);
3921 
3922 	snprintf(name, sizeof(name), "%d", idx);
3923 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name,
3924 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queue");
3925 	add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq);
3926 	add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl);
3927 
3928 	return (rc);
3929 }
3930 
3931 static int
3932 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3933 {
3934 	int rc;
3935 
3936 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3937 	if (rc == 0)
3938 		bzero(ofld_rxq, sizeof(*ofld_rxq));
3939 
3940 	return (rc);
3941 }
3942 #endif
3943 
3944 #ifdef DEV_NETMAP
3945 static int
3946 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3947     int idx, struct sysctl_oid *oid)
3948 {
3949 	int rc;
3950 	struct sysctl_oid_list *children;
3951 	struct sysctl_ctx_list *ctx;
3952 	char name[16];
3953 	size_t len;
3954 	struct adapter *sc = vi->adapter;
3955 	struct netmap_adapter *na = NA(vi->ifp);
3956 
3957 	MPASS(na != NULL);
3958 
3959 	len = vi->qsize_rxq * IQ_ESIZE;
3960 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3961 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3962 	if (rc != 0)
3963 		return (rc);
3964 
3965 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3966 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3967 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3968 	if (rc != 0)
3969 		return (rc);
3970 
3971 	nm_rxq->vi = vi;
3972 	nm_rxq->nid = idx;
3973 	nm_rxq->iq_cidx = 0;
3974 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3975 	nm_rxq->iq_gen = F_RSPD_GEN;
3976 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3977 	nm_rxq->fl_sidx = na->num_rx_desc;
3978 	nm_rxq->fl_sidx2 = nm_rxq->fl_sidx;	/* copy for rxsync cacheline */
3979 	nm_rxq->intr_idx = intr_idx;
3980 	nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID;
3981 
3982 	ctx = &vi->ctx;
3983 	children = SYSCTL_CHILDREN(oid);
3984 
3985 	snprintf(name, sizeof(name), "%d", idx);
3986 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name,
3987 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queue");
3988 	children = SYSCTL_CHILDREN(oid);
3989 
3990 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3991 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &nm_rxq->iq_abs_id,
3992 	    0, sysctl_uint16, "I", "absolute id of the queue");
3993 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3994 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &nm_rxq->iq_cntxt_id,
3995 	    0, sysctl_uint16, "I", "SGE context id of the queue");
3996 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3997 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &nm_rxq->iq_cidx, 0,
3998 	    sysctl_uint16, "I", "consumer index");
3999 
4000 	children = SYSCTL_CHILDREN(oid);
4001 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
4002 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
4003 	children = SYSCTL_CHILDREN(oid);
4004 
4005 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
4006 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &nm_rxq->fl_cntxt_id,
4007 	    0, sysctl_uint16, "I", "SGE context id of the freelist");
4008 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
4009 	    &nm_rxq->fl_cidx, 0, "consumer index");
4010 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
4011 	    &nm_rxq->fl_pidx, 0, "producer index");
4012 
4013 	return (rc);
4014 }
4015 
4016 
4017 static int
4018 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
4019 {
4020 	struct adapter *sc = vi->adapter;
4021 
4022 	if (vi->flags & VI_INIT_DONE)
4023 		MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID);
4024 	else
4025 		MPASS(nm_rxq->iq_cntxt_id == 0);
4026 
4027 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
4028 	    nm_rxq->iq_desc);
4029 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
4030 	    nm_rxq->fl_desc);
4031 
4032 	return (0);
4033 }
4034 
4035 static int
4036 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
4037     struct sysctl_oid *oid)
4038 {
4039 	int rc;
4040 	size_t len;
4041 	struct port_info *pi = vi->pi;
4042 	struct adapter *sc = pi->adapter;
4043 	struct netmap_adapter *na = NA(vi->ifp);
4044 	char name[16];
4045 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4046 
4047 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
4048 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
4049 	    &nm_txq->ba, (void **)&nm_txq->desc);
4050 	if (rc)
4051 		return (rc);
4052 
4053 	nm_txq->pidx = nm_txq->cidx = 0;
4054 	nm_txq->sidx = na->num_tx_desc;
4055 	nm_txq->nid = idx;
4056 	nm_txq->iqidx = iqidx;
4057 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
4058 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4059 	    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4060 	if (sc->params.fw_vers >= FW_VERSION32(1, 24, 11, 0))
4061 		nm_txq->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR));
4062 	else
4063 		nm_txq->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4064 	nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID;
4065 
4066 	snprintf(name, sizeof(name), "%d", idx);
4067 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name,
4068 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queue");
4069 	children = SYSCTL_CHILDREN(oid);
4070 
4071 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4072 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
4073 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
4074 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &nm_txq->cidx, 0,
4075 	    sysctl_uint16, "I", "consumer index");
4076 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
4077 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &nm_txq->pidx, 0,
4078 	    sysctl_uint16, "I", "producer index");
4079 
4080 	return (rc);
4081 }
4082 
4083 static int
4084 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
4085 {
4086 	struct adapter *sc = vi->adapter;
4087 
4088 	if (vi->flags & VI_INIT_DONE)
4089 		MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID);
4090 	else
4091 		MPASS(nm_txq->cntxt_id == 0);
4092 
4093 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
4094 	    nm_txq->desc);
4095 
4096 	return (0);
4097 }
4098 #endif
4099 
4100 /*
4101  * Returns a reasonable automatic cidx flush threshold for a given queue size.
4102  */
4103 static u_int
4104 qsize_to_fthresh(int qsize)
4105 {
4106 	u_int fthresh;
4107 
4108 	while (!powerof2(qsize))
4109 		qsize++;
4110 	fthresh = ilog2(qsize);
4111 	if (fthresh > X_CIDXFLUSHTHRESH_128)
4112 		fthresh = X_CIDXFLUSHTHRESH_128;
4113 
4114 	return (fthresh);
4115 }
4116 
4117 static int
4118 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
4119 {
4120 	int rc, cntxt_id;
4121 	struct fw_eq_ctrl_cmd c;
4122 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4123 
4124 	bzero(&c, sizeof(c));
4125 
4126 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
4127 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
4128 	    V_FW_EQ_CTRL_CMD_VFN(0));
4129 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
4130 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
4131 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
4132 	c.physeqid_pkd = htobe32(0);
4133 	c.fetchszm_to_iqid =
4134 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4135 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
4136 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
4137 	c.dcaen_to_eqsize =
4138 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4139 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4140 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4141 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4142 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
4143 	c.eqaddr = htobe64(eq->ba);
4144 
4145 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4146 	if (rc != 0) {
4147 		device_printf(sc->dev,
4148 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
4149 		return (rc);
4150 	}
4151 	eq->flags |= EQ_ALLOCATED;
4152 
4153 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
4154 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4155 	if (cntxt_id >= sc->sge.eqmap_sz)
4156 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4157 		cntxt_id, sc->sge.eqmap_sz - 1);
4158 	sc->sge.eqmap[cntxt_id] = eq;
4159 
4160 	return (rc);
4161 }
4162 
4163 static int
4164 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4165 {
4166 	int rc, cntxt_id;
4167 	struct fw_eq_eth_cmd c;
4168 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4169 
4170 	bzero(&c, sizeof(c));
4171 
4172 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
4173 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
4174 	    V_FW_EQ_ETH_CMD_VFN(0));
4175 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
4176 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
4177 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
4178 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
4179 	c.fetchszm_to_iqid =
4180 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
4181 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
4182 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
4183 	c.dcaen_to_eqsize =
4184 	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4185 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4186 		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4187 		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
4188 	c.eqaddr = htobe64(eq->ba);
4189 
4190 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4191 	if (rc != 0) {
4192 		device_printf(vi->dev,
4193 		    "failed to create Ethernet egress queue: %d\n", rc);
4194 		return (rc);
4195 	}
4196 	eq->flags |= EQ_ALLOCATED;
4197 
4198 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
4199 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4200 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4201 	if (cntxt_id >= sc->sge.eqmap_sz)
4202 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4203 		cntxt_id, sc->sge.eqmap_sz - 1);
4204 	sc->sge.eqmap[cntxt_id] = eq;
4205 
4206 	return (rc);
4207 }
4208 
4209 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4210 static int
4211 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4212 {
4213 	int rc, cntxt_id;
4214 	struct fw_eq_ofld_cmd c;
4215 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4216 
4217 	bzero(&c, sizeof(c));
4218 
4219 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
4220 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
4221 	    V_FW_EQ_OFLD_CMD_VFN(0));
4222 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
4223 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
4224 	c.fetchszm_to_iqid =
4225 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4226 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
4227 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
4228 	c.dcaen_to_eqsize =
4229 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4230 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4231 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4232 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4233 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
4234 	c.eqaddr = htobe64(eq->ba);
4235 
4236 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4237 	if (rc != 0) {
4238 		device_printf(vi->dev,
4239 		    "failed to create egress queue for TCP offload: %d\n", rc);
4240 		return (rc);
4241 	}
4242 	eq->flags |= EQ_ALLOCATED;
4243 
4244 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
4245 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4246 	if (cntxt_id >= sc->sge.eqmap_sz)
4247 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4248 		cntxt_id, sc->sge.eqmap_sz - 1);
4249 	sc->sge.eqmap[cntxt_id] = eq;
4250 
4251 	return (rc);
4252 }
4253 #endif
4254 
4255 static int
4256 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4257 {
4258 	int rc, qsize;
4259 	size_t len;
4260 
4261 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
4262 
4263 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4264 	len = qsize * EQ_ESIZE;
4265 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
4266 	    &eq->ba, (void **)&eq->desc);
4267 	if (rc)
4268 		return (rc);
4269 
4270 	eq->pidx = eq->cidx = eq->dbidx = 0;
4271 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4272 	eq->equeqidx = 0;
4273 	eq->doorbells = sc->doorbells;
4274 
4275 	switch (eq->flags & EQ_TYPEMASK) {
4276 	case EQ_CTRL:
4277 		rc = ctrl_eq_alloc(sc, eq);
4278 		break;
4279 
4280 	case EQ_ETH:
4281 		rc = eth_eq_alloc(sc, vi, eq);
4282 		break;
4283 
4284 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4285 	case EQ_OFLD:
4286 		rc = ofld_eq_alloc(sc, vi, eq);
4287 		break;
4288 #endif
4289 
4290 	default:
4291 		panic("%s: invalid eq type %d.", __func__,
4292 		    eq->flags & EQ_TYPEMASK);
4293 	}
4294 	if (rc != 0) {
4295 		device_printf(sc->dev,
4296 		    "failed to allocate egress queue(%d): %d\n",
4297 		    eq->flags & EQ_TYPEMASK, rc);
4298 	}
4299 
4300 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4301 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4302 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4303 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4304 		uint32_t mask = (1 << s_qpp) - 1;
4305 		volatile uint8_t *udb;
4306 
4307 		udb = sc->udbs_base + UDBS_DB_OFFSET;
4308 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4309 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4310 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4311 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
4312 		else {
4313 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4314 			eq->udb_qid = 0;
4315 		}
4316 		eq->udb = (volatile void *)udb;
4317 	}
4318 
4319 	return (rc);
4320 }
4321 
4322 static int
4323 free_eq(struct adapter *sc, struct sge_eq *eq)
4324 {
4325 	int rc;
4326 
4327 	if (eq->flags & EQ_ALLOCATED) {
4328 		switch (eq->flags & EQ_TYPEMASK) {
4329 		case EQ_CTRL:
4330 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
4331 			    eq->cntxt_id);
4332 			break;
4333 
4334 		case EQ_ETH:
4335 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
4336 			    eq->cntxt_id);
4337 			break;
4338 
4339 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4340 		case EQ_OFLD:
4341 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
4342 			    eq->cntxt_id);
4343 			break;
4344 #endif
4345 
4346 		default:
4347 			panic("%s: invalid eq type %d.", __func__,
4348 			    eq->flags & EQ_TYPEMASK);
4349 		}
4350 		if (rc != 0) {
4351 			device_printf(sc->dev,
4352 			    "failed to free egress queue (%d): %d\n",
4353 			    eq->flags & EQ_TYPEMASK, rc);
4354 			return (rc);
4355 		}
4356 		eq->flags &= ~EQ_ALLOCATED;
4357 	}
4358 
4359 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4360 
4361 	if (mtx_initialized(&eq->eq_lock))
4362 		mtx_destroy(&eq->eq_lock);
4363 
4364 	bzero(eq, sizeof(*eq));
4365 	return (0);
4366 }
4367 
4368 static int
4369 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4370     struct sysctl_oid *oid)
4371 {
4372 	int rc;
4373 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
4374 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4375 
4376 	rc = alloc_eq(sc, vi, &wrq->eq);
4377 	if (rc)
4378 		return (rc);
4379 
4380 	wrq->adapter = sc;
4381 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4382 	TAILQ_INIT(&wrq->incomplete_wrs);
4383 	STAILQ_INIT(&wrq->wr_list);
4384 	wrq->nwr_pending = 0;
4385 	wrq->ndesc_needed = 0;
4386 
4387 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
4388 	    &wrq->eq.ba, "bus address of descriptor ring");
4389 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4390 	    wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len,
4391 	    "desc ring size in bytes");
4392 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4393 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
4394 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
4395 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &wrq->eq.cidx, 0,
4396 	    sysctl_uint16, "I", "consumer index");
4397 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
4398 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &wrq->eq.pidx, 0,
4399 	    sysctl_uint16, "I", "producer index");
4400 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4401 	    wrq->eq.sidx, "status page index");
4402 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4403 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4404 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4405 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4406 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4407 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4408 
4409 	return (rc);
4410 }
4411 
4412 static int
4413 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4414 {
4415 	int rc;
4416 
4417 	rc = free_eq(sc, &wrq->eq);
4418 	if (rc)
4419 		return (rc);
4420 
4421 	bzero(wrq, sizeof(*wrq));
4422 	return (0);
4423 }
4424 
4425 static int
4426 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
4427     struct sysctl_oid *oid)
4428 {
4429 	int rc;
4430 	struct port_info *pi = vi->pi;
4431 	struct adapter *sc = pi->adapter;
4432 	struct sge_eq *eq = &txq->eq;
4433 	struct txpkts *txp;
4434 	char name[16];
4435 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4436 
4437 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
4438 	    M_CXGBE, &eq->eq_lock, M_WAITOK);
4439 	if (rc != 0) {
4440 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
4441 		return (rc);
4442 	}
4443 
4444 	rc = alloc_eq(sc, vi, eq);
4445 	if (rc != 0) {
4446 		mp_ring_free(txq->r);
4447 		txq->r = NULL;
4448 		return (rc);
4449 	}
4450 
4451 	/* Can't fail after this point. */
4452 
4453 	if (idx == 0)
4454 		sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4455 	else
4456 		KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4457 		    ("eq_base mismatch"));
4458 	KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4459 	    ("PF with non-zero eq_base"));
4460 
4461 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4462 	txq->ifp = vi->ifp;
4463 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4464 	if (vi->flags & TX_USES_VM_WR)
4465 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4466 		    V_TXPKT_INTF(pi->tx_chan));
4467 	else
4468 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4469 		    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4470 		    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4471 	txq->tc_idx = -1;
4472 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4473 	    M_ZERO | M_WAITOK);
4474 
4475 	txp = &txq->txp;
4476 	txp->score = 5;
4477 	MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4478 	txq->txp.max_npkt = min(nitems(txp->mb),
4479 	    sc->params.max_pkts_per_eth_tx_pkts_wr);
4480 	if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
4481 		txq->txp.max_npkt--;
4482 
4483 	snprintf(name, sizeof(name), "%d", idx);
4484 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name,
4485 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queue");
4486 	children = SYSCTL_CHILDREN(oid);
4487 
4488 	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
4489 	    &eq->ba, "bus address of descriptor ring");
4490 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4491 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4492 	    "desc ring size in bytes");
4493 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4494 	    &eq->abs_id, 0, "absolute id of the queue");
4495 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4496 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4497 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
4498 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &eq->cidx, 0,
4499 	    sysctl_uint16, "I", "consumer index");
4500 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
4501 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &eq->pidx, 0,
4502 	    sysctl_uint16, "I", "producer index");
4503 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4504 	    eq->sidx, "status page index");
4505 
4506 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
4507 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, idx, sysctl_tc,
4508 	    "I", "traffic class (-1 means none)");
4509 
4510 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4511 	    &txq->txcsum, "# of times hardware assisted with checksum");
4512 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
4513 	    CTLFLAG_RD, &txq->vlan_insertion,
4514 	    "# of times hardware inserted 802.1Q tag");
4515 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4516 	    &txq->tso_wrs, "# of TSO work requests");
4517 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4518 	    &txq->imm_wrs, "# of work requests with immediate data");
4519 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4520 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4521 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4522 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4523 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
4524 	    CTLFLAG_RD, &txq->txpkts0_wrs,
4525 	    "# of txpkts (type 0) work requests");
4526 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
4527 	    CTLFLAG_RD, &txq->txpkts1_wrs,
4528 	    "# of txpkts (type 1) work requests");
4529 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
4530 	    CTLFLAG_RD, &txq->txpkts0_pkts,
4531 	    "# of frames tx'd using type0 txpkts work requests");
4532 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
4533 	    CTLFLAG_RD, &txq->txpkts1_pkts,
4534 	    "# of frames tx'd using type1 txpkts work requests");
4535 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4536 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4537 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vxlan_tso_wrs",
4538 	    CTLFLAG_RD, &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
4539 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vxlan_txcsum",
4540 	    CTLFLAG_RD, &txq->vxlan_txcsum,
4541 	    "# of times hardware assisted with inner checksums (VXLAN)");
4542 
4543 #ifdef KERN_TLS
4544 	if (sc->flags & KERN_TLS_OK) {
4545 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4546 		    "kern_tls_records", CTLFLAG_RD, &txq->kern_tls_records,
4547 		    "# of NIC TLS records transmitted");
4548 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4549 		    "kern_tls_short", CTLFLAG_RD, &txq->kern_tls_short,
4550 		    "# of short NIC TLS records transmitted");
4551 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4552 		    "kern_tls_partial", CTLFLAG_RD, &txq->kern_tls_partial,
4553 		    "# of partial NIC TLS records transmitted");
4554 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4555 		    "kern_tls_full", CTLFLAG_RD, &txq->kern_tls_full,
4556 		    "# of full NIC TLS records transmitted");
4557 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4558 		    "kern_tls_octets", CTLFLAG_RD, &txq->kern_tls_octets,
4559 		    "# of payload octets in transmitted NIC TLS records");
4560 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4561 		    "kern_tls_waste", CTLFLAG_RD, &txq->kern_tls_waste,
4562 		    "# of octets DMAd but not transmitted in NIC TLS records");
4563 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4564 		    "kern_tls_options", CTLFLAG_RD, &txq->kern_tls_options,
4565 		    "# of NIC TLS options-only packets transmitted");
4566 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4567 		    "kern_tls_header", CTLFLAG_RD, &txq->kern_tls_header,
4568 		    "# of NIC TLS header-only packets transmitted");
4569 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4570 		    "kern_tls_fin", CTLFLAG_RD, &txq->kern_tls_fin,
4571 		    "# of NIC TLS FIN-only packets transmitted");
4572 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4573 		    "kern_tls_fin_short", CTLFLAG_RD, &txq->kern_tls_fin_short,
4574 		    "# of NIC TLS padded FIN packets on short TLS records");
4575 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4576 		    "kern_tls_cbc", CTLFLAG_RD, &txq->kern_tls_cbc,
4577 		    "# of NIC TLS sessions using AES-CBC");
4578 		SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO,
4579 		    "kern_tls_gcm", CTLFLAG_RD, &txq->kern_tls_gcm,
4580 		    "# of NIC TLS sessions using AES-GCM");
4581 	}
4582 #endif
4583 	mp_ring_sysctls(txq->r, &vi->ctx, children);
4584 
4585 	return (0);
4586 }
4587 
4588 static int
4589 free_txq(struct vi_info *vi, struct sge_txq *txq)
4590 {
4591 	int rc;
4592 	struct adapter *sc = vi->adapter;
4593 	struct sge_eq *eq = &txq->eq;
4594 
4595 	rc = free_eq(sc, eq);
4596 	if (rc)
4597 		return (rc);
4598 
4599 	sglist_free(txq->gl);
4600 	free(txq->sdesc, M_CXGBE);
4601 	mp_ring_free(txq->r);
4602 
4603 	bzero(txq, sizeof(*txq));
4604 	return (0);
4605 }
4606 
4607 static void
4608 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4609 {
4610 	bus_addr_t *ba = arg;
4611 
4612 	KASSERT(nseg == 1,
4613 	    ("%s meant for single segment mappings only.", __func__));
4614 
4615 	*ba = error ? 0 : segs->ds_addr;
4616 }
4617 
4618 static inline void
4619 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4620 {
4621 	uint32_t n, v;
4622 
4623 	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
4624 	MPASS(n > 0);
4625 
4626 	wmb();
4627 	v = fl->dbval | V_PIDX(n);
4628 	if (fl->udb)
4629 		*fl->udb = htole32(v);
4630 	else
4631 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4632 	IDXINCR(fl->dbidx, n, fl->sidx);
4633 }
4634 
4635 /*
4636  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4637  * recycled do not count towards this allocation budget.
4638  *
4639  * Returns non-zero to indicate that this freelist should be added to the list
4640  * of starving freelists.
4641  */
4642 static int
4643 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4644 {
4645 	__be64 *d;
4646 	struct fl_sdesc *sd;
4647 	uintptr_t pa;
4648 	caddr_t cl;
4649 	struct rx_buf_info *rxb;
4650 	struct cluster_metadata *clm;
4651 	uint16_t max_pidx;
4652 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
4653 
4654 	FL_LOCK_ASSERT_OWNED(fl);
4655 
4656 	/*
4657 	 * We always stop at the beginning of the hardware descriptor that's just
4658 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
4659 	 * which would mean an empty freelist to the chip.
4660 	 */
4661 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
4662 	if (fl->pidx == max_pidx * 8)
4663 		return (0);
4664 
4665 	d = &fl->desc[fl->pidx];
4666 	sd = &fl->sdesc[fl->pidx];
4667 
4668 	while (n > 0) {
4669 
4670 		if (sd->cl != NULL) {
4671 
4672 			if (sd->nmbuf == 0) {
4673 				/*
4674 				 * Fast recycle without involving any atomics on
4675 				 * the cluster's metadata (if the cluster has
4676 				 * metadata).  This happens when all frames
4677 				 * received in the cluster were small enough to
4678 				 * fit within a single mbuf each.
4679 				 */
4680 				fl->cl_fast_recycled++;
4681 				goto recycled;
4682 			}
4683 
4684 			/*
4685 			 * Cluster is guaranteed to have metadata.  Clusters
4686 			 * without metadata always take the fast recycle path
4687 			 * when they're recycled.
4688 			 */
4689 			clm = cl_metadata(sd);
4690 			MPASS(clm != NULL);
4691 
4692 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4693 				fl->cl_recycled++;
4694 				counter_u64_add(extfree_rels, 1);
4695 				goto recycled;
4696 			}
4697 			sd->cl = NULL;	/* gave up my reference */
4698 		}
4699 		MPASS(sd->cl == NULL);
4700 		rxb = &sc->sge.rx_buf_info[fl->zidx];
4701 		cl = uma_zalloc(rxb->zone, M_NOWAIT);
4702 		if (__predict_false(cl == NULL)) {
4703 			if (fl->zidx != fl->safe_zidx) {
4704 				rxb = &sc->sge.rx_buf_info[fl->safe_zidx];
4705 				cl = uma_zalloc(rxb->zone, M_NOWAIT);
4706 			}
4707 			if (cl == NULL)
4708 				break;
4709 		}
4710 		fl->cl_allocated++;
4711 		n--;
4712 
4713 		pa = pmap_kextract((vm_offset_t)cl);
4714 		sd->cl = cl;
4715 		sd->zidx = fl->zidx;
4716 
4717 		if (fl->flags & FL_BUF_PACKING) {
4718 			*d = htobe64(pa | rxb->hwidx2);
4719 			sd->moff = rxb->size2;
4720 		} else {
4721 			*d = htobe64(pa | rxb->hwidx1);
4722 			sd->moff = 0;
4723 		}
4724 recycled:
4725 		sd->nmbuf = 0;
4726 		d++;
4727 		sd++;
4728 		if (__predict_false((++fl->pidx & 7) == 0)) {
4729 			uint16_t pidx = fl->pidx >> 3;
4730 
4731 			if (__predict_false(pidx == fl->sidx)) {
4732 				fl->pidx = 0;
4733 				pidx = 0;
4734 				sd = fl->sdesc;
4735 				d = fl->desc;
4736 			}
4737 			if (n < 8 || pidx == max_pidx)
4738 				break;
4739 
4740 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
4741 				ring_fl_db(sc, fl);
4742 		}
4743 	}
4744 
4745 	if ((fl->pidx >> 3) != fl->dbidx)
4746 		ring_fl_db(sc, fl);
4747 
4748 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
4749 }
4750 
4751 /*
4752  * Attempt to refill all starving freelists.
4753  */
4754 static void
4755 refill_sfl(void *arg)
4756 {
4757 	struct adapter *sc = arg;
4758 	struct sge_fl *fl, *fl_temp;
4759 
4760 	mtx_assert(&sc->sfl_lock, MA_OWNED);
4761 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
4762 		FL_LOCK(fl);
4763 		refill_fl(sc, fl, 64);
4764 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
4765 			TAILQ_REMOVE(&sc->sfl, fl, link);
4766 			fl->flags &= ~FL_STARVING;
4767 		}
4768 		FL_UNLOCK(fl);
4769 	}
4770 
4771 	if (!TAILQ_EMPTY(&sc->sfl))
4772 		callout_schedule(&sc->sfl_callout, hz / 5);
4773 }
4774 
4775 static int
4776 alloc_fl_sdesc(struct sge_fl *fl)
4777 {
4778 
4779 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
4780 	    M_ZERO | M_WAITOK);
4781 
4782 	return (0);
4783 }
4784 
4785 static void
4786 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
4787 {
4788 	struct fl_sdesc *sd;
4789 	struct cluster_metadata *clm;
4790 	int i;
4791 
4792 	sd = fl->sdesc;
4793 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
4794 		if (sd->cl == NULL)
4795 			continue;
4796 
4797 		if (sd->nmbuf == 0)
4798 			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
4799 		else if (fl->flags & FL_BUF_PACKING) {
4800 			clm = cl_metadata(sd);
4801 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4802 				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
4803 				    sd->cl);
4804 				counter_u64_add(extfree_rels, 1);
4805 			}
4806 		}
4807 		sd->cl = NULL;
4808 	}
4809 
4810 	free(fl->sdesc, M_CXGBE);
4811 	fl->sdesc = NULL;
4812 }
4813 
4814 static inline void
4815 get_pkt_gl(struct mbuf *m, struct sglist *gl)
4816 {
4817 	int rc;
4818 
4819 	M_ASSERTPKTHDR(m);
4820 
4821 	sglist_reset(gl);
4822 	rc = sglist_append_mbuf(gl, m);
4823 	if (__predict_false(rc != 0)) {
4824 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
4825 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
4826 	}
4827 
4828 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
4829 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
4830 	    mbuf_nsegs(m), gl->sg_nseg));
4831 #if 0	/* vm_wr not readily available here. */
4832 	KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
4833 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
4834 		gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
4835 #endif
4836 }
4837 
4838 /*
4839  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
4840  */
4841 static inline u_int
4842 txpkt_len16(u_int nsegs, const u_int extra)
4843 {
4844 	u_int n;
4845 
4846 	MPASS(nsegs > 0);
4847 
4848 	nsegs--; /* first segment is part of ulptx_sgl */
4849 	n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
4850 	    sizeof(struct cpl_tx_pkt_core) +
4851 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4852 
4853 	return (howmany(n, 16));
4854 }
4855 
4856 /*
4857  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
4858  * request header.
4859  */
4860 static inline u_int
4861 txpkt_vm_len16(u_int nsegs, const u_int extra)
4862 {
4863 	u_int n;
4864 
4865 	MPASS(nsegs > 0);
4866 
4867 	nsegs--; /* first segment is part of ulptx_sgl */
4868 	n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
4869 	    sizeof(struct cpl_tx_pkt_core) +
4870 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4871 
4872 	return (howmany(n, 16));
4873 }
4874 
4875 static inline void
4876 calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
4877 {
4878 	const int lso = sizeof(struct cpl_tx_pkt_lso_core);
4879 	const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
4880 
4881 	if (vm_wr) {
4882 		if (needs_tso(m))
4883 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
4884 		else
4885 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
4886 		return;
4887 	}
4888 
4889 	if (needs_tso(m)) {
4890 		if (needs_vxlan_tso(m))
4891 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
4892 		else
4893 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
4894 	} else
4895 		set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
4896 }
4897 
4898 /*
4899  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
4900  * request header.
4901  */
4902 static inline u_int
4903 txpkts0_len16(u_int nsegs)
4904 {
4905 	u_int n;
4906 
4907 	MPASS(nsegs > 0);
4908 
4909 	nsegs--; /* first segment is part of ulptx_sgl */
4910 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
4911 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
4912 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
4913 
4914 	return (howmany(n, 16));
4915 }
4916 
4917 /*
4918  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
4919  * request header.
4920  */
4921 static inline u_int
4922 txpkts1_len16(void)
4923 {
4924 	u_int n;
4925 
4926 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
4927 
4928 	return (howmany(n, 16));
4929 }
4930 
4931 static inline u_int
4932 imm_payload(u_int ndesc)
4933 {
4934 	u_int n;
4935 
4936 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
4937 	    sizeof(struct cpl_tx_pkt_core);
4938 
4939 	return (n);
4940 }
4941 
4942 static inline uint64_t
4943 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
4944 {
4945 	uint64_t ctrl;
4946 	int csum_type, l2hlen, l3hlen;
4947 	int x, y;
4948 	static const int csum_types[3][2] = {
4949 		{TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
4950 		{TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
4951 		{TX_CSUM_IP, 0}
4952 	};
4953 
4954 	M_ASSERTPKTHDR(m);
4955 
4956 	if (!needs_hwcsum(m))
4957 		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
4958 
4959 	MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
4960 	MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
4961 
4962 	if (needs_vxlan_csum(m)) {
4963 		MPASS(m->m_pkthdr.l4hlen > 0);
4964 		MPASS(m->m_pkthdr.l5hlen > 0);
4965 		MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
4966 		MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
4967 
4968 		l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
4969 		    m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
4970 		    m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
4971 		l3hlen = m->m_pkthdr.inner_l3hlen;
4972 	} else {
4973 		l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
4974 		l3hlen = m->m_pkthdr.l3hlen;
4975 	}
4976 
4977 	ctrl = 0;
4978 	if (!needs_l3_csum(m))
4979 		ctrl |= F_TXPKT_IPCSUM_DIS;
4980 
4981 	if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
4982 	    CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
4983 		x = 0;	/* TCP */
4984 	else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
4985 	    CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
4986 		x = 1;	/* UDP */
4987 	else
4988 		x = 2;
4989 
4990 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
4991 	    CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
4992 		y = 0;	/* IPv4 */
4993 	else {
4994 		MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
4995 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
4996 		y = 1;	/* IPv6 */
4997 	}
4998 	/*
4999 	 * needs_hwcsum returned true earlier so there must be some kind of
5000 	 * checksum to calculate.
5001 	 */
5002 	csum_type = csum_types[x][y];
5003 	MPASS(csum_type != 0);
5004 	if (csum_type == TX_CSUM_IP)
5005 		ctrl |= F_TXPKT_L4CSUM_DIS;
5006 	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
5007 	if (chip_id(sc) <= CHELSIO_T5)
5008 		ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
5009 	else
5010 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
5011 
5012 	return (ctrl);
5013 }
5014 
5015 static inline void *
5016 write_lso_cpl(void *cpl, struct mbuf *m0)
5017 {
5018 	struct cpl_tx_pkt_lso_core *lso;
5019 	uint32_t ctrl;
5020 
5021 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5022 	    m0->m_pkthdr.l4hlen > 0,
5023 	    ("%s: mbuf %p needs TSO but missing header lengths",
5024 		__func__, m0));
5025 
5026 	ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5027 	    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5028 	    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5029 	    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5030 	    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5031 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5032 		ctrl |= F_LSO_IPV6;
5033 
5034 	lso = cpl;
5035 	lso->lso_ctrl = htobe32(ctrl);
5036 	lso->ipid_ofst = htobe16(0);
5037 	lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5038 	lso->seqno_offset = htobe32(0);
5039 	lso->len = htobe32(m0->m_pkthdr.len);
5040 
5041 	return (lso + 1);
5042 }
5043 
5044 static void *
5045 write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
5046 {
5047 	struct cpl_tx_tnl_lso *tnl_lso = cpl;
5048 	uint32_t ctrl;
5049 
5050 	KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
5051 	    m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
5052 	    m0->m_pkthdr.inner_l5hlen > 0,
5053 	    ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
5054 		__func__, m0));
5055 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5056 	    m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
5057 	    ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
5058 		__func__, m0));
5059 
5060 	/* Outer headers. */
5061 	ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
5062 	    F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
5063 	    V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
5064 		(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5065 	    V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
5066 	    F_CPL_TX_TNL_LSO_IPLENSETOUT;
5067 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5068 		ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
5069 	else {
5070 		ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
5071 		    F_CPL_TX_TNL_LSO_IPIDINCOUT;
5072 	}
5073 	tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
5074 	tnl_lso->IpIdOffsetOut = 0;
5075 	tnl_lso->UdpLenSetOut_to_TnlHdrLen =
5076 		htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
5077 		    F_CPL_TX_TNL_LSO_UDPLENSETOUT |
5078 		    V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
5079 			m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
5080 			m0->m_pkthdr.l5hlen) |
5081 		    V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
5082 	tnl_lso->r1 = 0;
5083 
5084 	/* Inner headers. */
5085 	ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
5086 	    (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
5087 	    V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
5088 	    V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
5089 	if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
5090 		ctrl |= F_CPL_TX_TNL_LSO_IPV6;
5091 	tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
5092 	tnl_lso->IpIdOffset = 0;
5093 	tnl_lso->IpIdSplit_to_Mss =
5094 	    htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
5095 	tnl_lso->TCPSeqOffset = 0;
5096 	tnl_lso->EthLenOffset_Size =
5097 	    htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
5098 
5099 	return (tnl_lso + 1);
5100 }
5101 
5102 #define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
5103 
5104 /*
5105  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
5106  * software descriptor, and advance the pidx.  It is guaranteed that enough
5107  * descriptors are available.
5108  *
5109  * The return value is the # of hardware descriptors used.
5110  */
5111 static u_int
5112 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
5113 {
5114 	struct sge_eq *eq;
5115 	struct fw_eth_tx_pkt_vm_wr *wr;
5116 	struct tx_sdesc *txsd;
5117 	struct cpl_tx_pkt_core *cpl;
5118 	uint32_t ctrl;	/* used in many unrelated places */
5119 	uint64_t ctrl1;
5120 	int len16, ndesc, pktlen, nsegs;
5121 	caddr_t dst;
5122 
5123 	TXQ_LOCK_ASSERT_OWNED(txq);
5124 	M_ASSERTPKTHDR(m0);
5125 
5126 	len16 = mbuf_len16(m0);
5127 	nsegs = mbuf_nsegs(m0);
5128 	pktlen = m0->m_pkthdr.len;
5129 	ctrl = sizeof(struct cpl_tx_pkt_core);
5130 	if (needs_tso(m0))
5131 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5132 	ndesc = tx_len16_to_desc(len16);
5133 
5134 	/* Firmware work request header */
5135 	eq = &txq->eq;
5136 	wr = (void *)&eq->desc[eq->pidx];
5137 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
5138 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5139 
5140 	ctrl = V_FW_WR_LEN16(len16);
5141 	wr->equiq_to_len16 = htobe32(ctrl);
5142 	wr->r3[0] = 0;
5143 	wr->r3[1] = 0;
5144 
5145 	/*
5146 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
5147 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
5148 	 * simpler to always copy it rather than making it
5149 	 * conditional.  Also, it seems that we do not have to set
5150 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
5151 	 */
5152 	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
5153 
5154 	if (needs_tso(m0)) {
5155 		cpl = write_lso_cpl(wr + 1, m0);
5156 		txq->tso_wrs++;
5157 	} else
5158 		cpl = (void *)(wr + 1);
5159 
5160 	/* Checksum offload */
5161 	ctrl1 = csum_to_ctrl(sc, m0);
5162 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5163 		txq->txcsum++;	/* some hardware assistance provided */
5164 
5165 	/* VLAN tag insertion */
5166 	if (needs_vlan_insertion(m0)) {
5167 		ctrl1 |= F_TXPKT_VLAN_VLD |
5168 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5169 		txq->vlan_insertion++;
5170 	}
5171 
5172 	/* CPL header */
5173 	cpl->ctrl0 = txq->cpl_ctrl0;
5174 	cpl->pack = 0;
5175 	cpl->len = htobe16(pktlen);
5176 	cpl->ctrl1 = htobe64(ctrl1);
5177 
5178 	/* SGL */
5179 	dst = (void *)(cpl + 1);
5180 
5181 	/*
5182 	 * A packet using TSO will use up an entire descriptor for the
5183 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
5184 	 * If this descriptor is the last descriptor in the ring, wrap
5185 	 * around to the front of the ring explicitly for the start of
5186 	 * the sgl.
5187 	 */
5188 	if (dst == (void *)&eq->desc[eq->sidx]) {
5189 		dst = (void *)&eq->desc[0];
5190 		write_gl_to_txd(txq, m0, &dst, 0);
5191 	} else
5192 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5193 	txq->sgl_wrs++;
5194 	txq->txpkt_wrs++;
5195 
5196 	txsd = &txq->sdesc[eq->pidx];
5197 	txsd->m = m0;
5198 	txsd->desc_used = ndesc;
5199 
5200 	return (ndesc);
5201 }
5202 
5203 /*
5204  * Write a raw WR to the hardware descriptors, update the software
5205  * descriptor, and advance the pidx.  It is guaranteed that enough
5206  * descriptors are available.
5207  *
5208  * The return value is the # of hardware descriptors used.
5209  */
5210 static u_int
5211 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
5212 {
5213 	struct sge_eq *eq = &txq->eq;
5214 	struct tx_sdesc *txsd;
5215 	struct mbuf *m;
5216 	caddr_t dst;
5217 	int len16, ndesc;
5218 
5219 	len16 = mbuf_len16(m0);
5220 	ndesc = tx_len16_to_desc(len16);
5221 	MPASS(ndesc <= available);
5222 
5223 	dst = wr;
5224 	for (m = m0; m != NULL; m = m->m_next)
5225 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5226 
5227 	txq->raw_wrs++;
5228 
5229 	txsd = &txq->sdesc[eq->pidx];
5230 	txsd->m = m0;
5231 	txsd->desc_used = ndesc;
5232 
5233 	return (ndesc);
5234 }
5235 
5236 /*
5237  * Write a txpkt WR for this packet to the hardware descriptors, update the
5238  * software descriptor, and advance the pidx.  It is guaranteed that enough
5239  * descriptors are available.
5240  *
5241  * The return value is the # of hardware descriptors used.
5242  */
5243 static u_int
5244 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
5245     u_int available)
5246 {
5247 	struct sge_eq *eq;
5248 	struct fw_eth_tx_pkt_wr *wr;
5249 	struct tx_sdesc *txsd;
5250 	struct cpl_tx_pkt_core *cpl;
5251 	uint32_t ctrl;	/* used in many unrelated places */
5252 	uint64_t ctrl1;
5253 	int len16, ndesc, pktlen, nsegs;
5254 	caddr_t dst;
5255 
5256 	TXQ_LOCK_ASSERT_OWNED(txq);
5257 	M_ASSERTPKTHDR(m0);
5258 
5259 	len16 = mbuf_len16(m0);
5260 	nsegs = mbuf_nsegs(m0);
5261 	pktlen = m0->m_pkthdr.len;
5262 	ctrl = sizeof(struct cpl_tx_pkt_core);
5263 	if (needs_tso(m0)) {
5264 		if (needs_vxlan_tso(m0))
5265 			ctrl += sizeof(struct cpl_tx_tnl_lso);
5266 		else
5267 			ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5268 	} else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
5269 	    available >= 2) {
5270 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
5271 		ctrl += pktlen;
5272 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
5273 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
5274 		nsegs = 0;
5275 	}
5276 	ndesc = tx_len16_to_desc(len16);
5277 	MPASS(ndesc <= available);
5278 
5279 	/* Firmware work request header */
5280 	eq = &txq->eq;
5281 	wr = (void *)&eq->desc[eq->pidx];
5282 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
5283 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5284 
5285 	ctrl = V_FW_WR_LEN16(len16);
5286 	wr->equiq_to_len16 = htobe32(ctrl);
5287 	wr->r3 = 0;
5288 
5289 	if (needs_tso(m0)) {
5290 		if (needs_vxlan_tso(m0)) {
5291 			cpl = write_tnl_lso_cpl(wr + 1, m0);
5292 			txq->vxlan_tso_wrs++;
5293 		} else {
5294 			cpl = write_lso_cpl(wr + 1, m0);
5295 			txq->tso_wrs++;
5296 		}
5297 	} else
5298 		cpl = (void *)(wr + 1);
5299 
5300 	/* Checksum offload */
5301 	ctrl1 = csum_to_ctrl(sc, m0);
5302 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5303 		/* some hardware assistance provided */
5304 		if (needs_vxlan_csum(m0))
5305 			txq->vxlan_txcsum++;
5306 		else
5307 			txq->txcsum++;
5308 	}
5309 
5310 	/* VLAN tag insertion */
5311 	if (needs_vlan_insertion(m0)) {
5312 		ctrl1 |= F_TXPKT_VLAN_VLD |
5313 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5314 		txq->vlan_insertion++;
5315 	}
5316 
5317 	/* CPL header */
5318 	cpl->ctrl0 = txq->cpl_ctrl0;
5319 	cpl->pack = 0;
5320 	cpl->len = htobe16(pktlen);
5321 	cpl->ctrl1 = htobe64(ctrl1);
5322 
5323 	/* SGL */
5324 	dst = (void *)(cpl + 1);
5325 	if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
5326 		dst = (caddr_t)&eq->desc[0];
5327 	if (nsegs > 0) {
5328 
5329 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5330 		txq->sgl_wrs++;
5331 	} else {
5332 		struct mbuf *m;
5333 
5334 		for (m = m0; m != NULL; m = m->m_next) {
5335 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5336 #ifdef INVARIANTS
5337 			pktlen -= m->m_len;
5338 #endif
5339 		}
5340 #ifdef INVARIANTS
5341 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
5342 #endif
5343 		txq->imm_wrs++;
5344 	}
5345 
5346 	txq->txpkt_wrs++;
5347 
5348 	txsd = &txq->sdesc[eq->pidx];
5349 	txsd->m = m0;
5350 	txsd->desc_used = ndesc;
5351 
5352 	return (ndesc);
5353 }
5354 
5355 static inline bool
5356 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
5357 {
5358 	int len;
5359 
5360 	MPASS(txp->npkt > 0);
5361 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5362 
5363 	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5364 		len = VM_TX_L2HDR_LEN;
5365 	else
5366 		len = sizeof(struct ether_header);
5367 
5368 	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5369 }
5370 
5371 static inline void
5372 save_l2hdr(struct txpkts *txp, struct mbuf *m)
5373 {
5374 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5375 
5376 	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5377 }
5378 
5379 static int
5380 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5381     int avail, bool *send)
5382 {
5383 	struct txpkts *txp = &txq->txp;
5384 
5385 	/* Cannot have TSO and coalesce at the same time. */
5386 	if (cannot_use_txpkts(m)) {
5387 cannot_coalesce:
5388 		*send = txp->npkt > 0;
5389 		return (EINVAL);
5390 	}
5391 
5392 	/* VF allows coalescing of type 1 (1 GL) only */
5393 	if (mbuf_nsegs(m) > 1)
5394 		goto cannot_coalesce;
5395 
5396 	*send = false;
5397 	if (txp->npkt > 0) {
5398 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5399 		MPASS(txp->npkt < txp->max_npkt);
5400 		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5401 
5402 		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5403 retry_after_send:
5404 			*send = true;
5405 			return (EAGAIN);
5406 		}
5407 		if (m->m_pkthdr.len + txp->plen > 65535)
5408 			goto retry_after_send;
5409 		if (cmp_l2hdr(txp, m))
5410 			goto retry_after_send;
5411 
5412 		txp->len16 += txpkts1_len16();
5413 		txp->plen += m->m_pkthdr.len;
5414 		txp->mb[txp->npkt++] = m;
5415 		if (txp->npkt == txp->max_npkt)
5416 			*send = true;
5417 	} else {
5418 		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5419 		    txpkts1_len16();
5420 		if (tx_len16_to_desc(txp->len16) > avail)
5421 			goto cannot_coalesce;
5422 		txp->npkt = 1;
5423 		txp->wr_type = 1;
5424 		txp->plen = m->m_pkthdr.len;
5425 		txp->mb[0] = m;
5426 		save_l2hdr(txp, m);
5427 	}
5428 	return (0);
5429 }
5430 
5431 static int
5432 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5433     int avail, bool *send)
5434 {
5435 	struct txpkts *txp = &txq->txp;
5436 	int nsegs;
5437 
5438 	MPASS(!(sc->flags & IS_VF));
5439 
5440 	/* Cannot have TSO and coalesce at the same time. */
5441 	if (cannot_use_txpkts(m)) {
5442 cannot_coalesce:
5443 		*send = txp->npkt > 0;
5444 		return (EINVAL);
5445 	}
5446 
5447 	*send = false;
5448 	nsegs = mbuf_nsegs(m);
5449 	if (txp->npkt == 0) {
5450 		if (m->m_pkthdr.len > 65535)
5451 			goto cannot_coalesce;
5452 		if (nsegs > 1) {
5453 			txp->wr_type = 0;
5454 			txp->len16 =
5455 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5456 			    txpkts0_len16(nsegs);
5457 		} else {
5458 			txp->wr_type = 1;
5459 			txp->len16 =
5460 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5461 			    txpkts1_len16();
5462 		}
5463 		if (tx_len16_to_desc(txp->len16) > avail)
5464 			goto cannot_coalesce;
5465 		txp->npkt = 1;
5466 		txp->plen = m->m_pkthdr.len;
5467 		txp->mb[0] = m;
5468 	} else {
5469 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5470 		MPASS(txp->npkt < txp->max_npkt);
5471 
5472 		if (m->m_pkthdr.len + txp->plen > 65535) {
5473 retry_after_send:
5474 			*send = true;
5475 			return (EAGAIN);
5476 		}
5477 
5478 		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5479 		if (txp->wr_type == 0) {
5480 			if (tx_len16_to_desc(txp->len16 +
5481 			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
5482 				goto retry_after_send;
5483 			txp->len16 += txpkts0_len16(nsegs);
5484 		} else {
5485 			if (nsegs != 1)
5486 				goto retry_after_send;
5487 			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
5488 			    avail)
5489 				goto retry_after_send;
5490 			txp->len16 += txpkts1_len16();
5491 		}
5492 
5493 		txp->plen += m->m_pkthdr.len;
5494 		txp->mb[txp->npkt++] = m;
5495 		if (txp->npkt == txp->max_npkt)
5496 			*send = true;
5497 	}
5498 	return (0);
5499 }
5500 
5501 /*
5502  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
5503  * the software descriptor, and advance the pidx.  It is guaranteed that enough
5504  * descriptors are available.
5505  *
5506  * The return value is the # of hardware descriptors used.
5507  */
5508 static u_int
5509 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
5510 {
5511 	const struct txpkts *txp = &txq->txp;
5512 	struct sge_eq *eq = &txq->eq;
5513 	struct fw_eth_tx_pkts_wr *wr;
5514 	struct tx_sdesc *txsd;
5515 	struct cpl_tx_pkt_core *cpl;
5516 	uint64_t ctrl1;
5517 	int ndesc, i, checkwrap;
5518 	struct mbuf *m, *last;
5519 	void *flitp;
5520 
5521 	TXQ_LOCK_ASSERT_OWNED(txq);
5522 	MPASS(txp->npkt > 0);
5523 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5524 
5525 	wr = (void *)&eq->desc[eq->pidx];
5526 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
5527 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5528 	wr->plen = htobe16(txp->plen);
5529 	wr->npkt = txp->npkt;
5530 	wr->r3 = 0;
5531 	wr->type = txp->wr_type;
5532 	flitp = wr + 1;
5533 
5534 	/*
5535 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
5536 	 * set then we know the WR is going to wrap around somewhere.  We'll
5537 	 * check for that at appropriate points.
5538 	 */
5539 	ndesc = tx_len16_to_desc(txp->len16);
5540 	last = NULL;
5541 	checkwrap = eq->sidx - ndesc < eq->pidx;
5542 	for (i = 0; i < txp->npkt; i++) {
5543 		m = txp->mb[i];
5544 		if (txp->wr_type == 0) {
5545 			struct ulp_txpkt *ulpmc;
5546 			struct ulptx_idata *ulpsc;
5547 
5548 			/* ULP master command */
5549 			ulpmc = flitp;
5550 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
5551 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
5552 			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
5553 
5554 			/* ULP subcommand */
5555 			ulpsc = (void *)(ulpmc + 1);
5556 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
5557 			    F_ULP_TX_SC_MORE);
5558 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
5559 
5560 			cpl = (void *)(ulpsc + 1);
5561 			if (checkwrap &&
5562 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
5563 				cpl = (void *)&eq->desc[0];
5564 		} else {
5565 			cpl = flitp;
5566 		}
5567 
5568 		/* Checksum offload */
5569 		ctrl1 = csum_to_ctrl(sc, m);
5570 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5571 			/* some hardware assistance provided */
5572 			if (needs_vxlan_csum(m))
5573 				txq->vxlan_txcsum++;
5574 			else
5575 				txq->txcsum++;
5576 		}
5577 
5578 		/* VLAN tag insertion */
5579 		if (needs_vlan_insertion(m)) {
5580 			ctrl1 |= F_TXPKT_VLAN_VLD |
5581 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5582 			txq->vlan_insertion++;
5583 		}
5584 
5585 		/* CPL header */
5586 		cpl->ctrl0 = txq->cpl_ctrl0;
5587 		cpl->pack = 0;
5588 		cpl->len = htobe16(m->m_pkthdr.len);
5589 		cpl->ctrl1 = htobe64(ctrl1);
5590 
5591 		flitp = cpl + 1;
5592 		if (checkwrap &&
5593 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5594 			flitp = (void *)&eq->desc[0];
5595 
5596 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
5597 
5598 		if (last != NULL)
5599 			last->m_nextpkt = m;
5600 		last = m;
5601 	}
5602 
5603 	txq->sgl_wrs++;
5604 	if (txp->wr_type == 0) {
5605 		txq->txpkts0_pkts += txp->npkt;
5606 		txq->txpkts0_wrs++;
5607 	} else {
5608 		txq->txpkts1_pkts += txp->npkt;
5609 		txq->txpkts1_wrs++;
5610 	}
5611 
5612 	txsd = &txq->sdesc[eq->pidx];
5613 	txsd->m = txp->mb[0];
5614 	txsd->desc_used = ndesc;
5615 
5616 	return (ndesc);
5617 }
5618 
5619 static u_int
5620 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
5621 {
5622 	const struct txpkts *txp = &txq->txp;
5623 	struct sge_eq *eq = &txq->eq;
5624 	struct fw_eth_tx_pkts_vm_wr *wr;
5625 	struct tx_sdesc *txsd;
5626 	struct cpl_tx_pkt_core *cpl;
5627 	uint64_t ctrl1;
5628 	int ndesc, i;
5629 	struct mbuf *m, *last;
5630 	void *flitp;
5631 
5632 	TXQ_LOCK_ASSERT_OWNED(txq);
5633 	MPASS(txp->npkt > 0);
5634 	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5635 	MPASS(txp->mb[0] != NULL);
5636 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5637 
5638 	wr = (void *)&eq->desc[eq->pidx];
5639 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
5640 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5641 	wr->r3 = 0;
5642 	wr->plen = htobe16(txp->plen);
5643 	wr->npkt = txp->npkt;
5644 	wr->r4 = 0;
5645 	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
5646 	flitp = wr + 1;
5647 
5648 	/*
5649 	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
5650 	 * the WR will take 32B so we check for the end of the descriptor ring
5651 	 * before writing odd mbufs (mb[1], 3, 5, ..)
5652 	 */
5653 	ndesc = tx_len16_to_desc(txp->len16);
5654 	last = NULL;
5655 	for (i = 0; i < txp->npkt; i++) {
5656 		m = txp->mb[i];
5657 		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5658 			flitp = &eq->desc[0];
5659 		cpl = flitp;
5660 
5661 		/* Checksum offload */
5662 		ctrl1 = csum_to_ctrl(sc, m);
5663 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5664 			txq->txcsum++;	/* some hardware assistance provided */
5665 
5666 		/* VLAN tag insertion */
5667 		if (needs_vlan_insertion(m)) {
5668 			ctrl1 |= F_TXPKT_VLAN_VLD |
5669 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5670 			txq->vlan_insertion++;
5671 		}
5672 
5673 		/* CPL header */
5674 		cpl->ctrl0 = txq->cpl_ctrl0;
5675 		cpl->pack = 0;
5676 		cpl->len = htobe16(m->m_pkthdr.len);
5677 		cpl->ctrl1 = htobe64(ctrl1);
5678 
5679 		flitp = cpl + 1;
5680 		MPASS(mbuf_nsegs(m) == 1);
5681 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
5682 
5683 		if (last != NULL)
5684 			last->m_nextpkt = m;
5685 		last = m;
5686 	}
5687 
5688 	txq->sgl_wrs++;
5689 	txq->txpkts1_pkts += txp->npkt;
5690 	txq->txpkts1_wrs++;
5691 
5692 	txsd = &txq->sdesc[eq->pidx];
5693 	txsd->m = txp->mb[0];
5694 	txsd->desc_used = ndesc;
5695 
5696 	return (ndesc);
5697 }
5698 
5699 /*
5700  * If the SGL ends on an address that is not 16 byte aligned, this function will
5701  * add a 0 filled flit at the end.
5702  */
5703 static void
5704 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
5705 {
5706 	struct sge_eq *eq = &txq->eq;
5707 	struct sglist *gl = txq->gl;
5708 	struct sglist_seg *seg;
5709 	__be64 *flitp, *wrap;
5710 	struct ulptx_sgl *usgl;
5711 	int i, nflits, nsegs;
5712 
5713 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
5714 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
5715 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5716 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5717 
5718 	get_pkt_gl(m, gl);
5719 	nsegs = gl->sg_nseg;
5720 	MPASS(nsegs > 0);
5721 
5722 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
5723 	flitp = (__be64 *)(*to);
5724 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
5725 	seg = &gl->sg_segs[0];
5726 	usgl = (void *)flitp;
5727 
5728 	/*
5729 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
5730 	 * ring, so we're at least 16 bytes away from the status page.  There is
5731 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
5732 	 */
5733 
5734 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
5735 	    V_ULPTX_NSGE(nsegs));
5736 	usgl->len0 = htobe32(seg->ss_len);
5737 	usgl->addr0 = htobe64(seg->ss_paddr);
5738 	seg++;
5739 
5740 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
5741 
5742 		/* Won't wrap around at all */
5743 
5744 		for (i = 0; i < nsegs - 1; i++, seg++) {
5745 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
5746 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
5747 		}
5748 		if (i & 1)
5749 			usgl->sge[i / 2].len[1] = htobe32(0);
5750 		flitp += nflits;
5751 	} else {
5752 
5753 		/* Will wrap somewhere in the rest of the SGL */
5754 
5755 		/* 2 flits already written, write the rest flit by flit */
5756 		flitp = (void *)(usgl + 1);
5757 		for (i = 0; i < nflits - 2; i++) {
5758 			if (flitp == wrap)
5759 				flitp = (void *)eq->desc;
5760 			*flitp++ = get_flit(seg, nsegs - 1, i);
5761 		}
5762 	}
5763 
5764 	if (nflits & 1) {
5765 		MPASS(((uintptr_t)flitp) & 0xf);
5766 		*flitp++ = 0;
5767 	}
5768 
5769 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
5770 	if (__predict_false(flitp == wrap))
5771 		*to = (void *)eq->desc;
5772 	else
5773 		*to = (void *)flitp;
5774 }
5775 
5776 static inline void
5777 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
5778 {
5779 
5780 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5781 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5782 
5783 	if (__predict_true((uintptr_t)(*to) + len <=
5784 	    (uintptr_t)&eq->desc[eq->sidx])) {
5785 		bcopy(from, *to, len);
5786 		(*to) += len;
5787 	} else {
5788 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
5789 
5790 		bcopy(from, *to, portion);
5791 		from += portion;
5792 		portion = len - portion;	/* remaining */
5793 		bcopy(from, (void *)eq->desc, portion);
5794 		(*to) = (caddr_t)eq->desc + portion;
5795 	}
5796 }
5797 
5798 static inline void
5799 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
5800 {
5801 	u_int db;
5802 
5803 	MPASS(n > 0);
5804 
5805 	db = eq->doorbells;
5806 	if (n > 1)
5807 		clrbit(&db, DOORBELL_WCWR);
5808 	wmb();
5809 
5810 	switch (ffs(db) - 1) {
5811 	case DOORBELL_UDB:
5812 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
5813 		break;
5814 
5815 	case DOORBELL_WCWR: {
5816 		volatile uint64_t *dst, *src;
5817 		int i;
5818 
5819 		/*
5820 		 * Queues whose 128B doorbell segment fits in the page do not
5821 		 * use relative qid (udb_qid is always 0).  Only queues with
5822 		 * doorbell segments can do WCWR.
5823 		 */
5824 		KASSERT(eq->udb_qid == 0 && n == 1,
5825 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
5826 		    __func__, eq->doorbells, n, eq->dbidx, eq));
5827 
5828 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
5829 		    UDBS_DB_OFFSET);
5830 		i = eq->dbidx;
5831 		src = (void *)&eq->desc[i];
5832 		while (src != (void *)&eq->desc[i + 1])
5833 			*dst++ = *src++;
5834 		wmb();
5835 		break;
5836 	}
5837 
5838 	case DOORBELL_UDBWC:
5839 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
5840 		wmb();
5841 		break;
5842 
5843 	case DOORBELL_KDB:
5844 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
5845 		    V_QID(eq->cntxt_id) | V_PIDX(n));
5846 		break;
5847 	}
5848 
5849 	IDXINCR(eq->dbidx, n, eq->sidx);
5850 }
5851 
5852 static inline u_int
5853 reclaimable_tx_desc(struct sge_eq *eq)
5854 {
5855 	uint16_t hw_cidx;
5856 
5857 	hw_cidx = read_hw_cidx(eq);
5858 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
5859 }
5860 
5861 static inline u_int
5862 total_available_tx_desc(struct sge_eq *eq)
5863 {
5864 	uint16_t hw_cidx, pidx;
5865 
5866 	hw_cidx = read_hw_cidx(eq);
5867 	pidx = eq->pidx;
5868 
5869 	if (pidx == hw_cidx)
5870 		return (eq->sidx - 1);
5871 	else
5872 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
5873 }
5874 
5875 static inline uint16_t
5876 read_hw_cidx(struct sge_eq *eq)
5877 {
5878 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5879 	uint16_t cidx = spg->cidx;	/* stable snapshot */
5880 
5881 	return (be16toh(cidx));
5882 }
5883 
5884 /*
5885  * Reclaim 'n' descriptors approximately.
5886  */
5887 static u_int
5888 reclaim_tx_descs(struct sge_txq *txq, u_int n)
5889 {
5890 	struct tx_sdesc *txsd;
5891 	struct sge_eq *eq = &txq->eq;
5892 	u_int can_reclaim, reclaimed;
5893 
5894 	TXQ_LOCK_ASSERT_OWNED(txq);
5895 	MPASS(n > 0);
5896 
5897 	reclaimed = 0;
5898 	can_reclaim = reclaimable_tx_desc(eq);
5899 	while (can_reclaim && reclaimed < n) {
5900 		int ndesc;
5901 		struct mbuf *m, *nextpkt;
5902 
5903 		txsd = &txq->sdesc[eq->cidx];
5904 		ndesc = txsd->desc_used;
5905 
5906 		/* Firmware doesn't return "partial" credits. */
5907 		KASSERT(can_reclaim >= ndesc,
5908 		    ("%s: unexpected number of credits: %d, %d",
5909 		    __func__, can_reclaim, ndesc));
5910 		KASSERT(ndesc != 0,
5911 		    ("%s: descriptor with no credits: cidx %d",
5912 		    __func__, eq->cidx));
5913 
5914 		for (m = txsd->m; m != NULL; m = nextpkt) {
5915 			nextpkt = m->m_nextpkt;
5916 			m->m_nextpkt = NULL;
5917 			m_freem(m);
5918 		}
5919 		reclaimed += ndesc;
5920 		can_reclaim -= ndesc;
5921 		IDXINCR(eq->cidx, ndesc, eq->sidx);
5922 	}
5923 
5924 	return (reclaimed);
5925 }
5926 
5927 static void
5928 tx_reclaim(void *arg, int n)
5929 {
5930 	struct sge_txq *txq = arg;
5931 	struct sge_eq *eq = &txq->eq;
5932 
5933 	do {
5934 		if (TXQ_TRYLOCK(txq) == 0)
5935 			break;
5936 		n = reclaim_tx_descs(txq, 32);
5937 		if (eq->cidx == eq->pidx)
5938 			eq->equeqidx = eq->pidx;
5939 		TXQ_UNLOCK(txq);
5940 	} while (n > 0);
5941 }
5942 
5943 static __be64
5944 get_flit(struct sglist_seg *segs, int nsegs, int idx)
5945 {
5946 	int i = (idx / 3) * 2;
5947 
5948 	switch (idx % 3) {
5949 	case 0: {
5950 		uint64_t rc;
5951 
5952 		rc = (uint64_t)segs[i].ss_len << 32;
5953 		if (i + 1 < nsegs)
5954 			rc |= (uint64_t)(segs[i + 1].ss_len);
5955 
5956 		return (htobe64(rc));
5957 	}
5958 	case 1:
5959 		return (htobe64(segs[i].ss_paddr));
5960 	case 2:
5961 		return (htobe64(segs[i + 1].ss_paddr));
5962 	}
5963 
5964 	return (0);
5965 }
5966 
5967 static int
5968 find_refill_source(struct adapter *sc, int maxp, bool packing)
5969 {
5970 	int i, zidx = -1;
5971 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
5972 
5973 	if (packing) {
5974 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
5975 			if (rxb->hwidx2 == -1)
5976 				continue;
5977 			if (rxb->size1 < PAGE_SIZE &&
5978 			    rxb->size1 < largest_rx_cluster)
5979 				continue;
5980 			if (rxb->size1 > largest_rx_cluster)
5981 				break;
5982 			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
5983 			if (rxb->size2 >= maxp)
5984 				return (i);
5985 			zidx = i;
5986 		}
5987 	} else {
5988 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
5989 			if (rxb->hwidx1 == -1)
5990 				continue;
5991 			if (rxb->size1 > largest_rx_cluster)
5992 				break;
5993 			if (rxb->size1 >= maxp)
5994 				return (i);
5995 			zidx = i;
5996 		}
5997 	}
5998 
5999 	return (zidx);
6000 }
6001 
6002 static void
6003 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
6004 {
6005 	mtx_lock(&sc->sfl_lock);
6006 	FL_LOCK(fl);
6007 	if ((fl->flags & FL_DOOMED) == 0) {
6008 		fl->flags |= FL_STARVING;
6009 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
6010 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
6011 	}
6012 	FL_UNLOCK(fl);
6013 	mtx_unlock(&sc->sfl_lock);
6014 }
6015 
6016 static void
6017 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
6018 {
6019 	struct sge_wrq *wrq = (void *)eq;
6020 
6021 	atomic_readandclear_int(&eq->equiq);
6022 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
6023 }
6024 
6025 static void
6026 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
6027 {
6028 	struct sge_txq *txq = (void *)eq;
6029 
6030 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
6031 
6032 	atomic_readandclear_int(&eq->equiq);
6033 	if (mp_ring_is_idle(txq->r))
6034 		taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
6035 	else
6036 		mp_ring_check_drainage(txq->r, 64);
6037 }
6038 
6039 static int
6040 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
6041     struct mbuf *m)
6042 {
6043 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
6044 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
6045 	struct adapter *sc = iq->adapter;
6046 	struct sge *s = &sc->sge;
6047 	struct sge_eq *eq;
6048 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
6049 		&handle_wrq_egr_update, &handle_eth_egr_update,
6050 		&handle_wrq_egr_update};
6051 
6052 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6053 	    rss->opcode));
6054 
6055 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
6056 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
6057 
6058 	return (0);
6059 }
6060 
6061 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
6062 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
6063     offsetof(struct cpl_fw6_msg, data));
6064 
6065 static int
6066 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
6067 {
6068 	struct adapter *sc = iq->adapter;
6069 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
6070 
6071 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6072 	    rss->opcode));
6073 
6074 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
6075 		const struct rss_header *rss2;
6076 
6077 		rss2 = (const struct rss_header *)&cpl->data[0];
6078 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
6079 	}
6080 
6081 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
6082 }
6083 
6084 /**
6085  *	t4_handle_wrerr_rpl - process a FW work request error message
6086  *	@adap: the adapter
6087  *	@rpl: start of the FW message
6088  */
6089 static int
6090 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
6091 {
6092 	u8 opcode = *(const u8 *)rpl;
6093 	const struct fw_error_cmd *e = (const void *)rpl;
6094 	unsigned int i;
6095 
6096 	if (opcode != FW_ERROR_CMD) {
6097 		log(LOG_ERR,
6098 		    "%s: Received WRERR_RPL message with opcode %#x\n",
6099 		    device_get_nameunit(adap->dev), opcode);
6100 		return (EINVAL);
6101 	}
6102 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
6103 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
6104 	    "non-fatal");
6105 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
6106 	case FW_ERROR_TYPE_EXCEPTION:
6107 		log(LOG_ERR, "exception info:\n");
6108 		for (i = 0; i < nitems(e->u.exception.info); i++)
6109 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
6110 			    be32toh(e->u.exception.info[i]));
6111 		log(LOG_ERR, "\n");
6112 		break;
6113 	case FW_ERROR_TYPE_HWMODULE:
6114 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
6115 		    be32toh(e->u.hwmodule.regaddr),
6116 		    be32toh(e->u.hwmodule.regval));
6117 		break;
6118 	case FW_ERROR_TYPE_WR:
6119 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
6120 		    be16toh(e->u.wr.cidx),
6121 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
6122 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
6123 		    be32toh(e->u.wr.eqid));
6124 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
6125 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
6126 			    e->u.wr.wrhdr[i]);
6127 		log(LOG_ERR, "\n");
6128 		break;
6129 	case FW_ERROR_TYPE_ACL:
6130 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
6131 		    be16toh(e->u.acl.cidx),
6132 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
6133 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
6134 		    be32toh(e->u.acl.eqid),
6135 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
6136 		    "MAC");
6137 		for (i = 0; i < nitems(e->u.acl.val); i++)
6138 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
6139 		log(LOG_ERR, "\n");
6140 		break;
6141 	default:
6142 		log(LOG_ERR, "type %#x\n",
6143 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
6144 		return (EINVAL);
6145 	}
6146 	return (0);
6147 }
6148 
6149 static int
6150 sysctl_uint16(SYSCTL_HANDLER_ARGS)
6151 {
6152 	uint16_t *id = arg1;
6153 	int i = *id;
6154 
6155 	return sysctl_handle_int(oidp, &i, 0, req);
6156 }
6157 
6158 static inline bool
6159 bufidx_used(struct adapter *sc, int idx)
6160 {
6161 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6162 	int i;
6163 
6164 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6165 		if (rxb->size1 > largest_rx_cluster)
6166 			continue;
6167 		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
6168 			return (true);
6169 	}
6170 
6171 	return (false);
6172 }
6173 
6174 static int
6175 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
6176 {
6177 	struct adapter *sc = arg1;
6178 	struct sge_params *sp = &sc->params.sge;
6179 	int i, rc;
6180 	struct sbuf sb;
6181 	char c;
6182 
6183 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
6184 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
6185 		if (bufidx_used(sc, i))
6186 			c = '*';
6187 		else
6188 			c = '\0';
6189 
6190 		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
6191 	}
6192 	sbuf_trim(&sb);
6193 	sbuf_finish(&sb);
6194 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
6195 	sbuf_delete(&sb);
6196 	return (rc);
6197 }
6198 
6199 #ifdef RATELIMIT
6200 /*
6201  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
6202  */
6203 static inline u_int
6204 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
6205 {
6206 	u_int n;
6207 
6208 	MPASS(immhdrs > 0);
6209 
6210 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
6211 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
6212 	if (__predict_false(nsegs == 0))
6213 		goto done;
6214 
6215 	nsegs--; /* first segment is part of ulptx_sgl */
6216 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
6217 	if (tso)
6218 		n += sizeof(struct cpl_tx_pkt_lso_core);
6219 
6220 done:
6221 	return (howmany(n, 16));
6222 }
6223 
6224 #define ETID_FLOWC_NPARAMS 6
6225 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
6226     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
6227 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
6228 
6229 static int
6230 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
6231     struct vi_info *vi)
6232 {
6233 	struct wrq_cookie cookie;
6234 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
6235 	struct fw_flowc_wr *flowc;
6236 
6237 	mtx_assert(&cst->lock, MA_OWNED);
6238 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
6239 	    EO_FLOWC_PENDING);
6240 
6241 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLOWC_LEN16, &cookie);
6242 	if (__predict_false(flowc == NULL))
6243 		return (ENOMEM);
6244 
6245 	bzero(flowc, ETID_FLOWC_LEN);
6246 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6247 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
6248 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
6249 	    V_FW_WR_FLOWID(cst->etid));
6250 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
6251 	flowc->mnemval[0].val = htobe32(pfvf);
6252 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
6253 	flowc->mnemval[1].val = htobe32(pi->tx_chan);
6254 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
6255 	flowc->mnemval[2].val = htobe32(pi->tx_chan);
6256 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
6257 	flowc->mnemval[3].val = htobe32(cst->iqid);
6258 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
6259 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
6260 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
6261 	flowc->mnemval[5].val = htobe32(cst->schedcl);
6262 
6263 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
6264 
6265 	cst->flags &= ~EO_FLOWC_PENDING;
6266 	cst->flags |= EO_FLOWC_RPL_PENDING;
6267 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
6268 	cst->tx_credits -= ETID_FLOWC_LEN16;
6269 
6270 	return (0);
6271 }
6272 
6273 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
6274 
6275 void
6276 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
6277 {
6278 	struct fw_flowc_wr *flowc;
6279 	struct wrq_cookie cookie;
6280 
6281 	mtx_assert(&cst->lock, MA_OWNED);
6282 
6283 	flowc = start_wrq_wr(cst->eo_txq, ETID_FLUSH_LEN16, &cookie);
6284 	if (__predict_false(flowc == NULL))
6285 		CXGBE_UNIMPLEMENTED(__func__);
6286 
6287 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
6288 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6289 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
6290 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
6291 	    V_FW_WR_FLOWID(cst->etid));
6292 
6293 	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
6294 
6295 	cst->flags |= EO_FLUSH_RPL_PENDING;
6296 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
6297 	cst->tx_credits -= ETID_FLUSH_LEN16;
6298 	cst->ncompl++;
6299 }
6300 
6301 static void
6302 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
6303     struct mbuf *m0, int compl)
6304 {
6305 	struct cpl_tx_pkt_core *cpl;
6306 	uint64_t ctrl1;
6307 	uint32_t ctrl;	/* used in many unrelated places */
6308 	int len16, pktlen, nsegs, immhdrs;
6309 	caddr_t dst;
6310 	uintptr_t p;
6311 	struct ulptx_sgl *usgl;
6312 	struct sglist sg;
6313 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
6314 
6315 	mtx_assert(&cst->lock, MA_OWNED);
6316 	M_ASSERTPKTHDR(m0);
6317 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
6318 	    m0->m_pkthdr.l4hlen > 0,
6319 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
6320 
6321 	len16 = mbuf_eo_len16(m0);
6322 	nsegs = mbuf_eo_nsegs(m0);
6323 	pktlen = m0->m_pkthdr.len;
6324 	ctrl = sizeof(struct cpl_tx_pkt_core);
6325 	if (needs_tso(m0))
6326 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
6327 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
6328 	ctrl += immhdrs;
6329 
6330 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
6331 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
6332 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
6333 	    V_FW_WR_FLOWID(cst->etid));
6334 	wr->r3 = 0;
6335 	if (needs_outer_udp_csum(m0)) {
6336 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
6337 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
6338 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6339 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
6340 		wr->u.udpseg.rtplen = 0;
6341 		wr->u.udpseg.r4 = 0;
6342 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
6343 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
6344 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
6345 		cpl = (void *)(wr + 1);
6346 	} else {
6347 		MPASS(needs_outer_tcp_csum(m0));
6348 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
6349 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
6350 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6351 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
6352 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
6353 		wr->u.tcpseg.r4 = 0;
6354 		wr->u.tcpseg.r5 = 0;
6355 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
6356 
6357 		if (needs_tso(m0)) {
6358 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
6359 
6360 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
6361 
6362 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
6363 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
6364 			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6365 				ETHER_HDR_LEN) >> 2) |
6366 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6367 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6368 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6369 				ctrl |= F_LSO_IPV6;
6370 			lso->lso_ctrl = htobe32(ctrl);
6371 			lso->ipid_ofst = htobe16(0);
6372 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6373 			lso->seqno_offset = htobe32(0);
6374 			lso->len = htobe32(pktlen);
6375 
6376 			cpl = (void *)(lso + 1);
6377 		} else {
6378 			wr->u.tcpseg.mss = htobe16(0xffff);
6379 			cpl = (void *)(wr + 1);
6380 		}
6381 	}
6382 
6383 	/* Checksum offload must be requested for ethofld. */
6384 	MPASS(needs_outer_l4_csum(m0));
6385 	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6386 
6387 	/* VLAN tag insertion */
6388 	if (needs_vlan_insertion(m0)) {
6389 		ctrl1 |= F_TXPKT_VLAN_VLD |
6390 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6391 	}
6392 
6393 	/* CPL header */
6394 	cpl->ctrl0 = cst->ctrl0;
6395 	cpl->pack = 0;
6396 	cpl->len = htobe16(pktlen);
6397 	cpl->ctrl1 = htobe64(ctrl1);
6398 
6399 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6400 	p = (uintptr_t)(cpl + 1);
6401 	m_copydata(m0, 0, immhdrs, (void *)p);
6402 
6403 	/* SGL */
6404 	dst = (void *)(cpl + 1);
6405 	if (nsegs > 0) {
6406 		int i, pad;
6407 
6408 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6409 		p += immhdrs;
6410 		pad = 16 - (immhdrs & 0xf);
6411 		bzero((void *)p, pad);
6412 
6413 		usgl = (void *)(p + pad);
6414 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6415 		    V_ULPTX_NSGE(nsegs));
6416 
6417 		sglist_init(&sg, nitems(segs), segs);
6418 		for (; m0 != NULL; m0 = m0->m_next) {
6419 			if (__predict_false(m0->m_len == 0))
6420 				continue;
6421 			if (immhdrs >= m0->m_len) {
6422 				immhdrs -= m0->m_len;
6423 				continue;
6424 			}
6425 			if (m0->m_flags & M_EXTPG)
6426 				sglist_append_mbuf_epg(&sg, m0,
6427 				    mtod(m0, vm_offset_t), m0->m_len);
6428                         else
6429 				sglist_append(&sg, mtod(m0, char *) + immhdrs,
6430 				    m0->m_len - immhdrs);
6431 			immhdrs = 0;
6432 		}
6433 		MPASS(sg.sg_nseg == nsegs);
6434 
6435 		/*
6436 		 * Zero pad last 8B in case the WR doesn't end on a 16B
6437 		 * boundary.
6438 		 */
6439 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6440 
6441 		usgl->len0 = htobe32(segs[0].ss_len);
6442 		usgl->addr0 = htobe64(segs[0].ss_paddr);
6443 		for (i = 0; i < nsegs - 1; i++) {
6444 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6445 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6446 		}
6447 		if (i & 1)
6448 			usgl->sge[i / 2].len[1] = htobe32(0);
6449 	}
6450 
6451 }
6452 
6453 static void
6454 ethofld_tx(struct cxgbe_rate_tag *cst)
6455 {
6456 	struct mbuf *m;
6457 	struct wrq_cookie cookie;
6458 	int next_credits, compl;
6459 	struct fw_eth_tx_eo_wr *wr;
6460 
6461 	mtx_assert(&cst->lock, MA_OWNED);
6462 
6463 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6464 		M_ASSERTPKTHDR(m);
6465 
6466 		/* How many len16 credits do we need to send this mbuf. */
6467 		next_credits = mbuf_eo_len16(m);
6468 		MPASS(next_credits > 0);
6469 		if (next_credits > cst->tx_credits) {
6470 			/*
6471 			 * Tx will make progress eventually because there is at
6472 			 * least one outstanding fw4_ack that will return
6473 			 * credits and kick the tx.
6474 			 */
6475 			MPASS(cst->ncompl > 0);
6476 			return;
6477 		}
6478 		wr = start_wrq_wr(cst->eo_txq, next_credits, &cookie);
6479 		if (__predict_false(wr == NULL)) {
6480 			/* XXX: wishful thinking, not a real assertion. */
6481 			MPASS(cst->ncompl > 0);
6482 			return;
6483 		}
6484 		cst->tx_credits -= next_credits;
6485 		cst->tx_nocompl += next_credits;
6486 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
6487 		ETHER_BPF_MTAP(cst->com.ifp, m);
6488 		write_ethofld_wr(cst, wr, m, compl);
6489 		commit_wrq_wr(cst->eo_txq, wr, &cookie);
6490 		if (compl) {
6491 			cst->ncompl++;
6492 			cst->tx_nocompl	= 0;
6493 		}
6494 		(void) mbufq_dequeue(&cst->pending_tx);
6495 
6496 		/*
6497 		 * Drop the mbuf's reference on the tag now rather
6498 		 * than waiting until m_freem().  This ensures that
6499 		 * cxgbe_rate_tag_free gets called when the inp drops
6500 		 * its reference on the tag and there are no more
6501 		 * mbufs in the pending_tx queue and can flush any
6502 		 * pending requests.  Otherwise if the last mbuf
6503 		 * doesn't request a completion the etid will never be
6504 		 * released.
6505 		 */
6506 		m->m_pkthdr.snd_tag = NULL;
6507 		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
6508 		m_snd_tag_rele(&cst->com);
6509 
6510 		mbufq_enqueue(&cst->pending_fwack, m);
6511 	}
6512 }
6513 
6514 int
6515 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
6516 {
6517 	struct cxgbe_rate_tag *cst;
6518 	int rc;
6519 
6520 	MPASS(m0->m_nextpkt == NULL);
6521 	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
6522 	MPASS(m0->m_pkthdr.snd_tag != NULL);
6523 	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
6524 
6525 	mtx_lock(&cst->lock);
6526 	MPASS(cst->flags & EO_SND_TAG_REF);
6527 
6528 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
6529 		struct vi_info *vi = ifp->if_softc;
6530 		struct port_info *pi = vi->pi;
6531 		struct adapter *sc = pi->adapter;
6532 		const uint32_t rss_mask = vi->rss_size - 1;
6533 		uint32_t rss_hash;
6534 
6535 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
6536 		if (M_HASHTYPE_ISHASH(m0))
6537 			rss_hash = m0->m_pkthdr.flowid;
6538 		else
6539 			rss_hash = arc4random();
6540 		/* We assume RSS hashing */
6541 		cst->iqid = vi->rss[rss_hash & rss_mask];
6542 		cst->eo_txq += rss_hash % vi->nofldtxq;
6543 		rc = send_etid_flowc_wr(cst, pi, vi);
6544 		if (rc != 0)
6545 			goto done;
6546 	}
6547 
6548 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
6549 		rc = ENOBUFS;
6550 		goto done;
6551 	}
6552 
6553 	mbufq_enqueue(&cst->pending_tx, m0);
6554 	cst->plen += m0->m_pkthdr.len;
6555 
6556 	/*
6557 	 * Hold an extra reference on the tag while generating work
6558 	 * requests to ensure that we don't try to free the tag during
6559 	 * ethofld_tx() in case we are sending the final mbuf after
6560 	 * the inp was freed.
6561 	 */
6562 	m_snd_tag_ref(&cst->com);
6563 	ethofld_tx(cst);
6564 	mtx_unlock(&cst->lock);
6565 	m_snd_tag_rele(&cst->com);
6566 	return (0);
6567 
6568 done:
6569 	mtx_unlock(&cst->lock);
6570 	if (__predict_false(rc != 0))
6571 		m_freem(m0);
6572 	return (rc);
6573 }
6574 
6575 static int
6576 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
6577 {
6578 	struct adapter *sc = iq->adapter;
6579 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
6580 	struct mbuf *m;
6581 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
6582 	struct cxgbe_rate_tag *cst;
6583 	uint8_t credits = cpl->credits;
6584 
6585 	cst = lookup_etid(sc, etid);
6586 	mtx_lock(&cst->lock);
6587 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
6588 		MPASS(credits >= ETID_FLOWC_LEN16);
6589 		credits -= ETID_FLOWC_LEN16;
6590 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
6591 	}
6592 
6593 	KASSERT(cst->ncompl > 0,
6594 	    ("%s: etid %u (%p) wasn't expecting completion.",
6595 	    __func__, etid, cst));
6596 	cst->ncompl--;
6597 
6598 	while (credits > 0) {
6599 		m = mbufq_dequeue(&cst->pending_fwack);
6600 		if (__predict_false(m == NULL)) {
6601 			/*
6602 			 * The remaining credits are for the final flush that
6603 			 * was issued when the tag was freed by the kernel.
6604 			 */
6605 			MPASS((cst->flags &
6606 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
6607 			    EO_FLUSH_RPL_PENDING);
6608 			MPASS(credits == ETID_FLUSH_LEN16);
6609 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
6610 			MPASS(cst->ncompl == 0);
6611 
6612 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
6613 			cst->tx_credits += cpl->credits;
6614 			cxgbe_rate_tag_free_locked(cst);
6615 			return (0);	/* cst is gone. */
6616 		}
6617 		KASSERT(m != NULL,
6618 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
6619 		    credits));
6620 		KASSERT(credits >= mbuf_eo_len16(m),
6621 		    ("%s: too few credits (%u, %u, %u)", __func__,
6622 		    cpl->credits, credits, mbuf_eo_len16(m)));
6623 		credits -= mbuf_eo_len16(m);
6624 		cst->plen -= m->m_pkthdr.len;
6625 		m_freem(m);
6626 	}
6627 
6628 	cst->tx_credits += cpl->credits;
6629 	MPASS(cst->tx_credits <= cst->tx_total);
6630 
6631 	if (cst->flags & EO_SND_TAG_REF) {
6632 		/*
6633 		 * As with ethofld_transmit(), hold an extra reference
6634 		 * so that the tag is stable across ethold_tx().
6635 		 */
6636 		m_snd_tag_ref(&cst->com);
6637 		m = mbufq_first(&cst->pending_tx);
6638 		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
6639 			ethofld_tx(cst);
6640 		mtx_unlock(&cst->lock);
6641 		m_snd_tag_rele(&cst->com);
6642 	} else {
6643 		/*
6644 		 * There shouldn't be any pending packets if the tag
6645 		 * was freed by the kernel since any pending packet
6646 		 * should hold a reference to the tag.
6647 		 */
6648 		MPASS(mbufq_first(&cst->pending_tx) == NULL);
6649 		mtx_unlock(&cst->lock);
6650 	}
6651 
6652 	return (0);
6653 }
6654 #endif
6655