xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 2397aecf28352676c462122ead5ffe9b363b6cd0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ratelimit.h"
36 
37 #include <sys/types.h>
38 #include <sys/eventhandler.h>
39 #include <sys/mbuf.h>
40 #include <sys/socket.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/queue.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 #include <sys/time.h>
47 #include <sys/sglist.h>
48 #include <sys/sysctl.h>
49 #include <sys/smp.h>
50 #include <sys/counter.h>
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_vlan_var.h>
55 #include <netinet/in.h>
56 #include <netinet/ip.h>
57 #include <netinet/ip6.h>
58 #include <netinet/tcp.h>
59 #include <machine/in_cksum.h>
60 #include <machine/md_var.h>
61 #include <vm/vm.h>
62 #include <vm/pmap.h>
63 #ifdef DEV_NETMAP
64 #include <machine/bus.h>
65 #include <sys/selinfo.h>
66 #include <net/if_var.h>
67 #include <net/netmap.h>
68 #include <dev/netmap/netmap_kern.h>
69 #endif
70 
71 #include "common/common.h"
72 #include "common/t4_regs.h"
73 #include "common/t4_regs_values.h"
74 #include "common/t4_msg.h"
75 #include "t4_l2t.h"
76 #include "t4_mp_ring.h"
77 
78 #ifdef T4_PKT_TIMESTAMP
79 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
80 #else
81 #define RX_COPY_THRESHOLD MINCLSIZE
82 #endif
83 
84 /*
85  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
86  * 0-7 are valid values.
87  */
88 static int fl_pktshift = 2;
89 TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
90 
91 /*
92  * Pad ethernet payload up to this boundary.
93  * -1: driver should figure out a good value.
94  *  0: disable padding.
95  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
96  */
97 int fl_pad = -1;
98 TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
99 
100 /*
101  * Status page length.
102  * -1: driver should figure out a good value.
103  *  64 or 128 are the only other valid values.
104  */
105 static int spg_len = -1;
106 TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
107 
108 /*
109  * Congestion drops.
110  * -1: no congestion feedback (not recommended).
111  *  0: backpressure the channel instead of dropping packets right away.
112  *  1: no backpressure, drop packets for the congested queue immediately.
113  */
114 static int cong_drop = 0;
115 TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
116 
117 /*
118  * Deliver multiple frames in the same free list buffer if they fit.
119  * -1: let the driver decide whether to enable buffer packing or not.
120  *  0: disable buffer packing.
121  *  1: enable buffer packing.
122  */
123 static int buffer_packing = -1;
124 TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
125 
126 /*
127  * Start next frame in a packed buffer at this boundary.
128  * -1: driver should figure out a good value.
129  * T4: driver will ignore this and use the same value as fl_pad above.
130  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
131  */
132 static int fl_pack = -1;
133 TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
134 
135 /*
136  * Allow the driver to create mbuf(s) in a cluster allocated for rx.
137  * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
138  * 1: ok to create mbuf(s) within a cluster if there is room.
139  */
140 static int allow_mbufs_in_cluster = 1;
141 TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
142 
143 /*
144  * Largest rx cluster size that the driver is allowed to allocate.
145  */
146 static int largest_rx_cluster = MJUM16BYTES;
147 TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
148 
149 /*
150  * Size of cluster allocation that's most likely to succeed.  The driver will
151  * fall back to this size if it fails to allocate clusters larger than this.
152  */
153 static int safest_rx_cluster = PAGE_SIZE;
154 TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
155 
156 /*
157  * The interrupt holdoff timers are multiplied by this value on T6+.
158  * 1 and 3-17 (both inclusive) are legal values.
159  */
160 static int tscale = 1;
161 TUNABLE_INT("hw.cxgbe.tscale", &tscale);
162 
163 /*
164  * Number of LRO entries in the lro_ctrl structure per rx queue.
165  */
166 static int lro_entries = TCP_LRO_ENTRIES;
167 TUNABLE_INT("hw.cxgbe.lro_entries", &lro_entries);
168 
169 /*
170  * This enables presorting of frames before they're fed into tcp_lro_rx.
171  */
172 static int lro_mbufs = 0;
173 TUNABLE_INT("hw.cxgbe.lro_mbufs", &lro_mbufs);
174 
175 struct txpkts {
176 	u_int wr_type;		/* type 0 or type 1 */
177 	u_int npkt;		/* # of packets in this work request */
178 	u_int plen;		/* total payload (sum of all packets) */
179 	u_int len16;		/* # of 16B pieces used by this work request */
180 };
181 
182 /* A packet's SGL.  This + m_pkthdr has all info needed for tx */
183 struct sgl {
184 	struct sglist sg;
185 	struct sglist_seg seg[TX_SGL_SEGS];
186 };
187 
188 static int service_iq(struct sge_iq *, int);
189 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
190 static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
191 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
192 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
193 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
194     uint16_t, char *);
195 static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
196     bus_addr_t *, void **);
197 static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
198     void *);
199 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
200     int, int);
201 static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
202 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
203     struct sge_iq *);
204 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
205     struct sysctl_oid *, struct sge_fl *);
206 static int alloc_fwq(struct adapter *);
207 static int free_fwq(struct adapter *);
208 static int alloc_mgmtq(struct adapter *);
209 static int free_mgmtq(struct adapter *);
210 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
211     struct sysctl_oid *);
212 static int free_rxq(struct vi_info *, struct sge_rxq *);
213 #ifdef TCP_OFFLOAD
214 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
215     struct sysctl_oid *);
216 static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
217 #endif
218 #ifdef DEV_NETMAP
219 static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
220     struct sysctl_oid *);
221 static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
222 static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
223     struct sysctl_oid *);
224 static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
225 #endif
226 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
227 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
228 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
229 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
230 #endif
231 static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
232 static int free_eq(struct adapter *, struct sge_eq *);
233 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
234     struct sysctl_oid *);
235 static int free_wrq(struct adapter *, struct sge_wrq *);
236 static int alloc_txq(struct vi_info *, struct sge_txq *, int,
237     struct sysctl_oid *);
238 static int free_txq(struct vi_info *, struct sge_txq *);
239 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
240 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
241 static int refill_fl(struct adapter *, struct sge_fl *, int);
242 static void refill_sfl(void *);
243 static int alloc_fl_sdesc(struct sge_fl *);
244 static void free_fl_sdesc(struct adapter *, struct sge_fl *);
245 static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
246 static void find_safe_refill_source(struct adapter *, struct sge_fl *);
247 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
248 
249 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
250 static inline u_int txpkt_len16(u_int, u_int);
251 static inline u_int txpkt_vm_len16(u_int, u_int);
252 static inline u_int txpkts0_len16(u_int);
253 static inline u_int txpkts1_len16(void);
254 static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
255     struct mbuf *, u_int);
256 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
257     struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int);
258 static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
259 static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
260 static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
261     struct mbuf *, const struct txpkts *, u_int);
262 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
263 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
264 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
265 static inline uint16_t read_hw_cidx(struct sge_eq *);
266 static inline u_int reclaimable_tx_desc(struct sge_eq *);
267 static inline u_int total_available_tx_desc(struct sge_eq *);
268 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
269 static void tx_reclaim(void *, int);
270 static __be64 get_flit(struct sglist_seg *, int, int);
271 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
272     struct mbuf *);
273 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
274     struct mbuf *);
275 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
276 static void wrq_tx_drain(void *, int);
277 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
278 
279 static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
280 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
281 static int sysctl_tc(SYSCTL_HANDLER_ARGS);
282 
283 static counter_u64_t extfree_refs;
284 static counter_u64_t extfree_rels;
285 
286 an_handler_t t4_an_handler;
287 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
288 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
289 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
290 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
291 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
292 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
293 
294 void
295 t4_register_an_handler(an_handler_t h)
296 {
297 	uintptr_t *loc;
298 
299 	MPASS(h == NULL || t4_an_handler == NULL);
300 
301 	loc = (uintptr_t *)&t4_an_handler;
302 	atomic_store_rel_ptr(loc, (uintptr_t)h);
303 }
304 
305 void
306 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
307 {
308 	uintptr_t *loc;
309 
310 	MPASS(type < nitems(t4_fw_msg_handler));
311 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
312 	/*
313 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
314 	 * handler dispatch table.  Reject any attempt to install a handler for
315 	 * this subtype.
316 	 */
317 	MPASS(type != FW_TYPE_RSSCPL);
318 	MPASS(type != FW6_TYPE_RSSCPL);
319 
320 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
321 	atomic_store_rel_ptr(loc, (uintptr_t)h);
322 }
323 
324 void
325 t4_register_cpl_handler(int opcode, cpl_handler_t h)
326 {
327 	uintptr_t *loc;
328 
329 	MPASS(opcode < nitems(t4_cpl_handler));
330 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
331 
332 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
333 	atomic_store_rel_ptr(loc, (uintptr_t)h);
334 }
335 
336 static int
337 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
338     struct mbuf *m)
339 {
340 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
341 	u_int tid;
342 	int cookie;
343 
344 	MPASS(m == NULL);
345 
346 	tid = GET_TID(cpl);
347 	if (is_ftid(iq->adapter, tid)) {
348 		/*
349 		 * The return code for filter-write is put in the CPL cookie so
350 		 * we have to rely on the hardware tid (is_ftid) to determine
351 		 * that this is a response to a filter.
352 		 */
353 		cookie = CPL_COOKIE_FILTER;
354 	} else {
355 		cookie = G_COOKIE(cpl->cookie);
356 	}
357 	MPASS(cookie > CPL_COOKIE_RESERVED);
358 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
359 
360 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
361 }
362 
363 static int
364 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
365     struct mbuf *m)
366 {
367 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
368 	unsigned int cookie;
369 
370 	MPASS(m == NULL);
371 
372 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
373 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
374 }
375 
376 static int
377 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
378     struct mbuf *m)
379 {
380 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
381 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
382 
383 	MPASS(m == NULL);
384 	MPASS(cookie != CPL_COOKIE_RESERVED);
385 
386 	return (act_open_rpl_handlers[cookie](iq, rss, m));
387 }
388 
389 static int
390 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
391     struct mbuf *m)
392 {
393 	struct adapter *sc = iq->adapter;
394 	u_int cookie;
395 
396 	MPASS(m == NULL);
397 	if (is_hashfilter(sc))
398 		cookie = CPL_COOKIE_HASHFILTER;
399 	else
400 		cookie = CPL_COOKIE_TOM;
401 
402 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
403 }
404 
405 static void
406 t4_init_shared_cpl_handlers(void)
407 {
408 
409 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
410 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
411 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
412 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
413 }
414 
415 void
416 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
417 {
418 	uintptr_t *loc;
419 
420 	MPASS(opcode < nitems(t4_cpl_handler));
421 	MPASS(cookie > CPL_COOKIE_RESERVED);
422 	MPASS(cookie < NUM_CPL_COOKIES);
423 	MPASS(t4_cpl_handler[opcode] != NULL);
424 
425 	switch (opcode) {
426 	case CPL_SET_TCB_RPL:
427 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
428 		break;
429 	case CPL_L2T_WRITE_RPL:
430 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
431 		break;
432 	case CPL_ACT_OPEN_RPL:
433 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
434 		break;
435 	case CPL_ABORT_RPL_RSS:
436 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
437 		break;
438 	default:
439 		MPASS(0);
440 		return;
441 	}
442 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
443 	atomic_store_rel_ptr(loc, (uintptr_t)h);
444 }
445 
446 /*
447  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
448  */
449 void
450 t4_sge_modload(void)
451 {
452 
453 	if (fl_pktshift < 0 || fl_pktshift > 7) {
454 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
455 		    " using 2 instead.\n", fl_pktshift);
456 		fl_pktshift = 2;
457 	}
458 
459 	if (spg_len != 64 && spg_len != 128) {
460 		int len;
461 
462 #if defined(__i386__) || defined(__amd64__)
463 		len = cpu_clflush_line_size > 64 ? 128 : 64;
464 #else
465 		len = 64;
466 #endif
467 		if (spg_len != -1) {
468 			printf("Invalid hw.cxgbe.spg_len value (%d),"
469 			    " using %d instead.\n", spg_len, len);
470 		}
471 		spg_len = len;
472 	}
473 
474 	if (cong_drop < -1 || cong_drop > 1) {
475 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
476 		    " using 0 instead.\n", cong_drop);
477 		cong_drop = 0;
478 	}
479 
480 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
481 		printf("Invalid hw.cxgbe.tscale value (%d),"
482 		    " using 1 instead.\n", tscale);
483 		tscale = 1;
484 	}
485 
486 	extfree_refs = counter_u64_alloc(M_WAITOK);
487 	extfree_rels = counter_u64_alloc(M_WAITOK);
488 	counter_u64_zero(extfree_refs);
489 	counter_u64_zero(extfree_rels);
490 
491 	t4_init_shared_cpl_handlers();
492 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
493 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
494 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
495 	t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx);
496 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
497 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
498 }
499 
500 void
501 t4_sge_modunload(void)
502 {
503 
504 	counter_u64_free(extfree_refs);
505 	counter_u64_free(extfree_rels);
506 }
507 
508 uint64_t
509 t4_sge_extfree_refs(void)
510 {
511 	uint64_t refs, rels;
512 
513 	rels = counter_u64_fetch(extfree_rels);
514 	refs = counter_u64_fetch(extfree_refs);
515 
516 	return (refs - rels);
517 }
518 
519 static inline void
520 setup_pad_and_pack_boundaries(struct adapter *sc)
521 {
522 	uint32_t v, m;
523 	int pad, pack, pad_shift;
524 
525 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
526 	    X_INGPADBOUNDARY_SHIFT;
527 	pad = fl_pad;
528 	if (fl_pad < (1 << pad_shift) ||
529 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
530 	    !powerof2(fl_pad)) {
531 		/*
532 		 * If there is any chance that we might use buffer packing and
533 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
534 		 * it to the minimum allowed in all other cases.
535 		 */
536 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
537 
538 		/*
539 		 * For fl_pad = 0 we'll still write a reasonable value to the
540 		 * register but all the freelists will opt out of padding.
541 		 * We'll complain here only if the user tried to set it to a
542 		 * value greater than 0 that was invalid.
543 		 */
544 		if (fl_pad > 0) {
545 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
546 			    " (%d), using %d instead.\n", fl_pad, pad);
547 		}
548 	}
549 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
550 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
551 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
552 
553 	if (is_t4(sc)) {
554 		if (fl_pack != -1 && fl_pack != pad) {
555 			/* Complain but carry on. */
556 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
557 			    " using %d instead.\n", fl_pack, pad);
558 		}
559 		return;
560 	}
561 
562 	pack = fl_pack;
563 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
564 	    !powerof2(fl_pack)) {
565 		pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
566 		MPASS(powerof2(pack));
567 		if (pack < 16)
568 			pack = 16;
569 		if (pack == 32)
570 			pack = 64;
571 		if (pack > 4096)
572 			pack = 4096;
573 		if (fl_pack != -1) {
574 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
575 			    " (%d), using %d instead.\n", fl_pack, pack);
576 		}
577 	}
578 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
579 	if (pack == 16)
580 		v = V_INGPACKBOUNDARY(0);
581 	else
582 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
583 
584 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
585 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
586 }
587 
588 /*
589  * adap->params.vpd.cclk must be set up before this is called.
590  */
591 void
592 t4_tweak_chip_settings(struct adapter *sc)
593 {
594 	int i;
595 	uint32_t v, m;
596 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
597 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
598 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
599 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
600 	static int sge_flbuf_sizes[] = {
601 		MCLBYTES,
602 #if MJUMPAGESIZE != MCLBYTES
603 		MJUMPAGESIZE,
604 		MJUMPAGESIZE - CL_METADATA_SIZE,
605 		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
606 #endif
607 		MJUM9BYTES,
608 		MJUM16BYTES,
609 		MCLBYTES - MSIZE - CL_METADATA_SIZE,
610 		MJUM9BYTES - CL_METADATA_SIZE,
611 		MJUM16BYTES - CL_METADATA_SIZE,
612 	};
613 
614 	KASSERT(sc->flags & MASTER_PF,
615 	    ("%s: trying to change chip settings when not master.", __func__));
616 
617 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
618 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
619 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
620 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
621 
622 	setup_pad_and_pack_boundaries(sc);
623 
624 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
625 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
626 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
627 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
628 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
629 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
630 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
631 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
632 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
633 
634 	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
635 	    ("%s: hw buffer size table too big", __func__));
636 	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
637 		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
638 		    sge_flbuf_sizes[i]);
639 	}
640 
641 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
642 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
643 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
644 
645 	KASSERT(intr_timer[0] <= timer_max,
646 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
647 	    timer_max));
648 	for (i = 1; i < nitems(intr_timer); i++) {
649 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
650 		    ("%s: timers not listed in increasing order (%d)",
651 		    __func__, i));
652 
653 		while (intr_timer[i] > timer_max) {
654 			if (i == nitems(intr_timer) - 1) {
655 				intr_timer[i] = timer_max;
656 				break;
657 			}
658 			intr_timer[i] += intr_timer[i - 1];
659 			intr_timer[i] /= 2;
660 		}
661 	}
662 
663 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
664 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
665 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
666 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
667 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
668 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
669 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
670 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
671 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
672 
673 	if (chip_id(sc) >= CHELSIO_T6) {
674 		m = V_TSCALE(M_TSCALE);
675 		if (tscale == 1)
676 			v = 0;
677 		else
678 			v = V_TSCALE(tscale - 2);
679 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
680 
681 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
682 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
683 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
684 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
685 			v &= ~m;
686 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
687 			    V_WRTHRTHRESH(16);
688 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
689 		}
690 	}
691 
692 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
693 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
694 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
695 
696 	/*
697 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
698 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
699 	 * may have to deal with is MAXPHYS + 1 page.
700 	 */
701 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
702 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
703 
704 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
705 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
706 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
707 
708 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
709 	    F_RESETDDPOFFSET;
710 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
711 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
712 }
713 
714 /*
715  * SGE wants the buffer to be at least 64B and then a multiple of 16.  If
716  * padding is in use, the buffer's start and end need to be aligned to the pad
717  * boundary as well.  We'll just make sure that the size is a multiple of the
718  * boundary here, it is up to the buffer allocation code to make sure the start
719  * of the buffer is aligned as well.
720  */
721 static inline int
722 hwsz_ok(struct adapter *sc, int hwsz)
723 {
724 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
725 
726 	return (hwsz >= 64 && (hwsz & mask) == 0);
727 }
728 
729 /*
730  * XXX: driver really should be able to deal with unexpected settings.
731  */
732 int
733 t4_read_chip_settings(struct adapter *sc)
734 {
735 	struct sge *s = &sc->sge;
736 	struct sge_params *sp = &sc->params.sge;
737 	int i, j, n, rc = 0;
738 	uint32_t m, v, r;
739 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
740 	static int sw_buf_sizes[] = {	/* Sorted by size */
741 		MCLBYTES,
742 #if MJUMPAGESIZE != MCLBYTES
743 		MJUMPAGESIZE,
744 #endif
745 		MJUM9BYTES,
746 		MJUM16BYTES
747 	};
748 	struct sw_zone_info *swz, *safe_swz;
749 	struct hw_buf_info *hwb;
750 
751 	m = F_RXPKTCPLMODE;
752 	v = F_RXPKTCPLMODE;
753 	r = sc->params.sge.sge_control;
754 	if ((r & m) != v) {
755 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
756 		rc = EINVAL;
757 	}
758 
759 	/*
760 	 * If this changes then every single use of PAGE_SHIFT in the driver
761 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
762 	 */
763 	if (sp->page_shift != PAGE_SHIFT) {
764 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
765 		rc = EINVAL;
766 	}
767 
768 	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
769 	hwb = &s->hw_buf_info[0];
770 	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
771 		r = sc->params.sge.sge_fl_buffer_size[i];
772 		hwb->size = r;
773 		hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
774 		hwb->next = -1;
775 	}
776 
777 	/*
778 	 * Create a sorted list in decreasing order of hw buffer sizes (and so
779 	 * increasing order of spare area) for each software zone.
780 	 *
781 	 * If padding is enabled then the start and end of the buffer must align
782 	 * to the pad boundary; if packing is enabled then they must align with
783 	 * the pack boundary as well.  Allocations from the cluster zones are
784 	 * aligned to min(size, 4K), so the buffer starts at that alignment and
785 	 * ends at hwb->size alignment.  If mbuf inlining is allowed the
786 	 * starting alignment will be reduced to MSIZE and the driver will
787 	 * exercise appropriate caution when deciding on the best buffer layout
788 	 * to use.
789 	 */
790 	n = 0;	/* no usable buffer size to begin with */
791 	swz = &s->sw_zone_info[0];
792 	safe_swz = NULL;
793 	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
794 		int8_t head = -1, tail = -1;
795 
796 		swz->size = sw_buf_sizes[i];
797 		swz->zone = m_getzone(swz->size);
798 		swz->type = m_gettype(swz->size);
799 
800 		if (swz->size < PAGE_SIZE) {
801 			MPASS(powerof2(swz->size));
802 			if (fl_pad && (swz->size % sp->pad_boundary != 0))
803 				continue;
804 		}
805 
806 		if (swz->size == safest_rx_cluster)
807 			safe_swz = swz;
808 
809 		hwb = &s->hw_buf_info[0];
810 		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
811 			if (hwb->zidx != -1 || hwb->size > swz->size)
812 				continue;
813 #ifdef INVARIANTS
814 			if (fl_pad)
815 				MPASS(hwb->size % sp->pad_boundary == 0);
816 #endif
817 			hwb->zidx = i;
818 			if (head == -1)
819 				head = tail = j;
820 			else if (hwb->size < s->hw_buf_info[tail].size) {
821 				s->hw_buf_info[tail].next = j;
822 				tail = j;
823 			} else {
824 				int8_t *cur;
825 				struct hw_buf_info *t;
826 
827 				for (cur = &head; *cur != -1; cur = &t->next) {
828 					t = &s->hw_buf_info[*cur];
829 					if (hwb->size == t->size) {
830 						hwb->zidx = -2;
831 						break;
832 					}
833 					if (hwb->size > t->size) {
834 						hwb->next = *cur;
835 						*cur = j;
836 						break;
837 					}
838 				}
839 			}
840 		}
841 		swz->head_hwidx = head;
842 		swz->tail_hwidx = tail;
843 
844 		if (tail != -1) {
845 			n++;
846 			if (swz->size - s->hw_buf_info[tail].size >=
847 			    CL_METADATA_SIZE)
848 				sc->flags |= BUF_PACKING_OK;
849 		}
850 	}
851 	if (n == 0) {
852 		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
853 		rc = EINVAL;
854 	}
855 
856 	s->safe_hwidx1 = -1;
857 	s->safe_hwidx2 = -1;
858 	if (safe_swz != NULL) {
859 		s->safe_hwidx1 = safe_swz->head_hwidx;
860 		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
861 			int spare;
862 
863 			hwb = &s->hw_buf_info[i];
864 #ifdef INVARIANTS
865 			if (fl_pad)
866 				MPASS(hwb->size % sp->pad_boundary == 0);
867 #endif
868 			spare = safe_swz->size - hwb->size;
869 			if (spare >= CL_METADATA_SIZE) {
870 				s->safe_hwidx2 = i;
871 				break;
872 			}
873 		}
874 	}
875 
876 	if (sc->flags & IS_VF)
877 		return (0);
878 
879 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
880 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
881 	if (r != v) {
882 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
883 		rc = EINVAL;
884 	}
885 
886 	m = v = F_TDDPTAGTCB;
887 	r = t4_read_reg(sc, A_ULP_RX_CTL);
888 	if ((r & m) != v) {
889 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
890 		rc = EINVAL;
891 	}
892 
893 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
894 	    F_RESETDDPOFFSET;
895 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
896 	r = t4_read_reg(sc, A_TP_PARA_REG5);
897 	if ((r & m) != v) {
898 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
899 		rc = EINVAL;
900 	}
901 
902 	t4_init_tp_params(sc, 1);
903 
904 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
905 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
906 
907 	return (rc);
908 }
909 
910 int
911 t4_create_dma_tag(struct adapter *sc)
912 {
913 	int rc;
914 
915 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
916 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
917 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
918 	    NULL, &sc->dmat);
919 	if (rc != 0) {
920 		device_printf(sc->dev,
921 		    "failed to create main DMA tag: %d\n", rc);
922 	}
923 
924 	return (rc);
925 }
926 
927 void
928 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
929     struct sysctl_oid_list *children)
930 {
931 	struct sge_params *sp = &sc->params.sge;
932 
933 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
934 	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
935 	    "freelist buffer sizes");
936 
937 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
938 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
939 
940 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
941 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
942 
943 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
944 	    NULL, sp->spg_len, "status page size (bytes)");
945 
946 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
947 	    NULL, cong_drop, "congestion drop setting");
948 
949 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
950 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
951 }
952 
953 int
954 t4_destroy_dma_tag(struct adapter *sc)
955 {
956 	if (sc->dmat)
957 		bus_dma_tag_destroy(sc->dmat);
958 
959 	return (0);
960 }
961 
962 /*
963  * Allocate and initialize the firmware event queue and the management queue.
964  *
965  * Returns errno on failure.  Resources allocated up to that point may still be
966  * allocated.  Caller is responsible for cleanup in case this function fails.
967  */
968 int
969 t4_setup_adapter_queues(struct adapter *sc)
970 {
971 	int rc;
972 
973 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
974 
975 	sysctl_ctx_init(&sc->ctx);
976 	sc->flags |= ADAP_SYSCTL_CTX;
977 
978 	/*
979 	 * Firmware event queue
980 	 */
981 	rc = alloc_fwq(sc);
982 	if (rc != 0)
983 		return (rc);
984 
985 	/*
986 	 * Management queue.  This is just a control queue that uses the fwq as
987 	 * its associated iq.
988 	 */
989 	if (!(sc->flags & IS_VF))
990 		rc = alloc_mgmtq(sc);
991 
992 	return (rc);
993 }
994 
995 /*
996  * Idempotent
997  */
998 int
999 t4_teardown_adapter_queues(struct adapter *sc)
1000 {
1001 
1002 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1003 
1004 	/* Do this before freeing the queue */
1005 	if (sc->flags & ADAP_SYSCTL_CTX) {
1006 		sysctl_ctx_free(&sc->ctx);
1007 		sc->flags &= ~ADAP_SYSCTL_CTX;
1008 	}
1009 
1010 	free_mgmtq(sc);
1011 	free_fwq(sc);
1012 
1013 	return (0);
1014 }
1015 
1016 /* Maximum payload that can be delivered with a single iq descriptor */
1017 static inline int
1018 mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
1019 {
1020 	int payload;
1021 
1022 #ifdef TCP_OFFLOAD
1023 	if (toe) {
1024 		int rxcs = G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2));
1025 
1026 		/* Note that COP can set rx_coalesce on/off per connection. */
1027 		payload = max(mtu, rxcs);
1028 	} else {
1029 #endif
1030 		/* large enough even when hw VLAN extraction is disabled */
1031 		payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1032 		    ETHER_VLAN_ENCAP_LEN + mtu;
1033 #ifdef TCP_OFFLOAD
1034 	}
1035 #endif
1036 
1037 	return (payload);
1038 }
1039 
1040 int
1041 t4_setup_vi_queues(struct vi_info *vi)
1042 {
1043 	int rc = 0, i, intr_idx, iqidx;
1044 	struct sge_rxq *rxq;
1045 	struct sge_txq *txq;
1046 	struct sge_wrq *ctrlq;
1047 #ifdef TCP_OFFLOAD
1048 	struct sge_ofld_rxq *ofld_rxq;
1049 #endif
1050 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1051 	struct sge_wrq *ofld_txq;
1052 #endif
1053 #ifdef DEV_NETMAP
1054 	int saved_idx;
1055 	struct sge_nm_rxq *nm_rxq;
1056 	struct sge_nm_txq *nm_txq;
1057 #endif
1058 	char name[16];
1059 	struct port_info *pi = vi->pi;
1060 	struct adapter *sc = pi->adapter;
1061 	struct ifnet *ifp = vi->ifp;
1062 	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
1063 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1064 	int maxp, mtu = ifp->if_mtu;
1065 
1066 	/* Interrupt vector to start from (when using multiple vectors) */
1067 	intr_idx = vi->first_intr;
1068 
1069 #ifdef DEV_NETMAP
1070 	saved_idx = intr_idx;
1071 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1072 
1073 		/* netmap is supported with direct interrupts only. */
1074 		MPASS(!forwarding_intr_to_fwq(sc));
1075 
1076 		/*
1077 		 * We don't have buffers to back the netmap rx queues
1078 		 * right now so we create the queues in a way that
1079 		 * doesn't set off any congestion signal in the chip.
1080 		 */
1081 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1082 		    CTLFLAG_RD, NULL, "rx queues");
1083 		for_each_nm_rxq(vi, i, nm_rxq) {
1084 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1085 			if (rc != 0)
1086 				goto done;
1087 			intr_idx++;
1088 		}
1089 
1090 		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1091 		    CTLFLAG_RD, NULL, "tx queues");
1092 		for_each_nm_txq(vi, i, nm_txq) {
1093 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1094 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid);
1095 			if (rc != 0)
1096 				goto done;
1097 		}
1098 	}
1099 
1100 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1101 	intr_idx = saved_idx;
1102 #endif
1103 
1104 	/*
1105 	 * Allocate rx queues first because a default iqid is required when
1106 	 * creating a tx queue.
1107 	 */
1108 	maxp = mtu_to_max_payload(sc, mtu, 0);
1109 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1110 	    CTLFLAG_RD, NULL, "rx queues");
1111 	for_each_rxq(vi, i, rxq) {
1112 
1113 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1114 
1115 		snprintf(name, sizeof(name), "%s rxq%d-fl",
1116 		    device_get_nameunit(vi->dev), i);
1117 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1118 
1119 		rc = alloc_rxq(vi, rxq,
1120 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1121 		if (rc != 0)
1122 			goto done;
1123 		intr_idx++;
1124 	}
1125 #ifdef DEV_NETMAP
1126 	if (ifp->if_capabilities & IFCAP_NETMAP)
1127 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1128 #endif
1129 #ifdef TCP_OFFLOAD
1130 	maxp = mtu_to_max_payload(sc, mtu, 1);
1131 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1132 	    CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections");
1133 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1134 
1135 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
1136 		    vi->qsize_rxq);
1137 
1138 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1139 		    device_get_nameunit(vi->dev), i);
1140 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1141 
1142 		rc = alloc_ofld_rxq(vi, ofld_rxq,
1143 		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1144 		if (rc != 0)
1145 			goto done;
1146 		intr_idx++;
1147 	}
1148 #endif
1149 
1150 	/*
1151 	 * Now the tx queues.
1152 	 */
1153 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1154 	    NULL, "tx queues");
1155 	for_each_txq(vi, i, txq) {
1156 		iqidx = vi->first_rxq + (i % vi->nrxq);
1157 		snprintf(name, sizeof(name), "%s txq%d",
1158 		    device_get_nameunit(vi->dev), i);
1159 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
1160 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1161 
1162 		rc = alloc_txq(vi, txq, i, oid);
1163 		if (rc != 0)
1164 			goto done;
1165 	}
1166 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1167 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1168 	    CTLFLAG_RD, NULL, "tx queues for TOE/ETHOFLD");
1169 	for_each_ofld_txq(vi, i, ofld_txq) {
1170 		struct sysctl_oid *oid2;
1171 
1172 		snprintf(name, sizeof(name), "%s ofld_txq%d",
1173 		    device_get_nameunit(vi->dev), i);
1174 #ifdef TCP_OFFLOAD
1175 		iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq);
1176 		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1177 		    sc->sge.ofld_rxq[iqidx].iq.cntxt_id, name);
1178 #else
1179 		iqidx = vi->first_rxq + (i % vi->nrxq);
1180 		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1181 		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1182 #endif
1183 
1184 		snprintf(name, sizeof(name), "%d", i);
1185 		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1186 		    name, CTLFLAG_RD, NULL, "offload tx queue");
1187 
1188 		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1189 		if (rc != 0)
1190 			goto done;
1191 	}
1192 #endif
1193 
1194 	/*
1195 	 * Finally, the control queue.
1196 	 */
1197 	if (!IS_MAIN_VI(vi) || sc->flags & IS_VF)
1198 		goto done;
1199 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1200 	    NULL, "ctrl queue");
1201 	ctrlq = &sc->sge.ctrlq[pi->port_id];
1202 	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev));
1203 	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan,
1204 	    sc->sge.rxq[vi->first_rxq].iq.cntxt_id, name);
1205 	rc = alloc_wrq(sc, vi, ctrlq, oid);
1206 
1207 done:
1208 	if (rc)
1209 		t4_teardown_vi_queues(vi);
1210 
1211 	return (rc);
1212 }
1213 
1214 /*
1215  * Idempotent
1216  */
1217 int
1218 t4_teardown_vi_queues(struct vi_info *vi)
1219 {
1220 	int i;
1221 	struct port_info *pi = vi->pi;
1222 	struct adapter *sc = pi->adapter;
1223 	struct sge_rxq *rxq;
1224 	struct sge_txq *txq;
1225 #ifdef TCP_OFFLOAD
1226 	struct sge_ofld_rxq *ofld_rxq;
1227 #endif
1228 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1229 	struct sge_wrq *ofld_txq;
1230 #endif
1231 #ifdef DEV_NETMAP
1232 	struct sge_nm_rxq *nm_rxq;
1233 	struct sge_nm_txq *nm_txq;
1234 #endif
1235 
1236 	/* Do this before freeing the queues */
1237 	if (vi->flags & VI_SYSCTL_CTX) {
1238 		sysctl_ctx_free(&vi->ctx);
1239 		vi->flags &= ~VI_SYSCTL_CTX;
1240 	}
1241 
1242 #ifdef DEV_NETMAP
1243 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1244 		for_each_nm_txq(vi, i, nm_txq) {
1245 			free_nm_txq(vi, nm_txq);
1246 		}
1247 
1248 		for_each_nm_rxq(vi, i, nm_rxq) {
1249 			free_nm_rxq(vi, nm_rxq);
1250 		}
1251 	}
1252 #endif
1253 
1254 	/*
1255 	 * Take down all the tx queues first, as they reference the rx queues
1256 	 * (for egress updates, etc.).
1257 	 */
1258 
1259 	if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
1260 		free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1261 
1262 	for_each_txq(vi, i, txq) {
1263 		free_txq(vi, txq);
1264 	}
1265 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1266 	for_each_ofld_txq(vi, i, ofld_txq) {
1267 		free_wrq(sc, ofld_txq);
1268 	}
1269 #endif
1270 
1271 	/*
1272 	 * Then take down the rx queues.
1273 	 */
1274 
1275 	for_each_rxq(vi, i, rxq) {
1276 		free_rxq(vi, rxq);
1277 	}
1278 #ifdef TCP_OFFLOAD
1279 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1280 		free_ofld_rxq(vi, ofld_rxq);
1281 	}
1282 #endif
1283 
1284 	return (0);
1285 }
1286 
1287 /*
1288  * Deals with errors and the firmware event queue.  All data rx queues forward
1289  * their interrupt to the firmware event queue.
1290  */
1291 void
1292 t4_intr_all(void *arg)
1293 {
1294 	struct adapter *sc = arg;
1295 	struct sge_iq *fwq = &sc->sge.fwq;
1296 
1297 	t4_intr_err(arg);
1298 	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1299 		service_iq(fwq, 0);
1300 		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1301 	}
1302 }
1303 
1304 /* Deals with error interrupts */
1305 void
1306 t4_intr_err(void *arg)
1307 {
1308 	struct adapter *sc = arg;
1309 
1310 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1311 	t4_slow_intr_handler(sc);
1312 }
1313 
1314 void
1315 t4_intr_evt(void *arg)
1316 {
1317 	struct sge_iq *iq = arg;
1318 
1319 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1320 		service_iq(iq, 0);
1321 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1322 	}
1323 }
1324 
1325 void
1326 t4_intr(void *arg)
1327 {
1328 	struct sge_iq *iq = arg;
1329 
1330 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1331 		service_iq(iq, 0);
1332 		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1333 	}
1334 }
1335 
1336 void
1337 t4_vi_intr(void *arg)
1338 {
1339 	struct irq *irq = arg;
1340 
1341 #ifdef DEV_NETMAP
1342 	if (atomic_cmpset_int(&irq->nm_state, NM_ON, NM_BUSY)) {
1343 		t4_nm_intr(irq->nm_rxq);
1344 		atomic_cmpset_int(&irq->nm_state, NM_BUSY, NM_ON);
1345 	}
1346 #endif
1347 	if (irq->rxq != NULL)
1348 		t4_intr(irq->rxq);
1349 }
1350 
1351 static inline int
1352 sort_before_lro(struct lro_ctrl *lro)
1353 {
1354 
1355 	return (lro->lro_mbuf_max != 0);
1356 }
1357 
1358 /*
1359  * Deals with anything and everything on the given ingress queue.
1360  */
1361 static int
1362 service_iq(struct sge_iq *iq, int budget)
1363 {
1364 	struct sge_iq *q;
1365 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1366 	struct sge_fl *fl;			/* Use iff IQ_HAS_FL */
1367 	struct adapter *sc = iq->adapter;
1368 	struct iq_desc *d = &iq->desc[iq->cidx];
1369 	int ndescs = 0, limit;
1370 	int rsp_type, refill;
1371 	uint32_t lq;
1372 	uint16_t fl_hw_cidx;
1373 	struct mbuf *m0;
1374 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1375 #if defined(INET) || defined(INET6)
1376 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1377 	struct lro_ctrl *lro = &rxq->lro;
1378 #endif
1379 
1380 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1381 
1382 	limit = budget ? budget : iq->qsize / 16;
1383 
1384 	if (iq->flags & IQ_HAS_FL) {
1385 		fl = &rxq->fl;
1386 		fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1387 	} else {
1388 		fl = NULL;
1389 		fl_hw_cidx = 0;			/* to silence gcc warning */
1390 	}
1391 
1392 #if defined(INET) || defined(INET6)
1393 	if (iq->flags & IQ_ADJ_CREDIT) {
1394 		MPASS(sort_before_lro(lro));
1395 		iq->flags &= ~IQ_ADJ_CREDIT;
1396 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1397 			tcp_lro_flush_all(lro);
1398 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1399 			    V_INGRESSQID((u32)iq->cntxt_id) |
1400 			    V_SEINTARM(iq->intr_params));
1401 			return (0);
1402 		}
1403 		ndescs = 1;
1404 	}
1405 #else
1406 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1407 #endif
1408 
1409 	/*
1410 	 * We always come back and check the descriptor ring for new indirect
1411 	 * interrupts and other responses after running a single handler.
1412 	 */
1413 	for (;;) {
1414 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1415 
1416 			rmb();
1417 
1418 			refill = 0;
1419 			m0 = NULL;
1420 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1421 			lq = be32toh(d->rsp.pldbuflen_qid);
1422 
1423 			switch (rsp_type) {
1424 			case X_RSPD_TYPE_FLBUF:
1425 
1426 				KASSERT(iq->flags & IQ_HAS_FL,
1427 				    ("%s: data for an iq (%p) with no freelist",
1428 				    __func__, iq));
1429 
1430 				m0 = get_fl_payload(sc, fl, lq);
1431 				if (__predict_false(m0 == NULL))
1432 					goto process_iql;
1433 				refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1434 #ifdef T4_PKT_TIMESTAMP
1435 				/*
1436 				 * 60 bit timestamp for the payload is
1437 				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1438 				 * in the leading free-space in the mbuf.  The
1439 				 * kernel can clobber it during a pullup,
1440 				 * m_copymdata, etc.  You need to make sure that
1441 				 * the mbuf reaches you unmolested if you care
1442 				 * about the timestamp.
1443 				 */
1444 				*(uint64_t *)m0->m_pktdat =
1445 				    be64toh(ctrl->u.last_flit) &
1446 				    0xfffffffffffffff;
1447 #endif
1448 
1449 				/* fall through */
1450 
1451 			case X_RSPD_TYPE_CPL:
1452 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1453 				    ("%s: bad opcode %02x.", __func__,
1454 				    d->rss.opcode));
1455 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1456 				break;
1457 
1458 			case X_RSPD_TYPE_INTR:
1459 
1460 				/*
1461 				 * Interrupts should be forwarded only to queues
1462 				 * that are not forwarding their interrupts.
1463 				 * This means service_iq can recurse but only 1
1464 				 * level deep.
1465 				 */
1466 				KASSERT(budget == 0,
1467 				    ("%s: budget %u, rsp_type %u", __func__,
1468 				    budget, rsp_type));
1469 
1470 				/*
1471 				 * There are 1K interrupt-capable queues (qids 0
1472 				 * through 1023).  A response type indicating a
1473 				 * forwarded interrupt with a qid >= 1K is an
1474 				 * iWARP async notification.
1475 				 */
1476 				if (lq >= 1024) {
1477                                         t4_an_handler(iq, &d->rsp);
1478                                         break;
1479                                 }
1480 
1481 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1482 				    sc->sge.iq_base];
1483 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1484 				    IQS_BUSY)) {
1485 					if (service_iq(q, q->qsize / 16) == 0) {
1486 						atomic_cmpset_int(&q->state,
1487 						    IQS_BUSY, IQS_IDLE);
1488 					} else {
1489 						STAILQ_INSERT_TAIL(&iql, q,
1490 						    link);
1491 					}
1492 				}
1493 				break;
1494 
1495 			default:
1496 				KASSERT(0,
1497 				    ("%s: illegal response type %d on iq %p",
1498 				    __func__, rsp_type, iq));
1499 				log(LOG_ERR,
1500 				    "%s: illegal response type %d on iq %p",
1501 				    device_get_nameunit(sc->dev), rsp_type, iq);
1502 				break;
1503 			}
1504 
1505 			d++;
1506 			if (__predict_false(++iq->cidx == iq->sidx)) {
1507 				iq->cidx = 0;
1508 				iq->gen ^= F_RSPD_GEN;
1509 				d = &iq->desc[0];
1510 			}
1511 			if (__predict_false(++ndescs == limit)) {
1512 				t4_write_reg(sc, sc->sge_gts_reg,
1513 				    V_CIDXINC(ndescs) |
1514 				    V_INGRESSQID(iq->cntxt_id) |
1515 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1516 				ndescs = 0;
1517 
1518 #if defined(INET) || defined(INET6)
1519 				if (iq->flags & IQ_LRO_ENABLED &&
1520 				    !sort_before_lro(lro) &&
1521 				    sc->lro_timeout != 0) {
1522 					tcp_lro_flush_inactive(lro,
1523 					    &lro_timeout);
1524 				}
1525 #endif
1526 
1527 				if (budget) {
1528 					if (iq->flags & IQ_HAS_FL) {
1529 						FL_LOCK(fl);
1530 						refill_fl(sc, fl, 32);
1531 						FL_UNLOCK(fl);
1532 					}
1533 					return (EINPROGRESS);
1534 				}
1535 			}
1536 			if (refill) {
1537 				FL_LOCK(fl);
1538 				refill_fl(sc, fl, 32);
1539 				FL_UNLOCK(fl);
1540 				fl_hw_cidx = fl->hw_cidx;
1541 			}
1542 		}
1543 
1544 process_iql:
1545 		if (STAILQ_EMPTY(&iql))
1546 			break;
1547 
1548 		/*
1549 		 * Process the head only, and send it to the back of the list if
1550 		 * it's still not done.
1551 		 */
1552 		q = STAILQ_FIRST(&iql);
1553 		STAILQ_REMOVE_HEAD(&iql, link);
1554 		if (service_iq(q, q->qsize / 8) == 0)
1555 			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1556 		else
1557 			STAILQ_INSERT_TAIL(&iql, q, link);
1558 	}
1559 
1560 #if defined(INET) || defined(INET6)
1561 	if (iq->flags & IQ_LRO_ENABLED) {
1562 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1563 			MPASS(sort_before_lro(lro));
1564 			/* hold back one credit and don't flush LRO state */
1565 			iq->flags |= IQ_ADJ_CREDIT;
1566 			ndescs--;
1567 		} else {
1568 			tcp_lro_flush_all(lro);
1569 		}
1570 	}
1571 #endif
1572 
1573 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1574 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1575 
1576 	if (iq->flags & IQ_HAS_FL) {
1577 		int starved;
1578 
1579 		FL_LOCK(fl);
1580 		starved = refill_fl(sc, fl, 64);
1581 		FL_UNLOCK(fl);
1582 		if (__predict_false(starved != 0))
1583 			add_fl_to_sfl(sc, fl);
1584 	}
1585 
1586 	return (0);
1587 }
1588 
1589 static inline int
1590 cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1591 {
1592 	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1593 
1594 	if (rc)
1595 		MPASS(cll->region3 >= CL_METADATA_SIZE);
1596 
1597 	return (rc);
1598 }
1599 
1600 static inline struct cluster_metadata *
1601 cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1602     caddr_t cl)
1603 {
1604 
1605 	if (cl_has_metadata(fl, cll)) {
1606 		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1607 
1608 		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1609 	}
1610 	return (NULL);
1611 }
1612 
1613 static void
1614 rxb_free(struct mbuf *m)
1615 {
1616 	uma_zone_t zone = m->m_ext.ext_arg1;
1617 	void *cl = m->m_ext.ext_arg2;
1618 
1619 	uma_zfree(zone, cl);
1620 	counter_u64_add(extfree_rels, 1);
1621 }
1622 
1623 /*
1624  * The mbuf returned by this function could be allocated from zone_mbuf or
1625  * constructed in spare room in the cluster.
1626  *
1627  * The mbuf carries the payload in one of these ways
1628  * a) frame inside the mbuf (mbuf from zone_mbuf)
1629  * b) m_cljset (for clusters without metadata) zone_mbuf
1630  * c) m_extaddref (cluster with metadata) inline mbuf
1631  * d) m_extaddref (cluster with metadata) zone_mbuf
1632  */
1633 static struct mbuf *
1634 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1635     int remaining)
1636 {
1637 	struct mbuf *m;
1638 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1639 	struct cluster_layout *cll = &sd->cll;
1640 	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1641 	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1642 	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1643 	int len, blen;
1644 	caddr_t payload;
1645 
1646 	blen = hwb->size - fl->rx_offset;	/* max possible in this buf */
1647 	len = min(remaining, blen);
1648 	payload = sd->cl + cll->region1 + fl->rx_offset;
1649 	if (fl->flags & FL_BUF_PACKING) {
1650 		const u_int l = fr_offset + len;
1651 		const u_int pad = roundup2(l, fl->buf_boundary) - l;
1652 
1653 		if (fl->rx_offset + len + pad < hwb->size)
1654 			blen = len + pad;
1655 		MPASS(fl->rx_offset + blen <= hwb->size);
1656 	} else {
1657 		MPASS(fl->rx_offset == 0);	/* not packing */
1658 	}
1659 
1660 
1661 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1662 
1663 		/*
1664 		 * Copy payload into a freshly allocated mbuf.
1665 		 */
1666 
1667 		m = fr_offset == 0 ?
1668 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1669 		if (m == NULL)
1670 			return (NULL);
1671 		fl->mbuf_allocated++;
1672 #ifdef T4_PKT_TIMESTAMP
1673 		/* Leave room for a timestamp */
1674 		m->m_data += 8;
1675 #endif
1676 		/* copy data to mbuf */
1677 		bcopy(payload, mtod(m, caddr_t), len);
1678 
1679 	} else if (sd->nmbuf * MSIZE < cll->region1) {
1680 
1681 		/*
1682 		 * There's spare room in the cluster for an mbuf.  Create one
1683 		 * and associate it with the payload that's in the cluster.
1684 		 */
1685 
1686 		MPASS(clm != NULL);
1687 		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1688 		/* No bzero required */
1689 		if (m_init(m, M_NOWAIT, MT_DATA,
1690 		    fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
1691 			return (NULL);
1692 		fl->mbuf_inlined++;
1693 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
1694 		    swz->zone, sd->cl);
1695 		if (sd->nmbuf++ == 0)
1696 			counter_u64_add(extfree_refs, 1);
1697 
1698 	} else {
1699 
1700 		/*
1701 		 * Grab an mbuf from zone_mbuf and associate it with the
1702 		 * payload in the cluster.
1703 		 */
1704 
1705 		m = fr_offset == 0 ?
1706 		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1707 		if (m == NULL)
1708 			return (NULL);
1709 		fl->mbuf_allocated++;
1710 		if (clm != NULL) {
1711 			m_extaddref(m, payload, blen, &clm->refcount,
1712 			    rxb_free, swz->zone, sd->cl);
1713 			if (sd->nmbuf++ == 0)
1714 				counter_u64_add(extfree_refs, 1);
1715 		} else {
1716 			m_cljset(m, sd->cl, swz->type);
1717 			sd->cl = NULL;	/* consumed, not a recycle candidate */
1718 		}
1719 	}
1720 	if (fr_offset == 0)
1721 		m->m_pkthdr.len = remaining;
1722 	m->m_len = len;
1723 
1724 	if (fl->flags & FL_BUF_PACKING) {
1725 		fl->rx_offset += blen;
1726 		MPASS(fl->rx_offset <= hwb->size);
1727 		if (fl->rx_offset < hwb->size)
1728 			return (m);	/* without advancing the cidx */
1729 	}
1730 
1731 	if (__predict_false(++fl->cidx % 8 == 0)) {
1732 		uint16_t cidx = fl->cidx / 8;
1733 
1734 		if (__predict_false(cidx == fl->sidx))
1735 			fl->cidx = cidx = 0;
1736 		fl->hw_cidx = cidx;
1737 	}
1738 	fl->rx_offset = 0;
1739 
1740 	return (m);
1741 }
1742 
1743 static struct mbuf *
1744 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1745 {
1746 	struct mbuf *m0, *m, **pnext;
1747 	u_int remaining;
1748 	const u_int total = G_RSPD_LEN(len_newbuf);
1749 
1750 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1751 		M_ASSERTPKTHDR(fl->m0);
1752 		MPASS(fl->m0->m_pkthdr.len == total);
1753 		MPASS(fl->remaining < total);
1754 
1755 		m0 = fl->m0;
1756 		pnext = fl->pnext;
1757 		remaining = fl->remaining;
1758 		fl->flags &= ~FL_BUF_RESUME;
1759 		goto get_segment;
1760 	}
1761 
1762 	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1763 		fl->rx_offset = 0;
1764 		if (__predict_false(++fl->cidx % 8 == 0)) {
1765 			uint16_t cidx = fl->cidx / 8;
1766 
1767 			if (__predict_false(cidx == fl->sidx))
1768 				fl->cidx = cidx = 0;
1769 			fl->hw_cidx = cidx;
1770 		}
1771 	}
1772 
1773 	/*
1774 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1775 	 * 'len' and it may span multiple hw buffers.
1776 	 */
1777 
1778 	m0 = get_scatter_segment(sc, fl, 0, total);
1779 	if (m0 == NULL)
1780 		return (NULL);
1781 	remaining = total - m0->m_len;
1782 	pnext = &m0->m_next;
1783 	while (remaining > 0) {
1784 get_segment:
1785 		MPASS(fl->rx_offset == 0);
1786 		m = get_scatter_segment(sc, fl, total - remaining, remaining);
1787 		if (__predict_false(m == NULL)) {
1788 			fl->m0 = m0;
1789 			fl->pnext = pnext;
1790 			fl->remaining = remaining;
1791 			fl->flags |= FL_BUF_RESUME;
1792 			return (NULL);
1793 		}
1794 		*pnext = m;
1795 		pnext = &m->m_next;
1796 		remaining -= m->m_len;
1797 	}
1798 	*pnext = NULL;
1799 
1800 	M_ASSERTPKTHDR(m0);
1801 	return (m0);
1802 }
1803 
1804 static int
1805 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1806 {
1807 	struct sge_rxq *rxq = iq_to_rxq(iq);
1808 	struct ifnet *ifp = rxq->ifp;
1809 	struct adapter *sc = iq->adapter;
1810 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1811 #if defined(INET) || defined(INET6)
1812 	struct lro_ctrl *lro = &rxq->lro;
1813 #endif
1814 	static const int sw_hashtype[4][2] = {
1815 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1816 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1817 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1818 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1819 	};
1820 
1821 	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1822 	    rss->opcode));
1823 
1824 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1825 	m0->m_len -= sc->params.sge.fl_pktshift;
1826 	m0->m_data += sc->params.sge.fl_pktshift;
1827 
1828 	m0->m_pkthdr.rcvif = ifp;
1829 	M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
1830 	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1831 
1832 	if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) {
1833 		if (ifp->if_capenable & IFCAP_RXCSUM &&
1834 		    cpl->l2info & htobe32(F_RXF_IP)) {
1835 			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1836 			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1837 			rxq->rxcsum++;
1838 		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1839 		    cpl->l2info & htobe32(F_RXF_IP6)) {
1840 			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1841 			    CSUM_PSEUDO_HDR);
1842 			rxq->rxcsum++;
1843 		}
1844 
1845 		if (__predict_false(cpl->ip_frag))
1846 			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1847 		else
1848 			m0->m_pkthdr.csum_data = 0xffff;
1849 	}
1850 
1851 	if (cpl->vlan_ex) {
1852 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1853 		m0->m_flags |= M_VLANTAG;
1854 		rxq->vlan_extraction++;
1855 	}
1856 
1857 #if defined(INET) || defined(INET6)
1858 	if (iq->flags & IQ_LRO_ENABLED) {
1859 		if (sort_before_lro(lro)) {
1860 			tcp_lro_queue_mbuf(lro, m0);
1861 			return (0); /* queued for sort, then LRO */
1862 		}
1863 		if (tcp_lro_rx(lro, m0, 0) == 0)
1864 			return (0); /* queued for LRO */
1865 	}
1866 #endif
1867 	ifp->if_input(ifp, m0);
1868 
1869 	return (0);
1870 }
1871 
1872 /*
1873  * Must drain the wrq or make sure that someone else will.
1874  */
1875 static void
1876 wrq_tx_drain(void *arg, int n)
1877 {
1878 	struct sge_wrq *wrq = arg;
1879 	struct sge_eq *eq = &wrq->eq;
1880 
1881 	EQ_LOCK(eq);
1882 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
1883 		drain_wrq_wr_list(wrq->adapter, wrq);
1884 	EQ_UNLOCK(eq);
1885 }
1886 
1887 static void
1888 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
1889 {
1890 	struct sge_eq *eq = &wrq->eq;
1891 	u_int available, dbdiff;	/* # of hardware descriptors */
1892 	u_int n;
1893 	struct wrqe *wr;
1894 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
1895 
1896 	EQ_LOCK_ASSERT_OWNED(eq);
1897 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
1898 	wr = STAILQ_FIRST(&wrq->wr_list);
1899 	MPASS(wr != NULL);	/* Must be called with something useful to do */
1900 	MPASS(eq->pidx == eq->dbidx);
1901 	dbdiff = 0;
1902 
1903 	do {
1904 		eq->cidx = read_hw_cidx(eq);
1905 		if (eq->pidx == eq->cidx)
1906 			available = eq->sidx - 1;
1907 		else
1908 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
1909 
1910 		MPASS(wr->wrq == wrq);
1911 		n = howmany(wr->wr_len, EQ_ESIZE);
1912 		if (available < n)
1913 			break;
1914 
1915 		dst = (void *)&eq->desc[eq->pidx];
1916 		if (__predict_true(eq->sidx - eq->pidx > n)) {
1917 			/* Won't wrap, won't end exactly at the status page. */
1918 			bcopy(&wr->wr[0], dst, wr->wr_len);
1919 			eq->pidx += n;
1920 		} else {
1921 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
1922 
1923 			bcopy(&wr->wr[0], dst, first_portion);
1924 			if (wr->wr_len > first_portion) {
1925 				bcopy(&wr->wr[first_portion], &eq->desc[0],
1926 				    wr->wr_len - first_portion);
1927 			}
1928 			eq->pidx = n - (eq->sidx - eq->pidx);
1929 		}
1930 		wrq->tx_wrs_copied++;
1931 
1932 		if (available < eq->sidx / 4 &&
1933 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
1934 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
1935 			    F_FW_WR_EQUEQ);
1936 			eq->equeqidx = eq->pidx;
1937 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
1938 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
1939 			eq->equeqidx = eq->pidx;
1940 		}
1941 
1942 		dbdiff += n;
1943 		if (dbdiff >= 16) {
1944 			ring_eq_db(sc, eq, dbdiff);
1945 			dbdiff = 0;
1946 		}
1947 
1948 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1949 		free_wrqe(wr);
1950 		MPASS(wrq->nwr_pending > 0);
1951 		wrq->nwr_pending--;
1952 		MPASS(wrq->ndesc_needed >= n);
1953 		wrq->ndesc_needed -= n;
1954 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
1955 
1956 	if (dbdiff)
1957 		ring_eq_db(sc, eq, dbdiff);
1958 }
1959 
1960 /*
1961  * Doesn't fail.  Holds on to work requests it can't send right away.
1962  */
1963 void
1964 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1965 {
1966 #ifdef INVARIANTS
1967 	struct sge_eq *eq = &wrq->eq;
1968 #endif
1969 
1970 	EQ_LOCK_ASSERT_OWNED(eq);
1971 	MPASS(wr != NULL);
1972 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
1973 	MPASS((wr->wr_len & 0x7) == 0);
1974 
1975 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1976 	wrq->nwr_pending++;
1977 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
1978 
1979 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
1980 		return;	/* commit_wrq_wr will drain wr_list as well. */
1981 
1982 	drain_wrq_wr_list(sc, wrq);
1983 
1984 	/* Doorbell must have caught up to the pidx. */
1985 	MPASS(eq->pidx == eq->dbidx);
1986 }
1987 
1988 void
1989 t4_update_fl_bufsize(struct ifnet *ifp)
1990 {
1991 	struct vi_info *vi = ifp->if_softc;
1992 	struct adapter *sc = vi->pi->adapter;
1993 	struct sge_rxq *rxq;
1994 #ifdef TCP_OFFLOAD
1995 	struct sge_ofld_rxq *ofld_rxq;
1996 #endif
1997 	struct sge_fl *fl;
1998 	int i, maxp, mtu = ifp->if_mtu;
1999 
2000 	maxp = mtu_to_max_payload(sc, mtu, 0);
2001 	for_each_rxq(vi, i, rxq) {
2002 		fl = &rxq->fl;
2003 
2004 		FL_LOCK(fl);
2005 		find_best_refill_source(sc, fl, maxp);
2006 		FL_UNLOCK(fl);
2007 	}
2008 #ifdef TCP_OFFLOAD
2009 	maxp = mtu_to_max_payload(sc, mtu, 1);
2010 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2011 		fl = &ofld_rxq->fl;
2012 
2013 		FL_LOCK(fl);
2014 		find_best_refill_source(sc, fl, maxp);
2015 		FL_UNLOCK(fl);
2016 	}
2017 #endif
2018 }
2019 
2020 static inline int
2021 mbuf_nsegs(struct mbuf *m)
2022 {
2023 
2024 	M_ASSERTPKTHDR(m);
2025 	KASSERT(m->m_pkthdr.l5hlen > 0,
2026 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2027 
2028 	return (m->m_pkthdr.l5hlen);
2029 }
2030 
2031 static inline void
2032 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2033 {
2034 
2035 	M_ASSERTPKTHDR(m);
2036 	m->m_pkthdr.l5hlen = nsegs;
2037 }
2038 
2039 static inline int
2040 mbuf_len16(struct mbuf *m)
2041 {
2042 	int n;
2043 
2044 	M_ASSERTPKTHDR(m);
2045 	n = m->m_pkthdr.PH_loc.eight[0];
2046 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2047 
2048 	return (n);
2049 }
2050 
2051 static inline void
2052 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2053 {
2054 
2055 	M_ASSERTPKTHDR(m);
2056 	m->m_pkthdr.PH_loc.eight[0] = len16;
2057 }
2058 
2059 static inline int
2060 needs_tso(struct mbuf *m)
2061 {
2062 
2063 	M_ASSERTPKTHDR(m);
2064 
2065 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
2066 		KASSERT(m->m_pkthdr.tso_segsz > 0,
2067 		    ("%s: TSO requested in mbuf %p but MSS not provided",
2068 		    __func__, m));
2069 		return (1);
2070 	}
2071 
2072 	return (0);
2073 }
2074 
2075 static inline int
2076 needs_l3_csum(struct mbuf *m)
2077 {
2078 
2079 	M_ASSERTPKTHDR(m);
2080 
2081 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
2082 		return (1);
2083 	return (0);
2084 }
2085 
2086 static inline int
2087 needs_l4_csum(struct mbuf *m)
2088 {
2089 
2090 	M_ASSERTPKTHDR(m);
2091 
2092 	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2093 	    CSUM_TCP_IPV6 | CSUM_TSO))
2094 		return (1);
2095 	return (0);
2096 }
2097 
2098 static inline int
2099 needs_vlan_insertion(struct mbuf *m)
2100 {
2101 
2102 	M_ASSERTPKTHDR(m);
2103 
2104 	if (m->m_flags & M_VLANTAG) {
2105 		KASSERT(m->m_pkthdr.ether_vtag != 0,
2106 		    ("%s: HWVLAN requested in mbuf %p but tag not provided",
2107 		    __func__, m));
2108 		return (1);
2109 	}
2110 	return (0);
2111 }
2112 
2113 static void *
2114 m_advance(struct mbuf **pm, int *poffset, int len)
2115 {
2116 	struct mbuf *m = *pm;
2117 	int offset = *poffset;
2118 	uintptr_t p = 0;
2119 
2120 	MPASS(len > 0);
2121 
2122 	for (;;) {
2123 		if (offset + len < m->m_len) {
2124 			offset += len;
2125 			p = mtod(m, uintptr_t) + offset;
2126 			break;
2127 		}
2128 		len -= m->m_len - offset;
2129 		m = m->m_next;
2130 		offset = 0;
2131 		MPASS(m != NULL);
2132 	}
2133 	*poffset = offset;
2134 	*pm = m;
2135 	return ((void *)p);
2136 }
2137 
2138 /*
2139  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2140  * must have at least one mbuf that's not empty.
2141  */
2142 static inline int
2143 count_mbuf_nsegs(struct mbuf *m)
2144 {
2145 	vm_paddr_t lastb, next;
2146 	vm_offset_t va;
2147 	int len, nsegs;
2148 
2149 	MPASS(m != NULL);
2150 
2151 	nsegs = 0;
2152 	lastb = 0;
2153 	for (; m; m = m->m_next) {
2154 
2155 		len = m->m_len;
2156 		if (__predict_false(len == 0))
2157 			continue;
2158 		va = mtod(m, vm_offset_t);
2159 		next = pmap_kextract(va);
2160 		nsegs += sglist_count(m->m_data, len);
2161 		if (lastb + 1 == next)
2162 			nsegs--;
2163 		lastb = pmap_kextract(va + len - 1);
2164 	}
2165 
2166 	MPASS(nsegs > 0);
2167 	return (nsegs);
2168 }
2169 
2170 /*
2171  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2172  * a) caller can assume it's been freed if this function returns with an error.
2173  * b) it may get defragged up if the gather list is too long for the hardware.
2174  */
2175 int
2176 parse_pkt(struct adapter *sc, struct mbuf **mp)
2177 {
2178 	struct mbuf *m0 = *mp, *m;
2179 	int rc, nsegs, defragged = 0, offset;
2180 	struct ether_header *eh;
2181 	void *l3hdr;
2182 #if defined(INET) || defined(INET6)
2183 	struct tcphdr *tcp;
2184 #endif
2185 	uint16_t eh_type;
2186 
2187 	M_ASSERTPKTHDR(m0);
2188 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2189 		rc = EINVAL;
2190 fail:
2191 		m_freem(m0);
2192 		*mp = NULL;
2193 		return (rc);
2194 	}
2195 restart:
2196 	/*
2197 	 * First count the number of gather list segments in the payload.
2198 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2199 	 */
2200 	M_ASSERTPKTHDR(m0);
2201 	MPASS(m0->m_pkthdr.len > 0);
2202 	nsegs = count_mbuf_nsegs(m0);
2203 	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2204 		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2205 			rc = EFBIG;
2206 			goto fail;
2207 		}
2208 		*mp = m0 = m;	/* update caller's copy after defrag */
2209 		goto restart;
2210 	}
2211 
2212 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
2213 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2214 		if (m0 == NULL) {
2215 			/* Should have left well enough alone. */
2216 			rc = EFBIG;
2217 			goto fail;
2218 		}
2219 		*mp = m0;	/* update caller's copy after pullup */
2220 		goto restart;
2221 	}
2222 	set_mbuf_nsegs(m0, nsegs);
2223 	if (sc->flags & IS_VF)
2224 		set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0)));
2225 	else
2226 		set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2227 
2228 	if (!needs_tso(m0) &&
2229 	    !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0))))
2230 		return (0);
2231 
2232 	m = m0;
2233 	eh = mtod(m, struct ether_header *);
2234 	eh_type = ntohs(eh->ether_type);
2235 	if (eh_type == ETHERTYPE_VLAN) {
2236 		struct ether_vlan_header *evh = (void *)eh;
2237 
2238 		eh_type = ntohs(evh->evl_proto);
2239 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2240 	} else
2241 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2242 
2243 	offset = 0;
2244 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2245 
2246 	switch (eh_type) {
2247 #ifdef INET6
2248 	case ETHERTYPE_IPV6:
2249 	{
2250 		struct ip6_hdr *ip6 = l3hdr;
2251 
2252 		MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP);
2253 
2254 		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2255 		break;
2256 	}
2257 #endif
2258 #ifdef INET
2259 	case ETHERTYPE_IP:
2260 	{
2261 		struct ip *ip = l3hdr;
2262 
2263 		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2264 		break;
2265 	}
2266 #endif
2267 	default:
2268 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2269 		    " with the same INET/INET6 options as the kernel.",
2270 		    __func__, eh_type);
2271 	}
2272 
2273 #if defined(INET) || defined(INET6)
2274 	if (needs_tso(m0)) {
2275 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2276 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2277 	}
2278 #endif
2279 	MPASS(m0 == *mp);
2280 	return (0);
2281 }
2282 
2283 void *
2284 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2285 {
2286 	struct sge_eq *eq = &wrq->eq;
2287 	struct adapter *sc = wrq->adapter;
2288 	int ndesc, available;
2289 	struct wrqe *wr;
2290 	void *w;
2291 
2292 	MPASS(len16 > 0);
2293 	ndesc = howmany(len16, EQ_ESIZE / 16);
2294 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2295 
2296 	EQ_LOCK(eq);
2297 
2298 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2299 		drain_wrq_wr_list(sc, wrq);
2300 
2301 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2302 slowpath:
2303 		EQ_UNLOCK(eq);
2304 		wr = alloc_wrqe(len16 * 16, wrq);
2305 		if (__predict_false(wr == NULL))
2306 			return (NULL);
2307 		cookie->pidx = -1;
2308 		cookie->ndesc = ndesc;
2309 		return (&wr->wr);
2310 	}
2311 
2312 	eq->cidx = read_hw_cidx(eq);
2313 	if (eq->pidx == eq->cidx)
2314 		available = eq->sidx - 1;
2315 	else
2316 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2317 	if (available < ndesc)
2318 		goto slowpath;
2319 
2320 	cookie->pidx = eq->pidx;
2321 	cookie->ndesc = ndesc;
2322 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2323 
2324 	w = &eq->desc[eq->pidx];
2325 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2326 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2327 		w = &wrq->ss[0];
2328 		wrq->ss_pidx = cookie->pidx;
2329 		wrq->ss_len = len16 * 16;
2330 	}
2331 
2332 	EQ_UNLOCK(eq);
2333 
2334 	return (w);
2335 }
2336 
2337 void
2338 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2339 {
2340 	struct sge_eq *eq = &wrq->eq;
2341 	struct adapter *sc = wrq->adapter;
2342 	int ndesc, pidx;
2343 	struct wrq_cookie *prev, *next;
2344 
2345 	if (cookie->pidx == -1) {
2346 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2347 
2348 		t4_wrq_tx(sc, wr);
2349 		return;
2350 	}
2351 
2352 	if (__predict_false(w == &wrq->ss[0])) {
2353 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2354 
2355 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2356 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2357 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2358 		wrq->tx_wrs_ss++;
2359 	} else
2360 		wrq->tx_wrs_direct++;
2361 
2362 	EQ_LOCK(eq);
2363 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2364 	pidx = cookie->pidx;
2365 	MPASS(pidx >= 0 && pidx < eq->sidx);
2366 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2367 	next = TAILQ_NEXT(cookie, link);
2368 	if (prev == NULL) {
2369 		MPASS(pidx == eq->dbidx);
2370 		if (next == NULL || ndesc >= 16)
2371 			ring_eq_db(wrq->adapter, eq, ndesc);
2372 		else {
2373 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2374 			next->pidx = pidx;
2375 			next->ndesc += ndesc;
2376 		}
2377 	} else {
2378 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2379 		prev->ndesc += ndesc;
2380 	}
2381 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2382 
2383 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2384 		drain_wrq_wr_list(sc, wrq);
2385 
2386 #ifdef INVARIANTS
2387 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2388 		/* Doorbell must have caught up to the pidx. */
2389 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2390 	}
2391 #endif
2392 	EQ_UNLOCK(eq);
2393 }
2394 
2395 static u_int
2396 can_resume_eth_tx(struct mp_ring *r)
2397 {
2398 	struct sge_eq *eq = r->cookie;
2399 
2400 	return (total_available_tx_desc(eq) > eq->sidx / 8);
2401 }
2402 
2403 static inline int
2404 cannot_use_txpkts(struct mbuf *m)
2405 {
2406 	/* maybe put a GL limit too, to avoid silliness? */
2407 
2408 	return (needs_tso(m));
2409 }
2410 
2411 static inline int
2412 discard_tx(struct sge_eq *eq)
2413 {
2414 
2415 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
2416 }
2417 
2418 /*
2419  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2420  * be consumed.  Return the actual number consumed.  0 indicates a stall.
2421  */
2422 static u_int
2423 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2424 {
2425 	struct sge_txq *txq = r->cookie;
2426 	struct sge_eq *eq = &txq->eq;
2427 	struct ifnet *ifp = txq->ifp;
2428 	struct vi_info *vi = ifp->if_softc;
2429 	struct port_info *pi = vi->pi;
2430 	struct adapter *sc = pi->adapter;
2431 	u_int total, remaining;		/* # of packets */
2432 	u_int available, dbdiff;	/* # of hardware descriptors */
2433 	u_int n, next_cidx;
2434 	struct mbuf *m0, *tail;
2435 	struct txpkts txp;
2436 	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2437 
2438 	remaining = IDXDIFF(pidx, cidx, r->size);
2439 	MPASS(remaining > 0);	/* Must not be called without work to do. */
2440 	total = 0;
2441 
2442 	TXQ_LOCK(txq);
2443 	if (__predict_false(discard_tx(eq))) {
2444 		while (cidx != pidx) {
2445 			m0 = r->items[cidx];
2446 			m_freem(m0);
2447 			if (++cidx == r->size)
2448 				cidx = 0;
2449 		}
2450 		reclaim_tx_descs(txq, 2048);
2451 		total = remaining;
2452 		goto done;
2453 	}
2454 
2455 	/* How many hardware descriptors do we have readily available. */
2456 	if (eq->pidx == eq->cidx)
2457 		available = eq->sidx - 1;
2458 	else
2459 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2460 	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2461 
2462 	while (remaining > 0) {
2463 
2464 		m0 = r->items[cidx];
2465 		M_ASSERTPKTHDR(m0);
2466 		MPASS(m0->m_nextpkt == NULL);
2467 
2468 		if (available < SGE_MAX_WR_NDESC) {
2469 			available += reclaim_tx_descs(txq, 64);
2470 			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2471 				break;	/* out of descriptors */
2472 		}
2473 
2474 		next_cidx = cidx + 1;
2475 		if (__predict_false(next_cidx == r->size))
2476 			next_cidx = 0;
2477 
2478 		wr = (void *)&eq->desc[eq->pidx];
2479 		if (sc->flags & IS_VF) {
2480 			total++;
2481 			remaining--;
2482 			ETHER_BPF_MTAP(ifp, m0);
2483 			n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0,
2484 			    available);
2485 		} else if (remaining > 1 &&
2486 		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2487 
2488 			/* pkts at cidx, next_cidx should both be in txp. */
2489 			MPASS(txp.npkt == 2);
2490 			tail = r->items[next_cidx];
2491 			MPASS(tail->m_nextpkt == NULL);
2492 			ETHER_BPF_MTAP(ifp, m0);
2493 			ETHER_BPF_MTAP(ifp, tail);
2494 			m0->m_nextpkt = tail;
2495 
2496 			if (__predict_false(++next_cidx == r->size))
2497 				next_cidx = 0;
2498 
2499 			while (next_cidx != pidx) {
2500 				if (add_to_txpkts(r->items[next_cidx], &txp,
2501 				    available) != 0)
2502 					break;
2503 				tail->m_nextpkt = r->items[next_cidx];
2504 				tail = tail->m_nextpkt;
2505 				ETHER_BPF_MTAP(ifp, tail);
2506 				if (__predict_false(++next_cidx == r->size))
2507 					next_cidx = 0;
2508 			}
2509 
2510 			n = write_txpkts_wr(txq, wr, m0, &txp, available);
2511 			total += txp.npkt;
2512 			remaining -= txp.npkt;
2513 		} else {
2514 			total++;
2515 			remaining--;
2516 			ETHER_BPF_MTAP(ifp, m0);
2517 			n = write_txpkt_wr(txq, (void *)wr, m0, available);
2518 		}
2519 		MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
2520 
2521 		available -= n;
2522 		dbdiff += n;
2523 		IDXINCR(eq->pidx, n, eq->sidx);
2524 
2525 		if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2526 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2527 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2528 			    F_FW_WR_EQUEQ);
2529 			eq->equeqidx = eq->pidx;
2530 		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2531 			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2532 			eq->equeqidx = eq->pidx;
2533 		}
2534 
2535 		if (dbdiff >= 16 && remaining >= 4) {
2536 			ring_eq_db(sc, eq, dbdiff);
2537 			available += reclaim_tx_descs(txq, 4 * dbdiff);
2538 			dbdiff = 0;
2539 		}
2540 
2541 		cidx = next_cidx;
2542 	}
2543 	if (dbdiff != 0) {
2544 		ring_eq_db(sc, eq, dbdiff);
2545 		reclaim_tx_descs(txq, 32);
2546 	}
2547 done:
2548 	TXQ_UNLOCK(txq);
2549 
2550 	return (total);
2551 }
2552 
2553 static inline void
2554 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2555     int qsize)
2556 {
2557 
2558 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2559 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2560 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2561 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2562 
2563 	iq->flags = 0;
2564 	iq->adapter = sc;
2565 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2566 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2567 	if (pktc_idx >= 0) {
2568 		iq->intr_params |= F_QINTR_CNT_EN;
2569 		iq->intr_pktc_idx = pktc_idx;
2570 	}
2571 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2572 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
2573 }
2574 
2575 static inline void
2576 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
2577 {
2578 
2579 	fl->qsize = qsize;
2580 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2581 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2582 	if (sc->flags & BUF_PACKING_OK &&
2583 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
2584 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
2585 		fl->flags |= FL_BUF_PACKING;
2586 	find_best_refill_source(sc, fl, maxp);
2587 	find_safe_refill_source(sc, fl);
2588 }
2589 
2590 static inline void
2591 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
2592     uint8_t tx_chan, uint16_t iqid, char *name)
2593 {
2594 	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2595 
2596 	eq->flags = eqtype & EQ_TYPEMASK;
2597 	eq->tx_chan = tx_chan;
2598 	eq->iqid = iqid;
2599 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2600 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2601 }
2602 
2603 static int
2604 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2605     bus_dmamap_t *map, bus_addr_t *pa, void **va)
2606 {
2607 	int rc;
2608 
2609 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2610 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2611 	if (rc != 0) {
2612 		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2613 		goto done;
2614 	}
2615 
2616 	rc = bus_dmamem_alloc(*tag, va,
2617 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2618 	if (rc != 0) {
2619 		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2620 		goto done;
2621 	}
2622 
2623 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2624 	if (rc != 0) {
2625 		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2626 		goto done;
2627 	}
2628 done:
2629 	if (rc)
2630 		free_ring(sc, *tag, *map, *pa, *va);
2631 
2632 	return (rc);
2633 }
2634 
2635 static int
2636 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2637     bus_addr_t pa, void *va)
2638 {
2639 	if (pa)
2640 		bus_dmamap_unload(tag, map);
2641 	if (va)
2642 		bus_dmamem_free(tag, va, map);
2643 	if (tag)
2644 		bus_dma_tag_destroy(tag);
2645 
2646 	return (0);
2647 }
2648 
2649 /*
2650  * Allocates the ring for an ingress queue and an optional freelist.  If the
2651  * freelist is specified it will be allocated and then associated with the
2652  * ingress queue.
2653  *
2654  * Returns errno on failure.  Resources allocated up to that point may still be
2655  * allocated.  Caller is responsible for cleanup in case this function fails.
2656  *
2657  * If the ingress queue will take interrupts directly then the intr_idx
2658  * specifies the vector, starting from 0.  -1 means the interrupts for this
2659  * queue should be forwarded to the fwq.
2660  */
2661 static int
2662 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
2663     int intr_idx, int cong)
2664 {
2665 	int rc, i, cntxt_id;
2666 	size_t len;
2667 	struct fw_iq_cmd c;
2668 	struct port_info *pi = vi->pi;
2669 	struct adapter *sc = iq->adapter;
2670 	struct sge_params *sp = &sc->params.sge;
2671 	__be32 v = 0;
2672 
2673 	len = iq->qsize * IQ_ESIZE;
2674 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2675 	    (void **)&iq->desc);
2676 	if (rc != 0)
2677 		return (rc);
2678 
2679 	bzero(&c, sizeof(c));
2680 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2681 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2682 	    V_FW_IQ_CMD_VFN(0));
2683 
2684 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2685 	    FW_LEN16(c));
2686 
2687 	/* Special handling for firmware event queue */
2688 	if (iq == &sc->sge.fwq)
2689 		v |= F_FW_IQ_CMD_IQASYNCH;
2690 
2691 	if (intr_idx < 0) {
2692 		/* Forwarded interrupts, all headed to fwq */
2693 		v |= F_FW_IQ_CMD_IQANDST;
2694 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
2695 	} else {
2696 		KASSERT(intr_idx < sc->intr_count,
2697 		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2698 		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2699 	}
2700 
2701 	c.type_to_iqandstindex = htobe32(v |
2702 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2703 	    V_FW_IQ_CMD_VIID(vi->viid) |
2704 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2705 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2706 	    F_FW_IQ_CMD_IQGTSMODE |
2707 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2708 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2709 	c.iqsize = htobe16(iq->qsize);
2710 	c.iqaddr = htobe64(iq->ba);
2711 	if (cong >= 0)
2712 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2713 
2714 	if (fl) {
2715 		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2716 
2717 		len = fl->qsize * EQ_ESIZE;
2718 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2719 		    &fl->ba, (void **)&fl->desc);
2720 		if (rc)
2721 			return (rc);
2722 
2723 		/* Allocate space for one software descriptor per buffer. */
2724 		rc = alloc_fl_sdesc(fl);
2725 		if (rc != 0) {
2726 			device_printf(sc->dev,
2727 			    "failed to setup fl software descriptors: %d\n",
2728 			    rc);
2729 			return (rc);
2730 		}
2731 
2732 		if (fl->flags & FL_BUF_PACKING) {
2733 			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
2734 			fl->buf_boundary = sp->pack_boundary;
2735 		} else {
2736 			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
2737 			fl->buf_boundary = 16;
2738 		}
2739 		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
2740 			fl->buf_boundary = sp->pad_boundary;
2741 
2742 		c.iqns_to_fl0congen |=
2743 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2744 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2745 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2746 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2747 			    0));
2748 		if (cong >= 0) {
2749 			c.iqns_to_fl0congen |=
2750 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2751 				    F_FW_IQ_CMD_FL0CONGCIF |
2752 				    F_FW_IQ_CMD_FL0CONGEN);
2753 		}
2754 		c.fl0dcaen_to_fl0cidxfthresh =
2755 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
2756 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) |
2757 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
2758 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
2759 		c.fl0size = htobe16(fl->qsize);
2760 		c.fl0addr = htobe64(fl->ba);
2761 	}
2762 
2763 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2764 	if (rc != 0) {
2765 		device_printf(sc->dev,
2766 		    "failed to create ingress queue: %d\n", rc);
2767 		return (rc);
2768 	}
2769 
2770 	iq->cidx = 0;
2771 	iq->gen = F_RSPD_GEN;
2772 	iq->intr_next = iq->intr_params;
2773 	iq->cntxt_id = be16toh(c.iqid);
2774 	iq->abs_id = be16toh(c.physiqid);
2775 	iq->flags |= IQ_ALLOCATED;
2776 
2777 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2778 	if (cntxt_id >= sc->sge.niq) {
2779 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2780 		    cntxt_id, sc->sge.niq - 1);
2781 	}
2782 	sc->sge.iqmap[cntxt_id] = iq;
2783 
2784 	if (fl) {
2785 		u_int qid;
2786 
2787 		iq->flags |= IQ_HAS_FL;
2788 		fl->cntxt_id = be16toh(c.fl0id);
2789 		fl->pidx = fl->cidx = 0;
2790 
2791 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2792 		if (cntxt_id >= sc->sge.neq) {
2793 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2794 			    __func__, cntxt_id, sc->sge.neq - 1);
2795 		}
2796 		sc->sge.eqmap[cntxt_id] = (void *)fl;
2797 
2798 		qid = fl->cntxt_id;
2799 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
2800 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
2801 			uint32_t mask = (1 << s_qpp) - 1;
2802 			volatile uint8_t *udb;
2803 
2804 			udb = sc->udbs_base + UDBS_DB_OFFSET;
2805 			udb += (qid >> s_qpp) << PAGE_SHIFT;
2806 			qid &= mask;
2807 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
2808 				udb += qid << UDBS_SEG_SHIFT;
2809 				qid = 0;
2810 			}
2811 			fl->udb = (volatile void *)udb;
2812 		}
2813 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
2814 
2815 		FL_LOCK(fl);
2816 		/* Enough to make sure the SGE doesn't think it's starved */
2817 		refill_fl(sc, fl, fl->lowat);
2818 		FL_UNLOCK(fl);
2819 	}
2820 
2821 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) {
2822 		uint32_t param, val;
2823 
2824 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2825 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2826 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2827 		if (cong == 0)
2828 			val = 1 << 19;
2829 		else {
2830 			val = 2 << 19;
2831 			for (i = 0; i < 4; i++) {
2832 				if (cong & (1 << i))
2833 					val |= 1 << (i << 2);
2834 			}
2835 		}
2836 
2837 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2838 		if (rc != 0) {
2839 			/* report error but carry on */
2840 			device_printf(sc->dev,
2841 			    "failed to set congestion manager context for "
2842 			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2843 		}
2844 	}
2845 
2846 	/* Enable IQ interrupts */
2847 	atomic_store_rel_int(&iq->state, IQS_IDLE);
2848 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
2849 	    V_INGRESSQID(iq->cntxt_id));
2850 
2851 	return (0);
2852 }
2853 
2854 static int
2855 free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
2856 {
2857 	int rc;
2858 	struct adapter *sc = iq->adapter;
2859 	device_t dev;
2860 
2861 	if (sc == NULL)
2862 		return (0);	/* nothing to do */
2863 
2864 	dev = vi ? vi->dev : sc->dev;
2865 
2866 	if (iq->flags & IQ_ALLOCATED) {
2867 		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2868 		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2869 		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2870 		if (rc != 0) {
2871 			device_printf(dev,
2872 			    "failed to free queue %p: %d\n", iq, rc);
2873 			return (rc);
2874 		}
2875 		iq->flags &= ~IQ_ALLOCATED;
2876 	}
2877 
2878 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2879 
2880 	bzero(iq, sizeof(*iq));
2881 
2882 	if (fl) {
2883 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2884 		    fl->desc);
2885 
2886 		if (fl->sdesc)
2887 			free_fl_sdesc(sc, fl);
2888 
2889 		if (mtx_initialized(&fl->fl_lock))
2890 			mtx_destroy(&fl->fl_lock);
2891 
2892 		bzero(fl, sizeof(*fl));
2893 	}
2894 
2895 	return (0);
2896 }
2897 
2898 static void
2899 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2900     struct sge_iq *iq)
2901 {
2902 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2903 
2904 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
2905 	    "bus address of descriptor ring");
2906 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
2907 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
2908 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
2909 	    CTLTYPE_INT | CTLFLAG_RD, &iq->abs_id, 0, sysctl_uint16, "I",
2910 	    "absolute id of the queue");
2911 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2912 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cntxt_id, 0, sysctl_uint16, "I",
2913 	    "SGE context id of the queue");
2914 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2915 	    CTLTYPE_INT | CTLFLAG_RD, &iq->cidx, 0, sysctl_uint16, "I",
2916 	    "consumer index");
2917 }
2918 
2919 static void
2920 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
2921     struct sysctl_oid *oid, struct sge_fl *fl)
2922 {
2923 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2924 
2925 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2926 	    "freelist");
2927 	children = SYSCTL_CHILDREN(oid);
2928 
2929 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
2930 	    &fl->ba, "bus address of descriptor ring");
2931 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
2932 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
2933 	    "desc ring size in bytes");
2934 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2935 	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2936 	    "SGE context id of the freelist");
2937 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
2938 	    fl_pad ? 1 : 0, "padding enabled");
2939 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
2940 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
2941 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2942 	    0, "consumer index");
2943 	if (fl->flags & FL_BUF_PACKING) {
2944 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2945 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2946 	}
2947 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2948 	    0, "producer index");
2949 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2950 	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2951 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2952 	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2953 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2954 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2955 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2956 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2957 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2958 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2959 }
2960 
2961 static int
2962 alloc_fwq(struct adapter *sc)
2963 {
2964 	int rc, intr_idx;
2965 	struct sge_iq *fwq = &sc->sge.fwq;
2966 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2967 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2968 
2969 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
2970 	if (sc->flags & IS_VF)
2971 		intr_idx = 0;
2972 	else
2973 		intr_idx = sc->intr_count > 1 ? 1 : 0;
2974 	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
2975 	if (rc != 0) {
2976 		device_printf(sc->dev,
2977 		    "failed to create firmware event queue: %d\n", rc);
2978 		return (rc);
2979 	}
2980 
2981 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2982 	    NULL, "firmware event queue");
2983 	add_iq_sysctls(&sc->ctx, oid, fwq);
2984 
2985 	return (0);
2986 }
2987 
2988 static int
2989 free_fwq(struct adapter *sc)
2990 {
2991 	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2992 }
2993 
2994 static int
2995 alloc_mgmtq(struct adapter *sc)
2996 {
2997 	int rc;
2998 	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2999 	char name[16];
3000 	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
3001 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3002 
3003 	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
3004 	    NULL, "management queue");
3005 
3006 	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
3007 	init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
3008 	    sc->sge.fwq.cntxt_id, name);
3009 	rc = alloc_wrq(sc, NULL, mgmtq, oid);
3010 	if (rc != 0) {
3011 		device_printf(sc->dev,
3012 		    "failed to create management queue: %d\n", rc);
3013 		return (rc);
3014 	}
3015 
3016 	return (0);
3017 }
3018 
3019 static int
3020 free_mgmtq(struct adapter *sc)
3021 {
3022 
3023 	return free_wrq(sc, &sc->sge.mgmtq);
3024 }
3025 
3026 int
3027 tnl_cong(struct port_info *pi, int drop)
3028 {
3029 
3030 	if (drop == -1)
3031 		return (-1);
3032 	else if (drop == 1)
3033 		return (0);
3034 	else
3035 		return (pi->rx_e_chan_map);
3036 }
3037 
3038 static int
3039 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
3040     struct sysctl_oid *oid)
3041 {
3042 	int rc;
3043 	struct adapter *sc = vi->pi->adapter;
3044 	struct sysctl_oid_list *children;
3045 	char name[16];
3046 
3047 	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
3048 	    tnl_cong(vi->pi, cong_drop));
3049 	if (rc != 0)
3050 		return (rc);
3051 
3052 	if (idx == 0)
3053 		sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3054 	else
3055 		KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3056 		    ("iq_base mismatch"));
3057 	KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3058 	    ("PF with non-zero iq_base"));
3059 
3060 	/*
3061 	 * The freelist is just barely above the starvation threshold right now,
3062 	 * fill it up a bit more.
3063 	 */
3064 	FL_LOCK(&rxq->fl);
3065 	refill_fl(sc, &rxq->fl, 128);
3066 	FL_UNLOCK(&rxq->fl);
3067 
3068 #if defined(INET) || defined(INET6)
3069 	rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs);
3070 	if (rc != 0)
3071 		return (rc);
3072 	MPASS(rxq->lro.ifp == vi->ifp);	/* also indicates LRO init'ed */
3073 
3074 	if (vi->ifp->if_capenable & IFCAP_LRO)
3075 		rxq->iq.flags |= IQ_LRO_ENABLED;
3076 #endif
3077 	rxq->ifp = vi->ifp;
3078 
3079 	children = SYSCTL_CHILDREN(oid);
3080 
3081 	snprintf(name, sizeof(name), "%d", idx);
3082 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3083 	    NULL, "rx queue");
3084 	children = SYSCTL_CHILDREN(oid);
3085 
3086 	add_iq_sysctls(&vi->ctx, oid, &rxq->iq);
3087 #if defined(INET) || defined(INET6)
3088 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3089 	    &rxq->lro.lro_queued, 0, NULL);
3090 	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3091 	    &rxq->lro.lro_flushed, 0, NULL);
3092 #endif
3093 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3094 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3095 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3096 	    CTLFLAG_RD, &rxq->vlan_extraction,
3097 	    "# of times hardware extracted 802.1Q tag");
3098 
3099 	add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl);
3100 
3101 	return (rc);
3102 }
3103 
3104 static int
3105 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3106 {
3107 	int rc;
3108 
3109 #if defined(INET) || defined(INET6)
3110 	if (rxq->lro.ifp) {
3111 		tcp_lro_free(&rxq->lro);
3112 		rxq->lro.ifp = NULL;
3113 	}
3114 #endif
3115 
3116 	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3117 	if (rc == 0)
3118 		bzero(rxq, sizeof(*rxq));
3119 
3120 	return (rc);
3121 }
3122 
3123 #ifdef TCP_OFFLOAD
3124 static int
3125 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3126     int intr_idx, int idx, struct sysctl_oid *oid)
3127 {
3128 	struct port_info *pi = vi->pi;
3129 	int rc;
3130 	struct sysctl_oid_list *children;
3131 	char name[16];
3132 
3133 	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0);
3134 	if (rc != 0)
3135 		return (rc);
3136 
3137 	children = SYSCTL_CHILDREN(oid);
3138 
3139 	snprintf(name, sizeof(name), "%d", idx);
3140 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3141 	    NULL, "rx queue");
3142 	add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq);
3143 	add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl);
3144 
3145 	return (rc);
3146 }
3147 
3148 static int
3149 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3150 {
3151 	int rc;
3152 
3153 	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3154 	if (rc == 0)
3155 		bzero(ofld_rxq, sizeof(*ofld_rxq));
3156 
3157 	return (rc);
3158 }
3159 #endif
3160 
3161 #ifdef DEV_NETMAP
3162 static int
3163 alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3164     int idx, struct sysctl_oid *oid)
3165 {
3166 	int rc;
3167 	struct sysctl_oid_list *children;
3168 	struct sysctl_ctx_list *ctx;
3169 	char name[16];
3170 	size_t len;
3171 	struct adapter *sc = vi->pi->adapter;
3172 	struct netmap_adapter *na = NA(vi->ifp);
3173 
3174 	MPASS(na != NULL);
3175 
3176 	len = vi->qsize_rxq * IQ_ESIZE;
3177 	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3178 	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3179 	if (rc != 0)
3180 		return (rc);
3181 
3182 	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3183 	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3184 	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3185 	if (rc != 0)
3186 		return (rc);
3187 
3188 	nm_rxq->vi = vi;
3189 	nm_rxq->nid = idx;
3190 	nm_rxq->iq_cidx = 0;
3191 	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3192 	nm_rxq->iq_gen = F_RSPD_GEN;
3193 	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3194 	nm_rxq->fl_sidx = na->num_rx_desc;
3195 	nm_rxq->intr_idx = intr_idx;
3196 	nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID;
3197 
3198 	ctx = &vi->ctx;
3199 	children = SYSCTL_CHILDREN(oid);
3200 
3201 	snprintf(name, sizeof(name), "%d", idx);
3202 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3203 	    "rx queue");
3204 	children = SYSCTL_CHILDREN(oid);
3205 
3206 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3207 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3208 	    "I", "absolute id of the queue");
3209 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3210 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3211 	    "I", "SGE context id of the queue");
3212 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3213 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3214 	    "consumer index");
3215 
3216 	children = SYSCTL_CHILDREN(oid);
3217 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3218 	    "freelist");
3219 	children = SYSCTL_CHILDREN(oid);
3220 
3221 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3222 	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3223 	    "I", "SGE context id of the freelist");
3224 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3225 	    &nm_rxq->fl_cidx, 0, "consumer index");
3226 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3227 	    &nm_rxq->fl_pidx, 0, "producer index");
3228 
3229 	return (rc);
3230 }
3231 
3232 
3233 static int
3234 free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3235 {
3236 	struct adapter *sc = vi->pi->adapter;
3237 
3238 	if (vi->flags & VI_INIT_DONE)
3239 		MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID);
3240 	else
3241 		MPASS(nm_rxq->iq_cntxt_id == 0);
3242 
3243 	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3244 	    nm_rxq->iq_desc);
3245 	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3246 	    nm_rxq->fl_desc);
3247 
3248 	return (0);
3249 }
3250 
3251 static int
3252 alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3253     struct sysctl_oid *oid)
3254 {
3255 	int rc;
3256 	size_t len;
3257 	struct port_info *pi = vi->pi;
3258 	struct adapter *sc = pi->adapter;
3259 	struct netmap_adapter *na = NA(vi->ifp);
3260 	char name[16];
3261 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3262 
3263 	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3264 	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3265 	    &nm_txq->ba, (void **)&nm_txq->desc);
3266 	if (rc)
3267 		return (rc);
3268 
3269 	nm_txq->pidx = nm_txq->cidx = 0;
3270 	nm_txq->sidx = na->num_tx_desc;
3271 	nm_txq->nid = idx;
3272 	nm_txq->iqidx = iqidx;
3273 	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3274 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) |
3275 	    V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) |
3276 	    V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid)));
3277 	nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID;
3278 
3279 	snprintf(name, sizeof(name), "%d", idx);
3280 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3281 	    NULL, "netmap tx queue");
3282 	children = SYSCTL_CHILDREN(oid);
3283 
3284 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3285 	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3286 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3287 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3288 	    "consumer index");
3289 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3290 	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3291 	    "producer index");
3292 
3293 	return (rc);
3294 }
3295 
3296 static int
3297 free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3298 {
3299 	struct adapter *sc = vi->pi->adapter;
3300 
3301 	if (vi->flags & VI_INIT_DONE)
3302 		MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID);
3303 	else
3304 		MPASS(nm_txq->cntxt_id == 0);
3305 
3306 	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3307 	    nm_txq->desc);
3308 
3309 	return (0);
3310 }
3311 #endif
3312 
3313 static int
3314 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3315 {
3316 	int rc, cntxt_id;
3317 	struct fw_eq_ctrl_cmd c;
3318 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3319 
3320 	bzero(&c, sizeof(c));
3321 
3322 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3323 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3324 	    V_FW_EQ_CTRL_CMD_VFN(0));
3325 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3326 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3327 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3328 	c.physeqid_pkd = htobe32(0);
3329 	c.fetchszm_to_iqid =
3330 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3331 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3332 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3333 	c.dcaen_to_eqsize =
3334 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3335 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3336 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
3337 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3338 	c.eqaddr = htobe64(eq->ba);
3339 
3340 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3341 	if (rc != 0) {
3342 		device_printf(sc->dev,
3343 		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3344 		return (rc);
3345 	}
3346 	eq->flags |= EQ_ALLOCATED;
3347 
3348 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3349 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3350 	if (cntxt_id >= sc->sge.neq)
3351 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3352 		cntxt_id, sc->sge.neq - 1);
3353 	sc->sge.eqmap[cntxt_id] = eq;
3354 
3355 	return (rc);
3356 }
3357 
3358 static int
3359 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3360 {
3361 	int rc, cntxt_id;
3362 	struct fw_eq_eth_cmd c;
3363 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3364 
3365 	bzero(&c, sizeof(c));
3366 
3367 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3368 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3369 	    V_FW_EQ_ETH_CMD_VFN(0));
3370 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3371 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3372 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3373 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3374 	c.fetchszm_to_iqid =
3375 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3376 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3377 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3378 	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3379 	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3380 	    V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3381 	c.eqaddr = htobe64(eq->ba);
3382 
3383 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3384 	if (rc != 0) {
3385 		device_printf(vi->dev,
3386 		    "failed to create Ethernet egress queue: %d\n", rc);
3387 		return (rc);
3388 	}
3389 	eq->flags |= EQ_ALLOCATED;
3390 
3391 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3392 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
3393 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3394 	if (cntxt_id >= sc->sge.neq)
3395 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3396 		cntxt_id, sc->sge.neq - 1);
3397 	sc->sge.eqmap[cntxt_id] = eq;
3398 
3399 	return (rc);
3400 }
3401 
3402 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3403 static int
3404 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3405 {
3406 	int rc, cntxt_id;
3407 	struct fw_eq_ofld_cmd c;
3408 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3409 
3410 	bzero(&c, sizeof(c));
3411 
3412 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3413 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3414 	    V_FW_EQ_OFLD_CMD_VFN(0));
3415 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3416 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3417 	c.fetchszm_to_iqid =
3418 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3419 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3420 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3421 	c.dcaen_to_eqsize =
3422 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3423 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3424 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3425 	c.eqaddr = htobe64(eq->ba);
3426 
3427 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3428 	if (rc != 0) {
3429 		device_printf(vi->dev,
3430 		    "failed to create egress queue for TCP offload: %d\n", rc);
3431 		return (rc);
3432 	}
3433 	eq->flags |= EQ_ALLOCATED;
3434 
3435 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3436 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3437 	if (cntxt_id >= sc->sge.neq)
3438 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3439 		cntxt_id, sc->sge.neq - 1);
3440 	sc->sge.eqmap[cntxt_id] = eq;
3441 
3442 	return (rc);
3443 }
3444 #endif
3445 
3446 static int
3447 alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3448 {
3449 	int rc, qsize;
3450 	size_t len;
3451 
3452 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3453 
3454 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3455 	len = qsize * EQ_ESIZE;
3456 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3457 	    &eq->ba, (void **)&eq->desc);
3458 	if (rc)
3459 		return (rc);
3460 
3461 	eq->pidx = eq->cidx = 0;
3462 	eq->equeqidx = eq->dbidx = 0;
3463 	eq->doorbells = sc->doorbells;
3464 
3465 	switch (eq->flags & EQ_TYPEMASK) {
3466 	case EQ_CTRL:
3467 		rc = ctrl_eq_alloc(sc, eq);
3468 		break;
3469 
3470 	case EQ_ETH:
3471 		rc = eth_eq_alloc(sc, vi, eq);
3472 		break;
3473 
3474 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3475 	case EQ_OFLD:
3476 		rc = ofld_eq_alloc(sc, vi, eq);
3477 		break;
3478 #endif
3479 
3480 	default:
3481 		panic("%s: invalid eq type %d.", __func__,
3482 		    eq->flags & EQ_TYPEMASK);
3483 	}
3484 	if (rc != 0) {
3485 		device_printf(sc->dev,
3486 		    "failed to allocate egress queue(%d): %d\n",
3487 		    eq->flags & EQ_TYPEMASK, rc);
3488 	}
3489 
3490 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3491 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3492 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3493 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3494 		uint32_t mask = (1 << s_qpp) - 1;
3495 		volatile uint8_t *udb;
3496 
3497 		udb = sc->udbs_base + UDBS_DB_OFFSET;
3498 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3499 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3500 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3501 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3502 		else {
3503 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3504 			eq->udb_qid = 0;
3505 		}
3506 		eq->udb = (volatile void *)udb;
3507 	}
3508 
3509 	return (rc);
3510 }
3511 
3512 static int
3513 free_eq(struct adapter *sc, struct sge_eq *eq)
3514 {
3515 	int rc;
3516 
3517 	if (eq->flags & EQ_ALLOCATED) {
3518 		switch (eq->flags & EQ_TYPEMASK) {
3519 		case EQ_CTRL:
3520 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3521 			    eq->cntxt_id);
3522 			break;
3523 
3524 		case EQ_ETH:
3525 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3526 			    eq->cntxt_id);
3527 			break;
3528 
3529 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3530 		case EQ_OFLD:
3531 			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3532 			    eq->cntxt_id);
3533 			break;
3534 #endif
3535 
3536 		default:
3537 			panic("%s: invalid eq type %d.", __func__,
3538 			    eq->flags & EQ_TYPEMASK);
3539 		}
3540 		if (rc != 0) {
3541 			device_printf(sc->dev,
3542 			    "failed to free egress queue (%d): %d\n",
3543 			    eq->flags & EQ_TYPEMASK, rc);
3544 			return (rc);
3545 		}
3546 		eq->flags &= ~EQ_ALLOCATED;
3547 	}
3548 
3549 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3550 
3551 	if (mtx_initialized(&eq->eq_lock))
3552 		mtx_destroy(&eq->eq_lock);
3553 
3554 	bzero(eq, sizeof(*eq));
3555 	return (0);
3556 }
3557 
3558 static int
3559 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
3560     struct sysctl_oid *oid)
3561 {
3562 	int rc;
3563 	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
3564 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3565 
3566 	rc = alloc_eq(sc, vi, &wrq->eq);
3567 	if (rc)
3568 		return (rc);
3569 
3570 	wrq->adapter = sc;
3571 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
3572 	TAILQ_INIT(&wrq->incomplete_wrs);
3573 	STAILQ_INIT(&wrq->wr_list);
3574 	wrq->nwr_pending = 0;
3575 	wrq->ndesc_needed = 0;
3576 
3577 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3578 	    &wrq->eq.ba, "bus address of descriptor ring");
3579 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3580 	    wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len,
3581 	    "desc ring size in bytes");
3582 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3583 	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3584 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3585 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3586 	    "consumer index");
3587 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3588 	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3589 	    "producer index");
3590 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3591 	    wrq->eq.sidx, "status page index");
3592 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
3593 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
3594 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
3595 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
3596 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
3597 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
3598 
3599 	return (rc);
3600 }
3601 
3602 static int
3603 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3604 {
3605 	int rc;
3606 
3607 	rc = free_eq(sc, &wrq->eq);
3608 	if (rc)
3609 		return (rc);
3610 
3611 	bzero(wrq, sizeof(*wrq));
3612 	return (0);
3613 }
3614 
3615 static int
3616 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
3617     struct sysctl_oid *oid)
3618 {
3619 	int rc;
3620 	struct port_info *pi = vi->pi;
3621 	struct adapter *sc = pi->adapter;
3622 	struct sge_eq *eq = &txq->eq;
3623 	char name[16];
3624 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3625 
3626 	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
3627 	    M_CXGBE, M_WAITOK);
3628 	if (rc != 0) {
3629 		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
3630 		return (rc);
3631 	}
3632 
3633 	rc = alloc_eq(sc, vi, eq);
3634 	if (rc != 0) {
3635 		mp_ring_free(txq->r);
3636 		txq->r = NULL;
3637 		return (rc);
3638 	}
3639 
3640 	/* Can't fail after this point. */
3641 
3642 	if (idx == 0)
3643 		sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
3644 	else
3645 		KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
3646 		    ("eq_base mismatch"));
3647 	KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
3648 	    ("PF with non-zero eq_base"));
3649 
3650 	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
3651 	txq->ifp = vi->ifp;
3652 	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
3653 	if (sc->flags & IS_VF)
3654 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
3655 		    V_TXPKT_INTF(pi->tx_chan));
3656 	else
3657 		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3658 		    V_TXPKT_INTF(pi->tx_chan) |
3659 		    V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) |
3660 		    V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) |
3661 		    V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid)));
3662 	txq->tc_idx = -1;
3663 	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
3664 	    M_ZERO | M_WAITOK);
3665 
3666 	snprintf(name, sizeof(name), "%d", idx);
3667 	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3668 	    NULL, "tx queue");
3669 	children = SYSCTL_CHILDREN(oid);
3670 
3671 	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3672 	    &eq->ba, "bus address of descriptor ring");
3673 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3674 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3675 	    "desc ring size in bytes");
3676 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3677 	    &eq->abs_id, 0, "absolute id of the queue");
3678 	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3679 	    &eq->cntxt_id, 0, "SGE context id of the queue");
3680 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3681 	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3682 	    "consumer index");
3683 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3684 	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3685 	    "producer index");
3686 	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3687 	    eq->sidx, "status page index");
3688 
3689 	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
3690 	    CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I",
3691 	    "traffic class (-1 means none)");
3692 
3693 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3694 	    &txq->txcsum, "# of times hardware assisted with checksum");
3695 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
3696 	    CTLFLAG_RD, &txq->vlan_insertion,
3697 	    "# of times hardware inserted 802.1Q tag");
3698 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3699 	    &txq->tso_wrs, "# of TSO work requests");
3700 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3701 	    &txq->imm_wrs, "# of work requests with immediate data");
3702 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3703 	    &txq->sgl_wrs, "# of work requests with direct SGL");
3704 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3705 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3706 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
3707 	    CTLFLAG_RD, &txq->txpkts0_wrs,
3708 	    "# of txpkts (type 0) work requests");
3709 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
3710 	    CTLFLAG_RD, &txq->txpkts1_wrs,
3711 	    "# of txpkts (type 1) work requests");
3712 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
3713 	    CTLFLAG_RD, &txq->txpkts0_pkts,
3714 	    "# of frames tx'd using type0 txpkts work requests");
3715 	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
3716 	    CTLFLAG_RD, &txq->txpkts1_pkts,
3717 	    "# of frames tx'd using type1 txpkts work requests");
3718 
3719 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
3720 	    CTLFLAG_RD, &txq->r->enqueues,
3721 	    "# of enqueues to the mp_ring for this queue");
3722 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
3723 	    CTLFLAG_RD, &txq->r->drops,
3724 	    "# of drops in the mp_ring for this queue");
3725 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
3726 	    CTLFLAG_RD, &txq->r->starts,
3727 	    "# of normal consumer starts in the mp_ring for this queue");
3728 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
3729 	    CTLFLAG_RD, &txq->r->stalls,
3730 	    "# of consumer stalls in the mp_ring for this queue");
3731 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
3732 	    CTLFLAG_RD, &txq->r->restarts,
3733 	    "# of consumer restarts in the mp_ring for this queue");
3734 	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
3735 	    CTLFLAG_RD, &txq->r->abdications,
3736 	    "# of consumer abdications in the mp_ring for this queue");
3737 
3738 	return (0);
3739 }
3740 
3741 static int
3742 free_txq(struct vi_info *vi, struct sge_txq *txq)
3743 {
3744 	int rc;
3745 	struct adapter *sc = vi->pi->adapter;
3746 	struct sge_eq *eq = &txq->eq;
3747 
3748 	rc = free_eq(sc, eq);
3749 	if (rc)
3750 		return (rc);
3751 
3752 	sglist_free(txq->gl);
3753 	free(txq->sdesc, M_CXGBE);
3754 	mp_ring_free(txq->r);
3755 
3756 	bzero(txq, sizeof(*txq));
3757 	return (0);
3758 }
3759 
3760 static void
3761 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3762 {
3763 	bus_addr_t *ba = arg;
3764 
3765 	KASSERT(nseg == 1,
3766 	    ("%s meant for single segment mappings only.", __func__));
3767 
3768 	*ba = error ? 0 : segs->ds_addr;
3769 }
3770 
3771 static inline void
3772 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3773 {
3774 	uint32_t n, v;
3775 
3776 	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
3777 	MPASS(n > 0);
3778 
3779 	wmb();
3780 	v = fl->dbval | V_PIDX(n);
3781 	if (fl->udb)
3782 		*fl->udb = htole32(v);
3783 	else
3784 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
3785 	IDXINCR(fl->dbidx, n, fl->sidx);
3786 }
3787 
3788 /*
3789  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
3790  * recycled do not count towards this allocation budget.
3791  *
3792  * Returns non-zero to indicate that this freelist should be added to the list
3793  * of starving freelists.
3794  */
3795 static int
3796 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
3797 {
3798 	__be64 *d;
3799 	struct fl_sdesc *sd;
3800 	uintptr_t pa;
3801 	caddr_t cl;
3802 	struct cluster_layout *cll;
3803 	struct sw_zone_info *swz;
3804 	struct cluster_metadata *clm;
3805 	uint16_t max_pidx;
3806 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
3807 
3808 	FL_LOCK_ASSERT_OWNED(fl);
3809 
3810 	/*
3811 	 * We always stop at the beginning of the hardware descriptor that's just
3812 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
3813 	 * which would mean an empty freelist to the chip.
3814 	 */
3815 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
3816 	if (fl->pidx == max_pidx * 8)
3817 		return (0);
3818 
3819 	d = &fl->desc[fl->pidx];
3820 	sd = &fl->sdesc[fl->pidx];
3821 	cll = &fl->cll_def;	/* default layout */
3822 	swz = &sc->sge.sw_zone_info[cll->zidx];
3823 
3824 	while (n > 0) {
3825 
3826 		if (sd->cl != NULL) {
3827 
3828 			if (sd->nmbuf == 0) {
3829 				/*
3830 				 * Fast recycle without involving any atomics on
3831 				 * the cluster's metadata (if the cluster has
3832 				 * metadata).  This happens when all frames
3833 				 * received in the cluster were small enough to
3834 				 * fit within a single mbuf each.
3835 				 */
3836 				fl->cl_fast_recycled++;
3837 #ifdef INVARIANTS
3838 				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3839 				if (clm != NULL)
3840 					MPASS(clm->refcount == 1);
3841 #endif
3842 				goto recycled_fast;
3843 			}
3844 
3845 			/*
3846 			 * Cluster is guaranteed to have metadata.  Clusters
3847 			 * without metadata always take the fast recycle path
3848 			 * when they're recycled.
3849 			 */
3850 			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3851 			MPASS(clm != NULL);
3852 
3853 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3854 				fl->cl_recycled++;
3855 				counter_u64_add(extfree_rels, 1);
3856 				goto recycled;
3857 			}
3858 			sd->cl = NULL;	/* gave up my reference */
3859 		}
3860 		MPASS(sd->cl == NULL);
3861 alloc:
3862 		cl = uma_zalloc(swz->zone, M_NOWAIT);
3863 		if (__predict_false(cl == NULL)) {
3864 			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3865 			    fl->cll_def.zidx == fl->cll_alt.zidx)
3866 				break;
3867 
3868 			/* fall back to the safe zone */
3869 			cll = &fl->cll_alt;
3870 			swz = &sc->sge.sw_zone_info[cll->zidx];
3871 			goto alloc;
3872 		}
3873 		fl->cl_allocated++;
3874 		n--;
3875 
3876 		pa = pmap_kextract((vm_offset_t)cl);
3877 		pa += cll->region1;
3878 		sd->cl = cl;
3879 		sd->cll = *cll;
3880 		*d = htobe64(pa | cll->hwidx);
3881 		clm = cl_metadata(sc, fl, cll, cl);
3882 		if (clm != NULL) {
3883 recycled:
3884 #ifdef INVARIANTS
3885 			clm->sd = sd;
3886 #endif
3887 			clm->refcount = 1;
3888 		}
3889 		sd->nmbuf = 0;
3890 recycled_fast:
3891 		d++;
3892 		sd++;
3893 		if (__predict_false(++fl->pidx % 8 == 0)) {
3894 			uint16_t pidx = fl->pidx / 8;
3895 
3896 			if (__predict_false(pidx == fl->sidx)) {
3897 				fl->pidx = 0;
3898 				pidx = 0;
3899 				sd = fl->sdesc;
3900 				d = fl->desc;
3901 			}
3902 			if (pidx == max_pidx)
3903 				break;
3904 
3905 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
3906 				ring_fl_db(sc, fl);
3907 		}
3908 	}
3909 
3910 	if (fl->pidx / 8 != fl->dbidx)
3911 		ring_fl_db(sc, fl);
3912 
3913 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3914 }
3915 
3916 /*
3917  * Attempt to refill all starving freelists.
3918  */
3919 static void
3920 refill_sfl(void *arg)
3921 {
3922 	struct adapter *sc = arg;
3923 	struct sge_fl *fl, *fl_temp;
3924 
3925 	mtx_assert(&sc->sfl_lock, MA_OWNED);
3926 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3927 		FL_LOCK(fl);
3928 		refill_fl(sc, fl, 64);
3929 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3930 			TAILQ_REMOVE(&sc->sfl, fl, link);
3931 			fl->flags &= ~FL_STARVING;
3932 		}
3933 		FL_UNLOCK(fl);
3934 	}
3935 
3936 	if (!TAILQ_EMPTY(&sc->sfl))
3937 		callout_schedule(&sc->sfl_callout, hz / 5);
3938 }
3939 
3940 static int
3941 alloc_fl_sdesc(struct sge_fl *fl)
3942 {
3943 
3944 	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
3945 	    M_ZERO | M_WAITOK);
3946 
3947 	return (0);
3948 }
3949 
3950 static void
3951 free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3952 {
3953 	struct fl_sdesc *sd;
3954 	struct cluster_metadata *clm;
3955 	struct cluster_layout *cll;
3956 	int i;
3957 
3958 	sd = fl->sdesc;
3959 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
3960 		if (sd->cl == NULL)
3961 			continue;
3962 
3963 		cll = &sd->cll;
3964 		clm = cl_metadata(sc, fl, cll, sd->cl);
3965 		if (sd->nmbuf == 0)
3966 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3967 		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3968 			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3969 			counter_u64_add(extfree_rels, 1);
3970 		}
3971 		sd->cl = NULL;
3972 	}
3973 
3974 	free(fl->sdesc, M_CXGBE);
3975 	fl->sdesc = NULL;
3976 }
3977 
3978 static inline void
3979 get_pkt_gl(struct mbuf *m, struct sglist *gl)
3980 {
3981 	int rc;
3982 
3983 	M_ASSERTPKTHDR(m);
3984 
3985 	sglist_reset(gl);
3986 	rc = sglist_append_mbuf(gl, m);
3987 	if (__predict_false(rc != 0)) {
3988 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
3989 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
3990 	}
3991 
3992 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
3993 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
3994 	    mbuf_nsegs(m), gl->sg_nseg));
3995 	KASSERT(gl->sg_nseg > 0 &&
3996 	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
3997 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
3998 		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
3999 }
4000 
4001 /*
4002  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
4003  */
4004 static inline u_int
4005 txpkt_len16(u_int nsegs, u_int tso)
4006 {
4007 	u_int n;
4008 
4009 	MPASS(nsegs > 0);
4010 
4011 	nsegs--; /* first segment is part of ulptx_sgl */
4012 	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
4013 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4014 	if (tso)
4015 		n += sizeof(struct cpl_tx_pkt_lso_core);
4016 
4017 	return (howmany(n, 16));
4018 }
4019 
4020 /*
4021  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
4022  * request header.
4023  */
4024 static inline u_int
4025 txpkt_vm_len16(u_int nsegs, u_int tso)
4026 {
4027 	u_int n;
4028 
4029 	MPASS(nsegs > 0);
4030 
4031 	nsegs--; /* first segment is part of ulptx_sgl */
4032 	n = sizeof(struct fw_eth_tx_pkt_vm_wr) +
4033 	    sizeof(struct cpl_tx_pkt_core) +
4034 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4035 	if (tso)
4036 		n += sizeof(struct cpl_tx_pkt_lso_core);
4037 
4038 	return (howmany(n, 16));
4039 }
4040 
4041 /*
4042  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
4043  * request header.
4044  */
4045 static inline u_int
4046 txpkts0_len16(u_int nsegs)
4047 {
4048 	u_int n;
4049 
4050 	MPASS(nsegs > 0);
4051 
4052 	nsegs--; /* first segment is part of ulptx_sgl */
4053 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
4054 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
4055 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
4056 
4057 	return (howmany(n, 16));
4058 }
4059 
4060 /*
4061  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
4062  * request header.
4063  */
4064 static inline u_int
4065 txpkts1_len16(void)
4066 {
4067 	u_int n;
4068 
4069 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
4070 
4071 	return (howmany(n, 16));
4072 }
4073 
4074 static inline u_int
4075 imm_payload(u_int ndesc)
4076 {
4077 	u_int n;
4078 
4079 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
4080 	    sizeof(struct cpl_tx_pkt_core);
4081 
4082 	return (n);
4083 }
4084 
4085 /*
4086  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
4087  * software descriptor, and advance the pidx.  It is guaranteed that enough
4088  * descriptors are available.
4089  *
4090  * The return value is the # of hardware descriptors used.
4091  */
4092 static u_int
4093 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq,
4094     struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available)
4095 {
4096 	struct sge_eq *eq = &txq->eq;
4097 	struct tx_sdesc *txsd;
4098 	struct cpl_tx_pkt_core *cpl;
4099 	uint32_t ctrl;	/* used in many unrelated places */
4100 	uint64_t ctrl1;
4101 	int csum_type, len16, ndesc, pktlen, nsegs;
4102 	caddr_t dst;
4103 
4104 	TXQ_LOCK_ASSERT_OWNED(txq);
4105 	M_ASSERTPKTHDR(m0);
4106 	MPASS(available > 0 && available < eq->sidx);
4107 
4108 	len16 = mbuf_len16(m0);
4109 	nsegs = mbuf_nsegs(m0);
4110 	pktlen = m0->m_pkthdr.len;
4111 	ctrl = sizeof(struct cpl_tx_pkt_core);
4112 	if (needs_tso(m0))
4113 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4114 	ndesc = howmany(len16, EQ_ESIZE / 16);
4115 	MPASS(ndesc <= available);
4116 
4117 	/* Firmware work request header */
4118 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4119 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
4120 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4121 
4122 	ctrl = V_FW_WR_LEN16(len16);
4123 	wr->equiq_to_len16 = htobe32(ctrl);
4124 	wr->r3[0] = 0;
4125 	wr->r3[1] = 0;
4126 
4127 	/*
4128 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
4129 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
4130 	 * simpler to always copy it rather than making it
4131 	 * conditional.  Also, it seems that we do not have to set
4132 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
4133 	 */
4134 	m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst);
4135 
4136 	csum_type = -1;
4137 	if (needs_tso(m0)) {
4138 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4139 
4140 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4141 		    m0->m_pkthdr.l4hlen > 0,
4142 		    ("%s: mbuf %p needs TSO but missing header lengths",
4143 			__func__, m0));
4144 
4145 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4146 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4147 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4148 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4149 			ctrl |= V_LSO_ETHHDR_LEN(1);
4150 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4151 			ctrl |= F_LSO_IPV6;
4152 
4153 		lso->lso_ctrl = htobe32(ctrl);
4154 		lso->ipid_ofst = htobe16(0);
4155 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4156 		lso->seqno_offset = htobe32(0);
4157 		lso->len = htobe32(pktlen);
4158 
4159 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4160 			csum_type = TX_CSUM_TCPIP6;
4161 		else
4162 			csum_type = TX_CSUM_TCPIP;
4163 
4164 		cpl = (void *)(lso + 1);
4165 
4166 		txq->tso_wrs++;
4167 	} else {
4168 		if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP)
4169 			csum_type = TX_CSUM_TCPIP;
4170 		else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP)
4171 			csum_type = TX_CSUM_UDPIP;
4172 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP)
4173 			csum_type = TX_CSUM_TCPIP6;
4174 		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP)
4175 			csum_type = TX_CSUM_UDPIP6;
4176 #if defined(INET)
4177 		else if (m0->m_pkthdr.csum_flags & CSUM_IP) {
4178 			/*
4179 			 * XXX: The firmware appears to stomp on the
4180 			 * fragment/flags field of the IP header when
4181 			 * using TX_CSUM_IP.  Fall back to doing
4182 			 * software checksums.
4183 			 */
4184 			u_short *sump;
4185 			struct mbuf *m;
4186 			int offset;
4187 
4188 			m = m0;
4189 			offset = 0;
4190 			sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen +
4191 			    offsetof(struct ip, ip_sum));
4192 			*sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen +
4193 			    m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen);
4194 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
4195 		}
4196 #endif
4197 
4198 		cpl = (void *)(wr + 1);
4199 	}
4200 
4201 	/* Checksum offload */
4202 	ctrl1 = 0;
4203 	if (needs_l3_csum(m0) == 0)
4204 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4205 	if (csum_type >= 0) {
4206 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0,
4207 	    ("%s: mbuf %p needs checksum offload but missing header lengths",
4208 			__func__, m0));
4209 
4210 		if (chip_id(sc) <= CHELSIO_T5) {
4211 			ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4212 			    ETHER_HDR_LEN);
4213 		} else {
4214 			ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4215 			    ETHER_HDR_LEN);
4216 		}
4217 		ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen);
4218 		ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type);
4219 	} else
4220 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4221 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4222 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4223 		txq->txcsum++;	/* some hardware assistance provided */
4224 
4225 	/* VLAN tag insertion */
4226 	if (needs_vlan_insertion(m0)) {
4227 		ctrl1 |= F_TXPKT_VLAN_VLD |
4228 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4229 		txq->vlan_insertion++;
4230 	}
4231 
4232 	/* CPL header */
4233 	cpl->ctrl0 = txq->cpl_ctrl0;
4234 	cpl->pack = 0;
4235 	cpl->len = htobe16(pktlen);
4236 	cpl->ctrl1 = htobe64(ctrl1);
4237 
4238 	/* SGL */
4239 	dst = (void *)(cpl + 1);
4240 
4241 	/*
4242 	 * A packet using TSO will use up an entire descriptor for the
4243 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
4244 	 * If this descriptor is the last descriptor in the ring, wrap
4245 	 * around to the front of the ring explicitly for the start of
4246 	 * the sgl.
4247 	 */
4248 	if (dst == (void *)&eq->desc[eq->sidx]) {
4249 		dst = (void *)&eq->desc[0];
4250 		write_gl_to_txd(txq, m0, &dst, 0);
4251 	} else
4252 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4253 	txq->sgl_wrs++;
4254 
4255 	txq->txpkt_wrs++;
4256 
4257 	txsd = &txq->sdesc[eq->pidx];
4258 	txsd->m = m0;
4259 	txsd->desc_used = ndesc;
4260 
4261 	return (ndesc);
4262 }
4263 
4264 /*
4265  * Write a txpkt WR for this packet to the hardware descriptors, update the
4266  * software descriptor, and advance the pidx.  It is guaranteed that enough
4267  * descriptors are available.
4268  *
4269  * The return value is the # of hardware descriptors used.
4270  */
4271 static u_int
4272 write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
4273     struct mbuf *m0, u_int available)
4274 {
4275 	struct sge_eq *eq = &txq->eq;
4276 	struct tx_sdesc *txsd;
4277 	struct cpl_tx_pkt_core *cpl;
4278 	uint32_t ctrl;	/* used in many unrelated places */
4279 	uint64_t ctrl1;
4280 	int len16, ndesc, pktlen, nsegs;
4281 	caddr_t dst;
4282 
4283 	TXQ_LOCK_ASSERT_OWNED(txq);
4284 	M_ASSERTPKTHDR(m0);
4285 	MPASS(available > 0 && available < eq->sidx);
4286 
4287 	len16 = mbuf_len16(m0);
4288 	nsegs = mbuf_nsegs(m0);
4289 	pktlen = m0->m_pkthdr.len;
4290 	ctrl = sizeof(struct cpl_tx_pkt_core);
4291 	if (needs_tso(m0))
4292 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4293 	else if (pktlen <= imm_payload(2) && available >= 2) {
4294 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
4295 		ctrl += pktlen;
4296 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
4297 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
4298 		nsegs = 0;
4299 	}
4300 	ndesc = howmany(len16, EQ_ESIZE / 16);
4301 	MPASS(ndesc <= available);
4302 
4303 	/* Firmware work request header */
4304 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4305 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
4306 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4307 
4308 	ctrl = V_FW_WR_LEN16(len16);
4309 	wr->equiq_to_len16 = htobe32(ctrl);
4310 	wr->r3 = 0;
4311 
4312 	if (needs_tso(m0)) {
4313 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4314 
4315 		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4316 		    m0->m_pkthdr.l4hlen > 0,
4317 		    ("%s: mbuf %p needs TSO but missing header lengths",
4318 			__func__, m0));
4319 
4320 		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4321 		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4322 		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4323 		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4324 			ctrl |= V_LSO_ETHHDR_LEN(1);
4325 		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4326 			ctrl |= F_LSO_IPV6;
4327 
4328 		lso->lso_ctrl = htobe32(ctrl);
4329 		lso->ipid_ofst = htobe16(0);
4330 		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4331 		lso->seqno_offset = htobe32(0);
4332 		lso->len = htobe32(pktlen);
4333 
4334 		cpl = (void *)(lso + 1);
4335 
4336 		txq->tso_wrs++;
4337 	} else
4338 		cpl = (void *)(wr + 1);
4339 
4340 	/* Checksum offload */
4341 	ctrl1 = 0;
4342 	if (needs_l3_csum(m0) == 0)
4343 		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4344 	if (needs_l4_csum(m0) == 0)
4345 		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4346 	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4347 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4348 		txq->txcsum++;	/* some hardware assistance provided */
4349 
4350 	/* VLAN tag insertion */
4351 	if (needs_vlan_insertion(m0)) {
4352 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4353 		txq->vlan_insertion++;
4354 	}
4355 
4356 	/* CPL header */
4357 	cpl->ctrl0 = txq->cpl_ctrl0;
4358 	cpl->pack = 0;
4359 	cpl->len = htobe16(pktlen);
4360 	cpl->ctrl1 = htobe64(ctrl1);
4361 
4362 	/* SGL */
4363 	dst = (void *)(cpl + 1);
4364 	if (nsegs > 0) {
4365 
4366 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4367 		txq->sgl_wrs++;
4368 	} else {
4369 		struct mbuf *m;
4370 
4371 		for (m = m0; m != NULL; m = m->m_next) {
4372 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4373 #ifdef INVARIANTS
4374 			pktlen -= m->m_len;
4375 #endif
4376 		}
4377 #ifdef INVARIANTS
4378 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
4379 #endif
4380 		txq->imm_wrs++;
4381 	}
4382 
4383 	txq->txpkt_wrs++;
4384 
4385 	txsd = &txq->sdesc[eq->pidx];
4386 	txsd->m = m0;
4387 	txsd->desc_used = ndesc;
4388 
4389 	return (ndesc);
4390 }
4391 
4392 static int
4393 try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
4394 {
4395 	u_int needed, nsegs1, nsegs2, l1, l2;
4396 
4397 	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
4398 		return (1);
4399 
4400 	nsegs1 = mbuf_nsegs(m);
4401 	nsegs2 = mbuf_nsegs(n);
4402 	if (nsegs1 + nsegs2 == 2) {
4403 		txp->wr_type = 1;
4404 		l1 = l2 = txpkts1_len16();
4405 	} else {
4406 		txp->wr_type = 0;
4407 		l1 = txpkts0_len16(nsegs1);
4408 		l2 = txpkts0_len16(nsegs2);
4409 	}
4410 	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
4411 	needed = howmany(txp->len16, EQ_ESIZE / 16);
4412 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4413 		return (1);
4414 
4415 	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
4416 	if (txp->plen > 65535)
4417 		return (1);
4418 
4419 	txp->npkt = 2;
4420 	set_mbuf_len16(m, l1);
4421 	set_mbuf_len16(n, l2);
4422 
4423 	return (0);
4424 }
4425 
4426 static int
4427 add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
4428 {
4429 	u_int plen, len16, needed, nsegs;
4430 
4431 	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
4432 
4433 	nsegs = mbuf_nsegs(m);
4434 	if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
4435 		return (1);
4436 
4437 	plen = txp->plen + m->m_pkthdr.len;
4438 	if (plen > 65535)
4439 		return (1);
4440 
4441 	if (txp->wr_type == 0)
4442 		len16 = txpkts0_len16(nsegs);
4443 	else
4444 		len16 = txpkts1_len16();
4445 	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4446 	if (needed > SGE_MAX_WR_NDESC || needed > available)
4447 		return (1);
4448 
4449 	txp->npkt++;
4450 	txp->plen = plen;
4451 	txp->len16 += len16;
4452 	set_mbuf_len16(m, len16);
4453 
4454 	return (0);
4455 }
4456 
4457 /*
4458  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
4459  * the software descriptor, and advance the pidx.  It is guaranteed that enough
4460  * descriptors are available.
4461  *
4462  * The return value is the # of hardware descriptors used.
4463  */
4464 static u_int
4465 write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
4466     struct mbuf *m0, const struct txpkts *txp, u_int available)
4467 {
4468 	struct sge_eq *eq = &txq->eq;
4469 	struct tx_sdesc *txsd;
4470 	struct cpl_tx_pkt_core *cpl;
4471 	uint32_t ctrl;
4472 	uint64_t ctrl1;
4473 	int ndesc, checkwrap;
4474 	struct mbuf *m;
4475 	void *flitp;
4476 
4477 	TXQ_LOCK_ASSERT_OWNED(txq);
4478 	MPASS(txp->npkt > 0);
4479 	MPASS(txp->plen < 65536);
4480 	MPASS(m0 != NULL);
4481 	MPASS(m0->m_nextpkt != NULL);
4482 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
4483 	MPASS(available > 0 && available < eq->sidx);
4484 
4485 	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
4486 	MPASS(ndesc <= available);
4487 
4488 	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4489 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4490 	ctrl = V_FW_WR_LEN16(txp->len16);
4491 	wr->equiq_to_len16 = htobe32(ctrl);
4492 	wr->plen = htobe16(txp->plen);
4493 	wr->npkt = txp->npkt;
4494 	wr->r3 = 0;
4495 	wr->type = txp->wr_type;
4496 	flitp = wr + 1;
4497 
4498 	/*
4499 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
4500 	 * set then we know the WR is going to wrap around somewhere.  We'll
4501 	 * check for that at appropriate points.
4502 	 */
4503 	checkwrap = eq->sidx - ndesc < eq->pidx;
4504 	for (m = m0; m != NULL; m = m->m_nextpkt) {
4505 		if (txp->wr_type == 0) {
4506 			struct ulp_txpkt *ulpmc;
4507 			struct ulptx_idata *ulpsc;
4508 
4509 			/* ULP master command */
4510 			ulpmc = flitp;
4511 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
4512 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
4513 			ulpmc->len = htobe32(mbuf_len16(m));
4514 
4515 			/* ULP subcommand */
4516 			ulpsc = (void *)(ulpmc + 1);
4517 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
4518 			    F_ULP_TX_SC_MORE);
4519 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
4520 
4521 			cpl = (void *)(ulpsc + 1);
4522 			if (checkwrap &&
4523 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
4524 				cpl = (void *)&eq->desc[0];
4525 		} else {
4526 			cpl = flitp;
4527 		}
4528 
4529 		/* Checksum offload */
4530 		ctrl1 = 0;
4531 		if (needs_l3_csum(m) == 0)
4532 			ctrl1 |= F_TXPKT_IPCSUM_DIS;
4533 		if (needs_l4_csum(m) == 0)
4534 			ctrl1 |= F_TXPKT_L4CSUM_DIS;
4535 		if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4536 		    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4537 			txq->txcsum++;	/* some hardware assistance provided */
4538 
4539 		/* VLAN tag insertion */
4540 		if (needs_vlan_insertion(m)) {
4541 			ctrl1 |= F_TXPKT_VLAN_VLD |
4542 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
4543 			txq->vlan_insertion++;
4544 		}
4545 
4546 		/* CPL header */
4547 		cpl->ctrl0 = txq->cpl_ctrl0;
4548 		cpl->pack = 0;
4549 		cpl->len = htobe16(m->m_pkthdr.len);
4550 		cpl->ctrl1 = htobe64(ctrl1);
4551 
4552 		flitp = cpl + 1;
4553 		if (checkwrap &&
4554 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
4555 			flitp = (void *)&eq->desc[0];
4556 
4557 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
4558 
4559 	}
4560 
4561 	if (txp->wr_type == 0) {
4562 		txq->txpkts0_pkts += txp->npkt;
4563 		txq->txpkts0_wrs++;
4564 	} else {
4565 		txq->txpkts1_pkts += txp->npkt;
4566 		txq->txpkts1_wrs++;
4567 	}
4568 
4569 	txsd = &txq->sdesc[eq->pidx];
4570 	txsd->m = m0;
4571 	txsd->desc_used = ndesc;
4572 
4573 	return (ndesc);
4574 }
4575 
4576 /*
4577  * If the SGL ends on an address that is not 16 byte aligned, this function will
4578  * add a 0 filled flit at the end.
4579  */
4580 static void
4581 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
4582 {
4583 	struct sge_eq *eq = &txq->eq;
4584 	struct sglist *gl = txq->gl;
4585 	struct sglist_seg *seg;
4586 	__be64 *flitp, *wrap;
4587 	struct ulptx_sgl *usgl;
4588 	int i, nflits, nsegs;
4589 
4590 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4591 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4592 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4593 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4594 
4595 	get_pkt_gl(m, gl);
4596 	nsegs = gl->sg_nseg;
4597 	MPASS(nsegs > 0);
4598 
4599 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
4600 	flitp = (__be64 *)(*to);
4601 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
4602 	seg = &gl->sg_segs[0];
4603 	usgl = (void *)flitp;
4604 
4605 	/*
4606 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4607 	 * ring, so we're at least 16 bytes away from the status page.  There is
4608 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4609 	 */
4610 
4611 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4612 	    V_ULPTX_NSGE(nsegs));
4613 	usgl->len0 = htobe32(seg->ss_len);
4614 	usgl->addr0 = htobe64(seg->ss_paddr);
4615 	seg++;
4616 
4617 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
4618 
4619 		/* Won't wrap around at all */
4620 
4621 		for (i = 0; i < nsegs - 1; i++, seg++) {
4622 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
4623 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
4624 		}
4625 		if (i & 1)
4626 			usgl->sge[i / 2].len[1] = htobe32(0);
4627 		flitp += nflits;
4628 	} else {
4629 
4630 		/* Will wrap somewhere in the rest of the SGL */
4631 
4632 		/* 2 flits already written, write the rest flit by flit */
4633 		flitp = (void *)(usgl + 1);
4634 		for (i = 0; i < nflits - 2; i++) {
4635 			if (flitp == wrap)
4636 				flitp = (void *)eq->desc;
4637 			*flitp++ = get_flit(seg, nsegs - 1, i);
4638 		}
4639 	}
4640 
4641 	if (nflits & 1) {
4642 		MPASS(((uintptr_t)flitp) & 0xf);
4643 		*flitp++ = 0;
4644 	}
4645 
4646 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
4647 	if (__predict_false(flitp == wrap))
4648 		*to = (void *)eq->desc;
4649 	else
4650 		*to = (void *)flitp;
4651 }
4652 
4653 static inline void
4654 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4655 {
4656 
4657 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4658 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4659 
4660 	if (__predict_true((uintptr_t)(*to) + len <=
4661 	    (uintptr_t)&eq->desc[eq->sidx])) {
4662 		bcopy(from, *to, len);
4663 		(*to) += len;
4664 	} else {
4665 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
4666 
4667 		bcopy(from, *to, portion);
4668 		from += portion;
4669 		portion = len - portion;	/* remaining */
4670 		bcopy(from, (void *)eq->desc, portion);
4671 		(*to) = (caddr_t)eq->desc + portion;
4672 	}
4673 }
4674 
4675 static inline void
4676 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
4677 {
4678 	u_int db;
4679 
4680 	MPASS(n > 0);
4681 
4682 	db = eq->doorbells;
4683 	if (n > 1)
4684 		clrbit(&db, DOORBELL_WCWR);
4685 	wmb();
4686 
4687 	switch (ffs(db) - 1) {
4688 	case DOORBELL_UDB:
4689 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4690 		break;
4691 
4692 	case DOORBELL_WCWR: {
4693 		volatile uint64_t *dst, *src;
4694 		int i;
4695 
4696 		/*
4697 		 * Queues whose 128B doorbell segment fits in the page do not
4698 		 * use relative qid (udb_qid is always 0).  Only queues with
4699 		 * doorbell segments can do WCWR.
4700 		 */
4701 		KASSERT(eq->udb_qid == 0 && n == 1,
4702 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4703 		    __func__, eq->doorbells, n, eq->dbidx, eq));
4704 
4705 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4706 		    UDBS_DB_OFFSET);
4707 		i = eq->dbidx;
4708 		src = (void *)&eq->desc[i];
4709 		while (src != (void *)&eq->desc[i + 1])
4710 			*dst++ = *src++;
4711 		wmb();
4712 		break;
4713 	}
4714 
4715 	case DOORBELL_UDBWC:
4716 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4717 		wmb();
4718 		break;
4719 
4720 	case DOORBELL_KDB:
4721 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
4722 		    V_QID(eq->cntxt_id) | V_PIDX(n));
4723 		break;
4724 	}
4725 
4726 	IDXINCR(eq->dbidx, n, eq->sidx);
4727 }
4728 
4729 static inline u_int
4730 reclaimable_tx_desc(struct sge_eq *eq)
4731 {
4732 	uint16_t hw_cidx;
4733 
4734 	hw_cidx = read_hw_cidx(eq);
4735 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
4736 }
4737 
4738 static inline u_int
4739 total_available_tx_desc(struct sge_eq *eq)
4740 {
4741 	uint16_t hw_cidx, pidx;
4742 
4743 	hw_cidx = read_hw_cidx(eq);
4744 	pidx = eq->pidx;
4745 
4746 	if (pidx == hw_cidx)
4747 		return (eq->sidx - 1);
4748 	else
4749 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
4750 }
4751 
4752 static inline uint16_t
4753 read_hw_cidx(struct sge_eq *eq)
4754 {
4755 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4756 	uint16_t cidx = spg->cidx;	/* stable snapshot */
4757 
4758 	return (be16toh(cidx));
4759 }
4760 
4761 /*
4762  * Reclaim 'n' descriptors approximately.
4763  */
4764 static u_int
4765 reclaim_tx_descs(struct sge_txq *txq, u_int n)
4766 {
4767 	struct tx_sdesc *txsd;
4768 	struct sge_eq *eq = &txq->eq;
4769 	u_int can_reclaim, reclaimed;
4770 
4771 	TXQ_LOCK_ASSERT_OWNED(txq);
4772 	MPASS(n > 0);
4773 
4774 	reclaimed = 0;
4775 	can_reclaim = reclaimable_tx_desc(eq);
4776 	while (can_reclaim && reclaimed < n) {
4777 		int ndesc;
4778 		struct mbuf *m, *nextpkt;
4779 
4780 		txsd = &txq->sdesc[eq->cidx];
4781 		ndesc = txsd->desc_used;
4782 
4783 		/* Firmware doesn't return "partial" credits. */
4784 		KASSERT(can_reclaim >= ndesc,
4785 		    ("%s: unexpected number of credits: %d, %d",
4786 		    __func__, can_reclaim, ndesc));
4787 
4788 		for (m = txsd->m; m != NULL; m = nextpkt) {
4789 			nextpkt = m->m_nextpkt;
4790 			m->m_nextpkt = NULL;
4791 			m_freem(m);
4792 		}
4793 		reclaimed += ndesc;
4794 		can_reclaim -= ndesc;
4795 		IDXINCR(eq->cidx, ndesc, eq->sidx);
4796 	}
4797 
4798 	return (reclaimed);
4799 }
4800 
4801 static void
4802 tx_reclaim(void *arg, int n)
4803 {
4804 	struct sge_txq *txq = arg;
4805 	struct sge_eq *eq = &txq->eq;
4806 
4807 	do {
4808 		if (TXQ_TRYLOCK(txq) == 0)
4809 			break;
4810 		n = reclaim_tx_descs(txq, 32);
4811 		if (eq->cidx == eq->pidx)
4812 			eq->equeqidx = eq->pidx;
4813 		TXQ_UNLOCK(txq);
4814 	} while (n > 0);
4815 }
4816 
4817 static __be64
4818 get_flit(struct sglist_seg *segs, int nsegs, int idx)
4819 {
4820 	int i = (idx / 3) * 2;
4821 
4822 	switch (idx % 3) {
4823 	case 0: {
4824 		uint64_t rc;
4825 
4826 		rc = (uint64_t)segs[i].ss_len << 32;
4827 		if (i + 1 < nsegs)
4828 			rc |= (uint64_t)(segs[i + 1].ss_len);
4829 
4830 		return (htobe64(rc));
4831 	}
4832 	case 1:
4833 		return (htobe64(segs[i].ss_paddr));
4834 	case 2:
4835 		return (htobe64(segs[i + 1].ss_paddr));
4836 	}
4837 
4838 	return (0);
4839 }
4840 
4841 static void
4842 find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4843 {
4844 	int8_t zidx, hwidx, idx;
4845 	uint16_t region1, region3;
4846 	int spare, spare_needed, n;
4847 	struct sw_zone_info *swz;
4848 	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4849 
4850 	/*
4851 	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4852 	 * large enough for the max payload and cluster metadata.  Otherwise
4853 	 * settle for the largest bufsize that leaves enough room in the cluster
4854 	 * for metadata.
4855 	 *
4856 	 * Without buffer packing: Look for the smallest zone which has a
4857 	 * bufsize large enough for the max payload.  Settle for the largest
4858 	 * bufsize available if there's nothing big enough for max payload.
4859 	 */
4860 	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4861 	swz = &sc->sge.sw_zone_info[0];
4862 	hwidx = -1;
4863 	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4864 		if (swz->size > largest_rx_cluster) {
4865 			if (__predict_true(hwidx != -1))
4866 				break;
4867 
4868 			/*
4869 			 * This is a misconfiguration.  largest_rx_cluster is
4870 			 * preventing us from finding a refill source.  See
4871 			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4872 			 */
4873 			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4874 			    " refill source for fl %p (dma %u).  Ignored.\n",
4875 			    largest_rx_cluster, fl, maxp);
4876 		}
4877 		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4878 			hwb = &hwb_list[idx];
4879 			spare = swz->size - hwb->size;
4880 			if (spare < spare_needed)
4881 				continue;
4882 
4883 			hwidx = idx;		/* best option so far */
4884 			if (hwb->size >= maxp) {
4885 
4886 				if ((fl->flags & FL_BUF_PACKING) == 0)
4887 					goto done; /* stop looking (not packing) */
4888 
4889 				if (swz->size >= safest_rx_cluster)
4890 					goto done; /* stop looking (packing) */
4891 			}
4892 			break;		/* keep looking, next zone */
4893 		}
4894 	}
4895 done:
4896 	/* A usable hwidx has been located. */
4897 	MPASS(hwidx != -1);
4898 	hwb = &hwb_list[hwidx];
4899 	zidx = hwb->zidx;
4900 	swz = &sc->sge.sw_zone_info[zidx];
4901 	region1 = 0;
4902 	region3 = swz->size - hwb->size;
4903 
4904 	/*
4905 	 * Stay within this zone and see if there is a better match when mbuf
4906 	 * inlining is allowed.  Remember that the hwidx's are sorted in
4907 	 * decreasing order of size (so in increasing order of spare area).
4908 	 */
4909 	for (idx = hwidx; idx != -1; idx = hwb->next) {
4910 		hwb = &hwb_list[idx];
4911 		spare = swz->size - hwb->size;
4912 
4913 		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4914 			break;
4915 
4916 		/*
4917 		 * Do not inline mbufs if doing so would violate the pad/pack
4918 		 * boundary alignment requirement.
4919 		 */
4920 		if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0)
4921 			continue;
4922 		if (fl->flags & FL_BUF_PACKING &&
4923 		    (MSIZE % sc->params.sge.pack_boundary) != 0)
4924 			continue;
4925 
4926 		if (spare < CL_METADATA_SIZE + MSIZE)
4927 			continue;
4928 		n = (spare - CL_METADATA_SIZE) / MSIZE;
4929 		if (n > howmany(hwb->size, maxp))
4930 			break;
4931 
4932 		hwidx = idx;
4933 		if (fl->flags & FL_BUF_PACKING) {
4934 			region1 = n * MSIZE;
4935 			region3 = spare - region1;
4936 		} else {
4937 			region1 = MSIZE;
4938 			region3 = spare - region1;
4939 			break;
4940 		}
4941 	}
4942 
4943 	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4944 	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4945 	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4946 	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4947 	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4948 	    sc->sge.sw_zone_info[zidx].size,
4949 	    ("%s: bad buffer layout for fl %p, maxp %d. "
4950 		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4951 		sc->sge.sw_zone_info[zidx].size, region1,
4952 		sc->sge.hw_buf_info[hwidx].size, region3));
4953 	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4954 		KASSERT(region3 >= CL_METADATA_SIZE,
4955 		    ("%s: no room for metadata.  fl %p, maxp %d; "
4956 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4957 		    sc->sge.sw_zone_info[zidx].size, region1,
4958 		    sc->sge.hw_buf_info[hwidx].size, region3));
4959 		KASSERT(region1 % MSIZE == 0,
4960 		    ("%s: bad mbuf region for fl %p, maxp %d. "
4961 		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4962 		    sc->sge.sw_zone_info[zidx].size, region1,
4963 		    sc->sge.hw_buf_info[hwidx].size, region3));
4964 	}
4965 
4966 	fl->cll_def.zidx = zidx;
4967 	fl->cll_def.hwidx = hwidx;
4968 	fl->cll_def.region1 = region1;
4969 	fl->cll_def.region3 = region3;
4970 }
4971 
4972 static void
4973 find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4974 {
4975 	struct sge *s = &sc->sge;
4976 	struct hw_buf_info *hwb;
4977 	struct sw_zone_info *swz;
4978 	int spare;
4979 	int8_t hwidx;
4980 
4981 	if (fl->flags & FL_BUF_PACKING)
4982 		hwidx = s->safe_hwidx2;	/* with room for metadata */
4983 	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4984 		hwidx = s->safe_hwidx2;
4985 		hwb = &s->hw_buf_info[hwidx];
4986 		swz = &s->sw_zone_info[hwb->zidx];
4987 		spare = swz->size - hwb->size;
4988 
4989 		/* no good if there isn't room for an mbuf as well */
4990 		if (spare < CL_METADATA_SIZE + MSIZE)
4991 			hwidx = s->safe_hwidx1;
4992 	} else
4993 		hwidx = s->safe_hwidx1;
4994 
4995 	if (hwidx == -1) {
4996 		/* No fallback source */
4997 		fl->cll_alt.hwidx = -1;
4998 		fl->cll_alt.zidx = -1;
4999 
5000 		return;
5001 	}
5002 
5003 	hwb = &s->hw_buf_info[hwidx];
5004 	swz = &s->sw_zone_info[hwb->zidx];
5005 	spare = swz->size - hwb->size;
5006 	fl->cll_alt.hwidx = hwidx;
5007 	fl->cll_alt.zidx = hwb->zidx;
5008 	if (allow_mbufs_in_cluster &&
5009 	    (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0))
5010 		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
5011 	else
5012 		fl->cll_alt.region1 = 0;
5013 	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
5014 }
5015 
5016 static void
5017 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
5018 {
5019 	mtx_lock(&sc->sfl_lock);
5020 	FL_LOCK(fl);
5021 	if ((fl->flags & FL_DOOMED) == 0) {
5022 		fl->flags |= FL_STARVING;
5023 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
5024 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
5025 	}
5026 	FL_UNLOCK(fl);
5027 	mtx_unlock(&sc->sfl_lock);
5028 }
5029 
5030 static void
5031 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
5032 {
5033 	struct sge_wrq *wrq = (void *)eq;
5034 
5035 	atomic_readandclear_int(&eq->equiq);
5036 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
5037 }
5038 
5039 static void
5040 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
5041 {
5042 	struct sge_txq *txq = (void *)eq;
5043 
5044 	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
5045 
5046 	atomic_readandclear_int(&eq->equiq);
5047 	mp_ring_check_drainage(txq->r, 0);
5048 	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
5049 }
5050 
5051 static int
5052 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
5053     struct mbuf *m)
5054 {
5055 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
5056 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
5057 	struct adapter *sc = iq->adapter;
5058 	struct sge *s = &sc->sge;
5059 	struct sge_eq *eq;
5060 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
5061 		&handle_wrq_egr_update, &handle_eth_egr_update,
5062 		&handle_wrq_egr_update};
5063 
5064 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5065 	    rss->opcode));
5066 
5067 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
5068 	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
5069 
5070 	return (0);
5071 }
5072 
5073 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
5074 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
5075     offsetof(struct cpl_fw6_msg, data));
5076 
5077 static int
5078 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
5079 {
5080 	struct adapter *sc = iq->adapter;
5081 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
5082 
5083 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5084 	    rss->opcode));
5085 
5086 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
5087 		const struct rss_header *rss2;
5088 
5089 		rss2 = (const struct rss_header *)&cpl->data[0];
5090 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
5091 	}
5092 
5093 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
5094 }
5095 
5096 /**
5097  *	t4_handle_wrerr_rpl - process a FW work request error message
5098  *	@adap: the adapter
5099  *	@rpl: start of the FW message
5100  */
5101 static int
5102 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
5103 {
5104 	u8 opcode = *(const u8 *)rpl;
5105 	const struct fw_error_cmd *e = (const void *)rpl;
5106 	unsigned int i;
5107 
5108 	if (opcode != FW_ERROR_CMD) {
5109 		log(LOG_ERR,
5110 		    "%s: Received WRERR_RPL message with opcode %#x\n",
5111 		    device_get_nameunit(adap->dev), opcode);
5112 		return (EINVAL);
5113 	}
5114 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
5115 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
5116 	    "non-fatal");
5117 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
5118 	case FW_ERROR_TYPE_EXCEPTION:
5119 		log(LOG_ERR, "exception info:\n");
5120 		for (i = 0; i < nitems(e->u.exception.info); i++)
5121 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
5122 			    be32toh(e->u.exception.info[i]));
5123 		log(LOG_ERR, "\n");
5124 		break;
5125 	case FW_ERROR_TYPE_HWMODULE:
5126 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
5127 		    be32toh(e->u.hwmodule.regaddr),
5128 		    be32toh(e->u.hwmodule.regval));
5129 		break;
5130 	case FW_ERROR_TYPE_WR:
5131 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
5132 		    be16toh(e->u.wr.cidx),
5133 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
5134 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
5135 		    be32toh(e->u.wr.eqid));
5136 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
5137 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
5138 			    e->u.wr.wrhdr[i]);
5139 		log(LOG_ERR, "\n");
5140 		break;
5141 	case FW_ERROR_TYPE_ACL:
5142 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
5143 		    be16toh(e->u.acl.cidx),
5144 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
5145 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
5146 		    be32toh(e->u.acl.eqid),
5147 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
5148 		    "MAC");
5149 		for (i = 0; i < nitems(e->u.acl.val); i++)
5150 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
5151 		log(LOG_ERR, "\n");
5152 		break;
5153 	default:
5154 		log(LOG_ERR, "type %#x\n",
5155 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
5156 		return (EINVAL);
5157 	}
5158 	return (0);
5159 }
5160 
5161 static int
5162 sysctl_uint16(SYSCTL_HANDLER_ARGS)
5163 {
5164 	uint16_t *id = arg1;
5165 	int i = *id;
5166 
5167 	return sysctl_handle_int(oidp, &i, 0, req);
5168 }
5169 
5170 static int
5171 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
5172 {
5173 	struct sge *s = arg1;
5174 	struct hw_buf_info *hwb = &s->hw_buf_info[0];
5175 	struct sw_zone_info *swz = &s->sw_zone_info[0];
5176 	int i, rc;
5177 	struct sbuf sb;
5178 	char c;
5179 
5180 	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
5181 	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
5182 		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
5183 			c = '*';
5184 		else
5185 			c = '\0';
5186 
5187 		sbuf_printf(&sb, "%u%c ", hwb->size, c);
5188 	}
5189 	sbuf_trim(&sb);
5190 	sbuf_finish(&sb);
5191 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
5192 	sbuf_delete(&sb);
5193 	return (rc);
5194 }
5195 
5196 static int
5197 sysctl_tc(SYSCTL_HANDLER_ARGS)
5198 {
5199 	struct vi_info *vi = arg1;
5200 	struct port_info *pi;
5201 	struct adapter *sc;
5202 	struct sge_txq *txq;
5203 	struct tx_cl_rl_params *tc;
5204 	int qidx = arg2, rc, tc_idx;
5205 	uint32_t fw_queue, fw_class;
5206 
5207 	MPASS(qidx >= 0 && qidx < vi->ntxq);
5208 	pi = vi->pi;
5209 	sc = pi->adapter;
5210 	txq = &sc->sge.txq[vi->first_txq + qidx];
5211 
5212 	tc_idx = txq->tc_idx;
5213 	rc = sysctl_handle_int(oidp, &tc_idx, 0, req);
5214 	if (rc != 0 || req->newptr == NULL)
5215 		return (rc);
5216 
5217 	if (sc->flags & IS_VF)
5218 		return (EPERM);
5219 
5220 	/* Note that -1 is legitimate input (it means unbind). */
5221 	if (tc_idx < -1 || tc_idx >= sc->chip_params->nsched_cls)
5222 		return (EINVAL);
5223 
5224 	mtx_lock(&sc->tc_lock);
5225 	if (tc_idx == txq->tc_idx) {
5226 		rc = 0;		/* No change, nothing to do. */
5227 		goto done;
5228 	}
5229 
5230 	fw_queue = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
5231 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) |
5232 	    V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id);
5233 
5234 	if (tc_idx == -1)
5235 		fw_class = 0xffffffff;	/* Unbind. */
5236 	else {
5237 		/*
5238 		 * Bind to a different class.
5239 		 */
5240 		tc = &pi->sched_params->cl_rl[tc_idx];
5241 		if (tc->flags & TX_CLRL_ERROR) {
5242 			/* Previous attempt to set the cl-rl params failed. */
5243 			rc = EIO;
5244 			goto done;
5245 		} else {
5246 			/*
5247 			 * Ok to proceed.  Place a reference on the new class
5248 			 * while still holding on to the reference on the
5249 			 * previous class, if any.
5250 			 */
5251 			fw_class = tc_idx;
5252 			tc->refcount++;
5253 		}
5254 	}
5255 	mtx_unlock(&sc->tc_lock);
5256 
5257 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4stc");
5258 	if (rc)
5259 		return (rc);
5260 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, &fw_class);
5261 	end_synchronized_op(sc, 0);
5262 
5263 	mtx_lock(&sc->tc_lock);
5264 	if (rc == 0) {
5265 		if (txq->tc_idx != -1) {
5266 			tc = &pi->sched_params->cl_rl[txq->tc_idx];
5267 			MPASS(tc->refcount > 0);
5268 			tc->refcount--;
5269 		}
5270 		txq->tc_idx = tc_idx;
5271 	} else if (tc_idx != -1) {
5272 		tc = &pi->sched_params->cl_rl[tc_idx];
5273 		MPASS(tc->refcount > 0);
5274 		tc->refcount--;
5275 	}
5276 done:
5277 	mtx_unlock(&sc->tc_lock);
5278 	return (rc);
5279 }
5280