xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 18f21f0355481283ceef0ec10e99554f44c205c2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_kern_tls.h"
36 #include "opt_ratelimit.h"
37 
38 #include <sys/types.h>
39 #include <sys/eventhandler.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/malloc.h>
45 #include <sys/queue.h>
46 #include <sys/sbuf.h>
47 #include <sys/taskqueue.h>
48 #include <sys/time.h>
49 #include <sys/sglist.h>
50 #include <sys/sysctl.h>
51 #include <sys/smp.h>
52 #include <sys/socketvar.h>
53 #include <sys/counter.h>
54 #include <net/bpf.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_vlan_var.h>
58 #include <net/if_vxlan.h>
59 #include <netinet/in.h>
60 #include <netinet/ip.h>
61 #include <netinet/ip6.h>
62 #include <netinet/tcp.h>
63 #include <netinet/udp.h>
64 #include <machine/in_cksum.h>
65 #include <machine/md_var.h>
66 #include <vm/vm.h>
67 #include <vm/pmap.h>
68 #ifdef DEV_NETMAP
69 #include <machine/bus.h>
70 #include <sys/selinfo.h>
71 #include <net/if_var.h>
72 #include <net/netmap.h>
73 #include <dev/netmap/netmap_kern.h>
74 #endif
75 
76 #include "common/common.h"
77 #include "common/t4_regs.h"
78 #include "common/t4_regs_values.h"
79 #include "common/t4_msg.h"
80 #include "t4_l2t.h"
81 #include "t4_mp_ring.h"
82 
83 #ifdef T4_PKT_TIMESTAMP
84 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
85 #else
86 #define RX_COPY_THRESHOLD MINCLSIZE
87 #endif
88 
89 /* Internal mbuf flags stored in PH_loc.eight[1]. */
90 #define	MC_NOMAP		0x01
91 #define	MC_RAW_WR		0x02
92 #define	MC_TLS			0x04
93 
94 /*
95  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
96  * 0-7 are valid values.
97  */
98 static int fl_pktshift = 0;
99 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
100     "payload DMA offset in rx buffer (bytes)");
101 
102 /*
103  * Pad ethernet payload up to this boundary.
104  * -1: driver should figure out a good value.
105  *  0: disable padding.
106  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
107  */
108 int fl_pad = -1;
109 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
110     "payload pad boundary (bytes)");
111 
112 /*
113  * Status page length.
114  * -1: driver should figure out a good value.
115  *  64 or 128 are the only other valid values.
116  */
117 static int spg_len = -1;
118 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
119     "status page size (bytes)");
120 
121 /*
122  * Congestion drops.
123  * -1: no congestion feedback (not recommended).
124  *  0: backpressure the channel instead of dropping packets right away.
125  *  1: no backpressure, drop packets for the congested queue immediately.
126  */
127 static int cong_drop = 0;
128 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
129     "Congestion control for RX queues (0 = backpressure, 1 = drop");
130 
131 /*
132  * Deliver multiple frames in the same free list buffer if they fit.
133  * -1: let the driver decide whether to enable buffer packing or not.
134  *  0: disable buffer packing.
135  *  1: enable buffer packing.
136  */
137 static int buffer_packing = -1;
138 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
139     0, "Enable buffer packing");
140 
141 /*
142  * Start next frame in a packed buffer at this boundary.
143  * -1: driver should figure out a good value.
144  * T4: driver will ignore this and use the same value as fl_pad above.
145  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
146  */
147 static int fl_pack = -1;
148 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
149     "payload pack boundary (bytes)");
150 
151 /*
152  * Largest rx cluster size that the driver is allowed to allocate.
153  */
154 static int largest_rx_cluster = MJUM16BYTES;
155 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
156     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
157 
158 /*
159  * Size of cluster allocation that's most likely to succeed.  The driver will
160  * fall back to this size if it fails to allocate clusters larger than this.
161  */
162 static int safest_rx_cluster = PAGE_SIZE;
163 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
164     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
165 
166 #ifdef RATELIMIT
167 /*
168  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
169  * for rewriting.  -1 and 0-3 are all valid values.
170  * -1: hardware should leave the TCP timestamps alone.
171  * 0: 1ms
172  * 1: 100us
173  * 2: 10us
174  * 3: 1us
175  */
176 static int tsclk = -1;
177 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
178     "Control TCP timestamp rewriting when using pacing");
179 
180 static int eo_max_backlog = 1024 * 1024;
181 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
182     0, "Maximum backlog of ratelimited data per flow");
183 #endif
184 
185 /*
186  * The interrupt holdoff timers are multiplied by this value on T6+.
187  * 1 and 3-17 (both inclusive) are legal values.
188  */
189 static int tscale = 1;
190 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
191     "Interrupt holdoff timer scale on T6+");
192 
193 /*
194  * Number of LRO entries in the lro_ctrl structure per rx queue.
195  */
196 static int lro_entries = TCP_LRO_ENTRIES;
197 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
198     "Number of LRO entries per RX queue");
199 
200 /*
201  * This enables presorting of frames before they're fed into tcp_lro_rx.
202  */
203 static int lro_mbufs = 0;
204 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
205     "Enable presorting of LRO frames");
206 
207 static counter_u64_t pullups;
208 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
209     "Number of mbuf pullups performed");
210 
211 static counter_u64_t defrags;
212 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
213     "Number of mbuf defrags performed");
214 
215 static int t4_tx_coalesce = 1;
216 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
217     "tx coalescing allowed");
218 
219 /*
220  * The driver will make aggressive attempts at tx coalescing if it sees these
221  * many packets eligible for coalescing in quick succession, with no more than
222  * the specified gap in between the eth_tx calls that delivered the packets.
223  */
224 static int t4_tx_coalesce_pkts = 32;
225 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
226     &t4_tx_coalesce_pkts, 0,
227     "# of consecutive packets (1 - 255) that will trigger tx coalescing");
228 static int t4_tx_coalesce_gap = 5;
229 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
230     &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
231 
232 static int service_iq(struct sge_iq *, int);
233 static int service_iq_fl(struct sge_iq *, int);
234 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
235 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
236     u_int);
237 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
238     int, int);
239 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
240 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
241     struct sge_iq *, char *);
242 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
243     struct sysctl_ctx_list *, struct sysctl_oid *);
244 static void free_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
245 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
246     struct sge_iq *);
247 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
248     struct sysctl_oid *, struct sge_fl *);
249 static int alloc_iq_fl_hwq(struct vi_info *, struct sge_iq *, struct sge_fl *);
250 static int free_iq_fl_hwq(struct adapter *, struct sge_iq *, struct sge_fl *);
251 static int alloc_fwq(struct adapter *);
252 static void free_fwq(struct adapter *);
253 static int alloc_ctrlq(struct adapter *, int);
254 static void free_ctrlq(struct adapter *, int);
255 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, int);
256 static void free_rxq(struct vi_info *, struct sge_rxq *);
257 static void add_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
258     struct sge_rxq *);
259 #ifdef TCP_OFFLOAD
260 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
261     int);
262 static void free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
263 static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
264     struct sge_ofld_rxq *);
265 #endif
266 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
267 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
268 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
269 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
270 #endif
271 static int alloc_eq(struct adapter *, struct sge_eq *, struct sysctl_ctx_list *,
272     struct sysctl_oid *);
273 static void free_eq(struct adapter *, struct sge_eq *);
274 static void add_eq_sysctls(struct adapter *, struct sysctl_ctx_list *,
275     struct sysctl_oid *, struct sge_eq *);
276 static int alloc_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
277 static int free_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
278 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
279     struct sysctl_ctx_list *, struct sysctl_oid *);
280 static void free_wrq(struct adapter *, struct sge_wrq *);
281 static void add_wrq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
282     struct sge_wrq *);
283 static int alloc_txq(struct vi_info *, struct sge_txq *, int);
284 static void free_txq(struct vi_info *, struct sge_txq *);
285 static void add_txq_sysctls(struct vi_info *, struct sysctl_ctx_list *,
286     struct sysctl_oid *, struct sge_txq *);
287 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
288 static int alloc_ofld_txq(struct vi_info *, struct sge_ofld_txq *, int);
289 static void free_ofld_txq(struct vi_info *, struct sge_ofld_txq *);
290 static void add_ofld_txq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
291     struct sge_ofld_txq *);
292 #endif
293 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
294 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
295 static int refill_fl(struct adapter *, struct sge_fl *, int);
296 static void refill_sfl(void *);
297 static int find_refill_source(struct adapter *, int, bool);
298 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
299 
300 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
301 static inline u_int txpkt_len16(u_int, const u_int);
302 static inline u_int txpkt_vm_len16(u_int, const u_int);
303 static inline void calculate_mbuf_len16(struct mbuf *, bool);
304 static inline u_int txpkts0_len16(u_int);
305 static inline u_int txpkts1_len16(void);
306 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
307 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
308     u_int);
309 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
310     struct mbuf *);
311 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
312     int, bool *);
313 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
314     int, bool *);
315 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
316 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
317 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
318 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
319 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
320 static inline uint16_t read_hw_cidx(struct sge_eq *);
321 static inline u_int reclaimable_tx_desc(struct sge_eq *);
322 static inline u_int total_available_tx_desc(struct sge_eq *);
323 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
324 static void tx_reclaim(void *, int);
325 static __be64 get_flit(struct sglist_seg *, int, int);
326 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
327     struct mbuf *);
328 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
329     struct mbuf *);
330 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
331 static void wrq_tx_drain(void *, int);
332 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
333 
334 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
335 #ifdef RATELIMIT
336 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
337 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
338     struct mbuf *);
339 #endif
340 
341 static counter_u64_t extfree_refs;
342 static counter_u64_t extfree_rels;
343 
344 an_handler_t t4_an_handler;
345 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
346 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
347 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
348 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
349 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
350 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
351 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
352 
353 void
354 t4_register_an_handler(an_handler_t h)
355 {
356 	uintptr_t *loc;
357 
358 	MPASS(h == NULL || t4_an_handler == NULL);
359 
360 	loc = (uintptr_t *)&t4_an_handler;
361 	atomic_store_rel_ptr(loc, (uintptr_t)h);
362 }
363 
364 void
365 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
366 {
367 	uintptr_t *loc;
368 
369 	MPASS(type < nitems(t4_fw_msg_handler));
370 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
371 	/*
372 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
373 	 * handler dispatch table.  Reject any attempt to install a handler for
374 	 * this subtype.
375 	 */
376 	MPASS(type != FW_TYPE_RSSCPL);
377 	MPASS(type != FW6_TYPE_RSSCPL);
378 
379 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
380 	atomic_store_rel_ptr(loc, (uintptr_t)h);
381 }
382 
383 void
384 t4_register_cpl_handler(int opcode, cpl_handler_t h)
385 {
386 	uintptr_t *loc;
387 
388 	MPASS(opcode < nitems(t4_cpl_handler));
389 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
390 
391 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
392 	atomic_store_rel_ptr(loc, (uintptr_t)h);
393 }
394 
395 static int
396 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
397     struct mbuf *m)
398 {
399 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
400 	u_int tid;
401 	int cookie;
402 
403 	MPASS(m == NULL);
404 
405 	tid = GET_TID(cpl);
406 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
407 		/*
408 		 * The return code for filter-write is put in the CPL cookie so
409 		 * we have to rely on the hardware tid (is_ftid) to determine
410 		 * that this is a response to a filter.
411 		 */
412 		cookie = CPL_COOKIE_FILTER;
413 	} else {
414 		cookie = G_COOKIE(cpl->cookie);
415 	}
416 	MPASS(cookie > CPL_COOKIE_RESERVED);
417 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
418 
419 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
420 }
421 
422 static int
423 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
424     struct mbuf *m)
425 {
426 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
427 	unsigned int cookie;
428 
429 	MPASS(m == NULL);
430 
431 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
432 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
433 }
434 
435 static int
436 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
437     struct mbuf *m)
438 {
439 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
440 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
441 
442 	MPASS(m == NULL);
443 	MPASS(cookie != CPL_COOKIE_RESERVED);
444 
445 	return (act_open_rpl_handlers[cookie](iq, rss, m));
446 }
447 
448 static int
449 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
450     struct mbuf *m)
451 {
452 	struct adapter *sc = iq->adapter;
453 	u_int cookie;
454 
455 	MPASS(m == NULL);
456 	if (is_hashfilter(sc))
457 		cookie = CPL_COOKIE_HASHFILTER;
458 	else
459 		cookie = CPL_COOKIE_TOM;
460 
461 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
462 }
463 
464 static int
465 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
466 {
467 	struct adapter *sc = iq->adapter;
468 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
469 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
470 	u_int cookie;
471 
472 	MPASS(m == NULL);
473 	if (is_etid(sc, tid))
474 		cookie = CPL_COOKIE_ETHOFLD;
475 	else
476 		cookie = CPL_COOKIE_TOM;
477 
478 	return (fw4_ack_handlers[cookie](iq, rss, m));
479 }
480 
481 static void
482 t4_init_shared_cpl_handlers(void)
483 {
484 
485 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
486 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
487 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
488 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
489 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
490 }
491 
492 void
493 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
494 {
495 	uintptr_t *loc;
496 
497 	MPASS(opcode < nitems(t4_cpl_handler));
498 	MPASS(cookie > CPL_COOKIE_RESERVED);
499 	MPASS(cookie < NUM_CPL_COOKIES);
500 	MPASS(t4_cpl_handler[opcode] != NULL);
501 
502 	switch (opcode) {
503 	case CPL_SET_TCB_RPL:
504 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
505 		break;
506 	case CPL_L2T_WRITE_RPL:
507 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
508 		break;
509 	case CPL_ACT_OPEN_RPL:
510 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
511 		break;
512 	case CPL_ABORT_RPL_RSS:
513 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
514 		break;
515 	case CPL_FW4_ACK:
516 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
517 		break;
518 	default:
519 		MPASS(0);
520 		return;
521 	}
522 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
523 	atomic_store_rel_ptr(loc, (uintptr_t)h);
524 }
525 
526 /*
527  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
528  */
529 void
530 t4_sge_modload(void)
531 {
532 
533 	if (fl_pktshift < 0 || fl_pktshift > 7) {
534 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
535 		    " using 0 instead.\n", fl_pktshift);
536 		fl_pktshift = 0;
537 	}
538 
539 	if (spg_len != 64 && spg_len != 128) {
540 		int len;
541 
542 #if defined(__i386__) || defined(__amd64__)
543 		len = cpu_clflush_line_size > 64 ? 128 : 64;
544 #else
545 		len = 64;
546 #endif
547 		if (spg_len != -1) {
548 			printf("Invalid hw.cxgbe.spg_len value (%d),"
549 			    " using %d instead.\n", spg_len, len);
550 		}
551 		spg_len = len;
552 	}
553 
554 	if (cong_drop < -1 || cong_drop > 1) {
555 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
556 		    " using 0 instead.\n", cong_drop);
557 		cong_drop = 0;
558 	}
559 
560 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
561 		printf("Invalid hw.cxgbe.tscale value (%d),"
562 		    " using 1 instead.\n", tscale);
563 		tscale = 1;
564 	}
565 
566 	if (largest_rx_cluster != MCLBYTES &&
567 #if MJUMPAGESIZE != MCLBYTES
568 	    largest_rx_cluster != MJUMPAGESIZE &&
569 #endif
570 	    largest_rx_cluster != MJUM9BYTES &&
571 	    largest_rx_cluster != MJUM16BYTES) {
572 		printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
573 		    " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
574 		largest_rx_cluster = MJUM16BYTES;
575 	}
576 
577 	if (safest_rx_cluster != MCLBYTES &&
578 #if MJUMPAGESIZE != MCLBYTES
579 	    safest_rx_cluster != MJUMPAGESIZE &&
580 #endif
581 	    safest_rx_cluster != MJUM9BYTES &&
582 	    safest_rx_cluster != MJUM16BYTES) {
583 		printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
584 		    " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
585 		safest_rx_cluster = MJUMPAGESIZE;
586 	}
587 
588 	extfree_refs = counter_u64_alloc(M_WAITOK);
589 	extfree_rels = counter_u64_alloc(M_WAITOK);
590 	pullups = counter_u64_alloc(M_WAITOK);
591 	defrags = counter_u64_alloc(M_WAITOK);
592 	counter_u64_zero(extfree_refs);
593 	counter_u64_zero(extfree_rels);
594 	counter_u64_zero(pullups);
595 	counter_u64_zero(defrags);
596 
597 	t4_init_shared_cpl_handlers();
598 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
599 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
600 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
601 #ifdef RATELIMIT
602 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
603 	    CPL_COOKIE_ETHOFLD);
604 #endif
605 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
606 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
607 }
608 
609 void
610 t4_sge_modunload(void)
611 {
612 
613 	counter_u64_free(extfree_refs);
614 	counter_u64_free(extfree_rels);
615 	counter_u64_free(pullups);
616 	counter_u64_free(defrags);
617 }
618 
619 uint64_t
620 t4_sge_extfree_refs(void)
621 {
622 	uint64_t refs, rels;
623 
624 	rels = counter_u64_fetch(extfree_rels);
625 	refs = counter_u64_fetch(extfree_refs);
626 
627 	return (refs - rels);
628 }
629 
630 /* max 4096 */
631 #define MAX_PACK_BOUNDARY 512
632 
633 static inline void
634 setup_pad_and_pack_boundaries(struct adapter *sc)
635 {
636 	uint32_t v, m;
637 	int pad, pack, pad_shift;
638 
639 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
640 	    X_INGPADBOUNDARY_SHIFT;
641 	pad = fl_pad;
642 	if (fl_pad < (1 << pad_shift) ||
643 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
644 	    !powerof2(fl_pad)) {
645 		/*
646 		 * If there is any chance that we might use buffer packing and
647 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
648 		 * it to the minimum allowed in all other cases.
649 		 */
650 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
651 
652 		/*
653 		 * For fl_pad = 0 we'll still write a reasonable value to the
654 		 * register but all the freelists will opt out of padding.
655 		 * We'll complain here only if the user tried to set it to a
656 		 * value greater than 0 that was invalid.
657 		 */
658 		if (fl_pad > 0) {
659 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
660 			    " (%d), using %d instead.\n", fl_pad, pad);
661 		}
662 	}
663 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
664 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
665 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
666 
667 	if (is_t4(sc)) {
668 		if (fl_pack != -1 && fl_pack != pad) {
669 			/* Complain but carry on. */
670 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
671 			    " using %d instead.\n", fl_pack, pad);
672 		}
673 		return;
674 	}
675 
676 	pack = fl_pack;
677 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
678 	    !powerof2(fl_pack)) {
679 		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
680 			pack = MAX_PACK_BOUNDARY;
681 		else
682 			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
683 		MPASS(powerof2(pack));
684 		if (pack < 16)
685 			pack = 16;
686 		if (pack == 32)
687 			pack = 64;
688 		if (pack > 4096)
689 			pack = 4096;
690 		if (fl_pack != -1) {
691 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
692 			    " (%d), using %d instead.\n", fl_pack, pack);
693 		}
694 	}
695 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
696 	if (pack == 16)
697 		v = V_INGPACKBOUNDARY(0);
698 	else
699 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
700 
701 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
702 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
703 }
704 
705 /*
706  * adap->params.vpd.cclk must be set up before this is called.
707  */
708 void
709 t4_tweak_chip_settings(struct adapter *sc)
710 {
711 	int i, reg;
712 	uint32_t v, m;
713 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
714 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
715 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
716 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
717 	static int sw_buf_sizes[] = {
718 		MCLBYTES,
719 #if MJUMPAGESIZE != MCLBYTES
720 		MJUMPAGESIZE,
721 #endif
722 		MJUM9BYTES,
723 		MJUM16BYTES
724 	};
725 
726 	KASSERT(sc->flags & MASTER_PF,
727 	    ("%s: trying to change chip settings when not master.", __func__));
728 
729 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
730 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
731 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
732 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
733 
734 	setup_pad_and_pack_boundaries(sc);
735 
736 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
737 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
738 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
739 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
740 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
741 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
742 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
743 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
744 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
745 
746 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
747 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
748 	reg = A_SGE_FL_BUFFER_SIZE2;
749 	for (i = 0; i < nitems(sw_buf_sizes); i++) {
750 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
751 		t4_write_reg(sc, reg, sw_buf_sizes[i]);
752 		reg += 4;
753 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
754 		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
755 		reg += 4;
756 	}
757 
758 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
759 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
760 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
761 
762 	KASSERT(intr_timer[0] <= timer_max,
763 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
764 	    timer_max));
765 	for (i = 1; i < nitems(intr_timer); i++) {
766 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
767 		    ("%s: timers not listed in increasing order (%d)",
768 		    __func__, i));
769 
770 		while (intr_timer[i] > timer_max) {
771 			if (i == nitems(intr_timer) - 1) {
772 				intr_timer[i] = timer_max;
773 				break;
774 			}
775 			intr_timer[i] += intr_timer[i - 1];
776 			intr_timer[i] /= 2;
777 		}
778 	}
779 
780 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
781 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
782 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
783 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
784 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
785 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
786 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
787 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
788 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
789 
790 	if (chip_id(sc) >= CHELSIO_T6) {
791 		m = V_TSCALE(M_TSCALE);
792 		if (tscale == 1)
793 			v = 0;
794 		else
795 			v = V_TSCALE(tscale - 2);
796 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
797 
798 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
799 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
800 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
801 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
802 			v &= ~m;
803 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
804 			    V_WRTHRTHRESH(16);
805 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
806 		}
807 	}
808 
809 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
810 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
811 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
812 
813 	/*
814 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
815 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
816 	 * may have to deal with is MAXPHYS + 1 page.
817 	 */
818 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
819 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
820 
821 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
822 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
823 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
824 
825 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
826 	    F_RESETDDPOFFSET;
827 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
828 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
829 }
830 
831 /*
832  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
833  * address mut be 16B aligned.  If padding is in use the buffer's start and end
834  * need to be aligned to the pad boundary as well.  We'll just make sure that
835  * the size is a multiple of the pad boundary here, it is up to the buffer
836  * allocation code to make sure the start of the buffer is aligned.
837  */
838 static inline int
839 hwsz_ok(struct adapter *sc, int hwsz)
840 {
841 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
842 
843 	return (hwsz >= 64 && (hwsz & mask) == 0);
844 }
845 
846 /*
847  * Initialize the rx buffer sizes and figure out which zones the buffers will
848  * be allocated from.
849  */
850 void
851 t4_init_rx_buf_info(struct adapter *sc)
852 {
853 	struct sge *s = &sc->sge;
854 	struct sge_params *sp = &sc->params.sge;
855 	int i, j, n;
856 	static int sw_buf_sizes[] = {	/* Sorted by size */
857 		MCLBYTES,
858 #if MJUMPAGESIZE != MCLBYTES
859 		MJUMPAGESIZE,
860 #endif
861 		MJUM9BYTES,
862 		MJUM16BYTES
863 	};
864 	struct rx_buf_info *rxb;
865 
866 	s->safe_zidx = -1;
867 	rxb = &s->rx_buf_info[0];
868 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
869 		rxb->size1 = sw_buf_sizes[i];
870 		rxb->zone = m_getzone(rxb->size1);
871 		rxb->type = m_gettype(rxb->size1);
872 		rxb->size2 = 0;
873 		rxb->hwidx1 = -1;
874 		rxb->hwidx2 = -1;
875 		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
876 			int hwsize = sp->sge_fl_buffer_size[j];
877 
878 			if (!hwsz_ok(sc, hwsize))
879 				continue;
880 
881 			/* hwidx for size1 */
882 			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
883 				rxb->hwidx1 = j;
884 
885 			/* hwidx for size2 (buffer packing) */
886 			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
887 				continue;
888 			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
889 			if (n == 0) {
890 				rxb->hwidx2 = j;
891 				rxb->size2 = hwsize;
892 				break;	/* stop looking */
893 			}
894 			if (rxb->hwidx2 != -1) {
895 				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
896 				    hwsize - CL_METADATA_SIZE) {
897 					rxb->hwidx2 = j;
898 					rxb->size2 = hwsize;
899 				}
900 			} else if (n <= 2 * CL_METADATA_SIZE) {
901 				rxb->hwidx2 = j;
902 				rxb->size2 = hwsize;
903 			}
904 		}
905 		if (rxb->hwidx2 != -1)
906 			sc->flags |= BUF_PACKING_OK;
907 		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
908 			s->safe_zidx = i;
909 	}
910 }
911 
912 /*
913  * Verify some basic SGE settings for the PF and VF driver, and other
914  * miscellaneous settings for the PF driver.
915  */
916 int
917 t4_verify_chip_settings(struct adapter *sc)
918 {
919 	struct sge_params *sp = &sc->params.sge;
920 	uint32_t m, v, r;
921 	int rc = 0;
922 	const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
923 
924 	m = F_RXPKTCPLMODE;
925 	v = F_RXPKTCPLMODE;
926 	r = sp->sge_control;
927 	if ((r & m) != v) {
928 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
929 		rc = EINVAL;
930 	}
931 
932 	/*
933 	 * If this changes then every single use of PAGE_SHIFT in the driver
934 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
935 	 */
936 	if (sp->page_shift != PAGE_SHIFT) {
937 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
938 		rc = EINVAL;
939 	}
940 
941 	if (sc->flags & IS_VF)
942 		return (0);
943 
944 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
945 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
946 	if (r != v) {
947 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
948 		if (sc->vres.ddp.size != 0)
949 			rc = EINVAL;
950 	}
951 
952 	m = v = F_TDDPTAGTCB;
953 	r = t4_read_reg(sc, A_ULP_RX_CTL);
954 	if ((r & m) != v) {
955 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
956 		if (sc->vres.ddp.size != 0)
957 			rc = EINVAL;
958 	}
959 
960 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
961 	    F_RESETDDPOFFSET;
962 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
963 	r = t4_read_reg(sc, A_TP_PARA_REG5);
964 	if ((r & m) != v) {
965 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
966 		if (sc->vres.ddp.size != 0)
967 			rc = EINVAL;
968 	}
969 
970 	return (rc);
971 }
972 
973 int
974 t4_create_dma_tag(struct adapter *sc)
975 {
976 	int rc;
977 
978 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
979 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
980 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
981 	    NULL, &sc->dmat);
982 	if (rc != 0) {
983 		device_printf(sc->dev,
984 		    "failed to create main DMA tag: %d\n", rc);
985 	}
986 
987 	return (rc);
988 }
989 
990 void
991 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
992     struct sysctl_oid_list *children)
993 {
994 	struct sge_params *sp = &sc->params.sge;
995 
996 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
997 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
998 	    sysctl_bufsizes, "A", "freelist buffer sizes");
999 
1000 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
1001 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
1002 
1003 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
1004 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
1005 
1006 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
1007 	    NULL, sp->spg_len, "status page size (bytes)");
1008 
1009 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
1010 	    NULL, cong_drop, "congestion drop setting");
1011 
1012 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
1013 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1014 }
1015 
1016 int
1017 t4_destroy_dma_tag(struct adapter *sc)
1018 {
1019 	if (sc->dmat)
1020 		bus_dma_tag_destroy(sc->dmat);
1021 
1022 	return (0);
1023 }
1024 
1025 /*
1026  * Allocate and initialize the firmware event queue, control queues, and special
1027  * purpose rx queues owned by the adapter.
1028  *
1029  * Returns errno on failure.  Resources allocated up to that point may still be
1030  * allocated.  Caller is responsible for cleanup in case this function fails.
1031  */
1032 int
1033 t4_setup_adapter_queues(struct adapter *sc)
1034 {
1035 	int rc, i;
1036 
1037 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1038 
1039 	/*
1040 	 * Firmware event queue
1041 	 */
1042 	rc = alloc_fwq(sc);
1043 	if (rc != 0)
1044 		return (rc);
1045 
1046 	/*
1047 	 * That's all for the VF driver.
1048 	 */
1049 	if (sc->flags & IS_VF)
1050 		return (rc);
1051 
1052 	/*
1053 	 * XXX: General purpose rx queues, one per port.
1054 	 */
1055 
1056 	/*
1057 	 * Control queues, one per port.
1058 	 */
1059 	for_each_port(sc, i) {
1060 		rc = alloc_ctrlq(sc, i);
1061 		if (rc != 0)
1062 			return (rc);
1063 	}
1064 
1065 	return (rc);
1066 }
1067 
1068 /*
1069  * Idempotent
1070  */
1071 int
1072 t4_teardown_adapter_queues(struct adapter *sc)
1073 {
1074 	int i;
1075 
1076 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1077 
1078 	if (!(sc->flags & IS_VF)) {
1079 		for_each_port(sc, i)
1080 			free_ctrlq(sc, i);
1081 	}
1082 	free_fwq(sc);
1083 
1084 	return (0);
1085 }
1086 
1087 /* Maximum payload that could arrive with a single iq descriptor. */
1088 static inline int
1089 max_rx_payload(struct adapter *sc, struct ifnet *ifp, const bool ofld)
1090 {
1091 	int maxp;
1092 
1093 	/* large enough even when hw VLAN extraction is disabled */
1094 	maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1095 	    ETHER_VLAN_ENCAP_LEN + ifp->if_mtu;
1096 	if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1097 	    maxp < sc->params.tp.max_rx_pdu)
1098 		maxp = sc->params.tp.max_rx_pdu;
1099 	return (maxp);
1100 }
1101 
1102 int
1103 t4_setup_vi_queues(struct vi_info *vi)
1104 {
1105 	int rc = 0, i, intr_idx;
1106 	struct sge_rxq *rxq;
1107 	struct sge_txq *txq;
1108 #ifdef TCP_OFFLOAD
1109 	struct sge_ofld_rxq *ofld_rxq;
1110 #endif
1111 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1112 	struct sge_ofld_txq *ofld_txq;
1113 #endif
1114 #ifdef DEV_NETMAP
1115 	int saved_idx, iqidx;
1116 	struct sge_nm_rxq *nm_rxq;
1117 	struct sge_nm_txq *nm_txq;
1118 #endif
1119 	struct adapter *sc = vi->adapter;
1120 	struct ifnet *ifp = vi->ifp;
1121 	int maxp;
1122 
1123 	/* Interrupt vector to start from (when using multiple vectors) */
1124 	intr_idx = vi->first_intr;
1125 
1126 #ifdef DEV_NETMAP
1127 	saved_idx = intr_idx;
1128 	if (ifp->if_capabilities & IFCAP_NETMAP) {
1129 
1130 		/* netmap is supported with direct interrupts only. */
1131 		MPASS(!forwarding_intr_to_fwq(sc));
1132 		MPASS(vi->first_intr >= 0);
1133 
1134 		/*
1135 		 * We don't have buffers to back the netmap rx queues
1136 		 * right now so we create the queues in a way that
1137 		 * doesn't set off any congestion signal in the chip.
1138 		 */
1139 		for_each_nm_rxq(vi, i, nm_rxq) {
1140 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i);
1141 			if (rc != 0)
1142 				goto done;
1143 			intr_idx++;
1144 		}
1145 
1146 		for_each_nm_txq(vi, i, nm_txq) {
1147 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1148 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i);
1149 			if (rc != 0)
1150 				goto done;
1151 		}
1152 	}
1153 
1154 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1155 	intr_idx = saved_idx;
1156 #endif
1157 
1158 	/*
1159 	 * Allocate rx queues first because a default iqid is required when
1160 	 * creating a tx queue.
1161 	 */
1162 	maxp = max_rx_payload(sc, ifp, false);
1163 	for_each_rxq(vi, i, rxq) {
1164 		rc = alloc_rxq(vi, rxq, i, intr_idx, maxp);
1165 		if (rc != 0)
1166 			goto done;
1167 		if (!forwarding_intr_to_fwq(sc))
1168 			intr_idx++;
1169 	}
1170 #ifdef DEV_NETMAP
1171 	if (ifp->if_capabilities & IFCAP_NETMAP)
1172 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1173 #endif
1174 #ifdef TCP_OFFLOAD
1175 	maxp = max_rx_payload(sc, ifp, true);
1176 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1177 		rc = alloc_ofld_rxq(vi, ofld_rxq, i, intr_idx, maxp);
1178 		if (rc != 0)
1179 			goto done;
1180 		if (!forwarding_intr_to_fwq(sc))
1181 			intr_idx++;
1182 	}
1183 #endif
1184 
1185 	/*
1186 	 * Now the tx queues.
1187 	 */
1188 	for_each_txq(vi, i, txq) {
1189 		rc = alloc_txq(vi, txq, i);
1190 		if (rc != 0)
1191 			goto done;
1192 	}
1193 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1194 	for_each_ofld_txq(vi, i, ofld_txq) {
1195 		rc = alloc_ofld_txq(vi, ofld_txq, i);
1196 		if (rc != 0)
1197 			goto done;
1198 	}
1199 #endif
1200 done:
1201 	if (rc)
1202 		t4_teardown_vi_queues(vi);
1203 
1204 	return (rc);
1205 }
1206 
1207 /*
1208  * Idempotent
1209  */
1210 int
1211 t4_teardown_vi_queues(struct vi_info *vi)
1212 {
1213 	int i;
1214 	struct sge_rxq *rxq;
1215 	struct sge_txq *txq;
1216 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1217 	struct sge_ofld_txq *ofld_txq;
1218 #endif
1219 #ifdef TCP_OFFLOAD
1220 	struct sge_ofld_rxq *ofld_rxq;
1221 #endif
1222 #ifdef DEV_NETMAP
1223 	struct sge_nm_rxq *nm_rxq;
1224 	struct sge_nm_txq *nm_txq;
1225 #endif
1226 
1227 #ifdef DEV_NETMAP
1228 	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1229 		for_each_nm_txq(vi, i, nm_txq) {
1230 			free_nm_txq(vi, nm_txq);
1231 		}
1232 
1233 		for_each_nm_rxq(vi, i, nm_rxq) {
1234 			free_nm_rxq(vi, nm_rxq);
1235 		}
1236 	}
1237 #endif
1238 
1239 	/*
1240 	 * Take down all the tx queues first, as they reference the rx queues
1241 	 * (for egress updates, etc.).
1242 	 */
1243 
1244 	for_each_txq(vi, i, txq) {
1245 		free_txq(vi, txq);
1246 	}
1247 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1248 	for_each_ofld_txq(vi, i, ofld_txq) {
1249 		free_ofld_txq(vi, ofld_txq);
1250 	}
1251 #endif
1252 
1253 	/*
1254 	 * Then take down the rx queues.
1255 	 */
1256 
1257 	for_each_rxq(vi, i, rxq) {
1258 		free_rxq(vi, rxq);
1259 	}
1260 #ifdef TCP_OFFLOAD
1261 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1262 		free_ofld_rxq(vi, ofld_rxq);
1263 	}
1264 #endif
1265 
1266 	return (0);
1267 }
1268 
1269 /*
1270  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1271  * unusual scenario.
1272  *
1273  * a) Deals with errors, if any.
1274  * b) Services firmware event queue, which is taking interrupts for all other
1275  *    queues.
1276  */
1277 void
1278 t4_intr_all(void *arg)
1279 {
1280 	struct adapter *sc = arg;
1281 	struct sge_iq *fwq = &sc->sge.fwq;
1282 
1283 	MPASS(sc->intr_count == 1);
1284 
1285 	if (sc->intr_type == INTR_INTX)
1286 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1287 
1288 	t4_intr_err(arg);
1289 	t4_intr_evt(fwq);
1290 }
1291 
1292 /*
1293  * Interrupt handler for errors (installed directly when multiple interrupts are
1294  * being used, or called by t4_intr_all).
1295  */
1296 void
1297 t4_intr_err(void *arg)
1298 {
1299 	struct adapter *sc = arg;
1300 	uint32_t v;
1301 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1302 
1303 	if (sc->flags & ADAP_ERR)
1304 		return;
1305 
1306 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1307 	if (v & F_PFSW) {
1308 		sc->swintr++;
1309 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1310 	}
1311 
1312 	t4_slow_intr_handler(sc, verbose);
1313 }
1314 
1315 /*
1316  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1317  * such queue right now.
1318  */
1319 void
1320 t4_intr_evt(void *arg)
1321 {
1322 	struct sge_iq *iq = arg;
1323 
1324 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1325 		service_iq(iq, 0);
1326 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1327 	}
1328 }
1329 
1330 /*
1331  * Interrupt handler for iq+fl queues.
1332  */
1333 void
1334 t4_intr(void *arg)
1335 {
1336 	struct sge_iq *iq = arg;
1337 
1338 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1339 		service_iq_fl(iq, 0);
1340 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1341 	}
1342 }
1343 
1344 #ifdef DEV_NETMAP
1345 /*
1346  * Interrupt handler for netmap rx queues.
1347  */
1348 void
1349 t4_nm_intr(void *arg)
1350 {
1351 	struct sge_nm_rxq *nm_rxq = arg;
1352 
1353 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1354 		service_nm_rxq(nm_rxq);
1355 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1356 	}
1357 }
1358 
1359 /*
1360  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1361  */
1362 void
1363 t4_vi_intr(void *arg)
1364 {
1365 	struct irq *irq = arg;
1366 
1367 	MPASS(irq->nm_rxq != NULL);
1368 	t4_nm_intr(irq->nm_rxq);
1369 
1370 	MPASS(irq->rxq != NULL);
1371 	t4_intr(irq->rxq);
1372 }
1373 #endif
1374 
1375 /*
1376  * Deals with interrupts on an iq-only (no freelist) queue.
1377  */
1378 static int
1379 service_iq(struct sge_iq *iq, int budget)
1380 {
1381 	struct sge_iq *q;
1382 	struct adapter *sc = iq->adapter;
1383 	struct iq_desc *d = &iq->desc[iq->cidx];
1384 	int ndescs = 0, limit;
1385 	int rsp_type;
1386 	uint32_t lq;
1387 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1388 
1389 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1390 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1391 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1392 	    iq->flags));
1393 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1394 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1395 
1396 	limit = budget ? budget : iq->qsize / 16;
1397 
1398 	/*
1399 	 * We always come back and check the descriptor ring for new indirect
1400 	 * interrupts and other responses after running a single handler.
1401 	 */
1402 	for (;;) {
1403 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1404 
1405 			rmb();
1406 
1407 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1408 			lq = be32toh(d->rsp.pldbuflen_qid);
1409 
1410 			switch (rsp_type) {
1411 			case X_RSPD_TYPE_FLBUF:
1412 				panic("%s: data for an iq (%p) with no freelist",
1413 				    __func__, iq);
1414 
1415 				/* NOTREACHED */
1416 
1417 			case X_RSPD_TYPE_CPL:
1418 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1419 				    ("%s: bad opcode %02x.", __func__,
1420 				    d->rss.opcode));
1421 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1422 				break;
1423 
1424 			case X_RSPD_TYPE_INTR:
1425 				/*
1426 				 * There are 1K interrupt-capable queues (qids 0
1427 				 * through 1023).  A response type indicating a
1428 				 * forwarded interrupt with a qid >= 1K is an
1429 				 * iWARP async notification.
1430 				 */
1431 				if (__predict_true(lq >= 1024)) {
1432 					t4_an_handler(iq, &d->rsp);
1433 					break;
1434 				}
1435 
1436 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1437 				    sc->sge.iq_base];
1438 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1439 				    IQS_BUSY)) {
1440 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1441 						(void) atomic_cmpset_int(&q->state,
1442 						    IQS_BUSY, IQS_IDLE);
1443 					} else {
1444 						STAILQ_INSERT_TAIL(&iql, q,
1445 						    link);
1446 					}
1447 				}
1448 				break;
1449 
1450 			default:
1451 				KASSERT(0,
1452 				    ("%s: illegal response type %d on iq %p",
1453 				    __func__, rsp_type, iq));
1454 				log(LOG_ERR,
1455 				    "%s: illegal response type %d on iq %p",
1456 				    device_get_nameunit(sc->dev), rsp_type, iq);
1457 				break;
1458 			}
1459 
1460 			d++;
1461 			if (__predict_false(++iq->cidx == iq->sidx)) {
1462 				iq->cidx = 0;
1463 				iq->gen ^= F_RSPD_GEN;
1464 				d = &iq->desc[0];
1465 			}
1466 			if (__predict_false(++ndescs == limit)) {
1467 				t4_write_reg(sc, sc->sge_gts_reg,
1468 				    V_CIDXINC(ndescs) |
1469 				    V_INGRESSQID(iq->cntxt_id) |
1470 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1471 				ndescs = 0;
1472 
1473 				if (budget) {
1474 					return (EINPROGRESS);
1475 				}
1476 			}
1477 		}
1478 
1479 		if (STAILQ_EMPTY(&iql))
1480 			break;
1481 
1482 		/*
1483 		 * Process the head only, and send it to the back of the list if
1484 		 * it's still not done.
1485 		 */
1486 		q = STAILQ_FIRST(&iql);
1487 		STAILQ_REMOVE_HEAD(&iql, link);
1488 		if (service_iq_fl(q, q->qsize / 8) == 0)
1489 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1490 		else
1491 			STAILQ_INSERT_TAIL(&iql, q, link);
1492 	}
1493 
1494 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1495 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1496 
1497 	return (0);
1498 }
1499 
1500 static inline int
1501 sort_before_lro(struct lro_ctrl *lro)
1502 {
1503 
1504 	return (lro->lro_mbuf_max != 0);
1505 }
1506 
1507 static inline uint64_t
1508 last_flit_to_ns(struct adapter *sc, uint64_t lf)
1509 {
1510 	uint64_t n = be64toh(lf) & 0xfffffffffffffff;	/* 60b, not 64b. */
1511 
1512 	if (n > UINT64_MAX / 1000000)
1513 		return (n / sc->params.vpd.cclk * 1000000);
1514 	else
1515 		return (n * 1000000 / sc->params.vpd.cclk);
1516 }
1517 
1518 static inline void
1519 move_to_next_rxbuf(struct sge_fl *fl)
1520 {
1521 
1522 	fl->rx_offset = 0;
1523 	if (__predict_false((++fl->cidx & 7) == 0)) {
1524 		uint16_t cidx = fl->cidx >> 3;
1525 
1526 		if (__predict_false(cidx == fl->sidx))
1527 			fl->cidx = cidx = 0;
1528 		fl->hw_cidx = cidx;
1529 	}
1530 }
1531 
1532 /*
1533  * Deals with interrupts on an iq+fl queue.
1534  */
1535 static int
1536 service_iq_fl(struct sge_iq *iq, int budget)
1537 {
1538 	struct sge_rxq *rxq = iq_to_rxq(iq);
1539 	struct sge_fl *fl;
1540 	struct adapter *sc = iq->adapter;
1541 	struct iq_desc *d = &iq->desc[iq->cidx];
1542 	int ndescs, limit;
1543 	int rsp_type, starved;
1544 	uint32_t lq;
1545 	uint16_t fl_hw_cidx;
1546 	struct mbuf *m0;
1547 #if defined(INET) || defined(INET6)
1548 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1549 	struct lro_ctrl *lro = &rxq->lro;
1550 #endif
1551 
1552 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1553 	MPASS(iq->flags & IQ_HAS_FL);
1554 
1555 	ndescs = 0;
1556 #if defined(INET) || defined(INET6)
1557 	if (iq->flags & IQ_ADJ_CREDIT) {
1558 		MPASS(sort_before_lro(lro));
1559 		iq->flags &= ~IQ_ADJ_CREDIT;
1560 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1561 			tcp_lro_flush_all(lro);
1562 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1563 			    V_INGRESSQID((u32)iq->cntxt_id) |
1564 			    V_SEINTARM(iq->intr_params));
1565 			return (0);
1566 		}
1567 		ndescs = 1;
1568 	}
1569 #else
1570 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1571 #endif
1572 
1573 	limit = budget ? budget : iq->qsize / 16;
1574 	fl = &rxq->fl;
1575 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1576 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1577 
1578 		rmb();
1579 
1580 		m0 = NULL;
1581 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1582 		lq = be32toh(d->rsp.pldbuflen_qid);
1583 
1584 		switch (rsp_type) {
1585 		case X_RSPD_TYPE_FLBUF:
1586 			if (lq & F_RSPD_NEWBUF) {
1587 				if (fl->rx_offset > 0)
1588 					move_to_next_rxbuf(fl);
1589 				lq = G_RSPD_LEN(lq);
1590 			}
1591 			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1592 				FL_LOCK(fl);
1593 				refill_fl(sc, fl, 64);
1594 				FL_UNLOCK(fl);
1595 				fl_hw_cidx = fl->hw_cidx;
1596 			}
1597 
1598 			if (d->rss.opcode == CPL_RX_PKT) {
1599 				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1600 					break;
1601 				goto out;
1602 			}
1603 			m0 = get_fl_payload(sc, fl, lq);
1604 			if (__predict_false(m0 == NULL))
1605 				goto out;
1606 
1607 			/* fall through */
1608 
1609 		case X_RSPD_TYPE_CPL:
1610 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1611 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1612 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1613 			break;
1614 
1615 		case X_RSPD_TYPE_INTR:
1616 
1617 			/*
1618 			 * There are 1K interrupt-capable queues (qids 0
1619 			 * through 1023).  A response type indicating a
1620 			 * forwarded interrupt with a qid >= 1K is an
1621 			 * iWARP async notification.  That is the only
1622 			 * acceptable indirect interrupt on this queue.
1623 			 */
1624 			if (__predict_false(lq < 1024)) {
1625 				panic("%s: indirect interrupt on iq_fl %p "
1626 				    "with qid %u", __func__, iq, lq);
1627 			}
1628 
1629 			t4_an_handler(iq, &d->rsp);
1630 			break;
1631 
1632 		default:
1633 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1634 			    __func__, rsp_type, iq));
1635 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1636 			    device_get_nameunit(sc->dev), rsp_type, iq);
1637 			break;
1638 		}
1639 
1640 		d++;
1641 		if (__predict_false(++iq->cidx == iq->sidx)) {
1642 			iq->cidx = 0;
1643 			iq->gen ^= F_RSPD_GEN;
1644 			d = &iq->desc[0];
1645 		}
1646 		if (__predict_false(++ndescs == limit)) {
1647 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1648 			    V_INGRESSQID(iq->cntxt_id) |
1649 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1650 
1651 #if defined(INET) || defined(INET6)
1652 			if (iq->flags & IQ_LRO_ENABLED &&
1653 			    !sort_before_lro(lro) &&
1654 			    sc->lro_timeout != 0) {
1655 				tcp_lro_flush_inactive(lro, &lro_timeout);
1656 			}
1657 #endif
1658 			if (budget)
1659 				return (EINPROGRESS);
1660 			ndescs = 0;
1661 		}
1662 	}
1663 out:
1664 #if defined(INET) || defined(INET6)
1665 	if (iq->flags & IQ_LRO_ENABLED) {
1666 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1667 			MPASS(sort_before_lro(lro));
1668 			/* hold back one credit and don't flush LRO state */
1669 			iq->flags |= IQ_ADJ_CREDIT;
1670 			ndescs--;
1671 		} else {
1672 			tcp_lro_flush_all(lro);
1673 		}
1674 	}
1675 #endif
1676 
1677 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1678 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1679 
1680 	FL_LOCK(fl);
1681 	starved = refill_fl(sc, fl, 64);
1682 	FL_UNLOCK(fl);
1683 	if (__predict_false(starved != 0))
1684 		add_fl_to_sfl(sc, fl);
1685 
1686 	return (0);
1687 }
1688 
1689 static inline struct cluster_metadata *
1690 cl_metadata(struct fl_sdesc *sd)
1691 {
1692 
1693 	return ((void *)(sd->cl + sd->moff));
1694 }
1695 
1696 static void
1697 rxb_free(struct mbuf *m)
1698 {
1699 	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1700 
1701 	uma_zfree(clm->zone, clm->cl);
1702 	counter_u64_add(extfree_rels, 1);
1703 }
1704 
1705 /*
1706  * The mbuf returned comes from zone_muf and carries the payload in one of these
1707  * ways
1708  * a) complete frame inside the mbuf
1709  * b) m_cljset (for clusters without metadata)
1710  * d) m_extaddref (cluster with metadata)
1711  */
1712 static struct mbuf *
1713 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1714     int remaining)
1715 {
1716 	struct mbuf *m;
1717 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1718 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1719 	struct cluster_metadata *clm;
1720 	int len, blen;
1721 	caddr_t payload;
1722 
1723 	if (fl->flags & FL_BUF_PACKING) {
1724 		u_int l, pad;
1725 
1726 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1727 		len = min(remaining, blen);
1728 		payload = sd->cl + fl->rx_offset;
1729 
1730 		l = fr_offset + len;
1731 		pad = roundup2(l, fl->buf_boundary) - l;
1732 		if (fl->rx_offset + len + pad < rxb->size2)
1733 			blen = len + pad;
1734 		MPASS(fl->rx_offset + blen <= rxb->size2);
1735 	} else {
1736 		MPASS(fl->rx_offset == 0);	/* not packing */
1737 		blen = rxb->size1;
1738 		len = min(remaining, blen);
1739 		payload = sd->cl;
1740 	}
1741 
1742 	if (fr_offset == 0) {
1743 		m = m_gethdr(M_NOWAIT, MT_DATA);
1744 		if (__predict_false(m == NULL))
1745 			return (NULL);
1746 		m->m_pkthdr.len = remaining;
1747 	} else {
1748 		m = m_get(M_NOWAIT, MT_DATA);
1749 		if (__predict_false(m == NULL))
1750 			return (NULL);
1751 	}
1752 	m->m_len = len;
1753 
1754 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1755 		/* copy data to mbuf */
1756 		bcopy(payload, mtod(m, caddr_t), len);
1757 		if (fl->flags & FL_BUF_PACKING) {
1758 			fl->rx_offset += blen;
1759 			MPASS(fl->rx_offset <= rxb->size2);
1760 			if (fl->rx_offset < rxb->size2)
1761 				return (m);	/* without advancing the cidx */
1762 		}
1763 	} else if (fl->flags & FL_BUF_PACKING) {
1764 		clm = cl_metadata(sd);
1765 		if (sd->nmbuf++ == 0) {
1766 			clm->refcount = 1;
1767 			clm->zone = rxb->zone;
1768 			clm->cl = sd->cl;
1769 			counter_u64_add(extfree_refs, 1);
1770 		}
1771 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1772 		    NULL);
1773 
1774 		fl->rx_offset += blen;
1775 		MPASS(fl->rx_offset <= rxb->size2);
1776 		if (fl->rx_offset < rxb->size2)
1777 			return (m);	/* without advancing the cidx */
1778 	} else {
1779 		m_cljset(m, sd->cl, rxb->type);
1780 		sd->cl = NULL;	/* consumed, not a recycle candidate */
1781 	}
1782 
1783 	move_to_next_rxbuf(fl);
1784 
1785 	return (m);
1786 }
1787 
1788 static struct mbuf *
1789 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1790 {
1791 	struct mbuf *m0, *m, **pnext;
1792 	u_int remaining;
1793 
1794 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1795 		M_ASSERTPKTHDR(fl->m0);
1796 		MPASS(fl->m0->m_pkthdr.len == plen);
1797 		MPASS(fl->remaining < plen);
1798 
1799 		m0 = fl->m0;
1800 		pnext = fl->pnext;
1801 		remaining = fl->remaining;
1802 		fl->flags &= ~FL_BUF_RESUME;
1803 		goto get_segment;
1804 	}
1805 
1806 	/*
1807 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1808 	 * 'len' and it may span multiple hw buffers.
1809 	 */
1810 
1811 	m0 = get_scatter_segment(sc, fl, 0, plen);
1812 	if (m0 == NULL)
1813 		return (NULL);
1814 	remaining = plen - m0->m_len;
1815 	pnext = &m0->m_next;
1816 	while (remaining > 0) {
1817 get_segment:
1818 		MPASS(fl->rx_offset == 0);
1819 		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1820 		if (__predict_false(m == NULL)) {
1821 			fl->m0 = m0;
1822 			fl->pnext = pnext;
1823 			fl->remaining = remaining;
1824 			fl->flags |= FL_BUF_RESUME;
1825 			return (NULL);
1826 		}
1827 		*pnext = m;
1828 		pnext = &m->m_next;
1829 		remaining -= m->m_len;
1830 	}
1831 	*pnext = NULL;
1832 
1833 	M_ASSERTPKTHDR(m0);
1834 	return (m0);
1835 }
1836 
1837 static int
1838 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1839     int remaining)
1840 {
1841 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1842 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1843 	int len, blen;
1844 
1845 	if (fl->flags & FL_BUF_PACKING) {
1846 		u_int l, pad;
1847 
1848 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1849 		len = min(remaining, blen);
1850 
1851 		l = fr_offset + len;
1852 		pad = roundup2(l, fl->buf_boundary) - l;
1853 		if (fl->rx_offset + len + pad < rxb->size2)
1854 			blen = len + pad;
1855 		fl->rx_offset += blen;
1856 		MPASS(fl->rx_offset <= rxb->size2);
1857 		if (fl->rx_offset < rxb->size2)
1858 			return (len);	/* without advancing the cidx */
1859 	} else {
1860 		MPASS(fl->rx_offset == 0);	/* not packing */
1861 		blen = rxb->size1;
1862 		len = min(remaining, blen);
1863 	}
1864 	move_to_next_rxbuf(fl);
1865 	return (len);
1866 }
1867 
1868 static inline void
1869 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1870 {
1871 	int remaining, fr_offset, len;
1872 
1873 	fr_offset = 0;
1874 	remaining = plen;
1875 	while (remaining > 0) {
1876 		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1877 		fr_offset += len;
1878 		remaining -= len;
1879 	}
1880 }
1881 
1882 static inline int
1883 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1884 {
1885 	int len;
1886 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1887 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1888 
1889 	if (fl->flags & FL_BUF_PACKING)
1890 		len = rxb->size2 - fl->rx_offset;
1891 	else
1892 		len = rxb->size1;
1893 
1894 	return (min(plen, len));
1895 }
1896 
1897 static int
1898 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1899     u_int plen)
1900 {
1901 	struct mbuf *m0;
1902 	struct ifnet *ifp = rxq->ifp;
1903 	struct sge_fl *fl = &rxq->fl;
1904 	struct vi_info *vi = ifp->if_softc;
1905 	const struct cpl_rx_pkt *cpl;
1906 #if defined(INET) || defined(INET6)
1907 	struct lro_ctrl *lro = &rxq->lro;
1908 #endif
1909 	uint16_t err_vec, tnl_type, tnlhdr_len;
1910 	static const int sw_hashtype[4][2] = {
1911 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1912 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1913 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1914 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1915 	};
1916 	static const int sw_csum_flags[2][2] = {
1917 		{
1918 			/* IP, inner IP */
1919 			CSUM_ENCAP_VXLAN |
1920 			    CSUM_L3_CALC | CSUM_L3_VALID |
1921 			    CSUM_L4_CALC | CSUM_L4_VALID |
1922 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1923 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1924 
1925 			/* IP, inner IP6 */
1926 			CSUM_ENCAP_VXLAN |
1927 			    CSUM_L3_CALC | CSUM_L3_VALID |
1928 			    CSUM_L4_CALC | CSUM_L4_VALID |
1929 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1930 		},
1931 		{
1932 			/* IP6, inner IP */
1933 			CSUM_ENCAP_VXLAN |
1934 			    CSUM_L4_CALC | CSUM_L4_VALID |
1935 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1936 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1937 
1938 			/* IP6, inner IP6 */
1939 			CSUM_ENCAP_VXLAN |
1940 			    CSUM_L4_CALC | CSUM_L4_VALID |
1941 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1942 		},
1943 	};
1944 
1945 	MPASS(plen > sc->params.sge.fl_pktshift);
1946 	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
1947 	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
1948 		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1949 		caddr_t frame;
1950 		int rc, slen;
1951 
1952 		slen = get_segment_len(sc, fl, plen) -
1953 		    sc->params.sge.fl_pktshift;
1954 		frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
1955 		CURVNET_SET_QUIET(ifp->if_vnet);
1956 		rc = pfil_run_hooks(vi->pfil, frame, ifp,
1957 		    slen | PFIL_MEMPTR | PFIL_IN, NULL);
1958 		CURVNET_RESTORE();
1959 		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
1960 			skip_fl_payload(sc, fl, plen);
1961 			return (0);
1962 		}
1963 		if (rc == PFIL_REALLOCED) {
1964 			skip_fl_payload(sc, fl, plen);
1965 			m0 = pfil_mem2mbuf(frame);
1966 			goto have_mbuf;
1967 		}
1968 	}
1969 
1970 	m0 = get_fl_payload(sc, fl, plen);
1971 	if (__predict_false(m0 == NULL))
1972 		return (ENOMEM);
1973 
1974 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1975 	m0->m_len -= sc->params.sge.fl_pktshift;
1976 	m0->m_data += sc->params.sge.fl_pktshift;
1977 
1978 have_mbuf:
1979 	m0->m_pkthdr.rcvif = ifp;
1980 	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
1981 	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
1982 
1983 	cpl = (const void *)(&d->rss + 1);
1984 	if (sc->params.tp.rx_pkt_encap) {
1985 		const uint16_t ev = be16toh(cpl->err_vec);
1986 
1987 		err_vec = G_T6_COMPR_RXERR_VEC(ev);
1988 		tnl_type = G_T6_RX_TNL_TYPE(ev);
1989 		tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
1990 	} else {
1991 		err_vec = be16toh(cpl->err_vec);
1992 		tnl_type = 0;
1993 		tnlhdr_len = 0;
1994 	}
1995 	if (cpl->csum_calc && err_vec == 0) {
1996 		int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
1997 
1998 		/* checksum(s) calculated and found to be correct. */
1999 
2000 		MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
2001 		    (cpl->l2info & htobe32(F_RXF_IP6)));
2002 		m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2003 		if (tnl_type == 0) {
2004 	    		if (!ipv6 && ifp->if_capenable & IFCAP_RXCSUM) {
2005 				m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2006 				    CSUM_L3_VALID | CSUM_L4_CALC |
2007 				    CSUM_L4_VALID;
2008 			} else if (ipv6 && ifp->if_capenable & IFCAP_RXCSUM_IPV6) {
2009 				m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2010 				    CSUM_L4_VALID;
2011 			}
2012 			rxq->rxcsum++;
2013 		} else {
2014 			MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
2015 
2016 			M_HASHTYPE_SETINNER(m0);
2017 			if (__predict_false(cpl->ip_frag)) {
2018 				/*
2019 				 * csum_data is for the inner frame (which is an
2020 				 * IP fragment) and is not 0xffff.  There is no
2021 				 * way to pass the inner csum_data to the stack.
2022 				 * We don't want the stack to use the inner
2023 				 * csum_data to validate the outer frame or it
2024 				 * will get rejected.  So we fix csum_data here
2025 				 * and let sw do the checksum of inner IP
2026 				 * fragments.
2027 				 *
2028 				 * XXX: Need 32b for csum_data2 in an rx mbuf.
2029 				 * Maybe stuff it into rcv_tstmp?
2030 				 */
2031 				m0->m_pkthdr.csum_data = 0xffff;
2032 				if (ipv6) {
2033 					m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2034 					    CSUM_L4_VALID;
2035 				} else {
2036 					m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2037 					    CSUM_L3_VALID | CSUM_L4_CALC |
2038 					    CSUM_L4_VALID;
2039 				}
2040 			} else {
2041 				int outer_ipv6;
2042 
2043 				MPASS(m0->m_pkthdr.csum_data == 0xffff);
2044 
2045 				outer_ipv6 = tnlhdr_len >=
2046 				    sizeof(struct ether_header) +
2047 				    sizeof(struct ip6_hdr);
2048 				m0->m_pkthdr.csum_flags =
2049 				    sw_csum_flags[outer_ipv6][ipv6];
2050 			}
2051 			rxq->vxlan_rxcsum++;
2052 		}
2053 	}
2054 
2055 	if (cpl->vlan_ex) {
2056 		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2057 		m0->m_flags |= M_VLANTAG;
2058 		rxq->vlan_extraction++;
2059 	}
2060 
2061 	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
2062 		/*
2063 		 * Fill up rcv_tstmp but do not set M_TSTMP.
2064 		 * rcv_tstmp is not in the format that the
2065 		 * kernel expects and we don't want to mislead
2066 		 * it.  For now this is only for custom code
2067 		 * that knows how to interpret cxgbe's stamp.
2068 		 */
2069 		m0->m_pkthdr.rcv_tstmp =
2070 		    last_flit_to_ns(sc, d->rsp.u.last_flit);
2071 #ifdef notyet
2072 		m0->m_flags |= M_TSTMP;
2073 #endif
2074 	}
2075 
2076 #ifdef NUMA
2077 	m0->m_pkthdr.numa_domain = ifp->if_numa_domain;
2078 #endif
2079 #if defined(INET) || defined(INET6)
2080 	if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
2081 	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2082 	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2083 		if (sort_before_lro(lro)) {
2084 			tcp_lro_queue_mbuf(lro, m0);
2085 			return (0); /* queued for sort, then LRO */
2086 		}
2087 		if (tcp_lro_rx(lro, m0, 0) == 0)
2088 			return (0); /* queued for LRO */
2089 	}
2090 #endif
2091 	ifp->if_input(ifp, m0);
2092 
2093 	return (0);
2094 }
2095 
2096 /*
2097  * Must drain the wrq or make sure that someone else will.
2098  */
2099 static void
2100 wrq_tx_drain(void *arg, int n)
2101 {
2102 	struct sge_wrq *wrq = arg;
2103 	struct sge_eq *eq = &wrq->eq;
2104 
2105 	EQ_LOCK(eq);
2106 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2107 		drain_wrq_wr_list(wrq->adapter, wrq);
2108 	EQ_UNLOCK(eq);
2109 }
2110 
2111 static void
2112 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2113 {
2114 	struct sge_eq *eq = &wrq->eq;
2115 	u_int available, dbdiff;	/* # of hardware descriptors */
2116 	u_int n;
2117 	struct wrqe *wr;
2118 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2119 
2120 	EQ_LOCK_ASSERT_OWNED(eq);
2121 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2122 	wr = STAILQ_FIRST(&wrq->wr_list);
2123 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2124 	MPASS(eq->pidx == eq->dbidx);
2125 	dbdiff = 0;
2126 
2127 	do {
2128 		eq->cidx = read_hw_cidx(eq);
2129 		if (eq->pidx == eq->cidx)
2130 			available = eq->sidx - 1;
2131 		else
2132 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2133 
2134 		MPASS(wr->wrq == wrq);
2135 		n = howmany(wr->wr_len, EQ_ESIZE);
2136 		if (available < n)
2137 			break;
2138 
2139 		dst = (void *)&eq->desc[eq->pidx];
2140 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2141 			/* Won't wrap, won't end exactly at the status page. */
2142 			bcopy(&wr->wr[0], dst, wr->wr_len);
2143 			eq->pidx += n;
2144 		} else {
2145 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2146 
2147 			bcopy(&wr->wr[0], dst, first_portion);
2148 			if (wr->wr_len > first_portion) {
2149 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2150 				    wr->wr_len - first_portion);
2151 			}
2152 			eq->pidx = n - (eq->sidx - eq->pidx);
2153 		}
2154 		wrq->tx_wrs_copied++;
2155 
2156 		if (available < eq->sidx / 4 &&
2157 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2158 				/*
2159 				 * XXX: This is not 100% reliable with some
2160 				 * types of WRs.  But this is a very unusual
2161 				 * situation for an ofld/ctrl queue anyway.
2162 				 */
2163 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2164 			    F_FW_WR_EQUEQ);
2165 		}
2166 
2167 		dbdiff += n;
2168 		if (dbdiff >= 16) {
2169 			ring_eq_db(sc, eq, dbdiff);
2170 			dbdiff = 0;
2171 		}
2172 
2173 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2174 		free_wrqe(wr);
2175 		MPASS(wrq->nwr_pending > 0);
2176 		wrq->nwr_pending--;
2177 		MPASS(wrq->ndesc_needed >= n);
2178 		wrq->ndesc_needed -= n;
2179 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2180 
2181 	if (dbdiff)
2182 		ring_eq_db(sc, eq, dbdiff);
2183 }
2184 
2185 /*
2186  * Doesn't fail.  Holds on to work requests it can't send right away.
2187  */
2188 void
2189 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2190 {
2191 #ifdef INVARIANTS
2192 	struct sge_eq *eq = &wrq->eq;
2193 #endif
2194 
2195 	EQ_LOCK_ASSERT_OWNED(eq);
2196 	MPASS(wr != NULL);
2197 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2198 	MPASS((wr->wr_len & 0x7) == 0);
2199 
2200 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2201 	wrq->nwr_pending++;
2202 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2203 
2204 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2205 		return;	/* commit_wrq_wr will drain wr_list as well. */
2206 
2207 	drain_wrq_wr_list(sc, wrq);
2208 
2209 	/* Doorbell must have caught up to the pidx. */
2210 	MPASS(eq->pidx == eq->dbidx);
2211 }
2212 
2213 void
2214 t4_update_fl_bufsize(struct ifnet *ifp)
2215 {
2216 	struct vi_info *vi = ifp->if_softc;
2217 	struct adapter *sc = vi->adapter;
2218 	struct sge_rxq *rxq;
2219 #ifdef TCP_OFFLOAD
2220 	struct sge_ofld_rxq *ofld_rxq;
2221 #endif
2222 	struct sge_fl *fl;
2223 	int i, maxp;
2224 
2225 	maxp = max_rx_payload(sc, ifp, false);
2226 	for_each_rxq(vi, i, rxq) {
2227 		fl = &rxq->fl;
2228 
2229 		FL_LOCK(fl);
2230 		fl->zidx = find_refill_source(sc, maxp,
2231 		    fl->flags & FL_BUF_PACKING);
2232 		FL_UNLOCK(fl);
2233 	}
2234 #ifdef TCP_OFFLOAD
2235 	maxp = max_rx_payload(sc, ifp, true);
2236 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2237 		fl = &ofld_rxq->fl;
2238 
2239 		FL_LOCK(fl);
2240 		fl->zidx = find_refill_source(sc, maxp,
2241 		    fl->flags & FL_BUF_PACKING);
2242 		FL_UNLOCK(fl);
2243 	}
2244 #endif
2245 }
2246 
2247 static inline int
2248 mbuf_nsegs(struct mbuf *m)
2249 {
2250 
2251 	M_ASSERTPKTHDR(m);
2252 	KASSERT(m->m_pkthdr.inner_l5hlen > 0,
2253 	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2254 
2255 	return (m->m_pkthdr.inner_l5hlen);
2256 }
2257 
2258 static inline void
2259 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2260 {
2261 
2262 	M_ASSERTPKTHDR(m);
2263 	m->m_pkthdr.inner_l5hlen = nsegs;
2264 }
2265 
2266 static inline int
2267 mbuf_cflags(struct mbuf *m)
2268 {
2269 
2270 	M_ASSERTPKTHDR(m);
2271 	return (m->m_pkthdr.PH_loc.eight[4]);
2272 }
2273 
2274 static inline void
2275 set_mbuf_cflags(struct mbuf *m, uint8_t flags)
2276 {
2277 
2278 	M_ASSERTPKTHDR(m);
2279 	m->m_pkthdr.PH_loc.eight[4] = flags;
2280 }
2281 
2282 static inline int
2283 mbuf_len16(struct mbuf *m)
2284 {
2285 	int n;
2286 
2287 	M_ASSERTPKTHDR(m);
2288 	n = m->m_pkthdr.PH_loc.eight[0];
2289 	if (!(mbuf_cflags(m) & MC_TLS))
2290 		MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2291 
2292 	return (n);
2293 }
2294 
2295 static inline void
2296 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2297 {
2298 
2299 	M_ASSERTPKTHDR(m);
2300 	if (!(mbuf_cflags(m) & MC_TLS))
2301 		MPASS(len16 > 0 && len16 <= SGE_MAX_WR_LEN / 16);
2302 	m->m_pkthdr.PH_loc.eight[0] = len16;
2303 }
2304 
2305 #ifdef RATELIMIT
2306 static inline int
2307 mbuf_eo_nsegs(struct mbuf *m)
2308 {
2309 
2310 	M_ASSERTPKTHDR(m);
2311 	return (m->m_pkthdr.PH_loc.eight[1]);
2312 }
2313 
2314 static inline void
2315 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2316 {
2317 
2318 	M_ASSERTPKTHDR(m);
2319 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2320 }
2321 
2322 static inline int
2323 mbuf_eo_len16(struct mbuf *m)
2324 {
2325 	int n;
2326 
2327 	M_ASSERTPKTHDR(m);
2328 	n = m->m_pkthdr.PH_loc.eight[2];
2329 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2330 
2331 	return (n);
2332 }
2333 
2334 static inline void
2335 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2336 {
2337 
2338 	M_ASSERTPKTHDR(m);
2339 	m->m_pkthdr.PH_loc.eight[2] = len16;
2340 }
2341 
2342 static inline int
2343 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2344 {
2345 
2346 	M_ASSERTPKTHDR(m);
2347 	return (m->m_pkthdr.PH_loc.eight[3]);
2348 }
2349 
2350 static inline void
2351 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2352 {
2353 
2354 	M_ASSERTPKTHDR(m);
2355 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2356 }
2357 
2358 static inline int
2359 needs_eo(struct m_snd_tag *mst)
2360 {
2361 
2362 	return (mst != NULL && mst->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2363 }
2364 #endif
2365 
2366 /*
2367  * Try to allocate an mbuf to contain a raw work request.  To make it
2368  * easy to construct the work request, don't allocate a chain but a
2369  * single mbuf.
2370  */
2371 struct mbuf *
2372 alloc_wr_mbuf(int len, int how)
2373 {
2374 	struct mbuf *m;
2375 
2376 	if (len <= MHLEN)
2377 		m = m_gethdr(how, MT_DATA);
2378 	else if (len <= MCLBYTES)
2379 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2380 	else
2381 		m = NULL;
2382 	if (m == NULL)
2383 		return (NULL);
2384 	m->m_pkthdr.len = len;
2385 	m->m_len = len;
2386 	set_mbuf_cflags(m, MC_RAW_WR);
2387 	set_mbuf_len16(m, howmany(len, 16));
2388 	return (m);
2389 }
2390 
2391 static inline bool
2392 needs_hwcsum(struct mbuf *m)
2393 {
2394 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
2395 	    CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2396 	    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
2397 	    CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
2398 	    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
2399 
2400 	M_ASSERTPKTHDR(m);
2401 
2402 	return (m->m_pkthdr.csum_flags & csum_flags);
2403 }
2404 
2405 static inline bool
2406 needs_tso(struct mbuf *m)
2407 {
2408 	const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
2409 	    CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2410 
2411 	M_ASSERTPKTHDR(m);
2412 
2413 	return (m->m_pkthdr.csum_flags & csum_flags);
2414 }
2415 
2416 static inline bool
2417 needs_vxlan_csum(struct mbuf *m)
2418 {
2419 
2420 	M_ASSERTPKTHDR(m);
2421 
2422 	return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
2423 }
2424 
2425 static inline bool
2426 needs_vxlan_tso(struct mbuf *m)
2427 {
2428 	const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
2429 	    CSUM_INNER_IP6_TSO;
2430 
2431 	M_ASSERTPKTHDR(m);
2432 
2433 	return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
2434 	    (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
2435 }
2436 
2437 static inline bool
2438 needs_inner_tcp_csum(struct mbuf *m)
2439 {
2440 	const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2441 
2442 	M_ASSERTPKTHDR(m);
2443 
2444 	return (m->m_pkthdr.csum_flags & csum_flags);
2445 }
2446 
2447 static inline bool
2448 needs_l3_csum(struct mbuf *m)
2449 {
2450 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
2451 	    CSUM_INNER_IP_TSO;
2452 
2453 	M_ASSERTPKTHDR(m);
2454 
2455 	return (m->m_pkthdr.csum_flags & csum_flags);
2456 }
2457 
2458 static inline bool
2459 needs_outer_tcp_csum(struct mbuf *m)
2460 {
2461 	const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
2462 	    CSUM_IP6_TSO;
2463 
2464 	M_ASSERTPKTHDR(m);
2465 
2466 	return (m->m_pkthdr.csum_flags & csum_flags);
2467 }
2468 
2469 #ifdef RATELIMIT
2470 static inline bool
2471 needs_outer_l4_csum(struct mbuf *m)
2472 {
2473 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
2474 	    CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
2475 
2476 	M_ASSERTPKTHDR(m);
2477 
2478 	return (m->m_pkthdr.csum_flags & csum_flags);
2479 }
2480 
2481 static inline bool
2482 needs_outer_udp_csum(struct mbuf *m)
2483 {
2484 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
2485 
2486 	M_ASSERTPKTHDR(m);
2487 
2488 	return (m->m_pkthdr.csum_flags & csum_flags);
2489 }
2490 #endif
2491 
2492 static inline bool
2493 needs_vlan_insertion(struct mbuf *m)
2494 {
2495 
2496 	M_ASSERTPKTHDR(m);
2497 
2498 	return (m->m_flags & M_VLANTAG);
2499 }
2500 
2501 static void *
2502 m_advance(struct mbuf **pm, int *poffset, int len)
2503 {
2504 	struct mbuf *m = *pm;
2505 	int offset = *poffset;
2506 	uintptr_t p = 0;
2507 
2508 	MPASS(len > 0);
2509 
2510 	for (;;) {
2511 		if (offset + len < m->m_len) {
2512 			offset += len;
2513 			p = mtod(m, uintptr_t) + offset;
2514 			break;
2515 		}
2516 		len -= m->m_len - offset;
2517 		m = m->m_next;
2518 		offset = 0;
2519 		MPASS(m != NULL);
2520 	}
2521 	*poffset = offset;
2522 	*pm = m;
2523 	return ((void *)p);
2524 }
2525 
2526 static inline int
2527 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2528 {
2529 	vm_paddr_t paddr;
2530 	int i, len, off, pglen, pgoff, seglen, segoff;
2531 	int nsegs = 0;
2532 
2533 	M_ASSERTEXTPG(m);
2534 	off = mtod(m, vm_offset_t);
2535 	len = m->m_len;
2536 	off += skip;
2537 	len -= skip;
2538 
2539 	if (m->m_epg_hdrlen != 0) {
2540 		if (off >= m->m_epg_hdrlen) {
2541 			off -= m->m_epg_hdrlen;
2542 		} else {
2543 			seglen = m->m_epg_hdrlen - off;
2544 			segoff = off;
2545 			seglen = min(seglen, len);
2546 			off = 0;
2547 			len -= seglen;
2548 			paddr = pmap_kextract(
2549 			    (vm_offset_t)&m->m_epg_hdr[segoff]);
2550 			if (*nextaddr != paddr)
2551 				nsegs++;
2552 			*nextaddr = paddr + seglen;
2553 		}
2554 	}
2555 	pgoff = m->m_epg_1st_off;
2556 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2557 		pglen = m_epg_pagelen(m, i, pgoff);
2558 		if (off >= pglen) {
2559 			off -= pglen;
2560 			pgoff = 0;
2561 			continue;
2562 		}
2563 		seglen = pglen - off;
2564 		segoff = pgoff + off;
2565 		off = 0;
2566 		seglen = min(seglen, len);
2567 		len -= seglen;
2568 		paddr = m->m_epg_pa[i] + segoff;
2569 		if (*nextaddr != paddr)
2570 			nsegs++;
2571 		*nextaddr = paddr + seglen;
2572 		pgoff = 0;
2573 	};
2574 	if (len != 0) {
2575 		seglen = min(len, m->m_epg_trllen - off);
2576 		len -= seglen;
2577 		paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2578 		if (*nextaddr != paddr)
2579 			nsegs++;
2580 		*nextaddr = paddr + seglen;
2581 	}
2582 
2583 	return (nsegs);
2584 }
2585 
2586 
2587 /*
2588  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2589  * must have at least one mbuf that's not empty.  It is possible for this
2590  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2591  */
2592 static inline int
2593 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2594 {
2595 	vm_paddr_t nextaddr, paddr;
2596 	vm_offset_t va;
2597 	int len, nsegs;
2598 
2599 	M_ASSERTPKTHDR(m);
2600 	MPASS(m->m_pkthdr.len > 0);
2601 	MPASS(m->m_pkthdr.len >= skip);
2602 
2603 	nsegs = 0;
2604 	nextaddr = 0;
2605 	for (; m; m = m->m_next) {
2606 		len = m->m_len;
2607 		if (__predict_false(len == 0))
2608 			continue;
2609 		if (skip >= len) {
2610 			skip -= len;
2611 			continue;
2612 		}
2613 		if ((m->m_flags & M_EXTPG) != 0) {
2614 			*cflags |= MC_NOMAP;
2615 			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2616 			skip = 0;
2617 			continue;
2618 		}
2619 		va = mtod(m, vm_offset_t) + skip;
2620 		len -= skip;
2621 		skip = 0;
2622 		paddr = pmap_kextract(va);
2623 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2624 		if (paddr == nextaddr)
2625 			nsegs--;
2626 		nextaddr = pmap_kextract(va + len - 1) + 1;
2627 	}
2628 
2629 	return (nsegs);
2630 }
2631 
2632 /*
2633  * The maximum number of segments that can fit in a WR.
2634  */
2635 static int
2636 max_nsegs_allowed(struct mbuf *m, bool vm_wr)
2637 {
2638 
2639 	if (vm_wr) {
2640 		if (needs_tso(m))
2641 			return (TX_SGL_SEGS_VM_TSO);
2642 		return (TX_SGL_SEGS_VM);
2643 	}
2644 
2645 	if (needs_tso(m)) {
2646 		if (needs_vxlan_tso(m))
2647 			return (TX_SGL_SEGS_VXLAN_TSO);
2648 		else
2649 			return (TX_SGL_SEGS_TSO);
2650 	}
2651 
2652 	return (TX_SGL_SEGS);
2653 }
2654 
2655 /*
2656  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2657  * a) caller can assume it's been freed if this function returns with an error.
2658  * b) it may get defragged up if the gather list is too long for the hardware.
2659  */
2660 int
2661 parse_pkt(struct mbuf **mp, bool vm_wr)
2662 {
2663 	struct mbuf *m0 = *mp, *m;
2664 	int rc, nsegs, defragged = 0, offset;
2665 	struct ether_header *eh;
2666 	void *l3hdr;
2667 #if defined(INET) || defined(INET6)
2668 	struct tcphdr *tcp;
2669 #endif
2670 #if defined(KERN_TLS) || defined(RATELIMIT)
2671 	struct m_snd_tag *mst;
2672 #endif
2673 	uint16_t eh_type;
2674 	uint8_t cflags;
2675 
2676 	cflags = 0;
2677 	M_ASSERTPKTHDR(m0);
2678 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2679 		rc = EINVAL;
2680 fail:
2681 		m_freem(m0);
2682 		*mp = NULL;
2683 		return (rc);
2684 	}
2685 restart:
2686 	/*
2687 	 * First count the number of gather list segments in the payload.
2688 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2689 	 */
2690 	M_ASSERTPKTHDR(m0);
2691 	MPASS(m0->m_pkthdr.len > 0);
2692 	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2693 #if defined(KERN_TLS) || defined(RATELIMIT)
2694 	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2695 		mst = m0->m_pkthdr.snd_tag;
2696 	else
2697 		mst = NULL;
2698 #endif
2699 #ifdef KERN_TLS
2700 	if (mst != NULL && mst->type == IF_SND_TAG_TYPE_TLS) {
2701 		int len16;
2702 
2703 		cflags |= MC_TLS;
2704 		set_mbuf_cflags(m0, cflags);
2705 		rc = t6_ktls_parse_pkt(m0, &nsegs, &len16);
2706 		if (rc != 0)
2707 			goto fail;
2708 		set_mbuf_nsegs(m0, nsegs);
2709 		set_mbuf_len16(m0, len16);
2710 		return (0);
2711 	}
2712 #endif
2713 	if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
2714 		if (defragged++ > 0) {
2715 			rc = EFBIG;
2716 			goto fail;
2717 		}
2718 		counter_u64_add(defrags, 1);
2719 		if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
2720 			rc = ENOMEM;
2721 			goto fail;
2722 		}
2723 		*mp = m0 = m;	/* update caller's copy after defrag */
2724 		goto restart;
2725 	}
2726 
2727 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2728 	    !(cflags & MC_NOMAP))) {
2729 		counter_u64_add(pullups, 1);
2730 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2731 		if (m0 == NULL) {
2732 			/* Should have left well enough alone. */
2733 			rc = EFBIG;
2734 			goto fail;
2735 		}
2736 		*mp = m0;	/* update caller's copy after pullup */
2737 		goto restart;
2738 	}
2739 	set_mbuf_nsegs(m0, nsegs);
2740 	set_mbuf_cflags(m0, cflags);
2741 	calculate_mbuf_len16(m0, vm_wr);
2742 
2743 #ifdef RATELIMIT
2744 	/*
2745 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2746 	 * checksumming is enabled.  needs_outer_l4_csum happens to check for
2747 	 * all the right things.
2748 	 */
2749 	if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
2750 		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2751 		m0->m_pkthdr.snd_tag = NULL;
2752 		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2753 		mst = NULL;
2754 	}
2755 #endif
2756 
2757 	if (!needs_hwcsum(m0)
2758 #ifdef RATELIMIT
2759    		 && !needs_eo(mst)
2760 #endif
2761 	)
2762 		return (0);
2763 
2764 	m = m0;
2765 	eh = mtod(m, struct ether_header *);
2766 	eh_type = ntohs(eh->ether_type);
2767 	if (eh_type == ETHERTYPE_VLAN) {
2768 		struct ether_vlan_header *evh = (void *)eh;
2769 
2770 		eh_type = ntohs(evh->evl_proto);
2771 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2772 	} else
2773 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2774 
2775 	offset = 0;
2776 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2777 
2778 	switch (eh_type) {
2779 #ifdef INET6
2780 	case ETHERTYPE_IPV6:
2781 		m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
2782 		break;
2783 #endif
2784 #ifdef INET
2785 	case ETHERTYPE_IP:
2786 	{
2787 		struct ip *ip = l3hdr;
2788 
2789 		if (needs_vxlan_csum(m0)) {
2790 			/* Driver will do the outer IP hdr checksum. */
2791 			ip->ip_sum = 0;
2792 			if (needs_vxlan_tso(m0)) {
2793 				const uint16_t ipl = ip->ip_len;
2794 
2795 				ip->ip_len = 0;
2796 				ip->ip_sum = ~in_cksum_hdr(ip);
2797 				ip->ip_len = ipl;
2798 			} else
2799 				ip->ip_sum = in_cksum_hdr(ip);
2800 		}
2801 		m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
2802 		break;
2803 	}
2804 #endif
2805 	default:
2806 		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2807 		    " with the same INET/INET6 options as the kernel.",
2808 		    __func__, eh_type);
2809 	}
2810 
2811 	if (needs_vxlan_csum(m0)) {
2812 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2813 		m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
2814 
2815 		/* Inner headers. */
2816 		eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
2817 		    sizeof(struct udphdr) + sizeof(struct vxlan_header));
2818 		eh_type = ntohs(eh->ether_type);
2819 		if (eh_type == ETHERTYPE_VLAN) {
2820 			struct ether_vlan_header *evh = (void *)eh;
2821 
2822 			eh_type = ntohs(evh->evl_proto);
2823 			m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
2824 		} else
2825 			m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
2826 		l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2827 
2828 		switch (eh_type) {
2829 #ifdef INET6
2830 		case ETHERTYPE_IPV6:
2831 			m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
2832 			break;
2833 #endif
2834 #ifdef INET
2835 		case ETHERTYPE_IP:
2836 		{
2837 			struct ip *ip = l3hdr;
2838 
2839 			m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
2840 			break;
2841 		}
2842 #endif
2843 		default:
2844 			panic("%s: VXLAN hw offload requested with unknown "
2845 			    "ethertype 0x%04x.  if_cxgbe must be compiled"
2846 			    " with the same INET/INET6 options as the kernel.",
2847 			    __func__, eh_type);
2848 		}
2849 #if defined(INET) || defined(INET6)
2850 		if (needs_inner_tcp_csum(m0)) {
2851 			tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
2852 			m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
2853 		}
2854 #endif
2855 		MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
2856 		m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
2857 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
2858 		    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
2859 		    CSUM_ENCAP_VXLAN;
2860 	}
2861 
2862 #if defined(INET) || defined(INET6)
2863 	if (needs_outer_tcp_csum(m0)) {
2864 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2865 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2866 #ifdef RATELIMIT
2867 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2868 			set_mbuf_eo_tsclk_tsoff(m0,
2869 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2870 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2871 		} else
2872 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2873 	} else if (needs_outer_udp_csum(m0)) {
2874 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2875 #endif
2876 	}
2877 #ifdef RATELIMIT
2878 	if (needs_eo(mst)) {
2879 		u_int immhdrs;
2880 
2881 		/* EO WRs have the headers in the WR and not the GL. */
2882 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2883 		    m0->m_pkthdr.l4hlen;
2884 		cflags = 0;
2885 		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2886 		MPASS(cflags == mbuf_cflags(m0));
2887 		set_mbuf_eo_nsegs(m0, nsegs);
2888 		set_mbuf_eo_len16(m0,
2889 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2890 	}
2891 #endif
2892 #endif
2893 	MPASS(m0 == *mp);
2894 	return (0);
2895 }
2896 
2897 void *
2898 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2899 {
2900 	struct sge_eq *eq = &wrq->eq;
2901 	struct adapter *sc = wrq->adapter;
2902 	int ndesc, available;
2903 	struct wrqe *wr;
2904 	void *w;
2905 
2906 	MPASS(len16 > 0);
2907 	ndesc = tx_len16_to_desc(len16);
2908 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2909 
2910 	EQ_LOCK(eq);
2911 
2912 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2913 		drain_wrq_wr_list(sc, wrq);
2914 
2915 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2916 slowpath:
2917 		EQ_UNLOCK(eq);
2918 		wr = alloc_wrqe(len16 * 16, wrq);
2919 		if (__predict_false(wr == NULL))
2920 			return (NULL);
2921 		cookie->pidx = -1;
2922 		cookie->ndesc = ndesc;
2923 		return (&wr->wr);
2924 	}
2925 
2926 	eq->cidx = read_hw_cidx(eq);
2927 	if (eq->pidx == eq->cidx)
2928 		available = eq->sidx - 1;
2929 	else
2930 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2931 	if (available < ndesc)
2932 		goto slowpath;
2933 
2934 	cookie->pidx = eq->pidx;
2935 	cookie->ndesc = ndesc;
2936 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2937 
2938 	w = &eq->desc[eq->pidx];
2939 	IDXINCR(eq->pidx, ndesc, eq->sidx);
2940 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2941 		w = &wrq->ss[0];
2942 		wrq->ss_pidx = cookie->pidx;
2943 		wrq->ss_len = len16 * 16;
2944 	}
2945 
2946 	EQ_UNLOCK(eq);
2947 
2948 	return (w);
2949 }
2950 
2951 void
2952 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2953 {
2954 	struct sge_eq *eq = &wrq->eq;
2955 	struct adapter *sc = wrq->adapter;
2956 	int ndesc, pidx;
2957 	struct wrq_cookie *prev, *next;
2958 
2959 	if (cookie->pidx == -1) {
2960 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2961 
2962 		t4_wrq_tx(sc, wr);
2963 		return;
2964 	}
2965 
2966 	if (__predict_false(w == &wrq->ss[0])) {
2967 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2968 
2969 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2970 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2971 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2972 		wrq->tx_wrs_ss++;
2973 	} else
2974 		wrq->tx_wrs_direct++;
2975 
2976 	EQ_LOCK(eq);
2977 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2978 	pidx = cookie->pidx;
2979 	MPASS(pidx >= 0 && pidx < eq->sidx);
2980 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2981 	next = TAILQ_NEXT(cookie, link);
2982 	if (prev == NULL) {
2983 		MPASS(pidx == eq->dbidx);
2984 		if (next == NULL || ndesc >= 16) {
2985 			int available;
2986 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2987 
2988 			/*
2989 			 * Note that the WR via which we'll request tx updates
2990 			 * is at pidx and not eq->pidx, which has moved on
2991 			 * already.
2992 			 */
2993 			dst = (void *)&eq->desc[pidx];
2994 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2995 			if (available < eq->sidx / 4 &&
2996 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2997 				/*
2998 				 * XXX: This is not 100% reliable with some
2999 				 * types of WRs.  But this is a very unusual
3000 				 * situation for an ofld/ctrl queue anyway.
3001 				 */
3002 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
3003 				    F_FW_WR_EQUEQ);
3004 			}
3005 
3006 			ring_eq_db(wrq->adapter, eq, ndesc);
3007 		} else {
3008 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
3009 			next->pidx = pidx;
3010 			next->ndesc += ndesc;
3011 		}
3012 	} else {
3013 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
3014 		prev->ndesc += ndesc;
3015 	}
3016 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
3017 
3018 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
3019 		drain_wrq_wr_list(sc, wrq);
3020 
3021 #ifdef INVARIANTS
3022 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
3023 		/* Doorbell must have caught up to the pidx. */
3024 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
3025 	}
3026 #endif
3027 	EQ_UNLOCK(eq);
3028 }
3029 
3030 static u_int
3031 can_resume_eth_tx(struct mp_ring *r)
3032 {
3033 	struct sge_eq *eq = r->cookie;
3034 
3035 	return (total_available_tx_desc(eq) > eq->sidx / 8);
3036 }
3037 
3038 static inline bool
3039 cannot_use_txpkts(struct mbuf *m)
3040 {
3041 	/* maybe put a GL limit too, to avoid silliness? */
3042 
3043 	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
3044 }
3045 
3046 static inline int
3047 discard_tx(struct sge_eq *eq)
3048 {
3049 
3050 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
3051 }
3052 
3053 static inline int
3054 wr_can_update_eq(void *p)
3055 {
3056 	struct fw_eth_tx_pkts_wr *wr = p;
3057 
3058 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
3059 	case FW_ULPTX_WR:
3060 	case FW_ETH_TX_PKT_WR:
3061 	case FW_ETH_TX_PKTS_WR:
3062 	case FW_ETH_TX_PKTS2_WR:
3063 	case FW_ETH_TX_PKT_VM_WR:
3064 	case FW_ETH_TX_PKTS_VM_WR:
3065 		return (1);
3066 	default:
3067 		return (0);
3068 	}
3069 }
3070 
3071 static inline void
3072 set_txupdate_flags(struct sge_txq *txq, u_int avail,
3073     struct fw_eth_tx_pkt_wr *wr)
3074 {
3075 	struct sge_eq *eq = &txq->eq;
3076 	struct txpkts *txp = &txq->txp;
3077 
3078 	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
3079 	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3080 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3081 		eq->equeqidx = eq->pidx;
3082 	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
3083 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3084 		eq->equeqidx = eq->pidx;
3085 	}
3086 }
3087 
3088 #if defined(__i386__) || defined(__amd64__)
3089 extern uint64_t tsc_freq;
3090 #endif
3091 
3092 static inline bool
3093 record_eth_tx_time(struct sge_txq *txq)
3094 {
3095 	const uint64_t cycles = get_cyclecount();
3096 	const uint64_t last_tx = txq->last_tx;
3097 #if defined(__i386__) || defined(__amd64__)
3098 	const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
3099 #else
3100 	const uint64_t itg = 0;
3101 #endif
3102 
3103 	MPASS(cycles >= last_tx);
3104 	txq->last_tx = cycles;
3105 	return (cycles - last_tx < itg);
3106 }
3107 
3108 /*
3109  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
3110  * be consumed.  Return the actual number consumed.  0 indicates a stall.
3111  */
3112 static u_int
3113 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
3114 {
3115 	struct sge_txq *txq = r->cookie;
3116 	struct ifnet *ifp = txq->ifp;
3117 	struct sge_eq *eq = &txq->eq;
3118 	struct txpkts *txp = &txq->txp;
3119 	struct vi_info *vi = ifp->if_softc;
3120 	struct adapter *sc = vi->adapter;
3121 	u_int total, remaining;		/* # of packets */
3122 	u_int n, avail, dbdiff;		/* # of hardware descriptors */
3123 	int i, rc;
3124 	struct mbuf *m0;
3125 	bool snd, recent_tx;
3126 	void *wr;	/* start of the last WR written to the ring */
3127 
3128 	TXQ_LOCK_ASSERT_OWNED(txq);
3129 	recent_tx = record_eth_tx_time(txq);
3130 
3131 	remaining = IDXDIFF(pidx, cidx, r->size);
3132 	if (__predict_false(discard_tx(eq))) {
3133 		for (i = 0; i < txp->npkt; i++)
3134 			m_freem(txp->mb[i]);
3135 		txp->npkt = 0;
3136 		while (cidx != pidx) {
3137 			m0 = r->items[cidx];
3138 			m_freem(m0);
3139 			if (++cidx == r->size)
3140 				cidx = 0;
3141 		}
3142 		reclaim_tx_descs(txq, eq->sidx);
3143 		*coalescing = false;
3144 		return (remaining);	/* emptied */
3145 	}
3146 
3147 	/* How many hardware descriptors do we have readily available. */
3148 	if (eq->pidx == eq->cidx)
3149 		avail = eq->sidx - 1;
3150 	else
3151 		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3152 
3153 	total = 0;
3154 	if (remaining == 0) {
3155 		txp->score = 0;
3156 		txq->txpkts_flush++;
3157 		goto send_txpkts;
3158 	}
3159 
3160 	dbdiff = 0;
3161 	MPASS(remaining > 0);
3162 	while (remaining > 0) {
3163 		m0 = r->items[cidx];
3164 		M_ASSERTPKTHDR(m0);
3165 		MPASS(m0->m_nextpkt == NULL);
3166 
3167 		if (avail < 2 * SGE_MAX_WR_NDESC)
3168 			avail += reclaim_tx_descs(txq, 64);
3169 
3170 		if (t4_tx_coalesce == 0 && txp->npkt == 0)
3171 			goto skip_coalescing;
3172 		if (cannot_use_txpkts(m0))
3173 			txp->score = 0;
3174 		else if (recent_tx) {
3175 			if (++txp->score == 0)
3176 				txp->score = UINT8_MAX;
3177 		} else
3178 			txp->score = 1;
3179 		if (txp->npkt > 0 || remaining > 1 ||
3180 		    txp->score >= t4_tx_coalesce_pkts ||
3181 		    atomic_load_int(&txq->eq.equiq) != 0) {
3182 			if (vi->flags & TX_USES_VM_WR)
3183 				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
3184 			else
3185 				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
3186 		} else {
3187 			snd = false;
3188 			rc = EINVAL;
3189 		}
3190 		if (snd) {
3191 			MPASS(txp->npkt > 0);
3192 			for (i = 0; i < txp->npkt; i++)
3193 				ETHER_BPF_MTAP(ifp, txp->mb[i]);
3194 			if (txp->npkt > 1) {
3195 				MPASS(avail >= tx_len16_to_desc(txp->len16));
3196 				if (vi->flags & TX_USES_VM_WR)
3197 					n = write_txpkts_vm_wr(sc, txq);
3198 				else
3199 					n = write_txpkts_wr(sc, txq);
3200 			} else {
3201 				MPASS(avail >=
3202 				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3203 				if (vi->flags & TX_USES_VM_WR)
3204 					n = write_txpkt_vm_wr(sc, txq,
3205 					    txp->mb[0]);
3206 				else
3207 					n = write_txpkt_wr(sc, txq, txp->mb[0],
3208 					    avail);
3209 			}
3210 			MPASS(n <= SGE_MAX_WR_NDESC);
3211 			avail -= n;
3212 			dbdiff += n;
3213 			wr = &eq->desc[eq->pidx];
3214 			IDXINCR(eq->pidx, n, eq->sidx);
3215 			txp->npkt = 0;	/* emptied */
3216 		}
3217 		if (rc == 0) {
3218 			/* m0 was coalesced into txq->txpkts. */
3219 			goto next_mbuf;
3220 		}
3221 		if (rc == EAGAIN) {
3222 			/*
3223 			 * m0 is suitable for tx coalescing but could not be
3224 			 * combined with the existing txq->txpkts, which has now
3225 			 * been transmitted.  Start a new txpkts with m0.
3226 			 */
3227 			MPASS(snd);
3228 			MPASS(txp->npkt == 0);
3229 			continue;
3230 		}
3231 
3232 		MPASS(rc != 0 && rc != EAGAIN);
3233 		MPASS(txp->npkt == 0);
3234 skip_coalescing:
3235 		n = tx_len16_to_desc(mbuf_len16(m0));
3236 		if (__predict_false(avail < n)) {
3237 			avail += reclaim_tx_descs(txq, min(n, 32));
3238 			if (avail < n)
3239 				break;	/* out of descriptors */
3240 		}
3241 
3242 		wr = &eq->desc[eq->pidx];
3243 		if (mbuf_cflags(m0) & MC_RAW_WR) {
3244 			n = write_raw_wr(txq, wr, m0, avail);
3245 #ifdef KERN_TLS
3246 		} else if (mbuf_cflags(m0) & MC_TLS) {
3247 			ETHER_BPF_MTAP(ifp, m0);
3248 			n = t6_ktls_write_wr(txq, wr, m0, mbuf_nsegs(m0),
3249 			    avail);
3250 #endif
3251 		} else {
3252 			ETHER_BPF_MTAP(ifp, m0);
3253 			if (vi->flags & TX_USES_VM_WR)
3254 				n = write_txpkt_vm_wr(sc, txq, m0);
3255 			else
3256 				n = write_txpkt_wr(sc, txq, m0, avail);
3257 		}
3258 		MPASS(n >= 1 && n <= avail);
3259 		if (!(mbuf_cflags(m0) & MC_TLS))
3260 			MPASS(n <= SGE_MAX_WR_NDESC);
3261 
3262 		avail -= n;
3263 		dbdiff += n;
3264 		IDXINCR(eq->pidx, n, eq->sidx);
3265 
3266 		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3267 			if (wr_can_update_eq(wr))
3268 				set_txupdate_flags(txq, avail, wr);
3269 			ring_eq_db(sc, eq, dbdiff);
3270 			avail += reclaim_tx_descs(txq, 32);
3271 			dbdiff = 0;
3272 		}
3273 next_mbuf:
3274 		total++;
3275 		remaining--;
3276 		if (__predict_false(++cidx == r->size))
3277 			cidx = 0;
3278 	}
3279 	if (dbdiff != 0) {
3280 		if (wr_can_update_eq(wr))
3281 			set_txupdate_flags(txq, avail, wr);
3282 		ring_eq_db(sc, eq, dbdiff);
3283 		reclaim_tx_descs(txq, 32);
3284 	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3285 	    atomic_load_int(&txq->eq.equiq) == 0) {
3286 		/*
3287 		 * If nothing was submitted to the chip for tx (it was coalesced
3288 		 * into txpkts instead) and there is no tx update outstanding
3289 		 * then we need to send txpkts now.
3290 		 */
3291 send_txpkts:
3292 		MPASS(txp->npkt > 0);
3293 		for (i = 0; i < txp->npkt; i++)
3294 			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3295 		if (txp->npkt > 1) {
3296 			MPASS(avail >= tx_len16_to_desc(txp->len16));
3297 			if (vi->flags & TX_USES_VM_WR)
3298 				n = write_txpkts_vm_wr(sc, txq);
3299 			else
3300 				n = write_txpkts_wr(sc, txq);
3301 		} else {
3302 			MPASS(avail >=
3303 			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3304 			if (vi->flags & TX_USES_VM_WR)
3305 				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3306 			else
3307 				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3308 		}
3309 		MPASS(n <= SGE_MAX_WR_NDESC);
3310 		wr = &eq->desc[eq->pidx];
3311 		IDXINCR(eq->pidx, n, eq->sidx);
3312 		txp->npkt = 0;	/* emptied */
3313 
3314 		MPASS(wr_can_update_eq(wr));
3315 		set_txupdate_flags(txq, avail - n, wr);
3316 		ring_eq_db(sc, eq, n);
3317 		reclaim_tx_descs(txq, 32);
3318 	}
3319 	*coalescing = txp->npkt > 0;
3320 
3321 	return (total);
3322 }
3323 
3324 static inline void
3325 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3326     int qsize, int intr_idx, int cong)
3327 {
3328 
3329 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3330 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3331 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3332 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3333 	KASSERT(intr_idx >= -1 && intr_idx < sc->intr_count,
3334 	    ("%s: bad intr_idx %d", __func__, intr_idx));
3335 
3336 	iq->flags = 0;
3337 	iq->state = IQS_DISABLED;
3338 	iq->adapter = sc;
3339 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3340 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3341 	if (pktc_idx >= 0) {
3342 		iq->intr_params |= F_QINTR_CNT_EN;
3343 		iq->intr_pktc_idx = pktc_idx;
3344 	}
3345 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3346 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3347 	iq->intr_idx = intr_idx;
3348 	iq->cong = cong;
3349 }
3350 
3351 static inline void
3352 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3353 {
3354 	struct sge_params *sp = &sc->params.sge;
3355 
3356 	fl->qsize = qsize;
3357 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3358 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3359 	mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3360 	if (sc->flags & BUF_PACKING_OK &&
3361 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3362 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3363 		fl->flags |= FL_BUF_PACKING;
3364 	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3365 	fl->safe_zidx = sc->sge.safe_zidx;
3366 	if (fl->flags & FL_BUF_PACKING) {
3367 		fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3368 		fl->buf_boundary = sp->pack_boundary;
3369 	} else {
3370 		fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3371 		fl->buf_boundary = 16;
3372 	}
3373 	if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3374 		fl->buf_boundary = sp->pad_boundary;
3375 }
3376 
3377 static inline void
3378 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3379     uint8_t tx_chan, struct sge_iq *iq, char *name)
3380 {
3381 	KASSERT(eqtype >= EQ_CTRL && eqtype <= EQ_OFLD,
3382 	    ("%s: bad qtype %d", __func__, eqtype));
3383 
3384 	eq->type = eqtype;
3385 	eq->tx_chan = tx_chan;
3386 	eq->iq = iq;
3387 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3388 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3389 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3390 }
3391 
3392 int
3393 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3394     bus_dmamap_t *map, bus_addr_t *pa, void **va)
3395 {
3396 	int rc;
3397 
3398 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3399 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3400 	if (rc != 0) {
3401 		CH_ERR(sc, "cannot allocate DMA tag: %d\n", rc);
3402 		goto done;
3403 	}
3404 
3405 	rc = bus_dmamem_alloc(*tag, va,
3406 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3407 	if (rc != 0) {
3408 		CH_ERR(sc, "cannot allocate DMA memory: %d\n", rc);
3409 		goto done;
3410 	}
3411 
3412 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3413 	if (rc != 0) {
3414 		CH_ERR(sc, "cannot load DMA map: %d\n", rc);
3415 		goto done;
3416 	}
3417 done:
3418 	if (rc)
3419 		free_ring(sc, *tag, *map, *pa, *va);
3420 
3421 	return (rc);
3422 }
3423 
3424 int
3425 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3426     bus_addr_t pa, void *va)
3427 {
3428 	if (pa)
3429 		bus_dmamap_unload(tag, map);
3430 	if (va)
3431 		bus_dmamem_free(tag, va, map);
3432 	if (tag)
3433 		bus_dma_tag_destroy(tag);
3434 
3435 	return (0);
3436 }
3437 
3438 /*
3439  * Allocates the software resources (mainly memory and sysctl nodes) for an
3440  * ingress queue and an optional freelist.
3441  *
3442  * Sets IQ_SW_ALLOCATED and returns 0 on success.
3443  */
3444 static int
3445 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3446     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
3447 {
3448 	int rc;
3449 	size_t len;
3450 	struct adapter *sc = vi->adapter;
3451 
3452 	MPASS(!(iq->flags & IQ_SW_ALLOCATED));
3453 
3454 	len = iq->qsize * IQ_ESIZE;
3455 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3456 	    (void **)&iq->desc);
3457 	if (rc != 0)
3458 		return (rc);
3459 
3460 	if (fl) {
3461 		len = fl->qsize * EQ_ESIZE;
3462 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3463 		    &fl->ba, (void **)&fl->desc);
3464 		if (rc) {
3465 			free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba,
3466 			    iq->desc);
3467 			return (rc);
3468 		}
3469 
3470 		/* Allocate space for one software descriptor per buffer. */
3471 		fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc),
3472 		    M_CXGBE, M_ZERO | M_WAITOK);
3473 
3474 		add_fl_sysctls(sc, ctx, oid, fl);
3475 		iq->flags |= IQ_HAS_FL;
3476 	}
3477 	add_iq_sysctls(ctx, oid, iq);
3478 	iq->flags |= IQ_SW_ALLOCATED;
3479 
3480 	return (0);
3481 }
3482 
3483 /*
3484  * Frees all software resources (memory and locks) associated with an ingress
3485  * queue and an optional freelist.
3486  */
3487 static void
3488 free_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3489 {
3490 	MPASS(iq->flags & IQ_SW_ALLOCATED);
3491 
3492 	if (fl) {
3493 		MPASS(iq->flags & IQ_HAS_FL);
3494 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc);
3495 		free_fl_buffers(sc, fl);
3496 		free(fl->sdesc, M_CXGBE);
3497 		mtx_destroy(&fl->fl_lock);
3498 		bzero(fl, sizeof(*fl));
3499 	}
3500 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3501 	bzero(iq, sizeof(*iq));
3502 }
3503 
3504 /*
3505  * Allocates a hardware ingress queue and an optional freelist that will be
3506  * associated with it.
3507  *
3508  * Returns errno on failure.  Resources allocated up to that point may still be
3509  * allocated.  Caller is responsible for cleanup in case this function fails.
3510  */
3511 static int
3512 alloc_iq_fl_hwq(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3513 {
3514 	int rc, i, cntxt_id;
3515 	struct fw_iq_cmd c;
3516 	struct adapter *sc = vi->adapter;
3517 	__be32 v = 0;
3518 
3519 	MPASS (!(iq->flags & IQ_HW_ALLOCATED));
3520 
3521 	bzero(&c, sizeof(c));
3522 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3523 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3524 	    V_FW_IQ_CMD_VFN(0));
3525 
3526 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3527 	    FW_LEN16(c));
3528 
3529 	/* Special handling for firmware event queue */
3530 	if (iq == &sc->sge.fwq)
3531 		v |= F_FW_IQ_CMD_IQASYNCH;
3532 
3533 	if (iq->intr_idx < 0) {
3534 		/* Forwarded interrupts, all headed to fwq */
3535 		v |= F_FW_IQ_CMD_IQANDST;
3536 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3537 	} else {
3538 		KASSERT(iq->intr_idx < sc->intr_count,
3539 		    ("%s: invalid direct intr_idx %d", __func__, iq->intr_idx));
3540 		v |= V_FW_IQ_CMD_IQANDSTINDEX(iq->intr_idx);
3541 	}
3542 
3543 	bzero(iq->desc, iq->qsize * IQ_ESIZE);
3544 	c.type_to_iqandstindex = htobe32(v |
3545 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3546 	    V_FW_IQ_CMD_VIID(vi->viid) |
3547 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3548 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(vi->pi->tx_chan) |
3549 	    F_FW_IQ_CMD_IQGTSMODE |
3550 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3551 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3552 	c.iqsize = htobe16(iq->qsize);
3553 	c.iqaddr = htobe64(iq->ba);
3554 	if (iq->cong >= 0)
3555 		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3556 
3557 	if (fl) {
3558 		bzero(fl->desc, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len);
3559 		c.iqns_to_fl0congen |=
3560 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3561 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3562 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3563 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3564 			    0));
3565 		if (iq->cong >= 0) {
3566 			c.iqns_to_fl0congen |=
3567 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(iq->cong) |
3568 				    F_FW_IQ_CMD_FL0CONGCIF |
3569 				    F_FW_IQ_CMD_FL0CONGEN);
3570 		}
3571 		c.fl0dcaen_to_fl0cidxfthresh =
3572 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3573 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3574 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3575 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3576 		c.fl0size = htobe16(fl->qsize);
3577 		c.fl0addr = htobe64(fl->ba);
3578 	}
3579 
3580 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3581 	if (rc != 0) {
3582 		CH_ERR(sc, "failed to create hw ingress queue: %d\n", rc);
3583 		return (rc);
3584 	}
3585 
3586 	iq->cidx = 0;
3587 	iq->gen = F_RSPD_GEN;
3588 	iq->cntxt_id = be16toh(c.iqid);
3589 	iq->abs_id = be16toh(c.physiqid);
3590 
3591 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3592 	if (cntxt_id >= sc->sge.iqmap_sz) {
3593 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3594 		    cntxt_id, sc->sge.iqmap_sz - 1);
3595 	}
3596 	sc->sge.iqmap[cntxt_id] = iq;
3597 
3598 	if (fl) {
3599 		u_int qid;
3600 #ifdef INVARIANTS
3601 		MPASS(!(fl->flags & FL_BUF_RESUME));
3602 		for (i = 0; i < fl->sidx * 8; i++)
3603 			MPASS(fl->sdesc[i].cl == NULL);
3604 #endif
3605 		fl->cntxt_id = be16toh(c.fl0id);
3606 		fl->pidx = fl->cidx = fl->hw_cidx = fl->dbidx = 0;
3607 		fl->rx_offset = 0;
3608 		fl->flags &= ~(FL_STARVING | FL_DOOMED);
3609 
3610 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3611 		if (cntxt_id >= sc->sge.eqmap_sz) {
3612 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3613 			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
3614 		}
3615 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3616 
3617 		qid = fl->cntxt_id;
3618 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3619 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3620 			uint32_t mask = (1 << s_qpp) - 1;
3621 			volatile uint8_t *udb;
3622 
3623 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3624 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3625 			qid &= mask;
3626 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3627 				udb += qid << UDBS_SEG_SHIFT;
3628 				qid = 0;
3629 			}
3630 			fl->udb = (volatile void *)udb;
3631 		}
3632 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3633 
3634 		FL_LOCK(fl);
3635 		/* Enough to make sure the SGE doesn't think it's starved */
3636 		refill_fl(sc, fl, fl->lowat);
3637 		FL_UNLOCK(fl);
3638 	}
3639 
3640 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && iq->cong >= 0) {
3641 		uint32_t param, val;
3642 
3643 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3644 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3645 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
3646 		if (iq->cong == 0)
3647 			val = 1 << 19;
3648 		else {
3649 			val = 2 << 19;
3650 			for (i = 0; i < 4; i++) {
3651 				if (iq->cong & (1 << i))
3652 					val |= 1 << (i << 2);
3653 			}
3654 		}
3655 
3656 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3657 		if (rc != 0) {
3658 			/* report error but carry on */
3659 			CH_ERR(sc, "failed to set congestion manager context "
3660 			    "for ingress queue %d: %d\n", iq->cntxt_id, rc);
3661 		}
3662 	}
3663 
3664 	/* Enable IQ interrupts */
3665 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3666 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3667 	    V_INGRESSQID(iq->cntxt_id));
3668 
3669 	iq->flags |= IQ_HW_ALLOCATED;
3670 
3671 	return (0);
3672 }
3673 
3674 static int
3675 free_iq_fl_hwq(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3676 {
3677 	int rc;
3678 
3679 	MPASS(iq->flags & IQ_HW_ALLOCATED);
3680 	rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3681 	    iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
3682 	if (rc != 0) {
3683 		CH_ERR(sc, "failed to free iq %p: %d\n", iq, rc);
3684 		return (rc);
3685 	}
3686 	iq->flags &= ~IQ_HW_ALLOCATED;
3687 
3688 	return (0);
3689 }
3690 
3691 static void
3692 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3693     struct sge_iq *iq)
3694 {
3695 	struct sysctl_oid_list *children;
3696 
3697 	if (ctx == NULL || oid == NULL)
3698 		return;
3699 
3700 	children = SYSCTL_CHILDREN(oid);
3701 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3702 	    "bus address of descriptor ring");
3703 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3704 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3705 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3706 	    &iq->abs_id, 0, "absolute id of the queue");
3707 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3708 	    &iq->cntxt_id, 0, "SGE context id of the queue");
3709 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &iq->cidx,
3710 	    0, "consumer index");
3711 }
3712 
3713 static void
3714 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3715     struct sysctl_oid *oid, struct sge_fl *fl)
3716 {
3717 	struct sysctl_oid_list *children;
3718 
3719 	if (ctx == NULL || oid == NULL)
3720 		return;
3721 
3722 	children = SYSCTL_CHILDREN(oid);
3723 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3724 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3725 	children = SYSCTL_CHILDREN(oid);
3726 
3727 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3728 	    &fl->ba, "bus address of descriptor ring");
3729 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3730 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3731 	    "desc ring size in bytes");
3732 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3733 	    &fl->cntxt_id, 0, "SGE context id of the freelist");
3734 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3735 	    fl_pad ? 1 : 0, "padding enabled");
3736 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3737 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3738 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3739 	    0, "consumer index");
3740 	if (fl->flags & FL_BUF_PACKING) {
3741 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3742 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3743 	}
3744 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3745 	    0, "producer index");
3746 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3747 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3748 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3749 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3750 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3751 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3752 }
3753 
3754 /*
3755  * Idempotent.
3756  */
3757 static int
3758 alloc_fwq(struct adapter *sc)
3759 {
3760 	int rc, intr_idx;
3761 	struct sge_iq *fwq = &sc->sge.fwq;
3762 	struct vi_info *vi = &sc->port[0]->vi[0];
3763 
3764 	if (!(fwq->flags & IQ_SW_ALLOCATED)) {
3765 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3766 
3767 		if (sc->flags & IS_VF)
3768 			intr_idx = 0;
3769 		else
3770 			intr_idx = sc->intr_count > 1 ? 1 : 0;
3771 		init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, intr_idx, -1);
3772 		rc = alloc_iq_fl(vi, fwq, NULL, &sc->ctx, sc->fwq_oid);
3773 		if (rc != 0) {
3774 			CH_ERR(sc, "failed to allocate fwq: %d\n", rc);
3775 			return (rc);
3776 		}
3777 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3778 	}
3779 
3780 	if (!(fwq->flags & IQ_HW_ALLOCATED)) {
3781 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3782 
3783 		rc = alloc_iq_fl_hwq(vi, fwq, NULL);
3784 		if (rc != 0) {
3785 			CH_ERR(sc, "failed to create hw fwq: %d\n", rc);
3786 			return (rc);
3787 		}
3788 		MPASS(fwq->flags & IQ_HW_ALLOCATED);
3789 	}
3790 
3791 	return (0);
3792 }
3793 
3794 /*
3795  * Idempotent.
3796  */
3797 static void
3798 free_fwq(struct adapter *sc)
3799 {
3800 	struct sge_iq *fwq = &sc->sge.fwq;
3801 
3802 	if (fwq->flags & IQ_HW_ALLOCATED) {
3803 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3804 		free_iq_fl_hwq(sc, fwq, NULL);
3805 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3806 	}
3807 
3808 	if (fwq->flags & IQ_SW_ALLOCATED) {
3809 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3810 		free_iq_fl(sc, fwq, NULL);
3811 		MPASS(!(fwq->flags & IQ_SW_ALLOCATED));
3812 	}
3813 }
3814 
3815 /*
3816  * Idempotent.
3817  */
3818 static int
3819 alloc_ctrlq(struct adapter *sc, int idx)
3820 {
3821 	int rc;
3822 	char name[16];
3823 	struct sysctl_oid *oid;
3824 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3825 
3826 	MPASS(idx < sc->params.nports);
3827 
3828 	if (!(ctrlq->eq.flags & EQ_SW_ALLOCATED)) {
3829 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3830 
3831 		snprintf(name, sizeof(name), "%d", idx);
3832 		oid = SYSCTL_ADD_NODE(&sc->ctx, SYSCTL_CHILDREN(sc->ctrlq_oid),
3833 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3834 		    "ctrl queue");
3835 
3836 		snprintf(name, sizeof(name), "%s ctrlq%d",
3837 		    device_get_nameunit(sc->dev), idx);
3838 		init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE,
3839 		    sc->port[idx]->tx_chan, &sc->sge.fwq, name);
3840 		rc = alloc_wrq(sc, NULL, ctrlq, &sc->ctx, oid);
3841 		if (rc != 0) {
3842 			CH_ERR(sc, "failed to allocate ctrlq%d: %d\n", idx, rc);
3843 			sysctl_remove_oid(oid, 1, 1);
3844 			return (rc);
3845 		}
3846 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3847 	}
3848 
3849 	if (!(ctrlq->eq.flags & EQ_HW_ALLOCATED)) {
3850 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3851 
3852 		rc = alloc_eq_hwq(sc, NULL, &ctrlq->eq);
3853 		if (rc != 0) {
3854 			CH_ERR(sc, "failed to create hw ctrlq%d: %d\n", idx, rc);
3855 			return (rc);
3856 		}
3857 		MPASS(ctrlq->eq.flags & EQ_HW_ALLOCATED);
3858 	}
3859 
3860 	return (0);
3861 }
3862 
3863 /*
3864  * Idempotent.
3865  */
3866 static void
3867 free_ctrlq(struct adapter *sc, int idx)
3868 {
3869 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3870 
3871 	if (ctrlq->eq.flags & EQ_HW_ALLOCATED) {
3872 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3873 		free_eq_hwq(sc, NULL, &ctrlq->eq);
3874 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3875 	}
3876 
3877 	if (ctrlq->eq.flags & EQ_SW_ALLOCATED) {
3878 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3879 		free_wrq(sc, ctrlq);
3880 		MPASS(!(ctrlq->eq.flags & EQ_SW_ALLOCATED));
3881 	}
3882 }
3883 
3884 int
3885 tnl_cong(struct port_info *pi, int drop)
3886 {
3887 
3888 	if (drop == -1)
3889 		return (-1);
3890 	else if (drop == 1)
3891 		return (0);
3892 	else
3893 		return (pi->rx_e_chan_map);
3894 }
3895 
3896 /*
3897  * Idempotent.
3898  */
3899 static int
3900 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int idx, int intr_idx,
3901     int maxp)
3902 {
3903 	int rc;
3904 	struct adapter *sc = vi->adapter;
3905 	struct ifnet *ifp = vi->ifp;
3906 	struct sysctl_oid *oid;
3907 	char name[16];
3908 
3909 	if (!(rxq->iq.flags & IQ_SW_ALLOCATED)) {
3910 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
3911 #if defined(INET) || defined(INET6)
3912 		rc = tcp_lro_init_args(&rxq->lro, ifp, lro_entries, lro_mbufs);
3913 		if (rc != 0)
3914 			return (rc);
3915 		MPASS(rxq->lro.ifp == ifp);	/* also indicates LRO init'ed */
3916 
3917 		if (ifp->if_capenable & IFCAP_LRO)
3918 			rxq->iq.flags |= IQ_LRO_ENABLED;
3919 #endif
3920 		if (ifp->if_capenable & IFCAP_HWRXTSTMP)
3921 			rxq->iq.flags |= IQ_RX_TIMESTAMP;
3922 		rxq->ifp = ifp;
3923 
3924 		snprintf(name, sizeof(name), "%d", idx);
3925 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->rxq_oid),
3926 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3927 		    "rx queue");
3928 
3929 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq,
3930 		    intr_idx, tnl_cong(vi->pi, cong_drop));
3931 		snprintf(name, sizeof(name), "%s rxq%d-fl",
3932 		    device_get_nameunit(vi->dev), idx);
3933 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
3934 		rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, &vi->ctx, oid);
3935 		if (rc != 0) {
3936 			CH_ERR(vi, "failed to allocate rxq%d: %d\n", idx, rc);
3937 			sysctl_remove_oid(oid, 1, 1);
3938 #if defined(INET) || defined(INET6)
3939 			tcp_lro_free(&rxq->lro);
3940 			rxq->lro.ifp = NULL;
3941 #endif
3942 			return (rc);
3943 		}
3944 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
3945 		add_rxq_sysctls(&vi->ctx, oid, rxq);
3946 	}
3947 
3948 	if (!(rxq->iq.flags & IQ_HW_ALLOCATED)) {
3949 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
3950 		rc = alloc_iq_fl_hwq(vi, &rxq->iq, &rxq->fl);
3951 		if (rc != 0) {
3952 			CH_ERR(vi, "failed to create hw rxq%d: %d\n", idx, rc);
3953 			return (rc);
3954 		}
3955 		MPASS(rxq->iq.flags & IQ_HW_ALLOCATED);
3956 
3957 		if (idx == 0)
3958 			sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3959 		else
3960 			KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3961 			    ("iq_base mismatch"));
3962 		KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3963 		    ("PF with non-zero iq_base"));
3964 
3965 		/*
3966 		 * The freelist is just barely above the starvation threshold
3967 		 * right now, fill it up a bit more.
3968 		 */
3969 		FL_LOCK(&rxq->fl);
3970 		refill_fl(sc, &rxq->fl, 128);
3971 		FL_UNLOCK(&rxq->fl);
3972 	}
3973 
3974 	return (0);
3975 }
3976 
3977 /*
3978  * Idempotent.
3979  */
3980 static void
3981 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3982 {
3983 	if (rxq->iq.flags & IQ_HW_ALLOCATED) {
3984 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
3985 		free_iq_fl_hwq(vi->adapter, &rxq->iq, &rxq->fl);
3986 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
3987 	}
3988 
3989 	if (rxq->iq.flags & IQ_SW_ALLOCATED) {
3990 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
3991 #if defined(INET) || defined(INET6)
3992 		tcp_lro_free(&rxq->lro);
3993 #endif
3994 		free_iq_fl(vi->adapter, &rxq->iq, &rxq->fl);
3995 		MPASS(!(rxq->iq.flags & IQ_SW_ALLOCATED));
3996 		bzero(rxq, sizeof(*rxq));
3997 	}
3998 }
3999 
4000 static void
4001 add_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4002     struct sge_rxq *rxq)
4003 {
4004 	struct sysctl_oid_list *children;
4005 
4006 	if (ctx == NULL || oid == NULL)
4007 		return;
4008 
4009 	children = SYSCTL_CHILDREN(oid);
4010 #if defined(INET) || defined(INET6)
4011 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
4012 	    &rxq->lro.lro_queued, 0, NULL);
4013 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
4014 	    &rxq->lro.lro_flushed, 0, NULL);
4015 #endif
4016 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
4017 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
4018 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD,
4019 	    &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag");
4020 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_rxcsum", CTLFLAG_RD,
4021 	    &rxq->vxlan_rxcsum,
4022 	    "# of times hardware assisted with inner checksum (VXLAN)");
4023 }
4024 
4025 #ifdef TCP_OFFLOAD
4026 /*
4027  * Idempotent.
4028  */
4029 static int
4030 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int idx,
4031     int intr_idx, int maxp)
4032 {
4033 	int rc;
4034 	struct adapter *sc = vi->adapter;
4035 	struct sysctl_oid *oid;
4036 	char name[16];
4037 
4038 	if (!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)) {
4039 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4040 
4041 		snprintf(name, sizeof(name), "%d", idx);
4042 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4043 		    SYSCTL_CHILDREN(vi->ofld_rxq_oid), OID_AUTO, name,
4044 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload rx queue");
4045 
4046 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
4047 		    vi->qsize_rxq, intr_idx, 0);
4048 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
4049 		    device_get_nameunit(vi->dev), idx);
4050 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
4051 		rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, &vi->ctx,
4052 		    oid);
4053 		if (rc != 0) {
4054 			CH_ERR(vi, "failed to allocate ofld_rxq%d: %d\n", idx,
4055 			    rc);
4056 			sysctl_remove_oid(oid, 1, 1);
4057 			return (rc);
4058 		}
4059 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4060 		add_ofld_rxq_sysctls(&vi->ctx, oid, ofld_rxq);
4061 	}
4062 
4063 	if (!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)) {
4064 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4065 		rc = alloc_iq_fl_hwq(vi, &ofld_rxq->iq, &ofld_rxq->fl);
4066 		if (rc != 0) {
4067 			CH_ERR(vi, "failed to create hw ofld_rxq%d: %d\n", idx,
4068 			    rc);
4069 			return (rc);
4070 		}
4071 		MPASS(ofld_rxq->iq.flags & IQ_HW_ALLOCATED);
4072 	}
4073 	return (rc);
4074 }
4075 
4076 /*
4077  * Idempotent.
4078  */
4079 static void
4080 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
4081 {
4082 	if (ofld_rxq->iq.flags & IQ_HW_ALLOCATED) {
4083 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4084 		free_iq_fl_hwq(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4085 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4086 	}
4087 
4088 	if (ofld_rxq->iq.flags & IQ_SW_ALLOCATED) {
4089 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4090 		free_iq_fl(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4091 		MPASS(!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED));
4092 		bzero(ofld_rxq, sizeof(*ofld_rxq));
4093 	}
4094 }
4095 
4096 static void
4097 add_ofld_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4098     struct sge_ofld_rxq *ofld_rxq)
4099 {
4100 	struct sysctl_oid_list *children;
4101 
4102 	if (ctx == NULL || oid == NULL)
4103 		return;
4104 
4105 	children = SYSCTL_CHILDREN(oid);
4106 	SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
4107 	    "rx_toe_tls_records", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_records,
4108 	    "# of TOE TLS records received");
4109 	SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
4110 	    "rx_toe_tls_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_octets,
4111 	    "# of payload octets in received TOE TLS records");
4112 }
4113 #endif
4114 
4115 /*
4116  * Returns a reasonable automatic cidx flush threshold for a given queue size.
4117  */
4118 static u_int
4119 qsize_to_fthresh(int qsize)
4120 {
4121 	u_int fthresh;
4122 
4123 	while (!powerof2(qsize))
4124 		qsize++;
4125 	fthresh = ilog2(qsize);
4126 	if (fthresh > X_CIDXFLUSHTHRESH_128)
4127 		fthresh = X_CIDXFLUSHTHRESH_128;
4128 
4129 	return (fthresh);
4130 }
4131 
4132 static int
4133 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
4134 {
4135 	int rc, cntxt_id;
4136 	struct fw_eq_ctrl_cmd c;
4137 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4138 
4139 	bzero(&c, sizeof(c));
4140 
4141 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
4142 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
4143 	    V_FW_EQ_CTRL_CMD_VFN(0));
4144 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
4145 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
4146 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
4147 	c.physeqid_pkd = htobe32(0);
4148 	c.fetchszm_to_iqid =
4149 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4150 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
4151 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
4152 	c.dcaen_to_eqsize =
4153 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4154 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4155 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4156 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4157 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
4158 	c.eqaddr = htobe64(eq->ba);
4159 
4160 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4161 	if (rc != 0) {
4162 		CH_ERR(sc, "failed to create hw ctrlq for tx_chan %d: %d\n",
4163 		    eq->tx_chan, rc);
4164 		return (rc);
4165 	}
4166 
4167 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
4168 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4169 	if (cntxt_id >= sc->sge.eqmap_sz)
4170 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4171 		cntxt_id, sc->sge.eqmap_sz - 1);
4172 	sc->sge.eqmap[cntxt_id] = eq;
4173 
4174 	return (rc);
4175 }
4176 
4177 static int
4178 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4179 {
4180 	int rc, cntxt_id;
4181 	struct fw_eq_eth_cmd c;
4182 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4183 
4184 	bzero(&c, sizeof(c));
4185 
4186 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
4187 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
4188 	    V_FW_EQ_ETH_CMD_VFN(0));
4189 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
4190 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
4191 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
4192 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
4193 	c.fetchszm_to_iqid =
4194 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
4195 		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
4196 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
4197 	c.dcaen_to_eqsize =
4198 	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4199 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4200 		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4201 		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
4202 	c.eqaddr = htobe64(eq->ba);
4203 
4204 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4205 	if (rc != 0) {
4206 		device_printf(vi->dev,
4207 		    "failed to create Ethernet egress queue: %d\n", rc);
4208 		return (rc);
4209 	}
4210 
4211 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
4212 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4213 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4214 	if (cntxt_id >= sc->sge.eqmap_sz)
4215 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4216 		cntxt_id, sc->sge.eqmap_sz - 1);
4217 	sc->sge.eqmap[cntxt_id] = eq;
4218 
4219 	return (rc);
4220 }
4221 
4222 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4223 static int
4224 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4225 {
4226 	int rc, cntxt_id;
4227 	struct fw_eq_ofld_cmd c;
4228 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4229 
4230 	bzero(&c, sizeof(c));
4231 
4232 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
4233 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
4234 	    V_FW_EQ_OFLD_CMD_VFN(0));
4235 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
4236 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
4237 	c.fetchszm_to_iqid =
4238 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4239 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
4240 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
4241 	c.dcaen_to_eqsize =
4242 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4243 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4244 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4245 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4246 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
4247 	c.eqaddr = htobe64(eq->ba);
4248 
4249 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4250 	if (rc != 0) {
4251 		device_printf(vi->dev,
4252 		    "failed to create egress queue for TCP offload: %d\n", rc);
4253 		return (rc);
4254 	}
4255 
4256 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
4257 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4258 	if (cntxt_id >= sc->sge.eqmap_sz)
4259 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4260 		cntxt_id, sc->sge.eqmap_sz - 1);
4261 	sc->sge.eqmap[cntxt_id] = eq;
4262 
4263 	return (rc);
4264 }
4265 #endif
4266 
4267 /* SW only */
4268 static int
4269 alloc_eq(struct adapter *sc, struct sge_eq *eq, struct sysctl_ctx_list *ctx,
4270     struct sysctl_oid *oid)
4271 {
4272 	int rc, qsize;
4273 	size_t len;
4274 
4275 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4276 
4277 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4278 	len = qsize * EQ_ESIZE;
4279 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba,
4280 	    (void **)&eq->desc);
4281 	if (rc)
4282 		return (rc);
4283 	if (ctx != NULL && oid != NULL)
4284 		add_eq_sysctls(sc, ctx, oid, eq);
4285 	eq->flags |= EQ_SW_ALLOCATED;
4286 
4287 	return (0);
4288 }
4289 
4290 /* SW only */
4291 static void
4292 free_eq(struct adapter *sc, struct sge_eq *eq)
4293 {
4294 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4295 	MPASS(eq->pidx == eq->cidx);
4296 
4297 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4298 	mtx_destroy(&eq->eq_lock);
4299 	bzero(eq, sizeof(*eq));
4300 }
4301 
4302 static void
4303 add_eq_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
4304     struct sysctl_oid *oid, struct sge_eq *eq)
4305 {
4306 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4307 
4308 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba,
4309 	    "bus address of descriptor ring");
4310 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4311 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4312 	    "desc ring size in bytes");
4313 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4314 	    &eq->abs_id, 0, "absolute id of the queue");
4315 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4316 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4317 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &eq->cidx,
4318 	    0, "consumer index");
4319 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &eq->pidx,
4320 	    0, "producer index");
4321 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4322 	    eq->sidx, "status page index");
4323 }
4324 
4325 static int
4326 alloc_eq_hwq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4327 {
4328 	int rc;
4329 
4330 	MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4331 
4332 	eq->iqid = eq->iq->cntxt_id;
4333 	eq->pidx = eq->cidx = eq->dbidx = 0;
4334 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4335 	eq->equeqidx = 0;
4336 	eq->doorbells = sc->doorbells;
4337 	bzero(eq->desc, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len);
4338 
4339 	switch (eq->type) {
4340 	case EQ_CTRL:
4341 		rc = ctrl_eq_alloc(sc, eq);
4342 		break;
4343 
4344 	case EQ_ETH:
4345 		rc = eth_eq_alloc(sc, vi, eq);
4346 		break;
4347 
4348 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4349 	case EQ_OFLD:
4350 		rc = ofld_eq_alloc(sc, vi, eq);
4351 		break;
4352 #endif
4353 
4354 	default:
4355 		panic("%s: invalid eq type %d.", __func__, eq->type);
4356 	}
4357 	if (rc != 0) {
4358 		CH_ERR(sc, "failed to allocate egress queue(%d): %d\n",
4359 		    eq->type, rc);
4360 		return (rc);
4361 	}
4362 
4363 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4364 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4365 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4366 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4367 		uint32_t mask = (1 << s_qpp) - 1;
4368 		volatile uint8_t *udb;
4369 
4370 		udb = sc->udbs_base + UDBS_DB_OFFSET;
4371 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4372 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4373 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4374 	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
4375 		else {
4376 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4377 			eq->udb_qid = 0;
4378 		}
4379 		eq->udb = (volatile void *)udb;
4380 	}
4381 
4382 	eq->flags |= EQ_HW_ALLOCATED;
4383 	return (0);
4384 }
4385 
4386 static int
4387 free_eq_hwq(struct adapter *sc, struct vi_info *vi __unused, struct sge_eq *eq)
4388 {
4389 	int rc;
4390 
4391 	MPASS(eq->flags & EQ_HW_ALLOCATED);
4392 
4393 	switch (eq->type) {
4394 	case EQ_CTRL:
4395 		rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4396 		break;
4397 	case EQ_ETH:
4398 		rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4399 		break;
4400 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4401 	case EQ_OFLD:
4402 		rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4403 		break;
4404 #endif
4405 	default:
4406 		panic("%s: invalid eq type %d.", __func__, eq->type);
4407 	}
4408 	if (rc != 0) {
4409 		CH_ERR(sc, "failed to free eq (type %d): %d\n", eq->type, rc);
4410 		return (rc);
4411 	}
4412 	eq->flags &= ~EQ_HW_ALLOCATED;
4413 
4414 	return (0);
4415 }
4416 
4417 static int
4418 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4419     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
4420 {
4421 	struct sge_eq *eq = &wrq->eq;
4422 	int rc;
4423 
4424 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4425 
4426 	rc = alloc_eq(sc, eq, ctx, oid);
4427 	if (rc)
4428 		return (rc);
4429 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4430 	/* Can't fail after this. */
4431 
4432 	wrq->adapter = sc;
4433 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4434 	TAILQ_INIT(&wrq->incomplete_wrs);
4435 	STAILQ_INIT(&wrq->wr_list);
4436 	wrq->nwr_pending = 0;
4437 	wrq->ndesc_needed = 0;
4438 	add_wrq_sysctls(ctx, oid, wrq);
4439 
4440 	return (0);
4441 }
4442 
4443 static void
4444 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4445 {
4446 	free_eq(sc, &wrq->eq);
4447 	MPASS(wrq->nwr_pending == 0);
4448 	bzero(wrq, sizeof(*wrq));
4449 }
4450 
4451 static void
4452 add_wrq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4453     struct sge_wrq *wrq)
4454 {
4455 	struct sysctl_oid_list *children;
4456 
4457 	if (ctx == NULL || oid == NULL)
4458 		return;
4459 
4460 	children = SYSCTL_CHILDREN(oid);
4461 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4462 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4463 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4464 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4465 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4466 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4467 }
4468 
4469 /*
4470  * Idempotent.
4471  */
4472 static int
4473 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx)
4474 {
4475 	int rc, iqidx;
4476 	struct port_info *pi = vi->pi;
4477 	struct adapter *sc = vi->adapter;
4478 	struct sge_eq *eq = &txq->eq;
4479 	struct txpkts *txp;
4480 	char name[16];
4481 	struct sysctl_oid *oid;
4482 
4483 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4484 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4485 
4486 		snprintf(name, sizeof(name), "%d", idx);
4487 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->txq_oid),
4488 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4489 		    "tx queue");
4490 
4491 		iqidx = vi->first_rxq + (idx % vi->nrxq);
4492 		snprintf(name, sizeof(name), "%s txq%d",
4493 		    device_get_nameunit(vi->dev), idx);
4494 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
4495 		    &sc->sge.rxq[iqidx].iq, name);
4496 
4497 		rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx,
4498 		    can_resume_eth_tx, M_CXGBE, &eq->eq_lock, M_WAITOK);
4499 		if (rc != 0) {
4500 			CH_ERR(vi, "failed to allocate mp_ring for txq%d: %d\n",
4501 			    idx, rc);
4502 failed:
4503 			sysctl_remove_oid(oid, 1, 1);
4504 			return (rc);
4505 		}
4506 
4507 		rc = alloc_eq(sc, eq, &vi->ctx, oid);
4508 		if (rc) {
4509 			CH_ERR(vi, "failed to allocate txq%d: %d\n", idx, rc);
4510 			mp_ring_free(txq->r);
4511 			goto failed;
4512 		}
4513 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4514 		/* Can't fail after this point. */
4515 
4516 		TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4517 		txq->ifp = vi->ifp;
4518 		txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4519 		txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4520 		    M_ZERO | M_WAITOK);
4521 
4522 		add_txq_sysctls(vi, &vi->ctx, oid, txq);
4523 	}
4524 
4525 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4526 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4527 		rc = alloc_eq_hwq(sc, vi, eq);
4528 		if (rc != 0) {
4529 			CH_ERR(vi, "failed to create hw txq%d: %d\n", idx, rc);
4530 			return (rc);
4531 		}
4532 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4533 		/* Can't fail after this point. */
4534 
4535 		if (idx == 0)
4536 			sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4537 		else
4538 			KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4539 			    ("eq_base mismatch"));
4540 		KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4541 		    ("PF with non-zero eq_base"));
4542 
4543 		txp = &txq->txp;
4544 		MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4545 		txq->txp.max_npkt = min(nitems(txp->mb),
4546 		    sc->params.max_pkts_per_eth_tx_pkts_wr);
4547 		if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
4548 			txq->txp.max_npkt--;
4549 
4550 		if (vi->flags & TX_USES_VM_WR)
4551 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4552 			    V_TXPKT_INTF(pi->tx_chan));
4553 		else
4554 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4555 			    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4556 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4557 
4558 		txq->tc_idx = -1;
4559 	}
4560 
4561 	return (0);
4562 }
4563 
4564 /*
4565  * Idempotent.
4566  */
4567 static void
4568 free_txq(struct vi_info *vi, struct sge_txq *txq)
4569 {
4570 	struct adapter *sc = vi->adapter;
4571 	struct sge_eq *eq = &txq->eq;
4572 
4573 	if (eq->flags & EQ_HW_ALLOCATED) {
4574 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4575 		free_eq_hwq(sc, NULL, eq);
4576 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4577 	}
4578 
4579 	if (eq->flags & EQ_SW_ALLOCATED) {
4580 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4581 		sglist_free(txq->gl);
4582 		free(txq->sdesc, M_CXGBE);
4583 		mp_ring_free(txq->r);
4584 		free_eq(sc, eq);
4585 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4586 		bzero(txq, sizeof(*txq));
4587 	}
4588 }
4589 
4590 static void
4591 add_txq_sysctls(struct vi_info *vi, struct sysctl_ctx_list *ctx,
4592     struct sysctl_oid *oid, struct sge_txq *txq)
4593 {
4594 	struct adapter *sc;
4595 	struct sysctl_oid_list *children;
4596 
4597 	if (ctx == NULL || oid == NULL)
4598 		return;
4599 
4600 	sc = vi->adapter;
4601 	children = SYSCTL_CHILDREN(oid);
4602 
4603 	mp_ring_sysctls(txq->r, ctx, children);
4604 
4605 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tc",
4606 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, txq - sc->sge.txq,
4607 	    sysctl_tc, "I", "traffic class (-1 means none)");
4608 
4609 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4610 	    &txq->txcsum, "# of times hardware assisted with checksum");
4611 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD,
4612 	    &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag");
4613 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4614 	    &txq->tso_wrs, "# of TSO work requests");
4615 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4616 	    &txq->imm_wrs, "# of work requests with immediate data");
4617 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4618 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4619 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4620 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4621 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD,
4622 	    &txq->txpkts0_wrs, "# of txpkts (type 0) work requests");
4623 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD,
4624 	    &txq->txpkts1_wrs, "# of txpkts (type 1) work requests");
4625 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD,
4626 	    &txq->txpkts0_pkts,
4627 	    "# of frames tx'd using type0 txpkts work requests");
4628 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD,
4629 	    &txq->txpkts1_pkts,
4630 	    "# of frames tx'd using type1 txpkts work requests");
4631 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts_flush", CTLFLAG_RD,
4632 	    &txq->txpkts_flush,
4633 	    "# of times txpkts had to be flushed out by an egress-update");
4634 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4635 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4636 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_tso_wrs", CTLFLAG_RD,
4637 	    &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
4638 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_txcsum", CTLFLAG_RD,
4639 	    &txq->vxlan_txcsum,
4640 	    "# of times hardware assisted with inner checksums (VXLAN)");
4641 
4642 #ifdef KERN_TLS
4643 	if (is_ktls(sc)) {
4644 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_records",
4645 		    CTLFLAG_RD, &txq->kern_tls_records,
4646 		    "# of NIC TLS records transmitted");
4647 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_short",
4648 		    CTLFLAG_RD, &txq->kern_tls_short,
4649 		    "# of short NIC TLS records transmitted");
4650 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_partial",
4651 		    CTLFLAG_RD, &txq->kern_tls_partial,
4652 		    "# of partial NIC TLS records transmitted");
4653 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_full",
4654 		    CTLFLAG_RD, &txq->kern_tls_full,
4655 		    "# of full NIC TLS records transmitted");
4656 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_octets",
4657 		    CTLFLAG_RD, &txq->kern_tls_octets,
4658 		    "# of payload octets in transmitted NIC TLS records");
4659 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_waste",
4660 		    CTLFLAG_RD, &txq->kern_tls_waste,
4661 		    "# of octets DMAd but not transmitted in NIC TLS records");
4662 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_options",
4663 		    CTLFLAG_RD, &txq->kern_tls_options,
4664 		    "# of NIC TLS options-only packets transmitted");
4665 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_header",
4666 		    CTLFLAG_RD, &txq->kern_tls_header,
4667 		    "# of NIC TLS header-only packets transmitted");
4668 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin",
4669 		    CTLFLAG_RD, &txq->kern_tls_fin,
4670 		    "# of NIC TLS FIN-only packets transmitted");
4671 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin_short",
4672 		    CTLFLAG_RD, &txq->kern_tls_fin_short,
4673 		    "# of NIC TLS padded FIN packets on short TLS records");
4674 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_cbc",
4675 		    CTLFLAG_RD, &txq->kern_tls_cbc,
4676 		    "# of NIC TLS sessions using AES-CBC");
4677 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_gcm",
4678 		    CTLFLAG_RD, &txq->kern_tls_gcm,
4679 		    "# of NIC TLS sessions using AES-GCM");
4680 	}
4681 #endif
4682 }
4683 
4684 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4685 /*
4686  * Idempotent.
4687  */
4688 static int
4689 alloc_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq, int idx)
4690 {
4691 	struct sysctl_oid *oid;
4692 	struct port_info *pi = vi->pi;
4693 	struct adapter *sc = vi->adapter;
4694 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4695 	int rc, iqidx;
4696 	char name[16];
4697 
4698 	MPASS(idx >= 0);
4699 	MPASS(idx < vi->nofldtxq);
4700 
4701 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4702 		snprintf(name, sizeof(name), "%d", idx);
4703 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4704 		    SYSCTL_CHILDREN(vi->ofld_txq_oid), OID_AUTO, name,
4705 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
4706 
4707 		snprintf(name, sizeof(name), "%s ofld_txq%d",
4708 		    device_get_nameunit(vi->dev), idx);
4709 		if (vi->nofldrxq > 0) {
4710 			iqidx = vi->first_ofld_rxq + (idx % vi->nofldrxq);
4711 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
4712 			    &sc->sge.ofld_rxq[iqidx].iq, name);
4713 		} else {
4714 			iqidx = vi->first_rxq + (idx % vi->nrxq);
4715 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
4716 			    &sc->sge.rxq[iqidx].iq, name);
4717 		}
4718 
4719 		rc = alloc_wrq(sc, vi, &ofld_txq->wrq, &vi->ctx, oid);
4720 		if (rc != 0) {
4721 			CH_ERR(vi, "failed to allocate ofld_txq%d: %d\n", idx,
4722 			    rc);
4723 			sysctl_remove_oid(oid, 1, 1);
4724 			return (rc);
4725 		}
4726 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4727 		/* Can't fail after this point. */
4728 
4729 		ofld_txq->tx_iscsi_pdus = counter_u64_alloc(M_WAITOK);
4730 		ofld_txq->tx_iscsi_octets = counter_u64_alloc(M_WAITOK);
4731 		ofld_txq->tx_toe_tls_records = counter_u64_alloc(M_WAITOK);
4732 		ofld_txq->tx_toe_tls_octets = counter_u64_alloc(M_WAITOK);
4733 		add_ofld_txq_sysctls(&vi->ctx, oid, ofld_txq);
4734 	}
4735 
4736 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4737 		rc = alloc_eq_hwq(sc, vi, eq);
4738 		if (rc != 0) {
4739 			CH_ERR(vi, "failed to create hw ofld_txq%d: %d\n", idx,
4740 			    rc);
4741 			return (rc);
4742 		}
4743 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4744 	}
4745 
4746 	return (0);
4747 }
4748 
4749 /*
4750  * Idempotent.
4751  */
4752 static void
4753 free_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq)
4754 {
4755 	struct adapter *sc = vi->adapter;
4756 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4757 
4758 	if (eq->flags & EQ_HW_ALLOCATED) {
4759 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4760 		free_eq_hwq(sc, NULL, eq);
4761 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4762 	}
4763 
4764 	if (eq->flags & EQ_SW_ALLOCATED) {
4765 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4766 		counter_u64_free(ofld_txq->tx_iscsi_pdus);
4767 		counter_u64_free(ofld_txq->tx_iscsi_octets);
4768 		counter_u64_free(ofld_txq->tx_toe_tls_records);
4769 		counter_u64_free(ofld_txq->tx_toe_tls_octets);
4770 		free_wrq(sc, &ofld_txq->wrq);
4771 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4772 		bzero(ofld_txq, sizeof(*ofld_txq));
4773 	}
4774 }
4775 
4776 static void
4777 add_ofld_txq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4778     struct sge_ofld_txq *ofld_txq)
4779 {
4780 	struct sysctl_oid_list *children;
4781 
4782 	if (ctx == NULL || oid == NULL)
4783 		return;
4784 
4785 	children = SYSCTL_CHILDREN(oid);
4786 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_pdus",
4787 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_pdus,
4788 	    "# of iSCSI PDUs transmitted");
4789 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_octets",
4790 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_octets,
4791 	    "# of payload octets in transmitted iSCSI PDUs");
4792 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_records",
4793 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_records,
4794 	    "# of TOE TLS records transmitted");
4795 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_octets",
4796 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_octets,
4797 	    "# of payload octets in transmitted TOE TLS records");
4798 }
4799 #endif
4800 
4801 static void
4802 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4803 {
4804 	bus_addr_t *ba = arg;
4805 
4806 	KASSERT(nseg == 1,
4807 	    ("%s meant for single segment mappings only.", __func__));
4808 
4809 	*ba = error ? 0 : segs->ds_addr;
4810 }
4811 
4812 static inline void
4813 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4814 {
4815 	uint32_t n, v;
4816 
4817 	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
4818 	MPASS(n > 0);
4819 
4820 	wmb();
4821 	v = fl->dbval | V_PIDX(n);
4822 	if (fl->udb)
4823 		*fl->udb = htole32(v);
4824 	else
4825 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4826 	IDXINCR(fl->dbidx, n, fl->sidx);
4827 }
4828 
4829 /*
4830  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4831  * recycled do not count towards this allocation budget.
4832  *
4833  * Returns non-zero to indicate that this freelist should be added to the list
4834  * of starving freelists.
4835  */
4836 static int
4837 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4838 {
4839 	__be64 *d;
4840 	struct fl_sdesc *sd;
4841 	uintptr_t pa;
4842 	caddr_t cl;
4843 	struct rx_buf_info *rxb;
4844 	struct cluster_metadata *clm;
4845 	uint16_t max_pidx, zidx = fl->zidx;
4846 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
4847 
4848 	FL_LOCK_ASSERT_OWNED(fl);
4849 
4850 	/*
4851 	 * We always stop at the beginning of the hardware descriptor that's just
4852 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
4853 	 * which would mean an empty freelist to the chip.
4854 	 */
4855 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
4856 	if (fl->pidx == max_pidx * 8)
4857 		return (0);
4858 
4859 	d = &fl->desc[fl->pidx];
4860 	sd = &fl->sdesc[fl->pidx];
4861 	rxb = &sc->sge.rx_buf_info[zidx];
4862 
4863 	while (n > 0) {
4864 
4865 		if (sd->cl != NULL) {
4866 
4867 			if (sd->nmbuf == 0) {
4868 				/*
4869 				 * Fast recycle without involving any atomics on
4870 				 * the cluster's metadata (if the cluster has
4871 				 * metadata).  This happens when all frames
4872 				 * received in the cluster were small enough to
4873 				 * fit within a single mbuf each.
4874 				 */
4875 				fl->cl_fast_recycled++;
4876 				goto recycled;
4877 			}
4878 
4879 			/*
4880 			 * Cluster is guaranteed to have metadata.  Clusters
4881 			 * without metadata always take the fast recycle path
4882 			 * when they're recycled.
4883 			 */
4884 			clm = cl_metadata(sd);
4885 			MPASS(clm != NULL);
4886 
4887 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4888 				fl->cl_recycled++;
4889 				counter_u64_add(extfree_rels, 1);
4890 				goto recycled;
4891 			}
4892 			sd->cl = NULL;	/* gave up my reference */
4893 		}
4894 		MPASS(sd->cl == NULL);
4895 		cl = uma_zalloc(rxb->zone, M_NOWAIT);
4896 		if (__predict_false(cl == NULL)) {
4897 			if (zidx != fl->safe_zidx) {
4898 				zidx = fl->safe_zidx;
4899 				rxb = &sc->sge.rx_buf_info[zidx];
4900 				cl = uma_zalloc(rxb->zone, M_NOWAIT);
4901 			}
4902 			if (cl == NULL)
4903 				break;
4904 		}
4905 		fl->cl_allocated++;
4906 		n--;
4907 
4908 		pa = pmap_kextract((vm_offset_t)cl);
4909 		sd->cl = cl;
4910 		sd->zidx = zidx;
4911 
4912 		if (fl->flags & FL_BUF_PACKING) {
4913 			*d = htobe64(pa | rxb->hwidx2);
4914 			sd->moff = rxb->size2;
4915 		} else {
4916 			*d = htobe64(pa | rxb->hwidx1);
4917 			sd->moff = 0;
4918 		}
4919 recycled:
4920 		sd->nmbuf = 0;
4921 		d++;
4922 		sd++;
4923 		if (__predict_false((++fl->pidx & 7) == 0)) {
4924 			uint16_t pidx = fl->pidx >> 3;
4925 
4926 			if (__predict_false(pidx == fl->sidx)) {
4927 				fl->pidx = 0;
4928 				pidx = 0;
4929 				sd = fl->sdesc;
4930 				d = fl->desc;
4931 			}
4932 			if (n < 8 || pidx == max_pidx)
4933 				break;
4934 
4935 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
4936 				ring_fl_db(sc, fl);
4937 		}
4938 	}
4939 
4940 	if ((fl->pidx >> 3) != fl->dbidx)
4941 		ring_fl_db(sc, fl);
4942 
4943 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
4944 }
4945 
4946 /*
4947  * Attempt to refill all starving freelists.
4948  */
4949 static void
4950 refill_sfl(void *arg)
4951 {
4952 	struct adapter *sc = arg;
4953 	struct sge_fl *fl, *fl_temp;
4954 
4955 	mtx_assert(&sc->sfl_lock, MA_OWNED);
4956 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
4957 		FL_LOCK(fl);
4958 		refill_fl(sc, fl, 64);
4959 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
4960 			TAILQ_REMOVE(&sc->sfl, fl, link);
4961 			fl->flags &= ~FL_STARVING;
4962 		}
4963 		FL_UNLOCK(fl);
4964 	}
4965 
4966 	if (!TAILQ_EMPTY(&sc->sfl))
4967 		callout_schedule(&sc->sfl_callout, hz / 5);
4968 }
4969 
4970 /*
4971  * Release the driver's reference on all buffers in the given freelist.  Buffers
4972  * with kernel references cannot be freed and will prevent the driver from being
4973  * unloaded safely.
4974  */
4975 void
4976 free_fl_buffers(struct adapter *sc, struct sge_fl *fl)
4977 {
4978 	struct fl_sdesc *sd;
4979 	struct cluster_metadata *clm;
4980 	int i;
4981 
4982 	sd = fl->sdesc;
4983 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
4984 		if (sd->cl == NULL)
4985 			continue;
4986 
4987 		if (sd->nmbuf == 0)
4988 			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
4989 		else if (fl->flags & FL_BUF_PACKING) {
4990 			clm = cl_metadata(sd);
4991 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4992 				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
4993 				    sd->cl);
4994 				counter_u64_add(extfree_rels, 1);
4995 			}
4996 		}
4997 		sd->cl = NULL;
4998 	}
4999 
5000 	if (fl->flags & FL_BUF_RESUME) {
5001 		m_freem(fl->m0);
5002 		fl->flags &= ~FL_BUF_RESUME;
5003 	}
5004 }
5005 
5006 static inline void
5007 get_pkt_gl(struct mbuf *m, struct sglist *gl)
5008 {
5009 	int rc;
5010 
5011 	M_ASSERTPKTHDR(m);
5012 
5013 	sglist_reset(gl);
5014 	rc = sglist_append_mbuf(gl, m);
5015 	if (__predict_false(rc != 0)) {
5016 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
5017 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
5018 	}
5019 
5020 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
5021 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
5022 	    mbuf_nsegs(m), gl->sg_nseg));
5023 #if 0	/* vm_wr not readily available here. */
5024 	KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
5025 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
5026 		gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
5027 #endif
5028 }
5029 
5030 /*
5031  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5032  */
5033 static inline u_int
5034 txpkt_len16(u_int nsegs, const u_int extra)
5035 {
5036 	u_int n;
5037 
5038 	MPASS(nsegs > 0);
5039 
5040 	nsegs--; /* first segment is part of ulptx_sgl */
5041 	n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
5042 	    sizeof(struct cpl_tx_pkt_core) +
5043 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5044 
5045 	return (howmany(n, 16));
5046 }
5047 
5048 /*
5049  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
5050  * request header.
5051  */
5052 static inline u_int
5053 txpkt_vm_len16(u_int nsegs, const u_int extra)
5054 {
5055 	u_int n;
5056 
5057 	MPASS(nsegs > 0);
5058 
5059 	nsegs--; /* first segment is part of ulptx_sgl */
5060 	n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
5061 	    sizeof(struct cpl_tx_pkt_core) +
5062 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5063 
5064 	return (howmany(n, 16));
5065 }
5066 
5067 static inline void
5068 calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
5069 {
5070 	const int lso = sizeof(struct cpl_tx_pkt_lso_core);
5071 	const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
5072 
5073 	if (vm_wr) {
5074 		if (needs_tso(m))
5075 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
5076 		else
5077 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
5078 		return;
5079 	}
5080 
5081 	if (needs_tso(m)) {
5082 		if (needs_vxlan_tso(m))
5083 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
5084 		else
5085 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
5086 	} else
5087 		set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
5088 }
5089 
5090 /*
5091  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
5092  * request header.
5093  */
5094 static inline u_int
5095 txpkts0_len16(u_int nsegs)
5096 {
5097 	u_int n;
5098 
5099 	MPASS(nsegs > 0);
5100 
5101 	nsegs--; /* first segment is part of ulptx_sgl */
5102 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
5103 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
5104 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
5105 
5106 	return (howmany(n, 16));
5107 }
5108 
5109 /*
5110  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
5111  * request header.
5112  */
5113 static inline u_int
5114 txpkts1_len16(void)
5115 {
5116 	u_int n;
5117 
5118 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
5119 
5120 	return (howmany(n, 16));
5121 }
5122 
5123 static inline u_int
5124 imm_payload(u_int ndesc)
5125 {
5126 	u_int n;
5127 
5128 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
5129 	    sizeof(struct cpl_tx_pkt_core);
5130 
5131 	return (n);
5132 }
5133 
5134 static inline uint64_t
5135 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
5136 {
5137 	uint64_t ctrl;
5138 	int csum_type, l2hlen, l3hlen;
5139 	int x, y;
5140 	static const int csum_types[3][2] = {
5141 		{TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
5142 		{TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
5143 		{TX_CSUM_IP, 0}
5144 	};
5145 
5146 	M_ASSERTPKTHDR(m);
5147 
5148 	if (!needs_hwcsum(m))
5149 		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
5150 
5151 	MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
5152 	MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
5153 
5154 	if (needs_vxlan_csum(m)) {
5155 		MPASS(m->m_pkthdr.l4hlen > 0);
5156 		MPASS(m->m_pkthdr.l5hlen > 0);
5157 		MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
5158 		MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
5159 
5160 		l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
5161 		    m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
5162 		    m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
5163 		l3hlen = m->m_pkthdr.inner_l3hlen;
5164 	} else {
5165 		l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
5166 		l3hlen = m->m_pkthdr.l3hlen;
5167 	}
5168 
5169 	ctrl = 0;
5170 	if (!needs_l3_csum(m))
5171 		ctrl |= F_TXPKT_IPCSUM_DIS;
5172 
5173 	if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
5174 	    CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
5175 		x = 0;	/* TCP */
5176 	else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
5177 	    CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
5178 		x = 1;	/* UDP */
5179 	else
5180 		x = 2;
5181 
5182 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
5183 	    CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
5184 		y = 0;	/* IPv4 */
5185 	else {
5186 		MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
5187 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
5188 		y = 1;	/* IPv6 */
5189 	}
5190 	/*
5191 	 * needs_hwcsum returned true earlier so there must be some kind of
5192 	 * checksum to calculate.
5193 	 */
5194 	csum_type = csum_types[x][y];
5195 	MPASS(csum_type != 0);
5196 	if (csum_type == TX_CSUM_IP)
5197 		ctrl |= F_TXPKT_L4CSUM_DIS;
5198 	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
5199 	if (chip_id(sc) <= CHELSIO_T5)
5200 		ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
5201 	else
5202 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
5203 
5204 	return (ctrl);
5205 }
5206 
5207 static inline void *
5208 write_lso_cpl(void *cpl, struct mbuf *m0)
5209 {
5210 	struct cpl_tx_pkt_lso_core *lso;
5211 	uint32_t ctrl;
5212 
5213 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5214 	    m0->m_pkthdr.l4hlen > 0,
5215 	    ("%s: mbuf %p needs TSO but missing header lengths",
5216 		__func__, m0));
5217 
5218 	ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5219 	    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5220 	    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5221 	    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5222 	    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5223 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5224 		ctrl |= F_LSO_IPV6;
5225 
5226 	lso = cpl;
5227 	lso->lso_ctrl = htobe32(ctrl);
5228 	lso->ipid_ofst = htobe16(0);
5229 	lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5230 	lso->seqno_offset = htobe32(0);
5231 	lso->len = htobe32(m0->m_pkthdr.len);
5232 
5233 	return (lso + 1);
5234 }
5235 
5236 static void *
5237 write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
5238 {
5239 	struct cpl_tx_tnl_lso *tnl_lso = cpl;
5240 	uint32_t ctrl;
5241 
5242 	KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
5243 	    m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
5244 	    m0->m_pkthdr.inner_l5hlen > 0,
5245 	    ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
5246 		__func__, m0));
5247 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5248 	    m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
5249 	    ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
5250 		__func__, m0));
5251 
5252 	/* Outer headers. */
5253 	ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
5254 	    F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
5255 	    V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
5256 		(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5257 	    V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
5258 	    F_CPL_TX_TNL_LSO_IPLENSETOUT;
5259 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5260 		ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
5261 	else {
5262 		ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
5263 		    F_CPL_TX_TNL_LSO_IPIDINCOUT;
5264 	}
5265 	tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
5266 	tnl_lso->IpIdOffsetOut = 0;
5267 	tnl_lso->UdpLenSetOut_to_TnlHdrLen =
5268 		htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
5269 		    F_CPL_TX_TNL_LSO_UDPLENSETOUT |
5270 		    V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
5271 			m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
5272 			m0->m_pkthdr.l5hlen) |
5273 		    V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
5274 	tnl_lso->r1 = 0;
5275 
5276 	/* Inner headers. */
5277 	ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
5278 	    (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
5279 	    V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
5280 	    V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
5281 	if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
5282 		ctrl |= F_CPL_TX_TNL_LSO_IPV6;
5283 	tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
5284 	tnl_lso->IpIdOffset = 0;
5285 	tnl_lso->IpIdSplit_to_Mss =
5286 	    htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
5287 	tnl_lso->TCPSeqOffset = 0;
5288 	tnl_lso->EthLenOffset_Size =
5289 	    htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
5290 
5291 	return (tnl_lso + 1);
5292 }
5293 
5294 #define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
5295 
5296 /*
5297  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
5298  * software descriptor, and advance the pidx.  It is guaranteed that enough
5299  * descriptors are available.
5300  *
5301  * The return value is the # of hardware descriptors used.
5302  */
5303 static u_int
5304 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
5305 {
5306 	struct sge_eq *eq;
5307 	struct fw_eth_tx_pkt_vm_wr *wr;
5308 	struct tx_sdesc *txsd;
5309 	struct cpl_tx_pkt_core *cpl;
5310 	uint32_t ctrl;	/* used in many unrelated places */
5311 	uint64_t ctrl1;
5312 	int len16, ndesc, pktlen, nsegs;
5313 	caddr_t dst;
5314 
5315 	TXQ_LOCK_ASSERT_OWNED(txq);
5316 	M_ASSERTPKTHDR(m0);
5317 
5318 	len16 = mbuf_len16(m0);
5319 	nsegs = mbuf_nsegs(m0);
5320 	pktlen = m0->m_pkthdr.len;
5321 	ctrl = sizeof(struct cpl_tx_pkt_core);
5322 	if (needs_tso(m0))
5323 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5324 	ndesc = tx_len16_to_desc(len16);
5325 
5326 	/* Firmware work request header */
5327 	eq = &txq->eq;
5328 	wr = (void *)&eq->desc[eq->pidx];
5329 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
5330 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5331 
5332 	ctrl = V_FW_WR_LEN16(len16);
5333 	wr->equiq_to_len16 = htobe32(ctrl);
5334 	wr->r3[0] = 0;
5335 	wr->r3[1] = 0;
5336 
5337 	/*
5338 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
5339 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
5340 	 * simpler to always copy it rather than making it
5341 	 * conditional.  Also, it seems that we do not have to set
5342 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
5343 	 */
5344 	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
5345 
5346 	if (needs_tso(m0)) {
5347 		cpl = write_lso_cpl(wr + 1, m0);
5348 		txq->tso_wrs++;
5349 	} else
5350 		cpl = (void *)(wr + 1);
5351 
5352 	/* Checksum offload */
5353 	ctrl1 = csum_to_ctrl(sc, m0);
5354 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5355 		txq->txcsum++;	/* some hardware assistance provided */
5356 
5357 	/* VLAN tag insertion */
5358 	if (needs_vlan_insertion(m0)) {
5359 		ctrl1 |= F_TXPKT_VLAN_VLD |
5360 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5361 		txq->vlan_insertion++;
5362 	}
5363 
5364 	/* CPL header */
5365 	cpl->ctrl0 = txq->cpl_ctrl0;
5366 	cpl->pack = 0;
5367 	cpl->len = htobe16(pktlen);
5368 	cpl->ctrl1 = htobe64(ctrl1);
5369 
5370 	/* SGL */
5371 	dst = (void *)(cpl + 1);
5372 
5373 	/*
5374 	 * A packet using TSO will use up an entire descriptor for the
5375 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
5376 	 * If this descriptor is the last descriptor in the ring, wrap
5377 	 * around to the front of the ring explicitly for the start of
5378 	 * the sgl.
5379 	 */
5380 	if (dst == (void *)&eq->desc[eq->sidx]) {
5381 		dst = (void *)&eq->desc[0];
5382 		write_gl_to_txd(txq, m0, &dst, 0);
5383 	} else
5384 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5385 	txq->sgl_wrs++;
5386 	txq->txpkt_wrs++;
5387 
5388 	txsd = &txq->sdesc[eq->pidx];
5389 	txsd->m = m0;
5390 	txsd->desc_used = ndesc;
5391 
5392 	return (ndesc);
5393 }
5394 
5395 /*
5396  * Write a raw WR to the hardware descriptors, update the software
5397  * descriptor, and advance the pidx.  It is guaranteed that enough
5398  * descriptors are available.
5399  *
5400  * The return value is the # of hardware descriptors used.
5401  */
5402 static u_int
5403 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
5404 {
5405 	struct sge_eq *eq = &txq->eq;
5406 	struct tx_sdesc *txsd;
5407 	struct mbuf *m;
5408 	caddr_t dst;
5409 	int len16, ndesc;
5410 
5411 	len16 = mbuf_len16(m0);
5412 	ndesc = tx_len16_to_desc(len16);
5413 	MPASS(ndesc <= available);
5414 
5415 	dst = wr;
5416 	for (m = m0; m != NULL; m = m->m_next)
5417 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5418 
5419 	txq->raw_wrs++;
5420 
5421 	txsd = &txq->sdesc[eq->pidx];
5422 	txsd->m = m0;
5423 	txsd->desc_used = ndesc;
5424 
5425 	return (ndesc);
5426 }
5427 
5428 /*
5429  * Write a txpkt WR for this packet to the hardware descriptors, update the
5430  * software descriptor, and advance the pidx.  It is guaranteed that enough
5431  * descriptors are available.
5432  *
5433  * The return value is the # of hardware descriptors used.
5434  */
5435 static u_int
5436 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
5437     u_int available)
5438 {
5439 	struct sge_eq *eq;
5440 	struct fw_eth_tx_pkt_wr *wr;
5441 	struct tx_sdesc *txsd;
5442 	struct cpl_tx_pkt_core *cpl;
5443 	uint32_t ctrl;	/* used in many unrelated places */
5444 	uint64_t ctrl1;
5445 	int len16, ndesc, pktlen, nsegs;
5446 	caddr_t dst;
5447 
5448 	TXQ_LOCK_ASSERT_OWNED(txq);
5449 	M_ASSERTPKTHDR(m0);
5450 
5451 	len16 = mbuf_len16(m0);
5452 	nsegs = mbuf_nsegs(m0);
5453 	pktlen = m0->m_pkthdr.len;
5454 	ctrl = sizeof(struct cpl_tx_pkt_core);
5455 	if (needs_tso(m0)) {
5456 		if (needs_vxlan_tso(m0))
5457 			ctrl += sizeof(struct cpl_tx_tnl_lso);
5458 		else
5459 			ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5460 	} else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
5461 	    available >= 2) {
5462 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
5463 		ctrl += pktlen;
5464 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
5465 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
5466 		nsegs = 0;
5467 	}
5468 	ndesc = tx_len16_to_desc(len16);
5469 	MPASS(ndesc <= available);
5470 
5471 	/* Firmware work request header */
5472 	eq = &txq->eq;
5473 	wr = (void *)&eq->desc[eq->pidx];
5474 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
5475 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5476 
5477 	ctrl = V_FW_WR_LEN16(len16);
5478 	wr->equiq_to_len16 = htobe32(ctrl);
5479 	wr->r3 = 0;
5480 
5481 	if (needs_tso(m0)) {
5482 		if (needs_vxlan_tso(m0)) {
5483 			cpl = write_tnl_lso_cpl(wr + 1, m0);
5484 			txq->vxlan_tso_wrs++;
5485 		} else {
5486 			cpl = write_lso_cpl(wr + 1, m0);
5487 			txq->tso_wrs++;
5488 		}
5489 	} else
5490 		cpl = (void *)(wr + 1);
5491 
5492 	/* Checksum offload */
5493 	ctrl1 = csum_to_ctrl(sc, m0);
5494 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5495 		/* some hardware assistance provided */
5496 		if (needs_vxlan_csum(m0))
5497 			txq->vxlan_txcsum++;
5498 		else
5499 			txq->txcsum++;
5500 	}
5501 
5502 	/* VLAN tag insertion */
5503 	if (needs_vlan_insertion(m0)) {
5504 		ctrl1 |= F_TXPKT_VLAN_VLD |
5505 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5506 		txq->vlan_insertion++;
5507 	}
5508 
5509 	/* CPL header */
5510 	cpl->ctrl0 = txq->cpl_ctrl0;
5511 	cpl->pack = 0;
5512 	cpl->len = htobe16(pktlen);
5513 	cpl->ctrl1 = htobe64(ctrl1);
5514 
5515 	/* SGL */
5516 	dst = (void *)(cpl + 1);
5517 	if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
5518 		dst = (caddr_t)&eq->desc[0];
5519 	if (nsegs > 0) {
5520 
5521 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5522 		txq->sgl_wrs++;
5523 	} else {
5524 		struct mbuf *m;
5525 
5526 		for (m = m0; m != NULL; m = m->m_next) {
5527 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5528 #ifdef INVARIANTS
5529 			pktlen -= m->m_len;
5530 #endif
5531 		}
5532 #ifdef INVARIANTS
5533 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
5534 #endif
5535 		txq->imm_wrs++;
5536 	}
5537 
5538 	txq->txpkt_wrs++;
5539 
5540 	txsd = &txq->sdesc[eq->pidx];
5541 	txsd->m = m0;
5542 	txsd->desc_used = ndesc;
5543 
5544 	return (ndesc);
5545 }
5546 
5547 static inline bool
5548 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
5549 {
5550 	int len;
5551 
5552 	MPASS(txp->npkt > 0);
5553 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5554 
5555 	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5556 		len = VM_TX_L2HDR_LEN;
5557 	else
5558 		len = sizeof(struct ether_header);
5559 
5560 	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5561 }
5562 
5563 static inline void
5564 save_l2hdr(struct txpkts *txp, struct mbuf *m)
5565 {
5566 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5567 
5568 	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5569 }
5570 
5571 static int
5572 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5573     int avail, bool *send)
5574 {
5575 	struct txpkts *txp = &txq->txp;
5576 
5577 	/* Cannot have TSO and coalesce at the same time. */
5578 	if (cannot_use_txpkts(m)) {
5579 cannot_coalesce:
5580 		*send = txp->npkt > 0;
5581 		return (EINVAL);
5582 	}
5583 
5584 	/* VF allows coalescing of type 1 (1 GL) only */
5585 	if (mbuf_nsegs(m) > 1)
5586 		goto cannot_coalesce;
5587 
5588 	*send = false;
5589 	if (txp->npkt > 0) {
5590 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5591 		MPASS(txp->npkt < txp->max_npkt);
5592 		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5593 
5594 		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5595 retry_after_send:
5596 			*send = true;
5597 			return (EAGAIN);
5598 		}
5599 		if (m->m_pkthdr.len + txp->plen > 65535)
5600 			goto retry_after_send;
5601 		if (cmp_l2hdr(txp, m))
5602 			goto retry_after_send;
5603 
5604 		txp->len16 += txpkts1_len16();
5605 		txp->plen += m->m_pkthdr.len;
5606 		txp->mb[txp->npkt++] = m;
5607 		if (txp->npkt == txp->max_npkt)
5608 			*send = true;
5609 	} else {
5610 		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5611 		    txpkts1_len16();
5612 		if (tx_len16_to_desc(txp->len16) > avail)
5613 			goto cannot_coalesce;
5614 		txp->npkt = 1;
5615 		txp->wr_type = 1;
5616 		txp->plen = m->m_pkthdr.len;
5617 		txp->mb[0] = m;
5618 		save_l2hdr(txp, m);
5619 	}
5620 	return (0);
5621 }
5622 
5623 static int
5624 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5625     int avail, bool *send)
5626 {
5627 	struct txpkts *txp = &txq->txp;
5628 	int nsegs;
5629 
5630 	MPASS(!(sc->flags & IS_VF));
5631 
5632 	/* Cannot have TSO and coalesce at the same time. */
5633 	if (cannot_use_txpkts(m)) {
5634 cannot_coalesce:
5635 		*send = txp->npkt > 0;
5636 		return (EINVAL);
5637 	}
5638 
5639 	*send = false;
5640 	nsegs = mbuf_nsegs(m);
5641 	if (txp->npkt == 0) {
5642 		if (m->m_pkthdr.len > 65535)
5643 			goto cannot_coalesce;
5644 		if (nsegs > 1) {
5645 			txp->wr_type = 0;
5646 			txp->len16 =
5647 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5648 			    txpkts0_len16(nsegs);
5649 		} else {
5650 			txp->wr_type = 1;
5651 			txp->len16 =
5652 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5653 			    txpkts1_len16();
5654 		}
5655 		if (tx_len16_to_desc(txp->len16) > avail)
5656 			goto cannot_coalesce;
5657 		txp->npkt = 1;
5658 		txp->plen = m->m_pkthdr.len;
5659 		txp->mb[0] = m;
5660 	} else {
5661 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5662 		MPASS(txp->npkt < txp->max_npkt);
5663 
5664 		if (m->m_pkthdr.len + txp->plen > 65535) {
5665 retry_after_send:
5666 			*send = true;
5667 			return (EAGAIN);
5668 		}
5669 
5670 		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5671 		if (txp->wr_type == 0) {
5672 			if (tx_len16_to_desc(txp->len16 +
5673 			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
5674 				goto retry_after_send;
5675 			txp->len16 += txpkts0_len16(nsegs);
5676 		} else {
5677 			if (nsegs != 1)
5678 				goto retry_after_send;
5679 			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
5680 			    avail)
5681 				goto retry_after_send;
5682 			txp->len16 += txpkts1_len16();
5683 		}
5684 
5685 		txp->plen += m->m_pkthdr.len;
5686 		txp->mb[txp->npkt++] = m;
5687 		if (txp->npkt == txp->max_npkt)
5688 			*send = true;
5689 	}
5690 	return (0);
5691 }
5692 
5693 /*
5694  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
5695  * the software descriptor, and advance the pidx.  It is guaranteed that enough
5696  * descriptors are available.
5697  *
5698  * The return value is the # of hardware descriptors used.
5699  */
5700 static u_int
5701 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
5702 {
5703 	const struct txpkts *txp = &txq->txp;
5704 	struct sge_eq *eq = &txq->eq;
5705 	struct fw_eth_tx_pkts_wr *wr;
5706 	struct tx_sdesc *txsd;
5707 	struct cpl_tx_pkt_core *cpl;
5708 	uint64_t ctrl1;
5709 	int ndesc, i, checkwrap;
5710 	struct mbuf *m, *last;
5711 	void *flitp;
5712 
5713 	TXQ_LOCK_ASSERT_OWNED(txq);
5714 	MPASS(txp->npkt > 0);
5715 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5716 
5717 	wr = (void *)&eq->desc[eq->pidx];
5718 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
5719 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5720 	wr->plen = htobe16(txp->plen);
5721 	wr->npkt = txp->npkt;
5722 	wr->r3 = 0;
5723 	wr->type = txp->wr_type;
5724 	flitp = wr + 1;
5725 
5726 	/*
5727 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
5728 	 * set then we know the WR is going to wrap around somewhere.  We'll
5729 	 * check for that at appropriate points.
5730 	 */
5731 	ndesc = tx_len16_to_desc(txp->len16);
5732 	last = NULL;
5733 	checkwrap = eq->sidx - ndesc < eq->pidx;
5734 	for (i = 0; i < txp->npkt; i++) {
5735 		m = txp->mb[i];
5736 		if (txp->wr_type == 0) {
5737 			struct ulp_txpkt *ulpmc;
5738 			struct ulptx_idata *ulpsc;
5739 
5740 			/* ULP master command */
5741 			ulpmc = flitp;
5742 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
5743 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
5744 			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
5745 
5746 			/* ULP subcommand */
5747 			ulpsc = (void *)(ulpmc + 1);
5748 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
5749 			    F_ULP_TX_SC_MORE);
5750 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
5751 
5752 			cpl = (void *)(ulpsc + 1);
5753 			if (checkwrap &&
5754 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
5755 				cpl = (void *)&eq->desc[0];
5756 		} else {
5757 			cpl = flitp;
5758 		}
5759 
5760 		/* Checksum offload */
5761 		ctrl1 = csum_to_ctrl(sc, m);
5762 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5763 			/* some hardware assistance provided */
5764 			if (needs_vxlan_csum(m))
5765 				txq->vxlan_txcsum++;
5766 			else
5767 				txq->txcsum++;
5768 		}
5769 
5770 		/* VLAN tag insertion */
5771 		if (needs_vlan_insertion(m)) {
5772 			ctrl1 |= F_TXPKT_VLAN_VLD |
5773 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5774 			txq->vlan_insertion++;
5775 		}
5776 
5777 		/* CPL header */
5778 		cpl->ctrl0 = txq->cpl_ctrl0;
5779 		cpl->pack = 0;
5780 		cpl->len = htobe16(m->m_pkthdr.len);
5781 		cpl->ctrl1 = htobe64(ctrl1);
5782 
5783 		flitp = cpl + 1;
5784 		if (checkwrap &&
5785 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5786 			flitp = (void *)&eq->desc[0];
5787 
5788 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
5789 
5790 		if (last != NULL)
5791 			last->m_nextpkt = m;
5792 		last = m;
5793 	}
5794 
5795 	txq->sgl_wrs++;
5796 	if (txp->wr_type == 0) {
5797 		txq->txpkts0_pkts += txp->npkt;
5798 		txq->txpkts0_wrs++;
5799 	} else {
5800 		txq->txpkts1_pkts += txp->npkt;
5801 		txq->txpkts1_wrs++;
5802 	}
5803 
5804 	txsd = &txq->sdesc[eq->pidx];
5805 	txsd->m = txp->mb[0];
5806 	txsd->desc_used = ndesc;
5807 
5808 	return (ndesc);
5809 }
5810 
5811 static u_int
5812 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
5813 {
5814 	const struct txpkts *txp = &txq->txp;
5815 	struct sge_eq *eq = &txq->eq;
5816 	struct fw_eth_tx_pkts_vm_wr *wr;
5817 	struct tx_sdesc *txsd;
5818 	struct cpl_tx_pkt_core *cpl;
5819 	uint64_t ctrl1;
5820 	int ndesc, i;
5821 	struct mbuf *m, *last;
5822 	void *flitp;
5823 
5824 	TXQ_LOCK_ASSERT_OWNED(txq);
5825 	MPASS(txp->npkt > 0);
5826 	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5827 	MPASS(txp->mb[0] != NULL);
5828 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5829 
5830 	wr = (void *)&eq->desc[eq->pidx];
5831 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
5832 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5833 	wr->r3 = 0;
5834 	wr->plen = htobe16(txp->plen);
5835 	wr->npkt = txp->npkt;
5836 	wr->r4 = 0;
5837 	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
5838 	flitp = wr + 1;
5839 
5840 	/*
5841 	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
5842 	 * the WR will take 32B so we check for the end of the descriptor ring
5843 	 * before writing odd mbufs (mb[1], 3, 5, ..)
5844 	 */
5845 	ndesc = tx_len16_to_desc(txp->len16);
5846 	last = NULL;
5847 	for (i = 0; i < txp->npkt; i++) {
5848 		m = txp->mb[i];
5849 		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5850 			flitp = &eq->desc[0];
5851 		cpl = flitp;
5852 
5853 		/* Checksum offload */
5854 		ctrl1 = csum_to_ctrl(sc, m);
5855 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5856 			txq->txcsum++;	/* some hardware assistance provided */
5857 
5858 		/* VLAN tag insertion */
5859 		if (needs_vlan_insertion(m)) {
5860 			ctrl1 |= F_TXPKT_VLAN_VLD |
5861 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5862 			txq->vlan_insertion++;
5863 		}
5864 
5865 		/* CPL header */
5866 		cpl->ctrl0 = txq->cpl_ctrl0;
5867 		cpl->pack = 0;
5868 		cpl->len = htobe16(m->m_pkthdr.len);
5869 		cpl->ctrl1 = htobe64(ctrl1);
5870 
5871 		flitp = cpl + 1;
5872 		MPASS(mbuf_nsegs(m) == 1);
5873 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
5874 
5875 		if (last != NULL)
5876 			last->m_nextpkt = m;
5877 		last = m;
5878 	}
5879 
5880 	txq->sgl_wrs++;
5881 	txq->txpkts1_pkts += txp->npkt;
5882 	txq->txpkts1_wrs++;
5883 
5884 	txsd = &txq->sdesc[eq->pidx];
5885 	txsd->m = txp->mb[0];
5886 	txsd->desc_used = ndesc;
5887 
5888 	return (ndesc);
5889 }
5890 
5891 /*
5892  * If the SGL ends on an address that is not 16 byte aligned, this function will
5893  * add a 0 filled flit at the end.
5894  */
5895 static void
5896 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
5897 {
5898 	struct sge_eq *eq = &txq->eq;
5899 	struct sglist *gl = txq->gl;
5900 	struct sglist_seg *seg;
5901 	__be64 *flitp, *wrap;
5902 	struct ulptx_sgl *usgl;
5903 	int i, nflits, nsegs;
5904 
5905 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
5906 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
5907 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5908 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5909 
5910 	get_pkt_gl(m, gl);
5911 	nsegs = gl->sg_nseg;
5912 	MPASS(nsegs > 0);
5913 
5914 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
5915 	flitp = (__be64 *)(*to);
5916 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
5917 	seg = &gl->sg_segs[0];
5918 	usgl = (void *)flitp;
5919 
5920 	/*
5921 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
5922 	 * ring, so we're at least 16 bytes away from the status page.  There is
5923 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
5924 	 */
5925 
5926 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
5927 	    V_ULPTX_NSGE(nsegs));
5928 	usgl->len0 = htobe32(seg->ss_len);
5929 	usgl->addr0 = htobe64(seg->ss_paddr);
5930 	seg++;
5931 
5932 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
5933 
5934 		/* Won't wrap around at all */
5935 
5936 		for (i = 0; i < nsegs - 1; i++, seg++) {
5937 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
5938 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
5939 		}
5940 		if (i & 1)
5941 			usgl->sge[i / 2].len[1] = htobe32(0);
5942 		flitp += nflits;
5943 	} else {
5944 
5945 		/* Will wrap somewhere in the rest of the SGL */
5946 
5947 		/* 2 flits already written, write the rest flit by flit */
5948 		flitp = (void *)(usgl + 1);
5949 		for (i = 0; i < nflits - 2; i++) {
5950 			if (flitp == wrap)
5951 				flitp = (void *)eq->desc;
5952 			*flitp++ = get_flit(seg, nsegs - 1, i);
5953 		}
5954 	}
5955 
5956 	if (nflits & 1) {
5957 		MPASS(((uintptr_t)flitp) & 0xf);
5958 		*flitp++ = 0;
5959 	}
5960 
5961 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
5962 	if (__predict_false(flitp == wrap))
5963 		*to = (void *)eq->desc;
5964 	else
5965 		*to = (void *)flitp;
5966 }
5967 
5968 static inline void
5969 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
5970 {
5971 
5972 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5973 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5974 
5975 	if (__predict_true((uintptr_t)(*to) + len <=
5976 	    (uintptr_t)&eq->desc[eq->sidx])) {
5977 		bcopy(from, *to, len);
5978 		(*to) += len;
5979 	} else {
5980 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
5981 
5982 		bcopy(from, *to, portion);
5983 		from += portion;
5984 		portion = len - portion;	/* remaining */
5985 		bcopy(from, (void *)eq->desc, portion);
5986 		(*to) = (caddr_t)eq->desc + portion;
5987 	}
5988 }
5989 
5990 static inline void
5991 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
5992 {
5993 	u_int db;
5994 
5995 	MPASS(n > 0);
5996 
5997 	db = eq->doorbells;
5998 	if (n > 1)
5999 		clrbit(&db, DOORBELL_WCWR);
6000 	wmb();
6001 
6002 	switch (ffs(db) - 1) {
6003 	case DOORBELL_UDB:
6004 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6005 		break;
6006 
6007 	case DOORBELL_WCWR: {
6008 		volatile uint64_t *dst, *src;
6009 		int i;
6010 
6011 		/*
6012 		 * Queues whose 128B doorbell segment fits in the page do not
6013 		 * use relative qid (udb_qid is always 0).  Only queues with
6014 		 * doorbell segments can do WCWR.
6015 		 */
6016 		KASSERT(eq->udb_qid == 0 && n == 1,
6017 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
6018 		    __func__, eq->doorbells, n, eq->dbidx, eq));
6019 
6020 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
6021 		    UDBS_DB_OFFSET);
6022 		i = eq->dbidx;
6023 		src = (void *)&eq->desc[i];
6024 		while (src != (void *)&eq->desc[i + 1])
6025 			*dst++ = *src++;
6026 		wmb();
6027 		break;
6028 	}
6029 
6030 	case DOORBELL_UDBWC:
6031 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6032 		wmb();
6033 		break;
6034 
6035 	case DOORBELL_KDB:
6036 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
6037 		    V_QID(eq->cntxt_id) | V_PIDX(n));
6038 		break;
6039 	}
6040 
6041 	IDXINCR(eq->dbidx, n, eq->sidx);
6042 }
6043 
6044 static inline u_int
6045 reclaimable_tx_desc(struct sge_eq *eq)
6046 {
6047 	uint16_t hw_cidx;
6048 
6049 	hw_cidx = read_hw_cidx(eq);
6050 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
6051 }
6052 
6053 static inline u_int
6054 total_available_tx_desc(struct sge_eq *eq)
6055 {
6056 	uint16_t hw_cidx, pidx;
6057 
6058 	hw_cidx = read_hw_cidx(eq);
6059 	pidx = eq->pidx;
6060 
6061 	if (pidx == hw_cidx)
6062 		return (eq->sidx - 1);
6063 	else
6064 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
6065 }
6066 
6067 static inline uint16_t
6068 read_hw_cidx(struct sge_eq *eq)
6069 {
6070 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6071 	uint16_t cidx = spg->cidx;	/* stable snapshot */
6072 
6073 	return (be16toh(cidx));
6074 }
6075 
6076 /*
6077  * Reclaim 'n' descriptors approximately.
6078  */
6079 static u_int
6080 reclaim_tx_descs(struct sge_txq *txq, u_int n)
6081 {
6082 	struct tx_sdesc *txsd;
6083 	struct sge_eq *eq = &txq->eq;
6084 	u_int can_reclaim, reclaimed;
6085 
6086 	TXQ_LOCK_ASSERT_OWNED(txq);
6087 	MPASS(n > 0);
6088 
6089 	reclaimed = 0;
6090 	can_reclaim = reclaimable_tx_desc(eq);
6091 	while (can_reclaim && reclaimed < n) {
6092 		int ndesc;
6093 		struct mbuf *m, *nextpkt;
6094 
6095 		txsd = &txq->sdesc[eq->cidx];
6096 		ndesc = txsd->desc_used;
6097 
6098 		/* Firmware doesn't return "partial" credits. */
6099 		KASSERT(can_reclaim >= ndesc,
6100 		    ("%s: unexpected number of credits: %d, %d",
6101 		    __func__, can_reclaim, ndesc));
6102 		KASSERT(ndesc != 0,
6103 		    ("%s: descriptor with no credits: cidx %d",
6104 		    __func__, eq->cidx));
6105 
6106 		for (m = txsd->m; m != NULL; m = nextpkt) {
6107 			nextpkt = m->m_nextpkt;
6108 			m->m_nextpkt = NULL;
6109 			m_freem(m);
6110 		}
6111 		reclaimed += ndesc;
6112 		can_reclaim -= ndesc;
6113 		IDXINCR(eq->cidx, ndesc, eq->sidx);
6114 	}
6115 
6116 	return (reclaimed);
6117 }
6118 
6119 static void
6120 tx_reclaim(void *arg, int n)
6121 {
6122 	struct sge_txq *txq = arg;
6123 	struct sge_eq *eq = &txq->eq;
6124 
6125 	do {
6126 		if (TXQ_TRYLOCK(txq) == 0)
6127 			break;
6128 		n = reclaim_tx_descs(txq, 32);
6129 		if (eq->cidx == eq->pidx)
6130 			eq->equeqidx = eq->pidx;
6131 		TXQ_UNLOCK(txq);
6132 	} while (n > 0);
6133 }
6134 
6135 static __be64
6136 get_flit(struct sglist_seg *segs, int nsegs, int idx)
6137 {
6138 	int i = (idx / 3) * 2;
6139 
6140 	switch (idx % 3) {
6141 	case 0: {
6142 		uint64_t rc;
6143 
6144 		rc = (uint64_t)segs[i].ss_len << 32;
6145 		if (i + 1 < nsegs)
6146 			rc |= (uint64_t)(segs[i + 1].ss_len);
6147 
6148 		return (htobe64(rc));
6149 	}
6150 	case 1:
6151 		return (htobe64(segs[i].ss_paddr));
6152 	case 2:
6153 		return (htobe64(segs[i + 1].ss_paddr));
6154 	}
6155 
6156 	return (0);
6157 }
6158 
6159 static int
6160 find_refill_source(struct adapter *sc, int maxp, bool packing)
6161 {
6162 	int i, zidx = -1;
6163 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6164 
6165 	if (packing) {
6166 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6167 			if (rxb->hwidx2 == -1)
6168 				continue;
6169 			if (rxb->size1 < PAGE_SIZE &&
6170 			    rxb->size1 < largest_rx_cluster)
6171 				continue;
6172 			if (rxb->size1 > largest_rx_cluster)
6173 				break;
6174 			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
6175 			if (rxb->size2 >= maxp)
6176 				return (i);
6177 			zidx = i;
6178 		}
6179 	} else {
6180 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6181 			if (rxb->hwidx1 == -1)
6182 				continue;
6183 			if (rxb->size1 > largest_rx_cluster)
6184 				break;
6185 			if (rxb->size1 >= maxp)
6186 				return (i);
6187 			zidx = i;
6188 		}
6189 	}
6190 
6191 	return (zidx);
6192 }
6193 
6194 static void
6195 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
6196 {
6197 	mtx_lock(&sc->sfl_lock);
6198 	FL_LOCK(fl);
6199 	if ((fl->flags & FL_DOOMED) == 0) {
6200 		fl->flags |= FL_STARVING;
6201 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
6202 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
6203 	}
6204 	FL_UNLOCK(fl);
6205 	mtx_unlock(&sc->sfl_lock);
6206 }
6207 
6208 static void
6209 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
6210 {
6211 	struct sge_wrq *wrq = (void *)eq;
6212 
6213 	atomic_readandclear_int(&eq->equiq);
6214 	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
6215 }
6216 
6217 static void
6218 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
6219 {
6220 	struct sge_txq *txq = (void *)eq;
6221 
6222 	MPASS(eq->type == EQ_ETH);
6223 
6224 	atomic_readandclear_int(&eq->equiq);
6225 	if (mp_ring_is_idle(txq->r))
6226 		taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
6227 	else
6228 		mp_ring_check_drainage(txq->r, 64);
6229 }
6230 
6231 static int
6232 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
6233     struct mbuf *m)
6234 {
6235 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
6236 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
6237 	struct adapter *sc = iq->adapter;
6238 	struct sge *s = &sc->sge;
6239 	struct sge_eq *eq;
6240 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
6241 		&handle_wrq_egr_update, &handle_eth_egr_update,
6242 		&handle_wrq_egr_update};
6243 
6244 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6245 	    rss->opcode));
6246 
6247 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
6248 	(*h[eq->type])(sc, eq);
6249 
6250 	return (0);
6251 }
6252 
6253 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
6254 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
6255     offsetof(struct cpl_fw6_msg, data));
6256 
6257 static int
6258 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
6259 {
6260 	struct adapter *sc = iq->adapter;
6261 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
6262 
6263 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6264 	    rss->opcode));
6265 
6266 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
6267 		const struct rss_header *rss2;
6268 
6269 		rss2 = (const struct rss_header *)&cpl->data[0];
6270 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
6271 	}
6272 
6273 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
6274 }
6275 
6276 /**
6277  *	t4_handle_wrerr_rpl - process a FW work request error message
6278  *	@adap: the adapter
6279  *	@rpl: start of the FW message
6280  */
6281 static int
6282 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
6283 {
6284 	u8 opcode = *(const u8 *)rpl;
6285 	const struct fw_error_cmd *e = (const void *)rpl;
6286 	unsigned int i;
6287 
6288 	if (opcode != FW_ERROR_CMD) {
6289 		log(LOG_ERR,
6290 		    "%s: Received WRERR_RPL message with opcode %#x\n",
6291 		    device_get_nameunit(adap->dev), opcode);
6292 		return (EINVAL);
6293 	}
6294 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
6295 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
6296 	    "non-fatal");
6297 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
6298 	case FW_ERROR_TYPE_EXCEPTION:
6299 		log(LOG_ERR, "exception info:\n");
6300 		for (i = 0; i < nitems(e->u.exception.info); i++)
6301 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
6302 			    be32toh(e->u.exception.info[i]));
6303 		log(LOG_ERR, "\n");
6304 		break;
6305 	case FW_ERROR_TYPE_HWMODULE:
6306 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
6307 		    be32toh(e->u.hwmodule.regaddr),
6308 		    be32toh(e->u.hwmodule.regval));
6309 		break;
6310 	case FW_ERROR_TYPE_WR:
6311 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
6312 		    be16toh(e->u.wr.cidx),
6313 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
6314 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
6315 		    be32toh(e->u.wr.eqid));
6316 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
6317 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
6318 			    e->u.wr.wrhdr[i]);
6319 		log(LOG_ERR, "\n");
6320 		break;
6321 	case FW_ERROR_TYPE_ACL:
6322 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
6323 		    be16toh(e->u.acl.cidx),
6324 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
6325 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
6326 		    be32toh(e->u.acl.eqid),
6327 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
6328 		    "MAC");
6329 		for (i = 0; i < nitems(e->u.acl.val); i++)
6330 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
6331 		log(LOG_ERR, "\n");
6332 		break;
6333 	default:
6334 		log(LOG_ERR, "type %#x\n",
6335 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
6336 		return (EINVAL);
6337 	}
6338 	return (0);
6339 }
6340 
6341 static inline bool
6342 bufidx_used(struct adapter *sc, int idx)
6343 {
6344 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6345 	int i;
6346 
6347 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6348 		if (rxb->size1 > largest_rx_cluster)
6349 			continue;
6350 		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
6351 			return (true);
6352 	}
6353 
6354 	return (false);
6355 }
6356 
6357 static int
6358 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
6359 {
6360 	struct adapter *sc = arg1;
6361 	struct sge_params *sp = &sc->params.sge;
6362 	int i, rc;
6363 	struct sbuf sb;
6364 	char c;
6365 
6366 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
6367 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
6368 		if (bufidx_used(sc, i))
6369 			c = '*';
6370 		else
6371 			c = '\0';
6372 
6373 		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
6374 	}
6375 	sbuf_trim(&sb);
6376 	sbuf_finish(&sb);
6377 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
6378 	sbuf_delete(&sb);
6379 	return (rc);
6380 }
6381 
6382 #ifdef RATELIMIT
6383 /*
6384  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
6385  */
6386 static inline u_int
6387 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
6388 {
6389 	u_int n;
6390 
6391 	MPASS(immhdrs > 0);
6392 
6393 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
6394 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
6395 	if (__predict_false(nsegs == 0))
6396 		goto done;
6397 
6398 	nsegs--; /* first segment is part of ulptx_sgl */
6399 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
6400 	if (tso)
6401 		n += sizeof(struct cpl_tx_pkt_lso_core);
6402 
6403 done:
6404 	return (howmany(n, 16));
6405 }
6406 
6407 #define ETID_FLOWC_NPARAMS 6
6408 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
6409     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
6410 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
6411 
6412 static int
6413 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
6414     struct vi_info *vi)
6415 {
6416 	struct wrq_cookie cookie;
6417 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
6418 	struct fw_flowc_wr *flowc;
6419 
6420 	mtx_assert(&cst->lock, MA_OWNED);
6421 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
6422 	    EO_FLOWC_PENDING);
6423 
6424 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLOWC_LEN16, &cookie);
6425 	if (__predict_false(flowc == NULL))
6426 		return (ENOMEM);
6427 
6428 	bzero(flowc, ETID_FLOWC_LEN);
6429 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6430 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
6431 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
6432 	    V_FW_WR_FLOWID(cst->etid));
6433 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
6434 	flowc->mnemval[0].val = htobe32(pfvf);
6435 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
6436 	flowc->mnemval[1].val = htobe32(pi->tx_chan);
6437 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
6438 	flowc->mnemval[2].val = htobe32(pi->tx_chan);
6439 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
6440 	flowc->mnemval[3].val = htobe32(cst->iqid);
6441 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
6442 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
6443 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
6444 	flowc->mnemval[5].val = htobe32(cst->schedcl);
6445 
6446 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6447 
6448 	cst->flags &= ~EO_FLOWC_PENDING;
6449 	cst->flags |= EO_FLOWC_RPL_PENDING;
6450 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
6451 	cst->tx_credits -= ETID_FLOWC_LEN16;
6452 
6453 	return (0);
6454 }
6455 
6456 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
6457 
6458 void
6459 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
6460 {
6461 	struct fw_flowc_wr *flowc;
6462 	struct wrq_cookie cookie;
6463 
6464 	mtx_assert(&cst->lock, MA_OWNED);
6465 
6466 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLUSH_LEN16, &cookie);
6467 	if (__predict_false(flowc == NULL))
6468 		CXGBE_UNIMPLEMENTED(__func__);
6469 
6470 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
6471 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6472 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
6473 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
6474 	    V_FW_WR_FLOWID(cst->etid));
6475 
6476 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6477 
6478 	cst->flags |= EO_FLUSH_RPL_PENDING;
6479 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
6480 	cst->tx_credits -= ETID_FLUSH_LEN16;
6481 	cst->ncompl++;
6482 }
6483 
6484 static void
6485 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
6486     struct mbuf *m0, int compl)
6487 {
6488 	struct cpl_tx_pkt_core *cpl;
6489 	uint64_t ctrl1;
6490 	uint32_t ctrl;	/* used in many unrelated places */
6491 	int len16, pktlen, nsegs, immhdrs;
6492 	caddr_t dst;
6493 	uintptr_t p;
6494 	struct ulptx_sgl *usgl;
6495 	struct sglist sg;
6496 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
6497 
6498 	mtx_assert(&cst->lock, MA_OWNED);
6499 	M_ASSERTPKTHDR(m0);
6500 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
6501 	    m0->m_pkthdr.l4hlen > 0,
6502 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
6503 
6504 	len16 = mbuf_eo_len16(m0);
6505 	nsegs = mbuf_eo_nsegs(m0);
6506 	pktlen = m0->m_pkthdr.len;
6507 	ctrl = sizeof(struct cpl_tx_pkt_core);
6508 	if (needs_tso(m0))
6509 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
6510 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
6511 	ctrl += immhdrs;
6512 
6513 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
6514 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
6515 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
6516 	    V_FW_WR_FLOWID(cst->etid));
6517 	wr->r3 = 0;
6518 	if (needs_outer_udp_csum(m0)) {
6519 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
6520 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
6521 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6522 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
6523 		wr->u.udpseg.rtplen = 0;
6524 		wr->u.udpseg.r4 = 0;
6525 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
6526 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
6527 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
6528 		cpl = (void *)(wr + 1);
6529 	} else {
6530 		MPASS(needs_outer_tcp_csum(m0));
6531 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
6532 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
6533 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6534 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
6535 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
6536 		wr->u.tcpseg.r4 = 0;
6537 		wr->u.tcpseg.r5 = 0;
6538 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
6539 
6540 		if (needs_tso(m0)) {
6541 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
6542 
6543 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
6544 
6545 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
6546 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
6547 			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6548 				ETHER_HDR_LEN) >> 2) |
6549 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6550 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6551 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6552 				ctrl |= F_LSO_IPV6;
6553 			lso->lso_ctrl = htobe32(ctrl);
6554 			lso->ipid_ofst = htobe16(0);
6555 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6556 			lso->seqno_offset = htobe32(0);
6557 			lso->len = htobe32(pktlen);
6558 
6559 			cpl = (void *)(lso + 1);
6560 		} else {
6561 			wr->u.tcpseg.mss = htobe16(0xffff);
6562 			cpl = (void *)(wr + 1);
6563 		}
6564 	}
6565 
6566 	/* Checksum offload must be requested for ethofld. */
6567 	MPASS(needs_outer_l4_csum(m0));
6568 	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6569 
6570 	/* VLAN tag insertion */
6571 	if (needs_vlan_insertion(m0)) {
6572 		ctrl1 |= F_TXPKT_VLAN_VLD |
6573 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6574 	}
6575 
6576 	/* CPL header */
6577 	cpl->ctrl0 = cst->ctrl0;
6578 	cpl->pack = 0;
6579 	cpl->len = htobe16(pktlen);
6580 	cpl->ctrl1 = htobe64(ctrl1);
6581 
6582 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6583 	p = (uintptr_t)(cpl + 1);
6584 	m_copydata(m0, 0, immhdrs, (void *)p);
6585 
6586 	/* SGL */
6587 	dst = (void *)(cpl + 1);
6588 	if (nsegs > 0) {
6589 		int i, pad;
6590 
6591 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6592 		p += immhdrs;
6593 		pad = 16 - (immhdrs & 0xf);
6594 		bzero((void *)p, pad);
6595 
6596 		usgl = (void *)(p + pad);
6597 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6598 		    V_ULPTX_NSGE(nsegs));
6599 
6600 		sglist_init(&sg, nitems(segs), segs);
6601 		for (; m0 != NULL; m0 = m0->m_next) {
6602 			if (__predict_false(m0->m_len == 0))
6603 				continue;
6604 			if (immhdrs >= m0->m_len) {
6605 				immhdrs -= m0->m_len;
6606 				continue;
6607 			}
6608 			if (m0->m_flags & M_EXTPG)
6609 				sglist_append_mbuf_epg(&sg, m0,
6610 				    mtod(m0, vm_offset_t), m0->m_len);
6611                         else
6612 				sglist_append(&sg, mtod(m0, char *) + immhdrs,
6613 				    m0->m_len - immhdrs);
6614 			immhdrs = 0;
6615 		}
6616 		MPASS(sg.sg_nseg == nsegs);
6617 
6618 		/*
6619 		 * Zero pad last 8B in case the WR doesn't end on a 16B
6620 		 * boundary.
6621 		 */
6622 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6623 
6624 		usgl->len0 = htobe32(segs[0].ss_len);
6625 		usgl->addr0 = htobe64(segs[0].ss_paddr);
6626 		for (i = 0; i < nsegs - 1; i++) {
6627 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6628 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6629 		}
6630 		if (i & 1)
6631 			usgl->sge[i / 2].len[1] = htobe32(0);
6632 	}
6633 
6634 }
6635 
6636 static void
6637 ethofld_tx(struct cxgbe_rate_tag *cst)
6638 {
6639 	struct mbuf *m;
6640 	struct wrq_cookie cookie;
6641 	int next_credits, compl;
6642 	struct fw_eth_tx_eo_wr *wr;
6643 
6644 	mtx_assert(&cst->lock, MA_OWNED);
6645 
6646 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6647 		M_ASSERTPKTHDR(m);
6648 
6649 		/* How many len16 credits do we need to send this mbuf. */
6650 		next_credits = mbuf_eo_len16(m);
6651 		MPASS(next_credits > 0);
6652 		if (next_credits > cst->tx_credits) {
6653 			/*
6654 			 * Tx will make progress eventually because there is at
6655 			 * least one outstanding fw4_ack that will return
6656 			 * credits and kick the tx.
6657 			 */
6658 			MPASS(cst->ncompl > 0);
6659 			return;
6660 		}
6661 		wr = start_wrq_wr(&cst->eo_txq->wrq, next_credits, &cookie);
6662 		if (__predict_false(wr == NULL)) {
6663 			/* XXX: wishful thinking, not a real assertion. */
6664 			MPASS(cst->ncompl > 0);
6665 			return;
6666 		}
6667 		cst->tx_credits -= next_credits;
6668 		cst->tx_nocompl += next_credits;
6669 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
6670 		ETHER_BPF_MTAP(cst->com.ifp, m);
6671 		write_ethofld_wr(cst, wr, m, compl);
6672 		commit_wrq_wr(&cst->eo_txq->wrq, wr, &cookie);
6673 		if (compl) {
6674 			cst->ncompl++;
6675 			cst->tx_nocompl	= 0;
6676 		}
6677 		(void) mbufq_dequeue(&cst->pending_tx);
6678 
6679 		/*
6680 		 * Drop the mbuf's reference on the tag now rather
6681 		 * than waiting until m_freem().  This ensures that
6682 		 * cxgbe_rate_tag_free gets called when the inp drops
6683 		 * its reference on the tag and there are no more
6684 		 * mbufs in the pending_tx queue and can flush any
6685 		 * pending requests.  Otherwise if the last mbuf
6686 		 * doesn't request a completion the etid will never be
6687 		 * released.
6688 		 */
6689 		m->m_pkthdr.snd_tag = NULL;
6690 		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
6691 		m_snd_tag_rele(&cst->com);
6692 
6693 		mbufq_enqueue(&cst->pending_fwack, m);
6694 	}
6695 }
6696 
6697 int
6698 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
6699 {
6700 	struct cxgbe_rate_tag *cst;
6701 	int rc;
6702 
6703 	MPASS(m0->m_nextpkt == NULL);
6704 	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
6705 	MPASS(m0->m_pkthdr.snd_tag != NULL);
6706 	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
6707 
6708 	mtx_lock(&cst->lock);
6709 	MPASS(cst->flags & EO_SND_TAG_REF);
6710 
6711 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
6712 		struct vi_info *vi = ifp->if_softc;
6713 		struct port_info *pi = vi->pi;
6714 		struct adapter *sc = pi->adapter;
6715 		const uint32_t rss_mask = vi->rss_size - 1;
6716 		uint32_t rss_hash;
6717 
6718 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
6719 		if (M_HASHTYPE_ISHASH(m0))
6720 			rss_hash = m0->m_pkthdr.flowid;
6721 		else
6722 			rss_hash = arc4random();
6723 		/* We assume RSS hashing */
6724 		cst->iqid = vi->rss[rss_hash & rss_mask];
6725 		cst->eo_txq += rss_hash % vi->nofldtxq;
6726 		rc = send_etid_flowc_wr(cst, pi, vi);
6727 		if (rc != 0)
6728 			goto done;
6729 	}
6730 
6731 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
6732 		rc = ENOBUFS;
6733 		goto done;
6734 	}
6735 
6736 	mbufq_enqueue(&cst->pending_tx, m0);
6737 	cst->plen += m0->m_pkthdr.len;
6738 
6739 	/*
6740 	 * Hold an extra reference on the tag while generating work
6741 	 * requests to ensure that we don't try to free the tag during
6742 	 * ethofld_tx() in case we are sending the final mbuf after
6743 	 * the inp was freed.
6744 	 */
6745 	m_snd_tag_ref(&cst->com);
6746 	ethofld_tx(cst);
6747 	mtx_unlock(&cst->lock);
6748 	m_snd_tag_rele(&cst->com);
6749 	return (0);
6750 
6751 done:
6752 	mtx_unlock(&cst->lock);
6753 	if (__predict_false(rc != 0))
6754 		m_freem(m0);
6755 	return (rc);
6756 }
6757 
6758 static int
6759 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
6760 {
6761 	struct adapter *sc = iq->adapter;
6762 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
6763 	struct mbuf *m;
6764 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
6765 	struct cxgbe_rate_tag *cst;
6766 	uint8_t credits = cpl->credits;
6767 
6768 	cst = lookup_etid(sc, etid);
6769 	mtx_lock(&cst->lock);
6770 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
6771 		MPASS(credits >= ETID_FLOWC_LEN16);
6772 		credits -= ETID_FLOWC_LEN16;
6773 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
6774 	}
6775 
6776 	KASSERT(cst->ncompl > 0,
6777 	    ("%s: etid %u (%p) wasn't expecting completion.",
6778 	    __func__, etid, cst));
6779 	cst->ncompl--;
6780 
6781 	while (credits > 0) {
6782 		m = mbufq_dequeue(&cst->pending_fwack);
6783 		if (__predict_false(m == NULL)) {
6784 			/*
6785 			 * The remaining credits are for the final flush that
6786 			 * was issued when the tag was freed by the kernel.
6787 			 */
6788 			MPASS((cst->flags &
6789 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
6790 			    EO_FLUSH_RPL_PENDING);
6791 			MPASS(credits == ETID_FLUSH_LEN16);
6792 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
6793 			MPASS(cst->ncompl == 0);
6794 
6795 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
6796 			cst->tx_credits += cpl->credits;
6797 			cxgbe_rate_tag_free_locked(cst);
6798 			return (0);	/* cst is gone. */
6799 		}
6800 		KASSERT(m != NULL,
6801 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
6802 		    credits));
6803 		KASSERT(credits >= mbuf_eo_len16(m),
6804 		    ("%s: too few credits (%u, %u, %u)", __func__,
6805 		    cpl->credits, credits, mbuf_eo_len16(m)));
6806 		credits -= mbuf_eo_len16(m);
6807 		cst->plen -= m->m_pkthdr.len;
6808 		m_freem(m);
6809 	}
6810 
6811 	cst->tx_credits += cpl->credits;
6812 	MPASS(cst->tx_credits <= cst->tx_total);
6813 
6814 	if (cst->flags & EO_SND_TAG_REF) {
6815 		/*
6816 		 * As with ethofld_transmit(), hold an extra reference
6817 		 * so that the tag is stable across ethold_tx().
6818 		 */
6819 		m_snd_tag_ref(&cst->com);
6820 		m = mbufq_first(&cst->pending_tx);
6821 		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
6822 			ethofld_tx(cst);
6823 		mtx_unlock(&cst->lock);
6824 		m_snd_tag_rele(&cst->com);
6825 	} else {
6826 		/*
6827 		 * There shouldn't be any pending packets if the tag
6828 		 * was freed by the kernel since any pending packet
6829 		 * should hold a reference to the tag.
6830 		 */
6831 		MPASS(mbufq_first(&cst->pending_tx) == NULL);
6832 		mtx_unlock(&cst->lock);
6833 	}
6834 
6835 	return (0);
6836 }
6837 #endif
6838