xref: /freebsd/sys/dev/cxgbe/t4_sge.c (revision 71d82199a111af67cba73e32a27a900d74c1a1cc)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011, 2025 Chelsio Communications.
5  * Written by: Navdeep Parhar <np@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_kern_tls.h"
33 #include "opt_ratelimit.h"
34 
35 #include <sys/types.h>
36 #include <sys/eventhandler.h>
37 #include <sys/mbuf.h>
38 #include <sys/socket.h>
39 #include <sys/kernel.h>
40 #include <sys/ktls.h>
41 #include <sys/malloc.h>
42 #include <sys/msan.h>
43 #include <sys/queue.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 #include <sys/time.h>
47 #include <sys/sglist.h>
48 #include <sys/sysctl.h>
49 #include <sys/smp.h>
50 #include <sys/socketvar.h>
51 #include <sys/counter.h>
52 #include <net/bpf.h>
53 #include <net/ethernet.h>
54 #include <net/if.h>
55 #include <net/if_vlan_var.h>
56 #include <net/if_vxlan.h>
57 #include <netinet/in.h>
58 #include <netinet/ip.h>
59 #include <netinet/ip6.h>
60 #include <netinet/tcp.h>
61 #include <netinet/udp.h>
62 #include <machine/in_cksum.h>
63 #include <machine/md_var.h>
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 #ifdef DEV_NETMAP
67 #include <machine/bus.h>
68 #include <sys/selinfo.h>
69 #include <net/if_var.h>
70 #include <net/netmap.h>
71 #include <dev/netmap/netmap_kern.h>
72 #endif
73 
74 #include "common/common.h"
75 #include "common/t4_regs.h"
76 #include "common/t4_regs_values.h"
77 #include "common/t4_msg.h"
78 #include "t4_l2t.h"
79 #include "t4_mp_ring.h"
80 
81 #define RX_COPY_THRESHOLD MINCLSIZE
82 
83 /*
84  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
85  * 0-7 are valid values.
86  */
87 static int fl_pktshift = 0;
88 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
89     "payload DMA offset in rx buffer (bytes)");
90 
91 /*
92  * Pad ethernet payload up to this boundary.
93  * -1: driver should figure out a good value.
94  *  0: disable padding.
95  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
96  */
97 int fl_pad = -1;
98 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
99     "payload pad boundary (bytes)");
100 
101 /*
102  * Status page length.
103  * -1: driver should figure out a good value.
104  *  64 or 128 are the only other valid values.
105  */
106 static int spg_len = -1;
107 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
108     "status page size (bytes)");
109 
110 /*
111  * Congestion drops.
112  * -1: no congestion feedback (not recommended).
113  *  0: backpressure the channel instead of dropping packets right away.
114  *  1: no backpressure, drop packets for the congested queue immediately.
115  *  2: both backpressure and drop.
116  */
117 static int cong_drop = 0;
118 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
119     "Congestion control for NIC RX queues (0 = backpressure, 1 = drop, 2 = both");
120 #ifdef TCP_OFFLOAD
121 static int ofld_cong_drop = 0;
122 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ofld_cong_drop, CTLFLAG_RDTUN, &ofld_cong_drop, 0,
123     "Congestion control for TOE RX queues (0 = backpressure, 1 = drop, 2 = both");
124 #endif
125 
126 /*
127  * Deliver multiple frames in the same free list buffer if they fit.
128  * -1: let the driver decide whether to enable buffer packing or not.
129  *  0: disable buffer packing.
130  *  1: enable buffer packing.
131  */
132 static int buffer_packing = -1;
133 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
134     0, "Enable buffer packing");
135 
136 /*
137  * Start next frame in a packed buffer at this boundary.
138  * -1: driver should figure out a good value.
139  * T4: driver will ignore this and use the same value as fl_pad above.
140  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
141  */
142 static int fl_pack = -1;
143 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
144     "payload pack boundary (bytes)");
145 
146 /*
147  * Largest rx cluster size that the driver is allowed to allocate.
148  */
149 static int largest_rx_cluster = MJUM16BYTES;
150 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
151     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
152 
153 /*
154  * Size of cluster allocation that's most likely to succeed.  The driver will
155  * fall back to this size if it fails to allocate clusters larger than this.
156  */
157 static int safest_rx_cluster = PAGE_SIZE;
158 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
159     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
160 
161 #ifdef RATELIMIT
162 /*
163  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
164  * for rewriting.  -1 and 0-3 are all valid values.
165  * -1: hardware should leave the TCP timestamps alone.
166  * 0: 1ms
167  * 1: 100us
168  * 2: 10us
169  * 3: 1us
170  */
171 static int tsclk = -1;
172 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
173     "Control TCP timestamp rewriting when using pacing");
174 
175 static int eo_max_backlog = 1024 * 1024;
176 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
177     0, "Maximum backlog of ratelimited data per flow");
178 #endif
179 
180 /*
181  * The interrupt holdoff timers are multiplied by this value on T6+.
182  * 1 and 3-17 (both inclusive) are legal values.
183  */
184 static int tscale = 1;
185 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
186     "Interrupt holdoff timer scale on T6+");
187 
188 /*
189  * Number of LRO entries in the lro_ctrl structure per rx queue.
190  */
191 static int lro_entries = TCP_LRO_ENTRIES;
192 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
193     "Number of LRO entries per RX queue");
194 
195 /*
196  * This enables presorting of frames before they're fed into tcp_lro_rx.
197  */
198 static int lro_mbufs = 0;
199 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
200     "Enable presorting of LRO frames");
201 
202 static counter_u64_t pullups;
203 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
204     "Number of mbuf pullups performed");
205 
206 static counter_u64_t defrags;
207 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
208     "Number of mbuf defrags performed");
209 
210 static int t4_tx_coalesce = 1;
211 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
212     "tx coalescing allowed");
213 
214 /*
215  * The driver will make aggressive attempts at tx coalescing if it sees these
216  * many packets eligible for coalescing in quick succession, with no more than
217  * the specified gap in between the eth_tx calls that delivered the packets.
218  */
219 static int t4_tx_coalesce_pkts = 32;
220 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
221     &t4_tx_coalesce_pkts, 0,
222     "# of consecutive packets (1 - 255) that will trigger tx coalescing");
223 static int t4_tx_coalesce_gap = 5;
224 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
225     &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
226 
227 static int service_iq(struct sge_iq *, int);
228 static int service_iq_fl(struct sge_iq *, int);
229 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
230 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
231     u_int);
232 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
233     int, int, int);
234 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
235 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
236     struct sge_iq *, char *);
237 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
238     struct sysctl_ctx_list *, struct sysctl_oid *);
239 static void free_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
240 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
241     struct sge_iq *);
242 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
243     struct sysctl_oid *, struct sge_fl *);
244 static int alloc_iq_fl_hwq(struct vi_info *, struct sge_iq *, struct sge_fl *);
245 static int free_iq_fl_hwq(struct adapter *, struct sge_iq *, struct sge_fl *);
246 static int alloc_fwq(struct adapter *);
247 static void free_fwq(struct adapter *);
248 static int alloc_ctrlq(struct adapter *, int);
249 static void free_ctrlq(struct adapter *, int);
250 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, int);
251 static void free_rxq(struct vi_info *, struct sge_rxq *);
252 static void add_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
253     struct sge_rxq *);
254 #ifdef TCP_OFFLOAD
255 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
256     int);
257 static void free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
258 static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
259     struct sge_ofld_rxq *);
260 #endif
261 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *, int);
262 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *,
263     int);
264 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
265 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *,
266     int);
267 #endif
268 static int alloc_eq(struct adapter *, struct sge_eq *, struct sysctl_ctx_list *,
269     struct sysctl_oid *);
270 static void free_eq(struct adapter *, struct sge_eq *);
271 static void add_eq_sysctls(struct adapter *, struct sysctl_ctx_list *,
272     struct sysctl_oid *, struct sge_eq *);
273 static int alloc_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *,
274     int);
275 static int free_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
276 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
277     struct sysctl_ctx_list *, struct sysctl_oid *);
278 static void free_wrq(struct adapter *, struct sge_wrq *);
279 static void add_wrq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
280     struct sge_wrq *);
281 static int alloc_txq(struct vi_info *, struct sge_txq *, int);
282 static void free_txq(struct vi_info *, struct sge_txq *);
283 static void add_txq_sysctls(struct vi_info *, struct sysctl_ctx_list *,
284     struct sysctl_oid *, struct sge_txq *);
285 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
286 static int alloc_ofld_txq(struct vi_info *, struct sge_ofld_txq *, int);
287 static void free_ofld_txq(struct vi_info *, struct sge_ofld_txq *);
288 static void add_ofld_txq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
289     struct sge_ofld_txq *);
290 #endif
291 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
292 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
293 static int refill_fl(struct adapter *, struct sge_fl *, int);
294 static void refill_sfl(void *);
295 static int find_refill_source(struct adapter *, int, bool);
296 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
297 
298 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
299 static inline u_int txpkt_len16(u_int, const u_int);
300 static inline u_int txpkt_vm_len16(u_int, const u_int);
301 static inline void calculate_mbuf_len16(struct mbuf *, bool);
302 static inline u_int txpkts0_len16(u_int);
303 static inline u_int txpkts1_len16(void);
304 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
305 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
306     u_int);
307 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
308     struct mbuf *);
309 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
310     int, bool *);
311 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
312     int, bool *);
313 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
314 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
315 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
316 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
317 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
318 static inline uint16_t read_hw_cidx(struct sge_eq *);
319 static inline u_int reclaimable_tx_desc(struct sge_eq *);
320 static inline u_int total_available_tx_desc(struct sge_eq *);
321 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
322 static void tx_reclaim(void *, int);
323 static __be64 get_flit(struct sglist_seg *, int, int);
324 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
325     struct mbuf *);
326 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
327     struct mbuf *);
328 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
329 static void wrq_tx_drain(void *, int);
330 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
331 
332 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
333 #ifdef RATELIMIT
334 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
335     struct mbuf *);
336 #if defined(INET) || defined(INET6)
337 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
338 static int ethofld_transmit(if_t, struct mbuf *);
339 #endif
340 #endif
341 
342 static counter_u64_t extfree_refs;
343 static counter_u64_t extfree_rels;
344 
345 an_handler_t t4_an_handler;
346 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
347 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
348 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
349 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
350 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
351 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
352 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
353 cpl_handler_t fw6_pld_handlers[NUM_CPL_FW6_COOKIES];
354 
355 void
t4_register_an_handler(an_handler_t h)356 t4_register_an_handler(an_handler_t h)
357 {
358 	uintptr_t *loc;
359 
360 	MPASS(h == NULL || t4_an_handler == NULL);
361 
362 	loc = (uintptr_t *)&t4_an_handler;
363 	atomic_store_rel_ptr(loc, (uintptr_t)h);
364 }
365 
366 void
t4_register_fw_msg_handler(int type,fw_msg_handler_t h)367 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
368 {
369 	uintptr_t *loc;
370 
371 	MPASS(type < nitems(t4_fw_msg_handler));
372 	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
373 	/*
374 	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
375 	 * handler dispatch table.  Reject any attempt to install a handler for
376 	 * this subtype.
377 	 */
378 	MPASS(type != FW_TYPE_RSSCPL);
379 	MPASS(type != FW6_TYPE_RSSCPL);
380 
381 	loc = (uintptr_t *)&t4_fw_msg_handler[type];
382 	atomic_store_rel_ptr(loc, (uintptr_t)h);
383 }
384 
385 void
t4_register_cpl_handler(int opcode,cpl_handler_t h)386 t4_register_cpl_handler(int opcode, cpl_handler_t h)
387 {
388 	uintptr_t *loc;
389 
390 	MPASS(opcode < nitems(t4_cpl_handler));
391 	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
392 
393 	loc = (uintptr_t *)&t4_cpl_handler[opcode];
394 	atomic_store_rel_ptr(loc, (uintptr_t)h);
395 }
396 
397 static int
set_tcb_rpl_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)398 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
399     struct mbuf *m)
400 {
401 	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
402 	u_int tid;
403 	int cookie;
404 
405 	MPASS(m == NULL);
406 
407 	tid = GET_TID(cpl);
408 	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
409 		/*
410 		 * The return code for filter-write is put in the CPL cookie so
411 		 * we have to rely on the hardware tid (is_ftid) to determine
412 		 * that this is a response to a filter.
413 		 */
414 		cookie = CPL_COOKIE_FILTER;
415 	} else {
416 		cookie = G_COOKIE(cpl->cookie);
417 	}
418 	MPASS(cookie > CPL_COOKIE_RESERVED);
419 	MPASS(cookie < nitems(set_tcb_rpl_handlers));
420 
421 	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
422 }
423 
424 static int
l2t_write_rpl_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)425 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
426     struct mbuf *m)
427 {
428 	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
429 	unsigned int cookie;
430 
431 	MPASS(m == NULL);
432 
433 	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
434 	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
435 }
436 
437 static int
act_open_rpl_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)438 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
439     struct mbuf *m)
440 {
441 	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
442 	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
443 
444 	MPASS(m == NULL);
445 	MPASS(cookie != CPL_COOKIE_RESERVED);
446 
447 	return (act_open_rpl_handlers[cookie](iq, rss, m));
448 }
449 
450 static int
abort_rpl_rss_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)451 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
452     struct mbuf *m)
453 {
454 	struct adapter *sc = iq->adapter;
455 	u_int cookie;
456 
457 	MPASS(m == NULL);
458 	if (is_hashfilter(sc))
459 		cookie = CPL_COOKIE_HASHFILTER;
460 	else
461 		cookie = CPL_COOKIE_TOM;
462 
463 	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
464 }
465 
466 static int
fw4_ack_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)467 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
468 {
469 	struct adapter *sc = iq->adapter;
470 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
471 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
472 	u_int cookie;
473 
474 	MPASS(m == NULL);
475 	if (is_etid(sc, tid))
476 		cookie = CPL_COOKIE_ETHOFLD;
477 	else
478 		cookie = CPL_COOKIE_TOM;
479 
480 	return (fw4_ack_handlers[cookie](iq, rss, m));
481 }
482 
483 static int
fw6_pld_handler(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)484 fw6_pld_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
485 {
486 	const struct cpl_fw6_pld *cpl;
487 	uint64_t cookie;
488 
489 	if (m != NULL)
490 		cpl = mtod(m, const void *);
491 	else
492 		cpl = (const void *)(rss + 1);
493 	cookie = be64toh(cpl->data[1]) & CPL_FW6_COOKIE_MASK;
494 
495 	return (fw6_pld_handlers[cookie](iq, rss, m));
496 }
497 
498 static void
t4_init_shared_cpl_handlers(void)499 t4_init_shared_cpl_handlers(void)
500 {
501 
502 	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
503 	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
504 	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
505 	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
506 	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
507 	t4_register_cpl_handler(CPL_FW6_PLD, fw6_pld_handler);
508 }
509 
510 void
t4_register_shared_cpl_handler(int opcode,cpl_handler_t h,int cookie)511 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
512 {
513 	uintptr_t *loc;
514 
515 	MPASS(opcode < nitems(t4_cpl_handler));
516 	if (opcode == CPL_FW6_PLD) {
517 		MPASS(cookie < NUM_CPL_FW6_COOKIES);
518 	} else {
519 		MPASS(cookie > CPL_COOKIE_RESERVED);
520 		MPASS(cookie < NUM_CPL_COOKIES);
521 	}
522 	MPASS(t4_cpl_handler[opcode] != NULL);
523 
524 	switch (opcode) {
525 	case CPL_SET_TCB_RPL:
526 		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
527 		break;
528 	case CPL_L2T_WRITE_RPL:
529 		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
530 		break;
531 	case CPL_ACT_OPEN_RPL:
532 		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
533 		break;
534 	case CPL_ABORT_RPL_RSS:
535 		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
536 		break;
537 	case CPL_FW4_ACK:
538 		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
539 		break;
540 	case CPL_FW6_PLD:
541 		loc = (uintptr_t *)&fw6_pld_handlers[cookie];
542 		break;
543 	default:
544 		MPASS(0);
545 		return;
546 	}
547 	MPASS(h == NULL || *loc == (uintptr_t)NULL);
548 	atomic_store_rel_ptr(loc, (uintptr_t)h);
549 }
550 
551 /*
552  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
553  */
554 void
t4_sge_modload(void)555 t4_sge_modload(void)
556 {
557 
558 	if (fl_pktshift < 0 || fl_pktshift > 7) {
559 		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
560 		    " using 0 instead.\n", fl_pktshift);
561 		fl_pktshift = 0;
562 	}
563 
564 	if (spg_len != 64 && spg_len != 128) {
565 		int len;
566 
567 #if defined(__i386__) || defined(__amd64__)
568 		len = cpu_clflush_line_size > 64 ? 128 : 64;
569 #else
570 		len = 64;
571 #endif
572 		if (spg_len != -1) {
573 			printf("Invalid hw.cxgbe.spg_len value (%d),"
574 			    " using %d instead.\n", spg_len, len);
575 		}
576 		spg_len = len;
577 	}
578 
579 	if (cong_drop < -1 || cong_drop > 2) {
580 		printf("Invalid hw.cxgbe.cong_drop value (%d),"
581 		    " using 0 instead.\n", cong_drop);
582 		cong_drop = 0;
583 	}
584 #ifdef TCP_OFFLOAD
585 	if (ofld_cong_drop < -1 || ofld_cong_drop > 2) {
586 		printf("Invalid hw.cxgbe.ofld_cong_drop value (%d),"
587 		    " using 0 instead.\n", ofld_cong_drop);
588 		ofld_cong_drop = 0;
589 	}
590 #endif
591 
592 	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
593 		printf("Invalid hw.cxgbe.tscale value (%d),"
594 		    " using 1 instead.\n", tscale);
595 		tscale = 1;
596 	}
597 
598 	if (largest_rx_cluster != MCLBYTES &&
599 #if MJUMPAGESIZE != MCLBYTES
600 	    largest_rx_cluster != MJUMPAGESIZE &&
601 #endif
602 	    largest_rx_cluster != MJUM9BYTES &&
603 	    largest_rx_cluster != MJUM16BYTES) {
604 		printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
605 		    " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
606 		largest_rx_cluster = MJUM16BYTES;
607 	}
608 
609 	if (safest_rx_cluster != MCLBYTES &&
610 #if MJUMPAGESIZE != MCLBYTES
611 	    safest_rx_cluster != MJUMPAGESIZE &&
612 #endif
613 	    safest_rx_cluster != MJUM9BYTES &&
614 	    safest_rx_cluster != MJUM16BYTES) {
615 		printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
616 		    " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
617 		safest_rx_cluster = MJUMPAGESIZE;
618 	}
619 
620 	extfree_refs = counter_u64_alloc(M_WAITOK);
621 	extfree_rels = counter_u64_alloc(M_WAITOK);
622 	pullups = counter_u64_alloc(M_WAITOK);
623 	defrags = counter_u64_alloc(M_WAITOK);
624 	counter_u64_zero(extfree_refs);
625 	counter_u64_zero(extfree_rels);
626 	counter_u64_zero(pullups);
627 	counter_u64_zero(defrags);
628 
629 	t4_init_shared_cpl_handlers();
630 	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
631 	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
632 	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
633 #ifdef RATELIMIT
634 	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
635 	    CPL_COOKIE_ETHOFLD);
636 #endif
637 	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
638 	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
639 }
640 
641 void
t4_sge_modunload(void)642 t4_sge_modunload(void)
643 {
644 
645 	counter_u64_free(extfree_refs);
646 	counter_u64_free(extfree_rels);
647 	counter_u64_free(pullups);
648 	counter_u64_free(defrags);
649 }
650 
651 uint64_t
t4_sge_extfree_refs(void)652 t4_sge_extfree_refs(void)
653 {
654 	uint64_t refs, rels;
655 
656 	rels = counter_u64_fetch(extfree_rels);
657 	refs = counter_u64_fetch(extfree_refs);
658 
659 	return (refs - rels);
660 }
661 
662 /* max 4096 */
663 #define MAX_PACK_BOUNDARY 512
664 
665 static inline void
setup_pad_and_pack_boundaries(struct adapter * sc)666 setup_pad_and_pack_boundaries(struct adapter *sc)
667 {
668 	uint32_t v, m;
669 	int pad, pack, pad_shift;
670 
671 	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
672 	    X_INGPADBOUNDARY_SHIFT;
673 	pad = fl_pad;
674 	if (fl_pad < (1 << pad_shift) ||
675 	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
676 	    !powerof2(fl_pad)) {
677 		/*
678 		 * If there is any chance that we might use buffer packing and
679 		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
680 		 * it to the minimum allowed in all other cases.
681 		 */
682 		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
683 
684 		/*
685 		 * For fl_pad = 0 we'll still write a reasonable value to the
686 		 * register but all the freelists will opt out of padding.
687 		 * We'll complain here only if the user tried to set it to a
688 		 * value greater than 0 that was invalid.
689 		 */
690 		if (fl_pad > 0) {
691 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
692 			    " (%d), using %d instead.\n", fl_pad, pad);
693 		}
694 	}
695 	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
696 	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
697 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
698 
699 	if (is_t4(sc)) {
700 		if (fl_pack != -1 && fl_pack != pad) {
701 			/* Complain but carry on. */
702 			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
703 			    " using %d instead.\n", fl_pack, pad);
704 		}
705 		return;
706 	}
707 
708 	pack = fl_pack;
709 	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
710 	    !powerof2(fl_pack)) {
711 		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
712 			pack = MAX_PACK_BOUNDARY;
713 		else
714 			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
715 		MPASS(powerof2(pack));
716 		if (pack < 16)
717 			pack = 16;
718 		if (pack == 32)
719 			pack = 64;
720 		if (pack > 4096)
721 			pack = 4096;
722 		if (fl_pack != -1) {
723 			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
724 			    " (%d), using %d instead.\n", fl_pack, pack);
725 		}
726 	}
727 	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
728 	if (pack == 16)
729 		v = V_INGPACKBOUNDARY(0);
730 	else
731 		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
732 
733 	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
734 	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
735 }
736 
737 /*
738  * adap->params.vpd.cclk must be set up before this is called.
739  */
740 void
t4_tweak_chip_settings(struct adapter * sc)741 t4_tweak_chip_settings(struct adapter *sc)
742 {
743 	int i, reg;
744 	uint32_t v, m;
745 	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
746 	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
747 	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
748 	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
749 	static int sw_buf_sizes[] = {
750 		MCLBYTES,
751 #if MJUMPAGESIZE != MCLBYTES
752 		MJUMPAGESIZE,
753 #endif
754 		MJUM9BYTES,
755 		MJUM16BYTES
756 	};
757 
758 	KASSERT(sc->flags & MASTER_PF,
759 	    ("%s: trying to change chip settings when not master.", __func__));
760 
761 	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
762 	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
763 	    V_EGRSTATUSPAGESIZE(spg_len == 128);
764 	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
765 
766 	setup_pad_and_pack_boundaries(sc);
767 
768 	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
769 	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
770 	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
771 	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
772 	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
773 	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
774 	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
775 	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
776 	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
777 
778 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
779 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
780 	reg = A_SGE_FL_BUFFER_SIZE2;
781 	for (i = 0; i < nitems(sw_buf_sizes); i++) {
782 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
783 		t4_write_reg(sc, reg, sw_buf_sizes[i]);
784 		reg += 4;
785 		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
786 		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
787 		reg += 4;
788 	}
789 
790 	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
791 	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
792 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
793 
794 	KASSERT(intr_timer[0] <= timer_max,
795 	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
796 	    timer_max));
797 	for (i = 1; i < nitems(intr_timer); i++) {
798 		KASSERT(intr_timer[i] >= intr_timer[i - 1],
799 		    ("%s: timers not listed in increasing order (%d)",
800 		    __func__, i));
801 
802 		while (intr_timer[i] > timer_max) {
803 			if (i == nitems(intr_timer) - 1) {
804 				intr_timer[i] = timer_max;
805 				break;
806 			}
807 			intr_timer[i] += intr_timer[i - 1];
808 			intr_timer[i] /= 2;
809 		}
810 	}
811 
812 	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
813 	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
814 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
815 	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
816 	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
817 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
818 	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
819 	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
820 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
821 
822 	if (chip_id(sc) >= CHELSIO_T6) {
823 		m = V_TSCALE(M_TSCALE);
824 		if (tscale == 1)
825 			v = 0;
826 		else
827 			v = V_TSCALE(tscale - 2);
828 		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
829 
830 		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
831 			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
832 			    V_WRTHRTHRESH(M_WRTHRTHRESH);
833 			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
834 			v &= ~m;
835 			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
836 			    V_WRTHRTHRESH(16);
837 			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
838 		}
839 	}
840 
841 	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
842 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
843 	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
844 
845 	/*
846 	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
847 	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
848 	 * may have to deal with is MAXPHYS + 1 page.
849 	 */
850 	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
851 	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
852 
853 	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
854 	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
855 	if (sc->nvmecaps != 0) {
856 		/* Request DDP status bit for NVMe PDU completions. */
857 		m |= F_NVME_TCP_DDP_VAL_EN;
858 		v |= F_NVME_TCP_DDP_VAL_EN;
859 	}
860 	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
861 
862 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
863 	    F_RESETDDPOFFSET;
864 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
865 	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
866 }
867 
868 /*
869  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
870  * address mut be 16B aligned.  If padding is in use the buffer's start and end
871  * need to be aligned to the pad boundary as well.  We'll just make sure that
872  * the size is a multiple of the pad boundary here, it is up to the buffer
873  * allocation code to make sure the start of the buffer is aligned.
874  */
875 static inline int
hwsz_ok(struct adapter * sc,int hwsz)876 hwsz_ok(struct adapter *sc, int hwsz)
877 {
878 	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
879 
880 	return (hwsz >= 64 && (hwsz & mask) == 0);
881 }
882 
883 /*
884  * Initialize the rx buffer sizes and figure out which zones the buffers will
885  * be allocated from.
886  */
887 void
t4_init_rx_buf_info(struct adapter * sc)888 t4_init_rx_buf_info(struct adapter *sc)
889 {
890 	struct sge *s = &sc->sge;
891 	struct sge_params *sp = &sc->params.sge;
892 	int i, j, n;
893 	static int sw_buf_sizes[] = {	/* Sorted by size */
894 		MCLBYTES,
895 #if MJUMPAGESIZE != MCLBYTES
896 		MJUMPAGESIZE,
897 #endif
898 		MJUM9BYTES,
899 		MJUM16BYTES
900 	};
901 	struct rx_buf_info *rxb;
902 
903 	s->safe_zidx = -1;
904 	rxb = &s->rx_buf_info[0];
905 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
906 		rxb->size1 = sw_buf_sizes[i];
907 		rxb->zone = m_getzone(rxb->size1);
908 		rxb->type = m_gettype(rxb->size1);
909 		rxb->size2 = 0;
910 		rxb->hwidx1 = -1;
911 		rxb->hwidx2 = -1;
912 		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
913 			int hwsize = sp->sge_fl_buffer_size[j];
914 
915 			if (!hwsz_ok(sc, hwsize))
916 				continue;
917 
918 			/* hwidx for size1 */
919 			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
920 				rxb->hwidx1 = j;
921 
922 			/* hwidx for size2 (buffer packing) */
923 			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
924 				continue;
925 			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
926 			if (n == 0) {
927 				rxb->hwidx2 = j;
928 				rxb->size2 = hwsize;
929 				break;	/* stop looking */
930 			}
931 			if (rxb->hwidx2 != -1) {
932 				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
933 				    hwsize - CL_METADATA_SIZE) {
934 					rxb->hwidx2 = j;
935 					rxb->size2 = hwsize;
936 				}
937 			} else if (n <= 2 * CL_METADATA_SIZE) {
938 				rxb->hwidx2 = j;
939 				rxb->size2 = hwsize;
940 			}
941 		}
942 		if (rxb->hwidx2 != -1)
943 			sc->flags |= BUF_PACKING_OK;
944 		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
945 			s->safe_zidx = i;
946 	}
947 }
948 
949 /*
950  * Verify some basic SGE settings for the PF and VF driver, and other
951  * miscellaneous settings for the PF driver.
952  */
953 int
t4_verify_chip_settings(struct adapter * sc)954 t4_verify_chip_settings(struct adapter *sc)
955 {
956 	struct sge_params *sp = &sc->params.sge;
957 	uint32_t m, v, r;
958 	int rc = 0;
959 	const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
960 
961 	m = F_RXPKTCPLMODE;
962 	v = F_RXPKTCPLMODE;
963 	r = sp->sge_control;
964 	if ((r & m) != v) {
965 		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
966 		rc = EINVAL;
967 	}
968 
969 	/*
970 	 * If this changes then every single use of PAGE_SHIFT in the driver
971 	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
972 	 */
973 	if (sp->page_shift != PAGE_SHIFT) {
974 		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
975 		rc = EINVAL;
976 	}
977 
978 	if (sc->flags & IS_VF)
979 		return (0);
980 
981 	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
982 	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
983 	if (r != v) {
984 		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
985 		if (sc->vres.ddp.size != 0)
986 			rc = EINVAL;
987 	}
988 
989 	m = v = F_TDDPTAGTCB;
990 	r = t4_read_reg(sc, A_ULP_RX_CTL);
991 	if ((r & m) != v) {
992 		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
993 		if (sc->vres.ddp.size != 0)
994 			rc = EINVAL;
995 	}
996 
997 	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
998 	    F_RESETDDPOFFSET;
999 	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
1000 	r = t4_read_reg(sc, A_TP_PARA_REG5);
1001 	if ((r & m) != v) {
1002 		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
1003 		if (sc->vres.ddp.size != 0)
1004 			rc = EINVAL;
1005 	}
1006 
1007 	return (rc);
1008 }
1009 
1010 int
t4_create_dma_tag(struct adapter * sc)1011 t4_create_dma_tag(struct adapter *sc)
1012 {
1013 	int rc;
1014 
1015 	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
1016 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
1017 	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
1018 	    NULL, &sc->dmat);
1019 	if (rc != 0) {
1020 		device_printf(sc->dev,
1021 		    "failed to create main DMA tag: %d\n", rc);
1022 	}
1023 
1024 	return (rc);
1025 }
1026 
1027 void
t4_sge_sysctls(struct adapter * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid_list * children)1028 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
1029     struct sysctl_oid_list *children)
1030 {
1031 	struct sge_params *sp = &sc->params.sge;
1032 
1033 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
1034 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
1035 	    sysctl_bufsizes, "A", "freelist buffer sizes");
1036 
1037 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
1038 	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
1039 
1040 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
1041 	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
1042 
1043 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
1044 	    NULL, sp->spg_len, "status page size (bytes)");
1045 
1046 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
1047 	    NULL, cong_drop, "congestion drop setting");
1048 #ifdef TCP_OFFLOAD
1049 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ofld_cong_drop", CTLFLAG_RD,
1050 	    NULL, ofld_cong_drop, "congestion drop setting");
1051 #endif
1052 
1053 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
1054 	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1055 }
1056 
1057 int
t4_destroy_dma_tag(struct adapter * sc)1058 t4_destroy_dma_tag(struct adapter *sc)
1059 {
1060 	if (sc->dmat)
1061 		bus_dma_tag_destroy(sc->dmat);
1062 
1063 	return (0);
1064 }
1065 
1066 /*
1067  * Allocate and initialize the firmware event queue, control queues, and special
1068  * purpose rx queues owned by the adapter.
1069  *
1070  * Returns errno on failure.  Resources allocated up to that point may still be
1071  * allocated.  Caller is responsible for cleanup in case this function fails.
1072  */
1073 int
t4_setup_adapter_queues(struct adapter * sc)1074 t4_setup_adapter_queues(struct adapter *sc)
1075 {
1076 	int rc, i;
1077 
1078 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1079 
1080 	/*
1081 	 * Firmware event queue
1082 	 */
1083 	rc = alloc_fwq(sc);
1084 	if (rc != 0)
1085 		return (rc);
1086 
1087 	/*
1088 	 * That's all for the VF driver.
1089 	 */
1090 	if (sc->flags & IS_VF)
1091 		return (rc);
1092 
1093 	/*
1094 	 * XXX: General purpose rx queues, one per port.
1095 	 */
1096 
1097 	/*
1098 	 * Control queues.  At least one per port and per internal core.
1099 	 */
1100 	for (i = 0; i < sc->sge.nctrlq; i++) {
1101 		rc = alloc_ctrlq(sc, i);
1102 		if (rc != 0)
1103 			return (rc);
1104 	}
1105 
1106 	return (rc);
1107 }
1108 
1109 /*
1110  * Idempotent
1111  */
1112 int
t4_teardown_adapter_queues(struct adapter * sc)1113 t4_teardown_adapter_queues(struct adapter *sc)
1114 {
1115 	int i;
1116 
1117 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1118 
1119 	if (sc->sge.ctrlq != NULL) {
1120 		MPASS(!(sc->flags & IS_VF));	/* VFs don't allocate ctrlq. */
1121 		for (i = 0; i < sc->sge.nctrlq; i++)
1122 			free_ctrlq(sc, i);
1123 	}
1124 	free_fwq(sc);
1125 
1126 	return (0);
1127 }
1128 
1129 /* Maximum payload that could arrive with a single iq descriptor. */
1130 static inline int
max_rx_payload(struct adapter * sc,if_t ifp,const bool ofld)1131 max_rx_payload(struct adapter *sc, if_t ifp, const bool ofld)
1132 {
1133 	int maxp;
1134 
1135 	/* large enough even when hw VLAN extraction is disabled */
1136 	maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1137 	    ETHER_VLAN_ENCAP_LEN + if_getmtu(ifp);
1138 	if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1139 	    maxp < sc->params.tp.max_rx_pdu)
1140 		maxp = sc->params.tp.max_rx_pdu;
1141 	return (maxp);
1142 }
1143 
1144 int
t4_setup_vi_queues(struct vi_info * vi)1145 t4_setup_vi_queues(struct vi_info *vi)
1146 {
1147 	int rc = 0, i, intr_idx;
1148 	struct sge_rxq *rxq;
1149 	struct sge_txq *txq;
1150 #ifdef TCP_OFFLOAD
1151 	struct sge_ofld_rxq *ofld_rxq;
1152 #endif
1153 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1154 	struct sge_ofld_txq *ofld_txq;
1155 #endif
1156 #ifdef DEV_NETMAP
1157 	int saved_idx, iqidx;
1158 	struct sge_nm_rxq *nm_rxq;
1159 	struct sge_nm_txq *nm_txq;
1160 #endif
1161 	struct adapter *sc = vi->adapter;
1162 	if_t ifp = vi->ifp;
1163 	int maxp;
1164 
1165 	/* Interrupt vector to start from (when using multiple vectors) */
1166 	intr_idx = vi->first_intr;
1167 
1168 #ifdef DEV_NETMAP
1169 	saved_idx = intr_idx;
1170 	if (if_getcapabilities(ifp) & IFCAP_NETMAP) {
1171 
1172 		/* netmap is supported with direct interrupts only. */
1173 		MPASS(!forwarding_intr_to_fwq(sc));
1174 		MPASS(vi->first_intr >= 0);
1175 
1176 		/*
1177 		 * We don't have buffers to back the netmap rx queues
1178 		 * right now so we create the queues in a way that
1179 		 * doesn't set off any congestion signal in the chip.
1180 		 */
1181 		for_each_nm_rxq(vi, i, nm_rxq) {
1182 			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i);
1183 			if (rc != 0)
1184 				goto done;
1185 			intr_idx++;
1186 		}
1187 
1188 		for_each_nm_txq(vi, i, nm_txq) {
1189 			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1190 			rc = alloc_nm_txq(vi, nm_txq, iqidx, i);
1191 			if (rc != 0)
1192 				goto done;
1193 		}
1194 	}
1195 
1196 	/* Normal rx queues and netmap rx queues share the same interrupts. */
1197 	intr_idx = saved_idx;
1198 #endif
1199 
1200 	/*
1201 	 * Allocate rx queues first because a default iqid is required when
1202 	 * creating a tx queue.
1203 	 */
1204 	maxp = max_rx_payload(sc, ifp, false);
1205 	for_each_rxq(vi, i, rxq) {
1206 		rc = alloc_rxq(vi, rxq, i, intr_idx, maxp);
1207 		if (rc != 0)
1208 			goto done;
1209 		if (!forwarding_intr_to_fwq(sc))
1210 			intr_idx++;
1211 	}
1212 #ifdef DEV_NETMAP
1213 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
1214 		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1215 #endif
1216 #ifdef TCP_OFFLOAD
1217 	maxp = max_rx_payload(sc, ifp, true);
1218 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1219 		rc = alloc_ofld_rxq(vi, ofld_rxq, i, intr_idx, maxp);
1220 		if (rc != 0)
1221 			goto done;
1222 		if (!forwarding_intr_to_fwq(sc))
1223 			intr_idx++;
1224 	}
1225 #endif
1226 
1227 	/*
1228 	 * Now the tx queues.
1229 	 */
1230 	for_each_txq(vi, i, txq) {
1231 		rc = alloc_txq(vi, txq, i);
1232 		if (rc != 0)
1233 			goto done;
1234 	}
1235 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1236 	for_each_ofld_txq(vi, i, ofld_txq) {
1237 		rc = alloc_ofld_txq(vi, ofld_txq, i);
1238 		if (rc != 0)
1239 			goto done;
1240 	}
1241 #endif
1242 done:
1243 	if (rc)
1244 		t4_teardown_vi_queues(vi);
1245 
1246 	return (rc);
1247 }
1248 
1249 /*
1250  * Idempotent
1251  */
1252 int
t4_teardown_vi_queues(struct vi_info * vi)1253 t4_teardown_vi_queues(struct vi_info *vi)
1254 {
1255 	int i;
1256 	struct sge_rxq *rxq;
1257 	struct sge_txq *txq;
1258 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1259 	struct sge_ofld_txq *ofld_txq;
1260 #endif
1261 #ifdef TCP_OFFLOAD
1262 	struct sge_ofld_rxq *ofld_rxq;
1263 #endif
1264 #ifdef DEV_NETMAP
1265 	struct sge_nm_rxq *nm_rxq;
1266 	struct sge_nm_txq *nm_txq;
1267 #endif
1268 
1269 #ifdef DEV_NETMAP
1270 	if (if_getcapabilities(vi->ifp) & IFCAP_NETMAP) {
1271 		for_each_nm_txq(vi, i, nm_txq) {
1272 			free_nm_txq(vi, nm_txq);
1273 		}
1274 
1275 		for_each_nm_rxq(vi, i, nm_rxq) {
1276 			free_nm_rxq(vi, nm_rxq);
1277 		}
1278 	}
1279 #endif
1280 
1281 	/*
1282 	 * Take down all the tx queues first, as they reference the rx queues
1283 	 * (for egress updates, etc.).
1284 	 */
1285 
1286 	for_each_txq(vi, i, txq) {
1287 		free_txq(vi, txq);
1288 	}
1289 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1290 	for_each_ofld_txq(vi, i, ofld_txq) {
1291 		free_ofld_txq(vi, ofld_txq);
1292 	}
1293 #endif
1294 
1295 	/*
1296 	 * Then take down the rx queues.
1297 	 */
1298 
1299 	for_each_rxq(vi, i, rxq) {
1300 		free_rxq(vi, rxq);
1301 	}
1302 #ifdef TCP_OFFLOAD
1303 	for_each_ofld_rxq(vi, i, ofld_rxq) {
1304 		free_ofld_rxq(vi, ofld_rxq);
1305 	}
1306 #endif
1307 
1308 	return (0);
1309 }
1310 
1311 /*
1312  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1313  * unusual scenario.
1314  *
1315  * a) Deals with errors, if any.
1316  * b) Services firmware event queue, which is taking interrupts for all other
1317  *    queues.
1318  */
1319 void
t4_intr_all(void * arg)1320 t4_intr_all(void *arg)
1321 {
1322 	struct adapter *sc = arg;
1323 	struct sge_iq *fwq = &sc->sge.fwq;
1324 
1325 	MPASS(sc->intr_count == 1);
1326 
1327 	if (sc->intr_type == INTR_INTX)
1328 		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1329 
1330 	t4_intr_err(arg);
1331 	t4_intr_evt(fwq);
1332 }
1333 
1334 /*
1335  * Interrupt handler for errors (installed directly when multiple interrupts are
1336  * being used, or called by t4_intr_all).
1337  */
1338 void
t4_intr_err(void * arg)1339 t4_intr_err(void *arg)
1340 {
1341 	struct adapter *sc = arg;
1342 	uint32_t v;
1343 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1344 
1345 	if (atomic_load_int(&sc->error_flags) & ADAP_FATAL_ERR)
1346 		return;
1347 
1348 	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1349 	if (v & F_PFSW) {
1350 		sc->swintr++;
1351 		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1352 	}
1353 
1354 	if (t4_slow_intr_handler(sc, verbose))
1355 		t4_fatal_err(sc, false);
1356 }
1357 
1358 /*
1359  * Interrupt handler for iq-only queues.  The firmware event queue is the only
1360  * such queue right now.
1361  */
1362 void
t4_intr_evt(void * arg)1363 t4_intr_evt(void *arg)
1364 {
1365 	struct sge_iq *iq = arg;
1366 
1367 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1368 		service_iq(iq, 0);
1369 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1370 	}
1371 }
1372 
1373 /*
1374  * Interrupt handler for iq+fl queues.
1375  */
1376 void
t4_intr(void * arg)1377 t4_intr(void *arg)
1378 {
1379 	struct sge_iq *iq = arg;
1380 
1381 	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1382 		service_iq_fl(iq, 0);
1383 		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1384 	}
1385 }
1386 
1387 #ifdef DEV_NETMAP
1388 /*
1389  * Interrupt handler for netmap rx queues.
1390  */
1391 void
t4_nm_intr(void * arg)1392 t4_nm_intr(void *arg)
1393 {
1394 	struct sge_nm_rxq *nm_rxq = arg;
1395 
1396 	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1397 		service_nm_rxq(nm_rxq);
1398 		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1399 	}
1400 }
1401 
1402 /*
1403  * Interrupt handler for vectors shared between NIC and netmap rx queues.
1404  */
1405 void
t4_vi_intr(void * arg)1406 t4_vi_intr(void *arg)
1407 {
1408 	struct irq *irq = arg;
1409 
1410 	MPASS(irq->nm_rxq != NULL);
1411 	t4_nm_intr(irq->nm_rxq);
1412 
1413 	MPASS(irq->rxq != NULL);
1414 	t4_intr(irq->rxq);
1415 }
1416 #endif
1417 
1418 /*
1419  * Deals with interrupts on an iq-only (no freelist) queue.
1420  */
1421 static int
service_iq(struct sge_iq * iq,int budget)1422 service_iq(struct sge_iq *iq, int budget)
1423 {
1424 	struct sge_iq *q;
1425 	struct adapter *sc = iq->adapter;
1426 	struct iq_desc *d = &iq->desc[iq->cidx];
1427 	int ndescs = 0, limit;
1428 	int rsp_type;
1429 	uint32_t lq;
1430 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1431 
1432 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1433 	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1434 	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1435 	    iq->flags));
1436 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1437 	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1438 
1439 	limit = budget ? budget : iq->qsize / 16;
1440 
1441 	/*
1442 	 * We always come back and check the descriptor ring for new indirect
1443 	 * interrupts and other responses after running a single handler.
1444 	 */
1445 	for (;;) {
1446 		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1447 
1448 			rmb();
1449 
1450 			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1451 			lq = be32toh(d->rsp.pldbuflen_qid);
1452 
1453 			switch (rsp_type) {
1454 			case X_RSPD_TYPE_FLBUF:
1455 				panic("%s: data for an iq (%p) with no freelist",
1456 				    __func__, iq);
1457 
1458 				/* NOTREACHED */
1459 
1460 			case X_RSPD_TYPE_CPL:
1461 				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1462 				    ("%s: bad opcode %02x.", __func__,
1463 				    d->rss.opcode));
1464 				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1465 				break;
1466 
1467 			case X_RSPD_TYPE_INTR:
1468 				/*
1469 				 * There are 1K interrupt-capable queues (qids 0
1470 				 * through 1023).  A response type indicating a
1471 				 * forwarded interrupt with a qid >= 1K is an
1472 				 * iWARP async notification.
1473 				 */
1474 				if (__predict_true(lq >= 1024)) {
1475 					t4_an_handler(iq, &d->rsp);
1476 					break;
1477 				}
1478 
1479 				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1480 				    sc->sge.iq_base];
1481 				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1482 				    IQS_BUSY)) {
1483 					if (service_iq_fl(q, q->qsize / 16) == 0) {
1484 						(void) atomic_cmpset_int(&q->state,
1485 						    IQS_BUSY, IQS_IDLE);
1486 					} else {
1487 						STAILQ_INSERT_TAIL(&iql, q,
1488 						    link);
1489 					}
1490 				}
1491 				break;
1492 
1493 			default:
1494 				KASSERT(0,
1495 				    ("%s: illegal response type %d on iq %p",
1496 				    __func__, rsp_type, iq));
1497 				log(LOG_ERR,
1498 				    "%s: illegal response type %d on iq %p",
1499 				    device_get_nameunit(sc->dev), rsp_type, iq);
1500 				break;
1501 			}
1502 
1503 			d++;
1504 			if (__predict_false(++iq->cidx == iq->sidx)) {
1505 				iq->cidx = 0;
1506 				iq->gen ^= F_RSPD_GEN;
1507 				d = &iq->desc[0];
1508 			}
1509 			if (__predict_false(++ndescs == limit)) {
1510 				t4_write_reg(sc, sc->sge_gts_reg,
1511 				    V_CIDXINC(ndescs) |
1512 				    V_INGRESSQID(iq->cntxt_id) |
1513 				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1514 				ndescs = 0;
1515 
1516 				if (budget) {
1517 					return (EINPROGRESS);
1518 				}
1519 			}
1520 		}
1521 
1522 		if (STAILQ_EMPTY(&iql))
1523 			break;
1524 
1525 		/*
1526 		 * Process the head only, and send it to the back of the list if
1527 		 * it's still not done.
1528 		 */
1529 		q = STAILQ_FIRST(&iql);
1530 		STAILQ_REMOVE_HEAD(&iql, link);
1531 		if (service_iq_fl(q, q->qsize / 8) == 0)
1532 			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1533 		else
1534 			STAILQ_INSERT_TAIL(&iql, q, link);
1535 	}
1536 
1537 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1538 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1539 
1540 	return (0);
1541 }
1542 
1543 #if defined(INET) || defined(INET6)
1544 static inline int
sort_before_lro(struct lro_ctrl * lro)1545 sort_before_lro(struct lro_ctrl *lro)
1546 {
1547 
1548 	return (lro->lro_mbuf_max != 0);
1549 }
1550 #endif
1551 
1552 #define CGBE_SHIFT_SCALE 10
1553 
1554 static inline uint64_t
t4_tstmp_to_ns(struct adapter * sc,uint64_t lf)1555 t4_tstmp_to_ns(struct adapter *sc, uint64_t lf)
1556 {
1557 	struct clock_sync *cur, dcur;
1558 	uint64_t hw_clocks;
1559 	uint64_t hw_clk_div;
1560 	sbintime_t sbt_cur_to_prev, sbt;
1561 	uint64_t hw_tstmp = lf & 0xfffffffffffffffULL;	/* 60b, not 64b. */
1562 	seqc_t gen;
1563 
1564 	for (;;) {
1565 		cur = &sc->cal_info[sc->cal_current];
1566 		gen = seqc_read(&cur->gen);
1567 		if (gen == 0)
1568 			return (0);
1569 		dcur = *cur;
1570 		if (seqc_consistent(&cur->gen, gen))
1571 			break;
1572 	}
1573 
1574 	/*
1575 	 * Our goal here is to have a result that is:
1576 	 *
1577 	 * (                             (cur_time - prev_time)   )
1578 	 * ((hw_tstmp - hw_prev) *  ----------------------------- ) + prev_time
1579 	 * (                             (hw_cur - hw_prev)       )
1580 	 *
1581 	 * With the constraints that we cannot use float and we
1582 	 * don't want to overflow the uint64_t numbers we are using.
1583 	 */
1584 	hw_clocks = hw_tstmp - dcur.hw_prev;
1585 	sbt_cur_to_prev = (dcur.sbt_cur - dcur.sbt_prev);
1586 	hw_clk_div = dcur.hw_cur - dcur.hw_prev;
1587 	sbt = hw_clocks * sbt_cur_to_prev / hw_clk_div + dcur.sbt_prev;
1588 	return (sbttons(sbt));
1589 }
1590 
1591 static inline void
move_to_next_rxbuf(struct sge_fl * fl)1592 move_to_next_rxbuf(struct sge_fl *fl)
1593 {
1594 
1595 	fl->rx_offset = 0;
1596 	if (__predict_false((++fl->cidx & 7) == 0)) {
1597 		uint16_t cidx = fl->cidx >> 3;
1598 
1599 		if (__predict_false(cidx == fl->sidx))
1600 			fl->cidx = cidx = 0;
1601 		fl->hw_cidx = cidx;
1602 	}
1603 }
1604 
1605 /*
1606  * Deals with interrupts on an iq+fl queue.
1607  */
1608 static int
service_iq_fl(struct sge_iq * iq,int budget)1609 service_iq_fl(struct sge_iq *iq, int budget)
1610 {
1611 	struct sge_rxq *rxq = iq_to_rxq(iq);
1612 	struct sge_fl *fl;
1613 	struct adapter *sc = iq->adapter;
1614 	struct iq_desc *d = &iq->desc[iq->cidx];
1615 	int ndescs, limit;
1616 	int rsp_type, starved;
1617 	uint32_t lq;
1618 	uint16_t fl_hw_cidx;
1619 	struct mbuf *m0;
1620 #if defined(INET) || defined(INET6)
1621 	const struct timeval lro_timeout = {0, sc->lro_timeout};
1622 	struct lro_ctrl *lro = &rxq->lro;
1623 #endif
1624 
1625 	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1626 	MPASS(iq->flags & IQ_HAS_FL);
1627 
1628 	ndescs = 0;
1629 #if defined(INET) || defined(INET6)
1630 	if (iq->flags & IQ_ADJ_CREDIT) {
1631 		MPASS(sort_before_lro(lro));
1632 		iq->flags &= ~IQ_ADJ_CREDIT;
1633 		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1634 			tcp_lro_flush_all(lro);
1635 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1636 			    V_INGRESSQID((u32)iq->cntxt_id) |
1637 			    V_SEINTARM(iq->intr_params));
1638 			return (0);
1639 		}
1640 		ndescs = 1;
1641 	}
1642 #else
1643 	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1644 #endif
1645 
1646 	limit = budget ? budget : iq->qsize / 16;
1647 	fl = &rxq->fl;
1648 	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1649 	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1650 
1651 		rmb();
1652 
1653 		m0 = NULL;
1654 		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1655 		lq = be32toh(d->rsp.pldbuflen_qid);
1656 
1657 		switch (rsp_type) {
1658 		case X_RSPD_TYPE_FLBUF:
1659 			if (lq & F_RSPD_NEWBUF) {
1660 				if (fl->rx_offset > 0)
1661 					move_to_next_rxbuf(fl);
1662 				lq = G_RSPD_LEN(lq);
1663 			}
1664 			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1665 				FL_LOCK(fl);
1666 				refill_fl(sc, fl, 64);
1667 				FL_UNLOCK(fl);
1668 				fl_hw_cidx = fl->hw_cidx;
1669 			}
1670 
1671 			if (d->rss.opcode == CPL_RX_PKT) {
1672 				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1673 					break;
1674 				goto out;
1675 			}
1676 			m0 = get_fl_payload(sc, fl, lq);
1677 			if (__predict_false(m0 == NULL))
1678 				goto out;
1679 
1680 			/* fall through */
1681 
1682 		case X_RSPD_TYPE_CPL:
1683 			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1684 			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1685 			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1686 			break;
1687 
1688 		case X_RSPD_TYPE_INTR:
1689 
1690 			/*
1691 			 * There are 1K interrupt-capable queues (qids 0
1692 			 * through 1023).  A response type indicating a
1693 			 * forwarded interrupt with a qid >= 1K is an
1694 			 * iWARP async notification.  That is the only
1695 			 * acceptable indirect interrupt on this queue.
1696 			 */
1697 			if (__predict_false(lq < 1024)) {
1698 				panic("%s: indirect interrupt on iq_fl %p "
1699 				    "with qid %u", __func__, iq, lq);
1700 			}
1701 
1702 			t4_an_handler(iq, &d->rsp);
1703 			break;
1704 
1705 		default:
1706 			KASSERT(0, ("%s: illegal response type %d on iq %p",
1707 			    __func__, rsp_type, iq));
1708 			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1709 			    device_get_nameunit(sc->dev), rsp_type, iq);
1710 			break;
1711 		}
1712 
1713 		d++;
1714 		if (__predict_false(++iq->cidx == iq->sidx)) {
1715 			iq->cidx = 0;
1716 			iq->gen ^= F_RSPD_GEN;
1717 			d = &iq->desc[0];
1718 		}
1719 		if (__predict_false(++ndescs == limit)) {
1720 			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1721 			    V_INGRESSQID(iq->cntxt_id) |
1722 			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1723 
1724 #if defined(INET) || defined(INET6)
1725 			if (iq->flags & IQ_LRO_ENABLED &&
1726 			    !sort_before_lro(lro) &&
1727 			    sc->lro_timeout != 0) {
1728 				tcp_lro_flush_inactive(lro, &lro_timeout);
1729 			}
1730 #endif
1731 			if (budget)
1732 				return (EINPROGRESS);
1733 			ndescs = 0;
1734 		}
1735 	}
1736 out:
1737 #if defined(INET) || defined(INET6)
1738 	if (iq->flags & IQ_LRO_ENABLED) {
1739 		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1740 			MPASS(sort_before_lro(lro));
1741 			/* hold back one credit and don't flush LRO state */
1742 			iq->flags |= IQ_ADJ_CREDIT;
1743 			ndescs--;
1744 		} else {
1745 			tcp_lro_flush_all(lro);
1746 		}
1747 	}
1748 #endif
1749 
1750 	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1751 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1752 
1753 	FL_LOCK(fl);
1754 	starved = refill_fl(sc, fl, 64);
1755 	FL_UNLOCK(fl);
1756 	if (__predict_false(starved != 0))
1757 		add_fl_to_sfl(sc, fl);
1758 
1759 	return (0);
1760 }
1761 
1762 static inline struct cluster_metadata *
cl_metadata(struct fl_sdesc * sd)1763 cl_metadata(struct fl_sdesc *sd)
1764 {
1765 
1766 	return ((void *)(sd->cl + sd->moff));
1767 }
1768 
1769 static void
rxb_free(struct mbuf * m)1770 rxb_free(struct mbuf *m)
1771 {
1772 	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1773 
1774 	uma_zfree(clm->zone, clm->cl);
1775 	counter_u64_add(extfree_rels, 1);
1776 }
1777 
1778 /*
1779  * The mbuf returned comes from zone_muf and carries the payload in one of these
1780  * ways
1781  * a) complete frame inside the mbuf
1782  * b) m_cljset (for clusters without metadata)
1783  * d) m_extaddref (cluster with metadata)
1784  */
1785 static struct mbuf *
get_scatter_segment(struct adapter * sc,struct sge_fl * fl,int fr_offset,int remaining)1786 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1787     int remaining)
1788 {
1789 	struct mbuf *m;
1790 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1791 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1792 	struct cluster_metadata *clm;
1793 	int len, blen;
1794 	caddr_t payload;
1795 
1796 	if (fl->flags & FL_BUF_PACKING) {
1797 		u_int l, pad;
1798 
1799 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1800 		len = min(remaining, blen);
1801 		payload = sd->cl + fl->rx_offset;
1802 
1803 		l = fr_offset + len;
1804 		pad = roundup2(l, fl->buf_boundary) - l;
1805 		if (fl->rx_offset + len + pad < rxb->size2)
1806 			blen = len + pad;
1807 		MPASS(fl->rx_offset + blen <= rxb->size2);
1808 	} else {
1809 		MPASS(fl->rx_offset == 0);	/* not packing */
1810 		blen = rxb->size1;
1811 		len = min(remaining, blen);
1812 		payload = sd->cl;
1813 	}
1814 
1815 	if (fr_offset == 0) {
1816 		m = m_gethdr(M_NOWAIT, MT_DATA);
1817 		if (__predict_false(m == NULL))
1818 			return (NULL);
1819 		m->m_pkthdr.len = remaining;
1820 	} else {
1821 		m = m_get(M_NOWAIT, MT_DATA);
1822 		if (__predict_false(m == NULL))
1823 			return (NULL);
1824 	}
1825 	m->m_len = len;
1826 	kmsan_mark(payload, len, KMSAN_STATE_INITED);
1827 
1828 	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1829 		/* copy data to mbuf */
1830 		bcopy(payload, mtod(m, caddr_t), len);
1831 		if (fl->flags & FL_BUF_PACKING) {
1832 			fl->rx_offset += blen;
1833 			MPASS(fl->rx_offset <= rxb->size2);
1834 			if (fl->rx_offset < rxb->size2)
1835 				return (m);	/* without advancing the cidx */
1836 		}
1837 	} else if (fl->flags & FL_BUF_PACKING) {
1838 		clm = cl_metadata(sd);
1839 		if (sd->nmbuf++ == 0) {
1840 			clm->refcount = 1;
1841 			clm->zone = rxb->zone;
1842 			clm->cl = sd->cl;
1843 			counter_u64_add(extfree_refs, 1);
1844 		}
1845 		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1846 		    NULL);
1847 
1848 		fl->rx_offset += blen;
1849 		MPASS(fl->rx_offset <= rxb->size2);
1850 		if (fl->rx_offset < rxb->size2)
1851 			return (m);	/* without advancing the cidx */
1852 	} else {
1853 		m_cljset(m, sd->cl, rxb->type);
1854 		sd->cl = NULL;	/* consumed, not a recycle candidate */
1855 	}
1856 
1857 	move_to_next_rxbuf(fl);
1858 
1859 	return (m);
1860 }
1861 
1862 static struct mbuf *
get_fl_payload(struct adapter * sc,struct sge_fl * fl,const u_int plen)1863 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1864 {
1865 	struct mbuf *m0, *m, **pnext;
1866 	u_int remaining;
1867 
1868 	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1869 		M_ASSERTPKTHDR(fl->m0);
1870 		MPASS(fl->m0->m_pkthdr.len == plen);
1871 		MPASS(fl->remaining < plen);
1872 
1873 		m0 = fl->m0;
1874 		pnext = fl->pnext;
1875 		remaining = fl->remaining;
1876 		fl->flags &= ~FL_BUF_RESUME;
1877 		goto get_segment;
1878 	}
1879 
1880 	/*
1881 	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1882 	 * 'len' and it may span multiple hw buffers.
1883 	 */
1884 
1885 	m0 = get_scatter_segment(sc, fl, 0, plen);
1886 	if (m0 == NULL)
1887 		return (NULL);
1888 	remaining = plen - m0->m_len;
1889 	pnext = &m0->m_next;
1890 	while (remaining > 0) {
1891 get_segment:
1892 		MPASS(fl->rx_offset == 0);
1893 		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1894 		if (__predict_false(m == NULL)) {
1895 			fl->m0 = m0;
1896 			fl->pnext = pnext;
1897 			fl->remaining = remaining;
1898 			fl->flags |= FL_BUF_RESUME;
1899 			return (NULL);
1900 		}
1901 		*pnext = m;
1902 		pnext = &m->m_next;
1903 		remaining -= m->m_len;
1904 	}
1905 	*pnext = NULL;
1906 
1907 	M_ASSERTPKTHDR(m0);
1908 	return (m0);
1909 }
1910 
1911 static int
skip_scatter_segment(struct adapter * sc,struct sge_fl * fl,int fr_offset,int remaining)1912 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1913     int remaining)
1914 {
1915 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1916 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1917 	int len, blen;
1918 
1919 	if (fl->flags & FL_BUF_PACKING) {
1920 		u_int l, pad;
1921 
1922 		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1923 		len = min(remaining, blen);
1924 
1925 		l = fr_offset + len;
1926 		pad = roundup2(l, fl->buf_boundary) - l;
1927 		if (fl->rx_offset + len + pad < rxb->size2)
1928 			blen = len + pad;
1929 		fl->rx_offset += blen;
1930 		MPASS(fl->rx_offset <= rxb->size2);
1931 		if (fl->rx_offset < rxb->size2)
1932 			return (len);	/* without advancing the cidx */
1933 	} else {
1934 		MPASS(fl->rx_offset == 0);	/* not packing */
1935 		blen = rxb->size1;
1936 		len = min(remaining, blen);
1937 	}
1938 	move_to_next_rxbuf(fl);
1939 	return (len);
1940 }
1941 
1942 static inline void
skip_fl_payload(struct adapter * sc,struct sge_fl * fl,int plen)1943 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1944 {
1945 	int remaining, fr_offset, len;
1946 
1947 	fr_offset = 0;
1948 	remaining = plen;
1949 	while (remaining > 0) {
1950 		len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1951 		fr_offset += len;
1952 		remaining -= len;
1953 	}
1954 }
1955 
1956 static inline int
get_segment_len(struct adapter * sc,struct sge_fl * fl,int plen)1957 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1958 {
1959 	int len;
1960 	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1961 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1962 
1963 	if (fl->flags & FL_BUF_PACKING)
1964 		len = rxb->size2 - fl->rx_offset;
1965 	else
1966 		len = rxb->size1;
1967 
1968 	return (min(plen, len));
1969 }
1970 
1971 static int
eth_rx(struct adapter * sc,struct sge_rxq * rxq,const struct iq_desc * d,u_int plen)1972 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1973     u_int plen)
1974 {
1975 	struct mbuf *m0;
1976 	if_t ifp = rxq->ifp;
1977 	struct sge_fl *fl = &rxq->fl;
1978 	struct vi_info *vi = if_getsoftc(ifp);
1979 	const struct cpl_rx_pkt *cpl;
1980 #if defined(INET) || defined(INET6)
1981 	struct lro_ctrl *lro = &rxq->lro;
1982 #endif
1983 	uint16_t err_vec, tnl_type, tnlhdr_len;
1984 	static const int sw_hashtype[4][2] = {
1985 		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1986 		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1987 		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1988 		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1989 	};
1990 	static const int sw_csum_flags[2][2] = {
1991 		{
1992 			/* IP, inner IP */
1993 			CSUM_ENCAP_VXLAN |
1994 			    CSUM_L3_CALC | CSUM_L3_VALID |
1995 			    CSUM_L4_CALC | CSUM_L4_VALID |
1996 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1997 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1998 
1999 			/* IP, inner IP6 */
2000 			CSUM_ENCAP_VXLAN |
2001 			    CSUM_L3_CALC | CSUM_L3_VALID |
2002 			    CSUM_L4_CALC | CSUM_L4_VALID |
2003 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
2004 		},
2005 		{
2006 			/* IP6, inner IP */
2007 			CSUM_ENCAP_VXLAN |
2008 			    CSUM_L4_CALC | CSUM_L4_VALID |
2009 			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
2010 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
2011 
2012 			/* IP6, inner IP6 */
2013 			CSUM_ENCAP_VXLAN |
2014 			    CSUM_L4_CALC | CSUM_L4_VALID |
2015 			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
2016 		},
2017 	};
2018 
2019 	MPASS(plen > sc->params.sge.fl_pktshift);
2020 	if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
2021 	    __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
2022 		struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
2023 		caddr_t frame;
2024 		int rc, slen;
2025 
2026 		slen = get_segment_len(sc, fl, plen) -
2027 		    sc->params.sge.fl_pktshift;
2028 		frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
2029 		CURVNET_SET_QUIET(if_getvnet(ifp));
2030 		rc = pfil_mem_in(vi->pfil, frame, slen, ifp, &m0);
2031 		CURVNET_RESTORE();
2032 		if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
2033 			skip_fl_payload(sc, fl, plen);
2034 			return (0);
2035 		}
2036 		if (rc == PFIL_REALLOCED) {
2037 			skip_fl_payload(sc, fl, plen);
2038 			goto have_mbuf;
2039 		}
2040 	}
2041 
2042 	m0 = get_fl_payload(sc, fl, plen);
2043 	if (__predict_false(m0 == NULL))
2044 		return (ENOMEM);
2045 
2046 	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
2047 	m0->m_len -= sc->params.sge.fl_pktshift;
2048 	m0->m_data += sc->params.sge.fl_pktshift;
2049 
2050 have_mbuf:
2051 	m0->m_pkthdr.rcvif = ifp;
2052 	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
2053 	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
2054 
2055 	cpl = (const void *)(&d->rss + 1);
2056 	if (sc->params.tp.rx_pkt_encap) {
2057 		const uint16_t ev = be16toh(cpl->err_vec);
2058 
2059 		err_vec = G_T6_COMPR_RXERR_VEC(ev);
2060 		tnl_type = G_T6_RX_TNL_TYPE(ev);
2061 		tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
2062 	} else {
2063 		err_vec = be16toh(cpl->err_vec);
2064 		tnl_type = 0;
2065 		tnlhdr_len = 0;
2066 	}
2067 	if (cpl->csum_calc && err_vec == 0) {
2068 		int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
2069 
2070 		/* checksum(s) calculated and found to be correct. */
2071 
2072 		MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
2073 		    (cpl->l2info & htobe32(F_RXF_IP6)));
2074 		m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2075 		if (tnl_type == 0) {
2076 			if (!ipv6 && if_getcapenable(ifp) & IFCAP_RXCSUM) {
2077 				m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2078 				    CSUM_L3_VALID | CSUM_L4_CALC |
2079 				    CSUM_L4_VALID;
2080 			} else if (ipv6 && if_getcapenable(ifp) & IFCAP_RXCSUM_IPV6) {
2081 				m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2082 				    CSUM_L4_VALID;
2083 			}
2084 			rxq->rxcsum++;
2085 		} else {
2086 			MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
2087 
2088 			M_HASHTYPE_SETINNER(m0);
2089 			if (__predict_false(cpl->ip_frag)) {
2090 				/*
2091 				 * csum_data is for the inner frame (which is an
2092 				 * IP fragment) and is not 0xffff.  There is no
2093 				 * way to pass the inner csum_data to the stack.
2094 				 * We don't want the stack to use the inner
2095 				 * csum_data to validate the outer frame or it
2096 				 * will get rejected.  So we fix csum_data here
2097 				 * and let sw do the checksum of inner IP
2098 				 * fragments.
2099 				 *
2100 				 * XXX: Need 32b for csum_data2 in an rx mbuf.
2101 				 * Maybe stuff it into rcv_tstmp?
2102 				 */
2103 				m0->m_pkthdr.csum_data = 0xffff;
2104 				if (ipv6) {
2105 					m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2106 					    CSUM_L4_VALID;
2107 				} else {
2108 					m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2109 					    CSUM_L3_VALID | CSUM_L4_CALC |
2110 					    CSUM_L4_VALID;
2111 				}
2112 			} else {
2113 				int outer_ipv6;
2114 
2115 				MPASS(m0->m_pkthdr.csum_data == 0xffff);
2116 
2117 				outer_ipv6 = tnlhdr_len >=
2118 				    sizeof(struct ether_header) +
2119 				    sizeof(struct ip6_hdr);
2120 				m0->m_pkthdr.csum_flags =
2121 				    sw_csum_flags[outer_ipv6][ipv6];
2122 			}
2123 			rxq->vxlan_rxcsum++;
2124 		}
2125 	}
2126 
2127 	if (cpl->vlan_ex) {
2128 		if (sc->flags & IS_VF && sc->vlan_id) {
2129 			/*
2130 			 * HW is not setup correctly if extracted vlan_id does
2131 			 * not match the VF's setting.
2132 			 */
2133 			MPASS(be16toh(cpl->vlan) == sc->vlan_id);
2134 		} else {
2135 			m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2136 			m0->m_flags |= M_VLANTAG;
2137 			rxq->vlan_extraction++;
2138 		}
2139 	}
2140 
2141 	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
2142 		/*
2143 		 * Fill up rcv_tstmp but do not set M_TSTMP as
2144 		 * long as we get a non-zero back from t4_tstmp_to_ns().
2145 		 */
2146 		m0->m_pkthdr.rcv_tstmp = t4_tstmp_to_ns(sc,
2147 		    be64toh(d->rsp.u.last_flit));
2148 		if (m0->m_pkthdr.rcv_tstmp != 0)
2149 			m0->m_flags |= M_TSTMP;
2150 	}
2151 
2152 #ifdef NUMA
2153 	m0->m_pkthdr.numa_domain = if_getnumadomain(ifp);
2154 #endif
2155 #if defined(INET) || defined(INET6)
2156 	if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
2157 	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2158 	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2159 		if (sort_before_lro(lro)) {
2160 			tcp_lro_queue_mbuf(lro, m0);
2161 			return (0); /* queued for sort, then LRO */
2162 		}
2163 		if (tcp_lro_rx(lro, m0, 0) == 0)
2164 			return (0); /* queued for LRO */
2165 	}
2166 #endif
2167 	if_input(ifp, m0);
2168 
2169 	return (0);
2170 }
2171 
2172 /*
2173  * Must drain the wrq or make sure that someone else will.
2174  */
2175 static void
wrq_tx_drain(void * arg,int n)2176 wrq_tx_drain(void *arg, int n)
2177 {
2178 	struct sge_wrq *wrq = arg;
2179 	struct sge_eq *eq = &wrq->eq;
2180 
2181 	EQ_LOCK(eq);
2182 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2183 		drain_wrq_wr_list(wrq->adapter, wrq);
2184 	EQ_UNLOCK(eq);
2185 }
2186 
2187 static void
drain_wrq_wr_list(struct adapter * sc,struct sge_wrq * wrq)2188 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2189 {
2190 	struct sge_eq *eq = &wrq->eq;
2191 	u_int available, dbdiff;	/* # of hardware descriptors */
2192 	u_int n;
2193 	struct wrqe *wr;
2194 	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2195 
2196 	EQ_LOCK_ASSERT_OWNED(eq);
2197 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2198 	wr = STAILQ_FIRST(&wrq->wr_list);
2199 	MPASS(wr != NULL);	/* Must be called with something useful to do */
2200 	MPASS(eq->pidx == eq->dbidx);
2201 	dbdiff = 0;
2202 
2203 	do {
2204 		eq->cidx = read_hw_cidx(eq);
2205 		if (eq->pidx == eq->cidx)
2206 			available = eq->sidx - 1;
2207 		else
2208 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2209 
2210 		MPASS(wr->wrq == wrq);
2211 		n = howmany(wr->wr_len, EQ_ESIZE);
2212 		if (available < n)
2213 			break;
2214 
2215 		dst = (void *)&eq->desc[eq->pidx];
2216 		if (__predict_true(eq->sidx - eq->pidx > n)) {
2217 			/* Won't wrap, won't end exactly at the status page. */
2218 			bcopy(&wr->wr[0], dst, wr->wr_len);
2219 			eq->pidx += n;
2220 		} else {
2221 			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2222 
2223 			bcopy(&wr->wr[0], dst, first_portion);
2224 			if (wr->wr_len > first_portion) {
2225 				bcopy(&wr->wr[first_portion], &eq->desc[0],
2226 				    wr->wr_len - first_portion);
2227 			}
2228 			eq->pidx = n - (eq->sidx - eq->pidx);
2229 		}
2230 		wrq->tx_wrs_copied++;
2231 
2232 		if (available < eq->sidx / 4 &&
2233 		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2234 				/*
2235 				 * XXX: This is not 100% reliable with some
2236 				 * types of WRs.  But this is a very unusual
2237 				 * situation for an ofld/ctrl queue anyway.
2238 				 */
2239 			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2240 			    F_FW_WR_EQUEQ);
2241 		}
2242 
2243 		dbdiff += n;
2244 		if (dbdiff >= 16) {
2245 			ring_eq_db(sc, eq, dbdiff);
2246 			dbdiff = 0;
2247 		}
2248 
2249 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2250 		free_wrqe(wr);
2251 		MPASS(wrq->nwr_pending > 0);
2252 		wrq->nwr_pending--;
2253 		MPASS(wrq->ndesc_needed >= n);
2254 		wrq->ndesc_needed -= n;
2255 	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2256 
2257 	if (dbdiff)
2258 		ring_eq_db(sc, eq, dbdiff);
2259 }
2260 
2261 /*
2262  * Doesn't fail.  Holds on to work requests it can't send right away.
2263  */
2264 void
t4_wrq_tx_locked(struct adapter * sc,struct sge_wrq * wrq,struct wrqe * wr)2265 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2266 {
2267 #ifdef INVARIANTS
2268 	struct sge_eq *eq = &wrq->eq;
2269 #endif
2270 
2271 	EQ_LOCK_ASSERT_OWNED(eq);
2272 	MPASS(wr != NULL);
2273 	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2274 	MPASS((wr->wr_len & 0x7) == 0);
2275 
2276 	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2277 	wrq->nwr_pending++;
2278 	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2279 
2280 	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2281 		return;	/* commit_wrq_wr will drain wr_list as well. */
2282 
2283 	drain_wrq_wr_list(sc, wrq);
2284 
2285 	/* Doorbell must have caught up to the pidx. */
2286 	MPASS(eq->pidx == eq->dbidx);
2287 }
2288 
2289 void
t4_update_fl_bufsize(if_t ifp)2290 t4_update_fl_bufsize(if_t ifp)
2291 {
2292 	struct vi_info *vi = if_getsoftc(ifp);
2293 	struct adapter *sc = vi->adapter;
2294 	struct sge_rxq *rxq;
2295 #ifdef TCP_OFFLOAD
2296 	struct sge_ofld_rxq *ofld_rxq;
2297 #endif
2298 	struct sge_fl *fl;
2299 	int i, maxp;
2300 
2301 	maxp = max_rx_payload(sc, ifp, false);
2302 	for_each_rxq(vi, i, rxq) {
2303 		fl = &rxq->fl;
2304 
2305 		FL_LOCK(fl);
2306 		fl->zidx = find_refill_source(sc, maxp,
2307 		    fl->flags & FL_BUF_PACKING);
2308 		FL_UNLOCK(fl);
2309 	}
2310 #ifdef TCP_OFFLOAD
2311 	maxp = max_rx_payload(sc, ifp, true);
2312 	for_each_ofld_rxq(vi, i, ofld_rxq) {
2313 		fl = &ofld_rxq->fl;
2314 
2315 		FL_LOCK(fl);
2316 		fl->zidx = find_refill_source(sc, maxp,
2317 		    fl->flags & FL_BUF_PACKING);
2318 		FL_UNLOCK(fl);
2319 	}
2320 #endif
2321 }
2322 
2323 #ifdef RATELIMIT
2324 static inline int
mbuf_eo_nsegs(struct mbuf * m)2325 mbuf_eo_nsegs(struct mbuf *m)
2326 {
2327 
2328 	M_ASSERTPKTHDR(m);
2329 	return (m->m_pkthdr.PH_loc.eight[1]);
2330 }
2331 
2332 #if defined(INET) || defined(INET6)
2333 static inline void
set_mbuf_eo_nsegs(struct mbuf * m,uint8_t nsegs)2334 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2335 {
2336 
2337 	M_ASSERTPKTHDR(m);
2338 	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2339 }
2340 #endif
2341 
2342 static inline int
mbuf_eo_len16(struct mbuf * m)2343 mbuf_eo_len16(struct mbuf *m)
2344 {
2345 	int n;
2346 
2347 	M_ASSERTPKTHDR(m);
2348 	n = m->m_pkthdr.PH_loc.eight[2];
2349 	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2350 
2351 	return (n);
2352 }
2353 
2354 #if defined(INET) || defined(INET6)
2355 static inline void
set_mbuf_eo_len16(struct mbuf * m,uint8_t len16)2356 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2357 {
2358 
2359 	M_ASSERTPKTHDR(m);
2360 	m->m_pkthdr.PH_loc.eight[2] = len16;
2361 }
2362 #endif
2363 
2364 static inline int
mbuf_eo_tsclk_tsoff(struct mbuf * m)2365 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2366 {
2367 
2368 	M_ASSERTPKTHDR(m);
2369 	return (m->m_pkthdr.PH_loc.eight[3]);
2370 }
2371 
2372 #if defined(INET) || defined(INET6)
2373 static inline void
set_mbuf_eo_tsclk_tsoff(struct mbuf * m,uint8_t tsclk_tsoff)2374 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2375 {
2376 
2377 	M_ASSERTPKTHDR(m);
2378 	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2379 }
2380 #endif
2381 
2382 static inline int
needs_eo(struct m_snd_tag * mst)2383 needs_eo(struct m_snd_tag *mst)
2384 {
2385 
2386 	return (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2387 }
2388 #endif
2389 
2390 /*
2391  * Try to allocate an mbuf to contain a raw work request.  To make it
2392  * easy to construct the work request, don't allocate a chain but a
2393  * single mbuf.
2394  */
2395 struct mbuf *
alloc_wr_mbuf(int len,int how)2396 alloc_wr_mbuf(int len, int how)
2397 {
2398 	struct mbuf *m;
2399 
2400 	if (len <= MHLEN)
2401 		m = m_gethdr(how, MT_DATA);
2402 	else if (len <= MCLBYTES)
2403 		m = m_getcl(how, MT_DATA, M_PKTHDR);
2404 	else
2405 		m = NULL;
2406 	if (m == NULL)
2407 		return (NULL);
2408 	m->m_pkthdr.len = len;
2409 	m->m_len = len;
2410 	set_mbuf_cflags(m, MC_RAW_WR);
2411 	set_mbuf_len16(m, howmany(len, 16));
2412 	return (m);
2413 }
2414 
2415 static inline bool
needs_hwcsum(struct mbuf * m)2416 needs_hwcsum(struct mbuf *m)
2417 {
2418 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
2419 	    CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2420 	    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
2421 	    CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
2422 	    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
2423 
2424 	M_ASSERTPKTHDR(m);
2425 
2426 	return (m->m_pkthdr.csum_flags & csum_flags);
2427 }
2428 
2429 static inline bool
needs_tso(struct mbuf * m)2430 needs_tso(struct mbuf *m)
2431 {
2432 	const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
2433 	    CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2434 
2435 	M_ASSERTPKTHDR(m);
2436 
2437 	return (m->m_pkthdr.csum_flags & csum_flags);
2438 }
2439 
2440 static inline bool
needs_vxlan_csum(struct mbuf * m)2441 needs_vxlan_csum(struct mbuf *m)
2442 {
2443 
2444 	M_ASSERTPKTHDR(m);
2445 
2446 	return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
2447 }
2448 
2449 static inline bool
needs_vxlan_tso(struct mbuf * m)2450 needs_vxlan_tso(struct mbuf *m)
2451 {
2452 	const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
2453 	    CSUM_INNER_IP6_TSO;
2454 
2455 	M_ASSERTPKTHDR(m);
2456 
2457 	return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
2458 	    (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
2459 }
2460 
2461 #if defined(INET) || defined(INET6)
2462 static inline bool
needs_inner_tcp_csum(struct mbuf * m)2463 needs_inner_tcp_csum(struct mbuf *m)
2464 {
2465 	const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2466 
2467 	M_ASSERTPKTHDR(m);
2468 
2469 	return (m->m_pkthdr.csum_flags & csum_flags);
2470 }
2471 #endif
2472 
2473 static inline bool
needs_l3_csum(struct mbuf * m)2474 needs_l3_csum(struct mbuf *m)
2475 {
2476 	const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
2477 	    CSUM_INNER_IP_TSO;
2478 
2479 	M_ASSERTPKTHDR(m);
2480 
2481 	return (m->m_pkthdr.csum_flags & csum_flags);
2482 }
2483 
2484 static inline bool
needs_outer_tcp_csum(struct mbuf * m)2485 needs_outer_tcp_csum(struct mbuf *m)
2486 {
2487 	const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
2488 	    CSUM_IP6_TSO;
2489 
2490 	M_ASSERTPKTHDR(m);
2491 
2492 	return (m->m_pkthdr.csum_flags & csum_flags);
2493 }
2494 
2495 #ifdef RATELIMIT
2496 static inline bool
needs_outer_l4_csum(struct mbuf * m)2497 needs_outer_l4_csum(struct mbuf *m)
2498 {
2499 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
2500 	    CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
2501 
2502 	M_ASSERTPKTHDR(m);
2503 
2504 	return (m->m_pkthdr.csum_flags & csum_flags);
2505 }
2506 
2507 static inline bool
needs_outer_udp_csum(struct mbuf * m)2508 needs_outer_udp_csum(struct mbuf *m)
2509 {
2510 	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
2511 
2512 	M_ASSERTPKTHDR(m);
2513 
2514 	return (m->m_pkthdr.csum_flags & csum_flags);
2515 }
2516 #endif
2517 
2518 static inline bool
needs_vlan_insertion(struct mbuf * m)2519 needs_vlan_insertion(struct mbuf *m)
2520 {
2521 
2522 	M_ASSERTPKTHDR(m);
2523 
2524 	return (m->m_flags & M_VLANTAG);
2525 }
2526 
2527 #if defined(INET) || defined(INET6)
2528 static void *
m_advance(struct mbuf ** pm,int * poffset,int len)2529 m_advance(struct mbuf **pm, int *poffset, int len)
2530 {
2531 	struct mbuf *m = *pm;
2532 	int offset = *poffset;
2533 	uintptr_t p = 0;
2534 
2535 	MPASS(len > 0);
2536 
2537 	for (;;) {
2538 		if (offset + len < m->m_len) {
2539 			offset += len;
2540 			p = mtod(m, uintptr_t) + offset;
2541 			break;
2542 		}
2543 		len -= m->m_len - offset;
2544 		m = m->m_next;
2545 		offset = 0;
2546 		MPASS(m != NULL);
2547 	}
2548 	*poffset = offset;
2549 	*pm = m;
2550 	return ((void *)p);
2551 }
2552 #endif
2553 
2554 static inline int
count_mbuf_ext_pgs(struct mbuf * m,int skip,vm_paddr_t * nextaddr)2555 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2556 {
2557 	vm_paddr_t paddr;
2558 	int i, len, off, pglen, pgoff, seglen, segoff;
2559 	int nsegs = 0;
2560 
2561 	M_ASSERTEXTPG(m);
2562 	off = mtod(m, vm_offset_t);
2563 	len = m->m_len;
2564 	off += skip;
2565 	len -= skip;
2566 
2567 	if (m->m_epg_hdrlen != 0) {
2568 		if (off >= m->m_epg_hdrlen) {
2569 			off -= m->m_epg_hdrlen;
2570 		} else {
2571 			seglen = m->m_epg_hdrlen - off;
2572 			segoff = off;
2573 			seglen = min(seglen, len);
2574 			off = 0;
2575 			len -= seglen;
2576 			paddr = pmap_kextract(
2577 			    (vm_offset_t)&m->m_epg_hdr[segoff]);
2578 			if (*nextaddr != paddr)
2579 				nsegs++;
2580 			*nextaddr = paddr + seglen;
2581 		}
2582 	}
2583 	pgoff = m->m_epg_1st_off;
2584 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2585 		pglen = m_epg_pagelen(m, i, pgoff);
2586 		if (off >= pglen) {
2587 			off -= pglen;
2588 			pgoff = 0;
2589 			continue;
2590 		}
2591 		seglen = pglen - off;
2592 		segoff = pgoff + off;
2593 		off = 0;
2594 		seglen = min(seglen, len);
2595 		len -= seglen;
2596 		paddr = m->m_epg_pa[i] + segoff;
2597 		if (*nextaddr != paddr)
2598 			nsegs++;
2599 		*nextaddr = paddr + seglen;
2600 		pgoff = 0;
2601 	};
2602 	if (len != 0) {
2603 		seglen = min(len, m->m_epg_trllen - off);
2604 		len -= seglen;
2605 		paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2606 		if (*nextaddr != paddr)
2607 			nsegs++;
2608 		*nextaddr = paddr + seglen;
2609 	}
2610 
2611 	return (nsegs);
2612 }
2613 
2614 
2615 /*
2616  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2617  * must have at least one mbuf that's not empty.  It is possible for this
2618  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2619  */
2620 static inline int
count_mbuf_nsegs(struct mbuf * m,int skip,uint8_t * cflags)2621 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2622 {
2623 	vm_paddr_t nextaddr, paddr;
2624 	vm_offset_t va;
2625 	int len, nsegs;
2626 
2627 	M_ASSERTPKTHDR(m);
2628 	MPASS(m->m_pkthdr.len > 0);
2629 	MPASS(m->m_pkthdr.len >= skip);
2630 
2631 	nsegs = 0;
2632 	nextaddr = 0;
2633 	for (; m; m = m->m_next) {
2634 		len = m->m_len;
2635 		if (__predict_false(len == 0))
2636 			continue;
2637 		if (skip >= len) {
2638 			skip -= len;
2639 			continue;
2640 		}
2641 		if ((m->m_flags & M_EXTPG) != 0) {
2642 			*cflags |= MC_NOMAP;
2643 			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2644 			skip = 0;
2645 			continue;
2646 		}
2647 		va = mtod(m, vm_offset_t) + skip;
2648 		len -= skip;
2649 		skip = 0;
2650 		paddr = pmap_kextract(va);
2651 		nsegs += sglist_count((void *)(uintptr_t)va, len);
2652 		if (paddr == nextaddr)
2653 			nsegs--;
2654 		nextaddr = pmap_kextract(va + len - 1) + 1;
2655 	}
2656 
2657 	return (nsegs);
2658 }
2659 
2660 /*
2661  * The maximum number of segments that can fit in a WR.
2662  */
2663 static int
max_nsegs_allowed(struct mbuf * m,bool vm_wr)2664 max_nsegs_allowed(struct mbuf *m, bool vm_wr)
2665 {
2666 
2667 	if (vm_wr) {
2668 		if (needs_tso(m))
2669 			return (TX_SGL_SEGS_VM_TSO);
2670 		return (TX_SGL_SEGS_VM);
2671 	}
2672 
2673 	if (needs_tso(m)) {
2674 		if (needs_vxlan_tso(m))
2675 			return (TX_SGL_SEGS_VXLAN_TSO);
2676 		else
2677 			return (TX_SGL_SEGS_TSO);
2678 	}
2679 
2680 	return (TX_SGL_SEGS);
2681 }
2682 
2683 static struct timeval txerr_ratecheck = {0};
2684 static const struct timeval txerr_interval = {3, 0};
2685 
2686 /*
2687  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2688  * a) caller can assume it's been freed if this function returns with an error.
2689  * b) it may get defragged up if the gather list is too long for the hardware.
2690  */
2691 int
parse_pkt(struct mbuf ** mp,bool vm_wr)2692 parse_pkt(struct mbuf **mp, bool vm_wr)
2693 {
2694 	struct mbuf *m0 = *mp, *m;
2695 	int rc, nsegs, defragged = 0;
2696 	struct ether_header *eh;
2697 #ifdef INET
2698 	void *l3hdr;
2699 #endif
2700 #if defined(INET) || defined(INET6)
2701 	int offset;
2702 	struct tcphdr *tcp;
2703 #endif
2704 #if defined(KERN_TLS) || defined(RATELIMIT)
2705 	struct m_snd_tag *mst;
2706 #endif
2707 	uint16_t eh_type;
2708 	uint8_t cflags;
2709 
2710 	cflags = 0;
2711 	M_ASSERTPKTHDR(m0);
2712 	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2713 		rc = EINVAL;
2714 fail:
2715 		m_freem(m0);
2716 		*mp = NULL;
2717 		return (rc);
2718 	}
2719 restart:
2720 	/*
2721 	 * First count the number of gather list segments in the payload.
2722 	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2723 	 */
2724 	M_ASSERTPKTHDR(m0);
2725 	MPASS(m0->m_pkthdr.len > 0);
2726 	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2727 #if defined(KERN_TLS) || defined(RATELIMIT)
2728 	if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2729 		mst = m0->m_pkthdr.snd_tag;
2730 	else
2731 		mst = NULL;
2732 #endif
2733 #ifdef KERN_TLS
2734 	if (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_TLS) {
2735 		struct vi_info *vi = if_getsoftc(mst->ifp);
2736 
2737 		cflags |= MC_TLS;
2738 		set_mbuf_cflags(m0, cflags);
2739 		if (is_t6(vi->pi->adapter))
2740 			rc = t6_ktls_parse_pkt(m0);
2741 		else
2742 			rc = t7_ktls_parse_pkt(m0);
2743 		if (rc != 0)
2744 			goto fail;
2745 		return (EINPROGRESS);
2746 	}
2747 #endif
2748 	if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
2749 		if (defragged++ > 0) {
2750 			rc = EFBIG;
2751 			goto fail;
2752 		}
2753 		counter_u64_add(defrags, 1);
2754 		if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
2755 			rc = ENOMEM;
2756 			goto fail;
2757 		}
2758 		*mp = m0 = m;	/* update caller's copy after defrag */
2759 		goto restart;
2760 	}
2761 
2762 	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2763 	    !(cflags & MC_NOMAP))) {
2764 		counter_u64_add(pullups, 1);
2765 		m0 = m_pullup(m0, m0->m_pkthdr.len);
2766 		if (m0 == NULL) {
2767 			/* Should have left well enough alone. */
2768 			rc = EFBIG;
2769 			goto fail;
2770 		}
2771 		*mp = m0;	/* update caller's copy after pullup */
2772 		goto restart;
2773 	}
2774 	set_mbuf_nsegs(m0, nsegs);
2775 	set_mbuf_cflags(m0, cflags);
2776 	calculate_mbuf_len16(m0, vm_wr);
2777 
2778 #ifdef RATELIMIT
2779 	/*
2780 	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2781 	 * checksumming is enabled.  needs_outer_l4_csum happens to check for
2782 	 * all the right things.
2783 	 */
2784 	if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
2785 		m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2786 		m0->m_pkthdr.snd_tag = NULL;
2787 		m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2788 		mst = NULL;
2789 	}
2790 #endif
2791 
2792 	if (!needs_hwcsum(m0)
2793 #ifdef RATELIMIT
2794 		 && !needs_eo(mst)
2795 #endif
2796 	)
2797 		return (0);
2798 
2799 	m = m0;
2800 	eh = mtod(m, struct ether_header *);
2801 	eh_type = ntohs(eh->ether_type);
2802 	if (eh_type == ETHERTYPE_VLAN) {
2803 		struct ether_vlan_header *evh = (void *)eh;
2804 
2805 		eh_type = ntohs(evh->evl_proto);
2806 		m0->m_pkthdr.l2hlen = sizeof(*evh);
2807 	} else
2808 		m0->m_pkthdr.l2hlen = sizeof(*eh);
2809 
2810 #if defined(INET) || defined(INET6)
2811 	offset = 0;
2812 #ifdef INET
2813 	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2814 #else
2815 	m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2816 #endif
2817 #endif
2818 
2819 	switch (eh_type) {
2820 #ifdef INET6
2821 	case ETHERTYPE_IPV6:
2822 		m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
2823 		break;
2824 #endif
2825 #ifdef INET
2826 	case ETHERTYPE_IP:
2827 	{
2828 		struct ip *ip = l3hdr;
2829 
2830 		if (needs_vxlan_csum(m0)) {
2831 			/* Driver will do the outer IP hdr checksum. */
2832 			ip->ip_sum = 0;
2833 			if (needs_vxlan_tso(m0)) {
2834 				const uint16_t ipl = ip->ip_len;
2835 
2836 				ip->ip_len = 0;
2837 				ip->ip_sum = ~in_cksum_hdr(ip);
2838 				ip->ip_len = ipl;
2839 			} else
2840 				ip->ip_sum = in_cksum_hdr(ip);
2841 		}
2842 		m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
2843 		break;
2844 	}
2845 #endif
2846 	default:
2847 		if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2848 			log(LOG_ERR, "%s: ethertype 0x%04x unknown.  "
2849 			    "if_cxgbe must be compiled with the same "
2850 			    "INET/INET6 options as the kernel.\n", __func__,
2851 			    eh_type);
2852 		}
2853 		rc = EINVAL;
2854 		goto fail;
2855 	}
2856 
2857 #if defined(INET) || defined(INET6)
2858 	if (needs_vxlan_csum(m0)) {
2859 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2860 		m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
2861 
2862 		/* Inner headers. */
2863 		eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
2864 		    sizeof(struct udphdr) + sizeof(struct vxlan_header));
2865 		eh_type = ntohs(eh->ether_type);
2866 		if (eh_type == ETHERTYPE_VLAN) {
2867 			struct ether_vlan_header *evh = (void *)eh;
2868 
2869 			eh_type = ntohs(evh->evl_proto);
2870 			m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
2871 		} else
2872 			m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
2873 #ifdef INET
2874 		l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2875 #else
2876 		m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2877 #endif
2878 
2879 		switch (eh_type) {
2880 #ifdef INET6
2881 		case ETHERTYPE_IPV6:
2882 			m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
2883 			break;
2884 #endif
2885 #ifdef INET
2886 		case ETHERTYPE_IP:
2887 		{
2888 			struct ip *ip = l3hdr;
2889 
2890 			m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
2891 			break;
2892 		}
2893 #endif
2894 		default:
2895 			if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2896 				log(LOG_ERR, "%s: VXLAN hw offload requested"
2897 				    "with unknown ethertype 0x%04x.  if_cxgbe "
2898 				    "must be compiled with the same INET/INET6 "
2899 				    "options as the kernel.\n", __func__,
2900 				    eh_type);
2901 			}
2902 			rc = EINVAL;
2903 			goto fail;
2904 		}
2905 		if (needs_inner_tcp_csum(m0)) {
2906 			tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
2907 			m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
2908 		}
2909 		MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
2910 		m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
2911 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
2912 		    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
2913 		    CSUM_ENCAP_VXLAN;
2914 	}
2915 
2916 	if (needs_outer_tcp_csum(m0)) {
2917 		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2918 		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2919 #ifdef RATELIMIT
2920 		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2921 			set_mbuf_eo_tsclk_tsoff(m0,
2922 			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2923 			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2924 		} else
2925 			set_mbuf_eo_tsclk_tsoff(m0, 0);
2926 	} else if (needs_outer_udp_csum(m0)) {
2927 		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2928 #endif
2929 	}
2930 #ifdef RATELIMIT
2931 	if (needs_eo(mst)) {
2932 		u_int immhdrs;
2933 
2934 		/* EO WRs have the headers in the WR and not the GL. */
2935 		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2936 		    m0->m_pkthdr.l4hlen;
2937 		cflags = 0;
2938 		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2939 		MPASS(cflags == mbuf_cflags(m0));
2940 		set_mbuf_eo_nsegs(m0, nsegs);
2941 		set_mbuf_eo_len16(m0,
2942 		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2943 		rc = ethofld_transmit(mst->ifp, m0);
2944 		if (rc != 0)
2945 			goto fail;
2946 		return (EINPROGRESS);
2947 	}
2948 #endif
2949 #endif
2950 	MPASS(m0 == *mp);
2951 	return (0);
2952 }
2953 
2954 void *
start_wrq_wr(struct sge_wrq * wrq,int len16,struct wrq_cookie * cookie)2955 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2956 {
2957 	struct sge_eq *eq = &wrq->eq;
2958 	struct adapter *sc = wrq->adapter;
2959 	int ndesc, available;
2960 	struct wrqe *wr;
2961 	void *w;
2962 
2963 	MPASS(len16 > 0);
2964 	ndesc = tx_len16_to_desc(len16);
2965 	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2966 
2967 	EQ_LOCK(eq);
2968 	if (__predict_false((eq->flags & EQ_HW_ALLOCATED) == 0)) {
2969 		EQ_UNLOCK(eq);
2970 		return (NULL);
2971 	}
2972 
2973 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2974 		drain_wrq_wr_list(sc, wrq);
2975 
2976 	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2977 slowpath:
2978 		EQ_UNLOCK(eq);
2979 		wr = alloc_wrqe(len16 * 16, wrq);
2980 		if (__predict_false(wr == NULL))
2981 			return (NULL);
2982 		cookie->pidx = -1;
2983 		cookie->ndesc = ndesc;
2984 		return (&wr->wr);
2985 	}
2986 
2987 	eq->cidx = read_hw_cidx(eq);
2988 	if (eq->pidx == eq->cidx)
2989 		available = eq->sidx - 1;
2990 	else
2991 		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2992 	if (available < ndesc)
2993 		goto slowpath;
2994 
2995 	cookie->pidx = eq->pidx;
2996 	cookie->ndesc = ndesc;
2997 	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2998 
2999 	w = &eq->desc[eq->pidx];
3000 	IDXINCR(eq->pidx, ndesc, eq->sidx);
3001 	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
3002 		w = &wrq->ss[0];
3003 		wrq->ss_pidx = cookie->pidx;
3004 		wrq->ss_len = len16 * 16;
3005 	}
3006 
3007 	EQ_UNLOCK(eq);
3008 
3009 	return (w);
3010 }
3011 
3012 void
commit_wrq_wr(struct sge_wrq * wrq,void * w,struct wrq_cookie * cookie)3013 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
3014 {
3015 	struct sge_eq *eq = &wrq->eq;
3016 	struct adapter *sc = wrq->adapter;
3017 	int ndesc, pidx;
3018 	struct wrq_cookie *prev, *next;
3019 
3020 	if (cookie->pidx == -1) {
3021 		struct wrqe *wr = __containerof(w, struct wrqe, wr);
3022 
3023 		t4_wrq_tx(sc, wr);
3024 		return;
3025 	}
3026 
3027 	if (__predict_false(w == &wrq->ss[0])) {
3028 		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
3029 
3030 		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
3031 		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
3032 		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
3033 		wrq->tx_wrs_ss++;
3034 	} else
3035 		wrq->tx_wrs_direct++;
3036 
3037 	EQ_LOCK(eq);
3038 	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
3039 	pidx = cookie->pidx;
3040 	MPASS(pidx >= 0 && pidx < eq->sidx);
3041 	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
3042 	next = TAILQ_NEXT(cookie, link);
3043 	if (prev == NULL) {
3044 		MPASS(pidx == eq->dbidx);
3045 		if (next == NULL || ndesc >= 16) {
3046 			int available;
3047 			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
3048 
3049 			/*
3050 			 * Note that the WR via which we'll request tx updates
3051 			 * is at pidx and not eq->pidx, which has moved on
3052 			 * already.
3053 			 */
3054 			dst = (void *)&eq->desc[pidx];
3055 			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3056 			if (available < eq->sidx / 4 &&
3057 			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3058 				/*
3059 				 * XXX: This is not 100% reliable with some
3060 				 * types of WRs.  But this is a very unusual
3061 				 * situation for an ofld/ctrl queue anyway.
3062 				 */
3063 				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
3064 				    F_FW_WR_EQUEQ);
3065 			}
3066 
3067 			if (__predict_true(eq->flags & EQ_HW_ALLOCATED))
3068 				ring_eq_db(wrq->adapter, eq, ndesc);
3069 			else
3070 				IDXINCR(eq->dbidx, ndesc, eq->sidx);
3071 		} else {
3072 			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
3073 			next->pidx = pidx;
3074 			next->ndesc += ndesc;
3075 		}
3076 	} else {
3077 		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
3078 		prev->ndesc += ndesc;
3079 	}
3080 	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
3081 
3082 	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
3083 		drain_wrq_wr_list(sc, wrq);
3084 
3085 #ifdef INVARIANTS
3086 	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
3087 		/* Doorbell must have caught up to the pidx. */
3088 		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
3089 	}
3090 #endif
3091 	EQ_UNLOCK(eq);
3092 }
3093 
3094 static u_int
can_resume_eth_tx(struct mp_ring * r)3095 can_resume_eth_tx(struct mp_ring *r)
3096 {
3097 	struct sge_eq *eq = r->cookie;
3098 
3099 	return (total_available_tx_desc(eq) > eq->sidx / 8);
3100 }
3101 
3102 static inline bool
cannot_use_txpkts(struct mbuf * m)3103 cannot_use_txpkts(struct mbuf *m)
3104 {
3105 	/* maybe put a GL limit too, to avoid silliness? */
3106 
3107 	return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
3108 }
3109 
3110 static inline int
discard_tx(struct sge_eq * eq)3111 discard_tx(struct sge_eq *eq)
3112 {
3113 
3114 	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
3115 }
3116 
3117 static inline int
wr_can_update_eq(void * p)3118 wr_can_update_eq(void *p)
3119 {
3120 	struct fw_eth_tx_pkts_wr *wr = p;
3121 
3122 	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
3123 	case FW_ULPTX_WR:
3124 	case FW_ETH_TX_PKT_WR:
3125 	case FW_ETH_TX_PKTS_WR:
3126 	case FW_ETH_TX_PKTS2_WR:
3127 	case FW_ETH_TX_PKT_VM_WR:
3128 	case FW_ETH_TX_PKTS_VM_WR:
3129 		return (1);
3130 	default:
3131 		return (0);
3132 	}
3133 }
3134 
3135 static inline void
set_txupdate_flags(struct sge_txq * txq,u_int avail,struct fw_eth_tx_pkt_wr * wr)3136 set_txupdate_flags(struct sge_txq *txq, u_int avail,
3137     struct fw_eth_tx_pkt_wr *wr)
3138 {
3139 	struct sge_eq *eq = &txq->eq;
3140 	struct txpkts *txp = &txq->txp;
3141 
3142 	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
3143 	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3144 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3145 		eq->equeqidx = eq->pidx;
3146 	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
3147 		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3148 		eq->equeqidx = eq->pidx;
3149 	}
3150 }
3151 
3152 #if defined(__i386__) || defined(__amd64__)
3153 extern uint64_t tsc_freq;
3154 #endif
3155 
3156 static inline bool
record_eth_tx_time(struct sge_txq * txq)3157 record_eth_tx_time(struct sge_txq *txq)
3158 {
3159 	const uint64_t cycles = get_cyclecount();
3160 	const uint64_t last_tx = txq->last_tx;
3161 #if defined(__i386__) || defined(__amd64__)
3162 	const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
3163 #else
3164 	const uint64_t itg = 0;
3165 #endif
3166 
3167 	MPASS(cycles >= last_tx);
3168 	txq->last_tx = cycles;
3169 	return (cycles - last_tx < itg);
3170 }
3171 
3172 /*
3173  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
3174  * be consumed.  Return the actual number consumed.  0 indicates a stall.
3175  */
3176 static u_int
eth_tx(struct mp_ring * r,u_int cidx,u_int pidx,bool * coalescing)3177 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
3178 {
3179 	struct sge_txq *txq = r->cookie;
3180 	if_t ifp = txq->ifp;
3181 	struct sge_eq *eq = &txq->eq;
3182 	struct txpkts *txp = &txq->txp;
3183 	struct vi_info *vi = if_getsoftc(ifp);
3184 	struct adapter *sc = vi->adapter;
3185 	u_int total, remaining;		/* # of packets */
3186 	u_int n, avail, dbdiff;		/* # of hardware descriptors */
3187 	int i, rc;
3188 	struct mbuf *m0;
3189 	bool snd, recent_tx;
3190 	void *wr;	/* start of the last WR written to the ring */
3191 
3192 	TXQ_LOCK_ASSERT_OWNED(txq);
3193 	recent_tx = record_eth_tx_time(txq);
3194 
3195 	remaining = IDXDIFF(pidx, cidx, r->size);
3196 	if (__predict_false(discard_tx(eq))) {
3197 		for (i = 0; i < txp->npkt; i++)
3198 			m_freem(txp->mb[i]);
3199 		txp->npkt = 0;
3200 		while (cidx != pidx) {
3201 			m0 = r->items[cidx];
3202 			m_freem(m0);
3203 			if (++cidx == r->size)
3204 				cidx = 0;
3205 		}
3206 		reclaim_tx_descs(txq, eq->sidx);
3207 		*coalescing = false;
3208 		return (remaining);	/* emptied */
3209 	}
3210 
3211 	/* How many hardware descriptors do we have readily available. */
3212 	if (eq->pidx == eq->cidx)
3213 		avail = eq->sidx - 1;
3214 	else
3215 		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3216 
3217 	total = 0;
3218 	if (remaining == 0) {
3219 		txp->score = 0;
3220 		txq->txpkts_flush++;
3221 		goto send_txpkts;
3222 	}
3223 
3224 	dbdiff = 0;
3225 	MPASS(remaining > 0);
3226 	while (remaining > 0) {
3227 		m0 = r->items[cidx];
3228 		M_ASSERTPKTHDR(m0);
3229 		MPASS(m0->m_nextpkt == NULL);
3230 
3231 		if (avail < 2 * SGE_MAX_WR_NDESC)
3232 			avail += reclaim_tx_descs(txq, 64);
3233 
3234 		if (t4_tx_coalesce == 0 && txp->npkt == 0)
3235 			goto skip_coalescing;
3236 		if (cannot_use_txpkts(m0))
3237 			txp->score = 0;
3238 		else if (recent_tx) {
3239 			if (++txp->score == 0)
3240 				txp->score = UINT8_MAX;
3241 		} else
3242 			txp->score = 1;
3243 		if (txp->npkt > 0 || remaining > 1 ||
3244 		    txp->score >= t4_tx_coalesce_pkts ||
3245 		    atomic_load_int(&txq->eq.equiq) != 0) {
3246 			if (vi->flags & TX_USES_VM_WR)
3247 				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
3248 			else
3249 				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
3250 		} else {
3251 			snd = false;
3252 			rc = EINVAL;
3253 		}
3254 		if (snd) {
3255 			MPASS(txp->npkt > 0);
3256 			for (i = 0; i < txp->npkt; i++)
3257 				ETHER_BPF_MTAP(ifp, txp->mb[i]);
3258 			if (txp->npkt > 1) {
3259 				MPASS(avail >= tx_len16_to_desc(txp->len16));
3260 				if (vi->flags & TX_USES_VM_WR)
3261 					n = write_txpkts_vm_wr(sc, txq);
3262 				else
3263 					n = write_txpkts_wr(sc, txq);
3264 			} else {
3265 				MPASS(avail >=
3266 				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3267 				if (vi->flags & TX_USES_VM_WR)
3268 					n = write_txpkt_vm_wr(sc, txq,
3269 					    txp->mb[0]);
3270 				else
3271 					n = write_txpkt_wr(sc, txq, txp->mb[0],
3272 					    avail);
3273 			}
3274 			MPASS(n <= SGE_MAX_WR_NDESC);
3275 			avail -= n;
3276 			dbdiff += n;
3277 			wr = &eq->desc[eq->pidx];
3278 			IDXINCR(eq->pidx, n, eq->sidx);
3279 			txp->npkt = 0;	/* emptied */
3280 		}
3281 		if (rc == 0) {
3282 			/* m0 was coalesced into txq->txpkts. */
3283 			goto next_mbuf;
3284 		}
3285 		if (rc == EAGAIN) {
3286 			/*
3287 			 * m0 is suitable for tx coalescing but could not be
3288 			 * combined with the existing txq->txpkts, which has now
3289 			 * been transmitted.  Start a new txpkts with m0.
3290 			 */
3291 			MPASS(snd);
3292 			MPASS(txp->npkt == 0);
3293 			continue;
3294 		}
3295 
3296 		MPASS(rc != 0 && rc != EAGAIN);
3297 		MPASS(txp->npkt == 0);
3298 skip_coalescing:
3299 		n = tx_len16_to_desc(mbuf_len16(m0));
3300 		if (__predict_false(avail < n)) {
3301 			avail += reclaim_tx_descs(txq, min(n, 32));
3302 			if (avail < n)
3303 				break;	/* out of descriptors */
3304 		}
3305 
3306 		wr = &eq->desc[eq->pidx];
3307 		if (mbuf_cflags(m0) & MC_RAW_WR) {
3308 			n = write_raw_wr(txq, wr, m0, avail);
3309 #ifdef KERN_TLS
3310 		} else if (mbuf_cflags(m0) & MC_TLS) {
3311 			ETHER_BPF_MTAP(ifp, m0);
3312 			if (is_t6(sc))
3313 				n = t6_ktls_write_wr(txq, wr, m0, avail);
3314 			else
3315 				n = t7_ktls_write_wr(txq, wr, m0, avail);
3316 #endif
3317 		} else {
3318 			ETHER_BPF_MTAP(ifp, m0);
3319 			if (vi->flags & TX_USES_VM_WR)
3320 				n = write_txpkt_vm_wr(sc, txq, m0);
3321 			else
3322 				n = write_txpkt_wr(sc, txq, m0, avail);
3323 		}
3324 		MPASS(n >= 1 && n <= avail);
3325 		if (!(mbuf_cflags(m0) & MC_TLS))
3326 			MPASS(n <= SGE_MAX_WR_NDESC);
3327 
3328 		avail -= n;
3329 		dbdiff += n;
3330 		IDXINCR(eq->pidx, n, eq->sidx);
3331 
3332 		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3333 			if (wr_can_update_eq(wr))
3334 				set_txupdate_flags(txq, avail, wr);
3335 			ring_eq_db(sc, eq, dbdiff);
3336 			avail += reclaim_tx_descs(txq, 32);
3337 			dbdiff = 0;
3338 		}
3339 next_mbuf:
3340 		total++;
3341 		remaining--;
3342 		if (__predict_false(++cidx == r->size))
3343 			cidx = 0;
3344 	}
3345 	if (dbdiff != 0) {
3346 		if (wr_can_update_eq(wr))
3347 			set_txupdate_flags(txq, avail, wr);
3348 		ring_eq_db(sc, eq, dbdiff);
3349 		reclaim_tx_descs(txq, 32);
3350 	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3351 	    atomic_load_int(&txq->eq.equiq) == 0) {
3352 		/*
3353 		 * If nothing was submitted to the chip for tx (it was coalesced
3354 		 * into txpkts instead) and there is no tx update outstanding
3355 		 * then we need to send txpkts now.
3356 		 */
3357 send_txpkts:
3358 		MPASS(txp->npkt > 0);
3359 		for (i = 0; i < txp->npkt; i++)
3360 			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3361 		if (txp->npkt > 1) {
3362 			MPASS(avail >= tx_len16_to_desc(txp->len16));
3363 			if (vi->flags & TX_USES_VM_WR)
3364 				n = write_txpkts_vm_wr(sc, txq);
3365 			else
3366 				n = write_txpkts_wr(sc, txq);
3367 		} else {
3368 			MPASS(avail >=
3369 			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3370 			if (vi->flags & TX_USES_VM_WR)
3371 				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3372 			else
3373 				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3374 		}
3375 		MPASS(n <= SGE_MAX_WR_NDESC);
3376 		wr = &eq->desc[eq->pidx];
3377 		IDXINCR(eq->pidx, n, eq->sidx);
3378 		txp->npkt = 0;	/* emptied */
3379 
3380 		MPASS(wr_can_update_eq(wr));
3381 		set_txupdate_flags(txq, avail - n, wr);
3382 		ring_eq_db(sc, eq, n);
3383 		reclaim_tx_descs(txq, 32);
3384 	}
3385 	*coalescing = txp->npkt > 0;
3386 
3387 	return (total);
3388 }
3389 
3390 static inline void
init_iq(struct sge_iq * iq,struct adapter * sc,int tmr_idx,int pktc_idx,int qsize,int intr_idx,int cong,int qtype)3391 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3392     int qsize, int intr_idx, int cong, int qtype)
3393 {
3394 
3395 	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3396 	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3397 	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3398 	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3399 	KASSERT(intr_idx >= -1 && intr_idx < sc->intr_count,
3400 	    ("%s: bad intr_idx %d", __func__, intr_idx));
3401 	KASSERT(qtype == FW_IQ_IQTYPE_OTHER || qtype == FW_IQ_IQTYPE_NIC ||
3402 	    qtype == FW_IQ_IQTYPE_OFLD, ("%s: bad qtype %d", __func__, qtype));
3403 
3404 	iq->flags = 0;
3405 	iq->state = IQS_DISABLED;
3406 	iq->adapter = sc;
3407 	iq->qtype = qtype;
3408 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3409 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3410 	if (pktc_idx >= 0) {
3411 		iq->intr_params |= F_QINTR_CNT_EN;
3412 		iq->intr_pktc_idx = pktc_idx;
3413 	}
3414 	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3415 	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3416 	iq->intr_idx = intr_idx;
3417 	iq->cong_drop = cong;
3418 }
3419 
3420 static inline void
init_fl(struct adapter * sc,struct sge_fl * fl,int qsize,int maxp,char * name)3421 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3422 {
3423 	struct sge_params *sp = &sc->params.sge;
3424 
3425 	fl->qsize = qsize;
3426 	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3427 	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3428 	mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3429 	if (sc->flags & BUF_PACKING_OK &&
3430 	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3431 	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3432 		fl->flags |= FL_BUF_PACKING;
3433 	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3434 	fl->safe_zidx = sc->sge.safe_zidx;
3435 	if (fl->flags & FL_BUF_PACKING) {
3436 		fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3437 		fl->buf_boundary = sp->pack_boundary;
3438 	} else {
3439 		fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3440 		fl->buf_boundary = 16;
3441 	}
3442 	if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3443 		fl->buf_boundary = sp->pad_boundary;
3444 }
3445 
3446 static inline void
init_eq(struct adapter * sc,struct sge_eq * eq,int eqtype,int qsize,uint8_t port_id,struct sge_iq * iq,char * name)3447 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3448     uint8_t port_id, struct sge_iq *iq, char *name)
3449 {
3450 	KASSERT(eqtype >= EQ_CTRL && eqtype <= EQ_OFLD,
3451 	    ("%s: bad qtype %d", __func__, eqtype));
3452 
3453 	eq->type = eqtype;
3454 	eq->port_id = port_id;
3455 	eq->tx_chan = sc->port[port_id]->tx_chan;
3456 	eq->hw_port = sc->port[port_id]->hw_port;
3457 	eq->iq = iq;
3458 	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3459 	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3460 	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3461 }
3462 
3463 int
alloc_ring(struct adapter * sc,size_t len,bus_dma_tag_t * tag,bus_dmamap_t * map,bus_addr_t * pa,void ** va)3464 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3465     bus_dmamap_t *map, bus_addr_t *pa, void **va)
3466 {
3467 	int rc;
3468 
3469 	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3470 	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3471 	if (rc != 0) {
3472 		CH_ERR(sc, "cannot allocate DMA tag: %d\n", rc);
3473 		goto done;
3474 	}
3475 
3476 	rc = bus_dmamem_alloc(*tag, va,
3477 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3478 	if (rc != 0) {
3479 		CH_ERR(sc, "cannot allocate DMA memory: %d\n", rc);
3480 		goto done;
3481 	}
3482 
3483 	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3484 	if (rc != 0) {
3485 		CH_ERR(sc, "cannot load DMA map: %d\n", rc);
3486 		goto done;
3487 	}
3488 done:
3489 	if (rc)
3490 		free_ring(sc, *tag, *map, *pa, *va);
3491 
3492 	return (rc);
3493 }
3494 
3495 int
free_ring(struct adapter * sc,bus_dma_tag_t tag,bus_dmamap_t map,bus_addr_t pa,void * va)3496 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3497     bus_addr_t pa, void *va)
3498 {
3499 	if (pa)
3500 		bus_dmamap_unload(tag, map);
3501 	if (va)
3502 		bus_dmamem_free(tag, va, map);
3503 	if (tag)
3504 		bus_dma_tag_destroy(tag);
3505 
3506 	return (0);
3507 }
3508 
3509 /*
3510  * Allocates the software resources (mainly memory and sysctl nodes) for an
3511  * ingress queue and an optional freelist.
3512  *
3513  * Sets IQ_SW_ALLOCATED and returns 0 on success.
3514  */
3515 static int
alloc_iq_fl(struct vi_info * vi,struct sge_iq * iq,struct sge_fl * fl,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid)3516 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3517     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
3518 {
3519 	int rc;
3520 	size_t len;
3521 	struct adapter *sc = vi->adapter;
3522 
3523 	MPASS(!(iq->flags & IQ_SW_ALLOCATED));
3524 
3525 	len = iq->qsize * IQ_ESIZE;
3526 	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3527 	    (void **)&iq->desc);
3528 	if (rc != 0)
3529 		return (rc);
3530 
3531 	if (fl) {
3532 		len = fl->qsize * EQ_ESIZE;
3533 		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3534 		    &fl->ba, (void **)&fl->desc);
3535 		if (rc) {
3536 			free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba,
3537 			    iq->desc);
3538 			return (rc);
3539 		}
3540 
3541 		/* Allocate space for one software descriptor per buffer. */
3542 		fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc),
3543 		    M_CXGBE, M_ZERO | M_WAITOK);
3544 
3545 		add_fl_sysctls(sc, ctx, oid, fl);
3546 		iq->flags |= IQ_HAS_FL;
3547 	}
3548 	add_iq_sysctls(ctx, oid, iq);
3549 	iq->flags |= IQ_SW_ALLOCATED;
3550 
3551 	return (0);
3552 }
3553 
3554 /*
3555  * Frees all software resources (memory and locks) associated with an ingress
3556  * queue and an optional freelist.
3557  */
3558 static void
free_iq_fl(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)3559 free_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3560 {
3561 	MPASS(iq->flags & IQ_SW_ALLOCATED);
3562 
3563 	if (fl) {
3564 		MPASS(iq->flags & IQ_HAS_FL);
3565 		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc);
3566 		free_fl_buffers(sc, fl);
3567 		free(fl->sdesc, M_CXGBE);
3568 		mtx_destroy(&fl->fl_lock);
3569 		bzero(fl, sizeof(*fl));
3570 	}
3571 	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3572 	bzero(iq, sizeof(*iq));
3573 }
3574 
3575 /*
3576  * Allocates a hardware ingress queue and an optional freelist that will be
3577  * associated with it.
3578  *
3579  * Returns errno on failure.  Resources allocated up to that point may still be
3580  * allocated.  Caller is responsible for cleanup in case this function fails.
3581  */
3582 static int
alloc_iq_fl_hwq(struct vi_info * vi,struct sge_iq * iq,struct sge_fl * fl)3583 alloc_iq_fl_hwq(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3584 {
3585 	int rc, cntxt_id, cong_map;
3586 	struct fw_iq_cmd c;
3587 	struct adapter *sc = vi->adapter;
3588 	struct port_info *pi = vi->pi;
3589 	__be32 v = 0;
3590 
3591 	MPASS (!(iq->flags & IQ_HW_ALLOCATED));
3592 
3593 	bzero(&c, sizeof(c));
3594 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3595 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3596 	    V_FW_IQ_CMD_VFN(0));
3597 
3598 	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3599 	    FW_LEN16(c));
3600 
3601 	/* Special handling for firmware event queue */
3602 	if (iq == &sc->sge.fwq)
3603 		v |= F_FW_IQ_CMD_IQASYNCH;
3604 
3605 	if (iq->intr_idx < 0) {
3606 		/* Forwarded interrupts, all headed to fwq */
3607 		v |= F_FW_IQ_CMD_IQANDST;
3608 		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3609 	} else {
3610 		KASSERT(iq->intr_idx < sc->intr_count,
3611 		    ("%s: invalid direct intr_idx %d", __func__, iq->intr_idx));
3612 		v |= V_FW_IQ_CMD_IQANDSTINDEX(iq->intr_idx);
3613 	}
3614 
3615 	bzero(iq->desc, iq->qsize * IQ_ESIZE);
3616 	c.type_to_iqandstindex = htobe32(v |
3617 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3618 	    V_FW_IQ_CMD_VIID(vi->viid) |
3619 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3620 	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->hw_port) |
3621 	    F_FW_IQ_CMD_IQGTSMODE |
3622 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3623 	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3624 	c.iqsize = htobe16(iq->qsize);
3625 	c.iqaddr = htobe64(iq->ba);
3626 	c.iqns_to_fl0congen = htobe32(V_FW_IQ_CMD_IQTYPE(iq->qtype));
3627 	if (iq->cong_drop != -1) {
3628 		if (iq->qtype == IQ_ETH) {
3629 			if (chip_id(sc) >= CHELSIO_T7)
3630 				cong_map = 1 << pi->hw_port;
3631 			else
3632 				cong_map = pi->rx_e_chan_map;
3633 		} else
3634 			cong_map = 0;
3635 		c.iqns_to_fl0congen |= htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3636 	}
3637 
3638 	if (fl) {
3639 		bzero(fl->desc, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len);
3640 		c.iqns_to_fl0congen |=
3641 		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3642 			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3643 			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3644 			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3645 			    0));
3646 		if (iq->cong_drop != -1) {
3647 			c.iqns_to_fl0congen |=
3648 				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong_map) |
3649 				    F_FW_IQ_CMD_FL0CONGCIF |
3650 				    F_FW_IQ_CMD_FL0CONGEN);
3651 		}
3652 		c.fl0dcaen_to_fl0cidxfthresh =
3653 		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3654 			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3655 			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3656 			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3657 		c.fl0size = htobe16(fl->qsize);
3658 		c.fl0addr = htobe64(fl->ba);
3659 	}
3660 
3661 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3662 	if (rc != 0) {
3663 		CH_ERR(sc, "failed to create hw ingress queue: %d\n", rc);
3664 		return (rc);
3665 	}
3666 
3667 	iq->cidx = 0;
3668 	iq->gen = F_RSPD_GEN;
3669 	iq->cntxt_id = be16toh(c.iqid);
3670 	iq->abs_id = be16toh(c.physiqid);
3671 
3672 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3673 	if (cntxt_id >= sc->sge.iqmap_sz) {
3674 		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3675 		    cntxt_id, sc->sge.iqmap_sz - 1);
3676 	}
3677 	sc->sge.iqmap[cntxt_id] = iq;
3678 
3679 	if (fl) {
3680 		u_int qid;
3681 #ifdef INVARIANTS
3682 		int i;
3683 
3684 		MPASS(!(fl->flags & FL_BUF_RESUME));
3685 		for (i = 0; i < fl->sidx * 8; i++)
3686 			MPASS(fl->sdesc[i].cl == NULL);
3687 #endif
3688 		fl->cntxt_id = be16toh(c.fl0id);
3689 		fl->pidx = fl->cidx = fl->hw_cidx = fl->dbidx = 0;
3690 		fl->rx_offset = 0;
3691 		fl->flags &= ~(FL_STARVING | FL_DOOMED);
3692 
3693 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3694 		if (cntxt_id >= sc->sge.eqmap_sz) {
3695 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3696 			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
3697 		}
3698 		sc->sge.eqmap[cntxt_id] = (void *)fl;
3699 
3700 		qid = fl->cntxt_id;
3701 		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3702 			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3703 			uint32_t mask = (1 << s_qpp) - 1;
3704 			volatile uint8_t *udb;
3705 
3706 			udb = sc->udbs_base + UDBS_DB_OFFSET;
3707 			udb += (qid >> s_qpp) << PAGE_SHIFT;
3708 			qid &= mask;
3709 			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3710 				udb += qid << UDBS_SEG_SHIFT;
3711 				qid = 0;
3712 			}
3713 			fl->udb = (volatile void *)udb;
3714 		}
3715 		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3716 
3717 		FL_LOCK(fl);
3718 		/* Enough to make sure the SGE doesn't think it's starved */
3719 		refill_fl(sc, fl, fl->lowat);
3720 		FL_UNLOCK(fl);
3721 	}
3722 
3723 	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) &&
3724 	    iq->cong_drop != -1) {
3725 		t4_sge_set_conm_context(sc, iq->cntxt_id, iq->cong_drop,
3726 		    cong_map);
3727 	}
3728 
3729 	/* Enable IQ interrupts */
3730 	atomic_store_rel_int(&iq->state, IQS_IDLE);
3731 	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3732 	    V_INGRESSQID(iq->cntxt_id));
3733 
3734 	iq->flags |= IQ_HW_ALLOCATED;
3735 
3736 	return (0);
3737 }
3738 
3739 static int
free_iq_fl_hwq(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)3740 free_iq_fl_hwq(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3741 {
3742 	int rc;
3743 
3744 	MPASS(iq->flags & IQ_HW_ALLOCATED);
3745 	rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3746 	    iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
3747 	if (rc != 0) {
3748 		CH_ERR(sc, "failed to free iq %p: %d\n", iq, rc);
3749 		return (rc);
3750 	}
3751 	iq->flags &= ~IQ_HW_ALLOCATED;
3752 
3753 	return (0);
3754 }
3755 
3756 static void
add_iq_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_iq * iq)3757 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3758     struct sge_iq *iq)
3759 {
3760 	struct sysctl_oid_list *children;
3761 
3762 	if (ctx == NULL || oid == NULL)
3763 		return;
3764 
3765 	children = SYSCTL_CHILDREN(oid);
3766 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3767 	    "bus address of descriptor ring");
3768 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3769 	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3770 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3771 	    &iq->abs_id, 0, "absolute id of the queue");
3772 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3773 	    &iq->cntxt_id, 0, "SGE context id of the queue");
3774 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &iq->cidx,
3775 	    0, "consumer index");
3776 }
3777 
3778 static void
add_fl_sysctls(struct adapter * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_fl * fl)3779 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3780     struct sysctl_oid *oid, struct sge_fl *fl)
3781 {
3782 	struct sysctl_oid_list *children;
3783 
3784 	if (ctx == NULL || oid == NULL)
3785 		return;
3786 
3787 	children = SYSCTL_CHILDREN(oid);
3788 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3789 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3790 	children = SYSCTL_CHILDREN(oid);
3791 
3792 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3793 	    &fl->ba, "bus address of descriptor ring");
3794 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3795 	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3796 	    "desc ring size in bytes");
3797 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3798 	    &fl->cntxt_id, 0, "SGE context id of the freelist");
3799 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3800 	    fl_pad ? 1 : 0, "padding enabled");
3801 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3802 	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3803 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3804 	    0, "consumer index");
3805 	if (fl->flags & FL_BUF_PACKING) {
3806 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3807 		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3808 	}
3809 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3810 	    0, "producer index");
3811 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3812 	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3813 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3814 	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3815 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3816 	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3817 }
3818 
3819 /*
3820  * Idempotent.
3821  */
3822 static int
alloc_fwq(struct adapter * sc)3823 alloc_fwq(struct adapter *sc)
3824 {
3825 	int rc, intr_idx;
3826 	struct sge_iq *fwq = &sc->sge.fwq;
3827 	struct vi_info *vi = &sc->port[0]->vi[0];
3828 
3829 	if (!(fwq->flags & IQ_SW_ALLOCATED)) {
3830 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3831 
3832 		if (sc->flags & IS_VF)
3833 			intr_idx = 0;
3834 		else
3835 			intr_idx = sc->intr_count > 1 ? 1 : 0;
3836 		init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, intr_idx, -1, IQ_OTHER);
3837 		rc = alloc_iq_fl(vi, fwq, NULL, &sc->ctx, sc->fwq_oid);
3838 		if (rc != 0) {
3839 			CH_ERR(sc, "failed to allocate fwq: %d\n", rc);
3840 			return (rc);
3841 		}
3842 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3843 	}
3844 
3845 	if (!(fwq->flags & IQ_HW_ALLOCATED)) {
3846 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3847 
3848 		rc = alloc_iq_fl_hwq(vi, fwq, NULL);
3849 		if (rc != 0) {
3850 			CH_ERR(sc, "failed to create hw fwq: %d\n", rc);
3851 			return (rc);
3852 		}
3853 		MPASS(fwq->flags & IQ_HW_ALLOCATED);
3854 	}
3855 
3856 	return (0);
3857 }
3858 
3859 /*
3860  * Idempotent.
3861  */
3862 static void
free_fwq(struct adapter * sc)3863 free_fwq(struct adapter *sc)
3864 {
3865 	struct sge_iq *fwq = &sc->sge.fwq;
3866 
3867 	if (fwq->flags & IQ_HW_ALLOCATED) {
3868 		MPASS(fwq->flags & IQ_SW_ALLOCATED);
3869 		free_iq_fl_hwq(sc, fwq, NULL);
3870 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3871 	}
3872 
3873 	if (fwq->flags & IQ_SW_ALLOCATED) {
3874 		MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3875 		free_iq_fl(sc, fwq, NULL);
3876 		MPASS(!(fwq->flags & IQ_SW_ALLOCATED));
3877 	}
3878 }
3879 
3880 /*
3881  * Idempotent.
3882  */
3883 static int
alloc_ctrlq(struct adapter * sc,int idx)3884 alloc_ctrlq(struct adapter *sc, int idx)
3885 {
3886 	int rc;
3887 	char name[16];
3888 	struct sysctl_oid *oid;
3889 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3890 
3891 	MPASS(idx < sc->sge.nctrlq);
3892 
3893 	if (!(ctrlq->eq.flags & EQ_SW_ALLOCATED)) {
3894 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3895 
3896 		snprintf(name, sizeof(name), "%d", idx);
3897 		oid = SYSCTL_ADD_NODE(&sc->ctx, SYSCTL_CHILDREN(sc->ctrlq_oid),
3898 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3899 		    "ctrl queue");
3900 
3901 		snprintf(name, sizeof(name), "%s ctrlq%d",
3902 		    device_get_nameunit(sc->dev), idx);
3903 		init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE,
3904 		    idx % sc->params.nports, &sc->sge.fwq, name);
3905 		rc = alloc_wrq(sc, NULL, ctrlq, &sc->ctx, oid);
3906 		if (rc != 0) {
3907 			CH_ERR(sc, "failed to allocate ctrlq%d: %d\n", idx, rc);
3908 			sysctl_remove_oid(oid, 1, 1);
3909 			return (rc);
3910 		}
3911 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3912 	}
3913 
3914 	if (!(ctrlq->eq.flags & EQ_HW_ALLOCATED)) {
3915 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3916 		MPASS(ctrlq->nwr_pending == 0);
3917 		MPASS(ctrlq->ndesc_needed == 0);
3918 
3919 		rc = alloc_eq_hwq(sc, NULL, &ctrlq->eq, idx);
3920 		if (rc != 0) {
3921 			CH_ERR(sc, "failed to create hw ctrlq%d: %d\n", idx, rc);
3922 			return (rc);
3923 		}
3924 		MPASS(ctrlq->eq.flags & EQ_HW_ALLOCATED);
3925 	}
3926 
3927 	return (0);
3928 }
3929 
3930 /*
3931  * Idempotent.
3932  */
3933 static void
free_ctrlq(struct adapter * sc,int idx)3934 free_ctrlq(struct adapter *sc, int idx)
3935 {
3936 	struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3937 
3938 	if (ctrlq->eq.flags & EQ_HW_ALLOCATED) {
3939 		MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3940 		free_eq_hwq(sc, NULL, &ctrlq->eq);
3941 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3942 	}
3943 
3944 	if (ctrlq->eq.flags & EQ_SW_ALLOCATED) {
3945 		MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3946 		free_wrq(sc, ctrlq);
3947 		MPASS(!(ctrlq->eq.flags & EQ_SW_ALLOCATED));
3948 	}
3949 }
3950 
3951 int
t4_sge_set_conm_context(struct adapter * sc,int cntxt_id,int cong_drop,int cong_map)3952 t4_sge_set_conm_context(struct adapter *sc, int cntxt_id, int cong_drop,
3953     int cong_map)
3954 {
3955 	const int cng_ch_bits_log = sc->chip_params->cng_ch_bits_log;
3956 	uint32_t param, val;
3957 	uint16_t ch_map;
3958 	int cong_mode, rc, i;
3959 
3960 	if (chip_id(sc) < CHELSIO_T5)
3961 		return (ENOTSUP);
3962 
3963 	/* Convert the driver knob to the mode understood by the firmware. */
3964 	switch (cong_drop) {
3965 	case -1:
3966 		cong_mode = X_CONMCTXT_CNGTPMODE_DISABLE;
3967 		break;
3968 	case 0:
3969 		cong_mode = X_CONMCTXT_CNGTPMODE_CHANNEL;
3970 		break;
3971 	case 1:
3972 		cong_mode = X_CONMCTXT_CNGTPMODE_QUEUE;
3973 		break;
3974 	case 2:
3975 		cong_mode = X_CONMCTXT_CNGTPMODE_BOTH;
3976 		break;
3977 	default:
3978 		MPASS(0);
3979 		CH_ERR(sc, "cong_drop = %d is invalid (ingress queue %d).\n",
3980 		    cong_drop, cntxt_id);
3981 		return (EINVAL);
3982 	}
3983 
3984 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3985 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3986 	    V_FW_PARAMS_PARAM_YZ(cntxt_id);
3987 	if (chip_id(sc) >= CHELSIO_T7) {
3988 		val = V_T7_DMAQ_CONM_CTXT_CNGTPMODE(cong_mode) |
3989 		    V_T7_DMAQ_CONM_CTXT_CH_VEC(cong_map);
3990 	} else {
3991 		val = V_CONMCTXT_CNGTPMODE(cong_mode);
3992 		if (cong_mode == X_CONMCTXT_CNGTPMODE_CHANNEL ||
3993 		    cong_mode == X_CONMCTXT_CNGTPMODE_BOTH) {
3994 			for (i = 0, ch_map = 0; i < 4; i++) {
3995 				if (cong_map & (1 << i))
3996 					ch_map |= 1 << (i << cng_ch_bits_log);
3997 			}
3998 			val |= V_CONMCTXT_CNGCHMAP(ch_map);
3999 		}
4000 	}
4001 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4002 	if (rc != 0) {
4003 		CH_ERR(sc, "failed to set congestion manager context "
4004 		    "for ingress queue %d: %d\n", cntxt_id, rc);
4005 	}
4006 
4007 	return (rc);
4008 }
4009 
4010 /*
4011  * Idempotent.
4012  */
4013 static int
alloc_rxq(struct vi_info * vi,struct sge_rxq * rxq,int idx,int intr_idx,int maxp)4014 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int idx, int intr_idx,
4015     int maxp)
4016 {
4017 	int rc;
4018 	struct adapter *sc = vi->adapter;
4019 	if_t ifp = vi->ifp;
4020 	struct sysctl_oid *oid;
4021 	char name[16];
4022 
4023 	if (!(rxq->iq.flags & IQ_SW_ALLOCATED)) {
4024 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4025 #if defined(INET) || defined(INET6)
4026 		rc = tcp_lro_init_args(&rxq->lro, ifp, lro_entries, lro_mbufs);
4027 		if (rc != 0)
4028 			return (rc);
4029 		MPASS(rxq->lro.ifp == ifp);	/* also indicates LRO init'ed */
4030 #endif
4031 		rxq->ifp = ifp;
4032 
4033 		snprintf(name, sizeof(name), "%d", idx);
4034 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->rxq_oid),
4035 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4036 		    "rx queue");
4037 
4038 		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq,
4039 		    intr_idx, cong_drop, IQ_ETH);
4040 #if defined(INET) || defined(INET6)
4041 		if (if_getcapenable(ifp) & IFCAP_LRO)
4042 			rxq->iq.flags |= IQ_LRO_ENABLED;
4043 #endif
4044 		if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
4045 			rxq->iq.flags |= IQ_RX_TIMESTAMP;
4046 		snprintf(name, sizeof(name), "%s rxq%d-fl",
4047 		    device_get_nameunit(vi->dev), idx);
4048 		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
4049 		rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, &vi->ctx, oid);
4050 		if (rc != 0) {
4051 			CH_ERR(vi, "failed to allocate rxq%d: %d\n", idx, rc);
4052 			sysctl_remove_oid(oid, 1, 1);
4053 #if defined(INET) || defined(INET6)
4054 			tcp_lro_free(&rxq->lro);
4055 			rxq->lro.ifp = NULL;
4056 #endif
4057 			return (rc);
4058 		}
4059 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4060 		add_rxq_sysctls(&vi->ctx, oid, rxq);
4061 	}
4062 
4063 	if (!(rxq->iq.flags & IQ_HW_ALLOCATED)) {
4064 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4065 		rc = alloc_iq_fl_hwq(vi, &rxq->iq, &rxq->fl);
4066 		if (rc != 0) {
4067 			CH_ERR(vi, "failed to create hw rxq%d: %d\n", idx, rc);
4068 			return (rc);
4069 		}
4070 		MPASS(rxq->iq.flags & IQ_HW_ALLOCATED);
4071 
4072 		if (idx == 0)
4073 			sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
4074 		else
4075 			KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
4076 			    ("iq_base mismatch"));
4077 		KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
4078 		    ("PF with non-zero iq_base"));
4079 
4080 		/*
4081 		 * The freelist is just barely above the starvation threshold
4082 		 * right now, fill it up a bit more.
4083 		 */
4084 		FL_LOCK(&rxq->fl);
4085 		refill_fl(sc, &rxq->fl, 128);
4086 		FL_UNLOCK(&rxq->fl);
4087 	}
4088 
4089 	return (0);
4090 }
4091 
4092 /*
4093  * Idempotent.
4094  */
4095 static void
free_rxq(struct vi_info * vi,struct sge_rxq * rxq)4096 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
4097 {
4098 	if (rxq->iq.flags & IQ_HW_ALLOCATED) {
4099 		MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4100 		free_iq_fl_hwq(vi->adapter, &rxq->iq, &rxq->fl);
4101 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4102 	}
4103 
4104 	if (rxq->iq.flags & IQ_SW_ALLOCATED) {
4105 		MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4106 #if defined(INET) || defined(INET6)
4107 		tcp_lro_free(&rxq->lro);
4108 #endif
4109 		free_iq_fl(vi->adapter, &rxq->iq, &rxq->fl);
4110 		MPASS(!(rxq->iq.flags & IQ_SW_ALLOCATED));
4111 		bzero(rxq, sizeof(*rxq));
4112 	}
4113 }
4114 
4115 static void
add_rxq_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_rxq * rxq)4116 add_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4117     struct sge_rxq *rxq)
4118 {
4119 	struct sysctl_oid_list *children;
4120 
4121 	if (ctx == NULL || oid == NULL)
4122 		return;
4123 
4124 	children = SYSCTL_CHILDREN(oid);
4125 #if defined(INET) || defined(INET6)
4126 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
4127 	    &rxq->lro.lro_queued, 0, NULL);
4128 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
4129 	    &rxq->lro.lro_flushed, 0, NULL);
4130 #endif
4131 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
4132 	    &rxq->rxcsum, "# of times hardware assisted with checksum");
4133 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD,
4134 	    &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag");
4135 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_rxcsum", CTLFLAG_RD,
4136 	    &rxq->vxlan_rxcsum,
4137 	    "# of times hardware assisted with inner checksum (VXLAN)");
4138 }
4139 
4140 #ifdef TCP_OFFLOAD
4141 /*
4142  * Idempotent.
4143  */
4144 static int
alloc_ofld_rxq(struct vi_info * vi,struct sge_ofld_rxq * ofld_rxq,int idx,int intr_idx,int maxp)4145 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int idx,
4146     int intr_idx, int maxp)
4147 {
4148 	int rc;
4149 	struct adapter *sc = vi->adapter;
4150 	struct sysctl_oid *oid;
4151 	char name[16];
4152 
4153 	if (!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)) {
4154 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4155 
4156 		snprintf(name, sizeof(name), "%d", idx);
4157 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4158 		    SYSCTL_CHILDREN(vi->ofld_rxq_oid), OID_AUTO, name,
4159 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload rx queue");
4160 
4161 		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
4162 		    vi->qsize_rxq, intr_idx, ofld_cong_drop, IQ_OFLD);
4163 		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
4164 		    device_get_nameunit(vi->dev), idx);
4165 		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
4166 		rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, &vi->ctx,
4167 		    oid);
4168 		if (rc != 0) {
4169 			CH_ERR(vi, "failed to allocate ofld_rxq%d: %d\n", idx,
4170 			    rc);
4171 			sysctl_remove_oid(oid, 1, 1);
4172 			return (rc);
4173 		}
4174 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4175 		ofld_rxq->rx_iscsi_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
4176 		ofld_rxq->rx_iscsi_ddp_setup_error =
4177 		    counter_u64_alloc(M_WAITOK);
4178 		ofld_rxq->rx_nvme_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
4179 		ofld_rxq->rx_nvme_ddp_setup_no_stag =
4180 		    counter_u64_alloc(M_WAITOK);
4181 		ofld_rxq->rx_nvme_ddp_setup_error =
4182 		    counter_u64_alloc(M_WAITOK);
4183 		ofld_rxq->rx_nvme_ddp_octets = counter_u64_alloc(M_WAITOK);
4184 		ofld_rxq->rx_nvme_ddp_pdus = counter_u64_alloc(M_WAITOK);
4185 		ofld_rxq->rx_nvme_fl_octets = counter_u64_alloc(M_WAITOK);
4186 		ofld_rxq->rx_nvme_fl_pdus = counter_u64_alloc(M_WAITOK);
4187 		ofld_rxq->rx_nvme_invalid_headers = counter_u64_alloc(M_WAITOK);
4188 		ofld_rxq->rx_nvme_header_digest_errors =
4189 		    counter_u64_alloc(M_WAITOK);
4190 		ofld_rxq->rx_nvme_data_digest_errors =
4191 		    counter_u64_alloc(M_WAITOK);
4192 		ofld_rxq->ddp_buffer_alloc = counter_u64_alloc(M_WAITOK);
4193 		ofld_rxq->ddp_buffer_reuse = counter_u64_alloc(M_WAITOK);
4194 		ofld_rxq->ddp_buffer_free = counter_u64_alloc(M_WAITOK);
4195 		add_ofld_rxq_sysctls(&vi->ctx, oid, ofld_rxq);
4196 	}
4197 
4198 	if (!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)) {
4199 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4200 		rc = alloc_iq_fl_hwq(vi, &ofld_rxq->iq, &ofld_rxq->fl);
4201 		if (rc != 0) {
4202 			CH_ERR(vi, "failed to create hw ofld_rxq%d: %d\n", idx,
4203 			    rc);
4204 			return (rc);
4205 		}
4206 		MPASS(ofld_rxq->iq.flags & IQ_HW_ALLOCATED);
4207 	}
4208 	return (rc);
4209 }
4210 
4211 /*
4212  * Idempotent.
4213  */
4214 static void
free_ofld_rxq(struct vi_info * vi,struct sge_ofld_rxq * ofld_rxq)4215 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
4216 {
4217 	if (ofld_rxq->iq.flags & IQ_HW_ALLOCATED) {
4218 		MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4219 		free_iq_fl_hwq(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4220 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4221 	}
4222 
4223 	if (ofld_rxq->iq.flags & IQ_SW_ALLOCATED) {
4224 		MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4225 		free_iq_fl(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4226 		MPASS(!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED));
4227 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_ok);
4228 		counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_error);
4229 		counter_u64_free(ofld_rxq->rx_nvme_ddp_setup_ok);
4230 		counter_u64_free(ofld_rxq->rx_nvme_ddp_setup_no_stag);
4231 		counter_u64_free(ofld_rxq->rx_nvme_ddp_setup_error);
4232 		counter_u64_free(ofld_rxq->rx_nvme_ddp_octets);
4233 		counter_u64_free(ofld_rxq->rx_nvme_ddp_pdus);
4234 		counter_u64_free(ofld_rxq->rx_nvme_fl_octets);
4235 		counter_u64_free(ofld_rxq->rx_nvme_fl_pdus);
4236 		counter_u64_free(ofld_rxq->rx_nvme_invalid_headers);
4237 		counter_u64_free(ofld_rxq->rx_nvme_header_digest_errors);
4238 		counter_u64_free(ofld_rxq->rx_nvme_data_digest_errors);
4239 		counter_u64_free(ofld_rxq->ddp_buffer_alloc);
4240 		counter_u64_free(ofld_rxq->ddp_buffer_reuse);
4241 		counter_u64_free(ofld_rxq->ddp_buffer_free);
4242 		bzero(ofld_rxq, sizeof(*ofld_rxq));
4243 	}
4244 }
4245 
4246 static void
add_ofld_rxq_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_ofld_rxq * ofld_rxq)4247 add_ofld_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4248     struct sge_ofld_rxq *ofld_rxq)
4249 {
4250 	struct sysctl_oid_list *children, *top;
4251 
4252 	if (ctx == NULL || oid == NULL)
4253 		return;
4254 
4255 	top = children = SYSCTL_CHILDREN(oid);
4256 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "rx_aio_ddp_jobs",
4257 	    CTLFLAG_RD, &ofld_rxq->rx_aio_ddp_jobs, 0,
4258 	    "# of aio_read(2) jobs completed via DDP");
4259 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "rx_aio_ddp_octets",
4260 	    CTLFLAG_RD, &ofld_rxq->rx_aio_ddp_octets, 0,
4261 	    "# of octets placed directly for aio_read(2) jobs");
4262 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4263 	    "rx_toe_tls_records", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_records,
4264 	    "# of TOE TLS records received");
4265 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4266 	    "rx_toe_tls_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_octets,
4267 	    "# of payload octets in received TOE TLS records");
4268 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4269 	    "rx_toe_ddp_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_ddp_octets,
4270 	    "# of payload octets received via TCP DDP");
4271 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO,
4272 	    "ddp_buffer_alloc", CTLFLAG_RD, &ofld_rxq->ddp_buffer_alloc,
4273 	    "# of DDP RCV buffers allocated");
4274 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO,
4275 	    "ddp_buffer_reuse", CTLFLAG_RD, &ofld_rxq->ddp_buffer_reuse,
4276 	    "# of DDP RCV buffers reused");
4277 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO,
4278 	    "ddp_buffer_free", CTLFLAG_RD, &ofld_rxq->ddp_buffer_free,
4279 	    "# of DDP RCV buffers freed");
4280 
4281 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "iscsi",
4282 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE iSCSI statistics");
4283 	children = SYSCTL_CHILDREN(oid);
4284 
4285 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
4286 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_ok,
4287 	    "# of times DDP buffer was setup successfully.");
4288 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
4289 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_error,
4290 	    "# of times DDP buffer setup failed.");
4291 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_octets",
4292 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_octets, 0,
4293 	    "# of octets placed directly");
4294 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_pdus",
4295 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_pdus, 0,
4296 	    "# of PDUs with data placed directly.");
4297 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_octets",
4298 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_octets, 0,
4299 	    "# of data octets delivered in freelist");
4300 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_pdus",
4301 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_pdus, 0,
4302 	    "# of PDUs with data delivered in freelist");
4303 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "padding_errors",
4304 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_padding_errors, 0,
4305 	    "# of PDUs with invalid padding");
4306 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "header_digest_errors",
4307 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_header_digest_errors, 0,
4308 	    "# of PDUs with invalid header digests");
4309 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "data_digest_errors",
4310 	    CTLFLAG_RD, &ofld_rxq->rx_iscsi_data_digest_errors, 0,
4311 	    "# of PDUs with invalid data digests");
4312 
4313 	oid = SYSCTL_ADD_NODE(ctx, top, OID_AUTO, "nvme",
4314 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE NVMe statistics");
4315 	children = SYSCTL_CHILDREN(oid);
4316 
4317 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
4318 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_ddp_setup_ok,
4319 	    "# of times DDP buffer was setup successfully");
4320 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_no_stag",
4321 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_ddp_setup_no_stag,
4322 	    "# of times STAG was not available for DDP buffer setup");
4323 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
4324 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_ddp_setup_error,
4325 	    "# of times DDP buffer setup failed");
4326 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_octets",
4327 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_ddp_octets,
4328 	    "# of octets placed directly");
4329 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_pdus",
4330 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_ddp_pdus,
4331 	    "# of PDUs with data placed directly");
4332 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "fl_octets",
4333 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_fl_octets,
4334 	    "# of data octets delivered in freelist");
4335 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "fl_pdus",
4336 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_fl_pdus,
4337 	    "# of PDUs with data delivered in freelist");
4338 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "invalid_headers",
4339 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_invalid_headers,
4340 	    "# of PDUs with invalid header field");
4341 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "header_digest_errors",
4342 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_header_digest_errors,
4343 	    "# of PDUs with invalid header digests");
4344 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "data_digest_errors",
4345 	    CTLFLAG_RD, &ofld_rxq->rx_nvme_data_digest_errors,
4346 	    "# of PDUs with invalid data digests");
4347 }
4348 #endif
4349 
4350 /*
4351  * Returns a reasonable automatic cidx flush threshold for a given queue size.
4352  */
4353 static u_int
qsize_to_fthresh(int qsize)4354 qsize_to_fthresh(int qsize)
4355 {
4356 	u_int fthresh;
4357 
4358 	fthresh = qsize == 0 ? 0 : order_base_2(qsize);
4359 	if (fthresh > X_CIDXFLUSHTHRESH_128)
4360 		fthresh = X_CIDXFLUSHTHRESH_128;
4361 
4362 	return (fthresh);
4363 }
4364 
4365 static int
ctrl_eq_alloc(struct adapter * sc,struct sge_eq * eq,int idx)4366 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq, int idx)
4367 {
4368 	int rc, cntxt_id, core;
4369 	struct fw_eq_ctrl_cmd c;
4370 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4371 
4372 	core = sc->params.tid_qid_sel_mask != 0 ? idx % sc->params.ncores : 0;
4373 	bzero(&c, sizeof(c));
4374 
4375 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
4376 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
4377 	    V_FW_EQ_CTRL_CMD_VFN(0));
4378 	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
4379 	    V_FW_EQ_CTRL_CMD_COREGROUP(core) |
4380 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
4381 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
4382 	c.physeqid_pkd = htobe32(0);
4383 	c.fetchszm_to_iqid =
4384 	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4385 		V_FW_EQ_CTRL_CMD_PCIECHN(eq->hw_port) |
4386 		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
4387 	c.dcaen_to_eqsize =
4388 	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4389 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4390 		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4391 		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4392 		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
4393 	c.eqaddr = htobe64(eq->ba);
4394 
4395 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4396 	if (rc != 0) {
4397 		CH_ERR(sc, "failed to create hw ctrlq for port %d: %d\n",
4398 		    eq->port_id, rc);
4399 		return (rc);
4400 	}
4401 
4402 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
4403 	eq->abs_id = G_FW_EQ_CTRL_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4404 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4405 	if (cntxt_id >= sc->sge.eqmap_sz)
4406 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4407 		cntxt_id, sc->sge.eqmap_sz - 1);
4408 	sc->sge.eqmap[cntxt_id] = eq;
4409 
4410 	return (rc);
4411 }
4412 
4413 static int
eth_eq_alloc(struct adapter * sc,struct vi_info * vi,struct sge_eq * eq,int idx)4414 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq, int idx)
4415 {
4416 	int rc, cntxt_id, core;
4417 	struct fw_eq_eth_cmd c;
4418 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4419 
4420 	core = sc->params.ncores > 1 ? idx % sc->params.ncores : 0;
4421 	bzero(&c, sizeof(c));
4422 
4423 	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
4424 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
4425 	    V_FW_EQ_ETH_CMD_VFN(0));
4426 	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
4427 	    V_FW_EQ_ETH_CMD_COREGROUP(core) |
4428 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
4429 	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
4430 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
4431 	c.fetchszm_to_iqid =
4432 	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
4433 		V_FW_EQ_ETH_CMD_PCIECHN(eq->hw_port) | F_FW_EQ_ETH_CMD_FETCHRO |
4434 		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
4435 	c.dcaen_to_eqsize =
4436 	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4437 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4438 		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4439 		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
4440 	c.eqaddr = htobe64(eq->ba);
4441 
4442 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4443 	if (rc != 0) {
4444 		device_printf(vi->dev,
4445 		    "failed to create Ethernet egress queue: %d\n", rc);
4446 		return (rc);
4447 	}
4448 
4449 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
4450 	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4451 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4452 	if (cntxt_id >= sc->sge.eqmap_sz)
4453 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4454 		cntxt_id, sc->sge.eqmap_sz - 1);
4455 	sc->sge.eqmap[cntxt_id] = eq;
4456 
4457 	return (rc);
4458 }
4459 
4460 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4461 /*
4462  * ncores	number of uP cores.
4463  * nq		number of queues for this VI
4464  * idx		queue index
4465  */
4466 static inline int
qidx_to_core(int ncores,int nq,int idx)4467 qidx_to_core(int ncores, int nq, int idx)
4468 {
4469 	MPASS(nq % ncores == 0);
4470 	MPASS(idx >= 0 && idx < nq);
4471 
4472 	return (idx * ncores / nq);
4473 }
4474 
4475 static int
ofld_eq_alloc(struct adapter * sc,struct vi_info * vi,struct sge_eq * eq,int idx)4476 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq,
4477     int idx)
4478 {
4479 	int rc, cntxt_id, core;
4480 	struct fw_eq_ofld_cmd c;
4481 	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4482 
4483 	if (sc->params.tid_qid_sel_mask != 0)
4484 		core = qidx_to_core(sc->params.ncores, vi->nofldtxq, idx);
4485 	else
4486 		core = 0;
4487 
4488 	bzero(&c, sizeof(c));
4489 
4490 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
4491 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
4492 	    V_FW_EQ_OFLD_CMD_VFN(0));
4493 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
4494 	    V_FW_EQ_OFLD_CMD_COREGROUP(core) |
4495 	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
4496 	c.fetchszm_to_iqid =
4497 		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4498 		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->hw_port) |
4499 		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
4500 	c.dcaen_to_eqsize =
4501 	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4502 		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4503 		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4504 		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4505 		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
4506 	c.eqaddr = htobe64(eq->ba);
4507 
4508 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4509 	if (rc != 0) {
4510 		device_printf(vi->dev,
4511 		    "failed to create egress queue for TCP offload: %d\n", rc);
4512 		return (rc);
4513 	}
4514 
4515 	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
4516 	eq->abs_id = G_FW_EQ_OFLD_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4517 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4518 	if (cntxt_id >= sc->sge.eqmap_sz)
4519 	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4520 		cntxt_id, sc->sge.eqmap_sz - 1);
4521 	sc->sge.eqmap[cntxt_id] = eq;
4522 
4523 	return (rc);
4524 }
4525 #endif
4526 
4527 /* SW only */
4528 static int
alloc_eq(struct adapter * sc,struct sge_eq * eq,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid)4529 alloc_eq(struct adapter *sc, struct sge_eq *eq, struct sysctl_ctx_list *ctx,
4530     struct sysctl_oid *oid)
4531 {
4532 	int rc, qsize;
4533 	size_t len;
4534 
4535 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4536 
4537 	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4538 	len = qsize * EQ_ESIZE;
4539 	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba,
4540 	    (void **)&eq->desc);
4541 	if (rc)
4542 		return (rc);
4543 	if (ctx != NULL && oid != NULL)
4544 		add_eq_sysctls(sc, ctx, oid, eq);
4545 	eq->flags |= EQ_SW_ALLOCATED;
4546 
4547 	return (0);
4548 }
4549 
4550 /* SW only */
4551 static void
free_eq(struct adapter * sc,struct sge_eq * eq)4552 free_eq(struct adapter *sc, struct sge_eq *eq)
4553 {
4554 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4555 	if (eq->type == EQ_ETH)
4556 		MPASS(eq->pidx == eq->cidx);
4557 
4558 	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4559 	mtx_destroy(&eq->eq_lock);
4560 	bzero(eq, sizeof(*eq));
4561 }
4562 
4563 static void
add_eq_sysctls(struct adapter * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_eq * eq)4564 add_eq_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
4565     struct sysctl_oid *oid, struct sge_eq *eq)
4566 {
4567 	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4568 
4569 	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba,
4570 	    "bus address of descriptor ring");
4571 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4572 	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4573 	    "desc ring size in bytes");
4574 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4575 	    &eq->abs_id, 0, "absolute id of the queue");
4576 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4577 	    &eq->cntxt_id, 0, "SGE context id of the queue");
4578 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &eq->cidx,
4579 	    0, "consumer index");
4580 	SYSCTL_ADD_U16(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &eq->pidx,
4581 	    0, "producer index");
4582 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4583 	    eq->sidx, "status page index");
4584 }
4585 
4586 static int
alloc_eq_hwq(struct adapter * sc,struct vi_info * vi,struct sge_eq * eq,int idx)4587 alloc_eq_hwq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq, int idx)
4588 {
4589 	int rc;
4590 
4591 	MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4592 
4593 	eq->iqid = eq->iq->cntxt_id;
4594 	eq->pidx = eq->cidx = eq->dbidx = 0;
4595 	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4596 	eq->equeqidx = 0;
4597 	eq->doorbells = sc->doorbells;
4598 	bzero(eq->desc, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len);
4599 
4600 	switch (eq->type) {
4601 	case EQ_CTRL:
4602 		rc = ctrl_eq_alloc(sc, eq, idx);
4603 		break;
4604 
4605 	case EQ_ETH:
4606 		rc = eth_eq_alloc(sc, vi, eq, idx);
4607 		break;
4608 
4609 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4610 	case EQ_OFLD:
4611 		rc = ofld_eq_alloc(sc, vi, eq, idx);
4612 		break;
4613 #endif
4614 
4615 	default:
4616 		panic("%s: invalid eq type %d.", __func__, eq->type);
4617 	}
4618 	if (rc != 0) {
4619 		CH_ERR(sc, "failed to allocate egress queue(%d): %d\n",
4620 		    eq->type, rc);
4621 		return (rc);
4622 	}
4623 
4624 	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4625 	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4626 	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4627 		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4628 		uint32_t mask = (1 << s_qpp) - 1;
4629 		volatile uint8_t *udb;
4630 
4631 		udb = sc->udbs_base + UDBS_DB_OFFSET;
4632 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4633 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4634 		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4635 			clrbit(&eq->doorbells, DOORBELL_WCWR);
4636 		else {
4637 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4638 			eq->udb_qid = 0;
4639 		}
4640 		eq->udb = (volatile void *)udb;
4641 	}
4642 
4643 	eq->flags |= EQ_HW_ALLOCATED;
4644 	return (0);
4645 }
4646 
4647 static int
free_eq_hwq(struct adapter * sc,struct vi_info * vi __unused,struct sge_eq * eq)4648 free_eq_hwq(struct adapter *sc, struct vi_info *vi __unused, struct sge_eq *eq)
4649 {
4650 	int rc;
4651 
4652 	MPASS(eq->flags & EQ_HW_ALLOCATED);
4653 
4654 	switch (eq->type) {
4655 	case EQ_CTRL:
4656 		rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4657 		break;
4658 	case EQ_ETH:
4659 		rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4660 		break;
4661 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4662 	case EQ_OFLD:
4663 		rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4664 		break;
4665 #endif
4666 	default:
4667 		panic("%s: invalid eq type %d.", __func__, eq->type);
4668 	}
4669 	if (rc != 0) {
4670 		CH_ERR(sc, "failed to free eq (type %d): %d\n", eq->type, rc);
4671 		return (rc);
4672 	}
4673 	eq->flags &= ~EQ_HW_ALLOCATED;
4674 
4675 	return (0);
4676 }
4677 
4678 static int
alloc_wrq(struct adapter * sc,struct vi_info * vi,struct sge_wrq * wrq,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid)4679 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4680     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
4681 {
4682 	struct sge_eq *eq = &wrq->eq;
4683 	int rc;
4684 
4685 	MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4686 
4687 	rc = alloc_eq(sc, eq, ctx, oid);
4688 	if (rc)
4689 		return (rc);
4690 	MPASS(eq->flags & EQ_SW_ALLOCATED);
4691 	/* Can't fail after this. */
4692 
4693 	wrq->adapter = sc;
4694 	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4695 	TAILQ_INIT(&wrq->incomplete_wrs);
4696 	STAILQ_INIT(&wrq->wr_list);
4697 	wrq->nwr_pending = 0;
4698 	wrq->ndesc_needed = 0;
4699 	add_wrq_sysctls(ctx, oid, wrq);
4700 
4701 	return (0);
4702 }
4703 
4704 static void
free_wrq(struct adapter * sc,struct sge_wrq * wrq)4705 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4706 {
4707 	free_eq(sc, &wrq->eq);
4708 	MPASS(wrq->nwr_pending == 0);
4709 	MPASS(wrq->ndesc_needed == 0);
4710 	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
4711 	MPASS(STAILQ_EMPTY(&wrq->wr_list));
4712 	bzero(wrq, sizeof(*wrq));
4713 }
4714 
4715 static void
add_wrq_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_wrq * wrq)4716 add_wrq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4717     struct sge_wrq *wrq)
4718 {
4719 	struct sysctl_oid_list *children;
4720 
4721 	if (ctx == NULL || oid == NULL)
4722 		return;
4723 
4724 	children = SYSCTL_CHILDREN(oid);
4725 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4726 	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4727 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4728 	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4729 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4730 	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4731 }
4732 
4733 /*
4734  * Idempotent.
4735  */
4736 static int
alloc_txq(struct vi_info * vi,struct sge_txq * txq,int idx)4737 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx)
4738 {
4739 	int rc, iqidx;
4740 	struct port_info *pi = vi->pi;
4741 	struct adapter *sc = vi->adapter;
4742 	struct sge_eq *eq = &txq->eq;
4743 	struct txpkts *txp;
4744 	char name[16];
4745 	struct sysctl_oid *oid;
4746 
4747 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4748 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4749 
4750 		snprintf(name, sizeof(name), "%d", idx);
4751 		oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->txq_oid),
4752 		    OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4753 		    "tx queue");
4754 
4755 		iqidx = vi->first_rxq + (idx % vi->nrxq);
4756 		snprintf(name, sizeof(name), "%s txq%d",
4757 		    device_get_nameunit(vi->dev), idx);
4758 		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->port_id,
4759 		    &sc->sge.rxq[iqidx].iq, name);
4760 
4761 		rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx,
4762 		    can_resume_eth_tx, M_CXGBE, &eq->eq_lock, M_WAITOK);
4763 		if (rc != 0) {
4764 			CH_ERR(vi, "failed to allocate mp_ring for txq%d: %d\n",
4765 			    idx, rc);
4766 failed:
4767 			sysctl_remove_oid(oid, 1, 1);
4768 			return (rc);
4769 		}
4770 
4771 		rc = alloc_eq(sc, eq, &vi->ctx, oid);
4772 		if (rc) {
4773 			CH_ERR(vi, "failed to allocate txq%d: %d\n", idx, rc);
4774 			mp_ring_free(txq->r);
4775 			goto failed;
4776 		}
4777 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4778 		/* Can't fail after this point. */
4779 
4780 		TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4781 		txq->ifp = vi->ifp;
4782 		txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4783 		txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4784 		    M_ZERO | M_WAITOK);
4785 
4786 		add_txq_sysctls(vi, &vi->ctx, oid, txq);
4787 	}
4788 
4789 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
4790 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4791 		rc = alloc_eq_hwq(sc, vi, eq, idx);
4792 		if (rc != 0) {
4793 			CH_ERR(vi, "failed to create hw txq%d: %d\n", idx, rc);
4794 			return (rc);
4795 		}
4796 		MPASS(eq->flags & EQ_HW_ALLOCATED);
4797 		/* Can't fail after this point. */
4798 
4799 		if (idx == 0)
4800 			sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4801 		else
4802 			KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4803 			    ("eq_base mismatch"));
4804 		KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4805 		    ("PF with non-zero eq_base"));
4806 
4807 		txp = &txq->txp;
4808 		MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4809 		txq->txp.max_npkt = min(nitems(txp->mb),
4810 		    sc->params.max_pkts_per_eth_tx_pkts_wr);
4811 		if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
4812 			txq->txp.max_npkt--;
4813 
4814 		if (vi->flags & TX_USES_VM_WR)
4815 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4816 			    V_TXPKT_INTF(pi->hw_port));
4817 		else
4818 			txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4819 			    V_TXPKT_INTF(pi->hw_port) | V_TXPKT_PF(sc->pf) |
4820 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4821 
4822 		txq->tc_idx = -1;
4823 	}
4824 
4825 	return (0);
4826 }
4827 
4828 /*
4829  * Idempotent.
4830  */
4831 static void
free_txq(struct vi_info * vi,struct sge_txq * txq)4832 free_txq(struct vi_info *vi, struct sge_txq *txq)
4833 {
4834 	struct adapter *sc = vi->adapter;
4835 	struct sge_eq *eq = &txq->eq;
4836 
4837 	if (eq->flags & EQ_HW_ALLOCATED) {
4838 		MPASS(eq->flags & EQ_SW_ALLOCATED);
4839 		free_eq_hwq(sc, NULL, eq);
4840 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4841 	}
4842 
4843 	if (eq->flags & EQ_SW_ALLOCATED) {
4844 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4845 		sglist_free(txq->gl);
4846 		free(txq->sdesc, M_CXGBE);
4847 		mp_ring_free(txq->r);
4848 		free_eq(sc, eq);
4849 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4850 		bzero(txq, sizeof(*txq));
4851 	}
4852 }
4853 
4854 static void
add_txq_sysctls(struct vi_info * vi,struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_txq * txq)4855 add_txq_sysctls(struct vi_info *vi, struct sysctl_ctx_list *ctx,
4856     struct sysctl_oid *oid, struct sge_txq *txq)
4857 {
4858 	struct adapter *sc;
4859 	struct sysctl_oid_list *children;
4860 
4861 	if (ctx == NULL || oid == NULL)
4862 		return;
4863 
4864 	sc = vi->adapter;
4865 	children = SYSCTL_CHILDREN(oid);
4866 
4867 	mp_ring_sysctls(txq->r, ctx, children);
4868 
4869 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tc",
4870 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, txq - sc->sge.txq,
4871 	    sysctl_tc, "I", "traffic class (-1 means none)");
4872 
4873 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4874 	    &txq->txcsum, "# of times hardware assisted with checksum");
4875 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD,
4876 	    &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag");
4877 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4878 	    &txq->tso_wrs, "# of TSO work requests");
4879 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4880 	    &txq->imm_wrs, "# of work requests with immediate data");
4881 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4882 	    &txq->sgl_wrs, "# of work requests with direct SGL");
4883 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4884 	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4885 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD,
4886 	    &txq->txpkts0_wrs, "# of txpkts (type 0) work requests");
4887 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD,
4888 	    &txq->txpkts1_wrs, "# of txpkts (type 1) work requests");
4889 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD,
4890 	    &txq->txpkts0_pkts,
4891 	    "# of frames tx'd using type0 txpkts work requests");
4892 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD,
4893 	    &txq->txpkts1_pkts,
4894 	    "# of frames tx'd using type1 txpkts work requests");
4895 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts_flush", CTLFLAG_RD,
4896 	    &txq->txpkts_flush,
4897 	    "# of times txpkts had to be flushed out by an egress-update");
4898 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4899 	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4900 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_tso_wrs", CTLFLAG_RD,
4901 	    &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
4902 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_txcsum", CTLFLAG_RD,
4903 	    &txq->vxlan_txcsum,
4904 	    "# of times hardware assisted with inner checksums (VXLAN)");
4905 
4906 #ifdef KERN_TLS
4907 	if (is_ktls(sc)) {
4908 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_records",
4909 		    CTLFLAG_RD, &txq->kern_tls_records,
4910 		    "# of NIC TLS records transmitted");
4911 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_short",
4912 		    CTLFLAG_RD, &txq->kern_tls_short,
4913 		    "# of short NIC TLS records transmitted");
4914 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_partial",
4915 		    CTLFLAG_RD, &txq->kern_tls_partial,
4916 		    "# of partial NIC TLS records transmitted");
4917 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_full",
4918 		    CTLFLAG_RD, &txq->kern_tls_full,
4919 		    "# of full NIC TLS records transmitted");
4920 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_octets",
4921 		    CTLFLAG_RD, &txq->kern_tls_octets,
4922 		    "# of payload octets in transmitted NIC TLS records");
4923 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_waste",
4924 		    CTLFLAG_RD, &txq->kern_tls_waste,
4925 		    "# of octets DMAd but not transmitted in NIC TLS records");
4926 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_header",
4927 		    CTLFLAG_RD, &txq->kern_tls_header,
4928 		    "# of NIC TLS header-only packets transmitted");
4929 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin_short",
4930 		    CTLFLAG_RD, &txq->kern_tls_fin_short,
4931 		    "# of NIC TLS padded FIN packets on short TLS records");
4932 		if (is_t6(sc)) {
4933 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4934 			    "kern_tls_options", CTLFLAG_RD,
4935 			    &txq->kern_tls_options,
4936 			    "# of NIC TLS options-only packets transmitted");
4937 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4938 			    "kern_tls_fin", CTLFLAG_RD, &txq->kern_tls_fin,
4939 			    "# of NIC TLS FIN-only packets transmitted");
4940 		} else {
4941 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4942 			    "kern_tls_ghash_received", CTLFLAG_RD,
4943 			    &txq->kern_tls_ghash_received,
4944 			    "# of NIC TLS GHASHes received");
4945 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4946 			    "kern_tls_ghash_requested", CTLFLAG_RD,
4947 			    &txq->kern_tls_ghash_requested,
4948 			    "# of NIC TLS GHASHes requested");
4949 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4950 			    "kern_tls_lso", CTLFLAG_RD,
4951 			    &txq->kern_tls_lso,
4952 			    "# of NIC TLS records transmitted using LSO");
4953 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4954 			    "kern_tls_partial_ghash", CTLFLAG_RD,
4955 			    &txq->kern_tls_partial_ghash,
4956 			    "# of NIC TLS records encrypted using a partial GHASH");
4957 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4958 			    "kern_tls_splitmode", CTLFLAG_RD,
4959 			    &txq->kern_tls_splitmode,
4960 			    "# of NIC TLS records using SplitMode");
4961 			SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO,
4962 			    "kern_tls_trailer", CTLFLAG_RD,
4963 			    &txq->kern_tls_trailer,
4964 			    "# of NIC TLS trailer-only packets transmitted");
4965 		}
4966 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_cbc",
4967 		    CTLFLAG_RD, &txq->kern_tls_cbc,
4968 		    "# of NIC TLS sessions using AES-CBC");
4969 		SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_gcm",
4970 		    CTLFLAG_RD, &txq->kern_tls_gcm,
4971 		    "# of NIC TLS sessions using AES-GCM");
4972 	}
4973 #endif
4974 }
4975 
4976 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4977 /*
4978  * Idempotent.
4979  */
4980 static int
alloc_ofld_txq(struct vi_info * vi,struct sge_ofld_txq * ofld_txq,int idx)4981 alloc_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq, int idx)
4982 {
4983 	struct sysctl_oid *oid;
4984 	struct port_info *pi = vi->pi;
4985 	struct adapter *sc = vi->adapter;
4986 	struct sge_eq *eq = &ofld_txq->wrq.eq;
4987 	int rc, iqidx;
4988 	char name[16];
4989 
4990 	MPASS(idx >= 0);
4991 	MPASS(idx < vi->nofldtxq);
4992 
4993 	if (!(eq->flags & EQ_SW_ALLOCATED)) {
4994 		snprintf(name, sizeof(name), "%d", idx);
4995 		oid = SYSCTL_ADD_NODE(&vi->ctx,
4996 		    SYSCTL_CHILDREN(vi->ofld_txq_oid), OID_AUTO, name,
4997 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
4998 
4999 		snprintf(name, sizeof(name), "%s ofld_txq%d",
5000 		    device_get_nameunit(vi->dev), idx);
5001 		if (vi->nofldrxq > 0) {
5002 			iqidx = vi->first_ofld_rxq + (idx % vi->nofldrxq);
5003 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->port_id,
5004 			    &sc->sge.ofld_rxq[iqidx].iq, name);
5005 		} else {
5006 			iqidx = vi->first_rxq + (idx % vi->nrxq);
5007 			init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->port_id,
5008 			    &sc->sge.rxq[iqidx].iq, name);
5009 		}
5010 
5011 		rc = alloc_wrq(sc, vi, &ofld_txq->wrq, &vi->ctx, oid);
5012 		if (rc != 0) {
5013 			CH_ERR(vi, "failed to allocate ofld_txq%d: %d\n", idx,
5014 			    rc);
5015 			sysctl_remove_oid(oid, 1, 1);
5016 			return (rc);
5017 		}
5018 		MPASS(eq->flags & EQ_SW_ALLOCATED);
5019 		/* Can't fail after this point. */
5020 
5021 		ofld_txq->tx_iscsi_pdus = counter_u64_alloc(M_WAITOK);
5022 		ofld_txq->tx_iscsi_octets = counter_u64_alloc(M_WAITOK);
5023 		ofld_txq->tx_iscsi_iso_wrs = counter_u64_alloc(M_WAITOK);
5024 		ofld_txq->tx_nvme_pdus = counter_u64_alloc(M_WAITOK);
5025 		ofld_txq->tx_nvme_octets = counter_u64_alloc(M_WAITOK);
5026 		ofld_txq->tx_nvme_iso_wrs = counter_u64_alloc(M_WAITOK);
5027 		ofld_txq->tx_aio_jobs = counter_u64_alloc(M_WAITOK);
5028 		ofld_txq->tx_aio_octets = counter_u64_alloc(M_WAITOK);
5029 		ofld_txq->tx_toe_tls_records = counter_u64_alloc(M_WAITOK);
5030 		ofld_txq->tx_toe_tls_octets = counter_u64_alloc(M_WAITOK);
5031 		add_ofld_txq_sysctls(&vi->ctx, oid, ofld_txq);
5032 	}
5033 
5034 	if (!(eq->flags & EQ_HW_ALLOCATED)) {
5035 		MPASS(eq->flags & EQ_SW_ALLOCATED);
5036 		MPASS(ofld_txq->wrq.nwr_pending == 0);
5037 		MPASS(ofld_txq->wrq.ndesc_needed == 0);
5038 		rc = alloc_eq_hwq(sc, vi, eq, idx);
5039 		if (rc != 0) {
5040 			CH_ERR(vi, "failed to create hw ofld_txq%d: %d\n", idx,
5041 			    rc);
5042 			return (rc);
5043 		}
5044 		MPASS(eq->flags & EQ_HW_ALLOCATED);
5045 	}
5046 
5047 	return (0);
5048 }
5049 
5050 /*
5051  * Idempotent.
5052  */
5053 static void
free_ofld_txq(struct vi_info * vi,struct sge_ofld_txq * ofld_txq)5054 free_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq)
5055 {
5056 	struct adapter *sc = vi->adapter;
5057 	struct sge_eq *eq = &ofld_txq->wrq.eq;
5058 
5059 	if (eq->flags & EQ_HW_ALLOCATED) {
5060 		MPASS(eq->flags & EQ_SW_ALLOCATED);
5061 		free_eq_hwq(sc, NULL, eq);
5062 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
5063 	}
5064 
5065 	if (eq->flags & EQ_SW_ALLOCATED) {
5066 		MPASS(!(eq->flags & EQ_HW_ALLOCATED));
5067 		counter_u64_free(ofld_txq->tx_iscsi_pdus);
5068 		counter_u64_free(ofld_txq->tx_iscsi_octets);
5069 		counter_u64_free(ofld_txq->tx_iscsi_iso_wrs);
5070 		counter_u64_free(ofld_txq->tx_nvme_pdus);
5071 		counter_u64_free(ofld_txq->tx_nvme_octets);
5072 		counter_u64_free(ofld_txq->tx_nvme_iso_wrs);
5073 		counter_u64_free(ofld_txq->tx_aio_jobs);
5074 		counter_u64_free(ofld_txq->tx_aio_octets);
5075 		counter_u64_free(ofld_txq->tx_toe_tls_records);
5076 		counter_u64_free(ofld_txq->tx_toe_tls_octets);
5077 		free_wrq(sc, &ofld_txq->wrq);
5078 		MPASS(!(eq->flags & EQ_SW_ALLOCATED));
5079 		bzero(ofld_txq, sizeof(*ofld_txq));
5080 	}
5081 }
5082 
5083 static void
add_ofld_txq_sysctls(struct sysctl_ctx_list * ctx,struct sysctl_oid * oid,struct sge_ofld_txq * ofld_txq)5084 add_ofld_txq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
5085     struct sge_ofld_txq *ofld_txq)
5086 {
5087 	struct sysctl_oid_list *children;
5088 
5089 	if (ctx == NULL || oid == NULL)
5090 		return;
5091 
5092 	children = SYSCTL_CHILDREN(oid);
5093 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_pdus",
5094 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_pdus,
5095 	    "# of iSCSI PDUs transmitted");
5096 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_octets",
5097 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_octets,
5098 	    "# of payload octets in transmitted iSCSI PDUs");
5099 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_iso_wrs",
5100 	    CTLFLAG_RD, &ofld_txq->tx_iscsi_iso_wrs,
5101 	    "# of iSCSI segmentation offload work requests");
5102 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_nvme_pdus",
5103 	    CTLFLAG_RD, &ofld_txq->tx_nvme_pdus,
5104 	    "# of NVMe PDUs transmitted");
5105 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_nvme_octets",
5106 	    CTLFLAG_RD, &ofld_txq->tx_nvme_octets,
5107 	    "# of payload octets in transmitted NVMe PDUs");
5108 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_nvme_iso_wrs",
5109 	    CTLFLAG_RD, &ofld_txq->tx_nvme_iso_wrs,
5110 	    "# of NVMe segmentation offload work requests");
5111 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_aio_jobs",
5112 	    CTLFLAG_RD, &ofld_txq->tx_aio_jobs,
5113 	    "# of zero-copy aio_write(2) jobs transmitted");
5114 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_aio_octets",
5115 	    CTLFLAG_RD, &ofld_txq->tx_aio_octets,
5116 	    "# of payload octets in transmitted zero-copy aio_write(2) jobs");
5117 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_records",
5118 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_records,
5119 	    "# of TOE TLS records transmitted");
5120 	SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_octets",
5121 	    CTLFLAG_RD, &ofld_txq->tx_toe_tls_octets,
5122 	    "# of payload octets in transmitted TOE TLS records");
5123 }
5124 #endif
5125 
5126 static void
oneseg_dma_callback(void * arg,bus_dma_segment_t * segs,int nseg,int error)5127 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
5128 {
5129 	bus_addr_t *ba = arg;
5130 
5131 	KASSERT(nseg == 1,
5132 	    ("%s meant for single segment mappings only.", __func__));
5133 
5134 	*ba = error ? 0 : segs->ds_addr;
5135 }
5136 
5137 static inline void
ring_fl_db(struct adapter * sc,struct sge_fl * fl)5138 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
5139 {
5140 	uint32_t n, v;
5141 
5142 	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
5143 	MPASS(n > 0);
5144 
5145 	wmb();
5146 	v = fl->dbval | V_PIDX(n);
5147 	if (fl->udb)
5148 		*fl->udb = htole32(v);
5149 	else
5150 		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
5151 	IDXINCR(fl->dbidx, n, fl->sidx);
5152 }
5153 
5154 /*
5155  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
5156  * recycled do not count towards this allocation budget.
5157  *
5158  * Returns non-zero to indicate that this freelist should be added to the list
5159  * of starving freelists.
5160  */
5161 static int
refill_fl(struct adapter * sc,struct sge_fl * fl,int n)5162 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
5163 {
5164 	__be64 *d;
5165 	struct fl_sdesc *sd;
5166 	uintptr_t pa;
5167 	caddr_t cl;
5168 	struct rx_buf_info *rxb;
5169 	struct cluster_metadata *clm;
5170 	uint16_t max_pidx, zidx = fl->zidx;
5171 	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
5172 
5173 	FL_LOCK_ASSERT_OWNED(fl);
5174 
5175 	/*
5176 	 * We always stop at the beginning of the hardware descriptor that's just
5177 	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
5178 	 * which would mean an empty freelist to the chip.
5179 	 */
5180 	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
5181 	if (fl->pidx == max_pidx * 8)
5182 		return (0);
5183 
5184 	d = &fl->desc[fl->pidx];
5185 	sd = &fl->sdesc[fl->pidx];
5186 	rxb = &sc->sge.rx_buf_info[zidx];
5187 
5188 	while (n > 0) {
5189 
5190 		if (sd->cl != NULL) {
5191 
5192 			if (sd->nmbuf == 0) {
5193 				/*
5194 				 * Fast recycle without involving any atomics on
5195 				 * the cluster's metadata (if the cluster has
5196 				 * metadata).  This happens when all frames
5197 				 * received in the cluster were small enough to
5198 				 * fit within a single mbuf each.
5199 				 */
5200 				fl->cl_fast_recycled++;
5201 				goto recycled;
5202 			}
5203 
5204 			/*
5205 			 * Cluster is guaranteed to have metadata.  Clusters
5206 			 * without metadata always take the fast recycle path
5207 			 * when they're recycled.
5208 			 */
5209 			clm = cl_metadata(sd);
5210 			MPASS(clm != NULL);
5211 
5212 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5213 				fl->cl_recycled++;
5214 				counter_u64_add(extfree_rels, 1);
5215 				goto recycled;
5216 			}
5217 			sd->cl = NULL;	/* gave up my reference */
5218 		}
5219 		MPASS(sd->cl == NULL);
5220 		cl = uma_zalloc(rxb->zone, M_NOWAIT);
5221 		if (__predict_false(cl == NULL)) {
5222 			if (zidx != fl->safe_zidx) {
5223 				zidx = fl->safe_zidx;
5224 				rxb = &sc->sge.rx_buf_info[zidx];
5225 				cl = uma_zalloc(rxb->zone, M_NOWAIT);
5226 			}
5227 			if (cl == NULL)
5228 				break;
5229 		}
5230 		fl->cl_allocated++;
5231 		n--;
5232 
5233 		pa = pmap_kextract((vm_offset_t)cl);
5234 		sd->cl = cl;
5235 		sd->zidx = zidx;
5236 
5237 		if (fl->flags & FL_BUF_PACKING) {
5238 			*d = htobe64(pa | rxb->hwidx2);
5239 			sd->moff = rxb->size2;
5240 		} else {
5241 			*d = htobe64(pa | rxb->hwidx1);
5242 			sd->moff = 0;
5243 		}
5244 recycled:
5245 		sd->nmbuf = 0;
5246 		d++;
5247 		sd++;
5248 		if (__predict_false((++fl->pidx & 7) == 0)) {
5249 			uint16_t pidx = fl->pidx >> 3;
5250 
5251 			if (__predict_false(pidx == fl->sidx)) {
5252 				fl->pidx = 0;
5253 				pidx = 0;
5254 				sd = fl->sdesc;
5255 				d = fl->desc;
5256 			}
5257 			if (n < 8 || pidx == max_pidx)
5258 				break;
5259 
5260 			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
5261 				ring_fl_db(sc, fl);
5262 		}
5263 	}
5264 
5265 	if ((fl->pidx >> 3) != fl->dbidx)
5266 		ring_fl_db(sc, fl);
5267 
5268 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
5269 }
5270 
5271 /*
5272  * Attempt to refill all starving freelists.
5273  */
5274 static void
refill_sfl(void * arg)5275 refill_sfl(void *arg)
5276 {
5277 	struct adapter *sc = arg;
5278 	struct sge_fl *fl, *fl_temp;
5279 
5280 	mtx_assert(&sc->sfl_lock, MA_OWNED);
5281 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
5282 		FL_LOCK(fl);
5283 		refill_fl(sc, fl, 64);
5284 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
5285 			TAILQ_REMOVE(&sc->sfl, fl, link);
5286 			fl->flags &= ~FL_STARVING;
5287 		}
5288 		FL_UNLOCK(fl);
5289 	}
5290 
5291 	if (!TAILQ_EMPTY(&sc->sfl))
5292 		callout_schedule(&sc->sfl_callout, hz / 5);
5293 }
5294 
5295 /*
5296  * Release the driver's reference on all buffers in the given freelist.  Buffers
5297  * with kernel references cannot be freed and will prevent the driver from being
5298  * unloaded safely.
5299  */
5300 void
free_fl_buffers(struct adapter * sc,struct sge_fl * fl)5301 free_fl_buffers(struct adapter *sc, struct sge_fl *fl)
5302 {
5303 	struct fl_sdesc *sd;
5304 	struct cluster_metadata *clm;
5305 	int i;
5306 
5307 	sd = fl->sdesc;
5308 	for (i = 0; i < fl->sidx * 8; i++, sd++) {
5309 		if (sd->cl == NULL)
5310 			continue;
5311 
5312 		if (sd->nmbuf == 0)
5313 			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
5314 		else if (fl->flags & FL_BUF_PACKING) {
5315 			clm = cl_metadata(sd);
5316 			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5317 				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
5318 				    sd->cl);
5319 				counter_u64_add(extfree_rels, 1);
5320 			}
5321 		}
5322 		sd->cl = NULL;
5323 	}
5324 
5325 	if (fl->flags & FL_BUF_RESUME) {
5326 		m_freem(fl->m0);
5327 		fl->flags &= ~FL_BUF_RESUME;
5328 	}
5329 }
5330 
5331 static inline void
get_pkt_gl(struct mbuf * m,struct sglist * gl)5332 get_pkt_gl(struct mbuf *m, struct sglist *gl)
5333 {
5334 	int rc;
5335 
5336 	M_ASSERTPKTHDR(m);
5337 
5338 	sglist_reset(gl);
5339 	rc = sglist_append_mbuf(gl, m);
5340 	if (__predict_false(rc != 0)) {
5341 		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
5342 		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
5343 	}
5344 
5345 	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
5346 	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
5347 	    mbuf_nsegs(m), gl->sg_nseg));
5348 #if 0	/* vm_wr not readily available here. */
5349 	KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
5350 	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
5351 		gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
5352 #endif
5353 }
5354 
5355 /*
5356  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
5357  */
5358 static inline u_int
txpkt_len16(u_int nsegs,const u_int extra)5359 txpkt_len16(u_int nsegs, const u_int extra)
5360 {
5361 	u_int n;
5362 
5363 	MPASS(nsegs > 0);
5364 
5365 	nsegs--; /* first segment is part of ulptx_sgl */
5366 	n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
5367 	    sizeof(struct cpl_tx_pkt_core) +
5368 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5369 
5370 	return (howmany(n, 16));
5371 }
5372 
5373 /*
5374  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
5375  * request header.
5376  */
5377 static inline u_int
txpkt_vm_len16(u_int nsegs,const u_int extra)5378 txpkt_vm_len16(u_int nsegs, const u_int extra)
5379 {
5380 	u_int n;
5381 
5382 	MPASS(nsegs > 0);
5383 
5384 	nsegs--; /* first segment is part of ulptx_sgl */
5385 	n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
5386 	    sizeof(struct cpl_tx_pkt_core) +
5387 	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5388 
5389 	return (howmany(n, 16));
5390 }
5391 
5392 static inline void
calculate_mbuf_len16(struct mbuf * m,bool vm_wr)5393 calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
5394 {
5395 	const int lso = sizeof(struct cpl_tx_pkt_lso_core);
5396 	const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
5397 
5398 	if (vm_wr) {
5399 		if (needs_tso(m))
5400 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
5401 		else
5402 			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
5403 		return;
5404 	}
5405 
5406 	if (needs_tso(m)) {
5407 		if (needs_vxlan_tso(m))
5408 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
5409 		else
5410 			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
5411 	} else
5412 		set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
5413 }
5414 
5415 /*
5416  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
5417  * request header.
5418  */
5419 static inline u_int
txpkts0_len16(u_int nsegs)5420 txpkts0_len16(u_int nsegs)
5421 {
5422 	u_int n;
5423 
5424 	MPASS(nsegs > 0);
5425 
5426 	nsegs--; /* first segment is part of ulptx_sgl */
5427 	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
5428 	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
5429 	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
5430 
5431 	return (howmany(n, 16));
5432 }
5433 
5434 /*
5435  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
5436  * request header.
5437  */
5438 static inline u_int
txpkts1_len16(void)5439 txpkts1_len16(void)
5440 {
5441 	u_int n;
5442 
5443 	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
5444 
5445 	return (howmany(n, 16));
5446 }
5447 
5448 static inline u_int
imm_payload(u_int ndesc)5449 imm_payload(u_int ndesc)
5450 {
5451 	u_int n;
5452 
5453 	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
5454 	    sizeof(struct cpl_tx_pkt_core);
5455 
5456 	return (n);
5457 }
5458 
5459 static inline uint64_t
csum_to_ctrl(struct adapter * sc,struct mbuf * m)5460 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
5461 {
5462 	uint64_t ctrl;
5463 	int csum_type, l2hlen, l3hlen;
5464 	int x, y;
5465 	static const int csum_types[3][2] = {
5466 		{TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
5467 		{TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
5468 		{TX_CSUM_IP, 0}
5469 	};
5470 
5471 	M_ASSERTPKTHDR(m);
5472 
5473 	if (!needs_hwcsum(m))
5474 		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
5475 
5476 	MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
5477 	MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
5478 
5479 	if (needs_vxlan_csum(m)) {
5480 		MPASS(m->m_pkthdr.l4hlen > 0);
5481 		MPASS(m->m_pkthdr.l5hlen > 0);
5482 		MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
5483 		MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
5484 
5485 		l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
5486 		    m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
5487 		    m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
5488 		l3hlen = m->m_pkthdr.inner_l3hlen;
5489 	} else {
5490 		l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
5491 		l3hlen = m->m_pkthdr.l3hlen;
5492 	}
5493 
5494 	ctrl = 0;
5495 	if (!needs_l3_csum(m))
5496 		ctrl |= F_TXPKT_IPCSUM_DIS;
5497 
5498 	if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
5499 	    CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
5500 		x = 0;	/* TCP */
5501 	else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
5502 	    CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
5503 		x = 1;	/* UDP */
5504 	else
5505 		x = 2;
5506 
5507 	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
5508 	    CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
5509 		y = 0;	/* IPv4 */
5510 	else {
5511 		MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
5512 		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
5513 		y = 1;	/* IPv6 */
5514 	}
5515 	/*
5516 	 * needs_hwcsum returned true earlier so there must be some kind of
5517 	 * checksum to calculate.
5518 	 */
5519 	csum_type = csum_types[x][y];
5520 	MPASS(csum_type != 0);
5521 	if (csum_type == TX_CSUM_IP)
5522 		ctrl |= F_TXPKT_L4CSUM_DIS;
5523 	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
5524 	if (chip_id(sc) <= CHELSIO_T5)
5525 		ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
5526 	else
5527 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
5528 
5529 	return (ctrl);
5530 }
5531 
5532 static inline void *
write_lso_cpl(void * cpl,struct mbuf * m0)5533 write_lso_cpl(void *cpl, struct mbuf *m0)
5534 {
5535 	struct cpl_tx_pkt_lso_core *lso;
5536 	uint32_t ctrl;
5537 
5538 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5539 	    m0->m_pkthdr.l4hlen > 0,
5540 	    ("%s: mbuf %p needs TSO but missing header lengths",
5541 		__func__, m0));
5542 
5543 	ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5544 	    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5545 	    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5546 	    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5547 	    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5548 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5549 		ctrl |= F_LSO_IPV6;
5550 
5551 	lso = cpl;
5552 	lso->lso_ctrl = htobe32(ctrl);
5553 	lso->ipid_ofst = htobe16(0);
5554 	lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5555 	lso->seqno_offset = htobe32(0);
5556 	lso->len = htobe32(m0->m_pkthdr.len);
5557 
5558 	return (lso + 1);
5559 }
5560 
5561 static void *
write_tnl_lso_cpl(void * cpl,struct mbuf * m0)5562 write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
5563 {
5564 	struct cpl_tx_tnl_lso *tnl_lso = cpl;
5565 	uint32_t ctrl;
5566 
5567 	KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
5568 	    m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
5569 	    m0->m_pkthdr.inner_l5hlen > 0,
5570 	    ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
5571 		__func__, m0));
5572 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5573 	    m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
5574 	    ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
5575 		__func__, m0));
5576 
5577 	/* Outer headers. */
5578 	ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
5579 	    F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
5580 	    V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
5581 		(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5582 	    V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
5583 	    F_CPL_TX_TNL_LSO_IPLENSETOUT;
5584 	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5585 		ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
5586 	else {
5587 		ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
5588 		    F_CPL_TX_TNL_LSO_IPIDINCOUT;
5589 	}
5590 	tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
5591 	tnl_lso->IpIdOffsetOut = 0;
5592 	tnl_lso->UdpLenSetOut_to_TnlHdrLen =
5593 		htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
5594 		    F_CPL_TX_TNL_LSO_UDPLENSETOUT |
5595 		    V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
5596 			m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
5597 			m0->m_pkthdr.l5hlen) |
5598 		    V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
5599 	tnl_lso->ipsecen_to_rocev2 = 0;
5600 	tnl_lso->roce_eth = 0;
5601 
5602 	/* Inner headers. */
5603 	ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
5604 	    (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
5605 	    V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
5606 	    V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
5607 	if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
5608 		ctrl |= F_CPL_TX_TNL_LSO_IPV6;
5609 	tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
5610 	tnl_lso->IpIdOffset = 0;
5611 	tnl_lso->IpIdSplit_to_Mss =
5612 	    htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
5613 	tnl_lso->TCPSeqOffset = 0;
5614 	tnl_lso->EthLenOffset_Size =
5615 	    htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
5616 
5617 	return (tnl_lso + 1);
5618 }
5619 
5620 #define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
5621 
5622 /*
5623  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
5624  * software descriptor, and advance the pidx.  It is guaranteed that enough
5625  * descriptors are available.
5626  *
5627  * The return value is the # of hardware descriptors used.
5628  */
5629 static u_int
write_txpkt_vm_wr(struct adapter * sc,struct sge_txq * txq,struct mbuf * m0)5630 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
5631 {
5632 	struct sge_eq *eq;
5633 	struct fw_eth_tx_pkt_vm_wr *wr;
5634 	struct tx_sdesc *txsd;
5635 	struct cpl_tx_pkt_core *cpl;
5636 	uint32_t ctrl;	/* used in many unrelated places */
5637 	uint64_t ctrl1;
5638 	int len16, ndesc, pktlen;
5639 	caddr_t dst;
5640 
5641 	TXQ_LOCK_ASSERT_OWNED(txq);
5642 	M_ASSERTPKTHDR(m0);
5643 
5644 	len16 = mbuf_len16(m0);
5645 	pktlen = m0->m_pkthdr.len;
5646 	ctrl = sizeof(struct cpl_tx_pkt_core);
5647 	if (needs_tso(m0))
5648 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5649 	ndesc = tx_len16_to_desc(len16);
5650 
5651 	/* Firmware work request header */
5652 	eq = &txq->eq;
5653 	wr = (void *)&eq->desc[eq->pidx];
5654 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
5655 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5656 
5657 	ctrl = V_FW_WR_LEN16(len16);
5658 	wr->equiq_to_len16 = htobe32(ctrl);
5659 	wr->r3[0] = 0;
5660 	wr->r3[1] = 0;
5661 
5662 	/*
5663 	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
5664 	 * vlantci is ignored unless the ethtype is 0x8100, so it's
5665 	 * simpler to always copy it rather than making it
5666 	 * conditional.  Also, it seems that we do not have to set
5667 	 * vlantci or fake the ethtype when doing VLAN tag insertion.
5668 	 */
5669 	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
5670 
5671 	if (needs_tso(m0)) {
5672 		cpl = write_lso_cpl(wr + 1, m0);
5673 		txq->tso_wrs++;
5674 	} else
5675 		cpl = (void *)(wr + 1);
5676 
5677 	/* Checksum offload */
5678 	ctrl1 = csum_to_ctrl(sc, m0);
5679 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5680 		txq->txcsum++;	/* some hardware assistance provided */
5681 
5682 	/* VLAN tag insertion */
5683 	if (needs_vlan_insertion(m0)) {
5684 		ctrl1 |= F_TXPKT_VLAN_VLD |
5685 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5686 		txq->vlan_insertion++;
5687 	} else if (sc->vlan_id)
5688 		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(sc->vlan_id);
5689 
5690 	/* CPL header */
5691 	cpl->ctrl0 = txq->cpl_ctrl0;
5692 	cpl->pack = 0;
5693 	cpl->len = htobe16(pktlen);
5694 	cpl->ctrl1 = htobe64(ctrl1);
5695 
5696 	/* SGL */
5697 	dst = (void *)(cpl + 1);
5698 
5699 	/*
5700 	 * A packet using TSO will use up an entire descriptor for the
5701 	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
5702 	 * If this descriptor is the last descriptor in the ring, wrap
5703 	 * around to the front of the ring explicitly for the start of
5704 	 * the sgl.
5705 	 */
5706 	if (dst == (void *)&eq->desc[eq->sidx]) {
5707 		dst = (void *)&eq->desc[0];
5708 		write_gl_to_txd(txq, m0, &dst, 0);
5709 	} else
5710 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5711 	txq->sgl_wrs++;
5712 	txq->txpkt_wrs++;
5713 
5714 	txsd = &txq->sdesc[eq->pidx];
5715 	txsd->m = m0;
5716 	txsd->desc_used = ndesc;
5717 
5718 	return (ndesc);
5719 }
5720 
5721 /*
5722  * Write a raw WR to the hardware descriptors, update the software
5723  * descriptor, and advance the pidx.  It is guaranteed that enough
5724  * descriptors are available.
5725  *
5726  * The return value is the # of hardware descriptors used.
5727  */
5728 static u_int
write_raw_wr(struct sge_txq * txq,void * wr,struct mbuf * m0,u_int available)5729 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
5730 {
5731 	struct sge_eq *eq = &txq->eq;
5732 	struct tx_sdesc *txsd;
5733 	struct mbuf *m;
5734 	caddr_t dst;
5735 	int len16, ndesc;
5736 
5737 	len16 = mbuf_len16(m0);
5738 	ndesc = tx_len16_to_desc(len16);
5739 	MPASS(ndesc <= available);
5740 
5741 	dst = wr;
5742 	for (m = m0; m != NULL; m = m->m_next)
5743 		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5744 
5745 	txq->raw_wrs++;
5746 
5747 	txsd = &txq->sdesc[eq->pidx];
5748 	txsd->m = m0;
5749 	txsd->desc_used = ndesc;
5750 
5751 	return (ndesc);
5752 }
5753 
5754 /*
5755  * Write a txpkt WR for this packet to the hardware descriptors, update the
5756  * software descriptor, and advance the pidx.  It is guaranteed that enough
5757  * descriptors are available.
5758  *
5759  * The return value is the # of hardware descriptors used.
5760  */
5761 static u_int
write_txpkt_wr(struct adapter * sc,struct sge_txq * txq,struct mbuf * m0,u_int available)5762 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
5763     u_int available)
5764 {
5765 	struct sge_eq *eq;
5766 	struct fw_eth_tx_pkt_wr *wr;
5767 	struct tx_sdesc *txsd;
5768 	struct cpl_tx_pkt_core *cpl;
5769 	uint32_t ctrl;	/* used in many unrelated places */
5770 	uint64_t ctrl1;
5771 	int len16, ndesc, pktlen, nsegs;
5772 	caddr_t dst;
5773 
5774 	TXQ_LOCK_ASSERT_OWNED(txq);
5775 	M_ASSERTPKTHDR(m0);
5776 
5777 	len16 = mbuf_len16(m0);
5778 	nsegs = mbuf_nsegs(m0);
5779 	pktlen = m0->m_pkthdr.len;
5780 	ctrl = sizeof(struct cpl_tx_pkt_core);
5781 	if (needs_tso(m0)) {
5782 		if (needs_vxlan_tso(m0))
5783 			ctrl += sizeof(struct cpl_tx_tnl_lso);
5784 		else
5785 			ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5786 	} else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
5787 	    available >= 2) {
5788 		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
5789 		ctrl += pktlen;
5790 		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
5791 		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
5792 		nsegs = 0;
5793 	}
5794 	ndesc = tx_len16_to_desc(len16);
5795 	MPASS(ndesc <= available);
5796 
5797 	/* Firmware work request header */
5798 	eq = &txq->eq;
5799 	wr = (void *)&eq->desc[eq->pidx];
5800 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
5801 	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5802 
5803 	ctrl = V_FW_WR_LEN16(len16);
5804 	wr->equiq_to_len16 = htobe32(ctrl);
5805 	wr->r3 = 0;
5806 
5807 	if (needs_tso(m0)) {
5808 		if (needs_vxlan_tso(m0)) {
5809 			cpl = write_tnl_lso_cpl(wr + 1, m0);
5810 			txq->vxlan_tso_wrs++;
5811 		} else {
5812 			cpl = write_lso_cpl(wr + 1, m0);
5813 			txq->tso_wrs++;
5814 		}
5815 	} else
5816 		cpl = (void *)(wr + 1);
5817 
5818 	/* Checksum offload */
5819 	ctrl1 = csum_to_ctrl(sc, m0);
5820 	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5821 		/* some hardware assistance provided */
5822 		if (needs_vxlan_csum(m0))
5823 			txq->vxlan_txcsum++;
5824 		else
5825 			txq->txcsum++;
5826 	}
5827 
5828 	/* VLAN tag insertion */
5829 	if (needs_vlan_insertion(m0)) {
5830 		ctrl1 |= F_TXPKT_VLAN_VLD |
5831 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5832 		txq->vlan_insertion++;
5833 	}
5834 
5835 	/* CPL header */
5836 	cpl->ctrl0 = txq->cpl_ctrl0;
5837 	cpl->pack = 0;
5838 	cpl->len = htobe16(pktlen);
5839 	cpl->ctrl1 = htobe64(ctrl1);
5840 
5841 	/* SGL */
5842 	dst = (void *)(cpl + 1);
5843 	if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
5844 		dst = (caddr_t)&eq->desc[0];
5845 	if (nsegs > 0) {
5846 
5847 		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5848 		txq->sgl_wrs++;
5849 	} else {
5850 		struct mbuf *m;
5851 
5852 		for (m = m0; m != NULL; m = m->m_next) {
5853 			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5854 #ifdef INVARIANTS
5855 			pktlen -= m->m_len;
5856 #endif
5857 		}
5858 #ifdef INVARIANTS
5859 		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
5860 #endif
5861 		txq->imm_wrs++;
5862 	}
5863 
5864 	txq->txpkt_wrs++;
5865 
5866 	txsd = &txq->sdesc[eq->pidx];
5867 	txsd->m = m0;
5868 	txsd->desc_used = ndesc;
5869 
5870 	return (ndesc);
5871 }
5872 
5873 static inline bool
cmp_l2hdr(struct txpkts * txp,struct mbuf * m)5874 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
5875 {
5876 	int len;
5877 
5878 	MPASS(txp->npkt > 0);
5879 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5880 
5881 	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5882 		len = VM_TX_L2HDR_LEN;
5883 	else
5884 		len = sizeof(struct ether_header);
5885 
5886 	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5887 }
5888 
5889 static inline void
save_l2hdr(struct txpkts * txp,struct mbuf * m)5890 save_l2hdr(struct txpkts *txp, struct mbuf *m)
5891 {
5892 	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5893 
5894 	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5895 }
5896 
5897 static int
add_to_txpkts_vf(struct adapter * sc,struct sge_txq * txq,struct mbuf * m,int avail,bool * send)5898 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5899     int avail, bool *send)
5900 {
5901 	struct txpkts *txp = &txq->txp;
5902 
5903 	/* Cannot have TSO and coalesce at the same time. */
5904 	if (cannot_use_txpkts(m)) {
5905 cannot_coalesce:
5906 		*send = txp->npkt > 0;
5907 		return (EINVAL);
5908 	}
5909 
5910 	/* VF allows coalescing of type 1 (1 GL) only */
5911 	if (mbuf_nsegs(m) > 1)
5912 		goto cannot_coalesce;
5913 
5914 	*send = false;
5915 	if (txp->npkt > 0) {
5916 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5917 		MPASS(txp->npkt < txp->max_npkt);
5918 		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5919 
5920 		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5921 retry_after_send:
5922 			*send = true;
5923 			return (EAGAIN);
5924 		}
5925 		if (m->m_pkthdr.len + txp->plen > 65535)
5926 			goto retry_after_send;
5927 		if (cmp_l2hdr(txp, m))
5928 			goto retry_after_send;
5929 
5930 		txp->len16 += txpkts1_len16();
5931 		txp->plen += m->m_pkthdr.len;
5932 		txp->mb[txp->npkt++] = m;
5933 		if (txp->npkt == txp->max_npkt)
5934 			*send = true;
5935 	} else {
5936 		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5937 		    txpkts1_len16();
5938 		if (tx_len16_to_desc(txp->len16) > avail)
5939 			goto cannot_coalesce;
5940 		txp->npkt = 1;
5941 		txp->wr_type = 1;
5942 		txp->plen = m->m_pkthdr.len;
5943 		txp->mb[0] = m;
5944 		save_l2hdr(txp, m);
5945 	}
5946 	return (0);
5947 }
5948 
5949 static int
add_to_txpkts_pf(struct adapter * sc,struct sge_txq * txq,struct mbuf * m,int avail,bool * send)5950 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5951     int avail, bool *send)
5952 {
5953 	struct txpkts *txp = &txq->txp;
5954 	int nsegs;
5955 
5956 	MPASS(!(sc->flags & IS_VF));
5957 
5958 	/* Cannot have TSO and coalesce at the same time. */
5959 	if (cannot_use_txpkts(m)) {
5960 cannot_coalesce:
5961 		*send = txp->npkt > 0;
5962 		return (EINVAL);
5963 	}
5964 
5965 	*send = false;
5966 	nsegs = mbuf_nsegs(m);
5967 	if (txp->npkt == 0) {
5968 		if (m->m_pkthdr.len > 65535)
5969 			goto cannot_coalesce;
5970 		if (nsegs > 1) {
5971 			txp->wr_type = 0;
5972 			txp->len16 =
5973 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5974 			    txpkts0_len16(nsegs);
5975 		} else {
5976 			txp->wr_type = 1;
5977 			txp->len16 =
5978 			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5979 			    txpkts1_len16();
5980 		}
5981 		if (tx_len16_to_desc(txp->len16) > avail)
5982 			goto cannot_coalesce;
5983 		txp->npkt = 1;
5984 		txp->plen = m->m_pkthdr.len;
5985 		txp->mb[0] = m;
5986 	} else {
5987 		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5988 		MPASS(txp->npkt < txp->max_npkt);
5989 
5990 		if (m->m_pkthdr.len + txp->plen > 65535) {
5991 retry_after_send:
5992 			*send = true;
5993 			return (EAGAIN);
5994 		}
5995 
5996 		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5997 		if (txp->wr_type == 0) {
5998 			if (tx_len16_to_desc(txp->len16 +
5999 			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
6000 				goto retry_after_send;
6001 			txp->len16 += txpkts0_len16(nsegs);
6002 		} else {
6003 			if (nsegs != 1)
6004 				goto retry_after_send;
6005 			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
6006 			    avail)
6007 				goto retry_after_send;
6008 			txp->len16 += txpkts1_len16();
6009 		}
6010 
6011 		txp->plen += m->m_pkthdr.len;
6012 		txp->mb[txp->npkt++] = m;
6013 		if (txp->npkt == txp->max_npkt)
6014 			*send = true;
6015 	}
6016 	return (0);
6017 }
6018 
6019 /*
6020  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
6021  * the software descriptor, and advance the pidx.  It is guaranteed that enough
6022  * descriptors are available.
6023  *
6024  * The return value is the # of hardware descriptors used.
6025  */
6026 static u_int
write_txpkts_wr(struct adapter * sc,struct sge_txq * txq)6027 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
6028 {
6029 	const struct txpkts *txp = &txq->txp;
6030 	struct sge_eq *eq = &txq->eq;
6031 	struct fw_eth_tx_pkts_wr *wr;
6032 	struct tx_sdesc *txsd;
6033 	struct cpl_tx_pkt_core *cpl;
6034 	uint64_t ctrl1;
6035 	int ndesc, i, checkwrap;
6036 	struct mbuf *m, *last;
6037 	void *flitp;
6038 
6039 	TXQ_LOCK_ASSERT_OWNED(txq);
6040 	MPASS(txp->npkt > 0);
6041 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
6042 
6043 	wr = (void *)&eq->desc[eq->pidx];
6044 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
6045 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
6046 	wr->plen = htobe16(txp->plen);
6047 	wr->npkt = txp->npkt;
6048 	wr->r3 = 0;
6049 	wr->type = txp->wr_type;
6050 	flitp = wr + 1;
6051 
6052 	/*
6053 	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
6054 	 * set then we know the WR is going to wrap around somewhere.  We'll
6055 	 * check for that at appropriate points.
6056 	 */
6057 	ndesc = tx_len16_to_desc(txp->len16);
6058 	last = NULL;
6059 	checkwrap = eq->sidx - ndesc < eq->pidx;
6060 	for (i = 0; i < txp->npkt; i++) {
6061 		m = txp->mb[i];
6062 		if (txp->wr_type == 0) {
6063 			struct ulp_txpkt *ulpmc;
6064 			struct ulptx_idata *ulpsc;
6065 
6066 			/* ULP master command */
6067 			ulpmc = flitp;
6068 			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
6069 			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
6070 			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
6071 
6072 			/* ULP subcommand */
6073 			ulpsc = (void *)(ulpmc + 1);
6074 			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
6075 			    F_ULP_TX_SC_MORE);
6076 			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
6077 
6078 			cpl = (void *)(ulpsc + 1);
6079 			if (checkwrap &&
6080 			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
6081 				cpl = (void *)&eq->desc[0];
6082 		} else {
6083 			cpl = flitp;
6084 		}
6085 
6086 		/* Checksum offload */
6087 		ctrl1 = csum_to_ctrl(sc, m);
6088 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
6089 			/* some hardware assistance provided */
6090 			if (needs_vxlan_csum(m))
6091 				txq->vxlan_txcsum++;
6092 			else
6093 				txq->txcsum++;
6094 		}
6095 
6096 		/* VLAN tag insertion */
6097 		if (needs_vlan_insertion(m)) {
6098 			ctrl1 |= F_TXPKT_VLAN_VLD |
6099 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
6100 			txq->vlan_insertion++;
6101 		}
6102 
6103 		/* CPL header */
6104 		cpl->ctrl0 = txq->cpl_ctrl0;
6105 		cpl->pack = 0;
6106 		cpl->len = htobe16(m->m_pkthdr.len);
6107 		cpl->ctrl1 = htobe64(ctrl1);
6108 
6109 		flitp = cpl + 1;
6110 		if (checkwrap &&
6111 		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
6112 			flitp = (void *)&eq->desc[0];
6113 
6114 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
6115 
6116 		if (last != NULL)
6117 			last->m_nextpkt = m;
6118 		last = m;
6119 	}
6120 
6121 	txq->sgl_wrs++;
6122 	if (txp->wr_type == 0) {
6123 		txq->txpkts0_pkts += txp->npkt;
6124 		txq->txpkts0_wrs++;
6125 	} else {
6126 		txq->txpkts1_pkts += txp->npkt;
6127 		txq->txpkts1_wrs++;
6128 	}
6129 
6130 	txsd = &txq->sdesc[eq->pidx];
6131 	txsd->m = txp->mb[0];
6132 	txsd->desc_used = ndesc;
6133 
6134 	return (ndesc);
6135 }
6136 
6137 static u_int
write_txpkts_vm_wr(struct adapter * sc,struct sge_txq * txq)6138 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
6139 {
6140 	const struct txpkts *txp = &txq->txp;
6141 	struct sge_eq *eq = &txq->eq;
6142 	struct fw_eth_tx_pkts_vm_wr *wr;
6143 	struct tx_sdesc *txsd;
6144 	struct cpl_tx_pkt_core *cpl;
6145 	uint64_t ctrl1;
6146 	int ndesc, i;
6147 	struct mbuf *m, *last;
6148 	void *flitp;
6149 
6150 	TXQ_LOCK_ASSERT_OWNED(txq);
6151 	MPASS(txp->npkt > 0);
6152 	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
6153 	MPASS(txp->mb[0] != NULL);
6154 	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
6155 
6156 	wr = (void *)&eq->desc[eq->pidx];
6157 	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
6158 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
6159 	wr->r3 = 0;
6160 	wr->plen = htobe16(txp->plen);
6161 	wr->npkt = txp->npkt;
6162 	wr->r4 = 0;
6163 	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
6164 	flitp = wr + 1;
6165 
6166 	/*
6167 	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
6168 	 * the WR will take 32B so we check for the end of the descriptor ring
6169 	 * before writing odd mbufs (mb[1], 3, 5, ..)
6170 	 */
6171 	ndesc = tx_len16_to_desc(txp->len16);
6172 	last = NULL;
6173 	for (i = 0; i < txp->npkt; i++) {
6174 		m = txp->mb[i];
6175 		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
6176 			flitp = &eq->desc[0];
6177 		cpl = flitp;
6178 
6179 		/* Checksum offload */
6180 		ctrl1 = csum_to_ctrl(sc, m);
6181 		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
6182 			txq->txcsum++;	/* some hardware assistance provided */
6183 
6184 		/* VLAN tag insertion */
6185 		if (needs_vlan_insertion(m)) {
6186 			ctrl1 |= F_TXPKT_VLAN_VLD |
6187 			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
6188 			txq->vlan_insertion++;
6189 		} else if (sc->vlan_id)
6190 			ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(sc->vlan_id);
6191 
6192 		/* CPL header */
6193 		cpl->ctrl0 = txq->cpl_ctrl0;
6194 		cpl->pack = 0;
6195 		cpl->len = htobe16(m->m_pkthdr.len);
6196 		cpl->ctrl1 = htobe64(ctrl1);
6197 
6198 		flitp = cpl + 1;
6199 		MPASS(mbuf_nsegs(m) == 1);
6200 		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
6201 
6202 		if (last != NULL)
6203 			last->m_nextpkt = m;
6204 		last = m;
6205 	}
6206 
6207 	txq->sgl_wrs++;
6208 	txq->txpkts1_pkts += txp->npkt;
6209 	txq->txpkts1_wrs++;
6210 
6211 	txsd = &txq->sdesc[eq->pidx];
6212 	txsd->m = txp->mb[0];
6213 	txsd->desc_used = ndesc;
6214 
6215 	return (ndesc);
6216 }
6217 
6218 /*
6219  * If the SGL ends on an address that is not 16 byte aligned, this function will
6220  * add a 0 filled flit at the end.
6221  */
6222 static void
write_gl_to_txd(struct sge_txq * txq,struct mbuf * m,caddr_t * to,int checkwrap)6223 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
6224 {
6225 	struct sge_eq *eq = &txq->eq;
6226 	struct sglist *gl = txq->gl;
6227 	struct sglist_seg *seg;
6228 	__be64 *flitp, *wrap;
6229 	struct ulptx_sgl *usgl;
6230 	int i, nflits, nsegs;
6231 
6232 	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
6233 	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
6234 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6235 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6236 
6237 	get_pkt_gl(m, gl);
6238 	nsegs = gl->sg_nseg;
6239 	MPASS(nsegs > 0);
6240 
6241 	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
6242 	flitp = (__be64 *)(*to);
6243 	wrap = (__be64 *)(&eq->desc[eq->sidx]);
6244 	seg = &gl->sg_segs[0];
6245 	usgl = (void *)flitp;
6246 
6247 	/*
6248 	 * We start at a 16 byte boundary somewhere inside the tx descriptor
6249 	 * ring, so we're at least 16 bytes away from the status page.  There is
6250 	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
6251 	 */
6252 
6253 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6254 	    V_ULPTX_NSGE(nsegs));
6255 	usgl->len0 = htobe32(seg->ss_len);
6256 	usgl->addr0 = htobe64(seg->ss_paddr);
6257 	seg++;
6258 
6259 	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
6260 
6261 		/* Won't wrap around at all */
6262 
6263 		for (i = 0; i < nsegs - 1; i++, seg++) {
6264 			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
6265 			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
6266 		}
6267 		if (i & 1)
6268 			usgl->sge[i / 2].len[1] = htobe32(0);
6269 		flitp += nflits;
6270 	} else {
6271 
6272 		/* Will wrap somewhere in the rest of the SGL */
6273 
6274 		/* 2 flits already written, write the rest flit by flit */
6275 		flitp = (void *)(usgl + 1);
6276 		for (i = 0; i < nflits - 2; i++) {
6277 			if (flitp == wrap)
6278 				flitp = (void *)eq->desc;
6279 			*flitp++ = get_flit(seg, nsegs - 1, i);
6280 		}
6281 	}
6282 
6283 	if (nflits & 1) {
6284 		MPASS(((uintptr_t)flitp) & 0xf);
6285 		*flitp++ = 0;
6286 	}
6287 
6288 	MPASS((((uintptr_t)flitp) & 0xf) == 0);
6289 	if (__predict_false(flitp == wrap))
6290 		*to = (void *)eq->desc;
6291 	else
6292 		*to = (void *)flitp;
6293 }
6294 
6295 static inline void
copy_to_txd(struct sge_eq * eq,caddr_t from,caddr_t * to,int len)6296 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
6297 {
6298 
6299 	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6300 	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6301 
6302 	if (__predict_true((uintptr_t)(*to) + len <=
6303 	    (uintptr_t)&eq->desc[eq->sidx])) {
6304 		bcopy(from, *to, len);
6305 		(*to) += len;
6306 	} else {
6307 		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
6308 
6309 		bcopy(from, *to, portion);
6310 		from += portion;
6311 		portion = len - portion;	/* remaining */
6312 		bcopy(from, (void *)eq->desc, portion);
6313 		(*to) = (caddr_t)eq->desc + portion;
6314 	}
6315 }
6316 
6317 static inline void
ring_eq_db(struct adapter * sc,struct sge_eq * eq,u_int n)6318 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
6319 {
6320 	u_int db;
6321 
6322 	MPASS(n > 0);
6323 
6324 	db = eq->doorbells;
6325 	if (n > 1)
6326 		clrbit(&db, DOORBELL_WCWR);
6327 	wmb();
6328 
6329 	switch (ffs(db) - 1) {
6330 	case DOORBELL_UDB:
6331 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6332 		break;
6333 
6334 	case DOORBELL_WCWR: {
6335 		volatile uint64_t *dst, *src;
6336 		int i;
6337 
6338 		/*
6339 		 * Queues whose 128B doorbell segment fits in the page do not
6340 		 * use relative qid (udb_qid is always 0).  Only queues with
6341 		 * doorbell segments can do WCWR.
6342 		 */
6343 		KASSERT(eq->udb_qid == 0 && n == 1,
6344 		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
6345 		    __func__, eq->doorbells, n, eq->dbidx, eq));
6346 
6347 		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
6348 		    UDBS_DB_OFFSET);
6349 		i = eq->dbidx;
6350 		src = (void *)&eq->desc[i];
6351 		while (src != (void *)&eq->desc[i + 1])
6352 			*dst++ = *src++;
6353 		wmb();
6354 		break;
6355 	}
6356 
6357 	case DOORBELL_UDBWC:
6358 		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6359 		wmb();
6360 		break;
6361 
6362 	case DOORBELL_KDB:
6363 		t4_write_reg(sc, sc->sge_kdoorbell_reg,
6364 		    V_QID(eq->cntxt_id) | V_PIDX(n));
6365 		break;
6366 	}
6367 
6368 	IDXINCR(eq->dbidx, n, eq->sidx);
6369 }
6370 
6371 static inline u_int
reclaimable_tx_desc(struct sge_eq * eq)6372 reclaimable_tx_desc(struct sge_eq *eq)
6373 {
6374 	uint16_t hw_cidx;
6375 
6376 	hw_cidx = read_hw_cidx(eq);
6377 	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
6378 }
6379 
6380 static inline u_int
total_available_tx_desc(struct sge_eq * eq)6381 total_available_tx_desc(struct sge_eq *eq)
6382 {
6383 	uint16_t hw_cidx, pidx;
6384 
6385 	hw_cidx = read_hw_cidx(eq);
6386 	pidx = eq->pidx;
6387 
6388 	if (pidx == hw_cidx)
6389 		return (eq->sidx - 1);
6390 	else
6391 		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
6392 }
6393 
6394 static inline uint16_t
read_hw_cidx(struct sge_eq * eq)6395 read_hw_cidx(struct sge_eq *eq)
6396 {
6397 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6398 	uint16_t cidx = spg->cidx;	/* stable snapshot */
6399 
6400 	return (be16toh(cidx));
6401 }
6402 
6403 /*
6404  * Reclaim 'n' descriptors approximately.
6405  */
6406 static u_int
reclaim_tx_descs(struct sge_txq * txq,u_int n)6407 reclaim_tx_descs(struct sge_txq *txq, u_int n)
6408 {
6409 	struct tx_sdesc *txsd;
6410 	struct sge_eq *eq = &txq->eq;
6411 	u_int can_reclaim, reclaimed;
6412 
6413 	TXQ_LOCK_ASSERT_OWNED(txq);
6414 	MPASS(n > 0);
6415 
6416 	reclaimed = 0;
6417 	can_reclaim = reclaimable_tx_desc(eq);
6418 	while (can_reclaim && reclaimed < n) {
6419 		int ndesc;
6420 		struct mbuf *m, *nextpkt;
6421 
6422 		txsd = &txq->sdesc[eq->cidx];
6423 		ndesc = txsd->desc_used;
6424 
6425 		/* Firmware doesn't return "partial" credits. */
6426 		KASSERT(can_reclaim >= ndesc,
6427 		    ("%s: unexpected number of credits: %d, %d",
6428 		    __func__, can_reclaim, ndesc));
6429 		KASSERT(ndesc != 0,
6430 		    ("%s: descriptor with no credits: cidx %d",
6431 		    __func__, eq->cidx));
6432 
6433 		for (m = txsd->m; m != NULL; m = nextpkt) {
6434 			nextpkt = m->m_nextpkt;
6435 			m->m_nextpkt = NULL;
6436 			m_freem(m);
6437 		}
6438 		reclaimed += ndesc;
6439 		can_reclaim -= ndesc;
6440 		IDXINCR(eq->cidx, ndesc, eq->sidx);
6441 	}
6442 
6443 	return (reclaimed);
6444 }
6445 
6446 static void
tx_reclaim(void * arg,int n)6447 tx_reclaim(void *arg, int n)
6448 {
6449 	struct sge_txq *txq = arg;
6450 	struct sge_eq *eq = &txq->eq;
6451 
6452 	do {
6453 		if (TXQ_TRYLOCK(txq) == 0)
6454 			break;
6455 		n = reclaim_tx_descs(txq, 32);
6456 		if (eq->cidx == eq->pidx)
6457 			eq->equeqidx = eq->pidx;
6458 		TXQ_UNLOCK(txq);
6459 	} while (n > 0);
6460 }
6461 
6462 static __be64
get_flit(struct sglist_seg * segs,int nsegs,int idx)6463 get_flit(struct sglist_seg *segs, int nsegs, int idx)
6464 {
6465 	int i = (idx / 3) * 2;
6466 
6467 	switch (idx % 3) {
6468 	case 0: {
6469 		uint64_t rc;
6470 
6471 		rc = (uint64_t)segs[i].ss_len << 32;
6472 		if (i + 1 < nsegs)
6473 			rc |= (uint64_t)(segs[i + 1].ss_len);
6474 
6475 		return (htobe64(rc));
6476 	}
6477 	case 1:
6478 		return (htobe64(segs[i].ss_paddr));
6479 	case 2:
6480 		return (htobe64(segs[i + 1].ss_paddr));
6481 	}
6482 
6483 	return (0);
6484 }
6485 
6486 static int
find_refill_source(struct adapter * sc,int maxp,bool packing)6487 find_refill_source(struct adapter *sc, int maxp, bool packing)
6488 {
6489 	int i, zidx = -1;
6490 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6491 
6492 	if (packing) {
6493 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6494 			if (rxb->hwidx2 == -1)
6495 				continue;
6496 			if (rxb->size1 < PAGE_SIZE &&
6497 			    rxb->size1 < largest_rx_cluster)
6498 				continue;
6499 			if (rxb->size1 > largest_rx_cluster)
6500 				break;
6501 			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
6502 			if (rxb->size2 >= maxp)
6503 				return (i);
6504 			zidx = i;
6505 		}
6506 	} else {
6507 		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6508 			if (rxb->hwidx1 == -1)
6509 				continue;
6510 			if (rxb->size1 > largest_rx_cluster)
6511 				break;
6512 			if (rxb->size1 >= maxp)
6513 				return (i);
6514 			zidx = i;
6515 		}
6516 	}
6517 
6518 	return (zidx);
6519 }
6520 
6521 static void
add_fl_to_sfl(struct adapter * sc,struct sge_fl * fl)6522 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
6523 {
6524 	mtx_lock(&sc->sfl_lock);
6525 	FL_LOCK(fl);
6526 	if ((fl->flags & FL_DOOMED) == 0) {
6527 		fl->flags |= FL_STARVING;
6528 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
6529 		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
6530 	}
6531 	FL_UNLOCK(fl);
6532 	mtx_unlock(&sc->sfl_lock);
6533 }
6534 
6535 static void
handle_wrq_egr_update(struct adapter * sc,struct sge_eq * eq)6536 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
6537 {
6538 	struct sge_wrq *wrq = (void *)eq;
6539 
6540 	atomic_readandclear_int(&eq->equiq);
6541 	taskqueue_enqueue(sc->tq[eq->port_id], &wrq->wrq_tx_task);
6542 }
6543 
6544 static void
handle_eth_egr_update(struct adapter * sc,struct sge_eq * eq)6545 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
6546 {
6547 	struct sge_txq *txq = (void *)eq;
6548 
6549 	MPASS(eq->type == EQ_ETH);
6550 
6551 	atomic_readandclear_int(&eq->equiq);
6552 	if (mp_ring_is_idle(txq->r))
6553 		taskqueue_enqueue(sc->tq[eq->port_id], &txq->tx_reclaim_task);
6554 	else
6555 		mp_ring_check_drainage(txq->r, 64);
6556 }
6557 
6558 static int
handle_sge_egr_update(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)6559 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
6560     struct mbuf *m)
6561 {
6562 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
6563 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
6564 	struct adapter *sc = iq->adapter;
6565 	struct sge *s = &sc->sge;
6566 	struct sge_eq *eq;
6567 	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
6568 		&handle_wrq_egr_update, &handle_eth_egr_update,
6569 		&handle_wrq_egr_update};
6570 
6571 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6572 	    rss->opcode));
6573 
6574 	eq = s->eqmap[qid - s->eq_start - s->eq_base];
6575 	(*h[eq->type])(sc, eq);
6576 
6577 	return (0);
6578 }
6579 
6580 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
6581 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
6582     offsetof(struct cpl_fw6_msg, data));
6583 
6584 static int
handle_fw_msg(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)6585 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
6586 {
6587 	struct adapter *sc = iq->adapter;
6588 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
6589 
6590 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6591 	    rss->opcode));
6592 
6593 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
6594 		const struct rss_header *rss2;
6595 
6596 		rss2 = (const struct rss_header *)&cpl->data[0];
6597 		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
6598 	}
6599 
6600 	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
6601 }
6602 
6603 /**
6604  *	t4_handle_wrerr_rpl - process a FW work request error message
6605  *	@adap: the adapter
6606  *	@rpl: start of the FW message
6607  */
6608 static int
t4_handle_wrerr_rpl(struct adapter * adap,const __be64 * rpl)6609 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
6610 {
6611 	u8 opcode = *(const u8 *)rpl;
6612 	const struct fw_error_cmd *e = (const void *)rpl;
6613 	unsigned int i;
6614 
6615 	if (opcode != FW_ERROR_CMD) {
6616 		log(LOG_ERR,
6617 		    "%s: Received WRERR_RPL message with opcode %#x\n",
6618 		    device_get_nameunit(adap->dev), opcode);
6619 		return (EINVAL);
6620 	}
6621 	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
6622 	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
6623 	    "non-fatal");
6624 	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
6625 	case FW_ERROR_TYPE_EXCEPTION:
6626 		log(LOG_ERR, "exception info:\n");
6627 		for (i = 0; i < nitems(e->u.exception.info); i++)
6628 			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
6629 			    be32toh(e->u.exception.info[i]));
6630 		log(LOG_ERR, "\n");
6631 		break;
6632 	case FW_ERROR_TYPE_HWMODULE:
6633 		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
6634 		    be32toh(e->u.hwmodule.regaddr),
6635 		    be32toh(e->u.hwmodule.regval));
6636 		break;
6637 	case FW_ERROR_TYPE_WR:
6638 		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
6639 		    be16toh(e->u.wr.cidx),
6640 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
6641 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
6642 		    be32toh(e->u.wr.eqid));
6643 		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
6644 			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
6645 			    e->u.wr.wrhdr[i]);
6646 		log(LOG_ERR, "\n");
6647 		break;
6648 	case FW_ERROR_TYPE_ACL:
6649 		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
6650 		    be16toh(e->u.acl.cidx),
6651 		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
6652 		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
6653 		    be32toh(e->u.acl.eqid),
6654 		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
6655 		    "MAC");
6656 		for (i = 0; i < nitems(e->u.acl.val); i++)
6657 			log(LOG_ERR, " %02x", e->u.acl.val[i]);
6658 		log(LOG_ERR, "\n");
6659 		break;
6660 	default:
6661 		log(LOG_ERR, "type %#x\n",
6662 		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
6663 		return (EINVAL);
6664 	}
6665 	return (0);
6666 }
6667 
6668 static inline bool
bufidx_used(struct adapter * sc,int idx)6669 bufidx_used(struct adapter *sc, int idx)
6670 {
6671 	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6672 	int i;
6673 
6674 	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6675 		if (rxb->size1 > largest_rx_cluster)
6676 			continue;
6677 		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
6678 			return (true);
6679 	}
6680 
6681 	return (false);
6682 }
6683 
6684 static int
sysctl_bufsizes(SYSCTL_HANDLER_ARGS)6685 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
6686 {
6687 	struct adapter *sc = arg1;
6688 	struct sge_params *sp = &sc->params.sge;
6689 	int i, rc;
6690 	struct sbuf sb;
6691 	char c;
6692 
6693 	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
6694 	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
6695 		if (bufidx_used(sc, i))
6696 			c = '*';
6697 		else
6698 			c = '\0';
6699 
6700 		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
6701 	}
6702 	sbuf_trim(&sb);
6703 	sbuf_finish(&sb);
6704 	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
6705 	sbuf_delete(&sb);
6706 	return (rc);
6707 }
6708 
6709 #ifdef RATELIMIT
6710 #if defined(INET) || defined(INET6)
6711 /*
6712  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
6713  */
6714 static inline u_int
txpkt_eo_len16(u_int nsegs,u_int immhdrs,u_int tso)6715 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
6716 {
6717 	u_int n;
6718 
6719 	MPASS(immhdrs > 0);
6720 
6721 	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
6722 	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
6723 	if (__predict_false(nsegs == 0))
6724 		goto done;
6725 
6726 	nsegs--; /* first segment is part of ulptx_sgl */
6727 	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
6728 	if (tso)
6729 		n += sizeof(struct cpl_tx_pkt_lso_core);
6730 
6731 done:
6732 	return (howmany(n, 16));
6733 }
6734 #endif
6735 
6736 #define ETID_FLOWC_NPARAMS 6
6737 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
6738     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
6739 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
6740 
6741 #if defined(INET) || defined(INET6)
6742 static int
send_etid_flowc_wr(struct cxgbe_rate_tag * cst,struct port_info * pi,struct vi_info * vi)6743 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
6744     struct vi_info *vi)
6745 {
6746 	struct wrq_cookie cookie;
6747 	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
6748 	struct fw_flowc_wr *flowc;
6749 
6750 	mtx_assert(&cst->lock, MA_OWNED);
6751 	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
6752 	    EO_FLOWC_PENDING);
6753 
6754 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLOWC_LEN16, &cookie);
6755 	if (__predict_false(flowc == NULL))
6756 		return (ENOMEM);
6757 
6758 	bzero(flowc, ETID_FLOWC_LEN);
6759 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6760 	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
6761 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
6762 	    V_FW_WR_FLOWID(cst->etid));
6763 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
6764 	flowc->mnemval[0].val = htobe32(pfvf);
6765 	/* Firmware expects hw port and will translate to channel itself. */
6766 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
6767 	flowc->mnemval[1].val = htobe32(pi->hw_port);
6768 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
6769 	flowc->mnemval[2].val = htobe32(pi->hw_port);
6770 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
6771 	flowc->mnemval[3].val = htobe32(cst->iqid);
6772 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
6773 	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
6774 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
6775 	flowc->mnemval[5].val = htobe32(cst->schedcl);
6776 
6777 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6778 
6779 	cst->flags &= ~EO_FLOWC_PENDING;
6780 	cst->flags |= EO_FLOWC_RPL_PENDING;
6781 	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
6782 	cst->tx_credits -= ETID_FLOWC_LEN16;
6783 
6784 	return (0);
6785 }
6786 #endif
6787 
6788 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
6789 
6790 void
send_etid_flush_wr(struct cxgbe_rate_tag * cst)6791 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
6792 {
6793 	struct fw_flowc_wr *flowc;
6794 	struct wrq_cookie cookie;
6795 
6796 	mtx_assert(&cst->lock, MA_OWNED);
6797 
6798 	flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLUSH_LEN16, &cookie);
6799 	if (__predict_false(flowc == NULL))
6800 		CXGBE_UNIMPLEMENTED(__func__);
6801 
6802 	bzero(flowc, ETID_FLUSH_LEN16 * 16);
6803 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6804 	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
6805 	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
6806 	    V_FW_WR_FLOWID(cst->etid));
6807 
6808 	commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6809 
6810 	cst->flags |= EO_FLUSH_RPL_PENDING;
6811 	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
6812 	cst->tx_credits -= ETID_FLUSH_LEN16;
6813 	cst->ncompl++;
6814 }
6815 
6816 static void
write_ethofld_wr(struct cxgbe_rate_tag * cst,struct fw_eth_tx_eo_wr * wr,struct mbuf * m0,int compl)6817 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
6818     struct mbuf *m0, int compl)
6819 {
6820 	struct cpl_tx_pkt_core *cpl;
6821 	uint64_t ctrl1;
6822 	uint32_t ctrl;	/* used in many unrelated places */
6823 	int len16, pktlen, nsegs, immhdrs;
6824 	uintptr_t p;
6825 	struct ulptx_sgl *usgl;
6826 	struct sglist sg;
6827 	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
6828 
6829 	mtx_assert(&cst->lock, MA_OWNED);
6830 	M_ASSERTPKTHDR(m0);
6831 	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
6832 	    m0->m_pkthdr.l4hlen > 0,
6833 	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
6834 
6835 	len16 = mbuf_eo_len16(m0);
6836 	nsegs = mbuf_eo_nsegs(m0);
6837 	pktlen = m0->m_pkthdr.len;
6838 	ctrl = sizeof(struct cpl_tx_pkt_core);
6839 	if (needs_tso(m0))
6840 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
6841 	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
6842 	ctrl += immhdrs;
6843 
6844 	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
6845 	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
6846 	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
6847 	    V_FW_WR_FLOWID(cst->etid));
6848 	wr->r3 = 0;
6849 	if (needs_outer_udp_csum(m0)) {
6850 		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
6851 		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
6852 		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6853 		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
6854 		wr->u.udpseg.rtplen = 0;
6855 		wr->u.udpseg.r4 = 0;
6856 		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
6857 		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
6858 		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
6859 		cpl = (void *)(wr + 1);
6860 	} else {
6861 		MPASS(needs_outer_tcp_csum(m0));
6862 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
6863 		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
6864 		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6865 		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
6866 		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
6867 		wr->u.tcpseg.r4 = 0;
6868 		wr->u.tcpseg.r5 = 0;
6869 		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
6870 
6871 		if (needs_tso(m0)) {
6872 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
6873 
6874 			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
6875 
6876 			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
6877 			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
6878 			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6879 				ETHER_HDR_LEN) >> 2) |
6880 			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6881 			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6882 			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6883 				ctrl |= F_LSO_IPV6;
6884 			lso->lso_ctrl = htobe32(ctrl);
6885 			lso->ipid_ofst = htobe16(0);
6886 			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6887 			lso->seqno_offset = htobe32(0);
6888 			lso->len = htobe32(pktlen);
6889 
6890 			cpl = (void *)(lso + 1);
6891 		} else {
6892 			wr->u.tcpseg.mss = htobe16(0xffff);
6893 			cpl = (void *)(wr + 1);
6894 		}
6895 	}
6896 
6897 	/* Checksum offload must be requested for ethofld. */
6898 	MPASS(needs_outer_l4_csum(m0));
6899 	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6900 
6901 	/* VLAN tag insertion */
6902 	if (needs_vlan_insertion(m0)) {
6903 		ctrl1 |= F_TXPKT_VLAN_VLD |
6904 		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6905 	}
6906 
6907 	/* CPL header */
6908 	cpl->ctrl0 = cst->ctrl0;
6909 	cpl->pack = 0;
6910 	cpl->len = htobe16(pktlen);
6911 	cpl->ctrl1 = htobe64(ctrl1);
6912 
6913 	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6914 	p = (uintptr_t)(cpl + 1);
6915 	m_copydata(m0, 0, immhdrs, (void *)p);
6916 
6917 	/* SGL */
6918 	if (nsegs > 0) {
6919 		int i, pad;
6920 
6921 		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6922 		p += immhdrs;
6923 		pad = 16 - (immhdrs & 0xf);
6924 		bzero((void *)p, pad);
6925 
6926 		usgl = (void *)(p + pad);
6927 		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6928 		    V_ULPTX_NSGE(nsegs));
6929 
6930 		sglist_init(&sg, nitems(segs), segs);
6931 		for (; m0 != NULL; m0 = m0->m_next) {
6932 			if (__predict_false(m0->m_len == 0))
6933 				continue;
6934 			if (immhdrs >= m0->m_len) {
6935 				immhdrs -= m0->m_len;
6936 				continue;
6937 			}
6938 			if (m0->m_flags & M_EXTPG)
6939 				sglist_append_mbuf_epg(&sg, m0,
6940 				    mtod(m0, vm_offset_t), m0->m_len);
6941                         else
6942 				sglist_append(&sg, mtod(m0, char *) + immhdrs,
6943 				    m0->m_len - immhdrs);
6944 			immhdrs = 0;
6945 		}
6946 		MPASS(sg.sg_nseg == nsegs);
6947 
6948 		/*
6949 		 * Zero pad last 8B in case the WR doesn't end on a 16B
6950 		 * boundary.
6951 		 */
6952 		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6953 
6954 		usgl->len0 = htobe32(segs[0].ss_len);
6955 		usgl->addr0 = htobe64(segs[0].ss_paddr);
6956 		for (i = 0; i < nsegs - 1; i++) {
6957 			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6958 			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6959 		}
6960 		if (i & 1)
6961 			usgl->sge[i / 2].len[1] = htobe32(0);
6962 	}
6963 
6964 }
6965 
6966 static void
ethofld_tx(struct cxgbe_rate_tag * cst)6967 ethofld_tx(struct cxgbe_rate_tag *cst)
6968 {
6969 	struct mbuf *m;
6970 	struct wrq_cookie cookie;
6971 	int next_credits, compl;
6972 	struct fw_eth_tx_eo_wr *wr;
6973 
6974 	mtx_assert(&cst->lock, MA_OWNED);
6975 
6976 	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6977 		M_ASSERTPKTHDR(m);
6978 
6979 		/* How many len16 credits do we need to send this mbuf. */
6980 		next_credits = mbuf_eo_len16(m);
6981 		MPASS(next_credits > 0);
6982 		if (next_credits > cst->tx_credits) {
6983 			/*
6984 			 * Tx will make progress eventually because there is at
6985 			 * least one outstanding fw4_ack that will return
6986 			 * credits and kick the tx.
6987 			 */
6988 			MPASS(cst->ncompl > 0);
6989 			return;
6990 		}
6991 		wr = start_wrq_wr(&cst->eo_txq->wrq, next_credits, &cookie);
6992 		if (__predict_false(wr == NULL)) {
6993 			/* XXX: wishful thinking, not a real assertion. */
6994 			MPASS(cst->ncompl > 0);
6995 			return;
6996 		}
6997 		cst->tx_credits -= next_credits;
6998 		cst->tx_nocompl += next_credits;
6999 		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
7000 		ETHER_BPF_MTAP(cst->com.ifp, m);
7001 		write_ethofld_wr(cst, wr, m, compl);
7002 		commit_wrq_wr(&cst->eo_txq->wrq, wr, &cookie);
7003 		if (compl) {
7004 			cst->ncompl++;
7005 			cst->tx_nocompl	= 0;
7006 		}
7007 		(void) mbufq_dequeue(&cst->pending_tx);
7008 
7009 		/*
7010 		 * Drop the mbuf's reference on the tag now rather
7011 		 * than waiting until m_freem().  This ensures that
7012 		 * cxgbe_rate_tag_free gets called when the inp drops
7013 		 * its reference on the tag and there are no more
7014 		 * mbufs in the pending_tx queue and can flush any
7015 		 * pending requests.  Otherwise if the last mbuf
7016 		 * doesn't request a completion the etid will never be
7017 		 * released.
7018 		 */
7019 		m->m_pkthdr.snd_tag = NULL;
7020 		m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
7021 		m_snd_tag_rele(&cst->com);
7022 
7023 		mbufq_enqueue(&cst->pending_fwack, m);
7024 	}
7025 }
7026 
7027 #if defined(INET) || defined(INET6)
7028 static int
ethofld_transmit(if_t ifp,struct mbuf * m0)7029 ethofld_transmit(if_t ifp, struct mbuf *m0)
7030 {
7031 	struct cxgbe_rate_tag *cst;
7032 	int rc;
7033 
7034 	MPASS(m0->m_nextpkt == NULL);
7035 	MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
7036 	MPASS(m0->m_pkthdr.snd_tag != NULL);
7037 	cst = mst_to_crt(m0->m_pkthdr.snd_tag);
7038 
7039 	mtx_lock(&cst->lock);
7040 	MPASS(cst->flags & EO_SND_TAG_REF);
7041 
7042 	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
7043 		struct vi_info *vi = if_getsoftc(ifp);
7044 		struct port_info *pi = vi->pi;
7045 		struct adapter *sc = pi->adapter;
7046 		const uint32_t rss_mask = vi->rss_size - 1;
7047 		uint32_t rss_hash;
7048 
7049 		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
7050 		if (M_HASHTYPE_ISHASH(m0))
7051 			rss_hash = m0->m_pkthdr.flowid;
7052 		else
7053 			rss_hash = arc4random();
7054 		/* We assume RSS hashing */
7055 		cst->iqid = vi->rss[rss_hash & rss_mask];
7056 		cst->eo_txq += rss_hash % vi->nofldtxq;
7057 		rc = send_etid_flowc_wr(cst, pi, vi);
7058 		if (rc != 0)
7059 			goto done;
7060 	}
7061 
7062 	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
7063 		rc = ENOBUFS;
7064 		goto done;
7065 	}
7066 
7067 	mbufq_enqueue(&cst->pending_tx, m0);
7068 	cst->plen += m0->m_pkthdr.len;
7069 
7070 	/*
7071 	 * Hold an extra reference on the tag while generating work
7072 	 * requests to ensure that we don't try to free the tag during
7073 	 * ethofld_tx() in case we are sending the final mbuf after
7074 	 * the inp was freed.
7075 	 */
7076 	m_snd_tag_ref(&cst->com);
7077 	ethofld_tx(cst);
7078 	mtx_unlock(&cst->lock);
7079 	m_snd_tag_rele(&cst->com);
7080 	return (0);
7081 
7082 done:
7083 	mtx_unlock(&cst->lock);
7084 	return (rc);
7085 }
7086 #endif
7087 
7088 static int
ethofld_fw4_ack(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m0)7089 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
7090 {
7091 	struct adapter *sc = iq->adapter;
7092 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
7093 	struct mbuf *m;
7094 	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
7095 	struct cxgbe_rate_tag *cst;
7096 	uint8_t credits = cpl->credits;
7097 
7098 	cst = lookup_etid(sc, etid);
7099 	mtx_lock(&cst->lock);
7100 	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
7101 		MPASS(credits >= ETID_FLOWC_LEN16);
7102 		credits -= ETID_FLOWC_LEN16;
7103 		cst->flags &= ~EO_FLOWC_RPL_PENDING;
7104 	}
7105 
7106 	KASSERT(cst->ncompl > 0,
7107 	    ("%s: etid %u (%p) wasn't expecting completion.",
7108 	    __func__, etid, cst));
7109 	cst->ncompl--;
7110 
7111 	while (credits > 0) {
7112 		m = mbufq_dequeue(&cst->pending_fwack);
7113 		if (__predict_false(m == NULL)) {
7114 			/*
7115 			 * The remaining credits are for the final flush that
7116 			 * was issued when the tag was freed by the kernel.
7117 			 */
7118 			MPASS((cst->flags &
7119 			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
7120 			    EO_FLUSH_RPL_PENDING);
7121 			MPASS(credits == ETID_FLUSH_LEN16);
7122 			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
7123 			MPASS(cst->ncompl == 0);
7124 
7125 			cst->flags &= ~EO_FLUSH_RPL_PENDING;
7126 			cst->tx_credits += cpl->credits;
7127 			cxgbe_rate_tag_free_locked(cst);
7128 			return (0);	/* cst is gone. */
7129 		}
7130 		KASSERT(m != NULL,
7131 		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
7132 		    credits));
7133 		KASSERT(credits >= mbuf_eo_len16(m),
7134 		    ("%s: too few credits (%u, %u, %u)", __func__,
7135 		    cpl->credits, credits, mbuf_eo_len16(m)));
7136 		credits -= mbuf_eo_len16(m);
7137 		cst->plen -= m->m_pkthdr.len;
7138 		m_freem(m);
7139 	}
7140 
7141 	cst->tx_credits += cpl->credits;
7142 	MPASS(cst->tx_credits <= cst->tx_total);
7143 
7144 	if (cst->flags & EO_SND_TAG_REF) {
7145 		/*
7146 		 * As with ethofld_transmit(), hold an extra reference
7147 		 * so that the tag is stable across ethold_tx().
7148 		 */
7149 		m_snd_tag_ref(&cst->com);
7150 		m = mbufq_first(&cst->pending_tx);
7151 		if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
7152 			ethofld_tx(cst);
7153 		mtx_unlock(&cst->lock);
7154 		m_snd_tag_rele(&cst->com);
7155 	} else {
7156 		/*
7157 		 * There shouldn't be any pending packets if the tag
7158 		 * was freed by the kernel since any pending packet
7159 		 * should hold a reference to the tag.
7160 		 */
7161 		MPASS(mbufq_first(&cst->pending_tx) == NULL);
7162 		mtx_unlock(&cst->lock);
7163 	}
7164 
7165 	return (0);
7166 }
7167 #endif
7168