1 /*- 2 * Copyright (c) 2017 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: Navdeep Parhar <np@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_ratelimit.h" 34 35 #include <sys/types.h> 36 #include <sys/malloc.h> 37 #include <sys/queue.h> 38 #include <sys/sbuf.h> 39 #include <sys/taskqueue.h> 40 #include <sys/sysctl.h> 41 42 #include "common/common.h" 43 #include "common/t4_regs.h" 44 #include "common/t4_regs_values.h" 45 #include "common/t4_msg.h" 46 47 48 static int 49 in_range(int val, int lo, int hi) 50 { 51 52 return (val < 0 || (val <= hi && val >= lo)); 53 } 54 55 static int 56 set_sched_class_config(struct adapter *sc, int minmax) 57 { 58 int rc; 59 60 if (minmax < 0) 61 return (EINVAL); 62 63 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4sscc"); 64 if (rc) 65 return (rc); 66 rc = -t4_sched_config(sc, FW_SCHED_TYPE_PKTSCHED, minmax, 1); 67 end_synchronized_op(sc, 0); 68 69 return (rc); 70 } 71 72 static int 73 set_sched_class_params(struct adapter *sc, struct t4_sched_class_params *p, 74 int sleep_ok) 75 { 76 int rc, top_speed, fw_level, fw_mode, fw_rateunit, fw_ratemode; 77 struct port_info *pi; 78 struct tx_cl_rl_params *tc, old; 79 bool check_pktsize = false; 80 81 if (p->level == SCHED_CLASS_LEVEL_CL_RL) 82 fw_level = FW_SCHED_PARAMS_LEVEL_CL_RL; 83 else if (p->level == SCHED_CLASS_LEVEL_CL_WRR) 84 fw_level = FW_SCHED_PARAMS_LEVEL_CL_WRR; 85 else if (p->level == SCHED_CLASS_LEVEL_CH_RL) 86 fw_level = FW_SCHED_PARAMS_LEVEL_CH_RL; 87 else 88 return (EINVAL); 89 90 if (p->level == SCHED_CLASS_LEVEL_CL_RL) { 91 if (p->mode == SCHED_CLASS_MODE_CLASS) 92 fw_mode = FW_SCHED_PARAMS_MODE_CLASS; 93 else if (p->mode == SCHED_CLASS_MODE_FLOW) { 94 check_pktsize = true; 95 fw_mode = FW_SCHED_PARAMS_MODE_FLOW; 96 } else 97 return (EINVAL); 98 } else 99 fw_mode = 0; 100 101 /* Valid channel must always be provided. */ 102 if (p->channel < 0) 103 return (EINVAL); 104 if (!in_range(p->channel, 0, sc->chip_params->nchan - 1)) 105 return (ERANGE); 106 107 pi = sc->port[sc->chan_map[p->channel]]; 108 if (pi == NULL) 109 return (ENXIO); 110 MPASS(pi->tx_chan == p->channel); 111 top_speed = port_top_speed(pi) * 1000000; /* Gbps -> Kbps */ 112 113 if (p->level == SCHED_CLASS_LEVEL_CL_RL || 114 p->level == SCHED_CLASS_LEVEL_CH_RL) { 115 /* 116 * Valid rate (mode, unit and values) must be provided. 117 */ 118 119 if (p->minrate < 0) 120 p->minrate = 0; 121 if (p->maxrate < 0) 122 return (EINVAL); 123 124 if (p->rateunit == SCHED_CLASS_RATEUNIT_BITS) { 125 fw_rateunit = FW_SCHED_PARAMS_UNIT_BITRATE; 126 /* ratemode could be relative (%) or absolute. */ 127 if (p->ratemode == SCHED_CLASS_RATEMODE_REL) { 128 fw_ratemode = FW_SCHED_PARAMS_RATE_REL; 129 /* maxrate is % of port bandwidth. */ 130 if (!in_range(p->minrate, 0, 100) || 131 !in_range(p->maxrate, 0, 100)) { 132 return (ERANGE); 133 } 134 } else if (p->ratemode == SCHED_CLASS_RATEMODE_ABS) { 135 fw_ratemode = FW_SCHED_PARAMS_RATE_ABS; 136 /* maxrate is absolute value in kbps. */ 137 if (!in_range(p->minrate, 0, top_speed) || 138 !in_range(p->maxrate, 0, top_speed)) { 139 return (ERANGE); 140 } 141 } else 142 return (EINVAL); 143 } else if (p->rateunit == SCHED_CLASS_RATEUNIT_PKTS) { 144 /* maxrate is the absolute value in pps. */ 145 check_pktsize = true; 146 fw_rateunit = FW_SCHED_PARAMS_UNIT_PKTRATE; 147 } else 148 return (EINVAL); 149 } else { 150 MPASS(p->level == SCHED_CLASS_LEVEL_CL_WRR); 151 152 /* 153 * Valid weight must be provided. 154 */ 155 if (p->weight < 0) 156 return (EINVAL); 157 if (!in_range(p->weight, 1, 99)) 158 return (ERANGE); 159 160 fw_rateunit = 0; 161 fw_ratemode = 0; 162 } 163 164 if (p->level == SCHED_CLASS_LEVEL_CL_RL || 165 p->level == SCHED_CLASS_LEVEL_CL_WRR) { 166 /* 167 * Valid scheduling class must be provided. 168 */ 169 if (p->cl < 0) 170 return (EINVAL); 171 if (!in_range(p->cl, 0, sc->chip_params->nsched_cls - 1)) 172 return (ERANGE); 173 } 174 175 if (check_pktsize) { 176 if (p->pktsize < 0) 177 return (EINVAL); 178 if (!in_range(p->pktsize, 64, pi->vi[0].ifp->if_mtu)) 179 return (ERANGE); 180 } 181 182 if (p->level == SCHED_CLASS_LEVEL_CL_RL) { 183 tc = &pi->sched_params->cl_rl[p->cl]; 184 mtx_lock(&sc->tc_lock); 185 if (tc->refcount > 0 || tc->flags & (CLRL_SYNC | CLRL_ASYNC)) 186 rc = EBUSY; 187 else { 188 tc->flags |= CLRL_SYNC | CLRL_USER; 189 tc->ratemode = fw_ratemode; 190 tc->rateunit = fw_rateunit; 191 tc->mode = fw_mode; 192 tc->maxrate = p->maxrate; 193 tc->pktsize = p->pktsize; 194 rc = 0; 195 old= *tc; 196 } 197 mtx_unlock(&sc->tc_lock); 198 if (rc != 0) 199 return (rc); 200 } 201 202 rc = begin_synchronized_op(sc, NULL, 203 sleep_ok ? (SLEEP_OK | INTR_OK) : HOLD_LOCK, "t4sscp"); 204 if (rc != 0) { 205 if (p->level == SCHED_CLASS_LEVEL_CL_RL) { 206 mtx_lock(&sc->tc_lock); 207 *tc = old; 208 mtx_unlock(&sc->tc_lock); 209 } 210 return (rc); 211 } 212 rc = -t4_sched_params(sc, FW_SCHED_TYPE_PKTSCHED, fw_level, fw_mode, 213 fw_rateunit, fw_ratemode, p->channel, p->cl, p->minrate, p->maxrate, 214 p->weight, p->pktsize, 0, sleep_ok); 215 end_synchronized_op(sc, sleep_ok ? 0 : LOCK_HELD); 216 217 if (p->level == SCHED_CLASS_LEVEL_CL_RL) { 218 mtx_lock(&sc->tc_lock); 219 MPASS(tc->flags & CLRL_SYNC); 220 MPASS(tc->flags & CLRL_USER); 221 MPASS(tc->refcount == 0); 222 223 tc->flags &= ~CLRL_SYNC; 224 if (rc == 0) 225 tc->flags &= ~CLRL_ERR; 226 else 227 tc->flags |= CLRL_ERR; 228 mtx_unlock(&sc->tc_lock); 229 } 230 231 return (rc); 232 } 233 234 static void 235 update_tx_sched(void *context, int pending) 236 { 237 int i, j, rc; 238 struct port_info *pi; 239 struct tx_cl_rl_params *tc; 240 struct adapter *sc = context; 241 const int n = sc->chip_params->nsched_cls; 242 243 mtx_lock(&sc->tc_lock); 244 for_each_port(sc, i) { 245 pi = sc->port[i]; 246 tc = &pi->sched_params->cl_rl[0]; 247 for (j = 0; j < n; j++, tc++) { 248 MPASS(mtx_owned(&sc->tc_lock)); 249 if ((tc->flags & CLRL_ASYNC) == 0) 250 continue; 251 mtx_unlock(&sc->tc_lock); 252 253 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 254 "t4utxs") != 0) { 255 mtx_lock(&sc->tc_lock); 256 continue; 257 } 258 rc = -t4_sched_params(sc, FW_SCHED_TYPE_PKTSCHED, 259 FW_SCHED_PARAMS_LEVEL_CL_RL, tc->mode, tc->rateunit, 260 tc->ratemode, pi->tx_chan, j, 0, tc->maxrate, 0, 261 tc->pktsize, tc->burstsize, 1); 262 end_synchronized_op(sc, 0); 263 264 mtx_lock(&sc->tc_lock); 265 MPASS(tc->flags & CLRL_ASYNC); 266 tc->flags &= ~CLRL_ASYNC; 267 if (rc == 0) 268 tc->flags &= ~CLRL_ERR; 269 else 270 tc->flags |= CLRL_ERR; 271 } 272 } 273 mtx_unlock(&sc->tc_lock); 274 } 275 276 int 277 t4_set_sched_class(struct adapter *sc, struct t4_sched_params *p) 278 { 279 280 if (p->type != SCHED_CLASS_TYPE_PACKET) 281 return (EINVAL); 282 283 if (p->subcmd == SCHED_CLASS_SUBCMD_CONFIG) 284 return (set_sched_class_config(sc, p->u.config.minmax)); 285 286 if (p->subcmd == SCHED_CLASS_SUBCMD_PARAMS) 287 return (set_sched_class_params(sc, &p->u.params, 1)); 288 289 return (EINVAL); 290 } 291 292 static int 293 bind_txq_to_traffic_class(struct adapter *sc, struct sge_txq *txq, int idx) 294 { 295 struct tx_cl_rl_params *tc0, *tc; 296 int rc, old_idx; 297 uint32_t fw_mnem, fw_class; 298 299 if (!(txq->eq.flags & EQ_ALLOCATED)) 300 return (EAGAIN); 301 302 mtx_lock(&sc->tc_lock); 303 if (txq->tc_idx == -2) { 304 rc = EBUSY; /* Another bind/unbind in progress already. */ 305 goto done; 306 } 307 if (idx == txq->tc_idx) { 308 rc = 0; /* No change, nothing to do. */ 309 goto done; 310 } 311 312 tc0 = &sc->port[txq->eq.tx_chan]->sched_params->cl_rl[0]; 313 if (idx != -1) { 314 /* 315 * Bind to a different class at index idx. 316 */ 317 tc = &tc0[idx]; 318 if (tc->flags & CLRL_ERR) { 319 rc = ENXIO; 320 goto done; 321 } else { 322 /* 323 * Ok to proceed. Place a reference on the new class 324 * while still holding on to the reference on the 325 * previous class, if any. 326 */ 327 tc->refcount++; 328 } 329 } 330 /* Mark as busy before letting go of the lock. */ 331 old_idx = txq->tc_idx; 332 txq->tc_idx = -2; 333 mtx_unlock(&sc->tc_lock); 334 335 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4btxq"); 336 if (rc != 0) 337 return (rc); 338 fw_mnem = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 339 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH) | 340 V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id)); 341 fw_class = idx < 0 ? 0xffffffff : idx; 342 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_mnem, &fw_class); 343 end_synchronized_op(sc, 0); 344 345 mtx_lock(&sc->tc_lock); 346 MPASS(txq->tc_idx == -2); 347 if (rc == 0) { 348 /* 349 * Unbind, bind, or bind to a different class succeeded. Remove 350 * the reference on the old traffic class, if any. 351 */ 352 if (old_idx != -1) { 353 tc = &tc0[old_idx]; 354 MPASS(tc->refcount > 0); 355 tc->refcount--; 356 } 357 txq->tc_idx = idx; 358 } else { 359 /* 360 * Unbind, bind, or bind to a different class failed. Remove 361 * the anticipatory reference on the new traffic class, if any. 362 */ 363 if (idx != -1) { 364 tc = &tc0[idx]; 365 MPASS(tc->refcount > 0); 366 tc->refcount--; 367 } 368 txq->tc_idx = old_idx; 369 } 370 done: 371 MPASS(txq->tc_idx >= -1 && txq->tc_idx < sc->chip_params->nsched_cls); 372 mtx_unlock(&sc->tc_lock); 373 return (rc); 374 } 375 376 int 377 t4_set_sched_queue(struct adapter *sc, struct t4_sched_queue *p) 378 { 379 struct port_info *pi = NULL; 380 struct vi_info *vi; 381 struct sge_txq *txq; 382 int i, rc; 383 384 if (p->port >= sc->params.nports) 385 return (EINVAL); 386 387 /* 388 * XXX: cxgbetool allows the user to specify the physical port only. So 389 * we always operate on the main VI. 390 */ 391 pi = sc->port[p->port]; 392 vi = &pi->vi[0]; 393 394 /* Checking VI_INIT_DONE outside a synch-op is a harmless race here. */ 395 if (!(vi->flags & VI_INIT_DONE)) 396 return (EAGAIN); 397 398 if (!in_range(p->queue, 0, vi->ntxq - 1) || 399 !in_range(p->cl, 0, sc->chip_params->nsched_cls - 1)) 400 return (EINVAL); 401 402 if (p->queue < 0) { 403 /* 404 * Change the scheduling on all the TX queues for the 405 * interface. 406 */ 407 for_each_txq(vi, i, txq) { 408 rc = bind_txq_to_traffic_class(sc, txq, p->cl); 409 if (rc != 0) 410 break; 411 } 412 } else { 413 /* 414 * If op.queue is non-negative, then we're only changing the 415 * scheduling on a single specified TX queue. 416 */ 417 txq = &sc->sge.txq[vi->first_txq + p->queue]; 418 rc = bind_txq_to_traffic_class(sc, txq, p->cl); 419 } 420 421 return (rc); 422 } 423 424 int 425 t4_init_tx_sched(struct adapter *sc) 426 { 427 int i, j; 428 const int n = sc->chip_params->nsched_cls; 429 struct port_info *pi; 430 struct tx_cl_rl_params *tc; 431 432 mtx_init(&sc->tc_lock, "tx_sched lock", NULL, MTX_DEF); 433 TASK_INIT(&sc->tc_task, 0, update_tx_sched, sc); 434 for_each_port(sc, i) { 435 pi = sc->port[i]; 436 pi->sched_params = malloc(sizeof(*pi->sched_params) + 437 n * sizeof(*tc), M_CXGBE, M_ZERO | M_WAITOK); 438 tc = &pi->sched_params->cl_rl[0]; 439 for (j = 0; j < n; j++, tc++) { 440 tc->refcount = 0; 441 tc->ratemode = FW_SCHED_PARAMS_RATE_ABS; 442 tc->rateunit = FW_SCHED_PARAMS_UNIT_BITRATE; 443 tc->mode = FW_SCHED_PARAMS_MODE_CLASS; 444 tc->maxrate = 1000 * 1000; /* 1 Gbps. Arbitrary */ 445 446 if (t4_sched_params_cl_rl_kbps(sc, pi->tx_chan, j, 447 tc->mode, tc->maxrate, tc->pktsize, 1) != 0) 448 tc->flags = CLRL_ERR; 449 } 450 } 451 452 return (0); 453 } 454 455 int 456 t4_free_tx_sched(struct adapter *sc) 457 { 458 int i; 459 460 taskqueue_drain(taskqueue_thread, &sc->tc_task); 461 462 for_each_port(sc, i) { 463 if (sc->port[i] != NULL) 464 free(sc->port[i]->sched_params, M_CXGBE); 465 } 466 467 if (mtx_initialized(&sc->tc_lock)) 468 mtx_destroy(&sc->tc_lock); 469 470 return (0); 471 } 472 473 void 474 t4_update_tx_sched(struct adapter *sc) 475 { 476 477 taskqueue_enqueue(taskqueue_thread, &sc->tc_task); 478 } 479 480 int 481 t4_reserve_cl_rl_kbps(struct adapter *sc, int port_id, u_int maxrate, 482 int *tc_idx) 483 { 484 int rc = 0, fa = -1, i, pktsize, burstsize; 485 bool update; 486 struct tx_cl_rl_params *tc; 487 struct port_info *pi; 488 489 MPASS(port_id >= 0 && port_id < sc->params.nports); 490 491 pi = sc->port[port_id]; 492 if (pi->sched_params->pktsize > 0) 493 pktsize = pi->sched_params->pktsize; 494 else 495 pktsize = pi->vi[0].ifp->if_mtu; 496 if (pi->sched_params->burstsize > 0) 497 burstsize = pi->sched_params->burstsize; 498 else 499 burstsize = pktsize * 4; 500 tc = &pi->sched_params->cl_rl[0]; 501 502 update = false; 503 mtx_lock(&sc->tc_lock); 504 for (i = 0; i < sc->chip_params->nsched_cls; i++, tc++) { 505 if (fa < 0 && tc->refcount == 0 && !(tc->flags & CLRL_USER)) 506 fa = i; /* first available */ 507 508 if (tc->ratemode == FW_SCHED_PARAMS_RATE_ABS && 509 tc->rateunit == FW_SCHED_PARAMS_UNIT_BITRATE && 510 tc->mode == FW_SCHED_PARAMS_MODE_FLOW && 511 tc->maxrate == maxrate && tc->pktsize == pktsize && 512 tc->burstsize == burstsize) { 513 tc->refcount++; 514 *tc_idx = i; 515 if ((tc->flags & (CLRL_ERR | CLRL_ASYNC | CLRL_SYNC)) == 516 CLRL_ERR) { 517 update = true; 518 } 519 goto done; 520 } 521 } 522 /* Not found */ 523 MPASS(i == sc->chip_params->nsched_cls); 524 if (fa != -1) { 525 tc = &pi->sched_params->cl_rl[fa]; 526 tc->refcount = 1; 527 tc->ratemode = FW_SCHED_PARAMS_RATE_ABS; 528 tc->rateunit = FW_SCHED_PARAMS_UNIT_BITRATE; 529 tc->mode = FW_SCHED_PARAMS_MODE_FLOW; 530 tc->maxrate = maxrate; 531 tc->pktsize = pktsize; 532 tc->burstsize = burstsize; 533 *tc_idx = fa; 534 update = true; 535 } else { 536 *tc_idx = -1; 537 rc = ENOSPC; 538 } 539 done: 540 mtx_unlock(&sc->tc_lock); 541 if (update) { 542 tc->flags |= CLRL_ASYNC; 543 t4_update_tx_sched(sc); 544 } 545 return (rc); 546 } 547 548 void 549 t4_release_cl_rl(struct adapter *sc, int port_id, int tc_idx) 550 { 551 struct tx_cl_rl_params *tc; 552 553 MPASS(port_id >= 0 && port_id < sc->params.nports); 554 MPASS(tc_idx >= 0 && tc_idx < sc->chip_params->nsched_cls); 555 556 mtx_lock(&sc->tc_lock); 557 tc = &sc->port[port_id]->sched_params->cl_rl[tc_idx]; 558 MPASS(tc->refcount > 0); 559 tc->refcount--; 560 mtx_unlock(&sc->tc_lock); 561 } 562 563 int 564 sysctl_tc(SYSCTL_HANDLER_ARGS) 565 { 566 struct vi_info *vi = arg1; 567 struct port_info *pi; 568 struct adapter *sc; 569 struct sge_txq *txq; 570 int qidx = arg2, rc, tc_idx; 571 572 MPASS(qidx >= 0 && qidx < vi->ntxq); 573 pi = vi->pi; 574 sc = pi->adapter; 575 txq = &sc->sge.txq[vi->first_txq + qidx]; 576 577 tc_idx = txq->tc_idx; 578 rc = sysctl_handle_int(oidp, &tc_idx, 0, req); 579 if (rc != 0 || req->newptr == NULL) 580 return (rc); 581 582 if (sc->flags & IS_VF) 583 return (EPERM); 584 if (!in_range(tc_idx, 0, sc->chip_params->nsched_cls - 1)) 585 return (EINVAL); 586 587 return (bind_txq_to_traffic_class(sc, txq, tc_idx)); 588 } 589 590 int 591 sysctl_tc_params(SYSCTL_HANDLER_ARGS) 592 { 593 struct adapter *sc = arg1; 594 struct tx_cl_rl_params tc; 595 struct sbuf *sb; 596 int i, rc, port_id, mbps, gbps; 597 598 rc = sysctl_wire_old_buffer(req, 0); 599 if (rc != 0) 600 return (rc); 601 602 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 603 if (sb == NULL) 604 return (ENOMEM); 605 606 port_id = arg2 >> 16; 607 MPASS(port_id < sc->params.nports); 608 MPASS(sc->port[port_id] != NULL); 609 i = arg2 & 0xffff; 610 MPASS(i < sc->chip_params->nsched_cls); 611 612 mtx_lock(&sc->tc_lock); 613 tc = sc->port[port_id]->sched_params->cl_rl[i]; 614 mtx_unlock(&sc->tc_lock); 615 616 switch (tc.rateunit) { 617 case SCHED_CLASS_RATEUNIT_BITS: 618 switch (tc.ratemode) { 619 case SCHED_CLASS_RATEMODE_REL: 620 /* XXX: top speed or actual link speed? */ 621 gbps = port_top_speed(sc->port[port_id]); 622 sbuf_printf(sb, "%u%% of %uGbps", tc.maxrate, gbps); 623 break; 624 case SCHED_CLASS_RATEMODE_ABS: 625 mbps = tc.maxrate / 1000; 626 gbps = tc.maxrate / 1000000; 627 if (tc.maxrate == gbps * 1000000) 628 sbuf_printf(sb, "%uGbps", gbps); 629 else if (tc.maxrate == mbps * 1000) 630 sbuf_printf(sb, "%uMbps", mbps); 631 else 632 sbuf_printf(sb, "%uKbps", tc.maxrate); 633 break; 634 default: 635 rc = ENXIO; 636 goto done; 637 } 638 break; 639 case SCHED_CLASS_RATEUNIT_PKTS: 640 sbuf_printf(sb, "%upps", tc.maxrate); 641 break; 642 default: 643 rc = ENXIO; 644 goto done; 645 } 646 647 switch (tc.mode) { 648 case SCHED_CLASS_MODE_CLASS: 649 sbuf_printf(sb, " aggregate"); 650 break; 651 case SCHED_CLASS_MODE_FLOW: 652 sbuf_printf(sb, " per-flow"); 653 if (tc.pktsize > 0) 654 sbuf_printf(sb, " pkt-size %u", tc.pktsize); 655 if (tc.burstsize > 0) 656 sbuf_printf(sb, " burst-size %u", tc.burstsize); 657 break; 658 default: 659 rc = ENXIO; 660 goto done; 661 } 662 663 done: 664 if (rc == 0) 665 rc = sbuf_finish(sb); 666 sbuf_delete(sb); 667 668 return (rc); 669 } 670 671 #ifdef RATELIMIT 672 void 673 t4_init_etid_table(struct adapter *sc) 674 { 675 int i; 676 struct tid_info *t; 677 678 if (!is_ethoffload(sc)) 679 return; 680 681 t = &sc->tids; 682 MPASS(t->netids > 0); 683 684 mtx_init(&t->etid_lock, "etid lock", NULL, MTX_DEF); 685 t->etid_tab = malloc(sizeof(*t->etid_tab) * t->netids, M_CXGBE, 686 M_ZERO | M_WAITOK); 687 t->efree = t->etid_tab; 688 t->etids_in_use = 0; 689 for (i = 1; i < t->netids; i++) 690 t->etid_tab[i - 1].next = &t->etid_tab[i]; 691 t->etid_tab[t->netids - 1].next = NULL; 692 } 693 694 void 695 t4_free_etid_table(struct adapter *sc) 696 { 697 struct tid_info *t; 698 699 if (!is_ethoffload(sc)) 700 return; 701 702 t = &sc->tids; 703 MPASS(t->netids > 0); 704 705 free(t->etid_tab, M_CXGBE); 706 t->etid_tab = NULL; 707 708 if (mtx_initialized(&t->etid_lock)) 709 mtx_destroy(&t->etid_lock); 710 } 711 712 /* etid services */ 713 static int alloc_etid(struct adapter *, struct cxgbe_snd_tag *); 714 static void free_etid(struct adapter *, int); 715 716 static int 717 alloc_etid(struct adapter *sc, struct cxgbe_snd_tag *cst) 718 { 719 struct tid_info *t = &sc->tids; 720 int etid = -1; 721 722 mtx_lock(&t->etid_lock); 723 if (t->efree) { 724 union etid_entry *p = t->efree; 725 726 etid = p - t->etid_tab + t->etid_base; 727 t->efree = p->next; 728 p->cst = cst; 729 t->etids_in_use++; 730 } 731 mtx_unlock(&t->etid_lock); 732 return (etid); 733 } 734 735 struct cxgbe_snd_tag * 736 lookup_etid(struct adapter *sc, int etid) 737 { 738 struct tid_info *t = &sc->tids; 739 740 return (t->etid_tab[etid - t->etid_base].cst); 741 } 742 743 static void 744 free_etid(struct adapter *sc, int etid) 745 { 746 struct tid_info *t = &sc->tids; 747 union etid_entry *p = &t->etid_tab[etid - t->etid_base]; 748 749 mtx_lock(&t->etid_lock); 750 p->next = t->efree; 751 t->efree = p; 752 t->etids_in_use--; 753 mtx_unlock(&t->etid_lock); 754 } 755 756 int 757 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, 758 struct m_snd_tag **pt) 759 { 760 int rc, schedcl; 761 struct vi_info *vi = ifp->if_softc; 762 struct port_info *pi = vi->pi; 763 struct adapter *sc = pi->adapter; 764 struct cxgbe_snd_tag *cst; 765 766 if (params->hdr.type != IF_SND_TAG_TYPE_RATE_LIMIT) 767 return (ENOTSUP); 768 769 rc = t4_reserve_cl_rl_kbps(sc, pi->port_id, 770 (params->rate_limit.max_rate * 8ULL / 1000), &schedcl); 771 if (rc != 0) 772 return (rc); 773 MPASS(schedcl >= 0 && schedcl < sc->chip_params->nsched_cls); 774 775 cst = malloc(sizeof(*cst), M_CXGBE, M_ZERO | M_NOWAIT); 776 if (cst == NULL) { 777 failed: 778 t4_release_cl_rl(sc, pi->port_id, schedcl); 779 return (ENOMEM); 780 } 781 782 cst->etid = alloc_etid(sc, cst); 783 if (cst->etid < 0) { 784 free(cst, M_CXGBE); 785 goto failed; 786 } 787 788 mtx_init(&cst->lock, "cst_lock", NULL, MTX_DEF); 789 mbufq_init(&cst->pending_tx, INT_MAX); 790 mbufq_init(&cst->pending_fwack, INT_MAX); 791 cst->com.ifp = ifp; 792 cst->flags |= EO_FLOWC_PENDING | EO_SND_TAG_REF; 793 cst->adapter = sc; 794 cst->port_id = pi->port_id; 795 cst->schedcl = schedcl; 796 cst->max_rate = params->rate_limit.max_rate; 797 cst->tx_credits = sc->params.eo_wr_cred; 798 cst->tx_total = cst->tx_credits; 799 cst->plen = 0; 800 cst->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | 801 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(G_FW_VIID_PFN(vi->viid)) | 802 V_TXPKT_VF(G_FW_VIID_VIN(vi->viid)) | 803 V_TXPKT_VF_VLD(G_FW_VIID_VIVLD(vi->viid))); 804 805 /* 806 * Queues will be selected later when the connection flowid is available. 807 */ 808 809 *pt = &cst->com; 810 return (0); 811 } 812 813 /* 814 * Change in parameters, no change in ifp. 815 */ 816 int 817 cxgbe_snd_tag_modify(struct m_snd_tag *mst, 818 union if_snd_tag_modify_params *params) 819 { 820 int rc, schedcl; 821 struct cxgbe_snd_tag *cst = mst_to_cst(mst); 822 struct adapter *sc = cst->adapter; 823 824 /* XXX: is schedcl -1 ok here? */ 825 MPASS(cst->schedcl >= 0 && cst->schedcl < sc->chip_params->nsched_cls); 826 827 mtx_lock(&cst->lock); 828 MPASS(cst->flags & EO_SND_TAG_REF); 829 rc = t4_reserve_cl_rl_kbps(sc, cst->port_id, 830 (params->rate_limit.max_rate * 8ULL / 1000), &schedcl); 831 if (rc != 0) 832 return (rc); 833 MPASS(schedcl >= 0 && schedcl < sc->chip_params->nsched_cls); 834 t4_release_cl_rl(sc, cst->port_id, cst->schedcl); 835 cst->schedcl = schedcl; 836 cst->max_rate = params->rate_limit.max_rate; 837 mtx_unlock(&cst->lock); 838 839 return (0); 840 } 841 842 int 843 cxgbe_snd_tag_query(struct m_snd_tag *mst, 844 union if_snd_tag_query_params *params) 845 { 846 struct cxgbe_snd_tag *cst = mst_to_cst(mst); 847 848 params->rate_limit.max_rate = cst->max_rate; 849 850 #define CST_TO_MST_QLEVEL_SCALE (IF_SND_QUEUE_LEVEL_MAX / cst->tx_total) 851 params->rate_limit.queue_level = 852 (cst->tx_total - cst->tx_credits) * CST_TO_MST_QLEVEL_SCALE; 853 854 return (0); 855 } 856 857 /* 858 * Unlocks cst and frees it. 859 */ 860 void 861 cxgbe_snd_tag_free_locked(struct cxgbe_snd_tag *cst) 862 { 863 struct adapter *sc = cst->adapter; 864 865 mtx_assert(&cst->lock, MA_OWNED); 866 MPASS((cst->flags & EO_SND_TAG_REF) == 0); 867 MPASS(cst->tx_credits == cst->tx_total); 868 MPASS(cst->plen == 0); 869 MPASS(mbufq_first(&cst->pending_tx) == NULL); 870 MPASS(mbufq_first(&cst->pending_fwack) == NULL); 871 872 if (cst->etid >= 0) 873 free_etid(sc, cst->etid); 874 if (cst->schedcl != -1) 875 t4_release_cl_rl(sc, cst->port_id, cst->schedcl); 876 mtx_unlock(&cst->lock); 877 mtx_destroy(&cst->lock); 878 free(cst, M_CXGBE); 879 } 880 881 void 882 cxgbe_snd_tag_free(struct m_snd_tag *mst) 883 { 884 struct cxgbe_snd_tag *cst = mst_to_cst(mst); 885 886 mtx_lock(&cst->lock); 887 888 /* The kernel is done with the snd_tag. Remove its reference. */ 889 MPASS(cst->flags & EO_SND_TAG_REF); 890 cst->flags &= ~EO_SND_TAG_REF; 891 892 if (cst->ncompl == 0) { 893 /* 894 * No fw4_ack in flight. Free the tag right away if there are 895 * no outstanding credits. Request the firmware to return all 896 * credits for the etid otherwise. 897 */ 898 if (cst->tx_credits == cst->tx_total) { 899 cxgbe_snd_tag_free_locked(cst); 900 return; /* cst is gone. */ 901 } 902 send_etid_flush_wr(cst); 903 } 904 mtx_unlock(&cst->lock); 905 } 906 #endif 907