1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_ddb.h" 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_kern_tls.h" 35 #include "opt_ratelimit.h" 36 #include "opt_rss.h" 37 38 #include <sys/param.h> 39 #include <sys/conf.h> 40 #include <sys/priv.h> 41 #include <sys/kernel.h> 42 #include <sys/bus.h> 43 #include <sys/eventhandler.h> 44 #include <sys/module.h> 45 #include <sys/malloc.h> 46 #include <sys/queue.h> 47 #include <sys/taskqueue.h> 48 #include <dev/pci/pcireg.h> 49 #include <dev/pci/pcivar.h> 50 #include <sys/firmware.h> 51 #include <sys/sbuf.h> 52 #include <sys/smp.h> 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/sysctl.h> 56 #include <net/ethernet.h> 57 #include <net/if.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/if_vlan_var.h> 61 #ifdef RSS 62 #include <net/rss_config.h> 63 #endif 64 #include <netinet/in.h> 65 #include <netinet/ip.h> 66 #ifdef KERN_TLS 67 #include <netinet/tcp_seq.h> 68 #endif 69 #if defined(__i386__) || defined(__amd64__) 70 #include <machine/md_var.h> 71 #include <machine/cputypes.h> 72 #include <vm/vm.h> 73 #include <vm/pmap.h> 74 #endif 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #include <ddb/db_lex.h> 78 #endif 79 80 #include "common/common.h" 81 #include "common/t4_msg.h" 82 #include "common/t4_regs.h" 83 #include "common/t4_regs_values.h" 84 #include "cudbg/cudbg.h" 85 #include "t4_clip.h" 86 #include "t4_ioctl.h" 87 #include "t4_l2t.h" 88 #include "t4_mp_ring.h" 89 #include "t4_if.h" 90 #include "t4_smt.h" 91 92 /* T4 bus driver interface */ 93 static int t4_probe(device_t); 94 static int t4_attach(device_t); 95 static int t4_detach(device_t); 96 static int t4_child_location(device_t, device_t, struct sbuf *); 97 static int t4_ready(device_t); 98 static int t4_read_port_device(device_t, int, device_t *); 99 static int t4_suspend(device_t); 100 static int t4_resume(device_t); 101 static int t4_reset_prepare(device_t, device_t); 102 static int t4_reset_post(device_t, device_t); 103 static device_method_t t4_methods[] = { 104 DEVMETHOD(device_probe, t4_probe), 105 DEVMETHOD(device_attach, t4_attach), 106 DEVMETHOD(device_detach, t4_detach), 107 DEVMETHOD(device_suspend, t4_suspend), 108 DEVMETHOD(device_resume, t4_resume), 109 110 DEVMETHOD(bus_child_location, t4_child_location), 111 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 112 DEVMETHOD(bus_reset_post, t4_reset_post), 113 114 DEVMETHOD(t4_is_main_ready, t4_ready), 115 DEVMETHOD(t4_read_port_device, t4_read_port_device), 116 117 DEVMETHOD_END 118 }; 119 static driver_t t4_driver = { 120 "t4nex", 121 t4_methods, 122 sizeof(struct adapter) 123 }; 124 125 126 /* T4 port (cxgbe) interface */ 127 static int cxgbe_probe(device_t); 128 static int cxgbe_attach(device_t); 129 static int cxgbe_detach(device_t); 130 device_method_t cxgbe_methods[] = { 131 DEVMETHOD(device_probe, cxgbe_probe), 132 DEVMETHOD(device_attach, cxgbe_attach), 133 DEVMETHOD(device_detach, cxgbe_detach), 134 { 0, 0 } 135 }; 136 static driver_t cxgbe_driver = { 137 "cxgbe", 138 cxgbe_methods, 139 sizeof(struct port_info) 140 }; 141 142 /* T4 VI (vcxgbe) interface */ 143 static int vcxgbe_probe(device_t); 144 static int vcxgbe_attach(device_t); 145 static int vcxgbe_detach(device_t); 146 static device_method_t vcxgbe_methods[] = { 147 DEVMETHOD(device_probe, vcxgbe_probe), 148 DEVMETHOD(device_attach, vcxgbe_attach), 149 DEVMETHOD(device_detach, vcxgbe_detach), 150 { 0, 0 } 151 }; 152 static driver_t vcxgbe_driver = { 153 "vcxgbe", 154 vcxgbe_methods, 155 sizeof(struct vi_info) 156 }; 157 158 static d_ioctl_t t4_ioctl; 159 160 static struct cdevsw t4_cdevsw = { 161 .d_version = D_VERSION, 162 .d_ioctl = t4_ioctl, 163 .d_name = "t4nex", 164 }; 165 166 /* T5 bus driver interface */ 167 static int t5_probe(device_t); 168 static device_method_t t5_methods[] = { 169 DEVMETHOD(device_probe, t5_probe), 170 DEVMETHOD(device_attach, t4_attach), 171 DEVMETHOD(device_detach, t4_detach), 172 DEVMETHOD(device_suspend, t4_suspend), 173 DEVMETHOD(device_resume, t4_resume), 174 175 DEVMETHOD(bus_child_location, t4_child_location), 176 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 177 DEVMETHOD(bus_reset_post, t4_reset_post), 178 179 DEVMETHOD(t4_is_main_ready, t4_ready), 180 DEVMETHOD(t4_read_port_device, t4_read_port_device), 181 182 DEVMETHOD_END 183 }; 184 static driver_t t5_driver = { 185 "t5nex", 186 t5_methods, 187 sizeof(struct adapter) 188 }; 189 190 191 /* T5 port (cxl) interface */ 192 static driver_t cxl_driver = { 193 "cxl", 194 cxgbe_methods, 195 sizeof(struct port_info) 196 }; 197 198 /* T5 VI (vcxl) interface */ 199 static driver_t vcxl_driver = { 200 "vcxl", 201 vcxgbe_methods, 202 sizeof(struct vi_info) 203 }; 204 205 /* T6 bus driver interface */ 206 static int t6_probe(device_t); 207 static device_method_t t6_methods[] = { 208 DEVMETHOD(device_probe, t6_probe), 209 DEVMETHOD(device_attach, t4_attach), 210 DEVMETHOD(device_detach, t4_detach), 211 DEVMETHOD(device_suspend, t4_suspend), 212 DEVMETHOD(device_resume, t4_resume), 213 214 DEVMETHOD(bus_child_location, t4_child_location), 215 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 216 DEVMETHOD(bus_reset_post, t4_reset_post), 217 218 DEVMETHOD(t4_is_main_ready, t4_ready), 219 DEVMETHOD(t4_read_port_device, t4_read_port_device), 220 221 DEVMETHOD_END 222 }; 223 static driver_t t6_driver = { 224 "t6nex", 225 t6_methods, 226 sizeof(struct adapter) 227 }; 228 229 230 /* T6 port (cc) interface */ 231 static driver_t cc_driver = { 232 "cc", 233 cxgbe_methods, 234 sizeof(struct port_info) 235 }; 236 237 /* T6 VI (vcc) interface */ 238 static driver_t vcc_driver = { 239 "vcc", 240 vcxgbe_methods, 241 sizeof(struct vi_info) 242 }; 243 244 /* ifnet interface */ 245 static void cxgbe_init(void *); 246 static int cxgbe_ioctl(if_t, unsigned long, caddr_t); 247 static int cxgbe_transmit(if_t, struct mbuf *); 248 static void cxgbe_qflush(if_t); 249 #if defined(KERN_TLS) || defined(RATELIMIT) 250 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *, 251 struct m_snd_tag **); 252 #endif 253 254 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 255 256 /* 257 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 258 * then ADAPTER_LOCK, then t4_uld_list_lock. 259 */ 260 static struct sx t4_list_lock; 261 SLIST_HEAD(, adapter) t4_list; 262 #ifdef TCP_OFFLOAD 263 static struct sx t4_uld_list_lock; 264 struct uld_info *t4_uld_list[ULD_MAX + 1]; 265 #endif 266 267 /* 268 * Tunables. See tweak_tunables() too. 269 * 270 * Each tunable is set to a default value here if it's known at compile-time. 271 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 272 * provide a reasonable default (upto n) when the driver is loaded. 273 * 274 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 275 * T5 are under hw.cxl. 276 */ 277 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 278 "cxgbe(4) parameters"); 279 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 280 "cxgbe(4) T5+ parameters"); 281 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) TOE parameters"); 283 284 /* 285 * Number of queues for tx and rx, NIC and offload. 286 */ 287 #define NTXQ 16 288 int t4_ntxq = -NTXQ; 289 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 290 "Number of TX queues per port"); 291 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 292 293 #define NRXQ 8 294 int t4_nrxq = -NRXQ; 295 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 296 "Number of RX queues per port"); 297 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 298 299 #define NTXQ_VI 1 300 static int t4_ntxq_vi = -NTXQ_VI; 301 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 302 "Number of TX queues per VI"); 303 304 #define NRXQ_VI 1 305 static int t4_nrxq_vi = -NRXQ_VI; 306 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 307 "Number of RX queues per VI"); 308 309 static int t4_rsrv_noflowq = 0; 310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 311 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 312 313 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 314 #define NOFLDTXQ 8 315 static int t4_nofldtxq = -NOFLDTXQ; 316 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 317 "Number of offload TX queues per port"); 318 319 #define NOFLDTXQ_VI 1 320 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 321 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 322 "Number of offload TX queues per VI"); 323 #endif 324 325 #if defined(TCP_OFFLOAD) 326 #define NOFLDRXQ 2 327 static int t4_nofldrxq = -NOFLDRXQ; 328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 329 "Number of offload RX queues per port"); 330 331 #define NOFLDRXQ_VI 1 332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 334 "Number of offload RX queues per VI"); 335 336 #define TMR_IDX_OFLD 1 337 static int t4_tmr_idx_ofld = TMR_IDX_OFLD; 338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 339 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 340 341 #define PKTC_IDX_OFLD (-1) 342 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 344 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 345 346 /* 0 means chip/fw default, non-zero number is value in microseconds */ 347 static u_long t4_toe_keepalive_idle = 0; 348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 349 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 350 351 /* 0 means chip/fw default, non-zero number is value in microseconds */ 352 static u_long t4_toe_keepalive_interval = 0; 353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 354 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 355 356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 357 static int t4_toe_keepalive_count = 0; 358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 359 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 360 361 /* 0 means chip/fw default, non-zero number is value in microseconds */ 362 static u_long t4_toe_rexmt_min = 0; 363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 364 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 365 366 /* 0 means chip/fw default, non-zero number is value in microseconds */ 367 static u_long t4_toe_rexmt_max = 0; 368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 369 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 370 371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 372 static int t4_toe_rexmt_count = 0; 373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 374 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 375 376 /* -1 means chip/fw default, other values are raw backoff values to use */ 377 static int t4_toe_rexmt_backoff[16] = { 378 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 379 }; 380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 381 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 382 "cxgbe(4) TOE retransmit backoff values"); 383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 384 &t4_toe_rexmt_backoff[0], 0, ""); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[1], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[2], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[3], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[4], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[5], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[6], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[7], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[8], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[9], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[10], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[11], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[12], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[13], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[14], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[15], 0, ""); 415 416 int t4_ddp_rcvbuf_len = 256 * 1024; 417 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN, 418 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer"); 419 420 unsigned int t4_ddp_rcvbuf_cache = 4; 421 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN, 422 &t4_ddp_rcvbuf_cache, 0, 423 "maximum number of free DDP RX buffers to cache per connection"); 424 #endif 425 426 #ifdef DEV_NETMAP 427 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 428 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 429 static int t4_native_netmap = NN_EXTRA_VI; 430 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 431 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 432 433 #define NNMTXQ 8 434 static int t4_nnmtxq = -NNMTXQ; 435 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 436 "Number of netmap TX queues"); 437 438 #define NNMRXQ 8 439 static int t4_nnmrxq = -NNMRXQ; 440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 441 "Number of netmap RX queues"); 442 443 #define NNMTXQ_VI 2 444 static int t4_nnmtxq_vi = -NNMTXQ_VI; 445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 446 "Number of netmap TX queues per VI"); 447 448 #define NNMRXQ_VI 2 449 static int t4_nnmrxq_vi = -NNMRXQ_VI; 450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 451 "Number of netmap RX queues per VI"); 452 #endif 453 454 /* 455 * Holdoff parameters for ports. 456 */ 457 #define TMR_IDX 1 458 int t4_tmr_idx = TMR_IDX; 459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 460 0, "Holdoff timer index"); 461 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 462 463 #define PKTC_IDX (-1) 464 int t4_pktc_idx = PKTC_IDX; 465 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 466 0, "Holdoff packet counter index"); 467 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 468 469 /* 470 * Size (# of entries) of each tx and rx queue. 471 */ 472 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 474 "Number of descriptors in each TX queue"); 475 476 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 477 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 478 "Number of descriptors in each RX queue"); 479 480 /* 481 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 482 */ 483 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 484 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 485 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 486 487 /* 488 * Configuration file. All the _CF names here are special. 489 */ 490 #define DEFAULT_CF "default" 491 #define BUILTIN_CF "built-in" 492 #define FLASH_CF "flash" 493 #define UWIRE_CF "uwire" 494 #define FPGA_CF "fpga" 495 static char t4_cfg_file[32] = DEFAULT_CF; 496 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 497 sizeof(t4_cfg_file), "Firmware configuration file"); 498 499 /* 500 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 501 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 502 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 503 * mark or when signalled to do so, 0 to never emit PAUSE. 504 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 505 * negotiated settings will override rx_pause/tx_pause. 506 * Otherwise rx_pause/tx_pause are applied forcibly. 507 */ 508 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 510 &t4_pause_settings, 0, 511 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 512 513 /* 514 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 515 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 516 * 0 to disable FEC. 517 */ 518 static int t4_fec = -1; 519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 520 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 521 522 /* 523 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 524 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 525 * driver runs as if this is set to 0. 526 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 527 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 528 * transceiver. Multiple FEC bits may not be okay but will be passed on to 529 * the firmware anyway (may result in l1cfg errors with old firmwares). 530 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 531 * means set all FEC bits that are valid for the speed. 532 */ 533 static int t4_force_fec = -1; 534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 535 "Controls the use of FORCE_FEC bit in L1 configuration."); 536 537 /* 538 * Link autonegotiation. 539 * -1 to run with the firmware default. 540 * 0 to disable. 541 * 1 to enable. 542 */ 543 static int t4_autoneg = -1; 544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 545 "Link autonegotiation"); 546 547 /* 548 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 549 * encouraged respectively). '-n' is the same as 'n' except the firmware 550 * version used in the checks is read from the firmware bundled with the driver. 551 */ 552 static int t4_fw_install = 1; 553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 554 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 555 556 /* 557 * ASIC features that will be used. Disable the ones you don't want so that the 558 * chip resources aren't wasted on features that will not be used. 559 */ 560 static int t4_nbmcaps_allowed = 0; 561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 562 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 563 564 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 566 &t4_linkcaps_allowed, 0, "Default link capabilities"); 567 568 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 569 FW_CAPS_CONFIG_SWITCH_EGRESS; 570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 571 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 572 573 #ifdef RATELIMIT 574 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 575 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 576 #else 577 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 578 FW_CAPS_CONFIG_NIC_HASHFILTER; 579 #endif 580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 581 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 582 583 static int t4_toecaps_allowed = -1; 584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 585 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 586 587 static int t4_rdmacaps_allowed = -1; 588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 589 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 590 591 static int t4_cryptocaps_allowed = -1; 592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 593 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 594 595 static int t4_iscsicaps_allowed = -1; 596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 597 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 598 599 static int t4_fcoecaps_allowed = 0; 600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 601 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 602 603 static int t5_write_combine = 0; 604 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 605 0, "Use WC instead of UC for BAR2"); 606 607 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */ 608 static int t4_doorbells_allowed = 0xf; 609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN, 610 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells"); 611 612 static int t4_num_vis = 1; 613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 614 "Number of VIs per port"); 615 616 /* 617 * PCIe Relaxed Ordering. 618 * -1: driver should figure out a good value. 619 * 0: disable RO. 620 * 1: enable RO. 621 * 2: leave RO alone. 622 */ 623 static int pcie_relaxed_ordering = -1; 624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 625 &pcie_relaxed_ordering, 0, 626 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 627 628 static int t4_panic_on_fatal_err = 0; 629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 630 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 631 632 static int t4_reset_on_fatal_err = 0; 633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 634 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 635 636 static int t4_reset_method = 1; 637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_method, CTLFLAG_RWTUN, &t4_reset_method, 638 0, "reset method: 0 = PL_RST, 1 = PCIe secondary bus reset, 2 = PCIe link bounce"); 639 640 static int t4_clock_gate_on_suspend = 0; 641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 642 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 643 644 static int t4_tx_vm_wr = 0; 645 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 646 "Use VM work requests to transmit packets."); 647 648 /* 649 * Set to non-zero to enable the attack filter. A packet that matches any of 650 * these conditions will get dropped on ingress: 651 * 1) IP && source address == destination address. 652 * 2) TCP/IP && source address is not a unicast address. 653 * 3) TCP/IP && destination address is not a unicast address. 654 * 4) IP && source address is loopback (127.x.y.z). 655 * 5) IP && destination address is loopback (127.x.y.z). 656 * 6) IPv6 && source address == destination address. 657 * 7) IPv6 && source address is not a unicast address. 658 * 8) IPv6 && source address is loopback (::1/128). 659 * 9) IPv6 && destination address is loopback (::1/128). 660 * 10) IPv6 && source address is unspecified (::/128). 661 * 11) IPv6 && destination address is unspecified (::/128). 662 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 663 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 664 */ 665 static int t4_attack_filter = 0; 666 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 667 &t4_attack_filter, 0, "Drop suspicious traffic"); 668 669 static int t4_drop_ip_fragments = 0; 670 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 671 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 672 673 static int t4_drop_pkts_with_l2_errors = 1; 674 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 675 &t4_drop_pkts_with_l2_errors, 0, 676 "Drop all frames with Layer 2 length or checksum errors"); 677 678 static int t4_drop_pkts_with_l3_errors = 0; 679 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 680 &t4_drop_pkts_with_l3_errors, 0, 681 "Drop all frames with IP version, length, or checksum errors"); 682 683 static int t4_drop_pkts_with_l4_errors = 0; 684 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 685 &t4_drop_pkts_with_l4_errors, 0, 686 "Drop all frames with Layer 4 length, checksum, or other errors"); 687 688 #ifdef TCP_OFFLOAD 689 /* 690 * TOE tunables. 691 */ 692 static int t4_cop_managed_offloading = 0; 693 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 694 &t4_cop_managed_offloading, 0, 695 "COP (Connection Offload Policy) controls all TOE offload"); 696 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading); 697 #endif 698 699 #ifdef KERN_TLS 700 /* 701 * This enables KERN_TLS for all adapters if set. 702 */ 703 static int t4_kern_tls = 0; 704 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 705 "Enable KERN_TLS mode for T6 adapters"); 706 707 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 708 "cxgbe(4) KERN_TLS parameters"); 709 710 static int t4_tls_inline_keys = 0; 711 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 712 &t4_tls_inline_keys, 0, 713 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 714 "in card memory."); 715 716 static int t4_tls_combo_wrs = 0; 717 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 718 0, "Attempt to combine TCB field updates with TLS record work requests."); 719 #endif 720 721 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 722 static int vi_mac_funcs[] = { 723 FW_VI_FUNC_ETH, 724 FW_VI_FUNC_OFLD, 725 FW_VI_FUNC_IWARP, 726 FW_VI_FUNC_OPENISCSI, 727 FW_VI_FUNC_OPENFCOE, 728 FW_VI_FUNC_FOISCSI, 729 FW_VI_FUNC_FOFCOE, 730 }; 731 732 struct intrs_and_queues { 733 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 734 uint16_t num_vis; /* number of VIs for each port */ 735 uint16_t nirq; /* Total # of vectors */ 736 uint16_t ntxq; /* # of NIC txq's for each port */ 737 uint16_t nrxq; /* # of NIC rxq's for each port */ 738 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 739 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 740 uint16_t nnmtxq; /* # of netmap txq's */ 741 uint16_t nnmrxq; /* # of netmap rxq's */ 742 743 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 744 uint16_t ntxq_vi; /* # of NIC txq's */ 745 uint16_t nrxq_vi; /* # of NIC rxq's */ 746 uint16_t nofldtxq_vi; /* # of TOE txq's */ 747 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 748 uint16_t nnmtxq_vi; /* # of netmap txq's */ 749 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 750 }; 751 752 static void setup_memwin(struct adapter *); 753 static void position_memwin(struct adapter *, int, uint32_t); 754 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 755 static int fwmtype_to_hwmtype(int); 756 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 757 uint32_t *); 758 static int fixup_devlog_params(struct adapter *); 759 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 760 static int contact_firmware(struct adapter *); 761 static int partition_resources(struct adapter *); 762 static int get_params__pre_init(struct adapter *); 763 static int set_params__pre_init(struct adapter *); 764 static int get_params__post_init(struct adapter *); 765 static int set_params__post_init(struct adapter *); 766 static void t4_set_desc(struct adapter *); 767 static bool fixed_ifmedia(struct port_info *); 768 static void build_medialist(struct port_info *); 769 static void init_link_config(struct port_info *); 770 static int fixup_link_config(struct port_info *); 771 static int apply_link_config(struct port_info *); 772 static int cxgbe_init_synchronized(struct vi_info *); 773 static int cxgbe_uninit_synchronized(struct vi_info *); 774 static int adapter_full_init(struct adapter *); 775 static void adapter_full_uninit(struct adapter *); 776 static int vi_full_init(struct vi_info *); 777 static void vi_full_uninit(struct vi_info *); 778 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 779 static void quiesce_txq(struct sge_txq *); 780 static void quiesce_wrq(struct sge_wrq *); 781 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 782 static void quiesce_vi(struct vi_info *); 783 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 784 driver_intr_t *, void *, char *); 785 static int t4_free_irq(struct adapter *, struct irq *); 786 static void t4_init_atid_table(struct adapter *); 787 static void t4_free_atid_table(struct adapter *); 788 static void stop_atid_allocator(struct adapter *); 789 static void restart_atid_allocator(struct adapter *); 790 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 791 static void vi_refresh_stats(struct vi_info *); 792 static void cxgbe_refresh_stats(struct vi_info *); 793 static void cxgbe_tick(void *); 794 static void vi_tick(void *); 795 static void cxgbe_sysctls(struct port_info *); 796 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 797 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 798 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 799 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 800 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 801 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 802 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 803 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 804 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 805 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 806 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 807 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 808 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 809 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 810 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 811 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 812 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 813 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 814 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 815 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 816 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 817 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 818 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 819 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 820 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 821 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 822 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 823 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 824 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 825 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 826 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 827 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 828 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 829 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 830 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 831 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 832 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 833 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 834 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 835 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 836 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 837 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 838 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 839 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 840 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 841 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 842 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 843 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 844 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 845 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 846 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 847 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 848 #ifdef TCP_OFFLOAD 849 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 850 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 851 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 852 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 853 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 854 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 855 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 856 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 857 #endif 858 static int get_sge_context(struct adapter *, struct t4_sge_context *); 859 static int load_fw(struct adapter *, struct t4_data *); 860 static int load_cfg(struct adapter *, struct t4_data *); 861 static int load_boot(struct adapter *, struct t4_bootrom *); 862 static int load_bootcfg(struct adapter *, struct t4_data *); 863 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 864 static void free_offload_policy(struct t4_offload_policy *); 865 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 866 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 867 static int read_i2c(struct adapter *, struct t4_i2c_data *); 868 static int clear_stats(struct adapter *, u_int); 869 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 870 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 871 static inline int stop_adapter(struct adapter *); 872 static inline void set_adapter_hwstatus(struct adapter *, const bool); 873 static int stop_lld(struct adapter *); 874 static inline int restart_adapter(struct adapter *); 875 static int restart_lld(struct adapter *); 876 #ifdef TCP_OFFLOAD 877 static int deactivate_all_uld(struct adapter *); 878 static void stop_all_uld(struct adapter *); 879 static void restart_all_uld(struct adapter *); 880 #endif 881 #ifdef KERN_TLS 882 static int ktls_capability(struct adapter *, bool); 883 #endif 884 static int mod_event(module_t, int, void *); 885 static int notify_siblings(device_t, int); 886 static uint64_t vi_get_counter(if_t, ift_counter); 887 static uint64_t cxgbe_get_counter(if_t, ift_counter); 888 static void enable_vxlan_rx(struct adapter *); 889 static void reset_adapter_task(void *, int); 890 static void fatal_error_task(void *, int); 891 static void dump_devlog(struct adapter *); 892 static void dump_cim_regs(struct adapter *); 893 static void dump_cimla(struct adapter *); 894 895 struct { 896 uint16_t device; 897 char *desc; 898 } t4_pciids[] = { 899 {0xa000, "Chelsio Terminator 4 FPGA"}, 900 {0x4400, "Chelsio T440-dbg"}, 901 {0x4401, "Chelsio T420-CR"}, 902 {0x4402, "Chelsio T422-CR"}, 903 {0x4403, "Chelsio T440-CR"}, 904 {0x4404, "Chelsio T420-BCH"}, 905 {0x4405, "Chelsio T440-BCH"}, 906 {0x4406, "Chelsio T440-CH"}, 907 {0x4407, "Chelsio T420-SO"}, 908 {0x4408, "Chelsio T420-CX"}, 909 {0x4409, "Chelsio T420-BT"}, 910 {0x440a, "Chelsio T404-BT"}, 911 {0x440e, "Chelsio T440-LP-CR"}, 912 }, t5_pciids[] = { 913 {0xb000, "Chelsio Terminator 5 FPGA"}, 914 {0x5400, "Chelsio T580-dbg"}, 915 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 916 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 917 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 918 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 919 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 920 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 921 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 922 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 923 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 924 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 925 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 926 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 927 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 928 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 929 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 930 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 931 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 932 933 /* Custom */ 934 {0x5483, "Custom T540-CR"}, 935 {0x5484, "Custom T540-BT"}, 936 }, t6_pciids[] = { 937 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 938 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 939 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 940 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 941 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 942 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 943 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */ 944 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */ 945 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 946 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 947 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 948 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 949 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 950 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 951 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */ 952 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 953 954 /* Custom */ 955 {0x6480, "Custom T6225-CR"}, 956 {0x6481, "Custom T62100-CR"}, 957 {0x6482, "Custom T6225-CR"}, 958 {0x6483, "Custom T62100-CR"}, 959 {0x6484, "Custom T64100-CR"}, 960 {0x6485, "Custom T6240-SO"}, 961 {0x6486, "Custom T6225-SO-CR"}, 962 {0x6487, "Custom T6225-CR"}, 963 }; 964 965 #ifdef TCP_OFFLOAD 966 /* 967 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 968 * be exactly the same for both rxq and ofld_rxq. 969 */ 970 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 971 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 972 #endif 973 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 974 975 static int 976 t4_probe(device_t dev) 977 { 978 int i; 979 uint16_t v = pci_get_vendor(dev); 980 uint16_t d = pci_get_device(dev); 981 uint8_t f = pci_get_function(dev); 982 983 if (v != PCI_VENDOR_ID_CHELSIO) 984 return (ENXIO); 985 986 /* Attach only to PF0 of the FPGA */ 987 if (d == 0xa000 && f != 0) 988 return (ENXIO); 989 990 for (i = 0; i < nitems(t4_pciids); i++) { 991 if (d == t4_pciids[i].device) { 992 device_set_desc(dev, t4_pciids[i].desc); 993 return (BUS_PROBE_DEFAULT); 994 } 995 } 996 997 return (ENXIO); 998 } 999 1000 static int 1001 t5_probe(device_t dev) 1002 { 1003 int i; 1004 uint16_t v = pci_get_vendor(dev); 1005 uint16_t d = pci_get_device(dev); 1006 uint8_t f = pci_get_function(dev); 1007 1008 if (v != PCI_VENDOR_ID_CHELSIO) 1009 return (ENXIO); 1010 1011 /* Attach only to PF0 of the FPGA */ 1012 if (d == 0xb000 && f != 0) 1013 return (ENXIO); 1014 1015 for (i = 0; i < nitems(t5_pciids); i++) { 1016 if (d == t5_pciids[i].device) { 1017 device_set_desc(dev, t5_pciids[i].desc); 1018 return (BUS_PROBE_DEFAULT); 1019 } 1020 } 1021 1022 return (ENXIO); 1023 } 1024 1025 static int 1026 t6_probe(device_t dev) 1027 { 1028 int i; 1029 uint16_t v = pci_get_vendor(dev); 1030 uint16_t d = pci_get_device(dev); 1031 1032 if (v != PCI_VENDOR_ID_CHELSIO) 1033 return (ENXIO); 1034 1035 for (i = 0; i < nitems(t6_pciids); i++) { 1036 if (d == t6_pciids[i].device) { 1037 device_set_desc(dev, t6_pciids[i].desc); 1038 return (BUS_PROBE_DEFAULT); 1039 } 1040 } 1041 1042 return (ENXIO); 1043 } 1044 1045 static void 1046 t5_attribute_workaround(device_t dev) 1047 { 1048 device_t root_port; 1049 uint32_t v; 1050 1051 /* 1052 * The T5 chips do not properly echo the No Snoop and Relaxed 1053 * Ordering attributes when replying to a TLP from a Root 1054 * Port. As a workaround, find the parent Root Port and 1055 * disable No Snoop and Relaxed Ordering. Note that this 1056 * affects all devices under this root port. 1057 */ 1058 root_port = pci_find_pcie_root_port(dev); 1059 if (root_port == NULL) { 1060 device_printf(dev, "Unable to find parent root port\n"); 1061 return; 1062 } 1063 1064 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1065 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1066 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1067 0) 1068 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1069 device_get_nameunit(root_port)); 1070 } 1071 1072 static const struct devnames devnames[] = { 1073 { 1074 .nexus_name = "t4nex", 1075 .ifnet_name = "cxgbe", 1076 .vi_ifnet_name = "vcxgbe", 1077 .pf03_drv_name = "t4iov", 1078 .vf_nexus_name = "t4vf", 1079 .vf_ifnet_name = "cxgbev" 1080 }, { 1081 .nexus_name = "t5nex", 1082 .ifnet_name = "cxl", 1083 .vi_ifnet_name = "vcxl", 1084 .pf03_drv_name = "t5iov", 1085 .vf_nexus_name = "t5vf", 1086 .vf_ifnet_name = "cxlv" 1087 }, { 1088 .nexus_name = "t6nex", 1089 .ifnet_name = "cc", 1090 .vi_ifnet_name = "vcc", 1091 .pf03_drv_name = "t6iov", 1092 .vf_nexus_name = "t6vf", 1093 .vf_ifnet_name = "ccv" 1094 } 1095 }; 1096 1097 void 1098 t4_init_devnames(struct adapter *sc) 1099 { 1100 int id; 1101 1102 id = chip_id(sc); 1103 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1104 sc->names = &devnames[id - CHELSIO_T4]; 1105 else { 1106 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1107 sc->names = NULL; 1108 } 1109 } 1110 1111 static int 1112 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1113 { 1114 const char *parent, *name; 1115 long value; 1116 int line, unit; 1117 1118 line = 0; 1119 parent = device_get_nameunit(sc->dev); 1120 name = sc->names->ifnet_name; 1121 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1122 if (resource_long_value(name, unit, "port", &value) == 0 && 1123 value == pi->port_id) 1124 return (unit); 1125 } 1126 return (-1); 1127 } 1128 1129 static void 1130 t4_calibration(void *arg) 1131 { 1132 struct adapter *sc; 1133 struct clock_sync *cur, *nex; 1134 uint64_t hw; 1135 sbintime_t sbt; 1136 int next_up; 1137 1138 sc = (struct adapter *)arg; 1139 1140 KASSERT(hw_all_ok(sc), ("!hw_all_ok at t4_calibration")); 1141 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1142 sbt = sbinuptime(); 1143 1144 cur = &sc->cal_info[sc->cal_current]; 1145 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1146 nex = &sc->cal_info[next_up]; 1147 if (__predict_false(sc->cal_count == 0)) { 1148 /* First time in, just get the values in */ 1149 cur->hw_cur = hw; 1150 cur->sbt_cur = sbt; 1151 sc->cal_count++; 1152 goto done; 1153 } 1154 1155 if (cur->hw_cur == hw) { 1156 /* The clock is not advancing? */ 1157 sc->cal_count = 0; 1158 atomic_store_rel_int(&cur->gen, 0); 1159 goto done; 1160 } 1161 1162 seqc_write_begin(&nex->gen); 1163 nex->hw_prev = cur->hw_cur; 1164 nex->sbt_prev = cur->sbt_cur; 1165 nex->hw_cur = hw; 1166 nex->sbt_cur = sbt; 1167 seqc_write_end(&nex->gen); 1168 sc->cal_current = next_up; 1169 done: 1170 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration, 1171 sc, C_DIRECT_EXEC); 1172 } 1173 1174 static void 1175 t4_calibration_start(struct adapter *sc) 1176 { 1177 /* 1178 * Here if we have not done a calibration 1179 * then do so otherwise start the appropriate 1180 * timer. 1181 */ 1182 int i; 1183 1184 for (i = 0; i < CNT_CAL_INFO; i++) { 1185 sc->cal_info[i].gen = 0; 1186 } 1187 sc->cal_current = 0; 1188 sc->cal_count = 0; 1189 sc->cal_gen = 0; 1190 t4_calibration(sc); 1191 } 1192 1193 static int 1194 t4_attach(device_t dev) 1195 { 1196 struct adapter *sc; 1197 int rc = 0, i, j, rqidx, tqidx, nports; 1198 struct make_dev_args mda; 1199 struct intrs_and_queues iaq; 1200 struct sge *s; 1201 uint32_t *buf; 1202 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1203 int ofld_tqidx; 1204 #endif 1205 #ifdef TCP_OFFLOAD 1206 int ofld_rqidx; 1207 #endif 1208 #ifdef DEV_NETMAP 1209 int nm_rqidx, nm_tqidx; 1210 #endif 1211 int num_vis; 1212 1213 sc = device_get_softc(dev); 1214 sc->dev = dev; 1215 sysctl_ctx_init(&sc->ctx); 1216 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1217 1218 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1219 t5_attribute_workaround(dev); 1220 pci_enable_busmaster(dev); 1221 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1222 uint32_t v; 1223 1224 pci_set_max_read_req(dev, 4096); 1225 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1226 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1227 if (pcie_relaxed_ordering == 0 && 1228 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1229 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1230 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1231 } else if (pcie_relaxed_ordering == 1 && 1232 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1233 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1234 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1235 } 1236 } 1237 1238 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1239 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1240 sc->traceq = -1; 1241 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1242 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1243 device_get_nameunit(dev)); 1244 1245 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1246 device_get_nameunit(dev)); 1247 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1248 t4_add_adapter(sc); 1249 1250 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1251 TAILQ_INIT(&sc->sfl); 1252 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1253 1254 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1255 1256 sc->policy = NULL; 1257 rw_init(&sc->policy_lock, "connection offload policy"); 1258 1259 callout_init(&sc->ktls_tick, 1); 1260 1261 callout_init(&sc->cal_callout, 1); 1262 1263 refcount_init(&sc->vxlan_refcount, 0); 1264 1265 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1266 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1267 1268 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1269 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1270 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1271 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1272 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1273 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1274 1275 rc = t4_map_bars_0_and_4(sc); 1276 if (rc != 0) 1277 goto done; /* error message displayed already */ 1278 1279 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1280 1281 /* Prepare the adapter for operation. */ 1282 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1283 rc = -t4_prep_adapter(sc, buf); 1284 free(buf, M_CXGBE); 1285 if (rc != 0) { 1286 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1287 goto done; 1288 } 1289 1290 /* 1291 * This is the real PF# to which we're attaching. Works from within PCI 1292 * passthrough environments too, where pci_get_function() could return a 1293 * different PF# depending on the passthrough configuration. We need to 1294 * use the real PF# in all our communication with the firmware. 1295 */ 1296 j = t4_read_reg(sc, A_PL_WHOAMI); 1297 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1298 sc->mbox = sc->pf; 1299 1300 t4_init_devnames(sc); 1301 if (sc->names == NULL) { 1302 rc = ENOTSUP; 1303 goto done; /* error message displayed already */ 1304 } 1305 1306 /* 1307 * Do this really early, with the memory windows set up even before the 1308 * character device. The userland tool's register i/o and mem read 1309 * will work even in "recovery mode". 1310 */ 1311 setup_memwin(sc); 1312 if (t4_init_devlog_params(sc, 0) == 0) 1313 fixup_devlog_params(sc); 1314 make_dev_args_init(&mda); 1315 mda.mda_devsw = &t4_cdevsw; 1316 mda.mda_uid = UID_ROOT; 1317 mda.mda_gid = GID_WHEEL; 1318 mda.mda_mode = 0600; 1319 mda.mda_si_drv1 = sc; 1320 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1321 if (rc != 0) 1322 device_printf(dev, "failed to create nexus char device: %d.\n", 1323 rc); 1324 1325 /* Go no further if recovery mode has been requested. */ 1326 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1327 device_printf(dev, "recovery mode.\n"); 1328 goto done; 1329 } 1330 1331 #if defined(__i386__) 1332 if ((cpu_feature & CPUID_CX8) == 0) { 1333 device_printf(dev, "64 bit atomics not available.\n"); 1334 rc = ENOTSUP; 1335 goto done; 1336 } 1337 #endif 1338 1339 /* Contact the firmware and try to become the master driver. */ 1340 rc = contact_firmware(sc); 1341 if (rc != 0) 1342 goto done; /* error message displayed already */ 1343 MPASS(sc->flags & FW_OK); 1344 1345 rc = get_params__pre_init(sc); 1346 if (rc != 0) 1347 goto done; /* error message displayed already */ 1348 1349 if (sc->flags & MASTER_PF) { 1350 rc = partition_resources(sc); 1351 if (rc != 0) 1352 goto done; /* error message displayed already */ 1353 } 1354 1355 rc = get_params__post_init(sc); 1356 if (rc != 0) 1357 goto done; /* error message displayed already */ 1358 1359 rc = set_params__post_init(sc); 1360 if (rc != 0) 1361 goto done; /* error message displayed already */ 1362 1363 rc = t4_map_bar_2(sc); 1364 if (rc != 0) 1365 goto done; /* error message displayed already */ 1366 1367 rc = t4_adj_doorbells(sc); 1368 if (rc != 0) 1369 goto done; /* error message displayed already */ 1370 1371 rc = t4_create_dma_tag(sc); 1372 if (rc != 0) 1373 goto done; /* error message displayed already */ 1374 1375 /* 1376 * First pass over all the ports - allocate VIs and initialize some 1377 * basic parameters like mac address, port type, etc. 1378 */ 1379 for_each_port(sc, i) { 1380 struct port_info *pi; 1381 1382 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1383 sc->port[i] = pi; 1384 1385 /* These must be set before t4_port_init */ 1386 pi->adapter = sc; 1387 pi->port_id = i; 1388 /* 1389 * XXX: vi[0] is special so we can't delay this allocation until 1390 * pi->nvi's final value is known. 1391 */ 1392 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1393 M_ZERO | M_WAITOK); 1394 1395 /* 1396 * Allocate the "main" VI and initialize parameters 1397 * like mac addr. 1398 */ 1399 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1400 if (rc != 0) { 1401 device_printf(dev, "unable to initialize port %d: %d\n", 1402 i, rc); 1403 free(pi->vi, M_CXGBE); 1404 free(pi, M_CXGBE); 1405 sc->port[i] = NULL; 1406 goto done; 1407 } 1408 1409 if (is_bt(pi->port_type)) 1410 setbit(&sc->bt_map, pi->tx_chan); 1411 else 1412 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1413 1414 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1415 device_get_nameunit(dev), i); 1416 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1417 sc->chan_map[pi->tx_chan] = i; 1418 1419 /* 1420 * The MPS counter for FCS errors doesn't work correctly on the 1421 * T6 so we use the MAC counter here. Which MAC is in use 1422 * depends on the link settings which will be known when the 1423 * link comes up. 1424 */ 1425 if (is_t6(sc)) 1426 pi->fcs_reg = -1; 1427 else { 1428 pi->fcs_reg = t4_port_reg(sc, pi->tx_chan, 1429 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1430 } 1431 pi->fcs_base = 0; 1432 1433 /* All VIs on this port share this media. */ 1434 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1435 cxgbe_media_status); 1436 1437 PORT_LOCK(pi); 1438 init_link_config(pi); 1439 fixup_link_config(pi); 1440 build_medialist(pi); 1441 if (fixed_ifmedia(pi)) 1442 pi->flags |= FIXED_IFMEDIA; 1443 PORT_UNLOCK(pi); 1444 1445 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1446 t4_ifnet_unit(sc, pi)); 1447 if (pi->dev == NULL) { 1448 device_printf(dev, 1449 "failed to add device for port %d.\n", i); 1450 rc = ENXIO; 1451 goto done; 1452 } 1453 pi->vi[0].dev = pi->dev; 1454 device_set_softc(pi->dev, pi); 1455 } 1456 1457 /* 1458 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1459 */ 1460 nports = sc->params.nports; 1461 rc = cfg_itype_and_nqueues(sc, &iaq); 1462 if (rc != 0) 1463 goto done; /* error message displayed already */ 1464 1465 num_vis = iaq.num_vis; 1466 sc->intr_type = iaq.intr_type; 1467 sc->intr_count = iaq.nirq; 1468 1469 s = &sc->sge; 1470 s->nrxq = nports * iaq.nrxq; 1471 s->ntxq = nports * iaq.ntxq; 1472 if (num_vis > 1) { 1473 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1474 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1475 } 1476 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1477 s->neq += nports; /* ctrl queues: 1 per port */ 1478 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1479 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1480 if (is_offload(sc) || is_ethoffload(sc)) { 1481 s->nofldtxq = nports * iaq.nofldtxq; 1482 if (num_vis > 1) 1483 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1484 s->neq += s->nofldtxq; 1485 1486 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1487 M_CXGBE, M_ZERO | M_WAITOK); 1488 } 1489 #endif 1490 #ifdef TCP_OFFLOAD 1491 if (is_offload(sc)) { 1492 s->nofldrxq = nports * iaq.nofldrxq; 1493 if (num_vis > 1) 1494 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1495 s->neq += s->nofldrxq; /* free list */ 1496 s->niq += s->nofldrxq; 1497 1498 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1499 M_CXGBE, M_ZERO | M_WAITOK); 1500 } 1501 #endif 1502 #ifdef DEV_NETMAP 1503 s->nnmrxq = 0; 1504 s->nnmtxq = 0; 1505 if (t4_native_netmap & NN_MAIN_VI) { 1506 s->nnmrxq += nports * iaq.nnmrxq; 1507 s->nnmtxq += nports * iaq.nnmtxq; 1508 } 1509 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1510 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1511 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1512 } 1513 s->neq += s->nnmtxq + s->nnmrxq; 1514 s->niq += s->nnmrxq; 1515 1516 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1517 M_CXGBE, M_ZERO | M_WAITOK); 1518 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1519 M_CXGBE, M_ZERO | M_WAITOK); 1520 #endif 1521 MPASS(s->niq <= s->iqmap_sz); 1522 MPASS(s->neq <= s->eqmap_sz); 1523 1524 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1525 M_ZERO | M_WAITOK); 1526 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1527 M_ZERO | M_WAITOK); 1528 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1529 M_ZERO | M_WAITOK); 1530 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1531 M_ZERO | M_WAITOK); 1532 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1533 M_ZERO | M_WAITOK); 1534 1535 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1536 M_ZERO | M_WAITOK); 1537 1538 t4_init_l2t(sc, M_WAITOK); 1539 t4_init_smt(sc, M_WAITOK); 1540 t4_init_tx_sched(sc); 1541 t4_init_atid_table(sc); 1542 #ifdef RATELIMIT 1543 t4_init_etid_table(sc); 1544 #endif 1545 #ifdef INET6 1546 t4_init_clip_table(sc); 1547 #endif 1548 if (sc->vres.key.size != 0) 1549 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1550 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1551 1552 /* 1553 * Second pass over the ports. This time we know the number of rx and 1554 * tx queues that each port should get. 1555 */ 1556 rqidx = tqidx = 0; 1557 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1558 ofld_tqidx = 0; 1559 #endif 1560 #ifdef TCP_OFFLOAD 1561 ofld_rqidx = 0; 1562 #endif 1563 #ifdef DEV_NETMAP 1564 nm_rqidx = nm_tqidx = 0; 1565 #endif 1566 for_each_port(sc, i) { 1567 struct port_info *pi = sc->port[i]; 1568 struct vi_info *vi; 1569 1570 if (pi == NULL) 1571 continue; 1572 1573 pi->nvi = num_vis; 1574 for_each_vi(pi, j, vi) { 1575 vi->pi = pi; 1576 vi->adapter = sc; 1577 vi->first_intr = -1; 1578 vi->qsize_rxq = t4_qsize_rxq; 1579 vi->qsize_txq = t4_qsize_txq; 1580 1581 vi->first_rxq = rqidx; 1582 vi->first_txq = tqidx; 1583 vi->tmr_idx = t4_tmr_idx; 1584 vi->pktc_idx = t4_pktc_idx; 1585 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1586 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1587 1588 rqidx += vi->nrxq; 1589 tqidx += vi->ntxq; 1590 1591 if (j == 0 && vi->ntxq > 1) 1592 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1593 else 1594 vi->rsrv_noflowq = 0; 1595 1596 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1597 vi->first_ofld_txq = ofld_tqidx; 1598 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1599 ofld_tqidx += vi->nofldtxq; 1600 #endif 1601 #ifdef TCP_OFFLOAD 1602 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1603 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1604 vi->first_ofld_rxq = ofld_rqidx; 1605 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1606 1607 ofld_rqidx += vi->nofldrxq; 1608 #endif 1609 #ifdef DEV_NETMAP 1610 vi->first_nm_rxq = nm_rqidx; 1611 vi->first_nm_txq = nm_tqidx; 1612 if (j == 0) { 1613 vi->nnmrxq = iaq.nnmrxq; 1614 vi->nnmtxq = iaq.nnmtxq; 1615 } else { 1616 vi->nnmrxq = iaq.nnmrxq_vi; 1617 vi->nnmtxq = iaq.nnmtxq_vi; 1618 } 1619 nm_rqidx += vi->nnmrxq; 1620 nm_tqidx += vi->nnmtxq; 1621 #endif 1622 } 1623 } 1624 1625 rc = t4_setup_intr_handlers(sc); 1626 if (rc != 0) { 1627 device_printf(dev, 1628 "failed to setup interrupt handlers: %d\n", rc); 1629 goto done; 1630 } 1631 1632 bus_identify_children(dev); 1633 1634 /* 1635 * Ensure thread-safe mailbox access (in debug builds). 1636 * 1637 * So far this was the only thread accessing the mailbox but various 1638 * ifnets and sysctls are about to be created and their handlers/ioctls 1639 * will access the mailbox from different threads. 1640 */ 1641 sc->flags |= CHK_MBOX_ACCESS; 1642 1643 bus_attach_children(dev); 1644 t4_calibration_start(sc); 1645 1646 device_printf(dev, 1647 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1648 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1649 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1650 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1651 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1652 1653 t4_set_desc(sc); 1654 1655 notify_siblings(dev, 0); 1656 1657 done: 1658 if (rc != 0 && sc->cdev) { 1659 /* cdev was created and so cxgbetool works; recover that way. */ 1660 device_printf(dev, 1661 "error during attach, adapter is now in recovery mode.\n"); 1662 rc = 0; 1663 } 1664 1665 if (rc != 0) 1666 t4_detach_common(dev); 1667 else 1668 t4_sysctls(sc); 1669 1670 return (rc); 1671 } 1672 1673 static int 1674 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1675 { 1676 struct adapter *sc; 1677 struct port_info *pi; 1678 int i; 1679 1680 sc = device_get_softc(bus); 1681 for_each_port(sc, i) { 1682 pi = sc->port[i]; 1683 if (pi != NULL && pi->dev == dev) { 1684 sbuf_printf(sb, "port=%d", pi->port_id); 1685 break; 1686 } 1687 } 1688 return (0); 1689 } 1690 1691 static int 1692 t4_ready(device_t dev) 1693 { 1694 struct adapter *sc; 1695 1696 sc = device_get_softc(dev); 1697 if (sc->flags & FW_OK) 1698 return (0); 1699 return (ENXIO); 1700 } 1701 1702 static int 1703 t4_read_port_device(device_t dev, int port, device_t *child) 1704 { 1705 struct adapter *sc; 1706 struct port_info *pi; 1707 1708 sc = device_get_softc(dev); 1709 if (port < 0 || port >= MAX_NPORTS) 1710 return (EINVAL); 1711 pi = sc->port[port]; 1712 if (pi == NULL || pi->dev == NULL) 1713 return (ENXIO); 1714 *child = pi->dev; 1715 return (0); 1716 } 1717 1718 static int 1719 notify_siblings(device_t dev, int detaching) 1720 { 1721 device_t sibling; 1722 int error, i; 1723 1724 error = 0; 1725 for (i = 0; i < PCI_FUNCMAX; i++) { 1726 if (i == pci_get_function(dev)) 1727 continue; 1728 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1729 pci_get_slot(dev), i); 1730 if (sibling == NULL || !device_is_attached(sibling)) 1731 continue; 1732 if (detaching) 1733 error = T4_DETACH_CHILD(sibling); 1734 else 1735 (void)T4_ATTACH_CHILD(sibling); 1736 if (error) 1737 break; 1738 } 1739 return (error); 1740 } 1741 1742 /* 1743 * Idempotent 1744 */ 1745 static int 1746 t4_detach(device_t dev) 1747 { 1748 int rc; 1749 1750 rc = notify_siblings(dev, 1); 1751 if (rc) { 1752 device_printf(dev, 1753 "failed to detach sibling devices: %d\n", rc); 1754 return (rc); 1755 } 1756 1757 return (t4_detach_common(dev)); 1758 } 1759 1760 int 1761 t4_detach_common(device_t dev) 1762 { 1763 struct adapter *sc; 1764 struct port_info *pi; 1765 int i, rc; 1766 1767 sc = device_get_softc(dev); 1768 1769 #ifdef TCP_OFFLOAD 1770 rc = deactivate_all_uld(sc); 1771 if (rc) { 1772 device_printf(dev, 1773 "failed to detach upper layer drivers: %d\n", rc); 1774 return (rc); 1775 } 1776 #endif 1777 1778 if (sc->cdev) { 1779 destroy_dev(sc->cdev); 1780 sc->cdev = NULL; 1781 } 1782 1783 sx_xlock(&t4_list_lock); 1784 SLIST_REMOVE(&t4_list, sc, adapter, link); 1785 sx_xunlock(&t4_list_lock); 1786 1787 sc->flags &= ~CHK_MBOX_ACCESS; 1788 if (sc->flags & FULL_INIT_DONE) { 1789 if (!(sc->flags & IS_VF)) 1790 t4_intr_disable(sc); 1791 } 1792 1793 if (device_is_attached(dev)) { 1794 rc = bus_detach_children(dev); 1795 if (rc) { 1796 device_printf(dev, 1797 "failed to detach child devices: %d\n", rc); 1798 return (rc); 1799 } 1800 } 1801 1802 for (i = 0; i < sc->intr_count; i++) 1803 t4_free_irq(sc, &sc->irq[i]); 1804 1805 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1806 t4_free_tx_sched(sc); 1807 1808 for (i = 0; i < MAX_NPORTS; i++) { 1809 pi = sc->port[i]; 1810 if (pi) { 1811 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1812 1813 mtx_destroy(&pi->pi_lock); 1814 free(pi->vi, M_CXGBE); 1815 free(pi, M_CXGBE); 1816 } 1817 } 1818 callout_stop(&sc->cal_callout); 1819 callout_drain(&sc->cal_callout); 1820 device_delete_children(dev); 1821 sysctl_ctx_free(&sc->ctx); 1822 adapter_full_uninit(sc); 1823 1824 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1825 t4_fw_bye(sc, sc->mbox); 1826 1827 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1828 pci_release_msi(dev); 1829 1830 if (sc->regs_res) 1831 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1832 sc->regs_res); 1833 1834 if (sc->udbs_res) 1835 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1836 sc->udbs_res); 1837 1838 if (sc->msix_res) 1839 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1840 sc->msix_res); 1841 1842 if (sc->l2t) 1843 t4_free_l2t(sc); 1844 if (sc->smt) 1845 t4_free_smt(sc->smt); 1846 t4_free_atid_table(sc); 1847 #ifdef RATELIMIT 1848 t4_free_etid_table(sc); 1849 #endif 1850 if (sc->key_map) 1851 vmem_destroy(sc->key_map); 1852 #ifdef INET6 1853 t4_destroy_clip_table(sc); 1854 #endif 1855 1856 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1857 free(sc->sge.ofld_txq, M_CXGBE); 1858 #endif 1859 #ifdef TCP_OFFLOAD 1860 free(sc->sge.ofld_rxq, M_CXGBE); 1861 #endif 1862 #ifdef DEV_NETMAP 1863 free(sc->sge.nm_rxq, M_CXGBE); 1864 free(sc->sge.nm_txq, M_CXGBE); 1865 #endif 1866 free(sc->irq, M_CXGBE); 1867 free(sc->sge.rxq, M_CXGBE); 1868 free(sc->sge.txq, M_CXGBE); 1869 free(sc->sge.ctrlq, M_CXGBE); 1870 free(sc->sge.iqmap, M_CXGBE); 1871 free(sc->sge.eqmap, M_CXGBE); 1872 free(sc->tids.ftid_tab, M_CXGBE); 1873 free(sc->tids.hpftid_tab, M_CXGBE); 1874 free_hftid_hash(&sc->tids); 1875 free(sc->tids.tid_tab, M_CXGBE); 1876 t4_destroy_dma_tag(sc); 1877 1878 callout_drain(&sc->ktls_tick); 1879 callout_drain(&sc->sfl_callout); 1880 if (mtx_initialized(&sc->tids.ftid_lock)) { 1881 mtx_destroy(&sc->tids.ftid_lock); 1882 cv_destroy(&sc->tids.ftid_cv); 1883 } 1884 if (mtx_initialized(&sc->tids.atid_lock)) 1885 mtx_destroy(&sc->tids.atid_lock); 1886 if (mtx_initialized(&sc->ifp_lock)) 1887 mtx_destroy(&sc->ifp_lock); 1888 1889 if (rw_initialized(&sc->policy_lock)) { 1890 rw_destroy(&sc->policy_lock); 1891 #ifdef TCP_OFFLOAD 1892 if (sc->policy != NULL) 1893 free_offload_policy(sc->policy); 1894 #endif 1895 } 1896 1897 for (i = 0; i < NUM_MEMWIN; i++) { 1898 struct memwin *mw = &sc->memwin[i]; 1899 1900 if (rw_initialized(&mw->mw_lock)) 1901 rw_destroy(&mw->mw_lock); 1902 } 1903 1904 mtx_destroy(&sc->sfl_lock); 1905 mtx_destroy(&sc->reg_lock); 1906 mtx_destroy(&sc->sc_lock); 1907 1908 bzero(sc, sizeof(*sc)); 1909 1910 return (0); 1911 } 1912 1913 static inline int 1914 stop_adapter(struct adapter *sc) 1915 { 1916 struct port_info *pi; 1917 int i; 1918 1919 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 1920 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 1921 __func__, curthread, sc->flags, sc->error_flags); 1922 return (EALREADY); 1923 } 1924 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 1925 sc->flags, sc->error_flags); 1926 t4_shutdown_adapter(sc); 1927 for_each_port(sc, i) { 1928 pi = sc->port[i]; 1929 if (pi == NULL) 1930 continue; 1931 PORT_LOCK(pi); 1932 if (pi->up_vis > 0 && pi->link_cfg.link_ok) { 1933 /* 1934 * t4_shutdown_adapter has already shut down all the 1935 * PHYs but it also disables interrupts and DMA so there 1936 * won't be a link interrupt. Update the state manually 1937 * if the link was up previously and inform the kernel. 1938 */ 1939 pi->link_cfg.link_ok = false; 1940 t4_os_link_changed(pi); 1941 } 1942 PORT_UNLOCK(pi); 1943 } 1944 1945 return (0); 1946 } 1947 1948 static inline int 1949 restart_adapter(struct adapter *sc) 1950 { 1951 uint32_t val; 1952 1953 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 1954 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 1955 __func__, curthread, sc->flags, sc->error_flags); 1956 return (EALREADY); 1957 } 1958 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 1959 sc->flags, sc->error_flags); 1960 1961 MPASS(hw_off_limits(sc)); 1962 MPASS((sc->flags & FW_OK) == 0); 1963 MPASS((sc->flags & MASTER_PF) == 0); 1964 MPASS(sc->reset_thread == NULL); 1965 1966 /* 1967 * The adapter is supposed to be back on PCIE with its config space and 1968 * BARs restored to their state before reset. Register access via 1969 * t4_read_reg BAR0 should just work. 1970 */ 1971 sc->reset_thread = curthread; 1972 val = t4_read_reg(sc, A_PL_WHOAMI); 1973 if (val == 0xffffffff || val == 0xeeeeeeee) { 1974 CH_ERR(sc, "%s: device registers not readable.\n", __func__); 1975 sc->reset_thread = NULL; 1976 atomic_set_int(&sc->error_flags, ADAP_STOPPED); 1977 return (ENXIO); 1978 } 1979 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR); 1980 atomic_add_int(&sc->incarnation, 1); 1981 atomic_add_int(&sc->num_resets, 1); 1982 1983 return (0); 1984 } 1985 1986 static inline void 1987 set_adapter_hwstatus(struct adapter *sc, const bool usable) 1988 { 1989 if (usable) { 1990 /* Must be marked reusable by the designated thread. */ 1991 ASSERT_SYNCHRONIZED_OP(sc); 1992 MPASS(sc->reset_thread == curthread); 1993 mtx_lock(&sc->reg_lock); 1994 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 1995 mtx_unlock(&sc->reg_lock); 1996 } else { 1997 /* Mark the adapter totally off limits. */ 1998 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts"); 1999 mtx_lock(&sc->reg_lock); 2000 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 2001 mtx_unlock(&sc->reg_lock); 2002 sc->flags &= ~(FW_OK | MASTER_PF); 2003 sc->reset_thread = NULL; 2004 end_synchronized_op(sc, 0); 2005 } 2006 } 2007 2008 static int 2009 stop_lld(struct adapter *sc) 2010 { 2011 struct port_info *pi; 2012 struct vi_info *vi; 2013 if_t ifp; 2014 struct sge_rxq *rxq; 2015 struct sge_txq *txq; 2016 struct sge_wrq *wrq; 2017 #ifdef TCP_OFFLOAD 2018 struct sge_ofld_rxq *ofld_rxq; 2019 #endif 2020 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2021 struct sge_ofld_txq *ofld_txq; 2022 #endif 2023 int rc, i, j, k; 2024 2025 /* 2026 * XXX: Can there be a synch_op in progress that will hang because 2027 * hardware has been stopped? We'll hang too and the solution will be 2028 * to use a version of begin_synch_op that wakes up existing synch_op 2029 * with errors. Maybe stop_adapter should do this wakeup? 2030 * 2031 * I don't think any synch_op could get stranded waiting for DMA or 2032 * interrupt so I think we're okay here. Remove this comment block 2033 * after testing. 2034 */ 2035 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld"); 2036 if (rc != 0) 2037 return (ENXIO); 2038 2039 /* Quiesce all activity. */ 2040 for_each_port(sc, i) { 2041 pi = sc->port[i]; 2042 if (pi == NULL) 2043 continue; 2044 pi->vxlan_tcam_entry = false; 2045 for_each_vi(pi, j, vi) { 2046 vi->xact_addr_filt = -1; 2047 mtx_lock(&vi->tick_mtx); 2048 vi->flags |= VI_SKIP_STATS; 2049 mtx_unlock(&vi->tick_mtx); 2050 if (!(vi->flags & VI_INIT_DONE)) 2051 continue; 2052 2053 ifp = vi->ifp; 2054 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2055 mtx_lock(&vi->tick_mtx); 2056 callout_stop(&vi->tick); 2057 mtx_unlock(&vi->tick_mtx); 2058 callout_drain(&vi->tick); 2059 } 2060 2061 /* 2062 * Note that the HW is not available. 2063 */ 2064 for_each_txq(vi, k, txq) { 2065 TXQ_LOCK(txq); 2066 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2067 TXQ_UNLOCK(txq); 2068 } 2069 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2070 for_each_ofld_txq(vi, k, ofld_txq) { 2071 TXQ_LOCK(&ofld_txq->wrq); 2072 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2073 TXQ_UNLOCK(&ofld_txq->wrq); 2074 } 2075 #endif 2076 for_each_rxq(vi, k, rxq) { 2077 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2078 } 2079 #if defined(TCP_OFFLOAD) 2080 for_each_ofld_rxq(vi, k, ofld_rxq) { 2081 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2082 } 2083 #endif 2084 2085 quiesce_vi(vi); 2086 } 2087 2088 if (sc->flags & FULL_INIT_DONE) { 2089 /* Control queue */ 2090 wrq = &sc->sge.ctrlq[i]; 2091 TXQ_LOCK(wrq); 2092 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2093 TXQ_UNLOCK(wrq); 2094 quiesce_wrq(wrq); 2095 } 2096 2097 if (pi->flags & HAS_TRACEQ) { 2098 pi->flags &= ~HAS_TRACEQ; 2099 sc->traceq = -1; 2100 sc->tracer_valid = 0; 2101 sc->tracer_enabled = 0; 2102 } 2103 } 2104 if (sc->flags & FULL_INIT_DONE) { 2105 /* Firmware event queue */ 2106 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2107 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2108 } 2109 2110 /* Stop calibration */ 2111 callout_stop(&sc->cal_callout); 2112 callout_drain(&sc->cal_callout); 2113 2114 if (t4_clock_gate_on_suspend) { 2115 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2116 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2117 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2118 } 2119 2120 end_synchronized_op(sc, 0); 2121 2122 stop_atid_allocator(sc); 2123 t4_stop_l2t(sc); 2124 2125 return (rc); 2126 } 2127 2128 int 2129 suspend_adapter(struct adapter *sc) 2130 { 2131 stop_adapter(sc); 2132 stop_lld(sc); 2133 #ifdef TCP_OFFLOAD 2134 stop_all_uld(sc); 2135 #endif 2136 set_adapter_hwstatus(sc, false); 2137 2138 return (0); 2139 } 2140 2141 static int 2142 t4_suspend(device_t dev) 2143 { 2144 struct adapter *sc = device_get_softc(dev); 2145 int rc; 2146 2147 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2148 rc = suspend_adapter(sc); 2149 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2150 2151 return (rc); 2152 } 2153 2154 struct adapter_pre_reset_state { 2155 u_int flags; 2156 uint16_t nbmcaps; 2157 uint16_t linkcaps; 2158 uint16_t switchcaps; 2159 uint16_t niccaps; 2160 uint16_t toecaps; 2161 uint16_t rdmacaps; 2162 uint16_t cryptocaps; 2163 uint16_t iscsicaps; 2164 uint16_t fcoecaps; 2165 2166 u_int cfcsum; 2167 char cfg_file[32]; 2168 2169 struct adapter_params params; 2170 struct t4_virt_res vres; 2171 struct tid_info tids; 2172 struct sge sge; 2173 2174 int rawf_base; 2175 int nrawf; 2176 2177 }; 2178 2179 static void 2180 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2181 { 2182 2183 ASSERT_SYNCHRONIZED_OP(sc); 2184 2185 o->flags = sc->flags; 2186 2187 o->nbmcaps = sc->nbmcaps; 2188 o->linkcaps = sc->linkcaps; 2189 o->switchcaps = sc->switchcaps; 2190 o->niccaps = sc->niccaps; 2191 o->toecaps = sc->toecaps; 2192 o->rdmacaps = sc->rdmacaps; 2193 o->cryptocaps = sc->cryptocaps; 2194 o->iscsicaps = sc->iscsicaps; 2195 o->fcoecaps = sc->fcoecaps; 2196 2197 o->cfcsum = sc->cfcsum; 2198 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2199 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2200 2201 o->params = sc->params; 2202 o->vres = sc->vres; 2203 o->tids = sc->tids; 2204 o->sge = sc->sge; 2205 2206 o->rawf_base = sc->rawf_base; 2207 o->nrawf = sc->nrawf; 2208 } 2209 2210 static int 2211 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2212 { 2213 int rc = 0; 2214 2215 ASSERT_SYNCHRONIZED_OP(sc); 2216 2217 /* Capabilities */ 2218 #define COMPARE_CAPS(c) do { \ 2219 if (o->c##caps != sc->c##caps) { \ 2220 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2221 sc->c##caps); \ 2222 rc = EINVAL; \ 2223 } \ 2224 } while (0) 2225 COMPARE_CAPS(nbm); 2226 COMPARE_CAPS(link); 2227 COMPARE_CAPS(switch); 2228 COMPARE_CAPS(nic); 2229 COMPARE_CAPS(toe); 2230 COMPARE_CAPS(rdma); 2231 COMPARE_CAPS(crypto); 2232 COMPARE_CAPS(iscsi); 2233 COMPARE_CAPS(fcoe); 2234 #undef COMPARE_CAPS 2235 2236 /* Firmware config file */ 2237 if (o->cfcsum != sc->cfcsum) { 2238 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2239 o->cfcsum, sc->cfg_file, sc->cfcsum); 2240 rc = EINVAL; 2241 } 2242 2243 #define COMPARE_PARAM(p, name) do { \ 2244 if (o->p != sc->p) { \ 2245 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2246 rc = EINVAL; \ 2247 } \ 2248 } while (0) 2249 COMPARE_PARAM(sge.iq_start, iq_start); 2250 COMPARE_PARAM(sge.eq_start, eq_start); 2251 COMPARE_PARAM(tids.ftid_base, ftid_base); 2252 COMPARE_PARAM(tids.ftid_end, ftid_end); 2253 COMPARE_PARAM(tids.nftids, nftids); 2254 COMPARE_PARAM(vres.l2t.start, l2t_start); 2255 COMPARE_PARAM(vres.l2t.size, l2t_size); 2256 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2257 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2258 COMPARE_PARAM(tids.tid_base, tid_base); 2259 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2260 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2261 COMPARE_PARAM(tids.nhpftids, nhpftids); 2262 COMPARE_PARAM(rawf_base, rawf_base); 2263 COMPARE_PARAM(nrawf, nrawf); 2264 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2265 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2266 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2267 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2268 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2269 COMPARE_PARAM(tids.ntids, ntids); 2270 COMPARE_PARAM(tids.etid_base, etid_base); 2271 COMPARE_PARAM(tids.etid_end, etid_end); 2272 COMPARE_PARAM(tids.netids, netids); 2273 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2274 COMPARE_PARAM(params.ethoffload, ethoffload); 2275 COMPARE_PARAM(tids.natids, natids); 2276 COMPARE_PARAM(tids.stid_base, stid_base); 2277 COMPARE_PARAM(vres.ddp.start, ddp_start); 2278 COMPARE_PARAM(vres.ddp.size, ddp_size); 2279 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2280 COMPARE_PARAM(vres.stag.start, stag_start); 2281 COMPARE_PARAM(vres.stag.size, stag_size); 2282 COMPARE_PARAM(vres.rq.start, rq_start); 2283 COMPARE_PARAM(vres.rq.size, rq_size); 2284 COMPARE_PARAM(vres.pbl.start, pbl_start); 2285 COMPARE_PARAM(vres.pbl.size, pbl_size); 2286 COMPARE_PARAM(vres.qp.start, qp_start); 2287 COMPARE_PARAM(vres.qp.size, qp_size); 2288 COMPARE_PARAM(vres.cq.start, cq_start); 2289 COMPARE_PARAM(vres.cq.size, cq_size); 2290 COMPARE_PARAM(vres.ocq.start, ocq_start); 2291 COMPARE_PARAM(vres.ocq.size, ocq_size); 2292 COMPARE_PARAM(vres.srq.start, srq_start); 2293 COMPARE_PARAM(vres.srq.size, srq_size); 2294 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2295 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2296 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2297 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2298 COMPARE_PARAM(vres.key.start, key_start); 2299 COMPARE_PARAM(vres.key.size, key_size); 2300 #undef COMPARE_PARAM 2301 2302 return (rc); 2303 } 2304 2305 static int 2306 restart_lld(struct adapter *sc) 2307 { 2308 struct adapter_pre_reset_state *old_state = NULL; 2309 struct port_info *pi; 2310 struct vi_info *vi; 2311 if_t ifp; 2312 struct sge_txq *txq; 2313 int rc, i, j, k; 2314 2315 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld"); 2316 if (rc != 0) 2317 return (ENXIO); 2318 2319 /* Restore memory window. */ 2320 setup_memwin(sc); 2321 2322 /* Go no further if recovery mode has been requested. */ 2323 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2324 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__); 2325 rc = 0; 2326 set_adapter_hwstatus(sc, true); 2327 goto done; 2328 } 2329 2330 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2331 save_caps_and_params(sc, old_state); 2332 2333 /* Reestablish contact with firmware and become the primary PF. */ 2334 rc = contact_firmware(sc); 2335 if (rc != 0) 2336 goto done; /* error message displayed already */ 2337 MPASS(sc->flags & FW_OK); 2338 2339 if (sc->flags & MASTER_PF) { 2340 rc = partition_resources(sc); 2341 if (rc != 0) 2342 goto done; /* error message displayed already */ 2343 } 2344 2345 rc = get_params__post_init(sc); 2346 if (rc != 0) 2347 goto done; /* error message displayed already */ 2348 2349 rc = set_params__post_init(sc); 2350 if (rc != 0) 2351 goto done; /* error message displayed already */ 2352 2353 rc = compare_caps_and_params(sc, old_state); 2354 if (rc != 0) 2355 goto done; /* error message displayed already */ 2356 2357 for_each_port(sc, i) { 2358 pi = sc->port[i]; 2359 MPASS(pi != NULL); 2360 MPASS(pi->vi != NULL); 2361 MPASS(pi->vi[0].dev == pi->dev); 2362 2363 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2364 if (rc != 0) { 2365 CH_ERR(sc, 2366 "failed to re-initialize port %d: %d\n", i, rc); 2367 goto done; 2368 } 2369 MPASS(sc->chan_map[pi->tx_chan] == i); 2370 2371 PORT_LOCK(pi); 2372 fixup_link_config(pi); 2373 build_medialist(pi); 2374 PORT_UNLOCK(pi); 2375 for_each_vi(pi, j, vi) { 2376 if (IS_MAIN_VI(vi)) 2377 continue; 2378 rc = alloc_extra_vi(sc, pi, vi); 2379 if (rc != 0) { 2380 CH_ERR(vi, 2381 "failed to re-allocate extra VI: %d\n", rc); 2382 goto done; 2383 } 2384 } 2385 } 2386 2387 /* 2388 * Interrupts and queues are about to be enabled and other threads will 2389 * want to access the hardware too. It is safe to do so. Note that 2390 * this thread is still in the middle of a synchronized_op. 2391 */ 2392 set_adapter_hwstatus(sc, true); 2393 2394 if (sc->flags & FULL_INIT_DONE) { 2395 rc = adapter_full_init(sc); 2396 if (rc != 0) { 2397 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2398 goto done; 2399 } 2400 2401 if (sc->vxlan_refcount > 0) 2402 enable_vxlan_rx(sc); 2403 2404 for_each_port(sc, i) { 2405 pi = sc->port[i]; 2406 for_each_vi(pi, j, vi) { 2407 mtx_lock(&vi->tick_mtx); 2408 vi->flags &= ~VI_SKIP_STATS; 2409 mtx_unlock(&vi->tick_mtx); 2410 if (!(vi->flags & VI_INIT_DONE)) 2411 continue; 2412 rc = vi_full_init(vi); 2413 if (rc != 0) { 2414 CH_ERR(vi, "failed to re-initialize " 2415 "interface: %d\n", rc); 2416 goto done; 2417 } 2418 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 2419 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 2420 t4_write_reg(sc, is_t4(sc) ? 2421 A_MPS_TRC_RSS_CONTROL : 2422 A_MPS_T5_TRC_RSS_CONTROL, 2423 V_RSSCONTROL(pi->tx_chan) | 2424 V_QUEUENUMBER(sc->traceq)); 2425 pi->flags |= HAS_TRACEQ; 2426 } 2427 2428 ifp = vi->ifp; 2429 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2430 continue; 2431 /* 2432 * Note that we do not setup multicast addresses 2433 * in the first pass. This ensures that the 2434 * unicast DMACs for all VIs on all ports get an 2435 * MPS TCAM entry. 2436 */ 2437 rc = update_mac_settings(ifp, XGMAC_ALL & 2438 ~XGMAC_MCADDRS); 2439 if (rc != 0) { 2440 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2441 goto done; 2442 } 2443 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2444 true); 2445 if (rc != 0) { 2446 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2447 goto done; 2448 } 2449 for_each_txq(vi, k, txq) { 2450 TXQ_LOCK(txq); 2451 txq->eq.flags |= EQ_ENABLED; 2452 TXQ_UNLOCK(txq); 2453 } 2454 mtx_lock(&vi->tick_mtx); 2455 callout_schedule(&vi->tick, hz); 2456 mtx_unlock(&vi->tick_mtx); 2457 } 2458 PORT_LOCK(pi); 2459 if (pi->up_vis > 0) { 2460 t4_update_port_info(pi); 2461 fixup_link_config(pi); 2462 build_medialist(pi); 2463 apply_link_config(pi); 2464 if (pi->link_cfg.link_ok) 2465 t4_os_link_changed(pi); 2466 } 2467 PORT_UNLOCK(pi); 2468 } 2469 2470 /* Now reprogram the L2 multicast addresses. */ 2471 for_each_port(sc, i) { 2472 pi = sc->port[i]; 2473 for_each_vi(pi, j, vi) { 2474 if (!(vi->flags & VI_INIT_DONE)) 2475 continue; 2476 ifp = vi->ifp; 2477 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2478 continue; 2479 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2480 if (rc != 0) { 2481 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2482 rc = 0; /* carry on */ 2483 } 2484 } 2485 } 2486 } 2487 2488 /* Reset all calibration */ 2489 t4_calibration_start(sc); 2490 done: 2491 end_synchronized_op(sc, 0); 2492 free(old_state, M_CXGBE); 2493 2494 restart_atid_allocator(sc); 2495 t4_restart_l2t(sc); 2496 2497 return (rc); 2498 } 2499 2500 int 2501 resume_adapter(struct adapter *sc) 2502 { 2503 restart_adapter(sc); 2504 restart_lld(sc); 2505 #ifdef TCP_OFFLOAD 2506 restart_all_uld(sc); 2507 #endif 2508 return (0); 2509 } 2510 2511 static int 2512 t4_resume(device_t dev) 2513 { 2514 struct adapter *sc = device_get_softc(dev); 2515 int rc; 2516 2517 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2518 rc = resume_adapter(sc); 2519 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2520 2521 return (rc); 2522 } 2523 2524 static int 2525 t4_reset_prepare(device_t dev, device_t child) 2526 { 2527 struct adapter *sc = device_get_softc(dev); 2528 2529 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2530 return (0); 2531 } 2532 2533 static int 2534 t4_reset_post(device_t dev, device_t child) 2535 { 2536 struct adapter *sc = device_get_softc(dev); 2537 2538 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2539 return (0); 2540 } 2541 2542 static int 2543 reset_adapter_with_pl_rst(struct adapter *sc) 2544 { 2545 /* This is a t4_write_reg without the hw_off_limits check. */ 2546 MPASS(sc->error_flags & HW_OFF_LIMITS); 2547 bus_space_write_4(sc->bt, sc->bh, A_PL_RST, 2548 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE); 2549 pause("pl_rst", 1 * hz); /* Wait 1s for reset */ 2550 return (0); 2551 } 2552 2553 static int 2554 reset_adapter_with_pcie_sbr(struct adapter *sc) 2555 { 2556 device_t pdev = device_get_parent(sc->dev); 2557 device_t gpdev = device_get_parent(pdev); 2558 device_t *children; 2559 int rc, i, lcap, lsta, nchildren; 2560 uint32_t v; 2561 2562 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v); 2563 if (rc != 0) { 2564 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__, 2565 device_get_nameunit(gpdev), rc); 2566 return (ENOTSUP); 2567 } 2568 lcap = v + PCIER_LINK_CAP; 2569 lsta = v + PCIER_LINK_STA; 2570 2571 nchildren = 0; 2572 device_get_children(pdev, &children, &nchildren); 2573 for (i = 0; i < nchildren; i++) 2574 pci_save_state(children[i]); 2575 v = pci_read_config(gpdev, PCIR_BRIDGECTL_1, 2); 2576 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v | PCIB_BCR_SECBUS_RESET, 2); 2577 pause("pcie_sbr1", hz / 10); /* 100ms */ 2578 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v, 2); 2579 pause("pcie_sbr2", hz); /* Wait 1s before restore_state. */ 2580 v = pci_read_config(gpdev, lsta, 2); 2581 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE) 2582 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT; 2583 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING)) 2584 rc = ETIMEDOUT; 2585 else 2586 rc = 0; 2587 if (rc != 0) 2588 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n", 2589 __func__, v); 2590 else { 2591 for (i = 0; i < nchildren; i++) 2592 pci_restore_state(children[i]); 2593 } 2594 free(children, M_TEMP); 2595 2596 return (rc); 2597 } 2598 2599 static int 2600 reset_adapter_with_pcie_link_bounce(struct adapter *sc) 2601 { 2602 device_t pdev = device_get_parent(sc->dev); 2603 device_t gpdev = device_get_parent(pdev); 2604 device_t *children; 2605 int rc, i, lcap, lctl, lsta, nchildren; 2606 uint32_t v; 2607 2608 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v); 2609 if (rc != 0) { 2610 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__, 2611 device_get_nameunit(gpdev), rc); 2612 return (ENOTSUP); 2613 } 2614 lcap = v + PCIER_LINK_CAP; 2615 lctl = v + PCIER_LINK_CTL; 2616 lsta = v + PCIER_LINK_STA; 2617 2618 nchildren = 0; 2619 device_get_children(pdev, &children, &nchildren); 2620 for (i = 0; i < nchildren; i++) 2621 pci_save_state(children[i]); 2622 v = pci_read_config(gpdev, lctl, 2); 2623 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_LINK_DIS, 2); 2624 pause("pcie_lnk1", 100 * hz / 1000); /* 100ms */ 2625 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_RETRAIN_LINK, 2); 2626 pause("pcie_lnk2", hz); /* Wait 1s before restore_state. */ 2627 v = pci_read_config(gpdev, lsta, 2); 2628 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE) 2629 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT; 2630 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING)) 2631 rc = ETIMEDOUT; 2632 else 2633 rc = 0; 2634 if (rc != 0) 2635 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n", 2636 __func__, v); 2637 else { 2638 for (i = 0; i < nchildren; i++) 2639 pci_restore_state(children[i]); 2640 } 2641 free(children, M_TEMP); 2642 2643 return (rc); 2644 } 2645 2646 static inline int 2647 reset_adapter(struct adapter *sc) 2648 { 2649 int rc; 2650 const int reset_method = vm_guest == VM_GUEST_NO ? t4_reset_method : 0; 2651 2652 rc = suspend_adapter(sc); 2653 if (rc != 0) 2654 return (rc); 2655 2656 switch (reset_method) { 2657 case 1: 2658 rc = reset_adapter_with_pcie_sbr(sc); 2659 break; 2660 case 2: 2661 rc = reset_adapter_with_pcie_link_bounce(sc); 2662 break; 2663 case 0: 2664 default: 2665 rc = reset_adapter_with_pl_rst(sc); 2666 break; 2667 } 2668 if (rc == 0) 2669 rc = resume_adapter(sc); 2670 return (rc); 2671 } 2672 2673 static void 2674 reset_adapter_task(void *arg, int pending) 2675 { 2676 struct adapter *sc = arg; 2677 const int flags = sc->flags; 2678 const int eflags = sc->error_flags; 2679 int rc; 2680 2681 if (pending > 1) 2682 CH_ALERT(sc, "%s: pending %d\n", __func__, pending); 2683 rc = reset_adapter(sc); 2684 if (rc != 0) { 2685 CH_ERR(sc, "adapter did not reset properly, rc = %d, " 2686 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n", 2687 rc, flags, sc->flags, eflags, sc->error_flags); 2688 } 2689 } 2690 2691 static int 2692 cxgbe_probe(device_t dev) 2693 { 2694 struct port_info *pi = device_get_softc(dev); 2695 2696 device_set_descf(dev, "port %d", pi->port_id); 2697 2698 return (BUS_PROBE_DEFAULT); 2699 } 2700 2701 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2702 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2703 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2704 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2705 #define T4_CAP_ENABLE (T4_CAP) 2706 2707 static void 2708 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2709 { 2710 if_t ifp; 2711 struct sbuf *sb; 2712 struct sysctl_ctx_list *ctx = &vi->ctx; 2713 struct sysctl_oid_list *children; 2714 struct pfil_head_args pa; 2715 struct adapter *sc = vi->adapter; 2716 2717 sysctl_ctx_init(ctx); 2718 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2719 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2720 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2721 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2722 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2723 #ifdef DEV_NETMAP 2724 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2725 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2726 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2727 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2728 #endif 2729 #ifdef TCP_OFFLOAD 2730 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2731 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2732 #endif 2733 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2734 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2735 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2736 #endif 2737 2738 vi->xact_addr_filt = -1; 2739 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2740 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2741 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2742 vi->flags |= TX_USES_VM_WR; 2743 2744 /* Allocate an ifnet and set it up */ 2745 ifp = if_alloc_dev(IFT_ETHER, dev); 2746 vi->ifp = ifp; 2747 if_setsoftc(ifp, vi); 2748 2749 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2750 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2751 2752 if_setinitfn(ifp, cxgbe_init); 2753 if_setioctlfn(ifp, cxgbe_ioctl); 2754 if_settransmitfn(ifp, cxgbe_transmit); 2755 if_setqflushfn(ifp, cxgbe_qflush); 2756 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2757 if_setgetcounterfn(ifp, vi_get_counter); 2758 else 2759 if_setgetcounterfn(ifp, cxgbe_get_counter); 2760 #if defined(KERN_TLS) || defined(RATELIMIT) 2761 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc); 2762 #endif 2763 #ifdef RATELIMIT 2764 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query); 2765 #endif 2766 2767 if_setcapabilities(ifp, T4_CAP); 2768 if_setcapenable(ifp, T4_CAP_ENABLE); 2769 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2770 CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2771 if (chip_id(sc) >= CHELSIO_T6) { 2772 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2773 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2774 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2775 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2776 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0); 2777 } 2778 2779 #ifdef TCP_OFFLOAD 2780 if (vi->nofldrxq != 0) 2781 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0); 2782 #endif 2783 #ifdef RATELIMIT 2784 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2785 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0); 2786 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0); 2787 } 2788 #endif 2789 2790 if_sethwtsomax(ifp, IP_MAXPACKET); 2791 if (vi->flags & TX_USES_VM_WR) 2792 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO); 2793 else 2794 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO); 2795 #ifdef RATELIMIT 2796 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2797 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO); 2798 #endif 2799 if_sethwtsomaxsegsize(ifp, 65536); 2800 #ifdef KERN_TLS 2801 if (is_ktls(sc)) { 2802 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0); 2803 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2804 if_setcapenablebit(ifp, IFCAP_TXTLS, 0); 2805 } 2806 #endif 2807 2808 ether_ifattach(ifp, vi->hw_addr); 2809 #ifdef DEV_NETMAP 2810 if (vi->nnmrxq != 0) 2811 cxgbe_nm_attach(vi); 2812 #endif 2813 sb = sbuf_new_auto(); 2814 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2815 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2816 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2817 case IFCAP_TOE: 2818 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2819 break; 2820 case IFCAP_TOE | IFCAP_TXRTLMT: 2821 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2822 break; 2823 case IFCAP_TXRTLMT: 2824 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2825 break; 2826 } 2827 #endif 2828 #ifdef TCP_OFFLOAD 2829 if (if_getcapabilities(ifp) & IFCAP_TOE) 2830 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2831 #endif 2832 #ifdef DEV_NETMAP 2833 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2834 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2835 vi->nnmtxq, vi->nnmrxq); 2836 #endif 2837 sbuf_finish(sb); 2838 device_printf(dev, "%s\n", sbuf_data(sb)); 2839 sbuf_delete(sb); 2840 2841 vi_sysctls(vi); 2842 2843 pa.pa_version = PFIL_VERSION; 2844 pa.pa_flags = PFIL_IN; 2845 pa.pa_type = PFIL_TYPE_ETHERNET; 2846 pa.pa_headname = if_name(ifp); 2847 vi->pfil = pfil_head_register(&pa); 2848 } 2849 2850 static int 2851 cxgbe_attach(device_t dev) 2852 { 2853 struct port_info *pi = device_get_softc(dev); 2854 struct adapter *sc = pi->adapter; 2855 struct vi_info *vi; 2856 int i; 2857 2858 sysctl_ctx_init(&pi->ctx); 2859 2860 cxgbe_vi_attach(dev, &pi->vi[0]); 2861 2862 for_each_vi(pi, i, vi) { 2863 if (i == 0) 2864 continue; 2865 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY); 2866 if (vi->dev == NULL) { 2867 device_printf(dev, "failed to add VI %d\n", i); 2868 continue; 2869 } 2870 device_set_softc(vi->dev, vi); 2871 } 2872 2873 cxgbe_sysctls(pi); 2874 2875 bus_attach_children(dev); 2876 2877 return (0); 2878 } 2879 2880 static void 2881 cxgbe_vi_detach(struct vi_info *vi) 2882 { 2883 if_t ifp = vi->ifp; 2884 2885 if (vi->pfil != NULL) { 2886 pfil_head_unregister(vi->pfil); 2887 vi->pfil = NULL; 2888 } 2889 2890 ether_ifdetach(ifp); 2891 2892 /* Let detach proceed even if these fail. */ 2893 #ifdef DEV_NETMAP 2894 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2895 cxgbe_nm_detach(vi); 2896 #endif 2897 cxgbe_uninit_synchronized(vi); 2898 callout_drain(&vi->tick); 2899 mtx_destroy(&vi->tick_mtx); 2900 sysctl_ctx_free(&vi->ctx); 2901 vi_full_uninit(vi); 2902 2903 if_free(vi->ifp); 2904 vi->ifp = NULL; 2905 } 2906 2907 static int 2908 cxgbe_detach(device_t dev) 2909 { 2910 struct port_info *pi = device_get_softc(dev); 2911 struct adapter *sc = pi->adapter; 2912 int rc; 2913 2914 /* Detach the extra VIs first. */ 2915 rc = bus_generic_detach(dev); 2916 if (rc) 2917 return (rc); 2918 2919 sysctl_ctx_free(&pi->ctx); 2920 begin_vi_detach(sc, &pi->vi[0]); 2921 if (pi->flags & HAS_TRACEQ) { 2922 sc->traceq = -1; /* cloner should not create ifnet */ 2923 t4_tracer_port_detach(sc); 2924 } 2925 cxgbe_vi_detach(&pi->vi[0]); 2926 ifmedia_removeall(&pi->media); 2927 end_vi_detach(sc, &pi->vi[0]); 2928 2929 return (0); 2930 } 2931 2932 static void 2933 cxgbe_init(void *arg) 2934 { 2935 struct vi_info *vi = arg; 2936 struct adapter *sc = vi->adapter; 2937 2938 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2939 return; 2940 cxgbe_init_synchronized(vi); 2941 end_synchronized_op(sc, 0); 2942 } 2943 2944 static int 2945 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data) 2946 { 2947 int rc = 0, mtu, flags; 2948 struct vi_info *vi = if_getsoftc(ifp); 2949 struct port_info *pi = vi->pi; 2950 struct adapter *sc = pi->adapter; 2951 struct ifreq *ifr = (struct ifreq *)data; 2952 uint32_t mask; 2953 2954 switch (cmd) { 2955 case SIOCSIFMTU: 2956 mtu = ifr->ifr_mtu; 2957 if (mtu < ETHERMIN || mtu > MAX_MTU) 2958 return (EINVAL); 2959 2960 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2961 if (rc) 2962 return (rc); 2963 if_setmtu(ifp, mtu); 2964 if (vi->flags & VI_INIT_DONE) { 2965 t4_update_fl_bufsize(ifp); 2966 if (hw_all_ok(sc) && 2967 if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2968 rc = update_mac_settings(ifp, XGMAC_MTU); 2969 } 2970 end_synchronized_op(sc, 0); 2971 break; 2972 2973 case SIOCSIFFLAGS: 2974 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2975 if (rc) 2976 return (rc); 2977 2978 if (!hw_all_ok(sc)) { 2979 rc = ENXIO; 2980 goto fail; 2981 } 2982 2983 if (if_getflags(ifp) & IFF_UP) { 2984 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2985 flags = vi->if_flags; 2986 if ((if_getflags(ifp) ^ flags) & 2987 (IFF_PROMISC | IFF_ALLMULTI)) { 2988 rc = update_mac_settings(ifp, 2989 XGMAC_PROMISC | XGMAC_ALLMULTI); 2990 } 2991 } else { 2992 rc = cxgbe_init_synchronized(vi); 2993 } 2994 vi->if_flags = if_getflags(ifp); 2995 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2996 rc = cxgbe_uninit_synchronized(vi); 2997 } 2998 end_synchronized_op(sc, 0); 2999 break; 3000 3001 case SIOCADDMULTI: 3002 case SIOCDELMULTI: 3003 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 3004 if (rc) 3005 return (rc); 3006 if (hw_all_ok(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3007 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 3008 end_synchronized_op(sc, 0); 3009 break; 3010 3011 case SIOCSIFCAP: 3012 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 3013 if (rc) 3014 return (rc); 3015 3016 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 3017 if (mask & IFCAP_TXCSUM) { 3018 if_togglecapenable(ifp, IFCAP_TXCSUM); 3019 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP); 3020 3021 if (IFCAP_TSO4 & if_getcapenable(ifp) && 3022 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 3023 mask &= ~IFCAP_TSO4; 3024 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 3025 if_printf(ifp, 3026 "tso4 disabled due to -txcsum.\n"); 3027 } 3028 } 3029 if (mask & IFCAP_TXCSUM_IPV6) { 3030 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); 3031 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 3032 3033 if (IFCAP_TSO6 & if_getcapenable(ifp) && 3034 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 3035 mask &= ~IFCAP_TSO6; 3036 if_setcapenablebit(ifp, 0, IFCAP_TSO6); 3037 if_printf(ifp, 3038 "tso6 disabled due to -txcsum6.\n"); 3039 } 3040 } 3041 if (mask & IFCAP_RXCSUM) 3042 if_togglecapenable(ifp, IFCAP_RXCSUM); 3043 if (mask & IFCAP_RXCSUM_IPV6) 3044 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); 3045 3046 /* 3047 * Note that we leave CSUM_TSO alone (it is always set). The 3048 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 3049 * sending a TSO request our way, so it's sufficient to toggle 3050 * IFCAP_TSOx only. 3051 */ 3052 if (mask & IFCAP_TSO4) { 3053 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) && 3054 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 3055 if_printf(ifp, "enable txcsum first.\n"); 3056 rc = EAGAIN; 3057 goto fail; 3058 } 3059 if_togglecapenable(ifp, IFCAP_TSO4); 3060 } 3061 if (mask & IFCAP_TSO6) { 3062 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) && 3063 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 3064 if_printf(ifp, "enable txcsum6 first.\n"); 3065 rc = EAGAIN; 3066 goto fail; 3067 } 3068 if_togglecapenable(ifp, IFCAP_TSO6); 3069 } 3070 if (mask & IFCAP_LRO) { 3071 #if defined(INET) || defined(INET6) 3072 int i; 3073 struct sge_rxq *rxq; 3074 3075 if_togglecapenable(ifp, IFCAP_LRO); 3076 for_each_rxq(vi, i, rxq) { 3077 if (if_getcapenable(ifp) & IFCAP_LRO) 3078 rxq->iq.flags |= IQ_LRO_ENABLED; 3079 else 3080 rxq->iq.flags &= ~IQ_LRO_ENABLED; 3081 } 3082 #endif 3083 } 3084 #ifdef TCP_OFFLOAD 3085 if (mask & IFCAP_TOE) { 3086 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE; 3087 3088 rc = toe_capability(vi, enable); 3089 if (rc != 0) 3090 goto fail; 3091 3092 if_togglecapenable(ifp, mask); 3093 } 3094 #endif 3095 if (mask & IFCAP_VLAN_HWTAGGING) { 3096 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 3097 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3098 rc = update_mac_settings(ifp, XGMAC_VLANEX); 3099 } 3100 if (mask & IFCAP_VLAN_MTU) { 3101 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 3102 3103 /* Need to find out how to disable auto-mtu-inflation */ 3104 } 3105 if (mask & IFCAP_VLAN_HWTSO) 3106 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 3107 if (mask & IFCAP_VLAN_HWCSUM) 3108 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 3109 #ifdef RATELIMIT 3110 if (mask & IFCAP_TXRTLMT) 3111 if_togglecapenable(ifp, IFCAP_TXRTLMT); 3112 #endif 3113 if (mask & IFCAP_HWRXTSTMP) { 3114 int i; 3115 struct sge_rxq *rxq; 3116 3117 if_togglecapenable(ifp, IFCAP_HWRXTSTMP); 3118 for_each_rxq(vi, i, rxq) { 3119 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) 3120 rxq->iq.flags |= IQ_RX_TIMESTAMP; 3121 else 3122 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 3123 } 3124 } 3125 if (mask & IFCAP_MEXTPG) 3126 if_togglecapenable(ifp, IFCAP_MEXTPG); 3127 3128 #ifdef KERN_TLS 3129 if (mask & IFCAP_TXTLS) { 3130 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS; 3131 3132 rc = ktls_capability(sc, enable); 3133 if (rc != 0) 3134 goto fail; 3135 3136 if_togglecapenable(ifp, mask & IFCAP_TXTLS); 3137 } 3138 #endif 3139 if (mask & IFCAP_VXLAN_HWCSUM) { 3140 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM); 3141 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP | 3142 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 3143 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP); 3144 } 3145 if (mask & IFCAP_VXLAN_HWTSO) { 3146 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO); 3147 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO | 3148 CSUM_INNER_IP_TSO); 3149 } 3150 3151 #ifdef VLAN_CAPABILITIES 3152 VLAN_CAPABILITIES(ifp); 3153 #endif 3154 fail: 3155 end_synchronized_op(sc, 0); 3156 break; 3157 3158 case SIOCSIFMEDIA: 3159 case SIOCGIFMEDIA: 3160 case SIOCGIFXMEDIA: 3161 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3162 break; 3163 3164 case SIOCGI2C: { 3165 struct ifi2creq i2c; 3166 3167 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3168 if (rc != 0) 3169 break; 3170 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3171 rc = EPERM; 3172 break; 3173 } 3174 if (i2c.len > sizeof(i2c.data)) { 3175 rc = EINVAL; 3176 break; 3177 } 3178 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3179 if (rc) 3180 return (rc); 3181 if (!hw_all_ok(sc)) 3182 rc = ENXIO; 3183 else 3184 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3185 i2c.offset, i2c.len, &i2c.data[0]); 3186 end_synchronized_op(sc, 0); 3187 if (rc == 0) 3188 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3189 break; 3190 } 3191 3192 default: 3193 rc = ether_ioctl(ifp, cmd, data); 3194 } 3195 3196 return (rc); 3197 } 3198 3199 static int 3200 cxgbe_transmit(if_t ifp, struct mbuf *m) 3201 { 3202 struct vi_info *vi = if_getsoftc(ifp); 3203 struct port_info *pi = vi->pi; 3204 struct adapter *sc; 3205 struct sge_txq *txq; 3206 void *items[1]; 3207 int rc; 3208 3209 M_ASSERTPKTHDR(m); 3210 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3211 #if defined(KERN_TLS) || defined(RATELIMIT) 3212 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3213 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3214 #endif 3215 3216 if (__predict_false(pi->link_cfg.link_ok == false)) { 3217 m_freem(m); 3218 return (ENETDOWN); 3219 } 3220 3221 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3222 if (__predict_false(rc != 0)) { 3223 if (__predict_true(rc == EINPROGRESS)) { 3224 /* queued by parse_pkt */ 3225 MPASS(m != NULL); 3226 return (0); 3227 } 3228 3229 MPASS(m == NULL); /* was freed already */ 3230 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3231 return (rc); 3232 } 3233 3234 /* Select a txq. */ 3235 sc = vi->adapter; 3236 txq = &sc->sge.txq[vi->first_txq]; 3237 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3238 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3239 vi->rsrv_noflowq); 3240 3241 items[0] = m; 3242 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3243 if (__predict_false(rc != 0)) 3244 m_freem(m); 3245 3246 return (rc); 3247 } 3248 3249 static void 3250 cxgbe_qflush(if_t ifp) 3251 { 3252 struct vi_info *vi = if_getsoftc(ifp); 3253 struct sge_txq *txq; 3254 int i; 3255 3256 /* queues do not exist if !VI_INIT_DONE. */ 3257 if (vi->flags & VI_INIT_DONE) { 3258 for_each_txq(vi, i, txq) { 3259 TXQ_LOCK(txq); 3260 txq->eq.flags |= EQ_QFLUSH; 3261 TXQ_UNLOCK(txq); 3262 while (!mp_ring_is_idle(txq->r)) { 3263 mp_ring_check_drainage(txq->r, 4096); 3264 pause("qflush", 1); 3265 } 3266 TXQ_LOCK(txq); 3267 txq->eq.flags &= ~EQ_QFLUSH; 3268 TXQ_UNLOCK(txq); 3269 } 3270 } 3271 if_qflush(ifp); 3272 } 3273 3274 static uint64_t 3275 vi_get_counter(if_t ifp, ift_counter c) 3276 { 3277 struct vi_info *vi = if_getsoftc(ifp); 3278 struct fw_vi_stats_vf *s = &vi->stats; 3279 3280 mtx_lock(&vi->tick_mtx); 3281 vi_refresh_stats(vi); 3282 mtx_unlock(&vi->tick_mtx); 3283 3284 switch (c) { 3285 case IFCOUNTER_IPACKETS: 3286 return (s->rx_bcast_frames + s->rx_mcast_frames + 3287 s->rx_ucast_frames); 3288 case IFCOUNTER_IERRORS: 3289 return (s->rx_err_frames); 3290 case IFCOUNTER_OPACKETS: 3291 return (s->tx_bcast_frames + s->tx_mcast_frames + 3292 s->tx_ucast_frames + s->tx_offload_frames); 3293 case IFCOUNTER_OERRORS: 3294 return (s->tx_drop_frames); 3295 case IFCOUNTER_IBYTES: 3296 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3297 s->rx_ucast_bytes); 3298 case IFCOUNTER_OBYTES: 3299 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3300 s->tx_ucast_bytes + s->tx_offload_bytes); 3301 case IFCOUNTER_IMCASTS: 3302 return (s->rx_mcast_frames); 3303 case IFCOUNTER_OMCASTS: 3304 return (s->tx_mcast_frames); 3305 case IFCOUNTER_OQDROPS: { 3306 uint64_t drops; 3307 3308 drops = 0; 3309 if (vi->flags & VI_INIT_DONE) { 3310 int i; 3311 struct sge_txq *txq; 3312 3313 for_each_txq(vi, i, txq) 3314 drops += counter_u64_fetch(txq->r->dropped); 3315 } 3316 3317 return (drops); 3318 3319 } 3320 3321 default: 3322 return (if_get_counter_default(ifp, c)); 3323 } 3324 } 3325 3326 static uint64_t 3327 cxgbe_get_counter(if_t ifp, ift_counter c) 3328 { 3329 struct vi_info *vi = if_getsoftc(ifp); 3330 struct port_info *pi = vi->pi; 3331 struct port_stats *s = &pi->stats; 3332 3333 mtx_lock(&vi->tick_mtx); 3334 cxgbe_refresh_stats(vi); 3335 mtx_unlock(&vi->tick_mtx); 3336 3337 switch (c) { 3338 case IFCOUNTER_IPACKETS: 3339 return (s->rx_frames); 3340 3341 case IFCOUNTER_IERRORS: 3342 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3343 s->rx_fcs_err + s->rx_len_err); 3344 3345 case IFCOUNTER_OPACKETS: 3346 return (s->tx_frames); 3347 3348 case IFCOUNTER_OERRORS: 3349 return (s->tx_error_frames); 3350 3351 case IFCOUNTER_IBYTES: 3352 return (s->rx_octets); 3353 3354 case IFCOUNTER_OBYTES: 3355 return (s->tx_octets); 3356 3357 case IFCOUNTER_IMCASTS: 3358 return (s->rx_mcast_frames); 3359 3360 case IFCOUNTER_OMCASTS: 3361 return (s->tx_mcast_frames); 3362 3363 case IFCOUNTER_IQDROPS: 3364 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3365 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3366 s->rx_trunc3 + pi->tnl_cong_drops); 3367 3368 case IFCOUNTER_OQDROPS: { 3369 uint64_t drops; 3370 3371 drops = s->tx_drop; 3372 if (vi->flags & VI_INIT_DONE) { 3373 int i; 3374 struct sge_txq *txq; 3375 3376 for_each_txq(vi, i, txq) 3377 drops += counter_u64_fetch(txq->r->dropped); 3378 } 3379 3380 return (drops); 3381 3382 } 3383 3384 default: 3385 return (if_get_counter_default(ifp, c)); 3386 } 3387 } 3388 3389 #if defined(KERN_TLS) || defined(RATELIMIT) 3390 static int 3391 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 3392 struct m_snd_tag **pt) 3393 { 3394 int error; 3395 3396 switch (params->hdr.type) { 3397 #ifdef RATELIMIT 3398 case IF_SND_TAG_TYPE_RATE_LIMIT: 3399 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3400 break; 3401 #endif 3402 #ifdef KERN_TLS 3403 case IF_SND_TAG_TYPE_TLS: 3404 { 3405 struct vi_info *vi = if_getsoftc(ifp); 3406 3407 if (is_t6(vi->pi->adapter)) 3408 error = t6_tls_tag_alloc(ifp, params, pt); 3409 else 3410 error = EOPNOTSUPP; 3411 break; 3412 } 3413 #endif 3414 default: 3415 error = EOPNOTSUPP; 3416 } 3417 return (error); 3418 } 3419 #endif 3420 3421 /* 3422 * The kernel picks a media from the list we had provided but we still validate 3423 * the requeste. 3424 */ 3425 int 3426 cxgbe_media_change(if_t ifp) 3427 { 3428 struct vi_info *vi = if_getsoftc(ifp); 3429 struct port_info *pi = vi->pi; 3430 struct ifmedia *ifm = &pi->media; 3431 struct link_config *lc = &pi->link_cfg; 3432 struct adapter *sc = pi->adapter; 3433 int rc; 3434 3435 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3436 if (rc != 0) 3437 return (rc); 3438 PORT_LOCK(pi); 3439 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3440 /* ifconfig .. media autoselect */ 3441 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3442 rc = ENOTSUP; /* AN not supported by transceiver */ 3443 goto done; 3444 } 3445 lc->requested_aneg = AUTONEG_ENABLE; 3446 lc->requested_speed = 0; 3447 lc->requested_fc |= PAUSE_AUTONEG; 3448 } else { 3449 lc->requested_aneg = AUTONEG_DISABLE; 3450 lc->requested_speed = 3451 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3452 lc->requested_fc = 0; 3453 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3454 lc->requested_fc |= PAUSE_RX; 3455 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3456 lc->requested_fc |= PAUSE_TX; 3457 } 3458 if (pi->up_vis > 0 && hw_all_ok(sc)) { 3459 fixup_link_config(pi); 3460 rc = apply_link_config(pi); 3461 } 3462 done: 3463 PORT_UNLOCK(pi); 3464 end_synchronized_op(sc, 0); 3465 return (rc); 3466 } 3467 3468 /* 3469 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3470 * given speed. 3471 */ 3472 static int 3473 port_mword(struct port_info *pi, uint32_t speed) 3474 { 3475 3476 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3477 MPASS(powerof2(speed)); 3478 3479 switch(pi->port_type) { 3480 case FW_PORT_TYPE_BT_SGMII: 3481 case FW_PORT_TYPE_BT_XFI: 3482 case FW_PORT_TYPE_BT_XAUI: 3483 /* BaseT */ 3484 switch (speed) { 3485 case FW_PORT_CAP32_SPEED_100M: 3486 return (IFM_100_T); 3487 case FW_PORT_CAP32_SPEED_1G: 3488 return (IFM_1000_T); 3489 case FW_PORT_CAP32_SPEED_10G: 3490 return (IFM_10G_T); 3491 } 3492 break; 3493 case FW_PORT_TYPE_KX4: 3494 if (speed == FW_PORT_CAP32_SPEED_10G) 3495 return (IFM_10G_KX4); 3496 break; 3497 case FW_PORT_TYPE_CX4: 3498 if (speed == FW_PORT_CAP32_SPEED_10G) 3499 return (IFM_10G_CX4); 3500 break; 3501 case FW_PORT_TYPE_KX: 3502 if (speed == FW_PORT_CAP32_SPEED_1G) 3503 return (IFM_1000_KX); 3504 break; 3505 case FW_PORT_TYPE_KR: 3506 case FW_PORT_TYPE_BP_AP: 3507 case FW_PORT_TYPE_BP4_AP: 3508 case FW_PORT_TYPE_BP40_BA: 3509 case FW_PORT_TYPE_KR4_100G: 3510 case FW_PORT_TYPE_KR_SFP28: 3511 case FW_PORT_TYPE_KR_XLAUI: 3512 switch (speed) { 3513 case FW_PORT_CAP32_SPEED_1G: 3514 return (IFM_1000_KX); 3515 case FW_PORT_CAP32_SPEED_10G: 3516 return (IFM_10G_KR); 3517 case FW_PORT_CAP32_SPEED_25G: 3518 return (IFM_25G_KR); 3519 case FW_PORT_CAP32_SPEED_40G: 3520 return (IFM_40G_KR4); 3521 case FW_PORT_CAP32_SPEED_50G: 3522 return (IFM_50G_KR2); 3523 case FW_PORT_CAP32_SPEED_100G: 3524 return (IFM_100G_KR4); 3525 } 3526 break; 3527 case FW_PORT_TYPE_FIBER_XFI: 3528 case FW_PORT_TYPE_FIBER_XAUI: 3529 case FW_PORT_TYPE_SFP: 3530 case FW_PORT_TYPE_QSFP_10G: 3531 case FW_PORT_TYPE_QSA: 3532 case FW_PORT_TYPE_QSFP: 3533 case FW_PORT_TYPE_CR4_QSFP: 3534 case FW_PORT_TYPE_CR_QSFP: 3535 case FW_PORT_TYPE_CR2_QSFP: 3536 case FW_PORT_TYPE_SFP28: 3537 /* Pluggable transceiver */ 3538 switch (pi->mod_type) { 3539 case FW_PORT_MOD_TYPE_LR: 3540 case FW_PORT_MOD_TYPE_LR_SIMPLEX: 3541 switch (speed) { 3542 case FW_PORT_CAP32_SPEED_1G: 3543 return (IFM_1000_LX); 3544 case FW_PORT_CAP32_SPEED_10G: 3545 return (IFM_10G_LR); 3546 case FW_PORT_CAP32_SPEED_25G: 3547 return (IFM_25G_LR); 3548 case FW_PORT_CAP32_SPEED_40G: 3549 return (IFM_40G_LR4); 3550 case FW_PORT_CAP32_SPEED_50G: 3551 return (IFM_50G_LR2); 3552 case FW_PORT_CAP32_SPEED_100G: 3553 return (IFM_100G_LR4); 3554 } 3555 break; 3556 case FW_PORT_MOD_TYPE_SR: 3557 switch (speed) { 3558 case FW_PORT_CAP32_SPEED_1G: 3559 return (IFM_1000_SX); 3560 case FW_PORT_CAP32_SPEED_10G: 3561 return (IFM_10G_SR); 3562 case FW_PORT_CAP32_SPEED_25G: 3563 return (IFM_25G_SR); 3564 case FW_PORT_CAP32_SPEED_40G: 3565 return (IFM_40G_SR4); 3566 case FW_PORT_CAP32_SPEED_50G: 3567 return (IFM_50G_SR2); 3568 case FW_PORT_CAP32_SPEED_100G: 3569 return (IFM_100G_SR4); 3570 } 3571 break; 3572 case FW_PORT_MOD_TYPE_ER: 3573 if (speed == FW_PORT_CAP32_SPEED_10G) 3574 return (IFM_10G_ER); 3575 break; 3576 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3577 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3578 switch (speed) { 3579 case FW_PORT_CAP32_SPEED_1G: 3580 return (IFM_1000_CX); 3581 case FW_PORT_CAP32_SPEED_10G: 3582 return (IFM_10G_TWINAX); 3583 case FW_PORT_CAP32_SPEED_25G: 3584 return (IFM_25G_CR); 3585 case FW_PORT_CAP32_SPEED_40G: 3586 return (IFM_40G_CR4); 3587 case FW_PORT_CAP32_SPEED_50G: 3588 return (IFM_50G_CR2); 3589 case FW_PORT_CAP32_SPEED_100G: 3590 return (IFM_100G_CR4); 3591 } 3592 break; 3593 case FW_PORT_MOD_TYPE_LRM: 3594 if (speed == FW_PORT_CAP32_SPEED_10G) 3595 return (IFM_10G_LRM); 3596 break; 3597 case FW_PORT_MOD_TYPE_DR: 3598 if (speed == FW_PORT_CAP32_SPEED_100G) 3599 return (IFM_100G_DR); 3600 break; 3601 case FW_PORT_MOD_TYPE_NA: 3602 MPASS(0); /* Not pluggable? */ 3603 /* fall throough */ 3604 case FW_PORT_MOD_TYPE_ERROR: 3605 case FW_PORT_MOD_TYPE_UNKNOWN: 3606 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3607 break; 3608 case FW_PORT_MOD_TYPE_NONE: 3609 return (IFM_NONE); 3610 } 3611 break; 3612 case FW_PORT_TYPE_NONE: 3613 return (IFM_NONE); 3614 } 3615 3616 return (IFM_UNKNOWN); 3617 } 3618 3619 void 3620 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr) 3621 { 3622 struct vi_info *vi = if_getsoftc(ifp); 3623 struct port_info *pi = vi->pi; 3624 struct adapter *sc = pi->adapter; 3625 struct link_config *lc = &pi->link_cfg; 3626 3627 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0) 3628 return; 3629 PORT_LOCK(pi); 3630 3631 if (pi->up_vis == 0 && hw_all_ok(sc)) { 3632 /* 3633 * If all the interfaces are administratively down the firmware 3634 * does not report transceiver changes. Refresh port info here 3635 * so that ifconfig displays accurate ifmedia at all times. 3636 * This is the only reason we have a synchronized op in this 3637 * function. Just PORT_LOCK would have been enough otherwise. 3638 */ 3639 t4_update_port_info(pi); 3640 build_medialist(pi); 3641 } 3642 3643 /* ifm_status */ 3644 ifmr->ifm_status = IFM_AVALID; 3645 if (lc->link_ok == false) 3646 goto done; 3647 ifmr->ifm_status |= IFM_ACTIVE; 3648 3649 /* ifm_active */ 3650 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3651 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3652 if (lc->fc & PAUSE_RX) 3653 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3654 if (lc->fc & PAUSE_TX) 3655 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3656 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3657 done: 3658 PORT_UNLOCK(pi); 3659 end_synchronized_op(sc, 0); 3660 } 3661 3662 static int 3663 vcxgbe_probe(device_t dev) 3664 { 3665 struct vi_info *vi = device_get_softc(dev); 3666 3667 device_set_descf(dev, "port %d vi %td", vi->pi->port_id, 3668 vi - vi->pi->vi); 3669 3670 return (BUS_PROBE_DEFAULT); 3671 } 3672 3673 static int 3674 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3675 { 3676 int func, index, rc; 3677 uint32_t param, val; 3678 3679 ASSERT_SYNCHRONIZED_OP(sc); 3680 3681 index = vi - pi->vi; 3682 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3683 KASSERT(index < nitems(vi_mac_funcs), 3684 ("%s: VI %s doesn't have a MAC func", __func__, 3685 device_get_nameunit(vi->dev))); 3686 func = vi_mac_funcs[index]; 3687 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3688 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3689 if (rc < 0) { 3690 CH_ERR(vi, "failed to allocate virtual interface %d" 3691 "for port %d: %d\n", index, pi->port_id, -rc); 3692 return (-rc); 3693 } 3694 vi->viid = rc; 3695 3696 if (vi->rss_size == 1) { 3697 /* 3698 * This VI didn't get a slice of the RSS table. Reduce the 3699 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3700 * configuration file (nvi, rssnvi for this PF) if this is a 3701 * problem. 3702 */ 3703 device_printf(vi->dev, "RSS table not available.\n"); 3704 vi->rss_base = 0xffff; 3705 3706 return (0); 3707 } 3708 3709 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3710 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3711 V_FW_PARAMS_PARAM_YZ(vi->viid); 3712 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3713 if (rc) 3714 vi->rss_base = 0xffff; 3715 else { 3716 MPASS((val >> 16) == vi->rss_size); 3717 vi->rss_base = val & 0xffff; 3718 } 3719 3720 return (0); 3721 } 3722 3723 static int 3724 vcxgbe_attach(device_t dev) 3725 { 3726 struct vi_info *vi; 3727 struct port_info *pi; 3728 struct adapter *sc; 3729 int rc; 3730 3731 vi = device_get_softc(dev); 3732 pi = vi->pi; 3733 sc = pi->adapter; 3734 3735 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3736 if (rc) 3737 return (rc); 3738 rc = alloc_extra_vi(sc, pi, vi); 3739 end_synchronized_op(sc, 0); 3740 if (rc) 3741 return (rc); 3742 3743 cxgbe_vi_attach(dev, vi); 3744 3745 return (0); 3746 } 3747 3748 static int 3749 vcxgbe_detach(device_t dev) 3750 { 3751 struct vi_info *vi; 3752 struct adapter *sc; 3753 3754 vi = device_get_softc(dev); 3755 sc = vi->adapter; 3756 3757 begin_vi_detach(sc, vi); 3758 cxgbe_vi_detach(vi); 3759 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3760 end_vi_detach(sc, vi); 3761 3762 return (0); 3763 } 3764 3765 static struct callout fatal_callout; 3766 static struct taskqueue *reset_tq; 3767 3768 static void 3769 delayed_panic(void *arg) 3770 { 3771 struct adapter *sc = arg; 3772 3773 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3774 } 3775 3776 static void 3777 fatal_error_task(void *arg, int pending) 3778 { 3779 struct adapter *sc = arg; 3780 int rc; 3781 3782 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3783 dump_cim_regs(sc); 3784 dump_cimla(sc); 3785 dump_devlog(sc); 3786 } 3787 3788 if (t4_reset_on_fatal_err) { 3789 CH_ALERT(sc, "resetting adapter after fatal error.\n"); 3790 rc = reset_adapter(sc); 3791 if (rc == 0 && t4_panic_on_fatal_err) { 3792 CH_ALERT(sc, "reset was successful, " 3793 "system will NOT panic.\n"); 3794 return; 3795 } 3796 } 3797 3798 if (t4_panic_on_fatal_err) { 3799 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3800 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3801 } 3802 } 3803 3804 void 3805 t4_fatal_err(struct adapter *sc, bool fw_error) 3806 { 3807 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3808 3809 stop_adapter(sc); 3810 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3811 return; 3812 if (fw_error) { 3813 /* 3814 * We are here because of a firmware error/timeout and not 3815 * because of a hardware interrupt. It is possible (although 3816 * not very likely) that an error interrupt was also raised but 3817 * this thread ran first and inhibited t4_intr_err. We walk the 3818 * main INT_CAUSE registers here to make sure we haven't missed 3819 * anything interesting. 3820 */ 3821 t4_slow_intr_handler(sc, verbose); 3822 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3823 } 3824 t4_report_fw_error(sc); 3825 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3826 device_get_nameunit(sc->dev), fw_error); 3827 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3828 } 3829 3830 void 3831 t4_add_adapter(struct adapter *sc) 3832 { 3833 sx_xlock(&t4_list_lock); 3834 SLIST_INSERT_HEAD(&t4_list, sc, link); 3835 sx_xunlock(&t4_list_lock); 3836 } 3837 3838 int 3839 t4_map_bars_0_and_4(struct adapter *sc) 3840 { 3841 sc->regs_rid = PCIR_BAR(0); 3842 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3843 &sc->regs_rid, RF_ACTIVE); 3844 if (sc->regs_res == NULL) { 3845 device_printf(sc->dev, "cannot map registers.\n"); 3846 return (ENXIO); 3847 } 3848 sc->bt = rman_get_bustag(sc->regs_res); 3849 sc->bh = rman_get_bushandle(sc->regs_res); 3850 sc->mmio_len = rman_get_size(sc->regs_res); 3851 setbit(&sc->doorbells, DOORBELL_KDB); 3852 3853 sc->msix_rid = PCIR_BAR(4); 3854 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3855 &sc->msix_rid, RF_ACTIVE); 3856 if (sc->msix_res == NULL) { 3857 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3858 return (ENXIO); 3859 } 3860 3861 return (0); 3862 } 3863 3864 int 3865 t4_map_bar_2(struct adapter *sc) 3866 { 3867 3868 /* 3869 * T4: only iWARP driver uses the userspace doorbells. There is no need 3870 * to map it if RDMA is disabled. 3871 */ 3872 if (is_t4(sc) && sc->rdmacaps == 0) 3873 return (0); 3874 3875 sc->udbs_rid = PCIR_BAR(2); 3876 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3877 &sc->udbs_rid, RF_ACTIVE); 3878 if (sc->udbs_res == NULL) { 3879 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3880 return (ENXIO); 3881 } 3882 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3883 3884 if (chip_id(sc) >= CHELSIO_T5) { 3885 setbit(&sc->doorbells, DOORBELL_UDB); 3886 #if defined(__i386__) || defined(__amd64__) 3887 if (t5_write_combine) { 3888 int rc, mode; 3889 3890 /* 3891 * Enable write combining on BAR2. This is the 3892 * userspace doorbell BAR and is split into 128B 3893 * (UDBS_SEG_SIZE) doorbell regions, each associated 3894 * with an egress queue. The first 64B has the doorbell 3895 * and the second 64B can be used to submit a tx work 3896 * request with an implicit doorbell. 3897 */ 3898 3899 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3900 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3901 if (rc == 0) { 3902 clrbit(&sc->doorbells, DOORBELL_UDB); 3903 setbit(&sc->doorbells, DOORBELL_WCWR); 3904 setbit(&sc->doorbells, DOORBELL_UDBWC); 3905 } else { 3906 device_printf(sc->dev, 3907 "couldn't enable write combining: %d\n", 3908 rc); 3909 } 3910 3911 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3912 t4_write_reg(sc, A_SGE_STAT_CFG, 3913 V_STATSOURCE_T5(7) | mode); 3914 } 3915 #endif 3916 } 3917 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3918 3919 return (0); 3920 } 3921 3922 int 3923 t4_adj_doorbells(struct adapter *sc) 3924 { 3925 if ((sc->doorbells & t4_doorbells_allowed) != 0) { 3926 sc->doorbells &= t4_doorbells_allowed; 3927 return (0); 3928 } 3929 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n", 3930 sc->doorbells, t4_doorbells_allowed); 3931 return (EINVAL); 3932 } 3933 3934 struct memwin_init { 3935 uint32_t base; 3936 uint32_t aperture; 3937 }; 3938 3939 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3940 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3941 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3942 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3943 }; 3944 3945 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3946 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3947 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3948 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3949 }; 3950 3951 static void 3952 setup_memwin(struct adapter *sc) 3953 { 3954 const struct memwin_init *mw_init; 3955 struct memwin *mw; 3956 int i; 3957 uint32_t bar0; 3958 3959 if (is_t4(sc)) { 3960 /* 3961 * Read low 32b of bar0 indirectly via the hardware backdoor 3962 * mechanism. Works from within PCI passthrough environments 3963 * too, where rman_get_start() can return a different value. We 3964 * need to program the T4 memory window decoders with the actual 3965 * addresses that will be coming across the PCIe link. 3966 */ 3967 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3968 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3969 3970 mw_init = &t4_memwin[0]; 3971 } else { 3972 /* T5+ use the relative offset inside the PCIe BAR */ 3973 bar0 = 0; 3974 3975 mw_init = &t5_memwin[0]; 3976 } 3977 3978 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3979 if (!rw_initialized(&mw->mw_lock)) { 3980 rw_init(&mw->mw_lock, "memory window access"); 3981 mw->mw_base = mw_init->base; 3982 mw->mw_aperture = mw_init->aperture; 3983 mw->mw_curpos = 0; 3984 } 3985 t4_write_reg(sc, 3986 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3987 (mw->mw_base + bar0) | V_BIR(0) | 3988 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3989 rw_wlock(&mw->mw_lock); 3990 position_memwin(sc, i, mw->mw_curpos); 3991 rw_wunlock(&mw->mw_lock); 3992 } 3993 3994 /* flush */ 3995 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3996 } 3997 3998 /* 3999 * Positions the memory window at the given address in the card's address space. 4000 * There are some alignment requirements and the actual position may be at an 4001 * address prior to the requested address. mw->mw_curpos always has the actual 4002 * position of the window. 4003 */ 4004 static void 4005 position_memwin(struct adapter *sc, int idx, uint32_t addr) 4006 { 4007 struct memwin *mw; 4008 uint32_t pf; 4009 uint32_t reg; 4010 4011 MPASS(idx >= 0 && idx < NUM_MEMWIN); 4012 mw = &sc->memwin[idx]; 4013 rw_assert(&mw->mw_lock, RA_WLOCKED); 4014 4015 if (is_t4(sc)) { 4016 pf = 0; 4017 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 4018 } else { 4019 pf = V_PFNUM(sc->pf); 4020 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 4021 } 4022 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 4023 t4_write_reg(sc, reg, mw->mw_curpos | pf); 4024 t4_read_reg(sc, reg); /* flush */ 4025 } 4026 4027 int 4028 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 4029 int len, int rw) 4030 { 4031 struct memwin *mw; 4032 uint32_t mw_end, v; 4033 4034 MPASS(idx >= 0 && idx < NUM_MEMWIN); 4035 4036 /* Memory can only be accessed in naturally aligned 4 byte units */ 4037 if (addr & 3 || len & 3 || len <= 0) 4038 return (EINVAL); 4039 4040 mw = &sc->memwin[idx]; 4041 while (len > 0) { 4042 rw_rlock(&mw->mw_lock); 4043 mw_end = mw->mw_curpos + mw->mw_aperture; 4044 if (addr >= mw_end || addr < mw->mw_curpos) { 4045 /* Will need to reposition the window */ 4046 if (!rw_try_upgrade(&mw->mw_lock)) { 4047 rw_runlock(&mw->mw_lock); 4048 rw_wlock(&mw->mw_lock); 4049 } 4050 rw_assert(&mw->mw_lock, RA_WLOCKED); 4051 position_memwin(sc, idx, addr); 4052 rw_downgrade(&mw->mw_lock); 4053 mw_end = mw->mw_curpos + mw->mw_aperture; 4054 } 4055 rw_assert(&mw->mw_lock, RA_RLOCKED); 4056 while (addr < mw_end && len > 0) { 4057 if (rw == 0) { 4058 v = t4_read_reg(sc, mw->mw_base + addr - 4059 mw->mw_curpos); 4060 *val++ = le32toh(v); 4061 } else { 4062 v = *val++; 4063 t4_write_reg(sc, mw->mw_base + addr - 4064 mw->mw_curpos, htole32(v)); 4065 } 4066 addr += 4; 4067 len -= 4; 4068 } 4069 rw_runlock(&mw->mw_lock); 4070 } 4071 4072 return (0); 4073 } 4074 4075 CTASSERT(M_TID_COOKIE == M_COOKIE); 4076 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1)); 4077 4078 static void 4079 t4_init_atid_table(struct adapter *sc) 4080 { 4081 struct tid_info *t; 4082 int i; 4083 4084 t = &sc->tids; 4085 if (t->natids == 0) 4086 return; 4087 4088 MPASS(t->atid_tab == NULL); 4089 4090 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 4091 M_ZERO | M_WAITOK); 4092 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 4093 t->afree = t->atid_tab; 4094 t->atids_in_use = 0; 4095 t->atid_alloc_stopped = false; 4096 for (i = 1; i < t->natids; i++) 4097 t->atid_tab[i - 1].next = &t->atid_tab[i]; 4098 t->atid_tab[t->natids - 1].next = NULL; 4099 } 4100 4101 static void 4102 t4_free_atid_table(struct adapter *sc) 4103 { 4104 struct tid_info *t; 4105 4106 t = &sc->tids; 4107 4108 KASSERT(t->atids_in_use == 0, 4109 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4110 4111 if (mtx_initialized(&t->atid_lock)) 4112 mtx_destroy(&t->atid_lock); 4113 free(t->atid_tab, M_CXGBE); 4114 t->atid_tab = NULL; 4115 } 4116 4117 static void 4118 stop_atid_allocator(struct adapter *sc) 4119 { 4120 struct tid_info *t = &sc->tids; 4121 4122 if (t->natids == 0) 4123 return; 4124 mtx_lock(&t->atid_lock); 4125 t->atid_alloc_stopped = true; 4126 mtx_unlock(&t->atid_lock); 4127 } 4128 4129 static void 4130 restart_atid_allocator(struct adapter *sc) 4131 { 4132 struct tid_info *t = &sc->tids; 4133 4134 if (t->natids == 0) 4135 return; 4136 mtx_lock(&t->atid_lock); 4137 KASSERT(t->atids_in_use == 0, 4138 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4139 t->atid_alloc_stopped = false; 4140 mtx_unlock(&t->atid_lock); 4141 } 4142 4143 int 4144 alloc_atid(struct adapter *sc, void *ctx) 4145 { 4146 struct tid_info *t = &sc->tids; 4147 int atid = -1; 4148 4149 mtx_lock(&t->atid_lock); 4150 if (t->afree && !t->atid_alloc_stopped) { 4151 union aopen_entry *p = t->afree; 4152 4153 atid = p - t->atid_tab; 4154 MPASS(atid <= M_TID_TID); 4155 t->afree = p->next; 4156 p->data = ctx; 4157 t->atids_in_use++; 4158 } 4159 mtx_unlock(&t->atid_lock); 4160 return (atid); 4161 } 4162 4163 void * 4164 lookup_atid(struct adapter *sc, int atid) 4165 { 4166 struct tid_info *t = &sc->tids; 4167 4168 return (t->atid_tab[atid].data); 4169 } 4170 4171 void 4172 free_atid(struct adapter *sc, int atid) 4173 { 4174 struct tid_info *t = &sc->tids; 4175 union aopen_entry *p = &t->atid_tab[atid]; 4176 4177 mtx_lock(&t->atid_lock); 4178 p->next = t->afree; 4179 t->afree = p; 4180 t->atids_in_use--; 4181 mtx_unlock(&t->atid_lock); 4182 } 4183 4184 static void 4185 queue_tid_release(struct adapter *sc, int tid) 4186 { 4187 4188 CXGBE_UNIMPLEMENTED("deferred tid release"); 4189 } 4190 4191 void 4192 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 4193 { 4194 struct wrqe *wr; 4195 struct cpl_tid_release *req; 4196 4197 wr = alloc_wrqe(sizeof(*req), ctrlq); 4198 if (wr == NULL) { 4199 queue_tid_release(sc, tid); /* defer */ 4200 return; 4201 } 4202 req = wrtod(wr); 4203 4204 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4205 4206 t4_wrq_tx(sc, wr); 4207 } 4208 4209 static int 4210 t4_range_cmp(const void *a, const void *b) 4211 { 4212 return ((const struct t4_range *)a)->start - 4213 ((const struct t4_range *)b)->start; 4214 } 4215 4216 /* 4217 * Verify that the memory range specified by the addr/len pair is valid within 4218 * the card's address space. 4219 */ 4220 static int 4221 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4222 { 4223 struct t4_range mem_ranges[4], *r, *next; 4224 uint32_t em, addr_len; 4225 int i, n, remaining; 4226 4227 /* Memory can only be accessed in naturally aligned 4 byte units */ 4228 if (addr & 3 || len & 3 || len == 0) 4229 return (EINVAL); 4230 4231 /* Enabled memories */ 4232 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4233 4234 r = &mem_ranges[0]; 4235 n = 0; 4236 bzero(r, sizeof(mem_ranges)); 4237 if (em & F_EDRAM0_ENABLE) { 4238 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4239 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4240 if (r->size > 0) { 4241 r->start = G_EDRAM0_BASE(addr_len) << 20; 4242 if (addr >= r->start && 4243 addr + len <= r->start + r->size) 4244 return (0); 4245 r++; 4246 n++; 4247 } 4248 } 4249 if (em & F_EDRAM1_ENABLE) { 4250 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4251 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4252 if (r->size > 0) { 4253 r->start = G_EDRAM1_BASE(addr_len) << 20; 4254 if (addr >= r->start && 4255 addr + len <= r->start + r->size) 4256 return (0); 4257 r++; 4258 n++; 4259 } 4260 } 4261 if (em & F_EXT_MEM_ENABLE) { 4262 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4263 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4264 if (r->size > 0) { 4265 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4266 if (addr >= r->start && 4267 addr + len <= r->start + r->size) 4268 return (0); 4269 r++; 4270 n++; 4271 } 4272 } 4273 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4274 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4275 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4276 if (r->size > 0) { 4277 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4278 if (addr >= r->start && 4279 addr + len <= r->start + r->size) 4280 return (0); 4281 r++; 4282 n++; 4283 } 4284 } 4285 MPASS(n <= nitems(mem_ranges)); 4286 4287 if (n > 1) { 4288 /* Sort and merge the ranges. */ 4289 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4290 4291 /* Start from index 0 and examine the next n - 1 entries. */ 4292 r = &mem_ranges[0]; 4293 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4294 4295 MPASS(r->size > 0); /* r is a valid entry. */ 4296 next = r + 1; 4297 MPASS(next->size > 0); /* and so is the next one. */ 4298 4299 while (r->start + r->size >= next->start) { 4300 /* Merge the next one into the current entry. */ 4301 r->size = max(r->start + r->size, 4302 next->start + next->size) - r->start; 4303 n--; /* One fewer entry in total. */ 4304 if (--remaining == 0) 4305 goto done; /* short circuit */ 4306 next++; 4307 } 4308 if (next != r + 1) { 4309 /* 4310 * Some entries were merged into r and next 4311 * points to the first valid entry that couldn't 4312 * be merged. 4313 */ 4314 MPASS(next->size > 0); /* must be valid */ 4315 memcpy(r + 1, next, remaining * sizeof(*r)); 4316 #ifdef INVARIANTS 4317 /* 4318 * This so that the foo->size assertion in the 4319 * next iteration of the loop do the right 4320 * thing for entries that were pulled up and are 4321 * no longer valid. 4322 */ 4323 MPASS(n < nitems(mem_ranges)); 4324 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4325 sizeof(struct t4_range)); 4326 #endif 4327 } 4328 } 4329 done: 4330 /* Done merging the ranges. */ 4331 MPASS(n > 0); 4332 r = &mem_ranges[0]; 4333 for (i = 0; i < n; i++, r++) { 4334 if (addr >= r->start && 4335 addr + len <= r->start + r->size) 4336 return (0); 4337 } 4338 } 4339 4340 return (EFAULT); 4341 } 4342 4343 static int 4344 fwmtype_to_hwmtype(int mtype) 4345 { 4346 4347 switch (mtype) { 4348 case FW_MEMTYPE_EDC0: 4349 return (MEM_EDC0); 4350 case FW_MEMTYPE_EDC1: 4351 return (MEM_EDC1); 4352 case FW_MEMTYPE_EXTMEM: 4353 return (MEM_MC0); 4354 case FW_MEMTYPE_EXTMEM1: 4355 return (MEM_MC1); 4356 default: 4357 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4358 } 4359 } 4360 4361 /* 4362 * Verify that the memory range specified by the memtype/offset/len pair is 4363 * valid and lies entirely within the memtype specified. The global address of 4364 * the start of the range is returned in addr. 4365 */ 4366 static int 4367 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4368 uint32_t *addr) 4369 { 4370 uint32_t em, addr_len, maddr; 4371 4372 /* Memory can only be accessed in naturally aligned 4 byte units */ 4373 if (off & 3 || len & 3 || len == 0) 4374 return (EINVAL); 4375 4376 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4377 switch (fwmtype_to_hwmtype(mtype)) { 4378 case MEM_EDC0: 4379 if (!(em & F_EDRAM0_ENABLE)) 4380 return (EINVAL); 4381 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4382 maddr = G_EDRAM0_BASE(addr_len) << 20; 4383 break; 4384 case MEM_EDC1: 4385 if (!(em & F_EDRAM1_ENABLE)) 4386 return (EINVAL); 4387 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4388 maddr = G_EDRAM1_BASE(addr_len) << 20; 4389 break; 4390 case MEM_MC: 4391 if (!(em & F_EXT_MEM_ENABLE)) 4392 return (EINVAL); 4393 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4394 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4395 break; 4396 case MEM_MC1: 4397 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4398 return (EINVAL); 4399 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4400 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4401 break; 4402 default: 4403 return (EINVAL); 4404 } 4405 4406 *addr = maddr + off; /* global address */ 4407 return (validate_mem_range(sc, *addr, len)); 4408 } 4409 4410 static int 4411 fixup_devlog_params(struct adapter *sc) 4412 { 4413 struct devlog_params *dparams = &sc->params.devlog; 4414 int rc; 4415 4416 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4417 dparams->size, &dparams->addr); 4418 4419 return (rc); 4420 } 4421 4422 static void 4423 update_nirq(struct intrs_and_queues *iaq, int nports) 4424 { 4425 4426 iaq->nirq = T4_EXTRA_INTR; 4427 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4428 iaq->nirq += nports * iaq->nofldrxq; 4429 iaq->nirq += nports * (iaq->num_vis - 1) * 4430 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4431 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4432 } 4433 4434 /* 4435 * Adjust requirements to fit the number of interrupts available. 4436 */ 4437 static void 4438 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4439 int navail) 4440 { 4441 int old_nirq; 4442 const int nports = sc->params.nports; 4443 4444 MPASS(nports > 0); 4445 MPASS(navail > 0); 4446 4447 bzero(iaq, sizeof(*iaq)); 4448 iaq->intr_type = itype; 4449 iaq->num_vis = t4_num_vis; 4450 iaq->ntxq = t4_ntxq; 4451 iaq->ntxq_vi = t4_ntxq_vi; 4452 iaq->nrxq = t4_nrxq; 4453 iaq->nrxq_vi = t4_nrxq_vi; 4454 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4455 if (is_offload(sc) || is_ethoffload(sc)) { 4456 iaq->nofldtxq = t4_nofldtxq; 4457 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4458 } 4459 #endif 4460 #ifdef TCP_OFFLOAD 4461 if (is_offload(sc)) { 4462 iaq->nofldrxq = t4_nofldrxq; 4463 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4464 } 4465 #endif 4466 #ifdef DEV_NETMAP 4467 if (t4_native_netmap & NN_MAIN_VI) { 4468 iaq->nnmtxq = t4_nnmtxq; 4469 iaq->nnmrxq = t4_nnmrxq; 4470 } 4471 if (t4_native_netmap & NN_EXTRA_VI) { 4472 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4473 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4474 } 4475 #endif 4476 4477 update_nirq(iaq, nports); 4478 if (iaq->nirq <= navail && 4479 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4480 /* 4481 * This is the normal case -- there are enough interrupts for 4482 * everything. 4483 */ 4484 goto done; 4485 } 4486 4487 /* 4488 * If extra VIs have been configured try reducing their count and see if 4489 * that works. 4490 */ 4491 while (iaq->num_vis > 1) { 4492 iaq->num_vis--; 4493 update_nirq(iaq, nports); 4494 if (iaq->nirq <= navail && 4495 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4496 device_printf(sc->dev, "virtual interfaces per port " 4497 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4498 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4499 "itype %d, navail %u, nirq %d.\n", 4500 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4501 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4502 itype, navail, iaq->nirq); 4503 goto done; 4504 } 4505 } 4506 4507 /* 4508 * Extra VIs will not be created. Log a message if they were requested. 4509 */ 4510 MPASS(iaq->num_vis == 1); 4511 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4512 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4513 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4514 if (iaq->num_vis != t4_num_vis) { 4515 device_printf(sc->dev, "extra virtual interfaces disabled. " 4516 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4517 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4518 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4519 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4520 } 4521 4522 /* 4523 * Keep reducing the number of NIC rx queues to the next lower power of 4524 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4525 * if that works. 4526 */ 4527 do { 4528 if (iaq->nrxq > 1) { 4529 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1); 4530 if (iaq->nnmrxq > iaq->nrxq) 4531 iaq->nnmrxq = iaq->nrxq; 4532 } 4533 if (iaq->nofldrxq > 1) 4534 iaq->nofldrxq >>= 1; 4535 4536 old_nirq = iaq->nirq; 4537 update_nirq(iaq, nports); 4538 if (iaq->nirq <= navail && 4539 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4540 device_printf(sc->dev, "running with reduced number of " 4541 "rx queues because of shortage of interrupts. " 4542 "nrxq=%u, nofldrxq=%u. " 4543 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4544 iaq->nofldrxq, itype, navail, iaq->nirq); 4545 goto done; 4546 } 4547 } while (old_nirq != iaq->nirq); 4548 4549 /* One interrupt for everything. Ugh. */ 4550 device_printf(sc->dev, "running with minimal number of queues. " 4551 "itype %d, navail %u.\n", itype, navail); 4552 iaq->nirq = 1; 4553 iaq->nrxq = 1; 4554 iaq->ntxq = 1; 4555 if (iaq->nofldrxq > 0) { 4556 iaq->nofldrxq = 1; 4557 iaq->nofldtxq = 1; 4558 } 4559 iaq->nnmtxq = 0; 4560 iaq->nnmrxq = 0; 4561 done: 4562 MPASS(iaq->num_vis > 0); 4563 if (iaq->num_vis > 1) { 4564 MPASS(iaq->nrxq_vi > 0); 4565 MPASS(iaq->ntxq_vi > 0); 4566 } 4567 MPASS(iaq->nirq > 0); 4568 MPASS(iaq->nrxq > 0); 4569 MPASS(iaq->ntxq > 0); 4570 if (itype == INTR_MSI) { 4571 MPASS(powerof2(iaq->nirq)); 4572 } 4573 } 4574 4575 static int 4576 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4577 { 4578 int rc, itype, navail, nalloc; 4579 4580 for (itype = INTR_MSIX; itype; itype >>= 1) { 4581 4582 if ((itype & t4_intr_types) == 0) 4583 continue; /* not allowed */ 4584 4585 if (itype == INTR_MSIX) 4586 navail = pci_msix_count(sc->dev); 4587 else if (itype == INTR_MSI) 4588 navail = pci_msi_count(sc->dev); 4589 else 4590 navail = 1; 4591 restart: 4592 if (navail == 0) 4593 continue; 4594 4595 calculate_iaq(sc, iaq, itype, navail); 4596 nalloc = iaq->nirq; 4597 rc = 0; 4598 if (itype == INTR_MSIX) 4599 rc = pci_alloc_msix(sc->dev, &nalloc); 4600 else if (itype == INTR_MSI) 4601 rc = pci_alloc_msi(sc->dev, &nalloc); 4602 4603 if (rc == 0 && nalloc > 0) { 4604 if (nalloc == iaq->nirq) 4605 return (0); 4606 4607 /* 4608 * Didn't get the number requested. Use whatever number 4609 * the kernel is willing to allocate. 4610 */ 4611 device_printf(sc->dev, "fewer vectors than requested, " 4612 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4613 itype, iaq->nirq, nalloc); 4614 pci_release_msi(sc->dev); 4615 navail = nalloc; 4616 goto restart; 4617 } 4618 4619 device_printf(sc->dev, 4620 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4621 itype, rc, iaq->nirq, nalloc); 4622 } 4623 4624 device_printf(sc->dev, 4625 "failed to find a usable interrupt type. " 4626 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4627 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4628 4629 return (ENXIO); 4630 } 4631 4632 #define FW_VERSION(chip) ( \ 4633 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4634 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4635 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4636 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4637 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4638 4639 /* Just enough of fw_hdr to cover all version info. */ 4640 struct fw_h { 4641 __u8 ver; 4642 __u8 chip; 4643 __be16 len512; 4644 __be32 fw_ver; 4645 __be32 tp_microcode_ver; 4646 __u8 intfver_nic; 4647 __u8 intfver_vnic; 4648 __u8 intfver_ofld; 4649 __u8 intfver_ri; 4650 __u8 intfver_iscsipdu; 4651 __u8 intfver_iscsi; 4652 __u8 intfver_fcoepdu; 4653 __u8 intfver_fcoe; 4654 }; 4655 /* Spot check a couple of fields. */ 4656 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4657 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4658 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4659 4660 struct fw_info { 4661 uint8_t chip; 4662 char *kld_name; 4663 char *fw_mod_name; 4664 struct fw_h fw_h; 4665 } fw_info[] = { 4666 { 4667 .chip = CHELSIO_T4, 4668 .kld_name = "t4fw_cfg", 4669 .fw_mod_name = "t4fw", 4670 .fw_h = { 4671 .chip = FW_HDR_CHIP_T4, 4672 .fw_ver = htobe32(FW_VERSION(T4)), 4673 .intfver_nic = FW_INTFVER(T4, NIC), 4674 .intfver_vnic = FW_INTFVER(T4, VNIC), 4675 .intfver_ofld = FW_INTFVER(T4, OFLD), 4676 .intfver_ri = FW_INTFVER(T4, RI), 4677 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4678 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4679 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4680 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4681 }, 4682 }, { 4683 .chip = CHELSIO_T5, 4684 .kld_name = "t5fw_cfg", 4685 .fw_mod_name = "t5fw", 4686 .fw_h = { 4687 .chip = FW_HDR_CHIP_T5, 4688 .fw_ver = htobe32(FW_VERSION(T5)), 4689 .intfver_nic = FW_INTFVER(T5, NIC), 4690 .intfver_vnic = FW_INTFVER(T5, VNIC), 4691 .intfver_ofld = FW_INTFVER(T5, OFLD), 4692 .intfver_ri = FW_INTFVER(T5, RI), 4693 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4694 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4695 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4696 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4697 }, 4698 }, { 4699 .chip = CHELSIO_T6, 4700 .kld_name = "t6fw_cfg", 4701 .fw_mod_name = "t6fw", 4702 .fw_h = { 4703 .chip = FW_HDR_CHIP_T6, 4704 .fw_ver = htobe32(FW_VERSION(T6)), 4705 .intfver_nic = FW_INTFVER(T6, NIC), 4706 .intfver_vnic = FW_INTFVER(T6, VNIC), 4707 .intfver_ofld = FW_INTFVER(T6, OFLD), 4708 .intfver_ri = FW_INTFVER(T6, RI), 4709 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4710 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4711 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4712 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4713 }, 4714 } 4715 }; 4716 4717 static struct fw_info * 4718 find_fw_info(int chip) 4719 { 4720 int i; 4721 4722 for (i = 0; i < nitems(fw_info); i++) { 4723 if (fw_info[i].chip == chip) 4724 return (&fw_info[i]); 4725 } 4726 return (NULL); 4727 } 4728 4729 /* 4730 * Is the given firmware API compatible with the one the driver was compiled 4731 * with? 4732 */ 4733 static int 4734 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4735 { 4736 4737 /* short circuit if it's the exact same firmware version */ 4738 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4739 return (1); 4740 4741 /* 4742 * XXX: Is this too conservative? Perhaps I should limit this to the 4743 * features that are supported in the driver. 4744 */ 4745 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4746 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4747 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4748 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4749 return (1); 4750 #undef SAME_INTF 4751 4752 return (0); 4753 } 4754 4755 static int 4756 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4757 const struct firmware **fw) 4758 { 4759 struct fw_info *fw_info; 4760 4761 *dcfg = NULL; 4762 if (fw != NULL) 4763 *fw = NULL; 4764 4765 fw_info = find_fw_info(chip_id(sc)); 4766 if (fw_info == NULL) { 4767 device_printf(sc->dev, 4768 "unable to look up firmware information for chip %d.\n", 4769 chip_id(sc)); 4770 return (EINVAL); 4771 } 4772 4773 *dcfg = firmware_get(fw_info->kld_name); 4774 if (*dcfg != NULL) { 4775 if (fw != NULL) 4776 *fw = firmware_get(fw_info->fw_mod_name); 4777 return (0); 4778 } 4779 4780 return (ENOENT); 4781 } 4782 4783 static void 4784 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4785 const struct firmware *fw) 4786 { 4787 4788 if (fw != NULL) 4789 firmware_put(fw, FIRMWARE_UNLOAD); 4790 if (dcfg != NULL) 4791 firmware_put(dcfg, FIRMWARE_UNLOAD); 4792 } 4793 4794 /* 4795 * Return values: 4796 * 0 means no firmware install attempted. 4797 * ERESTART means a firmware install was attempted and was successful. 4798 * +ve errno means a firmware install was attempted but failed. 4799 */ 4800 static int 4801 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4802 const struct fw_h *drv_fw, const char *reason, int *already) 4803 { 4804 const struct firmware *cfg, *fw; 4805 const uint32_t c = be32toh(card_fw->fw_ver); 4806 uint32_t d, k; 4807 int rc, fw_install; 4808 struct fw_h bundled_fw; 4809 bool load_attempted; 4810 4811 cfg = fw = NULL; 4812 load_attempted = false; 4813 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4814 4815 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4816 if (t4_fw_install < 0) { 4817 rc = load_fw_module(sc, &cfg, &fw); 4818 if (rc != 0 || fw == NULL) { 4819 device_printf(sc->dev, 4820 "failed to load firmware module: %d. cfg %p, fw %p;" 4821 " will use compiled-in firmware version for" 4822 "hw.cxgbe.fw_install checks.\n", 4823 rc, cfg, fw); 4824 } else { 4825 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4826 } 4827 load_attempted = true; 4828 } 4829 d = be32toh(bundled_fw.fw_ver); 4830 4831 if (reason != NULL) 4832 goto install; 4833 4834 if ((sc->flags & FW_OK) == 0) { 4835 4836 if (c == 0xffffffff) { 4837 reason = "missing"; 4838 goto install; 4839 } 4840 4841 rc = 0; 4842 goto done; 4843 } 4844 4845 if (!fw_compatible(card_fw, &bundled_fw)) { 4846 reason = "incompatible or unusable"; 4847 goto install; 4848 } 4849 4850 if (d > c) { 4851 reason = "older than the version bundled with this driver"; 4852 goto install; 4853 } 4854 4855 if (fw_install == 2 && d != c) { 4856 reason = "different than the version bundled with this driver"; 4857 goto install; 4858 } 4859 4860 /* No reason to do anything to the firmware already on the card. */ 4861 rc = 0; 4862 goto done; 4863 4864 install: 4865 rc = 0; 4866 if ((*already)++) 4867 goto done; 4868 4869 if (fw_install == 0) { 4870 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4871 "but the driver is prohibited from installing a firmware " 4872 "on the card.\n", 4873 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4874 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4875 4876 goto done; 4877 } 4878 4879 /* 4880 * We'll attempt to install a firmware. Load the module first (if it 4881 * hasn't been loaded already). 4882 */ 4883 if (!load_attempted) { 4884 rc = load_fw_module(sc, &cfg, &fw); 4885 if (rc != 0 || fw == NULL) { 4886 device_printf(sc->dev, 4887 "failed to load firmware module: %d. cfg %p, fw %p\n", 4888 rc, cfg, fw); 4889 /* carry on */ 4890 } 4891 } 4892 if (fw == NULL) { 4893 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4894 "but the driver cannot take corrective action because it " 4895 "is unable to load the firmware module.\n", 4896 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4897 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4898 rc = sc->flags & FW_OK ? 0 : ENOENT; 4899 goto done; 4900 } 4901 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4902 if (k != d) { 4903 MPASS(t4_fw_install > 0); 4904 device_printf(sc->dev, 4905 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4906 "expecting (%u.%u.%u.%u) and will not be used.\n", 4907 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4908 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4909 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4910 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4911 rc = sc->flags & FW_OK ? 0 : EINVAL; 4912 goto done; 4913 } 4914 4915 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4916 "installing firmware %u.%u.%u.%u on card.\n", 4917 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4918 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4919 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4920 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4921 4922 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4923 if (rc != 0) { 4924 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4925 } else { 4926 /* Installed successfully, update the cached header too. */ 4927 rc = ERESTART; 4928 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4929 } 4930 done: 4931 unload_fw_module(sc, cfg, fw); 4932 4933 return (rc); 4934 } 4935 4936 /* 4937 * Establish contact with the firmware and attempt to become the master driver. 4938 * 4939 * A firmware will be installed to the card if needed (if the driver is allowed 4940 * to do so). 4941 */ 4942 static int 4943 contact_firmware(struct adapter *sc) 4944 { 4945 int rc, already = 0; 4946 enum dev_state state; 4947 struct fw_info *fw_info; 4948 struct fw_hdr *card_fw; /* fw on the card */ 4949 const struct fw_h *drv_fw; 4950 4951 fw_info = find_fw_info(chip_id(sc)); 4952 if (fw_info == NULL) { 4953 device_printf(sc->dev, 4954 "unable to look up firmware information for chip %d.\n", 4955 chip_id(sc)); 4956 return (EINVAL); 4957 } 4958 drv_fw = &fw_info->fw_h; 4959 4960 /* Read the header of the firmware on the card */ 4961 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4962 restart: 4963 rc = -t4_get_fw_hdr(sc, card_fw); 4964 if (rc != 0) { 4965 device_printf(sc->dev, 4966 "unable to read firmware header from card's flash: %d\n", 4967 rc); 4968 goto done; 4969 } 4970 4971 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4972 &already); 4973 if (rc == ERESTART) 4974 goto restart; 4975 if (rc != 0) 4976 goto done; 4977 4978 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4979 if (rc < 0 || state == DEV_STATE_ERR) { 4980 rc = -rc; 4981 device_printf(sc->dev, 4982 "failed to connect to the firmware: %d, %d. " 4983 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4984 #if 0 4985 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4986 "not responding properly to HELLO", &already) == ERESTART) 4987 goto restart; 4988 #endif 4989 goto done; 4990 } 4991 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4992 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4993 4994 if (rc == sc->pf) { 4995 sc->flags |= MASTER_PF; 4996 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4997 NULL, &already); 4998 if (rc == ERESTART) 4999 rc = 0; 5000 else if (rc != 0) 5001 goto done; 5002 } else if (state == DEV_STATE_UNINIT) { 5003 /* 5004 * We didn't get to be the master so we definitely won't be 5005 * configuring the chip. It's a bug if someone else hasn't 5006 * configured it already. 5007 */ 5008 device_printf(sc->dev, "couldn't be master(%d), " 5009 "device not already initialized either(%d). " 5010 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5011 rc = EPROTO; 5012 goto done; 5013 } else { 5014 /* 5015 * Some other PF is the master and has configured the chip. 5016 * This is allowed but untested. 5017 */ 5018 device_printf(sc->dev, "PF%d is master, device state %d. " 5019 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5020 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 5021 sc->cfcsum = 0; 5022 rc = 0; 5023 } 5024 done: 5025 if (rc != 0 && sc->flags & FW_OK) { 5026 t4_fw_bye(sc, sc->mbox); 5027 sc->flags &= ~FW_OK; 5028 } 5029 free(card_fw, M_CXGBE); 5030 return (rc); 5031 } 5032 5033 static int 5034 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 5035 uint32_t mtype, uint32_t moff) 5036 { 5037 struct fw_info *fw_info; 5038 const struct firmware *dcfg, *rcfg = NULL; 5039 const uint32_t *cfdata; 5040 uint32_t cflen, addr; 5041 int rc; 5042 5043 load_fw_module(sc, &dcfg, NULL); 5044 5045 /* Card specific interpretation of "default". */ 5046 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 5047 if (pci_get_device(sc->dev) == 0x440a) 5048 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 5049 if (is_fpga(sc)) 5050 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 5051 } 5052 5053 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 5054 if (dcfg == NULL) { 5055 device_printf(sc->dev, 5056 "KLD with default config is not available.\n"); 5057 rc = ENOENT; 5058 goto done; 5059 } 5060 cfdata = dcfg->data; 5061 cflen = dcfg->datasize & ~3; 5062 } else { 5063 char s[32]; 5064 5065 fw_info = find_fw_info(chip_id(sc)); 5066 if (fw_info == NULL) { 5067 device_printf(sc->dev, 5068 "unable to look up firmware information for chip %d.\n", 5069 chip_id(sc)); 5070 rc = EINVAL; 5071 goto done; 5072 } 5073 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 5074 5075 rcfg = firmware_get(s); 5076 if (rcfg == NULL) { 5077 device_printf(sc->dev, 5078 "unable to load module \"%s\" for configuration " 5079 "profile \"%s\".\n", s, cfg_file); 5080 rc = ENOENT; 5081 goto done; 5082 } 5083 cfdata = rcfg->data; 5084 cflen = rcfg->datasize & ~3; 5085 } 5086 5087 if (cflen > FLASH_CFG_MAX_SIZE) { 5088 device_printf(sc->dev, 5089 "config file too long (%d, max allowed is %d).\n", 5090 cflen, FLASH_CFG_MAX_SIZE); 5091 rc = EINVAL; 5092 goto done; 5093 } 5094 5095 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 5096 if (rc != 0) { 5097 device_printf(sc->dev, 5098 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 5099 __func__, mtype, moff, cflen, rc); 5100 rc = EINVAL; 5101 goto done; 5102 } 5103 write_via_memwin(sc, 2, addr, cfdata, cflen); 5104 done: 5105 if (rcfg != NULL) 5106 firmware_put(rcfg, FIRMWARE_UNLOAD); 5107 unload_fw_module(sc, dcfg, NULL); 5108 return (rc); 5109 } 5110 5111 struct caps_allowed { 5112 uint16_t nbmcaps; 5113 uint16_t linkcaps; 5114 uint16_t switchcaps; 5115 uint16_t niccaps; 5116 uint16_t toecaps; 5117 uint16_t rdmacaps; 5118 uint16_t cryptocaps; 5119 uint16_t iscsicaps; 5120 uint16_t fcoecaps; 5121 }; 5122 5123 #define FW_PARAM_DEV(param) \ 5124 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 5125 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 5126 #define FW_PARAM_PFVF(param) \ 5127 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 5128 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 5129 5130 /* 5131 * Provide a configuration profile to the firmware and have it initialize the 5132 * chip accordingly. This may involve uploading a configuration file to the 5133 * card. 5134 */ 5135 static int 5136 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 5137 const struct caps_allowed *caps_allowed) 5138 { 5139 int rc; 5140 struct fw_caps_config_cmd caps; 5141 uint32_t mtype, moff, finicsum, cfcsum, param, val; 5142 5143 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 5144 if (rc != 0) { 5145 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 5146 return (rc); 5147 } 5148 5149 bzero(&caps, sizeof(caps)); 5150 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5151 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5152 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 5153 mtype = 0; 5154 moff = 0; 5155 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5156 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 5157 mtype = FW_MEMTYPE_FLASH; 5158 moff = t4_flash_cfg_addr(sc); 5159 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5160 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5161 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5162 FW_LEN16(caps)); 5163 } else { 5164 /* 5165 * Ask the firmware where it wants us to upload the config file. 5166 */ 5167 param = FW_PARAM_DEV(CF); 5168 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5169 if (rc != 0) { 5170 /* No support for config file? Shouldn't happen. */ 5171 device_printf(sc->dev, 5172 "failed to query config file location: %d.\n", rc); 5173 goto done; 5174 } 5175 mtype = G_FW_PARAMS_PARAM_Y(val); 5176 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 5177 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5178 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5179 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5180 FW_LEN16(caps)); 5181 5182 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 5183 if (rc != 0) { 5184 device_printf(sc->dev, 5185 "failed to upload config file to card: %d.\n", rc); 5186 goto done; 5187 } 5188 } 5189 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5190 if (rc != 0) { 5191 device_printf(sc->dev, "failed to pre-process config file: %d " 5192 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 5193 goto done; 5194 } 5195 5196 finicsum = be32toh(caps.finicsum); 5197 cfcsum = be32toh(caps.cfcsum); /* actual */ 5198 if (finicsum != cfcsum) { 5199 device_printf(sc->dev, 5200 "WARNING: config file checksum mismatch: %08x %08x\n", 5201 finicsum, cfcsum); 5202 } 5203 sc->cfcsum = cfcsum; 5204 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5205 5206 /* 5207 * Let the firmware know what features will (not) be used so it can tune 5208 * things accordingly. 5209 */ 5210 #define LIMIT_CAPS(x) do { \ 5211 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5212 } while (0) 5213 LIMIT_CAPS(nbm); 5214 LIMIT_CAPS(link); 5215 LIMIT_CAPS(switch); 5216 LIMIT_CAPS(nic); 5217 LIMIT_CAPS(toe); 5218 LIMIT_CAPS(rdma); 5219 LIMIT_CAPS(crypto); 5220 LIMIT_CAPS(iscsi); 5221 LIMIT_CAPS(fcoe); 5222 #undef LIMIT_CAPS 5223 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5224 /* 5225 * TOE and hashfilters are mutually exclusive. It is a config 5226 * file or firmware bug if both are reported as available. Try 5227 * to cope with the situation in non-debug builds by disabling 5228 * TOE. 5229 */ 5230 MPASS(caps.toecaps == 0); 5231 5232 caps.toecaps = 0; 5233 caps.rdmacaps = 0; 5234 caps.iscsicaps = 0; 5235 } 5236 5237 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5238 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5239 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5240 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5241 if (rc != 0) { 5242 device_printf(sc->dev, 5243 "failed to process config file: %d.\n", rc); 5244 goto done; 5245 } 5246 5247 t4_tweak_chip_settings(sc); 5248 set_params__pre_init(sc); 5249 5250 /* get basic stuff going */ 5251 rc = -t4_fw_initialize(sc, sc->mbox); 5252 if (rc != 0) { 5253 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5254 goto done; 5255 } 5256 done: 5257 return (rc); 5258 } 5259 5260 /* 5261 * Partition chip resources for use between various PFs, VFs, etc. 5262 */ 5263 static int 5264 partition_resources(struct adapter *sc) 5265 { 5266 char cfg_file[sizeof(t4_cfg_file)]; 5267 struct caps_allowed caps_allowed; 5268 int rc; 5269 bool fallback; 5270 5271 /* Only the master driver gets to configure the chip resources. */ 5272 MPASS(sc->flags & MASTER_PF); 5273 5274 #define COPY_CAPS(x) do { \ 5275 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5276 } while (0) 5277 bzero(&caps_allowed, sizeof(caps_allowed)); 5278 COPY_CAPS(nbm); 5279 COPY_CAPS(link); 5280 COPY_CAPS(switch); 5281 COPY_CAPS(nic); 5282 COPY_CAPS(toe); 5283 COPY_CAPS(rdma); 5284 COPY_CAPS(crypto); 5285 COPY_CAPS(iscsi); 5286 COPY_CAPS(fcoe); 5287 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5288 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5289 retry: 5290 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5291 if (rc != 0 && fallback) { 5292 dump_devlog(sc); 5293 device_printf(sc->dev, 5294 "failed (%d) to configure card with \"%s\" profile, " 5295 "will fall back to a basic configuration and retry.\n", 5296 rc, cfg_file); 5297 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5298 bzero(&caps_allowed, sizeof(caps_allowed)); 5299 COPY_CAPS(switch); 5300 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5301 fallback = false; 5302 goto retry; 5303 } 5304 #undef COPY_CAPS 5305 return (rc); 5306 } 5307 5308 /* 5309 * Retrieve parameters that are needed (or nice to have) very early. 5310 */ 5311 static int 5312 get_params__pre_init(struct adapter *sc) 5313 { 5314 int rc; 5315 uint32_t param[2], val[2]; 5316 5317 t4_get_version_info(sc); 5318 5319 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5320 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5321 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5322 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5323 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5324 5325 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5326 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5327 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5328 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5329 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5330 5331 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5332 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5333 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5334 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5335 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5336 5337 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5338 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5339 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5340 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5341 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5342 5343 param[0] = FW_PARAM_DEV(PORTVEC); 5344 param[1] = FW_PARAM_DEV(CCLK); 5345 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5346 if (rc != 0) { 5347 device_printf(sc->dev, 5348 "failed to query parameters (pre_init): %d.\n", rc); 5349 return (rc); 5350 } 5351 5352 sc->params.portvec = val[0]; 5353 sc->params.nports = bitcount32(val[0]); 5354 sc->params.vpd.cclk = val[1]; 5355 5356 /* Read device log parameters. */ 5357 rc = -t4_init_devlog_params(sc, 1); 5358 if (rc == 0) 5359 fixup_devlog_params(sc); 5360 else { 5361 device_printf(sc->dev, 5362 "failed to get devlog parameters: %d.\n", rc); 5363 rc = 0; /* devlog isn't critical for device operation */ 5364 } 5365 5366 return (rc); 5367 } 5368 5369 /* 5370 * Any params that need to be set before FW_INITIALIZE. 5371 */ 5372 static int 5373 set_params__pre_init(struct adapter *sc) 5374 { 5375 int rc = 0; 5376 uint32_t param, val; 5377 5378 if (chip_id(sc) >= CHELSIO_T6) { 5379 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5380 val = 1; 5381 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5382 /* firmwares < 1.20.1.0 do not have this param. */ 5383 if (rc == FW_EINVAL && 5384 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5385 rc = 0; 5386 } 5387 if (rc != 0) { 5388 device_printf(sc->dev, 5389 "failed to enable high priority filters :%d.\n", 5390 rc); 5391 } 5392 5393 param = FW_PARAM_DEV(PPOD_EDRAM); 5394 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5395 if (rc == 0 && val == 1) { 5396 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5397 &val); 5398 if (rc != 0) { 5399 device_printf(sc->dev, 5400 "failed to set PPOD_EDRAM: %d.\n", rc); 5401 } 5402 } 5403 } 5404 5405 /* Enable opaque VIIDs with firmwares that support it. */ 5406 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5407 val = 1; 5408 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5409 if (rc == 0 && val == 1) 5410 sc->params.viid_smt_extn_support = true; 5411 else 5412 sc->params.viid_smt_extn_support = false; 5413 5414 return (rc); 5415 } 5416 5417 /* 5418 * Retrieve various parameters that are of interest to the driver. The device 5419 * has been initialized by the firmware at this point. 5420 */ 5421 static int 5422 get_params__post_init(struct adapter *sc) 5423 { 5424 int rc; 5425 uint32_t param[7], val[7]; 5426 struct fw_caps_config_cmd caps; 5427 5428 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5429 param[1] = FW_PARAM_PFVF(EQ_START); 5430 param[2] = FW_PARAM_PFVF(FILTER_START); 5431 param[3] = FW_PARAM_PFVF(FILTER_END); 5432 param[4] = FW_PARAM_PFVF(L2T_START); 5433 param[5] = FW_PARAM_PFVF(L2T_END); 5434 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5435 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5436 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5437 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5438 if (rc != 0) { 5439 device_printf(sc->dev, 5440 "failed to query parameters (post_init): %d.\n", rc); 5441 return (rc); 5442 } 5443 5444 sc->sge.iq_start = val[0]; 5445 sc->sge.eq_start = val[1]; 5446 if ((int)val[3] > (int)val[2]) { 5447 sc->tids.ftid_base = val[2]; 5448 sc->tids.ftid_end = val[3]; 5449 sc->tids.nftids = val[3] - val[2] + 1; 5450 } 5451 sc->vres.l2t.start = val[4]; 5452 sc->vres.l2t.size = val[5] - val[4] + 1; 5453 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */ 5454 if (sc->vres.l2t.size > 0) 5455 MPASS(fls(val[5]) <= S_SYNC_WR); 5456 sc->params.core_vdd = val[6]; 5457 5458 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5459 param[1] = FW_PARAM_PFVF(EQ_END); 5460 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5461 if (rc != 0) { 5462 device_printf(sc->dev, 5463 "failed to query parameters (post_init2): %d.\n", rc); 5464 return (rc); 5465 } 5466 MPASS((int)val[0] >= sc->sge.iq_start); 5467 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5468 MPASS((int)val[1] >= sc->sge.eq_start); 5469 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5470 5471 if (chip_id(sc) >= CHELSIO_T6) { 5472 5473 sc->tids.tid_base = t4_read_reg(sc, 5474 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5475 5476 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5477 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5478 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5479 if (rc != 0) { 5480 device_printf(sc->dev, 5481 "failed to query hpfilter parameters: %d.\n", rc); 5482 return (rc); 5483 } 5484 if ((int)val[1] > (int)val[0]) { 5485 sc->tids.hpftid_base = val[0]; 5486 sc->tids.hpftid_end = val[1]; 5487 sc->tids.nhpftids = val[1] - val[0] + 1; 5488 5489 /* 5490 * These should go off if the layout changes and the 5491 * driver needs to catch up. 5492 */ 5493 MPASS(sc->tids.hpftid_base == 0); 5494 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5495 } 5496 5497 param[0] = FW_PARAM_PFVF(RAWF_START); 5498 param[1] = FW_PARAM_PFVF(RAWF_END); 5499 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5500 if (rc != 0) { 5501 device_printf(sc->dev, 5502 "failed to query rawf parameters: %d.\n", rc); 5503 return (rc); 5504 } 5505 if ((int)val[1] > (int)val[0]) { 5506 sc->rawf_base = val[0]; 5507 sc->nrawf = val[1] - val[0] + 1; 5508 } 5509 } 5510 5511 /* 5512 * The parameters that follow may not be available on all firmwares. We 5513 * query them individually rather than in a compound query because old 5514 * firmwares fail the entire query if an unknown parameter is queried. 5515 */ 5516 5517 /* 5518 * MPS buffer group configuration. 5519 */ 5520 param[0] = FW_PARAM_DEV(MPSBGMAP); 5521 val[0] = 0; 5522 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5523 if (rc == 0) 5524 sc->params.mps_bg_map = val[0]; 5525 else 5526 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */ 5527 5528 param[0] = FW_PARAM_DEV(TPCHMAP); 5529 val[0] = 0; 5530 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5531 if (rc == 0) 5532 sc->params.tp_ch_map = val[0]; 5533 else 5534 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5535 5536 /* 5537 * Determine whether the firmware supports the filter2 work request. 5538 */ 5539 param[0] = FW_PARAM_DEV(FILTER2_WR); 5540 val[0] = 0; 5541 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5542 if (rc == 0) 5543 sc->params.filter2_wr_support = val[0] != 0; 5544 else 5545 sc->params.filter2_wr_support = 0; 5546 5547 /* 5548 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5549 */ 5550 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5551 val[0] = 0; 5552 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5553 if (rc == 0) 5554 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5555 else 5556 sc->params.ulptx_memwrite_dsgl = false; 5557 5558 /* FW_RI_FR_NSMR_TPTE_WR support */ 5559 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5560 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5561 if (rc == 0) 5562 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5563 else 5564 sc->params.fr_nsmr_tpte_wr_support = false; 5565 5566 /* Support for 512 SGL entries per FR MR. */ 5567 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5568 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5569 if (rc == 0) 5570 sc->params.dev_512sgl_mr = val[0] != 0; 5571 else 5572 sc->params.dev_512sgl_mr = false; 5573 5574 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5575 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5576 if (rc == 0) 5577 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5578 else 5579 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5580 5581 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5582 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5583 if (rc == 0) { 5584 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5585 sc->params.nsched_cls = val[0]; 5586 } else 5587 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5588 5589 /* get capabilites */ 5590 bzero(&caps, sizeof(caps)); 5591 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5592 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5593 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5594 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5595 if (rc != 0) { 5596 device_printf(sc->dev, 5597 "failed to get card capabilities: %d.\n", rc); 5598 return (rc); 5599 } 5600 5601 #define READ_CAPS(x) do { \ 5602 sc->x = htobe16(caps.x); \ 5603 } while (0) 5604 READ_CAPS(nbmcaps); 5605 READ_CAPS(linkcaps); 5606 READ_CAPS(switchcaps); 5607 READ_CAPS(niccaps); 5608 READ_CAPS(toecaps); 5609 READ_CAPS(rdmacaps); 5610 READ_CAPS(cryptocaps); 5611 READ_CAPS(iscsicaps); 5612 READ_CAPS(fcoecaps); 5613 5614 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5615 MPASS(chip_id(sc) > CHELSIO_T4); 5616 MPASS(sc->toecaps == 0); 5617 sc->toecaps = 0; 5618 5619 param[0] = FW_PARAM_DEV(NTID); 5620 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5621 if (rc != 0) { 5622 device_printf(sc->dev, 5623 "failed to query HASHFILTER parameters: %d.\n", rc); 5624 return (rc); 5625 } 5626 sc->tids.ntids = val[0]; 5627 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5628 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5629 sc->tids.ntids -= sc->tids.nhpftids; 5630 } 5631 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5632 sc->params.hash_filter = 1; 5633 } 5634 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5635 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5636 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5637 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5638 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5639 if (rc != 0) { 5640 device_printf(sc->dev, 5641 "failed to query NIC parameters: %d.\n", rc); 5642 return (rc); 5643 } 5644 if ((int)val[1] > (int)val[0]) { 5645 sc->tids.etid_base = val[0]; 5646 sc->tids.etid_end = val[1]; 5647 sc->tids.netids = val[1] - val[0] + 1; 5648 sc->params.eo_wr_cred = val[2]; 5649 sc->params.ethoffload = 1; 5650 } 5651 } 5652 if (sc->toecaps) { 5653 /* query offload-related parameters */ 5654 param[0] = FW_PARAM_DEV(NTID); 5655 param[1] = FW_PARAM_PFVF(SERVER_START); 5656 param[2] = FW_PARAM_PFVF(SERVER_END); 5657 param[3] = FW_PARAM_PFVF(TDDP_START); 5658 param[4] = FW_PARAM_PFVF(TDDP_END); 5659 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5660 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5661 if (rc != 0) { 5662 device_printf(sc->dev, 5663 "failed to query TOE parameters: %d.\n", rc); 5664 return (rc); 5665 } 5666 sc->tids.ntids = val[0]; 5667 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5668 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5669 sc->tids.ntids -= sc->tids.nhpftids; 5670 } 5671 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5672 if ((int)val[2] > (int)val[1]) { 5673 sc->tids.stid_base = val[1]; 5674 sc->tids.nstids = val[2] - val[1] + 1; 5675 } 5676 sc->vres.ddp.start = val[3]; 5677 sc->vres.ddp.size = val[4] - val[3] + 1; 5678 sc->params.ofldq_wr_cred = val[5]; 5679 sc->params.offload = 1; 5680 } else { 5681 /* 5682 * The firmware attempts memfree TOE configuration for -SO cards 5683 * and will report toecaps=0 if it runs out of resources (this 5684 * depends on the config file). It may not report 0 for other 5685 * capabilities dependent on the TOE in this case. Set them to 5686 * 0 here so that the driver doesn't bother tracking resources 5687 * that will never be used. 5688 */ 5689 sc->iscsicaps = 0; 5690 sc->rdmacaps = 0; 5691 } 5692 if (sc->rdmacaps) { 5693 param[0] = FW_PARAM_PFVF(STAG_START); 5694 param[1] = FW_PARAM_PFVF(STAG_END); 5695 param[2] = FW_PARAM_PFVF(RQ_START); 5696 param[3] = FW_PARAM_PFVF(RQ_END); 5697 param[4] = FW_PARAM_PFVF(PBL_START); 5698 param[5] = FW_PARAM_PFVF(PBL_END); 5699 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5700 if (rc != 0) { 5701 device_printf(sc->dev, 5702 "failed to query RDMA parameters(1): %d.\n", rc); 5703 return (rc); 5704 } 5705 sc->vres.stag.start = val[0]; 5706 sc->vres.stag.size = val[1] - val[0] + 1; 5707 sc->vres.rq.start = val[2]; 5708 sc->vres.rq.size = val[3] - val[2] + 1; 5709 sc->vres.pbl.start = val[4]; 5710 sc->vres.pbl.size = val[5] - val[4] + 1; 5711 5712 param[0] = FW_PARAM_PFVF(SQRQ_START); 5713 param[1] = FW_PARAM_PFVF(SQRQ_END); 5714 param[2] = FW_PARAM_PFVF(CQ_START); 5715 param[3] = FW_PARAM_PFVF(CQ_END); 5716 param[4] = FW_PARAM_PFVF(OCQ_START); 5717 param[5] = FW_PARAM_PFVF(OCQ_END); 5718 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5719 if (rc != 0) { 5720 device_printf(sc->dev, 5721 "failed to query RDMA parameters(2): %d.\n", rc); 5722 return (rc); 5723 } 5724 sc->vres.qp.start = val[0]; 5725 sc->vres.qp.size = val[1] - val[0] + 1; 5726 sc->vres.cq.start = val[2]; 5727 sc->vres.cq.size = val[3] - val[2] + 1; 5728 sc->vres.ocq.start = val[4]; 5729 sc->vres.ocq.size = val[5] - val[4] + 1; 5730 5731 param[0] = FW_PARAM_PFVF(SRQ_START); 5732 param[1] = FW_PARAM_PFVF(SRQ_END); 5733 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5734 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5735 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5736 if (rc != 0) { 5737 device_printf(sc->dev, 5738 "failed to query RDMA parameters(3): %d.\n", rc); 5739 return (rc); 5740 } 5741 sc->vres.srq.start = val[0]; 5742 sc->vres.srq.size = val[1] - val[0] + 1; 5743 sc->params.max_ordird_qp = val[2]; 5744 sc->params.max_ird_adapter = val[3]; 5745 } 5746 if (sc->iscsicaps) { 5747 param[0] = FW_PARAM_PFVF(ISCSI_START); 5748 param[1] = FW_PARAM_PFVF(ISCSI_END); 5749 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5750 if (rc != 0) { 5751 device_printf(sc->dev, 5752 "failed to query iSCSI parameters: %d.\n", rc); 5753 return (rc); 5754 } 5755 sc->vres.iscsi.start = val[0]; 5756 sc->vres.iscsi.size = val[1] - val[0] + 1; 5757 } 5758 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5759 param[0] = FW_PARAM_PFVF(TLS_START); 5760 param[1] = FW_PARAM_PFVF(TLS_END); 5761 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5762 if (rc != 0) { 5763 device_printf(sc->dev, 5764 "failed to query TLS parameters: %d.\n", rc); 5765 return (rc); 5766 } 5767 sc->vres.key.start = val[0]; 5768 sc->vres.key.size = val[1] - val[0] + 1; 5769 } 5770 5771 /* 5772 * We've got the params we wanted to query directly from the firmware. 5773 * Grab some others via other means. 5774 */ 5775 t4_init_sge_params(sc); 5776 t4_init_tp_params(sc); 5777 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5778 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5779 5780 rc = t4_verify_chip_settings(sc); 5781 if (rc != 0) 5782 return (rc); 5783 t4_init_rx_buf_info(sc); 5784 5785 return (rc); 5786 } 5787 5788 #ifdef KERN_TLS 5789 static void 5790 ktls_tick(void *arg) 5791 { 5792 struct adapter *sc; 5793 uint32_t tstamp; 5794 5795 sc = arg; 5796 tstamp = tcp_ts_getticks(); 5797 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5798 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5799 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5800 } 5801 5802 static int 5803 t6_config_kern_tls(struct adapter *sc, bool enable) 5804 { 5805 int rc; 5806 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5807 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5808 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5809 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5810 5811 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5812 if (rc != 0) { 5813 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5814 enable ? "enable" : "disable", rc); 5815 return (rc); 5816 } 5817 5818 if (enable) { 5819 sc->flags |= KERN_TLS_ON; 5820 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5821 C_HARDCLOCK); 5822 } else { 5823 sc->flags &= ~KERN_TLS_ON; 5824 callout_stop(&sc->ktls_tick); 5825 } 5826 5827 return (rc); 5828 } 5829 #endif 5830 5831 static int 5832 set_params__post_init(struct adapter *sc) 5833 { 5834 uint32_t mask, param, val; 5835 #ifdef TCP_OFFLOAD 5836 int i, v, shift; 5837 #endif 5838 5839 /* ask for encapsulated CPLs */ 5840 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5841 val = 1; 5842 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5843 5844 /* Enable 32b port caps if the firmware supports it. */ 5845 param = FW_PARAM_PFVF(PORT_CAPS32); 5846 val = 1; 5847 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5848 sc->params.port_caps32 = 1; 5849 5850 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5851 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5852 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5853 V_MASKFILTER(val - 1)); 5854 5855 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5856 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5857 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5858 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5859 val = 0; 5860 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5861 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5862 F_ATTACKFILTERENABLE); 5863 val |= F_DROPERRORATTACK; 5864 } 5865 if (t4_drop_ip_fragments != 0) { 5866 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5867 F_FRAGMENTDROP); 5868 val |= F_DROPERRORFRAG; 5869 } 5870 if (t4_drop_pkts_with_l2_errors != 0) 5871 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5872 if (t4_drop_pkts_with_l3_errors != 0) { 5873 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5874 F_DROPERRORCSUMIP; 5875 } 5876 if (t4_drop_pkts_with_l4_errors != 0) { 5877 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5878 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5879 } 5880 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5881 5882 #ifdef TCP_OFFLOAD 5883 /* 5884 * Override the TOE timers with user provided tunables. This is not the 5885 * recommended way to change the timers (the firmware config file is) so 5886 * these tunables are not documented. 5887 * 5888 * All the timer tunables are in microseconds. 5889 */ 5890 if (t4_toe_keepalive_idle != 0) { 5891 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5892 v &= M_KEEPALIVEIDLE; 5893 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5894 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5895 } 5896 if (t4_toe_keepalive_interval != 0) { 5897 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5898 v &= M_KEEPALIVEINTVL; 5899 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5900 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5901 } 5902 if (t4_toe_keepalive_count != 0) { 5903 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5904 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5905 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5906 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5907 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5908 } 5909 if (t4_toe_rexmt_min != 0) { 5910 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5911 v &= M_RXTMIN; 5912 t4_set_reg_field(sc, A_TP_RXT_MIN, 5913 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5914 } 5915 if (t4_toe_rexmt_max != 0) { 5916 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5917 v &= M_RXTMAX; 5918 t4_set_reg_field(sc, A_TP_RXT_MAX, 5919 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5920 } 5921 if (t4_toe_rexmt_count != 0) { 5922 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5923 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5924 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5925 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5926 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5927 } 5928 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5929 if (t4_toe_rexmt_backoff[i] != -1) { 5930 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5931 shift = (i & 3) << 3; 5932 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5933 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5934 } 5935 } 5936 #endif 5937 5938 /* 5939 * Limit TOE connections to 2 reassembly "islands". This is 5940 * required to permit migrating TOE connections to either 5941 * ULP_MODE_TCPDDP or UPL_MODE_TLS. 5942 */ 5943 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE), 5944 V_PASSMODE(2)); 5945 5946 #ifdef KERN_TLS 5947 if (is_ktls(sc)) { 5948 sc->tlst.inline_keys = t4_tls_inline_keys; 5949 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5950 if (t4_kern_tls != 0 && is_t6(sc)) 5951 t6_config_kern_tls(sc, true); 5952 } 5953 #endif 5954 return (0); 5955 } 5956 5957 #undef FW_PARAM_PFVF 5958 #undef FW_PARAM_DEV 5959 5960 static void 5961 t4_set_desc(struct adapter *sc) 5962 { 5963 struct adapter_params *p = &sc->params; 5964 5965 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id); 5966 } 5967 5968 static inline void 5969 ifmedia_add4(struct ifmedia *ifm, int m) 5970 { 5971 5972 ifmedia_add(ifm, m, 0, NULL); 5973 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5974 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5975 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5976 } 5977 5978 /* 5979 * This is the selected media, which is not quite the same as the active media. 5980 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5981 * and active are not the same, and "media: Ethernet selected" otherwise. 5982 */ 5983 static void 5984 set_current_media(struct port_info *pi) 5985 { 5986 struct link_config *lc; 5987 struct ifmedia *ifm; 5988 int mword; 5989 u_int speed; 5990 5991 PORT_LOCK_ASSERT_OWNED(pi); 5992 5993 /* Leave current media alone if it's already set to IFM_NONE. */ 5994 ifm = &pi->media; 5995 if (ifm->ifm_cur != NULL && 5996 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5997 return; 5998 5999 lc = &pi->link_cfg; 6000 if (lc->requested_aneg != AUTONEG_DISABLE && 6001 lc->pcaps & FW_PORT_CAP32_ANEG) { 6002 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 6003 return; 6004 } 6005 mword = IFM_ETHER | IFM_FDX; 6006 if (lc->requested_fc & PAUSE_TX) 6007 mword |= IFM_ETH_TXPAUSE; 6008 if (lc->requested_fc & PAUSE_RX) 6009 mword |= IFM_ETH_RXPAUSE; 6010 if (lc->requested_speed == 0) 6011 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 6012 else 6013 speed = lc->requested_speed; 6014 mword |= port_mword(pi, speed_to_fwcap(speed)); 6015 ifmedia_set(ifm, mword); 6016 } 6017 6018 /* 6019 * Returns true if the ifmedia list for the port cannot change. 6020 */ 6021 static bool 6022 fixed_ifmedia(struct port_info *pi) 6023 { 6024 6025 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 6026 pi->port_type == FW_PORT_TYPE_BT_XFI || 6027 pi->port_type == FW_PORT_TYPE_BT_XAUI || 6028 pi->port_type == FW_PORT_TYPE_KX4 || 6029 pi->port_type == FW_PORT_TYPE_KX || 6030 pi->port_type == FW_PORT_TYPE_KR || 6031 pi->port_type == FW_PORT_TYPE_BP_AP || 6032 pi->port_type == FW_PORT_TYPE_BP4_AP || 6033 pi->port_type == FW_PORT_TYPE_BP40_BA || 6034 pi->port_type == FW_PORT_TYPE_KR4_100G || 6035 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 6036 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 6037 } 6038 6039 static void 6040 build_medialist(struct port_info *pi) 6041 { 6042 uint32_t ss, speed; 6043 int unknown, mword, bit; 6044 struct link_config *lc; 6045 struct ifmedia *ifm; 6046 6047 PORT_LOCK_ASSERT_OWNED(pi); 6048 6049 if (pi->flags & FIXED_IFMEDIA) 6050 return; 6051 6052 /* 6053 * Rebuild the ifmedia list. 6054 */ 6055 ifm = &pi->media; 6056 ifmedia_removeall(ifm); 6057 lc = &pi->link_cfg; 6058 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 6059 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 6060 MPASS(ss != 0); 6061 no_media: 6062 MPASS(LIST_EMPTY(&ifm->ifm_list)); 6063 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 6064 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 6065 return; 6066 } 6067 6068 unknown = 0; 6069 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 6070 speed = 1 << bit; 6071 MPASS(speed & M_FW_PORT_CAP32_SPEED); 6072 if (ss & speed) { 6073 mword = port_mword(pi, speed); 6074 if (mword == IFM_NONE) { 6075 goto no_media; 6076 } else if (mword == IFM_UNKNOWN) 6077 unknown++; 6078 else 6079 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 6080 } 6081 } 6082 if (unknown > 0) /* Add one unknown for all unknown media types. */ 6083 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 6084 if (lc->pcaps & FW_PORT_CAP32_ANEG) 6085 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 6086 6087 set_current_media(pi); 6088 } 6089 6090 /* 6091 * Initialize the requested fields in the link config based on driver tunables. 6092 */ 6093 static void 6094 init_link_config(struct port_info *pi) 6095 { 6096 struct link_config *lc = &pi->link_cfg; 6097 6098 PORT_LOCK_ASSERT_OWNED(pi); 6099 6100 lc->requested_caps = 0; 6101 lc->requested_speed = 0; 6102 6103 if (t4_autoneg == 0) 6104 lc->requested_aneg = AUTONEG_DISABLE; 6105 else if (t4_autoneg == 1) 6106 lc->requested_aneg = AUTONEG_ENABLE; 6107 else 6108 lc->requested_aneg = AUTONEG_AUTO; 6109 6110 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 6111 PAUSE_AUTONEG); 6112 6113 if (t4_fec & FEC_AUTO) 6114 lc->requested_fec = FEC_AUTO; 6115 else if (t4_fec == 0) 6116 lc->requested_fec = FEC_NONE; 6117 else { 6118 /* -1 is handled by the FEC_AUTO block above and not here. */ 6119 lc->requested_fec = t4_fec & 6120 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 6121 if (lc->requested_fec == 0) 6122 lc->requested_fec = FEC_AUTO; 6123 } 6124 if (t4_force_fec < 0) 6125 lc->force_fec = -1; 6126 else if (t4_force_fec > 0) 6127 lc->force_fec = 1; 6128 else 6129 lc->force_fec = 0; 6130 } 6131 6132 /* 6133 * Makes sure that all requested settings comply with what's supported by the 6134 * port. Returns the number of settings that were invalid and had to be fixed. 6135 */ 6136 static int 6137 fixup_link_config(struct port_info *pi) 6138 { 6139 int n = 0; 6140 struct link_config *lc = &pi->link_cfg; 6141 uint32_t fwspeed; 6142 6143 PORT_LOCK_ASSERT_OWNED(pi); 6144 6145 /* Speed (when not autonegotiating) */ 6146 if (lc->requested_speed != 0) { 6147 fwspeed = speed_to_fwcap(lc->requested_speed); 6148 if ((fwspeed & lc->pcaps) == 0) { 6149 n++; 6150 lc->requested_speed = 0; 6151 } 6152 } 6153 6154 /* Link autonegotiation */ 6155 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 6156 lc->requested_aneg == AUTONEG_DISABLE || 6157 lc->requested_aneg == AUTONEG_AUTO); 6158 if (lc->requested_aneg == AUTONEG_ENABLE && 6159 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 6160 n++; 6161 lc->requested_aneg = AUTONEG_AUTO; 6162 } 6163 6164 /* Flow control */ 6165 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 6166 if (lc->requested_fc & PAUSE_TX && 6167 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 6168 n++; 6169 lc->requested_fc &= ~PAUSE_TX; 6170 } 6171 if (lc->requested_fc & PAUSE_RX && 6172 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 6173 n++; 6174 lc->requested_fc &= ~PAUSE_RX; 6175 } 6176 if (!(lc->requested_fc & PAUSE_AUTONEG) && 6177 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 6178 n++; 6179 lc->requested_fc |= PAUSE_AUTONEG; 6180 } 6181 6182 /* FEC */ 6183 if ((lc->requested_fec & FEC_RS && 6184 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 6185 (lc->requested_fec & FEC_BASER_RS && 6186 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 6187 n++; 6188 lc->requested_fec = FEC_AUTO; 6189 } 6190 6191 return (n); 6192 } 6193 6194 /* 6195 * Apply the requested L1 settings, which are expected to be valid, to the 6196 * hardware. 6197 */ 6198 static int 6199 apply_link_config(struct port_info *pi) 6200 { 6201 struct adapter *sc = pi->adapter; 6202 struct link_config *lc = &pi->link_cfg; 6203 int rc; 6204 6205 #ifdef INVARIANTS 6206 ASSERT_SYNCHRONIZED_OP(sc); 6207 PORT_LOCK_ASSERT_OWNED(pi); 6208 6209 if (lc->requested_aneg == AUTONEG_ENABLE) 6210 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6211 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6212 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6213 if (lc->requested_fc & PAUSE_TX) 6214 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6215 if (lc->requested_fc & PAUSE_RX) 6216 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6217 if (lc->requested_fec & FEC_RS) 6218 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6219 if (lc->requested_fec & FEC_BASER_RS) 6220 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6221 #endif 6222 if (!(sc->flags & IS_VF)) { 6223 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6224 if (rc != 0) { 6225 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6226 return (rc); 6227 } 6228 } 6229 6230 /* 6231 * An L1_CFG will almost always result in a link-change event if the 6232 * link is up, and the driver will refresh the actual fec/fc/etc. when 6233 * the notification is processed. If the link is down then the actual 6234 * settings are meaningless. 6235 * 6236 * This takes care of the case where a change in the L1 settings may not 6237 * result in a notification. 6238 */ 6239 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6240 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6241 6242 return (0); 6243 } 6244 6245 #define FW_MAC_EXACT_CHUNK 7 6246 struct mcaddr_ctx { 6247 if_t ifp; 6248 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6249 uint64_t hash; 6250 int i; 6251 int del; 6252 int rc; 6253 }; 6254 6255 static u_int 6256 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6257 { 6258 struct mcaddr_ctx *ctx = arg; 6259 struct vi_info *vi = if_getsoftc(ctx->ifp); 6260 struct port_info *pi = vi->pi; 6261 struct adapter *sc = pi->adapter; 6262 6263 if (ctx->rc < 0) 6264 return (0); 6265 6266 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6267 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6268 ctx->i++; 6269 6270 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6271 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6272 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6273 if (ctx->rc < 0) { 6274 int j; 6275 6276 for (j = 0; j < ctx->i; j++) { 6277 if_printf(ctx->ifp, 6278 "failed to add mc address" 6279 " %02x:%02x:%02x:" 6280 "%02x:%02x:%02x rc=%d\n", 6281 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6282 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6283 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6284 -ctx->rc); 6285 } 6286 return (0); 6287 } 6288 ctx->del = 0; 6289 ctx->i = 0; 6290 } 6291 6292 return (1); 6293 } 6294 6295 /* 6296 * Program the port's XGMAC based on parameters in ifnet. The caller also 6297 * indicates which parameters should be programmed (the rest are left alone). 6298 */ 6299 int 6300 update_mac_settings(if_t ifp, int flags) 6301 { 6302 int rc = 0; 6303 struct vi_info *vi = if_getsoftc(ifp); 6304 struct port_info *pi = vi->pi; 6305 struct adapter *sc = pi->adapter; 6306 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6307 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6308 6309 ASSERT_SYNCHRONIZED_OP(sc); 6310 KASSERT(flags, ("%s: not told what to update.", __func__)); 6311 6312 if (flags & XGMAC_MTU) 6313 mtu = if_getmtu(ifp); 6314 6315 if (flags & XGMAC_PROMISC) 6316 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0; 6317 6318 if (flags & XGMAC_ALLMULTI) 6319 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0; 6320 6321 if (flags & XGMAC_VLANEX) 6322 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6323 6324 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6325 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6326 allmulti, 1, vlanex, false); 6327 if (rc) { 6328 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6329 rc); 6330 return (rc); 6331 } 6332 } 6333 6334 if (flags & XGMAC_UCADDR) { 6335 uint8_t ucaddr[ETHER_ADDR_LEN]; 6336 6337 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr)); 6338 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6339 ucaddr, true, &vi->smt_idx); 6340 if (rc < 0) { 6341 rc = -rc; 6342 if_printf(ifp, "change_mac failed: %d\n", rc); 6343 return (rc); 6344 } else { 6345 vi->xact_addr_filt = rc; 6346 rc = 0; 6347 } 6348 } 6349 6350 if (flags & XGMAC_MCADDRS) { 6351 struct epoch_tracker et; 6352 struct mcaddr_ctx ctx; 6353 int j; 6354 6355 ctx.ifp = ifp; 6356 ctx.hash = 0; 6357 ctx.i = 0; 6358 ctx.del = 1; 6359 ctx.rc = 0; 6360 /* 6361 * Unlike other drivers, we accumulate list of pointers into 6362 * interface address lists and we need to keep it safe even 6363 * after if_foreach_llmaddr() returns, thus we must enter the 6364 * network epoch. 6365 */ 6366 NET_EPOCH_ENTER(et); 6367 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6368 if (ctx.rc < 0) { 6369 NET_EPOCH_EXIT(et); 6370 rc = -ctx.rc; 6371 return (rc); 6372 } 6373 if (ctx.i > 0) { 6374 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6375 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6376 NET_EPOCH_EXIT(et); 6377 if (rc < 0) { 6378 rc = -rc; 6379 for (j = 0; j < ctx.i; j++) { 6380 if_printf(ifp, 6381 "failed to add mcast address" 6382 " %02x:%02x:%02x:" 6383 "%02x:%02x:%02x rc=%d\n", 6384 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6385 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6386 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6387 rc); 6388 } 6389 return (rc); 6390 } 6391 ctx.del = 0; 6392 } else 6393 NET_EPOCH_EXIT(et); 6394 6395 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6396 if (rc != 0) 6397 if_printf(ifp, "failed to set mcast address hash: %d\n", 6398 rc); 6399 if (ctx.del == 0) { 6400 /* We clobbered the VXLAN entry if there was one. */ 6401 pi->vxlan_tcam_entry = false; 6402 } 6403 } 6404 6405 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6406 pi->vxlan_tcam_entry == false) { 6407 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6408 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6409 true); 6410 if (rc < 0) { 6411 rc = -rc; 6412 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6413 rc); 6414 } else { 6415 MPASS(rc == sc->rawf_base + pi->port_id); 6416 rc = 0; 6417 pi->vxlan_tcam_entry = true; 6418 } 6419 } 6420 6421 return (rc); 6422 } 6423 6424 /* 6425 * {begin|end}_synchronized_op must be called from the same thread. 6426 */ 6427 int 6428 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6429 char *wmesg) 6430 { 6431 int rc; 6432 6433 #ifdef WITNESS 6434 /* the caller thinks it's ok to sleep, but is it really? */ 6435 if (flags & SLEEP_OK) 6436 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 6437 #endif 6438 ADAPTER_LOCK(sc); 6439 for (;;) { 6440 6441 if (vi && IS_DETACHING(vi)) { 6442 rc = ENXIO; 6443 goto done; 6444 } 6445 6446 if (!IS_BUSY(sc)) { 6447 rc = 0; 6448 break; 6449 } 6450 6451 if (!(flags & SLEEP_OK)) { 6452 rc = EBUSY; 6453 goto done; 6454 } 6455 6456 if (mtx_sleep(&sc->flags, &sc->sc_lock, 6457 flags & INTR_OK ? PCATCH : 0, wmesg, 0)) { 6458 rc = EINTR; 6459 goto done; 6460 } 6461 } 6462 6463 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6464 SET_BUSY(sc); 6465 #ifdef INVARIANTS 6466 sc->last_op = wmesg; 6467 sc->last_op_thr = curthread; 6468 sc->last_op_flags = flags; 6469 #endif 6470 6471 done: 6472 if (!(flags & HOLD_LOCK) || rc) 6473 ADAPTER_UNLOCK(sc); 6474 6475 return (rc); 6476 } 6477 6478 /* 6479 * Tell if_ioctl and if_init that the VI is going away. This is 6480 * special variant of begin_synchronized_op and must be paired with a 6481 * call to end_vi_detach. 6482 */ 6483 void 6484 begin_vi_detach(struct adapter *sc, struct vi_info *vi) 6485 { 6486 ADAPTER_LOCK(sc); 6487 SET_DETACHING(vi); 6488 wakeup(&sc->flags); 6489 while (IS_BUSY(sc)) 6490 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6491 SET_BUSY(sc); 6492 #ifdef INVARIANTS 6493 sc->last_op = "t4detach"; 6494 sc->last_op_thr = curthread; 6495 sc->last_op_flags = 0; 6496 #endif 6497 ADAPTER_UNLOCK(sc); 6498 } 6499 6500 void 6501 end_vi_detach(struct adapter *sc, struct vi_info *vi) 6502 { 6503 ADAPTER_LOCK(sc); 6504 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6505 CLR_BUSY(sc); 6506 CLR_DETACHING(vi); 6507 wakeup(&sc->flags); 6508 ADAPTER_UNLOCK(sc); 6509 } 6510 6511 /* 6512 * {begin|end}_synchronized_op must be called from the same thread. 6513 */ 6514 void 6515 end_synchronized_op(struct adapter *sc, int flags) 6516 { 6517 6518 if (flags & LOCK_HELD) 6519 ADAPTER_LOCK_ASSERT_OWNED(sc); 6520 else 6521 ADAPTER_LOCK(sc); 6522 6523 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6524 CLR_BUSY(sc); 6525 wakeup(&sc->flags); 6526 ADAPTER_UNLOCK(sc); 6527 } 6528 6529 static int 6530 cxgbe_init_synchronized(struct vi_info *vi) 6531 { 6532 struct port_info *pi = vi->pi; 6533 struct adapter *sc = pi->adapter; 6534 if_t ifp = vi->ifp; 6535 int rc = 0, i; 6536 struct sge_txq *txq; 6537 6538 ASSERT_SYNCHRONIZED_OP(sc); 6539 6540 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6541 return (0); /* already running */ 6542 6543 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6544 return (rc); /* error message displayed already */ 6545 6546 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6547 return (rc); /* error message displayed already */ 6548 6549 rc = update_mac_settings(ifp, XGMAC_ALL); 6550 if (rc) 6551 goto done; /* error message displayed already */ 6552 6553 PORT_LOCK(pi); 6554 if (pi->up_vis == 0) { 6555 t4_update_port_info(pi); 6556 fixup_link_config(pi); 6557 build_medialist(pi); 6558 apply_link_config(pi); 6559 } 6560 6561 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6562 if (rc != 0) { 6563 if_printf(ifp, "enable_vi failed: %d\n", rc); 6564 PORT_UNLOCK(pi); 6565 goto done; 6566 } 6567 6568 /* 6569 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6570 * if this changes. 6571 */ 6572 6573 for_each_txq(vi, i, txq) { 6574 TXQ_LOCK(txq); 6575 txq->eq.flags |= EQ_ENABLED; 6576 TXQ_UNLOCK(txq); 6577 } 6578 6579 /* 6580 * The first iq of the first port to come up is used for tracing. 6581 */ 6582 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6583 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6584 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6585 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6586 V_QUEUENUMBER(sc->traceq)); 6587 pi->flags |= HAS_TRACEQ; 6588 } 6589 6590 /* all ok */ 6591 pi->up_vis++; 6592 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 6593 if (pi->link_cfg.link_ok) 6594 t4_os_link_changed(pi); 6595 PORT_UNLOCK(pi); 6596 6597 mtx_lock(&vi->tick_mtx); 6598 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 6599 callout_reset(&vi->tick, hz, vi_tick, vi); 6600 else 6601 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6602 mtx_unlock(&vi->tick_mtx); 6603 done: 6604 if (rc != 0) 6605 cxgbe_uninit_synchronized(vi); 6606 6607 return (rc); 6608 } 6609 6610 /* 6611 * Idempotent. 6612 */ 6613 static int 6614 cxgbe_uninit_synchronized(struct vi_info *vi) 6615 { 6616 struct port_info *pi = vi->pi; 6617 struct adapter *sc = pi->adapter; 6618 if_t ifp = vi->ifp; 6619 int rc, i; 6620 struct sge_txq *txq; 6621 6622 ASSERT_SYNCHRONIZED_OP(sc); 6623 6624 if (!(vi->flags & VI_INIT_DONE)) { 6625 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6626 KASSERT(0, ("uninited VI is running")); 6627 if_printf(ifp, "uninited VI with running ifnet. " 6628 "vi->flags 0x%016lx, if_flags 0x%08x, " 6629 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp), 6630 if_getdrvflags(ifp)); 6631 } 6632 return (0); 6633 } 6634 6635 /* 6636 * Disable the VI so that all its data in either direction is discarded 6637 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6638 * tick) intact as the TP can deliver negative advice or data that it's 6639 * holding in its RAM (for an offloaded connection) even after the VI is 6640 * disabled. 6641 */ 6642 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6643 if (rc) { 6644 if_printf(ifp, "disable_vi failed: %d\n", rc); 6645 return (rc); 6646 } 6647 6648 for_each_txq(vi, i, txq) { 6649 TXQ_LOCK(txq); 6650 txq->eq.flags &= ~EQ_ENABLED; 6651 TXQ_UNLOCK(txq); 6652 } 6653 6654 mtx_lock(&vi->tick_mtx); 6655 callout_stop(&vi->tick); 6656 mtx_unlock(&vi->tick_mtx); 6657 6658 PORT_LOCK(pi); 6659 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6660 PORT_UNLOCK(pi); 6661 return (0); 6662 } 6663 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 6664 pi->up_vis--; 6665 if (pi->up_vis > 0) { 6666 PORT_UNLOCK(pi); 6667 return (0); 6668 } 6669 6670 pi->link_cfg.link_ok = false; 6671 pi->link_cfg.speed = 0; 6672 pi->link_cfg.link_down_rc = 255; 6673 t4_os_link_changed(pi); 6674 PORT_UNLOCK(pi); 6675 6676 return (0); 6677 } 6678 6679 /* 6680 * It is ok for this function to fail midway and return right away. t4_detach 6681 * will walk the entire sc->irq list and clean up whatever is valid. 6682 */ 6683 int 6684 t4_setup_intr_handlers(struct adapter *sc) 6685 { 6686 int rc, rid, p, q, v; 6687 char s[8]; 6688 struct irq *irq; 6689 struct port_info *pi; 6690 struct vi_info *vi; 6691 struct sge *sge = &sc->sge; 6692 struct sge_rxq *rxq; 6693 #ifdef TCP_OFFLOAD 6694 struct sge_ofld_rxq *ofld_rxq; 6695 #endif 6696 #ifdef DEV_NETMAP 6697 struct sge_nm_rxq *nm_rxq; 6698 #endif 6699 #ifdef RSS 6700 int nbuckets = rss_getnumbuckets(); 6701 #endif 6702 6703 /* 6704 * Setup interrupts. 6705 */ 6706 irq = &sc->irq[0]; 6707 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6708 if (forwarding_intr_to_fwq(sc)) 6709 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6710 6711 /* Multiple interrupts. */ 6712 if (sc->flags & IS_VF) 6713 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6714 ("%s: too few intr.", __func__)); 6715 else 6716 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6717 ("%s: too few intr.", __func__)); 6718 6719 /* The first one is always error intr on PFs */ 6720 if (!(sc->flags & IS_VF)) { 6721 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6722 if (rc != 0) 6723 return (rc); 6724 irq++; 6725 rid++; 6726 } 6727 6728 /* The second one is always the firmware event queue (first on VFs) */ 6729 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6730 if (rc != 0) 6731 return (rc); 6732 irq++; 6733 rid++; 6734 6735 for_each_port(sc, p) { 6736 pi = sc->port[p]; 6737 for_each_vi(pi, v, vi) { 6738 vi->first_intr = rid - 1; 6739 6740 if (vi->nnmrxq > 0) { 6741 int n = max(vi->nrxq, vi->nnmrxq); 6742 6743 rxq = &sge->rxq[vi->first_rxq]; 6744 #ifdef DEV_NETMAP 6745 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6746 #endif 6747 for (q = 0; q < n; q++) { 6748 snprintf(s, sizeof(s), "%x%c%x", p, 6749 'a' + v, q); 6750 if (q < vi->nrxq) 6751 irq->rxq = rxq++; 6752 #ifdef DEV_NETMAP 6753 if (q < vi->nnmrxq) 6754 irq->nm_rxq = nm_rxq++; 6755 6756 if (irq->nm_rxq != NULL && 6757 irq->rxq == NULL) { 6758 /* Netmap rx only */ 6759 rc = t4_alloc_irq(sc, irq, rid, 6760 t4_nm_intr, irq->nm_rxq, s); 6761 } 6762 if (irq->nm_rxq != NULL && 6763 irq->rxq != NULL) { 6764 /* NIC and Netmap rx */ 6765 rc = t4_alloc_irq(sc, irq, rid, 6766 t4_vi_intr, irq, s); 6767 } 6768 #endif 6769 if (irq->rxq != NULL && 6770 irq->nm_rxq == NULL) { 6771 /* NIC rx only */ 6772 rc = t4_alloc_irq(sc, irq, rid, 6773 t4_intr, irq->rxq, s); 6774 } 6775 if (rc != 0) 6776 return (rc); 6777 #ifdef RSS 6778 if (q < vi->nrxq) { 6779 bus_bind_intr(sc->dev, irq->res, 6780 rss_getcpu(q % nbuckets)); 6781 } 6782 #endif 6783 irq++; 6784 rid++; 6785 vi->nintr++; 6786 } 6787 } else { 6788 for_each_rxq(vi, q, rxq) { 6789 snprintf(s, sizeof(s), "%x%c%x", p, 6790 'a' + v, q); 6791 rc = t4_alloc_irq(sc, irq, rid, 6792 t4_intr, rxq, s); 6793 if (rc != 0) 6794 return (rc); 6795 #ifdef RSS 6796 bus_bind_intr(sc->dev, irq->res, 6797 rss_getcpu(q % nbuckets)); 6798 #endif 6799 irq++; 6800 rid++; 6801 vi->nintr++; 6802 } 6803 } 6804 #ifdef TCP_OFFLOAD 6805 for_each_ofld_rxq(vi, q, ofld_rxq) { 6806 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6807 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6808 ofld_rxq, s); 6809 if (rc != 0) 6810 return (rc); 6811 irq++; 6812 rid++; 6813 vi->nintr++; 6814 } 6815 #endif 6816 } 6817 } 6818 MPASS(irq == &sc->irq[sc->intr_count]); 6819 6820 return (0); 6821 } 6822 6823 static void 6824 write_global_rss_key(struct adapter *sc) 6825 { 6826 #ifdef RSS 6827 int i; 6828 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6829 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6830 6831 CTASSERT(RSS_KEYSIZE == 40); 6832 6833 rss_getkey((void *)&raw_rss_key[0]); 6834 for (i = 0; i < nitems(rss_key); i++) { 6835 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6836 } 6837 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6838 #endif 6839 } 6840 6841 /* 6842 * Idempotent. 6843 */ 6844 static int 6845 adapter_full_init(struct adapter *sc) 6846 { 6847 int rc, i; 6848 6849 ASSERT_SYNCHRONIZED_OP(sc); 6850 6851 /* 6852 * queues that belong to the adapter (not any particular port). 6853 */ 6854 rc = t4_setup_adapter_queues(sc); 6855 if (rc != 0) 6856 return (rc); 6857 6858 MPASS(sc->params.nports <= nitems(sc->tq)); 6859 for (i = 0; i < sc->params.nports; i++) { 6860 if (sc->tq[i] != NULL) 6861 continue; 6862 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6863 taskqueue_thread_enqueue, &sc->tq[i]); 6864 if (sc->tq[i] == NULL) { 6865 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6866 return (ENOMEM); 6867 } 6868 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6869 device_get_nameunit(sc->dev), i); 6870 } 6871 6872 if (!(sc->flags & IS_VF)) { 6873 write_global_rss_key(sc); 6874 t4_intr_enable(sc); 6875 } 6876 return (0); 6877 } 6878 6879 int 6880 adapter_init(struct adapter *sc) 6881 { 6882 int rc; 6883 6884 ASSERT_SYNCHRONIZED_OP(sc); 6885 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6886 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6887 ("%s: FULL_INIT_DONE already", __func__)); 6888 6889 rc = adapter_full_init(sc); 6890 if (rc != 0) 6891 adapter_full_uninit(sc); 6892 else 6893 sc->flags |= FULL_INIT_DONE; 6894 6895 return (rc); 6896 } 6897 6898 /* 6899 * Idempotent. 6900 */ 6901 static void 6902 adapter_full_uninit(struct adapter *sc) 6903 { 6904 int i; 6905 6906 t4_teardown_adapter_queues(sc); 6907 6908 for (i = 0; i < nitems(sc->tq); i++) { 6909 if (sc->tq[i] == NULL) 6910 continue; 6911 taskqueue_free(sc->tq[i]); 6912 sc->tq[i] = NULL; 6913 } 6914 6915 sc->flags &= ~FULL_INIT_DONE; 6916 } 6917 6918 #ifdef RSS 6919 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6920 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6921 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6922 RSS_HASHTYPE_RSS_UDP_IPV6) 6923 6924 /* Translates kernel hash types to hardware. */ 6925 static int 6926 hashconfig_to_hashen(int hashconfig) 6927 { 6928 int hashen = 0; 6929 6930 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6931 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6932 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6933 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6934 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6935 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6936 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6937 } 6938 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6939 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6940 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6941 } 6942 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6943 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6944 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6945 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6946 6947 return (hashen); 6948 } 6949 6950 /* Translates hardware hash types to kernel. */ 6951 static int 6952 hashen_to_hashconfig(int hashen) 6953 { 6954 int hashconfig = 0; 6955 6956 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6957 /* 6958 * If UDP hashing was enabled it must have been enabled for 6959 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6960 * enabling any 4-tuple hash is nonsense configuration. 6961 */ 6962 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6963 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6964 6965 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6966 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6967 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6968 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6969 } 6970 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6971 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6972 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6973 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6974 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6975 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6976 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6977 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6978 6979 return (hashconfig); 6980 } 6981 #endif 6982 6983 /* 6984 * Idempotent. 6985 */ 6986 static int 6987 vi_full_init(struct vi_info *vi) 6988 { 6989 struct adapter *sc = vi->adapter; 6990 struct sge_rxq *rxq; 6991 int rc, i, j; 6992 #ifdef RSS 6993 int nbuckets = rss_getnumbuckets(); 6994 int hashconfig = rss_gethashconfig(); 6995 int extra; 6996 #endif 6997 6998 ASSERT_SYNCHRONIZED_OP(sc); 6999 7000 /* 7001 * Allocate tx/rx/fl queues for this VI. 7002 */ 7003 rc = t4_setup_vi_queues(vi); 7004 if (rc != 0) 7005 return (rc); 7006 7007 /* 7008 * Setup RSS for this VI. Save a copy of the RSS table for later use. 7009 */ 7010 if (vi->nrxq > vi->rss_size) { 7011 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 7012 "some queues will never receive traffic.\n", vi->nrxq, 7013 vi->rss_size); 7014 } else if (vi->rss_size % vi->nrxq) { 7015 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 7016 "expect uneven traffic distribution.\n", vi->nrxq, 7017 vi->rss_size); 7018 } 7019 #ifdef RSS 7020 if (vi->nrxq != nbuckets) { 7021 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 7022 "performance will be impacted.\n", vi->nrxq, nbuckets); 7023 } 7024 #endif 7025 if (vi->rss == NULL) 7026 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 7027 M_ZERO | M_WAITOK); 7028 for (i = 0; i < vi->rss_size;) { 7029 #ifdef RSS 7030 j = rss_get_indirection_to_bucket(i); 7031 j %= vi->nrxq; 7032 rxq = &sc->sge.rxq[vi->first_rxq + j]; 7033 vi->rss[i++] = rxq->iq.abs_id; 7034 #else 7035 for_each_rxq(vi, j, rxq) { 7036 vi->rss[i++] = rxq->iq.abs_id; 7037 if (i == vi->rss_size) 7038 break; 7039 } 7040 #endif 7041 } 7042 7043 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 7044 vi->rss, vi->rss_size); 7045 if (rc != 0) { 7046 CH_ERR(vi, "rss_config failed: %d\n", rc); 7047 return (rc); 7048 } 7049 7050 #ifdef RSS 7051 vi->hashen = hashconfig_to_hashen(hashconfig); 7052 7053 /* 7054 * We may have had to enable some hashes even though the global config 7055 * wants them disabled. This is a potential problem that must be 7056 * reported to the user. 7057 */ 7058 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 7059 7060 /* 7061 * If we consider only the supported hash types, then the enabled hashes 7062 * are a superset of the requested hashes. In other words, there cannot 7063 * be any supported hash that was requested but not enabled, but there 7064 * can be hashes that were not requested but had to be enabled. 7065 */ 7066 extra &= SUPPORTED_RSS_HASHTYPES; 7067 MPASS((extra & hashconfig) == 0); 7068 7069 if (extra) { 7070 CH_ALERT(vi, 7071 "global RSS config (0x%x) cannot be accommodated.\n", 7072 hashconfig); 7073 } 7074 if (extra & RSS_HASHTYPE_RSS_IPV4) 7075 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 7076 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 7077 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 7078 if (extra & RSS_HASHTYPE_RSS_IPV6) 7079 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 7080 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 7081 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 7082 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 7083 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 7084 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 7085 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 7086 #else 7087 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 7088 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 7089 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 7090 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 7091 #endif 7092 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 7093 0, 0); 7094 if (rc != 0) { 7095 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 7096 return (rc); 7097 } 7098 7099 return (0); 7100 } 7101 7102 int 7103 vi_init(struct vi_info *vi) 7104 { 7105 int rc; 7106 7107 ASSERT_SYNCHRONIZED_OP(vi->adapter); 7108 KASSERT((vi->flags & VI_INIT_DONE) == 0, 7109 ("%s: VI_INIT_DONE already", __func__)); 7110 7111 rc = vi_full_init(vi); 7112 if (rc != 0) 7113 vi_full_uninit(vi); 7114 else 7115 vi->flags |= VI_INIT_DONE; 7116 7117 return (rc); 7118 } 7119 7120 /* 7121 * Idempotent. 7122 */ 7123 static void 7124 vi_full_uninit(struct vi_info *vi) 7125 { 7126 7127 if (vi->flags & VI_INIT_DONE) { 7128 quiesce_vi(vi); 7129 free(vi->rss, M_CXGBE); 7130 free(vi->nm_rss, M_CXGBE); 7131 } 7132 7133 t4_teardown_vi_queues(vi); 7134 vi->flags &= ~VI_INIT_DONE; 7135 } 7136 7137 static void 7138 quiesce_txq(struct sge_txq *txq) 7139 { 7140 struct sge_eq *eq = &txq->eq; 7141 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 7142 7143 MPASS(eq->flags & EQ_SW_ALLOCATED); 7144 MPASS(!(eq->flags & EQ_ENABLED)); 7145 7146 /* Wait for the mp_ring to empty. */ 7147 while (!mp_ring_is_idle(txq->r)) { 7148 mp_ring_check_drainage(txq->r, 4096); 7149 pause("rquiesce", 1); 7150 } 7151 MPASS(txq->txp.npkt == 0); 7152 7153 if (eq->flags & EQ_HW_ALLOCATED) { 7154 /* 7155 * Hardware is alive and working normally. Wait for it to 7156 * finish and then wait for the driver to catch up and reclaim 7157 * all descriptors. 7158 */ 7159 while (spg->cidx != htobe16(eq->pidx)) 7160 pause("equiesce", 1); 7161 while (eq->cidx != eq->pidx) 7162 pause("dquiesce", 1); 7163 } else { 7164 /* 7165 * Hardware is unavailable. Discard all pending tx and reclaim 7166 * descriptors directly. 7167 */ 7168 TXQ_LOCK(txq); 7169 while (eq->cidx != eq->pidx) { 7170 struct mbuf *m, *nextpkt; 7171 struct tx_sdesc *txsd; 7172 7173 txsd = &txq->sdesc[eq->cidx]; 7174 for (m = txsd->m; m != NULL; m = nextpkt) { 7175 nextpkt = m->m_nextpkt; 7176 m->m_nextpkt = NULL; 7177 m_freem(m); 7178 } 7179 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 7180 } 7181 spg->pidx = spg->cidx = htobe16(eq->cidx); 7182 TXQ_UNLOCK(txq); 7183 } 7184 } 7185 7186 static void 7187 quiesce_wrq(struct sge_wrq *wrq) 7188 { 7189 struct wrqe *wr; 7190 7191 TXQ_LOCK(wrq); 7192 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) { 7193 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 7194 #ifdef INVARIANTS 7195 wrq->nwr_pending--; 7196 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE); 7197 #endif 7198 free(wr, M_CXGBE); 7199 } 7200 MPASS(wrq->nwr_pending == 0); 7201 MPASS(wrq->ndesc_needed == 0); 7202 wrq->nwr_pending = 0; 7203 wrq->ndesc_needed = 0; 7204 TXQ_UNLOCK(wrq); 7205 } 7206 7207 static void 7208 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 7209 { 7210 /* Synchronize with the interrupt handler */ 7211 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 7212 pause("iqfree", 1); 7213 7214 if (fl != NULL) { 7215 MPASS(iq->flags & IQ_HAS_FL); 7216 7217 mtx_lock(&sc->sfl_lock); 7218 FL_LOCK(fl); 7219 fl->flags |= FL_DOOMED; 7220 FL_UNLOCK(fl); 7221 callout_stop(&sc->sfl_callout); 7222 mtx_unlock(&sc->sfl_lock); 7223 7224 KASSERT((fl->flags & FL_STARVING) == 0, 7225 ("%s: still starving", __func__)); 7226 7227 /* Release all buffers if hardware is no longer available. */ 7228 if (!(iq->flags & IQ_HW_ALLOCATED)) 7229 free_fl_buffers(sc, fl); 7230 } 7231 } 7232 7233 /* 7234 * Wait for all activity on all the queues of the VI to complete. It is assumed 7235 * that no new work is being enqueued by the hardware or the driver. That part 7236 * should be arranged before calling this function. 7237 */ 7238 static void 7239 quiesce_vi(struct vi_info *vi) 7240 { 7241 int i; 7242 struct adapter *sc = vi->adapter; 7243 struct sge_rxq *rxq; 7244 struct sge_txq *txq; 7245 #ifdef TCP_OFFLOAD 7246 struct sge_ofld_rxq *ofld_rxq; 7247 #endif 7248 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7249 struct sge_ofld_txq *ofld_txq; 7250 #endif 7251 7252 if (!(vi->flags & VI_INIT_DONE)) 7253 return; 7254 7255 for_each_txq(vi, i, txq) { 7256 quiesce_txq(txq); 7257 } 7258 7259 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7260 for_each_ofld_txq(vi, i, ofld_txq) { 7261 quiesce_wrq(&ofld_txq->wrq); 7262 } 7263 #endif 7264 7265 for_each_rxq(vi, i, rxq) { 7266 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7267 } 7268 7269 #ifdef TCP_OFFLOAD 7270 for_each_ofld_rxq(vi, i, ofld_rxq) { 7271 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7272 } 7273 #endif 7274 } 7275 7276 static int 7277 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7278 driver_intr_t *handler, void *arg, char *name) 7279 { 7280 int rc; 7281 7282 irq->rid = rid; 7283 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7284 RF_SHAREABLE | RF_ACTIVE); 7285 if (irq->res == NULL) { 7286 device_printf(sc->dev, 7287 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7288 return (ENOMEM); 7289 } 7290 7291 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7292 NULL, handler, arg, &irq->tag); 7293 if (rc != 0) { 7294 device_printf(sc->dev, 7295 "failed to setup interrupt for rid %d, name %s: %d\n", 7296 rid, name, rc); 7297 } else if (name) 7298 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7299 7300 return (rc); 7301 } 7302 7303 static int 7304 t4_free_irq(struct adapter *sc, struct irq *irq) 7305 { 7306 if (irq->tag) 7307 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7308 if (irq->res) 7309 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7310 7311 bzero(irq, sizeof(*irq)); 7312 7313 return (0); 7314 } 7315 7316 static void 7317 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7318 { 7319 7320 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7321 t4_get_regs(sc, buf, regs->len); 7322 } 7323 7324 #define A_PL_INDIR_CMD 0x1f8 7325 7326 #define S_PL_AUTOINC 31 7327 #define M_PL_AUTOINC 0x1U 7328 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7329 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7330 7331 #define S_PL_VFID 20 7332 #define M_PL_VFID 0xffU 7333 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7334 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7335 7336 #define S_PL_ADDR 0 7337 #define M_PL_ADDR 0xfffffU 7338 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7339 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7340 7341 #define A_PL_INDIR_DATA 0x1fc 7342 7343 static uint64_t 7344 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7345 { 7346 u32 stats[2]; 7347 7348 if (sc->flags & IS_VF) { 7349 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7350 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7351 } else { 7352 mtx_assert(&sc->reg_lock, MA_OWNED); 7353 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7354 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7355 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7356 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7357 } 7358 return (((uint64_t)stats[1]) << 32 | stats[0]); 7359 } 7360 7361 static void 7362 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7363 { 7364 7365 #define GET_STAT(name) \ 7366 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7367 7368 if (!(sc->flags & IS_VF)) 7369 mtx_lock(&sc->reg_lock); 7370 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7371 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7372 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7373 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7374 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7375 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7376 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7377 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7378 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7379 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7380 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7381 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7382 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7383 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7384 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7385 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7386 if (!(sc->flags & IS_VF)) 7387 mtx_unlock(&sc->reg_lock); 7388 7389 #undef GET_STAT 7390 } 7391 7392 static void 7393 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7394 { 7395 int reg; 7396 7397 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7398 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7399 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7400 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7401 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7402 } 7403 7404 static void 7405 vi_refresh_stats(struct vi_info *vi) 7406 { 7407 struct timeval tv; 7408 const struct timeval interval = {0, 250000}; /* 250ms */ 7409 7410 mtx_assert(&vi->tick_mtx, MA_OWNED); 7411 7412 if (vi->flags & VI_SKIP_STATS) 7413 return; 7414 7415 getmicrotime(&tv); 7416 timevalsub(&tv, &interval); 7417 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7418 return; 7419 7420 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7421 getmicrotime(&vi->last_refreshed); 7422 } 7423 7424 static void 7425 cxgbe_refresh_stats(struct vi_info *vi) 7426 { 7427 u_int i, v, tnl_cong_drops, chan_map; 7428 struct timeval tv; 7429 const struct timeval interval = {0, 250000}; /* 250ms */ 7430 struct port_info *pi; 7431 struct adapter *sc; 7432 7433 mtx_assert(&vi->tick_mtx, MA_OWNED); 7434 7435 if (vi->flags & VI_SKIP_STATS) 7436 return; 7437 7438 getmicrotime(&tv); 7439 timevalsub(&tv, &interval); 7440 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7441 return; 7442 7443 pi = vi->pi; 7444 sc = vi->adapter; 7445 tnl_cong_drops = 0; 7446 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7447 chan_map = pi->rx_e_chan_map; 7448 while (chan_map) { 7449 i = ffs(chan_map) - 1; 7450 mtx_lock(&sc->reg_lock); 7451 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7452 A_TP_MIB_TNL_CNG_DROP_0 + i); 7453 mtx_unlock(&sc->reg_lock); 7454 tnl_cong_drops += v; 7455 chan_map &= ~(1 << i); 7456 } 7457 pi->tnl_cong_drops = tnl_cong_drops; 7458 getmicrotime(&vi->last_refreshed); 7459 } 7460 7461 static void 7462 cxgbe_tick(void *arg) 7463 { 7464 struct vi_info *vi = arg; 7465 7466 MPASS(IS_MAIN_VI(vi)); 7467 mtx_assert(&vi->tick_mtx, MA_OWNED); 7468 7469 cxgbe_refresh_stats(vi); 7470 callout_schedule(&vi->tick, hz); 7471 } 7472 7473 static void 7474 vi_tick(void *arg) 7475 { 7476 struct vi_info *vi = arg; 7477 7478 mtx_assert(&vi->tick_mtx, MA_OWNED); 7479 7480 vi_refresh_stats(vi); 7481 callout_schedule(&vi->tick, hz); 7482 } 7483 7484 /* 7485 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7486 */ 7487 static char *caps_decoder[] = { 7488 "\20\001IPMI\002NCSI", /* 0: NBM */ 7489 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7490 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7491 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7492 "\006HASHFILTER\007ETHOFLD", 7493 "\20\001TOE", /* 4: TOE */ 7494 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7495 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7496 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7497 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7498 "\007T10DIF" 7499 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7500 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7501 "\004TLS_HW", 7502 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7503 "\004PO_INITIATOR\005PO_TARGET", 7504 }; 7505 7506 void 7507 t4_sysctls(struct adapter *sc) 7508 { 7509 struct sysctl_ctx_list *ctx = &sc->ctx; 7510 struct sysctl_oid *oid; 7511 struct sysctl_oid_list *children, *c0; 7512 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7513 7514 /* 7515 * dev.t4nex.X. 7516 */ 7517 oid = device_get_sysctl_tree(sc->dev); 7518 c0 = children = SYSCTL_CHILDREN(oid); 7519 7520 sc->sc_do_rxcopy = 1; 7521 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7522 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7523 7524 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7525 sc->params.nports, "# of ports"); 7526 7527 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7528 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7529 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7530 "available doorbells"); 7531 7532 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7533 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7534 7535 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7536 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7537 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7538 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7539 7540 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7541 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7542 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7543 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7544 7545 t4_sge_sysctls(sc, ctx, children); 7546 7547 sc->lro_timeout = 100; 7548 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7549 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7550 7551 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7552 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7553 7554 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7555 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7556 7557 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7558 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7559 7560 if (sc->flags & IS_VF) 7561 return; 7562 7563 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7564 NULL, chip_rev(sc), "chip hardware revision"); 7565 7566 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7567 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7568 7569 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7570 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7571 7572 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7573 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7574 7575 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7576 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7577 7578 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7579 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7580 7581 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7582 sc->er_version, 0, "expansion ROM version"); 7583 7584 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7585 sc->bs_version, 0, "bootstrap firmware version"); 7586 7587 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7588 NULL, sc->params.scfg_vers, "serial config version"); 7589 7590 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7591 NULL, sc->params.vpd_vers, "VPD version"); 7592 7593 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7594 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7595 7596 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7597 sc->cfcsum, "config file checksum"); 7598 7599 #define SYSCTL_CAP(name, n, text) \ 7600 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7601 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7602 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7603 "available " text " capabilities") 7604 7605 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7606 SYSCTL_CAP(linkcaps, 1, "link"); 7607 SYSCTL_CAP(switchcaps, 2, "switch"); 7608 SYSCTL_CAP(niccaps, 3, "NIC"); 7609 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7610 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7611 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7612 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7613 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7614 #undef SYSCTL_CAP 7615 7616 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7617 NULL, sc->tids.nftids, "number of filters"); 7618 7619 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7620 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7621 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7622 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7623 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7624 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7625 7626 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7627 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7628 sysctl_loadavg, "A", 7629 "microprocessor load averages (debug firmwares only)"); 7630 7631 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7632 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7633 "I", "core Vdd (in mV)"); 7634 7635 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7636 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7637 sysctl_cpus, "A", "local CPUs"); 7638 7639 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7640 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7641 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7642 7643 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7644 &sc->swintr, 0, "software triggered interrupts"); 7645 7646 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7647 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7648 "1 = reset adapter, 0 = zero reset counter"); 7649 7650 /* 7651 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7652 */ 7653 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7654 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7655 "logs and miscellaneous information"); 7656 children = SYSCTL_CHILDREN(oid); 7657 7658 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7659 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7660 sysctl_cctrl, "A", "congestion control"); 7661 7662 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7663 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7664 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7665 7666 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7667 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7668 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7669 7670 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7671 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7672 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7673 7674 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7675 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7676 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7677 7678 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7679 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7680 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7681 7682 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7683 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7684 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7685 7686 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7687 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7688 sysctl_cim_la, "A", "CIM logic analyzer"); 7689 7690 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7691 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7692 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7693 7694 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7695 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7696 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7697 7698 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7699 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7700 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7701 7702 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7703 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7704 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7705 7706 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7707 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7708 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7709 7710 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7711 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7712 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7713 7714 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7715 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7716 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7717 7718 if (chip_id(sc) > CHELSIO_T4) { 7719 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7720 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7721 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7722 "CIM OBQ 6 (SGE0-RX)"); 7723 7724 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7725 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7726 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7727 "CIM OBQ 7 (SGE1-RX)"); 7728 } 7729 7730 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7731 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7732 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7733 7734 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7735 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7736 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7737 7738 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7739 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7740 sysctl_cpl_stats, "A", "CPL statistics"); 7741 7742 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7743 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7744 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7745 7746 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7747 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7748 sysctl_tid_stats, "A", "tid stats"); 7749 7750 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7751 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7752 sysctl_devlog, "A", "firmware's device log"); 7753 7754 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7755 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7756 sysctl_fcoe_stats, "A", "FCoE statistics"); 7757 7758 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7759 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7760 sysctl_hw_sched, "A", "hardware scheduler "); 7761 7762 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7763 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7764 sysctl_l2t, "A", "hardware L2 table"); 7765 7766 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7767 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7768 sysctl_smt, "A", "hardware source MAC table"); 7769 7770 #ifdef INET6 7771 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7772 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7773 sysctl_clip, "A", "active CLIP table entries"); 7774 #endif 7775 7776 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7777 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7778 sysctl_lb_stats, "A", "loopback statistics"); 7779 7780 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7781 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7782 sysctl_meminfo, "A", "memory regions"); 7783 7784 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7785 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7786 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7787 "A", "MPS TCAM entries"); 7788 7789 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7790 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7791 sysctl_path_mtus, "A", "path MTUs"); 7792 7793 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7794 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7795 sysctl_pm_stats, "A", "PM statistics"); 7796 7797 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7798 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7799 sysctl_rdma_stats, "A", "RDMA statistics"); 7800 7801 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7802 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7803 sysctl_tcp_stats, "A", "TCP statistics"); 7804 7805 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7806 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7807 sysctl_tids, "A", "TID information"); 7808 7809 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7810 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7811 sysctl_tp_err_stats, "A", "TP error statistics"); 7812 7813 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7814 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7815 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7816 7817 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7818 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7819 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7820 7821 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7822 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7823 sysctl_tp_la, "A", "TP logic analyzer"); 7824 7825 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7826 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7827 sysctl_tx_rate, "A", "Tx rate"); 7828 7829 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7830 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7831 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7832 7833 if (chip_id(sc) >= CHELSIO_T5) { 7834 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7835 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7836 sysctl_wcwr_stats, "A", "write combined work requests"); 7837 } 7838 7839 #ifdef KERN_TLS 7840 if (is_ktls(sc)) { 7841 /* 7842 * dev.t4nex.0.tls. 7843 */ 7844 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7845 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7846 children = SYSCTL_CHILDREN(oid); 7847 7848 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7849 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7850 "keys in work requests (1) or attempt to store TLS keys " 7851 "in card memory."); 7852 7853 if (is_t6(sc)) 7854 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7855 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 7856 "combine TCB field updates with TLS record work " 7857 "requests."); 7858 } 7859 #endif 7860 7861 #ifdef TCP_OFFLOAD 7862 if (is_offload(sc)) { 7863 int i; 7864 char s[4]; 7865 7866 /* 7867 * dev.t4nex.X.toe. 7868 */ 7869 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7870 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7871 children = SYSCTL_CHILDREN(oid); 7872 7873 sc->tt.cong_algorithm = -1; 7874 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7875 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7876 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7877 "3 = highspeed)"); 7878 7879 sc->tt.sndbuf = -1; 7880 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7881 &sc->tt.sndbuf, 0, "hardware send buffer"); 7882 7883 sc->tt.ddp = 0; 7884 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7885 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7886 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7887 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7888 7889 sc->tt.rx_coalesce = -1; 7890 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7891 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7892 7893 sc->tt.tls = 1; 7894 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7895 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7896 "Inline TLS allowed"); 7897 7898 sc->tt.tx_align = -1; 7899 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7900 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7901 7902 sc->tt.tx_zcopy = 0; 7903 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7904 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7905 "Enable zero-copy aio_write(2)"); 7906 7907 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7908 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7909 "cop_managed_offloading", CTLFLAG_RW, 7910 &sc->tt.cop_managed_offloading, 0, 7911 "COP (Connection Offload Policy) controls all TOE offload"); 7912 7913 sc->tt.autorcvbuf_inc = 16 * 1024; 7914 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7915 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7916 "autorcvbuf increment"); 7917 7918 sc->tt.update_hc_on_pmtu_change = 1; 7919 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7920 "update_hc_on_pmtu_change", CTLFLAG_RW, 7921 &sc->tt.update_hc_on_pmtu_change, 0, 7922 "Update hostcache entry if the PMTU changes"); 7923 7924 sc->tt.iso = 1; 7925 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7926 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7927 7928 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7929 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7930 sysctl_tp_tick, "A", "TP timer tick (us)"); 7931 7932 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7933 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7934 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7935 7936 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7937 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7938 sysctl_tp_tick, "A", "DACK tick (us)"); 7939 7940 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7941 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7942 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7943 7944 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7945 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7946 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7947 "Minimum retransmit interval (us)"); 7948 7949 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7950 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7951 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7952 "Maximum retransmit interval (us)"); 7953 7954 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7955 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7956 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7957 "Persist timer min (us)"); 7958 7959 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7960 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7961 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7962 "Persist timer max (us)"); 7963 7964 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7965 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7966 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7967 "Keepalive idle timer (us)"); 7968 7969 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7970 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7971 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7972 "Keepalive interval timer (us)"); 7973 7974 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7975 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7976 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7977 7978 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7979 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7980 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7981 "FINWAIT2 timer (us)"); 7982 7983 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7984 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7985 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7986 "Number of SYN retransmissions before abort"); 7987 7988 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7989 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7990 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7991 "Number of retransmissions before abort"); 7992 7993 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7994 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7995 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7996 "Number of keepalive probes before abort"); 7997 7998 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7999 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8000 "TOE retransmit backoffs"); 8001 children = SYSCTL_CHILDREN(oid); 8002 for (i = 0; i < 16; i++) { 8003 snprintf(s, sizeof(s), "%u", i); 8004 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 8005 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8006 i, sysctl_tp_backoff, "IU", 8007 "TOE retransmit backoff"); 8008 } 8009 } 8010 #endif 8011 } 8012 8013 void 8014 vi_sysctls(struct vi_info *vi) 8015 { 8016 struct sysctl_ctx_list *ctx = &vi->ctx; 8017 struct sysctl_oid *oid; 8018 struct sysctl_oid_list *children; 8019 8020 /* 8021 * dev.v?(cxgbe|cxl).X. 8022 */ 8023 oid = device_get_sysctl_tree(vi->dev); 8024 children = SYSCTL_CHILDREN(oid); 8025 8026 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 8027 vi->viid, "VI identifer"); 8028 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 8029 &vi->nrxq, 0, "# of rx queues"); 8030 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 8031 &vi->ntxq, 0, "# of tx queues"); 8032 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 8033 &vi->first_rxq, 0, "index of first rx queue"); 8034 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 8035 &vi->first_txq, 0, "index of first tx queue"); 8036 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 8037 vi->rss_base, "start of RSS indirection table"); 8038 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 8039 vi->rss_size, "size of RSS indirection table"); 8040 8041 if (IS_MAIN_VI(vi)) { 8042 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 8043 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8044 sysctl_noflowq, "IU", 8045 "Reserve queue 0 for non-flowid packets"); 8046 } 8047 8048 if (vi->adapter->flags & IS_VF) { 8049 MPASS(vi->flags & TX_USES_VM_WR); 8050 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 8051 NULL, 1, "use VM work requests for transmit"); 8052 } else { 8053 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 8054 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8055 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 8056 } 8057 8058 #ifdef TCP_OFFLOAD 8059 if (vi->nofldrxq != 0) { 8060 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 8061 &vi->nofldrxq, 0, 8062 "# of rx queues for offloaded TCP connections"); 8063 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 8064 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 8065 "index of first TOE rx queue"); 8066 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 8067 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8068 sysctl_holdoff_tmr_idx_ofld, "I", 8069 "holdoff timer index for TOE queues"); 8070 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 8071 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8072 sysctl_holdoff_pktc_idx_ofld, "I", 8073 "holdoff packet counter index for TOE queues"); 8074 } 8075 #endif 8076 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 8077 if (vi->nofldtxq != 0) { 8078 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 8079 &vi->nofldtxq, 0, 8080 "# of tx queues for TOE/ETHOFLD"); 8081 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 8082 CTLFLAG_RD, &vi->first_ofld_txq, 0, 8083 "index of first TOE/ETHOFLD tx queue"); 8084 } 8085 #endif 8086 #ifdef DEV_NETMAP 8087 if (vi->nnmrxq != 0) { 8088 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 8089 &vi->nnmrxq, 0, "# of netmap rx queues"); 8090 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 8091 &vi->nnmtxq, 0, "# of netmap tx queues"); 8092 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 8093 CTLFLAG_RD, &vi->first_nm_rxq, 0, 8094 "index of first netmap rx queue"); 8095 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 8096 CTLFLAG_RD, &vi->first_nm_txq, 0, 8097 "index of first netmap tx queue"); 8098 } 8099 #endif 8100 8101 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 8102 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8103 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 8104 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 8105 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8106 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 8107 8108 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 8109 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8110 sysctl_qsize_rxq, "I", "rx queue size"); 8111 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 8112 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8113 sysctl_qsize_txq, "I", "tx queue size"); 8114 } 8115 8116 static void 8117 cxgbe_sysctls(struct port_info *pi) 8118 { 8119 struct sysctl_ctx_list *ctx = &pi->ctx; 8120 struct sysctl_oid *oid; 8121 struct sysctl_oid_list *children, *children2; 8122 struct adapter *sc = pi->adapter; 8123 int i; 8124 char name[16]; 8125 static char *tc_flags = {"\20\1USER"}; 8126 8127 /* 8128 * dev.cxgbe.X. 8129 */ 8130 oid = device_get_sysctl_tree(pi->dev); 8131 children = SYSCTL_CHILDREN(oid); 8132 8133 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 8134 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8135 sysctl_linkdnrc, "A", "reason why link is down"); 8136 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 8137 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 8138 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8139 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 8140 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 8141 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 8142 sysctl_btphy, "I", "PHY firmware version"); 8143 } 8144 8145 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 8146 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8147 sysctl_pause_settings, "A", 8148 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 8149 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 8150 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 8151 "FEC in use on the link"); 8152 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 8153 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8154 sysctl_requested_fec, "A", 8155 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 8156 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 8157 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 8158 "FEC recommended by the cable/transceiver"); 8159 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 8160 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8161 sysctl_autoneg, "I", 8162 "autonegotiation (-1 = not supported)"); 8163 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 8164 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8165 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 8166 8167 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 8168 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 8169 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 8170 &pi->link_cfg.pcaps, 0, "port capabilities"); 8171 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 8172 &pi->link_cfg.acaps, 0, "advertised capabilities"); 8173 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 8174 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 8175 8176 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 8177 port_top_speed(pi), "max speed (in Gbps)"); 8178 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 8179 pi->mps_bg_map, "MPS buffer group map"); 8180 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 8181 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 8182 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL, 8183 pi->tx_chan, "TP tx c-channel"); 8184 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL, 8185 pi->rx_chan, "TP rx c-channel"); 8186 8187 if (sc->flags & IS_VF) 8188 return; 8189 8190 /* 8191 * dev.(cxgbe|cxl).X.tc. 8192 */ 8193 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 8194 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8195 "Tx scheduler traffic classes (cl_rl)"); 8196 children2 = SYSCTL_CHILDREN(oid); 8197 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 8198 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 8199 "pktsize for per-flow cl-rl (0 means up to the driver )"); 8200 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 8201 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 8202 "burstsize for per-flow cl-rl (0 means up to the driver)"); 8203 for (i = 0; i < sc->params.nsched_cls; i++) { 8204 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 8205 8206 snprintf(name, sizeof(name), "%d", i); 8207 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 8208 SYSCTL_CHILDREN(oid), OID_AUTO, name, 8209 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 8210 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 8211 CTLFLAG_RD, &tc->state, 0, "current state"); 8212 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 8213 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 8214 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 8215 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 8216 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 8217 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 8218 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8219 (pi->port_id << 16) | i, sysctl_tc_params, "A", 8220 "traffic class parameters"); 8221 } 8222 8223 /* 8224 * dev.cxgbe.X.stats. 8225 */ 8226 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8227 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8228 children = SYSCTL_CHILDREN(oid); 8229 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8230 &pi->tx_parse_error, 0, 8231 "# of tx packets with invalid length or # of segments"); 8232 8233 #define T4_REGSTAT(name, stat, desc) \ 8234 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8235 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8236 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \ 8237 sysctl_handle_t4_reg64, "QU", desc) 8238 8239 /* We get these from port_stats and they may be stale by up to 1s */ 8240 #define T4_PORTSTAT(name, desc) \ 8241 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 8242 &pi->stats.name, desc) 8243 8244 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8245 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8246 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8247 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8248 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8249 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8250 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8251 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8252 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8253 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8254 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8255 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8256 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8257 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8258 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8259 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8260 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8261 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8262 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8263 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8264 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8265 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8266 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8267 8268 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8269 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8270 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8271 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8272 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8273 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8274 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8275 if (is_t6(sc)) { 8276 T4_PORTSTAT(rx_fcs_err, 8277 "# of frames received with bad FCS since last link up"); 8278 } else { 8279 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8280 "# of frames received with bad FCS"); 8281 } 8282 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8283 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8284 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8285 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8286 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8287 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8288 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8289 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8290 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8291 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8292 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8293 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8294 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8295 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8296 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8297 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8298 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8299 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8300 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8301 8302 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 8303 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 8304 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 8305 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 8306 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 8307 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 8308 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 8309 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 8310 8311 #undef T4_REGSTAT 8312 #undef T4_PORTSTAT 8313 } 8314 8315 static int 8316 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8317 { 8318 int rc, *i, space = 0; 8319 struct sbuf sb; 8320 8321 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8322 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8323 if (space) 8324 sbuf_printf(&sb, " "); 8325 sbuf_printf(&sb, "%d", *i); 8326 space = 1; 8327 } 8328 rc = sbuf_finish(&sb); 8329 sbuf_delete(&sb); 8330 return (rc); 8331 } 8332 8333 static int 8334 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8335 { 8336 int rc; 8337 struct sbuf *sb; 8338 8339 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8340 if (sb == NULL) 8341 return (ENOMEM); 8342 8343 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8344 rc = sbuf_finish(sb); 8345 sbuf_delete(sb); 8346 8347 return (rc); 8348 } 8349 8350 static int 8351 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8352 { 8353 int rc; 8354 struct sbuf *sb; 8355 8356 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8357 if (sb == NULL) 8358 return (ENOMEM); 8359 8360 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8361 rc = sbuf_finish(sb); 8362 sbuf_delete(sb); 8363 8364 return (rc); 8365 } 8366 8367 static int 8368 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8369 { 8370 struct port_info *pi = arg1; 8371 int op = arg2; 8372 struct adapter *sc = pi->adapter; 8373 u_int v; 8374 int rc; 8375 8376 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8377 if (rc) 8378 return (rc); 8379 if (!hw_all_ok(sc)) 8380 rc = ENXIO; 8381 else { 8382 /* XXX: magic numbers */ 8383 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8384 op ? 0x20 : 0xc820, &v); 8385 } 8386 end_synchronized_op(sc, 0); 8387 if (rc) 8388 return (rc); 8389 if (op == 0) 8390 v /= 256; 8391 8392 rc = sysctl_handle_int(oidp, &v, 0, req); 8393 return (rc); 8394 } 8395 8396 static int 8397 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8398 { 8399 struct vi_info *vi = arg1; 8400 int rc, val; 8401 8402 val = vi->rsrv_noflowq; 8403 rc = sysctl_handle_int(oidp, &val, 0, req); 8404 if (rc != 0 || req->newptr == NULL) 8405 return (rc); 8406 8407 if ((val >= 1) && (vi->ntxq > 1)) 8408 vi->rsrv_noflowq = 1; 8409 else 8410 vi->rsrv_noflowq = 0; 8411 8412 return (rc); 8413 } 8414 8415 static int 8416 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8417 { 8418 struct vi_info *vi = arg1; 8419 struct adapter *sc = vi->adapter; 8420 int rc, val, i; 8421 8422 MPASS(!(sc->flags & IS_VF)); 8423 8424 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8425 rc = sysctl_handle_int(oidp, &val, 0, req); 8426 if (rc != 0 || req->newptr == NULL) 8427 return (rc); 8428 8429 if (val != 0 && val != 1) 8430 return (EINVAL); 8431 8432 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8433 "t4txvm"); 8434 if (rc) 8435 return (rc); 8436 if (!hw_all_ok(sc)) 8437 rc = ENXIO; 8438 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) { 8439 /* 8440 * We don't want parse_pkt to run with one setting (VF or PF) 8441 * and then eth_tx to see a different setting but still use 8442 * stale information calculated by parse_pkt. 8443 */ 8444 rc = EBUSY; 8445 } else { 8446 struct port_info *pi = vi->pi; 8447 struct sge_txq *txq; 8448 uint32_t ctrl0; 8449 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8450 8451 if (val) { 8452 vi->flags |= TX_USES_VM_WR; 8453 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO); 8454 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8455 V_TXPKT_INTF(pi->tx_chan)); 8456 if (!(sc->flags & IS_VF)) 8457 npkt--; 8458 } else { 8459 vi->flags &= ~TX_USES_VM_WR; 8460 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO); 8461 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8462 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8463 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8464 } 8465 for_each_txq(vi, i, txq) { 8466 txq->cpl_ctrl0 = ctrl0; 8467 txq->txp.max_npkt = npkt; 8468 } 8469 } 8470 end_synchronized_op(sc, LOCK_HELD); 8471 return (rc); 8472 } 8473 8474 static int 8475 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8476 { 8477 struct vi_info *vi = arg1; 8478 struct adapter *sc = vi->adapter; 8479 int idx, rc, i; 8480 struct sge_rxq *rxq; 8481 uint8_t v; 8482 8483 idx = vi->tmr_idx; 8484 8485 rc = sysctl_handle_int(oidp, &idx, 0, req); 8486 if (rc != 0 || req->newptr == NULL) 8487 return (rc); 8488 8489 if (idx < 0 || idx >= SGE_NTIMERS) 8490 return (EINVAL); 8491 8492 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8493 "t4tmr"); 8494 if (rc) 8495 return (rc); 8496 8497 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8498 for_each_rxq(vi, i, rxq) { 8499 #ifdef atomic_store_rel_8 8500 atomic_store_rel_8(&rxq->iq.intr_params, v); 8501 #else 8502 rxq->iq.intr_params = v; 8503 #endif 8504 } 8505 vi->tmr_idx = idx; 8506 8507 end_synchronized_op(sc, LOCK_HELD); 8508 return (0); 8509 } 8510 8511 static int 8512 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8513 { 8514 struct vi_info *vi = arg1; 8515 struct adapter *sc = vi->adapter; 8516 int idx, rc; 8517 8518 idx = vi->pktc_idx; 8519 8520 rc = sysctl_handle_int(oidp, &idx, 0, req); 8521 if (rc != 0 || req->newptr == NULL) 8522 return (rc); 8523 8524 if (idx < -1 || idx >= SGE_NCOUNTERS) 8525 return (EINVAL); 8526 8527 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8528 "t4pktc"); 8529 if (rc) 8530 return (rc); 8531 8532 if (vi->flags & VI_INIT_DONE) 8533 rc = EBUSY; /* cannot be changed once the queues are created */ 8534 else 8535 vi->pktc_idx = idx; 8536 8537 end_synchronized_op(sc, LOCK_HELD); 8538 return (rc); 8539 } 8540 8541 static int 8542 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8543 { 8544 struct vi_info *vi = arg1; 8545 struct adapter *sc = vi->adapter; 8546 int qsize, rc; 8547 8548 qsize = vi->qsize_rxq; 8549 8550 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8551 if (rc != 0 || req->newptr == NULL) 8552 return (rc); 8553 8554 if (qsize < 128 || (qsize & 7)) 8555 return (EINVAL); 8556 8557 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8558 "t4rxqs"); 8559 if (rc) 8560 return (rc); 8561 8562 if (vi->flags & VI_INIT_DONE) 8563 rc = EBUSY; /* cannot be changed once the queues are created */ 8564 else 8565 vi->qsize_rxq = qsize; 8566 8567 end_synchronized_op(sc, LOCK_HELD); 8568 return (rc); 8569 } 8570 8571 static int 8572 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8573 { 8574 struct vi_info *vi = arg1; 8575 struct adapter *sc = vi->adapter; 8576 int qsize, rc; 8577 8578 qsize = vi->qsize_txq; 8579 8580 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8581 if (rc != 0 || req->newptr == NULL) 8582 return (rc); 8583 8584 if (qsize < 128 || qsize > 65536) 8585 return (EINVAL); 8586 8587 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8588 "t4txqs"); 8589 if (rc) 8590 return (rc); 8591 8592 if (vi->flags & VI_INIT_DONE) 8593 rc = EBUSY; /* cannot be changed once the queues are created */ 8594 else 8595 vi->qsize_txq = qsize; 8596 8597 end_synchronized_op(sc, LOCK_HELD); 8598 return (rc); 8599 } 8600 8601 static int 8602 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8603 { 8604 struct port_info *pi = arg1; 8605 struct adapter *sc = pi->adapter; 8606 struct link_config *lc = &pi->link_cfg; 8607 int rc; 8608 8609 if (req->newptr == NULL) { 8610 struct sbuf *sb; 8611 static char *bits = "\20\1RX\2TX\3AUTO"; 8612 8613 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8614 if (sb == NULL) 8615 return (ENOMEM); 8616 8617 if (lc->link_ok) { 8618 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8619 (lc->requested_fc & PAUSE_AUTONEG), bits); 8620 } else { 8621 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8622 PAUSE_RX | PAUSE_AUTONEG), bits); 8623 } 8624 rc = sbuf_finish(sb); 8625 sbuf_delete(sb); 8626 } else { 8627 char s[2]; 8628 int n; 8629 8630 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8631 PAUSE_AUTONEG)); 8632 s[1] = 0; 8633 8634 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8635 if (rc != 0) 8636 return(rc); 8637 8638 if (s[1] != 0) 8639 return (EINVAL); 8640 if (s[0] < '0' || s[0] > '9') 8641 return (EINVAL); /* not a number */ 8642 n = s[0] - '0'; 8643 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8644 return (EINVAL); /* some other bit is set too */ 8645 8646 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8647 "t4PAUSE"); 8648 if (rc) 8649 return (rc); 8650 if (hw_all_ok(sc)) { 8651 PORT_LOCK(pi); 8652 lc->requested_fc = n; 8653 fixup_link_config(pi); 8654 if (pi->up_vis > 0) 8655 rc = apply_link_config(pi); 8656 set_current_media(pi); 8657 PORT_UNLOCK(pi); 8658 } 8659 end_synchronized_op(sc, 0); 8660 } 8661 8662 return (rc); 8663 } 8664 8665 static int 8666 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8667 { 8668 struct port_info *pi = arg1; 8669 struct link_config *lc = &pi->link_cfg; 8670 int rc; 8671 struct sbuf *sb; 8672 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8673 8674 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8675 if (sb == NULL) 8676 return (ENOMEM); 8677 if (lc->link_ok) 8678 sbuf_printf(sb, "%b", lc->fec, bits); 8679 else 8680 sbuf_printf(sb, "no link"); 8681 rc = sbuf_finish(sb); 8682 sbuf_delete(sb); 8683 8684 return (rc); 8685 } 8686 8687 static int 8688 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8689 { 8690 struct port_info *pi = arg1; 8691 struct adapter *sc = pi->adapter; 8692 struct link_config *lc = &pi->link_cfg; 8693 int rc; 8694 int8_t old; 8695 8696 if (req->newptr == NULL) { 8697 struct sbuf *sb; 8698 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8699 "\5RSVD3\6auto\7module"; 8700 8701 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8702 if (sb == NULL) 8703 return (ENOMEM); 8704 8705 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8706 rc = sbuf_finish(sb); 8707 sbuf_delete(sb); 8708 } else { 8709 char s[8]; 8710 int n; 8711 8712 snprintf(s, sizeof(s), "%d", 8713 lc->requested_fec == FEC_AUTO ? -1 : 8714 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8715 8716 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8717 if (rc != 0) 8718 return(rc); 8719 8720 n = strtol(&s[0], NULL, 0); 8721 if (n < 0 || n & FEC_AUTO) 8722 n = FEC_AUTO; 8723 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8724 return (EINVAL);/* some other bit is set too */ 8725 8726 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8727 "t4reqf"); 8728 if (rc) 8729 return (rc); 8730 PORT_LOCK(pi); 8731 old = lc->requested_fec; 8732 if (n == FEC_AUTO) 8733 lc->requested_fec = FEC_AUTO; 8734 else if (n == 0 || n == FEC_NONE) 8735 lc->requested_fec = FEC_NONE; 8736 else { 8737 if ((lc->pcaps | 8738 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8739 lc->pcaps) { 8740 rc = ENOTSUP; 8741 goto done; 8742 } 8743 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8744 FEC_MODULE); 8745 } 8746 if (hw_all_ok(sc)) { 8747 fixup_link_config(pi); 8748 if (pi->up_vis > 0) { 8749 rc = apply_link_config(pi); 8750 if (rc != 0) { 8751 lc->requested_fec = old; 8752 if (rc == FW_EPROTO) 8753 rc = ENOTSUP; 8754 } 8755 } 8756 } 8757 done: 8758 PORT_UNLOCK(pi); 8759 end_synchronized_op(sc, 0); 8760 } 8761 8762 return (rc); 8763 } 8764 8765 static int 8766 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8767 { 8768 struct port_info *pi = arg1; 8769 struct adapter *sc = pi->adapter; 8770 struct link_config *lc = &pi->link_cfg; 8771 int rc; 8772 int8_t fec; 8773 struct sbuf *sb; 8774 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8775 8776 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8777 if (sb == NULL) 8778 return (ENOMEM); 8779 8780 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8781 rc = EBUSY; 8782 goto done; 8783 } 8784 if (!hw_all_ok(sc)) { 8785 rc = ENXIO; 8786 goto done; 8787 } 8788 PORT_LOCK(pi); 8789 if (pi->up_vis == 0) { 8790 /* 8791 * If all the interfaces are administratively down the firmware 8792 * does not report transceiver changes. Refresh port info here. 8793 * This is the only reason we have a synchronized op in this 8794 * function. Just PORT_LOCK would have been enough otherwise. 8795 */ 8796 t4_update_port_info(pi); 8797 } 8798 8799 fec = lc->fec_hint; 8800 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8801 !fec_supported(lc->pcaps)) { 8802 PORT_UNLOCK(pi); 8803 sbuf_printf(sb, "n/a"); 8804 } else { 8805 if (fec == 0) 8806 fec = FEC_NONE; 8807 PORT_UNLOCK(pi); 8808 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8809 } 8810 rc = sbuf_finish(sb); 8811 done: 8812 sbuf_delete(sb); 8813 end_synchronized_op(sc, 0); 8814 8815 return (rc); 8816 } 8817 8818 static int 8819 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8820 { 8821 struct port_info *pi = arg1; 8822 struct adapter *sc = pi->adapter; 8823 struct link_config *lc = &pi->link_cfg; 8824 int rc, val; 8825 8826 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8827 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8828 else 8829 val = -1; 8830 rc = sysctl_handle_int(oidp, &val, 0, req); 8831 if (rc != 0 || req->newptr == NULL) 8832 return (rc); 8833 if (val == 0) 8834 val = AUTONEG_DISABLE; 8835 else if (val == 1) 8836 val = AUTONEG_ENABLE; 8837 else 8838 val = AUTONEG_AUTO; 8839 8840 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8841 "t4aneg"); 8842 if (rc) 8843 return (rc); 8844 PORT_LOCK(pi); 8845 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8846 rc = ENOTSUP; 8847 goto done; 8848 } 8849 lc->requested_aneg = val; 8850 if (hw_all_ok(sc)) { 8851 fixup_link_config(pi); 8852 if (pi->up_vis > 0) 8853 rc = apply_link_config(pi); 8854 set_current_media(pi); 8855 } 8856 done: 8857 PORT_UNLOCK(pi); 8858 end_synchronized_op(sc, 0); 8859 return (rc); 8860 } 8861 8862 static int 8863 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8864 { 8865 struct port_info *pi = arg1; 8866 struct adapter *sc = pi->adapter; 8867 struct link_config *lc = &pi->link_cfg; 8868 int rc, val; 8869 8870 val = lc->force_fec; 8871 MPASS(val >= -1 && val <= 1); 8872 rc = sysctl_handle_int(oidp, &val, 0, req); 8873 if (rc != 0 || req->newptr == NULL) 8874 return (rc); 8875 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8876 return (ENOTSUP); 8877 if (val < -1 || val > 1) 8878 return (EINVAL); 8879 8880 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8881 if (rc) 8882 return (rc); 8883 PORT_LOCK(pi); 8884 lc->force_fec = val; 8885 if (hw_all_ok(sc)) { 8886 fixup_link_config(pi); 8887 if (pi->up_vis > 0) 8888 rc = apply_link_config(pi); 8889 } 8890 PORT_UNLOCK(pi); 8891 end_synchronized_op(sc, 0); 8892 return (rc); 8893 } 8894 8895 static int 8896 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8897 { 8898 struct adapter *sc = arg1; 8899 int rc, reg = arg2; 8900 uint64_t val; 8901 8902 mtx_lock(&sc->reg_lock); 8903 if (hw_off_limits(sc)) 8904 rc = ENXIO; 8905 else { 8906 rc = 0; 8907 val = t4_read_reg64(sc, reg); 8908 } 8909 mtx_unlock(&sc->reg_lock); 8910 if (rc == 0) 8911 rc = sysctl_handle_64(oidp, &val, 0, req); 8912 return (rc); 8913 } 8914 8915 static int 8916 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8917 { 8918 struct adapter *sc = arg1; 8919 int rc, t; 8920 uint32_t param, val; 8921 8922 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8923 if (rc) 8924 return (rc); 8925 if (!hw_all_ok(sc)) 8926 rc = ENXIO; 8927 else { 8928 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8929 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8930 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8931 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8932 } 8933 end_synchronized_op(sc, 0); 8934 if (rc) 8935 return (rc); 8936 8937 /* unknown is returned as 0 but we display -1 in that case */ 8938 t = val == 0 ? -1 : val; 8939 8940 rc = sysctl_handle_int(oidp, &t, 0, req); 8941 return (rc); 8942 } 8943 8944 static int 8945 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8946 { 8947 struct adapter *sc = arg1; 8948 int rc; 8949 uint32_t param, val; 8950 8951 if (sc->params.core_vdd == 0) { 8952 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8953 "t4vdd"); 8954 if (rc) 8955 return (rc); 8956 if (!hw_all_ok(sc)) 8957 rc = ENXIO; 8958 else { 8959 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8960 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8961 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8962 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8963 ¶m, &val); 8964 } 8965 end_synchronized_op(sc, 0); 8966 if (rc) 8967 return (rc); 8968 sc->params.core_vdd = val; 8969 } 8970 8971 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8972 } 8973 8974 static int 8975 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8976 { 8977 struct adapter *sc = arg1; 8978 int rc, v; 8979 uint32_t param, val; 8980 8981 v = sc->sensor_resets; 8982 rc = sysctl_handle_int(oidp, &v, 0, req); 8983 if (rc != 0 || req->newptr == NULL || v <= 0) 8984 return (rc); 8985 8986 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8987 chip_id(sc) < CHELSIO_T5) 8988 return (ENOTSUP); 8989 8990 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8991 if (rc) 8992 return (rc); 8993 if (!hw_all_ok(sc)) 8994 rc = ENXIO; 8995 else { 8996 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8997 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8998 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8999 val = 1; 9000 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9001 } 9002 end_synchronized_op(sc, 0); 9003 if (rc == 0) 9004 sc->sensor_resets++; 9005 return (rc); 9006 } 9007 9008 static int 9009 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 9010 { 9011 struct adapter *sc = arg1; 9012 struct sbuf *sb; 9013 int rc; 9014 uint32_t param, val; 9015 9016 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 9017 if (rc) 9018 return (rc); 9019 if (hw_all_ok(sc)) 9020 rc = ENXIO; 9021 else { 9022 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9023 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 9024 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9025 } 9026 end_synchronized_op(sc, 0); 9027 if (rc) 9028 return (rc); 9029 9030 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9031 if (sb == NULL) 9032 return (ENOMEM); 9033 9034 if (val == 0xffffffff) { 9035 /* Only debug and custom firmwares report load averages. */ 9036 sbuf_printf(sb, "not available"); 9037 } else { 9038 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 9039 (val >> 16) & 0xff); 9040 } 9041 rc = sbuf_finish(sb); 9042 sbuf_delete(sb); 9043 9044 return (rc); 9045 } 9046 9047 static int 9048 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 9049 { 9050 struct adapter *sc = arg1; 9051 struct sbuf *sb; 9052 int rc, i; 9053 uint16_t incr[NMTUS][NCCTRL_WIN]; 9054 static const char *dec_fac[] = { 9055 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 9056 "0.9375" 9057 }; 9058 9059 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9060 if (sb == NULL) 9061 return (ENOMEM); 9062 9063 rc = 0; 9064 mtx_lock(&sc->reg_lock); 9065 if (hw_off_limits(sc)) 9066 rc = ENXIO; 9067 else 9068 t4_read_cong_tbl(sc, incr); 9069 mtx_unlock(&sc->reg_lock); 9070 if (rc) 9071 goto done; 9072 9073 for (i = 0; i < NCCTRL_WIN; ++i) { 9074 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 9075 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 9076 incr[5][i], incr[6][i], incr[7][i]); 9077 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 9078 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 9079 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 9080 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 9081 } 9082 9083 rc = sbuf_finish(sb); 9084 done: 9085 sbuf_delete(sb); 9086 return (rc); 9087 } 9088 9089 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 9090 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 9091 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 9092 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 9093 }; 9094 9095 static int 9096 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 9097 { 9098 struct adapter *sc = arg1; 9099 struct sbuf *sb; 9100 int rc, i, n, qid = arg2; 9101 uint32_t *buf, *p; 9102 char *qtype; 9103 u_int cim_num_obq = sc->chip_params->cim_num_obq; 9104 9105 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 9106 ("%s: bad qid %d\n", __func__, qid)); 9107 9108 if (qid < CIM_NUM_IBQ) { 9109 /* inbound queue */ 9110 qtype = "IBQ"; 9111 n = 4 * CIM_IBQ_SIZE; 9112 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9113 mtx_lock(&sc->reg_lock); 9114 if (hw_off_limits(sc)) 9115 rc = -ENXIO; 9116 else 9117 rc = t4_read_cim_ibq(sc, qid, buf, n); 9118 mtx_unlock(&sc->reg_lock); 9119 } else { 9120 /* outbound queue */ 9121 qtype = "OBQ"; 9122 qid -= CIM_NUM_IBQ; 9123 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 9124 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9125 mtx_lock(&sc->reg_lock); 9126 if (hw_off_limits(sc)) 9127 rc = -ENXIO; 9128 else 9129 rc = t4_read_cim_obq(sc, qid, buf, n); 9130 mtx_unlock(&sc->reg_lock); 9131 } 9132 9133 if (rc < 0) { 9134 rc = -rc; 9135 goto done; 9136 } 9137 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 9138 9139 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9140 if (sb == NULL) { 9141 rc = ENOMEM; 9142 goto done; 9143 } 9144 9145 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 9146 for (i = 0, p = buf; i < n; i += 16, p += 4) 9147 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9148 p[2], p[3]); 9149 9150 rc = sbuf_finish(sb); 9151 sbuf_delete(sb); 9152 done: 9153 free(buf, M_CXGBE); 9154 return (rc); 9155 } 9156 9157 static void 9158 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9159 { 9160 uint32_t *p; 9161 9162 sbuf_printf(sb, "Status Data PC%s", 9163 cfg & F_UPDBGLACAPTPCONLY ? "" : 9164 " LS0Stat LS0Addr LS0Data"); 9165 9166 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 9167 if (cfg & F_UPDBGLACAPTPCONLY) { 9168 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 9169 p[6], p[7]); 9170 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 9171 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 9172 p[4] & 0xff, p[5] >> 8); 9173 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 9174 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9175 p[1] & 0xf, p[2] >> 4); 9176 } else { 9177 sbuf_printf(sb, 9178 "\n %02x %x%07x %x%07x %08x %08x " 9179 "%08x%08x%08x%08x", 9180 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9181 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 9182 p[6], p[7]); 9183 } 9184 } 9185 } 9186 9187 static void 9188 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9189 { 9190 uint32_t *p; 9191 9192 sbuf_printf(sb, "Status Inst Data PC%s", 9193 cfg & F_UPDBGLACAPTPCONLY ? "" : 9194 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9195 9196 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9197 if (cfg & F_UPDBGLACAPTPCONLY) { 9198 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9199 p[3] & 0xff, p[2], p[1], p[0]); 9200 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9201 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9202 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9203 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9204 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9205 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9206 p[6] >> 16); 9207 } else { 9208 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9209 "%08x %08x %08x %08x %08x %08x", 9210 (p[9] >> 16) & 0xff, 9211 p[9] & 0xffff, p[8] >> 16, 9212 p[8] & 0xffff, p[7] >> 16, 9213 p[7] & 0xffff, p[6] >> 16, 9214 p[2], p[1], p[0], p[5], p[4], p[3]); 9215 } 9216 } 9217 } 9218 9219 static int 9220 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 9221 { 9222 uint32_t cfg, *buf; 9223 int rc; 9224 9225 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9226 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9227 M_ZERO | flags); 9228 if (buf == NULL) 9229 return (ENOMEM); 9230 9231 mtx_lock(&sc->reg_lock); 9232 if (hw_off_limits(sc)) 9233 rc = ENXIO; 9234 else { 9235 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9236 if (rc == 0) 9237 rc = -t4_cim_read_la(sc, buf, NULL); 9238 } 9239 mtx_unlock(&sc->reg_lock); 9240 if (rc == 0) { 9241 if (chip_id(sc) < CHELSIO_T6) 9242 sbuf_cim_la4(sc, sb, buf, cfg); 9243 else 9244 sbuf_cim_la6(sc, sb, buf, cfg); 9245 } 9246 free(buf, M_CXGBE); 9247 return (rc); 9248 } 9249 9250 static int 9251 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9252 { 9253 struct adapter *sc = arg1; 9254 struct sbuf *sb; 9255 int rc; 9256 9257 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9258 if (sb == NULL) 9259 return (ENOMEM); 9260 9261 rc = sbuf_cim_la(sc, sb, M_WAITOK); 9262 if (rc == 0) 9263 rc = sbuf_finish(sb); 9264 sbuf_delete(sb); 9265 return (rc); 9266 } 9267 9268 static void 9269 dump_cim_regs(struct adapter *sc) 9270 { 9271 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9272 device_get_nameunit(sc->dev), 9273 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9274 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9275 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9276 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9277 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9278 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9279 device_get_nameunit(sc->dev), 9280 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9281 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9282 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9283 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9284 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9285 } 9286 9287 static void 9288 dump_cimla(struct adapter *sc) 9289 { 9290 struct sbuf sb; 9291 int rc; 9292 9293 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9294 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9295 device_get_nameunit(sc->dev)); 9296 return; 9297 } 9298 rc = sbuf_cim_la(sc, &sb, M_WAITOK); 9299 if (rc == 0) { 9300 rc = sbuf_finish(&sb); 9301 if (rc == 0) { 9302 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9303 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9304 } 9305 } 9306 sbuf_delete(&sb); 9307 } 9308 9309 void 9310 t4_os_cim_err(struct adapter *sc) 9311 { 9312 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9313 } 9314 9315 static int 9316 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9317 { 9318 struct adapter *sc = arg1; 9319 u_int i; 9320 struct sbuf *sb; 9321 uint32_t *buf, *p; 9322 int rc; 9323 9324 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9325 if (sb == NULL) 9326 return (ENOMEM); 9327 9328 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9329 M_ZERO | M_WAITOK); 9330 9331 rc = 0; 9332 mtx_lock(&sc->reg_lock); 9333 if (hw_off_limits(sc)) 9334 rc = ENXIO; 9335 else 9336 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9337 mtx_unlock(&sc->reg_lock); 9338 if (rc) 9339 goto done; 9340 9341 p = buf; 9342 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9343 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9344 p[1], p[0]); 9345 } 9346 9347 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9348 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9349 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9350 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9351 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9352 (p[1] >> 2) | ((p[2] & 3) << 30), 9353 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9354 p[0] & 1); 9355 } 9356 rc = sbuf_finish(sb); 9357 done: 9358 sbuf_delete(sb); 9359 free(buf, M_CXGBE); 9360 return (rc); 9361 } 9362 9363 static int 9364 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9365 { 9366 struct adapter *sc = arg1; 9367 u_int i; 9368 struct sbuf *sb; 9369 uint32_t *buf, *p; 9370 int rc; 9371 9372 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9373 if (sb == NULL) 9374 return (ENOMEM); 9375 9376 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9377 M_ZERO | M_WAITOK); 9378 9379 rc = 0; 9380 mtx_lock(&sc->reg_lock); 9381 if (hw_off_limits(sc)) 9382 rc = ENXIO; 9383 else 9384 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9385 mtx_unlock(&sc->reg_lock); 9386 if (rc) 9387 goto done; 9388 9389 p = buf; 9390 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9391 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9392 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9393 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9394 p[4], p[3], p[2], p[1], p[0]); 9395 } 9396 9397 sbuf_printf(sb, "\n\nCntl ID Data"); 9398 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9399 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9400 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9401 } 9402 9403 rc = sbuf_finish(sb); 9404 done: 9405 sbuf_delete(sb); 9406 free(buf, M_CXGBE); 9407 return (rc); 9408 } 9409 9410 static int 9411 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9412 { 9413 struct adapter *sc = arg1; 9414 struct sbuf *sb; 9415 int rc, i; 9416 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9417 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9418 uint16_t thres[CIM_NUM_IBQ]; 9419 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9420 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9421 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9422 9423 cim_num_obq = sc->chip_params->cim_num_obq; 9424 if (is_t4(sc)) { 9425 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9426 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9427 } else { 9428 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9429 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9430 } 9431 nq = CIM_NUM_IBQ + cim_num_obq; 9432 9433 mtx_lock(&sc->reg_lock); 9434 if (hw_off_limits(sc)) 9435 rc = ENXIO; 9436 else { 9437 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9438 if (rc == 0) { 9439 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9440 obq_wr); 9441 if (rc == 0) 9442 t4_read_cimq_cfg(sc, base, size, thres); 9443 } 9444 } 9445 mtx_unlock(&sc->reg_lock); 9446 if (rc) 9447 return (rc); 9448 9449 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9450 if (sb == NULL) 9451 return (ENOMEM); 9452 9453 sbuf_printf(sb, 9454 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9455 9456 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9457 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9458 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9459 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9460 G_QUEREMFLITS(p[2]) * 16); 9461 for ( ; i < nq; i++, p += 4, wr += 2) 9462 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9463 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9464 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9465 G_QUEREMFLITS(p[2]) * 16); 9466 9467 rc = sbuf_finish(sb); 9468 sbuf_delete(sb); 9469 9470 return (rc); 9471 } 9472 9473 static int 9474 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9475 { 9476 struct adapter *sc = arg1; 9477 struct sbuf *sb; 9478 int rc; 9479 struct tp_cpl_stats stats; 9480 9481 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9482 if (sb == NULL) 9483 return (ENOMEM); 9484 9485 rc = 0; 9486 mtx_lock(&sc->reg_lock); 9487 if (hw_off_limits(sc)) 9488 rc = ENXIO; 9489 else 9490 t4_tp_get_cpl_stats(sc, &stats, 0); 9491 mtx_unlock(&sc->reg_lock); 9492 if (rc) 9493 goto done; 9494 9495 if (sc->chip_params->nchan > 2) { 9496 sbuf_printf(sb, " channel 0 channel 1" 9497 " channel 2 channel 3"); 9498 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9499 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9500 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9501 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9502 } else { 9503 sbuf_printf(sb, " channel 0 channel 1"); 9504 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9505 stats.req[0], stats.req[1]); 9506 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9507 stats.rsp[0], stats.rsp[1]); 9508 } 9509 9510 rc = sbuf_finish(sb); 9511 done: 9512 sbuf_delete(sb); 9513 return (rc); 9514 } 9515 9516 static int 9517 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9518 { 9519 struct adapter *sc = arg1; 9520 struct sbuf *sb; 9521 int rc; 9522 struct tp_usm_stats stats; 9523 9524 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9525 if (sb == NULL) 9526 return (ENOMEM); 9527 9528 rc = 0; 9529 mtx_lock(&sc->reg_lock); 9530 if (hw_off_limits(sc)) 9531 rc = ENXIO; 9532 else 9533 t4_get_usm_stats(sc, &stats, 1); 9534 mtx_unlock(&sc->reg_lock); 9535 if (rc == 0) { 9536 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9537 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9538 sbuf_printf(sb, "Drops: %u", stats.drops); 9539 rc = sbuf_finish(sb); 9540 } 9541 sbuf_delete(sb); 9542 9543 return (rc); 9544 } 9545 9546 static int 9547 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9548 { 9549 struct adapter *sc = arg1; 9550 struct sbuf *sb; 9551 int rc; 9552 struct tp_tid_stats stats; 9553 9554 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9555 if (sb == NULL) 9556 return (ENOMEM); 9557 9558 rc = 0; 9559 mtx_lock(&sc->reg_lock); 9560 if (hw_off_limits(sc)) 9561 rc = ENXIO; 9562 else 9563 t4_tp_get_tid_stats(sc, &stats, 1); 9564 mtx_unlock(&sc->reg_lock); 9565 if (rc == 0) { 9566 sbuf_printf(sb, "Delete: %u\n", stats.del); 9567 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9568 sbuf_printf(sb, "Active: %u\n", stats.act); 9569 sbuf_printf(sb, "Passive: %u", stats.pas); 9570 rc = sbuf_finish(sb); 9571 } 9572 sbuf_delete(sb); 9573 9574 return (rc); 9575 } 9576 9577 static const char * const devlog_level_strings[] = { 9578 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9579 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9580 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9581 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9582 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9583 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9584 }; 9585 9586 static const char * const devlog_facility_strings[] = { 9587 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9588 [FW_DEVLOG_FACILITY_CF] = "CF", 9589 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9590 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9591 [FW_DEVLOG_FACILITY_RES] = "RES", 9592 [FW_DEVLOG_FACILITY_HW] = "HW", 9593 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9594 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9595 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9596 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9597 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9598 [FW_DEVLOG_FACILITY_VI] = "VI", 9599 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9600 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9601 [FW_DEVLOG_FACILITY_TM] = "TM", 9602 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9603 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9604 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9605 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9606 [FW_DEVLOG_FACILITY_RI] = "RI", 9607 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9608 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9609 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9610 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9611 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9612 }; 9613 9614 static int 9615 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9616 { 9617 int i, j, rc, nentries, first = 0; 9618 struct devlog_params *dparams = &sc->params.devlog; 9619 struct fw_devlog_e *buf, *e; 9620 uint64_t ftstamp = UINT64_MAX; 9621 9622 if (dparams->addr == 0) 9623 return (ENXIO); 9624 9625 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9626 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9627 if (buf == NULL) 9628 return (ENOMEM); 9629 9630 mtx_lock(&sc->reg_lock); 9631 if (hw_off_limits(sc)) 9632 rc = ENXIO; 9633 else 9634 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9635 dparams->size); 9636 mtx_unlock(&sc->reg_lock); 9637 if (rc != 0) 9638 goto done; 9639 9640 nentries = dparams->size / sizeof(struct fw_devlog_e); 9641 for (i = 0; i < nentries; i++) { 9642 e = &buf[i]; 9643 9644 if (e->timestamp == 0) 9645 break; /* end */ 9646 9647 e->timestamp = be64toh(e->timestamp); 9648 e->seqno = be32toh(e->seqno); 9649 for (j = 0; j < 8; j++) 9650 e->params[j] = be32toh(e->params[j]); 9651 9652 if (e->timestamp < ftstamp) { 9653 ftstamp = e->timestamp; 9654 first = i; 9655 } 9656 } 9657 9658 if (buf[first].timestamp == 0) 9659 goto done; /* nothing in the log */ 9660 9661 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9662 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9663 9664 i = first; 9665 do { 9666 e = &buf[i]; 9667 if (e->timestamp == 0) 9668 break; /* end */ 9669 9670 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9671 e->seqno, e->timestamp, 9672 (e->level < nitems(devlog_level_strings) ? 9673 devlog_level_strings[e->level] : "UNKNOWN"), 9674 (e->facility < nitems(devlog_facility_strings) ? 9675 devlog_facility_strings[e->facility] : "UNKNOWN")); 9676 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9677 e->params[2], e->params[3], e->params[4], 9678 e->params[5], e->params[6], e->params[7]); 9679 9680 if (++i == nentries) 9681 i = 0; 9682 } while (i != first); 9683 done: 9684 free(buf, M_CXGBE); 9685 return (rc); 9686 } 9687 9688 static int 9689 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9690 { 9691 struct adapter *sc = arg1; 9692 int rc; 9693 struct sbuf *sb; 9694 9695 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9696 if (sb == NULL) 9697 return (ENOMEM); 9698 9699 rc = sbuf_devlog(sc, sb, M_WAITOK); 9700 if (rc == 0) 9701 rc = sbuf_finish(sb); 9702 sbuf_delete(sb); 9703 return (rc); 9704 } 9705 9706 static void 9707 dump_devlog(struct adapter *sc) 9708 { 9709 int rc; 9710 struct sbuf sb; 9711 9712 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9713 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 9714 device_get_nameunit(sc->dev)); 9715 return; 9716 } 9717 rc = sbuf_devlog(sc, &sb, M_WAITOK); 9718 if (rc == 0) { 9719 rc = sbuf_finish(&sb); 9720 if (rc == 0) { 9721 log(LOG_DEBUG, "%s: device log follows.\n%s", 9722 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9723 } 9724 } 9725 sbuf_delete(&sb); 9726 } 9727 9728 static int 9729 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9730 { 9731 struct adapter *sc = arg1; 9732 struct sbuf *sb; 9733 int rc; 9734 struct tp_fcoe_stats stats[MAX_NCHAN]; 9735 int i, nchan = sc->chip_params->nchan; 9736 9737 rc = 0; 9738 mtx_lock(&sc->reg_lock); 9739 if (hw_off_limits(sc)) 9740 rc = ENXIO; 9741 else { 9742 for (i = 0; i < nchan; i++) 9743 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9744 } 9745 mtx_unlock(&sc->reg_lock); 9746 if (rc != 0) 9747 return (rc); 9748 9749 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9750 if (sb == NULL) 9751 return (ENOMEM); 9752 9753 if (nchan > 2) { 9754 sbuf_printf(sb, " channel 0 channel 1" 9755 " channel 2 channel 3"); 9756 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9757 stats[0].octets_ddp, stats[1].octets_ddp, 9758 stats[2].octets_ddp, stats[3].octets_ddp); 9759 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9760 stats[0].frames_ddp, stats[1].frames_ddp, 9761 stats[2].frames_ddp, stats[3].frames_ddp); 9762 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9763 stats[0].frames_drop, stats[1].frames_drop, 9764 stats[2].frames_drop, stats[3].frames_drop); 9765 } else { 9766 sbuf_printf(sb, " channel 0 channel 1"); 9767 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9768 stats[0].octets_ddp, stats[1].octets_ddp); 9769 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9770 stats[0].frames_ddp, stats[1].frames_ddp); 9771 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9772 stats[0].frames_drop, stats[1].frames_drop); 9773 } 9774 9775 rc = sbuf_finish(sb); 9776 sbuf_delete(sb); 9777 9778 return (rc); 9779 } 9780 9781 static int 9782 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9783 { 9784 struct adapter *sc = arg1; 9785 struct sbuf *sb; 9786 int rc, i; 9787 unsigned int map, kbps, ipg, mode; 9788 unsigned int pace_tab[NTX_SCHED]; 9789 9790 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9791 if (sb == NULL) 9792 return (ENOMEM); 9793 9794 mtx_lock(&sc->reg_lock); 9795 if (hw_off_limits(sc)) { 9796 mtx_unlock(&sc->reg_lock); 9797 rc = ENXIO; 9798 goto done; 9799 } 9800 9801 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9802 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9803 t4_read_pace_tbl(sc, pace_tab); 9804 mtx_unlock(&sc->reg_lock); 9805 9806 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9807 "Class IPG (0.1 ns) Flow IPG (us)"); 9808 9809 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9810 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9811 sbuf_printf(sb, "\n %u %-5s %u ", i, 9812 (mode & (1 << i)) ? "flow" : "class", map & 3); 9813 if (kbps) 9814 sbuf_printf(sb, "%9u ", kbps); 9815 else 9816 sbuf_printf(sb, " disabled "); 9817 9818 if (ipg) 9819 sbuf_printf(sb, "%13u ", ipg); 9820 else 9821 sbuf_printf(sb, " disabled "); 9822 9823 if (pace_tab[i]) 9824 sbuf_printf(sb, "%10u", pace_tab[i]); 9825 else 9826 sbuf_printf(sb, " disabled"); 9827 } 9828 rc = sbuf_finish(sb); 9829 done: 9830 sbuf_delete(sb); 9831 return (rc); 9832 } 9833 9834 static int 9835 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9836 { 9837 struct adapter *sc = arg1; 9838 struct sbuf *sb; 9839 int rc, i, j; 9840 uint64_t *p0, *p1; 9841 struct lb_port_stats s[2]; 9842 static const char *stat_name[] = { 9843 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9844 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9845 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9846 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9847 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9848 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9849 "BG2FramesTrunc:", "BG3FramesTrunc:" 9850 }; 9851 9852 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9853 if (sb == NULL) 9854 return (ENOMEM); 9855 9856 memset(s, 0, sizeof(s)); 9857 9858 rc = 0; 9859 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9860 mtx_lock(&sc->reg_lock); 9861 if (hw_off_limits(sc)) 9862 rc = ENXIO; 9863 else { 9864 t4_get_lb_stats(sc, i, &s[0]); 9865 t4_get_lb_stats(sc, i + 1, &s[1]); 9866 } 9867 mtx_unlock(&sc->reg_lock); 9868 if (rc != 0) 9869 break; 9870 9871 p0 = &s[0].octets; 9872 p1 = &s[1].octets; 9873 sbuf_printf(sb, "%s Loopback %u" 9874 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9875 9876 for (j = 0; j < nitems(stat_name); j++) 9877 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9878 *p0++, *p1++); 9879 } 9880 9881 if (rc == 0) 9882 rc = sbuf_finish(sb); 9883 sbuf_delete(sb); 9884 9885 return (rc); 9886 } 9887 9888 static int 9889 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9890 { 9891 int rc = 0; 9892 struct port_info *pi = arg1; 9893 struct link_config *lc = &pi->link_cfg; 9894 struct sbuf *sb; 9895 9896 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9897 if (sb == NULL) 9898 return (ENOMEM); 9899 9900 if (lc->link_ok || lc->link_down_rc == 255) 9901 sbuf_printf(sb, "n/a"); 9902 else 9903 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9904 9905 rc = sbuf_finish(sb); 9906 sbuf_delete(sb); 9907 9908 return (rc); 9909 } 9910 9911 struct mem_desc { 9912 u_int base; 9913 u_int limit; 9914 u_int idx; 9915 }; 9916 9917 static int 9918 mem_desc_cmp(const void *a, const void *b) 9919 { 9920 const u_int v1 = ((const struct mem_desc *)a)->base; 9921 const u_int v2 = ((const struct mem_desc *)b)->base; 9922 9923 if (v1 < v2) 9924 return (-1); 9925 else if (v1 > v2) 9926 return (1); 9927 9928 return (0); 9929 } 9930 9931 static void 9932 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9933 unsigned int to) 9934 { 9935 unsigned int size; 9936 9937 if (from == to) 9938 return; 9939 9940 size = to - from + 1; 9941 if (size == 0) 9942 return; 9943 9944 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9945 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9946 } 9947 9948 static int 9949 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9950 { 9951 struct adapter *sc = arg1; 9952 struct sbuf *sb; 9953 int rc, i, n; 9954 uint32_t lo, hi, used, free, alloc; 9955 static const char *memory[] = { 9956 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9957 }; 9958 static const char *region[] = { 9959 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9960 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9961 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9962 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9963 "RQUDP region:", "PBL region:", "TXPBL region:", 9964 "TLSKey region:", "DBVFIFO region:", "ULPRX state:", 9965 "ULPTX state:", "On-chip queues:", 9966 }; 9967 struct mem_desc avail[4]; 9968 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9969 struct mem_desc *md = mem; 9970 9971 rc = sysctl_wire_old_buffer(req, 0); 9972 if (rc != 0) 9973 return (rc); 9974 9975 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9976 if (sb == NULL) 9977 return (ENOMEM); 9978 9979 for (i = 0; i < nitems(mem); i++) { 9980 mem[i].limit = 0; 9981 mem[i].idx = i; 9982 } 9983 9984 mtx_lock(&sc->reg_lock); 9985 if (hw_off_limits(sc)) { 9986 rc = ENXIO; 9987 goto done; 9988 } 9989 9990 /* Find and sort the populated memory ranges */ 9991 i = 0; 9992 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9993 if (lo & F_EDRAM0_ENABLE) { 9994 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9995 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9996 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9997 avail[i].idx = 0; 9998 i++; 9999 } 10000 if (lo & F_EDRAM1_ENABLE) { 10001 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 10002 avail[i].base = G_EDRAM1_BASE(hi) << 20; 10003 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 10004 avail[i].idx = 1; 10005 i++; 10006 } 10007 if (lo & F_EXT_MEM_ENABLE) { 10008 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 10009 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 10010 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 10011 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 10012 i++; 10013 } 10014 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 10015 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 10016 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 10017 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 10018 avail[i].idx = 4; 10019 i++; 10020 } 10021 if (is_t6(sc) && lo & F_HMA_MUX) { 10022 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 10023 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 10024 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 10025 avail[i].idx = 5; 10026 i++; 10027 } 10028 MPASS(i <= nitems(avail)); 10029 if (!i) /* no memory available */ 10030 goto done; 10031 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 10032 10033 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 10034 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 10035 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 10036 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 10037 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 10038 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 10039 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 10040 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 10041 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 10042 10043 /* the next few have explicit upper bounds */ 10044 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 10045 md->limit = md->base - 1 + 10046 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 10047 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 10048 md++; 10049 10050 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 10051 md->limit = md->base - 1 + 10052 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 10053 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 10054 md++; 10055 10056 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10057 if (chip_id(sc) <= CHELSIO_T5) 10058 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 10059 else 10060 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 10061 md->limit = 0; 10062 } else { 10063 md->base = 0; 10064 md->idx = nitems(region); /* hide it */ 10065 } 10066 md++; 10067 10068 #define ulp_region(reg) \ 10069 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 10070 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 10071 10072 ulp_region(RX_ISCSI); 10073 ulp_region(RX_TDDP); 10074 ulp_region(TX_TPT); 10075 ulp_region(RX_STAG); 10076 ulp_region(RX_RQ); 10077 ulp_region(RX_RQUDP); 10078 ulp_region(RX_PBL); 10079 ulp_region(TX_PBL); 10080 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 10081 ulp_region(RX_TLS_KEY); 10082 } 10083 #undef ulp_region 10084 10085 md->base = 0; 10086 if (is_t4(sc)) 10087 md->idx = nitems(region); 10088 else { 10089 uint32_t size = 0; 10090 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 10091 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 10092 10093 if (is_t5(sc)) { 10094 if (sge_ctrl & F_VFIFO_ENABLE) 10095 size = fifo_size << 2; 10096 } else 10097 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 10098 10099 if (size) { 10100 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 10101 md->limit = md->base + size - 1; 10102 } else 10103 md->idx = nitems(region); 10104 } 10105 md++; 10106 10107 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 10108 md->limit = 0; 10109 md++; 10110 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 10111 md->limit = 0; 10112 md++; 10113 10114 md->base = sc->vres.ocq.start; 10115 if (sc->vres.ocq.size) 10116 md->limit = md->base + sc->vres.ocq.size - 1; 10117 else 10118 md->idx = nitems(region); /* hide it */ 10119 md++; 10120 10121 /* add any address-space holes, there can be up to 3 */ 10122 for (n = 0; n < i - 1; n++) 10123 if (avail[n].limit < avail[n + 1].base) 10124 (md++)->base = avail[n].limit; 10125 if (avail[n].limit) 10126 (md++)->base = avail[n].limit; 10127 10128 n = md - mem; 10129 MPASS(n <= nitems(mem)); 10130 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 10131 10132 for (lo = 0; lo < i; lo++) 10133 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 10134 avail[lo].limit - 1); 10135 10136 sbuf_printf(sb, "\n"); 10137 for (i = 0; i < n; i++) { 10138 if (mem[i].idx >= nitems(region)) 10139 continue; /* skip holes */ 10140 if (!mem[i].limit) 10141 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 10142 mem_region_show(sb, region[mem[i].idx], mem[i].base, 10143 mem[i].limit); 10144 } 10145 10146 sbuf_printf(sb, "\n"); 10147 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 10148 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 10149 mem_region_show(sb, "uP RAM:", lo, hi); 10150 10151 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 10152 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10153 mem_region_show(sb, "uP Extmem2:", lo, hi); 10154 10155 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10156 for (i = 0, free = 0; i < 2; i++) 10157 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10158 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10159 G_PMRXMAXPAGE(lo), free, 10160 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 10161 (lo & F_PMRXNUMCHN) ? 2 : 1); 10162 10163 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10164 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10165 for (i = 0, free = 0; i < 4; i++) 10166 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10167 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10168 G_PMTXMAXPAGE(lo), free, 10169 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10170 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 10171 sbuf_printf(sb, "%u p-structs (%u free)\n", 10172 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10173 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10174 10175 for (i = 0; i < 4; i++) { 10176 if (chip_id(sc) > CHELSIO_T5) 10177 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10178 else 10179 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10180 if (is_t5(sc)) { 10181 used = G_T5_USED(lo); 10182 alloc = G_T5_ALLOC(lo); 10183 } else { 10184 used = G_USED(lo); 10185 alloc = G_ALLOC(lo); 10186 } 10187 /* For T6 these are MAC buffer groups */ 10188 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10189 i, used, alloc); 10190 } 10191 for (i = 0; i < sc->chip_params->nchan; i++) { 10192 if (chip_id(sc) > CHELSIO_T5) 10193 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10194 else 10195 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10196 if (is_t5(sc)) { 10197 used = G_T5_USED(lo); 10198 alloc = G_T5_ALLOC(lo); 10199 } else { 10200 used = G_USED(lo); 10201 alloc = G_ALLOC(lo); 10202 } 10203 /* For T6 these are MAC buffer groups */ 10204 sbuf_printf(sb, 10205 "\nLoopback %d using %u pages out of %u allocated", 10206 i, used, alloc); 10207 } 10208 done: 10209 mtx_unlock(&sc->reg_lock); 10210 if (rc == 0) 10211 rc = sbuf_finish(sb); 10212 sbuf_delete(sb); 10213 return (rc); 10214 } 10215 10216 static inline void 10217 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10218 { 10219 *mask = x | y; 10220 y = htobe64(y); 10221 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10222 } 10223 10224 static int 10225 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10226 { 10227 struct adapter *sc = arg1; 10228 struct sbuf *sb; 10229 int rc, i; 10230 10231 MPASS(chip_id(sc) <= CHELSIO_T5); 10232 10233 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10234 if (sb == NULL) 10235 return (ENOMEM); 10236 10237 sbuf_printf(sb, 10238 "Idx Ethernet address Mask Vld Ports PF" 10239 " VF Replication P0 P1 P2 P3 ML"); 10240 rc = 0; 10241 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10242 uint64_t tcamx, tcamy, mask; 10243 uint32_t cls_lo, cls_hi; 10244 uint8_t addr[ETHER_ADDR_LEN]; 10245 10246 mtx_lock(&sc->reg_lock); 10247 if (hw_off_limits(sc)) 10248 rc = ENXIO; 10249 else { 10250 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10251 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10252 } 10253 mtx_unlock(&sc->reg_lock); 10254 if (rc != 0) 10255 break; 10256 if (tcamx & tcamy) 10257 continue; 10258 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10259 mtx_lock(&sc->reg_lock); 10260 if (hw_off_limits(sc)) 10261 rc = ENXIO; 10262 else { 10263 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10264 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10265 } 10266 mtx_unlock(&sc->reg_lock); 10267 if (rc != 0) 10268 break; 10269 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10270 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10271 addr[3], addr[4], addr[5], (uintmax_t)mask, 10272 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10273 G_PORTMAP(cls_hi), G_PF(cls_lo), 10274 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10275 10276 if (cls_lo & F_REPLICATE) { 10277 struct fw_ldst_cmd ldst_cmd; 10278 10279 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10280 ldst_cmd.op_to_addrspace = 10281 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10282 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10283 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10284 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10285 ldst_cmd.u.mps.rplc.fid_idx = 10286 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10287 V_FW_LDST_CMD_IDX(i)); 10288 10289 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10290 "t4mps"); 10291 if (rc) 10292 break; 10293 if (hw_off_limits(sc)) 10294 rc = ENXIO; 10295 else 10296 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10297 sizeof(ldst_cmd), &ldst_cmd); 10298 end_synchronized_op(sc, 0); 10299 if (rc != 0) 10300 break; 10301 else { 10302 sbuf_printf(sb, " %08x %08x %08x %08x", 10303 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10304 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10305 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10306 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10307 } 10308 } else 10309 sbuf_printf(sb, "%36s", ""); 10310 10311 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10312 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10313 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10314 } 10315 10316 if (rc) 10317 (void) sbuf_finish(sb); 10318 else 10319 rc = sbuf_finish(sb); 10320 sbuf_delete(sb); 10321 10322 return (rc); 10323 } 10324 10325 static int 10326 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10327 { 10328 struct adapter *sc = arg1; 10329 struct sbuf *sb; 10330 int rc, i; 10331 10332 MPASS(chip_id(sc) > CHELSIO_T5); 10333 10334 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10335 if (sb == NULL) 10336 return (ENOMEM); 10337 10338 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10339 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10340 " Replication" 10341 " P0 P1 P2 P3 ML\n"); 10342 10343 rc = 0; 10344 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10345 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10346 uint16_t ivlan; 10347 uint64_t tcamx, tcamy, val, mask; 10348 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10349 uint8_t addr[ETHER_ADDR_LEN]; 10350 10351 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10352 if (i < 256) 10353 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10354 else 10355 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10356 mtx_lock(&sc->reg_lock); 10357 if (hw_off_limits(sc)) 10358 rc = ENXIO; 10359 else { 10360 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10361 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10362 tcamy = G_DMACH(val) << 32; 10363 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10364 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10365 } 10366 mtx_unlock(&sc->reg_lock); 10367 if (rc != 0) 10368 break; 10369 10370 lookup_type = G_DATALKPTYPE(data2); 10371 port_num = G_DATAPORTNUM(data2); 10372 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10373 /* Inner header VNI */ 10374 vniy = ((data2 & F_DATAVIDH2) << 23) | 10375 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10376 dip_hit = data2 & F_DATADIPHIT; 10377 vlan_vld = 0; 10378 } else { 10379 vniy = 0; 10380 dip_hit = 0; 10381 vlan_vld = data2 & F_DATAVIDH2; 10382 ivlan = G_VIDL(val); 10383 } 10384 10385 ctl |= V_CTLXYBITSEL(1); 10386 mtx_lock(&sc->reg_lock); 10387 if (hw_off_limits(sc)) 10388 rc = ENXIO; 10389 else { 10390 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10391 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10392 tcamx = G_DMACH(val) << 32; 10393 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10394 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10395 } 10396 mtx_unlock(&sc->reg_lock); 10397 if (rc != 0) 10398 break; 10399 10400 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10401 /* Inner header VNI mask */ 10402 vnix = ((data2 & F_DATAVIDH2) << 23) | 10403 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10404 } else 10405 vnix = 0; 10406 10407 if (tcamx & tcamy) 10408 continue; 10409 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10410 10411 mtx_lock(&sc->reg_lock); 10412 if (hw_off_limits(sc)) 10413 rc = ENXIO; 10414 else { 10415 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10416 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10417 } 10418 mtx_unlock(&sc->reg_lock); 10419 if (rc != 0) 10420 break; 10421 10422 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10423 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10424 "%012jx %06x %06x - - %3c" 10425 " I %4x %3c %#x%4u%4d", i, addr[0], 10426 addr[1], addr[2], addr[3], addr[4], addr[5], 10427 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10428 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10429 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10430 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10431 } else { 10432 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10433 "%012jx - - ", i, addr[0], addr[1], 10434 addr[2], addr[3], addr[4], addr[5], 10435 (uintmax_t)mask); 10436 10437 if (vlan_vld) 10438 sbuf_printf(sb, "%4u Y ", ivlan); 10439 else 10440 sbuf_printf(sb, " - N "); 10441 10442 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10443 lookup_type ? 'I' : 'O', port_num, 10444 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10445 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10446 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10447 } 10448 10449 10450 if (cls_lo & F_T6_REPLICATE) { 10451 struct fw_ldst_cmd ldst_cmd; 10452 10453 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10454 ldst_cmd.op_to_addrspace = 10455 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10456 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10457 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10458 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10459 ldst_cmd.u.mps.rplc.fid_idx = 10460 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10461 V_FW_LDST_CMD_IDX(i)); 10462 10463 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10464 "t6mps"); 10465 if (rc) 10466 break; 10467 if (hw_off_limits(sc)) 10468 rc = ENXIO; 10469 else 10470 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10471 sizeof(ldst_cmd), &ldst_cmd); 10472 end_synchronized_op(sc, 0); 10473 if (rc != 0) 10474 break; 10475 else { 10476 sbuf_printf(sb, " %08x %08x %08x %08x" 10477 " %08x %08x %08x %08x", 10478 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10479 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10480 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10481 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10482 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10483 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10484 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10485 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10486 } 10487 } else 10488 sbuf_printf(sb, "%72s", ""); 10489 10490 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10491 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10492 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10493 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10494 } 10495 10496 if (rc) 10497 (void) sbuf_finish(sb); 10498 else 10499 rc = sbuf_finish(sb); 10500 sbuf_delete(sb); 10501 10502 return (rc); 10503 } 10504 10505 static int 10506 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10507 { 10508 struct adapter *sc = arg1; 10509 struct sbuf *sb; 10510 int rc; 10511 uint16_t mtus[NMTUS]; 10512 10513 rc = 0; 10514 mtx_lock(&sc->reg_lock); 10515 if (hw_off_limits(sc)) 10516 rc = ENXIO; 10517 else 10518 t4_read_mtu_tbl(sc, mtus, NULL); 10519 mtx_unlock(&sc->reg_lock); 10520 if (rc != 0) 10521 return (rc); 10522 10523 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10524 if (sb == NULL) 10525 return (ENOMEM); 10526 10527 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10528 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10529 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10530 mtus[14], mtus[15]); 10531 10532 rc = sbuf_finish(sb); 10533 sbuf_delete(sb); 10534 10535 return (rc); 10536 } 10537 10538 static int 10539 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10540 { 10541 struct adapter *sc = arg1; 10542 struct sbuf *sb; 10543 int rc, i; 10544 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10545 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10546 static const char *tx_stats[MAX_PM_NSTATS] = { 10547 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10548 "Tx FIFO wait", NULL, "Tx latency" 10549 }; 10550 static const char *rx_stats[MAX_PM_NSTATS] = { 10551 "Read:", "Write bypass:", "Write mem:", "Flush:", 10552 "Rx FIFO wait", NULL, "Rx latency" 10553 }; 10554 10555 rc = 0; 10556 mtx_lock(&sc->reg_lock); 10557 if (hw_off_limits(sc)) 10558 rc = ENXIO; 10559 else { 10560 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10561 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10562 } 10563 mtx_unlock(&sc->reg_lock); 10564 if (rc != 0) 10565 return (rc); 10566 10567 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10568 if (sb == NULL) 10569 return (ENOMEM); 10570 10571 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10572 for (i = 0; i < 4; i++) { 10573 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10574 tx_cyc[i]); 10575 } 10576 10577 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10578 for (i = 0; i < 4; i++) { 10579 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10580 rx_cyc[i]); 10581 } 10582 10583 if (chip_id(sc) > CHELSIO_T5) { 10584 sbuf_printf(sb, 10585 "\n Total wait Total occupancy"); 10586 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10587 tx_cyc[i]); 10588 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10589 rx_cyc[i]); 10590 10591 i += 2; 10592 MPASS(i < nitems(tx_stats)); 10593 10594 sbuf_printf(sb, 10595 "\n Reads Total wait"); 10596 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10597 tx_cyc[i]); 10598 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10599 rx_cyc[i]); 10600 } 10601 10602 rc = sbuf_finish(sb); 10603 sbuf_delete(sb); 10604 10605 return (rc); 10606 } 10607 10608 static int 10609 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10610 { 10611 struct adapter *sc = arg1; 10612 struct sbuf *sb; 10613 int rc; 10614 struct tp_rdma_stats stats; 10615 10616 rc = 0; 10617 mtx_lock(&sc->reg_lock); 10618 if (hw_off_limits(sc)) 10619 rc = ENXIO; 10620 else 10621 t4_tp_get_rdma_stats(sc, &stats, 0); 10622 mtx_unlock(&sc->reg_lock); 10623 if (rc != 0) 10624 return (rc); 10625 10626 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10627 if (sb == NULL) 10628 return (ENOMEM); 10629 10630 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10631 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10632 10633 rc = sbuf_finish(sb); 10634 sbuf_delete(sb); 10635 10636 return (rc); 10637 } 10638 10639 static int 10640 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10641 { 10642 struct adapter *sc = arg1; 10643 struct sbuf *sb; 10644 int rc; 10645 struct tp_tcp_stats v4, v6; 10646 10647 rc = 0; 10648 mtx_lock(&sc->reg_lock); 10649 if (hw_off_limits(sc)) 10650 rc = ENXIO; 10651 else 10652 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10653 mtx_unlock(&sc->reg_lock); 10654 if (rc != 0) 10655 return (rc); 10656 10657 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10658 if (sb == NULL) 10659 return (ENOMEM); 10660 10661 sbuf_printf(sb, 10662 " IP IPv6\n"); 10663 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10664 v4.tcp_out_rsts, v6.tcp_out_rsts); 10665 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10666 v4.tcp_in_segs, v6.tcp_in_segs); 10667 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10668 v4.tcp_out_segs, v6.tcp_out_segs); 10669 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10670 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10671 10672 rc = sbuf_finish(sb); 10673 sbuf_delete(sb); 10674 10675 return (rc); 10676 } 10677 10678 static int 10679 sysctl_tids(SYSCTL_HANDLER_ARGS) 10680 { 10681 struct adapter *sc = arg1; 10682 struct sbuf *sb; 10683 int rc; 10684 uint32_t x, y; 10685 struct tid_info *t = &sc->tids; 10686 10687 rc = 0; 10688 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10689 if (sb == NULL) 10690 return (ENOMEM); 10691 10692 if (t->natids) { 10693 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10694 t->atids_in_use); 10695 } 10696 10697 if (t->nhpftids) { 10698 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10699 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10700 } 10701 10702 if (t->ntids) { 10703 bool hashen = false; 10704 10705 mtx_lock(&sc->reg_lock); 10706 if (hw_off_limits(sc)) 10707 rc = ENXIO; 10708 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10709 hashen = true; 10710 if (chip_id(sc) <= CHELSIO_T5) { 10711 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10712 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10713 } else { 10714 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10715 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10716 } 10717 } 10718 mtx_unlock(&sc->reg_lock); 10719 if (rc != 0) 10720 goto done; 10721 10722 sbuf_printf(sb, "TID range: "); 10723 if (hashen) { 10724 if (x) 10725 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10726 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10727 } else { 10728 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10729 t->ntids - 1); 10730 } 10731 sbuf_printf(sb, ", in use: %u\n", 10732 atomic_load_acq_int(&t->tids_in_use)); 10733 } 10734 10735 if (t->nstids) { 10736 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10737 t->stid_base + t->nstids - 1, t->stids_in_use); 10738 } 10739 10740 if (t->nftids) { 10741 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10742 t->ftid_end, t->ftids_in_use); 10743 } 10744 10745 if (t->netids) { 10746 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10747 t->etid_base + t->netids - 1, t->etids_in_use); 10748 } 10749 10750 mtx_lock(&sc->reg_lock); 10751 if (hw_off_limits(sc)) 10752 rc = ENXIO; 10753 else { 10754 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10755 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10756 } 10757 mtx_unlock(&sc->reg_lock); 10758 if (rc != 0) 10759 goto done; 10760 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10761 done: 10762 if (rc == 0) 10763 rc = sbuf_finish(sb); 10764 else 10765 (void)sbuf_finish(sb); 10766 sbuf_delete(sb); 10767 10768 return (rc); 10769 } 10770 10771 static int 10772 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10773 { 10774 struct adapter *sc = arg1; 10775 struct sbuf *sb; 10776 int rc; 10777 struct tp_err_stats stats; 10778 10779 rc = 0; 10780 mtx_lock(&sc->reg_lock); 10781 if (hw_off_limits(sc)) 10782 rc = ENXIO; 10783 else 10784 t4_tp_get_err_stats(sc, &stats, 0); 10785 mtx_unlock(&sc->reg_lock); 10786 if (rc != 0) 10787 return (rc); 10788 10789 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10790 if (sb == NULL) 10791 return (ENOMEM); 10792 10793 if (sc->chip_params->nchan > 2) { 10794 sbuf_printf(sb, " channel 0 channel 1" 10795 " channel 2 channel 3\n"); 10796 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10797 stats.mac_in_errs[0], stats.mac_in_errs[1], 10798 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10799 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10800 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10801 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10802 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10803 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10804 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10805 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10806 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10807 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10808 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10809 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10810 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10811 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10812 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10813 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10814 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10815 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10816 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10817 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10818 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10819 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10820 } else { 10821 sbuf_printf(sb, " channel 0 channel 1\n"); 10822 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10823 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10824 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10825 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10826 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10827 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10828 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10829 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10830 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10831 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10832 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10833 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10834 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10835 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10836 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10837 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10838 } 10839 10840 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10841 stats.ofld_no_neigh, stats.ofld_cong_defer); 10842 10843 rc = sbuf_finish(sb); 10844 sbuf_delete(sb); 10845 10846 return (rc); 10847 } 10848 10849 static int 10850 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10851 { 10852 struct adapter *sc = arg1; 10853 struct sbuf *sb; 10854 int rc; 10855 struct tp_tnl_stats stats; 10856 10857 rc = 0; 10858 mtx_lock(&sc->reg_lock); 10859 if (hw_off_limits(sc)) 10860 rc = ENXIO; 10861 else 10862 t4_tp_get_tnl_stats(sc, &stats, 1); 10863 mtx_unlock(&sc->reg_lock); 10864 if (rc != 0) 10865 return (rc); 10866 10867 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10868 if (sb == NULL) 10869 return (ENOMEM); 10870 10871 if (sc->chip_params->nchan > 2) { 10872 sbuf_printf(sb, " channel 0 channel 1" 10873 " channel 2 channel 3\n"); 10874 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10875 stats.out_pkt[0], stats.out_pkt[1], 10876 stats.out_pkt[2], stats.out_pkt[3]); 10877 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10878 stats.in_pkt[0], stats.in_pkt[1], 10879 stats.in_pkt[2], stats.in_pkt[3]); 10880 } else { 10881 sbuf_printf(sb, " channel 0 channel 1\n"); 10882 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10883 stats.out_pkt[0], stats.out_pkt[1]); 10884 sbuf_printf(sb, "InPkts: %10u %10u", 10885 stats.in_pkt[0], stats.in_pkt[1]); 10886 } 10887 10888 rc = sbuf_finish(sb); 10889 sbuf_delete(sb); 10890 10891 return (rc); 10892 } 10893 10894 static int 10895 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10896 { 10897 struct adapter *sc = arg1; 10898 struct tp_params *tpp = &sc->params.tp; 10899 u_int mask; 10900 int rc; 10901 10902 mask = tpp->la_mask >> 16; 10903 rc = sysctl_handle_int(oidp, &mask, 0, req); 10904 if (rc != 0 || req->newptr == NULL) 10905 return (rc); 10906 if (mask > 0xffff) 10907 return (EINVAL); 10908 mtx_lock(&sc->reg_lock); 10909 if (hw_off_limits(sc)) 10910 rc = ENXIO; 10911 else { 10912 tpp->la_mask = mask << 16; 10913 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10914 tpp->la_mask); 10915 } 10916 mtx_unlock(&sc->reg_lock); 10917 10918 return (rc); 10919 } 10920 10921 struct field_desc { 10922 const char *name; 10923 u_int start; 10924 u_int width; 10925 }; 10926 10927 static void 10928 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10929 { 10930 char buf[32]; 10931 int line_size = 0; 10932 10933 while (f->name) { 10934 uint64_t mask = (1ULL << f->width) - 1; 10935 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10936 ((uintmax_t)v >> f->start) & mask); 10937 10938 if (line_size + len >= 79) { 10939 line_size = 8; 10940 sbuf_printf(sb, "\n "); 10941 } 10942 sbuf_printf(sb, "%s ", buf); 10943 line_size += len + 1; 10944 f++; 10945 } 10946 sbuf_printf(sb, "\n"); 10947 } 10948 10949 static const struct field_desc tp_la0[] = { 10950 { "RcfOpCodeOut", 60, 4 }, 10951 { "State", 56, 4 }, 10952 { "WcfState", 52, 4 }, 10953 { "RcfOpcSrcOut", 50, 2 }, 10954 { "CRxError", 49, 1 }, 10955 { "ERxError", 48, 1 }, 10956 { "SanityFailed", 47, 1 }, 10957 { "SpuriousMsg", 46, 1 }, 10958 { "FlushInputMsg", 45, 1 }, 10959 { "FlushInputCpl", 44, 1 }, 10960 { "RssUpBit", 43, 1 }, 10961 { "RssFilterHit", 42, 1 }, 10962 { "Tid", 32, 10 }, 10963 { "InitTcb", 31, 1 }, 10964 { "LineNumber", 24, 7 }, 10965 { "Emsg", 23, 1 }, 10966 { "EdataOut", 22, 1 }, 10967 { "Cmsg", 21, 1 }, 10968 { "CdataOut", 20, 1 }, 10969 { "EreadPdu", 19, 1 }, 10970 { "CreadPdu", 18, 1 }, 10971 { "TunnelPkt", 17, 1 }, 10972 { "RcfPeerFin", 16, 1 }, 10973 { "RcfReasonOut", 12, 4 }, 10974 { "TxCchannel", 10, 2 }, 10975 { "RcfTxChannel", 8, 2 }, 10976 { "RxEchannel", 6, 2 }, 10977 { "RcfRxChannel", 5, 1 }, 10978 { "RcfDataOutSrdy", 4, 1 }, 10979 { "RxDvld", 3, 1 }, 10980 { "RxOoDvld", 2, 1 }, 10981 { "RxCongestion", 1, 1 }, 10982 { "TxCongestion", 0, 1 }, 10983 { NULL } 10984 }; 10985 10986 static const struct field_desc tp_la1[] = { 10987 { "CplCmdIn", 56, 8 }, 10988 { "CplCmdOut", 48, 8 }, 10989 { "ESynOut", 47, 1 }, 10990 { "EAckOut", 46, 1 }, 10991 { "EFinOut", 45, 1 }, 10992 { "ERstOut", 44, 1 }, 10993 { "SynIn", 43, 1 }, 10994 { "AckIn", 42, 1 }, 10995 { "FinIn", 41, 1 }, 10996 { "RstIn", 40, 1 }, 10997 { "DataIn", 39, 1 }, 10998 { "DataInVld", 38, 1 }, 10999 { "PadIn", 37, 1 }, 11000 { "RxBufEmpty", 36, 1 }, 11001 { "RxDdp", 35, 1 }, 11002 { "RxFbCongestion", 34, 1 }, 11003 { "TxFbCongestion", 33, 1 }, 11004 { "TxPktSumSrdy", 32, 1 }, 11005 { "RcfUlpType", 28, 4 }, 11006 { "Eread", 27, 1 }, 11007 { "Ebypass", 26, 1 }, 11008 { "Esave", 25, 1 }, 11009 { "Static0", 24, 1 }, 11010 { "Cread", 23, 1 }, 11011 { "Cbypass", 22, 1 }, 11012 { "Csave", 21, 1 }, 11013 { "CPktOut", 20, 1 }, 11014 { "RxPagePoolFull", 18, 2 }, 11015 { "RxLpbkPkt", 17, 1 }, 11016 { "TxLpbkPkt", 16, 1 }, 11017 { "RxVfValid", 15, 1 }, 11018 { "SynLearned", 14, 1 }, 11019 { "SetDelEntry", 13, 1 }, 11020 { "SetInvEntry", 12, 1 }, 11021 { "CpcmdDvld", 11, 1 }, 11022 { "CpcmdSave", 10, 1 }, 11023 { "RxPstructsFull", 8, 2 }, 11024 { "EpcmdDvld", 7, 1 }, 11025 { "EpcmdFlush", 6, 1 }, 11026 { "EpcmdTrimPrefix", 5, 1 }, 11027 { "EpcmdTrimPostfix", 4, 1 }, 11028 { "ERssIp4Pkt", 3, 1 }, 11029 { "ERssIp6Pkt", 2, 1 }, 11030 { "ERssTcpUdpPkt", 1, 1 }, 11031 { "ERssFceFipPkt", 0, 1 }, 11032 { NULL } 11033 }; 11034 11035 static const struct field_desc tp_la2[] = { 11036 { "CplCmdIn", 56, 8 }, 11037 { "MpsVfVld", 55, 1 }, 11038 { "MpsPf", 52, 3 }, 11039 { "MpsVf", 44, 8 }, 11040 { "SynIn", 43, 1 }, 11041 { "AckIn", 42, 1 }, 11042 { "FinIn", 41, 1 }, 11043 { "RstIn", 40, 1 }, 11044 { "DataIn", 39, 1 }, 11045 { "DataInVld", 38, 1 }, 11046 { "PadIn", 37, 1 }, 11047 { "RxBufEmpty", 36, 1 }, 11048 { "RxDdp", 35, 1 }, 11049 { "RxFbCongestion", 34, 1 }, 11050 { "TxFbCongestion", 33, 1 }, 11051 { "TxPktSumSrdy", 32, 1 }, 11052 { "RcfUlpType", 28, 4 }, 11053 { "Eread", 27, 1 }, 11054 { "Ebypass", 26, 1 }, 11055 { "Esave", 25, 1 }, 11056 { "Static0", 24, 1 }, 11057 { "Cread", 23, 1 }, 11058 { "Cbypass", 22, 1 }, 11059 { "Csave", 21, 1 }, 11060 { "CPktOut", 20, 1 }, 11061 { "RxPagePoolFull", 18, 2 }, 11062 { "RxLpbkPkt", 17, 1 }, 11063 { "TxLpbkPkt", 16, 1 }, 11064 { "RxVfValid", 15, 1 }, 11065 { "SynLearned", 14, 1 }, 11066 { "SetDelEntry", 13, 1 }, 11067 { "SetInvEntry", 12, 1 }, 11068 { "CpcmdDvld", 11, 1 }, 11069 { "CpcmdSave", 10, 1 }, 11070 { "RxPstructsFull", 8, 2 }, 11071 { "EpcmdDvld", 7, 1 }, 11072 { "EpcmdFlush", 6, 1 }, 11073 { "EpcmdTrimPrefix", 5, 1 }, 11074 { "EpcmdTrimPostfix", 4, 1 }, 11075 { "ERssIp4Pkt", 3, 1 }, 11076 { "ERssIp6Pkt", 2, 1 }, 11077 { "ERssTcpUdpPkt", 1, 1 }, 11078 { "ERssFceFipPkt", 0, 1 }, 11079 { NULL } 11080 }; 11081 11082 static void 11083 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 11084 { 11085 11086 field_desc_show(sb, *p, tp_la0); 11087 } 11088 11089 static void 11090 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 11091 { 11092 11093 if (idx) 11094 sbuf_printf(sb, "\n"); 11095 field_desc_show(sb, p[0], tp_la0); 11096 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11097 field_desc_show(sb, p[1], tp_la0); 11098 } 11099 11100 static void 11101 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 11102 { 11103 11104 if (idx) 11105 sbuf_printf(sb, "\n"); 11106 field_desc_show(sb, p[0], tp_la0); 11107 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11108 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 11109 } 11110 11111 static int 11112 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 11113 { 11114 struct adapter *sc = arg1; 11115 struct sbuf *sb; 11116 uint64_t *buf, *p; 11117 int rc; 11118 u_int i, inc; 11119 void (*show_func)(struct sbuf *, uint64_t *, int); 11120 11121 rc = 0; 11122 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11123 if (sb == NULL) 11124 return (ENOMEM); 11125 11126 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 11127 11128 mtx_lock(&sc->reg_lock); 11129 if (hw_off_limits(sc)) 11130 rc = ENXIO; 11131 else { 11132 t4_tp_read_la(sc, buf, NULL); 11133 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 11134 case 2: 11135 inc = 2; 11136 show_func = tp_la_show2; 11137 break; 11138 case 3: 11139 inc = 2; 11140 show_func = tp_la_show3; 11141 break; 11142 default: 11143 inc = 1; 11144 show_func = tp_la_show; 11145 } 11146 } 11147 mtx_unlock(&sc->reg_lock); 11148 if (rc != 0) 11149 goto done; 11150 11151 p = buf; 11152 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 11153 (*show_func)(sb, p, i); 11154 rc = sbuf_finish(sb); 11155 done: 11156 sbuf_delete(sb); 11157 free(buf, M_CXGBE); 11158 return (rc); 11159 } 11160 11161 static int 11162 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 11163 { 11164 struct adapter *sc = arg1; 11165 struct sbuf *sb; 11166 int rc; 11167 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 11168 11169 rc = 0; 11170 mtx_lock(&sc->reg_lock); 11171 if (hw_off_limits(sc)) 11172 rc = ENXIO; 11173 else 11174 t4_get_chan_txrate(sc, nrate, orate); 11175 mtx_unlock(&sc->reg_lock); 11176 if (rc != 0) 11177 return (rc); 11178 11179 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11180 if (sb == NULL) 11181 return (ENOMEM); 11182 11183 if (sc->chip_params->nchan > 2) { 11184 sbuf_printf(sb, " channel 0 channel 1" 11185 " channel 2 channel 3\n"); 11186 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 11187 nrate[0], nrate[1], nrate[2], nrate[3]); 11188 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 11189 orate[0], orate[1], orate[2], orate[3]); 11190 } else { 11191 sbuf_printf(sb, " channel 0 channel 1\n"); 11192 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 11193 nrate[0], nrate[1]); 11194 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 11195 orate[0], orate[1]); 11196 } 11197 11198 rc = sbuf_finish(sb); 11199 sbuf_delete(sb); 11200 11201 return (rc); 11202 } 11203 11204 static int 11205 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 11206 { 11207 struct adapter *sc = arg1; 11208 struct sbuf *sb; 11209 uint32_t *buf, *p; 11210 int rc, i; 11211 11212 rc = 0; 11213 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11214 if (sb == NULL) 11215 return (ENOMEM); 11216 11217 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 11218 M_ZERO | M_WAITOK); 11219 11220 mtx_lock(&sc->reg_lock); 11221 if (hw_off_limits(sc)) 11222 rc = ENXIO; 11223 else 11224 t4_ulprx_read_la(sc, buf); 11225 mtx_unlock(&sc->reg_lock); 11226 if (rc != 0) 11227 goto done; 11228 11229 p = buf; 11230 sbuf_printf(sb, " Pcmd Type Message" 11231 " Data"); 11232 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 11233 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 11234 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 11235 } 11236 rc = sbuf_finish(sb); 11237 done: 11238 sbuf_delete(sb); 11239 free(buf, M_CXGBE); 11240 return (rc); 11241 } 11242 11243 static int 11244 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 11245 { 11246 struct adapter *sc = arg1; 11247 struct sbuf *sb; 11248 int rc; 11249 uint32_t cfg, s1, s2; 11250 11251 MPASS(chip_id(sc) >= CHELSIO_T5); 11252 11253 rc = 0; 11254 mtx_lock(&sc->reg_lock); 11255 if (hw_off_limits(sc)) 11256 rc = ENXIO; 11257 else { 11258 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 11259 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 11260 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 11261 } 11262 mtx_unlock(&sc->reg_lock); 11263 if (rc != 0) 11264 return (rc); 11265 11266 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11267 if (sb == NULL) 11268 return (ENOMEM); 11269 11270 if (G_STATSOURCE_T5(cfg) == 7) { 11271 int mode; 11272 11273 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 11274 if (mode == 0) 11275 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 11276 else if (mode == 1) 11277 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 11278 else 11279 sbuf_printf(sb, "unknown mode %d", mode); 11280 } 11281 rc = sbuf_finish(sb); 11282 sbuf_delete(sb); 11283 11284 return (rc); 11285 } 11286 11287 static int 11288 sysctl_cpus(SYSCTL_HANDLER_ARGS) 11289 { 11290 struct adapter *sc = arg1; 11291 enum cpu_sets op = arg2; 11292 cpuset_t cpuset; 11293 struct sbuf *sb; 11294 int i, rc; 11295 11296 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11297 11298 CPU_ZERO(&cpuset); 11299 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11300 if (rc != 0) 11301 return (rc); 11302 11303 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11304 if (sb == NULL) 11305 return (ENOMEM); 11306 11307 CPU_FOREACH(i) 11308 sbuf_printf(sb, "%d ", i); 11309 rc = sbuf_finish(sb); 11310 sbuf_delete(sb); 11311 11312 return (rc); 11313 } 11314 11315 static int 11316 sysctl_reset(SYSCTL_HANDLER_ARGS) 11317 { 11318 struct adapter *sc = arg1; 11319 u_int val; 11320 int rc; 11321 11322 val = atomic_load_int(&sc->num_resets); 11323 rc = sysctl_handle_int(oidp, &val, 0, req); 11324 if (rc != 0 || req->newptr == NULL) 11325 return (rc); 11326 11327 if (val == 0) { 11328 /* Zero out the counter that tracks reset. */ 11329 atomic_store_int(&sc->num_resets, 0); 11330 return (0); 11331 } 11332 11333 if (val != 1) 11334 return (EINVAL); /* 0 or 1 are the only legal values */ 11335 11336 if (hw_off_limits(sc)) /* harmless race */ 11337 return (EALREADY); 11338 11339 taskqueue_enqueue(reset_tq, &sc->reset_task); 11340 return (0); 11341 } 11342 11343 #ifdef TCP_OFFLOAD 11344 static int 11345 sysctl_tls(SYSCTL_HANDLER_ARGS) 11346 { 11347 struct adapter *sc = arg1; 11348 int i, j, v, rc; 11349 struct vi_info *vi; 11350 11351 v = sc->tt.tls; 11352 rc = sysctl_handle_int(oidp, &v, 0, req); 11353 if (rc != 0 || req->newptr == NULL) 11354 return (rc); 11355 11356 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11357 return (ENOTSUP); 11358 11359 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11360 if (rc) 11361 return (rc); 11362 if (hw_off_limits(sc)) 11363 rc = ENXIO; 11364 else { 11365 sc->tt.tls = !!v; 11366 for_each_port(sc, i) { 11367 for_each_vi(sc->port[i], j, vi) { 11368 if (vi->flags & VI_INIT_DONE) 11369 t4_update_fl_bufsize(vi->ifp); 11370 } 11371 } 11372 } 11373 end_synchronized_op(sc, 0); 11374 11375 return (rc); 11376 11377 } 11378 11379 static void 11380 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11381 { 11382 u_int rem = val % factor; 11383 11384 if (rem == 0) 11385 snprintf(buf, len, "%u", val / factor); 11386 else { 11387 while (rem % 10 == 0) 11388 rem /= 10; 11389 snprintf(buf, len, "%u.%u", val / factor, rem); 11390 } 11391 } 11392 11393 static int 11394 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11395 { 11396 struct adapter *sc = arg1; 11397 char buf[16]; 11398 u_int res, re; 11399 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11400 11401 mtx_lock(&sc->reg_lock); 11402 if (hw_off_limits(sc)) 11403 res = (u_int)-1; 11404 else 11405 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11406 mtx_unlock(&sc->reg_lock); 11407 if (res == (u_int)-1) 11408 return (ENXIO); 11409 11410 switch (arg2) { 11411 case 0: 11412 /* timer_tick */ 11413 re = G_TIMERRESOLUTION(res); 11414 break; 11415 case 1: 11416 /* TCP timestamp tick */ 11417 re = G_TIMESTAMPRESOLUTION(res); 11418 break; 11419 case 2: 11420 /* DACK tick */ 11421 re = G_DELAYEDACKRESOLUTION(res); 11422 break; 11423 default: 11424 return (EDOOFUS); 11425 } 11426 11427 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11428 11429 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11430 } 11431 11432 static int 11433 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11434 { 11435 struct adapter *sc = arg1; 11436 int rc; 11437 u_int dack_tmr, dack_re, v; 11438 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11439 11440 mtx_lock(&sc->reg_lock); 11441 if (hw_off_limits(sc)) 11442 rc = ENXIO; 11443 else { 11444 rc = 0; 11445 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11446 A_TP_TIMER_RESOLUTION)); 11447 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11448 } 11449 mtx_unlock(&sc->reg_lock); 11450 if (rc != 0) 11451 return (rc); 11452 11453 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11454 11455 return (sysctl_handle_int(oidp, &v, 0, req)); 11456 } 11457 11458 static int 11459 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11460 { 11461 struct adapter *sc = arg1; 11462 int rc, reg = arg2; 11463 u_int tre; 11464 u_long tp_tick_us, v; 11465 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11466 11467 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11468 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11469 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11470 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11471 11472 mtx_lock(&sc->reg_lock); 11473 if (hw_off_limits(sc)) 11474 rc = ENXIO; 11475 else { 11476 rc = 0; 11477 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11478 tp_tick_us = (cclk_ps << tre) / 1000000; 11479 if (reg == A_TP_INIT_SRTT) 11480 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11481 else 11482 v = tp_tick_us * t4_read_reg(sc, reg); 11483 } 11484 mtx_unlock(&sc->reg_lock); 11485 if (rc != 0) 11486 return (rc); 11487 else 11488 return (sysctl_handle_long(oidp, &v, 0, req)); 11489 } 11490 11491 /* 11492 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11493 * passed to this function. 11494 */ 11495 static int 11496 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11497 { 11498 struct adapter *sc = arg1; 11499 int rc, idx = arg2; 11500 u_int v; 11501 11502 MPASS(idx >= 0 && idx <= 24); 11503 11504 mtx_lock(&sc->reg_lock); 11505 if (hw_off_limits(sc)) 11506 rc = ENXIO; 11507 else { 11508 rc = 0; 11509 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11510 } 11511 mtx_unlock(&sc->reg_lock); 11512 if (rc != 0) 11513 return (rc); 11514 else 11515 return (sysctl_handle_int(oidp, &v, 0, req)); 11516 } 11517 11518 static int 11519 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11520 { 11521 struct adapter *sc = arg1; 11522 int rc, idx = arg2; 11523 u_int shift, v, r; 11524 11525 MPASS(idx >= 0 && idx < 16); 11526 11527 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11528 shift = (idx & 3) << 3; 11529 mtx_lock(&sc->reg_lock); 11530 if (hw_off_limits(sc)) 11531 rc = ENXIO; 11532 else { 11533 rc = 0; 11534 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11535 } 11536 mtx_unlock(&sc->reg_lock); 11537 if (rc != 0) 11538 return (rc); 11539 else 11540 return (sysctl_handle_int(oidp, &v, 0, req)); 11541 } 11542 11543 static int 11544 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11545 { 11546 struct vi_info *vi = arg1; 11547 struct adapter *sc = vi->adapter; 11548 int idx, rc, i; 11549 struct sge_ofld_rxq *ofld_rxq; 11550 uint8_t v; 11551 11552 idx = vi->ofld_tmr_idx; 11553 11554 rc = sysctl_handle_int(oidp, &idx, 0, req); 11555 if (rc != 0 || req->newptr == NULL) 11556 return (rc); 11557 11558 if (idx < 0 || idx >= SGE_NTIMERS) 11559 return (EINVAL); 11560 11561 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11562 "t4otmr"); 11563 if (rc) 11564 return (rc); 11565 11566 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11567 for_each_ofld_rxq(vi, i, ofld_rxq) { 11568 #ifdef atomic_store_rel_8 11569 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11570 #else 11571 ofld_rxq->iq.intr_params = v; 11572 #endif 11573 } 11574 vi->ofld_tmr_idx = idx; 11575 11576 end_synchronized_op(sc, LOCK_HELD); 11577 return (0); 11578 } 11579 11580 static int 11581 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11582 { 11583 struct vi_info *vi = arg1; 11584 struct adapter *sc = vi->adapter; 11585 int idx, rc; 11586 11587 idx = vi->ofld_pktc_idx; 11588 11589 rc = sysctl_handle_int(oidp, &idx, 0, req); 11590 if (rc != 0 || req->newptr == NULL) 11591 return (rc); 11592 11593 if (idx < -1 || idx >= SGE_NCOUNTERS) 11594 return (EINVAL); 11595 11596 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11597 "t4opktc"); 11598 if (rc) 11599 return (rc); 11600 11601 if (vi->flags & VI_INIT_DONE) 11602 rc = EBUSY; /* cannot be changed once the queues are created */ 11603 else 11604 vi->ofld_pktc_idx = idx; 11605 11606 end_synchronized_op(sc, LOCK_HELD); 11607 return (rc); 11608 } 11609 #endif 11610 11611 static int 11612 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11613 { 11614 int rc; 11615 11616 if (cntxt->cid > M_CTXTQID) 11617 return (EINVAL); 11618 11619 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11620 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11621 return (EINVAL); 11622 11623 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11624 if (rc) 11625 return (rc); 11626 11627 if (hw_off_limits(sc)) { 11628 rc = ENXIO; 11629 goto done; 11630 } 11631 11632 if (sc->flags & FW_OK) { 11633 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11634 &cntxt->data[0]); 11635 if (rc == 0) 11636 goto done; 11637 } 11638 11639 /* 11640 * Read via firmware failed or wasn't even attempted. Read directly via 11641 * the backdoor. 11642 */ 11643 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11644 done: 11645 end_synchronized_op(sc, 0); 11646 return (rc); 11647 } 11648 11649 static int 11650 load_fw(struct adapter *sc, struct t4_data *fw) 11651 { 11652 int rc; 11653 uint8_t *fw_data; 11654 11655 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11656 if (rc) 11657 return (rc); 11658 11659 if (hw_off_limits(sc)) { 11660 rc = ENXIO; 11661 goto done; 11662 } 11663 11664 /* 11665 * The firmware, with the sole exception of the memory parity error 11666 * handler, runs from memory and not flash. It is almost always safe to 11667 * install a new firmware on a running system. Just set bit 1 in 11668 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11669 */ 11670 if (sc->flags & FULL_INIT_DONE && 11671 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11672 rc = EBUSY; 11673 goto done; 11674 } 11675 11676 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11677 11678 rc = copyin(fw->data, fw_data, fw->len); 11679 if (rc == 0) 11680 rc = -t4_load_fw(sc, fw_data, fw->len); 11681 11682 free(fw_data, M_CXGBE); 11683 done: 11684 end_synchronized_op(sc, 0); 11685 return (rc); 11686 } 11687 11688 static int 11689 load_cfg(struct adapter *sc, struct t4_data *cfg) 11690 { 11691 int rc; 11692 uint8_t *cfg_data = NULL; 11693 11694 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11695 if (rc) 11696 return (rc); 11697 11698 if (hw_off_limits(sc)) { 11699 rc = ENXIO; 11700 goto done; 11701 } 11702 11703 if (cfg->len == 0) { 11704 /* clear */ 11705 rc = -t4_load_cfg(sc, NULL, 0); 11706 goto done; 11707 } 11708 11709 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11710 11711 rc = copyin(cfg->data, cfg_data, cfg->len); 11712 if (rc == 0) 11713 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11714 11715 free(cfg_data, M_CXGBE); 11716 done: 11717 end_synchronized_op(sc, 0); 11718 return (rc); 11719 } 11720 11721 static int 11722 load_boot(struct adapter *sc, struct t4_bootrom *br) 11723 { 11724 int rc; 11725 uint8_t *br_data = NULL; 11726 u_int offset; 11727 11728 if (br->len > 1024 * 1024) 11729 return (EFBIG); 11730 11731 if (br->pf_offset == 0) { 11732 /* pfidx */ 11733 if (br->pfidx_addr > 7) 11734 return (EINVAL); 11735 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11736 A_PCIE_PF_EXPROM_OFST))); 11737 } else if (br->pf_offset == 1) { 11738 /* offset */ 11739 offset = G_OFFSET(br->pfidx_addr); 11740 } else { 11741 return (EINVAL); 11742 } 11743 11744 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11745 if (rc) 11746 return (rc); 11747 11748 if (hw_off_limits(sc)) { 11749 rc = ENXIO; 11750 goto done; 11751 } 11752 11753 if (br->len == 0) { 11754 /* clear */ 11755 rc = -t4_load_boot(sc, NULL, offset, 0); 11756 goto done; 11757 } 11758 11759 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11760 11761 rc = copyin(br->data, br_data, br->len); 11762 if (rc == 0) 11763 rc = -t4_load_boot(sc, br_data, offset, br->len); 11764 11765 free(br_data, M_CXGBE); 11766 done: 11767 end_synchronized_op(sc, 0); 11768 return (rc); 11769 } 11770 11771 static int 11772 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11773 { 11774 int rc; 11775 uint8_t *bc_data = NULL; 11776 11777 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11778 if (rc) 11779 return (rc); 11780 11781 if (hw_off_limits(sc)) { 11782 rc = ENXIO; 11783 goto done; 11784 } 11785 11786 if (bc->len == 0) { 11787 /* clear */ 11788 rc = -t4_load_bootcfg(sc, NULL, 0); 11789 goto done; 11790 } 11791 11792 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11793 11794 rc = copyin(bc->data, bc_data, bc->len); 11795 if (rc == 0) 11796 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11797 11798 free(bc_data, M_CXGBE); 11799 done: 11800 end_synchronized_op(sc, 0); 11801 return (rc); 11802 } 11803 11804 static int 11805 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11806 { 11807 int rc; 11808 struct cudbg_init *cudbg; 11809 void *handle, *buf; 11810 11811 /* buf is large, don't block if no memory is available */ 11812 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11813 if (buf == NULL) 11814 return (ENOMEM); 11815 11816 handle = cudbg_alloc_handle(); 11817 if (handle == NULL) { 11818 rc = ENOMEM; 11819 goto done; 11820 } 11821 11822 cudbg = cudbg_get_init(handle); 11823 cudbg->adap = sc; 11824 cudbg->print = (cudbg_print_cb)printf; 11825 11826 #ifndef notyet 11827 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11828 __func__, dump->wr_flash, dump->len, dump->data); 11829 #endif 11830 11831 if (dump->wr_flash) 11832 cudbg->use_flash = 1; 11833 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11834 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11835 11836 rc = cudbg_collect(handle, buf, &dump->len); 11837 if (rc != 0) 11838 goto done; 11839 11840 rc = copyout(buf, dump->data, dump->len); 11841 done: 11842 cudbg_free_handle(handle); 11843 free(buf, M_CXGBE); 11844 return (rc); 11845 } 11846 11847 static void 11848 free_offload_policy(struct t4_offload_policy *op) 11849 { 11850 struct offload_rule *r; 11851 int i; 11852 11853 if (op == NULL) 11854 return; 11855 11856 r = &op->rule[0]; 11857 for (i = 0; i < op->nrules; i++, r++) { 11858 free(r->bpf_prog.bf_insns, M_CXGBE); 11859 } 11860 free(op->rule, M_CXGBE); 11861 free(op, M_CXGBE); 11862 } 11863 11864 static int 11865 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11866 { 11867 int i, rc, len; 11868 struct t4_offload_policy *op, *old; 11869 struct bpf_program *bf; 11870 const struct offload_settings *s; 11871 struct offload_rule *r; 11872 void *u; 11873 11874 if (!is_offload(sc)) 11875 return (ENODEV); 11876 11877 if (uop->nrules == 0) { 11878 /* Delete installed policies. */ 11879 op = NULL; 11880 goto set_policy; 11881 } else if (uop->nrules > 256) { /* arbitrary */ 11882 return (E2BIG); 11883 } 11884 11885 /* Copy userspace offload policy to kernel */ 11886 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11887 op->nrules = uop->nrules; 11888 len = op->nrules * sizeof(struct offload_rule); 11889 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11890 rc = copyin(uop->rule, op->rule, len); 11891 if (rc) { 11892 free(op->rule, M_CXGBE); 11893 free(op, M_CXGBE); 11894 return (rc); 11895 } 11896 11897 r = &op->rule[0]; 11898 for (i = 0; i < op->nrules; i++, r++) { 11899 11900 /* Validate open_type */ 11901 if (r->open_type != OPEN_TYPE_LISTEN && 11902 r->open_type != OPEN_TYPE_ACTIVE && 11903 r->open_type != OPEN_TYPE_PASSIVE && 11904 r->open_type != OPEN_TYPE_DONTCARE) { 11905 error: 11906 /* 11907 * Rules 0 to i have malloc'd filters that need to be 11908 * freed. Rules i+1 to nrules have userspace pointers 11909 * and should be left alone. 11910 */ 11911 op->nrules = i; 11912 free_offload_policy(op); 11913 return (rc); 11914 } 11915 11916 /* Validate settings */ 11917 s = &r->settings; 11918 if ((s->offload != 0 && s->offload != 1) || 11919 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11920 s->sched_class < -1 || 11921 s->sched_class >= sc->params.nsched_cls) { 11922 rc = EINVAL; 11923 goto error; 11924 } 11925 11926 bf = &r->bpf_prog; 11927 u = bf->bf_insns; /* userspace ptr */ 11928 bf->bf_insns = NULL; 11929 if (bf->bf_len == 0) { 11930 /* legal, matches everything */ 11931 continue; 11932 } 11933 len = bf->bf_len * sizeof(*bf->bf_insns); 11934 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11935 rc = copyin(u, bf->bf_insns, len); 11936 if (rc != 0) 11937 goto error; 11938 11939 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11940 rc = EINVAL; 11941 goto error; 11942 } 11943 } 11944 set_policy: 11945 rw_wlock(&sc->policy_lock); 11946 old = sc->policy; 11947 sc->policy = op; 11948 rw_wunlock(&sc->policy_lock); 11949 free_offload_policy(old); 11950 11951 return (0); 11952 } 11953 11954 #define MAX_READ_BUF_SIZE (128 * 1024) 11955 static int 11956 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11957 { 11958 uint32_t addr, remaining, n; 11959 uint32_t *buf; 11960 int rc; 11961 uint8_t *dst; 11962 11963 mtx_lock(&sc->reg_lock); 11964 if (hw_off_limits(sc)) 11965 rc = ENXIO; 11966 else 11967 rc = validate_mem_range(sc, mr->addr, mr->len); 11968 mtx_unlock(&sc->reg_lock); 11969 if (rc != 0) 11970 return (rc); 11971 11972 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11973 addr = mr->addr; 11974 remaining = mr->len; 11975 dst = (void *)mr->data; 11976 11977 while (remaining) { 11978 n = min(remaining, MAX_READ_BUF_SIZE); 11979 mtx_lock(&sc->reg_lock); 11980 if (hw_off_limits(sc)) 11981 rc = ENXIO; 11982 else 11983 read_via_memwin(sc, 2, addr, buf, n); 11984 mtx_unlock(&sc->reg_lock); 11985 if (rc != 0) 11986 break; 11987 11988 rc = copyout(buf, dst, n); 11989 if (rc != 0) 11990 break; 11991 11992 dst += n; 11993 remaining -= n; 11994 addr += n; 11995 } 11996 11997 free(buf, M_CXGBE); 11998 return (rc); 11999 } 12000 #undef MAX_READ_BUF_SIZE 12001 12002 static int 12003 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 12004 { 12005 int rc; 12006 12007 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 12008 return (EINVAL); 12009 12010 if (i2cd->len > sizeof(i2cd->data)) 12011 return (EFBIG); 12012 12013 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 12014 if (rc) 12015 return (rc); 12016 if (hw_off_limits(sc)) 12017 rc = ENXIO; 12018 else 12019 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 12020 i2cd->offset, i2cd->len, &i2cd->data[0]); 12021 end_synchronized_op(sc, 0); 12022 12023 return (rc); 12024 } 12025 12026 static int 12027 clear_stats(struct adapter *sc, u_int port_id) 12028 { 12029 int i, v, chan_map; 12030 struct port_info *pi; 12031 struct vi_info *vi; 12032 struct sge_rxq *rxq; 12033 struct sge_txq *txq; 12034 struct sge_wrq *wrq; 12035 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12036 struct sge_ofld_txq *ofld_txq; 12037 #endif 12038 #ifdef TCP_OFFLOAD 12039 struct sge_ofld_rxq *ofld_rxq; 12040 #endif 12041 12042 if (port_id >= sc->params.nports) 12043 return (EINVAL); 12044 pi = sc->port[port_id]; 12045 if (pi == NULL) 12046 return (EIO); 12047 12048 mtx_lock(&sc->reg_lock); 12049 if (!hw_off_limits(sc)) { 12050 /* MAC stats */ 12051 t4_clr_port_stats(sc, pi->tx_chan); 12052 if (is_t6(sc)) { 12053 if (pi->fcs_reg != -1) 12054 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12055 else 12056 pi->stats.rx_fcs_err = 0; 12057 } 12058 for_each_vi(pi, v, vi) { 12059 if (vi->flags & VI_INIT_DONE) 12060 t4_clr_vi_stats(sc, vi->vin); 12061 } 12062 chan_map = pi->rx_e_chan_map; 12063 v = 0; /* reuse */ 12064 while (chan_map) { 12065 i = ffs(chan_map) - 1; 12066 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 12067 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 12068 chan_map &= ~(1 << i); 12069 } 12070 } 12071 mtx_unlock(&sc->reg_lock); 12072 pi->tx_parse_error = 0; 12073 pi->tnl_cong_drops = 0; 12074 12075 /* 12076 * Since this command accepts a port, clear stats for 12077 * all VIs on this port. 12078 */ 12079 for_each_vi(pi, v, vi) { 12080 if (vi->flags & VI_INIT_DONE) { 12081 12082 for_each_rxq(vi, i, rxq) { 12083 #if defined(INET) || defined(INET6) 12084 rxq->lro.lro_queued = 0; 12085 rxq->lro.lro_flushed = 0; 12086 #endif 12087 rxq->rxcsum = 0; 12088 rxq->vlan_extraction = 0; 12089 rxq->vxlan_rxcsum = 0; 12090 12091 rxq->fl.cl_allocated = 0; 12092 rxq->fl.cl_recycled = 0; 12093 rxq->fl.cl_fast_recycled = 0; 12094 } 12095 12096 for_each_txq(vi, i, txq) { 12097 txq->txcsum = 0; 12098 txq->tso_wrs = 0; 12099 txq->vlan_insertion = 0; 12100 txq->imm_wrs = 0; 12101 txq->sgl_wrs = 0; 12102 txq->txpkt_wrs = 0; 12103 txq->txpkts0_wrs = 0; 12104 txq->txpkts1_wrs = 0; 12105 txq->txpkts0_pkts = 0; 12106 txq->txpkts1_pkts = 0; 12107 txq->txpkts_flush = 0; 12108 txq->raw_wrs = 0; 12109 txq->vxlan_tso_wrs = 0; 12110 txq->vxlan_txcsum = 0; 12111 txq->kern_tls_records = 0; 12112 txq->kern_tls_short = 0; 12113 txq->kern_tls_partial = 0; 12114 txq->kern_tls_full = 0; 12115 txq->kern_tls_octets = 0; 12116 txq->kern_tls_waste = 0; 12117 txq->kern_tls_options = 0; 12118 txq->kern_tls_header = 0; 12119 txq->kern_tls_fin = 0; 12120 txq->kern_tls_fin_short = 0; 12121 txq->kern_tls_cbc = 0; 12122 txq->kern_tls_gcm = 0; 12123 mp_ring_reset_stats(txq->r); 12124 } 12125 12126 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12127 for_each_ofld_txq(vi, i, ofld_txq) { 12128 ofld_txq->wrq.tx_wrs_direct = 0; 12129 ofld_txq->wrq.tx_wrs_copied = 0; 12130 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12131 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12132 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12133 counter_u64_zero(ofld_txq->tx_aio_jobs); 12134 counter_u64_zero(ofld_txq->tx_aio_octets); 12135 counter_u64_zero(ofld_txq->tx_toe_tls_records); 12136 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 12137 } 12138 #endif 12139 #ifdef TCP_OFFLOAD 12140 for_each_ofld_rxq(vi, i, ofld_rxq) { 12141 ofld_rxq->fl.cl_allocated = 0; 12142 ofld_rxq->fl.cl_recycled = 0; 12143 ofld_rxq->fl.cl_fast_recycled = 0; 12144 counter_u64_zero( 12145 ofld_rxq->rx_iscsi_ddp_setup_ok); 12146 counter_u64_zero( 12147 ofld_rxq->rx_iscsi_ddp_setup_error); 12148 ofld_rxq->rx_iscsi_ddp_pdus = 0; 12149 ofld_rxq->rx_iscsi_ddp_octets = 0; 12150 ofld_rxq->rx_iscsi_fl_pdus = 0; 12151 ofld_rxq->rx_iscsi_fl_octets = 0; 12152 ofld_rxq->rx_aio_ddp_jobs = 0; 12153 ofld_rxq->rx_aio_ddp_octets = 0; 12154 ofld_rxq->rx_toe_tls_records = 0; 12155 ofld_rxq->rx_toe_tls_octets = 0; 12156 ofld_rxq->rx_toe_ddp_octets = 0; 12157 counter_u64_zero(ofld_rxq->ddp_buffer_alloc); 12158 counter_u64_zero(ofld_rxq->ddp_buffer_reuse); 12159 counter_u64_zero(ofld_rxq->ddp_buffer_free); 12160 } 12161 #endif 12162 12163 if (IS_MAIN_VI(vi)) { 12164 wrq = &sc->sge.ctrlq[pi->port_id]; 12165 wrq->tx_wrs_direct = 0; 12166 wrq->tx_wrs_copied = 0; 12167 } 12168 } 12169 } 12170 12171 return (0); 12172 } 12173 12174 static int 12175 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12176 { 12177 #ifdef INET6 12178 struct in6_addr in6; 12179 12180 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12181 if (t4_get_clip_entry(sc, &in6, true) != NULL) 12182 return (0); 12183 else 12184 return (EIO); 12185 #else 12186 return (ENOTSUP); 12187 #endif 12188 } 12189 12190 static int 12191 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12192 { 12193 #ifdef INET6 12194 struct in6_addr in6; 12195 12196 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12197 return (t4_release_clip_addr(sc, &in6)); 12198 #else 12199 return (ENOTSUP); 12200 #endif 12201 } 12202 12203 int 12204 t4_os_find_pci_capability(struct adapter *sc, int cap) 12205 { 12206 int i; 12207 12208 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12209 } 12210 12211 void 12212 t4_os_portmod_changed(struct port_info *pi) 12213 { 12214 struct adapter *sc = pi->adapter; 12215 struct vi_info *vi; 12216 if_t ifp; 12217 static const char *mod_str[] = { 12218 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM", 12219 "LR_SIMPLEX", "DR" 12220 }; 12221 12222 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12223 ("%s: port_type %u", __func__, pi->port_type)); 12224 12225 vi = &pi->vi[0]; 12226 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12227 PORT_LOCK(pi); 12228 build_medialist(pi); 12229 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12230 fixup_link_config(pi); 12231 apply_link_config(pi); 12232 } 12233 PORT_UNLOCK(pi); 12234 end_synchronized_op(sc, LOCK_HELD); 12235 } 12236 12237 ifp = vi->ifp; 12238 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12239 if_printf(ifp, "transceiver unplugged.\n"); 12240 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12241 if_printf(ifp, "unknown transceiver inserted.\n"); 12242 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12243 if_printf(ifp, "unsupported transceiver inserted.\n"); 12244 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12245 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12246 port_top_speed(pi), mod_str[pi->mod_type]); 12247 } else { 12248 if_printf(ifp, "transceiver (type %d) inserted.\n", 12249 pi->mod_type); 12250 } 12251 } 12252 12253 void 12254 t4_os_link_changed(struct port_info *pi) 12255 { 12256 struct vi_info *vi; 12257 if_t ifp; 12258 struct link_config *lc = &pi->link_cfg; 12259 struct adapter *sc = pi->adapter; 12260 int v; 12261 12262 PORT_LOCK_ASSERT_OWNED(pi); 12263 12264 if (is_t6(sc)) { 12265 if (lc->link_ok) { 12266 if (lc->speed > 25000 || 12267 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12268 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12269 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12270 } else { 12271 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12272 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12273 } 12274 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12275 pi->stats.rx_fcs_err = 0; 12276 } else { 12277 pi->fcs_reg = -1; 12278 } 12279 } else { 12280 MPASS(pi->fcs_reg != -1); 12281 MPASS(pi->fcs_base == 0); 12282 } 12283 12284 for_each_vi(pi, v, vi) { 12285 ifp = vi->ifp; 12286 if (ifp == NULL || IS_DETACHING(vi)) 12287 continue; 12288 12289 if (lc->link_ok) { 12290 if_setbaudrate(ifp, IF_Mbps(lc->speed)); 12291 if_link_state_change(ifp, LINK_STATE_UP); 12292 } else { 12293 if_link_state_change(ifp, LINK_STATE_DOWN); 12294 } 12295 } 12296 } 12297 12298 void 12299 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12300 { 12301 struct adapter *sc; 12302 12303 sx_slock(&t4_list_lock); 12304 SLIST_FOREACH(sc, &t4_list, link) { 12305 /* 12306 * func should not make any assumptions about what state sc is 12307 * in - the only guarantee is that sc->sc_lock is a valid lock. 12308 */ 12309 func(sc, arg); 12310 } 12311 sx_sunlock(&t4_list_lock); 12312 } 12313 12314 static int 12315 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12316 struct thread *td) 12317 { 12318 int rc; 12319 struct adapter *sc = dev->si_drv1; 12320 12321 rc = priv_check(td, PRIV_DRIVER); 12322 if (rc != 0) 12323 return (rc); 12324 12325 switch (cmd) { 12326 case CHELSIO_T4_GETREG: { 12327 struct t4_reg *edata = (struct t4_reg *)data; 12328 12329 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12330 return (EFAULT); 12331 12332 mtx_lock(&sc->reg_lock); 12333 if (hw_off_limits(sc)) 12334 rc = ENXIO; 12335 else if (edata->size == 4) 12336 edata->val = t4_read_reg(sc, edata->addr); 12337 else if (edata->size == 8) 12338 edata->val = t4_read_reg64(sc, edata->addr); 12339 else 12340 rc = EINVAL; 12341 mtx_unlock(&sc->reg_lock); 12342 12343 break; 12344 } 12345 case CHELSIO_T4_SETREG: { 12346 struct t4_reg *edata = (struct t4_reg *)data; 12347 12348 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12349 return (EFAULT); 12350 12351 mtx_lock(&sc->reg_lock); 12352 if (hw_off_limits(sc)) 12353 rc = ENXIO; 12354 else if (edata->size == 4) { 12355 if (edata->val & 0xffffffff00000000) 12356 rc = EINVAL; 12357 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12358 } else if (edata->size == 8) 12359 t4_write_reg64(sc, edata->addr, edata->val); 12360 else 12361 rc = EINVAL; 12362 mtx_unlock(&sc->reg_lock); 12363 12364 break; 12365 } 12366 case CHELSIO_T4_REGDUMP: { 12367 struct t4_regdump *regs = (struct t4_regdump *)data; 12368 int reglen = t4_get_regs_len(sc); 12369 uint8_t *buf; 12370 12371 if (regs->len < reglen) { 12372 regs->len = reglen; /* hint to the caller */ 12373 return (ENOBUFS); 12374 } 12375 12376 regs->len = reglen; 12377 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12378 mtx_lock(&sc->reg_lock); 12379 if (hw_off_limits(sc)) 12380 rc = ENXIO; 12381 else 12382 get_regs(sc, regs, buf); 12383 mtx_unlock(&sc->reg_lock); 12384 if (rc == 0) 12385 rc = copyout(buf, regs->data, reglen); 12386 free(buf, M_CXGBE); 12387 break; 12388 } 12389 case CHELSIO_T4_GET_FILTER_MODE: 12390 rc = get_filter_mode(sc, (uint32_t *)data); 12391 break; 12392 case CHELSIO_T4_SET_FILTER_MODE: 12393 rc = set_filter_mode(sc, *(uint32_t *)data); 12394 break; 12395 case CHELSIO_T4_SET_FILTER_MASK: 12396 rc = set_filter_mask(sc, *(uint32_t *)data); 12397 break; 12398 case CHELSIO_T4_GET_FILTER: 12399 rc = get_filter(sc, (struct t4_filter *)data); 12400 break; 12401 case CHELSIO_T4_SET_FILTER: 12402 rc = set_filter(sc, (struct t4_filter *)data); 12403 break; 12404 case CHELSIO_T4_DEL_FILTER: 12405 rc = del_filter(sc, (struct t4_filter *)data); 12406 break; 12407 case CHELSIO_T4_GET_SGE_CONTEXT: 12408 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12409 break; 12410 case CHELSIO_T4_LOAD_FW: 12411 rc = load_fw(sc, (struct t4_data *)data); 12412 break; 12413 case CHELSIO_T4_GET_MEM: 12414 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12415 break; 12416 case CHELSIO_T4_GET_I2C: 12417 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12418 break; 12419 case CHELSIO_T4_CLEAR_STATS: 12420 rc = clear_stats(sc, *(uint32_t *)data); 12421 break; 12422 case CHELSIO_T4_SCHED_CLASS: 12423 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12424 break; 12425 case CHELSIO_T4_SCHED_QUEUE: 12426 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12427 break; 12428 case CHELSIO_T4_GET_TRACER: 12429 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12430 break; 12431 case CHELSIO_T4_SET_TRACER: 12432 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12433 break; 12434 case CHELSIO_T4_LOAD_CFG: 12435 rc = load_cfg(sc, (struct t4_data *)data); 12436 break; 12437 case CHELSIO_T4_LOAD_BOOT: 12438 rc = load_boot(sc, (struct t4_bootrom *)data); 12439 break; 12440 case CHELSIO_T4_LOAD_BOOTCFG: 12441 rc = load_bootcfg(sc, (struct t4_data *)data); 12442 break; 12443 case CHELSIO_T4_CUDBG_DUMP: 12444 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12445 break; 12446 case CHELSIO_T4_SET_OFLD_POLICY: 12447 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12448 break; 12449 case CHELSIO_T4_HOLD_CLIP_ADDR: 12450 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12451 break; 12452 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12453 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12454 break; 12455 default: 12456 rc = ENOTTY; 12457 } 12458 12459 return (rc); 12460 } 12461 12462 #ifdef TCP_OFFLOAD 12463 int 12464 toe_capability(struct vi_info *vi, bool enable) 12465 { 12466 int rc; 12467 struct port_info *pi = vi->pi; 12468 struct adapter *sc = pi->adapter; 12469 12470 ASSERT_SYNCHRONIZED_OP(sc); 12471 12472 if (!is_offload(sc)) 12473 return (ENODEV); 12474 if (!hw_all_ok(sc)) 12475 return (ENXIO); 12476 12477 if (enable) { 12478 #ifdef KERN_TLS 12479 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 12480 int i, j, n; 12481 struct port_info *p; 12482 struct vi_info *v; 12483 12484 /* 12485 * Reconfigure hardware for TOE if TXTLS is not enabled 12486 * on any ifnet. 12487 */ 12488 n = 0; 12489 for_each_port(sc, i) { 12490 p = sc->port[i]; 12491 for_each_vi(p, j, v) { 12492 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) { 12493 CH_WARN(sc, 12494 "%s has NIC TLS enabled.\n", 12495 device_get_nameunit(v->dev)); 12496 n++; 12497 } 12498 } 12499 } 12500 if (n > 0) { 12501 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12502 "associated with this adapter before " 12503 "trying to enable TOE.\n"); 12504 return (EAGAIN); 12505 } 12506 rc = t6_config_kern_tls(sc, false); 12507 if (rc) 12508 return (rc); 12509 } 12510 #endif 12511 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) { 12512 /* TOE is already enabled. */ 12513 return (0); 12514 } 12515 12516 /* 12517 * We need the port's queues around so that we're able to send 12518 * and receive CPLs to/from the TOE even if the ifnet for this 12519 * port has never been UP'd administratively. 12520 */ 12521 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12522 return (rc); 12523 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12524 ((rc = vi_init(&pi->vi[0])) != 0)) 12525 return (rc); 12526 12527 if (isset(&sc->offload_map, pi->port_id)) { 12528 /* TOE is enabled on another VI of this port. */ 12529 MPASS(pi->uld_vis > 0); 12530 pi->uld_vis++; 12531 return (0); 12532 } 12533 12534 if (!uld_active(sc, ULD_TOM)) { 12535 rc = t4_activate_uld(sc, ULD_TOM); 12536 if (rc == EAGAIN) { 12537 log(LOG_WARNING, 12538 "You must kldload t4_tom.ko before trying " 12539 "to enable TOE on a cxgbe interface.\n"); 12540 } 12541 if (rc != 0) 12542 return (rc); 12543 KASSERT(sc->tom_softc != NULL, 12544 ("%s: TOM activated but softc NULL", __func__)); 12545 KASSERT(uld_active(sc, ULD_TOM), 12546 ("%s: TOM activated but flag not set", __func__)); 12547 } 12548 12549 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12550 if (!uld_active(sc, ULD_IWARP)) 12551 (void) t4_activate_uld(sc, ULD_IWARP); 12552 if (!uld_active(sc, ULD_ISCSI)) 12553 (void) t4_activate_uld(sc, ULD_ISCSI); 12554 12555 if (pi->uld_vis++ == 0) 12556 setbit(&sc->offload_map, pi->port_id); 12557 } else { 12558 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) { 12559 /* TOE is already disabled. */ 12560 return (0); 12561 } 12562 MPASS(isset(&sc->offload_map, pi->port_id)); 12563 MPASS(pi->uld_vis > 0); 12564 if (--pi->uld_vis == 0) 12565 clrbit(&sc->offload_map, pi->port_id); 12566 } 12567 12568 return (0); 12569 } 12570 12571 /* 12572 * Add an upper layer driver to the global list. 12573 */ 12574 int 12575 t4_register_uld(struct uld_info *ui, int id) 12576 { 12577 int rc; 12578 12579 if (id < 0 || id > ULD_MAX) 12580 return (EINVAL); 12581 sx_xlock(&t4_uld_list_lock); 12582 if (t4_uld_list[id] != NULL) 12583 rc = EEXIST; 12584 else { 12585 t4_uld_list[id] = ui; 12586 rc = 0; 12587 } 12588 sx_xunlock(&t4_uld_list_lock); 12589 return (rc); 12590 } 12591 12592 int 12593 t4_unregister_uld(struct uld_info *ui, int id) 12594 { 12595 12596 if (id < 0 || id > ULD_MAX) 12597 return (EINVAL); 12598 sx_xlock(&t4_uld_list_lock); 12599 MPASS(t4_uld_list[id] == ui); 12600 t4_uld_list[id] = NULL; 12601 sx_xunlock(&t4_uld_list_lock); 12602 return (0); 12603 } 12604 12605 int 12606 t4_activate_uld(struct adapter *sc, int id) 12607 { 12608 int rc; 12609 12610 ASSERT_SYNCHRONIZED_OP(sc); 12611 12612 if (id < 0 || id > ULD_MAX) 12613 return (EINVAL); 12614 12615 /* Adapter needs to be initialized before any ULD can be activated. */ 12616 if (!(sc->flags & FULL_INIT_DONE)) { 12617 rc = adapter_init(sc); 12618 if (rc != 0) 12619 return (rc); 12620 } 12621 12622 sx_slock(&t4_uld_list_lock); 12623 if (t4_uld_list[id] == NULL) 12624 rc = EAGAIN; /* load the KLD with this ULD and try again. */ 12625 else { 12626 rc = t4_uld_list[id]->uld_activate(sc); 12627 if (rc == 0) 12628 setbit(&sc->active_ulds, id); 12629 } 12630 sx_sunlock(&t4_uld_list_lock); 12631 12632 return (rc); 12633 } 12634 12635 int 12636 t4_deactivate_uld(struct adapter *sc, int id) 12637 { 12638 int rc; 12639 12640 ASSERT_SYNCHRONIZED_OP(sc); 12641 12642 if (id < 0 || id > ULD_MAX) 12643 return (EINVAL); 12644 12645 sx_slock(&t4_uld_list_lock); 12646 if (t4_uld_list[id] == NULL) 12647 rc = ENXIO; 12648 else { 12649 rc = t4_uld_list[id]->uld_deactivate(sc); 12650 if (rc == 0) 12651 clrbit(&sc->active_ulds, id); 12652 } 12653 sx_sunlock(&t4_uld_list_lock); 12654 12655 return (rc); 12656 } 12657 12658 static int 12659 deactivate_all_uld(struct adapter *sc) 12660 { 12661 int i, rc; 12662 12663 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 12664 if (rc != 0) 12665 return (ENXIO); 12666 sx_slock(&t4_uld_list_lock); 12667 for (i = 0; i <= ULD_MAX; i++) { 12668 if (t4_uld_list[i] == NULL || !uld_active(sc, i)) 12669 continue; 12670 rc = t4_uld_list[i]->uld_deactivate(sc); 12671 if (rc != 0) 12672 break; 12673 clrbit(&sc->active_ulds, i); 12674 } 12675 sx_sunlock(&t4_uld_list_lock); 12676 end_synchronized_op(sc, 0); 12677 12678 return (rc); 12679 } 12680 12681 static void 12682 stop_all_uld(struct adapter *sc) 12683 { 12684 int i; 12685 12686 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0) 12687 return; 12688 sx_slock(&t4_uld_list_lock); 12689 for (i = 0; i <= ULD_MAX; i++) { 12690 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 12691 t4_uld_list[i]->uld_stop == NULL) 12692 continue; 12693 (void) t4_uld_list[i]->uld_stop(sc); 12694 } 12695 sx_sunlock(&t4_uld_list_lock); 12696 end_synchronized_op(sc, 0); 12697 } 12698 12699 static void 12700 restart_all_uld(struct adapter *sc) 12701 { 12702 int i; 12703 12704 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0) 12705 return; 12706 sx_slock(&t4_uld_list_lock); 12707 for (i = 0; i <= ULD_MAX; i++) { 12708 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 12709 t4_uld_list[i]->uld_restart == NULL) 12710 continue; 12711 (void) t4_uld_list[i]->uld_restart(sc); 12712 } 12713 sx_sunlock(&t4_uld_list_lock); 12714 end_synchronized_op(sc, 0); 12715 } 12716 12717 int 12718 uld_active(struct adapter *sc, int id) 12719 { 12720 12721 MPASS(id >= 0 && id <= ULD_MAX); 12722 12723 return (isset(&sc->active_ulds, id)); 12724 } 12725 #endif 12726 12727 #ifdef KERN_TLS 12728 static int 12729 ktls_capability(struct adapter *sc, bool enable) 12730 { 12731 ASSERT_SYNCHRONIZED_OP(sc); 12732 12733 if (!is_ktls(sc)) 12734 return (ENODEV); 12735 if (!is_t6(sc)) 12736 return (0); 12737 if (!hw_all_ok(sc)) 12738 return (ENXIO); 12739 12740 if (enable) { 12741 if (sc->flags & KERN_TLS_ON) 12742 return (0); /* already on */ 12743 if (sc->offload_map != 0) { 12744 CH_WARN(sc, 12745 "Disable TOE on all interfaces associated with " 12746 "this adapter before trying to enable NIC TLS.\n"); 12747 return (EAGAIN); 12748 } 12749 return (t6_config_kern_tls(sc, true)); 12750 } else { 12751 /* 12752 * Nothing to do for disable. If TOE is enabled sometime later 12753 * then toe_capability will reconfigure the hardware. 12754 */ 12755 return (0); 12756 } 12757 } 12758 #endif 12759 12760 /* 12761 * t = ptr to tunable. 12762 * nc = number of CPUs. 12763 * c = compiled in default for that tunable. 12764 */ 12765 static void 12766 calculate_nqueues(int *t, int nc, const int c) 12767 { 12768 int nq; 12769 12770 if (*t > 0) 12771 return; 12772 nq = *t < 0 ? -*t : c; 12773 *t = min(nc, nq); 12774 } 12775 12776 /* 12777 * Come up with reasonable defaults for some of the tunables, provided they're 12778 * not set by the user (in which case we'll use the values as is). 12779 */ 12780 static void 12781 tweak_tunables(void) 12782 { 12783 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12784 12785 if (t4_ntxq < 1) { 12786 #ifdef RSS 12787 t4_ntxq = rss_getnumbuckets(); 12788 #else 12789 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12790 #endif 12791 } 12792 12793 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12794 12795 if (t4_nrxq < 1) { 12796 #ifdef RSS 12797 t4_nrxq = rss_getnumbuckets(); 12798 #else 12799 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12800 #endif 12801 } 12802 12803 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12804 12805 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12806 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12807 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12808 #endif 12809 #ifdef TCP_OFFLOAD 12810 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12811 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12812 #endif 12813 12814 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12815 if (t4_toecaps_allowed == -1) 12816 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12817 #else 12818 if (t4_toecaps_allowed == -1) 12819 t4_toecaps_allowed = 0; 12820 #endif 12821 12822 #ifdef TCP_OFFLOAD 12823 if (t4_rdmacaps_allowed == -1) { 12824 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12825 FW_CAPS_CONFIG_RDMA_RDMAC; 12826 } 12827 12828 if (t4_iscsicaps_allowed == -1) { 12829 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12830 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12831 FW_CAPS_CONFIG_ISCSI_T10DIF; 12832 } 12833 12834 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12835 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12836 12837 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12838 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12839 #else 12840 if (t4_rdmacaps_allowed == -1) 12841 t4_rdmacaps_allowed = 0; 12842 12843 if (t4_iscsicaps_allowed == -1) 12844 t4_iscsicaps_allowed = 0; 12845 #endif 12846 12847 #ifdef DEV_NETMAP 12848 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12849 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12850 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12851 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12852 #endif 12853 12854 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12855 t4_tmr_idx = TMR_IDX; 12856 12857 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12858 t4_pktc_idx = PKTC_IDX; 12859 12860 if (t4_qsize_txq < 128) 12861 t4_qsize_txq = 128; 12862 12863 if (t4_qsize_rxq < 128) 12864 t4_qsize_rxq = 128; 12865 while (t4_qsize_rxq & 7) 12866 t4_qsize_rxq++; 12867 12868 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12869 12870 /* 12871 * Number of VIs to create per-port. The first VI is the "main" regular 12872 * VI for the port. The rest are additional virtual interfaces on the 12873 * same physical port. Note that the main VI does not have native 12874 * netmap support but the extra VIs do. 12875 * 12876 * Limit the number of VIs per port to the number of available 12877 * MAC addresses per port. 12878 */ 12879 if (t4_num_vis < 1) 12880 t4_num_vis = 1; 12881 if (t4_num_vis > nitems(vi_mac_funcs)) { 12882 t4_num_vis = nitems(vi_mac_funcs); 12883 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12884 } 12885 12886 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12887 pcie_relaxed_ordering = 1; 12888 #if defined(__i386__) || defined(__amd64__) 12889 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12890 pcie_relaxed_ordering = 0; 12891 #endif 12892 } 12893 } 12894 12895 #ifdef DDB 12896 static void 12897 t4_dump_mem(struct adapter *sc, u_int addr, u_int len) 12898 { 12899 uint32_t base, j, off, pf, reg, save, win_pos; 12900 12901 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12902 save = t4_read_reg(sc, reg); 12903 base = sc->memwin[2].mw_base; 12904 12905 if (is_t4(sc)) { 12906 pf = 0; 12907 win_pos = addr & ~0xf; /* start must be 16B aligned */ 12908 } else { 12909 pf = V_PFNUM(sc->pf); 12910 win_pos = addr & ~0x7f; /* start must be 128B aligned */ 12911 } 12912 off = addr - win_pos; 12913 t4_write_reg(sc, reg, win_pos | pf); 12914 t4_read_reg(sc, reg); 12915 12916 while (len > 0 && !db_pager_quit) { 12917 uint32_t buf[8]; 12918 for (j = 0; j < 8; j++, off += 4) 12919 buf[j] = htonl(t4_read_reg(sc, base + off)); 12920 12921 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12922 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12923 buf[7]); 12924 if (len <= sizeof(buf)) 12925 len = 0; 12926 else 12927 len -= sizeof(buf); 12928 } 12929 12930 t4_write_reg(sc, reg, save); 12931 t4_read_reg(sc, reg); 12932 } 12933 12934 static void 12935 t4_dump_tcb(struct adapter *sc, int tid) 12936 { 12937 uint32_t tcb_addr; 12938 12939 /* Dump TCB for the tid */ 12940 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12941 tcb_addr += tid * TCB_SIZE; 12942 t4_dump_mem(sc, tcb_addr, TCB_SIZE); 12943 } 12944 12945 static void 12946 t4_dump_devlog(struct adapter *sc) 12947 { 12948 struct devlog_params *dparams = &sc->params.devlog; 12949 struct fw_devlog_e e; 12950 int i, first, j, m, nentries, rc; 12951 uint64_t ftstamp = UINT64_MAX; 12952 12953 if (dparams->start == 0) { 12954 db_printf("devlog params not valid\n"); 12955 return; 12956 } 12957 12958 nentries = dparams->size / sizeof(struct fw_devlog_e); 12959 m = fwmtype_to_hwmtype(dparams->memtype); 12960 12961 /* Find the first entry. */ 12962 first = -1; 12963 for (i = 0; i < nentries && !db_pager_quit; i++) { 12964 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12965 sizeof(e), (void *)&e); 12966 if (rc != 0) 12967 break; 12968 12969 if (e.timestamp == 0) 12970 break; 12971 12972 e.timestamp = be64toh(e.timestamp); 12973 if (e.timestamp < ftstamp) { 12974 ftstamp = e.timestamp; 12975 first = i; 12976 } 12977 } 12978 12979 if (first == -1) 12980 return; 12981 12982 i = first; 12983 do { 12984 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12985 sizeof(e), (void *)&e); 12986 if (rc != 0) 12987 return; 12988 12989 if (e.timestamp == 0) 12990 return; 12991 12992 e.timestamp = be64toh(e.timestamp); 12993 e.seqno = be32toh(e.seqno); 12994 for (j = 0; j < 8; j++) 12995 e.params[j] = be32toh(e.params[j]); 12996 12997 db_printf("%10d %15ju %8s %8s ", 12998 e.seqno, e.timestamp, 12999 (e.level < nitems(devlog_level_strings) ? 13000 devlog_level_strings[e.level] : "UNKNOWN"), 13001 (e.facility < nitems(devlog_facility_strings) ? 13002 devlog_facility_strings[e.facility] : "UNKNOWN")); 13003 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 13004 e.params[3], e.params[4], e.params[5], e.params[6], 13005 e.params[7]); 13006 13007 if (++i == nentries) 13008 i = 0; 13009 } while (i != first && !db_pager_quit); 13010 } 13011 13012 static DB_DEFINE_TABLE(show, t4, show_t4); 13013 13014 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN) 13015 { 13016 device_t dev; 13017 int t; 13018 bool valid; 13019 13020 valid = false; 13021 t = db_read_token(); 13022 if (t == tIDENT) { 13023 dev = device_lookup_by_name(db_tok_string); 13024 valid = true; 13025 } 13026 db_skip_to_eol(); 13027 if (!valid) { 13028 db_printf("usage: show t4 devlog <nexus>\n"); 13029 return; 13030 } 13031 13032 if (dev == NULL) { 13033 db_printf("device not found\n"); 13034 return; 13035 } 13036 13037 t4_dump_devlog(device_get_softc(dev)); 13038 } 13039 13040 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN) 13041 { 13042 device_t dev; 13043 int radix, tid, t; 13044 bool valid; 13045 13046 valid = false; 13047 radix = db_radix; 13048 db_radix = 10; 13049 t = db_read_token(); 13050 if (t == tIDENT) { 13051 dev = device_lookup_by_name(db_tok_string); 13052 t = db_read_token(); 13053 if (t == tNUMBER) { 13054 tid = db_tok_number; 13055 valid = true; 13056 } 13057 } 13058 db_radix = radix; 13059 db_skip_to_eol(); 13060 if (!valid) { 13061 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 13062 return; 13063 } 13064 13065 if (dev == NULL) { 13066 db_printf("device not found\n"); 13067 return; 13068 } 13069 if (tid < 0) { 13070 db_printf("invalid tid\n"); 13071 return; 13072 } 13073 13074 t4_dump_tcb(device_get_softc(dev), tid); 13075 } 13076 13077 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN) 13078 { 13079 device_t dev; 13080 int radix, t; 13081 bool valid; 13082 13083 valid = false; 13084 radix = db_radix; 13085 db_radix = 10; 13086 t = db_read_token(); 13087 if (t == tIDENT) { 13088 dev = device_lookup_by_name(db_tok_string); 13089 t = db_read_token(); 13090 if (t == tNUMBER) { 13091 addr = db_tok_number; 13092 t = db_read_token(); 13093 if (t == tNUMBER) { 13094 count = db_tok_number; 13095 valid = true; 13096 } 13097 } 13098 } 13099 db_radix = radix; 13100 db_skip_to_eol(); 13101 if (!valid) { 13102 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n"); 13103 return; 13104 } 13105 13106 if (dev == NULL) { 13107 db_printf("device not found\n"); 13108 return; 13109 } 13110 if (addr < 0) { 13111 db_printf("invalid address\n"); 13112 return; 13113 } 13114 if (count <= 0) { 13115 db_printf("invalid length\n"); 13116 return; 13117 } 13118 13119 t4_dump_mem(device_get_softc(dev), addr, count); 13120 } 13121 #endif 13122 13123 static eventhandler_tag vxlan_start_evtag; 13124 static eventhandler_tag vxlan_stop_evtag; 13125 13126 struct vxlan_evargs { 13127 if_t ifp; 13128 uint16_t port; 13129 }; 13130 13131 static void 13132 enable_vxlan_rx(struct adapter *sc) 13133 { 13134 int i, rc; 13135 struct port_info *pi; 13136 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 13137 13138 ASSERT_SYNCHRONIZED_OP(sc); 13139 13140 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 13141 F_VXLAN_EN); 13142 for_each_port(sc, i) { 13143 pi = sc->port[i]; 13144 if (pi->vxlan_tcam_entry == true) 13145 continue; 13146 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 13147 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 13148 true); 13149 if (rc < 0) { 13150 rc = -rc; 13151 CH_ERR(&pi->vi[0], 13152 "failed to add VXLAN TCAM entry: %d.\n", rc); 13153 } else { 13154 MPASS(rc == sc->rawf_base + pi->port_id); 13155 pi->vxlan_tcam_entry = true; 13156 } 13157 } 13158 } 13159 13160 static void 13161 t4_vxlan_start(struct adapter *sc, void *arg) 13162 { 13163 struct vxlan_evargs *v = arg; 13164 13165 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13166 return; 13167 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 13168 return; 13169 13170 if (sc->vxlan_refcount == 0) { 13171 sc->vxlan_port = v->port; 13172 sc->vxlan_refcount = 1; 13173 if (!hw_off_limits(sc)) 13174 enable_vxlan_rx(sc); 13175 } else if (sc->vxlan_port == v->port) { 13176 sc->vxlan_refcount++; 13177 } else { 13178 CH_ERR(sc, "VXLAN already configured on port %d; " 13179 "ignoring attempt to configure it on port %d\n", 13180 sc->vxlan_port, v->port); 13181 } 13182 end_synchronized_op(sc, 0); 13183 } 13184 13185 static void 13186 t4_vxlan_stop(struct adapter *sc, void *arg) 13187 { 13188 struct vxlan_evargs *v = arg; 13189 13190 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13191 return; 13192 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 13193 return; 13194 13195 /* 13196 * VXLANs may have been configured before the driver was loaded so we 13197 * may see more stops than starts. This is not handled cleanly but at 13198 * least we keep the refcount sane. 13199 */ 13200 if (sc->vxlan_port != v->port) 13201 goto done; 13202 if (sc->vxlan_refcount == 0) { 13203 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 13204 "ignoring attempt to stop it again.\n", sc->vxlan_port); 13205 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 13206 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 13207 done: 13208 end_synchronized_op(sc, 0); 13209 } 13210 13211 static void 13212 t4_vxlan_start_handler(void *arg __unused, if_t ifp, 13213 sa_family_t family, u_int port) 13214 { 13215 struct vxlan_evargs v; 13216 13217 MPASS(family == AF_INET || family == AF_INET6); 13218 v.ifp = ifp; 13219 v.port = port; 13220 13221 t4_iterate(t4_vxlan_start, &v); 13222 } 13223 13224 static void 13225 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family, 13226 u_int port) 13227 { 13228 struct vxlan_evargs v; 13229 13230 MPASS(family == AF_INET || family == AF_INET6); 13231 v.ifp = ifp; 13232 v.port = port; 13233 13234 t4_iterate(t4_vxlan_stop, &v); 13235 } 13236 13237 13238 static struct sx mlu; /* mod load unload */ 13239 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 13240 13241 static int 13242 mod_event(module_t mod, int cmd, void *arg) 13243 { 13244 int rc = 0; 13245 static int loaded = 0; 13246 13247 switch (cmd) { 13248 case MOD_LOAD: 13249 sx_xlock(&mlu); 13250 if (loaded++ == 0) { 13251 t4_sge_modload(); 13252 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13253 t4_filter_rpl, CPL_COOKIE_FILTER); 13254 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13255 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13256 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13257 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13258 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13259 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13260 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13261 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13262 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13263 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13264 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13265 do_smt_write_rpl); 13266 sx_init(&t4_list_lock, "T4/T5 adapters"); 13267 SLIST_INIT(&t4_list); 13268 callout_init(&fatal_callout, 1); 13269 #ifdef TCP_OFFLOAD 13270 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13271 #endif 13272 #ifdef INET6 13273 t4_clip_modload(); 13274 #endif 13275 #ifdef KERN_TLS 13276 t6_ktls_modload(); 13277 #endif 13278 t4_tracer_modload(); 13279 tweak_tunables(); 13280 vxlan_start_evtag = 13281 EVENTHANDLER_REGISTER(vxlan_start, 13282 t4_vxlan_start_handler, NULL, 13283 EVENTHANDLER_PRI_ANY); 13284 vxlan_stop_evtag = 13285 EVENTHANDLER_REGISTER(vxlan_stop, 13286 t4_vxlan_stop_handler, NULL, 13287 EVENTHANDLER_PRI_ANY); 13288 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13289 taskqueue_thread_enqueue, &reset_tq); 13290 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13291 "t4_rst_thr"); 13292 } 13293 sx_xunlock(&mlu); 13294 break; 13295 13296 case MOD_UNLOAD: 13297 sx_xlock(&mlu); 13298 if (--loaded == 0) { 13299 #ifdef TCP_OFFLOAD 13300 int i; 13301 #endif 13302 int tries; 13303 13304 taskqueue_free(reset_tq); 13305 13306 tries = 0; 13307 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13308 uprintf("%ju clusters with custom free routine " 13309 "still is use.\n", t4_sge_extfree_refs()); 13310 pause("t4unload", 2 * hz); 13311 } 13312 13313 sx_slock(&t4_list_lock); 13314 if (!SLIST_EMPTY(&t4_list)) { 13315 rc = EBUSY; 13316 sx_sunlock(&t4_list_lock); 13317 goto done_unload; 13318 } 13319 #ifdef TCP_OFFLOAD 13320 sx_slock(&t4_uld_list_lock); 13321 for (i = 0; i <= ULD_MAX; i++) { 13322 if (t4_uld_list[i] != NULL) { 13323 rc = EBUSY; 13324 sx_sunlock(&t4_uld_list_lock); 13325 sx_sunlock(&t4_list_lock); 13326 goto done_unload; 13327 } 13328 } 13329 sx_sunlock(&t4_uld_list_lock); 13330 #endif 13331 sx_sunlock(&t4_list_lock); 13332 13333 if (t4_sge_extfree_refs() == 0) { 13334 EVENTHANDLER_DEREGISTER(vxlan_start, 13335 vxlan_start_evtag); 13336 EVENTHANDLER_DEREGISTER(vxlan_stop, 13337 vxlan_stop_evtag); 13338 t4_tracer_modunload(); 13339 #ifdef KERN_TLS 13340 t6_ktls_modunload(); 13341 #endif 13342 #ifdef INET6 13343 t4_clip_modunload(); 13344 #endif 13345 #ifdef TCP_OFFLOAD 13346 sx_destroy(&t4_uld_list_lock); 13347 #endif 13348 sx_destroy(&t4_list_lock); 13349 t4_sge_modunload(); 13350 loaded = 0; 13351 } else { 13352 rc = EBUSY; 13353 loaded++; /* undo earlier decrement */ 13354 } 13355 } 13356 done_unload: 13357 sx_xunlock(&mlu); 13358 break; 13359 } 13360 13361 return (rc); 13362 } 13363 13364 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 13365 MODULE_VERSION(t4nex, 1); 13366 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13367 #ifdef DEV_NETMAP 13368 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13369 #endif /* DEV_NETMAP */ 13370 13371 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 13372 MODULE_VERSION(t5nex, 1); 13373 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13374 #ifdef DEV_NETMAP 13375 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13376 #endif /* DEV_NETMAP */ 13377 13378 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 13379 MODULE_VERSION(t6nex, 1); 13380 MODULE_DEPEND(t6nex, crypto, 1, 1, 1); 13381 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13382 #ifdef DEV_NETMAP 13383 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13384 #endif /* DEV_NETMAP */ 13385 13386 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 13387 MODULE_VERSION(cxgbe, 1); 13388 13389 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 13390 MODULE_VERSION(cxl, 1); 13391 13392 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 13393 MODULE_VERSION(cc, 1); 13394 13395 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 13396 MODULE_VERSION(vcxgbe, 1); 13397 13398 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 13399 MODULE_VERSION(vcxl, 1); 13400 13401 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 13402 MODULE_VERSION(vcc, 1); 13403