xref: /freebsd/sys/dev/cxgbe/t4_main.c (revision e3514747256465c52c3b2aedc9795f52c0d3efe9)
1 /*-
2  * Copyright (c) 2011 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_ddb.h"
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_rss.h"
35 
36 #include <sys/param.h>
37 #include <sys/conf.h>
38 #include <sys/priv.h>
39 #include <sys/kernel.h>
40 #include <sys/bus.h>
41 #include <sys/module.h>
42 #include <sys/malloc.h>
43 #include <sys/queue.h>
44 #include <sys/taskqueue.h>
45 #include <sys/pciio.h>
46 #include <dev/pci/pcireg.h>
47 #include <dev/pci/pcivar.h>
48 #include <dev/pci/pci_private.h>
49 #include <sys/firmware.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/if_vlan_var.h>
60 #ifdef RSS
61 #include <net/rss_config.h>
62 #endif
63 #if defined(__i386__) || defined(__amd64__)
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 #endif
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #include <ddb/db_lex.h>
70 #endif
71 
72 #include "common/common.h"
73 #include "common/t4_msg.h"
74 #include "common/t4_regs.h"
75 #include "common/t4_regs_values.h"
76 #include "t4_ioctl.h"
77 #include "t4_l2t.h"
78 #include "t4_mp_ring.h"
79 #include "t4_if.h"
80 
81 /* T4 bus driver interface */
82 static int t4_probe(device_t);
83 static int t4_attach(device_t);
84 static int t4_detach(device_t);
85 static int t4_ready(device_t);
86 static int t4_read_port_device(device_t, int, device_t *);
87 static device_method_t t4_methods[] = {
88 	DEVMETHOD(device_probe,		t4_probe),
89 	DEVMETHOD(device_attach,	t4_attach),
90 	DEVMETHOD(device_detach,	t4_detach),
91 
92 	DEVMETHOD(t4_is_main_ready,	t4_ready),
93 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
94 
95 	DEVMETHOD_END
96 };
97 static driver_t t4_driver = {
98 	"t4nex",
99 	t4_methods,
100 	sizeof(struct adapter)
101 };
102 
103 
104 /* T4 port (cxgbe) interface */
105 static int cxgbe_probe(device_t);
106 static int cxgbe_attach(device_t);
107 static int cxgbe_detach(device_t);
108 device_method_t cxgbe_methods[] = {
109 	DEVMETHOD(device_probe,		cxgbe_probe),
110 	DEVMETHOD(device_attach,	cxgbe_attach),
111 	DEVMETHOD(device_detach,	cxgbe_detach),
112 	{ 0, 0 }
113 };
114 static driver_t cxgbe_driver = {
115 	"cxgbe",
116 	cxgbe_methods,
117 	sizeof(struct port_info)
118 };
119 
120 /* T4 VI (vcxgbe) interface */
121 static int vcxgbe_probe(device_t);
122 static int vcxgbe_attach(device_t);
123 static int vcxgbe_detach(device_t);
124 static device_method_t vcxgbe_methods[] = {
125 	DEVMETHOD(device_probe,		vcxgbe_probe),
126 	DEVMETHOD(device_attach,	vcxgbe_attach),
127 	DEVMETHOD(device_detach,	vcxgbe_detach),
128 	{ 0, 0 }
129 };
130 static driver_t vcxgbe_driver = {
131 	"vcxgbe",
132 	vcxgbe_methods,
133 	sizeof(struct vi_info)
134 };
135 
136 static d_ioctl_t t4_ioctl;
137 
138 static struct cdevsw t4_cdevsw = {
139        .d_version = D_VERSION,
140        .d_ioctl = t4_ioctl,
141        .d_name = "t4nex",
142 };
143 
144 /* T5 bus driver interface */
145 static int t5_probe(device_t);
146 static device_method_t t5_methods[] = {
147 	DEVMETHOD(device_probe,		t5_probe),
148 	DEVMETHOD(device_attach,	t4_attach),
149 	DEVMETHOD(device_detach,	t4_detach),
150 
151 	DEVMETHOD(t4_is_main_ready,	t4_ready),
152 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
153 
154 	DEVMETHOD_END
155 };
156 static driver_t t5_driver = {
157 	"t5nex",
158 	t5_methods,
159 	sizeof(struct adapter)
160 };
161 
162 
163 /* T5 port (cxl) interface */
164 static driver_t cxl_driver = {
165 	"cxl",
166 	cxgbe_methods,
167 	sizeof(struct port_info)
168 };
169 
170 /* T5 VI (vcxl) interface */
171 static driver_t vcxl_driver = {
172 	"vcxl",
173 	vcxgbe_methods,
174 	sizeof(struct vi_info)
175 };
176 
177 /* T6 bus driver interface */
178 static int t6_probe(device_t);
179 static device_method_t t6_methods[] = {
180 	DEVMETHOD(device_probe,		t6_probe),
181 	DEVMETHOD(device_attach,	t4_attach),
182 	DEVMETHOD(device_detach,	t4_detach),
183 
184 	DEVMETHOD(t4_is_main_ready,	t4_ready),
185 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
186 
187 	DEVMETHOD_END
188 };
189 static driver_t t6_driver = {
190 	"t6nex",
191 	t6_methods,
192 	sizeof(struct adapter)
193 };
194 
195 
196 /* T6 port (cc) interface */
197 static driver_t cc_driver = {
198 	"cc",
199 	cxgbe_methods,
200 	sizeof(struct port_info)
201 };
202 
203 /* T6 VI (vcc) interface */
204 static driver_t vcc_driver = {
205 	"vcc",
206 	vcxgbe_methods,
207 	sizeof(struct vi_info)
208 };
209 
210 /* ifnet + media interface */
211 static void cxgbe_init(void *);
212 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
213 static int cxgbe_transmit(struct ifnet *, struct mbuf *);
214 static void cxgbe_qflush(struct ifnet *);
215 static int cxgbe_media_change(struct ifnet *);
216 static void cxgbe_media_status(struct ifnet *, struct ifmediareq *);
217 
218 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
219 
220 /*
221  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
222  * then ADAPTER_LOCK, then t4_uld_list_lock.
223  */
224 static struct sx t4_list_lock;
225 SLIST_HEAD(, adapter) t4_list;
226 #ifdef TCP_OFFLOAD
227 static struct sx t4_uld_list_lock;
228 SLIST_HEAD(, uld_info) t4_uld_list;
229 #endif
230 
231 /*
232  * Tunables.  See tweak_tunables() too.
233  *
234  * Each tunable is set to a default value here if it's known at compile-time.
235  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
236  * provide a reasonable default (upto n) when the driver is loaded.
237  *
238  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
239  * T5 are under hw.cxl.
240  */
241 
242 /*
243  * Number of queues for tx and rx, 10G and 1G, NIC and offload.
244  */
245 #define NTXQ_10G 16
246 int t4_ntxq10g = -NTXQ_10G;
247 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq10g);
248 
249 #define NRXQ_10G 8
250 int t4_nrxq10g = -NRXQ_10G;
251 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq10g);
252 
253 #define NTXQ_1G 4
254 int t4_ntxq1g = -NTXQ_1G;
255 TUNABLE_INT("hw.cxgbe.ntxq1g", &t4_ntxq1g);
256 
257 #define NRXQ_1G 2
258 int t4_nrxq1g = -NRXQ_1G;
259 TUNABLE_INT("hw.cxgbe.nrxq1g", &t4_nrxq1g);
260 
261 #define NTXQ_VI 1
262 static int t4_ntxq_vi = -NTXQ_VI;
263 TUNABLE_INT("hw.cxgbe.ntxq_vi", &t4_ntxq_vi);
264 
265 #define NRXQ_VI 1
266 static int t4_nrxq_vi = -NRXQ_VI;
267 TUNABLE_INT("hw.cxgbe.nrxq_vi", &t4_nrxq_vi);
268 
269 static int t4_rsrv_noflowq = 0;
270 TUNABLE_INT("hw.cxgbe.rsrv_noflowq", &t4_rsrv_noflowq);
271 
272 #ifdef TCP_OFFLOAD
273 #define NOFLDTXQ_10G 8
274 static int t4_nofldtxq10g = -NOFLDTXQ_10G;
275 TUNABLE_INT("hw.cxgbe.nofldtxq10g", &t4_nofldtxq10g);
276 
277 #define NOFLDRXQ_10G 2
278 static int t4_nofldrxq10g = -NOFLDRXQ_10G;
279 TUNABLE_INT("hw.cxgbe.nofldrxq10g", &t4_nofldrxq10g);
280 
281 #define NOFLDTXQ_1G 2
282 static int t4_nofldtxq1g = -NOFLDTXQ_1G;
283 TUNABLE_INT("hw.cxgbe.nofldtxq1g", &t4_nofldtxq1g);
284 
285 #define NOFLDRXQ_1G 1
286 static int t4_nofldrxq1g = -NOFLDRXQ_1G;
287 TUNABLE_INT("hw.cxgbe.nofldrxq1g", &t4_nofldrxq1g);
288 
289 #define NOFLDTXQ_VI 1
290 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
291 TUNABLE_INT("hw.cxgbe.nofldtxq_vi", &t4_nofldtxq_vi);
292 
293 #define NOFLDRXQ_VI 1
294 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
295 TUNABLE_INT("hw.cxgbe.nofldrxq_vi", &t4_nofldrxq_vi);
296 #endif
297 
298 #ifdef DEV_NETMAP
299 #define NNMTXQ_VI 2
300 static int t4_nnmtxq_vi = -NNMTXQ_VI;
301 TUNABLE_INT("hw.cxgbe.nnmtxq_vi", &t4_nnmtxq_vi);
302 
303 #define NNMRXQ_VI 2
304 static int t4_nnmrxq_vi = -NNMRXQ_VI;
305 TUNABLE_INT("hw.cxgbe.nnmrxq_vi", &t4_nnmrxq_vi);
306 #endif
307 
308 /*
309  * Holdoff parameters for 10G and 1G ports.
310  */
311 #define TMR_IDX_10G 1
312 int t4_tmr_idx_10g = TMR_IDX_10G;
313 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx_10g);
314 
315 #define PKTC_IDX_10G (-1)
316 int t4_pktc_idx_10g = PKTC_IDX_10G;
317 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx_10g);
318 
319 #define TMR_IDX_1G 1
320 int t4_tmr_idx_1g = TMR_IDX_1G;
321 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_1G", &t4_tmr_idx_1g);
322 
323 #define PKTC_IDX_1G (-1)
324 int t4_pktc_idx_1g = PKTC_IDX_1G;
325 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_1G", &t4_pktc_idx_1g);
326 
327 /*
328  * Size (# of entries) of each tx and rx queue.
329  */
330 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
331 TUNABLE_INT("hw.cxgbe.qsize_txq", &t4_qsize_txq);
332 
333 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
334 TUNABLE_INT("hw.cxgbe.qsize_rxq", &t4_qsize_rxq);
335 
336 /*
337  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
338  */
339 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
340 TUNABLE_INT("hw.cxgbe.interrupt_types", &t4_intr_types);
341 
342 /*
343  * Configuration file.
344  */
345 #define DEFAULT_CF	"default"
346 #define FLASH_CF	"flash"
347 #define UWIRE_CF	"uwire"
348 #define FPGA_CF		"fpga"
349 static char t4_cfg_file[32] = DEFAULT_CF;
350 TUNABLE_STR("hw.cxgbe.config_file", t4_cfg_file, sizeof(t4_cfg_file));
351 
352 /*
353  * PAUSE settings (bit 0, 1 = rx_pause, tx_pause respectively).
354  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
355  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
356  *            mark or when signalled to do so, 0 to never emit PAUSE.
357  */
358 static int t4_pause_settings = PAUSE_TX | PAUSE_RX;
359 TUNABLE_INT("hw.cxgbe.pause_settings", &t4_pause_settings);
360 
361 /*
362  * Forward Error Correction settings (bit 0, 1, 2 = FEC_RS, FEC_BASER_RS,
363  * FEC_RESERVED respectively).
364  * -1 to run with the firmware default.
365  *  0 to disable FEC.
366  */
367 static int t4_fec = -1;
368 TUNABLE_INT("hw.cxgbe.fec", &t4_fec);
369 
370 /*
371  * Link autonegotiation.
372  * -1 to run with the firmware default.
373  *  0 to disable.
374  *  1 to enable.
375  */
376 static int t4_autoneg = -1;
377 TUNABLE_INT("hw.cxgbe.autoneg", &t4_autoneg);
378 
379 /*
380  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
381  * encouraged respectively).
382  */
383 static unsigned int t4_fw_install = 1;
384 TUNABLE_INT("hw.cxgbe.fw_install", &t4_fw_install);
385 
386 /*
387  * ASIC features that will be used.  Disable the ones you don't want so that the
388  * chip resources aren't wasted on features that will not be used.
389  */
390 static int t4_nbmcaps_allowed = 0;
391 TUNABLE_INT("hw.cxgbe.nbmcaps_allowed", &t4_nbmcaps_allowed);
392 
393 static int t4_linkcaps_allowed = 0;	/* No DCBX, PPP, etc. by default */
394 TUNABLE_INT("hw.cxgbe.linkcaps_allowed", &t4_linkcaps_allowed);
395 
396 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
397     FW_CAPS_CONFIG_SWITCH_EGRESS;
398 TUNABLE_INT("hw.cxgbe.switchcaps_allowed", &t4_switchcaps_allowed);
399 
400 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC;
401 TUNABLE_INT("hw.cxgbe.niccaps_allowed", &t4_niccaps_allowed);
402 
403 static int t4_toecaps_allowed = -1;
404 TUNABLE_INT("hw.cxgbe.toecaps_allowed", &t4_toecaps_allowed);
405 
406 static int t4_rdmacaps_allowed = -1;
407 TUNABLE_INT("hw.cxgbe.rdmacaps_allowed", &t4_rdmacaps_allowed);
408 
409 static int t4_cryptocaps_allowed = 0;
410 TUNABLE_INT("hw.cxgbe.cryptocaps_allowed", &t4_cryptocaps_allowed);
411 
412 static int t4_iscsicaps_allowed = -1;
413 TUNABLE_INT("hw.cxgbe.iscsicaps_allowed", &t4_iscsicaps_allowed);
414 
415 static int t4_fcoecaps_allowed = 0;
416 TUNABLE_INT("hw.cxgbe.fcoecaps_allowed", &t4_fcoecaps_allowed);
417 
418 static int t5_write_combine = 0;
419 TUNABLE_INT("hw.cxl.write_combine", &t5_write_combine);
420 
421 static int t4_num_vis = 1;
422 TUNABLE_INT("hw.cxgbe.num_vis", &t4_num_vis);
423 
424 /* Functions used by extra VIs to obtain unique MAC addresses for each VI. */
425 static int vi_mac_funcs[] = {
426 	FW_VI_FUNC_OFLD,
427 	FW_VI_FUNC_IWARP,
428 	FW_VI_FUNC_OPENISCSI,
429 	FW_VI_FUNC_OPENFCOE,
430 	FW_VI_FUNC_FOISCSI,
431 	FW_VI_FUNC_FOFCOE,
432 };
433 
434 struct intrs_and_queues {
435 	uint16_t intr_type;	/* INTx, MSI, or MSI-X */
436 	uint16_t nirq;		/* Total # of vectors */
437 	uint16_t intr_flags_10g;/* Interrupt flags for each 10G port */
438 	uint16_t intr_flags_1g;	/* Interrupt flags for each 1G port */
439 	uint16_t ntxq10g;	/* # of NIC txq's for each 10G port */
440 	uint16_t nrxq10g;	/* # of NIC rxq's for each 10G port */
441 	uint16_t ntxq1g;	/* # of NIC txq's for each 1G port */
442 	uint16_t nrxq1g;	/* # of NIC rxq's for each 1G port */
443 	uint16_t rsrv_noflowq;	/* Flag whether to reserve queue 0 */
444 	uint16_t nofldtxq10g;	/* # of TOE txq's for each 10G port */
445 	uint16_t nofldrxq10g;	/* # of TOE rxq's for each 10G port */
446 	uint16_t nofldtxq1g;	/* # of TOE txq's for each 1G port */
447 	uint16_t nofldrxq1g;	/* # of TOE rxq's for each 1G port */
448 
449 	/* The vcxgbe/vcxl interfaces use these and not the ones above. */
450 	uint16_t ntxq_vi;	/* # of NIC txq's */
451 	uint16_t nrxq_vi;	/* # of NIC rxq's */
452 	uint16_t nofldtxq_vi;	/* # of TOE txq's */
453 	uint16_t nofldrxq_vi;	/* # of TOE rxq's */
454 	uint16_t nnmtxq_vi;	/* # of netmap txq's */
455 	uint16_t nnmrxq_vi;	/* # of netmap rxq's */
456 };
457 
458 struct filter_entry {
459         uint32_t valid:1;	/* filter allocated and valid */
460         uint32_t locked:1;	/* filter is administratively locked */
461         uint32_t pending:1;	/* filter action is pending firmware reply */
462 	uint32_t smtidx:8;	/* Source MAC Table index for smac */
463 	struct l2t_entry *l2t;	/* Layer Two Table entry for dmac */
464 
465         struct t4_filter_specification fs;
466 };
467 
468 static void setup_memwin(struct adapter *);
469 static void position_memwin(struct adapter *, int, uint32_t);
470 static int rw_via_memwin(struct adapter *, int, uint32_t, uint32_t *, int, int);
471 static inline int read_via_memwin(struct adapter *, int, uint32_t, uint32_t *,
472     int);
473 static inline int write_via_memwin(struct adapter *, int, uint32_t,
474     const uint32_t *, int);
475 static int validate_mem_range(struct adapter *, uint32_t, int);
476 static int fwmtype_to_hwmtype(int);
477 static int validate_mt_off_len(struct adapter *, int, uint32_t, int,
478     uint32_t *);
479 static int fixup_devlog_params(struct adapter *);
480 static int cfg_itype_and_nqueues(struct adapter *, int, int, int,
481     struct intrs_and_queues *);
482 static int prep_firmware(struct adapter *);
483 static int partition_resources(struct adapter *, const struct firmware *,
484     const char *);
485 static int get_params__pre_init(struct adapter *);
486 static int get_params__post_init(struct adapter *);
487 static int set_params__post_init(struct adapter *);
488 static void t4_set_desc(struct adapter *);
489 static void build_medialist(struct port_info *, struct ifmedia *);
490 static int cxgbe_init_synchronized(struct vi_info *);
491 static int cxgbe_uninit_synchronized(struct vi_info *);
492 static void quiesce_txq(struct adapter *, struct sge_txq *);
493 static void quiesce_wrq(struct adapter *, struct sge_wrq *);
494 static void quiesce_iq(struct adapter *, struct sge_iq *);
495 static void quiesce_fl(struct adapter *, struct sge_fl *);
496 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
497     driver_intr_t *, void *, char *);
498 static int t4_free_irq(struct adapter *, struct irq *);
499 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
500 static void vi_refresh_stats(struct adapter *, struct vi_info *);
501 static void cxgbe_refresh_stats(struct adapter *, struct port_info *);
502 static void cxgbe_tick(void *);
503 static void cxgbe_vlan_config(void *, struct ifnet *, uint16_t);
504 static void cxgbe_sysctls(struct port_info *);
505 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
506 static int sysctl_bitfield(SYSCTL_HANDLER_ARGS);
507 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
508 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
509 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
510 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
511 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
512 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
513 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
514 static int sysctl_fec(SYSCTL_HANDLER_ARGS);
515 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
516 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
517 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
518 #ifdef SBUF_DRAIN
519 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
520 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
521 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
522 static int sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS);
523 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
524 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
525 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
526 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
527 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
528 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
529 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
530 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
531 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
532 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
533 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
534 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
535 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
536 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
537 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
538 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
539 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
540 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
541 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
542 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
543 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
544 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
545 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
546 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
547 static int sysctl_tc_params(SYSCTL_HANDLER_ARGS);
548 #endif
549 #ifdef TCP_OFFLOAD
550 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
551 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
552 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
553 #endif
554 static uint32_t fconf_iconf_to_mode(uint32_t, uint32_t);
555 static uint32_t mode_to_fconf(uint32_t);
556 static uint32_t mode_to_iconf(uint32_t);
557 static int check_fspec_against_fconf_iconf(struct adapter *,
558     struct t4_filter_specification *);
559 static int get_filter_mode(struct adapter *, uint32_t *);
560 static int set_filter_mode(struct adapter *, uint32_t);
561 static inline uint64_t get_filter_hits(struct adapter *, uint32_t);
562 static int get_filter(struct adapter *, struct t4_filter *);
563 static int set_filter(struct adapter *, struct t4_filter *);
564 static int del_filter(struct adapter *, struct t4_filter *);
565 static void clear_filter(struct filter_entry *);
566 static int set_filter_wr(struct adapter *, int);
567 static int del_filter_wr(struct adapter *, int);
568 static int set_tcb_rpl(struct sge_iq *, const struct rss_header *,
569     struct mbuf *);
570 static int get_sge_context(struct adapter *, struct t4_sge_context *);
571 static int load_fw(struct adapter *, struct t4_data *);
572 static int load_cfg(struct adapter *, struct t4_data *);
573 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
574 static int read_i2c(struct adapter *, struct t4_i2c_data *);
575 #ifdef TCP_OFFLOAD
576 static int toe_capability(struct vi_info *, int);
577 #endif
578 static int mod_event(module_t, int, void *);
579 static int notify_siblings(device_t, int);
580 
581 struct {
582 	uint16_t device;
583 	char *desc;
584 } t4_pciids[] = {
585 	{0xa000, "Chelsio Terminator 4 FPGA"},
586 	{0x4400, "Chelsio T440-dbg"},
587 	{0x4401, "Chelsio T420-CR"},
588 	{0x4402, "Chelsio T422-CR"},
589 	{0x4403, "Chelsio T440-CR"},
590 	{0x4404, "Chelsio T420-BCH"},
591 	{0x4405, "Chelsio T440-BCH"},
592 	{0x4406, "Chelsio T440-CH"},
593 	{0x4407, "Chelsio T420-SO"},
594 	{0x4408, "Chelsio T420-CX"},
595 	{0x4409, "Chelsio T420-BT"},
596 	{0x440a, "Chelsio T404-BT"},
597 	{0x440e, "Chelsio T440-LP-CR"},
598 }, t5_pciids[] = {
599 	{0xb000, "Chelsio Terminator 5 FPGA"},
600 	{0x5400, "Chelsio T580-dbg"},
601 	{0x5401,  "Chelsio T520-CR"},		/* 2 x 10G */
602 	{0x5402,  "Chelsio T522-CR"},		/* 2 x 10G, 2 X 1G */
603 	{0x5403,  "Chelsio T540-CR"},		/* 4 x 10G */
604 	{0x5407,  "Chelsio T520-SO"},		/* 2 x 10G, nomem */
605 	{0x5409,  "Chelsio T520-BT"},		/* 2 x 10GBaseT */
606 	{0x540a,  "Chelsio T504-BT"},		/* 4 x 1G */
607 	{0x540d,  "Chelsio T580-CR"},		/* 2 x 40G */
608 	{0x540e,  "Chelsio T540-LP-CR"},	/* 4 x 10G */
609 	{0x5410,  "Chelsio T580-LP-CR"},	/* 2 x 40G */
610 	{0x5411,  "Chelsio T520-LL-CR"},	/* 2 x 10G */
611 	{0x5412,  "Chelsio T560-CR"},		/* 1 x 40G, 2 x 10G */
612 	{0x5414,  "Chelsio T580-LP-SO-CR"},	/* 2 x 40G, nomem */
613 	{0x5415,  "Chelsio T502-BT"},		/* 2 x 1G */
614 #ifdef notyet
615 	{0x5404,  "Chelsio T520-BCH"},
616 	{0x5405,  "Chelsio T540-BCH"},
617 	{0x5406,  "Chelsio T540-CH"},
618 	{0x5408,  "Chelsio T520-CX"},
619 	{0x540b,  "Chelsio B520-SR"},
620 	{0x540c,  "Chelsio B504-BT"},
621 	{0x540f,  "Chelsio Amsterdam"},
622 	{0x5413,  "Chelsio T580-CHR"},
623 #endif
624 }, t6_pciids[] = {
625 	{0xc006, "Chelsio Terminator 6 FPGA"},	/* T6 PE10K6 FPGA (PF0) */
626 	{0x6400, "Chelsio T6225-DBG"},		/* 2 x 10/25G, debug */
627 	{0x6401, "Chelsio T6225-CR"},		/* 2 x 10/25G */
628 	{0x6402, "Chelsio T6225-SO-CR"},	/* 2 x 10/25G, nomem */
629 	{0x6407, "Chelsio T62100-LP-CR"},	/* 2 x 40/50/100G */
630 	{0x6408, "Chelsio T62100-SO-CR"},	/* 2 x 40/50/100G, nomem */
631 	{0x640d, "Chelsio T62100-CR"},		/* 2 x 40/50/100G */
632 	{0x6410, "Chelsio T62100-DBG"},		/* 2 x 40/50/100G, debug */
633 };
634 
635 #ifdef TCP_OFFLOAD
636 /*
637  * service_iq() has an iq and needs the fl.  Offset of fl from the iq should be
638  * exactly the same for both rxq and ofld_rxq.
639  */
640 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
641 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
642 #endif
643 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
644 
645 static int
646 t4_probe(device_t dev)
647 {
648 	int i;
649 	uint16_t v = pci_get_vendor(dev);
650 	uint16_t d = pci_get_device(dev);
651 	uint8_t f = pci_get_function(dev);
652 
653 	if (v != PCI_VENDOR_ID_CHELSIO)
654 		return (ENXIO);
655 
656 	/* Attach only to PF0 of the FPGA */
657 	if (d == 0xa000 && f != 0)
658 		return (ENXIO);
659 
660 	for (i = 0; i < nitems(t4_pciids); i++) {
661 		if (d == t4_pciids[i].device) {
662 			device_set_desc(dev, t4_pciids[i].desc);
663 			return (BUS_PROBE_DEFAULT);
664 		}
665 	}
666 
667 	return (ENXIO);
668 }
669 
670 static int
671 t5_probe(device_t dev)
672 {
673 	int i;
674 	uint16_t v = pci_get_vendor(dev);
675 	uint16_t d = pci_get_device(dev);
676 	uint8_t f = pci_get_function(dev);
677 
678 	if (v != PCI_VENDOR_ID_CHELSIO)
679 		return (ENXIO);
680 
681 	/* Attach only to PF0 of the FPGA */
682 	if (d == 0xb000 && f != 0)
683 		return (ENXIO);
684 
685 	for (i = 0; i < nitems(t5_pciids); i++) {
686 		if (d == t5_pciids[i].device) {
687 			device_set_desc(dev, t5_pciids[i].desc);
688 			return (BUS_PROBE_DEFAULT);
689 		}
690 	}
691 
692 	return (ENXIO);
693 }
694 
695 static int
696 t6_probe(device_t dev)
697 {
698 	int i;
699 	uint16_t v = pci_get_vendor(dev);
700 	uint16_t d = pci_get_device(dev);
701 
702 	if (v != PCI_VENDOR_ID_CHELSIO)
703 		return (ENXIO);
704 
705 	for (i = 0; i < nitems(t6_pciids); i++) {
706 		if (d == t6_pciids[i].device) {
707 			device_set_desc(dev, t6_pciids[i].desc);
708 			return (BUS_PROBE_DEFAULT);
709 		}
710 	}
711 
712 	return (ENXIO);
713 }
714 
715 static void
716 t5_attribute_workaround(device_t dev)
717 {
718 	device_t root_port;
719 	uint32_t v;
720 
721 	/*
722 	 * The T5 chips do not properly echo the No Snoop and Relaxed
723 	 * Ordering attributes when replying to a TLP from a Root
724 	 * Port.  As a workaround, find the parent Root Port and
725 	 * disable No Snoop and Relaxed Ordering.  Note that this
726 	 * affects all devices under this root port.
727 	 */
728 	root_port = pci_find_pcie_root_port(dev);
729 	if (root_port == NULL) {
730 		device_printf(dev, "Unable to find parent root port\n");
731 		return;
732 	}
733 
734 	v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
735 	    PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
736 	if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
737 	    0)
738 		device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
739 		    device_get_nameunit(root_port));
740 }
741 
742 static const struct devnames devnames[] = {
743 	{
744 		.nexus_name = "t4nex",
745 		.ifnet_name = "cxgbe",
746 		.vi_ifnet_name = "vcxgbe",
747 		.pf03_drv_name = "t4iov",
748 		.vf_nexus_name = "t4vf",
749 		.vf_ifnet_name = "cxgbev"
750 	}, {
751 		.nexus_name = "t5nex",
752 		.ifnet_name = "cxl",
753 		.vi_ifnet_name = "vcxl",
754 		.pf03_drv_name = "t5iov",
755 		.vf_nexus_name = "t5vf",
756 		.vf_ifnet_name = "cxlv"
757 	}, {
758 		.nexus_name = "t6nex",
759 		.ifnet_name = "cc",
760 		.vi_ifnet_name = "vcc",
761 		.pf03_drv_name = "t6iov",
762 		.vf_nexus_name = "t6vf",
763 		.vf_ifnet_name = "ccv"
764 	}
765 };
766 
767 void
768 t4_init_devnames(struct adapter *sc)
769 {
770 	int id;
771 
772 	id = chip_id(sc);
773 	if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
774 		sc->names = &devnames[id - CHELSIO_T4];
775 	else {
776 		device_printf(sc->dev, "chip id %d is not supported.\n", id);
777 		sc->names = NULL;
778 	}
779 }
780 
781 static int
782 t4_attach(device_t dev)
783 {
784 	struct adapter *sc;
785 	int rc = 0, i, j, n10g, n1g, rqidx, tqidx;
786 	struct make_dev_args mda;
787 	struct intrs_and_queues iaq;
788 	struct sge *s;
789 	uint8_t *buf;
790 #ifdef TCP_OFFLOAD
791 	int ofld_rqidx, ofld_tqidx;
792 #endif
793 #ifdef DEV_NETMAP
794 	int nm_rqidx, nm_tqidx;
795 #endif
796 	int num_vis;
797 
798 	sc = device_get_softc(dev);
799 	sc->dev = dev;
800 	TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
801 
802 	if ((pci_get_device(dev) & 0xff00) == 0x5400)
803 		t5_attribute_workaround(dev);
804 	pci_enable_busmaster(dev);
805 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
806 		uint32_t v;
807 
808 		pci_set_max_read_req(dev, 4096);
809 		v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
810 		v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
811 		pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
812 
813 		sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
814 	}
815 
816 	sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
817 	sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
818 	sc->traceq = -1;
819 	mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
820 	snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
821 	    device_get_nameunit(dev));
822 
823 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
824 	    device_get_nameunit(dev));
825 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
826 	t4_add_adapter(sc);
827 
828 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
829 	TAILQ_INIT(&sc->sfl);
830 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
831 
832 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
833 
834 	rc = t4_map_bars_0_and_4(sc);
835 	if (rc != 0)
836 		goto done; /* error message displayed already */
837 
838 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
839 
840 	/* Prepare the adapter for operation. */
841 	buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
842 	rc = -t4_prep_adapter(sc, buf);
843 	free(buf, M_CXGBE);
844 	if (rc != 0) {
845 		device_printf(dev, "failed to prepare adapter: %d.\n", rc);
846 		goto done;
847 	}
848 
849 	/*
850 	 * This is the real PF# to which we're attaching.  Works from within PCI
851 	 * passthrough environments too, where pci_get_function() could return a
852 	 * different PF# depending on the passthrough configuration.  We need to
853 	 * use the real PF# in all our communication with the firmware.
854 	 */
855 	j = t4_read_reg(sc, A_PL_WHOAMI);
856 	sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
857 	sc->mbox = sc->pf;
858 
859 	t4_init_devnames(sc);
860 	if (sc->names == NULL) {
861 		rc = ENOTSUP;
862 		goto done; /* error message displayed already */
863 	}
864 
865 	/*
866 	 * Do this really early, with the memory windows set up even before the
867 	 * character device.  The userland tool's register i/o and mem read
868 	 * will work even in "recovery mode".
869 	 */
870 	setup_memwin(sc);
871 	if (t4_init_devlog_params(sc, 0) == 0)
872 		fixup_devlog_params(sc);
873 	make_dev_args_init(&mda);
874 	mda.mda_devsw = &t4_cdevsw;
875 	mda.mda_uid = UID_ROOT;
876 	mda.mda_gid = GID_WHEEL;
877 	mda.mda_mode = 0600;
878 	mda.mda_si_drv1 = sc;
879 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
880 	if (rc != 0)
881 		device_printf(dev, "failed to create nexus char device: %d.\n",
882 		    rc);
883 
884 	/* Go no further if recovery mode has been requested. */
885 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
886 		device_printf(dev, "recovery mode.\n");
887 		goto done;
888 	}
889 
890 #if defined(__i386__)
891 	if ((cpu_feature & CPUID_CX8) == 0) {
892 		device_printf(dev, "64 bit atomics not available.\n");
893 		rc = ENOTSUP;
894 		goto done;
895 	}
896 #endif
897 
898 	/* Prepare the firmware for operation */
899 	rc = prep_firmware(sc);
900 	if (rc != 0)
901 		goto done; /* error message displayed already */
902 
903 	rc = get_params__post_init(sc);
904 	if (rc != 0)
905 		goto done; /* error message displayed already */
906 
907 	rc = set_params__post_init(sc);
908 	if (rc != 0)
909 		goto done; /* error message displayed already */
910 
911 	rc = t4_map_bar_2(sc);
912 	if (rc != 0)
913 		goto done; /* error message displayed already */
914 
915 	rc = t4_create_dma_tag(sc);
916 	if (rc != 0)
917 		goto done; /* error message displayed already */
918 
919 	/*
920 	 * Number of VIs to create per-port.  The first VI is the "main" regular
921 	 * VI for the port.  The rest are additional virtual interfaces on the
922 	 * same physical port.  Note that the main VI does not have native
923 	 * netmap support but the extra VIs do.
924 	 *
925 	 * Limit the number of VIs per port to the number of available
926 	 * MAC addresses per port.
927 	 */
928 	if (t4_num_vis >= 1)
929 		num_vis = t4_num_vis;
930 	else
931 		num_vis = 1;
932 	if (num_vis > nitems(vi_mac_funcs)) {
933 		num_vis = nitems(vi_mac_funcs);
934 		device_printf(dev, "Number of VIs limited to %d\n", num_vis);
935 	}
936 
937 	/*
938 	 * First pass over all the ports - allocate VIs and initialize some
939 	 * basic parameters like mac address, port type, etc.  We also figure
940 	 * out whether a port is 10G or 1G and use that information when
941 	 * calculating how many interrupts to attempt to allocate.
942 	 */
943 	n10g = n1g = 0;
944 	for_each_port(sc, i) {
945 		struct port_info *pi;
946 		struct link_config *lc;
947 
948 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
949 		sc->port[i] = pi;
950 
951 		/* These must be set before t4_port_init */
952 		pi->adapter = sc;
953 		pi->port_id = i;
954 		/*
955 		 * XXX: vi[0] is special so we can't delay this allocation until
956 		 * pi->nvi's final value is known.
957 		 */
958 		pi->vi = malloc(sizeof(struct vi_info) * num_vis, M_CXGBE,
959 		    M_ZERO | M_WAITOK);
960 
961 		/*
962 		 * Allocate the "main" VI and initialize parameters
963 		 * like mac addr.
964 		 */
965 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
966 		if (rc != 0) {
967 			device_printf(dev, "unable to initialize port %d: %d\n",
968 			    i, rc);
969 			free(pi->vi, M_CXGBE);
970 			free(pi, M_CXGBE);
971 			sc->port[i] = NULL;
972 			goto done;
973 		}
974 
975 		lc = &pi->link_cfg;
976 		lc->requested_fc &= ~(PAUSE_TX | PAUSE_RX);
977 		lc->requested_fc |= t4_pause_settings;
978 		if (t4_fec != -1) {
979 			lc->requested_fec = t4_fec &
980 			    G_FW_PORT_CAP_FEC(lc->supported);
981 		}
982 		if (lc->supported & FW_PORT_CAP_ANEG && t4_autoneg != -1) {
983 			lc->autoneg = t4_autoneg ? AUTONEG_ENABLE :
984 			    AUTONEG_DISABLE;
985 		}
986 
987 		rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
988 		if (rc != 0) {
989 			device_printf(dev, "port %d l1cfg failed: %d\n", i, rc);
990 			free(pi->vi, M_CXGBE);
991 			free(pi, M_CXGBE);
992 			sc->port[i] = NULL;
993 			goto done;
994 		}
995 
996 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
997 		    device_get_nameunit(dev), i);
998 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
999 		sc->chan_map[pi->tx_chan] = i;
1000 
1001 		if (port_top_speed(pi) >= 10) {
1002 			n10g++;
1003 		} else {
1004 			n1g++;
1005 		}
1006 
1007 		pi->dev = device_add_child(dev, sc->names->ifnet_name, -1);
1008 		if (pi->dev == NULL) {
1009 			device_printf(dev,
1010 			    "failed to add device for port %d.\n", i);
1011 			rc = ENXIO;
1012 			goto done;
1013 		}
1014 		pi->vi[0].dev = pi->dev;
1015 		device_set_softc(pi->dev, pi);
1016 	}
1017 
1018 	/*
1019 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1020 	 */
1021 	rc = cfg_itype_and_nqueues(sc, n10g, n1g, num_vis, &iaq);
1022 	if (rc != 0)
1023 		goto done; /* error message displayed already */
1024 	if (iaq.nrxq_vi + iaq.nofldrxq_vi + iaq.nnmrxq_vi == 0)
1025 		num_vis = 1;
1026 
1027 	sc->intr_type = iaq.intr_type;
1028 	sc->intr_count = iaq.nirq;
1029 
1030 	s = &sc->sge;
1031 	s->nrxq = n10g * iaq.nrxq10g + n1g * iaq.nrxq1g;
1032 	s->ntxq = n10g * iaq.ntxq10g + n1g * iaq.ntxq1g;
1033 	if (num_vis > 1) {
1034 		s->nrxq += (n10g + n1g) * (num_vis - 1) * iaq.nrxq_vi;
1035 		s->ntxq += (n10g + n1g) * (num_vis - 1) * iaq.ntxq_vi;
1036 	}
1037 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
1038 	s->neq += sc->params.nports + 1;/* ctrl queues: 1 per port + 1 mgmt */
1039 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
1040 #ifdef TCP_OFFLOAD
1041 	if (is_offload(sc)) {
1042 		s->nofldrxq = n10g * iaq.nofldrxq10g + n1g * iaq.nofldrxq1g;
1043 		s->nofldtxq = n10g * iaq.nofldtxq10g + n1g * iaq.nofldtxq1g;
1044 		if (num_vis > 1) {
1045 			s->nofldrxq += (n10g + n1g) * (num_vis - 1) *
1046 			    iaq.nofldrxq_vi;
1047 			s->nofldtxq += (n10g + n1g) * (num_vis - 1) *
1048 			    iaq.nofldtxq_vi;
1049 		}
1050 		s->neq += s->nofldtxq + s->nofldrxq;
1051 		s->niq += s->nofldrxq;
1052 
1053 		s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1054 		    M_CXGBE, M_ZERO | M_WAITOK);
1055 		s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq),
1056 		    M_CXGBE, M_ZERO | M_WAITOK);
1057 	}
1058 #endif
1059 #ifdef DEV_NETMAP
1060 	if (num_vis > 1) {
1061 		s->nnmrxq = (n10g + n1g) * (num_vis - 1) * iaq.nnmrxq_vi;
1062 		s->nnmtxq = (n10g + n1g) * (num_vis - 1) * iaq.nnmtxq_vi;
1063 	}
1064 	s->neq += s->nnmtxq + s->nnmrxq;
1065 	s->niq += s->nnmrxq;
1066 
1067 	s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1068 	    M_CXGBE, M_ZERO | M_WAITOK);
1069 	s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1070 	    M_CXGBE, M_ZERO | M_WAITOK);
1071 #endif
1072 
1073 	s->ctrlq = malloc(sc->params.nports * sizeof(struct sge_wrq), M_CXGBE,
1074 	    M_ZERO | M_WAITOK);
1075 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1076 	    M_ZERO | M_WAITOK);
1077 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1078 	    M_ZERO | M_WAITOK);
1079 	s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
1080 	    M_ZERO | M_WAITOK);
1081 	s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
1082 	    M_ZERO | M_WAITOK);
1083 
1084 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1085 	    M_ZERO | M_WAITOK);
1086 
1087 	t4_init_l2t(sc, M_WAITOK);
1088 	t4_init_tx_sched(sc);
1089 
1090 	/*
1091 	 * Second pass over the ports.  This time we know the number of rx and
1092 	 * tx queues that each port should get.
1093 	 */
1094 	rqidx = tqidx = 0;
1095 #ifdef TCP_OFFLOAD
1096 	ofld_rqidx = ofld_tqidx = 0;
1097 #endif
1098 #ifdef DEV_NETMAP
1099 	nm_rqidx = nm_tqidx = 0;
1100 #endif
1101 	for_each_port(sc, i) {
1102 		struct port_info *pi = sc->port[i];
1103 		struct vi_info *vi;
1104 
1105 		if (pi == NULL)
1106 			continue;
1107 
1108 		pi->nvi = num_vis;
1109 		for_each_vi(pi, j, vi) {
1110 			vi->pi = pi;
1111 			vi->qsize_rxq = t4_qsize_rxq;
1112 			vi->qsize_txq = t4_qsize_txq;
1113 
1114 			vi->first_rxq = rqidx;
1115 			vi->first_txq = tqidx;
1116 			if (port_top_speed(pi) >= 10) {
1117 				vi->tmr_idx = t4_tmr_idx_10g;
1118 				vi->pktc_idx = t4_pktc_idx_10g;
1119 				vi->flags |= iaq.intr_flags_10g & INTR_RXQ;
1120 				vi->nrxq = j == 0 ? iaq.nrxq10g : iaq.nrxq_vi;
1121 				vi->ntxq = j == 0 ? iaq.ntxq10g : iaq.ntxq_vi;
1122 			} else {
1123 				vi->tmr_idx = t4_tmr_idx_1g;
1124 				vi->pktc_idx = t4_pktc_idx_1g;
1125 				vi->flags |= iaq.intr_flags_1g & INTR_RXQ;
1126 				vi->nrxq = j == 0 ? iaq.nrxq1g : iaq.nrxq_vi;
1127 				vi->ntxq = j == 0 ? iaq.ntxq1g : iaq.ntxq_vi;
1128 			}
1129 			rqidx += vi->nrxq;
1130 			tqidx += vi->ntxq;
1131 
1132 			if (j == 0 && vi->ntxq > 1)
1133 				vi->rsrv_noflowq = iaq.rsrv_noflowq ? 1 : 0;
1134 			else
1135 				vi->rsrv_noflowq = 0;
1136 
1137 #ifdef TCP_OFFLOAD
1138 			vi->first_ofld_rxq = ofld_rqidx;
1139 			vi->first_ofld_txq = ofld_tqidx;
1140 			if (port_top_speed(pi) >= 10) {
1141 				vi->flags |= iaq.intr_flags_10g & INTR_OFLD_RXQ;
1142 				vi->nofldrxq = j == 0 ? iaq.nofldrxq10g :
1143 				    iaq.nofldrxq_vi;
1144 				vi->nofldtxq = j == 0 ? iaq.nofldtxq10g :
1145 				    iaq.nofldtxq_vi;
1146 			} else {
1147 				vi->flags |= iaq.intr_flags_1g & INTR_OFLD_RXQ;
1148 				vi->nofldrxq = j == 0 ? iaq.nofldrxq1g :
1149 				    iaq.nofldrxq_vi;
1150 				vi->nofldtxq = j == 0 ? iaq.nofldtxq1g :
1151 				    iaq.nofldtxq_vi;
1152 			}
1153 			ofld_rqidx += vi->nofldrxq;
1154 			ofld_tqidx += vi->nofldtxq;
1155 #endif
1156 #ifdef DEV_NETMAP
1157 			if (j > 0) {
1158 				vi->first_nm_rxq = nm_rqidx;
1159 				vi->first_nm_txq = nm_tqidx;
1160 				vi->nnmrxq = iaq.nnmrxq_vi;
1161 				vi->nnmtxq = iaq.nnmtxq_vi;
1162 				nm_rqidx += vi->nnmrxq;
1163 				nm_tqidx += vi->nnmtxq;
1164 			}
1165 #endif
1166 		}
1167 	}
1168 
1169 	rc = t4_setup_intr_handlers(sc);
1170 	if (rc != 0) {
1171 		device_printf(dev,
1172 		    "failed to setup interrupt handlers: %d\n", rc);
1173 		goto done;
1174 	}
1175 
1176 	rc = bus_generic_attach(dev);
1177 	if (rc != 0) {
1178 		device_printf(dev,
1179 		    "failed to attach all child ports: %d\n", rc);
1180 		goto done;
1181 	}
1182 
1183 	device_printf(dev,
1184 	    "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1185 	    sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1186 	    sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1187 	    (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1188 	    sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1189 
1190 	t4_set_desc(sc);
1191 
1192 	notify_siblings(dev, 0);
1193 
1194 done:
1195 	if (rc != 0 && sc->cdev) {
1196 		/* cdev was created and so cxgbetool works; recover that way. */
1197 		device_printf(dev,
1198 		    "error during attach, adapter is now in recovery mode.\n");
1199 		rc = 0;
1200 	}
1201 
1202 	if (rc != 0)
1203 		t4_detach_common(dev);
1204 	else
1205 		t4_sysctls(sc);
1206 
1207 	return (rc);
1208 }
1209 
1210 static int
1211 t4_ready(device_t dev)
1212 {
1213 	struct adapter *sc;
1214 
1215 	sc = device_get_softc(dev);
1216 	if (sc->flags & FW_OK)
1217 		return (0);
1218 	return (ENXIO);
1219 }
1220 
1221 static int
1222 t4_read_port_device(device_t dev, int port, device_t *child)
1223 {
1224 	struct adapter *sc;
1225 	struct port_info *pi;
1226 
1227 	sc = device_get_softc(dev);
1228 	if (port < 0 || port >= MAX_NPORTS)
1229 		return (EINVAL);
1230 	pi = sc->port[port];
1231 	if (pi == NULL || pi->dev == NULL)
1232 		return (ENXIO);
1233 	*child = pi->dev;
1234 	return (0);
1235 }
1236 
1237 static int
1238 notify_siblings(device_t dev, int detaching)
1239 {
1240 	device_t sibling;
1241 	int error, i;
1242 
1243 	error = 0;
1244 	for (i = 0; i < PCI_FUNCMAX; i++) {
1245 		if (i == pci_get_function(dev))
1246 			continue;
1247 		sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1248 		    pci_get_slot(dev), i);
1249 		if (sibling == NULL || !device_is_attached(sibling))
1250 			continue;
1251 		if (detaching)
1252 			error = T4_DETACH_CHILD(sibling);
1253 		else
1254 			(void)T4_ATTACH_CHILD(sibling);
1255 		if (error)
1256 			break;
1257 	}
1258 	return (error);
1259 }
1260 
1261 /*
1262  * Idempotent
1263  */
1264 static int
1265 t4_detach(device_t dev)
1266 {
1267 	struct adapter *sc;
1268 	int rc;
1269 
1270 	sc = device_get_softc(dev);
1271 
1272 	rc = notify_siblings(dev, 1);
1273 	if (rc) {
1274 		device_printf(dev,
1275 		    "failed to detach sibling devices: %d\n", rc);
1276 		return (rc);
1277 	}
1278 
1279 	return (t4_detach_common(dev));
1280 }
1281 
1282 int
1283 t4_detach_common(device_t dev)
1284 {
1285 	struct adapter *sc;
1286 	struct port_info *pi;
1287 	int i, rc;
1288 
1289 	sc = device_get_softc(dev);
1290 
1291 	if (sc->flags & FULL_INIT_DONE) {
1292 		if (!(sc->flags & IS_VF))
1293 			t4_intr_disable(sc);
1294 	}
1295 
1296 	if (sc->cdev) {
1297 		destroy_dev(sc->cdev);
1298 		sc->cdev = NULL;
1299 	}
1300 
1301 	if (device_is_attached(dev)) {
1302 		rc = bus_generic_detach(dev);
1303 		if (rc) {
1304 			device_printf(dev,
1305 			    "failed to detach child devices: %d\n", rc);
1306 			return (rc);
1307 		}
1308 	}
1309 
1310 	for (i = 0; i < sc->intr_count; i++)
1311 		t4_free_irq(sc, &sc->irq[i]);
1312 
1313 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1314 		t4_free_tx_sched(sc);
1315 
1316 	for (i = 0; i < MAX_NPORTS; i++) {
1317 		pi = sc->port[i];
1318 		if (pi) {
1319 			t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1320 			if (pi->dev)
1321 				device_delete_child(dev, pi->dev);
1322 
1323 			mtx_destroy(&pi->pi_lock);
1324 			free(pi->vi, M_CXGBE);
1325 			free(pi, M_CXGBE);
1326 		}
1327 	}
1328 
1329 	if (sc->flags & FULL_INIT_DONE)
1330 		adapter_full_uninit(sc);
1331 
1332 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1333 		t4_fw_bye(sc, sc->mbox);
1334 
1335 	if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1336 		pci_release_msi(dev);
1337 
1338 	if (sc->regs_res)
1339 		bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1340 		    sc->regs_res);
1341 
1342 	if (sc->udbs_res)
1343 		bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1344 		    sc->udbs_res);
1345 
1346 	if (sc->msix_res)
1347 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1348 		    sc->msix_res);
1349 
1350 	if (sc->l2t)
1351 		t4_free_l2t(sc->l2t);
1352 
1353 #ifdef TCP_OFFLOAD
1354 	free(sc->sge.ofld_rxq, M_CXGBE);
1355 	free(sc->sge.ofld_txq, M_CXGBE);
1356 #endif
1357 #ifdef DEV_NETMAP
1358 	free(sc->sge.nm_rxq, M_CXGBE);
1359 	free(sc->sge.nm_txq, M_CXGBE);
1360 #endif
1361 	free(sc->irq, M_CXGBE);
1362 	free(sc->sge.rxq, M_CXGBE);
1363 	free(sc->sge.txq, M_CXGBE);
1364 	free(sc->sge.ctrlq, M_CXGBE);
1365 	free(sc->sge.iqmap, M_CXGBE);
1366 	free(sc->sge.eqmap, M_CXGBE);
1367 	free(sc->tids.ftid_tab, M_CXGBE);
1368 	t4_destroy_dma_tag(sc);
1369 	if (mtx_initialized(&sc->sc_lock)) {
1370 		sx_xlock(&t4_list_lock);
1371 		SLIST_REMOVE(&t4_list, sc, adapter, link);
1372 		sx_xunlock(&t4_list_lock);
1373 		mtx_destroy(&sc->sc_lock);
1374 	}
1375 
1376 	callout_drain(&sc->sfl_callout);
1377 	if (mtx_initialized(&sc->tids.ftid_lock))
1378 		mtx_destroy(&sc->tids.ftid_lock);
1379 	if (mtx_initialized(&sc->sfl_lock))
1380 		mtx_destroy(&sc->sfl_lock);
1381 	if (mtx_initialized(&sc->ifp_lock))
1382 		mtx_destroy(&sc->ifp_lock);
1383 	if (mtx_initialized(&sc->reg_lock))
1384 		mtx_destroy(&sc->reg_lock);
1385 
1386 	for (i = 0; i < NUM_MEMWIN; i++) {
1387 		struct memwin *mw = &sc->memwin[i];
1388 
1389 		if (rw_initialized(&mw->mw_lock))
1390 			rw_destroy(&mw->mw_lock);
1391 	}
1392 
1393 	bzero(sc, sizeof(*sc));
1394 
1395 	return (0);
1396 }
1397 
1398 static int
1399 cxgbe_probe(device_t dev)
1400 {
1401 	char buf[128];
1402 	struct port_info *pi = device_get_softc(dev);
1403 
1404 	snprintf(buf, sizeof(buf), "port %d", pi->port_id);
1405 	device_set_desc_copy(dev, buf);
1406 
1407 	return (BUS_PROBE_DEFAULT);
1408 }
1409 
1410 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
1411     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
1412     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS)
1413 #define T4_CAP_ENABLE (T4_CAP)
1414 
1415 static int
1416 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
1417 {
1418 	struct ifnet *ifp;
1419 	struct sbuf *sb;
1420 
1421 	vi->xact_addr_filt = -1;
1422 	callout_init(&vi->tick, 1);
1423 
1424 	/* Allocate an ifnet and set it up */
1425 	ifp = if_alloc(IFT_ETHER);
1426 	if (ifp == NULL) {
1427 		device_printf(dev, "Cannot allocate ifnet\n");
1428 		return (ENOMEM);
1429 	}
1430 	vi->ifp = ifp;
1431 	ifp->if_softc = vi;
1432 
1433 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1434 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1435 
1436 	ifp->if_init = cxgbe_init;
1437 	ifp->if_ioctl = cxgbe_ioctl;
1438 	ifp->if_transmit = cxgbe_transmit;
1439 	ifp->if_qflush = cxgbe_qflush;
1440 	ifp->if_get_counter = cxgbe_get_counter;
1441 
1442 	ifp->if_capabilities = T4_CAP;
1443 #ifdef TCP_OFFLOAD
1444 	if (vi->nofldrxq != 0)
1445 		ifp->if_capabilities |= IFCAP_TOE;
1446 #endif
1447 #ifdef DEV_NETMAP
1448 	if (vi->nnmrxq != 0)
1449 		ifp->if_capabilities |= IFCAP_NETMAP;
1450 #endif
1451 	ifp->if_capenable = T4_CAP_ENABLE;
1452 	ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
1453 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
1454 
1455 	ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
1456 	ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS;
1457 	ifp->if_hw_tsomaxsegsize = 65536;
1458 
1459 	/* Initialize ifmedia for this VI */
1460 	ifmedia_init(&vi->media, IFM_IMASK, cxgbe_media_change,
1461 	    cxgbe_media_status);
1462 	build_medialist(vi->pi, &vi->media);
1463 
1464 	vi->vlan_c = EVENTHANDLER_REGISTER(vlan_config, cxgbe_vlan_config, ifp,
1465 	    EVENTHANDLER_PRI_ANY);
1466 
1467 	ether_ifattach(ifp, vi->hw_addr);
1468 #ifdef DEV_NETMAP
1469 	if (ifp->if_capabilities & IFCAP_NETMAP)
1470 		cxgbe_nm_attach(vi);
1471 #endif
1472 	sb = sbuf_new_auto();
1473 	sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
1474 #ifdef TCP_OFFLOAD
1475 	if (ifp->if_capabilities & IFCAP_TOE)
1476 		sbuf_printf(sb, "; %d txq, %d rxq (TOE)",
1477 		    vi->nofldtxq, vi->nofldrxq);
1478 #endif
1479 #ifdef DEV_NETMAP
1480 	if (ifp->if_capabilities & IFCAP_NETMAP)
1481 		sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
1482 		    vi->nnmtxq, vi->nnmrxq);
1483 #endif
1484 	sbuf_finish(sb);
1485 	device_printf(dev, "%s\n", sbuf_data(sb));
1486 	sbuf_delete(sb);
1487 
1488 	vi_sysctls(vi);
1489 
1490 	return (0);
1491 }
1492 
1493 static int
1494 cxgbe_attach(device_t dev)
1495 {
1496 	struct port_info *pi = device_get_softc(dev);
1497 	struct adapter *sc = pi->adapter;
1498 	struct vi_info *vi;
1499 	int i, rc;
1500 
1501 	callout_init_mtx(&pi->tick, &pi->pi_lock, 0);
1502 
1503 	rc = cxgbe_vi_attach(dev, &pi->vi[0]);
1504 	if (rc)
1505 		return (rc);
1506 
1507 	for_each_vi(pi, i, vi) {
1508 		if (i == 0)
1509 			continue;
1510 		vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
1511 		if (vi->dev == NULL) {
1512 			device_printf(dev, "failed to add VI %d\n", i);
1513 			continue;
1514 		}
1515 		device_set_softc(vi->dev, vi);
1516 	}
1517 
1518 	cxgbe_sysctls(pi);
1519 
1520 	bus_generic_attach(dev);
1521 
1522 	return (0);
1523 }
1524 
1525 static void
1526 cxgbe_vi_detach(struct vi_info *vi)
1527 {
1528 	struct ifnet *ifp = vi->ifp;
1529 
1530 	ether_ifdetach(ifp);
1531 
1532 	if (vi->vlan_c)
1533 		EVENTHANDLER_DEREGISTER(vlan_config, vi->vlan_c);
1534 
1535 	/* Let detach proceed even if these fail. */
1536 #ifdef DEV_NETMAP
1537 	if (ifp->if_capabilities & IFCAP_NETMAP)
1538 		cxgbe_nm_detach(vi);
1539 #endif
1540 	cxgbe_uninit_synchronized(vi);
1541 	callout_drain(&vi->tick);
1542 	vi_full_uninit(vi);
1543 
1544 	ifmedia_removeall(&vi->media);
1545 	if_free(vi->ifp);
1546 	vi->ifp = NULL;
1547 }
1548 
1549 static int
1550 cxgbe_detach(device_t dev)
1551 {
1552 	struct port_info *pi = device_get_softc(dev);
1553 	struct adapter *sc = pi->adapter;
1554 	int rc;
1555 
1556 	/* Detach the extra VIs first. */
1557 	rc = bus_generic_detach(dev);
1558 	if (rc)
1559 		return (rc);
1560 	device_delete_children(dev);
1561 
1562 	doom_vi(sc, &pi->vi[0]);
1563 
1564 	if (pi->flags & HAS_TRACEQ) {
1565 		sc->traceq = -1;	/* cloner should not create ifnet */
1566 		t4_tracer_port_detach(sc);
1567 	}
1568 
1569 	cxgbe_vi_detach(&pi->vi[0]);
1570 	callout_drain(&pi->tick);
1571 
1572 	end_synchronized_op(sc, 0);
1573 
1574 	return (0);
1575 }
1576 
1577 static void
1578 cxgbe_init(void *arg)
1579 {
1580 	struct vi_info *vi = arg;
1581 	struct adapter *sc = vi->pi->adapter;
1582 
1583 	if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
1584 		return;
1585 	cxgbe_init_synchronized(vi);
1586 	end_synchronized_op(sc, 0);
1587 }
1588 
1589 static int
1590 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
1591 {
1592 	int rc = 0, mtu, flags, can_sleep;
1593 	struct vi_info *vi = ifp->if_softc;
1594 	struct adapter *sc = vi->pi->adapter;
1595 	struct ifreq *ifr = (struct ifreq *)data;
1596 	uint32_t mask;
1597 
1598 	switch (cmd) {
1599 	case SIOCSIFMTU:
1600 		mtu = ifr->ifr_mtu;
1601 		if (mtu < ETHERMIN || mtu > MAX_MTU)
1602 			return (EINVAL);
1603 
1604 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
1605 		if (rc)
1606 			return (rc);
1607 		ifp->if_mtu = mtu;
1608 		if (vi->flags & VI_INIT_DONE) {
1609 			t4_update_fl_bufsize(ifp);
1610 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1611 				rc = update_mac_settings(ifp, XGMAC_MTU);
1612 		}
1613 		end_synchronized_op(sc, 0);
1614 		break;
1615 
1616 	case SIOCSIFFLAGS:
1617 		can_sleep = 0;
1618 redo_sifflags:
1619 		rc = begin_synchronized_op(sc, vi,
1620 		    can_sleep ? (SLEEP_OK | INTR_OK) : HOLD_LOCK, "t4flg");
1621 		if (rc)
1622 			return (rc);
1623 
1624 		if (ifp->if_flags & IFF_UP) {
1625 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1626 				flags = vi->if_flags;
1627 				if ((ifp->if_flags ^ flags) &
1628 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1629 					if (can_sleep == 1) {
1630 						end_synchronized_op(sc, 0);
1631 						can_sleep = 0;
1632 						goto redo_sifflags;
1633 					}
1634 					rc = update_mac_settings(ifp,
1635 					    XGMAC_PROMISC | XGMAC_ALLMULTI);
1636 				}
1637 			} else {
1638 				if (can_sleep == 0) {
1639 					end_synchronized_op(sc, LOCK_HELD);
1640 					can_sleep = 1;
1641 					goto redo_sifflags;
1642 				}
1643 				rc = cxgbe_init_synchronized(vi);
1644 			}
1645 			vi->if_flags = ifp->if_flags;
1646 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1647 			if (can_sleep == 0) {
1648 				end_synchronized_op(sc, LOCK_HELD);
1649 				can_sleep = 1;
1650 				goto redo_sifflags;
1651 			}
1652 			rc = cxgbe_uninit_synchronized(vi);
1653 		}
1654 		end_synchronized_op(sc, can_sleep ? 0 : LOCK_HELD);
1655 		break;
1656 
1657 	case SIOCADDMULTI:
1658 	case SIOCDELMULTI: /* these two are called with a mutex held :-( */
1659 		rc = begin_synchronized_op(sc, vi, HOLD_LOCK, "t4multi");
1660 		if (rc)
1661 			return (rc);
1662 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1663 			rc = update_mac_settings(ifp, XGMAC_MCADDRS);
1664 		end_synchronized_op(sc, LOCK_HELD);
1665 		break;
1666 
1667 	case SIOCSIFCAP:
1668 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
1669 		if (rc)
1670 			return (rc);
1671 
1672 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1673 		if (mask & IFCAP_TXCSUM) {
1674 			ifp->if_capenable ^= IFCAP_TXCSUM;
1675 			ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
1676 
1677 			if (IFCAP_TSO4 & ifp->if_capenable &&
1678 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1679 				ifp->if_capenable &= ~IFCAP_TSO4;
1680 				if_printf(ifp,
1681 				    "tso4 disabled due to -txcsum.\n");
1682 			}
1683 		}
1684 		if (mask & IFCAP_TXCSUM_IPV6) {
1685 			ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
1686 			ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
1687 
1688 			if (IFCAP_TSO6 & ifp->if_capenable &&
1689 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1690 				ifp->if_capenable &= ~IFCAP_TSO6;
1691 				if_printf(ifp,
1692 				    "tso6 disabled due to -txcsum6.\n");
1693 			}
1694 		}
1695 		if (mask & IFCAP_RXCSUM)
1696 			ifp->if_capenable ^= IFCAP_RXCSUM;
1697 		if (mask & IFCAP_RXCSUM_IPV6)
1698 			ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
1699 
1700 		/*
1701 		 * Note that we leave CSUM_TSO alone (it is always set).  The
1702 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
1703 		 * sending a TSO request our way, so it's sufficient to toggle
1704 		 * IFCAP_TSOx only.
1705 		 */
1706 		if (mask & IFCAP_TSO4) {
1707 			if (!(IFCAP_TSO4 & ifp->if_capenable) &&
1708 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1709 				if_printf(ifp, "enable txcsum first.\n");
1710 				rc = EAGAIN;
1711 				goto fail;
1712 			}
1713 			ifp->if_capenable ^= IFCAP_TSO4;
1714 		}
1715 		if (mask & IFCAP_TSO6) {
1716 			if (!(IFCAP_TSO6 & ifp->if_capenable) &&
1717 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1718 				if_printf(ifp, "enable txcsum6 first.\n");
1719 				rc = EAGAIN;
1720 				goto fail;
1721 			}
1722 			ifp->if_capenable ^= IFCAP_TSO6;
1723 		}
1724 		if (mask & IFCAP_LRO) {
1725 #if defined(INET) || defined(INET6)
1726 			int i;
1727 			struct sge_rxq *rxq;
1728 
1729 			ifp->if_capenable ^= IFCAP_LRO;
1730 			for_each_rxq(vi, i, rxq) {
1731 				if (ifp->if_capenable & IFCAP_LRO)
1732 					rxq->iq.flags |= IQ_LRO_ENABLED;
1733 				else
1734 					rxq->iq.flags &= ~IQ_LRO_ENABLED;
1735 			}
1736 #endif
1737 		}
1738 #ifdef TCP_OFFLOAD
1739 		if (mask & IFCAP_TOE) {
1740 			int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
1741 
1742 			rc = toe_capability(vi, enable);
1743 			if (rc != 0)
1744 				goto fail;
1745 
1746 			ifp->if_capenable ^= mask;
1747 		}
1748 #endif
1749 		if (mask & IFCAP_VLAN_HWTAGGING) {
1750 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1751 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1752 				rc = update_mac_settings(ifp, XGMAC_VLANEX);
1753 		}
1754 		if (mask & IFCAP_VLAN_MTU) {
1755 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1756 
1757 			/* Need to find out how to disable auto-mtu-inflation */
1758 		}
1759 		if (mask & IFCAP_VLAN_HWTSO)
1760 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1761 		if (mask & IFCAP_VLAN_HWCSUM)
1762 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1763 
1764 #ifdef VLAN_CAPABILITIES
1765 		VLAN_CAPABILITIES(ifp);
1766 #endif
1767 fail:
1768 		end_synchronized_op(sc, 0);
1769 		break;
1770 
1771 	case SIOCSIFMEDIA:
1772 	case SIOCGIFMEDIA:
1773 	case SIOCGIFXMEDIA:
1774 		ifmedia_ioctl(ifp, ifr, &vi->media, cmd);
1775 		break;
1776 
1777 	case SIOCGI2C: {
1778 		struct ifi2creq i2c;
1779 
1780 		rc = copyin(ifr->ifr_data, &i2c, sizeof(i2c));
1781 		if (rc != 0)
1782 			break;
1783 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
1784 			rc = EPERM;
1785 			break;
1786 		}
1787 		if (i2c.len > sizeof(i2c.data)) {
1788 			rc = EINVAL;
1789 			break;
1790 		}
1791 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
1792 		if (rc)
1793 			return (rc);
1794 		rc = -t4_i2c_rd(sc, sc->mbox, vi->pi->port_id, i2c.dev_addr,
1795 		    i2c.offset, i2c.len, &i2c.data[0]);
1796 		end_synchronized_op(sc, 0);
1797 		if (rc == 0)
1798 			rc = copyout(&i2c, ifr->ifr_data, sizeof(i2c));
1799 		break;
1800 	}
1801 
1802 	default:
1803 		rc = ether_ioctl(ifp, cmd, data);
1804 	}
1805 
1806 	return (rc);
1807 }
1808 
1809 static int
1810 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
1811 {
1812 	struct vi_info *vi = ifp->if_softc;
1813 	struct port_info *pi = vi->pi;
1814 	struct adapter *sc = pi->adapter;
1815 	struct sge_txq *txq;
1816 	void *items[1];
1817 	int rc;
1818 
1819 	M_ASSERTPKTHDR(m);
1820 	MPASS(m->m_nextpkt == NULL);	/* not quite ready for this yet */
1821 
1822 	if (__predict_false(pi->link_cfg.link_ok == 0)) {
1823 		m_freem(m);
1824 		return (ENETDOWN);
1825 	}
1826 
1827 	rc = parse_pkt(sc, &m);
1828 	if (__predict_false(rc != 0)) {
1829 		MPASS(m == NULL);			/* was freed already */
1830 		atomic_add_int(&pi->tx_parse_error, 1);	/* rare, atomic is ok */
1831 		return (rc);
1832 	}
1833 
1834 	/* Select a txq. */
1835 	txq = &sc->sge.txq[vi->first_txq];
1836 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
1837 		txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
1838 		    vi->rsrv_noflowq);
1839 
1840 	items[0] = m;
1841 	rc = mp_ring_enqueue(txq->r, items, 1, 4096);
1842 	if (__predict_false(rc != 0))
1843 		m_freem(m);
1844 
1845 	return (rc);
1846 }
1847 
1848 static void
1849 cxgbe_qflush(struct ifnet *ifp)
1850 {
1851 	struct vi_info *vi = ifp->if_softc;
1852 	struct sge_txq *txq;
1853 	int i;
1854 
1855 	/* queues do not exist if !VI_INIT_DONE. */
1856 	if (vi->flags & VI_INIT_DONE) {
1857 		for_each_txq(vi, i, txq) {
1858 			TXQ_LOCK(txq);
1859 			txq->eq.flags &= ~EQ_ENABLED;
1860 			TXQ_UNLOCK(txq);
1861 			while (!mp_ring_is_idle(txq->r)) {
1862 				mp_ring_check_drainage(txq->r, 0);
1863 				pause("qflush", 1);
1864 			}
1865 		}
1866 	}
1867 	if_qflush(ifp);
1868 }
1869 
1870 static uint64_t
1871 vi_get_counter(struct ifnet *ifp, ift_counter c)
1872 {
1873 	struct vi_info *vi = ifp->if_softc;
1874 	struct fw_vi_stats_vf *s = &vi->stats;
1875 
1876 	vi_refresh_stats(vi->pi->adapter, vi);
1877 
1878 	switch (c) {
1879 	case IFCOUNTER_IPACKETS:
1880 		return (s->rx_bcast_frames + s->rx_mcast_frames +
1881 		    s->rx_ucast_frames);
1882 	case IFCOUNTER_IERRORS:
1883 		return (s->rx_err_frames);
1884 	case IFCOUNTER_OPACKETS:
1885 		return (s->tx_bcast_frames + s->tx_mcast_frames +
1886 		    s->tx_ucast_frames + s->tx_offload_frames);
1887 	case IFCOUNTER_OERRORS:
1888 		return (s->tx_drop_frames);
1889 	case IFCOUNTER_IBYTES:
1890 		return (s->rx_bcast_bytes + s->rx_mcast_bytes +
1891 		    s->rx_ucast_bytes);
1892 	case IFCOUNTER_OBYTES:
1893 		return (s->tx_bcast_bytes + s->tx_mcast_bytes +
1894 		    s->tx_ucast_bytes + s->tx_offload_bytes);
1895 	case IFCOUNTER_IMCASTS:
1896 		return (s->rx_mcast_frames);
1897 	case IFCOUNTER_OMCASTS:
1898 		return (s->tx_mcast_frames);
1899 	case IFCOUNTER_OQDROPS: {
1900 		uint64_t drops;
1901 
1902 		drops = 0;
1903 		if (vi->flags & VI_INIT_DONE) {
1904 			int i;
1905 			struct sge_txq *txq;
1906 
1907 			for_each_txq(vi, i, txq)
1908 				drops += counter_u64_fetch(txq->r->drops);
1909 		}
1910 
1911 		return (drops);
1912 
1913 	}
1914 
1915 	default:
1916 		return (if_get_counter_default(ifp, c));
1917 	}
1918 }
1919 
1920 uint64_t
1921 cxgbe_get_counter(struct ifnet *ifp, ift_counter c)
1922 {
1923 	struct vi_info *vi = ifp->if_softc;
1924 	struct port_info *pi = vi->pi;
1925 	struct adapter *sc = pi->adapter;
1926 	struct port_stats *s = &pi->stats;
1927 
1928 	if (pi->nvi > 1 || sc->flags & IS_VF)
1929 		return (vi_get_counter(ifp, c));
1930 
1931 	cxgbe_refresh_stats(sc, pi);
1932 
1933 	switch (c) {
1934 	case IFCOUNTER_IPACKETS:
1935 		return (s->rx_frames);
1936 
1937 	case IFCOUNTER_IERRORS:
1938 		return (s->rx_jabber + s->rx_runt + s->rx_too_long +
1939 		    s->rx_fcs_err + s->rx_len_err);
1940 
1941 	case IFCOUNTER_OPACKETS:
1942 		return (s->tx_frames);
1943 
1944 	case IFCOUNTER_OERRORS:
1945 		return (s->tx_error_frames);
1946 
1947 	case IFCOUNTER_IBYTES:
1948 		return (s->rx_octets);
1949 
1950 	case IFCOUNTER_OBYTES:
1951 		return (s->tx_octets);
1952 
1953 	case IFCOUNTER_IMCASTS:
1954 		return (s->rx_mcast_frames);
1955 
1956 	case IFCOUNTER_OMCASTS:
1957 		return (s->tx_mcast_frames);
1958 
1959 	case IFCOUNTER_IQDROPS:
1960 		return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
1961 		    s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
1962 		    s->rx_trunc3 + pi->tnl_cong_drops);
1963 
1964 	case IFCOUNTER_OQDROPS: {
1965 		uint64_t drops;
1966 
1967 		drops = s->tx_drop;
1968 		if (vi->flags & VI_INIT_DONE) {
1969 			int i;
1970 			struct sge_txq *txq;
1971 
1972 			for_each_txq(vi, i, txq)
1973 				drops += counter_u64_fetch(txq->r->drops);
1974 		}
1975 
1976 		return (drops);
1977 
1978 	}
1979 
1980 	default:
1981 		return (if_get_counter_default(ifp, c));
1982 	}
1983 }
1984 
1985 static int
1986 cxgbe_media_change(struct ifnet *ifp)
1987 {
1988 	struct vi_info *vi = ifp->if_softc;
1989 
1990 	device_printf(vi->dev, "%s unimplemented.\n", __func__);
1991 
1992 	return (EOPNOTSUPP);
1993 }
1994 
1995 static void
1996 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1997 {
1998 	struct vi_info *vi = ifp->if_softc;
1999 	struct port_info *pi = vi->pi;
2000 	struct ifmedia_entry *cur;
2001 	int speed = pi->link_cfg.speed;
2002 
2003 	cur = vi->media.ifm_cur;
2004 
2005 	ifmr->ifm_status = IFM_AVALID;
2006 	if (!pi->link_cfg.link_ok)
2007 		return;
2008 
2009 	ifmr->ifm_status |= IFM_ACTIVE;
2010 
2011 	/* active and current will differ iff current media is autoselect. */
2012 	if (IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO)
2013 		return;
2014 
2015 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
2016 	if (speed == 10000)
2017 		ifmr->ifm_active |= IFM_10G_T;
2018 	else if (speed == 1000)
2019 		ifmr->ifm_active |= IFM_1000_T;
2020 	else if (speed == 100)
2021 		ifmr->ifm_active |= IFM_100_TX;
2022 	else if (speed == 10)
2023 		ifmr->ifm_active |= IFM_10_T;
2024 	else
2025 		KASSERT(0, ("%s: link up but speed unknown (%u)", __func__,
2026 			    speed));
2027 }
2028 
2029 static int
2030 vcxgbe_probe(device_t dev)
2031 {
2032 	char buf[128];
2033 	struct vi_info *vi = device_get_softc(dev);
2034 
2035 	snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
2036 	    vi - vi->pi->vi);
2037 	device_set_desc_copy(dev, buf);
2038 
2039 	return (BUS_PROBE_DEFAULT);
2040 }
2041 
2042 static int
2043 vcxgbe_attach(device_t dev)
2044 {
2045 	struct vi_info *vi;
2046 	struct port_info *pi;
2047 	struct adapter *sc;
2048 	int func, index, rc;
2049 	u32 param, val;
2050 
2051 	vi = device_get_softc(dev);
2052 	pi = vi->pi;
2053 	sc = pi->adapter;
2054 
2055 	index = vi - pi->vi;
2056 	KASSERT(index < nitems(vi_mac_funcs),
2057 	    ("%s: VI %s doesn't have a MAC func", __func__,
2058 	    device_get_nameunit(dev)));
2059 	func = vi_mac_funcs[index];
2060 	rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
2061 	    vi->hw_addr, &vi->rss_size, func, 0);
2062 	if (rc < 0) {
2063 		device_printf(dev, "Failed to allocate virtual interface "
2064 		    "for port %d: %d\n", pi->port_id, -rc);
2065 		return (-rc);
2066 	}
2067 	vi->viid = rc;
2068 	if (chip_id(sc) <= CHELSIO_T5)
2069 		vi->smt_idx = (rc & 0x7f) << 1;
2070 	else
2071 		vi->smt_idx = (rc & 0x7f);
2072 
2073 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2074 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
2075 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
2076 	rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2077 	if (rc)
2078 		vi->rss_base = 0xffff;
2079 	else {
2080 		/* MPASS((val >> 16) == rss_size); */
2081 		vi->rss_base = val & 0xffff;
2082 	}
2083 
2084 	rc = cxgbe_vi_attach(dev, vi);
2085 	if (rc) {
2086 		t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2087 		return (rc);
2088 	}
2089 	return (0);
2090 }
2091 
2092 static int
2093 vcxgbe_detach(device_t dev)
2094 {
2095 	struct vi_info *vi;
2096 	struct adapter *sc;
2097 
2098 	vi = device_get_softc(dev);
2099 	sc = vi->pi->adapter;
2100 
2101 	doom_vi(sc, vi);
2102 
2103 	cxgbe_vi_detach(vi);
2104 	t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2105 
2106 	end_synchronized_op(sc, 0);
2107 
2108 	return (0);
2109 }
2110 
2111 void
2112 t4_fatal_err(struct adapter *sc)
2113 {
2114 	t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0);
2115 	t4_intr_disable(sc);
2116 	log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n",
2117 	    device_get_nameunit(sc->dev));
2118 }
2119 
2120 void
2121 t4_add_adapter(struct adapter *sc)
2122 {
2123 	sx_xlock(&t4_list_lock);
2124 	SLIST_INSERT_HEAD(&t4_list, sc, link);
2125 	sx_xunlock(&t4_list_lock);
2126 }
2127 
2128 int
2129 t4_map_bars_0_and_4(struct adapter *sc)
2130 {
2131 	sc->regs_rid = PCIR_BAR(0);
2132 	sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2133 	    &sc->regs_rid, RF_ACTIVE);
2134 	if (sc->regs_res == NULL) {
2135 		device_printf(sc->dev, "cannot map registers.\n");
2136 		return (ENXIO);
2137 	}
2138 	sc->bt = rman_get_bustag(sc->regs_res);
2139 	sc->bh = rman_get_bushandle(sc->regs_res);
2140 	sc->mmio_len = rman_get_size(sc->regs_res);
2141 	setbit(&sc->doorbells, DOORBELL_KDB);
2142 
2143 	sc->msix_rid = PCIR_BAR(4);
2144 	sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2145 	    &sc->msix_rid, RF_ACTIVE);
2146 	if (sc->msix_res == NULL) {
2147 		device_printf(sc->dev, "cannot map MSI-X BAR.\n");
2148 		return (ENXIO);
2149 	}
2150 
2151 	return (0);
2152 }
2153 
2154 int
2155 t4_map_bar_2(struct adapter *sc)
2156 {
2157 
2158 	/*
2159 	 * T4: only iWARP driver uses the userspace doorbells.  There is no need
2160 	 * to map it if RDMA is disabled.
2161 	 */
2162 	if (is_t4(sc) && sc->rdmacaps == 0)
2163 		return (0);
2164 
2165 	sc->udbs_rid = PCIR_BAR(2);
2166 	sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2167 	    &sc->udbs_rid, RF_ACTIVE);
2168 	if (sc->udbs_res == NULL) {
2169 		device_printf(sc->dev, "cannot map doorbell BAR.\n");
2170 		return (ENXIO);
2171 	}
2172 	sc->udbs_base = rman_get_virtual(sc->udbs_res);
2173 
2174 	if (chip_id(sc) >= CHELSIO_T5) {
2175 		setbit(&sc->doorbells, DOORBELL_UDB);
2176 #if defined(__i386__) || defined(__amd64__)
2177 		if (t5_write_combine) {
2178 			int rc, mode;
2179 
2180 			/*
2181 			 * Enable write combining on BAR2.  This is the
2182 			 * userspace doorbell BAR and is split into 128B
2183 			 * (UDBS_SEG_SIZE) doorbell regions, each associated
2184 			 * with an egress queue.  The first 64B has the doorbell
2185 			 * and the second 64B can be used to submit a tx work
2186 			 * request with an implicit doorbell.
2187 			 */
2188 
2189 			rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
2190 			    rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
2191 			if (rc == 0) {
2192 				clrbit(&sc->doorbells, DOORBELL_UDB);
2193 				setbit(&sc->doorbells, DOORBELL_WCWR);
2194 				setbit(&sc->doorbells, DOORBELL_UDBWC);
2195 			} else {
2196 				device_printf(sc->dev,
2197 				    "couldn't enable write combining: %d\n",
2198 				    rc);
2199 			}
2200 
2201 			mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
2202 			t4_write_reg(sc, A_SGE_STAT_CFG,
2203 			    V_STATSOURCE_T5(7) | mode);
2204 		}
2205 #endif
2206 	}
2207 
2208 	return (0);
2209 }
2210 
2211 struct memwin_init {
2212 	uint32_t base;
2213 	uint32_t aperture;
2214 };
2215 
2216 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
2217 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
2218 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
2219 	{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
2220 };
2221 
2222 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
2223 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
2224 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
2225 	{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
2226 };
2227 
2228 static void
2229 setup_memwin(struct adapter *sc)
2230 {
2231 	const struct memwin_init *mw_init;
2232 	struct memwin *mw;
2233 	int i;
2234 	uint32_t bar0;
2235 
2236 	if (is_t4(sc)) {
2237 		/*
2238 		 * Read low 32b of bar0 indirectly via the hardware backdoor
2239 		 * mechanism.  Works from within PCI passthrough environments
2240 		 * too, where rman_get_start() can return a different value.  We
2241 		 * need to program the T4 memory window decoders with the actual
2242 		 * addresses that will be coming across the PCIe link.
2243 		 */
2244 		bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
2245 		bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
2246 
2247 		mw_init = &t4_memwin[0];
2248 	} else {
2249 		/* T5+ use the relative offset inside the PCIe BAR */
2250 		bar0 = 0;
2251 
2252 		mw_init = &t5_memwin[0];
2253 	}
2254 
2255 	for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
2256 		rw_init(&mw->mw_lock, "memory window access");
2257 		mw->mw_base = mw_init->base;
2258 		mw->mw_aperture = mw_init->aperture;
2259 		mw->mw_curpos = 0;
2260 		t4_write_reg(sc,
2261 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
2262 		    (mw->mw_base + bar0) | V_BIR(0) |
2263 		    V_WINDOW(ilog2(mw->mw_aperture) - 10));
2264 		rw_wlock(&mw->mw_lock);
2265 		position_memwin(sc, i, 0);
2266 		rw_wunlock(&mw->mw_lock);
2267 	}
2268 
2269 	/* flush */
2270 	t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
2271 }
2272 
2273 /*
2274  * Positions the memory window at the given address in the card's address space.
2275  * There are some alignment requirements and the actual position may be at an
2276  * address prior to the requested address.  mw->mw_curpos always has the actual
2277  * position of the window.
2278  */
2279 static void
2280 position_memwin(struct adapter *sc, int idx, uint32_t addr)
2281 {
2282 	struct memwin *mw;
2283 	uint32_t pf;
2284 	uint32_t reg;
2285 
2286 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
2287 	mw = &sc->memwin[idx];
2288 	rw_assert(&mw->mw_lock, RA_WLOCKED);
2289 
2290 	if (is_t4(sc)) {
2291 		pf = 0;
2292 		mw->mw_curpos = addr & ~0xf;	/* start must be 16B aligned */
2293 	} else {
2294 		pf = V_PFNUM(sc->pf);
2295 		mw->mw_curpos = addr & ~0x7f;	/* start must be 128B aligned */
2296 	}
2297 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
2298 	t4_write_reg(sc, reg, mw->mw_curpos | pf);
2299 	t4_read_reg(sc, reg);	/* flush */
2300 }
2301 
2302 static int
2303 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2304     int len, int rw)
2305 {
2306 	struct memwin *mw;
2307 	uint32_t mw_end, v;
2308 
2309 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
2310 
2311 	/* Memory can only be accessed in naturally aligned 4 byte units */
2312 	if (addr & 3 || len & 3 || len <= 0)
2313 		return (EINVAL);
2314 
2315 	mw = &sc->memwin[idx];
2316 	while (len > 0) {
2317 		rw_rlock(&mw->mw_lock);
2318 		mw_end = mw->mw_curpos + mw->mw_aperture;
2319 		if (addr >= mw_end || addr < mw->mw_curpos) {
2320 			/* Will need to reposition the window */
2321 			if (!rw_try_upgrade(&mw->mw_lock)) {
2322 				rw_runlock(&mw->mw_lock);
2323 				rw_wlock(&mw->mw_lock);
2324 			}
2325 			rw_assert(&mw->mw_lock, RA_WLOCKED);
2326 			position_memwin(sc, idx, addr);
2327 			rw_downgrade(&mw->mw_lock);
2328 			mw_end = mw->mw_curpos + mw->mw_aperture;
2329 		}
2330 		rw_assert(&mw->mw_lock, RA_RLOCKED);
2331 		while (addr < mw_end && len > 0) {
2332 			if (rw == 0) {
2333 				v = t4_read_reg(sc, mw->mw_base + addr -
2334 				    mw->mw_curpos);
2335 				*val++ = le32toh(v);
2336 			} else {
2337 				v = *val++;
2338 				t4_write_reg(sc, mw->mw_base + addr -
2339 				    mw->mw_curpos, htole32(v));
2340 			}
2341 			addr += 4;
2342 			len -= 4;
2343 		}
2344 		rw_runlock(&mw->mw_lock);
2345 	}
2346 
2347 	return (0);
2348 }
2349 
2350 static inline int
2351 read_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2352     int len)
2353 {
2354 
2355 	return (rw_via_memwin(sc, idx, addr, val, len, 0));
2356 }
2357 
2358 static inline int
2359 write_via_memwin(struct adapter *sc, int idx, uint32_t addr,
2360     const uint32_t *val, int len)
2361 {
2362 
2363 	return (rw_via_memwin(sc, idx, addr, (void *)(uintptr_t)val, len, 1));
2364 }
2365 
2366 static int
2367 t4_range_cmp(const void *a, const void *b)
2368 {
2369 	return ((const struct t4_range *)a)->start -
2370 	       ((const struct t4_range *)b)->start;
2371 }
2372 
2373 /*
2374  * Verify that the memory range specified by the addr/len pair is valid within
2375  * the card's address space.
2376  */
2377 static int
2378 validate_mem_range(struct adapter *sc, uint32_t addr, int len)
2379 {
2380 	struct t4_range mem_ranges[4], *r, *next;
2381 	uint32_t em, addr_len;
2382 	int i, n, remaining;
2383 
2384 	/* Memory can only be accessed in naturally aligned 4 byte units */
2385 	if (addr & 3 || len & 3 || len <= 0)
2386 		return (EINVAL);
2387 
2388 	/* Enabled memories */
2389 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2390 
2391 	r = &mem_ranges[0];
2392 	n = 0;
2393 	bzero(r, sizeof(mem_ranges));
2394 	if (em & F_EDRAM0_ENABLE) {
2395 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2396 		r->size = G_EDRAM0_SIZE(addr_len) << 20;
2397 		if (r->size > 0) {
2398 			r->start = G_EDRAM0_BASE(addr_len) << 20;
2399 			if (addr >= r->start &&
2400 			    addr + len <= r->start + r->size)
2401 				return (0);
2402 			r++;
2403 			n++;
2404 		}
2405 	}
2406 	if (em & F_EDRAM1_ENABLE) {
2407 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2408 		r->size = G_EDRAM1_SIZE(addr_len) << 20;
2409 		if (r->size > 0) {
2410 			r->start = G_EDRAM1_BASE(addr_len) << 20;
2411 			if (addr >= r->start &&
2412 			    addr + len <= r->start + r->size)
2413 				return (0);
2414 			r++;
2415 			n++;
2416 		}
2417 	}
2418 	if (em & F_EXT_MEM_ENABLE) {
2419 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2420 		r->size = G_EXT_MEM_SIZE(addr_len) << 20;
2421 		if (r->size > 0) {
2422 			r->start = G_EXT_MEM_BASE(addr_len) << 20;
2423 			if (addr >= r->start &&
2424 			    addr + len <= r->start + r->size)
2425 				return (0);
2426 			r++;
2427 			n++;
2428 		}
2429 	}
2430 	if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
2431 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
2432 		r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
2433 		if (r->size > 0) {
2434 			r->start = G_EXT_MEM1_BASE(addr_len) << 20;
2435 			if (addr >= r->start &&
2436 			    addr + len <= r->start + r->size)
2437 				return (0);
2438 			r++;
2439 			n++;
2440 		}
2441 	}
2442 	MPASS(n <= nitems(mem_ranges));
2443 
2444 	if (n > 1) {
2445 		/* Sort and merge the ranges. */
2446 		qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
2447 
2448 		/* Start from index 0 and examine the next n - 1 entries. */
2449 		r = &mem_ranges[0];
2450 		for (remaining = n - 1; remaining > 0; remaining--, r++) {
2451 
2452 			MPASS(r->size > 0);	/* r is a valid entry. */
2453 			next = r + 1;
2454 			MPASS(next->size > 0);	/* and so is the next one. */
2455 
2456 			while (r->start + r->size >= next->start) {
2457 				/* Merge the next one into the current entry. */
2458 				r->size = max(r->start + r->size,
2459 				    next->start + next->size) - r->start;
2460 				n--;	/* One fewer entry in total. */
2461 				if (--remaining == 0)
2462 					goto done;	/* short circuit */
2463 				next++;
2464 			}
2465 			if (next != r + 1) {
2466 				/*
2467 				 * Some entries were merged into r and next
2468 				 * points to the first valid entry that couldn't
2469 				 * be merged.
2470 				 */
2471 				MPASS(next->size > 0);	/* must be valid */
2472 				memcpy(r + 1, next, remaining * sizeof(*r));
2473 #ifdef INVARIANTS
2474 				/*
2475 				 * This so that the foo->size assertion in the
2476 				 * next iteration of the loop do the right
2477 				 * thing for entries that were pulled up and are
2478 				 * no longer valid.
2479 				 */
2480 				MPASS(n < nitems(mem_ranges));
2481 				bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
2482 				    sizeof(struct t4_range));
2483 #endif
2484 			}
2485 		}
2486 done:
2487 		/* Done merging the ranges. */
2488 		MPASS(n > 0);
2489 		r = &mem_ranges[0];
2490 		for (i = 0; i < n; i++, r++) {
2491 			if (addr >= r->start &&
2492 			    addr + len <= r->start + r->size)
2493 				return (0);
2494 		}
2495 	}
2496 
2497 	return (EFAULT);
2498 }
2499 
2500 static int
2501 fwmtype_to_hwmtype(int mtype)
2502 {
2503 
2504 	switch (mtype) {
2505 	case FW_MEMTYPE_EDC0:
2506 		return (MEM_EDC0);
2507 	case FW_MEMTYPE_EDC1:
2508 		return (MEM_EDC1);
2509 	case FW_MEMTYPE_EXTMEM:
2510 		return (MEM_MC0);
2511 	case FW_MEMTYPE_EXTMEM1:
2512 		return (MEM_MC1);
2513 	default:
2514 		panic("%s: cannot translate fw mtype %d.", __func__, mtype);
2515 	}
2516 }
2517 
2518 /*
2519  * Verify that the memory range specified by the memtype/offset/len pair is
2520  * valid and lies entirely within the memtype specified.  The global address of
2521  * the start of the range is returned in addr.
2522  */
2523 static int
2524 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, int len,
2525     uint32_t *addr)
2526 {
2527 	uint32_t em, addr_len, maddr;
2528 
2529 	/* Memory can only be accessed in naturally aligned 4 byte units */
2530 	if (off & 3 || len & 3 || len == 0)
2531 		return (EINVAL);
2532 
2533 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2534 	switch (fwmtype_to_hwmtype(mtype)) {
2535 	case MEM_EDC0:
2536 		if (!(em & F_EDRAM0_ENABLE))
2537 			return (EINVAL);
2538 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2539 		maddr = G_EDRAM0_BASE(addr_len) << 20;
2540 		break;
2541 	case MEM_EDC1:
2542 		if (!(em & F_EDRAM1_ENABLE))
2543 			return (EINVAL);
2544 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2545 		maddr = G_EDRAM1_BASE(addr_len) << 20;
2546 		break;
2547 	case MEM_MC:
2548 		if (!(em & F_EXT_MEM_ENABLE))
2549 			return (EINVAL);
2550 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2551 		maddr = G_EXT_MEM_BASE(addr_len) << 20;
2552 		break;
2553 	case MEM_MC1:
2554 		if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
2555 			return (EINVAL);
2556 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
2557 		maddr = G_EXT_MEM1_BASE(addr_len) << 20;
2558 		break;
2559 	default:
2560 		return (EINVAL);
2561 	}
2562 
2563 	*addr = maddr + off;	/* global address */
2564 	return (validate_mem_range(sc, *addr, len));
2565 }
2566 
2567 static int
2568 fixup_devlog_params(struct adapter *sc)
2569 {
2570 	struct devlog_params *dparams = &sc->params.devlog;
2571 	int rc;
2572 
2573 	rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
2574 	    dparams->size, &dparams->addr);
2575 
2576 	return (rc);
2577 }
2578 
2579 static int
2580 cfg_itype_and_nqueues(struct adapter *sc, int n10g, int n1g, int num_vis,
2581     struct intrs_and_queues *iaq)
2582 {
2583 	int rc, itype, navail, nrxq10g, nrxq1g, n;
2584 	int nofldrxq10g = 0, nofldrxq1g = 0;
2585 
2586 	bzero(iaq, sizeof(*iaq));
2587 
2588 	iaq->ntxq10g = t4_ntxq10g;
2589 	iaq->ntxq1g = t4_ntxq1g;
2590 	iaq->ntxq_vi = t4_ntxq_vi;
2591 	iaq->nrxq10g = nrxq10g = t4_nrxq10g;
2592 	iaq->nrxq1g = nrxq1g = t4_nrxq1g;
2593 	iaq->nrxq_vi = t4_nrxq_vi;
2594 	iaq->rsrv_noflowq = t4_rsrv_noflowq;
2595 #ifdef TCP_OFFLOAD
2596 	if (is_offload(sc)) {
2597 		iaq->nofldtxq10g = t4_nofldtxq10g;
2598 		iaq->nofldtxq1g = t4_nofldtxq1g;
2599 		iaq->nofldtxq_vi = t4_nofldtxq_vi;
2600 		iaq->nofldrxq10g = nofldrxq10g = t4_nofldrxq10g;
2601 		iaq->nofldrxq1g = nofldrxq1g = t4_nofldrxq1g;
2602 		iaq->nofldrxq_vi = t4_nofldrxq_vi;
2603 	}
2604 #endif
2605 #ifdef DEV_NETMAP
2606 	iaq->nnmtxq_vi = t4_nnmtxq_vi;
2607 	iaq->nnmrxq_vi = t4_nnmrxq_vi;
2608 #endif
2609 
2610 	for (itype = INTR_MSIX; itype; itype >>= 1) {
2611 
2612 		if ((itype & t4_intr_types) == 0)
2613 			continue;	/* not allowed */
2614 
2615 		if (itype == INTR_MSIX)
2616 			navail = pci_msix_count(sc->dev);
2617 		else if (itype == INTR_MSI)
2618 			navail = pci_msi_count(sc->dev);
2619 		else
2620 			navail = 1;
2621 restart:
2622 		if (navail == 0)
2623 			continue;
2624 
2625 		iaq->intr_type = itype;
2626 		iaq->intr_flags_10g = 0;
2627 		iaq->intr_flags_1g = 0;
2628 
2629 		/*
2630 		 * Best option: an interrupt vector for errors, one for the
2631 		 * firmware event queue, and one for every rxq (NIC and TOE) of
2632 		 * every VI.  The VIs that support netmap use the same
2633 		 * interrupts for the NIC rx queues and the netmap rx queues
2634 		 * because only one set of queues is active at a time.
2635 		 */
2636 		iaq->nirq = T4_EXTRA_INTR;
2637 		iaq->nirq += n10g * (nrxq10g + nofldrxq10g);
2638 		iaq->nirq += n1g * (nrxq1g + nofldrxq1g);
2639 		iaq->nirq += (n10g + n1g) * (num_vis - 1) *
2640 		    max(iaq->nrxq_vi, iaq->nnmrxq_vi);	/* See comment above. */
2641 		iaq->nirq += (n10g + n1g) * (num_vis - 1) * iaq->nofldrxq_vi;
2642 		if (iaq->nirq <= navail &&
2643 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
2644 			iaq->intr_flags_10g = INTR_ALL;
2645 			iaq->intr_flags_1g = INTR_ALL;
2646 			goto allocate;
2647 		}
2648 
2649 		/* Disable the VIs (and netmap) if there aren't enough intrs */
2650 		if (num_vis > 1) {
2651 			device_printf(sc->dev, "virtual interfaces disabled "
2652 			    "because num_vis=%u with current settings "
2653 			    "(nrxq10g=%u, nrxq1g=%u, nofldrxq10g=%u, "
2654 			    "nofldrxq1g=%u, nrxq_vi=%u nofldrxq_vi=%u, "
2655 			    "nnmrxq_vi=%u) would need %u interrupts but "
2656 			    "only %u are available.\n", num_vis, nrxq10g,
2657 			    nrxq1g, nofldrxq10g, nofldrxq1g, iaq->nrxq_vi,
2658 			    iaq->nofldrxq_vi, iaq->nnmrxq_vi, iaq->nirq,
2659 			    navail);
2660 			num_vis = 1;
2661 			iaq->ntxq_vi = iaq->nrxq_vi = 0;
2662 			iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
2663 			iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
2664 			goto restart;
2665 		}
2666 
2667 		/*
2668 		 * Second best option: a vector for errors, one for the firmware
2669 		 * event queue, and vectors for either all the NIC rx queues or
2670 		 * all the TOE rx queues.  The queues that don't get vectors
2671 		 * will forward their interrupts to those that do.
2672 		 */
2673 		iaq->nirq = T4_EXTRA_INTR;
2674 		if (nrxq10g >= nofldrxq10g) {
2675 			iaq->intr_flags_10g = INTR_RXQ;
2676 			iaq->nirq += n10g * nrxq10g;
2677 		} else {
2678 			iaq->intr_flags_10g = INTR_OFLD_RXQ;
2679 			iaq->nirq += n10g * nofldrxq10g;
2680 		}
2681 		if (nrxq1g >= nofldrxq1g) {
2682 			iaq->intr_flags_1g = INTR_RXQ;
2683 			iaq->nirq += n1g * nrxq1g;
2684 		} else {
2685 			iaq->intr_flags_1g = INTR_OFLD_RXQ;
2686 			iaq->nirq += n1g * nofldrxq1g;
2687 		}
2688 		if (iaq->nirq <= navail &&
2689 		    (itype != INTR_MSI || powerof2(iaq->nirq)))
2690 			goto allocate;
2691 
2692 		/*
2693 		 * Next best option: an interrupt vector for errors, one for the
2694 		 * firmware event queue, and at least one per main-VI.  At this
2695 		 * point we know we'll have to downsize nrxq and/or nofldrxq to
2696 		 * fit what's available to us.
2697 		 */
2698 		iaq->nirq = T4_EXTRA_INTR;
2699 		iaq->nirq += n10g + n1g;
2700 		if (iaq->nirq <= navail) {
2701 			int leftover = navail - iaq->nirq;
2702 
2703 			if (n10g > 0) {
2704 				int target = max(nrxq10g, nofldrxq10g);
2705 
2706 				iaq->intr_flags_10g = nrxq10g >= nofldrxq10g ?
2707 				    INTR_RXQ : INTR_OFLD_RXQ;
2708 
2709 				n = 1;
2710 				while (n < target && leftover >= n10g) {
2711 					leftover -= n10g;
2712 					iaq->nirq += n10g;
2713 					n++;
2714 				}
2715 				iaq->nrxq10g = min(n, nrxq10g);
2716 #ifdef TCP_OFFLOAD
2717 				iaq->nofldrxq10g = min(n, nofldrxq10g);
2718 #endif
2719 			}
2720 
2721 			if (n1g > 0) {
2722 				int target = max(nrxq1g, nofldrxq1g);
2723 
2724 				iaq->intr_flags_1g = nrxq1g >= nofldrxq1g ?
2725 				    INTR_RXQ : INTR_OFLD_RXQ;
2726 
2727 				n = 1;
2728 				while (n < target && leftover >= n1g) {
2729 					leftover -= n1g;
2730 					iaq->nirq += n1g;
2731 					n++;
2732 				}
2733 				iaq->nrxq1g = min(n, nrxq1g);
2734 #ifdef TCP_OFFLOAD
2735 				iaq->nofldrxq1g = min(n, nofldrxq1g);
2736 #endif
2737 			}
2738 
2739 			if (itype != INTR_MSI || powerof2(iaq->nirq))
2740 				goto allocate;
2741 		}
2742 
2743 		/*
2744 		 * Least desirable option: one interrupt vector for everything.
2745 		 */
2746 		iaq->nirq = iaq->nrxq10g = iaq->nrxq1g = 1;
2747 		iaq->intr_flags_10g = iaq->intr_flags_1g = 0;
2748 #ifdef TCP_OFFLOAD
2749 		if (is_offload(sc))
2750 			iaq->nofldrxq10g = iaq->nofldrxq1g = 1;
2751 #endif
2752 allocate:
2753 		navail = iaq->nirq;
2754 		rc = 0;
2755 		if (itype == INTR_MSIX)
2756 			rc = pci_alloc_msix(sc->dev, &navail);
2757 		else if (itype == INTR_MSI)
2758 			rc = pci_alloc_msi(sc->dev, &navail);
2759 
2760 		if (rc == 0) {
2761 			if (navail == iaq->nirq)
2762 				return (0);
2763 
2764 			/*
2765 			 * Didn't get the number requested.  Use whatever number
2766 			 * the kernel is willing to allocate (it's in navail).
2767 			 */
2768 			device_printf(sc->dev, "fewer vectors than requested, "
2769 			    "type=%d, req=%d, rcvd=%d; will downshift req.\n",
2770 			    itype, iaq->nirq, navail);
2771 			pci_release_msi(sc->dev);
2772 			goto restart;
2773 		}
2774 
2775 		device_printf(sc->dev,
2776 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
2777 		    itype, rc, iaq->nirq, navail);
2778 	}
2779 
2780 	device_printf(sc->dev,
2781 	    "failed to find a usable interrupt type.  "
2782 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
2783 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
2784 
2785 	return (ENXIO);
2786 }
2787 
2788 #define FW_VERSION(chip) ( \
2789     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
2790     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
2791     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
2792     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
2793 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
2794 
2795 struct fw_info {
2796 	uint8_t chip;
2797 	char *kld_name;
2798 	char *fw_mod_name;
2799 	struct fw_hdr fw_hdr;	/* XXX: waste of space, need a sparse struct */
2800 } fw_info[] = {
2801 	{
2802 		.chip = CHELSIO_T4,
2803 		.kld_name = "t4fw_cfg",
2804 		.fw_mod_name = "t4fw",
2805 		.fw_hdr = {
2806 			.chip = FW_HDR_CHIP_T4,
2807 			.fw_ver = htobe32_const(FW_VERSION(T4)),
2808 			.intfver_nic = FW_INTFVER(T4, NIC),
2809 			.intfver_vnic = FW_INTFVER(T4, VNIC),
2810 			.intfver_ofld = FW_INTFVER(T4, OFLD),
2811 			.intfver_ri = FW_INTFVER(T4, RI),
2812 			.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
2813 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
2814 			.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
2815 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
2816 		},
2817 	}, {
2818 		.chip = CHELSIO_T5,
2819 		.kld_name = "t5fw_cfg",
2820 		.fw_mod_name = "t5fw",
2821 		.fw_hdr = {
2822 			.chip = FW_HDR_CHIP_T5,
2823 			.fw_ver = htobe32_const(FW_VERSION(T5)),
2824 			.intfver_nic = FW_INTFVER(T5, NIC),
2825 			.intfver_vnic = FW_INTFVER(T5, VNIC),
2826 			.intfver_ofld = FW_INTFVER(T5, OFLD),
2827 			.intfver_ri = FW_INTFVER(T5, RI),
2828 			.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
2829 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
2830 			.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
2831 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
2832 		},
2833 	}, {
2834 		.chip = CHELSIO_T6,
2835 		.kld_name = "t6fw_cfg",
2836 		.fw_mod_name = "t6fw",
2837 		.fw_hdr = {
2838 			.chip = FW_HDR_CHIP_T6,
2839 			.fw_ver = htobe32_const(FW_VERSION(T6)),
2840 			.intfver_nic = FW_INTFVER(T6, NIC),
2841 			.intfver_vnic = FW_INTFVER(T6, VNIC),
2842 			.intfver_ofld = FW_INTFVER(T6, OFLD),
2843 			.intfver_ri = FW_INTFVER(T6, RI),
2844 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
2845 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
2846 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
2847 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
2848 		},
2849 	}
2850 };
2851 
2852 static struct fw_info *
2853 find_fw_info(int chip)
2854 {
2855 	int i;
2856 
2857 	for (i = 0; i < nitems(fw_info); i++) {
2858 		if (fw_info[i].chip == chip)
2859 			return (&fw_info[i]);
2860 	}
2861 	return (NULL);
2862 }
2863 
2864 /*
2865  * Is the given firmware API compatible with the one the driver was compiled
2866  * with?
2867  */
2868 static int
2869 fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2870 {
2871 
2872 	/* short circuit if it's the exact same firmware version */
2873 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2874 		return (1);
2875 
2876 	/*
2877 	 * XXX: Is this too conservative?  Perhaps I should limit this to the
2878 	 * features that are supported in the driver.
2879 	 */
2880 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2881 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2882 	    SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
2883 	    SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
2884 		return (1);
2885 #undef SAME_INTF
2886 
2887 	return (0);
2888 }
2889 
2890 /*
2891  * The firmware in the KLD is usable, but should it be installed?  This routine
2892  * explains itself in detail if it indicates the KLD firmware should be
2893  * installed.
2894  */
2895 static int
2896 should_install_kld_fw(struct adapter *sc, int card_fw_usable, int k, int c)
2897 {
2898 	const char *reason;
2899 
2900 	if (!card_fw_usable) {
2901 		reason = "incompatible or unusable";
2902 		goto install;
2903 	}
2904 
2905 	if (k > c) {
2906 		reason = "older than the version bundled with this driver";
2907 		goto install;
2908 	}
2909 
2910 	if (t4_fw_install == 2 && k != c) {
2911 		reason = "different than the version bundled with this driver";
2912 		goto install;
2913 	}
2914 
2915 	return (0);
2916 
2917 install:
2918 	if (t4_fw_install == 0) {
2919 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
2920 		    "but the driver is prohibited from installing a different "
2921 		    "firmware on the card.\n",
2922 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
2923 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
2924 
2925 		return (0);
2926 	}
2927 
2928 	device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
2929 	    "installing firmware %u.%u.%u.%u on card.\n",
2930 	    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
2931 	    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
2932 	    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
2933 	    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
2934 
2935 	return (1);
2936 }
2937 /*
2938  * Establish contact with the firmware and determine if we are the master driver
2939  * or not, and whether we are responsible for chip initialization.
2940  */
2941 static int
2942 prep_firmware(struct adapter *sc)
2943 {
2944 	const struct firmware *fw = NULL, *default_cfg;
2945 	int rc, pf, card_fw_usable, kld_fw_usable, need_fw_reset = 1;
2946 	enum dev_state state;
2947 	struct fw_info *fw_info;
2948 	struct fw_hdr *card_fw;		/* fw on the card */
2949 	const struct fw_hdr *kld_fw;	/* fw in the KLD */
2950 	const struct fw_hdr *drv_fw;	/* fw header the driver was compiled
2951 					   against */
2952 
2953 	/* Contact firmware. */
2954 	rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
2955 	if (rc < 0 || state == DEV_STATE_ERR) {
2956 		rc = -rc;
2957 		device_printf(sc->dev,
2958 		    "failed to connect to the firmware: %d, %d.\n", rc, state);
2959 		return (rc);
2960 	}
2961 	pf = rc;
2962 	if (pf == sc->mbox)
2963 		sc->flags |= MASTER_PF;
2964 	else if (state == DEV_STATE_UNINIT) {
2965 		/*
2966 		 * We didn't get to be the master so we definitely won't be
2967 		 * configuring the chip.  It's a bug if someone else hasn't
2968 		 * configured it already.
2969 		 */
2970 		device_printf(sc->dev, "couldn't be master(%d), "
2971 		    "device not already initialized either(%d).\n", rc, state);
2972 		return (EDOOFUS);
2973 	}
2974 
2975 	/* This is the firmware whose headers the driver was compiled against */
2976 	fw_info = find_fw_info(chip_id(sc));
2977 	if (fw_info == NULL) {
2978 		device_printf(sc->dev,
2979 		    "unable to look up firmware information for chip %d.\n",
2980 		    chip_id(sc));
2981 		return (EINVAL);
2982 	}
2983 	drv_fw = &fw_info->fw_hdr;
2984 
2985 	/*
2986 	 * The firmware KLD contains many modules.  The KLD name is also the
2987 	 * name of the module that contains the default config file.
2988 	 */
2989 	default_cfg = firmware_get(fw_info->kld_name);
2990 
2991 	/* Read the header of the firmware on the card */
2992 	card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
2993 	rc = -t4_read_flash(sc, FLASH_FW_START,
2994 	    sizeof (*card_fw) / sizeof (uint32_t), (uint32_t *)card_fw, 1);
2995 	if (rc == 0)
2996 		card_fw_usable = fw_compatible(drv_fw, (const void*)card_fw);
2997 	else {
2998 		device_printf(sc->dev,
2999 		    "Unable to read card's firmware header: %d\n", rc);
3000 		card_fw_usable = 0;
3001 	}
3002 
3003 	/* This is the firmware in the KLD */
3004 	fw = firmware_get(fw_info->fw_mod_name);
3005 	if (fw != NULL) {
3006 		kld_fw = (const void *)fw->data;
3007 		kld_fw_usable = fw_compatible(drv_fw, kld_fw);
3008 	} else {
3009 		kld_fw = NULL;
3010 		kld_fw_usable = 0;
3011 	}
3012 
3013 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3014 	    (!kld_fw_usable || kld_fw->fw_ver == drv_fw->fw_ver)) {
3015 		/*
3016 		 * Common case: the firmware on the card is an exact match and
3017 		 * the KLD is an exact match too, or the KLD is
3018 		 * absent/incompatible.  Note that t4_fw_install = 2 is ignored
3019 		 * here -- use cxgbetool loadfw if you want to reinstall the
3020 		 * same firmware as the one on the card.
3021 		 */
3022 	} else if (kld_fw_usable && state == DEV_STATE_UNINIT &&
3023 	    should_install_kld_fw(sc, card_fw_usable, be32toh(kld_fw->fw_ver),
3024 	    be32toh(card_fw->fw_ver))) {
3025 
3026 		rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
3027 		if (rc != 0) {
3028 			device_printf(sc->dev,
3029 			    "failed to install firmware: %d\n", rc);
3030 			goto done;
3031 		}
3032 
3033 		/* Installed successfully, update the cached header too. */
3034 		memcpy(card_fw, kld_fw, sizeof(*card_fw));
3035 		card_fw_usable = 1;
3036 		need_fw_reset = 0;	/* already reset as part of load_fw */
3037 	}
3038 
3039 	if (!card_fw_usable) {
3040 		uint32_t d, c, k;
3041 
3042 		d = ntohl(drv_fw->fw_ver);
3043 		c = ntohl(card_fw->fw_ver);
3044 		k = kld_fw ? ntohl(kld_fw->fw_ver) : 0;
3045 
3046 		device_printf(sc->dev, "Cannot find a usable firmware: "
3047 		    "fw_install %d, chip state %d, "
3048 		    "driver compiled with %d.%d.%d.%d, "
3049 		    "card has %d.%d.%d.%d, KLD has %d.%d.%d.%d\n",
3050 		    t4_fw_install, state,
3051 		    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3052 		    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d),
3053 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3054 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c),
3055 		    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3056 		    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
3057 		rc = EINVAL;
3058 		goto done;
3059 	}
3060 
3061 	/* Reset device */
3062 	if (need_fw_reset &&
3063 	    (rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST)) != 0) {
3064 		device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
3065 		if (rc != ETIMEDOUT && rc != EIO)
3066 			t4_fw_bye(sc, sc->mbox);
3067 		goto done;
3068 	}
3069 	sc->flags |= FW_OK;
3070 
3071 	rc = get_params__pre_init(sc);
3072 	if (rc != 0)
3073 		goto done; /* error message displayed already */
3074 
3075 	/* Partition adapter resources as specified in the config file. */
3076 	if (state == DEV_STATE_UNINIT) {
3077 
3078 		KASSERT(sc->flags & MASTER_PF,
3079 		    ("%s: trying to change chip settings when not master.",
3080 		    __func__));
3081 
3082 		rc = partition_resources(sc, default_cfg, fw_info->kld_name);
3083 		if (rc != 0)
3084 			goto done;	/* error message displayed already */
3085 
3086 		t4_tweak_chip_settings(sc);
3087 
3088 		/* get basic stuff going */
3089 		rc = -t4_fw_initialize(sc, sc->mbox);
3090 		if (rc != 0) {
3091 			device_printf(sc->dev, "fw init failed: %d.\n", rc);
3092 			goto done;
3093 		}
3094 	} else {
3095 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", pf);
3096 		sc->cfcsum = 0;
3097 	}
3098 
3099 done:
3100 	free(card_fw, M_CXGBE);
3101 	if (fw != NULL)
3102 		firmware_put(fw, FIRMWARE_UNLOAD);
3103 	if (default_cfg != NULL)
3104 		firmware_put(default_cfg, FIRMWARE_UNLOAD);
3105 
3106 	return (rc);
3107 }
3108 
3109 #define FW_PARAM_DEV(param) \
3110 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
3111 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
3112 #define FW_PARAM_PFVF(param) \
3113 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3114 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
3115 
3116 /*
3117  * Partition chip resources for use between various PFs, VFs, etc.
3118  */
3119 static int
3120 partition_resources(struct adapter *sc, const struct firmware *default_cfg,
3121     const char *name_prefix)
3122 {
3123 	const struct firmware *cfg = NULL;
3124 	int rc = 0;
3125 	struct fw_caps_config_cmd caps;
3126 	uint32_t mtype, moff, finicsum, cfcsum;
3127 
3128 	/*
3129 	 * Figure out what configuration file to use.  Pick the default config
3130 	 * file for the card if the user hasn't specified one explicitly.
3131 	 */
3132 	snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", t4_cfg_file);
3133 	if (strncmp(t4_cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
3134 		/* Card specific overrides go here. */
3135 		if (pci_get_device(sc->dev) == 0x440a)
3136 			snprintf(sc->cfg_file, sizeof(sc->cfg_file), UWIRE_CF);
3137 		if (is_fpga(sc))
3138 			snprintf(sc->cfg_file, sizeof(sc->cfg_file), FPGA_CF);
3139 	}
3140 
3141 	/*
3142 	 * We need to load another module if the profile is anything except
3143 	 * "default" or "flash".
3144 	 */
3145 	if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) != 0 &&
3146 	    strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
3147 		char s[32];
3148 
3149 		snprintf(s, sizeof(s), "%s_%s", name_prefix, sc->cfg_file);
3150 		cfg = firmware_get(s);
3151 		if (cfg == NULL) {
3152 			if (default_cfg != NULL) {
3153 				device_printf(sc->dev,
3154 				    "unable to load module \"%s\" for "
3155 				    "configuration profile \"%s\", will use "
3156 				    "the default config file instead.\n",
3157 				    s, sc->cfg_file);
3158 				snprintf(sc->cfg_file, sizeof(sc->cfg_file),
3159 				    "%s", DEFAULT_CF);
3160 			} else {
3161 				device_printf(sc->dev,
3162 				    "unable to load module \"%s\" for "
3163 				    "configuration profile \"%s\", will use "
3164 				    "the config file on the card's flash "
3165 				    "instead.\n", s, sc->cfg_file);
3166 				snprintf(sc->cfg_file, sizeof(sc->cfg_file),
3167 				    "%s", FLASH_CF);
3168 			}
3169 		}
3170 	}
3171 
3172 	if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) == 0 &&
3173 	    default_cfg == NULL) {
3174 		device_printf(sc->dev,
3175 		    "default config file not available, will use the config "
3176 		    "file on the card's flash instead.\n");
3177 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", FLASH_CF);
3178 	}
3179 
3180 	if (strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
3181 		u_int cflen;
3182 		const uint32_t *cfdata;
3183 		uint32_t param, val, addr;
3184 
3185 		KASSERT(cfg != NULL || default_cfg != NULL,
3186 		    ("%s: no config to upload", __func__));
3187 
3188 		/*
3189 		 * Ask the firmware where it wants us to upload the config file.
3190 		 */
3191 		param = FW_PARAM_DEV(CF);
3192 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3193 		if (rc != 0) {
3194 			/* No support for config file?  Shouldn't happen. */
3195 			device_printf(sc->dev,
3196 			    "failed to query config file location: %d.\n", rc);
3197 			goto done;
3198 		}
3199 		mtype = G_FW_PARAMS_PARAM_Y(val);
3200 		moff = G_FW_PARAMS_PARAM_Z(val) << 16;
3201 
3202 		/*
3203 		 * XXX: sheer laziness.  We deliberately added 4 bytes of
3204 		 * useless stuffing/comments at the end of the config file so
3205 		 * it's ok to simply throw away the last remaining bytes when
3206 		 * the config file is not an exact multiple of 4.  This also
3207 		 * helps with the validate_mt_off_len check.
3208 		 */
3209 		if (cfg != NULL) {
3210 			cflen = cfg->datasize & ~3;
3211 			cfdata = cfg->data;
3212 		} else {
3213 			cflen = default_cfg->datasize & ~3;
3214 			cfdata = default_cfg->data;
3215 		}
3216 
3217 		if (cflen > FLASH_CFG_MAX_SIZE) {
3218 			device_printf(sc->dev,
3219 			    "config file too long (%d, max allowed is %d).  "
3220 			    "Will try to use the config on the card, if any.\n",
3221 			    cflen, FLASH_CFG_MAX_SIZE);
3222 			goto use_config_on_flash;
3223 		}
3224 
3225 		rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
3226 		if (rc != 0) {
3227 			device_printf(sc->dev,
3228 			    "%s: addr (%d/0x%x) or len %d is not valid: %d.  "
3229 			    "Will try to use the config on the card, if any.\n",
3230 			    __func__, mtype, moff, cflen, rc);
3231 			goto use_config_on_flash;
3232 		}
3233 		write_via_memwin(sc, 2, addr, cfdata, cflen);
3234 	} else {
3235 use_config_on_flash:
3236 		mtype = FW_MEMTYPE_FLASH;
3237 		moff = t4_flash_cfg_addr(sc);
3238 	}
3239 
3240 	bzero(&caps, sizeof(caps));
3241 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3242 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
3243 	caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
3244 	    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
3245 	    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps));
3246 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3247 	if (rc != 0) {
3248 		device_printf(sc->dev,
3249 		    "failed to pre-process config file: %d "
3250 		    "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
3251 		goto done;
3252 	}
3253 
3254 	finicsum = be32toh(caps.finicsum);
3255 	cfcsum = be32toh(caps.cfcsum);
3256 	if (finicsum != cfcsum) {
3257 		device_printf(sc->dev,
3258 		    "WARNING: config file checksum mismatch: %08x %08x\n",
3259 		    finicsum, cfcsum);
3260 	}
3261 	sc->cfcsum = cfcsum;
3262 
3263 #define LIMIT_CAPS(x) do { \
3264 	caps.x &= htobe16(t4_##x##_allowed); \
3265 } while (0)
3266 
3267 	/*
3268 	 * Let the firmware know what features will (not) be used so it can tune
3269 	 * things accordingly.
3270 	 */
3271 	LIMIT_CAPS(nbmcaps);
3272 	LIMIT_CAPS(linkcaps);
3273 	LIMIT_CAPS(switchcaps);
3274 	LIMIT_CAPS(niccaps);
3275 	LIMIT_CAPS(toecaps);
3276 	LIMIT_CAPS(rdmacaps);
3277 	LIMIT_CAPS(cryptocaps);
3278 	LIMIT_CAPS(iscsicaps);
3279 	LIMIT_CAPS(fcoecaps);
3280 #undef LIMIT_CAPS
3281 
3282 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3283 	    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
3284 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3285 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
3286 	if (rc != 0) {
3287 		device_printf(sc->dev,
3288 		    "failed to process config file: %d.\n", rc);
3289 	}
3290 done:
3291 	if (cfg != NULL)
3292 		firmware_put(cfg, FIRMWARE_UNLOAD);
3293 	return (rc);
3294 }
3295 
3296 /*
3297  * Retrieve parameters that are needed (or nice to have) very early.
3298  */
3299 static int
3300 get_params__pre_init(struct adapter *sc)
3301 {
3302 	int rc;
3303 	uint32_t param[2], val[2];
3304 
3305 	t4_get_version_info(sc);
3306 
3307 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
3308 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
3309 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
3310 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
3311 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
3312 
3313 	snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
3314 	    G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
3315 	    G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
3316 	    G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
3317 	    G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
3318 
3319 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
3320 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
3321 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
3322 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
3323 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
3324 
3325 	snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
3326 	    G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
3327 	    G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
3328 	    G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
3329 	    G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
3330 
3331 	param[0] = FW_PARAM_DEV(PORTVEC);
3332 	param[1] = FW_PARAM_DEV(CCLK);
3333 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3334 	if (rc != 0) {
3335 		device_printf(sc->dev,
3336 		    "failed to query parameters (pre_init): %d.\n", rc);
3337 		return (rc);
3338 	}
3339 
3340 	sc->params.portvec = val[0];
3341 	sc->params.nports = bitcount32(val[0]);
3342 	sc->params.vpd.cclk = val[1];
3343 
3344 	/* Read device log parameters. */
3345 	rc = -t4_init_devlog_params(sc, 1);
3346 	if (rc == 0)
3347 		fixup_devlog_params(sc);
3348 	else {
3349 		device_printf(sc->dev,
3350 		    "failed to get devlog parameters: %d.\n", rc);
3351 		rc = 0;	/* devlog isn't critical for device operation */
3352 	}
3353 
3354 	return (rc);
3355 }
3356 
3357 /*
3358  * Retrieve various parameters that are of interest to the driver.  The device
3359  * has been initialized by the firmware at this point.
3360  */
3361 static int
3362 get_params__post_init(struct adapter *sc)
3363 {
3364 	int rc;
3365 	uint32_t param[7], val[7];
3366 	struct fw_caps_config_cmd caps;
3367 
3368 	param[0] = FW_PARAM_PFVF(IQFLINT_START);
3369 	param[1] = FW_PARAM_PFVF(EQ_START);
3370 	param[2] = FW_PARAM_PFVF(FILTER_START);
3371 	param[3] = FW_PARAM_PFVF(FILTER_END);
3372 	param[4] = FW_PARAM_PFVF(L2T_START);
3373 	param[5] = FW_PARAM_PFVF(L2T_END);
3374 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3375 	if (rc != 0) {
3376 		device_printf(sc->dev,
3377 		    "failed to query parameters (post_init): %d.\n", rc);
3378 		return (rc);
3379 	}
3380 
3381 	sc->sge.iq_start = val[0];
3382 	sc->sge.eq_start = val[1];
3383 	sc->tids.ftid_base = val[2];
3384 	sc->tids.nftids = val[3] - val[2] + 1;
3385 	sc->params.ftid_min = val[2];
3386 	sc->params.ftid_max = val[3];
3387 	sc->vres.l2t.start = val[4];
3388 	sc->vres.l2t.size = val[5] - val[4] + 1;
3389 	KASSERT(sc->vres.l2t.size <= L2T_SIZE,
3390 	    ("%s: L2 table size (%u) larger than expected (%u)",
3391 	    __func__, sc->vres.l2t.size, L2T_SIZE));
3392 
3393 	/* get capabilites */
3394 	bzero(&caps, sizeof(caps));
3395 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3396 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
3397 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3398 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3399 	if (rc != 0) {
3400 		device_printf(sc->dev,
3401 		    "failed to get card capabilities: %d.\n", rc);
3402 		return (rc);
3403 	}
3404 
3405 #define READ_CAPS(x) do { \
3406 	sc->x = htobe16(caps.x); \
3407 } while (0)
3408 	READ_CAPS(nbmcaps);
3409 	READ_CAPS(linkcaps);
3410 	READ_CAPS(switchcaps);
3411 	READ_CAPS(niccaps);
3412 	READ_CAPS(toecaps);
3413 	READ_CAPS(rdmacaps);
3414 	READ_CAPS(cryptocaps);
3415 	READ_CAPS(iscsicaps);
3416 	READ_CAPS(fcoecaps);
3417 
3418 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
3419 		param[0] = FW_PARAM_PFVF(ETHOFLD_START);
3420 		param[1] = FW_PARAM_PFVF(ETHOFLD_END);
3421 		param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3422 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
3423 		if (rc != 0) {
3424 			device_printf(sc->dev,
3425 			    "failed to query NIC parameters: %d.\n", rc);
3426 			return (rc);
3427 		}
3428 		sc->tids.etid_base = val[0];
3429 		sc->params.etid_min = val[0];
3430 		sc->tids.netids = val[1] - val[0] + 1;
3431 		sc->params.netids = sc->tids.netids;
3432 		sc->params.eo_wr_cred = val[2];
3433 		sc->params.ethoffload = 1;
3434 	}
3435 
3436 	if (sc->toecaps) {
3437 		/* query offload-related parameters */
3438 		param[0] = FW_PARAM_DEV(NTID);
3439 		param[1] = FW_PARAM_PFVF(SERVER_START);
3440 		param[2] = FW_PARAM_PFVF(SERVER_END);
3441 		param[3] = FW_PARAM_PFVF(TDDP_START);
3442 		param[4] = FW_PARAM_PFVF(TDDP_END);
3443 		param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3444 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3445 		if (rc != 0) {
3446 			device_printf(sc->dev,
3447 			    "failed to query TOE parameters: %d.\n", rc);
3448 			return (rc);
3449 		}
3450 		sc->tids.ntids = val[0];
3451 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
3452 		sc->tids.stid_base = val[1];
3453 		sc->tids.nstids = val[2] - val[1] + 1;
3454 		sc->vres.ddp.start = val[3];
3455 		sc->vres.ddp.size = val[4] - val[3] + 1;
3456 		sc->params.ofldq_wr_cred = val[5];
3457 		sc->params.offload = 1;
3458 	}
3459 	if (sc->rdmacaps) {
3460 		param[0] = FW_PARAM_PFVF(STAG_START);
3461 		param[1] = FW_PARAM_PFVF(STAG_END);
3462 		param[2] = FW_PARAM_PFVF(RQ_START);
3463 		param[3] = FW_PARAM_PFVF(RQ_END);
3464 		param[4] = FW_PARAM_PFVF(PBL_START);
3465 		param[5] = FW_PARAM_PFVF(PBL_END);
3466 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3467 		if (rc != 0) {
3468 			device_printf(sc->dev,
3469 			    "failed to query RDMA parameters(1): %d.\n", rc);
3470 			return (rc);
3471 		}
3472 		sc->vres.stag.start = val[0];
3473 		sc->vres.stag.size = val[1] - val[0] + 1;
3474 		sc->vres.rq.start = val[2];
3475 		sc->vres.rq.size = val[3] - val[2] + 1;
3476 		sc->vres.pbl.start = val[4];
3477 		sc->vres.pbl.size = val[5] - val[4] + 1;
3478 
3479 		param[0] = FW_PARAM_PFVF(SQRQ_START);
3480 		param[1] = FW_PARAM_PFVF(SQRQ_END);
3481 		param[2] = FW_PARAM_PFVF(CQ_START);
3482 		param[3] = FW_PARAM_PFVF(CQ_END);
3483 		param[4] = FW_PARAM_PFVF(OCQ_START);
3484 		param[5] = FW_PARAM_PFVF(OCQ_END);
3485 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3486 		if (rc != 0) {
3487 			device_printf(sc->dev,
3488 			    "failed to query RDMA parameters(2): %d.\n", rc);
3489 			return (rc);
3490 		}
3491 		sc->vres.qp.start = val[0];
3492 		sc->vres.qp.size = val[1] - val[0] + 1;
3493 		sc->vres.cq.start = val[2];
3494 		sc->vres.cq.size = val[3] - val[2] + 1;
3495 		sc->vres.ocq.start = val[4];
3496 		sc->vres.ocq.size = val[5] - val[4] + 1;
3497 
3498 		param[0] = FW_PARAM_PFVF(SRQ_START);
3499 		param[1] = FW_PARAM_PFVF(SRQ_END);
3500 		param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
3501 		param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3502 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
3503 		if (rc != 0) {
3504 			device_printf(sc->dev,
3505 			    "failed to query RDMA parameters(3): %d.\n", rc);
3506 			return (rc);
3507 		}
3508 		sc->vres.srq.start = val[0];
3509 		sc->vres.srq.size = val[1] - val[0] + 1;
3510 		sc->params.max_ordird_qp = val[2];
3511 		sc->params.max_ird_adapter = val[3];
3512 	}
3513 	if (sc->iscsicaps) {
3514 		param[0] = FW_PARAM_PFVF(ISCSI_START);
3515 		param[1] = FW_PARAM_PFVF(ISCSI_END);
3516 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3517 		if (rc != 0) {
3518 			device_printf(sc->dev,
3519 			    "failed to query iSCSI parameters: %d.\n", rc);
3520 			return (rc);
3521 		}
3522 		sc->vres.iscsi.start = val[0];
3523 		sc->vres.iscsi.size = val[1] - val[0] + 1;
3524 	}
3525 
3526 	t4_init_sge_params(sc);
3527 
3528 	/*
3529 	 * We've got the params we wanted to query via the firmware.  Now grab
3530 	 * some others directly from the chip.
3531 	 */
3532 	rc = t4_read_chip_settings(sc);
3533 
3534 	return (rc);
3535 }
3536 
3537 static int
3538 set_params__post_init(struct adapter *sc)
3539 {
3540 	uint32_t param, val;
3541 
3542 	/* ask for encapsulated CPLs */
3543 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3544 	val = 1;
3545 	(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3546 
3547 	return (0);
3548 }
3549 
3550 #undef FW_PARAM_PFVF
3551 #undef FW_PARAM_DEV
3552 
3553 static void
3554 t4_set_desc(struct adapter *sc)
3555 {
3556 	char buf[128];
3557 	struct adapter_params *p = &sc->params;
3558 
3559 	snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
3560 
3561 	device_set_desc_copy(sc->dev, buf);
3562 }
3563 
3564 static void
3565 build_medialist(struct port_info *pi, struct ifmedia *media)
3566 {
3567 	int m;
3568 
3569 	PORT_LOCK(pi);
3570 
3571 	ifmedia_removeall(media);
3572 
3573 	m = IFM_ETHER | IFM_FDX;
3574 
3575 	switch(pi->port_type) {
3576 	case FW_PORT_TYPE_BT_XFI:
3577 	case FW_PORT_TYPE_BT_XAUI:
3578 		ifmedia_add(media, m | IFM_10G_T, 0, NULL);
3579 		/* fall through */
3580 
3581 	case FW_PORT_TYPE_BT_SGMII:
3582 		ifmedia_add(media, m | IFM_1000_T, 0, NULL);
3583 		ifmedia_add(media, m | IFM_100_TX, 0, NULL);
3584 		ifmedia_add(media, IFM_ETHER | IFM_AUTO, 0, NULL);
3585 		ifmedia_set(media, IFM_ETHER | IFM_AUTO);
3586 		break;
3587 
3588 	case FW_PORT_TYPE_CX4:
3589 		ifmedia_add(media, m | IFM_10G_CX4, 0, NULL);
3590 		ifmedia_set(media, m | IFM_10G_CX4);
3591 		break;
3592 
3593 	case FW_PORT_TYPE_QSFP_10G:
3594 	case FW_PORT_TYPE_SFP:
3595 	case FW_PORT_TYPE_FIBER_XFI:
3596 	case FW_PORT_TYPE_FIBER_XAUI:
3597 		switch (pi->mod_type) {
3598 
3599 		case FW_PORT_MOD_TYPE_LR:
3600 			ifmedia_add(media, m | IFM_10G_LR, 0, NULL);
3601 			ifmedia_set(media, m | IFM_10G_LR);
3602 			break;
3603 
3604 		case FW_PORT_MOD_TYPE_SR:
3605 			ifmedia_add(media, m | IFM_10G_SR, 0, NULL);
3606 			ifmedia_set(media, m | IFM_10G_SR);
3607 			break;
3608 
3609 		case FW_PORT_MOD_TYPE_LRM:
3610 			ifmedia_add(media, m | IFM_10G_LRM, 0, NULL);
3611 			ifmedia_set(media, m | IFM_10G_LRM);
3612 			break;
3613 
3614 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3615 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3616 			ifmedia_add(media, m | IFM_10G_TWINAX, 0, NULL);
3617 			ifmedia_set(media, m | IFM_10G_TWINAX);
3618 			break;
3619 
3620 		case FW_PORT_MOD_TYPE_NONE:
3621 			m &= ~IFM_FDX;
3622 			ifmedia_add(media, m | IFM_NONE, 0, NULL);
3623 			ifmedia_set(media, m | IFM_NONE);
3624 			break;
3625 
3626 		case FW_PORT_MOD_TYPE_NA:
3627 		case FW_PORT_MOD_TYPE_ER:
3628 		default:
3629 			device_printf(pi->dev,
3630 			    "unknown port_type (%d), mod_type (%d)\n",
3631 			    pi->port_type, pi->mod_type);
3632 			ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3633 			ifmedia_set(media, m | IFM_UNKNOWN);
3634 			break;
3635 		}
3636 		break;
3637 
3638 	case FW_PORT_TYPE_CR_QSFP:
3639 	case FW_PORT_TYPE_SFP28:
3640 	case FW_PORT_TYPE_KR_SFP28:
3641 		switch (pi->mod_type) {
3642 
3643 		case FW_PORT_MOD_TYPE_SR:
3644 			ifmedia_add(media, m | IFM_25G_SR, 0, NULL);
3645 			ifmedia_set(media, m | IFM_25G_SR);
3646 			break;
3647 
3648 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3649 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3650 			ifmedia_add(media, m | IFM_25G_CR, 0, NULL);
3651 			ifmedia_set(media, m | IFM_25G_CR);
3652 			break;
3653 
3654 		case FW_PORT_MOD_TYPE_NONE:
3655 			m &= ~IFM_FDX;
3656 			ifmedia_add(media, m | IFM_NONE, 0, NULL);
3657 			ifmedia_set(media, m | IFM_NONE);
3658 			break;
3659 
3660 		default:
3661 			device_printf(pi->dev,
3662 			    "unknown port_type (%d), mod_type (%d)\n",
3663 			    pi->port_type, pi->mod_type);
3664 			ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3665 			ifmedia_set(media, m | IFM_UNKNOWN);
3666 			break;
3667 		}
3668 		break;
3669 
3670 	case FW_PORT_TYPE_QSFP:
3671 		switch (pi->mod_type) {
3672 
3673 		case FW_PORT_MOD_TYPE_LR:
3674 			ifmedia_add(media, m | IFM_40G_LR4, 0, NULL);
3675 			ifmedia_set(media, m | IFM_40G_LR4);
3676 			break;
3677 
3678 		case FW_PORT_MOD_TYPE_SR:
3679 			ifmedia_add(media, m | IFM_40G_SR4, 0, NULL);
3680 			ifmedia_set(media, m | IFM_40G_SR4);
3681 			break;
3682 
3683 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3684 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3685 			ifmedia_add(media, m | IFM_40G_CR4, 0, NULL);
3686 			ifmedia_set(media, m | IFM_40G_CR4);
3687 			break;
3688 
3689 		case FW_PORT_MOD_TYPE_NONE:
3690 			m &= ~IFM_FDX;
3691 			ifmedia_add(media, m | IFM_NONE, 0, NULL);
3692 			ifmedia_set(media, m | IFM_NONE);
3693 			break;
3694 
3695 		default:
3696 			device_printf(pi->dev,
3697 			    "unknown port_type (%d), mod_type (%d)\n",
3698 			    pi->port_type, pi->mod_type);
3699 			ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3700 			ifmedia_set(media, m | IFM_UNKNOWN);
3701 			break;
3702 		}
3703 		break;
3704 
3705 	case FW_PORT_TYPE_KR4_100G:
3706 	case FW_PORT_TYPE_CR4_QSFP:
3707 		switch (pi->mod_type) {
3708 
3709 		case FW_PORT_MOD_TYPE_LR:
3710 			ifmedia_add(media, m | IFM_100G_LR4, 0, NULL);
3711 			ifmedia_set(media, m | IFM_100G_LR4);
3712 			break;
3713 
3714 		case FW_PORT_MOD_TYPE_SR:
3715 			ifmedia_add(media, m | IFM_100G_SR4, 0, NULL);
3716 			ifmedia_set(media, m | IFM_100G_SR4);
3717 			break;
3718 
3719 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3720 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3721 			ifmedia_add(media, m | IFM_100G_CR4, 0, NULL);
3722 			ifmedia_set(media, m | IFM_100G_CR4);
3723 			break;
3724 
3725 		case FW_PORT_MOD_TYPE_NONE:
3726 			m &= ~IFM_FDX;
3727 			ifmedia_add(media, m | IFM_NONE, 0, NULL);
3728 			ifmedia_set(media, m | IFM_NONE);
3729 			break;
3730 
3731 		default:
3732 			device_printf(pi->dev,
3733 			    "unknown port_type (%d), mod_type (%d)\n",
3734 			    pi->port_type, pi->mod_type);
3735 			ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3736 			ifmedia_set(media, m | IFM_UNKNOWN);
3737 			break;
3738 		}
3739 		break;
3740 
3741 	default:
3742 		device_printf(pi->dev,
3743 		    "unknown port_type (%d), mod_type (%d)\n", pi->port_type,
3744 		    pi->mod_type);
3745 		ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3746 		ifmedia_set(media, m | IFM_UNKNOWN);
3747 		break;
3748 	}
3749 
3750 	PORT_UNLOCK(pi);
3751 }
3752 
3753 #define FW_MAC_EXACT_CHUNK	7
3754 
3755 /*
3756  * Program the port's XGMAC based on parameters in ifnet.  The caller also
3757  * indicates which parameters should be programmed (the rest are left alone).
3758  */
3759 int
3760 update_mac_settings(struct ifnet *ifp, int flags)
3761 {
3762 	int rc = 0;
3763 	struct vi_info *vi = ifp->if_softc;
3764 	struct port_info *pi = vi->pi;
3765 	struct adapter *sc = pi->adapter;
3766 	int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
3767 
3768 	ASSERT_SYNCHRONIZED_OP(sc);
3769 	KASSERT(flags, ("%s: not told what to update.", __func__));
3770 
3771 	if (flags & XGMAC_MTU)
3772 		mtu = ifp->if_mtu;
3773 
3774 	if (flags & XGMAC_PROMISC)
3775 		promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
3776 
3777 	if (flags & XGMAC_ALLMULTI)
3778 		allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
3779 
3780 	if (flags & XGMAC_VLANEX)
3781 		vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
3782 
3783 	if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
3784 		rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
3785 		    allmulti, 1, vlanex, false);
3786 		if (rc) {
3787 			if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
3788 			    rc);
3789 			return (rc);
3790 		}
3791 	}
3792 
3793 	if (flags & XGMAC_UCADDR) {
3794 		uint8_t ucaddr[ETHER_ADDR_LEN];
3795 
3796 		bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
3797 		rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
3798 		    ucaddr, true, true);
3799 		if (rc < 0) {
3800 			rc = -rc;
3801 			if_printf(ifp, "change_mac failed: %d\n", rc);
3802 			return (rc);
3803 		} else {
3804 			vi->xact_addr_filt = rc;
3805 			rc = 0;
3806 		}
3807 	}
3808 
3809 	if (flags & XGMAC_MCADDRS) {
3810 		const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
3811 		int del = 1;
3812 		uint64_t hash = 0;
3813 		struct ifmultiaddr *ifma;
3814 		int i = 0, j;
3815 
3816 		if_maddr_rlock(ifp);
3817 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3818 			if (ifma->ifma_addr->sa_family != AF_LINK)
3819 				continue;
3820 			mcaddr[i] =
3821 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
3822 			MPASS(ETHER_IS_MULTICAST(mcaddr[i]));
3823 			i++;
3824 
3825 			if (i == FW_MAC_EXACT_CHUNK) {
3826 				rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
3827 				    del, i, mcaddr, NULL, &hash, 0);
3828 				if (rc < 0) {
3829 					rc = -rc;
3830 					for (j = 0; j < i; j++) {
3831 						if_printf(ifp,
3832 						    "failed to add mc address"
3833 						    " %02x:%02x:%02x:"
3834 						    "%02x:%02x:%02x rc=%d\n",
3835 						    mcaddr[j][0], mcaddr[j][1],
3836 						    mcaddr[j][2], mcaddr[j][3],
3837 						    mcaddr[j][4], mcaddr[j][5],
3838 						    rc);
3839 					}
3840 					goto mcfail;
3841 				}
3842 				del = 0;
3843 				i = 0;
3844 			}
3845 		}
3846 		if (i > 0) {
3847 			rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i,
3848 			    mcaddr, NULL, &hash, 0);
3849 			if (rc < 0) {
3850 				rc = -rc;
3851 				for (j = 0; j < i; j++) {
3852 					if_printf(ifp,
3853 					    "failed to add mc address"
3854 					    " %02x:%02x:%02x:"
3855 					    "%02x:%02x:%02x rc=%d\n",
3856 					    mcaddr[j][0], mcaddr[j][1],
3857 					    mcaddr[j][2], mcaddr[j][3],
3858 					    mcaddr[j][4], mcaddr[j][5],
3859 					    rc);
3860 				}
3861 				goto mcfail;
3862 			}
3863 		}
3864 
3865 		rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0);
3866 		if (rc != 0)
3867 			if_printf(ifp, "failed to set mc address hash: %d", rc);
3868 mcfail:
3869 		if_maddr_runlock(ifp);
3870 	}
3871 
3872 	return (rc);
3873 }
3874 
3875 /*
3876  * {begin|end}_synchronized_op must be called from the same thread.
3877  */
3878 int
3879 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
3880     char *wmesg)
3881 {
3882 	int rc, pri;
3883 
3884 #ifdef WITNESS
3885 	/* the caller thinks it's ok to sleep, but is it really? */
3886 	if (flags & SLEEP_OK)
3887 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3888 		    "begin_synchronized_op");
3889 #endif
3890 
3891 	if (INTR_OK)
3892 		pri = PCATCH;
3893 	else
3894 		pri = 0;
3895 
3896 	ADAPTER_LOCK(sc);
3897 	for (;;) {
3898 
3899 		if (vi && IS_DOOMED(vi)) {
3900 			rc = ENXIO;
3901 			goto done;
3902 		}
3903 
3904 		if (!IS_BUSY(sc)) {
3905 			rc = 0;
3906 			break;
3907 		}
3908 
3909 		if (!(flags & SLEEP_OK)) {
3910 			rc = EBUSY;
3911 			goto done;
3912 		}
3913 
3914 		if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
3915 			rc = EINTR;
3916 			goto done;
3917 		}
3918 	}
3919 
3920 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
3921 	SET_BUSY(sc);
3922 #ifdef INVARIANTS
3923 	sc->last_op = wmesg;
3924 	sc->last_op_thr = curthread;
3925 	sc->last_op_flags = flags;
3926 #endif
3927 
3928 done:
3929 	if (!(flags & HOLD_LOCK) || rc)
3930 		ADAPTER_UNLOCK(sc);
3931 
3932 	return (rc);
3933 }
3934 
3935 /*
3936  * Tell if_ioctl and if_init that the VI is going away.  This is
3937  * special variant of begin_synchronized_op and must be paired with a
3938  * call to end_synchronized_op.
3939  */
3940 void
3941 doom_vi(struct adapter *sc, struct vi_info *vi)
3942 {
3943 
3944 	ADAPTER_LOCK(sc);
3945 	SET_DOOMED(vi);
3946 	wakeup(&sc->flags);
3947 	while (IS_BUSY(sc))
3948 		mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
3949 	SET_BUSY(sc);
3950 #ifdef INVARIANTS
3951 	sc->last_op = "t4detach";
3952 	sc->last_op_thr = curthread;
3953 	sc->last_op_flags = 0;
3954 #endif
3955 	ADAPTER_UNLOCK(sc);
3956 }
3957 
3958 /*
3959  * {begin|end}_synchronized_op must be called from the same thread.
3960  */
3961 void
3962 end_synchronized_op(struct adapter *sc, int flags)
3963 {
3964 
3965 	if (flags & LOCK_HELD)
3966 		ADAPTER_LOCK_ASSERT_OWNED(sc);
3967 	else
3968 		ADAPTER_LOCK(sc);
3969 
3970 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
3971 	CLR_BUSY(sc);
3972 	wakeup(&sc->flags);
3973 	ADAPTER_UNLOCK(sc);
3974 }
3975 
3976 static int
3977 cxgbe_init_synchronized(struct vi_info *vi)
3978 {
3979 	struct port_info *pi = vi->pi;
3980 	struct adapter *sc = pi->adapter;
3981 	struct ifnet *ifp = vi->ifp;
3982 	int rc = 0, i;
3983 	struct sge_txq *txq;
3984 
3985 	ASSERT_SYNCHRONIZED_OP(sc);
3986 
3987 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3988 		return (0);	/* already running */
3989 
3990 	if (!(sc->flags & FULL_INIT_DONE) &&
3991 	    ((rc = adapter_full_init(sc)) != 0))
3992 		return (rc);	/* error message displayed already */
3993 
3994 	if (!(vi->flags & VI_INIT_DONE) &&
3995 	    ((rc = vi_full_init(vi)) != 0))
3996 		return (rc); /* error message displayed already */
3997 
3998 	rc = update_mac_settings(ifp, XGMAC_ALL);
3999 	if (rc)
4000 		goto done;	/* error message displayed already */
4001 
4002 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
4003 	if (rc != 0) {
4004 		if_printf(ifp, "enable_vi failed: %d\n", rc);
4005 		goto done;
4006 	}
4007 
4008 	/*
4009 	 * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
4010 	 * if this changes.
4011 	 */
4012 
4013 	for_each_txq(vi, i, txq) {
4014 		TXQ_LOCK(txq);
4015 		txq->eq.flags |= EQ_ENABLED;
4016 		TXQ_UNLOCK(txq);
4017 	}
4018 
4019 	/*
4020 	 * The first iq of the first port to come up is used for tracing.
4021 	 */
4022 	if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
4023 		sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
4024 		t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
4025 		    A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
4026 		    V_QUEUENUMBER(sc->traceq));
4027 		pi->flags |= HAS_TRACEQ;
4028 	}
4029 
4030 	/* all ok */
4031 	PORT_LOCK(pi);
4032 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4033 	pi->up_vis++;
4034 
4035 	if (pi->nvi > 1 || sc->flags & IS_VF)
4036 		callout_reset(&vi->tick, hz, vi_tick, vi);
4037 	else
4038 		callout_reset(&pi->tick, hz, cxgbe_tick, pi);
4039 	PORT_UNLOCK(pi);
4040 done:
4041 	if (rc != 0)
4042 		cxgbe_uninit_synchronized(vi);
4043 
4044 	return (rc);
4045 }
4046 
4047 /*
4048  * Idempotent.
4049  */
4050 static int
4051 cxgbe_uninit_synchronized(struct vi_info *vi)
4052 {
4053 	struct port_info *pi = vi->pi;
4054 	struct adapter *sc = pi->adapter;
4055 	struct ifnet *ifp = vi->ifp;
4056 	int rc, i;
4057 	struct sge_txq *txq;
4058 
4059 	ASSERT_SYNCHRONIZED_OP(sc);
4060 
4061 	if (!(vi->flags & VI_INIT_DONE)) {
4062 		KASSERT(!(ifp->if_drv_flags & IFF_DRV_RUNNING),
4063 		    ("uninited VI is running"));
4064 		return (0);
4065 	}
4066 
4067 	/*
4068 	 * Disable the VI so that all its data in either direction is discarded
4069 	 * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
4070 	 * tick) intact as the TP can deliver negative advice or data that it's
4071 	 * holding in its RAM (for an offloaded connection) even after the VI is
4072 	 * disabled.
4073 	 */
4074 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
4075 	if (rc) {
4076 		if_printf(ifp, "disable_vi failed: %d\n", rc);
4077 		return (rc);
4078 	}
4079 
4080 	for_each_txq(vi, i, txq) {
4081 		TXQ_LOCK(txq);
4082 		txq->eq.flags &= ~EQ_ENABLED;
4083 		TXQ_UNLOCK(txq);
4084 	}
4085 
4086 	PORT_LOCK(pi);
4087 	if (pi->nvi > 1 || sc->flags & IS_VF)
4088 		callout_stop(&vi->tick);
4089 	else
4090 		callout_stop(&pi->tick);
4091 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4092 		PORT_UNLOCK(pi);
4093 		return (0);
4094 	}
4095 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4096 	pi->up_vis--;
4097 	if (pi->up_vis > 0) {
4098 		PORT_UNLOCK(pi);
4099 		return (0);
4100 	}
4101 	PORT_UNLOCK(pi);
4102 
4103 	pi->link_cfg.link_ok = 0;
4104 	pi->link_cfg.speed = 0;
4105 	pi->link_cfg.link_down_rc = 255;
4106 	t4_os_link_changed(sc, pi->port_id, 0);
4107 
4108 	return (0);
4109 }
4110 
4111 /*
4112  * It is ok for this function to fail midway and return right away.  t4_detach
4113  * will walk the entire sc->irq list and clean up whatever is valid.
4114  */
4115 int
4116 t4_setup_intr_handlers(struct adapter *sc)
4117 {
4118 	int rc, rid, p, q, v;
4119 	char s[8];
4120 	struct irq *irq;
4121 	struct port_info *pi;
4122 	struct vi_info *vi;
4123 	struct sge *sge = &sc->sge;
4124 	struct sge_rxq *rxq;
4125 #ifdef TCP_OFFLOAD
4126 	struct sge_ofld_rxq *ofld_rxq;
4127 #endif
4128 #ifdef DEV_NETMAP
4129 	struct sge_nm_rxq *nm_rxq;
4130 #endif
4131 #ifdef RSS
4132 	int nbuckets = rss_getnumbuckets();
4133 #endif
4134 
4135 	/*
4136 	 * Setup interrupts.
4137 	 */
4138 	irq = &sc->irq[0];
4139 	rid = sc->intr_type == INTR_INTX ? 0 : 1;
4140 	if (sc->intr_count == 1)
4141 		return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
4142 
4143 	/* Multiple interrupts. */
4144 	if (sc->flags & IS_VF)
4145 		KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
4146 		    ("%s: too few intr.", __func__));
4147 	else
4148 		KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
4149 		    ("%s: too few intr.", __func__));
4150 
4151 	/* The first one is always error intr on PFs */
4152 	if (!(sc->flags & IS_VF)) {
4153 		rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
4154 		if (rc != 0)
4155 			return (rc);
4156 		irq++;
4157 		rid++;
4158 	}
4159 
4160 	/* The second one is always the firmware event queue (first on VFs) */
4161 	rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
4162 	if (rc != 0)
4163 		return (rc);
4164 	irq++;
4165 	rid++;
4166 
4167 	for_each_port(sc, p) {
4168 		pi = sc->port[p];
4169 		for_each_vi(pi, v, vi) {
4170 			vi->first_intr = rid - 1;
4171 
4172 			if (vi->nnmrxq > 0) {
4173 				int n = max(vi->nrxq, vi->nnmrxq);
4174 
4175 				MPASS(vi->flags & INTR_RXQ);
4176 
4177 				rxq = &sge->rxq[vi->first_rxq];
4178 #ifdef DEV_NETMAP
4179 				nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
4180 #endif
4181 				for (q = 0; q < n; q++) {
4182 					snprintf(s, sizeof(s), "%x%c%x", p,
4183 					    'a' + v, q);
4184 					if (q < vi->nrxq)
4185 						irq->rxq = rxq++;
4186 #ifdef DEV_NETMAP
4187 					if (q < vi->nnmrxq)
4188 						irq->nm_rxq = nm_rxq++;
4189 #endif
4190 					rc = t4_alloc_irq(sc, irq, rid,
4191 					    t4_vi_intr, irq, s);
4192 					if (rc != 0)
4193 						return (rc);
4194 					irq++;
4195 					rid++;
4196 					vi->nintr++;
4197 				}
4198 			} else if (vi->flags & INTR_RXQ) {
4199 				for_each_rxq(vi, q, rxq) {
4200 					snprintf(s, sizeof(s), "%x%c%x", p,
4201 					    'a' + v, q);
4202 					rc = t4_alloc_irq(sc, irq, rid,
4203 					    t4_intr, rxq, s);
4204 					if (rc != 0)
4205 						return (rc);
4206 #ifdef RSS
4207 					bus_bind_intr(sc->dev, irq->res,
4208 					    rss_getcpu(q % nbuckets));
4209 #endif
4210 					irq++;
4211 					rid++;
4212 					vi->nintr++;
4213 				}
4214 			}
4215 #ifdef TCP_OFFLOAD
4216 			if (vi->flags & INTR_OFLD_RXQ) {
4217 				for_each_ofld_rxq(vi, q, ofld_rxq) {
4218 					snprintf(s, sizeof(s), "%x%c%x", p,
4219 					    'A' + v, q);
4220 					rc = t4_alloc_irq(sc, irq, rid,
4221 					    t4_intr, ofld_rxq, s);
4222 					if (rc != 0)
4223 						return (rc);
4224 					irq++;
4225 					rid++;
4226 					vi->nintr++;
4227 				}
4228 			}
4229 #endif
4230 		}
4231 	}
4232 	MPASS(irq == &sc->irq[sc->intr_count]);
4233 
4234 	return (0);
4235 }
4236 
4237 int
4238 adapter_full_init(struct adapter *sc)
4239 {
4240 	int rc, i;
4241 #ifdef RSS
4242 	uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
4243 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
4244 #endif
4245 
4246 	ASSERT_SYNCHRONIZED_OP(sc);
4247 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
4248 	KASSERT((sc->flags & FULL_INIT_DONE) == 0,
4249 	    ("%s: FULL_INIT_DONE already", __func__));
4250 
4251 	/*
4252 	 * queues that belong to the adapter (not any particular port).
4253 	 */
4254 	rc = t4_setup_adapter_queues(sc);
4255 	if (rc != 0)
4256 		goto done;
4257 
4258 	for (i = 0; i < nitems(sc->tq); i++) {
4259 		sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
4260 		    taskqueue_thread_enqueue, &sc->tq[i]);
4261 		if (sc->tq[i] == NULL) {
4262 			device_printf(sc->dev,
4263 			    "failed to allocate task queue %d\n", i);
4264 			rc = ENOMEM;
4265 			goto done;
4266 		}
4267 		taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
4268 		    device_get_nameunit(sc->dev), i);
4269 	}
4270 #ifdef RSS
4271 	MPASS(RSS_KEYSIZE == 40);
4272 	rss_getkey((void *)&raw_rss_key[0]);
4273 	for (i = 0; i < nitems(rss_key); i++) {
4274 		rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
4275 	}
4276 	t4_write_rss_key(sc, &rss_key[0], -1);
4277 #endif
4278 
4279 	if (!(sc->flags & IS_VF))
4280 		t4_intr_enable(sc);
4281 	sc->flags |= FULL_INIT_DONE;
4282 done:
4283 	if (rc != 0)
4284 		adapter_full_uninit(sc);
4285 
4286 	return (rc);
4287 }
4288 
4289 int
4290 adapter_full_uninit(struct adapter *sc)
4291 {
4292 	int i;
4293 
4294 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
4295 
4296 	t4_teardown_adapter_queues(sc);
4297 
4298 	for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
4299 		taskqueue_free(sc->tq[i]);
4300 		sc->tq[i] = NULL;
4301 	}
4302 
4303 	sc->flags &= ~FULL_INIT_DONE;
4304 
4305 	return (0);
4306 }
4307 
4308 #ifdef RSS
4309 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
4310     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
4311     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
4312     RSS_HASHTYPE_RSS_UDP_IPV6)
4313 
4314 /* Translates kernel hash types to hardware. */
4315 static int
4316 hashconfig_to_hashen(int hashconfig)
4317 {
4318 	int hashen = 0;
4319 
4320 	if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
4321 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
4322 	if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
4323 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
4324 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
4325 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
4326 		    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
4327 	}
4328 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
4329 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
4330 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
4331 	}
4332 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
4333 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
4334 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
4335 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
4336 
4337 	return (hashen);
4338 }
4339 
4340 /* Translates hardware hash types to kernel. */
4341 static int
4342 hashen_to_hashconfig(int hashen)
4343 {
4344 	int hashconfig = 0;
4345 
4346 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
4347 		/*
4348 		 * If UDP hashing was enabled it must have been enabled for
4349 		 * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
4350 		 * enabling any 4-tuple hash is nonsense configuration.
4351 		 */
4352 		MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
4353 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
4354 
4355 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
4356 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
4357 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
4358 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
4359 	}
4360 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
4361 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
4362 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
4363 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
4364 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
4365 		hashconfig |= RSS_HASHTYPE_RSS_IPV4;
4366 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
4367 		hashconfig |= RSS_HASHTYPE_RSS_IPV6;
4368 
4369 	return (hashconfig);
4370 }
4371 #endif
4372 
4373 int
4374 vi_full_init(struct vi_info *vi)
4375 {
4376 	struct adapter *sc = vi->pi->adapter;
4377 	struct ifnet *ifp = vi->ifp;
4378 	uint16_t *rss;
4379 	struct sge_rxq *rxq;
4380 	int rc, i, j, hashen;
4381 #ifdef RSS
4382 	int nbuckets = rss_getnumbuckets();
4383 	int hashconfig = rss_gethashconfig();
4384 	int extra;
4385 #endif
4386 
4387 	ASSERT_SYNCHRONIZED_OP(sc);
4388 	KASSERT((vi->flags & VI_INIT_DONE) == 0,
4389 	    ("%s: VI_INIT_DONE already", __func__));
4390 
4391 	sysctl_ctx_init(&vi->ctx);
4392 	vi->flags |= VI_SYSCTL_CTX;
4393 
4394 	/*
4395 	 * Allocate tx/rx/fl queues for this VI.
4396 	 */
4397 	rc = t4_setup_vi_queues(vi);
4398 	if (rc != 0)
4399 		goto done;	/* error message displayed already */
4400 
4401 	/*
4402 	 * Setup RSS for this VI.  Save a copy of the RSS table for later use.
4403 	 */
4404 	if (vi->nrxq > vi->rss_size) {
4405 		if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); "
4406 		    "some queues will never receive traffic.\n", vi->nrxq,
4407 		    vi->rss_size);
4408 	} else if (vi->rss_size % vi->nrxq) {
4409 		if_printf(ifp, "nrxq (%d), hw RSS table size (%d); "
4410 		    "expect uneven traffic distribution.\n", vi->nrxq,
4411 		    vi->rss_size);
4412 	}
4413 #ifdef RSS
4414 	if (vi->nrxq != nbuckets) {
4415 		if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);"
4416 		    "performance will be impacted.\n", vi->nrxq, nbuckets);
4417 	}
4418 #endif
4419 	rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK);
4420 	for (i = 0; i < vi->rss_size;) {
4421 #ifdef RSS
4422 		j = rss_get_indirection_to_bucket(i);
4423 		j %= vi->nrxq;
4424 		rxq = &sc->sge.rxq[vi->first_rxq + j];
4425 		rss[i++] = rxq->iq.abs_id;
4426 #else
4427 		for_each_rxq(vi, j, rxq) {
4428 			rss[i++] = rxq->iq.abs_id;
4429 			if (i == vi->rss_size)
4430 				break;
4431 		}
4432 #endif
4433 	}
4434 
4435 	rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss,
4436 	    vi->rss_size);
4437 	if (rc != 0) {
4438 		if_printf(ifp, "rss_config failed: %d\n", rc);
4439 		goto done;
4440 	}
4441 
4442 #ifdef RSS
4443 	hashen = hashconfig_to_hashen(hashconfig);
4444 
4445 	/*
4446 	 * We may have had to enable some hashes even though the global config
4447 	 * wants them disabled.  This is a potential problem that must be
4448 	 * reported to the user.
4449 	 */
4450 	extra = hashen_to_hashconfig(hashen) ^ hashconfig;
4451 
4452 	/*
4453 	 * If we consider only the supported hash types, then the enabled hashes
4454 	 * are a superset of the requested hashes.  In other words, there cannot
4455 	 * be any supported hash that was requested but not enabled, but there
4456 	 * can be hashes that were not requested but had to be enabled.
4457 	 */
4458 	extra &= SUPPORTED_RSS_HASHTYPES;
4459 	MPASS((extra & hashconfig) == 0);
4460 
4461 	if (extra) {
4462 		if_printf(ifp,
4463 		    "global RSS config (0x%x) cannot be accommodated.\n",
4464 		    hashconfig);
4465 	}
4466 	if (extra & RSS_HASHTYPE_RSS_IPV4)
4467 		if_printf(ifp, "IPv4 2-tuple hashing forced on.\n");
4468 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
4469 		if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n");
4470 	if (extra & RSS_HASHTYPE_RSS_IPV6)
4471 		if_printf(ifp, "IPv6 2-tuple hashing forced on.\n");
4472 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
4473 		if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n");
4474 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
4475 		if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n");
4476 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
4477 		if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n");
4478 #else
4479 	hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
4480 	    F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
4481 	    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
4482 	    F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
4483 #endif
4484 	rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, hashen, rss[0], 0, 0);
4485 	if (rc != 0) {
4486 		if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc);
4487 		goto done;
4488 	}
4489 
4490 	vi->rss = rss;
4491 	vi->flags |= VI_INIT_DONE;
4492 done:
4493 	if (rc != 0)
4494 		vi_full_uninit(vi);
4495 
4496 	return (rc);
4497 }
4498 
4499 /*
4500  * Idempotent.
4501  */
4502 int
4503 vi_full_uninit(struct vi_info *vi)
4504 {
4505 	struct port_info *pi = vi->pi;
4506 	struct adapter *sc = pi->adapter;
4507 	int i;
4508 	struct sge_rxq *rxq;
4509 	struct sge_txq *txq;
4510 #ifdef TCP_OFFLOAD
4511 	struct sge_ofld_rxq *ofld_rxq;
4512 	struct sge_wrq *ofld_txq;
4513 #endif
4514 
4515 	if (vi->flags & VI_INIT_DONE) {
4516 
4517 		/* Need to quiesce queues.  */
4518 
4519 		/* XXX: Only for the first VI? */
4520 		if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
4521 			quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
4522 
4523 		for_each_txq(vi, i, txq) {
4524 			quiesce_txq(sc, txq);
4525 		}
4526 
4527 #ifdef TCP_OFFLOAD
4528 		for_each_ofld_txq(vi, i, ofld_txq) {
4529 			quiesce_wrq(sc, ofld_txq);
4530 		}
4531 #endif
4532 
4533 		for_each_rxq(vi, i, rxq) {
4534 			quiesce_iq(sc, &rxq->iq);
4535 			quiesce_fl(sc, &rxq->fl);
4536 		}
4537 
4538 #ifdef TCP_OFFLOAD
4539 		for_each_ofld_rxq(vi, i, ofld_rxq) {
4540 			quiesce_iq(sc, &ofld_rxq->iq);
4541 			quiesce_fl(sc, &ofld_rxq->fl);
4542 		}
4543 #endif
4544 		free(vi->rss, M_CXGBE);
4545 		free(vi->nm_rss, M_CXGBE);
4546 	}
4547 
4548 	t4_teardown_vi_queues(vi);
4549 	vi->flags &= ~VI_INIT_DONE;
4550 
4551 	return (0);
4552 }
4553 
4554 static void
4555 quiesce_txq(struct adapter *sc, struct sge_txq *txq)
4556 {
4557 	struct sge_eq *eq = &txq->eq;
4558 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4559 
4560 	(void) sc;	/* unused */
4561 
4562 #ifdef INVARIANTS
4563 	TXQ_LOCK(txq);
4564 	MPASS((eq->flags & EQ_ENABLED) == 0);
4565 	TXQ_UNLOCK(txq);
4566 #endif
4567 
4568 	/* Wait for the mp_ring to empty. */
4569 	while (!mp_ring_is_idle(txq->r)) {
4570 		mp_ring_check_drainage(txq->r, 0);
4571 		pause("rquiesce", 1);
4572 	}
4573 
4574 	/* Then wait for the hardware to finish. */
4575 	while (spg->cidx != htobe16(eq->pidx))
4576 		pause("equiesce", 1);
4577 
4578 	/* Finally, wait for the driver to reclaim all descriptors. */
4579 	while (eq->cidx != eq->pidx)
4580 		pause("dquiesce", 1);
4581 }
4582 
4583 static void
4584 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq)
4585 {
4586 
4587 	/* XXXTX */
4588 }
4589 
4590 static void
4591 quiesce_iq(struct adapter *sc, struct sge_iq *iq)
4592 {
4593 	(void) sc;	/* unused */
4594 
4595 	/* Synchronize with the interrupt handler */
4596 	while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
4597 		pause("iqfree", 1);
4598 }
4599 
4600 static void
4601 quiesce_fl(struct adapter *sc, struct sge_fl *fl)
4602 {
4603 	mtx_lock(&sc->sfl_lock);
4604 	FL_LOCK(fl);
4605 	fl->flags |= FL_DOOMED;
4606 	FL_UNLOCK(fl);
4607 	callout_stop(&sc->sfl_callout);
4608 	mtx_unlock(&sc->sfl_lock);
4609 
4610 	KASSERT((fl->flags & FL_STARVING) == 0,
4611 	    ("%s: still starving", __func__));
4612 }
4613 
4614 static int
4615 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
4616     driver_intr_t *handler, void *arg, char *name)
4617 {
4618 	int rc;
4619 
4620 	irq->rid = rid;
4621 	irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
4622 	    RF_SHAREABLE | RF_ACTIVE);
4623 	if (irq->res == NULL) {
4624 		device_printf(sc->dev,
4625 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
4626 		return (ENOMEM);
4627 	}
4628 
4629 	rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
4630 	    NULL, handler, arg, &irq->tag);
4631 	if (rc != 0) {
4632 		device_printf(sc->dev,
4633 		    "failed to setup interrupt for rid %d, name %s: %d\n",
4634 		    rid, name, rc);
4635 	} else if (name)
4636 		bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
4637 
4638 	return (rc);
4639 }
4640 
4641 static int
4642 t4_free_irq(struct adapter *sc, struct irq *irq)
4643 {
4644 	if (irq->tag)
4645 		bus_teardown_intr(sc->dev, irq->res, irq->tag);
4646 	if (irq->res)
4647 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
4648 
4649 	bzero(irq, sizeof(*irq));
4650 
4651 	return (0);
4652 }
4653 
4654 static void
4655 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
4656 {
4657 
4658 	regs->version = chip_id(sc) | chip_rev(sc) << 10;
4659 	t4_get_regs(sc, buf, regs->len);
4660 }
4661 
4662 #define	A_PL_INDIR_CMD	0x1f8
4663 
4664 #define	S_PL_AUTOINC	31
4665 #define	M_PL_AUTOINC	0x1U
4666 #define	V_PL_AUTOINC(x)	((x) << S_PL_AUTOINC)
4667 #define	G_PL_AUTOINC(x)	(((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
4668 
4669 #define	S_PL_VFID	20
4670 #define	M_PL_VFID	0xffU
4671 #define	V_PL_VFID(x)	((x) << S_PL_VFID)
4672 #define	G_PL_VFID(x)	(((x) >> S_PL_VFID) & M_PL_VFID)
4673 
4674 #define	S_PL_ADDR	0
4675 #define	M_PL_ADDR	0xfffffU
4676 #define	V_PL_ADDR(x)	((x) << S_PL_ADDR)
4677 #define	G_PL_ADDR(x)	(((x) >> S_PL_ADDR) & M_PL_ADDR)
4678 
4679 #define	A_PL_INDIR_DATA	0x1fc
4680 
4681 static uint64_t
4682 read_vf_stat(struct adapter *sc, unsigned int viid, int reg)
4683 {
4684 	u32 stats[2];
4685 
4686 	mtx_assert(&sc->reg_lock, MA_OWNED);
4687 	if (sc->flags & IS_VF) {
4688 		stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
4689 		stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
4690 	} else {
4691 		t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
4692 		    V_PL_VFID(G_FW_VIID_VIN(viid)) |
4693 		    V_PL_ADDR(VF_MPS_REG(reg)));
4694 		stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
4695 		stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
4696 	}
4697 	return (((uint64_t)stats[1]) << 32 | stats[0]);
4698 }
4699 
4700 static void
4701 t4_get_vi_stats(struct adapter *sc, unsigned int viid,
4702     struct fw_vi_stats_vf *stats)
4703 {
4704 
4705 #define GET_STAT(name) \
4706 	read_vf_stat(sc, viid, A_MPS_VF_STAT_##name##_L)
4707 
4708 	stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
4709 	stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
4710 	stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
4711 	stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
4712 	stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
4713 	stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
4714 	stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
4715 	stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
4716 	stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
4717 	stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
4718 	stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
4719 	stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
4720 	stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
4721 	stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
4722 	stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
4723 	stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
4724 
4725 #undef GET_STAT
4726 }
4727 
4728 static void
4729 t4_clr_vi_stats(struct adapter *sc, unsigned int viid)
4730 {
4731 	int reg;
4732 
4733 	t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
4734 	    V_PL_VFID(G_FW_VIID_VIN(viid)) |
4735 	    V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
4736 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
4737 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
4738 		t4_write_reg(sc, A_PL_INDIR_DATA, 0);
4739 }
4740 
4741 static void
4742 vi_refresh_stats(struct adapter *sc, struct vi_info *vi)
4743 {
4744 	struct timeval tv;
4745 	const struct timeval interval = {0, 250000};	/* 250ms */
4746 
4747 	if (!(vi->flags & VI_INIT_DONE))
4748 		return;
4749 
4750 	getmicrotime(&tv);
4751 	timevalsub(&tv, &interval);
4752 	if (timevalcmp(&tv, &vi->last_refreshed, <))
4753 		return;
4754 
4755 	mtx_lock(&sc->reg_lock);
4756 	t4_get_vi_stats(sc, vi->viid, &vi->stats);
4757 	getmicrotime(&vi->last_refreshed);
4758 	mtx_unlock(&sc->reg_lock);
4759 }
4760 
4761 static void
4762 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi)
4763 {
4764 	int i;
4765 	u_int v, tnl_cong_drops;
4766 	struct timeval tv;
4767 	const struct timeval interval = {0, 250000};	/* 250ms */
4768 
4769 	getmicrotime(&tv);
4770 	timevalsub(&tv, &interval);
4771 	if (timevalcmp(&tv, &pi->last_refreshed, <))
4772 		return;
4773 
4774 	tnl_cong_drops = 0;
4775 	t4_get_port_stats(sc, pi->tx_chan, &pi->stats);
4776 	for (i = 0; i < sc->chip_params->nchan; i++) {
4777 		if (pi->rx_chan_map & (1 << i)) {
4778 			mtx_lock(&sc->reg_lock);
4779 			t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
4780 			    1, A_TP_MIB_TNL_CNG_DROP_0 + i);
4781 			mtx_unlock(&sc->reg_lock);
4782 			tnl_cong_drops += v;
4783 		}
4784 	}
4785 	pi->tnl_cong_drops = tnl_cong_drops;
4786 	getmicrotime(&pi->last_refreshed);
4787 }
4788 
4789 static void
4790 cxgbe_tick(void *arg)
4791 {
4792 	struct port_info *pi = arg;
4793 	struct adapter *sc = pi->adapter;
4794 
4795 	PORT_LOCK_ASSERT_OWNED(pi);
4796 	cxgbe_refresh_stats(sc, pi);
4797 
4798 	callout_schedule(&pi->tick, hz);
4799 }
4800 
4801 void
4802 vi_tick(void *arg)
4803 {
4804 	struct vi_info *vi = arg;
4805 	struct adapter *sc = vi->pi->adapter;
4806 
4807 	vi_refresh_stats(sc, vi);
4808 
4809 	callout_schedule(&vi->tick, hz);
4810 }
4811 
4812 static void
4813 cxgbe_vlan_config(void *arg, struct ifnet *ifp, uint16_t vid)
4814 {
4815 	struct ifnet *vlan;
4816 
4817 	if (arg != ifp || ifp->if_type != IFT_ETHER)
4818 		return;
4819 
4820 	vlan = VLAN_DEVAT(ifp, vid);
4821 	VLAN_SETCOOKIE(vlan, ifp);
4822 }
4823 
4824 /*
4825  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
4826  */
4827 static char *caps_decoder[] = {
4828 	"\20\001IPMI\002NCSI",				/* 0: NBM */
4829 	"\20\001PPP\002QFC\003DCBX",			/* 1: link */
4830 	"\20\001INGRESS\002EGRESS",			/* 2: switch */
4831 	"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"	/* 3: NIC */
4832 	    "\006HASHFILTER\007ETHOFLD",
4833 	"\20\001TOE",					/* 4: TOE */
4834 	"\20\001RDDP\002RDMAC",				/* 5: RDMA */
4835 	"\20\001INITIATOR_PDU\002TARGET_PDU"		/* 6: iSCSI */
4836 	    "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
4837 	    "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
4838 	    "\007T10DIF"
4839 	    "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
4840 	"\20\001LOOKASIDE\002TLSKEYS",			/* 7: Crypto */
4841 	"\20\001INITIATOR\002TARGET\003CTRL_OFLD"	/* 8: FCoE */
4842 		    "\004PO_INITIATOR\005PO_TARGET",
4843 };
4844 
4845 void
4846 t4_sysctls(struct adapter *sc)
4847 {
4848 	struct sysctl_ctx_list *ctx;
4849 	struct sysctl_oid *oid;
4850 	struct sysctl_oid_list *children, *c0;
4851 	static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
4852 
4853 	ctx = device_get_sysctl_ctx(sc->dev);
4854 
4855 	/*
4856 	 * dev.t4nex.X.
4857 	 */
4858 	oid = device_get_sysctl_tree(sc->dev);
4859 	c0 = children = SYSCTL_CHILDREN(oid);
4860 
4861 	sc->sc_do_rxcopy = 1;
4862 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
4863 	    &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
4864 
4865 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
4866 	    sc->params.nports, "# of ports");
4867 
4868 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
4869 	    CTLTYPE_STRING | CTLFLAG_RD, doorbells, sc->doorbells,
4870 	    sysctl_bitfield, "A", "available doorbells");
4871 
4872 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
4873 	    sc->params.vpd.cclk, "core clock frequency (in KHz)");
4874 
4875 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
4876 	    CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val,
4877 	    sizeof(sc->params.sge.timer_val), sysctl_int_array, "A",
4878 	    "interrupt holdoff timer values (us)");
4879 
4880 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
4881 	    CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val,
4882 	    sizeof(sc->params.sge.counter_val), sysctl_int_array, "A",
4883 	    "interrupt holdoff packet counter values");
4884 
4885 	t4_sge_sysctls(sc, ctx, children);
4886 
4887 	sc->lro_timeout = 100;
4888 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
4889 	    &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
4890 
4891 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
4892 	    &sc->debug_flags, 0, "flags to enable runtime debugging");
4893 
4894 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
4895 	    CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
4896 
4897 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
4898 	    CTLFLAG_RD, sc->fw_version, 0, "firmware version");
4899 
4900 	if (sc->flags & IS_VF)
4901 		return;
4902 
4903 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
4904 	    NULL, chip_rev(sc), "chip hardware revision");
4905 
4906 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
4907 	    CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
4908 
4909 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
4910 	    CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
4911 
4912 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
4913 	    CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
4914 
4915 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
4916 	    CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
4917 
4918 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
4919 	    sc->er_version, 0, "expansion ROM version");
4920 
4921 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
4922 	    sc->bs_version, 0, "bootstrap firmware version");
4923 
4924 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
4925 	    NULL, sc->params.scfg_vers, "serial config version");
4926 
4927 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
4928 	    NULL, sc->params.vpd_vers, "VPD version");
4929 
4930 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
4931 	    CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
4932 
4933 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
4934 	    sc->cfcsum, "config file checksum");
4935 
4936 #define SYSCTL_CAP(name, n, text) \
4937 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
4938 	    CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], sc->name, \
4939 	    sysctl_bitfield, "A", "available " text " capabilities")
4940 
4941 	SYSCTL_CAP(nbmcaps, 0, "NBM");
4942 	SYSCTL_CAP(linkcaps, 1, "link");
4943 	SYSCTL_CAP(switchcaps, 2, "switch");
4944 	SYSCTL_CAP(niccaps, 3, "NIC");
4945 	SYSCTL_CAP(toecaps, 4, "TCP offload");
4946 	SYSCTL_CAP(rdmacaps, 5, "RDMA");
4947 	SYSCTL_CAP(iscsicaps, 6, "iSCSI");
4948 	SYSCTL_CAP(cryptocaps, 7, "crypto");
4949 	SYSCTL_CAP(fcoecaps, 8, "FCoE");
4950 #undef SYSCTL_CAP
4951 
4952 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
4953 	    NULL, sc->tids.nftids, "number of filters");
4954 
4955 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT |
4956 	    CTLFLAG_RD, sc, 0, sysctl_temperature, "I",
4957 	    "chip temperature (in Celsius)");
4958 
4959 #ifdef SBUF_DRAIN
4960 	/*
4961 	 * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
4962 	 */
4963 	oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
4964 	    CTLFLAG_RD | CTLFLAG_SKIP, NULL,
4965 	    "logs and miscellaneous information");
4966 	children = SYSCTL_CHILDREN(oid);
4967 
4968 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
4969 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
4970 	    sysctl_cctrl, "A", "congestion control");
4971 
4972 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
4973 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
4974 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
4975 
4976 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
4977 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 1,
4978 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
4979 
4980 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
4981 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 2,
4982 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
4983 
4984 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
4985 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 3,
4986 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
4987 
4988 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
4989 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 4,
4990 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
4991 
4992 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
4993 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 5,
4994 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
4995 
4996 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
4997 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
4998 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_cim_la : sysctl_cim_la_t6,
4999 	    "A", "CIM logic analyzer");
5000 
5001 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
5002 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5003 	    sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
5004 
5005 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
5006 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ,
5007 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
5008 
5009 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
5010 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ,
5011 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
5012 
5013 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
5014 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ,
5015 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
5016 
5017 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
5018 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ,
5019 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
5020 
5021 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
5022 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ,
5023 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
5024 
5025 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
5026 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ,
5027 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
5028 
5029 	if (chip_id(sc) > CHELSIO_T4) {
5030 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
5031 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ,
5032 		    sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)");
5033 
5034 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
5035 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ,
5036 		    sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)");
5037 	}
5038 
5039 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
5040 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5041 	    sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
5042 
5043 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
5044 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5045 	    sysctl_cim_qcfg, "A", "CIM queue configuration");
5046 
5047 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
5048 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5049 	    sysctl_cpl_stats, "A", "CPL statistics");
5050 
5051 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
5052 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5053 	    sysctl_ddp_stats, "A", "non-TCP DDP statistics");
5054 
5055 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
5056 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5057 	    sysctl_devlog, "A", "firmware's device log");
5058 
5059 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
5060 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5061 	    sysctl_fcoe_stats, "A", "FCoE statistics");
5062 
5063 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
5064 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5065 	    sysctl_hw_sched, "A", "hardware scheduler ");
5066 
5067 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
5068 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5069 	    sysctl_l2t, "A", "hardware L2 table");
5070 
5071 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
5072 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5073 	    sysctl_lb_stats, "A", "loopback statistics");
5074 
5075 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
5076 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5077 	    sysctl_meminfo, "A", "memory regions");
5078 
5079 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
5080 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5081 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
5082 	    "A", "MPS TCAM entries");
5083 
5084 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
5085 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5086 	    sysctl_path_mtus, "A", "path MTUs");
5087 
5088 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
5089 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5090 	    sysctl_pm_stats, "A", "PM statistics");
5091 
5092 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
5093 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5094 	    sysctl_rdma_stats, "A", "RDMA statistics");
5095 
5096 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
5097 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5098 	    sysctl_tcp_stats, "A", "TCP statistics");
5099 
5100 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
5101 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5102 	    sysctl_tids, "A", "TID information");
5103 
5104 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
5105 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5106 	    sysctl_tp_err_stats, "A", "TP error statistics");
5107 
5108 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
5109 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I",
5110 	    "TP logic analyzer event capture mask");
5111 
5112 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
5113 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5114 	    sysctl_tp_la, "A", "TP logic analyzer");
5115 
5116 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
5117 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5118 	    sysctl_tx_rate, "A", "Tx rate");
5119 
5120 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
5121 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5122 	    sysctl_ulprx_la, "A", "ULPRX logic analyzer");
5123 
5124 	if (chip_id(sc) >= CHELSIO_T5) {
5125 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
5126 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5127 		    sysctl_wcwr_stats, "A", "write combined work requests");
5128 	}
5129 #endif
5130 
5131 #ifdef TCP_OFFLOAD
5132 	if (is_offload(sc)) {
5133 		/*
5134 		 * dev.t4nex.X.toe.
5135 		 */
5136 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD,
5137 		    NULL, "TOE parameters");
5138 		children = SYSCTL_CHILDREN(oid);
5139 
5140 		sc->tt.sndbuf = 256 * 1024;
5141 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
5142 		    &sc->tt.sndbuf, 0, "max hardware send buffer size");
5143 
5144 		sc->tt.ddp = 0;
5145 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW,
5146 		    &sc->tt.ddp, 0, "DDP allowed");
5147 
5148 		sc->tt.rx_coalesce = 1;
5149 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
5150 		    CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
5151 
5152 		sc->tt.tx_align = 1;
5153 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
5154 		    CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
5155 
5156 		sc->tt.tx_zcopy = 0;
5157 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
5158 		    CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
5159 		    "Enable zero-copy aio_write(2)");
5160 
5161 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
5162 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A",
5163 		    "TP timer tick (us)");
5164 
5165 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
5166 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A",
5167 		    "TCP timestamp tick (us)");
5168 
5169 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
5170 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A",
5171 		    "DACK tick (us)");
5172 
5173 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
5174 		    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer,
5175 		    "IU", "DACK timer (us)");
5176 
5177 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
5178 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN,
5179 		    sysctl_tp_timer, "LU", "Retransmit min (us)");
5180 
5181 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
5182 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX,
5183 		    sysctl_tp_timer, "LU", "Retransmit max (us)");
5184 
5185 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
5186 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN,
5187 		    sysctl_tp_timer, "LU", "Persist timer min (us)");
5188 
5189 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
5190 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX,
5191 		    sysctl_tp_timer, "LU", "Persist timer max (us)");
5192 
5193 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
5194 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE,
5195 		    sysctl_tp_timer, "LU", "Keepidle idle timer (us)");
5196 
5197 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_intvl",
5198 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL,
5199 		    sysctl_tp_timer, "LU", "Keepidle interval (us)");
5200 
5201 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
5202 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT,
5203 		    sysctl_tp_timer, "LU", "Initial SRTT (us)");
5204 
5205 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
5206 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER,
5207 		    sysctl_tp_timer, "LU", "FINWAIT2 timer (us)");
5208 	}
5209 #endif
5210 }
5211 
5212 void
5213 vi_sysctls(struct vi_info *vi)
5214 {
5215 	struct sysctl_ctx_list *ctx;
5216 	struct sysctl_oid *oid;
5217 	struct sysctl_oid_list *children;
5218 
5219 	ctx = device_get_sysctl_ctx(vi->dev);
5220 
5221 	/*
5222 	 * dev.v?(cxgbe|cxl).X.
5223 	 */
5224 	oid = device_get_sysctl_tree(vi->dev);
5225 	children = SYSCTL_CHILDREN(oid);
5226 
5227 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
5228 	    vi->viid, "VI identifer");
5229 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
5230 	    &vi->nrxq, 0, "# of rx queues");
5231 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
5232 	    &vi->ntxq, 0, "# of tx queues");
5233 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
5234 	    &vi->first_rxq, 0, "index of first rx queue");
5235 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
5236 	    &vi->first_txq, 0, "index of first tx queue");
5237 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
5238 	    vi->rss_size, "size of RSS indirection table");
5239 
5240 	if (IS_MAIN_VI(vi)) {
5241 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
5242 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU",
5243 		    "Reserve queue 0 for non-flowid packets");
5244 	}
5245 
5246 #ifdef TCP_OFFLOAD
5247 	if (vi->nofldrxq != 0) {
5248 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
5249 		    &vi->nofldrxq, 0,
5250 		    "# of rx queues for offloaded TCP connections");
5251 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
5252 		    &vi->nofldtxq, 0,
5253 		    "# of tx queues for offloaded TCP connections");
5254 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
5255 		    CTLFLAG_RD, &vi->first_ofld_rxq, 0,
5256 		    "index of first TOE rx queue");
5257 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
5258 		    CTLFLAG_RD, &vi->first_ofld_txq, 0,
5259 		    "index of first TOE tx queue");
5260 	}
5261 #endif
5262 #ifdef DEV_NETMAP
5263 	if (vi->nnmrxq != 0) {
5264 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
5265 		    &vi->nnmrxq, 0, "# of netmap rx queues");
5266 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
5267 		    &vi->nnmtxq, 0, "# of netmap tx queues");
5268 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
5269 		    CTLFLAG_RD, &vi->first_nm_rxq, 0,
5270 		    "index of first netmap rx queue");
5271 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
5272 		    CTLFLAG_RD, &vi->first_nm_txq, 0,
5273 		    "index of first netmap tx queue");
5274 	}
5275 #endif
5276 
5277 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
5278 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I",
5279 	    "holdoff timer index");
5280 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
5281 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I",
5282 	    "holdoff packet counter index");
5283 
5284 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
5285 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I",
5286 	    "rx queue size");
5287 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
5288 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I",
5289 	    "tx queue size");
5290 }
5291 
5292 static void
5293 cxgbe_sysctls(struct port_info *pi)
5294 {
5295 	struct sysctl_ctx_list *ctx;
5296 	struct sysctl_oid *oid;
5297 	struct sysctl_oid_list *children, *children2;
5298 	struct adapter *sc = pi->adapter;
5299 	int i;
5300 	char name[16];
5301 
5302 	ctx = device_get_sysctl_ctx(pi->dev);
5303 
5304 	/*
5305 	 * dev.cxgbe.X.
5306 	 */
5307 	oid = device_get_sysctl_tree(pi->dev);
5308 	children = SYSCTL_CHILDREN(oid);
5309 
5310 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING |
5311 	   CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down");
5312 	if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
5313 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
5314 		    CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I",
5315 		    "PHY temperature (in Celsius)");
5316 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
5317 		    CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I",
5318 		    "PHY firmware version");
5319 	}
5320 
5321 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
5322 	    CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A",
5323 	    "PAUSE settings (bit 0 = rx_pause, bit 1 = tx_pause)");
5324 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec",
5325 	    CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A",
5326 	    "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
5327 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
5328 	    CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I",
5329 	    "autonegotiation (-1 = not supported)");
5330 
5331 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
5332 	    port_top_speed(pi), "max speed (in Gbps)");
5333 
5334 	if (sc->flags & IS_VF)
5335 		return;
5336 
5337 	/*
5338 	 * dev.(cxgbe|cxl).X.tc.
5339 	 */
5340 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL,
5341 	    "Tx scheduler traffic classes (cl_rl)");
5342 	for (i = 0; i < sc->chip_params->nsched_cls; i++) {
5343 		struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
5344 
5345 		snprintf(name, sizeof(name), "%d", i);
5346 		children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
5347 		    SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL,
5348 		    "traffic class"));
5349 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "flags", CTLFLAG_RD,
5350 		    &tc->flags, 0, "flags");
5351 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
5352 		    CTLFLAG_RD, &tc->refcount, 0, "references to this class");
5353 #ifdef SBUF_DRAIN
5354 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
5355 		    CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i,
5356 		    sysctl_tc_params, "A", "traffic class parameters");
5357 #endif
5358 	}
5359 
5360 	/*
5361 	 * dev.cxgbe.X.stats.
5362 	 */
5363 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
5364 	    NULL, "port statistics");
5365 	children = SYSCTL_CHILDREN(oid);
5366 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
5367 	    &pi->tx_parse_error, 0,
5368 	    "# of tx packets with invalid length or # of segments");
5369 
5370 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \
5371 	SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \
5372 	    CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \
5373 	    sysctl_handle_t4_reg64, "QU", desc)
5374 
5375 	SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames",
5376 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L));
5377 	SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames",
5378 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L));
5379 	SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames",
5380 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L));
5381 	SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames",
5382 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L));
5383 	SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames",
5384 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L));
5385 	SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames",
5386 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L));
5387 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_64",
5388 	    "# of tx frames in this range",
5389 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L));
5390 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127",
5391 	    "# of tx frames in this range",
5392 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L));
5393 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255",
5394 	    "# of tx frames in this range",
5395 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L));
5396 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511",
5397 	    "# of tx frames in this range",
5398 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L));
5399 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023",
5400 	    "# of tx frames in this range",
5401 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L));
5402 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518",
5403 	    "# of tx frames in this range",
5404 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L));
5405 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max",
5406 	    "# of tx frames in this range",
5407 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L));
5408 	SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames",
5409 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L));
5410 	SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted",
5411 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L));
5412 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted",
5413 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L));
5414 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted",
5415 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L));
5416 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted",
5417 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L));
5418 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted",
5419 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L));
5420 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted",
5421 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L));
5422 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted",
5423 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L));
5424 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted",
5425 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L));
5426 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted",
5427 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L));
5428 
5429 	SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames",
5430 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L));
5431 	SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames",
5432 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L));
5433 	SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames",
5434 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L));
5435 	SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames",
5436 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L));
5437 	SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames",
5438 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L));
5439 	SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU",
5440 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L));
5441 	SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames",
5442 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L));
5443 	SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err",
5444 	    "# of frames received with bad FCS",
5445 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L));
5446 	SYSCTL_ADD_T4_REG64(pi, "rx_len_err",
5447 	    "# of frames received with length error",
5448 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L));
5449 	SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors",
5450 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L));
5451 	SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received",
5452 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L));
5453 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_64",
5454 	    "# of rx frames in this range",
5455 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L));
5456 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127",
5457 	    "# of rx frames in this range",
5458 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L));
5459 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255",
5460 	    "# of rx frames in this range",
5461 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L));
5462 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511",
5463 	    "# of rx frames in this range",
5464 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L));
5465 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023",
5466 	    "# of rx frames in this range",
5467 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L));
5468 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518",
5469 	    "# of rx frames in this range",
5470 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L));
5471 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max",
5472 	    "# of rx frames in this range",
5473 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L));
5474 	SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received",
5475 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L));
5476 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received",
5477 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L));
5478 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received",
5479 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L));
5480 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received",
5481 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L));
5482 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received",
5483 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L));
5484 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received",
5485 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L));
5486 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received",
5487 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L));
5488 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received",
5489 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L));
5490 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received",
5491 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L));
5492 
5493 #undef SYSCTL_ADD_T4_REG64
5494 
5495 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \
5496 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
5497 	    &pi->stats.name, desc)
5498 
5499 	/* We get these from port_stats and they may be stale by up to 1s */
5500 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0,
5501 	    "# drops due to buffer-group 0 overflows");
5502 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1,
5503 	    "# drops due to buffer-group 1 overflows");
5504 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2,
5505 	    "# drops due to buffer-group 2 overflows");
5506 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3,
5507 	    "# drops due to buffer-group 3 overflows");
5508 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc0,
5509 	    "# of buffer-group 0 truncated packets");
5510 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc1,
5511 	    "# of buffer-group 1 truncated packets");
5512 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc2,
5513 	    "# of buffer-group 2 truncated packets");
5514 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc3,
5515 	    "# of buffer-group 3 truncated packets");
5516 
5517 #undef SYSCTL_ADD_T4_PORTSTAT
5518 }
5519 
5520 static int
5521 sysctl_int_array(SYSCTL_HANDLER_ARGS)
5522 {
5523 	int rc, *i, space = 0;
5524 	struct sbuf sb;
5525 
5526 	sbuf_new_for_sysctl(&sb, NULL, 64, req);
5527 	for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
5528 		if (space)
5529 			sbuf_printf(&sb, " ");
5530 		sbuf_printf(&sb, "%d", *i);
5531 		space = 1;
5532 	}
5533 	rc = sbuf_finish(&sb);
5534 	sbuf_delete(&sb);
5535 	return (rc);
5536 }
5537 
5538 static int
5539 sysctl_bitfield(SYSCTL_HANDLER_ARGS)
5540 {
5541 	int rc;
5542 	struct sbuf *sb;
5543 
5544 	rc = sysctl_wire_old_buffer(req, 0);
5545 	if (rc != 0)
5546 		return(rc);
5547 
5548 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5549 	if (sb == NULL)
5550 		return (ENOMEM);
5551 
5552 	sbuf_printf(sb, "%b", (int)arg2, (char *)arg1);
5553 	rc = sbuf_finish(sb);
5554 	sbuf_delete(sb);
5555 
5556 	return (rc);
5557 }
5558 
5559 static int
5560 sysctl_btphy(SYSCTL_HANDLER_ARGS)
5561 {
5562 	struct port_info *pi = arg1;
5563 	int op = arg2;
5564 	struct adapter *sc = pi->adapter;
5565 	u_int v;
5566 	int rc;
5567 
5568 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
5569 	if (rc)
5570 		return (rc);
5571 	/* XXX: magic numbers */
5572 	rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820,
5573 	    &v);
5574 	end_synchronized_op(sc, 0);
5575 	if (rc)
5576 		return (rc);
5577 	if (op == 0)
5578 		v /= 256;
5579 
5580 	rc = sysctl_handle_int(oidp, &v, 0, req);
5581 	return (rc);
5582 }
5583 
5584 static int
5585 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
5586 {
5587 	struct vi_info *vi = arg1;
5588 	int rc, val;
5589 
5590 	val = vi->rsrv_noflowq;
5591 	rc = sysctl_handle_int(oidp, &val, 0, req);
5592 	if (rc != 0 || req->newptr == NULL)
5593 		return (rc);
5594 
5595 	if ((val >= 1) && (vi->ntxq > 1))
5596 		vi->rsrv_noflowq = 1;
5597 	else
5598 		vi->rsrv_noflowq = 0;
5599 
5600 	return (rc);
5601 }
5602 
5603 static int
5604 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
5605 {
5606 	struct vi_info *vi = arg1;
5607 	struct adapter *sc = vi->pi->adapter;
5608 	int idx, rc, i;
5609 	struct sge_rxq *rxq;
5610 #ifdef TCP_OFFLOAD
5611 	struct sge_ofld_rxq *ofld_rxq;
5612 #endif
5613 	uint8_t v;
5614 
5615 	idx = vi->tmr_idx;
5616 
5617 	rc = sysctl_handle_int(oidp, &idx, 0, req);
5618 	if (rc != 0 || req->newptr == NULL)
5619 		return (rc);
5620 
5621 	if (idx < 0 || idx >= SGE_NTIMERS)
5622 		return (EINVAL);
5623 
5624 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
5625 	    "t4tmr");
5626 	if (rc)
5627 		return (rc);
5628 
5629 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
5630 	for_each_rxq(vi, i, rxq) {
5631 #ifdef atomic_store_rel_8
5632 		atomic_store_rel_8(&rxq->iq.intr_params, v);
5633 #else
5634 		rxq->iq.intr_params = v;
5635 #endif
5636 	}
5637 #ifdef TCP_OFFLOAD
5638 	for_each_ofld_rxq(vi, i, ofld_rxq) {
5639 #ifdef atomic_store_rel_8
5640 		atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
5641 #else
5642 		ofld_rxq->iq.intr_params = v;
5643 #endif
5644 	}
5645 #endif
5646 	vi->tmr_idx = idx;
5647 
5648 	end_synchronized_op(sc, LOCK_HELD);
5649 	return (0);
5650 }
5651 
5652 static int
5653 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
5654 {
5655 	struct vi_info *vi = arg1;
5656 	struct adapter *sc = vi->pi->adapter;
5657 	int idx, rc;
5658 
5659 	idx = vi->pktc_idx;
5660 
5661 	rc = sysctl_handle_int(oidp, &idx, 0, req);
5662 	if (rc != 0 || req->newptr == NULL)
5663 		return (rc);
5664 
5665 	if (idx < -1 || idx >= SGE_NCOUNTERS)
5666 		return (EINVAL);
5667 
5668 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
5669 	    "t4pktc");
5670 	if (rc)
5671 		return (rc);
5672 
5673 	if (vi->flags & VI_INIT_DONE)
5674 		rc = EBUSY; /* cannot be changed once the queues are created */
5675 	else
5676 		vi->pktc_idx = idx;
5677 
5678 	end_synchronized_op(sc, LOCK_HELD);
5679 	return (rc);
5680 }
5681 
5682 static int
5683 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
5684 {
5685 	struct vi_info *vi = arg1;
5686 	struct adapter *sc = vi->pi->adapter;
5687 	int qsize, rc;
5688 
5689 	qsize = vi->qsize_rxq;
5690 
5691 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
5692 	if (rc != 0 || req->newptr == NULL)
5693 		return (rc);
5694 
5695 	if (qsize < 128 || (qsize & 7))
5696 		return (EINVAL);
5697 
5698 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
5699 	    "t4rxqs");
5700 	if (rc)
5701 		return (rc);
5702 
5703 	if (vi->flags & VI_INIT_DONE)
5704 		rc = EBUSY; /* cannot be changed once the queues are created */
5705 	else
5706 		vi->qsize_rxq = qsize;
5707 
5708 	end_synchronized_op(sc, LOCK_HELD);
5709 	return (rc);
5710 }
5711 
5712 static int
5713 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
5714 {
5715 	struct vi_info *vi = arg1;
5716 	struct adapter *sc = vi->pi->adapter;
5717 	int qsize, rc;
5718 
5719 	qsize = vi->qsize_txq;
5720 
5721 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
5722 	if (rc != 0 || req->newptr == NULL)
5723 		return (rc);
5724 
5725 	if (qsize < 128 || qsize > 65536)
5726 		return (EINVAL);
5727 
5728 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
5729 	    "t4txqs");
5730 	if (rc)
5731 		return (rc);
5732 
5733 	if (vi->flags & VI_INIT_DONE)
5734 		rc = EBUSY; /* cannot be changed once the queues are created */
5735 	else
5736 		vi->qsize_txq = qsize;
5737 
5738 	end_synchronized_op(sc, LOCK_HELD);
5739 	return (rc);
5740 }
5741 
5742 static int
5743 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
5744 {
5745 	struct port_info *pi = arg1;
5746 	struct adapter *sc = pi->adapter;
5747 	struct link_config *lc = &pi->link_cfg;
5748 	int rc;
5749 
5750 	if (req->newptr == NULL) {
5751 		struct sbuf *sb;
5752 		static char *bits = "\20\1PAUSE_RX\2PAUSE_TX";
5753 
5754 		rc = sysctl_wire_old_buffer(req, 0);
5755 		if (rc != 0)
5756 			return(rc);
5757 
5758 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5759 		if (sb == NULL)
5760 			return (ENOMEM);
5761 
5762 		sbuf_printf(sb, "%b", lc->fc & (PAUSE_TX | PAUSE_RX), bits);
5763 		rc = sbuf_finish(sb);
5764 		sbuf_delete(sb);
5765 	} else {
5766 		char s[2];
5767 		int n;
5768 
5769 		s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX));
5770 		s[1] = 0;
5771 
5772 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
5773 		if (rc != 0)
5774 			return(rc);
5775 
5776 		if (s[1] != 0)
5777 			return (EINVAL);
5778 		if (s[0] < '0' || s[0] > '9')
5779 			return (EINVAL);	/* not a number */
5780 		n = s[0] - '0';
5781 		if (n & ~(PAUSE_TX | PAUSE_RX))
5782 			return (EINVAL);	/* some other bit is set too */
5783 
5784 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
5785 		    "t4PAUSE");
5786 		if (rc)
5787 			return (rc);
5788 		if ((lc->requested_fc & (PAUSE_TX | PAUSE_RX)) != n) {
5789 			lc->requested_fc &= ~(PAUSE_TX | PAUSE_RX);
5790 			lc->requested_fc |= n;
5791 			rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
5792 		}
5793 		end_synchronized_op(sc, 0);
5794 	}
5795 
5796 	return (rc);
5797 }
5798 
5799 static int
5800 sysctl_fec(SYSCTL_HANDLER_ARGS)
5801 {
5802 	struct port_info *pi = arg1;
5803 	struct adapter *sc = pi->adapter;
5804 	struct link_config *lc = &pi->link_cfg;
5805 	int rc;
5806 
5807 	if (req->newptr == NULL) {
5808 		struct sbuf *sb;
5809 		static char *bits = "\20\1RS\2BASER_RS\3RESERVED";
5810 
5811 		rc = sysctl_wire_old_buffer(req, 0);
5812 		if (rc != 0)
5813 			return(rc);
5814 
5815 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5816 		if (sb == NULL)
5817 			return (ENOMEM);
5818 
5819 		sbuf_printf(sb, "%b", lc->fec & M_FW_PORT_CAP_FEC, bits);
5820 		rc = sbuf_finish(sb);
5821 		sbuf_delete(sb);
5822 	} else {
5823 		char s[2];
5824 		int n;
5825 
5826 		s[0] = '0' + (lc->requested_fec & M_FW_PORT_CAP_FEC);
5827 		s[1] = 0;
5828 
5829 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
5830 		if (rc != 0)
5831 			return(rc);
5832 
5833 		if (s[1] != 0)
5834 			return (EINVAL);
5835 		if (s[0] < '0' || s[0] > '9')
5836 			return (EINVAL);	/* not a number */
5837 		n = s[0] - '0';
5838 		if (n & ~M_FW_PORT_CAP_FEC)
5839 			return (EINVAL);	/* some other bit is set too */
5840 
5841 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
5842 		    "t4fec");
5843 		if (rc)
5844 			return (rc);
5845 		if ((lc->requested_fec & M_FW_PORT_CAP_FEC) != n) {
5846 			lc->requested_fec = n &
5847 			    G_FW_PORT_CAP_FEC(lc->supported);
5848 			rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
5849 		}
5850 		end_synchronized_op(sc, 0);
5851 	}
5852 
5853 	return (rc);
5854 }
5855 
5856 static int
5857 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
5858 {
5859 	struct port_info *pi = arg1;
5860 	struct adapter *sc = pi->adapter;
5861 	struct link_config *lc = &pi->link_cfg;
5862 	int rc, val, old;
5863 
5864 	if (lc->supported & FW_PORT_CAP_ANEG)
5865 		val = lc->autoneg == AUTONEG_ENABLE ? 1 : 0;
5866 	else
5867 		val = -1;
5868 	rc = sysctl_handle_int(oidp, &val, 0, req);
5869 	if (rc != 0 || req->newptr == NULL)
5870 		return (rc);
5871 	if ((lc->supported & FW_PORT_CAP_ANEG) == 0)
5872 		return (ENOTSUP);
5873 
5874 	val = val ? AUTONEG_ENABLE : AUTONEG_DISABLE;
5875 	if (lc->autoneg == val)
5876 		return (0);	/* no change */
5877 
5878 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
5879 	    "t4aneg");
5880 	if (rc)
5881 		return (rc);
5882 	old = lc->autoneg;
5883 	lc->autoneg = val;
5884 	rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
5885 	if (rc != 0)
5886 		lc->autoneg = old;
5887 	return (rc);
5888 }
5889 
5890 static int
5891 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
5892 {
5893 	struct adapter *sc = arg1;
5894 	int reg = arg2;
5895 	uint64_t val;
5896 
5897 	val = t4_read_reg64(sc, reg);
5898 
5899 	return (sysctl_handle_64(oidp, &val, 0, req));
5900 }
5901 
5902 static int
5903 sysctl_temperature(SYSCTL_HANDLER_ARGS)
5904 {
5905 	struct adapter *sc = arg1;
5906 	int rc, t;
5907 	uint32_t param, val;
5908 
5909 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
5910 	if (rc)
5911 		return (rc);
5912 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5913 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5914 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
5915 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5916 	end_synchronized_op(sc, 0);
5917 	if (rc)
5918 		return (rc);
5919 
5920 	/* unknown is returned as 0 but we display -1 in that case */
5921 	t = val == 0 ? -1 : val;
5922 
5923 	rc = sysctl_handle_int(oidp, &t, 0, req);
5924 	return (rc);
5925 }
5926 
5927 #ifdef SBUF_DRAIN
5928 static int
5929 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
5930 {
5931 	struct adapter *sc = arg1;
5932 	struct sbuf *sb;
5933 	int rc, i;
5934 	uint16_t incr[NMTUS][NCCTRL_WIN];
5935 	static const char *dec_fac[] = {
5936 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
5937 		"0.9375"
5938 	};
5939 
5940 	rc = sysctl_wire_old_buffer(req, 0);
5941 	if (rc != 0)
5942 		return (rc);
5943 
5944 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
5945 	if (sb == NULL)
5946 		return (ENOMEM);
5947 
5948 	t4_read_cong_tbl(sc, incr);
5949 
5950 	for (i = 0; i < NCCTRL_WIN; ++i) {
5951 		sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
5952 		    incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
5953 		    incr[5][i], incr[6][i], incr[7][i]);
5954 		sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
5955 		    incr[8][i], incr[9][i], incr[10][i], incr[11][i],
5956 		    incr[12][i], incr[13][i], incr[14][i], incr[15][i],
5957 		    sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
5958 	}
5959 
5960 	rc = sbuf_finish(sb);
5961 	sbuf_delete(sb);
5962 
5963 	return (rc);
5964 }
5965 
5966 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
5967 	"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",	/* ibq's */
5968 	"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",	/* obq's */
5969 	"SGE0-RX", "SGE1-RX"	/* additional obq's (T5 onwards) */
5970 };
5971 
5972 static int
5973 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
5974 {
5975 	struct adapter *sc = arg1;
5976 	struct sbuf *sb;
5977 	int rc, i, n, qid = arg2;
5978 	uint32_t *buf, *p;
5979 	char *qtype;
5980 	u_int cim_num_obq = sc->chip_params->cim_num_obq;
5981 
5982 	KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
5983 	    ("%s: bad qid %d\n", __func__, qid));
5984 
5985 	if (qid < CIM_NUM_IBQ) {
5986 		/* inbound queue */
5987 		qtype = "IBQ";
5988 		n = 4 * CIM_IBQ_SIZE;
5989 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
5990 		rc = t4_read_cim_ibq(sc, qid, buf, n);
5991 	} else {
5992 		/* outbound queue */
5993 		qtype = "OBQ";
5994 		qid -= CIM_NUM_IBQ;
5995 		n = 4 * cim_num_obq * CIM_OBQ_SIZE;
5996 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
5997 		rc = t4_read_cim_obq(sc, qid, buf, n);
5998 	}
5999 
6000 	if (rc < 0) {
6001 		rc = -rc;
6002 		goto done;
6003 	}
6004 	n = rc * sizeof(uint32_t);	/* rc has # of words actually read */
6005 
6006 	rc = sysctl_wire_old_buffer(req, 0);
6007 	if (rc != 0)
6008 		goto done;
6009 
6010 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
6011 	if (sb == NULL) {
6012 		rc = ENOMEM;
6013 		goto done;
6014 	}
6015 
6016 	sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
6017 	for (i = 0, p = buf; i < n; i += 16, p += 4)
6018 		sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
6019 		    p[2], p[3]);
6020 
6021 	rc = sbuf_finish(sb);
6022 	sbuf_delete(sb);
6023 done:
6024 	free(buf, M_CXGBE);
6025 	return (rc);
6026 }
6027 
6028 static int
6029 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
6030 {
6031 	struct adapter *sc = arg1;
6032 	u_int cfg;
6033 	struct sbuf *sb;
6034 	uint32_t *buf, *p;
6035 	int rc;
6036 
6037 	MPASS(chip_id(sc) <= CHELSIO_T5);
6038 
6039 	rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
6040 	if (rc != 0)
6041 		return (rc);
6042 
6043 	rc = sysctl_wire_old_buffer(req, 0);
6044 	if (rc != 0)
6045 		return (rc);
6046 
6047 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6048 	if (sb == NULL)
6049 		return (ENOMEM);
6050 
6051 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
6052 	    M_ZERO | M_WAITOK);
6053 
6054 	rc = -t4_cim_read_la(sc, buf, NULL);
6055 	if (rc != 0)
6056 		goto done;
6057 
6058 	sbuf_printf(sb, "Status   Data      PC%s",
6059 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
6060 	    "     LS0Stat  LS0Addr             LS0Data");
6061 
6062 	for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
6063 		if (cfg & F_UPDBGLACAPTPCONLY) {
6064 			sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
6065 			    p[6], p[7]);
6066 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
6067 			    (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
6068 			    p[4] & 0xff, p[5] >> 8);
6069 			sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
6070 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
6071 			    p[1] & 0xf, p[2] >> 4);
6072 		} else {
6073 			sbuf_printf(sb,
6074 			    "\n  %02x   %x%07x %x%07x %08x %08x "
6075 			    "%08x%08x%08x%08x",
6076 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
6077 			    p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
6078 			    p[6], p[7]);
6079 		}
6080 	}
6081 
6082 	rc = sbuf_finish(sb);
6083 	sbuf_delete(sb);
6084 done:
6085 	free(buf, M_CXGBE);
6086 	return (rc);
6087 }
6088 
6089 static int
6090 sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS)
6091 {
6092 	struct adapter *sc = arg1;
6093 	u_int cfg;
6094 	struct sbuf *sb;
6095 	uint32_t *buf, *p;
6096 	int rc;
6097 
6098 	MPASS(chip_id(sc) > CHELSIO_T5);
6099 
6100 	rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
6101 	if (rc != 0)
6102 		return (rc);
6103 
6104 	rc = sysctl_wire_old_buffer(req, 0);
6105 	if (rc != 0)
6106 		return (rc);
6107 
6108 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6109 	if (sb == NULL)
6110 		return (ENOMEM);
6111 
6112 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
6113 	    M_ZERO | M_WAITOK);
6114 
6115 	rc = -t4_cim_read_la(sc, buf, NULL);
6116 	if (rc != 0)
6117 		goto done;
6118 
6119 	sbuf_printf(sb, "Status   Inst    Data      PC%s",
6120 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
6121 	    "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
6122 
6123 	for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
6124 		if (cfg & F_UPDBGLACAPTPCONLY) {
6125 			sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
6126 			    p[3] & 0xff, p[2], p[1], p[0]);
6127 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
6128 			    (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
6129 			    p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
6130 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
6131 			    (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
6132 			    p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
6133 			    p[6] >> 16);
6134 		} else {
6135 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
6136 			    "%08x %08x %08x %08x %08x %08x",
6137 			    (p[9] >> 16) & 0xff,
6138 			    p[9] & 0xffff, p[8] >> 16,
6139 			    p[8] & 0xffff, p[7] >> 16,
6140 			    p[7] & 0xffff, p[6] >> 16,
6141 			    p[2], p[1], p[0], p[5], p[4], p[3]);
6142 		}
6143 	}
6144 
6145 	rc = sbuf_finish(sb);
6146 	sbuf_delete(sb);
6147 done:
6148 	free(buf, M_CXGBE);
6149 	return (rc);
6150 }
6151 
6152 static int
6153 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
6154 {
6155 	struct adapter *sc = arg1;
6156 	u_int i;
6157 	struct sbuf *sb;
6158 	uint32_t *buf, *p;
6159 	int rc;
6160 
6161 	rc = sysctl_wire_old_buffer(req, 0);
6162 	if (rc != 0)
6163 		return (rc);
6164 
6165 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6166 	if (sb == NULL)
6167 		return (ENOMEM);
6168 
6169 	buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
6170 	    M_ZERO | M_WAITOK);
6171 
6172 	t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
6173 	p = buf;
6174 
6175 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
6176 		sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
6177 		    p[1], p[0]);
6178 	}
6179 
6180 	sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
6181 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
6182 		sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
6183 		    (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
6184 		    (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
6185 		    (p[1] >> 2) | ((p[2] & 3) << 30),
6186 		    (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
6187 		    p[0] & 1);
6188 	}
6189 
6190 	rc = sbuf_finish(sb);
6191 	sbuf_delete(sb);
6192 	free(buf, M_CXGBE);
6193 	return (rc);
6194 }
6195 
6196 static int
6197 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
6198 {
6199 	struct adapter *sc = arg1;
6200 	u_int i;
6201 	struct sbuf *sb;
6202 	uint32_t *buf, *p;
6203 	int rc;
6204 
6205 	rc = sysctl_wire_old_buffer(req, 0);
6206 	if (rc != 0)
6207 		return (rc);
6208 
6209 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6210 	if (sb == NULL)
6211 		return (ENOMEM);
6212 
6213 	buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
6214 	    M_ZERO | M_WAITOK);
6215 
6216 	t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
6217 	p = buf;
6218 
6219 	sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
6220 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
6221 		sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
6222 		    (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
6223 		    p[4], p[3], p[2], p[1], p[0]);
6224 	}
6225 
6226 	sbuf_printf(sb, "\n\nCntl ID               Data");
6227 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
6228 		sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
6229 		    (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
6230 	}
6231 
6232 	rc = sbuf_finish(sb);
6233 	sbuf_delete(sb);
6234 	free(buf, M_CXGBE);
6235 	return (rc);
6236 }
6237 
6238 static int
6239 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
6240 {
6241 	struct adapter *sc = arg1;
6242 	struct sbuf *sb;
6243 	int rc, i;
6244 	uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
6245 	uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
6246 	uint16_t thres[CIM_NUM_IBQ];
6247 	uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
6248 	uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
6249 	u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
6250 
6251 	cim_num_obq = sc->chip_params->cim_num_obq;
6252 	if (is_t4(sc)) {
6253 		ibq_rdaddr = A_UP_IBQ_0_RDADDR;
6254 		obq_rdaddr = A_UP_OBQ_0_REALADDR;
6255 	} else {
6256 		ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
6257 		obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
6258 	}
6259 	nq = CIM_NUM_IBQ + cim_num_obq;
6260 
6261 	rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
6262 	if (rc == 0)
6263 		rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr);
6264 	if (rc != 0)
6265 		return (rc);
6266 
6267 	t4_read_cimq_cfg(sc, base, size, thres);
6268 
6269 	rc = sysctl_wire_old_buffer(req, 0);
6270 	if (rc != 0)
6271 		return (rc);
6272 
6273 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
6274 	if (sb == NULL)
6275 		return (ENOMEM);
6276 
6277 	sbuf_printf(sb,
6278 	    "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
6279 
6280 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
6281 		sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
6282 		    qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
6283 		    G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
6284 		    G_QUEREMFLITS(p[2]) * 16);
6285 	for ( ; i < nq; i++, p += 4, wr += 2)
6286 		sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
6287 		    base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
6288 		    wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
6289 		    G_QUEREMFLITS(p[2]) * 16);
6290 
6291 	rc = sbuf_finish(sb);
6292 	sbuf_delete(sb);
6293 
6294 	return (rc);
6295 }
6296 
6297 static int
6298 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
6299 {
6300 	struct adapter *sc = arg1;
6301 	struct sbuf *sb;
6302 	int rc;
6303 	struct tp_cpl_stats stats;
6304 
6305 	rc = sysctl_wire_old_buffer(req, 0);
6306 	if (rc != 0)
6307 		return (rc);
6308 
6309 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6310 	if (sb == NULL)
6311 		return (ENOMEM);
6312 
6313 	mtx_lock(&sc->reg_lock);
6314 	t4_tp_get_cpl_stats(sc, &stats);
6315 	mtx_unlock(&sc->reg_lock);
6316 
6317 	if (sc->chip_params->nchan > 2) {
6318 		sbuf_printf(sb, "                 channel 0  channel 1"
6319 		    "  channel 2  channel 3");
6320 		sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
6321 		    stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
6322 		sbuf_printf(sb, "\nCPL responses:   %10u %10u %10u %10u",
6323 		    stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
6324 	} else {
6325 		sbuf_printf(sb, "                 channel 0  channel 1");
6326 		sbuf_printf(sb, "\nCPL requests:   %10u %10u",
6327 		    stats.req[0], stats.req[1]);
6328 		sbuf_printf(sb, "\nCPL responses:   %10u %10u",
6329 		    stats.rsp[0], stats.rsp[1]);
6330 	}
6331 
6332 	rc = sbuf_finish(sb);
6333 	sbuf_delete(sb);
6334 
6335 	return (rc);
6336 }
6337 
6338 static int
6339 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
6340 {
6341 	struct adapter *sc = arg1;
6342 	struct sbuf *sb;
6343 	int rc;
6344 	struct tp_usm_stats stats;
6345 
6346 	rc = sysctl_wire_old_buffer(req, 0);
6347 	if (rc != 0)
6348 		return(rc);
6349 
6350 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6351 	if (sb == NULL)
6352 		return (ENOMEM);
6353 
6354 	t4_get_usm_stats(sc, &stats);
6355 
6356 	sbuf_printf(sb, "Frames: %u\n", stats.frames);
6357 	sbuf_printf(sb, "Octets: %ju\n", stats.octets);
6358 	sbuf_printf(sb, "Drops:  %u", stats.drops);
6359 
6360 	rc = sbuf_finish(sb);
6361 	sbuf_delete(sb);
6362 
6363 	return (rc);
6364 }
6365 
6366 static const char * const devlog_level_strings[] = {
6367 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
6368 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
6369 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
6370 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
6371 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
6372 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
6373 };
6374 
6375 static const char * const devlog_facility_strings[] = {
6376 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
6377 	[FW_DEVLOG_FACILITY_CF]		= "CF",
6378 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
6379 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
6380 	[FW_DEVLOG_FACILITY_RES]	= "RES",
6381 	[FW_DEVLOG_FACILITY_HW]		= "HW",
6382 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
6383 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
6384 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
6385 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
6386 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
6387 	[FW_DEVLOG_FACILITY_VI]		= "VI",
6388 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
6389 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
6390 	[FW_DEVLOG_FACILITY_TM]		= "TM",
6391 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
6392 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
6393 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
6394 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
6395 	[FW_DEVLOG_FACILITY_RI]		= "RI",
6396 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
6397 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
6398 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
6399 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE",
6400 	[FW_DEVLOG_FACILITY_CHNET]	= "CHNET",
6401 };
6402 
6403 static int
6404 sysctl_devlog(SYSCTL_HANDLER_ARGS)
6405 {
6406 	struct adapter *sc = arg1;
6407 	struct devlog_params *dparams = &sc->params.devlog;
6408 	struct fw_devlog_e *buf, *e;
6409 	int i, j, rc, nentries, first = 0;
6410 	struct sbuf *sb;
6411 	uint64_t ftstamp = UINT64_MAX;
6412 
6413 	if (dparams->addr == 0)
6414 		return (ENXIO);
6415 
6416 	buf = malloc(dparams->size, M_CXGBE, M_NOWAIT);
6417 	if (buf == NULL)
6418 		return (ENOMEM);
6419 
6420 	rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size);
6421 	if (rc != 0)
6422 		goto done;
6423 
6424 	nentries = dparams->size / sizeof(struct fw_devlog_e);
6425 	for (i = 0; i < nentries; i++) {
6426 		e = &buf[i];
6427 
6428 		if (e->timestamp == 0)
6429 			break;	/* end */
6430 
6431 		e->timestamp = be64toh(e->timestamp);
6432 		e->seqno = be32toh(e->seqno);
6433 		for (j = 0; j < 8; j++)
6434 			e->params[j] = be32toh(e->params[j]);
6435 
6436 		if (e->timestamp < ftstamp) {
6437 			ftstamp = e->timestamp;
6438 			first = i;
6439 		}
6440 	}
6441 
6442 	if (buf[first].timestamp == 0)
6443 		goto done;	/* nothing in the log */
6444 
6445 	rc = sysctl_wire_old_buffer(req, 0);
6446 	if (rc != 0)
6447 		goto done;
6448 
6449 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6450 	if (sb == NULL) {
6451 		rc = ENOMEM;
6452 		goto done;
6453 	}
6454 	sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
6455 	    "Seq#", "Tstamp", "Level", "Facility", "Message");
6456 
6457 	i = first;
6458 	do {
6459 		e = &buf[i];
6460 		if (e->timestamp == 0)
6461 			break;	/* end */
6462 
6463 		sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
6464 		    e->seqno, e->timestamp,
6465 		    (e->level < nitems(devlog_level_strings) ?
6466 			devlog_level_strings[e->level] : "UNKNOWN"),
6467 		    (e->facility < nitems(devlog_facility_strings) ?
6468 			devlog_facility_strings[e->facility] : "UNKNOWN"));
6469 		sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
6470 		    e->params[2], e->params[3], e->params[4],
6471 		    e->params[5], e->params[6], e->params[7]);
6472 
6473 		if (++i == nentries)
6474 			i = 0;
6475 	} while (i != first);
6476 
6477 	rc = sbuf_finish(sb);
6478 	sbuf_delete(sb);
6479 done:
6480 	free(buf, M_CXGBE);
6481 	return (rc);
6482 }
6483 
6484 static int
6485 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
6486 {
6487 	struct adapter *sc = arg1;
6488 	struct sbuf *sb;
6489 	int rc;
6490 	struct tp_fcoe_stats stats[MAX_NCHAN];
6491 	int i, nchan = sc->chip_params->nchan;
6492 
6493 	rc = sysctl_wire_old_buffer(req, 0);
6494 	if (rc != 0)
6495 		return (rc);
6496 
6497 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6498 	if (sb == NULL)
6499 		return (ENOMEM);
6500 
6501 	for (i = 0; i < nchan; i++)
6502 		t4_get_fcoe_stats(sc, i, &stats[i]);
6503 
6504 	if (nchan > 2) {
6505 		sbuf_printf(sb, "                   channel 0        channel 1"
6506 		    "        channel 2        channel 3");
6507 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
6508 		    stats[0].octets_ddp, stats[1].octets_ddp,
6509 		    stats[2].octets_ddp, stats[3].octets_ddp);
6510 		sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
6511 		    stats[0].frames_ddp, stats[1].frames_ddp,
6512 		    stats[2].frames_ddp, stats[3].frames_ddp);
6513 		sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
6514 		    stats[0].frames_drop, stats[1].frames_drop,
6515 		    stats[2].frames_drop, stats[3].frames_drop);
6516 	} else {
6517 		sbuf_printf(sb, "                   channel 0        channel 1");
6518 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
6519 		    stats[0].octets_ddp, stats[1].octets_ddp);
6520 		sbuf_printf(sb, "\nframesDDP:  %16u %16u",
6521 		    stats[0].frames_ddp, stats[1].frames_ddp);
6522 		sbuf_printf(sb, "\nframesDrop: %16u %16u",
6523 		    stats[0].frames_drop, stats[1].frames_drop);
6524 	}
6525 
6526 	rc = sbuf_finish(sb);
6527 	sbuf_delete(sb);
6528 
6529 	return (rc);
6530 }
6531 
6532 static int
6533 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
6534 {
6535 	struct adapter *sc = arg1;
6536 	struct sbuf *sb;
6537 	int rc, i;
6538 	unsigned int map, kbps, ipg, mode;
6539 	unsigned int pace_tab[NTX_SCHED];
6540 
6541 	rc = sysctl_wire_old_buffer(req, 0);
6542 	if (rc != 0)
6543 		return (rc);
6544 
6545 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6546 	if (sb == NULL)
6547 		return (ENOMEM);
6548 
6549 	map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
6550 	mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
6551 	t4_read_pace_tbl(sc, pace_tab);
6552 
6553 	sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
6554 	    "Class IPG (0.1 ns)   Flow IPG (us)");
6555 
6556 	for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
6557 		t4_get_tx_sched(sc, i, &kbps, &ipg);
6558 		sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
6559 		    (mode & (1 << i)) ? "flow" : "class", map & 3);
6560 		if (kbps)
6561 			sbuf_printf(sb, "%9u     ", kbps);
6562 		else
6563 			sbuf_printf(sb, " disabled     ");
6564 
6565 		if (ipg)
6566 			sbuf_printf(sb, "%13u        ", ipg);
6567 		else
6568 			sbuf_printf(sb, "     disabled        ");
6569 
6570 		if (pace_tab[i])
6571 			sbuf_printf(sb, "%10u", pace_tab[i]);
6572 		else
6573 			sbuf_printf(sb, "  disabled");
6574 	}
6575 
6576 	rc = sbuf_finish(sb);
6577 	sbuf_delete(sb);
6578 
6579 	return (rc);
6580 }
6581 
6582 static int
6583 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
6584 {
6585 	struct adapter *sc = arg1;
6586 	struct sbuf *sb;
6587 	int rc, i, j;
6588 	uint64_t *p0, *p1;
6589 	struct lb_port_stats s[2];
6590 	static const char *stat_name[] = {
6591 		"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
6592 		"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
6593 		"Frames128To255:", "Frames256To511:", "Frames512To1023:",
6594 		"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
6595 		"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
6596 		"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
6597 		"BG2FramesTrunc:", "BG3FramesTrunc:"
6598 	};
6599 
6600 	rc = sysctl_wire_old_buffer(req, 0);
6601 	if (rc != 0)
6602 		return (rc);
6603 
6604 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6605 	if (sb == NULL)
6606 		return (ENOMEM);
6607 
6608 	memset(s, 0, sizeof(s));
6609 
6610 	for (i = 0; i < sc->chip_params->nchan; i += 2) {
6611 		t4_get_lb_stats(sc, i, &s[0]);
6612 		t4_get_lb_stats(sc, i + 1, &s[1]);
6613 
6614 		p0 = &s[0].octets;
6615 		p1 = &s[1].octets;
6616 		sbuf_printf(sb, "%s                       Loopback %u"
6617 		    "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
6618 
6619 		for (j = 0; j < nitems(stat_name); j++)
6620 			sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
6621 				   *p0++, *p1++);
6622 	}
6623 
6624 	rc = sbuf_finish(sb);
6625 	sbuf_delete(sb);
6626 
6627 	return (rc);
6628 }
6629 
6630 static int
6631 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
6632 {
6633 	int rc = 0;
6634 	struct port_info *pi = arg1;
6635 	struct link_config *lc = &pi->link_cfg;
6636 	struct sbuf *sb;
6637 
6638 	rc = sysctl_wire_old_buffer(req, 0);
6639 	if (rc != 0)
6640 		return(rc);
6641 	sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
6642 	if (sb == NULL)
6643 		return (ENOMEM);
6644 
6645 	if (lc->link_ok || lc->link_down_rc == 255)
6646 		sbuf_printf(sb, "n/a");
6647 	else
6648 		sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
6649 
6650 	rc = sbuf_finish(sb);
6651 	sbuf_delete(sb);
6652 
6653 	return (rc);
6654 }
6655 
6656 struct mem_desc {
6657 	unsigned int base;
6658 	unsigned int limit;
6659 	unsigned int idx;
6660 };
6661 
6662 static int
6663 mem_desc_cmp(const void *a, const void *b)
6664 {
6665 	return ((const struct mem_desc *)a)->base -
6666 	       ((const struct mem_desc *)b)->base;
6667 }
6668 
6669 static void
6670 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
6671     unsigned int to)
6672 {
6673 	unsigned int size;
6674 
6675 	if (from == to)
6676 		return;
6677 
6678 	size = to - from + 1;
6679 	if (size == 0)
6680 		return;
6681 
6682 	/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
6683 	sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
6684 }
6685 
6686 static int
6687 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
6688 {
6689 	struct adapter *sc = arg1;
6690 	struct sbuf *sb;
6691 	int rc, i, n;
6692 	uint32_t lo, hi, used, alloc;
6693 	static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"};
6694 	static const char *region[] = {
6695 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
6696 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
6697 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
6698 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
6699 		"RQUDP region:", "PBL region:", "TXPBL region:",
6700 		"DBVFIFO region:", "ULPRX state:", "ULPTX state:",
6701 		"On-chip queues:"
6702 	};
6703 	struct mem_desc avail[4];
6704 	struct mem_desc mem[nitems(region) + 3];	/* up to 3 holes */
6705 	struct mem_desc *md = mem;
6706 
6707 	rc = sysctl_wire_old_buffer(req, 0);
6708 	if (rc != 0)
6709 		return (rc);
6710 
6711 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6712 	if (sb == NULL)
6713 		return (ENOMEM);
6714 
6715 	for (i = 0; i < nitems(mem); i++) {
6716 		mem[i].limit = 0;
6717 		mem[i].idx = i;
6718 	}
6719 
6720 	/* Find and sort the populated memory ranges */
6721 	i = 0;
6722 	lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
6723 	if (lo & F_EDRAM0_ENABLE) {
6724 		hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
6725 		avail[i].base = G_EDRAM0_BASE(hi) << 20;
6726 		avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
6727 		avail[i].idx = 0;
6728 		i++;
6729 	}
6730 	if (lo & F_EDRAM1_ENABLE) {
6731 		hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
6732 		avail[i].base = G_EDRAM1_BASE(hi) << 20;
6733 		avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
6734 		avail[i].idx = 1;
6735 		i++;
6736 	}
6737 	if (lo & F_EXT_MEM_ENABLE) {
6738 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
6739 		avail[i].base = G_EXT_MEM_BASE(hi) << 20;
6740 		avail[i].limit = avail[i].base +
6741 		    (G_EXT_MEM_SIZE(hi) << 20);
6742 		avail[i].idx = is_t5(sc) ? 3 : 2;	/* Call it MC0 for T5 */
6743 		i++;
6744 	}
6745 	if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
6746 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
6747 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
6748 		avail[i].limit = avail[i].base +
6749 		    (G_EXT_MEM1_SIZE(hi) << 20);
6750 		avail[i].idx = 4;
6751 		i++;
6752 	}
6753 	if (!i)                                    /* no memory available */
6754 		return 0;
6755 	qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
6756 
6757 	(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
6758 	(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
6759 	(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
6760 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
6761 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
6762 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
6763 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
6764 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
6765 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
6766 
6767 	/* the next few have explicit upper bounds */
6768 	md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
6769 	md->limit = md->base - 1 +
6770 		    t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
6771 		    G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
6772 	md++;
6773 
6774 	md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
6775 	md->limit = md->base - 1 +
6776 		    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
6777 		    G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
6778 	md++;
6779 
6780 	if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
6781 		if (chip_id(sc) <= CHELSIO_T5)
6782 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
6783 		else
6784 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
6785 		md->limit = 0;
6786 	} else {
6787 		md->base = 0;
6788 		md->idx = nitems(region);  /* hide it */
6789 	}
6790 	md++;
6791 
6792 #define ulp_region(reg) \
6793 	md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
6794 	(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
6795 
6796 	ulp_region(RX_ISCSI);
6797 	ulp_region(RX_TDDP);
6798 	ulp_region(TX_TPT);
6799 	ulp_region(RX_STAG);
6800 	ulp_region(RX_RQ);
6801 	ulp_region(RX_RQUDP);
6802 	ulp_region(RX_PBL);
6803 	ulp_region(TX_PBL);
6804 #undef ulp_region
6805 
6806 	md->base = 0;
6807 	md->idx = nitems(region);
6808 	if (!is_t4(sc)) {
6809 		uint32_t size = 0;
6810 		uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
6811 		uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
6812 
6813 		if (is_t5(sc)) {
6814 			if (sge_ctrl & F_VFIFO_ENABLE)
6815 				size = G_DBVFIFO_SIZE(fifo_size);
6816 		} else
6817 			size = G_T6_DBVFIFO_SIZE(fifo_size);
6818 
6819 		if (size) {
6820 			md->base = G_BASEADDR(t4_read_reg(sc,
6821 			    A_SGE_DBVFIFO_BADDR));
6822 			md->limit = md->base + (size << 2) - 1;
6823 		}
6824 	}
6825 	md++;
6826 
6827 	md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
6828 	md->limit = 0;
6829 	md++;
6830 	md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
6831 	md->limit = 0;
6832 	md++;
6833 
6834 	md->base = sc->vres.ocq.start;
6835 	if (sc->vres.ocq.size)
6836 		md->limit = md->base + sc->vres.ocq.size - 1;
6837 	else
6838 		md->idx = nitems(region);  /* hide it */
6839 	md++;
6840 
6841 	/* add any address-space holes, there can be up to 3 */
6842 	for (n = 0; n < i - 1; n++)
6843 		if (avail[n].limit < avail[n + 1].base)
6844 			(md++)->base = avail[n].limit;
6845 	if (avail[n].limit)
6846 		(md++)->base = avail[n].limit;
6847 
6848 	n = md - mem;
6849 	qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
6850 
6851 	for (lo = 0; lo < i; lo++)
6852 		mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
6853 				avail[lo].limit - 1);
6854 
6855 	sbuf_printf(sb, "\n");
6856 	for (i = 0; i < n; i++) {
6857 		if (mem[i].idx >= nitems(region))
6858 			continue;                        /* skip holes */
6859 		if (!mem[i].limit)
6860 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
6861 		mem_region_show(sb, region[mem[i].idx], mem[i].base,
6862 				mem[i].limit);
6863 	}
6864 
6865 	sbuf_printf(sb, "\n");
6866 	lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
6867 	hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
6868 	mem_region_show(sb, "uP RAM:", lo, hi);
6869 
6870 	lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
6871 	hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
6872 	mem_region_show(sb, "uP Extmem2:", lo, hi);
6873 
6874 	lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
6875 	sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n",
6876 		   G_PMRXMAXPAGE(lo),
6877 		   t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
6878 		   (lo & F_PMRXNUMCHN) ? 2 : 1);
6879 
6880 	lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
6881 	hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
6882 	sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n",
6883 		   G_PMTXMAXPAGE(lo),
6884 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
6885 		   hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
6886 	sbuf_printf(sb, "%u p-structs\n",
6887 		   t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT));
6888 
6889 	for (i = 0; i < 4; i++) {
6890 		if (chip_id(sc) > CHELSIO_T5)
6891 			lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
6892 		else
6893 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
6894 		if (is_t5(sc)) {
6895 			used = G_T5_USED(lo);
6896 			alloc = G_T5_ALLOC(lo);
6897 		} else {
6898 			used = G_USED(lo);
6899 			alloc = G_ALLOC(lo);
6900 		}
6901 		/* For T6 these are MAC buffer groups */
6902 		sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
6903 		    i, used, alloc);
6904 	}
6905 	for (i = 0; i < sc->chip_params->nchan; i++) {
6906 		if (chip_id(sc) > CHELSIO_T5)
6907 			lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
6908 		else
6909 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
6910 		if (is_t5(sc)) {
6911 			used = G_T5_USED(lo);
6912 			alloc = G_T5_ALLOC(lo);
6913 		} else {
6914 			used = G_USED(lo);
6915 			alloc = G_ALLOC(lo);
6916 		}
6917 		/* For T6 these are MAC buffer groups */
6918 		sbuf_printf(sb,
6919 		    "\nLoopback %d using %u pages out of %u allocated",
6920 		    i, used, alloc);
6921 	}
6922 
6923 	rc = sbuf_finish(sb);
6924 	sbuf_delete(sb);
6925 
6926 	return (rc);
6927 }
6928 
6929 static inline void
6930 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
6931 {
6932 	*mask = x | y;
6933 	y = htobe64(y);
6934 	memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
6935 }
6936 
6937 static int
6938 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
6939 {
6940 	struct adapter *sc = arg1;
6941 	struct sbuf *sb;
6942 	int rc, i;
6943 
6944 	MPASS(chip_id(sc) <= CHELSIO_T5);
6945 
6946 	rc = sysctl_wire_old_buffer(req, 0);
6947 	if (rc != 0)
6948 		return (rc);
6949 
6950 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6951 	if (sb == NULL)
6952 		return (ENOMEM);
6953 
6954 	sbuf_printf(sb,
6955 	    "Idx  Ethernet address     Mask     Vld Ports PF"
6956 	    "  VF              Replication             P0 P1 P2 P3  ML");
6957 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
6958 		uint64_t tcamx, tcamy, mask;
6959 		uint32_t cls_lo, cls_hi;
6960 		uint8_t addr[ETHER_ADDR_LEN];
6961 
6962 		tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
6963 		tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
6964 		if (tcamx & tcamy)
6965 			continue;
6966 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
6967 		cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
6968 		cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
6969 		sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
6970 			   "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
6971 			   addr[3], addr[4], addr[5], (uintmax_t)mask,
6972 			   (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
6973 			   G_PORTMAP(cls_hi), G_PF(cls_lo),
6974 			   (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
6975 
6976 		if (cls_lo & F_REPLICATE) {
6977 			struct fw_ldst_cmd ldst_cmd;
6978 
6979 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
6980 			ldst_cmd.op_to_addrspace =
6981 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
6982 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
6983 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
6984 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
6985 			ldst_cmd.u.mps.rplc.fid_idx =
6986 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
6987 				V_FW_LDST_CMD_IDX(i));
6988 
6989 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
6990 			    "t4mps");
6991 			if (rc)
6992 				break;
6993 			rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
6994 			    sizeof(ldst_cmd), &ldst_cmd);
6995 			end_synchronized_op(sc, 0);
6996 
6997 			if (rc != 0) {
6998 				sbuf_printf(sb, "%36d", rc);
6999 				rc = 0;
7000 			} else {
7001 				sbuf_printf(sb, " %08x %08x %08x %08x",
7002 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
7003 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
7004 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
7005 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
7006 			}
7007 		} else
7008 			sbuf_printf(sb, "%36s", "");
7009 
7010 		sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
7011 		    G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
7012 		    G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
7013 	}
7014 
7015 	if (rc)
7016 		(void) sbuf_finish(sb);
7017 	else
7018 		rc = sbuf_finish(sb);
7019 	sbuf_delete(sb);
7020 
7021 	return (rc);
7022 }
7023 
7024 static int
7025 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
7026 {
7027 	struct adapter *sc = arg1;
7028 	struct sbuf *sb;
7029 	int rc, i;
7030 
7031 	MPASS(chip_id(sc) > CHELSIO_T5);
7032 
7033 	rc = sysctl_wire_old_buffer(req, 0);
7034 	if (rc != 0)
7035 		return (rc);
7036 
7037 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7038 	if (sb == NULL)
7039 		return (ENOMEM);
7040 
7041 	sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
7042 	    "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
7043 	    "                           Replication"
7044 	    "                                    P0 P1 P2 P3  ML\n");
7045 
7046 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
7047 		uint8_t dip_hit, vlan_vld, lookup_type, port_num;
7048 		uint16_t ivlan;
7049 		uint64_t tcamx, tcamy, val, mask;
7050 		uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
7051 		uint8_t addr[ETHER_ADDR_LEN];
7052 
7053 		ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
7054 		if (i < 256)
7055 			ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
7056 		else
7057 			ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
7058 		t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
7059 		val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
7060 		tcamy = G_DMACH(val) << 32;
7061 		tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
7062 		data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
7063 		lookup_type = G_DATALKPTYPE(data2);
7064 		port_num = G_DATAPORTNUM(data2);
7065 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
7066 			/* Inner header VNI */
7067 			vniy = ((data2 & F_DATAVIDH2) << 23) |
7068 				       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
7069 			dip_hit = data2 & F_DATADIPHIT;
7070 			vlan_vld = 0;
7071 		} else {
7072 			vniy = 0;
7073 			dip_hit = 0;
7074 			vlan_vld = data2 & F_DATAVIDH2;
7075 			ivlan = G_VIDL(val);
7076 		}
7077 
7078 		ctl |= V_CTLXYBITSEL(1);
7079 		t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
7080 		val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
7081 		tcamx = G_DMACH(val) << 32;
7082 		tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
7083 		data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
7084 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
7085 			/* Inner header VNI mask */
7086 			vnix = ((data2 & F_DATAVIDH2) << 23) |
7087 			       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
7088 		} else
7089 			vnix = 0;
7090 
7091 		if (tcamx & tcamy)
7092 			continue;
7093 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
7094 
7095 		cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
7096 		cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
7097 
7098 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
7099 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
7100 			    "%012jx %06x %06x    -    -   %3c"
7101 			    "      'I'  %4x   %3c   %#x%4u%4d", i, addr[0],
7102 			    addr[1], addr[2], addr[3], addr[4], addr[5],
7103 			    (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
7104 			    port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
7105 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
7106 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
7107 		} else {
7108 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
7109 			    "%012jx    -       -   ", i, addr[0], addr[1],
7110 			    addr[2], addr[3], addr[4], addr[5],
7111 			    (uintmax_t)mask);
7112 
7113 			if (vlan_vld)
7114 				sbuf_printf(sb, "%4u   Y     ", ivlan);
7115 			else
7116 				sbuf_printf(sb, "  -    N     ");
7117 
7118 			sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
7119 			    lookup_type ? 'I' : 'O', port_num,
7120 			    cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
7121 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
7122 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
7123 		}
7124 
7125 
7126 		if (cls_lo & F_T6_REPLICATE) {
7127 			struct fw_ldst_cmd ldst_cmd;
7128 
7129 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
7130 			ldst_cmd.op_to_addrspace =
7131 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
7132 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
7133 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
7134 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
7135 			ldst_cmd.u.mps.rplc.fid_idx =
7136 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
7137 				V_FW_LDST_CMD_IDX(i));
7138 
7139 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
7140 			    "t6mps");
7141 			if (rc)
7142 				break;
7143 			rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
7144 			    sizeof(ldst_cmd), &ldst_cmd);
7145 			end_synchronized_op(sc, 0);
7146 
7147 			if (rc != 0) {
7148 				sbuf_printf(sb, "%72d", rc);
7149 				rc = 0;
7150 			} else {
7151 				sbuf_printf(sb, " %08x %08x %08x %08x"
7152 				    " %08x %08x %08x %08x",
7153 				    be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
7154 				    be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
7155 				    be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
7156 				    be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
7157 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
7158 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
7159 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
7160 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
7161 			}
7162 		} else
7163 			sbuf_printf(sb, "%72s", "");
7164 
7165 		sbuf_printf(sb, "%4u%3u%3u%3u %#x",
7166 		    G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
7167 		    G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
7168 		    (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
7169 	}
7170 
7171 	if (rc)
7172 		(void) sbuf_finish(sb);
7173 	else
7174 		rc = sbuf_finish(sb);
7175 	sbuf_delete(sb);
7176 
7177 	return (rc);
7178 }
7179 
7180 static int
7181 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
7182 {
7183 	struct adapter *sc = arg1;
7184 	struct sbuf *sb;
7185 	int rc;
7186 	uint16_t mtus[NMTUS];
7187 
7188 	rc = sysctl_wire_old_buffer(req, 0);
7189 	if (rc != 0)
7190 		return (rc);
7191 
7192 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7193 	if (sb == NULL)
7194 		return (ENOMEM);
7195 
7196 	t4_read_mtu_tbl(sc, mtus, NULL);
7197 
7198 	sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
7199 	    mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
7200 	    mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
7201 	    mtus[14], mtus[15]);
7202 
7203 	rc = sbuf_finish(sb);
7204 	sbuf_delete(sb);
7205 
7206 	return (rc);
7207 }
7208 
7209 static int
7210 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
7211 {
7212 	struct adapter *sc = arg1;
7213 	struct sbuf *sb;
7214 	int rc, i;
7215 	uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
7216 	uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
7217 	static const char *tx_stats[MAX_PM_NSTATS] = {
7218 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
7219 		"Tx FIFO wait", NULL, "Tx latency"
7220 	};
7221 	static const char *rx_stats[MAX_PM_NSTATS] = {
7222 		"Read:", "Write bypass:", "Write mem:", "Flush:",
7223 		"Rx FIFO wait", NULL, "Rx latency"
7224 	};
7225 
7226 	rc = sysctl_wire_old_buffer(req, 0);
7227 	if (rc != 0)
7228 		return (rc);
7229 
7230 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7231 	if (sb == NULL)
7232 		return (ENOMEM);
7233 
7234 	t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
7235 	t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
7236 
7237 	sbuf_printf(sb, "                Tx pcmds             Tx bytes");
7238 	for (i = 0; i < 4; i++) {
7239 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7240 		    tx_cyc[i]);
7241 	}
7242 
7243 	sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
7244 	for (i = 0; i < 4; i++) {
7245 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7246 		    rx_cyc[i]);
7247 	}
7248 
7249 	if (chip_id(sc) > CHELSIO_T5) {
7250 		sbuf_printf(sb,
7251 		    "\n              Total wait      Total occupancy");
7252 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7253 		    tx_cyc[i]);
7254 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7255 		    rx_cyc[i]);
7256 
7257 		i += 2;
7258 		MPASS(i < nitems(tx_stats));
7259 
7260 		sbuf_printf(sb,
7261 		    "\n                   Reads           Total wait");
7262 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7263 		    tx_cyc[i]);
7264 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7265 		    rx_cyc[i]);
7266 	}
7267 
7268 	rc = sbuf_finish(sb);
7269 	sbuf_delete(sb);
7270 
7271 	return (rc);
7272 }
7273 
7274 static int
7275 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
7276 {
7277 	struct adapter *sc = arg1;
7278 	struct sbuf *sb;
7279 	int rc;
7280 	struct tp_rdma_stats stats;
7281 
7282 	rc = sysctl_wire_old_buffer(req, 0);
7283 	if (rc != 0)
7284 		return (rc);
7285 
7286 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7287 	if (sb == NULL)
7288 		return (ENOMEM);
7289 
7290 	mtx_lock(&sc->reg_lock);
7291 	t4_tp_get_rdma_stats(sc, &stats);
7292 	mtx_unlock(&sc->reg_lock);
7293 
7294 	sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
7295 	sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
7296 
7297 	rc = sbuf_finish(sb);
7298 	sbuf_delete(sb);
7299 
7300 	return (rc);
7301 }
7302 
7303 static int
7304 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
7305 {
7306 	struct adapter *sc = arg1;
7307 	struct sbuf *sb;
7308 	int rc;
7309 	struct tp_tcp_stats v4, v6;
7310 
7311 	rc = sysctl_wire_old_buffer(req, 0);
7312 	if (rc != 0)
7313 		return (rc);
7314 
7315 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7316 	if (sb == NULL)
7317 		return (ENOMEM);
7318 
7319 	mtx_lock(&sc->reg_lock);
7320 	t4_tp_get_tcp_stats(sc, &v4, &v6);
7321 	mtx_unlock(&sc->reg_lock);
7322 
7323 	sbuf_printf(sb,
7324 	    "                                IP                 IPv6\n");
7325 	sbuf_printf(sb, "OutRsts:      %20u %20u\n",
7326 	    v4.tcp_out_rsts, v6.tcp_out_rsts);
7327 	sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
7328 	    v4.tcp_in_segs, v6.tcp_in_segs);
7329 	sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
7330 	    v4.tcp_out_segs, v6.tcp_out_segs);
7331 	sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
7332 	    v4.tcp_retrans_segs, v6.tcp_retrans_segs);
7333 
7334 	rc = sbuf_finish(sb);
7335 	sbuf_delete(sb);
7336 
7337 	return (rc);
7338 }
7339 
7340 static int
7341 sysctl_tids(SYSCTL_HANDLER_ARGS)
7342 {
7343 	struct adapter *sc = arg1;
7344 	struct sbuf *sb;
7345 	int rc;
7346 	struct tid_info *t = &sc->tids;
7347 
7348 	rc = sysctl_wire_old_buffer(req, 0);
7349 	if (rc != 0)
7350 		return (rc);
7351 
7352 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7353 	if (sb == NULL)
7354 		return (ENOMEM);
7355 
7356 	if (t->natids) {
7357 		sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
7358 		    t->atids_in_use);
7359 	}
7360 
7361 	if (t->ntids) {
7362 		sbuf_printf(sb, "TID range: ");
7363 		if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
7364 			uint32_t b, hb;
7365 
7366 			if (chip_id(sc) <= CHELSIO_T5) {
7367 				b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
7368 				hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
7369 			} else {
7370 				b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
7371 				hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
7372 			}
7373 
7374 			if (b)
7375 				sbuf_printf(sb, "0-%u, ", b - 1);
7376 			sbuf_printf(sb, "%u-%u", hb, t->ntids - 1);
7377 		} else
7378 			sbuf_printf(sb, "0-%u", t->ntids - 1);
7379 		sbuf_printf(sb, ", in use: %u\n",
7380 		    atomic_load_acq_int(&t->tids_in_use));
7381 	}
7382 
7383 	if (t->nstids) {
7384 		sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
7385 		    t->stid_base + t->nstids - 1, t->stids_in_use);
7386 	}
7387 
7388 	if (t->nftids) {
7389 		sbuf_printf(sb, "FTID range: %u-%u\n", t->ftid_base,
7390 		    t->ftid_base + t->nftids - 1);
7391 	}
7392 
7393 	if (t->netids) {
7394 		sbuf_printf(sb, "ETID range: %u-%u\n", t->etid_base,
7395 		    t->etid_base + t->netids - 1);
7396 	}
7397 
7398 	sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users",
7399 	    t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4),
7400 	    t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6));
7401 
7402 	rc = sbuf_finish(sb);
7403 	sbuf_delete(sb);
7404 
7405 	return (rc);
7406 }
7407 
7408 static int
7409 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
7410 {
7411 	struct adapter *sc = arg1;
7412 	struct sbuf *sb;
7413 	int rc;
7414 	struct tp_err_stats stats;
7415 
7416 	rc = sysctl_wire_old_buffer(req, 0);
7417 	if (rc != 0)
7418 		return (rc);
7419 
7420 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7421 	if (sb == NULL)
7422 		return (ENOMEM);
7423 
7424 	mtx_lock(&sc->reg_lock);
7425 	t4_tp_get_err_stats(sc, &stats);
7426 	mtx_unlock(&sc->reg_lock);
7427 
7428 	if (sc->chip_params->nchan > 2) {
7429 		sbuf_printf(sb, "                 channel 0  channel 1"
7430 		    "  channel 2  channel 3\n");
7431 		sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
7432 		    stats.mac_in_errs[0], stats.mac_in_errs[1],
7433 		    stats.mac_in_errs[2], stats.mac_in_errs[3]);
7434 		sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
7435 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1],
7436 		    stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
7437 		sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
7438 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1],
7439 		    stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
7440 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
7441 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
7442 		    stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
7443 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
7444 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
7445 		    stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
7446 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
7447 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
7448 		    stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
7449 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
7450 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
7451 		    stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
7452 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
7453 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
7454 		    stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
7455 	} else {
7456 		sbuf_printf(sb, "                 channel 0  channel 1\n");
7457 		sbuf_printf(sb, "macInErrs:      %10u %10u\n",
7458 		    stats.mac_in_errs[0], stats.mac_in_errs[1]);
7459 		sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
7460 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
7461 		sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
7462 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
7463 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
7464 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
7465 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
7466 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
7467 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
7468 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
7469 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
7470 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
7471 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
7472 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
7473 	}
7474 
7475 	sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
7476 	    stats.ofld_no_neigh, stats.ofld_cong_defer);
7477 
7478 	rc = sbuf_finish(sb);
7479 	sbuf_delete(sb);
7480 
7481 	return (rc);
7482 }
7483 
7484 static int
7485 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
7486 {
7487 	struct adapter *sc = arg1;
7488 	struct tp_params *tpp = &sc->params.tp;
7489 	u_int mask;
7490 	int rc;
7491 
7492 	mask = tpp->la_mask >> 16;
7493 	rc = sysctl_handle_int(oidp, &mask, 0, req);
7494 	if (rc != 0 || req->newptr == NULL)
7495 		return (rc);
7496 	if (mask > 0xffff)
7497 		return (EINVAL);
7498 	tpp->la_mask = mask << 16;
7499 	t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask);
7500 
7501 	return (0);
7502 }
7503 
7504 struct field_desc {
7505 	const char *name;
7506 	u_int start;
7507 	u_int width;
7508 };
7509 
7510 static void
7511 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
7512 {
7513 	char buf[32];
7514 	int line_size = 0;
7515 
7516 	while (f->name) {
7517 		uint64_t mask = (1ULL << f->width) - 1;
7518 		int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
7519 		    ((uintmax_t)v >> f->start) & mask);
7520 
7521 		if (line_size + len >= 79) {
7522 			line_size = 8;
7523 			sbuf_printf(sb, "\n        ");
7524 		}
7525 		sbuf_printf(sb, "%s ", buf);
7526 		line_size += len + 1;
7527 		f++;
7528 	}
7529 	sbuf_printf(sb, "\n");
7530 }
7531 
7532 static const struct field_desc tp_la0[] = {
7533 	{ "RcfOpCodeOut", 60, 4 },
7534 	{ "State", 56, 4 },
7535 	{ "WcfState", 52, 4 },
7536 	{ "RcfOpcSrcOut", 50, 2 },
7537 	{ "CRxError", 49, 1 },
7538 	{ "ERxError", 48, 1 },
7539 	{ "SanityFailed", 47, 1 },
7540 	{ "SpuriousMsg", 46, 1 },
7541 	{ "FlushInputMsg", 45, 1 },
7542 	{ "FlushInputCpl", 44, 1 },
7543 	{ "RssUpBit", 43, 1 },
7544 	{ "RssFilterHit", 42, 1 },
7545 	{ "Tid", 32, 10 },
7546 	{ "InitTcb", 31, 1 },
7547 	{ "LineNumber", 24, 7 },
7548 	{ "Emsg", 23, 1 },
7549 	{ "EdataOut", 22, 1 },
7550 	{ "Cmsg", 21, 1 },
7551 	{ "CdataOut", 20, 1 },
7552 	{ "EreadPdu", 19, 1 },
7553 	{ "CreadPdu", 18, 1 },
7554 	{ "TunnelPkt", 17, 1 },
7555 	{ "RcfPeerFin", 16, 1 },
7556 	{ "RcfReasonOut", 12, 4 },
7557 	{ "TxCchannel", 10, 2 },
7558 	{ "RcfTxChannel", 8, 2 },
7559 	{ "RxEchannel", 6, 2 },
7560 	{ "RcfRxChannel", 5, 1 },
7561 	{ "RcfDataOutSrdy", 4, 1 },
7562 	{ "RxDvld", 3, 1 },
7563 	{ "RxOoDvld", 2, 1 },
7564 	{ "RxCongestion", 1, 1 },
7565 	{ "TxCongestion", 0, 1 },
7566 	{ NULL }
7567 };
7568 
7569 static const struct field_desc tp_la1[] = {
7570 	{ "CplCmdIn", 56, 8 },
7571 	{ "CplCmdOut", 48, 8 },
7572 	{ "ESynOut", 47, 1 },
7573 	{ "EAckOut", 46, 1 },
7574 	{ "EFinOut", 45, 1 },
7575 	{ "ERstOut", 44, 1 },
7576 	{ "SynIn", 43, 1 },
7577 	{ "AckIn", 42, 1 },
7578 	{ "FinIn", 41, 1 },
7579 	{ "RstIn", 40, 1 },
7580 	{ "DataIn", 39, 1 },
7581 	{ "DataInVld", 38, 1 },
7582 	{ "PadIn", 37, 1 },
7583 	{ "RxBufEmpty", 36, 1 },
7584 	{ "RxDdp", 35, 1 },
7585 	{ "RxFbCongestion", 34, 1 },
7586 	{ "TxFbCongestion", 33, 1 },
7587 	{ "TxPktSumSrdy", 32, 1 },
7588 	{ "RcfUlpType", 28, 4 },
7589 	{ "Eread", 27, 1 },
7590 	{ "Ebypass", 26, 1 },
7591 	{ "Esave", 25, 1 },
7592 	{ "Static0", 24, 1 },
7593 	{ "Cread", 23, 1 },
7594 	{ "Cbypass", 22, 1 },
7595 	{ "Csave", 21, 1 },
7596 	{ "CPktOut", 20, 1 },
7597 	{ "RxPagePoolFull", 18, 2 },
7598 	{ "RxLpbkPkt", 17, 1 },
7599 	{ "TxLpbkPkt", 16, 1 },
7600 	{ "RxVfValid", 15, 1 },
7601 	{ "SynLearned", 14, 1 },
7602 	{ "SetDelEntry", 13, 1 },
7603 	{ "SetInvEntry", 12, 1 },
7604 	{ "CpcmdDvld", 11, 1 },
7605 	{ "CpcmdSave", 10, 1 },
7606 	{ "RxPstructsFull", 8, 2 },
7607 	{ "EpcmdDvld", 7, 1 },
7608 	{ "EpcmdFlush", 6, 1 },
7609 	{ "EpcmdTrimPrefix", 5, 1 },
7610 	{ "EpcmdTrimPostfix", 4, 1 },
7611 	{ "ERssIp4Pkt", 3, 1 },
7612 	{ "ERssIp6Pkt", 2, 1 },
7613 	{ "ERssTcpUdpPkt", 1, 1 },
7614 	{ "ERssFceFipPkt", 0, 1 },
7615 	{ NULL }
7616 };
7617 
7618 static const struct field_desc tp_la2[] = {
7619 	{ "CplCmdIn", 56, 8 },
7620 	{ "MpsVfVld", 55, 1 },
7621 	{ "MpsPf", 52, 3 },
7622 	{ "MpsVf", 44, 8 },
7623 	{ "SynIn", 43, 1 },
7624 	{ "AckIn", 42, 1 },
7625 	{ "FinIn", 41, 1 },
7626 	{ "RstIn", 40, 1 },
7627 	{ "DataIn", 39, 1 },
7628 	{ "DataInVld", 38, 1 },
7629 	{ "PadIn", 37, 1 },
7630 	{ "RxBufEmpty", 36, 1 },
7631 	{ "RxDdp", 35, 1 },
7632 	{ "RxFbCongestion", 34, 1 },
7633 	{ "TxFbCongestion", 33, 1 },
7634 	{ "TxPktSumSrdy", 32, 1 },
7635 	{ "RcfUlpType", 28, 4 },
7636 	{ "Eread", 27, 1 },
7637 	{ "Ebypass", 26, 1 },
7638 	{ "Esave", 25, 1 },
7639 	{ "Static0", 24, 1 },
7640 	{ "Cread", 23, 1 },
7641 	{ "Cbypass", 22, 1 },
7642 	{ "Csave", 21, 1 },
7643 	{ "CPktOut", 20, 1 },
7644 	{ "RxPagePoolFull", 18, 2 },
7645 	{ "RxLpbkPkt", 17, 1 },
7646 	{ "TxLpbkPkt", 16, 1 },
7647 	{ "RxVfValid", 15, 1 },
7648 	{ "SynLearned", 14, 1 },
7649 	{ "SetDelEntry", 13, 1 },
7650 	{ "SetInvEntry", 12, 1 },
7651 	{ "CpcmdDvld", 11, 1 },
7652 	{ "CpcmdSave", 10, 1 },
7653 	{ "RxPstructsFull", 8, 2 },
7654 	{ "EpcmdDvld", 7, 1 },
7655 	{ "EpcmdFlush", 6, 1 },
7656 	{ "EpcmdTrimPrefix", 5, 1 },
7657 	{ "EpcmdTrimPostfix", 4, 1 },
7658 	{ "ERssIp4Pkt", 3, 1 },
7659 	{ "ERssIp6Pkt", 2, 1 },
7660 	{ "ERssTcpUdpPkt", 1, 1 },
7661 	{ "ERssFceFipPkt", 0, 1 },
7662 	{ NULL }
7663 };
7664 
7665 static void
7666 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
7667 {
7668 
7669 	field_desc_show(sb, *p, tp_la0);
7670 }
7671 
7672 static void
7673 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
7674 {
7675 
7676 	if (idx)
7677 		sbuf_printf(sb, "\n");
7678 	field_desc_show(sb, p[0], tp_la0);
7679 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
7680 		field_desc_show(sb, p[1], tp_la0);
7681 }
7682 
7683 static void
7684 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
7685 {
7686 
7687 	if (idx)
7688 		sbuf_printf(sb, "\n");
7689 	field_desc_show(sb, p[0], tp_la0);
7690 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
7691 		field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
7692 }
7693 
7694 static int
7695 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
7696 {
7697 	struct adapter *sc = arg1;
7698 	struct sbuf *sb;
7699 	uint64_t *buf, *p;
7700 	int rc;
7701 	u_int i, inc;
7702 	void (*show_func)(struct sbuf *, uint64_t *, int);
7703 
7704 	rc = sysctl_wire_old_buffer(req, 0);
7705 	if (rc != 0)
7706 		return (rc);
7707 
7708 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7709 	if (sb == NULL)
7710 		return (ENOMEM);
7711 
7712 	buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
7713 
7714 	t4_tp_read_la(sc, buf, NULL);
7715 	p = buf;
7716 
7717 	switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
7718 	case 2:
7719 		inc = 2;
7720 		show_func = tp_la_show2;
7721 		break;
7722 	case 3:
7723 		inc = 2;
7724 		show_func = tp_la_show3;
7725 		break;
7726 	default:
7727 		inc = 1;
7728 		show_func = tp_la_show;
7729 	}
7730 
7731 	for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
7732 		(*show_func)(sb, p, i);
7733 
7734 	rc = sbuf_finish(sb);
7735 	sbuf_delete(sb);
7736 	free(buf, M_CXGBE);
7737 	return (rc);
7738 }
7739 
7740 static int
7741 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
7742 {
7743 	struct adapter *sc = arg1;
7744 	struct sbuf *sb;
7745 	int rc;
7746 	u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
7747 
7748 	rc = sysctl_wire_old_buffer(req, 0);
7749 	if (rc != 0)
7750 		return (rc);
7751 
7752 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7753 	if (sb == NULL)
7754 		return (ENOMEM);
7755 
7756 	t4_get_chan_txrate(sc, nrate, orate);
7757 
7758 	if (sc->chip_params->nchan > 2) {
7759 		sbuf_printf(sb, "              channel 0   channel 1"
7760 		    "   channel 2   channel 3\n");
7761 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
7762 		    nrate[0], nrate[1], nrate[2], nrate[3]);
7763 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
7764 		    orate[0], orate[1], orate[2], orate[3]);
7765 	} else {
7766 		sbuf_printf(sb, "              channel 0   channel 1\n");
7767 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
7768 		    nrate[0], nrate[1]);
7769 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
7770 		    orate[0], orate[1]);
7771 	}
7772 
7773 	rc = sbuf_finish(sb);
7774 	sbuf_delete(sb);
7775 
7776 	return (rc);
7777 }
7778 
7779 static int
7780 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
7781 {
7782 	struct adapter *sc = arg1;
7783 	struct sbuf *sb;
7784 	uint32_t *buf, *p;
7785 	int rc, i;
7786 
7787 	rc = sysctl_wire_old_buffer(req, 0);
7788 	if (rc != 0)
7789 		return (rc);
7790 
7791 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7792 	if (sb == NULL)
7793 		return (ENOMEM);
7794 
7795 	buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
7796 	    M_ZERO | M_WAITOK);
7797 
7798 	t4_ulprx_read_la(sc, buf);
7799 	p = buf;
7800 
7801 	sbuf_printf(sb, "      Pcmd        Type   Message"
7802 	    "                Data");
7803 	for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
7804 		sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
7805 		    p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
7806 	}
7807 
7808 	rc = sbuf_finish(sb);
7809 	sbuf_delete(sb);
7810 	free(buf, M_CXGBE);
7811 	return (rc);
7812 }
7813 
7814 static int
7815 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
7816 {
7817 	struct adapter *sc = arg1;
7818 	struct sbuf *sb;
7819 	int rc, v;
7820 
7821 	MPASS(chip_id(sc) >= CHELSIO_T5);
7822 
7823 	rc = sysctl_wire_old_buffer(req, 0);
7824 	if (rc != 0)
7825 		return (rc);
7826 
7827 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7828 	if (sb == NULL)
7829 		return (ENOMEM);
7830 
7831 	v = t4_read_reg(sc, A_SGE_STAT_CFG);
7832 	if (G_STATSOURCE_T5(v) == 7) {
7833 		int mode;
7834 
7835 		mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v);
7836 		if (mode == 0) {
7837 			sbuf_printf(sb, "total %d, incomplete %d",
7838 			    t4_read_reg(sc, A_SGE_STAT_TOTAL),
7839 			    t4_read_reg(sc, A_SGE_STAT_MATCH));
7840 		} else if (mode == 1) {
7841 			sbuf_printf(sb, "total %d, data overflow %d",
7842 			    t4_read_reg(sc, A_SGE_STAT_TOTAL),
7843 			    t4_read_reg(sc, A_SGE_STAT_MATCH));
7844 		} else {
7845 			sbuf_printf(sb, "unknown mode %d", mode);
7846 		}
7847 	}
7848 	rc = sbuf_finish(sb);
7849 	sbuf_delete(sb);
7850 
7851 	return (rc);
7852 }
7853 
7854 static int
7855 sysctl_tc_params(SYSCTL_HANDLER_ARGS)
7856 {
7857 	struct adapter *sc = arg1;
7858 	struct tx_cl_rl_params tc;
7859 	struct sbuf *sb;
7860 	int i, rc, port_id, mbps, gbps;
7861 
7862 	rc = sysctl_wire_old_buffer(req, 0);
7863 	if (rc != 0)
7864 		return (rc);
7865 
7866 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7867 	if (sb == NULL)
7868 		return (ENOMEM);
7869 
7870 	port_id = arg2 >> 16;
7871 	MPASS(port_id < sc->params.nports);
7872 	MPASS(sc->port[port_id] != NULL);
7873 	i = arg2 & 0xffff;
7874 	MPASS(i < sc->chip_params->nsched_cls);
7875 
7876 	mtx_lock(&sc->tc_lock);
7877 	tc = sc->port[port_id]->sched_params->cl_rl[i];
7878 	mtx_unlock(&sc->tc_lock);
7879 
7880 	if (tc.flags & TX_CLRL_ERROR) {
7881 		sbuf_printf(sb, "error");
7882 		goto done;
7883 	}
7884 
7885 	if (tc.ratemode == SCHED_CLASS_RATEMODE_REL) {
7886 		/* XXX: top speed or actual link speed? */
7887 		gbps = port_top_speed(sc->port[port_id]);
7888 		sbuf_printf(sb, " %u%% of %uGbps", tc.maxrate, gbps);
7889 	} else if (tc.ratemode == SCHED_CLASS_RATEMODE_ABS) {
7890 		switch (tc.rateunit) {
7891 		case SCHED_CLASS_RATEUNIT_BITS:
7892 			mbps = tc.maxrate / 1000;
7893 			gbps = tc.maxrate / 1000000;
7894 			if (tc.maxrate == gbps * 1000000)
7895 				sbuf_printf(sb, " %uGbps", gbps);
7896 			else if (tc.maxrate == mbps * 1000)
7897 				sbuf_printf(sb, " %uMbps", mbps);
7898 			else
7899 				sbuf_printf(sb, " %uKbps", tc.maxrate);
7900 			break;
7901 		case SCHED_CLASS_RATEUNIT_PKTS:
7902 			sbuf_printf(sb, " %upps", tc.maxrate);
7903 			break;
7904 		default:
7905 			rc = ENXIO;
7906 			goto done;
7907 		}
7908 	}
7909 
7910 	switch (tc.mode) {
7911 	case SCHED_CLASS_MODE_CLASS:
7912 		sbuf_printf(sb, " aggregate");
7913 		break;
7914 	case SCHED_CLASS_MODE_FLOW:
7915 		sbuf_printf(sb, " per-flow");
7916 		break;
7917 	default:
7918 		rc = ENXIO;
7919 		goto done;
7920 	}
7921 
7922 done:
7923 	if (rc == 0)
7924 		rc = sbuf_finish(sb);
7925 	sbuf_delete(sb);
7926 
7927 	return (rc);
7928 }
7929 #endif
7930 
7931 #ifdef TCP_OFFLOAD
7932 static void
7933 unit_conv(char *buf, size_t len, u_int val, u_int factor)
7934 {
7935 	u_int rem = val % factor;
7936 
7937 	if (rem == 0)
7938 		snprintf(buf, len, "%u", val / factor);
7939 	else {
7940 		while (rem % 10 == 0)
7941 			rem /= 10;
7942 		snprintf(buf, len, "%u.%u", val / factor, rem);
7943 	}
7944 }
7945 
7946 static int
7947 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
7948 {
7949 	struct adapter *sc = arg1;
7950 	char buf[16];
7951 	u_int res, re;
7952 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
7953 
7954 	res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
7955 	switch (arg2) {
7956 	case 0:
7957 		/* timer_tick */
7958 		re = G_TIMERRESOLUTION(res);
7959 		break;
7960 	case 1:
7961 		/* TCP timestamp tick */
7962 		re = G_TIMESTAMPRESOLUTION(res);
7963 		break;
7964 	case 2:
7965 		/* DACK tick */
7966 		re = G_DELAYEDACKRESOLUTION(res);
7967 		break;
7968 	default:
7969 		return (EDOOFUS);
7970 	}
7971 
7972 	unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
7973 
7974 	return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
7975 }
7976 
7977 static int
7978 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
7979 {
7980 	struct adapter *sc = arg1;
7981 	u_int res, dack_re, v;
7982 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
7983 
7984 	res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
7985 	dack_re = G_DELAYEDACKRESOLUTION(res);
7986 	v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER);
7987 
7988 	return (sysctl_handle_int(oidp, &v, 0, req));
7989 }
7990 
7991 static int
7992 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
7993 {
7994 	struct adapter *sc = arg1;
7995 	int reg = arg2;
7996 	u_int tre;
7997 	u_long tp_tick_us, v;
7998 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
7999 
8000 	MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
8001 	    reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
8002 	    reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
8003 	    reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
8004 
8005 	tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
8006 	tp_tick_us = (cclk_ps << tre) / 1000000;
8007 
8008 	if (reg == A_TP_INIT_SRTT)
8009 		v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
8010 	else
8011 		v = tp_tick_us * t4_read_reg(sc, reg);
8012 
8013 	return (sysctl_handle_long(oidp, &v, 0, req));
8014 }
8015 #endif
8016 
8017 static uint32_t
8018 fconf_iconf_to_mode(uint32_t fconf, uint32_t iconf)
8019 {
8020 	uint32_t mode;
8021 
8022 	mode = T4_FILTER_IPv4 | T4_FILTER_IPv6 | T4_FILTER_IP_SADDR |
8023 	    T4_FILTER_IP_DADDR | T4_FILTER_IP_SPORT | T4_FILTER_IP_DPORT;
8024 
8025 	if (fconf & F_FRAGMENTATION)
8026 		mode |= T4_FILTER_IP_FRAGMENT;
8027 
8028 	if (fconf & F_MPSHITTYPE)
8029 		mode |= T4_FILTER_MPS_HIT_TYPE;
8030 
8031 	if (fconf & F_MACMATCH)
8032 		mode |= T4_FILTER_MAC_IDX;
8033 
8034 	if (fconf & F_ETHERTYPE)
8035 		mode |= T4_FILTER_ETH_TYPE;
8036 
8037 	if (fconf & F_PROTOCOL)
8038 		mode |= T4_FILTER_IP_PROTO;
8039 
8040 	if (fconf & F_TOS)
8041 		mode |= T4_FILTER_IP_TOS;
8042 
8043 	if (fconf & F_VLAN)
8044 		mode |= T4_FILTER_VLAN;
8045 
8046 	if (fconf & F_VNIC_ID) {
8047 		mode |= T4_FILTER_VNIC;
8048 		if (iconf & F_VNIC)
8049 			mode |= T4_FILTER_IC_VNIC;
8050 	}
8051 
8052 	if (fconf & F_PORT)
8053 		mode |= T4_FILTER_PORT;
8054 
8055 	if (fconf & F_FCOE)
8056 		mode |= T4_FILTER_FCoE;
8057 
8058 	return (mode);
8059 }
8060 
8061 static uint32_t
8062 mode_to_fconf(uint32_t mode)
8063 {
8064 	uint32_t fconf = 0;
8065 
8066 	if (mode & T4_FILTER_IP_FRAGMENT)
8067 		fconf |= F_FRAGMENTATION;
8068 
8069 	if (mode & T4_FILTER_MPS_HIT_TYPE)
8070 		fconf |= F_MPSHITTYPE;
8071 
8072 	if (mode & T4_FILTER_MAC_IDX)
8073 		fconf |= F_MACMATCH;
8074 
8075 	if (mode & T4_FILTER_ETH_TYPE)
8076 		fconf |= F_ETHERTYPE;
8077 
8078 	if (mode & T4_FILTER_IP_PROTO)
8079 		fconf |= F_PROTOCOL;
8080 
8081 	if (mode & T4_FILTER_IP_TOS)
8082 		fconf |= F_TOS;
8083 
8084 	if (mode & T4_FILTER_VLAN)
8085 		fconf |= F_VLAN;
8086 
8087 	if (mode & T4_FILTER_VNIC)
8088 		fconf |= F_VNIC_ID;
8089 
8090 	if (mode & T4_FILTER_PORT)
8091 		fconf |= F_PORT;
8092 
8093 	if (mode & T4_FILTER_FCoE)
8094 		fconf |= F_FCOE;
8095 
8096 	return (fconf);
8097 }
8098 
8099 static uint32_t
8100 mode_to_iconf(uint32_t mode)
8101 {
8102 
8103 	if (mode & T4_FILTER_IC_VNIC)
8104 		return (F_VNIC);
8105 	return (0);
8106 }
8107 
8108 static int check_fspec_against_fconf_iconf(struct adapter *sc,
8109     struct t4_filter_specification *fs)
8110 {
8111 	struct tp_params *tpp = &sc->params.tp;
8112 	uint32_t fconf = 0;
8113 
8114 	if (fs->val.frag || fs->mask.frag)
8115 		fconf |= F_FRAGMENTATION;
8116 
8117 	if (fs->val.matchtype || fs->mask.matchtype)
8118 		fconf |= F_MPSHITTYPE;
8119 
8120 	if (fs->val.macidx || fs->mask.macidx)
8121 		fconf |= F_MACMATCH;
8122 
8123 	if (fs->val.ethtype || fs->mask.ethtype)
8124 		fconf |= F_ETHERTYPE;
8125 
8126 	if (fs->val.proto || fs->mask.proto)
8127 		fconf |= F_PROTOCOL;
8128 
8129 	if (fs->val.tos || fs->mask.tos)
8130 		fconf |= F_TOS;
8131 
8132 	if (fs->val.vlan_vld || fs->mask.vlan_vld)
8133 		fconf |= F_VLAN;
8134 
8135 	if (fs->val.ovlan_vld || fs->mask.ovlan_vld) {
8136 		fconf |= F_VNIC_ID;
8137 		if (tpp->ingress_config & F_VNIC)
8138 			return (EINVAL);
8139 	}
8140 
8141 	if (fs->val.pfvf_vld || fs->mask.pfvf_vld) {
8142 		fconf |= F_VNIC_ID;
8143 		if ((tpp->ingress_config & F_VNIC) == 0)
8144 			return (EINVAL);
8145 	}
8146 
8147 	if (fs->val.iport || fs->mask.iport)
8148 		fconf |= F_PORT;
8149 
8150 	if (fs->val.fcoe || fs->mask.fcoe)
8151 		fconf |= F_FCOE;
8152 
8153 	if ((tpp->vlan_pri_map | fconf) != tpp->vlan_pri_map)
8154 		return (E2BIG);
8155 
8156 	return (0);
8157 }
8158 
8159 static int
8160 get_filter_mode(struct adapter *sc, uint32_t *mode)
8161 {
8162 	struct tp_params *tpp = &sc->params.tp;
8163 
8164 	/*
8165 	 * We trust the cached values of the relevant TP registers.  This means
8166 	 * things work reliably only if writes to those registers are always via
8167 	 * t4_set_filter_mode.
8168 	 */
8169 	*mode = fconf_iconf_to_mode(tpp->vlan_pri_map, tpp->ingress_config);
8170 
8171 	return (0);
8172 }
8173 
8174 static int
8175 set_filter_mode(struct adapter *sc, uint32_t mode)
8176 {
8177 	struct tp_params *tpp = &sc->params.tp;
8178 	uint32_t fconf, iconf;
8179 	int rc;
8180 
8181 	iconf = mode_to_iconf(mode);
8182 	if ((iconf ^ tpp->ingress_config) & F_VNIC) {
8183 		/*
8184 		 * For now we just complain if A_TP_INGRESS_CONFIG is not
8185 		 * already set to the correct value for the requested filter
8186 		 * mode.  It's not clear if it's safe to write to this register
8187 		 * on the fly.  (And we trust the cached value of the register).
8188 		 */
8189 		return (EBUSY);
8190 	}
8191 
8192 	fconf = mode_to_fconf(mode);
8193 
8194 	rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK,
8195 	    "t4setfm");
8196 	if (rc)
8197 		return (rc);
8198 
8199 	if (sc->tids.ftids_in_use > 0) {
8200 		rc = EBUSY;
8201 		goto done;
8202 	}
8203 
8204 #ifdef TCP_OFFLOAD
8205 	if (uld_active(sc, ULD_TOM)) {
8206 		rc = EBUSY;
8207 		goto done;
8208 	}
8209 #endif
8210 
8211 	rc = -t4_set_filter_mode(sc, fconf);
8212 done:
8213 	end_synchronized_op(sc, LOCK_HELD);
8214 	return (rc);
8215 }
8216 
8217 static inline uint64_t
8218 get_filter_hits(struct adapter *sc, uint32_t fid)
8219 {
8220 	uint32_t tcb_addr;
8221 
8222 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) +
8223 	    (fid + sc->tids.ftid_base) * TCB_SIZE;
8224 
8225 	if (is_t4(sc)) {
8226 		uint64_t hits;
8227 
8228 		read_via_memwin(sc, 0, tcb_addr + 16, (uint32_t *)&hits, 8);
8229 		return (be64toh(hits));
8230 	} else {
8231 		uint32_t hits;
8232 
8233 		read_via_memwin(sc, 0, tcb_addr + 24, &hits, 4);
8234 		return (be32toh(hits));
8235 	}
8236 }
8237 
8238 static int
8239 get_filter(struct adapter *sc, struct t4_filter *t)
8240 {
8241 	int i, rc, nfilters = sc->tids.nftids;
8242 	struct filter_entry *f;
8243 
8244 	rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK,
8245 	    "t4getf");
8246 	if (rc)
8247 		return (rc);
8248 
8249 	if (sc->tids.ftids_in_use == 0 || sc->tids.ftid_tab == NULL ||
8250 	    t->idx >= nfilters) {
8251 		t->idx = 0xffffffff;
8252 		goto done;
8253 	}
8254 
8255 	f = &sc->tids.ftid_tab[t->idx];
8256 	for (i = t->idx; i < nfilters; i++, f++) {
8257 		if (f->valid) {
8258 			t->idx = i;
8259 			t->l2tidx = f->l2t ? f->l2t->idx : 0;
8260 			t->smtidx = f->smtidx;
8261 			if (f->fs.hitcnts)
8262 				t->hits = get_filter_hits(sc, t->idx);
8263 			else
8264 				t->hits = UINT64_MAX;
8265 			t->fs = f->fs;
8266 
8267 			goto done;
8268 		}
8269 	}
8270 
8271 	t->idx = 0xffffffff;
8272 done:
8273 	end_synchronized_op(sc, LOCK_HELD);
8274 	return (0);
8275 }
8276 
8277 static int
8278 set_filter(struct adapter *sc, struct t4_filter *t)
8279 {
8280 	unsigned int nfilters, nports;
8281 	struct filter_entry *f;
8282 	int i, rc;
8283 
8284 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4setf");
8285 	if (rc)
8286 		return (rc);
8287 
8288 	nfilters = sc->tids.nftids;
8289 	nports = sc->params.nports;
8290 
8291 	if (nfilters == 0) {
8292 		rc = ENOTSUP;
8293 		goto done;
8294 	}
8295 
8296 	if (t->idx >= nfilters) {
8297 		rc = EINVAL;
8298 		goto done;
8299 	}
8300 
8301 	/* Validate against the global filter mode and ingress config */
8302 	rc = check_fspec_against_fconf_iconf(sc, &t->fs);
8303 	if (rc != 0)
8304 		goto done;
8305 
8306 	if (t->fs.action == FILTER_SWITCH && t->fs.eport >= nports) {
8307 		rc = EINVAL;
8308 		goto done;
8309 	}
8310 
8311 	if (t->fs.val.iport >= nports) {
8312 		rc = EINVAL;
8313 		goto done;
8314 	}
8315 
8316 	/* Can't specify an iq if not steering to it */
8317 	if (!t->fs.dirsteer && t->fs.iq) {
8318 		rc = EINVAL;
8319 		goto done;
8320 	}
8321 
8322 	/* IPv6 filter idx must be 4 aligned */
8323 	if (t->fs.type == 1 &&
8324 	    ((t->idx & 0x3) || t->idx + 4 >= nfilters)) {
8325 		rc = EINVAL;
8326 		goto done;
8327 	}
8328 
8329 	if (!(sc->flags & FULL_INIT_DONE) &&
8330 	    ((rc = adapter_full_init(sc)) != 0))
8331 		goto done;
8332 
8333 	if (sc->tids.ftid_tab == NULL) {
8334 		KASSERT(sc->tids.ftids_in_use == 0,
8335 		    ("%s: no memory allocated but filters_in_use > 0",
8336 		    __func__));
8337 
8338 		sc->tids.ftid_tab = malloc(sizeof (struct filter_entry) *
8339 		    nfilters, M_CXGBE, M_NOWAIT | M_ZERO);
8340 		if (sc->tids.ftid_tab == NULL) {
8341 			rc = ENOMEM;
8342 			goto done;
8343 		}
8344 		mtx_init(&sc->tids.ftid_lock, "T4 filters", 0, MTX_DEF);
8345 	}
8346 
8347 	for (i = 0; i < 4; i++) {
8348 		f = &sc->tids.ftid_tab[t->idx + i];
8349 
8350 		if (f->pending || f->valid) {
8351 			rc = EBUSY;
8352 			goto done;
8353 		}
8354 		if (f->locked) {
8355 			rc = EPERM;
8356 			goto done;
8357 		}
8358 
8359 		if (t->fs.type == 0)
8360 			break;
8361 	}
8362 
8363 	f = &sc->tids.ftid_tab[t->idx];
8364 	f->fs = t->fs;
8365 
8366 	rc = set_filter_wr(sc, t->idx);
8367 done:
8368 	end_synchronized_op(sc, 0);
8369 
8370 	if (rc == 0) {
8371 		mtx_lock(&sc->tids.ftid_lock);
8372 		for (;;) {
8373 			if (f->pending == 0) {
8374 				rc = f->valid ? 0 : EIO;
8375 				break;
8376 			}
8377 
8378 			if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock,
8379 			    PCATCH, "t4setfw", 0)) {
8380 				rc = EINPROGRESS;
8381 				break;
8382 			}
8383 		}
8384 		mtx_unlock(&sc->tids.ftid_lock);
8385 	}
8386 	return (rc);
8387 }
8388 
8389 static int
8390 del_filter(struct adapter *sc, struct t4_filter *t)
8391 {
8392 	unsigned int nfilters;
8393 	struct filter_entry *f;
8394 	int rc;
8395 
8396 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4delf");
8397 	if (rc)
8398 		return (rc);
8399 
8400 	nfilters = sc->tids.nftids;
8401 
8402 	if (nfilters == 0) {
8403 		rc = ENOTSUP;
8404 		goto done;
8405 	}
8406 
8407 	if (sc->tids.ftid_tab == NULL || sc->tids.ftids_in_use == 0 ||
8408 	    t->idx >= nfilters) {
8409 		rc = EINVAL;
8410 		goto done;
8411 	}
8412 
8413 	if (!(sc->flags & FULL_INIT_DONE)) {
8414 		rc = EAGAIN;
8415 		goto done;
8416 	}
8417 
8418 	f = &sc->tids.ftid_tab[t->idx];
8419 
8420 	if (f->pending) {
8421 		rc = EBUSY;
8422 		goto done;
8423 	}
8424 	if (f->locked) {
8425 		rc = EPERM;
8426 		goto done;
8427 	}
8428 
8429 	if (f->valid) {
8430 		t->fs = f->fs;	/* extra info for the caller */
8431 		rc = del_filter_wr(sc, t->idx);
8432 	}
8433 
8434 done:
8435 	end_synchronized_op(sc, 0);
8436 
8437 	if (rc == 0) {
8438 		mtx_lock(&sc->tids.ftid_lock);
8439 		for (;;) {
8440 			if (f->pending == 0) {
8441 				rc = f->valid ? EIO : 0;
8442 				break;
8443 			}
8444 
8445 			if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock,
8446 			    PCATCH, "t4delfw", 0)) {
8447 				rc = EINPROGRESS;
8448 				break;
8449 			}
8450 		}
8451 		mtx_unlock(&sc->tids.ftid_lock);
8452 	}
8453 
8454 	return (rc);
8455 }
8456 
8457 static void
8458 clear_filter(struct filter_entry *f)
8459 {
8460 	if (f->l2t)
8461 		t4_l2t_release(f->l2t);
8462 
8463 	bzero(f, sizeof (*f));
8464 }
8465 
8466 static int
8467 set_filter_wr(struct adapter *sc, int fidx)
8468 {
8469 	struct filter_entry *f = &sc->tids.ftid_tab[fidx];
8470 	struct fw_filter_wr *fwr;
8471 	unsigned int ftid, vnic_vld, vnic_vld_mask;
8472 	struct wrq_cookie cookie;
8473 
8474 	ASSERT_SYNCHRONIZED_OP(sc);
8475 
8476 	if (f->fs.newdmac || f->fs.newvlan) {
8477 		/* This filter needs an L2T entry; allocate one. */
8478 		f->l2t = t4_l2t_alloc_switching(sc->l2t);
8479 		if (f->l2t == NULL)
8480 			return (EAGAIN);
8481 		if (t4_l2t_set_switching(sc, f->l2t, f->fs.vlan, f->fs.eport,
8482 		    f->fs.dmac)) {
8483 			t4_l2t_release(f->l2t);
8484 			f->l2t = NULL;
8485 			return (ENOMEM);
8486 		}
8487 	}
8488 
8489 	/* Already validated against fconf, iconf */
8490 	MPASS((f->fs.val.pfvf_vld & f->fs.val.ovlan_vld) == 0);
8491 	MPASS((f->fs.mask.pfvf_vld & f->fs.mask.ovlan_vld) == 0);
8492 	if (f->fs.val.pfvf_vld || f->fs.val.ovlan_vld)
8493 		vnic_vld = 1;
8494 	else
8495 		vnic_vld = 0;
8496 	if (f->fs.mask.pfvf_vld || f->fs.mask.ovlan_vld)
8497 		vnic_vld_mask = 1;
8498 	else
8499 		vnic_vld_mask = 0;
8500 
8501 	ftid = sc->tids.ftid_base + fidx;
8502 
8503 	fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie);
8504 	if (fwr == NULL)
8505 		return (ENOMEM);
8506 	bzero(fwr, sizeof(*fwr));
8507 
8508 	fwr->op_pkd = htobe32(V_FW_WR_OP(FW_FILTER_WR));
8509 	fwr->len16_pkd = htobe32(FW_LEN16(*fwr));
8510 	fwr->tid_to_iq =
8511 	    htobe32(V_FW_FILTER_WR_TID(ftid) |
8512 		V_FW_FILTER_WR_RQTYPE(f->fs.type) |
8513 		V_FW_FILTER_WR_NOREPLY(0) |
8514 		V_FW_FILTER_WR_IQ(f->fs.iq));
8515 	fwr->del_filter_to_l2tix =
8516 	    htobe32(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
8517 		V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
8518 		V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
8519 		V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
8520 		V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
8521 		V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
8522 		V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
8523 		V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
8524 		V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
8525 		    f->fs.newvlan == VLAN_REWRITE) |
8526 		V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
8527 		    f->fs.newvlan == VLAN_REWRITE) |
8528 		V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
8529 		V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
8530 		V_FW_FILTER_WR_PRIO(f->fs.prio) |
8531 		V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
8532 	fwr->ethtype = htobe16(f->fs.val.ethtype);
8533 	fwr->ethtypem = htobe16(f->fs.mask.ethtype);
8534 	fwr->frag_to_ovlan_vldm =
8535 	    (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
8536 		V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
8537 		V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.vlan_vld) |
8538 		V_FW_FILTER_WR_OVLAN_VLD(vnic_vld) |
8539 		V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.vlan_vld) |
8540 		V_FW_FILTER_WR_OVLAN_VLDM(vnic_vld_mask));
8541 	fwr->smac_sel = 0;
8542 	fwr->rx_chan_rx_rpl_iq = htobe16(V_FW_FILTER_WR_RX_CHAN(0) |
8543 	    V_FW_FILTER_WR_RX_RPL_IQ(sc->sge.fwq.abs_id));
8544 	fwr->maci_to_matchtypem =
8545 	    htobe32(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
8546 		V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
8547 		V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
8548 		V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
8549 		V_FW_FILTER_WR_PORT(f->fs.val.iport) |
8550 		V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
8551 		V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
8552 		V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
8553 	fwr->ptcl = f->fs.val.proto;
8554 	fwr->ptclm = f->fs.mask.proto;
8555 	fwr->ttyp = f->fs.val.tos;
8556 	fwr->ttypm = f->fs.mask.tos;
8557 	fwr->ivlan = htobe16(f->fs.val.vlan);
8558 	fwr->ivlanm = htobe16(f->fs.mask.vlan);
8559 	fwr->ovlan = htobe16(f->fs.val.vnic);
8560 	fwr->ovlanm = htobe16(f->fs.mask.vnic);
8561 	bcopy(f->fs.val.dip, fwr->lip, sizeof (fwr->lip));
8562 	bcopy(f->fs.mask.dip, fwr->lipm, sizeof (fwr->lipm));
8563 	bcopy(f->fs.val.sip, fwr->fip, sizeof (fwr->fip));
8564 	bcopy(f->fs.mask.sip, fwr->fipm, sizeof (fwr->fipm));
8565 	fwr->lp = htobe16(f->fs.val.dport);
8566 	fwr->lpm = htobe16(f->fs.mask.dport);
8567 	fwr->fp = htobe16(f->fs.val.sport);
8568 	fwr->fpm = htobe16(f->fs.mask.sport);
8569 	if (f->fs.newsmac)
8570 		bcopy(f->fs.smac, fwr->sma, sizeof (fwr->sma));
8571 
8572 	f->pending = 1;
8573 	sc->tids.ftids_in_use++;
8574 
8575 	commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie);
8576 	return (0);
8577 }
8578 
8579 static int
8580 del_filter_wr(struct adapter *sc, int fidx)
8581 {
8582 	struct filter_entry *f = &sc->tids.ftid_tab[fidx];
8583 	struct fw_filter_wr *fwr;
8584 	unsigned int ftid;
8585 	struct wrq_cookie cookie;
8586 
8587 	ftid = sc->tids.ftid_base + fidx;
8588 
8589 	fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie);
8590 	if (fwr == NULL)
8591 		return (ENOMEM);
8592 	bzero(fwr, sizeof (*fwr));
8593 
8594 	t4_mk_filtdelwr(ftid, fwr, sc->sge.fwq.abs_id);
8595 
8596 	f->pending = 1;
8597 	commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie);
8598 	return (0);
8599 }
8600 
8601 int
8602 t4_filter_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
8603 {
8604 	struct adapter *sc = iq->adapter;
8605 	const struct cpl_set_tcb_rpl *rpl = (const void *)(rss + 1);
8606 	unsigned int idx = GET_TID(rpl);
8607 	unsigned int rc;
8608 	struct filter_entry *f;
8609 
8610 	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
8611 	    rss->opcode));
8612 	MPASS(iq == &sc->sge.fwq);
8613 	MPASS(is_ftid(sc, idx));
8614 
8615 	idx -= sc->tids.ftid_base;
8616 	f = &sc->tids.ftid_tab[idx];
8617 	rc = G_COOKIE(rpl->cookie);
8618 
8619 	mtx_lock(&sc->tids.ftid_lock);
8620 	if (rc == FW_FILTER_WR_FLT_ADDED) {
8621 		KASSERT(f->pending, ("%s: filter[%u] isn't pending.",
8622 		    __func__, idx));
8623 		f->smtidx = (be64toh(rpl->oldval) >> 24) & 0xff;
8624 		f->pending = 0;  /* asynchronous setup completed */
8625 		f->valid = 1;
8626 	} else {
8627 		if (rc != FW_FILTER_WR_FLT_DELETED) {
8628 			/* Add or delete failed, display an error */
8629 			log(LOG_ERR,
8630 			    "filter %u setup failed with error %u\n",
8631 			    idx, rc);
8632 		}
8633 
8634 		clear_filter(f);
8635 		sc->tids.ftids_in_use--;
8636 	}
8637 	wakeup(&sc->tids.ftid_tab);
8638 	mtx_unlock(&sc->tids.ftid_lock);
8639 
8640 	return (0);
8641 }
8642 
8643 static int
8644 set_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
8645 {
8646 
8647 	MPASS(iq->set_tcb_rpl != NULL);
8648 	return (iq->set_tcb_rpl(iq, rss, m));
8649 }
8650 
8651 static int
8652 l2t_write_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
8653 {
8654 
8655 	MPASS(iq->l2t_write_rpl != NULL);
8656 	return (iq->l2t_write_rpl(iq, rss, m));
8657 }
8658 
8659 static int
8660 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
8661 {
8662 	int rc;
8663 
8664 	if (cntxt->cid > M_CTXTQID)
8665 		return (EINVAL);
8666 
8667 	if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
8668 	    cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
8669 		return (EINVAL);
8670 
8671 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
8672 	if (rc)
8673 		return (rc);
8674 
8675 	if (sc->flags & FW_OK) {
8676 		rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
8677 		    &cntxt->data[0]);
8678 		if (rc == 0)
8679 			goto done;
8680 	}
8681 
8682 	/*
8683 	 * Read via firmware failed or wasn't even attempted.  Read directly via
8684 	 * the backdoor.
8685 	 */
8686 	rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
8687 done:
8688 	end_synchronized_op(sc, 0);
8689 	return (rc);
8690 }
8691 
8692 static int
8693 load_fw(struct adapter *sc, struct t4_data *fw)
8694 {
8695 	int rc;
8696 	uint8_t *fw_data;
8697 
8698 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
8699 	if (rc)
8700 		return (rc);
8701 
8702 	if (sc->flags & FULL_INIT_DONE) {
8703 		rc = EBUSY;
8704 		goto done;
8705 	}
8706 
8707 	fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
8708 	if (fw_data == NULL) {
8709 		rc = ENOMEM;
8710 		goto done;
8711 	}
8712 
8713 	rc = copyin(fw->data, fw_data, fw->len);
8714 	if (rc == 0)
8715 		rc = -t4_load_fw(sc, fw_data, fw->len);
8716 
8717 	free(fw_data, M_CXGBE);
8718 done:
8719 	end_synchronized_op(sc, 0);
8720 	return (rc);
8721 }
8722 
8723 static int
8724 load_cfg(struct adapter *sc, struct t4_data *cfg)
8725 {
8726 	int rc;
8727 	uint8_t *cfg_data = NULL;
8728 
8729 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
8730 	if (rc)
8731 		return (rc);
8732 
8733 	if (cfg->len == 0) {
8734 		/* clear */
8735 		rc = -t4_load_cfg(sc, NULL, 0);
8736 		goto done;
8737 	}
8738 
8739 	cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
8740 	if (cfg_data == NULL) {
8741 		rc = ENOMEM;
8742 		goto done;
8743 	}
8744 
8745 	rc = copyin(cfg->data, cfg_data, cfg->len);
8746 	if (rc == 0)
8747 		rc = -t4_load_cfg(sc, cfg_data, cfg->len);
8748 
8749 	free(cfg_data, M_CXGBE);
8750 done:
8751 	end_synchronized_op(sc, 0);
8752 	return (rc);
8753 }
8754 
8755 #define MAX_READ_BUF_SIZE (128 * 1024)
8756 static int
8757 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
8758 {
8759 	uint32_t addr, remaining, n;
8760 	uint32_t *buf;
8761 	int rc;
8762 	uint8_t *dst;
8763 
8764 	rc = validate_mem_range(sc, mr->addr, mr->len);
8765 	if (rc != 0)
8766 		return (rc);
8767 
8768 	buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
8769 	addr = mr->addr;
8770 	remaining = mr->len;
8771 	dst = (void *)mr->data;
8772 
8773 	while (remaining) {
8774 		n = min(remaining, MAX_READ_BUF_SIZE);
8775 		read_via_memwin(sc, 2, addr, buf, n);
8776 
8777 		rc = copyout(buf, dst, n);
8778 		if (rc != 0)
8779 			break;
8780 
8781 		dst += n;
8782 		remaining -= n;
8783 		addr += n;
8784 	}
8785 
8786 	free(buf, M_CXGBE);
8787 	return (rc);
8788 }
8789 #undef MAX_READ_BUF_SIZE
8790 
8791 static int
8792 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
8793 {
8794 	int rc;
8795 
8796 	if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
8797 		return (EINVAL);
8798 
8799 	if (i2cd->len > sizeof(i2cd->data))
8800 		return (EFBIG);
8801 
8802 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
8803 	if (rc)
8804 		return (rc);
8805 	rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
8806 	    i2cd->offset, i2cd->len, &i2cd->data[0]);
8807 	end_synchronized_op(sc, 0);
8808 
8809 	return (rc);
8810 }
8811 
8812 int
8813 t4_os_find_pci_capability(struct adapter *sc, int cap)
8814 {
8815 	int i;
8816 
8817 	return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
8818 }
8819 
8820 int
8821 t4_os_pci_save_state(struct adapter *sc)
8822 {
8823 	device_t dev;
8824 	struct pci_devinfo *dinfo;
8825 
8826 	dev = sc->dev;
8827 	dinfo = device_get_ivars(dev);
8828 
8829 	pci_cfg_save(dev, dinfo, 0);
8830 	return (0);
8831 }
8832 
8833 int
8834 t4_os_pci_restore_state(struct adapter *sc)
8835 {
8836 	device_t dev;
8837 	struct pci_devinfo *dinfo;
8838 
8839 	dev = sc->dev;
8840 	dinfo = device_get_ivars(dev);
8841 
8842 	pci_cfg_restore(dev, dinfo);
8843 	return (0);
8844 }
8845 
8846 void
8847 t4_os_portmod_changed(const struct adapter *sc, int idx)
8848 {
8849 	struct port_info *pi = sc->port[idx];
8850 	struct vi_info *vi;
8851 	struct ifnet *ifp;
8852 	int v;
8853 	static const char *mod_str[] = {
8854 		NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
8855 	};
8856 
8857 	for_each_vi(pi, v, vi) {
8858 		build_medialist(pi, &vi->media);
8859 	}
8860 
8861 	ifp = pi->vi[0].ifp;
8862 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
8863 		if_printf(ifp, "transceiver unplugged.\n");
8864 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
8865 		if_printf(ifp, "unknown transceiver inserted.\n");
8866 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
8867 		if_printf(ifp, "unsupported transceiver inserted.\n");
8868 	else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
8869 		if_printf(ifp, "%s transceiver inserted.\n",
8870 		    mod_str[pi->mod_type]);
8871 	} else {
8872 		if_printf(ifp, "transceiver (type %d) inserted.\n",
8873 		    pi->mod_type);
8874 	}
8875 }
8876 
8877 void
8878 t4_os_link_changed(struct adapter *sc, int idx, int link_stat)
8879 {
8880 	struct port_info *pi = sc->port[idx];
8881 	struct vi_info *vi;
8882 	struct ifnet *ifp;
8883 	int v;
8884 
8885 	for_each_vi(pi, v, vi) {
8886 		ifp = vi->ifp;
8887 		if (ifp == NULL)
8888 			continue;
8889 
8890 		if (link_stat) {
8891 			ifp->if_baudrate = IF_Mbps(pi->link_cfg.speed);
8892 			if_link_state_change(ifp, LINK_STATE_UP);
8893 		} else {
8894 			if_link_state_change(ifp, LINK_STATE_DOWN);
8895 		}
8896 	}
8897 }
8898 
8899 void
8900 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
8901 {
8902 	struct adapter *sc;
8903 
8904 	sx_slock(&t4_list_lock);
8905 	SLIST_FOREACH(sc, &t4_list, link) {
8906 		/*
8907 		 * func should not make any assumptions about what state sc is
8908 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
8909 		 */
8910 		func(sc, arg);
8911 	}
8912 	sx_sunlock(&t4_list_lock);
8913 }
8914 
8915 static int
8916 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
8917     struct thread *td)
8918 {
8919 	int rc;
8920 	struct adapter *sc = dev->si_drv1;
8921 
8922 	rc = priv_check(td, PRIV_DRIVER);
8923 	if (rc != 0)
8924 		return (rc);
8925 
8926 	switch (cmd) {
8927 	case CHELSIO_T4_GETREG: {
8928 		struct t4_reg *edata = (struct t4_reg *)data;
8929 
8930 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
8931 			return (EFAULT);
8932 
8933 		if (edata->size == 4)
8934 			edata->val = t4_read_reg(sc, edata->addr);
8935 		else if (edata->size == 8)
8936 			edata->val = t4_read_reg64(sc, edata->addr);
8937 		else
8938 			return (EINVAL);
8939 
8940 		break;
8941 	}
8942 	case CHELSIO_T4_SETREG: {
8943 		struct t4_reg *edata = (struct t4_reg *)data;
8944 
8945 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
8946 			return (EFAULT);
8947 
8948 		if (edata->size == 4) {
8949 			if (edata->val & 0xffffffff00000000)
8950 				return (EINVAL);
8951 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
8952 		} else if (edata->size == 8)
8953 			t4_write_reg64(sc, edata->addr, edata->val);
8954 		else
8955 			return (EINVAL);
8956 		break;
8957 	}
8958 	case CHELSIO_T4_REGDUMP: {
8959 		struct t4_regdump *regs = (struct t4_regdump *)data;
8960 		int reglen = t4_get_regs_len(sc);
8961 		uint8_t *buf;
8962 
8963 		if (regs->len < reglen) {
8964 			regs->len = reglen; /* hint to the caller */
8965 			return (ENOBUFS);
8966 		}
8967 
8968 		regs->len = reglen;
8969 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
8970 		get_regs(sc, regs, buf);
8971 		rc = copyout(buf, regs->data, reglen);
8972 		free(buf, M_CXGBE);
8973 		break;
8974 	}
8975 	case CHELSIO_T4_GET_FILTER_MODE:
8976 		rc = get_filter_mode(sc, (uint32_t *)data);
8977 		break;
8978 	case CHELSIO_T4_SET_FILTER_MODE:
8979 		rc = set_filter_mode(sc, *(uint32_t *)data);
8980 		break;
8981 	case CHELSIO_T4_GET_FILTER:
8982 		rc = get_filter(sc, (struct t4_filter *)data);
8983 		break;
8984 	case CHELSIO_T4_SET_FILTER:
8985 		rc = set_filter(sc, (struct t4_filter *)data);
8986 		break;
8987 	case CHELSIO_T4_DEL_FILTER:
8988 		rc = del_filter(sc, (struct t4_filter *)data);
8989 		break;
8990 	case CHELSIO_T4_GET_SGE_CONTEXT:
8991 		rc = get_sge_context(sc, (struct t4_sge_context *)data);
8992 		break;
8993 	case CHELSIO_T4_LOAD_FW:
8994 		rc = load_fw(sc, (struct t4_data *)data);
8995 		break;
8996 	case CHELSIO_T4_GET_MEM:
8997 		rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
8998 		break;
8999 	case CHELSIO_T4_GET_I2C:
9000 		rc = read_i2c(sc, (struct t4_i2c_data *)data);
9001 		break;
9002 	case CHELSIO_T4_CLEAR_STATS: {
9003 		int i, v;
9004 		u_int port_id = *(uint32_t *)data;
9005 		struct port_info *pi;
9006 		struct vi_info *vi;
9007 
9008 		if (port_id >= sc->params.nports)
9009 			return (EINVAL);
9010 		pi = sc->port[port_id];
9011 		if (pi == NULL)
9012 			return (EIO);
9013 
9014 		/* MAC stats */
9015 		t4_clr_port_stats(sc, pi->tx_chan);
9016 		pi->tx_parse_error = 0;
9017 		mtx_lock(&sc->reg_lock);
9018 		for_each_vi(pi, v, vi) {
9019 			if (vi->flags & VI_INIT_DONE)
9020 				t4_clr_vi_stats(sc, vi->viid);
9021 		}
9022 		mtx_unlock(&sc->reg_lock);
9023 
9024 		/*
9025 		 * Since this command accepts a port, clear stats for
9026 		 * all VIs on this port.
9027 		 */
9028 		for_each_vi(pi, v, vi) {
9029 			if (vi->flags & VI_INIT_DONE) {
9030 				struct sge_rxq *rxq;
9031 				struct sge_txq *txq;
9032 				struct sge_wrq *wrq;
9033 
9034 				for_each_rxq(vi, i, rxq) {
9035 #if defined(INET) || defined(INET6)
9036 					rxq->lro.lro_queued = 0;
9037 					rxq->lro.lro_flushed = 0;
9038 #endif
9039 					rxq->rxcsum = 0;
9040 					rxq->vlan_extraction = 0;
9041 				}
9042 
9043 				for_each_txq(vi, i, txq) {
9044 					txq->txcsum = 0;
9045 					txq->tso_wrs = 0;
9046 					txq->vlan_insertion = 0;
9047 					txq->imm_wrs = 0;
9048 					txq->sgl_wrs = 0;
9049 					txq->txpkt_wrs = 0;
9050 					txq->txpkts0_wrs = 0;
9051 					txq->txpkts1_wrs = 0;
9052 					txq->txpkts0_pkts = 0;
9053 					txq->txpkts1_pkts = 0;
9054 					mp_ring_reset_stats(txq->r);
9055 				}
9056 
9057 #ifdef TCP_OFFLOAD
9058 				/* nothing to clear for each ofld_rxq */
9059 
9060 				for_each_ofld_txq(vi, i, wrq) {
9061 					wrq->tx_wrs_direct = 0;
9062 					wrq->tx_wrs_copied = 0;
9063 				}
9064 #endif
9065 
9066 				if (IS_MAIN_VI(vi)) {
9067 					wrq = &sc->sge.ctrlq[pi->port_id];
9068 					wrq->tx_wrs_direct = 0;
9069 					wrq->tx_wrs_copied = 0;
9070 				}
9071 			}
9072 		}
9073 		break;
9074 	}
9075 	case CHELSIO_T4_SCHED_CLASS:
9076 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
9077 		break;
9078 	case CHELSIO_T4_SCHED_QUEUE:
9079 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
9080 		break;
9081 	case CHELSIO_T4_GET_TRACER:
9082 		rc = t4_get_tracer(sc, (struct t4_tracer *)data);
9083 		break;
9084 	case CHELSIO_T4_SET_TRACER:
9085 		rc = t4_set_tracer(sc, (struct t4_tracer *)data);
9086 		break;
9087 	case CHELSIO_T4_LOAD_CFG:
9088 		rc = load_cfg(sc, (struct t4_data *)data);
9089 		break;
9090 	default:
9091 		rc = ENOTTY;
9092 	}
9093 
9094 	return (rc);
9095 }
9096 
9097 void
9098 t4_db_full(struct adapter *sc)
9099 {
9100 
9101 	CXGBE_UNIMPLEMENTED(__func__);
9102 }
9103 
9104 void
9105 t4_db_dropped(struct adapter *sc)
9106 {
9107 
9108 	CXGBE_UNIMPLEMENTED(__func__);
9109 }
9110 
9111 #ifdef TCP_OFFLOAD
9112 static int
9113 toe_capability(struct vi_info *vi, int enable)
9114 {
9115 	int rc;
9116 	struct port_info *pi = vi->pi;
9117 	struct adapter *sc = pi->adapter;
9118 
9119 	ASSERT_SYNCHRONIZED_OP(sc);
9120 
9121 	if (!is_offload(sc))
9122 		return (ENODEV);
9123 
9124 	if (enable) {
9125 		if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) {
9126 			/* TOE is already enabled. */
9127 			return (0);
9128 		}
9129 
9130 		/*
9131 		 * We need the port's queues around so that we're able to send
9132 		 * and receive CPLs to/from the TOE even if the ifnet for this
9133 		 * port has never been UP'd administratively.
9134 		 */
9135 		if (!(vi->flags & VI_INIT_DONE)) {
9136 			rc = vi_full_init(vi);
9137 			if (rc)
9138 				return (rc);
9139 		}
9140 		if (!(pi->vi[0].flags & VI_INIT_DONE)) {
9141 			rc = vi_full_init(&pi->vi[0]);
9142 			if (rc)
9143 				return (rc);
9144 		}
9145 
9146 		if (isset(&sc->offload_map, pi->port_id)) {
9147 			/* TOE is enabled on another VI of this port. */
9148 			pi->uld_vis++;
9149 			return (0);
9150 		}
9151 
9152 		if (!uld_active(sc, ULD_TOM)) {
9153 			rc = t4_activate_uld(sc, ULD_TOM);
9154 			if (rc == EAGAIN) {
9155 				log(LOG_WARNING,
9156 				    "You must kldload t4_tom.ko before trying "
9157 				    "to enable TOE on a cxgbe interface.\n");
9158 			}
9159 			if (rc != 0)
9160 				return (rc);
9161 			KASSERT(sc->tom_softc != NULL,
9162 			    ("%s: TOM activated but softc NULL", __func__));
9163 			KASSERT(uld_active(sc, ULD_TOM),
9164 			    ("%s: TOM activated but flag not set", __func__));
9165 		}
9166 
9167 		/* Activate iWARP and iSCSI too, if the modules are loaded. */
9168 		if (!uld_active(sc, ULD_IWARP))
9169 			(void) t4_activate_uld(sc, ULD_IWARP);
9170 		if (!uld_active(sc, ULD_ISCSI))
9171 			(void) t4_activate_uld(sc, ULD_ISCSI);
9172 
9173 		pi->uld_vis++;
9174 		setbit(&sc->offload_map, pi->port_id);
9175 	} else {
9176 		pi->uld_vis--;
9177 
9178 		if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
9179 			return (0);
9180 
9181 		KASSERT(uld_active(sc, ULD_TOM),
9182 		    ("%s: TOM never initialized?", __func__));
9183 		clrbit(&sc->offload_map, pi->port_id);
9184 	}
9185 
9186 	return (0);
9187 }
9188 
9189 /*
9190  * Add an upper layer driver to the global list.
9191  */
9192 int
9193 t4_register_uld(struct uld_info *ui)
9194 {
9195 	int rc = 0;
9196 	struct uld_info *u;
9197 
9198 	sx_xlock(&t4_uld_list_lock);
9199 	SLIST_FOREACH(u, &t4_uld_list, link) {
9200 	    if (u->uld_id == ui->uld_id) {
9201 		    rc = EEXIST;
9202 		    goto done;
9203 	    }
9204 	}
9205 
9206 	SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
9207 	ui->refcount = 0;
9208 done:
9209 	sx_xunlock(&t4_uld_list_lock);
9210 	return (rc);
9211 }
9212 
9213 int
9214 t4_unregister_uld(struct uld_info *ui)
9215 {
9216 	int rc = EINVAL;
9217 	struct uld_info *u;
9218 
9219 	sx_xlock(&t4_uld_list_lock);
9220 
9221 	SLIST_FOREACH(u, &t4_uld_list, link) {
9222 	    if (u == ui) {
9223 		    if (ui->refcount > 0) {
9224 			    rc = EBUSY;
9225 			    goto done;
9226 		    }
9227 
9228 		    SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
9229 		    rc = 0;
9230 		    goto done;
9231 	    }
9232 	}
9233 done:
9234 	sx_xunlock(&t4_uld_list_lock);
9235 	return (rc);
9236 }
9237 
9238 int
9239 t4_activate_uld(struct adapter *sc, int id)
9240 {
9241 	int rc;
9242 	struct uld_info *ui;
9243 
9244 	ASSERT_SYNCHRONIZED_OP(sc);
9245 
9246 	if (id < 0 || id > ULD_MAX)
9247 		return (EINVAL);
9248 	rc = EAGAIN;	/* kldoad the module with this ULD and try again. */
9249 
9250 	sx_slock(&t4_uld_list_lock);
9251 
9252 	SLIST_FOREACH(ui, &t4_uld_list, link) {
9253 		if (ui->uld_id == id) {
9254 			if (!(sc->flags & FULL_INIT_DONE)) {
9255 				rc = adapter_full_init(sc);
9256 				if (rc != 0)
9257 					break;
9258 			}
9259 
9260 			rc = ui->activate(sc);
9261 			if (rc == 0) {
9262 				setbit(&sc->active_ulds, id);
9263 				ui->refcount++;
9264 			}
9265 			break;
9266 		}
9267 	}
9268 
9269 	sx_sunlock(&t4_uld_list_lock);
9270 
9271 	return (rc);
9272 }
9273 
9274 int
9275 t4_deactivate_uld(struct adapter *sc, int id)
9276 {
9277 	int rc;
9278 	struct uld_info *ui;
9279 
9280 	ASSERT_SYNCHRONIZED_OP(sc);
9281 
9282 	if (id < 0 || id > ULD_MAX)
9283 		return (EINVAL);
9284 	rc = ENXIO;
9285 
9286 	sx_slock(&t4_uld_list_lock);
9287 
9288 	SLIST_FOREACH(ui, &t4_uld_list, link) {
9289 		if (ui->uld_id == id) {
9290 			rc = ui->deactivate(sc);
9291 			if (rc == 0) {
9292 				clrbit(&sc->active_ulds, id);
9293 				ui->refcount--;
9294 			}
9295 			break;
9296 		}
9297 	}
9298 
9299 	sx_sunlock(&t4_uld_list_lock);
9300 
9301 	return (rc);
9302 }
9303 
9304 int
9305 uld_active(struct adapter *sc, int uld_id)
9306 {
9307 
9308 	MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
9309 
9310 	return (isset(&sc->active_ulds, uld_id));
9311 }
9312 #endif
9313 
9314 /*
9315  * t  = ptr to tunable.
9316  * nc = number of CPUs.
9317  * c  = compiled in default for that tunable.
9318  */
9319 static void
9320 calculate_nqueues(int *t, int nc, const int c)
9321 {
9322 	int nq;
9323 
9324 	if (*t > 0)
9325 		return;
9326 	nq = *t < 0 ? -*t : c;
9327 	*t = min(nc, nq);
9328 }
9329 
9330 /*
9331  * Come up with reasonable defaults for some of the tunables, provided they're
9332  * not set by the user (in which case we'll use the values as is).
9333  */
9334 static void
9335 tweak_tunables(void)
9336 {
9337 	int nc = mp_ncpus;	/* our snapshot of the number of CPUs */
9338 
9339 	if (t4_ntxq10g < 1) {
9340 #ifdef RSS
9341 		t4_ntxq10g = rss_getnumbuckets();
9342 #else
9343 		calculate_nqueues(&t4_ntxq10g, nc, NTXQ_10G);
9344 #endif
9345 	}
9346 
9347 	if (t4_ntxq1g < 1) {
9348 #ifdef RSS
9349 		/* XXX: way too many for 1GbE? */
9350 		t4_ntxq1g = rss_getnumbuckets();
9351 #else
9352 		calculate_nqueues(&t4_ntxq1g, nc, NTXQ_1G);
9353 #endif
9354 	}
9355 
9356 	calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
9357 
9358 	if (t4_nrxq10g < 1) {
9359 #ifdef RSS
9360 		t4_nrxq10g = rss_getnumbuckets();
9361 #else
9362 		calculate_nqueues(&t4_nrxq10g, nc, NRXQ_10G);
9363 #endif
9364 	}
9365 
9366 	if (t4_nrxq1g < 1) {
9367 #ifdef RSS
9368 		/* XXX: way too many for 1GbE? */
9369 		t4_nrxq1g = rss_getnumbuckets();
9370 #else
9371 		calculate_nqueues(&t4_nrxq1g, nc, NRXQ_1G);
9372 #endif
9373 	}
9374 
9375 	calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
9376 
9377 #ifdef TCP_OFFLOAD
9378 	calculate_nqueues(&t4_nofldtxq10g, nc, NOFLDTXQ_10G);
9379 	calculate_nqueues(&t4_nofldtxq1g, nc, NOFLDTXQ_1G);
9380 	calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
9381 	calculate_nqueues(&t4_nofldrxq10g, nc, NOFLDRXQ_10G);
9382 	calculate_nqueues(&t4_nofldrxq1g, nc, NOFLDRXQ_1G);
9383 	calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
9384 
9385 	if (t4_toecaps_allowed == -1)
9386 		t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
9387 
9388 	if (t4_rdmacaps_allowed == -1) {
9389 		t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
9390 		    FW_CAPS_CONFIG_RDMA_RDMAC;
9391 	}
9392 
9393 	if (t4_iscsicaps_allowed == -1) {
9394 		t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
9395 		    FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
9396 		    FW_CAPS_CONFIG_ISCSI_T10DIF;
9397 	}
9398 #else
9399 	if (t4_toecaps_allowed == -1)
9400 		t4_toecaps_allowed = 0;
9401 
9402 	if (t4_rdmacaps_allowed == -1)
9403 		t4_rdmacaps_allowed = 0;
9404 
9405 	if (t4_iscsicaps_allowed == -1)
9406 		t4_iscsicaps_allowed = 0;
9407 #endif
9408 
9409 #ifdef DEV_NETMAP
9410 	calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
9411 	calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
9412 #endif
9413 
9414 	if (t4_tmr_idx_10g < 0 || t4_tmr_idx_10g >= SGE_NTIMERS)
9415 		t4_tmr_idx_10g = TMR_IDX_10G;
9416 
9417 	if (t4_pktc_idx_10g < -1 || t4_pktc_idx_10g >= SGE_NCOUNTERS)
9418 		t4_pktc_idx_10g = PKTC_IDX_10G;
9419 
9420 	if (t4_tmr_idx_1g < 0 || t4_tmr_idx_1g >= SGE_NTIMERS)
9421 		t4_tmr_idx_1g = TMR_IDX_1G;
9422 
9423 	if (t4_pktc_idx_1g < -1 || t4_pktc_idx_1g >= SGE_NCOUNTERS)
9424 		t4_pktc_idx_1g = PKTC_IDX_1G;
9425 
9426 	if (t4_qsize_txq < 128)
9427 		t4_qsize_txq = 128;
9428 
9429 	if (t4_qsize_rxq < 128)
9430 		t4_qsize_rxq = 128;
9431 	while (t4_qsize_rxq & 7)
9432 		t4_qsize_rxq++;
9433 
9434 	t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
9435 }
9436 
9437 #ifdef DDB
9438 static void
9439 t4_dump_tcb(struct adapter *sc, int tid)
9440 {
9441 	uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
9442 
9443 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
9444 	save = t4_read_reg(sc, reg);
9445 	base = sc->memwin[2].mw_base;
9446 
9447 	/* Dump TCB for the tid */
9448 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
9449 	tcb_addr += tid * TCB_SIZE;
9450 
9451 	if (is_t4(sc)) {
9452 		pf = 0;
9453 		win_pos = tcb_addr & ~0xf;	/* start must be 16B aligned */
9454 	} else {
9455 		pf = V_PFNUM(sc->pf);
9456 		win_pos = tcb_addr & ~0x7f;	/* start must be 128B aligned */
9457 	}
9458 	t4_write_reg(sc, reg, win_pos | pf);
9459 	t4_read_reg(sc, reg);
9460 
9461 	off = tcb_addr - win_pos;
9462 	for (i = 0; i < 4; i++) {
9463 		uint32_t buf[8];
9464 		for (j = 0; j < 8; j++, off += 4)
9465 			buf[j] = htonl(t4_read_reg(sc, base + off));
9466 
9467 		db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
9468 		    buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
9469 		    buf[7]);
9470 	}
9471 
9472 	t4_write_reg(sc, reg, save);
9473 	t4_read_reg(sc, reg);
9474 }
9475 
9476 static void
9477 t4_dump_devlog(struct adapter *sc)
9478 {
9479 	struct devlog_params *dparams = &sc->params.devlog;
9480 	struct fw_devlog_e e;
9481 	int i, first, j, m, nentries, rc;
9482 	uint64_t ftstamp = UINT64_MAX;
9483 
9484 	if (dparams->start == 0) {
9485 		db_printf("devlog params not valid\n");
9486 		return;
9487 	}
9488 
9489 	nentries = dparams->size / sizeof(struct fw_devlog_e);
9490 	m = fwmtype_to_hwmtype(dparams->memtype);
9491 
9492 	/* Find the first entry. */
9493 	first = -1;
9494 	for (i = 0; i < nentries && !db_pager_quit; i++) {
9495 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
9496 		    sizeof(e), (void *)&e);
9497 		if (rc != 0)
9498 			break;
9499 
9500 		if (e.timestamp == 0)
9501 			break;
9502 
9503 		e.timestamp = be64toh(e.timestamp);
9504 		if (e.timestamp < ftstamp) {
9505 			ftstamp = e.timestamp;
9506 			first = i;
9507 		}
9508 	}
9509 
9510 	if (first == -1)
9511 		return;
9512 
9513 	i = first;
9514 	do {
9515 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
9516 		    sizeof(e), (void *)&e);
9517 		if (rc != 0)
9518 			return;
9519 
9520 		if (e.timestamp == 0)
9521 			return;
9522 
9523 		e.timestamp = be64toh(e.timestamp);
9524 		e.seqno = be32toh(e.seqno);
9525 		for (j = 0; j < 8; j++)
9526 			e.params[j] = be32toh(e.params[j]);
9527 
9528 		db_printf("%10d  %15ju  %8s  %8s  ",
9529 		    e.seqno, e.timestamp,
9530 		    (e.level < nitems(devlog_level_strings) ?
9531 			devlog_level_strings[e.level] : "UNKNOWN"),
9532 		    (e.facility < nitems(devlog_facility_strings) ?
9533 			devlog_facility_strings[e.facility] : "UNKNOWN"));
9534 		db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
9535 		    e.params[3], e.params[4], e.params[5], e.params[6],
9536 		    e.params[7]);
9537 
9538 		if (++i == nentries)
9539 			i = 0;
9540 	} while (i != first && !db_pager_quit);
9541 }
9542 
9543 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table);
9544 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table);
9545 
9546 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL)
9547 {
9548 	device_t dev;
9549 	int t;
9550 	bool valid;
9551 
9552 	valid = false;
9553 	t = db_read_token();
9554 	if (t == tIDENT) {
9555 		dev = device_lookup_by_name(db_tok_string);
9556 		valid = true;
9557 	}
9558 	db_skip_to_eol();
9559 	if (!valid) {
9560 		db_printf("usage: show t4 devlog <nexus>\n");
9561 		return;
9562 	}
9563 
9564 	if (dev == NULL) {
9565 		db_printf("device not found\n");
9566 		return;
9567 	}
9568 
9569 	t4_dump_devlog(device_get_softc(dev));
9570 }
9571 
9572 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL)
9573 {
9574 	device_t dev;
9575 	int radix, tid, t;
9576 	bool valid;
9577 
9578 	valid = false;
9579 	radix = db_radix;
9580 	db_radix = 10;
9581 	t = db_read_token();
9582 	if (t == tIDENT) {
9583 		dev = device_lookup_by_name(db_tok_string);
9584 		t = db_read_token();
9585 		if (t == tNUMBER) {
9586 			tid = db_tok_number;
9587 			valid = true;
9588 		}
9589 	}
9590 	db_radix = radix;
9591 	db_skip_to_eol();
9592 	if (!valid) {
9593 		db_printf("usage: show t4 tcb <nexus> <tid>\n");
9594 		return;
9595 	}
9596 
9597 	if (dev == NULL) {
9598 		db_printf("device not found\n");
9599 		return;
9600 	}
9601 	if (tid < 0) {
9602 		db_printf("invalid tid\n");
9603 		return;
9604 	}
9605 
9606 	t4_dump_tcb(device_get_softc(dev), tid);
9607 }
9608 #endif
9609 
9610 static struct sx mlu;	/* mod load unload */
9611 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
9612 
9613 static int
9614 mod_event(module_t mod, int cmd, void *arg)
9615 {
9616 	int rc = 0;
9617 	static int loaded = 0;
9618 
9619 	switch (cmd) {
9620 	case MOD_LOAD:
9621 		sx_xlock(&mlu);
9622 		if (loaded++ == 0) {
9623 			t4_sge_modload();
9624 			t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl);
9625 			t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl);
9626 			t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
9627 			t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
9628 			sx_init(&t4_list_lock, "T4/T5 adapters");
9629 			SLIST_INIT(&t4_list);
9630 #ifdef TCP_OFFLOAD
9631 			sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
9632 			SLIST_INIT(&t4_uld_list);
9633 #endif
9634 			t4_tracer_modload();
9635 			tweak_tunables();
9636 		}
9637 		sx_xunlock(&mlu);
9638 		break;
9639 
9640 	case MOD_UNLOAD:
9641 		sx_xlock(&mlu);
9642 		if (--loaded == 0) {
9643 			int tries;
9644 
9645 			sx_slock(&t4_list_lock);
9646 			if (!SLIST_EMPTY(&t4_list)) {
9647 				rc = EBUSY;
9648 				sx_sunlock(&t4_list_lock);
9649 				goto done_unload;
9650 			}
9651 #ifdef TCP_OFFLOAD
9652 			sx_slock(&t4_uld_list_lock);
9653 			if (!SLIST_EMPTY(&t4_uld_list)) {
9654 				rc = EBUSY;
9655 				sx_sunlock(&t4_uld_list_lock);
9656 				sx_sunlock(&t4_list_lock);
9657 				goto done_unload;
9658 			}
9659 #endif
9660 			tries = 0;
9661 			while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
9662 				uprintf("%ju clusters with custom free routine "
9663 				    "still is use.\n", t4_sge_extfree_refs());
9664 				pause("t4unload", 2 * hz);
9665 			}
9666 #ifdef TCP_OFFLOAD
9667 			sx_sunlock(&t4_uld_list_lock);
9668 #endif
9669 			sx_sunlock(&t4_list_lock);
9670 
9671 			if (t4_sge_extfree_refs() == 0) {
9672 				t4_tracer_modunload();
9673 #ifdef TCP_OFFLOAD
9674 				sx_destroy(&t4_uld_list_lock);
9675 #endif
9676 				sx_destroy(&t4_list_lock);
9677 				t4_sge_modunload();
9678 				loaded = 0;
9679 			} else {
9680 				rc = EBUSY;
9681 				loaded++;	/* undo earlier decrement */
9682 			}
9683 		}
9684 done_unload:
9685 		sx_xunlock(&mlu);
9686 		break;
9687 	}
9688 
9689 	return (rc);
9690 }
9691 
9692 static devclass_t t4_devclass, t5_devclass, t6_devclass;
9693 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass;
9694 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass;
9695 
9696 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0);
9697 MODULE_VERSION(t4nex, 1);
9698 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
9699 #ifdef DEV_NETMAP
9700 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
9701 #endif /* DEV_NETMAP */
9702 
9703 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0);
9704 MODULE_VERSION(t5nex, 1);
9705 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
9706 #ifdef DEV_NETMAP
9707 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
9708 #endif /* DEV_NETMAP */
9709 
9710 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0);
9711 MODULE_VERSION(t6nex, 1);
9712 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
9713 #ifdef DEV_NETMAP
9714 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
9715 #endif /* DEV_NETMAP */
9716 
9717 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
9718 MODULE_VERSION(cxgbe, 1);
9719 
9720 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0);
9721 MODULE_VERSION(cxl, 1);
9722 
9723 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0);
9724 MODULE_VERSION(cc, 1);
9725 
9726 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0);
9727 MODULE_VERSION(vcxgbe, 1);
9728 
9729 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0);
9730 MODULE_VERSION(vcxl, 1);
9731 
9732 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0);
9733 MODULE_VERSION(vcc, 1);
9734