1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_ddb.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_kern_tls.h" 37 #include "opt_ratelimit.h" 38 #include "opt_rss.h" 39 40 #include <sys/param.h> 41 #include <sys/conf.h> 42 #include <sys/priv.h> 43 #include <sys/kernel.h> 44 #include <sys/bus.h> 45 #include <sys/eventhandler.h> 46 #include <sys/module.h> 47 #include <sys/malloc.h> 48 #include <sys/queue.h> 49 #include <sys/taskqueue.h> 50 #include <sys/pciio.h> 51 #include <dev/pci/pcireg.h> 52 #include <dev/pci/pcivar.h> 53 #include <dev/pci/pci_private.h> 54 #include <sys/firmware.h> 55 #include <sys/sbuf.h> 56 #include <sys/smp.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/sysctl.h> 60 #include <net/ethernet.h> 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/if_dl.h> 64 #include <net/if_vlan_var.h> 65 #ifdef RSS 66 #include <net/rss_config.h> 67 #endif 68 #include <netinet/in.h> 69 #include <netinet/ip.h> 70 #ifdef KERN_TLS 71 #include <netinet/tcp_seq.h> 72 #endif 73 #if defined(__i386__) || defined(__amd64__) 74 #include <machine/md_var.h> 75 #include <machine/cputypes.h> 76 #include <vm/vm.h> 77 #include <vm/pmap.h> 78 #endif 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #include <ddb/db_lex.h> 82 #endif 83 84 #include "common/common.h" 85 #include "common/t4_msg.h" 86 #include "common/t4_regs.h" 87 #include "common/t4_regs_values.h" 88 #include "cudbg/cudbg.h" 89 #include "t4_clip.h" 90 #include "t4_ioctl.h" 91 #include "t4_l2t.h" 92 #include "t4_mp_ring.h" 93 #include "t4_if.h" 94 #include "t4_smt.h" 95 96 /* T4 bus driver interface */ 97 static int t4_probe(device_t); 98 static int t4_attach(device_t); 99 static int t4_detach(device_t); 100 static int t4_child_location_str(device_t, device_t, char *, size_t); 101 static int t4_ready(device_t); 102 static int t4_read_port_device(device_t, int, device_t *); 103 static int t4_suspend(device_t); 104 static int t4_resume(device_t); 105 static int t4_reset_prepare(device_t, device_t); 106 static int t4_reset_post(device_t, device_t); 107 static device_method_t t4_methods[] = { 108 DEVMETHOD(device_probe, t4_probe), 109 DEVMETHOD(device_attach, t4_attach), 110 DEVMETHOD(device_detach, t4_detach), 111 DEVMETHOD(device_suspend, t4_suspend), 112 DEVMETHOD(device_resume, t4_resume), 113 114 DEVMETHOD(bus_child_location_str, t4_child_location_str), 115 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 116 DEVMETHOD(bus_reset_post, t4_reset_post), 117 118 DEVMETHOD(t4_is_main_ready, t4_ready), 119 DEVMETHOD(t4_read_port_device, t4_read_port_device), 120 121 DEVMETHOD_END 122 }; 123 static driver_t t4_driver = { 124 "t4nex", 125 t4_methods, 126 sizeof(struct adapter) 127 }; 128 129 130 /* T4 port (cxgbe) interface */ 131 static int cxgbe_probe(device_t); 132 static int cxgbe_attach(device_t); 133 static int cxgbe_detach(device_t); 134 device_method_t cxgbe_methods[] = { 135 DEVMETHOD(device_probe, cxgbe_probe), 136 DEVMETHOD(device_attach, cxgbe_attach), 137 DEVMETHOD(device_detach, cxgbe_detach), 138 { 0, 0 } 139 }; 140 static driver_t cxgbe_driver = { 141 "cxgbe", 142 cxgbe_methods, 143 sizeof(struct port_info) 144 }; 145 146 /* T4 VI (vcxgbe) interface */ 147 static int vcxgbe_probe(device_t); 148 static int vcxgbe_attach(device_t); 149 static int vcxgbe_detach(device_t); 150 static device_method_t vcxgbe_methods[] = { 151 DEVMETHOD(device_probe, vcxgbe_probe), 152 DEVMETHOD(device_attach, vcxgbe_attach), 153 DEVMETHOD(device_detach, vcxgbe_detach), 154 { 0, 0 } 155 }; 156 static driver_t vcxgbe_driver = { 157 "vcxgbe", 158 vcxgbe_methods, 159 sizeof(struct vi_info) 160 }; 161 162 static d_ioctl_t t4_ioctl; 163 164 static struct cdevsw t4_cdevsw = { 165 .d_version = D_VERSION, 166 .d_ioctl = t4_ioctl, 167 .d_name = "t4nex", 168 }; 169 170 /* T5 bus driver interface */ 171 static int t5_probe(device_t); 172 static device_method_t t5_methods[] = { 173 DEVMETHOD(device_probe, t5_probe), 174 DEVMETHOD(device_attach, t4_attach), 175 DEVMETHOD(device_detach, t4_detach), 176 DEVMETHOD(device_suspend, t4_suspend), 177 DEVMETHOD(device_resume, t4_resume), 178 179 DEVMETHOD(bus_child_location_str, t4_child_location_str), 180 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 181 DEVMETHOD(bus_reset_post, t4_reset_post), 182 183 DEVMETHOD(t4_is_main_ready, t4_ready), 184 DEVMETHOD(t4_read_port_device, t4_read_port_device), 185 186 DEVMETHOD_END 187 }; 188 static driver_t t5_driver = { 189 "t5nex", 190 t5_methods, 191 sizeof(struct adapter) 192 }; 193 194 195 /* T5 port (cxl) interface */ 196 static driver_t cxl_driver = { 197 "cxl", 198 cxgbe_methods, 199 sizeof(struct port_info) 200 }; 201 202 /* T5 VI (vcxl) interface */ 203 static driver_t vcxl_driver = { 204 "vcxl", 205 vcxgbe_methods, 206 sizeof(struct vi_info) 207 }; 208 209 /* T6 bus driver interface */ 210 static int t6_probe(device_t); 211 static device_method_t t6_methods[] = { 212 DEVMETHOD(device_probe, t6_probe), 213 DEVMETHOD(device_attach, t4_attach), 214 DEVMETHOD(device_detach, t4_detach), 215 DEVMETHOD(device_suspend, t4_suspend), 216 DEVMETHOD(device_resume, t4_resume), 217 218 DEVMETHOD(bus_child_location_str, t4_child_location_str), 219 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 220 DEVMETHOD(bus_reset_post, t4_reset_post), 221 222 DEVMETHOD(t4_is_main_ready, t4_ready), 223 DEVMETHOD(t4_read_port_device, t4_read_port_device), 224 225 DEVMETHOD_END 226 }; 227 static driver_t t6_driver = { 228 "t6nex", 229 t6_methods, 230 sizeof(struct adapter) 231 }; 232 233 234 /* T6 port (cc) interface */ 235 static driver_t cc_driver = { 236 "cc", 237 cxgbe_methods, 238 sizeof(struct port_info) 239 }; 240 241 /* T6 VI (vcc) interface */ 242 static driver_t vcc_driver = { 243 "vcc", 244 vcxgbe_methods, 245 sizeof(struct vi_info) 246 }; 247 248 /* ifnet interface */ 249 static void cxgbe_init(void *); 250 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 251 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 252 static void cxgbe_qflush(struct ifnet *); 253 #if defined(KERN_TLS) || defined(RATELIMIT) 254 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, 255 struct m_snd_tag **); 256 static int cxgbe_snd_tag_modify(struct m_snd_tag *, 257 union if_snd_tag_modify_params *); 258 static int cxgbe_snd_tag_query(struct m_snd_tag *, 259 union if_snd_tag_query_params *); 260 static void cxgbe_snd_tag_free(struct m_snd_tag *); 261 #endif 262 263 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 264 265 /* 266 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 267 * then ADAPTER_LOCK, then t4_uld_list_lock. 268 */ 269 static struct sx t4_list_lock; 270 SLIST_HEAD(, adapter) t4_list; 271 #ifdef TCP_OFFLOAD 272 static struct sx t4_uld_list_lock; 273 SLIST_HEAD(, uld_info) t4_uld_list; 274 #endif 275 276 /* 277 * Tunables. See tweak_tunables() too. 278 * 279 * Each tunable is set to a default value here if it's known at compile-time. 280 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 281 * provide a reasonable default (upto n) when the driver is loaded. 282 * 283 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 284 * T5 are under hw.cxl. 285 */ 286 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 287 "cxgbe(4) parameters"); 288 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 289 "cxgbe(4) T5+ parameters"); 290 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 291 "cxgbe(4) TOE parameters"); 292 293 /* 294 * Number of queues for tx and rx, NIC and offload. 295 */ 296 #define NTXQ 16 297 int t4_ntxq = -NTXQ; 298 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 299 "Number of TX queues per port"); 300 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 301 302 #define NRXQ 8 303 int t4_nrxq = -NRXQ; 304 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 305 "Number of RX queues per port"); 306 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 307 308 #define NTXQ_VI 1 309 static int t4_ntxq_vi = -NTXQ_VI; 310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 311 "Number of TX queues per VI"); 312 313 #define NRXQ_VI 1 314 static int t4_nrxq_vi = -NRXQ_VI; 315 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 316 "Number of RX queues per VI"); 317 318 static int t4_rsrv_noflowq = 0; 319 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 320 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 321 322 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 323 #define NOFLDTXQ 8 324 static int t4_nofldtxq = -NOFLDTXQ; 325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 326 "Number of offload TX queues per port"); 327 328 #define NOFLDRXQ 2 329 static int t4_nofldrxq = -NOFLDRXQ; 330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 331 "Number of offload RX queues per port"); 332 333 #define NOFLDTXQ_VI 1 334 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 335 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 336 "Number of offload TX queues per VI"); 337 338 #define NOFLDRXQ_VI 1 339 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 340 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 341 "Number of offload RX queues per VI"); 342 343 #define TMR_IDX_OFLD 1 344 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 345 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 346 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 347 348 #define PKTC_IDX_OFLD (-1) 349 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 350 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 351 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 352 353 /* 0 means chip/fw default, non-zero number is value in microseconds */ 354 static u_long t4_toe_keepalive_idle = 0; 355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 356 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 357 358 /* 0 means chip/fw default, non-zero number is value in microseconds */ 359 static u_long t4_toe_keepalive_interval = 0; 360 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 361 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 362 363 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 364 static int t4_toe_keepalive_count = 0; 365 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 366 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 367 368 /* 0 means chip/fw default, non-zero number is value in microseconds */ 369 static u_long t4_toe_rexmt_min = 0; 370 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 371 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 372 373 /* 0 means chip/fw default, non-zero number is value in microseconds */ 374 static u_long t4_toe_rexmt_max = 0; 375 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 376 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 377 378 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 379 static int t4_toe_rexmt_count = 0; 380 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 381 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 382 383 /* -1 means chip/fw default, other values are raw backoff values to use */ 384 static int t4_toe_rexmt_backoff[16] = { 385 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 386 }; 387 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 388 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 389 "cxgbe(4) TOE retransmit backoff values"); 390 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 391 &t4_toe_rexmt_backoff[0], 0, ""); 392 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 393 &t4_toe_rexmt_backoff[1], 0, ""); 394 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 395 &t4_toe_rexmt_backoff[2], 0, ""); 396 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 397 &t4_toe_rexmt_backoff[3], 0, ""); 398 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 399 &t4_toe_rexmt_backoff[4], 0, ""); 400 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 401 &t4_toe_rexmt_backoff[5], 0, ""); 402 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 403 &t4_toe_rexmt_backoff[6], 0, ""); 404 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 405 &t4_toe_rexmt_backoff[7], 0, ""); 406 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 407 &t4_toe_rexmt_backoff[8], 0, ""); 408 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 409 &t4_toe_rexmt_backoff[9], 0, ""); 410 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 411 &t4_toe_rexmt_backoff[10], 0, ""); 412 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 413 &t4_toe_rexmt_backoff[11], 0, ""); 414 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 415 &t4_toe_rexmt_backoff[12], 0, ""); 416 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 417 &t4_toe_rexmt_backoff[13], 0, ""); 418 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 419 &t4_toe_rexmt_backoff[14], 0, ""); 420 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 421 &t4_toe_rexmt_backoff[15], 0, ""); 422 423 static int t4_toe_tls_rx_timeout = 5; 424 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, tls_rx_timeout, CTLFLAG_RDTUN, 425 &t4_toe_tls_rx_timeout, 0, 426 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 427 #endif 428 429 #ifdef DEV_NETMAP 430 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 431 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 432 static int t4_native_netmap = NN_EXTRA_VI; 433 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 434 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 435 436 #define NNMTXQ 8 437 static int t4_nnmtxq = -NNMTXQ; 438 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 439 "Number of netmap TX queues"); 440 441 #define NNMRXQ 8 442 static int t4_nnmrxq = -NNMRXQ; 443 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 444 "Number of netmap RX queues"); 445 446 #define NNMTXQ_VI 2 447 static int t4_nnmtxq_vi = -NNMTXQ_VI; 448 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 449 "Number of netmap TX queues per VI"); 450 451 #define NNMRXQ_VI 2 452 static int t4_nnmrxq_vi = -NNMRXQ_VI; 453 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 454 "Number of netmap RX queues per VI"); 455 #endif 456 457 /* 458 * Holdoff parameters for ports. 459 */ 460 #define TMR_IDX 1 461 int t4_tmr_idx = TMR_IDX; 462 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 463 0, "Holdoff timer index"); 464 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 465 466 #define PKTC_IDX (-1) 467 int t4_pktc_idx = PKTC_IDX; 468 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 469 0, "Holdoff packet counter index"); 470 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 471 472 /* 473 * Size (# of entries) of each tx and rx queue. 474 */ 475 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 476 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 477 "Number of descriptors in each TX queue"); 478 479 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 480 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 481 "Number of descriptors in each RX queue"); 482 483 /* 484 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 485 */ 486 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 487 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 488 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 489 490 /* 491 * Configuration file. All the _CF names here are special. 492 */ 493 #define DEFAULT_CF "default" 494 #define BUILTIN_CF "built-in" 495 #define FLASH_CF "flash" 496 #define UWIRE_CF "uwire" 497 #define FPGA_CF "fpga" 498 static char t4_cfg_file[32] = DEFAULT_CF; 499 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 500 sizeof(t4_cfg_file), "Firmware configuration file"); 501 502 /* 503 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 504 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 505 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 506 * mark or when signalled to do so, 0 to never emit PAUSE. 507 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 508 * negotiated settings will override rx_pause/tx_pause. 509 * Otherwise rx_pause/tx_pause are applied forcibly. 510 */ 511 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 512 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 513 &t4_pause_settings, 0, 514 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 515 516 /* 517 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 518 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 519 * 0 to disable FEC. 520 */ 521 static int t4_fec = -1; 522 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 523 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 524 525 /* 526 * Link autonegotiation. 527 * -1 to run with the firmware default. 528 * 0 to disable. 529 * 1 to enable. 530 */ 531 static int t4_autoneg = -1; 532 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 533 "Link autonegotiation"); 534 535 /* 536 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 537 * encouraged respectively). '-n' is the same as 'n' except the firmware 538 * version used in the checks is read from the firmware bundled with the driver. 539 */ 540 static int t4_fw_install = 1; 541 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 542 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 543 544 /* 545 * ASIC features that will be used. Disable the ones you don't want so that the 546 * chip resources aren't wasted on features that will not be used. 547 */ 548 static int t4_nbmcaps_allowed = 0; 549 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 550 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 551 552 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 554 &t4_linkcaps_allowed, 0, "Default link capabilities"); 555 556 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 557 FW_CAPS_CONFIG_SWITCH_EGRESS; 558 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 559 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 560 561 #ifdef RATELIMIT 562 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 563 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 564 #else 565 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 566 FW_CAPS_CONFIG_NIC_HASHFILTER; 567 #endif 568 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 569 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 570 571 static int t4_toecaps_allowed = -1; 572 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 573 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 574 575 static int t4_rdmacaps_allowed = -1; 576 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 577 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 578 579 static int t4_cryptocaps_allowed = -1; 580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 581 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 582 583 static int t4_iscsicaps_allowed = -1; 584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 585 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 586 587 static int t4_fcoecaps_allowed = 0; 588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 589 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 590 591 static int t5_write_combine = 0; 592 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 593 0, "Use WC instead of UC for BAR2"); 594 595 static int t4_num_vis = 1; 596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 597 "Number of VIs per port"); 598 599 /* 600 * PCIe Relaxed Ordering. 601 * -1: driver should figure out a good value. 602 * 0: disable RO. 603 * 1: enable RO. 604 * 2: leave RO alone. 605 */ 606 static int pcie_relaxed_ordering = -1; 607 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 608 &pcie_relaxed_ordering, 0, 609 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 610 611 static int t4_panic_on_fatal_err = 0; 612 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 613 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 614 615 static int t4_reset_on_fatal_err = 0; 616 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 617 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 618 619 static int t4_tx_vm_wr = 0; 620 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 621 "Use VM work requests to transmit packets."); 622 623 /* 624 * Set to non-zero to enable the attack filter. A packet that matches any of 625 * these conditions will get dropped on ingress: 626 * 1) IP && source address == destination address. 627 * 2) TCP/IP && source address is not a unicast address. 628 * 3) TCP/IP && destination address is not a unicast address. 629 * 4) IP && source address is loopback (127.x.y.z). 630 * 5) IP && destination address is loopback (127.x.y.z). 631 * 6) IPv6 && source address == destination address. 632 * 7) IPv6 && source address is not a unicast address. 633 * 8) IPv6 && source address is loopback (::1/128). 634 * 9) IPv6 && destination address is loopback (::1/128). 635 * 10) IPv6 && source address is unspecified (::/128). 636 * 11) IPv6 && destination address is unspecified (::/128). 637 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 638 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 639 */ 640 static int t4_attack_filter = 0; 641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 642 &t4_attack_filter, 0, "Drop suspicious traffic"); 643 644 static int t4_drop_ip_fragments = 0; 645 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 646 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 647 648 static int t4_drop_pkts_with_l2_errors = 1; 649 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 650 &t4_drop_pkts_with_l2_errors, 0, 651 "Drop all frames with Layer 2 length or checksum errors"); 652 653 static int t4_drop_pkts_with_l3_errors = 0; 654 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 655 &t4_drop_pkts_with_l3_errors, 0, 656 "Drop all frames with IP version, length, or checksum errors"); 657 658 static int t4_drop_pkts_with_l4_errors = 0; 659 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 660 &t4_drop_pkts_with_l4_errors, 0, 661 "Drop all frames with Layer 4 length, checksum, or other errors"); 662 663 #ifdef TCP_OFFLOAD 664 /* 665 * TOE tunables. 666 */ 667 static int t4_cop_managed_offloading = 0; 668 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 669 &t4_cop_managed_offloading, 0, 670 "COP (Connection Offload Policy) controls all TOE offload"); 671 #endif 672 673 #ifdef KERN_TLS 674 /* 675 * This enables KERN_TLS for all adapters if set. 676 */ 677 static int t4_kern_tls = 0; 678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 679 "Enable KERN_TLS mode for all supported adapters"); 680 681 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 682 "cxgbe(4) KERN_TLS parameters"); 683 684 static int t4_tls_inline_keys = 0; 685 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 686 &t4_tls_inline_keys, 0, 687 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 688 "in card memory."); 689 690 static int t4_tls_combo_wrs = 0; 691 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 692 0, "Attempt to combine TCB field updates with TLS record work requests."); 693 #endif 694 695 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 696 static int vi_mac_funcs[] = { 697 FW_VI_FUNC_ETH, 698 FW_VI_FUNC_OFLD, 699 FW_VI_FUNC_IWARP, 700 FW_VI_FUNC_OPENISCSI, 701 FW_VI_FUNC_OPENFCOE, 702 FW_VI_FUNC_FOISCSI, 703 FW_VI_FUNC_FOFCOE, 704 }; 705 706 struct intrs_and_queues { 707 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 708 uint16_t num_vis; /* number of VIs for each port */ 709 uint16_t nirq; /* Total # of vectors */ 710 uint16_t ntxq; /* # of NIC txq's for each port */ 711 uint16_t nrxq; /* # of NIC rxq's for each port */ 712 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 713 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 714 uint16_t nnmtxq; /* # of netmap txq's */ 715 uint16_t nnmrxq; /* # of netmap rxq's */ 716 717 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 718 uint16_t ntxq_vi; /* # of NIC txq's */ 719 uint16_t nrxq_vi; /* # of NIC rxq's */ 720 uint16_t nofldtxq_vi; /* # of TOE txq's */ 721 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 722 uint16_t nnmtxq_vi; /* # of netmap txq's */ 723 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 724 }; 725 726 static void setup_memwin(struct adapter *); 727 static void position_memwin(struct adapter *, int, uint32_t); 728 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 729 static int fwmtype_to_hwmtype(int); 730 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 731 uint32_t *); 732 static int fixup_devlog_params(struct adapter *); 733 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 734 static int contact_firmware(struct adapter *); 735 static int partition_resources(struct adapter *); 736 static int get_params__pre_init(struct adapter *); 737 static int set_params__pre_init(struct adapter *); 738 static int get_params__post_init(struct adapter *); 739 static int set_params__post_init(struct adapter *); 740 static void t4_set_desc(struct adapter *); 741 static bool fixed_ifmedia(struct port_info *); 742 static void build_medialist(struct port_info *); 743 static void init_link_config(struct port_info *); 744 static int fixup_link_config(struct port_info *); 745 static int apply_link_config(struct port_info *); 746 static int cxgbe_init_synchronized(struct vi_info *); 747 static int cxgbe_uninit_synchronized(struct vi_info *); 748 static int adapter_full_init(struct adapter *); 749 static void adapter_full_uninit(struct adapter *); 750 static int vi_full_init(struct vi_info *); 751 static void vi_full_uninit(struct vi_info *); 752 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 753 static void quiesce_txq(struct sge_txq *); 754 static void quiesce_wrq(struct sge_wrq *); 755 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 756 static void quiesce_vi(struct vi_info *); 757 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 758 driver_intr_t *, void *, char *); 759 static int t4_free_irq(struct adapter *, struct irq *); 760 static void t4_init_atid_table(struct adapter *); 761 static void t4_free_atid_table(struct adapter *); 762 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 763 static void vi_refresh_stats(struct vi_info *); 764 static void cxgbe_refresh_stats(struct vi_info *); 765 static void cxgbe_tick(void *); 766 static void vi_tick(void *); 767 static void cxgbe_sysctls(struct port_info *); 768 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 769 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 770 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 771 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 772 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 773 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 774 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 775 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 776 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 777 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 778 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 779 static int sysctl_fec(SYSCTL_HANDLER_ARGS); 780 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 781 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 782 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 783 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 784 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 785 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 786 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 787 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 788 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 789 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 790 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 791 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 792 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 793 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 794 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 795 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 796 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 797 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 798 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 799 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 800 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 801 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 802 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 803 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 804 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 805 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 806 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 807 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 808 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 809 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 810 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 811 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 812 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 813 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 814 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 815 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 816 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 817 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 818 #ifdef TCP_OFFLOAD 819 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 820 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS); 821 static int sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS); 822 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 823 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 824 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 825 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 826 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 827 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 828 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 829 #endif 830 static int get_sge_context(struct adapter *, struct t4_sge_context *); 831 static int load_fw(struct adapter *, struct t4_data *); 832 static int load_cfg(struct adapter *, struct t4_data *); 833 static int load_boot(struct adapter *, struct t4_bootrom *); 834 static int load_bootcfg(struct adapter *, struct t4_data *); 835 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 836 static void free_offload_policy(struct t4_offload_policy *); 837 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 838 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 839 static int read_i2c(struct adapter *, struct t4_i2c_data *); 840 static int clear_stats(struct adapter *, u_int); 841 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 842 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 843 #ifdef TCP_OFFLOAD 844 static int toe_capability(struct vi_info *, bool); 845 static void t4_async_event(void *, int); 846 #endif 847 #ifdef KERN_TLS 848 static int ktls_capability(struct adapter *, bool); 849 #endif 850 static int mod_event(module_t, int, void *); 851 static int notify_siblings(device_t, int); 852 static uint64_t vi_get_counter(struct ifnet *, ift_counter); 853 static uint64_t cxgbe_get_counter(struct ifnet *, ift_counter); 854 static void enable_vxlan_rx(struct adapter *); 855 static void reset_adapter(void *, int); 856 857 struct { 858 uint16_t device; 859 char *desc; 860 } t4_pciids[] = { 861 {0xa000, "Chelsio Terminator 4 FPGA"}, 862 {0x4400, "Chelsio T440-dbg"}, 863 {0x4401, "Chelsio T420-CR"}, 864 {0x4402, "Chelsio T422-CR"}, 865 {0x4403, "Chelsio T440-CR"}, 866 {0x4404, "Chelsio T420-BCH"}, 867 {0x4405, "Chelsio T440-BCH"}, 868 {0x4406, "Chelsio T440-CH"}, 869 {0x4407, "Chelsio T420-SO"}, 870 {0x4408, "Chelsio T420-CX"}, 871 {0x4409, "Chelsio T420-BT"}, 872 {0x440a, "Chelsio T404-BT"}, 873 {0x440e, "Chelsio T440-LP-CR"}, 874 }, t5_pciids[] = { 875 {0xb000, "Chelsio Terminator 5 FPGA"}, 876 {0x5400, "Chelsio T580-dbg"}, 877 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 878 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 879 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 880 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 881 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 882 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 883 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 884 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 885 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 886 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 887 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 888 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 889 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 890 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 891 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 892 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 893 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 894 895 /* Custom */ 896 {0x5483, "Custom T540-CR"}, 897 {0x5484, "Custom T540-BT"}, 898 }, t6_pciids[] = { 899 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 900 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 901 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 902 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 903 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 904 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 905 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 906 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 907 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 908 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 909 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 910 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 911 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 912 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 913 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 914 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 915 916 /* Custom */ 917 {0x6480, "Custom T6225-CR"}, 918 {0x6481, "Custom T62100-CR"}, 919 {0x6482, "Custom T6225-CR"}, 920 {0x6483, "Custom T62100-CR"}, 921 {0x6484, "Custom T64100-CR"}, 922 {0x6485, "Custom T6240-SO"}, 923 {0x6486, "Custom T6225-SO-CR"}, 924 {0x6487, "Custom T6225-CR"}, 925 }; 926 927 #ifdef TCP_OFFLOAD 928 /* 929 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 930 * be exactly the same for both rxq and ofld_rxq. 931 */ 932 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 933 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 934 #endif 935 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 936 937 static int 938 t4_probe(device_t dev) 939 { 940 int i; 941 uint16_t v = pci_get_vendor(dev); 942 uint16_t d = pci_get_device(dev); 943 uint8_t f = pci_get_function(dev); 944 945 if (v != PCI_VENDOR_ID_CHELSIO) 946 return (ENXIO); 947 948 /* Attach only to PF0 of the FPGA */ 949 if (d == 0xa000 && f != 0) 950 return (ENXIO); 951 952 for (i = 0; i < nitems(t4_pciids); i++) { 953 if (d == t4_pciids[i].device) { 954 device_set_desc(dev, t4_pciids[i].desc); 955 return (BUS_PROBE_DEFAULT); 956 } 957 } 958 959 return (ENXIO); 960 } 961 962 static int 963 t5_probe(device_t dev) 964 { 965 int i; 966 uint16_t v = pci_get_vendor(dev); 967 uint16_t d = pci_get_device(dev); 968 uint8_t f = pci_get_function(dev); 969 970 if (v != PCI_VENDOR_ID_CHELSIO) 971 return (ENXIO); 972 973 /* Attach only to PF0 of the FPGA */ 974 if (d == 0xb000 && f != 0) 975 return (ENXIO); 976 977 for (i = 0; i < nitems(t5_pciids); i++) { 978 if (d == t5_pciids[i].device) { 979 device_set_desc(dev, t5_pciids[i].desc); 980 return (BUS_PROBE_DEFAULT); 981 } 982 } 983 984 return (ENXIO); 985 } 986 987 static int 988 t6_probe(device_t dev) 989 { 990 int i; 991 uint16_t v = pci_get_vendor(dev); 992 uint16_t d = pci_get_device(dev); 993 994 if (v != PCI_VENDOR_ID_CHELSIO) 995 return (ENXIO); 996 997 for (i = 0; i < nitems(t6_pciids); i++) { 998 if (d == t6_pciids[i].device) { 999 device_set_desc(dev, t6_pciids[i].desc); 1000 return (BUS_PROBE_DEFAULT); 1001 } 1002 } 1003 1004 return (ENXIO); 1005 } 1006 1007 static void 1008 t5_attribute_workaround(device_t dev) 1009 { 1010 device_t root_port; 1011 uint32_t v; 1012 1013 /* 1014 * The T5 chips do not properly echo the No Snoop and Relaxed 1015 * Ordering attributes when replying to a TLP from a Root 1016 * Port. As a workaround, find the parent Root Port and 1017 * disable No Snoop and Relaxed Ordering. Note that this 1018 * affects all devices under this root port. 1019 */ 1020 root_port = pci_find_pcie_root_port(dev); 1021 if (root_port == NULL) { 1022 device_printf(dev, "Unable to find parent root port\n"); 1023 return; 1024 } 1025 1026 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1027 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1028 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1029 0) 1030 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1031 device_get_nameunit(root_port)); 1032 } 1033 1034 static const struct devnames devnames[] = { 1035 { 1036 .nexus_name = "t4nex", 1037 .ifnet_name = "cxgbe", 1038 .vi_ifnet_name = "vcxgbe", 1039 .pf03_drv_name = "t4iov", 1040 .vf_nexus_name = "t4vf", 1041 .vf_ifnet_name = "cxgbev" 1042 }, { 1043 .nexus_name = "t5nex", 1044 .ifnet_name = "cxl", 1045 .vi_ifnet_name = "vcxl", 1046 .pf03_drv_name = "t5iov", 1047 .vf_nexus_name = "t5vf", 1048 .vf_ifnet_name = "cxlv" 1049 }, { 1050 .nexus_name = "t6nex", 1051 .ifnet_name = "cc", 1052 .vi_ifnet_name = "vcc", 1053 .pf03_drv_name = "t6iov", 1054 .vf_nexus_name = "t6vf", 1055 .vf_ifnet_name = "ccv" 1056 } 1057 }; 1058 1059 void 1060 t4_init_devnames(struct adapter *sc) 1061 { 1062 int id; 1063 1064 id = chip_id(sc); 1065 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1066 sc->names = &devnames[id - CHELSIO_T4]; 1067 else { 1068 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1069 sc->names = NULL; 1070 } 1071 } 1072 1073 static int 1074 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1075 { 1076 const char *parent, *name; 1077 long value; 1078 int line, unit; 1079 1080 line = 0; 1081 parent = device_get_nameunit(sc->dev); 1082 name = sc->names->ifnet_name; 1083 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1084 if (resource_long_value(name, unit, "port", &value) == 0 && 1085 value == pi->port_id) 1086 return (unit); 1087 } 1088 return (-1); 1089 } 1090 1091 static int 1092 t4_attach(device_t dev) 1093 { 1094 struct adapter *sc; 1095 int rc = 0, i, j, rqidx, tqidx, nports; 1096 struct make_dev_args mda; 1097 struct intrs_and_queues iaq; 1098 struct sge *s; 1099 uint32_t *buf; 1100 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1101 int ofld_tqidx; 1102 #endif 1103 #ifdef TCP_OFFLOAD 1104 int ofld_rqidx; 1105 #endif 1106 #ifdef DEV_NETMAP 1107 int nm_rqidx, nm_tqidx; 1108 #endif 1109 int num_vis; 1110 1111 sc = device_get_softc(dev); 1112 sc->dev = dev; 1113 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1114 1115 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1116 t5_attribute_workaround(dev); 1117 pci_enable_busmaster(dev); 1118 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1119 uint32_t v; 1120 1121 pci_set_max_read_req(dev, 4096); 1122 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1123 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1124 if (pcie_relaxed_ordering == 0 && 1125 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1126 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1127 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1128 } else if (pcie_relaxed_ordering == 1 && 1129 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1130 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1131 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1132 } 1133 } 1134 1135 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1136 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1137 sc->traceq = -1; 1138 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1139 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1140 device_get_nameunit(dev)); 1141 1142 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1143 device_get_nameunit(dev)); 1144 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1145 t4_add_adapter(sc); 1146 1147 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1148 TAILQ_INIT(&sc->sfl); 1149 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1150 1151 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1152 1153 sc->policy = NULL; 1154 rw_init(&sc->policy_lock, "connection offload policy"); 1155 1156 callout_init(&sc->ktls_tick, 1); 1157 1158 #ifdef TCP_OFFLOAD 1159 TASK_INIT(&sc->async_event_task, 0, t4_async_event, sc); 1160 #endif 1161 1162 refcount_init(&sc->vxlan_refcount, 0); 1163 1164 TASK_INIT(&sc->reset_task, 0, reset_adapter, sc); 1165 1166 sc->ctrlq_oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(sc->dev), 1167 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1168 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1169 sc->fwq_oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(sc->dev), 1170 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1171 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1172 1173 rc = t4_map_bars_0_and_4(sc); 1174 if (rc != 0) 1175 goto done; /* error message displayed already */ 1176 1177 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1178 1179 /* Prepare the adapter for operation. */ 1180 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1181 rc = -t4_prep_adapter(sc, buf); 1182 free(buf, M_CXGBE); 1183 if (rc != 0) { 1184 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1185 goto done; 1186 } 1187 1188 /* 1189 * This is the real PF# to which we're attaching. Works from within PCI 1190 * passthrough environments too, where pci_get_function() could return a 1191 * different PF# depending on the passthrough configuration. We need to 1192 * use the real PF# in all our communication with the firmware. 1193 */ 1194 j = t4_read_reg(sc, A_PL_WHOAMI); 1195 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1196 sc->mbox = sc->pf; 1197 1198 t4_init_devnames(sc); 1199 if (sc->names == NULL) { 1200 rc = ENOTSUP; 1201 goto done; /* error message displayed already */ 1202 } 1203 1204 /* 1205 * Do this really early, with the memory windows set up even before the 1206 * character device. The userland tool's register i/o and mem read 1207 * will work even in "recovery mode". 1208 */ 1209 setup_memwin(sc); 1210 if (t4_init_devlog_params(sc, 0) == 0) 1211 fixup_devlog_params(sc); 1212 make_dev_args_init(&mda); 1213 mda.mda_devsw = &t4_cdevsw; 1214 mda.mda_uid = UID_ROOT; 1215 mda.mda_gid = GID_WHEEL; 1216 mda.mda_mode = 0600; 1217 mda.mda_si_drv1 = sc; 1218 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1219 if (rc != 0) 1220 device_printf(dev, "failed to create nexus char device: %d.\n", 1221 rc); 1222 1223 /* Go no further if recovery mode has been requested. */ 1224 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1225 device_printf(dev, "recovery mode.\n"); 1226 goto done; 1227 } 1228 1229 #if defined(__i386__) 1230 if ((cpu_feature & CPUID_CX8) == 0) { 1231 device_printf(dev, "64 bit atomics not available.\n"); 1232 rc = ENOTSUP; 1233 goto done; 1234 } 1235 #endif 1236 1237 /* Contact the firmware and try to become the master driver. */ 1238 rc = contact_firmware(sc); 1239 if (rc != 0) 1240 goto done; /* error message displayed already */ 1241 MPASS(sc->flags & FW_OK); 1242 1243 rc = get_params__pre_init(sc); 1244 if (rc != 0) 1245 goto done; /* error message displayed already */ 1246 1247 if (sc->flags & MASTER_PF) { 1248 rc = partition_resources(sc); 1249 if (rc != 0) 1250 goto done; /* error message displayed already */ 1251 t4_intr_clear(sc); 1252 } 1253 1254 rc = get_params__post_init(sc); 1255 if (rc != 0) 1256 goto done; /* error message displayed already */ 1257 1258 rc = set_params__post_init(sc); 1259 if (rc != 0) 1260 goto done; /* error message displayed already */ 1261 1262 rc = t4_map_bar_2(sc); 1263 if (rc != 0) 1264 goto done; /* error message displayed already */ 1265 1266 rc = t4_create_dma_tag(sc); 1267 if (rc != 0) 1268 goto done; /* error message displayed already */ 1269 1270 /* 1271 * First pass over all the ports - allocate VIs and initialize some 1272 * basic parameters like mac address, port type, etc. 1273 */ 1274 for_each_port(sc, i) { 1275 struct port_info *pi; 1276 1277 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1278 sc->port[i] = pi; 1279 1280 /* These must be set before t4_port_init */ 1281 pi->adapter = sc; 1282 pi->port_id = i; 1283 /* 1284 * XXX: vi[0] is special so we can't delay this allocation until 1285 * pi->nvi's final value is known. 1286 */ 1287 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1288 M_ZERO | M_WAITOK); 1289 1290 /* 1291 * Allocate the "main" VI and initialize parameters 1292 * like mac addr. 1293 */ 1294 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1295 if (rc != 0) { 1296 device_printf(dev, "unable to initialize port %d: %d\n", 1297 i, rc); 1298 free(pi->vi, M_CXGBE); 1299 free(pi, M_CXGBE); 1300 sc->port[i] = NULL; 1301 goto done; 1302 } 1303 1304 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1305 device_get_nameunit(dev), i); 1306 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1307 sc->chan_map[pi->tx_chan] = i; 1308 1309 /* 1310 * The MPS counter for FCS errors doesn't work correctly on the 1311 * T6 so we use the MAC counter here. Which MAC is in use 1312 * depends on the link settings which will be known when the 1313 * link comes up. 1314 */ 1315 if (is_t6(sc)) { 1316 pi->fcs_reg = -1; 1317 } else if (is_t4(sc)) { 1318 pi->fcs_reg = PORT_REG(pi->tx_chan, 1319 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1320 } else { 1321 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 1322 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1323 } 1324 pi->fcs_base = 0; 1325 1326 /* All VIs on this port share this media. */ 1327 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1328 cxgbe_media_status); 1329 1330 PORT_LOCK(pi); 1331 init_link_config(pi); 1332 fixup_link_config(pi); 1333 build_medialist(pi); 1334 if (fixed_ifmedia(pi)) 1335 pi->flags |= FIXED_IFMEDIA; 1336 PORT_UNLOCK(pi); 1337 1338 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1339 t4_ifnet_unit(sc, pi)); 1340 if (pi->dev == NULL) { 1341 device_printf(dev, 1342 "failed to add device for port %d.\n", i); 1343 rc = ENXIO; 1344 goto done; 1345 } 1346 pi->vi[0].dev = pi->dev; 1347 device_set_softc(pi->dev, pi); 1348 } 1349 1350 /* 1351 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1352 */ 1353 nports = sc->params.nports; 1354 rc = cfg_itype_and_nqueues(sc, &iaq); 1355 if (rc != 0) 1356 goto done; /* error message displayed already */ 1357 1358 num_vis = iaq.num_vis; 1359 sc->intr_type = iaq.intr_type; 1360 sc->intr_count = iaq.nirq; 1361 1362 s = &sc->sge; 1363 s->nrxq = nports * iaq.nrxq; 1364 s->ntxq = nports * iaq.ntxq; 1365 if (num_vis > 1) { 1366 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1367 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1368 } 1369 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1370 s->neq += nports; /* ctrl queues: 1 per port */ 1371 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1372 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1373 if (is_offload(sc) || is_ethoffload(sc)) { 1374 s->nofldtxq = nports * iaq.nofldtxq; 1375 if (num_vis > 1) 1376 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1377 s->neq += s->nofldtxq; 1378 1379 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1380 M_CXGBE, M_ZERO | M_WAITOK); 1381 } 1382 #endif 1383 #ifdef TCP_OFFLOAD 1384 if (is_offload(sc)) { 1385 s->nofldrxq = nports * iaq.nofldrxq; 1386 if (num_vis > 1) 1387 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1388 s->neq += s->nofldrxq; /* free list */ 1389 s->niq += s->nofldrxq; 1390 1391 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1392 M_CXGBE, M_ZERO | M_WAITOK); 1393 } 1394 #endif 1395 #ifdef DEV_NETMAP 1396 s->nnmrxq = 0; 1397 s->nnmtxq = 0; 1398 if (t4_native_netmap & NN_MAIN_VI) { 1399 s->nnmrxq += nports * iaq.nnmrxq; 1400 s->nnmtxq += nports * iaq.nnmtxq; 1401 } 1402 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1403 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1404 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1405 } 1406 s->neq += s->nnmtxq + s->nnmrxq; 1407 s->niq += s->nnmrxq; 1408 1409 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1410 M_CXGBE, M_ZERO | M_WAITOK); 1411 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1412 M_CXGBE, M_ZERO | M_WAITOK); 1413 #endif 1414 MPASS(s->niq <= s->iqmap_sz); 1415 MPASS(s->neq <= s->eqmap_sz); 1416 1417 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1418 M_ZERO | M_WAITOK); 1419 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1420 M_ZERO | M_WAITOK); 1421 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1422 M_ZERO | M_WAITOK); 1423 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1424 M_ZERO | M_WAITOK); 1425 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1426 M_ZERO | M_WAITOK); 1427 1428 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1429 M_ZERO | M_WAITOK); 1430 1431 t4_init_l2t(sc, M_WAITOK); 1432 t4_init_smt(sc, M_WAITOK); 1433 t4_init_tx_sched(sc); 1434 t4_init_atid_table(sc); 1435 #ifdef RATELIMIT 1436 t4_init_etid_table(sc); 1437 #endif 1438 #ifdef INET6 1439 t4_init_clip_table(sc); 1440 #endif 1441 if (sc->vres.key.size != 0) 1442 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1443 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1444 1445 /* 1446 * Second pass over the ports. This time we know the number of rx and 1447 * tx queues that each port should get. 1448 */ 1449 rqidx = tqidx = 0; 1450 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1451 ofld_tqidx = 0; 1452 #endif 1453 #ifdef TCP_OFFLOAD 1454 ofld_rqidx = 0; 1455 #endif 1456 #ifdef DEV_NETMAP 1457 nm_rqidx = nm_tqidx = 0; 1458 #endif 1459 for_each_port(sc, i) { 1460 struct port_info *pi = sc->port[i]; 1461 struct vi_info *vi; 1462 1463 if (pi == NULL) 1464 continue; 1465 1466 pi->nvi = num_vis; 1467 for_each_vi(pi, j, vi) { 1468 vi->pi = pi; 1469 vi->adapter = sc; 1470 vi->first_intr = -1; 1471 vi->qsize_rxq = t4_qsize_rxq; 1472 vi->qsize_txq = t4_qsize_txq; 1473 1474 vi->first_rxq = rqidx; 1475 vi->first_txq = tqidx; 1476 vi->tmr_idx = t4_tmr_idx; 1477 vi->pktc_idx = t4_pktc_idx; 1478 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1479 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1480 1481 rqidx += vi->nrxq; 1482 tqidx += vi->ntxq; 1483 1484 if (j == 0 && vi->ntxq > 1) 1485 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1486 else 1487 vi->rsrv_noflowq = 0; 1488 1489 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1490 vi->first_ofld_txq = ofld_tqidx; 1491 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1492 ofld_tqidx += vi->nofldtxq; 1493 #endif 1494 #ifdef TCP_OFFLOAD 1495 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1496 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1497 vi->first_ofld_rxq = ofld_rqidx; 1498 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1499 1500 ofld_rqidx += vi->nofldrxq; 1501 #endif 1502 #ifdef DEV_NETMAP 1503 vi->first_nm_rxq = nm_rqidx; 1504 vi->first_nm_txq = nm_tqidx; 1505 if (j == 0) { 1506 vi->nnmrxq = iaq.nnmrxq; 1507 vi->nnmtxq = iaq.nnmtxq; 1508 } else { 1509 vi->nnmrxq = iaq.nnmrxq_vi; 1510 vi->nnmtxq = iaq.nnmtxq_vi; 1511 } 1512 nm_rqidx += vi->nnmrxq; 1513 nm_tqidx += vi->nnmtxq; 1514 #endif 1515 } 1516 } 1517 1518 rc = t4_setup_intr_handlers(sc); 1519 if (rc != 0) { 1520 device_printf(dev, 1521 "failed to setup interrupt handlers: %d\n", rc); 1522 goto done; 1523 } 1524 1525 rc = bus_generic_probe(dev); 1526 if (rc != 0) { 1527 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1528 goto done; 1529 } 1530 1531 /* 1532 * Ensure thread-safe mailbox access (in debug builds). 1533 * 1534 * So far this was the only thread accessing the mailbox but various 1535 * ifnets and sysctls are about to be created and their handlers/ioctls 1536 * will access the mailbox from different threads. 1537 */ 1538 sc->flags |= CHK_MBOX_ACCESS; 1539 1540 rc = bus_generic_attach(dev); 1541 if (rc != 0) { 1542 device_printf(dev, 1543 "failed to attach all child ports: %d\n", rc); 1544 goto done; 1545 } 1546 1547 device_printf(dev, 1548 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1549 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1550 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1551 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1552 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1553 1554 t4_set_desc(sc); 1555 1556 notify_siblings(dev, 0); 1557 1558 done: 1559 if (rc != 0 && sc->cdev) { 1560 /* cdev was created and so cxgbetool works; recover that way. */ 1561 device_printf(dev, 1562 "error during attach, adapter is now in recovery mode.\n"); 1563 rc = 0; 1564 } 1565 1566 if (rc != 0) 1567 t4_detach_common(dev); 1568 else 1569 t4_sysctls(sc); 1570 1571 return (rc); 1572 } 1573 1574 static int 1575 t4_child_location_str(device_t bus, device_t dev, char *buf, size_t buflen) 1576 { 1577 struct adapter *sc; 1578 struct port_info *pi; 1579 int i; 1580 1581 sc = device_get_softc(bus); 1582 buf[0] = '\0'; 1583 for_each_port(sc, i) { 1584 pi = sc->port[i]; 1585 if (pi != NULL && pi->dev == dev) { 1586 snprintf(buf, buflen, "port=%d", pi->port_id); 1587 break; 1588 } 1589 } 1590 return (0); 1591 } 1592 1593 static int 1594 t4_ready(device_t dev) 1595 { 1596 struct adapter *sc; 1597 1598 sc = device_get_softc(dev); 1599 if (sc->flags & FW_OK) 1600 return (0); 1601 return (ENXIO); 1602 } 1603 1604 static int 1605 t4_read_port_device(device_t dev, int port, device_t *child) 1606 { 1607 struct adapter *sc; 1608 struct port_info *pi; 1609 1610 sc = device_get_softc(dev); 1611 if (port < 0 || port >= MAX_NPORTS) 1612 return (EINVAL); 1613 pi = sc->port[port]; 1614 if (pi == NULL || pi->dev == NULL) 1615 return (ENXIO); 1616 *child = pi->dev; 1617 return (0); 1618 } 1619 1620 static int 1621 notify_siblings(device_t dev, int detaching) 1622 { 1623 device_t sibling; 1624 int error, i; 1625 1626 error = 0; 1627 for (i = 0; i < PCI_FUNCMAX; i++) { 1628 if (i == pci_get_function(dev)) 1629 continue; 1630 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1631 pci_get_slot(dev), i); 1632 if (sibling == NULL || !device_is_attached(sibling)) 1633 continue; 1634 if (detaching) 1635 error = T4_DETACH_CHILD(sibling); 1636 else 1637 (void)T4_ATTACH_CHILD(sibling); 1638 if (error) 1639 break; 1640 } 1641 return (error); 1642 } 1643 1644 /* 1645 * Idempotent 1646 */ 1647 static int 1648 t4_detach(device_t dev) 1649 { 1650 struct adapter *sc; 1651 int rc; 1652 1653 sc = device_get_softc(dev); 1654 1655 rc = notify_siblings(dev, 1); 1656 if (rc) { 1657 device_printf(dev, 1658 "failed to detach sibling devices: %d\n", rc); 1659 return (rc); 1660 } 1661 1662 return (t4_detach_common(dev)); 1663 } 1664 1665 int 1666 t4_detach_common(device_t dev) 1667 { 1668 struct adapter *sc; 1669 struct port_info *pi; 1670 int i, rc; 1671 1672 sc = device_get_softc(dev); 1673 1674 if (sc->cdev) { 1675 destroy_dev(sc->cdev); 1676 sc->cdev = NULL; 1677 } 1678 1679 sx_xlock(&t4_list_lock); 1680 SLIST_REMOVE(&t4_list, sc, adapter, link); 1681 sx_xunlock(&t4_list_lock); 1682 1683 sc->flags &= ~CHK_MBOX_ACCESS; 1684 if (sc->flags & FULL_INIT_DONE) { 1685 if (!(sc->flags & IS_VF)) 1686 t4_intr_disable(sc); 1687 } 1688 1689 if (device_is_attached(dev)) { 1690 rc = bus_generic_detach(dev); 1691 if (rc) { 1692 device_printf(dev, 1693 "failed to detach child devices: %d\n", rc); 1694 return (rc); 1695 } 1696 } 1697 1698 #ifdef TCP_OFFLOAD 1699 taskqueue_drain(taskqueue_thread, &sc->async_event_task); 1700 #endif 1701 1702 for (i = 0; i < sc->intr_count; i++) 1703 t4_free_irq(sc, &sc->irq[i]); 1704 1705 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1706 t4_free_tx_sched(sc); 1707 1708 for (i = 0; i < MAX_NPORTS; i++) { 1709 pi = sc->port[i]; 1710 if (pi) { 1711 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1712 if (pi->dev) 1713 device_delete_child(dev, pi->dev); 1714 1715 mtx_destroy(&pi->pi_lock); 1716 free(pi->vi, M_CXGBE); 1717 free(pi, M_CXGBE); 1718 } 1719 } 1720 1721 device_delete_children(dev); 1722 adapter_full_uninit(sc); 1723 1724 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1725 t4_fw_bye(sc, sc->mbox); 1726 1727 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1728 pci_release_msi(dev); 1729 1730 if (sc->regs_res) 1731 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1732 sc->regs_res); 1733 1734 if (sc->udbs_res) 1735 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1736 sc->udbs_res); 1737 1738 if (sc->msix_res) 1739 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1740 sc->msix_res); 1741 1742 if (sc->l2t) 1743 t4_free_l2t(sc->l2t); 1744 if (sc->smt) 1745 t4_free_smt(sc->smt); 1746 t4_free_atid_table(sc); 1747 #ifdef RATELIMIT 1748 t4_free_etid_table(sc); 1749 #endif 1750 if (sc->key_map) 1751 vmem_destroy(sc->key_map); 1752 #ifdef INET6 1753 t4_destroy_clip_table(sc); 1754 #endif 1755 1756 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1757 free(sc->sge.ofld_txq, M_CXGBE); 1758 #endif 1759 #ifdef TCP_OFFLOAD 1760 free(sc->sge.ofld_rxq, M_CXGBE); 1761 #endif 1762 #ifdef DEV_NETMAP 1763 free(sc->sge.nm_rxq, M_CXGBE); 1764 free(sc->sge.nm_txq, M_CXGBE); 1765 #endif 1766 free(sc->irq, M_CXGBE); 1767 free(sc->sge.rxq, M_CXGBE); 1768 free(sc->sge.txq, M_CXGBE); 1769 free(sc->sge.ctrlq, M_CXGBE); 1770 free(sc->sge.iqmap, M_CXGBE); 1771 free(sc->sge.eqmap, M_CXGBE); 1772 free(sc->tids.ftid_tab, M_CXGBE); 1773 free(sc->tids.hpftid_tab, M_CXGBE); 1774 free_hftid_hash(&sc->tids); 1775 free(sc->tids.tid_tab, M_CXGBE); 1776 free(sc->tt.tls_rx_ports, M_CXGBE); 1777 t4_destroy_dma_tag(sc); 1778 1779 callout_drain(&sc->ktls_tick); 1780 callout_drain(&sc->sfl_callout); 1781 if (mtx_initialized(&sc->tids.ftid_lock)) { 1782 mtx_destroy(&sc->tids.ftid_lock); 1783 cv_destroy(&sc->tids.ftid_cv); 1784 } 1785 if (mtx_initialized(&sc->tids.atid_lock)) 1786 mtx_destroy(&sc->tids.atid_lock); 1787 if (mtx_initialized(&sc->ifp_lock)) 1788 mtx_destroy(&sc->ifp_lock); 1789 1790 if (rw_initialized(&sc->policy_lock)) { 1791 rw_destroy(&sc->policy_lock); 1792 #ifdef TCP_OFFLOAD 1793 if (sc->policy != NULL) 1794 free_offload_policy(sc->policy); 1795 #endif 1796 } 1797 1798 for (i = 0; i < NUM_MEMWIN; i++) { 1799 struct memwin *mw = &sc->memwin[i]; 1800 1801 if (rw_initialized(&mw->mw_lock)) 1802 rw_destroy(&mw->mw_lock); 1803 } 1804 1805 mtx_destroy(&sc->sfl_lock); 1806 mtx_destroy(&sc->reg_lock); 1807 mtx_destroy(&sc->sc_lock); 1808 1809 bzero(sc, sizeof(*sc)); 1810 1811 return (0); 1812 } 1813 1814 static inline bool 1815 ok_to_reset(struct adapter *sc) 1816 { 1817 struct tid_info *t = &sc->tids; 1818 struct port_info *pi; 1819 struct vi_info *vi; 1820 int i, j; 1821 const int caps = IFCAP_TOE | IFCAP_TXTLS | IFCAP_NETMAP | IFCAP_TXRTLMT; 1822 1823 ASSERT_SYNCHRONIZED_OP(sc); 1824 MPASS(!(sc->flags & IS_VF)); 1825 1826 for_each_port(sc, i) { 1827 pi = sc->port[i]; 1828 for_each_vi(pi, j, vi) { 1829 if (vi->ifp->if_capenable & caps) 1830 return (false); 1831 } 1832 } 1833 1834 if (atomic_load_int(&t->tids_in_use) > 0) 1835 return (false); 1836 if (atomic_load_int(&t->stids_in_use) > 0) 1837 return (false); 1838 if (atomic_load_int(&t->atids_in_use) > 0) 1839 return (false); 1840 if (atomic_load_int(&t->ftids_in_use) > 0) 1841 return (false); 1842 if (atomic_load_int(&t->hpftids_in_use) > 0) 1843 return (false); 1844 if (atomic_load_int(&t->etids_in_use) > 0) 1845 return (false); 1846 1847 return (true); 1848 } 1849 1850 static int 1851 t4_suspend(device_t dev) 1852 { 1853 struct adapter *sc = device_get_softc(dev); 1854 struct port_info *pi; 1855 struct vi_info *vi; 1856 struct ifnet *ifp; 1857 struct sge_rxq *rxq; 1858 struct sge_txq *txq; 1859 struct sge_wrq *wrq; 1860 #ifdef TCP_OFFLOAD 1861 struct sge_ofld_rxq *ofld_rxq; 1862 #endif 1863 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1864 struct sge_ofld_txq *ofld_txq; 1865 #endif 1866 int rc, i, j, k; 1867 1868 CH_ALERT(sc, "suspend requested\n"); 1869 1870 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus"); 1871 if (rc != 0) 1872 return (ENXIO); 1873 1874 /* XXX: Can the kernel call suspend repeatedly without resume? */ 1875 MPASS(!hw_off_limits(sc)); 1876 1877 if (!ok_to_reset(sc)) { 1878 /* XXX: should list what resource is preventing suspend. */ 1879 CH_ERR(sc, "not safe to suspend.\n"); 1880 rc = EBUSY; 1881 goto done; 1882 } 1883 1884 /* No more DMA or interrupts. */ 1885 t4_shutdown_adapter(sc); 1886 1887 /* Quiesce all activity. */ 1888 for_each_port(sc, i) { 1889 pi = sc->port[i]; 1890 pi->vxlan_tcam_entry = false; 1891 1892 PORT_LOCK(pi); 1893 if (pi->up_vis > 0) { 1894 /* 1895 * t4_shutdown_adapter has already shut down all the 1896 * PHYs but it also disables interrupts and DMA so there 1897 * won't be a link interrupt. So we update the state 1898 * manually and inform the kernel. 1899 */ 1900 pi->link_cfg.link_ok = false; 1901 t4_os_link_changed(pi); 1902 } 1903 PORT_UNLOCK(pi); 1904 1905 for_each_vi(pi, j, vi) { 1906 vi->xact_addr_filt = -1; 1907 if (!(vi->flags & VI_INIT_DONE)) 1908 continue; 1909 1910 ifp = vi->ifp; 1911 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1912 mtx_lock(&vi->tick_mtx); 1913 vi->flags |= VI_SKIP_STATS; 1914 callout_stop(&vi->tick); 1915 mtx_unlock(&vi->tick_mtx); 1916 callout_drain(&vi->tick); 1917 } 1918 1919 /* 1920 * Note that the HW is not available. 1921 */ 1922 for_each_txq(vi, k, txq) { 1923 TXQ_LOCK(txq); 1924 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 1925 TXQ_UNLOCK(txq); 1926 } 1927 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1928 for_each_ofld_txq(vi, k, ofld_txq) { 1929 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 1930 } 1931 #endif 1932 for_each_rxq(vi, k, rxq) { 1933 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1934 } 1935 #if defined(TCP_OFFLOAD) 1936 for_each_ofld_rxq(vi, k, ofld_rxq) { 1937 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 1938 } 1939 #endif 1940 1941 quiesce_vi(vi); 1942 } 1943 1944 if (sc->flags & FULL_INIT_DONE) { 1945 /* Control queue */ 1946 wrq = &sc->sge.ctrlq[i]; 1947 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 1948 quiesce_wrq(wrq); 1949 } 1950 } 1951 if (sc->flags & FULL_INIT_DONE) { 1952 /* Firmware event queue */ 1953 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 1954 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 1955 } 1956 1957 /* Mark the adapter totally off limits. */ 1958 mtx_lock(&sc->reg_lock); 1959 sc->flags |= HW_OFF_LIMITS; 1960 sc->flags &= ~(FW_OK | MASTER_PF); 1961 sc->reset_thread = NULL; 1962 mtx_unlock(&sc->reg_lock); 1963 1964 sc->num_resets++; 1965 CH_ALERT(sc, "suspend completed.\n"); 1966 done: 1967 end_synchronized_op(sc, 0); 1968 return (rc); 1969 } 1970 1971 struct adapter_pre_reset_state { 1972 u_int flags; 1973 uint16_t nbmcaps; 1974 uint16_t linkcaps; 1975 uint16_t switchcaps; 1976 uint16_t niccaps; 1977 uint16_t toecaps; 1978 uint16_t rdmacaps; 1979 uint16_t cryptocaps; 1980 uint16_t iscsicaps; 1981 uint16_t fcoecaps; 1982 1983 u_int cfcsum; 1984 char cfg_file[32]; 1985 1986 struct adapter_params params; 1987 struct t4_virt_res vres; 1988 struct tid_info tids; 1989 struct sge sge; 1990 1991 int rawf_base; 1992 int nrawf; 1993 1994 }; 1995 1996 static void 1997 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 1998 { 1999 2000 ASSERT_SYNCHRONIZED_OP(sc); 2001 2002 o->flags = sc->flags; 2003 2004 o->nbmcaps = sc->nbmcaps; 2005 o->linkcaps = sc->linkcaps; 2006 o->switchcaps = sc->switchcaps; 2007 o->niccaps = sc->niccaps; 2008 o->toecaps = sc->toecaps; 2009 o->rdmacaps = sc->rdmacaps; 2010 o->cryptocaps = sc->cryptocaps; 2011 o->iscsicaps = sc->iscsicaps; 2012 o->fcoecaps = sc->fcoecaps; 2013 2014 o->cfcsum = sc->cfcsum; 2015 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2016 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2017 2018 o->params = sc->params; 2019 o->vres = sc->vres; 2020 o->tids = sc->tids; 2021 o->sge = sc->sge; 2022 2023 o->rawf_base = sc->rawf_base; 2024 o->nrawf = sc->nrawf; 2025 } 2026 2027 static int 2028 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2029 { 2030 int rc = 0; 2031 2032 ASSERT_SYNCHRONIZED_OP(sc); 2033 2034 /* Capabilities */ 2035 #define COMPARE_CAPS(c) do { \ 2036 if (o->c##caps != sc->c##caps) { \ 2037 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2038 sc->c##caps); \ 2039 rc = EINVAL; \ 2040 } \ 2041 } while (0) 2042 COMPARE_CAPS(nbm); 2043 COMPARE_CAPS(link); 2044 COMPARE_CAPS(switch); 2045 COMPARE_CAPS(nic); 2046 COMPARE_CAPS(toe); 2047 COMPARE_CAPS(rdma); 2048 COMPARE_CAPS(crypto); 2049 COMPARE_CAPS(iscsi); 2050 COMPARE_CAPS(fcoe); 2051 #undef COMPARE_CAPS 2052 2053 /* Firmware config file */ 2054 if (o->cfcsum != sc->cfcsum) { 2055 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2056 o->cfcsum, sc->cfg_file, sc->cfcsum); 2057 rc = EINVAL; 2058 } 2059 2060 #define COMPARE_PARAM(p, name) do { \ 2061 if (o->p != sc->p) { \ 2062 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2063 rc = EINVAL; \ 2064 } \ 2065 } while (0) 2066 COMPARE_PARAM(sge.iq_start, iq_start); 2067 COMPARE_PARAM(sge.eq_start, eq_start); 2068 COMPARE_PARAM(tids.ftid_base, ftid_base); 2069 COMPARE_PARAM(tids.ftid_end, ftid_end); 2070 COMPARE_PARAM(tids.nftids, nftids); 2071 COMPARE_PARAM(vres.l2t.start, l2t_start); 2072 COMPARE_PARAM(vres.l2t.size, l2t_size); 2073 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2074 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2075 COMPARE_PARAM(tids.tid_base, tid_base); 2076 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2077 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2078 COMPARE_PARAM(tids.nhpftids, nhpftids); 2079 COMPARE_PARAM(rawf_base, rawf_base); 2080 COMPARE_PARAM(nrawf, nrawf); 2081 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2082 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2083 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2084 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2085 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2086 COMPARE_PARAM(tids.ntids, ntids); 2087 COMPARE_PARAM(tids.etid_base, etid_base); 2088 COMPARE_PARAM(tids.etid_end, etid_end); 2089 COMPARE_PARAM(tids.netids, netids); 2090 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2091 COMPARE_PARAM(params.ethoffload, ethoffload); 2092 COMPARE_PARAM(tids.natids, natids); 2093 COMPARE_PARAM(tids.stid_base, stid_base); 2094 COMPARE_PARAM(vres.ddp.start, ddp_start); 2095 COMPARE_PARAM(vres.ddp.size, ddp_size); 2096 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2097 COMPARE_PARAM(vres.stag.start, stag_start); 2098 COMPARE_PARAM(vres.stag.size, stag_size); 2099 COMPARE_PARAM(vres.rq.start, rq_start); 2100 COMPARE_PARAM(vres.rq.size, rq_size); 2101 COMPARE_PARAM(vres.pbl.start, pbl_start); 2102 COMPARE_PARAM(vres.pbl.size, pbl_size); 2103 COMPARE_PARAM(vres.qp.start, qp_start); 2104 COMPARE_PARAM(vres.qp.size, qp_size); 2105 COMPARE_PARAM(vres.cq.start, cq_start); 2106 COMPARE_PARAM(vres.cq.size, cq_size); 2107 COMPARE_PARAM(vres.ocq.start, ocq_start); 2108 COMPARE_PARAM(vres.ocq.size, ocq_size); 2109 COMPARE_PARAM(vres.srq.start, srq_start); 2110 COMPARE_PARAM(vres.srq.size, srq_size); 2111 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2112 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2113 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2114 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2115 COMPARE_PARAM(vres.key.start, key_start); 2116 COMPARE_PARAM(vres.key.size, key_size); 2117 #undef COMPARE_PARAM 2118 2119 return (rc); 2120 } 2121 2122 static int 2123 t4_resume(device_t dev) 2124 { 2125 struct adapter *sc = device_get_softc(dev); 2126 struct adapter_pre_reset_state *old_state = NULL; 2127 struct port_info *pi; 2128 struct vi_info *vi; 2129 struct ifnet *ifp; 2130 struct sge_txq *txq; 2131 int rc, i, j, k; 2132 2133 CH_ALERT(sc, "resume requested.\n"); 2134 2135 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res"); 2136 if (rc != 0) 2137 return (ENXIO); 2138 MPASS(hw_off_limits(sc)); 2139 MPASS((sc->flags & FW_OK) == 0); 2140 MPASS((sc->flags & MASTER_PF) == 0); 2141 MPASS(sc->reset_thread == NULL); 2142 sc->reset_thread = curthread; 2143 2144 /* Register access is expected to work by the time we're here. */ 2145 if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) { 2146 CH_ERR(sc, "%s: can't read device registers\n", __func__); 2147 rc = ENXIO; 2148 goto done; 2149 } 2150 2151 /* Restore memory window. */ 2152 setup_memwin(sc); 2153 2154 /* Go no further if recovery mode has been requested. */ 2155 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2156 CH_ALERT(sc, "recovery mode on resume.\n"); 2157 rc = 0; 2158 mtx_lock(&sc->reg_lock); 2159 sc->flags &= ~HW_OFF_LIMITS; 2160 mtx_unlock(&sc->reg_lock); 2161 goto done; 2162 } 2163 2164 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2165 save_caps_and_params(sc, old_state); 2166 2167 /* Reestablish contact with firmware and become the primary PF. */ 2168 rc = contact_firmware(sc); 2169 if (rc != 0) 2170 goto done; /* error message displayed already */ 2171 MPASS(sc->flags & FW_OK); 2172 2173 if (sc->flags & MASTER_PF) { 2174 rc = partition_resources(sc); 2175 if (rc != 0) 2176 goto done; /* error message displayed already */ 2177 t4_intr_clear(sc); 2178 } 2179 2180 rc = get_params__post_init(sc); 2181 if (rc != 0) 2182 goto done; /* error message displayed already */ 2183 2184 rc = set_params__post_init(sc); 2185 if (rc != 0) 2186 goto done; /* error message displayed already */ 2187 2188 rc = compare_caps_and_params(sc, old_state); 2189 if (rc != 0) 2190 goto done; /* error message displayed already */ 2191 2192 for_each_port(sc, i) { 2193 pi = sc->port[i]; 2194 MPASS(pi != NULL); 2195 MPASS(pi->vi != NULL); 2196 MPASS(pi->vi[0].dev == pi->dev); 2197 2198 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2199 if (rc != 0) { 2200 CH_ERR(sc, 2201 "failed to re-initialize port %d: %d\n", i, rc); 2202 goto done; 2203 } 2204 MPASS(sc->chan_map[pi->tx_chan] == i); 2205 2206 PORT_LOCK(pi); 2207 fixup_link_config(pi); 2208 build_medialist(pi); 2209 PORT_UNLOCK(pi); 2210 for_each_vi(pi, j, vi) { 2211 if (IS_MAIN_VI(vi)) 2212 continue; 2213 rc = alloc_extra_vi(sc, pi, vi); 2214 if (rc != 0) { 2215 CH_ERR(vi, 2216 "failed to re-allocate extra VI: %d\n", rc); 2217 goto done; 2218 } 2219 } 2220 } 2221 2222 /* 2223 * Interrupts and queues are about to be enabled and other threads will 2224 * want to access the hardware too. It is safe to do so. Note that 2225 * this thread is still in the middle of a synchronized_op. 2226 */ 2227 mtx_lock(&sc->reg_lock); 2228 sc->flags &= ~HW_OFF_LIMITS; 2229 mtx_unlock(&sc->reg_lock); 2230 2231 if (sc->flags & FULL_INIT_DONE) { 2232 rc = adapter_full_init(sc); 2233 if (rc != 0) { 2234 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2235 goto done; 2236 } 2237 2238 if (sc->vxlan_refcount > 0) 2239 enable_vxlan_rx(sc); 2240 2241 for_each_port(sc, i) { 2242 pi = sc->port[i]; 2243 for_each_vi(pi, j, vi) { 2244 if (!(vi->flags & VI_INIT_DONE)) 2245 continue; 2246 rc = vi_full_init(vi); 2247 if (rc != 0) { 2248 CH_ERR(vi, "failed to re-initialize " 2249 "interface: %d\n", rc); 2250 goto done; 2251 } 2252 2253 ifp = vi->ifp; 2254 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2255 continue; 2256 /* 2257 * Note that we do not setup multicast addresses 2258 * in the first pass. This ensures that the 2259 * unicast DMACs for all VIs on all ports get an 2260 * MPS TCAM entry. 2261 */ 2262 rc = update_mac_settings(ifp, XGMAC_ALL & 2263 ~XGMAC_MCADDRS); 2264 if (rc != 0) { 2265 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2266 goto done; 2267 } 2268 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2269 true); 2270 if (rc != 0) { 2271 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2272 goto done; 2273 } 2274 for_each_txq(vi, k, txq) { 2275 TXQ_LOCK(txq); 2276 txq->eq.flags |= EQ_ENABLED; 2277 TXQ_UNLOCK(txq); 2278 } 2279 mtx_lock(&vi->tick_mtx); 2280 vi->flags &= ~VI_SKIP_STATS; 2281 callout_schedule(&vi->tick, hz); 2282 mtx_unlock(&vi->tick_mtx); 2283 } 2284 PORT_LOCK(pi); 2285 if (pi->up_vis > 0) { 2286 t4_update_port_info(pi); 2287 fixup_link_config(pi); 2288 build_medialist(pi); 2289 apply_link_config(pi); 2290 if (pi->link_cfg.link_ok) 2291 t4_os_link_changed(pi); 2292 } 2293 PORT_UNLOCK(pi); 2294 } 2295 2296 /* Now reprogram the L2 multicast addresses. */ 2297 for_each_port(sc, i) { 2298 pi = sc->port[i]; 2299 for_each_vi(pi, j, vi) { 2300 if (!(vi->flags & VI_INIT_DONE)) 2301 continue; 2302 ifp = vi->ifp; 2303 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2304 continue; 2305 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2306 if (rc != 0) { 2307 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2308 rc = 0; /* carry on */ 2309 } 2310 } 2311 } 2312 } 2313 done: 2314 if (rc == 0) { 2315 sc->incarnation++; 2316 CH_ALERT(sc, "resume completed.\n"); 2317 } 2318 end_synchronized_op(sc, 0); 2319 free(old_state, M_CXGBE); 2320 return (rc); 2321 } 2322 2323 static int 2324 t4_reset_prepare(device_t dev, device_t child) 2325 { 2326 struct adapter *sc = device_get_softc(dev); 2327 2328 CH_ALERT(sc, "reset_prepare.\n"); 2329 return (0); 2330 } 2331 2332 static int 2333 t4_reset_post(device_t dev, device_t child) 2334 { 2335 struct adapter *sc = device_get_softc(dev); 2336 2337 CH_ALERT(sc, "reset_post.\n"); 2338 return (0); 2339 } 2340 2341 static void 2342 reset_adapter(void *arg, int pending) 2343 { 2344 struct adapter *sc = arg; 2345 int rc; 2346 2347 CH_ALERT(sc, "reset requested.\n"); 2348 2349 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1"); 2350 if (rc != 0) 2351 return; 2352 2353 if (hw_off_limits(sc)) { 2354 CH_ERR(sc, "adapter is suspended, use resume (not reset).\n"); 2355 rc = ENXIO; 2356 goto done; 2357 } 2358 2359 if (!ok_to_reset(sc)) { 2360 /* XXX: should list what resource is preventing reset. */ 2361 CH_ERR(sc, "not safe to reset.\n"); 2362 rc = EBUSY; 2363 goto done; 2364 } 2365 2366 done: 2367 end_synchronized_op(sc, 0); 2368 if (rc != 0) 2369 return; /* Error logged already. */ 2370 2371 mtx_lock(&Giant); 2372 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2373 mtx_unlock(&Giant); 2374 if (rc != 0) 2375 CH_ERR(sc, "bus_reset_child failed: %d.\n", rc); 2376 else 2377 CH_ALERT(sc, "bus_reset_child succeeded.\n"); 2378 } 2379 2380 static int 2381 cxgbe_probe(device_t dev) 2382 { 2383 char buf[128]; 2384 struct port_info *pi = device_get_softc(dev); 2385 2386 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 2387 device_set_desc_copy(dev, buf); 2388 2389 return (BUS_PROBE_DEFAULT); 2390 } 2391 2392 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2393 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2394 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2395 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2396 #define T4_CAP_ENABLE (T4_CAP) 2397 2398 static int 2399 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2400 { 2401 struct ifnet *ifp; 2402 struct sbuf *sb; 2403 struct sysctl_ctx_list *ctx; 2404 struct sysctl_oid_list *children; 2405 struct pfil_head_args pa; 2406 struct adapter *sc = vi->adapter; 2407 2408 ctx = device_get_sysctl_ctx(vi->dev); 2409 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2410 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2411 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2412 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2413 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2414 #ifdef DEV_NETMAP 2415 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2416 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2417 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2418 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2419 #endif 2420 #ifdef TCP_OFFLOAD 2421 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2422 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2423 #endif 2424 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2425 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2426 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2427 #endif 2428 2429 vi->xact_addr_filt = -1; 2430 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2431 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2432 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2433 vi->flags |= TX_USES_VM_WR; 2434 2435 /* Allocate an ifnet and set it up */ 2436 ifp = if_alloc_dev(IFT_ETHER, dev); 2437 if (ifp == NULL) { 2438 device_printf(dev, "Cannot allocate ifnet\n"); 2439 return (ENOMEM); 2440 } 2441 vi->ifp = ifp; 2442 ifp->if_softc = vi; 2443 2444 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2445 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2446 2447 ifp->if_init = cxgbe_init; 2448 ifp->if_ioctl = cxgbe_ioctl; 2449 ifp->if_transmit = cxgbe_transmit; 2450 ifp->if_qflush = cxgbe_qflush; 2451 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2452 ifp->if_get_counter = vi_get_counter; 2453 else 2454 ifp->if_get_counter = cxgbe_get_counter; 2455 #if defined(KERN_TLS) || defined(RATELIMIT) 2456 ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc; 2457 ifp->if_snd_tag_modify = cxgbe_snd_tag_modify; 2458 ifp->if_snd_tag_query = cxgbe_snd_tag_query; 2459 ifp->if_snd_tag_free = cxgbe_snd_tag_free; 2460 #endif 2461 #ifdef RATELIMIT 2462 ifp->if_ratelimit_query = cxgbe_ratelimit_query; 2463 #endif 2464 2465 ifp->if_capabilities = T4_CAP; 2466 ifp->if_capenable = T4_CAP_ENABLE; 2467 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2468 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 2469 if (chip_id(sc) >= CHELSIO_T6) { 2470 ifp->if_capabilities |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2471 ifp->if_capenable |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2472 ifp->if_hwassist |= CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2473 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2474 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN; 2475 } 2476 2477 #ifdef TCP_OFFLOAD 2478 if (vi->nofldrxq != 0) 2479 ifp->if_capabilities |= IFCAP_TOE; 2480 #endif 2481 #ifdef RATELIMIT 2482 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2483 ifp->if_capabilities |= IFCAP_TXRTLMT; 2484 ifp->if_capenable |= IFCAP_TXRTLMT; 2485 } 2486 #endif 2487 2488 ifp->if_hw_tsomax = IP_MAXPACKET; 2489 if (vi->flags & TX_USES_VM_WR) 2490 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 2491 else 2492 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 2493 #ifdef RATELIMIT 2494 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2495 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO; 2496 #endif 2497 ifp->if_hw_tsomaxsegsize = 65536; 2498 #ifdef KERN_TLS 2499 if (is_ktls(sc)) { 2500 ifp->if_capabilities |= IFCAP_TXTLS; 2501 if (sc->flags & KERN_TLS_ON) 2502 ifp->if_capenable |= IFCAP_TXTLS; 2503 } 2504 #endif 2505 2506 ether_ifattach(ifp, vi->hw_addr); 2507 #ifdef DEV_NETMAP 2508 if (vi->nnmrxq != 0) 2509 cxgbe_nm_attach(vi); 2510 #endif 2511 sb = sbuf_new_auto(); 2512 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2513 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2514 switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2515 case IFCAP_TOE: 2516 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2517 break; 2518 case IFCAP_TOE | IFCAP_TXRTLMT: 2519 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2520 break; 2521 case IFCAP_TXRTLMT: 2522 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2523 break; 2524 } 2525 #endif 2526 #ifdef TCP_OFFLOAD 2527 if (ifp->if_capabilities & IFCAP_TOE) 2528 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2529 #endif 2530 #ifdef DEV_NETMAP 2531 if (ifp->if_capabilities & IFCAP_NETMAP) 2532 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2533 vi->nnmtxq, vi->nnmrxq); 2534 #endif 2535 sbuf_finish(sb); 2536 device_printf(dev, "%s\n", sbuf_data(sb)); 2537 sbuf_delete(sb); 2538 2539 vi_sysctls(vi); 2540 2541 pa.pa_version = PFIL_VERSION; 2542 pa.pa_flags = PFIL_IN; 2543 pa.pa_type = PFIL_TYPE_ETHERNET; 2544 pa.pa_headname = ifp->if_xname; 2545 vi->pfil = pfil_head_register(&pa); 2546 2547 return (0); 2548 } 2549 2550 static int 2551 cxgbe_attach(device_t dev) 2552 { 2553 struct port_info *pi = device_get_softc(dev); 2554 struct adapter *sc = pi->adapter; 2555 struct vi_info *vi; 2556 int i, rc; 2557 2558 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 2559 if (rc) 2560 return (rc); 2561 2562 for_each_vi(pi, i, vi) { 2563 if (i == 0) 2564 continue; 2565 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 2566 if (vi->dev == NULL) { 2567 device_printf(dev, "failed to add VI %d\n", i); 2568 continue; 2569 } 2570 device_set_softc(vi->dev, vi); 2571 } 2572 2573 cxgbe_sysctls(pi); 2574 2575 bus_generic_attach(dev); 2576 2577 return (0); 2578 } 2579 2580 static void 2581 cxgbe_vi_detach(struct vi_info *vi) 2582 { 2583 struct ifnet *ifp = vi->ifp; 2584 2585 if (vi->pfil != NULL) { 2586 pfil_head_unregister(vi->pfil); 2587 vi->pfil = NULL; 2588 } 2589 2590 ether_ifdetach(ifp); 2591 2592 /* Let detach proceed even if these fail. */ 2593 #ifdef DEV_NETMAP 2594 if (ifp->if_capabilities & IFCAP_NETMAP) 2595 cxgbe_nm_detach(vi); 2596 #endif 2597 cxgbe_uninit_synchronized(vi); 2598 callout_drain(&vi->tick); 2599 vi_full_uninit(vi); 2600 2601 if_free(vi->ifp); 2602 vi->ifp = NULL; 2603 } 2604 2605 static int 2606 cxgbe_detach(device_t dev) 2607 { 2608 struct port_info *pi = device_get_softc(dev); 2609 struct adapter *sc = pi->adapter; 2610 int rc; 2611 2612 /* Detach the extra VIs first. */ 2613 rc = bus_generic_detach(dev); 2614 if (rc) 2615 return (rc); 2616 device_delete_children(dev); 2617 2618 doom_vi(sc, &pi->vi[0]); 2619 2620 if (pi->flags & HAS_TRACEQ) { 2621 sc->traceq = -1; /* cloner should not create ifnet */ 2622 t4_tracer_port_detach(sc); 2623 } 2624 2625 cxgbe_vi_detach(&pi->vi[0]); 2626 ifmedia_removeall(&pi->media); 2627 2628 end_synchronized_op(sc, 0); 2629 2630 return (0); 2631 } 2632 2633 static void 2634 cxgbe_init(void *arg) 2635 { 2636 struct vi_info *vi = arg; 2637 struct adapter *sc = vi->adapter; 2638 2639 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2640 return; 2641 cxgbe_init_synchronized(vi); 2642 end_synchronized_op(sc, 0); 2643 } 2644 2645 static int 2646 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 2647 { 2648 int rc = 0, mtu, flags; 2649 struct vi_info *vi = ifp->if_softc; 2650 struct port_info *pi = vi->pi; 2651 struct adapter *sc = pi->adapter; 2652 struct ifreq *ifr = (struct ifreq *)data; 2653 uint32_t mask; 2654 2655 switch (cmd) { 2656 case SIOCSIFMTU: 2657 mtu = ifr->ifr_mtu; 2658 if (mtu < ETHERMIN || mtu > MAX_MTU) 2659 return (EINVAL); 2660 2661 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2662 if (rc) 2663 return (rc); 2664 ifp->if_mtu = mtu; 2665 if (vi->flags & VI_INIT_DONE) { 2666 t4_update_fl_bufsize(ifp); 2667 if (!hw_off_limits(sc) && 2668 ifp->if_drv_flags & IFF_DRV_RUNNING) 2669 rc = update_mac_settings(ifp, XGMAC_MTU); 2670 } 2671 end_synchronized_op(sc, 0); 2672 break; 2673 2674 case SIOCSIFFLAGS: 2675 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2676 if (rc) 2677 return (rc); 2678 2679 if (hw_off_limits(sc)) { 2680 rc = ENXIO; 2681 goto fail; 2682 } 2683 2684 if (ifp->if_flags & IFF_UP) { 2685 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2686 flags = vi->if_flags; 2687 if ((ifp->if_flags ^ flags) & 2688 (IFF_PROMISC | IFF_ALLMULTI)) { 2689 rc = update_mac_settings(ifp, 2690 XGMAC_PROMISC | XGMAC_ALLMULTI); 2691 } 2692 } else { 2693 rc = cxgbe_init_synchronized(vi); 2694 } 2695 vi->if_flags = ifp->if_flags; 2696 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2697 rc = cxgbe_uninit_synchronized(vi); 2698 } 2699 end_synchronized_op(sc, 0); 2700 break; 2701 2702 case SIOCADDMULTI: 2703 case SIOCDELMULTI: 2704 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2705 if (rc) 2706 return (rc); 2707 if (!hw_off_limits(sc) && ifp->if_drv_flags & IFF_DRV_RUNNING) 2708 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2709 end_synchronized_op(sc, 0); 2710 break; 2711 2712 case SIOCSIFCAP: 2713 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2714 if (rc) 2715 return (rc); 2716 2717 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2718 if (mask & IFCAP_TXCSUM) { 2719 ifp->if_capenable ^= IFCAP_TXCSUM; 2720 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 2721 2722 if (IFCAP_TSO4 & ifp->if_capenable && 2723 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2724 mask &= ~IFCAP_TSO4; 2725 ifp->if_capenable &= ~IFCAP_TSO4; 2726 if_printf(ifp, 2727 "tso4 disabled due to -txcsum.\n"); 2728 } 2729 } 2730 if (mask & IFCAP_TXCSUM_IPV6) { 2731 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 2732 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2733 2734 if (IFCAP_TSO6 & ifp->if_capenable && 2735 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2736 mask &= ~IFCAP_TSO6; 2737 ifp->if_capenable &= ~IFCAP_TSO6; 2738 if_printf(ifp, 2739 "tso6 disabled due to -txcsum6.\n"); 2740 } 2741 } 2742 if (mask & IFCAP_RXCSUM) 2743 ifp->if_capenable ^= IFCAP_RXCSUM; 2744 if (mask & IFCAP_RXCSUM_IPV6) 2745 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 2746 2747 /* 2748 * Note that we leave CSUM_TSO alone (it is always set). The 2749 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2750 * sending a TSO request our way, so it's sufficient to toggle 2751 * IFCAP_TSOx only. 2752 */ 2753 if (mask & IFCAP_TSO4) { 2754 if (!(IFCAP_TSO4 & ifp->if_capenable) && 2755 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2756 if_printf(ifp, "enable txcsum first.\n"); 2757 rc = EAGAIN; 2758 goto fail; 2759 } 2760 ifp->if_capenable ^= IFCAP_TSO4; 2761 } 2762 if (mask & IFCAP_TSO6) { 2763 if (!(IFCAP_TSO6 & ifp->if_capenable) && 2764 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2765 if_printf(ifp, "enable txcsum6 first.\n"); 2766 rc = EAGAIN; 2767 goto fail; 2768 } 2769 ifp->if_capenable ^= IFCAP_TSO6; 2770 } 2771 if (mask & IFCAP_LRO) { 2772 #if defined(INET) || defined(INET6) 2773 int i; 2774 struct sge_rxq *rxq; 2775 2776 ifp->if_capenable ^= IFCAP_LRO; 2777 for_each_rxq(vi, i, rxq) { 2778 if (ifp->if_capenable & IFCAP_LRO) 2779 rxq->iq.flags |= IQ_LRO_ENABLED; 2780 else 2781 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2782 } 2783 #endif 2784 } 2785 #ifdef TCP_OFFLOAD 2786 if (mask & IFCAP_TOE) { 2787 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 2788 2789 rc = toe_capability(vi, enable); 2790 if (rc != 0) 2791 goto fail; 2792 2793 ifp->if_capenable ^= mask; 2794 } 2795 #endif 2796 if (mask & IFCAP_VLAN_HWTAGGING) { 2797 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2798 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2799 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2800 } 2801 if (mask & IFCAP_VLAN_MTU) { 2802 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2803 2804 /* Need to find out how to disable auto-mtu-inflation */ 2805 } 2806 if (mask & IFCAP_VLAN_HWTSO) 2807 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2808 if (mask & IFCAP_VLAN_HWCSUM) 2809 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2810 #ifdef RATELIMIT 2811 if (mask & IFCAP_TXRTLMT) 2812 ifp->if_capenable ^= IFCAP_TXRTLMT; 2813 #endif 2814 if (mask & IFCAP_HWRXTSTMP) { 2815 int i; 2816 struct sge_rxq *rxq; 2817 2818 ifp->if_capenable ^= IFCAP_HWRXTSTMP; 2819 for_each_rxq(vi, i, rxq) { 2820 if (ifp->if_capenable & IFCAP_HWRXTSTMP) 2821 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2822 else 2823 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2824 } 2825 } 2826 if (mask & IFCAP_MEXTPG) 2827 ifp->if_capenable ^= IFCAP_MEXTPG; 2828 2829 #ifdef KERN_TLS 2830 if (mask & IFCAP_TXTLS) { 2831 int enable = (ifp->if_capenable ^ mask) & IFCAP_TXTLS; 2832 2833 rc = ktls_capability(sc, enable); 2834 if (rc != 0) 2835 goto fail; 2836 2837 ifp->if_capenable ^= (mask & IFCAP_TXTLS); 2838 } 2839 #endif 2840 if (mask & IFCAP_VXLAN_HWCSUM) { 2841 ifp->if_capenable ^= IFCAP_VXLAN_HWCSUM; 2842 ifp->if_hwassist ^= CSUM_INNER_IP6_UDP | 2843 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 2844 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP; 2845 } 2846 if (mask & IFCAP_VXLAN_HWTSO) { 2847 ifp->if_capenable ^= IFCAP_VXLAN_HWTSO; 2848 ifp->if_hwassist ^= CSUM_INNER_IP6_TSO | 2849 CSUM_INNER_IP_TSO; 2850 } 2851 2852 #ifdef VLAN_CAPABILITIES 2853 VLAN_CAPABILITIES(ifp); 2854 #endif 2855 fail: 2856 end_synchronized_op(sc, 0); 2857 break; 2858 2859 case SIOCSIFMEDIA: 2860 case SIOCGIFMEDIA: 2861 case SIOCGIFXMEDIA: 2862 ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 2863 break; 2864 2865 case SIOCGI2C: { 2866 struct ifi2creq i2c; 2867 2868 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 2869 if (rc != 0) 2870 break; 2871 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 2872 rc = EPERM; 2873 break; 2874 } 2875 if (i2c.len > sizeof(i2c.data)) { 2876 rc = EINVAL; 2877 break; 2878 } 2879 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 2880 if (rc) 2881 return (rc); 2882 if (hw_off_limits(sc)) 2883 rc = ENXIO; 2884 else 2885 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 2886 i2c.offset, i2c.len, &i2c.data[0]); 2887 end_synchronized_op(sc, 0); 2888 if (rc == 0) 2889 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 2890 break; 2891 } 2892 2893 default: 2894 rc = ether_ioctl(ifp, cmd, data); 2895 } 2896 2897 return (rc); 2898 } 2899 2900 static int 2901 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 2902 { 2903 struct vi_info *vi = ifp->if_softc; 2904 struct port_info *pi = vi->pi; 2905 struct adapter *sc; 2906 struct sge_txq *txq; 2907 void *items[1]; 2908 int rc; 2909 2910 M_ASSERTPKTHDR(m); 2911 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 2912 #if defined(KERN_TLS) || defined(RATELIMIT) 2913 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 2914 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 2915 #endif 2916 2917 if (__predict_false(pi->link_cfg.link_ok == false)) { 2918 m_freem(m); 2919 return (ENETDOWN); 2920 } 2921 2922 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 2923 if (__predict_false(rc != 0)) { 2924 MPASS(m == NULL); /* was freed already */ 2925 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 2926 return (rc); 2927 } 2928 #ifdef RATELIMIT 2929 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 2930 if (m->m_pkthdr.snd_tag->type == IF_SND_TAG_TYPE_RATE_LIMIT) 2931 return (ethofld_transmit(ifp, m)); 2932 } 2933 #endif 2934 2935 /* Select a txq. */ 2936 sc = vi->adapter; 2937 txq = &sc->sge.txq[vi->first_txq]; 2938 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 2939 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 2940 vi->rsrv_noflowq); 2941 2942 items[0] = m; 2943 rc = mp_ring_enqueue(txq->r, items, 1, 256); 2944 if (__predict_false(rc != 0)) 2945 m_freem(m); 2946 2947 return (rc); 2948 } 2949 2950 static void 2951 cxgbe_qflush(struct ifnet *ifp) 2952 { 2953 struct vi_info *vi = ifp->if_softc; 2954 struct sge_txq *txq; 2955 int i; 2956 2957 /* queues do not exist if !VI_INIT_DONE. */ 2958 if (vi->flags & VI_INIT_DONE) { 2959 for_each_txq(vi, i, txq) { 2960 TXQ_LOCK(txq); 2961 txq->eq.flags |= EQ_QFLUSH; 2962 TXQ_UNLOCK(txq); 2963 while (!mp_ring_is_idle(txq->r)) { 2964 mp_ring_check_drainage(txq->r, 4096); 2965 pause("qflush", 1); 2966 } 2967 TXQ_LOCK(txq); 2968 txq->eq.flags &= ~EQ_QFLUSH; 2969 TXQ_UNLOCK(txq); 2970 } 2971 } 2972 if_qflush(ifp); 2973 } 2974 2975 static uint64_t 2976 vi_get_counter(struct ifnet *ifp, ift_counter c) 2977 { 2978 struct vi_info *vi = ifp->if_softc; 2979 struct fw_vi_stats_vf *s = &vi->stats; 2980 2981 mtx_lock(&vi->tick_mtx); 2982 vi_refresh_stats(vi); 2983 mtx_unlock(&vi->tick_mtx); 2984 2985 switch (c) { 2986 case IFCOUNTER_IPACKETS: 2987 return (s->rx_bcast_frames + s->rx_mcast_frames + 2988 s->rx_ucast_frames); 2989 case IFCOUNTER_IERRORS: 2990 return (s->rx_err_frames); 2991 case IFCOUNTER_OPACKETS: 2992 return (s->tx_bcast_frames + s->tx_mcast_frames + 2993 s->tx_ucast_frames + s->tx_offload_frames); 2994 case IFCOUNTER_OERRORS: 2995 return (s->tx_drop_frames); 2996 case IFCOUNTER_IBYTES: 2997 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 2998 s->rx_ucast_bytes); 2999 case IFCOUNTER_OBYTES: 3000 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3001 s->tx_ucast_bytes + s->tx_offload_bytes); 3002 case IFCOUNTER_IMCASTS: 3003 return (s->rx_mcast_frames); 3004 case IFCOUNTER_OMCASTS: 3005 return (s->tx_mcast_frames); 3006 case IFCOUNTER_OQDROPS: { 3007 uint64_t drops; 3008 3009 drops = 0; 3010 if (vi->flags & VI_INIT_DONE) { 3011 int i; 3012 struct sge_txq *txq; 3013 3014 for_each_txq(vi, i, txq) 3015 drops += counter_u64_fetch(txq->r->dropped); 3016 } 3017 3018 return (drops); 3019 3020 } 3021 3022 default: 3023 return (if_get_counter_default(ifp, c)); 3024 } 3025 } 3026 3027 static uint64_t 3028 cxgbe_get_counter(struct ifnet *ifp, ift_counter c) 3029 { 3030 struct vi_info *vi = ifp->if_softc; 3031 struct port_info *pi = vi->pi; 3032 struct port_stats *s = &pi->stats; 3033 3034 mtx_lock(&vi->tick_mtx); 3035 cxgbe_refresh_stats(vi); 3036 mtx_unlock(&vi->tick_mtx); 3037 3038 switch (c) { 3039 case IFCOUNTER_IPACKETS: 3040 return (s->rx_frames); 3041 3042 case IFCOUNTER_IERRORS: 3043 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3044 s->rx_fcs_err + s->rx_len_err); 3045 3046 case IFCOUNTER_OPACKETS: 3047 return (s->tx_frames); 3048 3049 case IFCOUNTER_OERRORS: 3050 return (s->tx_error_frames); 3051 3052 case IFCOUNTER_IBYTES: 3053 return (s->rx_octets); 3054 3055 case IFCOUNTER_OBYTES: 3056 return (s->tx_octets); 3057 3058 case IFCOUNTER_IMCASTS: 3059 return (s->rx_mcast_frames); 3060 3061 case IFCOUNTER_OMCASTS: 3062 return (s->tx_mcast_frames); 3063 3064 case IFCOUNTER_IQDROPS: 3065 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3066 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3067 s->rx_trunc3 + pi->tnl_cong_drops); 3068 3069 case IFCOUNTER_OQDROPS: { 3070 uint64_t drops; 3071 3072 drops = s->tx_drop; 3073 if (vi->flags & VI_INIT_DONE) { 3074 int i; 3075 struct sge_txq *txq; 3076 3077 for_each_txq(vi, i, txq) 3078 drops += counter_u64_fetch(txq->r->dropped); 3079 } 3080 3081 return (drops); 3082 3083 } 3084 3085 default: 3086 return (if_get_counter_default(ifp, c)); 3087 } 3088 } 3089 3090 #if defined(KERN_TLS) || defined(RATELIMIT) 3091 static int 3092 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, 3093 struct m_snd_tag **pt) 3094 { 3095 int error; 3096 3097 switch (params->hdr.type) { 3098 #ifdef RATELIMIT 3099 case IF_SND_TAG_TYPE_RATE_LIMIT: 3100 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3101 break; 3102 #endif 3103 #ifdef KERN_TLS 3104 case IF_SND_TAG_TYPE_TLS: 3105 error = cxgbe_tls_tag_alloc(ifp, params, pt); 3106 break; 3107 #endif 3108 default: 3109 error = EOPNOTSUPP; 3110 } 3111 return (error); 3112 } 3113 3114 static int 3115 cxgbe_snd_tag_modify(struct m_snd_tag *mst, 3116 union if_snd_tag_modify_params *params) 3117 { 3118 3119 switch (mst->type) { 3120 #ifdef RATELIMIT 3121 case IF_SND_TAG_TYPE_RATE_LIMIT: 3122 return (cxgbe_rate_tag_modify(mst, params)); 3123 #endif 3124 default: 3125 return (EOPNOTSUPP); 3126 } 3127 } 3128 3129 static int 3130 cxgbe_snd_tag_query(struct m_snd_tag *mst, 3131 union if_snd_tag_query_params *params) 3132 { 3133 3134 switch (mst->type) { 3135 #ifdef RATELIMIT 3136 case IF_SND_TAG_TYPE_RATE_LIMIT: 3137 return (cxgbe_rate_tag_query(mst, params)); 3138 #endif 3139 default: 3140 return (EOPNOTSUPP); 3141 } 3142 } 3143 3144 static void 3145 cxgbe_snd_tag_free(struct m_snd_tag *mst) 3146 { 3147 3148 switch (mst->type) { 3149 #ifdef RATELIMIT 3150 case IF_SND_TAG_TYPE_RATE_LIMIT: 3151 cxgbe_rate_tag_free(mst); 3152 return; 3153 #endif 3154 #ifdef KERN_TLS 3155 case IF_SND_TAG_TYPE_TLS: 3156 cxgbe_tls_tag_free(mst); 3157 return; 3158 #endif 3159 default: 3160 panic("shouldn't get here"); 3161 } 3162 } 3163 #endif 3164 3165 /* 3166 * The kernel picks a media from the list we had provided but we still validate 3167 * the requeste. 3168 */ 3169 int 3170 cxgbe_media_change(struct ifnet *ifp) 3171 { 3172 struct vi_info *vi = ifp->if_softc; 3173 struct port_info *pi = vi->pi; 3174 struct ifmedia *ifm = &pi->media; 3175 struct link_config *lc = &pi->link_cfg; 3176 struct adapter *sc = pi->adapter; 3177 int rc; 3178 3179 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3180 if (rc != 0) 3181 return (rc); 3182 PORT_LOCK(pi); 3183 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3184 /* ifconfig .. media autoselect */ 3185 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3186 rc = ENOTSUP; /* AN not supported by transceiver */ 3187 goto done; 3188 } 3189 lc->requested_aneg = AUTONEG_ENABLE; 3190 lc->requested_speed = 0; 3191 lc->requested_fc |= PAUSE_AUTONEG; 3192 } else { 3193 lc->requested_aneg = AUTONEG_DISABLE; 3194 lc->requested_speed = 3195 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3196 lc->requested_fc = 0; 3197 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3198 lc->requested_fc |= PAUSE_RX; 3199 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3200 lc->requested_fc |= PAUSE_TX; 3201 } 3202 if (pi->up_vis > 0) { 3203 fixup_link_config(pi); 3204 rc = apply_link_config(pi); 3205 } 3206 done: 3207 PORT_UNLOCK(pi); 3208 end_synchronized_op(sc, 0); 3209 return (rc); 3210 } 3211 3212 /* 3213 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3214 * given speed. 3215 */ 3216 static int 3217 port_mword(struct port_info *pi, uint32_t speed) 3218 { 3219 3220 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3221 MPASS(powerof2(speed)); 3222 3223 switch(pi->port_type) { 3224 case FW_PORT_TYPE_BT_SGMII: 3225 case FW_PORT_TYPE_BT_XFI: 3226 case FW_PORT_TYPE_BT_XAUI: 3227 /* BaseT */ 3228 switch (speed) { 3229 case FW_PORT_CAP32_SPEED_100M: 3230 return (IFM_100_T); 3231 case FW_PORT_CAP32_SPEED_1G: 3232 return (IFM_1000_T); 3233 case FW_PORT_CAP32_SPEED_10G: 3234 return (IFM_10G_T); 3235 } 3236 break; 3237 case FW_PORT_TYPE_KX4: 3238 if (speed == FW_PORT_CAP32_SPEED_10G) 3239 return (IFM_10G_KX4); 3240 break; 3241 case FW_PORT_TYPE_CX4: 3242 if (speed == FW_PORT_CAP32_SPEED_10G) 3243 return (IFM_10G_CX4); 3244 break; 3245 case FW_PORT_TYPE_KX: 3246 if (speed == FW_PORT_CAP32_SPEED_1G) 3247 return (IFM_1000_KX); 3248 break; 3249 case FW_PORT_TYPE_KR: 3250 case FW_PORT_TYPE_BP_AP: 3251 case FW_PORT_TYPE_BP4_AP: 3252 case FW_PORT_TYPE_BP40_BA: 3253 case FW_PORT_TYPE_KR4_100G: 3254 case FW_PORT_TYPE_KR_SFP28: 3255 case FW_PORT_TYPE_KR_XLAUI: 3256 switch (speed) { 3257 case FW_PORT_CAP32_SPEED_1G: 3258 return (IFM_1000_KX); 3259 case FW_PORT_CAP32_SPEED_10G: 3260 return (IFM_10G_KR); 3261 case FW_PORT_CAP32_SPEED_25G: 3262 return (IFM_25G_KR); 3263 case FW_PORT_CAP32_SPEED_40G: 3264 return (IFM_40G_KR4); 3265 case FW_PORT_CAP32_SPEED_50G: 3266 return (IFM_50G_KR2); 3267 case FW_PORT_CAP32_SPEED_100G: 3268 return (IFM_100G_KR4); 3269 } 3270 break; 3271 case FW_PORT_TYPE_FIBER_XFI: 3272 case FW_PORT_TYPE_FIBER_XAUI: 3273 case FW_PORT_TYPE_SFP: 3274 case FW_PORT_TYPE_QSFP_10G: 3275 case FW_PORT_TYPE_QSA: 3276 case FW_PORT_TYPE_QSFP: 3277 case FW_PORT_TYPE_CR4_QSFP: 3278 case FW_PORT_TYPE_CR_QSFP: 3279 case FW_PORT_TYPE_CR2_QSFP: 3280 case FW_PORT_TYPE_SFP28: 3281 /* Pluggable transceiver */ 3282 switch (pi->mod_type) { 3283 case FW_PORT_MOD_TYPE_LR: 3284 switch (speed) { 3285 case FW_PORT_CAP32_SPEED_1G: 3286 return (IFM_1000_LX); 3287 case FW_PORT_CAP32_SPEED_10G: 3288 return (IFM_10G_LR); 3289 case FW_PORT_CAP32_SPEED_25G: 3290 return (IFM_25G_LR); 3291 case FW_PORT_CAP32_SPEED_40G: 3292 return (IFM_40G_LR4); 3293 case FW_PORT_CAP32_SPEED_50G: 3294 return (IFM_50G_LR2); 3295 case FW_PORT_CAP32_SPEED_100G: 3296 return (IFM_100G_LR4); 3297 } 3298 break; 3299 case FW_PORT_MOD_TYPE_SR: 3300 switch (speed) { 3301 case FW_PORT_CAP32_SPEED_1G: 3302 return (IFM_1000_SX); 3303 case FW_PORT_CAP32_SPEED_10G: 3304 return (IFM_10G_SR); 3305 case FW_PORT_CAP32_SPEED_25G: 3306 return (IFM_25G_SR); 3307 case FW_PORT_CAP32_SPEED_40G: 3308 return (IFM_40G_SR4); 3309 case FW_PORT_CAP32_SPEED_50G: 3310 return (IFM_50G_SR2); 3311 case FW_PORT_CAP32_SPEED_100G: 3312 return (IFM_100G_SR4); 3313 } 3314 break; 3315 case FW_PORT_MOD_TYPE_ER: 3316 if (speed == FW_PORT_CAP32_SPEED_10G) 3317 return (IFM_10G_ER); 3318 break; 3319 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3320 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3321 switch (speed) { 3322 case FW_PORT_CAP32_SPEED_1G: 3323 return (IFM_1000_CX); 3324 case FW_PORT_CAP32_SPEED_10G: 3325 return (IFM_10G_TWINAX); 3326 case FW_PORT_CAP32_SPEED_25G: 3327 return (IFM_25G_CR); 3328 case FW_PORT_CAP32_SPEED_40G: 3329 return (IFM_40G_CR4); 3330 case FW_PORT_CAP32_SPEED_50G: 3331 return (IFM_50G_CR2); 3332 case FW_PORT_CAP32_SPEED_100G: 3333 return (IFM_100G_CR4); 3334 } 3335 break; 3336 case FW_PORT_MOD_TYPE_LRM: 3337 if (speed == FW_PORT_CAP32_SPEED_10G) 3338 return (IFM_10G_LRM); 3339 break; 3340 case FW_PORT_MOD_TYPE_NA: 3341 MPASS(0); /* Not pluggable? */ 3342 /* fall throough */ 3343 case FW_PORT_MOD_TYPE_ERROR: 3344 case FW_PORT_MOD_TYPE_UNKNOWN: 3345 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3346 break; 3347 case FW_PORT_MOD_TYPE_NONE: 3348 return (IFM_NONE); 3349 } 3350 break; 3351 case FW_PORT_TYPE_NONE: 3352 return (IFM_NONE); 3353 } 3354 3355 return (IFM_UNKNOWN); 3356 } 3357 3358 void 3359 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 3360 { 3361 struct vi_info *vi = ifp->if_softc; 3362 struct port_info *pi = vi->pi; 3363 struct adapter *sc = pi->adapter; 3364 struct link_config *lc = &pi->link_cfg; 3365 3366 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0) 3367 return; 3368 PORT_LOCK(pi); 3369 3370 if (pi->up_vis == 0) { 3371 /* 3372 * If all the interfaces are administratively down the firmware 3373 * does not report transceiver changes. Refresh port info here 3374 * so that ifconfig displays accurate ifmedia at all times. 3375 * This is the only reason we have a synchronized op in this 3376 * function. Just PORT_LOCK would have been enough otherwise. 3377 */ 3378 t4_update_port_info(pi); 3379 build_medialist(pi); 3380 } 3381 3382 /* ifm_status */ 3383 ifmr->ifm_status = IFM_AVALID; 3384 if (lc->link_ok == false) 3385 goto done; 3386 ifmr->ifm_status |= IFM_ACTIVE; 3387 3388 /* ifm_active */ 3389 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3390 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3391 if (lc->fc & PAUSE_RX) 3392 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3393 if (lc->fc & PAUSE_TX) 3394 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3395 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3396 done: 3397 PORT_UNLOCK(pi); 3398 end_synchronized_op(sc, 0); 3399 } 3400 3401 static int 3402 vcxgbe_probe(device_t dev) 3403 { 3404 char buf[128]; 3405 struct vi_info *vi = device_get_softc(dev); 3406 3407 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 3408 vi - vi->pi->vi); 3409 device_set_desc_copy(dev, buf); 3410 3411 return (BUS_PROBE_DEFAULT); 3412 } 3413 3414 static int 3415 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3416 { 3417 int func, index, rc; 3418 uint32_t param, val; 3419 3420 ASSERT_SYNCHRONIZED_OP(sc); 3421 3422 index = vi - pi->vi; 3423 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3424 KASSERT(index < nitems(vi_mac_funcs), 3425 ("%s: VI %s doesn't have a MAC func", __func__, 3426 device_get_nameunit(vi->dev))); 3427 func = vi_mac_funcs[index]; 3428 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3429 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3430 if (rc < 0) { 3431 CH_ERR(vi, "failed to allocate virtual interface %d" 3432 "for port %d: %d\n", index, pi->port_id, -rc); 3433 return (-rc); 3434 } 3435 vi->viid = rc; 3436 3437 if (vi->rss_size == 1) { 3438 /* 3439 * This VI didn't get a slice of the RSS table. Reduce the 3440 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3441 * configuration file (nvi, rssnvi for this PF) if this is a 3442 * problem. 3443 */ 3444 device_printf(vi->dev, "RSS table not available.\n"); 3445 vi->rss_base = 0xffff; 3446 3447 return (0); 3448 } 3449 3450 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3451 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3452 V_FW_PARAMS_PARAM_YZ(vi->viid); 3453 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3454 if (rc) 3455 vi->rss_base = 0xffff; 3456 else { 3457 MPASS((val >> 16) == vi->rss_size); 3458 vi->rss_base = val & 0xffff; 3459 } 3460 3461 return (0); 3462 } 3463 3464 static int 3465 vcxgbe_attach(device_t dev) 3466 { 3467 struct vi_info *vi; 3468 struct port_info *pi; 3469 struct adapter *sc; 3470 int rc; 3471 3472 vi = device_get_softc(dev); 3473 pi = vi->pi; 3474 sc = pi->adapter; 3475 3476 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3477 if (rc) 3478 return (rc); 3479 rc = alloc_extra_vi(sc, pi, vi); 3480 end_synchronized_op(sc, 0); 3481 if (rc) 3482 return (rc); 3483 3484 rc = cxgbe_vi_attach(dev, vi); 3485 if (rc) { 3486 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3487 return (rc); 3488 } 3489 return (0); 3490 } 3491 3492 static int 3493 vcxgbe_detach(device_t dev) 3494 { 3495 struct vi_info *vi; 3496 struct adapter *sc; 3497 3498 vi = device_get_softc(dev); 3499 sc = vi->adapter; 3500 3501 doom_vi(sc, vi); 3502 3503 cxgbe_vi_detach(vi); 3504 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3505 3506 end_synchronized_op(sc, 0); 3507 3508 return (0); 3509 } 3510 3511 static struct callout fatal_callout; 3512 static struct taskqueue *reset_tq; 3513 3514 static void 3515 delayed_panic(void *arg) 3516 { 3517 struct adapter *sc = arg; 3518 3519 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3520 } 3521 3522 void 3523 t4_fatal_err(struct adapter *sc, bool fw_error) 3524 { 3525 3526 t4_shutdown_adapter(sc); 3527 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped.\n", 3528 device_get_nameunit(sc->dev)); 3529 if (fw_error) { 3530 if (sc->flags & CHK_MBOX_ACCESS) 3531 ASSERT_SYNCHRONIZED_OP(sc); 3532 sc->flags |= ADAP_ERR; 3533 } else { 3534 ADAPTER_LOCK(sc); 3535 sc->flags |= ADAP_ERR; 3536 ADAPTER_UNLOCK(sc); 3537 } 3538 #ifdef TCP_OFFLOAD 3539 taskqueue_enqueue(taskqueue_thread, &sc->async_event_task); 3540 #endif 3541 3542 if (t4_panic_on_fatal_err) { 3543 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3544 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3545 } else if (t4_reset_on_fatal_err) { 3546 CH_ALERT(sc, "resetting on fatal error.\n"); 3547 taskqueue_enqueue(reset_tq, &sc->reset_task); 3548 } 3549 } 3550 3551 void 3552 t4_add_adapter(struct adapter *sc) 3553 { 3554 sx_xlock(&t4_list_lock); 3555 SLIST_INSERT_HEAD(&t4_list, sc, link); 3556 sx_xunlock(&t4_list_lock); 3557 } 3558 3559 int 3560 t4_map_bars_0_and_4(struct adapter *sc) 3561 { 3562 sc->regs_rid = PCIR_BAR(0); 3563 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3564 &sc->regs_rid, RF_ACTIVE); 3565 if (sc->regs_res == NULL) { 3566 device_printf(sc->dev, "cannot map registers.\n"); 3567 return (ENXIO); 3568 } 3569 sc->bt = rman_get_bustag(sc->regs_res); 3570 sc->bh = rman_get_bushandle(sc->regs_res); 3571 sc->mmio_len = rman_get_size(sc->regs_res); 3572 setbit(&sc->doorbells, DOORBELL_KDB); 3573 3574 sc->msix_rid = PCIR_BAR(4); 3575 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3576 &sc->msix_rid, RF_ACTIVE); 3577 if (sc->msix_res == NULL) { 3578 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3579 return (ENXIO); 3580 } 3581 3582 return (0); 3583 } 3584 3585 int 3586 t4_map_bar_2(struct adapter *sc) 3587 { 3588 3589 /* 3590 * T4: only iWARP driver uses the userspace doorbells. There is no need 3591 * to map it if RDMA is disabled. 3592 */ 3593 if (is_t4(sc) && sc->rdmacaps == 0) 3594 return (0); 3595 3596 sc->udbs_rid = PCIR_BAR(2); 3597 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3598 &sc->udbs_rid, RF_ACTIVE); 3599 if (sc->udbs_res == NULL) { 3600 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3601 return (ENXIO); 3602 } 3603 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3604 3605 if (chip_id(sc) >= CHELSIO_T5) { 3606 setbit(&sc->doorbells, DOORBELL_UDB); 3607 #if defined(__i386__) || defined(__amd64__) 3608 if (t5_write_combine) { 3609 int rc, mode; 3610 3611 /* 3612 * Enable write combining on BAR2. This is the 3613 * userspace doorbell BAR and is split into 128B 3614 * (UDBS_SEG_SIZE) doorbell regions, each associated 3615 * with an egress queue. The first 64B has the doorbell 3616 * and the second 64B can be used to submit a tx work 3617 * request with an implicit doorbell. 3618 */ 3619 3620 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3621 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3622 if (rc == 0) { 3623 clrbit(&sc->doorbells, DOORBELL_UDB); 3624 setbit(&sc->doorbells, DOORBELL_WCWR); 3625 setbit(&sc->doorbells, DOORBELL_UDBWC); 3626 } else { 3627 device_printf(sc->dev, 3628 "couldn't enable write combining: %d\n", 3629 rc); 3630 } 3631 3632 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3633 t4_write_reg(sc, A_SGE_STAT_CFG, 3634 V_STATSOURCE_T5(7) | mode); 3635 } 3636 #endif 3637 } 3638 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3639 3640 return (0); 3641 } 3642 3643 struct memwin_init { 3644 uint32_t base; 3645 uint32_t aperture; 3646 }; 3647 3648 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3649 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3650 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3651 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3652 }; 3653 3654 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3655 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3656 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3657 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3658 }; 3659 3660 static void 3661 setup_memwin(struct adapter *sc) 3662 { 3663 const struct memwin_init *mw_init; 3664 struct memwin *mw; 3665 int i; 3666 uint32_t bar0; 3667 3668 if (is_t4(sc)) { 3669 /* 3670 * Read low 32b of bar0 indirectly via the hardware backdoor 3671 * mechanism. Works from within PCI passthrough environments 3672 * too, where rman_get_start() can return a different value. We 3673 * need to program the T4 memory window decoders with the actual 3674 * addresses that will be coming across the PCIe link. 3675 */ 3676 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3677 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3678 3679 mw_init = &t4_memwin[0]; 3680 } else { 3681 /* T5+ use the relative offset inside the PCIe BAR */ 3682 bar0 = 0; 3683 3684 mw_init = &t5_memwin[0]; 3685 } 3686 3687 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3688 if (!rw_initialized(&mw->mw_lock)) { 3689 rw_init(&mw->mw_lock, "memory window access"); 3690 mw->mw_base = mw_init->base; 3691 mw->mw_aperture = mw_init->aperture; 3692 mw->mw_curpos = 0; 3693 } 3694 t4_write_reg(sc, 3695 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3696 (mw->mw_base + bar0) | V_BIR(0) | 3697 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3698 rw_wlock(&mw->mw_lock); 3699 position_memwin(sc, i, mw->mw_curpos); 3700 rw_wunlock(&mw->mw_lock); 3701 } 3702 3703 /* flush */ 3704 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3705 } 3706 3707 /* 3708 * Positions the memory window at the given address in the card's address space. 3709 * There are some alignment requirements and the actual position may be at an 3710 * address prior to the requested address. mw->mw_curpos always has the actual 3711 * position of the window. 3712 */ 3713 static void 3714 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3715 { 3716 struct memwin *mw; 3717 uint32_t pf; 3718 uint32_t reg; 3719 3720 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3721 mw = &sc->memwin[idx]; 3722 rw_assert(&mw->mw_lock, RA_WLOCKED); 3723 3724 if (is_t4(sc)) { 3725 pf = 0; 3726 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3727 } else { 3728 pf = V_PFNUM(sc->pf); 3729 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3730 } 3731 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3732 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3733 t4_read_reg(sc, reg); /* flush */ 3734 } 3735 3736 int 3737 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3738 int len, int rw) 3739 { 3740 struct memwin *mw; 3741 uint32_t mw_end, v; 3742 3743 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3744 3745 /* Memory can only be accessed in naturally aligned 4 byte units */ 3746 if (addr & 3 || len & 3 || len <= 0) 3747 return (EINVAL); 3748 3749 mw = &sc->memwin[idx]; 3750 while (len > 0) { 3751 rw_rlock(&mw->mw_lock); 3752 mw_end = mw->mw_curpos + mw->mw_aperture; 3753 if (addr >= mw_end || addr < mw->mw_curpos) { 3754 /* Will need to reposition the window */ 3755 if (!rw_try_upgrade(&mw->mw_lock)) { 3756 rw_runlock(&mw->mw_lock); 3757 rw_wlock(&mw->mw_lock); 3758 } 3759 rw_assert(&mw->mw_lock, RA_WLOCKED); 3760 position_memwin(sc, idx, addr); 3761 rw_downgrade(&mw->mw_lock); 3762 mw_end = mw->mw_curpos + mw->mw_aperture; 3763 } 3764 rw_assert(&mw->mw_lock, RA_RLOCKED); 3765 while (addr < mw_end && len > 0) { 3766 if (rw == 0) { 3767 v = t4_read_reg(sc, mw->mw_base + addr - 3768 mw->mw_curpos); 3769 *val++ = le32toh(v); 3770 } else { 3771 v = *val++; 3772 t4_write_reg(sc, mw->mw_base + addr - 3773 mw->mw_curpos, htole32(v)); 3774 } 3775 addr += 4; 3776 len -= 4; 3777 } 3778 rw_runlock(&mw->mw_lock); 3779 } 3780 3781 return (0); 3782 } 3783 3784 static void 3785 t4_init_atid_table(struct adapter *sc) 3786 { 3787 struct tid_info *t; 3788 int i; 3789 3790 t = &sc->tids; 3791 if (t->natids == 0) 3792 return; 3793 3794 MPASS(t->atid_tab == NULL); 3795 3796 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3797 M_ZERO | M_WAITOK); 3798 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3799 t->afree = t->atid_tab; 3800 t->atids_in_use = 0; 3801 for (i = 1; i < t->natids; i++) 3802 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3803 t->atid_tab[t->natids - 1].next = NULL; 3804 } 3805 3806 static void 3807 t4_free_atid_table(struct adapter *sc) 3808 { 3809 struct tid_info *t; 3810 3811 t = &sc->tids; 3812 3813 KASSERT(t->atids_in_use == 0, 3814 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3815 3816 if (mtx_initialized(&t->atid_lock)) 3817 mtx_destroy(&t->atid_lock); 3818 free(t->atid_tab, M_CXGBE); 3819 t->atid_tab = NULL; 3820 } 3821 3822 int 3823 alloc_atid(struct adapter *sc, void *ctx) 3824 { 3825 struct tid_info *t = &sc->tids; 3826 int atid = -1; 3827 3828 mtx_lock(&t->atid_lock); 3829 if (t->afree) { 3830 union aopen_entry *p = t->afree; 3831 3832 atid = p - t->atid_tab; 3833 MPASS(atid <= M_TID_TID); 3834 t->afree = p->next; 3835 p->data = ctx; 3836 t->atids_in_use++; 3837 } 3838 mtx_unlock(&t->atid_lock); 3839 return (atid); 3840 } 3841 3842 void * 3843 lookup_atid(struct adapter *sc, int atid) 3844 { 3845 struct tid_info *t = &sc->tids; 3846 3847 return (t->atid_tab[atid].data); 3848 } 3849 3850 void 3851 free_atid(struct adapter *sc, int atid) 3852 { 3853 struct tid_info *t = &sc->tids; 3854 union aopen_entry *p = &t->atid_tab[atid]; 3855 3856 mtx_lock(&t->atid_lock); 3857 p->next = t->afree; 3858 t->afree = p; 3859 t->atids_in_use--; 3860 mtx_unlock(&t->atid_lock); 3861 } 3862 3863 static void 3864 queue_tid_release(struct adapter *sc, int tid) 3865 { 3866 3867 CXGBE_UNIMPLEMENTED("deferred tid release"); 3868 } 3869 3870 void 3871 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 3872 { 3873 struct wrqe *wr; 3874 struct cpl_tid_release *req; 3875 3876 wr = alloc_wrqe(sizeof(*req), ctrlq); 3877 if (wr == NULL) { 3878 queue_tid_release(sc, tid); /* defer */ 3879 return; 3880 } 3881 req = wrtod(wr); 3882 3883 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 3884 3885 t4_wrq_tx(sc, wr); 3886 } 3887 3888 static int 3889 t4_range_cmp(const void *a, const void *b) 3890 { 3891 return ((const struct t4_range *)a)->start - 3892 ((const struct t4_range *)b)->start; 3893 } 3894 3895 /* 3896 * Verify that the memory range specified by the addr/len pair is valid within 3897 * the card's address space. 3898 */ 3899 static int 3900 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 3901 { 3902 struct t4_range mem_ranges[4], *r, *next; 3903 uint32_t em, addr_len; 3904 int i, n, remaining; 3905 3906 /* Memory can only be accessed in naturally aligned 4 byte units */ 3907 if (addr & 3 || len & 3 || len == 0) 3908 return (EINVAL); 3909 3910 /* Enabled memories */ 3911 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 3912 3913 r = &mem_ranges[0]; 3914 n = 0; 3915 bzero(r, sizeof(mem_ranges)); 3916 if (em & F_EDRAM0_ENABLE) { 3917 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 3918 r->size = G_EDRAM0_SIZE(addr_len) << 20; 3919 if (r->size > 0) { 3920 r->start = G_EDRAM0_BASE(addr_len) << 20; 3921 if (addr >= r->start && 3922 addr + len <= r->start + r->size) 3923 return (0); 3924 r++; 3925 n++; 3926 } 3927 } 3928 if (em & F_EDRAM1_ENABLE) { 3929 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 3930 r->size = G_EDRAM1_SIZE(addr_len) << 20; 3931 if (r->size > 0) { 3932 r->start = G_EDRAM1_BASE(addr_len) << 20; 3933 if (addr >= r->start && 3934 addr + len <= r->start + r->size) 3935 return (0); 3936 r++; 3937 n++; 3938 } 3939 } 3940 if (em & F_EXT_MEM_ENABLE) { 3941 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 3942 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 3943 if (r->size > 0) { 3944 r->start = G_EXT_MEM_BASE(addr_len) << 20; 3945 if (addr >= r->start && 3946 addr + len <= r->start + r->size) 3947 return (0); 3948 r++; 3949 n++; 3950 } 3951 } 3952 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 3953 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 3954 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 3955 if (r->size > 0) { 3956 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 3957 if (addr >= r->start && 3958 addr + len <= r->start + r->size) 3959 return (0); 3960 r++; 3961 n++; 3962 } 3963 } 3964 MPASS(n <= nitems(mem_ranges)); 3965 3966 if (n > 1) { 3967 /* Sort and merge the ranges. */ 3968 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 3969 3970 /* Start from index 0 and examine the next n - 1 entries. */ 3971 r = &mem_ranges[0]; 3972 for (remaining = n - 1; remaining > 0; remaining--, r++) { 3973 3974 MPASS(r->size > 0); /* r is a valid entry. */ 3975 next = r + 1; 3976 MPASS(next->size > 0); /* and so is the next one. */ 3977 3978 while (r->start + r->size >= next->start) { 3979 /* Merge the next one into the current entry. */ 3980 r->size = max(r->start + r->size, 3981 next->start + next->size) - r->start; 3982 n--; /* One fewer entry in total. */ 3983 if (--remaining == 0) 3984 goto done; /* short circuit */ 3985 next++; 3986 } 3987 if (next != r + 1) { 3988 /* 3989 * Some entries were merged into r and next 3990 * points to the first valid entry that couldn't 3991 * be merged. 3992 */ 3993 MPASS(next->size > 0); /* must be valid */ 3994 memcpy(r + 1, next, remaining * sizeof(*r)); 3995 #ifdef INVARIANTS 3996 /* 3997 * This so that the foo->size assertion in the 3998 * next iteration of the loop do the right 3999 * thing for entries that were pulled up and are 4000 * no longer valid. 4001 */ 4002 MPASS(n < nitems(mem_ranges)); 4003 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4004 sizeof(struct t4_range)); 4005 #endif 4006 } 4007 } 4008 done: 4009 /* Done merging the ranges. */ 4010 MPASS(n > 0); 4011 r = &mem_ranges[0]; 4012 for (i = 0; i < n; i++, r++) { 4013 if (addr >= r->start && 4014 addr + len <= r->start + r->size) 4015 return (0); 4016 } 4017 } 4018 4019 return (EFAULT); 4020 } 4021 4022 static int 4023 fwmtype_to_hwmtype(int mtype) 4024 { 4025 4026 switch (mtype) { 4027 case FW_MEMTYPE_EDC0: 4028 return (MEM_EDC0); 4029 case FW_MEMTYPE_EDC1: 4030 return (MEM_EDC1); 4031 case FW_MEMTYPE_EXTMEM: 4032 return (MEM_MC0); 4033 case FW_MEMTYPE_EXTMEM1: 4034 return (MEM_MC1); 4035 default: 4036 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4037 } 4038 } 4039 4040 /* 4041 * Verify that the memory range specified by the memtype/offset/len pair is 4042 * valid and lies entirely within the memtype specified. The global address of 4043 * the start of the range is returned in addr. 4044 */ 4045 static int 4046 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4047 uint32_t *addr) 4048 { 4049 uint32_t em, addr_len, maddr; 4050 4051 /* Memory can only be accessed in naturally aligned 4 byte units */ 4052 if (off & 3 || len & 3 || len == 0) 4053 return (EINVAL); 4054 4055 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4056 switch (fwmtype_to_hwmtype(mtype)) { 4057 case MEM_EDC0: 4058 if (!(em & F_EDRAM0_ENABLE)) 4059 return (EINVAL); 4060 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4061 maddr = G_EDRAM0_BASE(addr_len) << 20; 4062 break; 4063 case MEM_EDC1: 4064 if (!(em & F_EDRAM1_ENABLE)) 4065 return (EINVAL); 4066 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4067 maddr = G_EDRAM1_BASE(addr_len) << 20; 4068 break; 4069 case MEM_MC: 4070 if (!(em & F_EXT_MEM_ENABLE)) 4071 return (EINVAL); 4072 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4073 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4074 break; 4075 case MEM_MC1: 4076 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4077 return (EINVAL); 4078 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4079 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4080 break; 4081 default: 4082 return (EINVAL); 4083 } 4084 4085 *addr = maddr + off; /* global address */ 4086 return (validate_mem_range(sc, *addr, len)); 4087 } 4088 4089 static int 4090 fixup_devlog_params(struct adapter *sc) 4091 { 4092 struct devlog_params *dparams = &sc->params.devlog; 4093 int rc; 4094 4095 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4096 dparams->size, &dparams->addr); 4097 4098 return (rc); 4099 } 4100 4101 static void 4102 update_nirq(struct intrs_and_queues *iaq, int nports) 4103 { 4104 4105 iaq->nirq = T4_EXTRA_INTR; 4106 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4107 iaq->nirq += nports * iaq->nofldrxq; 4108 iaq->nirq += nports * (iaq->num_vis - 1) * 4109 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4110 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4111 } 4112 4113 /* 4114 * Adjust requirements to fit the number of interrupts available. 4115 */ 4116 static void 4117 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4118 int navail) 4119 { 4120 int old_nirq; 4121 const int nports = sc->params.nports; 4122 4123 MPASS(nports > 0); 4124 MPASS(navail > 0); 4125 4126 bzero(iaq, sizeof(*iaq)); 4127 iaq->intr_type = itype; 4128 iaq->num_vis = t4_num_vis; 4129 iaq->ntxq = t4_ntxq; 4130 iaq->ntxq_vi = t4_ntxq_vi; 4131 iaq->nrxq = t4_nrxq; 4132 iaq->nrxq_vi = t4_nrxq_vi; 4133 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4134 if (is_offload(sc) || is_ethoffload(sc)) { 4135 iaq->nofldtxq = t4_nofldtxq; 4136 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4137 } 4138 #endif 4139 #ifdef TCP_OFFLOAD 4140 if (is_offload(sc)) { 4141 iaq->nofldrxq = t4_nofldrxq; 4142 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4143 } 4144 #endif 4145 #ifdef DEV_NETMAP 4146 if (t4_native_netmap & NN_MAIN_VI) { 4147 iaq->nnmtxq = t4_nnmtxq; 4148 iaq->nnmrxq = t4_nnmrxq; 4149 } 4150 if (t4_native_netmap & NN_EXTRA_VI) { 4151 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4152 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4153 } 4154 #endif 4155 4156 update_nirq(iaq, nports); 4157 if (iaq->nirq <= navail && 4158 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4159 /* 4160 * This is the normal case -- there are enough interrupts for 4161 * everything. 4162 */ 4163 goto done; 4164 } 4165 4166 /* 4167 * If extra VIs have been configured try reducing their count and see if 4168 * that works. 4169 */ 4170 while (iaq->num_vis > 1) { 4171 iaq->num_vis--; 4172 update_nirq(iaq, nports); 4173 if (iaq->nirq <= navail && 4174 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4175 device_printf(sc->dev, "virtual interfaces per port " 4176 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4177 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4178 "itype %d, navail %u, nirq %d.\n", 4179 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4180 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4181 itype, navail, iaq->nirq); 4182 goto done; 4183 } 4184 } 4185 4186 /* 4187 * Extra VIs will not be created. Log a message if they were requested. 4188 */ 4189 MPASS(iaq->num_vis == 1); 4190 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4191 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4192 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4193 if (iaq->num_vis != t4_num_vis) { 4194 device_printf(sc->dev, "extra virtual interfaces disabled. " 4195 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4196 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4197 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4198 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4199 } 4200 4201 /* 4202 * Keep reducing the number of NIC rx queues to the next lower power of 4203 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4204 * if that works. 4205 */ 4206 do { 4207 if (iaq->nrxq > 1) { 4208 do { 4209 iaq->nrxq--; 4210 } while (!powerof2(iaq->nrxq)); 4211 if (iaq->nnmrxq > iaq->nrxq) 4212 iaq->nnmrxq = iaq->nrxq; 4213 } 4214 if (iaq->nofldrxq > 1) 4215 iaq->nofldrxq >>= 1; 4216 4217 old_nirq = iaq->nirq; 4218 update_nirq(iaq, nports); 4219 if (iaq->nirq <= navail && 4220 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4221 device_printf(sc->dev, "running with reduced number of " 4222 "rx queues because of shortage of interrupts. " 4223 "nrxq=%u, nofldrxq=%u. " 4224 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4225 iaq->nofldrxq, itype, navail, iaq->nirq); 4226 goto done; 4227 } 4228 } while (old_nirq != iaq->nirq); 4229 4230 /* One interrupt for everything. Ugh. */ 4231 device_printf(sc->dev, "running with minimal number of queues. " 4232 "itype %d, navail %u.\n", itype, navail); 4233 iaq->nirq = 1; 4234 iaq->nrxq = 1; 4235 iaq->ntxq = 1; 4236 if (iaq->nofldrxq > 0) { 4237 iaq->nofldrxq = 1; 4238 iaq->nofldtxq = 1; 4239 } 4240 iaq->nnmtxq = 0; 4241 iaq->nnmrxq = 0; 4242 done: 4243 MPASS(iaq->num_vis > 0); 4244 if (iaq->num_vis > 1) { 4245 MPASS(iaq->nrxq_vi > 0); 4246 MPASS(iaq->ntxq_vi > 0); 4247 } 4248 MPASS(iaq->nirq > 0); 4249 MPASS(iaq->nrxq > 0); 4250 MPASS(iaq->ntxq > 0); 4251 if (itype == INTR_MSI) { 4252 MPASS(powerof2(iaq->nirq)); 4253 } 4254 } 4255 4256 static int 4257 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4258 { 4259 int rc, itype, navail, nalloc; 4260 4261 for (itype = INTR_MSIX; itype; itype >>= 1) { 4262 4263 if ((itype & t4_intr_types) == 0) 4264 continue; /* not allowed */ 4265 4266 if (itype == INTR_MSIX) 4267 navail = pci_msix_count(sc->dev); 4268 else if (itype == INTR_MSI) 4269 navail = pci_msi_count(sc->dev); 4270 else 4271 navail = 1; 4272 restart: 4273 if (navail == 0) 4274 continue; 4275 4276 calculate_iaq(sc, iaq, itype, navail); 4277 nalloc = iaq->nirq; 4278 rc = 0; 4279 if (itype == INTR_MSIX) 4280 rc = pci_alloc_msix(sc->dev, &nalloc); 4281 else if (itype == INTR_MSI) 4282 rc = pci_alloc_msi(sc->dev, &nalloc); 4283 4284 if (rc == 0 && nalloc > 0) { 4285 if (nalloc == iaq->nirq) 4286 return (0); 4287 4288 /* 4289 * Didn't get the number requested. Use whatever number 4290 * the kernel is willing to allocate. 4291 */ 4292 device_printf(sc->dev, "fewer vectors than requested, " 4293 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4294 itype, iaq->nirq, nalloc); 4295 pci_release_msi(sc->dev); 4296 navail = nalloc; 4297 goto restart; 4298 } 4299 4300 device_printf(sc->dev, 4301 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4302 itype, rc, iaq->nirq, nalloc); 4303 } 4304 4305 device_printf(sc->dev, 4306 "failed to find a usable interrupt type. " 4307 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4308 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4309 4310 return (ENXIO); 4311 } 4312 4313 #define FW_VERSION(chip) ( \ 4314 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4315 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4316 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4317 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4318 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4319 4320 /* Just enough of fw_hdr to cover all version info. */ 4321 struct fw_h { 4322 __u8 ver; 4323 __u8 chip; 4324 __be16 len512; 4325 __be32 fw_ver; 4326 __be32 tp_microcode_ver; 4327 __u8 intfver_nic; 4328 __u8 intfver_vnic; 4329 __u8 intfver_ofld; 4330 __u8 intfver_ri; 4331 __u8 intfver_iscsipdu; 4332 __u8 intfver_iscsi; 4333 __u8 intfver_fcoepdu; 4334 __u8 intfver_fcoe; 4335 }; 4336 /* Spot check a couple of fields. */ 4337 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4338 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4339 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4340 4341 struct fw_info { 4342 uint8_t chip; 4343 char *kld_name; 4344 char *fw_mod_name; 4345 struct fw_h fw_h; 4346 } fw_info[] = { 4347 { 4348 .chip = CHELSIO_T4, 4349 .kld_name = "t4fw_cfg", 4350 .fw_mod_name = "t4fw", 4351 .fw_h = { 4352 .chip = FW_HDR_CHIP_T4, 4353 .fw_ver = htobe32(FW_VERSION(T4)), 4354 .intfver_nic = FW_INTFVER(T4, NIC), 4355 .intfver_vnic = FW_INTFVER(T4, VNIC), 4356 .intfver_ofld = FW_INTFVER(T4, OFLD), 4357 .intfver_ri = FW_INTFVER(T4, RI), 4358 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4359 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4360 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4361 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4362 }, 4363 }, { 4364 .chip = CHELSIO_T5, 4365 .kld_name = "t5fw_cfg", 4366 .fw_mod_name = "t5fw", 4367 .fw_h = { 4368 .chip = FW_HDR_CHIP_T5, 4369 .fw_ver = htobe32(FW_VERSION(T5)), 4370 .intfver_nic = FW_INTFVER(T5, NIC), 4371 .intfver_vnic = FW_INTFVER(T5, VNIC), 4372 .intfver_ofld = FW_INTFVER(T5, OFLD), 4373 .intfver_ri = FW_INTFVER(T5, RI), 4374 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4375 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4376 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4377 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4378 }, 4379 }, { 4380 .chip = CHELSIO_T6, 4381 .kld_name = "t6fw_cfg", 4382 .fw_mod_name = "t6fw", 4383 .fw_h = { 4384 .chip = FW_HDR_CHIP_T6, 4385 .fw_ver = htobe32(FW_VERSION(T6)), 4386 .intfver_nic = FW_INTFVER(T6, NIC), 4387 .intfver_vnic = FW_INTFVER(T6, VNIC), 4388 .intfver_ofld = FW_INTFVER(T6, OFLD), 4389 .intfver_ri = FW_INTFVER(T6, RI), 4390 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4391 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4392 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4393 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4394 }, 4395 } 4396 }; 4397 4398 static struct fw_info * 4399 find_fw_info(int chip) 4400 { 4401 int i; 4402 4403 for (i = 0; i < nitems(fw_info); i++) { 4404 if (fw_info[i].chip == chip) 4405 return (&fw_info[i]); 4406 } 4407 return (NULL); 4408 } 4409 4410 /* 4411 * Is the given firmware API compatible with the one the driver was compiled 4412 * with? 4413 */ 4414 static int 4415 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4416 { 4417 4418 /* short circuit if it's the exact same firmware version */ 4419 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4420 return (1); 4421 4422 /* 4423 * XXX: Is this too conservative? Perhaps I should limit this to the 4424 * features that are supported in the driver. 4425 */ 4426 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4427 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4428 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4429 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4430 return (1); 4431 #undef SAME_INTF 4432 4433 return (0); 4434 } 4435 4436 static int 4437 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4438 const struct firmware **fw) 4439 { 4440 struct fw_info *fw_info; 4441 4442 *dcfg = NULL; 4443 if (fw != NULL) 4444 *fw = NULL; 4445 4446 fw_info = find_fw_info(chip_id(sc)); 4447 if (fw_info == NULL) { 4448 device_printf(sc->dev, 4449 "unable to look up firmware information for chip %d.\n", 4450 chip_id(sc)); 4451 return (EINVAL); 4452 } 4453 4454 *dcfg = firmware_get(fw_info->kld_name); 4455 if (*dcfg != NULL) { 4456 if (fw != NULL) 4457 *fw = firmware_get(fw_info->fw_mod_name); 4458 return (0); 4459 } 4460 4461 return (ENOENT); 4462 } 4463 4464 static void 4465 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4466 const struct firmware *fw) 4467 { 4468 4469 if (fw != NULL) 4470 firmware_put(fw, FIRMWARE_UNLOAD); 4471 if (dcfg != NULL) 4472 firmware_put(dcfg, FIRMWARE_UNLOAD); 4473 } 4474 4475 /* 4476 * Return values: 4477 * 0 means no firmware install attempted. 4478 * ERESTART means a firmware install was attempted and was successful. 4479 * +ve errno means a firmware install was attempted but failed. 4480 */ 4481 static int 4482 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4483 const struct fw_h *drv_fw, const char *reason, int *already) 4484 { 4485 const struct firmware *cfg, *fw; 4486 const uint32_t c = be32toh(card_fw->fw_ver); 4487 uint32_t d, k; 4488 int rc, fw_install; 4489 struct fw_h bundled_fw; 4490 bool load_attempted; 4491 4492 cfg = fw = NULL; 4493 load_attempted = false; 4494 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4495 4496 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4497 if (t4_fw_install < 0) { 4498 rc = load_fw_module(sc, &cfg, &fw); 4499 if (rc != 0 || fw == NULL) { 4500 device_printf(sc->dev, 4501 "failed to load firmware module: %d. cfg %p, fw %p;" 4502 " will use compiled-in firmware version for" 4503 "hw.cxgbe.fw_install checks.\n", 4504 rc, cfg, fw); 4505 } else { 4506 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4507 } 4508 load_attempted = true; 4509 } 4510 d = be32toh(bundled_fw.fw_ver); 4511 4512 if (reason != NULL) 4513 goto install; 4514 4515 if ((sc->flags & FW_OK) == 0) { 4516 4517 if (c == 0xffffffff) { 4518 reason = "missing"; 4519 goto install; 4520 } 4521 4522 rc = 0; 4523 goto done; 4524 } 4525 4526 if (!fw_compatible(card_fw, &bundled_fw)) { 4527 reason = "incompatible or unusable"; 4528 goto install; 4529 } 4530 4531 if (d > c) { 4532 reason = "older than the version bundled with this driver"; 4533 goto install; 4534 } 4535 4536 if (fw_install == 2 && d != c) { 4537 reason = "different than the version bundled with this driver"; 4538 goto install; 4539 } 4540 4541 /* No reason to do anything to the firmware already on the card. */ 4542 rc = 0; 4543 goto done; 4544 4545 install: 4546 rc = 0; 4547 if ((*already)++) 4548 goto done; 4549 4550 if (fw_install == 0) { 4551 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4552 "but the driver is prohibited from installing a firmware " 4553 "on the card.\n", 4554 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4555 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4556 4557 goto done; 4558 } 4559 4560 /* 4561 * We'll attempt to install a firmware. Load the module first (if it 4562 * hasn't been loaded already). 4563 */ 4564 if (!load_attempted) { 4565 rc = load_fw_module(sc, &cfg, &fw); 4566 if (rc != 0 || fw == NULL) { 4567 device_printf(sc->dev, 4568 "failed to load firmware module: %d. cfg %p, fw %p\n", 4569 rc, cfg, fw); 4570 /* carry on */ 4571 } 4572 } 4573 if (fw == NULL) { 4574 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4575 "but the driver cannot take corrective action because it " 4576 "is unable to load the firmware module.\n", 4577 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4578 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4579 rc = sc->flags & FW_OK ? 0 : ENOENT; 4580 goto done; 4581 } 4582 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4583 if (k != d) { 4584 MPASS(t4_fw_install > 0); 4585 device_printf(sc->dev, 4586 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4587 "expecting (%u.%u.%u.%u) and will not be used.\n", 4588 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4589 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4590 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4591 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4592 rc = sc->flags & FW_OK ? 0 : EINVAL; 4593 goto done; 4594 } 4595 4596 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4597 "installing firmware %u.%u.%u.%u on card.\n", 4598 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4599 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4600 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4601 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4602 4603 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4604 if (rc != 0) { 4605 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4606 } else { 4607 /* Installed successfully, update the cached header too. */ 4608 rc = ERESTART; 4609 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4610 } 4611 done: 4612 unload_fw_module(sc, cfg, fw); 4613 4614 return (rc); 4615 } 4616 4617 /* 4618 * Establish contact with the firmware and attempt to become the master driver. 4619 * 4620 * A firmware will be installed to the card if needed (if the driver is allowed 4621 * to do so). 4622 */ 4623 static int 4624 contact_firmware(struct adapter *sc) 4625 { 4626 int rc, already = 0; 4627 enum dev_state state; 4628 struct fw_info *fw_info; 4629 struct fw_hdr *card_fw; /* fw on the card */ 4630 const struct fw_h *drv_fw; 4631 4632 fw_info = find_fw_info(chip_id(sc)); 4633 if (fw_info == NULL) { 4634 device_printf(sc->dev, 4635 "unable to look up firmware information for chip %d.\n", 4636 chip_id(sc)); 4637 return (EINVAL); 4638 } 4639 drv_fw = &fw_info->fw_h; 4640 4641 /* Read the header of the firmware on the card */ 4642 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4643 restart: 4644 rc = -t4_get_fw_hdr(sc, card_fw); 4645 if (rc != 0) { 4646 device_printf(sc->dev, 4647 "unable to read firmware header from card's flash: %d\n", 4648 rc); 4649 goto done; 4650 } 4651 4652 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4653 &already); 4654 if (rc == ERESTART) 4655 goto restart; 4656 if (rc != 0) 4657 goto done; 4658 4659 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4660 if (rc < 0 || state == DEV_STATE_ERR) { 4661 rc = -rc; 4662 device_printf(sc->dev, 4663 "failed to connect to the firmware: %d, %d. " 4664 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4665 #if 0 4666 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4667 "not responding properly to HELLO", &already) == ERESTART) 4668 goto restart; 4669 #endif 4670 goto done; 4671 } 4672 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4673 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4674 4675 if (rc == sc->pf) { 4676 sc->flags |= MASTER_PF; 4677 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4678 NULL, &already); 4679 if (rc == ERESTART) 4680 rc = 0; 4681 else if (rc != 0) 4682 goto done; 4683 } else if (state == DEV_STATE_UNINIT) { 4684 /* 4685 * We didn't get to be the master so we definitely won't be 4686 * configuring the chip. It's a bug if someone else hasn't 4687 * configured it already. 4688 */ 4689 device_printf(sc->dev, "couldn't be master(%d), " 4690 "device not already initialized either(%d). " 4691 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4692 rc = EPROTO; 4693 goto done; 4694 } else { 4695 /* 4696 * Some other PF is the master and has configured the chip. 4697 * This is allowed but untested. 4698 */ 4699 device_printf(sc->dev, "PF%d is master, device state %d. " 4700 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4701 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4702 sc->cfcsum = 0; 4703 rc = 0; 4704 } 4705 done: 4706 if (rc != 0 && sc->flags & FW_OK) { 4707 t4_fw_bye(sc, sc->mbox); 4708 sc->flags &= ~FW_OK; 4709 } 4710 free(card_fw, M_CXGBE); 4711 return (rc); 4712 } 4713 4714 static int 4715 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4716 uint32_t mtype, uint32_t moff) 4717 { 4718 struct fw_info *fw_info; 4719 const struct firmware *dcfg, *rcfg = NULL; 4720 const uint32_t *cfdata; 4721 uint32_t cflen, addr; 4722 int rc; 4723 4724 load_fw_module(sc, &dcfg, NULL); 4725 4726 /* Card specific interpretation of "default". */ 4727 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4728 if (pci_get_device(sc->dev) == 0x440a) 4729 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4730 if (is_fpga(sc)) 4731 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4732 } 4733 4734 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4735 if (dcfg == NULL) { 4736 device_printf(sc->dev, 4737 "KLD with default config is not available.\n"); 4738 rc = ENOENT; 4739 goto done; 4740 } 4741 cfdata = dcfg->data; 4742 cflen = dcfg->datasize & ~3; 4743 } else { 4744 char s[32]; 4745 4746 fw_info = find_fw_info(chip_id(sc)); 4747 if (fw_info == NULL) { 4748 device_printf(sc->dev, 4749 "unable to look up firmware information for chip %d.\n", 4750 chip_id(sc)); 4751 rc = EINVAL; 4752 goto done; 4753 } 4754 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4755 4756 rcfg = firmware_get(s); 4757 if (rcfg == NULL) { 4758 device_printf(sc->dev, 4759 "unable to load module \"%s\" for configuration " 4760 "profile \"%s\".\n", s, cfg_file); 4761 rc = ENOENT; 4762 goto done; 4763 } 4764 cfdata = rcfg->data; 4765 cflen = rcfg->datasize & ~3; 4766 } 4767 4768 if (cflen > FLASH_CFG_MAX_SIZE) { 4769 device_printf(sc->dev, 4770 "config file too long (%d, max allowed is %d).\n", 4771 cflen, FLASH_CFG_MAX_SIZE); 4772 rc = EINVAL; 4773 goto done; 4774 } 4775 4776 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4777 if (rc != 0) { 4778 device_printf(sc->dev, 4779 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4780 __func__, mtype, moff, cflen, rc); 4781 rc = EINVAL; 4782 goto done; 4783 } 4784 write_via_memwin(sc, 2, addr, cfdata, cflen); 4785 done: 4786 if (rcfg != NULL) 4787 firmware_put(rcfg, FIRMWARE_UNLOAD); 4788 unload_fw_module(sc, dcfg, NULL); 4789 return (rc); 4790 } 4791 4792 struct caps_allowed { 4793 uint16_t nbmcaps; 4794 uint16_t linkcaps; 4795 uint16_t switchcaps; 4796 uint16_t niccaps; 4797 uint16_t toecaps; 4798 uint16_t rdmacaps; 4799 uint16_t cryptocaps; 4800 uint16_t iscsicaps; 4801 uint16_t fcoecaps; 4802 }; 4803 4804 #define FW_PARAM_DEV(param) \ 4805 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4806 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4807 #define FW_PARAM_PFVF(param) \ 4808 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4809 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4810 4811 /* 4812 * Provide a configuration profile to the firmware and have it initialize the 4813 * chip accordingly. This may involve uploading a configuration file to the 4814 * card. 4815 */ 4816 static int 4817 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4818 const struct caps_allowed *caps_allowed) 4819 { 4820 int rc; 4821 struct fw_caps_config_cmd caps; 4822 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4823 4824 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4825 if (rc != 0) { 4826 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4827 return (rc); 4828 } 4829 4830 bzero(&caps, sizeof(caps)); 4831 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4832 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4833 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4834 mtype = 0; 4835 moff = 0; 4836 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4837 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4838 mtype = FW_MEMTYPE_FLASH; 4839 moff = t4_flash_cfg_addr(sc); 4840 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4841 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4842 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4843 FW_LEN16(caps)); 4844 } else { 4845 /* 4846 * Ask the firmware where it wants us to upload the config file. 4847 */ 4848 param = FW_PARAM_DEV(CF); 4849 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4850 if (rc != 0) { 4851 /* No support for config file? Shouldn't happen. */ 4852 device_printf(sc->dev, 4853 "failed to query config file location: %d.\n", rc); 4854 goto done; 4855 } 4856 mtype = G_FW_PARAMS_PARAM_Y(val); 4857 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 4858 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4859 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4860 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4861 FW_LEN16(caps)); 4862 4863 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 4864 if (rc != 0) { 4865 device_printf(sc->dev, 4866 "failed to upload config file to card: %d.\n", rc); 4867 goto done; 4868 } 4869 } 4870 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4871 if (rc != 0) { 4872 device_printf(sc->dev, "failed to pre-process config file: %d " 4873 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 4874 goto done; 4875 } 4876 4877 finicsum = be32toh(caps.finicsum); 4878 cfcsum = be32toh(caps.cfcsum); /* actual */ 4879 if (finicsum != cfcsum) { 4880 device_printf(sc->dev, 4881 "WARNING: config file checksum mismatch: %08x %08x\n", 4882 finicsum, cfcsum); 4883 } 4884 sc->cfcsum = cfcsum; 4885 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 4886 4887 /* 4888 * Let the firmware know what features will (not) be used so it can tune 4889 * things accordingly. 4890 */ 4891 #define LIMIT_CAPS(x) do { \ 4892 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 4893 } while (0) 4894 LIMIT_CAPS(nbm); 4895 LIMIT_CAPS(link); 4896 LIMIT_CAPS(switch); 4897 LIMIT_CAPS(nic); 4898 LIMIT_CAPS(toe); 4899 LIMIT_CAPS(rdma); 4900 LIMIT_CAPS(crypto); 4901 LIMIT_CAPS(iscsi); 4902 LIMIT_CAPS(fcoe); 4903 #undef LIMIT_CAPS 4904 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4905 /* 4906 * TOE and hashfilters are mutually exclusive. It is a config 4907 * file or firmware bug if both are reported as available. Try 4908 * to cope with the situation in non-debug builds by disabling 4909 * TOE. 4910 */ 4911 MPASS(caps.toecaps == 0); 4912 4913 caps.toecaps = 0; 4914 caps.rdmacaps = 0; 4915 caps.iscsicaps = 0; 4916 } 4917 4918 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4919 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 4920 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4921 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 4922 if (rc != 0) { 4923 device_printf(sc->dev, 4924 "failed to process config file: %d.\n", rc); 4925 goto done; 4926 } 4927 4928 t4_tweak_chip_settings(sc); 4929 set_params__pre_init(sc); 4930 4931 /* get basic stuff going */ 4932 rc = -t4_fw_initialize(sc, sc->mbox); 4933 if (rc != 0) { 4934 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 4935 goto done; 4936 } 4937 done: 4938 return (rc); 4939 } 4940 4941 /* 4942 * Partition chip resources for use between various PFs, VFs, etc. 4943 */ 4944 static int 4945 partition_resources(struct adapter *sc) 4946 { 4947 char cfg_file[sizeof(t4_cfg_file)]; 4948 struct caps_allowed caps_allowed; 4949 int rc; 4950 bool fallback; 4951 4952 /* Only the master driver gets to configure the chip resources. */ 4953 MPASS(sc->flags & MASTER_PF); 4954 4955 #define COPY_CAPS(x) do { \ 4956 caps_allowed.x##caps = t4_##x##caps_allowed; \ 4957 } while (0) 4958 bzero(&caps_allowed, sizeof(caps_allowed)); 4959 COPY_CAPS(nbm); 4960 COPY_CAPS(link); 4961 COPY_CAPS(switch); 4962 COPY_CAPS(nic); 4963 COPY_CAPS(toe); 4964 COPY_CAPS(rdma); 4965 COPY_CAPS(crypto); 4966 COPY_CAPS(iscsi); 4967 COPY_CAPS(fcoe); 4968 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 4969 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 4970 retry: 4971 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 4972 if (rc != 0 && fallback) { 4973 device_printf(sc->dev, 4974 "failed (%d) to configure card with \"%s\" profile, " 4975 "will fall back to a basic configuration and retry.\n", 4976 rc, cfg_file); 4977 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 4978 bzero(&caps_allowed, sizeof(caps_allowed)); 4979 COPY_CAPS(switch); 4980 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 4981 fallback = false; 4982 goto retry; 4983 } 4984 #undef COPY_CAPS 4985 return (rc); 4986 } 4987 4988 /* 4989 * Retrieve parameters that are needed (or nice to have) very early. 4990 */ 4991 static int 4992 get_params__pre_init(struct adapter *sc) 4993 { 4994 int rc; 4995 uint32_t param[2], val[2]; 4996 4997 t4_get_version_info(sc); 4998 4999 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5000 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5001 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5002 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5003 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5004 5005 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5006 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5007 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5008 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5009 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5010 5011 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5012 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5013 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5014 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5015 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5016 5017 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5018 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5019 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5020 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5021 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5022 5023 param[0] = FW_PARAM_DEV(PORTVEC); 5024 param[1] = FW_PARAM_DEV(CCLK); 5025 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5026 if (rc != 0) { 5027 device_printf(sc->dev, 5028 "failed to query parameters (pre_init): %d.\n", rc); 5029 return (rc); 5030 } 5031 5032 sc->params.portvec = val[0]; 5033 sc->params.nports = bitcount32(val[0]); 5034 sc->params.vpd.cclk = val[1]; 5035 5036 /* Read device log parameters. */ 5037 rc = -t4_init_devlog_params(sc, 1); 5038 if (rc == 0) 5039 fixup_devlog_params(sc); 5040 else { 5041 device_printf(sc->dev, 5042 "failed to get devlog parameters: %d.\n", rc); 5043 rc = 0; /* devlog isn't critical for device operation */ 5044 } 5045 5046 return (rc); 5047 } 5048 5049 /* 5050 * Any params that need to be set before FW_INITIALIZE. 5051 */ 5052 static int 5053 set_params__pre_init(struct adapter *sc) 5054 { 5055 int rc = 0; 5056 uint32_t param, val; 5057 5058 if (chip_id(sc) >= CHELSIO_T6) { 5059 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5060 val = 1; 5061 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5062 /* firmwares < 1.20.1.0 do not have this param. */ 5063 if (rc == FW_EINVAL && 5064 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5065 rc = 0; 5066 } 5067 if (rc != 0) { 5068 device_printf(sc->dev, 5069 "failed to enable high priority filters :%d.\n", 5070 rc); 5071 } 5072 } 5073 5074 /* Enable opaque VIIDs with firmwares that support it. */ 5075 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5076 val = 1; 5077 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5078 if (rc == 0 && val == 1) 5079 sc->params.viid_smt_extn_support = true; 5080 else 5081 sc->params.viid_smt_extn_support = false; 5082 5083 return (rc); 5084 } 5085 5086 /* 5087 * Retrieve various parameters that are of interest to the driver. The device 5088 * has been initialized by the firmware at this point. 5089 */ 5090 static int 5091 get_params__post_init(struct adapter *sc) 5092 { 5093 int rc; 5094 uint32_t param[7], val[7]; 5095 struct fw_caps_config_cmd caps; 5096 5097 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5098 param[1] = FW_PARAM_PFVF(EQ_START); 5099 param[2] = FW_PARAM_PFVF(FILTER_START); 5100 param[3] = FW_PARAM_PFVF(FILTER_END); 5101 param[4] = FW_PARAM_PFVF(L2T_START); 5102 param[5] = FW_PARAM_PFVF(L2T_END); 5103 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5104 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5105 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5106 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5107 if (rc != 0) { 5108 device_printf(sc->dev, 5109 "failed to query parameters (post_init): %d.\n", rc); 5110 return (rc); 5111 } 5112 5113 sc->sge.iq_start = val[0]; 5114 sc->sge.eq_start = val[1]; 5115 if ((int)val[3] > (int)val[2]) { 5116 sc->tids.ftid_base = val[2]; 5117 sc->tids.ftid_end = val[3]; 5118 sc->tids.nftids = val[3] - val[2] + 1; 5119 } 5120 sc->vres.l2t.start = val[4]; 5121 sc->vres.l2t.size = val[5] - val[4] + 1; 5122 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 5123 ("%s: L2 table size (%u) larger than expected (%u)", 5124 __func__, sc->vres.l2t.size, L2T_SIZE)); 5125 sc->params.core_vdd = val[6]; 5126 5127 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5128 param[1] = FW_PARAM_PFVF(EQ_END); 5129 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5130 if (rc != 0) { 5131 device_printf(sc->dev, 5132 "failed to query parameters (post_init2): %d.\n", rc); 5133 return (rc); 5134 } 5135 MPASS((int)val[0] >= sc->sge.iq_start); 5136 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5137 MPASS((int)val[1] >= sc->sge.eq_start); 5138 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5139 5140 if (chip_id(sc) >= CHELSIO_T6) { 5141 5142 sc->tids.tid_base = t4_read_reg(sc, 5143 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5144 5145 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5146 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5147 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5148 if (rc != 0) { 5149 device_printf(sc->dev, 5150 "failed to query hpfilter parameters: %d.\n", rc); 5151 return (rc); 5152 } 5153 if ((int)val[1] > (int)val[0]) { 5154 sc->tids.hpftid_base = val[0]; 5155 sc->tids.hpftid_end = val[1]; 5156 sc->tids.nhpftids = val[1] - val[0] + 1; 5157 5158 /* 5159 * These should go off if the layout changes and the 5160 * driver needs to catch up. 5161 */ 5162 MPASS(sc->tids.hpftid_base == 0); 5163 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5164 } 5165 5166 param[0] = FW_PARAM_PFVF(RAWF_START); 5167 param[1] = FW_PARAM_PFVF(RAWF_END); 5168 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5169 if (rc != 0) { 5170 device_printf(sc->dev, 5171 "failed to query rawf parameters: %d.\n", rc); 5172 return (rc); 5173 } 5174 if ((int)val[1] > (int)val[0]) { 5175 sc->rawf_base = val[0]; 5176 sc->nrawf = val[1] - val[0] + 1; 5177 } 5178 } 5179 5180 /* 5181 * MPSBGMAP is queried separately because only recent firmwares support 5182 * it as a parameter and we don't want the compound query above to fail 5183 * on older firmwares. 5184 */ 5185 param[0] = FW_PARAM_DEV(MPSBGMAP); 5186 val[0] = 0; 5187 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5188 if (rc == 0) 5189 sc->params.mps_bg_map = val[0]; 5190 else 5191 sc->params.mps_bg_map = 0; 5192 5193 /* 5194 * Determine whether the firmware supports the filter2 work request. 5195 * This is queried separately for the same reason as MPSBGMAP above. 5196 */ 5197 param[0] = FW_PARAM_DEV(FILTER2_WR); 5198 val[0] = 0; 5199 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5200 if (rc == 0) 5201 sc->params.filter2_wr_support = val[0] != 0; 5202 else 5203 sc->params.filter2_wr_support = 0; 5204 5205 /* 5206 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5207 * This is queried separately for the same reason as other params above. 5208 */ 5209 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5210 val[0] = 0; 5211 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5212 if (rc == 0) 5213 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5214 else 5215 sc->params.ulptx_memwrite_dsgl = false; 5216 5217 /* FW_RI_FR_NSMR_TPTE_WR support */ 5218 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5219 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5220 if (rc == 0) 5221 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5222 else 5223 sc->params.fr_nsmr_tpte_wr_support = false; 5224 5225 /* Support for 512 SGL entries per FR MR. */ 5226 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5227 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5228 if (rc == 0) 5229 sc->params.dev_512sgl_mr = val[0] != 0; 5230 else 5231 sc->params.dev_512sgl_mr = false; 5232 5233 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5234 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5235 if (rc == 0) 5236 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5237 else 5238 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5239 5240 /* get capabilites */ 5241 bzero(&caps, sizeof(caps)); 5242 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5243 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5244 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5245 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5246 if (rc != 0) { 5247 device_printf(sc->dev, 5248 "failed to get card capabilities: %d.\n", rc); 5249 return (rc); 5250 } 5251 5252 #define READ_CAPS(x) do { \ 5253 sc->x = htobe16(caps.x); \ 5254 } while (0) 5255 READ_CAPS(nbmcaps); 5256 READ_CAPS(linkcaps); 5257 READ_CAPS(switchcaps); 5258 READ_CAPS(niccaps); 5259 READ_CAPS(toecaps); 5260 READ_CAPS(rdmacaps); 5261 READ_CAPS(cryptocaps); 5262 READ_CAPS(iscsicaps); 5263 READ_CAPS(fcoecaps); 5264 5265 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5266 MPASS(chip_id(sc) > CHELSIO_T4); 5267 MPASS(sc->toecaps == 0); 5268 sc->toecaps = 0; 5269 5270 param[0] = FW_PARAM_DEV(NTID); 5271 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5272 if (rc != 0) { 5273 device_printf(sc->dev, 5274 "failed to query HASHFILTER parameters: %d.\n", rc); 5275 return (rc); 5276 } 5277 sc->tids.ntids = val[0]; 5278 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5279 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5280 sc->tids.ntids -= sc->tids.nhpftids; 5281 } 5282 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5283 sc->params.hash_filter = 1; 5284 } 5285 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5286 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5287 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5288 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5289 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5290 if (rc != 0) { 5291 device_printf(sc->dev, 5292 "failed to query NIC parameters: %d.\n", rc); 5293 return (rc); 5294 } 5295 if ((int)val[1] > (int)val[0]) { 5296 sc->tids.etid_base = val[0]; 5297 sc->tids.etid_end = val[1]; 5298 sc->tids.netids = val[1] - val[0] + 1; 5299 sc->params.eo_wr_cred = val[2]; 5300 sc->params.ethoffload = 1; 5301 } 5302 } 5303 if (sc->toecaps) { 5304 /* query offload-related parameters */ 5305 param[0] = FW_PARAM_DEV(NTID); 5306 param[1] = FW_PARAM_PFVF(SERVER_START); 5307 param[2] = FW_PARAM_PFVF(SERVER_END); 5308 param[3] = FW_PARAM_PFVF(TDDP_START); 5309 param[4] = FW_PARAM_PFVF(TDDP_END); 5310 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5311 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5312 if (rc != 0) { 5313 device_printf(sc->dev, 5314 "failed to query TOE parameters: %d.\n", rc); 5315 return (rc); 5316 } 5317 sc->tids.ntids = val[0]; 5318 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5319 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5320 sc->tids.ntids -= sc->tids.nhpftids; 5321 } 5322 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5323 if ((int)val[2] > (int)val[1]) { 5324 sc->tids.stid_base = val[1]; 5325 sc->tids.nstids = val[2] - val[1] + 1; 5326 } 5327 sc->vres.ddp.start = val[3]; 5328 sc->vres.ddp.size = val[4] - val[3] + 1; 5329 sc->params.ofldq_wr_cred = val[5]; 5330 sc->params.offload = 1; 5331 } else { 5332 /* 5333 * The firmware attempts memfree TOE configuration for -SO cards 5334 * and will report toecaps=0 if it runs out of resources (this 5335 * depends on the config file). It may not report 0 for other 5336 * capabilities dependent on the TOE in this case. Set them to 5337 * 0 here so that the driver doesn't bother tracking resources 5338 * that will never be used. 5339 */ 5340 sc->iscsicaps = 0; 5341 sc->rdmacaps = 0; 5342 } 5343 if (sc->rdmacaps) { 5344 param[0] = FW_PARAM_PFVF(STAG_START); 5345 param[1] = FW_PARAM_PFVF(STAG_END); 5346 param[2] = FW_PARAM_PFVF(RQ_START); 5347 param[3] = FW_PARAM_PFVF(RQ_END); 5348 param[4] = FW_PARAM_PFVF(PBL_START); 5349 param[5] = FW_PARAM_PFVF(PBL_END); 5350 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5351 if (rc != 0) { 5352 device_printf(sc->dev, 5353 "failed to query RDMA parameters(1): %d.\n", rc); 5354 return (rc); 5355 } 5356 sc->vres.stag.start = val[0]; 5357 sc->vres.stag.size = val[1] - val[0] + 1; 5358 sc->vres.rq.start = val[2]; 5359 sc->vres.rq.size = val[3] - val[2] + 1; 5360 sc->vres.pbl.start = val[4]; 5361 sc->vres.pbl.size = val[5] - val[4] + 1; 5362 5363 param[0] = FW_PARAM_PFVF(SQRQ_START); 5364 param[1] = FW_PARAM_PFVF(SQRQ_END); 5365 param[2] = FW_PARAM_PFVF(CQ_START); 5366 param[3] = FW_PARAM_PFVF(CQ_END); 5367 param[4] = FW_PARAM_PFVF(OCQ_START); 5368 param[5] = FW_PARAM_PFVF(OCQ_END); 5369 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5370 if (rc != 0) { 5371 device_printf(sc->dev, 5372 "failed to query RDMA parameters(2): %d.\n", rc); 5373 return (rc); 5374 } 5375 sc->vres.qp.start = val[0]; 5376 sc->vres.qp.size = val[1] - val[0] + 1; 5377 sc->vres.cq.start = val[2]; 5378 sc->vres.cq.size = val[3] - val[2] + 1; 5379 sc->vres.ocq.start = val[4]; 5380 sc->vres.ocq.size = val[5] - val[4] + 1; 5381 5382 param[0] = FW_PARAM_PFVF(SRQ_START); 5383 param[1] = FW_PARAM_PFVF(SRQ_END); 5384 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5385 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5386 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5387 if (rc != 0) { 5388 device_printf(sc->dev, 5389 "failed to query RDMA parameters(3): %d.\n", rc); 5390 return (rc); 5391 } 5392 sc->vres.srq.start = val[0]; 5393 sc->vres.srq.size = val[1] - val[0] + 1; 5394 sc->params.max_ordird_qp = val[2]; 5395 sc->params.max_ird_adapter = val[3]; 5396 } 5397 if (sc->iscsicaps) { 5398 param[0] = FW_PARAM_PFVF(ISCSI_START); 5399 param[1] = FW_PARAM_PFVF(ISCSI_END); 5400 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5401 if (rc != 0) { 5402 device_printf(sc->dev, 5403 "failed to query iSCSI parameters: %d.\n", rc); 5404 return (rc); 5405 } 5406 sc->vres.iscsi.start = val[0]; 5407 sc->vres.iscsi.size = val[1] - val[0] + 1; 5408 } 5409 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5410 param[0] = FW_PARAM_PFVF(TLS_START); 5411 param[1] = FW_PARAM_PFVF(TLS_END); 5412 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5413 if (rc != 0) { 5414 device_printf(sc->dev, 5415 "failed to query TLS parameters: %d.\n", rc); 5416 return (rc); 5417 } 5418 sc->vres.key.start = val[0]; 5419 sc->vres.key.size = val[1] - val[0] + 1; 5420 } 5421 5422 /* 5423 * We've got the params we wanted to query directly from the firmware. 5424 * Grab some others via other means. 5425 */ 5426 t4_init_sge_params(sc); 5427 t4_init_tp_params(sc); 5428 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5429 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5430 5431 rc = t4_verify_chip_settings(sc); 5432 if (rc != 0) 5433 return (rc); 5434 t4_init_rx_buf_info(sc); 5435 5436 return (rc); 5437 } 5438 5439 #ifdef KERN_TLS 5440 static void 5441 ktls_tick(void *arg) 5442 { 5443 struct adapter *sc; 5444 uint32_t tstamp; 5445 5446 sc = arg; 5447 if (sc->flags & KERN_TLS_ON) { 5448 tstamp = tcp_ts_getticks(); 5449 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5450 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5451 } 5452 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5453 } 5454 5455 static int 5456 t4_config_kern_tls(struct adapter *sc, bool enable) 5457 { 5458 int rc; 5459 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5460 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5461 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5462 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5463 5464 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5465 if (rc != 0) { 5466 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5467 enable ? "enable" : "disable", rc); 5468 return (rc); 5469 } 5470 5471 if (enable) 5472 sc->flags |= KERN_TLS_ON; 5473 else 5474 sc->flags &= ~KERN_TLS_ON; 5475 5476 return (rc); 5477 } 5478 #endif 5479 5480 static int 5481 set_params__post_init(struct adapter *sc) 5482 { 5483 uint32_t mask, param, val; 5484 #ifdef TCP_OFFLOAD 5485 int i, v, shift; 5486 #endif 5487 5488 /* ask for encapsulated CPLs */ 5489 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5490 val = 1; 5491 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5492 5493 /* Enable 32b port caps if the firmware supports it. */ 5494 param = FW_PARAM_PFVF(PORT_CAPS32); 5495 val = 1; 5496 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5497 sc->params.port_caps32 = 1; 5498 5499 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5500 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5501 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5502 V_MASKFILTER(val - 1)); 5503 5504 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5505 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5506 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5507 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5508 val = 0; 5509 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5510 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5511 F_ATTACKFILTERENABLE); 5512 val |= F_DROPERRORATTACK; 5513 } 5514 if (t4_drop_ip_fragments != 0) { 5515 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5516 F_FRAGMENTDROP); 5517 val |= F_DROPERRORFRAG; 5518 } 5519 if (t4_drop_pkts_with_l2_errors != 0) 5520 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5521 if (t4_drop_pkts_with_l3_errors != 0) { 5522 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5523 F_DROPERRORCSUMIP; 5524 } 5525 if (t4_drop_pkts_with_l4_errors != 0) { 5526 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5527 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5528 } 5529 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5530 5531 #ifdef TCP_OFFLOAD 5532 /* 5533 * Override the TOE timers with user provided tunables. This is not the 5534 * recommended way to change the timers (the firmware config file is) so 5535 * these tunables are not documented. 5536 * 5537 * All the timer tunables are in microseconds. 5538 */ 5539 if (t4_toe_keepalive_idle != 0) { 5540 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5541 v &= M_KEEPALIVEIDLE; 5542 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5543 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5544 } 5545 if (t4_toe_keepalive_interval != 0) { 5546 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5547 v &= M_KEEPALIVEINTVL; 5548 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5549 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5550 } 5551 if (t4_toe_keepalive_count != 0) { 5552 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5553 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5554 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5555 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5556 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5557 } 5558 if (t4_toe_rexmt_min != 0) { 5559 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5560 v &= M_RXTMIN; 5561 t4_set_reg_field(sc, A_TP_RXT_MIN, 5562 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5563 } 5564 if (t4_toe_rexmt_max != 0) { 5565 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5566 v &= M_RXTMAX; 5567 t4_set_reg_field(sc, A_TP_RXT_MAX, 5568 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5569 } 5570 if (t4_toe_rexmt_count != 0) { 5571 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5572 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5573 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5574 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5575 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5576 } 5577 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5578 if (t4_toe_rexmt_backoff[i] != -1) { 5579 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5580 shift = (i & 3) << 3; 5581 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5582 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5583 } 5584 } 5585 #endif 5586 5587 #ifdef KERN_TLS 5588 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS && 5589 sc->toecaps & FW_CAPS_CONFIG_TOE) { 5590 /* 5591 * Limit TOE connections to 2 reassembly "islands". This is 5592 * required for TOE TLS connections to downgrade to plain TOE 5593 * connections if an unsupported TLS version or ciphersuite is 5594 * used. 5595 */ 5596 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, 5597 V_PASSMODE(M_PASSMODE), V_PASSMODE(2)); 5598 if (is_ktls(sc)) { 5599 sc->tlst.inline_keys = t4_tls_inline_keys; 5600 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5601 if (t4_kern_tls != 0) 5602 t4_config_kern_tls(sc, true); 5603 } 5604 } 5605 #endif 5606 return (0); 5607 } 5608 5609 #undef FW_PARAM_PFVF 5610 #undef FW_PARAM_DEV 5611 5612 static void 5613 t4_set_desc(struct adapter *sc) 5614 { 5615 char buf[128]; 5616 struct adapter_params *p = &sc->params; 5617 5618 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 5619 5620 device_set_desc_copy(sc->dev, buf); 5621 } 5622 5623 static inline void 5624 ifmedia_add4(struct ifmedia *ifm, int m) 5625 { 5626 5627 ifmedia_add(ifm, m, 0, NULL); 5628 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5629 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5630 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5631 } 5632 5633 /* 5634 * This is the selected media, which is not quite the same as the active media. 5635 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5636 * and active are not the same, and "media: Ethernet selected" otherwise. 5637 */ 5638 static void 5639 set_current_media(struct port_info *pi) 5640 { 5641 struct link_config *lc; 5642 struct ifmedia *ifm; 5643 int mword; 5644 u_int speed; 5645 5646 PORT_LOCK_ASSERT_OWNED(pi); 5647 5648 /* Leave current media alone if it's already set to IFM_NONE. */ 5649 ifm = &pi->media; 5650 if (ifm->ifm_cur != NULL && 5651 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5652 return; 5653 5654 lc = &pi->link_cfg; 5655 if (lc->requested_aneg != AUTONEG_DISABLE && 5656 lc->pcaps & FW_PORT_CAP32_ANEG) { 5657 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5658 return; 5659 } 5660 mword = IFM_ETHER | IFM_FDX; 5661 if (lc->requested_fc & PAUSE_TX) 5662 mword |= IFM_ETH_TXPAUSE; 5663 if (lc->requested_fc & PAUSE_RX) 5664 mword |= IFM_ETH_RXPAUSE; 5665 if (lc->requested_speed == 0) 5666 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5667 else 5668 speed = lc->requested_speed; 5669 mword |= port_mword(pi, speed_to_fwcap(speed)); 5670 ifmedia_set(ifm, mword); 5671 } 5672 5673 /* 5674 * Returns true if the ifmedia list for the port cannot change. 5675 */ 5676 static bool 5677 fixed_ifmedia(struct port_info *pi) 5678 { 5679 5680 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5681 pi->port_type == FW_PORT_TYPE_BT_XFI || 5682 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5683 pi->port_type == FW_PORT_TYPE_KX4 || 5684 pi->port_type == FW_PORT_TYPE_KX || 5685 pi->port_type == FW_PORT_TYPE_KR || 5686 pi->port_type == FW_PORT_TYPE_BP_AP || 5687 pi->port_type == FW_PORT_TYPE_BP4_AP || 5688 pi->port_type == FW_PORT_TYPE_BP40_BA || 5689 pi->port_type == FW_PORT_TYPE_KR4_100G || 5690 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5691 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5692 } 5693 5694 static void 5695 build_medialist(struct port_info *pi) 5696 { 5697 uint32_t ss, speed; 5698 int unknown, mword, bit; 5699 struct link_config *lc; 5700 struct ifmedia *ifm; 5701 5702 PORT_LOCK_ASSERT_OWNED(pi); 5703 5704 if (pi->flags & FIXED_IFMEDIA) 5705 return; 5706 5707 /* 5708 * Rebuild the ifmedia list. 5709 */ 5710 ifm = &pi->media; 5711 ifmedia_removeall(ifm); 5712 lc = &pi->link_cfg; 5713 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5714 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5715 MPASS(ss != 0); 5716 no_media: 5717 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5718 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5719 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5720 return; 5721 } 5722 5723 unknown = 0; 5724 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5725 speed = 1 << bit; 5726 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5727 if (ss & speed) { 5728 mword = port_mword(pi, speed); 5729 if (mword == IFM_NONE) { 5730 goto no_media; 5731 } else if (mword == IFM_UNKNOWN) 5732 unknown++; 5733 else 5734 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5735 } 5736 } 5737 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5738 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5739 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5740 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5741 5742 set_current_media(pi); 5743 } 5744 5745 /* 5746 * Initialize the requested fields in the link config based on driver tunables. 5747 */ 5748 static void 5749 init_link_config(struct port_info *pi) 5750 { 5751 struct link_config *lc = &pi->link_cfg; 5752 5753 PORT_LOCK_ASSERT_OWNED(pi); 5754 5755 lc->requested_speed = 0; 5756 5757 if (t4_autoneg == 0) 5758 lc->requested_aneg = AUTONEG_DISABLE; 5759 else if (t4_autoneg == 1) 5760 lc->requested_aneg = AUTONEG_ENABLE; 5761 else 5762 lc->requested_aneg = AUTONEG_AUTO; 5763 5764 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5765 PAUSE_AUTONEG); 5766 5767 if (t4_fec & FEC_AUTO) 5768 lc->requested_fec = FEC_AUTO; 5769 else if (t4_fec == 0) 5770 lc->requested_fec = FEC_NONE; 5771 else { 5772 /* -1 is handled by the FEC_AUTO block above and not here. */ 5773 lc->requested_fec = t4_fec & 5774 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5775 if (lc->requested_fec == 0) 5776 lc->requested_fec = FEC_AUTO; 5777 } 5778 } 5779 5780 /* 5781 * Makes sure that all requested settings comply with what's supported by the 5782 * port. Returns the number of settings that were invalid and had to be fixed. 5783 */ 5784 static int 5785 fixup_link_config(struct port_info *pi) 5786 { 5787 int n = 0; 5788 struct link_config *lc = &pi->link_cfg; 5789 uint32_t fwspeed; 5790 5791 PORT_LOCK_ASSERT_OWNED(pi); 5792 5793 /* Speed (when not autonegotiating) */ 5794 if (lc->requested_speed != 0) { 5795 fwspeed = speed_to_fwcap(lc->requested_speed); 5796 if ((fwspeed & lc->pcaps) == 0) { 5797 n++; 5798 lc->requested_speed = 0; 5799 } 5800 } 5801 5802 /* Link autonegotiation */ 5803 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 5804 lc->requested_aneg == AUTONEG_DISABLE || 5805 lc->requested_aneg == AUTONEG_AUTO); 5806 if (lc->requested_aneg == AUTONEG_ENABLE && 5807 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 5808 n++; 5809 lc->requested_aneg = AUTONEG_AUTO; 5810 } 5811 5812 /* Flow control */ 5813 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 5814 if (lc->requested_fc & PAUSE_TX && 5815 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 5816 n++; 5817 lc->requested_fc &= ~PAUSE_TX; 5818 } 5819 if (lc->requested_fc & PAUSE_RX && 5820 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 5821 n++; 5822 lc->requested_fc &= ~PAUSE_RX; 5823 } 5824 if (!(lc->requested_fc & PAUSE_AUTONEG) && 5825 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 5826 n++; 5827 lc->requested_fc |= PAUSE_AUTONEG; 5828 } 5829 5830 /* FEC */ 5831 if ((lc->requested_fec & FEC_RS && 5832 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 5833 (lc->requested_fec & FEC_BASER_RS && 5834 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 5835 n++; 5836 lc->requested_fec = FEC_AUTO; 5837 } 5838 5839 return (n); 5840 } 5841 5842 /* 5843 * Apply the requested L1 settings, which are expected to be valid, to the 5844 * hardware. 5845 */ 5846 static int 5847 apply_link_config(struct port_info *pi) 5848 { 5849 struct adapter *sc = pi->adapter; 5850 struct link_config *lc = &pi->link_cfg; 5851 int rc; 5852 5853 #ifdef INVARIANTS 5854 ASSERT_SYNCHRONIZED_OP(sc); 5855 PORT_LOCK_ASSERT_OWNED(pi); 5856 5857 if (lc->requested_aneg == AUTONEG_ENABLE) 5858 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 5859 if (!(lc->requested_fc & PAUSE_AUTONEG)) 5860 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 5861 if (lc->requested_fc & PAUSE_TX) 5862 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 5863 if (lc->requested_fc & PAUSE_RX) 5864 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 5865 if (lc->requested_fec & FEC_RS) 5866 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 5867 if (lc->requested_fec & FEC_BASER_RS) 5868 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 5869 #endif 5870 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 5871 if (rc != 0) { 5872 /* Don't complain if the VF driver gets back an EPERM. */ 5873 if (!(sc->flags & IS_VF) || rc != FW_EPERM) 5874 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 5875 } else { 5876 /* 5877 * An L1_CFG will almost always result in a link-change event if 5878 * the link is up, and the driver will refresh the actual 5879 * fec/fc/etc. when the notification is processed. If the link 5880 * is down then the actual settings are meaningless. 5881 * 5882 * This takes care of the case where a change in the L1 settings 5883 * may not result in a notification. 5884 */ 5885 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 5886 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 5887 } 5888 return (rc); 5889 } 5890 5891 #define FW_MAC_EXACT_CHUNK 7 5892 struct mcaddr_ctx { 5893 struct ifnet *ifp; 5894 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 5895 uint64_t hash; 5896 int i; 5897 int del; 5898 int rc; 5899 }; 5900 5901 static u_int 5902 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 5903 { 5904 struct mcaddr_ctx *ctx = arg; 5905 struct vi_info *vi = ctx->ifp->if_softc; 5906 struct port_info *pi = vi->pi; 5907 struct adapter *sc = pi->adapter; 5908 5909 if (ctx->rc < 0) 5910 return (0); 5911 5912 ctx->mcaddr[ctx->i] = LLADDR(sdl); 5913 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 5914 ctx->i++; 5915 5916 if (ctx->i == FW_MAC_EXACT_CHUNK) { 5917 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 5918 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 5919 if (ctx->rc < 0) { 5920 int j; 5921 5922 for (j = 0; j < ctx->i; j++) { 5923 if_printf(ctx->ifp, 5924 "failed to add mc address" 5925 " %02x:%02x:%02x:" 5926 "%02x:%02x:%02x rc=%d\n", 5927 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 5928 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 5929 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 5930 -ctx->rc); 5931 } 5932 return (0); 5933 } 5934 ctx->del = 0; 5935 ctx->i = 0; 5936 } 5937 5938 return (1); 5939 } 5940 5941 /* 5942 * Program the port's XGMAC based on parameters in ifnet. The caller also 5943 * indicates which parameters should be programmed (the rest are left alone). 5944 */ 5945 int 5946 update_mac_settings(struct ifnet *ifp, int flags) 5947 { 5948 int rc = 0; 5949 struct vi_info *vi = ifp->if_softc; 5950 struct port_info *pi = vi->pi; 5951 struct adapter *sc = pi->adapter; 5952 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 5953 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 5954 5955 ASSERT_SYNCHRONIZED_OP(sc); 5956 KASSERT(flags, ("%s: not told what to update.", __func__)); 5957 5958 if (flags & XGMAC_MTU) 5959 mtu = ifp->if_mtu; 5960 5961 if (flags & XGMAC_PROMISC) 5962 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 5963 5964 if (flags & XGMAC_ALLMULTI) 5965 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 5966 5967 if (flags & XGMAC_VLANEX) 5968 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 5969 5970 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 5971 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 5972 allmulti, 1, vlanex, false); 5973 if (rc) { 5974 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 5975 rc); 5976 return (rc); 5977 } 5978 } 5979 5980 if (flags & XGMAC_UCADDR) { 5981 uint8_t ucaddr[ETHER_ADDR_LEN]; 5982 5983 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 5984 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 5985 ucaddr, true, &vi->smt_idx); 5986 if (rc < 0) { 5987 rc = -rc; 5988 if_printf(ifp, "change_mac failed: %d\n", rc); 5989 return (rc); 5990 } else { 5991 vi->xact_addr_filt = rc; 5992 rc = 0; 5993 } 5994 } 5995 5996 if (flags & XGMAC_MCADDRS) { 5997 struct epoch_tracker et; 5998 struct mcaddr_ctx ctx; 5999 int j; 6000 6001 ctx.ifp = ifp; 6002 ctx.hash = 0; 6003 ctx.i = 0; 6004 ctx.del = 1; 6005 ctx.rc = 0; 6006 /* 6007 * Unlike other drivers, we accumulate list of pointers into 6008 * interface address lists and we need to keep it safe even 6009 * after if_foreach_llmaddr() returns, thus we must enter the 6010 * network epoch. 6011 */ 6012 NET_EPOCH_ENTER(et); 6013 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6014 if (ctx.rc < 0) { 6015 NET_EPOCH_EXIT(et); 6016 rc = -ctx.rc; 6017 return (rc); 6018 } 6019 if (ctx.i > 0) { 6020 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6021 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6022 NET_EPOCH_EXIT(et); 6023 if (rc < 0) { 6024 rc = -rc; 6025 for (j = 0; j < ctx.i; j++) { 6026 if_printf(ifp, 6027 "failed to add mcast address" 6028 " %02x:%02x:%02x:" 6029 "%02x:%02x:%02x rc=%d\n", 6030 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6031 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6032 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6033 rc); 6034 } 6035 return (rc); 6036 } 6037 ctx.del = 0; 6038 } else 6039 NET_EPOCH_EXIT(et); 6040 6041 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6042 if (rc != 0) 6043 if_printf(ifp, "failed to set mcast address hash: %d\n", 6044 rc); 6045 if (ctx.del == 0) { 6046 /* We clobbered the VXLAN entry if there was one. */ 6047 pi->vxlan_tcam_entry = false; 6048 } 6049 } 6050 6051 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6052 pi->vxlan_tcam_entry == false) { 6053 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6054 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6055 true); 6056 if (rc < 0) { 6057 rc = -rc; 6058 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6059 rc); 6060 } else { 6061 MPASS(rc == sc->rawf_base + pi->port_id); 6062 rc = 0; 6063 pi->vxlan_tcam_entry = true; 6064 } 6065 } 6066 6067 return (rc); 6068 } 6069 6070 /* 6071 * {begin|end}_synchronized_op must be called from the same thread. 6072 */ 6073 int 6074 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6075 char *wmesg) 6076 { 6077 int rc, pri; 6078 6079 #ifdef WITNESS 6080 /* the caller thinks it's ok to sleep, but is it really? */ 6081 if (flags & SLEEP_OK) 6082 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6083 "begin_synchronized_op"); 6084 #endif 6085 6086 if (INTR_OK) 6087 pri = PCATCH; 6088 else 6089 pri = 0; 6090 6091 ADAPTER_LOCK(sc); 6092 for (;;) { 6093 6094 if (vi && IS_DOOMED(vi)) { 6095 rc = ENXIO; 6096 goto done; 6097 } 6098 6099 if (!IS_BUSY(sc)) { 6100 rc = 0; 6101 break; 6102 } 6103 6104 if (!(flags & SLEEP_OK)) { 6105 rc = EBUSY; 6106 goto done; 6107 } 6108 6109 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6110 rc = EINTR; 6111 goto done; 6112 } 6113 } 6114 6115 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6116 SET_BUSY(sc); 6117 #ifdef INVARIANTS 6118 sc->last_op = wmesg; 6119 sc->last_op_thr = curthread; 6120 sc->last_op_flags = flags; 6121 #endif 6122 6123 done: 6124 if (!(flags & HOLD_LOCK) || rc) 6125 ADAPTER_UNLOCK(sc); 6126 6127 return (rc); 6128 } 6129 6130 /* 6131 * Tell if_ioctl and if_init that the VI is going away. This is 6132 * special variant of begin_synchronized_op and must be paired with a 6133 * call to end_synchronized_op. 6134 */ 6135 void 6136 doom_vi(struct adapter *sc, struct vi_info *vi) 6137 { 6138 6139 ADAPTER_LOCK(sc); 6140 SET_DOOMED(vi); 6141 wakeup(&sc->flags); 6142 while (IS_BUSY(sc)) 6143 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6144 SET_BUSY(sc); 6145 #ifdef INVARIANTS 6146 sc->last_op = "t4detach"; 6147 sc->last_op_thr = curthread; 6148 sc->last_op_flags = 0; 6149 #endif 6150 ADAPTER_UNLOCK(sc); 6151 } 6152 6153 /* 6154 * {begin|end}_synchronized_op must be called from the same thread. 6155 */ 6156 void 6157 end_synchronized_op(struct adapter *sc, int flags) 6158 { 6159 6160 if (flags & LOCK_HELD) 6161 ADAPTER_LOCK_ASSERT_OWNED(sc); 6162 else 6163 ADAPTER_LOCK(sc); 6164 6165 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6166 CLR_BUSY(sc); 6167 wakeup(&sc->flags); 6168 ADAPTER_UNLOCK(sc); 6169 } 6170 6171 static int 6172 cxgbe_init_synchronized(struct vi_info *vi) 6173 { 6174 struct port_info *pi = vi->pi; 6175 struct adapter *sc = pi->adapter; 6176 struct ifnet *ifp = vi->ifp; 6177 int rc = 0, i; 6178 struct sge_txq *txq; 6179 6180 ASSERT_SYNCHRONIZED_OP(sc); 6181 6182 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6183 return (0); /* already running */ 6184 6185 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6186 return (rc); /* error message displayed already */ 6187 6188 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6189 return (rc); /* error message displayed already */ 6190 6191 rc = update_mac_settings(ifp, XGMAC_ALL); 6192 if (rc) 6193 goto done; /* error message displayed already */ 6194 6195 PORT_LOCK(pi); 6196 if (pi->up_vis == 0) { 6197 t4_update_port_info(pi); 6198 fixup_link_config(pi); 6199 build_medialist(pi); 6200 apply_link_config(pi); 6201 } 6202 6203 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6204 if (rc != 0) { 6205 if_printf(ifp, "enable_vi failed: %d\n", rc); 6206 PORT_UNLOCK(pi); 6207 goto done; 6208 } 6209 6210 /* 6211 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6212 * if this changes. 6213 */ 6214 6215 for_each_txq(vi, i, txq) { 6216 TXQ_LOCK(txq); 6217 txq->eq.flags |= EQ_ENABLED; 6218 TXQ_UNLOCK(txq); 6219 } 6220 6221 /* 6222 * The first iq of the first port to come up is used for tracing. 6223 */ 6224 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6225 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6226 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6227 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6228 V_QUEUENUMBER(sc->traceq)); 6229 pi->flags |= HAS_TRACEQ; 6230 } 6231 6232 /* all ok */ 6233 pi->up_vis++; 6234 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6235 if (pi->link_cfg.link_ok) 6236 t4_os_link_changed(pi); 6237 PORT_UNLOCK(pi); 6238 6239 mtx_lock(&vi->tick_mtx); 6240 if (ifp->if_get_counter == vi_get_counter) 6241 callout_reset(&vi->tick, hz, vi_tick, vi); 6242 else 6243 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6244 mtx_unlock(&vi->tick_mtx); 6245 done: 6246 if (rc != 0) 6247 cxgbe_uninit_synchronized(vi); 6248 6249 return (rc); 6250 } 6251 6252 /* 6253 * Idempotent. 6254 */ 6255 static int 6256 cxgbe_uninit_synchronized(struct vi_info *vi) 6257 { 6258 struct port_info *pi = vi->pi; 6259 struct adapter *sc = pi->adapter; 6260 struct ifnet *ifp = vi->ifp; 6261 int rc, i; 6262 struct sge_txq *txq; 6263 6264 ASSERT_SYNCHRONIZED_OP(sc); 6265 6266 if (!(vi->flags & VI_INIT_DONE)) { 6267 if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6268 KASSERT(0, ("uninited VI is running")); 6269 if_printf(ifp, "uninited VI with running ifnet. " 6270 "vi->flags 0x%016lx, if_flags 0x%08x, " 6271 "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags, 6272 ifp->if_drv_flags); 6273 } 6274 return (0); 6275 } 6276 6277 /* 6278 * Disable the VI so that all its data in either direction is discarded 6279 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6280 * tick) intact as the TP can deliver negative advice or data that it's 6281 * holding in its RAM (for an offloaded connection) even after the VI is 6282 * disabled. 6283 */ 6284 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6285 if (rc) { 6286 if_printf(ifp, "disable_vi failed: %d\n", rc); 6287 return (rc); 6288 } 6289 6290 for_each_txq(vi, i, txq) { 6291 TXQ_LOCK(txq); 6292 txq->eq.flags &= ~EQ_ENABLED; 6293 TXQ_UNLOCK(txq); 6294 } 6295 6296 mtx_lock(&vi->tick_mtx); 6297 callout_stop(&vi->tick); 6298 mtx_unlock(&vi->tick_mtx); 6299 6300 PORT_LOCK(pi); 6301 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6302 PORT_UNLOCK(pi); 6303 return (0); 6304 } 6305 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 6306 pi->up_vis--; 6307 if (pi->up_vis > 0) { 6308 PORT_UNLOCK(pi); 6309 return (0); 6310 } 6311 6312 pi->link_cfg.link_ok = false; 6313 pi->link_cfg.speed = 0; 6314 pi->link_cfg.link_down_rc = 255; 6315 t4_os_link_changed(pi); 6316 PORT_UNLOCK(pi); 6317 6318 return (0); 6319 } 6320 6321 /* 6322 * It is ok for this function to fail midway and return right away. t4_detach 6323 * will walk the entire sc->irq list and clean up whatever is valid. 6324 */ 6325 int 6326 t4_setup_intr_handlers(struct adapter *sc) 6327 { 6328 int rc, rid, p, q, v; 6329 char s[8]; 6330 struct irq *irq; 6331 struct port_info *pi; 6332 struct vi_info *vi; 6333 struct sge *sge = &sc->sge; 6334 struct sge_rxq *rxq; 6335 #ifdef TCP_OFFLOAD 6336 struct sge_ofld_rxq *ofld_rxq; 6337 #endif 6338 #ifdef DEV_NETMAP 6339 struct sge_nm_rxq *nm_rxq; 6340 #endif 6341 #ifdef RSS 6342 int nbuckets = rss_getnumbuckets(); 6343 #endif 6344 6345 /* 6346 * Setup interrupts. 6347 */ 6348 irq = &sc->irq[0]; 6349 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6350 if (forwarding_intr_to_fwq(sc)) 6351 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6352 6353 /* Multiple interrupts. */ 6354 if (sc->flags & IS_VF) 6355 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6356 ("%s: too few intr.", __func__)); 6357 else 6358 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6359 ("%s: too few intr.", __func__)); 6360 6361 /* The first one is always error intr on PFs */ 6362 if (!(sc->flags & IS_VF)) { 6363 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6364 if (rc != 0) 6365 return (rc); 6366 irq++; 6367 rid++; 6368 } 6369 6370 /* The second one is always the firmware event queue (first on VFs) */ 6371 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6372 if (rc != 0) 6373 return (rc); 6374 irq++; 6375 rid++; 6376 6377 for_each_port(sc, p) { 6378 pi = sc->port[p]; 6379 for_each_vi(pi, v, vi) { 6380 vi->first_intr = rid - 1; 6381 6382 if (vi->nnmrxq > 0) { 6383 int n = max(vi->nrxq, vi->nnmrxq); 6384 6385 rxq = &sge->rxq[vi->first_rxq]; 6386 #ifdef DEV_NETMAP 6387 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6388 #endif 6389 for (q = 0; q < n; q++) { 6390 snprintf(s, sizeof(s), "%x%c%x", p, 6391 'a' + v, q); 6392 if (q < vi->nrxq) 6393 irq->rxq = rxq++; 6394 #ifdef DEV_NETMAP 6395 if (q < vi->nnmrxq) 6396 irq->nm_rxq = nm_rxq++; 6397 6398 if (irq->nm_rxq != NULL && 6399 irq->rxq == NULL) { 6400 /* Netmap rx only */ 6401 rc = t4_alloc_irq(sc, irq, rid, 6402 t4_nm_intr, irq->nm_rxq, s); 6403 } 6404 if (irq->nm_rxq != NULL && 6405 irq->rxq != NULL) { 6406 /* NIC and Netmap rx */ 6407 rc = t4_alloc_irq(sc, irq, rid, 6408 t4_vi_intr, irq, s); 6409 } 6410 #endif 6411 if (irq->rxq != NULL && 6412 irq->nm_rxq == NULL) { 6413 /* NIC rx only */ 6414 rc = t4_alloc_irq(sc, irq, rid, 6415 t4_intr, irq->rxq, s); 6416 } 6417 if (rc != 0) 6418 return (rc); 6419 #ifdef RSS 6420 if (q < vi->nrxq) { 6421 bus_bind_intr(sc->dev, irq->res, 6422 rss_getcpu(q % nbuckets)); 6423 } 6424 #endif 6425 irq++; 6426 rid++; 6427 vi->nintr++; 6428 } 6429 } else { 6430 for_each_rxq(vi, q, rxq) { 6431 snprintf(s, sizeof(s), "%x%c%x", p, 6432 'a' + v, q); 6433 rc = t4_alloc_irq(sc, irq, rid, 6434 t4_intr, rxq, s); 6435 if (rc != 0) 6436 return (rc); 6437 #ifdef RSS 6438 bus_bind_intr(sc->dev, irq->res, 6439 rss_getcpu(q % nbuckets)); 6440 #endif 6441 irq++; 6442 rid++; 6443 vi->nintr++; 6444 } 6445 } 6446 #ifdef TCP_OFFLOAD 6447 for_each_ofld_rxq(vi, q, ofld_rxq) { 6448 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6449 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6450 ofld_rxq, s); 6451 if (rc != 0) 6452 return (rc); 6453 irq++; 6454 rid++; 6455 vi->nintr++; 6456 } 6457 #endif 6458 } 6459 } 6460 MPASS(irq == &sc->irq[sc->intr_count]); 6461 6462 return (0); 6463 } 6464 6465 static void 6466 write_global_rss_key(struct adapter *sc) 6467 { 6468 #ifdef RSS 6469 int i; 6470 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6471 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6472 6473 CTASSERT(RSS_KEYSIZE == 40); 6474 6475 rss_getkey((void *)&raw_rss_key[0]); 6476 for (i = 0; i < nitems(rss_key); i++) { 6477 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6478 } 6479 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6480 #endif 6481 } 6482 6483 /* 6484 * Idempotent. 6485 */ 6486 static int 6487 adapter_full_init(struct adapter *sc) 6488 { 6489 int rc, i; 6490 6491 ASSERT_SYNCHRONIZED_OP(sc); 6492 6493 if (!(sc->flags & ADAP_SYSCTL_CTX)) { 6494 sysctl_ctx_init(&sc->ctx); 6495 sc->flags |= ADAP_SYSCTL_CTX; 6496 } 6497 6498 /* 6499 * queues that belong to the adapter (not any particular port). 6500 */ 6501 rc = t4_setup_adapter_queues(sc); 6502 if (rc != 0) 6503 return (rc); 6504 6505 for (i = 0; i < nitems(sc->tq); i++) { 6506 if (sc->tq[i] != NULL) 6507 continue; 6508 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6509 taskqueue_thread_enqueue, &sc->tq[i]); 6510 if (sc->tq[i] == NULL) { 6511 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6512 return (ENOMEM); 6513 } 6514 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6515 device_get_nameunit(sc->dev), i); 6516 } 6517 6518 if (!(sc->flags & IS_VF)) { 6519 write_global_rss_key(sc); 6520 t4_intr_enable(sc); 6521 } 6522 #ifdef KERN_TLS 6523 if (is_ktls(sc)) 6524 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 6525 C_HARDCLOCK); 6526 #endif 6527 return (0); 6528 } 6529 6530 int 6531 adapter_init(struct adapter *sc) 6532 { 6533 int rc; 6534 6535 ASSERT_SYNCHRONIZED_OP(sc); 6536 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6537 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6538 ("%s: FULL_INIT_DONE already", __func__)); 6539 6540 rc = adapter_full_init(sc); 6541 if (rc != 0) 6542 adapter_full_uninit(sc); 6543 else 6544 sc->flags |= FULL_INIT_DONE; 6545 6546 return (rc); 6547 } 6548 6549 /* 6550 * Idempotent. 6551 */ 6552 static void 6553 adapter_full_uninit(struct adapter *sc) 6554 { 6555 int i; 6556 6557 /* Do this before freeing the adapter queues. */ 6558 if (sc->flags & ADAP_SYSCTL_CTX) { 6559 sysctl_ctx_free(&sc->ctx); 6560 sc->flags &= ~ADAP_SYSCTL_CTX; 6561 } 6562 6563 t4_teardown_adapter_queues(sc); 6564 6565 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 6566 taskqueue_free(sc->tq[i]); 6567 sc->tq[i] = NULL; 6568 } 6569 6570 sc->flags &= ~FULL_INIT_DONE; 6571 } 6572 6573 #ifdef RSS 6574 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6575 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6576 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6577 RSS_HASHTYPE_RSS_UDP_IPV6) 6578 6579 /* Translates kernel hash types to hardware. */ 6580 static int 6581 hashconfig_to_hashen(int hashconfig) 6582 { 6583 int hashen = 0; 6584 6585 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6586 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6587 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6588 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6589 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6590 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6591 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6592 } 6593 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6594 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6595 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6596 } 6597 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6598 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6599 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6600 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6601 6602 return (hashen); 6603 } 6604 6605 /* Translates hardware hash types to kernel. */ 6606 static int 6607 hashen_to_hashconfig(int hashen) 6608 { 6609 int hashconfig = 0; 6610 6611 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6612 /* 6613 * If UDP hashing was enabled it must have been enabled for 6614 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6615 * enabling any 4-tuple hash is nonsense configuration. 6616 */ 6617 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6618 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6619 6620 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6621 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6622 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6623 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6624 } 6625 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6626 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6627 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6628 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6629 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6630 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6631 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6632 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6633 6634 return (hashconfig); 6635 } 6636 #endif 6637 6638 /* 6639 * Idempotent. 6640 */ 6641 static int 6642 vi_full_init(struct vi_info *vi) 6643 { 6644 struct adapter *sc = vi->adapter; 6645 struct sge_rxq *rxq; 6646 int rc, i, j; 6647 #ifdef RSS 6648 int nbuckets = rss_getnumbuckets(); 6649 int hashconfig = rss_gethashconfig(); 6650 int extra; 6651 #endif 6652 6653 ASSERT_SYNCHRONIZED_OP(sc); 6654 6655 if (!(vi->flags & VI_SYSCTL_CTX)) { 6656 sysctl_ctx_init(&vi->ctx); 6657 vi->flags |= VI_SYSCTL_CTX; 6658 } 6659 6660 /* 6661 * Allocate tx/rx/fl queues for this VI. 6662 */ 6663 rc = t4_setup_vi_queues(vi); 6664 if (rc != 0) 6665 return (rc); 6666 6667 /* 6668 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6669 */ 6670 if (vi->nrxq > vi->rss_size) { 6671 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6672 "some queues will never receive traffic.\n", vi->nrxq, 6673 vi->rss_size); 6674 } else if (vi->rss_size % vi->nrxq) { 6675 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6676 "expect uneven traffic distribution.\n", vi->nrxq, 6677 vi->rss_size); 6678 } 6679 #ifdef RSS 6680 if (vi->nrxq != nbuckets) { 6681 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6682 "performance will be impacted.\n", vi->nrxq, nbuckets); 6683 } 6684 #endif 6685 if (vi->rss == NULL) 6686 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6687 M_ZERO | M_WAITOK); 6688 for (i = 0; i < vi->rss_size;) { 6689 #ifdef RSS 6690 j = rss_get_indirection_to_bucket(i); 6691 j %= vi->nrxq; 6692 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6693 vi->rss[i++] = rxq->iq.abs_id; 6694 #else 6695 for_each_rxq(vi, j, rxq) { 6696 vi->rss[i++] = rxq->iq.abs_id; 6697 if (i == vi->rss_size) 6698 break; 6699 } 6700 #endif 6701 } 6702 6703 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6704 vi->rss, vi->rss_size); 6705 if (rc != 0) { 6706 CH_ERR(vi, "rss_config failed: %d\n", rc); 6707 return (rc); 6708 } 6709 6710 #ifdef RSS 6711 vi->hashen = hashconfig_to_hashen(hashconfig); 6712 6713 /* 6714 * We may have had to enable some hashes even though the global config 6715 * wants them disabled. This is a potential problem that must be 6716 * reported to the user. 6717 */ 6718 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6719 6720 /* 6721 * If we consider only the supported hash types, then the enabled hashes 6722 * are a superset of the requested hashes. In other words, there cannot 6723 * be any supported hash that was requested but not enabled, but there 6724 * can be hashes that were not requested but had to be enabled. 6725 */ 6726 extra &= SUPPORTED_RSS_HASHTYPES; 6727 MPASS((extra & hashconfig) == 0); 6728 6729 if (extra) { 6730 CH_ALERT(vi, 6731 "global RSS config (0x%x) cannot be accommodated.\n", 6732 hashconfig); 6733 } 6734 if (extra & RSS_HASHTYPE_RSS_IPV4) 6735 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6736 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6737 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6738 if (extra & RSS_HASHTYPE_RSS_IPV6) 6739 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6740 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6741 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6742 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6743 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6744 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6745 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6746 #else 6747 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6748 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6749 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6750 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6751 #endif 6752 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6753 0, 0); 6754 if (rc != 0) { 6755 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6756 return (rc); 6757 } 6758 6759 return (0); 6760 } 6761 6762 int 6763 vi_init(struct vi_info *vi) 6764 { 6765 int rc; 6766 6767 ASSERT_SYNCHRONIZED_OP(vi->adapter); 6768 KASSERT((vi->flags & VI_INIT_DONE) == 0, 6769 ("%s: VI_INIT_DONE already", __func__)); 6770 6771 rc = vi_full_init(vi); 6772 if (rc != 0) 6773 vi_full_uninit(vi); 6774 else 6775 vi->flags |= VI_INIT_DONE; 6776 6777 return (rc); 6778 } 6779 6780 /* 6781 * Idempotent. 6782 */ 6783 static void 6784 vi_full_uninit(struct vi_info *vi) 6785 { 6786 6787 if (vi->flags & VI_INIT_DONE) { 6788 quiesce_vi(vi); 6789 free(vi->rss, M_CXGBE); 6790 free(vi->nm_rss, M_CXGBE); 6791 } 6792 6793 /* Do this before freeing the VI queues. */ 6794 if (vi->flags & VI_SYSCTL_CTX) { 6795 sysctl_ctx_free(&vi->ctx); 6796 vi->flags &= ~VI_SYSCTL_CTX; 6797 } 6798 6799 t4_teardown_vi_queues(vi); 6800 vi->flags &= ~VI_INIT_DONE; 6801 } 6802 6803 static void 6804 quiesce_txq(struct sge_txq *txq) 6805 { 6806 struct sge_eq *eq = &txq->eq; 6807 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 6808 6809 MPASS(eq->flags & EQ_SW_ALLOCATED); 6810 MPASS(!(eq->flags & EQ_ENABLED)); 6811 6812 /* Wait for the mp_ring to empty. */ 6813 while (!mp_ring_is_idle(txq->r)) { 6814 mp_ring_check_drainage(txq->r, 4096); 6815 pause("rquiesce", 1); 6816 } 6817 MPASS(txq->txp.npkt == 0); 6818 6819 if (eq->flags & EQ_HW_ALLOCATED) { 6820 /* 6821 * Hardware is alive and working normally. Wait for it to 6822 * finish and then wait for the driver to catch up and reclaim 6823 * all descriptors. 6824 */ 6825 while (spg->cidx != htobe16(eq->pidx)) 6826 pause("equiesce", 1); 6827 while (eq->cidx != eq->pidx) 6828 pause("dquiesce", 1); 6829 } else { 6830 /* 6831 * Hardware is unavailable. Discard all pending tx and reclaim 6832 * descriptors directly. 6833 */ 6834 TXQ_LOCK(txq); 6835 while (eq->cidx != eq->pidx) { 6836 struct mbuf *m, *nextpkt; 6837 struct tx_sdesc *txsd; 6838 6839 txsd = &txq->sdesc[eq->cidx]; 6840 for (m = txsd->m; m != NULL; m = nextpkt) { 6841 nextpkt = m->m_nextpkt; 6842 m->m_nextpkt = NULL; 6843 m_freem(m); 6844 } 6845 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 6846 } 6847 spg->pidx = spg->cidx = htobe16(eq->cidx); 6848 TXQ_UNLOCK(txq); 6849 } 6850 } 6851 6852 static void 6853 quiesce_wrq(struct sge_wrq *wrq) 6854 { 6855 6856 /* XXXTX */ 6857 } 6858 6859 static void 6860 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 6861 { 6862 /* Synchronize with the interrupt handler */ 6863 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 6864 pause("iqfree", 1); 6865 6866 if (fl != NULL) { 6867 MPASS(iq->flags & IQ_HAS_FL); 6868 6869 mtx_lock(&sc->sfl_lock); 6870 FL_LOCK(fl); 6871 fl->flags |= FL_DOOMED; 6872 FL_UNLOCK(fl); 6873 callout_stop(&sc->sfl_callout); 6874 mtx_unlock(&sc->sfl_lock); 6875 6876 KASSERT((fl->flags & FL_STARVING) == 0, 6877 ("%s: still starving", __func__)); 6878 6879 /* Release all buffers if hardware is no longer available. */ 6880 if (!(iq->flags & IQ_HW_ALLOCATED)) 6881 free_fl_buffers(sc, fl); 6882 } 6883 } 6884 6885 /* 6886 * Wait for all activity on all the queues of the VI to complete. It is assumed 6887 * that no new work is being enqueued by the hardware or the driver. That part 6888 * should be arranged before calling this function. 6889 */ 6890 static void 6891 quiesce_vi(struct vi_info *vi) 6892 { 6893 int i; 6894 struct adapter *sc = vi->adapter; 6895 struct sge_rxq *rxq; 6896 struct sge_txq *txq; 6897 #ifdef TCP_OFFLOAD 6898 struct sge_ofld_rxq *ofld_rxq; 6899 #endif 6900 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6901 struct sge_ofld_txq *ofld_txq; 6902 #endif 6903 6904 if (!(vi->flags & VI_INIT_DONE)) 6905 return; 6906 6907 for_each_txq(vi, i, txq) { 6908 quiesce_txq(txq); 6909 } 6910 6911 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6912 for_each_ofld_txq(vi, i, ofld_txq) { 6913 quiesce_wrq(&ofld_txq->wrq); 6914 } 6915 #endif 6916 6917 for_each_rxq(vi, i, rxq) { 6918 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 6919 } 6920 6921 #ifdef TCP_OFFLOAD 6922 for_each_ofld_rxq(vi, i, ofld_rxq) { 6923 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 6924 } 6925 #endif 6926 } 6927 6928 static int 6929 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 6930 driver_intr_t *handler, void *arg, char *name) 6931 { 6932 int rc; 6933 6934 irq->rid = rid; 6935 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 6936 RF_SHAREABLE | RF_ACTIVE); 6937 if (irq->res == NULL) { 6938 device_printf(sc->dev, 6939 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 6940 return (ENOMEM); 6941 } 6942 6943 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 6944 NULL, handler, arg, &irq->tag); 6945 if (rc != 0) { 6946 device_printf(sc->dev, 6947 "failed to setup interrupt for rid %d, name %s: %d\n", 6948 rid, name, rc); 6949 } else if (name) 6950 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 6951 6952 return (rc); 6953 } 6954 6955 static int 6956 t4_free_irq(struct adapter *sc, struct irq *irq) 6957 { 6958 if (irq->tag) 6959 bus_teardown_intr(sc->dev, irq->res, irq->tag); 6960 if (irq->res) 6961 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 6962 6963 bzero(irq, sizeof(*irq)); 6964 6965 return (0); 6966 } 6967 6968 static void 6969 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 6970 { 6971 6972 regs->version = chip_id(sc) | chip_rev(sc) << 10; 6973 t4_get_regs(sc, buf, regs->len); 6974 } 6975 6976 #define A_PL_INDIR_CMD 0x1f8 6977 6978 #define S_PL_AUTOINC 31 6979 #define M_PL_AUTOINC 0x1U 6980 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 6981 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 6982 6983 #define S_PL_VFID 20 6984 #define M_PL_VFID 0xffU 6985 #define V_PL_VFID(x) ((x) << S_PL_VFID) 6986 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 6987 6988 #define S_PL_ADDR 0 6989 #define M_PL_ADDR 0xfffffU 6990 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 6991 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 6992 6993 #define A_PL_INDIR_DATA 0x1fc 6994 6995 static uint64_t 6996 read_vf_stat(struct adapter *sc, u_int vin, int reg) 6997 { 6998 u32 stats[2]; 6999 7000 if (sc->flags & IS_VF) { 7001 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7002 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7003 } else { 7004 mtx_assert(&sc->reg_lock, MA_OWNED); 7005 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7006 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7007 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7008 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7009 } 7010 return (((uint64_t)stats[1]) << 32 | stats[0]); 7011 } 7012 7013 static void 7014 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7015 { 7016 7017 #define GET_STAT(name) \ 7018 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7019 7020 if (!(sc->flags & IS_VF)) 7021 mtx_lock(&sc->reg_lock); 7022 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7023 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7024 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7025 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7026 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7027 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7028 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7029 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7030 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7031 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7032 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7033 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7034 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7035 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7036 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7037 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7038 if (!(sc->flags & IS_VF)) 7039 mtx_unlock(&sc->reg_lock); 7040 7041 #undef GET_STAT 7042 } 7043 7044 static void 7045 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7046 { 7047 int reg; 7048 7049 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7050 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7051 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7052 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7053 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7054 } 7055 7056 static void 7057 vi_refresh_stats(struct vi_info *vi) 7058 { 7059 struct timeval tv; 7060 const struct timeval interval = {0, 250000}; /* 250ms */ 7061 7062 mtx_assert(&vi->tick_mtx, MA_OWNED); 7063 7064 if (!(vi->flags & VI_INIT_DONE) || vi->flags & VI_SKIP_STATS) 7065 return; 7066 7067 getmicrotime(&tv); 7068 timevalsub(&tv, &interval); 7069 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7070 return; 7071 7072 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7073 getmicrotime(&vi->last_refreshed); 7074 } 7075 7076 static void 7077 cxgbe_refresh_stats(struct vi_info *vi) 7078 { 7079 u_int i, v, tnl_cong_drops, chan_map; 7080 struct timeval tv; 7081 const struct timeval interval = {0, 250000}; /* 250ms */ 7082 struct port_info *pi; 7083 struct adapter *sc; 7084 7085 mtx_assert(&vi->tick_mtx, MA_OWNED); 7086 7087 if (vi->flags & VI_SKIP_STATS) 7088 return; 7089 7090 getmicrotime(&tv); 7091 timevalsub(&tv, &interval); 7092 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7093 return; 7094 7095 pi = vi->pi; 7096 sc = vi->adapter; 7097 tnl_cong_drops = 0; 7098 t4_get_port_stats(sc, pi->tx_chan, &pi->stats); 7099 chan_map = pi->rx_e_chan_map; 7100 while (chan_map) { 7101 i = ffs(chan_map) - 1; 7102 mtx_lock(&sc->reg_lock); 7103 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7104 A_TP_MIB_TNL_CNG_DROP_0 + i); 7105 mtx_unlock(&sc->reg_lock); 7106 tnl_cong_drops += v; 7107 chan_map &= ~(1 << i); 7108 } 7109 pi->tnl_cong_drops = tnl_cong_drops; 7110 getmicrotime(&vi->last_refreshed); 7111 } 7112 7113 static void 7114 cxgbe_tick(void *arg) 7115 { 7116 struct vi_info *vi = arg; 7117 7118 MPASS(IS_MAIN_VI(vi)); 7119 mtx_assert(&vi->tick_mtx, MA_OWNED); 7120 7121 cxgbe_refresh_stats(vi); 7122 callout_schedule(&vi->tick, hz); 7123 } 7124 7125 static void 7126 vi_tick(void *arg) 7127 { 7128 struct vi_info *vi = arg; 7129 7130 mtx_assert(&vi->tick_mtx, MA_OWNED); 7131 7132 vi_refresh_stats(vi); 7133 callout_schedule(&vi->tick, hz); 7134 } 7135 7136 /* 7137 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7138 */ 7139 static char *caps_decoder[] = { 7140 "\20\001IPMI\002NCSI", /* 0: NBM */ 7141 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7142 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7143 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7144 "\006HASHFILTER\007ETHOFLD", 7145 "\20\001TOE", /* 4: TOE */ 7146 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7147 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7148 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7149 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7150 "\007T10DIF" 7151 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7152 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7153 "\004TLS_HW", 7154 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7155 "\004PO_INITIATOR\005PO_TARGET", 7156 }; 7157 7158 void 7159 t4_sysctls(struct adapter *sc) 7160 { 7161 struct sysctl_ctx_list *ctx; 7162 struct sysctl_oid *oid; 7163 struct sysctl_oid_list *children, *c0; 7164 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7165 7166 ctx = device_get_sysctl_ctx(sc->dev); 7167 7168 /* 7169 * dev.t4nex.X. 7170 */ 7171 oid = device_get_sysctl_tree(sc->dev); 7172 c0 = children = SYSCTL_CHILDREN(oid); 7173 7174 sc->sc_do_rxcopy = 1; 7175 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7176 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7177 7178 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7179 sc->params.nports, "# of ports"); 7180 7181 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7182 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7183 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7184 "available doorbells"); 7185 7186 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7187 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7188 7189 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7190 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7191 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7192 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7193 7194 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7195 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7196 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7197 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7198 7199 t4_sge_sysctls(sc, ctx, children); 7200 7201 sc->lro_timeout = 100; 7202 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7203 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7204 7205 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7206 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7207 7208 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7209 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7210 7211 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7212 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7213 7214 if (sc->flags & IS_VF) 7215 return; 7216 7217 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7218 NULL, chip_rev(sc), "chip hardware revision"); 7219 7220 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7221 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7222 7223 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7224 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7225 7226 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7227 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7228 7229 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7230 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7231 7232 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7233 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7234 7235 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7236 sc->er_version, 0, "expansion ROM version"); 7237 7238 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7239 sc->bs_version, 0, "bootstrap firmware version"); 7240 7241 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7242 NULL, sc->params.scfg_vers, "serial config version"); 7243 7244 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7245 NULL, sc->params.vpd_vers, "VPD version"); 7246 7247 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7248 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7249 7250 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7251 sc->cfcsum, "config file checksum"); 7252 7253 #define SYSCTL_CAP(name, n, text) \ 7254 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7255 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7256 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7257 "available " text " capabilities") 7258 7259 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7260 SYSCTL_CAP(linkcaps, 1, "link"); 7261 SYSCTL_CAP(switchcaps, 2, "switch"); 7262 SYSCTL_CAP(niccaps, 3, "NIC"); 7263 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7264 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7265 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7266 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7267 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7268 #undef SYSCTL_CAP 7269 7270 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7271 NULL, sc->tids.nftids, "number of filters"); 7272 7273 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7274 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7275 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7276 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7277 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7278 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7279 7280 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7281 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7282 sysctl_loadavg, "A", 7283 "microprocessor load averages (debug firmwares only)"); 7284 7285 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7286 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7287 "I", "core Vdd (in mV)"); 7288 7289 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7290 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7291 sysctl_cpus, "A", "local CPUs"); 7292 7293 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7294 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7295 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7296 7297 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7298 &sc->swintr, 0, "software triggered interrupts"); 7299 7300 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7301 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7302 "1 = reset adapter, 0 = zero reset counter"); 7303 7304 /* 7305 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7306 */ 7307 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7308 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7309 "logs and miscellaneous information"); 7310 children = SYSCTL_CHILDREN(oid); 7311 7312 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7313 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7314 sysctl_cctrl, "A", "congestion control"); 7315 7316 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7317 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7318 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7319 7320 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7321 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7322 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7323 7324 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7325 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7326 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7327 7328 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7329 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7330 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7331 7332 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7333 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7334 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7335 7336 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7337 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7338 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7339 7340 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7341 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7342 sysctl_cim_la, "A", "CIM logic analyzer"); 7343 7344 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7345 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7346 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7347 7348 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7349 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7350 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7351 7352 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7353 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7354 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7355 7356 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7357 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7358 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7359 7360 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7361 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7362 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7363 7364 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7365 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7366 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7367 7368 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7369 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7370 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7371 7372 if (chip_id(sc) > CHELSIO_T4) { 7373 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7374 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7375 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7376 "CIM OBQ 6 (SGE0-RX)"); 7377 7378 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7379 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7380 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7381 "CIM OBQ 7 (SGE1-RX)"); 7382 } 7383 7384 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7385 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7386 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7387 7388 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7389 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7390 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7391 7392 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7393 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7394 sysctl_cpl_stats, "A", "CPL statistics"); 7395 7396 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7397 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7398 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7399 7400 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7401 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7402 sysctl_tid_stats, "A", "tid stats"); 7403 7404 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7405 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7406 sysctl_devlog, "A", "firmware's device log"); 7407 7408 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7409 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7410 sysctl_fcoe_stats, "A", "FCoE statistics"); 7411 7412 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7413 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7414 sysctl_hw_sched, "A", "hardware scheduler "); 7415 7416 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7417 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7418 sysctl_l2t, "A", "hardware L2 table"); 7419 7420 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7421 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7422 sysctl_smt, "A", "hardware source MAC table"); 7423 7424 #ifdef INET6 7425 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7426 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7427 sysctl_clip, "A", "active CLIP table entries"); 7428 #endif 7429 7430 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7431 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7432 sysctl_lb_stats, "A", "loopback statistics"); 7433 7434 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7435 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7436 sysctl_meminfo, "A", "memory regions"); 7437 7438 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7439 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7440 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7441 "A", "MPS TCAM entries"); 7442 7443 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7444 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7445 sysctl_path_mtus, "A", "path MTUs"); 7446 7447 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7448 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7449 sysctl_pm_stats, "A", "PM statistics"); 7450 7451 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7452 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7453 sysctl_rdma_stats, "A", "RDMA statistics"); 7454 7455 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7456 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7457 sysctl_tcp_stats, "A", "TCP statistics"); 7458 7459 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7460 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7461 sysctl_tids, "A", "TID information"); 7462 7463 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7464 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7465 sysctl_tp_err_stats, "A", "TP error statistics"); 7466 7467 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7468 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7469 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7470 7471 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7472 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7473 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7474 7475 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7476 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7477 sysctl_tp_la, "A", "TP logic analyzer"); 7478 7479 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7480 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7481 sysctl_tx_rate, "A", "Tx rate"); 7482 7483 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7484 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7485 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7486 7487 if (chip_id(sc) >= CHELSIO_T5) { 7488 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7489 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7490 sysctl_wcwr_stats, "A", "write combined work requests"); 7491 } 7492 7493 #ifdef KERN_TLS 7494 if (is_ktls(sc)) { 7495 /* 7496 * dev.t4nex.0.tls. 7497 */ 7498 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7499 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7500 children = SYSCTL_CHILDREN(oid); 7501 7502 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7503 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7504 "keys in work requests (1) or attempt to store TLS keys " 7505 "in card memory."); 7506 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7507 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to combine " 7508 "TCB field updates with TLS record work requests."); 7509 } 7510 #endif 7511 7512 #ifdef TCP_OFFLOAD 7513 if (is_offload(sc)) { 7514 int i; 7515 char s[4]; 7516 7517 /* 7518 * dev.t4nex.X.toe. 7519 */ 7520 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7521 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7522 children = SYSCTL_CHILDREN(oid); 7523 7524 sc->tt.cong_algorithm = -1; 7525 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7526 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7527 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7528 "3 = highspeed)"); 7529 7530 sc->tt.sndbuf = -1; 7531 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7532 &sc->tt.sndbuf, 0, "hardware send buffer"); 7533 7534 sc->tt.ddp = 0; 7535 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7536 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7537 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7538 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7539 7540 sc->tt.rx_coalesce = -1; 7541 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7542 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7543 7544 sc->tt.tls = 0; 7545 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7546 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7547 "Inline TLS allowed"); 7548 7549 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports", 7550 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7551 sysctl_tls_rx_ports, "I", 7552 "TCP ports that use inline TLS+TOE RX"); 7553 7554 sc->tt.tls_rx_timeout = t4_toe_tls_rx_timeout; 7555 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_timeout", 7556 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7557 sysctl_tls_rx_timeout, "I", 7558 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 7559 7560 sc->tt.tx_align = -1; 7561 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7562 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7563 7564 sc->tt.tx_zcopy = 0; 7565 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7566 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7567 "Enable zero-copy aio_write(2)"); 7568 7569 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7570 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7571 "cop_managed_offloading", CTLFLAG_RW, 7572 &sc->tt.cop_managed_offloading, 0, 7573 "COP (Connection Offload Policy) controls all TOE offload"); 7574 7575 sc->tt.autorcvbuf_inc = 16 * 1024; 7576 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7577 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7578 "autorcvbuf increment"); 7579 7580 sc->tt.update_hc_on_pmtu_change = 1; 7581 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7582 "update_hc_on_pmtu_change", CTLFLAG_RW, 7583 &sc->tt.update_hc_on_pmtu_change, 0, 7584 "Update hostcache entry if the PMTU changes"); 7585 7586 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7587 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7588 sysctl_tp_tick, "A", "TP timer tick (us)"); 7589 7590 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7591 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7592 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7593 7594 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7595 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7596 sysctl_tp_tick, "A", "DACK tick (us)"); 7597 7598 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7599 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7600 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7601 7602 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7603 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7604 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7605 "Minimum retransmit interval (us)"); 7606 7607 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7608 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7609 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7610 "Maximum retransmit interval (us)"); 7611 7612 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7613 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7614 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7615 "Persist timer min (us)"); 7616 7617 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7618 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7619 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7620 "Persist timer max (us)"); 7621 7622 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7623 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7624 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7625 "Keepalive idle timer (us)"); 7626 7627 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7628 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7629 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7630 "Keepalive interval timer (us)"); 7631 7632 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7633 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7634 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7635 7636 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7637 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7638 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7639 "FINWAIT2 timer (us)"); 7640 7641 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7642 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7643 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7644 "Number of SYN retransmissions before abort"); 7645 7646 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7647 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7648 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7649 "Number of retransmissions before abort"); 7650 7651 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7652 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7653 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7654 "Number of keepalive probes before abort"); 7655 7656 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7657 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7658 "TOE retransmit backoffs"); 7659 children = SYSCTL_CHILDREN(oid); 7660 for (i = 0; i < 16; i++) { 7661 snprintf(s, sizeof(s), "%u", i); 7662 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7663 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7664 i, sysctl_tp_backoff, "IU", 7665 "TOE retransmit backoff"); 7666 } 7667 } 7668 #endif 7669 } 7670 7671 void 7672 vi_sysctls(struct vi_info *vi) 7673 { 7674 struct sysctl_ctx_list *ctx; 7675 struct sysctl_oid *oid; 7676 struct sysctl_oid_list *children; 7677 7678 ctx = device_get_sysctl_ctx(vi->dev); 7679 7680 /* 7681 * dev.v?(cxgbe|cxl).X. 7682 */ 7683 oid = device_get_sysctl_tree(vi->dev); 7684 children = SYSCTL_CHILDREN(oid); 7685 7686 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7687 vi->viid, "VI identifer"); 7688 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7689 &vi->nrxq, 0, "# of rx queues"); 7690 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7691 &vi->ntxq, 0, "# of tx queues"); 7692 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7693 &vi->first_rxq, 0, "index of first rx queue"); 7694 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7695 &vi->first_txq, 0, "index of first tx queue"); 7696 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7697 vi->rss_base, "start of RSS indirection table"); 7698 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7699 vi->rss_size, "size of RSS indirection table"); 7700 7701 if (IS_MAIN_VI(vi)) { 7702 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7703 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7704 sysctl_noflowq, "IU", 7705 "Reserve queue 0 for non-flowid packets"); 7706 } 7707 7708 if (vi->adapter->flags & IS_VF) { 7709 MPASS(vi->flags & TX_USES_VM_WR); 7710 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7711 NULL, 1, "use VM work requests for transmit"); 7712 } else { 7713 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7714 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7715 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7716 } 7717 7718 #ifdef TCP_OFFLOAD 7719 if (vi->nofldrxq != 0) { 7720 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7721 &vi->nofldrxq, 0, 7722 "# of rx queues for offloaded TCP connections"); 7723 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7724 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7725 "index of first TOE rx queue"); 7726 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7727 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7728 sysctl_holdoff_tmr_idx_ofld, "I", 7729 "holdoff timer index for TOE queues"); 7730 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7731 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7732 sysctl_holdoff_pktc_idx_ofld, "I", 7733 "holdoff packet counter index for TOE queues"); 7734 } 7735 #endif 7736 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7737 if (vi->nofldtxq != 0) { 7738 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7739 &vi->nofldtxq, 0, 7740 "# of tx queues for TOE/ETHOFLD"); 7741 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7742 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7743 "index of first TOE/ETHOFLD tx queue"); 7744 } 7745 #endif 7746 #ifdef DEV_NETMAP 7747 if (vi->nnmrxq != 0) { 7748 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7749 &vi->nnmrxq, 0, "# of netmap rx queues"); 7750 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7751 &vi->nnmtxq, 0, "# of netmap tx queues"); 7752 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7753 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7754 "index of first netmap rx queue"); 7755 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7756 CTLFLAG_RD, &vi->first_nm_txq, 0, 7757 "index of first netmap tx queue"); 7758 } 7759 #endif 7760 7761 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 7762 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7763 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 7764 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 7765 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7766 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 7767 7768 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 7769 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7770 sysctl_qsize_rxq, "I", "rx queue size"); 7771 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 7772 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7773 sysctl_qsize_txq, "I", "tx queue size"); 7774 } 7775 7776 static void 7777 cxgbe_sysctls(struct port_info *pi) 7778 { 7779 struct sysctl_ctx_list *ctx; 7780 struct sysctl_oid *oid; 7781 struct sysctl_oid_list *children, *children2; 7782 struct adapter *sc = pi->adapter; 7783 int i; 7784 char name[16]; 7785 static char *tc_flags = {"\20\1USER\2SYNC\3ASYNC\4ERR"}; 7786 7787 ctx = device_get_sysctl_ctx(pi->dev); 7788 7789 /* 7790 * dev.cxgbe.X. 7791 */ 7792 oid = device_get_sysctl_tree(pi->dev); 7793 children = SYSCTL_CHILDREN(oid); 7794 7795 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 7796 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7797 sysctl_linkdnrc, "A", "reason why link is down"); 7798 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 7799 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7800 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7801 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 7802 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 7803 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 7804 sysctl_btphy, "I", "PHY firmware version"); 7805 } 7806 7807 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 7808 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7809 sysctl_pause_settings, "A", 7810 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 7811 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec", 7812 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7813 sysctl_fec, "A", 7814 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 7815 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 7816 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 7817 "FEC recommended by the cable/transceiver"); 7818 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 7819 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7820 sysctl_autoneg, "I", 7821 "autonegotiation (-1 = not supported)"); 7822 7823 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 7824 &pi->link_cfg.pcaps, 0, "port capabilities"); 7825 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 7826 &pi->link_cfg.acaps, 0, "advertised capabilities"); 7827 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 7828 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 7829 7830 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 7831 port_top_speed(pi), "max speed (in Gbps)"); 7832 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 7833 pi->mps_bg_map, "MPS buffer group map"); 7834 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 7835 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 7836 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_c_chan", CTLFLAG_RD, NULL, 7837 pi->rx_c_chan, "TP rx c-channel"); 7838 7839 if (sc->flags & IS_VF) 7840 return; 7841 7842 /* 7843 * dev.(cxgbe|cxl).X.tc. 7844 */ 7845 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 7846 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7847 "Tx scheduler traffic classes (cl_rl)"); 7848 children2 = SYSCTL_CHILDREN(oid); 7849 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 7850 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 7851 "pktsize for per-flow cl-rl (0 means up to the driver )"); 7852 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 7853 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 7854 "burstsize for per-flow cl-rl (0 means up to the driver)"); 7855 for (i = 0; i < sc->chip_params->nsched_cls; i++) { 7856 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 7857 7858 snprintf(name, sizeof(name), "%d", i); 7859 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 7860 SYSCTL_CHILDREN(oid), OID_AUTO, name, 7861 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 7862 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 7863 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 7864 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 7865 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 7866 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 7867 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 7868 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7869 (pi->port_id << 16) | i, sysctl_tc_params, "A", 7870 "traffic class parameters"); 7871 } 7872 7873 /* 7874 * dev.cxgbe.X.stats. 7875 */ 7876 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 7877 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 7878 children = SYSCTL_CHILDREN(oid); 7879 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 7880 &pi->tx_parse_error, 0, 7881 "# of tx packets with invalid length or # of segments"); 7882 7883 #define T4_REGSTAT(name, stat, desc) \ 7884 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 7885 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 7886 (is_t4(sc) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L) : \ 7887 T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L)), \ 7888 sysctl_handle_t4_reg64, "QU", desc) 7889 7890 /* We get these from port_stats and they may be stale by up to 1s */ 7891 #define T4_PORTSTAT(name, desc) \ 7892 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 7893 &pi->stats.name, desc) 7894 7895 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 7896 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 7897 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 7898 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 7899 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 7900 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 7901 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 7902 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 7903 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 7904 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 7905 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 7906 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 7907 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 7908 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 7909 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 7910 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 7911 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 7912 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 7913 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 7914 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 7915 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 7916 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 7917 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 7918 7919 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 7920 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 7921 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 7922 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 7923 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 7924 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 7925 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 7926 if (is_t6(sc)) { 7927 T4_PORTSTAT(rx_fcs_err, 7928 "# of frames received with bad FCS since last link up"); 7929 } else { 7930 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 7931 "# of frames received with bad FCS"); 7932 } 7933 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 7934 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 7935 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 7936 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 7937 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 7938 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 7939 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 7940 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 7941 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 7942 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 7943 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 7944 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 7945 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 7946 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 7947 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 7948 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 7949 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 7950 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 7951 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 7952 7953 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 7954 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 7955 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 7956 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 7957 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 7958 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 7959 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 7960 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 7961 7962 #undef T4_REGSTAT 7963 #undef T4_PORTSTAT 7964 } 7965 7966 static int 7967 sysctl_int_array(SYSCTL_HANDLER_ARGS) 7968 { 7969 int rc, *i, space = 0; 7970 struct sbuf sb; 7971 7972 sbuf_new_for_sysctl(&sb, NULL, 64, req); 7973 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 7974 if (space) 7975 sbuf_printf(&sb, " "); 7976 sbuf_printf(&sb, "%d", *i); 7977 space = 1; 7978 } 7979 rc = sbuf_finish(&sb); 7980 sbuf_delete(&sb); 7981 return (rc); 7982 } 7983 7984 static int 7985 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 7986 { 7987 int rc; 7988 struct sbuf *sb; 7989 7990 rc = sysctl_wire_old_buffer(req, 0); 7991 if (rc != 0) 7992 return(rc); 7993 7994 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7995 if (sb == NULL) 7996 return (ENOMEM); 7997 7998 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 7999 rc = sbuf_finish(sb); 8000 sbuf_delete(sb); 8001 8002 return (rc); 8003 } 8004 8005 static int 8006 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8007 { 8008 int rc; 8009 struct sbuf *sb; 8010 8011 rc = sysctl_wire_old_buffer(req, 0); 8012 if (rc != 0) 8013 return(rc); 8014 8015 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8016 if (sb == NULL) 8017 return (ENOMEM); 8018 8019 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8020 rc = sbuf_finish(sb); 8021 sbuf_delete(sb); 8022 8023 return (rc); 8024 } 8025 8026 static int 8027 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8028 { 8029 struct port_info *pi = arg1; 8030 int op = arg2; 8031 struct adapter *sc = pi->adapter; 8032 u_int v; 8033 int rc; 8034 8035 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8036 if (rc) 8037 return (rc); 8038 if (hw_off_limits(sc)) 8039 rc = ENXIO; 8040 else { 8041 /* XXX: magic numbers */ 8042 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8043 op ? 0x20 : 0xc820, &v); 8044 } 8045 end_synchronized_op(sc, 0); 8046 if (rc) 8047 return (rc); 8048 if (op == 0) 8049 v /= 256; 8050 8051 rc = sysctl_handle_int(oidp, &v, 0, req); 8052 return (rc); 8053 } 8054 8055 static int 8056 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8057 { 8058 struct vi_info *vi = arg1; 8059 int rc, val; 8060 8061 val = vi->rsrv_noflowq; 8062 rc = sysctl_handle_int(oidp, &val, 0, req); 8063 if (rc != 0 || req->newptr == NULL) 8064 return (rc); 8065 8066 if ((val >= 1) && (vi->ntxq > 1)) 8067 vi->rsrv_noflowq = 1; 8068 else 8069 vi->rsrv_noflowq = 0; 8070 8071 return (rc); 8072 } 8073 8074 static int 8075 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8076 { 8077 struct vi_info *vi = arg1; 8078 struct adapter *sc = vi->adapter; 8079 int rc, val, i; 8080 8081 MPASS(!(sc->flags & IS_VF)); 8082 8083 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8084 rc = sysctl_handle_int(oidp, &val, 0, req); 8085 if (rc != 0 || req->newptr == NULL) 8086 return (rc); 8087 8088 if (val != 0 && val != 1) 8089 return (EINVAL); 8090 8091 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8092 "t4txvm"); 8093 if (rc) 8094 return (rc); 8095 if (hw_off_limits(sc)) 8096 rc = ENXIO; 8097 else if (vi->ifp->if_drv_flags & IFF_DRV_RUNNING) { 8098 /* 8099 * We don't want parse_pkt to run with one setting (VF or PF) 8100 * and then eth_tx to see a different setting but still use 8101 * stale information calculated by parse_pkt. 8102 */ 8103 rc = EBUSY; 8104 } else { 8105 struct port_info *pi = vi->pi; 8106 struct sge_txq *txq; 8107 uint32_t ctrl0; 8108 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8109 8110 if (val) { 8111 vi->flags |= TX_USES_VM_WR; 8112 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 8113 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8114 V_TXPKT_INTF(pi->tx_chan)); 8115 if (!(sc->flags & IS_VF)) 8116 npkt--; 8117 } else { 8118 vi->flags &= ~TX_USES_VM_WR; 8119 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 8120 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8121 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8122 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8123 } 8124 for_each_txq(vi, i, txq) { 8125 txq->cpl_ctrl0 = ctrl0; 8126 txq->txp.max_npkt = npkt; 8127 } 8128 } 8129 end_synchronized_op(sc, LOCK_HELD); 8130 return (rc); 8131 } 8132 8133 static int 8134 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8135 { 8136 struct vi_info *vi = arg1; 8137 struct adapter *sc = vi->adapter; 8138 int idx, rc, i; 8139 struct sge_rxq *rxq; 8140 uint8_t v; 8141 8142 idx = vi->tmr_idx; 8143 8144 rc = sysctl_handle_int(oidp, &idx, 0, req); 8145 if (rc != 0 || req->newptr == NULL) 8146 return (rc); 8147 8148 if (idx < 0 || idx >= SGE_NTIMERS) 8149 return (EINVAL); 8150 8151 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8152 "t4tmr"); 8153 if (rc) 8154 return (rc); 8155 8156 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8157 for_each_rxq(vi, i, rxq) { 8158 #ifdef atomic_store_rel_8 8159 atomic_store_rel_8(&rxq->iq.intr_params, v); 8160 #else 8161 rxq->iq.intr_params = v; 8162 #endif 8163 } 8164 vi->tmr_idx = idx; 8165 8166 end_synchronized_op(sc, LOCK_HELD); 8167 return (0); 8168 } 8169 8170 static int 8171 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8172 { 8173 struct vi_info *vi = arg1; 8174 struct adapter *sc = vi->adapter; 8175 int idx, rc; 8176 8177 idx = vi->pktc_idx; 8178 8179 rc = sysctl_handle_int(oidp, &idx, 0, req); 8180 if (rc != 0 || req->newptr == NULL) 8181 return (rc); 8182 8183 if (idx < -1 || idx >= SGE_NCOUNTERS) 8184 return (EINVAL); 8185 8186 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8187 "t4pktc"); 8188 if (rc) 8189 return (rc); 8190 8191 if (vi->flags & VI_INIT_DONE) 8192 rc = EBUSY; /* cannot be changed once the queues are created */ 8193 else 8194 vi->pktc_idx = idx; 8195 8196 end_synchronized_op(sc, LOCK_HELD); 8197 return (rc); 8198 } 8199 8200 static int 8201 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8202 { 8203 struct vi_info *vi = arg1; 8204 struct adapter *sc = vi->adapter; 8205 int qsize, rc; 8206 8207 qsize = vi->qsize_rxq; 8208 8209 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8210 if (rc != 0 || req->newptr == NULL) 8211 return (rc); 8212 8213 if (qsize < 128 || (qsize & 7)) 8214 return (EINVAL); 8215 8216 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8217 "t4rxqs"); 8218 if (rc) 8219 return (rc); 8220 8221 if (vi->flags & VI_INIT_DONE) 8222 rc = EBUSY; /* cannot be changed once the queues are created */ 8223 else 8224 vi->qsize_rxq = qsize; 8225 8226 end_synchronized_op(sc, LOCK_HELD); 8227 return (rc); 8228 } 8229 8230 static int 8231 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8232 { 8233 struct vi_info *vi = arg1; 8234 struct adapter *sc = vi->adapter; 8235 int qsize, rc; 8236 8237 qsize = vi->qsize_txq; 8238 8239 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8240 if (rc != 0 || req->newptr == NULL) 8241 return (rc); 8242 8243 if (qsize < 128 || qsize > 65536) 8244 return (EINVAL); 8245 8246 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8247 "t4txqs"); 8248 if (rc) 8249 return (rc); 8250 8251 if (vi->flags & VI_INIT_DONE) 8252 rc = EBUSY; /* cannot be changed once the queues are created */ 8253 else 8254 vi->qsize_txq = qsize; 8255 8256 end_synchronized_op(sc, LOCK_HELD); 8257 return (rc); 8258 } 8259 8260 static int 8261 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8262 { 8263 struct port_info *pi = arg1; 8264 struct adapter *sc = pi->adapter; 8265 struct link_config *lc = &pi->link_cfg; 8266 int rc; 8267 8268 if (req->newptr == NULL) { 8269 struct sbuf *sb; 8270 static char *bits = "\20\1RX\2TX\3AUTO"; 8271 8272 rc = sysctl_wire_old_buffer(req, 0); 8273 if (rc != 0) 8274 return(rc); 8275 8276 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8277 if (sb == NULL) 8278 return (ENOMEM); 8279 8280 if (lc->link_ok) { 8281 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8282 (lc->requested_fc & PAUSE_AUTONEG), bits); 8283 } else { 8284 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8285 PAUSE_RX | PAUSE_AUTONEG), bits); 8286 } 8287 rc = sbuf_finish(sb); 8288 sbuf_delete(sb); 8289 } else { 8290 char s[2]; 8291 int n; 8292 8293 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8294 PAUSE_AUTONEG)); 8295 s[1] = 0; 8296 8297 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8298 if (rc != 0) 8299 return(rc); 8300 8301 if (s[1] != 0) 8302 return (EINVAL); 8303 if (s[0] < '0' || s[0] > '9') 8304 return (EINVAL); /* not a number */ 8305 n = s[0] - '0'; 8306 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8307 return (EINVAL); /* some other bit is set too */ 8308 8309 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8310 "t4PAUSE"); 8311 if (rc) 8312 return (rc); 8313 if (!hw_off_limits(sc)) { 8314 PORT_LOCK(pi); 8315 lc->requested_fc = n; 8316 fixup_link_config(pi); 8317 if (pi->up_vis > 0) 8318 rc = apply_link_config(pi); 8319 set_current_media(pi); 8320 PORT_UNLOCK(pi); 8321 } 8322 end_synchronized_op(sc, 0); 8323 } 8324 8325 return (rc); 8326 } 8327 8328 static int 8329 sysctl_fec(SYSCTL_HANDLER_ARGS) 8330 { 8331 struct port_info *pi = arg1; 8332 struct adapter *sc = pi->adapter; 8333 struct link_config *lc = &pi->link_cfg; 8334 int rc; 8335 int8_t old; 8336 8337 if (req->newptr == NULL) { 8338 struct sbuf *sb; 8339 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8340 "\5RSVD3\6auto\7module"; 8341 8342 rc = sysctl_wire_old_buffer(req, 0); 8343 if (rc != 0) 8344 return(rc); 8345 8346 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8347 if (sb == NULL) 8348 return (ENOMEM); 8349 8350 /* 8351 * Display the requested_fec when the link is down -- the actual 8352 * FEC makes sense only when the link is up. 8353 */ 8354 if (lc->link_ok) { 8355 sbuf_printf(sb, "%b", (lc->fec & M_FW_PORT_CAP32_FEC) | 8356 (lc->requested_fec & (FEC_AUTO | FEC_MODULE)), 8357 bits); 8358 } else { 8359 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8360 } 8361 rc = sbuf_finish(sb); 8362 sbuf_delete(sb); 8363 } else { 8364 char s[8]; 8365 int n; 8366 8367 snprintf(s, sizeof(s), "%d", 8368 lc->requested_fec == FEC_AUTO ? -1 : 8369 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8370 8371 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8372 if (rc != 0) 8373 return(rc); 8374 8375 n = strtol(&s[0], NULL, 0); 8376 if (n < 0 || n & FEC_AUTO) 8377 n = FEC_AUTO; 8378 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8379 return (EINVAL);/* some other bit is set too */ 8380 8381 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8382 "t4fec"); 8383 if (rc) 8384 return (rc); 8385 PORT_LOCK(pi); 8386 old = lc->requested_fec; 8387 if (n == FEC_AUTO) 8388 lc->requested_fec = FEC_AUTO; 8389 else if (n == 0 || n == FEC_NONE) 8390 lc->requested_fec = FEC_NONE; 8391 else { 8392 if ((lc->pcaps | 8393 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8394 lc->pcaps) { 8395 rc = ENOTSUP; 8396 goto done; 8397 } 8398 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8399 FEC_MODULE); 8400 } 8401 if (!hw_off_limits(sc)) { 8402 fixup_link_config(pi); 8403 if (pi->up_vis > 0) { 8404 rc = apply_link_config(pi); 8405 if (rc != 0) { 8406 lc->requested_fec = old; 8407 if (rc == FW_EPROTO) 8408 rc = ENOTSUP; 8409 } 8410 } 8411 } 8412 done: 8413 PORT_UNLOCK(pi); 8414 end_synchronized_op(sc, 0); 8415 } 8416 8417 return (rc); 8418 } 8419 8420 static int 8421 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8422 { 8423 struct port_info *pi = arg1; 8424 struct adapter *sc = pi->adapter; 8425 struct link_config *lc = &pi->link_cfg; 8426 int rc; 8427 int8_t fec; 8428 struct sbuf *sb; 8429 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8430 8431 rc = sysctl_wire_old_buffer(req, 0); 8432 if (rc != 0) 8433 return (rc); 8434 8435 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8436 if (sb == NULL) 8437 return (ENOMEM); 8438 8439 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8440 rc = EBUSY; 8441 goto done; 8442 } 8443 if (hw_off_limits(sc)) { 8444 rc = ENXIO; 8445 goto done; 8446 } 8447 PORT_LOCK(pi); 8448 if (pi->up_vis == 0) { 8449 /* 8450 * If all the interfaces are administratively down the firmware 8451 * does not report transceiver changes. Refresh port info here. 8452 * This is the only reason we have a synchronized op in this 8453 * function. Just PORT_LOCK would have been enough otherwise. 8454 */ 8455 t4_update_port_info(pi); 8456 } 8457 8458 fec = lc->fec_hint; 8459 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8460 !fec_supported(lc->pcaps)) { 8461 sbuf_printf(sb, "n/a"); 8462 } else { 8463 if (fec == 0) 8464 fec = FEC_NONE; 8465 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8466 } 8467 rc = sbuf_finish(sb); 8468 PORT_UNLOCK(pi); 8469 done: 8470 sbuf_delete(sb); 8471 end_synchronized_op(sc, 0); 8472 8473 return (rc); 8474 } 8475 8476 static int 8477 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8478 { 8479 struct port_info *pi = arg1; 8480 struct adapter *sc = pi->adapter; 8481 struct link_config *lc = &pi->link_cfg; 8482 int rc, val; 8483 8484 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8485 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8486 else 8487 val = -1; 8488 rc = sysctl_handle_int(oidp, &val, 0, req); 8489 if (rc != 0 || req->newptr == NULL) 8490 return (rc); 8491 if (val == 0) 8492 val = AUTONEG_DISABLE; 8493 else if (val == 1) 8494 val = AUTONEG_ENABLE; 8495 else 8496 val = AUTONEG_AUTO; 8497 8498 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8499 "t4aneg"); 8500 if (rc) 8501 return (rc); 8502 PORT_LOCK(pi); 8503 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8504 rc = ENOTSUP; 8505 goto done; 8506 } 8507 lc->requested_aneg = val; 8508 if (!hw_off_limits(sc)) { 8509 fixup_link_config(pi); 8510 if (pi->up_vis > 0) 8511 rc = apply_link_config(pi); 8512 set_current_media(pi); 8513 } 8514 done: 8515 PORT_UNLOCK(pi); 8516 end_synchronized_op(sc, 0); 8517 return (rc); 8518 } 8519 8520 static int 8521 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8522 { 8523 struct adapter *sc = arg1; 8524 int rc, reg = arg2; 8525 uint64_t val; 8526 8527 mtx_lock(&sc->reg_lock); 8528 if (hw_off_limits(sc)) 8529 rc = ENXIO; 8530 else { 8531 rc = 0; 8532 val = t4_read_reg64(sc, reg); 8533 } 8534 mtx_unlock(&sc->reg_lock); 8535 if (rc == 0) 8536 rc = sysctl_handle_64(oidp, &val, 0, req); 8537 return (rc); 8538 } 8539 8540 static int 8541 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8542 { 8543 struct adapter *sc = arg1; 8544 int rc, t; 8545 uint32_t param, val; 8546 8547 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8548 if (rc) 8549 return (rc); 8550 if (hw_off_limits(sc)) 8551 rc = ENXIO; 8552 else { 8553 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8554 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8555 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8556 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8557 } 8558 end_synchronized_op(sc, 0); 8559 if (rc) 8560 return (rc); 8561 8562 /* unknown is returned as 0 but we display -1 in that case */ 8563 t = val == 0 ? -1 : val; 8564 8565 rc = sysctl_handle_int(oidp, &t, 0, req); 8566 return (rc); 8567 } 8568 8569 static int 8570 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8571 { 8572 struct adapter *sc = arg1; 8573 int rc; 8574 uint32_t param, val; 8575 8576 if (sc->params.core_vdd == 0) { 8577 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8578 "t4vdd"); 8579 if (rc) 8580 return (rc); 8581 if (hw_off_limits(sc)) 8582 rc = ENXIO; 8583 else { 8584 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8585 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8586 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8587 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8588 ¶m, &val); 8589 } 8590 end_synchronized_op(sc, 0); 8591 if (rc) 8592 return (rc); 8593 sc->params.core_vdd = val; 8594 } 8595 8596 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8597 } 8598 8599 static int 8600 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8601 { 8602 struct adapter *sc = arg1; 8603 int rc, v; 8604 uint32_t param, val; 8605 8606 v = sc->sensor_resets; 8607 rc = sysctl_handle_int(oidp, &v, 0, req); 8608 if (rc != 0 || req->newptr == NULL || v <= 0) 8609 return (rc); 8610 8611 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8612 chip_id(sc) < CHELSIO_T5) 8613 return (ENOTSUP); 8614 8615 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8616 if (rc) 8617 return (rc); 8618 if (hw_off_limits(sc)) 8619 rc = ENXIO; 8620 else { 8621 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8622 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8623 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8624 val = 1; 8625 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8626 } 8627 end_synchronized_op(sc, 0); 8628 if (rc == 0) 8629 sc->sensor_resets++; 8630 return (rc); 8631 } 8632 8633 static int 8634 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8635 { 8636 struct adapter *sc = arg1; 8637 struct sbuf *sb; 8638 int rc; 8639 uint32_t param, val; 8640 8641 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8642 if (rc) 8643 return (rc); 8644 if (hw_off_limits(sc)) 8645 rc = ENXIO; 8646 else { 8647 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8648 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8649 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8650 } 8651 end_synchronized_op(sc, 0); 8652 if (rc) 8653 return (rc); 8654 8655 rc = sysctl_wire_old_buffer(req, 0); 8656 if (rc != 0) 8657 return (rc); 8658 8659 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8660 if (sb == NULL) 8661 return (ENOMEM); 8662 8663 if (val == 0xffffffff) { 8664 /* Only debug and custom firmwares report load averages. */ 8665 sbuf_printf(sb, "not available"); 8666 } else { 8667 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8668 (val >> 16) & 0xff); 8669 } 8670 rc = sbuf_finish(sb); 8671 sbuf_delete(sb); 8672 8673 return (rc); 8674 } 8675 8676 static int 8677 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8678 { 8679 struct adapter *sc = arg1; 8680 struct sbuf *sb; 8681 int rc, i; 8682 uint16_t incr[NMTUS][NCCTRL_WIN]; 8683 static const char *dec_fac[] = { 8684 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8685 "0.9375" 8686 }; 8687 8688 rc = sysctl_wire_old_buffer(req, 0); 8689 if (rc != 0) 8690 return (rc); 8691 8692 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8693 if (sb == NULL) 8694 return (ENOMEM); 8695 8696 mtx_lock(&sc->reg_lock); 8697 if (hw_off_limits(sc)) 8698 rc = ENXIO; 8699 else 8700 t4_read_cong_tbl(sc, incr); 8701 mtx_unlock(&sc->reg_lock); 8702 if (rc) 8703 goto done; 8704 8705 for (i = 0; i < NCCTRL_WIN; ++i) { 8706 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8707 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8708 incr[5][i], incr[6][i], incr[7][i]); 8709 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8710 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8711 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8712 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8713 } 8714 8715 rc = sbuf_finish(sb); 8716 done: 8717 sbuf_delete(sb); 8718 return (rc); 8719 } 8720 8721 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8722 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8723 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8724 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8725 }; 8726 8727 static int 8728 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8729 { 8730 struct adapter *sc = arg1; 8731 struct sbuf *sb; 8732 int rc, i, n, qid = arg2; 8733 uint32_t *buf, *p; 8734 char *qtype; 8735 u_int cim_num_obq = sc->chip_params->cim_num_obq; 8736 8737 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 8738 ("%s: bad qid %d\n", __func__, qid)); 8739 8740 if (qid < CIM_NUM_IBQ) { 8741 /* inbound queue */ 8742 qtype = "IBQ"; 8743 n = 4 * CIM_IBQ_SIZE; 8744 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8745 mtx_lock(&sc->reg_lock); 8746 if (hw_off_limits(sc)) 8747 rc = -ENXIO; 8748 else 8749 rc = t4_read_cim_ibq(sc, qid, buf, n); 8750 mtx_unlock(&sc->reg_lock); 8751 } else { 8752 /* outbound queue */ 8753 qtype = "OBQ"; 8754 qid -= CIM_NUM_IBQ; 8755 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 8756 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8757 mtx_lock(&sc->reg_lock); 8758 if (hw_off_limits(sc)) 8759 rc = -ENXIO; 8760 else 8761 rc = t4_read_cim_obq(sc, qid, buf, n); 8762 mtx_unlock(&sc->reg_lock); 8763 } 8764 8765 if (rc < 0) { 8766 rc = -rc; 8767 goto done; 8768 } 8769 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 8770 8771 rc = sysctl_wire_old_buffer(req, 0); 8772 if (rc != 0) 8773 goto done; 8774 8775 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8776 if (sb == NULL) { 8777 rc = ENOMEM; 8778 goto done; 8779 } 8780 8781 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 8782 for (i = 0, p = buf; i < n; i += 16, p += 4) 8783 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 8784 p[2], p[3]); 8785 8786 rc = sbuf_finish(sb); 8787 sbuf_delete(sb); 8788 done: 8789 free(buf, M_CXGBE); 8790 return (rc); 8791 } 8792 8793 static void 8794 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8795 { 8796 uint32_t *p; 8797 8798 sbuf_printf(sb, "Status Data PC%s", 8799 cfg & F_UPDBGLACAPTPCONLY ? "" : 8800 " LS0Stat LS0Addr LS0Data"); 8801 8802 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 8803 if (cfg & F_UPDBGLACAPTPCONLY) { 8804 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 8805 p[6], p[7]); 8806 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 8807 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 8808 p[4] & 0xff, p[5] >> 8); 8809 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 8810 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8811 p[1] & 0xf, p[2] >> 4); 8812 } else { 8813 sbuf_printf(sb, 8814 "\n %02x %x%07x %x%07x %08x %08x " 8815 "%08x%08x%08x%08x", 8816 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8817 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 8818 p[6], p[7]); 8819 } 8820 } 8821 } 8822 8823 static void 8824 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8825 { 8826 uint32_t *p; 8827 8828 sbuf_printf(sb, "Status Inst Data PC%s", 8829 cfg & F_UPDBGLACAPTPCONLY ? "" : 8830 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 8831 8832 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 8833 if (cfg & F_UPDBGLACAPTPCONLY) { 8834 sbuf_printf(sb, "\n %02x %08x %08x %08x", 8835 p[3] & 0xff, p[2], p[1], p[0]); 8836 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 8837 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 8838 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 8839 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 8840 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 8841 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 8842 p[6] >> 16); 8843 } else { 8844 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 8845 "%08x %08x %08x %08x %08x %08x", 8846 (p[9] >> 16) & 0xff, 8847 p[9] & 0xffff, p[8] >> 16, 8848 p[8] & 0xffff, p[7] >> 16, 8849 p[7] & 0xffff, p[6] >> 16, 8850 p[2], p[1], p[0], p[5], p[4], p[3]); 8851 } 8852 } 8853 } 8854 8855 static int 8856 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 8857 { 8858 uint32_t cfg, *buf; 8859 int rc; 8860 8861 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 8862 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 8863 M_ZERO | flags); 8864 if (buf == NULL) 8865 return (ENOMEM); 8866 8867 mtx_lock(&sc->reg_lock); 8868 if (hw_off_limits(sc)) 8869 rc = ENXIO; 8870 else { 8871 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 8872 if (rc == 0) 8873 rc = -t4_cim_read_la(sc, buf, NULL); 8874 } 8875 mtx_unlock(&sc->reg_lock); 8876 if (rc == 0) { 8877 if (chip_id(sc) < CHELSIO_T6) 8878 sbuf_cim_la4(sc, sb, buf, cfg); 8879 else 8880 sbuf_cim_la6(sc, sb, buf, cfg); 8881 } 8882 free(buf, M_CXGBE); 8883 return (rc); 8884 } 8885 8886 static int 8887 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 8888 { 8889 struct adapter *sc = arg1; 8890 struct sbuf *sb; 8891 int rc; 8892 8893 rc = sysctl_wire_old_buffer(req, 0); 8894 if (rc != 0) 8895 return (rc); 8896 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8897 if (sb == NULL) 8898 return (ENOMEM); 8899 8900 rc = sbuf_cim_la(sc, sb, M_WAITOK); 8901 if (rc == 0) 8902 rc = sbuf_finish(sb); 8903 sbuf_delete(sb); 8904 return (rc); 8905 } 8906 8907 bool 8908 t4_os_dump_cimla(struct adapter *sc, int arg, bool verbose) 8909 { 8910 struct sbuf sb; 8911 int rc; 8912 8913 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) 8914 return (false); 8915 rc = sbuf_cim_la(sc, &sb, M_NOWAIT); 8916 if (rc == 0) { 8917 rc = sbuf_finish(&sb); 8918 if (rc == 0) { 8919 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s", 8920 device_get_nameunit(sc->dev), sbuf_data(&sb)); 8921 } 8922 } 8923 sbuf_delete(&sb); 8924 return (false); 8925 } 8926 8927 static int 8928 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 8929 { 8930 struct adapter *sc = arg1; 8931 u_int i; 8932 struct sbuf *sb; 8933 uint32_t *buf, *p; 8934 int rc; 8935 8936 rc = sysctl_wire_old_buffer(req, 0); 8937 if (rc != 0) 8938 return (rc); 8939 8940 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8941 if (sb == NULL) 8942 return (ENOMEM); 8943 8944 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 8945 M_ZERO | M_WAITOK); 8946 8947 mtx_lock(&sc->reg_lock); 8948 if (hw_off_limits(sc)) 8949 rc = ENXIO; 8950 else 8951 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 8952 mtx_unlock(&sc->reg_lock); 8953 if (rc) 8954 goto done; 8955 8956 p = buf; 8957 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 8958 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 8959 p[1], p[0]); 8960 } 8961 8962 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 8963 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 8964 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 8965 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 8966 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 8967 (p[1] >> 2) | ((p[2] & 3) << 30), 8968 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 8969 p[0] & 1); 8970 } 8971 rc = sbuf_finish(sb); 8972 done: 8973 sbuf_delete(sb); 8974 free(buf, M_CXGBE); 8975 return (rc); 8976 } 8977 8978 static int 8979 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 8980 { 8981 struct adapter *sc = arg1; 8982 u_int i; 8983 struct sbuf *sb; 8984 uint32_t *buf, *p; 8985 int rc; 8986 8987 rc = sysctl_wire_old_buffer(req, 0); 8988 if (rc != 0) 8989 return (rc); 8990 8991 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8992 if (sb == NULL) 8993 return (ENOMEM); 8994 8995 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 8996 M_ZERO | M_WAITOK); 8997 8998 mtx_lock(&sc->reg_lock); 8999 if (hw_off_limits(sc)) 9000 rc = ENXIO; 9001 else 9002 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9003 mtx_unlock(&sc->reg_lock); 9004 if (rc) 9005 goto done; 9006 9007 p = buf; 9008 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9009 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9010 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9011 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9012 p[4], p[3], p[2], p[1], p[0]); 9013 } 9014 9015 sbuf_printf(sb, "\n\nCntl ID Data"); 9016 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9017 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9018 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9019 } 9020 9021 rc = sbuf_finish(sb); 9022 done: 9023 sbuf_delete(sb); 9024 free(buf, M_CXGBE); 9025 return (rc); 9026 } 9027 9028 static int 9029 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9030 { 9031 struct adapter *sc = arg1; 9032 struct sbuf *sb; 9033 int rc, i; 9034 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9035 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9036 uint16_t thres[CIM_NUM_IBQ]; 9037 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9038 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9039 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9040 9041 cim_num_obq = sc->chip_params->cim_num_obq; 9042 if (is_t4(sc)) { 9043 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9044 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9045 } else { 9046 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9047 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9048 } 9049 nq = CIM_NUM_IBQ + cim_num_obq; 9050 9051 mtx_lock(&sc->reg_lock); 9052 if (hw_off_limits(sc)) 9053 rc = ENXIO; 9054 else { 9055 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9056 if (rc == 0) { 9057 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9058 obq_wr); 9059 if (rc == 0) 9060 t4_read_cimq_cfg(sc, base, size, thres); 9061 } 9062 } 9063 mtx_unlock(&sc->reg_lock); 9064 if (rc) 9065 return (rc); 9066 9067 rc = sysctl_wire_old_buffer(req, 0); 9068 if (rc != 0) 9069 return (rc); 9070 9071 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9072 if (sb == NULL) 9073 return (ENOMEM); 9074 9075 sbuf_printf(sb, 9076 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9077 9078 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9079 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9080 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9081 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9082 G_QUEREMFLITS(p[2]) * 16); 9083 for ( ; i < nq; i++, p += 4, wr += 2) 9084 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9085 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9086 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9087 G_QUEREMFLITS(p[2]) * 16); 9088 9089 rc = sbuf_finish(sb); 9090 sbuf_delete(sb); 9091 9092 return (rc); 9093 } 9094 9095 static int 9096 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9097 { 9098 struct adapter *sc = arg1; 9099 struct sbuf *sb; 9100 int rc; 9101 struct tp_cpl_stats stats; 9102 9103 rc = sysctl_wire_old_buffer(req, 0); 9104 if (rc != 0) 9105 return (rc); 9106 9107 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9108 if (sb == NULL) 9109 return (ENOMEM); 9110 9111 mtx_lock(&sc->reg_lock); 9112 if (hw_off_limits(sc)) 9113 rc = ENXIO; 9114 else 9115 t4_tp_get_cpl_stats(sc, &stats, 0); 9116 mtx_unlock(&sc->reg_lock); 9117 if (rc) 9118 goto done; 9119 9120 if (sc->chip_params->nchan > 2) { 9121 sbuf_printf(sb, " channel 0 channel 1" 9122 " channel 2 channel 3"); 9123 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9124 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9125 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9126 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9127 } else { 9128 sbuf_printf(sb, " channel 0 channel 1"); 9129 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9130 stats.req[0], stats.req[1]); 9131 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9132 stats.rsp[0], stats.rsp[1]); 9133 } 9134 9135 rc = sbuf_finish(sb); 9136 done: 9137 sbuf_delete(sb); 9138 return (rc); 9139 } 9140 9141 static int 9142 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9143 { 9144 struct adapter *sc = arg1; 9145 struct sbuf *sb; 9146 int rc; 9147 struct tp_usm_stats stats; 9148 9149 rc = sysctl_wire_old_buffer(req, 0); 9150 if (rc != 0) 9151 return(rc); 9152 9153 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9154 if (sb == NULL) 9155 return (ENOMEM); 9156 9157 mtx_lock(&sc->reg_lock); 9158 if (hw_off_limits(sc)) 9159 rc = ENXIO; 9160 else 9161 t4_get_usm_stats(sc, &stats, 1); 9162 mtx_unlock(&sc->reg_lock); 9163 if (rc == 0) { 9164 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9165 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9166 sbuf_printf(sb, "Drops: %u", stats.drops); 9167 rc = sbuf_finish(sb); 9168 } 9169 sbuf_delete(sb); 9170 9171 return (rc); 9172 } 9173 9174 static int 9175 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9176 { 9177 struct adapter *sc = arg1; 9178 struct sbuf *sb; 9179 int rc; 9180 struct tp_tid_stats stats; 9181 9182 rc = sysctl_wire_old_buffer(req, 0); 9183 if (rc != 0) 9184 return(rc); 9185 9186 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9187 if (sb == NULL) 9188 return (ENOMEM); 9189 9190 mtx_lock(&sc->reg_lock); 9191 if (hw_off_limits(sc)) 9192 rc = ENXIO; 9193 else 9194 t4_tp_get_tid_stats(sc, &stats, 1); 9195 mtx_unlock(&sc->reg_lock); 9196 if (rc == 0) { 9197 sbuf_printf(sb, "Delete: %u\n", stats.del); 9198 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9199 sbuf_printf(sb, "Active: %u\n", stats.act); 9200 sbuf_printf(sb, "Passive: %u", stats.pas); 9201 rc = sbuf_finish(sb); 9202 } 9203 sbuf_delete(sb); 9204 9205 return (rc); 9206 } 9207 9208 static const char * const devlog_level_strings[] = { 9209 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9210 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9211 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9212 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9213 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9214 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9215 }; 9216 9217 static const char * const devlog_facility_strings[] = { 9218 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9219 [FW_DEVLOG_FACILITY_CF] = "CF", 9220 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9221 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9222 [FW_DEVLOG_FACILITY_RES] = "RES", 9223 [FW_DEVLOG_FACILITY_HW] = "HW", 9224 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9225 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9226 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9227 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9228 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9229 [FW_DEVLOG_FACILITY_VI] = "VI", 9230 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9231 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9232 [FW_DEVLOG_FACILITY_TM] = "TM", 9233 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9234 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9235 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9236 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9237 [FW_DEVLOG_FACILITY_RI] = "RI", 9238 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9239 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9240 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9241 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9242 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9243 }; 9244 9245 static int 9246 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9247 { 9248 int i, j, rc, nentries, first = 0; 9249 struct devlog_params *dparams = &sc->params.devlog; 9250 struct fw_devlog_e *buf, *e; 9251 uint64_t ftstamp = UINT64_MAX; 9252 9253 if (dparams->addr == 0) 9254 return (ENXIO); 9255 9256 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9257 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9258 if (buf == NULL) 9259 return (ENOMEM); 9260 9261 mtx_lock(&sc->reg_lock); 9262 if (hw_off_limits(sc)) 9263 rc = ENXIO; 9264 else 9265 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9266 dparams->size); 9267 mtx_unlock(&sc->reg_lock); 9268 if (rc != 0) 9269 goto done; 9270 9271 nentries = dparams->size / sizeof(struct fw_devlog_e); 9272 for (i = 0; i < nentries; i++) { 9273 e = &buf[i]; 9274 9275 if (e->timestamp == 0) 9276 break; /* end */ 9277 9278 e->timestamp = be64toh(e->timestamp); 9279 e->seqno = be32toh(e->seqno); 9280 for (j = 0; j < 8; j++) 9281 e->params[j] = be32toh(e->params[j]); 9282 9283 if (e->timestamp < ftstamp) { 9284 ftstamp = e->timestamp; 9285 first = i; 9286 } 9287 } 9288 9289 if (buf[first].timestamp == 0) 9290 goto done; /* nothing in the log */ 9291 9292 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9293 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9294 9295 i = first; 9296 do { 9297 e = &buf[i]; 9298 if (e->timestamp == 0) 9299 break; /* end */ 9300 9301 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9302 e->seqno, e->timestamp, 9303 (e->level < nitems(devlog_level_strings) ? 9304 devlog_level_strings[e->level] : "UNKNOWN"), 9305 (e->facility < nitems(devlog_facility_strings) ? 9306 devlog_facility_strings[e->facility] : "UNKNOWN")); 9307 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9308 e->params[2], e->params[3], e->params[4], 9309 e->params[5], e->params[6], e->params[7]); 9310 9311 if (++i == nentries) 9312 i = 0; 9313 } while (i != first); 9314 done: 9315 free(buf, M_CXGBE); 9316 return (rc); 9317 } 9318 9319 static int 9320 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9321 { 9322 struct adapter *sc = arg1; 9323 int rc; 9324 struct sbuf *sb; 9325 9326 rc = sysctl_wire_old_buffer(req, 0); 9327 if (rc != 0) 9328 return (rc); 9329 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9330 if (sb == NULL) 9331 return (ENOMEM); 9332 9333 rc = sbuf_devlog(sc, sb, M_WAITOK); 9334 if (rc == 0) 9335 rc = sbuf_finish(sb); 9336 sbuf_delete(sb); 9337 return (rc); 9338 } 9339 9340 void 9341 t4_os_dump_devlog(struct adapter *sc) 9342 { 9343 int rc; 9344 struct sbuf sb; 9345 9346 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) 9347 return; 9348 rc = sbuf_devlog(sc, &sb, M_NOWAIT); 9349 if (rc == 0) { 9350 rc = sbuf_finish(&sb); 9351 if (rc == 0) { 9352 log(LOG_DEBUG, "%s: device log follows.\n%s", 9353 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9354 } 9355 } 9356 sbuf_delete(&sb); 9357 } 9358 9359 static int 9360 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9361 { 9362 struct adapter *sc = arg1; 9363 struct sbuf *sb; 9364 int rc; 9365 struct tp_fcoe_stats stats[MAX_NCHAN]; 9366 int i, nchan = sc->chip_params->nchan; 9367 9368 rc = sysctl_wire_old_buffer(req, 0); 9369 if (rc != 0) 9370 return (rc); 9371 9372 mtx_lock(&sc->reg_lock); 9373 if (hw_off_limits(sc)) 9374 rc = ENXIO; 9375 else { 9376 for (i = 0; i < nchan; i++) 9377 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9378 } 9379 mtx_unlock(&sc->reg_lock); 9380 if (rc != 0) 9381 return (rc); 9382 9383 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9384 if (sb == NULL) 9385 return (ENOMEM); 9386 9387 if (nchan > 2) { 9388 sbuf_printf(sb, " channel 0 channel 1" 9389 " channel 2 channel 3"); 9390 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9391 stats[0].octets_ddp, stats[1].octets_ddp, 9392 stats[2].octets_ddp, stats[3].octets_ddp); 9393 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9394 stats[0].frames_ddp, stats[1].frames_ddp, 9395 stats[2].frames_ddp, stats[3].frames_ddp); 9396 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9397 stats[0].frames_drop, stats[1].frames_drop, 9398 stats[2].frames_drop, stats[3].frames_drop); 9399 } else { 9400 sbuf_printf(sb, " channel 0 channel 1"); 9401 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9402 stats[0].octets_ddp, stats[1].octets_ddp); 9403 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9404 stats[0].frames_ddp, stats[1].frames_ddp); 9405 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9406 stats[0].frames_drop, stats[1].frames_drop); 9407 } 9408 9409 rc = sbuf_finish(sb); 9410 sbuf_delete(sb); 9411 9412 return (rc); 9413 } 9414 9415 static int 9416 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9417 { 9418 struct adapter *sc = arg1; 9419 struct sbuf *sb; 9420 int rc, i; 9421 unsigned int map, kbps, ipg, mode; 9422 unsigned int pace_tab[NTX_SCHED]; 9423 9424 rc = sysctl_wire_old_buffer(req, 0); 9425 if (rc != 0) 9426 return (rc); 9427 9428 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9429 if (sb == NULL) 9430 return (ENOMEM); 9431 9432 mtx_lock(&sc->reg_lock); 9433 if (hw_off_limits(sc)) { 9434 rc = ENXIO; 9435 goto done; 9436 } 9437 9438 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9439 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9440 t4_read_pace_tbl(sc, pace_tab); 9441 9442 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9443 "Class IPG (0.1 ns) Flow IPG (us)"); 9444 9445 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9446 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9447 sbuf_printf(sb, "\n %u %-5s %u ", i, 9448 (mode & (1 << i)) ? "flow" : "class", map & 3); 9449 if (kbps) 9450 sbuf_printf(sb, "%9u ", kbps); 9451 else 9452 sbuf_printf(sb, " disabled "); 9453 9454 if (ipg) 9455 sbuf_printf(sb, "%13u ", ipg); 9456 else 9457 sbuf_printf(sb, " disabled "); 9458 9459 if (pace_tab[i]) 9460 sbuf_printf(sb, "%10u", pace_tab[i]); 9461 else 9462 sbuf_printf(sb, " disabled"); 9463 } 9464 rc = sbuf_finish(sb); 9465 done: 9466 mtx_unlock(&sc->reg_lock); 9467 sbuf_delete(sb); 9468 return (rc); 9469 } 9470 9471 static int 9472 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9473 { 9474 struct adapter *sc = arg1; 9475 struct sbuf *sb; 9476 int rc, i, j; 9477 uint64_t *p0, *p1; 9478 struct lb_port_stats s[2]; 9479 static const char *stat_name[] = { 9480 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9481 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9482 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9483 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9484 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9485 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9486 "BG2FramesTrunc:", "BG3FramesTrunc:" 9487 }; 9488 9489 rc = sysctl_wire_old_buffer(req, 0); 9490 if (rc != 0) 9491 return (rc); 9492 9493 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9494 if (sb == NULL) 9495 return (ENOMEM); 9496 9497 memset(s, 0, sizeof(s)); 9498 9499 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9500 mtx_lock(&sc->reg_lock); 9501 if (hw_off_limits(sc)) 9502 rc = ENXIO; 9503 else { 9504 t4_get_lb_stats(sc, i, &s[0]); 9505 t4_get_lb_stats(sc, i + 1, &s[1]); 9506 } 9507 mtx_unlock(&sc->reg_lock); 9508 if (rc != 0) 9509 break; 9510 9511 p0 = &s[0].octets; 9512 p1 = &s[1].octets; 9513 sbuf_printf(sb, "%s Loopback %u" 9514 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9515 9516 for (j = 0; j < nitems(stat_name); j++) 9517 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9518 *p0++, *p1++); 9519 } 9520 9521 rc = sbuf_finish(sb); 9522 sbuf_delete(sb); 9523 9524 return (rc); 9525 } 9526 9527 static int 9528 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9529 { 9530 int rc = 0; 9531 struct port_info *pi = arg1; 9532 struct link_config *lc = &pi->link_cfg; 9533 struct sbuf *sb; 9534 9535 rc = sysctl_wire_old_buffer(req, 0); 9536 if (rc != 0) 9537 return(rc); 9538 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9539 if (sb == NULL) 9540 return (ENOMEM); 9541 9542 if (lc->link_ok || lc->link_down_rc == 255) 9543 sbuf_printf(sb, "n/a"); 9544 else 9545 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9546 9547 rc = sbuf_finish(sb); 9548 sbuf_delete(sb); 9549 9550 return (rc); 9551 } 9552 9553 struct mem_desc { 9554 unsigned int base; 9555 unsigned int limit; 9556 unsigned int idx; 9557 }; 9558 9559 static int 9560 mem_desc_cmp(const void *a, const void *b) 9561 { 9562 return ((const struct mem_desc *)a)->base - 9563 ((const struct mem_desc *)b)->base; 9564 } 9565 9566 static void 9567 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9568 unsigned int to) 9569 { 9570 unsigned int size; 9571 9572 if (from == to) 9573 return; 9574 9575 size = to - from + 1; 9576 if (size == 0) 9577 return; 9578 9579 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9580 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9581 } 9582 9583 static int 9584 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9585 { 9586 struct adapter *sc = arg1; 9587 struct sbuf *sb; 9588 int rc, i, n; 9589 uint32_t lo, hi, used, alloc; 9590 static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"}; 9591 static const char *region[] = { 9592 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9593 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9594 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9595 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9596 "RQUDP region:", "PBL region:", "TXPBL region:", 9597 "DBVFIFO region:", "ULPRX state:", "ULPTX state:", 9598 "On-chip queues:", "TLS keys:", 9599 }; 9600 struct mem_desc avail[4]; 9601 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9602 struct mem_desc *md = mem; 9603 9604 rc = sysctl_wire_old_buffer(req, 0); 9605 if (rc != 0) 9606 return (rc); 9607 9608 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9609 if (sb == NULL) 9610 return (ENOMEM); 9611 9612 for (i = 0; i < nitems(mem); i++) { 9613 mem[i].limit = 0; 9614 mem[i].idx = i; 9615 } 9616 9617 mtx_lock(&sc->reg_lock); 9618 if (hw_off_limits(sc)) { 9619 rc = ENXIO; 9620 goto done; 9621 } 9622 9623 /* Find and sort the populated memory ranges */ 9624 i = 0; 9625 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9626 if (lo & F_EDRAM0_ENABLE) { 9627 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9628 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9629 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9630 avail[i].idx = 0; 9631 i++; 9632 } 9633 if (lo & F_EDRAM1_ENABLE) { 9634 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9635 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9636 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9637 avail[i].idx = 1; 9638 i++; 9639 } 9640 if (lo & F_EXT_MEM_ENABLE) { 9641 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9642 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9643 avail[i].limit = avail[i].base + 9644 (G_EXT_MEM_SIZE(hi) << 20); 9645 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9646 i++; 9647 } 9648 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9649 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9650 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9651 avail[i].limit = avail[i].base + 9652 (G_EXT_MEM1_SIZE(hi) << 20); 9653 avail[i].idx = 4; 9654 i++; 9655 } 9656 if (!i) /* no memory available */ 9657 goto done; 9658 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9659 9660 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9661 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9662 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9663 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9664 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9665 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9666 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9667 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9668 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9669 9670 /* the next few have explicit upper bounds */ 9671 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9672 md->limit = md->base - 1 + 9673 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9674 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9675 md++; 9676 9677 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9678 md->limit = md->base - 1 + 9679 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9680 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9681 md++; 9682 9683 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9684 if (chip_id(sc) <= CHELSIO_T5) 9685 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9686 else 9687 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9688 md->limit = 0; 9689 } else { 9690 md->base = 0; 9691 md->idx = nitems(region); /* hide it */ 9692 } 9693 md++; 9694 9695 #define ulp_region(reg) \ 9696 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9697 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9698 9699 ulp_region(RX_ISCSI); 9700 ulp_region(RX_TDDP); 9701 ulp_region(TX_TPT); 9702 ulp_region(RX_STAG); 9703 ulp_region(RX_RQ); 9704 ulp_region(RX_RQUDP); 9705 ulp_region(RX_PBL); 9706 ulp_region(TX_PBL); 9707 #undef ulp_region 9708 9709 md->base = 0; 9710 md->idx = nitems(region); 9711 if (!is_t4(sc)) { 9712 uint32_t size = 0; 9713 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9714 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9715 9716 if (is_t5(sc)) { 9717 if (sge_ctrl & F_VFIFO_ENABLE) 9718 size = G_DBVFIFO_SIZE(fifo_size); 9719 } else 9720 size = G_T6_DBVFIFO_SIZE(fifo_size); 9721 9722 if (size) { 9723 md->base = G_BASEADDR(t4_read_reg(sc, 9724 A_SGE_DBVFIFO_BADDR)); 9725 md->limit = md->base + (size << 2) - 1; 9726 } 9727 } 9728 md++; 9729 9730 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 9731 md->limit = 0; 9732 md++; 9733 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 9734 md->limit = 0; 9735 md++; 9736 9737 md->base = sc->vres.ocq.start; 9738 if (sc->vres.ocq.size) 9739 md->limit = md->base + sc->vres.ocq.size - 1; 9740 else 9741 md->idx = nitems(region); /* hide it */ 9742 md++; 9743 9744 md->base = sc->vres.key.start; 9745 if (sc->vres.key.size) 9746 md->limit = md->base + sc->vres.key.size - 1; 9747 else 9748 md->idx = nitems(region); /* hide it */ 9749 md++; 9750 9751 /* add any address-space holes, there can be up to 3 */ 9752 for (n = 0; n < i - 1; n++) 9753 if (avail[n].limit < avail[n + 1].base) 9754 (md++)->base = avail[n].limit; 9755 if (avail[n].limit) 9756 (md++)->base = avail[n].limit; 9757 9758 n = md - mem; 9759 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 9760 9761 for (lo = 0; lo < i; lo++) 9762 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 9763 avail[lo].limit - 1); 9764 9765 sbuf_printf(sb, "\n"); 9766 for (i = 0; i < n; i++) { 9767 if (mem[i].idx >= nitems(region)) 9768 continue; /* skip holes */ 9769 if (!mem[i].limit) 9770 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 9771 mem_region_show(sb, region[mem[i].idx], mem[i].base, 9772 mem[i].limit); 9773 } 9774 9775 sbuf_printf(sb, "\n"); 9776 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 9777 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 9778 mem_region_show(sb, "uP RAM:", lo, hi); 9779 9780 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 9781 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 9782 mem_region_show(sb, "uP Extmem2:", lo, hi); 9783 9784 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 9785 sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", 9786 G_PMRXMAXPAGE(lo), 9787 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 9788 (lo & F_PMRXNUMCHN) ? 2 : 1); 9789 9790 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 9791 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 9792 sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", 9793 G_PMTXMAXPAGE(lo), 9794 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 9795 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 9796 sbuf_printf(sb, "%u p-structs\n", 9797 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); 9798 9799 for (i = 0; i < 4; i++) { 9800 if (chip_id(sc) > CHELSIO_T5) 9801 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 9802 else 9803 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 9804 if (is_t5(sc)) { 9805 used = G_T5_USED(lo); 9806 alloc = G_T5_ALLOC(lo); 9807 } else { 9808 used = G_USED(lo); 9809 alloc = G_ALLOC(lo); 9810 } 9811 /* For T6 these are MAC buffer groups */ 9812 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 9813 i, used, alloc); 9814 } 9815 for (i = 0; i < sc->chip_params->nchan; i++) { 9816 if (chip_id(sc) > CHELSIO_T5) 9817 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 9818 else 9819 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 9820 if (is_t5(sc)) { 9821 used = G_T5_USED(lo); 9822 alloc = G_T5_ALLOC(lo); 9823 } else { 9824 used = G_USED(lo); 9825 alloc = G_ALLOC(lo); 9826 } 9827 /* For T6 these are MAC buffer groups */ 9828 sbuf_printf(sb, 9829 "\nLoopback %d using %u pages out of %u allocated", 9830 i, used, alloc); 9831 } 9832 done: 9833 mtx_unlock(&sc->reg_lock); 9834 if (rc == 0) 9835 rc = sbuf_finish(sb); 9836 sbuf_delete(sb); 9837 return (rc); 9838 } 9839 9840 static inline void 9841 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 9842 { 9843 *mask = x | y; 9844 y = htobe64(y); 9845 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 9846 } 9847 9848 static int 9849 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 9850 { 9851 struct adapter *sc = arg1; 9852 struct sbuf *sb; 9853 int rc, i; 9854 9855 MPASS(chip_id(sc) <= CHELSIO_T5); 9856 9857 rc = sysctl_wire_old_buffer(req, 0); 9858 if (rc != 0) 9859 return (rc); 9860 9861 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9862 if (sb == NULL) 9863 return (ENOMEM); 9864 9865 sbuf_printf(sb, 9866 "Idx Ethernet address Mask Vld Ports PF" 9867 " VF Replication P0 P1 P2 P3 ML"); 9868 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 9869 uint64_t tcamx, tcamy, mask; 9870 uint32_t cls_lo, cls_hi; 9871 uint8_t addr[ETHER_ADDR_LEN]; 9872 9873 mtx_lock(&sc->reg_lock); 9874 if (hw_off_limits(sc)) 9875 rc = ENXIO; 9876 else { 9877 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 9878 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 9879 } 9880 mtx_unlock(&sc->reg_lock); 9881 if (rc != 0) 9882 break; 9883 if (tcamx & tcamy) 9884 continue; 9885 tcamxy2valmask(tcamx, tcamy, addr, &mask); 9886 mtx_lock(&sc->reg_lock); 9887 if (hw_off_limits(sc)) 9888 rc = ENXIO; 9889 else { 9890 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 9891 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 9892 } 9893 mtx_unlock(&sc->reg_lock); 9894 if (rc != 0) 9895 break; 9896 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 9897 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 9898 addr[3], addr[4], addr[5], (uintmax_t)mask, 9899 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 9900 G_PORTMAP(cls_hi), G_PF(cls_lo), 9901 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 9902 9903 if (cls_lo & F_REPLICATE) { 9904 struct fw_ldst_cmd ldst_cmd; 9905 9906 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 9907 ldst_cmd.op_to_addrspace = 9908 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 9909 F_FW_CMD_REQUEST | F_FW_CMD_READ | 9910 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 9911 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 9912 ldst_cmd.u.mps.rplc.fid_idx = 9913 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 9914 V_FW_LDST_CMD_IDX(i)); 9915 9916 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 9917 "t4mps"); 9918 if (rc) 9919 break; 9920 if (hw_off_limits(sc)) 9921 rc = ENXIO; 9922 else 9923 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 9924 sizeof(ldst_cmd), &ldst_cmd); 9925 end_synchronized_op(sc, 0); 9926 if (rc != 0) 9927 break; 9928 else { 9929 sbuf_printf(sb, " %08x %08x %08x %08x", 9930 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 9931 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 9932 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 9933 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 9934 } 9935 } else 9936 sbuf_printf(sb, "%36s", ""); 9937 9938 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 9939 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 9940 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 9941 } 9942 9943 if (rc) 9944 (void) sbuf_finish(sb); 9945 else 9946 rc = sbuf_finish(sb); 9947 sbuf_delete(sb); 9948 9949 return (rc); 9950 } 9951 9952 static int 9953 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 9954 { 9955 struct adapter *sc = arg1; 9956 struct sbuf *sb; 9957 int rc, i; 9958 9959 MPASS(chip_id(sc) > CHELSIO_T5); 9960 9961 rc = sysctl_wire_old_buffer(req, 0); 9962 if (rc != 0) 9963 return (rc); 9964 9965 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9966 if (sb == NULL) 9967 return (ENOMEM); 9968 9969 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 9970 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 9971 " Replication" 9972 " P0 P1 P2 P3 ML\n"); 9973 9974 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 9975 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 9976 uint16_t ivlan; 9977 uint64_t tcamx, tcamy, val, mask; 9978 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 9979 uint8_t addr[ETHER_ADDR_LEN]; 9980 9981 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 9982 if (i < 256) 9983 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 9984 else 9985 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 9986 mtx_lock(&sc->reg_lock); 9987 if (hw_off_limits(sc)) 9988 rc = ENXIO; 9989 else { 9990 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 9991 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 9992 tcamy = G_DMACH(val) << 32; 9993 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 9994 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 9995 } 9996 mtx_unlock(&sc->reg_lock); 9997 if (rc != 0) 9998 break; 9999 10000 lookup_type = G_DATALKPTYPE(data2); 10001 port_num = G_DATAPORTNUM(data2); 10002 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10003 /* Inner header VNI */ 10004 vniy = ((data2 & F_DATAVIDH2) << 23) | 10005 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10006 dip_hit = data2 & F_DATADIPHIT; 10007 vlan_vld = 0; 10008 } else { 10009 vniy = 0; 10010 dip_hit = 0; 10011 vlan_vld = data2 & F_DATAVIDH2; 10012 ivlan = G_VIDL(val); 10013 } 10014 10015 ctl |= V_CTLXYBITSEL(1); 10016 mtx_lock(&sc->reg_lock); 10017 if (hw_off_limits(sc)) 10018 rc = ENXIO; 10019 else { 10020 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10021 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10022 tcamx = G_DMACH(val) << 32; 10023 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10024 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10025 } 10026 mtx_unlock(&sc->reg_lock); 10027 if (rc != 0) 10028 break; 10029 10030 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10031 /* Inner header VNI mask */ 10032 vnix = ((data2 & F_DATAVIDH2) << 23) | 10033 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10034 } else 10035 vnix = 0; 10036 10037 if (tcamx & tcamy) 10038 continue; 10039 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10040 10041 mtx_lock(&sc->reg_lock); 10042 if (hw_off_limits(sc)) 10043 rc = ENXIO; 10044 else { 10045 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10046 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10047 } 10048 mtx_unlock(&sc->reg_lock); 10049 if (rc != 0) 10050 break; 10051 10052 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10053 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10054 "%012jx %06x %06x - - %3c" 10055 " I %4x %3c %#x%4u%4d", i, addr[0], 10056 addr[1], addr[2], addr[3], addr[4], addr[5], 10057 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10058 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10059 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10060 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10061 } else { 10062 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10063 "%012jx - - ", i, addr[0], addr[1], 10064 addr[2], addr[3], addr[4], addr[5], 10065 (uintmax_t)mask); 10066 10067 if (vlan_vld) 10068 sbuf_printf(sb, "%4u Y ", ivlan); 10069 else 10070 sbuf_printf(sb, " - N "); 10071 10072 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10073 lookup_type ? 'I' : 'O', port_num, 10074 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10075 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10076 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10077 } 10078 10079 10080 if (cls_lo & F_T6_REPLICATE) { 10081 struct fw_ldst_cmd ldst_cmd; 10082 10083 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10084 ldst_cmd.op_to_addrspace = 10085 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10086 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10087 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10088 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10089 ldst_cmd.u.mps.rplc.fid_idx = 10090 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10091 V_FW_LDST_CMD_IDX(i)); 10092 10093 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10094 "t6mps"); 10095 if (rc) 10096 break; 10097 if (hw_off_limits(sc)) 10098 rc = ENXIO; 10099 else 10100 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10101 sizeof(ldst_cmd), &ldst_cmd); 10102 end_synchronized_op(sc, 0); 10103 if (rc != 0) 10104 break; 10105 else { 10106 sbuf_printf(sb, " %08x %08x %08x %08x" 10107 " %08x %08x %08x %08x", 10108 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10109 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10110 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10111 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10112 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10113 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10114 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10115 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10116 } 10117 } else 10118 sbuf_printf(sb, "%72s", ""); 10119 10120 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10121 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10122 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10123 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10124 } 10125 10126 if (rc) 10127 (void) sbuf_finish(sb); 10128 else 10129 rc = sbuf_finish(sb); 10130 sbuf_delete(sb); 10131 10132 return (rc); 10133 } 10134 10135 static int 10136 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10137 { 10138 struct adapter *sc = arg1; 10139 struct sbuf *sb; 10140 int rc; 10141 uint16_t mtus[NMTUS]; 10142 10143 rc = sysctl_wire_old_buffer(req, 0); 10144 if (rc != 0) 10145 return (rc); 10146 10147 mtx_lock(&sc->reg_lock); 10148 if (hw_off_limits(sc)) 10149 rc = ENXIO; 10150 else 10151 t4_read_mtu_tbl(sc, mtus, NULL); 10152 mtx_unlock(&sc->reg_lock); 10153 if (rc != 0) 10154 return (rc); 10155 10156 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10157 if (sb == NULL) 10158 return (ENOMEM); 10159 10160 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10161 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10162 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10163 mtus[14], mtus[15]); 10164 10165 rc = sbuf_finish(sb); 10166 sbuf_delete(sb); 10167 10168 return (rc); 10169 } 10170 10171 static int 10172 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10173 { 10174 struct adapter *sc = arg1; 10175 struct sbuf *sb; 10176 int rc, i; 10177 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10178 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10179 static const char *tx_stats[MAX_PM_NSTATS] = { 10180 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10181 "Tx FIFO wait", NULL, "Tx latency" 10182 }; 10183 static const char *rx_stats[MAX_PM_NSTATS] = { 10184 "Read:", "Write bypass:", "Write mem:", "Flush:", 10185 "Rx FIFO wait", NULL, "Rx latency" 10186 }; 10187 10188 rc = sysctl_wire_old_buffer(req, 0); 10189 if (rc != 0) 10190 return (rc); 10191 10192 mtx_lock(&sc->reg_lock); 10193 if (hw_off_limits(sc)) 10194 rc = ENXIO; 10195 else { 10196 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10197 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10198 } 10199 mtx_unlock(&sc->reg_lock); 10200 if (rc != 0) 10201 return (rc); 10202 10203 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10204 if (sb == NULL) 10205 return (ENOMEM); 10206 10207 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10208 for (i = 0; i < 4; i++) { 10209 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10210 tx_cyc[i]); 10211 } 10212 10213 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10214 for (i = 0; i < 4; i++) { 10215 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10216 rx_cyc[i]); 10217 } 10218 10219 if (chip_id(sc) > CHELSIO_T5) { 10220 sbuf_printf(sb, 10221 "\n Total wait Total occupancy"); 10222 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10223 tx_cyc[i]); 10224 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10225 rx_cyc[i]); 10226 10227 i += 2; 10228 MPASS(i < nitems(tx_stats)); 10229 10230 sbuf_printf(sb, 10231 "\n Reads Total wait"); 10232 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10233 tx_cyc[i]); 10234 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10235 rx_cyc[i]); 10236 } 10237 10238 rc = sbuf_finish(sb); 10239 sbuf_delete(sb); 10240 10241 return (rc); 10242 } 10243 10244 static int 10245 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10246 { 10247 struct adapter *sc = arg1; 10248 struct sbuf *sb; 10249 int rc; 10250 struct tp_rdma_stats stats; 10251 10252 rc = sysctl_wire_old_buffer(req, 0); 10253 if (rc != 0) 10254 return (rc); 10255 10256 mtx_lock(&sc->reg_lock); 10257 if (hw_off_limits(sc)) 10258 rc = ENXIO; 10259 else 10260 t4_tp_get_rdma_stats(sc, &stats, 0); 10261 mtx_unlock(&sc->reg_lock); 10262 if (rc != 0) 10263 return (rc); 10264 10265 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10266 if (sb == NULL) 10267 return (ENOMEM); 10268 10269 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10270 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10271 10272 rc = sbuf_finish(sb); 10273 sbuf_delete(sb); 10274 10275 return (rc); 10276 } 10277 10278 static int 10279 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10280 { 10281 struct adapter *sc = arg1; 10282 struct sbuf *sb; 10283 int rc; 10284 struct tp_tcp_stats v4, v6; 10285 10286 rc = sysctl_wire_old_buffer(req, 0); 10287 if (rc != 0) 10288 return (rc); 10289 10290 mtx_lock(&sc->reg_lock); 10291 if (hw_off_limits(sc)) 10292 rc = ENXIO; 10293 else 10294 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10295 mtx_unlock(&sc->reg_lock); 10296 if (rc != 0) 10297 return (rc); 10298 10299 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10300 if (sb == NULL) 10301 return (ENOMEM); 10302 10303 sbuf_printf(sb, 10304 " IP IPv6\n"); 10305 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10306 v4.tcp_out_rsts, v6.tcp_out_rsts); 10307 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10308 v4.tcp_in_segs, v6.tcp_in_segs); 10309 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10310 v4.tcp_out_segs, v6.tcp_out_segs); 10311 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10312 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10313 10314 rc = sbuf_finish(sb); 10315 sbuf_delete(sb); 10316 10317 return (rc); 10318 } 10319 10320 static int 10321 sysctl_tids(SYSCTL_HANDLER_ARGS) 10322 { 10323 struct adapter *sc = arg1; 10324 struct sbuf *sb; 10325 int rc; 10326 uint32_t x, y; 10327 struct tid_info *t = &sc->tids; 10328 10329 rc = sysctl_wire_old_buffer(req, 0); 10330 if (rc != 0) 10331 return (rc); 10332 10333 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10334 if (sb == NULL) 10335 return (ENOMEM); 10336 10337 if (t->natids) { 10338 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10339 t->atids_in_use); 10340 } 10341 10342 if (t->nhpftids) { 10343 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10344 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10345 } 10346 10347 if (t->ntids) { 10348 bool hashen = false; 10349 10350 mtx_lock(&sc->reg_lock); 10351 if (hw_off_limits(sc)) 10352 rc = ENXIO; 10353 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10354 hashen = true; 10355 if (chip_id(sc) <= CHELSIO_T5) { 10356 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10357 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10358 } else { 10359 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10360 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10361 } 10362 } 10363 mtx_unlock(&sc->reg_lock); 10364 if (rc != 0) 10365 goto done; 10366 10367 sbuf_printf(sb, "TID range: "); 10368 if (hashen) { 10369 if (x) 10370 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10371 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10372 } else { 10373 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10374 t->ntids - 1); 10375 } 10376 sbuf_printf(sb, ", in use: %u\n", 10377 atomic_load_acq_int(&t->tids_in_use)); 10378 } 10379 10380 if (t->nstids) { 10381 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10382 t->stid_base + t->nstids - 1, t->stids_in_use); 10383 } 10384 10385 if (t->nftids) { 10386 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10387 t->ftid_end, t->ftids_in_use); 10388 } 10389 10390 if (t->netids) { 10391 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10392 t->etid_base + t->netids - 1, t->etids_in_use); 10393 } 10394 10395 mtx_lock(&sc->reg_lock); 10396 if (hw_off_limits(sc)) 10397 rc = ENXIO; 10398 else { 10399 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10400 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10401 } 10402 mtx_unlock(&sc->reg_lock); 10403 if (rc != 0) 10404 goto done; 10405 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10406 done: 10407 if (rc == 0) 10408 rc = sbuf_finish(sb); 10409 else 10410 (void)sbuf_finish(sb); 10411 sbuf_delete(sb); 10412 10413 return (rc); 10414 } 10415 10416 static int 10417 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10418 { 10419 struct adapter *sc = arg1; 10420 struct sbuf *sb; 10421 int rc; 10422 struct tp_err_stats stats; 10423 10424 rc = sysctl_wire_old_buffer(req, 0); 10425 if (rc != 0) 10426 return (rc); 10427 10428 mtx_lock(&sc->reg_lock); 10429 if (hw_off_limits(sc)) 10430 rc = ENXIO; 10431 else 10432 t4_tp_get_err_stats(sc, &stats, 0); 10433 mtx_unlock(&sc->reg_lock); 10434 if (rc != 0) 10435 return (rc); 10436 10437 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10438 if (sb == NULL) 10439 return (ENOMEM); 10440 10441 if (sc->chip_params->nchan > 2) { 10442 sbuf_printf(sb, " channel 0 channel 1" 10443 " channel 2 channel 3\n"); 10444 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10445 stats.mac_in_errs[0], stats.mac_in_errs[1], 10446 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10447 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10448 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10449 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10450 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10451 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10452 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10453 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10454 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10455 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10456 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10457 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10458 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10459 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10460 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10461 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10462 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10463 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10464 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10465 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10466 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10467 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10468 } else { 10469 sbuf_printf(sb, " channel 0 channel 1\n"); 10470 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10471 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10472 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10473 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10474 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10475 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10476 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10477 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10478 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10479 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10480 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10481 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10482 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10483 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10484 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10485 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10486 } 10487 10488 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10489 stats.ofld_no_neigh, stats.ofld_cong_defer); 10490 10491 rc = sbuf_finish(sb); 10492 sbuf_delete(sb); 10493 10494 return (rc); 10495 } 10496 10497 static int 10498 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10499 { 10500 struct adapter *sc = arg1; 10501 struct sbuf *sb; 10502 int rc; 10503 struct tp_tnl_stats stats; 10504 10505 rc = sysctl_wire_old_buffer(req, 0); 10506 if (rc != 0) 10507 return(rc); 10508 10509 mtx_lock(&sc->reg_lock); 10510 if (hw_off_limits(sc)) 10511 rc = ENXIO; 10512 else 10513 t4_tp_get_tnl_stats(sc, &stats, 1); 10514 mtx_unlock(&sc->reg_lock); 10515 if (rc != 0) 10516 return (rc); 10517 10518 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10519 if (sb == NULL) 10520 return (ENOMEM); 10521 10522 if (sc->chip_params->nchan > 2) { 10523 sbuf_printf(sb, " channel 0 channel 1" 10524 " channel 2 channel 3\n"); 10525 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10526 stats.out_pkt[0], stats.out_pkt[1], 10527 stats.out_pkt[2], stats.out_pkt[3]); 10528 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10529 stats.in_pkt[0], stats.in_pkt[1], 10530 stats.in_pkt[2], stats.in_pkt[3]); 10531 } else { 10532 sbuf_printf(sb, " channel 0 channel 1\n"); 10533 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10534 stats.out_pkt[0], stats.out_pkt[1]); 10535 sbuf_printf(sb, "InPkts: %10u %10u", 10536 stats.in_pkt[0], stats.in_pkt[1]); 10537 } 10538 10539 rc = sbuf_finish(sb); 10540 sbuf_delete(sb); 10541 10542 return (rc); 10543 } 10544 10545 static int 10546 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10547 { 10548 struct adapter *sc = arg1; 10549 struct tp_params *tpp = &sc->params.tp; 10550 u_int mask; 10551 int rc; 10552 10553 mask = tpp->la_mask >> 16; 10554 rc = sysctl_handle_int(oidp, &mask, 0, req); 10555 if (rc != 0 || req->newptr == NULL) 10556 return (rc); 10557 if (mask > 0xffff) 10558 return (EINVAL); 10559 mtx_lock(&sc->reg_lock); 10560 if (hw_off_limits(sc)) 10561 rc = ENXIO; 10562 else { 10563 tpp->la_mask = mask << 16; 10564 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10565 tpp->la_mask); 10566 } 10567 mtx_unlock(&sc->reg_lock); 10568 10569 return (rc); 10570 } 10571 10572 struct field_desc { 10573 const char *name; 10574 u_int start; 10575 u_int width; 10576 }; 10577 10578 static void 10579 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10580 { 10581 char buf[32]; 10582 int line_size = 0; 10583 10584 while (f->name) { 10585 uint64_t mask = (1ULL << f->width) - 1; 10586 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10587 ((uintmax_t)v >> f->start) & mask); 10588 10589 if (line_size + len >= 79) { 10590 line_size = 8; 10591 sbuf_printf(sb, "\n "); 10592 } 10593 sbuf_printf(sb, "%s ", buf); 10594 line_size += len + 1; 10595 f++; 10596 } 10597 sbuf_printf(sb, "\n"); 10598 } 10599 10600 static const struct field_desc tp_la0[] = { 10601 { "RcfOpCodeOut", 60, 4 }, 10602 { "State", 56, 4 }, 10603 { "WcfState", 52, 4 }, 10604 { "RcfOpcSrcOut", 50, 2 }, 10605 { "CRxError", 49, 1 }, 10606 { "ERxError", 48, 1 }, 10607 { "SanityFailed", 47, 1 }, 10608 { "SpuriousMsg", 46, 1 }, 10609 { "FlushInputMsg", 45, 1 }, 10610 { "FlushInputCpl", 44, 1 }, 10611 { "RssUpBit", 43, 1 }, 10612 { "RssFilterHit", 42, 1 }, 10613 { "Tid", 32, 10 }, 10614 { "InitTcb", 31, 1 }, 10615 { "LineNumber", 24, 7 }, 10616 { "Emsg", 23, 1 }, 10617 { "EdataOut", 22, 1 }, 10618 { "Cmsg", 21, 1 }, 10619 { "CdataOut", 20, 1 }, 10620 { "EreadPdu", 19, 1 }, 10621 { "CreadPdu", 18, 1 }, 10622 { "TunnelPkt", 17, 1 }, 10623 { "RcfPeerFin", 16, 1 }, 10624 { "RcfReasonOut", 12, 4 }, 10625 { "TxCchannel", 10, 2 }, 10626 { "RcfTxChannel", 8, 2 }, 10627 { "RxEchannel", 6, 2 }, 10628 { "RcfRxChannel", 5, 1 }, 10629 { "RcfDataOutSrdy", 4, 1 }, 10630 { "RxDvld", 3, 1 }, 10631 { "RxOoDvld", 2, 1 }, 10632 { "RxCongestion", 1, 1 }, 10633 { "TxCongestion", 0, 1 }, 10634 { NULL } 10635 }; 10636 10637 static const struct field_desc tp_la1[] = { 10638 { "CplCmdIn", 56, 8 }, 10639 { "CplCmdOut", 48, 8 }, 10640 { "ESynOut", 47, 1 }, 10641 { "EAckOut", 46, 1 }, 10642 { "EFinOut", 45, 1 }, 10643 { "ERstOut", 44, 1 }, 10644 { "SynIn", 43, 1 }, 10645 { "AckIn", 42, 1 }, 10646 { "FinIn", 41, 1 }, 10647 { "RstIn", 40, 1 }, 10648 { "DataIn", 39, 1 }, 10649 { "DataInVld", 38, 1 }, 10650 { "PadIn", 37, 1 }, 10651 { "RxBufEmpty", 36, 1 }, 10652 { "RxDdp", 35, 1 }, 10653 { "RxFbCongestion", 34, 1 }, 10654 { "TxFbCongestion", 33, 1 }, 10655 { "TxPktSumSrdy", 32, 1 }, 10656 { "RcfUlpType", 28, 4 }, 10657 { "Eread", 27, 1 }, 10658 { "Ebypass", 26, 1 }, 10659 { "Esave", 25, 1 }, 10660 { "Static0", 24, 1 }, 10661 { "Cread", 23, 1 }, 10662 { "Cbypass", 22, 1 }, 10663 { "Csave", 21, 1 }, 10664 { "CPktOut", 20, 1 }, 10665 { "RxPagePoolFull", 18, 2 }, 10666 { "RxLpbkPkt", 17, 1 }, 10667 { "TxLpbkPkt", 16, 1 }, 10668 { "RxVfValid", 15, 1 }, 10669 { "SynLearned", 14, 1 }, 10670 { "SetDelEntry", 13, 1 }, 10671 { "SetInvEntry", 12, 1 }, 10672 { "CpcmdDvld", 11, 1 }, 10673 { "CpcmdSave", 10, 1 }, 10674 { "RxPstructsFull", 8, 2 }, 10675 { "EpcmdDvld", 7, 1 }, 10676 { "EpcmdFlush", 6, 1 }, 10677 { "EpcmdTrimPrefix", 5, 1 }, 10678 { "EpcmdTrimPostfix", 4, 1 }, 10679 { "ERssIp4Pkt", 3, 1 }, 10680 { "ERssIp6Pkt", 2, 1 }, 10681 { "ERssTcpUdpPkt", 1, 1 }, 10682 { "ERssFceFipPkt", 0, 1 }, 10683 { NULL } 10684 }; 10685 10686 static const struct field_desc tp_la2[] = { 10687 { "CplCmdIn", 56, 8 }, 10688 { "MpsVfVld", 55, 1 }, 10689 { "MpsPf", 52, 3 }, 10690 { "MpsVf", 44, 8 }, 10691 { "SynIn", 43, 1 }, 10692 { "AckIn", 42, 1 }, 10693 { "FinIn", 41, 1 }, 10694 { "RstIn", 40, 1 }, 10695 { "DataIn", 39, 1 }, 10696 { "DataInVld", 38, 1 }, 10697 { "PadIn", 37, 1 }, 10698 { "RxBufEmpty", 36, 1 }, 10699 { "RxDdp", 35, 1 }, 10700 { "RxFbCongestion", 34, 1 }, 10701 { "TxFbCongestion", 33, 1 }, 10702 { "TxPktSumSrdy", 32, 1 }, 10703 { "RcfUlpType", 28, 4 }, 10704 { "Eread", 27, 1 }, 10705 { "Ebypass", 26, 1 }, 10706 { "Esave", 25, 1 }, 10707 { "Static0", 24, 1 }, 10708 { "Cread", 23, 1 }, 10709 { "Cbypass", 22, 1 }, 10710 { "Csave", 21, 1 }, 10711 { "CPktOut", 20, 1 }, 10712 { "RxPagePoolFull", 18, 2 }, 10713 { "RxLpbkPkt", 17, 1 }, 10714 { "TxLpbkPkt", 16, 1 }, 10715 { "RxVfValid", 15, 1 }, 10716 { "SynLearned", 14, 1 }, 10717 { "SetDelEntry", 13, 1 }, 10718 { "SetInvEntry", 12, 1 }, 10719 { "CpcmdDvld", 11, 1 }, 10720 { "CpcmdSave", 10, 1 }, 10721 { "RxPstructsFull", 8, 2 }, 10722 { "EpcmdDvld", 7, 1 }, 10723 { "EpcmdFlush", 6, 1 }, 10724 { "EpcmdTrimPrefix", 5, 1 }, 10725 { "EpcmdTrimPostfix", 4, 1 }, 10726 { "ERssIp4Pkt", 3, 1 }, 10727 { "ERssIp6Pkt", 2, 1 }, 10728 { "ERssTcpUdpPkt", 1, 1 }, 10729 { "ERssFceFipPkt", 0, 1 }, 10730 { NULL } 10731 }; 10732 10733 static void 10734 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10735 { 10736 10737 field_desc_show(sb, *p, tp_la0); 10738 } 10739 10740 static void 10741 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10742 { 10743 10744 if (idx) 10745 sbuf_printf(sb, "\n"); 10746 field_desc_show(sb, p[0], tp_la0); 10747 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10748 field_desc_show(sb, p[1], tp_la0); 10749 } 10750 10751 static void 10752 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 10753 { 10754 10755 if (idx) 10756 sbuf_printf(sb, "\n"); 10757 field_desc_show(sb, p[0], tp_la0); 10758 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10759 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 10760 } 10761 10762 static int 10763 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 10764 { 10765 struct adapter *sc = arg1; 10766 struct sbuf *sb; 10767 uint64_t *buf, *p; 10768 int rc; 10769 u_int i, inc; 10770 void (*show_func)(struct sbuf *, uint64_t *, int); 10771 10772 rc = sysctl_wire_old_buffer(req, 0); 10773 if (rc != 0) 10774 return (rc); 10775 10776 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10777 if (sb == NULL) 10778 return (ENOMEM); 10779 10780 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 10781 10782 mtx_lock(&sc->reg_lock); 10783 if (hw_off_limits(sc)) 10784 rc = ENXIO; 10785 else { 10786 t4_tp_read_la(sc, buf, NULL); 10787 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 10788 case 2: 10789 inc = 2; 10790 show_func = tp_la_show2; 10791 break; 10792 case 3: 10793 inc = 2; 10794 show_func = tp_la_show3; 10795 break; 10796 default: 10797 inc = 1; 10798 show_func = tp_la_show; 10799 } 10800 } 10801 mtx_unlock(&sc->reg_lock); 10802 if (rc != 0) 10803 goto done; 10804 10805 p = buf; 10806 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 10807 (*show_func)(sb, p, i); 10808 rc = sbuf_finish(sb); 10809 done: 10810 sbuf_delete(sb); 10811 free(buf, M_CXGBE); 10812 return (rc); 10813 } 10814 10815 static int 10816 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 10817 { 10818 struct adapter *sc = arg1; 10819 struct sbuf *sb; 10820 int rc; 10821 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 10822 10823 rc = sysctl_wire_old_buffer(req, 0); 10824 if (rc != 0) 10825 return (rc); 10826 10827 mtx_lock(&sc->reg_lock); 10828 if (hw_off_limits(sc)) 10829 rc = ENXIO; 10830 else 10831 t4_get_chan_txrate(sc, nrate, orate); 10832 mtx_unlock(&sc->reg_lock); 10833 if (rc != 0) 10834 return (rc); 10835 10836 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10837 if (sb == NULL) 10838 return (ENOMEM); 10839 10840 if (sc->chip_params->nchan > 2) { 10841 sbuf_printf(sb, " channel 0 channel 1" 10842 " channel 2 channel 3\n"); 10843 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 10844 nrate[0], nrate[1], nrate[2], nrate[3]); 10845 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 10846 orate[0], orate[1], orate[2], orate[3]); 10847 } else { 10848 sbuf_printf(sb, " channel 0 channel 1\n"); 10849 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 10850 nrate[0], nrate[1]); 10851 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 10852 orate[0], orate[1]); 10853 } 10854 10855 rc = sbuf_finish(sb); 10856 sbuf_delete(sb); 10857 10858 return (rc); 10859 } 10860 10861 static int 10862 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 10863 { 10864 struct adapter *sc = arg1; 10865 struct sbuf *sb; 10866 uint32_t *buf, *p; 10867 int rc, i; 10868 10869 rc = sysctl_wire_old_buffer(req, 0); 10870 if (rc != 0) 10871 return (rc); 10872 10873 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10874 if (sb == NULL) 10875 return (ENOMEM); 10876 10877 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 10878 M_ZERO | M_WAITOK); 10879 10880 mtx_lock(&sc->reg_lock); 10881 if (hw_off_limits(sc)) 10882 rc = ENXIO; 10883 else 10884 t4_ulprx_read_la(sc, buf); 10885 mtx_unlock(&sc->reg_lock); 10886 if (rc != 0) 10887 goto done; 10888 10889 p = buf; 10890 sbuf_printf(sb, " Pcmd Type Message" 10891 " Data"); 10892 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 10893 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 10894 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 10895 } 10896 rc = sbuf_finish(sb); 10897 done: 10898 sbuf_delete(sb); 10899 free(buf, M_CXGBE); 10900 return (rc); 10901 } 10902 10903 static int 10904 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 10905 { 10906 struct adapter *sc = arg1; 10907 struct sbuf *sb; 10908 int rc; 10909 uint32_t cfg, s1, s2; 10910 10911 MPASS(chip_id(sc) >= CHELSIO_T5); 10912 10913 rc = sysctl_wire_old_buffer(req, 0); 10914 if (rc != 0) 10915 return (rc); 10916 10917 mtx_lock(&sc->reg_lock); 10918 if (hw_off_limits(sc)) 10919 rc = ENXIO; 10920 else { 10921 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 10922 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 10923 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 10924 } 10925 mtx_unlock(&sc->reg_lock); 10926 if (rc != 0) 10927 return (rc); 10928 10929 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10930 if (sb == NULL) 10931 return (ENOMEM); 10932 10933 if (G_STATSOURCE_T5(cfg) == 7) { 10934 int mode; 10935 10936 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 10937 if (mode == 0) 10938 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 10939 else if (mode == 1) 10940 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 10941 else 10942 sbuf_printf(sb, "unknown mode %d", mode); 10943 } 10944 rc = sbuf_finish(sb); 10945 sbuf_delete(sb); 10946 10947 return (rc); 10948 } 10949 10950 static int 10951 sysctl_cpus(SYSCTL_HANDLER_ARGS) 10952 { 10953 struct adapter *sc = arg1; 10954 enum cpu_sets op = arg2; 10955 cpuset_t cpuset; 10956 struct sbuf *sb; 10957 int i, rc; 10958 10959 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 10960 10961 CPU_ZERO(&cpuset); 10962 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 10963 if (rc != 0) 10964 return (rc); 10965 10966 rc = sysctl_wire_old_buffer(req, 0); 10967 if (rc != 0) 10968 return (rc); 10969 10970 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10971 if (sb == NULL) 10972 return (ENOMEM); 10973 10974 CPU_FOREACH(i) 10975 sbuf_printf(sb, "%d ", i); 10976 rc = sbuf_finish(sb); 10977 sbuf_delete(sb); 10978 10979 return (rc); 10980 } 10981 10982 static int 10983 sysctl_reset(SYSCTL_HANDLER_ARGS) 10984 { 10985 struct adapter *sc = arg1; 10986 u_int val; 10987 int rc; 10988 10989 val = sc->num_resets; 10990 rc = sysctl_handle_int(oidp, &val, 0, req); 10991 if (rc != 0 || req->newptr == NULL) 10992 return (rc); 10993 10994 if (val == 0) { 10995 /* Zero out the counter that tracks reset. */ 10996 sc->num_resets = 0; 10997 return (0); 10998 } 10999 11000 if (val != 1) 11001 return (EINVAL); /* 0 or 1 are the only legal values */ 11002 11003 if (hw_off_limits(sc)) /* harmless race */ 11004 return (EALREADY); 11005 11006 taskqueue_enqueue(reset_tq, &sc->reset_task); 11007 return (0); 11008 } 11009 11010 #ifdef TCP_OFFLOAD 11011 static int 11012 sysctl_tls(SYSCTL_HANDLER_ARGS) 11013 { 11014 struct adapter *sc = arg1; 11015 int i, j, v, rc; 11016 struct vi_info *vi; 11017 11018 v = sc->tt.tls; 11019 rc = sysctl_handle_int(oidp, &v, 0, req); 11020 if (rc != 0 || req->newptr == NULL) 11021 return (rc); 11022 11023 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11024 return (ENOTSUP); 11025 11026 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11027 if (rc) 11028 return (rc); 11029 if (hw_off_limits(sc)) 11030 rc = ENXIO; 11031 else { 11032 sc->tt.tls = !!v; 11033 for_each_port(sc, i) { 11034 for_each_vi(sc->port[i], j, vi) { 11035 if (vi->flags & VI_INIT_DONE) 11036 t4_update_fl_bufsize(vi->ifp); 11037 } 11038 } 11039 } 11040 end_synchronized_op(sc, 0); 11041 11042 return (rc); 11043 11044 } 11045 11046 static int 11047 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS) 11048 { 11049 struct adapter *sc = arg1; 11050 int *old_ports, *new_ports; 11051 int i, new_count, rc; 11052 11053 if (req->newptr == NULL && req->oldptr == NULL) 11054 return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) * 11055 sizeof(sc->tt.tls_rx_ports[0]))); 11056 11057 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx"); 11058 if (rc) 11059 return (rc); 11060 11061 if (hw_off_limits(sc)) { 11062 rc = ENXIO; 11063 goto done; 11064 } 11065 11066 if (sc->tt.num_tls_rx_ports == 0) { 11067 i = -1; 11068 rc = SYSCTL_OUT(req, &i, sizeof(i)); 11069 } else 11070 rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports, 11071 sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0])); 11072 if (rc == 0 && req->newptr != NULL) { 11073 new_count = req->newlen / sizeof(new_ports[0]); 11074 new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE, 11075 M_WAITOK); 11076 rc = SYSCTL_IN(req, new_ports, new_count * 11077 sizeof(new_ports[0])); 11078 if (rc) 11079 goto err; 11080 11081 /* Allow setting to a single '-1' to clear the list. */ 11082 if (new_count == 1 && new_ports[0] == -1) { 11083 ADAPTER_LOCK(sc); 11084 old_ports = sc->tt.tls_rx_ports; 11085 sc->tt.tls_rx_ports = NULL; 11086 sc->tt.num_tls_rx_ports = 0; 11087 ADAPTER_UNLOCK(sc); 11088 free(old_ports, M_CXGBE); 11089 } else { 11090 for (i = 0; i < new_count; i++) { 11091 if (new_ports[i] < 1 || 11092 new_ports[i] > IPPORT_MAX) { 11093 rc = EINVAL; 11094 goto err; 11095 } 11096 } 11097 11098 ADAPTER_LOCK(sc); 11099 old_ports = sc->tt.tls_rx_ports; 11100 sc->tt.tls_rx_ports = new_ports; 11101 sc->tt.num_tls_rx_ports = new_count; 11102 ADAPTER_UNLOCK(sc); 11103 free(old_ports, M_CXGBE); 11104 new_ports = NULL; 11105 } 11106 err: 11107 free(new_ports, M_CXGBE); 11108 } 11109 done: 11110 end_synchronized_op(sc, 0); 11111 return (rc); 11112 } 11113 11114 static int 11115 sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS) 11116 { 11117 struct adapter *sc = arg1; 11118 int v, rc; 11119 11120 v = sc->tt.tls_rx_timeout; 11121 rc = sysctl_handle_int(oidp, &v, 0, req); 11122 if (rc != 0 || req->newptr == NULL) 11123 return (rc); 11124 11125 if (v < 0) 11126 return (EINVAL); 11127 11128 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11129 return (ENOTSUP); 11130 11131 sc->tt.tls_rx_timeout = v; 11132 11133 return (0); 11134 11135 } 11136 11137 static void 11138 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11139 { 11140 u_int rem = val % factor; 11141 11142 if (rem == 0) 11143 snprintf(buf, len, "%u", val / factor); 11144 else { 11145 while (rem % 10 == 0) 11146 rem /= 10; 11147 snprintf(buf, len, "%u.%u", val / factor, rem); 11148 } 11149 } 11150 11151 static int 11152 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11153 { 11154 struct adapter *sc = arg1; 11155 char buf[16]; 11156 u_int res, re; 11157 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11158 11159 mtx_lock(&sc->reg_lock); 11160 if (hw_off_limits(sc)) 11161 res = (u_int)-1; 11162 else 11163 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11164 mtx_unlock(&sc->reg_lock); 11165 if (res == (u_int)-1) 11166 return (ENXIO); 11167 11168 switch (arg2) { 11169 case 0: 11170 /* timer_tick */ 11171 re = G_TIMERRESOLUTION(res); 11172 break; 11173 case 1: 11174 /* TCP timestamp tick */ 11175 re = G_TIMESTAMPRESOLUTION(res); 11176 break; 11177 case 2: 11178 /* DACK tick */ 11179 re = G_DELAYEDACKRESOLUTION(res); 11180 break; 11181 default: 11182 return (EDOOFUS); 11183 } 11184 11185 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11186 11187 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11188 } 11189 11190 static int 11191 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11192 { 11193 struct adapter *sc = arg1; 11194 int rc; 11195 u_int dack_tmr, dack_re, v; 11196 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11197 11198 mtx_lock(&sc->reg_lock); 11199 if (hw_off_limits(sc)) 11200 rc = ENXIO; 11201 else { 11202 rc = 0; 11203 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11204 A_TP_TIMER_RESOLUTION)); 11205 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11206 } 11207 mtx_unlock(&sc->reg_lock); 11208 if (rc != 0) 11209 return (rc); 11210 11211 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11212 11213 return (sysctl_handle_int(oidp, &v, 0, req)); 11214 } 11215 11216 static int 11217 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11218 { 11219 struct adapter *sc = arg1; 11220 int rc, reg = arg2; 11221 u_int tre; 11222 u_long tp_tick_us, v; 11223 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11224 11225 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11226 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11227 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11228 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11229 11230 mtx_lock(&sc->reg_lock); 11231 if (hw_off_limits(sc)) 11232 rc = ENXIO; 11233 else { 11234 rc = 0; 11235 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11236 tp_tick_us = (cclk_ps << tre) / 1000000; 11237 if (reg == A_TP_INIT_SRTT) 11238 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11239 else 11240 v = tp_tick_us * t4_read_reg(sc, reg); 11241 } 11242 mtx_unlock(&sc->reg_lock); 11243 if (rc != 0) 11244 return (rc); 11245 else 11246 return (sysctl_handle_long(oidp, &v, 0, req)); 11247 } 11248 11249 /* 11250 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11251 * passed to this function. 11252 */ 11253 static int 11254 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11255 { 11256 struct adapter *sc = arg1; 11257 int rc, idx = arg2; 11258 u_int v; 11259 11260 MPASS(idx >= 0 && idx <= 24); 11261 11262 mtx_lock(&sc->reg_lock); 11263 if (hw_off_limits(sc)) 11264 rc = ENXIO; 11265 else { 11266 rc = 0; 11267 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11268 } 11269 mtx_unlock(&sc->reg_lock); 11270 if (rc != 0) 11271 return (rc); 11272 else 11273 return (sysctl_handle_int(oidp, &v, 0, req)); 11274 } 11275 11276 static int 11277 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11278 { 11279 struct adapter *sc = arg1; 11280 int rc, idx = arg2; 11281 u_int shift, v, r; 11282 11283 MPASS(idx >= 0 && idx < 16); 11284 11285 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11286 shift = (idx & 3) << 3; 11287 mtx_lock(&sc->reg_lock); 11288 if (hw_off_limits(sc)) 11289 rc = ENXIO; 11290 else { 11291 rc = 0; 11292 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11293 } 11294 mtx_unlock(&sc->reg_lock); 11295 if (rc != 0) 11296 return (rc); 11297 else 11298 return (sysctl_handle_int(oidp, &v, 0, req)); 11299 } 11300 11301 static int 11302 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11303 { 11304 struct vi_info *vi = arg1; 11305 struct adapter *sc = vi->adapter; 11306 int idx, rc, i; 11307 struct sge_ofld_rxq *ofld_rxq; 11308 uint8_t v; 11309 11310 idx = vi->ofld_tmr_idx; 11311 11312 rc = sysctl_handle_int(oidp, &idx, 0, req); 11313 if (rc != 0 || req->newptr == NULL) 11314 return (rc); 11315 11316 if (idx < 0 || idx >= SGE_NTIMERS) 11317 return (EINVAL); 11318 11319 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11320 "t4otmr"); 11321 if (rc) 11322 return (rc); 11323 11324 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11325 for_each_ofld_rxq(vi, i, ofld_rxq) { 11326 #ifdef atomic_store_rel_8 11327 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11328 #else 11329 ofld_rxq->iq.intr_params = v; 11330 #endif 11331 } 11332 vi->ofld_tmr_idx = idx; 11333 11334 end_synchronized_op(sc, LOCK_HELD); 11335 return (0); 11336 } 11337 11338 static int 11339 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11340 { 11341 struct vi_info *vi = arg1; 11342 struct adapter *sc = vi->adapter; 11343 int idx, rc; 11344 11345 idx = vi->ofld_pktc_idx; 11346 11347 rc = sysctl_handle_int(oidp, &idx, 0, req); 11348 if (rc != 0 || req->newptr == NULL) 11349 return (rc); 11350 11351 if (idx < -1 || idx >= SGE_NCOUNTERS) 11352 return (EINVAL); 11353 11354 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11355 "t4opktc"); 11356 if (rc) 11357 return (rc); 11358 11359 if (vi->flags & VI_INIT_DONE) 11360 rc = EBUSY; /* cannot be changed once the queues are created */ 11361 else 11362 vi->ofld_pktc_idx = idx; 11363 11364 end_synchronized_op(sc, LOCK_HELD); 11365 return (rc); 11366 } 11367 #endif 11368 11369 static int 11370 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11371 { 11372 int rc; 11373 11374 if (cntxt->cid > M_CTXTQID) 11375 return (EINVAL); 11376 11377 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11378 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11379 return (EINVAL); 11380 11381 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11382 if (rc) 11383 return (rc); 11384 11385 if (hw_off_limits(sc)) { 11386 rc = ENXIO; 11387 goto done; 11388 } 11389 11390 if (sc->flags & FW_OK) { 11391 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11392 &cntxt->data[0]); 11393 if (rc == 0) 11394 goto done; 11395 } 11396 11397 /* 11398 * Read via firmware failed or wasn't even attempted. Read directly via 11399 * the backdoor. 11400 */ 11401 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11402 done: 11403 end_synchronized_op(sc, 0); 11404 return (rc); 11405 } 11406 11407 static int 11408 load_fw(struct adapter *sc, struct t4_data *fw) 11409 { 11410 int rc; 11411 uint8_t *fw_data; 11412 11413 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11414 if (rc) 11415 return (rc); 11416 11417 if (hw_off_limits(sc)) { 11418 rc = ENXIO; 11419 goto done; 11420 } 11421 11422 /* 11423 * The firmware, with the sole exception of the memory parity error 11424 * handler, runs from memory and not flash. It is almost always safe to 11425 * install a new firmware on a running system. Just set bit 1 in 11426 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11427 */ 11428 if (sc->flags & FULL_INIT_DONE && 11429 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11430 rc = EBUSY; 11431 goto done; 11432 } 11433 11434 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11435 11436 rc = copyin(fw->data, fw_data, fw->len); 11437 if (rc == 0) 11438 rc = -t4_load_fw(sc, fw_data, fw->len); 11439 11440 free(fw_data, M_CXGBE); 11441 done: 11442 end_synchronized_op(sc, 0); 11443 return (rc); 11444 } 11445 11446 static int 11447 load_cfg(struct adapter *sc, struct t4_data *cfg) 11448 { 11449 int rc; 11450 uint8_t *cfg_data = NULL; 11451 11452 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11453 if (rc) 11454 return (rc); 11455 11456 if (hw_off_limits(sc)) { 11457 rc = ENXIO; 11458 goto done; 11459 } 11460 11461 if (cfg->len == 0) { 11462 /* clear */ 11463 rc = -t4_load_cfg(sc, NULL, 0); 11464 goto done; 11465 } 11466 11467 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11468 11469 rc = copyin(cfg->data, cfg_data, cfg->len); 11470 if (rc == 0) 11471 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11472 11473 free(cfg_data, M_CXGBE); 11474 done: 11475 end_synchronized_op(sc, 0); 11476 return (rc); 11477 } 11478 11479 static int 11480 load_boot(struct adapter *sc, struct t4_bootrom *br) 11481 { 11482 int rc; 11483 uint8_t *br_data = NULL; 11484 u_int offset; 11485 11486 if (br->len > 1024 * 1024) 11487 return (EFBIG); 11488 11489 if (br->pf_offset == 0) { 11490 /* pfidx */ 11491 if (br->pfidx_addr > 7) 11492 return (EINVAL); 11493 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11494 A_PCIE_PF_EXPROM_OFST))); 11495 } else if (br->pf_offset == 1) { 11496 /* offset */ 11497 offset = G_OFFSET(br->pfidx_addr); 11498 } else { 11499 return (EINVAL); 11500 } 11501 11502 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11503 if (rc) 11504 return (rc); 11505 11506 if (hw_off_limits(sc)) { 11507 rc = ENXIO; 11508 goto done; 11509 } 11510 11511 if (br->len == 0) { 11512 /* clear */ 11513 rc = -t4_load_boot(sc, NULL, offset, 0); 11514 goto done; 11515 } 11516 11517 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11518 11519 rc = copyin(br->data, br_data, br->len); 11520 if (rc == 0) 11521 rc = -t4_load_boot(sc, br_data, offset, br->len); 11522 11523 free(br_data, M_CXGBE); 11524 done: 11525 end_synchronized_op(sc, 0); 11526 return (rc); 11527 } 11528 11529 static int 11530 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11531 { 11532 int rc; 11533 uint8_t *bc_data = NULL; 11534 11535 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11536 if (rc) 11537 return (rc); 11538 11539 if (hw_off_limits(sc)) { 11540 rc = ENXIO; 11541 goto done; 11542 } 11543 11544 if (bc->len == 0) { 11545 /* clear */ 11546 rc = -t4_load_bootcfg(sc, NULL, 0); 11547 goto done; 11548 } 11549 11550 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11551 11552 rc = copyin(bc->data, bc_data, bc->len); 11553 if (rc == 0) 11554 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11555 11556 free(bc_data, M_CXGBE); 11557 done: 11558 end_synchronized_op(sc, 0); 11559 return (rc); 11560 } 11561 11562 static int 11563 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11564 { 11565 int rc; 11566 struct cudbg_init *cudbg; 11567 void *handle, *buf; 11568 11569 /* buf is large, don't block if no memory is available */ 11570 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11571 if (buf == NULL) 11572 return (ENOMEM); 11573 11574 handle = cudbg_alloc_handle(); 11575 if (handle == NULL) { 11576 rc = ENOMEM; 11577 goto done; 11578 } 11579 11580 cudbg = cudbg_get_init(handle); 11581 cudbg->adap = sc; 11582 cudbg->print = (cudbg_print_cb)printf; 11583 11584 #ifndef notyet 11585 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11586 __func__, dump->wr_flash, dump->len, dump->data); 11587 #endif 11588 11589 if (dump->wr_flash) 11590 cudbg->use_flash = 1; 11591 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11592 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11593 11594 rc = cudbg_collect(handle, buf, &dump->len); 11595 if (rc != 0) 11596 goto done; 11597 11598 rc = copyout(buf, dump->data, dump->len); 11599 done: 11600 cudbg_free_handle(handle); 11601 free(buf, M_CXGBE); 11602 return (rc); 11603 } 11604 11605 static void 11606 free_offload_policy(struct t4_offload_policy *op) 11607 { 11608 struct offload_rule *r; 11609 int i; 11610 11611 if (op == NULL) 11612 return; 11613 11614 r = &op->rule[0]; 11615 for (i = 0; i < op->nrules; i++, r++) { 11616 free(r->bpf_prog.bf_insns, M_CXGBE); 11617 } 11618 free(op->rule, M_CXGBE); 11619 free(op, M_CXGBE); 11620 } 11621 11622 static int 11623 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11624 { 11625 int i, rc, len; 11626 struct t4_offload_policy *op, *old; 11627 struct bpf_program *bf; 11628 const struct offload_settings *s; 11629 struct offload_rule *r; 11630 void *u; 11631 11632 if (!is_offload(sc)) 11633 return (ENODEV); 11634 11635 if (uop->nrules == 0) { 11636 /* Delete installed policies. */ 11637 op = NULL; 11638 goto set_policy; 11639 } else if (uop->nrules > 256) { /* arbitrary */ 11640 return (E2BIG); 11641 } 11642 11643 /* Copy userspace offload policy to kernel */ 11644 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11645 op->nrules = uop->nrules; 11646 len = op->nrules * sizeof(struct offload_rule); 11647 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11648 rc = copyin(uop->rule, op->rule, len); 11649 if (rc) { 11650 free(op->rule, M_CXGBE); 11651 free(op, M_CXGBE); 11652 return (rc); 11653 } 11654 11655 r = &op->rule[0]; 11656 for (i = 0; i < op->nrules; i++, r++) { 11657 11658 /* Validate open_type */ 11659 if (r->open_type != OPEN_TYPE_LISTEN && 11660 r->open_type != OPEN_TYPE_ACTIVE && 11661 r->open_type != OPEN_TYPE_PASSIVE && 11662 r->open_type != OPEN_TYPE_DONTCARE) { 11663 error: 11664 /* 11665 * Rules 0 to i have malloc'd filters that need to be 11666 * freed. Rules i+1 to nrules have userspace pointers 11667 * and should be left alone. 11668 */ 11669 op->nrules = i; 11670 free_offload_policy(op); 11671 return (rc); 11672 } 11673 11674 /* Validate settings */ 11675 s = &r->settings; 11676 if ((s->offload != 0 && s->offload != 1) || 11677 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11678 s->sched_class < -1 || 11679 s->sched_class >= sc->chip_params->nsched_cls) { 11680 rc = EINVAL; 11681 goto error; 11682 } 11683 11684 bf = &r->bpf_prog; 11685 u = bf->bf_insns; /* userspace ptr */ 11686 bf->bf_insns = NULL; 11687 if (bf->bf_len == 0) { 11688 /* legal, matches everything */ 11689 continue; 11690 } 11691 len = bf->bf_len * sizeof(*bf->bf_insns); 11692 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11693 rc = copyin(u, bf->bf_insns, len); 11694 if (rc != 0) 11695 goto error; 11696 11697 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11698 rc = EINVAL; 11699 goto error; 11700 } 11701 } 11702 set_policy: 11703 rw_wlock(&sc->policy_lock); 11704 old = sc->policy; 11705 sc->policy = op; 11706 rw_wunlock(&sc->policy_lock); 11707 free_offload_policy(old); 11708 11709 return (0); 11710 } 11711 11712 #define MAX_READ_BUF_SIZE (128 * 1024) 11713 static int 11714 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11715 { 11716 uint32_t addr, remaining, n; 11717 uint32_t *buf; 11718 int rc; 11719 uint8_t *dst; 11720 11721 mtx_lock(&sc->reg_lock); 11722 if (hw_off_limits(sc)) 11723 rc = ENXIO; 11724 else 11725 rc = validate_mem_range(sc, mr->addr, mr->len); 11726 mtx_unlock(&sc->reg_lock); 11727 if (rc != 0) 11728 return (rc); 11729 11730 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11731 addr = mr->addr; 11732 remaining = mr->len; 11733 dst = (void *)mr->data; 11734 11735 while (remaining) { 11736 n = min(remaining, MAX_READ_BUF_SIZE); 11737 mtx_lock(&sc->reg_lock); 11738 if (hw_off_limits(sc)) 11739 rc = ENXIO; 11740 else 11741 read_via_memwin(sc, 2, addr, buf, n); 11742 mtx_unlock(&sc->reg_lock); 11743 if (rc != 0) 11744 break; 11745 11746 rc = copyout(buf, dst, n); 11747 if (rc != 0) 11748 break; 11749 11750 dst += n; 11751 remaining -= n; 11752 addr += n; 11753 } 11754 11755 free(buf, M_CXGBE); 11756 return (rc); 11757 } 11758 #undef MAX_READ_BUF_SIZE 11759 11760 static int 11761 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11762 { 11763 int rc; 11764 11765 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11766 return (EINVAL); 11767 11768 if (i2cd->len > sizeof(i2cd->data)) 11769 return (EFBIG); 11770 11771 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11772 if (rc) 11773 return (rc); 11774 if (hw_off_limits(sc)) 11775 rc = ENXIO; 11776 else 11777 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11778 i2cd->offset, i2cd->len, &i2cd->data[0]); 11779 end_synchronized_op(sc, 0); 11780 11781 return (rc); 11782 } 11783 11784 static int 11785 clear_stats(struct adapter *sc, u_int port_id) 11786 { 11787 int i, v, chan_map; 11788 struct port_info *pi; 11789 struct vi_info *vi; 11790 struct sge_rxq *rxq; 11791 struct sge_txq *txq; 11792 struct sge_wrq *wrq; 11793 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11794 struct sge_ofld_txq *ofld_txq; 11795 #endif 11796 #ifdef TCP_OFFLOAD 11797 struct sge_ofld_rxq *ofld_rxq; 11798 #endif 11799 11800 if (port_id >= sc->params.nports) 11801 return (EINVAL); 11802 pi = sc->port[port_id]; 11803 if (pi == NULL) 11804 return (EIO); 11805 11806 mtx_lock(&sc->reg_lock); 11807 if (!hw_off_limits(sc)) { 11808 /* MAC stats */ 11809 t4_clr_port_stats(sc, pi->tx_chan); 11810 if (is_t6(sc)) { 11811 if (pi->fcs_reg != -1) 11812 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11813 else 11814 pi->stats.rx_fcs_err = 0; 11815 } 11816 for_each_vi(pi, v, vi) { 11817 if (vi->flags & VI_INIT_DONE) 11818 t4_clr_vi_stats(sc, vi->vin); 11819 } 11820 chan_map = pi->rx_e_chan_map; 11821 v = 0; /* reuse */ 11822 while (chan_map) { 11823 i = ffs(chan_map) - 1; 11824 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11825 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11826 chan_map &= ~(1 << i); 11827 } 11828 } 11829 mtx_unlock(&sc->reg_lock); 11830 pi->tx_parse_error = 0; 11831 pi->tnl_cong_drops = 0; 11832 11833 /* 11834 * Since this command accepts a port, clear stats for 11835 * all VIs on this port. 11836 */ 11837 for_each_vi(pi, v, vi) { 11838 if (vi->flags & VI_INIT_DONE) { 11839 11840 for_each_rxq(vi, i, rxq) { 11841 #if defined(INET) || defined(INET6) 11842 rxq->lro.lro_queued = 0; 11843 rxq->lro.lro_flushed = 0; 11844 #endif 11845 rxq->rxcsum = 0; 11846 rxq->vlan_extraction = 0; 11847 rxq->vxlan_rxcsum = 0; 11848 11849 rxq->fl.cl_allocated = 0; 11850 rxq->fl.cl_recycled = 0; 11851 rxq->fl.cl_fast_recycled = 0; 11852 } 11853 11854 for_each_txq(vi, i, txq) { 11855 txq->txcsum = 0; 11856 txq->tso_wrs = 0; 11857 txq->vlan_insertion = 0; 11858 txq->imm_wrs = 0; 11859 txq->sgl_wrs = 0; 11860 txq->txpkt_wrs = 0; 11861 txq->txpkts0_wrs = 0; 11862 txq->txpkts1_wrs = 0; 11863 txq->txpkts0_pkts = 0; 11864 txq->txpkts1_pkts = 0; 11865 txq->txpkts_flush = 0; 11866 txq->raw_wrs = 0; 11867 txq->vxlan_tso_wrs = 0; 11868 txq->vxlan_txcsum = 0; 11869 txq->kern_tls_records = 0; 11870 txq->kern_tls_short = 0; 11871 txq->kern_tls_partial = 0; 11872 txq->kern_tls_full = 0; 11873 txq->kern_tls_octets = 0; 11874 txq->kern_tls_waste = 0; 11875 txq->kern_tls_options = 0; 11876 txq->kern_tls_header = 0; 11877 txq->kern_tls_fin = 0; 11878 txq->kern_tls_fin_short = 0; 11879 txq->kern_tls_cbc = 0; 11880 txq->kern_tls_gcm = 0; 11881 mp_ring_reset_stats(txq->r); 11882 } 11883 11884 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11885 for_each_ofld_txq(vi, i, ofld_txq) { 11886 ofld_txq->wrq.tx_wrs_direct = 0; 11887 ofld_txq->wrq.tx_wrs_copied = 0; 11888 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 11889 counter_u64_zero(ofld_txq->tx_iscsi_octets); 11890 counter_u64_zero(ofld_txq->tx_toe_tls_records); 11891 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 11892 } 11893 #endif 11894 #ifdef TCP_OFFLOAD 11895 for_each_ofld_rxq(vi, i, ofld_rxq) { 11896 ofld_rxq->fl.cl_allocated = 0; 11897 ofld_rxq->fl.cl_recycled = 0; 11898 ofld_rxq->fl.cl_fast_recycled = 0; 11899 counter_u64_zero( 11900 ofld_rxq->rx_iscsi_ddp_setup_ok); 11901 counter_u64_zero( 11902 ofld_rxq->rx_iscsi_ddp_setup_error); 11903 ofld_rxq->rx_iscsi_ddp_pdus = 0; 11904 ofld_rxq->rx_iscsi_ddp_octets = 0; 11905 ofld_rxq->rx_iscsi_fl_pdus = 0; 11906 ofld_rxq->rx_iscsi_fl_octets = 0; 11907 ofld_rxq->rx_toe_tls_records = 0; 11908 ofld_rxq->rx_toe_tls_octets = 0; 11909 } 11910 #endif 11911 11912 if (IS_MAIN_VI(vi)) { 11913 wrq = &sc->sge.ctrlq[pi->port_id]; 11914 wrq->tx_wrs_direct = 0; 11915 wrq->tx_wrs_copied = 0; 11916 } 11917 } 11918 } 11919 11920 return (0); 11921 } 11922 11923 static int 11924 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 11925 { 11926 #ifdef INET6 11927 struct in6_addr in6; 11928 11929 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 11930 if (t4_get_clip_entry(sc, &in6, true) != NULL) 11931 return (0); 11932 else 11933 return (EIO); 11934 #else 11935 return (ENOTSUP); 11936 #endif 11937 } 11938 11939 static int 11940 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 11941 { 11942 #ifdef INET6 11943 struct in6_addr in6; 11944 11945 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 11946 return (t4_release_clip_addr(sc, &in6)); 11947 #else 11948 return (ENOTSUP); 11949 #endif 11950 } 11951 11952 int 11953 t4_os_find_pci_capability(struct adapter *sc, int cap) 11954 { 11955 int i; 11956 11957 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 11958 } 11959 11960 int 11961 t4_os_pci_save_state(struct adapter *sc) 11962 { 11963 device_t dev; 11964 struct pci_devinfo *dinfo; 11965 11966 dev = sc->dev; 11967 dinfo = device_get_ivars(dev); 11968 11969 pci_cfg_save(dev, dinfo, 0); 11970 return (0); 11971 } 11972 11973 int 11974 t4_os_pci_restore_state(struct adapter *sc) 11975 { 11976 device_t dev; 11977 struct pci_devinfo *dinfo; 11978 11979 dev = sc->dev; 11980 dinfo = device_get_ivars(dev); 11981 11982 pci_cfg_restore(dev, dinfo); 11983 return (0); 11984 } 11985 11986 void 11987 t4_os_portmod_changed(struct port_info *pi) 11988 { 11989 struct adapter *sc = pi->adapter; 11990 struct vi_info *vi; 11991 struct ifnet *ifp; 11992 static const char *mod_str[] = { 11993 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 11994 }; 11995 11996 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 11997 ("%s: port_type %u", __func__, pi->port_type)); 11998 11999 vi = &pi->vi[0]; 12000 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12001 PORT_LOCK(pi); 12002 build_medialist(pi); 12003 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12004 fixup_link_config(pi); 12005 apply_link_config(pi); 12006 } 12007 PORT_UNLOCK(pi); 12008 end_synchronized_op(sc, LOCK_HELD); 12009 } 12010 12011 ifp = vi->ifp; 12012 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12013 if_printf(ifp, "transceiver unplugged.\n"); 12014 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12015 if_printf(ifp, "unknown transceiver inserted.\n"); 12016 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12017 if_printf(ifp, "unsupported transceiver inserted.\n"); 12018 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12019 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12020 port_top_speed(pi), mod_str[pi->mod_type]); 12021 } else { 12022 if_printf(ifp, "transceiver (type %d) inserted.\n", 12023 pi->mod_type); 12024 } 12025 } 12026 12027 void 12028 t4_os_link_changed(struct port_info *pi) 12029 { 12030 struct vi_info *vi; 12031 struct ifnet *ifp; 12032 struct link_config *lc = &pi->link_cfg; 12033 struct adapter *sc = pi->adapter; 12034 int v; 12035 12036 PORT_LOCK_ASSERT_OWNED(pi); 12037 12038 if (is_t6(sc)) { 12039 if (lc->link_ok) { 12040 if (lc->speed > 25000 || 12041 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12042 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12043 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12044 } else { 12045 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12046 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12047 } 12048 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12049 pi->stats.rx_fcs_err = 0; 12050 } else { 12051 pi->fcs_reg = -1; 12052 } 12053 } else { 12054 MPASS(pi->fcs_reg != -1); 12055 MPASS(pi->fcs_base == 0); 12056 } 12057 12058 for_each_vi(pi, v, vi) { 12059 ifp = vi->ifp; 12060 if (ifp == NULL) 12061 continue; 12062 12063 if (lc->link_ok) { 12064 ifp->if_baudrate = IF_Mbps(lc->speed); 12065 if_link_state_change(ifp, LINK_STATE_UP); 12066 } else { 12067 if_link_state_change(ifp, LINK_STATE_DOWN); 12068 } 12069 } 12070 } 12071 12072 void 12073 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12074 { 12075 struct adapter *sc; 12076 12077 sx_slock(&t4_list_lock); 12078 SLIST_FOREACH(sc, &t4_list, link) { 12079 /* 12080 * func should not make any assumptions about what state sc is 12081 * in - the only guarantee is that sc->sc_lock is a valid lock. 12082 */ 12083 func(sc, arg); 12084 } 12085 sx_sunlock(&t4_list_lock); 12086 } 12087 12088 static int 12089 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12090 struct thread *td) 12091 { 12092 int rc; 12093 struct adapter *sc = dev->si_drv1; 12094 12095 rc = priv_check(td, PRIV_DRIVER); 12096 if (rc != 0) 12097 return (rc); 12098 12099 switch (cmd) { 12100 case CHELSIO_T4_GETREG: { 12101 struct t4_reg *edata = (struct t4_reg *)data; 12102 12103 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12104 return (EFAULT); 12105 12106 mtx_lock(&sc->reg_lock); 12107 if (hw_off_limits(sc)) 12108 rc = ENXIO; 12109 else if (edata->size == 4) 12110 edata->val = t4_read_reg(sc, edata->addr); 12111 else if (edata->size == 8) 12112 edata->val = t4_read_reg64(sc, edata->addr); 12113 else 12114 rc = EINVAL; 12115 mtx_unlock(&sc->reg_lock); 12116 12117 break; 12118 } 12119 case CHELSIO_T4_SETREG: { 12120 struct t4_reg *edata = (struct t4_reg *)data; 12121 12122 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12123 return (EFAULT); 12124 12125 mtx_lock(&sc->reg_lock); 12126 if (hw_off_limits(sc)) 12127 rc = ENXIO; 12128 else if (edata->size == 4) { 12129 if (edata->val & 0xffffffff00000000) 12130 rc = EINVAL; 12131 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12132 } else if (edata->size == 8) 12133 t4_write_reg64(sc, edata->addr, edata->val); 12134 else 12135 rc = EINVAL; 12136 mtx_unlock(&sc->reg_lock); 12137 12138 break; 12139 } 12140 case CHELSIO_T4_REGDUMP: { 12141 struct t4_regdump *regs = (struct t4_regdump *)data; 12142 int reglen = t4_get_regs_len(sc); 12143 uint8_t *buf; 12144 12145 if (regs->len < reglen) { 12146 regs->len = reglen; /* hint to the caller */ 12147 return (ENOBUFS); 12148 } 12149 12150 regs->len = reglen; 12151 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12152 mtx_lock(&sc->reg_lock); 12153 if (hw_off_limits(sc)) 12154 rc = ENXIO; 12155 else 12156 get_regs(sc, regs, buf); 12157 mtx_unlock(&sc->reg_lock); 12158 if (rc == 0) 12159 rc = copyout(buf, regs->data, reglen); 12160 free(buf, M_CXGBE); 12161 break; 12162 } 12163 case CHELSIO_T4_GET_FILTER_MODE: 12164 rc = get_filter_mode(sc, (uint32_t *)data); 12165 break; 12166 case CHELSIO_T4_SET_FILTER_MODE: 12167 rc = set_filter_mode(sc, *(uint32_t *)data); 12168 break; 12169 case CHELSIO_T4_SET_FILTER_MASK: 12170 rc = set_filter_mask(sc, *(uint32_t *)data); 12171 break; 12172 case CHELSIO_T4_GET_FILTER: 12173 rc = get_filter(sc, (struct t4_filter *)data); 12174 break; 12175 case CHELSIO_T4_SET_FILTER: 12176 rc = set_filter(sc, (struct t4_filter *)data); 12177 break; 12178 case CHELSIO_T4_DEL_FILTER: 12179 rc = del_filter(sc, (struct t4_filter *)data); 12180 break; 12181 case CHELSIO_T4_GET_SGE_CONTEXT: 12182 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12183 break; 12184 case CHELSIO_T4_LOAD_FW: 12185 rc = load_fw(sc, (struct t4_data *)data); 12186 break; 12187 case CHELSIO_T4_GET_MEM: 12188 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12189 break; 12190 case CHELSIO_T4_GET_I2C: 12191 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12192 break; 12193 case CHELSIO_T4_CLEAR_STATS: 12194 rc = clear_stats(sc, *(uint32_t *)data); 12195 break; 12196 case CHELSIO_T4_SCHED_CLASS: 12197 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12198 break; 12199 case CHELSIO_T4_SCHED_QUEUE: 12200 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12201 break; 12202 case CHELSIO_T4_GET_TRACER: 12203 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12204 break; 12205 case CHELSIO_T4_SET_TRACER: 12206 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12207 break; 12208 case CHELSIO_T4_LOAD_CFG: 12209 rc = load_cfg(sc, (struct t4_data *)data); 12210 break; 12211 case CHELSIO_T4_LOAD_BOOT: 12212 rc = load_boot(sc, (struct t4_bootrom *)data); 12213 break; 12214 case CHELSIO_T4_LOAD_BOOTCFG: 12215 rc = load_bootcfg(sc, (struct t4_data *)data); 12216 break; 12217 case CHELSIO_T4_CUDBG_DUMP: 12218 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12219 break; 12220 case CHELSIO_T4_SET_OFLD_POLICY: 12221 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12222 break; 12223 case CHELSIO_T4_HOLD_CLIP_ADDR: 12224 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12225 break; 12226 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12227 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12228 break; 12229 default: 12230 rc = ENOTTY; 12231 } 12232 12233 return (rc); 12234 } 12235 12236 #ifdef TCP_OFFLOAD 12237 static int 12238 toe_capability(struct vi_info *vi, bool enable) 12239 { 12240 int rc; 12241 struct port_info *pi = vi->pi; 12242 struct adapter *sc = pi->adapter; 12243 12244 ASSERT_SYNCHRONIZED_OP(sc); 12245 12246 if (!is_offload(sc)) 12247 return (ENODEV); 12248 if (hw_off_limits(sc)) 12249 return (ENXIO); 12250 12251 if (enable) { 12252 #ifdef KERN_TLS 12253 if (sc->flags & KERN_TLS_ON) { 12254 int i, j, n; 12255 struct port_info *p; 12256 struct vi_info *v; 12257 12258 /* 12259 * Reconfigure hardware for TOE if TXTLS is not enabled 12260 * on any ifnet. 12261 */ 12262 n = 0; 12263 for_each_port(sc, i) { 12264 p = sc->port[i]; 12265 for_each_vi(p, j, v) { 12266 if (v->ifp->if_capenable & IFCAP_TXTLS) { 12267 CH_WARN(sc, 12268 "%s has NIC TLS enabled.\n", 12269 device_get_nameunit(v->dev)); 12270 n++; 12271 } 12272 } 12273 } 12274 if (n > 0) { 12275 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12276 "associated with this adapter before " 12277 "trying to enable TOE.\n"); 12278 return (EAGAIN); 12279 } 12280 rc = t4_config_kern_tls(sc, false); 12281 if (rc) 12282 return (rc); 12283 } 12284 #endif 12285 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { 12286 /* TOE is already enabled. */ 12287 return (0); 12288 } 12289 12290 /* 12291 * We need the port's queues around so that we're able to send 12292 * and receive CPLs to/from the TOE even if the ifnet for this 12293 * port has never been UP'd administratively. 12294 */ 12295 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12296 return (rc); 12297 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12298 ((rc = vi_init(&pi->vi[0])) != 0)) 12299 return (rc); 12300 12301 if (isset(&sc->offload_map, pi->port_id)) { 12302 /* TOE is enabled on another VI of this port. */ 12303 pi->uld_vis++; 12304 return (0); 12305 } 12306 12307 if (!uld_active(sc, ULD_TOM)) { 12308 rc = t4_activate_uld(sc, ULD_TOM); 12309 if (rc == EAGAIN) { 12310 log(LOG_WARNING, 12311 "You must kldload t4_tom.ko before trying " 12312 "to enable TOE on a cxgbe interface.\n"); 12313 } 12314 if (rc != 0) 12315 return (rc); 12316 KASSERT(sc->tom_softc != NULL, 12317 ("%s: TOM activated but softc NULL", __func__)); 12318 KASSERT(uld_active(sc, ULD_TOM), 12319 ("%s: TOM activated but flag not set", __func__)); 12320 } 12321 12322 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12323 if (!uld_active(sc, ULD_IWARP)) 12324 (void) t4_activate_uld(sc, ULD_IWARP); 12325 if (!uld_active(sc, ULD_ISCSI)) 12326 (void) t4_activate_uld(sc, ULD_ISCSI); 12327 12328 pi->uld_vis++; 12329 setbit(&sc->offload_map, pi->port_id); 12330 } else { 12331 pi->uld_vis--; 12332 12333 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 12334 return (0); 12335 12336 KASSERT(uld_active(sc, ULD_TOM), 12337 ("%s: TOM never initialized?", __func__)); 12338 clrbit(&sc->offload_map, pi->port_id); 12339 } 12340 12341 return (0); 12342 } 12343 12344 /* 12345 * Add an upper layer driver to the global list. 12346 */ 12347 int 12348 t4_register_uld(struct uld_info *ui) 12349 { 12350 int rc = 0; 12351 struct uld_info *u; 12352 12353 sx_xlock(&t4_uld_list_lock); 12354 SLIST_FOREACH(u, &t4_uld_list, link) { 12355 if (u->uld_id == ui->uld_id) { 12356 rc = EEXIST; 12357 goto done; 12358 } 12359 } 12360 12361 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 12362 ui->refcount = 0; 12363 done: 12364 sx_xunlock(&t4_uld_list_lock); 12365 return (rc); 12366 } 12367 12368 int 12369 t4_unregister_uld(struct uld_info *ui) 12370 { 12371 int rc = EINVAL; 12372 struct uld_info *u; 12373 12374 sx_xlock(&t4_uld_list_lock); 12375 12376 SLIST_FOREACH(u, &t4_uld_list, link) { 12377 if (u == ui) { 12378 if (ui->refcount > 0) { 12379 rc = EBUSY; 12380 goto done; 12381 } 12382 12383 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 12384 rc = 0; 12385 goto done; 12386 } 12387 } 12388 done: 12389 sx_xunlock(&t4_uld_list_lock); 12390 return (rc); 12391 } 12392 12393 int 12394 t4_activate_uld(struct adapter *sc, int id) 12395 { 12396 int rc; 12397 struct uld_info *ui; 12398 12399 ASSERT_SYNCHRONIZED_OP(sc); 12400 12401 if (id < 0 || id > ULD_MAX) 12402 return (EINVAL); 12403 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 12404 12405 sx_slock(&t4_uld_list_lock); 12406 12407 SLIST_FOREACH(ui, &t4_uld_list, link) { 12408 if (ui->uld_id == id) { 12409 if (!(sc->flags & FULL_INIT_DONE)) { 12410 rc = adapter_init(sc); 12411 if (rc != 0) 12412 break; 12413 } 12414 12415 rc = ui->activate(sc); 12416 if (rc == 0) { 12417 setbit(&sc->active_ulds, id); 12418 ui->refcount++; 12419 } 12420 break; 12421 } 12422 } 12423 12424 sx_sunlock(&t4_uld_list_lock); 12425 12426 return (rc); 12427 } 12428 12429 int 12430 t4_deactivate_uld(struct adapter *sc, int id) 12431 { 12432 int rc; 12433 struct uld_info *ui; 12434 12435 ASSERT_SYNCHRONIZED_OP(sc); 12436 12437 if (id < 0 || id > ULD_MAX) 12438 return (EINVAL); 12439 rc = ENXIO; 12440 12441 sx_slock(&t4_uld_list_lock); 12442 12443 SLIST_FOREACH(ui, &t4_uld_list, link) { 12444 if (ui->uld_id == id) { 12445 rc = ui->deactivate(sc); 12446 if (rc == 0) { 12447 clrbit(&sc->active_ulds, id); 12448 ui->refcount--; 12449 } 12450 break; 12451 } 12452 } 12453 12454 sx_sunlock(&t4_uld_list_lock); 12455 12456 return (rc); 12457 } 12458 12459 static void 12460 t4_async_event(void *arg, int n) 12461 { 12462 struct uld_info *ui; 12463 struct adapter *sc = (struct adapter *)arg; 12464 12465 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0) 12466 return; 12467 sx_slock(&t4_uld_list_lock); 12468 SLIST_FOREACH(ui, &t4_uld_list, link) { 12469 if (ui->uld_id == ULD_IWARP) { 12470 ui->async_event(sc); 12471 break; 12472 } 12473 } 12474 sx_sunlock(&t4_uld_list_lock); 12475 end_synchronized_op(sc, 0); 12476 } 12477 12478 int 12479 uld_active(struct adapter *sc, int uld_id) 12480 { 12481 12482 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 12483 12484 return (isset(&sc->active_ulds, uld_id)); 12485 } 12486 #endif 12487 12488 #ifdef KERN_TLS 12489 static int 12490 ktls_capability(struct adapter *sc, bool enable) 12491 { 12492 ASSERT_SYNCHRONIZED_OP(sc); 12493 12494 if (!is_ktls(sc)) 12495 return (ENODEV); 12496 if (hw_off_limits(sc)) 12497 return (ENXIO); 12498 12499 if (enable) { 12500 if (sc->flags & KERN_TLS_ON) 12501 return (0); /* already on */ 12502 if (sc->offload_map != 0) { 12503 CH_WARN(sc, 12504 "Disable TOE on all interfaces associated with " 12505 "this adapter before trying to enable NIC TLS.\n"); 12506 return (EAGAIN); 12507 } 12508 return (t4_config_kern_tls(sc, true)); 12509 } else { 12510 /* 12511 * Nothing to do for disable. If TOE is enabled sometime later 12512 * then toe_capability will reconfigure the hardware. 12513 */ 12514 return (0); 12515 } 12516 } 12517 #endif 12518 12519 /* 12520 * t = ptr to tunable. 12521 * nc = number of CPUs. 12522 * c = compiled in default for that tunable. 12523 */ 12524 static void 12525 calculate_nqueues(int *t, int nc, const int c) 12526 { 12527 int nq; 12528 12529 if (*t > 0) 12530 return; 12531 nq = *t < 0 ? -*t : c; 12532 *t = min(nc, nq); 12533 } 12534 12535 /* 12536 * Come up with reasonable defaults for some of the tunables, provided they're 12537 * not set by the user (in which case we'll use the values as is). 12538 */ 12539 static void 12540 tweak_tunables(void) 12541 { 12542 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12543 12544 if (t4_ntxq < 1) { 12545 #ifdef RSS 12546 t4_ntxq = rss_getnumbuckets(); 12547 #else 12548 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12549 #endif 12550 } 12551 12552 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12553 12554 if (t4_nrxq < 1) { 12555 #ifdef RSS 12556 t4_nrxq = rss_getnumbuckets(); 12557 #else 12558 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12559 #endif 12560 } 12561 12562 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12563 12564 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12565 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12566 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12567 #endif 12568 #ifdef TCP_OFFLOAD 12569 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12570 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12571 #endif 12572 12573 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12574 if (t4_toecaps_allowed == -1) 12575 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12576 #else 12577 if (t4_toecaps_allowed == -1) 12578 t4_toecaps_allowed = 0; 12579 #endif 12580 12581 #ifdef TCP_OFFLOAD 12582 if (t4_rdmacaps_allowed == -1) { 12583 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12584 FW_CAPS_CONFIG_RDMA_RDMAC; 12585 } 12586 12587 if (t4_iscsicaps_allowed == -1) { 12588 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12589 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12590 FW_CAPS_CONFIG_ISCSI_T10DIF; 12591 } 12592 12593 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12594 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12595 12596 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12597 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12598 12599 if (t4_toe_tls_rx_timeout < 0) 12600 t4_toe_tls_rx_timeout = 0; 12601 #else 12602 if (t4_rdmacaps_allowed == -1) 12603 t4_rdmacaps_allowed = 0; 12604 12605 if (t4_iscsicaps_allowed == -1) 12606 t4_iscsicaps_allowed = 0; 12607 #endif 12608 12609 #ifdef DEV_NETMAP 12610 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12611 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12612 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12613 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12614 #endif 12615 12616 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12617 t4_tmr_idx = TMR_IDX; 12618 12619 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12620 t4_pktc_idx = PKTC_IDX; 12621 12622 if (t4_qsize_txq < 128) 12623 t4_qsize_txq = 128; 12624 12625 if (t4_qsize_rxq < 128) 12626 t4_qsize_rxq = 128; 12627 while (t4_qsize_rxq & 7) 12628 t4_qsize_rxq++; 12629 12630 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12631 12632 /* 12633 * Number of VIs to create per-port. The first VI is the "main" regular 12634 * VI for the port. The rest are additional virtual interfaces on the 12635 * same physical port. Note that the main VI does not have native 12636 * netmap support but the extra VIs do. 12637 * 12638 * Limit the number of VIs per port to the number of available 12639 * MAC addresses per port. 12640 */ 12641 if (t4_num_vis < 1) 12642 t4_num_vis = 1; 12643 if (t4_num_vis > nitems(vi_mac_funcs)) { 12644 t4_num_vis = nitems(vi_mac_funcs); 12645 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12646 } 12647 12648 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12649 pcie_relaxed_ordering = 1; 12650 #if defined(__i386__) || defined(__amd64__) 12651 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12652 pcie_relaxed_ordering = 0; 12653 #endif 12654 } 12655 } 12656 12657 #ifdef DDB 12658 static void 12659 t4_dump_tcb(struct adapter *sc, int tid) 12660 { 12661 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 12662 12663 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12664 save = t4_read_reg(sc, reg); 12665 base = sc->memwin[2].mw_base; 12666 12667 /* Dump TCB for the tid */ 12668 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12669 tcb_addr += tid * TCB_SIZE; 12670 12671 if (is_t4(sc)) { 12672 pf = 0; 12673 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 12674 } else { 12675 pf = V_PFNUM(sc->pf); 12676 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 12677 } 12678 t4_write_reg(sc, reg, win_pos | pf); 12679 t4_read_reg(sc, reg); 12680 12681 off = tcb_addr - win_pos; 12682 for (i = 0; i < 4; i++) { 12683 uint32_t buf[8]; 12684 for (j = 0; j < 8; j++, off += 4) 12685 buf[j] = htonl(t4_read_reg(sc, base + off)); 12686 12687 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12688 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12689 buf[7]); 12690 } 12691 12692 t4_write_reg(sc, reg, save); 12693 t4_read_reg(sc, reg); 12694 } 12695 12696 static void 12697 t4_dump_devlog(struct adapter *sc) 12698 { 12699 struct devlog_params *dparams = &sc->params.devlog; 12700 struct fw_devlog_e e; 12701 int i, first, j, m, nentries, rc; 12702 uint64_t ftstamp = UINT64_MAX; 12703 12704 if (dparams->start == 0) { 12705 db_printf("devlog params not valid\n"); 12706 return; 12707 } 12708 12709 nentries = dparams->size / sizeof(struct fw_devlog_e); 12710 m = fwmtype_to_hwmtype(dparams->memtype); 12711 12712 /* Find the first entry. */ 12713 first = -1; 12714 for (i = 0; i < nentries && !db_pager_quit; i++) { 12715 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12716 sizeof(e), (void *)&e); 12717 if (rc != 0) 12718 break; 12719 12720 if (e.timestamp == 0) 12721 break; 12722 12723 e.timestamp = be64toh(e.timestamp); 12724 if (e.timestamp < ftstamp) { 12725 ftstamp = e.timestamp; 12726 first = i; 12727 } 12728 } 12729 12730 if (first == -1) 12731 return; 12732 12733 i = first; 12734 do { 12735 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12736 sizeof(e), (void *)&e); 12737 if (rc != 0) 12738 return; 12739 12740 if (e.timestamp == 0) 12741 return; 12742 12743 e.timestamp = be64toh(e.timestamp); 12744 e.seqno = be32toh(e.seqno); 12745 for (j = 0; j < 8; j++) 12746 e.params[j] = be32toh(e.params[j]); 12747 12748 db_printf("%10d %15ju %8s %8s ", 12749 e.seqno, e.timestamp, 12750 (e.level < nitems(devlog_level_strings) ? 12751 devlog_level_strings[e.level] : "UNKNOWN"), 12752 (e.facility < nitems(devlog_facility_strings) ? 12753 devlog_facility_strings[e.facility] : "UNKNOWN")); 12754 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12755 e.params[3], e.params[4], e.params[5], e.params[6], 12756 e.params[7]); 12757 12758 if (++i == nentries) 12759 i = 0; 12760 } while (i != first && !db_pager_quit); 12761 } 12762 12763 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); 12764 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); 12765 12766 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) 12767 { 12768 device_t dev; 12769 int t; 12770 bool valid; 12771 12772 valid = false; 12773 t = db_read_token(); 12774 if (t == tIDENT) { 12775 dev = device_lookup_by_name(db_tok_string); 12776 valid = true; 12777 } 12778 db_skip_to_eol(); 12779 if (!valid) { 12780 db_printf("usage: show t4 devlog <nexus>\n"); 12781 return; 12782 } 12783 12784 if (dev == NULL) { 12785 db_printf("device not found\n"); 12786 return; 12787 } 12788 12789 t4_dump_devlog(device_get_softc(dev)); 12790 } 12791 12792 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) 12793 { 12794 device_t dev; 12795 int radix, tid, t; 12796 bool valid; 12797 12798 valid = false; 12799 radix = db_radix; 12800 db_radix = 10; 12801 t = db_read_token(); 12802 if (t == tIDENT) { 12803 dev = device_lookup_by_name(db_tok_string); 12804 t = db_read_token(); 12805 if (t == tNUMBER) { 12806 tid = db_tok_number; 12807 valid = true; 12808 } 12809 } 12810 db_radix = radix; 12811 db_skip_to_eol(); 12812 if (!valid) { 12813 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 12814 return; 12815 } 12816 12817 if (dev == NULL) { 12818 db_printf("device not found\n"); 12819 return; 12820 } 12821 if (tid < 0) { 12822 db_printf("invalid tid\n"); 12823 return; 12824 } 12825 12826 t4_dump_tcb(device_get_softc(dev), tid); 12827 } 12828 #endif 12829 12830 static eventhandler_tag vxlan_start_evtag; 12831 static eventhandler_tag vxlan_stop_evtag; 12832 12833 struct vxlan_evargs { 12834 struct ifnet *ifp; 12835 uint16_t port; 12836 }; 12837 12838 static void 12839 enable_vxlan_rx(struct adapter *sc) 12840 { 12841 int i, rc; 12842 struct port_info *pi; 12843 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 12844 12845 ASSERT_SYNCHRONIZED_OP(sc); 12846 12847 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 12848 F_VXLAN_EN); 12849 for_each_port(sc, i) { 12850 pi = sc->port[i]; 12851 if (pi->vxlan_tcam_entry == true) 12852 continue; 12853 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 12854 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 12855 true); 12856 if (rc < 0) { 12857 rc = -rc; 12858 CH_ERR(&pi->vi[0], 12859 "failed to add VXLAN TCAM entry: %d.\n", rc); 12860 } else { 12861 MPASS(rc == sc->rawf_base + pi->port_id); 12862 pi->vxlan_tcam_entry = true; 12863 } 12864 } 12865 } 12866 12867 static void 12868 t4_vxlan_start(struct adapter *sc, void *arg) 12869 { 12870 struct vxlan_evargs *v = arg; 12871 12872 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 12873 return; 12874 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 12875 return; 12876 12877 if (sc->vxlan_refcount == 0) { 12878 sc->vxlan_port = v->port; 12879 sc->vxlan_refcount = 1; 12880 if (!hw_off_limits(sc)) 12881 enable_vxlan_rx(sc); 12882 } else if (sc->vxlan_port == v->port) { 12883 sc->vxlan_refcount++; 12884 } else { 12885 CH_ERR(sc, "VXLAN already configured on port %d; " 12886 "ignoring attempt to configure it on port %d\n", 12887 sc->vxlan_port, v->port); 12888 } 12889 end_synchronized_op(sc, 0); 12890 } 12891 12892 static void 12893 t4_vxlan_stop(struct adapter *sc, void *arg) 12894 { 12895 struct vxlan_evargs *v = arg; 12896 12897 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 12898 return; 12899 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 12900 return; 12901 12902 /* 12903 * VXLANs may have been configured before the driver was loaded so we 12904 * may see more stops than starts. This is not handled cleanly but at 12905 * least we keep the refcount sane. 12906 */ 12907 if (sc->vxlan_port != v->port) 12908 goto done; 12909 if (sc->vxlan_refcount == 0) { 12910 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 12911 "ignoring attempt to stop it again.\n", sc->vxlan_port); 12912 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 12913 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 12914 done: 12915 end_synchronized_op(sc, 0); 12916 } 12917 12918 static void 12919 t4_vxlan_start_handler(void *arg __unused, struct ifnet *ifp, 12920 sa_family_t family, u_int port) 12921 { 12922 struct vxlan_evargs v; 12923 12924 MPASS(family == AF_INET || family == AF_INET6); 12925 v.ifp = ifp; 12926 v.port = port; 12927 12928 t4_iterate(t4_vxlan_start, &v); 12929 } 12930 12931 static void 12932 t4_vxlan_stop_handler(void *arg __unused, struct ifnet *ifp, sa_family_t family, 12933 u_int port) 12934 { 12935 struct vxlan_evargs v; 12936 12937 MPASS(family == AF_INET || family == AF_INET6); 12938 v.ifp = ifp; 12939 v.port = port; 12940 12941 t4_iterate(t4_vxlan_stop, &v); 12942 } 12943 12944 12945 static struct sx mlu; /* mod load unload */ 12946 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 12947 12948 static int 12949 mod_event(module_t mod, int cmd, void *arg) 12950 { 12951 int rc = 0; 12952 static int loaded = 0; 12953 12954 switch (cmd) { 12955 case MOD_LOAD: 12956 sx_xlock(&mlu); 12957 if (loaded++ == 0) { 12958 t4_sge_modload(); 12959 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 12960 t4_filter_rpl, CPL_COOKIE_FILTER); 12961 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 12962 do_l2t_write_rpl, CPL_COOKIE_FILTER); 12963 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 12964 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 12965 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 12966 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 12967 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 12968 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 12969 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 12970 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 12971 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 12972 do_smt_write_rpl); 12973 sx_init(&t4_list_lock, "T4/T5 adapters"); 12974 SLIST_INIT(&t4_list); 12975 callout_init(&fatal_callout, 1); 12976 #ifdef TCP_OFFLOAD 12977 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 12978 SLIST_INIT(&t4_uld_list); 12979 #endif 12980 #ifdef INET6 12981 t4_clip_modload(); 12982 #endif 12983 #ifdef KERN_TLS 12984 t6_ktls_modload(); 12985 #endif 12986 t4_tracer_modload(); 12987 tweak_tunables(); 12988 vxlan_start_evtag = 12989 EVENTHANDLER_REGISTER(vxlan_start, 12990 t4_vxlan_start_handler, NULL, 12991 EVENTHANDLER_PRI_ANY); 12992 vxlan_stop_evtag = 12993 EVENTHANDLER_REGISTER(vxlan_stop, 12994 t4_vxlan_stop_handler, NULL, 12995 EVENTHANDLER_PRI_ANY); 12996 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 12997 taskqueue_thread_enqueue, &reset_tq); 12998 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 12999 "t4_rst_thr"); 13000 } 13001 sx_xunlock(&mlu); 13002 break; 13003 13004 case MOD_UNLOAD: 13005 sx_xlock(&mlu); 13006 if (--loaded == 0) { 13007 int tries; 13008 13009 taskqueue_free(reset_tq); 13010 sx_slock(&t4_list_lock); 13011 if (!SLIST_EMPTY(&t4_list)) { 13012 rc = EBUSY; 13013 sx_sunlock(&t4_list_lock); 13014 goto done_unload; 13015 } 13016 #ifdef TCP_OFFLOAD 13017 sx_slock(&t4_uld_list_lock); 13018 if (!SLIST_EMPTY(&t4_uld_list)) { 13019 rc = EBUSY; 13020 sx_sunlock(&t4_uld_list_lock); 13021 sx_sunlock(&t4_list_lock); 13022 goto done_unload; 13023 } 13024 #endif 13025 tries = 0; 13026 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13027 uprintf("%ju clusters with custom free routine " 13028 "still is use.\n", t4_sge_extfree_refs()); 13029 pause("t4unload", 2 * hz); 13030 } 13031 #ifdef TCP_OFFLOAD 13032 sx_sunlock(&t4_uld_list_lock); 13033 #endif 13034 sx_sunlock(&t4_list_lock); 13035 13036 if (t4_sge_extfree_refs() == 0) { 13037 EVENTHANDLER_DEREGISTER(vxlan_start, 13038 vxlan_start_evtag); 13039 EVENTHANDLER_DEREGISTER(vxlan_stop, 13040 vxlan_stop_evtag); 13041 t4_tracer_modunload(); 13042 #ifdef KERN_TLS 13043 t6_ktls_modunload(); 13044 #endif 13045 #ifdef INET6 13046 t4_clip_modunload(); 13047 #endif 13048 #ifdef TCP_OFFLOAD 13049 sx_destroy(&t4_uld_list_lock); 13050 #endif 13051 sx_destroy(&t4_list_lock); 13052 t4_sge_modunload(); 13053 loaded = 0; 13054 } else { 13055 rc = EBUSY; 13056 loaded++; /* undo earlier decrement */ 13057 } 13058 } 13059 done_unload: 13060 sx_xunlock(&mlu); 13061 break; 13062 } 13063 13064 return (rc); 13065 } 13066 13067 static devclass_t t4_devclass, t5_devclass, t6_devclass; 13068 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass; 13069 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass; 13070 13071 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0); 13072 MODULE_VERSION(t4nex, 1); 13073 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13074 #ifdef DEV_NETMAP 13075 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13076 #endif /* DEV_NETMAP */ 13077 13078 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0); 13079 MODULE_VERSION(t5nex, 1); 13080 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13081 #ifdef DEV_NETMAP 13082 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13083 #endif /* DEV_NETMAP */ 13084 13085 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0); 13086 MODULE_VERSION(t6nex, 1); 13087 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13088 #ifdef DEV_NETMAP 13089 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13090 #endif /* DEV_NETMAP */ 13091 13092 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); 13093 MODULE_VERSION(cxgbe, 1); 13094 13095 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0); 13096 MODULE_VERSION(cxl, 1); 13097 13098 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0); 13099 MODULE_VERSION(cc, 1); 13100 13101 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0); 13102 MODULE_VERSION(vcxgbe, 1); 13103 13104 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0); 13105 MODULE_VERSION(vcxl, 1); 13106 13107 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0); 13108 MODULE_VERSION(vcc, 1); 13109