1 /*- 2 * Copyright (c) 2011 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: Navdeep Parhar <np@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_ddb.h" 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_rss.h" 35 36 #include <sys/param.h> 37 #include <sys/conf.h> 38 #include <sys/priv.h> 39 #include <sys/kernel.h> 40 #include <sys/bus.h> 41 #include <sys/module.h> 42 #include <sys/malloc.h> 43 #include <sys/queue.h> 44 #include <sys/taskqueue.h> 45 #include <sys/pciio.h> 46 #include <dev/pci/pcireg.h> 47 #include <dev/pci/pcivar.h> 48 #include <dev/pci/pci_private.h> 49 #include <sys/firmware.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/socket.h> 53 #include <sys/sockio.h> 54 #include <sys/sysctl.h> 55 #include <net/ethernet.h> 56 #include <net/if.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/if_vlan_var.h> 60 #ifdef RSS 61 #include <net/rss_config.h> 62 #endif 63 #if defined(__i386__) || defined(__amd64__) 64 #include <vm/vm.h> 65 #include <vm/pmap.h> 66 #endif 67 #ifdef DDB 68 #include <ddb/ddb.h> 69 #include <ddb/db_lex.h> 70 #endif 71 72 #include "common/common.h" 73 #include "common/t4_msg.h" 74 #include "common/t4_regs.h" 75 #include "common/t4_regs_values.h" 76 #include "cudbg/cudbg.h" 77 #include "t4_ioctl.h" 78 #include "t4_l2t.h" 79 #include "t4_mp_ring.h" 80 #include "t4_if.h" 81 82 /* T4 bus driver interface */ 83 static int t4_probe(device_t); 84 static int t4_attach(device_t); 85 static int t4_detach(device_t); 86 static int t4_ready(device_t); 87 static int t4_read_port_device(device_t, int, device_t *); 88 static device_method_t t4_methods[] = { 89 DEVMETHOD(device_probe, t4_probe), 90 DEVMETHOD(device_attach, t4_attach), 91 DEVMETHOD(device_detach, t4_detach), 92 93 DEVMETHOD(t4_is_main_ready, t4_ready), 94 DEVMETHOD(t4_read_port_device, t4_read_port_device), 95 96 DEVMETHOD_END 97 }; 98 static driver_t t4_driver = { 99 "t4nex", 100 t4_methods, 101 sizeof(struct adapter) 102 }; 103 104 105 /* T4 port (cxgbe) interface */ 106 static int cxgbe_probe(device_t); 107 static int cxgbe_attach(device_t); 108 static int cxgbe_detach(device_t); 109 device_method_t cxgbe_methods[] = { 110 DEVMETHOD(device_probe, cxgbe_probe), 111 DEVMETHOD(device_attach, cxgbe_attach), 112 DEVMETHOD(device_detach, cxgbe_detach), 113 { 0, 0 } 114 }; 115 static driver_t cxgbe_driver = { 116 "cxgbe", 117 cxgbe_methods, 118 sizeof(struct port_info) 119 }; 120 121 /* T4 VI (vcxgbe) interface */ 122 static int vcxgbe_probe(device_t); 123 static int vcxgbe_attach(device_t); 124 static int vcxgbe_detach(device_t); 125 static device_method_t vcxgbe_methods[] = { 126 DEVMETHOD(device_probe, vcxgbe_probe), 127 DEVMETHOD(device_attach, vcxgbe_attach), 128 DEVMETHOD(device_detach, vcxgbe_detach), 129 { 0, 0 } 130 }; 131 static driver_t vcxgbe_driver = { 132 "vcxgbe", 133 vcxgbe_methods, 134 sizeof(struct vi_info) 135 }; 136 137 static d_ioctl_t t4_ioctl; 138 139 static struct cdevsw t4_cdevsw = { 140 .d_version = D_VERSION, 141 .d_ioctl = t4_ioctl, 142 .d_name = "t4nex", 143 }; 144 145 /* T5 bus driver interface */ 146 static int t5_probe(device_t); 147 static device_method_t t5_methods[] = { 148 DEVMETHOD(device_probe, t5_probe), 149 DEVMETHOD(device_attach, t4_attach), 150 DEVMETHOD(device_detach, t4_detach), 151 152 DEVMETHOD(t4_is_main_ready, t4_ready), 153 DEVMETHOD(t4_read_port_device, t4_read_port_device), 154 155 DEVMETHOD_END 156 }; 157 static driver_t t5_driver = { 158 "t5nex", 159 t5_methods, 160 sizeof(struct adapter) 161 }; 162 163 164 /* T5 port (cxl) interface */ 165 static driver_t cxl_driver = { 166 "cxl", 167 cxgbe_methods, 168 sizeof(struct port_info) 169 }; 170 171 /* T5 VI (vcxl) interface */ 172 static driver_t vcxl_driver = { 173 "vcxl", 174 vcxgbe_methods, 175 sizeof(struct vi_info) 176 }; 177 178 /* T6 bus driver interface */ 179 static int t6_probe(device_t); 180 static device_method_t t6_methods[] = { 181 DEVMETHOD(device_probe, t6_probe), 182 DEVMETHOD(device_attach, t4_attach), 183 DEVMETHOD(device_detach, t4_detach), 184 185 DEVMETHOD(t4_is_main_ready, t4_ready), 186 DEVMETHOD(t4_read_port_device, t4_read_port_device), 187 188 DEVMETHOD_END 189 }; 190 static driver_t t6_driver = { 191 "t6nex", 192 t6_methods, 193 sizeof(struct adapter) 194 }; 195 196 197 /* T6 port (cc) interface */ 198 static driver_t cc_driver = { 199 "cc", 200 cxgbe_methods, 201 sizeof(struct port_info) 202 }; 203 204 /* T6 VI (vcc) interface */ 205 static driver_t vcc_driver = { 206 "vcc", 207 vcxgbe_methods, 208 sizeof(struct vi_info) 209 }; 210 211 /* ifnet + media interface */ 212 static void cxgbe_init(void *); 213 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 214 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 215 static void cxgbe_qflush(struct ifnet *); 216 static int cxgbe_media_change(struct ifnet *); 217 static void cxgbe_media_status(struct ifnet *, struct ifmediareq *); 218 219 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 220 221 /* 222 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 223 * then ADAPTER_LOCK, then t4_uld_list_lock. 224 */ 225 static struct sx t4_list_lock; 226 SLIST_HEAD(, adapter) t4_list; 227 #ifdef TCP_OFFLOAD 228 static struct sx t4_uld_list_lock; 229 SLIST_HEAD(, uld_info) t4_uld_list; 230 #endif 231 232 /* 233 * Tunables. See tweak_tunables() too. 234 * 235 * Each tunable is set to a default value here if it's known at compile-time. 236 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 237 * provide a reasonable default (upto n) when the driver is loaded. 238 * 239 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 240 * T5 are under hw.cxl. 241 */ 242 243 /* 244 * Number of queues for tx and rx, 10G and 1G, NIC and offload. 245 */ 246 #define NTXQ_10G 16 247 int t4_ntxq10g = -NTXQ_10G; 248 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq10g); 249 250 #define NRXQ_10G 8 251 int t4_nrxq10g = -NRXQ_10G; 252 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq10g); 253 254 #define NTXQ_1G 4 255 int t4_ntxq1g = -NTXQ_1G; 256 TUNABLE_INT("hw.cxgbe.ntxq1g", &t4_ntxq1g); 257 258 #define NRXQ_1G 2 259 int t4_nrxq1g = -NRXQ_1G; 260 TUNABLE_INT("hw.cxgbe.nrxq1g", &t4_nrxq1g); 261 262 #define NTXQ_VI 1 263 static int t4_ntxq_vi = -NTXQ_VI; 264 TUNABLE_INT("hw.cxgbe.ntxq_vi", &t4_ntxq_vi); 265 266 #define NRXQ_VI 1 267 static int t4_nrxq_vi = -NRXQ_VI; 268 TUNABLE_INT("hw.cxgbe.nrxq_vi", &t4_nrxq_vi); 269 270 static int t4_rsrv_noflowq = 0; 271 TUNABLE_INT("hw.cxgbe.rsrv_noflowq", &t4_rsrv_noflowq); 272 273 #ifdef TCP_OFFLOAD 274 #define NOFLDTXQ_10G 8 275 static int t4_nofldtxq10g = -NOFLDTXQ_10G; 276 TUNABLE_INT("hw.cxgbe.nofldtxq10g", &t4_nofldtxq10g); 277 278 #define NOFLDRXQ_10G 2 279 static int t4_nofldrxq10g = -NOFLDRXQ_10G; 280 TUNABLE_INT("hw.cxgbe.nofldrxq10g", &t4_nofldrxq10g); 281 282 #define NOFLDTXQ_1G 2 283 static int t4_nofldtxq1g = -NOFLDTXQ_1G; 284 TUNABLE_INT("hw.cxgbe.nofldtxq1g", &t4_nofldtxq1g); 285 286 #define NOFLDRXQ_1G 1 287 static int t4_nofldrxq1g = -NOFLDRXQ_1G; 288 TUNABLE_INT("hw.cxgbe.nofldrxq1g", &t4_nofldrxq1g); 289 290 #define NOFLDTXQ_VI 1 291 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 292 TUNABLE_INT("hw.cxgbe.nofldtxq_vi", &t4_nofldtxq_vi); 293 294 #define NOFLDRXQ_VI 1 295 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 296 TUNABLE_INT("hw.cxgbe.nofldrxq_vi", &t4_nofldrxq_vi); 297 298 /* 0 means chip/fw default, non-zero number is value in microseconds */ 299 static u_long t4_toe_keepalive_idle = 0; 300 TUNABLE_ULONG("hw.cxgbe.toe.keepalive_idle", &t4_toe_keepalive_idle); 301 302 /* 0 means chip/fw default, non-zero number is value in microseconds */ 303 static u_long t4_toe_keepalive_interval = 0; 304 TUNABLE_ULONG("hw.cxgbe.toe.keepalive_interval", &t4_toe_keepalive_interval); 305 306 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 307 static int t4_toe_keepalive_count = 0; 308 TUNABLE_INT("hw.cxgbe.toe.keepalive_count", &t4_toe_keepalive_count); 309 310 /* 0 means chip/fw default, non-zero number is value in microseconds */ 311 static u_long t4_toe_rexmt_min = 0; 312 TUNABLE_ULONG("hw.cxgbe.toe.rexmt_min", &t4_toe_rexmt_min); 313 314 /* 0 means chip/fw default, non-zero number is value in microseconds */ 315 static u_long t4_toe_rexmt_max = 0; 316 TUNABLE_ULONG("hw.cxgbe.toe.rexmt_max", &t4_toe_rexmt_max); 317 318 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 319 static int t4_toe_rexmt_count = 0; 320 TUNABLE_INT("hw.cxgbe.toe.rexmt_count", &t4_toe_rexmt_count); 321 322 /* -1 means chip/fw default, other values are raw backoff values to use */ 323 static int t4_toe_rexmt_backoff[16] = { 324 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 325 }; 326 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.0", &t4_toe_rexmt_backoff[0]); 327 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.1", &t4_toe_rexmt_backoff[1]); 328 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.2", &t4_toe_rexmt_backoff[2]); 329 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.3", &t4_toe_rexmt_backoff[3]); 330 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.4", &t4_toe_rexmt_backoff[4]); 331 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.5", &t4_toe_rexmt_backoff[5]); 332 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.6", &t4_toe_rexmt_backoff[6]); 333 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.7", &t4_toe_rexmt_backoff[7]); 334 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.8", &t4_toe_rexmt_backoff[8]); 335 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.9", &t4_toe_rexmt_backoff[9]); 336 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.10", &t4_toe_rexmt_backoff[10]); 337 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.11", &t4_toe_rexmt_backoff[11]); 338 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.12", &t4_toe_rexmt_backoff[12]); 339 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.13", &t4_toe_rexmt_backoff[13]); 340 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.14", &t4_toe_rexmt_backoff[14]); 341 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.15", &t4_toe_rexmt_backoff[15]); 342 #endif 343 344 #ifdef DEV_NETMAP 345 #define NNMTXQ_VI 2 346 static int t4_nnmtxq_vi = -NNMTXQ_VI; 347 TUNABLE_INT("hw.cxgbe.nnmtxq_vi", &t4_nnmtxq_vi); 348 349 #define NNMRXQ_VI 2 350 static int t4_nnmrxq_vi = -NNMRXQ_VI; 351 TUNABLE_INT("hw.cxgbe.nnmrxq_vi", &t4_nnmrxq_vi); 352 #endif 353 354 /* 355 * Holdoff parameters for 10G and 1G ports. 356 */ 357 #define TMR_IDX_10G 1 358 int t4_tmr_idx_10g = TMR_IDX_10G; 359 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx_10g); 360 361 #define PKTC_IDX_10G (-1) 362 int t4_pktc_idx_10g = PKTC_IDX_10G; 363 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx_10g); 364 365 #define TMR_IDX_1G 1 366 int t4_tmr_idx_1g = TMR_IDX_1G; 367 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_1G", &t4_tmr_idx_1g); 368 369 #define PKTC_IDX_1G (-1) 370 int t4_pktc_idx_1g = PKTC_IDX_1G; 371 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_1G", &t4_pktc_idx_1g); 372 373 /* 374 * Size (# of entries) of each tx and rx queue. 375 */ 376 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 377 TUNABLE_INT("hw.cxgbe.qsize_txq", &t4_qsize_txq); 378 379 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 380 TUNABLE_INT("hw.cxgbe.qsize_rxq", &t4_qsize_rxq); 381 382 /* 383 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 384 */ 385 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 386 TUNABLE_INT("hw.cxgbe.interrupt_types", &t4_intr_types); 387 388 /* 389 * Configuration file. 390 */ 391 #define DEFAULT_CF "default" 392 #define FLASH_CF "flash" 393 #define UWIRE_CF "uwire" 394 #define FPGA_CF "fpga" 395 static char t4_cfg_file[32] = DEFAULT_CF; 396 TUNABLE_STR("hw.cxgbe.config_file", t4_cfg_file, sizeof(t4_cfg_file)); 397 398 /* 399 * PAUSE settings (bit 0, 1 = rx_pause, tx_pause respectively). 400 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 401 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 402 * mark or when signalled to do so, 0 to never emit PAUSE. 403 */ 404 static int t4_pause_settings = PAUSE_TX | PAUSE_RX; 405 TUNABLE_INT("hw.cxgbe.pause_settings", &t4_pause_settings); 406 407 /* 408 * Forward Error Correction settings (bit 0, 1, 2 = FEC_RS, FEC_BASER_RS, 409 * FEC_RESERVED respectively). 410 * -1 to run with the firmware default. 411 * 0 to disable FEC. 412 */ 413 static int t4_fec = -1; 414 TUNABLE_INT("hw.cxgbe.fec", &t4_fec); 415 416 /* 417 * Link autonegotiation. 418 * -1 to run with the firmware default. 419 * 0 to disable. 420 * 1 to enable. 421 */ 422 static int t4_autoneg = -1; 423 TUNABLE_INT("hw.cxgbe.autoneg", &t4_autoneg); 424 425 /* 426 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 427 * encouraged respectively). 428 */ 429 static unsigned int t4_fw_install = 1; 430 TUNABLE_INT("hw.cxgbe.fw_install", &t4_fw_install); 431 432 /* 433 * ASIC features that will be used. Disable the ones you don't want so that the 434 * chip resources aren't wasted on features that will not be used. 435 */ 436 static int t4_nbmcaps_allowed = 0; 437 TUNABLE_INT("hw.cxgbe.nbmcaps_allowed", &t4_nbmcaps_allowed); 438 439 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 440 TUNABLE_INT("hw.cxgbe.linkcaps_allowed", &t4_linkcaps_allowed); 441 442 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 443 FW_CAPS_CONFIG_SWITCH_EGRESS; 444 TUNABLE_INT("hw.cxgbe.switchcaps_allowed", &t4_switchcaps_allowed); 445 446 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC; 447 TUNABLE_INT("hw.cxgbe.niccaps_allowed", &t4_niccaps_allowed); 448 449 static int t4_toecaps_allowed = -1; 450 TUNABLE_INT("hw.cxgbe.toecaps_allowed", &t4_toecaps_allowed); 451 452 static int t4_rdmacaps_allowed = -1; 453 TUNABLE_INT("hw.cxgbe.rdmacaps_allowed", &t4_rdmacaps_allowed); 454 455 static int t4_cryptocaps_allowed = 0; 456 TUNABLE_INT("hw.cxgbe.cryptocaps_allowed", &t4_cryptocaps_allowed); 457 458 static int t4_iscsicaps_allowed = -1; 459 TUNABLE_INT("hw.cxgbe.iscsicaps_allowed", &t4_iscsicaps_allowed); 460 461 static int t4_fcoecaps_allowed = 0; 462 TUNABLE_INT("hw.cxgbe.fcoecaps_allowed", &t4_fcoecaps_allowed); 463 464 static int t5_write_combine = 0; 465 TUNABLE_INT("hw.cxl.write_combine", &t5_write_combine); 466 467 static int t4_num_vis = 1; 468 TUNABLE_INT("hw.cxgbe.num_vis", &t4_num_vis); 469 470 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 471 static int vi_mac_funcs[] = { 472 FW_VI_FUNC_ETH, 473 FW_VI_FUNC_OFLD, 474 FW_VI_FUNC_IWARP, 475 FW_VI_FUNC_OPENISCSI, 476 FW_VI_FUNC_OPENFCOE, 477 FW_VI_FUNC_FOISCSI, 478 FW_VI_FUNC_FOFCOE, 479 }; 480 481 struct intrs_and_queues { 482 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 483 uint16_t nirq; /* Total # of vectors */ 484 uint16_t intr_flags_10g;/* Interrupt flags for each 10G port */ 485 uint16_t intr_flags_1g; /* Interrupt flags for each 1G port */ 486 uint16_t ntxq10g; /* # of NIC txq's for each 10G port */ 487 uint16_t nrxq10g; /* # of NIC rxq's for each 10G port */ 488 uint16_t ntxq1g; /* # of NIC txq's for each 1G port */ 489 uint16_t nrxq1g; /* # of NIC rxq's for each 1G port */ 490 uint16_t rsrv_noflowq; /* Flag whether to reserve queue 0 */ 491 uint16_t nofldtxq10g; /* # of TOE txq's for each 10G port */ 492 uint16_t nofldrxq10g; /* # of TOE rxq's for each 10G port */ 493 uint16_t nofldtxq1g; /* # of TOE txq's for each 1G port */ 494 uint16_t nofldrxq1g; /* # of TOE rxq's for each 1G port */ 495 496 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 497 uint16_t ntxq_vi; /* # of NIC txq's */ 498 uint16_t nrxq_vi; /* # of NIC rxq's */ 499 uint16_t nofldtxq_vi; /* # of TOE txq's */ 500 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 501 uint16_t nnmtxq_vi; /* # of netmap txq's */ 502 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 503 }; 504 505 struct filter_entry { 506 uint32_t valid:1; /* filter allocated and valid */ 507 uint32_t locked:1; /* filter is administratively locked */ 508 uint32_t pending:1; /* filter action is pending firmware reply */ 509 uint32_t smtidx:8; /* Source MAC Table index for smac */ 510 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ 511 512 struct t4_filter_specification fs; 513 }; 514 515 static void setup_memwin(struct adapter *); 516 static void position_memwin(struct adapter *, int, uint32_t); 517 static int rw_via_memwin(struct adapter *, int, uint32_t, uint32_t *, int, int); 518 static inline int read_via_memwin(struct adapter *, int, uint32_t, uint32_t *, 519 int); 520 static inline int write_via_memwin(struct adapter *, int, uint32_t, 521 const uint32_t *, int); 522 static int validate_mem_range(struct adapter *, uint32_t, int); 523 static int fwmtype_to_hwmtype(int); 524 static int validate_mt_off_len(struct adapter *, int, uint32_t, int, 525 uint32_t *); 526 static int fixup_devlog_params(struct adapter *); 527 static int cfg_itype_and_nqueues(struct adapter *, int, int, int, 528 struct intrs_and_queues *); 529 static int prep_firmware(struct adapter *); 530 static int partition_resources(struct adapter *, const struct firmware *, 531 const char *); 532 static int get_params__pre_init(struct adapter *); 533 static int get_params__post_init(struct adapter *); 534 static int set_params__post_init(struct adapter *); 535 static void t4_set_desc(struct adapter *); 536 static void build_medialist(struct port_info *, struct ifmedia *); 537 static void init_l1cfg(struct port_info *); 538 static int cxgbe_init_synchronized(struct vi_info *); 539 static int cxgbe_uninit_synchronized(struct vi_info *); 540 static void quiesce_txq(struct adapter *, struct sge_txq *); 541 static void quiesce_wrq(struct adapter *, struct sge_wrq *); 542 static void quiesce_iq(struct adapter *, struct sge_iq *); 543 static void quiesce_fl(struct adapter *, struct sge_fl *); 544 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 545 driver_intr_t *, void *, char *); 546 static int t4_free_irq(struct adapter *, struct irq *); 547 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 548 static void vi_refresh_stats(struct adapter *, struct vi_info *); 549 static void cxgbe_refresh_stats(struct adapter *, struct port_info *); 550 static void cxgbe_tick(void *); 551 static void cxgbe_vlan_config(void *, struct ifnet *, uint16_t); 552 static void cxgbe_sysctls(struct port_info *); 553 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 554 static int sysctl_bitfield(SYSCTL_HANDLER_ARGS); 555 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 556 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 557 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 558 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 559 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 560 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 561 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 562 static int sysctl_fec(SYSCTL_HANDLER_ARGS); 563 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 564 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 565 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 566 #ifdef SBUF_DRAIN 567 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 568 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 569 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 570 static int sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS); 571 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 572 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 573 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 574 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 575 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 576 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 577 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 578 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 579 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 580 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 581 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 582 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 583 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 584 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 585 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 586 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 587 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 588 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 589 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 590 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 591 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 592 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 593 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 594 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 595 static int sysctl_tc_params(SYSCTL_HANDLER_ARGS); 596 #endif 597 #ifdef TCP_OFFLOAD 598 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 599 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 600 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 601 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 602 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 603 #endif 604 static uint32_t fconf_iconf_to_mode(uint32_t, uint32_t); 605 static uint32_t mode_to_fconf(uint32_t); 606 static uint32_t mode_to_iconf(uint32_t); 607 static int check_fspec_against_fconf_iconf(struct adapter *, 608 struct t4_filter_specification *); 609 static int get_filter_mode(struct adapter *, uint32_t *); 610 static int set_filter_mode(struct adapter *, uint32_t); 611 static inline uint64_t get_filter_hits(struct adapter *, uint32_t); 612 static int get_filter(struct adapter *, struct t4_filter *); 613 static int set_filter(struct adapter *, struct t4_filter *); 614 static int del_filter(struct adapter *, struct t4_filter *); 615 static void clear_filter(struct filter_entry *); 616 static int set_filter_wr(struct adapter *, int); 617 static int del_filter_wr(struct adapter *, int); 618 static int set_tcb_rpl(struct sge_iq *, const struct rss_header *, 619 struct mbuf *); 620 static int get_sge_context(struct adapter *, struct t4_sge_context *); 621 static int load_fw(struct adapter *, struct t4_data *); 622 static int load_cfg(struct adapter *, struct t4_data *); 623 static int load_boot(struct adapter *, struct t4_bootrom *); 624 static int load_bootcfg(struct adapter *, struct t4_data *); 625 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 626 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 627 static int read_i2c(struct adapter *, struct t4_i2c_data *); 628 #ifdef TCP_OFFLOAD 629 static int toe_capability(struct vi_info *, int); 630 #endif 631 static int mod_event(module_t, int, void *); 632 static int notify_siblings(device_t, int); 633 634 struct { 635 uint16_t device; 636 char *desc; 637 } t4_pciids[] = { 638 {0xa000, "Chelsio Terminator 4 FPGA"}, 639 {0x4400, "Chelsio T440-dbg"}, 640 {0x4401, "Chelsio T420-CR"}, 641 {0x4402, "Chelsio T422-CR"}, 642 {0x4403, "Chelsio T440-CR"}, 643 {0x4404, "Chelsio T420-BCH"}, 644 {0x4405, "Chelsio T440-BCH"}, 645 {0x4406, "Chelsio T440-CH"}, 646 {0x4407, "Chelsio T420-SO"}, 647 {0x4408, "Chelsio T420-CX"}, 648 {0x4409, "Chelsio T420-BT"}, 649 {0x440a, "Chelsio T404-BT"}, 650 {0x440e, "Chelsio T440-LP-CR"}, 651 }, t5_pciids[] = { 652 {0xb000, "Chelsio Terminator 5 FPGA"}, 653 {0x5400, "Chelsio T580-dbg"}, 654 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 655 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 656 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 657 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 658 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 659 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 660 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 661 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 662 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 663 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 664 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 665 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 666 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 667 #ifdef notyet 668 {0x5404, "Chelsio T520-BCH"}, 669 {0x5405, "Chelsio T540-BCH"}, 670 {0x5406, "Chelsio T540-CH"}, 671 {0x5408, "Chelsio T520-CX"}, 672 {0x540b, "Chelsio B520-SR"}, 673 {0x540c, "Chelsio B504-BT"}, 674 {0x540f, "Chelsio Amsterdam"}, 675 {0x5413, "Chelsio T580-CHR"}, 676 #endif 677 }, t6_pciids[] = { 678 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 679 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 680 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 681 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 682 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 683 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 684 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 685 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 686 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 687 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 688 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 689 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 690 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 691 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 692 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 693 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 694 695 /* Custom */ 696 {0x6480, "Chelsio T6225 80"}, 697 {0x6481, "Chelsio T62100 81"}, 698 }; 699 700 #ifdef TCP_OFFLOAD 701 /* 702 * service_iq() has an iq and needs the fl. Offset of fl from the iq should be 703 * exactly the same for both rxq and ofld_rxq. 704 */ 705 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 706 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 707 #endif 708 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 709 710 static int 711 t4_probe(device_t dev) 712 { 713 int i; 714 uint16_t v = pci_get_vendor(dev); 715 uint16_t d = pci_get_device(dev); 716 uint8_t f = pci_get_function(dev); 717 718 if (v != PCI_VENDOR_ID_CHELSIO) 719 return (ENXIO); 720 721 /* Attach only to PF0 of the FPGA */ 722 if (d == 0xa000 && f != 0) 723 return (ENXIO); 724 725 for (i = 0; i < nitems(t4_pciids); i++) { 726 if (d == t4_pciids[i].device) { 727 device_set_desc(dev, t4_pciids[i].desc); 728 return (BUS_PROBE_DEFAULT); 729 } 730 } 731 732 return (ENXIO); 733 } 734 735 static int 736 t5_probe(device_t dev) 737 { 738 int i; 739 uint16_t v = pci_get_vendor(dev); 740 uint16_t d = pci_get_device(dev); 741 uint8_t f = pci_get_function(dev); 742 743 if (v != PCI_VENDOR_ID_CHELSIO) 744 return (ENXIO); 745 746 /* Attach only to PF0 of the FPGA */ 747 if (d == 0xb000 && f != 0) 748 return (ENXIO); 749 750 for (i = 0; i < nitems(t5_pciids); i++) { 751 if (d == t5_pciids[i].device) { 752 device_set_desc(dev, t5_pciids[i].desc); 753 return (BUS_PROBE_DEFAULT); 754 } 755 } 756 757 return (ENXIO); 758 } 759 760 static int 761 t6_probe(device_t dev) 762 { 763 int i; 764 uint16_t v = pci_get_vendor(dev); 765 uint16_t d = pci_get_device(dev); 766 767 if (v != PCI_VENDOR_ID_CHELSIO) 768 return (ENXIO); 769 770 for (i = 0; i < nitems(t6_pciids); i++) { 771 if (d == t6_pciids[i].device) { 772 device_set_desc(dev, t6_pciids[i].desc); 773 return (BUS_PROBE_DEFAULT); 774 } 775 } 776 777 return (ENXIO); 778 } 779 780 static void 781 t5_attribute_workaround(device_t dev) 782 { 783 device_t root_port; 784 uint32_t v; 785 786 /* 787 * The T5 chips do not properly echo the No Snoop and Relaxed 788 * Ordering attributes when replying to a TLP from a Root 789 * Port. As a workaround, find the parent Root Port and 790 * disable No Snoop and Relaxed Ordering. Note that this 791 * affects all devices under this root port. 792 */ 793 root_port = pci_find_pcie_root_port(dev); 794 if (root_port == NULL) { 795 device_printf(dev, "Unable to find parent root port\n"); 796 return; 797 } 798 799 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 800 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 801 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 802 0) 803 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 804 device_get_nameunit(root_port)); 805 } 806 807 static const struct devnames devnames[] = { 808 { 809 .nexus_name = "t4nex", 810 .ifnet_name = "cxgbe", 811 .vi_ifnet_name = "vcxgbe", 812 .pf03_drv_name = "t4iov", 813 .vf_nexus_name = "t4vf", 814 .vf_ifnet_name = "cxgbev" 815 }, { 816 .nexus_name = "t5nex", 817 .ifnet_name = "cxl", 818 .vi_ifnet_name = "vcxl", 819 .pf03_drv_name = "t5iov", 820 .vf_nexus_name = "t5vf", 821 .vf_ifnet_name = "cxlv" 822 }, { 823 .nexus_name = "t6nex", 824 .ifnet_name = "cc", 825 .vi_ifnet_name = "vcc", 826 .pf03_drv_name = "t6iov", 827 .vf_nexus_name = "t6vf", 828 .vf_ifnet_name = "ccv" 829 } 830 }; 831 832 void 833 t4_init_devnames(struct adapter *sc) 834 { 835 int id; 836 837 id = chip_id(sc); 838 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 839 sc->names = &devnames[id - CHELSIO_T4]; 840 else { 841 device_printf(sc->dev, "chip id %d is not supported.\n", id); 842 sc->names = NULL; 843 } 844 } 845 846 static int 847 t4_attach(device_t dev) 848 { 849 struct adapter *sc; 850 int rc = 0, i, j, n10g, n1g, rqidx, tqidx; 851 struct make_dev_args mda; 852 struct intrs_and_queues iaq; 853 struct sge *s; 854 uint8_t *buf; 855 #ifdef TCP_OFFLOAD 856 int ofld_rqidx, ofld_tqidx; 857 #endif 858 #ifdef DEV_NETMAP 859 int nm_rqidx, nm_tqidx; 860 #endif 861 int num_vis; 862 863 sc = device_get_softc(dev); 864 sc->dev = dev; 865 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 866 867 if ((pci_get_device(dev) & 0xff00) == 0x5400) 868 t5_attribute_workaround(dev); 869 pci_enable_busmaster(dev); 870 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 871 uint32_t v; 872 873 pci_set_max_read_req(dev, 4096); 874 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 875 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 876 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 877 878 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 879 } 880 881 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 882 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 883 sc->traceq = -1; 884 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 885 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 886 device_get_nameunit(dev)); 887 888 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 889 device_get_nameunit(dev)); 890 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 891 t4_add_adapter(sc); 892 893 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 894 TAILQ_INIT(&sc->sfl); 895 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 896 897 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 898 899 rc = t4_map_bars_0_and_4(sc); 900 if (rc != 0) 901 goto done; /* error message displayed already */ 902 903 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 904 905 /* Prepare the adapter for operation. */ 906 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 907 rc = -t4_prep_adapter(sc, buf); 908 free(buf, M_CXGBE); 909 if (rc != 0) { 910 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 911 goto done; 912 } 913 914 /* 915 * This is the real PF# to which we're attaching. Works from within PCI 916 * passthrough environments too, where pci_get_function() could return a 917 * different PF# depending on the passthrough configuration. We need to 918 * use the real PF# in all our communication with the firmware. 919 */ 920 j = t4_read_reg(sc, A_PL_WHOAMI); 921 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 922 sc->mbox = sc->pf; 923 924 t4_init_devnames(sc); 925 if (sc->names == NULL) { 926 rc = ENOTSUP; 927 goto done; /* error message displayed already */ 928 } 929 930 /* 931 * Do this really early, with the memory windows set up even before the 932 * character device. The userland tool's register i/o and mem read 933 * will work even in "recovery mode". 934 */ 935 setup_memwin(sc); 936 if (t4_init_devlog_params(sc, 0) == 0) 937 fixup_devlog_params(sc); 938 make_dev_args_init(&mda); 939 mda.mda_devsw = &t4_cdevsw; 940 mda.mda_uid = UID_ROOT; 941 mda.mda_gid = GID_WHEEL; 942 mda.mda_mode = 0600; 943 mda.mda_si_drv1 = sc; 944 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 945 if (rc != 0) 946 device_printf(dev, "failed to create nexus char device: %d.\n", 947 rc); 948 949 /* Go no further if recovery mode has been requested. */ 950 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 951 device_printf(dev, "recovery mode.\n"); 952 goto done; 953 } 954 955 #if defined(__i386__) 956 if ((cpu_feature & CPUID_CX8) == 0) { 957 device_printf(dev, "64 bit atomics not available.\n"); 958 rc = ENOTSUP; 959 goto done; 960 } 961 #endif 962 963 /* Prepare the firmware for operation */ 964 rc = prep_firmware(sc); 965 if (rc != 0) 966 goto done; /* error message displayed already */ 967 968 rc = get_params__post_init(sc); 969 if (rc != 0) 970 goto done; /* error message displayed already */ 971 972 rc = set_params__post_init(sc); 973 if (rc != 0) 974 goto done; /* error message displayed already */ 975 976 rc = t4_map_bar_2(sc); 977 if (rc != 0) 978 goto done; /* error message displayed already */ 979 980 rc = t4_create_dma_tag(sc); 981 if (rc != 0) 982 goto done; /* error message displayed already */ 983 984 /* 985 * Number of VIs to create per-port. The first VI is the "main" regular 986 * VI for the port. The rest are additional virtual interfaces on the 987 * same physical port. Note that the main VI does not have native 988 * netmap support but the extra VIs do. 989 * 990 * Limit the number of VIs per port to the number of available 991 * MAC addresses per port. 992 */ 993 if (t4_num_vis >= 1) 994 num_vis = t4_num_vis; 995 else 996 num_vis = 1; 997 if (num_vis > nitems(vi_mac_funcs)) { 998 num_vis = nitems(vi_mac_funcs); 999 device_printf(dev, "Number of VIs limited to %d\n", num_vis); 1000 } 1001 1002 /* 1003 * First pass over all the ports - allocate VIs and initialize some 1004 * basic parameters like mac address, port type, etc. We also figure 1005 * out whether a port is 10G or 1G and use that information when 1006 * calculating how many interrupts to attempt to allocate. 1007 */ 1008 n10g = n1g = 0; 1009 for_each_port(sc, i) { 1010 struct port_info *pi; 1011 1012 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1013 sc->port[i] = pi; 1014 1015 /* These must be set before t4_port_init */ 1016 pi->adapter = sc; 1017 pi->port_id = i; 1018 /* 1019 * XXX: vi[0] is special so we can't delay this allocation until 1020 * pi->nvi's final value is known. 1021 */ 1022 pi->vi = malloc(sizeof(struct vi_info) * num_vis, M_CXGBE, 1023 M_ZERO | M_WAITOK); 1024 1025 /* 1026 * Allocate the "main" VI and initialize parameters 1027 * like mac addr. 1028 */ 1029 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1030 if (rc != 0) { 1031 device_printf(dev, "unable to initialize port %d: %d\n", 1032 i, rc); 1033 free(pi->vi, M_CXGBE); 1034 free(pi, M_CXGBE); 1035 sc->port[i] = NULL; 1036 goto done; 1037 } 1038 1039 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1040 device_get_nameunit(dev), i); 1041 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1042 sc->chan_map[pi->tx_chan] = i; 1043 1044 if (port_top_speed(pi) >= 10) { 1045 n10g++; 1046 } else { 1047 n1g++; 1048 } 1049 1050 /* All VIs on this port share this media. */ 1051 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1052 cxgbe_media_status); 1053 1054 pi->dev = device_add_child(dev, sc->names->ifnet_name, -1); 1055 if (pi->dev == NULL) { 1056 device_printf(dev, 1057 "failed to add device for port %d.\n", i); 1058 rc = ENXIO; 1059 goto done; 1060 } 1061 pi->vi[0].dev = pi->dev; 1062 device_set_softc(pi->dev, pi); 1063 } 1064 1065 /* 1066 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1067 */ 1068 rc = cfg_itype_and_nqueues(sc, n10g, n1g, num_vis, &iaq); 1069 if (rc != 0) 1070 goto done; /* error message displayed already */ 1071 if (iaq.nrxq_vi + iaq.nofldrxq_vi + iaq.nnmrxq_vi == 0) 1072 num_vis = 1; 1073 1074 sc->intr_type = iaq.intr_type; 1075 sc->intr_count = iaq.nirq; 1076 1077 s = &sc->sge; 1078 s->nrxq = n10g * iaq.nrxq10g + n1g * iaq.nrxq1g; 1079 s->ntxq = n10g * iaq.ntxq10g + n1g * iaq.ntxq1g; 1080 if (num_vis > 1) { 1081 s->nrxq += (n10g + n1g) * (num_vis - 1) * iaq.nrxq_vi; 1082 s->ntxq += (n10g + n1g) * (num_vis - 1) * iaq.ntxq_vi; 1083 } 1084 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1085 s->neq += sc->params.nports + 1;/* ctrl queues: 1 per port + 1 mgmt */ 1086 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1087 #ifdef TCP_OFFLOAD 1088 if (is_offload(sc)) { 1089 s->nofldrxq = n10g * iaq.nofldrxq10g + n1g * iaq.nofldrxq1g; 1090 s->nofldtxq = n10g * iaq.nofldtxq10g + n1g * iaq.nofldtxq1g; 1091 if (num_vis > 1) { 1092 s->nofldrxq += (n10g + n1g) * (num_vis - 1) * 1093 iaq.nofldrxq_vi; 1094 s->nofldtxq += (n10g + n1g) * (num_vis - 1) * 1095 iaq.nofldtxq_vi; 1096 } 1097 s->neq += s->nofldtxq + s->nofldrxq; 1098 s->niq += s->nofldrxq; 1099 1100 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1101 M_CXGBE, M_ZERO | M_WAITOK); 1102 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq), 1103 M_CXGBE, M_ZERO | M_WAITOK); 1104 } 1105 #endif 1106 #ifdef DEV_NETMAP 1107 if (num_vis > 1) { 1108 s->nnmrxq = (n10g + n1g) * (num_vis - 1) * iaq.nnmrxq_vi; 1109 s->nnmtxq = (n10g + n1g) * (num_vis - 1) * iaq.nnmtxq_vi; 1110 } 1111 s->neq += s->nnmtxq + s->nnmrxq; 1112 s->niq += s->nnmrxq; 1113 1114 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1115 M_CXGBE, M_ZERO | M_WAITOK); 1116 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1117 M_CXGBE, M_ZERO | M_WAITOK); 1118 #endif 1119 1120 s->ctrlq = malloc(sc->params.nports * sizeof(struct sge_wrq), M_CXGBE, 1121 M_ZERO | M_WAITOK); 1122 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1123 M_ZERO | M_WAITOK); 1124 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1125 M_ZERO | M_WAITOK); 1126 s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE, 1127 M_ZERO | M_WAITOK); 1128 s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE, 1129 M_ZERO | M_WAITOK); 1130 1131 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1132 M_ZERO | M_WAITOK); 1133 1134 t4_init_l2t(sc, M_WAITOK); 1135 t4_init_tx_sched(sc); 1136 1137 /* 1138 * Second pass over the ports. This time we know the number of rx and 1139 * tx queues that each port should get. 1140 */ 1141 rqidx = tqidx = 0; 1142 #ifdef TCP_OFFLOAD 1143 ofld_rqidx = ofld_tqidx = 0; 1144 #endif 1145 #ifdef DEV_NETMAP 1146 nm_rqidx = nm_tqidx = 0; 1147 #endif 1148 for_each_port(sc, i) { 1149 struct port_info *pi = sc->port[i]; 1150 struct vi_info *vi; 1151 1152 if (pi == NULL) 1153 continue; 1154 1155 pi->nvi = num_vis; 1156 for_each_vi(pi, j, vi) { 1157 vi->pi = pi; 1158 vi->qsize_rxq = t4_qsize_rxq; 1159 vi->qsize_txq = t4_qsize_txq; 1160 1161 vi->first_rxq = rqidx; 1162 vi->first_txq = tqidx; 1163 if (port_top_speed(pi) >= 10) { 1164 vi->tmr_idx = t4_tmr_idx_10g; 1165 vi->pktc_idx = t4_pktc_idx_10g; 1166 vi->flags |= iaq.intr_flags_10g & INTR_RXQ; 1167 vi->nrxq = j == 0 ? iaq.nrxq10g : iaq.nrxq_vi; 1168 vi->ntxq = j == 0 ? iaq.ntxq10g : iaq.ntxq_vi; 1169 } else { 1170 vi->tmr_idx = t4_tmr_idx_1g; 1171 vi->pktc_idx = t4_pktc_idx_1g; 1172 vi->flags |= iaq.intr_flags_1g & INTR_RXQ; 1173 vi->nrxq = j == 0 ? iaq.nrxq1g : iaq.nrxq_vi; 1174 vi->ntxq = j == 0 ? iaq.ntxq1g : iaq.ntxq_vi; 1175 } 1176 rqidx += vi->nrxq; 1177 tqidx += vi->ntxq; 1178 1179 if (j == 0 && vi->ntxq > 1) 1180 vi->rsrv_noflowq = iaq.rsrv_noflowq ? 1 : 0; 1181 else 1182 vi->rsrv_noflowq = 0; 1183 1184 #ifdef TCP_OFFLOAD 1185 vi->first_ofld_rxq = ofld_rqidx; 1186 vi->first_ofld_txq = ofld_tqidx; 1187 if (port_top_speed(pi) >= 10) { 1188 vi->flags |= iaq.intr_flags_10g & INTR_OFLD_RXQ; 1189 vi->nofldrxq = j == 0 ? iaq.nofldrxq10g : 1190 iaq.nofldrxq_vi; 1191 vi->nofldtxq = j == 0 ? iaq.nofldtxq10g : 1192 iaq.nofldtxq_vi; 1193 } else { 1194 vi->flags |= iaq.intr_flags_1g & INTR_OFLD_RXQ; 1195 vi->nofldrxq = j == 0 ? iaq.nofldrxq1g : 1196 iaq.nofldrxq_vi; 1197 vi->nofldtxq = j == 0 ? iaq.nofldtxq1g : 1198 iaq.nofldtxq_vi; 1199 } 1200 ofld_rqidx += vi->nofldrxq; 1201 ofld_tqidx += vi->nofldtxq; 1202 #endif 1203 #ifdef DEV_NETMAP 1204 if (j > 0) { 1205 vi->first_nm_rxq = nm_rqidx; 1206 vi->first_nm_txq = nm_tqidx; 1207 vi->nnmrxq = iaq.nnmrxq_vi; 1208 vi->nnmtxq = iaq.nnmtxq_vi; 1209 nm_rqidx += vi->nnmrxq; 1210 nm_tqidx += vi->nnmtxq; 1211 } 1212 #endif 1213 } 1214 } 1215 1216 rc = t4_setup_intr_handlers(sc); 1217 if (rc != 0) { 1218 device_printf(dev, 1219 "failed to setup interrupt handlers: %d\n", rc); 1220 goto done; 1221 } 1222 1223 rc = bus_generic_probe(dev); 1224 if (rc != 0) { 1225 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1226 goto done; 1227 } 1228 1229 /* 1230 * Ensure thread-safe mailbox access (in debug builds). 1231 * 1232 * So far this was the only thread accessing the mailbox but various 1233 * ifnets and sysctls are about to be created and their handlers/ioctls 1234 * will access the mailbox from different threads. 1235 */ 1236 sc->flags |= CHK_MBOX_ACCESS; 1237 1238 rc = bus_generic_attach(dev); 1239 if (rc != 0) { 1240 device_printf(dev, 1241 "failed to attach all child ports: %d\n", rc); 1242 goto done; 1243 } 1244 1245 device_printf(dev, 1246 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1247 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1248 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1249 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1250 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1251 1252 t4_set_desc(sc); 1253 1254 notify_siblings(dev, 0); 1255 1256 done: 1257 if (rc != 0 && sc->cdev) { 1258 /* cdev was created and so cxgbetool works; recover that way. */ 1259 device_printf(dev, 1260 "error during attach, adapter is now in recovery mode.\n"); 1261 rc = 0; 1262 } 1263 1264 if (rc != 0) 1265 t4_detach_common(dev); 1266 else 1267 t4_sysctls(sc); 1268 1269 return (rc); 1270 } 1271 1272 static int 1273 t4_ready(device_t dev) 1274 { 1275 struct adapter *sc; 1276 1277 sc = device_get_softc(dev); 1278 if (sc->flags & FW_OK) 1279 return (0); 1280 return (ENXIO); 1281 } 1282 1283 static int 1284 t4_read_port_device(device_t dev, int port, device_t *child) 1285 { 1286 struct adapter *sc; 1287 struct port_info *pi; 1288 1289 sc = device_get_softc(dev); 1290 if (port < 0 || port >= MAX_NPORTS) 1291 return (EINVAL); 1292 pi = sc->port[port]; 1293 if (pi == NULL || pi->dev == NULL) 1294 return (ENXIO); 1295 *child = pi->dev; 1296 return (0); 1297 } 1298 1299 static int 1300 notify_siblings(device_t dev, int detaching) 1301 { 1302 device_t sibling; 1303 int error, i; 1304 1305 error = 0; 1306 for (i = 0; i < PCI_FUNCMAX; i++) { 1307 if (i == pci_get_function(dev)) 1308 continue; 1309 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1310 pci_get_slot(dev), i); 1311 if (sibling == NULL || !device_is_attached(sibling)) 1312 continue; 1313 if (detaching) 1314 error = T4_DETACH_CHILD(sibling); 1315 else 1316 (void)T4_ATTACH_CHILD(sibling); 1317 if (error) 1318 break; 1319 } 1320 return (error); 1321 } 1322 1323 /* 1324 * Idempotent 1325 */ 1326 static int 1327 t4_detach(device_t dev) 1328 { 1329 struct adapter *sc; 1330 int rc; 1331 1332 sc = device_get_softc(dev); 1333 1334 rc = notify_siblings(dev, 1); 1335 if (rc) { 1336 device_printf(dev, 1337 "failed to detach sibling devices: %d\n", rc); 1338 return (rc); 1339 } 1340 1341 return (t4_detach_common(dev)); 1342 } 1343 1344 int 1345 t4_detach_common(device_t dev) 1346 { 1347 struct adapter *sc; 1348 struct port_info *pi; 1349 int i, rc; 1350 1351 sc = device_get_softc(dev); 1352 1353 sc->flags &= ~CHK_MBOX_ACCESS; 1354 if (sc->flags & FULL_INIT_DONE) { 1355 if (!(sc->flags & IS_VF)) 1356 t4_intr_disable(sc); 1357 } 1358 1359 if (sc->cdev) { 1360 destroy_dev(sc->cdev); 1361 sc->cdev = NULL; 1362 } 1363 1364 if (device_is_attached(dev)) { 1365 rc = bus_generic_detach(dev); 1366 if (rc) { 1367 device_printf(dev, 1368 "failed to detach child devices: %d\n", rc); 1369 return (rc); 1370 } 1371 } 1372 1373 for (i = 0; i < sc->intr_count; i++) 1374 t4_free_irq(sc, &sc->irq[i]); 1375 1376 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1377 t4_free_tx_sched(sc); 1378 1379 for (i = 0; i < MAX_NPORTS; i++) { 1380 pi = sc->port[i]; 1381 if (pi) { 1382 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1383 if (pi->dev) 1384 device_delete_child(dev, pi->dev); 1385 1386 mtx_destroy(&pi->pi_lock); 1387 free(pi->vi, M_CXGBE); 1388 free(pi, M_CXGBE); 1389 } 1390 } 1391 1392 device_delete_children(dev); 1393 1394 if (sc->flags & FULL_INIT_DONE) 1395 adapter_full_uninit(sc); 1396 1397 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1398 t4_fw_bye(sc, sc->mbox); 1399 1400 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1401 pci_release_msi(dev); 1402 1403 if (sc->regs_res) 1404 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1405 sc->regs_res); 1406 1407 if (sc->udbs_res) 1408 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1409 sc->udbs_res); 1410 1411 if (sc->msix_res) 1412 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1413 sc->msix_res); 1414 1415 if (sc->l2t) 1416 t4_free_l2t(sc->l2t); 1417 1418 #ifdef TCP_OFFLOAD 1419 free(sc->sge.ofld_rxq, M_CXGBE); 1420 free(sc->sge.ofld_txq, M_CXGBE); 1421 #endif 1422 #ifdef DEV_NETMAP 1423 free(sc->sge.nm_rxq, M_CXGBE); 1424 free(sc->sge.nm_txq, M_CXGBE); 1425 #endif 1426 free(sc->irq, M_CXGBE); 1427 free(sc->sge.rxq, M_CXGBE); 1428 free(sc->sge.txq, M_CXGBE); 1429 free(sc->sge.ctrlq, M_CXGBE); 1430 free(sc->sge.iqmap, M_CXGBE); 1431 free(sc->sge.eqmap, M_CXGBE); 1432 free(sc->tids.ftid_tab, M_CXGBE); 1433 t4_destroy_dma_tag(sc); 1434 if (mtx_initialized(&sc->sc_lock)) { 1435 sx_xlock(&t4_list_lock); 1436 SLIST_REMOVE(&t4_list, sc, adapter, link); 1437 sx_xunlock(&t4_list_lock); 1438 mtx_destroy(&sc->sc_lock); 1439 } 1440 1441 callout_drain(&sc->sfl_callout); 1442 if (mtx_initialized(&sc->tids.ftid_lock)) 1443 mtx_destroy(&sc->tids.ftid_lock); 1444 if (mtx_initialized(&sc->sfl_lock)) 1445 mtx_destroy(&sc->sfl_lock); 1446 if (mtx_initialized(&sc->ifp_lock)) 1447 mtx_destroy(&sc->ifp_lock); 1448 if (mtx_initialized(&sc->reg_lock)) 1449 mtx_destroy(&sc->reg_lock); 1450 1451 for (i = 0; i < NUM_MEMWIN; i++) { 1452 struct memwin *mw = &sc->memwin[i]; 1453 1454 if (rw_initialized(&mw->mw_lock)) 1455 rw_destroy(&mw->mw_lock); 1456 } 1457 1458 bzero(sc, sizeof(*sc)); 1459 1460 return (0); 1461 } 1462 1463 static int 1464 cxgbe_probe(device_t dev) 1465 { 1466 char buf[128]; 1467 struct port_info *pi = device_get_softc(dev); 1468 1469 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 1470 device_set_desc_copy(dev, buf); 1471 1472 return (BUS_PROBE_DEFAULT); 1473 } 1474 1475 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 1476 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 1477 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS) 1478 #define T4_CAP_ENABLE (T4_CAP) 1479 1480 static int 1481 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 1482 { 1483 struct ifnet *ifp; 1484 struct sbuf *sb; 1485 1486 vi->xact_addr_filt = -1; 1487 callout_init(&vi->tick, 1); 1488 1489 /* Allocate an ifnet and set it up */ 1490 ifp = if_alloc(IFT_ETHER); 1491 if (ifp == NULL) { 1492 device_printf(dev, "Cannot allocate ifnet\n"); 1493 return (ENOMEM); 1494 } 1495 vi->ifp = ifp; 1496 ifp->if_softc = vi; 1497 1498 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1499 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1500 1501 ifp->if_init = cxgbe_init; 1502 ifp->if_ioctl = cxgbe_ioctl; 1503 ifp->if_transmit = cxgbe_transmit; 1504 ifp->if_qflush = cxgbe_qflush; 1505 ifp->if_get_counter = cxgbe_get_counter; 1506 1507 ifp->if_capabilities = T4_CAP; 1508 #ifdef TCP_OFFLOAD 1509 if (vi->nofldrxq != 0) 1510 ifp->if_capabilities |= IFCAP_TOE; 1511 #endif 1512 #ifdef DEV_NETMAP 1513 if (vi->nnmrxq != 0) 1514 ifp->if_capabilities |= IFCAP_NETMAP; 1515 #endif 1516 ifp->if_capenable = T4_CAP_ENABLE; 1517 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 1518 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 1519 1520 ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 1521 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS; 1522 ifp->if_hw_tsomaxsegsize = 65536; 1523 1524 vi->vlan_c = EVENTHANDLER_REGISTER(vlan_config, cxgbe_vlan_config, ifp, 1525 EVENTHANDLER_PRI_ANY); 1526 1527 ether_ifattach(ifp, vi->hw_addr); 1528 #ifdef DEV_NETMAP 1529 if (ifp->if_capabilities & IFCAP_NETMAP) 1530 cxgbe_nm_attach(vi); 1531 #endif 1532 sb = sbuf_new_auto(); 1533 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 1534 #ifdef TCP_OFFLOAD 1535 if (ifp->if_capabilities & IFCAP_TOE) 1536 sbuf_printf(sb, "; %d txq, %d rxq (TOE)", 1537 vi->nofldtxq, vi->nofldrxq); 1538 #endif 1539 #ifdef DEV_NETMAP 1540 if (ifp->if_capabilities & IFCAP_NETMAP) 1541 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 1542 vi->nnmtxq, vi->nnmrxq); 1543 #endif 1544 sbuf_finish(sb); 1545 device_printf(dev, "%s\n", sbuf_data(sb)); 1546 sbuf_delete(sb); 1547 1548 vi_sysctls(vi); 1549 1550 return (0); 1551 } 1552 1553 static int 1554 cxgbe_attach(device_t dev) 1555 { 1556 struct port_info *pi = device_get_softc(dev); 1557 struct adapter *sc = pi->adapter; 1558 struct vi_info *vi; 1559 int i, rc; 1560 1561 callout_init_mtx(&pi->tick, &pi->pi_lock, 0); 1562 1563 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 1564 if (rc) 1565 return (rc); 1566 1567 for_each_vi(pi, i, vi) { 1568 if (i == 0) 1569 continue; 1570 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 1571 if (vi->dev == NULL) { 1572 device_printf(dev, "failed to add VI %d\n", i); 1573 continue; 1574 } 1575 device_set_softc(vi->dev, vi); 1576 } 1577 1578 cxgbe_sysctls(pi); 1579 1580 bus_generic_attach(dev); 1581 1582 return (0); 1583 } 1584 1585 static void 1586 cxgbe_vi_detach(struct vi_info *vi) 1587 { 1588 struct ifnet *ifp = vi->ifp; 1589 1590 ether_ifdetach(ifp); 1591 1592 if (vi->vlan_c) 1593 EVENTHANDLER_DEREGISTER(vlan_config, vi->vlan_c); 1594 1595 /* Let detach proceed even if these fail. */ 1596 #ifdef DEV_NETMAP 1597 if (ifp->if_capabilities & IFCAP_NETMAP) 1598 cxgbe_nm_detach(vi); 1599 #endif 1600 cxgbe_uninit_synchronized(vi); 1601 callout_drain(&vi->tick); 1602 vi_full_uninit(vi); 1603 1604 if_free(vi->ifp); 1605 vi->ifp = NULL; 1606 } 1607 1608 static int 1609 cxgbe_detach(device_t dev) 1610 { 1611 struct port_info *pi = device_get_softc(dev); 1612 struct adapter *sc = pi->adapter; 1613 int rc; 1614 1615 /* Detach the extra VIs first. */ 1616 rc = bus_generic_detach(dev); 1617 if (rc) 1618 return (rc); 1619 device_delete_children(dev); 1620 1621 doom_vi(sc, &pi->vi[0]); 1622 1623 if (pi->flags & HAS_TRACEQ) { 1624 sc->traceq = -1; /* cloner should not create ifnet */ 1625 t4_tracer_port_detach(sc); 1626 } 1627 1628 cxgbe_vi_detach(&pi->vi[0]); 1629 callout_drain(&pi->tick); 1630 ifmedia_removeall(&pi->media); 1631 1632 end_synchronized_op(sc, 0); 1633 1634 return (0); 1635 } 1636 1637 static void 1638 cxgbe_init(void *arg) 1639 { 1640 struct vi_info *vi = arg; 1641 struct adapter *sc = vi->pi->adapter; 1642 1643 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 1644 return; 1645 cxgbe_init_synchronized(vi); 1646 end_synchronized_op(sc, 0); 1647 } 1648 1649 static int 1650 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 1651 { 1652 int rc = 0, mtu, flags, can_sleep; 1653 struct vi_info *vi = ifp->if_softc; 1654 struct port_info *pi = vi->pi; 1655 struct adapter *sc = pi->adapter; 1656 struct ifreq *ifr = (struct ifreq *)data; 1657 uint32_t mask; 1658 1659 switch (cmd) { 1660 case SIOCSIFMTU: 1661 mtu = ifr->ifr_mtu; 1662 if (mtu < ETHERMIN || mtu > MAX_MTU) 1663 return (EINVAL); 1664 1665 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 1666 if (rc) 1667 return (rc); 1668 ifp->if_mtu = mtu; 1669 if (vi->flags & VI_INIT_DONE) { 1670 t4_update_fl_bufsize(ifp); 1671 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1672 rc = update_mac_settings(ifp, XGMAC_MTU); 1673 } 1674 end_synchronized_op(sc, 0); 1675 break; 1676 1677 case SIOCSIFFLAGS: 1678 can_sleep = 0; 1679 redo_sifflags: 1680 rc = begin_synchronized_op(sc, vi, 1681 can_sleep ? (SLEEP_OK | INTR_OK) : HOLD_LOCK, "t4flg"); 1682 if (rc) 1683 return (rc); 1684 1685 if (ifp->if_flags & IFF_UP) { 1686 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1687 flags = vi->if_flags; 1688 if ((ifp->if_flags ^ flags) & 1689 (IFF_PROMISC | IFF_ALLMULTI)) { 1690 if (can_sleep == 1) { 1691 end_synchronized_op(sc, 0); 1692 can_sleep = 0; 1693 goto redo_sifflags; 1694 } 1695 rc = update_mac_settings(ifp, 1696 XGMAC_PROMISC | XGMAC_ALLMULTI); 1697 } 1698 } else { 1699 if (can_sleep == 0) { 1700 end_synchronized_op(sc, LOCK_HELD); 1701 can_sleep = 1; 1702 goto redo_sifflags; 1703 } 1704 rc = cxgbe_init_synchronized(vi); 1705 } 1706 vi->if_flags = ifp->if_flags; 1707 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1708 if (can_sleep == 0) { 1709 end_synchronized_op(sc, LOCK_HELD); 1710 can_sleep = 1; 1711 goto redo_sifflags; 1712 } 1713 rc = cxgbe_uninit_synchronized(vi); 1714 } 1715 end_synchronized_op(sc, can_sleep ? 0 : LOCK_HELD); 1716 break; 1717 1718 case SIOCADDMULTI: 1719 case SIOCDELMULTI: /* these two are called with a mutex held :-( */ 1720 rc = begin_synchronized_op(sc, vi, HOLD_LOCK, "t4multi"); 1721 if (rc) 1722 return (rc); 1723 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1724 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 1725 end_synchronized_op(sc, LOCK_HELD); 1726 break; 1727 1728 case SIOCSIFCAP: 1729 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 1730 if (rc) 1731 return (rc); 1732 1733 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1734 if (mask & IFCAP_TXCSUM) { 1735 ifp->if_capenable ^= IFCAP_TXCSUM; 1736 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 1737 1738 if (IFCAP_TSO4 & ifp->if_capenable && 1739 !(IFCAP_TXCSUM & ifp->if_capenable)) { 1740 ifp->if_capenable &= ~IFCAP_TSO4; 1741 if_printf(ifp, 1742 "tso4 disabled due to -txcsum.\n"); 1743 } 1744 } 1745 if (mask & IFCAP_TXCSUM_IPV6) { 1746 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 1747 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 1748 1749 if (IFCAP_TSO6 & ifp->if_capenable && 1750 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 1751 ifp->if_capenable &= ~IFCAP_TSO6; 1752 if_printf(ifp, 1753 "tso6 disabled due to -txcsum6.\n"); 1754 } 1755 } 1756 if (mask & IFCAP_RXCSUM) 1757 ifp->if_capenable ^= IFCAP_RXCSUM; 1758 if (mask & IFCAP_RXCSUM_IPV6) 1759 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 1760 1761 /* 1762 * Note that we leave CSUM_TSO alone (it is always set). The 1763 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 1764 * sending a TSO request our way, so it's sufficient to toggle 1765 * IFCAP_TSOx only. 1766 */ 1767 if (mask & IFCAP_TSO4) { 1768 if (!(IFCAP_TSO4 & ifp->if_capenable) && 1769 !(IFCAP_TXCSUM & ifp->if_capenable)) { 1770 if_printf(ifp, "enable txcsum first.\n"); 1771 rc = EAGAIN; 1772 goto fail; 1773 } 1774 ifp->if_capenable ^= IFCAP_TSO4; 1775 } 1776 if (mask & IFCAP_TSO6) { 1777 if (!(IFCAP_TSO6 & ifp->if_capenable) && 1778 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 1779 if_printf(ifp, "enable txcsum6 first.\n"); 1780 rc = EAGAIN; 1781 goto fail; 1782 } 1783 ifp->if_capenable ^= IFCAP_TSO6; 1784 } 1785 if (mask & IFCAP_LRO) { 1786 #if defined(INET) || defined(INET6) 1787 int i; 1788 struct sge_rxq *rxq; 1789 1790 ifp->if_capenable ^= IFCAP_LRO; 1791 for_each_rxq(vi, i, rxq) { 1792 if (ifp->if_capenable & IFCAP_LRO) 1793 rxq->iq.flags |= IQ_LRO_ENABLED; 1794 else 1795 rxq->iq.flags &= ~IQ_LRO_ENABLED; 1796 } 1797 #endif 1798 } 1799 #ifdef TCP_OFFLOAD 1800 if (mask & IFCAP_TOE) { 1801 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 1802 1803 rc = toe_capability(vi, enable); 1804 if (rc != 0) 1805 goto fail; 1806 1807 ifp->if_capenable ^= mask; 1808 } 1809 #endif 1810 if (mask & IFCAP_VLAN_HWTAGGING) { 1811 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1812 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1813 rc = update_mac_settings(ifp, XGMAC_VLANEX); 1814 } 1815 if (mask & IFCAP_VLAN_MTU) { 1816 ifp->if_capenable ^= IFCAP_VLAN_MTU; 1817 1818 /* Need to find out how to disable auto-mtu-inflation */ 1819 } 1820 if (mask & IFCAP_VLAN_HWTSO) 1821 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 1822 if (mask & IFCAP_VLAN_HWCSUM) 1823 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 1824 1825 #ifdef VLAN_CAPABILITIES 1826 VLAN_CAPABILITIES(ifp); 1827 #endif 1828 fail: 1829 end_synchronized_op(sc, 0); 1830 break; 1831 1832 case SIOCSIFMEDIA: 1833 case SIOCGIFMEDIA: 1834 case SIOCGIFXMEDIA: 1835 ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 1836 break; 1837 1838 case SIOCGI2C: { 1839 struct ifi2creq i2c; 1840 1841 rc = copyin(ifr->ifr_data, &i2c, sizeof(i2c)); 1842 if (rc != 0) 1843 break; 1844 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 1845 rc = EPERM; 1846 break; 1847 } 1848 if (i2c.len > sizeof(i2c.data)) { 1849 rc = EINVAL; 1850 break; 1851 } 1852 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 1853 if (rc) 1854 return (rc); 1855 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 1856 i2c.offset, i2c.len, &i2c.data[0]); 1857 end_synchronized_op(sc, 0); 1858 if (rc == 0) 1859 rc = copyout(&i2c, ifr->ifr_data, sizeof(i2c)); 1860 break; 1861 } 1862 1863 default: 1864 rc = ether_ioctl(ifp, cmd, data); 1865 } 1866 1867 return (rc); 1868 } 1869 1870 static int 1871 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 1872 { 1873 struct vi_info *vi = ifp->if_softc; 1874 struct port_info *pi = vi->pi; 1875 struct adapter *sc = pi->adapter; 1876 struct sge_txq *txq; 1877 void *items[1]; 1878 int rc; 1879 1880 M_ASSERTPKTHDR(m); 1881 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 1882 1883 if (__predict_false(pi->link_cfg.link_ok == 0)) { 1884 m_freem(m); 1885 return (ENETDOWN); 1886 } 1887 1888 rc = parse_pkt(sc, &m); 1889 if (__predict_false(rc != 0)) { 1890 MPASS(m == NULL); /* was freed already */ 1891 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 1892 return (rc); 1893 } 1894 1895 /* Select a txq. */ 1896 txq = &sc->sge.txq[vi->first_txq]; 1897 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 1898 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 1899 vi->rsrv_noflowq); 1900 1901 items[0] = m; 1902 rc = mp_ring_enqueue(txq->r, items, 1, 4096); 1903 if (__predict_false(rc != 0)) 1904 m_freem(m); 1905 1906 return (rc); 1907 } 1908 1909 static void 1910 cxgbe_qflush(struct ifnet *ifp) 1911 { 1912 struct vi_info *vi = ifp->if_softc; 1913 struct sge_txq *txq; 1914 int i; 1915 1916 /* queues do not exist if !VI_INIT_DONE. */ 1917 if (vi->flags & VI_INIT_DONE) { 1918 for_each_txq(vi, i, txq) { 1919 TXQ_LOCK(txq); 1920 txq->eq.flags |= EQ_QFLUSH; 1921 TXQ_UNLOCK(txq); 1922 while (!mp_ring_is_idle(txq->r)) { 1923 mp_ring_check_drainage(txq->r, 0); 1924 pause("qflush", 1); 1925 } 1926 TXQ_LOCK(txq); 1927 txq->eq.flags &= ~EQ_QFLUSH; 1928 TXQ_UNLOCK(txq); 1929 } 1930 } 1931 if_qflush(ifp); 1932 } 1933 1934 static uint64_t 1935 vi_get_counter(struct ifnet *ifp, ift_counter c) 1936 { 1937 struct vi_info *vi = ifp->if_softc; 1938 struct fw_vi_stats_vf *s = &vi->stats; 1939 1940 vi_refresh_stats(vi->pi->adapter, vi); 1941 1942 switch (c) { 1943 case IFCOUNTER_IPACKETS: 1944 return (s->rx_bcast_frames + s->rx_mcast_frames + 1945 s->rx_ucast_frames); 1946 case IFCOUNTER_IERRORS: 1947 return (s->rx_err_frames); 1948 case IFCOUNTER_OPACKETS: 1949 return (s->tx_bcast_frames + s->tx_mcast_frames + 1950 s->tx_ucast_frames + s->tx_offload_frames); 1951 case IFCOUNTER_OERRORS: 1952 return (s->tx_drop_frames); 1953 case IFCOUNTER_IBYTES: 1954 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 1955 s->rx_ucast_bytes); 1956 case IFCOUNTER_OBYTES: 1957 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 1958 s->tx_ucast_bytes + s->tx_offload_bytes); 1959 case IFCOUNTER_IMCASTS: 1960 return (s->rx_mcast_frames); 1961 case IFCOUNTER_OMCASTS: 1962 return (s->tx_mcast_frames); 1963 case IFCOUNTER_OQDROPS: { 1964 uint64_t drops; 1965 1966 drops = 0; 1967 if (vi->flags & VI_INIT_DONE) { 1968 int i; 1969 struct sge_txq *txq; 1970 1971 for_each_txq(vi, i, txq) 1972 drops += counter_u64_fetch(txq->r->drops); 1973 } 1974 1975 return (drops); 1976 1977 } 1978 1979 default: 1980 return (if_get_counter_default(ifp, c)); 1981 } 1982 } 1983 1984 uint64_t 1985 cxgbe_get_counter(struct ifnet *ifp, ift_counter c) 1986 { 1987 struct vi_info *vi = ifp->if_softc; 1988 struct port_info *pi = vi->pi; 1989 struct adapter *sc = pi->adapter; 1990 struct port_stats *s = &pi->stats; 1991 1992 if (pi->nvi > 1 || sc->flags & IS_VF) 1993 return (vi_get_counter(ifp, c)); 1994 1995 cxgbe_refresh_stats(sc, pi); 1996 1997 switch (c) { 1998 case IFCOUNTER_IPACKETS: 1999 return (s->rx_frames); 2000 2001 case IFCOUNTER_IERRORS: 2002 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 2003 s->rx_fcs_err + s->rx_len_err); 2004 2005 case IFCOUNTER_OPACKETS: 2006 return (s->tx_frames); 2007 2008 case IFCOUNTER_OERRORS: 2009 return (s->tx_error_frames); 2010 2011 case IFCOUNTER_IBYTES: 2012 return (s->rx_octets); 2013 2014 case IFCOUNTER_OBYTES: 2015 return (s->tx_octets); 2016 2017 case IFCOUNTER_IMCASTS: 2018 return (s->rx_mcast_frames); 2019 2020 case IFCOUNTER_OMCASTS: 2021 return (s->tx_mcast_frames); 2022 2023 case IFCOUNTER_IQDROPS: 2024 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 2025 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 2026 s->rx_trunc3 + pi->tnl_cong_drops); 2027 2028 case IFCOUNTER_OQDROPS: { 2029 uint64_t drops; 2030 2031 drops = s->tx_drop; 2032 if (vi->flags & VI_INIT_DONE) { 2033 int i; 2034 struct sge_txq *txq; 2035 2036 for_each_txq(vi, i, txq) 2037 drops += counter_u64_fetch(txq->r->drops); 2038 } 2039 2040 return (drops); 2041 2042 } 2043 2044 default: 2045 return (if_get_counter_default(ifp, c)); 2046 } 2047 } 2048 2049 static int 2050 cxgbe_media_change(struct ifnet *ifp) 2051 { 2052 struct vi_info *vi = ifp->if_softc; 2053 2054 device_printf(vi->dev, "%s unimplemented.\n", __func__); 2055 2056 return (EOPNOTSUPP); 2057 } 2058 2059 static void 2060 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 2061 { 2062 struct vi_info *vi = ifp->if_softc; 2063 struct port_info *pi = vi->pi; 2064 struct ifmedia_entry *cur; 2065 struct link_config *lc = &pi->link_cfg; 2066 2067 /* 2068 * If all the interfaces are administratively down the firmware does not 2069 * report transceiver changes. Refresh port info here so that ifconfig 2070 * displays accurate information at all times. 2071 */ 2072 if (begin_synchronized_op(pi->adapter, NULL, SLEEP_OK | INTR_OK, 2073 "t4med") == 0) { 2074 PORT_LOCK(pi); 2075 if (pi->up_vis == 0) { 2076 t4_update_port_info(pi); 2077 build_medialist(pi, &pi->media); 2078 } 2079 PORT_UNLOCK(pi); 2080 end_synchronized_op(pi->adapter, 0); 2081 } 2082 2083 ifmr->ifm_status = IFM_AVALID; 2084 if (lc->link_ok == 0) 2085 return; 2086 2087 ifmr->ifm_status |= IFM_ACTIVE; 2088 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 2089 if (lc->fc & PAUSE_RX) 2090 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 2091 if (lc->fc & PAUSE_TX) 2092 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 2093 2094 /* active and current will differ iff current media is autoselect. */ 2095 cur = pi->media.ifm_cur; 2096 if (cur != NULL && IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO) 2097 return; 2098 2099 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 2100 if (lc->fc & PAUSE_RX) 2101 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 2102 if (lc->fc & PAUSE_TX) 2103 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 2104 switch (lc->speed) { 2105 case 10000: 2106 ifmr->ifm_active |= IFM_10G_T; 2107 break; 2108 case 1000: 2109 ifmr->ifm_active |= IFM_1000_T; 2110 break; 2111 case 100: 2112 ifmr->ifm_active |= IFM_100_TX; 2113 break; 2114 case 10: 2115 ifmr->ifm_active |= IFM_10_T; 2116 break; 2117 default: 2118 device_printf(vi->dev, "link up but speed unknown (%u)\n", 2119 lc->speed); 2120 } 2121 } 2122 2123 static int 2124 vcxgbe_probe(device_t dev) 2125 { 2126 char buf[128]; 2127 struct vi_info *vi = device_get_softc(dev); 2128 2129 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 2130 vi - vi->pi->vi); 2131 device_set_desc_copy(dev, buf); 2132 2133 return (BUS_PROBE_DEFAULT); 2134 } 2135 2136 static int 2137 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 2138 { 2139 int func, index, rc; 2140 uint32_t param, val; 2141 2142 ASSERT_SYNCHRONIZED_OP(sc); 2143 2144 index = vi - pi->vi; 2145 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 2146 KASSERT(index < nitems(vi_mac_funcs), 2147 ("%s: VI %s doesn't have a MAC func", __func__, 2148 device_get_nameunit(vi->dev))); 2149 func = vi_mac_funcs[index]; 2150 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 2151 vi->hw_addr, &vi->rss_size, func, 0); 2152 if (rc < 0) { 2153 device_printf(vi->dev, "failed to allocate virtual interface %d" 2154 "for port %d: %d\n", index, pi->port_id, -rc); 2155 return (-rc); 2156 } 2157 vi->viid = rc; 2158 if (chip_id(sc) <= CHELSIO_T5) 2159 vi->smt_idx = (rc & 0x7f) << 1; 2160 else 2161 vi->smt_idx = (rc & 0x7f); 2162 2163 if (vi->rss_size == 1) { 2164 /* 2165 * This VI didn't get a slice of the RSS table. Reduce the 2166 * number of VIs being created (hw.cxgbe.num_vis) or modify the 2167 * configuration file (nvi, rssnvi for this PF) if this is a 2168 * problem. 2169 */ 2170 device_printf(vi->dev, "RSS table not available.\n"); 2171 vi->rss_base = 0xffff; 2172 2173 return (0); 2174 } 2175 2176 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 2177 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 2178 V_FW_PARAMS_PARAM_YZ(vi->viid); 2179 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 2180 if (rc) 2181 vi->rss_base = 0xffff; 2182 else { 2183 MPASS((val >> 16) == vi->rss_size); 2184 vi->rss_base = val & 0xffff; 2185 } 2186 2187 return (0); 2188 } 2189 2190 static int 2191 vcxgbe_attach(device_t dev) 2192 { 2193 struct vi_info *vi; 2194 struct port_info *pi; 2195 struct adapter *sc; 2196 int rc; 2197 2198 vi = device_get_softc(dev); 2199 pi = vi->pi; 2200 sc = pi->adapter; 2201 2202 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 2203 if (rc) 2204 return (rc); 2205 rc = alloc_extra_vi(sc, pi, vi); 2206 end_synchronized_op(sc, 0); 2207 if (rc) 2208 return (rc); 2209 2210 rc = cxgbe_vi_attach(dev, vi); 2211 if (rc) { 2212 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 2213 return (rc); 2214 } 2215 return (0); 2216 } 2217 2218 static int 2219 vcxgbe_detach(device_t dev) 2220 { 2221 struct vi_info *vi; 2222 struct adapter *sc; 2223 2224 vi = device_get_softc(dev); 2225 sc = vi->pi->adapter; 2226 2227 doom_vi(sc, vi); 2228 2229 cxgbe_vi_detach(vi); 2230 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 2231 2232 end_synchronized_op(sc, 0); 2233 2234 return (0); 2235 } 2236 2237 void 2238 t4_fatal_err(struct adapter *sc) 2239 { 2240 t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0); 2241 t4_intr_disable(sc); 2242 log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n", 2243 device_get_nameunit(sc->dev)); 2244 } 2245 2246 void 2247 t4_add_adapter(struct adapter *sc) 2248 { 2249 sx_xlock(&t4_list_lock); 2250 SLIST_INSERT_HEAD(&t4_list, sc, link); 2251 sx_xunlock(&t4_list_lock); 2252 } 2253 2254 int 2255 t4_map_bars_0_and_4(struct adapter *sc) 2256 { 2257 sc->regs_rid = PCIR_BAR(0); 2258 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 2259 &sc->regs_rid, RF_ACTIVE); 2260 if (sc->regs_res == NULL) { 2261 device_printf(sc->dev, "cannot map registers.\n"); 2262 return (ENXIO); 2263 } 2264 sc->bt = rman_get_bustag(sc->regs_res); 2265 sc->bh = rman_get_bushandle(sc->regs_res); 2266 sc->mmio_len = rman_get_size(sc->regs_res); 2267 setbit(&sc->doorbells, DOORBELL_KDB); 2268 2269 sc->msix_rid = PCIR_BAR(4); 2270 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 2271 &sc->msix_rid, RF_ACTIVE); 2272 if (sc->msix_res == NULL) { 2273 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 2274 return (ENXIO); 2275 } 2276 2277 return (0); 2278 } 2279 2280 int 2281 t4_map_bar_2(struct adapter *sc) 2282 { 2283 2284 /* 2285 * T4: only iWARP driver uses the userspace doorbells. There is no need 2286 * to map it if RDMA is disabled. 2287 */ 2288 if (is_t4(sc) && sc->rdmacaps == 0) 2289 return (0); 2290 2291 sc->udbs_rid = PCIR_BAR(2); 2292 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 2293 &sc->udbs_rid, RF_ACTIVE); 2294 if (sc->udbs_res == NULL) { 2295 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 2296 return (ENXIO); 2297 } 2298 sc->udbs_base = rman_get_virtual(sc->udbs_res); 2299 2300 if (chip_id(sc) >= CHELSIO_T5) { 2301 setbit(&sc->doorbells, DOORBELL_UDB); 2302 #if defined(__i386__) || defined(__amd64__) 2303 if (t5_write_combine) { 2304 int rc, mode; 2305 2306 /* 2307 * Enable write combining on BAR2. This is the 2308 * userspace doorbell BAR and is split into 128B 2309 * (UDBS_SEG_SIZE) doorbell regions, each associated 2310 * with an egress queue. The first 64B has the doorbell 2311 * and the second 64B can be used to submit a tx work 2312 * request with an implicit doorbell. 2313 */ 2314 2315 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 2316 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 2317 if (rc == 0) { 2318 clrbit(&sc->doorbells, DOORBELL_UDB); 2319 setbit(&sc->doorbells, DOORBELL_WCWR); 2320 setbit(&sc->doorbells, DOORBELL_UDBWC); 2321 } else { 2322 device_printf(sc->dev, 2323 "couldn't enable write combining: %d\n", 2324 rc); 2325 } 2326 2327 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 2328 t4_write_reg(sc, A_SGE_STAT_CFG, 2329 V_STATSOURCE_T5(7) | mode); 2330 } 2331 #endif 2332 } 2333 2334 return (0); 2335 } 2336 2337 struct memwin_init { 2338 uint32_t base; 2339 uint32_t aperture; 2340 }; 2341 2342 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 2343 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 2344 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 2345 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 2346 }; 2347 2348 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 2349 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 2350 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 2351 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 2352 }; 2353 2354 static void 2355 setup_memwin(struct adapter *sc) 2356 { 2357 const struct memwin_init *mw_init; 2358 struct memwin *mw; 2359 int i; 2360 uint32_t bar0; 2361 2362 if (is_t4(sc)) { 2363 /* 2364 * Read low 32b of bar0 indirectly via the hardware backdoor 2365 * mechanism. Works from within PCI passthrough environments 2366 * too, where rman_get_start() can return a different value. We 2367 * need to program the T4 memory window decoders with the actual 2368 * addresses that will be coming across the PCIe link. 2369 */ 2370 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 2371 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 2372 2373 mw_init = &t4_memwin[0]; 2374 } else { 2375 /* T5+ use the relative offset inside the PCIe BAR */ 2376 bar0 = 0; 2377 2378 mw_init = &t5_memwin[0]; 2379 } 2380 2381 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 2382 rw_init(&mw->mw_lock, "memory window access"); 2383 mw->mw_base = mw_init->base; 2384 mw->mw_aperture = mw_init->aperture; 2385 mw->mw_curpos = 0; 2386 t4_write_reg(sc, 2387 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 2388 (mw->mw_base + bar0) | V_BIR(0) | 2389 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 2390 rw_wlock(&mw->mw_lock); 2391 position_memwin(sc, i, 0); 2392 rw_wunlock(&mw->mw_lock); 2393 } 2394 2395 /* flush */ 2396 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 2397 } 2398 2399 /* 2400 * Positions the memory window at the given address in the card's address space. 2401 * There are some alignment requirements and the actual position may be at an 2402 * address prior to the requested address. mw->mw_curpos always has the actual 2403 * position of the window. 2404 */ 2405 static void 2406 position_memwin(struct adapter *sc, int idx, uint32_t addr) 2407 { 2408 struct memwin *mw; 2409 uint32_t pf; 2410 uint32_t reg; 2411 2412 MPASS(idx >= 0 && idx < NUM_MEMWIN); 2413 mw = &sc->memwin[idx]; 2414 rw_assert(&mw->mw_lock, RA_WLOCKED); 2415 2416 if (is_t4(sc)) { 2417 pf = 0; 2418 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 2419 } else { 2420 pf = V_PFNUM(sc->pf); 2421 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 2422 } 2423 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 2424 t4_write_reg(sc, reg, mw->mw_curpos | pf); 2425 t4_read_reg(sc, reg); /* flush */ 2426 } 2427 2428 static int 2429 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 2430 int len, int rw) 2431 { 2432 struct memwin *mw; 2433 uint32_t mw_end, v; 2434 2435 MPASS(idx >= 0 && idx < NUM_MEMWIN); 2436 2437 /* Memory can only be accessed in naturally aligned 4 byte units */ 2438 if (addr & 3 || len & 3 || len <= 0) 2439 return (EINVAL); 2440 2441 mw = &sc->memwin[idx]; 2442 while (len > 0) { 2443 rw_rlock(&mw->mw_lock); 2444 mw_end = mw->mw_curpos + mw->mw_aperture; 2445 if (addr >= mw_end || addr < mw->mw_curpos) { 2446 /* Will need to reposition the window */ 2447 if (!rw_try_upgrade(&mw->mw_lock)) { 2448 rw_runlock(&mw->mw_lock); 2449 rw_wlock(&mw->mw_lock); 2450 } 2451 rw_assert(&mw->mw_lock, RA_WLOCKED); 2452 position_memwin(sc, idx, addr); 2453 rw_downgrade(&mw->mw_lock); 2454 mw_end = mw->mw_curpos + mw->mw_aperture; 2455 } 2456 rw_assert(&mw->mw_lock, RA_RLOCKED); 2457 while (addr < mw_end && len > 0) { 2458 if (rw == 0) { 2459 v = t4_read_reg(sc, mw->mw_base + addr - 2460 mw->mw_curpos); 2461 *val++ = le32toh(v); 2462 } else { 2463 v = *val++; 2464 t4_write_reg(sc, mw->mw_base + addr - 2465 mw->mw_curpos, htole32(v)); 2466 } 2467 addr += 4; 2468 len -= 4; 2469 } 2470 rw_runlock(&mw->mw_lock); 2471 } 2472 2473 return (0); 2474 } 2475 2476 static inline int 2477 read_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 2478 int len) 2479 { 2480 2481 return (rw_via_memwin(sc, idx, addr, val, len, 0)); 2482 } 2483 2484 static inline int 2485 write_via_memwin(struct adapter *sc, int idx, uint32_t addr, 2486 const uint32_t *val, int len) 2487 { 2488 2489 return (rw_via_memwin(sc, idx, addr, (void *)(uintptr_t)val, len, 1)); 2490 } 2491 2492 static int 2493 t4_range_cmp(const void *a, const void *b) 2494 { 2495 return ((const struct t4_range *)a)->start - 2496 ((const struct t4_range *)b)->start; 2497 } 2498 2499 /* 2500 * Verify that the memory range specified by the addr/len pair is valid within 2501 * the card's address space. 2502 */ 2503 static int 2504 validate_mem_range(struct adapter *sc, uint32_t addr, int len) 2505 { 2506 struct t4_range mem_ranges[4], *r, *next; 2507 uint32_t em, addr_len; 2508 int i, n, remaining; 2509 2510 /* Memory can only be accessed in naturally aligned 4 byte units */ 2511 if (addr & 3 || len & 3 || len <= 0) 2512 return (EINVAL); 2513 2514 /* Enabled memories */ 2515 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 2516 2517 r = &mem_ranges[0]; 2518 n = 0; 2519 bzero(r, sizeof(mem_ranges)); 2520 if (em & F_EDRAM0_ENABLE) { 2521 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 2522 r->size = G_EDRAM0_SIZE(addr_len) << 20; 2523 if (r->size > 0) { 2524 r->start = G_EDRAM0_BASE(addr_len) << 20; 2525 if (addr >= r->start && 2526 addr + len <= r->start + r->size) 2527 return (0); 2528 r++; 2529 n++; 2530 } 2531 } 2532 if (em & F_EDRAM1_ENABLE) { 2533 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 2534 r->size = G_EDRAM1_SIZE(addr_len) << 20; 2535 if (r->size > 0) { 2536 r->start = G_EDRAM1_BASE(addr_len) << 20; 2537 if (addr >= r->start && 2538 addr + len <= r->start + r->size) 2539 return (0); 2540 r++; 2541 n++; 2542 } 2543 } 2544 if (em & F_EXT_MEM_ENABLE) { 2545 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 2546 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 2547 if (r->size > 0) { 2548 r->start = G_EXT_MEM_BASE(addr_len) << 20; 2549 if (addr >= r->start && 2550 addr + len <= r->start + r->size) 2551 return (0); 2552 r++; 2553 n++; 2554 } 2555 } 2556 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 2557 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 2558 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 2559 if (r->size > 0) { 2560 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 2561 if (addr >= r->start && 2562 addr + len <= r->start + r->size) 2563 return (0); 2564 r++; 2565 n++; 2566 } 2567 } 2568 MPASS(n <= nitems(mem_ranges)); 2569 2570 if (n > 1) { 2571 /* Sort and merge the ranges. */ 2572 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 2573 2574 /* Start from index 0 and examine the next n - 1 entries. */ 2575 r = &mem_ranges[0]; 2576 for (remaining = n - 1; remaining > 0; remaining--, r++) { 2577 2578 MPASS(r->size > 0); /* r is a valid entry. */ 2579 next = r + 1; 2580 MPASS(next->size > 0); /* and so is the next one. */ 2581 2582 while (r->start + r->size >= next->start) { 2583 /* Merge the next one into the current entry. */ 2584 r->size = max(r->start + r->size, 2585 next->start + next->size) - r->start; 2586 n--; /* One fewer entry in total. */ 2587 if (--remaining == 0) 2588 goto done; /* short circuit */ 2589 next++; 2590 } 2591 if (next != r + 1) { 2592 /* 2593 * Some entries were merged into r and next 2594 * points to the first valid entry that couldn't 2595 * be merged. 2596 */ 2597 MPASS(next->size > 0); /* must be valid */ 2598 memcpy(r + 1, next, remaining * sizeof(*r)); 2599 #ifdef INVARIANTS 2600 /* 2601 * This so that the foo->size assertion in the 2602 * next iteration of the loop do the right 2603 * thing for entries that were pulled up and are 2604 * no longer valid. 2605 */ 2606 MPASS(n < nitems(mem_ranges)); 2607 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 2608 sizeof(struct t4_range)); 2609 #endif 2610 } 2611 } 2612 done: 2613 /* Done merging the ranges. */ 2614 MPASS(n > 0); 2615 r = &mem_ranges[0]; 2616 for (i = 0; i < n; i++, r++) { 2617 if (addr >= r->start && 2618 addr + len <= r->start + r->size) 2619 return (0); 2620 } 2621 } 2622 2623 return (EFAULT); 2624 } 2625 2626 static int 2627 fwmtype_to_hwmtype(int mtype) 2628 { 2629 2630 switch (mtype) { 2631 case FW_MEMTYPE_EDC0: 2632 return (MEM_EDC0); 2633 case FW_MEMTYPE_EDC1: 2634 return (MEM_EDC1); 2635 case FW_MEMTYPE_EXTMEM: 2636 return (MEM_MC0); 2637 case FW_MEMTYPE_EXTMEM1: 2638 return (MEM_MC1); 2639 default: 2640 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 2641 } 2642 } 2643 2644 /* 2645 * Verify that the memory range specified by the memtype/offset/len pair is 2646 * valid and lies entirely within the memtype specified. The global address of 2647 * the start of the range is returned in addr. 2648 */ 2649 static int 2650 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, int len, 2651 uint32_t *addr) 2652 { 2653 uint32_t em, addr_len, maddr; 2654 2655 /* Memory can only be accessed in naturally aligned 4 byte units */ 2656 if (off & 3 || len & 3 || len == 0) 2657 return (EINVAL); 2658 2659 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 2660 switch (fwmtype_to_hwmtype(mtype)) { 2661 case MEM_EDC0: 2662 if (!(em & F_EDRAM0_ENABLE)) 2663 return (EINVAL); 2664 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 2665 maddr = G_EDRAM0_BASE(addr_len) << 20; 2666 break; 2667 case MEM_EDC1: 2668 if (!(em & F_EDRAM1_ENABLE)) 2669 return (EINVAL); 2670 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 2671 maddr = G_EDRAM1_BASE(addr_len) << 20; 2672 break; 2673 case MEM_MC: 2674 if (!(em & F_EXT_MEM_ENABLE)) 2675 return (EINVAL); 2676 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 2677 maddr = G_EXT_MEM_BASE(addr_len) << 20; 2678 break; 2679 case MEM_MC1: 2680 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 2681 return (EINVAL); 2682 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 2683 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 2684 break; 2685 default: 2686 return (EINVAL); 2687 } 2688 2689 *addr = maddr + off; /* global address */ 2690 return (validate_mem_range(sc, *addr, len)); 2691 } 2692 2693 static int 2694 fixup_devlog_params(struct adapter *sc) 2695 { 2696 struct devlog_params *dparams = &sc->params.devlog; 2697 int rc; 2698 2699 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 2700 dparams->size, &dparams->addr); 2701 2702 return (rc); 2703 } 2704 2705 static int 2706 cfg_itype_and_nqueues(struct adapter *sc, int n10g, int n1g, int num_vis, 2707 struct intrs_and_queues *iaq) 2708 { 2709 int rc, itype, navail, nrxq10g, nrxq1g, n; 2710 int nofldrxq10g = 0, nofldrxq1g = 0; 2711 2712 bzero(iaq, sizeof(*iaq)); 2713 2714 iaq->ntxq10g = t4_ntxq10g; 2715 iaq->ntxq1g = t4_ntxq1g; 2716 iaq->ntxq_vi = t4_ntxq_vi; 2717 iaq->nrxq10g = nrxq10g = t4_nrxq10g; 2718 iaq->nrxq1g = nrxq1g = t4_nrxq1g; 2719 iaq->nrxq_vi = t4_nrxq_vi; 2720 iaq->rsrv_noflowq = t4_rsrv_noflowq; 2721 #ifdef TCP_OFFLOAD 2722 if (is_offload(sc)) { 2723 iaq->nofldtxq10g = t4_nofldtxq10g; 2724 iaq->nofldtxq1g = t4_nofldtxq1g; 2725 iaq->nofldtxq_vi = t4_nofldtxq_vi; 2726 iaq->nofldrxq10g = nofldrxq10g = t4_nofldrxq10g; 2727 iaq->nofldrxq1g = nofldrxq1g = t4_nofldrxq1g; 2728 iaq->nofldrxq_vi = t4_nofldrxq_vi; 2729 } 2730 #endif 2731 #ifdef DEV_NETMAP 2732 iaq->nnmtxq_vi = t4_nnmtxq_vi; 2733 iaq->nnmrxq_vi = t4_nnmrxq_vi; 2734 #endif 2735 2736 for (itype = INTR_MSIX; itype; itype >>= 1) { 2737 2738 if ((itype & t4_intr_types) == 0) 2739 continue; /* not allowed */ 2740 2741 if (itype == INTR_MSIX) 2742 navail = pci_msix_count(sc->dev); 2743 else if (itype == INTR_MSI) 2744 navail = pci_msi_count(sc->dev); 2745 else 2746 navail = 1; 2747 restart: 2748 if (navail == 0) 2749 continue; 2750 2751 iaq->intr_type = itype; 2752 iaq->intr_flags_10g = 0; 2753 iaq->intr_flags_1g = 0; 2754 2755 /* 2756 * Best option: an interrupt vector for errors, one for the 2757 * firmware event queue, and one for every rxq (NIC and TOE) of 2758 * every VI. The VIs that support netmap use the same 2759 * interrupts for the NIC rx queues and the netmap rx queues 2760 * because only one set of queues is active at a time. 2761 */ 2762 iaq->nirq = T4_EXTRA_INTR; 2763 iaq->nirq += n10g * (nrxq10g + nofldrxq10g); 2764 iaq->nirq += n1g * (nrxq1g + nofldrxq1g); 2765 iaq->nirq += (n10g + n1g) * (num_vis - 1) * 2766 max(iaq->nrxq_vi, iaq->nnmrxq_vi); /* See comment above. */ 2767 iaq->nirq += (n10g + n1g) * (num_vis - 1) * iaq->nofldrxq_vi; 2768 if (iaq->nirq <= navail && 2769 (itype != INTR_MSI || powerof2(iaq->nirq))) { 2770 iaq->intr_flags_10g = INTR_ALL; 2771 iaq->intr_flags_1g = INTR_ALL; 2772 goto allocate; 2773 } 2774 2775 /* Disable the VIs (and netmap) if there aren't enough intrs */ 2776 if (num_vis > 1) { 2777 device_printf(sc->dev, "virtual interfaces disabled " 2778 "because num_vis=%u with current settings " 2779 "(nrxq10g=%u, nrxq1g=%u, nofldrxq10g=%u, " 2780 "nofldrxq1g=%u, nrxq_vi=%u nofldrxq_vi=%u, " 2781 "nnmrxq_vi=%u) would need %u interrupts but " 2782 "only %u are available.\n", num_vis, nrxq10g, 2783 nrxq1g, nofldrxq10g, nofldrxq1g, iaq->nrxq_vi, 2784 iaq->nofldrxq_vi, iaq->nnmrxq_vi, iaq->nirq, 2785 navail); 2786 num_vis = 1; 2787 iaq->ntxq_vi = iaq->nrxq_vi = 0; 2788 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 2789 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 2790 goto restart; 2791 } 2792 2793 /* 2794 * Second best option: a vector for errors, one for the firmware 2795 * event queue, and vectors for either all the NIC rx queues or 2796 * all the TOE rx queues. The queues that don't get vectors 2797 * will forward their interrupts to those that do. 2798 */ 2799 iaq->nirq = T4_EXTRA_INTR; 2800 if (nrxq10g >= nofldrxq10g) { 2801 iaq->intr_flags_10g = INTR_RXQ; 2802 iaq->nirq += n10g * nrxq10g; 2803 } else { 2804 iaq->intr_flags_10g = INTR_OFLD_RXQ; 2805 iaq->nirq += n10g * nofldrxq10g; 2806 } 2807 if (nrxq1g >= nofldrxq1g) { 2808 iaq->intr_flags_1g = INTR_RXQ; 2809 iaq->nirq += n1g * nrxq1g; 2810 } else { 2811 iaq->intr_flags_1g = INTR_OFLD_RXQ; 2812 iaq->nirq += n1g * nofldrxq1g; 2813 } 2814 if (iaq->nirq <= navail && 2815 (itype != INTR_MSI || powerof2(iaq->nirq))) 2816 goto allocate; 2817 2818 /* 2819 * Next best option: an interrupt vector for errors, one for the 2820 * firmware event queue, and at least one per main-VI. At this 2821 * point we know we'll have to downsize nrxq and/or nofldrxq to 2822 * fit what's available to us. 2823 */ 2824 iaq->nirq = T4_EXTRA_INTR; 2825 iaq->nirq += n10g + n1g; 2826 if (iaq->nirq <= navail) { 2827 int leftover = navail - iaq->nirq; 2828 2829 if (n10g > 0) { 2830 int target = max(nrxq10g, nofldrxq10g); 2831 2832 iaq->intr_flags_10g = nrxq10g >= nofldrxq10g ? 2833 INTR_RXQ : INTR_OFLD_RXQ; 2834 2835 n = 1; 2836 while (n < target && leftover >= n10g) { 2837 leftover -= n10g; 2838 iaq->nirq += n10g; 2839 n++; 2840 } 2841 iaq->nrxq10g = min(n, nrxq10g); 2842 #ifdef TCP_OFFLOAD 2843 iaq->nofldrxq10g = min(n, nofldrxq10g); 2844 #endif 2845 } 2846 2847 if (n1g > 0) { 2848 int target = max(nrxq1g, nofldrxq1g); 2849 2850 iaq->intr_flags_1g = nrxq1g >= nofldrxq1g ? 2851 INTR_RXQ : INTR_OFLD_RXQ; 2852 2853 n = 1; 2854 while (n < target && leftover >= n1g) { 2855 leftover -= n1g; 2856 iaq->nirq += n1g; 2857 n++; 2858 } 2859 iaq->nrxq1g = min(n, nrxq1g); 2860 #ifdef TCP_OFFLOAD 2861 iaq->nofldrxq1g = min(n, nofldrxq1g); 2862 #endif 2863 } 2864 2865 if (itype != INTR_MSI || powerof2(iaq->nirq)) 2866 goto allocate; 2867 } 2868 2869 /* 2870 * Least desirable option: one interrupt vector for everything. 2871 */ 2872 iaq->nirq = iaq->nrxq10g = iaq->nrxq1g = 1; 2873 iaq->intr_flags_10g = iaq->intr_flags_1g = 0; 2874 #ifdef TCP_OFFLOAD 2875 if (is_offload(sc)) 2876 iaq->nofldrxq10g = iaq->nofldrxq1g = 1; 2877 #endif 2878 allocate: 2879 navail = iaq->nirq; 2880 rc = 0; 2881 if (itype == INTR_MSIX) 2882 rc = pci_alloc_msix(sc->dev, &navail); 2883 else if (itype == INTR_MSI) 2884 rc = pci_alloc_msi(sc->dev, &navail); 2885 2886 if (rc == 0) { 2887 if (navail == iaq->nirq) 2888 return (0); 2889 2890 /* 2891 * Didn't get the number requested. Use whatever number 2892 * the kernel is willing to allocate (it's in navail). 2893 */ 2894 device_printf(sc->dev, "fewer vectors than requested, " 2895 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 2896 itype, iaq->nirq, navail); 2897 pci_release_msi(sc->dev); 2898 goto restart; 2899 } 2900 2901 device_printf(sc->dev, 2902 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 2903 itype, rc, iaq->nirq, navail); 2904 } 2905 2906 device_printf(sc->dev, 2907 "failed to find a usable interrupt type. " 2908 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 2909 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 2910 2911 return (ENXIO); 2912 } 2913 2914 #define FW_VERSION(chip) ( \ 2915 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 2916 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 2917 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 2918 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 2919 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 2920 2921 struct fw_info { 2922 uint8_t chip; 2923 char *kld_name; 2924 char *fw_mod_name; 2925 struct fw_hdr fw_hdr; /* XXX: waste of space, need a sparse struct */ 2926 } fw_info[] = { 2927 { 2928 .chip = CHELSIO_T4, 2929 .kld_name = "t4fw_cfg", 2930 .fw_mod_name = "t4fw", 2931 .fw_hdr = { 2932 .chip = FW_HDR_CHIP_T4, 2933 .fw_ver = htobe32_const(FW_VERSION(T4)), 2934 .intfver_nic = FW_INTFVER(T4, NIC), 2935 .intfver_vnic = FW_INTFVER(T4, VNIC), 2936 .intfver_ofld = FW_INTFVER(T4, OFLD), 2937 .intfver_ri = FW_INTFVER(T4, RI), 2938 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 2939 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 2940 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 2941 .intfver_fcoe = FW_INTFVER(T4, FCOE), 2942 }, 2943 }, { 2944 .chip = CHELSIO_T5, 2945 .kld_name = "t5fw_cfg", 2946 .fw_mod_name = "t5fw", 2947 .fw_hdr = { 2948 .chip = FW_HDR_CHIP_T5, 2949 .fw_ver = htobe32_const(FW_VERSION(T5)), 2950 .intfver_nic = FW_INTFVER(T5, NIC), 2951 .intfver_vnic = FW_INTFVER(T5, VNIC), 2952 .intfver_ofld = FW_INTFVER(T5, OFLD), 2953 .intfver_ri = FW_INTFVER(T5, RI), 2954 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 2955 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 2956 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 2957 .intfver_fcoe = FW_INTFVER(T5, FCOE), 2958 }, 2959 }, { 2960 .chip = CHELSIO_T6, 2961 .kld_name = "t6fw_cfg", 2962 .fw_mod_name = "t6fw", 2963 .fw_hdr = { 2964 .chip = FW_HDR_CHIP_T6, 2965 .fw_ver = htobe32_const(FW_VERSION(T6)), 2966 .intfver_nic = FW_INTFVER(T6, NIC), 2967 .intfver_vnic = FW_INTFVER(T6, VNIC), 2968 .intfver_ofld = FW_INTFVER(T6, OFLD), 2969 .intfver_ri = FW_INTFVER(T6, RI), 2970 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 2971 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 2972 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 2973 .intfver_fcoe = FW_INTFVER(T6, FCOE), 2974 }, 2975 } 2976 }; 2977 2978 static struct fw_info * 2979 find_fw_info(int chip) 2980 { 2981 int i; 2982 2983 for (i = 0; i < nitems(fw_info); i++) { 2984 if (fw_info[i].chip == chip) 2985 return (&fw_info[i]); 2986 } 2987 return (NULL); 2988 } 2989 2990 /* 2991 * Is the given firmware API compatible with the one the driver was compiled 2992 * with? 2993 */ 2994 static int 2995 fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 2996 { 2997 2998 /* short circuit if it's the exact same firmware version */ 2999 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3000 return (1); 3001 3002 /* 3003 * XXX: Is this too conservative? Perhaps I should limit this to the 3004 * features that are supported in the driver. 3005 */ 3006 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3007 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3008 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 3009 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 3010 return (1); 3011 #undef SAME_INTF 3012 3013 return (0); 3014 } 3015 3016 /* 3017 * The firmware in the KLD is usable, but should it be installed? This routine 3018 * explains itself in detail if it indicates the KLD firmware should be 3019 * installed. 3020 */ 3021 static int 3022 should_install_kld_fw(struct adapter *sc, int card_fw_usable, int k, int c) 3023 { 3024 const char *reason; 3025 3026 if (!card_fw_usable) { 3027 reason = "incompatible or unusable"; 3028 goto install; 3029 } 3030 3031 if (k > c) { 3032 reason = "older than the version bundled with this driver"; 3033 goto install; 3034 } 3035 3036 if (t4_fw_install == 2 && k != c) { 3037 reason = "different than the version bundled with this driver"; 3038 goto install; 3039 } 3040 3041 return (0); 3042 3043 install: 3044 if (t4_fw_install == 0) { 3045 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 3046 "but the driver is prohibited from installing a different " 3047 "firmware on the card.\n", 3048 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 3049 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 3050 3051 return (0); 3052 } 3053 3054 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 3055 "installing firmware %u.%u.%u.%u on card.\n", 3056 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 3057 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 3058 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 3059 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k)); 3060 3061 return (1); 3062 } 3063 3064 /* 3065 * Establish contact with the firmware and determine if we are the master driver 3066 * or not, and whether we are responsible for chip initialization. 3067 */ 3068 static int 3069 prep_firmware(struct adapter *sc) 3070 { 3071 const struct firmware *fw = NULL, *default_cfg; 3072 int rc, pf, card_fw_usable, kld_fw_usable, need_fw_reset = 1; 3073 enum dev_state state; 3074 struct fw_info *fw_info; 3075 struct fw_hdr *card_fw; /* fw on the card */ 3076 const struct fw_hdr *kld_fw; /* fw in the KLD */ 3077 const struct fw_hdr *drv_fw; /* fw header the driver was compiled 3078 against */ 3079 3080 /* This is the firmware whose headers the driver was compiled against */ 3081 fw_info = find_fw_info(chip_id(sc)); 3082 if (fw_info == NULL) { 3083 device_printf(sc->dev, 3084 "unable to look up firmware information for chip %d.\n", 3085 chip_id(sc)); 3086 return (EINVAL); 3087 } 3088 drv_fw = &fw_info->fw_hdr; 3089 3090 /* 3091 * The firmware KLD contains many modules. The KLD name is also the 3092 * name of the module that contains the default config file. 3093 */ 3094 default_cfg = firmware_get(fw_info->kld_name); 3095 3096 /* This is the firmware in the KLD */ 3097 fw = firmware_get(fw_info->fw_mod_name); 3098 if (fw != NULL) { 3099 kld_fw = (const void *)fw->data; 3100 kld_fw_usable = fw_compatible(drv_fw, kld_fw); 3101 } else { 3102 kld_fw = NULL; 3103 kld_fw_usable = 0; 3104 } 3105 3106 /* Read the header of the firmware on the card */ 3107 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 3108 rc = -t4_read_flash(sc, FLASH_FW_START, 3109 sizeof (*card_fw) / sizeof (uint32_t), (uint32_t *)card_fw, 1); 3110 if (rc == 0) { 3111 card_fw_usable = fw_compatible(drv_fw, (const void*)card_fw); 3112 if (card_fw->fw_ver == be32toh(0xffffffff)) { 3113 uint32_t d = be32toh(kld_fw->fw_ver); 3114 3115 if (!kld_fw_usable) { 3116 device_printf(sc->dev, 3117 "no firmware on the card and no usable " 3118 "firmware bundled with the driver.\n"); 3119 rc = EIO; 3120 goto done; 3121 } else if (t4_fw_install == 0) { 3122 device_printf(sc->dev, 3123 "no firmware on the card and the driver " 3124 "is prohibited from installing new " 3125 "firmware.\n"); 3126 rc = EIO; 3127 goto done; 3128 } 3129 3130 device_printf(sc->dev, "no firmware on the card, " 3131 "installing firmware %d.%d.%d.%d\n", 3132 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 3133 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 3134 rc = t4_fw_forceinstall(sc, fw->data, fw->datasize); 3135 if (rc < 0) { 3136 rc = -rc; 3137 device_printf(sc->dev, 3138 "firmware install failed: %d.\n", rc); 3139 goto done; 3140 } 3141 memcpy(card_fw, kld_fw, sizeof(*card_fw)); 3142 card_fw_usable = 1; 3143 need_fw_reset = 0; 3144 } 3145 } else { 3146 device_printf(sc->dev, 3147 "Unable to read card's firmware header: %d\n", rc); 3148 card_fw_usable = 0; 3149 } 3150 3151 /* Contact firmware. */ 3152 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 3153 if (rc < 0 || state == DEV_STATE_ERR) { 3154 rc = -rc; 3155 device_printf(sc->dev, 3156 "failed to connect to the firmware: %d, %d.\n", rc, state); 3157 goto done; 3158 } 3159 pf = rc; 3160 if (pf == sc->mbox) 3161 sc->flags |= MASTER_PF; 3162 else if (state == DEV_STATE_UNINIT) { 3163 /* 3164 * We didn't get to be the master so we definitely won't be 3165 * configuring the chip. It's a bug if someone else hasn't 3166 * configured it already. 3167 */ 3168 device_printf(sc->dev, "couldn't be master(%d), " 3169 "device not already initialized either(%d).\n", rc, state); 3170 rc = EPROTO; 3171 goto done; 3172 } 3173 3174 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3175 (!kld_fw_usable || kld_fw->fw_ver == drv_fw->fw_ver)) { 3176 /* 3177 * Common case: the firmware on the card is an exact match and 3178 * the KLD is an exact match too, or the KLD is 3179 * absent/incompatible. Note that t4_fw_install = 2 is ignored 3180 * here -- use cxgbetool loadfw if you want to reinstall the 3181 * same firmware as the one on the card. 3182 */ 3183 } else if (kld_fw_usable && state == DEV_STATE_UNINIT && 3184 should_install_kld_fw(sc, card_fw_usable, be32toh(kld_fw->fw_ver), 3185 be32toh(card_fw->fw_ver))) { 3186 3187 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 3188 if (rc != 0) { 3189 device_printf(sc->dev, 3190 "failed to install firmware: %d\n", rc); 3191 goto done; 3192 } 3193 3194 /* Installed successfully, update the cached header too. */ 3195 memcpy(card_fw, kld_fw, sizeof(*card_fw)); 3196 card_fw_usable = 1; 3197 need_fw_reset = 0; /* already reset as part of load_fw */ 3198 } 3199 3200 if (!card_fw_usable) { 3201 uint32_t d, c, k; 3202 3203 d = ntohl(drv_fw->fw_ver); 3204 c = ntohl(card_fw->fw_ver); 3205 k = kld_fw ? ntohl(kld_fw->fw_ver) : 0; 3206 3207 device_printf(sc->dev, "Cannot find a usable firmware: " 3208 "fw_install %d, chip state %d, " 3209 "driver compiled with %d.%d.%d.%d, " 3210 "card has %d.%d.%d.%d, KLD has %d.%d.%d.%d\n", 3211 t4_fw_install, state, 3212 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 3213 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d), 3214 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 3215 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), 3216 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 3217 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k)); 3218 rc = EINVAL; 3219 goto done; 3220 } 3221 3222 /* Reset device */ 3223 if (need_fw_reset && 3224 (rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST)) != 0) { 3225 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 3226 if (rc != ETIMEDOUT && rc != EIO) 3227 t4_fw_bye(sc, sc->mbox); 3228 goto done; 3229 } 3230 sc->flags |= FW_OK; 3231 3232 rc = get_params__pre_init(sc); 3233 if (rc != 0) 3234 goto done; /* error message displayed already */ 3235 3236 /* Partition adapter resources as specified in the config file. */ 3237 if (state == DEV_STATE_UNINIT) { 3238 3239 KASSERT(sc->flags & MASTER_PF, 3240 ("%s: trying to change chip settings when not master.", 3241 __func__)); 3242 3243 rc = partition_resources(sc, default_cfg, fw_info->kld_name); 3244 if (rc != 0) 3245 goto done; /* error message displayed already */ 3246 3247 t4_tweak_chip_settings(sc); 3248 3249 /* get basic stuff going */ 3250 rc = -t4_fw_initialize(sc, sc->mbox); 3251 if (rc != 0) { 3252 device_printf(sc->dev, "fw init failed: %d.\n", rc); 3253 goto done; 3254 } 3255 } else { 3256 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", pf); 3257 sc->cfcsum = 0; 3258 } 3259 3260 done: 3261 free(card_fw, M_CXGBE); 3262 if (fw != NULL) 3263 firmware_put(fw, FIRMWARE_UNLOAD); 3264 if (default_cfg != NULL) 3265 firmware_put(default_cfg, FIRMWARE_UNLOAD); 3266 3267 return (rc); 3268 } 3269 3270 #define FW_PARAM_DEV(param) \ 3271 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 3272 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 3273 #define FW_PARAM_PFVF(param) \ 3274 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 3275 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 3276 3277 /* 3278 * Partition chip resources for use between various PFs, VFs, etc. 3279 */ 3280 static int 3281 partition_resources(struct adapter *sc, const struct firmware *default_cfg, 3282 const char *name_prefix) 3283 { 3284 const struct firmware *cfg = NULL; 3285 int rc = 0; 3286 struct fw_caps_config_cmd caps; 3287 uint32_t mtype, moff, finicsum, cfcsum; 3288 3289 /* 3290 * Figure out what configuration file to use. Pick the default config 3291 * file for the card if the user hasn't specified one explicitly. 3292 */ 3293 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", t4_cfg_file); 3294 if (strncmp(t4_cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 3295 /* Card specific overrides go here. */ 3296 if (pci_get_device(sc->dev) == 0x440a) 3297 snprintf(sc->cfg_file, sizeof(sc->cfg_file), UWIRE_CF); 3298 if (is_fpga(sc)) 3299 snprintf(sc->cfg_file, sizeof(sc->cfg_file), FPGA_CF); 3300 } 3301 3302 /* 3303 * We need to load another module if the profile is anything except 3304 * "default" or "flash". 3305 */ 3306 if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) != 0 && 3307 strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) { 3308 char s[32]; 3309 3310 snprintf(s, sizeof(s), "%s_%s", name_prefix, sc->cfg_file); 3311 cfg = firmware_get(s); 3312 if (cfg == NULL) { 3313 if (default_cfg != NULL) { 3314 device_printf(sc->dev, 3315 "unable to load module \"%s\" for " 3316 "configuration profile \"%s\", will use " 3317 "the default config file instead.\n", 3318 s, sc->cfg_file); 3319 snprintf(sc->cfg_file, sizeof(sc->cfg_file), 3320 "%s", DEFAULT_CF); 3321 } else { 3322 device_printf(sc->dev, 3323 "unable to load module \"%s\" for " 3324 "configuration profile \"%s\", will use " 3325 "the config file on the card's flash " 3326 "instead.\n", s, sc->cfg_file); 3327 snprintf(sc->cfg_file, sizeof(sc->cfg_file), 3328 "%s", FLASH_CF); 3329 } 3330 } 3331 } 3332 3333 if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) == 0 && 3334 default_cfg == NULL) { 3335 device_printf(sc->dev, 3336 "default config file not available, will use the config " 3337 "file on the card's flash instead.\n"); 3338 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", FLASH_CF); 3339 } 3340 3341 if (strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) { 3342 u_int cflen; 3343 const uint32_t *cfdata; 3344 uint32_t param, val, addr; 3345 3346 KASSERT(cfg != NULL || default_cfg != NULL, 3347 ("%s: no config to upload", __func__)); 3348 3349 /* 3350 * Ask the firmware where it wants us to upload the config file. 3351 */ 3352 param = FW_PARAM_DEV(CF); 3353 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3354 if (rc != 0) { 3355 /* No support for config file? Shouldn't happen. */ 3356 device_printf(sc->dev, 3357 "failed to query config file location: %d.\n", rc); 3358 goto done; 3359 } 3360 mtype = G_FW_PARAMS_PARAM_Y(val); 3361 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 3362 3363 /* 3364 * XXX: sheer laziness. We deliberately added 4 bytes of 3365 * useless stuffing/comments at the end of the config file so 3366 * it's ok to simply throw away the last remaining bytes when 3367 * the config file is not an exact multiple of 4. This also 3368 * helps with the validate_mt_off_len check. 3369 */ 3370 if (cfg != NULL) { 3371 cflen = cfg->datasize & ~3; 3372 cfdata = cfg->data; 3373 } else { 3374 cflen = default_cfg->datasize & ~3; 3375 cfdata = default_cfg->data; 3376 } 3377 3378 if (cflen > FLASH_CFG_MAX_SIZE) { 3379 device_printf(sc->dev, 3380 "config file too long (%d, max allowed is %d). " 3381 "Will try to use the config on the card, if any.\n", 3382 cflen, FLASH_CFG_MAX_SIZE); 3383 goto use_config_on_flash; 3384 } 3385 3386 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 3387 if (rc != 0) { 3388 device_printf(sc->dev, 3389 "%s: addr (%d/0x%x) or len %d is not valid: %d. " 3390 "Will try to use the config on the card, if any.\n", 3391 __func__, mtype, moff, cflen, rc); 3392 goto use_config_on_flash; 3393 } 3394 write_via_memwin(sc, 2, addr, cfdata, cflen); 3395 } else { 3396 use_config_on_flash: 3397 mtype = FW_MEMTYPE_FLASH; 3398 moff = t4_flash_cfg_addr(sc); 3399 } 3400 3401 bzero(&caps, sizeof(caps)); 3402 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3403 F_FW_CMD_REQUEST | F_FW_CMD_READ); 3404 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 3405 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 3406 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps)); 3407 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 3408 if (rc != 0) { 3409 device_printf(sc->dev, 3410 "failed to pre-process config file: %d " 3411 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 3412 goto done; 3413 } 3414 3415 finicsum = be32toh(caps.finicsum); 3416 cfcsum = be32toh(caps.cfcsum); 3417 if (finicsum != cfcsum) { 3418 device_printf(sc->dev, 3419 "WARNING: config file checksum mismatch: %08x %08x\n", 3420 finicsum, cfcsum); 3421 } 3422 sc->cfcsum = cfcsum; 3423 3424 #define LIMIT_CAPS(x) do { \ 3425 caps.x &= htobe16(t4_##x##_allowed); \ 3426 } while (0) 3427 3428 /* 3429 * Let the firmware know what features will (not) be used so it can tune 3430 * things accordingly. 3431 */ 3432 LIMIT_CAPS(nbmcaps); 3433 LIMIT_CAPS(linkcaps); 3434 LIMIT_CAPS(switchcaps); 3435 LIMIT_CAPS(niccaps); 3436 LIMIT_CAPS(toecaps); 3437 LIMIT_CAPS(rdmacaps); 3438 LIMIT_CAPS(cryptocaps); 3439 LIMIT_CAPS(iscsicaps); 3440 LIMIT_CAPS(fcoecaps); 3441 #undef LIMIT_CAPS 3442 3443 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3444 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 3445 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 3446 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 3447 if (rc != 0) { 3448 device_printf(sc->dev, 3449 "failed to process config file: %d.\n", rc); 3450 } 3451 done: 3452 if (cfg != NULL) 3453 firmware_put(cfg, FIRMWARE_UNLOAD); 3454 return (rc); 3455 } 3456 3457 /* 3458 * Retrieve parameters that are needed (or nice to have) very early. 3459 */ 3460 static int 3461 get_params__pre_init(struct adapter *sc) 3462 { 3463 int rc; 3464 uint32_t param[2], val[2]; 3465 3466 t4_get_version_info(sc); 3467 3468 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 3469 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 3470 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 3471 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 3472 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 3473 3474 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 3475 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 3476 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 3477 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 3478 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 3479 3480 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 3481 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 3482 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 3483 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 3484 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 3485 3486 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 3487 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 3488 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 3489 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 3490 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 3491 3492 param[0] = FW_PARAM_DEV(PORTVEC); 3493 param[1] = FW_PARAM_DEV(CCLK); 3494 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 3495 if (rc != 0) { 3496 device_printf(sc->dev, 3497 "failed to query parameters (pre_init): %d.\n", rc); 3498 return (rc); 3499 } 3500 3501 sc->params.portvec = val[0]; 3502 sc->params.nports = bitcount32(val[0]); 3503 sc->params.vpd.cclk = val[1]; 3504 3505 /* Read device log parameters. */ 3506 rc = -t4_init_devlog_params(sc, 1); 3507 if (rc == 0) 3508 fixup_devlog_params(sc); 3509 else { 3510 device_printf(sc->dev, 3511 "failed to get devlog parameters: %d.\n", rc); 3512 rc = 0; /* devlog isn't critical for device operation */ 3513 } 3514 3515 return (rc); 3516 } 3517 3518 /* 3519 * Retrieve various parameters that are of interest to the driver. The device 3520 * has been initialized by the firmware at this point. 3521 */ 3522 static int 3523 get_params__post_init(struct adapter *sc) 3524 { 3525 int rc; 3526 uint32_t param[7], val[7]; 3527 struct fw_caps_config_cmd caps; 3528 3529 param[0] = FW_PARAM_PFVF(IQFLINT_START); 3530 param[1] = FW_PARAM_PFVF(EQ_START); 3531 param[2] = FW_PARAM_PFVF(FILTER_START); 3532 param[3] = FW_PARAM_PFVF(FILTER_END); 3533 param[4] = FW_PARAM_PFVF(L2T_START); 3534 param[5] = FW_PARAM_PFVF(L2T_END); 3535 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 3536 if (rc != 0) { 3537 device_printf(sc->dev, 3538 "failed to query parameters (post_init): %d.\n", rc); 3539 return (rc); 3540 } 3541 3542 sc->sge.iq_start = val[0]; 3543 sc->sge.eq_start = val[1]; 3544 sc->tids.ftid_base = val[2]; 3545 sc->tids.nftids = val[3] - val[2] + 1; 3546 sc->params.ftid_min = val[2]; 3547 sc->params.ftid_max = val[3]; 3548 sc->vres.l2t.start = val[4]; 3549 sc->vres.l2t.size = val[5] - val[4] + 1; 3550 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 3551 ("%s: L2 table size (%u) larger than expected (%u)", 3552 __func__, sc->vres.l2t.size, L2T_SIZE)); 3553 3554 /* get capabilites */ 3555 bzero(&caps, sizeof(caps)); 3556 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3557 F_FW_CMD_REQUEST | F_FW_CMD_READ); 3558 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 3559 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 3560 if (rc != 0) { 3561 device_printf(sc->dev, 3562 "failed to get card capabilities: %d.\n", rc); 3563 return (rc); 3564 } 3565 3566 #define READ_CAPS(x) do { \ 3567 sc->x = htobe16(caps.x); \ 3568 } while (0) 3569 READ_CAPS(nbmcaps); 3570 READ_CAPS(linkcaps); 3571 READ_CAPS(switchcaps); 3572 READ_CAPS(niccaps); 3573 READ_CAPS(toecaps); 3574 READ_CAPS(rdmacaps); 3575 READ_CAPS(cryptocaps); 3576 READ_CAPS(iscsicaps); 3577 READ_CAPS(fcoecaps); 3578 3579 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 3580 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 3581 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 3582 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3583 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 3584 if (rc != 0) { 3585 device_printf(sc->dev, 3586 "failed to query NIC parameters: %d.\n", rc); 3587 return (rc); 3588 } 3589 sc->tids.etid_base = val[0]; 3590 sc->params.etid_min = val[0]; 3591 sc->tids.netids = val[1] - val[0] + 1; 3592 sc->params.netids = sc->tids.netids; 3593 sc->params.eo_wr_cred = val[2]; 3594 sc->params.ethoffload = 1; 3595 } 3596 3597 if (sc->toecaps) { 3598 /* query offload-related parameters */ 3599 param[0] = FW_PARAM_DEV(NTID); 3600 param[1] = FW_PARAM_PFVF(SERVER_START); 3601 param[2] = FW_PARAM_PFVF(SERVER_END); 3602 param[3] = FW_PARAM_PFVF(TDDP_START); 3603 param[4] = FW_PARAM_PFVF(TDDP_END); 3604 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3605 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 3606 if (rc != 0) { 3607 device_printf(sc->dev, 3608 "failed to query TOE parameters: %d.\n", rc); 3609 return (rc); 3610 } 3611 sc->tids.ntids = val[0]; 3612 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 3613 sc->tids.stid_base = val[1]; 3614 sc->tids.nstids = val[2] - val[1] + 1; 3615 sc->vres.ddp.start = val[3]; 3616 sc->vres.ddp.size = val[4] - val[3] + 1; 3617 sc->params.ofldq_wr_cred = val[5]; 3618 sc->params.offload = 1; 3619 } 3620 if (sc->rdmacaps) { 3621 param[0] = FW_PARAM_PFVF(STAG_START); 3622 param[1] = FW_PARAM_PFVF(STAG_END); 3623 param[2] = FW_PARAM_PFVF(RQ_START); 3624 param[3] = FW_PARAM_PFVF(RQ_END); 3625 param[4] = FW_PARAM_PFVF(PBL_START); 3626 param[5] = FW_PARAM_PFVF(PBL_END); 3627 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 3628 if (rc != 0) { 3629 device_printf(sc->dev, 3630 "failed to query RDMA parameters(1): %d.\n", rc); 3631 return (rc); 3632 } 3633 sc->vres.stag.start = val[0]; 3634 sc->vres.stag.size = val[1] - val[0] + 1; 3635 sc->vres.rq.start = val[2]; 3636 sc->vres.rq.size = val[3] - val[2] + 1; 3637 sc->vres.pbl.start = val[4]; 3638 sc->vres.pbl.size = val[5] - val[4] + 1; 3639 3640 param[0] = FW_PARAM_PFVF(SQRQ_START); 3641 param[1] = FW_PARAM_PFVF(SQRQ_END); 3642 param[2] = FW_PARAM_PFVF(CQ_START); 3643 param[3] = FW_PARAM_PFVF(CQ_END); 3644 param[4] = FW_PARAM_PFVF(OCQ_START); 3645 param[5] = FW_PARAM_PFVF(OCQ_END); 3646 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 3647 if (rc != 0) { 3648 device_printf(sc->dev, 3649 "failed to query RDMA parameters(2): %d.\n", rc); 3650 return (rc); 3651 } 3652 sc->vres.qp.start = val[0]; 3653 sc->vres.qp.size = val[1] - val[0] + 1; 3654 sc->vres.cq.start = val[2]; 3655 sc->vres.cq.size = val[3] - val[2] + 1; 3656 sc->vres.ocq.start = val[4]; 3657 sc->vres.ocq.size = val[5] - val[4] + 1; 3658 3659 param[0] = FW_PARAM_PFVF(SRQ_START); 3660 param[1] = FW_PARAM_PFVF(SRQ_END); 3661 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 3662 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 3663 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 3664 if (rc != 0) { 3665 device_printf(sc->dev, 3666 "failed to query RDMA parameters(3): %d.\n", rc); 3667 return (rc); 3668 } 3669 sc->vres.srq.start = val[0]; 3670 sc->vres.srq.size = val[1] - val[0] + 1; 3671 sc->params.max_ordird_qp = val[2]; 3672 sc->params.max_ird_adapter = val[3]; 3673 } 3674 if (sc->iscsicaps) { 3675 param[0] = FW_PARAM_PFVF(ISCSI_START); 3676 param[1] = FW_PARAM_PFVF(ISCSI_END); 3677 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 3678 if (rc != 0) { 3679 device_printf(sc->dev, 3680 "failed to query iSCSI parameters: %d.\n", rc); 3681 return (rc); 3682 } 3683 sc->vres.iscsi.start = val[0]; 3684 sc->vres.iscsi.size = val[1] - val[0] + 1; 3685 } 3686 3687 t4_init_sge_params(sc); 3688 3689 /* 3690 * We've got the params we wanted to query via the firmware. Now grab 3691 * some others directly from the chip. 3692 */ 3693 rc = t4_read_chip_settings(sc); 3694 3695 return (rc); 3696 } 3697 3698 static int 3699 set_params__post_init(struct adapter *sc) 3700 { 3701 uint32_t param, val; 3702 #ifdef TCP_OFFLOAD 3703 int i, v, shift; 3704 #endif 3705 3706 /* ask for encapsulated CPLs */ 3707 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3708 val = 1; 3709 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3710 3711 #ifdef TCP_OFFLOAD 3712 /* 3713 * Override the TOE timers with user provided tunables. This is not the 3714 * recommended way to change the timers (the firmware config file is) so 3715 * these tunables are not documented. 3716 * 3717 * All the timer tunables are in microseconds. 3718 */ 3719 if (t4_toe_keepalive_idle != 0) { 3720 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 3721 v &= M_KEEPALIVEIDLE; 3722 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 3723 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 3724 } 3725 if (t4_toe_keepalive_interval != 0) { 3726 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 3727 v &= M_KEEPALIVEINTVL; 3728 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 3729 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 3730 } 3731 if (t4_toe_keepalive_count != 0) { 3732 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 3733 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 3734 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 3735 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 3736 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 3737 } 3738 if (t4_toe_rexmt_min != 0) { 3739 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 3740 v &= M_RXTMIN; 3741 t4_set_reg_field(sc, A_TP_RXT_MIN, 3742 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 3743 } 3744 if (t4_toe_rexmt_max != 0) { 3745 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 3746 v &= M_RXTMAX; 3747 t4_set_reg_field(sc, A_TP_RXT_MAX, 3748 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 3749 } 3750 if (t4_toe_rexmt_count != 0) { 3751 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 3752 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 3753 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 3754 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 3755 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 3756 } 3757 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 3758 if (t4_toe_rexmt_backoff[i] != -1) { 3759 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 3760 shift = (i & 3) << 3; 3761 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 3762 M_TIMERBACKOFFINDEX0 << shift, v << shift); 3763 } 3764 } 3765 #endif 3766 return (0); 3767 } 3768 3769 #undef FW_PARAM_PFVF 3770 #undef FW_PARAM_DEV 3771 3772 static void 3773 t4_set_desc(struct adapter *sc) 3774 { 3775 char buf[128]; 3776 struct adapter_params *p = &sc->params; 3777 3778 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 3779 3780 device_set_desc_copy(sc->dev, buf); 3781 } 3782 3783 static void 3784 build_medialist(struct port_info *pi, struct ifmedia *media) 3785 { 3786 int m; 3787 3788 PORT_LOCK_ASSERT_OWNED(pi); 3789 3790 ifmedia_removeall(media); 3791 3792 /* 3793 * XXX: Would it be better to ifmedia_add all 4 combinations of pause 3794 * settings for every speed instead of just txpause|rxpause? ifconfig 3795 * media display looks much better if autoselect is the only case where 3796 * ifm_current is different from ifm_active. If the user picks anything 3797 * except txpause|rxpause the display is ugly. 3798 */ 3799 m = IFM_ETHER | IFM_FDX | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 3800 3801 switch(pi->port_type) { 3802 case FW_PORT_TYPE_BT_XFI: 3803 case FW_PORT_TYPE_BT_XAUI: 3804 ifmedia_add(media, m | IFM_10G_T, 0, NULL); 3805 /* fall through */ 3806 3807 case FW_PORT_TYPE_BT_SGMII: 3808 ifmedia_add(media, m | IFM_1000_T, 0, NULL); 3809 ifmedia_add(media, m | IFM_100_TX, 0, NULL); 3810 ifmedia_add(media, IFM_ETHER | IFM_AUTO, 0, NULL); 3811 ifmedia_set(media, IFM_ETHER | IFM_AUTO); 3812 break; 3813 3814 case FW_PORT_TYPE_CX4: 3815 ifmedia_add(media, m | IFM_10G_CX4, 0, NULL); 3816 ifmedia_set(media, m | IFM_10G_CX4); 3817 break; 3818 3819 case FW_PORT_TYPE_QSFP_10G: 3820 case FW_PORT_TYPE_SFP: 3821 case FW_PORT_TYPE_FIBER_XFI: 3822 case FW_PORT_TYPE_FIBER_XAUI: 3823 switch (pi->mod_type) { 3824 3825 case FW_PORT_MOD_TYPE_LR: 3826 ifmedia_add(media, m | IFM_10G_LR, 0, NULL); 3827 ifmedia_set(media, m | IFM_10G_LR); 3828 break; 3829 3830 case FW_PORT_MOD_TYPE_SR: 3831 ifmedia_add(media, m | IFM_10G_SR, 0, NULL); 3832 ifmedia_set(media, m | IFM_10G_SR); 3833 break; 3834 3835 case FW_PORT_MOD_TYPE_LRM: 3836 ifmedia_add(media, m | IFM_10G_LRM, 0, NULL); 3837 ifmedia_set(media, m | IFM_10G_LRM); 3838 break; 3839 3840 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3841 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3842 ifmedia_add(media, m | IFM_10G_TWINAX, 0, NULL); 3843 ifmedia_set(media, m | IFM_10G_TWINAX); 3844 break; 3845 3846 case FW_PORT_MOD_TYPE_NONE: 3847 m &= ~IFM_FDX; 3848 ifmedia_add(media, m | IFM_NONE, 0, NULL); 3849 ifmedia_set(media, m | IFM_NONE); 3850 break; 3851 3852 case FW_PORT_MOD_TYPE_NA: 3853 case FW_PORT_MOD_TYPE_ER: 3854 default: 3855 device_printf(pi->dev, 3856 "unknown port_type (%d), mod_type (%d)\n", 3857 pi->port_type, pi->mod_type); 3858 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL); 3859 ifmedia_set(media, m | IFM_UNKNOWN); 3860 break; 3861 } 3862 break; 3863 3864 case FW_PORT_TYPE_CR_QSFP: 3865 case FW_PORT_TYPE_SFP28: 3866 case FW_PORT_TYPE_KR_SFP28: 3867 switch (pi->mod_type) { 3868 3869 case FW_PORT_MOD_TYPE_SR: 3870 ifmedia_add(media, m | IFM_25G_SR, 0, NULL); 3871 ifmedia_set(media, m | IFM_25G_SR); 3872 break; 3873 3874 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3875 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3876 ifmedia_add(media, m | IFM_25G_CR, 0, NULL); 3877 ifmedia_set(media, m | IFM_25G_CR); 3878 break; 3879 3880 case FW_PORT_MOD_TYPE_NONE: 3881 m &= ~IFM_FDX; 3882 ifmedia_add(media, m | IFM_NONE, 0, NULL); 3883 ifmedia_set(media, m | IFM_NONE); 3884 break; 3885 3886 default: 3887 device_printf(pi->dev, 3888 "unknown port_type (%d), mod_type (%d)\n", 3889 pi->port_type, pi->mod_type); 3890 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL); 3891 ifmedia_set(media, m | IFM_UNKNOWN); 3892 break; 3893 } 3894 break; 3895 3896 case FW_PORT_TYPE_QSFP: 3897 switch (pi->mod_type) { 3898 3899 case FW_PORT_MOD_TYPE_LR: 3900 ifmedia_add(media, m | IFM_40G_LR4, 0, NULL); 3901 ifmedia_set(media, m | IFM_40G_LR4); 3902 break; 3903 3904 case FW_PORT_MOD_TYPE_SR: 3905 ifmedia_add(media, m | IFM_40G_SR4, 0, NULL); 3906 ifmedia_set(media, m | IFM_40G_SR4); 3907 break; 3908 3909 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3910 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3911 ifmedia_add(media, m | IFM_40G_CR4, 0, NULL); 3912 ifmedia_set(media, m | IFM_40G_CR4); 3913 break; 3914 3915 case FW_PORT_MOD_TYPE_NONE: 3916 m &= ~IFM_FDX; 3917 ifmedia_add(media, m | IFM_NONE, 0, NULL); 3918 ifmedia_set(media, m | IFM_NONE); 3919 break; 3920 3921 default: 3922 device_printf(pi->dev, 3923 "unknown port_type (%d), mod_type (%d)\n", 3924 pi->port_type, pi->mod_type); 3925 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL); 3926 ifmedia_set(media, m | IFM_UNKNOWN); 3927 break; 3928 } 3929 break; 3930 3931 case FW_PORT_TYPE_KR4_100G: 3932 case FW_PORT_TYPE_CR4_QSFP: 3933 switch (pi->mod_type) { 3934 3935 case FW_PORT_MOD_TYPE_LR: 3936 ifmedia_add(media, m | IFM_100G_LR4, 0, NULL); 3937 ifmedia_set(media, m | IFM_100G_LR4); 3938 break; 3939 3940 case FW_PORT_MOD_TYPE_SR: 3941 ifmedia_add(media, m | IFM_100G_SR4, 0, NULL); 3942 ifmedia_set(media, m | IFM_100G_SR4); 3943 break; 3944 3945 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3946 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3947 ifmedia_add(media, m | IFM_100G_CR4, 0, NULL); 3948 ifmedia_set(media, m | IFM_100G_CR4); 3949 break; 3950 3951 case FW_PORT_MOD_TYPE_NONE: 3952 m &= ~IFM_FDX; 3953 ifmedia_add(media, m | IFM_NONE, 0, NULL); 3954 ifmedia_set(media, m | IFM_NONE); 3955 break; 3956 3957 default: 3958 device_printf(pi->dev, 3959 "unknown port_type (%d), mod_type (%d)\n", 3960 pi->port_type, pi->mod_type); 3961 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL); 3962 ifmedia_set(media, m | IFM_UNKNOWN); 3963 break; 3964 } 3965 break; 3966 3967 default: 3968 device_printf(pi->dev, 3969 "unknown port_type (%d), mod_type (%d)\n", pi->port_type, 3970 pi->mod_type); 3971 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL); 3972 ifmedia_set(media, m | IFM_UNKNOWN); 3973 break; 3974 } 3975 } 3976 3977 /* 3978 * Update all the requested_* fields in the link config and then send a mailbox 3979 * command to apply the settings. 3980 */ 3981 static void 3982 init_l1cfg(struct port_info *pi) 3983 { 3984 struct adapter *sc = pi->adapter; 3985 struct link_config *lc = &pi->link_cfg; 3986 int rc; 3987 3988 ASSERT_SYNCHRONIZED_OP(sc); 3989 3990 if (t4_autoneg != 0 && lc->supported & FW_PORT_CAP_ANEG) { 3991 lc->requested_aneg = AUTONEG_ENABLE; 3992 lc->requested_speed = 0; 3993 } else { 3994 lc->requested_aneg = AUTONEG_DISABLE; 3995 lc->requested_speed = port_top_speed(pi); /* in Gbps */ 3996 } 3997 3998 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX); 3999 4000 if (t4_fec != -1) { 4001 lc->requested_fec = t4_fec & (FEC_RS | FEC_BASER_RS | 4002 FEC_RESERVED); 4003 } else { 4004 /* Use the suggested value provided by the firmware in acaps */ 4005 if (lc->advertising & FW_PORT_CAP_FEC_RS) 4006 lc->requested_fec = FEC_RS; 4007 else if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS) 4008 lc->requested_fec = FEC_BASER_RS; 4009 else if (lc->advertising & FW_PORT_CAP_FEC_RESERVED) 4010 lc->requested_fec = FEC_RESERVED; 4011 else 4012 lc->requested_fec = 0; 4013 } 4014 4015 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 4016 if (rc != 0) { 4017 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 4018 } else { 4019 lc->fc = lc->requested_fc; 4020 lc->fec = lc->requested_fec; 4021 } 4022 } 4023 4024 #define FW_MAC_EXACT_CHUNK 7 4025 4026 /* 4027 * Program the port's XGMAC based on parameters in ifnet. The caller also 4028 * indicates which parameters should be programmed (the rest are left alone). 4029 */ 4030 int 4031 update_mac_settings(struct ifnet *ifp, int flags) 4032 { 4033 int rc = 0; 4034 struct vi_info *vi = ifp->if_softc; 4035 struct port_info *pi = vi->pi; 4036 struct adapter *sc = pi->adapter; 4037 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 4038 4039 ASSERT_SYNCHRONIZED_OP(sc); 4040 KASSERT(flags, ("%s: not told what to update.", __func__)); 4041 4042 if (flags & XGMAC_MTU) 4043 mtu = ifp->if_mtu; 4044 4045 if (flags & XGMAC_PROMISC) 4046 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 4047 4048 if (flags & XGMAC_ALLMULTI) 4049 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 4050 4051 if (flags & XGMAC_VLANEX) 4052 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 4053 4054 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 4055 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 4056 allmulti, 1, vlanex, false); 4057 if (rc) { 4058 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 4059 rc); 4060 return (rc); 4061 } 4062 } 4063 4064 if (flags & XGMAC_UCADDR) { 4065 uint8_t ucaddr[ETHER_ADDR_LEN]; 4066 4067 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 4068 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 4069 ucaddr, true, true); 4070 if (rc < 0) { 4071 rc = -rc; 4072 if_printf(ifp, "change_mac failed: %d\n", rc); 4073 return (rc); 4074 } else { 4075 vi->xact_addr_filt = rc; 4076 rc = 0; 4077 } 4078 } 4079 4080 if (flags & XGMAC_MCADDRS) { 4081 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 4082 int del = 1; 4083 uint64_t hash = 0; 4084 struct ifmultiaddr *ifma; 4085 int i = 0, j; 4086 4087 if_maddr_rlock(ifp); 4088 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 4089 if (ifma->ifma_addr->sa_family != AF_LINK) 4090 continue; 4091 mcaddr[i] = 4092 LLADDR((struct sockaddr_dl *)ifma->ifma_addr); 4093 MPASS(ETHER_IS_MULTICAST(mcaddr[i])); 4094 i++; 4095 4096 if (i == FW_MAC_EXACT_CHUNK) { 4097 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 4098 del, i, mcaddr, NULL, &hash, 0); 4099 if (rc < 0) { 4100 rc = -rc; 4101 for (j = 0; j < i; j++) { 4102 if_printf(ifp, 4103 "failed to add mc address" 4104 " %02x:%02x:%02x:" 4105 "%02x:%02x:%02x rc=%d\n", 4106 mcaddr[j][0], mcaddr[j][1], 4107 mcaddr[j][2], mcaddr[j][3], 4108 mcaddr[j][4], mcaddr[j][5], 4109 rc); 4110 } 4111 goto mcfail; 4112 } 4113 del = 0; 4114 i = 0; 4115 } 4116 } 4117 if (i > 0) { 4118 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i, 4119 mcaddr, NULL, &hash, 0); 4120 if (rc < 0) { 4121 rc = -rc; 4122 for (j = 0; j < i; j++) { 4123 if_printf(ifp, 4124 "failed to add mc address" 4125 " %02x:%02x:%02x:" 4126 "%02x:%02x:%02x rc=%d\n", 4127 mcaddr[j][0], mcaddr[j][1], 4128 mcaddr[j][2], mcaddr[j][3], 4129 mcaddr[j][4], mcaddr[j][5], 4130 rc); 4131 } 4132 goto mcfail; 4133 } 4134 } 4135 4136 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0); 4137 if (rc != 0) 4138 if_printf(ifp, "failed to set mc address hash: %d", rc); 4139 mcfail: 4140 if_maddr_runlock(ifp); 4141 } 4142 4143 return (rc); 4144 } 4145 4146 /* 4147 * {begin|end}_synchronized_op must be called from the same thread. 4148 */ 4149 int 4150 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 4151 char *wmesg) 4152 { 4153 int rc, pri; 4154 4155 #ifdef WITNESS 4156 /* the caller thinks it's ok to sleep, but is it really? */ 4157 if (flags & SLEEP_OK) 4158 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 4159 "begin_synchronized_op"); 4160 #endif 4161 4162 if (INTR_OK) 4163 pri = PCATCH; 4164 else 4165 pri = 0; 4166 4167 ADAPTER_LOCK(sc); 4168 for (;;) { 4169 4170 if (vi && IS_DOOMED(vi)) { 4171 rc = ENXIO; 4172 goto done; 4173 } 4174 4175 if (!IS_BUSY(sc)) { 4176 rc = 0; 4177 break; 4178 } 4179 4180 if (!(flags & SLEEP_OK)) { 4181 rc = EBUSY; 4182 goto done; 4183 } 4184 4185 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 4186 rc = EINTR; 4187 goto done; 4188 } 4189 } 4190 4191 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 4192 SET_BUSY(sc); 4193 #ifdef INVARIANTS 4194 sc->last_op = wmesg; 4195 sc->last_op_thr = curthread; 4196 sc->last_op_flags = flags; 4197 #endif 4198 4199 done: 4200 if (!(flags & HOLD_LOCK) || rc) 4201 ADAPTER_UNLOCK(sc); 4202 4203 return (rc); 4204 } 4205 4206 /* 4207 * Tell if_ioctl and if_init that the VI is going away. This is 4208 * special variant of begin_synchronized_op and must be paired with a 4209 * call to end_synchronized_op. 4210 */ 4211 void 4212 doom_vi(struct adapter *sc, struct vi_info *vi) 4213 { 4214 4215 ADAPTER_LOCK(sc); 4216 SET_DOOMED(vi); 4217 wakeup(&sc->flags); 4218 while (IS_BUSY(sc)) 4219 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 4220 SET_BUSY(sc); 4221 #ifdef INVARIANTS 4222 sc->last_op = "t4detach"; 4223 sc->last_op_thr = curthread; 4224 sc->last_op_flags = 0; 4225 #endif 4226 ADAPTER_UNLOCK(sc); 4227 } 4228 4229 /* 4230 * {begin|end}_synchronized_op must be called from the same thread. 4231 */ 4232 void 4233 end_synchronized_op(struct adapter *sc, int flags) 4234 { 4235 4236 if (flags & LOCK_HELD) 4237 ADAPTER_LOCK_ASSERT_OWNED(sc); 4238 else 4239 ADAPTER_LOCK(sc); 4240 4241 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 4242 CLR_BUSY(sc); 4243 wakeup(&sc->flags); 4244 ADAPTER_UNLOCK(sc); 4245 } 4246 4247 static int 4248 cxgbe_init_synchronized(struct vi_info *vi) 4249 { 4250 struct port_info *pi = vi->pi; 4251 struct adapter *sc = pi->adapter; 4252 struct ifnet *ifp = vi->ifp; 4253 int rc = 0, i; 4254 struct sge_txq *txq; 4255 4256 ASSERT_SYNCHRONIZED_OP(sc); 4257 4258 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 4259 return (0); /* already running */ 4260 4261 if (!(sc->flags & FULL_INIT_DONE) && 4262 ((rc = adapter_full_init(sc)) != 0)) 4263 return (rc); /* error message displayed already */ 4264 4265 if (!(vi->flags & VI_INIT_DONE) && 4266 ((rc = vi_full_init(vi)) != 0)) 4267 return (rc); /* error message displayed already */ 4268 4269 rc = update_mac_settings(ifp, XGMAC_ALL); 4270 if (rc) 4271 goto done; /* error message displayed already */ 4272 4273 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 4274 if (rc != 0) { 4275 if_printf(ifp, "enable_vi failed: %d\n", rc); 4276 goto done; 4277 } 4278 4279 /* 4280 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 4281 * if this changes. 4282 */ 4283 4284 for_each_txq(vi, i, txq) { 4285 TXQ_LOCK(txq); 4286 txq->eq.flags |= EQ_ENABLED; 4287 TXQ_UNLOCK(txq); 4288 } 4289 4290 /* 4291 * The first iq of the first port to come up is used for tracing. 4292 */ 4293 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 4294 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 4295 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 4296 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 4297 V_QUEUENUMBER(sc->traceq)); 4298 pi->flags |= HAS_TRACEQ; 4299 } 4300 4301 /* all ok */ 4302 PORT_LOCK(pi); 4303 if (pi->up_vis++ == 0) { 4304 t4_update_port_info(pi); 4305 build_medialist(pi, &pi->media); 4306 init_l1cfg(pi); 4307 } 4308 ifp->if_drv_flags |= IFF_DRV_RUNNING; 4309 4310 if (pi->nvi > 1 || sc->flags & IS_VF) 4311 callout_reset(&vi->tick, hz, vi_tick, vi); 4312 else 4313 callout_reset(&pi->tick, hz, cxgbe_tick, pi); 4314 PORT_UNLOCK(pi); 4315 done: 4316 if (rc != 0) 4317 cxgbe_uninit_synchronized(vi); 4318 4319 return (rc); 4320 } 4321 4322 /* 4323 * Idempotent. 4324 */ 4325 static int 4326 cxgbe_uninit_synchronized(struct vi_info *vi) 4327 { 4328 struct port_info *pi = vi->pi; 4329 struct adapter *sc = pi->adapter; 4330 struct ifnet *ifp = vi->ifp; 4331 int rc, i; 4332 struct sge_txq *txq; 4333 4334 ASSERT_SYNCHRONIZED_OP(sc); 4335 4336 if (!(vi->flags & VI_INIT_DONE)) { 4337 KASSERT(!(ifp->if_drv_flags & IFF_DRV_RUNNING), 4338 ("uninited VI is running")); 4339 return (0); 4340 } 4341 4342 /* 4343 * Disable the VI so that all its data in either direction is discarded 4344 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 4345 * tick) intact as the TP can deliver negative advice or data that it's 4346 * holding in its RAM (for an offloaded connection) even after the VI is 4347 * disabled. 4348 */ 4349 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 4350 if (rc) { 4351 if_printf(ifp, "disable_vi failed: %d\n", rc); 4352 return (rc); 4353 } 4354 4355 for_each_txq(vi, i, txq) { 4356 TXQ_LOCK(txq); 4357 txq->eq.flags &= ~EQ_ENABLED; 4358 TXQ_UNLOCK(txq); 4359 } 4360 4361 PORT_LOCK(pi); 4362 if (pi->nvi > 1 || sc->flags & IS_VF) 4363 callout_stop(&vi->tick); 4364 else 4365 callout_stop(&pi->tick); 4366 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 4367 PORT_UNLOCK(pi); 4368 return (0); 4369 } 4370 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 4371 pi->up_vis--; 4372 if (pi->up_vis > 0) { 4373 PORT_UNLOCK(pi); 4374 return (0); 4375 } 4376 PORT_UNLOCK(pi); 4377 4378 pi->link_cfg.link_ok = 0; 4379 pi->link_cfg.speed = 0; 4380 pi->link_cfg.link_down_rc = 255; 4381 t4_os_link_changed(pi); 4382 pi->old_link_cfg = pi->link_cfg; 4383 4384 return (0); 4385 } 4386 4387 /* 4388 * It is ok for this function to fail midway and return right away. t4_detach 4389 * will walk the entire sc->irq list and clean up whatever is valid. 4390 */ 4391 int 4392 t4_setup_intr_handlers(struct adapter *sc) 4393 { 4394 int rc, rid, p, q, v; 4395 char s[8]; 4396 struct irq *irq; 4397 struct port_info *pi; 4398 struct vi_info *vi; 4399 struct sge *sge = &sc->sge; 4400 struct sge_rxq *rxq; 4401 #ifdef TCP_OFFLOAD 4402 struct sge_ofld_rxq *ofld_rxq; 4403 #endif 4404 #ifdef DEV_NETMAP 4405 struct sge_nm_rxq *nm_rxq; 4406 #endif 4407 #ifdef RSS 4408 int nbuckets = rss_getnumbuckets(); 4409 #endif 4410 4411 /* 4412 * Setup interrupts. 4413 */ 4414 irq = &sc->irq[0]; 4415 rid = sc->intr_type == INTR_INTX ? 0 : 1; 4416 if (sc->intr_count == 1) 4417 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 4418 4419 /* Multiple interrupts. */ 4420 if (sc->flags & IS_VF) 4421 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 4422 ("%s: too few intr.", __func__)); 4423 else 4424 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 4425 ("%s: too few intr.", __func__)); 4426 4427 /* The first one is always error intr on PFs */ 4428 if (!(sc->flags & IS_VF)) { 4429 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 4430 if (rc != 0) 4431 return (rc); 4432 irq++; 4433 rid++; 4434 } 4435 4436 /* The second one is always the firmware event queue (first on VFs) */ 4437 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 4438 if (rc != 0) 4439 return (rc); 4440 irq++; 4441 rid++; 4442 4443 for_each_port(sc, p) { 4444 pi = sc->port[p]; 4445 for_each_vi(pi, v, vi) { 4446 vi->first_intr = rid - 1; 4447 4448 if (vi->nnmrxq > 0) { 4449 int n = max(vi->nrxq, vi->nnmrxq); 4450 4451 MPASS(vi->flags & INTR_RXQ); 4452 4453 rxq = &sge->rxq[vi->first_rxq]; 4454 #ifdef DEV_NETMAP 4455 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 4456 #endif 4457 for (q = 0; q < n; q++) { 4458 snprintf(s, sizeof(s), "%x%c%x", p, 4459 'a' + v, q); 4460 if (q < vi->nrxq) 4461 irq->rxq = rxq++; 4462 #ifdef DEV_NETMAP 4463 if (q < vi->nnmrxq) 4464 irq->nm_rxq = nm_rxq++; 4465 #endif 4466 rc = t4_alloc_irq(sc, irq, rid, 4467 t4_vi_intr, irq, s); 4468 if (rc != 0) 4469 return (rc); 4470 irq++; 4471 rid++; 4472 vi->nintr++; 4473 } 4474 } else if (vi->flags & INTR_RXQ) { 4475 for_each_rxq(vi, q, rxq) { 4476 snprintf(s, sizeof(s), "%x%c%x", p, 4477 'a' + v, q); 4478 rc = t4_alloc_irq(sc, irq, rid, 4479 t4_intr, rxq, s); 4480 if (rc != 0) 4481 return (rc); 4482 #ifdef RSS 4483 bus_bind_intr(sc->dev, irq->res, 4484 rss_getcpu(q % nbuckets)); 4485 #endif 4486 irq++; 4487 rid++; 4488 vi->nintr++; 4489 } 4490 } 4491 #ifdef TCP_OFFLOAD 4492 if (vi->flags & INTR_OFLD_RXQ) { 4493 for_each_ofld_rxq(vi, q, ofld_rxq) { 4494 snprintf(s, sizeof(s), "%x%c%x", p, 4495 'A' + v, q); 4496 rc = t4_alloc_irq(sc, irq, rid, 4497 t4_intr, ofld_rxq, s); 4498 if (rc != 0) 4499 return (rc); 4500 irq++; 4501 rid++; 4502 vi->nintr++; 4503 } 4504 } 4505 #endif 4506 } 4507 } 4508 MPASS(irq == &sc->irq[sc->intr_count]); 4509 4510 return (0); 4511 } 4512 4513 int 4514 adapter_full_init(struct adapter *sc) 4515 { 4516 int rc, i; 4517 #ifdef RSS 4518 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 4519 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 4520 #endif 4521 4522 ASSERT_SYNCHRONIZED_OP(sc); 4523 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 4524 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 4525 ("%s: FULL_INIT_DONE already", __func__)); 4526 4527 /* 4528 * queues that belong to the adapter (not any particular port). 4529 */ 4530 rc = t4_setup_adapter_queues(sc); 4531 if (rc != 0) 4532 goto done; 4533 4534 for (i = 0; i < nitems(sc->tq); i++) { 4535 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 4536 taskqueue_thread_enqueue, &sc->tq[i]); 4537 if (sc->tq[i] == NULL) { 4538 device_printf(sc->dev, 4539 "failed to allocate task queue %d\n", i); 4540 rc = ENOMEM; 4541 goto done; 4542 } 4543 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 4544 device_get_nameunit(sc->dev), i); 4545 } 4546 #ifdef RSS 4547 MPASS(RSS_KEYSIZE == 40); 4548 rss_getkey((void *)&raw_rss_key[0]); 4549 for (i = 0; i < nitems(rss_key); i++) { 4550 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 4551 } 4552 t4_write_rss_key(sc, &rss_key[0], -1, 1); 4553 #endif 4554 4555 if (!(sc->flags & IS_VF)) 4556 t4_intr_enable(sc); 4557 sc->flags |= FULL_INIT_DONE; 4558 done: 4559 if (rc != 0) 4560 adapter_full_uninit(sc); 4561 4562 return (rc); 4563 } 4564 4565 int 4566 adapter_full_uninit(struct adapter *sc) 4567 { 4568 int i; 4569 4570 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 4571 4572 t4_teardown_adapter_queues(sc); 4573 4574 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 4575 taskqueue_free(sc->tq[i]); 4576 sc->tq[i] = NULL; 4577 } 4578 4579 sc->flags &= ~FULL_INIT_DONE; 4580 4581 return (0); 4582 } 4583 4584 #ifdef RSS 4585 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 4586 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 4587 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 4588 RSS_HASHTYPE_RSS_UDP_IPV6) 4589 4590 /* Translates kernel hash types to hardware. */ 4591 static int 4592 hashconfig_to_hashen(int hashconfig) 4593 { 4594 int hashen = 0; 4595 4596 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 4597 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 4598 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 4599 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 4600 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 4601 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 4602 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 4603 } 4604 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 4605 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 4606 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 4607 } 4608 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 4609 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 4610 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 4611 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 4612 4613 return (hashen); 4614 } 4615 4616 /* Translates hardware hash types to kernel. */ 4617 static int 4618 hashen_to_hashconfig(int hashen) 4619 { 4620 int hashconfig = 0; 4621 4622 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 4623 /* 4624 * If UDP hashing was enabled it must have been enabled for 4625 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 4626 * enabling any 4-tuple hash is nonsense configuration. 4627 */ 4628 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 4629 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 4630 4631 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 4632 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 4633 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 4634 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 4635 } 4636 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 4637 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 4638 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 4639 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 4640 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 4641 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 4642 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 4643 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 4644 4645 return (hashconfig); 4646 } 4647 #endif 4648 4649 int 4650 vi_full_init(struct vi_info *vi) 4651 { 4652 struct adapter *sc = vi->pi->adapter; 4653 struct ifnet *ifp = vi->ifp; 4654 uint16_t *rss; 4655 struct sge_rxq *rxq; 4656 int rc, i, j, hashen; 4657 #ifdef RSS 4658 int nbuckets = rss_getnumbuckets(); 4659 int hashconfig = rss_gethashconfig(); 4660 int extra; 4661 #endif 4662 4663 ASSERT_SYNCHRONIZED_OP(sc); 4664 KASSERT((vi->flags & VI_INIT_DONE) == 0, 4665 ("%s: VI_INIT_DONE already", __func__)); 4666 4667 sysctl_ctx_init(&vi->ctx); 4668 vi->flags |= VI_SYSCTL_CTX; 4669 4670 /* 4671 * Allocate tx/rx/fl queues for this VI. 4672 */ 4673 rc = t4_setup_vi_queues(vi); 4674 if (rc != 0) 4675 goto done; /* error message displayed already */ 4676 4677 /* 4678 * Setup RSS for this VI. Save a copy of the RSS table for later use. 4679 */ 4680 if (vi->nrxq > vi->rss_size) { 4681 if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); " 4682 "some queues will never receive traffic.\n", vi->nrxq, 4683 vi->rss_size); 4684 } else if (vi->rss_size % vi->nrxq) { 4685 if_printf(ifp, "nrxq (%d), hw RSS table size (%d); " 4686 "expect uneven traffic distribution.\n", vi->nrxq, 4687 vi->rss_size); 4688 } 4689 #ifdef RSS 4690 if (vi->nrxq != nbuckets) { 4691 if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);" 4692 "performance will be impacted.\n", vi->nrxq, nbuckets); 4693 } 4694 #endif 4695 rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK); 4696 for (i = 0; i < vi->rss_size;) { 4697 #ifdef RSS 4698 j = rss_get_indirection_to_bucket(i); 4699 j %= vi->nrxq; 4700 rxq = &sc->sge.rxq[vi->first_rxq + j]; 4701 rss[i++] = rxq->iq.abs_id; 4702 #else 4703 for_each_rxq(vi, j, rxq) { 4704 rss[i++] = rxq->iq.abs_id; 4705 if (i == vi->rss_size) 4706 break; 4707 } 4708 #endif 4709 } 4710 4711 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss, 4712 vi->rss_size); 4713 if (rc != 0) { 4714 if_printf(ifp, "rss_config failed: %d\n", rc); 4715 goto done; 4716 } 4717 4718 #ifdef RSS 4719 hashen = hashconfig_to_hashen(hashconfig); 4720 4721 /* 4722 * We may have had to enable some hashes even though the global config 4723 * wants them disabled. This is a potential problem that must be 4724 * reported to the user. 4725 */ 4726 extra = hashen_to_hashconfig(hashen) ^ hashconfig; 4727 4728 /* 4729 * If we consider only the supported hash types, then the enabled hashes 4730 * are a superset of the requested hashes. In other words, there cannot 4731 * be any supported hash that was requested but not enabled, but there 4732 * can be hashes that were not requested but had to be enabled. 4733 */ 4734 extra &= SUPPORTED_RSS_HASHTYPES; 4735 MPASS((extra & hashconfig) == 0); 4736 4737 if (extra) { 4738 if_printf(ifp, 4739 "global RSS config (0x%x) cannot be accommodated.\n", 4740 hashconfig); 4741 } 4742 if (extra & RSS_HASHTYPE_RSS_IPV4) 4743 if_printf(ifp, "IPv4 2-tuple hashing forced on.\n"); 4744 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 4745 if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n"); 4746 if (extra & RSS_HASHTYPE_RSS_IPV6) 4747 if_printf(ifp, "IPv6 2-tuple hashing forced on.\n"); 4748 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 4749 if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n"); 4750 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 4751 if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n"); 4752 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 4753 if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n"); 4754 #else 4755 hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 4756 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 4757 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 4758 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 4759 #endif 4760 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, hashen, rss[0], 0, 0); 4761 if (rc != 0) { 4762 if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc); 4763 goto done; 4764 } 4765 4766 vi->rss = rss; 4767 vi->flags |= VI_INIT_DONE; 4768 done: 4769 if (rc != 0) 4770 vi_full_uninit(vi); 4771 4772 return (rc); 4773 } 4774 4775 /* 4776 * Idempotent. 4777 */ 4778 int 4779 vi_full_uninit(struct vi_info *vi) 4780 { 4781 struct port_info *pi = vi->pi; 4782 struct adapter *sc = pi->adapter; 4783 int i; 4784 struct sge_rxq *rxq; 4785 struct sge_txq *txq; 4786 #ifdef TCP_OFFLOAD 4787 struct sge_ofld_rxq *ofld_rxq; 4788 struct sge_wrq *ofld_txq; 4789 #endif 4790 4791 if (vi->flags & VI_INIT_DONE) { 4792 4793 /* Need to quiesce queues. */ 4794 4795 /* XXX: Only for the first VI? */ 4796 if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF)) 4797 quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 4798 4799 for_each_txq(vi, i, txq) { 4800 quiesce_txq(sc, txq); 4801 } 4802 4803 #ifdef TCP_OFFLOAD 4804 for_each_ofld_txq(vi, i, ofld_txq) { 4805 quiesce_wrq(sc, ofld_txq); 4806 } 4807 #endif 4808 4809 for_each_rxq(vi, i, rxq) { 4810 quiesce_iq(sc, &rxq->iq); 4811 quiesce_fl(sc, &rxq->fl); 4812 } 4813 4814 #ifdef TCP_OFFLOAD 4815 for_each_ofld_rxq(vi, i, ofld_rxq) { 4816 quiesce_iq(sc, &ofld_rxq->iq); 4817 quiesce_fl(sc, &ofld_rxq->fl); 4818 } 4819 #endif 4820 free(vi->rss, M_CXGBE); 4821 free(vi->nm_rss, M_CXGBE); 4822 } 4823 4824 t4_teardown_vi_queues(vi); 4825 vi->flags &= ~VI_INIT_DONE; 4826 4827 return (0); 4828 } 4829 4830 static void 4831 quiesce_txq(struct adapter *sc, struct sge_txq *txq) 4832 { 4833 struct sge_eq *eq = &txq->eq; 4834 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 4835 4836 (void) sc; /* unused */ 4837 4838 #ifdef INVARIANTS 4839 TXQ_LOCK(txq); 4840 MPASS((eq->flags & EQ_ENABLED) == 0); 4841 TXQ_UNLOCK(txq); 4842 #endif 4843 4844 /* Wait for the mp_ring to empty. */ 4845 while (!mp_ring_is_idle(txq->r)) { 4846 mp_ring_check_drainage(txq->r, 0); 4847 pause("rquiesce", 1); 4848 } 4849 4850 /* Then wait for the hardware to finish. */ 4851 while (spg->cidx != htobe16(eq->pidx)) 4852 pause("equiesce", 1); 4853 4854 /* Finally, wait for the driver to reclaim all descriptors. */ 4855 while (eq->cidx != eq->pidx) 4856 pause("dquiesce", 1); 4857 } 4858 4859 static void 4860 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq) 4861 { 4862 4863 /* XXXTX */ 4864 } 4865 4866 static void 4867 quiesce_iq(struct adapter *sc, struct sge_iq *iq) 4868 { 4869 (void) sc; /* unused */ 4870 4871 /* Synchronize with the interrupt handler */ 4872 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 4873 pause("iqfree", 1); 4874 } 4875 4876 static void 4877 quiesce_fl(struct adapter *sc, struct sge_fl *fl) 4878 { 4879 mtx_lock(&sc->sfl_lock); 4880 FL_LOCK(fl); 4881 fl->flags |= FL_DOOMED; 4882 FL_UNLOCK(fl); 4883 callout_stop(&sc->sfl_callout); 4884 mtx_unlock(&sc->sfl_lock); 4885 4886 KASSERT((fl->flags & FL_STARVING) == 0, 4887 ("%s: still starving", __func__)); 4888 } 4889 4890 static int 4891 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 4892 driver_intr_t *handler, void *arg, char *name) 4893 { 4894 int rc; 4895 4896 irq->rid = rid; 4897 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 4898 RF_SHAREABLE | RF_ACTIVE); 4899 if (irq->res == NULL) { 4900 device_printf(sc->dev, 4901 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 4902 return (ENOMEM); 4903 } 4904 4905 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 4906 NULL, handler, arg, &irq->tag); 4907 if (rc != 0) { 4908 device_printf(sc->dev, 4909 "failed to setup interrupt for rid %d, name %s: %d\n", 4910 rid, name, rc); 4911 } else if (name) 4912 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 4913 4914 return (rc); 4915 } 4916 4917 static int 4918 t4_free_irq(struct adapter *sc, struct irq *irq) 4919 { 4920 if (irq->tag) 4921 bus_teardown_intr(sc->dev, irq->res, irq->tag); 4922 if (irq->res) 4923 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 4924 4925 bzero(irq, sizeof(*irq)); 4926 4927 return (0); 4928 } 4929 4930 static void 4931 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 4932 { 4933 4934 regs->version = chip_id(sc) | chip_rev(sc) << 10; 4935 t4_get_regs(sc, buf, regs->len); 4936 } 4937 4938 #define A_PL_INDIR_CMD 0x1f8 4939 4940 #define S_PL_AUTOINC 31 4941 #define M_PL_AUTOINC 0x1U 4942 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 4943 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 4944 4945 #define S_PL_VFID 20 4946 #define M_PL_VFID 0xffU 4947 #define V_PL_VFID(x) ((x) << S_PL_VFID) 4948 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 4949 4950 #define S_PL_ADDR 0 4951 #define M_PL_ADDR 0xfffffU 4952 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 4953 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 4954 4955 #define A_PL_INDIR_DATA 0x1fc 4956 4957 static uint64_t 4958 read_vf_stat(struct adapter *sc, unsigned int viid, int reg) 4959 { 4960 u32 stats[2]; 4961 4962 mtx_assert(&sc->reg_lock, MA_OWNED); 4963 if (sc->flags & IS_VF) { 4964 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 4965 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 4966 } else { 4967 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 4968 V_PL_VFID(G_FW_VIID_VIN(viid)) | 4969 V_PL_ADDR(VF_MPS_REG(reg))); 4970 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 4971 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 4972 } 4973 return (((uint64_t)stats[1]) << 32 | stats[0]); 4974 } 4975 4976 static void 4977 t4_get_vi_stats(struct adapter *sc, unsigned int viid, 4978 struct fw_vi_stats_vf *stats) 4979 { 4980 4981 #define GET_STAT(name) \ 4982 read_vf_stat(sc, viid, A_MPS_VF_STAT_##name##_L) 4983 4984 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 4985 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 4986 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 4987 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 4988 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 4989 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 4990 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 4991 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 4992 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 4993 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 4994 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 4995 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 4996 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 4997 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 4998 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 4999 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 5000 5001 #undef GET_STAT 5002 } 5003 5004 static void 5005 t4_clr_vi_stats(struct adapter *sc, unsigned int viid) 5006 { 5007 int reg; 5008 5009 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 5010 V_PL_VFID(G_FW_VIID_VIN(viid)) | 5011 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 5012 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 5013 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 5014 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 5015 } 5016 5017 static void 5018 vi_refresh_stats(struct adapter *sc, struct vi_info *vi) 5019 { 5020 struct timeval tv; 5021 const struct timeval interval = {0, 250000}; /* 250ms */ 5022 5023 if (!(vi->flags & VI_INIT_DONE)) 5024 return; 5025 5026 getmicrotime(&tv); 5027 timevalsub(&tv, &interval); 5028 if (timevalcmp(&tv, &vi->last_refreshed, <)) 5029 return; 5030 5031 mtx_lock(&sc->reg_lock); 5032 t4_get_vi_stats(sc, vi->viid, &vi->stats); 5033 getmicrotime(&vi->last_refreshed); 5034 mtx_unlock(&sc->reg_lock); 5035 } 5036 5037 static void 5038 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi) 5039 { 5040 int i; 5041 u_int v, tnl_cong_drops; 5042 struct timeval tv; 5043 const struct timeval interval = {0, 250000}; /* 250ms */ 5044 5045 getmicrotime(&tv); 5046 timevalsub(&tv, &interval); 5047 if (timevalcmp(&tv, &pi->last_refreshed, <)) 5048 return; 5049 5050 tnl_cong_drops = 0; 5051 t4_get_port_stats(sc, pi->tx_chan, &pi->stats); 5052 for (i = 0; i < sc->chip_params->nchan; i++) { 5053 if (pi->rx_chan_map & (1 << i)) { 5054 mtx_lock(&sc->reg_lock); 5055 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 5056 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 5057 mtx_unlock(&sc->reg_lock); 5058 tnl_cong_drops += v; 5059 } 5060 } 5061 pi->tnl_cong_drops = tnl_cong_drops; 5062 getmicrotime(&pi->last_refreshed); 5063 } 5064 5065 static void 5066 cxgbe_tick(void *arg) 5067 { 5068 struct port_info *pi = arg; 5069 struct adapter *sc = pi->adapter; 5070 5071 PORT_LOCK_ASSERT_OWNED(pi); 5072 cxgbe_refresh_stats(sc, pi); 5073 5074 callout_schedule(&pi->tick, hz); 5075 } 5076 5077 void 5078 vi_tick(void *arg) 5079 { 5080 struct vi_info *vi = arg; 5081 struct adapter *sc = vi->pi->adapter; 5082 5083 vi_refresh_stats(sc, vi); 5084 5085 callout_schedule(&vi->tick, hz); 5086 } 5087 5088 static void 5089 cxgbe_vlan_config(void *arg, struct ifnet *ifp, uint16_t vid) 5090 { 5091 struct ifnet *vlan; 5092 5093 if (arg != ifp || ifp->if_type != IFT_ETHER) 5094 return; 5095 5096 vlan = VLAN_DEVAT(ifp, vid); 5097 VLAN_SETCOOKIE(vlan, ifp); 5098 } 5099 5100 /* 5101 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 5102 */ 5103 static char *caps_decoder[] = { 5104 "\20\001IPMI\002NCSI", /* 0: NBM */ 5105 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 5106 "\20\001INGRESS\002EGRESS", /* 2: switch */ 5107 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 5108 "\006HASHFILTER\007ETHOFLD", 5109 "\20\001TOE", /* 4: TOE */ 5110 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 5111 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 5112 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 5113 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 5114 "\007T10DIF" 5115 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 5116 "\20\001LOOKASIDE\002TLSKEYS", /* 7: Crypto */ 5117 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 5118 "\004PO_INITIATOR\005PO_TARGET", 5119 }; 5120 5121 void 5122 t4_sysctls(struct adapter *sc) 5123 { 5124 struct sysctl_ctx_list *ctx; 5125 struct sysctl_oid *oid; 5126 struct sysctl_oid_list *children, *c0; 5127 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 5128 5129 ctx = device_get_sysctl_ctx(sc->dev); 5130 5131 /* 5132 * dev.t4nex.X. 5133 */ 5134 oid = device_get_sysctl_tree(sc->dev); 5135 c0 = children = SYSCTL_CHILDREN(oid); 5136 5137 sc->sc_do_rxcopy = 1; 5138 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 5139 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 5140 5141 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 5142 sc->params.nports, "# of ports"); 5143 5144 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 5145 CTLTYPE_STRING | CTLFLAG_RD, doorbells, sc->doorbells, 5146 sysctl_bitfield, "A", "available doorbells"); 5147 5148 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 5149 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 5150 5151 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 5152 CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val, 5153 sizeof(sc->params.sge.timer_val), sysctl_int_array, "A", 5154 "interrupt holdoff timer values (us)"); 5155 5156 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 5157 CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val, 5158 sizeof(sc->params.sge.counter_val), sysctl_int_array, "A", 5159 "interrupt holdoff packet counter values"); 5160 5161 t4_sge_sysctls(sc, ctx, children); 5162 5163 sc->lro_timeout = 100; 5164 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 5165 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 5166 5167 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 5168 &sc->debug_flags, 0, "flags to enable runtime debugging"); 5169 5170 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 5171 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 5172 5173 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 5174 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 5175 5176 if (sc->flags & IS_VF) 5177 return; 5178 5179 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 5180 NULL, chip_rev(sc), "chip hardware revision"); 5181 5182 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 5183 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 5184 5185 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 5186 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 5187 5188 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 5189 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 5190 5191 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 5192 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 5193 5194 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 5195 sc->er_version, 0, "expansion ROM version"); 5196 5197 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 5198 sc->bs_version, 0, "bootstrap firmware version"); 5199 5200 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 5201 NULL, sc->params.scfg_vers, "serial config version"); 5202 5203 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 5204 NULL, sc->params.vpd_vers, "VPD version"); 5205 5206 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 5207 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 5208 5209 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 5210 sc->cfcsum, "config file checksum"); 5211 5212 #define SYSCTL_CAP(name, n, text) \ 5213 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 5214 CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], sc->name, \ 5215 sysctl_bitfield, "A", "available " text " capabilities") 5216 5217 SYSCTL_CAP(nbmcaps, 0, "NBM"); 5218 SYSCTL_CAP(linkcaps, 1, "link"); 5219 SYSCTL_CAP(switchcaps, 2, "switch"); 5220 SYSCTL_CAP(niccaps, 3, "NIC"); 5221 SYSCTL_CAP(toecaps, 4, "TCP offload"); 5222 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 5223 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 5224 SYSCTL_CAP(cryptocaps, 7, "crypto"); 5225 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 5226 #undef SYSCTL_CAP 5227 5228 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 5229 NULL, sc->tids.nftids, "number of filters"); 5230 5231 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT | 5232 CTLFLAG_RD, sc, 0, sysctl_temperature, "I", 5233 "chip temperature (in Celsius)"); 5234 5235 #ifdef SBUF_DRAIN 5236 /* 5237 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 5238 */ 5239 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 5240 CTLFLAG_RD | CTLFLAG_SKIP, NULL, 5241 "logs and miscellaneous information"); 5242 children = SYSCTL_CHILDREN(oid); 5243 5244 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 5245 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5246 sysctl_cctrl, "A", "congestion control"); 5247 5248 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 5249 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5250 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 5251 5252 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 5253 CTLTYPE_STRING | CTLFLAG_RD, sc, 1, 5254 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 5255 5256 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 5257 CTLTYPE_STRING | CTLFLAG_RD, sc, 2, 5258 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 5259 5260 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 5261 CTLTYPE_STRING | CTLFLAG_RD, sc, 3, 5262 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 5263 5264 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 5265 CTLTYPE_STRING | CTLFLAG_RD, sc, 4, 5266 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 5267 5268 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 5269 CTLTYPE_STRING | CTLFLAG_RD, sc, 5, 5270 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 5271 5272 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 5273 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5274 chip_id(sc) <= CHELSIO_T5 ? sysctl_cim_la : sysctl_cim_la_t6, 5275 "A", "CIM logic analyzer"); 5276 5277 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 5278 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5279 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 5280 5281 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 5282 CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ, 5283 sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 5284 5285 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 5286 CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ, 5287 sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 5288 5289 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 5290 CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ, 5291 sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 5292 5293 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 5294 CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ, 5295 sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 5296 5297 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 5298 CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ, 5299 sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 5300 5301 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 5302 CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ, 5303 sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 5304 5305 if (chip_id(sc) > CHELSIO_T4) { 5306 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 5307 CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ, 5308 sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)"); 5309 5310 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 5311 CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ, 5312 sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)"); 5313 } 5314 5315 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 5316 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5317 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 5318 5319 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 5320 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5321 sysctl_cim_qcfg, "A", "CIM queue configuration"); 5322 5323 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 5324 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5325 sysctl_cpl_stats, "A", "CPL statistics"); 5326 5327 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 5328 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5329 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 5330 5331 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 5332 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5333 sysctl_devlog, "A", "firmware's device log"); 5334 5335 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 5336 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5337 sysctl_fcoe_stats, "A", "FCoE statistics"); 5338 5339 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 5340 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5341 sysctl_hw_sched, "A", "hardware scheduler "); 5342 5343 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 5344 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5345 sysctl_l2t, "A", "hardware L2 table"); 5346 5347 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 5348 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5349 sysctl_lb_stats, "A", "loopback statistics"); 5350 5351 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 5352 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5353 sysctl_meminfo, "A", "memory regions"); 5354 5355 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 5356 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5357 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 5358 "A", "MPS TCAM entries"); 5359 5360 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 5361 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5362 sysctl_path_mtus, "A", "path MTUs"); 5363 5364 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 5365 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5366 sysctl_pm_stats, "A", "PM statistics"); 5367 5368 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 5369 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5370 sysctl_rdma_stats, "A", "RDMA statistics"); 5371 5372 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 5373 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5374 sysctl_tcp_stats, "A", "TCP statistics"); 5375 5376 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 5377 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5378 sysctl_tids, "A", "TID information"); 5379 5380 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 5381 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5382 sysctl_tp_err_stats, "A", "TP error statistics"); 5383 5384 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 5385 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I", 5386 "TP logic analyzer event capture mask"); 5387 5388 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 5389 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5390 sysctl_tp_la, "A", "TP logic analyzer"); 5391 5392 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 5393 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5394 sysctl_tx_rate, "A", "Tx rate"); 5395 5396 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 5397 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5398 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 5399 5400 if (chip_id(sc) >= CHELSIO_T5) { 5401 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 5402 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 5403 sysctl_wcwr_stats, "A", "write combined work requests"); 5404 } 5405 #endif 5406 5407 #ifdef TCP_OFFLOAD 5408 if (is_offload(sc)) { 5409 int i; 5410 char s[4]; 5411 5412 /* 5413 * dev.t4nex.X.toe. 5414 */ 5415 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD, 5416 NULL, "TOE parameters"); 5417 children = SYSCTL_CHILDREN(oid); 5418 5419 sc->tt.cong_algorithm = -1; 5420 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 5421 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 5422 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 5423 "3 = highspeed)"); 5424 5425 sc->tt.sndbuf = 256 * 1024; 5426 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 5427 &sc->tt.sndbuf, 0, "max hardware send buffer size"); 5428 5429 sc->tt.ddp = 0; 5430 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW, 5431 &sc->tt.ddp, 0, "DDP allowed"); 5432 5433 sc->tt.rx_coalesce = 1; 5434 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 5435 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 5436 5437 sc->tt.tx_align = 1; 5438 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 5439 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 5440 5441 sc->tt.tx_zcopy = 0; 5442 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 5443 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 5444 "Enable zero-copy aio_write(2)"); 5445 5446 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 5447 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A", 5448 "TP timer tick (us)"); 5449 5450 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 5451 CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A", 5452 "TCP timestamp tick (us)"); 5453 5454 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 5455 CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A", 5456 "DACK tick (us)"); 5457 5458 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 5459 CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer, 5460 "IU", "DACK timer (us)"); 5461 5462 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 5463 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN, 5464 sysctl_tp_timer, "LU", "Minimum retransmit interval (us)"); 5465 5466 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 5467 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX, 5468 sysctl_tp_timer, "LU", "Maximum retransmit interval (us)"); 5469 5470 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 5471 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN, 5472 sysctl_tp_timer, "LU", "Persist timer min (us)"); 5473 5474 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 5475 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX, 5476 sysctl_tp_timer, "LU", "Persist timer max (us)"); 5477 5478 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 5479 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE, 5480 sysctl_tp_timer, "LU", "Keepalive idle timer (us)"); 5481 5482 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 5483 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL, 5484 sysctl_tp_timer, "LU", "Keepalive interval timer (us)"); 5485 5486 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 5487 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT, 5488 sysctl_tp_timer, "LU", "Initial SRTT (us)"); 5489 5490 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 5491 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER, 5492 sysctl_tp_timer, "LU", "FINWAIT2 timer (us)"); 5493 5494 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 5495 CTLTYPE_UINT | CTLFLAG_RD, sc, S_SYNSHIFTMAX, 5496 sysctl_tp_shift_cnt, "IU", 5497 "Number of SYN retransmissions before abort"); 5498 5499 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 5500 CTLTYPE_UINT | CTLFLAG_RD, sc, S_RXTSHIFTMAXR2, 5501 sysctl_tp_shift_cnt, "IU", 5502 "Number of retransmissions before abort"); 5503 5504 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 5505 CTLTYPE_UINT | CTLFLAG_RD, sc, S_KEEPALIVEMAXR2, 5506 sysctl_tp_shift_cnt, "IU", 5507 "Number of keepalive probes before abort"); 5508 5509 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 5510 CTLFLAG_RD, NULL, "TOE retransmit backoffs"); 5511 children = SYSCTL_CHILDREN(oid); 5512 for (i = 0; i < 16; i++) { 5513 snprintf(s, sizeof(s), "%u", i); 5514 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 5515 CTLTYPE_UINT | CTLFLAG_RD, sc, i, sysctl_tp_backoff, 5516 "IU", "TOE retransmit backoff"); 5517 } 5518 } 5519 #endif 5520 } 5521 5522 void 5523 vi_sysctls(struct vi_info *vi) 5524 { 5525 struct sysctl_ctx_list *ctx; 5526 struct sysctl_oid *oid; 5527 struct sysctl_oid_list *children; 5528 5529 ctx = device_get_sysctl_ctx(vi->dev); 5530 5531 /* 5532 * dev.v?(cxgbe|cxl).X. 5533 */ 5534 oid = device_get_sysctl_tree(vi->dev); 5535 children = SYSCTL_CHILDREN(oid); 5536 5537 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 5538 vi->viid, "VI identifer"); 5539 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 5540 &vi->nrxq, 0, "# of rx queues"); 5541 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 5542 &vi->ntxq, 0, "# of tx queues"); 5543 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 5544 &vi->first_rxq, 0, "index of first rx queue"); 5545 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 5546 &vi->first_txq, 0, "index of first tx queue"); 5547 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 5548 vi->rss_size, "size of RSS indirection table"); 5549 5550 if (IS_MAIN_VI(vi)) { 5551 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 5552 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU", 5553 "Reserve queue 0 for non-flowid packets"); 5554 } 5555 5556 #ifdef TCP_OFFLOAD 5557 if (vi->nofldrxq != 0) { 5558 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 5559 &vi->nofldrxq, 0, 5560 "# of rx queues for offloaded TCP connections"); 5561 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 5562 &vi->nofldtxq, 0, 5563 "# of tx queues for offloaded TCP connections"); 5564 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 5565 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 5566 "index of first TOE rx queue"); 5567 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 5568 CTLFLAG_RD, &vi->first_ofld_txq, 0, 5569 "index of first TOE tx queue"); 5570 } 5571 #endif 5572 #ifdef DEV_NETMAP 5573 if (vi->nnmrxq != 0) { 5574 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 5575 &vi->nnmrxq, 0, "# of netmap rx queues"); 5576 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 5577 &vi->nnmtxq, 0, "# of netmap tx queues"); 5578 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 5579 CTLFLAG_RD, &vi->first_nm_rxq, 0, 5580 "index of first netmap rx queue"); 5581 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 5582 CTLFLAG_RD, &vi->first_nm_txq, 0, 5583 "index of first netmap tx queue"); 5584 } 5585 #endif 5586 5587 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 5588 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I", 5589 "holdoff timer index"); 5590 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 5591 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I", 5592 "holdoff packet counter index"); 5593 5594 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 5595 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I", 5596 "rx queue size"); 5597 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 5598 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I", 5599 "tx queue size"); 5600 } 5601 5602 static void 5603 cxgbe_sysctls(struct port_info *pi) 5604 { 5605 struct sysctl_ctx_list *ctx; 5606 struct sysctl_oid *oid; 5607 struct sysctl_oid_list *children, *children2; 5608 struct adapter *sc = pi->adapter; 5609 int i; 5610 char name[16]; 5611 5612 ctx = device_get_sysctl_ctx(pi->dev); 5613 5614 /* 5615 * dev.cxgbe.X. 5616 */ 5617 oid = device_get_sysctl_tree(pi->dev); 5618 children = SYSCTL_CHILDREN(oid); 5619 5620 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING | 5621 CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down"); 5622 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 5623 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 5624 CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I", 5625 "PHY temperature (in Celsius)"); 5626 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 5627 CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I", 5628 "PHY firmware version"); 5629 } 5630 5631 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 5632 CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A", 5633 "PAUSE settings (bit 0 = rx_pause, bit 1 = tx_pause)"); 5634 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec", 5635 CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A", 5636 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 5637 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 5638 CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I", 5639 "autonegotiation (-1 = not supported)"); 5640 5641 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 5642 port_top_speed(pi), "max speed (in Gbps)"); 5643 5644 if (sc->flags & IS_VF) 5645 return; 5646 5647 /* 5648 * dev.(cxgbe|cxl).X.tc. 5649 */ 5650 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL, 5651 "Tx scheduler traffic classes (cl_rl)"); 5652 for (i = 0; i < sc->chip_params->nsched_cls; i++) { 5653 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 5654 5655 snprintf(name, sizeof(name), "%d", i); 5656 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 5657 SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL, 5658 "traffic class")); 5659 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "flags", CTLFLAG_RD, 5660 &tc->flags, 0, "flags"); 5661 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 5662 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 5663 #ifdef SBUF_DRAIN 5664 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 5665 CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i, 5666 sysctl_tc_params, "A", "traffic class parameters"); 5667 #endif 5668 } 5669 5670 /* 5671 * dev.cxgbe.X.stats. 5672 */ 5673 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, 5674 NULL, "port statistics"); 5675 children = SYSCTL_CHILDREN(oid); 5676 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 5677 &pi->tx_parse_error, 0, 5678 "# of tx packets with invalid length or # of segments"); 5679 5680 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \ 5681 SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \ 5682 CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \ 5683 sysctl_handle_t4_reg64, "QU", desc) 5684 5685 SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames", 5686 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L)); 5687 SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames", 5688 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L)); 5689 SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames", 5690 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L)); 5691 SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames", 5692 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L)); 5693 SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames", 5694 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L)); 5695 SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames", 5696 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L)); 5697 SYSCTL_ADD_T4_REG64(pi, "tx_frames_64", 5698 "# of tx frames in this range", 5699 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L)); 5700 SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127", 5701 "# of tx frames in this range", 5702 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L)); 5703 SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255", 5704 "# of tx frames in this range", 5705 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L)); 5706 SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511", 5707 "# of tx frames in this range", 5708 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L)); 5709 SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023", 5710 "# of tx frames in this range", 5711 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L)); 5712 SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518", 5713 "# of tx frames in this range", 5714 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L)); 5715 SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max", 5716 "# of tx frames in this range", 5717 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L)); 5718 SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames", 5719 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L)); 5720 SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted", 5721 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L)); 5722 SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted", 5723 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L)); 5724 SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted", 5725 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L)); 5726 SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted", 5727 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L)); 5728 SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted", 5729 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L)); 5730 SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted", 5731 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L)); 5732 SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted", 5733 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L)); 5734 SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted", 5735 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L)); 5736 SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted", 5737 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L)); 5738 5739 SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames", 5740 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L)); 5741 SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames", 5742 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L)); 5743 SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames", 5744 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L)); 5745 SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames", 5746 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L)); 5747 SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames", 5748 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L)); 5749 SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU", 5750 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L)); 5751 SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames", 5752 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L)); 5753 SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err", 5754 "# of frames received with bad FCS", 5755 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L)); 5756 SYSCTL_ADD_T4_REG64(pi, "rx_len_err", 5757 "# of frames received with length error", 5758 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L)); 5759 SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors", 5760 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L)); 5761 SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received", 5762 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L)); 5763 SYSCTL_ADD_T4_REG64(pi, "rx_frames_64", 5764 "# of rx frames in this range", 5765 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L)); 5766 SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127", 5767 "# of rx frames in this range", 5768 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L)); 5769 SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255", 5770 "# of rx frames in this range", 5771 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L)); 5772 SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511", 5773 "# of rx frames in this range", 5774 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L)); 5775 SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023", 5776 "# of rx frames in this range", 5777 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L)); 5778 SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518", 5779 "# of rx frames in this range", 5780 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L)); 5781 SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max", 5782 "# of rx frames in this range", 5783 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L)); 5784 SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received", 5785 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L)); 5786 SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received", 5787 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L)); 5788 SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received", 5789 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L)); 5790 SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received", 5791 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L)); 5792 SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received", 5793 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L)); 5794 SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received", 5795 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L)); 5796 SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received", 5797 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L)); 5798 SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received", 5799 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L)); 5800 SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received", 5801 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L)); 5802 5803 #undef SYSCTL_ADD_T4_REG64 5804 5805 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \ 5806 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 5807 &pi->stats.name, desc) 5808 5809 /* We get these from port_stats and they may be stale by up to 1s */ 5810 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0, 5811 "# drops due to buffer-group 0 overflows"); 5812 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1, 5813 "# drops due to buffer-group 1 overflows"); 5814 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2, 5815 "# drops due to buffer-group 2 overflows"); 5816 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3, 5817 "# drops due to buffer-group 3 overflows"); 5818 SYSCTL_ADD_T4_PORTSTAT(rx_trunc0, 5819 "# of buffer-group 0 truncated packets"); 5820 SYSCTL_ADD_T4_PORTSTAT(rx_trunc1, 5821 "# of buffer-group 1 truncated packets"); 5822 SYSCTL_ADD_T4_PORTSTAT(rx_trunc2, 5823 "# of buffer-group 2 truncated packets"); 5824 SYSCTL_ADD_T4_PORTSTAT(rx_trunc3, 5825 "# of buffer-group 3 truncated packets"); 5826 5827 #undef SYSCTL_ADD_T4_PORTSTAT 5828 } 5829 5830 static int 5831 sysctl_int_array(SYSCTL_HANDLER_ARGS) 5832 { 5833 int rc, *i, space = 0; 5834 struct sbuf sb; 5835 5836 sbuf_new_for_sysctl(&sb, NULL, 64, req); 5837 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 5838 if (space) 5839 sbuf_printf(&sb, " "); 5840 sbuf_printf(&sb, "%d", *i); 5841 space = 1; 5842 } 5843 rc = sbuf_finish(&sb); 5844 sbuf_delete(&sb); 5845 return (rc); 5846 } 5847 5848 static int 5849 sysctl_bitfield(SYSCTL_HANDLER_ARGS) 5850 { 5851 int rc; 5852 struct sbuf *sb; 5853 5854 rc = sysctl_wire_old_buffer(req, 0); 5855 if (rc != 0) 5856 return(rc); 5857 5858 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 5859 if (sb == NULL) 5860 return (ENOMEM); 5861 5862 sbuf_printf(sb, "%b", (int)arg2, (char *)arg1); 5863 rc = sbuf_finish(sb); 5864 sbuf_delete(sb); 5865 5866 return (rc); 5867 } 5868 5869 static int 5870 sysctl_btphy(SYSCTL_HANDLER_ARGS) 5871 { 5872 struct port_info *pi = arg1; 5873 int op = arg2; 5874 struct adapter *sc = pi->adapter; 5875 u_int v; 5876 int rc; 5877 5878 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 5879 if (rc) 5880 return (rc); 5881 /* XXX: magic numbers */ 5882 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820, 5883 &v); 5884 end_synchronized_op(sc, 0); 5885 if (rc) 5886 return (rc); 5887 if (op == 0) 5888 v /= 256; 5889 5890 rc = sysctl_handle_int(oidp, &v, 0, req); 5891 return (rc); 5892 } 5893 5894 static int 5895 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 5896 { 5897 struct vi_info *vi = arg1; 5898 int rc, val; 5899 5900 val = vi->rsrv_noflowq; 5901 rc = sysctl_handle_int(oidp, &val, 0, req); 5902 if (rc != 0 || req->newptr == NULL) 5903 return (rc); 5904 5905 if ((val >= 1) && (vi->ntxq > 1)) 5906 vi->rsrv_noflowq = 1; 5907 else 5908 vi->rsrv_noflowq = 0; 5909 5910 return (rc); 5911 } 5912 5913 static int 5914 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 5915 { 5916 struct vi_info *vi = arg1; 5917 struct adapter *sc = vi->pi->adapter; 5918 int idx, rc, i; 5919 struct sge_rxq *rxq; 5920 #ifdef TCP_OFFLOAD 5921 struct sge_ofld_rxq *ofld_rxq; 5922 #endif 5923 uint8_t v; 5924 5925 idx = vi->tmr_idx; 5926 5927 rc = sysctl_handle_int(oidp, &idx, 0, req); 5928 if (rc != 0 || req->newptr == NULL) 5929 return (rc); 5930 5931 if (idx < 0 || idx >= SGE_NTIMERS) 5932 return (EINVAL); 5933 5934 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 5935 "t4tmr"); 5936 if (rc) 5937 return (rc); 5938 5939 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 5940 for_each_rxq(vi, i, rxq) { 5941 #ifdef atomic_store_rel_8 5942 atomic_store_rel_8(&rxq->iq.intr_params, v); 5943 #else 5944 rxq->iq.intr_params = v; 5945 #endif 5946 } 5947 #ifdef TCP_OFFLOAD 5948 for_each_ofld_rxq(vi, i, ofld_rxq) { 5949 #ifdef atomic_store_rel_8 5950 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 5951 #else 5952 ofld_rxq->iq.intr_params = v; 5953 #endif 5954 } 5955 #endif 5956 vi->tmr_idx = idx; 5957 5958 end_synchronized_op(sc, LOCK_HELD); 5959 return (0); 5960 } 5961 5962 static int 5963 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 5964 { 5965 struct vi_info *vi = arg1; 5966 struct adapter *sc = vi->pi->adapter; 5967 int idx, rc; 5968 5969 idx = vi->pktc_idx; 5970 5971 rc = sysctl_handle_int(oidp, &idx, 0, req); 5972 if (rc != 0 || req->newptr == NULL) 5973 return (rc); 5974 5975 if (idx < -1 || idx >= SGE_NCOUNTERS) 5976 return (EINVAL); 5977 5978 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 5979 "t4pktc"); 5980 if (rc) 5981 return (rc); 5982 5983 if (vi->flags & VI_INIT_DONE) 5984 rc = EBUSY; /* cannot be changed once the queues are created */ 5985 else 5986 vi->pktc_idx = idx; 5987 5988 end_synchronized_op(sc, LOCK_HELD); 5989 return (rc); 5990 } 5991 5992 static int 5993 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 5994 { 5995 struct vi_info *vi = arg1; 5996 struct adapter *sc = vi->pi->adapter; 5997 int qsize, rc; 5998 5999 qsize = vi->qsize_rxq; 6000 6001 rc = sysctl_handle_int(oidp, &qsize, 0, req); 6002 if (rc != 0 || req->newptr == NULL) 6003 return (rc); 6004 6005 if (qsize < 128 || (qsize & 7)) 6006 return (EINVAL); 6007 6008 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 6009 "t4rxqs"); 6010 if (rc) 6011 return (rc); 6012 6013 if (vi->flags & VI_INIT_DONE) 6014 rc = EBUSY; /* cannot be changed once the queues are created */ 6015 else 6016 vi->qsize_rxq = qsize; 6017 6018 end_synchronized_op(sc, LOCK_HELD); 6019 return (rc); 6020 } 6021 6022 static int 6023 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 6024 { 6025 struct vi_info *vi = arg1; 6026 struct adapter *sc = vi->pi->adapter; 6027 int qsize, rc; 6028 6029 qsize = vi->qsize_txq; 6030 6031 rc = sysctl_handle_int(oidp, &qsize, 0, req); 6032 if (rc != 0 || req->newptr == NULL) 6033 return (rc); 6034 6035 if (qsize < 128 || qsize > 65536) 6036 return (EINVAL); 6037 6038 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 6039 "t4txqs"); 6040 if (rc) 6041 return (rc); 6042 6043 if (vi->flags & VI_INIT_DONE) 6044 rc = EBUSY; /* cannot be changed once the queues are created */ 6045 else 6046 vi->qsize_txq = qsize; 6047 6048 end_synchronized_op(sc, LOCK_HELD); 6049 return (rc); 6050 } 6051 6052 static int 6053 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 6054 { 6055 struct port_info *pi = arg1; 6056 struct adapter *sc = pi->adapter; 6057 struct link_config *lc = &pi->link_cfg; 6058 int rc; 6059 6060 if (req->newptr == NULL) { 6061 struct sbuf *sb; 6062 static char *bits = "\20\1PAUSE_RX\2PAUSE_TX"; 6063 6064 rc = sysctl_wire_old_buffer(req, 0); 6065 if (rc != 0) 6066 return(rc); 6067 6068 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 6069 if (sb == NULL) 6070 return (ENOMEM); 6071 6072 sbuf_printf(sb, "%b", lc->fc & (PAUSE_TX | PAUSE_RX), bits); 6073 rc = sbuf_finish(sb); 6074 sbuf_delete(sb); 6075 } else { 6076 char s[2]; 6077 int n; 6078 6079 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX)); 6080 s[1] = 0; 6081 6082 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 6083 if (rc != 0) 6084 return(rc); 6085 6086 if (s[1] != 0) 6087 return (EINVAL); 6088 if (s[0] < '0' || s[0] > '9') 6089 return (EINVAL); /* not a number */ 6090 n = s[0] - '0'; 6091 if (n & ~(PAUSE_TX | PAUSE_RX)) 6092 return (EINVAL); /* some other bit is set too */ 6093 6094 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 6095 "t4PAUSE"); 6096 if (rc) 6097 return (rc); 6098 if ((lc->requested_fc & (PAUSE_TX | PAUSE_RX)) != n) { 6099 lc->requested_fc &= ~(PAUSE_TX | PAUSE_RX); 6100 lc->requested_fc |= n; 6101 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6102 if (rc == 0) { 6103 lc->fc = lc->requested_fc; 6104 } 6105 } 6106 end_synchronized_op(sc, 0); 6107 } 6108 6109 return (rc); 6110 } 6111 6112 static int 6113 sysctl_fec(SYSCTL_HANDLER_ARGS) 6114 { 6115 struct port_info *pi = arg1; 6116 struct adapter *sc = pi->adapter; 6117 struct link_config *lc = &pi->link_cfg; 6118 int rc; 6119 6120 if (req->newptr == NULL) { 6121 struct sbuf *sb; 6122 static char *bits = "\20\1RS\2BASER_RS\3RESERVED"; 6123 6124 rc = sysctl_wire_old_buffer(req, 0); 6125 if (rc != 0) 6126 return(rc); 6127 6128 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 6129 if (sb == NULL) 6130 return (ENOMEM); 6131 6132 sbuf_printf(sb, "%b", lc->fec & M_FW_PORT_CAP_FEC, bits); 6133 rc = sbuf_finish(sb); 6134 sbuf_delete(sb); 6135 } else { 6136 char s[2]; 6137 int n; 6138 6139 s[0] = '0' + (lc->requested_fec & M_FW_PORT_CAP_FEC); 6140 s[1] = 0; 6141 6142 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 6143 if (rc != 0) 6144 return(rc); 6145 6146 if (s[1] != 0) 6147 return (EINVAL); 6148 if (s[0] < '0' || s[0] > '9') 6149 return (EINVAL); /* not a number */ 6150 n = s[0] - '0'; 6151 if (n & ~M_FW_PORT_CAP_FEC) 6152 return (EINVAL); /* some other bit is set too */ 6153 6154 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 6155 "t4fec"); 6156 if (rc) 6157 return (rc); 6158 if ((lc->requested_fec & M_FW_PORT_CAP_FEC) != n) { 6159 lc->requested_fec = n & 6160 G_FW_PORT_CAP_FEC(lc->supported); 6161 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6162 if (rc == 0) { 6163 lc->fec = lc->requested_fec; 6164 } 6165 } 6166 end_synchronized_op(sc, 0); 6167 } 6168 6169 return (rc); 6170 } 6171 6172 static int 6173 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 6174 { 6175 struct port_info *pi = arg1; 6176 struct adapter *sc = pi->adapter; 6177 struct link_config *lc = &pi->link_cfg; 6178 int rc, val, old; 6179 6180 if (lc->supported & FW_PORT_CAP_ANEG) 6181 val = lc->requested_aneg == AUTONEG_ENABLE ? 1 : 0; 6182 else 6183 val = -1; 6184 rc = sysctl_handle_int(oidp, &val, 0, req); 6185 if (rc != 0 || req->newptr == NULL) 6186 return (rc); 6187 if ((lc->supported & FW_PORT_CAP_ANEG) == 0) 6188 return (ENOTSUP); 6189 6190 if (val == 0) 6191 val = AUTONEG_DISABLE; 6192 else if (val == 1) 6193 val = AUTONEG_ENABLE; 6194 else 6195 return (EINVAL); 6196 if (lc->requested_aneg == val) 6197 return (0); /* no change */ 6198 6199 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 6200 "t4aneg"); 6201 if (rc) 6202 return (rc); 6203 old = lc->requested_aneg; 6204 lc->requested_aneg = val; 6205 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6206 if (rc != 0) 6207 lc->requested_aneg = old; 6208 end_synchronized_op(sc, 0); 6209 return (rc); 6210 } 6211 6212 static int 6213 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 6214 { 6215 struct adapter *sc = arg1; 6216 int reg = arg2; 6217 uint64_t val; 6218 6219 val = t4_read_reg64(sc, reg); 6220 6221 return (sysctl_handle_64(oidp, &val, 0, req)); 6222 } 6223 6224 static int 6225 sysctl_temperature(SYSCTL_HANDLER_ARGS) 6226 { 6227 struct adapter *sc = arg1; 6228 int rc, t; 6229 uint32_t param, val; 6230 6231 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 6232 if (rc) 6233 return (rc); 6234 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 6235 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 6236 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 6237 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 6238 end_synchronized_op(sc, 0); 6239 if (rc) 6240 return (rc); 6241 6242 /* unknown is returned as 0 but we display -1 in that case */ 6243 t = val == 0 ? -1 : val; 6244 6245 rc = sysctl_handle_int(oidp, &t, 0, req); 6246 return (rc); 6247 } 6248 6249 #ifdef SBUF_DRAIN 6250 static int 6251 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 6252 { 6253 struct adapter *sc = arg1; 6254 struct sbuf *sb; 6255 int rc, i; 6256 uint16_t incr[NMTUS][NCCTRL_WIN]; 6257 static const char *dec_fac[] = { 6258 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 6259 "0.9375" 6260 }; 6261 6262 rc = sysctl_wire_old_buffer(req, 0); 6263 if (rc != 0) 6264 return (rc); 6265 6266 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6267 if (sb == NULL) 6268 return (ENOMEM); 6269 6270 t4_read_cong_tbl(sc, incr); 6271 6272 for (i = 0; i < NCCTRL_WIN; ++i) { 6273 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 6274 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 6275 incr[5][i], incr[6][i], incr[7][i]); 6276 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 6277 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 6278 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 6279 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 6280 } 6281 6282 rc = sbuf_finish(sb); 6283 sbuf_delete(sb); 6284 6285 return (rc); 6286 } 6287 6288 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 6289 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 6290 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 6291 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 6292 }; 6293 6294 static int 6295 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 6296 { 6297 struct adapter *sc = arg1; 6298 struct sbuf *sb; 6299 int rc, i, n, qid = arg2; 6300 uint32_t *buf, *p; 6301 char *qtype; 6302 u_int cim_num_obq = sc->chip_params->cim_num_obq; 6303 6304 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 6305 ("%s: bad qid %d\n", __func__, qid)); 6306 6307 if (qid < CIM_NUM_IBQ) { 6308 /* inbound queue */ 6309 qtype = "IBQ"; 6310 n = 4 * CIM_IBQ_SIZE; 6311 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 6312 rc = t4_read_cim_ibq(sc, qid, buf, n); 6313 } else { 6314 /* outbound queue */ 6315 qtype = "OBQ"; 6316 qid -= CIM_NUM_IBQ; 6317 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 6318 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 6319 rc = t4_read_cim_obq(sc, qid, buf, n); 6320 } 6321 6322 if (rc < 0) { 6323 rc = -rc; 6324 goto done; 6325 } 6326 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 6327 6328 rc = sysctl_wire_old_buffer(req, 0); 6329 if (rc != 0) 6330 goto done; 6331 6332 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 6333 if (sb == NULL) { 6334 rc = ENOMEM; 6335 goto done; 6336 } 6337 6338 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 6339 for (i = 0, p = buf; i < n; i += 16, p += 4) 6340 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 6341 p[2], p[3]); 6342 6343 rc = sbuf_finish(sb); 6344 sbuf_delete(sb); 6345 done: 6346 free(buf, M_CXGBE); 6347 return (rc); 6348 } 6349 6350 static int 6351 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 6352 { 6353 struct adapter *sc = arg1; 6354 u_int cfg; 6355 struct sbuf *sb; 6356 uint32_t *buf, *p; 6357 int rc; 6358 6359 MPASS(chip_id(sc) <= CHELSIO_T5); 6360 6361 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 6362 if (rc != 0) 6363 return (rc); 6364 6365 rc = sysctl_wire_old_buffer(req, 0); 6366 if (rc != 0) 6367 return (rc); 6368 6369 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6370 if (sb == NULL) 6371 return (ENOMEM); 6372 6373 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 6374 M_ZERO | M_WAITOK); 6375 6376 rc = -t4_cim_read_la(sc, buf, NULL); 6377 if (rc != 0) 6378 goto done; 6379 6380 sbuf_printf(sb, "Status Data PC%s", 6381 cfg & F_UPDBGLACAPTPCONLY ? "" : 6382 " LS0Stat LS0Addr LS0Data"); 6383 6384 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 6385 if (cfg & F_UPDBGLACAPTPCONLY) { 6386 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 6387 p[6], p[7]); 6388 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 6389 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 6390 p[4] & 0xff, p[5] >> 8); 6391 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 6392 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 6393 p[1] & 0xf, p[2] >> 4); 6394 } else { 6395 sbuf_printf(sb, 6396 "\n %02x %x%07x %x%07x %08x %08x " 6397 "%08x%08x%08x%08x", 6398 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 6399 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 6400 p[6], p[7]); 6401 } 6402 } 6403 6404 rc = sbuf_finish(sb); 6405 sbuf_delete(sb); 6406 done: 6407 free(buf, M_CXGBE); 6408 return (rc); 6409 } 6410 6411 static int 6412 sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS) 6413 { 6414 struct adapter *sc = arg1; 6415 u_int cfg; 6416 struct sbuf *sb; 6417 uint32_t *buf, *p; 6418 int rc; 6419 6420 MPASS(chip_id(sc) > CHELSIO_T5); 6421 6422 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 6423 if (rc != 0) 6424 return (rc); 6425 6426 rc = sysctl_wire_old_buffer(req, 0); 6427 if (rc != 0) 6428 return (rc); 6429 6430 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6431 if (sb == NULL) 6432 return (ENOMEM); 6433 6434 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 6435 M_ZERO | M_WAITOK); 6436 6437 rc = -t4_cim_read_la(sc, buf, NULL); 6438 if (rc != 0) 6439 goto done; 6440 6441 sbuf_printf(sb, "Status Inst Data PC%s", 6442 cfg & F_UPDBGLACAPTPCONLY ? "" : 6443 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 6444 6445 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 6446 if (cfg & F_UPDBGLACAPTPCONLY) { 6447 sbuf_printf(sb, "\n %02x %08x %08x %08x", 6448 p[3] & 0xff, p[2], p[1], p[0]); 6449 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 6450 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 6451 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 6452 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 6453 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 6454 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 6455 p[6] >> 16); 6456 } else { 6457 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 6458 "%08x %08x %08x %08x %08x %08x", 6459 (p[9] >> 16) & 0xff, 6460 p[9] & 0xffff, p[8] >> 16, 6461 p[8] & 0xffff, p[7] >> 16, 6462 p[7] & 0xffff, p[6] >> 16, 6463 p[2], p[1], p[0], p[5], p[4], p[3]); 6464 } 6465 } 6466 6467 rc = sbuf_finish(sb); 6468 sbuf_delete(sb); 6469 done: 6470 free(buf, M_CXGBE); 6471 return (rc); 6472 } 6473 6474 static int 6475 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 6476 { 6477 struct adapter *sc = arg1; 6478 u_int i; 6479 struct sbuf *sb; 6480 uint32_t *buf, *p; 6481 int rc; 6482 6483 rc = sysctl_wire_old_buffer(req, 0); 6484 if (rc != 0) 6485 return (rc); 6486 6487 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6488 if (sb == NULL) 6489 return (ENOMEM); 6490 6491 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 6492 M_ZERO | M_WAITOK); 6493 6494 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 6495 p = buf; 6496 6497 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 6498 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 6499 p[1], p[0]); 6500 } 6501 6502 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 6503 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 6504 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 6505 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 6506 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 6507 (p[1] >> 2) | ((p[2] & 3) << 30), 6508 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 6509 p[0] & 1); 6510 } 6511 6512 rc = sbuf_finish(sb); 6513 sbuf_delete(sb); 6514 free(buf, M_CXGBE); 6515 return (rc); 6516 } 6517 6518 static int 6519 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 6520 { 6521 struct adapter *sc = arg1; 6522 u_int i; 6523 struct sbuf *sb; 6524 uint32_t *buf, *p; 6525 int rc; 6526 6527 rc = sysctl_wire_old_buffer(req, 0); 6528 if (rc != 0) 6529 return (rc); 6530 6531 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6532 if (sb == NULL) 6533 return (ENOMEM); 6534 6535 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 6536 M_ZERO | M_WAITOK); 6537 6538 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 6539 p = buf; 6540 6541 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 6542 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 6543 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 6544 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 6545 p[4], p[3], p[2], p[1], p[0]); 6546 } 6547 6548 sbuf_printf(sb, "\n\nCntl ID Data"); 6549 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 6550 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 6551 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 6552 } 6553 6554 rc = sbuf_finish(sb); 6555 sbuf_delete(sb); 6556 free(buf, M_CXGBE); 6557 return (rc); 6558 } 6559 6560 static int 6561 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 6562 { 6563 struct adapter *sc = arg1; 6564 struct sbuf *sb; 6565 int rc, i; 6566 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 6567 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 6568 uint16_t thres[CIM_NUM_IBQ]; 6569 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 6570 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 6571 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 6572 6573 cim_num_obq = sc->chip_params->cim_num_obq; 6574 if (is_t4(sc)) { 6575 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 6576 obq_rdaddr = A_UP_OBQ_0_REALADDR; 6577 } else { 6578 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 6579 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 6580 } 6581 nq = CIM_NUM_IBQ + cim_num_obq; 6582 6583 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 6584 if (rc == 0) 6585 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr); 6586 if (rc != 0) 6587 return (rc); 6588 6589 t4_read_cimq_cfg(sc, base, size, thres); 6590 6591 rc = sysctl_wire_old_buffer(req, 0); 6592 if (rc != 0) 6593 return (rc); 6594 6595 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 6596 if (sb == NULL) 6597 return (ENOMEM); 6598 6599 sbuf_printf(sb, 6600 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 6601 6602 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 6603 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 6604 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 6605 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 6606 G_QUEREMFLITS(p[2]) * 16); 6607 for ( ; i < nq; i++, p += 4, wr += 2) 6608 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 6609 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 6610 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 6611 G_QUEREMFLITS(p[2]) * 16); 6612 6613 rc = sbuf_finish(sb); 6614 sbuf_delete(sb); 6615 6616 return (rc); 6617 } 6618 6619 static int 6620 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 6621 { 6622 struct adapter *sc = arg1; 6623 struct sbuf *sb; 6624 int rc; 6625 struct tp_cpl_stats stats; 6626 6627 rc = sysctl_wire_old_buffer(req, 0); 6628 if (rc != 0) 6629 return (rc); 6630 6631 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6632 if (sb == NULL) 6633 return (ENOMEM); 6634 6635 mtx_lock(&sc->reg_lock); 6636 t4_tp_get_cpl_stats(sc, &stats, 0); 6637 mtx_unlock(&sc->reg_lock); 6638 6639 if (sc->chip_params->nchan > 2) { 6640 sbuf_printf(sb, " channel 0 channel 1" 6641 " channel 2 channel 3"); 6642 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 6643 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 6644 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 6645 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 6646 } else { 6647 sbuf_printf(sb, " channel 0 channel 1"); 6648 sbuf_printf(sb, "\nCPL requests: %10u %10u", 6649 stats.req[0], stats.req[1]); 6650 sbuf_printf(sb, "\nCPL responses: %10u %10u", 6651 stats.rsp[0], stats.rsp[1]); 6652 } 6653 6654 rc = sbuf_finish(sb); 6655 sbuf_delete(sb); 6656 6657 return (rc); 6658 } 6659 6660 static int 6661 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 6662 { 6663 struct adapter *sc = arg1; 6664 struct sbuf *sb; 6665 int rc; 6666 struct tp_usm_stats stats; 6667 6668 rc = sysctl_wire_old_buffer(req, 0); 6669 if (rc != 0) 6670 return(rc); 6671 6672 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6673 if (sb == NULL) 6674 return (ENOMEM); 6675 6676 t4_get_usm_stats(sc, &stats, 1); 6677 6678 sbuf_printf(sb, "Frames: %u\n", stats.frames); 6679 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 6680 sbuf_printf(sb, "Drops: %u", stats.drops); 6681 6682 rc = sbuf_finish(sb); 6683 sbuf_delete(sb); 6684 6685 return (rc); 6686 } 6687 6688 static const char * const devlog_level_strings[] = { 6689 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 6690 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 6691 [FW_DEVLOG_LEVEL_ERR] = "ERR", 6692 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 6693 [FW_DEVLOG_LEVEL_INFO] = "INFO", 6694 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 6695 }; 6696 6697 static const char * const devlog_facility_strings[] = { 6698 [FW_DEVLOG_FACILITY_CORE] = "CORE", 6699 [FW_DEVLOG_FACILITY_CF] = "CF", 6700 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 6701 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 6702 [FW_DEVLOG_FACILITY_RES] = "RES", 6703 [FW_DEVLOG_FACILITY_HW] = "HW", 6704 [FW_DEVLOG_FACILITY_FLR] = "FLR", 6705 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 6706 [FW_DEVLOG_FACILITY_PHY] = "PHY", 6707 [FW_DEVLOG_FACILITY_MAC] = "MAC", 6708 [FW_DEVLOG_FACILITY_PORT] = "PORT", 6709 [FW_DEVLOG_FACILITY_VI] = "VI", 6710 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 6711 [FW_DEVLOG_FACILITY_ACL] = "ACL", 6712 [FW_DEVLOG_FACILITY_TM] = "TM", 6713 [FW_DEVLOG_FACILITY_QFC] = "QFC", 6714 [FW_DEVLOG_FACILITY_DCB] = "DCB", 6715 [FW_DEVLOG_FACILITY_ETH] = "ETH", 6716 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 6717 [FW_DEVLOG_FACILITY_RI] = "RI", 6718 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 6719 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 6720 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 6721 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 6722 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 6723 }; 6724 6725 static int 6726 sysctl_devlog(SYSCTL_HANDLER_ARGS) 6727 { 6728 struct adapter *sc = arg1; 6729 struct devlog_params *dparams = &sc->params.devlog; 6730 struct fw_devlog_e *buf, *e; 6731 int i, j, rc, nentries, first = 0; 6732 struct sbuf *sb; 6733 uint64_t ftstamp = UINT64_MAX; 6734 6735 if (dparams->addr == 0) 6736 return (ENXIO); 6737 6738 buf = malloc(dparams->size, M_CXGBE, M_NOWAIT); 6739 if (buf == NULL) 6740 return (ENOMEM); 6741 6742 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size); 6743 if (rc != 0) 6744 goto done; 6745 6746 nentries = dparams->size / sizeof(struct fw_devlog_e); 6747 for (i = 0; i < nentries; i++) { 6748 e = &buf[i]; 6749 6750 if (e->timestamp == 0) 6751 break; /* end */ 6752 6753 e->timestamp = be64toh(e->timestamp); 6754 e->seqno = be32toh(e->seqno); 6755 for (j = 0; j < 8; j++) 6756 e->params[j] = be32toh(e->params[j]); 6757 6758 if (e->timestamp < ftstamp) { 6759 ftstamp = e->timestamp; 6760 first = i; 6761 } 6762 } 6763 6764 if (buf[first].timestamp == 0) 6765 goto done; /* nothing in the log */ 6766 6767 rc = sysctl_wire_old_buffer(req, 0); 6768 if (rc != 0) 6769 goto done; 6770 6771 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6772 if (sb == NULL) { 6773 rc = ENOMEM; 6774 goto done; 6775 } 6776 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 6777 "Seq#", "Tstamp", "Level", "Facility", "Message"); 6778 6779 i = first; 6780 do { 6781 e = &buf[i]; 6782 if (e->timestamp == 0) 6783 break; /* end */ 6784 6785 sbuf_printf(sb, "%10d %15ju %8s %8s ", 6786 e->seqno, e->timestamp, 6787 (e->level < nitems(devlog_level_strings) ? 6788 devlog_level_strings[e->level] : "UNKNOWN"), 6789 (e->facility < nitems(devlog_facility_strings) ? 6790 devlog_facility_strings[e->facility] : "UNKNOWN")); 6791 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 6792 e->params[2], e->params[3], e->params[4], 6793 e->params[5], e->params[6], e->params[7]); 6794 6795 if (++i == nentries) 6796 i = 0; 6797 } while (i != first); 6798 6799 rc = sbuf_finish(sb); 6800 sbuf_delete(sb); 6801 done: 6802 free(buf, M_CXGBE); 6803 return (rc); 6804 } 6805 6806 static int 6807 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 6808 { 6809 struct adapter *sc = arg1; 6810 struct sbuf *sb; 6811 int rc; 6812 struct tp_fcoe_stats stats[MAX_NCHAN]; 6813 int i, nchan = sc->chip_params->nchan; 6814 6815 rc = sysctl_wire_old_buffer(req, 0); 6816 if (rc != 0) 6817 return (rc); 6818 6819 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6820 if (sb == NULL) 6821 return (ENOMEM); 6822 6823 for (i = 0; i < nchan; i++) 6824 t4_get_fcoe_stats(sc, i, &stats[i], 1); 6825 6826 if (nchan > 2) { 6827 sbuf_printf(sb, " channel 0 channel 1" 6828 " channel 2 channel 3"); 6829 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 6830 stats[0].octets_ddp, stats[1].octets_ddp, 6831 stats[2].octets_ddp, stats[3].octets_ddp); 6832 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 6833 stats[0].frames_ddp, stats[1].frames_ddp, 6834 stats[2].frames_ddp, stats[3].frames_ddp); 6835 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 6836 stats[0].frames_drop, stats[1].frames_drop, 6837 stats[2].frames_drop, stats[3].frames_drop); 6838 } else { 6839 sbuf_printf(sb, " channel 0 channel 1"); 6840 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 6841 stats[0].octets_ddp, stats[1].octets_ddp); 6842 sbuf_printf(sb, "\nframesDDP: %16u %16u", 6843 stats[0].frames_ddp, stats[1].frames_ddp); 6844 sbuf_printf(sb, "\nframesDrop: %16u %16u", 6845 stats[0].frames_drop, stats[1].frames_drop); 6846 } 6847 6848 rc = sbuf_finish(sb); 6849 sbuf_delete(sb); 6850 6851 return (rc); 6852 } 6853 6854 static int 6855 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 6856 { 6857 struct adapter *sc = arg1; 6858 struct sbuf *sb; 6859 int rc, i; 6860 unsigned int map, kbps, ipg, mode; 6861 unsigned int pace_tab[NTX_SCHED]; 6862 6863 rc = sysctl_wire_old_buffer(req, 0); 6864 if (rc != 0) 6865 return (rc); 6866 6867 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6868 if (sb == NULL) 6869 return (ENOMEM); 6870 6871 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 6872 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 6873 t4_read_pace_tbl(sc, pace_tab); 6874 6875 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 6876 "Class IPG (0.1 ns) Flow IPG (us)"); 6877 6878 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 6879 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 6880 sbuf_printf(sb, "\n %u %-5s %u ", i, 6881 (mode & (1 << i)) ? "flow" : "class", map & 3); 6882 if (kbps) 6883 sbuf_printf(sb, "%9u ", kbps); 6884 else 6885 sbuf_printf(sb, " disabled "); 6886 6887 if (ipg) 6888 sbuf_printf(sb, "%13u ", ipg); 6889 else 6890 sbuf_printf(sb, " disabled "); 6891 6892 if (pace_tab[i]) 6893 sbuf_printf(sb, "%10u", pace_tab[i]); 6894 else 6895 sbuf_printf(sb, " disabled"); 6896 } 6897 6898 rc = sbuf_finish(sb); 6899 sbuf_delete(sb); 6900 6901 return (rc); 6902 } 6903 6904 static int 6905 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 6906 { 6907 struct adapter *sc = arg1; 6908 struct sbuf *sb; 6909 int rc, i, j; 6910 uint64_t *p0, *p1; 6911 struct lb_port_stats s[2]; 6912 static const char *stat_name[] = { 6913 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 6914 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 6915 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 6916 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 6917 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 6918 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 6919 "BG2FramesTrunc:", "BG3FramesTrunc:" 6920 }; 6921 6922 rc = sysctl_wire_old_buffer(req, 0); 6923 if (rc != 0) 6924 return (rc); 6925 6926 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6927 if (sb == NULL) 6928 return (ENOMEM); 6929 6930 memset(s, 0, sizeof(s)); 6931 6932 for (i = 0; i < sc->chip_params->nchan; i += 2) { 6933 t4_get_lb_stats(sc, i, &s[0]); 6934 t4_get_lb_stats(sc, i + 1, &s[1]); 6935 6936 p0 = &s[0].octets; 6937 p1 = &s[1].octets; 6938 sbuf_printf(sb, "%s Loopback %u" 6939 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 6940 6941 for (j = 0; j < nitems(stat_name); j++) 6942 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 6943 *p0++, *p1++); 6944 } 6945 6946 rc = sbuf_finish(sb); 6947 sbuf_delete(sb); 6948 6949 return (rc); 6950 } 6951 6952 static int 6953 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 6954 { 6955 int rc = 0; 6956 struct port_info *pi = arg1; 6957 struct link_config *lc = &pi->link_cfg; 6958 struct sbuf *sb; 6959 6960 rc = sysctl_wire_old_buffer(req, 0); 6961 if (rc != 0) 6962 return(rc); 6963 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 6964 if (sb == NULL) 6965 return (ENOMEM); 6966 6967 if (lc->link_ok || lc->link_down_rc == 255) 6968 sbuf_printf(sb, "n/a"); 6969 else 6970 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 6971 6972 rc = sbuf_finish(sb); 6973 sbuf_delete(sb); 6974 6975 return (rc); 6976 } 6977 6978 struct mem_desc { 6979 unsigned int base; 6980 unsigned int limit; 6981 unsigned int idx; 6982 }; 6983 6984 static int 6985 mem_desc_cmp(const void *a, const void *b) 6986 { 6987 return ((const struct mem_desc *)a)->base - 6988 ((const struct mem_desc *)b)->base; 6989 } 6990 6991 static void 6992 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 6993 unsigned int to) 6994 { 6995 unsigned int size; 6996 6997 if (from == to) 6998 return; 6999 7000 size = to - from + 1; 7001 if (size == 0) 7002 return; 7003 7004 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 7005 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 7006 } 7007 7008 static int 7009 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 7010 { 7011 struct adapter *sc = arg1; 7012 struct sbuf *sb; 7013 int rc, i, n; 7014 uint32_t lo, hi, used, alloc; 7015 static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"}; 7016 static const char *region[] = { 7017 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 7018 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 7019 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 7020 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 7021 "RQUDP region:", "PBL region:", "TXPBL region:", 7022 "DBVFIFO region:", "ULPRX state:", "ULPTX state:", 7023 "On-chip queues:" 7024 }; 7025 struct mem_desc avail[4]; 7026 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 7027 struct mem_desc *md = mem; 7028 7029 rc = sysctl_wire_old_buffer(req, 0); 7030 if (rc != 0) 7031 return (rc); 7032 7033 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7034 if (sb == NULL) 7035 return (ENOMEM); 7036 7037 for (i = 0; i < nitems(mem); i++) { 7038 mem[i].limit = 0; 7039 mem[i].idx = i; 7040 } 7041 7042 /* Find and sort the populated memory ranges */ 7043 i = 0; 7044 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 7045 if (lo & F_EDRAM0_ENABLE) { 7046 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 7047 avail[i].base = G_EDRAM0_BASE(hi) << 20; 7048 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 7049 avail[i].idx = 0; 7050 i++; 7051 } 7052 if (lo & F_EDRAM1_ENABLE) { 7053 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 7054 avail[i].base = G_EDRAM1_BASE(hi) << 20; 7055 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 7056 avail[i].idx = 1; 7057 i++; 7058 } 7059 if (lo & F_EXT_MEM_ENABLE) { 7060 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 7061 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 7062 avail[i].limit = avail[i].base + 7063 (G_EXT_MEM_SIZE(hi) << 20); 7064 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 7065 i++; 7066 } 7067 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 7068 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 7069 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 7070 avail[i].limit = avail[i].base + 7071 (G_EXT_MEM1_SIZE(hi) << 20); 7072 avail[i].idx = 4; 7073 i++; 7074 } 7075 if (!i) /* no memory available */ 7076 return 0; 7077 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 7078 7079 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 7080 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 7081 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 7082 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 7083 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 7084 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 7085 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 7086 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 7087 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 7088 7089 /* the next few have explicit upper bounds */ 7090 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 7091 md->limit = md->base - 1 + 7092 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 7093 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 7094 md++; 7095 7096 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 7097 md->limit = md->base - 1 + 7098 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 7099 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 7100 md++; 7101 7102 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 7103 if (chip_id(sc) <= CHELSIO_T5) 7104 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 7105 else 7106 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 7107 md->limit = 0; 7108 } else { 7109 md->base = 0; 7110 md->idx = nitems(region); /* hide it */ 7111 } 7112 md++; 7113 7114 #define ulp_region(reg) \ 7115 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 7116 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 7117 7118 ulp_region(RX_ISCSI); 7119 ulp_region(RX_TDDP); 7120 ulp_region(TX_TPT); 7121 ulp_region(RX_STAG); 7122 ulp_region(RX_RQ); 7123 ulp_region(RX_RQUDP); 7124 ulp_region(RX_PBL); 7125 ulp_region(TX_PBL); 7126 #undef ulp_region 7127 7128 md->base = 0; 7129 md->idx = nitems(region); 7130 if (!is_t4(sc)) { 7131 uint32_t size = 0; 7132 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 7133 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 7134 7135 if (is_t5(sc)) { 7136 if (sge_ctrl & F_VFIFO_ENABLE) 7137 size = G_DBVFIFO_SIZE(fifo_size); 7138 } else 7139 size = G_T6_DBVFIFO_SIZE(fifo_size); 7140 7141 if (size) { 7142 md->base = G_BASEADDR(t4_read_reg(sc, 7143 A_SGE_DBVFIFO_BADDR)); 7144 md->limit = md->base + (size << 2) - 1; 7145 } 7146 } 7147 md++; 7148 7149 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 7150 md->limit = 0; 7151 md++; 7152 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 7153 md->limit = 0; 7154 md++; 7155 7156 md->base = sc->vres.ocq.start; 7157 if (sc->vres.ocq.size) 7158 md->limit = md->base + sc->vres.ocq.size - 1; 7159 else 7160 md->idx = nitems(region); /* hide it */ 7161 md++; 7162 7163 /* add any address-space holes, there can be up to 3 */ 7164 for (n = 0; n < i - 1; n++) 7165 if (avail[n].limit < avail[n + 1].base) 7166 (md++)->base = avail[n].limit; 7167 if (avail[n].limit) 7168 (md++)->base = avail[n].limit; 7169 7170 n = md - mem; 7171 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 7172 7173 for (lo = 0; lo < i; lo++) 7174 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 7175 avail[lo].limit - 1); 7176 7177 sbuf_printf(sb, "\n"); 7178 for (i = 0; i < n; i++) { 7179 if (mem[i].idx >= nitems(region)) 7180 continue; /* skip holes */ 7181 if (!mem[i].limit) 7182 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 7183 mem_region_show(sb, region[mem[i].idx], mem[i].base, 7184 mem[i].limit); 7185 } 7186 7187 sbuf_printf(sb, "\n"); 7188 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 7189 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 7190 mem_region_show(sb, "uP RAM:", lo, hi); 7191 7192 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 7193 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 7194 mem_region_show(sb, "uP Extmem2:", lo, hi); 7195 7196 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 7197 sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", 7198 G_PMRXMAXPAGE(lo), 7199 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 7200 (lo & F_PMRXNUMCHN) ? 2 : 1); 7201 7202 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 7203 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 7204 sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", 7205 G_PMTXMAXPAGE(lo), 7206 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 7207 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 7208 sbuf_printf(sb, "%u p-structs\n", 7209 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); 7210 7211 for (i = 0; i < 4; i++) { 7212 if (chip_id(sc) > CHELSIO_T5) 7213 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 7214 else 7215 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 7216 if (is_t5(sc)) { 7217 used = G_T5_USED(lo); 7218 alloc = G_T5_ALLOC(lo); 7219 } else { 7220 used = G_USED(lo); 7221 alloc = G_ALLOC(lo); 7222 } 7223 /* For T6 these are MAC buffer groups */ 7224 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 7225 i, used, alloc); 7226 } 7227 for (i = 0; i < sc->chip_params->nchan; i++) { 7228 if (chip_id(sc) > CHELSIO_T5) 7229 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 7230 else 7231 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 7232 if (is_t5(sc)) { 7233 used = G_T5_USED(lo); 7234 alloc = G_T5_ALLOC(lo); 7235 } else { 7236 used = G_USED(lo); 7237 alloc = G_ALLOC(lo); 7238 } 7239 /* For T6 these are MAC buffer groups */ 7240 sbuf_printf(sb, 7241 "\nLoopback %d using %u pages out of %u allocated", 7242 i, used, alloc); 7243 } 7244 7245 rc = sbuf_finish(sb); 7246 sbuf_delete(sb); 7247 7248 return (rc); 7249 } 7250 7251 static inline void 7252 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 7253 { 7254 *mask = x | y; 7255 y = htobe64(y); 7256 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 7257 } 7258 7259 static int 7260 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 7261 { 7262 struct adapter *sc = arg1; 7263 struct sbuf *sb; 7264 int rc, i; 7265 7266 MPASS(chip_id(sc) <= CHELSIO_T5); 7267 7268 rc = sysctl_wire_old_buffer(req, 0); 7269 if (rc != 0) 7270 return (rc); 7271 7272 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7273 if (sb == NULL) 7274 return (ENOMEM); 7275 7276 sbuf_printf(sb, 7277 "Idx Ethernet address Mask Vld Ports PF" 7278 " VF Replication P0 P1 P2 P3 ML"); 7279 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 7280 uint64_t tcamx, tcamy, mask; 7281 uint32_t cls_lo, cls_hi; 7282 uint8_t addr[ETHER_ADDR_LEN]; 7283 7284 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 7285 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 7286 if (tcamx & tcamy) 7287 continue; 7288 tcamxy2valmask(tcamx, tcamy, addr, &mask); 7289 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 7290 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 7291 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 7292 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 7293 addr[3], addr[4], addr[5], (uintmax_t)mask, 7294 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 7295 G_PORTMAP(cls_hi), G_PF(cls_lo), 7296 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 7297 7298 if (cls_lo & F_REPLICATE) { 7299 struct fw_ldst_cmd ldst_cmd; 7300 7301 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 7302 ldst_cmd.op_to_addrspace = 7303 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 7304 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7305 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 7306 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 7307 ldst_cmd.u.mps.rplc.fid_idx = 7308 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 7309 V_FW_LDST_CMD_IDX(i)); 7310 7311 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 7312 "t4mps"); 7313 if (rc) 7314 break; 7315 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 7316 sizeof(ldst_cmd), &ldst_cmd); 7317 end_synchronized_op(sc, 0); 7318 7319 if (rc != 0) { 7320 sbuf_printf(sb, "%36d", rc); 7321 rc = 0; 7322 } else { 7323 sbuf_printf(sb, " %08x %08x %08x %08x", 7324 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 7325 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 7326 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 7327 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 7328 } 7329 } else 7330 sbuf_printf(sb, "%36s", ""); 7331 7332 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 7333 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 7334 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 7335 } 7336 7337 if (rc) 7338 (void) sbuf_finish(sb); 7339 else 7340 rc = sbuf_finish(sb); 7341 sbuf_delete(sb); 7342 7343 return (rc); 7344 } 7345 7346 static int 7347 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 7348 { 7349 struct adapter *sc = arg1; 7350 struct sbuf *sb; 7351 int rc, i; 7352 7353 MPASS(chip_id(sc) > CHELSIO_T5); 7354 7355 rc = sysctl_wire_old_buffer(req, 0); 7356 if (rc != 0) 7357 return (rc); 7358 7359 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7360 if (sb == NULL) 7361 return (ENOMEM); 7362 7363 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 7364 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 7365 " Replication" 7366 " P0 P1 P2 P3 ML\n"); 7367 7368 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 7369 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 7370 uint16_t ivlan; 7371 uint64_t tcamx, tcamy, val, mask; 7372 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 7373 uint8_t addr[ETHER_ADDR_LEN]; 7374 7375 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 7376 if (i < 256) 7377 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 7378 else 7379 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 7380 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 7381 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 7382 tcamy = G_DMACH(val) << 32; 7383 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 7384 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 7385 lookup_type = G_DATALKPTYPE(data2); 7386 port_num = G_DATAPORTNUM(data2); 7387 if (lookup_type && lookup_type != M_DATALKPTYPE) { 7388 /* Inner header VNI */ 7389 vniy = ((data2 & F_DATAVIDH2) << 23) | 7390 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 7391 dip_hit = data2 & F_DATADIPHIT; 7392 vlan_vld = 0; 7393 } else { 7394 vniy = 0; 7395 dip_hit = 0; 7396 vlan_vld = data2 & F_DATAVIDH2; 7397 ivlan = G_VIDL(val); 7398 } 7399 7400 ctl |= V_CTLXYBITSEL(1); 7401 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 7402 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 7403 tcamx = G_DMACH(val) << 32; 7404 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 7405 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 7406 if (lookup_type && lookup_type != M_DATALKPTYPE) { 7407 /* Inner header VNI mask */ 7408 vnix = ((data2 & F_DATAVIDH2) << 23) | 7409 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 7410 } else 7411 vnix = 0; 7412 7413 if (tcamx & tcamy) 7414 continue; 7415 tcamxy2valmask(tcamx, tcamy, addr, &mask); 7416 7417 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 7418 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 7419 7420 if (lookup_type && lookup_type != M_DATALKPTYPE) { 7421 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 7422 "%012jx %06x %06x - - %3c" 7423 " 'I' %4x %3c %#x%4u%4d", i, addr[0], 7424 addr[1], addr[2], addr[3], addr[4], addr[5], 7425 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 7426 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 7427 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 7428 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 7429 } else { 7430 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 7431 "%012jx - - ", i, addr[0], addr[1], 7432 addr[2], addr[3], addr[4], addr[5], 7433 (uintmax_t)mask); 7434 7435 if (vlan_vld) 7436 sbuf_printf(sb, "%4u Y ", ivlan); 7437 else 7438 sbuf_printf(sb, " - N "); 7439 7440 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 7441 lookup_type ? 'I' : 'O', port_num, 7442 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 7443 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 7444 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 7445 } 7446 7447 7448 if (cls_lo & F_T6_REPLICATE) { 7449 struct fw_ldst_cmd ldst_cmd; 7450 7451 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 7452 ldst_cmd.op_to_addrspace = 7453 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 7454 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7455 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 7456 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 7457 ldst_cmd.u.mps.rplc.fid_idx = 7458 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 7459 V_FW_LDST_CMD_IDX(i)); 7460 7461 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 7462 "t6mps"); 7463 if (rc) 7464 break; 7465 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 7466 sizeof(ldst_cmd), &ldst_cmd); 7467 end_synchronized_op(sc, 0); 7468 7469 if (rc != 0) { 7470 sbuf_printf(sb, "%72d", rc); 7471 rc = 0; 7472 } else { 7473 sbuf_printf(sb, " %08x %08x %08x %08x" 7474 " %08x %08x %08x %08x", 7475 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 7476 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 7477 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 7478 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 7479 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 7480 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 7481 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 7482 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 7483 } 7484 } else 7485 sbuf_printf(sb, "%72s", ""); 7486 7487 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 7488 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 7489 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 7490 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 7491 } 7492 7493 if (rc) 7494 (void) sbuf_finish(sb); 7495 else 7496 rc = sbuf_finish(sb); 7497 sbuf_delete(sb); 7498 7499 return (rc); 7500 } 7501 7502 static int 7503 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 7504 { 7505 struct adapter *sc = arg1; 7506 struct sbuf *sb; 7507 int rc; 7508 uint16_t mtus[NMTUS]; 7509 7510 rc = sysctl_wire_old_buffer(req, 0); 7511 if (rc != 0) 7512 return (rc); 7513 7514 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 7515 if (sb == NULL) 7516 return (ENOMEM); 7517 7518 t4_read_mtu_tbl(sc, mtus, NULL); 7519 7520 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 7521 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 7522 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 7523 mtus[14], mtus[15]); 7524 7525 rc = sbuf_finish(sb); 7526 sbuf_delete(sb); 7527 7528 return (rc); 7529 } 7530 7531 static int 7532 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 7533 { 7534 struct adapter *sc = arg1; 7535 struct sbuf *sb; 7536 int rc, i; 7537 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 7538 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 7539 static const char *tx_stats[MAX_PM_NSTATS] = { 7540 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 7541 "Tx FIFO wait", NULL, "Tx latency" 7542 }; 7543 static const char *rx_stats[MAX_PM_NSTATS] = { 7544 "Read:", "Write bypass:", "Write mem:", "Flush:", 7545 "Rx FIFO wait", NULL, "Rx latency" 7546 }; 7547 7548 rc = sysctl_wire_old_buffer(req, 0); 7549 if (rc != 0) 7550 return (rc); 7551 7552 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 7553 if (sb == NULL) 7554 return (ENOMEM); 7555 7556 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 7557 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 7558 7559 sbuf_printf(sb, " Tx pcmds Tx bytes"); 7560 for (i = 0; i < 4; i++) { 7561 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 7562 tx_cyc[i]); 7563 } 7564 7565 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 7566 for (i = 0; i < 4; i++) { 7567 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 7568 rx_cyc[i]); 7569 } 7570 7571 if (chip_id(sc) > CHELSIO_T5) { 7572 sbuf_printf(sb, 7573 "\n Total wait Total occupancy"); 7574 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 7575 tx_cyc[i]); 7576 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 7577 rx_cyc[i]); 7578 7579 i += 2; 7580 MPASS(i < nitems(tx_stats)); 7581 7582 sbuf_printf(sb, 7583 "\n Reads Total wait"); 7584 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 7585 tx_cyc[i]); 7586 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 7587 rx_cyc[i]); 7588 } 7589 7590 rc = sbuf_finish(sb); 7591 sbuf_delete(sb); 7592 7593 return (rc); 7594 } 7595 7596 static int 7597 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 7598 { 7599 struct adapter *sc = arg1; 7600 struct sbuf *sb; 7601 int rc; 7602 struct tp_rdma_stats stats; 7603 7604 rc = sysctl_wire_old_buffer(req, 0); 7605 if (rc != 0) 7606 return (rc); 7607 7608 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 7609 if (sb == NULL) 7610 return (ENOMEM); 7611 7612 mtx_lock(&sc->reg_lock); 7613 t4_tp_get_rdma_stats(sc, &stats, 0); 7614 mtx_unlock(&sc->reg_lock); 7615 7616 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 7617 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 7618 7619 rc = sbuf_finish(sb); 7620 sbuf_delete(sb); 7621 7622 return (rc); 7623 } 7624 7625 static int 7626 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 7627 { 7628 struct adapter *sc = arg1; 7629 struct sbuf *sb; 7630 int rc; 7631 struct tp_tcp_stats v4, v6; 7632 7633 rc = sysctl_wire_old_buffer(req, 0); 7634 if (rc != 0) 7635 return (rc); 7636 7637 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 7638 if (sb == NULL) 7639 return (ENOMEM); 7640 7641 mtx_lock(&sc->reg_lock); 7642 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 7643 mtx_unlock(&sc->reg_lock); 7644 7645 sbuf_printf(sb, 7646 " IP IPv6\n"); 7647 sbuf_printf(sb, "OutRsts: %20u %20u\n", 7648 v4.tcp_out_rsts, v6.tcp_out_rsts); 7649 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 7650 v4.tcp_in_segs, v6.tcp_in_segs); 7651 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 7652 v4.tcp_out_segs, v6.tcp_out_segs); 7653 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 7654 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 7655 7656 rc = sbuf_finish(sb); 7657 sbuf_delete(sb); 7658 7659 return (rc); 7660 } 7661 7662 static int 7663 sysctl_tids(SYSCTL_HANDLER_ARGS) 7664 { 7665 struct adapter *sc = arg1; 7666 struct sbuf *sb; 7667 int rc; 7668 struct tid_info *t = &sc->tids; 7669 7670 rc = sysctl_wire_old_buffer(req, 0); 7671 if (rc != 0) 7672 return (rc); 7673 7674 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 7675 if (sb == NULL) 7676 return (ENOMEM); 7677 7678 if (t->natids) { 7679 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 7680 t->atids_in_use); 7681 } 7682 7683 if (t->ntids) { 7684 sbuf_printf(sb, "TID range: "); 7685 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 7686 uint32_t b, hb; 7687 7688 if (chip_id(sc) <= CHELSIO_T5) { 7689 b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 7690 hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 7691 } else { 7692 b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 7693 hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 7694 } 7695 7696 if (b) 7697 sbuf_printf(sb, "0-%u, ", b - 1); 7698 sbuf_printf(sb, "%u-%u", hb, t->ntids - 1); 7699 } else 7700 sbuf_printf(sb, "0-%u", t->ntids - 1); 7701 sbuf_printf(sb, ", in use: %u\n", 7702 atomic_load_acq_int(&t->tids_in_use)); 7703 } 7704 7705 if (t->nstids) { 7706 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 7707 t->stid_base + t->nstids - 1, t->stids_in_use); 7708 } 7709 7710 if (t->nftids) { 7711 sbuf_printf(sb, "FTID range: %u-%u\n", t->ftid_base, 7712 t->ftid_base + t->nftids - 1); 7713 } 7714 7715 if (t->netids) { 7716 sbuf_printf(sb, "ETID range: %u-%u\n", t->etid_base, 7717 t->etid_base + t->netids - 1); 7718 } 7719 7720 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", 7721 t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4), 7722 t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6)); 7723 7724 rc = sbuf_finish(sb); 7725 sbuf_delete(sb); 7726 7727 return (rc); 7728 } 7729 7730 static int 7731 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 7732 { 7733 struct adapter *sc = arg1; 7734 struct sbuf *sb; 7735 int rc; 7736 struct tp_err_stats stats; 7737 7738 rc = sysctl_wire_old_buffer(req, 0); 7739 if (rc != 0) 7740 return (rc); 7741 7742 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 7743 if (sb == NULL) 7744 return (ENOMEM); 7745 7746 mtx_lock(&sc->reg_lock); 7747 t4_tp_get_err_stats(sc, &stats, 0); 7748 mtx_unlock(&sc->reg_lock); 7749 7750 if (sc->chip_params->nchan > 2) { 7751 sbuf_printf(sb, " channel 0 channel 1" 7752 " channel 2 channel 3\n"); 7753 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 7754 stats.mac_in_errs[0], stats.mac_in_errs[1], 7755 stats.mac_in_errs[2], stats.mac_in_errs[3]); 7756 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 7757 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 7758 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 7759 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 7760 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 7761 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 7762 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 7763 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 7764 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 7765 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 7766 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 7767 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 7768 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 7769 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 7770 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 7771 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 7772 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 7773 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 7774 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 7775 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 7776 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 7777 } else { 7778 sbuf_printf(sb, " channel 0 channel 1\n"); 7779 sbuf_printf(sb, "macInErrs: %10u %10u\n", 7780 stats.mac_in_errs[0], stats.mac_in_errs[1]); 7781 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 7782 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 7783 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 7784 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 7785 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 7786 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 7787 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 7788 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 7789 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 7790 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 7791 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 7792 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 7793 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 7794 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 7795 } 7796 7797 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 7798 stats.ofld_no_neigh, stats.ofld_cong_defer); 7799 7800 rc = sbuf_finish(sb); 7801 sbuf_delete(sb); 7802 7803 return (rc); 7804 } 7805 7806 static int 7807 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 7808 { 7809 struct adapter *sc = arg1; 7810 struct tp_params *tpp = &sc->params.tp; 7811 u_int mask; 7812 int rc; 7813 7814 mask = tpp->la_mask >> 16; 7815 rc = sysctl_handle_int(oidp, &mask, 0, req); 7816 if (rc != 0 || req->newptr == NULL) 7817 return (rc); 7818 if (mask > 0xffff) 7819 return (EINVAL); 7820 tpp->la_mask = mask << 16; 7821 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask); 7822 7823 return (0); 7824 } 7825 7826 struct field_desc { 7827 const char *name; 7828 u_int start; 7829 u_int width; 7830 }; 7831 7832 static void 7833 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 7834 { 7835 char buf[32]; 7836 int line_size = 0; 7837 7838 while (f->name) { 7839 uint64_t mask = (1ULL << f->width) - 1; 7840 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 7841 ((uintmax_t)v >> f->start) & mask); 7842 7843 if (line_size + len >= 79) { 7844 line_size = 8; 7845 sbuf_printf(sb, "\n "); 7846 } 7847 sbuf_printf(sb, "%s ", buf); 7848 line_size += len + 1; 7849 f++; 7850 } 7851 sbuf_printf(sb, "\n"); 7852 } 7853 7854 static const struct field_desc tp_la0[] = { 7855 { "RcfOpCodeOut", 60, 4 }, 7856 { "State", 56, 4 }, 7857 { "WcfState", 52, 4 }, 7858 { "RcfOpcSrcOut", 50, 2 }, 7859 { "CRxError", 49, 1 }, 7860 { "ERxError", 48, 1 }, 7861 { "SanityFailed", 47, 1 }, 7862 { "SpuriousMsg", 46, 1 }, 7863 { "FlushInputMsg", 45, 1 }, 7864 { "FlushInputCpl", 44, 1 }, 7865 { "RssUpBit", 43, 1 }, 7866 { "RssFilterHit", 42, 1 }, 7867 { "Tid", 32, 10 }, 7868 { "InitTcb", 31, 1 }, 7869 { "LineNumber", 24, 7 }, 7870 { "Emsg", 23, 1 }, 7871 { "EdataOut", 22, 1 }, 7872 { "Cmsg", 21, 1 }, 7873 { "CdataOut", 20, 1 }, 7874 { "EreadPdu", 19, 1 }, 7875 { "CreadPdu", 18, 1 }, 7876 { "TunnelPkt", 17, 1 }, 7877 { "RcfPeerFin", 16, 1 }, 7878 { "RcfReasonOut", 12, 4 }, 7879 { "TxCchannel", 10, 2 }, 7880 { "RcfTxChannel", 8, 2 }, 7881 { "RxEchannel", 6, 2 }, 7882 { "RcfRxChannel", 5, 1 }, 7883 { "RcfDataOutSrdy", 4, 1 }, 7884 { "RxDvld", 3, 1 }, 7885 { "RxOoDvld", 2, 1 }, 7886 { "RxCongestion", 1, 1 }, 7887 { "TxCongestion", 0, 1 }, 7888 { NULL } 7889 }; 7890 7891 static const struct field_desc tp_la1[] = { 7892 { "CplCmdIn", 56, 8 }, 7893 { "CplCmdOut", 48, 8 }, 7894 { "ESynOut", 47, 1 }, 7895 { "EAckOut", 46, 1 }, 7896 { "EFinOut", 45, 1 }, 7897 { "ERstOut", 44, 1 }, 7898 { "SynIn", 43, 1 }, 7899 { "AckIn", 42, 1 }, 7900 { "FinIn", 41, 1 }, 7901 { "RstIn", 40, 1 }, 7902 { "DataIn", 39, 1 }, 7903 { "DataInVld", 38, 1 }, 7904 { "PadIn", 37, 1 }, 7905 { "RxBufEmpty", 36, 1 }, 7906 { "RxDdp", 35, 1 }, 7907 { "RxFbCongestion", 34, 1 }, 7908 { "TxFbCongestion", 33, 1 }, 7909 { "TxPktSumSrdy", 32, 1 }, 7910 { "RcfUlpType", 28, 4 }, 7911 { "Eread", 27, 1 }, 7912 { "Ebypass", 26, 1 }, 7913 { "Esave", 25, 1 }, 7914 { "Static0", 24, 1 }, 7915 { "Cread", 23, 1 }, 7916 { "Cbypass", 22, 1 }, 7917 { "Csave", 21, 1 }, 7918 { "CPktOut", 20, 1 }, 7919 { "RxPagePoolFull", 18, 2 }, 7920 { "RxLpbkPkt", 17, 1 }, 7921 { "TxLpbkPkt", 16, 1 }, 7922 { "RxVfValid", 15, 1 }, 7923 { "SynLearned", 14, 1 }, 7924 { "SetDelEntry", 13, 1 }, 7925 { "SetInvEntry", 12, 1 }, 7926 { "CpcmdDvld", 11, 1 }, 7927 { "CpcmdSave", 10, 1 }, 7928 { "RxPstructsFull", 8, 2 }, 7929 { "EpcmdDvld", 7, 1 }, 7930 { "EpcmdFlush", 6, 1 }, 7931 { "EpcmdTrimPrefix", 5, 1 }, 7932 { "EpcmdTrimPostfix", 4, 1 }, 7933 { "ERssIp4Pkt", 3, 1 }, 7934 { "ERssIp6Pkt", 2, 1 }, 7935 { "ERssTcpUdpPkt", 1, 1 }, 7936 { "ERssFceFipPkt", 0, 1 }, 7937 { NULL } 7938 }; 7939 7940 static const struct field_desc tp_la2[] = { 7941 { "CplCmdIn", 56, 8 }, 7942 { "MpsVfVld", 55, 1 }, 7943 { "MpsPf", 52, 3 }, 7944 { "MpsVf", 44, 8 }, 7945 { "SynIn", 43, 1 }, 7946 { "AckIn", 42, 1 }, 7947 { "FinIn", 41, 1 }, 7948 { "RstIn", 40, 1 }, 7949 { "DataIn", 39, 1 }, 7950 { "DataInVld", 38, 1 }, 7951 { "PadIn", 37, 1 }, 7952 { "RxBufEmpty", 36, 1 }, 7953 { "RxDdp", 35, 1 }, 7954 { "RxFbCongestion", 34, 1 }, 7955 { "TxFbCongestion", 33, 1 }, 7956 { "TxPktSumSrdy", 32, 1 }, 7957 { "RcfUlpType", 28, 4 }, 7958 { "Eread", 27, 1 }, 7959 { "Ebypass", 26, 1 }, 7960 { "Esave", 25, 1 }, 7961 { "Static0", 24, 1 }, 7962 { "Cread", 23, 1 }, 7963 { "Cbypass", 22, 1 }, 7964 { "Csave", 21, 1 }, 7965 { "CPktOut", 20, 1 }, 7966 { "RxPagePoolFull", 18, 2 }, 7967 { "RxLpbkPkt", 17, 1 }, 7968 { "TxLpbkPkt", 16, 1 }, 7969 { "RxVfValid", 15, 1 }, 7970 { "SynLearned", 14, 1 }, 7971 { "SetDelEntry", 13, 1 }, 7972 { "SetInvEntry", 12, 1 }, 7973 { "CpcmdDvld", 11, 1 }, 7974 { "CpcmdSave", 10, 1 }, 7975 { "RxPstructsFull", 8, 2 }, 7976 { "EpcmdDvld", 7, 1 }, 7977 { "EpcmdFlush", 6, 1 }, 7978 { "EpcmdTrimPrefix", 5, 1 }, 7979 { "EpcmdTrimPostfix", 4, 1 }, 7980 { "ERssIp4Pkt", 3, 1 }, 7981 { "ERssIp6Pkt", 2, 1 }, 7982 { "ERssTcpUdpPkt", 1, 1 }, 7983 { "ERssFceFipPkt", 0, 1 }, 7984 { NULL } 7985 }; 7986 7987 static void 7988 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 7989 { 7990 7991 field_desc_show(sb, *p, tp_la0); 7992 } 7993 7994 static void 7995 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 7996 { 7997 7998 if (idx) 7999 sbuf_printf(sb, "\n"); 8000 field_desc_show(sb, p[0], tp_la0); 8001 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 8002 field_desc_show(sb, p[1], tp_la0); 8003 } 8004 8005 static void 8006 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 8007 { 8008 8009 if (idx) 8010 sbuf_printf(sb, "\n"); 8011 field_desc_show(sb, p[0], tp_la0); 8012 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 8013 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 8014 } 8015 8016 static int 8017 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 8018 { 8019 struct adapter *sc = arg1; 8020 struct sbuf *sb; 8021 uint64_t *buf, *p; 8022 int rc; 8023 u_int i, inc; 8024 void (*show_func)(struct sbuf *, uint64_t *, int); 8025 8026 rc = sysctl_wire_old_buffer(req, 0); 8027 if (rc != 0) 8028 return (rc); 8029 8030 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8031 if (sb == NULL) 8032 return (ENOMEM); 8033 8034 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 8035 8036 t4_tp_read_la(sc, buf, NULL); 8037 p = buf; 8038 8039 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 8040 case 2: 8041 inc = 2; 8042 show_func = tp_la_show2; 8043 break; 8044 case 3: 8045 inc = 2; 8046 show_func = tp_la_show3; 8047 break; 8048 default: 8049 inc = 1; 8050 show_func = tp_la_show; 8051 } 8052 8053 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 8054 (*show_func)(sb, p, i); 8055 8056 rc = sbuf_finish(sb); 8057 sbuf_delete(sb); 8058 free(buf, M_CXGBE); 8059 return (rc); 8060 } 8061 8062 static int 8063 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 8064 { 8065 struct adapter *sc = arg1; 8066 struct sbuf *sb; 8067 int rc; 8068 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 8069 8070 rc = sysctl_wire_old_buffer(req, 0); 8071 if (rc != 0) 8072 return (rc); 8073 8074 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8075 if (sb == NULL) 8076 return (ENOMEM); 8077 8078 t4_get_chan_txrate(sc, nrate, orate); 8079 8080 if (sc->chip_params->nchan > 2) { 8081 sbuf_printf(sb, " channel 0 channel 1" 8082 " channel 2 channel 3\n"); 8083 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 8084 nrate[0], nrate[1], nrate[2], nrate[3]); 8085 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 8086 orate[0], orate[1], orate[2], orate[3]); 8087 } else { 8088 sbuf_printf(sb, " channel 0 channel 1\n"); 8089 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 8090 nrate[0], nrate[1]); 8091 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 8092 orate[0], orate[1]); 8093 } 8094 8095 rc = sbuf_finish(sb); 8096 sbuf_delete(sb); 8097 8098 return (rc); 8099 } 8100 8101 static int 8102 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 8103 { 8104 struct adapter *sc = arg1; 8105 struct sbuf *sb; 8106 uint32_t *buf, *p; 8107 int rc, i; 8108 8109 rc = sysctl_wire_old_buffer(req, 0); 8110 if (rc != 0) 8111 return (rc); 8112 8113 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8114 if (sb == NULL) 8115 return (ENOMEM); 8116 8117 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 8118 M_ZERO | M_WAITOK); 8119 8120 t4_ulprx_read_la(sc, buf); 8121 p = buf; 8122 8123 sbuf_printf(sb, " Pcmd Type Message" 8124 " Data"); 8125 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 8126 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 8127 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 8128 } 8129 8130 rc = sbuf_finish(sb); 8131 sbuf_delete(sb); 8132 free(buf, M_CXGBE); 8133 return (rc); 8134 } 8135 8136 static int 8137 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 8138 { 8139 struct adapter *sc = arg1; 8140 struct sbuf *sb; 8141 int rc, v; 8142 8143 MPASS(chip_id(sc) >= CHELSIO_T5); 8144 8145 rc = sysctl_wire_old_buffer(req, 0); 8146 if (rc != 0) 8147 return (rc); 8148 8149 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8150 if (sb == NULL) 8151 return (ENOMEM); 8152 8153 v = t4_read_reg(sc, A_SGE_STAT_CFG); 8154 if (G_STATSOURCE_T5(v) == 7) { 8155 int mode; 8156 8157 mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v); 8158 if (mode == 0) { 8159 sbuf_printf(sb, "total %d, incomplete %d", 8160 t4_read_reg(sc, A_SGE_STAT_TOTAL), 8161 t4_read_reg(sc, A_SGE_STAT_MATCH)); 8162 } else if (mode == 1) { 8163 sbuf_printf(sb, "total %d, data overflow %d", 8164 t4_read_reg(sc, A_SGE_STAT_TOTAL), 8165 t4_read_reg(sc, A_SGE_STAT_MATCH)); 8166 } else { 8167 sbuf_printf(sb, "unknown mode %d", mode); 8168 } 8169 } 8170 rc = sbuf_finish(sb); 8171 sbuf_delete(sb); 8172 8173 return (rc); 8174 } 8175 8176 static int 8177 sysctl_tc_params(SYSCTL_HANDLER_ARGS) 8178 { 8179 struct adapter *sc = arg1; 8180 struct tx_cl_rl_params tc; 8181 struct sbuf *sb; 8182 int i, rc, port_id, mbps, gbps; 8183 8184 rc = sysctl_wire_old_buffer(req, 0); 8185 if (rc != 0) 8186 return (rc); 8187 8188 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8189 if (sb == NULL) 8190 return (ENOMEM); 8191 8192 port_id = arg2 >> 16; 8193 MPASS(port_id < sc->params.nports); 8194 MPASS(sc->port[port_id] != NULL); 8195 i = arg2 & 0xffff; 8196 MPASS(i < sc->chip_params->nsched_cls); 8197 8198 mtx_lock(&sc->tc_lock); 8199 tc = sc->port[port_id]->sched_params->cl_rl[i]; 8200 mtx_unlock(&sc->tc_lock); 8201 8202 if (tc.flags & TX_CLRL_ERROR) { 8203 sbuf_printf(sb, "error"); 8204 goto done; 8205 } 8206 8207 if (tc.ratemode == SCHED_CLASS_RATEMODE_REL) { 8208 /* XXX: top speed or actual link speed? */ 8209 gbps = port_top_speed(sc->port[port_id]); 8210 sbuf_printf(sb, " %u%% of %uGbps", tc.maxrate, gbps); 8211 } else if (tc.ratemode == SCHED_CLASS_RATEMODE_ABS) { 8212 switch (tc.rateunit) { 8213 case SCHED_CLASS_RATEUNIT_BITS: 8214 mbps = tc.maxrate / 1000; 8215 gbps = tc.maxrate / 1000000; 8216 if (tc.maxrate == gbps * 1000000) 8217 sbuf_printf(sb, " %uGbps", gbps); 8218 else if (tc.maxrate == mbps * 1000) 8219 sbuf_printf(sb, " %uMbps", mbps); 8220 else 8221 sbuf_printf(sb, " %uKbps", tc.maxrate); 8222 break; 8223 case SCHED_CLASS_RATEUNIT_PKTS: 8224 sbuf_printf(sb, " %upps", tc.maxrate); 8225 break; 8226 default: 8227 rc = ENXIO; 8228 goto done; 8229 } 8230 } 8231 8232 switch (tc.mode) { 8233 case SCHED_CLASS_MODE_CLASS: 8234 sbuf_printf(sb, " aggregate"); 8235 break; 8236 case SCHED_CLASS_MODE_FLOW: 8237 sbuf_printf(sb, " per-flow"); 8238 break; 8239 default: 8240 rc = ENXIO; 8241 goto done; 8242 } 8243 8244 done: 8245 if (rc == 0) 8246 rc = sbuf_finish(sb); 8247 sbuf_delete(sb); 8248 8249 return (rc); 8250 } 8251 #endif 8252 8253 #ifdef TCP_OFFLOAD 8254 static void 8255 unit_conv(char *buf, size_t len, u_int val, u_int factor) 8256 { 8257 u_int rem = val % factor; 8258 8259 if (rem == 0) 8260 snprintf(buf, len, "%u", val / factor); 8261 else { 8262 while (rem % 10 == 0) 8263 rem /= 10; 8264 snprintf(buf, len, "%u.%u", val / factor, rem); 8265 } 8266 } 8267 8268 static int 8269 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 8270 { 8271 struct adapter *sc = arg1; 8272 char buf[16]; 8273 u_int res, re; 8274 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 8275 8276 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 8277 switch (arg2) { 8278 case 0: 8279 /* timer_tick */ 8280 re = G_TIMERRESOLUTION(res); 8281 break; 8282 case 1: 8283 /* TCP timestamp tick */ 8284 re = G_TIMESTAMPRESOLUTION(res); 8285 break; 8286 case 2: 8287 /* DACK tick */ 8288 re = G_DELAYEDACKRESOLUTION(res); 8289 break; 8290 default: 8291 return (EDOOFUS); 8292 } 8293 8294 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 8295 8296 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 8297 } 8298 8299 static int 8300 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 8301 { 8302 struct adapter *sc = arg1; 8303 u_int res, dack_re, v; 8304 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 8305 8306 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 8307 dack_re = G_DELAYEDACKRESOLUTION(res); 8308 v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER); 8309 8310 return (sysctl_handle_int(oidp, &v, 0, req)); 8311 } 8312 8313 static int 8314 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 8315 { 8316 struct adapter *sc = arg1; 8317 int reg = arg2; 8318 u_int tre; 8319 u_long tp_tick_us, v; 8320 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 8321 8322 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 8323 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 8324 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 8325 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 8326 8327 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 8328 tp_tick_us = (cclk_ps << tre) / 1000000; 8329 8330 if (reg == A_TP_INIT_SRTT) 8331 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 8332 else 8333 v = tp_tick_us * t4_read_reg(sc, reg); 8334 8335 return (sysctl_handle_long(oidp, &v, 0, req)); 8336 } 8337 8338 /* 8339 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 8340 * passed to this function. 8341 */ 8342 static int 8343 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 8344 { 8345 struct adapter *sc = arg1; 8346 int idx = arg2; 8347 u_int v; 8348 8349 MPASS(idx >= 0 && idx <= 24); 8350 8351 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 8352 8353 return (sysctl_handle_int(oidp, &v, 0, req)); 8354 } 8355 8356 static int 8357 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 8358 { 8359 struct adapter *sc = arg1; 8360 int idx = arg2; 8361 u_int shift, v, r; 8362 8363 MPASS(idx >= 0 && idx < 16); 8364 8365 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 8366 shift = (idx & 3) << 3; 8367 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 8368 8369 return (sysctl_handle_int(oidp, &v, 0, req)); 8370 } 8371 #endif 8372 8373 static uint32_t 8374 fconf_iconf_to_mode(uint32_t fconf, uint32_t iconf) 8375 { 8376 uint32_t mode; 8377 8378 mode = T4_FILTER_IPv4 | T4_FILTER_IPv6 | T4_FILTER_IP_SADDR | 8379 T4_FILTER_IP_DADDR | T4_FILTER_IP_SPORT | T4_FILTER_IP_DPORT; 8380 8381 if (fconf & F_FRAGMENTATION) 8382 mode |= T4_FILTER_IP_FRAGMENT; 8383 8384 if (fconf & F_MPSHITTYPE) 8385 mode |= T4_FILTER_MPS_HIT_TYPE; 8386 8387 if (fconf & F_MACMATCH) 8388 mode |= T4_FILTER_MAC_IDX; 8389 8390 if (fconf & F_ETHERTYPE) 8391 mode |= T4_FILTER_ETH_TYPE; 8392 8393 if (fconf & F_PROTOCOL) 8394 mode |= T4_FILTER_IP_PROTO; 8395 8396 if (fconf & F_TOS) 8397 mode |= T4_FILTER_IP_TOS; 8398 8399 if (fconf & F_VLAN) 8400 mode |= T4_FILTER_VLAN; 8401 8402 if (fconf & F_VNIC_ID) { 8403 mode |= T4_FILTER_VNIC; 8404 if (iconf & F_VNIC) 8405 mode |= T4_FILTER_IC_VNIC; 8406 } 8407 8408 if (fconf & F_PORT) 8409 mode |= T4_FILTER_PORT; 8410 8411 if (fconf & F_FCOE) 8412 mode |= T4_FILTER_FCoE; 8413 8414 return (mode); 8415 } 8416 8417 static uint32_t 8418 mode_to_fconf(uint32_t mode) 8419 { 8420 uint32_t fconf = 0; 8421 8422 if (mode & T4_FILTER_IP_FRAGMENT) 8423 fconf |= F_FRAGMENTATION; 8424 8425 if (mode & T4_FILTER_MPS_HIT_TYPE) 8426 fconf |= F_MPSHITTYPE; 8427 8428 if (mode & T4_FILTER_MAC_IDX) 8429 fconf |= F_MACMATCH; 8430 8431 if (mode & T4_FILTER_ETH_TYPE) 8432 fconf |= F_ETHERTYPE; 8433 8434 if (mode & T4_FILTER_IP_PROTO) 8435 fconf |= F_PROTOCOL; 8436 8437 if (mode & T4_FILTER_IP_TOS) 8438 fconf |= F_TOS; 8439 8440 if (mode & T4_FILTER_VLAN) 8441 fconf |= F_VLAN; 8442 8443 if (mode & T4_FILTER_VNIC) 8444 fconf |= F_VNIC_ID; 8445 8446 if (mode & T4_FILTER_PORT) 8447 fconf |= F_PORT; 8448 8449 if (mode & T4_FILTER_FCoE) 8450 fconf |= F_FCOE; 8451 8452 return (fconf); 8453 } 8454 8455 static uint32_t 8456 mode_to_iconf(uint32_t mode) 8457 { 8458 8459 if (mode & T4_FILTER_IC_VNIC) 8460 return (F_VNIC); 8461 return (0); 8462 } 8463 8464 static int check_fspec_against_fconf_iconf(struct adapter *sc, 8465 struct t4_filter_specification *fs) 8466 { 8467 struct tp_params *tpp = &sc->params.tp; 8468 uint32_t fconf = 0; 8469 8470 if (fs->val.frag || fs->mask.frag) 8471 fconf |= F_FRAGMENTATION; 8472 8473 if (fs->val.matchtype || fs->mask.matchtype) 8474 fconf |= F_MPSHITTYPE; 8475 8476 if (fs->val.macidx || fs->mask.macidx) 8477 fconf |= F_MACMATCH; 8478 8479 if (fs->val.ethtype || fs->mask.ethtype) 8480 fconf |= F_ETHERTYPE; 8481 8482 if (fs->val.proto || fs->mask.proto) 8483 fconf |= F_PROTOCOL; 8484 8485 if (fs->val.tos || fs->mask.tos) 8486 fconf |= F_TOS; 8487 8488 if (fs->val.vlan_vld || fs->mask.vlan_vld) 8489 fconf |= F_VLAN; 8490 8491 if (fs->val.ovlan_vld || fs->mask.ovlan_vld) { 8492 fconf |= F_VNIC_ID; 8493 if (tpp->ingress_config & F_VNIC) 8494 return (EINVAL); 8495 } 8496 8497 if (fs->val.pfvf_vld || fs->mask.pfvf_vld) { 8498 fconf |= F_VNIC_ID; 8499 if ((tpp->ingress_config & F_VNIC) == 0) 8500 return (EINVAL); 8501 } 8502 8503 if (fs->val.iport || fs->mask.iport) 8504 fconf |= F_PORT; 8505 8506 if (fs->val.fcoe || fs->mask.fcoe) 8507 fconf |= F_FCOE; 8508 8509 if ((tpp->vlan_pri_map | fconf) != tpp->vlan_pri_map) 8510 return (E2BIG); 8511 8512 return (0); 8513 } 8514 8515 static int 8516 get_filter_mode(struct adapter *sc, uint32_t *mode) 8517 { 8518 struct tp_params *tpp = &sc->params.tp; 8519 8520 /* 8521 * We trust the cached values of the relevant TP registers. This means 8522 * things work reliably only if writes to those registers are always via 8523 * t4_set_filter_mode. 8524 */ 8525 *mode = fconf_iconf_to_mode(tpp->vlan_pri_map, tpp->ingress_config); 8526 8527 return (0); 8528 } 8529 8530 static int 8531 set_filter_mode(struct adapter *sc, uint32_t mode) 8532 { 8533 struct tp_params *tpp = &sc->params.tp; 8534 uint32_t fconf, iconf; 8535 int rc; 8536 8537 iconf = mode_to_iconf(mode); 8538 if ((iconf ^ tpp->ingress_config) & F_VNIC) { 8539 /* 8540 * For now we just complain if A_TP_INGRESS_CONFIG is not 8541 * already set to the correct value for the requested filter 8542 * mode. It's not clear if it's safe to write to this register 8543 * on the fly. (And we trust the cached value of the register). 8544 */ 8545 return (EBUSY); 8546 } 8547 8548 fconf = mode_to_fconf(mode); 8549 8550 rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK, 8551 "t4setfm"); 8552 if (rc) 8553 return (rc); 8554 8555 if (sc->tids.ftids_in_use > 0) { 8556 rc = EBUSY; 8557 goto done; 8558 } 8559 8560 #ifdef TCP_OFFLOAD 8561 if (uld_active(sc, ULD_TOM)) { 8562 rc = EBUSY; 8563 goto done; 8564 } 8565 #endif 8566 8567 rc = -t4_set_filter_mode(sc, fconf, true); 8568 done: 8569 end_synchronized_op(sc, LOCK_HELD); 8570 return (rc); 8571 } 8572 8573 static inline uint64_t 8574 get_filter_hits(struct adapter *sc, uint32_t fid) 8575 { 8576 uint32_t tcb_addr; 8577 8578 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + 8579 (fid + sc->tids.ftid_base) * TCB_SIZE; 8580 8581 if (is_t4(sc)) { 8582 uint64_t hits; 8583 8584 read_via_memwin(sc, 0, tcb_addr + 16, (uint32_t *)&hits, 8); 8585 return (be64toh(hits)); 8586 } else { 8587 uint32_t hits; 8588 8589 read_via_memwin(sc, 0, tcb_addr + 24, &hits, 4); 8590 return (be32toh(hits)); 8591 } 8592 } 8593 8594 static int 8595 get_filter(struct adapter *sc, struct t4_filter *t) 8596 { 8597 int i, rc, nfilters = sc->tids.nftids; 8598 struct filter_entry *f; 8599 8600 rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK, 8601 "t4getf"); 8602 if (rc) 8603 return (rc); 8604 8605 if (sc->tids.ftids_in_use == 0 || sc->tids.ftid_tab == NULL || 8606 t->idx >= nfilters) { 8607 t->idx = 0xffffffff; 8608 goto done; 8609 } 8610 8611 f = &sc->tids.ftid_tab[t->idx]; 8612 for (i = t->idx; i < nfilters; i++, f++) { 8613 if (f->valid) { 8614 t->idx = i; 8615 t->l2tidx = f->l2t ? f->l2t->idx : 0; 8616 t->smtidx = f->smtidx; 8617 if (f->fs.hitcnts) 8618 t->hits = get_filter_hits(sc, t->idx); 8619 else 8620 t->hits = UINT64_MAX; 8621 t->fs = f->fs; 8622 8623 goto done; 8624 } 8625 } 8626 8627 t->idx = 0xffffffff; 8628 done: 8629 end_synchronized_op(sc, LOCK_HELD); 8630 return (0); 8631 } 8632 8633 static int 8634 set_filter(struct adapter *sc, struct t4_filter *t) 8635 { 8636 unsigned int nfilters, nports; 8637 struct filter_entry *f; 8638 int i, rc; 8639 8640 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4setf"); 8641 if (rc) 8642 return (rc); 8643 8644 nfilters = sc->tids.nftids; 8645 nports = sc->params.nports; 8646 8647 if (nfilters == 0) { 8648 rc = ENOTSUP; 8649 goto done; 8650 } 8651 8652 if (t->idx >= nfilters) { 8653 rc = EINVAL; 8654 goto done; 8655 } 8656 8657 /* Validate against the global filter mode and ingress config */ 8658 rc = check_fspec_against_fconf_iconf(sc, &t->fs); 8659 if (rc != 0) 8660 goto done; 8661 8662 if (t->fs.action == FILTER_SWITCH && t->fs.eport >= nports) { 8663 rc = EINVAL; 8664 goto done; 8665 } 8666 8667 if (t->fs.val.iport >= nports) { 8668 rc = EINVAL; 8669 goto done; 8670 } 8671 8672 /* Can't specify an iq if not steering to it */ 8673 if (!t->fs.dirsteer && t->fs.iq) { 8674 rc = EINVAL; 8675 goto done; 8676 } 8677 8678 /* IPv6 filter idx must be 4 aligned */ 8679 if (t->fs.type == 1 && 8680 ((t->idx & 0x3) || t->idx + 4 >= nfilters)) { 8681 rc = EINVAL; 8682 goto done; 8683 } 8684 8685 if (!(sc->flags & FULL_INIT_DONE) && 8686 ((rc = adapter_full_init(sc)) != 0)) 8687 goto done; 8688 8689 if (sc->tids.ftid_tab == NULL) { 8690 KASSERT(sc->tids.ftids_in_use == 0, 8691 ("%s: no memory allocated but filters_in_use > 0", 8692 __func__)); 8693 8694 sc->tids.ftid_tab = malloc(sizeof (struct filter_entry) * 8695 nfilters, M_CXGBE, M_NOWAIT | M_ZERO); 8696 if (sc->tids.ftid_tab == NULL) { 8697 rc = ENOMEM; 8698 goto done; 8699 } 8700 mtx_init(&sc->tids.ftid_lock, "T4 filters", 0, MTX_DEF); 8701 } 8702 8703 for (i = 0; i < 4; i++) { 8704 f = &sc->tids.ftid_tab[t->idx + i]; 8705 8706 if (f->pending || f->valid) { 8707 rc = EBUSY; 8708 goto done; 8709 } 8710 if (f->locked) { 8711 rc = EPERM; 8712 goto done; 8713 } 8714 8715 if (t->fs.type == 0) 8716 break; 8717 } 8718 8719 f = &sc->tids.ftid_tab[t->idx]; 8720 f->fs = t->fs; 8721 8722 rc = set_filter_wr(sc, t->idx); 8723 done: 8724 end_synchronized_op(sc, 0); 8725 8726 if (rc == 0) { 8727 mtx_lock(&sc->tids.ftid_lock); 8728 for (;;) { 8729 if (f->pending == 0) { 8730 rc = f->valid ? 0 : EIO; 8731 break; 8732 } 8733 8734 if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock, 8735 PCATCH, "t4setfw", 0)) { 8736 rc = EINPROGRESS; 8737 break; 8738 } 8739 } 8740 mtx_unlock(&sc->tids.ftid_lock); 8741 } 8742 return (rc); 8743 } 8744 8745 static int 8746 del_filter(struct adapter *sc, struct t4_filter *t) 8747 { 8748 unsigned int nfilters; 8749 struct filter_entry *f; 8750 int rc; 8751 8752 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4delf"); 8753 if (rc) 8754 return (rc); 8755 8756 nfilters = sc->tids.nftids; 8757 8758 if (nfilters == 0) { 8759 rc = ENOTSUP; 8760 goto done; 8761 } 8762 8763 if (sc->tids.ftid_tab == NULL || sc->tids.ftids_in_use == 0 || 8764 t->idx >= nfilters) { 8765 rc = EINVAL; 8766 goto done; 8767 } 8768 8769 if (!(sc->flags & FULL_INIT_DONE)) { 8770 rc = EAGAIN; 8771 goto done; 8772 } 8773 8774 f = &sc->tids.ftid_tab[t->idx]; 8775 8776 if (f->pending) { 8777 rc = EBUSY; 8778 goto done; 8779 } 8780 if (f->locked) { 8781 rc = EPERM; 8782 goto done; 8783 } 8784 8785 if (f->valid) { 8786 t->fs = f->fs; /* extra info for the caller */ 8787 rc = del_filter_wr(sc, t->idx); 8788 } 8789 8790 done: 8791 end_synchronized_op(sc, 0); 8792 8793 if (rc == 0) { 8794 mtx_lock(&sc->tids.ftid_lock); 8795 for (;;) { 8796 if (f->pending == 0) { 8797 rc = f->valid ? EIO : 0; 8798 break; 8799 } 8800 8801 if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock, 8802 PCATCH, "t4delfw", 0)) { 8803 rc = EINPROGRESS; 8804 break; 8805 } 8806 } 8807 mtx_unlock(&sc->tids.ftid_lock); 8808 } 8809 8810 return (rc); 8811 } 8812 8813 static void 8814 clear_filter(struct filter_entry *f) 8815 { 8816 if (f->l2t) 8817 t4_l2t_release(f->l2t); 8818 8819 bzero(f, sizeof (*f)); 8820 } 8821 8822 static int 8823 set_filter_wr(struct adapter *sc, int fidx) 8824 { 8825 struct filter_entry *f = &sc->tids.ftid_tab[fidx]; 8826 struct fw_filter_wr *fwr; 8827 unsigned int ftid, vnic_vld, vnic_vld_mask; 8828 struct wrq_cookie cookie; 8829 8830 ASSERT_SYNCHRONIZED_OP(sc); 8831 8832 if (f->fs.newdmac || f->fs.newvlan) { 8833 /* This filter needs an L2T entry; allocate one. */ 8834 f->l2t = t4_l2t_alloc_switching(sc->l2t); 8835 if (f->l2t == NULL) 8836 return (EAGAIN); 8837 if (t4_l2t_set_switching(sc, f->l2t, f->fs.vlan, f->fs.eport, 8838 f->fs.dmac)) { 8839 t4_l2t_release(f->l2t); 8840 f->l2t = NULL; 8841 return (ENOMEM); 8842 } 8843 } 8844 8845 /* Already validated against fconf, iconf */ 8846 MPASS((f->fs.val.pfvf_vld & f->fs.val.ovlan_vld) == 0); 8847 MPASS((f->fs.mask.pfvf_vld & f->fs.mask.ovlan_vld) == 0); 8848 if (f->fs.val.pfvf_vld || f->fs.val.ovlan_vld) 8849 vnic_vld = 1; 8850 else 8851 vnic_vld = 0; 8852 if (f->fs.mask.pfvf_vld || f->fs.mask.ovlan_vld) 8853 vnic_vld_mask = 1; 8854 else 8855 vnic_vld_mask = 0; 8856 8857 ftid = sc->tids.ftid_base + fidx; 8858 8859 fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie); 8860 if (fwr == NULL) 8861 return (ENOMEM); 8862 bzero(fwr, sizeof(*fwr)); 8863 8864 fwr->op_pkd = htobe32(V_FW_WR_OP(FW_FILTER_WR)); 8865 fwr->len16_pkd = htobe32(FW_LEN16(*fwr)); 8866 fwr->tid_to_iq = 8867 htobe32(V_FW_FILTER_WR_TID(ftid) | 8868 V_FW_FILTER_WR_RQTYPE(f->fs.type) | 8869 V_FW_FILTER_WR_NOREPLY(0) | 8870 V_FW_FILTER_WR_IQ(f->fs.iq)); 8871 fwr->del_filter_to_l2tix = 8872 htobe32(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) | 8873 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) | 8874 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) | 8875 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) | 8876 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) | 8877 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) | 8878 V_FW_FILTER_WR_DMAC(f->fs.newdmac) | 8879 V_FW_FILTER_WR_SMAC(f->fs.newsmac) | 8880 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT || 8881 f->fs.newvlan == VLAN_REWRITE) | 8882 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE || 8883 f->fs.newvlan == VLAN_REWRITE) | 8884 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) | 8885 V_FW_FILTER_WR_TXCHAN(f->fs.eport) | 8886 V_FW_FILTER_WR_PRIO(f->fs.prio) | 8887 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0)); 8888 fwr->ethtype = htobe16(f->fs.val.ethtype); 8889 fwr->ethtypem = htobe16(f->fs.mask.ethtype); 8890 fwr->frag_to_ovlan_vldm = 8891 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) | 8892 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) | 8893 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.vlan_vld) | 8894 V_FW_FILTER_WR_OVLAN_VLD(vnic_vld) | 8895 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.vlan_vld) | 8896 V_FW_FILTER_WR_OVLAN_VLDM(vnic_vld_mask)); 8897 fwr->smac_sel = 0; 8898 fwr->rx_chan_rx_rpl_iq = htobe16(V_FW_FILTER_WR_RX_CHAN(0) | 8899 V_FW_FILTER_WR_RX_RPL_IQ(sc->sge.fwq.abs_id)); 8900 fwr->maci_to_matchtypem = 8901 htobe32(V_FW_FILTER_WR_MACI(f->fs.val.macidx) | 8902 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) | 8903 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) | 8904 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) | 8905 V_FW_FILTER_WR_PORT(f->fs.val.iport) | 8906 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) | 8907 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) | 8908 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype)); 8909 fwr->ptcl = f->fs.val.proto; 8910 fwr->ptclm = f->fs.mask.proto; 8911 fwr->ttyp = f->fs.val.tos; 8912 fwr->ttypm = f->fs.mask.tos; 8913 fwr->ivlan = htobe16(f->fs.val.vlan); 8914 fwr->ivlanm = htobe16(f->fs.mask.vlan); 8915 fwr->ovlan = htobe16(f->fs.val.vnic); 8916 fwr->ovlanm = htobe16(f->fs.mask.vnic); 8917 bcopy(f->fs.val.dip, fwr->lip, sizeof (fwr->lip)); 8918 bcopy(f->fs.mask.dip, fwr->lipm, sizeof (fwr->lipm)); 8919 bcopy(f->fs.val.sip, fwr->fip, sizeof (fwr->fip)); 8920 bcopy(f->fs.mask.sip, fwr->fipm, sizeof (fwr->fipm)); 8921 fwr->lp = htobe16(f->fs.val.dport); 8922 fwr->lpm = htobe16(f->fs.mask.dport); 8923 fwr->fp = htobe16(f->fs.val.sport); 8924 fwr->fpm = htobe16(f->fs.mask.sport); 8925 if (f->fs.newsmac) 8926 bcopy(f->fs.smac, fwr->sma, sizeof (fwr->sma)); 8927 8928 f->pending = 1; 8929 sc->tids.ftids_in_use++; 8930 8931 commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie); 8932 return (0); 8933 } 8934 8935 static int 8936 del_filter_wr(struct adapter *sc, int fidx) 8937 { 8938 struct filter_entry *f = &sc->tids.ftid_tab[fidx]; 8939 struct fw_filter_wr *fwr; 8940 unsigned int ftid; 8941 struct wrq_cookie cookie; 8942 8943 ftid = sc->tids.ftid_base + fidx; 8944 8945 fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie); 8946 if (fwr == NULL) 8947 return (ENOMEM); 8948 bzero(fwr, sizeof (*fwr)); 8949 8950 t4_mk_filtdelwr(ftid, fwr, sc->sge.fwq.abs_id); 8951 8952 f->pending = 1; 8953 commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie); 8954 return (0); 8955 } 8956 8957 int 8958 t4_filter_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 8959 { 8960 struct adapter *sc = iq->adapter; 8961 const struct cpl_set_tcb_rpl *rpl = (const void *)(rss + 1); 8962 unsigned int idx = GET_TID(rpl); 8963 unsigned int rc; 8964 struct filter_entry *f; 8965 8966 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 8967 rss->opcode)); 8968 MPASS(iq == &sc->sge.fwq); 8969 MPASS(is_ftid(sc, idx)); 8970 8971 idx -= sc->tids.ftid_base; 8972 f = &sc->tids.ftid_tab[idx]; 8973 rc = G_COOKIE(rpl->cookie); 8974 8975 mtx_lock(&sc->tids.ftid_lock); 8976 if (rc == FW_FILTER_WR_FLT_ADDED) { 8977 KASSERT(f->pending, ("%s: filter[%u] isn't pending.", 8978 __func__, idx)); 8979 f->smtidx = (be64toh(rpl->oldval) >> 24) & 0xff; 8980 f->pending = 0; /* asynchronous setup completed */ 8981 f->valid = 1; 8982 } else { 8983 if (rc != FW_FILTER_WR_FLT_DELETED) { 8984 /* Add or delete failed, display an error */ 8985 log(LOG_ERR, 8986 "filter %u setup failed with error %u\n", 8987 idx, rc); 8988 } 8989 8990 clear_filter(f); 8991 sc->tids.ftids_in_use--; 8992 } 8993 wakeup(&sc->tids.ftid_tab); 8994 mtx_unlock(&sc->tids.ftid_lock); 8995 8996 return (0); 8997 } 8998 8999 static int 9000 set_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 9001 { 9002 9003 MPASS(iq->set_tcb_rpl != NULL); 9004 return (iq->set_tcb_rpl(iq, rss, m)); 9005 } 9006 9007 static int 9008 l2t_write_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 9009 { 9010 9011 MPASS(iq->l2t_write_rpl != NULL); 9012 return (iq->l2t_write_rpl(iq, rss, m)); 9013 } 9014 9015 static int 9016 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 9017 { 9018 int rc; 9019 9020 if (cntxt->cid > M_CTXTQID) 9021 return (EINVAL); 9022 9023 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 9024 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 9025 return (EINVAL); 9026 9027 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 9028 if (rc) 9029 return (rc); 9030 9031 if (sc->flags & FW_OK) { 9032 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 9033 &cntxt->data[0]); 9034 if (rc == 0) 9035 goto done; 9036 } 9037 9038 /* 9039 * Read via firmware failed or wasn't even attempted. Read directly via 9040 * the backdoor. 9041 */ 9042 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 9043 done: 9044 end_synchronized_op(sc, 0); 9045 return (rc); 9046 } 9047 9048 static int 9049 load_fw(struct adapter *sc, struct t4_data *fw) 9050 { 9051 int rc; 9052 uint8_t *fw_data; 9053 9054 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 9055 if (rc) 9056 return (rc); 9057 9058 /* 9059 * The firmware, with the sole exception of the memory parity error 9060 * handler, runs from memory and not flash. It is almost always safe to 9061 * install a new firmware on a running system. Just set bit 1 in 9062 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 9063 */ 9064 if (sc->flags & FULL_INIT_DONE && 9065 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 9066 rc = EBUSY; 9067 goto done; 9068 } 9069 9070 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 9071 if (fw_data == NULL) { 9072 rc = ENOMEM; 9073 goto done; 9074 } 9075 9076 rc = copyin(fw->data, fw_data, fw->len); 9077 if (rc == 0) 9078 rc = -t4_load_fw(sc, fw_data, fw->len); 9079 9080 free(fw_data, M_CXGBE); 9081 done: 9082 end_synchronized_op(sc, 0); 9083 return (rc); 9084 } 9085 9086 static int 9087 load_cfg(struct adapter *sc, struct t4_data *cfg) 9088 { 9089 int rc; 9090 uint8_t *cfg_data = NULL; 9091 9092 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 9093 if (rc) 9094 return (rc); 9095 9096 if (cfg->len == 0) { 9097 /* clear */ 9098 rc = -t4_load_cfg(sc, NULL, 0); 9099 goto done; 9100 } 9101 9102 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 9103 if (cfg_data == NULL) { 9104 rc = ENOMEM; 9105 goto done; 9106 } 9107 9108 rc = copyin(cfg->data, cfg_data, cfg->len); 9109 if (rc == 0) 9110 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 9111 9112 free(cfg_data, M_CXGBE); 9113 done: 9114 end_synchronized_op(sc, 0); 9115 return (rc); 9116 } 9117 9118 static int 9119 load_boot(struct adapter *sc, struct t4_bootrom *br) 9120 { 9121 int rc; 9122 uint8_t *br_data = NULL; 9123 u_int offset; 9124 9125 if (br->len > 1024 * 1024) 9126 return (EFBIG); 9127 9128 if (br->pf_offset == 0) { 9129 /* pfidx */ 9130 if (br->pfidx_addr > 7) 9131 return (EINVAL); 9132 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 9133 A_PCIE_PF_EXPROM_OFST))); 9134 } else if (br->pf_offset == 1) { 9135 /* offset */ 9136 offset = G_OFFSET(br->pfidx_addr); 9137 } else { 9138 return (EINVAL); 9139 } 9140 9141 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 9142 if (rc) 9143 return (rc); 9144 9145 if (br->len == 0) { 9146 /* clear */ 9147 rc = -t4_load_boot(sc, NULL, offset, 0); 9148 goto done; 9149 } 9150 9151 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 9152 if (br_data == NULL) { 9153 rc = ENOMEM; 9154 goto done; 9155 } 9156 9157 rc = copyin(br->data, br_data, br->len); 9158 if (rc == 0) 9159 rc = -t4_load_boot(sc, br_data, offset, br->len); 9160 9161 free(br_data, M_CXGBE); 9162 done: 9163 end_synchronized_op(sc, 0); 9164 return (rc); 9165 } 9166 9167 static int 9168 load_bootcfg(struct adapter *sc, struct t4_data *bc) 9169 { 9170 int rc; 9171 uint8_t *bc_data = NULL; 9172 9173 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 9174 if (rc) 9175 return (rc); 9176 9177 if (bc->len == 0) { 9178 /* clear */ 9179 rc = -t4_load_bootcfg(sc, NULL, 0); 9180 goto done; 9181 } 9182 9183 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 9184 if (bc_data == NULL) { 9185 rc = ENOMEM; 9186 goto done; 9187 } 9188 9189 rc = copyin(bc->data, bc_data, bc->len); 9190 if (rc == 0) 9191 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 9192 9193 free(bc_data, M_CXGBE); 9194 done: 9195 end_synchronized_op(sc, 0); 9196 return (rc); 9197 } 9198 9199 static int 9200 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 9201 { 9202 int rc; 9203 struct cudbg_init *cudbg; 9204 void *handle, *buf; 9205 9206 /* buf is large, don't block if no memory is available */ 9207 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 9208 if (buf == NULL) 9209 return (ENOMEM); 9210 9211 handle = cudbg_alloc_handle(); 9212 if (handle == NULL) { 9213 rc = ENOMEM; 9214 goto done; 9215 } 9216 9217 cudbg = cudbg_get_init(handle); 9218 cudbg->adap = sc; 9219 cudbg->print = (cudbg_print_cb)printf; 9220 9221 #ifndef notyet 9222 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 9223 __func__, dump->wr_flash, dump->len, dump->data); 9224 #endif 9225 9226 if (dump->wr_flash) 9227 cudbg->use_flash = 1; 9228 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 9229 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 9230 9231 rc = cudbg_collect(handle, buf, &dump->len); 9232 if (rc != 0) 9233 goto done; 9234 9235 rc = copyout(buf, dump->data, dump->len); 9236 done: 9237 cudbg_free_handle(handle); 9238 free(buf, M_CXGBE); 9239 return (rc); 9240 } 9241 9242 #define MAX_READ_BUF_SIZE (128 * 1024) 9243 static int 9244 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 9245 { 9246 uint32_t addr, remaining, n; 9247 uint32_t *buf; 9248 int rc; 9249 uint8_t *dst; 9250 9251 rc = validate_mem_range(sc, mr->addr, mr->len); 9252 if (rc != 0) 9253 return (rc); 9254 9255 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 9256 addr = mr->addr; 9257 remaining = mr->len; 9258 dst = (void *)mr->data; 9259 9260 while (remaining) { 9261 n = min(remaining, MAX_READ_BUF_SIZE); 9262 read_via_memwin(sc, 2, addr, buf, n); 9263 9264 rc = copyout(buf, dst, n); 9265 if (rc != 0) 9266 break; 9267 9268 dst += n; 9269 remaining -= n; 9270 addr += n; 9271 } 9272 9273 free(buf, M_CXGBE); 9274 return (rc); 9275 } 9276 #undef MAX_READ_BUF_SIZE 9277 9278 static int 9279 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 9280 { 9281 int rc; 9282 9283 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 9284 return (EINVAL); 9285 9286 if (i2cd->len > sizeof(i2cd->data)) 9287 return (EFBIG); 9288 9289 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 9290 if (rc) 9291 return (rc); 9292 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 9293 i2cd->offset, i2cd->len, &i2cd->data[0]); 9294 end_synchronized_op(sc, 0); 9295 9296 return (rc); 9297 } 9298 9299 int 9300 t4_os_find_pci_capability(struct adapter *sc, int cap) 9301 { 9302 int i; 9303 9304 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 9305 } 9306 9307 int 9308 t4_os_pci_save_state(struct adapter *sc) 9309 { 9310 device_t dev; 9311 struct pci_devinfo *dinfo; 9312 9313 dev = sc->dev; 9314 dinfo = device_get_ivars(dev); 9315 9316 pci_cfg_save(dev, dinfo, 0); 9317 return (0); 9318 } 9319 9320 int 9321 t4_os_pci_restore_state(struct adapter *sc) 9322 { 9323 device_t dev; 9324 struct pci_devinfo *dinfo; 9325 9326 dev = sc->dev; 9327 dinfo = device_get_ivars(dev); 9328 9329 pci_cfg_restore(dev, dinfo); 9330 return (0); 9331 } 9332 9333 void 9334 t4_os_portmod_changed(struct port_info *pi) 9335 { 9336 struct adapter *sc = pi->adapter; 9337 struct vi_info *vi; 9338 struct ifnet *ifp; 9339 static const char *mod_str[] = { 9340 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 9341 }; 9342 9343 PORT_LOCK(pi); 9344 build_medialist(pi, &pi->media); 9345 PORT_UNLOCK(pi); 9346 vi = &pi->vi[0]; 9347 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 9348 init_l1cfg(pi); 9349 end_synchronized_op(sc, LOCK_HELD); 9350 } 9351 9352 ifp = vi->ifp; 9353 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 9354 if_printf(ifp, "transceiver unplugged.\n"); 9355 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 9356 if_printf(ifp, "unknown transceiver inserted.\n"); 9357 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 9358 if_printf(ifp, "unsupported transceiver inserted.\n"); 9359 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 9360 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 9361 port_top_speed(pi), mod_str[pi->mod_type]); 9362 } else { 9363 if_printf(ifp, "transceiver (type %d) inserted.\n", 9364 pi->mod_type); 9365 } 9366 } 9367 9368 void 9369 t4_os_link_changed(struct port_info *pi) 9370 { 9371 struct vi_info *vi; 9372 struct ifnet *ifp; 9373 struct link_config *lc; 9374 int v; 9375 9376 for_each_vi(pi, v, vi) { 9377 ifp = vi->ifp; 9378 if (ifp == NULL) 9379 continue; 9380 9381 lc = &pi->link_cfg; 9382 if (lc->link_ok) { 9383 ifp->if_baudrate = IF_Mbps(lc->speed); 9384 if_link_state_change(ifp, LINK_STATE_UP); 9385 } else { 9386 if_link_state_change(ifp, LINK_STATE_DOWN); 9387 } 9388 } 9389 } 9390 9391 void 9392 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 9393 { 9394 struct adapter *sc; 9395 9396 sx_slock(&t4_list_lock); 9397 SLIST_FOREACH(sc, &t4_list, link) { 9398 /* 9399 * func should not make any assumptions about what state sc is 9400 * in - the only guarantee is that sc->sc_lock is a valid lock. 9401 */ 9402 func(sc, arg); 9403 } 9404 sx_sunlock(&t4_list_lock); 9405 } 9406 9407 static int 9408 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 9409 struct thread *td) 9410 { 9411 int rc; 9412 struct adapter *sc = dev->si_drv1; 9413 9414 rc = priv_check(td, PRIV_DRIVER); 9415 if (rc != 0) 9416 return (rc); 9417 9418 switch (cmd) { 9419 case CHELSIO_T4_GETREG: { 9420 struct t4_reg *edata = (struct t4_reg *)data; 9421 9422 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 9423 return (EFAULT); 9424 9425 if (edata->size == 4) 9426 edata->val = t4_read_reg(sc, edata->addr); 9427 else if (edata->size == 8) 9428 edata->val = t4_read_reg64(sc, edata->addr); 9429 else 9430 return (EINVAL); 9431 9432 break; 9433 } 9434 case CHELSIO_T4_SETREG: { 9435 struct t4_reg *edata = (struct t4_reg *)data; 9436 9437 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 9438 return (EFAULT); 9439 9440 if (edata->size == 4) { 9441 if (edata->val & 0xffffffff00000000) 9442 return (EINVAL); 9443 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 9444 } else if (edata->size == 8) 9445 t4_write_reg64(sc, edata->addr, edata->val); 9446 else 9447 return (EINVAL); 9448 break; 9449 } 9450 case CHELSIO_T4_REGDUMP: { 9451 struct t4_regdump *regs = (struct t4_regdump *)data; 9452 int reglen = t4_get_regs_len(sc); 9453 uint8_t *buf; 9454 9455 if (regs->len < reglen) { 9456 regs->len = reglen; /* hint to the caller */ 9457 return (ENOBUFS); 9458 } 9459 9460 regs->len = reglen; 9461 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 9462 get_regs(sc, regs, buf); 9463 rc = copyout(buf, regs->data, reglen); 9464 free(buf, M_CXGBE); 9465 break; 9466 } 9467 case CHELSIO_T4_GET_FILTER_MODE: 9468 rc = get_filter_mode(sc, (uint32_t *)data); 9469 break; 9470 case CHELSIO_T4_SET_FILTER_MODE: 9471 rc = set_filter_mode(sc, *(uint32_t *)data); 9472 break; 9473 case CHELSIO_T4_GET_FILTER: 9474 rc = get_filter(sc, (struct t4_filter *)data); 9475 break; 9476 case CHELSIO_T4_SET_FILTER: 9477 rc = set_filter(sc, (struct t4_filter *)data); 9478 break; 9479 case CHELSIO_T4_DEL_FILTER: 9480 rc = del_filter(sc, (struct t4_filter *)data); 9481 break; 9482 case CHELSIO_T4_GET_SGE_CONTEXT: 9483 rc = get_sge_context(sc, (struct t4_sge_context *)data); 9484 break; 9485 case CHELSIO_T4_LOAD_FW: 9486 rc = load_fw(sc, (struct t4_data *)data); 9487 break; 9488 case CHELSIO_T4_GET_MEM: 9489 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 9490 break; 9491 case CHELSIO_T4_GET_I2C: 9492 rc = read_i2c(sc, (struct t4_i2c_data *)data); 9493 break; 9494 case CHELSIO_T4_CLEAR_STATS: { 9495 int i, v; 9496 u_int port_id = *(uint32_t *)data; 9497 struct port_info *pi; 9498 struct vi_info *vi; 9499 9500 if (port_id >= sc->params.nports) 9501 return (EINVAL); 9502 pi = sc->port[port_id]; 9503 if (pi == NULL) 9504 return (EIO); 9505 9506 /* MAC stats */ 9507 t4_clr_port_stats(sc, pi->tx_chan); 9508 pi->tx_parse_error = 0; 9509 mtx_lock(&sc->reg_lock); 9510 for_each_vi(pi, v, vi) { 9511 if (vi->flags & VI_INIT_DONE) 9512 t4_clr_vi_stats(sc, vi->viid); 9513 } 9514 mtx_unlock(&sc->reg_lock); 9515 9516 /* 9517 * Since this command accepts a port, clear stats for 9518 * all VIs on this port. 9519 */ 9520 for_each_vi(pi, v, vi) { 9521 if (vi->flags & VI_INIT_DONE) { 9522 struct sge_rxq *rxq; 9523 struct sge_txq *txq; 9524 struct sge_wrq *wrq; 9525 9526 for_each_rxq(vi, i, rxq) { 9527 #if defined(INET) || defined(INET6) 9528 rxq->lro.lro_queued = 0; 9529 rxq->lro.lro_flushed = 0; 9530 #endif 9531 rxq->rxcsum = 0; 9532 rxq->vlan_extraction = 0; 9533 } 9534 9535 for_each_txq(vi, i, txq) { 9536 txq->txcsum = 0; 9537 txq->tso_wrs = 0; 9538 txq->vlan_insertion = 0; 9539 txq->imm_wrs = 0; 9540 txq->sgl_wrs = 0; 9541 txq->txpkt_wrs = 0; 9542 txq->txpkts0_wrs = 0; 9543 txq->txpkts1_wrs = 0; 9544 txq->txpkts0_pkts = 0; 9545 txq->txpkts1_pkts = 0; 9546 mp_ring_reset_stats(txq->r); 9547 } 9548 9549 #ifdef TCP_OFFLOAD 9550 /* nothing to clear for each ofld_rxq */ 9551 9552 for_each_ofld_txq(vi, i, wrq) { 9553 wrq->tx_wrs_direct = 0; 9554 wrq->tx_wrs_copied = 0; 9555 } 9556 #endif 9557 9558 if (IS_MAIN_VI(vi)) { 9559 wrq = &sc->sge.ctrlq[pi->port_id]; 9560 wrq->tx_wrs_direct = 0; 9561 wrq->tx_wrs_copied = 0; 9562 } 9563 } 9564 } 9565 break; 9566 } 9567 case CHELSIO_T4_SCHED_CLASS: 9568 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 9569 break; 9570 case CHELSIO_T4_SCHED_QUEUE: 9571 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 9572 break; 9573 case CHELSIO_T4_GET_TRACER: 9574 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 9575 break; 9576 case CHELSIO_T4_SET_TRACER: 9577 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 9578 break; 9579 case CHELSIO_T4_LOAD_CFG: 9580 rc = load_cfg(sc, (struct t4_data *)data); 9581 break; 9582 case CHELSIO_T4_LOAD_BOOT: 9583 rc = load_boot(sc, (struct t4_bootrom *)data); 9584 break; 9585 case CHELSIO_T4_LOAD_BOOTCFG: 9586 rc = load_bootcfg(sc, (struct t4_data *)data); 9587 break; 9588 case CHELSIO_T4_CUDBG_DUMP: 9589 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 9590 break; 9591 default: 9592 rc = ENOTTY; 9593 } 9594 9595 return (rc); 9596 } 9597 9598 void 9599 t4_db_full(struct adapter *sc) 9600 { 9601 9602 CXGBE_UNIMPLEMENTED(__func__); 9603 } 9604 9605 void 9606 t4_db_dropped(struct adapter *sc) 9607 { 9608 9609 CXGBE_UNIMPLEMENTED(__func__); 9610 } 9611 9612 #ifdef TCP_OFFLOAD 9613 static int 9614 toe_capability(struct vi_info *vi, int enable) 9615 { 9616 int rc; 9617 struct port_info *pi = vi->pi; 9618 struct adapter *sc = pi->adapter; 9619 9620 ASSERT_SYNCHRONIZED_OP(sc); 9621 9622 if (!is_offload(sc)) 9623 return (ENODEV); 9624 9625 if (enable) { 9626 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { 9627 /* TOE is already enabled. */ 9628 return (0); 9629 } 9630 9631 /* 9632 * We need the port's queues around so that we're able to send 9633 * and receive CPLs to/from the TOE even if the ifnet for this 9634 * port has never been UP'd administratively. 9635 */ 9636 if (!(vi->flags & VI_INIT_DONE)) { 9637 rc = vi_full_init(vi); 9638 if (rc) 9639 return (rc); 9640 } 9641 if (!(pi->vi[0].flags & VI_INIT_DONE)) { 9642 rc = vi_full_init(&pi->vi[0]); 9643 if (rc) 9644 return (rc); 9645 } 9646 9647 if (isset(&sc->offload_map, pi->port_id)) { 9648 /* TOE is enabled on another VI of this port. */ 9649 pi->uld_vis++; 9650 return (0); 9651 } 9652 9653 if (!uld_active(sc, ULD_TOM)) { 9654 rc = t4_activate_uld(sc, ULD_TOM); 9655 if (rc == EAGAIN) { 9656 log(LOG_WARNING, 9657 "You must kldload t4_tom.ko before trying " 9658 "to enable TOE on a cxgbe interface.\n"); 9659 } 9660 if (rc != 0) 9661 return (rc); 9662 KASSERT(sc->tom_softc != NULL, 9663 ("%s: TOM activated but softc NULL", __func__)); 9664 KASSERT(uld_active(sc, ULD_TOM), 9665 ("%s: TOM activated but flag not set", __func__)); 9666 } 9667 9668 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 9669 if (!uld_active(sc, ULD_IWARP)) 9670 (void) t4_activate_uld(sc, ULD_IWARP); 9671 if (!uld_active(sc, ULD_ISCSI)) 9672 (void) t4_activate_uld(sc, ULD_ISCSI); 9673 9674 pi->uld_vis++; 9675 setbit(&sc->offload_map, pi->port_id); 9676 } else { 9677 pi->uld_vis--; 9678 9679 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 9680 return (0); 9681 9682 KASSERT(uld_active(sc, ULD_TOM), 9683 ("%s: TOM never initialized?", __func__)); 9684 clrbit(&sc->offload_map, pi->port_id); 9685 } 9686 9687 return (0); 9688 } 9689 9690 /* 9691 * Add an upper layer driver to the global list. 9692 */ 9693 int 9694 t4_register_uld(struct uld_info *ui) 9695 { 9696 int rc = 0; 9697 struct uld_info *u; 9698 9699 sx_xlock(&t4_uld_list_lock); 9700 SLIST_FOREACH(u, &t4_uld_list, link) { 9701 if (u->uld_id == ui->uld_id) { 9702 rc = EEXIST; 9703 goto done; 9704 } 9705 } 9706 9707 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 9708 ui->refcount = 0; 9709 done: 9710 sx_xunlock(&t4_uld_list_lock); 9711 return (rc); 9712 } 9713 9714 int 9715 t4_unregister_uld(struct uld_info *ui) 9716 { 9717 int rc = EINVAL; 9718 struct uld_info *u; 9719 9720 sx_xlock(&t4_uld_list_lock); 9721 9722 SLIST_FOREACH(u, &t4_uld_list, link) { 9723 if (u == ui) { 9724 if (ui->refcount > 0) { 9725 rc = EBUSY; 9726 goto done; 9727 } 9728 9729 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 9730 rc = 0; 9731 goto done; 9732 } 9733 } 9734 done: 9735 sx_xunlock(&t4_uld_list_lock); 9736 return (rc); 9737 } 9738 9739 int 9740 t4_activate_uld(struct adapter *sc, int id) 9741 { 9742 int rc; 9743 struct uld_info *ui; 9744 9745 ASSERT_SYNCHRONIZED_OP(sc); 9746 9747 if (id < 0 || id > ULD_MAX) 9748 return (EINVAL); 9749 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 9750 9751 sx_slock(&t4_uld_list_lock); 9752 9753 SLIST_FOREACH(ui, &t4_uld_list, link) { 9754 if (ui->uld_id == id) { 9755 if (!(sc->flags & FULL_INIT_DONE)) { 9756 rc = adapter_full_init(sc); 9757 if (rc != 0) 9758 break; 9759 } 9760 9761 rc = ui->activate(sc); 9762 if (rc == 0) { 9763 setbit(&sc->active_ulds, id); 9764 ui->refcount++; 9765 } 9766 break; 9767 } 9768 } 9769 9770 sx_sunlock(&t4_uld_list_lock); 9771 9772 return (rc); 9773 } 9774 9775 int 9776 t4_deactivate_uld(struct adapter *sc, int id) 9777 { 9778 int rc; 9779 struct uld_info *ui; 9780 9781 ASSERT_SYNCHRONIZED_OP(sc); 9782 9783 if (id < 0 || id > ULD_MAX) 9784 return (EINVAL); 9785 rc = ENXIO; 9786 9787 sx_slock(&t4_uld_list_lock); 9788 9789 SLIST_FOREACH(ui, &t4_uld_list, link) { 9790 if (ui->uld_id == id) { 9791 rc = ui->deactivate(sc); 9792 if (rc == 0) { 9793 clrbit(&sc->active_ulds, id); 9794 ui->refcount--; 9795 } 9796 break; 9797 } 9798 } 9799 9800 sx_sunlock(&t4_uld_list_lock); 9801 9802 return (rc); 9803 } 9804 9805 int 9806 uld_active(struct adapter *sc, int uld_id) 9807 { 9808 9809 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 9810 9811 return (isset(&sc->active_ulds, uld_id)); 9812 } 9813 #endif 9814 9815 /* 9816 * t = ptr to tunable. 9817 * nc = number of CPUs. 9818 * c = compiled in default for that tunable. 9819 */ 9820 static void 9821 calculate_nqueues(int *t, int nc, const int c) 9822 { 9823 int nq; 9824 9825 if (*t > 0) 9826 return; 9827 nq = *t < 0 ? -*t : c; 9828 *t = min(nc, nq); 9829 } 9830 9831 /* 9832 * Come up with reasonable defaults for some of the tunables, provided they're 9833 * not set by the user (in which case we'll use the values as is). 9834 */ 9835 static void 9836 tweak_tunables(void) 9837 { 9838 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 9839 9840 if (t4_ntxq10g < 1) { 9841 #ifdef RSS 9842 t4_ntxq10g = rss_getnumbuckets(); 9843 #else 9844 calculate_nqueues(&t4_ntxq10g, nc, NTXQ_10G); 9845 #endif 9846 } 9847 9848 if (t4_ntxq1g < 1) { 9849 #ifdef RSS 9850 /* XXX: way too many for 1GbE? */ 9851 t4_ntxq1g = rss_getnumbuckets(); 9852 #else 9853 calculate_nqueues(&t4_ntxq1g, nc, NTXQ_1G); 9854 #endif 9855 } 9856 9857 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 9858 9859 if (t4_nrxq10g < 1) { 9860 #ifdef RSS 9861 t4_nrxq10g = rss_getnumbuckets(); 9862 #else 9863 calculate_nqueues(&t4_nrxq10g, nc, NRXQ_10G); 9864 #endif 9865 } 9866 9867 if (t4_nrxq1g < 1) { 9868 #ifdef RSS 9869 /* XXX: way too many for 1GbE? */ 9870 t4_nrxq1g = rss_getnumbuckets(); 9871 #else 9872 calculate_nqueues(&t4_nrxq1g, nc, NRXQ_1G); 9873 #endif 9874 } 9875 9876 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 9877 9878 #ifdef TCP_OFFLOAD 9879 calculate_nqueues(&t4_nofldtxq10g, nc, NOFLDTXQ_10G); 9880 calculate_nqueues(&t4_nofldtxq1g, nc, NOFLDTXQ_1G); 9881 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 9882 calculate_nqueues(&t4_nofldrxq10g, nc, NOFLDRXQ_10G); 9883 calculate_nqueues(&t4_nofldrxq1g, nc, NOFLDRXQ_1G); 9884 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 9885 9886 if (t4_toecaps_allowed == -1) 9887 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 9888 9889 if (t4_rdmacaps_allowed == -1) { 9890 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 9891 FW_CAPS_CONFIG_RDMA_RDMAC; 9892 } 9893 9894 if (t4_iscsicaps_allowed == -1) { 9895 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 9896 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 9897 FW_CAPS_CONFIG_ISCSI_T10DIF; 9898 } 9899 #else 9900 if (t4_toecaps_allowed == -1) 9901 t4_toecaps_allowed = 0; 9902 9903 if (t4_rdmacaps_allowed == -1) 9904 t4_rdmacaps_allowed = 0; 9905 9906 if (t4_iscsicaps_allowed == -1) 9907 t4_iscsicaps_allowed = 0; 9908 #endif 9909 9910 #ifdef DEV_NETMAP 9911 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 9912 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 9913 #endif 9914 9915 if (t4_tmr_idx_10g < 0 || t4_tmr_idx_10g >= SGE_NTIMERS) 9916 t4_tmr_idx_10g = TMR_IDX_10G; 9917 9918 if (t4_pktc_idx_10g < -1 || t4_pktc_idx_10g >= SGE_NCOUNTERS) 9919 t4_pktc_idx_10g = PKTC_IDX_10G; 9920 9921 if (t4_tmr_idx_1g < 0 || t4_tmr_idx_1g >= SGE_NTIMERS) 9922 t4_tmr_idx_1g = TMR_IDX_1G; 9923 9924 if (t4_pktc_idx_1g < -1 || t4_pktc_idx_1g >= SGE_NCOUNTERS) 9925 t4_pktc_idx_1g = PKTC_IDX_1G; 9926 9927 if (t4_qsize_txq < 128) 9928 t4_qsize_txq = 128; 9929 9930 if (t4_qsize_rxq < 128) 9931 t4_qsize_rxq = 128; 9932 while (t4_qsize_rxq & 7) 9933 t4_qsize_rxq++; 9934 9935 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 9936 } 9937 9938 #ifdef DDB 9939 static void 9940 t4_dump_tcb(struct adapter *sc, int tid) 9941 { 9942 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 9943 9944 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 9945 save = t4_read_reg(sc, reg); 9946 base = sc->memwin[2].mw_base; 9947 9948 /* Dump TCB for the tid */ 9949 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9950 tcb_addr += tid * TCB_SIZE; 9951 9952 if (is_t4(sc)) { 9953 pf = 0; 9954 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 9955 } else { 9956 pf = V_PFNUM(sc->pf); 9957 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 9958 } 9959 t4_write_reg(sc, reg, win_pos | pf); 9960 t4_read_reg(sc, reg); 9961 9962 off = tcb_addr - win_pos; 9963 for (i = 0; i < 4; i++) { 9964 uint32_t buf[8]; 9965 for (j = 0; j < 8; j++, off += 4) 9966 buf[j] = htonl(t4_read_reg(sc, base + off)); 9967 9968 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 9969 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 9970 buf[7]); 9971 } 9972 9973 t4_write_reg(sc, reg, save); 9974 t4_read_reg(sc, reg); 9975 } 9976 9977 static void 9978 t4_dump_devlog(struct adapter *sc) 9979 { 9980 struct devlog_params *dparams = &sc->params.devlog; 9981 struct fw_devlog_e e; 9982 int i, first, j, m, nentries, rc; 9983 uint64_t ftstamp = UINT64_MAX; 9984 9985 if (dparams->start == 0) { 9986 db_printf("devlog params not valid\n"); 9987 return; 9988 } 9989 9990 nentries = dparams->size / sizeof(struct fw_devlog_e); 9991 m = fwmtype_to_hwmtype(dparams->memtype); 9992 9993 /* Find the first entry. */ 9994 first = -1; 9995 for (i = 0; i < nentries && !db_pager_quit; i++) { 9996 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 9997 sizeof(e), (void *)&e); 9998 if (rc != 0) 9999 break; 10000 10001 if (e.timestamp == 0) 10002 break; 10003 10004 e.timestamp = be64toh(e.timestamp); 10005 if (e.timestamp < ftstamp) { 10006 ftstamp = e.timestamp; 10007 first = i; 10008 } 10009 } 10010 10011 if (first == -1) 10012 return; 10013 10014 i = first; 10015 do { 10016 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 10017 sizeof(e), (void *)&e); 10018 if (rc != 0) 10019 return; 10020 10021 if (e.timestamp == 0) 10022 return; 10023 10024 e.timestamp = be64toh(e.timestamp); 10025 e.seqno = be32toh(e.seqno); 10026 for (j = 0; j < 8; j++) 10027 e.params[j] = be32toh(e.params[j]); 10028 10029 db_printf("%10d %15ju %8s %8s ", 10030 e.seqno, e.timestamp, 10031 (e.level < nitems(devlog_level_strings) ? 10032 devlog_level_strings[e.level] : "UNKNOWN"), 10033 (e.facility < nitems(devlog_facility_strings) ? 10034 devlog_facility_strings[e.facility] : "UNKNOWN")); 10035 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 10036 e.params[3], e.params[4], e.params[5], e.params[6], 10037 e.params[7]); 10038 10039 if (++i == nentries) 10040 i = 0; 10041 } while (i != first && !db_pager_quit); 10042 } 10043 10044 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); 10045 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); 10046 10047 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) 10048 { 10049 device_t dev; 10050 int t; 10051 bool valid; 10052 10053 valid = false; 10054 t = db_read_token(); 10055 if (t == tIDENT) { 10056 dev = device_lookup_by_name(db_tok_string); 10057 valid = true; 10058 } 10059 db_skip_to_eol(); 10060 if (!valid) { 10061 db_printf("usage: show t4 devlog <nexus>\n"); 10062 return; 10063 } 10064 10065 if (dev == NULL) { 10066 db_printf("device not found\n"); 10067 return; 10068 } 10069 10070 t4_dump_devlog(device_get_softc(dev)); 10071 } 10072 10073 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) 10074 { 10075 device_t dev; 10076 int radix, tid, t; 10077 bool valid; 10078 10079 valid = false; 10080 radix = db_radix; 10081 db_radix = 10; 10082 t = db_read_token(); 10083 if (t == tIDENT) { 10084 dev = device_lookup_by_name(db_tok_string); 10085 t = db_read_token(); 10086 if (t == tNUMBER) { 10087 tid = db_tok_number; 10088 valid = true; 10089 } 10090 } 10091 db_radix = radix; 10092 db_skip_to_eol(); 10093 if (!valid) { 10094 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 10095 return; 10096 } 10097 10098 if (dev == NULL) { 10099 db_printf("device not found\n"); 10100 return; 10101 } 10102 if (tid < 0) { 10103 db_printf("invalid tid\n"); 10104 return; 10105 } 10106 10107 t4_dump_tcb(device_get_softc(dev), tid); 10108 } 10109 #endif 10110 10111 static struct sx mlu; /* mod load unload */ 10112 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 10113 10114 static int 10115 mod_event(module_t mod, int cmd, void *arg) 10116 { 10117 int rc = 0; 10118 static int loaded = 0; 10119 10120 switch (cmd) { 10121 case MOD_LOAD: 10122 sx_xlock(&mlu); 10123 if (loaded++ == 0) { 10124 t4_sge_modload(); 10125 t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl); 10126 t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl); 10127 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 10128 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 10129 sx_init(&t4_list_lock, "T4/T5 adapters"); 10130 SLIST_INIT(&t4_list); 10131 #ifdef TCP_OFFLOAD 10132 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 10133 SLIST_INIT(&t4_uld_list); 10134 #endif 10135 t4_tracer_modload(); 10136 tweak_tunables(); 10137 } 10138 sx_xunlock(&mlu); 10139 break; 10140 10141 case MOD_UNLOAD: 10142 sx_xlock(&mlu); 10143 if (--loaded == 0) { 10144 int tries; 10145 10146 sx_slock(&t4_list_lock); 10147 if (!SLIST_EMPTY(&t4_list)) { 10148 rc = EBUSY; 10149 sx_sunlock(&t4_list_lock); 10150 goto done_unload; 10151 } 10152 #ifdef TCP_OFFLOAD 10153 sx_slock(&t4_uld_list_lock); 10154 if (!SLIST_EMPTY(&t4_uld_list)) { 10155 rc = EBUSY; 10156 sx_sunlock(&t4_uld_list_lock); 10157 sx_sunlock(&t4_list_lock); 10158 goto done_unload; 10159 } 10160 #endif 10161 tries = 0; 10162 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 10163 uprintf("%ju clusters with custom free routine " 10164 "still is use.\n", t4_sge_extfree_refs()); 10165 pause("t4unload", 2 * hz); 10166 } 10167 #ifdef TCP_OFFLOAD 10168 sx_sunlock(&t4_uld_list_lock); 10169 #endif 10170 sx_sunlock(&t4_list_lock); 10171 10172 if (t4_sge_extfree_refs() == 0) { 10173 t4_tracer_modunload(); 10174 #ifdef TCP_OFFLOAD 10175 sx_destroy(&t4_uld_list_lock); 10176 #endif 10177 sx_destroy(&t4_list_lock); 10178 t4_sge_modunload(); 10179 loaded = 0; 10180 } else { 10181 rc = EBUSY; 10182 loaded++; /* undo earlier decrement */ 10183 } 10184 } 10185 done_unload: 10186 sx_xunlock(&mlu); 10187 break; 10188 } 10189 10190 return (rc); 10191 } 10192 10193 static devclass_t t4_devclass, t5_devclass, t6_devclass; 10194 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass; 10195 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass; 10196 10197 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0); 10198 MODULE_VERSION(t4nex, 1); 10199 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 10200 #ifdef DEV_NETMAP 10201 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 10202 #endif /* DEV_NETMAP */ 10203 10204 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0); 10205 MODULE_VERSION(t5nex, 1); 10206 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 10207 #ifdef DEV_NETMAP 10208 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 10209 #endif /* DEV_NETMAP */ 10210 10211 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0); 10212 MODULE_VERSION(t6nex, 1); 10213 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 10214 #ifdef DEV_NETMAP 10215 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 10216 #endif /* DEV_NETMAP */ 10217 10218 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); 10219 MODULE_VERSION(cxgbe, 1); 10220 10221 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0); 10222 MODULE_VERSION(cxl, 1); 10223 10224 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0); 10225 MODULE_VERSION(cc, 1); 10226 10227 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0); 10228 MODULE_VERSION(vcxgbe, 1); 10229 10230 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0); 10231 MODULE_VERSION(vcxl, 1); 10232 10233 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0); 10234 MODULE_VERSION(vcc, 1); 10235