1 /*- 2 * Copyright (c) 2011 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: Navdeep Parhar <np@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_ddb.h" 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_rss.h" 35 36 #include <sys/param.h> 37 #include <sys/conf.h> 38 #include <sys/priv.h> 39 #include <sys/kernel.h> 40 #include <sys/bus.h> 41 #include <sys/module.h> 42 #include <sys/malloc.h> 43 #include <sys/queue.h> 44 #include <sys/taskqueue.h> 45 #include <sys/pciio.h> 46 #include <dev/pci/pcireg.h> 47 #include <dev/pci/pcivar.h> 48 #include <dev/pci/pci_private.h> 49 #include <sys/firmware.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/socket.h> 53 #include <sys/sockio.h> 54 #include <sys/sysctl.h> 55 #include <net/ethernet.h> 56 #include <net/if.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/if_vlan_var.h> 60 #ifdef RSS 61 #include <net/rss_config.h> 62 #endif 63 #if defined(__i386__) || defined(__amd64__) 64 #include <vm/vm.h> 65 #include <vm/pmap.h> 66 #endif 67 #ifdef DDB 68 #include <ddb/ddb.h> 69 #include <ddb/db_lex.h> 70 #endif 71 72 #include "common/common.h" 73 #include "common/t4_msg.h" 74 #include "common/t4_regs.h" 75 #include "common/t4_regs_values.h" 76 #include "t4_ioctl.h" 77 #include "t4_l2t.h" 78 #include "t4_mp_ring.h" 79 80 /* T4 bus driver interface */ 81 static int t4_probe(device_t); 82 static int t4_attach(device_t); 83 static int t4_detach(device_t); 84 static device_method_t t4_methods[] = { 85 DEVMETHOD(device_probe, t4_probe), 86 DEVMETHOD(device_attach, t4_attach), 87 DEVMETHOD(device_detach, t4_detach), 88 89 DEVMETHOD_END 90 }; 91 static driver_t t4_driver = { 92 "t4nex", 93 t4_methods, 94 sizeof(struct adapter) 95 }; 96 97 98 /* T4 port (cxgbe) interface */ 99 static int cxgbe_probe(device_t); 100 static int cxgbe_attach(device_t); 101 static int cxgbe_detach(device_t); 102 static device_method_t cxgbe_methods[] = { 103 DEVMETHOD(device_probe, cxgbe_probe), 104 DEVMETHOD(device_attach, cxgbe_attach), 105 DEVMETHOD(device_detach, cxgbe_detach), 106 { 0, 0 } 107 }; 108 static driver_t cxgbe_driver = { 109 "cxgbe", 110 cxgbe_methods, 111 sizeof(struct port_info) 112 }; 113 114 /* T4 VI (vcxgbe) interface */ 115 static int vcxgbe_probe(device_t); 116 static int vcxgbe_attach(device_t); 117 static int vcxgbe_detach(device_t); 118 static device_method_t vcxgbe_methods[] = { 119 DEVMETHOD(device_probe, vcxgbe_probe), 120 DEVMETHOD(device_attach, vcxgbe_attach), 121 DEVMETHOD(device_detach, vcxgbe_detach), 122 { 0, 0 } 123 }; 124 static driver_t vcxgbe_driver = { 125 "vcxgbe", 126 vcxgbe_methods, 127 sizeof(struct vi_info) 128 }; 129 130 static d_ioctl_t t4_ioctl; 131 static d_open_t t4_open; 132 static d_close_t t4_close; 133 134 static struct cdevsw t4_cdevsw = { 135 .d_version = D_VERSION, 136 .d_flags = 0, 137 .d_open = t4_open, 138 .d_close = t4_close, 139 .d_ioctl = t4_ioctl, 140 .d_name = "t4nex", 141 }; 142 143 /* T5 bus driver interface */ 144 static int t5_probe(device_t); 145 static device_method_t t5_methods[] = { 146 DEVMETHOD(device_probe, t5_probe), 147 DEVMETHOD(device_attach, t4_attach), 148 DEVMETHOD(device_detach, t4_detach), 149 150 DEVMETHOD_END 151 }; 152 static driver_t t5_driver = { 153 "t5nex", 154 t5_methods, 155 sizeof(struct adapter) 156 }; 157 158 159 /* T5 port (cxl) interface */ 160 static driver_t cxl_driver = { 161 "cxl", 162 cxgbe_methods, 163 sizeof(struct port_info) 164 }; 165 166 /* T5 VI (vcxl) interface */ 167 static driver_t vcxl_driver = { 168 "vcxl", 169 vcxgbe_methods, 170 sizeof(struct vi_info) 171 }; 172 173 static struct cdevsw t5_cdevsw = { 174 .d_version = D_VERSION, 175 .d_flags = 0, 176 .d_open = t4_open, 177 .d_close = t4_close, 178 .d_ioctl = t4_ioctl, 179 .d_name = "t5nex", 180 }; 181 182 /* ifnet + media interface */ 183 static void cxgbe_init(void *); 184 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 185 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 186 static void cxgbe_qflush(struct ifnet *); 187 static int cxgbe_media_change(struct ifnet *); 188 static void cxgbe_media_status(struct ifnet *, struct ifmediareq *); 189 190 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 191 192 /* 193 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 194 * then ADAPTER_LOCK, then t4_uld_list_lock. 195 */ 196 static struct sx t4_list_lock; 197 SLIST_HEAD(, adapter) t4_list; 198 #ifdef TCP_OFFLOAD 199 static struct sx t4_uld_list_lock; 200 SLIST_HEAD(, uld_info) t4_uld_list; 201 #endif 202 203 /* 204 * Tunables. See tweak_tunables() too. 205 * 206 * Each tunable is set to a default value here if it's known at compile-time. 207 * Otherwise it is set to -1 as an indication to tweak_tunables() that it should 208 * provide a reasonable default when the driver is loaded. 209 * 210 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 211 * T5 are under hw.cxl. 212 */ 213 214 /* 215 * Number of queues for tx and rx, 10G and 1G, NIC and offload. 216 */ 217 #define NTXQ_10G 16 218 static int t4_ntxq10g = -1; 219 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq10g); 220 221 #define NRXQ_10G 8 222 static int t4_nrxq10g = -1; 223 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq10g); 224 225 #define NTXQ_1G 4 226 static int t4_ntxq1g = -1; 227 TUNABLE_INT("hw.cxgbe.ntxq1g", &t4_ntxq1g); 228 229 #define NRXQ_1G 2 230 static int t4_nrxq1g = -1; 231 TUNABLE_INT("hw.cxgbe.nrxq1g", &t4_nrxq1g); 232 233 static int t4_rsrv_noflowq = 0; 234 TUNABLE_INT("hw.cxgbe.rsrv_noflowq", &t4_rsrv_noflowq); 235 236 #ifdef TCP_OFFLOAD 237 #define NOFLDTXQ_10G 8 238 static int t4_nofldtxq10g = -1; 239 TUNABLE_INT("hw.cxgbe.nofldtxq10g", &t4_nofldtxq10g); 240 241 #define NOFLDRXQ_10G 2 242 static int t4_nofldrxq10g = -1; 243 TUNABLE_INT("hw.cxgbe.nofldrxq10g", &t4_nofldrxq10g); 244 245 #define NOFLDTXQ_1G 2 246 static int t4_nofldtxq1g = -1; 247 TUNABLE_INT("hw.cxgbe.nofldtxq1g", &t4_nofldtxq1g); 248 249 #define NOFLDRXQ_1G 1 250 static int t4_nofldrxq1g = -1; 251 TUNABLE_INT("hw.cxgbe.nofldrxq1g", &t4_nofldrxq1g); 252 #endif 253 254 #ifdef DEV_NETMAP 255 #define NNMTXQ_10G 2 256 static int t4_nnmtxq10g = -1; 257 TUNABLE_INT("hw.cxgbe.nnmtxq10g", &t4_nnmtxq10g); 258 259 #define NNMRXQ_10G 2 260 static int t4_nnmrxq10g = -1; 261 TUNABLE_INT("hw.cxgbe.nnmrxq10g", &t4_nnmrxq10g); 262 263 #define NNMTXQ_1G 1 264 static int t4_nnmtxq1g = -1; 265 TUNABLE_INT("hw.cxgbe.nnmtxq1g", &t4_nnmtxq1g); 266 267 #define NNMRXQ_1G 1 268 static int t4_nnmrxq1g = -1; 269 TUNABLE_INT("hw.cxgbe.nnmrxq1g", &t4_nnmrxq1g); 270 #endif 271 272 /* 273 * Holdoff parameters for 10G and 1G ports. 274 */ 275 #define TMR_IDX_10G 1 276 static int t4_tmr_idx_10g = TMR_IDX_10G; 277 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx_10g); 278 279 #define PKTC_IDX_10G (-1) 280 static int t4_pktc_idx_10g = PKTC_IDX_10G; 281 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx_10g); 282 283 #define TMR_IDX_1G 1 284 static int t4_tmr_idx_1g = TMR_IDX_1G; 285 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_1G", &t4_tmr_idx_1g); 286 287 #define PKTC_IDX_1G (-1) 288 static int t4_pktc_idx_1g = PKTC_IDX_1G; 289 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_1G", &t4_pktc_idx_1g); 290 291 /* 292 * Size (# of entries) of each tx and rx queue. 293 */ 294 static unsigned int t4_qsize_txq = TX_EQ_QSIZE; 295 TUNABLE_INT("hw.cxgbe.qsize_txq", &t4_qsize_txq); 296 297 static unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 298 TUNABLE_INT("hw.cxgbe.qsize_rxq", &t4_qsize_rxq); 299 300 /* 301 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 302 */ 303 static int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 304 TUNABLE_INT("hw.cxgbe.interrupt_types", &t4_intr_types); 305 306 /* 307 * Configuration file. 308 */ 309 #define DEFAULT_CF "default" 310 #define FLASH_CF "flash" 311 #define UWIRE_CF "uwire" 312 #define FPGA_CF "fpga" 313 static char t4_cfg_file[32] = DEFAULT_CF; 314 TUNABLE_STR("hw.cxgbe.config_file", t4_cfg_file, sizeof(t4_cfg_file)); 315 316 /* 317 * PAUSE settings (bit 0, 1 = rx_pause, tx_pause respectively). 318 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 319 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 320 * mark or when signalled to do so, 0 to never emit PAUSE. 321 */ 322 static int t4_pause_settings = PAUSE_TX | PAUSE_RX; 323 TUNABLE_INT("hw.cxgbe.pause_settings", &t4_pause_settings); 324 325 /* 326 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 327 * encouraged respectively). 328 */ 329 static unsigned int t4_fw_install = 1; 330 TUNABLE_INT("hw.cxgbe.fw_install", &t4_fw_install); 331 332 /* 333 * ASIC features that will be used. Disable the ones you don't want so that the 334 * chip resources aren't wasted on features that will not be used. 335 */ 336 static int t4_nbmcaps_allowed = 0; 337 TUNABLE_INT("hw.cxgbe.nbmcaps_allowed", &t4_nbmcaps_allowed); 338 339 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 340 TUNABLE_INT("hw.cxgbe.linkcaps_allowed", &t4_linkcaps_allowed); 341 342 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 343 FW_CAPS_CONFIG_SWITCH_EGRESS; 344 TUNABLE_INT("hw.cxgbe.switchcaps_allowed", &t4_switchcaps_allowed); 345 346 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC; 347 TUNABLE_INT("hw.cxgbe.niccaps_allowed", &t4_niccaps_allowed); 348 349 static int t4_toecaps_allowed = -1; 350 TUNABLE_INT("hw.cxgbe.toecaps_allowed", &t4_toecaps_allowed); 351 352 static int t4_rdmacaps_allowed = -1; 353 TUNABLE_INT("hw.cxgbe.rdmacaps_allowed", &t4_rdmacaps_allowed); 354 355 static int t4_tlscaps_allowed = 0; 356 TUNABLE_INT("hw.cxgbe.tlscaps_allowed", &t4_tlscaps_allowed); 357 358 static int t4_iscsicaps_allowed = -1; 359 TUNABLE_INT("hw.cxgbe.iscsicaps_allowed", &t4_iscsicaps_allowed); 360 361 static int t4_fcoecaps_allowed = 0; 362 TUNABLE_INT("hw.cxgbe.fcoecaps_allowed", &t4_fcoecaps_allowed); 363 364 static int t5_write_combine = 0; 365 TUNABLE_INT("hw.cxl.write_combine", &t5_write_combine); 366 367 static int t4_num_vis = 1; 368 TUNABLE_INT("hw.cxgbe.num_vis", &t4_num_vis); 369 370 /* Functions used by extra VIs to obtain unique MAC addresses for each VI. */ 371 static int vi_mac_funcs[] = { 372 FW_VI_FUNC_OFLD, 373 FW_VI_FUNC_IWARP, 374 FW_VI_FUNC_OPENISCSI, 375 FW_VI_FUNC_OPENFCOE, 376 FW_VI_FUNC_FOISCSI, 377 FW_VI_FUNC_FOFCOE, 378 }; 379 380 struct intrs_and_queues { 381 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 382 uint16_t nirq; /* Total # of vectors */ 383 uint16_t intr_flags_10g;/* Interrupt flags for each 10G port */ 384 uint16_t intr_flags_1g; /* Interrupt flags for each 1G port */ 385 uint16_t ntxq10g; /* # of NIC txq's for each 10G port */ 386 uint16_t nrxq10g; /* # of NIC rxq's for each 10G port */ 387 uint16_t ntxq1g; /* # of NIC txq's for each 1G port */ 388 uint16_t nrxq1g; /* # of NIC rxq's for each 1G port */ 389 uint16_t rsrv_noflowq; /* Flag whether to reserve queue 0 */ 390 #ifdef TCP_OFFLOAD 391 uint16_t nofldtxq10g; /* # of TOE txq's for each 10G port */ 392 uint16_t nofldrxq10g; /* # of TOE rxq's for each 10G port */ 393 uint16_t nofldtxq1g; /* # of TOE txq's for each 1G port */ 394 uint16_t nofldrxq1g; /* # of TOE rxq's for each 1G port */ 395 #endif 396 #ifdef DEV_NETMAP 397 uint16_t nnmtxq10g; /* # of netmap txq's for each 10G port */ 398 uint16_t nnmrxq10g; /* # of netmap rxq's for each 10G port */ 399 uint16_t nnmtxq1g; /* # of netmap txq's for each 1G port */ 400 uint16_t nnmrxq1g; /* # of netmap rxq's for each 1G port */ 401 #endif 402 }; 403 404 struct filter_entry { 405 uint32_t valid:1; /* filter allocated and valid */ 406 uint32_t locked:1; /* filter is administratively locked */ 407 uint32_t pending:1; /* filter action is pending firmware reply */ 408 uint32_t smtidx:8; /* Source MAC Table index for smac */ 409 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ 410 411 struct t4_filter_specification fs; 412 }; 413 414 static int map_bars_0_and_4(struct adapter *); 415 static int map_bar_2(struct adapter *); 416 static void setup_memwin(struct adapter *); 417 static void position_memwin(struct adapter *, int, uint32_t); 418 static int rw_via_memwin(struct adapter *, int, uint32_t, uint32_t *, int, int); 419 static inline int read_via_memwin(struct adapter *, int, uint32_t, uint32_t *, 420 int); 421 static inline int write_via_memwin(struct adapter *, int, uint32_t, 422 const uint32_t *, int); 423 static int validate_mem_range(struct adapter *, uint32_t, int); 424 static int fwmtype_to_hwmtype(int); 425 static int validate_mt_off_len(struct adapter *, int, uint32_t, int, 426 uint32_t *); 427 static int fixup_devlog_params(struct adapter *); 428 static int cfg_itype_and_nqueues(struct adapter *, int, int, int, 429 struct intrs_and_queues *); 430 static int prep_firmware(struct adapter *); 431 static int partition_resources(struct adapter *, const struct firmware *, 432 const char *); 433 static int get_params__pre_init(struct adapter *); 434 static int get_params__post_init(struct adapter *); 435 static int set_params__post_init(struct adapter *); 436 static void t4_set_desc(struct adapter *); 437 static void build_medialist(struct port_info *, struct ifmedia *); 438 static int cxgbe_init_synchronized(struct vi_info *); 439 static int cxgbe_uninit_synchronized(struct vi_info *); 440 static int setup_intr_handlers(struct adapter *); 441 static void quiesce_txq(struct adapter *, struct sge_txq *); 442 static void quiesce_wrq(struct adapter *, struct sge_wrq *); 443 static void quiesce_iq(struct adapter *, struct sge_iq *); 444 static void quiesce_fl(struct adapter *, struct sge_fl *); 445 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 446 driver_intr_t *, void *, char *); 447 static int t4_free_irq(struct adapter *, struct irq *); 448 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 449 static void vi_refresh_stats(struct adapter *, struct vi_info *); 450 static void cxgbe_refresh_stats(struct adapter *, struct port_info *); 451 static void cxgbe_tick(void *); 452 static void cxgbe_vlan_config(void *, struct ifnet *, uint16_t); 453 static int cpl_not_handled(struct sge_iq *, const struct rss_header *, 454 struct mbuf *); 455 static int an_not_handled(struct sge_iq *, const struct rsp_ctrl *); 456 static int fw_msg_not_handled(struct adapter *, const __be64 *); 457 static void t4_sysctls(struct adapter *); 458 static void cxgbe_sysctls(struct port_info *); 459 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 460 static int sysctl_bitfield(SYSCTL_HANDLER_ARGS); 461 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 462 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 463 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 464 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 465 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 466 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 467 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 468 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 469 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 470 #ifdef SBUF_DRAIN 471 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 472 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 473 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 474 static int sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS); 475 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 476 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 477 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 478 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 479 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 480 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 481 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 482 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 483 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 484 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 485 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 486 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 487 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 488 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 489 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 490 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 491 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 492 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 493 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 494 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 495 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 496 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 497 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 498 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 499 #endif 500 #ifdef TCP_OFFLOAD 501 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 502 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 503 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 504 #endif 505 static uint32_t fconf_iconf_to_mode(uint32_t, uint32_t); 506 static uint32_t mode_to_fconf(uint32_t); 507 static uint32_t mode_to_iconf(uint32_t); 508 static int check_fspec_against_fconf_iconf(struct adapter *, 509 struct t4_filter_specification *); 510 static int get_filter_mode(struct adapter *, uint32_t *); 511 static int set_filter_mode(struct adapter *, uint32_t); 512 static inline uint64_t get_filter_hits(struct adapter *, uint32_t); 513 static int get_filter(struct adapter *, struct t4_filter *); 514 static int set_filter(struct adapter *, struct t4_filter *); 515 static int del_filter(struct adapter *, struct t4_filter *); 516 static void clear_filter(struct filter_entry *); 517 static int set_filter_wr(struct adapter *, int); 518 static int del_filter_wr(struct adapter *, int); 519 static int get_sge_context(struct adapter *, struct t4_sge_context *); 520 static int load_fw(struct adapter *, struct t4_data *); 521 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 522 static int read_i2c(struct adapter *, struct t4_i2c_data *); 523 static int set_sched_class(struct adapter *, struct t4_sched_params *); 524 static int set_sched_queue(struct adapter *, struct t4_sched_queue *); 525 #ifdef TCP_OFFLOAD 526 static int toe_capability(struct vi_info *, int); 527 #endif 528 static int mod_event(module_t, int, void *); 529 530 struct { 531 uint16_t device; 532 char *desc; 533 } t4_pciids[] = { 534 {0xa000, "Chelsio Terminator 4 FPGA"}, 535 {0x4400, "Chelsio T440-dbg"}, 536 {0x4401, "Chelsio T420-CR"}, 537 {0x4402, "Chelsio T422-CR"}, 538 {0x4403, "Chelsio T440-CR"}, 539 {0x4404, "Chelsio T420-BCH"}, 540 {0x4405, "Chelsio T440-BCH"}, 541 {0x4406, "Chelsio T440-CH"}, 542 {0x4407, "Chelsio T420-SO"}, 543 {0x4408, "Chelsio T420-CX"}, 544 {0x4409, "Chelsio T420-BT"}, 545 {0x440a, "Chelsio T404-BT"}, 546 {0x440e, "Chelsio T440-LP-CR"}, 547 }, t5_pciids[] = { 548 {0xb000, "Chelsio Terminator 5 FPGA"}, 549 {0x5400, "Chelsio T580-dbg"}, 550 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 551 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 552 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 553 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 554 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 555 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 556 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 557 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 558 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 559 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 560 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 561 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 562 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 563 #ifdef notyet 564 {0x5404, "Chelsio T520-BCH"}, 565 {0x5405, "Chelsio T540-BCH"}, 566 {0x5406, "Chelsio T540-CH"}, 567 {0x5408, "Chelsio T520-CX"}, 568 {0x540b, "Chelsio B520-SR"}, 569 {0x540c, "Chelsio B504-BT"}, 570 {0x540f, "Chelsio Amsterdam"}, 571 {0x5413, "Chelsio T580-CHR"}, 572 #endif 573 }; 574 575 #ifdef TCP_OFFLOAD 576 /* 577 * service_iq() has an iq and needs the fl. Offset of fl from the iq should be 578 * exactly the same for both rxq and ofld_rxq. 579 */ 580 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 581 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 582 #endif 583 584 /* No easy way to include t4_msg.h before adapter.h so we check this way */ 585 CTASSERT(nitems(((struct adapter *)0)->cpl_handler) == NUM_CPL_CMDS); 586 CTASSERT(nitems(((struct adapter *)0)->fw_msg_handler) == NUM_FW6_TYPES); 587 588 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 589 590 static int 591 t4_probe(device_t dev) 592 { 593 int i; 594 uint16_t v = pci_get_vendor(dev); 595 uint16_t d = pci_get_device(dev); 596 uint8_t f = pci_get_function(dev); 597 598 if (v != PCI_VENDOR_ID_CHELSIO) 599 return (ENXIO); 600 601 /* Attach only to PF0 of the FPGA */ 602 if (d == 0xa000 && f != 0) 603 return (ENXIO); 604 605 for (i = 0; i < nitems(t4_pciids); i++) { 606 if (d == t4_pciids[i].device) { 607 device_set_desc(dev, t4_pciids[i].desc); 608 return (BUS_PROBE_DEFAULT); 609 } 610 } 611 612 return (ENXIO); 613 } 614 615 static int 616 t5_probe(device_t dev) 617 { 618 int i; 619 uint16_t v = pci_get_vendor(dev); 620 uint16_t d = pci_get_device(dev); 621 uint8_t f = pci_get_function(dev); 622 623 if (v != PCI_VENDOR_ID_CHELSIO) 624 return (ENXIO); 625 626 /* Attach only to PF0 of the FPGA */ 627 if (d == 0xb000 && f != 0) 628 return (ENXIO); 629 630 for (i = 0; i < nitems(t5_pciids); i++) { 631 if (d == t5_pciids[i].device) { 632 device_set_desc(dev, t5_pciids[i].desc); 633 return (BUS_PROBE_DEFAULT); 634 } 635 } 636 637 return (ENXIO); 638 } 639 640 static void 641 t5_attribute_workaround(device_t dev) 642 { 643 device_t root_port; 644 uint32_t v; 645 646 /* 647 * The T5 chips do not properly echo the No Snoop and Relaxed 648 * Ordering attributes when replying to a TLP from a Root 649 * Port. As a workaround, find the parent Root Port and 650 * disable No Snoop and Relaxed Ordering. Note that this 651 * affects all devices under this root port. 652 */ 653 root_port = pci_find_pcie_root_port(dev); 654 if (root_port == NULL) { 655 device_printf(dev, "Unable to find parent root port\n"); 656 return; 657 } 658 659 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 660 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 661 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 662 0) 663 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 664 device_get_nameunit(root_port)); 665 } 666 667 static int 668 t4_attach(device_t dev) 669 { 670 struct adapter *sc; 671 int rc = 0, i, j, n10g, n1g, rqidx, tqidx; 672 struct intrs_and_queues iaq; 673 struct sge *s; 674 uint8_t *buf; 675 #ifdef TCP_OFFLOAD 676 int ofld_rqidx, ofld_tqidx; 677 #endif 678 #ifdef DEV_NETMAP 679 int nm_rqidx, nm_tqidx; 680 #endif 681 int num_vis; 682 683 sc = device_get_softc(dev); 684 sc->dev = dev; 685 TUNABLE_INT_FETCH("hw.cxgbe.debug_flags", &sc->debug_flags); 686 687 if ((pci_get_device(dev) & 0xff00) == 0x5400) 688 t5_attribute_workaround(dev); 689 pci_enable_busmaster(dev); 690 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 691 uint32_t v; 692 693 pci_set_max_read_req(dev, 4096); 694 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 695 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 696 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 697 698 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 699 } 700 701 sc->traceq = -1; 702 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 703 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 704 device_get_nameunit(dev)); 705 706 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 707 device_get_nameunit(dev)); 708 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 709 sx_xlock(&t4_list_lock); 710 SLIST_INSERT_HEAD(&t4_list, sc, link); 711 sx_xunlock(&t4_list_lock); 712 713 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 714 TAILQ_INIT(&sc->sfl); 715 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 716 717 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 718 719 rc = map_bars_0_and_4(sc); 720 if (rc != 0) 721 goto done; /* error message displayed already */ 722 723 /* 724 * This is the real PF# to which we're attaching. Works from within PCI 725 * passthrough environments too, where pci_get_function() could return a 726 * different PF# depending on the passthrough configuration. We need to 727 * use the real PF# in all our communication with the firmware. 728 */ 729 sc->pf = G_SOURCEPF(t4_read_reg(sc, A_PL_WHOAMI)); 730 sc->mbox = sc->pf; 731 732 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 733 sc->an_handler = an_not_handled; 734 for (i = 0; i < nitems(sc->cpl_handler); i++) 735 sc->cpl_handler[i] = cpl_not_handled; 736 for (i = 0; i < nitems(sc->fw_msg_handler); i++) 737 sc->fw_msg_handler[i] = fw_msg_not_handled; 738 t4_register_cpl_handler(sc, CPL_SET_TCB_RPL, t4_filter_rpl); 739 t4_register_cpl_handler(sc, CPL_TRACE_PKT, t4_trace_pkt); 740 t4_register_cpl_handler(sc, CPL_T5_TRACE_PKT, t5_trace_pkt); 741 t4_init_sge_cpl_handlers(sc); 742 743 /* Prepare the adapter for operation. */ 744 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 745 rc = -t4_prep_adapter(sc, buf); 746 free(buf, M_CXGBE); 747 if (rc != 0) { 748 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 749 goto done; 750 } 751 752 /* 753 * Do this really early, with the memory windows set up even before the 754 * character device. The userland tool's register i/o and mem read 755 * will work even in "recovery mode". 756 */ 757 setup_memwin(sc); 758 if (t4_init_devlog_params(sc, 0) == 0) 759 fixup_devlog_params(sc); 760 sc->cdev = make_dev(is_t4(sc) ? &t4_cdevsw : &t5_cdevsw, 761 device_get_unit(dev), UID_ROOT, GID_WHEEL, 0600, "%s", 762 device_get_nameunit(dev)); 763 if (sc->cdev == NULL) 764 device_printf(dev, "failed to create nexus char device.\n"); 765 else 766 sc->cdev->si_drv1 = sc; 767 768 /* Go no further if recovery mode has been requested. */ 769 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 770 device_printf(dev, "recovery mode.\n"); 771 goto done; 772 } 773 774 #if defined(__i386__) 775 if ((cpu_feature & CPUID_CX8) == 0) { 776 device_printf(dev, "64 bit atomics not available.\n"); 777 rc = ENOTSUP; 778 goto done; 779 } 780 #endif 781 782 /* Prepare the firmware for operation */ 783 rc = prep_firmware(sc); 784 if (rc != 0) 785 goto done; /* error message displayed already */ 786 787 rc = get_params__post_init(sc); 788 if (rc != 0) 789 goto done; /* error message displayed already */ 790 791 rc = set_params__post_init(sc); 792 if (rc != 0) 793 goto done; /* error message displayed already */ 794 795 rc = map_bar_2(sc); 796 if (rc != 0) 797 goto done; /* error message displayed already */ 798 799 rc = t4_create_dma_tag(sc); 800 if (rc != 0) 801 goto done; /* error message displayed already */ 802 803 /* 804 * Number of VIs to create per-port. The first VI is the 805 * "main" regular VI for the port. The second VI is used for 806 * netmap if present, and any remaining VIs are used for 807 * additional virtual interfaces. 808 * 809 * Limit the number of VIs per port to the number of available 810 * MAC addresses per port. 811 */ 812 if (t4_num_vis >= 1) 813 num_vis = t4_num_vis; 814 else 815 num_vis = 1; 816 #ifdef DEV_NETMAP 817 num_vis++; 818 #endif 819 if (num_vis > nitems(vi_mac_funcs)) { 820 num_vis = nitems(vi_mac_funcs); 821 device_printf(dev, "Number of VIs limited to %d\n", num_vis); 822 } 823 824 /* 825 * First pass over all the ports - allocate VIs and initialize some 826 * basic parameters like mac address, port type, etc. We also figure 827 * out whether a port is 10G or 1G and use that information when 828 * calculating how many interrupts to attempt to allocate. 829 */ 830 n10g = n1g = 0; 831 for_each_port(sc, i) { 832 struct port_info *pi; 833 struct vi_info *vi; 834 835 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 836 sc->port[i] = pi; 837 838 /* These must be set before t4_port_init */ 839 pi->adapter = sc; 840 pi->port_id = i; 841 pi->nvi = num_vis; 842 pi->vi = malloc(sizeof(struct vi_info) * num_vis, M_CXGBE, 843 M_ZERO | M_WAITOK); 844 845 /* 846 * Allocate the "main" VI and initialize parameters 847 * like mac addr. 848 */ 849 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 850 if (rc != 0) { 851 device_printf(dev, "unable to initialize port %d: %d\n", 852 i, rc); 853 free(pi->vi, M_CXGBE); 854 free(pi, M_CXGBE); 855 sc->port[i] = NULL; 856 goto done; 857 } 858 859 pi->link_cfg.requested_fc &= ~(PAUSE_TX | PAUSE_RX); 860 pi->link_cfg.requested_fc |= t4_pause_settings; 861 pi->link_cfg.fc &= ~(PAUSE_TX | PAUSE_RX); 862 pi->link_cfg.fc |= t4_pause_settings; 863 864 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, &pi->link_cfg); 865 if (rc != 0) { 866 device_printf(dev, "port %d l1cfg failed: %d\n", i, rc); 867 free(pi->vi, M_CXGBE); 868 free(pi, M_CXGBE); 869 sc->port[i] = NULL; 870 goto done; 871 } 872 873 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 874 device_get_nameunit(dev), i); 875 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 876 sc->chan_map[pi->tx_chan] = i; 877 878 if (is_10G_port(pi) || is_40G_port(pi)) { 879 n10g++; 880 for_each_vi(pi, j, vi) { 881 vi->tmr_idx = t4_tmr_idx_10g; 882 vi->pktc_idx = t4_pktc_idx_10g; 883 } 884 } else { 885 n1g++; 886 for_each_vi(pi, j, vi) { 887 vi->tmr_idx = t4_tmr_idx_1g; 888 vi->pktc_idx = t4_pktc_idx_1g; 889 } 890 } 891 892 pi->linkdnrc = -1; 893 894 for_each_vi(pi, j, vi) { 895 vi->qsize_rxq = t4_qsize_rxq; 896 vi->qsize_txq = t4_qsize_txq; 897 vi->pi = pi; 898 } 899 900 pi->dev = device_add_child(dev, is_t4(sc) ? "cxgbe" : "cxl", -1); 901 if (pi->dev == NULL) { 902 device_printf(dev, 903 "failed to add device for port %d.\n", i); 904 rc = ENXIO; 905 goto done; 906 } 907 pi->vi[0].dev = pi->dev; 908 device_set_softc(pi->dev, pi); 909 } 910 911 /* 912 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 913 */ 914 #ifdef DEV_NETMAP 915 num_vis--; 916 #endif 917 rc = cfg_itype_and_nqueues(sc, n10g, n1g, num_vis, &iaq); 918 if (rc != 0) 919 goto done; /* error message displayed already */ 920 921 sc->intr_type = iaq.intr_type; 922 sc->intr_count = iaq.nirq; 923 924 s = &sc->sge; 925 s->nrxq = n10g * iaq.nrxq10g + n1g * iaq.nrxq1g; 926 s->ntxq = n10g * iaq.ntxq10g + n1g * iaq.ntxq1g; 927 if (num_vis > 1) { 928 s->nrxq += (n10g + n1g) * (num_vis - 1); 929 s->ntxq += (n10g + n1g) * (num_vis - 1); 930 } 931 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 932 s->neq += sc->params.nports + 1;/* ctrl queues: 1 per port + 1 mgmt */ 933 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 934 #ifdef TCP_OFFLOAD 935 if (is_offload(sc)) { 936 s->nofldrxq = n10g * iaq.nofldrxq10g + n1g * iaq.nofldrxq1g; 937 s->nofldtxq = n10g * iaq.nofldtxq10g + n1g * iaq.nofldtxq1g; 938 if (num_vis > 1) { 939 s->nofldrxq += (n10g + n1g) * (num_vis - 1); 940 s->nofldtxq += (n10g + n1g) * (num_vis - 1); 941 } 942 s->neq += s->nofldtxq + s->nofldrxq; 943 s->niq += s->nofldrxq; 944 945 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 946 M_CXGBE, M_ZERO | M_WAITOK); 947 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq), 948 M_CXGBE, M_ZERO | M_WAITOK); 949 } 950 #endif 951 #ifdef DEV_NETMAP 952 s->nnmrxq = n10g * iaq.nnmrxq10g + n1g * iaq.nnmrxq1g; 953 s->nnmtxq = n10g * iaq.nnmtxq10g + n1g * iaq.nnmtxq1g; 954 s->neq += s->nnmtxq + s->nnmrxq; 955 s->niq += s->nnmrxq; 956 957 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 958 M_CXGBE, M_ZERO | M_WAITOK); 959 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 960 M_CXGBE, M_ZERO | M_WAITOK); 961 #endif 962 963 s->ctrlq = malloc(sc->params.nports * sizeof(struct sge_wrq), M_CXGBE, 964 M_ZERO | M_WAITOK); 965 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 966 M_ZERO | M_WAITOK); 967 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 968 M_ZERO | M_WAITOK); 969 s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE, 970 M_ZERO | M_WAITOK); 971 s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE, 972 M_ZERO | M_WAITOK); 973 974 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 975 M_ZERO | M_WAITOK); 976 977 t4_init_l2t(sc, M_WAITOK); 978 979 /* 980 * Second pass over the ports. This time we know the number of rx and 981 * tx queues that each port should get. 982 */ 983 rqidx = tqidx = 0; 984 #ifdef TCP_OFFLOAD 985 ofld_rqidx = ofld_tqidx = 0; 986 #endif 987 #ifdef DEV_NETMAP 988 nm_rqidx = nm_tqidx = 0; 989 #endif 990 for_each_port(sc, i) { 991 struct port_info *pi = sc->port[i]; 992 struct vi_info *vi; 993 994 if (pi == NULL) 995 continue; 996 997 for_each_vi(pi, j, vi) { 998 #ifdef DEV_NETMAP 999 if (j == 1) { 1000 vi->flags |= VI_NETMAP | INTR_RXQ; 1001 vi->first_rxq = nm_rqidx; 1002 vi->first_txq = nm_tqidx; 1003 if (is_10G_port(pi) || is_40G_port(pi)) { 1004 vi->nrxq = iaq.nnmrxq10g; 1005 vi->ntxq = iaq.nnmtxq10g; 1006 } else { 1007 vi->nrxq = iaq.nnmrxq1g; 1008 vi->ntxq = iaq.nnmtxq1g; 1009 } 1010 nm_rqidx += vi->nrxq; 1011 nm_tqidx += vi->ntxq; 1012 continue; 1013 } 1014 #endif 1015 1016 vi->first_rxq = rqidx; 1017 vi->first_txq = tqidx; 1018 if (is_10G_port(pi) || is_40G_port(pi)) { 1019 vi->flags |= iaq.intr_flags_10g & INTR_RXQ; 1020 vi->nrxq = j == 0 ? iaq.nrxq10g : 1; 1021 vi->ntxq = j == 0 ? iaq.ntxq10g : 1; 1022 } else { 1023 vi->flags |= iaq.intr_flags_1g & INTR_RXQ; 1024 vi->nrxq = j == 0 ? iaq.nrxq1g : 1; 1025 vi->ntxq = j == 0 ? iaq.ntxq1g : 1; 1026 } 1027 1028 if (vi->ntxq > 1) 1029 vi->rsrv_noflowq = iaq.rsrv_noflowq ? 1 : 0; 1030 else 1031 vi->rsrv_noflowq = 0; 1032 1033 rqidx += vi->nrxq; 1034 tqidx += vi->ntxq; 1035 1036 #ifdef TCP_OFFLOAD 1037 if (!is_offload(sc)) 1038 continue; 1039 vi->first_ofld_rxq = ofld_rqidx; 1040 vi->first_ofld_txq = ofld_tqidx; 1041 if (is_10G_port(pi) || is_40G_port(pi)) { 1042 vi->flags |= iaq.intr_flags_10g & INTR_OFLD_RXQ; 1043 vi->nofldrxq = j == 0 ? iaq.nofldrxq10g : 1; 1044 vi->nofldtxq = j == 0 ? iaq.nofldtxq10g : 1; 1045 } else { 1046 vi->flags |= iaq.intr_flags_1g & INTR_OFLD_RXQ; 1047 vi->nofldrxq = j == 0 ? iaq.nofldrxq1g : 1; 1048 vi->nofldtxq = j == 0 ? iaq.nofldtxq1g : 1; 1049 } 1050 ofld_rqidx += vi->nofldrxq; 1051 ofld_tqidx += vi->nofldtxq; 1052 #endif 1053 } 1054 } 1055 1056 rc = setup_intr_handlers(sc); 1057 if (rc != 0) { 1058 device_printf(dev, 1059 "failed to setup interrupt handlers: %d\n", rc); 1060 goto done; 1061 } 1062 1063 rc = bus_generic_attach(dev); 1064 if (rc != 0) { 1065 device_printf(dev, 1066 "failed to attach all child ports: %d\n", rc); 1067 goto done; 1068 } 1069 1070 device_printf(dev, 1071 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1072 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1073 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1074 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1075 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1076 1077 t4_set_desc(sc); 1078 1079 done: 1080 if (rc != 0 && sc->cdev) { 1081 /* cdev was created and so cxgbetool works; recover that way. */ 1082 device_printf(dev, 1083 "error during attach, adapter is now in recovery mode.\n"); 1084 rc = 0; 1085 } 1086 1087 if (rc != 0) 1088 t4_detach(dev); 1089 else 1090 t4_sysctls(sc); 1091 1092 return (rc); 1093 } 1094 1095 /* 1096 * Idempotent 1097 */ 1098 static int 1099 t4_detach(device_t dev) 1100 { 1101 struct adapter *sc; 1102 struct port_info *pi; 1103 int i, rc; 1104 1105 sc = device_get_softc(dev); 1106 1107 if (sc->flags & FULL_INIT_DONE) 1108 t4_intr_disable(sc); 1109 1110 if (sc->cdev) { 1111 destroy_dev(sc->cdev); 1112 sc->cdev = NULL; 1113 } 1114 1115 rc = bus_generic_detach(dev); 1116 if (rc) { 1117 device_printf(dev, 1118 "failed to detach child devices: %d\n", rc); 1119 return (rc); 1120 } 1121 1122 for (i = 0; i < sc->intr_count; i++) 1123 t4_free_irq(sc, &sc->irq[i]); 1124 1125 for (i = 0; i < MAX_NPORTS; i++) { 1126 pi = sc->port[i]; 1127 if (pi) { 1128 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1129 if (pi->dev) 1130 device_delete_child(dev, pi->dev); 1131 1132 mtx_destroy(&pi->pi_lock); 1133 free(pi->vi, M_CXGBE); 1134 free(pi, M_CXGBE); 1135 } 1136 } 1137 1138 if (sc->flags & FULL_INIT_DONE) 1139 adapter_full_uninit(sc); 1140 1141 if (sc->flags & FW_OK) 1142 t4_fw_bye(sc, sc->mbox); 1143 1144 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1145 pci_release_msi(dev); 1146 1147 if (sc->regs_res) 1148 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1149 sc->regs_res); 1150 1151 if (sc->udbs_res) 1152 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1153 sc->udbs_res); 1154 1155 if (sc->msix_res) 1156 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1157 sc->msix_res); 1158 1159 if (sc->l2t) 1160 t4_free_l2t(sc->l2t); 1161 1162 #ifdef TCP_OFFLOAD 1163 free(sc->sge.ofld_rxq, M_CXGBE); 1164 free(sc->sge.ofld_txq, M_CXGBE); 1165 #endif 1166 #ifdef DEV_NETMAP 1167 free(sc->sge.nm_rxq, M_CXGBE); 1168 free(sc->sge.nm_txq, M_CXGBE); 1169 #endif 1170 free(sc->irq, M_CXGBE); 1171 free(sc->sge.rxq, M_CXGBE); 1172 free(sc->sge.txq, M_CXGBE); 1173 free(sc->sge.ctrlq, M_CXGBE); 1174 free(sc->sge.iqmap, M_CXGBE); 1175 free(sc->sge.eqmap, M_CXGBE); 1176 free(sc->tids.ftid_tab, M_CXGBE); 1177 t4_destroy_dma_tag(sc); 1178 if (mtx_initialized(&sc->sc_lock)) { 1179 sx_xlock(&t4_list_lock); 1180 SLIST_REMOVE(&t4_list, sc, adapter, link); 1181 sx_xunlock(&t4_list_lock); 1182 mtx_destroy(&sc->sc_lock); 1183 } 1184 1185 callout_drain(&sc->sfl_callout); 1186 if (mtx_initialized(&sc->tids.ftid_lock)) 1187 mtx_destroy(&sc->tids.ftid_lock); 1188 if (mtx_initialized(&sc->sfl_lock)) 1189 mtx_destroy(&sc->sfl_lock); 1190 if (mtx_initialized(&sc->ifp_lock)) 1191 mtx_destroy(&sc->ifp_lock); 1192 if (mtx_initialized(&sc->reg_lock)) 1193 mtx_destroy(&sc->reg_lock); 1194 1195 for (i = 0; i < NUM_MEMWIN; i++) { 1196 struct memwin *mw = &sc->memwin[i]; 1197 1198 if (rw_initialized(&mw->mw_lock)) 1199 rw_destroy(&mw->mw_lock); 1200 } 1201 1202 bzero(sc, sizeof(*sc)); 1203 1204 return (0); 1205 } 1206 1207 static int 1208 cxgbe_probe(device_t dev) 1209 { 1210 char buf[128]; 1211 struct port_info *pi = device_get_softc(dev); 1212 1213 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 1214 device_set_desc_copy(dev, buf); 1215 1216 return (BUS_PROBE_DEFAULT); 1217 } 1218 1219 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 1220 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 1221 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS) 1222 #define T4_CAP_ENABLE (T4_CAP) 1223 1224 static int 1225 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 1226 { 1227 struct ifnet *ifp; 1228 struct sbuf *sb; 1229 1230 vi->xact_addr_filt = -1; 1231 callout_init(&vi->tick, 1); 1232 1233 /* Allocate an ifnet and set it up */ 1234 ifp = if_alloc(IFT_ETHER); 1235 if (ifp == NULL) { 1236 device_printf(dev, "Cannot allocate ifnet\n"); 1237 return (ENOMEM); 1238 } 1239 vi->ifp = ifp; 1240 ifp->if_softc = vi; 1241 1242 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1243 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1244 1245 ifp->if_init = cxgbe_init; 1246 ifp->if_ioctl = cxgbe_ioctl; 1247 ifp->if_transmit = cxgbe_transmit; 1248 ifp->if_qflush = cxgbe_qflush; 1249 ifp->if_get_counter = cxgbe_get_counter; 1250 1251 ifp->if_capabilities = T4_CAP; 1252 #ifdef TCP_OFFLOAD 1253 if (vi->nofldrxq != 0) 1254 ifp->if_capabilities |= IFCAP_TOE; 1255 #endif 1256 ifp->if_capenable = T4_CAP_ENABLE; 1257 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 1258 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 1259 1260 ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 1261 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS; 1262 ifp->if_hw_tsomaxsegsize = 65536; 1263 1264 /* Initialize ifmedia for this VI */ 1265 ifmedia_init(&vi->media, IFM_IMASK, cxgbe_media_change, 1266 cxgbe_media_status); 1267 build_medialist(vi->pi, &vi->media); 1268 1269 vi->vlan_c = EVENTHANDLER_REGISTER(vlan_config, cxgbe_vlan_config, ifp, 1270 EVENTHANDLER_PRI_ANY); 1271 1272 ether_ifattach(ifp, vi->hw_addr); 1273 1274 sb = sbuf_new_auto(); 1275 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 1276 #ifdef TCP_OFFLOAD 1277 if (ifp->if_capabilities & IFCAP_TOE) 1278 sbuf_printf(sb, "; %d txq, %d rxq (TOE)", 1279 vi->nofldtxq, vi->nofldrxq); 1280 #endif 1281 sbuf_finish(sb); 1282 device_printf(dev, "%s\n", sbuf_data(sb)); 1283 sbuf_delete(sb); 1284 1285 vi_sysctls(vi); 1286 1287 return (0); 1288 } 1289 1290 static int 1291 cxgbe_attach(device_t dev) 1292 { 1293 struct port_info *pi = device_get_softc(dev); 1294 struct vi_info *vi; 1295 int i, rc; 1296 1297 callout_init_mtx(&pi->tick, &pi->pi_lock, 0); 1298 1299 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 1300 if (rc) 1301 return (rc); 1302 1303 for_each_vi(pi, i, vi) { 1304 if (i == 0) 1305 continue; 1306 #ifdef DEV_NETMAP 1307 if (vi->flags & VI_NETMAP) { 1308 /* 1309 * media handled here to keep 1310 * implementation private to this file 1311 */ 1312 ifmedia_init(&vi->media, IFM_IMASK, cxgbe_media_change, 1313 cxgbe_media_status); 1314 build_medialist(pi, &vi->media); 1315 vi->dev = device_add_child(dev, is_t4(pi->adapter) ? 1316 "ncxgbe" : "ncxl", device_get_unit(dev)); 1317 } else 1318 #endif 1319 vi->dev = device_add_child(dev, is_t4(pi->adapter) ? 1320 "vcxgbe" : "vcxl", -1); 1321 if (vi->dev == NULL) { 1322 device_printf(dev, "failed to add VI %d\n", i); 1323 continue; 1324 } 1325 device_set_softc(vi->dev, vi); 1326 } 1327 1328 cxgbe_sysctls(pi); 1329 1330 bus_generic_attach(dev); 1331 1332 return (0); 1333 } 1334 1335 static void 1336 cxgbe_vi_detach(struct vi_info *vi) 1337 { 1338 struct ifnet *ifp = vi->ifp; 1339 1340 ether_ifdetach(ifp); 1341 1342 if (vi->vlan_c) 1343 EVENTHANDLER_DEREGISTER(vlan_config, vi->vlan_c); 1344 1345 /* Let detach proceed even if these fail. */ 1346 cxgbe_uninit_synchronized(vi); 1347 callout_drain(&vi->tick); 1348 vi_full_uninit(vi); 1349 1350 ifmedia_removeall(&vi->media); 1351 if_free(vi->ifp); 1352 vi->ifp = NULL; 1353 } 1354 1355 static int 1356 cxgbe_detach(device_t dev) 1357 { 1358 struct port_info *pi = device_get_softc(dev); 1359 struct adapter *sc = pi->adapter; 1360 int rc; 1361 1362 /* Detach the extra VIs first. */ 1363 rc = bus_generic_detach(dev); 1364 if (rc) 1365 return (rc); 1366 device_delete_children(dev); 1367 1368 doom_vi(sc, &pi->vi[0]); 1369 1370 if (pi->flags & HAS_TRACEQ) { 1371 sc->traceq = -1; /* cloner should not create ifnet */ 1372 t4_tracer_port_detach(sc); 1373 } 1374 1375 cxgbe_vi_detach(&pi->vi[0]); 1376 callout_drain(&pi->tick); 1377 1378 end_synchronized_op(sc, 0); 1379 1380 return (0); 1381 } 1382 1383 static void 1384 cxgbe_init(void *arg) 1385 { 1386 struct vi_info *vi = arg; 1387 struct adapter *sc = vi->pi->adapter; 1388 1389 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 1390 return; 1391 cxgbe_init_synchronized(vi); 1392 end_synchronized_op(sc, 0); 1393 } 1394 1395 static int 1396 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 1397 { 1398 int rc = 0, mtu, flags, can_sleep; 1399 struct vi_info *vi = ifp->if_softc; 1400 struct adapter *sc = vi->pi->adapter; 1401 struct ifreq *ifr = (struct ifreq *)data; 1402 uint32_t mask; 1403 1404 switch (cmd) { 1405 case SIOCSIFMTU: 1406 mtu = ifr->ifr_mtu; 1407 if ((mtu < ETHERMIN) || (mtu > ETHERMTU_JUMBO)) 1408 return (EINVAL); 1409 1410 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 1411 if (rc) 1412 return (rc); 1413 ifp->if_mtu = mtu; 1414 if (vi->flags & VI_INIT_DONE) { 1415 t4_update_fl_bufsize(ifp); 1416 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1417 rc = update_mac_settings(ifp, XGMAC_MTU); 1418 } 1419 end_synchronized_op(sc, 0); 1420 break; 1421 1422 case SIOCSIFFLAGS: 1423 can_sleep = 0; 1424 redo_sifflags: 1425 rc = begin_synchronized_op(sc, vi, 1426 can_sleep ? (SLEEP_OK | INTR_OK) : HOLD_LOCK, "t4flg"); 1427 if (rc) 1428 return (rc); 1429 1430 if (ifp->if_flags & IFF_UP) { 1431 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1432 flags = vi->if_flags; 1433 if ((ifp->if_flags ^ flags) & 1434 (IFF_PROMISC | IFF_ALLMULTI)) { 1435 if (can_sleep == 1) { 1436 end_synchronized_op(sc, 0); 1437 can_sleep = 0; 1438 goto redo_sifflags; 1439 } 1440 rc = update_mac_settings(ifp, 1441 XGMAC_PROMISC | XGMAC_ALLMULTI); 1442 } 1443 } else { 1444 if (can_sleep == 0) { 1445 end_synchronized_op(sc, LOCK_HELD); 1446 can_sleep = 1; 1447 goto redo_sifflags; 1448 } 1449 rc = cxgbe_init_synchronized(vi); 1450 } 1451 vi->if_flags = ifp->if_flags; 1452 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1453 if (can_sleep == 0) { 1454 end_synchronized_op(sc, LOCK_HELD); 1455 can_sleep = 1; 1456 goto redo_sifflags; 1457 } 1458 rc = cxgbe_uninit_synchronized(vi); 1459 } 1460 end_synchronized_op(sc, can_sleep ? 0 : LOCK_HELD); 1461 break; 1462 1463 case SIOCADDMULTI: 1464 case SIOCDELMULTI: /* these two are called with a mutex held :-( */ 1465 rc = begin_synchronized_op(sc, vi, HOLD_LOCK, "t4multi"); 1466 if (rc) 1467 return (rc); 1468 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1469 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 1470 end_synchronized_op(sc, LOCK_HELD); 1471 break; 1472 1473 case SIOCSIFCAP: 1474 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 1475 if (rc) 1476 return (rc); 1477 1478 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1479 if (mask & IFCAP_TXCSUM) { 1480 ifp->if_capenable ^= IFCAP_TXCSUM; 1481 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 1482 1483 if (IFCAP_TSO4 & ifp->if_capenable && 1484 !(IFCAP_TXCSUM & ifp->if_capenable)) { 1485 ifp->if_capenable &= ~IFCAP_TSO4; 1486 if_printf(ifp, 1487 "tso4 disabled due to -txcsum.\n"); 1488 } 1489 } 1490 if (mask & IFCAP_TXCSUM_IPV6) { 1491 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 1492 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 1493 1494 if (IFCAP_TSO6 & ifp->if_capenable && 1495 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 1496 ifp->if_capenable &= ~IFCAP_TSO6; 1497 if_printf(ifp, 1498 "tso6 disabled due to -txcsum6.\n"); 1499 } 1500 } 1501 if (mask & IFCAP_RXCSUM) 1502 ifp->if_capenable ^= IFCAP_RXCSUM; 1503 if (mask & IFCAP_RXCSUM_IPV6) 1504 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 1505 1506 /* 1507 * Note that we leave CSUM_TSO alone (it is always set). The 1508 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 1509 * sending a TSO request our way, so it's sufficient to toggle 1510 * IFCAP_TSOx only. 1511 */ 1512 if (mask & IFCAP_TSO4) { 1513 if (!(IFCAP_TSO4 & ifp->if_capenable) && 1514 !(IFCAP_TXCSUM & ifp->if_capenable)) { 1515 if_printf(ifp, "enable txcsum first.\n"); 1516 rc = EAGAIN; 1517 goto fail; 1518 } 1519 ifp->if_capenable ^= IFCAP_TSO4; 1520 } 1521 if (mask & IFCAP_TSO6) { 1522 if (!(IFCAP_TSO6 & ifp->if_capenable) && 1523 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 1524 if_printf(ifp, "enable txcsum6 first.\n"); 1525 rc = EAGAIN; 1526 goto fail; 1527 } 1528 ifp->if_capenable ^= IFCAP_TSO6; 1529 } 1530 if (mask & IFCAP_LRO) { 1531 #if defined(INET) || defined(INET6) 1532 int i; 1533 struct sge_rxq *rxq; 1534 1535 ifp->if_capenable ^= IFCAP_LRO; 1536 for_each_rxq(vi, i, rxq) { 1537 if (ifp->if_capenable & IFCAP_LRO) 1538 rxq->iq.flags |= IQ_LRO_ENABLED; 1539 else 1540 rxq->iq.flags &= ~IQ_LRO_ENABLED; 1541 } 1542 #endif 1543 } 1544 #ifdef TCP_OFFLOAD 1545 if (mask & IFCAP_TOE) { 1546 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 1547 1548 rc = toe_capability(vi, enable); 1549 if (rc != 0) 1550 goto fail; 1551 1552 ifp->if_capenable ^= mask; 1553 } 1554 #endif 1555 if (mask & IFCAP_VLAN_HWTAGGING) { 1556 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1557 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1558 rc = update_mac_settings(ifp, XGMAC_VLANEX); 1559 } 1560 if (mask & IFCAP_VLAN_MTU) { 1561 ifp->if_capenable ^= IFCAP_VLAN_MTU; 1562 1563 /* Need to find out how to disable auto-mtu-inflation */ 1564 } 1565 if (mask & IFCAP_VLAN_HWTSO) 1566 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 1567 if (mask & IFCAP_VLAN_HWCSUM) 1568 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 1569 1570 #ifdef VLAN_CAPABILITIES 1571 VLAN_CAPABILITIES(ifp); 1572 #endif 1573 fail: 1574 end_synchronized_op(sc, 0); 1575 break; 1576 1577 case SIOCSIFMEDIA: 1578 case SIOCGIFMEDIA: 1579 ifmedia_ioctl(ifp, ifr, &vi->media, cmd); 1580 break; 1581 1582 case SIOCGI2C: { 1583 struct ifi2creq i2c; 1584 1585 rc = copyin(ifr->ifr_data, &i2c, sizeof(i2c)); 1586 if (rc != 0) 1587 break; 1588 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 1589 rc = EPERM; 1590 break; 1591 } 1592 if (i2c.len > sizeof(i2c.data)) { 1593 rc = EINVAL; 1594 break; 1595 } 1596 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 1597 if (rc) 1598 return (rc); 1599 rc = -t4_i2c_rd(sc, sc->mbox, vi->pi->port_id, i2c.dev_addr, 1600 i2c.offset, i2c.len, &i2c.data[0]); 1601 end_synchronized_op(sc, 0); 1602 if (rc == 0) 1603 rc = copyout(&i2c, ifr->ifr_data, sizeof(i2c)); 1604 break; 1605 } 1606 1607 default: 1608 rc = ether_ioctl(ifp, cmd, data); 1609 } 1610 1611 return (rc); 1612 } 1613 1614 static int 1615 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 1616 { 1617 struct vi_info *vi = ifp->if_softc; 1618 struct port_info *pi = vi->pi; 1619 struct adapter *sc = pi->adapter; 1620 struct sge_txq *txq; 1621 void *items[1]; 1622 int rc; 1623 1624 M_ASSERTPKTHDR(m); 1625 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 1626 1627 if (__predict_false(pi->link_cfg.link_ok == 0)) { 1628 m_freem(m); 1629 return (ENETDOWN); 1630 } 1631 1632 rc = parse_pkt(&m); 1633 if (__predict_false(rc != 0)) { 1634 MPASS(m == NULL); /* was freed already */ 1635 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 1636 return (rc); 1637 } 1638 1639 /* Select a txq. */ 1640 txq = &sc->sge.txq[vi->first_txq]; 1641 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 1642 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 1643 vi->rsrv_noflowq); 1644 1645 items[0] = m; 1646 rc = mp_ring_enqueue(txq->r, items, 1, 4096); 1647 if (__predict_false(rc != 0)) 1648 m_freem(m); 1649 1650 return (rc); 1651 } 1652 1653 static void 1654 cxgbe_qflush(struct ifnet *ifp) 1655 { 1656 struct vi_info *vi = ifp->if_softc; 1657 struct sge_txq *txq; 1658 int i; 1659 1660 /* queues do not exist if !VI_INIT_DONE. */ 1661 if (vi->flags & VI_INIT_DONE) { 1662 for_each_txq(vi, i, txq) { 1663 TXQ_LOCK(txq); 1664 txq->eq.flags &= ~EQ_ENABLED; 1665 TXQ_UNLOCK(txq); 1666 while (!mp_ring_is_idle(txq->r)) { 1667 mp_ring_check_drainage(txq->r, 0); 1668 pause("qflush", 1); 1669 } 1670 } 1671 } 1672 if_qflush(ifp); 1673 } 1674 1675 static uint64_t 1676 vi_get_counter(struct ifnet *ifp, ift_counter c) 1677 { 1678 struct vi_info *vi = ifp->if_softc; 1679 struct fw_vi_stats_vf *s = &vi->stats; 1680 1681 vi_refresh_stats(vi->pi->adapter, vi); 1682 1683 switch (c) { 1684 case IFCOUNTER_IPACKETS: 1685 return (s->rx_bcast_frames + s->rx_mcast_frames + 1686 s->rx_ucast_frames); 1687 case IFCOUNTER_IERRORS: 1688 return (s->rx_err_frames); 1689 case IFCOUNTER_OPACKETS: 1690 return (s->tx_bcast_frames + s->tx_mcast_frames + 1691 s->tx_ucast_frames + s->tx_offload_frames); 1692 case IFCOUNTER_OERRORS: 1693 return (s->tx_drop_frames); 1694 case IFCOUNTER_IBYTES: 1695 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 1696 s->rx_ucast_bytes); 1697 case IFCOUNTER_OBYTES: 1698 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 1699 s->tx_ucast_bytes + s->tx_offload_bytes); 1700 case IFCOUNTER_IMCASTS: 1701 return (s->rx_mcast_frames); 1702 case IFCOUNTER_OMCASTS: 1703 return (s->tx_mcast_frames); 1704 case IFCOUNTER_OQDROPS: { 1705 uint64_t drops; 1706 1707 drops = 0; 1708 if ((vi->flags & (VI_INIT_DONE | VI_NETMAP)) == VI_INIT_DONE) { 1709 int i; 1710 struct sge_txq *txq; 1711 1712 for_each_txq(vi, i, txq) 1713 drops += counter_u64_fetch(txq->r->drops); 1714 } 1715 1716 return (drops); 1717 1718 } 1719 1720 default: 1721 return (if_get_counter_default(ifp, c)); 1722 } 1723 } 1724 1725 uint64_t 1726 cxgbe_get_counter(struct ifnet *ifp, ift_counter c) 1727 { 1728 struct vi_info *vi = ifp->if_softc; 1729 struct port_info *pi = vi->pi; 1730 struct adapter *sc = pi->adapter; 1731 struct port_stats *s = &pi->stats; 1732 1733 if (pi->nvi > 1) 1734 return (vi_get_counter(ifp, c)); 1735 1736 cxgbe_refresh_stats(sc, pi); 1737 1738 switch (c) { 1739 case IFCOUNTER_IPACKETS: 1740 return (s->rx_frames); 1741 1742 case IFCOUNTER_IERRORS: 1743 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 1744 s->rx_fcs_err + s->rx_len_err); 1745 1746 case IFCOUNTER_OPACKETS: 1747 return (s->tx_frames); 1748 1749 case IFCOUNTER_OERRORS: 1750 return (s->tx_error_frames); 1751 1752 case IFCOUNTER_IBYTES: 1753 return (s->rx_octets); 1754 1755 case IFCOUNTER_OBYTES: 1756 return (s->tx_octets); 1757 1758 case IFCOUNTER_IMCASTS: 1759 return (s->rx_mcast_frames); 1760 1761 case IFCOUNTER_OMCASTS: 1762 return (s->tx_mcast_frames); 1763 1764 case IFCOUNTER_IQDROPS: 1765 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 1766 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 1767 s->rx_trunc3 + pi->tnl_cong_drops); 1768 1769 case IFCOUNTER_OQDROPS: { 1770 uint64_t drops; 1771 1772 drops = s->tx_drop; 1773 if (vi->flags & VI_INIT_DONE) { 1774 int i; 1775 struct sge_txq *txq; 1776 1777 for_each_txq(vi, i, txq) 1778 drops += counter_u64_fetch(txq->r->drops); 1779 } 1780 1781 return (drops); 1782 1783 } 1784 1785 default: 1786 return (if_get_counter_default(ifp, c)); 1787 } 1788 } 1789 1790 static int 1791 cxgbe_media_change(struct ifnet *ifp) 1792 { 1793 struct vi_info *vi = ifp->if_softc; 1794 1795 device_printf(vi->dev, "%s unimplemented.\n", __func__); 1796 1797 return (EOPNOTSUPP); 1798 } 1799 1800 static void 1801 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 1802 { 1803 struct vi_info *vi = ifp->if_softc; 1804 struct port_info *pi = vi->pi; 1805 struct ifmedia_entry *cur; 1806 int speed = pi->link_cfg.speed; 1807 1808 cur = vi->media.ifm_cur; 1809 1810 ifmr->ifm_status = IFM_AVALID; 1811 if (!pi->link_cfg.link_ok) 1812 return; 1813 1814 ifmr->ifm_status |= IFM_ACTIVE; 1815 1816 /* active and current will differ iff current media is autoselect. */ 1817 if (IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO) 1818 return; 1819 1820 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 1821 if (speed == 10000) 1822 ifmr->ifm_active |= IFM_10G_T; 1823 else if (speed == 1000) 1824 ifmr->ifm_active |= IFM_1000_T; 1825 else if (speed == 100) 1826 ifmr->ifm_active |= IFM_100_TX; 1827 else if (speed == 10) 1828 ifmr->ifm_active |= IFM_10_T; 1829 else 1830 KASSERT(0, ("%s: link up but speed unknown (%u)", __func__, 1831 speed)); 1832 } 1833 1834 static int 1835 vcxgbe_probe(device_t dev) 1836 { 1837 char buf[128]; 1838 struct vi_info *vi = device_get_softc(dev); 1839 1840 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 1841 vi - vi->pi->vi); 1842 device_set_desc_copy(dev, buf); 1843 1844 return (BUS_PROBE_DEFAULT); 1845 } 1846 1847 static int 1848 vcxgbe_attach(device_t dev) 1849 { 1850 struct vi_info *vi; 1851 struct port_info *pi; 1852 struct adapter *sc; 1853 int func, index, rc; 1854 u32 param, val; 1855 1856 vi = device_get_softc(dev); 1857 pi = vi->pi; 1858 sc = pi->adapter; 1859 1860 index = vi - pi->vi; 1861 KASSERT(index < nitems(vi_mac_funcs), 1862 ("%s: VI %s doesn't have a MAC func", __func__, 1863 device_get_nameunit(dev))); 1864 func = vi_mac_funcs[index]; 1865 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 1866 vi->hw_addr, &vi->rss_size, func, 0); 1867 if (rc < 0) { 1868 device_printf(dev, "Failed to allocate virtual interface " 1869 "for port %d: %d\n", pi->port_id, -rc); 1870 return (-rc); 1871 } 1872 vi->viid = rc; 1873 1874 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 1875 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 1876 V_FW_PARAMS_PARAM_YZ(vi->viid); 1877 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 1878 if (rc) 1879 vi->rss_base = 0xffff; 1880 else { 1881 /* MPASS((val >> 16) == rss_size); */ 1882 vi->rss_base = val & 0xffff; 1883 } 1884 1885 rc = cxgbe_vi_attach(dev, vi); 1886 if (rc) { 1887 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 1888 return (rc); 1889 } 1890 return (0); 1891 } 1892 1893 static int 1894 vcxgbe_detach(device_t dev) 1895 { 1896 struct vi_info *vi; 1897 struct adapter *sc; 1898 1899 vi = device_get_softc(dev); 1900 sc = vi->pi->adapter; 1901 1902 doom_vi(sc, vi); 1903 1904 cxgbe_vi_detach(vi); 1905 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 1906 1907 end_synchronized_op(sc, 0); 1908 1909 return (0); 1910 } 1911 1912 void 1913 t4_fatal_err(struct adapter *sc) 1914 { 1915 t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0); 1916 t4_intr_disable(sc); 1917 log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n", 1918 device_get_nameunit(sc->dev)); 1919 } 1920 1921 static int 1922 map_bars_0_and_4(struct adapter *sc) 1923 { 1924 sc->regs_rid = PCIR_BAR(0); 1925 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 1926 &sc->regs_rid, RF_ACTIVE); 1927 if (sc->regs_res == NULL) { 1928 device_printf(sc->dev, "cannot map registers.\n"); 1929 return (ENXIO); 1930 } 1931 sc->bt = rman_get_bustag(sc->regs_res); 1932 sc->bh = rman_get_bushandle(sc->regs_res); 1933 sc->mmio_len = rman_get_size(sc->regs_res); 1934 setbit(&sc->doorbells, DOORBELL_KDB); 1935 1936 sc->msix_rid = PCIR_BAR(4); 1937 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 1938 &sc->msix_rid, RF_ACTIVE); 1939 if (sc->msix_res == NULL) { 1940 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 1941 return (ENXIO); 1942 } 1943 1944 return (0); 1945 } 1946 1947 static int 1948 map_bar_2(struct adapter *sc) 1949 { 1950 1951 /* 1952 * T4: only iWARP driver uses the userspace doorbells. There is no need 1953 * to map it if RDMA is disabled. 1954 */ 1955 if (is_t4(sc) && sc->rdmacaps == 0) 1956 return (0); 1957 1958 sc->udbs_rid = PCIR_BAR(2); 1959 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 1960 &sc->udbs_rid, RF_ACTIVE); 1961 if (sc->udbs_res == NULL) { 1962 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 1963 return (ENXIO); 1964 } 1965 sc->udbs_base = rman_get_virtual(sc->udbs_res); 1966 1967 if (is_t5(sc)) { 1968 setbit(&sc->doorbells, DOORBELL_UDB); 1969 #if defined(__i386__) || defined(__amd64__) 1970 if (t5_write_combine) { 1971 int rc; 1972 1973 /* 1974 * Enable write combining on BAR2. This is the 1975 * userspace doorbell BAR and is split into 128B 1976 * (UDBS_SEG_SIZE) doorbell regions, each associated 1977 * with an egress queue. The first 64B has the doorbell 1978 * and the second 64B can be used to submit a tx work 1979 * request with an implicit doorbell. 1980 */ 1981 1982 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 1983 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 1984 if (rc == 0) { 1985 clrbit(&sc->doorbells, DOORBELL_UDB); 1986 setbit(&sc->doorbells, DOORBELL_WCWR); 1987 setbit(&sc->doorbells, DOORBELL_UDBWC); 1988 } else { 1989 device_printf(sc->dev, 1990 "couldn't enable write combining: %d\n", 1991 rc); 1992 } 1993 1994 t4_write_reg(sc, A_SGE_STAT_CFG, 1995 V_STATSOURCE_T5(7) | V_STATMODE(0)); 1996 } 1997 #endif 1998 } 1999 2000 return (0); 2001 } 2002 2003 struct memwin_init { 2004 uint32_t base; 2005 uint32_t aperture; 2006 }; 2007 2008 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 2009 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 2010 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 2011 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 2012 }; 2013 2014 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 2015 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 2016 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 2017 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 2018 }; 2019 2020 static void 2021 setup_memwin(struct adapter *sc) 2022 { 2023 const struct memwin_init *mw_init; 2024 struct memwin *mw; 2025 int i; 2026 uint32_t bar0; 2027 2028 if (is_t4(sc)) { 2029 /* 2030 * Read low 32b of bar0 indirectly via the hardware backdoor 2031 * mechanism. Works from within PCI passthrough environments 2032 * too, where rman_get_start() can return a different value. We 2033 * need to program the T4 memory window decoders with the actual 2034 * addresses that will be coming across the PCIe link. 2035 */ 2036 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 2037 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 2038 2039 mw_init = &t4_memwin[0]; 2040 } else { 2041 /* T5+ use the relative offset inside the PCIe BAR */ 2042 bar0 = 0; 2043 2044 mw_init = &t5_memwin[0]; 2045 } 2046 2047 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 2048 rw_init(&mw->mw_lock, "memory window access"); 2049 mw->mw_base = mw_init->base; 2050 mw->mw_aperture = mw_init->aperture; 2051 mw->mw_curpos = 0; 2052 t4_write_reg(sc, 2053 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 2054 (mw->mw_base + bar0) | V_BIR(0) | 2055 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 2056 rw_wlock(&mw->mw_lock); 2057 position_memwin(sc, i, 0); 2058 rw_wunlock(&mw->mw_lock); 2059 } 2060 2061 /* flush */ 2062 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 2063 } 2064 2065 /* 2066 * Positions the memory window at the given address in the card's address space. 2067 * There are some alignment requirements and the actual position may be at an 2068 * address prior to the requested address. mw->mw_curpos always has the actual 2069 * position of the window. 2070 */ 2071 static void 2072 position_memwin(struct adapter *sc, int idx, uint32_t addr) 2073 { 2074 struct memwin *mw; 2075 uint32_t pf; 2076 uint32_t reg; 2077 2078 MPASS(idx >= 0 && idx < NUM_MEMWIN); 2079 mw = &sc->memwin[idx]; 2080 rw_assert(&mw->mw_lock, RA_WLOCKED); 2081 2082 if (is_t4(sc)) { 2083 pf = 0; 2084 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 2085 } else { 2086 pf = V_PFNUM(sc->pf); 2087 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 2088 } 2089 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 2090 t4_write_reg(sc, reg, mw->mw_curpos | pf); 2091 t4_read_reg(sc, reg); /* flush */ 2092 } 2093 2094 static int 2095 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 2096 int len, int rw) 2097 { 2098 struct memwin *mw; 2099 uint32_t mw_end, v; 2100 2101 MPASS(idx >= 0 && idx < NUM_MEMWIN); 2102 2103 /* Memory can only be accessed in naturally aligned 4 byte units */ 2104 if (addr & 3 || len & 3 || len <= 0) 2105 return (EINVAL); 2106 2107 mw = &sc->memwin[idx]; 2108 while (len > 0) { 2109 rw_rlock(&mw->mw_lock); 2110 mw_end = mw->mw_curpos + mw->mw_aperture; 2111 if (addr >= mw_end || addr < mw->mw_curpos) { 2112 /* Will need to reposition the window */ 2113 if (!rw_try_upgrade(&mw->mw_lock)) { 2114 rw_runlock(&mw->mw_lock); 2115 rw_wlock(&mw->mw_lock); 2116 } 2117 rw_assert(&mw->mw_lock, RA_WLOCKED); 2118 position_memwin(sc, idx, addr); 2119 rw_downgrade(&mw->mw_lock); 2120 mw_end = mw->mw_curpos + mw->mw_aperture; 2121 } 2122 rw_assert(&mw->mw_lock, RA_RLOCKED); 2123 while (addr < mw_end && len > 0) { 2124 if (rw == 0) { 2125 v = t4_read_reg(sc, mw->mw_base + addr - 2126 mw->mw_curpos); 2127 *val++ = le32toh(v); 2128 } else { 2129 v = *val++; 2130 t4_write_reg(sc, mw->mw_base + addr - 2131 mw->mw_curpos, htole32(v)); 2132 } 2133 addr += 4; 2134 len -= 4; 2135 } 2136 rw_runlock(&mw->mw_lock); 2137 } 2138 2139 return (0); 2140 } 2141 2142 static inline int 2143 read_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 2144 int len) 2145 { 2146 2147 return (rw_via_memwin(sc, idx, addr, val, len, 0)); 2148 } 2149 2150 static inline int 2151 write_via_memwin(struct adapter *sc, int idx, uint32_t addr, 2152 const uint32_t *val, int len) 2153 { 2154 2155 return (rw_via_memwin(sc, idx, addr, (void *)(uintptr_t)val, len, 1)); 2156 } 2157 2158 static int 2159 t4_range_cmp(const void *a, const void *b) 2160 { 2161 return ((const struct t4_range *)a)->start - 2162 ((const struct t4_range *)b)->start; 2163 } 2164 2165 /* 2166 * Verify that the memory range specified by the addr/len pair is valid within 2167 * the card's address space. 2168 */ 2169 static int 2170 validate_mem_range(struct adapter *sc, uint32_t addr, int len) 2171 { 2172 struct t4_range mem_ranges[4], *r, *next; 2173 uint32_t em, addr_len; 2174 int i, n, remaining; 2175 2176 /* Memory can only be accessed in naturally aligned 4 byte units */ 2177 if (addr & 3 || len & 3 || len <= 0) 2178 return (EINVAL); 2179 2180 /* Enabled memories */ 2181 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 2182 2183 r = &mem_ranges[0]; 2184 n = 0; 2185 bzero(r, sizeof(mem_ranges)); 2186 if (em & F_EDRAM0_ENABLE) { 2187 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 2188 r->size = G_EDRAM0_SIZE(addr_len) << 20; 2189 if (r->size > 0) { 2190 r->start = G_EDRAM0_BASE(addr_len) << 20; 2191 if (addr >= r->start && 2192 addr + len <= r->start + r->size) 2193 return (0); 2194 r++; 2195 n++; 2196 } 2197 } 2198 if (em & F_EDRAM1_ENABLE) { 2199 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 2200 r->size = G_EDRAM1_SIZE(addr_len) << 20; 2201 if (r->size > 0) { 2202 r->start = G_EDRAM1_BASE(addr_len) << 20; 2203 if (addr >= r->start && 2204 addr + len <= r->start + r->size) 2205 return (0); 2206 r++; 2207 n++; 2208 } 2209 } 2210 if (em & F_EXT_MEM_ENABLE) { 2211 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 2212 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 2213 if (r->size > 0) { 2214 r->start = G_EXT_MEM_BASE(addr_len) << 20; 2215 if (addr >= r->start && 2216 addr + len <= r->start + r->size) 2217 return (0); 2218 r++; 2219 n++; 2220 } 2221 } 2222 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 2223 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 2224 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 2225 if (r->size > 0) { 2226 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 2227 if (addr >= r->start && 2228 addr + len <= r->start + r->size) 2229 return (0); 2230 r++; 2231 n++; 2232 } 2233 } 2234 MPASS(n <= nitems(mem_ranges)); 2235 2236 if (n > 1) { 2237 /* Sort and merge the ranges. */ 2238 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 2239 2240 /* Start from index 0 and examine the next n - 1 entries. */ 2241 r = &mem_ranges[0]; 2242 for (remaining = n - 1; remaining > 0; remaining--, r++) { 2243 2244 MPASS(r->size > 0); /* r is a valid entry. */ 2245 next = r + 1; 2246 MPASS(next->size > 0); /* and so is the next one. */ 2247 2248 while (r->start + r->size >= next->start) { 2249 /* Merge the next one into the current entry. */ 2250 r->size = max(r->start + r->size, 2251 next->start + next->size) - r->start; 2252 n--; /* One fewer entry in total. */ 2253 if (--remaining == 0) 2254 goto done; /* short circuit */ 2255 next++; 2256 } 2257 if (next != r + 1) { 2258 /* 2259 * Some entries were merged into r and next 2260 * points to the first valid entry that couldn't 2261 * be merged. 2262 */ 2263 MPASS(next->size > 0); /* must be valid */ 2264 memcpy(r + 1, next, remaining * sizeof(*r)); 2265 #ifdef INVARIANTS 2266 /* 2267 * This so that the foo->size assertion in the 2268 * next iteration of the loop do the right 2269 * thing for entries that were pulled up and are 2270 * no longer valid. 2271 */ 2272 MPASS(n < nitems(mem_ranges)); 2273 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 2274 sizeof(struct t4_range)); 2275 #endif 2276 } 2277 } 2278 done: 2279 /* Done merging the ranges. */ 2280 MPASS(n > 0); 2281 r = &mem_ranges[0]; 2282 for (i = 0; i < n; i++, r++) { 2283 if (addr >= r->start && 2284 addr + len <= r->start + r->size) 2285 return (0); 2286 } 2287 } 2288 2289 return (EFAULT); 2290 } 2291 2292 static int 2293 fwmtype_to_hwmtype(int mtype) 2294 { 2295 2296 switch (mtype) { 2297 case FW_MEMTYPE_EDC0: 2298 return (MEM_EDC0); 2299 case FW_MEMTYPE_EDC1: 2300 return (MEM_EDC1); 2301 case FW_MEMTYPE_EXTMEM: 2302 return (MEM_MC0); 2303 case FW_MEMTYPE_EXTMEM1: 2304 return (MEM_MC1); 2305 default: 2306 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 2307 } 2308 } 2309 2310 /* 2311 * Verify that the memory range specified by the memtype/offset/len pair is 2312 * valid and lies entirely within the memtype specified. The global address of 2313 * the start of the range is returned in addr. 2314 */ 2315 static int 2316 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, int len, 2317 uint32_t *addr) 2318 { 2319 uint32_t em, addr_len, maddr; 2320 2321 /* Memory can only be accessed in naturally aligned 4 byte units */ 2322 if (off & 3 || len & 3 || len == 0) 2323 return (EINVAL); 2324 2325 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 2326 switch (fwmtype_to_hwmtype(mtype)) { 2327 case MEM_EDC0: 2328 if (!(em & F_EDRAM0_ENABLE)) 2329 return (EINVAL); 2330 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 2331 maddr = G_EDRAM0_BASE(addr_len) << 20; 2332 break; 2333 case MEM_EDC1: 2334 if (!(em & F_EDRAM1_ENABLE)) 2335 return (EINVAL); 2336 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 2337 maddr = G_EDRAM1_BASE(addr_len) << 20; 2338 break; 2339 case MEM_MC: 2340 if (!(em & F_EXT_MEM_ENABLE)) 2341 return (EINVAL); 2342 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 2343 maddr = G_EXT_MEM_BASE(addr_len) << 20; 2344 break; 2345 case MEM_MC1: 2346 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 2347 return (EINVAL); 2348 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 2349 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 2350 break; 2351 default: 2352 return (EINVAL); 2353 } 2354 2355 *addr = maddr + off; /* global address */ 2356 return (validate_mem_range(sc, *addr, len)); 2357 } 2358 2359 static int 2360 fixup_devlog_params(struct adapter *sc) 2361 { 2362 struct devlog_params *dparams = &sc->params.devlog; 2363 int rc; 2364 2365 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 2366 dparams->size, &dparams->addr); 2367 2368 return (rc); 2369 } 2370 2371 static int 2372 cfg_itype_and_nqueues(struct adapter *sc, int n10g, int n1g, int num_vis, 2373 struct intrs_and_queues *iaq) 2374 { 2375 int rc, itype, navail, nrxq10g, nrxq1g, n; 2376 int nofldrxq10g = 0, nofldrxq1g = 0; 2377 int nnmrxq10g = 0, nnmrxq1g = 0; 2378 2379 bzero(iaq, sizeof(*iaq)); 2380 2381 iaq->ntxq10g = t4_ntxq10g; 2382 iaq->ntxq1g = t4_ntxq1g; 2383 iaq->nrxq10g = nrxq10g = t4_nrxq10g; 2384 iaq->nrxq1g = nrxq1g = t4_nrxq1g; 2385 iaq->rsrv_noflowq = t4_rsrv_noflowq; 2386 #ifdef TCP_OFFLOAD 2387 if (is_offload(sc)) { 2388 iaq->nofldtxq10g = t4_nofldtxq10g; 2389 iaq->nofldtxq1g = t4_nofldtxq1g; 2390 iaq->nofldrxq10g = nofldrxq10g = t4_nofldrxq10g; 2391 iaq->nofldrxq1g = nofldrxq1g = t4_nofldrxq1g; 2392 } 2393 #endif 2394 #ifdef DEV_NETMAP 2395 iaq->nnmtxq10g = t4_nnmtxq10g; 2396 iaq->nnmtxq1g = t4_nnmtxq1g; 2397 iaq->nnmrxq10g = nnmrxq10g = t4_nnmrxq10g; 2398 iaq->nnmrxq1g = nnmrxq1g = t4_nnmrxq1g; 2399 #endif 2400 2401 for (itype = INTR_MSIX; itype; itype >>= 1) { 2402 2403 if ((itype & t4_intr_types) == 0) 2404 continue; /* not allowed */ 2405 2406 if (itype == INTR_MSIX) 2407 navail = pci_msix_count(sc->dev); 2408 else if (itype == INTR_MSI) 2409 navail = pci_msi_count(sc->dev); 2410 else 2411 navail = 1; 2412 restart: 2413 if (navail == 0) 2414 continue; 2415 2416 iaq->intr_type = itype; 2417 iaq->intr_flags_10g = 0; 2418 iaq->intr_flags_1g = 0; 2419 2420 /* 2421 * Best option: an interrupt vector for errors, one for the 2422 * firmware event queue, and one for every rxq (NIC, TOE, and 2423 * netmap). 2424 */ 2425 iaq->nirq = T4_EXTRA_INTR; 2426 iaq->nirq += n10g * (nrxq10g + nofldrxq10g + nnmrxq10g); 2427 iaq->nirq += n10g * 2 * (num_vis - 1); 2428 iaq->nirq += n1g * (nrxq1g + nofldrxq1g + nnmrxq1g); 2429 iaq->nirq += n1g * 2 * (num_vis - 1); 2430 if (iaq->nirq <= navail && 2431 (itype != INTR_MSI || powerof2(iaq->nirq))) { 2432 iaq->intr_flags_10g = INTR_ALL; 2433 iaq->intr_flags_1g = INTR_ALL; 2434 goto allocate; 2435 } 2436 2437 /* 2438 * Second best option: a vector for errors, one for the firmware 2439 * event queue, and vectors for either all the NIC rx queues or 2440 * all the TOE rx queues. The queues that don't get vectors 2441 * will forward their interrupts to those that do. 2442 * 2443 * Note: netmap rx queues cannot be created early and so they 2444 * can't be setup to receive forwarded interrupts for others. 2445 */ 2446 iaq->nirq = T4_EXTRA_INTR; 2447 if (nrxq10g >= nofldrxq10g) { 2448 iaq->intr_flags_10g = INTR_RXQ; 2449 iaq->nirq += n10g * nrxq10g; 2450 iaq->nirq += n10g * (num_vis - 1); 2451 #ifdef DEV_NETMAP 2452 iaq->nnmrxq10g = min(nnmrxq10g, nrxq10g); 2453 #endif 2454 } else { 2455 iaq->intr_flags_10g = INTR_OFLD_RXQ; 2456 iaq->nirq += n10g * nofldrxq10g; 2457 #ifdef DEV_NETMAP 2458 iaq->nnmrxq10g = min(nnmrxq10g, nofldrxq10g); 2459 #endif 2460 } 2461 if (nrxq1g >= nofldrxq1g) { 2462 iaq->intr_flags_1g = INTR_RXQ; 2463 iaq->nirq += n1g * nrxq1g; 2464 iaq->nirq += n1g * (num_vis - 1); 2465 #ifdef DEV_NETMAP 2466 iaq->nnmrxq1g = min(nnmrxq1g, nrxq1g); 2467 #endif 2468 } else { 2469 iaq->intr_flags_1g = INTR_OFLD_RXQ; 2470 iaq->nirq += n1g * nofldrxq1g; 2471 #ifdef DEV_NETMAP 2472 iaq->nnmrxq1g = min(nnmrxq1g, nofldrxq1g); 2473 #endif 2474 } 2475 if (iaq->nirq <= navail && 2476 (itype != INTR_MSI || powerof2(iaq->nirq))) 2477 goto allocate; 2478 2479 /* 2480 * Next best option: an interrupt vector for errors, one for the 2481 * firmware event queue, and at least one per VI. At this 2482 * point we know we'll have to downsize nrxq and/or nofldrxq 2483 * and/or nnmrxq to fit what's available to us. 2484 */ 2485 iaq->nirq = T4_EXTRA_INTR; 2486 iaq->nirq += (n10g + n1g) * num_vis; 2487 if (iaq->nirq <= navail) { 2488 int leftover = navail - iaq->nirq; 2489 2490 if (n10g > 0) { 2491 int target = max(nrxq10g, nofldrxq10g); 2492 2493 iaq->intr_flags_10g = nrxq10g >= nofldrxq10g ? 2494 INTR_RXQ : INTR_OFLD_RXQ; 2495 2496 n = 1; 2497 while (n < target && leftover >= n10g) { 2498 leftover -= n10g; 2499 iaq->nirq += n10g; 2500 n++; 2501 } 2502 iaq->nrxq10g = min(n, nrxq10g); 2503 #ifdef TCP_OFFLOAD 2504 iaq->nofldrxq10g = min(n, nofldrxq10g); 2505 #endif 2506 #ifdef DEV_NETMAP 2507 iaq->nnmrxq10g = min(n, nnmrxq10g); 2508 #endif 2509 } 2510 2511 if (n1g > 0) { 2512 int target = max(nrxq1g, nofldrxq1g); 2513 2514 iaq->intr_flags_1g = nrxq1g >= nofldrxq1g ? 2515 INTR_RXQ : INTR_OFLD_RXQ; 2516 2517 n = 1; 2518 while (n < target && leftover >= n1g) { 2519 leftover -= n1g; 2520 iaq->nirq += n1g; 2521 n++; 2522 } 2523 iaq->nrxq1g = min(n, nrxq1g); 2524 #ifdef TCP_OFFLOAD 2525 iaq->nofldrxq1g = min(n, nofldrxq1g); 2526 #endif 2527 #ifdef DEV_NETMAP 2528 iaq->nnmrxq1g = min(n, nnmrxq1g); 2529 #endif 2530 } 2531 2532 if (itype != INTR_MSI || powerof2(iaq->nirq)) 2533 goto allocate; 2534 } 2535 2536 /* 2537 * Least desirable option: one interrupt vector for everything. 2538 */ 2539 iaq->nirq = iaq->nrxq10g = iaq->nrxq1g = 1; 2540 iaq->intr_flags_10g = iaq->intr_flags_1g = 0; 2541 #ifdef TCP_OFFLOAD 2542 if (is_offload(sc)) 2543 iaq->nofldrxq10g = iaq->nofldrxq1g = 1; 2544 #endif 2545 #ifdef DEV_NETMAP 2546 iaq->nnmrxq10g = iaq->nnmrxq1g = 1; 2547 #endif 2548 2549 allocate: 2550 navail = iaq->nirq; 2551 rc = 0; 2552 if (itype == INTR_MSIX) 2553 rc = pci_alloc_msix(sc->dev, &navail); 2554 else if (itype == INTR_MSI) 2555 rc = pci_alloc_msi(sc->dev, &navail); 2556 2557 if (rc == 0) { 2558 if (navail == iaq->nirq) 2559 return (0); 2560 2561 /* 2562 * Didn't get the number requested. Use whatever number 2563 * the kernel is willing to allocate (it's in navail). 2564 */ 2565 device_printf(sc->dev, "fewer vectors than requested, " 2566 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 2567 itype, iaq->nirq, navail); 2568 pci_release_msi(sc->dev); 2569 goto restart; 2570 } 2571 2572 device_printf(sc->dev, 2573 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 2574 itype, rc, iaq->nirq, navail); 2575 } 2576 2577 device_printf(sc->dev, 2578 "failed to find a usable interrupt type. " 2579 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 2580 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 2581 2582 return (ENXIO); 2583 } 2584 2585 #define FW_VERSION(chip) ( \ 2586 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 2587 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 2588 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 2589 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 2590 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 2591 2592 struct fw_info { 2593 uint8_t chip; 2594 char *kld_name; 2595 char *fw_mod_name; 2596 struct fw_hdr fw_hdr; /* XXX: waste of space, need a sparse struct */ 2597 } fw_info[] = { 2598 { 2599 .chip = CHELSIO_T4, 2600 .kld_name = "t4fw_cfg", 2601 .fw_mod_name = "t4fw", 2602 .fw_hdr = { 2603 .chip = FW_HDR_CHIP_T4, 2604 .fw_ver = htobe32_const(FW_VERSION(T4)), 2605 .intfver_nic = FW_INTFVER(T4, NIC), 2606 .intfver_vnic = FW_INTFVER(T4, VNIC), 2607 .intfver_ofld = FW_INTFVER(T4, OFLD), 2608 .intfver_ri = FW_INTFVER(T4, RI), 2609 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 2610 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 2611 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 2612 .intfver_fcoe = FW_INTFVER(T4, FCOE), 2613 }, 2614 }, { 2615 .chip = CHELSIO_T5, 2616 .kld_name = "t5fw_cfg", 2617 .fw_mod_name = "t5fw", 2618 .fw_hdr = { 2619 .chip = FW_HDR_CHIP_T5, 2620 .fw_ver = htobe32_const(FW_VERSION(T5)), 2621 .intfver_nic = FW_INTFVER(T5, NIC), 2622 .intfver_vnic = FW_INTFVER(T5, VNIC), 2623 .intfver_ofld = FW_INTFVER(T5, OFLD), 2624 .intfver_ri = FW_INTFVER(T5, RI), 2625 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 2626 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 2627 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 2628 .intfver_fcoe = FW_INTFVER(T5, FCOE), 2629 }, 2630 } 2631 }; 2632 2633 static struct fw_info * 2634 find_fw_info(int chip) 2635 { 2636 int i; 2637 2638 for (i = 0; i < nitems(fw_info); i++) { 2639 if (fw_info[i].chip == chip) 2640 return (&fw_info[i]); 2641 } 2642 return (NULL); 2643 } 2644 2645 /* 2646 * Is the given firmware API compatible with the one the driver was compiled 2647 * with? 2648 */ 2649 static int 2650 fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 2651 { 2652 2653 /* short circuit if it's the exact same firmware version */ 2654 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 2655 return (1); 2656 2657 /* 2658 * XXX: Is this too conservative? Perhaps I should limit this to the 2659 * features that are supported in the driver. 2660 */ 2661 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 2662 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 2663 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 2664 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 2665 return (1); 2666 #undef SAME_INTF 2667 2668 return (0); 2669 } 2670 2671 /* 2672 * The firmware in the KLD is usable, but should it be installed? This routine 2673 * explains itself in detail if it indicates the KLD firmware should be 2674 * installed. 2675 */ 2676 static int 2677 should_install_kld_fw(struct adapter *sc, int card_fw_usable, int k, int c) 2678 { 2679 const char *reason; 2680 2681 if (!card_fw_usable) { 2682 reason = "incompatible or unusable"; 2683 goto install; 2684 } 2685 2686 if (k > c) { 2687 reason = "older than the version bundled with this driver"; 2688 goto install; 2689 } 2690 2691 if (t4_fw_install == 2 && k != c) { 2692 reason = "different than the version bundled with this driver"; 2693 goto install; 2694 } 2695 2696 return (0); 2697 2698 install: 2699 if (t4_fw_install == 0) { 2700 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 2701 "but the driver is prohibited from installing a different " 2702 "firmware on the card.\n", 2703 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 2704 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 2705 2706 return (0); 2707 } 2708 2709 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 2710 "installing firmware %u.%u.%u.%u on card.\n", 2711 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 2712 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 2713 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 2714 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k)); 2715 2716 return (1); 2717 } 2718 /* 2719 * Establish contact with the firmware and determine if we are the master driver 2720 * or not, and whether we are responsible for chip initialization. 2721 */ 2722 static int 2723 prep_firmware(struct adapter *sc) 2724 { 2725 const struct firmware *fw = NULL, *default_cfg; 2726 int rc, pf, card_fw_usable, kld_fw_usable, need_fw_reset = 1; 2727 enum dev_state state; 2728 struct fw_info *fw_info; 2729 struct fw_hdr *card_fw; /* fw on the card */ 2730 const struct fw_hdr *kld_fw; /* fw in the KLD */ 2731 const struct fw_hdr *drv_fw; /* fw header the driver was compiled 2732 against */ 2733 2734 /* Contact firmware. */ 2735 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 2736 if (rc < 0 || state == DEV_STATE_ERR) { 2737 rc = -rc; 2738 device_printf(sc->dev, 2739 "failed to connect to the firmware: %d, %d.\n", rc, state); 2740 return (rc); 2741 } 2742 pf = rc; 2743 if (pf == sc->mbox) 2744 sc->flags |= MASTER_PF; 2745 else if (state == DEV_STATE_UNINIT) { 2746 /* 2747 * We didn't get to be the master so we definitely won't be 2748 * configuring the chip. It's a bug if someone else hasn't 2749 * configured it already. 2750 */ 2751 device_printf(sc->dev, "couldn't be master(%d), " 2752 "device not already initialized either(%d).\n", rc, state); 2753 return (EDOOFUS); 2754 } 2755 2756 /* This is the firmware whose headers the driver was compiled against */ 2757 fw_info = find_fw_info(chip_id(sc)); 2758 if (fw_info == NULL) { 2759 device_printf(sc->dev, 2760 "unable to look up firmware information for chip %d.\n", 2761 chip_id(sc)); 2762 return (EINVAL); 2763 } 2764 drv_fw = &fw_info->fw_hdr; 2765 2766 /* 2767 * The firmware KLD contains many modules. The KLD name is also the 2768 * name of the module that contains the default config file. 2769 */ 2770 default_cfg = firmware_get(fw_info->kld_name); 2771 2772 /* Read the header of the firmware on the card */ 2773 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 2774 rc = -t4_read_flash(sc, FLASH_FW_START, 2775 sizeof (*card_fw) / sizeof (uint32_t), (uint32_t *)card_fw, 1); 2776 if (rc == 0) 2777 card_fw_usable = fw_compatible(drv_fw, (const void*)card_fw); 2778 else { 2779 device_printf(sc->dev, 2780 "Unable to read card's firmware header: %d\n", rc); 2781 card_fw_usable = 0; 2782 } 2783 2784 /* This is the firmware in the KLD */ 2785 fw = firmware_get(fw_info->fw_mod_name); 2786 if (fw != NULL) { 2787 kld_fw = (const void *)fw->data; 2788 kld_fw_usable = fw_compatible(drv_fw, kld_fw); 2789 } else { 2790 kld_fw = NULL; 2791 kld_fw_usable = 0; 2792 } 2793 2794 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 2795 (!kld_fw_usable || kld_fw->fw_ver == drv_fw->fw_ver)) { 2796 /* 2797 * Common case: the firmware on the card is an exact match and 2798 * the KLD is an exact match too, or the KLD is 2799 * absent/incompatible. Note that t4_fw_install = 2 is ignored 2800 * here -- use cxgbetool loadfw if you want to reinstall the 2801 * same firmware as the one on the card. 2802 */ 2803 } else if (kld_fw_usable && state == DEV_STATE_UNINIT && 2804 should_install_kld_fw(sc, card_fw_usable, be32toh(kld_fw->fw_ver), 2805 be32toh(card_fw->fw_ver))) { 2806 2807 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 2808 if (rc != 0) { 2809 device_printf(sc->dev, 2810 "failed to install firmware: %d\n", rc); 2811 goto done; 2812 } 2813 2814 /* Installed successfully, update the cached header too. */ 2815 memcpy(card_fw, kld_fw, sizeof(*card_fw)); 2816 card_fw_usable = 1; 2817 need_fw_reset = 0; /* already reset as part of load_fw */ 2818 } 2819 2820 if (!card_fw_usable) { 2821 uint32_t d, c, k; 2822 2823 d = ntohl(drv_fw->fw_ver); 2824 c = ntohl(card_fw->fw_ver); 2825 k = kld_fw ? ntohl(kld_fw->fw_ver) : 0; 2826 2827 device_printf(sc->dev, "Cannot find a usable firmware: " 2828 "fw_install %d, chip state %d, " 2829 "driver compiled with %d.%d.%d.%d, " 2830 "card has %d.%d.%d.%d, KLD has %d.%d.%d.%d\n", 2831 t4_fw_install, state, 2832 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 2833 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d), 2834 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 2835 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), 2836 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 2837 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k)); 2838 rc = EINVAL; 2839 goto done; 2840 } 2841 2842 /* We're using whatever's on the card and it's known to be good. */ 2843 sc->params.fw_vers = ntohl(card_fw->fw_ver); 2844 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 2845 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 2846 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 2847 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 2848 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 2849 2850 t4_get_tp_version(sc, &sc->params.tp_vers); 2851 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 2852 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 2853 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 2854 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 2855 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 2856 2857 if (t4_get_exprom_version(sc, &sc->params.exprom_vers) != 0) 2858 sc->params.exprom_vers = 0; 2859 else { 2860 snprintf(sc->exprom_version, sizeof(sc->exprom_version), 2861 "%u.%u.%u.%u", 2862 G_FW_HDR_FW_VER_MAJOR(sc->params.exprom_vers), 2863 G_FW_HDR_FW_VER_MINOR(sc->params.exprom_vers), 2864 G_FW_HDR_FW_VER_MICRO(sc->params.exprom_vers), 2865 G_FW_HDR_FW_VER_BUILD(sc->params.exprom_vers)); 2866 } 2867 2868 /* Reset device */ 2869 if (need_fw_reset && 2870 (rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST)) != 0) { 2871 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 2872 if (rc != ETIMEDOUT && rc != EIO) 2873 t4_fw_bye(sc, sc->mbox); 2874 goto done; 2875 } 2876 sc->flags |= FW_OK; 2877 2878 rc = get_params__pre_init(sc); 2879 if (rc != 0) 2880 goto done; /* error message displayed already */ 2881 2882 /* Partition adapter resources as specified in the config file. */ 2883 if (state == DEV_STATE_UNINIT) { 2884 2885 KASSERT(sc->flags & MASTER_PF, 2886 ("%s: trying to change chip settings when not master.", 2887 __func__)); 2888 2889 rc = partition_resources(sc, default_cfg, fw_info->kld_name); 2890 if (rc != 0) 2891 goto done; /* error message displayed already */ 2892 2893 t4_tweak_chip_settings(sc); 2894 2895 /* get basic stuff going */ 2896 rc = -t4_fw_initialize(sc, sc->mbox); 2897 if (rc != 0) { 2898 device_printf(sc->dev, "fw init failed: %d.\n", rc); 2899 goto done; 2900 } 2901 } else { 2902 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", pf); 2903 sc->cfcsum = 0; 2904 } 2905 2906 done: 2907 free(card_fw, M_CXGBE); 2908 if (fw != NULL) 2909 firmware_put(fw, FIRMWARE_UNLOAD); 2910 if (default_cfg != NULL) 2911 firmware_put(default_cfg, FIRMWARE_UNLOAD); 2912 2913 return (rc); 2914 } 2915 2916 #define FW_PARAM_DEV(param) \ 2917 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 2918 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 2919 #define FW_PARAM_PFVF(param) \ 2920 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 2921 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 2922 2923 /* 2924 * Partition chip resources for use between various PFs, VFs, etc. 2925 */ 2926 static int 2927 partition_resources(struct adapter *sc, const struct firmware *default_cfg, 2928 const char *name_prefix) 2929 { 2930 const struct firmware *cfg = NULL; 2931 int rc = 0; 2932 struct fw_caps_config_cmd caps; 2933 uint32_t mtype, moff, finicsum, cfcsum; 2934 2935 /* 2936 * Figure out what configuration file to use. Pick the default config 2937 * file for the card if the user hasn't specified one explicitly. 2938 */ 2939 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", t4_cfg_file); 2940 if (strncmp(t4_cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 2941 /* Card specific overrides go here. */ 2942 if (pci_get_device(sc->dev) == 0x440a) 2943 snprintf(sc->cfg_file, sizeof(sc->cfg_file), UWIRE_CF); 2944 if (is_fpga(sc)) 2945 snprintf(sc->cfg_file, sizeof(sc->cfg_file), FPGA_CF); 2946 } 2947 2948 /* 2949 * We need to load another module if the profile is anything except 2950 * "default" or "flash". 2951 */ 2952 if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) != 0 && 2953 strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) { 2954 char s[32]; 2955 2956 snprintf(s, sizeof(s), "%s_%s", name_prefix, sc->cfg_file); 2957 cfg = firmware_get(s); 2958 if (cfg == NULL) { 2959 if (default_cfg != NULL) { 2960 device_printf(sc->dev, 2961 "unable to load module \"%s\" for " 2962 "configuration profile \"%s\", will use " 2963 "the default config file instead.\n", 2964 s, sc->cfg_file); 2965 snprintf(sc->cfg_file, sizeof(sc->cfg_file), 2966 "%s", DEFAULT_CF); 2967 } else { 2968 device_printf(sc->dev, 2969 "unable to load module \"%s\" for " 2970 "configuration profile \"%s\", will use " 2971 "the config file on the card's flash " 2972 "instead.\n", s, sc->cfg_file); 2973 snprintf(sc->cfg_file, sizeof(sc->cfg_file), 2974 "%s", FLASH_CF); 2975 } 2976 } 2977 } 2978 2979 if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) == 0 && 2980 default_cfg == NULL) { 2981 device_printf(sc->dev, 2982 "default config file not available, will use the config " 2983 "file on the card's flash instead.\n"); 2984 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", FLASH_CF); 2985 } 2986 2987 if (strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) { 2988 u_int cflen; 2989 const uint32_t *cfdata; 2990 uint32_t param, val, addr; 2991 2992 KASSERT(cfg != NULL || default_cfg != NULL, 2993 ("%s: no config to upload", __func__)); 2994 2995 /* 2996 * Ask the firmware where it wants us to upload the config file. 2997 */ 2998 param = FW_PARAM_DEV(CF); 2999 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3000 if (rc != 0) { 3001 /* No support for config file? Shouldn't happen. */ 3002 device_printf(sc->dev, 3003 "failed to query config file location: %d.\n", rc); 3004 goto done; 3005 } 3006 mtype = G_FW_PARAMS_PARAM_Y(val); 3007 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 3008 3009 /* 3010 * XXX: sheer laziness. We deliberately added 4 bytes of 3011 * useless stuffing/comments at the end of the config file so 3012 * it's ok to simply throw away the last remaining bytes when 3013 * the config file is not an exact multiple of 4. This also 3014 * helps with the validate_mt_off_len check. 3015 */ 3016 if (cfg != NULL) { 3017 cflen = cfg->datasize & ~3; 3018 cfdata = cfg->data; 3019 } else { 3020 cflen = default_cfg->datasize & ~3; 3021 cfdata = default_cfg->data; 3022 } 3023 3024 if (cflen > FLASH_CFG_MAX_SIZE) { 3025 device_printf(sc->dev, 3026 "config file too long (%d, max allowed is %d). " 3027 "Will try to use the config on the card, if any.\n", 3028 cflen, FLASH_CFG_MAX_SIZE); 3029 goto use_config_on_flash; 3030 } 3031 3032 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 3033 if (rc != 0) { 3034 device_printf(sc->dev, 3035 "%s: addr (%d/0x%x) or len %d is not valid: %d. " 3036 "Will try to use the config on the card, if any.\n", 3037 __func__, mtype, moff, cflen, rc); 3038 goto use_config_on_flash; 3039 } 3040 write_via_memwin(sc, 2, addr, cfdata, cflen); 3041 } else { 3042 use_config_on_flash: 3043 mtype = FW_MEMTYPE_FLASH; 3044 moff = t4_flash_cfg_addr(sc); 3045 } 3046 3047 bzero(&caps, sizeof(caps)); 3048 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3049 F_FW_CMD_REQUEST | F_FW_CMD_READ); 3050 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 3051 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 3052 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps)); 3053 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 3054 if (rc != 0) { 3055 device_printf(sc->dev, 3056 "failed to pre-process config file: %d " 3057 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 3058 goto done; 3059 } 3060 3061 finicsum = be32toh(caps.finicsum); 3062 cfcsum = be32toh(caps.cfcsum); 3063 if (finicsum != cfcsum) { 3064 device_printf(sc->dev, 3065 "WARNING: config file checksum mismatch: %08x %08x\n", 3066 finicsum, cfcsum); 3067 } 3068 sc->cfcsum = cfcsum; 3069 3070 #define LIMIT_CAPS(x) do { \ 3071 caps.x &= htobe16(t4_##x##_allowed); \ 3072 } while (0) 3073 3074 /* 3075 * Let the firmware know what features will (not) be used so it can tune 3076 * things accordingly. 3077 */ 3078 LIMIT_CAPS(nbmcaps); 3079 LIMIT_CAPS(linkcaps); 3080 LIMIT_CAPS(switchcaps); 3081 LIMIT_CAPS(niccaps); 3082 LIMIT_CAPS(toecaps); 3083 LIMIT_CAPS(rdmacaps); 3084 LIMIT_CAPS(tlscaps); 3085 LIMIT_CAPS(iscsicaps); 3086 LIMIT_CAPS(fcoecaps); 3087 #undef LIMIT_CAPS 3088 3089 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3090 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 3091 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 3092 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 3093 if (rc != 0) { 3094 device_printf(sc->dev, 3095 "failed to process config file: %d.\n", rc); 3096 } 3097 done: 3098 if (cfg != NULL) 3099 firmware_put(cfg, FIRMWARE_UNLOAD); 3100 return (rc); 3101 } 3102 3103 /* 3104 * Retrieve parameters that are needed (or nice to have) very early. 3105 */ 3106 static int 3107 get_params__pre_init(struct adapter *sc) 3108 { 3109 int rc; 3110 uint32_t param[2], val[2]; 3111 3112 param[0] = FW_PARAM_DEV(PORTVEC); 3113 param[1] = FW_PARAM_DEV(CCLK); 3114 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 3115 if (rc != 0) { 3116 device_printf(sc->dev, 3117 "failed to query parameters (pre_init): %d.\n", rc); 3118 return (rc); 3119 } 3120 3121 sc->params.portvec = val[0]; 3122 sc->params.nports = bitcount32(val[0]); 3123 sc->params.vpd.cclk = val[1]; 3124 3125 /* Read device log parameters. */ 3126 rc = -t4_init_devlog_params(sc, 1); 3127 if (rc == 0) 3128 fixup_devlog_params(sc); 3129 else { 3130 device_printf(sc->dev, 3131 "failed to get devlog parameters: %d.\n", rc); 3132 rc = 0; /* devlog isn't critical for device operation */ 3133 } 3134 3135 return (rc); 3136 } 3137 3138 /* 3139 * Retrieve various parameters that are of interest to the driver. The device 3140 * has been initialized by the firmware at this point. 3141 */ 3142 static int 3143 get_params__post_init(struct adapter *sc) 3144 { 3145 int rc; 3146 uint32_t param[7], val[7]; 3147 struct fw_caps_config_cmd caps; 3148 3149 param[0] = FW_PARAM_PFVF(IQFLINT_START); 3150 param[1] = FW_PARAM_PFVF(EQ_START); 3151 param[2] = FW_PARAM_PFVF(FILTER_START); 3152 param[3] = FW_PARAM_PFVF(FILTER_END); 3153 param[4] = FW_PARAM_PFVF(L2T_START); 3154 param[5] = FW_PARAM_PFVF(L2T_END); 3155 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 3156 if (rc != 0) { 3157 device_printf(sc->dev, 3158 "failed to query parameters (post_init): %d.\n", rc); 3159 return (rc); 3160 } 3161 3162 sc->sge.iq_start = val[0]; 3163 sc->sge.eq_start = val[1]; 3164 sc->tids.ftid_base = val[2]; 3165 sc->tids.nftids = val[3] - val[2] + 1; 3166 sc->params.ftid_min = val[2]; 3167 sc->params.ftid_max = val[3]; 3168 sc->vres.l2t.start = val[4]; 3169 sc->vres.l2t.size = val[5] - val[4] + 1; 3170 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 3171 ("%s: L2 table size (%u) larger than expected (%u)", 3172 __func__, sc->vres.l2t.size, L2T_SIZE)); 3173 3174 /* get capabilites */ 3175 bzero(&caps, sizeof(caps)); 3176 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3177 F_FW_CMD_REQUEST | F_FW_CMD_READ); 3178 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 3179 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 3180 if (rc != 0) { 3181 device_printf(sc->dev, 3182 "failed to get card capabilities: %d.\n", rc); 3183 return (rc); 3184 } 3185 3186 #define READ_CAPS(x) do { \ 3187 sc->x = htobe16(caps.x); \ 3188 } while (0) 3189 READ_CAPS(nbmcaps); 3190 READ_CAPS(linkcaps); 3191 READ_CAPS(switchcaps); 3192 READ_CAPS(niccaps); 3193 READ_CAPS(toecaps); 3194 READ_CAPS(rdmacaps); 3195 READ_CAPS(tlscaps); 3196 READ_CAPS(iscsicaps); 3197 READ_CAPS(fcoecaps); 3198 3199 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 3200 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 3201 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 3202 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3203 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 3204 if (rc != 0) { 3205 device_printf(sc->dev, 3206 "failed to query NIC parameters: %d.\n", rc); 3207 return (rc); 3208 } 3209 sc->tids.etid_base = val[0]; 3210 sc->params.etid_min = val[0]; 3211 sc->tids.netids = val[1] - val[0] + 1; 3212 sc->params.netids = sc->tids.netids; 3213 sc->params.eo_wr_cred = val[2]; 3214 sc->params.ethoffload = 1; 3215 } 3216 3217 if (sc->toecaps) { 3218 /* query offload-related parameters */ 3219 param[0] = FW_PARAM_DEV(NTID); 3220 param[1] = FW_PARAM_PFVF(SERVER_START); 3221 param[2] = FW_PARAM_PFVF(SERVER_END); 3222 param[3] = FW_PARAM_PFVF(TDDP_START); 3223 param[4] = FW_PARAM_PFVF(TDDP_END); 3224 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3225 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 3226 if (rc != 0) { 3227 device_printf(sc->dev, 3228 "failed to query TOE parameters: %d.\n", rc); 3229 return (rc); 3230 } 3231 sc->tids.ntids = val[0]; 3232 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 3233 sc->tids.stid_base = val[1]; 3234 sc->tids.nstids = val[2] - val[1] + 1; 3235 sc->vres.ddp.start = val[3]; 3236 sc->vres.ddp.size = val[4] - val[3] + 1; 3237 sc->params.ofldq_wr_cred = val[5]; 3238 sc->params.offload = 1; 3239 } 3240 if (sc->rdmacaps) { 3241 param[0] = FW_PARAM_PFVF(STAG_START); 3242 param[1] = FW_PARAM_PFVF(STAG_END); 3243 param[2] = FW_PARAM_PFVF(RQ_START); 3244 param[3] = FW_PARAM_PFVF(RQ_END); 3245 param[4] = FW_PARAM_PFVF(PBL_START); 3246 param[5] = FW_PARAM_PFVF(PBL_END); 3247 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 3248 if (rc != 0) { 3249 device_printf(sc->dev, 3250 "failed to query RDMA parameters(1): %d.\n", rc); 3251 return (rc); 3252 } 3253 sc->vres.stag.start = val[0]; 3254 sc->vres.stag.size = val[1] - val[0] + 1; 3255 sc->vres.rq.start = val[2]; 3256 sc->vres.rq.size = val[3] - val[2] + 1; 3257 sc->vres.pbl.start = val[4]; 3258 sc->vres.pbl.size = val[5] - val[4] + 1; 3259 3260 param[0] = FW_PARAM_PFVF(SQRQ_START); 3261 param[1] = FW_PARAM_PFVF(SQRQ_END); 3262 param[2] = FW_PARAM_PFVF(CQ_START); 3263 param[3] = FW_PARAM_PFVF(CQ_END); 3264 param[4] = FW_PARAM_PFVF(OCQ_START); 3265 param[5] = FW_PARAM_PFVF(OCQ_END); 3266 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 3267 if (rc != 0) { 3268 device_printf(sc->dev, 3269 "failed to query RDMA parameters(2): %d.\n", rc); 3270 return (rc); 3271 } 3272 sc->vres.qp.start = val[0]; 3273 sc->vres.qp.size = val[1] - val[0] + 1; 3274 sc->vres.cq.start = val[2]; 3275 sc->vres.cq.size = val[3] - val[2] + 1; 3276 sc->vres.ocq.start = val[4]; 3277 sc->vres.ocq.size = val[5] - val[4] + 1; 3278 } 3279 if (sc->iscsicaps) { 3280 param[0] = FW_PARAM_PFVF(ISCSI_START); 3281 param[1] = FW_PARAM_PFVF(ISCSI_END); 3282 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 3283 if (rc != 0) { 3284 device_printf(sc->dev, 3285 "failed to query iSCSI parameters: %d.\n", rc); 3286 return (rc); 3287 } 3288 sc->vres.iscsi.start = val[0]; 3289 sc->vres.iscsi.size = val[1] - val[0] + 1; 3290 } 3291 3292 /* 3293 * We've got the params we wanted to query via the firmware. Now grab 3294 * some others directly from the chip. 3295 */ 3296 rc = t4_read_chip_settings(sc); 3297 3298 return (rc); 3299 } 3300 3301 static int 3302 set_params__post_init(struct adapter *sc) 3303 { 3304 uint32_t param, val; 3305 3306 /* ask for encapsulated CPLs */ 3307 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3308 val = 1; 3309 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3310 3311 return (0); 3312 } 3313 3314 #undef FW_PARAM_PFVF 3315 #undef FW_PARAM_DEV 3316 3317 static void 3318 t4_set_desc(struct adapter *sc) 3319 { 3320 char buf[128]; 3321 struct adapter_params *p = &sc->params; 3322 3323 snprintf(buf, sizeof(buf), "Chelsio %s %sNIC (rev %d), S/N:%s, " 3324 "P/N:%s, E/C:%s", p->vpd.id, is_offload(sc) ? "R" : "", 3325 chip_rev(sc), p->vpd.sn, p->vpd.pn, p->vpd.ec); 3326 3327 device_set_desc_copy(sc->dev, buf); 3328 } 3329 3330 static void 3331 build_medialist(struct port_info *pi, struct ifmedia *media) 3332 { 3333 int m; 3334 3335 PORT_LOCK(pi); 3336 3337 ifmedia_removeall(media); 3338 3339 m = IFM_ETHER | IFM_FDX; 3340 3341 switch(pi->port_type) { 3342 case FW_PORT_TYPE_BT_XFI: 3343 case FW_PORT_TYPE_BT_XAUI: 3344 ifmedia_add(media, m | IFM_10G_T, 0, NULL); 3345 /* fall through */ 3346 3347 case FW_PORT_TYPE_BT_SGMII: 3348 ifmedia_add(media, m | IFM_1000_T, 0, NULL); 3349 ifmedia_add(media, m | IFM_100_TX, 0, NULL); 3350 ifmedia_add(media, IFM_ETHER | IFM_AUTO, 0, NULL); 3351 ifmedia_set(media, IFM_ETHER | IFM_AUTO); 3352 break; 3353 3354 case FW_PORT_TYPE_CX4: 3355 ifmedia_add(media, m | IFM_10G_CX4, 0, NULL); 3356 ifmedia_set(media, m | IFM_10G_CX4); 3357 break; 3358 3359 case FW_PORT_TYPE_QSFP_10G: 3360 case FW_PORT_TYPE_SFP: 3361 case FW_PORT_TYPE_FIBER_XFI: 3362 case FW_PORT_TYPE_FIBER_XAUI: 3363 switch (pi->mod_type) { 3364 3365 case FW_PORT_MOD_TYPE_LR: 3366 ifmedia_add(media, m | IFM_10G_LR, 0, NULL); 3367 ifmedia_set(media, m | IFM_10G_LR); 3368 break; 3369 3370 case FW_PORT_MOD_TYPE_SR: 3371 ifmedia_add(media, m | IFM_10G_SR, 0, NULL); 3372 ifmedia_set(media, m | IFM_10G_SR); 3373 break; 3374 3375 case FW_PORT_MOD_TYPE_LRM: 3376 ifmedia_add(media, m | IFM_10G_LRM, 0, NULL); 3377 ifmedia_set(media, m | IFM_10G_LRM); 3378 break; 3379 3380 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3381 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3382 ifmedia_add(media, m | IFM_10G_TWINAX, 0, NULL); 3383 ifmedia_set(media, m | IFM_10G_TWINAX); 3384 break; 3385 3386 case FW_PORT_MOD_TYPE_NONE: 3387 m &= ~IFM_FDX; 3388 ifmedia_add(media, m | IFM_NONE, 0, NULL); 3389 ifmedia_set(media, m | IFM_NONE); 3390 break; 3391 3392 case FW_PORT_MOD_TYPE_NA: 3393 case FW_PORT_MOD_TYPE_ER: 3394 default: 3395 device_printf(pi->dev, 3396 "unknown port_type (%d), mod_type (%d)\n", 3397 pi->port_type, pi->mod_type); 3398 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL); 3399 ifmedia_set(media, m | IFM_UNKNOWN); 3400 break; 3401 } 3402 break; 3403 3404 case FW_PORT_TYPE_QSFP: 3405 switch (pi->mod_type) { 3406 3407 case FW_PORT_MOD_TYPE_LR: 3408 ifmedia_add(media, m | IFM_40G_LR4, 0, NULL); 3409 ifmedia_set(media, m | IFM_40G_LR4); 3410 break; 3411 3412 case FW_PORT_MOD_TYPE_SR: 3413 ifmedia_add(media, m | IFM_40G_SR4, 0, NULL); 3414 ifmedia_set(media, m | IFM_40G_SR4); 3415 break; 3416 3417 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3418 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3419 ifmedia_add(media, m | IFM_40G_CR4, 0, NULL); 3420 ifmedia_set(media, m | IFM_40G_CR4); 3421 break; 3422 3423 case FW_PORT_MOD_TYPE_NONE: 3424 m &= ~IFM_FDX; 3425 ifmedia_add(media, m | IFM_NONE, 0, NULL); 3426 ifmedia_set(media, m | IFM_NONE); 3427 break; 3428 3429 default: 3430 device_printf(pi->dev, 3431 "unknown port_type (%d), mod_type (%d)\n", 3432 pi->port_type, pi->mod_type); 3433 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL); 3434 ifmedia_set(media, m | IFM_UNKNOWN); 3435 break; 3436 } 3437 break; 3438 3439 default: 3440 device_printf(pi->dev, 3441 "unknown port_type (%d), mod_type (%d)\n", pi->port_type, 3442 pi->mod_type); 3443 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL); 3444 ifmedia_set(media, m | IFM_UNKNOWN); 3445 break; 3446 } 3447 3448 PORT_UNLOCK(pi); 3449 } 3450 3451 #define FW_MAC_EXACT_CHUNK 7 3452 3453 /* 3454 * Program the port's XGMAC based on parameters in ifnet. The caller also 3455 * indicates which parameters should be programmed (the rest are left alone). 3456 */ 3457 int 3458 update_mac_settings(struct ifnet *ifp, int flags) 3459 { 3460 int rc = 0; 3461 struct vi_info *vi = ifp->if_softc; 3462 struct port_info *pi = vi->pi; 3463 struct adapter *sc = pi->adapter; 3464 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 3465 3466 ASSERT_SYNCHRONIZED_OP(sc); 3467 KASSERT(flags, ("%s: not told what to update.", __func__)); 3468 3469 if (flags & XGMAC_MTU) 3470 mtu = ifp->if_mtu; 3471 3472 if (flags & XGMAC_PROMISC) 3473 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 3474 3475 if (flags & XGMAC_ALLMULTI) 3476 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 3477 3478 if (flags & XGMAC_VLANEX) 3479 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 3480 3481 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 3482 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 3483 allmulti, 1, vlanex, false); 3484 if (rc) { 3485 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 3486 rc); 3487 return (rc); 3488 } 3489 } 3490 3491 if (flags & XGMAC_UCADDR) { 3492 uint8_t ucaddr[ETHER_ADDR_LEN]; 3493 3494 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 3495 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 3496 ucaddr, true, true); 3497 if (rc < 0) { 3498 rc = -rc; 3499 if_printf(ifp, "change_mac failed: %d\n", rc); 3500 return (rc); 3501 } else { 3502 vi->xact_addr_filt = rc; 3503 rc = 0; 3504 } 3505 } 3506 3507 if (flags & XGMAC_MCADDRS) { 3508 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 3509 int del = 1; 3510 uint64_t hash = 0; 3511 struct ifmultiaddr *ifma; 3512 int i = 0, j; 3513 3514 if_maddr_rlock(ifp); 3515 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3516 if (ifma->ifma_addr->sa_family != AF_LINK) 3517 continue; 3518 mcaddr[i] = 3519 LLADDR((struct sockaddr_dl *)ifma->ifma_addr); 3520 MPASS(ETHER_IS_MULTICAST(mcaddr[i])); 3521 i++; 3522 3523 if (i == FW_MAC_EXACT_CHUNK) { 3524 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 3525 del, i, mcaddr, NULL, &hash, 0); 3526 if (rc < 0) { 3527 rc = -rc; 3528 for (j = 0; j < i; j++) { 3529 if_printf(ifp, 3530 "failed to add mc address" 3531 " %02x:%02x:%02x:" 3532 "%02x:%02x:%02x rc=%d\n", 3533 mcaddr[j][0], mcaddr[j][1], 3534 mcaddr[j][2], mcaddr[j][3], 3535 mcaddr[j][4], mcaddr[j][5], 3536 rc); 3537 } 3538 goto mcfail; 3539 } 3540 del = 0; 3541 i = 0; 3542 } 3543 } 3544 if (i > 0) { 3545 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i, 3546 mcaddr, NULL, &hash, 0); 3547 if (rc < 0) { 3548 rc = -rc; 3549 for (j = 0; j < i; j++) { 3550 if_printf(ifp, 3551 "failed to add mc address" 3552 " %02x:%02x:%02x:" 3553 "%02x:%02x:%02x rc=%d\n", 3554 mcaddr[j][0], mcaddr[j][1], 3555 mcaddr[j][2], mcaddr[j][3], 3556 mcaddr[j][4], mcaddr[j][5], 3557 rc); 3558 } 3559 goto mcfail; 3560 } 3561 } 3562 3563 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0); 3564 if (rc != 0) 3565 if_printf(ifp, "failed to set mc address hash: %d", rc); 3566 mcfail: 3567 if_maddr_runlock(ifp); 3568 } 3569 3570 return (rc); 3571 } 3572 3573 /* 3574 * {begin|end}_synchronized_op must be called from the same thread. 3575 */ 3576 int 3577 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 3578 char *wmesg) 3579 { 3580 int rc, pri; 3581 3582 #ifdef WITNESS 3583 /* the caller thinks it's ok to sleep, but is it really? */ 3584 if (flags & SLEEP_OK) 3585 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3586 "begin_synchronized_op"); 3587 #endif 3588 3589 if (INTR_OK) 3590 pri = PCATCH; 3591 else 3592 pri = 0; 3593 3594 ADAPTER_LOCK(sc); 3595 for (;;) { 3596 3597 if (vi && IS_DOOMED(vi)) { 3598 rc = ENXIO; 3599 goto done; 3600 } 3601 3602 if (!IS_BUSY(sc)) { 3603 rc = 0; 3604 break; 3605 } 3606 3607 if (!(flags & SLEEP_OK)) { 3608 rc = EBUSY; 3609 goto done; 3610 } 3611 3612 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 3613 rc = EINTR; 3614 goto done; 3615 } 3616 } 3617 3618 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 3619 SET_BUSY(sc); 3620 #ifdef INVARIANTS 3621 sc->last_op = wmesg; 3622 sc->last_op_thr = curthread; 3623 sc->last_op_flags = flags; 3624 #endif 3625 3626 done: 3627 if (!(flags & HOLD_LOCK) || rc) 3628 ADAPTER_UNLOCK(sc); 3629 3630 return (rc); 3631 } 3632 3633 /* 3634 * Tell if_ioctl and if_init that the VI is going away. This is 3635 * special variant of begin_synchronized_op and must be paired with a 3636 * call to end_synchronized_op. 3637 */ 3638 void 3639 doom_vi(struct adapter *sc, struct vi_info *vi) 3640 { 3641 3642 ADAPTER_LOCK(sc); 3643 SET_DOOMED(vi); 3644 wakeup(&sc->flags); 3645 while (IS_BUSY(sc)) 3646 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 3647 SET_BUSY(sc); 3648 #ifdef INVARIANTS 3649 sc->last_op = "t4detach"; 3650 sc->last_op_thr = curthread; 3651 sc->last_op_flags = 0; 3652 #endif 3653 ADAPTER_UNLOCK(sc); 3654 } 3655 3656 /* 3657 * {begin|end}_synchronized_op must be called from the same thread. 3658 */ 3659 void 3660 end_synchronized_op(struct adapter *sc, int flags) 3661 { 3662 3663 if (flags & LOCK_HELD) 3664 ADAPTER_LOCK_ASSERT_OWNED(sc); 3665 else 3666 ADAPTER_LOCK(sc); 3667 3668 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 3669 CLR_BUSY(sc); 3670 wakeup(&sc->flags); 3671 ADAPTER_UNLOCK(sc); 3672 } 3673 3674 static int 3675 cxgbe_init_synchronized(struct vi_info *vi) 3676 { 3677 struct port_info *pi = vi->pi; 3678 struct adapter *sc = pi->adapter; 3679 struct ifnet *ifp = vi->ifp; 3680 int rc = 0, i; 3681 struct sge_txq *txq; 3682 3683 ASSERT_SYNCHRONIZED_OP(sc); 3684 3685 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3686 return (0); /* already running */ 3687 3688 if (!(sc->flags & FULL_INIT_DONE) && 3689 ((rc = adapter_full_init(sc)) != 0)) 3690 return (rc); /* error message displayed already */ 3691 3692 if (!(vi->flags & VI_INIT_DONE) && 3693 ((rc = vi_full_init(vi)) != 0)) 3694 return (rc); /* error message displayed already */ 3695 3696 rc = update_mac_settings(ifp, XGMAC_ALL); 3697 if (rc) 3698 goto done; /* error message displayed already */ 3699 3700 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 3701 if (rc != 0) { 3702 if_printf(ifp, "enable_vi failed: %d\n", rc); 3703 goto done; 3704 } 3705 3706 /* 3707 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 3708 * if this changes. 3709 */ 3710 3711 for_each_txq(vi, i, txq) { 3712 TXQ_LOCK(txq); 3713 txq->eq.flags |= EQ_ENABLED; 3714 TXQ_UNLOCK(txq); 3715 } 3716 3717 /* 3718 * The first iq of the first port to come up is used for tracing. 3719 */ 3720 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 3721 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 3722 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 3723 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 3724 V_QUEUENUMBER(sc->traceq)); 3725 pi->flags |= HAS_TRACEQ; 3726 } 3727 3728 /* all ok */ 3729 PORT_LOCK(pi); 3730 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3731 pi->up_vis++; 3732 3733 if (pi->nvi > 1) 3734 callout_reset(&vi->tick, hz, vi_tick, vi); 3735 else 3736 callout_reset(&pi->tick, hz, cxgbe_tick, pi); 3737 PORT_UNLOCK(pi); 3738 done: 3739 if (rc != 0) 3740 cxgbe_uninit_synchronized(vi); 3741 3742 return (rc); 3743 } 3744 3745 /* 3746 * Idempotent. 3747 */ 3748 static int 3749 cxgbe_uninit_synchronized(struct vi_info *vi) 3750 { 3751 struct port_info *pi = vi->pi; 3752 struct adapter *sc = pi->adapter; 3753 struct ifnet *ifp = vi->ifp; 3754 int rc, i; 3755 struct sge_txq *txq; 3756 3757 ASSERT_SYNCHRONIZED_OP(sc); 3758 3759 if (!(vi->flags & VI_INIT_DONE)) { 3760 KASSERT(!(ifp->if_drv_flags & IFF_DRV_RUNNING), 3761 ("uninited VI is running")); 3762 return (0); 3763 } 3764 3765 /* 3766 * Disable the VI so that all its data in either direction is discarded 3767 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 3768 * tick) intact as the TP can deliver negative advice or data that it's 3769 * holding in its RAM (for an offloaded connection) even after the VI is 3770 * disabled. 3771 */ 3772 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 3773 if (rc) { 3774 if_printf(ifp, "disable_vi failed: %d\n", rc); 3775 return (rc); 3776 } 3777 3778 for_each_txq(vi, i, txq) { 3779 TXQ_LOCK(txq); 3780 txq->eq.flags &= ~EQ_ENABLED; 3781 TXQ_UNLOCK(txq); 3782 } 3783 3784 PORT_LOCK(pi); 3785 if (pi->nvi == 1) 3786 callout_stop(&pi->tick); 3787 else 3788 callout_stop(&vi->tick); 3789 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3790 PORT_UNLOCK(pi); 3791 return (0); 3792 } 3793 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3794 pi->up_vis--; 3795 if (pi->up_vis > 0) { 3796 PORT_UNLOCK(pi); 3797 return (0); 3798 } 3799 PORT_UNLOCK(pi); 3800 3801 pi->link_cfg.link_ok = 0; 3802 pi->link_cfg.speed = 0; 3803 pi->linkdnrc = -1; 3804 t4_os_link_changed(sc, pi->port_id, 0, -1); 3805 3806 return (0); 3807 } 3808 3809 /* 3810 * It is ok for this function to fail midway and return right away. t4_detach 3811 * will walk the entire sc->irq list and clean up whatever is valid. 3812 */ 3813 static int 3814 setup_intr_handlers(struct adapter *sc) 3815 { 3816 int rc, rid, p, q, v; 3817 char s[8]; 3818 struct irq *irq; 3819 struct port_info *pi; 3820 struct vi_info *vi; 3821 struct sge_rxq *rxq; 3822 #ifdef TCP_OFFLOAD 3823 struct sge_ofld_rxq *ofld_rxq; 3824 #endif 3825 #ifdef DEV_NETMAP 3826 struct sge_nm_rxq *nm_rxq; 3827 #endif 3828 #ifdef RSS 3829 int nbuckets = rss_getnumbuckets(); 3830 #endif 3831 3832 /* 3833 * Setup interrupts. 3834 */ 3835 irq = &sc->irq[0]; 3836 rid = sc->intr_type == INTR_INTX ? 0 : 1; 3837 if (sc->intr_count == 1) 3838 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 3839 3840 /* Multiple interrupts. */ 3841 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 3842 ("%s: too few intr.", __func__)); 3843 3844 /* The first one is always error intr */ 3845 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 3846 if (rc != 0) 3847 return (rc); 3848 irq++; 3849 rid++; 3850 3851 /* The second one is always the firmware event queue */ 3852 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sc->sge.fwq, "evt"); 3853 if (rc != 0) 3854 return (rc); 3855 irq++; 3856 rid++; 3857 3858 for_each_port(sc, p) { 3859 pi = sc->port[p]; 3860 for_each_vi(pi, v, vi) { 3861 vi->first_intr = rid - 1; 3862 #ifdef DEV_NETMAP 3863 if (vi->flags & VI_NETMAP) { 3864 for_each_nm_rxq(vi, q, nm_rxq) { 3865 snprintf(s, sizeof(s), "%d-%d", p, q); 3866 rc = t4_alloc_irq(sc, irq, rid, 3867 t4_nm_intr, nm_rxq, s); 3868 if (rc != 0) 3869 return (rc); 3870 irq++; 3871 rid++; 3872 vi->nintr++; 3873 } 3874 continue; 3875 } 3876 #endif 3877 if (vi->flags & INTR_RXQ) { 3878 for_each_rxq(vi, q, rxq) { 3879 if (v == 0) 3880 snprintf(s, sizeof(s), "%d.%d", 3881 p, q); 3882 else 3883 snprintf(s, sizeof(s), 3884 "%d(%d).%d", p, v, q); 3885 rc = t4_alloc_irq(sc, irq, rid, 3886 t4_intr, rxq, s); 3887 if (rc != 0) 3888 return (rc); 3889 #ifdef RSS 3890 bus_bind_intr(sc->dev, irq->res, 3891 rss_getcpu(q % nbuckets)); 3892 #endif 3893 irq++; 3894 rid++; 3895 vi->nintr++; 3896 } 3897 } 3898 #ifdef TCP_OFFLOAD 3899 if (vi->flags & INTR_OFLD_RXQ) { 3900 for_each_ofld_rxq(vi, q, ofld_rxq) { 3901 snprintf(s, sizeof(s), "%d,%d", p, q); 3902 rc = t4_alloc_irq(sc, irq, rid, 3903 t4_intr, ofld_rxq, s); 3904 if (rc != 0) 3905 return (rc); 3906 irq++; 3907 rid++; 3908 vi->nintr++; 3909 } 3910 } 3911 #endif 3912 } 3913 } 3914 MPASS(irq == &sc->irq[sc->intr_count]); 3915 3916 return (0); 3917 } 3918 3919 int 3920 adapter_full_init(struct adapter *sc) 3921 { 3922 int rc, i; 3923 3924 ASSERT_SYNCHRONIZED_OP(sc); 3925 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 3926 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 3927 ("%s: FULL_INIT_DONE already", __func__)); 3928 3929 /* 3930 * queues that belong to the adapter (not any particular port). 3931 */ 3932 rc = t4_setup_adapter_queues(sc); 3933 if (rc != 0) 3934 goto done; 3935 3936 for (i = 0; i < nitems(sc->tq); i++) { 3937 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 3938 taskqueue_thread_enqueue, &sc->tq[i]); 3939 if (sc->tq[i] == NULL) { 3940 device_printf(sc->dev, 3941 "failed to allocate task queue %d\n", i); 3942 rc = ENOMEM; 3943 goto done; 3944 } 3945 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 3946 device_get_nameunit(sc->dev), i); 3947 } 3948 3949 t4_intr_enable(sc); 3950 sc->flags |= FULL_INIT_DONE; 3951 done: 3952 if (rc != 0) 3953 adapter_full_uninit(sc); 3954 3955 return (rc); 3956 } 3957 3958 int 3959 adapter_full_uninit(struct adapter *sc) 3960 { 3961 int i; 3962 3963 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 3964 3965 t4_teardown_adapter_queues(sc); 3966 3967 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 3968 taskqueue_free(sc->tq[i]); 3969 sc->tq[i] = NULL; 3970 } 3971 3972 sc->flags &= ~FULL_INIT_DONE; 3973 3974 return (0); 3975 } 3976 3977 #ifdef RSS 3978 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 3979 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 3980 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 3981 RSS_HASHTYPE_RSS_UDP_IPV6) 3982 3983 /* Translates kernel hash types to hardware. */ 3984 static int 3985 hashconfig_to_hashen(int hashconfig) 3986 { 3987 int hashen = 0; 3988 3989 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 3990 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 3991 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 3992 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 3993 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 3994 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 3995 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 3996 } 3997 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 3998 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 3999 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 4000 } 4001 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 4002 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 4003 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 4004 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 4005 4006 return (hashen); 4007 } 4008 4009 /* Translates hardware hash types to kernel. */ 4010 static int 4011 hashen_to_hashconfig(int hashen) 4012 { 4013 int hashconfig = 0; 4014 4015 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 4016 /* 4017 * If UDP hashing was enabled it must have been enabled for 4018 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 4019 * enabling any 4-tuple hash is nonsense configuration. 4020 */ 4021 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 4022 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 4023 4024 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 4025 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 4026 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 4027 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 4028 } 4029 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 4030 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 4031 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 4032 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 4033 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 4034 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 4035 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 4036 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 4037 4038 return (hashconfig); 4039 } 4040 #endif 4041 4042 int 4043 vi_full_init(struct vi_info *vi) 4044 { 4045 struct adapter *sc = vi->pi->adapter; 4046 struct ifnet *ifp = vi->ifp; 4047 uint16_t *rss; 4048 struct sge_rxq *rxq; 4049 int rc, i, j, hashen; 4050 #ifdef RSS 4051 int nbuckets = rss_getnumbuckets(); 4052 int hashconfig = rss_gethashconfig(); 4053 int extra; 4054 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 4055 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 4056 #endif 4057 4058 ASSERT_SYNCHRONIZED_OP(sc); 4059 KASSERT((vi->flags & VI_INIT_DONE) == 0, 4060 ("%s: VI_INIT_DONE already", __func__)); 4061 4062 sysctl_ctx_init(&vi->ctx); 4063 vi->flags |= VI_SYSCTL_CTX; 4064 4065 /* 4066 * Allocate tx/rx/fl queues for this VI. 4067 */ 4068 rc = t4_setup_vi_queues(vi); 4069 if (rc != 0) 4070 goto done; /* error message displayed already */ 4071 4072 #ifdef DEV_NETMAP 4073 /* Netmap VIs configure RSS when netmap is enabled. */ 4074 if (vi->flags & VI_NETMAP) { 4075 vi->flags |= VI_INIT_DONE; 4076 return (0); 4077 } 4078 #endif 4079 4080 /* 4081 * Setup RSS for this VI. Save a copy of the RSS table for later use. 4082 */ 4083 if (vi->nrxq > vi->rss_size) { 4084 if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); " 4085 "some queues will never receive traffic.\n", vi->nrxq, 4086 vi->rss_size); 4087 } else if (vi->rss_size % vi->nrxq) { 4088 if_printf(ifp, "nrxq (%d), hw RSS table size (%d); " 4089 "expect uneven traffic distribution.\n", vi->nrxq, 4090 vi->rss_size); 4091 } 4092 #ifdef RSS 4093 MPASS(RSS_KEYSIZE == 40); 4094 if (vi->nrxq != nbuckets) { 4095 if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);" 4096 "performance will be impacted.\n", vi->nrxq, nbuckets); 4097 } 4098 4099 rss_getkey((void *)&raw_rss_key[0]); 4100 for (i = 0; i < nitems(rss_key); i++) { 4101 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 4102 } 4103 t4_write_rss_key(sc, &rss_key[0], -1); 4104 #endif 4105 rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK); 4106 for (i = 0; i < vi->rss_size;) { 4107 #ifdef RSS 4108 j = rss_get_indirection_to_bucket(i); 4109 j %= vi->nrxq; 4110 rxq = &sc->sge.rxq[vi->first_rxq + j]; 4111 rss[i++] = rxq->iq.abs_id; 4112 #else 4113 for_each_rxq(vi, j, rxq) { 4114 rss[i++] = rxq->iq.abs_id; 4115 if (i == vi->rss_size) 4116 break; 4117 } 4118 #endif 4119 } 4120 4121 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss, 4122 vi->rss_size); 4123 if (rc != 0) { 4124 if_printf(ifp, "rss_config failed: %d\n", rc); 4125 goto done; 4126 } 4127 4128 #ifdef RSS 4129 hashen = hashconfig_to_hashen(hashconfig); 4130 4131 /* 4132 * We may have had to enable some hashes even though the global config 4133 * wants them disabled. This is a potential problem that must be 4134 * reported to the user. 4135 */ 4136 extra = hashen_to_hashconfig(hashen) ^ hashconfig; 4137 4138 /* 4139 * If we consider only the supported hash types, then the enabled hashes 4140 * are a superset of the requested hashes. In other words, there cannot 4141 * be any supported hash that was requested but not enabled, but there 4142 * can be hashes that were not requested but had to be enabled. 4143 */ 4144 extra &= SUPPORTED_RSS_HASHTYPES; 4145 MPASS((extra & hashconfig) == 0); 4146 4147 if (extra) { 4148 if_printf(ifp, 4149 "global RSS config (0x%x) cannot be accomodated.\n", 4150 hashconfig); 4151 } 4152 if (extra & RSS_HASHTYPE_RSS_IPV4) 4153 if_printf(ifp, "IPv4 2-tuple hashing forced on.\n"); 4154 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 4155 if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n"); 4156 if (extra & RSS_HASHTYPE_RSS_IPV6) 4157 if_printf(ifp, "IPv6 2-tuple hashing forced on.\n"); 4158 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 4159 if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n"); 4160 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 4161 if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n"); 4162 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 4163 if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n"); 4164 #else 4165 hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 4166 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 4167 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 4168 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 4169 #endif 4170 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, hashen, rss[0]); 4171 if (rc != 0) { 4172 if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc); 4173 goto done; 4174 } 4175 4176 vi->rss = rss; 4177 vi->flags |= VI_INIT_DONE; 4178 done: 4179 if (rc != 0) 4180 vi_full_uninit(vi); 4181 4182 return (rc); 4183 } 4184 4185 /* 4186 * Idempotent. 4187 */ 4188 int 4189 vi_full_uninit(struct vi_info *vi) 4190 { 4191 struct port_info *pi = vi->pi; 4192 struct adapter *sc = pi->adapter; 4193 int i; 4194 struct sge_rxq *rxq; 4195 struct sge_txq *txq; 4196 #ifdef TCP_OFFLOAD 4197 struct sge_ofld_rxq *ofld_rxq; 4198 struct sge_wrq *ofld_txq; 4199 #endif 4200 4201 if (vi->flags & VI_INIT_DONE) { 4202 4203 /* Need to quiesce queues. */ 4204 #ifdef DEV_NETMAP 4205 if (vi->flags & VI_NETMAP) 4206 goto skip; 4207 #endif 4208 4209 /* XXX: Only for the first VI? */ 4210 if (IS_MAIN_VI(vi)) 4211 quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 4212 4213 for_each_txq(vi, i, txq) { 4214 quiesce_txq(sc, txq); 4215 } 4216 4217 #ifdef TCP_OFFLOAD 4218 for_each_ofld_txq(vi, i, ofld_txq) { 4219 quiesce_wrq(sc, ofld_txq); 4220 } 4221 #endif 4222 4223 for_each_rxq(vi, i, rxq) { 4224 quiesce_iq(sc, &rxq->iq); 4225 quiesce_fl(sc, &rxq->fl); 4226 } 4227 4228 #ifdef TCP_OFFLOAD 4229 for_each_ofld_rxq(vi, i, ofld_rxq) { 4230 quiesce_iq(sc, &ofld_rxq->iq); 4231 quiesce_fl(sc, &ofld_rxq->fl); 4232 } 4233 #endif 4234 free(vi->rss, M_CXGBE); 4235 } 4236 #ifdef DEV_NETMAP 4237 skip: 4238 #endif 4239 4240 t4_teardown_vi_queues(vi); 4241 vi->flags &= ~VI_INIT_DONE; 4242 4243 return (0); 4244 } 4245 4246 static void 4247 quiesce_txq(struct adapter *sc, struct sge_txq *txq) 4248 { 4249 struct sge_eq *eq = &txq->eq; 4250 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 4251 4252 (void) sc; /* unused */ 4253 4254 #ifdef INVARIANTS 4255 TXQ_LOCK(txq); 4256 MPASS((eq->flags & EQ_ENABLED) == 0); 4257 TXQ_UNLOCK(txq); 4258 #endif 4259 4260 /* Wait for the mp_ring to empty. */ 4261 while (!mp_ring_is_idle(txq->r)) { 4262 mp_ring_check_drainage(txq->r, 0); 4263 pause("rquiesce", 1); 4264 } 4265 4266 /* Then wait for the hardware to finish. */ 4267 while (spg->cidx != htobe16(eq->pidx)) 4268 pause("equiesce", 1); 4269 4270 /* Finally, wait for the driver to reclaim all descriptors. */ 4271 while (eq->cidx != eq->pidx) 4272 pause("dquiesce", 1); 4273 } 4274 4275 static void 4276 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq) 4277 { 4278 4279 /* XXXTX */ 4280 } 4281 4282 static void 4283 quiesce_iq(struct adapter *sc, struct sge_iq *iq) 4284 { 4285 (void) sc; /* unused */ 4286 4287 /* Synchronize with the interrupt handler */ 4288 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 4289 pause("iqfree", 1); 4290 } 4291 4292 static void 4293 quiesce_fl(struct adapter *sc, struct sge_fl *fl) 4294 { 4295 mtx_lock(&sc->sfl_lock); 4296 FL_LOCK(fl); 4297 fl->flags |= FL_DOOMED; 4298 FL_UNLOCK(fl); 4299 callout_stop(&sc->sfl_callout); 4300 mtx_unlock(&sc->sfl_lock); 4301 4302 KASSERT((fl->flags & FL_STARVING) == 0, 4303 ("%s: still starving", __func__)); 4304 } 4305 4306 static int 4307 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 4308 driver_intr_t *handler, void *arg, char *name) 4309 { 4310 int rc; 4311 4312 irq->rid = rid; 4313 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 4314 RF_SHAREABLE | RF_ACTIVE); 4315 if (irq->res == NULL) { 4316 device_printf(sc->dev, 4317 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 4318 return (ENOMEM); 4319 } 4320 4321 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 4322 NULL, handler, arg, &irq->tag); 4323 if (rc != 0) { 4324 device_printf(sc->dev, 4325 "failed to setup interrupt for rid %d, name %s: %d\n", 4326 rid, name, rc); 4327 } else if (name) 4328 bus_describe_intr(sc->dev, irq->res, irq->tag, name); 4329 4330 return (rc); 4331 } 4332 4333 static int 4334 t4_free_irq(struct adapter *sc, struct irq *irq) 4335 { 4336 if (irq->tag) 4337 bus_teardown_intr(sc->dev, irq->res, irq->tag); 4338 if (irq->res) 4339 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 4340 4341 bzero(irq, sizeof(*irq)); 4342 4343 return (0); 4344 } 4345 4346 static void 4347 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 4348 { 4349 4350 regs->version = chip_id(sc) | chip_rev(sc) << 10; 4351 t4_get_regs(sc, buf, regs->len); 4352 } 4353 4354 #define A_PL_INDIR_CMD 0x1f8 4355 4356 #define S_PL_AUTOINC 31 4357 #define M_PL_AUTOINC 0x1U 4358 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 4359 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 4360 4361 #define S_PL_VFID 20 4362 #define M_PL_VFID 0xffU 4363 #define V_PL_VFID(x) ((x) << S_PL_VFID) 4364 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 4365 4366 #define S_PL_ADDR 0 4367 #define M_PL_ADDR 0xfffffU 4368 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 4369 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 4370 4371 #define A_PL_INDIR_DATA 0x1fc 4372 4373 static uint64_t 4374 read_vf_stat(struct adapter *sc, unsigned int viid, int reg) 4375 { 4376 u32 stats[2]; 4377 4378 mtx_assert(&sc->reg_lock, MA_OWNED); 4379 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 4380 V_PL_VFID(G_FW_VIID_VIN(viid)) | V_PL_ADDR(VF_MPS_REG(reg))); 4381 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 4382 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 4383 return (((uint64_t)stats[1]) << 32 | stats[0]); 4384 } 4385 4386 static void 4387 t4_get_vi_stats(struct adapter *sc, unsigned int viid, 4388 struct fw_vi_stats_vf *stats) 4389 { 4390 4391 #define GET_STAT(name) \ 4392 read_vf_stat(sc, viid, A_MPS_VF_STAT_##name##_L) 4393 4394 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 4395 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 4396 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 4397 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 4398 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 4399 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 4400 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 4401 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 4402 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 4403 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 4404 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 4405 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 4406 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 4407 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 4408 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 4409 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 4410 4411 #undef GET_STAT 4412 } 4413 4414 static void 4415 t4_clr_vi_stats(struct adapter *sc, unsigned int viid) 4416 { 4417 int reg; 4418 4419 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 4420 V_PL_VFID(G_FW_VIID_VIN(viid)) | 4421 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 4422 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 4423 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 4424 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 4425 } 4426 4427 static void 4428 vi_refresh_stats(struct adapter *sc, struct vi_info *vi) 4429 { 4430 struct timeval tv; 4431 const struct timeval interval = {0, 250000}; /* 250ms */ 4432 4433 if (!(vi->flags & VI_INIT_DONE)) 4434 return; 4435 4436 getmicrotime(&tv); 4437 timevalsub(&tv, &interval); 4438 if (timevalcmp(&tv, &vi->last_refreshed, <)) 4439 return; 4440 4441 mtx_lock(&sc->reg_lock); 4442 t4_get_vi_stats(sc, vi->viid, &vi->stats); 4443 getmicrotime(&vi->last_refreshed); 4444 mtx_unlock(&sc->reg_lock); 4445 } 4446 4447 static void 4448 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi) 4449 { 4450 int i; 4451 u_int v, tnl_cong_drops; 4452 struct timeval tv; 4453 const struct timeval interval = {0, 250000}; /* 250ms */ 4454 4455 getmicrotime(&tv); 4456 timevalsub(&tv, &interval); 4457 if (timevalcmp(&tv, &pi->last_refreshed, <)) 4458 return; 4459 4460 tnl_cong_drops = 0; 4461 t4_get_port_stats(sc, pi->tx_chan, &pi->stats); 4462 for (i = 0; i < sc->chip_params->nchan; i++) { 4463 if (pi->rx_chan_map & (1 << i)) { 4464 mtx_lock(&sc->reg_lock); 4465 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 4466 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 4467 mtx_unlock(&sc->reg_lock); 4468 tnl_cong_drops += v; 4469 } 4470 } 4471 pi->tnl_cong_drops = tnl_cong_drops; 4472 getmicrotime(&pi->last_refreshed); 4473 } 4474 4475 static void 4476 cxgbe_tick(void *arg) 4477 { 4478 struct port_info *pi = arg; 4479 struct adapter *sc = pi->adapter; 4480 4481 PORT_LOCK_ASSERT_OWNED(pi); 4482 cxgbe_refresh_stats(sc, pi); 4483 4484 callout_schedule(&pi->tick, hz); 4485 } 4486 4487 void 4488 vi_tick(void *arg) 4489 { 4490 struct vi_info *vi = arg; 4491 struct adapter *sc = vi->pi->adapter; 4492 4493 vi_refresh_stats(sc, vi); 4494 4495 callout_schedule(&vi->tick, hz); 4496 } 4497 4498 static void 4499 cxgbe_vlan_config(void *arg, struct ifnet *ifp, uint16_t vid) 4500 { 4501 struct ifnet *vlan; 4502 4503 if (arg != ifp || ifp->if_type != IFT_ETHER) 4504 return; 4505 4506 vlan = VLAN_DEVAT(ifp, vid); 4507 VLAN_SETCOOKIE(vlan, ifp); 4508 } 4509 4510 static int 4511 cpl_not_handled(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 4512 { 4513 4514 #ifdef INVARIANTS 4515 panic("%s: opcode 0x%02x on iq %p with payload %p", 4516 __func__, rss->opcode, iq, m); 4517 #else 4518 log(LOG_ERR, "%s: opcode 0x%02x on iq %p with payload %p\n", 4519 __func__, rss->opcode, iq, m); 4520 m_freem(m); 4521 #endif 4522 return (EDOOFUS); 4523 } 4524 4525 int 4526 t4_register_cpl_handler(struct adapter *sc, int opcode, cpl_handler_t h) 4527 { 4528 uintptr_t *loc, new; 4529 4530 if (opcode >= nitems(sc->cpl_handler)) 4531 return (EINVAL); 4532 4533 new = h ? (uintptr_t)h : (uintptr_t)cpl_not_handled; 4534 loc = (uintptr_t *) &sc->cpl_handler[opcode]; 4535 atomic_store_rel_ptr(loc, new); 4536 4537 return (0); 4538 } 4539 4540 static int 4541 an_not_handled(struct sge_iq *iq, const struct rsp_ctrl *ctrl) 4542 { 4543 4544 #ifdef INVARIANTS 4545 panic("%s: async notification on iq %p (ctrl %p)", __func__, iq, ctrl); 4546 #else 4547 log(LOG_ERR, "%s: async notification on iq %p (ctrl %p)\n", 4548 __func__, iq, ctrl); 4549 #endif 4550 return (EDOOFUS); 4551 } 4552 4553 int 4554 t4_register_an_handler(struct adapter *sc, an_handler_t h) 4555 { 4556 uintptr_t *loc, new; 4557 4558 new = h ? (uintptr_t)h : (uintptr_t)an_not_handled; 4559 loc = (uintptr_t *) &sc->an_handler; 4560 atomic_store_rel_ptr(loc, new); 4561 4562 return (0); 4563 } 4564 4565 static int 4566 fw_msg_not_handled(struct adapter *sc, const __be64 *rpl) 4567 { 4568 const struct cpl_fw6_msg *cpl = 4569 __containerof(rpl, struct cpl_fw6_msg, data[0]); 4570 4571 #ifdef INVARIANTS 4572 panic("%s: fw_msg type %d", __func__, cpl->type); 4573 #else 4574 log(LOG_ERR, "%s: fw_msg type %d\n", __func__, cpl->type); 4575 #endif 4576 return (EDOOFUS); 4577 } 4578 4579 int 4580 t4_register_fw_msg_handler(struct adapter *sc, int type, fw_msg_handler_t h) 4581 { 4582 uintptr_t *loc, new; 4583 4584 if (type >= nitems(sc->fw_msg_handler)) 4585 return (EINVAL); 4586 4587 /* 4588 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL 4589 * handler dispatch table. Reject any attempt to install a handler for 4590 * this subtype. 4591 */ 4592 if (type == FW_TYPE_RSSCPL || type == FW6_TYPE_RSSCPL) 4593 return (EINVAL); 4594 4595 new = h ? (uintptr_t)h : (uintptr_t)fw_msg_not_handled; 4596 loc = (uintptr_t *) &sc->fw_msg_handler[type]; 4597 atomic_store_rel_ptr(loc, new); 4598 4599 return (0); 4600 } 4601 4602 /* 4603 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 4604 */ 4605 static char *caps_decoder[] = { 4606 "\20\001IPMI\002NCSI", /* 0: NBM */ 4607 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 4608 "\20\001INGRESS\002EGRESS", /* 2: switch */ 4609 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 4610 "\006HASHFILTER\007ETHOFLD", 4611 "\20\001TOE", /* 4: TOE */ 4612 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 4613 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 4614 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 4615 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 4616 "\007T10DIF" 4617 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 4618 "\20\00KEYS", /* 7: TLS */ 4619 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 4620 "\004PO_INITIATOR\005PO_TARGET", 4621 }; 4622 4623 static void 4624 t4_sysctls(struct adapter *sc) 4625 { 4626 struct sysctl_ctx_list *ctx; 4627 struct sysctl_oid *oid; 4628 struct sysctl_oid_list *children, *c0; 4629 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 4630 4631 ctx = device_get_sysctl_ctx(sc->dev); 4632 4633 /* 4634 * dev.t4nex.X. 4635 */ 4636 oid = device_get_sysctl_tree(sc->dev); 4637 c0 = children = SYSCTL_CHILDREN(oid); 4638 4639 sc->sc_do_rxcopy = 1; 4640 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 4641 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 4642 4643 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 4644 sc->params.nports, "# of ports"); 4645 4646 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 4647 NULL, chip_rev(sc), "chip hardware revision"); 4648 4649 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 4650 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 4651 4652 if (sc->params.exprom_vers != 0) { 4653 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "exprom_version", 4654 CTLFLAG_RD, sc->exprom_version, 0, "expansion ROM version"); 4655 } 4656 4657 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 4658 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 4659 4660 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 4661 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 4662 4663 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 4664 sc->cfcsum, "config file checksum"); 4665 4666 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 4667 CTLTYPE_STRING | CTLFLAG_RD, doorbells, sc->doorbells, 4668 sysctl_bitfield, "A", "available doorbells"); 4669 4670 #define SYSCTL_CAP(name, n, text) \ 4671 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 4672 CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], sc->name, \ 4673 sysctl_bitfield, "A", "available " text "capabilities") 4674 4675 SYSCTL_CAP(nbmcaps, 0, "NBM"); 4676 SYSCTL_CAP(linkcaps, 1, "link"); 4677 SYSCTL_CAP(switchcaps, 2, "switch"); 4678 SYSCTL_CAP(niccaps, 3, "NIC"); 4679 SYSCTL_CAP(toecaps, 4, "TCP offload"); 4680 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 4681 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 4682 SYSCTL_CAP(tlscaps, 7, "TLS"); 4683 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 4684 #undef SYSCTL_CAP 4685 4686 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 4687 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 4688 4689 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 4690 CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val, 4691 sizeof(sc->params.sge.timer_val), sysctl_int_array, "A", 4692 "interrupt holdoff timer values (us)"); 4693 4694 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 4695 CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val, 4696 sizeof(sc->params.sge.counter_val), sysctl_int_array, "A", 4697 "interrupt holdoff packet counter values"); 4698 4699 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 4700 NULL, sc->tids.nftids, "number of filters"); 4701 4702 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT | 4703 CTLFLAG_RD, sc, 0, sysctl_temperature, "I", 4704 "chip temperature (in Celsius)"); 4705 4706 t4_sge_sysctls(sc, ctx, children); 4707 4708 sc->lro_timeout = 100; 4709 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 4710 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 4711 4712 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "debug_flags", CTLFLAG_RW, 4713 &sc->debug_flags, 0, "flags to enable runtime debugging"); 4714 4715 #ifdef SBUF_DRAIN 4716 /* 4717 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 4718 */ 4719 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 4720 CTLFLAG_RD | CTLFLAG_SKIP, NULL, 4721 "logs and miscellaneous information"); 4722 children = SYSCTL_CHILDREN(oid); 4723 4724 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 4725 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4726 sysctl_cctrl, "A", "congestion control"); 4727 4728 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 4729 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4730 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 4731 4732 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 4733 CTLTYPE_STRING | CTLFLAG_RD, sc, 1, 4734 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 4735 4736 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 4737 CTLTYPE_STRING | CTLFLAG_RD, sc, 2, 4738 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 4739 4740 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 4741 CTLTYPE_STRING | CTLFLAG_RD, sc, 3, 4742 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 4743 4744 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 4745 CTLTYPE_STRING | CTLFLAG_RD, sc, 4, 4746 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 4747 4748 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 4749 CTLTYPE_STRING | CTLFLAG_RD, sc, 5, 4750 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 4751 4752 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 4753 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4754 chip_id(sc) <= CHELSIO_T5 ? sysctl_cim_la : sysctl_cim_la_t6, 4755 "A", "CIM logic analyzer"); 4756 4757 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 4758 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4759 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 4760 4761 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 4762 CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ, 4763 sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 4764 4765 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 4766 CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ, 4767 sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 4768 4769 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 4770 CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ, 4771 sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 4772 4773 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 4774 CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ, 4775 sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 4776 4777 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 4778 CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ, 4779 sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 4780 4781 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 4782 CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ, 4783 sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 4784 4785 if (chip_id(sc) > CHELSIO_T4) { 4786 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 4787 CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ, 4788 sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)"); 4789 4790 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 4791 CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ, 4792 sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)"); 4793 } 4794 4795 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 4796 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4797 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 4798 4799 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 4800 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4801 sysctl_cim_qcfg, "A", "CIM queue configuration"); 4802 4803 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 4804 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4805 sysctl_cpl_stats, "A", "CPL statistics"); 4806 4807 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 4808 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4809 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 4810 4811 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 4812 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4813 sysctl_devlog, "A", "firmware's device log"); 4814 4815 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 4816 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4817 sysctl_fcoe_stats, "A", "FCoE statistics"); 4818 4819 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 4820 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4821 sysctl_hw_sched, "A", "hardware scheduler "); 4822 4823 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 4824 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4825 sysctl_l2t, "A", "hardware L2 table"); 4826 4827 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 4828 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4829 sysctl_lb_stats, "A", "loopback statistics"); 4830 4831 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 4832 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4833 sysctl_meminfo, "A", "memory regions"); 4834 4835 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 4836 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4837 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 4838 "A", "MPS TCAM entries"); 4839 4840 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 4841 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4842 sysctl_path_mtus, "A", "path MTUs"); 4843 4844 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 4845 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4846 sysctl_pm_stats, "A", "PM statistics"); 4847 4848 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 4849 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4850 sysctl_rdma_stats, "A", "RDMA statistics"); 4851 4852 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 4853 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4854 sysctl_tcp_stats, "A", "TCP statistics"); 4855 4856 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 4857 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4858 sysctl_tids, "A", "TID information"); 4859 4860 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 4861 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4862 sysctl_tp_err_stats, "A", "TP error statistics"); 4863 4864 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 4865 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I", 4866 "TP logic analyzer event capture mask"); 4867 4868 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 4869 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4870 sysctl_tp_la, "A", "TP logic analyzer"); 4871 4872 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 4873 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4874 sysctl_tx_rate, "A", "Tx rate"); 4875 4876 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 4877 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4878 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 4879 4880 if (is_t5(sc)) { 4881 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 4882 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4883 sysctl_wcwr_stats, "A", "write combined work requests"); 4884 } 4885 #endif 4886 4887 #ifdef TCP_OFFLOAD 4888 if (is_offload(sc)) { 4889 /* 4890 * dev.t4nex.X.toe. 4891 */ 4892 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD, 4893 NULL, "TOE parameters"); 4894 children = SYSCTL_CHILDREN(oid); 4895 4896 sc->tt.sndbuf = 256 * 1024; 4897 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 4898 &sc->tt.sndbuf, 0, "max hardware send buffer size"); 4899 4900 sc->tt.ddp = 0; 4901 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW, 4902 &sc->tt.ddp, 0, "DDP allowed"); 4903 4904 sc->tt.indsz = G_INDICATESIZE(t4_read_reg(sc, A_TP_PARA_REG5)); 4905 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "indsz", CTLFLAG_RW, 4906 &sc->tt.indsz, 0, "DDP max indicate size allowed"); 4907 4908 sc->tt.ddp_thres = 4909 G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)); 4910 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp_thres", CTLFLAG_RW, 4911 &sc->tt.ddp_thres, 0, "DDP threshold"); 4912 4913 sc->tt.rx_coalesce = 1; 4914 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 4915 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 4916 4917 sc->tt.tx_align = 1; 4918 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 4919 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 4920 4921 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 4922 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A", 4923 "TP timer tick (us)"); 4924 4925 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 4926 CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A", 4927 "TCP timestamp tick (us)"); 4928 4929 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 4930 CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A", 4931 "DACK tick (us)"); 4932 4933 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 4934 CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer, 4935 "IU", "DACK timer (us)"); 4936 4937 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 4938 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN, 4939 sysctl_tp_timer, "LU", "Retransmit min (us)"); 4940 4941 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 4942 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX, 4943 sysctl_tp_timer, "LU", "Retransmit max (us)"); 4944 4945 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 4946 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN, 4947 sysctl_tp_timer, "LU", "Persist timer min (us)"); 4948 4949 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 4950 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX, 4951 sysctl_tp_timer, "LU", "Persist timer max (us)"); 4952 4953 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 4954 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE, 4955 sysctl_tp_timer, "LU", "Keepidle idle timer (us)"); 4956 4957 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_intvl", 4958 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL, 4959 sysctl_tp_timer, "LU", "Keepidle interval (us)"); 4960 4961 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 4962 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT, 4963 sysctl_tp_timer, "LU", "Initial SRTT (us)"); 4964 4965 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 4966 CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER, 4967 sysctl_tp_timer, "LU", "FINWAIT2 timer (us)"); 4968 } 4969 #endif 4970 } 4971 4972 void 4973 vi_sysctls(struct vi_info *vi) 4974 { 4975 struct sysctl_ctx_list *ctx; 4976 struct sysctl_oid *oid; 4977 struct sysctl_oid_list *children; 4978 4979 ctx = device_get_sysctl_ctx(vi->dev); 4980 4981 /* 4982 * dev.[nv](cxgbe|cxl).X. 4983 */ 4984 oid = device_get_sysctl_tree(vi->dev); 4985 children = SYSCTL_CHILDREN(oid); 4986 4987 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 4988 vi->viid, "VI identifer"); 4989 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 4990 &vi->nrxq, 0, "# of rx queues"); 4991 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 4992 &vi->ntxq, 0, "# of tx queues"); 4993 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 4994 &vi->first_rxq, 0, "index of first rx queue"); 4995 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 4996 &vi->first_txq, 0, "index of first tx queue"); 4997 4998 if (vi->flags & VI_NETMAP) 4999 return; 5000 5001 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", CTLTYPE_INT | 5002 CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU", 5003 "Reserve queue 0 for non-flowid packets"); 5004 5005 #ifdef TCP_OFFLOAD 5006 if (vi->nofldrxq != 0) { 5007 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 5008 &vi->nofldrxq, 0, 5009 "# of rx queues for offloaded TCP connections"); 5010 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 5011 &vi->nofldtxq, 0, 5012 "# of tx queues for offloaded TCP connections"); 5013 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 5014 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 5015 "index of first TOE rx queue"); 5016 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 5017 CTLFLAG_RD, &vi->first_ofld_txq, 0, 5018 "index of first TOE tx queue"); 5019 } 5020 #endif 5021 5022 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 5023 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I", 5024 "holdoff timer index"); 5025 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 5026 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I", 5027 "holdoff packet counter index"); 5028 5029 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 5030 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I", 5031 "rx queue size"); 5032 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 5033 CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I", 5034 "tx queue size"); 5035 } 5036 5037 static void 5038 cxgbe_sysctls(struct port_info *pi) 5039 { 5040 struct sysctl_ctx_list *ctx; 5041 struct sysctl_oid *oid; 5042 struct sysctl_oid_list *children; 5043 struct adapter *sc = pi->adapter; 5044 5045 ctx = device_get_sysctl_ctx(pi->dev); 5046 5047 /* 5048 * dev.cxgbe.X. 5049 */ 5050 oid = device_get_sysctl_tree(pi->dev); 5051 children = SYSCTL_CHILDREN(oid); 5052 5053 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING | 5054 CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down"); 5055 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 5056 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 5057 CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I", 5058 "PHY temperature (in Celsius)"); 5059 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 5060 CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I", 5061 "PHY firmware version"); 5062 } 5063 5064 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 5065 CTLTYPE_STRING | CTLFLAG_RW, pi, PAUSE_TX, sysctl_pause_settings, 5066 "A", "PAUSE settings (bit 0 = rx_pause, bit 1 = tx_pause)"); 5067 5068 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 5069 port_top_speed(pi), "max speed (in Gbps)"); 5070 5071 /* 5072 * dev.cxgbe.X.stats. 5073 */ 5074 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, 5075 NULL, "port statistics"); 5076 children = SYSCTL_CHILDREN(oid); 5077 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 5078 &pi->tx_parse_error, 0, 5079 "# of tx packets with invalid length or # of segments"); 5080 5081 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \ 5082 SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \ 5083 CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \ 5084 sysctl_handle_t4_reg64, "QU", desc) 5085 5086 SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames", 5087 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L)); 5088 SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames", 5089 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L)); 5090 SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames", 5091 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L)); 5092 SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames", 5093 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L)); 5094 SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames", 5095 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L)); 5096 SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames", 5097 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L)); 5098 SYSCTL_ADD_T4_REG64(pi, "tx_frames_64", 5099 "# of tx frames in this range", 5100 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L)); 5101 SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127", 5102 "# of tx frames in this range", 5103 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L)); 5104 SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255", 5105 "# of tx frames in this range", 5106 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L)); 5107 SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511", 5108 "# of tx frames in this range", 5109 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L)); 5110 SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023", 5111 "# of tx frames in this range", 5112 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L)); 5113 SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518", 5114 "# of tx frames in this range", 5115 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L)); 5116 SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max", 5117 "# of tx frames in this range", 5118 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L)); 5119 SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames", 5120 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L)); 5121 SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted", 5122 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L)); 5123 SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted", 5124 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L)); 5125 SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted", 5126 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L)); 5127 SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted", 5128 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L)); 5129 SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted", 5130 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L)); 5131 SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted", 5132 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L)); 5133 SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted", 5134 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L)); 5135 SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted", 5136 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L)); 5137 SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted", 5138 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L)); 5139 5140 SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames", 5141 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L)); 5142 SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames", 5143 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L)); 5144 SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames", 5145 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L)); 5146 SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames", 5147 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L)); 5148 SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames", 5149 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L)); 5150 SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU", 5151 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L)); 5152 SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames", 5153 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L)); 5154 SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err", 5155 "# of frames received with bad FCS", 5156 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L)); 5157 SYSCTL_ADD_T4_REG64(pi, "rx_len_err", 5158 "# of frames received with length error", 5159 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L)); 5160 SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors", 5161 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L)); 5162 SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received", 5163 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L)); 5164 SYSCTL_ADD_T4_REG64(pi, "rx_frames_64", 5165 "# of rx frames in this range", 5166 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L)); 5167 SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127", 5168 "# of rx frames in this range", 5169 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L)); 5170 SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255", 5171 "# of rx frames in this range", 5172 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L)); 5173 SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511", 5174 "# of rx frames in this range", 5175 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L)); 5176 SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023", 5177 "# of rx frames in this range", 5178 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L)); 5179 SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518", 5180 "# of rx frames in this range", 5181 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L)); 5182 SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max", 5183 "# of rx frames in this range", 5184 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L)); 5185 SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received", 5186 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L)); 5187 SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received", 5188 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L)); 5189 SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received", 5190 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L)); 5191 SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received", 5192 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L)); 5193 SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received", 5194 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L)); 5195 SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received", 5196 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L)); 5197 SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received", 5198 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L)); 5199 SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received", 5200 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L)); 5201 SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received", 5202 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L)); 5203 5204 #undef SYSCTL_ADD_T4_REG64 5205 5206 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \ 5207 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 5208 &pi->stats.name, desc) 5209 5210 /* We get these from port_stats and they may be stale by upto 1s */ 5211 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0, 5212 "# drops due to buffer-group 0 overflows"); 5213 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1, 5214 "# drops due to buffer-group 1 overflows"); 5215 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2, 5216 "# drops due to buffer-group 2 overflows"); 5217 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3, 5218 "# drops due to buffer-group 3 overflows"); 5219 SYSCTL_ADD_T4_PORTSTAT(rx_trunc0, 5220 "# of buffer-group 0 truncated packets"); 5221 SYSCTL_ADD_T4_PORTSTAT(rx_trunc1, 5222 "# of buffer-group 1 truncated packets"); 5223 SYSCTL_ADD_T4_PORTSTAT(rx_trunc2, 5224 "# of buffer-group 2 truncated packets"); 5225 SYSCTL_ADD_T4_PORTSTAT(rx_trunc3, 5226 "# of buffer-group 3 truncated packets"); 5227 5228 #undef SYSCTL_ADD_T4_PORTSTAT 5229 } 5230 5231 static int 5232 sysctl_int_array(SYSCTL_HANDLER_ARGS) 5233 { 5234 int rc, *i, space = 0; 5235 struct sbuf sb; 5236 5237 sbuf_new_for_sysctl(&sb, NULL, 64, req); 5238 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 5239 if (space) 5240 sbuf_printf(&sb, " "); 5241 sbuf_printf(&sb, "%d", *i); 5242 space = 1; 5243 } 5244 rc = sbuf_finish(&sb); 5245 sbuf_delete(&sb); 5246 return (rc); 5247 } 5248 5249 static int 5250 sysctl_bitfield(SYSCTL_HANDLER_ARGS) 5251 { 5252 int rc; 5253 struct sbuf *sb; 5254 5255 rc = sysctl_wire_old_buffer(req, 0); 5256 if (rc != 0) 5257 return(rc); 5258 5259 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 5260 if (sb == NULL) 5261 return (ENOMEM); 5262 5263 sbuf_printf(sb, "%b", (int)arg2, (char *)arg1); 5264 rc = sbuf_finish(sb); 5265 sbuf_delete(sb); 5266 5267 return (rc); 5268 } 5269 5270 static int 5271 sysctl_btphy(SYSCTL_HANDLER_ARGS) 5272 { 5273 struct port_info *pi = arg1; 5274 int op = arg2; 5275 struct adapter *sc = pi->adapter; 5276 u_int v; 5277 int rc; 5278 5279 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 5280 if (rc) 5281 return (rc); 5282 /* XXX: magic numbers */ 5283 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820, 5284 &v); 5285 end_synchronized_op(sc, 0); 5286 if (rc) 5287 return (rc); 5288 if (op == 0) 5289 v /= 256; 5290 5291 rc = sysctl_handle_int(oidp, &v, 0, req); 5292 return (rc); 5293 } 5294 5295 static int 5296 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 5297 { 5298 struct vi_info *vi = arg1; 5299 int rc, val; 5300 5301 val = vi->rsrv_noflowq; 5302 rc = sysctl_handle_int(oidp, &val, 0, req); 5303 if (rc != 0 || req->newptr == NULL) 5304 return (rc); 5305 5306 if ((val >= 1) && (vi->ntxq > 1)) 5307 vi->rsrv_noflowq = 1; 5308 else 5309 vi->rsrv_noflowq = 0; 5310 5311 return (rc); 5312 } 5313 5314 static int 5315 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 5316 { 5317 struct vi_info *vi = arg1; 5318 struct adapter *sc = vi->pi->adapter; 5319 int idx, rc, i; 5320 struct sge_rxq *rxq; 5321 #ifdef TCP_OFFLOAD 5322 struct sge_ofld_rxq *ofld_rxq; 5323 #endif 5324 uint8_t v; 5325 5326 idx = vi->tmr_idx; 5327 5328 rc = sysctl_handle_int(oidp, &idx, 0, req); 5329 if (rc != 0 || req->newptr == NULL) 5330 return (rc); 5331 5332 if (idx < 0 || idx >= SGE_NTIMERS) 5333 return (EINVAL); 5334 5335 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 5336 "t4tmr"); 5337 if (rc) 5338 return (rc); 5339 5340 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 5341 for_each_rxq(vi, i, rxq) { 5342 #ifdef atomic_store_rel_8 5343 atomic_store_rel_8(&rxq->iq.intr_params, v); 5344 #else 5345 rxq->iq.intr_params = v; 5346 #endif 5347 } 5348 #ifdef TCP_OFFLOAD 5349 for_each_ofld_rxq(vi, i, ofld_rxq) { 5350 #ifdef atomic_store_rel_8 5351 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 5352 #else 5353 ofld_rxq->iq.intr_params = v; 5354 #endif 5355 } 5356 #endif 5357 vi->tmr_idx = idx; 5358 5359 end_synchronized_op(sc, LOCK_HELD); 5360 return (0); 5361 } 5362 5363 static int 5364 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 5365 { 5366 struct vi_info *vi = arg1; 5367 struct adapter *sc = vi->pi->adapter; 5368 int idx, rc; 5369 5370 idx = vi->pktc_idx; 5371 5372 rc = sysctl_handle_int(oidp, &idx, 0, req); 5373 if (rc != 0 || req->newptr == NULL) 5374 return (rc); 5375 5376 if (idx < -1 || idx >= SGE_NCOUNTERS) 5377 return (EINVAL); 5378 5379 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 5380 "t4pktc"); 5381 if (rc) 5382 return (rc); 5383 5384 if (vi->flags & VI_INIT_DONE) 5385 rc = EBUSY; /* cannot be changed once the queues are created */ 5386 else 5387 vi->pktc_idx = idx; 5388 5389 end_synchronized_op(sc, LOCK_HELD); 5390 return (rc); 5391 } 5392 5393 static int 5394 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 5395 { 5396 struct vi_info *vi = arg1; 5397 struct adapter *sc = vi->pi->adapter; 5398 int qsize, rc; 5399 5400 qsize = vi->qsize_rxq; 5401 5402 rc = sysctl_handle_int(oidp, &qsize, 0, req); 5403 if (rc != 0 || req->newptr == NULL) 5404 return (rc); 5405 5406 if (qsize < 128 || (qsize & 7)) 5407 return (EINVAL); 5408 5409 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 5410 "t4rxqs"); 5411 if (rc) 5412 return (rc); 5413 5414 if (vi->flags & VI_INIT_DONE) 5415 rc = EBUSY; /* cannot be changed once the queues are created */ 5416 else 5417 vi->qsize_rxq = qsize; 5418 5419 end_synchronized_op(sc, LOCK_HELD); 5420 return (rc); 5421 } 5422 5423 static int 5424 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 5425 { 5426 struct vi_info *vi = arg1; 5427 struct adapter *sc = vi->pi->adapter; 5428 int qsize, rc; 5429 5430 qsize = vi->qsize_txq; 5431 5432 rc = sysctl_handle_int(oidp, &qsize, 0, req); 5433 if (rc != 0 || req->newptr == NULL) 5434 return (rc); 5435 5436 if (qsize < 128 || qsize > 65536) 5437 return (EINVAL); 5438 5439 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 5440 "t4txqs"); 5441 if (rc) 5442 return (rc); 5443 5444 if (vi->flags & VI_INIT_DONE) 5445 rc = EBUSY; /* cannot be changed once the queues are created */ 5446 else 5447 vi->qsize_txq = qsize; 5448 5449 end_synchronized_op(sc, LOCK_HELD); 5450 return (rc); 5451 } 5452 5453 static int 5454 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 5455 { 5456 struct port_info *pi = arg1; 5457 struct adapter *sc = pi->adapter; 5458 struct link_config *lc = &pi->link_cfg; 5459 int rc; 5460 5461 if (req->newptr == NULL) { 5462 struct sbuf *sb; 5463 static char *bits = "\20\1PAUSE_RX\2PAUSE_TX"; 5464 5465 rc = sysctl_wire_old_buffer(req, 0); 5466 if (rc != 0) 5467 return(rc); 5468 5469 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 5470 if (sb == NULL) 5471 return (ENOMEM); 5472 5473 sbuf_printf(sb, "%b", lc->fc & (PAUSE_TX | PAUSE_RX), bits); 5474 rc = sbuf_finish(sb); 5475 sbuf_delete(sb); 5476 } else { 5477 char s[2]; 5478 int n; 5479 5480 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX)); 5481 s[1] = 0; 5482 5483 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 5484 if (rc != 0) 5485 return(rc); 5486 5487 if (s[1] != 0) 5488 return (EINVAL); 5489 if (s[0] < '0' || s[0] > '9') 5490 return (EINVAL); /* not a number */ 5491 n = s[0] - '0'; 5492 if (n & ~(PAUSE_TX | PAUSE_RX)) 5493 return (EINVAL); /* some other bit is set too */ 5494 5495 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 5496 "t4PAUSE"); 5497 if (rc) 5498 return (rc); 5499 if ((lc->requested_fc & (PAUSE_TX | PAUSE_RX)) != n) { 5500 int link_ok = lc->link_ok; 5501 5502 lc->requested_fc &= ~(PAUSE_TX | PAUSE_RX); 5503 lc->requested_fc |= n; 5504 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 5505 lc->link_ok = link_ok; /* restore */ 5506 } 5507 end_synchronized_op(sc, 0); 5508 } 5509 5510 return (rc); 5511 } 5512 5513 static int 5514 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 5515 { 5516 struct adapter *sc = arg1; 5517 int reg = arg2; 5518 uint64_t val; 5519 5520 val = t4_read_reg64(sc, reg); 5521 5522 return (sysctl_handle_64(oidp, &val, 0, req)); 5523 } 5524 5525 static int 5526 sysctl_temperature(SYSCTL_HANDLER_ARGS) 5527 { 5528 struct adapter *sc = arg1; 5529 int rc, t; 5530 uint32_t param, val; 5531 5532 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 5533 if (rc) 5534 return (rc); 5535 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5536 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5537 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 5538 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5539 end_synchronized_op(sc, 0); 5540 if (rc) 5541 return (rc); 5542 5543 /* unknown is returned as 0 but we display -1 in that case */ 5544 t = val == 0 ? -1 : val; 5545 5546 rc = sysctl_handle_int(oidp, &t, 0, req); 5547 return (rc); 5548 } 5549 5550 #ifdef SBUF_DRAIN 5551 static int 5552 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 5553 { 5554 struct adapter *sc = arg1; 5555 struct sbuf *sb; 5556 int rc, i; 5557 uint16_t incr[NMTUS][NCCTRL_WIN]; 5558 static const char *dec_fac[] = { 5559 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 5560 "0.9375" 5561 }; 5562 5563 rc = sysctl_wire_old_buffer(req, 0); 5564 if (rc != 0) 5565 return (rc); 5566 5567 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 5568 if (sb == NULL) 5569 return (ENOMEM); 5570 5571 t4_read_cong_tbl(sc, incr); 5572 5573 for (i = 0; i < NCCTRL_WIN; ++i) { 5574 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 5575 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 5576 incr[5][i], incr[6][i], incr[7][i]); 5577 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 5578 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 5579 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 5580 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 5581 } 5582 5583 rc = sbuf_finish(sb); 5584 sbuf_delete(sb); 5585 5586 return (rc); 5587 } 5588 5589 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 5590 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 5591 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 5592 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 5593 }; 5594 5595 static int 5596 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 5597 { 5598 struct adapter *sc = arg1; 5599 struct sbuf *sb; 5600 int rc, i, n, qid = arg2; 5601 uint32_t *buf, *p; 5602 char *qtype; 5603 u_int cim_num_obq = sc->chip_params->cim_num_obq; 5604 5605 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 5606 ("%s: bad qid %d\n", __func__, qid)); 5607 5608 if (qid < CIM_NUM_IBQ) { 5609 /* inbound queue */ 5610 qtype = "IBQ"; 5611 n = 4 * CIM_IBQ_SIZE; 5612 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 5613 rc = t4_read_cim_ibq(sc, qid, buf, n); 5614 } else { 5615 /* outbound queue */ 5616 qtype = "OBQ"; 5617 qid -= CIM_NUM_IBQ; 5618 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 5619 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 5620 rc = t4_read_cim_obq(sc, qid, buf, n); 5621 } 5622 5623 if (rc < 0) { 5624 rc = -rc; 5625 goto done; 5626 } 5627 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 5628 5629 rc = sysctl_wire_old_buffer(req, 0); 5630 if (rc != 0) 5631 goto done; 5632 5633 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 5634 if (sb == NULL) { 5635 rc = ENOMEM; 5636 goto done; 5637 } 5638 5639 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 5640 for (i = 0, p = buf; i < n; i += 16, p += 4) 5641 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 5642 p[2], p[3]); 5643 5644 rc = sbuf_finish(sb); 5645 sbuf_delete(sb); 5646 done: 5647 free(buf, M_CXGBE); 5648 return (rc); 5649 } 5650 5651 static int 5652 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 5653 { 5654 struct adapter *sc = arg1; 5655 u_int cfg; 5656 struct sbuf *sb; 5657 uint32_t *buf, *p; 5658 int rc; 5659 5660 MPASS(chip_id(sc) <= CHELSIO_T5); 5661 5662 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 5663 if (rc != 0) 5664 return (rc); 5665 5666 rc = sysctl_wire_old_buffer(req, 0); 5667 if (rc != 0) 5668 return (rc); 5669 5670 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 5671 if (sb == NULL) 5672 return (ENOMEM); 5673 5674 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 5675 M_ZERO | M_WAITOK); 5676 5677 rc = -t4_cim_read_la(sc, buf, NULL); 5678 if (rc != 0) 5679 goto done; 5680 5681 sbuf_printf(sb, "Status Data PC%s", 5682 cfg & F_UPDBGLACAPTPCONLY ? "" : 5683 " LS0Stat LS0Addr LS0Data"); 5684 5685 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 5686 if (cfg & F_UPDBGLACAPTPCONLY) { 5687 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 5688 p[6], p[7]); 5689 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 5690 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 5691 p[4] & 0xff, p[5] >> 8); 5692 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 5693 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 5694 p[1] & 0xf, p[2] >> 4); 5695 } else { 5696 sbuf_printf(sb, 5697 "\n %02x %x%07x %x%07x %08x %08x " 5698 "%08x%08x%08x%08x", 5699 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 5700 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 5701 p[6], p[7]); 5702 } 5703 } 5704 5705 rc = sbuf_finish(sb); 5706 sbuf_delete(sb); 5707 done: 5708 free(buf, M_CXGBE); 5709 return (rc); 5710 } 5711 5712 static int 5713 sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS) 5714 { 5715 struct adapter *sc = arg1; 5716 u_int cfg; 5717 struct sbuf *sb; 5718 uint32_t *buf, *p; 5719 int rc; 5720 5721 MPASS(chip_id(sc) > CHELSIO_T5); 5722 5723 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 5724 if (rc != 0) 5725 return (rc); 5726 5727 rc = sysctl_wire_old_buffer(req, 0); 5728 if (rc != 0) 5729 return (rc); 5730 5731 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 5732 if (sb == NULL) 5733 return (ENOMEM); 5734 5735 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 5736 M_ZERO | M_WAITOK); 5737 5738 rc = -t4_cim_read_la(sc, buf, NULL); 5739 if (rc != 0) 5740 goto done; 5741 5742 sbuf_printf(sb, "Status Inst Data PC%s", 5743 cfg & F_UPDBGLACAPTPCONLY ? "" : 5744 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 5745 5746 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 5747 if (cfg & F_UPDBGLACAPTPCONLY) { 5748 sbuf_printf(sb, "\n %02x %08x %08x %08x", 5749 p[3] & 0xff, p[2], p[1], p[0]); 5750 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 5751 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 5752 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 5753 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 5754 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 5755 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 5756 p[6] >> 16); 5757 } else { 5758 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 5759 "%08x %08x %08x %08x %08x %08x", 5760 (p[9] >> 16) & 0xff, 5761 p[9] & 0xffff, p[8] >> 16, 5762 p[8] & 0xffff, p[7] >> 16, 5763 p[7] & 0xffff, p[6] >> 16, 5764 p[2], p[1], p[0], p[5], p[4], p[3]); 5765 } 5766 } 5767 5768 rc = sbuf_finish(sb); 5769 sbuf_delete(sb); 5770 done: 5771 free(buf, M_CXGBE); 5772 return (rc); 5773 } 5774 5775 static int 5776 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 5777 { 5778 struct adapter *sc = arg1; 5779 u_int i; 5780 struct sbuf *sb; 5781 uint32_t *buf, *p; 5782 int rc; 5783 5784 rc = sysctl_wire_old_buffer(req, 0); 5785 if (rc != 0) 5786 return (rc); 5787 5788 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 5789 if (sb == NULL) 5790 return (ENOMEM); 5791 5792 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 5793 M_ZERO | M_WAITOK); 5794 5795 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 5796 p = buf; 5797 5798 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 5799 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 5800 p[1], p[0]); 5801 } 5802 5803 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 5804 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 5805 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 5806 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 5807 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 5808 (p[1] >> 2) | ((p[2] & 3) << 30), 5809 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 5810 p[0] & 1); 5811 } 5812 5813 rc = sbuf_finish(sb); 5814 sbuf_delete(sb); 5815 free(buf, M_CXGBE); 5816 return (rc); 5817 } 5818 5819 static int 5820 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 5821 { 5822 struct adapter *sc = arg1; 5823 u_int i; 5824 struct sbuf *sb; 5825 uint32_t *buf, *p; 5826 int rc; 5827 5828 rc = sysctl_wire_old_buffer(req, 0); 5829 if (rc != 0) 5830 return (rc); 5831 5832 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 5833 if (sb == NULL) 5834 return (ENOMEM); 5835 5836 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 5837 M_ZERO | M_WAITOK); 5838 5839 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 5840 p = buf; 5841 5842 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 5843 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 5844 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 5845 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 5846 p[4], p[3], p[2], p[1], p[0]); 5847 } 5848 5849 sbuf_printf(sb, "\n\nCntl ID Data"); 5850 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 5851 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 5852 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 5853 } 5854 5855 rc = sbuf_finish(sb); 5856 sbuf_delete(sb); 5857 free(buf, M_CXGBE); 5858 return (rc); 5859 } 5860 5861 static int 5862 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 5863 { 5864 struct adapter *sc = arg1; 5865 struct sbuf *sb; 5866 int rc, i; 5867 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 5868 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 5869 uint16_t thres[CIM_NUM_IBQ]; 5870 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 5871 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 5872 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 5873 5874 cim_num_obq = sc->chip_params->cim_num_obq; 5875 if (is_t4(sc)) { 5876 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 5877 obq_rdaddr = A_UP_OBQ_0_REALADDR; 5878 } else { 5879 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 5880 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 5881 } 5882 nq = CIM_NUM_IBQ + cim_num_obq; 5883 5884 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 5885 if (rc == 0) 5886 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr); 5887 if (rc != 0) 5888 return (rc); 5889 5890 t4_read_cimq_cfg(sc, base, size, thres); 5891 5892 rc = sysctl_wire_old_buffer(req, 0); 5893 if (rc != 0) 5894 return (rc); 5895 5896 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 5897 if (sb == NULL) 5898 return (ENOMEM); 5899 5900 sbuf_printf(sb, "Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 5901 5902 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 5903 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 5904 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 5905 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 5906 G_QUEREMFLITS(p[2]) * 16); 5907 for ( ; i < nq; i++, p += 4, wr += 2) 5908 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 5909 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 5910 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 5911 G_QUEREMFLITS(p[2]) * 16); 5912 5913 rc = sbuf_finish(sb); 5914 sbuf_delete(sb); 5915 5916 return (rc); 5917 } 5918 5919 static int 5920 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 5921 { 5922 struct adapter *sc = arg1; 5923 struct sbuf *sb; 5924 int rc; 5925 struct tp_cpl_stats stats; 5926 5927 rc = sysctl_wire_old_buffer(req, 0); 5928 if (rc != 0) 5929 return (rc); 5930 5931 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 5932 if (sb == NULL) 5933 return (ENOMEM); 5934 5935 mtx_lock(&sc->reg_lock); 5936 t4_tp_get_cpl_stats(sc, &stats); 5937 mtx_unlock(&sc->reg_lock); 5938 5939 if (sc->chip_params->nchan > 2) { 5940 sbuf_printf(sb, " channel 0 channel 1" 5941 " channel 2 channel 3"); 5942 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 5943 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 5944 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 5945 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 5946 } else { 5947 sbuf_printf(sb, " channel 0 channel 1"); 5948 sbuf_printf(sb, "\nCPL requests: %10u %10u", 5949 stats.req[0], stats.req[1]); 5950 sbuf_printf(sb, "\nCPL responses: %10u %10u", 5951 stats.rsp[0], stats.rsp[1]); 5952 } 5953 5954 rc = sbuf_finish(sb); 5955 sbuf_delete(sb); 5956 5957 return (rc); 5958 } 5959 5960 static int 5961 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 5962 { 5963 struct adapter *sc = arg1; 5964 struct sbuf *sb; 5965 int rc; 5966 struct tp_usm_stats stats; 5967 5968 rc = sysctl_wire_old_buffer(req, 0); 5969 if (rc != 0) 5970 return(rc); 5971 5972 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 5973 if (sb == NULL) 5974 return (ENOMEM); 5975 5976 t4_get_usm_stats(sc, &stats); 5977 5978 sbuf_printf(sb, "Frames: %u\n", stats.frames); 5979 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 5980 sbuf_printf(sb, "Drops: %u", stats.drops); 5981 5982 rc = sbuf_finish(sb); 5983 sbuf_delete(sb); 5984 5985 return (rc); 5986 } 5987 5988 static const char * const devlog_level_strings[] = { 5989 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 5990 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 5991 [FW_DEVLOG_LEVEL_ERR] = "ERR", 5992 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 5993 [FW_DEVLOG_LEVEL_INFO] = "INFO", 5994 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 5995 }; 5996 5997 static const char * const devlog_facility_strings[] = { 5998 [FW_DEVLOG_FACILITY_CORE] = "CORE", 5999 [FW_DEVLOG_FACILITY_CF] = "CF", 6000 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 6001 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 6002 [FW_DEVLOG_FACILITY_RES] = "RES", 6003 [FW_DEVLOG_FACILITY_HW] = "HW", 6004 [FW_DEVLOG_FACILITY_FLR] = "FLR", 6005 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 6006 [FW_DEVLOG_FACILITY_PHY] = "PHY", 6007 [FW_DEVLOG_FACILITY_MAC] = "MAC", 6008 [FW_DEVLOG_FACILITY_PORT] = "PORT", 6009 [FW_DEVLOG_FACILITY_VI] = "VI", 6010 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 6011 [FW_DEVLOG_FACILITY_ACL] = "ACL", 6012 [FW_DEVLOG_FACILITY_TM] = "TM", 6013 [FW_DEVLOG_FACILITY_QFC] = "QFC", 6014 [FW_DEVLOG_FACILITY_DCB] = "DCB", 6015 [FW_DEVLOG_FACILITY_ETH] = "ETH", 6016 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 6017 [FW_DEVLOG_FACILITY_RI] = "RI", 6018 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 6019 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 6020 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 6021 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 6022 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 6023 }; 6024 6025 static int 6026 sysctl_devlog(SYSCTL_HANDLER_ARGS) 6027 { 6028 struct adapter *sc = arg1; 6029 struct devlog_params *dparams = &sc->params.devlog; 6030 struct fw_devlog_e *buf, *e; 6031 int i, j, rc, nentries, first = 0; 6032 struct sbuf *sb; 6033 uint64_t ftstamp = UINT64_MAX; 6034 6035 if (dparams->addr == 0) 6036 return (ENXIO); 6037 6038 buf = malloc(dparams->size, M_CXGBE, M_NOWAIT); 6039 if (buf == NULL) 6040 return (ENOMEM); 6041 6042 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size); 6043 if (rc != 0) 6044 goto done; 6045 6046 nentries = dparams->size / sizeof(struct fw_devlog_e); 6047 for (i = 0; i < nentries; i++) { 6048 e = &buf[i]; 6049 6050 if (e->timestamp == 0) 6051 break; /* end */ 6052 6053 e->timestamp = be64toh(e->timestamp); 6054 e->seqno = be32toh(e->seqno); 6055 for (j = 0; j < 8; j++) 6056 e->params[j] = be32toh(e->params[j]); 6057 6058 if (e->timestamp < ftstamp) { 6059 ftstamp = e->timestamp; 6060 first = i; 6061 } 6062 } 6063 6064 if (buf[first].timestamp == 0) 6065 goto done; /* nothing in the log */ 6066 6067 rc = sysctl_wire_old_buffer(req, 0); 6068 if (rc != 0) 6069 goto done; 6070 6071 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6072 if (sb == NULL) { 6073 rc = ENOMEM; 6074 goto done; 6075 } 6076 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 6077 "Seq#", "Tstamp", "Level", "Facility", "Message"); 6078 6079 i = first; 6080 do { 6081 e = &buf[i]; 6082 if (e->timestamp == 0) 6083 break; /* end */ 6084 6085 sbuf_printf(sb, "%10d %15ju %8s %8s ", 6086 e->seqno, e->timestamp, 6087 (e->level < nitems(devlog_level_strings) ? 6088 devlog_level_strings[e->level] : "UNKNOWN"), 6089 (e->facility < nitems(devlog_facility_strings) ? 6090 devlog_facility_strings[e->facility] : "UNKNOWN")); 6091 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 6092 e->params[2], e->params[3], e->params[4], 6093 e->params[5], e->params[6], e->params[7]); 6094 6095 if (++i == nentries) 6096 i = 0; 6097 } while (i != first); 6098 6099 rc = sbuf_finish(sb); 6100 sbuf_delete(sb); 6101 done: 6102 free(buf, M_CXGBE); 6103 return (rc); 6104 } 6105 6106 static int 6107 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 6108 { 6109 struct adapter *sc = arg1; 6110 struct sbuf *sb; 6111 int rc; 6112 struct tp_fcoe_stats stats[MAX_NCHAN]; 6113 int i, nchan = sc->chip_params->nchan; 6114 6115 rc = sysctl_wire_old_buffer(req, 0); 6116 if (rc != 0) 6117 return (rc); 6118 6119 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6120 if (sb == NULL) 6121 return (ENOMEM); 6122 6123 for (i = 0; i < nchan; i++) 6124 t4_get_fcoe_stats(sc, i, &stats[i]); 6125 6126 if (nchan > 2) { 6127 sbuf_printf(sb, " channel 0 channel 1" 6128 " channel 2 channel 3"); 6129 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 6130 stats[0].octets_ddp, stats[1].octets_ddp, 6131 stats[2].octets_ddp, stats[3].octets_ddp); 6132 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 6133 stats[0].frames_ddp, stats[1].frames_ddp, 6134 stats[2].frames_ddp, stats[3].frames_ddp); 6135 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 6136 stats[0].frames_drop, stats[1].frames_drop, 6137 stats[2].frames_drop, stats[3].frames_drop); 6138 } else { 6139 sbuf_printf(sb, " channel 0 channel 1"); 6140 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 6141 stats[0].octets_ddp, stats[1].octets_ddp); 6142 sbuf_printf(sb, "\nframesDDP: %16u %16u", 6143 stats[0].frames_ddp, stats[1].frames_ddp); 6144 sbuf_printf(sb, "\nframesDrop: %16u %16u", 6145 stats[0].frames_drop, stats[1].frames_drop); 6146 } 6147 6148 rc = sbuf_finish(sb); 6149 sbuf_delete(sb); 6150 6151 return (rc); 6152 } 6153 6154 static int 6155 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 6156 { 6157 struct adapter *sc = arg1; 6158 struct sbuf *sb; 6159 int rc, i; 6160 unsigned int map, kbps, ipg, mode; 6161 unsigned int pace_tab[NTX_SCHED]; 6162 6163 rc = sysctl_wire_old_buffer(req, 0); 6164 if (rc != 0) 6165 return (rc); 6166 6167 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6168 if (sb == NULL) 6169 return (ENOMEM); 6170 6171 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 6172 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 6173 t4_read_pace_tbl(sc, pace_tab); 6174 6175 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 6176 "Class IPG (0.1 ns) Flow IPG (us)"); 6177 6178 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 6179 t4_get_tx_sched(sc, i, &kbps, &ipg); 6180 sbuf_printf(sb, "\n %u %-5s %u ", i, 6181 (mode & (1 << i)) ? "flow" : "class", map & 3); 6182 if (kbps) 6183 sbuf_printf(sb, "%9u ", kbps); 6184 else 6185 sbuf_printf(sb, " disabled "); 6186 6187 if (ipg) 6188 sbuf_printf(sb, "%13u ", ipg); 6189 else 6190 sbuf_printf(sb, " disabled "); 6191 6192 if (pace_tab[i]) 6193 sbuf_printf(sb, "%10u", pace_tab[i]); 6194 else 6195 sbuf_printf(sb, " disabled"); 6196 } 6197 6198 rc = sbuf_finish(sb); 6199 sbuf_delete(sb); 6200 6201 return (rc); 6202 } 6203 6204 static int 6205 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 6206 { 6207 struct adapter *sc = arg1; 6208 struct sbuf *sb; 6209 int rc, i, j; 6210 uint64_t *p0, *p1; 6211 struct lb_port_stats s[2]; 6212 static const char *stat_name[] = { 6213 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 6214 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 6215 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 6216 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 6217 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 6218 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 6219 "BG2FramesTrunc:", "BG3FramesTrunc:" 6220 }; 6221 6222 rc = sysctl_wire_old_buffer(req, 0); 6223 if (rc != 0) 6224 return (rc); 6225 6226 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6227 if (sb == NULL) 6228 return (ENOMEM); 6229 6230 memset(s, 0, sizeof(s)); 6231 6232 for (i = 0; i < sc->chip_params->nchan; i += 2) { 6233 t4_get_lb_stats(sc, i, &s[0]); 6234 t4_get_lb_stats(sc, i + 1, &s[1]); 6235 6236 p0 = &s[0].octets; 6237 p1 = &s[1].octets; 6238 sbuf_printf(sb, "%s Loopback %u" 6239 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 6240 6241 for (j = 0; j < nitems(stat_name); j++) 6242 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 6243 *p0++, *p1++); 6244 } 6245 6246 rc = sbuf_finish(sb); 6247 sbuf_delete(sb); 6248 6249 return (rc); 6250 } 6251 6252 static int 6253 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 6254 { 6255 int rc = 0; 6256 struct port_info *pi = arg1; 6257 struct sbuf *sb; 6258 6259 rc = sysctl_wire_old_buffer(req, 0); 6260 if (rc != 0) 6261 return(rc); 6262 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 6263 if (sb == NULL) 6264 return (ENOMEM); 6265 6266 if (pi->linkdnrc < 0) 6267 sbuf_printf(sb, "n/a"); 6268 else 6269 sbuf_printf(sb, "%s", t4_link_down_rc_str(pi->linkdnrc)); 6270 6271 rc = sbuf_finish(sb); 6272 sbuf_delete(sb); 6273 6274 return (rc); 6275 } 6276 6277 struct mem_desc { 6278 unsigned int base; 6279 unsigned int limit; 6280 unsigned int idx; 6281 }; 6282 6283 static int 6284 mem_desc_cmp(const void *a, const void *b) 6285 { 6286 return ((const struct mem_desc *)a)->base - 6287 ((const struct mem_desc *)b)->base; 6288 } 6289 6290 static void 6291 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 6292 unsigned int to) 6293 { 6294 unsigned int size; 6295 6296 if (from == to) 6297 return; 6298 6299 size = to - from + 1; 6300 if (size == 0) 6301 return; 6302 6303 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 6304 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 6305 } 6306 6307 static int 6308 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 6309 { 6310 struct adapter *sc = arg1; 6311 struct sbuf *sb; 6312 int rc, i, n; 6313 uint32_t lo, hi, used, alloc; 6314 static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"}; 6315 static const char *region[] = { 6316 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 6317 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 6318 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 6319 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 6320 "RQUDP region:", "PBL region:", "TXPBL region:", 6321 "DBVFIFO region:", "ULPRX state:", "ULPTX state:", 6322 "On-chip queues:" 6323 }; 6324 struct mem_desc avail[4]; 6325 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 6326 struct mem_desc *md = mem; 6327 6328 rc = sysctl_wire_old_buffer(req, 0); 6329 if (rc != 0) 6330 return (rc); 6331 6332 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6333 if (sb == NULL) 6334 return (ENOMEM); 6335 6336 for (i = 0; i < nitems(mem); i++) { 6337 mem[i].limit = 0; 6338 mem[i].idx = i; 6339 } 6340 6341 /* Find and sort the populated memory ranges */ 6342 i = 0; 6343 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 6344 if (lo & F_EDRAM0_ENABLE) { 6345 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 6346 avail[i].base = G_EDRAM0_BASE(hi) << 20; 6347 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 6348 avail[i].idx = 0; 6349 i++; 6350 } 6351 if (lo & F_EDRAM1_ENABLE) { 6352 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 6353 avail[i].base = G_EDRAM1_BASE(hi) << 20; 6354 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 6355 avail[i].idx = 1; 6356 i++; 6357 } 6358 if (lo & F_EXT_MEM_ENABLE) { 6359 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 6360 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 6361 avail[i].limit = avail[i].base + 6362 (G_EXT_MEM_SIZE(hi) << 20); 6363 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 6364 i++; 6365 } 6366 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 6367 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 6368 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 6369 avail[i].limit = avail[i].base + 6370 (G_EXT_MEM1_SIZE(hi) << 20); 6371 avail[i].idx = 4; 6372 i++; 6373 } 6374 if (!i) /* no memory available */ 6375 return 0; 6376 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 6377 6378 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 6379 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 6380 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 6381 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 6382 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 6383 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 6384 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 6385 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 6386 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 6387 6388 /* the next few have explicit upper bounds */ 6389 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 6390 md->limit = md->base - 1 + 6391 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 6392 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 6393 md++; 6394 6395 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 6396 md->limit = md->base - 1 + 6397 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 6398 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 6399 md++; 6400 6401 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 6402 if (chip_id(sc) <= CHELSIO_T5) 6403 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 6404 else 6405 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 6406 md->limit = 0; 6407 } else { 6408 md->base = 0; 6409 md->idx = nitems(region); /* hide it */ 6410 } 6411 md++; 6412 6413 #define ulp_region(reg) \ 6414 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 6415 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 6416 6417 ulp_region(RX_ISCSI); 6418 ulp_region(RX_TDDP); 6419 ulp_region(TX_TPT); 6420 ulp_region(RX_STAG); 6421 ulp_region(RX_RQ); 6422 ulp_region(RX_RQUDP); 6423 ulp_region(RX_PBL); 6424 ulp_region(TX_PBL); 6425 #undef ulp_region 6426 6427 md->base = 0; 6428 md->idx = nitems(region); 6429 if (!is_t4(sc)) { 6430 uint32_t size = 0; 6431 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 6432 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 6433 6434 if (is_t5(sc)) { 6435 if (sge_ctrl & F_VFIFO_ENABLE) 6436 size = G_DBVFIFO_SIZE(fifo_size); 6437 } else 6438 size = G_T6_DBVFIFO_SIZE(fifo_size); 6439 6440 if (size) { 6441 md->base = G_BASEADDR(t4_read_reg(sc, 6442 A_SGE_DBVFIFO_BADDR)); 6443 md->limit = md->base + (size << 2) - 1; 6444 } 6445 } 6446 md++; 6447 6448 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 6449 md->limit = 0; 6450 md++; 6451 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 6452 md->limit = 0; 6453 md++; 6454 6455 md->base = sc->vres.ocq.start; 6456 if (sc->vres.ocq.size) 6457 md->limit = md->base + sc->vres.ocq.size - 1; 6458 else 6459 md->idx = nitems(region); /* hide it */ 6460 md++; 6461 6462 /* add any address-space holes, there can be up to 3 */ 6463 for (n = 0; n < i - 1; n++) 6464 if (avail[n].limit < avail[n + 1].base) 6465 (md++)->base = avail[n].limit; 6466 if (avail[n].limit) 6467 (md++)->base = avail[n].limit; 6468 6469 n = md - mem; 6470 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 6471 6472 for (lo = 0; lo < i; lo++) 6473 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 6474 avail[lo].limit - 1); 6475 6476 sbuf_printf(sb, "\n"); 6477 for (i = 0; i < n; i++) { 6478 if (mem[i].idx >= nitems(region)) 6479 continue; /* skip holes */ 6480 if (!mem[i].limit) 6481 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 6482 mem_region_show(sb, region[mem[i].idx], mem[i].base, 6483 mem[i].limit); 6484 } 6485 6486 sbuf_printf(sb, "\n"); 6487 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 6488 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 6489 mem_region_show(sb, "uP RAM:", lo, hi); 6490 6491 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 6492 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 6493 mem_region_show(sb, "uP Extmem2:", lo, hi); 6494 6495 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 6496 sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", 6497 G_PMRXMAXPAGE(lo), 6498 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 6499 (lo & F_PMRXNUMCHN) ? 2 : 1); 6500 6501 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 6502 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 6503 sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", 6504 G_PMTXMAXPAGE(lo), 6505 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 6506 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 6507 sbuf_printf(sb, "%u p-structs\n", 6508 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); 6509 6510 for (i = 0; i < 4; i++) { 6511 if (chip_id(sc) > CHELSIO_T5) 6512 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 6513 else 6514 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 6515 if (is_t5(sc)) { 6516 used = G_T5_USED(lo); 6517 alloc = G_T5_ALLOC(lo); 6518 } else { 6519 used = G_USED(lo); 6520 alloc = G_ALLOC(lo); 6521 } 6522 /* For T6 these are MAC buffer groups */ 6523 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 6524 i, used, alloc); 6525 } 6526 for (i = 0; i < sc->chip_params->nchan; i++) { 6527 if (chip_id(sc) > CHELSIO_T5) 6528 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 6529 else 6530 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 6531 if (is_t5(sc)) { 6532 used = G_T5_USED(lo); 6533 alloc = G_T5_ALLOC(lo); 6534 } else { 6535 used = G_USED(lo); 6536 alloc = G_ALLOC(lo); 6537 } 6538 /* For T6 these are MAC buffer groups */ 6539 sbuf_printf(sb, 6540 "\nLoopback %d using %u pages out of %u allocated", 6541 i, used, alloc); 6542 } 6543 6544 rc = sbuf_finish(sb); 6545 sbuf_delete(sb); 6546 6547 return (rc); 6548 } 6549 6550 static inline void 6551 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 6552 { 6553 *mask = x | y; 6554 y = htobe64(y); 6555 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 6556 } 6557 6558 static int 6559 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 6560 { 6561 struct adapter *sc = arg1; 6562 struct sbuf *sb; 6563 int rc, i; 6564 6565 MPASS(chip_id(sc) <= CHELSIO_T5); 6566 6567 rc = sysctl_wire_old_buffer(req, 0); 6568 if (rc != 0) 6569 return (rc); 6570 6571 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6572 if (sb == NULL) 6573 return (ENOMEM); 6574 6575 sbuf_printf(sb, 6576 "Idx Ethernet address Mask Vld Ports PF" 6577 " VF Replication P0 P1 P2 P3 ML"); 6578 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 6579 uint64_t tcamx, tcamy, mask; 6580 uint32_t cls_lo, cls_hi; 6581 uint8_t addr[ETHER_ADDR_LEN]; 6582 6583 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 6584 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 6585 if (tcamx & tcamy) 6586 continue; 6587 tcamxy2valmask(tcamx, tcamy, addr, &mask); 6588 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 6589 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 6590 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 6591 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 6592 addr[3], addr[4], addr[5], (uintmax_t)mask, 6593 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 6594 G_PORTMAP(cls_hi), G_PF(cls_lo), 6595 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 6596 6597 if (cls_lo & F_REPLICATE) { 6598 struct fw_ldst_cmd ldst_cmd; 6599 6600 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 6601 ldst_cmd.op_to_addrspace = 6602 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 6603 F_FW_CMD_REQUEST | F_FW_CMD_READ | 6604 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 6605 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 6606 ldst_cmd.u.mps.rplc.fid_idx = 6607 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 6608 V_FW_LDST_CMD_IDX(i)); 6609 6610 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 6611 "t4mps"); 6612 if (rc) 6613 break; 6614 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 6615 sizeof(ldst_cmd), &ldst_cmd); 6616 end_synchronized_op(sc, 0); 6617 6618 if (rc != 0) { 6619 sbuf_printf(sb, "%36d", rc); 6620 rc = 0; 6621 } else { 6622 sbuf_printf(sb, " %08x %08x %08x %08x", 6623 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 6624 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 6625 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 6626 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 6627 } 6628 } else 6629 sbuf_printf(sb, "%36s", ""); 6630 6631 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 6632 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 6633 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 6634 } 6635 6636 if (rc) 6637 (void) sbuf_finish(sb); 6638 else 6639 rc = sbuf_finish(sb); 6640 sbuf_delete(sb); 6641 6642 return (rc); 6643 } 6644 6645 static int 6646 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 6647 { 6648 struct adapter *sc = arg1; 6649 struct sbuf *sb; 6650 int rc, i; 6651 6652 MPASS(chip_id(sc) > CHELSIO_T5); 6653 6654 rc = sysctl_wire_old_buffer(req, 0); 6655 if (rc != 0) 6656 return (rc); 6657 6658 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6659 if (sb == NULL) 6660 return (ENOMEM); 6661 6662 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 6663 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 6664 " Replication" 6665 " P0 P1 P2 P3 ML\n"); 6666 6667 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 6668 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 6669 uint16_t ivlan; 6670 uint64_t tcamx, tcamy, val, mask; 6671 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 6672 uint8_t addr[ETHER_ADDR_LEN]; 6673 6674 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 6675 if (i < 256) 6676 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 6677 else 6678 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 6679 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 6680 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 6681 tcamy = G_DMACH(val) << 32; 6682 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 6683 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 6684 lookup_type = G_DATALKPTYPE(data2); 6685 port_num = G_DATAPORTNUM(data2); 6686 if (lookup_type && lookup_type != M_DATALKPTYPE) { 6687 /* Inner header VNI */ 6688 vniy = ((data2 & F_DATAVIDH2) << 23) | 6689 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 6690 dip_hit = data2 & F_DATADIPHIT; 6691 vlan_vld = 0; 6692 } else { 6693 vniy = 0; 6694 dip_hit = 0; 6695 vlan_vld = data2 & F_DATAVIDH2; 6696 ivlan = G_VIDL(val); 6697 } 6698 6699 ctl |= V_CTLXYBITSEL(1); 6700 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 6701 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 6702 tcamx = G_DMACH(val) << 32; 6703 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 6704 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 6705 if (lookup_type && lookup_type != M_DATALKPTYPE) { 6706 /* Inner header VNI mask */ 6707 vnix = ((data2 & F_DATAVIDH2) << 23) | 6708 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 6709 } else 6710 vnix = 0; 6711 6712 if (tcamx & tcamy) 6713 continue; 6714 tcamxy2valmask(tcamx, tcamy, addr, &mask); 6715 6716 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 6717 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 6718 6719 if (lookup_type && lookup_type != M_DATALKPTYPE) { 6720 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 6721 "%012jx %06x %06x - - %3c" 6722 " 'I' %4x %3c %#x%4u%4d", i, addr[0], 6723 addr[1], addr[2], addr[3], addr[4], addr[5], 6724 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 6725 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 6726 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 6727 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 6728 } else { 6729 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 6730 "%012jx - - ", i, addr[0], addr[1], 6731 addr[2], addr[3], addr[4], addr[5], 6732 (uintmax_t)mask); 6733 6734 if (vlan_vld) 6735 sbuf_printf(sb, "%4u Y ", ivlan); 6736 else 6737 sbuf_printf(sb, " - N "); 6738 6739 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 6740 lookup_type ? 'I' : 'O', port_num, 6741 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 6742 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 6743 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 6744 } 6745 6746 6747 if (cls_lo & F_T6_REPLICATE) { 6748 struct fw_ldst_cmd ldst_cmd; 6749 6750 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 6751 ldst_cmd.op_to_addrspace = 6752 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 6753 F_FW_CMD_REQUEST | F_FW_CMD_READ | 6754 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 6755 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 6756 ldst_cmd.u.mps.rplc.fid_idx = 6757 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 6758 V_FW_LDST_CMD_IDX(i)); 6759 6760 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 6761 "t6mps"); 6762 if (rc) 6763 break; 6764 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 6765 sizeof(ldst_cmd), &ldst_cmd); 6766 end_synchronized_op(sc, 0); 6767 6768 if (rc != 0) { 6769 sbuf_printf(sb, "%72d", rc); 6770 rc = 0; 6771 } else { 6772 sbuf_printf(sb, " %08x %08x %08x %08x" 6773 " %08x %08x %08x %08x", 6774 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 6775 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 6776 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 6777 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 6778 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 6779 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 6780 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 6781 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 6782 } 6783 } else 6784 sbuf_printf(sb, "%72s", ""); 6785 6786 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 6787 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 6788 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 6789 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 6790 } 6791 6792 if (rc) 6793 (void) sbuf_finish(sb); 6794 else 6795 rc = sbuf_finish(sb); 6796 sbuf_delete(sb); 6797 6798 return (rc); 6799 } 6800 6801 static int 6802 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 6803 { 6804 struct adapter *sc = arg1; 6805 struct sbuf *sb; 6806 int rc; 6807 uint16_t mtus[NMTUS]; 6808 6809 rc = sysctl_wire_old_buffer(req, 0); 6810 if (rc != 0) 6811 return (rc); 6812 6813 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6814 if (sb == NULL) 6815 return (ENOMEM); 6816 6817 t4_read_mtu_tbl(sc, mtus, NULL); 6818 6819 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 6820 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 6821 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 6822 mtus[14], mtus[15]); 6823 6824 rc = sbuf_finish(sb); 6825 sbuf_delete(sb); 6826 6827 return (rc); 6828 } 6829 6830 static int 6831 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 6832 { 6833 struct adapter *sc = arg1; 6834 struct sbuf *sb; 6835 int rc, i; 6836 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 6837 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 6838 static const char *tx_stats[MAX_PM_NSTATS] = { 6839 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 6840 "Tx FIFO wait", NULL, "Tx latency" 6841 }; 6842 static const char *rx_stats[MAX_PM_NSTATS] = { 6843 "Read:", "Write bypass:", "Write mem:", "Flush:", 6844 " Rx FIFO wait", NULL, "Rx latency" 6845 }; 6846 6847 rc = sysctl_wire_old_buffer(req, 0); 6848 if (rc != 0) 6849 return (rc); 6850 6851 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6852 if (sb == NULL) 6853 return (ENOMEM); 6854 6855 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 6856 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 6857 6858 sbuf_printf(sb, " Tx pcmds Tx bytes"); 6859 for (i = 0; i < 4; i++) { 6860 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 6861 tx_cyc[i]); 6862 } 6863 6864 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 6865 for (i = 0; i < 4; i++) { 6866 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 6867 rx_cyc[i]); 6868 } 6869 6870 if (chip_id(sc) > CHELSIO_T5) { 6871 sbuf_printf(sb, 6872 "\n Total wait Total occupancy"); 6873 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 6874 tx_cyc[i]); 6875 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 6876 rx_cyc[i]); 6877 6878 i += 2; 6879 MPASS(i < nitems(tx_stats)); 6880 6881 sbuf_printf(sb, 6882 "\n Reads Total wait"); 6883 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 6884 tx_cyc[i]); 6885 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 6886 rx_cyc[i]); 6887 } 6888 6889 rc = sbuf_finish(sb); 6890 sbuf_delete(sb); 6891 6892 return (rc); 6893 } 6894 6895 static int 6896 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 6897 { 6898 struct adapter *sc = arg1; 6899 struct sbuf *sb; 6900 int rc; 6901 struct tp_rdma_stats stats; 6902 6903 rc = sysctl_wire_old_buffer(req, 0); 6904 if (rc != 0) 6905 return (rc); 6906 6907 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6908 if (sb == NULL) 6909 return (ENOMEM); 6910 6911 mtx_lock(&sc->reg_lock); 6912 t4_tp_get_rdma_stats(sc, &stats); 6913 mtx_unlock(&sc->reg_lock); 6914 6915 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 6916 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 6917 6918 rc = sbuf_finish(sb); 6919 sbuf_delete(sb); 6920 6921 return (rc); 6922 } 6923 6924 static int 6925 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 6926 { 6927 struct adapter *sc = arg1; 6928 struct sbuf *sb; 6929 int rc; 6930 struct tp_tcp_stats v4, v6; 6931 6932 rc = sysctl_wire_old_buffer(req, 0); 6933 if (rc != 0) 6934 return (rc); 6935 6936 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6937 if (sb == NULL) 6938 return (ENOMEM); 6939 6940 mtx_lock(&sc->reg_lock); 6941 t4_tp_get_tcp_stats(sc, &v4, &v6); 6942 mtx_unlock(&sc->reg_lock); 6943 6944 sbuf_printf(sb, 6945 " IP IPv6\n"); 6946 sbuf_printf(sb, "OutRsts: %20u %20u\n", 6947 v4.tcp_out_rsts, v6.tcp_out_rsts); 6948 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 6949 v4.tcp_in_segs, v6.tcp_in_segs); 6950 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 6951 v4.tcp_out_segs, v6.tcp_out_segs); 6952 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 6953 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 6954 6955 rc = sbuf_finish(sb); 6956 sbuf_delete(sb); 6957 6958 return (rc); 6959 } 6960 6961 static int 6962 sysctl_tids(SYSCTL_HANDLER_ARGS) 6963 { 6964 struct adapter *sc = arg1; 6965 struct sbuf *sb; 6966 int rc; 6967 struct tid_info *t = &sc->tids; 6968 6969 rc = sysctl_wire_old_buffer(req, 0); 6970 if (rc != 0) 6971 return (rc); 6972 6973 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6974 if (sb == NULL) 6975 return (ENOMEM); 6976 6977 if (t->natids) { 6978 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 6979 t->atids_in_use); 6980 } 6981 6982 if (t->ntids) { 6983 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 6984 uint32_t b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 6985 6986 if (b) { 6987 sbuf_printf(sb, "TID range: 0-%u, %u-%u", b - 1, 6988 t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4, 6989 t->ntids - 1); 6990 } else { 6991 sbuf_printf(sb, "TID range: %u-%u", 6992 t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4, 6993 t->ntids - 1); 6994 } 6995 } else 6996 sbuf_printf(sb, "TID range: 0-%u", t->ntids - 1); 6997 sbuf_printf(sb, ", in use: %u\n", 6998 atomic_load_acq_int(&t->tids_in_use)); 6999 } 7000 7001 if (t->nstids) { 7002 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 7003 t->stid_base + t->nstids - 1, t->stids_in_use); 7004 } 7005 7006 if (t->nftids) { 7007 sbuf_printf(sb, "FTID range: %u-%u\n", t->ftid_base, 7008 t->ftid_base + t->nftids - 1); 7009 } 7010 7011 if (t->netids) { 7012 sbuf_printf(sb, "ETID range: %u-%u\n", t->etid_base, 7013 t->etid_base + t->netids - 1); 7014 } 7015 7016 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", 7017 t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4), 7018 t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6)); 7019 7020 rc = sbuf_finish(sb); 7021 sbuf_delete(sb); 7022 7023 return (rc); 7024 } 7025 7026 static int 7027 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 7028 { 7029 struct adapter *sc = arg1; 7030 struct sbuf *sb; 7031 int rc; 7032 struct tp_err_stats stats; 7033 7034 rc = sysctl_wire_old_buffer(req, 0); 7035 if (rc != 0) 7036 return (rc); 7037 7038 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 7039 if (sb == NULL) 7040 return (ENOMEM); 7041 7042 mtx_lock(&sc->reg_lock); 7043 t4_tp_get_err_stats(sc, &stats); 7044 mtx_unlock(&sc->reg_lock); 7045 7046 if (sc->chip_params->nchan > 2) { 7047 sbuf_printf(sb, " channel 0 channel 1" 7048 " channel 2 channel 3\n"); 7049 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 7050 stats.mac_in_errs[0], stats.mac_in_errs[1], 7051 stats.mac_in_errs[2], stats.mac_in_errs[3]); 7052 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 7053 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 7054 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 7055 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 7056 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 7057 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 7058 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 7059 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 7060 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 7061 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 7062 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 7063 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 7064 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 7065 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 7066 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 7067 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 7068 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 7069 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 7070 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 7071 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 7072 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 7073 } else { 7074 sbuf_printf(sb, " channel 0 channel 1\n"); 7075 sbuf_printf(sb, "macInErrs: %10u %10u\n", 7076 stats.mac_in_errs[0], stats.mac_in_errs[1]); 7077 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 7078 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 7079 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 7080 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 7081 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 7082 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 7083 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 7084 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 7085 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 7086 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 7087 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 7088 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 7089 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 7090 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 7091 } 7092 7093 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 7094 stats.ofld_no_neigh, stats.ofld_cong_defer); 7095 7096 rc = sbuf_finish(sb); 7097 sbuf_delete(sb); 7098 7099 return (rc); 7100 } 7101 7102 static int 7103 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 7104 { 7105 struct adapter *sc = arg1; 7106 struct tp_params *tpp = &sc->params.tp; 7107 u_int mask; 7108 int rc; 7109 7110 mask = tpp->la_mask >> 16; 7111 rc = sysctl_handle_int(oidp, &mask, 0, req); 7112 if (rc != 0 || req->newptr == NULL) 7113 return (rc); 7114 if (mask > 0xffff) 7115 return (EINVAL); 7116 tpp->la_mask = mask << 16; 7117 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask); 7118 7119 return (0); 7120 } 7121 7122 struct field_desc { 7123 const char *name; 7124 u_int start; 7125 u_int width; 7126 }; 7127 7128 static void 7129 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 7130 { 7131 char buf[32]; 7132 int line_size = 0; 7133 7134 while (f->name) { 7135 uint64_t mask = (1ULL << f->width) - 1; 7136 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 7137 ((uintmax_t)v >> f->start) & mask); 7138 7139 if (line_size + len >= 79) { 7140 line_size = 8; 7141 sbuf_printf(sb, "\n "); 7142 } 7143 sbuf_printf(sb, "%s ", buf); 7144 line_size += len + 1; 7145 f++; 7146 } 7147 sbuf_printf(sb, "\n"); 7148 } 7149 7150 static const struct field_desc tp_la0[] = { 7151 { "RcfOpCodeOut", 60, 4 }, 7152 { "State", 56, 4 }, 7153 { "WcfState", 52, 4 }, 7154 { "RcfOpcSrcOut", 50, 2 }, 7155 { "CRxError", 49, 1 }, 7156 { "ERxError", 48, 1 }, 7157 { "SanityFailed", 47, 1 }, 7158 { "SpuriousMsg", 46, 1 }, 7159 { "FlushInputMsg", 45, 1 }, 7160 { "FlushInputCpl", 44, 1 }, 7161 { "RssUpBit", 43, 1 }, 7162 { "RssFilterHit", 42, 1 }, 7163 { "Tid", 32, 10 }, 7164 { "InitTcb", 31, 1 }, 7165 { "LineNumber", 24, 7 }, 7166 { "Emsg", 23, 1 }, 7167 { "EdataOut", 22, 1 }, 7168 { "Cmsg", 21, 1 }, 7169 { "CdataOut", 20, 1 }, 7170 { "EreadPdu", 19, 1 }, 7171 { "CreadPdu", 18, 1 }, 7172 { "TunnelPkt", 17, 1 }, 7173 { "RcfPeerFin", 16, 1 }, 7174 { "RcfReasonOut", 12, 4 }, 7175 { "TxCchannel", 10, 2 }, 7176 { "RcfTxChannel", 8, 2 }, 7177 { "RxEchannel", 6, 2 }, 7178 { "RcfRxChannel", 5, 1 }, 7179 { "RcfDataOutSrdy", 4, 1 }, 7180 { "RxDvld", 3, 1 }, 7181 { "RxOoDvld", 2, 1 }, 7182 { "RxCongestion", 1, 1 }, 7183 { "TxCongestion", 0, 1 }, 7184 { NULL } 7185 }; 7186 7187 static const struct field_desc tp_la1[] = { 7188 { "CplCmdIn", 56, 8 }, 7189 { "CplCmdOut", 48, 8 }, 7190 { "ESynOut", 47, 1 }, 7191 { "EAckOut", 46, 1 }, 7192 { "EFinOut", 45, 1 }, 7193 { "ERstOut", 44, 1 }, 7194 { "SynIn", 43, 1 }, 7195 { "AckIn", 42, 1 }, 7196 { "FinIn", 41, 1 }, 7197 { "RstIn", 40, 1 }, 7198 { "DataIn", 39, 1 }, 7199 { "DataInVld", 38, 1 }, 7200 { "PadIn", 37, 1 }, 7201 { "RxBufEmpty", 36, 1 }, 7202 { "RxDdp", 35, 1 }, 7203 { "RxFbCongestion", 34, 1 }, 7204 { "TxFbCongestion", 33, 1 }, 7205 { "TxPktSumSrdy", 32, 1 }, 7206 { "RcfUlpType", 28, 4 }, 7207 { "Eread", 27, 1 }, 7208 { "Ebypass", 26, 1 }, 7209 { "Esave", 25, 1 }, 7210 { "Static0", 24, 1 }, 7211 { "Cread", 23, 1 }, 7212 { "Cbypass", 22, 1 }, 7213 { "Csave", 21, 1 }, 7214 { "CPktOut", 20, 1 }, 7215 { "RxPagePoolFull", 18, 2 }, 7216 { "RxLpbkPkt", 17, 1 }, 7217 { "TxLpbkPkt", 16, 1 }, 7218 { "RxVfValid", 15, 1 }, 7219 { "SynLearned", 14, 1 }, 7220 { "SetDelEntry", 13, 1 }, 7221 { "SetInvEntry", 12, 1 }, 7222 { "CpcmdDvld", 11, 1 }, 7223 { "CpcmdSave", 10, 1 }, 7224 { "RxPstructsFull", 8, 2 }, 7225 { "EpcmdDvld", 7, 1 }, 7226 { "EpcmdFlush", 6, 1 }, 7227 { "EpcmdTrimPrefix", 5, 1 }, 7228 { "EpcmdTrimPostfix", 4, 1 }, 7229 { "ERssIp4Pkt", 3, 1 }, 7230 { "ERssIp6Pkt", 2, 1 }, 7231 { "ERssTcpUdpPkt", 1, 1 }, 7232 { "ERssFceFipPkt", 0, 1 }, 7233 { NULL } 7234 }; 7235 7236 static const struct field_desc tp_la2[] = { 7237 { "CplCmdIn", 56, 8 }, 7238 { "MpsVfVld", 55, 1 }, 7239 { "MpsPf", 52, 3 }, 7240 { "MpsVf", 44, 8 }, 7241 { "SynIn", 43, 1 }, 7242 { "AckIn", 42, 1 }, 7243 { "FinIn", 41, 1 }, 7244 { "RstIn", 40, 1 }, 7245 { "DataIn", 39, 1 }, 7246 { "DataInVld", 38, 1 }, 7247 { "PadIn", 37, 1 }, 7248 { "RxBufEmpty", 36, 1 }, 7249 { "RxDdp", 35, 1 }, 7250 { "RxFbCongestion", 34, 1 }, 7251 { "TxFbCongestion", 33, 1 }, 7252 { "TxPktSumSrdy", 32, 1 }, 7253 { "RcfUlpType", 28, 4 }, 7254 { "Eread", 27, 1 }, 7255 { "Ebypass", 26, 1 }, 7256 { "Esave", 25, 1 }, 7257 { "Static0", 24, 1 }, 7258 { "Cread", 23, 1 }, 7259 { "Cbypass", 22, 1 }, 7260 { "Csave", 21, 1 }, 7261 { "CPktOut", 20, 1 }, 7262 { "RxPagePoolFull", 18, 2 }, 7263 { "RxLpbkPkt", 17, 1 }, 7264 { "TxLpbkPkt", 16, 1 }, 7265 { "RxVfValid", 15, 1 }, 7266 { "SynLearned", 14, 1 }, 7267 { "SetDelEntry", 13, 1 }, 7268 { "SetInvEntry", 12, 1 }, 7269 { "CpcmdDvld", 11, 1 }, 7270 { "CpcmdSave", 10, 1 }, 7271 { "RxPstructsFull", 8, 2 }, 7272 { "EpcmdDvld", 7, 1 }, 7273 { "EpcmdFlush", 6, 1 }, 7274 { "EpcmdTrimPrefix", 5, 1 }, 7275 { "EpcmdTrimPostfix", 4, 1 }, 7276 { "ERssIp4Pkt", 3, 1 }, 7277 { "ERssIp6Pkt", 2, 1 }, 7278 { "ERssTcpUdpPkt", 1, 1 }, 7279 { "ERssFceFipPkt", 0, 1 }, 7280 { NULL } 7281 }; 7282 7283 static void 7284 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 7285 { 7286 7287 field_desc_show(sb, *p, tp_la0); 7288 } 7289 7290 static void 7291 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 7292 { 7293 7294 if (idx) 7295 sbuf_printf(sb, "\n"); 7296 field_desc_show(sb, p[0], tp_la0); 7297 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 7298 field_desc_show(sb, p[1], tp_la0); 7299 } 7300 7301 static void 7302 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 7303 { 7304 7305 if (idx) 7306 sbuf_printf(sb, "\n"); 7307 field_desc_show(sb, p[0], tp_la0); 7308 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 7309 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 7310 } 7311 7312 static int 7313 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 7314 { 7315 struct adapter *sc = arg1; 7316 struct sbuf *sb; 7317 uint64_t *buf, *p; 7318 int rc; 7319 u_int i, inc; 7320 void (*show_func)(struct sbuf *, uint64_t *, int); 7321 7322 rc = sysctl_wire_old_buffer(req, 0); 7323 if (rc != 0) 7324 return (rc); 7325 7326 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7327 if (sb == NULL) 7328 return (ENOMEM); 7329 7330 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 7331 7332 t4_tp_read_la(sc, buf, NULL); 7333 p = buf; 7334 7335 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 7336 case 2: 7337 inc = 2; 7338 show_func = tp_la_show2; 7339 break; 7340 case 3: 7341 inc = 2; 7342 show_func = tp_la_show3; 7343 break; 7344 default: 7345 inc = 1; 7346 show_func = tp_la_show; 7347 } 7348 7349 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 7350 (*show_func)(sb, p, i); 7351 7352 rc = sbuf_finish(sb); 7353 sbuf_delete(sb); 7354 free(buf, M_CXGBE); 7355 return (rc); 7356 } 7357 7358 static int 7359 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 7360 { 7361 struct adapter *sc = arg1; 7362 struct sbuf *sb; 7363 int rc; 7364 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 7365 7366 rc = sysctl_wire_old_buffer(req, 0); 7367 if (rc != 0) 7368 return (rc); 7369 7370 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 7371 if (sb == NULL) 7372 return (ENOMEM); 7373 7374 t4_get_chan_txrate(sc, nrate, orate); 7375 7376 if (sc->chip_params->nchan > 2) { 7377 sbuf_printf(sb, " channel 0 channel 1" 7378 " channel 2 channel 3\n"); 7379 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 7380 nrate[0], nrate[1], nrate[2], nrate[3]); 7381 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 7382 orate[0], orate[1], orate[2], orate[3]); 7383 } else { 7384 sbuf_printf(sb, " channel 0 channel 1\n"); 7385 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 7386 nrate[0], nrate[1]); 7387 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 7388 orate[0], orate[1]); 7389 } 7390 7391 rc = sbuf_finish(sb); 7392 sbuf_delete(sb); 7393 7394 return (rc); 7395 } 7396 7397 static int 7398 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 7399 { 7400 struct adapter *sc = arg1; 7401 struct sbuf *sb; 7402 uint32_t *buf, *p; 7403 int rc, i; 7404 7405 rc = sysctl_wire_old_buffer(req, 0); 7406 if (rc != 0) 7407 return (rc); 7408 7409 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7410 if (sb == NULL) 7411 return (ENOMEM); 7412 7413 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 7414 M_ZERO | M_WAITOK); 7415 7416 t4_ulprx_read_la(sc, buf); 7417 p = buf; 7418 7419 sbuf_printf(sb, " Pcmd Type Message" 7420 " Data"); 7421 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 7422 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 7423 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 7424 } 7425 7426 rc = sbuf_finish(sb); 7427 sbuf_delete(sb); 7428 free(buf, M_CXGBE); 7429 return (rc); 7430 } 7431 7432 static int 7433 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 7434 { 7435 struct adapter *sc = arg1; 7436 struct sbuf *sb; 7437 int rc, v; 7438 7439 rc = sysctl_wire_old_buffer(req, 0); 7440 if (rc != 0) 7441 return (rc); 7442 7443 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7444 if (sb == NULL) 7445 return (ENOMEM); 7446 7447 v = t4_read_reg(sc, A_SGE_STAT_CFG); 7448 if (G_STATSOURCE_T5(v) == 7) { 7449 if (G_STATMODE(v) == 0) { 7450 sbuf_printf(sb, "total %d, incomplete %d", 7451 t4_read_reg(sc, A_SGE_STAT_TOTAL), 7452 t4_read_reg(sc, A_SGE_STAT_MATCH)); 7453 } else if (G_STATMODE(v) == 1) { 7454 sbuf_printf(sb, "total %d, data overflow %d", 7455 t4_read_reg(sc, A_SGE_STAT_TOTAL), 7456 t4_read_reg(sc, A_SGE_STAT_MATCH)); 7457 } 7458 } 7459 rc = sbuf_finish(sb); 7460 sbuf_delete(sb); 7461 7462 return (rc); 7463 } 7464 #endif 7465 7466 #ifdef TCP_OFFLOAD 7467 static void 7468 unit_conv(char *buf, size_t len, u_int val, u_int factor) 7469 { 7470 u_int rem = val % factor; 7471 7472 if (rem == 0) 7473 snprintf(buf, len, "%u", val / factor); 7474 else { 7475 while (rem % 10 == 0) 7476 rem /= 10; 7477 snprintf(buf, len, "%u.%u", val / factor, rem); 7478 } 7479 } 7480 7481 static int 7482 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 7483 { 7484 struct adapter *sc = arg1; 7485 char buf[16]; 7486 u_int res, re; 7487 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 7488 7489 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 7490 switch (arg2) { 7491 case 0: 7492 /* timer_tick */ 7493 re = G_TIMERRESOLUTION(res); 7494 break; 7495 case 1: 7496 /* TCP timestamp tick */ 7497 re = G_TIMESTAMPRESOLUTION(res); 7498 break; 7499 case 2: 7500 /* DACK tick */ 7501 re = G_DELAYEDACKRESOLUTION(res); 7502 break; 7503 default: 7504 return (EDOOFUS); 7505 } 7506 7507 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 7508 7509 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 7510 } 7511 7512 static int 7513 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 7514 { 7515 struct adapter *sc = arg1; 7516 u_int res, dack_re, v; 7517 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 7518 7519 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 7520 dack_re = G_DELAYEDACKRESOLUTION(res); 7521 v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER); 7522 7523 return (sysctl_handle_int(oidp, &v, 0, req)); 7524 } 7525 7526 static int 7527 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 7528 { 7529 struct adapter *sc = arg1; 7530 int reg = arg2; 7531 u_int tre; 7532 u_long tp_tick_us, v; 7533 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 7534 7535 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 7536 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 7537 reg == A_TP_KEEP_IDLE || A_TP_KEEP_INTVL || reg == A_TP_INIT_SRTT || 7538 reg == A_TP_FINWAIT2_TIMER); 7539 7540 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 7541 tp_tick_us = (cclk_ps << tre) / 1000000; 7542 7543 if (reg == A_TP_INIT_SRTT) 7544 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 7545 else 7546 v = tp_tick_us * t4_read_reg(sc, reg); 7547 7548 return (sysctl_handle_long(oidp, &v, 0, req)); 7549 } 7550 #endif 7551 7552 static uint32_t 7553 fconf_iconf_to_mode(uint32_t fconf, uint32_t iconf) 7554 { 7555 uint32_t mode; 7556 7557 mode = T4_FILTER_IPv4 | T4_FILTER_IPv6 | T4_FILTER_IP_SADDR | 7558 T4_FILTER_IP_DADDR | T4_FILTER_IP_SPORT | T4_FILTER_IP_DPORT; 7559 7560 if (fconf & F_FRAGMENTATION) 7561 mode |= T4_FILTER_IP_FRAGMENT; 7562 7563 if (fconf & F_MPSHITTYPE) 7564 mode |= T4_FILTER_MPS_HIT_TYPE; 7565 7566 if (fconf & F_MACMATCH) 7567 mode |= T4_FILTER_MAC_IDX; 7568 7569 if (fconf & F_ETHERTYPE) 7570 mode |= T4_FILTER_ETH_TYPE; 7571 7572 if (fconf & F_PROTOCOL) 7573 mode |= T4_FILTER_IP_PROTO; 7574 7575 if (fconf & F_TOS) 7576 mode |= T4_FILTER_IP_TOS; 7577 7578 if (fconf & F_VLAN) 7579 mode |= T4_FILTER_VLAN; 7580 7581 if (fconf & F_VNIC_ID) { 7582 mode |= T4_FILTER_VNIC; 7583 if (iconf & F_VNIC) 7584 mode |= T4_FILTER_IC_VNIC; 7585 } 7586 7587 if (fconf & F_PORT) 7588 mode |= T4_FILTER_PORT; 7589 7590 if (fconf & F_FCOE) 7591 mode |= T4_FILTER_FCoE; 7592 7593 return (mode); 7594 } 7595 7596 static uint32_t 7597 mode_to_fconf(uint32_t mode) 7598 { 7599 uint32_t fconf = 0; 7600 7601 if (mode & T4_FILTER_IP_FRAGMENT) 7602 fconf |= F_FRAGMENTATION; 7603 7604 if (mode & T4_FILTER_MPS_HIT_TYPE) 7605 fconf |= F_MPSHITTYPE; 7606 7607 if (mode & T4_FILTER_MAC_IDX) 7608 fconf |= F_MACMATCH; 7609 7610 if (mode & T4_FILTER_ETH_TYPE) 7611 fconf |= F_ETHERTYPE; 7612 7613 if (mode & T4_FILTER_IP_PROTO) 7614 fconf |= F_PROTOCOL; 7615 7616 if (mode & T4_FILTER_IP_TOS) 7617 fconf |= F_TOS; 7618 7619 if (mode & T4_FILTER_VLAN) 7620 fconf |= F_VLAN; 7621 7622 if (mode & T4_FILTER_VNIC) 7623 fconf |= F_VNIC_ID; 7624 7625 if (mode & T4_FILTER_PORT) 7626 fconf |= F_PORT; 7627 7628 if (mode & T4_FILTER_FCoE) 7629 fconf |= F_FCOE; 7630 7631 return (fconf); 7632 } 7633 7634 static uint32_t 7635 mode_to_iconf(uint32_t mode) 7636 { 7637 7638 if (mode & T4_FILTER_IC_VNIC) 7639 return (F_VNIC); 7640 return (0); 7641 } 7642 7643 static int check_fspec_against_fconf_iconf(struct adapter *sc, 7644 struct t4_filter_specification *fs) 7645 { 7646 struct tp_params *tpp = &sc->params.tp; 7647 uint32_t fconf = 0; 7648 7649 if (fs->val.frag || fs->mask.frag) 7650 fconf |= F_FRAGMENTATION; 7651 7652 if (fs->val.matchtype || fs->mask.matchtype) 7653 fconf |= F_MPSHITTYPE; 7654 7655 if (fs->val.macidx || fs->mask.macidx) 7656 fconf |= F_MACMATCH; 7657 7658 if (fs->val.ethtype || fs->mask.ethtype) 7659 fconf |= F_ETHERTYPE; 7660 7661 if (fs->val.proto || fs->mask.proto) 7662 fconf |= F_PROTOCOL; 7663 7664 if (fs->val.tos || fs->mask.tos) 7665 fconf |= F_TOS; 7666 7667 if (fs->val.vlan_vld || fs->mask.vlan_vld) 7668 fconf |= F_VLAN; 7669 7670 if (fs->val.ovlan_vld || fs->mask.ovlan_vld) { 7671 fconf |= F_VNIC_ID; 7672 if (tpp->ingress_config & F_VNIC) 7673 return (EINVAL); 7674 } 7675 7676 if (fs->val.pfvf_vld || fs->mask.pfvf_vld) { 7677 fconf |= F_VNIC_ID; 7678 if ((tpp->ingress_config & F_VNIC) == 0) 7679 return (EINVAL); 7680 } 7681 7682 if (fs->val.iport || fs->mask.iport) 7683 fconf |= F_PORT; 7684 7685 if (fs->val.fcoe || fs->mask.fcoe) 7686 fconf |= F_FCOE; 7687 7688 if ((tpp->vlan_pri_map | fconf) != tpp->vlan_pri_map) 7689 return (E2BIG); 7690 7691 return (0); 7692 } 7693 7694 static int 7695 get_filter_mode(struct adapter *sc, uint32_t *mode) 7696 { 7697 struct tp_params *tpp = &sc->params.tp; 7698 7699 /* 7700 * We trust the cached values of the relevant TP registers. This means 7701 * things work reliably only if writes to those registers are always via 7702 * t4_set_filter_mode. 7703 */ 7704 *mode = fconf_iconf_to_mode(tpp->vlan_pri_map, tpp->ingress_config); 7705 7706 return (0); 7707 } 7708 7709 static int 7710 set_filter_mode(struct adapter *sc, uint32_t mode) 7711 { 7712 struct tp_params *tpp = &sc->params.tp; 7713 uint32_t fconf, iconf; 7714 int rc; 7715 7716 iconf = mode_to_iconf(mode); 7717 if ((iconf ^ tpp->ingress_config) & F_VNIC) { 7718 /* 7719 * For now we just complain if A_TP_INGRESS_CONFIG is not 7720 * already set to the correct value for the requested filter 7721 * mode. It's not clear if it's safe to write to this register 7722 * on the fly. (And we trust the cached value of the register). 7723 */ 7724 return (EBUSY); 7725 } 7726 7727 fconf = mode_to_fconf(mode); 7728 7729 rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK, 7730 "t4setfm"); 7731 if (rc) 7732 return (rc); 7733 7734 if (sc->tids.ftids_in_use > 0) { 7735 rc = EBUSY; 7736 goto done; 7737 } 7738 7739 #ifdef TCP_OFFLOAD 7740 if (uld_active(sc, ULD_TOM)) { 7741 rc = EBUSY; 7742 goto done; 7743 } 7744 #endif 7745 7746 rc = -t4_set_filter_mode(sc, fconf); 7747 done: 7748 end_synchronized_op(sc, LOCK_HELD); 7749 return (rc); 7750 } 7751 7752 static inline uint64_t 7753 get_filter_hits(struct adapter *sc, uint32_t fid) 7754 { 7755 uint32_t tcb_addr; 7756 7757 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + 7758 (fid + sc->tids.ftid_base) * TCB_SIZE; 7759 7760 if (is_t4(sc)) { 7761 uint64_t hits; 7762 7763 read_via_memwin(sc, 0, tcb_addr + 16, (uint32_t *)&hits, 8); 7764 return (be64toh(hits)); 7765 } else { 7766 uint32_t hits; 7767 7768 read_via_memwin(sc, 0, tcb_addr + 24, &hits, 4); 7769 return (be32toh(hits)); 7770 } 7771 } 7772 7773 static int 7774 get_filter(struct adapter *sc, struct t4_filter *t) 7775 { 7776 int i, rc, nfilters = sc->tids.nftids; 7777 struct filter_entry *f; 7778 7779 rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK, 7780 "t4getf"); 7781 if (rc) 7782 return (rc); 7783 7784 if (sc->tids.ftids_in_use == 0 || sc->tids.ftid_tab == NULL || 7785 t->idx >= nfilters) { 7786 t->idx = 0xffffffff; 7787 goto done; 7788 } 7789 7790 f = &sc->tids.ftid_tab[t->idx]; 7791 for (i = t->idx; i < nfilters; i++, f++) { 7792 if (f->valid) { 7793 t->idx = i; 7794 t->l2tidx = f->l2t ? f->l2t->idx : 0; 7795 t->smtidx = f->smtidx; 7796 if (f->fs.hitcnts) 7797 t->hits = get_filter_hits(sc, t->idx); 7798 else 7799 t->hits = UINT64_MAX; 7800 t->fs = f->fs; 7801 7802 goto done; 7803 } 7804 } 7805 7806 t->idx = 0xffffffff; 7807 done: 7808 end_synchronized_op(sc, LOCK_HELD); 7809 return (0); 7810 } 7811 7812 static int 7813 set_filter(struct adapter *sc, struct t4_filter *t) 7814 { 7815 unsigned int nfilters, nports; 7816 struct filter_entry *f; 7817 int i, rc; 7818 7819 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4setf"); 7820 if (rc) 7821 return (rc); 7822 7823 nfilters = sc->tids.nftids; 7824 nports = sc->params.nports; 7825 7826 if (nfilters == 0) { 7827 rc = ENOTSUP; 7828 goto done; 7829 } 7830 7831 if (!(sc->flags & FULL_INIT_DONE)) { 7832 rc = EAGAIN; 7833 goto done; 7834 } 7835 7836 if (t->idx >= nfilters) { 7837 rc = EINVAL; 7838 goto done; 7839 } 7840 7841 /* Validate against the global filter mode and ingress config */ 7842 rc = check_fspec_against_fconf_iconf(sc, &t->fs); 7843 if (rc != 0) 7844 goto done; 7845 7846 if (t->fs.action == FILTER_SWITCH && t->fs.eport >= nports) { 7847 rc = EINVAL; 7848 goto done; 7849 } 7850 7851 if (t->fs.val.iport >= nports) { 7852 rc = EINVAL; 7853 goto done; 7854 } 7855 7856 /* Can't specify an iq if not steering to it */ 7857 if (!t->fs.dirsteer && t->fs.iq) { 7858 rc = EINVAL; 7859 goto done; 7860 } 7861 7862 /* IPv6 filter idx must be 4 aligned */ 7863 if (t->fs.type == 1 && 7864 ((t->idx & 0x3) || t->idx + 4 >= nfilters)) { 7865 rc = EINVAL; 7866 goto done; 7867 } 7868 7869 if (sc->tids.ftid_tab == NULL) { 7870 KASSERT(sc->tids.ftids_in_use == 0, 7871 ("%s: no memory allocated but filters_in_use > 0", 7872 __func__)); 7873 7874 sc->tids.ftid_tab = malloc(sizeof (struct filter_entry) * 7875 nfilters, M_CXGBE, M_NOWAIT | M_ZERO); 7876 if (sc->tids.ftid_tab == NULL) { 7877 rc = ENOMEM; 7878 goto done; 7879 } 7880 mtx_init(&sc->tids.ftid_lock, "T4 filters", 0, MTX_DEF); 7881 } 7882 7883 for (i = 0; i < 4; i++) { 7884 f = &sc->tids.ftid_tab[t->idx + i]; 7885 7886 if (f->pending || f->valid) { 7887 rc = EBUSY; 7888 goto done; 7889 } 7890 if (f->locked) { 7891 rc = EPERM; 7892 goto done; 7893 } 7894 7895 if (t->fs.type == 0) 7896 break; 7897 } 7898 7899 f = &sc->tids.ftid_tab[t->idx]; 7900 f->fs = t->fs; 7901 7902 rc = set_filter_wr(sc, t->idx); 7903 done: 7904 end_synchronized_op(sc, 0); 7905 7906 if (rc == 0) { 7907 mtx_lock(&sc->tids.ftid_lock); 7908 for (;;) { 7909 if (f->pending == 0) { 7910 rc = f->valid ? 0 : EIO; 7911 break; 7912 } 7913 7914 if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock, 7915 PCATCH, "t4setfw", 0)) { 7916 rc = EINPROGRESS; 7917 break; 7918 } 7919 } 7920 mtx_unlock(&sc->tids.ftid_lock); 7921 } 7922 return (rc); 7923 } 7924 7925 static int 7926 del_filter(struct adapter *sc, struct t4_filter *t) 7927 { 7928 unsigned int nfilters; 7929 struct filter_entry *f; 7930 int rc; 7931 7932 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4delf"); 7933 if (rc) 7934 return (rc); 7935 7936 nfilters = sc->tids.nftids; 7937 7938 if (nfilters == 0) { 7939 rc = ENOTSUP; 7940 goto done; 7941 } 7942 7943 if (sc->tids.ftid_tab == NULL || sc->tids.ftids_in_use == 0 || 7944 t->idx >= nfilters) { 7945 rc = EINVAL; 7946 goto done; 7947 } 7948 7949 if (!(sc->flags & FULL_INIT_DONE)) { 7950 rc = EAGAIN; 7951 goto done; 7952 } 7953 7954 f = &sc->tids.ftid_tab[t->idx]; 7955 7956 if (f->pending) { 7957 rc = EBUSY; 7958 goto done; 7959 } 7960 if (f->locked) { 7961 rc = EPERM; 7962 goto done; 7963 } 7964 7965 if (f->valid) { 7966 t->fs = f->fs; /* extra info for the caller */ 7967 rc = del_filter_wr(sc, t->idx); 7968 } 7969 7970 done: 7971 end_synchronized_op(sc, 0); 7972 7973 if (rc == 0) { 7974 mtx_lock(&sc->tids.ftid_lock); 7975 for (;;) { 7976 if (f->pending == 0) { 7977 rc = f->valid ? EIO : 0; 7978 break; 7979 } 7980 7981 if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock, 7982 PCATCH, "t4delfw", 0)) { 7983 rc = EINPROGRESS; 7984 break; 7985 } 7986 } 7987 mtx_unlock(&sc->tids.ftid_lock); 7988 } 7989 7990 return (rc); 7991 } 7992 7993 static void 7994 clear_filter(struct filter_entry *f) 7995 { 7996 if (f->l2t) 7997 t4_l2t_release(f->l2t); 7998 7999 bzero(f, sizeof (*f)); 8000 } 8001 8002 static int 8003 set_filter_wr(struct adapter *sc, int fidx) 8004 { 8005 struct filter_entry *f = &sc->tids.ftid_tab[fidx]; 8006 struct fw_filter_wr *fwr; 8007 unsigned int ftid, vnic_vld, vnic_vld_mask; 8008 struct wrq_cookie cookie; 8009 8010 ASSERT_SYNCHRONIZED_OP(sc); 8011 8012 if (f->fs.newdmac || f->fs.newvlan) { 8013 /* This filter needs an L2T entry; allocate one. */ 8014 f->l2t = t4_l2t_alloc_switching(sc->l2t); 8015 if (f->l2t == NULL) 8016 return (EAGAIN); 8017 if (t4_l2t_set_switching(sc, f->l2t, f->fs.vlan, f->fs.eport, 8018 f->fs.dmac)) { 8019 t4_l2t_release(f->l2t); 8020 f->l2t = NULL; 8021 return (ENOMEM); 8022 } 8023 } 8024 8025 /* Already validated against fconf, iconf */ 8026 MPASS((f->fs.val.pfvf_vld & f->fs.val.ovlan_vld) == 0); 8027 MPASS((f->fs.mask.pfvf_vld & f->fs.mask.ovlan_vld) == 0); 8028 if (f->fs.val.pfvf_vld || f->fs.val.ovlan_vld) 8029 vnic_vld = 1; 8030 else 8031 vnic_vld = 0; 8032 if (f->fs.mask.pfvf_vld || f->fs.mask.ovlan_vld) 8033 vnic_vld_mask = 1; 8034 else 8035 vnic_vld_mask = 0; 8036 8037 ftid = sc->tids.ftid_base + fidx; 8038 8039 fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie); 8040 if (fwr == NULL) 8041 return (ENOMEM); 8042 bzero(fwr, sizeof(*fwr)); 8043 8044 fwr->op_pkd = htobe32(V_FW_WR_OP(FW_FILTER_WR)); 8045 fwr->len16_pkd = htobe32(FW_LEN16(*fwr)); 8046 fwr->tid_to_iq = 8047 htobe32(V_FW_FILTER_WR_TID(ftid) | 8048 V_FW_FILTER_WR_RQTYPE(f->fs.type) | 8049 V_FW_FILTER_WR_NOREPLY(0) | 8050 V_FW_FILTER_WR_IQ(f->fs.iq)); 8051 fwr->del_filter_to_l2tix = 8052 htobe32(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) | 8053 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) | 8054 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) | 8055 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) | 8056 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) | 8057 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) | 8058 V_FW_FILTER_WR_DMAC(f->fs.newdmac) | 8059 V_FW_FILTER_WR_SMAC(f->fs.newsmac) | 8060 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT || 8061 f->fs.newvlan == VLAN_REWRITE) | 8062 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE || 8063 f->fs.newvlan == VLAN_REWRITE) | 8064 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) | 8065 V_FW_FILTER_WR_TXCHAN(f->fs.eport) | 8066 V_FW_FILTER_WR_PRIO(f->fs.prio) | 8067 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0)); 8068 fwr->ethtype = htobe16(f->fs.val.ethtype); 8069 fwr->ethtypem = htobe16(f->fs.mask.ethtype); 8070 fwr->frag_to_ovlan_vldm = 8071 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) | 8072 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) | 8073 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.vlan_vld) | 8074 V_FW_FILTER_WR_OVLAN_VLD(vnic_vld) | 8075 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.vlan_vld) | 8076 V_FW_FILTER_WR_OVLAN_VLDM(vnic_vld_mask)); 8077 fwr->smac_sel = 0; 8078 fwr->rx_chan_rx_rpl_iq = htobe16(V_FW_FILTER_WR_RX_CHAN(0) | 8079 V_FW_FILTER_WR_RX_RPL_IQ(sc->sge.fwq.abs_id)); 8080 fwr->maci_to_matchtypem = 8081 htobe32(V_FW_FILTER_WR_MACI(f->fs.val.macidx) | 8082 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) | 8083 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) | 8084 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) | 8085 V_FW_FILTER_WR_PORT(f->fs.val.iport) | 8086 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) | 8087 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) | 8088 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype)); 8089 fwr->ptcl = f->fs.val.proto; 8090 fwr->ptclm = f->fs.mask.proto; 8091 fwr->ttyp = f->fs.val.tos; 8092 fwr->ttypm = f->fs.mask.tos; 8093 fwr->ivlan = htobe16(f->fs.val.vlan); 8094 fwr->ivlanm = htobe16(f->fs.mask.vlan); 8095 fwr->ovlan = htobe16(f->fs.val.vnic); 8096 fwr->ovlanm = htobe16(f->fs.mask.vnic); 8097 bcopy(f->fs.val.dip, fwr->lip, sizeof (fwr->lip)); 8098 bcopy(f->fs.mask.dip, fwr->lipm, sizeof (fwr->lipm)); 8099 bcopy(f->fs.val.sip, fwr->fip, sizeof (fwr->fip)); 8100 bcopy(f->fs.mask.sip, fwr->fipm, sizeof (fwr->fipm)); 8101 fwr->lp = htobe16(f->fs.val.dport); 8102 fwr->lpm = htobe16(f->fs.mask.dport); 8103 fwr->fp = htobe16(f->fs.val.sport); 8104 fwr->fpm = htobe16(f->fs.mask.sport); 8105 if (f->fs.newsmac) 8106 bcopy(f->fs.smac, fwr->sma, sizeof (fwr->sma)); 8107 8108 f->pending = 1; 8109 sc->tids.ftids_in_use++; 8110 8111 commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie); 8112 return (0); 8113 } 8114 8115 static int 8116 del_filter_wr(struct adapter *sc, int fidx) 8117 { 8118 struct filter_entry *f = &sc->tids.ftid_tab[fidx]; 8119 struct fw_filter_wr *fwr; 8120 unsigned int ftid; 8121 struct wrq_cookie cookie; 8122 8123 ftid = sc->tids.ftid_base + fidx; 8124 8125 fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie); 8126 if (fwr == NULL) 8127 return (ENOMEM); 8128 bzero(fwr, sizeof (*fwr)); 8129 8130 t4_mk_filtdelwr(ftid, fwr, sc->sge.fwq.abs_id); 8131 8132 f->pending = 1; 8133 commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie); 8134 return (0); 8135 } 8136 8137 int 8138 t4_filter_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 8139 { 8140 struct adapter *sc = iq->adapter; 8141 const struct cpl_set_tcb_rpl *rpl = (const void *)(rss + 1); 8142 unsigned int idx = GET_TID(rpl); 8143 unsigned int rc; 8144 struct filter_entry *f; 8145 8146 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 8147 rss->opcode)); 8148 8149 if (is_ftid(sc, idx)) { 8150 8151 idx -= sc->tids.ftid_base; 8152 f = &sc->tids.ftid_tab[idx]; 8153 rc = G_COOKIE(rpl->cookie); 8154 8155 mtx_lock(&sc->tids.ftid_lock); 8156 if (rc == FW_FILTER_WR_FLT_ADDED) { 8157 KASSERT(f->pending, ("%s: filter[%u] isn't pending.", 8158 __func__, idx)); 8159 f->smtidx = (be64toh(rpl->oldval) >> 24) & 0xff; 8160 f->pending = 0; /* asynchronous setup completed */ 8161 f->valid = 1; 8162 } else { 8163 if (rc != FW_FILTER_WR_FLT_DELETED) { 8164 /* Add or delete failed, display an error */ 8165 log(LOG_ERR, 8166 "filter %u setup failed with error %u\n", 8167 idx, rc); 8168 } 8169 8170 clear_filter(f); 8171 sc->tids.ftids_in_use--; 8172 } 8173 wakeup(&sc->tids.ftid_tab); 8174 mtx_unlock(&sc->tids.ftid_lock); 8175 } 8176 8177 return (0); 8178 } 8179 8180 static int 8181 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 8182 { 8183 int rc; 8184 8185 if (cntxt->cid > M_CTXTQID) 8186 return (EINVAL); 8187 8188 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 8189 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 8190 return (EINVAL); 8191 8192 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 8193 if (rc) 8194 return (rc); 8195 8196 if (sc->flags & FW_OK) { 8197 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 8198 &cntxt->data[0]); 8199 if (rc == 0) 8200 goto done; 8201 } 8202 8203 /* 8204 * Read via firmware failed or wasn't even attempted. Read directly via 8205 * the backdoor. 8206 */ 8207 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 8208 done: 8209 end_synchronized_op(sc, 0); 8210 return (rc); 8211 } 8212 8213 static int 8214 load_fw(struct adapter *sc, struct t4_data *fw) 8215 { 8216 int rc; 8217 uint8_t *fw_data; 8218 8219 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 8220 if (rc) 8221 return (rc); 8222 8223 if (sc->flags & FULL_INIT_DONE) { 8224 rc = EBUSY; 8225 goto done; 8226 } 8227 8228 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 8229 if (fw_data == NULL) { 8230 rc = ENOMEM; 8231 goto done; 8232 } 8233 8234 rc = copyin(fw->data, fw_data, fw->len); 8235 if (rc == 0) 8236 rc = -t4_load_fw(sc, fw_data, fw->len); 8237 8238 free(fw_data, M_CXGBE); 8239 done: 8240 end_synchronized_op(sc, 0); 8241 return (rc); 8242 } 8243 8244 #define MAX_READ_BUF_SIZE (128 * 1024) 8245 static int 8246 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 8247 { 8248 uint32_t addr, remaining, n; 8249 uint32_t *buf; 8250 int rc; 8251 uint8_t *dst; 8252 8253 rc = validate_mem_range(sc, mr->addr, mr->len); 8254 if (rc != 0) 8255 return (rc); 8256 8257 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 8258 addr = mr->addr; 8259 remaining = mr->len; 8260 dst = (void *)mr->data; 8261 8262 while (remaining) { 8263 n = min(remaining, MAX_READ_BUF_SIZE); 8264 read_via_memwin(sc, 2, addr, buf, n); 8265 8266 rc = copyout(buf, dst, n); 8267 if (rc != 0) 8268 break; 8269 8270 dst += n; 8271 remaining -= n; 8272 addr += n; 8273 } 8274 8275 free(buf, M_CXGBE); 8276 return (rc); 8277 } 8278 #undef MAX_READ_BUF_SIZE 8279 8280 static int 8281 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 8282 { 8283 int rc; 8284 8285 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 8286 return (EINVAL); 8287 8288 if (i2cd->len > sizeof(i2cd->data)) 8289 return (EFBIG); 8290 8291 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 8292 if (rc) 8293 return (rc); 8294 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 8295 i2cd->offset, i2cd->len, &i2cd->data[0]); 8296 end_synchronized_op(sc, 0); 8297 8298 return (rc); 8299 } 8300 8301 static int 8302 in_range(int val, int lo, int hi) 8303 { 8304 8305 return (val < 0 || (val <= hi && val >= lo)); 8306 } 8307 8308 static int 8309 set_sched_class(struct adapter *sc, struct t4_sched_params *p) 8310 { 8311 int fw_subcmd, fw_type, rc; 8312 8313 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4setsc"); 8314 if (rc) 8315 return (rc); 8316 8317 if (!(sc->flags & FULL_INIT_DONE)) { 8318 rc = EAGAIN; 8319 goto done; 8320 } 8321 8322 /* 8323 * Translate the cxgbetool parameters into T4 firmware parameters. (The 8324 * sub-command and type are in common locations.) 8325 */ 8326 if (p->subcmd == SCHED_CLASS_SUBCMD_CONFIG) 8327 fw_subcmd = FW_SCHED_SC_CONFIG; 8328 else if (p->subcmd == SCHED_CLASS_SUBCMD_PARAMS) 8329 fw_subcmd = FW_SCHED_SC_PARAMS; 8330 else { 8331 rc = EINVAL; 8332 goto done; 8333 } 8334 if (p->type == SCHED_CLASS_TYPE_PACKET) 8335 fw_type = FW_SCHED_TYPE_PKTSCHED; 8336 else { 8337 rc = EINVAL; 8338 goto done; 8339 } 8340 8341 if (fw_subcmd == FW_SCHED_SC_CONFIG) { 8342 /* Vet our parameters ..*/ 8343 if (p->u.config.minmax < 0) { 8344 rc = EINVAL; 8345 goto done; 8346 } 8347 8348 /* And pass the request to the firmware ...*/ 8349 rc = -t4_sched_config(sc, fw_type, p->u.config.minmax, 1); 8350 goto done; 8351 } 8352 8353 if (fw_subcmd == FW_SCHED_SC_PARAMS) { 8354 int fw_level; 8355 int fw_mode; 8356 int fw_rateunit; 8357 int fw_ratemode; 8358 8359 if (p->u.params.level == SCHED_CLASS_LEVEL_CL_RL) 8360 fw_level = FW_SCHED_PARAMS_LEVEL_CL_RL; 8361 else if (p->u.params.level == SCHED_CLASS_LEVEL_CL_WRR) 8362 fw_level = FW_SCHED_PARAMS_LEVEL_CL_WRR; 8363 else if (p->u.params.level == SCHED_CLASS_LEVEL_CH_RL) 8364 fw_level = FW_SCHED_PARAMS_LEVEL_CH_RL; 8365 else { 8366 rc = EINVAL; 8367 goto done; 8368 } 8369 8370 if (p->u.params.mode == SCHED_CLASS_MODE_CLASS) 8371 fw_mode = FW_SCHED_PARAMS_MODE_CLASS; 8372 else if (p->u.params.mode == SCHED_CLASS_MODE_FLOW) 8373 fw_mode = FW_SCHED_PARAMS_MODE_FLOW; 8374 else { 8375 rc = EINVAL; 8376 goto done; 8377 } 8378 8379 if (p->u.params.rateunit == SCHED_CLASS_RATEUNIT_BITS) 8380 fw_rateunit = FW_SCHED_PARAMS_UNIT_BITRATE; 8381 else if (p->u.params.rateunit == SCHED_CLASS_RATEUNIT_PKTS) 8382 fw_rateunit = FW_SCHED_PARAMS_UNIT_PKTRATE; 8383 else { 8384 rc = EINVAL; 8385 goto done; 8386 } 8387 8388 if (p->u.params.ratemode == SCHED_CLASS_RATEMODE_REL) 8389 fw_ratemode = FW_SCHED_PARAMS_RATE_REL; 8390 else if (p->u.params.ratemode == SCHED_CLASS_RATEMODE_ABS) 8391 fw_ratemode = FW_SCHED_PARAMS_RATE_ABS; 8392 else { 8393 rc = EINVAL; 8394 goto done; 8395 } 8396 8397 /* Vet our parameters ... */ 8398 if (!in_range(p->u.params.channel, 0, 3) || 8399 !in_range(p->u.params.cl, 0, sc->chip_params->nsched_cls) || 8400 !in_range(p->u.params.minrate, 0, 10000000) || 8401 !in_range(p->u.params.maxrate, 0, 10000000) || 8402 !in_range(p->u.params.weight, 0, 100)) { 8403 rc = ERANGE; 8404 goto done; 8405 } 8406 8407 /* 8408 * Translate any unset parameters into the firmware's 8409 * nomenclature and/or fail the call if the parameters 8410 * are required ... 8411 */ 8412 if (p->u.params.rateunit < 0 || p->u.params.ratemode < 0 || 8413 p->u.params.channel < 0 || p->u.params.cl < 0) { 8414 rc = EINVAL; 8415 goto done; 8416 } 8417 if (p->u.params.minrate < 0) 8418 p->u.params.minrate = 0; 8419 if (p->u.params.maxrate < 0) { 8420 if (p->u.params.level == SCHED_CLASS_LEVEL_CL_RL || 8421 p->u.params.level == SCHED_CLASS_LEVEL_CH_RL) { 8422 rc = EINVAL; 8423 goto done; 8424 } else 8425 p->u.params.maxrate = 0; 8426 } 8427 if (p->u.params.weight < 0) { 8428 if (p->u.params.level == SCHED_CLASS_LEVEL_CL_WRR) { 8429 rc = EINVAL; 8430 goto done; 8431 } else 8432 p->u.params.weight = 0; 8433 } 8434 if (p->u.params.pktsize < 0) { 8435 if (p->u.params.level == SCHED_CLASS_LEVEL_CL_RL || 8436 p->u.params.level == SCHED_CLASS_LEVEL_CH_RL) { 8437 rc = EINVAL; 8438 goto done; 8439 } else 8440 p->u.params.pktsize = 0; 8441 } 8442 8443 /* See what the firmware thinks of the request ... */ 8444 rc = -t4_sched_params(sc, fw_type, fw_level, fw_mode, 8445 fw_rateunit, fw_ratemode, p->u.params.channel, 8446 p->u.params.cl, p->u.params.minrate, p->u.params.maxrate, 8447 p->u.params.weight, p->u.params.pktsize, 1); 8448 goto done; 8449 } 8450 8451 rc = EINVAL; 8452 done: 8453 end_synchronized_op(sc, 0); 8454 return (rc); 8455 } 8456 8457 static int 8458 set_sched_queue(struct adapter *sc, struct t4_sched_queue *p) 8459 { 8460 struct port_info *pi = NULL; 8461 struct vi_info *vi; 8462 struct sge_txq *txq; 8463 uint32_t fw_mnem, fw_queue, fw_class; 8464 int i, rc; 8465 8466 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4setsq"); 8467 if (rc) 8468 return (rc); 8469 8470 if (!(sc->flags & FULL_INIT_DONE)) { 8471 rc = EAGAIN; 8472 goto done; 8473 } 8474 8475 if (p->port >= sc->params.nports) { 8476 rc = EINVAL; 8477 goto done; 8478 } 8479 8480 /* XXX: Only supported for the main VI. */ 8481 pi = sc->port[p->port]; 8482 vi = &pi->vi[0]; 8483 if (!in_range(p->queue, 0, vi->ntxq - 1) || !in_range(p->cl, 0, 7)) { 8484 rc = EINVAL; 8485 goto done; 8486 } 8487 8488 /* 8489 * Create a template for the FW_PARAMS_CMD mnemonic and value (TX 8490 * Scheduling Class in this case). 8491 */ 8492 fw_mnem = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 8493 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH)); 8494 fw_class = p->cl < 0 ? 0xffffffff : p->cl; 8495 8496 /* 8497 * If op.queue is non-negative, then we're only changing the scheduling 8498 * on a single specified TX queue. 8499 */ 8500 if (p->queue >= 0) { 8501 txq = &sc->sge.txq[vi->first_txq + p->queue]; 8502 fw_queue = (fw_mnem | V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id)); 8503 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, 8504 &fw_class); 8505 goto done; 8506 } 8507 8508 /* 8509 * Change the scheduling on all the TX queues for the 8510 * interface. 8511 */ 8512 for_each_txq(vi, i, txq) { 8513 fw_queue = (fw_mnem | V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id)); 8514 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue, 8515 &fw_class); 8516 if (rc) 8517 goto done; 8518 } 8519 8520 rc = 0; 8521 done: 8522 end_synchronized_op(sc, 0); 8523 return (rc); 8524 } 8525 8526 int 8527 t4_os_find_pci_capability(struct adapter *sc, int cap) 8528 { 8529 int i; 8530 8531 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 8532 } 8533 8534 int 8535 t4_os_pci_save_state(struct adapter *sc) 8536 { 8537 device_t dev; 8538 struct pci_devinfo *dinfo; 8539 8540 dev = sc->dev; 8541 dinfo = device_get_ivars(dev); 8542 8543 pci_cfg_save(dev, dinfo, 0); 8544 return (0); 8545 } 8546 8547 int 8548 t4_os_pci_restore_state(struct adapter *sc) 8549 { 8550 device_t dev; 8551 struct pci_devinfo *dinfo; 8552 8553 dev = sc->dev; 8554 dinfo = device_get_ivars(dev); 8555 8556 pci_cfg_restore(dev, dinfo); 8557 return (0); 8558 } 8559 8560 void 8561 t4_os_portmod_changed(const struct adapter *sc, int idx) 8562 { 8563 struct port_info *pi = sc->port[idx]; 8564 struct vi_info *vi; 8565 struct ifnet *ifp; 8566 int v; 8567 static const char *mod_str[] = { 8568 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 8569 }; 8570 8571 for_each_vi(pi, v, vi) { 8572 build_medialist(pi, &vi->media); 8573 } 8574 8575 ifp = pi->vi[0].ifp; 8576 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 8577 if_printf(ifp, "transceiver unplugged.\n"); 8578 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 8579 if_printf(ifp, "unknown transceiver inserted.\n"); 8580 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 8581 if_printf(ifp, "unsupported transceiver inserted.\n"); 8582 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 8583 if_printf(ifp, "%s transceiver inserted.\n", 8584 mod_str[pi->mod_type]); 8585 } else { 8586 if_printf(ifp, "transceiver (type %d) inserted.\n", 8587 pi->mod_type); 8588 } 8589 } 8590 8591 void 8592 t4_os_link_changed(struct adapter *sc, int idx, int link_stat, int reason) 8593 { 8594 struct port_info *pi = sc->port[idx]; 8595 struct vi_info *vi; 8596 struct ifnet *ifp; 8597 int v; 8598 8599 if (link_stat) 8600 pi->linkdnrc = -1; 8601 else { 8602 if (reason >= 0) 8603 pi->linkdnrc = reason; 8604 } 8605 for_each_vi(pi, v, vi) { 8606 ifp = vi->ifp; 8607 if (ifp == NULL) 8608 continue; 8609 8610 if (link_stat) { 8611 ifp->if_baudrate = IF_Mbps(pi->link_cfg.speed); 8612 if_link_state_change(ifp, LINK_STATE_UP); 8613 } else { 8614 if_link_state_change(ifp, LINK_STATE_DOWN); 8615 } 8616 } 8617 } 8618 8619 void 8620 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 8621 { 8622 struct adapter *sc; 8623 8624 sx_slock(&t4_list_lock); 8625 SLIST_FOREACH(sc, &t4_list, link) { 8626 /* 8627 * func should not make any assumptions about what state sc is 8628 * in - the only guarantee is that sc->sc_lock is a valid lock. 8629 */ 8630 func(sc, arg); 8631 } 8632 sx_sunlock(&t4_list_lock); 8633 } 8634 8635 static int 8636 t4_open(struct cdev *dev, int flags, int type, struct thread *td) 8637 { 8638 return (0); 8639 } 8640 8641 static int 8642 t4_close(struct cdev *dev, int flags, int type, struct thread *td) 8643 { 8644 return (0); 8645 } 8646 8647 static int 8648 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 8649 struct thread *td) 8650 { 8651 int rc; 8652 struct adapter *sc = dev->si_drv1; 8653 8654 rc = priv_check(td, PRIV_DRIVER); 8655 if (rc != 0) 8656 return (rc); 8657 8658 switch (cmd) { 8659 case CHELSIO_T4_GETREG: { 8660 struct t4_reg *edata = (struct t4_reg *)data; 8661 8662 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 8663 return (EFAULT); 8664 8665 if (edata->size == 4) 8666 edata->val = t4_read_reg(sc, edata->addr); 8667 else if (edata->size == 8) 8668 edata->val = t4_read_reg64(sc, edata->addr); 8669 else 8670 return (EINVAL); 8671 8672 break; 8673 } 8674 case CHELSIO_T4_SETREG: { 8675 struct t4_reg *edata = (struct t4_reg *)data; 8676 8677 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 8678 return (EFAULT); 8679 8680 if (edata->size == 4) { 8681 if (edata->val & 0xffffffff00000000) 8682 return (EINVAL); 8683 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 8684 } else if (edata->size == 8) 8685 t4_write_reg64(sc, edata->addr, edata->val); 8686 else 8687 return (EINVAL); 8688 break; 8689 } 8690 case CHELSIO_T4_REGDUMP: { 8691 struct t4_regdump *regs = (struct t4_regdump *)data; 8692 int reglen = is_t4(sc) ? T4_REGDUMP_SIZE : T5_REGDUMP_SIZE; 8693 uint8_t *buf; 8694 8695 if (regs->len < reglen) { 8696 regs->len = reglen; /* hint to the caller */ 8697 return (ENOBUFS); 8698 } 8699 8700 regs->len = reglen; 8701 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 8702 get_regs(sc, regs, buf); 8703 rc = copyout(buf, regs->data, reglen); 8704 free(buf, M_CXGBE); 8705 break; 8706 } 8707 case CHELSIO_T4_GET_FILTER_MODE: 8708 rc = get_filter_mode(sc, (uint32_t *)data); 8709 break; 8710 case CHELSIO_T4_SET_FILTER_MODE: 8711 rc = set_filter_mode(sc, *(uint32_t *)data); 8712 break; 8713 case CHELSIO_T4_GET_FILTER: 8714 rc = get_filter(sc, (struct t4_filter *)data); 8715 break; 8716 case CHELSIO_T4_SET_FILTER: 8717 rc = set_filter(sc, (struct t4_filter *)data); 8718 break; 8719 case CHELSIO_T4_DEL_FILTER: 8720 rc = del_filter(sc, (struct t4_filter *)data); 8721 break; 8722 case CHELSIO_T4_GET_SGE_CONTEXT: 8723 rc = get_sge_context(sc, (struct t4_sge_context *)data); 8724 break; 8725 case CHELSIO_T4_LOAD_FW: 8726 rc = load_fw(sc, (struct t4_data *)data); 8727 break; 8728 case CHELSIO_T4_GET_MEM: 8729 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 8730 break; 8731 case CHELSIO_T4_GET_I2C: 8732 rc = read_i2c(sc, (struct t4_i2c_data *)data); 8733 break; 8734 case CHELSIO_T4_CLEAR_STATS: { 8735 int i, v; 8736 u_int port_id = *(uint32_t *)data; 8737 struct port_info *pi; 8738 struct vi_info *vi; 8739 8740 if (port_id >= sc->params.nports) 8741 return (EINVAL); 8742 pi = sc->port[port_id]; 8743 8744 /* MAC stats */ 8745 t4_clr_port_stats(sc, pi->tx_chan); 8746 pi->tx_parse_error = 0; 8747 mtx_lock(&sc->reg_lock); 8748 for_each_vi(pi, v, vi) { 8749 if (vi->flags & VI_INIT_DONE) 8750 t4_clr_vi_stats(sc, vi->viid); 8751 } 8752 mtx_unlock(&sc->reg_lock); 8753 8754 /* 8755 * Since this command accepts a port, clear stats for 8756 * all VIs on this port. 8757 */ 8758 for_each_vi(pi, v, vi) { 8759 if (vi->flags & VI_INIT_DONE) { 8760 struct sge_rxq *rxq; 8761 struct sge_txq *txq; 8762 struct sge_wrq *wrq; 8763 8764 if (vi->flags & VI_NETMAP) 8765 continue; 8766 8767 for_each_rxq(vi, i, rxq) { 8768 #if defined(INET) || defined(INET6) 8769 rxq->lro.lro_queued = 0; 8770 rxq->lro.lro_flushed = 0; 8771 #endif 8772 rxq->rxcsum = 0; 8773 rxq->vlan_extraction = 0; 8774 } 8775 8776 for_each_txq(vi, i, txq) { 8777 txq->txcsum = 0; 8778 txq->tso_wrs = 0; 8779 txq->vlan_insertion = 0; 8780 txq->imm_wrs = 0; 8781 txq->sgl_wrs = 0; 8782 txq->txpkt_wrs = 0; 8783 txq->txpkts0_wrs = 0; 8784 txq->txpkts1_wrs = 0; 8785 txq->txpkts0_pkts = 0; 8786 txq->txpkts1_pkts = 0; 8787 mp_ring_reset_stats(txq->r); 8788 } 8789 8790 #ifdef TCP_OFFLOAD 8791 /* nothing to clear for each ofld_rxq */ 8792 8793 for_each_ofld_txq(vi, i, wrq) { 8794 wrq->tx_wrs_direct = 0; 8795 wrq->tx_wrs_copied = 0; 8796 } 8797 #endif 8798 8799 if (IS_MAIN_VI(vi)) { 8800 wrq = &sc->sge.ctrlq[pi->port_id]; 8801 wrq->tx_wrs_direct = 0; 8802 wrq->tx_wrs_copied = 0; 8803 } 8804 } 8805 } 8806 break; 8807 } 8808 case CHELSIO_T4_SCHED_CLASS: 8809 rc = set_sched_class(sc, (struct t4_sched_params *)data); 8810 break; 8811 case CHELSIO_T4_SCHED_QUEUE: 8812 rc = set_sched_queue(sc, (struct t4_sched_queue *)data); 8813 break; 8814 case CHELSIO_T4_GET_TRACER: 8815 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 8816 break; 8817 case CHELSIO_T4_SET_TRACER: 8818 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 8819 break; 8820 default: 8821 rc = EINVAL; 8822 } 8823 8824 return (rc); 8825 } 8826 8827 void 8828 t4_db_full(struct adapter *sc) 8829 { 8830 8831 CXGBE_UNIMPLEMENTED(__func__); 8832 } 8833 8834 void 8835 t4_db_dropped(struct adapter *sc) 8836 { 8837 8838 CXGBE_UNIMPLEMENTED(__func__); 8839 } 8840 8841 #ifdef TCP_OFFLOAD 8842 void 8843 t4_iscsi_init(struct adapter *sc, u_int tag_mask, const u_int *pgsz_order) 8844 { 8845 8846 t4_write_reg(sc, A_ULP_RX_ISCSI_TAGMASK, tag_mask); 8847 t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, V_HPZ0(pgsz_order[0]) | 8848 V_HPZ1(pgsz_order[1]) | V_HPZ2(pgsz_order[2]) | 8849 V_HPZ3(pgsz_order[3])); 8850 } 8851 8852 static int 8853 toe_capability(struct vi_info *vi, int enable) 8854 { 8855 int rc; 8856 struct port_info *pi = vi->pi; 8857 struct adapter *sc = pi->adapter; 8858 8859 ASSERT_SYNCHRONIZED_OP(sc); 8860 8861 if (!is_offload(sc)) 8862 return (ENODEV); 8863 8864 if (enable) { 8865 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { 8866 /* TOE is already enabled. */ 8867 return (0); 8868 } 8869 8870 /* 8871 * We need the port's queues around so that we're able to send 8872 * and receive CPLs to/from the TOE even if the ifnet for this 8873 * port has never been UP'd administratively. 8874 */ 8875 if (!(vi->flags & VI_INIT_DONE)) { 8876 rc = cxgbe_init_synchronized(vi); 8877 if (rc) 8878 return (rc); 8879 } 8880 if (!(pi->vi[0].flags & VI_INIT_DONE)) { 8881 rc = cxgbe_init_synchronized(&pi->vi[0]); 8882 if (rc) 8883 return (rc); 8884 } 8885 8886 if (isset(&sc->offload_map, pi->port_id)) { 8887 /* TOE is enabled on another VI of this port. */ 8888 pi->uld_vis++; 8889 return (0); 8890 } 8891 8892 if (!uld_active(sc, ULD_TOM)) { 8893 rc = t4_activate_uld(sc, ULD_TOM); 8894 if (rc == EAGAIN) { 8895 log(LOG_WARNING, 8896 "You must kldload t4_tom.ko before trying " 8897 "to enable TOE on a cxgbe interface.\n"); 8898 } 8899 if (rc != 0) 8900 return (rc); 8901 KASSERT(sc->tom_softc != NULL, 8902 ("%s: TOM activated but softc NULL", __func__)); 8903 KASSERT(uld_active(sc, ULD_TOM), 8904 ("%s: TOM activated but flag not set", __func__)); 8905 } 8906 8907 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 8908 if (!uld_active(sc, ULD_IWARP)) 8909 (void) t4_activate_uld(sc, ULD_IWARP); 8910 if (!uld_active(sc, ULD_ISCSI)) 8911 (void) t4_activate_uld(sc, ULD_ISCSI); 8912 8913 pi->uld_vis++; 8914 setbit(&sc->offload_map, pi->port_id); 8915 } else { 8916 pi->uld_vis--; 8917 8918 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 8919 return (0); 8920 8921 KASSERT(uld_active(sc, ULD_TOM), 8922 ("%s: TOM never initialized?", __func__)); 8923 clrbit(&sc->offload_map, pi->port_id); 8924 } 8925 8926 return (0); 8927 } 8928 8929 /* 8930 * Add an upper layer driver to the global list. 8931 */ 8932 int 8933 t4_register_uld(struct uld_info *ui) 8934 { 8935 int rc = 0; 8936 struct uld_info *u; 8937 8938 sx_xlock(&t4_uld_list_lock); 8939 SLIST_FOREACH(u, &t4_uld_list, link) { 8940 if (u->uld_id == ui->uld_id) { 8941 rc = EEXIST; 8942 goto done; 8943 } 8944 } 8945 8946 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 8947 ui->refcount = 0; 8948 done: 8949 sx_xunlock(&t4_uld_list_lock); 8950 return (rc); 8951 } 8952 8953 int 8954 t4_unregister_uld(struct uld_info *ui) 8955 { 8956 int rc = EINVAL; 8957 struct uld_info *u; 8958 8959 sx_xlock(&t4_uld_list_lock); 8960 8961 SLIST_FOREACH(u, &t4_uld_list, link) { 8962 if (u == ui) { 8963 if (ui->refcount > 0) { 8964 rc = EBUSY; 8965 goto done; 8966 } 8967 8968 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 8969 rc = 0; 8970 goto done; 8971 } 8972 } 8973 done: 8974 sx_xunlock(&t4_uld_list_lock); 8975 return (rc); 8976 } 8977 8978 int 8979 t4_activate_uld(struct adapter *sc, int id) 8980 { 8981 int rc; 8982 struct uld_info *ui; 8983 8984 ASSERT_SYNCHRONIZED_OP(sc); 8985 8986 if (id < 0 || id > ULD_MAX) 8987 return (EINVAL); 8988 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 8989 8990 sx_slock(&t4_uld_list_lock); 8991 8992 SLIST_FOREACH(ui, &t4_uld_list, link) { 8993 if (ui->uld_id == id) { 8994 if (!(sc->flags & FULL_INIT_DONE)) { 8995 rc = adapter_full_init(sc); 8996 if (rc != 0) 8997 break; 8998 } 8999 9000 rc = ui->activate(sc); 9001 if (rc == 0) { 9002 setbit(&sc->active_ulds, id); 9003 ui->refcount++; 9004 } 9005 break; 9006 } 9007 } 9008 9009 sx_sunlock(&t4_uld_list_lock); 9010 9011 return (rc); 9012 } 9013 9014 int 9015 t4_deactivate_uld(struct adapter *sc, int id) 9016 { 9017 int rc; 9018 struct uld_info *ui; 9019 9020 ASSERT_SYNCHRONIZED_OP(sc); 9021 9022 if (id < 0 || id > ULD_MAX) 9023 return (EINVAL); 9024 rc = ENXIO; 9025 9026 sx_slock(&t4_uld_list_lock); 9027 9028 SLIST_FOREACH(ui, &t4_uld_list, link) { 9029 if (ui->uld_id == id) { 9030 rc = ui->deactivate(sc); 9031 if (rc == 0) { 9032 clrbit(&sc->active_ulds, id); 9033 ui->refcount--; 9034 } 9035 break; 9036 } 9037 } 9038 9039 sx_sunlock(&t4_uld_list_lock); 9040 9041 return (rc); 9042 } 9043 9044 int 9045 uld_active(struct adapter *sc, int uld_id) 9046 { 9047 9048 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 9049 9050 return (isset(&sc->active_ulds, uld_id)); 9051 } 9052 #endif 9053 9054 /* 9055 * Come up with reasonable defaults for some of the tunables, provided they're 9056 * not set by the user (in which case we'll use the values as is). 9057 */ 9058 static void 9059 tweak_tunables(void) 9060 { 9061 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 9062 9063 if (t4_ntxq10g < 1) { 9064 #ifdef RSS 9065 t4_ntxq10g = rss_getnumbuckets(); 9066 #else 9067 t4_ntxq10g = min(nc, NTXQ_10G); 9068 #endif 9069 } 9070 9071 if (t4_ntxq1g < 1) { 9072 #ifdef RSS 9073 /* XXX: way too many for 1GbE? */ 9074 t4_ntxq1g = rss_getnumbuckets(); 9075 #else 9076 t4_ntxq1g = min(nc, NTXQ_1G); 9077 #endif 9078 } 9079 9080 if (t4_nrxq10g < 1) { 9081 #ifdef RSS 9082 t4_nrxq10g = rss_getnumbuckets(); 9083 #else 9084 t4_nrxq10g = min(nc, NRXQ_10G); 9085 #endif 9086 } 9087 9088 if (t4_nrxq1g < 1) { 9089 #ifdef RSS 9090 /* XXX: way too many for 1GbE? */ 9091 t4_nrxq1g = rss_getnumbuckets(); 9092 #else 9093 t4_nrxq1g = min(nc, NRXQ_1G); 9094 #endif 9095 } 9096 9097 #ifdef TCP_OFFLOAD 9098 if (t4_nofldtxq10g < 1) 9099 t4_nofldtxq10g = min(nc, NOFLDTXQ_10G); 9100 9101 if (t4_nofldtxq1g < 1) 9102 t4_nofldtxq1g = min(nc, NOFLDTXQ_1G); 9103 9104 if (t4_nofldrxq10g < 1) 9105 t4_nofldrxq10g = min(nc, NOFLDRXQ_10G); 9106 9107 if (t4_nofldrxq1g < 1) 9108 t4_nofldrxq1g = min(nc, NOFLDRXQ_1G); 9109 9110 if (t4_toecaps_allowed == -1) 9111 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 9112 9113 if (t4_rdmacaps_allowed == -1) { 9114 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 9115 FW_CAPS_CONFIG_RDMA_RDMAC; 9116 } 9117 9118 if (t4_iscsicaps_allowed == -1) { 9119 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 9120 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 9121 FW_CAPS_CONFIG_ISCSI_T10DIF; 9122 } 9123 #else 9124 if (t4_toecaps_allowed == -1) 9125 t4_toecaps_allowed = 0; 9126 9127 if (t4_rdmacaps_allowed == -1) 9128 t4_rdmacaps_allowed = 0; 9129 9130 if (t4_iscsicaps_allowed == -1) 9131 t4_iscsicaps_allowed = 0; 9132 #endif 9133 9134 #ifdef DEV_NETMAP 9135 if (t4_nnmtxq10g < 1) 9136 t4_nnmtxq10g = min(nc, NNMTXQ_10G); 9137 9138 if (t4_nnmtxq1g < 1) 9139 t4_nnmtxq1g = min(nc, NNMTXQ_1G); 9140 9141 if (t4_nnmrxq10g < 1) 9142 t4_nnmrxq10g = min(nc, NNMRXQ_10G); 9143 9144 if (t4_nnmrxq1g < 1) 9145 t4_nnmrxq1g = min(nc, NNMRXQ_1G); 9146 #endif 9147 9148 if (t4_tmr_idx_10g < 0 || t4_tmr_idx_10g >= SGE_NTIMERS) 9149 t4_tmr_idx_10g = TMR_IDX_10G; 9150 9151 if (t4_pktc_idx_10g < -1 || t4_pktc_idx_10g >= SGE_NCOUNTERS) 9152 t4_pktc_idx_10g = PKTC_IDX_10G; 9153 9154 if (t4_tmr_idx_1g < 0 || t4_tmr_idx_1g >= SGE_NTIMERS) 9155 t4_tmr_idx_1g = TMR_IDX_1G; 9156 9157 if (t4_pktc_idx_1g < -1 || t4_pktc_idx_1g >= SGE_NCOUNTERS) 9158 t4_pktc_idx_1g = PKTC_IDX_1G; 9159 9160 if (t4_qsize_txq < 128) 9161 t4_qsize_txq = 128; 9162 9163 if (t4_qsize_rxq < 128) 9164 t4_qsize_rxq = 128; 9165 while (t4_qsize_rxq & 7) 9166 t4_qsize_rxq++; 9167 9168 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 9169 } 9170 9171 #ifdef DDB 9172 static void 9173 t4_dump_tcb(struct adapter *sc, int tid) 9174 { 9175 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 9176 9177 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 9178 save = t4_read_reg(sc, reg); 9179 base = sc->memwin[2].mw_base; 9180 9181 /* Dump TCB for the tid */ 9182 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9183 tcb_addr += tid * TCB_SIZE; 9184 9185 if (is_t4(sc)) { 9186 pf = 0; 9187 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 9188 } else { 9189 pf = V_PFNUM(sc->pf); 9190 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 9191 } 9192 t4_write_reg(sc, reg, win_pos | pf); 9193 t4_read_reg(sc, reg); 9194 9195 off = tcb_addr - win_pos; 9196 for (i = 0; i < 4; i++) { 9197 uint32_t buf[8]; 9198 for (j = 0; j < 8; j++, off += 4) 9199 buf[j] = htonl(t4_read_reg(sc, base + off)); 9200 9201 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 9202 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 9203 buf[7]); 9204 } 9205 9206 t4_write_reg(sc, reg, save); 9207 t4_read_reg(sc, reg); 9208 } 9209 9210 static void 9211 t4_dump_devlog(struct adapter *sc) 9212 { 9213 struct devlog_params *dparams = &sc->params.devlog; 9214 struct fw_devlog_e e; 9215 int i, first, j, m, nentries, rc; 9216 uint64_t ftstamp = UINT64_MAX; 9217 9218 if (dparams->start == 0) { 9219 db_printf("devlog params not valid\n"); 9220 return; 9221 } 9222 9223 nentries = dparams->size / sizeof(struct fw_devlog_e); 9224 m = fwmtype_to_hwmtype(dparams->memtype); 9225 9226 /* Find the first entry. */ 9227 first = -1; 9228 for (i = 0; i < nentries && !db_pager_quit; i++) { 9229 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 9230 sizeof(e), (void *)&e); 9231 if (rc != 0) 9232 break; 9233 9234 if (e.timestamp == 0) 9235 break; 9236 9237 e.timestamp = be64toh(e.timestamp); 9238 if (e.timestamp < ftstamp) { 9239 ftstamp = e.timestamp; 9240 first = i; 9241 } 9242 } 9243 9244 if (first == -1) 9245 return; 9246 9247 i = first; 9248 do { 9249 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 9250 sizeof(e), (void *)&e); 9251 if (rc != 0) 9252 return; 9253 9254 if (e.timestamp == 0) 9255 return; 9256 9257 e.timestamp = be64toh(e.timestamp); 9258 e.seqno = be32toh(e.seqno); 9259 for (j = 0; j < 8; j++) 9260 e.params[j] = be32toh(e.params[j]); 9261 9262 db_printf("%10d %15ju %8s %8s ", 9263 e.seqno, e.timestamp, 9264 (e.level < nitems(devlog_level_strings) ? 9265 devlog_level_strings[e.level] : "UNKNOWN"), 9266 (e.facility < nitems(devlog_facility_strings) ? 9267 devlog_facility_strings[e.facility] : "UNKNOWN")); 9268 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 9269 e.params[3], e.params[4], e.params[5], e.params[6], 9270 e.params[7]); 9271 9272 if (++i == nentries) 9273 i = 0; 9274 } while (i != first && !db_pager_quit); 9275 } 9276 9277 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); 9278 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); 9279 9280 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) 9281 { 9282 device_t dev; 9283 int t; 9284 bool valid; 9285 9286 valid = false; 9287 t = db_read_token(); 9288 if (t == tIDENT) { 9289 dev = device_lookup_by_name(db_tok_string); 9290 valid = true; 9291 } 9292 db_skip_to_eol(); 9293 if (!valid) { 9294 db_printf("usage: show t4 devlog <nexus>\n"); 9295 return; 9296 } 9297 9298 if (dev == NULL) { 9299 db_printf("device not found\n"); 9300 return; 9301 } 9302 9303 t4_dump_devlog(device_get_softc(dev)); 9304 } 9305 9306 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) 9307 { 9308 device_t dev; 9309 int radix, tid, t; 9310 bool valid; 9311 9312 valid = false; 9313 radix = db_radix; 9314 db_radix = 10; 9315 t = db_read_token(); 9316 if (t == tIDENT) { 9317 dev = device_lookup_by_name(db_tok_string); 9318 t = db_read_token(); 9319 if (t == tNUMBER) { 9320 tid = db_tok_number; 9321 valid = true; 9322 } 9323 } 9324 db_radix = radix; 9325 db_skip_to_eol(); 9326 if (!valid) { 9327 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 9328 return; 9329 } 9330 9331 if (dev == NULL) { 9332 db_printf("device not found\n"); 9333 return; 9334 } 9335 if (tid < 0) { 9336 db_printf("invalid tid\n"); 9337 return; 9338 } 9339 9340 t4_dump_tcb(device_get_softc(dev), tid); 9341 } 9342 #endif 9343 9344 static struct sx mlu; /* mod load unload */ 9345 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 9346 9347 static int 9348 mod_event(module_t mod, int cmd, void *arg) 9349 { 9350 int rc = 0; 9351 static int loaded = 0; 9352 9353 switch (cmd) { 9354 case MOD_LOAD: 9355 sx_xlock(&mlu); 9356 if (loaded++ == 0) { 9357 t4_sge_modload(); 9358 sx_init(&t4_list_lock, "T4/T5 adapters"); 9359 SLIST_INIT(&t4_list); 9360 #ifdef TCP_OFFLOAD 9361 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 9362 SLIST_INIT(&t4_uld_list); 9363 #endif 9364 t4_tracer_modload(); 9365 tweak_tunables(); 9366 } 9367 sx_xunlock(&mlu); 9368 break; 9369 9370 case MOD_UNLOAD: 9371 sx_xlock(&mlu); 9372 if (--loaded == 0) { 9373 int tries; 9374 9375 sx_slock(&t4_list_lock); 9376 if (!SLIST_EMPTY(&t4_list)) { 9377 rc = EBUSY; 9378 sx_sunlock(&t4_list_lock); 9379 goto done_unload; 9380 } 9381 #ifdef TCP_OFFLOAD 9382 sx_slock(&t4_uld_list_lock); 9383 if (!SLIST_EMPTY(&t4_uld_list)) { 9384 rc = EBUSY; 9385 sx_sunlock(&t4_uld_list_lock); 9386 sx_sunlock(&t4_list_lock); 9387 goto done_unload; 9388 } 9389 #endif 9390 tries = 0; 9391 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 9392 uprintf("%ju clusters with custom free routine " 9393 "still is use.\n", t4_sge_extfree_refs()); 9394 pause("t4unload", 2 * hz); 9395 } 9396 #ifdef TCP_OFFLOAD 9397 sx_sunlock(&t4_uld_list_lock); 9398 #endif 9399 sx_sunlock(&t4_list_lock); 9400 9401 if (t4_sge_extfree_refs() == 0) { 9402 t4_tracer_modunload(); 9403 #ifdef TCP_OFFLOAD 9404 sx_destroy(&t4_uld_list_lock); 9405 #endif 9406 sx_destroy(&t4_list_lock); 9407 t4_sge_modunload(); 9408 loaded = 0; 9409 } else { 9410 rc = EBUSY; 9411 loaded++; /* undo earlier decrement */ 9412 } 9413 } 9414 done_unload: 9415 sx_xunlock(&mlu); 9416 break; 9417 } 9418 9419 return (rc); 9420 } 9421 9422 static devclass_t t4_devclass, t5_devclass; 9423 static devclass_t cxgbe_devclass, cxl_devclass; 9424 static devclass_t vcxgbe_devclass, vcxl_devclass; 9425 9426 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0); 9427 MODULE_VERSION(t4nex, 1); 9428 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 9429 #ifdef DEV_NETMAP 9430 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 9431 #endif /* DEV_NETMAP */ 9432 9433 9434 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0); 9435 MODULE_VERSION(t5nex, 1); 9436 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 9437 #ifdef DEV_NETMAP 9438 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 9439 #endif /* DEV_NETMAP */ 9440 9441 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); 9442 MODULE_VERSION(cxgbe, 1); 9443 9444 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0); 9445 MODULE_VERSION(cxl, 1); 9446 9447 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0); 9448 MODULE_VERSION(vcxgbe, 1); 9449 9450 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0); 9451 MODULE_VERSION(vcxl, 1); 9452