1 /*- 2 * Copyright (c) 2011 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: Navdeep Parhar <np@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #include <sys/param.h> 35 #include <sys/conf.h> 36 #include <sys/priv.h> 37 #include <sys/kernel.h> 38 #include <sys/bus.h> 39 #include <sys/module.h> 40 #include <sys/malloc.h> 41 #include <sys/queue.h> 42 #include <sys/taskqueue.h> 43 #include <sys/pciio.h> 44 #include <dev/pci/pcireg.h> 45 #include <dev/pci/pcivar.h> 46 #include <dev/pci/pci_private.h> 47 #include <sys/firmware.h> 48 #include <sys/sbuf.h> 49 #include <sys/smp.h> 50 #include <sys/socket.h> 51 #include <sys/sockio.h> 52 #include <sys/sysctl.h> 53 #include <net/ethernet.h> 54 #include <net/if.h> 55 #include <net/if_types.h> 56 #include <net/if_dl.h> 57 #include <net/if_vlan_var.h> 58 #if defined(__i386__) || defined(__amd64__) 59 #include <vm/vm.h> 60 #include <vm/pmap.h> 61 #endif 62 63 #include "common/common.h" 64 #include "common/t4_msg.h" 65 #include "common/t4_regs.h" 66 #include "common/t4_regs_values.h" 67 #include "t4_ioctl.h" 68 #include "t4_l2t.h" 69 70 /* T4 bus driver interface */ 71 static int t4_probe(device_t); 72 static int t4_attach(device_t); 73 static int t4_detach(device_t); 74 static device_method_t t4_methods[] = { 75 DEVMETHOD(device_probe, t4_probe), 76 DEVMETHOD(device_attach, t4_attach), 77 DEVMETHOD(device_detach, t4_detach), 78 79 DEVMETHOD_END 80 }; 81 static driver_t t4_driver = { 82 "t4nex", 83 t4_methods, 84 sizeof(struct adapter) 85 }; 86 87 88 /* T4 port (cxgbe) interface */ 89 static int cxgbe_probe(device_t); 90 static int cxgbe_attach(device_t); 91 static int cxgbe_detach(device_t); 92 static device_method_t cxgbe_methods[] = { 93 DEVMETHOD(device_probe, cxgbe_probe), 94 DEVMETHOD(device_attach, cxgbe_attach), 95 DEVMETHOD(device_detach, cxgbe_detach), 96 { 0, 0 } 97 }; 98 static driver_t cxgbe_driver = { 99 "cxgbe", 100 cxgbe_methods, 101 sizeof(struct port_info) 102 }; 103 104 static d_ioctl_t t4_ioctl; 105 static d_open_t t4_open; 106 static d_close_t t4_close; 107 108 static struct cdevsw t4_cdevsw = { 109 .d_version = D_VERSION, 110 .d_flags = 0, 111 .d_open = t4_open, 112 .d_close = t4_close, 113 .d_ioctl = t4_ioctl, 114 .d_name = "t4nex", 115 }; 116 117 /* T5 bus driver interface */ 118 static int t5_probe(device_t); 119 static device_method_t t5_methods[] = { 120 DEVMETHOD(device_probe, t5_probe), 121 DEVMETHOD(device_attach, t4_attach), 122 DEVMETHOD(device_detach, t4_detach), 123 124 DEVMETHOD_END 125 }; 126 static driver_t t5_driver = { 127 "t5nex", 128 t5_methods, 129 sizeof(struct adapter) 130 }; 131 132 133 /* T5 port (cxl) interface */ 134 static driver_t cxl_driver = { 135 "cxl", 136 cxgbe_methods, 137 sizeof(struct port_info) 138 }; 139 140 static struct cdevsw t5_cdevsw = { 141 .d_version = D_VERSION, 142 .d_flags = 0, 143 .d_open = t4_open, 144 .d_close = t4_close, 145 .d_ioctl = t4_ioctl, 146 .d_name = "t5nex", 147 }; 148 149 /* ifnet + media interface */ 150 static void cxgbe_init(void *); 151 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 152 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 153 static void cxgbe_qflush(struct ifnet *); 154 static int cxgbe_media_change(struct ifnet *); 155 static void cxgbe_media_status(struct ifnet *, struct ifmediareq *); 156 157 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 158 159 /* 160 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 161 * then ADAPTER_LOCK, then t4_uld_list_lock. 162 */ 163 static struct mtx t4_list_lock; 164 static SLIST_HEAD(, adapter) t4_list; 165 #ifdef TCP_OFFLOAD 166 static struct mtx t4_uld_list_lock; 167 static SLIST_HEAD(, uld_info) t4_uld_list; 168 #endif 169 170 /* 171 * Tunables. See tweak_tunables() too. 172 * 173 * Each tunable is set to a default value here if it's known at compile-time. 174 * Otherwise it is set to -1 as an indication to tweak_tunables() that it should 175 * provide a reasonable default when the driver is loaded. 176 * 177 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 178 * T5 are under hw.cxl. 179 */ 180 181 /* 182 * Number of queues for tx and rx, 10G and 1G, NIC and offload. 183 */ 184 #define NTXQ_10G 16 185 static int t4_ntxq10g = -1; 186 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq10g); 187 188 #define NRXQ_10G 8 189 static int t4_nrxq10g = -1; 190 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq10g); 191 192 #define NTXQ_1G 4 193 static int t4_ntxq1g = -1; 194 TUNABLE_INT("hw.cxgbe.ntxq1g", &t4_ntxq1g); 195 196 #define NRXQ_1G 2 197 static int t4_nrxq1g = -1; 198 TUNABLE_INT("hw.cxgbe.nrxq1g", &t4_nrxq1g); 199 200 #ifdef TCP_OFFLOAD 201 #define NOFLDTXQ_10G 8 202 static int t4_nofldtxq10g = -1; 203 TUNABLE_INT("hw.cxgbe.nofldtxq10g", &t4_nofldtxq10g); 204 205 #define NOFLDRXQ_10G 2 206 static int t4_nofldrxq10g = -1; 207 TUNABLE_INT("hw.cxgbe.nofldrxq10g", &t4_nofldrxq10g); 208 209 #define NOFLDTXQ_1G 2 210 static int t4_nofldtxq1g = -1; 211 TUNABLE_INT("hw.cxgbe.nofldtxq1g", &t4_nofldtxq1g); 212 213 #define NOFLDRXQ_1G 1 214 static int t4_nofldrxq1g = -1; 215 TUNABLE_INT("hw.cxgbe.nofldrxq1g", &t4_nofldrxq1g); 216 #endif 217 218 /* 219 * Holdoff parameters for 10G and 1G ports. 220 */ 221 #define TMR_IDX_10G 1 222 static int t4_tmr_idx_10g = TMR_IDX_10G; 223 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx_10g); 224 225 #define PKTC_IDX_10G (-1) 226 static int t4_pktc_idx_10g = PKTC_IDX_10G; 227 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx_10g); 228 229 #define TMR_IDX_1G 1 230 static int t4_tmr_idx_1g = TMR_IDX_1G; 231 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_1G", &t4_tmr_idx_1g); 232 233 #define PKTC_IDX_1G (-1) 234 static int t4_pktc_idx_1g = PKTC_IDX_1G; 235 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_1G", &t4_pktc_idx_1g); 236 237 /* 238 * Size (# of entries) of each tx and rx queue. 239 */ 240 static unsigned int t4_qsize_txq = TX_EQ_QSIZE; 241 TUNABLE_INT("hw.cxgbe.qsize_txq", &t4_qsize_txq); 242 243 static unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 244 TUNABLE_INT("hw.cxgbe.qsize_rxq", &t4_qsize_rxq); 245 246 /* 247 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 248 */ 249 static int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 250 TUNABLE_INT("hw.cxgbe.interrupt_types", &t4_intr_types); 251 252 /* 253 * Configuration file. 254 */ 255 #define DEFAULT_CF "default" 256 #define FLASH_CF "flash" 257 #define UWIRE_CF "uwire" 258 #define FPGA_CF "fpga" 259 static char t4_cfg_file[32] = DEFAULT_CF; 260 TUNABLE_STR("hw.cxgbe.config_file", t4_cfg_file, sizeof(t4_cfg_file)); 261 262 /* 263 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 264 * encouraged respectively). 265 */ 266 static unsigned int t4_fw_install = 1; 267 TUNABLE_INT("hw.cxgbe.fw_install", &t4_fw_install); 268 269 /* 270 * ASIC features that will be used. Disable the ones you don't want so that the 271 * chip resources aren't wasted on features that will not be used. 272 */ 273 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 274 TUNABLE_INT("hw.cxgbe.linkcaps_allowed", &t4_linkcaps_allowed); 275 276 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC; 277 TUNABLE_INT("hw.cxgbe.niccaps_allowed", &t4_niccaps_allowed); 278 279 static int t4_toecaps_allowed = -1; 280 TUNABLE_INT("hw.cxgbe.toecaps_allowed", &t4_toecaps_allowed); 281 282 static int t4_rdmacaps_allowed = 0; 283 TUNABLE_INT("hw.cxgbe.rdmacaps_allowed", &t4_rdmacaps_allowed); 284 285 static int t4_iscsicaps_allowed = 0; 286 TUNABLE_INT("hw.cxgbe.iscsicaps_allowed", &t4_iscsicaps_allowed); 287 288 static int t4_fcoecaps_allowed = 0; 289 TUNABLE_INT("hw.cxgbe.fcoecaps_allowed", &t4_fcoecaps_allowed); 290 291 static int t5_write_combine = 0; 292 TUNABLE_INT("hw.cxl.write_combine", &t5_write_combine); 293 294 struct intrs_and_queues { 295 int intr_type; /* INTx, MSI, or MSI-X */ 296 int nirq; /* Number of vectors */ 297 int intr_flags; 298 int ntxq10g; /* # of NIC txq's for each 10G port */ 299 int nrxq10g; /* # of NIC rxq's for each 10G port */ 300 int ntxq1g; /* # of NIC txq's for each 1G port */ 301 int nrxq1g; /* # of NIC rxq's for each 1G port */ 302 #ifdef TCP_OFFLOAD 303 int nofldtxq10g; /* # of TOE txq's for each 10G port */ 304 int nofldrxq10g; /* # of TOE rxq's for each 10G port */ 305 int nofldtxq1g; /* # of TOE txq's for each 1G port */ 306 int nofldrxq1g; /* # of TOE rxq's for each 1G port */ 307 #endif 308 }; 309 310 struct filter_entry { 311 uint32_t valid:1; /* filter allocated and valid */ 312 uint32_t locked:1; /* filter is administratively locked */ 313 uint32_t pending:1; /* filter action is pending firmware reply */ 314 uint32_t smtidx:8; /* Source MAC Table index for smac */ 315 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ 316 317 struct t4_filter_specification fs; 318 }; 319 320 enum { 321 XGMAC_MTU = (1 << 0), 322 XGMAC_PROMISC = (1 << 1), 323 XGMAC_ALLMULTI = (1 << 2), 324 XGMAC_VLANEX = (1 << 3), 325 XGMAC_UCADDR = (1 << 4), 326 XGMAC_MCADDRS = (1 << 5), 327 328 XGMAC_ALL = 0xffff 329 }; 330 331 static int map_bars_0_and_4(struct adapter *); 332 static int map_bar_2(struct adapter *); 333 static void setup_memwin(struct adapter *); 334 static int validate_mem_range(struct adapter *, uint32_t, int); 335 static int validate_mt_off_len(struct adapter *, int, uint32_t, int, 336 uint32_t *); 337 static void memwin_info(struct adapter *, int, uint32_t *, uint32_t *); 338 static uint32_t position_memwin(struct adapter *, int, uint32_t); 339 static int cfg_itype_and_nqueues(struct adapter *, int, int, 340 struct intrs_and_queues *); 341 static int prep_firmware(struct adapter *); 342 static int partition_resources(struct adapter *, const struct firmware *, 343 const char *); 344 static int get_params__pre_init(struct adapter *); 345 static int get_params__post_init(struct adapter *); 346 static int set_params__post_init(struct adapter *); 347 static void t4_set_desc(struct adapter *); 348 static void build_medialist(struct port_info *); 349 static int update_mac_settings(struct port_info *, int); 350 static int cxgbe_init_synchronized(struct port_info *); 351 static int cxgbe_uninit_synchronized(struct port_info *); 352 static int setup_intr_handlers(struct adapter *); 353 static int adapter_full_init(struct adapter *); 354 static int adapter_full_uninit(struct adapter *); 355 static int port_full_init(struct port_info *); 356 static int port_full_uninit(struct port_info *); 357 static void quiesce_eq(struct adapter *, struct sge_eq *); 358 static void quiesce_iq(struct adapter *, struct sge_iq *); 359 static void quiesce_fl(struct adapter *, struct sge_fl *); 360 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 361 driver_intr_t *, void *, char *); 362 static int t4_free_irq(struct adapter *, struct irq *); 363 static void reg_block_dump(struct adapter *, uint8_t *, unsigned int, 364 unsigned int); 365 static void t4_get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 366 static void cxgbe_tick(void *); 367 static void cxgbe_vlan_config(void *, struct ifnet *, uint16_t); 368 static int cpl_not_handled(struct sge_iq *, const struct rss_header *, 369 struct mbuf *); 370 static int an_not_handled(struct sge_iq *, const struct rsp_ctrl *); 371 static int fw_msg_not_handled(struct adapter *, const __be64 *); 372 static int t4_sysctls(struct adapter *); 373 static int cxgbe_sysctls(struct port_info *); 374 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 375 static int sysctl_bitfield(SYSCTL_HANDLER_ARGS); 376 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 377 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 378 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 379 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 380 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 381 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 382 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 383 #ifdef SBUF_DRAIN 384 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 385 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 386 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 387 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 388 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 389 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 390 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 391 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 392 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 393 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 394 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 395 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 396 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 397 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 398 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 399 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 400 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 401 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 402 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 403 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 404 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 405 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 406 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 407 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 408 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 409 #endif 410 static inline void txq_start(struct ifnet *, struct sge_txq *); 411 static uint32_t fconf_to_mode(uint32_t); 412 static uint32_t mode_to_fconf(uint32_t); 413 static uint32_t fspec_to_fconf(struct t4_filter_specification *); 414 static int get_filter_mode(struct adapter *, uint32_t *); 415 static int set_filter_mode(struct adapter *, uint32_t); 416 static inline uint64_t get_filter_hits(struct adapter *, uint32_t); 417 static int get_filter(struct adapter *, struct t4_filter *); 418 static int set_filter(struct adapter *, struct t4_filter *); 419 static int del_filter(struct adapter *, struct t4_filter *); 420 static void clear_filter(struct filter_entry *); 421 static int set_filter_wr(struct adapter *, int); 422 static int del_filter_wr(struct adapter *, int); 423 static int get_sge_context(struct adapter *, struct t4_sge_context *); 424 static int load_fw(struct adapter *, struct t4_data *); 425 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 426 static int read_i2c(struct adapter *, struct t4_i2c_data *); 427 #ifdef TCP_OFFLOAD 428 static int toe_capability(struct port_info *, int); 429 #endif 430 static int mod_event(module_t, int, void *); 431 432 struct { 433 uint16_t device; 434 char *desc; 435 } t4_pciids[] = { 436 {0xa000, "Chelsio Terminator 4 FPGA"}, 437 {0x4400, "Chelsio T440-dbg"}, 438 {0x4401, "Chelsio T420-CR"}, 439 {0x4402, "Chelsio T422-CR"}, 440 {0x4403, "Chelsio T440-CR"}, 441 {0x4404, "Chelsio T420-BCH"}, 442 {0x4405, "Chelsio T440-BCH"}, 443 {0x4406, "Chelsio T440-CH"}, 444 {0x4407, "Chelsio T420-SO"}, 445 {0x4408, "Chelsio T420-CX"}, 446 {0x4409, "Chelsio T420-BT"}, 447 {0x440a, "Chelsio T404-BT"}, 448 {0x440e, "Chelsio T440-LP-CR"}, 449 }, t5_pciids[] = { 450 {0xb000, "Chelsio Terminator 5 FPGA"}, 451 {0x5400, "Chelsio T580-dbg"}, 452 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 453 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 454 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 455 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 456 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 457 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 458 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 459 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 460 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 461 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 462 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 463 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 464 #ifdef notyet 465 {0x5404, "Chelsio T520-BCH"}, 466 {0x5405, "Chelsio T540-BCH"}, 467 {0x5406, "Chelsio T540-CH"}, 468 {0x5408, "Chelsio T520-CX"}, 469 {0x540b, "Chelsio B520-SR"}, 470 {0x540c, "Chelsio B504-BT"}, 471 {0x540f, "Chelsio Amsterdam"}, 472 {0x5413, "Chelsio T580-CHR"}, 473 #endif 474 }; 475 476 #ifdef TCP_OFFLOAD 477 /* 478 * service_iq() has an iq and needs the fl. Offset of fl from the iq should be 479 * exactly the same for both rxq and ofld_rxq. 480 */ 481 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 482 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 483 #endif 484 485 /* No easy way to include t4_msg.h before adapter.h so we check this way */ 486 CTASSERT(nitems(((struct adapter *)0)->cpl_handler) == NUM_CPL_CMDS); 487 CTASSERT(nitems(((struct adapter *)0)->fw_msg_handler) == NUM_FW6_TYPES); 488 489 static int 490 t4_probe(device_t dev) 491 { 492 int i; 493 uint16_t v = pci_get_vendor(dev); 494 uint16_t d = pci_get_device(dev); 495 uint8_t f = pci_get_function(dev); 496 497 if (v != PCI_VENDOR_ID_CHELSIO) 498 return (ENXIO); 499 500 /* Attach only to PF0 of the FPGA */ 501 if (d == 0xa000 && f != 0) 502 return (ENXIO); 503 504 for (i = 0; i < nitems(t4_pciids); i++) { 505 if (d == t4_pciids[i].device) { 506 device_set_desc(dev, t4_pciids[i].desc); 507 return (BUS_PROBE_DEFAULT); 508 } 509 } 510 511 return (ENXIO); 512 } 513 514 static int 515 t5_probe(device_t dev) 516 { 517 int i; 518 uint16_t v = pci_get_vendor(dev); 519 uint16_t d = pci_get_device(dev); 520 uint8_t f = pci_get_function(dev); 521 522 if (v != PCI_VENDOR_ID_CHELSIO) 523 return (ENXIO); 524 525 /* Attach only to PF0 of the FPGA */ 526 if (d == 0xb000 && f != 0) 527 return (ENXIO); 528 529 for (i = 0; i < nitems(t5_pciids); i++) { 530 if (d == t5_pciids[i].device) { 531 device_set_desc(dev, t5_pciids[i].desc); 532 return (BUS_PROBE_DEFAULT); 533 } 534 } 535 536 return (ENXIO); 537 } 538 539 static int 540 t4_attach(device_t dev) 541 { 542 struct adapter *sc; 543 int rc = 0, i, n10g, n1g, rqidx, tqidx; 544 struct intrs_and_queues iaq; 545 struct sge *s; 546 #ifdef TCP_OFFLOAD 547 int ofld_rqidx, ofld_tqidx; 548 #endif 549 550 sc = device_get_softc(dev); 551 sc->dev = dev; 552 553 pci_enable_busmaster(dev); 554 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 555 uint32_t v; 556 557 pci_set_max_read_req(dev, 4096); 558 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 559 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 560 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 561 } 562 563 sc->traceq = -1; 564 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 565 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 566 device_get_nameunit(dev)); 567 568 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 569 device_get_nameunit(dev)); 570 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 571 mtx_lock(&t4_list_lock); 572 SLIST_INSERT_HEAD(&t4_list, sc, link); 573 mtx_unlock(&t4_list_lock); 574 575 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 576 TAILQ_INIT(&sc->sfl); 577 callout_init(&sc->sfl_callout, CALLOUT_MPSAFE); 578 579 rc = map_bars_0_and_4(sc); 580 if (rc != 0) 581 goto done; /* error message displayed already */ 582 583 /* 584 * This is the real PF# to which we're attaching. Works from within PCI 585 * passthrough environments too, where pci_get_function() could return a 586 * different PF# depending on the passthrough configuration. We need to 587 * use the real PF# in all our communication with the firmware. 588 */ 589 sc->pf = G_SOURCEPF(t4_read_reg(sc, A_PL_WHOAMI)); 590 sc->mbox = sc->pf; 591 592 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 593 sc->an_handler = an_not_handled; 594 for (i = 0; i < nitems(sc->cpl_handler); i++) 595 sc->cpl_handler[i] = cpl_not_handled; 596 for (i = 0; i < nitems(sc->fw_msg_handler); i++) 597 sc->fw_msg_handler[i] = fw_msg_not_handled; 598 t4_register_cpl_handler(sc, CPL_SET_TCB_RPL, t4_filter_rpl); 599 t4_register_cpl_handler(sc, CPL_TRACE_PKT, t4_trace_pkt); 600 t4_register_cpl_handler(sc, CPL_TRACE_PKT_T5, t5_trace_pkt); 601 t4_init_sge_cpl_handlers(sc); 602 603 604 /* Prepare the adapter for operation */ 605 rc = -t4_prep_adapter(sc); 606 if (rc != 0) { 607 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 608 goto done; 609 } 610 611 /* 612 * Do this really early, with the memory windows set up even before the 613 * character device. The userland tool's register i/o and mem read 614 * will work even in "recovery mode". 615 */ 616 setup_memwin(sc); 617 sc->cdev = make_dev(is_t4(sc) ? &t4_cdevsw : &t5_cdevsw, 618 device_get_unit(dev), UID_ROOT, GID_WHEEL, 0600, "%s", 619 device_get_nameunit(dev)); 620 if (sc->cdev == NULL) 621 device_printf(dev, "failed to create nexus char device.\n"); 622 else 623 sc->cdev->si_drv1 = sc; 624 625 /* Go no further if recovery mode has been requested. */ 626 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 627 device_printf(dev, "recovery mode.\n"); 628 goto done; 629 } 630 631 /* Prepare the firmware for operation */ 632 rc = prep_firmware(sc); 633 if (rc != 0) 634 goto done; /* error message displayed already */ 635 636 rc = get_params__post_init(sc); 637 if (rc != 0) 638 goto done; /* error message displayed already */ 639 640 rc = set_params__post_init(sc); 641 if (rc != 0) 642 goto done; /* error message displayed already */ 643 644 rc = map_bar_2(sc); 645 if (rc != 0) 646 goto done; /* error message displayed already */ 647 648 rc = t4_create_dma_tag(sc); 649 if (rc != 0) 650 goto done; /* error message displayed already */ 651 652 /* 653 * First pass over all the ports - allocate VIs and initialize some 654 * basic parameters like mac address, port type, etc. We also figure 655 * out whether a port is 10G or 1G and use that information when 656 * calculating how many interrupts to attempt to allocate. 657 */ 658 n10g = n1g = 0; 659 for_each_port(sc, i) { 660 struct port_info *pi; 661 662 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 663 sc->port[i] = pi; 664 665 /* These must be set before t4_port_init */ 666 pi->adapter = sc; 667 pi->port_id = i; 668 669 /* Allocate the vi and initialize parameters like mac addr */ 670 rc = -t4_port_init(pi, sc->mbox, sc->pf, 0); 671 if (rc != 0) { 672 device_printf(dev, "unable to initialize port %d: %d\n", 673 i, rc); 674 free(pi, M_CXGBE); 675 sc->port[i] = NULL; 676 goto done; 677 } 678 679 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 680 device_get_nameunit(dev), i); 681 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 682 sc->chan_map[pi->tx_chan] = i; 683 684 if (is_10G_port(pi) || is_40G_port(pi)) { 685 n10g++; 686 pi->tmr_idx = t4_tmr_idx_10g; 687 pi->pktc_idx = t4_pktc_idx_10g; 688 } else { 689 n1g++; 690 pi->tmr_idx = t4_tmr_idx_1g; 691 pi->pktc_idx = t4_pktc_idx_1g; 692 } 693 694 pi->xact_addr_filt = -1; 695 pi->linkdnrc = -1; 696 697 pi->qsize_rxq = t4_qsize_rxq; 698 pi->qsize_txq = t4_qsize_txq; 699 700 pi->dev = device_add_child(dev, is_t4(sc) ? "cxgbe" : "cxl", -1); 701 if (pi->dev == NULL) { 702 device_printf(dev, 703 "failed to add device for port %d.\n", i); 704 rc = ENXIO; 705 goto done; 706 } 707 device_set_softc(pi->dev, pi); 708 } 709 710 /* 711 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 712 */ 713 rc = cfg_itype_and_nqueues(sc, n10g, n1g, &iaq); 714 if (rc != 0) 715 goto done; /* error message displayed already */ 716 717 sc->intr_type = iaq.intr_type; 718 sc->intr_count = iaq.nirq; 719 sc->flags |= iaq.intr_flags; 720 721 s = &sc->sge; 722 s->nrxq = n10g * iaq.nrxq10g + n1g * iaq.nrxq1g; 723 s->ntxq = n10g * iaq.ntxq10g + n1g * iaq.ntxq1g; 724 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 725 s->neq += sc->params.nports + 1;/* ctrl queues: 1 per port + 1 mgmt */ 726 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 727 728 #ifdef TCP_OFFLOAD 729 if (is_offload(sc)) { 730 731 s->nofldrxq = n10g * iaq.nofldrxq10g + n1g * iaq.nofldrxq1g; 732 s->nofldtxq = n10g * iaq.nofldtxq10g + n1g * iaq.nofldtxq1g; 733 s->neq += s->nofldtxq + s->nofldrxq; 734 s->niq += s->nofldrxq; 735 736 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 737 M_CXGBE, M_ZERO | M_WAITOK); 738 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq), 739 M_CXGBE, M_ZERO | M_WAITOK); 740 } 741 #endif 742 743 s->ctrlq = malloc(sc->params.nports * sizeof(struct sge_wrq), M_CXGBE, 744 M_ZERO | M_WAITOK); 745 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 746 M_ZERO | M_WAITOK); 747 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 748 M_ZERO | M_WAITOK); 749 s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE, 750 M_ZERO | M_WAITOK); 751 s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE, 752 M_ZERO | M_WAITOK); 753 754 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 755 M_ZERO | M_WAITOK); 756 757 t4_init_l2t(sc, M_WAITOK); 758 759 /* 760 * Second pass over the ports. This time we know the number of rx and 761 * tx queues that each port should get. 762 */ 763 rqidx = tqidx = 0; 764 #ifdef TCP_OFFLOAD 765 ofld_rqidx = ofld_tqidx = 0; 766 #endif 767 for_each_port(sc, i) { 768 struct port_info *pi = sc->port[i]; 769 770 if (pi == NULL) 771 continue; 772 773 pi->first_rxq = rqidx; 774 pi->first_txq = tqidx; 775 if (is_10G_port(pi) || is_40G_port(pi)) { 776 pi->nrxq = iaq.nrxq10g; 777 pi->ntxq = iaq.ntxq10g; 778 } else { 779 pi->nrxq = iaq.nrxq1g; 780 pi->ntxq = iaq.ntxq1g; 781 } 782 783 rqidx += pi->nrxq; 784 tqidx += pi->ntxq; 785 786 #ifdef TCP_OFFLOAD 787 if (is_offload(sc)) { 788 pi->first_ofld_rxq = ofld_rqidx; 789 pi->first_ofld_txq = ofld_tqidx; 790 if (is_10G_port(pi) || is_40G_port(pi)) { 791 pi->nofldrxq = iaq.nofldrxq10g; 792 pi->nofldtxq = iaq.nofldtxq10g; 793 } else { 794 pi->nofldrxq = iaq.nofldrxq1g; 795 pi->nofldtxq = iaq.nofldtxq1g; 796 } 797 ofld_rqidx += pi->nofldrxq; 798 ofld_tqidx += pi->nofldtxq; 799 } 800 #endif 801 } 802 803 rc = setup_intr_handlers(sc); 804 if (rc != 0) { 805 device_printf(dev, 806 "failed to setup interrupt handlers: %d\n", rc); 807 goto done; 808 } 809 810 rc = bus_generic_attach(dev); 811 if (rc != 0) { 812 device_printf(dev, 813 "failed to attach all child ports: %d\n", rc); 814 goto done; 815 } 816 817 device_printf(dev, 818 "PCIe x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 819 sc->params.pci.width, sc->params.nports, sc->intr_count, 820 sc->intr_type == INTR_MSIX ? "MSI-X" : 821 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 822 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 823 824 t4_set_desc(sc); 825 826 done: 827 if (rc != 0 && sc->cdev) { 828 /* cdev was created and so cxgbetool works; recover that way. */ 829 device_printf(dev, 830 "error during attach, adapter is now in recovery mode.\n"); 831 rc = 0; 832 } 833 834 if (rc != 0) 835 t4_detach(dev); 836 else 837 t4_sysctls(sc); 838 839 return (rc); 840 } 841 842 /* 843 * Idempotent 844 */ 845 static int 846 t4_detach(device_t dev) 847 { 848 struct adapter *sc; 849 struct port_info *pi; 850 int i, rc; 851 852 sc = device_get_softc(dev); 853 854 if (sc->flags & FULL_INIT_DONE) 855 t4_intr_disable(sc); 856 857 if (sc->cdev) { 858 destroy_dev(sc->cdev); 859 sc->cdev = NULL; 860 } 861 862 rc = bus_generic_detach(dev); 863 if (rc) { 864 device_printf(dev, 865 "failed to detach child devices: %d\n", rc); 866 return (rc); 867 } 868 869 for (i = 0; i < sc->intr_count; i++) 870 t4_free_irq(sc, &sc->irq[i]); 871 872 for (i = 0; i < MAX_NPORTS; i++) { 873 pi = sc->port[i]; 874 if (pi) { 875 t4_free_vi(pi->adapter, sc->mbox, sc->pf, 0, pi->viid); 876 if (pi->dev) 877 device_delete_child(dev, pi->dev); 878 879 mtx_destroy(&pi->pi_lock); 880 free(pi, M_CXGBE); 881 } 882 } 883 884 if (sc->flags & FULL_INIT_DONE) 885 adapter_full_uninit(sc); 886 887 if (sc->flags & FW_OK) 888 t4_fw_bye(sc, sc->mbox); 889 890 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 891 pci_release_msi(dev); 892 893 if (sc->regs_res) 894 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 895 sc->regs_res); 896 897 if (sc->udbs_res) 898 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 899 sc->udbs_res); 900 901 if (sc->msix_res) 902 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 903 sc->msix_res); 904 905 if (sc->l2t) 906 t4_free_l2t(sc->l2t); 907 908 #ifdef TCP_OFFLOAD 909 free(sc->sge.ofld_rxq, M_CXGBE); 910 free(sc->sge.ofld_txq, M_CXGBE); 911 #endif 912 free(sc->irq, M_CXGBE); 913 free(sc->sge.rxq, M_CXGBE); 914 free(sc->sge.txq, M_CXGBE); 915 free(sc->sge.ctrlq, M_CXGBE); 916 free(sc->sge.iqmap, M_CXGBE); 917 free(sc->sge.eqmap, M_CXGBE); 918 free(sc->tids.ftid_tab, M_CXGBE); 919 t4_destroy_dma_tag(sc); 920 if (mtx_initialized(&sc->sc_lock)) { 921 mtx_lock(&t4_list_lock); 922 SLIST_REMOVE(&t4_list, sc, adapter, link); 923 mtx_unlock(&t4_list_lock); 924 mtx_destroy(&sc->sc_lock); 925 } 926 927 if (mtx_initialized(&sc->tids.ftid_lock)) 928 mtx_destroy(&sc->tids.ftid_lock); 929 if (mtx_initialized(&sc->sfl_lock)) 930 mtx_destroy(&sc->sfl_lock); 931 if (mtx_initialized(&sc->ifp_lock)) 932 mtx_destroy(&sc->ifp_lock); 933 934 bzero(sc, sizeof(*sc)); 935 936 return (0); 937 } 938 939 940 static int 941 cxgbe_probe(device_t dev) 942 { 943 char buf[128]; 944 struct port_info *pi = device_get_softc(dev); 945 946 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 947 device_set_desc_copy(dev, buf); 948 949 return (BUS_PROBE_DEFAULT); 950 } 951 952 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 953 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 954 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6) 955 #define T4_CAP_ENABLE (T4_CAP) 956 957 static int 958 cxgbe_attach(device_t dev) 959 { 960 struct port_info *pi = device_get_softc(dev); 961 struct ifnet *ifp; 962 963 /* Allocate an ifnet and set it up */ 964 ifp = if_alloc(IFT_ETHER); 965 if (ifp == NULL) { 966 device_printf(dev, "Cannot allocate ifnet\n"); 967 return (ENOMEM); 968 } 969 pi->ifp = ifp; 970 ifp->if_softc = pi; 971 972 callout_init(&pi->tick, CALLOUT_MPSAFE); 973 974 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 975 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 976 977 ifp->if_init = cxgbe_init; 978 ifp->if_ioctl = cxgbe_ioctl; 979 ifp->if_transmit = cxgbe_transmit; 980 ifp->if_qflush = cxgbe_qflush; 981 982 ifp->if_capabilities = T4_CAP; 983 #ifdef TCP_OFFLOAD 984 if (is_offload(pi->adapter)) 985 ifp->if_capabilities |= IFCAP_TOE; 986 #endif 987 ifp->if_capenable = T4_CAP_ENABLE; 988 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 989 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 990 991 /* Initialize ifmedia for this port */ 992 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 993 cxgbe_media_status); 994 build_medialist(pi); 995 996 pi->vlan_c = EVENTHANDLER_REGISTER(vlan_config, cxgbe_vlan_config, ifp, 997 EVENTHANDLER_PRI_ANY); 998 999 ether_ifattach(ifp, pi->hw_addr); 1000 1001 #ifdef TCP_OFFLOAD 1002 if (is_offload(pi->adapter)) { 1003 device_printf(dev, 1004 "%d txq, %d rxq (NIC); %d txq, %d rxq (TOE)\n", 1005 pi->ntxq, pi->nrxq, pi->nofldtxq, pi->nofldrxq); 1006 } else 1007 #endif 1008 device_printf(dev, "%d txq, %d rxq\n", pi->ntxq, pi->nrxq); 1009 1010 cxgbe_sysctls(pi); 1011 1012 return (0); 1013 } 1014 1015 static int 1016 cxgbe_detach(device_t dev) 1017 { 1018 struct port_info *pi = device_get_softc(dev); 1019 struct adapter *sc = pi->adapter; 1020 struct ifnet *ifp = pi->ifp; 1021 1022 /* Tell if_ioctl and if_init that the port is going away */ 1023 ADAPTER_LOCK(sc); 1024 SET_DOOMED(pi); 1025 wakeup(&sc->flags); 1026 while (IS_BUSY(sc)) 1027 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 1028 SET_BUSY(sc); 1029 #ifdef INVARIANTS 1030 sc->last_op = "t4detach"; 1031 sc->last_op_thr = curthread; 1032 #endif 1033 ADAPTER_UNLOCK(sc); 1034 1035 if (pi->flags & HAS_TRACEQ) { 1036 sc->traceq = -1; /* cloner should not create ifnet */ 1037 t4_tracer_port_detach(sc); 1038 } 1039 1040 if (pi->vlan_c) 1041 EVENTHANDLER_DEREGISTER(vlan_config, pi->vlan_c); 1042 1043 PORT_LOCK(pi); 1044 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1045 callout_stop(&pi->tick); 1046 PORT_UNLOCK(pi); 1047 callout_drain(&pi->tick); 1048 1049 /* Let detach proceed even if these fail. */ 1050 cxgbe_uninit_synchronized(pi); 1051 port_full_uninit(pi); 1052 1053 ifmedia_removeall(&pi->media); 1054 ether_ifdetach(pi->ifp); 1055 if_free(pi->ifp); 1056 1057 ADAPTER_LOCK(sc); 1058 CLR_BUSY(sc); 1059 wakeup(&sc->flags); 1060 ADAPTER_UNLOCK(sc); 1061 1062 return (0); 1063 } 1064 1065 static void 1066 cxgbe_init(void *arg) 1067 { 1068 struct port_info *pi = arg; 1069 struct adapter *sc = pi->adapter; 1070 1071 if (begin_synchronized_op(sc, pi, SLEEP_OK | INTR_OK, "t4init") != 0) 1072 return; 1073 cxgbe_init_synchronized(pi); 1074 end_synchronized_op(sc, 0); 1075 } 1076 1077 static int 1078 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 1079 { 1080 int rc = 0, mtu, flags; 1081 struct port_info *pi = ifp->if_softc; 1082 struct adapter *sc = pi->adapter; 1083 struct ifreq *ifr = (struct ifreq *)data; 1084 uint32_t mask; 1085 1086 switch (cmd) { 1087 case SIOCSIFMTU: 1088 mtu = ifr->ifr_mtu; 1089 if ((mtu < ETHERMIN) || (mtu > ETHERMTU_JUMBO)) 1090 return (EINVAL); 1091 1092 rc = begin_synchronized_op(sc, pi, SLEEP_OK | INTR_OK, "t4mtu"); 1093 if (rc) 1094 return (rc); 1095 ifp->if_mtu = mtu; 1096 if (pi->flags & PORT_INIT_DONE) { 1097 t4_update_fl_bufsize(ifp); 1098 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1099 rc = update_mac_settings(pi, XGMAC_MTU); 1100 } 1101 end_synchronized_op(sc, 0); 1102 break; 1103 1104 case SIOCSIFFLAGS: 1105 rc = begin_synchronized_op(sc, pi, SLEEP_OK | INTR_OK, "t4flg"); 1106 if (rc) 1107 return (rc); 1108 1109 if (ifp->if_flags & IFF_UP) { 1110 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1111 flags = pi->if_flags; 1112 if ((ifp->if_flags ^ flags) & 1113 (IFF_PROMISC | IFF_ALLMULTI)) { 1114 rc = update_mac_settings(pi, 1115 XGMAC_PROMISC | XGMAC_ALLMULTI); 1116 } 1117 } else 1118 rc = cxgbe_init_synchronized(pi); 1119 pi->if_flags = ifp->if_flags; 1120 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1121 rc = cxgbe_uninit_synchronized(pi); 1122 end_synchronized_op(sc, 0); 1123 break; 1124 1125 case SIOCADDMULTI: 1126 case SIOCDELMULTI: /* these two are called with a mutex held :-( */ 1127 rc = begin_synchronized_op(sc, pi, HOLD_LOCK, "t4multi"); 1128 if (rc) 1129 return (rc); 1130 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1131 rc = update_mac_settings(pi, XGMAC_MCADDRS); 1132 end_synchronized_op(sc, LOCK_HELD); 1133 break; 1134 1135 case SIOCSIFCAP: 1136 rc = begin_synchronized_op(sc, pi, SLEEP_OK | INTR_OK, "t4cap"); 1137 if (rc) 1138 return (rc); 1139 1140 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1141 if (mask & IFCAP_TXCSUM) { 1142 ifp->if_capenable ^= IFCAP_TXCSUM; 1143 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 1144 1145 if (IFCAP_TSO4 & ifp->if_capenable && 1146 !(IFCAP_TXCSUM & ifp->if_capenable)) { 1147 ifp->if_capenable &= ~IFCAP_TSO4; 1148 if_printf(ifp, 1149 "tso4 disabled due to -txcsum.\n"); 1150 } 1151 } 1152 if (mask & IFCAP_TXCSUM_IPV6) { 1153 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 1154 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 1155 1156 if (IFCAP_TSO6 & ifp->if_capenable && 1157 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 1158 ifp->if_capenable &= ~IFCAP_TSO6; 1159 if_printf(ifp, 1160 "tso6 disabled due to -txcsum6.\n"); 1161 } 1162 } 1163 if (mask & IFCAP_RXCSUM) 1164 ifp->if_capenable ^= IFCAP_RXCSUM; 1165 if (mask & IFCAP_RXCSUM_IPV6) 1166 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 1167 1168 /* 1169 * Note that we leave CSUM_TSO alone (it is always set). The 1170 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 1171 * sending a TSO request our way, so it's sufficient to toggle 1172 * IFCAP_TSOx only. 1173 */ 1174 if (mask & IFCAP_TSO4) { 1175 if (!(IFCAP_TSO4 & ifp->if_capenable) && 1176 !(IFCAP_TXCSUM & ifp->if_capenable)) { 1177 if_printf(ifp, "enable txcsum first.\n"); 1178 rc = EAGAIN; 1179 goto fail; 1180 } 1181 ifp->if_capenable ^= IFCAP_TSO4; 1182 } 1183 if (mask & IFCAP_TSO6) { 1184 if (!(IFCAP_TSO6 & ifp->if_capenable) && 1185 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 1186 if_printf(ifp, "enable txcsum6 first.\n"); 1187 rc = EAGAIN; 1188 goto fail; 1189 } 1190 ifp->if_capenable ^= IFCAP_TSO6; 1191 } 1192 if (mask & IFCAP_LRO) { 1193 #if defined(INET) || defined(INET6) 1194 int i; 1195 struct sge_rxq *rxq; 1196 1197 ifp->if_capenable ^= IFCAP_LRO; 1198 for_each_rxq(pi, i, rxq) { 1199 if (ifp->if_capenable & IFCAP_LRO) 1200 rxq->iq.flags |= IQ_LRO_ENABLED; 1201 else 1202 rxq->iq.flags &= ~IQ_LRO_ENABLED; 1203 } 1204 #endif 1205 } 1206 #ifdef TCP_OFFLOAD 1207 if (mask & IFCAP_TOE) { 1208 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 1209 1210 rc = toe_capability(pi, enable); 1211 if (rc != 0) 1212 goto fail; 1213 1214 ifp->if_capenable ^= mask; 1215 } 1216 #endif 1217 if (mask & IFCAP_VLAN_HWTAGGING) { 1218 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1219 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1220 rc = update_mac_settings(pi, XGMAC_VLANEX); 1221 } 1222 if (mask & IFCAP_VLAN_MTU) { 1223 ifp->if_capenable ^= IFCAP_VLAN_MTU; 1224 1225 /* Need to find out how to disable auto-mtu-inflation */ 1226 } 1227 if (mask & IFCAP_VLAN_HWTSO) 1228 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 1229 if (mask & IFCAP_VLAN_HWCSUM) 1230 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 1231 1232 #ifdef VLAN_CAPABILITIES 1233 VLAN_CAPABILITIES(ifp); 1234 #endif 1235 fail: 1236 end_synchronized_op(sc, 0); 1237 break; 1238 1239 case SIOCSIFMEDIA: 1240 case SIOCGIFMEDIA: 1241 ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 1242 break; 1243 1244 default: 1245 rc = ether_ioctl(ifp, cmd, data); 1246 } 1247 1248 return (rc); 1249 } 1250 1251 static int 1252 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 1253 { 1254 struct port_info *pi = ifp->if_softc; 1255 struct adapter *sc = pi->adapter; 1256 struct sge_txq *txq = &sc->sge.txq[pi->first_txq]; 1257 struct buf_ring *br; 1258 int rc; 1259 1260 M_ASSERTPKTHDR(m); 1261 1262 if (__predict_false(pi->link_cfg.link_ok == 0)) { 1263 m_freem(m); 1264 return (ENETDOWN); 1265 } 1266 1267 if (m->m_flags & M_FLOWID) 1268 txq += (m->m_pkthdr.flowid % pi->ntxq); 1269 br = txq->br; 1270 1271 if (TXQ_TRYLOCK(txq) == 0) { 1272 struct sge_eq *eq = &txq->eq; 1273 1274 /* 1275 * It is possible that t4_eth_tx finishes up and releases the 1276 * lock between the TRYLOCK above and the drbr_enqueue here. We 1277 * need to make sure that this mbuf doesn't just sit there in 1278 * the drbr. 1279 */ 1280 1281 rc = drbr_enqueue(ifp, br, m); 1282 if (rc == 0 && callout_pending(&eq->tx_callout) == 0 && 1283 !(eq->flags & EQ_DOOMED)) 1284 callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq); 1285 return (rc); 1286 } 1287 1288 /* 1289 * txq->m is the mbuf that is held up due to a temporary shortage of 1290 * resources and it should be put on the wire first. Then what's in 1291 * drbr and finally the mbuf that was just passed in to us. 1292 * 1293 * Return code should indicate the fate of the mbuf that was passed in 1294 * this time. 1295 */ 1296 1297 TXQ_LOCK_ASSERT_OWNED(txq); 1298 if (drbr_needs_enqueue(ifp, br) || txq->m) { 1299 1300 /* Queued for transmission. */ 1301 1302 rc = drbr_enqueue(ifp, br, m); 1303 m = txq->m ? txq->m : drbr_dequeue(ifp, br); 1304 (void) t4_eth_tx(ifp, txq, m); 1305 TXQ_UNLOCK(txq); 1306 return (rc); 1307 } 1308 1309 /* Direct transmission. */ 1310 rc = t4_eth_tx(ifp, txq, m); 1311 if (rc != 0 && txq->m) 1312 rc = 0; /* held, will be transmitted soon (hopefully) */ 1313 1314 TXQ_UNLOCK(txq); 1315 return (rc); 1316 } 1317 1318 static void 1319 cxgbe_qflush(struct ifnet *ifp) 1320 { 1321 struct port_info *pi = ifp->if_softc; 1322 struct sge_txq *txq; 1323 int i; 1324 struct mbuf *m; 1325 1326 /* queues do not exist if !PORT_INIT_DONE. */ 1327 if (pi->flags & PORT_INIT_DONE) { 1328 for_each_txq(pi, i, txq) { 1329 TXQ_LOCK(txq); 1330 m_freem(txq->m); 1331 txq->m = NULL; 1332 while ((m = buf_ring_dequeue_sc(txq->br)) != NULL) 1333 m_freem(m); 1334 TXQ_UNLOCK(txq); 1335 } 1336 } 1337 if_qflush(ifp); 1338 } 1339 1340 static int 1341 cxgbe_media_change(struct ifnet *ifp) 1342 { 1343 struct port_info *pi = ifp->if_softc; 1344 1345 device_printf(pi->dev, "%s unimplemented.\n", __func__); 1346 1347 return (EOPNOTSUPP); 1348 } 1349 1350 static void 1351 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 1352 { 1353 struct port_info *pi = ifp->if_softc; 1354 struct ifmedia_entry *cur = pi->media.ifm_cur; 1355 int speed = pi->link_cfg.speed; 1356 int data = (pi->port_type << 8) | pi->mod_type; 1357 1358 if (cur->ifm_data != data) { 1359 build_medialist(pi); 1360 cur = pi->media.ifm_cur; 1361 } 1362 1363 ifmr->ifm_status = IFM_AVALID; 1364 if (!pi->link_cfg.link_ok) 1365 return; 1366 1367 ifmr->ifm_status |= IFM_ACTIVE; 1368 1369 /* active and current will differ iff current media is autoselect. */ 1370 if (IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO) 1371 return; 1372 1373 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 1374 if (speed == SPEED_10000) 1375 ifmr->ifm_active |= IFM_10G_T; 1376 else if (speed == SPEED_1000) 1377 ifmr->ifm_active |= IFM_1000_T; 1378 else if (speed == SPEED_100) 1379 ifmr->ifm_active |= IFM_100_TX; 1380 else if (speed == SPEED_10) 1381 ifmr->ifm_active |= IFM_10_T; 1382 else 1383 KASSERT(0, ("%s: link up but speed unknown (%u)", __func__, 1384 speed)); 1385 } 1386 1387 void 1388 t4_fatal_err(struct adapter *sc) 1389 { 1390 t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0); 1391 t4_intr_disable(sc); 1392 log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n", 1393 device_get_nameunit(sc->dev)); 1394 } 1395 1396 static int 1397 map_bars_0_and_4(struct adapter *sc) 1398 { 1399 sc->regs_rid = PCIR_BAR(0); 1400 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 1401 &sc->regs_rid, RF_ACTIVE); 1402 if (sc->regs_res == NULL) { 1403 device_printf(sc->dev, "cannot map registers.\n"); 1404 return (ENXIO); 1405 } 1406 sc->bt = rman_get_bustag(sc->regs_res); 1407 sc->bh = rman_get_bushandle(sc->regs_res); 1408 sc->mmio_len = rman_get_size(sc->regs_res); 1409 setbit(&sc->doorbells, DOORBELL_KDB); 1410 1411 sc->msix_rid = PCIR_BAR(4); 1412 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 1413 &sc->msix_rid, RF_ACTIVE); 1414 if (sc->msix_res == NULL) { 1415 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 1416 return (ENXIO); 1417 } 1418 1419 return (0); 1420 } 1421 1422 static int 1423 map_bar_2(struct adapter *sc) 1424 { 1425 1426 /* 1427 * T4: only iWARP driver uses the userspace doorbells. There is no need 1428 * to map it if RDMA is disabled. 1429 */ 1430 if (is_t4(sc) && sc->rdmacaps == 0) 1431 return (0); 1432 1433 sc->udbs_rid = PCIR_BAR(2); 1434 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 1435 &sc->udbs_rid, RF_ACTIVE); 1436 if (sc->udbs_res == NULL) { 1437 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 1438 return (ENXIO); 1439 } 1440 sc->udbs_base = rman_get_virtual(sc->udbs_res); 1441 1442 if (is_t5(sc)) { 1443 setbit(&sc->doorbells, DOORBELL_UDB); 1444 #if defined(__i386__) || defined(__amd64__) 1445 if (t5_write_combine) { 1446 int rc; 1447 1448 /* 1449 * Enable write combining on BAR2. This is the 1450 * userspace doorbell BAR and is split into 128B 1451 * (UDBS_SEG_SIZE) doorbell regions, each associated 1452 * with an egress queue. The first 64B has the doorbell 1453 * and the second 64B can be used to submit a tx work 1454 * request with an implicit doorbell. 1455 */ 1456 1457 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 1458 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 1459 if (rc == 0) { 1460 clrbit(&sc->doorbells, DOORBELL_UDB); 1461 setbit(&sc->doorbells, DOORBELL_WCWR); 1462 setbit(&sc->doorbells, DOORBELL_UDBWC); 1463 } else { 1464 device_printf(sc->dev, 1465 "couldn't enable write combining: %d\n", 1466 rc); 1467 } 1468 1469 t4_write_reg(sc, A_SGE_STAT_CFG, 1470 V_STATSOURCE_T5(7) | V_STATMODE(0)); 1471 } 1472 #endif 1473 } 1474 1475 return (0); 1476 } 1477 1478 static const struct memwin t4_memwin[] = { 1479 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 1480 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 1481 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 1482 }; 1483 1484 static const struct memwin t5_memwin[] = { 1485 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 1486 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 1487 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 1488 }; 1489 1490 static void 1491 setup_memwin(struct adapter *sc) 1492 { 1493 const struct memwin *mw; 1494 int i, n; 1495 uint32_t bar0; 1496 1497 if (is_t4(sc)) { 1498 /* 1499 * Read low 32b of bar0 indirectly via the hardware backdoor 1500 * mechanism. Works from within PCI passthrough environments 1501 * too, where rman_get_start() can return a different value. We 1502 * need to program the T4 memory window decoders with the actual 1503 * addresses that will be coming across the PCIe link. 1504 */ 1505 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 1506 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 1507 1508 mw = &t4_memwin[0]; 1509 n = nitems(t4_memwin); 1510 } else { 1511 /* T5 uses the relative offset inside the PCIe BAR */ 1512 bar0 = 0; 1513 1514 mw = &t5_memwin[0]; 1515 n = nitems(t5_memwin); 1516 } 1517 1518 for (i = 0; i < n; i++, mw++) { 1519 t4_write_reg(sc, 1520 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 1521 (mw->base + bar0) | V_BIR(0) | 1522 V_WINDOW(ilog2(mw->aperture) - 10)); 1523 } 1524 1525 /* flush */ 1526 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 1527 } 1528 1529 /* 1530 * Verify that the memory range specified by the addr/len pair is valid and lies 1531 * entirely within a single region (EDCx or MCx). 1532 */ 1533 static int 1534 validate_mem_range(struct adapter *sc, uint32_t addr, int len) 1535 { 1536 uint32_t em, addr_len, maddr, mlen; 1537 1538 /* Memory can only be accessed in naturally aligned 4 byte units */ 1539 if (addr & 3 || len & 3 || len == 0) 1540 return (EINVAL); 1541 1542 /* Enabled memories */ 1543 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 1544 if (em & F_EDRAM0_ENABLE) { 1545 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 1546 maddr = G_EDRAM0_BASE(addr_len) << 20; 1547 mlen = G_EDRAM0_SIZE(addr_len) << 20; 1548 if (mlen > 0 && addr >= maddr && addr < maddr + mlen && 1549 addr + len <= maddr + mlen) 1550 return (0); 1551 } 1552 if (em & F_EDRAM1_ENABLE) { 1553 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 1554 maddr = G_EDRAM1_BASE(addr_len) << 20; 1555 mlen = G_EDRAM1_SIZE(addr_len) << 20; 1556 if (mlen > 0 && addr >= maddr && addr < maddr + mlen && 1557 addr + len <= maddr + mlen) 1558 return (0); 1559 } 1560 if (em & F_EXT_MEM_ENABLE) { 1561 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 1562 maddr = G_EXT_MEM_BASE(addr_len) << 20; 1563 mlen = G_EXT_MEM_SIZE(addr_len) << 20; 1564 if (mlen > 0 && addr >= maddr && addr < maddr + mlen && 1565 addr + len <= maddr + mlen) 1566 return (0); 1567 } 1568 if (!is_t4(sc) && em & F_EXT_MEM1_ENABLE) { 1569 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 1570 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 1571 mlen = G_EXT_MEM1_SIZE(addr_len) << 20; 1572 if (mlen > 0 && addr >= maddr && addr < maddr + mlen && 1573 addr + len <= maddr + mlen) 1574 return (0); 1575 } 1576 1577 return (EFAULT); 1578 } 1579 1580 /* 1581 * Verify that the memory range specified by the memtype/offset/len pair is 1582 * valid and lies entirely within the memtype specified. The global address of 1583 * the start of the range is returned in addr. 1584 */ 1585 static int 1586 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, int len, 1587 uint32_t *addr) 1588 { 1589 uint32_t em, addr_len, maddr, mlen; 1590 1591 /* Memory can only be accessed in naturally aligned 4 byte units */ 1592 if (off & 3 || len & 3 || len == 0) 1593 return (EINVAL); 1594 1595 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 1596 switch (mtype) { 1597 case MEM_EDC0: 1598 if (!(em & F_EDRAM0_ENABLE)) 1599 return (EINVAL); 1600 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 1601 maddr = G_EDRAM0_BASE(addr_len) << 20; 1602 mlen = G_EDRAM0_SIZE(addr_len) << 20; 1603 break; 1604 case MEM_EDC1: 1605 if (!(em & F_EDRAM1_ENABLE)) 1606 return (EINVAL); 1607 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 1608 maddr = G_EDRAM1_BASE(addr_len) << 20; 1609 mlen = G_EDRAM1_SIZE(addr_len) << 20; 1610 break; 1611 case MEM_MC: 1612 if (!(em & F_EXT_MEM_ENABLE)) 1613 return (EINVAL); 1614 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 1615 maddr = G_EXT_MEM_BASE(addr_len) << 20; 1616 mlen = G_EXT_MEM_SIZE(addr_len) << 20; 1617 break; 1618 case MEM_MC1: 1619 if (is_t4(sc) || !(em & F_EXT_MEM1_ENABLE)) 1620 return (EINVAL); 1621 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 1622 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 1623 mlen = G_EXT_MEM1_SIZE(addr_len) << 20; 1624 break; 1625 default: 1626 return (EINVAL); 1627 } 1628 1629 if (mlen > 0 && off < mlen && off + len <= mlen) { 1630 *addr = maddr + off; /* global address */ 1631 return (0); 1632 } 1633 1634 return (EFAULT); 1635 } 1636 1637 static void 1638 memwin_info(struct adapter *sc, int win, uint32_t *base, uint32_t *aperture) 1639 { 1640 const struct memwin *mw; 1641 1642 if (is_t4(sc)) { 1643 KASSERT(win >= 0 && win < nitems(t4_memwin), 1644 ("%s: incorrect memwin# (%d)", __func__, win)); 1645 mw = &t4_memwin[win]; 1646 } else { 1647 KASSERT(win >= 0 && win < nitems(t5_memwin), 1648 ("%s: incorrect memwin# (%d)", __func__, win)); 1649 mw = &t5_memwin[win]; 1650 } 1651 1652 if (base != NULL) 1653 *base = mw->base; 1654 if (aperture != NULL) 1655 *aperture = mw->aperture; 1656 } 1657 1658 /* 1659 * Positions the memory window such that it can be used to access the specified 1660 * address in the chip's address space. The return value is the offset of addr 1661 * from the start of the window. 1662 */ 1663 static uint32_t 1664 position_memwin(struct adapter *sc, int n, uint32_t addr) 1665 { 1666 uint32_t start, pf; 1667 uint32_t reg; 1668 1669 KASSERT(n >= 0 && n <= 3, 1670 ("%s: invalid window %d.", __func__, n)); 1671 KASSERT((addr & 3) == 0, 1672 ("%s: addr (0x%x) is not at a 4B boundary.", __func__, addr)); 1673 1674 if (is_t4(sc)) { 1675 pf = 0; 1676 start = addr & ~0xf; /* start must be 16B aligned */ 1677 } else { 1678 pf = V_PFNUM(sc->pf); 1679 start = addr & ~0x7f; /* start must be 128B aligned */ 1680 } 1681 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, n); 1682 1683 t4_write_reg(sc, reg, start | pf); 1684 t4_read_reg(sc, reg); 1685 1686 return (addr - start); 1687 } 1688 1689 static int 1690 cfg_itype_and_nqueues(struct adapter *sc, int n10g, int n1g, 1691 struct intrs_and_queues *iaq) 1692 { 1693 int rc, itype, navail, nrxq10g, nrxq1g, n; 1694 int nofldrxq10g = 0, nofldrxq1g = 0; 1695 1696 bzero(iaq, sizeof(*iaq)); 1697 1698 iaq->ntxq10g = t4_ntxq10g; 1699 iaq->ntxq1g = t4_ntxq1g; 1700 iaq->nrxq10g = nrxq10g = t4_nrxq10g; 1701 iaq->nrxq1g = nrxq1g = t4_nrxq1g; 1702 #ifdef TCP_OFFLOAD 1703 if (is_offload(sc)) { 1704 iaq->nofldtxq10g = t4_nofldtxq10g; 1705 iaq->nofldtxq1g = t4_nofldtxq1g; 1706 iaq->nofldrxq10g = nofldrxq10g = t4_nofldrxq10g; 1707 iaq->nofldrxq1g = nofldrxq1g = t4_nofldrxq1g; 1708 } 1709 #endif 1710 1711 for (itype = INTR_MSIX; itype; itype >>= 1) { 1712 1713 if ((itype & t4_intr_types) == 0) 1714 continue; /* not allowed */ 1715 1716 if (itype == INTR_MSIX) 1717 navail = pci_msix_count(sc->dev); 1718 else if (itype == INTR_MSI) 1719 navail = pci_msi_count(sc->dev); 1720 else 1721 navail = 1; 1722 restart: 1723 if (navail == 0) 1724 continue; 1725 1726 iaq->intr_type = itype; 1727 iaq->intr_flags = 0; 1728 1729 /* 1730 * Best option: an interrupt vector for errors, one for the 1731 * firmware event queue, and one each for each rxq (NIC as well 1732 * as offload). 1733 */ 1734 iaq->nirq = T4_EXTRA_INTR; 1735 iaq->nirq += n10g * (nrxq10g + nofldrxq10g); 1736 iaq->nirq += n1g * (nrxq1g + nofldrxq1g); 1737 if (iaq->nirq <= navail && 1738 (itype != INTR_MSI || powerof2(iaq->nirq))) { 1739 iaq->intr_flags |= INTR_DIRECT; 1740 goto allocate; 1741 } 1742 1743 /* 1744 * Second best option: an interrupt vector for errors, one for 1745 * the firmware event queue, and one each for either NIC or 1746 * offload rxq's. 1747 */ 1748 iaq->nirq = T4_EXTRA_INTR; 1749 iaq->nirq += n10g * max(nrxq10g, nofldrxq10g); 1750 iaq->nirq += n1g * max(nrxq1g, nofldrxq1g); 1751 if (iaq->nirq <= navail && 1752 (itype != INTR_MSI || powerof2(iaq->nirq))) 1753 goto allocate; 1754 1755 /* 1756 * Next best option: an interrupt vector for errors, one for the 1757 * firmware event queue, and at least one per port. At this 1758 * point we know we'll have to downsize nrxq or nofldrxq to fit 1759 * what's available to us. 1760 */ 1761 iaq->nirq = T4_EXTRA_INTR; 1762 iaq->nirq += n10g + n1g; 1763 if (iaq->nirq <= navail) { 1764 int leftover = navail - iaq->nirq; 1765 1766 if (n10g > 0) { 1767 int target = max(nrxq10g, nofldrxq10g); 1768 1769 n = 1; 1770 while (n < target && leftover >= n10g) { 1771 leftover -= n10g; 1772 iaq->nirq += n10g; 1773 n++; 1774 } 1775 iaq->nrxq10g = min(n, nrxq10g); 1776 #ifdef TCP_OFFLOAD 1777 if (is_offload(sc)) 1778 iaq->nofldrxq10g = min(n, nofldrxq10g); 1779 #endif 1780 } 1781 1782 if (n1g > 0) { 1783 int target = max(nrxq1g, nofldrxq1g); 1784 1785 n = 1; 1786 while (n < target && leftover >= n1g) { 1787 leftover -= n1g; 1788 iaq->nirq += n1g; 1789 n++; 1790 } 1791 iaq->nrxq1g = min(n, nrxq1g); 1792 #ifdef TCP_OFFLOAD 1793 if (is_offload(sc)) 1794 iaq->nofldrxq1g = min(n, nofldrxq1g); 1795 #endif 1796 } 1797 1798 if (itype != INTR_MSI || powerof2(iaq->nirq)) 1799 goto allocate; 1800 } 1801 1802 /* 1803 * Least desirable option: one interrupt vector for everything. 1804 */ 1805 iaq->nirq = iaq->nrxq10g = iaq->nrxq1g = 1; 1806 #ifdef TCP_OFFLOAD 1807 if (is_offload(sc)) 1808 iaq->nofldrxq10g = iaq->nofldrxq1g = 1; 1809 #endif 1810 1811 allocate: 1812 navail = iaq->nirq; 1813 rc = 0; 1814 if (itype == INTR_MSIX) 1815 rc = pci_alloc_msix(sc->dev, &navail); 1816 else if (itype == INTR_MSI) 1817 rc = pci_alloc_msi(sc->dev, &navail); 1818 1819 if (rc == 0) { 1820 if (navail == iaq->nirq) 1821 return (0); 1822 1823 /* 1824 * Didn't get the number requested. Use whatever number 1825 * the kernel is willing to allocate (it's in navail). 1826 */ 1827 device_printf(sc->dev, "fewer vectors than requested, " 1828 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 1829 itype, iaq->nirq, navail); 1830 pci_release_msi(sc->dev); 1831 goto restart; 1832 } 1833 1834 device_printf(sc->dev, 1835 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 1836 itype, rc, iaq->nirq, navail); 1837 } 1838 1839 device_printf(sc->dev, 1840 "failed to find a usable interrupt type. " 1841 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 1842 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 1843 1844 return (ENXIO); 1845 } 1846 1847 #define FW_VERSION(chip) ( \ 1848 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 1849 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 1850 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 1851 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 1852 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 1853 1854 struct fw_info { 1855 uint8_t chip; 1856 char *kld_name; 1857 char *fw_mod_name; 1858 struct fw_hdr fw_hdr; /* XXX: waste of space, need a sparse struct */ 1859 } fw_info[] = { 1860 { 1861 .chip = CHELSIO_T4, 1862 .kld_name = "t4fw_cfg", 1863 .fw_mod_name = "t4fw", 1864 .fw_hdr = { 1865 .chip = FW_HDR_CHIP_T4, 1866 .fw_ver = htobe32_const(FW_VERSION(T4)), 1867 .intfver_nic = FW_INTFVER(T4, NIC), 1868 .intfver_vnic = FW_INTFVER(T4, VNIC), 1869 .intfver_ofld = FW_INTFVER(T4, OFLD), 1870 .intfver_ri = FW_INTFVER(T4, RI), 1871 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 1872 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 1873 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 1874 .intfver_fcoe = FW_INTFVER(T4, FCOE), 1875 }, 1876 }, { 1877 .chip = CHELSIO_T5, 1878 .kld_name = "t5fw_cfg", 1879 .fw_mod_name = "t5fw", 1880 .fw_hdr = { 1881 .chip = FW_HDR_CHIP_T5, 1882 .fw_ver = htobe32_const(FW_VERSION(T5)), 1883 .intfver_nic = FW_INTFVER(T5, NIC), 1884 .intfver_vnic = FW_INTFVER(T5, VNIC), 1885 .intfver_ofld = FW_INTFVER(T5, OFLD), 1886 .intfver_ri = FW_INTFVER(T5, RI), 1887 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 1888 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 1889 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 1890 .intfver_fcoe = FW_INTFVER(T5, FCOE), 1891 }, 1892 } 1893 }; 1894 1895 static struct fw_info * 1896 find_fw_info(int chip) 1897 { 1898 int i; 1899 1900 for (i = 0; i < nitems(fw_info); i++) { 1901 if (fw_info[i].chip == chip) 1902 return (&fw_info[i]); 1903 } 1904 return (NULL); 1905 } 1906 1907 /* 1908 * Is the given firmware API compatible with the one the driver was compiled 1909 * with? 1910 */ 1911 static int 1912 fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 1913 { 1914 1915 /* short circuit if it's the exact same firmware version */ 1916 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 1917 return (1); 1918 1919 /* 1920 * XXX: Is this too conservative? Perhaps I should limit this to the 1921 * features that are supported in the driver. 1922 */ 1923 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 1924 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 1925 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 1926 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 1927 return (1); 1928 #undef SAME_INTF 1929 1930 return (0); 1931 } 1932 1933 /* 1934 * The firmware in the KLD is usable, but should it be installed? This routine 1935 * explains itself in detail if it indicates the KLD firmware should be 1936 * installed. 1937 */ 1938 static int 1939 should_install_kld_fw(struct adapter *sc, int card_fw_usable, int k, int c) 1940 { 1941 const char *reason; 1942 1943 if (!card_fw_usable) { 1944 reason = "incompatible or unusable"; 1945 goto install; 1946 } 1947 1948 if (k > c) { 1949 reason = "older than the version bundled with this driver"; 1950 goto install; 1951 } 1952 1953 if (t4_fw_install == 2 && k != c) { 1954 reason = "different than the version bundled with this driver"; 1955 goto install; 1956 } 1957 1958 return (0); 1959 1960 install: 1961 if (t4_fw_install == 0) { 1962 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 1963 "but the driver is prohibited from installing a different " 1964 "firmware on the card.\n", 1965 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 1966 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 1967 1968 return (0); 1969 } 1970 1971 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 1972 "installing firmware %u.%u.%u.%u on card.\n", 1973 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 1974 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 1975 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 1976 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k)); 1977 1978 return (1); 1979 } 1980 /* 1981 * Establish contact with the firmware and determine if we are the master driver 1982 * or not, and whether we are responsible for chip initialization. 1983 */ 1984 static int 1985 prep_firmware(struct adapter *sc) 1986 { 1987 const struct firmware *fw = NULL, *default_cfg; 1988 int rc, pf, card_fw_usable, kld_fw_usable, need_fw_reset = 1; 1989 enum dev_state state; 1990 struct fw_info *fw_info; 1991 struct fw_hdr *card_fw; /* fw on the card */ 1992 const struct fw_hdr *kld_fw; /* fw in the KLD */ 1993 const struct fw_hdr *drv_fw; /* fw header the driver was compiled 1994 against */ 1995 1996 /* Contact firmware. */ 1997 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 1998 if (rc < 0 || state == DEV_STATE_ERR) { 1999 rc = -rc; 2000 device_printf(sc->dev, 2001 "failed to connect to the firmware: %d, %d.\n", rc, state); 2002 return (rc); 2003 } 2004 pf = rc; 2005 if (pf == sc->mbox) 2006 sc->flags |= MASTER_PF; 2007 else if (state == DEV_STATE_UNINIT) { 2008 /* 2009 * We didn't get to be the master so we definitely won't be 2010 * configuring the chip. It's a bug if someone else hasn't 2011 * configured it already. 2012 */ 2013 device_printf(sc->dev, "couldn't be master(%d), " 2014 "device not already initialized either(%d).\n", rc, state); 2015 return (EDOOFUS); 2016 } 2017 2018 /* This is the firmware whose headers the driver was compiled against */ 2019 fw_info = find_fw_info(chip_id(sc)); 2020 if (fw_info == NULL) { 2021 device_printf(sc->dev, 2022 "unable to look up firmware information for chip %d.\n", 2023 chip_id(sc)); 2024 return (EINVAL); 2025 } 2026 drv_fw = &fw_info->fw_hdr; 2027 2028 /* 2029 * The firmware KLD contains many modules. The KLD name is also the 2030 * name of the module that contains the default config file. 2031 */ 2032 default_cfg = firmware_get(fw_info->kld_name); 2033 2034 /* Read the header of the firmware on the card */ 2035 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 2036 rc = -t4_read_flash(sc, FLASH_FW_START, 2037 sizeof (*card_fw) / sizeof (uint32_t), (uint32_t *)card_fw, 1); 2038 if (rc == 0) 2039 card_fw_usable = fw_compatible(drv_fw, (const void*)card_fw); 2040 else { 2041 device_printf(sc->dev, 2042 "Unable to read card's firmware header: %d\n", rc); 2043 card_fw_usable = 0; 2044 } 2045 2046 /* This is the firmware in the KLD */ 2047 fw = firmware_get(fw_info->fw_mod_name); 2048 if (fw != NULL) { 2049 kld_fw = (const void *)fw->data; 2050 kld_fw_usable = fw_compatible(drv_fw, kld_fw); 2051 } else { 2052 kld_fw = NULL; 2053 kld_fw_usable = 0; 2054 } 2055 2056 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 2057 (!kld_fw_usable || kld_fw->fw_ver == drv_fw->fw_ver)) { 2058 /* 2059 * Common case: the firmware on the card is an exact match and 2060 * the KLD is an exact match too, or the KLD is 2061 * absent/incompatible. Note that t4_fw_install = 2 is ignored 2062 * here -- use cxgbetool loadfw if you want to reinstall the 2063 * same firmware as the one on the card. 2064 */ 2065 } else if (kld_fw_usable && state == DEV_STATE_UNINIT && 2066 should_install_kld_fw(sc, card_fw_usable, be32toh(kld_fw->fw_ver), 2067 be32toh(card_fw->fw_ver))) { 2068 2069 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 2070 if (rc != 0) { 2071 device_printf(sc->dev, 2072 "failed to install firmware: %d\n", rc); 2073 goto done; 2074 } 2075 2076 /* Installed successfully, update the cached header too. */ 2077 memcpy(card_fw, kld_fw, sizeof(*card_fw)); 2078 card_fw_usable = 1; 2079 need_fw_reset = 0; /* already reset as part of load_fw */ 2080 } 2081 2082 if (!card_fw_usable) { 2083 uint32_t d, c, k; 2084 2085 d = ntohl(drv_fw->fw_ver); 2086 c = ntohl(card_fw->fw_ver); 2087 k = kld_fw ? ntohl(kld_fw->fw_ver) : 0; 2088 2089 device_printf(sc->dev, "Cannot find a usable firmware: " 2090 "fw_install %d, chip state %d, " 2091 "driver compiled with %d.%d.%d.%d, " 2092 "card has %d.%d.%d.%d, KLD has %d.%d.%d.%d\n", 2093 t4_fw_install, state, 2094 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 2095 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d), 2096 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 2097 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), 2098 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 2099 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k)); 2100 rc = EINVAL; 2101 goto done; 2102 } 2103 2104 /* We're using whatever's on the card and it's known to be good. */ 2105 sc->params.fw_vers = ntohl(card_fw->fw_ver); 2106 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 2107 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 2108 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 2109 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 2110 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 2111 t4_get_tp_version(sc, &sc->params.tp_vers); 2112 2113 /* Reset device */ 2114 if (need_fw_reset && 2115 (rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST)) != 0) { 2116 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 2117 if (rc != ETIMEDOUT && rc != EIO) 2118 t4_fw_bye(sc, sc->mbox); 2119 goto done; 2120 } 2121 sc->flags |= FW_OK; 2122 2123 rc = get_params__pre_init(sc); 2124 if (rc != 0) 2125 goto done; /* error message displayed already */ 2126 2127 /* Partition adapter resources as specified in the config file. */ 2128 if (state == DEV_STATE_UNINIT) { 2129 2130 KASSERT(sc->flags & MASTER_PF, 2131 ("%s: trying to change chip settings when not master.", 2132 __func__)); 2133 2134 rc = partition_resources(sc, default_cfg, fw_info->kld_name); 2135 if (rc != 0) 2136 goto done; /* error message displayed already */ 2137 2138 t4_tweak_chip_settings(sc); 2139 2140 /* get basic stuff going */ 2141 rc = -t4_fw_initialize(sc, sc->mbox); 2142 if (rc != 0) { 2143 device_printf(sc->dev, "fw init failed: %d.\n", rc); 2144 goto done; 2145 } 2146 } else { 2147 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", pf); 2148 sc->cfcsum = 0; 2149 } 2150 2151 done: 2152 free(card_fw, M_CXGBE); 2153 if (fw != NULL) 2154 firmware_put(fw, FIRMWARE_UNLOAD); 2155 if (default_cfg != NULL) 2156 firmware_put(default_cfg, FIRMWARE_UNLOAD); 2157 2158 return (rc); 2159 } 2160 2161 #define FW_PARAM_DEV(param) \ 2162 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 2163 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 2164 #define FW_PARAM_PFVF(param) \ 2165 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 2166 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 2167 2168 /* 2169 * Partition chip resources for use between various PFs, VFs, etc. 2170 */ 2171 static int 2172 partition_resources(struct adapter *sc, const struct firmware *default_cfg, 2173 const char *name_prefix) 2174 { 2175 const struct firmware *cfg = NULL; 2176 int rc = 0; 2177 struct fw_caps_config_cmd caps; 2178 uint32_t mtype, moff, finicsum, cfcsum; 2179 2180 /* 2181 * Figure out what configuration file to use. Pick the default config 2182 * file for the card if the user hasn't specified one explicitly. 2183 */ 2184 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", t4_cfg_file); 2185 if (strncmp(t4_cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 2186 /* Card specific overrides go here. */ 2187 if (pci_get_device(sc->dev) == 0x440a) 2188 snprintf(sc->cfg_file, sizeof(sc->cfg_file), UWIRE_CF); 2189 if (is_fpga(sc)) 2190 snprintf(sc->cfg_file, sizeof(sc->cfg_file), FPGA_CF); 2191 } 2192 2193 /* 2194 * We need to load another module if the profile is anything except 2195 * "default" or "flash". 2196 */ 2197 if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) != 0 && 2198 strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) { 2199 char s[32]; 2200 2201 snprintf(s, sizeof(s), "%s_%s", name_prefix, sc->cfg_file); 2202 cfg = firmware_get(s); 2203 if (cfg == NULL) { 2204 if (default_cfg != NULL) { 2205 device_printf(sc->dev, 2206 "unable to load module \"%s\" for " 2207 "configuration profile \"%s\", will use " 2208 "the default config file instead.\n", 2209 s, sc->cfg_file); 2210 snprintf(sc->cfg_file, sizeof(sc->cfg_file), 2211 "%s", DEFAULT_CF); 2212 } else { 2213 device_printf(sc->dev, 2214 "unable to load module \"%s\" for " 2215 "configuration profile \"%s\", will use " 2216 "the config file on the card's flash " 2217 "instead.\n", s, sc->cfg_file); 2218 snprintf(sc->cfg_file, sizeof(sc->cfg_file), 2219 "%s", FLASH_CF); 2220 } 2221 } 2222 } 2223 2224 if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) == 0 && 2225 default_cfg == NULL) { 2226 device_printf(sc->dev, 2227 "default config file not available, will use the config " 2228 "file on the card's flash instead.\n"); 2229 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", FLASH_CF); 2230 } 2231 2232 if (strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) { 2233 u_int cflen, i, n; 2234 const uint32_t *cfdata; 2235 uint32_t param, val, addr, off, mw_base, mw_aperture; 2236 2237 KASSERT(cfg != NULL || default_cfg != NULL, 2238 ("%s: no config to upload", __func__)); 2239 2240 /* 2241 * Ask the firmware where it wants us to upload the config file. 2242 */ 2243 param = FW_PARAM_DEV(CF); 2244 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 2245 if (rc != 0) { 2246 /* No support for config file? Shouldn't happen. */ 2247 device_printf(sc->dev, 2248 "failed to query config file location: %d.\n", rc); 2249 goto done; 2250 } 2251 mtype = G_FW_PARAMS_PARAM_Y(val); 2252 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 2253 2254 /* 2255 * XXX: sheer laziness. We deliberately added 4 bytes of 2256 * useless stuffing/comments at the end of the config file so 2257 * it's ok to simply throw away the last remaining bytes when 2258 * the config file is not an exact multiple of 4. This also 2259 * helps with the validate_mt_off_len check. 2260 */ 2261 if (cfg != NULL) { 2262 cflen = cfg->datasize & ~3; 2263 cfdata = cfg->data; 2264 } else { 2265 cflen = default_cfg->datasize & ~3; 2266 cfdata = default_cfg->data; 2267 } 2268 2269 if (cflen > FLASH_CFG_MAX_SIZE) { 2270 device_printf(sc->dev, 2271 "config file too long (%d, max allowed is %d). " 2272 "Will try to use the config on the card, if any.\n", 2273 cflen, FLASH_CFG_MAX_SIZE); 2274 goto use_config_on_flash; 2275 } 2276 2277 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 2278 if (rc != 0) { 2279 device_printf(sc->dev, 2280 "%s: addr (%d/0x%x) or len %d is not valid: %d. " 2281 "Will try to use the config on the card, if any.\n", 2282 __func__, mtype, moff, cflen, rc); 2283 goto use_config_on_flash; 2284 } 2285 2286 memwin_info(sc, 2, &mw_base, &mw_aperture); 2287 while (cflen) { 2288 off = position_memwin(sc, 2, addr); 2289 n = min(cflen, mw_aperture - off); 2290 for (i = 0; i < n; i += 4) 2291 t4_write_reg(sc, mw_base + off + i, *cfdata++); 2292 cflen -= n; 2293 addr += n; 2294 } 2295 } else { 2296 use_config_on_flash: 2297 mtype = FW_MEMTYPE_CF_FLASH; 2298 moff = t4_flash_cfg_addr(sc); 2299 } 2300 2301 bzero(&caps, sizeof(caps)); 2302 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 2303 F_FW_CMD_REQUEST | F_FW_CMD_READ); 2304 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 2305 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 2306 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps)); 2307 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 2308 if (rc != 0) { 2309 device_printf(sc->dev, 2310 "failed to pre-process config file: %d " 2311 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 2312 goto done; 2313 } 2314 2315 finicsum = be32toh(caps.finicsum); 2316 cfcsum = be32toh(caps.cfcsum); 2317 if (finicsum != cfcsum) { 2318 device_printf(sc->dev, 2319 "WARNING: config file checksum mismatch: %08x %08x\n", 2320 finicsum, cfcsum); 2321 } 2322 sc->cfcsum = cfcsum; 2323 2324 #define LIMIT_CAPS(x) do { \ 2325 caps.x &= htobe16(t4_##x##_allowed); \ 2326 sc->x = htobe16(caps.x); \ 2327 } while (0) 2328 2329 /* 2330 * Let the firmware know what features will (not) be used so it can tune 2331 * things accordingly. 2332 */ 2333 LIMIT_CAPS(linkcaps); 2334 LIMIT_CAPS(niccaps); 2335 LIMIT_CAPS(toecaps); 2336 LIMIT_CAPS(rdmacaps); 2337 LIMIT_CAPS(iscsicaps); 2338 LIMIT_CAPS(fcoecaps); 2339 #undef LIMIT_CAPS 2340 2341 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 2342 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 2343 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 2344 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 2345 if (rc != 0) { 2346 device_printf(sc->dev, 2347 "failed to process config file: %d.\n", rc); 2348 } 2349 done: 2350 if (cfg != NULL) 2351 firmware_put(cfg, FIRMWARE_UNLOAD); 2352 return (rc); 2353 } 2354 2355 /* 2356 * Retrieve parameters that are needed (or nice to have) very early. 2357 */ 2358 static int 2359 get_params__pre_init(struct adapter *sc) 2360 { 2361 int rc; 2362 uint32_t param[2], val[2]; 2363 struct fw_devlog_cmd cmd; 2364 struct devlog_params *dlog = &sc->params.devlog; 2365 2366 param[0] = FW_PARAM_DEV(PORTVEC); 2367 param[1] = FW_PARAM_DEV(CCLK); 2368 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 2369 if (rc != 0) { 2370 device_printf(sc->dev, 2371 "failed to query parameters (pre_init): %d.\n", rc); 2372 return (rc); 2373 } 2374 2375 sc->params.portvec = val[0]; 2376 sc->params.nports = bitcount32(val[0]); 2377 sc->params.vpd.cclk = val[1]; 2378 2379 /* Read device log parameters. */ 2380 bzero(&cmd, sizeof(cmd)); 2381 cmd.op_to_write = htobe32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 2382 F_FW_CMD_REQUEST | F_FW_CMD_READ); 2383 cmd.retval_len16 = htobe32(FW_LEN16(cmd)); 2384 rc = -t4_wr_mbox(sc, sc->mbox, &cmd, sizeof(cmd), &cmd); 2385 if (rc != 0) { 2386 device_printf(sc->dev, 2387 "failed to get devlog parameters: %d.\n", rc); 2388 bzero(dlog, sizeof (*dlog)); 2389 rc = 0; /* devlog isn't critical for device operation */ 2390 } else { 2391 val[0] = be32toh(cmd.memtype_devlog_memaddr16_devlog); 2392 dlog->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(val[0]); 2393 dlog->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(val[0]) << 4; 2394 dlog->size = be32toh(cmd.memsize_devlog); 2395 } 2396 2397 return (rc); 2398 } 2399 2400 /* 2401 * Retrieve various parameters that are of interest to the driver. The device 2402 * has been initialized by the firmware at this point. 2403 */ 2404 static int 2405 get_params__post_init(struct adapter *sc) 2406 { 2407 int rc; 2408 uint32_t param[7], val[7]; 2409 struct fw_caps_config_cmd caps; 2410 2411 param[0] = FW_PARAM_PFVF(IQFLINT_START); 2412 param[1] = FW_PARAM_PFVF(EQ_START); 2413 param[2] = FW_PARAM_PFVF(FILTER_START); 2414 param[3] = FW_PARAM_PFVF(FILTER_END); 2415 param[4] = FW_PARAM_PFVF(L2T_START); 2416 param[5] = FW_PARAM_PFVF(L2T_END); 2417 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 2418 if (rc != 0) { 2419 device_printf(sc->dev, 2420 "failed to query parameters (post_init): %d.\n", rc); 2421 return (rc); 2422 } 2423 2424 sc->sge.iq_start = val[0]; 2425 sc->sge.eq_start = val[1]; 2426 sc->tids.ftid_base = val[2]; 2427 sc->tids.nftids = val[3] - val[2] + 1; 2428 sc->vres.l2t.start = val[4]; 2429 sc->vres.l2t.size = val[5] - val[4] + 1; 2430 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 2431 ("%s: L2 table size (%u) larger than expected (%u)", 2432 __func__, sc->vres.l2t.size, L2T_SIZE)); 2433 2434 /* get capabilites */ 2435 bzero(&caps, sizeof(caps)); 2436 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 2437 F_FW_CMD_REQUEST | F_FW_CMD_READ); 2438 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 2439 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 2440 if (rc != 0) { 2441 device_printf(sc->dev, 2442 "failed to get card capabilities: %d.\n", rc); 2443 return (rc); 2444 } 2445 2446 if (caps.toecaps) { 2447 /* query offload-related parameters */ 2448 param[0] = FW_PARAM_DEV(NTID); 2449 param[1] = FW_PARAM_PFVF(SERVER_START); 2450 param[2] = FW_PARAM_PFVF(SERVER_END); 2451 param[3] = FW_PARAM_PFVF(TDDP_START); 2452 param[4] = FW_PARAM_PFVF(TDDP_END); 2453 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 2454 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 2455 if (rc != 0) { 2456 device_printf(sc->dev, 2457 "failed to query TOE parameters: %d.\n", rc); 2458 return (rc); 2459 } 2460 sc->tids.ntids = val[0]; 2461 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 2462 sc->tids.stid_base = val[1]; 2463 sc->tids.nstids = val[2] - val[1] + 1; 2464 sc->vres.ddp.start = val[3]; 2465 sc->vres.ddp.size = val[4] - val[3] + 1; 2466 sc->params.ofldq_wr_cred = val[5]; 2467 sc->params.offload = 1; 2468 } 2469 if (caps.rdmacaps) { 2470 param[0] = FW_PARAM_PFVF(STAG_START); 2471 param[1] = FW_PARAM_PFVF(STAG_END); 2472 param[2] = FW_PARAM_PFVF(RQ_START); 2473 param[3] = FW_PARAM_PFVF(RQ_END); 2474 param[4] = FW_PARAM_PFVF(PBL_START); 2475 param[5] = FW_PARAM_PFVF(PBL_END); 2476 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 2477 if (rc != 0) { 2478 device_printf(sc->dev, 2479 "failed to query RDMA parameters(1): %d.\n", rc); 2480 return (rc); 2481 } 2482 sc->vres.stag.start = val[0]; 2483 sc->vres.stag.size = val[1] - val[0] + 1; 2484 sc->vres.rq.start = val[2]; 2485 sc->vres.rq.size = val[3] - val[2] + 1; 2486 sc->vres.pbl.start = val[4]; 2487 sc->vres.pbl.size = val[5] - val[4] + 1; 2488 2489 param[0] = FW_PARAM_PFVF(SQRQ_START); 2490 param[1] = FW_PARAM_PFVF(SQRQ_END); 2491 param[2] = FW_PARAM_PFVF(CQ_START); 2492 param[3] = FW_PARAM_PFVF(CQ_END); 2493 param[4] = FW_PARAM_PFVF(OCQ_START); 2494 param[5] = FW_PARAM_PFVF(OCQ_END); 2495 rc = -t4_query_params(sc, 0, 0, 0, 6, param, val); 2496 if (rc != 0) { 2497 device_printf(sc->dev, 2498 "failed to query RDMA parameters(2): %d.\n", rc); 2499 return (rc); 2500 } 2501 sc->vres.qp.start = val[0]; 2502 sc->vres.qp.size = val[1] - val[0] + 1; 2503 sc->vres.cq.start = val[2]; 2504 sc->vres.cq.size = val[3] - val[2] + 1; 2505 sc->vres.ocq.start = val[4]; 2506 sc->vres.ocq.size = val[5] - val[4] + 1; 2507 } 2508 if (caps.iscsicaps) { 2509 param[0] = FW_PARAM_PFVF(ISCSI_START); 2510 param[1] = FW_PARAM_PFVF(ISCSI_END); 2511 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 2512 if (rc != 0) { 2513 device_printf(sc->dev, 2514 "failed to query iSCSI parameters: %d.\n", rc); 2515 return (rc); 2516 } 2517 sc->vres.iscsi.start = val[0]; 2518 sc->vres.iscsi.size = val[1] - val[0] + 1; 2519 } 2520 2521 /* 2522 * We've got the params we wanted to query via the firmware. Now grab 2523 * some others directly from the chip. 2524 */ 2525 rc = t4_read_chip_settings(sc); 2526 2527 return (rc); 2528 } 2529 2530 static int 2531 set_params__post_init(struct adapter *sc) 2532 { 2533 uint32_t param, val; 2534 2535 /* ask for encapsulated CPLs */ 2536 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 2537 val = 1; 2538 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 2539 2540 return (0); 2541 } 2542 2543 #undef FW_PARAM_PFVF 2544 #undef FW_PARAM_DEV 2545 2546 static void 2547 t4_set_desc(struct adapter *sc) 2548 { 2549 char buf[128]; 2550 struct adapter_params *p = &sc->params; 2551 2552 snprintf(buf, sizeof(buf), "Chelsio %s %sNIC (rev %d), S/N:%s, " 2553 "P/N:%s, E/C:%s", p->vpd.id, is_offload(sc) ? "R" : "", 2554 chip_rev(sc), p->vpd.sn, p->vpd.pn, p->vpd.ec); 2555 2556 device_set_desc_copy(sc->dev, buf); 2557 } 2558 2559 static void 2560 build_medialist(struct port_info *pi) 2561 { 2562 struct ifmedia *media = &pi->media; 2563 int data, m; 2564 2565 PORT_LOCK(pi); 2566 2567 ifmedia_removeall(media); 2568 2569 m = IFM_ETHER | IFM_FDX; 2570 data = (pi->port_type << 8) | pi->mod_type; 2571 2572 switch(pi->port_type) { 2573 case FW_PORT_TYPE_BT_XFI: 2574 ifmedia_add(media, m | IFM_10G_T, data, NULL); 2575 break; 2576 2577 case FW_PORT_TYPE_BT_XAUI: 2578 ifmedia_add(media, m | IFM_10G_T, data, NULL); 2579 /* fall through */ 2580 2581 case FW_PORT_TYPE_BT_SGMII: 2582 ifmedia_add(media, m | IFM_1000_T, data, NULL); 2583 ifmedia_add(media, m | IFM_100_TX, data, NULL); 2584 ifmedia_add(media, IFM_ETHER | IFM_AUTO, data, NULL); 2585 ifmedia_set(media, IFM_ETHER | IFM_AUTO); 2586 break; 2587 2588 case FW_PORT_TYPE_CX4: 2589 ifmedia_add(media, m | IFM_10G_CX4, data, NULL); 2590 ifmedia_set(media, m | IFM_10G_CX4); 2591 break; 2592 2593 case FW_PORT_TYPE_SFP: 2594 case FW_PORT_TYPE_FIBER_XFI: 2595 case FW_PORT_TYPE_FIBER_XAUI: 2596 switch (pi->mod_type) { 2597 2598 case FW_PORT_MOD_TYPE_LR: 2599 ifmedia_add(media, m | IFM_10G_LR, data, NULL); 2600 ifmedia_set(media, m | IFM_10G_LR); 2601 break; 2602 2603 case FW_PORT_MOD_TYPE_SR: 2604 ifmedia_add(media, m | IFM_10G_SR, data, NULL); 2605 ifmedia_set(media, m | IFM_10G_SR); 2606 break; 2607 2608 case FW_PORT_MOD_TYPE_LRM: 2609 ifmedia_add(media, m | IFM_10G_LRM, data, NULL); 2610 ifmedia_set(media, m | IFM_10G_LRM); 2611 break; 2612 2613 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 2614 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 2615 ifmedia_add(media, m | IFM_10G_TWINAX, data, NULL); 2616 ifmedia_set(media, m | IFM_10G_TWINAX); 2617 break; 2618 2619 case FW_PORT_MOD_TYPE_NONE: 2620 m &= ~IFM_FDX; 2621 ifmedia_add(media, m | IFM_NONE, data, NULL); 2622 ifmedia_set(media, m | IFM_NONE); 2623 break; 2624 2625 case FW_PORT_MOD_TYPE_NA: 2626 case FW_PORT_MOD_TYPE_ER: 2627 default: 2628 device_printf(pi->dev, 2629 "unknown port_type (%d), mod_type (%d)\n", 2630 pi->port_type, pi->mod_type); 2631 ifmedia_add(media, m | IFM_UNKNOWN, data, NULL); 2632 ifmedia_set(media, m | IFM_UNKNOWN); 2633 break; 2634 } 2635 break; 2636 2637 case FW_PORT_TYPE_QSFP: 2638 switch (pi->mod_type) { 2639 2640 case FW_PORT_MOD_TYPE_LR: 2641 ifmedia_add(media, m | IFM_40G_LR4, data, NULL); 2642 ifmedia_set(media, m | IFM_40G_LR4); 2643 break; 2644 2645 case FW_PORT_MOD_TYPE_SR: 2646 ifmedia_add(media, m | IFM_40G_SR4, data, NULL); 2647 ifmedia_set(media, m | IFM_40G_SR4); 2648 break; 2649 2650 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 2651 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 2652 ifmedia_add(media, m | IFM_40G_CR4, data, NULL); 2653 ifmedia_set(media, m | IFM_40G_CR4); 2654 break; 2655 2656 case FW_PORT_MOD_TYPE_NONE: 2657 m &= ~IFM_FDX; 2658 ifmedia_add(media, m | IFM_NONE, data, NULL); 2659 ifmedia_set(media, m | IFM_NONE); 2660 break; 2661 2662 default: 2663 device_printf(pi->dev, 2664 "unknown port_type (%d), mod_type (%d)\n", 2665 pi->port_type, pi->mod_type); 2666 ifmedia_add(media, m | IFM_UNKNOWN, data, NULL); 2667 ifmedia_set(media, m | IFM_UNKNOWN); 2668 break; 2669 } 2670 break; 2671 2672 default: 2673 device_printf(pi->dev, 2674 "unknown port_type (%d), mod_type (%d)\n", pi->port_type, 2675 pi->mod_type); 2676 ifmedia_add(media, m | IFM_UNKNOWN, data, NULL); 2677 ifmedia_set(media, m | IFM_UNKNOWN); 2678 break; 2679 } 2680 2681 PORT_UNLOCK(pi); 2682 } 2683 2684 #define FW_MAC_EXACT_CHUNK 7 2685 2686 /* 2687 * Program the port's XGMAC based on parameters in ifnet. The caller also 2688 * indicates which parameters should be programmed (the rest are left alone). 2689 */ 2690 static int 2691 update_mac_settings(struct port_info *pi, int flags) 2692 { 2693 int rc; 2694 struct ifnet *ifp = pi->ifp; 2695 struct adapter *sc = pi->adapter; 2696 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 2697 2698 ASSERT_SYNCHRONIZED_OP(sc); 2699 KASSERT(flags, ("%s: not told what to update.", __func__)); 2700 2701 if (flags & XGMAC_MTU) 2702 mtu = ifp->if_mtu; 2703 2704 if (flags & XGMAC_PROMISC) 2705 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 2706 2707 if (flags & XGMAC_ALLMULTI) 2708 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 2709 2710 if (flags & XGMAC_VLANEX) 2711 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 2712 2713 rc = -t4_set_rxmode(sc, sc->mbox, pi->viid, mtu, promisc, allmulti, 1, 2714 vlanex, false); 2715 if (rc) { 2716 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, rc); 2717 return (rc); 2718 } 2719 2720 if (flags & XGMAC_UCADDR) { 2721 uint8_t ucaddr[ETHER_ADDR_LEN]; 2722 2723 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 2724 rc = t4_change_mac(sc, sc->mbox, pi->viid, pi->xact_addr_filt, 2725 ucaddr, true, true); 2726 if (rc < 0) { 2727 rc = -rc; 2728 if_printf(ifp, "change_mac failed: %d\n", rc); 2729 return (rc); 2730 } else { 2731 pi->xact_addr_filt = rc; 2732 rc = 0; 2733 } 2734 } 2735 2736 if (flags & XGMAC_MCADDRS) { 2737 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 2738 int del = 1; 2739 uint64_t hash = 0; 2740 struct ifmultiaddr *ifma; 2741 int i = 0, j; 2742 2743 if_maddr_rlock(ifp); 2744 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2745 if (ifma->ifma_addr->sa_family != AF_LINK) 2746 continue; 2747 mcaddr[i++] = 2748 LLADDR((struct sockaddr_dl *)ifma->ifma_addr); 2749 2750 if (i == FW_MAC_EXACT_CHUNK) { 2751 rc = t4_alloc_mac_filt(sc, sc->mbox, pi->viid, 2752 del, i, mcaddr, NULL, &hash, 0); 2753 if (rc < 0) { 2754 rc = -rc; 2755 for (j = 0; j < i; j++) { 2756 if_printf(ifp, 2757 "failed to add mc address" 2758 " %02x:%02x:%02x:" 2759 "%02x:%02x:%02x rc=%d\n", 2760 mcaddr[j][0], mcaddr[j][1], 2761 mcaddr[j][2], mcaddr[j][3], 2762 mcaddr[j][4], mcaddr[j][5], 2763 rc); 2764 } 2765 goto mcfail; 2766 } 2767 del = 0; 2768 i = 0; 2769 } 2770 } 2771 if (i > 0) { 2772 rc = t4_alloc_mac_filt(sc, sc->mbox, pi->viid, 2773 del, i, mcaddr, NULL, &hash, 0); 2774 if (rc < 0) { 2775 rc = -rc; 2776 for (j = 0; j < i; j++) { 2777 if_printf(ifp, 2778 "failed to add mc address" 2779 " %02x:%02x:%02x:" 2780 "%02x:%02x:%02x rc=%d\n", 2781 mcaddr[j][0], mcaddr[j][1], 2782 mcaddr[j][2], mcaddr[j][3], 2783 mcaddr[j][4], mcaddr[j][5], 2784 rc); 2785 } 2786 goto mcfail; 2787 } 2788 } 2789 2790 rc = -t4_set_addr_hash(sc, sc->mbox, pi->viid, 0, hash, 0); 2791 if (rc != 0) 2792 if_printf(ifp, "failed to set mc address hash: %d", rc); 2793 mcfail: 2794 if_maddr_runlock(ifp); 2795 } 2796 2797 return (rc); 2798 } 2799 2800 int 2801 begin_synchronized_op(struct adapter *sc, struct port_info *pi, int flags, 2802 char *wmesg) 2803 { 2804 int rc, pri; 2805 2806 #ifdef WITNESS 2807 /* the caller thinks it's ok to sleep, but is it really? */ 2808 if (flags & SLEEP_OK) 2809 pause("t4slptst", 1); 2810 #endif 2811 2812 if (INTR_OK) 2813 pri = PCATCH; 2814 else 2815 pri = 0; 2816 2817 ADAPTER_LOCK(sc); 2818 for (;;) { 2819 2820 if (pi && IS_DOOMED(pi)) { 2821 rc = ENXIO; 2822 goto done; 2823 } 2824 2825 if (!IS_BUSY(sc)) { 2826 rc = 0; 2827 break; 2828 } 2829 2830 if (!(flags & SLEEP_OK)) { 2831 rc = EBUSY; 2832 goto done; 2833 } 2834 2835 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 2836 rc = EINTR; 2837 goto done; 2838 } 2839 } 2840 2841 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 2842 SET_BUSY(sc); 2843 #ifdef INVARIANTS 2844 sc->last_op = wmesg; 2845 sc->last_op_thr = curthread; 2846 #endif 2847 2848 done: 2849 if (!(flags & HOLD_LOCK) || rc) 2850 ADAPTER_UNLOCK(sc); 2851 2852 return (rc); 2853 } 2854 2855 void 2856 end_synchronized_op(struct adapter *sc, int flags) 2857 { 2858 2859 if (flags & LOCK_HELD) 2860 ADAPTER_LOCK_ASSERT_OWNED(sc); 2861 else 2862 ADAPTER_LOCK(sc); 2863 2864 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 2865 CLR_BUSY(sc); 2866 wakeup(&sc->flags); 2867 ADAPTER_UNLOCK(sc); 2868 } 2869 2870 static int 2871 cxgbe_init_synchronized(struct port_info *pi) 2872 { 2873 struct adapter *sc = pi->adapter; 2874 struct ifnet *ifp = pi->ifp; 2875 int rc = 0; 2876 2877 ASSERT_SYNCHRONIZED_OP(sc); 2878 2879 if (isset(&sc->open_device_map, pi->port_id)) { 2880 KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, 2881 ("mismatch between open_device_map and if_drv_flags")); 2882 return (0); /* already running */ 2883 } 2884 2885 if (!(sc->flags & FULL_INIT_DONE) && 2886 ((rc = adapter_full_init(sc)) != 0)) 2887 return (rc); /* error message displayed already */ 2888 2889 if (!(pi->flags & PORT_INIT_DONE) && 2890 ((rc = port_full_init(pi)) != 0)) 2891 return (rc); /* error message displayed already */ 2892 2893 rc = update_mac_settings(pi, XGMAC_ALL); 2894 if (rc) 2895 goto done; /* error message displayed already */ 2896 2897 rc = -t4_link_start(sc, sc->mbox, pi->tx_chan, &pi->link_cfg); 2898 if (rc != 0) { 2899 if_printf(ifp, "start_link failed: %d\n", rc); 2900 goto done; 2901 } 2902 2903 rc = -t4_enable_vi(sc, sc->mbox, pi->viid, true, true); 2904 if (rc != 0) { 2905 if_printf(ifp, "enable_vi failed: %d\n", rc); 2906 goto done; 2907 } 2908 2909 /* 2910 * The first iq of the first port to come up is used for tracing. 2911 */ 2912 if (sc->traceq < 0) { 2913 sc->traceq = sc->sge.rxq[pi->first_rxq].iq.abs_id; 2914 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 2915 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 2916 V_QUEUENUMBER(sc->traceq)); 2917 pi->flags |= HAS_TRACEQ; 2918 } 2919 2920 /* all ok */ 2921 setbit(&sc->open_device_map, pi->port_id); 2922 PORT_LOCK(pi); 2923 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2924 PORT_UNLOCK(pi); 2925 2926 callout_reset(&pi->tick, hz, cxgbe_tick, pi); 2927 done: 2928 if (rc != 0) 2929 cxgbe_uninit_synchronized(pi); 2930 2931 return (rc); 2932 } 2933 2934 /* 2935 * Idempotent. 2936 */ 2937 static int 2938 cxgbe_uninit_synchronized(struct port_info *pi) 2939 { 2940 struct adapter *sc = pi->adapter; 2941 struct ifnet *ifp = pi->ifp; 2942 int rc; 2943 2944 ASSERT_SYNCHRONIZED_OP(sc); 2945 2946 /* 2947 * Disable the VI so that all its data in either direction is discarded 2948 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 2949 * tick) intact as the TP can deliver negative advice or data that it's 2950 * holding in its RAM (for an offloaded connection) even after the VI is 2951 * disabled. 2952 */ 2953 rc = -t4_enable_vi(sc, sc->mbox, pi->viid, false, false); 2954 if (rc) { 2955 if_printf(ifp, "disable_vi failed: %d\n", rc); 2956 return (rc); 2957 } 2958 2959 clrbit(&sc->open_device_map, pi->port_id); 2960 PORT_LOCK(pi); 2961 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2962 PORT_UNLOCK(pi); 2963 2964 pi->link_cfg.link_ok = 0; 2965 pi->link_cfg.speed = 0; 2966 pi->linkdnrc = -1; 2967 t4_os_link_changed(sc, pi->port_id, 0, -1); 2968 2969 return (0); 2970 } 2971 2972 /* 2973 * It is ok for this function to fail midway and return right away. t4_detach 2974 * will walk the entire sc->irq list and clean up whatever is valid. 2975 */ 2976 static int 2977 setup_intr_handlers(struct adapter *sc) 2978 { 2979 int rc, rid, p, q; 2980 char s[8]; 2981 struct irq *irq; 2982 struct port_info *pi; 2983 struct sge_rxq *rxq; 2984 #ifdef TCP_OFFLOAD 2985 struct sge_ofld_rxq *ofld_rxq; 2986 #endif 2987 2988 /* 2989 * Setup interrupts. 2990 */ 2991 irq = &sc->irq[0]; 2992 rid = sc->intr_type == INTR_INTX ? 0 : 1; 2993 if (sc->intr_count == 1) { 2994 KASSERT(!(sc->flags & INTR_DIRECT), 2995 ("%s: single interrupt && INTR_DIRECT?", __func__)); 2996 2997 rc = t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"); 2998 if (rc != 0) 2999 return (rc); 3000 } else { 3001 /* Multiple interrupts. */ 3002 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 3003 ("%s: too few intr.", __func__)); 3004 3005 /* The first one is always error intr */ 3006 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 3007 if (rc != 0) 3008 return (rc); 3009 irq++; 3010 rid++; 3011 3012 /* The second one is always the firmware event queue */ 3013 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sc->sge.fwq, 3014 "evt"); 3015 if (rc != 0) 3016 return (rc); 3017 irq++; 3018 rid++; 3019 3020 /* 3021 * Note that if INTR_DIRECT is not set then either the NIC rx 3022 * queues or (exclusive or) the TOE rx queueus will be taking 3023 * direct interrupts. 3024 * 3025 * There is no need to check for is_offload(sc) as nofldrxq 3026 * will be 0 if offload is disabled. 3027 */ 3028 for_each_port(sc, p) { 3029 pi = sc->port[p]; 3030 3031 #ifdef TCP_OFFLOAD 3032 /* 3033 * Skip over the NIC queues if they aren't taking direct 3034 * interrupts. 3035 */ 3036 if (!(sc->flags & INTR_DIRECT) && 3037 pi->nofldrxq > pi->nrxq) 3038 goto ofld_queues; 3039 #endif 3040 rxq = &sc->sge.rxq[pi->first_rxq]; 3041 for (q = 0; q < pi->nrxq; q++, rxq++) { 3042 snprintf(s, sizeof(s), "%d.%d", p, q); 3043 rc = t4_alloc_irq(sc, irq, rid, t4_intr, rxq, 3044 s); 3045 if (rc != 0) 3046 return (rc); 3047 irq++; 3048 rid++; 3049 } 3050 3051 #ifdef TCP_OFFLOAD 3052 /* 3053 * Skip over the offload queues if they aren't taking 3054 * direct interrupts. 3055 */ 3056 if (!(sc->flags & INTR_DIRECT)) 3057 continue; 3058 ofld_queues: 3059 ofld_rxq = &sc->sge.ofld_rxq[pi->first_ofld_rxq]; 3060 for (q = 0; q < pi->nofldrxq; q++, ofld_rxq++) { 3061 snprintf(s, sizeof(s), "%d,%d", p, q); 3062 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 3063 ofld_rxq, s); 3064 if (rc != 0) 3065 return (rc); 3066 irq++; 3067 rid++; 3068 } 3069 #endif 3070 } 3071 } 3072 3073 return (0); 3074 } 3075 3076 static int 3077 adapter_full_init(struct adapter *sc) 3078 { 3079 int rc, i; 3080 3081 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 3082 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 3083 ("%s: FULL_INIT_DONE already", __func__)); 3084 3085 /* 3086 * queues that belong to the adapter (not any particular port). 3087 */ 3088 rc = t4_setup_adapter_queues(sc); 3089 if (rc != 0) 3090 goto done; 3091 3092 for (i = 0; i < nitems(sc->tq); i++) { 3093 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 3094 taskqueue_thread_enqueue, &sc->tq[i]); 3095 if (sc->tq[i] == NULL) { 3096 device_printf(sc->dev, 3097 "failed to allocate task queue %d\n", i); 3098 rc = ENOMEM; 3099 goto done; 3100 } 3101 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 3102 device_get_nameunit(sc->dev), i); 3103 } 3104 3105 t4_intr_enable(sc); 3106 sc->flags |= FULL_INIT_DONE; 3107 done: 3108 if (rc != 0) 3109 adapter_full_uninit(sc); 3110 3111 return (rc); 3112 } 3113 3114 static int 3115 adapter_full_uninit(struct adapter *sc) 3116 { 3117 int i; 3118 3119 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 3120 3121 t4_teardown_adapter_queues(sc); 3122 3123 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 3124 taskqueue_free(sc->tq[i]); 3125 sc->tq[i] = NULL; 3126 } 3127 3128 sc->flags &= ~FULL_INIT_DONE; 3129 3130 return (0); 3131 } 3132 3133 static int 3134 port_full_init(struct port_info *pi) 3135 { 3136 struct adapter *sc = pi->adapter; 3137 struct ifnet *ifp = pi->ifp; 3138 uint16_t *rss; 3139 struct sge_rxq *rxq; 3140 int rc, i; 3141 3142 ASSERT_SYNCHRONIZED_OP(sc); 3143 KASSERT((pi->flags & PORT_INIT_DONE) == 0, 3144 ("%s: PORT_INIT_DONE already", __func__)); 3145 3146 sysctl_ctx_init(&pi->ctx); 3147 pi->flags |= PORT_SYSCTL_CTX; 3148 3149 /* 3150 * Allocate tx/rx/fl queues for this port. 3151 */ 3152 rc = t4_setup_port_queues(pi); 3153 if (rc != 0) 3154 goto done; /* error message displayed already */ 3155 3156 /* 3157 * Setup RSS for this port. 3158 */ 3159 rss = malloc(pi->nrxq * sizeof (*rss), M_CXGBE, 3160 M_ZERO | M_WAITOK); 3161 for_each_rxq(pi, i, rxq) { 3162 rss[i] = rxq->iq.abs_id; 3163 } 3164 rc = -t4_config_rss_range(sc, sc->mbox, pi->viid, 0, 3165 pi->rss_size, rss, pi->nrxq); 3166 free(rss, M_CXGBE); 3167 if (rc != 0) { 3168 if_printf(ifp, "rss_config failed: %d\n", rc); 3169 goto done; 3170 } 3171 3172 pi->flags |= PORT_INIT_DONE; 3173 done: 3174 if (rc != 0) 3175 port_full_uninit(pi); 3176 3177 return (rc); 3178 } 3179 3180 /* 3181 * Idempotent. 3182 */ 3183 static int 3184 port_full_uninit(struct port_info *pi) 3185 { 3186 struct adapter *sc = pi->adapter; 3187 int i; 3188 struct sge_rxq *rxq; 3189 struct sge_txq *txq; 3190 #ifdef TCP_OFFLOAD 3191 struct sge_ofld_rxq *ofld_rxq; 3192 struct sge_wrq *ofld_txq; 3193 #endif 3194 3195 if (pi->flags & PORT_INIT_DONE) { 3196 3197 /* Need to quiesce queues. XXX: ctrl queues? */ 3198 3199 for_each_txq(pi, i, txq) { 3200 quiesce_eq(sc, &txq->eq); 3201 } 3202 3203 #ifdef TCP_OFFLOAD 3204 for_each_ofld_txq(pi, i, ofld_txq) { 3205 quiesce_eq(sc, &ofld_txq->eq); 3206 } 3207 #endif 3208 3209 for_each_rxq(pi, i, rxq) { 3210 quiesce_iq(sc, &rxq->iq); 3211 quiesce_fl(sc, &rxq->fl); 3212 } 3213 3214 #ifdef TCP_OFFLOAD 3215 for_each_ofld_rxq(pi, i, ofld_rxq) { 3216 quiesce_iq(sc, &ofld_rxq->iq); 3217 quiesce_fl(sc, &ofld_rxq->fl); 3218 } 3219 #endif 3220 } 3221 3222 t4_teardown_port_queues(pi); 3223 pi->flags &= ~PORT_INIT_DONE; 3224 3225 return (0); 3226 } 3227 3228 static void 3229 quiesce_eq(struct adapter *sc, struct sge_eq *eq) 3230 { 3231 EQ_LOCK(eq); 3232 eq->flags |= EQ_DOOMED; 3233 3234 /* 3235 * Wait for the response to a credit flush if one's 3236 * pending. 3237 */ 3238 while (eq->flags & EQ_CRFLUSHED) 3239 mtx_sleep(eq, &eq->eq_lock, 0, "crflush", 0); 3240 EQ_UNLOCK(eq); 3241 3242 callout_drain(&eq->tx_callout); /* XXX: iffy */ 3243 pause("callout", 10); /* Still iffy */ 3244 3245 taskqueue_drain(sc->tq[eq->tx_chan], &eq->tx_task); 3246 } 3247 3248 static void 3249 quiesce_iq(struct adapter *sc, struct sge_iq *iq) 3250 { 3251 (void) sc; /* unused */ 3252 3253 /* Synchronize with the interrupt handler */ 3254 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 3255 pause("iqfree", 1); 3256 } 3257 3258 static void 3259 quiesce_fl(struct adapter *sc, struct sge_fl *fl) 3260 { 3261 mtx_lock(&sc->sfl_lock); 3262 FL_LOCK(fl); 3263 fl->flags |= FL_DOOMED; 3264 FL_UNLOCK(fl); 3265 mtx_unlock(&sc->sfl_lock); 3266 3267 callout_drain(&sc->sfl_callout); 3268 KASSERT((fl->flags & FL_STARVING) == 0, 3269 ("%s: still starving", __func__)); 3270 } 3271 3272 static int 3273 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 3274 driver_intr_t *handler, void *arg, char *name) 3275 { 3276 int rc; 3277 3278 irq->rid = rid; 3279 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 3280 RF_SHAREABLE | RF_ACTIVE); 3281 if (irq->res == NULL) { 3282 device_printf(sc->dev, 3283 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 3284 return (ENOMEM); 3285 } 3286 3287 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 3288 NULL, handler, arg, &irq->tag); 3289 if (rc != 0) { 3290 device_printf(sc->dev, 3291 "failed to setup interrupt for rid %d, name %s: %d\n", 3292 rid, name, rc); 3293 } else if (name) 3294 bus_describe_intr(sc->dev, irq->res, irq->tag, name); 3295 3296 return (rc); 3297 } 3298 3299 static int 3300 t4_free_irq(struct adapter *sc, struct irq *irq) 3301 { 3302 if (irq->tag) 3303 bus_teardown_intr(sc->dev, irq->res, irq->tag); 3304 if (irq->res) 3305 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 3306 3307 bzero(irq, sizeof(*irq)); 3308 3309 return (0); 3310 } 3311 3312 static void 3313 reg_block_dump(struct adapter *sc, uint8_t *buf, unsigned int start, 3314 unsigned int end) 3315 { 3316 uint32_t *p = (uint32_t *)(buf + start); 3317 3318 for ( ; start <= end; start += sizeof(uint32_t)) 3319 *p++ = t4_read_reg(sc, start); 3320 } 3321 3322 static void 3323 t4_get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 3324 { 3325 int i, n; 3326 const unsigned int *reg_ranges; 3327 static const unsigned int t4_reg_ranges[] = { 3328 0x1008, 0x1108, 3329 0x1180, 0x11b4, 3330 0x11fc, 0x123c, 3331 0x1300, 0x173c, 3332 0x1800, 0x18fc, 3333 0x3000, 0x30d8, 3334 0x30e0, 0x5924, 3335 0x5960, 0x59d4, 3336 0x5a00, 0x5af8, 3337 0x6000, 0x6098, 3338 0x6100, 0x6150, 3339 0x6200, 0x6208, 3340 0x6240, 0x6248, 3341 0x6280, 0x6338, 3342 0x6370, 0x638c, 3343 0x6400, 0x643c, 3344 0x6500, 0x6524, 3345 0x6a00, 0x6a38, 3346 0x6a60, 0x6a78, 3347 0x6b00, 0x6b84, 3348 0x6bf0, 0x6c84, 3349 0x6cf0, 0x6d84, 3350 0x6df0, 0x6e84, 3351 0x6ef0, 0x6f84, 3352 0x6ff0, 0x7084, 3353 0x70f0, 0x7184, 3354 0x71f0, 0x7284, 3355 0x72f0, 0x7384, 3356 0x73f0, 0x7450, 3357 0x7500, 0x7530, 3358 0x7600, 0x761c, 3359 0x7680, 0x76cc, 3360 0x7700, 0x7798, 3361 0x77c0, 0x77fc, 3362 0x7900, 0x79fc, 3363 0x7b00, 0x7c38, 3364 0x7d00, 0x7efc, 3365 0x8dc0, 0x8e1c, 3366 0x8e30, 0x8e78, 3367 0x8ea0, 0x8f6c, 3368 0x8fc0, 0x9074, 3369 0x90fc, 0x90fc, 3370 0x9400, 0x9458, 3371 0x9600, 0x96bc, 3372 0x9800, 0x9808, 3373 0x9820, 0x983c, 3374 0x9850, 0x9864, 3375 0x9c00, 0x9c6c, 3376 0x9c80, 0x9cec, 3377 0x9d00, 0x9d6c, 3378 0x9d80, 0x9dec, 3379 0x9e00, 0x9e6c, 3380 0x9e80, 0x9eec, 3381 0x9f00, 0x9f6c, 3382 0x9f80, 0x9fec, 3383 0xd004, 0xd03c, 3384 0xdfc0, 0xdfe0, 3385 0xe000, 0xea7c, 3386 0xf000, 0x11190, 3387 0x19040, 0x1906c, 3388 0x19078, 0x19080, 3389 0x1908c, 0x19124, 3390 0x19150, 0x191b0, 3391 0x191d0, 0x191e8, 3392 0x19238, 0x1924c, 3393 0x193f8, 0x19474, 3394 0x19490, 0x194f8, 3395 0x19800, 0x19f30, 3396 0x1a000, 0x1a06c, 3397 0x1a0b0, 0x1a120, 3398 0x1a128, 0x1a138, 3399 0x1a190, 0x1a1c4, 3400 0x1a1fc, 0x1a1fc, 3401 0x1e040, 0x1e04c, 3402 0x1e284, 0x1e28c, 3403 0x1e2c0, 0x1e2c0, 3404 0x1e2e0, 0x1e2e0, 3405 0x1e300, 0x1e384, 3406 0x1e3c0, 0x1e3c8, 3407 0x1e440, 0x1e44c, 3408 0x1e684, 0x1e68c, 3409 0x1e6c0, 0x1e6c0, 3410 0x1e6e0, 0x1e6e0, 3411 0x1e700, 0x1e784, 3412 0x1e7c0, 0x1e7c8, 3413 0x1e840, 0x1e84c, 3414 0x1ea84, 0x1ea8c, 3415 0x1eac0, 0x1eac0, 3416 0x1eae0, 0x1eae0, 3417 0x1eb00, 0x1eb84, 3418 0x1ebc0, 0x1ebc8, 3419 0x1ec40, 0x1ec4c, 3420 0x1ee84, 0x1ee8c, 3421 0x1eec0, 0x1eec0, 3422 0x1eee0, 0x1eee0, 3423 0x1ef00, 0x1ef84, 3424 0x1efc0, 0x1efc8, 3425 0x1f040, 0x1f04c, 3426 0x1f284, 0x1f28c, 3427 0x1f2c0, 0x1f2c0, 3428 0x1f2e0, 0x1f2e0, 3429 0x1f300, 0x1f384, 3430 0x1f3c0, 0x1f3c8, 3431 0x1f440, 0x1f44c, 3432 0x1f684, 0x1f68c, 3433 0x1f6c0, 0x1f6c0, 3434 0x1f6e0, 0x1f6e0, 3435 0x1f700, 0x1f784, 3436 0x1f7c0, 0x1f7c8, 3437 0x1f840, 0x1f84c, 3438 0x1fa84, 0x1fa8c, 3439 0x1fac0, 0x1fac0, 3440 0x1fae0, 0x1fae0, 3441 0x1fb00, 0x1fb84, 3442 0x1fbc0, 0x1fbc8, 3443 0x1fc40, 0x1fc4c, 3444 0x1fe84, 0x1fe8c, 3445 0x1fec0, 0x1fec0, 3446 0x1fee0, 0x1fee0, 3447 0x1ff00, 0x1ff84, 3448 0x1ffc0, 0x1ffc8, 3449 0x20000, 0x2002c, 3450 0x20100, 0x2013c, 3451 0x20190, 0x201c8, 3452 0x20200, 0x20318, 3453 0x20400, 0x20528, 3454 0x20540, 0x20614, 3455 0x21000, 0x21040, 3456 0x2104c, 0x21060, 3457 0x210c0, 0x210ec, 3458 0x21200, 0x21268, 3459 0x21270, 0x21284, 3460 0x212fc, 0x21388, 3461 0x21400, 0x21404, 3462 0x21500, 0x21518, 3463 0x2152c, 0x2153c, 3464 0x21550, 0x21554, 3465 0x21600, 0x21600, 3466 0x21608, 0x21628, 3467 0x21630, 0x2163c, 3468 0x21700, 0x2171c, 3469 0x21780, 0x2178c, 3470 0x21800, 0x21c38, 3471 0x21c80, 0x21d7c, 3472 0x21e00, 0x21e04, 3473 0x22000, 0x2202c, 3474 0x22100, 0x2213c, 3475 0x22190, 0x221c8, 3476 0x22200, 0x22318, 3477 0x22400, 0x22528, 3478 0x22540, 0x22614, 3479 0x23000, 0x23040, 3480 0x2304c, 0x23060, 3481 0x230c0, 0x230ec, 3482 0x23200, 0x23268, 3483 0x23270, 0x23284, 3484 0x232fc, 0x23388, 3485 0x23400, 0x23404, 3486 0x23500, 0x23518, 3487 0x2352c, 0x2353c, 3488 0x23550, 0x23554, 3489 0x23600, 0x23600, 3490 0x23608, 0x23628, 3491 0x23630, 0x2363c, 3492 0x23700, 0x2371c, 3493 0x23780, 0x2378c, 3494 0x23800, 0x23c38, 3495 0x23c80, 0x23d7c, 3496 0x23e00, 0x23e04, 3497 0x24000, 0x2402c, 3498 0x24100, 0x2413c, 3499 0x24190, 0x241c8, 3500 0x24200, 0x24318, 3501 0x24400, 0x24528, 3502 0x24540, 0x24614, 3503 0x25000, 0x25040, 3504 0x2504c, 0x25060, 3505 0x250c0, 0x250ec, 3506 0x25200, 0x25268, 3507 0x25270, 0x25284, 3508 0x252fc, 0x25388, 3509 0x25400, 0x25404, 3510 0x25500, 0x25518, 3511 0x2552c, 0x2553c, 3512 0x25550, 0x25554, 3513 0x25600, 0x25600, 3514 0x25608, 0x25628, 3515 0x25630, 0x2563c, 3516 0x25700, 0x2571c, 3517 0x25780, 0x2578c, 3518 0x25800, 0x25c38, 3519 0x25c80, 0x25d7c, 3520 0x25e00, 0x25e04, 3521 0x26000, 0x2602c, 3522 0x26100, 0x2613c, 3523 0x26190, 0x261c8, 3524 0x26200, 0x26318, 3525 0x26400, 0x26528, 3526 0x26540, 0x26614, 3527 0x27000, 0x27040, 3528 0x2704c, 0x27060, 3529 0x270c0, 0x270ec, 3530 0x27200, 0x27268, 3531 0x27270, 0x27284, 3532 0x272fc, 0x27388, 3533 0x27400, 0x27404, 3534 0x27500, 0x27518, 3535 0x2752c, 0x2753c, 3536 0x27550, 0x27554, 3537 0x27600, 0x27600, 3538 0x27608, 0x27628, 3539 0x27630, 0x2763c, 3540 0x27700, 0x2771c, 3541 0x27780, 0x2778c, 3542 0x27800, 0x27c38, 3543 0x27c80, 0x27d7c, 3544 0x27e00, 0x27e04 3545 }; 3546 static const unsigned int t5_reg_ranges[] = { 3547 0x1008, 0x1148, 3548 0x1180, 0x11b4, 3549 0x11fc, 0x123c, 3550 0x1280, 0x173c, 3551 0x1800, 0x18fc, 3552 0x3000, 0x3028, 3553 0x3060, 0x30d8, 3554 0x30e0, 0x30fc, 3555 0x3140, 0x357c, 3556 0x35a8, 0x35cc, 3557 0x35ec, 0x35ec, 3558 0x3600, 0x5624, 3559 0x56cc, 0x575c, 3560 0x580c, 0x5814, 3561 0x5890, 0x58bc, 3562 0x5940, 0x59dc, 3563 0x59fc, 0x5a18, 3564 0x5a60, 0x5a9c, 3565 0x5b94, 0x5bfc, 3566 0x6000, 0x6040, 3567 0x6058, 0x614c, 3568 0x7700, 0x7798, 3569 0x77c0, 0x78fc, 3570 0x7b00, 0x7c54, 3571 0x7d00, 0x7efc, 3572 0x8dc0, 0x8de0, 3573 0x8df8, 0x8e84, 3574 0x8ea0, 0x8f84, 3575 0x8fc0, 0x90f8, 3576 0x9400, 0x9470, 3577 0x9600, 0x96f4, 3578 0x9800, 0x9808, 3579 0x9820, 0x983c, 3580 0x9850, 0x9864, 3581 0x9c00, 0x9c6c, 3582 0x9c80, 0x9cec, 3583 0x9d00, 0x9d6c, 3584 0x9d80, 0x9dec, 3585 0x9e00, 0x9e6c, 3586 0x9e80, 0x9eec, 3587 0x9f00, 0x9f6c, 3588 0x9f80, 0xa020, 3589 0xd004, 0xd03c, 3590 0xdfc0, 0xdfe0, 3591 0xe000, 0x11088, 3592 0x1109c, 0x1117c, 3593 0x11190, 0x11204, 3594 0x19040, 0x1906c, 3595 0x19078, 0x19080, 3596 0x1908c, 0x19124, 3597 0x19150, 0x191b0, 3598 0x191d0, 0x191e8, 3599 0x19238, 0x19290, 3600 0x193f8, 0x19474, 3601 0x19490, 0x194cc, 3602 0x194f0, 0x194f8, 3603 0x19c00, 0x19c60, 3604 0x19c94, 0x19e10, 3605 0x19e50, 0x19f34, 3606 0x19f40, 0x19f50, 3607 0x19f90, 0x19fe4, 3608 0x1a000, 0x1a06c, 3609 0x1a0b0, 0x1a120, 3610 0x1a128, 0x1a138, 3611 0x1a190, 0x1a1c4, 3612 0x1a1fc, 0x1a1fc, 3613 0x1e008, 0x1e00c, 3614 0x1e040, 0x1e04c, 3615 0x1e284, 0x1e290, 3616 0x1e2c0, 0x1e2c0, 3617 0x1e2e0, 0x1e2e0, 3618 0x1e300, 0x1e384, 3619 0x1e3c0, 0x1e3c8, 3620 0x1e408, 0x1e40c, 3621 0x1e440, 0x1e44c, 3622 0x1e684, 0x1e690, 3623 0x1e6c0, 0x1e6c0, 3624 0x1e6e0, 0x1e6e0, 3625 0x1e700, 0x1e784, 3626 0x1e7c0, 0x1e7c8, 3627 0x1e808, 0x1e80c, 3628 0x1e840, 0x1e84c, 3629 0x1ea84, 0x1ea90, 3630 0x1eac0, 0x1eac0, 3631 0x1eae0, 0x1eae0, 3632 0x1eb00, 0x1eb84, 3633 0x1ebc0, 0x1ebc8, 3634 0x1ec08, 0x1ec0c, 3635 0x1ec40, 0x1ec4c, 3636 0x1ee84, 0x1ee90, 3637 0x1eec0, 0x1eec0, 3638 0x1eee0, 0x1eee0, 3639 0x1ef00, 0x1ef84, 3640 0x1efc0, 0x1efc8, 3641 0x1f008, 0x1f00c, 3642 0x1f040, 0x1f04c, 3643 0x1f284, 0x1f290, 3644 0x1f2c0, 0x1f2c0, 3645 0x1f2e0, 0x1f2e0, 3646 0x1f300, 0x1f384, 3647 0x1f3c0, 0x1f3c8, 3648 0x1f408, 0x1f40c, 3649 0x1f440, 0x1f44c, 3650 0x1f684, 0x1f690, 3651 0x1f6c0, 0x1f6c0, 3652 0x1f6e0, 0x1f6e0, 3653 0x1f700, 0x1f784, 3654 0x1f7c0, 0x1f7c8, 3655 0x1f808, 0x1f80c, 3656 0x1f840, 0x1f84c, 3657 0x1fa84, 0x1fa90, 3658 0x1fac0, 0x1fac0, 3659 0x1fae0, 0x1fae0, 3660 0x1fb00, 0x1fb84, 3661 0x1fbc0, 0x1fbc8, 3662 0x1fc08, 0x1fc0c, 3663 0x1fc40, 0x1fc4c, 3664 0x1fe84, 0x1fe90, 3665 0x1fec0, 0x1fec0, 3666 0x1fee0, 0x1fee0, 3667 0x1ff00, 0x1ff84, 3668 0x1ffc0, 0x1ffc8, 3669 0x30000, 0x30030, 3670 0x30100, 0x30144, 3671 0x30190, 0x301d0, 3672 0x30200, 0x30318, 3673 0x30400, 0x3052c, 3674 0x30540, 0x3061c, 3675 0x30800, 0x30834, 3676 0x308c0, 0x30908, 3677 0x30910, 0x309ac, 3678 0x30a00, 0x30a2c, 3679 0x30a44, 0x30a50, 3680 0x30a74, 0x30c24, 3681 0x30d00, 0x30d00, 3682 0x30d08, 0x30d14, 3683 0x30d1c, 0x30d20, 3684 0x30d3c, 0x30d50, 3685 0x31200, 0x3120c, 3686 0x31220, 0x31220, 3687 0x31240, 0x31240, 3688 0x31600, 0x3160c, 3689 0x31a00, 0x31a1c, 3690 0x31e00, 0x31e20, 3691 0x31e38, 0x31e3c, 3692 0x31e80, 0x31e80, 3693 0x31e88, 0x31ea8, 3694 0x31eb0, 0x31eb4, 3695 0x31ec8, 0x31ed4, 3696 0x31fb8, 0x32004, 3697 0x32200, 0x32200, 3698 0x32208, 0x32240, 3699 0x32248, 0x32280, 3700 0x32288, 0x322c0, 3701 0x322c8, 0x322fc, 3702 0x32600, 0x32630, 3703 0x32a00, 0x32abc, 3704 0x32b00, 0x32b70, 3705 0x33000, 0x33048, 3706 0x33060, 0x3309c, 3707 0x330f0, 0x33148, 3708 0x33160, 0x3319c, 3709 0x331f0, 0x332e4, 3710 0x332f8, 0x333e4, 3711 0x333f8, 0x33448, 3712 0x33460, 0x3349c, 3713 0x334f0, 0x33548, 3714 0x33560, 0x3359c, 3715 0x335f0, 0x336e4, 3716 0x336f8, 0x337e4, 3717 0x337f8, 0x337fc, 3718 0x33814, 0x33814, 3719 0x3382c, 0x3382c, 3720 0x33880, 0x3388c, 3721 0x338e8, 0x338ec, 3722 0x33900, 0x33948, 3723 0x33960, 0x3399c, 3724 0x339f0, 0x33ae4, 3725 0x33af8, 0x33b10, 3726 0x33b28, 0x33b28, 3727 0x33b3c, 0x33b50, 3728 0x33bf0, 0x33c10, 3729 0x33c28, 0x33c28, 3730 0x33c3c, 0x33c50, 3731 0x33cf0, 0x33cfc, 3732 0x34000, 0x34030, 3733 0x34100, 0x34144, 3734 0x34190, 0x341d0, 3735 0x34200, 0x34318, 3736 0x34400, 0x3452c, 3737 0x34540, 0x3461c, 3738 0x34800, 0x34834, 3739 0x348c0, 0x34908, 3740 0x34910, 0x349ac, 3741 0x34a00, 0x34a2c, 3742 0x34a44, 0x34a50, 3743 0x34a74, 0x34c24, 3744 0x34d00, 0x34d00, 3745 0x34d08, 0x34d14, 3746 0x34d1c, 0x34d20, 3747 0x34d3c, 0x34d50, 3748 0x35200, 0x3520c, 3749 0x35220, 0x35220, 3750 0x35240, 0x35240, 3751 0x35600, 0x3560c, 3752 0x35a00, 0x35a1c, 3753 0x35e00, 0x35e20, 3754 0x35e38, 0x35e3c, 3755 0x35e80, 0x35e80, 3756 0x35e88, 0x35ea8, 3757 0x35eb0, 0x35eb4, 3758 0x35ec8, 0x35ed4, 3759 0x35fb8, 0x36004, 3760 0x36200, 0x36200, 3761 0x36208, 0x36240, 3762 0x36248, 0x36280, 3763 0x36288, 0x362c0, 3764 0x362c8, 0x362fc, 3765 0x36600, 0x36630, 3766 0x36a00, 0x36abc, 3767 0x36b00, 0x36b70, 3768 0x37000, 0x37048, 3769 0x37060, 0x3709c, 3770 0x370f0, 0x37148, 3771 0x37160, 0x3719c, 3772 0x371f0, 0x372e4, 3773 0x372f8, 0x373e4, 3774 0x373f8, 0x37448, 3775 0x37460, 0x3749c, 3776 0x374f0, 0x37548, 3777 0x37560, 0x3759c, 3778 0x375f0, 0x376e4, 3779 0x376f8, 0x377e4, 3780 0x377f8, 0x377fc, 3781 0x37814, 0x37814, 3782 0x3782c, 0x3782c, 3783 0x37880, 0x3788c, 3784 0x378e8, 0x378ec, 3785 0x37900, 0x37948, 3786 0x37960, 0x3799c, 3787 0x379f0, 0x37ae4, 3788 0x37af8, 0x37b10, 3789 0x37b28, 0x37b28, 3790 0x37b3c, 0x37b50, 3791 0x37bf0, 0x37c10, 3792 0x37c28, 0x37c28, 3793 0x37c3c, 0x37c50, 3794 0x37cf0, 0x37cfc, 3795 0x38000, 0x38030, 3796 0x38100, 0x38144, 3797 0x38190, 0x381d0, 3798 0x38200, 0x38318, 3799 0x38400, 0x3852c, 3800 0x38540, 0x3861c, 3801 0x38800, 0x38834, 3802 0x388c0, 0x38908, 3803 0x38910, 0x389ac, 3804 0x38a00, 0x38a2c, 3805 0x38a44, 0x38a50, 3806 0x38a74, 0x38c24, 3807 0x38d00, 0x38d00, 3808 0x38d08, 0x38d14, 3809 0x38d1c, 0x38d20, 3810 0x38d3c, 0x38d50, 3811 0x39200, 0x3920c, 3812 0x39220, 0x39220, 3813 0x39240, 0x39240, 3814 0x39600, 0x3960c, 3815 0x39a00, 0x39a1c, 3816 0x39e00, 0x39e20, 3817 0x39e38, 0x39e3c, 3818 0x39e80, 0x39e80, 3819 0x39e88, 0x39ea8, 3820 0x39eb0, 0x39eb4, 3821 0x39ec8, 0x39ed4, 3822 0x39fb8, 0x3a004, 3823 0x3a200, 0x3a200, 3824 0x3a208, 0x3a240, 3825 0x3a248, 0x3a280, 3826 0x3a288, 0x3a2c0, 3827 0x3a2c8, 0x3a2fc, 3828 0x3a600, 0x3a630, 3829 0x3aa00, 0x3aabc, 3830 0x3ab00, 0x3ab70, 3831 0x3b000, 0x3b048, 3832 0x3b060, 0x3b09c, 3833 0x3b0f0, 0x3b148, 3834 0x3b160, 0x3b19c, 3835 0x3b1f0, 0x3b2e4, 3836 0x3b2f8, 0x3b3e4, 3837 0x3b3f8, 0x3b448, 3838 0x3b460, 0x3b49c, 3839 0x3b4f0, 0x3b548, 3840 0x3b560, 0x3b59c, 3841 0x3b5f0, 0x3b6e4, 3842 0x3b6f8, 0x3b7e4, 3843 0x3b7f8, 0x3b7fc, 3844 0x3b814, 0x3b814, 3845 0x3b82c, 0x3b82c, 3846 0x3b880, 0x3b88c, 3847 0x3b8e8, 0x3b8ec, 3848 0x3b900, 0x3b948, 3849 0x3b960, 0x3b99c, 3850 0x3b9f0, 0x3bae4, 3851 0x3baf8, 0x3bb10, 3852 0x3bb28, 0x3bb28, 3853 0x3bb3c, 0x3bb50, 3854 0x3bbf0, 0x3bc10, 3855 0x3bc28, 0x3bc28, 3856 0x3bc3c, 0x3bc50, 3857 0x3bcf0, 0x3bcfc, 3858 0x3c000, 0x3c030, 3859 0x3c100, 0x3c144, 3860 0x3c190, 0x3c1d0, 3861 0x3c200, 0x3c318, 3862 0x3c400, 0x3c52c, 3863 0x3c540, 0x3c61c, 3864 0x3c800, 0x3c834, 3865 0x3c8c0, 0x3c908, 3866 0x3c910, 0x3c9ac, 3867 0x3ca00, 0x3ca2c, 3868 0x3ca44, 0x3ca50, 3869 0x3ca74, 0x3cc24, 3870 0x3cd00, 0x3cd00, 3871 0x3cd08, 0x3cd14, 3872 0x3cd1c, 0x3cd20, 3873 0x3cd3c, 0x3cd50, 3874 0x3d200, 0x3d20c, 3875 0x3d220, 0x3d220, 3876 0x3d240, 0x3d240, 3877 0x3d600, 0x3d60c, 3878 0x3da00, 0x3da1c, 3879 0x3de00, 0x3de20, 3880 0x3de38, 0x3de3c, 3881 0x3de80, 0x3de80, 3882 0x3de88, 0x3dea8, 3883 0x3deb0, 0x3deb4, 3884 0x3dec8, 0x3ded4, 3885 0x3dfb8, 0x3e004, 3886 0x3e200, 0x3e200, 3887 0x3e208, 0x3e240, 3888 0x3e248, 0x3e280, 3889 0x3e288, 0x3e2c0, 3890 0x3e2c8, 0x3e2fc, 3891 0x3e600, 0x3e630, 3892 0x3ea00, 0x3eabc, 3893 0x3eb00, 0x3eb70, 3894 0x3f000, 0x3f048, 3895 0x3f060, 0x3f09c, 3896 0x3f0f0, 0x3f148, 3897 0x3f160, 0x3f19c, 3898 0x3f1f0, 0x3f2e4, 3899 0x3f2f8, 0x3f3e4, 3900 0x3f3f8, 0x3f448, 3901 0x3f460, 0x3f49c, 3902 0x3f4f0, 0x3f548, 3903 0x3f560, 0x3f59c, 3904 0x3f5f0, 0x3f6e4, 3905 0x3f6f8, 0x3f7e4, 3906 0x3f7f8, 0x3f7fc, 3907 0x3f814, 0x3f814, 3908 0x3f82c, 0x3f82c, 3909 0x3f880, 0x3f88c, 3910 0x3f8e8, 0x3f8ec, 3911 0x3f900, 0x3f948, 3912 0x3f960, 0x3f99c, 3913 0x3f9f0, 0x3fae4, 3914 0x3faf8, 0x3fb10, 3915 0x3fb28, 0x3fb28, 3916 0x3fb3c, 0x3fb50, 3917 0x3fbf0, 0x3fc10, 3918 0x3fc28, 0x3fc28, 3919 0x3fc3c, 0x3fc50, 3920 0x3fcf0, 0x3fcfc, 3921 0x40000, 0x4000c, 3922 0x40040, 0x40068, 3923 0x4007c, 0x40144, 3924 0x40180, 0x4018c, 3925 0x40200, 0x40298, 3926 0x402ac, 0x4033c, 3927 0x403f8, 0x403fc, 3928 0x41304, 0x413c4, 3929 0x41400, 0x4141c, 3930 0x41480, 0x414d0, 3931 0x44000, 0x44078, 3932 0x440c0, 0x44278, 3933 0x442c0, 0x44478, 3934 0x444c0, 0x44678, 3935 0x446c0, 0x44878, 3936 0x448c0, 0x449fc, 3937 0x45000, 0x45068, 3938 0x45080, 0x45084, 3939 0x450a0, 0x450b0, 3940 0x45200, 0x45268, 3941 0x45280, 0x45284, 3942 0x452a0, 0x452b0, 3943 0x460c0, 0x460e4, 3944 0x47000, 0x4708c, 3945 0x47200, 0x47250, 3946 0x47400, 0x47420, 3947 0x47600, 0x47618, 3948 0x47800, 0x47814, 3949 0x48000, 0x4800c, 3950 0x48040, 0x48068, 3951 0x4807c, 0x48144, 3952 0x48180, 0x4818c, 3953 0x48200, 0x48298, 3954 0x482ac, 0x4833c, 3955 0x483f8, 0x483fc, 3956 0x49304, 0x493c4, 3957 0x49400, 0x4941c, 3958 0x49480, 0x494d0, 3959 0x4c000, 0x4c078, 3960 0x4c0c0, 0x4c278, 3961 0x4c2c0, 0x4c478, 3962 0x4c4c0, 0x4c678, 3963 0x4c6c0, 0x4c878, 3964 0x4c8c0, 0x4c9fc, 3965 0x4d000, 0x4d068, 3966 0x4d080, 0x4d084, 3967 0x4d0a0, 0x4d0b0, 3968 0x4d200, 0x4d268, 3969 0x4d280, 0x4d284, 3970 0x4d2a0, 0x4d2b0, 3971 0x4e0c0, 0x4e0e4, 3972 0x4f000, 0x4f08c, 3973 0x4f200, 0x4f250, 3974 0x4f400, 0x4f420, 3975 0x4f600, 0x4f618, 3976 0x4f800, 0x4f814, 3977 0x50000, 0x500cc, 3978 0x50400, 0x50400, 3979 0x50800, 0x508cc, 3980 0x50c00, 0x50c00, 3981 0x51000, 0x5101c, 3982 0x51300, 0x51308, 3983 }; 3984 3985 if (is_t4(sc)) { 3986 reg_ranges = &t4_reg_ranges[0]; 3987 n = nitems(t4_reg_ranges); 3988 } else { 3989 reg_ranges = &t5_reg_ranges[0]; 3990 n = nitems(t5_reg_ranges); 3991 } 3992 3993 regs->version = chip_id(sc) | chip_rev(sc) << 10; 3994 for (i = 0; i < n; i += 2) 3995 reg_block_dump(sc, buf, reg_ranges[i], reg_ranges[i + 1]); 3996 } 3997 3998 static void 3999 cxgbe_tick(void *arg) 4000 { 4001 struct port_info *pi = arg; 4002 struct ifnet *ifp = pi->ifp; 4003 struct sge_txq *txq; 4004 int i, drops; 4005 struct port_stats *s = &pi->stats; 4006 4007 PORT_LOCK(pi); 4008 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 4009 PORT_UNLOCK(pi); 4010 return; /* without scheduling another callout */ 4011 } 4012 4013 t4_get_port_stats(pi->adapter, pi->tx_chan, s); 4014 4015 ifp->if_opackets = s->tx_frames - s->tx_pause; 4016 ifp->if_ipackets = s->rx_frames - s->rx_pause; 4017 ifp->if_obytes = s->tx_octets - s->tx_pause * 64; 4018 ifp->if_ibytes = s->rx_octets - s->rx_pause * 64; 4019 ifp->if_omcasts = s->tx_mcast_frames - s->tx_pause; 4020 ifp->if_imcasts = s->rx_mcast_frames - s->rx_pause; 4021 ifp->if_iqdrops = s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 4022 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 4023 s->rx_trunc3; 4024 4025 drops = s->tx_drop; 4026 for_each_txq(pi, i, txq) 4027 drops += txq->br->br_drops; 4028 ifp->if_snd.ifq_drops = drops; 4029 4030 ifp->if_oerrors = s->tx_error_frames; 4031 ifp->if_ierrors = s->rx_jabber + s->rx_runt + s->rx_too_long + 4032 s->rx_fcs_err + s->rx_len_err; 4033 4034 callout_schedule(&pi->tick, hz); 4035 PORT_UNLOCK(pi); 4036 } 4037 4038 static void 4039 cxgbe_vlan_config(void *arg, struct ifnet *ifp, uint16_t vid) 4040 { 4041 struct ifnet *vlan; 4042 4043 if (arg != ifp || ifp->if_type != IFT_ETHER) 4044 return; 4045 4046 vlan = VLAN_DEVAT(ifp, vid); 4047 VLAN_SETCOOKIE(vlan, ifp); 4048 } 4049 4050 static int 4051 cpl_not_handled(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 4052 { 4053 4054 #ifdef INVARIANTS 4055 panic("%s: opcode 0x%02x on iq %p with payload %p", 4056 __func__, rss->opcode, iq, m); 4057 #else 4058 log(LOG_ERR, "%s: opcode 0x%02x on iq %p with payload %p\n", 4059 __func__, rss->opcode, iq, m); 4060 m_freem(m); 4061 #endif 4062 return (EDOOFUS); 4063 } 4064 4065 int 4066 t4_register_cpl_handler(struct adapter *sc, int opcode, cpl_handler_t h) 4067 { 4068 uintptr_t *loc, new; 4069 4070 if (opcode >= nitems(sc->cpl_handler)) 4071 return (EINVAL); 4072 4073 new = h ? (uintptr_t)h : (uintptr_t)cpl_not_handled; 4074 loc = (uintptr_t *) &sc->cpl_handler[opcode]; 4075 atomic_store_rel_ptr(loc, new); 4076 4077 return (0); 4078 } 4079 4080 static int 4081 an_not_handled(struct sge_iq *iq, const struct rsp_ctrl *ctrl) 4082 { 4083 4084 #ifdef INVARIANTS 4085 panic("%s: async notification on iq %p (ctrl %p)", __func__, iq, ctrl); 4086 #else 4087 log(LOG_ERR, "%s: async notification on iq %p (ctrl %p)\n", 4088 __func__, iq, ctrl); 4089 #endif 4090 return (EDOOFUS); 4091 } 4092 4093 int 4094 t4_register_an_handler(struct adapter *sc, an_handler_t h) 4095 { 4096 uintptr_t *loc, new; 4097 4098 new = h ? (uintptr_t)h : (uintptr_t)an_not_handled; 4099 loc = (uintptr_t *) &sc->an_handler; 4100 atomic_store_rel_ptr(loc, new); 4101 4102 return (0); 4103 } 4104 4105 static int 4106 fw_msg_not_handled(struct adapter *sc, const __be64 *rpl) 4107 { 4108 const struct cpl_fw6_msg *cpl = 4109 __containerof(rpl, struct cpl_fw6_msg, data[0]); 4110 4111 #ifdef INVARIANTS 4112 panic("%s: fw_msg type %d", __func__, cpl->type); 4113 #else 4114 log(LOG_ERR, "%s: fw_msg type %d\n", __func__, cpl->type); 4115 #endif 4116 return (EDOOFUS); 4117 } 4118 4119 int 4120 t4_register_fw_msg_handler(struct adapter *sc, int type, fw_msg_handler_t h) 4121 { 4122 uintptr_t *loc, new; 4123 4124 if (type >= nitems(sc->fw_msg_handler)) 4125 return (EINVAL); 4126 4127 /* 4128 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL 4129 * handler dispatch table. Reject any attempt to install a handler for 4130 * this subtype. 4131 */ 4132 if (type == FW_TYPE_RSSCPL || type == FW6_TYPE_RSSCPL) 4133 return (EINVAL); 4134 4135 new = h ? (uintptr_t)h : (uintptr_t)fw_msg_not_handled; 4136 loc = (uintptr_t *) &sc->fw_msg_handler[type]; 4137 atomic_store_rel_ptr(loc, new); 4138 4139 return (0); 4140 } 4141 4142 static int 4143 t4_sysctls(struct adapter *sc) 4144 { 4145 struct sysctl_ctx_list *ctx; 4146 struct sysctl_oid *oid; 4147 struct sysctl_oid_list *children, *c0; 4148 static char *caps[] = { 4149 "\20\1PPP\2QFC\3DCBX", /* caps[0] linkcaps */ 4150 "\20\1NIC\2VM\3IDS\4UM\5UM_ISGL", /* caps[1] niccaps */ 4151 "\20\1TOE", /* caps[2] toecaps */ 4152 "\20\1RDDP\2RDMAC", /* caps[3] rdmacaps */ 4153 "\20\1INITIATOR_PDU\2TARGET_PDU" /* caps[4] iscsicaps */ 4154 "\3INITIATOR_CNXOFLD\4TARGET_CNXOFLD" 4155 "\5INITIATOR_SSNOFLD\6TARGET_SSNOFLD", 4156 "\20\1INITIATOR\2TARGET\3CTRL_OFLD" /* caps[5] fcoecaps */ 4157 }; 4158 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 4159 4160 ctx = device_get_sysctl_ctx(sc->dev); 4161 4162 /* 4163 * dev.t4nex.X. 4164 */ 4165 oid = device_get_sysctl_tree(sc->dev); 4166 c0 = children = SYSCTL_CHILDREN(oid); 4167 4168 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 4169 sc->params.nports, "# of ports"); 4170 4171 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 4172 NULL, chip_rev(sc), "chip hardware revision"); 4173 4174 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 4175 CTLFLAG_RD, &sc->fw_version, 0, "firmware version"); 4176 4177 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 4178 CTLFLAG_RD, &sc->cfg_file, 0, "configuration file"); 4179 4180 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 4181 sc->cfcsum, "config file checksum"); 4182 4183 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 4184 CTLTYPE_STRING | CTLFLAG_RD, doorbells, sc->doorbells, 4185 sysctl_bitfield, "A", "available doorbells"); 4186 4187 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkcaps", 4188 CTLTYPE_STRING | CTLFLAG_RD, caps[0], sc->linkcaps, 4189 sysctl_bitfield, "A", "available link capabilities"); 4190 4191 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "niccaps", 4192 CTLTYPE_STRING | CTLFLAG_RD, caps[1], sc->niccaps, 4193 sysctl_bitfield, "A", "available NIC capabilities"); 4194 4195 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "toecaps", 4196 CTLTYPE_STRING | CTLFLAG_RD, caps[2], sc->toecaps, 4197 sysctl_bitfield, "A", "available TCP offload capabilities"); 4198 4199 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdmacaps", 4200 CTLTYPE_STRING | CTLFLAG_RD, caps[3], sc->rdmacaps, 4201 sysctl_bitfield, "A", "available RDMA capabilities"); 4202 4203 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "iscsicaps", 4204 CTLTYPE_STRING | CTLFLAG_RD, caps[4], sc->iscsicaps, 4205 sysctl_bitfield, "A", "available iSCSI capabilities"); 4206 4207 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoecaps", 4208 CTLTYPE_STRING | CTLFLAG_RD, caps[5], sc->fcoecaps, 4209 sysctl_bitfield, "A", "available FCoE capabilities"); 4210 4211 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 4212 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 4213 4214 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 4215 CTLTYPE_STRING | CTLFLAG_RD, sc->sge.timer_val, 4216 sizeof(sc->sge.timer_val), sysctl_int_array, "A", 4217 "interrupt holdoff timer values (us)"); 4218 4219 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 4220 CTLTYPE_STRING | CTLFLAG_RD, sc->sge.counter_val, 4221 sizeof(sc->sge.counter_val), sysctl_int_array, "A", 4222 "interrupt holdoff packet counter values"); 4223 4224 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 4225 NULL, sc->tids.nftids, "number of filters"); 4226 4227 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT | 4228 CTLFLAG_RD, sc, 0, sysctl_temperature, "A", 4229 "chip temperature (in Celsius)"); 4230 4231 t4_sge_sysctls(sc, ctx, children); 4232 4233 #ifdef SBUF_DRAIN 4234 /* 4235 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 4236 */ 4237 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 4238 CTLFLAG_RD | CTLFLAG_SKIP, NULL, 4239 "logs and miscellaneous information"); 4240 children = SYSCTL_CHILDREN(oid); 4241 4242 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 4243 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4244 sysctl_cctrl, "A", "congestion control"); 4245 4246 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 4247 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4248 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 4249 4250 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 4251 CTLTYPE_STRING | CTLFLAG_RD, sc, 1, 4252 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 4253 4254 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 4255 CTLTYPE_STRING | CTLFLAG_RD, sc, 2, 4256 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 4257 4258 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 4259 CTLTYPE_STRING | CTLFLAG_RD, sc, 3, 4260 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 4261 4262 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 4263 CTLTYPE_STRING | CTLFLAG_RD, sc, 4, 4264 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 4265 4266 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 4267 CTLTYPE_STRING | CTLFLAG_RD, sc, 5, 4268 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 4269 4270 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 4271 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4272 sysctl_cim_la, "A", "CIM logic analyzer"); 4273 4274 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 4275 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4276 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 4277 4278 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 4279 CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ, 4280 sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 4281 4282 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 4283 CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ, 4284 sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 4285 4286 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 4287 CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ, 4288 sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 4289 4290 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 4291 CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ, 4292 sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 4293 4294 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 4295 CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ, 4296 sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 4297 4298 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 4299 CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ, 4300 sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 4301 4302 if (is_t5(sc)) { 4303 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 4304 CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ, 4305 sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)"); 4306 4307 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 4308 CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ, 4309 sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)"); 4310 } 4311 4312 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 4313 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4314 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 4315 4316 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 4317 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4318 sysctl_cim_qcfg, "A", "CIM queue configuration"); 4319 4320 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 4321 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4322 sysctl_cpl_stats, "A", "CPL statistics"); 4323 4324 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 4325 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4326 sysctl_ddp_stats, "A", "DDP statistics"); 4327 4328 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 4329 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4330 sysctl_devlog, "A", "firmware's device log"); 4331 4332 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 4333 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4334 sysctl_fcoe_stats, "A", "FCoE statistics"); 4335 4336 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 4337 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4338 sysctl_hw_sched, "A", "hardware scheduler "); 4339 4340 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 4341 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4342 sysctl_l2t, "A", "hardware L2 table"); 4343 4344 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 4345 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4346 sysctl_lb_stats, "A", "loopback statistics"); 4347 4348 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 4349 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4350 sysctl_meminfo, "A", "memory regions"); 4351 4352 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 4353 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4354 sysctl_mps_tcam, "A", "MPS TCAM entries"); 4355 4356 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 4357 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4358 sysctl_path_mtus, "A", "path MTUs"); 4359 4360 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 4361 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4362 sysctl_pm_stats, "A", "PM statistics"); 4363 4364 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 4365 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4366 sysctl_rdma_stats, "A", "RDMA statistics"); 4367 4368 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 4369 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4370 sysctl_tcp_stats, "A", "TCP statistics"); 4371 4372 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 4373 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4374 sysctl_tids, "A", "TID information"); 4375 4376 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 4377 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4378 sysctl_tp_err_stats, "A", "TP error statistics"); 4379 4380 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 4381 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4382 sysctl_tp_la, "A", "TP logic analyzer"); 4383 4384 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 4385 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4386 sysctl_tx_rate, "A", "Tx rate"); 4387 4388 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 4389 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4390 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 4391 4392 if (is_t5(sc)) { 4393 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 4394 CTLTYPE_STRING | CTLFLAG_RD, sc, 0, 4395 sysctl_wcwr_stats, "A", "write combined work requests"); 4396 } 4397 #endif 4398 4399 #ifdef TCP_OFFLOAD 4400 if (is_offload(sc)) { 4401 /* 4402 * dev.t4nex.X.toe. 4403 */ 4404 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD, 4405 NULL, "TOE parameters"); 4406 children = SYSCTL_CHILDREN(oid); 4407 4408 sc->tt.sndbuf = 256 * 1024; 4409 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 4410 &sc->tt.sndbuf, 0, "max hardware send buffer size"); 4411 4412 sc->tt.ddp = 0; 4413 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW, 4414 &sc->tt.ddp, 0, "DDP allowed"); 4415 4416 sc->tt.indsz = G_INDICATESIZE(t4_read_reg(sc, A_TP_PARA_REG5)); 4417 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "indsz", CTLFLAG_RW, 4418 &sc->tt.indsz, 0, "DDP max indicate size allowed"); 4419 4420 sc->tt.ddp_thres = 4421 G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)); 4422 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp_thres", CTLFLAG_RW, 4423 &sc->tt.ddp_thres, 0, "DDP threshold"); 4424 4425 sc->tt.rx_coalesce = 1; 4426 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 4427 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 4428 } 4429 #endif 4430 4431 4432 return (0); 4433 } 4434 4435 static int 4436 cxgbe_sysctls(struct port_info *pi) 4437 { 4438 struct sysctl_ctx_list *ctx; 4439 struct sysctl_oid *oid; 4440 struct sysctl_oid_list *children; 4441 4442 ctx = device_get_sysctl_ctx(pi->dev); 4443 4444 /* 4445 * dev.cxgbe.X. 4446 */ 4447 oid = device_get_sysctl_tree(pi->dev); 4448 children = SYSCTL_CHILDREN(oid); 4449 4450 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING | 4451 CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down"); 4452 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 4453 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 4454 CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I", 4455 "PHY temperature (in Celsius)"); 4456 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 4457 CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I", 4458 "PHY firmware version"); 4459 } 4460 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 4461 &pi->nrxq, 0, "# of rx queues"); 4462 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 4463 &pi->ntxq, 0, "# of tx queues"); 4464 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 4465 &pi->first_rxq, 0, "index of first rx queue"); 4466 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 4467 &pi->first_txq, 0, "index of first tx queue"); 4468 4469 #ifdef TCP_OFFLOAD 4470 if (is_offload(pi->adapter)) { 4471 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 4472 &pi->nofldrxq, 0, 4473 "# of rx queues for offloaded TCP connections"); 4474 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 4475 &pi->nofldtxq, 0, 4476 "# of tx queues for offloaded TCP connections"); 4477 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 4478 CTLFLAG_RD, &pi->first_ofld_rxq, 0, 4479 "index of first TOE rx queue"); 4480 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 4481 CTLFLAG_RD, &pi->first_ofld_txq, 0, 4482 "index of first TOE tx queue"); 4483 } 4484 #endif 4485 4486 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 4487 CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_holdoff_tmr_idx, "I", 4488 "holdoff timer index"); 4489 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 4490 CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_holdoff_pktc_idx, "I", 4491 "holdoff packet counter index"); 4492 4493 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 4494 CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_qsize_rxq, "I", 4495 "rx queue size"); 4496 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 4497 CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_qsize_txq, "I", 4498 "tx queue size"); 4499 4500 /* 4501 * dev.cxgbe.X.stats. 4502 */ 4503 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, 4504 NULL, "port statistics"); 4505 children = SYSCTL_CHILDREN(oid); 4506 4507 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \ 4508 SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \ 4509 CTLTYPE_U64 | CTLFLAG_RD, pi->adapter, reg, \ 4510 sysctl_handle_t4_reg64, "QU", desc) 4511 4512 SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames", 4513 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L)); 4514 SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames", 4515 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L)); 4516 SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames", 4517 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L)); 4518 SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames", 4519 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L)); 4520 SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames", 4521 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L)); 4522 SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames", 4523 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L)); 4524 SYSCTL_ADD_T4_REG64(pi, "tx_frames_64", 4525 "# of tx frames in this range", 4526 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L)); 4527 SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127", 4528 "# of tx frames in this range", 4529 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L)); 4530 SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255", 4531 "# of tx frames in this range", 4532 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L)); 4533 SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511", 4534 "# of tx frames in this range", 4535 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L)); 4536 SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023", 4537 "# of tx frames in this range", 4538 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L)); 4539 SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518", 4540 "# of tx frames in this range", 4541 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L)); 4542 SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max", 4543 "# of tx frames in this range", 4544 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L)); 4545 SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames", 4546 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L)); 4547 SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted", 4548 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L)); 4549 SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted", 4550 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L)); 4551 SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted", 4552 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L)); 4553 SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted", 4554 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L)); 4555 SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted", 4556 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L)); 4557 SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted", 4558 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L)); 4559 SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted", 4560 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L)); 4561 SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted", 4562 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L)); 4563 SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted", 4564 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L)); 4565 4566 SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames", 4567 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L)); 4568 SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames", 4569 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L)); 4570 SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames", 4571 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L)); 4572 SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames", 4573 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L)); 4574 SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames", 4575 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L)); 4576 SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU", 4577 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L)); 4578 SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames", 4579 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L)); 4580 SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err", 4581 "# of frames received with bad FCS", 4582 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L)); 4583 SYSCTL_ADD_T4_REG64(pi, "rx_len_err", 4584 "# of frames received with length error", 4585 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L)); 4586 SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors", 4587 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L)); 4588 SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received", 4589 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L)); 4590 SYSCTL_ADD_T4_REG64(pi, "rx_frames_64", 4591 "# of rx frames in this range", 4592 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L)); 4593 SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127", 4594 "# of rx frames in this range", 4595 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L)); 4596 SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255", 4597 "# of rx frames in this range", 4598 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L)); 4599 SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511", 4600 "# of rx frames in this range", 4601 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L)); 4602 SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023", 4603 "# of rx frames in this range", 4604 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L)); 4605 SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518", 4606 "# of rx frames in this range", 4607 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L)); 4608 SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max", 4609 "# of rx frames in this range", 4610 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L)); 4611 SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received", 4612 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L)); 4613 SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received", 4614 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L)); 4615 SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received", 4616 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L)); 4617 SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received", 4618 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L)); 4619 SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received", 4620 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L)); 4621 SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received", 4622 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L)); 4623 SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received", 4624 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L)); 4625 SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received", 4626 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L)); 4627 SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received", 4628 PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L)); 4629 4630 #undef SYSCTL_ADD_T4_REG64 4631 4632 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \ 4633 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 4634 &pi->stats.name, desc) 4635 4636 /* We get these from port_stats and they may be stale by upto 1s */ 4637 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0, 4638 "# drops due to buffer-group 0 overflows"); 4639 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1, 4640 "# drops due to buffer-group 1 overflows"); 4641 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2, 4642 "# drops due to buffer-group 2 overflows"); 4643 SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3, 4644 "# drops due to buffer-group 3 overflows"); 4645 SYSCTL_ADD_T4_PORTSTAT(rx_trunc0, 4646 "# of buffer-group 0 truncated packets"); 4647 SYSCTL_ADD_T4_PORTSTAT(rx_trunc1, 4648 "# of buffer-group 1 truncated packets"); 4649 SYSCTL_ADD_T4_PORTSTAT(rx_trunc2, 4650 "# of buffer-group 2 truncated packets"); 4651 SYSCTL_ADD_T4_PORTSTAT(rx_trunc3, 4652 "# of buffer-group 3 truncated packets"); 4653 4654 #undef SYSCTL_ADD_T4_PORTSTAT 4655 4656 return (0); 4657 } 4658 4659 static int 4660 sysctl_int_array(SYSCTL_HANDLER_ARGS) 4661 { 4662 int rc, *i; 4663 struct sbuf sb; 4664 4665 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); 4666 for (i = arg1; arg2; arg2 -= sizeof(int), i++) 4667 sbuf_printf(&sb, "%d ", *i); 4668 sbuf_trim(&sb); 4669 sbuf_finish(&sb); 4670 rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); 4671 sbuf_delete(&sb); 4672 return (rc); 4673 } 4674 4675 static int 4676 sysctl_bitfield(SYSCTL_HANDLER_ARGS) 4677 { 4678 int rc; 4679 struct sbuf *sb; 4680 4681 rc = sysctl_wire_old_buffer(req, 0); 4682 if (rc != 0) 4683 return(rc); 4684 4685 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 4686 if (sb == NULL) 4687 return (ENOMEM); 4688 4689 sbuf_printf(sb, "%b", (int)arg2, (char *)arg1); 4690 rc = sbuf_finish(sb); 4691 sbuf_delete(sb); 4692 4693 return (rc); 4694 } 4695 4696 static int 4697 sysctl_btphy(SYSCTL_HANDLER_ARGS) 4698 { 4699 struct port_info *pi = arg1; 4700 int op = arg2; 4701 struct adapter *sc = pi->adapter; 4702 u_int v; 4703 int rc; 4704 4705 rc = begin_synchronized_op(sc, pi, SLEEP_OK | INTR_OK, "t4btt"); 4706 if (rc) 4707 return (rc); 4708 /* XXX: magic numbers */ 4709 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820, 4710 &v); 4711 end_synchronized_op(sc, 0); 4712 if (rc) 4713 return (rc); 4714 if (op == 0) 4715 v /= 256; 4716 4717 rc = sysctl_handle_int(oidp, &v, 0, req); 4718 return (rc); 4719 } 4720 4721 static int 4722 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 4723 { 4724 struct port_info *pi = arg1; 4725 struct adapter *sc = pi->adapter; 4726 int idx, rc, i; 4727 struct sge_rxq *rxq; 4728 #ifdef TCP_OFFLOAD 4729 struct sge_ofld_rxq *ofld_rxq; 4730 #endif 4731 uint8_t v; 4732 4733 idx = pi->tmr_idx; 4734 4735 rc = sysctl_handle_int(oidp, &idx, 0, req); 4736 if (rc != 0 || req->newptr == NULL) 4737 return (rc); 4738 4739 if (idx < 0 || idx >= SGE_NTIMERS) 4740 return (EINVAL); 4741 4742 rc = begin_synchronized_op(sc, pi, HOLD_LOCK | SLEEP_OK | INTR_OK, 4743 "t4tmr"); 4744 if (rc) 4745 return (rc); 4746 4747 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(pi->pktc_idx != -1); 4748 for_each_rxq(pi, i, rxq) { 4749 #ifdef atomic_store_rel_8 4750 atomic_store_rel_8(&rxq->iq.intr_params, v); 4751 #else 4752 rxq->iq.intr_params = v; 4753 #endif 4754 } 4755 #ifdef TCP_OFFLOAD 4756 for_each_ofld_rxq(pi, i, ofld_rxq) { 4757 #ifdef atomic_store_rel_8 4758 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 4759 #else 4760 ofld_rxq->iq.intr_params = v; 4761 #endif 4762 } 4763 #endif 4764 pi->tmr_idx = idx; 4765 4766 end_synchronized_op(sc, LOCK_HELD); 4767 return (0); 4768 } 4769 4770 static int 4771 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 4772 { 4773 struct port_info *pi = arg1; 4774 struct adapter *sc = pi->adapter; 4775 int idx, rc; 4776 4777 idx = pi->pktc_idx; 4778 4779 rc = sysctl_handle_int(oidp, &idx, 0, req); 4780 if (rc != 0 || req->newptr == NULL) 4781 return (rc); 4782 4783 if (idx < -1 || idx >= SGE_NCOUNTERS) 4784 return (EINVAL); 4785 4786 rc = begin_synchronized_op(sc, pi, HOLD_LOCK | SLEEP_OK | INTR_OK, 4787 "t4pktc"); 4788 if (rc) 4789 return (rc); 4790 4791 if (pi->flags & PORT_INIT_DONE) 4792 rc = EBUSY; /* cannot be changed once the queues are created */ 4793 else 4794 pi->pktc_idx = idx; 4795 4796 end_synchronized_op(sc, LOCK_HELD); 4797 return (rc); 4798 } 4799 4800 static int 4801 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 4802 { 4803 struct port_info *pi = arg1; 4804 struct adapter *sc = pi->adapter; 4805 int qsize, rc; 4806 4807 qsize = pi->qsize_rxq; 4808 4809 rc = sysctl_handle_int(oidp, &qsize, 0, req); 4810 if (rc != 0 || req->newptr == NULL) 4811 return (rc); 4812 4813 if (qsize < 128 || (qsize & 7)) 4814 return (EINVAL); 4815 4816 rc = begin_synchronized_op(sc, pi, HOLD_LOCK | SLEEP_OK | INTR_OK, 4817 "t4rxqs"); 4818 if (rc) 4819 return (rc); 4820 4821 if (pi->flags & PORT_INIT_DONE) 4822 rc = EBUSY; /* cannot be changed once the queues are created */ 4823 else 4824 pi->qsize_rxq = qsize; 4825 4826 end_synchronized_op(sc, LOCK_HELD); 4827 return (rc); 4828 } 4829 4830 static int 4831 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 4832 { 4833 struct port_info *pi = arg1; 4834 struct adapter *sc = pi->adapter; 4835 int qsize, rc; 4836 4837 qsize = pi->qsize_txq; 4838 4839 rc = sysctl_handle_int(oidp, &qsize, 0, req); 4840 if (rc != 0 || req->newptr == NULL) 4841 return (rc); 4842 4843 /* bufring size must be powerof2 */ 4844 if (qsize < 128 || !powerof2(qsize)) 4845 return (EINVAL); 4846 4847 rc = begin_synchronized_op(sc, pi, HOLD_LOCK | SLEEP_OK | INTR_OK, 4848 "t4txqs"); 4849 if (rc) 4850 return (rc); 4851 4852 if (pi->flags & PORT_INIT_DONE) 4853 rc = EBUSY; /* cannot be changed once the queues are created */ 4854 else 4855 pi->qsize_txq = qsize; 4856 4857 end_synchronized_op(sc, LOCK_HELD); 4858 return (rc); 4859 } 4860 4861 static int 4862 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 4863 { 4864 struct adapter *sc = arg1; 4865 int reg = arg2; 4866 uint64_t val; 4867 4868 val = t4_read_reg64(sc, reg); 4869 4870 return (sysctl_handle_64(oidp, &val, 0, req)); 4871 } 4872 4873 static int 4874 sysctl_temperature(SYSCTL_HANDLER_ARGS) 4875 { 4876 struct adapter *sc = arg1; 4877 int rc, t; 4878 uint32_t param, val; 4879 4880 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 4881 if (rc) 4882 return (rc); 4883 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 4884 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 4885 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 4886 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4887 end_synchronized_op(sc, 0); 4888 if (rc) 4889 return (rc); 4890 4891 /* unknown is returned as 0 but we display -1 in that case */ 4892 t = val == 0 ? -1 : val; 4893 4894 rc = sysctl_handle_int(oidp, &t, 0, req); 4895 return (rc); 4896 } 4897 4898 #ifdef SBUF_DRAIN 4899 static int 4900 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 4901 { 4902 struct adapter *sc = arg1; 4903 struct sbuf *sb; 4904 int rc, i; 4905 uint16_t incr[NMTUS][NCCTRL_WIN]; 4906 static const char *dec_fac[] = { 4907 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 4908 "0.9375" 4909 }; 4910 4911 rc = sysctl_wire_old_buffer(req, 0); 4912 if (rc != 0) 4913 return (rc); 4914 4915 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 4916 if (sb == NULL) 4917 return (ENOMEM); 4918 4919 t4_read_cong_tbl(sc, incr); 4920 4921 for (i = 0; i < NCCTRL_WIN; ++i) { 4922 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 4923 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 4924 incr[5][i], incr[6][i], incr[7][i]); 4925 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 4926 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 4927 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 4928 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 4929 } 4930 4931 rc = sbuf_finish(sb); 4932 sbuf_delete(sb); 4933 4934 return (rc); 4935 } 4936 4937 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 4938 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 4939 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 4940 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 4941 }; 4942 4943 static int 4944 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 4945 { 4946 struct adapter *sc = arg1; 4947 struct sbuf *sb; 4948 int rc, i, n, qid = arg2; 4949 uint32_t *buf, *p; 4950 char *qtype; 4951 u_int cim_num_obq = is_t4(sc) ? CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 4952 4953 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 4954 ("%s: bad qid %d\n", __func__, qid)); 4955 4956 if (qid < CIM_NUM_IBQ) { 4957 /* inbound queue */ 4958 qtype = "IBQ"; 4959 n = 4 * CIM_IBQ_SIZE; 4960 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 4961 rc = t4_read_cim_ibq(sc, qid, buf, n); 4962 } else { 4963 /* outbound queue */ 4964 qtype = "OBQ"; 4965 qid -= CIM_NUM_IBQ; 4966 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 4967 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 4968 rc = t4_read_cim_obq(sc, qid, buf, n); 4969 } 4970 4971 if (rc < 0) { 4972 rc = -rc; 4973 goto done; 4974 } 4975 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 4976 4977 rc = sysctl_wire_old_buffer(req, 0); 4978 if (rc != 0) 4979 goto done; 4980 4981 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 4982 if (sb == NULL) { 4983 rc = ENOMEM; 4984 goto done; 4985 } 4986 4987 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 4988 for (i = 0, p = buf; i < n; i += 16, p += 4) 4989 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 4990 p[2], p[3]); 4991 4992 rc = sbuf_finish(sb); 4993 sbuf_delete(sb); 4994 done: 4995 free(buf, M_CXGBE); 4996 return (rc); 4997 } 4998 4999 static int 5000 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 5001 { 5002 struct adapter *sc = arg1; 5003 u_int cfg; 5004 struct sbuf *sb; 5005 uint32_t *buf, *p; 5006 int rc; 5007 5008 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 5009 if (rc != 0) 5010 return (rc); 5011 5012 rc = sysctl_wire_old_buffer(req, 0); 5013 if (rc != 0) 5014 return (rc); 5015 5016 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 5017 if (sb == NULL) 5018 return (ENOMEM); 5019 5020 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 5021 M_ZERO | M_WAITOK); 5022 5023 rc = -t4_cim_read_la(sc, buf, NULL); 5024 if (rc != 0) 5025 goto done; 5026 5027 sbuf_printf(sb, "Status Data PC%s", 5028 cfg & F_UPDBGLACAPTPCONLY ? "" : 5029 " LS0Stat LS0Addr LS0Data"); 5030 5031 KASSERT((sc->params.cim_la_size & 7) == 0, 5032 ("%s: p will walk off the end of buf", __func__)); 5033 5034 for (p = buf; p < &buf[sc->params.cim_la_size]; p += 8) { 5035 if (cfg & F_UPDBGLACAPTPCONLY) { 5036 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 5037 p[6], p[7]); 5038 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 5039 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 5040 p[4] & 0xff, p[5] >> 8); 5041 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 5042 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 5043 p[1] & 0xf, p[2] >> 4); 5044 } else { 5045 sbuf_printf(sb, 5046 "\n %02x %x%07x %x%07x %08x %08x " 5047 "%08x%08x%08x%08x", 5048 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 5049 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 5050 p[6], p[7]); 5051 } 5052 } 5053 5054 rc = sbuf_finish(sb); 5055 sbuf_delete(sb); 5056 done: 5057 free(buf, M_CXGBE); 5058 return (rc); 5059 } 5060 5061 static int 5062 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 5063 { 5064 struct adapter *sc = arg1; 5065 u_int i; 5066 struct sbuf *sb; 5067 uint32_t *buf, *p; 5068 int rc; 5069 5070 rc = sysctl_wire_old_buffer(req, 0); 5071 if (rc != 0) 5072 return (rc); 5073 5074 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 5075 if (sb == NULL) 5076 return (ENOMEM); 5077 5078 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 5079 M_ZERO | M_WAITOK); 5080 5081 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 5082 p = buf; 5083 5084 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 5085 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 5086 p[1], p[0]); 5087 } 5088 5089 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 5090 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 5091 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 5092 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 5093 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 5094 (p[1] >> 2) | ((p[2] & 3) << 30), 5095 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 5096 p[0] & 1); 5097 } 5098 5099 rc = sbuf_finish(sb); 5100 sbuf_delete(sb); 5101 free(buf, M_CXGBE); 5102 return (rc); 5103 } 5104 5105 static int 5106 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 5107 { 5108 struct adapter *sc = arg1; 5109 u_int i; 5110 struct sbuf *sb; 5111 uint32_t *buf, *p; 5112 int rc; 5113 5114 rc = sysctl_wire_old_buffer(req, 0); 5115 if (rc != 0) 5116 return (rc); 5117 5118 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 5119 if (sb == NULL) 5120 return (ENOMEM); 5121 5122 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 5123 M_ZERO | M_WAITOK); 5124 5125 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 5126 p = buf; 5127 5128 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 5129 for (i = 0; i < CIM_MALA_SIZE; i++, p += 6) { 5130 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 5131 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 5132 p[4], p[3], p[2], p[1], p[0]); 5133 } 5134 5135 sbuf_printf(sb, "\n\nCntl ID Data"); 5136 for (i = 0; i < CIM_MALA_SIZE; i++, p += 6) { 5137 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 5138 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 5139 } 5140 5141 rc = sbuf_finish(sb); 5142 sbuf_delete(sb); 5143 free(buf, M_CXGBE); 5144 return (rc); 5145 } 5146 5147 static int 5148 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 5149 { 5150 struct adapter *sc = arg1; 5151 struct sbuf *sb; 5152 int rc, i; 5153 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 5154 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 5155 uint16_t thres[CIM_NUM_IBQ]; 5156 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 5157 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 5158 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 5159 5160 if (is_t4(sc)) { 5161 cim_num_obq = CIM_NUM_OBQ; 5162 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 5163 obq_rdaddr = A_UP_OBQ_0_REALADDR; 5164 } else { 5165 cim_num_obq = CIM_NUM_OBQ_T5; 5166 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 5167 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 5168 } 5169 nq = CIM_NUM_IBQ + cim_num_obq; 5170 5171 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 5172 if (rc == 0) 5173 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr); 5174 if (rc != 0) 5175 return (rc); 5176 5177 t4_read_cimq_cfg(sc, base, size, thres); 5178 5179 rc = sysctl_wire_old_buffer(req, 0); 5180 if (rc != 0) 5181 return (rc); 5182 5183 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 5184 if (sb == NULL) 5185 return (ENOMEM); 5186 5187 sbuf_printf(sb, "Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 5188 5189 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 5190 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 5191 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 5192 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 5193 G_QUEREMFLITS(p[2]) * 16); 5194 for ( ; i < nq; i++, p += 4, wr += 2) 5195 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 5196 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 5197 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 5198 G_QUEREMFLITS(p[2]) * 16); 5199 5200 rc = sbuf_finish(sb); 5201 sbuf_delete(sb); 5202 5203 return (rc); 5204 } 5205 5206 static int 5207 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 5208 { 5209 struct adapter *sc = arg1; 5210 struct sbuf *sb; 5211 int rc; 5212 struct tp_cpl_stats stats; 5213 5214 rc = sysctl_wire_old_buffer(req, 0); 5215 if (rc != 0) 5216 return (rc); 5217 5218 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 5219 if (sb == NULL) 5220 return (ENOMEM); 5221 5222 t4_tp_get_cpl_stats(sc, &stats); 5223 5224 sbuf_printf(sb, " channel 0 channel 1 channel 2 " 5225 "channel 3\n"); 5226 sbuf_printf(sb, "CPL requests: %10u %10u %10u %10u\n", 5227 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 5228 sbuf_printf(sb, "CPL responses: %10u %10u %10u %10u", 5229 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 5230 5231 rc = sbuf_finish(sb); 5232 sbuf_delete(sb); 5233 5234 return (rc); 5235 } 5236 5237 static int 5238 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 5239 { 5240 struct adapter *sc = arg1; 5241 struct sbuf *sb; 5242 int rc; 5243 struct tp_usm_stats stats; 5244 5245 rc = sysctl_wire_old_buffer(req, 0); 5246 if (rc != 0) 5247 return(rc); 5248 5249 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 5250 if (sb == NULL) 5251 return (ENOMEM); 5252 5253 t4_get_usm_stats(sc, &stats); 5254 5255 sbuf_printf(sb, "Frames: %u\n", stats.frames); 5256 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 5257 sbuf_printf(sb, "Drops: %u", stats.drops); 5258 5259 rc = sbuf_finish(sb); 5260 sbuf_delete(sb); 5261 5262 return (rc); 5263 } 5264 5265 const char *devlog_level_strings[] = { 5266 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 5267 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 5268 [FW_DEVLOG_LEVEL_ERR] = "ERR", 5269 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 5270 [FW_DEVLOG_LEVEL_INFO] = "INFO", 5271 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 5272 }; 5273 5274 const char *devlog_facility_strings[] = { 5275 [FW_DEVLOG_FACILITY_CORE] = "CORE", 5276 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 5277 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 5278 [FW_DEVLOG_FACILITY_RES] = "RES", 5279 [FW_DEVLOG_FACILITY_HW] = "HW", 5280 [FW_DEVLOG_FACILITY_FLR] = "FLR", 5281 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 5282 [FW_DEVLOG_FACILITY_PHY] = "PHY", 5283 [FW_DEVLOG_FACILITY_MAC] = "MAC", 5284 [FW_DEVLOG_FACILITY_PORT] = "PORT", 5285 [FW_DEVLOG_FACILITY_VI] = "VI", 5286 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 5287 [FW_DEVLOG_FACILITY_ACL] = "ACL", 5288 [FW_DEVLOG_FACILITY_TM] = "TM", 5289 [FW_DEVLOG_FACILITY_QFC] = "QFC", 5290 [FW_DEVLOG_FACILITY_DCB] = "DCB", 5291 [FW_DEVLOG_FACILITY_ETH] = "ETH", 5292 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 5293 [FW_DEVLOG_FACILITY_RI] = "RI", 5294 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 5295 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 5296 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 5297 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE" 5298 }; 5299 5300 static int 5301 sysctl_devlog(SYSCTL_HANDLER_ARGS) 5302 { 5303 struct adapter *sc = arg1; 5304 struct devlog_params *dparams = &sc->params.devlog; 5305 struct fw_devlog_e *buf, *e; 5306 int i, j, rc, nentries, first = 0; 5307 struct sbuf *sb; 5308 uint64_t ftstamp = UINT64_MAX; 5309 5310 if (dparams->start == 0) { 5311 dparams->memtype = 0; 5312 dparams->start = 0x84000; 5313 dparams->size = 32768; 5314 } 5315 5316 nentries = dparams->size / sizeof(struct fw_devlog_e); 5317 5318 buf = malloc(dparams->size, M_CXGBE, M_NOWAIT); 5319 if (buf == NULL) 5320 return (ENOMEM); 5321 5322 rc = -t4_mem_read(sc, dparams->memtype, dparams->start, dparams->size, 5323 (void *)buf); 5324 if (rc != 0) 5325 goto done; 5326 5327 for (i = 0; i < nentries; i++) { 5328 e = &buf[i]; 5329 5330 if (e->timestamp == 0) 5331 break; /* end */ 5332 5333 e->timestamp = be64toh(e->timestamp); 5334 e->seqno = be32toh(e->seqno); 5335 for (j = 0; j < 8; j++) 5336 e->params[j] = be32toh(e->params[j]); 5337 5338 if (e->timestamp < ftstamp) { 5339 ftstamp = e->timestamp; 5340 first = i; 5341 } 5342 } 5343 5344 if (buf[first].timestamp == 0) 5345 goto done; /* nothing in the log */ 5346 5347 rc = sysctl_wire_old_buffer(req, 0); 5348 if (rc != 0) 5349 goto done; 5350 5351 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 5352 if (sb == NULL) { 5353 rc = ENOMEM; 5354 goto done; 5355 } 5356 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 5357 "Seq#", "Tstamp", "Level", "Facility", "Message"); 5358 5359 i = first; 5360 do { 5361 e = &buf[i]; 5362 if (e->timestamp == 0) 5363 break; /* end */ 5364 5365 sbuf_printf(sb, "%10d %15ju %8s %8s ", 5366 e->seqno, e->timestamp, 5367 (e->level < nitems(devlog_level_strings) ? 5368 devlog_level_strings[e->level] : "UNKNOWN"), 5369 (e->facility < nitems(devlog_facility_strings) ? 5370 devlog_facility_strings[e->facility] : "UNKNOWN")); 5371 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 5372 e->params[2], e->params[3], e->params[4], 5373 e->params[5], e->params[6], e->params[7]); 5374 5375 if (++i == nentries) 5376 i = 0; 5377 } while (i != first); 5378 5379 rc = sbuf_finish(sb); 5380 sbuf_delete(sb); 5381 done: 5382 free(buf, M_CXGBE); 5383 return (rc); 5384 } 5385 5386 static int 5387 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 5388 { 5389 struct adapter *sc = arg1; 5390 struct sbuf *sb; 5391 int rc; 5392 struct tp_fcoe_stats stats[4]; 5393 5394 rc = sysctl_wire_old_buffer(req, 0); 5395 if (rc != 0) 5396 return (rc); 5397 5398 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 5399 if (sb == NULL) 5400 return (ENOMEM); 5401 5402 t4_get_fcoe_stats(sc, 0, &stats[0]); 5403 t4_get_fcoe_stats(sc, 1, &stats[1]); 5404 t4_get_fcoe_stats(sc, 2, &stats[2]); 5405 t4_get_fcoe_stats(sc, 3, &stats[3]); 5406 5407 sbuf_printf(sb, " channel 0 channel 1 " 5408 "channel 2 channel 3\n"); 5409 sbuf_printf(sb, "octetsDDP: %16ju %16ju %16ju %16ju\n", 5410 stats[0].octetsDDP, stats[1].octetsDDP, stats[2].octetsDDP, 5411 stats[3].octetsDDP); 5412 sbuf_printf(sb, "framesDDP: %16u %16u %16u %16u\n", stats[0].framesDDP, 5413 stats[1].framesDDP, stats[2].framesDDP, stats[3].framesDDP); 5414 sbuf_printf(sb, "framesDrop: %16u %16u %16u %16u", 5415 stats[0].framesDrop, stats[1].framesDrop, stats[2].framesDrop, 5416 stats[3].framesDrop); 5417 5418 rc = sbuf_finish(sb); 5419 sbuf_delete(sb); 5420 5421 return (rc); 5422 } 5423 5424 static int 5425 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 5426 { 5427 struct adapter *sc = arg1; 5428 struct sbuf *sb; 5429 int rc, i; 5430 unsigned int map, kbps, ipg, mode; 5431 unsigned int pace_tab[NTX_SCHED]; 5432 5433 rc = sysctl_wire_old_buffer(req, 0); 5434 if (rc != 0) 5435 return (rc); 5436 5437 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 5438 if (sb == NULL) 5439 return (ENOMEM); 5440 5441 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 5442 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 5443 t4_read_pace_tbl(sc, pace_tab); 5444 5445 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 5446 "Class IPG (0.1 ns) Flow IPG (us)"); 5447 5448 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 5449 t4_get_tx_sched(sc, i, &kbps, &ipg); 5450 sbuf_printf(sb, "\n %u %-5s %u ", i, 5451 (mode & (1 << i)) ? "flow" : "class", map & 3); 5452 if (kbps) 5453 sbuf_printf(sb, "%9u ", kbps); 5454 else 5455 sbuf_printf(sb, " disabled "); 5456 5457 if (ipg) 5458 sbuf_printf(sb, "%13u ", ipg); 5459 else 5460 sbuf_printf(sb, " disabled "); 5461 5462 if (pace_tab[i]) 5463 sbuf_printf(sb, "%10u", pace_tab[i]); 5464 else 5465 sbuf_printf(sb, " disabled"); 5466 } 5467 5468 rc = sbuf_finish(sb); 5469 sbuf_delete(sb); 5470 5471 return (rc); 5472 } 5473 5474 static int 5475 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 5476 { 5477 struct adapter *sc = arg1; 5478 struct sbuf *sb; 5479 int rc, i, j; 5480 uint64_t *p0, *p1; 5481 struct lb_port_stats s[2]; 5482 static const char *stat_name[] = { 5483 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 5484 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 5485 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 5486 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 5487 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 5488 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 5489 "BG2FramesTrunc:", "BG3FramesTrunc:" 5490 }; 5491 5492 rc = sysctl_wire_old_buffer(req, 0); 5493 if (rc != 0) 5494 return (rc); 5495 5496 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 5497 if (sb == NULL) 5498 return (ENOMEM); 5499 5500 memset(s, 0, sizeof(s)); 5501 5502 for (i = 0; i < 4; i += 2) { 5503 t4_get_lb_stats(sc, i, &s[0]); 5504 t4_get_lb_stats(sc, i + 1, &s[1]); 5505 5506 p0 = &s[0].octets; 5507 p1 = &s[1].octets; 5508 sbuf_printf(sb, "%s Loopback %u" 5509 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 5510 5511 for (j = 0; j < nitems(stat_name); j++) 5512 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 5513 *p0++, *p1++); 5514 } 5515 5516 rc = sbuf_finish(sb); 5517 sbuf_delete(sb); 5518 5519 return (rc); 5520 } 5521 5522 static int 5523 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 5524 { 5525 int rc = 0; 5526 struct port_info *pi = arg1; 5527 struct sbuf *sb; 5528 static const char *linkdnreasons[] = { 5529 "non-specific", "remote fault", "autoneg failed", "reserved3", 5530 "PHY overheated", "unknown", "rx los", "reserved7" 5531 }; 5532 5533 rc = sysctl_wire_old_buffer(req, 0); 5534 if (rc != 0) 5535 return(rc); 5536 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 5537 if (sb == NULL) 5538 return (ENOMEM); 5539 5540 if (pi->linkdnrc < 0) 5541 sbuf_printf(sb, "n/a"); 5542 else if (pi->linkdnrc < nitems(linkdnreasons)) 5543 sbuf_printf(sb, "%s", linkdnreasons[pi->linkdnrc]); 5544 else 5545 sbuf_printf(sb, "%d", pi->linkdnrc); 5546 5547 rc = sbuf_finish(sb); 5548 sbuf_delete(sb); 5549 5550 return (rc); 5551 } 5552 5553 struct mem_desc { 5554 unsigned int base; 5555 unsigned int limit; 5556 unsigned int idx; 5557 }; 5558 5559 static int 5560 mem_desc_cmp(const void *a, const void *b) 5561 { 5562 return ((const struct mem_desc *)a)->base - 5563 ((const struct mem_desc *)b)->base; 5564 } 5565 5566 static void 5567 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 5568 unsigned int to) 5569 { 5570 unsigned int size; 5571 5572 size = to - from + 1; 5573 if (size == 0) 5574 return; 5575 5576 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 5577 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 5578 } 5579 5580 static int 5581 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 5582 { 5583 struct adapter *sc = arg1; 5584 struct sbuf *sb; 5585 int rc, i, n; 5586 uint32_t lo, hi, used, alloc; 5587 static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"}; 5588 static const char *region[] = { 5589 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 5590 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 5591 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 5592 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 5593 "RQUDP region:", "PBL region:", "TXPBL region:", 5594 "DBVFIFO region:", "ULPRX state:", "ULPTX state:", 5595 "On-chip queues:" 5596 }; 5597 struct mem_desc avail[4]; 5598 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 5599 struct mem_desc *md = mem; 5600 5601 rc = sysctl_wire_old_buffer(req, 0); 5602 if (rc != 0) 5603 return (rc); 5604 5605 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 5606 if (sb == NULL) 5607 return (ENOMEM); 5608 5609 for (i = 0; i < nitems(mem); i++) { 5610 mem[i].limit = 0; 5611 mem[i].idx = i; 5612 } 5613 5614 /* Find and sort the populated memory ranges */ 5615 i = 0; 5616 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 5617 if (lo & F_EDRAM0_ENABLE) { 5618 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 5619 avail[i].base = G_EDRAM0_BASE(hi) << 20; 5620 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 5621 avail[i].idx = 0; 5622 i++; 5623 } 5624 if (lo & F_EDRAM1_ENABLE) { 5625 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 5626 avail[i].base = G_EDRAM1_BASE(hi) << 20; 5627 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 5628 avail[i].idx = 1; 5629 i++; 5630 } 5631 if (lo & F_EXT_MEM_ENABLE) { 5632 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 5633 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 5634 avail[i].limit = avail[i].base + 5635 (G_EXT_MEM_SIZE(hi) << 20); 5636 avail[i].idx = is_t4(sc) ? 2 : 3; /* Call it MC for T4 */ 5637 i++; 5638 } 5639 if (!is_t4(sc) && lo & F_EXT_MEM1_ENABLE) { 5640 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 5641 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 5642 avail[i].limit = avail[i].base + 5643 (G_EXT_MEM1_SIZE(hi) << 20); 5644 avail[i].idx = 4; 5645 i++; 5646 } 5647 if (!i) /* no memory available */ 5648 return 0; 5649 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 5650 5651 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 5652 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 5653 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 5654 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 5655 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 5656 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 5657 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 5658 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 5659 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 5660 5661 /* the next few have explicit upper bounds */ 5662 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 5663 md->limit = md->base - 1 + 5664 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 5665 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 5666 md++; 5667 5668 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 5669 md->limit = md->base - 1 + 5670 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 5671 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 5672 md++; 5673 5674 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 5675 hi = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 5676 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 5677 md->limit = (sc->tids.ntids - hi) * 16 + md->base - 1; 5678 } else { 5679 md->base = 0; 5680 md->idx = nitems(region); /* hide it */ 5681 } 5682 md++; 5683 5684 #define ulp_region(reg) \ 5685 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 5686 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 5687 5688 ulp_region(RX_ISCSI); 5689 ulp_region(RX_TDDP); 5690 ulp_region(TX_TPT); 5691 ulp_region(RX_STAG); 5692 ulp_region(RX_RQ); 5693 ulp_region(RX_RQUDP); 5694 ulp_region(RX_PBL); 5695 ulp_region(TX_PBL); 5696 #undef ulp_region 5697 5698 md->base = 0; 5699 md->idx = nitems(region); 5700 if (!is_t4(sc) && t4_read_reg(sc, A_SGE_CONTROL2) & F_VFIFO_ENABLE) { 5701 md->base = G_BASEADDR(t4_read_reg(sc, A_SGE_DBVFIFO_BADDR)); 5702 md->limit = md->base + (G_DBVFIFO_SIZE((t4_read_reg(sc, 5703 A_SGE_DBVFIFO_SIZE))) << 2) - 1; 5704 } 5705 md++; 5706 5707 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 5708 md->limit = md->base + sc->tids.ntids - 1; 5709 md++; 5710 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 5711 md->limit = md->base + sc->tids.ntids - 1; 5712 md++; 5713 5714 md->base = sc->vres.ocq.start; 5715 if (sc->vres.ocq.size) 5716 md->limit = md->base + sc->vres.ocq.size - 1; 5717 else 5718 md->idx = nitems(region); /* hide it */ 5719 md++; 5720 5721 /* add any address-space holes, there can be up to 3 */ 5722 for (n = 0; n < i - 1; n++) 5723 if (avail[n].limit < avail[n + 1].base) 5724 (md++)->base = avail[n].limit; 5725 if (avail[n].limit) 5726 (md++)->base = avail[n].limit; 5727 5728 n = md - mem; 5729 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 5730 5731 for (lo = 0; lo < i; lo++) 5732 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 5733 avail[lo].limit - 1); 5734 5735 sbuf_printf(sb, "\n"); 5736 for (i = 0; i < n; i++) { 5737 if (mem[i].idx >= nitems(region)) 5738 continue; /* skip holes */ 5739 if (!mem[i].limit) 5740 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 5741 mem_region_show(sb, region[mem[i].idx], mem[i].base, 5742 mem[i].limit); 5743 } 5744 5745 sbuf_printf(sb, "\n"); 5746 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 5747 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 5748 mem_region_show(sb, "uP RAM:", lo, hi); 5749 5750 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 5751 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 5752 mem_region_show(sb, "uP Extmem2:", lo, hi); 5753 5754 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 5755 sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", 5756 G_PMRXMAXPAGE(lo), 5757 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 5758 (lo & F_PMRXNUMCHN) ? 2 : 1); 5759 5760 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 5761 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 5762 sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", 5763 G_PMTXMAXPAGE(lo), 5764 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 5765 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 5766 sbuf_printf(sb, "%u p-structs\n", 5767 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); 5768 5769 for (i = 0; i < 4; i++) { 5770 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 5771 if (is_t4(sc)) { 5772 used = G_USED(lo); 5773 alloc = G_ALLOC(lo); 5774 } else { 5775 used = G_T5_USED(lo); 5776 alloc = G_T5_ALLOC(lo); 5777 } 5778 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 5779 i, used, alloc); 5780 } 5781 for (i = 0; i < 4; i++) { 5782 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 5783 if (is_t4(sc)) { 5784 used = G_USED(lo); 5785 alloc = G_ALLOC(lo); 5786 } else { 5787 used = G_T5_USED(lo); 5788 alloc = G_T5_ALLOC(lo); 5789 } 5790 sbuf_printf(sb, 5791 "\nLoopback %d using %u pages out of %u allocated", 5792 i, used, alloc); 5793 } 5794 5795 rc = sbuf_finish(sb); 5796 sbuf_delete(sb); 5797 5798 return (rc); 5799 } 5800 5801 static inline void 5802 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 5803 { 5804 *mask = x | y; 5805 y = htobe64(y); 5806 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 5807 } 5808 5809 static int 5810 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 5811 { 5812 struct adapter *sc = arg1; 5813 struct sbuf *sb; 5814 int rc, i, n; 5815 5816 rc = sysctl_wire_old_buffer(req, 0); 5817 if (rc != 0) 5818 return (rc); 5819 5820 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 5821 if (sb == NULL) 5822 return (ENOMEM); 5823 5824 sbuf_printf(sb, 5825 "Idx Ethernet address Mask Vld Ports PF" 5826 " VF Replication P0 P1 P2 P3 ML"); 5827 n = is_t4(sc) ? NUM_MPS_CLS_SRAM_L_INSTANCES : 5828 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 5829 for (i = 0; i < n; i++) { 5830 uint64_t tcamx, tcamy, mask; 5831 uint32_t cls_lo, cls_hi; 5832 uint8_t addr[ETHER_ADDR_LEN]; 5833 5834 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 5835 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 5836 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 5837 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 5838 5839 if (tcamx & tcamy) 5840 continue; 5841 5842 tcamxy2valmask(tcamx, tcamy, addr, &mask); 5843 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 5844 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 5845 addr[3], addr[4], addr[5], (uintmax_t)mask, 5846 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 5847 G_PORTMAP(cls_hi), G_PF(cls_lo), 5848 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 5849 5850 if (cls_lo & F_REPLICATE) { 5851 struct fw_ldst_cmd ldst_cmd; 5852 5853 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 5854 ldst_cmd.op_to_addrspace = 5855 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 5856 F_FW_CMD_REQUEST | F_FW_CMD_READ | 5857 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 5858 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 5859 ldst_cmd.u.mps.fid_ctl = 5860 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 5861 V_FW_LDST_CMD_CTL(i)); 5862 5863 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 5864 "t4mps"); 5865 if (rc) 5866 break; 5867 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 5868 sizeof(ldst_cmd), &ldst_cmd); 5869 end_synchronized_op(sc, 0); 5870 5871 if (rc != 0) { 5872 sbuf_printf(sb, 5873 " ------------ error %3u ------------", rc); 5874 rc = 0; 5875 } else { 5876 sbuf_printf(sb, " %08x %08x %08x %08x", 5877 be32toh(ldst_cmd.u.mps.rplc127_96), 5878 be32toh(ldst_cmd.u.mps.rplc95_64), 5879 be32toh(ldst_cmd.u.mps.rplc63_32), 5880 be32toh(ldst_cmd.u.mps.rplc31_0)); 5881 } 5882 } else 5883 sbuf_printf(sb, "%36s", ""); 5884 5885 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 5886 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 5887 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 5888 } 5889 5890 if (rc) 5891 (void) sbuf_finish(sb); 5892 else 5893 rc = sbuf_finish(sb); 5894 sbuf_delete(sb); 5895 5896 return (rc); 5897 } 5898 5899 static int 5900 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 5901 { 5902 struct adapter *sc = arg1; 5903 struct sbuf *sb; 5904 int rc; 5905 uint16_t mtus[NMTUS]; 5906 5907 rc = sysctl_wire_old_buffer(req, 0); 5908 if (rc != 0) 5909 return (rc); 5910 5911 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 5912 if (sb == NULL) 5913 return (ENOMEM); 5914 5915 t4_read_mtu_tbl(sc, mtus, NULL); 5916 5917 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 5918 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 5919 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 5920 mtus[14], mtus[15]); 5921 5922 rc = sbuf_finish(sb); 5923 sbuf_delete(sb); 5924 5925 return (rc); 5926 } 5927 5928 static int 5929 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 5930 { 5931 struct adapter *sc = arg1; 5932 struct sbuf *sb; 5933 int rc, i; 5934 uint32_t tx_cnt[PM_NSTATS], rx_cnt[PM_NSTATS]; 5935 uint64_t tx_cyc[PM_NSTATS], rx_cyc[PM_NSTATS]; 5936 static const char *pm_stats[] = { 5937 "Read:", "Write bypass:", "Write mem:", "Flush:", "FIFO wait:" 5938 }; 5939 5940 rc = sysctl_wire_old_buffer(req, 0); 5941 if (rc != 0) 5942 return (rc); 5943 5944 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 5945 if (sb == NULL) 5946 return (ENOMEM); 5947 5948 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 5949 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 5950 5951 sbuf_printf(sb, " Tx count Tx cycles " 5952 "Rx count Rx cycles"); 5953 for (i = 0; i < PM_NSTATS; i++) 5954 sbuf_printf(sb, "\n%-13s %10u %20ju %10u %20ju", 5955 pm_stats[i], tx_cnt[i], tx_cyc[i], rx_cnt[i], rx_cyc[i]); 5956 5957 rc = sbuf_finish(sb); 5958 sbuf_delete(sb); 5959 5960 return (rc); 5961 } 5962 5963 static int 5964 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 5965 { 5966 struct adapter *sc = arg1; 5967 struct sbuf *sb; 5968 int rc; 5969 struct tp_rdma_stats stats; 5970 5971 rc = sysctl_wire_old_buffer(req, 0); 5972 if (rc != 0) 5973 return (rc); 5974 5975 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 5976 if (sb == NULL) 5977 return (ENOMEM); 5978 5979 t4_tp_get_rdma_stats(sc, &stats); 5980 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 5981 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 5982 5983 rc = sbuf_finish(sb); 5984 sbuf_delete(sb); 5985 5986 return (rc); 5987 } 5988 5989 static int 5990 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 5991 { 5992 struct adapter *sc = arg1; 5993 struct sbuf *sb; 5994 int rc; 5995 struct tp_tcp_stats v4, v6; 5996 5997 rc = sysctl_wire_old_buffer(req, 0); 5998 if (rc != 0) 5999 return (rc); 6000 6001 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6002 if (sb == NULL) 6003 return (ENOMEM); 6004 6005 t4_tp_get_tcp_stats(sc, &v4, &v6); 6006 sbuf_printf(sb, 6007 " IP IPv6\n"); 6008 sbuf_printf(sb, "OutRsts: %20u %20u\n", 6009 v4.tcpOutRsts, v6.tcpOutRsts); 6010 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 6011 v4.tcpInSegs, v6.tcpInSegs); 6012 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 6013 v4.tcpOutSegs, v6.tcpOutSegs); 6014 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 6015 v4.tcpRetransSegs, v6.tcpRetransSegs); 6016 6017 rc = sbuf_finish(sb); 6018 sbuf_delete(sb); 6019 6020 return (rc); 6021 } 6022 6023 static int 6024 sysctl_tids(SYSCTL_HANDLER_ARGS) 6025 { 6026 struct adapter *sc = arg1; 6027 struct sbuf *sb; 6028 int rc; 6029 struct tid_info *t = &sc->tids; 6030 6031 rc = sysctl_wire_old_buffer(req, 0); 6032 if (rc != 0) 6033 return (rc); 6034 6035 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6036 if (sb == NULL) 6037 return (ENOMEM); 6038 6039 if (t->natids) { 6040 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 6041 t->atids_in_use); 6042 } 6043 6044 if (t->ntids) { 6045 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 6046 uint32_t b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 6047 6048 if (b) { 6049 sbuf_printf(sb, "TID range: 0-%u, %u-%u", b - 1, 6050 t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4, 6051 t->ntids - 1); 6052 } else { 6053 sbuf_printf(sb, "TID range: %u-%u", 6054 t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4, 6055 t->ntids - 1); 6056 } 6057 } else 6058 sbuf_printf(sb, "TID range: 0-%u", t->ntids - 1); 6059 sbuf_printf(sb, ", in use: %u\n", 6060 atomic_load_acq_int(&t->tids_in_use)); 6061 } 6062 6063 if (t->nstids) { 6064 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 6065 t->stid_base + t->nstids - 1, t->stids_in_use); 6066 } 6067 6068 if (t->nftids) { 6069 sbuf_printf(sb, "FTID range: %u-%u\n", t->ftid_base, 6070 t->ftid_base + t->nftids - 1); 6071 } 6072 6073 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", 6074 t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4), 6075 t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6)); 6076 6077 rc = sbuf_finish(sb); 6078 sbuf_delete(sb); 6079 6080 return (rc); 6081 } 6082 6083 static int 6084 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 6085 { 6086 struct adapter *sc = arg1; 6087 struct sbuf *sb; 6088 int rc; 6089 struct tp_err_stats stats; 6090 6091 rc = sysctl_wire_old_buffer(req, 0); 6092 if (rc != 0) 6093 return (rc); 6094 6095 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6096 if (sb == NULL) 6097 return (ENOMEM); 6098 6099 t4_tp_get_err_stats(sc, &stats); 6100 6101 sbuf_printf(sb, " channel 0 channel 1 channel 2 " 6102 "channel 3\n"); 6103 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 6104 stats.macInErrs[0], stats.macInErrs[1], stats.macInErrs[2], 6105 stats.macInErrs[3]); 6106 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 6107 stats.hdrInErrs[0], stats.hdrInErrs[1], stats.hdrInErrs[2], 6108 stats.hdrInErrs[3]); 6109 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 6110 stats.tcpInErrs[0], stats.tcpInErrs[1], stats.tcpInErrs[2], 6111 stats.tcpInErrs[3]); 6112 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 6113 stats.tcp6InErrs[0], stats.tcp6InErrs[1], stats.tcp6InErrs[2], 6114 stats.tcp6InErrs[3]); 6115 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 6116 stats.tnlCongDrops[0], stats.tnlCongDrops[1], stats.tnlCongDrops[2], 6117 stats.tnlCongDrops[3]); 6118 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 6119 stats.tnlTxDrops[0], stats.tnlTxDrops[1], stats.tnlTxDrops[2], 6120 stats.tnlTxDrops[3]); 6121 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 6122 stats.ofldVlanDrops[0], stats.ofldVlanDrops[1], 6123 stats.ofldVlanDrops[2], stats.ofldVlanDrops[3]); 6124 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 6125 stats.ofldChanDrops[0], stats.ofldChanDrops[1], 6126 stats.ofldChanDrops[2], stats.ofldChanDrops[3]); 6127 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 6128 stats.ofldNoNeigh, stats.ofldCongDefer); 6129 6130 rc = sbuf_finish(sb); 6131 sbuf_delete(sb); 6132 6133 return (rc); 6134 } 6135 6136 struct field_desc { 6137 const char *name; 6138 u_int start; 6139 u_int width; 6140 }; 6141 6142 static void 6143 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 6144 { 6145 char buf[32]; 6146 int line_size = 0; 6147 6148 while (f->name) { 6149 uint64_t mask = (1ULL << f->width) - 1; 6150 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 6151 ((uintmax_t)v >> f->start) & mask); 6152 6153 if (line_size + len >= 79) { 6154 line_size = 8; 6155 sbuf_printf(sb, "\n "); 6156 } 6157 sbuf_printf(sb, "%s ", buf); 6158 line_size += len + 1; 6159 f++; 6160 } 6161 sbuf_printf(sb, "\n"); 6162 } 6163 6164 static struct field_desc tp_la0[] = { 6165 { "RcfOpCodeOut", 60, 4 }, 6166 { "State", 56, 4 }, 6167 { "WcfState", 52, 4 }, 6168 { "RcfOpcSrcOut", 50, 2 }, 6169 { "CRxError", 49, 1 }, 6170 { "ERxError", 48, 1 }, 6171 { "SanityFailed", 47, 1 }, 6172 { "SpuriousMsg", 46, 1 }, 6173 { "FlushInputMsg", 45, 1 }, 6174 { "FlushInputCpl", 44, 1 }, 6175 { "RssUpBit", 43, 1 }, 6176 { "RssFilterHit", 42, 1 }, 6177 { "Tid", 32, 10 }, 6178 { "InitTcb", 31, 1 }, 6179 { "LineNumber", 24, 7 }, 6180 { "Emsg", 23, 1 }, 6181 { "EdataOut", 22, 1 }, 6182 { "Cmsg", 21, 1 }, 6183 { "CdataOut", 20, 1 }, 6184 { "EreadPdu", 19, 1 }, 6185 { "CreadPdu", 18, 1 }, 6186 { "TunnelPkt", 17, 1 }, 6187 { "RcfPeerFin", 16, 1 }, 6188 { "RcfReasonOut", 12, 4 }, 6189 { "TxCchannel", 10, 2 }, 6190 { "RcfTxChannel", 8, 2 }, 6191 { "RxEchannel", 6, 2 }, 6192 { "RcfRxChannel", 5, 1 }, 6193 { "RcfDataOutSrdy", 4, 1 }, 6194 { "RxDvld", 3, 1 }, 6195 { "RxOoDvld", 2, 1 }, 6196 { "RxCongestion", 1, 1 }, 6197 { "TxCongestion", 0, 1 }, 6198 { NULL } 6199 }; 6200 6201 static struct field_desc tp_la1[] = { 6202 { "CplCmdIn", 56, 8 }, 6203 { "CplCmdOut", 48, 8 }, 6204 { "ESynOut", 47, 1 }, 6205 { "EAckOut", 46, 1 }, 6206 { "EFinOut", 45, 1 }, 6207 { "ERstOut", 44, 1 }, 6208 { "SynIn", 43, 1 }, 6209 { "AckIn", 42, 1 }, 6210 { "FinIn", 41, 1 }, 6211 { "RstIn", 40, 1 }, 6212 { "DataIn", 39, 1 }, 6213 { "DataInVld", 38, 1 }, 6214 { "PadIn", 37, 1 }, 6215 { "RxBufEmpty", 36, 1 }, 6216 { "RxDdp", 35, 1 }, 6217 { "RxFbCongestion", 34, 1 }, 6218 { "TxFbCongestion", 33, 1 }, 6219 { "TxPktSumSrdy", 32, 1 }, 6220 { "RcfUlpType", 28, 4 }, 6221 { "Eread", 27, 1 }, 6222 { "Ebypass", 26, 1 }, 6223 { "Esave", 25, 1 }, 6224 { "Static0", 24, 1 }, 6225 { "Cread", 23, 1 }, 6226 { "Cbypass", 22, 1 }, 6227 { "Csave", 21, 1 }, 6228 { "CPktOut", 20, 1 }, 6229 { "RxPagePoolFull", 18, 2 }, 6230 { "RxLpbkPkt", 17, 1 }, 6231 { "TxLpbkPkt", 16, 1 }, 6232 { "RxVfValid", 15, 1 }, 6233 { "SynLearned", 14, 1 }, 6234 { "SetDelEntry", 13, 1 }, 6235 { "SetInvEntry", 12, 1 }, 6236 { "CpcmdDvld", 11, 1 }, 6237 { "CpcmdSave", 10, 1 }, 6238 { "RxPstructsFull", 8, 2 }, 6239 { "EpcmdDvld", 7, 1 }, 6240 { "EpcmdFlush", 6, 1 }, 6241 { "EpcmdTrimPrefix", 5, 1 }, 6242 { "EpcmdTrimPostfix", 4, 1 }, 6243 { "ERssIp4Pkt", 3, 1 }, 6244 { "ERssIp6Pkt", 2, 1 }, 6245 { "ERssTcpUdpPkt", 1, 1 }, 6246 { "ERssFceFipPkt", 0, 1 }, 6247 { NULL } 6248 }; 6249 6250 static struct field_desc tp_la2[] = { 6251 { "CplCmdIn", 56, 8 }, 6252 { "MpsVfVld", 55, 1 }, 6253 { "MpsPf", 52, 3 }, 6254 { "MpsVf", 44, 8 }, 6255 { "SynIn", 43, 1 }, 6256 { "AckIn", 42, 1 }, 6257 { "FinIn", 41, 1 }, 6258 { "RstIn", 40, 1 }, 6259 { "DataIn", 39, 1 }, 6260 { "DataInVld", 38, 1 }, 6261 { "PadIn", 37, 1 }, 6262 { "RxBufEmpty", 36, 1 }, 6263 { "RxDdp", 35, 1 }, 6264 { "RxFbCongestion", 34, 1 }, 6265 { "TxFbCongestion", 33, 1 }, 6266 { "TxPktSumSrdy", 32, 1 }, 6267 { "RcfUlpType", 28, 4 }, 6268 { "Eread", 27, 1 }, 6269 { "Ebypass", 26, 1 }, 6270 { "Esave", 25, 1 }, 6271 { "Static0", 24, 1 }, 6272 { "Cread", 23, 1 }, 6273 { "Cbypass", 22, 1 }, 6274 { "Csave", 21, 1 }, 6275 { "CPktOut", 20, 1 }, 6276 { "RxPagePoolFull", 18, 2 }, 6277 { "RxLpbkPkt", 17, 1 }, 6278 { "TxLpbkPkt", 16, 1 }, 6279 { "RxVfValid", 15, 1 }, 6280 { "SynLearned", 14, 1 }, 6281 { "SetDelEntry", 13, 1 }, 6282 { "SetInvEntry", 12, 1 }, 6283 { "CpcmdDvld", 11, 1 }, 6284 { "CpcmdSave", 10, 1 }, 6285 { "RxPstructsFull", 8, 2 }, 6286 { "EpcmdDvld", 7, 1 }, 6287 { "EpcmdFlush", 6, 1 }, 6288 { "EpcmdTrimPrefix", 5, 1 }, 6289 { "EpcmdTrimPostfix", 4, 1 }, 6290 { "ERssIp4Pkt", 3, 1 }, 6291 { "ERssIp6Pkt", 2, 1 }, 6292 { "ERssTcpUdpPkt", 1, 1 }, 6293 { "ERssFceFipPkt", 0, 1 }, 6294 { NULL } 6295 }; 6296 6297 static void 6298 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 6299 { 6300 6301 field_desc_show(sb, *p, tp_la0); 6302 } 6303 6304 static void 6305 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 6306 { 6307 6308 if (idx) 6309 sbuf_printf(sb, "\n"); 6310 field_desc_show(sb, p[0], tp_la0); 6311 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 6312 field_desc_show(sb, p[1], tp_la0); 6313 } 6314 6315 static void 6316 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 6317 { 6318 6319 if (idx) 6320 sbuf_printf(sb, "\n"); 6321 field_desc_show(sb, p[0], tp_la0); 6322 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 6323 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 6324 } 6325 6326 static int 6327 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 6328 { 6329 struct adapter *sc = arg1; 6330 struct sbuf *sb; 6331 uint64_t *buf, *p; 6332 int rc; 6333 u_int i, inc; 6334 void (*show_func)(struct sbuf *, uint64_t *, int); 6335 6336 rc = sysctl_wire_old_buffer(req, 0); 6337 if (rc != 0) 6338 return (rc); 6339 6340 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6341 if (sb == NULL) 6342 return (ENOMEM); 6343 6344 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 6345 6346 t4_tp_read_la(sc, buf, NULL); 6347 p = buf; 6348 6349 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 6350 case 2: 6351 inc = 2; 6352 show_func = tp_la_show2; 6353 break; 6354 case 3: 6355 inc = 2; 6356 show_func = tp_la_show3; 6357 break; 6358 default: 6359 inc = 1; 6360 show_func = tp_la_show; 6361 } 6362 6363 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 6364 (*show_func)(sb, p, i); 6365 6366 rc = sbuf_finish(sb); 6367 sbuf_delete(sb); 6368 free(buf, M_CXGBE); 6369 return (rc); 6370 } 6371 6372 static int 6373 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 6374 { 6375 struct adapter *sc = arg1; 6376 struct sbuf *sb; 6377 int rc; 6378 u64 nrate[NCHAN], orate[NCHAN]; 6379 6380 rc = sysctl_wire_old_buffer(req, 0); 6381 if (rc != 0) 6382 return (rc); 6383 6384 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 6385 if (sb == NULL) 6386 return (ENOMEM); 6387 6388 t4_get_chan_txrate(sc, nrate, orate); 6389 sbuf_printf(sb, " channel 0 channel 1 channel 2 " 6390 "channel 3\n"); 6391 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 6392 nrate[0], nrate[1], nrate[2], nrate[3]); 6393 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 6394 orate[0], orate[1], orate[2], orate[3]); 6395 6396 rc = sbuf_finish(sb); 6397 sbuf_delete(sb); 6398 6399 return (rc); 6400 } 6401 6402 static int 6403 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 6404 { 6405 struct adapter *sc = arg1; 6406 struct sbuf *sb; 6407 uint32_t *buf, *p; 6408 int rc, i; 6409 6410 rc = sysctl_wire_old_buffer(req, 0); 6411 if (rc != 0) 6412 return (rc); 6413 6414 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6415 if (sb == NULL) 6416 return (ENOMEM); 6417 6418 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 6419 M_ZERO | M_WAITOK); 6420 6421 t4_ulprx_read_la(sc, buf); 6422 p = buf; 6423 6424 sbuf_printf(sb, " Pcmd Type Message" 6425 " Data"); 6426 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 6427 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 6428 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 6429 } 6430 6431 rc = sbuf_finish(sb); 6432 sbuf_delete(sb); 6433 free(buf, M_CXGBE); 6434 return (rc); 6435 } 6436 6437 static int 6438 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 6439 { 6440 struct adapter *sc = arg1; 6441 struct sbuf *sb; 6442 int rc, v; 6443 6444 rc = sysctl_wire_old_buffer(req, 0); 6445 if (rc != 0) 6446 return (rc); 6447 6448 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 6449 if (sb == NULL) 6450 return (ENOMEM); 6451 6452 v = t4_read_reg(sc, A_SGE_STAT_CFG); 6453 if (G_STATSOURCE_T5(v) == 7) { 6454 if (G_STATMODE(v) == 0) { 6455 sbuf_printf(sb, "total %d, incomplete %d", 6456 t4_read_reg(sc, A_SGE_STAT_TOTAL), 6457 t4_read_reg(sc, A_SGE_STAT_MATCH)); 6458 } else if (G_STATMODE(v) == 1) { 6459 sbuf_printf(sb, "total %d, data overflow %d", 6460 t4_read_reg(sc, A_SGE_STAT_TOTAL), 6461 t4_read_reg(sc, A_SGE_STAT_MATCH)); 6462 } 6463 } 6464 rc = sbuf_finish(sb); 6465 sbuf_delete(sb); 6466 6467 return (rc); 6468 } 6469 #endif 6470 6471 static inline void 6472 txq_start(struct ifnet *ifp, struct sge_txq *txq) 6473 { 6474 struct buf_ring *br; 6475 struct mbuf *m; 6476 6477 TXQ_LOCK_ASSERT_OWNED(txq); 6478 6479 br = txq->br; 6480 m = txq->m ? txq->m : drbr_dequeue(ifp, br); 6481 if (m) 6482 t4_eth_tx(ifp, txq, m); 6483 } 6484 6485 void 6486 t4_tx_callout(void *arg) 6487 { 6488 struct sge_eq *eq = arg; 6489 struct adapter *sc; 6490 6491 if (EQ_TRYLOCK(eq) == 0) 6492 goto reschedule; 6493 6494 if (eq->flags & EQ_STALLED && !can_resume_tx(eq)) { 6495 EQ_UNLOCK(eq); 6496 reschedule: 6497 if (__predict_true(!(eq->flags && EQ_DOOMED))) 6498 callout_schedule(&eq->tx_callout, 1); 6499 return; 6500 } 6501 6502 EQ_LOCK_ASSERT_OWNED(eq); 6503 6504 if (__predict_true((eq->flags & EQ_DOOMED) == 0)) { 6505 6506 if ((eq->flags & EQ_TYPEMASK) == EQ_ETH) { 6507 struct sge_txq *txq = arg; 6508 struct port_info *pi = txq->ifp->if_softc; 6509 6510 sc = pi->adapter; 6511 } else { 6512 struct sge_wrq *wrq = arg; 6513 6514 sc = wrq->adapter; 6515 } 6516 6517 taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task); 6518 } 6519 6520 EQ_UNLOCK(eq); 6521 } 6522 6523 void 6524 t4_tx_task(void *arg, int count) 6525 { 6526 struct sge_eq *eq = arg; 6527 6528 EQ_LOCK(eq); 6529 if ((eq->flags & EQ_TYPEMASK) == EQ_ETH) { 6530 struct sge_txq *txq = arg; 6531 txq_start(txq->ifp, txq); 6532 } else { 6533 struct sge_wrq *wrq = arg; 6534 t4_wrq_tx_locked(wrq->adapter, wrq, NULL); 6535 } 6536 EQ_UNLOCK(eq); 6537 } 6538 6539 static uint32_t 6540 fconf_to_mode(uint32_t fconf) 6541 { 6542 uint32_t mode; 6543 6544 mode = T4_FILTER_IPv4 | T4_FILTER_IPv6 | T4_FILTER_IP_SADDR | 6545 T4_FILTER_IP_DADDR | T4_FILTER_IP_SPORT | T4_FILTER_IP_DPORT; 6546 6547 if (fconf & F_FRAGMENTATION) 6548 mode |= T4_FILTER_IP_FRAGMENT; 6549 6550 if (fconf & F_MPSHITTYPE) 6551 mode |= T4_FILTER_MPS_HIT_TYPE; 6552 6553 if (fconf & F_MACMATCH) 6554 mode |= T4_FILTER_MAC_IDX; 6555 6556 if (fconf & F_ETHERTYPE) 6557 mode |= T4_FILTER_ETH_TYPE; 6558 6559 if (fconf & F_PROTOCOL) 6560 mode |= T4_FILTER_IP_PROTO; 6561 6562 if (fconf & F_TOS) 6563 mode |= T4_FILTER_IP_TOS; 6564 6565 if (fconf & F_VLAN) 6566 mode |= T4_FILTER_VLAN; 6567 6568 if (fconf & F_VNIC_ID) 6569 mode |= T4_FILTER_VNIC; 6570 6571 if (fconf & F_PORT) 6572 mode |= T4_FILTER_PORT; 6573 6574 if (fconf & F_FCOE) 6575 mode |= T4_FILTER_FCoE; 6576 6577 return (mode); 6578 } 6579 6580 static uint32_t 6581 mode_to_fconf(uint32_t mode) 6582 { 6583 uint32_t fconf = 0; 6584 6585 if (mode & T4_FILTER_IP_FRAGMENT) 6586 fconf |= F_FRAGMENTATION; 6587 6588 if (mode & T4_FILTER_MPS_HIT_TYPE) 6589 fconf |= F_MPSHITTYPE; 6590 6591 if (mode & T4_FILTER_MAC_IDX) 6592 fconf |= F_MACMATCH; 6593 6594 if (mode & T4_FILTER_ETH_TYPE) 6595 fconf |= F_ETHERTYPE; 6596 6597 if (mode & T4_FILTER_IP_PROTO) 6598 fconf |= F_PROTOCOL; 6599 6600 if (mode & T4_FILTER_IP_TOS) 6601 fconf |= F_TOS; 6602 6603 if (mode & T4_FILTER_VLAN) 6604 fconf |= F_VLAN; 6605 6606 if (mode & T4_FILTER_VNIC) 6607 fconf |= F_VNIC_ID; 6608 6609 if (mode & T4_FILTER_PORT) 6610 fconf |= F_PORT; 6611 6612 if (mode & T4_FILTER_FCoE) 6613 fconf |= F_FCOE; 6614 6615 return (fconf); 6616 } 6617 6618 static uint32_t 6619 fspec_to_fconf(struct t4_filter_specification *fs) 6620 { 6621 uint32_t fconf = 0; 6622 6623 if (fs->val.frag || fs->mask.frag) 6624 fconf |= F_FRAGMENTATION; 6625 6626 if (fs->val.matchtype || fs->mask.matchtype) 6627 fconf |= F_MPSHITTYPE; 6628 6629 if (fs->val.macidx || fs->mask.macidx) 6630 fconf |= F_MACMATCH; 6631 6632 if (fs->val.ethtype || fs->mask.ethtype) 6633 fconf |= F_ETHERTYPE; 6634 6635 if (fs->val.proto || fs->mask.proto) 6636 fconf |= F_PROTOCOL; 6637 6638 if (fs->val.tos || fs->mask.tos) 6639 fconf |= F_TOS; 6640 6641 if (fs->val.vlan_vld || fs->mask.vlan_vld) 6642 fconf |= F_VLAN; 6643 6644 if (fs->val.vnic_vld || fs->mask.vnic_vld) 6645 fconf |= F_VNIC_ID; 6646 6647 if (fs->val.iport || fs->mask.iport) 6648 fconf |= F_PORT; 6649 6650 if (fs->val.fcoe || fs->mask.fcoe) 6651 fconf |= F_FCOE; 6652 6653 return (fconf); 6654 } 6655 6656 static int 6657 get_filter_mode(struct adapter *sc, uint32_t *mode) 6658 { 6659 int rc; 6660 uint32_t fconf; 6661 6662 rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK, 6663 "t4getfm"); 6664 if (rc) 6665 return (rc); 6666 6667 t4_read_indirect(sc, A_TP_PIO_ADDR, A_TP_PIO_DATA, &fconf, 1, 6668 A_TP_VLAN_PRI_MAP); 6669 6670 if (sc->params.tp.vlan_pri_map != fconf) { 6671 log(LOG_WARNING, "%s: cached filter mode out of sync %x %x.\n", 6672 device_get_nameunit(sc->dev), sc->params.tp.vlan_pri_map, 6673 fconf); 6674 sc->params.tp.vlan_pri_map = fconf; 6675 } 6676 6677 *mode = fconf_to_mode(sc->params.tp.vlan_pri_map); 6678 6679 end_synchronized_op(sc, LOCK_HELD); 6680 return (0); 6681 } 6682 6683 static int 6684 set_filter_mode(struct adapter *sc, uint32_t mode) 6685 { 6686 uint32_t fconf; 6687 int rc; 6688 6689 fconf = mode_to_fconf(mode); 6690 6691 rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK, 6692 "t4setfm"); 6693 if (rc) 6694 return (rc); 6695 6696 if (sc->tids.ftids_in_use > 0) { 6697 rc = EBUSY; 6698 goto done; 6699 } 6700 6701 #ifdef TCP_OFFLOAD 6702 if (sc->offload_map) { 6703 rc = EBUSY; 6704 goto done; 6705 } 6706 #endif 6707 6708 #ifdef notyet 6709 rc = -t4_set_filter_mode(sc, fconf); 6710 if (rc == 0) 6711 sc->filter_mode = fconf; 6712 #else 6713 rc = ENOTSUP; 6714 #endif 6715 6716 done: 6717 end_synchronized_op(sc, LOCK_HELD); 6718 return (rc); 6719 } 6720 6721 static inline uint64_t 6722 get_filter_hits(struct adapter *sc, uint32_t fid) 6723 { 6724 uint32_t mw_base, off, tcb_base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 6725 uint64_t hits; 6726 6727 memwin_info(sc, 0, &mw_base, NULL); 6728 off = position_memwin(sc, 0, 6729 tcb_base + (fid + sc->tids.ftid_base) * TCB_SIZE); 6730 if (is_t4(sc)) { 6731 hits = t4_read_reg64(sc, mw_base + off + 16); 6732 hits = be64toh(hits); 6733 } else { 6734 hits = t4_read_reg(sc, mw_base + off + 24); 6735 hits = be32toh(hits); 6736 } 6737 6738 return (hits); 6739 } 6740 6741 static int 6742 get_filter(struct adapter *sc, struct t4_filter *t) 6743 { 6744 int i, rc, nfilters = sc->tids.nftids; 6745 struct filter_entry *f; 6746 6747 rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK, 6748 "t4getf"); 6749 if (rc) 6750 return (rc); 6751 6752 if (sc->tids.ftids_in_use == 0 || sc->tids.ftid_tab == NULL || 6753 t->idx >= nfilters) { 6754 t->idx = 0xffffffff; 6755 goto done; 6756 } 6757 6758 f = &sc->tids.ftid_tab[t->idx]; 6759 for (i = t->idx; i < nfilters; i++, f++) { 6760 if (f->valid) { 6761 t->idx = i; 6762 t->l2tidx = f->l2t ? f->l2t->idx : 0; 6763 t->smtidx = f->smtidx; 6764 if (f->fs.hitcnts) 6765 t->hits = get_filter_hits(sc, t->idx); 6766 else 6767 t->hits = UINT64_MAX; 6768 t->fs = f->fs; 6769 6770 goto done; 6771 } 6772 } 6773 6774 t->idx = 0xffffffff; 6775 done: 6776 end_synchronized_op(sc, LOCK_HELD); 6777 return (0); 6778 } 6779 6780 static int 6781 set_filter(struct adapter *sc, struct t4_filter *t) 6782 { 6783 unsigned int nfilters, nports; 6784 struct filter_entry *f; 6785 int i, rc; 6786 6787 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4setf"); 6788 if (rc) 6789 return (rc); 6790 6791 nfilters = sc->tids.nftids; 6792 nports = sc->params.nports; 6793 6794 if (nfilters == 0) { 6795 rc = ENOTSUP; 6796 goto done; 6797 } 6798 6799 if (!(sc->flags & FULL_INIT_DONE)) { 6800 rc = EAGAIN; 6801 goto done; 6802 } 6803 6804 if (t->idx >= nfilters) { 6805 rc = EINVAL; 6806 goto done; 6807 } 6808 6809 /* Validate against the global filter mode */ 6810 if ((sc->params.tp.vlan_pri_map | fspec_to_fconf(&t->fs)) != 6811 sc->params.tp.vlan_pri_map) { 6812 rc = E2BIG; 6813 goto done; 6814 } 6815 6816 if (t->fs.action == FILTER_SWITCH && t->fs.eport >= nports) { 6817 rc = EINVAL; 6818 goto done; 6819 } 6820 6821 if (t->fs.val.iport >= nports) { 6822 rc = EINVAL; 6823 goto done; 6824 } 6825 6826 /* Can't specify an iq if not steering to it */ 6827 if (!t->fs.dirsteer && t->fs.iq) { 6828 rc = EINVAL; 6829 goto done; 6830 } 6831 6832 /* IPv6 filter idx must be 4 aligned */ 6833 if (t->fs.type == 1 && 6834 ((t->idx & 0x3) || t->idx + 4 >= nfilters)) { 6835 rc = EINVAL; 6836 goto done; 6837 } 6838 6839 if (sc->tids.ftid_tab == NULL) { 6840 KASSERT(sc->tids.ftids_in_use == 0, 6841 ("%s: no memory allocated but filters_in_use > 0", 6842 __func__)); 6843 6844 sc->tids.ftid_tab = malloc(sizeof (struct filter_entry) * 6845 nfilters, M_CXGBE, M_NOWAIT | M_ZERO); 6846 if (sc->tids.ftid_tab == NULL) { 6847 rc = ENOMEM; 6848 goto done; 6849 } 6850 mtx_init(&sc->tids.ftid_lock, "T4 filters", 0, MTX_DEF); 6851 } 6852 6853 for (i = 0; i < 4; i++) { 6854 f = &sc->tids.ftid_tab[t->idx + i]; 6855 6856 if (f->pending || f->valid) { 6857 rc = EBUSY; 6858 goto done; 6859 } 6860 if (f->locked) { 6861 rc = EPERM; 6862 goto done; 6863 } 6864 6865 if (t->fs.type == 0) 6866 break; 6867 } 6868 6869 f = &sc->tids.ftid_tab[t->idx]; 6870 f->fs = t->fs; 6871 6872 rc = set_filter_wr(sc, t->idx); 6873 done: 6874 end_synchronized_op(sc, 0); 6875 6876 if (rc == 0) { 6877 mtx_lock(&sc->tids.ftid_lock); 6878 for (;;) { 6879 if (f->pending == 0) { 6880 rc = f->valid ? 0 : EIO; 6881 break; 6882 } 6883 6884 if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock, 6885 PCATCH, "t4setfw", 0)) { 6886 rc = EINPROGRESS; 6887 break; 6888 } 6889 } 6890 mtx_unlock(&sc->tids.ftid_lock); 6891 } 6892 return (rc); 6893 } 6894 6895 static int 6896 del_filter(struct adapter *sc, struct t4_filter *t) 6897 { 6898 unsigned int nfilters; 6899 struct filter_entry *f; 6900 int rc; 6901 6902 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4delf"); 6903 if (rc) 6904 return (rc); 6905 6906 nfilters = sc->tids.nftids; 6907 6908 if (nfilters == 0) { 6909 rc = ENOTSUP; 6910 goto done; 6911 } 6912 6913 if (sc->tids.ftid_tab == NULL || sc->tids.ftids_in_use == 0 || 6914 t->idx >= nfilters) { 6915 rc = EINVAL; 6916 goto done; 6917 } 6918 6919 if (!(sc->flags & FULL_INIT_DONE)) { 6920 rc = EAGAIN; 6921 goto done; 6922 } 6923 6924 f = &sc->tids.ftid_tab[t->idx]; 6925 6926 if (f->pending) { 6927 rc = EBUSY; 6928 goto done; 6929 } 6930 if (f->locked) { 6931 rc = EPERM; 6932 goto done; 6933 } 6934 6935 if (f->valid) { 6936 t->fs = f->fs; /* extra info for the caller */ 6937 rc = del_filter_wr(sc, t->idx); 6938 } 6939 6940 done: 6941 end_synchronized_op(sc, 0); 6942 6943 if (rc == 0) { 6944 mtx_lock(&sc->tids.ftid_lock); 6945 for (;;) { 6946 if (f->pending == 0) { 6947 rc = f->valid ? EIO : 0; 6948 break; 6949 } 6950 6951 if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock, 6952 PCATCH, "t4delfw", 0)) { 6953 rc = EINPROGRESS; 6954 break; 6955 } 6956 } 6957 mtx_unlock(&sc->tids.ftid_lock); 6958 } 6959 6960 return (rc); 6961 } 6962 6963 static void 6964 clear_filter(struct filter_entry *f) 6965 { 6966 if (f->l2t) 6967 t4_l2t_release(f->l2t); 6968 6969 bzero(f, sizeof (*f)); 6970 } 6971 6972 static int 6973 set_filter_wr(struct adapter *sc, int fidx) 6974 { 6975 struct filter_entry *f = &sc->tids.ftid_tab[fidx]; 6976 struct wrqe *wr; 6977 struct fw_filter_wr *fwr; 6978 unsigned int ftid; 6979 6980 ASSERT_SYNCHRONIZED_OP(sc); 6981 6982 if (f->fs.newdmac || f->fs.newvlan) { 6983 /* This filter needs an L2T entry; allocate one. */ 6984 f->l2t = t4_l2t_alloc_switching(sc->l2t); 6985 if (f->l2t == NULL) 6986 return (EAGAIN); 6987 if (t4_l2t_set_switching(sc, f->l2t, f->fs.vlan, f->fs.eport, 6988 f->fs.dmac)) { 6989 t4_l2t_release(f->l2t); 6990 f->l2t = NULL; 6991 return (ENOMEM); 6992 } 6993 } 6994 6995 ftid = sc->tids.ftid_base + fidx; 6996 6997 wr = alloc_wrqe(sizeof(*fwr), &sc->sge.mgmtq); 6998 if (wr == NULL) 6999 return (ENOMEM); 7000 7001 fwr = wrtod(wr); 7002 bzero(fwr, sizeof (*fwr)); 7003 7004 fwr->op_pkd = htobe32(V_FW_WR_OP(FW_FILTER_WR)); 7005 fwr->len16_pkd = htobe32(FW_LEN16(*fwr)); 7006 fwr->tid_to_iq = 7007 htobe32(V_FW_FILTER_WR_TID(ftid) | 7008 V_FW_FILTER_WR_RQTYPE(f->fs.type) | 7009 V_FW_FILTER_WR_NOREPLY(0) | 7010 V_FW_FILTER_WR_IQ(f->fs.iq)); 7011 fwr->del_filter_to_l2tix = 7012 htobe32(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) | 7013 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) | 7014 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) | 7015 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) | 7016 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) | 7017 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) | 7018 V_FW_FILTER_WR_DMAC(f->fs.newdmac) | 7019 V_FW_FILTER_WR_SMAC(f->fs.newsmac) | 7020 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT || 7021 f->fs.newvlan == VLAN_REWRITE) | 7022 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE || 7023 f->fs.newvlan == VLAN_REWRITE) | 7024 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) | 7025 V_FW_FILTER_WR_TXCHAN(f->fs.eport) | 7026 V_FW_FILTER_WR_PRIO(f->fs.prio) | 7027 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0)); 7028 fwr->ethtype = htobe16(f->fs.val.ethtype); 7029 fwr->ethtypem = htobe16(f->fs.mask.ethtype); 7030 fwr->frag_to_ovlan_vldm = 7031 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) | 7032 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) | 7033 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.vlan_vld) | 7034 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.vnic_vld) | 7035 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.vlan_vld) | 7036 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.vnic_vld)); 7037 fwr->smac_sel = 0; 7038 fwr->rx_chan_rx_rpl_iq = htobe16(V_FW_FILTER_WR_RX_CHAN(0) | 7039 V_FW_FILTER_WR_RX_RPL_IQ(sc->sge.fwq.abs_id)); 7040 fwr->maci_to_matchtypem = 7041 htobe32(V_FW_FILTER_WR_MACI(f->fs.val.macidx) | 7042 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) | 7043 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) | 7044 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) | 7045 V_FW_FILTER_WR_PORT(f->fs.val.iport) | 7046 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) | 7047 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) | 7048 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype)); 7049 fwr->ptcl = f->fs.val.proto; 7050 fwr->ptclm = f->fs.mask.proto; 7051 fwr->ttyp = f->fs.val.tos; 7052 fwr->ttypm = f->fs.mask.tos; 7053 fwr->ivlan = htobe16(f->fs.val.vlan); 7054 fwr->ivlanm = htobe16(f->fs.mask.vlan); 7055 fwr->ovlan = htobe16(f->fs.val.vnic); 7056 fwr->ovlanm = htobe16(f->fs.mask.vnic); 7057 bcopy(f->fs.val.dip, fwr->lip, sizeof (fwr->lip)); 7058 bcopy(f->fs.mask.dip, fwr->lipm, sizeof (fwr->lipm)); 7059 bcopy(f->fs.val.sip, fwr->fip, sizeof (fwr->fip)); 7060 bcopy(f->fs.mask.sip, fwr->fipm, sizeof (fwr->fipm)); 7061 fwr->lp = htobe16(f->fs.val.dport); 7062 fwr->lpm = htobe16(f->fs.mask.dport); 7063 fwr->fp = htobe16(f->fs.val.sport); 7064 fwr->fpm = htobe16(f->fs.mask.sport); 7065 if (f->fs.newsmac) 7066 bcopy(f->fs.smac, fwr->sma, sizeof (fwr->sma)); 7067 7068 f->pending = 1; 7069 sc->tids.ftids_in_use++; 7070 7071 t4_wrq_tx(sc, wr); 7072 return (0); 7073 } 7074 7075 static int 7076 del_filter_wr(struct adapter *sc, int fidx) 7077 { 7078 struct filter_entry *f = &sc->tids.ftid_tab[fidx]; 7079 struct wrqe *wr; 7080 struct fw_filter_wr *fwr; 7081 unsigned int ftid; 7082 7083 ftid = sc->tids.ftid_base + fidx; 7084 7085 wr = alloc_wrqe(sizeof(*fwr), &sc->sge.mgmtq); 7086 if (wr == NULL) 7087 return (ENOMEM); 7088 fwr = wrtod(wr); 7089 bzero(fwr, sizeof (*fwr)); 7090 7091 t4_mk_filtdelwr(ftid, fwr, sc->sge.fwq.abs_id); 7092 7093 f->pending = 1; 7094 t4_wrq_tx(sc, wr); 7095 return (0); 7096 } 7097 7098 int 7099 t4_filter_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 7100 { 7101 struct adapter *sc = iq->adapter; 7102 const struct cpl_set_tcb_rpl *rpl = (const void *)(rss + 1); 7103 unsigned int idx = GET_TID(rpl); 7104 7105 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, 7106 rss->opcode)); 7107 7108 if (idx >= sc->tids.ftid_base && 7109 (idx -= sc->tids.ftid_base) < sc->tids.nftids) { 7110 unsigned int rc = G_COOKIE(rpl->cookie); 7111 struct filter_entry *f = &sc->tids.ftid_tab[idx]; 7112 7113 mtx_lock(&sc->tids.ftid_lock); 7114 if (rc == FW_FILTER_WR_FLT_ADDED) { 7115 KASSERT(f->pending, ("%s: filter[%u] isn't pending.", 7116 __func__, idx)); 7117 f->smtidx = (be64toh(rpl->oldval) >> 24) & 0xff; 7118 f->pending = 0; /* asynchronous setup completed */ 7119 f->valid = 1; 7120 } else { 7121 if (rc != FW_FILTER_WR_FLT_DELETED) { 7122 /* Add or delete failed, display an error */ 7123 log(LOG_ERR, 7124 "filter %u setup failed with error %u\n", 7125 idx, rc); 7126 } 7127 7128 clear_filter(f); 7129 sc->tids.ftids_in_use--; 7130 } 7131 wakeup(&sc->tids.ftid_tab); 7132 mtx_unlock(&sc->tids.ftid_lock); 7133 } 7134 7135 return (0); 7136 } 7137 7138 static int 7139 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 7140 { 7141 int rc; 7142 7143 if (cntxt->cid > M_CTXTQID) 7144 return (EINVAL); 7145 7146 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 7147 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 7148 return (EINVAL); 7149 7150 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 7151 if (rc) 7152 return (rc); 7153 7154 if (sc->flags & FW_OK) { 7155 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 7156 &cntxt->data[0]); 7157 if (rc == 0) 7158 goto done; 7159 } 7160 7161 /* 7162 * Read via firmware failed or wasn't even attempted. Read directly via 7163 * the backdoor. 7164 */ 7165 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 7166 done: 7167 end_synchronized_op(sc, 0); 7168 return (rc); 7169 } 7170 7171 static int 7172 load_fw(struct adapter *sc, struct t4_data *fw) 7173 { 7174 int rc; 7175 uint8_t *fw_data; 7176 7177 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 7178 if (rc) 7179 return (rc); 7180 7181 if (sc->flags & FULL_INIT_DONE) { 7182 rc = EBUSY; 7183 goto done; 7184 } 7185 7186 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 7187 if (fw_data == NULL) { 7188 rc = ENOMEM; 7189 goto done; 7190 } 7191 7192 rc = copyin(fw->data, fw_data, fw->len); 7193 if (rc == 0) 7194 rc = -t4_load_fw(sc, fw_data, fw->len); 7195 7196 free(fw_data, M_CXGBE); 7197 done: 7198 end_synchronized_op(sc, 0); 7199 return (rc); 7200 } 7201 7202 static int 7203 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 7204 { 7205 uint32_t addr, off, remaining, i, n; 7206 uint32_t *buf, *b; 7207 uint32_t mw_base, mw_aperture; 7208 int rc; 7209 uint8_t *dst; 7210 7211 rc = validate_mem_range(sc, mr->addr, mr->len); 7212 if (rc != 0) 7213 return (rc); 7214 7215 memwin_info(sc, win, &mw_base, &mw_aperture); 7216 buf = b = malloc(min(mr->len, mw_aperture), M_CXGBE, M_WAITOK); 7217 addr = mr->addr; 7218 remaining = mr->len; 7219 dst = (void *)mr->data; 7220 7221 while (remaining) { 7222 off = position_memwin(sc, win, addr); 7223 7224 /* number of bytes that we'll copy in the inner loop */ 7225 n = min(remaining, mw_aperture - off); 7226 for (i = 0; i < n; i += 4) 7227 *b++ = t4_read_reg(sc, mw_base + off + i); 7228 7229 rc = copyout(buf, dst, n); 7230 if (rc != 0) 7231 break; 7232 7233 b = buf; 7234 dst += n; 7235 remaining -= n; 7236 addr += n; 7237 } 7238 7239 free(buf, M_CXGBE); 7240 return (rc); 7241 } 7242 7243 static int 7244 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 7245 { 7246 int rc; 7247 7248 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 7249 return (EINVAL); 7250 7251 if (i2cd->len > 1) { 7252 /* XXX: need fw support for longer reads in one go */ 7253 return (ENOTSUP); 7254 } 7255 7256 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 7257 if (rc) 7258 return (rc); 7259 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 7260 i2cd->offset, &i2cd->data[0]); 7261 end_synchronized_op(sc, 0); 7262 7263 return (rc); 7264 } 7265 7266 int 7267 t4_os_find_pci_capability(struct adapter *sc, int cap) 7268 { 7269 int i; 7270 7271 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 7272 } 7273 7274 int 7275 t4_os_pci_save_state(struct adapter *sc) 7276 { 7277 device_t dev; 7278 struct pci_devinfo *dinfo; 7279 7280 dev = sc->dev; 7281 dinfo = device_get_ivars(dev); 7282 7283 pci_cfg_save(dev, dinfo, 0); 7284 return (0); 7285 } 7286 7287 int 7288 t4_os_pci_restore_state(struct adapter *sc) 7289 { 7290 device_t dev; 7291 struct pci_devinfo *dinfo; 7292 7293 dev = sc->dev; 7294 dinfo = device_get_ivars(dev); 7295 7296 pci_cfg_restore(dev, dinfo); 7297 return (0); 7298 } 7299 7300 void 7301 t4_os_portmod_changed(const struct adapter *sc, int idx) 7302 { 7303 struct port_info *pi = sc->port[idx]; 7304 static const char *mod_str[] = { 7305 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 7306 }; 7307 7308 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 7309 if_printf(pi->ifp, "transceiver unplugged.\n"); 7310 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 7311 if_printf(pi->ifp, "unknown transceiver inserted.\n"); 7312 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 7313 if_printf(pi->ifp, "unsupported transceiver inserted.\n"); 7314 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 7315 if_printf(pi->ifp, "%s transceiver inserted.\n", 7316 mod_str[pi->mod_type]); 7317 } else { 7318 if_printf(pi->ifp, "transceiver (type %d) inserted.\n", 7319 pi->mod_type); 7320 } 7321 } 7322 7323 void 7324 t4_os_link_changed(struct adapter *sc, int idx, int link_stat, int reason) 7325 { 7326 struct port_info *pi = sc->port[idx]; 7327 struct ifnet *ifp = pi->ifp; 7328 7329 if (link_stat) { 7330 pi->linkdnrc = -1; 7331 ifp->if_baudrate = IF_Mbps(pi->link_cfg.speed); 7332 if_link_state_change(ifp, LINK_STATE_UP); 7333 } else { 7334 if (reason >= 0) 7335 pi->linkdnrc = reason; 7336 if_link_state_change(ifp, LINK_STATE_DOWN); 7337 } 7338 } 7339 7340 void 7341 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 7342 { 7343 struct adapter *sc; 7344 7345 mtx_lock(&t4_list_lock); 7346 SLIST_FOREACH(sc, &t4_list, link) { 7347 /* 7348 * func should not make any assumptions about what state sc is 7349 * in - the only guarantee is that sc->sc_lock is a valid lock. 7350 */ 7351 func(sc, arg); 7352 } 7353 mtx_unlock(&t4_list_lock); 7354 } 7355 7356 static int 7357 t4_open(struct cdev *dev, int flags, int type, struct thread *td) 7358 { 7359 return (0); 7360 } 7361 7362 static int 7363 t4_close(struct cdev *dev, int flags, int type, struct thread *td) 7364 { 7365 return (0); 7366 } 7367 7368 static int 7369 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 7370 struct thread *td) 7371 { 7372 int rc; 7373 struct adapter *sc = dev->si_drv1; 7374 7375 rc = priv_check(td, PRIV_DRIVER); 7376 if (rc != 0) 7377 return (rc); 7378 7379 switch (cmd) { 7380 case CHELSIO_T4_GETREG: { 7381 struct t4_reg *edata = (struct t4_reg *)data; 7382 7383 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 7384 return (EFAULT); 7385 7386 if (edata->size == 4) 7387 edata->val = t4_read_reg(sc, edata->addr); 7388 else if (edata->size == 8) 7389 edata->val = t4_read_reg64(sc, edata->addr); 7390 else 7391 return (EINVAL); 7392 7393 break; 7394 } 7395 case CHELSIO_T4_SETREG: { 7396 struct t4_reg *edata = (struct t4_reg *)data; 7397 7398 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 7399 return (EFAULT); 7400 7401 if (edata->size == 4) { 7402 if (edata->val & 0xffffffff00000000) 7403 return (EINVAL); 7404 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 7405 } else if (edata->size == 8) 7406 t4_write_reg64(sc, edata->addr, edata->val); 7407 else 7408 return (EINVAL); 7409 break; 7410 } 7411 case CHELSIO_T4_REGDUMP: { 7412 struct t4_regdump *regs = (struct t4_regdump *)data; 7413 int reglen = is_t4(sc) ? T4_REGDUMP_SIZE : T5_REGDUMP_SIZE; 7414 uint8_t *buf; 7415 7416 if (regs->len < reglen) { 7417 regs->len = reglen; /* hint to the caller */ 7418 return (ENOBUFS); 7419 } 7420 7421 regs->len = reglen; 7422 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 7423 t4_get_regs(sc, regs, buf); 7424 rc = copyout(buf, regs->data, reglen); 7425 free(buf, M_CXGBE); 7426 break; 7427 } 7428 case CHELSIO_T4_GET_FILTER_MODE: 7429 rc = get_filter_mode(sc, (uint32_t *)data); 7430 break; 7431 case CHELSIO_T4_SET_FILTER_MODE: 7432 rc = set_filter_mode(sc, *(uint32_t *)data); 7433 break; 7434 case CHELSIO_T4_GET_FILTER: 7435 rc = get_filter(sc, (struct t4_filter *)data); 7436 break; 7437 case CHELSIO_T4_SET_FILTER: 7438 rc = set_filter(sc, (struct t4_filter *)data); 7439 break; 7440 case CHELSIO_T4_DEL_FILTER: 7441 rc = del_filter(sc, (struct t4_filter *)data); 7442 break; 7443 case CHELSIO_T4_GET_SGE_CONTEXT: 7444 rc = get_sge_context(sc, (struct t4_sge_context *)data); 7445 break; 7446 case CHELSIO_T4_LOAD_FW: 7447 rc = load_fw(sc, (struct t4_data *)data); 7448 break; 7449 case CHELSIO_T4_GET_MEM: 7450 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 7451 break; 7452 case CHELSIO_T4_GET_I2C: 7453 rc = read_i2c(sc, (struct t4_i2c_data *)data); 7454 break; 7455 case CHELSIO_T4_CLEAR_STATS: { 7456 int i; 7457 u_int port_id = *(uint32_t *)data; 7458 struct port_info *pi; 7459 7460 if (port_id >= sc->params.nports) 7461 return (EINVAL); 7462 7463 /* MAC stats */ 7464 t4_clr_port_stats(sc, port_id); 7465 7466 pi = sc->port[port_id]; 7467 if (pi->flags & PORT_INIT_DONE) { 7468 struct sge_rxq *rxq; 7469 struct sge_txq *txq; 7470 struct sge_wrq *wrq; 7471 7472 for_each_rxq(pi, i, rxq) { 7473 #if defined(INET) || defined(INET6) 7474 rxq->lro.lro_queued = 0; 7475 rxq->lro.lro_flushed = 0; 7476 #endif 7477 rxq->rxcsum = 0; 7478 rxq->vlan_extraction = 0; 7479 } 7480 7481 for_each_txq(pi, i, txq) { 7482 txq->txcsum = 0; 7483 txq->tso_wrs = 0; 7484 txq->vlan_insertion = 0; 7485 txq->imm_wrs = 0; 7486 txq->sgl_wrs = 0; 7487 txq->txpkt_wrs = 0; 7488 txq->txpkts_wrs = 0; 7489 txq->txpkts_pkts = 0; 7490 txq->br->br_drops = 0; 7491 txq->no_dmamap = 0; 7492 txq->no_desc = 0; 7493 } 7494 7495 #ifdef TCP_OFFLOAD 7496 /* nothing to clear for each ofld_rxq */ 7497 7498 for_each_ofld_txq(pi, i, wrq) { 7499 wrq->tx_wrs = 0; 7500 wrq->no_desc = 0; 7501 } 7502 #endif 7503 wrq = &sc->sge.ctrlq[pi->port_id]; 7504 wrq->tx_wrs = 0; 7505 wrq->no_desc = 0; 7506 } 7507 break; 7508 } 7509 case CHELSIO_T4_GET_TRACER: 7510 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 7511 break; 7512 case CHELSIO_T4_SET_TRACER: 7513 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 7514 break; 7515 default: 7516 rc = EINVAL; 7517 } 7518 7519 return (rc); 7520 } 7521 7522 #ifdef TCP_OFFLOAD 7523 static int 7524 toe_capability(struct port_info *pi, int enable) 7525 { 7526 int rc; 7527 struct adapter *sc = pi->adapter; 7528 7529 ASSERT_SYNCHRONIZED_OP(sc); 7530 7531 if (!is_offload(sc)) 7532 return (ENODEV); 7533 7534 if (enable) { 7535 if (!(sc->flags & FULL_INIT_DONE)) { 7536 rc = cxgbe_init_synchronized(pi); 7537 if (rc) 7538 return (rc); 7539 } 7540 7541 if (isset(&sc->offload_map, pi->port_id)) 7542 return (0); 7543 7544 if (!(sc->flags & TOM_INIT_DONE)) { 7545 rc = t4_activate_uld(sc, ULD_TOM); 7546 if (rc == EAGAIN) { 7547 log(LOG_WARNING, 7548 "You must kldload t4_tom.ko before trying " 7549 "to enable TOE on a cxgbe interface.\n"); 7550 } 7551 if (rc != 0) 7552 return (rc); 7553 KASSERT(sc->tom_softc != NULL, 7554 ("%s: TOM activated but softc NULL", __func__)); 7555 KASSERT(sc->flags & TOM_INIT_DONE, 7556 ("%s: TOM activated but flag not set", __func__)); 7557 } 7558 7559 setbit(&sc->offload_map, pi->port_id); 7560 } else { 7561 if (!isset(&sc->offload_map, pi->port_id)) 7562 return (0); 7563 7564 KASSERT(sc->flags & TOM_INIT_DONE, 7565 ("%s: TOM never initialized?", __func__)); 7566 clrbit(&sc->offload_map, pi->port_id); 7567 } 7568 7569 return (0); 7570 } 7571 7572 /* 7573 * Add an upper layer driver to the global list. 7574 */ 7575 int 7576 t4_register_uld(struct uld_info *ui) 7577 { 7578 int rc = 0; 7579 struct uld_info *u; 7580 7581 mtx_lock(&t4_uld_list_lock); 7582 SLIST_FOREACH(u, &t4_uld_list, link) { 7583 if (u->uld_id == ui->uld_id) { 7584 rc = EEXIST; 7585 goto done; 7586 } 7587 } 7588 7589 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 7590 ui->refcount = 0; 7591 done: 7592 mtx_unlock(&t4_uld_list_lock); 7593 return (rc); 7594 } 7595 7596 int 7597 t4_unregister_uld(struct uld_info *ui) 7598 { 7599 int rc = EINVAL; 7600 struct uld_info *u; 7601 7602 mtx_lock(&t4_uld_list_lock); 7603 7604 SLIST_FOREACH(u, &t4_uld_list, link) { 7605 if (u == ui) { 7606 if (ui->refcount > 0) { 7607 rc = EBUSY; 7608 goto done; 7609 } 7610 7611 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 7612 rc = 0; 7613 goto done; 7614 } 7615 } 7616 done: 7617 mtx_unlock(&t4_uld_list_lock); 7618 return (rc); 7619 } 7620 7621 int 7622 t4_activate_uld(struct adapter *sc, int id) 7623 { 7624 int rc = EAGAIN; 7625 struct uld_info *ui; 7626 7627 ASSERT_SYNCHRONIZED_OP(sc); 7628 7629 mtx_lock(&t4_uld_list_lock); 7630 7631 SLIST_FOREACH(ui, &t4_uld_list, link) { 7632 if (ui->uld_id == id) { 7633 rc = ui->activate(sc); 7634 if (rc == 0) 7635 ui->refcount++; 7636 goto done; 7637 } 7638 } 7639 done: 7640 mtx_unlock(&t4_uld_list_lock); 7641 7642 return (rc); 7643 } 7644 7645 int 7646 t4_deactivate_uld(struct adapter *sc, int id) 7647 { 7648 int rc = EINVAL; 7649 struct uld_info *ui; 7650 7651 ASSERT_SYNCHRONIZED_OP(sc); 7652 7653 mtx_lock(&t4_uld_list_lock); 7654 7655 SLIST_FOREACH(ui, &t4_uld_list, link) { 7656 if (ui->uld_id == id) { 7657 rc = ui->deactivate(sc); 7658 if (rc == 0) 7659 ui->refcount--; 7660 goto done; 7661 } 7662 } 7663 done: 7664 mtx_unlock(&t4_uld_list_lock); 7665 7666 return (rc); 7667 } 7668 #endif 7669 7670 /* 7671 * Come up with reasonable defaults for some of the tunables, provided they're 7672 * not set by the user (in which case we'll use the values as is). 7673 */ 7674 static void 7675 tweak_tunables(void) 7676 { 7677 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 7678 7679 if (t4_ntxq10g < 1) 7680 t4_ntxq10g = min(nc, NTXQ_10G); 7681 7682 if (t4_ntxq1g < 1) 7683 t4_ntxq1g = min(nc, NTXQ_1G); 7684 7685 if (t4_nrxq10g < 1) 7686 t4_nrxq10g = min(nc, NRXQ_10G); 7687 7688 if (t4_nrxq1g < 1) 7689 t4_nrxq1g = min(nc, NRXQ_1G); 7690 7691 #ifdef TCP_OFFLOAD 7692 if (t4_nofldtxq10g < 1) 7693 t4_nofldtxq10g = min(nc, NOFLDTXQ_10G); 7694 7695 if (t4_nofldtxq1g < 1) 7696 t4_nofldtxq1g = min(nc, NOFLDTXQ_1G); 7697 7698 if (t4_nofldrxq10g < 1) 7699 t4_nofldrxq10g = min(nc, NOFLDRXQ_10G); 7700 7701 if (t4_nofldrxq1g < 1) 7702 t4_nofldrxq1g = min(nc, NOFLDRXQ_1G); 7703 7704 if (t4_toecaps_allowed == -1) 7705 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 7706 #else 7707 if (t4_toecaps_allowed == -1) 7708 t4_toecaps_allowed = 0; 7709 #endif 7710 7711 if (t4_tmr_idx_10g < 0 || t4_tmr_idx_10g >= SGE_NTIMERS) 7712 t4_tmr_idx_10g = TMR_IDX_10G; 7713 7714 if (t4_pktc_idx_10g < -1 || t4_pktc_idx_10g >= SGE_NCOUNTERS) 7715 t4_pktc_idx_10g = PKTC_IDX_10G; 7716 7717 if (t4_tmr_idx_1g < 0 || t4_tmr_idx_1g >= SGE_NTIMERS) 7718 t4_tmr_idx_1g = TMR_IDX_1G; 7719 7720 if (t4_pktc_idx_1g < -1 || t4_pktc_idx_1g >= SGE_NCOUNTERS) 7721 t4_pktc_idx_1g = PKTC_IDX_1G; 7722 7723 if (t4_qsize_txq < 128) 7724 t4_qsize_txq = 128; 7725 7726 if (t4_qsize_rxq < 128) 7727 t4_qsize_rxq = 128; 7728 while (t4_qsize_rxq & 7) 7729 t4_qsize_rxq++; 7730 7731 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 7732 } 7733 7734 static int 7735 mod_event(module_t mod, int cmd, void *arg) 7736 { 7737 int rc = 0; 7738 static int loaded = 0; 7739 7740 switch (cmd) { 7741 case MOD_LOAD: 7742 if (atomic_fetchadd_int(&loaded, 1)) 7743 break; 7744 t4_sge_modload(); 7745 mtx_init(&t4_list_lock, "T4 adapters", 0, MTX_DEF); 7746 SLIST_INIT(&t4_list); 7747 #ifdef TCP_OFFLOAD 7748 mtx_init(&t4_uld_list_lock, "T4 ULDs", 0, MTX_DEF); 7749 SLIST_INIT(&t4_uld_list); 7750 #endif 7751 t4_tracer_modload(); 7752 tweak_tunables(); 7753 break; 7754 7755 case MOD_UNLOAD: 7756 if (atomic_fetchadd_int(&loaded, -1) > 1) 7757 break; 7758 t4_tracer_modunload(); 7759 #ifdef TCP_OFFLOAD 7760 mtx_lock(&t4_uld_list_lock); 7761 if (!SLIST_EMPTY(&t4_uld_list)) { 7762 rc = EBUSY; 7763 mtx_unlock(&t4_uld_list_lock); 7764 break; 7765 } 7766 mtx_unlock(&t4_uld_list_lock); 7767 mtx_destroy(&t4_uld_list_lock); 7768 #endif 7769 mtx_lock(&t4_list_lock); 7770 if (!SLIST_EMPTY(&t4_list)) { 7771 rc = EBUSY; 7772 mtx_unlock(&t4_list_lock); 7773 break; 7774 } 7775 mtx_unlock(&t4_list_lock); 7776 mtx_destroy(&t4_list_lock); 7777 break; 7778 } 7779 7780 return (rc); 7781 } 7782 7783 static devclass_t t4_devclass, t5_devclass; 7784 static devclass_t cxgbe_devclass, cxl_devclass; 7785 7786 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0); 7787 MODULE_VERSION(t4nex, 1); 7788 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 7789 7790 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0); 7791 MODULE_VERSION(t5nex, 1); 7792 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 7793 7794 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); 7795 MODULE_VERSION(cxgbe, 1); 7796 7797 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0); 7798 MODULE_VERSION(cxl, 1); 7799