1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_ddb.h" 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_kern_tls.h" 35 #include "opt_ratelimit.h" 36 #include "opt_rss.h" 37 38 #include <sys/param.h> 39 #include <sys/conf.h> 40 #include <sys/priv.h> 41 #include <sys/kernel.h> 42 #include <sys/bus.h> 43 #include <sys/eventhandler.h> 44 #include <sys/module.h> 45 #include <sys/malloc.h> 46 #include <sys/queue.h> 47 #include <sys/taskqueue.h> 48 #include <sys/pciio.h> 49 #include <dev/pci/pcireg.h> 50 #include <dev/pci/pcivar.h> 51 #include <dev/pci/pci_private.h> 52 #include <sys/firmware.h> 53 #include <sys/sbuf.h> 54 #include <sys/smp.h> 55 #include <sys/socket.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 #include <net/ethernet.h> 59 #include <net/if.h> 60 #include <net/if_types.h> 61 #include <net/if_dl.h> 62 #include <net/if_vlan_var.h> 63 #ifdef RSS 64 #include <net/rss_config.h> 65 #endif 66 #include <netinet/in.h> 67 #include <netinet/ip.h> 68 #ifdef KERN_TLS 69 #include <netinet/tcp_seq.h> 70 #endif 71 #if defined(__i386__) || defined(__amd64__) 72 #include <machine/md_var.h> 73 #include <machine/cputypes.h> 74 #include <vm/vm.h> 75 #include <vm/pmap.h> 76 #endif 77 #ifdef DDB 78 #include <ddb/ddb.h> 79 #include <ddb/db_lex.h> 80 #endif 81 82 #include "common/common.h" 83 #include "common/t4_msg.h" 84 #include "common/t4_regs.h" 85 #include "common/t4_regs_values.h" 86 #include "cudbg/cudbg.h" 87 #include "t4_clip.h" 88 #include "t4_ioctl.h" 89 #include "t4_l2t.h" 90 #include "t4_mp_ring.h" 91 #include "t4_if.h" 92 #include "t4_smt.h" 93 94 /* T4 bus driver interface */ 95 static int t4_probe(device_t); 96 static int t4_attach(device_t); 97 static int t4_detach(device_t); 98 static int t4_child_location(device_t, device_t, struct sbuf *); 99 static int t4_ready(device_t); 100 static int t4_read_port_device(device_t, int, device_t *); 101 static int t4_suspend(device_t); 102 static int t4_resume(device_t); 103 static int t4_reset_prepare(device_t, device_t); 104 static int t4_reset_post(device_t, device_t); 105 static device_method_t t4_methods[] = { 106 DEVMETHOD(device_probe, t4_probe), 107 DEVMETHOD(device_attach, t4_attach), 108 DEVMETHOD(device_detach, t4_detach), 109 DEVMETHOD(device_suspend, t4_suspend), 110 DEVMETHOD(device_resume, t4_resume), 111 112 DEVMETHOD(bus_child_location, t4_child_location), 113 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 114 DEVMETHOD(bus_reset_post, t4_reset_post), 115 116 DEVMETHOD(t4_is_main_ready, t4_ready), 117 DEVMETHOD(t4_read_port_device, t4_read_port_device), 118 119 DEVMETHOD_END 120 }; 121 static driver_t t4_driver = { 122 "t4nex", 123 t4_methods, 124 sizeof(struct adapter) 125 }; 126 127 128 /* T4 port (cxgbe) interface */ 129 static int cxgbe_probe(device_t); 130 static int cxgbe_attach(device_t); 131 static int cxgbe_detach(device_t); 132 device_method_t cxgbe_methods[] = { 133 DEVMETHOD(device_probe, cxgbe_probe), 134 DEVMETHOD(device_attach, cxgbe_attach), 135 DEVMETHOD(device_detach, cxgbe_detach), 136 { 0, 0 } 137 }; 138 static driver_t cxgbe_driver = { 139 "cxgbe", 140 cxgbe_methods, 141 sizeof(struct port_info) 142 }; 143 144 /* T4 VI (vcxgbe) interface */ 145 static int vcxgbe_probe(device_t); 146 static int vcxgbe_attach(device_t); 147 static int vcxgbe_detach(device_t); 148 static device_method_t vcxgbe_methods[] = { 149 DEVMETHOD(device_probe, vcxgbe_probe), 150 DEVMETHOD(device_attach, vcxgbe_attach), 151 DEVMETHOD(device_detach, vcxgbe_detach), 152 { 0, 0 } 153 }; 154 static driver_t vcxgbe_driver = { 155 "vcxgbe", 156 vcxgbe_methods, 157 sizeof(struct vi_info) 158 }; 159 160 static d_ioctl_t t4_ioctl; 161 162 static struct cdevsw t4_cdevsw = { 163 .d_version = D_VERSION, 164 .d_ioctl = t4_ioctl, 165 .d_name = "t4nex", 166 }; 167 168 /* T5 bus driver interface */ 169 static int t5_probe(device_t); 170 static device_method_t t5_methods[] = { 171 DEVMETHOD(device_probe, t5_probe), 172 DEVMETHOD(device_attach, t4_attach), 173 DEVMETHOD(device_detach, t4_detach), 174 DEVMETHOD(device_suspend, t4_suspend), 175 DEVMETHOD(device_resume, t4_resume), 176 177 DEVMETHOD(bus_child_location, t4_child_location), 178 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 179 DEVMETHOD(bus_reset_post, t4_reset_post), 180 181 DEVMETHOD(t4_is_main_ready, t4_ready), 182 DEVMETHOD(t4_read_port_device, t4_read_port_device), 183 184 DEVMETHOD_END 185 }; 186 static driver_t t5_driver = { 187 "t5nex", 188 t5_methods, 189 sizeof(struct adapter) 190 }; 191 192 193 /* T5 port (cxl) interface */ 194 static driver_t cxl_driver = { 195 "cxl", 196 cxgbe_methods, 197 sizeof(struct port_info) 198 }; 199 200 /* T5 VI (vcxl) interface */ 201 static driver_t vcxl_driver = { 202 "vcxl", 203 vcxgbe_methods, 204 sizeof(struct vi_info) 205 }; 206 207 /* T6 bus driver interface */ 208 static int t6_probe(device_t); 209 static device_method_t t6_methods[] = { 210 DEVMETHOD(device_probe, t6_probe), 211 DEVMETHOD(device_attach, t4_attach), 212 DEVMETHOD(device_detach, t4_detach), 213 DEVMETHOD(device_suspend, t4_suspend), 214 DEVMETHOD(device_resume, t4_resume), 215 216 DEVMETHOD(bus_child_location, t4_child_location), 217 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 218 DEVMETHOD(bus_reset_post, t4_reset_post), 219 220 DEVMETHOD(t4_is_main_ready, t4_ready), 221 DEVMETHOD(t4_read_port_device, t4_read_port_device), 222 223 DEVMETHOD_END 224 }; 225 static driver_t t6_driver = { 226 "t6nex", 227 t6_methods, 228 sizeof(struct adapter) 229 }; 230 231 232 /* T6 port (cc) interface */ 233 static driver_t cc_driver = { 234 "cc", 235 cxgbe_methods, 236 sizeof(struct port_info) 237 }; 238 239 /* T6 VI (vcc) interface */ 240 static driver_t vcc_driver = { 241 "vcc", 242 vcxgbe_methods, 243 sizeof(struct vi_info) 244 }; 245 246 /* ifnet interface */ 247 static void cxgbe_init(void *); 248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t); 249 static int cxgbe_transmit(if_t, struct mbuf *); 250 static void cxgbe_qflush(if_t); 251 #if defined(KERN_TLS) || defined(RATELIMIT) 252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *, 253 struct m_snd_tag **); 254 #endif 255 256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 257 258 /* 259 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 260 * then ADAPTER_LOCK, then t4_uld_list_lock. 261 */ 262 static struct sx t4_list_lock; 263 SLIST_HEAD(, adapter) t4_list; 264 #ifdef TCP_OFFLOAD 265 static struct sx t4_uld_list_lock; 266 SLIST_HEAD(, uld_info) t4_uld_list; 267 #endif 268 269 /* 270 * Tunables. See tweak_tunables() too. 271 * 272 * Each tunable is set to a default value here if it's known at compile-time. 273 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 274 * provide a reasonable default (upto n) when the driver is loaded. 275 * 276 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 277 * T5 are under hw.cxl. 278 */ 279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 280 "cxgbe(4) parameters"); 281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) T5+ parameters"); 283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) TOE parameters"); 285 286 /* 287 * Number of queues for tx and rx, NIC and offload. 288 */ 289 #define NTXQ 16 290 int t4_ntxq = -NTXQ; 291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 292 "Number of TX queues per port"); 293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 294 295 #define NRXQ 8 296 int t4_nrxq = -NRXQ; 297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 298 "Number of RX queues per port"); 299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 300 301 #define NTXQ_VI 1 302 static int t4_ntxq_vi = -NTXQ_VI; 303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 304 "Number of TX queues per VI"); 305 306 #define NRXQ_VI 1 307 static int t4_nrxq_vi = -NRXQ_VI; 308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 309 "Number of RX queues per VI"); 310 311 static int t4_rsrv_noflowq = 0; 312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 313 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 314 315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 316 #define NOFLDTXQ 8 317 static int t4_nofldtxq = -NOFLDTXQ; 318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 319 "Number of offload TX queues per port"); 320 321 #define NOFLDRXQ 2 322 static int t4_nofldrxq = -NOFLDRXQ; 323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 324 "Number of offload RX queues per port"); 325 326 #define NOFLDTXQ_VI 1 327 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 329 "Number of offload TX queues per VI"); 330 331 #define NOFLDRXQ_VI 1 332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 334 "Number of offload RX queues per VI"); 335 336 #define TMR_IDX_OFLD 1 337 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 339 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 340 341 #define PKTC_IDX_OFLD (-1) 342 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 344 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 345 346 /* 0 means chip/fw default, non-zero number is value in microseconds */ 347 static u_long t4_toe_keepalive_idle = 0; 348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 349 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 350 351 /* 0 means chip/fw default, non-zero number is value in microseconds */ 352 static u_long t4_toe_keepalive_interval = 0; 353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 354 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 355 356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 357 static int t4_toe_keepalive_count = 0; 358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 359 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 360 361 /* 0 means chip/fw default, non-zero number is value in microseconds */ 362 static u_long t4_toe_rexmt_min = 0; 363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 364 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 365 366 /* 0 means chip/fw default, non-zero number is value in microseconds */ 367 static u_long t4_toe_rexmt_max = 0; 368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 369 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 370 371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 372 static int t4_toe_rexmt_count = 0; 373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 374 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 375 376 /* -1 means chip/fw default, other values are raw backoff values to use */ 377 static int t4_toe_rexmt_backoff[16] = { 378 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 379 }; 380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 381 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 382 "cxgbe(4) TOE retransmit backoff values"); 383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 384 &t4_toe_rexmt_backoff[0], 0, ""); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[1], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[2], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[3], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[4], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[5], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[6], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[7], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[8], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[9], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[10], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[11], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[12], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[13], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[14], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[15], 0, ""); 415 416 int t4_ddp_rcvbuf_len = 256 * 1024; 417 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN, 418 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer"); 419 420 unsigned int t4_ddp_rcvbuf_cache = 4; 421 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN, 422 &t4_ddp_rcvbuf_cache, 0, 423 "maximum number of free DDP RX buffers to cache per connection"); 424 #endif 425 426 #ifdef DEV_NETMAP 427 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 428 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 429 static int t4_native_netmap = NN_EXTRA_VI; 430 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 431 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 432 433 #define NNMTXQ 8 434 static int t4_nnmtxq = -NNMTXQ; 435 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 436 "Number of netmap TX queues"); 437 438 #define NNMRXQ 8 439 static int t4_nnmrxq = -NNMRXQ; 440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 441 "Number of netmap RX queues"); 442 443 #define NNMTXQ_VI 2 444 static int t4_nnmtxq_vi = -NNMTXQ_VI; 445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 446 "Number of netmap TX queues per VI"); 447 448 #define NNMRXQ_VI 2 449 static int t4_nnmrxq_vi = -NNMRXQ_VI; 450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 451 "Number of netmap RX queues per VI"); 452 #endif 453 454 /* 455 * Holdoff parameters for ports. 456 */ 457 #define TMR_IDX 1 458 int t4_tmr_idx = TMR_IDX; 459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 460 0, "Holdoff timer index"); 461 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 462 463 #define PKTC_IDX (-1) 464 int t4_pktc_idx = PKTC_IDX; 465 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 466 0, "Holdoff packet counter index"); 467 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 468 469 /* 470 * Size (# of entries) of each tx and rx queue. 471 */ 472 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 474 "Number of descriptors in each TX queue"); 475 476 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 477 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 478 "Number of descriptors in each RX queue"); 479 480 /* 481 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 482 */ 483 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 484 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 485 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 486 487 /* 488 * Configuration file. All the _CF names here are special. 489 */ 490 #define DEFAULT_CF "default" 491 #define BUILTIN_CF "built-in" 492 #define FLASH_CF "flash" 493 #define UWIRE_CF "uwire" 494 #define FPGA_CF "fpga" 495 static char t4_cfg_file[32] = DEFAULT_CF; 496 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 497 sizeof(t4_cfg_file), "Firmware configuration file"); 498 499 /* 500 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 501 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 502 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 503 * mark or when signalled to do so, 0 to never emit PAUSE. 504 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 505 * negotiated settings will override rx_pause/tx_pause. 506 * Otherwise rx_pause/tx_pause are applied forcibly. 507 */ 508 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 510 &t4_pause_settings, 0, 511 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 512 513 /* 514 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 515 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 516 * 0 to disable FEC. 517 */ 518 static int t4_fec = -1; 519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 520 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 521 522 /* 523 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 524 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 525 * driver runs as if this is set to 0. 526 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 527 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 528 * transceiver. Multiple FEC bits may not be okay but will be passed on to 529 * the firmware anyway (may result in l1cfg errors with old firmwares). 530 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 531 * means set all FEC bits that are valid for the speed. 532 */ 533 static int t4_force_fec = -1; 534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 535 "Controls the use of FORCE_FEC bit in L1 configuration."); 536 537 /* 538 * Link autonegotiation. 539 * -1 to run with the firmware default. 540 * 0 to disable. 541 * 1 to enable. 542 */ 543 static int t4_autoneg = -1; 544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 545 "Link autonegotiation"); 546 547 /* 548 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 549 * encouraged respectively). '-n' is the same as 'n' except the firmware 550 * version used in the checks is read from the firmware bundled with the driver. 551 */ 552 static int t4_fw_install = 1; 553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 554 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 555 556 /* 557 * ASIC features that will be used. Disable the ones you don't want so that the 558 * chip resources aren't wasted on features that will not be used. 559 */ 560 static int t4_nbmcaps_allowed = 0; 561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 562 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 563 564 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 566 &t4_linkcaps_allowed, 0, "Default link capabilities"); 567 568 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 569 FW_CAPS_CONFIG_SWITCH_EGRESS; 570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 571 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 572 573 #ifdef RATELIMIT 574 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 575 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 576 #else 577 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 578 FW_CAPS_CONFIG_NIC_HASHFILTER; 579 #endif 580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 581 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 582 583 static int t4_toecaps_allowed = -1; 584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 585 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 586 587 static int t4_rdmacaps_allowed = -1; 588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 589 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 590 591 static int t4_cryptocaps_allowed = -1; 592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 593 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 594 595 static int t4_iscsicaps_allowed = -1; 596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 597 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 598 599 static int t4_fcoecaps_allowed = 0; 600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 601 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 602 603 static int t5_write_combine = 0; 604 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 605 0, "Use WC instead of UC for BAR2"); 606 607 static int t4_num_vis = 1; 608 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 609 "Number of VIs per port"); 610 611 /* 612 * PCIe Relaxed Ordering. 613 * -1: driver should figure out a good value. 614 * 0: disable RO. 615 * 1: enable RO. 616 * 2: leave RO alone. 617 */ 618 static int pcie_relaxed_ordering = -1; 619 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 620 &pcie_relaxed_ordering, 0, 621 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 622 623 static int t4_panic_on_fatal_err = 0; 624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 625 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 626 627 static int t4_reset_on_fatal_err = 0; 628 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 629 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 630 631 static int t4_clock_gate_on_suspend = 0; 632 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 633 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 634 635 static int t4_tx_vm_wr = 0; 636 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 637 "Use VM work requests to transmit packets."); 638 639 /* 640 * Set to non-zero to enable the attack filter. A packet that matches any of 641 * these conditions will get dropped on ingress: 642 * 1) IP && source address == destination address. 643 * 2) TCP/IP && source address is not a unicast address. 644 * 3) TCP/IP && destination address is not a unicast address. 645 * 4) IP && source address is loopback (127.x.y.z). 646 * 5) IP && destination address is loopback (127.x.y.z). 647 * 6) IPv6 && source address == destination address. 648 * 7) IPv6 && source address is not a unicast address. 649 * 8) IPv6 && source address is loopback (::1/128). 650 * 9) IPv6 && destination address is loopback (::1/128). 651 * 10) IPv6 && source address is unspecified (::/128). 652 * 11) IPv6 && destination address is unspecified (::/128). 653 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 654 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 655 */ 656 static int t4_attack_filter = 0; 657 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 658 &t4_attack_filter, 0, "Drop suspicious traffic"); 659 660 static int t4_drop_ip_fragments = 0; 661 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 662 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 663 664 static int t4_drop_pkts_with_l2_errors = 1; 665 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 666 &t4_drop_pkts_with_l2_errors, 0, 667 "Drop all frames with Layer 2 length or checksum errors"); 668 669 static int t4_drop_pkts_with_l3_errors = 0; 670 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 671 &t4_drop_pkts_with_l3_errors, 0, 672 "Drop all frames with IP version, length, or checksum errors"); 673 674 static int t4_drop_pkts_with_l4_errors = 0; 675 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 676 &t4_drop_pkts_with_l4_errors, 0, 677 "Drop all frames with Layer 4 length, checksum, or other errors"); 678 679 #ifdef TCP_OFFLOAD 680 /* 681 * TOE tunables. 682 */ 683 static int t4_cop_managed_offloading = 0; 684 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 685 &t4_cop_managed_offloading, 0, 686 "COP (Connection Offload Policy) controls all TOE offload"); 687 #endif 688 689 #ifdef KERN_TLS 690 /* 691 * This enables KERN_TLS for all adapters if set. 692 */ 693 static int t4_kern_tls = 0; 694 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 695 "Enable KERN_TLS mode for T6 adapters"); 696 697 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 698 "cxgbe(4) KERN_TLS parameters"); 699 700 static int t4_tls_inline_keys = 0; 701 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 702 &t4_tls_inline_keys, 0, 703 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 704 "in card memory."); 705 706 static int t4_tls_combo_wrs = 0; 707 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 708 0, "Attempt to combine TCB field updates with TLS record work requests."); 709 #endif 710 711 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 712 static int vi_mac_funcs[] = { 713 FW_VI_FUNC_ETH, 714 FW_VI_FUNC_OFLD, 715 FW_VI_FUNC_IWARP, 716 FW_VI_FUNC_OPENISCSI, 717 FW_VI_FUNC_OPENFCOE, 718 FW_VI_FUNC_FOISCSI, 719 FW_VI_FUNC_FOFCOE, 720 }; 721 722 struct intrs_and_queues { 723 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 724 uint16_t num_vis; /* number of VIs for each port */ 725 uint16_t nirq; /* Total # of vectors */ 726 uint16_t ntxq; /* # of NIC txq's for each port */ 727 uint16_t nrxq; /* # of NIC rxq's for each port */ 728 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 729 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 730 uint16_t nnmtxq; /* # of netmap txq's */ 731 uint16_t nnmrxq; /* # of netmap rxq's */ 732 733 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 734 uint16_t ntxq_vi; /* # of NIC txq's */ 735 uint16_t nrxq_vi; /* # of NIC rxq's */ 736 uint16_t nofldtxq_vi; /* # of TOE txq's */ 737 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 738 uint16_t nnmtxq_vi; /* # of netmap txq's */ 739 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 740 }; 741 742 static void setup_memwin(struct adapter *); 743 static void position_memwin(struct adapter *, int, uint32_t); 744 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 745 static int fwmtype_to_hwmtype(int); 746 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 747 uint32_t *); 748 static int fixup_devlog_params(struct adapter *); 749 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 750 static int contact_firmware(struct adapter *); 751 static int partition_resources(struct adapter *); 752 static int get_params__pre_init(struct adapter *); 753 static int set_params__pre_init(struct adapter *); 754 static int get_params__post_init(struct adapter *); 755 static int set_params__post_init(struct adapter *); 756 static void t4_set_desc(struct adapter *); 757 static bool fixed_ifmedia(struct port_info *); 758 static void build_medialist(struct port_info *); 759 static void init_link_config(struct port_info *); 760 static int fixup_link_config(struct port_info *); 761 static int apply_link_config(struct port_info *); 762 static int cxgbe_init_synchronized(struct vi_info *); 763 static int cxgbe_uninit_synchronized(struct vi_info *); 764 static int adapter_full_init(struct adapter *); 765 static void adapter_full_uninit(struct adapter *); 766 static int vi_full_init(struct vi_info *); 767 static void vi_full_uninit(struct vi_info *); 768 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 769 static void quiesce_txq(struct sge_txq *); 770 static void quiesce_wrq(struct sge_wrq *); 771 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 772 static void quiesce_vi(struct vi_info *); 773 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 774 driver_intr_t *, void *, char *); 775 static int t4_free_irq(struct adapter *, struct irq *); 776 static void t4_init_atid_table(struct adapter *); 777 static void t4_free_atid_table(struct adapter *); 778 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 779 static void vi_refresh_stats(struct vi_info *); 780 static void cxgbe_refresh_stats(struct vi_info *); 781 static void cxgbe_tick(void *); 782 static void vi_tick(void *); 783 static void cxgbe_sysctls(struct port_info *); 784 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 785 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 786 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 787 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 788 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 789 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 790 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 791 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 792 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 793 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 794 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 795 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 796 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 797 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 798 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 799 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 800 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 801 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 802 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 803 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 804 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 805 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 806 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 807 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 808 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 809 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 810 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 811 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 812 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 813 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 814 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 815 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 816 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 817 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 818 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 819 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 820 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 821 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 822 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 823 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 824 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 825 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 826 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 827 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 828 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 829 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 830 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 831 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 832 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 833 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 834 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 835 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 836 #ifdef TCP_OFFLOAD 837 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 838 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 839 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 840 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 841 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 842 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 843 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 844 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 845 #endif 846 static int get_sge_context(struct adapter *, struct t4_sge_context *); 847 static int load_fw(struct adapter *, struct t4_data *); 848 static int load_cfg(struct adapter *, struct t4_data *); 849 static int load_boot(struct adapter *, struct t4_bootrom *); 850 static int load_bootcfg(struct adapter *, struct t4_data *); 851 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 852 static void free_offload_policy(struct t4_offload_policy *); 853 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 854 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 855 static int read_i2c(struct adapter *, struct t4_i2c_data *); 856 static int clear_stats(struct adapter *, u_int); 857 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 858 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 859 #ifdef TCP_OFFLOAD 860 static int toe_capability(struct vi_info *, bool); 861 static int t4_deactivate_all_uld(struct adapter *); 862 static void t4_async_event(struct adapter *); 863 #endif 864 #ifdef KERN_TLS 865 static int ktls_capability(struct adapter *, bool); 866 #endif 867 static int mod_event(module_t, int, void *); 868 static int notify_siblings(device_t, int); 869 static uint64_t vi_get_counter(if_t, ift_counter); 870 static uint64_t cxgbe_get_counter(if_t, ift_counter); 871 static void enable_vxlan_rx(struct adapter *); 872 static void reset_adapter_task(void *, int); 873 static void fatal_error_task(void *, int); 874 static void dump_devlog(struct adapter *); 875 static void dump_cim_regs(struct adapter *); 876 static void dump_cimla(struct adapter *); 877 878 struct { 879 uint16_t device; 880 char *desc; 881 } t4_pciids[] = { 882 {0xa000, "Chelsio Terminator 4 FPGA"}, 883 {0x4400, "Chelsio T440-dbg"}, 884 {0x4401, "Chelsio T420-CR"}, 885 {0x4402, "Chelsio T422-CR"}, 886 {0x4403, "Chelsio T440-CR"}, 887 {0x4404, "Chelsio T420-BCH"}, 888 {0x4405, "Chelsio T440-BCH"}, 889 {0x4406, "Chelsio T440-CH"}, 890 {0x4407, "Chelsio T420-SO"}, 891 {0x4408, "Chelsio T420-CX"}, 892 {0x4409, "Chelsio T420-BT"}, 893 {0x440a, "Chelsio T404-BT"}, 894 {0x440e, "Chelsio T440-LP-CR"}, 895 }, t5_pciids[] = { 896 {0xb000, "Chelsio Terminator 5 FPGA"}, 897 {0x5400, "Chelsio T580-dbg"}, 898 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 899 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 900 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 901 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 902 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 903 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 904 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 905 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 906 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 907 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 908 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 909 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 910 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 911 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 912 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 913 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 914 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 915 916 /* Custom */ 917 {0x5483, "Custom T540-CR"}, 918 {0x5484, "Custom T540-BT"}, 919 }, t6_pciids[] = { 920 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 921 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 922 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 923 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 924 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 925 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 926 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 927 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 928 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 929 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 930 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 931 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 932 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 933 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 934 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 935 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 936 937 /* Custom */ 938 {0x6480, "Custom T6225-CR"}, 939 {0x6481, "Custom T62100-CR"}, 940 {0x6482, "Custom T6225-CR"}, 941 {0x6483, "Custom T62100-CR"}, 942 {0x6484, "Custom T64100-CR"}, 943 {0x6485, "Custom T6240-SO"}, 944 {0x6486, "Custom T6225-SO-CR"}, 945 {0x6487, "Custom T6225-CR"}, 946 }; 947 948 #ifdef TCP_OFFLOAD 949 /* 950 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 951 * be exactly the same for both rxq and ofld_rxq. 952 */ 953 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 954 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 955 #endif 956 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 957 958 static int 959 t4_probe(device_t dev) 960 { 961 int i; 962 uint16_t v = pci_get_vendor(dev); 963 uint16_t d = pci_get_device(dev); 964 uint8_t f = pci_get_function(dev); 965 966 if (v != PCI_VENDOR_ID_CHELSIO) 967 return (ENXIO); 968 969 /* Attach only to PF0 of the FPGA */ 970 if (d == 0xa000 && f != 0) 971 return (ENXIO); 972 973 for (i = 0; i < nitems(t4_pciids); i++) { 974 if (d == t4_pciids[i].device) { 975 device_set_desc(dev, t4_pciids[i].desc); 976 return (BUS_PROBE_DEFAULT); 977 } 978 } 979 980 return (ENXIO); 981 } 982 983 static int 984 t5_probe(device_t dev) 985 { 986 int i; 987 uint16_t v = pci_get_vendor(dev); 988 uint16_t d = pci_get_device(dev); 989 uint8_t f = pci_get_function(dev); 990 991 if (v != PCI_VENDOR_ID_CHELSIO) 992 return (ENXIO); 993 994 /* Attach only to PF0 of the FPGA */ 995 if (d == 0xb000 && f != 0) 996 return (ENXIO); 997 998 for (i = 0; i < nitems(t5_pciids); i++) { 999 if (d == t5_pciids[i].device) { 1000 device_set_desc(dev, t5_pciids[i].desc); 1001 return (BUS_PROBE_DEFAULT); 1002 } 1003 } 1004 1005 return (ENXIO); 1006 } 1007 1008 static int 1009 t6_probe(device_t dev) 1010 { 1011 int i; 1012 uint16_t v = pci_get_vendor(dev); 1013 uint16_t d = pci_get_device(dev); 1014 1015 if (v != PCI_VENDOR_ID_CHELSIO) 1016 return (ENXIO); 1017 1018 for (i = 0; i < nitems(t6_pciids); i++) { 1019 if (d == t6_pciids[i].device) { 1020 device_set_desc(dev, t6_pciids[i].desc); 1021 return (BUS_PROBE_DEFAULT); 1022 } 1023 } 1024 1025 return (ENXIO); 1026 } 1027 1028 static void 1029 t5_attribute_workaround(device_t dev) 1030 { 1031 device_t root_port; 1032 uint32_t v; 1033 1034 /* 1035 * The T5 chips do not properly echo the No Snoop and Relaxed 1036 * Ordering attributes when replying to a TLP from a Root 1037 * Port. As a workaround, find the parent Root Port and 1038 * disable No Snoop and Relaxed Ordering. Note that this 1039 * affects all devices under this root port. 1040 */ 1041 root_port = pci_find_pcie_root_port(dev); 1042 if (root_port == NULL) { 1043 device_printf(dev, "Unable to find parent root port\n"); 1044 return; 1045 } 1046 1047 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1048 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1049 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1050 0) 1051 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1052 device_get_nameunit(root_port)); 1053 } 1054 1055 static const struct devnames devnames[] = { 1056 { 1057 .nexus_name = "t4nex", 1058 .ifnet_name = "cxgbe", 1059 .vi_ifnet_name = "vcxgbe", 1060 .pf03_drv_name = "t4iov", 1061 .vf_nexus_name = "t4vf", 1062 .vf_ifnet_name = "cxgbev" 1063 }, { 1064 .nexus_name = "t5nex", 1065 .ifnet_name = "cxl", 1066 .vi_ifnet_name = "vcxl", 1067 .pf03_drv_name = "t5iov", 1068 .vf_nexus_name = "t5vf", 1069 .vf_ifnet_name = "cxlv" 1070 }, { 1071 .nexus_name = "t6nex", 1072 .ifnet_name = "cc", 1073 .vi_ifnet_name = "vcc", 1074 .pf03_drv_name = "t6iov", 1075 .vf_nexus_name = "t6vf", 1076 .vf_ifnet_name = "ccv" 1077 } 1078 }; 1079 1080 void 1081 t4_init_devnames(struct adapter *sc) 1082 { 1083 int id; 1084 1085 id = chip_id(sc); 1086 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1087 sc->names = &devnames[id - CHELSIO_T4]; 1088 else { 1089 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1090 sc->names = NULL; 1091 } 1092 } 1093 1094 static int 1095 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1096 { 1097 const char *parent, *name; 1098 long value; 1099 int line, unit; 1100 1101 line = 0; 1102 parent = device_get_nameunit(sc->dev); 1103 name = sc->names->ifnet_name; 1104 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1105 if (resource_long_value(name, unit, "port", &value) == 0 && 1106 value == pi->port_id) 1107 return (unit); 1108 } 1109 return (-1); 1110 } 1111 1112 static void 1113 t4_calibration(void *arg) 1114 { 1115 struct adapter *sc; 1116 struct clock_sync *cur, *nex; 1117 uint64_t hw; 1118 sbintime_t sbt; 1119 int next_up; 1120 1121 sc = (struct adapter *)arg; 1122 1123 KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration")); 1124 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1125 sbt = sbinuptime(); 1126 1127 cur = &sc->cal_info[sc->cal_current]; 1128 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1129 nex = &sc->cal_info[next_up]; 1130 if (__predict_false(sc->cal_count == 0)) { 1131 /* First time in, just get the values in */ 1132 cur->hw_cur = hw; 1133 cur->sbt_cur = sbt; 1134 sc->cal_count++; 1135 goto done; 1136 } 1137 1138 if (cur->hw_cur == hw) { 1139 /* The clock is not advancing? */ 1140 sc->cal_count = 0; 1141 atomic_store_rel_int(&cur->gen, 0); 1142 goto done; 1143 } 1144 1145 seqc_write_begin(&nex->gen); 1146 nex->hw_prev = cur->hw_cur; 1147 nex->sbt_prev = cur->sbt_cur; 1148 nex->hw_cur = hw; 1149 nex->sbt_cur = sbt; 1150 seqc_write_end(&nex->gen); 1151 sc->cal_current = next_up; 1152 done: 1153 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration, 1154 sc, C_DIRECT_EXEC); 1155 } 1156 1157 static void 1158 t4_calibration_start(struct adapter *sc) 1159 { 1160 /* 1161 * Here if we have not done a calibration 1162 * then do so otherwise start the appropriate 1163 * timer. 1164 */ 1165 int i; 1166 1167 for (i = 0; i < CNT_CAL_INFO; i++) { 1168 sc->cal_info[i].gen = 0; 1169 } 1170 sc->cal_current = 0; 1171 sc->cal_count = 0; 1172 sc->cal_gen = 0; 1173 t4_calibration(sc); 1174 } 1175 1176 static int 1177 t4_attach(device_t dev) 1178 { 1179 struct adapter *sc; 1180 int rc = 0, i, j, rqidx, tqidx, nports; 1181 struct make_dev_args mda; 1182 struct intrs_and_queues iaq; 1183 struct sge *s; 1184 uint32_t *buf; 1185 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1186 int ofld_tqidx; 1187 #endif 1188 #ifdef TCP_OFFLOAD 1189 int ofld_rqidx; 1190 #endif 1191 #ifdef DEV_NETMAP 1192 int nm_rqidx, nm_tqidx; 1193 #endif 1194 int num_vis; 1195 1196 sc = device_get_softc(dev); 1197 sc->dev = dev; 1198 sysctl_ctx_init(&sc->ctx); 1199 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1200 1201 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1202 t5_attribute_workaround(dev); 1203 pci_enable_busmaster(dev); 1204 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1205 uint32_t v; 1206 1207 pci_set_max_read_req(dev, 4096); 1208 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1209 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1210 if (pcie_relaxed_ordering == 0 && 1211 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1212 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1213 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1214 } else if (pcie_relaxed_ordering == 1 && 1215 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1216 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1217 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1218 } 1219 } 1220 1221 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1222 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1223 sc->traceq = -1; 1224 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1225 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1226 device_get_nameunit(dev)); 1227 1228 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1229 device_get_nameunit(dev)); 1230 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1231 t4_add_adapter(sc); 1232 1233 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1234 TAILQ_INIT(&sc->sfl); 1235 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1236 1237 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1238 1239 sc->policy = NULL; 1240 rw_init(&sc->policy_lock, "connection offload policy"); 1241 1242 callout_init(&sc->ktls_tick, 1); 1243 1244 callout_init(&sc->cal_callout, 1); 1245 1246 refcount_init(&sc->vxlan_refcount, 0); 1247 1248 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1249 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1250 1251 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1252 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1253 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1254 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1255 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1256 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1257 1258 rc = t4_map_bars_0_and_4(sc); 1259 if (rc != 0) 1260 goto done; /* error message displayed already */ 1261 1262 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1263 1264 /* Prepare the adapter for operation. */ 1265 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1266 rc = -t4_prep_adapter(sc, buf); 1267 free(buf, M_CXGBE); 1268 if (rc != 0) { 1269 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1270 goto done; 1271 } 1272 1273 /* 1274 * This is the real PF# to which we're attaching. Works from within PCI 1275 * passthrough environments too, where pci_get_function() could return a 1276 * different PF# depending on the passthrough configuration. We need to 1277 * use the real PF# in all our communication with the firmware. 1278 */ 1279 j = t4_read_reg(sc, A_PL_WHOAMI); 1280 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1281 sc->mbox = sc->pf; 1282 1283 t4_init_devnames(sc); 1284 if (sc->names == NULL) { 1285 rc = ENOTSUP; 1286 goto done; /* error message displayed already */ 1287 } 1288 1289 /* 1290 * Do this really early, with the memory windows set up even before the 1291 * character device. The userland tool's register i/o and mem read 1292 * will work even in "recovery mode". 1293 */ 1294 setup_memwin(sc); 1295 if (t4_init_devlog_params(sc, 0) == 0) 1296 fixup_devlog_params(sc); 1297 make_dev_args_init(&mda); 1298 mda.mda_devsw = &t4_cdevsw; 1299 mda.mda_uid = UID_ROOT; 1300 mda.mda_gid = GID_WHEEL; 1301 mda.mda_mode = 0600; 1302 mda.mda_si_drv1 = sc; 1303 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1304 if (rc != 0) 1305 device_printf(dev, "failed to create nexus char device: %d.\n", 1306 rc); 1307 1308 /* Go no further if recovery mode has been requested. */ 1309 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1310 device_printf(dev, "recovery mode.\n"); 1311 goto done; 1312 } 1313 1314 #if defined(__i386__) 1315 if ((cpu_feature & CPUID_CX8) == 0) { 1316 device_printf(dev, "64 bit atomics not available.\n"); 1317 rc = ENOTSUP; 1318 goto done; 1319 } 1320 #endif 1321 1322 /* Contact the firmware and try to become the master driver. */ 1323 rc = contact_firmware(sc); 1324 if (rc != 0) 1325 goto done; /* error message displayed already */ 1326 MPASS(sc->flags & FW_OK); 1327 1328 rc = get_params__pre_init(sc); 1329 if (rc != 0) 1330 goto done; /* error message displayed already */ 1331 1332 if (sc->flags & MASTER_PF) { 1333 rc = partition_resources(sc); 1334 if (rc != 0) 1335 goto done; /* error message displayed already */ 1336 } 1337 1338 rc = get_params__post_init(sc); 1339 if (rc != 0) 1340 goto done; /* error message displayed already */ 1341 1342 rc = set_params__post_init(sc); 1343 if (rc != 0) 1344 goto done; /* error message displayed already */ 1345 1346 rc = t4_map_bar_2(sc); 1347 if (rc != 0) 1348 goto done; /* error message displayed already */ 1349 1350 rc = t4_create_dma_tag(sc); 1351 if (rc != 0) 1352 goto done; /* error message displayed already */ 1353 1354 /* 1355 * First pass over all the ports - allocate VIs and initialize some 1356 * basic parameters like mac address, port type, etc. 1357 */ 1358 for_each_port(sc, i) { 1359 struct port_info *pi; 1360 1361 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1362 sc->port[i] = pi; 1363 1364 /* These must be set before t4_port_init */ 1365 pi->adapter = sc; 1366 pi->port_id = i; 1367 /* 1368 * XXX: vi[0] is special so we can't delay this allocation until 1369 * pi->nvi's final value is known. 1370 */ 1371 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1372 M_ZERO | M_WAITOK); 1373 1374 /* 1375 * Allocate the "main" VI and initialize parameters 1376 * like mac addr. 1377 */ 1378 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1379 if (rc != 0) { 1380 device_printf(dev, "unable to initialize port %d: %d\n", 1381 i, rc); 1382 free(pi->vi, M_CXGBE); 1383 free(pi, M_CXGBE); 1384 sc->port[i] = NULL; 1385 goto done; 1386 } 1387 1388 if (is_bt(pi->port_type)) 1389 setbit(&sc->bt_map, pi->tx_chan); 1390 else 1391 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1392 1393 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1394 device_get_nameunit(dev), i); 1395 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1396 sc->chan_map[pi->tx_chan] = i; 1397 1398 /* 1399 * The MPS counter for FCS errors doesn't work correctly on the 1400 * T6 so we use the MAC counter here. Which MAC is in use 1401 * depends on the link settings which will be known when the 1402 * link comes up. 1403 */ 1404 if (is_t6(sc)) 1405 pi->fcs_reg = -1; 1406 else { 1407 pi->fcs_reg = t4_port_reg(sc, pi->tx_chan, 1408 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1409 } 1410 pi->fcs_base = 0; 1411 1412 /* All VIs on this port share this media. */ 1413 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1414 cxgbe_media_status); 1415 1416 PORT_LOCK(pi); 1417 init_link_config(pi); 1418 fixup_link_config(pi); 1419 build_medialist(pi); 1420 if (fixed_ifmedia(pi)) 1421 pi->flags |= FIXED_IFMEDIA; 1422 PORT_UNLOCK(pi); 1423 1424 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1425 t4_ifnet_unit(sc, pi)); 1426 if (pi->dev == NULL) { 1427 device_printf(dev, 1428 "failed to add device for port %d.\n", i); 1429 rc = ENXIO; 1430 goto done; 1431 } 1432 pi->vi[0].dev = pi->dev; 1433 device_set_softc(pi->dev, pi); 1434 } 1435 1436 /* 1437 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1438 */ 1439 nports = sc->params.nports; 1440 rc = cfg_itype_and_nqueues(sc, &iaq); 1441 if (rc != 0) 1442 goto done; /* error message displayed already */ 1443 1444 num_vis = iaq.num_vis; 1445 sc->intr_type = iaq.intr_type; 1446 sc->intr_count = iaq.nirq; 1447 1448 s = &sc->sge; 1449 s->nrxq = nports * iaq.nrxq; 1450 s->ntxq = nports * iaq.ntxq; 1451 if (num_vis > 1) { 1452 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1453 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1454 } 1455 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1456 s->neq += nports; /* ctrl queues: 1 per port */ 1457 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1458 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1459 if (is_offload(sc) || is_ethoffload(sc)) { 1460 s->nofldtxq = nports * iaq.nofldtxq; 1461 if (num_vis > 1) 1462 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1463 s->neq += s->nofldtxq; 1464 1465 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1466 M_CXGBE, M_ZERO | M_WAITOK); 1467 } 1468 #endif 1469 #ifdef TCP_OFFLOAD 1470 if (is_offload(sc)) { 1471 s->nofldrxq = nports * iaq.nofldrxq; 1472 if (num_vis > 1) 1473 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1474 s->neq += s->nofldrxq; /* free list */ 1475 s->niq += s->nofldrxq; 1476 1477 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1478 M_CXGBE, M_ZERO | M_WAITOK); 1479 } 1480 #endif 1481 #ifdef DEV_NETMAP 1482 s->nnmrxq = 0; 1483 s->nnmtxq = 0; 1484 if (t4_native_netmap & NN_MAIN_VI) { 1485 s->nnmrxq += nports * iaq.nnmrxq; 1486 s->nnmtxq += nports * iaq.nnmtxq; 1487 } 1488 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1489 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1490 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1491 } 1492 s->neq += s->nnmtxq + s->nnmrxq; 1493 s->niq += s->nnmrxq; 1494 1495 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1496 M_CXGBE, M_ZERO | M_WAITOK); 1497 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1498 M_CXGBE, M_ZERO | M_WAITOK); 1499 #endif 1500 MPASS(s->niq <= s->iqmap_sz); 1501 MPASS(s->neq <= s->eqmap_sz); 1502 1503 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1504 M_ZERO | M_WAITOK); 1505 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1506 M_ZERO | M_WAITOK); 1507 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1508 M_ZERO | M_WAITOK); 1509 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1510 M_ZERO | M_WAITOK); 1511 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1512 M_ZERO | M_WAITOK); 1513 1514 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1515 M_ZERO | M_WAITOK); 1516 1517 t4_init_l2t(sc, M_WAITOK); 1518 t4_init_smt(sc, M_WAITOK); 1519 t4_init_tx_sched(sc); 1520 t4_init_atid_table(sc); 1521 #ifdef RATELIMIT 1522 t4_init_etid_table(sc); 1523 #endif 1524 #ifdef INET6 1525 t4_init_clip_table(sc); 1526 #endif 1527 if (sc->vres.key.size != 0) 1528 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1529 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1530 1531 /* 1532 * Second pass over the ports. This time we know the number of rx and 1533 * tx queues that each port should get. 1534 */ 1535 rqidx = tqidx = 0; 1536 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1537 ofld_tqidx = 0; 1538 #endif 1539 #ifdef TCP_OFFLOAD 1540 ofld_rqidx = 0; 1541 #endif 1542 #ifdef DEV_NETMAP 1543 nm_rqidx = nm_tqidx = 0; 1544 #endif 1545 for_each_port(sc, i) { 1546 struct port_info *pi = sc->port[i]; 1547 struct vi_info *vi; 1548 1549 if (pi == NULL) 1550 continue; 1551 1552 pi->nvi = num_vis; 1553 for_each_vi(pi, j, vi) { 1554 vi->pi = pi; 1555 vi->adapter = sc; 1556 vi->first_intr = -1; 1557 vi->qsize_rxq = t4_qsize_rxq; 1558 vi->qsize_txq = t4_qsize_txq; 1559 1560 vi->first_rxq = rqidx; 1561 vi->first_txq = tqidx; 1562 vi->tmr_idx = t4_tmr_idx; 1563 vi->pktc_idx = t4_pktc_idx; 1564 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1565 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1566 1567 rqidx += vi->nrxq; 1568 tqidx += vi->ntxq; 1569 1570 if (j == 0 && vi->ntxq > 1) 1571 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1572 else 1573 vi->rsrv_noflowq = 0; 1574 1575 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1576 vi->first_ofld_txq = ofld_tqidx; 1577 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1578 ofld_tqidx += vi->nofldtxq; 1579 #endif 1580 #ifdef TCP_OFFLOAD 1581 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1582 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1583 vi->first_ofld_rxq = ofld_rqidx; 1584 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1585 1586 ofld_rqidx += vi->nofldrxq; 1587 #endif 1588 #ifdef DEV_NETMAP 1589 vi->first_nm_rxq = nm_rqidx; 1590 vi->first_nm_txq = nm_tqidx; 1591 if (j == 0) { 1592 vi->nnmrxq = iaq.nnmrxq; 1593 vi->nnmtxq = iaq.nnmtxq; 1594 } else { 1595 vi->nnmrxq = iaq.nnmrxq_vi; 1596 vi->nnmtxq = iaq.nnmtxq_vi; 1597 } 1598 nm_rqidx += vi->nnmrxq; 1599 nm_tqidx += vi->nnmtxq; 1600 #endif 1601 } 1602 } 1603 1604 rc = t4_setup_intr_handlers(sc); 1605 if (rc != 0) { 1606 device_printf(dev, 1607 "failed to setup interrupt handlers: %d\n", rc); 1608 goto done; 1609 } 1610 1611 rc = bus_generic_probe(dev); 1612 if (rc != 0) { 1613 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1614 goto done; 1615 } 1616 1617 /* 1618 * Ensure thread-safe mailbox access (in debug builds). 1619 * 1620 * So far this was the only thread accessing the mailbox but various 1621 * ifnets and sysctls are about to be created and their handlers/ioctls 1622 * will access the mailbox from different threads. 1623 */ 1624 sc->flags |= CHK_MBOX_ACCESS; 1625 1626 rc = bus_generic_attach(dev); 1627 if (rc != 0) { 1628 device_printf(dev, 1629 "failed to attach all child ports: %d\n", rc); 1630 goto done; 1631 } 1632 t4_calibration_start(sc); 1633 1634 device_printf(dev, 1635 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1636 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1637 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1638 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1639 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1640 1641 t4_set_desc(sc); 1642 1643 notify_siblings(dev, 0); 1644 1645 done: 1646 if (rc != 0 && sc->cdev) { 1647 /* cdev was created and so cxgbetool works; recover that way. */ 1648 device_printf(dev, 1649 "error during attach, adapter is now in recovery mode.\n"); 1650 rc = 0; 1651 } 1652 1653 if (rc != 0) 1654 t4_detach_common(dev); 1655 else 1656 t4_sysctls(sc); 1657 1658 return (rc); 1659 } 1660 1661 static int 1662 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1663 { 1664 struct adapter *sc; 1665 struct port_info *pi; 1666 int i; 1667 1668 sc = device_get_softc(bus); 1669 for_each_port(sc, i) { 1670 pi = sc->port[i]; 1671 if (pi != NULL && pi->dev == dev) { 1672 sbuf_printf(sb, "port=%d", pi->port_id); 1673 break; 1674 } 1675 } 1676 return (0); 1677 } 1678 1679 static int 1680 t4_ready(device_t dev) 1681 { 1682 struct adapter *sc; 1683 1684 sc = device_get_softc(dev); 1685 if (sc->flags & FW_OK) 1686 return (0); 1687 return (ENXIO); 1688 } 1689 1690 static int 1691 t4_read_port_device(device_t dev, int port, device_t *child) 1692 { 1693 struct adapter *sc; 1694 struct port_info *pi; 1695 1696 sc = device_get_softc(dev); 1697 if (port < 0 || port >= MAX_NPORTS) 1698 return (EINVAL); 1699 pi = sc->port[port]; 1700 if (pi == NULL || pi->dev == NULL) 1701 return (ENXIO); 1702 *child = pi->dev; 1703 return (0); 1704 } 1705 1706 static int 1707 notify_siblings(device_t dev, int detaching) 1708 { 1709 device_t sibling; 1710 int error, i; 1711 1712 error = 0; 1713 for (i = 0; i < PCI_FUNCMAX; i++) { 1714 if (i == pci_get_function(dev)) 1715 continue; 1716 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1717 pci_get_slot(dev), i); 1718 if (sibling == NULL || !device_is_attached(sibling)) 1719 continue; 1720 if (detaching) 1721 error = T4_DETACH_CHILD(sibling); 1722 else 1723 (void)T4_ATTACH_CHILD(sibling); 1724 if (error) 1725 break; 1726 } 1727 return (error); 1728 } 1729 1730 /* 1731 * Idempotent 1732 */ 1733 static int 1734 t4_detach(device_t dev) 1735 { 1736 int rc; 1737 1738 rc = notify_siblings(dev, 1); 1739 if (rc) { 1740 device_printf(dev, 1741 "failed to detach sibling devices: %d\n", rc); 1742 return (rc); 1743 } 1744 1745 return (t4_detach_common(dev)); 1746 } 1747 1748 int 1749 t4_detach_common(device_t dev) 1750 { 1751 struct adapter *sc; 1752 struct port_info *pi; 1753 int i, rc; 1754 1755 sc = device_get_softc(dev); 1756 1757 #ifdef TCP_OFFLOAD 1758 rc = t4_deactivate_all_uld(sc); 1759 if (rc) { 1760 device_printf(dev, 1761 "failed to detach upper layer drivers: %d\n", rc); 1762 return (rc); 1763 } 1764 #endif 1765 1766 if (sc->cdev) { 1767 destroy_dev(sc->cdev); 1768 sc->cdev = NULL; 1769 } 1770 1771 sx_xlock(&t4_list_lock); 1772 SLIST_REMOVE(&t4_list, sc, adapter, link); 1773 sx_xunlock(&t4_list_lock); 1774 1775 sc->flags &= ~CHK_MBOX_ACCESS; 1776 if (sc->flags & FULL_INIT_DONE) { 1777 if (!(sc->flags & IS_VF)) 1778 t4_intr_disable(sc); 1779 } 1780 1781 if (device_is_attached(dev)) { 1782 rc = bus_generic_detach(dev); 1783 if (rc) { 1784 device_printf(dev, 1785 "failed to detach child devices: %d\n", rc); 1786 return (rc); 1787 } 1788 } 1789 1790 for (i = 0; i < sc->intr_count; i++) 1791 t4_free_irq(sc, &sc->irq[i]); 1792 1793 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1794 t4_free_tx_sched(sc); 1795 1796 for (i = 0; i < MAX_NPORTS; i++) { 1797 pi = sc->port[i]; 1798 if (pi) { 1799 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1800 if (pi->dev) 1801 device_delete_child(dev, pi->dev); 1802 1803 mtx_destroy(&pi->pi_lock); 1804 free(pi->vi, M_CXGBE); 1805 free(pi, M_CXGBE); 1806 } 1807 } 1808 callout_stop(&sc->cal_callout); 1809 callout_drain(&sc->cal_callout); 1810 device_delete_children(dev); 1811 sysctl_ctx_free(&sc->ctx); 1812 adapter_full_uninit(sc); 1813 1814 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1815 t4_fw_bye(sc, sc->mbox); 1816 1817 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1818 pci_release_msi(dev); 1819 1820 if (sc->regs_res) 1821 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1822 sc->regs_res); 1823 1824 if (sc->udbs_res) 1825 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1826 sc->udbs_res); 1827 1828 if (sc->msix_res) 1829 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1830 sc->msix_res); 1831 1832 if (sc->l2t) 1833 t4_free_l2t(sc->l2t); 1834 if (sc->smt) 1835 t4_free_smt(sc->smt); 1836 t4_free_atid_table(sc); 1837 #ifdef RATELIMIT 1838 t4_free_etid_table(sc); 1839 #endif 1840 if (sc->key_map) 1841 vmem_destroy(sc->key_map); 1842 #ifdef INET6 1843 t4_destroy_clip_table(sc); 1844 #endif 1845 1846 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1847 free(sc->sge.ofld_txq, M_CXGBE); 1848 #endif 1849 #ifdef TCP_OFFLOAD 1850 free(sc->sge.ofld_rxq, M_CXGBE); 1851 #endif 1852 #ifdef DEV_NETMAP 1853 free(sc->sge.nm_rxq, M_CXGBE); 1854 free(sc->sge.nm_txq, M_CXGBE); 1855 #endif 1856 free(sc->irq, M_CXGBE); 1857 free(sc->sge.rxq, M_CXGBE); 1858 free(sc->sge.txq, M_CXGBE); 1859 free(sc->sge.ctrlq, M_CXGBE); 1860 free(sc->sge.iqmap, M_CXGBE); 1861 free(sc->sge.eqmap, M_CXGBE); 1862 free(sc->tids.ftid_tab, M_CXGBE); 1863 free(sc->tids.hpftid_tab, M_CXGBE); 1864 free_hftid_hash(&sc->tids); 1865 free(sc->tids.tid_tab, M_CXGBE); 1866 t4_destroy_dma_tag(sc); 1867 1868 callout_drain(&sc->ktls_tick); 1869 callout_drain(&sc->sfl_callout); 1870 if (mtx_initialized(&sc->tids.ftid_lock)) { 1871 mtx_destroy(&sc->tids.ftid_lock); 1872 cv_destroy(&sc->tids.ftid_cv); 1873 } 1874 if (mtx_initialized(&sc->tids.atid_lock)) 1875 mtx_destroy(&sc->tids.atid_lock); 1876 if (mtx_initialized(&sc->ifp_lock)) 1877 mtx_destroy(&sc->ifp_lock); 1878 1879 if (rw_initialized(&sc->policy_lock)) { 1880 rw_destroy(&sc->policy_lock); 1881 #ifdef TCP_OFFLOAD 1882 if (sc->policy != NULL) 1883 free_offload_policy(sc->policy); 1884 #endif 1885 } 1886 1887 for (i = 0; i < NUM_MEMWIN; i++) { 1888 struct memwin *mw = &sc->memwin[i]; 1889 1890 if (rw_initialized(&mw->mw_lock)) 1891 rw_destroy(&mw->mw_lock); 1892 } 1893 1894 mtx_destroy(&sc->sfl_lock); 1895 mtx_destroy(&sc->reg_lock); 1896 mtx_destroy(&sc->sc_lock); 1897 1898 bzero(sc, sizeof(*sc)); 1899 1900 return (0); 1901 } 1902 1903 static inline bool 1904 ok_to_reset(struct adapter *sc) 1905 { 1906 struct tid_info *t = &sc->tids; 1907 struct port_info *pi; 1908 struct vi_info *vi; 1909 int i, j; 1910 int caps = IFCAP_TOE | IFCAP_NETMAP | IFCAP_TXRTLMT; 1911 1912 if (is_t6(sc)) 1913 caps |= IFCAP_TXTLS; 1914 1915 ASSERT_SYNCHRONIZED_OP(sc); 1916 MPASS(!(sc->flags & IS_VF)); 1917 1918 for_each_port(sc, i) { 1919 pi = sc->port[i]; 1920 for_each_vi(pi, j, vi) { 1921 if (if_getcapenable(vi->ifp) & caps) 1922 return (false); 1923 } 1924 } 1925 1926 if (atomic_load_int(&t->tids_in_use) > 0) 1927 return (false); 1928 if (atomic_load_int(&t->stids_in_use) > 0) 1929 return (false); 1930 if (atomic_load_int(&t->atids_in_use) > 0) 1931 return (false); 1932 if (atomic_load_int(&t->ftids_in_use) > 0) 1933 return (false); 1934 if (atomic_load_int(&t->hpftids_in_use) > 0) 1935 return (false); 1936 if (atomic_load_int(&t->etids_in_use) > 0) 1937 return (false); 1938 1939 return (true); 1940 } 1941 1942 static inline int 1943 stop_adapter(struct adapter *sc) 1944 { 1945 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) 1946 return (1); /* Already stopped. */ 1947 return (t4_shutdown_adapter(sc)); 1948 } 1949 1950 static int 1951 t4_suspend(device_t dev) 1952 { 1953 struct adapter *sc = device_get_softc(dev); 1954 struct port_info *pi; 1955 struct vi_info *vi; 1956 if_t ifp; 1957 struct sge_rxq *rxq; 1958 struct sge_txq *txq; 1959 struct sge_wrq *wrq; 1960 #ifdef TCP_OFFLOAD 1961 struct sge_ofld_rxq *ofld_rxq; 1962 #endif 1963 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1964 struct sge_ofld_txq *ofld_txq; 1965 #endif 1966 int rc, i, j, k; 1967 1968 CH_ALERT(sc, "suspend requested\n"); 1969 1970 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus"); 1971 if (rc != 0) 1972 return (ENXIO); 1973 1974 /* XXX: Can the kernel call suspend repeatedly without resume? */ 1975 MPASS(!hw_off_limits(sc)); 1976 1977 if (!ok_to_reset(sc)) { 1978 /* XXX: should list what resource is preventing suspend. */ 1979 CH_ERR(sc, "not safe to suspend.\n"); 1980 rc = EBUSY; 1981 goto done; 1982 } 1983 1984 /* No more DMA or interrupts. */ 1985 stop_adapter(sc); 1986 1987 /* Quiesce all activity. */ 1988 for_each_port(sc, i) { 1989 pi = sc->port[i]; 1990 pi->vxlan_tcam_entry = false; 1991 1992 PORT_LOCK(pi); 1993 if (pi->up_vis > 0) { 1994 /* 1995 * t4_shutdown_adapter has already shut down all the 1996 * PHYs but it also disables interrupts and DMA so there 1997 * won't be a link interrupt. So we update the state 1998 * manually and inform the kernel. 1999 */ 2000 pi->link_cfg.link_ok = false; 2001 t4_os_link_changed(pi); 2002 } 2003 PORT_UNLOCK(pi); 2004 2005 for_each_vi(pi, j, vi) { 2006 vi->xact_addr_filt = -1; 2007 mtx_lock(&vi->tick_mtx); 2008 vi->flags |= VI_SKIP_STATS; 2009 mtx_unlock(&vi->tick_mtx); 2010 if (!(vi->flags & VI_INIT_DONE)) 2011 continue; 2012 2013 ifp = vi->ifp; 2014 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2015 mtx_lock(&vi->tick_mtx); 2016 callout_stop(&vi->tick); 2017 mtx_unlock(&vi->tick_mtx); 2018 callout_drain(&vi->tick); 2019 } 2020 2021 /* 2022 * Note that the HW is not available. 2023 */ 2024 for_each_txq(vi, k, txq) { 2025 TXQ_LOCK(txq); 2026 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2027 TXQ_UNLOCK(txq); 2028 } 2029 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2030 for_each_ofld_txq(vi, k, ofld_txq) { 2031 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2032 } 2033 #endif 2034 for_each_rxq(vi, k, rxq) { 2035 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2036 } 2037 #if defined(TCP_OFFLOAD) 2038 for_each_ofld_rxq(vi, k, ofld_rxq) { 2039 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2040 } 2041 #endif 2042 2043 quiesce_vi(vi); 2044 } 2045 2046 if (sc->flags & FULL_INIT_DONE) { 2047 /* Control queue */ 2048 wrq = &sc->sge.ctrlq[i]; 2049 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2050 quiesce_wrq(wrq); 2051 } 2052 } 2053 if (sc->flags & FULL_INIT_DONE) { 2054 /* Firmware event queue */ 2055 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2056 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2057 } 2058 2059 /* Stop calibration */ 2060 callout_stop(&sc->cal_callout); 2061 callout_drain(&sc->cal_callout); 2062 2063 /* Mark the adapter totally off limits. */ 2064 mtx_lock(&sc->reg_lock); 2065 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 2066 sc->flags &= ~(FW_OK | MASTER_PF); 2067 sc->reset_thread = NULL; 2068 mtx_unlock(&sc->reg_lock); 2069 2070 if (t4_clock_gate_on_suspend) { 2071 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2072 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2073 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2074 } 2075 2076 CH_ALERT(sc, "suspend completed.\n"); 2077 done: 2078 end_synchronized_op(sc, 0); 2079 return (rc); 2080 } 2081 2082 struct adapter_pre_reset_state { 2083 u_int flags; 2084 uint16_t nbmcaps; 2085 uint16_t linkcaps; 2086 uint16_t switchcaps; 2087 uint16_t niccaps; 2088 uint16_t toecaps; 2089 uint16_t rdmacaps; 2090 uint16_t cryptocaps; 2091 uint16_t iscsicaps; 2092 uint16_t fcoecaps; 2093 2094 u_int cfcsum; 2095 char cfg_file[32]; 2096 2097 struct adapter_params params; 2098 struct t4_virt_res vres; 2099 struct tid_info tids; 2100 struct sge sge; 2101 2102 int rawf_base; 2103 int nrawf; 2104 2105 }; 2106 2107 static void 2108 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2109 { 2110 2111 ASSERT_SYNCHRONIZED_OP(sc); 2112 2113 o->flags = sc->flags; 2114 2115 o->nbmcaps = sc->nbmcaps; 2116 o->linkcaps = sc->linkcaps; 2117 o->switchcaps = sc->switchcaps; 2118 o->niccaps = sc->niccaps; 2119 o->toecaps = sc->toecaps; 2120 o->rdmacaps = sc->rdmacaps; 2121 o->cryptocaps = sc->cryptocaps; 2122 o->iscsicaps = sc->iscsicaps; 2123 o->fcoecaps = sc->fcoecaps; 2124 2125 o->cfcsum = sc->cfcsum; 2126 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2127 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2128 2129 o->params = sc->params; 2130 o->vres = sc->vres; 2131 o->tids = sc->tids; 2132 o->sge = sc->sge; 2133 2134 o->rawf_base = sc->rawf_base; 2135 o->nrawf = sc->nrawf; 2136 } 2137 2138 static int 2139 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2140 { 2141 int rc = 0; 2142 2143 ASSERT_SYNCHRONIZED_OP(sc); 2144 2145 /* Capabilities */ 2146 #define COMPARE_CAPS(c) do { \ 2147 if (o->c##caps != sc->c##caps) { \ 2148 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2149 sc->c##caps); \ 2150 rc = EINVAL; \ 2151 } \ 2152 } while (0) 2153 COMPARE_CAPS(nbm); 2154 COMPARE_CAPS(link); 2155 COMPARE_CAPS(switch); 2156 COMPARE_CAPS(nic); 2157 COMPARE_CAPS(toe); 2158 COMPARE_CAPS(rdma); 2159 COMPARE_CAPS(crypto); 2160 COMPARE_CAPS(iscsi); 2161 COMPARE_CAPS(fcoe); 2162 #undef COMPARE_CAPS 2163 2164 /* Firmware config file */ 2165 if (o->cfcsum != sc->cfcsum) { 2166 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2167 o->cfcsum, sc->cfg_file, sc->cfcsum); 2168 rc = EINVAL; 2169 } 2170 2171 #define COMPARE_PARAM(p, name) do { \ 2172 if (o->p != sc->p) { \ 2173 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2174 rc = EINVAL; \ 2175 } \ 2176 } while (0) 2177 COMPARE_PARAM(sge.iq_start, iq_start); 2178 COMPARE_PARAM(sge.eq_start, eq_start); 2179 COMPARE_PARAM(tids.ftid_base, ftid_base); 2180 COMPARE_PARAM(tids.ftid_end, ftid_end); 2181 COMPARE_PARAM(tids.nftids, nftids); 2182 COMPARE_PARAM(vres.l2t.start, l2t_start); 2183 COMPARE_PARAM(vres.l2t.size, l2t_size); 2184 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2185 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2186 COMPARE_PARAM(tids.tid_base, tid_base); 2187 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2188 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2189 COMPARE_PARAM(tids.nhpftids, nhpftids); 2190 COMPARE_PARAM(rawf_base, rawf_base); 2191 COMPARE_PARAM(nrawf, nrawf); 2192 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2193 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2194 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2195 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2196 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2197 COMPARE_PARAM(tids.ntids, ntids); 2198 COMPARE_PARAM(tids.etid_base, etid_base); 2199 COMPARE_PARAM(tids.etid_end, etid_end); 2200 COMPARE_PARAM(tids.netids, netids); 2201 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2202 COMPARE_PARAM(params.ethoffload, ethoffload); 2203 COMPARE_PARAM(tids.natids, natids); 2204 COMPARE_PARAM(tids.stid_base, stid_base); 2205 COMPARE_PARAM(vres.ddp.start, ddp_start); 2206 COMPARE_PARAM(vres.ddp.size, ddp_size); 2207 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2208 COMPARE_PARAM(vres.stag.start, stag_start); 2209 COMPARE_PARAM(vres.stag.size, stag_size); 2210 COMPARE_PARAM(vres.rq.start, rq_start); 2211 COMPARE_PARAM(vres.rq.size, rq_size); 2212 COMPARE_PARAM(vres.pbl.start, pbl_start); 2213 COMPARE_PARAM(vres.pbl.size, pbl_size); 2214 COMPARE_PARAM(vres.qp.start, qp_start); 2215 COMPARE_PARAM(vres.qp.size, qp_size); 2216 COMPARE_PARAM(vres.cq.start, cq_start); 2217 COMPARE_PARAM(vres.cq.size, cq_size); 2218 COMPARE_PARAM(vres.ocq.start, ocq_start); 2219 COMPARE_PARAM(vres.ocq.size, ocq_size); 2220 COMPARE_PARAM(vres.srq.start, srq_start); 2221 COMPARE_PARAM(vres.srq.size, srq_size); 2222 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2223 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2224 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2225 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2226 COMPARE_PARAM(vres.key.start, key_start); 2227 COMPARE_PARAM(vres.key.size, key_size); 2228 #undef COMPARE_PARAM 2229 2230 return (rc); 2231 } 2232 2233 static int 2234 t4_resume(device_t dev) 2235 { 2236 struct adapter *sc = device_get_softc(dev); 2237 struct adapter_pre_reset_state *old_state = NULL; 2238 struct port_info *pi; 2239 struct vi_info *vi; 2240 if_t ifp; 2241 struct sge_txq *txq; 2242 int rc, i, j, k; 2243 2244 CH_ALERT(sc, "resume requested.\n"); 2245 2246 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res"); 2247 if (rc != 0) 2248 return (ENXIO); 2249 MPASS(hw_off_limits(sc)); 2250 MPASS((sc->flags & FW_OK) == 0); 2251 MPASS((sc->flags & MASTER_PF) == 0); 2252 MPASS(sc->reset_thread == NULL); 2253 sc->reset_thread = curthread; 2254 2255 /* Register access is expected to work by the time we're here. */ 2256 if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) { 2257 CH_ERR(sc, "%s: can't read device registers\n", __func__); 2258 rc = ENXIO; 2259 goto done; 2260 } 2261 2262 /* Note that HW_OFF_LIMITS is cleared a bit later. */ 2263 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR | ADAP_STOPPED); 2264 2265 /* Restore memory window. */ 2266 setup_memwin(sc); 2267 2268 /* Go no further if recovery mode has been requested. */ 2269 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2270 CH_ALERT(sc, "recovery mode on resume.\n"); 2271 rc = 0; 2272 mtx_lock(&sc->reg_lock); 2273 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2274 mtx_unlock(&sc->reg_lock); 2275 goto done; 2276 } 2277 2278 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2279 save_caps_and_params(sc, old_state); 2280 2281 /* Reestablish contact with firmware and become the primary PF. */ 2282 rc = contact_firmware(sc); 2283 if (rc != 0) 2284 goto done; /* error message displayed already */ 2285 MPASS(sc->flags & FW_OK); 2286 2287 if (sc->flags & MASTER_PF) { 2288 rc = partition_resources(sc); 2289 if (rc != 0) 2290 goto done; /* error message displayed already */ 2291 } 2292 2293 rc = get_params__post_init(sc); 2294 if (rc != 0) 2295 goto done; /* error message displayed already */ 2296 2297 rc = set_params__post_init(sc); 2298 if (rc != 0) 2299 goto done; /* error message displayed already */ 2300 2301 rc = compare_caps_and_params(sc, old_state); 2302 if (rc != 0) 2303 goto done; /* error message displayed already */ 2304 2305 for_each_port(sc, i) { 2306 pi = sc->port[i]; 2307 MPASS(pi != NULL); 2308 MPASS(pi->vi != NULL); 2309 MPASS(pi->vi[0].dev == pi->dev); 2310 2311 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2312 if (rc != 0) { 2313 CH_ERR(sc, 2314 "failed to re-initialize port %d: %d\n", i, rc); 2315 goto done; 2316 } 2317 MPASS(sc->chan_map[pi->tx_chan] == i); 2318 2319 PORT_LOCK(pi); 2320 fixup_link_config(pi); 2321 build_medialist(pi); 2322 PORT_UNLOCK(pi); 2323 for_each_vi(pi, j, vi) { 2324 if (IS_MAIN_VI(vi)) 2325 continue; 2326 rc = alloc_extra_vi(sc, pi, vi); 2327 if (rc != 0) { 2328 CH_ERR(vi, 2329 "failed to re-allocate extra VI: %d\n", rc); 2330 goto done; 2331 } 2332 } 2333 } 2334 2335 /* 2336 * Interrupts and queues are about to be enabled and other threads will 2337 * want to access the hardware too. It is safe to do so. Note that 2338 * this thread is still in the middle of a synchronized_op. 2339 */ 2340 mtx_lock(&sc->reg_lock); 2341 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2342 mtx_unlock(&sc->reg_lock); 2343 2344 if (sc->flags & FULL_INIT_DONE) { 2345 rc = adapter_full_init(sc); 2346 if (rc != 0) { 2347 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2348 goto done; 2349 } 2350 2351 if (sc->vxlan_refcount > 0) 2352 enable_vxlan_rx(sc); 2353 2354 for_each_port(sc, i) { 2355 pi = sc->port[i]; 2356 for_each_vi(pi, j, vi) { 2357 mtx_lock(&vi->tick_mtx); 2358 vi->flags &= ~VI_SKIP_STATS; 2359 mtx_unlock(&vi->tick_mtx); 2360 if (!(vi->flags & VI_INIT_DONE)) 2361 continue; 2362 rc = vi_full_init(vi); 2363 if (rc != 0) { 2364 CH_ERR(vi, "failed to re-initialize " 2365 "interface: %d\n", rc); 2366 goto done; 2367 } 2368 2369 ifp = vi->ifp; 2370 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2371 continue; 2372 /* 2373 * Note that we do not setup multicast addresses 2374 * in the first pass. This ensures that the 2375 * unicast DMACs for all VIs on all ports get an 2376 * MPS TCAM entry. 2377 */ 2378 rc = update_mac_settings(ifp, XGMAC_ALL & 2379 ~XGMAC_MCADDRS); 2380 if (rc != 0) { 2381 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2382 goto done; 2383 } 2384 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2385 true); 2386 if (rc != 0) { 2387 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2388 goto done; 2389 } 2390 for_each_txq(vi, k, txq) { 2391 TXQ_LOCK(txq); 2392 txq->eq.flags |= EQ_ENABLED; 2393 TXQ_UNLOCK(txq); 2394 } 2395 mtx_lock(&vi->tick_mtx); 2396 callout_schedule(&vi->tick, hz); 2397 mtx_unlock(&vi->tick_mtx); 2398 } 2399 PORT_LOCK(pi); 2400 if (pi->up_vis > 0) { 2401 t4_update_port_info(pi); 2402 fixup_link_config(pi); 2403 build_medialist(pi); 2404 apply_link_config(pi); 2405 if (pi->link_cfg.link_ok) 2406 t4_os_link_changed(pi); 2407 } 2408 PORT_UNLOCK(pi); 2409 } 2410 2411 /* Now reprogram the L2 multicast addresses. */ 2412 for_each_port(sc, i) { 2413 pi = sc->port[i]; 2414 for_each_vi(pi, j, vi) { 2415 if (!(vi->flags & VI_INIT_DONE)) 2416 continue; 2417 ifp = vi->ifp; 2418 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2419 continue; 2420 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2421 if (rc != 0) { 2422 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2423 rc = 0; /* carry on */ 2424 } 2425 } 2426 } 2427 } 2428 2429 /* Reset all calibration */ 2430 t4_calibration_start(sc); 2431 2432 done: 2433 if (rc == 0) { 2434 sc->incarnation++; 2435 CH_ALERT(sc, "resume completed.\n"); 2436 } 2437 end_synchronized_op(sc, 0); 2438 free(old_state, M_CXGBE); 2439 return (rc); 2440 } 2441 2442 static int 2443 t4_reset_prepare(device_t dev, device_t child) 2444 { 2445 struct adapter *sc = device_get_softc(dev); 2446 2447 CH_ALERT(sc, "reset_prepare.\n"); 2448 return (0); 2449 } 2450 2451 static int 2452 t4_reset_post(device_t dev, device_t child) 2453 { 2454 struct adapter *sc = device_get_softc(dev); 2455 2456 CH_ALERT(sc, "reset_post.\n"); 2457 return (0); 2458 } 2459 2460 static int 2461 reset_adapter(struct adapter *sc) 2462 { 2463 int rc, oldinc, error_flags; 2464 2465 CH_ALERT(sc, "reset requested.\n"); 2466 2467 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1"); 2468 if (rc != 0) 2469 return (EBUSY); 2470 2471 if (hw_off_limits(sc)) { 2472 CH_ERR(sc, "adapter is suspended, use resume (not reset).\n"); 2473 rc = ENXIO; 2474 goto done; 2475 } 2476 2477 if (!ok_to_reset(sc)) { 2478 /* XXX: should list what resource is preventing reset. */ 2479 CH_ERR(sc, "not safe to reset.\n"); 2480 rc = EBUSY; 2481 goto done; 2482 } 2483 2484 done: 2485 oldinc = sc->incarnation; 2486 end_synchronized_op(sc, 0); 2487 if (rc != 0) 2488 return (rc); /* Error logged already. */ 2489 2490 atomic_add_int(&sc->num_resets, 1); 2491 mtx_lock(&Giant); 2492 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2493 mtx_unlock(&Giant); 2494 if (rc != 0) 2495 CH_ERR(sc, "bus_reset_child failed: %d.\n", rc); 2496 else { 2497 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst2"); 2498 if (rc != 0) 2499 return (EBUSY); 2500 error_flags = atomic_load_int(&sc->error_flags); 2501 if (sc->incarnation > oldinc && error_flags == 0) { 2502 CH_ALERT(sc, "bus_reset_child succeeded.\n"); 2503 } else { 2504 CH_ERR(sc, "adapter did not reset properly, flags " 2505 "0x%08x, error_flags 0x%08x.\n", sc->flags, 2506 error_flags); 2507 rc = ENXIO; 2508 } 2509 end_synchronized_op(sc, 0); 2510 } 2511 2512 return (rc); 2513 } 2514 2515 static void 2516 reset_adapter_task(void *arg, int pending) 2517 { 2518 /* XXX: t4_async_event here? */ 2519 reset_adapter(arg); 2520 } 2521 2522 static int 2523 cxgbe_probe(device_t dev) 2524 { 2525 char buf[128]; 2526 struct port_info *pi = device_get_softc(dev); 2527 2528 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 2529 device_set_desc_copy(dev, buf); 2530 2531 return (BUS_PROBE_DEFAULT); 2532 } 2533 2534 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2535 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2536 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2537 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2538 #define T4_CAP_ENABLE (T4_CAP) 2539 2540 static int 2541 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2542 { 2543 if_t ifp; 2544 struct sbuf *sb; 2545 struct sysctl_ctx_list *ctx = &vi->ctx; 2546 struct sysctl_oid_list *children; 2547 struct pfil_head_args pa; 2548 struct adapter *sc = vi->adapter; 2549 2550 sysctl_ctx_init(ctx); 2551 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2552 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2553 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2554 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2555 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2556 #ifdef DEV_NETMAP 2557 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2558 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2559 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2560 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2561 #endif 2562 #ifdef TCP_OFFLOAD 2563 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2564 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2565 #endif 2566 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2567 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2568 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2569 #endif 2570 2571 vi->xact_addr_filt = -1; 2572 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2573 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2574 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2575 vi->flags |= TX_USES_VM_WR; 2576 2577 /* Allocate an ifnet and set it up */ 2578 ifp = if_alloc_dev(IFT_ETHER, dev); 2579 if (ifp == NULL) { 2580 device_printf(dev, "Cannot allocate ifnet\n"); 2581 return (ENOMEM); 2582 } 2583 vi->ifp = ifp; 2584 if_setsoftc(ifp, vi); 2585 2586 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2587 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2588 2589 if_setinitfn(ifp, cxgbe_init); 2590 if_setioctlfn(ifp, cxgbe_ioctl); 2591 if_settransmitfn(ifp, cxgbe_transmit); 2592 if_setqflushfn(ifp, cxgbe_qflush); 2593 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2594 if_setgetcounterfn(ifp, vi_get_counter); 2595 else 2596 if_setgetcounterfn(ifp, cxgbe_get_counter); 2597 #if defined(KERN_TLS) || defined(RATELIMIT) 2598 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc); 2599 #endif 2600 #ifdef RATELIMIT 2601 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query); 2602 #endif 2603 2604 if_setcapabilities(ifp, T4_CAP); 2605 if_setcapenable(ifp, T4_CAP_ENABLE); 2606 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2607 CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2608 if (chip_id(sc) >= CHELSIO_T6) { 2609 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2610 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2611 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2612 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2613 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0); 2614 } 2615 2616 #ifdef TCP_OFFLOAD 2617 if (vi->nofldrxq != 0) 2618 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0); 2619 #endif 2620 #ifdef RATELIMIT 2621 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2622 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0); 2623 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0); 2624 } 2625 #endif 2626 2627 if_sethwtsomax(ifp, IP_MAXPACKET); 2628 if (vi->flags & TX_USES_VM_WR) 2629 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO); 2630 else 2631 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO); 2632 #ifdef RATELIMIT 2633 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2634 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO); 2635 #endif 2636 if_sethwtsomaxsegsize(ifp, 65536); 2637 #ifdef KERN_TLS 2638 if (is_ktls(sc)) { 2639 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0); 2640 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2641 if_setcapenablebit(ifp, IFCAP_TXTLS, 0); 2642 } 2643 #endif 2644 2645 ether_ifattach(ifp, vi->hw_addr); 2646 #ifdef DEV_NETMAP 2647 if (vi->nnmrxq != 0) 2648 cxgbe_nm_attach(vi); 2649 #endif 2650 sb = sbuf_new_auto(); 2651 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2652 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2653 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2654 case IFCAP_TOE: 2655 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2656 break; 2657 case IFCAP_TOE | IFCAP_TXRTLMT: 2658 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2659 break; 2660 case IFCAP_TXRTLMT: 2661 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2662 break; 2663 } 2664 #endif 2665 #ifdef TCP_OFFLOAD 2666 if (if_getcapabilities(ifp) & IFCAP_TOE) 2667 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2668 #endif 2669 #ifdef DEV_NETMAP 2670 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2671 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2672 vi->nnmtxq, vi->nnmrxq); 2673 #endif 2674 sbuf_finish(sb); 2675 device_printf(dev, "%s\n", sbuf_data(sb)); 2676 sbuf_delete(sb); 2677 2678 vi_sysctls(vi); 2679 2680 pa.pa_version = PFIL_VERSION; 2681 pa.pa_flags = PFIL_IN; 2682 pa.pa_type = PFIL_TYPE_ETHERNET; 2683 pa.pa_headname = if_name(ifp); 2684 vi->pfil = pfil_head_register(&pa); 2685 2686 return (0); 2687 } 2688 2689 static int 2690 cxgbe_attach(device_t dev) 2691 { 2692 struct port_info *pi = device_get_softc(dev); 2693 struct adapter *sc = pi->adapter; 2694 struct vi_info *vi; 2695 int i, rc; 2696 2697 sysctl_ctx_init(&pi->ctx); 2698 2699 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 2700 if (rc) 2701 return (rc); 2702 2703 for_each_vi(pi, i, vi) { 2704 if (i == 0) 2705 continue; 2706 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 2707 if (vi->dev == NULL) { 2708 device_printf(dev, "failed to add VI %d\n", i); 2709 continue; 2710 } 2711 device_set_softc(vi->dev, vi); 2712 } 2713 2714 cxgbe_sysctls(pi); 2715 2716 bus_generic_attach(dev); 2717 2718 return (0); 2719 } 2720 2721 static void 2722 cxgbe_vi_detach(struct vi_info *vi) 2723 { 2724 if_t ifp = vi->ifp; 2725 2726 if (vi->pfil != NULL) { 2727 pfil_head_unregister(vi->pfil); 2728 vi->pfil = NULL; 2729 } 2730 2731 ether_ifdetach(ifp); 2732 2733 /* Let detach proceed even if these fail. */ 2734 #ifdef DEV_NETMAP 2735 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2736 cxgbe_nm_detach(vi); 2737 #endif 2738 cxgbe_uninit_synchronized(vi); 2739 callout_drain(&vi->tick); 2740 mtx_destroy(&vi->tick_mtx); 2741 sysctl_ctx_free(&vi->ctx); 2742 vi_full_uninit(vi); 2743 2744 if_free(vi->ifp); 2745 vi->ifp = NULL; 2746 } 2747 2748 static int 2749 cxgbe_detach(device_t dev) 2750 { 2751 struct port_info *pi = device_get_softc(dev); 2752 struct adapter *sc = pi->adapter; 2753 int rc; 2754 2755 /* Detach the extra VIs first. */ 2756 rc = bus_generic_detach(dev); 2757 if (rc) 2758 return (rc); 2759 device_delete_children(dev); 2760 2761 sysctl_ctx_free(&pi->ctx); 2762 begin_vi_detach(sc, &pi->vi[0]); 2763 if (pi->flags & HAS_TRACEQ) { 2764 sc->traceq = -1; /* cloner should not create ifnet */ 2765 t4_tracer_port_detach(sc); 2766 } 2767 cxgbe_vi_detach(&pi->vi[0]); 2768 ifmedia_removeall(&pi->media); 2769 end_vi_detach(sc, &pi->vi[0]); 2770 2771 return (0); 2772 } 2773 2774 static void 2775 cxgbe_init(void *arg) 2776 { 2777 struct vi_info *vi = arg; 2778 struct adapter *sc = vi->adapter; 2779 2780 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2781 return; 2782 cxgbe_init_synchronized(vi); 2783 end_synchronized_op(sc, 0); 2784 } 2785 2786 static int 2787 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data) 2788 { 2789 int rc = 0, mtu, flags; 2790 struct vi_info *vi = if_getsoftc(ifp); 2791 struct port_info *pi = vi->pi; 2792 struct adapter *sc = pi->adapter; 2793 struct ifreq *ifr = (struct ifreq *)data; 2794 uint32_t mask; 2795 2796 switch (cmd) { 2797 case SIOCSIFMTU: 2798 mtu = ifr->ifr_mtu; 2799 if (mtu < ETHERMIN || mtu > MAX_MTU) 2800 return (EINVAL); 2801 2802 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2803 if (rc) 2804 return (rc); 2805 if_setmtu(ifp, mtu); 2806 if (vi->flags & VI_INIT_DONE) { 2807 t4_update_fl_bufsize(ifp); 2808 if (!hw_off_limits(sc) && 2809 if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2810 rc = update_mac_settings(ifp, XGMAC_MTU); 2811 } 2812 end_synchronized_op(sc, 0); 2813 break; 2814 2815 case SIOCSIFFLAGS: 2816 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2817 if (rc) 2818 return (rc); 2819 2820 if (hw_off_limits(sc)) { 2821 rc = ENXIO; 2822 goto fail; 2823 } 2824 2825 if (if_getflags(ifp) & IFF_UP) { 2826 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2827 flags = vi->if_flags; 2828 if ((if_getflags(ifp) ^ flags) & 2829 (IFF_PROMISC | IFF_ALLMULTI)) { 2830 rc = update_mac_settings(ifp, 2831 XGMAC_PROMISC | XGMAC_ALLMULTI); 2832 } 2833 } else { 2834 rc = cxgbe_init_synchronized(vi); 2835 } 2836 vi->if_flags = if_getflags(ifp); 2837 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2838 rc = cxgbe_uninit_synchronized(vi); 2839 } 2840 end_synchronized_op(sc, 0); 2841 break; 2842 2843 case SIOCADDMULTI: 2844 case SIOCDELMULTI: 2845 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2846 if (rc) 2847 return (rc); 2848 if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2849 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2850 end_synchronized_op(sc, 0); 2851 break; 2852 2853 case SIOCSIFCAP: 2854 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2855 if (rc) 2856 return (rc); 2857 2858 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 2859 if (mask & IFCAP_TXCSUM) { 2860 if_togglecapenable(ifp, IFCAP_TXCSUM); 2861 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP); 2862 2863 if (IFCAP_TSO4 & if_getcapenable(ifp) && 2864 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2865 mask &= ~IFCAP_TSO4; 2866 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 2867 if_printf(ifp, 2868 "tso4 disabled due to -txcsum.\n"); 2869 } 2870 } 2871 if (mask & IFCAP_TXCSUM_IPV6) { 2872 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); 2873 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2874 2875 if (IFCAP_TSO6 & if_getcapenable(ifp) && 2876 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2877 mask &= ~IFCAP_TSO6; 2878 if_setcapenablebit(ifp, 0, IFCAP_TSO6); 2879 if_printf(ifp, 2880 "tso6 disabled due to -txcsum6.\n"); 2881 } 2882 } 2883 if (mask & IFCAP_RXCSUM) 2884 if_togglecapenable(ifp, IFCAP_RXCSUM); 2885 if (mask & IFCAP_RXCSUM_IPV6) 2886 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); 2887 2888 /* 2889 * Note that we leave CSUM_TSO alone (it is always set). The 2890 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2891 * sending a TSO request our way, so it's sufficient to toggle 2892 * IFCAP_TSOx only. 2893 */ 2894 if (mask & IFCAP_TSO4) { 2895 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) && 2896 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2897 if_printf(ifp, "enable txcsum first.\n"); 2898 rc = EAGAIN; 2899 goto fail; 2900 } 2901 if_togglecapenable(ifp, IFCAP_TSO4); 2902 } 2903 if (mask & IFCAP_TSO6) { 2904 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) && 2905 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2906 if_printf(ifp, "enable txcsum6 first.\n"); 2907 rc = EAGAIN; 2908 goto fail; 2909 } 2910 if_togglecapenable(ifp, IFCAP_TSO6); 2911 } 2912 if (mask & IFCAP_LRO) { 2913 #if defined(INET) || defined(INET6) 2914 int i; 2915 struct sge_rxq *rxq; 2916 2917 if_togglecapenable(ifp, IFCAP_LRO); 2918 for_each_rxq(vi, i, rxq) { 2919 if (if_getcapenable(ifp) & IFCAP_LRO) 2920 rxq->iq.flags |= IQ_LRO_ENABLED; 2921 else 2922 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2923 } 2924 #endif 2925 } 2926 #ifdef TCP_OFFLOAD 2927 if (mask & IFCAP_TOE) { 2928 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE; 2929 2930 rc = toe_capability(vi, enable); 2931 if (rc != 0) 2932 goto fail; 2933 2934 if_togglecapenable(ifp, mask); 2935 } 2936 #endif 2937 if (mask & IFCAP_VLAN_HWTAGGING) { 2938 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 2939 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2940 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2941 } 2942 if (mask & IFCAP_VLAN_MTU) { 2943 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 2944 2945 /* Need to find out how to disable auto-mtu-inflation */ 2946 } 2947 if (mask & IFCAP_VLAN_HWTSO) 2948 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 2949 if (mask & IFCAP_VLAN_HWCSUM) 2950 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 2951 #ifdef RATELIMIT 2952 if (mask & IFCAP_TXRTLMT) 2953 if_togglecapenable(ifp, IFCAP_TXRTLMT); 2954 #endif 2955 if (mask & IFCAP_HWRXTSTMP) { 2956 int i; 2957 struct sge_rxq *rxq; 2958 2959 if_togglecapenable(ifp, IFCAP_HWRXTSTMP); 2960 for_each_rxq(vi, i, rxq) { 2961 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) 2962 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2963 else 2964 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2965 } 2966 } 2967 if (mask & IFCAP_MEXTPG) 2968 if_togglecapenable(ifp, IFCAP_MEXTPG); 2969 2970 #ifdef KERN_TLS 2971 if (mask & IFCAP_TXTLS) { 2972 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS; 2973 2974 rc = ktls_capability(sc, enable); 2975 if (rc != 0) 2976 goto fail; 2977 2978 if_togglecapenable(ifp, mask & IFCAP_TXTLS); 2979 } 2980 #endif 2981 if (mask & IFCAP_VXLAN_HWCSUM) { 2982 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM); 2983 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP | 2984 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 2985 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP); 2986 } 2987 if (mask & IFCAP_VXLAN_HWTSO) { 2988 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO); 2989 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO | 2990 CSUM_INNER_IP_TSO); 2991 } 2992 2993 #ifdef VLAN_CAPABILITIES 2994 VLAN_CAPABILITIES(ifp); 2995 #endif 2996 fail: 2997 end_synchronized_op(sc, 0); 2998 break; 2999 3000 case SIOCSIFMEDIA: 3001 case SIOCGIFMEDIA: 3002 case SIOCGIFXMEDIA: 3003 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3004 break; 3005 3006 case SIOCGI2C: { 3007 struct ifi2creq i2c; 3008 3009 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3010 if (rc != 0) 3011 break; 3012 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3013 rc = EPERM; 3014 break; 3015 } 3016 if (i2c.len > sizeof(i2c.data)) { 3017 rc = EINVAL; 3018 break; 3019 } 3020 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3021 if (rc) 3022 return (rc); 3023 if (hw_off_limits(sc)) 3024 rc = ENXIO; 3025 else 3026 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3027 i2c.offset, i2c.len, &i2c.data[0]); 3028 end_synchronized_op(sc, 0); 3029 if (rc == 0) 3030 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3031 break; 3032 } 3033 3034 default: 3035 rc = ether_ioctl(ifp, cmd, data); 3036 } 3037 3038 return (rc); 3039 } 3040 3041 static int 3042 cxgbe_transmit(if_t ifp, struct mbuf *m) 3043 { 3044 struct vi_info *vi = if_getsoftc(ifp); 3045 struct port_info *pi = vi->pi; 3046 struct adapter *sc; 3047 struct sge_txq *txq; 3048 void *items[1]; 3049 int rc; 3050 3051 M_ASSERTPKTHDR(m); 3052 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3053 #if defined(KERN_TLS) || defined(RATELIMIT) 3054 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3055 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3056 #endif 3057 3058 if (__predict_false(pi->link_cfg.link_ok == false)) { 3059 m_freem(m); 3060 return (ENETDOWN); 3061 } 3062 3063 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3064 if (__predict_false(rc != 0)) { 3065 if (__predict_true(rc == EINPROGRESS)) { 3066 /* queued by parse_pkt */ 3067 MPASS(m != NULL); 3068 return (0); 3069 } 3070 3071 MPASS(m == NULL); /* was freed already */ 3072 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3073 return (rc); 3074 } 3075 3076 /* Select a txq. */ 3077 sc = vi->adapter; 3078 txq = &sc->sge.txq[vi->first_txq]; 3079 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3080 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3081 vi->rsrv_noflowq); 3082 3083 items[0] = m; 3084 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3085 if (__predict_false(rc != 0)) 3086 m_freem(m); 3087 3088 return (rc); 3089 } 3090 3091 static void 3092 cxgbe_qflush(if_t ifp) 3093 { 3094 struct vi_info *vi = if_getsoftc(ifp); 3095 struct sge_txq *txq; 3096 int i; 3097 3098 /* queues do not exist if !VI_INIT_DONE. */ 3099 if (vi->flags & VI_INIT_DONE) { 3100 for_each_txq(vi, i, txq) { 3101 TXQ_LOCK(txq); 3102 txq->eq.flags |= EQ_QFLUSH; 3103 TXQ_UNLOCK(txq); 3104 while (!mp_ring_is_idle(txq->r)) { 3105 mp_ring_check_drainage(txq->r, 4096); 3106 pause("qflush", 1); 3107 } 3108 TXQ_LOCK(txq); 3109 txq->eq.flags &= ~EQ_QFLUSH; 3110 TXQ_UNLOCK(txq); 3111 } 3112 } 3113 if_qflush(ifp); 3114 } 3115 3116 static uint64_t 3117 vi_get_counter(if_t ifp, ift_counter c) 3118 { 3119 struct vi_info *vi = if_getsoftc(ifp); 3120 struct fw_vi_stats_vf *s = &vi->stats; 3121 3122 mtx_lock(&vi->tick_mtx); 3123 vi_refresh_stats(vi); 3124 mtx_unlock(&vi->tick_mtx); 3125 3126 switch (c) { 3127 case IFCOUNTER_IPACKETS: 3128 return (s->rx_bcast_frames + s->rx_mcast_frames + 3129 s->rx_ucast_frames); 3130 case IFCOUNTER_IERRORS: 3131 return (s->rx_err_frames); 3132 case IFCOUNTER_OPACKETS: 3133 return (s->tx_bcast_frames + s->tx_mcast_frames + 3134 s->tx_ucast_frames + s->tx_offload_frames); 3135 case IFCOUNTER_OERRORS: 3136 return (s->tx_drop_frames); 3137 case IFCOUNTER_IBYTES: 3138 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3139 s->rx_ucast_bytes); 3140 case IFCOUNTER_OBYTES: 3141 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3142 s->tx_ucast_bytes + s->tx_offload_bytes); 3143 case IFCOUNTER_IMCASTS: 3144 return (s->rx_mcast_frames); 3145 case IFCOUNTER_OMCASTS: 3146 return (s->tx_mcast_frames); 3147 case IFCOUNTER_OQDROPS: { 3148 uint64_t drops; 3149 3150 drops = 0; 3151 if (vi->flags & VI_INIT_DONE) { 3152 int i; 3153 struct sge_txq *txq; 3154 3155 for_each_txq(vi, i, txq) 3156 drops += counter_u64_fetch(txq->r->dropped); 3157 } 3158 3159 return (drops); 3160 3161 } 3162 3163 default: 3164 return (if_get_counter_default(ifp, c)); 3165 } 3166 } 3167 3168 static uint64_t 3169 cxgbe_get_counter(if_t ifp, ift_counter c) 3170 { 3171 struct vi_info *vi = if_getsoftc(ifp); 3172 struct port_info *pi = vi->pi; 3173 struct port_stats *s = &pi->stats; 3174 3175 mtx_lock(&vi->tick_mtx); 3176 cxgbe_refresh_stats(vi); 3177 mtx_unlock(&vi->tick_mtx); 3178 3179 switch (c) { 3180 case IFCOUNTER_IPACKETS: 3181 return (s->rx_frames); 3182 3183 case IFCOUNTER_IERRORS: 3184 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3185 s->rx_fcs_err + s->rx_len_err); 3186 3187 case IFCOUNTER_OPACKETS: 3188 return (s->tx_frames); 3189 3190 case IFCOUNTER_OERRORS: 3191 return (s->tx_error_frames); 3192 3193 case IFCOUNTER_IBYTES: 3194 return (s->rx_octets); 3195 3196 case IFCOUNTER_OBYTES: 3197 return (s->tx_octets); 3198 3199 case IFCOUNTER_IMCASTS: 3200 return (s->rx_mcast_frames); 3201 3202 case IFCOUNTER_OMCASTS: 3203 return (s->tx_mcast_frames); 3204 3205 case IFCOUNTER_IQDROPS: 3206 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3207 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3208 s->rx_trunc3 + pi->tnl_cong_drops); 3209 3210 case IFCOUNTER_OQDROPS: { 3211 uint64_t drops; 3212 3213 drops = s->tx_drop; 3214 if (vi->flags & VI_INIT_DONE) { 3215 int i; 3216 struct sge_txq *txq; 3217 3218 for_each_txq(vi, i, txq) 3219 drops += counter_u64_fetch(txq->r->dropped); 3220 } 3221 3222 return (drops); 3223 3224 } 3225 3226 default: 3227 return (if_get_counter_default(ifp, c)); 3228 } 3229 } 3230 3231 #if defined(KERN_TLS) || defined(RATELIMIT) 3232 static int 3233 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 3234 struct m_snd_tag **pt) 3235 { 3236 int error; 3237 3238 switch (params->hdr.type) { 3239 #ifdef RATELIMIT 3240 case IF_SND_TAG_TYPE_RATE_LIMIT: 3241 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3242 break; 3243 #endif 3244 #ifdef KERN_TLS 3245 case IF_SND_TAG_TYPE_TLS: 3246 { 3247 struct vi_info *vi = if_getsoftc(ifp); 3248 3249 if (is_t6(vi->pi->adapter)) 3250 error = t6_tls_tag_alloc(ifp, params, pt); 3251 else 3252 error = EOPNOTSUPP; 3253 break; 3254 } 3255 #endif 3256 default: 3257 error = EOPNOTSUPP; 3258 } 3259 return (error); 3260 } 3261 #endif 3262 3263 /* 3264 * The kernel picks a media from the list we had provided but we still validate 3265 * the requeste. 3266 */ 3267 int 3268 cxgbe_media_change(if_t ifp) 3269 { 3270 struct vi_info *vi = if_getsoftc(ifp); 3271 struct port_info *pi = vi->pi; 3272 struct ifmedia *ifm = &pi->media; 3273 struct link_config *lc = &pi->link_cfg; 3274 struct adapter *sc = pi->adapter; 3275 int rc; 3276 3277 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3278 if (rc != 0) 3279 return (rc); 3280 PORT_LOCK(pi); 3281 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3282 /* ifconfig .. media autoselect */ 3283 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3284 rc = ENOTSUP; /* AN not supported by transceiver */ 3285 goto done; 3286 } 3287 lc->requested_aneg = AUTONEG_ENABLE; 3288 lc->requested_speed = 0; 3289 lc->requested_fc |= PAUSE_AUTONEG; 3290 } else { 3291 lc->requested_aneg = AUTONEG_DISABLE; 3292 lc->requested_speed = 3293 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3294 lc->requested_fc = 0; 3295 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3296 lc->requested_fc |= PAUSE_RX; 3297 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3298 lc->requested_fc |= PAUSE_TX; 3299 } 3300 if (pi->up_vis > 0 && !hw_off_limits(sc)) { 3301 fixup_link_config(pi); 3302 rc = apply_link_config(pi); 3303 } 3304 done: 3305 PORT_UNLOCK(pi); 3306 end_synchronized_op(sc, 0); 3307 return (rc); 3308 } 3309 3310 /* 3311 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3312 * given speed. 3313 */ 3314 static int 3315 port_mword(struct port_info *pi, uint32_t speed) 3316 { 3317 3318 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3319 MPASS(powerof2(speed)); 3320 3321 switch(pi->port_type) { 3322 case FW_PORT_TYPE_BT_SGMII: 3323 case FW_PORT_TYPE_BT_XFI: 3324 case FW_PORT_TYPE_BT_XAUI: 3325 /* BaseT */ 3326 switch (speed) { 3327 case FW_PORT_CAP32_SPEED_100M: 3328 return (IFM_100_T); 3329 case FW_PORT_CAP32_SPEED_1G: 3330 return (IFM_1000_T); 3331 case FW_PORT_CAP32_SPEED_10G: 3332 return (IFM_10G_T); 3333 } 3334 break; 3335 case FW_PORT_TYPE_KX4: 3336 if (speed == FW_PORT_CAP32_SPEED_10G) 3337 return (IFM_10G_KX4); 3338 break; 3339 case FW_PORT_TYPE_CX4: 3340 if (speed == FW_PORT_CAP32_SPEED_10G) 3341 return (IFM_10G_CX4); 3342 break; 3343 case FW_PORT_TYPE_KX: 3344 if (speed == FW_PORT_CAP32_SPEED_1G) 3345 return (IFM_1000_KX); 3346 break; 3347 case FW_PORT_TYPE_KR: 3348 case FW_PORT_TYPE_BP_AP: 3349 case FW_PORT_TYPE_BP4_AP: 3350 case FW_PORT_TYPE_BP40_BA: 3351 case FW_PORT_TYPE_KR4_100G: 3352 case FW_PORT_TYPE_KR_SFP28: 3353 case FW_PORT_TYPE_KR_XLAUI: 3354 switch (speed) { 3355 case FW_PORT_CAP32_SPEED_1G: 3356 return (IFM_1000_KX); 3357 case FW_PORT_CAP32_SPEED_10G: 3358 return (IFM_10G_KR); 3359 case FW_PORT_CAP32_SPEED_25G: 3360 return (IFM_25G_KR); 3361 case FW_PORT_CAP32_SPEED_40G: 3362 return (IFM_40G_KR4); 3363 case FW_PORT_CAP32_SPEED_50G: 3364 return (IFM_50G_KR2); 3365 case FW_PORT_CAP32_SPEED_100G: 3366 return (IFM_100G_KR4); 3367 } 3368 break; 3369 case FW_PORT_TYPE_FIBER_XFI: 3370 case FW_PORT_TYPE_FIBER_XAUI: 3371 case FW_PORT_TYPE_SFP: 3372 case FW_PORT_TYPE_QSFP_10G: 3373 case FW_PORT_TYPE_QSA: 3374 case FW_PORT_TYPE_QSFP: 3375 case FW_PORT_TYPE_CR4_QSFP: 3376 case FW_PORT_TYPE_CR_QSFP: 3377 case FW_PORT_TYPE_CR2_QSFP: 3378 case FW_PORT_TYPE_SFP28: 3379 /* Pluggable transceiver */ 3380 switch (pi->mod_type) { 3381 case FW_PORT_MOD_TYPE_LR: 3382 switch (speed) { 3383 case FW_PORT_CAP32_SPEED_1G: 3384 return (IFM_1000_LX); 3385 case FW_PORT_CAP32_SPEED_10G: 3386 return (IFM_10G_LR); 3387 case FW_PORT_CAP32_SPEED_25G: 3388 return (IFM_25G_LR); 3389 case FW_PORT_CAP32_SPEED_40G: 3390 return (IFM_40G_LR4); 3391 case FW_PORT_CAP32_SPEED_50G: 3392 return (IFM_50G_LR2); 3393 case FW_PORT_CAP32_SPEED_100G: 3394 return (IFM_100G_LR4); 3395 } 3396 break; 3397 case FW_PORT_MOD_TYPE_SR: 3398 switch (speed) { 3399 case FW_PORT_CAP32_SPEED_1G: 3400 return (IFM_1000_SX); 3401 case FW_PORT_CAP32_SPEED_10G: 3402 return (IFM_10G_SR); 3403 case FW_PORT_CAP32_SPEED_25G: 3404 return (IFM_25G_SR); 3405 case FW_PORT_CAP32_SPEED_40G: 3406 return (IFM_40G_SR4); 3407 case FW_PORT_CAP32_SPEED_50G: 3408 return (IFM_50G_SR2); 3409 case FW_PORT_CAP32_SPEED_100G: 3410 return (IFM_100G_SR4); 3411 } 3412 break; 3413 case FW_PORT_MOD_TYPE_ER: 3414 if (speed == FW_PORT_CAP32_SPEED_10G) 3415 return (IFM_10G_ER); 3416 break; 3417 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3418 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3419 switch (speed) { 3420 case FW_PORT_CAP32_SPEED_1G: 3421 return (IFM_1000_CX); 3422 case FW_PORT_CAP32_SPEED_10G: 3423 return (IFM_10G_TWINAX); 3424 case FW_PORT_CAP32_SPEED_25G: 3425 return (IFM_25G_CR); 3426 case FW_PORT_CAP32_SPEED_40G: 3427 return (IFM_40G_CR4); 3428 case FW_PORT_CAP32_SPEED_50G: 3429 return (IFM_50G_CR2); 3430 case FW_PORT_CAP32_SPEED_100G: 3431 return (IFM_100G_CR4); 3432 } 3433 break; 3434 case FW_PORT_MOD_TYPE_LRM: 3435 if (speed == FW_PORT_CAP32_SPEED_10G) 3436 return (IFM_10G_LRM); 3437 break; 3438 case FW_PORT_MOD_TYPE_NA: 3439 MPASS(0); /* Not pluggable? */ 3440 /* fall throough */ 3441 case FW_PORT_MOD_TYPE_ERROR: 3442 case FW_PORT_MOD_TYPE_UNKNOWN: 3443 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3444 break; 3445 case FW_PORT_MOD_TYPE_NONE: 3446 return (IFM_NONE); 3447 } 3448 break; 3449 case FW_PORT_TYPE_NONE: 3450 return (IFM_NONE); 3451 } 3452 3453 return (IFM_UNKNOWN); 3454 } 3455 3456 void 3457 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr) 3458 { 3459 struct vi_info *vi = if_getsoftc(ifp); 3460 struct port_info *pi = vi->pi; 3461 struct adapter *sc = pi->adapter; 3462 struct link_config *lc = &pi->link_cfg; 3463 3464 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0) 3465 return; 3466 PORT_LOCK(pi); 3467 3468 if (pi->up_vis == 0 && !hw_off_limits(sc)) { 3469 /* 3470 * If all the interfaces are administratively down the firmware 3471 * does not report transceiver changes. Refresh port info here 3472 * so that ifconfig displays accurate ifmedia at all times. 3473 * This is the only reason we have a synchronized op in this 3474 * function. Just PORT_LOCK would have been enough otherwise. 3475 */ 3476 t4_update_port_info(pi); 3477 build_medialist(pi); 3478 } 3479 3480 /* ifm_status */ 3481 ifmr->ifm_status = IFM_AVALID; 3482 if (lc->link_ok == false) 3483 goto done; 3484 ifmr->ifm_status |= IFM_ACTIVE; 3485 3486 /* ifm_active */ 3487 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3488 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3489 if (lc->fc & PAUSE_RX) 3490 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3491 if (lc->fc & PAUSE_TX) 3492 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3493 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3494 done: 3495 PORT_UNLOCK(pi); 3496 end_synchronized_op(sc, 0); 3497 } 3498 3499 static int 3500 vcxgbe_probe(device_t dev) 3501 { 3502 char buf[128]; 3503 struct vi_info *vi = device_get_softc(dev); 3504 3505 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 3506 vi - vi->pi->vi); 3507 device_set_desc_copy(dev, buf); 3508 3509 return (BUS_PROBE_DEFAULT); 3510 } 3511 3512 static int 3513 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3514 { 3515 int func, index, rc; 3516 uint32_t param, val; 3517 3518 ASSERT_SYNCHRONIZED_OP(sc); 3519 3520 index = vi - pi->vi; 3521 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3522 KASSERT(index < nitems(vi_mac_funcs), 3523 ("%s: VI %s doesn't have a MAC func", __func__, 3524 device_get_nameunit(vi->dev))); 3525 func = vi_mac_funcs[index]; 3526 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3527 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3528 if (rc < 0) { 3529 CH_ERR(vi, "failed to allocate virtual interface %d" 3530 "for port %d: %d\n", index, pi->port_id, -rc); 3531 return (-rc); 3532 } 3533 vi->viid = rc; 3534 3535 if (vi->rss_size == 1) { 3536 /* 3537 * This VI didn't get a slice of the RSS table. Reduce the 3538 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3539 * configuration file (nvi, rssnvi for this PF) if this is a 3540 * problem. 3541 */ 3542 device_printf(vi->dev, "RSS table not available.\n"); 3543 vi->rss_base = 0xffff; 3544 3545 return (0); 3546 } 3547 3548 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3549 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3550 V_FW_PARAMS_PARAM_YZ(vi->viid); 3551 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3552 if (rc) 3553 vi->rss_base = 0xffff; 3554 else { 3555 MPASS((val >> 16) == vi->rss_size); 3556 vi->rss_base = val & 0xffff; 3557 } 3558 3559 return (0); 3560 } 3561 3562 static int 3563 vcxgbe_attach(device_t dev) 3564 { 3565 struct vi_info *vi; 3566 struct port_info *pi; 3567 struct adapter *sc; 3568 int rc; 3569 3570 vi = device_get_softc(dev); 3571 pi = vi->pi; 3572 sc = pi->adapter; 3573 3574 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3575 if (rc) 3576 return (rc); 3577 rc = alloc_extra_vi(sc, pi, vi); 3578 end_synchronized_op(sc, 0); 3579 if (rc) 3580 return (rc); 3581 3582 rc = cxgbe_vi_attach(dev, vi); 3583 if (rc) { 3584 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3585 return (rc); 3586 } 3587 return (0); 3588 } 3589 3590 static int 3591 vcxgbe_detach(device_t dev) 3592 { 3593 struct vi_info *vi; 3594 struct adapter *sc; 3595 3596 vi = device_get_softc(dev); 3597 sc = vi->adapter; 3598 3599 begin_vi_detach(sc, vi); 3600 cxgbe_vi_detach(vi); 3601 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3602 end_vi_detach(sc, vi); 3603 3604 return (0); 3605 } 3606 3607 static struct callout fatal_callout; 3608 static struct taskqueue *reset_tq; 3609 3610 static void 3611 delayed_panic(void *arg) 3612 { 3613 struct adapter *sc = arg; 3614 3615 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3616 } 3617 3618 static void 3619 fatal_error_task(void *arg, int pending) 3620 { 3621 struct adapter *sc = arg; 3622 int rc; 3623 3624 #ifdef TCP_OFFLOAD 3625 t4_async_event(sc); 3626 #endif 3627 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3628 dump_cim_regs(sc); 3629 dump_cimla(sc); 3630 dump_devlog(sc); 3631 } 3632 3633 if (t4_reset_on_fatal_err) { 3634 CH_ALERT(sc, "resetting on fatal error.\n"); 3635 rc = reset_adapter(sc); 3636 if (rc == 0 && t4_panic_on_fatal_err) { 3637 CH_ALERT(sc, "reset was successful, " 3638 "system will NOT panic.\n"); 3639 return; 3640 } 3641 } 3642 3643 if (t4_panic_on_fatal_err) { 3644 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3645 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3646 } 3647 } 3648 3649 void 3650 t4_fatal_err(struct adapter *sc, bool fw_error) 3651 { 3652 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3653 3654 stop_adapter(sc); 3655 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3656 return; 3657 if (fw_error) { 3658 /* 3659 * We are here because of a firmware error/timeout and not 3660 * because of a hardware interrupt. It is possible (although 3661 * not very likely) that an error interrupt was also raised but 3662 * this thread ran first and inhibited t4_intr_err. We walk the 3663 * main INT_CAUSE registers here to make sure we haven't missed 3664 * anything interesting. 3665 */ 3666 t4_slow_intr_handler(sc, verbose); 3667 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3668 } 3669 t4_report_fw_error(sc); 3670 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3671 device_get_nameunit(sc->dev), fw_error); 3672 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3673 } 3674 3675 void 3676 t4_add_adapter(struct adapter *sc) 3677 { 3678 sx_xlock(&t4_list_lock); 3679 SLIST_INSERT_HEAD(&t4_list, sc, link); 3680 sx_xunlock(&t4_list_lock); 3681 } 3682 3683 int 3684 t4_map_bars_0_and_4(struct adapter *sc) 3685 { 3686 sc->regs_rid = PCIR_BAR(0); 3687 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3688 &sc->regs_rid, RF_ACTIVE); 3689 if (sc->regs_res == NULL) { 3690 device_printf(sc->dev, "cannot map registers.\n"); 3691 return (ENXIO); 3692 } 3693 sc->bt = rman_get_bustag(sc->regs_res); 3694 sc->bh = rman_get_bushandle(sc->regs_res); 3695 sc->mmio_len = rman_get_size(sc->regs_res); 3696 setbit(&sc->doorbells, DOORBELL_KDB); 3697 3698 sc->msix_rid = PCIR_BAR(4); 3699 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3700 &sc->msix_rid, RF_ACTIVE); 3701 if (sc->msix_res == NULL) { 3702 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3703 return (ENXIO); 3704 } 3705 3706 return (0); 3707 } 3708 3709 int 3710 t4_map_bar_2(struct adapter *sc) 3711 { 3712 3713 /* 3714 * T4: only iWARP driver uses the userspace doorbells. There is no need 3715 * to map it if RDMA is disabled. 3716 */ 3717 if (is_t4(sc) && sc->rdmacaps == 0) 3718 return (0); 3719 3720 sc->udbs_rid = PCIR_BAR(2); 3721 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3722 &sc->udbs_rid, RF_ACTIVE); 3723 if (sc->udbs_res == NULL) { 3724 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3725 return (ENXIO); 3726 } 3727 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3728 3729 if (chip_id(sc) >= CHELSIO_T5) { 3730 setbit(&sc->doorbells, DOORBELL_UDB); 3731 #if defined(__i386__) || defined(__amd64__) 3732 if (t5_write_combine) { 3733 int rc, mode; 3734 3735 /* 3736 * Enable write combining on BAR2. This is the 3737 * userspace doorbell BAR and is split into 128B 3738 * (UDBS_SEG_SIZE) doorbell regions, each associated 3739 * with an egress queue. The first 64B has the doorbell 3740 * and the second 64B can be used to submit a tx work 3741 * request with an implicit doorbell. 3742 */ 3743 3744 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3745 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3746 if (rc == 0) { 3747 clrbit(&sc->doorbells, DOORBELL_UDB); 3748 setbit(&sc->doorbells, DOORBELL_WCWR); 3749 setbit(&sc->doorbells, DOORBELL_UDBWC); 3750 } else { 3751 device_printf(sc->dev, 3752 "couldn't enable write combining: %d\n", 3753 rc); 3754 } 3755 3756 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3757 t4_write_reg(sc, A_SGE_STAT_CFG, 3758 V_STATSOURCE_T5(7) | mode); 3759 } 3760 #endif 3761 } 3762 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3763 3764 return (0); 3765 } 3766 3767 struct memwin_init { 3768 uint32_t base; 3769 uint32_t aperture; 3770 }; 3771 3772 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3773 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3774 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3775 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3776 }; 3777 3778 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3779 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3780 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3781 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3782 }; 3783 3784 static void 3785 setup_memwin(struct adapter *sc) 3786 { 3787 const struct memwin_init *mw_init; 3788 struct memwin *mw; 3789 int i; 3790 uint32_t bar0; 3791 3792 if (is_t4(sc)) { 3793 /* 3794 * Read low 32b of bar0 indirectly via the hardware backdoor 3795 * mechanism. Works from within PCI passthrough environments 3796 * too, where rman_get_start() can return a different value. We 3797 * need to program the T4 memory window decoders with the actual 3798 * addresses that will be coming across the PCIe link. 3799 */ 3800 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3801 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3802 3803 mw_init = &t4_memwin[0]; 3804 } else { 3805 /* T5+ use the relative offset inside the PCIe BAR */ 3806 bar0 = 0; 3807 3808 mw_init = &t5_memwin[0]; 3809 } 3810 3811 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3812 if (!rw_initialized(&mw->mw_lock)) { 3813 rw_init(&mw->mw_lock, "memory window access"); 3814 mw->mw_base = mw_init->base; 3815 mw->mw_aperture = mw_init->aperture; 3816 mw->mw_curpos = 0; 3817 } 3818 t4_write_reg(sc, 3819 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3820 (mw->mw_base + bar0) | V_BIR(0) | 3821 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3822 rw_wlock(&mw->mw_lock); 3823 position_memwin(sc, i, mw->mw_curpos); 3824 rw_wunlock(&mw->mw_lock); 3825 } 3826 3827 /* flush */ 3828 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3829 } 3830 3831 /* 3832 * Positions the memory window at the given address in the card's address space. 3833 * There are some alignment requirements and the actual position may be at an 3834 * address prior to the requested address. mw->mw_curpos always has the actual 3835 * position of the window. 3836 */ 3837 static void 3838 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3839 { 3840 struct memwin *mw; 3841 uint32_t pf; 3842 uint32_t reg; 3843 3844 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3845 mw = &sc->memwin[idx]; 3846 rw_assert(&mw->mw_lock, RA_WLOCKED); 3847 3848 if (is_t4(sc)) { 3849 pf = 0; 3850 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3851 } else { 3852 pf = V_PFNUM(sc->pf); 3853 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3854 } 3855 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3856 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3857 t4_read_reg(sc, reg); /* flush */ 3858 } 3859 3860 int 3861 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3862 int len, int rw) 3863 { 3864 struct memwin *mw; 3865 uint32_t mw_end, v; 3866 3867 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3868 3869 /* Memory can only be accessed in naturally aligned 4 byte units */ 3870 if (addr & 3 || len & 3 || len <= 0) 3871 return (EINVAL); 3872 3873 mw = &sc->memwin[idx]; 3874 while (len > 0) { 3875 rw_rlock(&mw->mw_lock); 3876 mw_end = mw->mw_curpos + mw->mw_aperture; 3877 if (addr >= mw_end || addr < mw->mw_curpos) { 3878 /* Will need to reposition the window */ 3879 if (!rw_try_upgrade(&mw->mw_lock)) { 3880 rw_runlock(&mw->mw_lock); 3881 rw_wlock(&mw->mw_lock); 3882 } 3883 rw_assert(&mw->mw_lock, RA_WLOCKED); 3884 position_memwin(sc, idx, addr); 3885 rw_downgrade(&mw->mw_lock); 3886 mw_end = mw->mw_curpos + mw->mw_aperture; 3887 } 3888 rw_assert(&mw->mw_lock, RA_RLOCKED); 3889 while (addr < mw_end && len > 0) { 3890 if (rw == 0) { 3891 v = t4_read_reg(sc, mw->mw_base + addr - 3892 mw->mw_curpos); 3893 *val++ = le32toh(v); 3894 } else { 3895 v = *val++; 3896 t4_write_reg(sc, mw->mw_base + addr - 3897 mw->mw_curpos, htole32(v)); 3898 } 3899 addr += 4; 3900 len -= 4; 3901 } 3902 rw_runlock(&mw->mw_lock); 3903 } 3904 3905 return (0); 3906 } 3907 3908 CTASSERT(M_TID_COOKIE == M_COOKIE); 3909 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1)); 3910 3911 static void 3912 t4_init_atid_table(struct adapter *sc) 3913 { 3914 struct tid_info *t; 3915 int i; 3916 3917 t = &sc->tids; 3918 if (t->natids == 0) 3919 return; 3920 3921 MPASS(t->atid_tab == NULL); 3922 3923 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3924 M_ZERO | M_WAITOK); 3925 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3926 t->afree = t->atid_tab; 3927 t->atids_in_use = 0; 3928 for (i = 1; i < t->natids; i++) 3929 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3930 t->atid_tab[t->natids - 1].next = NULL; 3931 } 3932 3933 static void 3934 t4_free_atid_table(struct adapter *sc) 3935 { 3936 struct tid_info *t; 3937 3938 t = &sc->tids; 3939 3940 KASSERT(t->atids_in_use == 0, 3941 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3942 3943 if (mtx_initialized(&t->atid_lock)) 3944 mtx_destroy(&t->atid_lock); 3945 free(t->atid_tab, M_CXGBE); 3946 t->atid_tab = NULL; 3947 } 3948 3949 int 3950 alloc_atid(struct adapter *sc, void *ctx) 3951 { 3952 struct tid_info *t = &sc->tids; 3953 int atid = -1; 3954 3955 mtx_lock(&t->atid_lock); 3956 if (t->afree) { 3957 union aopen_entry *p = t->afree; 3958 3959 atid = p - t->atid_tab; 3960 MPASS(atid <= M_TID_TID); 3961 t->afree = p->next; 3962 p->data = ctx; 3963 t->atids_in_use++; 3964 } 3965 mtx_unlock(&t->atid_lock); 3966 return (atid); 3967 } 3968 3969 void * 3970 lookup_atid(struct adapter *sc, int atid) 3971 { 3972 struct tid_info *t = &sc->tids; 3973 3974 return (t->atid_tab[atid].data); 3975 } 3976 3977 void 3978 free_atid(struct adapter *sc, int atid) 3979 { 3980 struct tid_info *t = &sc->tids; 3981 union aopen_entry *p = &t->atid_tab[atid]; 3982 3983 mtx_lock(&t->atid_lock); 3984 p->next = t->afree; 3985 t->afree = p; 3986 t->atids_in_use--; 3987 mtx_unlock(&t->atid_lock); 3988 } 3989 3990 static void 3991 queue_tid_release(struct adapter *sc, int tid) 3992 { 3993 3994 CXGBE_UNIMPLEMENTED("deferred tid release"); 3995 } 3996 3997 void 3998 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 3999 { 4000 struct wrqe *wr; 4001 struct cpl_tid_release *req; 4002 4003 wr = alloc_wrqe(sizeof(*req), ctrlq); 4004 if (wr == NULL) { 4005 queue_tid_release(sc, tid); /* defer */ 4006 return; 4007 } 4008 req = wrtod(wr); 4009 4010 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4011 4012 t4_wrq_tx(sc, wr); 4013 } 4014 4015 static int 4016 t4_range_cmp(const void *a, const void *b) 4017 { 4018 return ((const struct t4_range *)a)->start - 4019 ((const struct t4_range *)b)->start; 4020 } 4021 4022 /* 4023 * Verify that the memory range specified by the addr/len pair is valid within 4024 * the card's address space. 4025 */ 4026 static int 4027 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4028 { 4029 struct t4_range mem_ranges[4], *r, *next; 4030 uint32_t em, addr_len; 4031 int i, n, remaining; 4032 4033 /* Memory can only be accessed in naturally aligned 4 byte units */ 4034 if (addr & 3 || len & 3 || len == 0) 4035 return (EINVAL); 4036 4037 /* Enabled memories */ 4038 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4039 4040 r = &mem_ranges[0]; 4041 n = 0; 4042 bzero(r, sizeof(mem_ranges)); 4043 if (em & F_EDRAM0_ENABLE) { 4044 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4045 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4046 if (r->size > 0) { 4047 r->start = G_EDRAM0_BASE(addr_len) << 20; 4048 if (addr >= r->start && 4049 addr + len <= r->start + r->size) 4050 return (0); 4051 r++; 4052 n++; 4053 } 4054 } 4055 if (em & F_EDRAM1_ENABLE) { 4056 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4057 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4058 if (r->size > 0) { 4059 r->start = G_EDRAM1_BASE(addr_len) << 20; 4060 if (addr >= r->start && 4061 addr + len <= r->start + r->size) 4062 return (0); 4063 r++; 4064 n++; 4065 } 4066 } 4067 if (em & F_EXT_MEM_ENABLE) { 4068 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4069 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4070 if (r->size > 0) { 4071 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4072 if (addr >= r->start && 4073 addr + len <= r->start + r->size) 4074 return (0); 4075 r++; 4076 n++; 4077 } 4078 } 4079 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4080 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4081 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4082 if (r->size > 0) { 4083 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4084 if (addr >= r->start && 4085 addr + len <= r->start + r->size) 4086 return (0); 4087 r++; 4088 n++; 4089 } 4090 } 4091 MPASS(n <= nitems(mem_ranges)); 4092 4093 if (n > 1) { 4094 /* Sort and merge the ranges. */ 4095 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4096 4097 /* Start from index 0 and examine the next n - 1 entries. */ 4098 r = &mem_ranges[0]; 4099 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4100 4101 MPASS(r->size > 0); /* r is a valid entry. */ 4102 next = r + 1; 4103 MPASS(next->size > 0); /* and so is the next one. */ 4104 4105 while (r->start + r->size >= next->start) { 4106 /* Merge the next one into the current entry. */ 4107 r->size = max(r->start + r->size, 4108 next->start + next->size) - r->start; 4109 n--; /* One fewer entry in total. */ 4110 if (--remaining == 0) 4111 goto done; /* short circuit */ 4112 next++; 4113 } 4114 if (next != r + 1) { 4115 /* 4116 * Some entries were merged into r and next 4117 * points to the first valid entry that couldn't 4118 * be merged. 4119 */ 4120 MPASS(next->size > 0); /* must be valid */ 4121 memcpy(r + 1, next, remaining * sizeof(*r)); 4122 #ifdef INVARIANTS 4123 /* 4124 * This so that the foo->size assertion in the 4125 * next iteration of the loop do the right 4126 * thing for entries that were pulled up and are 4127 * no longer valid. 4128 */ 4129 MPASS(n < nitems(mem_ranges)); 4130 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4131 sizeof(struct t4_range)); 4132 #endif 4133 } 4134 } 4135 done: 4136 /* Done merging the ranges. */ 4137 MPASS(n > 0); 4138 r = &mem_ranges[0]; 4139 for (i = 0; i < n; i++, r++) { 4140 if (addr >= r->start && 4141 addr + len <= r->start + r->size) 4142 return (0); 4143 } 4144 } 4145 4146 return (EFAULT); 4147 } 4148 4149 static int 4150 fwmtype_to_hwmtype(int mtype) 4151 { 4152 4153 switch (mtype) { 4154 case FW_MEMTYPE_EDC0: 4155 return (MEM_EDC0); 4156 case FW_MEMTYPE_EDC1: 4157 return (MEM_EDC1); 4158 case FW_MEMTYPE_EXTMEM: 4159 return (MEM_MC0); 4160 case FW_MEMTYPE_EXTMEM1: 4161 return (MEM_MC1); 4162 default: 4163 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4164 } 4165 } 4166 4167 /* 4168 * Verify that the memory range specified by the memtype/offset/len pair is 4169 * valid and lies entirely within the memtype specified. The global address of 4170 * the start of the range is returned in addr. 4171 */ 4172 static int 4173 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4174 uint32_t *addr) 4175 { 4176 uint32_t em, addr_len, maddr; 4177 4178 /* Memory can only be accessed in naturally aligned 4 byte units */ 4179 if (off & 3 || len & 3 || len == 0) 4180 return (EINVAL); 4181 4182 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4183 switch (fwmtype_to_hwmtype(mtype)) { 4184 case MEM_EDC0: 4185 if (!(em & F_EDRAM0_ENABLE)) 4186 return (EINVAL); 4187 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4188 maddr = G_EDRAM0_BASE(addr_len) << 20; 4189 break; 4190 case MEM_EDC1: 4191 if (!(em & F_EDRAM1_ENABLE)) 4192 return (EINVAL); 4193 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4194 maddr = G_EDRAM1_BASE(addr_len) << 20; 4195 break; 4196 case MEM_MC: 4197 if (!(em & F_EXT_MEM_ENABLE)) 4198 return (EINVAL); 4199 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4200 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4201 break; 4202 case MEM_MC1: 4203 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4204 return (EINVAL); 4205 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4206 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4207 break; 4208 default: 4209 return (EINVAL); 4210 } 4211 4212 *addr = maddr + off; /* global address */ 4213 return (validate_mem_range(sc, *addr, len)); 4214 } 4215 4216 static int 4217 fixup_devlog_params(struct adapter *sc) 4218 { 4219 struct devlog_params *dparams = &sc->params.devlog; 4220 int rc; 4221 4222 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4223 dparams->size, &dparams->addr); 4224 4225 return (rc); 4226 } 4227 4228 static void 4229 update_nirq(struct intrs_and_queues *iaq, int nports) 4230 { 4231 4232 iaq->nirq = T4_EXTRA_INTR; 4233 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4234 iaq->nirq += nports * iaq->nofldrxq; 4235 iaq->nirq += nports * (iaq->num_vis - 1) * 4236 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4237 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4238 } 4239 4240 /* 4241 * Adjust requirements to fit the number of interrupts available. 4242 */ 4243 static void 4244 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4245 int navail) 4246 { 4247 int old_nirq; 4248 const int nports = sc->params.nports; 4249 4250 MPASS(nports > 0); 4251 MPASS(navail > 0); 4252 4253 bzero(iaq, sizeof(*iaq)); 4254 iaq->intr_type = itype; 4255 iaq->num_vis = t4_num_vis; 4256 iaq->ntxq = t4_ntxq; 4257 iaq->ntxq_vi = t4_ntxq_vi; 4258 iaq->nrxq = t4_nrxq; 4259 iaq->nrxq_vi = t4_nrxq_vi; 4260 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4261 if (is_offload(sc) || is_ethoffload(sc)) { 4262 iaq->nofldtxq = t4_nofldtxq; 4263 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4264 } 4265 #endif 4266 #ifdef TCP_OFFLOAD 4267 if (is_offload(sc)) { 4268 iaq->nofldrxq = t4_nofldrxq; 4269 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4270 } 4271 #endif 4272 #ifdef DEV_NETMAP 4273 if (t4_native_netmap & NN_MAIN_VI) { 4274 iaq->nnmtxq = t4_nnmtxq; 4275 iaq->nnmrxq = t4_nnmrxq; 4276 } 4277 if (t4_native_netmap & NN_EXTRA_VI) { 4278 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4279 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4280 } 4281 #endif 4282 4283 update_nirq(iaq, nports); 4284 if (iaq->nirq <= navail && 4285 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4286 /* 4287 * This is the normal case -- there are enough interrupts for 4288 * everything. 4289 */ 4290 goto done; 4291 } 4292 4293 /* 4294 * If extra VIs have been configured try reducing their count and see if 4295 * that works. 4296 */ 4297 while (iaq->num_vis > 1) { 4298 iaq->num_vis--; 4299 update_nirq(iaq, nports); 4300 if (iaq->nirq <= navail && 4301 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4302 device_printf(sc->dev, "virtual interfaces per port " 4303 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4304 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4305 "itype %d, navail %u, nirq %d.\n", 4306 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4307 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4308 itype, navail, iaq->nirq); 4309 goto done; 4310 } 4311 } 4312 4313 /* 4314 * Extra VIs will not be created. Log a message if they were requested. 4315 */ 4316 MPASS(iaq->num_vis == 1); 4317 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4318 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4319 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4320 if (iaq->num_vis != t4_num_vis) { 4321 device_printf(sc->dev, "extra virtual interfaces disabled. " 4322 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4323 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4324 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4325 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4326 } 4327 4328 /* 4329 * Keep reducing the number of NIC rx queues to the next lower power of 4330 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4331 * if that works. 4332 */ 4333 do { 4334 if (iaq->nrxq > 1) { 4335 do { 4336 iaq->nrxq--; 4337 } while (!powerof2(iaq->nrxq)); 4338 if (iaq->nnmrxq > iaq->nrxq) 4339 iaq->nnmrxq = iaq->nrxq; 4340 } 4341 if (iaq->nofldrxq > 1) 4342 iaq->nofldrxq >>= 1; 4343 4344 old_nirq = iaq->nirq; 4345 update_nirq(iaq, nports); 4346 if (iaq->nirq <= navail && 4347 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4348 device_printf(sc->dev, "running with reduced number of " 4349 "rx queues because of shortage of interrupts. " 4350 "nrxq=%u, nofldrxq=%u. " 4351 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4352 iaq->nofldrxq, itype, navail, iaq->nirq); 4353 goto done; 4354 } 4355 } while (old_nirq != iaq->nirq); 4356 4357 /* One interrupt for everything. Ugh. */ 4358 device_printf(sc->dev, "running with minimal number of queues. " 4359 "itype %d, navail %u.\n", itype, navail); 4360 iaq->nirq = 1; 4361 iaq->nrxq = 1; 4362 iaq->ntxq = 1; 4363 if (iaq->nofldrxq > 0) { 4364 iaq->nofldrxq = 1; 4365 iaq->nofldtxq = 1; 4366 } 4367 iaq->nnmtxq = 0; 4368 iaq->nnmrxq = 0; 4369 done: 4370 MPASS(iaq->num_vis > 0); 4371 if (iaq->num_vis > 1) { 4372 MPASS(iaq->nrxq_vi > 0); 4373 MPASS(iaq->ntxq_vi > 0); 4374 } 4375 MPASS(iaq->nirq > 0); 4376 MPASS(iaq->nrxq > 0); 4377 MPASS(iaq->ntxq > 0); 4378 if (itype == INTR_MSI) { 4379 MPASS(powerof2(iaq->nirq)); 4380 } 4381 } 4382 4383 static int 4384 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4385 { 4386 int rc, itype, navail, nalloc; 4387 4388 for (itype = INTR_MSIX; itype; itype >>= 1) { 4389 4390 if ((itype & t4_intr_types) == 0) 4391 continue; /* not allowed */ 4392 4393 if (itype == INTR_MSIX) 4394 navail = pci_msix_count(sc->dev); 4395 else if (itype == INTR_MSI) 4396 navail = pci_msi_count(sc->dev); 4397 else 4398 navail = 1; 4399 restart: 4400 if (navail == 0) 4401 continue; 4402 4403 calculate_iaq(sc, iaq, itype, navail); 4404 nalloc = iaq->nirq; 4405 rc = 0; 4406 if (itype == INTR_MSIX) 4407 rc = pci_alloc_msix(sc->dev, &nalloc); 4408 else if (itype == INTR_MSI) 4409 rc = pci_alloc_msi(sc->dev, &nalloc); 4410 4411 if (rc == 0 && nalloc > 0) { 4412 if (nalloc == iaq->nirq) 4413 return (0); 4414 4415 /* 4416 * Didn't get the number requested. Use whatever number 4417 * the kernel is willing to allocate. 4418 */ 4419 device_printf(sc->dev, "fewer vectors than requested, " 4420 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4421 itype, iaq->nirq, nalloc); 4422 pci_release_msi(sc->dev); 4423 navail = nalloc; 4424 goto restart; 4425 } 4426 4427 device_printf(sc->dev, 4428 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4429 itype, rc, iaq->nirq, nalloc); 4430 } 4431 4432 device_printf(sc->dev, 4433 "failed to find a usable interrupt type. " 4434 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4435 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4436 4437 return (ENXIO); 4438 } 4439 4440 #define FW_VERSION(chip) ( \ 4441 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4442 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4443 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4444 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4445 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4446 4447 /* Just enough of fw_hdr to cover all version info. */ 4448 struct fw_h { 4449 __u8 ver; 4450 __u8 chip; 4451 __be16 len512; 4452 __be32 fw_ver; 4453 __be32 tp_microcode_ver; 4454 __u8 intfver_nic; 4455 __u8 intfver_vnic; 4456 __u8 intfver_ofld; 4457 __u8 intfver_ri; 4458 __u8 intfver_iscsipdu; 4459 __u8 intfver_iscsi; 4460 __u8 intfver_fcoepdu; 4461 __u8 intfver_fcoe; 4462 }; 4463 /* Spot check a couple of fields. */ 4464 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4465 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4466 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4467 4468 struct fw_info { 4469 uint8_t chip; 4470 char *kld_name; 4471 char *fw_mod_name; 4472 struct fw_h fw_h; 4473 } fw_info[] = { 4474 { 4475 .chip = CHELSIO_T4, 4476 .kld_name = "t4fw_cfg", 4477 .fw_mod_name = "t4fw", 4478 .fw_h = { 4479 .chip = FW_HDR_CHIP_T4, 4480 .fw_ver = htobe32(FW_VERSION(T4)), 4481 .intfver_nic = FW_INTFVER(T4, NIC), 4482 .intfver_vnic = FW_INTFVER(T4, VNIC), 4483 .intfver_ofld = FW_INTFVER(T4, OFLD), 4484 .intfver_ri = FW_INTFVER(T4, RI), 4485 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4486 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4487 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4488 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4489 }, 4490 }, { 4491 .chip = CHELSIO_T5, 4492 .kld_name = "t5fw_cfg", 4493 .fw_mod_name = "t5fw", 4494 .fw_h = { 4495 .chip = FW_HDR_CHIP_T5, 4496 .fw_ver = htobe32(FW_VERSION(T5)), 4497 .intfver_nic = FW_INTFVER(T5, NIC), 4498 .intfver_vnic = FW_INTFVER(T5, VNIC), 4499 .intfver_ofld = FW_INTFVER(T5, OFLD), 4500 .intfver_ri = FW_INTFVER(T5, RI), 4501 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4502 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4503 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4504 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4505 }, 4506 }, { 4507 .chip = CHELSIO_T6, 4508 .kld_name = "t6fw_cfg", 4509 .fw_mod_name = "t6fw", 4510 .fw_h = { 4511 .chip = FW_HDR_CHIP_T6, 4512 .fw_ver = htobe32(FW_VERSION(T6)), 4513 .intfver_nic = FW_INTFVER(T6, NIC), 4514 .intfver_vnic = FW_INTFVER(T6, VNIC), 4515 .intfver_ofld = FW_INTFVER(T6, OFLD), 4516 .intfver_ri = FW_INTFVER(T6, RI), 4517 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4518 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4519 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4520 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4521 }, 4522 } 4523 }; 4524 4525 static struct fw_info * 4526 find_fw_info(int chip) 4527 { 4528 int i; 4529 4530 for (i = 0; i < nitems(fw_info); i++) { 4531 if (fw_info[i].chip == chip) 4532 return (&fw_info[i]); 4533 } 4534 return (NULL); 4535 } 4536 4537 /* 4538 * Is the given firmware API compatible with the one the driver was compiled 4539 * with? 4540 */ 4541 static int 4542 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4543 { 4544 4545 /* short circuit if it's the exact same firmware version */ 4546 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4547 return (1); 4548 4549 /* 4550 * XXX: Is this too conservative? Perhaps I should limit this to the 4551 * features that are supported in the driver. 4552 */ 4553 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4554 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4555 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4556 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4557 return (1); 4558 #undef SAME_INTF 4559 4560 return (0); 4561 } 4562 4563 static int 4564 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4565 const struct firmware **fw) 4566 { 4567 struct fw_info *fw_info; 4568 4569 *dcfg = NULL; 4570 if (fw != NULL) 4571 *fw = NULL; 4572 4573 fw_info = find_fw_info(chip_id(sc)); 4574 if (fw_info == NULL) { 4575 device_printf(sc->dev, 4576 "unable to look up firmware information for chip %d.\n", 4577 chip_id(sc)); 4578 return (EINVAL); 4579 } 4580 4581 *dcfg = firmware_get(fw_info->kld_name); 4582 if (*dcfg != NULL) { 4583 if (fw != NULL) 4584 *fw = firmware_get(fw_info->fw_mod_name); 4585 return (0); 4586 } 4587 4588 return (ENOENT); 4589 } 4590 4591 static void 4592 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4593 const struct firmware *fw) 4594 { 4595 4596 if (fw != NULL) 4597 firmware_put(fw, FIRMWARE_UNLOAD); 4598 if (dcfg != NULL) 4599 firmware_put(dcfg, FIRMWARE_UNLOAD); 4600 } 4601 4602 /* 4603 * Return values: 4604 * 0 means no firmware install attempted. 4605 * ERESTART means a firmware install was attempted and was successful. 4606 * +ve errno means a firmware install was attempted but failed. 4607 */ 4608 static int 4609 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4610 const struct fw_h *drv_fw, const char *reason, int *already) 4611 { 4612 const struct firmware *cfg, *fw; 4613 const uint32_t c = be32toh(card_fw->fw_ver); 4614 uint32_t d, k; 4615 int rc, fw_install; 4616 struct fw_h bundled_fw; 4617 bool load_attempted; 4618 4619 cfg = fw = NULL; 4620 load_attempted = false; 4621 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4622 4623 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4624 if (t4_fw_install < 0) { 4625 rc = load_fw_module(sc, &cfg, &fw); 4626 if (rc != 0 || fw == NULL) { 4627 device_printf(sc->dev, 4628 "failed to load firmware module: %d. cfg %p, fw %p;" 4629 " will use compiled-in firmware version for" 4630 "hw.cxgbe.fw_install checks.\n", 4631 rc, cfg, fw); 4632 } else { 4633 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4634 } 4635 load_attempted = true; 4636 } 4637 d = be32toh(bundled_fw.fw_ver); 4638 4639 if (reason != NULL) 4640 goto install; 4641 4642 if ((sc->flags & FW_OK) == 0) { 4643 4644 if (c == 0xffffffff) { 4645 reason = "missing"; 4646 goto install; 4647 } 4648 4649 rc = 0; 4650 goto done; 4651 } 4652 4653 if (!fw_compatible(card_fw, &bundled_fw)) { 4654 reason = "incompatible or unusable"; 4655 goto install; 4656 } 4657 4658 if (d > c) { 4659 reason = "older than the version bundled with this driver"; 4660 goto install; 4661 } 4662 4663 if (fw_install == 2 && d != c) { 4664 reason = "different than the version bundled with this driver"; 4665 goto install; 4666 } 4667 4668 /* No reason to do anything to the firmware already on the card. */ 4669 rc = 0; 4670 goto done; 4671 4672 install: 4673 rc = 0; 4674 if ((*already)++) 4675 goto done; 4676 4677 if (fw_install == 0) { 4678 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4679 "but the driver is prohibited from installing a firmware " 4680 "on the card.\n", 4681 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4682 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4683 4684 goto done; 4685 } 4686 4687 /* 4688 * We'll attempt to install a firmware. Load the module first (if it 4689 * hasn't been loaded already). 4690 */ 4691 if (!load_attempted) { 4692 rc = load_fw_module(sc, &cfg, &fw); 4693 if (rc != 0 || fw == NULL) { 4694 device_printf(sc->dev, 4695 "failed to load firmware module: %d. cfg %p, fw %p\n", 4696 rc, cfg, fw); 4697 /* carry on */ 4698 } 4699 } 4700 if (fw == NULL) { 4701 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4702 "but the driver cannot take corrective action because it " 4703 "is unable to load the firmware module.\n", 4704 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4705 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4706 rc = sc->flags & FW_OK ? 0 : ENOENT; 4707 goto done; 4708 } 4709 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4710 if (k != d) { 4711 MPASS(t4_fw_install > 0); 4712 device_printf(sc->dev, 4713 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4714 "expecting (%u.%u.%u.%u) and will not be used.\n", 4715 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4716 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4717 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4718 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4719 rc = sc->flags & FW_OK ? 0 : EINVAL; 4720 goto done; 4721 } 4722 4723 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4724 "installing firmware %u.%u.%u.%u on card.\n", 4725 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4726 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4727 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4728 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4729 4730 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4731 if (rc != 0) { 4732 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4733 } else { 4734 /* Installed successfully, update the cached header too. */ 4735 rc = ERESTART; 4736 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4737 } 4738 done: 4739 unload_fw_module(sc, cfg, fw); 4740 4741 return (rc); 4742 } 4743 4744 /* 4745 * Establish contact with the firmware and attempt to become the master driver. 4746 * 4747 * A firmware will be installed to the card if needed (if the driver is allowed 4748 * to do so). 4749 */ 4750 static int 4751 contact_firmware(struct adapter *sc) 4752 { 4753 int rc, already = 0; 4754 enum dev_state state; 4755 struct fw_info *fw_info; 4756 struct fw_hdr *card_fw; /* fw on the card */ 4757 const struct fw_h *drv_fw; 4758 4759 fw_info = find_fw_info(chip_id(sc)); 4760 if (fw_info == NULL) { 4761 device_printf(sc->dev, 4762 "unable to look up firmware information for chip %d.\n", 4763 chip_id(sc)); 4764 return (EINVAL); 4765 } 4766 drv_fw = &fw_info->fw_h; 4767 4768 /* Read the header of the firmware on the card */ 4769 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4770 restart: 4771 rc = -t4_get_fw_hdr(sc, card_fw); 4772 if (rc != 0) { 4773 device_printf(sc->dev, 4774 "unable to read firmware header from card's flash: %d\n", 4775 rc); 4776 goto done; 4777 } 4778 4779 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4780 &already); 4781 if (rc == ERESTART) 4782 goto restart; 4783 if (rc != 0) 4784 goto done; 4785 4786 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4787 if (rc < 0 || state == DEV_STATE_ERR) { 4788 rc = -rc; 4789 device_printf(sc->dev, 4790 "failed to connect to the firmware: %d, %d. " 4791 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4792 #if 0 4793 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4794 "not responding properly to HELLO", &already) == ERESTART) 4795 goto restart; 4796 #endif 4797 goto done; 4798 } 4799 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4800 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4801 4802 if (rc == sc->pf) { 4803 sc->flags |= MASTER_PF; 4804 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4805 NULL, &already); 4806 if (rc == ERESTART) 4807 rc = 0; 4808 else if (rc != 0) 4809 goto done; 4810 } else if (state == DEV_STATE_UNINIT) { 4811 /* 4812 * We didn't get to be the master so we definitely won't be 4813 * configuring the chip. It's a bug if someone else hasn't 4814 * configured it already. 4815 */ 4816 device_printf(sc->dev, "couldn't be master(%d), " 4817 "device not already initialized either(%d). " 4818 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4819 rc = EPROTO; 4820 goto done; 4821 } else { 4822 /* 4823 * Some other PF is the master and has configured the chip. 4824 * This is allowed but untested. 4825 */ 4826 device_printf(sc->dev, "PF%d is master, device state %d. " 4827 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4828 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4829 sc->cfcsum = 0; 4830 rc = 0; 4831 } 4832 done: 4833 if (rc != 0 && sc->flags & FW_OK) { 4834 t4_fw_bye(sc, sc->mbox); 4835 sc->flags &= ~FW_OK; 4836 } 4837 free(card_fw, M_CXGBE); 4838 return (rc); 4839 } 4840 4841 static int 4842 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4843 uint32_t mtype, uint32_t moff) 4844 { 4845 struct fw_info *fw_info; 4846 const struct firmware *dcfg, *rcfg = NULL; 4847 const uint32_t *cfdata; 4848 uint32_t cflen, addr; 4849 int rc; 4850 4851 load_fw_module(sc, &dcfg, NULL); 4852 4853 /* Card specific interpretation of "default". */ 4854 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4855 if (pci_get_device(sc->dev) == 0x440a) 4856 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4857 if (is_fpga(sc)) 4858 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4859 } 4860 4861 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4862 if (dcfg == NULL) { 4863 device_printf(sc->dev, 4864 "KLD with default config is not available.\n"); 4865 rc = ENOENT; 4866 goto done; 4867 } 4868 cfdata = dcfg->data; 4869 cflen = dcfg->datasize & ~3; 4870 } else { 4871 char s[32]; 4872 4873 fw_info = find_fw_info(chip_id(sc)); 4874 if (fw_info == NULL) { 4875 device_printf(sc->dev, 4876 "unable to look up firmware information for chip %d.\n", 4877 chip_id(sc)); 4878 rc = EINVAL; 4879 goto done; 4880 } 4881 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4882 4883 rcfg = firmware_get(s); 4884 if (rcfg == NULL) { 4885 device_printf(sc->dev, 4886 "unable to load module \"%s\" for configuration " 4887 "profile \"%s\".\n", s, cfg_file); 4888 rc = ENOENT; 4889 goto done; 4890 } 4891 cfdata = rcfg->data; 4892 cflen = rcfg->datasize & ~3; 4893 } 4894 4895 if (cflen > FLASH_CFG_MAX_SIZE) { 4896 device_printf(sc->dev, 4897 "config file too long (%d, max allowed is %d).\n", 4898 cflen, FLASH_CFG_MAX_SIZE); 4899 rc = EINVAL; 4900 goto done; 4901 } 4902 4903 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4904 if (rc != 0) { 4905 device_printf(sc->dev, 4906 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4907 __func__, mtype, moff, cflen, rc); 4908 rc = EINVAL; 4909 goto done; 4910 } 4911 write_via_memwin(sc, 2, addr, cfdata, cflen); 4912 done: 4913 if (rcfg != NULL) 4914 firmware_put(rcfg, FIRMWARE_UNLOAD); 4915 unload_fw_module(sc, dcfg, NULL); 4916 return (rc); 4917 } 4918 4919 struct caps_allowed { 4920 uint16_t nbmcaps; 4921 uint16_t linkcaps; 4922 uint16_t switchcaps; 4923 uint16_t niccaps; 4924 uint16_t toecaps; 4925 uint16_t rdmacaps; 4926 uint16_t cryptocaps; 4927 uint16_t iscsicaps; 4928 uint16_t fcoecaps; 4929 }; 4930 4931 #define FW_PARAM_DEV(param) \ 4932 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4933 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4934 #define FW_PARAM_PFVF(param) \ 4935 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4936 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4937 4938 /* 4939 * Provide a configuration profile to the firmware and have it initialize the 4940 * chip accordingly. This may involve uploading a configuration file to the 4941 * card. 4942 */ 4943 static int 4944 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4945 const struct caps_allowed *caps_allowed) 4946 { 4947 int rc; 4948 struct fw_caps_config_cmd caps; 4949 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4950 4951 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4952 if (rc != 0) { 4953 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4954 return (rc); 4955 } 4956 4957 bzero(&caps, sizeof(caps)); 4958 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4959 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4960 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4961 mtype = 0; 4962 moff = 0; 4963 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4964 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4965 mtype = FW_MEMTYPE_FLASH; 4966 moff = t4_flash_cfg_addr(sc); 4967 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4968 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4969 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4970 FW_LEN16(caps)); 4971 } else { 4972 /* 4973 * Ask the firmware where it wants us to upload the config file. 4974 */ 4975 param = FW_PARAM_DEV(CF); 4976 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4977 if (rc != 0) { 4978 /* No support for config file? Shouldn't happen. */ 4979 device_printf(sc->dev, 4980 "failed to query config file location: %d.\n", rc); 4981 goto done; 4982 } 4983 mtype = G_FW_PARAMS_PARAM_Y(val); 4984 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 4985 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4986 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4987 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4988 FW_LEN16(caps)); 4989 4990 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 4991 if (rc != 0) { 4992 device_printf(sc->dev, 4993 "failed to upload config file to card: %d.\n", rc); 4994 goto done; 4995 } 4996 } 4997 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4998 if (rc != 0) { 4999 device_printf(sc->dev, "failed to pre-process config file: %d " 5000 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 5001 goto done; 5002 } 5003 5004 finicsum = be32toh(caps.finicsum); 5005 cfcsum = be32toh(caps.cfcsum); /* actual */ 5006 if (finicsum != cfcsum) { 5007 device_printf(sc->dev, 5008 "WARNING: config file checksum mismatch: %08x %08x\n", 5009 finicsum, cfcsum); 5010 } 5011 sc->cfcsum = cfcsum; 5012 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5013 5014 /* 5015 * Let the firmware know what features will (not) be used so it can tune 5016 * things accordingly. 5017 */ 5018 #define LIMIT_CAPS(x) do { \ 5019 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5020 } while (0) 5021 LIMIT_CAPS(nbm); 5022 LIMIT_CAPS(link); 5023 LIMIT_CAPS(switch); 5024 LIMIT_CAPS(nic); 5025 LIMIT_CAPS(toe); 5026 LIMIT_CAPS(rdma); 5027 LIMIT_CAPS(crypto); 5028 LIMIT_CAPS(iscsi); 5029 LIMIT_CAPS(fcoe); 5030 #undef LIMIT_CAPS 5031 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5032 /* 5033 * TOE and hashfilters are mutually exclusive. It is a config 5034 * file or firmware bug if both are reported as available. Try 5035 * to cope with the situation in non-debug builds by disabling 5036 * TOE. 5037 */ 5038 MPASS(caps.toecaps == 0); 5039 5040 caps.toecaps = 0; 5041 caps.rdmacaps = 0; 5042 caps.iscsicaps = 0; 5043 } 5044 5045 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5046 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5047 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5048 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5049 if (rc != 0) { 5050 device_printf(sc->dev, 5051 "failed to process config file: %d.\n", rc); 5052 goto done; 5053 } 5054 5055 t4_tweak_chip_settings(sc); 5056 set_params__pre_init(sc); 5057 5058 /* get basic stuff going */ 5059 rc = -t4_fw_initialize(sc, sc->mbox); 5060 if (rc != 0) { 5061 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5062 goto done; 5063 } 5064 done: 5065 return (rc); 5066 } 5067 5068 /* 5069 * Partition chip resources for use between various PFs, VFs, etc. 5070 */ 5071 static int 5072 partition_resources(struct adapter *sc) 5073 { 5074 char cfg_file[sizeof(t4_cfg_file)]; 5075 struct caps_allowed caps_allowed; 5076 int rc; 5077 bool fallback; 5078 5079 /* Only the master driver gets to configure the chip resources. */ 5080 MPASS(sc->flags & MASTER_PF); 5081 5082 #define COPY_CAPS(x) do { \ 5083 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5084 } while (0) 5085 bzero(&caps_allowed, sizeof(caps_allowed)); 5086 COPY_CAPS(nbm); 5087 COPY_CAPS(link); 5088 COPY_CAPS(switch); 5089 COPY_CAPS(nic); 5090 COPY_CAPS(toe); 5091 COPY_CAPS(rdma); 5092 COPY_CAPS(crypto); 5093 COPY_CAPS(iscsi); 5094 COPY_CAPS(fcoe); 5095 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5096 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5097 retry: 5098 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5099 if (rc != 0 && fallback) { 5100 dump_devlog(sc); 5101 device_printf(sc->dev, 5102 "failed (%d) to configure card with \"%s\" profile, " 5103 "will fall back to a basic configuration and retry.\n", 5104 rc, cfg_file); 5105 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5106 bzero(&caps_allowed, sizeof(caps_allowed)); 5107 COPY_CAPS(switch); 5108 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5109 fallback = false; 5110 goto retry; 5111 } 5112 #undef COPY_CAPS 5113 return (rc); 5114 } 5115 5116 /* 5117 * Retrieve parameters that are needed (or nice to have) very early. 5118 */ 5119 static int 5120 get_params__pre_init(struct adapter *sc) 5121 { 5122 int rc; 5123 uint32_t param[2], val[2]; 5124 5125 t4_get_version_info(sc); 5126 5127 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5128 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5129 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5130 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5131 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5132 5133 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5134 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5135 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5136 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5137 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5138 5139 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5140 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5141 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5142 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5143 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5144 5145 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5146 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5147 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5148 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5149 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5150 5151 param[0] = FW_PARAM_DEV(PORTVEC); 5152 param[1] = FW_PARAM_DEV(CCLK); 5153 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5154 if (rc != 0) { 5155 device_printf(sc->dev, 5156 "failed to query parameters (pre_init): %d.\n", rc); 5157 return (rc); 5158 } 5159 5160 sc->params.portvec = val[0]; 5161 sc->params.nports = bitcount32(val[0]); 5162 sc->params.vpd.cclk = val[1]; 5163 5164 /* Read device log parameters. */ 5165 rc = -t4_init_devlog_params(sc, 1); 5166 if (rc == 0) 5167 fixup_devlog_params(sc); 5168 else { 5169 device_printf(sc->dev, 5170 "failed to get devlog parameters: %d.\n", rc); 5171 rc = 0; /* devlog isn't critical for device operation */ 5172 } 5173 5174 return (rc); 5175 } 5176 5177 /* 5178 * Any params that need to be set before FW_INITIALIZE. 5179 */ 5180 static int 5181 set_params__pre_init(struct adapter *sc) 5182 { 5183 int rc = 0; 5184 uint32_t param, val; 5185 5186 if (chip_id(sc) >= CHELSIO_T6) { 5187 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5188 val = 1; 5189 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5190 /* firmwares < 1.20.1.0 do not have this param. */ 5191 if (rc == FW_EINVAL && 5192 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5193 rc = 0; 5194 } 5195 if (rc != 0) { 5196 device_printf(sc->dev, 5197 "failed to enable high priority filters :%d.\n", 5198 rc); 5199 } 5200 5201 param = FW_PARAM_DEV(PPOD_EDRAM); 5202 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5203 if (rc == 0 && val == 1) { 5204 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5205 &val); 5206 if (rc != 0) { 5207 device_printf(sc->dev, 5208 "failed to set PPOD_EDRAM: %d.\n", rc); 5209 } 5210 } 5211 } 5212 5213 /* Enable opaque VIIDs with firmwares that support it. */ 5214 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5215 val = 1; 5216 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5217 if (rc == 0 && val == 1) 5218 sc->params.viid_smt_extn_support = true; 5219 else 5220 sc->params.viid_smt_extn_support = false; 5221 5222 return (rc); 5223 } 5224 5225 /* 5226 * Retrieve various parameters that are of interest to the driver. The device 5227 * has been initialized by the firmware at this point. 5228 */ 5229 static int 5230 get_params__post_init(struct adapter *sc) 5231 { 5232 int rc; 5233 uint32_t param[7], val[7]; 5234 struct fw_caps_config_cmd caps; 5235 5236 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5237 param[1] = FW_PARAM_PFVF(EQ_START); 5238 param[2] = FW_PARAM_PFVF(FILTER_START); 5239 param[3] = FW_PARAM_PFVF(FILTER_END); 5240 param[4] = FW_PARAM_PFVF(L2T_START); 5241 param[5] = FW_PARAM_PFVF(L2T_END); 5242 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5243 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5244 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5245 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5246 if (rc != 0) { 5247 device_printf(sc->dev, 5248 "failed to query parameters (post_init): %d.\n", rc); 5249 return (rc); 5250 } 5251 5252 sc->sge.iq_start = val[0]; 5253 sc->sge.eq_start = val[1]; 5254 if ((int)val[3] > (int)val[2]) { 5255 sc->tids.ftid_base = val[2]; 5256 sc->tids.ftid_end = val[3]; 5257 sc->tids.nftids = val[3] - val[2] + 1; 5258 } 5259 sc->vres.l2t.start = val[4]; 5260 sc->vres.l2t.size = val[5] - val[4] + 1; 5261 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 5262 ("%s: L2 table size (%u) larger than expected (%u)", 5263 __func__, sc->vres.l2t.size, L2T_SIZE)); 5264 sc->params.core_vdd = val[6]; 5265 5266 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5267 param[1] = FW_PARAM_PFVF(EQ_END); 5268 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5269 if (rc != 0) { 5270 device_printf(sc->dev, 5271 "failed to query parameters (post_init2): %d.\n", rc); 5272 return (rc); 5273 } 5274 MPASS((int)val[0] >= sc->sge.iq_start); 5275 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5276 MPASS((int)val[1] >= sc->sge.eq_start); 5277 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5278 5279 if (chip_id(sc) >= CHELSIO_T6) { 5280 5281 sc->tids.tid_base = t4_read_reg(sc, 5282 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5283 5284 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5285 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5286 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5287 if (rc != 0) { 5288 device_printf(sc->dev, 5289 "failed to query hpfilter parameters: %d.\n", rc); 5290 return (rc); 5291 } 5292 if ((int)val[1] > (int)val[0]) { 5293 sc->tids.hpftid_base = val[0]; 5294 sc->tids.hpftid_end = val[1]; 5295 sc->tids.nhpftids = val[1] - val[0] + 1; 5296 5297 /* 5298 * These should go off if the layout changes and the 5299 * driver needs to catch up. 5300 */ 5301 MPASS(sc->tids.hpftid_base == 0); 5302 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5303 } 5304 5305 param[0] = FW_PARAM_PFVF(RAWF_START); 5306 param[1] = FW_PARAM_PFVF(RAWF_END); 5307 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5308 if (rc != 0) { 5309 device_printf(sc->dev, 5310 "failed to query rawf parameters: %d.\n", rc); 5311 return (rc); 5312 } 5313 if ((int)val[1] > (int)val[0]) { 5314 sc->rawf_base = val[0]; 5315 sc->nrawf = val[1] - val[0] + 1; 5316 } 5317 } 5318 5319 /* 5320 * MPSBGMAP is queried separately because only recent firmwares support 5321 * it as a parameter and we don't want the compound query above to fail 5322 * on older firmwares. 5323 */ 5324 param[0] = FW_PARAM_DEV(MPSBGMAP); 5325 val[0] = 0; 5326 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5327 if (rc == 0) 5328 sc->params.mps_bg_map = val[0]; 5329 else 5330 sc->params.mps_bg_map = 0; 5331 5332 /* 5333 * Determine whether the firmware supports the filter2 work request. 5334 * This is queried separately for the same reason as MPSBGMAP above. 5335 */ 5336 param[0] = FW_PARAM_DEV(FILTER2_WR); 5337 val[0] = 0; 5338 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5339 if (rc == 0) 5340 sc->params.filter2_wr_support = val[0] != 0; 5341 else 5342 sc->params.filter2_wr_support = 0; 5343 5344 /* 5345 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5346 * This is queried separately for the same reason as other params above. 5347 */ 5348 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5349 val[0] = 0; 5350 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5351 if (rc == 0) 5352 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5353 else 5354 sc->params.ulptx_memwrite_dsgl = false; 5355 5356 /* FW_RI_FR_NSMR_TPTE_WR support */ 5357 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5358 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5359 if (rc == 0) 5360 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5361 else 5362 sc->params.fr_nsmr_tpte_wr_support = false; 5363 5364 /* Support for 512 SGL entries per FR MR. */ 5365 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5366 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5367 if (rc == 0) 5368 sc->params.dev_512sgl_mr = val[0] != 0; 5369 else 5370 sc->params.dev_512sgl_mr = false; 5371 5372 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5373 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5374 if (rc == 0) 5375 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5376 else 5377 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5378 5379 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5380 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5381 if (rc == 0) { 5382 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5383 sc->params.nsched_cls = val[0]; 5384 } else 5385 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5386 5387 /* get capabilites */ 5388 bzero(&caps, sizeof(caps)); 5389 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5390 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5391 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5392 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5393 if (rc != 0) { 5394 device_printf(sc->dev, 5395 "failed to get card capabilities: %d.\n", rc); 5396 return (rc); 5397 } 5398 5399 #define READ_CAPS(x) do { \ 5400 sc->x = htobe16(caps.x); \ 5401 } while (0) 5402 READ_CAPS(nbmcaps); 5403 READ_CAPS(linkcaps); 5404 READ_CAPS(switchcaps); 5405 READ_CAPS(niccaps); 5406 READ_CAPS(toecaps); 5407 READ_CAPS(rdmacaps); 5408 READ_CAPS(cryptocaps); 5409 READ_CAPS(iscsicaps); 5410 READ_CAPS(fcoecaps); 5411 5412 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5413 MPASS(chip_id(sc) > CHELSIO_T4); 5414 MPASS(sc->toecaps == 0); 5415 sc->toecaps = 0; 5416 5417 param[0] = FW_PARAM_DEV(NTID); 5418 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5419 if (rc != 0) { 5420 device_printf(sc->dev, 5421 "failed to query HASHFILTER parameters: %d.\n", rc); 5422 return (rc); 5423 } 5424 sc->tids.ntids = val[0]; 5425 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5426 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5427 sc->tids.ntids -= sc->tids.nhpftids; 5428 } 5429 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5430 sc->params.hash_filter = 1; 5431 } 5432 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5433 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5434 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5435 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5436 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5437 if (rc != 0) { 5438 device_printf(sc->dev, 5439 "failed to query NIC parameters: %d.\n", rc); 5440 return (rc); 5441 } 5442 if ((int)val[1] > (int)val[0]) { 5443 sc->tids.etid_base = val[0]; 5444 sc->tids.etid_end = val[1]; 5445 sc->tids.netids = val[1] - val[0] + 1; 5446 sc->params.eo_wr_cred = val[2]; 5447 sc->params.ethoffload = 1; 5448 } 5449 } 5450 if (sc->toecaps) { 5451 /* query offload-related parameters */ 5452 param[0] = FW_PARAM_DEV(NTID); 5453 param[1] = FW_PARAM_PFVF(SERVER_START); 5454 param[2] = FW_PARAM_PFVF(SERVER_END); 5455 param[3] = FW_PARAM_PFVF(TDDP_START); 5456 param[4] = FW_PARAM_PFVF(TDDP_END); 5457 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5458 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5459 if (rc != 0) { 5460 device_printf(sc->dev, 5461 "failed to query TOE parameters: %d.\n", rc); 5462 return (rc); 5463 } 5464 sc->tids.ntids = val[0]; 5465 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5466 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5467 sc->tids.ntids -= sc->tids.nhpftids; 5468 } 5469 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5470 if ((int)val[2] > (int)val[1]) { 5471 sc->tids.stid_base = val[1]; 5472 sc->tids.nstids = val[2] - val[1] + 1; 5473 } 5474 sc->vres.ddp.start = val[3]; 5475 sc->vres.ddp.size = val[4] - val[3] + 1; 5476 sc->params.ofldq_wr_cred = val[5]; 5477 sc->params.offload = 1; 5478 } else { 5479 /* 5480 * The firmware attempts memfree TOE configuration for -SO cards 5481 * and will report toecaps=0 if it runs out of resources (this 5482 * depends on the config file). It may not report 0 for other 5483 * capabilities dependent on the TOE in this case. Set them to 5484 * 0 here so that the driver doesn't bother tracking resources 5485 * that will never be used. 5486 */ 5487 sc->iscsicaps = 0; 5488 sc->rdmacaps = 0; 5489 } 5490 if (sc->rdmacaps) { 5491 param[0] = FW_PARAM_PFVF(STAG_START); 5492 param[1] = FW_PARAM_PFVF(STAG_END); 5493 param[2] = FW_PARAM_PFVF(RQ_START); 5494 param[3] = FW_PARAM_PFVF(RQ_END); 5495 param[4] = FW_PARAM_PFVF(PBL_START); 5496 param[5] = FW_PARAM_PFVF(PBL_END); 5497 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5498 if (rc != 0) { 5499 device_printf(sc->dev, 5500 "failed to query RDMA parameters(1): %d.\n", rc); 5501 return (rc); 5502 } 5503 sc->vres.stag.start = val[0]; 5504 sc->vres.stag.size = val[1] - val[0] + 1; 5505 sc->vres.rq.start = val[2]; 5506 sc->vres.rq.size = val[3] - val[2] + 1; 5507 sc->vres.pbl.start = val[4]; 5508 sc->vres.pbl.size = val[5] - val[4] + 1; 5509 5510 param[0] = FW_PARAM_PFVF(SQRQ_START); 5511 param[1] = FW_PARAM_PFVF(SQRQ_END); 5512 param[2] = FW_PARAM_PFVF(CQ_START); 5513 param[3] = FW_PARAM_PFVF(CQ_END); 5514 param[4] = FW_PARAM_PFVF(OCQ_START); 5515 param[5] = FW_PARAM_PFVF(OCQ_END); 5516 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5517 if (rc != 0) { 5518 device_printf(sc->dev, 5519 "failed to query RDMA parameters(2): %d.\n", rc); 5520 return (rc); 5521 } 5522 sc->vres.qp.start = val[0]; 5523 sc->vres.qp.size = val[1] - val[0] + 1; 5524 sc->vres.cq.start = val[2]; 5525 sc->vres.cq.size = val[3] - val[2] + 1; 5526 sc->vres.ocq.start = val[4]; 5527 sc->vres.ocq.size = val[5] - val[4] + 1; 5528 5529 param[0] = FW_PARAM_PFVF(SRQ_START); 5530 param[1] = FW_PARAM_PFVF(SRQ_END); 5531 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5532 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5533 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5534 if (rc != 0) { 5535 device_printf(sc->dev, 5536 "failed to query RDMA parameters(3): %d.\n", rc); 5537 return (rc); 5538 } 5539 sc->vres.srq.start = val[0]; 5540 sc->vres.srq.size = val[1] - val[0] + 1; 5541 sc->params.max_ordird_qp = val[2]; 5542 sc->params.max_ird_adapter = val[3]; 5543 } 5544 if (sc->iscsicaps) { 5545 param[0] = FW_PARAM_PFVF(ISCSI_START); 5546 param[1] = FW_PARAM_PFVF(ISCSI_END); 5547 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5548 if (rc != 0) { 5549 device_printf(sc->dev, 5550 "failed to query iSCSI parameters: %d.\n", rc); 5551 return (rc); 5552 } 5553 sc->vres.iscsi.start = val[0]; 5554 sc->vres.iscsi.size = val[1] - val[0] + 1; 5555 } 5556 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5557 param[0] = FW_PARAM_PFVF(TLS_START); 5558 param[1] = FW_PARAM_PFVF(TLS_END); 5559 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5560 if (rc != 0) { 5561 device_printf(sc->dev, 5562 "failed to query TLS parameters: %d.\n", rc); 5563 return (rc); 5564 } 5565 sc->vres.key.start = val[0]; 5566 sc->vres.key.size = val[1] - val[0] + 1; 5567 } 5568 5569 /* 5570 * We've got the params we wanted to query directly from the firmware. 5571 * Grab some others via other means. 5572 */ 5573 t4_init_sge_params(sc); 5574 t4_init_tp_params(sc); 5575 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5576 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5577 5578 rc = t4_verify_chip_settings(sc); 5579 if (rc != 0) 5580 return (rc); 5581 t4_init_rx_buf_info(sc); 5582 5583 return (rc); 5584 } 5585 5586 #ifdef KERN_TLS 5587 static void 5588 ktls_tick(void *arg) 5589 { 5590 struct adapter *sc; 5591 uint32_t tstamp; 5592 5593 sc = arg; 5594 tstamp = tcp_ts_getticks(); 5595 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5596 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5597 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5598 } 5599 5600 static int 5601 t6_config_kern_tls(struct adapter *sc, bool enable) 5602 { 5603 int rc; 5604 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5605 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5606 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5607 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5608 5609 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5610 if (rc != 0) { 5611 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5612 enable ? "enable" : "disable", rc); 5613 return (rc); 5614 } 5615 5616 if (enable) { 5617 sc->flags |= KERN_TLS_ON; 5618 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5619 C_HARDCLOCK); 5620 } else { 5621 sc->flags &= ~KERN_TLS_ON; 5622 callout_stop(&sc->ktls_tick); 5623 } 5624 5625 return (rc); 5626 } 5627 #endif 5628 5629 static int 5630 set_params__post_init(struct adapter *sc) 5631 { 5632 uint32_t mask, param, val; 5633 #ifdef TCP_OFFLOAD 5634 int i, v, shift; 5635 #endif 5636 5637 /* ask for encapsulated CPLs */ 5638 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5639 val = 1; 5640 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5641 5642 /* Enable 32b port caps if the firmware supports it. */ 5643 param = FW_PARAM_PFVF(PORT_CAPS32); 5644 val = 1; 5645 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5646 sc->params.port_caps32 = 1; 5647 5648 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5649 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5650 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5651 V_MASKFILTER(val - 1)); 5652 5653 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5654 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5655 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5656 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5657 val = 0; 5658 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5659 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5660 F_ATTACKFILTERENABLE); 5661 val |= F_DROPERRORATTACK; 5662 } 5663 if (t4_drop_ip_fragments != 0) { 5664 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5665 F_FRAGMENTDROP); 5666 val |= F_DROPERRORFRAG; 5667 } 5668 if (t4_drop_pkts_with_l2_errors != 0) 5669 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5670 if (t4_drop_pkts_with_l3_errors != 0) { 5671 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5672 F_DROPERRORCSUMIP; 5673 } 5674 if (t4_drop_pkts_with_l4_errors != 0) { 5675 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5676 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5677 } 5678 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5679 5680 #ifdef TCP_OFFLOAD 5681 /* 5682 * Override the TOE timers with user provided tunables. This is not the 5683 * recommended way to change the timers (the firmware config file is) so 5684 * these tunables are not documented. 5685 * 5686 * All the timer tunables are in microseconds. 5687 */ 5688 if (t4_toe_keepalive_idle != 0) { 5689 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5690 v &= M_KEEPALIVEIDLE; 5691 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5692 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5693 } 5694 if (t4_toe_keepalive_interval != 0) { 5695 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5696 v &= M_KEEPALIVEINTVL; 5697 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5698 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5699 } 5700 if (t4_toe_keepalive_count != 0) { 5701 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5702 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5703 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5704 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5705 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5706 } 5707 if (t4_toe_rexmt_min != 0) { 5708 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5709 v &= M_RXTMIN; 5710 t4_set_reg_field(sc, A_TP_RXT_MIN, 5711 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5712 } 5713 if (t4_toe_rexmt_max != 0) { 5714 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5715 v &= M_RXTMAX; 5716 t4_set_reg_field(sc, A_TP_RXT_MAX, 5717 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5718 } 5719 if (t4_toe_rexmt_count != 0) { 5720 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5721 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5722 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5723 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5724 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5725 } 5726 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5727 if (t4_toe_rexmt_backoff[i] != -1) { 5728 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5729 shift = (i & 3) << 3; 5730 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5731 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5732 } 5733 } 5734 #endif 5735 5736 /* 5737 * Limit TOE connections to 2 reassembly "islands". This is 5738 * required to permit migrating TOE connections to either 5739 * ULP_MODE_TCPDDP or UPL_MODE_TLS. 5740 */ 5741 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE), 5742 V_PASSMODE(2)); 5743 5744 #ifdef KERN_TLS 5745 if (is_ktls(sc)) { 5746 sc->tlst.inline_keys = t4_tls_inline_keys; 5747 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5748 if (t4_kern_tls != 0 && is_t6(sc)) 5749 t6_config_kern_tls(sc, true); 5750 } 5751 #endif 5752 return (0); 5753 } 5754 5755 #undef FW_PARAM_PFVF 5756 #undef FW_PARAM_DEV 5757 5758 static void 5759 t4_set_desc(struct adapter *sc) 5760 { 5761 char buf[128]; 5762 struct adapter_params *p = &sc->params; 5763 5764 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 5765 5766 device_set_desc_copy(sc->dev, buf); 5767 } 5768 5769 static inline void 5770 ifmedia_add4(struct ifmedia *ifm, int m) 5771 { 5772 5773 ifmedia_add(ifm, m, 0, NULL); 5774 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5775 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5776 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5777 } 5778 5779 /* 5780 * This is the selected media, which is not quite the same as the active media. 5781 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5782 * and active are not the same, and "media: Ethernet selected" otherwise. 5783 */ 5784 static void 5785 set_current_media(struct port_info *pi) 5786 { 5787 struct link_config *lc; 5788 struct ifmedia *ifm; 5789 int mword; 5790 u_int speed; 5791 5792 PORT_LOCK_ASSERT_OWNED(pi); 5793 5794 /* Leave current media alone if it's already set to IFM_NONE. */ 5795 ifm = &pi->media; 5796 if (ifm->ifm_cur != NULL && 5797 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5798 return; 5799 5800 lc = &pi->link_cfg; 5801 if (lc->requested_aneg != AUTONEG_DISABLE && 5802 lc->pcaps & FW_PORT_CAP32_ANEG) { 5803 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5804 return; 5805 } 5806 mword = IFM_ETHER | IFM_FDX; 5807 if (lc->requested_fc & PAUSE_TX) 5808 mword |= IFM_ETH_TXPAUSE; 5809 if (lc->requested_fc & PAUSE_RX) 5810 mword |= IFM_ETH_RXPAUSE; 5811 if (lc->requested_speed == 0) 5812 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5813 else 5814 speed = lc->requested_speed; 5815 mword |= port_mword(pi, speed_to_fwcap(speed)); 5816 ifmedia_set(ifm, mword); 5817 } 5818 5819 /* 5820 * Returns true if the ifmedia list for the port cannot change. 5821 */ 5822 static bool 5823 fixed_ifmedia(struct port_info *pi) 5824 { 5825 5826 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5827 pi->port_type == FW_PORT_TYPE_BT_XFI || 5828 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5829 pi->port_type == FW_PORT_TYPE_KX4 || 5830 pi->port_type == FW_PORT_TYPE_KX || 5831 pi->port_type == FW_PORT_TYPE_KR || 5832 pi->port_type == FW_PORT_TYPE_BP_AP || 5833 pi->port_type == FW_PORT_TYPE_BP4_AP || 5834 pi->port_type == FW_PORT_TYPE_BP40_BA || 5835 pi->port_type == FW_PORT_TYPE_KR4_100G || 5836 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5837 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5838 } 5839 5840 static void 5841 build_medialist(struct port_info *pi) 5842 { 5843 uint32_t ss, speed; 5844 int unknown, mword, bit; 5845 struct link_config *lc; 5846 struct ifmedia *ifm; 5847 5848 PORT_LOCK_ASSERT_OWNED(pi); 5849 5850 if (pi->flags & FIXED_IFMEDIA) 5851 return; 5852 5853 /* 5854 * Rebuild the ifmedia list. 5855 */ 5856 ifm = &pi->media; 5857 ifmedia_removeall(ifm); 5858 lc = &pi->link_cfg; 5859 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5860 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5861 MPASS(ss != 0); 5862 no_media: 5863 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5864 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5865 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5866 return; 5867 } 5868 5869 unknown = 0; 5870 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5871 speed = 1 << bit; 5872 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5873 if (ss & speed) { 5874 mword = port_mword(pi, speed); 5875 if (mword == IFM_NONE) { 5876 goto no_media; 5877 } else if (mword == IFM_UNKNOWN) 5878 unknown++; 5879 else 5880 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5881 } 5882 } 5883 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5884 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5885 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5886 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5887 5888 set_current_media(pi); 5889 } 5890 5891 /* 5892 * Initialize the requested fields in the link config based on driver tunables. 5893 */ 5894 static void 5895 init_link_config(struct port_info *pi) 5896 { 5897 struct link_config *lc = &pi->link_cfg; 5898 5899 PORT_LOCK_ASSERT_OWNED(pi); 5900 5901 lc->requested_caps = 0; 5902 lc->requested_speed = 0; 5903 5904 if (t4_autoneg == 0) 5905 lc->requested_aneg = AUTONEG_DISABLE; 5906 else if (t4_autoneg == 1) 5907 lc->requested_aneg = AUTONEG_ENABLE; 5908 else 5909 lc->requested_aneg = AUTONEG_AUTO; 5910 5911 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5912 PAUSE_AUTONEG); 5913 5914 if (t4_fec & FEC_AUTO) 5915 lc->requested_fec = FEC_AUTO; 5916 else if (t4_fec == 0) 5917 lc->requested_fec = FEC_NONE; 5918 else { 5919 /* -1 is handled by the FEC_AUTO block above and not here. */ 5920 lc->requested_fec = t4_fec & 5921 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5922 if (lc->requested_fec == 0) 5923 lc->requested_fec = FEC_AUTO; 5924 } 5925 if (t4_force_fec < 0) 5926 lc->force_fec = -1; 5927 else if (t4_force_fec > 0) 5928 lc->force_fec = 1; 5929 else 5930 lc->force_fec = 0; 5931 } 5932 5933 /* 5934 * Makes sure that all requested settings comply with what's supported by the 5935 * port. Returns the number of settings that were invalid and had to be fixed. 5936 */ 5937 static int 5938 fixup_link_config(struct port_info *pi) 5939 { 5940 int n = 0; 5941 struct link_config *lc = &pi->link_cfg; 5942 uint32_t fwspeed; 5943 5944 PORT_LOCK_ASSERT_OWNED(pi); 5945 5946 /* Speed (when not autonegotiating) */ 5947 if (lc->requested_speed != 0) { 5948 fwspeed = speed_to_fwcap(lc->requested_speed); 5949 if ((fwspeed & lc->pcaps) == 0) { 5950 n++; 5951 lc->requested_speed = 0; 5952 } 5953 } 5954 5955 /* Link autonegotiation */ 5956 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 5957 lc->requested_aneg == AUTONEG_DISABLE || 5958 lc->requested_aneg == AUTONEG_AUTO); 5959 if (lc->requested_aneg == AUTONEG_ENABLE && 5960 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 5961 n++; 5962 lc->requested_aneg = AUTONEG_AUTO; 5963 } 5964 5965 /* Flow control */ 5966 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 5967 if (lc->requested_fc & PAUSE_TX && 5968 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 5969 n++; 5970 lc->requested_fc &= ~PAUSE_TX; 5971 } 5972 if (lc->requested_fc & PAUSE_RX && 5973 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 5974 n++; 5975 lc->requested_fc &= ~PAUSE_RX; 5976 } 5977 if (!(lc->requested_fc & PAUSE_AUTONEG) && 5978 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 5979 n++; 5980 lc->requested_fc |= PAUSE_AUTONEG; 5981 } 5982 5983 /* FEC */ 5984 if ((lc->requested_fec & FEC_RS && 5985 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 5986 (lc->requested_fec & FEC_BASER_RS && 5987 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 5988 n++; 5989 lc->requested_fec = FEC_AUTO; 5990 } 5991 5992 return (n); 5993 } 5994 5995 /* 5996 * Apply the requested L1 settings, which are expected to be valid, to the 5997 * hardware. 5998 */ 5999 static int 6000 apply_link_config(struct port_info *pi) 6001 { 6002 struct adapter *sc = pi->adapter; 6003 struct link_config *lc = &pi->link_cfg; 6004 int rc; 6005 6006 #ifdef INVARIANTS 6007 ASSERT_SYNCHRONIZED_OP(sc); 6008 PORT_LOCK_ASSERT_OWNED(pi); 6009 6010 if (lc->requested_aneg == AUTONEG_ENABLE) 6011 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6012 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6013 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6014 if (lc->requested_fc & PAUSE_TX) 6015 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6016 if (lc->requested_fc & PAUSE_RX) 6017 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6018 if (lc->requested_fec & FEC_RS) 6019 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6020 if (lc->requested_fec & FEC_BASER_RS) 6021 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6022 #endif 6023 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6024 if (rc != 0) { 6025 /* Don't complain if the VF driver gets back an EPERM. */ 6026 if (!(sc->flags & IS_VF) || rc != FW_EPERM) 6027 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6028 } else { 6029 /* 6030 * An L1_CFG will almost always result in a link-change event if 6031 * the link is up, and the driver will refresh the actual 6032 * fec/fc/etc. when the notification is processed. If the link 6033 * is down then the actual settings are meaningless. 6034 * 6035 * This takes care of the case where a change in the L1 settings 6036 * may not result in a notification. 6037 */ 6038 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6039 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6040 } 6041 return (rc); 6042 } 6043 6044 #define FW_MAC_EXACT_CHUNK 7 6045 struct mcaddr_ctx { 6046 if_t ifp; 6047 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6048 uint64_t hash; 6049 int i; 6050 int del; 6051 int rc; 6052 }; 6053 6054 static u_int 6055 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6056 { 6057 struct mcaddr_ctx *ctx = arg; 6058 struct vi_info *vi = if_getsoftc(ctx->ifp); 6059 struct port_info *pi = vi->pi; 6060 struct adapter *sc = pi->adapter; 6061 6062 if (ctx->rc < 0) 6063 return (0); 6064 6065 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6066 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6067 ctx->i++; 6068 6069 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6070 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6071 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6072 if (ctx->rc < 0) { 6073 int j; 6074 6075 for (j = 0; j < ctx->i; j++) { 6076 if_printf(ctx->ifp, 6077 "failed to add mc address" 6078 " %02x:%02x:%02x:" 6079 "%02x:%02x:%02x rc=%d\n", 6080 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6081 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6082 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6083 -ctx->rc); 6084 } 6085 return (0); 6086 } 6087 ctx->del = 0; 6088 ctx->i = 0; 6089 } 6090 6091 return (1); 6092 } 6093 6094 /* 6095 * Program the port's XGMAC based on parameters in ifnet. The caller also 6096 * indicates which parameters should be programmed (the rest are left alone). 6097 */ 6098 int 6099 update_mac_settings(if_t ifp, int flags) 6100 { 6101 int rc = 0; 6102 struct vi_info *vi = if_getsoftc(ifp); 6103 struct port_info *pi = vi->pi; 6104 struct adapter *sc = pi->adapter; 6105 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6106 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6107 6108 ASSERT_SYNCHRONIZED_OP(sc); 6109 KASSERT(flags, ("%s: not told what to update.", __func__)); 6110 6111 if (flags & XGMAC_MTU) 6112 mtu = if_getmtu(ifp); 6113 6114 if (flags & XGMAC_PROMISC) 6115 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0; 6116 6117 if (flags & XGMAC_ALLMULTI) 6118 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0; 6119 6120 if (flags & XGMAC_VLANEX) 6121 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6122 6123 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6124 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6125 allmulti, 1, vlanex, false); 6126 if (rc) { 6127 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6128 rc); 6129 return (rc); 6130 } 6131 } 6132 6133 if (flags & XGMAC_UCADDR) { 6134 uint8_t ucaddr[ETHER_ADDR_LEN]; 6135 6136 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr)); 6137 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6138 ucaddr, true, &vi->smt_idx); 6139 if (rc < 0) { 6140 rc = -rc; 6141 if_printf(ifp, "change_mac failed: %d\n", rc); 6142 return (rc); 6143 } else { 6144 vi->xact_addr_filt = rc; 6145 rc = 0; 6146 } 6147 } 6148 6149 if (flags & XGMAC_MCADDRS) { 6150 struct epoch_tracker et; 6151 struct mcaddr_ctx ctx; 6152 int j; 6153 6154 ctx.ifp = ifp; 6155 ctx.hash = 0; 6156 ctx.i = 0; 6157 ctx.del = 1; 6158 ctx.rc = 0; 6159 /* 6160 * Unlike other drivers, we accumulate list of pointers into 6161 * interface address lists and we need to keep it safe even 6162 * after if_foreach_llmaddr() returns, thus we must enter the 6163 * network epoch. 6164 */ 6165 NET_EPOCH_ENTER(et); 6166 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6167 if (ctx.rc < 0) { 6168 NET_EPOCH_EXIT(et); 6169 rc = -ctx.rc; 6170 return (rc); 6171 } 6172 if (ctx.i > 0) { 6173 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6174 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6175 NET_EPOCH_EXIT(et); 6176 if (rc < 0) { 6177 rc = -rc; 6178 for (j = 0; j < ctx.i; j++) { 6179 if_printf(ifp, 6180 "failed to add mcast address" 6181 " %02x:%02x:%02x:" 6182 "%02x:%02x:%02x rc=%d\n", 6183 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6184 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6185 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6186 rc); 6187 } 6188 return (rc); 6189 } 6190 ctx.del = 0; 6191 } else 6192 NET_EPOCH_EXIT(et); 6193 6194 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6195 if (rc != 0) 6196 if_printf(ifp, "failed to set mcast address hash: %d\n", 6197 rc); 6198 if (ctx.del == 0) { 6199 /* We clobbered the VXLAN entry if there was one. */ 6200 pi->vxlan_tcam_entry = false; 6201 } 6202 } 6203 6204 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6205 pi->vxlan_tcam_entry == false) { 6206 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6207 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6208 true); 6209 if (rc < 0) { 6210 rc = -rc; 6211 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6212 rc); 6213 } else { 6214 MPASS(rc == sc->rawf_base + pi->port_id); 6215 rc = 0; 6216 pi->vxlan_tcam_entry = true; 6217 } 6218 } 6219 6220 return (rc); 6221 } 6222 6223 /* 6224 * {begin|end}_synchronized_op must be called from the same thread. 6225 */ 6226 int 6227 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6228 char *wmesg) 6229 { 6230 int rc, pri; 6231 6232 #ifdef WITNESS 6233 /* the caller thinks it's ok to sleep, but is it really? */ 6234 if (flags & SLEEP_OK) 6235 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6236 "begin_synchronized_op"); 6237 #endif 6238 6239 if (INTR_OK) 6240 pri = PCATCH; 6241 else 6242 pri = 0; 6243 6244 ADAPTER_LOCK(sc); 6245 for (;;) { 6246 6247 if (vi && IS_DETACHING(vi)) { 6248 rc = ENXIO; 6249 goto done; 6250 } 6251 6252 if (!IS_BUSY(sc)) { 6253 rc = 0; 6254 break; 6255 } 6256 6257 if (!(flags & SLEEP_OK)) { 6258 rc = EBUSY; 6259 goto done; 6260 } 6261 6262 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6263 rc = EINTR; 6264 goto done; 6265 } 6266 } 6267 6268 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6269 SET_BUSY(sc); 6270 #ifdef INVARIANTS 6271 sc->last_op = wmesg; 6272 sc->last_op_thr = curthread; 6273 sc->last_op_flags = flags; 6274 #endif 6275 6276 done: 6277 if (!(flags & HOLD_LOCK) || rc) 6278 ADAPTER_UNLOCK(sc); 6279 6280 return (rc); 6281 } 6282 6283 /* 6284 * Tell if_ioctl and if_init that the VI is going away. This is 6285 * special variant of begin_synchronized_op and must be paired with a 6286 * call to end_vi_detach. 6287 */ 6288 void 6289 begin_vi_detach(struct adapter *sc, struct vi_info *vi) 6290 { 6291 ADAPTER_LOCK(sc); 6292 SET_DETACHING(vi); 6293 wakeup(&sc->flags); 6294 while (IS_BUSY(sc)) 6295 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6296 SET_BUSY(sc); 6297 #ifdef INVARIANTS 6298 sc->last_op = "t4detach"; 6299 sc->last_op_thr = curthread; 6300 sc->last_op_flags = 0; 6301 #endif 6302 ADAPTER_UNLOCK(sc); 6303 } 6304 6305 void 6306 end_vi_detach(struct adapter *sc, struct vi_info *vi) 6307 { 6308 ADAPTER_LOCK(sc); 6309 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6310 CLR_BUSY(sc); 6311 CLR_DETACHING(vi); 6312 wakeup(&sc->flags); 6313 ADAPTER_UNLOCK(sc); 6314 } 6315 6316 /* 6317 * {begin|end}_synchronized_op must be called from the same thread. 6318 */ 6319 void 6320 end_synchronized_op(struct adapter *sc, int flags) 6321 { 6322 6323 if (flags & LOCK_HELD) 6324 ADAPTER_LOCK_ASSERT_OWNED(sc); 6325 else 6326 ADAPTER_LOCK(sc); 6327 6328 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6329 CLR_BUSY(sc); 6330 wakeup(&sc->flags); 6331 ADAPTER_UNLOCK(sc); 6332 } 6333 6334 static int 6335 cxgbe_init_synchronized(struct vi_info *vi) 6336 { 6337 struct port_info *pi = vi->pi; 6338 struct adapter *sc = pi->adapter; 6339 if_t ifp = vi->ifp; 6340 int rc = 0, i; 6341 struct sge_txq *txq; 6342 6343 ASSERT_SYNCHRONIZED_OP(sc); 6344 6345 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6346 return (0); /* already running */ 6347 6348 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6349 return (rc); /* error message displayed already */ 6350 6351 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6352 return (rc); /* error message displayed already */ 6353 6354 rc = update_mac_settings(ifp, XGMAC_ALL); 6355 if (rc) 6356 goto done; /* error message displayed already */ 6357 6358 PORT_LOCK(pi); 6359 if (pi->up_vis == 0) { 6360 t4_update_port_info(pi); 6361 fixup_link_config(pi); 6362 build_medialist(pi); 6363 apply_link_config(pi); 6364 } 6365 6366 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6367 if (rc != 0) { 6368 if_printf(ifp, "enable_vi failed: %d\n", rc); 6369 PORT_UNLOCK(pi); 6370 goto done; 6371 } 6372 6373 /* 6374 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6375 * if this changes. 6376 */ 6377 6378 for_each_txq(vi, i, txq) { 6379 TXQ_LOCK(txq); 6380 txq->eq.flags |= EQ_ENABLED; 6381 TXQ_UNLOCK(txq); 6382 } 6383 6384 /* 6385 * The first iq of the first port to come up is used for tracing. 6386 */ 6387 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6388 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6389 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6390 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6391 V_QUEUENUMBER(sc->traceq)); 6392 pi->flags |= HAS_TRACEQ; 6393 } 6394 6395 /* all ok */ 6396 pi->up_vis++; 6397 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 6398 if (pi->link_cfg.link_ok) 6399 t4_os_link_changed(pi); 6400 PORT_UNLOCK(pi); 6401 6402 mtx_lock(&vi->tick_mtx); 6403 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 6404 callout_reset(&vi->tick, hz, vi_tick, vi); 6405 else 6406 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6407 mtx_unlock(&vi->tick_mtx); 6408 done: 6409 if (rc != 0) 6410 cxgbe_uninit_synchronized(vi); 6411 6412 return (rc); 6413 } 6414 6415 /* 6416 * Idempotent. 6417 */ 6418 static int 6419 cxgbe_uninit_synchronized(struct vi_info *vi) 6420 { 6421 struct port_info *pi = vi->pi; 6422 struct adapter *sc = pi->adapter; 6423 if_t ifp = vi->ifp; 6424 int rc, i; 6425 struct sge_txq *txq; 6426 6427 ASSERT_SYNCHRONIZED_OP(sc); 6428 6429 if (!(vi->flags & VI_INIT_DONE)) { 6430 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6431 KASSERT(0, ("uninited VI is running")); 6432 if_printf(ifp, "uninited VI with running ifnet. " 6433 "vi->flags 0x%016lx, if_flags 0x%08x, " 6434 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp), 6435 if_getdrvflags(ifp)); 6436 } 6437 return (0); 6438 } 6439 6440 /* 6441 * Disable the VI so that all its data in either direction is discarded 6442 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6443 * tick) intact as the TP can deliver negative advice or data that it's 6444 * holding in its RAM (for an offloaded connection) even after the VI is 6445 * disabled. 6446 */ 6447 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6448 if (rc) { 6449 if_printf(ifp, "disable_vi failed: %d\n", rc); 6450 return (rc); 6451 } 6452 6453 for_each_txq(vi, i, txq) { 6454 TXQ_LOCK(txq); 6455 txq->eq.flags &= ~EQ_ENABLED; 6456 TXQ_UNLOCK(txq); 6457 } 6458 6459 mtx_lock(&vi->tick_mtx); 6460 callout_stop(&vi->tick); 6461 mtx_unlock(&vi->tick_mtx); 6462 6463 PORT_LOCK(pi); 6464 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6465 PORT_UNLOCK(pi); 6466 return (0); 6467 } 6468 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 6469 pi->up_vis--; 6470 if (pi->up_vis > 0) { 6471 PORT_UNLOCK(pi); 6472 return (0); 6473 } 6474 6475 pi->link_cfg.link_ok = false; 6476 pi->link_cfg.speed = 0; 6477 pi->link_cfg.link_down_rc = 255; 6478 t4_os_link_changed(pi); 6479 PORT_UNLOCK(pi); 6480 6481 return (0); 6482 } 6483 6484 /* 6485 * It is ok for this function to fail midway and return right away. t4_detach 6486 * will walk the entire sc->irq list and clean up whatever is valid. 6487 */ 6488 int 6489 t4_setup_intr_handlers(struct adapter *sc) 6490 { 6491 int rc, rid, p, q, v; 6492 char s[8]; 6493 struct irq *irq; 6494 struct port_info *pi; 6495 struct vi_info *vi; 6496 struct sge *sge = &sc->sge; 6497 struct sge_rxq *rxq; 6498 #ifdef TCP_OFFLOAD 6499 struct sge_ofld_rxq *ofld_rxq; 6500 #endif 6501 #ifdef DEV_NETMAP 6502 struct sge_nm_rxq *nm_rxq; 6503 #endif 6504 #ifdef RSS 6505 int nbuckets = rss_getnumbuckets(); 6506 #endif 6507 6508 /* 6509 * Setup interrupts. 6510 */ 6511 irq = &sc->irq[0]; 6512 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6513 if (forwarding_intr_to_fwq(sc)) 6514 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6515 6516 /* Multiple interrupts. */ 6517 if (sc->flags & IS_VF) 6518 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6519 ("%s: too few intr.", __func__)); 6520 else 6521 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6522 ("%s: too few intr.", __func__)); 6523 6524 /* The first one is always error intr on PFs */ 6525 if (!(sc->flags & IS_VF)) { 6526 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6527 if (rc != 0) 6528 return (rc); 6529 irq++; 6530 rid++; 6531 } 6532 6533 /* The second one is always the firmware event queue (first on VFs) */ 6534 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6535 if (rc != 0) 6536 return (rc); 6537 irq++; 6538 rid++; 6539 6540 for_each_port(sc, p) { 6541 pi = sc->port[p]; 6542 for_each_vi(pi, v, vi) { 6543 vi->first_intr = rid - 1; 6544 6545 if (vi->nnmrxq > 0) { 6546 int n = max(vi->nrxq, vi->nnmrxq); 6547 6548 rxq = &sge->rxq[vi->first_rxq]; 6549 #ifdef DEV_NETMAP 6550 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6551 #endif 6552 for (q = 0; q < n; q++) { 6553 snprintf(s, sizeof(s), "%x%c%x", p, 6554 'a' + v, q); 6555 if (q < vi->nrxq) 6556 irq->rxq = rxq++; 6557 #ifdef DEV_NETMAP 6558 if (q < vi->nnmrxq) 6559 irq->nm_rxq = nm_rxq++; 6560 6561 if (irq->nm_rxq != NULL && 6562 irq->rxq == NULL) { 6563 /* Netmap rx only */ 6564 rc = t4_alloc_irq(sc, irq, rid, 6565 t4_nm_intr, irq->nm_rxq, s); 6566 } 6567 if (irq->nm_rxq != NULL && 6568 irq->rxq != NULL) { 6569 /* NIC and Netmap rx */ 6570 rc = t4_alloc_irq(sc, irq, rid, 6571 t4_vi_intr, irq, s); 6572 } 6573 #endif 6574 if (irq->rxq != NULL && 6575 irq->nm_rxq == NULL) { 6576 /* NIC rx only */ 6577 rc = t4_alloc_irq(sc, irq, rid, 6578 t4_intr, irq->rxq, s); 6579 } 6580 if (rc != 0) 6581 return (rc); 6582 #ifdef RSS 6583 if (q < vi->nrxq) { 6584 bus_bind_intr(sc->dev, irq->res, 6585 rss_getcpu(q % nbuckets)); 6586 } 6587 #endif 6588 irq++; 6589 rid++; 6590 vi->nintr++; 6591 } 6592 } else { 6593 for_each_rxq(vi, q, rxq) { 6594 snprintf(s, sizeof(s), "%x%c%x", p, 6595 'a' + v, q); 6596 rc = t4_alloc_irq(sc, irq, rid, 6597 t4_intr, rxq, s); 6598 if (rc != 0) 6599 return (rc); 6600 #ifdef RSS 6601 bus_bind_intr(sc->dev, irq->res, 6602 rss_getcpu(q % nbuckets)); 6603 #endif 6604 irq++; 6605 rid++; 6606 vi->nintr++; 6607 } 6608 } 6609 #ifdef TCP_OFFLOAD 6610 for_each_ofld_rxq(vi, q, ofld_rxq) { 6611 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6612 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6613 ofld_rxq, s); 6614 if (rc != 0) 6615 return (rc); 6616 irq++; 6617 rid++; 6618 vi->nintr++; 6619 } 6620 #endif 6621 } 6622 } 6623 MPASS(irq == &sc->irq[sc->intr_count]); 6624 6625 return (0); 6626 } 6627 6628 static void 6629 write_global_rss_key(struct adapter *sc) 6630 { 6631 #ifdef RSS 6632 int i; 6633 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6634 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6635 6636 CTASSERT(RSS_KEYSIZE == 40); 6637 6638 rss_getkey((void *)&raw_rss_key[0]); 6639 for (i = 0; i < nitems(rss_key); i++) { 6640 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6641 } 6642 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6643 #endif 6644 } 6645 6646 /* 6647 * Idempotent. 6648 */ 6649 static int 6650 adapter_full_init(struct adapter *sc) 6651 { 6652 int rc, i; 6653 6654 ASSERT_SYNCHRONIZED_OP(sc); 6655 6656 /* 6657 * queues that belong to the adapter (not any particular port). 6658 */ 6659 rc = t4_setup_adapter_queues(sc); 6660 if (rc != 0) 6661 return (rc); 6662 6663 for (i = 0; i < nitems(sc->tq); i++) { 6664 if (sc->tq[i] != NULL) 6665 continue; 6666 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6667 taskqueue_thread_enqueue, &sc->tq[i]); 6668 if (sc->tq[i] == NULL) { 6669 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6670 return (ENOMEM); 6671 } 6672 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6673 device_get_nameunit(sc->dev), i); 6674 } 6675 6676 if (!(sc->flags & IS_VF)) { 6677 write_global_rss_key(sc); 6678 t4_intr_enable(sc); 6679 } 6680 return (0); 6681 } 6682 6683 int 6684 adapter_init(struct adapter *sc) 6685 { 6686 int rc; 6687 6688 ASSERT_SYNCHRONIZED_OP(sc); 6689 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6690 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6691 ("%s: FULL_INIT_DONE already", __func__)); 6692 6693 rc = adapter_full_init(sc); 6694 if (rc != 0) 6695 adapter_full_uninit(sc); 6696 else 6697 sc->flags |= FULL_INIT_DONE; 6698 6699 return (rc); 6700 } 6701 6702 /* 6703 * Idempotent. 6704 */ 6705 static void 6706 adapter_full_uninit(struct adapter *sc) 6707 { 6708 int i; 6709 6710 t4_teardown_adapter_queues(sc); 6711 6712 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 6713 taskqueue_free(sc->tq[i]); 6714 sc->tq[i] = NULL; 6715 } 6716 6717 sc->flags &= ~FULL_INIT_DONE; 6718 } 6719 6720 #ifdef RSS 6721 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6722 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6723 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6724 RSS_HASHTYPE_RSS_UDP_IPV6) 6725 6726 /* Translates kernel hash types to hardware. */ 6727 static int 6728 hashconfig_to_hashen(int hashconfig) 6729 { 6730 int hashen = 0; 6731 6732 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6733 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6734 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6735 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6736 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6737 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6738 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6739 } 6740 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6741 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6742 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6743 } 6744 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6745 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6746 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6747 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6748 6749 return (hashen); 6750 } 6751 6752 /* Translates hardware hash types to kernel. */ 6753 static int 6754 hashen_to_hashconfig(int hashen) 6755 { 6756 int hashconfig = 0; 6757 6758 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6759 /* 6760 * If UDP hashing was enabled it must have been enabled for 6761 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6762 * enabling any 4-tuple hash is nonsense configuration. 6763 */ 6764 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6765 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6766 6767 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6768 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6769 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6770 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6771 } 6772 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6773 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6774 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6775 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6776 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6777 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6778 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6779 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6780 6781 return (hashconfig); 6782 } 6783 #endif 6784 6785 /* 6786 * Idempotent. 6787 */ 6788 static int 6789 vi_full_init(struct vi_info *vi) 6790 { 6791 struct adapter *sc = vi->adapter; 6792 struct sge_rxq *rxq; 6793 int rc, i, j; 6794 #ifdef RSS 6795 int nbuckets = rss_getnumbuckets(); 6796 int hashconfig = rss_gethashconfig(); 6797 int extra; 6798 #endif 6799 6800 ASSERT_SYNCHRONIZED_OP(sc); 6801 6802 /* 6803 * Allocate tx/rx/fl queues for this VI. 6804 */ 6805 rc = t4_setup_vi_queues(vi); 6806 if (rc != 0) 6807 return (rc); 6808 6809 /* 6810 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6811 */ 6812 if (vi->nrxq > vi->rss_size) { 6813 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6814 "some queues will never receive traffic.\n", vi->nrxq, 6815 vi->rss_size); 6816 } else if (vi->rss_size % vi->nrxq) { 6817 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6818 "expect uneven traffic distribution.\n", vi->nrxq, 6819 vi->rss_size); 6820 } 6821 #ifdef RSS 6822 if (vi->nrxq != nbuckets) { 6823 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6824 "performance will be impacted.\n", vi->nrxq, nbuckets); 6825 } 6826 #endif 6827 if (vi->rss == NULL) 6828 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6829 M_ZERO | M_WAITOK); 6830 for (i = 0; i < vi->rss_size;) { 6831 #ifdef RSS 6832 j = rss_get_indirection_to_bucket(i); 6833 j %= vi->nrxq; 6834 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6835 vi->rss[i++] = rxq->iq.abs_id; 6836 #else 6837 for_each_rxq(vi, j, rxq) { 6838 vi->rss[i++] = rxq->iq.abs_id; 6839 if (i == vi->rss_size) 6840 break; 6841 } 6842 #endif 6843 } 6844 6845 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6846 vi->rss, vi->rss_size); 6847 if (rc != 0) { 6848 CH_ERR(vi, "rss_config failed: %d\n", rc); 6849 return (rc); 6850 } 6851 6852 #ifdef RSS 6853 vi->hashen = hashconfig_to_hashen(hashconfig); 6854 6855 /* 6856 * We may have had to enable some hashes even though the global config 6857 * wants them disabled. This is a potential problem that must be 6858 * reported to the user. 6859 */ 6860 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6861 6862 /* 6863 * If we consider only the supported hash types, then the enabled hashes 6864 * are a superset of the requested hashes. In other words, there cannot 6865 * be any supported hash that was requested but not enabled, but there 6866 * can be hashes that were not requested but had to be enabled. 6867 */ 6868 extra &= SUPPORTED_RSS_HASHTYPES; 6869 MPASS((extra & hashconfig) == 0); 6870 6871 if (extra) { 6872 CH_ALERT(vi, 6873 "global RSS config (0x%x) cannot be accommodated.\n", 6874 hashconfig); 6875 } 6876 if (extra & RSS_HASHTYPE_RSS_IPV4) 6877 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6878 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6879 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6880 if (extra & RSS_HASHTYPE_RSS_IPV6) 6881 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6882 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6883 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6884 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6885 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6886 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6887 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6888 #else 6889 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6890 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6891 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6892 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6893 #endif 6894 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6895 0, 0); 6896 if (rc != 0) { 6897 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6898 return (rc); 6899 } 6900 6901 return (0); 6902 } 6903 6904 int 6905 vi_init(struct vi_info *vi) 6906 { 6907 int rc; 6908 6909 ASSERT_SYNCHRONIZED_OP(vi->adapter); 6910 KASSERT((vi->flags & VI_INIT_DONE) == 0, 6911 ("%s: VI_INIT_DONE already", __func__)); 6912 6913 rc = vi_full_init(vi); 6914 if (rc != 0) 6915 vi_full_uninit(vi); 6916 else 6917 vi->flags |= VI_INIT_DONE; 6918 6919 return (rc); 6920 } 6921 6922 /* 6923 * Idempotent. 6924 */ 6925 static void 6926 vi_full_uninit(struct vi_info *vi) 6927 { 6928 6929 if (vi->flags & VI_INIT_DONE) { 6930 quiesce_vi(vi); 6931 free(vi->rss, M_CXGBE); 6932 free(vi->nm_rss, M_CXGBE); 6933 } 6934 6935 t4_teardown_vi_queues(vi); 6936 vi->flags &= ~VI_INIT_DONE; 6937 } 6938 6939 static void 6940 quiesce_txq(struct sge_txq *txq) 6941 { 6942 struct sge_eq *eq = &txq->eq; 6943 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 6944 6945 MPASS(eq->flags & EQ_SW_ALLOCATED); 6946 MPASS(!(eq->flags & EQ_ENABLED)); 6947 6948 /* Wait for the mp_ring to empty. */ 6949 while (!mp_ring_is_idle(txq->r)) { 6950 mp_ring_check_drainage(txq->r, 4096); 6951 pause("rquiesce", 1); 6952 } 6953 MPASS(txq->txp.npkt == 0); 6954 6955 if (eq->flags & EQ_HW_ALLOCATED) { 6956 /* 6957 * Hardware is alive and working normally. Wait for it to 6958 * finish and then wait for the driver to catch up and reclaim 6959 * all descriptors. 6960 */ 6961 while (spg->cidx != htobe16(eq->pidx)) 6962 pause("equiesce", 1); 6963 while (eq->cidx != eq->pidx) 6964 pause("dquiesce", 1); 6965 } else { 6966 /* 6967 * Hardware is unavailable. Discard all pending tx and reclaim 6968 * descriptors directly. 6969 */ 6970 TXQ_LOCK(txq); 6971 while (eq->cidx != eq->pidx) { 6972 struct mbuf *m, *nextpkt; 6973 struct tx_sdesc *txsd; 6974 6975 txsd = &txq->sdesc[eq->cidx]; 6976 for (m = txsd->m; m != NULL; m = nextpkt) { 6977 nextpkt = m->m_nextpkt; 6978 m->m_nextpkt = NULL; 6979 m_freem(m); 6980 } 6981 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 6982 } 6983 spg->pidx = spg->cidx = htobe16(eq->cidx); 6984 TXQ_UNLOCK(txq); 6985 } 6986 } 6987 6988 static void 6989 quiesce_wrq(struct sge_wrq *wrq) 6990 { 6991 6992 /* XXXTX */ 6993 } 6994 6995 static void 6996 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 6997 { 6998 /* Synchronize with the interrupt handler */ 6999 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 7000 pause("iqfree", 1); 7001 7002 if (fl != NULL) { 7003 MPASS(iq->flags & IQ_HAS_FL); 7004 7005 mtx_lock(&sc->sfl_lock); 7006 FL_LOCK(fl); 7007 fl->flags |= FL_DOOMED; 7008 FL_UNLOCK(fl); 7009 callout_stop(&sc->sfl_callout); 7010 mtx_unlock(&sc->sfl_lock); 7011 7012 KASSERT((fl->flags & FL_STARVING) == 0, 7013 ("%s: still starving", __func__)); 7014 7015 /* Release all buffers if hardware is no longer available. */ 7016 if (!(iq->flags & IQ_HW_ALLOCATED)) 7017 free_fl_buffers(sc, fl); 7018 } 7019 } 7020 7021 /* 7022 * Wait for all activity on all the queues of the VI to complete. It is assumed 7023 * that no new work is being enqueued by the hardware or the driver. That part 7024 * should be arranged before calling this function. 7025 */ 7026 static void 7027 quiesce_vi(struct vi_info *vi) 7028 { 7029 int i; 7030 struct adapter *sc = vi->adapter; 7031 struct sge_rxq *rxq; 7032 struct sge_txq *txq; 7033 #ifdef TCP_OFFLOAD 7034 struct sge_ofld_rxq *ofld_rxq; 7035 #endif 7036 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7037 struct sge_ofld_txq *ofld_txq; 7038 #endif 7039 7040 if (!(vi->flags & VI_INIT_DONE)) 7041 return; 7042 7043 for_each_txq(vi, i, txq) { 7044 quiesce_txq(txq); 7045 } 7046 7047 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7048 for_each_ofld_txq(vi, i, ofld_txq) { 7049 quiesce_wrq(&ofld_txq->wrq); 7050 } 7051 #endif 7052 7053 for_each_rxq(vi, i, rxq) { 7054 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7055 } 7056 7057 #ifdef TCP_OFFLOAD 7058 for_each_ofld_rxq(vi, i, ofld_rxq) { 7059 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7060 } 7061 #endif 7062 } 7063 7064 static int 7065 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7066 driver_intr_t *handler, void *arg, char *name) 7067 { 7068 int rc; 7069 7070 irq->rid = rid; 7071 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7072 RF_SHAREABLE | RF_ACTIVE); 7073 if (irq->res == NULL) { 7074 device_printf(sc->dev, 7075 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7076 return (ENOMEM); 7077 } 7078 7079 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7080 NULL, handler, arg, &irq->tag); 7081 if (rc != 0) { 7082 device_printf(sc->dev, 7083 "failed to setup interrupt for rid %d, name %s: %d\n", 7084 rid, name, rc); 7085 } else if (name) 7086 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7087 7088 return (rc); 7089 } 7090 7091 static int 7092 t4_free_irq(struct adapter *sc, struct irq *irq) 7093 { 7094 if (irq->tag) 7095 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7096 if (irq->res) 7097 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7098 7099 bzero(irq, sizeof(*irq)); 7100 7101 return (0); 7102 } 7103 7104 static void 7105 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7106 { 7107 7108 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7109 t4_get_regs(sc, buf, regs->len); 7110 } 7111 7112 #define A_PL_INDIR_CMD 0x1f8 7113 7114 #define S_PL_AUTOINC 31 7115 #define M_PL_AUTOINC 0x1U 7116 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7117 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7118 7119 #define S_PL_VFID 20 7120 #define M_PL_VFID 0xffU 7121 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7122 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7123 7124 #define S_PL_ADDR 0 7125 #define M_PL_ADDR 0xfffffU 7126 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7127 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7128 7129 #define A_PL_INDIR_DATA 0x1fc 7130 7131 static uint64_t 7132 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7133 { 7134 u32 stats[2]; 7135 7136 if (sc->flags & IS_VF) { 7137 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7138 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7139 } else { 7140 mtx_assert(&sc->reg_lock, MA_OWNED); 7141 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7142 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7143 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7144 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7145 } 7146 return (((uint64_t)stats[1]) << 32 | stats[0]); 7147 } 7148 7149 static void 7150 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7151 { 7152 7153 #define GET_STAT(name) \ 7154 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7155 7156 if (!(sc->flags & IS_VF)) 7157 mtx_lock(&sc->reg_lock); 7158 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7159 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7160 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7161 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7162 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7163 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7164 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7165 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7166 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7167 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7168 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7169 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7170 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7171 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7172 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7173 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7174 if (!(sc->flags & IS_VF)) 7175 mtx_unlock(&sc->reg_lock); 7176 7177 #undef GET_STAT 7178 } 7179 7180 static void 7181 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7182 { 7183 int reg; 7184 7185 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7186 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7187 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7188 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7189 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7190 } 7191 7192 static void 7193 vi_refresh_stats(struct vi_info *vi) 7194 { 7195 struct timeval tv; 7196 const struct timeval interval = {0, 250000}; /* 250ms */ 7197 7198 mtx_assert(&vi->tick_mtx, MA_OWNED); 7199 7200 if (vi->flags & VI_SKIP_STATS) 7201 return; 7202 7203 getmicrotime(&tv); 7204 timevalsub(&tv, &interval); 7205 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7206 return; 7207 7208 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7209 getmicrotime(&vi->last_refreshed); 7210 } 7211 7212 static void 7213 cxgbe_refresh_stats(struct vi_info *vi) 7214 { 7215 u_int i, v, tnl_cong_drops, chan_map; 7216 struct timeval tv; 7217 const struct timeval interval = {0, 250000}; /* 250ms */ 7218 struct port_info *pi; 7219 struct adapter *sc; 7220 7221 mtx_assert(&vi->tick_mtx, MA_OWNED); 7222 7223 if (vi->flags & VI_SKIP_STATS) 7224 return; 7225 7226 getmicrotime(&tv); 7227 timevalsub(&tv, &interval); 7228 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7229 return; 7230 7231 pi = vi->pi; 7232 sc = vi->adapter; 7233 tnl_cong_drops = 0; 7234 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7235 chan_map = pi->rx_e_chan_map; 7236 while (chan_map) { 7237 i = ffs(chan_map) - 1; 7238 mtx_lock(&sc->reg_lock); 7239 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7240 A_TP_MIB_TNL_CNG_DROP_0 + i); 7241 mtx_unlock(&sc->reg_lock); 7242 tnl_cong_drops += v; 7243 chan_map &= ~(1 << i); 7244 } 7245 pi->tnl_cong_drops = tnl_cong_drops; 7246 getmicrotime(&vi->last_refreshed); 7247 } 7248 7249 static void 7250 cxgbe_tick(void *arg) 7251 { 7252 struct vi_info *vi = arg; 7253 7254 MPASS(IS_MAIN_VI(vi)); 7255 mtx_assert(&vi->tick_mtx, MA_OWNED); 7256 7257 cxgbe_refresh_stats(vi); 7258 callout_schedule(&vi->tick, hz); 7259 } 7260 7261 static void 7262 vi_tick(void *arg) 7263 { 7264 struct vi_info *vi = arg; 7265 7266 mtx_assert(&vi->tick_mtx, MA_OWNED); 7267 7268 vi_refresh_stats(vi); 7269 callout_schedule(&vi->tick, hz); 7270 } 7271 7272 /* 7273 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7274 */ 7275 static char *caps_decoder[] = { 7276 "\20\001IPMI\002NCSI", /* 0: NBM */ 7277 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7278 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7279 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7280 "\006HASHFILTER\007ETHOFLD", 7281 "\20\001TOE", /* 4: TOE */ 7282 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7283 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7284 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7285 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7286 "\007T10DIF" 7287 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7288 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7289 "\004TLS_HW", 7290 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7291 "\004PO_INITIATOR\005PO_TARGET", 7292 }; 7293 7294 void 7295 t4_sysctls(struct adapter *sc) 7296 { 7297 struct sysctl_ctx_list *ctx = &sc->ctx; 7298 struct sysctl_oid *oid; 7299 struct sysctl_oid_list *children, *c0; 7300 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7301 7302 /* 7303 * dev.t4nex.X. 7304 */ 7305 oid = device_get_sysctl_tree(sc->dev); 7306 c0 = children = SYSCTL_CHILDREN(oid); 7307 7308 sc->sc_do_rxcopy = 1; 7309 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7310 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7311 7312 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7313 sc->params.nports, "# of ports"); 7314 7315 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7316 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7317 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7318 "available doorbells"); 7319 7320 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7321 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7322 7323 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7324 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7325 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7326 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7327 7328 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7329 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7330 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7331 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7332 7333 t4_sge_sysctls(sc, ctx, children); 7334 7335 sc->lro_timeout = 100; 7336 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7337 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7338 7339 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7340 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7341 7342 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7343 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7344 7345 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7346 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7347 7348 if (sc->flags & IS_VF) 7349 return; 7350 7351 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7352 NULL, chip_rev(sc), "chip hardware revision"); 7353 7354 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7355 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7356 7357 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7358 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7359 7360 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7361 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7362 7363 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7364 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7365 7366 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7367 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7368 7369 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7370 sc->er_version, 0, "expansion ROM version"); 7371 7372 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7373 sc->bs_version, 0, "bootstrap firmware version"); 7374 7375 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7376 NULL, sc->params.scfg_vers, "serial config version"); 7377 7378 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7379 NULL, sc->params.vpd_vers, "VPD version"); 7380 7381 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7382 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7383 7384 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7385 sc->cfcsum, "config file checksum"); 7386 7387 #define SYSCTL_CAP(name, n, text) \ 7388 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7389 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7390 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7391 "available " text " capabilities") 7392 7393 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7394 SYSCTL_CAP(linkcaps, 1, "link"); 7395 SYSCTL_CAP(switchcaps, 2, "switch"); 7396 SYSCTL_CAP(niccaps, 3, "NIC"); 7397 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7398 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7399 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7400 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7401 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7402 #undef SYSCTL_CAP 7403 7404 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7405 NULL, sc->tids.nftids, "number of filters"); 7406 7407 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7408 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7409 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7410 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7411 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7412 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7413 7414 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7415 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7416 sysctl_loadavg, "A", 7417 "microprocessor load averages (debug firmwares only)"); 7418 7419 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7420 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7421 "I", "core Vdd (in mV)"); 7422 7423 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7424 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7425 sysctl_cpus, "A", "local CPUs"); 7426 7427 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7428 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7429 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7430 7431 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7432 &sc->swintr, 0, "software triggered interrupts"); 7433 7434 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7435 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7436 "1 = reset adapter, 0 = zero reset counter"); 7437 7438 /* 7439 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7440 */ 7441 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7442 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7443 "logs and miscellaneous information"); 7444 children = SYSCTL_CHILDREN(oid); 7445 7446 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7447 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7448 sysctl_cctrl, "A", "congestion control"); 7449 7450 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7451 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7452 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7453 7454 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7455 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7456 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7457 7458 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7459 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7460 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7461 7462 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7463 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7464 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7465 7466 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7467 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7468 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7469 7470 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7471 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7472 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7473 7474 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7475 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7476 sysctl_cim_la, "A", "CIM logic analyzer"); 7477 7478 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7479 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7480 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7481 7482 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7483 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7484 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7485 7486 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7487 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7488 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7489 7490 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7491 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7492 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7493 7494 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7495 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7496 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7497 7498 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7499 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7500 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7501 7502 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7503 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7504 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7505 7506 if (chip_id(sc) > CHELSIO_T4) { 7507 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7508 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7509 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7510 "CIM OBQ 6 (SGE0-RX)"); 7511 7512 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7513 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7514 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7515 "CIM OBQ 7 (SGE1-RX)"); 7516 } 7517 7518 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7519 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7520 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7521 7522 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7523 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7524 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7525 7526 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7527 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7528 sysctl_cpl_stats, "A", "CPL statistics"); 7529 7530 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7531 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7532 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7533 7534 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7535 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7536 sysctl_tid_stats, "A", "tid stats"); 7537 7538 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7539 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7540 sysctl_devlog, "A", "firmware's device log"); 7541 7542 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7543 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7544 sysctl_fcoe_stats, "A", "FCoE statistics"); 7545 7546 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7547 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7548 sysctl_hw_sched, "A", "hardware scheduler "); 7549 7550 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7551 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7552 sysctl_l2t, "A", "hardware L2 table"); 7553 7554 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7555 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7556 sysctl_smt, "A", "hardware source MAC table"); 7557 7558 #ifdef INET6 7559 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7560 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7561 sysctl_clip, "A", "active CLIP table entries"); 7562 #endif 7563 7564 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7565 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7566 sysctl_lb_stats, "A", "loopback statistics"); 7567 7568 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7569 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7570 sysctl_meminfo, "A", "memory regions"); 7571 7572 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7573 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7574 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7575 "A", "MPS TCAM entries"); 7576 7577 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7578 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7579 sysctl_path_mtus, "A", "path MTUs"); 7580 7581 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7582 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7583 sysctl_pm_stats, "A", "PM statistics"); 7584 7585 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7586 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7587 sysctl_rdma_stats, "A", "RDMA statistics"); 7588 7589 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7590 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7591 sysctl_tcp_stats, "A", "TCP statistics"); 7592 7593 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7594 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7595 sysctl_tids, "A", "TID information"); 7596 7597 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7598 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7599 sysctl_tp_err_stats, "A", "TP error statistics"); 7600 7601 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7602 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7603 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7604 7605 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7606 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7607 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7608 7609 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7610 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7611 sysctl_tp_la, "A", "TP logic analyzer"); 7612 7613 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7614 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7615 sysctl_tx_rate, "A", "Tx rate"); 7616 7617 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7618 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7619 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7620 7621 if (chip_id(sc) >= CHELSIO_T5) { 7622 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7623 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7624 sysctl_wcwr_stats, "A", "write combined work requests"); 7625 } 7626 7627 #ifdef KERN_TLS 7628 if (is_ktls(sc)) { 7629 /* 7630 * dev.t4nex.0.tls. 7631 */ 7632 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7633 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7634 children = SYSCTL_CHILDREN(oid); 7635 7636 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7637 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7638 "keys in work requests (1) or attempt to store TLS keys " 7639 "in card memory."); 7640 7641 if (is_t6(sc)) 7642 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7643 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 7644 "combine TCB field updates with TLS record work " 7645 "requests."); 7646 } 7647 #endif 7648 7649 #ifdef TCP_OFFLOAD 7650 if (is_offload(sc)) { 7651 int i; 7652 char s[4]; 7653 7654 /* 7655 * dev.t4nex.X.toe. 7656 */ 7657 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7658 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7659 children = SYSCTL_CHILDREN(oid); 7660 7661 sc->tt.cong_algorithm = -1; 7662 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7663 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7664 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7665 "3 = highspeed)"); 7666 7667 sc->tt.sndbuf = -1; 7668 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7669 &sc->tt.sndbuf, 0, "hardware send buffer"); 7670 7671 sc->tt.ddp = 0; 7672 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7673 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7674 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7675 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7676 7677 sc->tt.rx_coalesce = -1; 7678 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7679 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7680 7681 sc->tt.tls = 0; 7682 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7683 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7684 "Inline TLS allowed"); 7685 7686 sc->tt.tx_align = -1; 7687 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7688 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7689 7690 sc->tt.tx_zcopy = 0; 7691 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7692 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7693 "Enable zero-copy aio_write(2)"); 7694 7695 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7696 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7697 "cop_managed_offloading", CTLFLAG_RW, 7698 &sc->tt.cop_managed_offloading, 0, 7699 "COP (Connection Offload Policy) controls all TOE offload"); 7700 7701 sc->tt.autorcvbuf_inc = 16 * 1024; 7702 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7703 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7704 "autorcvbuf increment"); 7705 7706 sc->tt.update_hc_on_pmtu_change = 1; 7707 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7708 "update_hc_on_pmtu_change", CTLFLAG_RW, 7709 &sc->tt.update_hc_on_pmtu_change, 0, 7710 "Update hostcache entry if the PMTU changes"); 7711 7712 sc->tt.iso = 1; 7713 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7714 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7715 7716 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7717 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7718 sysctl_tp_tick, "A", "TP timer tick (us)"); 7719 7720 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7721 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7722 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7723 7724 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7725 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7726 sysctl_tp_tick, "A", "DACK tick (us)"); 7727 7728 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7729 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7730 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7731 7732 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7733 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7734 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7735 "Minimum retransmit interval (us)"); 7736 7737 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7738 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7739 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7740 "Maximum retransmit interval (us)"); 7741 7742 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7743 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7744 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7745 "Persist timer min (us)"); 7746 7747 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7748 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7749 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7750 "Persist timer max (us)"); 7751 7752 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7753 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7754 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7755 "Keepalive idle timer (us)"); 7756 7757 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7758 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7759 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7760 "Keepalive interval timer (us)"); 7761 7762 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7763 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7764 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7765 7766 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7767 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7768 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7769 "FINWAIT2 timer (us)"); 7770 7771 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7772 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7773 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7774 "Number of SYN retransmissions before abort"); 7775 7776 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7777 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7778 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7779 "Number of retransmissions before abort"); 7780 7781 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7782 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7783 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7784 "Number of keepalive probes before abort"); 7785 7786 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7787 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7788 "TOE retransmit backoffs"); 7789 children = SYSCTL_CHILDREN(oid); 7790 for (i = 0; i < 16; i++) { 7791 snprintf(s, sizeof(s), "%u", i); 7792 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7793 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7794 i, sysctl_tp_backoff, "IU", 7795 "TOE retransmit backoff"); 7796 } 7797 } 7798 #endif 7799 } 7800 7801 void 7802 vi_sysctls(struct vi_info *vi) 7803 { 7804 struct sysctl_ctx_list *ctx = &vi->ctx; 7805 struct sysctl_oid *oid; 7806 struct sysctl_oid_list *children; 7807 7808 /* 7809 * dev.v?(cxgbe|cxl).X. 7810 */ 7811 oid = device_get_sysctl_tree(vi->dev); 7812 children = SYSCTL_CHILDREN(oid); 7813 7814 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7815 vi->viid, "VI identifer"); 7816 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7817 &vi->nrxq, 0, "# of rx queues"); 7818 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7819 &vi->ntxq, 0, "# of tx queues"); 7820 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7821 &vi->first_rxq, 0, "index of first rx queue"); 7822 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7823 &vi->first_txq, 0, "index of first tx queue"); 7824 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7825 vi->rss_base, "start of RSS indirection table"); 7826 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7827 vi->rss_size, "size of RSS indirection table"); 7828 7829 if (IS_MAIN_VI(vi)) { 7830 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7831 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7832 sysctl_noflowq, "IU", 7833 "Reserve queue 0 for non-flowid packets"); 7834 } 7835 7836 if (vi->adapter->flags & IS_VF) { 7837 MPASS(vi->flags & TX_USES_VM_WR); 7838 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7839 NULL, 1, "use VM work requests for transmit"); 7840 } else { 7841 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7842 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7843 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7844 } 7845 7846 #ifdef TCP_OFFLOAD 7847 if (vi->nofldrxq != 0) { 7848 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7849 &vi->nofldrxq, 0, 7850 "# of rx queues for offloaded TCP connections"); 7851 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7852 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7853 "index of first TOE rx queue"); 7854 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7855 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7856 sysctl_holdoff_tmr_idx_ofld, "I", 7857 "holdoff timer index for TOE queues"); 7858 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7859 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7860 sysctl_holdoff_pktc_idx_ofld, "I", 7861 "holdoff packet counter index for TOE queues"); 7862 } 7863 #endif 7864 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7865 if (vi->nofldtxq != 0) { 7866 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7867 &vi->nofldtxq, 0, 7868 "# of tx queues for TOE/ETHOFLD"); 7869 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7870 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7871 "index of first TOE/ETHOFLD tx queue"); 7872 } 7873 #endif 7874 #ifdef DEV_NETMAP 7875 if (vi->nnmrxq != 0) { 7876 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7877 &vi->nnmrxq, 0, "# of netmap rx queues"); 7878 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7879 &vi->nnmtxq, 0, "# of netmap tx queues"); 7880 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7881 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7882 "index of first netmap rx queue"); 7883 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7884 CTLFLAG_RD, &vi->first_nm_txq, 0, 7885 "index of first netmap tx queue"); 7886 } 7887 #endif 7888 7889 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 7890 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7891 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 7892 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 7893 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7894 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 7895 7896 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 7897 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7898 sysctl_qsize_rxq, "I", "rx queue size"); 7899 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 7900 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7901 sysctl_qsize_txq, "I", "tx queue size"); 7902 } 7903 7904 static void 7905 cxgbe_sysctls(struct port_info *pi) 7906 { 7907 struct sysctl_ctx_list *ctx = &pi->ctx; 7908 struct sysctl_oid *oid; 7909 struct sysctl_oid_list *children, *children2; 7910 struct adapter *sc = pi->adapter; 7911 int i; 7912 char name[16]; 7913 static char *tc_flags = {"\20\1USER"}; 7914 7915 /* 7916 * dev.cxgbe.X. 7917 */ 7918 oid = device_get_sysctl_tree(pi->dev); 7919 children = SYSCTL_CHILDREN(oid); 7920 7921 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 7922 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7923 sysctl_linkdnrc, "A", "reason why link is down"); 7924 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 7925 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7926 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7927 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 7928 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 7929 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 7930 sysctl_btphy, "I", "PHY firmware version"); 7931 } 7932 7933 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 7934 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7935 sysctl_pause_settings, "A", 7936 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 7937 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 7938 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 7939 "FEC in use on the link"); 7940 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 7941 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7942 sysctl_requested_fec, "A", 7943 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 7944 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 7945 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 7946 "FEC recommended by the cable/transceiver"); 7947 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 7948 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7949 sysctl_autoneg, "I", 7950 "autonegotiation (-1 = not supported)"); 7951 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 7952 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7953 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 7954 7955 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 7956 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 7957 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 7958 &pi->link_cfg.pcaps, 0, "port capabilities"); 7959 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 7960 &pi->link_cfg.acaps, 0, "advertised capabilities"); 7961 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 7962 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 7963 7964 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 7965 port_top_speed(pi), "max speed (in Gbps)"); 7966 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 7967 pi->mps_bg_map, "MPS buffer group map"); 7968 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 7969 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 7970 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_c_chan", CTLFLAG_RD, NULL, 7971 pi->rx_c_chan, "TP rx c-channel"); 7972 7973 if (sc->flags & IS_VF) 7974 return; 7975 7976 /* 7977 * dev.(cxgbe|cxl).X.tc. 7978 */ 7979 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 7980 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7981 "Tx scheduler traffic classes (cl_rl)"); 7982 children2 = SYSCTL_CHILDREN(oid); 7983 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 7984 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 7985 "pktsize for per-flow cl-rl (0 means up to the driver )"); 7986 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 7987 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 7988 "burstsize for per-flow cl-rl (0 means up to the driver)"); 7989 for (i = 0; i < sc->params.nsched_cls; i++) { 7990 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 7991 7992 snprintf(name, sizeof(name), "%d", i); 7993 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 7994 SYSCTL_CHILDREN(oid), OID_AUTO, name, 7995 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 7996 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 7997 CTLFLAG_RD, &tc->state, 0, "current state"); 7998 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 7999 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 8000 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 8001 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 8002 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 8003 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 8004 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8005 (pi->port_id << 16) | i, sysctl_tc_params, "A", 8006 "traffic class parameters"); 8007 } 8008 8009 /* 8010 * dev.cxgbe.X.stats. 8011 */ 8012 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8013 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8014 children = SYSCTL_CHILDREN(oid); 8015 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8016 &pi->tx_parse_error, 0, 8017 "# of tx packets with invalid length or # of segments"); 8018 8019 #define T4_REGSTAT(name, stat, desc) \ 8020 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8021 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8022 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \ 8023 sysctl_handle_t4_reg64, "QU", desc) 8024 8025 /* We get these from port_stats and they may be stale by up to 1s */ 8026 #define T4_PORTSTAT(name, desc) \ 8027 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 8028 &pi->stats.name, desc) 8029 8030 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8031 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8032 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8033 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8034 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8035 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8036 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8037 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8038 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8039 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8040 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8041 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8042 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8043 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8044 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8045 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8046 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8047 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8048 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8049 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8050 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8051 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8052 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8053 8054 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8055 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8056 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8057 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8058 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8059 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8060 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8061 if (is_t6(sc)) { 8062 T4_PORTSTAT(rx_fcs_err, 8063 "# of frames received with bad FCS since last link up"); 8064 } else { 8065 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8066 "# of frames received with bad FCS"); 8067 } 8068 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8069 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8070 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8071 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8072 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8073 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8074 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8075 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8076 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8077 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8078 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8079 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8080 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8081 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8082 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8083 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8084 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8085 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8086 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8087 8088 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 8089 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 8090 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 8091 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 8092 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 8093 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 8094 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 8095 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 8096 8097 #undef T4_REGSTAT 8098 #undef T4_PORTSTAT 8099 } 8100 8101 static int 8102 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8103 { 8104 int rc, *i, space = 0; 8105 struct sbuf sb; 8106 8107 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8108 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8109 if (space) 8110 sbuf_printf(&sb, " "); 8111 sbuf_printf(&sb, "%d", *i); 8112 space = 1; 8113 } 8114 rc = sbuf_finish(&sb); 8115 sbuf_delete(&sb); 8116 return (rc); 8117 } 8118 8119 static int 8120 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8121 { 8122 int rc; 8123 struct sbuf *sb; 8124 8125 rc = sysctl_wire_old_buffer(req, 0); 8126 if (rc != 0) 8127 return(rc); 8128 8129 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8130 if (sb == NULL) 8131 return (ENOMEM); 8132 8133 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8134 rc = sbuf_finish(sb); 8135 sbuf_delete(sb); 8136 8137 return (rc); 8138 } 8139 8140 static int 8141 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8142 { 8143 int rc; 8144 struct sbuf *sb; 8145 8146 rc = sysctl_wire_old_buffer(req, 0); 8147 if (rc != 0) 8148 return(rc); 8149 8150 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8151 if (sb == NULL) 8152 return (ENOMEM); 8153 8154 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8155 rc = sbuf_finish(sb); 8156 sbuf_delete(sb); 8157 8158 return (rc); 8159 } 8160 8161 static int 8162 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8163 { 8164 struct port_info *pi = arg1; 8165 int op = arg2; 8166 struct adapter *sc = pi->adapter; 8167 u_int v; 8168 int rc; 8169 8170 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8171 if (rc) 8172 return (rc); 8173 if (hw_off_limits(sc)) 8174 rc = ENXIO; 8175 else { 8176 /* XXX: magic numbers */ 8177 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8178 op ? 0x20 : 0xc820, &v); 8179 } 8180 end_synchronized_op(sc, 0); 8181 if (rc) 8182 return (rc); 8183 if (op == 0) 8184 v /= 256; 8185 8186 rc = sysctl_handle_int(oidp, &v, 0, req); 8187 return (rc); 8188 } 8189 8190 static int 8191 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8192 { 8193 struct vi_info *vi = arg1; 8194 int rc, val; 8195 8196 val = vi->rsrv_noflowq; 8197 rc = sysctl_handle_int(oidp, &val, 0, req); 8198 if (rc != 0 || req->newptr == NULL) 8199 return (rc); 8200 8201 if ((val >= 1) && (vi->ntxq > 1)) 8202 vi->rsrv_noflowq = 1; 8203 else 8204 vi->rsrv_noflowq = 0; 8205 8206 return (rc); 8207 } 8208 8209 static int 8210 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8211 { 8212 struct vi_info *vi = arg1; 8213 struct adapter *sc = vi->adapter; 8214 int rc, val, i; 8215 8216 MPASS(!(sc->flags & IS_VF)); 8217 8218 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8219 rc = sysctl_handle_int(oidp, &val, 0, req); 8220 if (rc != 0 || req->newptr == NULL) 8221 return (rc); 8222 8223 if (val != 0 && val != 1) 8224 return (EINVAL); 8225 8226 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8227 "t4txvm"); 8228 if (rc) 8229 return (rc); 8230 if (hw_off_limits(sc)) 8231 rc = ENXIO; 8232 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) { 8233 /* 8234 * We don't want parse_pkt to run with one setting (VF or PF) 8235 * and then eth_tx to see a different setting but still use 8236 * stale information calculated by parse_pkt. 8237 */ 8238 rc = EBUSY; 8239 } else { 8240 struct port_info *pi = vi->pi; 8241 struct sge_txq *txq; 8242 uint32_t ctrl0; 8243 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8244 8245 if (val) { 8246 vi->flags |= TX_USES_VM_WR; 8247 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO); 8248 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8249 V_TXPKT_INTF(pi->tx_chan)); 8250 if (!(sc->flags & IS_VF)) 8251 npkt--; 8252 } else { 8253 vi->flags &= ~TX_USES_VM_WR; 8254 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO); 8255 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8256 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8257 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8258 } 8259 for_each_txq(vi, i, txq) { 8260 txq->cpl_ctrl0 = ctrl0; 8261 txq->txp.max_npkt = npkt; 8262 } 8263 } 8264 end_synchronized_op(sc, LOCK_HELD); 8265 return (rc); 8266 } 8267 8268 static int 8269 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8270 { 8271 struct vi_info *vi = arg1; 8272 struct adapter *sc = vi->adapter; 8273 int idx, rc, i; 8274 struct sge_rxq *rxq; 8275 uint8_t v; 8276 8277 idx = vi->tmr_idx; 8278 8279 rc = sysctl_handle_int(oidp, &idx, 0, req); 8280 if (rc != 0 || req->newptr == NULL) 8281 return (rc); 8282 8283 if (idx < 0 || idx >= SGE_NTIMERS) 8284 return (EINVAL); 8285 8286 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8287 "t4tmr"); 8288 if (rc) 8289 return (rc); 8290 8291 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8292 for_each_rxq(vi, i, rxq) { 8293 #ifdef atomic_store_rel_8 8294 atomic_store_rel_8(&rxq->iq.intr_params, v); 8295 #else 8296 rxq->iq.intr_params = v; 8297 #endif 8298 } 8299 vi->tmr_idx = idx; 8300 8301 end_synchronized_op(sc, LOCK_HELD); 8302 return (0); 8303 } 8304 8305 static int 8306 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8307 { 8308 struct vi_info *vi = arg1; 8309 struct adapter *sc = vi->adapter; 8310 int idx, rc; 8311 8312 idx = vi->pktc_idx; 8313 8314 rc = sysctl_handle_int(oidp, &idx, 0, req); 8315 if (rc != 0 || req->newptr == NULL) 8316 return (rc); 8317 8318 if (idx < -1 || idx >= SGE_NCOUNTERS) 8319 return (EINVAL); 8320 8321 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8322 "t4pktc"); 8323 if (rc) 8324 return (rc); 8325 8326 if (vi->flags & VI_INIT_DONE) 8327 rc = EBUSY; /* cannot be changed once the queues are created */ 8328 else 8329 vi->pktc_idx = idx; 8330 8331 end_synchronized_op(sc, LOCK_HELD); 8332 return (rc); 8333 } 8334 8335 static int 8336 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8337 { 8338 struct vi_info *vi = arg1; 8339 struct adapter *sc = vi->adapter; 8340 int qsize, rc; 8341 8342 qsize = vi->qsize_rxq; 8343 8344 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8345 if (rc != 0 || req->newptr == NULL) 8346 return (rc); 8347 8348 if (qsize < 128 || (qsize & 7)) 8349 return (EINVAL); 8350 8351 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8352 "t4rxqs"); 8353 if (rc) 8354 return (rc); 8355 8356 if (vi->flags & VI_INIT_DONE) 8357 rc = EBUSY; /* cannot be changed once the queues are created */ 8358 else 8359 vi->qsize_rxq = qsize; 8360 8361 end_synchronized_op(sc, LOCK_HELD); 8362 return (rc); 8363 } 8364 8365 static int 8366 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8367 { 8368 struct vi_info *vi = arg1; 8369 struct adapter *sc = vi->adapter; 8370 int qsize, rc; 8371 8372 qsize = vi->qsize_txq; 8373 8374 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8375 if (rc != 0 || req->newptr == NULL) 8376 return (rc); 8377 8378 if (qsize < 128 || qsize > 65536) 8379 return (EINVAL); 8380 8381 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8382 "t4txqs"); 8383 if (rc) 8384 return (rc); 8385 8386 if (vi->flags & VI_INIT_DONE) 8387 rc = EBUSY; /* cannot be changed once the queues are created */ 8388 else 8389 vi->qsize_txq = qsize; 8390 8391 end_synchronized_op(sc, LOCK_HELD); 8392 return (rc); 8393 } 8394 8395 static int 8396 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8397 { 8398 struct port_info *pi = arg1; 8399 struct adapter *sc = pi->adapter; 8400 struct link_config *lc = &pi->link_cfg; 8401 int rc; 8402 8403 if (req->newptr == NULL) { 8404 struct sbuf *sb; 8405 static char *bits = "\20\1RX\2TX\3AUTO"; 8406 8407 rc = sysctl_wire_old_buffer(req, 0); 8408 if (rc != 0) 8409 return(rc); 8410 8411 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8412 if (sb == NULL) 8413 return (ENOMEM); 8414 8415 if (lc->link_ok) { 8416 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8417 (lc->requested_fc & PAUSE_AUTONEG), bits); 8418 } else { 8419 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8420 PAUSE_RX | PAUSE_AUTONEG), bits); 8421 } 8422 rc = sbuf_finish(sb); 8423 sbuf_delete(sb); 8424 } else { 8425 char s[2]; 8426 int n; 8427 8428 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8429 PAUSE_AUTONEG)); 8430 s[1] = 0; 8431 8432 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8433 if (rc != 0) 8434 return(rc); 8435 8436 if (s[1] != 0) 8437 return (EINVAL); 8438 if (s[0] < '0' || s[0] > '9') 8439 return (EINVAL); /* not a number */ 8440 n = s[0] - '0'; 8441 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8442 return (EINVAL); /* some other bit is set too */ 8443 8444 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8445 "t4PAUSE"); 8446 if (rc) 8447 return (rc); 8448 if (!hw_off_limits(sc)) { 8449 PORT_LOCK(pi); 8450 lc->requested_fc = n; 8451 fixup_link_config(pi); 8452 if (pi->up_vis > 0) 8453 rc = apply_link_config(pi); 8454 set_current_media(pi); 8455 PORT_UNLOCK(pi); 8456 } 8457 end_synchronized_op(sc, 0); 8458 } 8459 8460 return (rc); 8461 } 8462 8463 static int 8464 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8465 { 8466 struct port_info *pi = arg1; 8467 struct link_config *lc = &pi->link_cfg; 8468 int rc; 8469 struct sbuf *sb; 8470 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8471 8472 rc = sysctl_wire_old_buffer(req, 0); 8473 if (rc != 0) 8474 return(rc); 8475 8476 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8477 if (sb == NULL) 8478 return (ENOMEM); 8479 if (lc->link_ok) 8480 sbuf_printf(sb, "%b", lc->fec, bits); 8481 else 8482 sbuf_printf(sb, "no link"); 8483 rc = sbuf_finish(sb); 8484 sbuf_delete(sb); 8485 8486 return (rc); 8487 } 8488 8489 static int 8490 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8491 { 8492 struct port_info *pi = arg1; 8493 struct adapter *sc = pi->adapter; 8494 struct link_config *lc = &pi->link_cfg; 8495 int rc; 8496 int8_t old; 8497 8498 if (req->newptr == NULL) { 8499 struct sbuf *sb; 8500 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8501 "\5RSVD3\6auto\7module"; 8502 8503 rc = sysctl_wire_old_buffer(req, 0); 8504 if (rc != 0) 8505 return(rc); 8506 8507 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8508 if (sb == NULL) 8509 return (ENOMEM); 8510 8511 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8512 rc = sbuf_finish(sb); 8513 sbuf_delete(sb); 8514 } else { 8515 char s[8]; 8516 int n; 8517 8518 snprintf(s, sizeof(s), "%d", 8519 lc->requested_fec == FEC_AUTO ? -1 : 8520 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8521 8522 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8523 if (rc != 0) 8524 return(rc); 8525 8526 n = strtol(&s[0], NULL, 0); 8527 if (n < 0 || n & FEC_AUTO) 8528 n = FEC_AUTO; 8529 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8530 return (EINVAL);/* some other bit is set too */ 8531 8532 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8533 "t4reqf"); 8534 if (rc) 8535 return (rc); 8536 PORT_LOCK(pi); 8537 old = lc->requested_fec; 8538 if (n == FEC_AUTO) 8539 lc->requested_fec = FEC_AUTO; 8540 else if (n == 0 || n == FEC_NONE) 8541 lc->requested_fec = FEC_NONE; 8542 else { 8543 if ((lc->pcaps | 8544 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8545 lc->pcaps) { 8546 rc = ENOTSUP; 8547 goto done; 8548 } 8549 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8550 FEC_MODULE); 8551 } 8552 if (!hw_off_limits(sc)) { 8553 fixup_link_config(pi); 8554 if (pi->up_vis > 0) { 8555 rc = apply_link_config(pi); 8556 if (rc != 0) { 8557 lc->requested_fec = old; 8558 if (rc == FW_EPROTO) 8559 rc = ENOTSUP; 8560 } 8561 } 8562 } 8563 done: 8564 PORT_UNLOCK(pi); 8565 end_synchronized_op(sc, 0); 8566 } 8567 8568 return (rc); 8569 } 8570 8571 static int 8572 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8573 { 8574 struct port_info *pi = arg1; 8575 struct adapter *sc = pi->adapter; 8576 struct link_config *lc = &pi->link_cfg; 8577 int rc; 8578 int8_t fec; 8579 struct sbuf *sb; 8580 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8581 8582 rc = sysctl_wire_old_buffer(req, 0); 8583 if (rc != 0) 8584 return (rc); 8585 8586 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8587 if (sb == NULL) 8588 return (ENOMEM); 8589 8590 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8591 rc = EBUSY; 8592 goto done; 8593 } 8594 if (hw_off_limits(sc)) { 8595 rc = ENXIO; 8596 goto done; 8597 } 8598 PORT_LOCK(pi); 8599 if (pi->up_vis == 0) { 8600 /* 8601 * If all the interfaces are administratively down the firmware 8602 * does not report transceiver changes. Refresh port info here. 8603 * This is the only reason we have a synchronized op in this 8604 * function. Just PORT_LOCK would have been enough otherwise. 8605 */ 8606 t4_update_port_info(pi); 8607 } 8608 8609 fec = lc->fec_hint; 8610 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8611 !fec_supported(lc->pcaps)) { 8612 sbuf_printf(sb, "n/a"); 8613 } else { 8614 if (fec == 0) 8615 fec = FEC_NONE; 8616 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8617 } 8618 rc = sbuf_finish(sb); 8619 PORT_UNLOCK(pi); 8620 done: 8621 sbuf_delete(sb); 8622 end_synchronized_op(sc, 0); 8623 8624 return (rc); 8625 } 8626 8627 static int 8628 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8629 { 8630 struct port_info *pi = arg1; 8631 struct adapter *sc = pi->adapter; 8632 struct link_config *lc = &pi->link_cfg; 8633 int rc, val; 8634 8635 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8636 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8637 else 8638 val = -1; 8639 rc = sysctl_handle_int(oidp, &val, 0, req); 8640 if (rc != 0 || req->newptr == NULL) 8641 return (rc); 8642 if (val == 0) 8643 val = AUTONEG_DISABLE; 8644 else if (val == 1) 8645 val = AUTONEG_ENABLE; 8646 else 8647 val = AUTONEG_AUTO; 8648 8649 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8650 "t4aneg"); 8651 if (rc) 8652 return (rc); 8653 PORT_LOCK(pi); 8654 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8655 rc = ENOTSUP; 8656 goto done; 8657 } 8658 lc->requested_aneg = val; 8659 if (!hw_off_limits(sc)) { 8660 fixup_link_config(pi); 8661 if (pi->up_vis > 0) 8662 rc = apply_link_config(pi); 8663 set_current_media(pi); 8664 } 8665 done: 8666 PORT_UNLOCK(pi); 8667 end_synchronized_op(sc, 0); 8668 return (rc); 8669 } 8670 8671 static int 8672 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8673 { 8674 struct port_info *pi = arg1; 8675 struct adapter *sc = pi->adapter; 8676 struct link_config *lc = &pi->link_cfg; 8677 int rc, val; 8678 8679 val = lc->force_fec; 8680 MPASS(val >= -1 && val <= 1); 8681 rc = sysctl_handle_int(oidp, &val, 0, req); 8682 if (rc != 0 || req->newptr == NULL) 8683 return (rc); 8684 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8685 return (ENOTSUP); 8686 if (val < -1 || val > 1) 8687 return (EINVAL); 8688 8689 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8690 if (rc) 8691 return (rc); 8692 PORT_LOCK(pi); 8693 lc->force_fec = val; 8694 if (!hw_off_limits(sc)) { 8695 fixup_link_config(pi); 8696 if (pi->up_vis > 0) 8697 rc = apply_link_config(pi); 8698 } 8699 PORT_UNLOCK(pi); 8700 end_synchronized_op(sc, 0); 8701 return (rc); 8702 } 8703 8704 static int 8705 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8706 { 8707 struct adapter *sc = arg1; 8708 int rc, reg = arg2; 8709 uint64_t val; 8710 8711 mtx_lock(&sc->reg_lock); 8712 if (hw_off_limits(sc)) 8713 rc = ENXIO; 8714 else { 8715 rc = 0; 8716 val = t4_read_reg64(sc, reg); 8717 } 8718 mtx_unlock(&sc->reg_lock); 8719 if (rc == 0) 8720 rc = sysctl_handle_64(oidp, &val, 0, req); 8721 return (rc); 8722 } 8723 8724 static int 8725 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8726 { 8727 struct adapter *sc = arg1; 8728 int rc, t; 8729 uint32_t param, val; 8730 8731 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8732 if (rc) 8733 return (rc); 8734 if (hw_off_limits(sc)) 8735 rc = ENXIO; 8736 else { 8737 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8738 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8739 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8740 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8741 } 8742 end_synchronized_op(sc, 0); 8743 if (rc) 8744 return (rc); 8745 8746 /* unknown is returned as 0 but we display -1 in that case */ 8747 t = val == 0 ? -1 : val; 8748 8749 rc = sysctl_handle_int(oidp, &t, 0, req); 8750 return (rc); 8751 } 8752 8753 static int 8754 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8755 { 8756 struct adapter *sc = arg1; 8757 int rc; 8758 uint32_t param, val; 8759 8760 if (sc->params.core_vdd == 0) { 8761 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8762 "t4vdd"); 8763 if (rc) 8764 return (rc); 8765 if (hw_off_limits(sc)) 8766 rc = ENXIO; 8767 else { 8768 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8769 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8770 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8771 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8772 ¶m, &val); 8773 } 8774 end_synchronized_op(sc, 0); 8775 if (rc) 8776 return (rc); 8777 sc->params.core_vdd = val; 8778 } 8779 8780 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8781 } 8782 8783 static int 8784 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8785 { 8786 struct adapter *sc = arg1; 8787 int rc, v; 8788 uint32_t param, val; 8789 8790 v = sc->sensor_resets; 8791 rc = sysctl_handle_int(oidp, &v, 0, req); 8792 if (rc != 0 || req->newptr == NULL || v <= 0) 8793 return (rc); 8794 8795 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8796 chip_id(sc) < CHELSIO_T5) 8797 return (ENOTSUP); 8798 8799 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8800 if (rc) 8801 return (rc); 8802 if (hw_off_limits(sc)) 8803 rc = ENXIO; 8804 else { 8805 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8806 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8807 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8808 val = 1; 8809 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8810 } 8811 end_synchronized_op(sc, 0); 8812 if (rc == 0) 8813 sc->sensor_resets++; 8814 return (rc); 8815 } 8816 8817 static int 8818 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8819 { 8820 struct adapter *sc = arg1; 8821 struct sbuf *sb; 8822 int rc; 8823 uint32_t param, val; 8824 8825 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8826 if (rc) 8827 return (rc); 8828 if (hw_off_limits(sc)) 8829 rc = ENXIO; 8830 else { 8831 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8832 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8833 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8834 } 8835 end_synchronized_op(sc, 0); 8836 if (rc) 8837 return (rc); 8838 8839 rc = sysctl_wire_old_buffer(req, 0); 8840 if (rc != 0) 8841 return (rc); 8842 8843 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8844 if (sb == NULL) 8845 return (ENOMEM); 8846 8847 if (val == 0xffffffff) { 8848 /* Only debug and custom firmwares report load averages. */ 8849 sbuf_printf(sb, "not available"); 8850 } else { 8851 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8852 (val >> 16) & 0xff); 8853 } 8854 rc = sbuf_finish(sb); 8855 sbuf_delete(sb); 8856 8857 return (rc); 8858 } 8859 8860 static int 8861 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8862 { 8863 struct adapter *sc = arg1; 8864 struct sbuf *sb; 8865 int rc, i; 8866 uint16_t incr[NMTUS][NCCTRL_WIN]; 8867 static const char *dec_fac[] = { 8868 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8869 "0.9375" 8870 }; 8871 8872 rc = sysctl_wire_old_buffer(req, 0); 8873 if (rc != 0) 8874 return (rc); 8875 8876 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8877 if (sb == NULL) 8878 return (ENOMEM); 8879 8880 mtx_lock(&sc->reg_lock); 8881 if (hw_off_limits(sc)) 8882 rc = ENXIO; 8883 else 8884 t4_read_cong_tbl(sc, incr); 8885 mtx_unlock(&sc->reg_lock); 8886 if (rc) 8887 goto done; 8888 8889 for (i = 0; i < NCCTRL_WIN; ++i) { 8890 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8891 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8892 incr[5][i], incr[6][i], incr[7][i]); 8893 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8894 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8895 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8896 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8897 } 8898 8899 rc = sbuf_finish(sb); 8900 done: 8901 sbuf_delete(sb); 8902 return (rc); 8903 } 8904 8905 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8906 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8907 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8908 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8909 }; 8910 8911 static int 8912 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8913 { 8914 struct adapter *sc = arg1; 8915 struct sbuf *sb; 8916 int rc, i, n, qid = arg2; 8917 uint32_t *buf, *p; 8918 char *qtype; 8919 u_int cim_num_obq = sc->chip_params->cim_num_obq; 8920 8921 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 8922 ("%s: bad qid %d\n", __func__, qid)); 8923 8924 if (qid < CIM_NUM_IBQ) { 8925 /* inbound queue */ 8926 qtype = "IBQ"; 8927 n = 4 * CIM_IBQ_SIZE; 8928 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8929 mtx_lock(&sc->reg_lock); 8930 if (hw_off_limits(sc)) 8931 rc = -ENXIO; 8932 else 8933 rc = t4_read_cim_ibq(sc, qid, buf, n); 8934 mtx_unlock(&sc->reg_lock); 8935 } else { 8936 /* outbound queue */ 8937 qtype = "OBQ"; 8938 qid -= CIM_NUM_IBQ; 8939 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 8940 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8941 mtx_lock(&sc->reg_lock); 8942 if (hw_off_limits(sc)) 8943 rc = -ENXIO; 8944 else 8945 rc = t4_read_cim_obq(sc, qid, buf, n); 8946 mtx_unlock(&sc->reg_lock); 8947 } 8948 8949 if (rc < 0) { 8950 rc = -rc; 8951 goto done; 8952 } 8953 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 8954 8955 rc = sysctl_wire_old_buffer(req, 0); 8956 if (rc != 0) 8957 goto done; 8958 8959 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8960 if (sb == NULL) { 8961 rc = ENOMEM; 8962 goto done; 8963 } 8964 8965 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 8966 for (i = 0, p = buf; i < n; i += 16, p += 4) 8967 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 8968 p[2], p[3]); 8969 8970 rc = sbuf_finish(sb); 8971 sbuf_delete(sb); 8972 done: 8973 free(buf, M_CXGBE); 8974 return (rc); 8975 } 8976 8977 static void 8978 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8979 { 8980 uint32_t *p; 8981 8982 sbuf_printf(sb, "Status Data PC%s", 8983 cfg & F_UPDBGLACAPTPCONLY ? "" : 8984 " LS0Stat LS0Addr LS0Data"); 8985 8986 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 8987 if (cfg & F_UPDBGLACAPTPCONLY) { 8988 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 8989 p[6], p[7]); 8990 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 8991 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 8992 p[4] & 0xff, p[5] >> 8); 8993 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 8994 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8995 p[1] & 0xf, p[2] >> 4); 8996 } else { 8997 sbuf_printf(sb, 8998 "\n %02x %x%07x %x%07x %08x %08x " 8999 "%08x%08x%08x%08x", 9000 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9001 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 9002 p[6], p[7]); 9003 } 9004 } 9005 } 9006 9007 static void 9008 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9009 { 9010 uint32_t *p; 9011 9012 sbuf_printf(sb, "Status Inst Data PC%s", 9013 cfg & F_UPDBGLACAPTPCONLY ? "" : 9014 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9015 9016 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9017 if (cfg & F_UPDBGLACAPTPCONLY) { 9018 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9019 p[3] & 0xff, p[2], p[1], p[0]); 9020 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9021 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9022 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9023 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9024 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9025 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9026 p[6] >> 16); 9027 } else { 9028 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9029 "%08x %08x %08x %08x %08x %08x", 9030 (p[9] >> 16) & 0xff, 9031 p[9] & 0xffff, p[8] >> 16, 9032 p[8] & 0xffff, p[7] >> 16, 9033 p[7] & 0xffff, p[6] >> 16, 9034 p[2], p[1], p[0], p[5], p[4], p[3]); 9035 } 9036 } 9037 } 9038 9039 static int 9040 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 9041 { 9042 uint32_t cfg, *buf; 9043 int rc; 9044 9045 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9046 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9047 M_ZERO | flags); 9048 if (buf == NULL) 9049 return (ENOMEM); 9050 9051 mtx_lock(&sc->reg_lock); 9052 if (hw_off_limits(sc)) 9053 rc = ENXIO; 9054 else { 9055 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9056 if (rc == 0) 9057 rc = -t4_cim_read_la(sc, buf, NULL); 9058 } 9059 mtx_unlock(&sc->reg_lock); 9060 if (rc == 0) { 9061 if (chip_id(sc) < CHELSIO_T6) 9062 sbuf_cim_la4(sc, sb, buf, cfg); 9063 else 9064 sbuf_cim_la6(sc, sb, buf, cfg); 9065 } 9066 free(buf, M_CXGBE); 9067 return (rc); 9068 } 9069 9070 static int 9071 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9072 { 9073 struct adapter *sc = arg1; 9074 struct sbuf *sb; 9075 int rc; 9076 9077 rc = sysctl_wire_old_buffer(req, 0); 9078 if (rc != 0) 9079 return (rc); 9080 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9081 if (sb == NULL) 9082 return (ENOMEM); 9083 9084 rc = sbuf_cim_la(sc, sb, M_WAITOK); 9085 if (rc == 0) 9086 rc = sbuf_finish(sb); 9087 sbuf_delete(sb); 9088 return (rc); 9089 } 9090 9091 static void 9092 dump_cim_regs(struct adapter *sc) 9093 { 9094 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9095 device_get_nameunit(sc->dev), 9096 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9097 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9098 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9099 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9100 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9101 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9102 device_get_nameunit(sc->dev), 9103 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9104 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9105 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9106 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9107 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9108 } 9109 9110 static void 9111 dump_cimla(struct adapter *sc) 9112 { 9113 struct sbuf sb; 9114 int rc; 9115 9116 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9117 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9118 device_get_nameunit(sc->dev)); 9119 return; 9120 } 9121 rc = sbuf_cim_la(sc, &sb, M_WAITOK); 9122 if (rc == 0) { 9123 rc = sbuf_finish(&sb); 9124 if (rc == 0) { 9125 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9126 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9127 } 9128 } 9129 sbuf_delete(&sb); 9130 } 9131 9132 void 9133 t4_os_cim_err(struct adapter *sc) 9134 { 9135 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9136 } 9137 9138 static int 9139 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9140 { 9141 struct adapter *sc = arg1; 9142 u_int i; 9143 struct sbuf *sb; 9144 uint32_t *buf, *p; 9145 int rc; 9146 9147 rc = sysctl_wire_old_buffer(req, 0); 9148 if (rc != 0) 9149 return (rc); 9150 9151 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9152 if (sb == NULL) 9153 return (ENOMEM); 9154 9155 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9156 M_ZERO | M_WAITOK); 9157 9158 mtx_lock(&sc->reg_lock); 9159 if (hw_off_limits(sc)) 9160 rc = ENXIO; 9161 else 9162 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9163 mtx_unlock(&sc->reg_lock); 9164 if (rc) 9165 goto done; 9166 9167 p = buf; 9168 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9169 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9170 p[1], p[0]); 9171 } 9172 9173 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9174 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9175 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9176 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9177 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9178 (p[1] >> 2) | ((p[2] & 3) << 30), 9179 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9180 p[0] & 1); 9181 } 9182 rc = sbuf_finish(sb); 9183 done: 9184 sbuf_delete(sb); 9185 free(buf, M_CXGBE); 9186 return (rc); 9187 } 9188 9189 static int 9190 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9191 { 9192 struct adapter *sc = arg1; 9193 u_int i; 9194 struct sbuf *sb; 9195 uint32_t *buf, *p; 9196 int rc; 9197 9198 rc = sysctl_wire_old_buffer(req, 0); 9199 if (rc != 0) 9200 return (rc); 9201 9202 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9203 if (sb == NULL) 9204 return (ENOMEM); 9205 9206 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9207 M_ZERO | M_WAITOK); 9208 9209 mtx_lock(&sc->reg_lock); 9210 if (hw_off_limits(sc)) 9211 rc = ENXIO; 9212 else 9213 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9214 mtx_unlock(&sc->reg_lock); 9215 if (rc) 9216 goto done; 9217 9218 p = buf; 9219 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9220 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9221 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9222 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9223 p[4], p[3], p[2], p[1], p[0]); 9224 } 9225 9226 sbuf_printf(sb, "\n\nCntl ID Data"); 9227 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9228 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9229 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9230 } 9231 9232 rc = sbuf_finish(sb); 9233 done: 9234 sbuf_delete(sb); 9235 free(buf, M_CXGBE); 9236 return (rc); 9237 } 9238 9239 static int 9240 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9241 { 9242 struct adapter *sc = arg1; 9243 struct sbuf *sb; 9244 int rc, i; 9245 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9246 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9247 uint16_t thres[CIM_NUM_IBQ]; 9248 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9249 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9250 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9251 9252 cim_num_obq = sc->chip_params->cim_num_obq; 9253 if (is_t4(sc)) { 9254 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9255 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9256 } else { 9257 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9258 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9259 } 9260 nq = CIM_NUM_IBQ + cim_num_obq; 9261 9262 mtx_lock(&sc->reg_lock); 9263 if (hw_off_limits(sc)) 9264 rc = ENXIO; 9265 else { 9266 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9267 if (rc == 0) { 9268 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9269 obq_wr); 9270 if (rc == 0) 9271 t4_read_cimq_cfg(sc, base, size, thres); 9272 } 9273 } 9274 mtx_unlock(&sc->reg_lock); 9275 if (rc) 9276 return (rc); 9277 9278 rc = sysctl_wire_old_buffer(req, 0); 9279 if (rc != 0) 9280 return (rc); 9281 9282 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9283 if (sb == NULL) 9284 return (ENOMEM); 9285 9286 sbuf_printf(sb, 9287 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9288 9289 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9290 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9291 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9292 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9293 G_QUEREMFLITS(p[2]) * 16); 9294 for ( ; i < nq; i++, p += 4, wr += 2) 9295 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9296 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9297 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9298 G_QUEREMFLITS(p[2]) * 16); 9299 9300 rc = sbuf_finish(sb); 9301 sbuf_delete(sb); 9302 9303 return (rc); 9304 } 9305 9306 static int 9307 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9308 { 9309 struct adapter *sc = arg1; 9310 struct sbuf *sb; 9311 int rc; 9312 struct tp_cpl_stats stats; 9313 9314 rc = sysctl_wire_old_buffer(req, 0); 9315 if (rc != 0) 9316 return (rc); 9317 9318 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9319 if (sb == NULL) 9320 return (ENOMEM); 9321 9322 mtx_lock(&sc->reg_lock); 9323 if (hw_off_limits(sc)) 9324 rc = ENXIO; 9325 else 9326 t4_tp_get_cpl_stats(sc, &stats, 0); 9327 mtx_unlock(&sc->reg_lock); 9328 if (rc) 9329 goto done; 9330 9331 if (sc->chip_params->nchan > 2) { 9332 sbuf_printf(sb, " channel 0 channel 1" 9333 " channel 2 channel 3"); 9334 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9335 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9336 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9337 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9338 } else { 9339 sbuf_printf(sb, " channel 0 channel 1"); 9340 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9341 stats.req[0], stats.req[1]); 9342 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9343 stats.rsp[0], stats.rsp[1]); 9344 } 9345 9346 rc = sbuf_finish(sb); 9347 done: 9348 sbuf_delete(sb); 9349 return (rc); 9350 } 9351 9352 static int 9353 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9354 { 9355 struct adapter *sc = arg1; 9356 struct sbuf *sb; 9357 int rc; 9358 struct tp_usm_stats stats; 9359 9360 rc = sysctl_wire_old_buffer(req, 0); 9361 if (rc != 0) 9362 return(rc); 9363 9364 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9365 if (sb == NULL) 9366 return (ENOMEM); 9367 9368 mtx_lock(&sc->reg_lock); 9369 if (hw_off_limits(sc)) 9370 rc = ENXIO; 9371 else 9372 t4_get_usm_stats(sc, &stats, 1); 9373 mtx_unlock(&sc->reg_lock); 9374 if (rc == 0) { 9375 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9376 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9377 sbuf_printf(sb, "Drops: %u", stats.drops); 9378 rc = sbuf_finish(sb); 9379 } 9380 sbuf_delete(sb); 9381 9382 return (rc); 9383 } 9384 9385 static int 9386 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9387 { 9388 struct adapter *sc = arg1; 9389 struct sbuf *sb; 9390 int rc; 9391 struct tp_tid_stats stats; 9392 9393 rc = sysctl_wire_old_buffer(req, 0); 9394 if (rc != 0) 9395 return(rc); 9396 9397 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9398 if (sb == NULL) 9399 return (ENOMEM); 9400 9401 mtx_lock(&sc->reg_lock); 9402 if (hw_off_limits(sc)) 9403 rc = ENXIO; 9404 else 9405 t4_tp_get_tid_stats(sc, &stats, 1); 9406 mtx_unlock(&sc->reg_lock); 9407 if (rc == 0) { 9408 sbuf_printf(sb, "Delete: %u\n", stats.del); 9409 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9410 sbuf_printf(sb, "Active: %u\n", stats.act); 9411 sbuf_printf(sb, "Passive: %u", stats.pas); 9412 rc = sbuf_finish(sb); 9413 } 9414 sbuf_delete(sb); 9415 9416 return (rc); 9417 } 9418 9419 static const char * const devlog_level_strings[] = { 9420 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9421 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9422 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9423 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9424 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9425 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9426 }; 9427 9428 static const char * const devlog_facility_strings[] = { 9429 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9430 [FW_DEVLOG_FACILITY_CF] = "CF", 9431 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9432 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9433 [FW_DEVLOG_FACILITY_RES] = "RES", 9434 [FW_DEVLOG_FACILITY_HW] = "HW", 9435 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9436 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9437 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9438 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9439 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9440 [FW_DEVLOG_FACILITY_VI] = "VI", 9441 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9442 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9443 [FW_DEVLOG_FACILITY_TM] = "TM", 9444 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9445 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9446 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9447 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9448 [FW_DEVLOG_FACILITY_RI] = "RI", 9449 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9450 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9451 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9452 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9453 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9454 }; 9455 9456 static int 9457 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9458 { 9459 int i, j, rc, nentries, first = 0; 9460 struct devlog_params *dparams = &sc->params.devlog; 9461 struct fw_devlog_e *buf, *e; 9462 uint64_t ftstamp = UINT64_MAX; 9463 9464 if (dparams->addr == 0) 9465 return (ENXIO); 9466 9467 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9468 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9469 if (buf == NULL) 9470 return (ENOMEM); 9471 9472 mtx_lock(&sc->reg_lock); 9473 if (hw_off_limits(sc)) 9474 rc = ENXIO; 9475 else 9476 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9477 dparams->size); 9478 mtx_unlock(&sc->reg_lock); 9479 if (rc != 0) 9480 goto done; 9481 9482 nentries = dparams->size / sizeof(struct fw_devlog_e); 9483 for (i = 0; i < nentries; i++) { 9484 e = &buf[i]; 9485 9486 if (e->timestamp == 0) 9487 break; /* end */ 9488 9489 e->timestamp = be64toh(e->timestamp); 9490 e->seqno = be32toh(e->seqno); 9491 for (j = 0; j < 8; j++) 9492 e->params[j] = be32toh(e->params[j]); 9493 9494 if (e->timestamp < ftstamp) { 9495 ftstamp = e->timestamp; 9496 first = i; 9497 } 9498 } 9499 9500 if (buf[first].timestamp == 0) 9501 goto done; /* nothing in the log */ 9502 9503 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9504 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9505 9506 i = first; 9507 do { 9508 e = &buf[i]; 9509 if (e->timestamp == 0) 9510 break; /* end */ 9511 9512 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9513 e->seqno, e->timestamp, 9514 (e->level < nitems(devlog_level_strings) ? 9515 devlog_level_strings[e->level] : "UNKNOWN"), 9516 (e->facility < nitems(devlog_facility_strings) ? 9517 devlog_facility_strings[e->facility] : "UNKNOWN")); 9518 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9519 e->params[2], e->params[3], e->params[4], 9520 e->params[5], e->params[6], e->params[7]); 9521 9522 if (++i == nentries) 9523 i = 0; 9524 } while (i != first); 9525 done: 9526 free(buf, M_CXGBE); 9527 return (rc); 9528 } 9529 9530 static int 9531 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9532 { 9533 struct adapter *sc = arg1; 9534 int rc; 9535 struct sbuf *sb; 9536 9537 rc = sysctl_wire_old_buffer(req, 0); 9538 if (rc != 0) 9539 return (rc); 9540 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9541 if (sb == NULL) 9542 return (ENOMEM); 9543 9544 rc = sbuf_devlog(sc, sb, M_WAITOK); 9545 if (rc == 0) 9546 rc = sbuf_finish(sb); 9547 sbuf_delete(sb); 9548 return (rc); 9549 } 9550 9551 static void 9552 dump_devlog(struct adapter *sc) 9553 { 9554 int rc; 9555 struct sbuf sb; 9556 9557 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9558 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 9559 device_get_nameunit(sc->dev)); 9560 return; 9561 } 9562 rc = sbuf_devlog(sc, &sb, M_WAITOK); 9563 if (rc == 0) { 9564 rc = sbuf_finish(&sb); 9565 if (rc == 0) { 9566 log(LOG_DEBUG, "%s: device log follows.\n%s", 9567 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9568 } 9569 } 9570 sbuf_delete(&sb); 9571 } 9572 9573 static int 9574 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9575 { 9576 struct adapter *sc = arg1; 9577 struct sbuf *sb; 9578 int rc; 9579 struct tp_fcoe_stats stats[MAX_NCHAN]; 9580 int i, nchan = sc->chip_params->nchan; 9581 9582 rc = sysctl_wire_old_buffer(req, 0); 9583 if (rc != 0) 9584 return (rc); 9585 9586 mtx_lock(&sc->reg_lock); 9587 if (hw_off_limits(sc)) 9588 rc = ENXIO; 9589 else { 9590 for (i = 0; i < nchan; i++) 9591 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9592 } 9593 mtx_unlock(&sc->reg_lock); 9594 if (rc != 0) 9595 return (rc); 9596 9597 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9598 if (sb == NULL) 9599 return (ENOMEM); 9600 9601 if (nchan > 2) { 9602 sbuf_printf(sb, " channel 0 channel 1" 9603 " channel 2 channel 3"); 9604 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9605 stats[0].octets_ddp, stats[1].octets_ddp, 9606 stats[2].octets_ddp, stats[3].octets_ddp); 9607 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9608 stats[0].frames_ddp, stats[1].frames_ddp, 9609 stats[2].frames_ddp, stats[3].frames_ddp); 9610 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9611 stats[0].frames_drop, stats[1].frames_drop, 9612 stats[2].frames_drop, stats[3].frames_drop); 9613 } else { 9614 sbuf_printf(sb, " channel 0 channel 1"); 9615 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9616 stats[0].octets_ddp, stats[1].octets_ddp); 9617 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9618 stats[0].frames_ddp, stats[1].frames_ddp); 9619 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9620 stats[0].frames_drop, stats[1].frames_drop); 9621 } 9622 9623 rc = sbuf_finish(sb); 9624 sbuf_delete(sb); 9625 9626 return (rc); 9627 } 9628 9629 static int 9630 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9631 { 9632 struct adapter *sc = arg1; 9633 struct sbuf *sb; 9634 int rc, i; 9635 unsigned int map, kbps, ipg, mode; 9636 unsigned int pace_tab[NTX_SCHED]; 9637 9638 rc = sysctl_wire_old_buffer(req, 0); 9639 if (rc != 0) 9640 return (rc); 9641 9642 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9643 if (sb == NULL) 9644 return (ENOMEM); 9645 9646 mtx_lock(&sc->reg_lock); 9647 if (hw_off_limits(sc)) { 9648 rc = ENXIO; 9649 goto done; 9650 } 9651 9652 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9653 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9654 t4_read_pace_tbl(sc, pace_tab); 9655 9656 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9657 "Class IPG (0.1 ns) Flow IPG (us)"); 9658 9659 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9660 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9661 sbuf_printf(sb, "\n %u %-5s %u ", i, 9662 (mode & (1 << i)) ? "flow" : "class", map & 3); 9663 if (kbps) 9664 sbuf_printf(sb, "%9u ", kbps); 9665 else 9666 sbuf_printf(sb, " disabled "); 9667 9668 if (ipg) 9669 sbuf_printf(sb, "%13u ", ipg); 9670 else 9671 sbuf_printf(sb, " disabled "); 9672 9673 if (pace_tab[i]) 9674 sbuf_printf(sb, "%10u", pace_tab[i]); 9675 else 9676 sbuf_printf(sb, " disabled"); 9677 } 9678 rc = sbuf_finish(sb); 9679 done: 9680 mtx_unlock(&sc->reg_lock); 9681 sbuf_delete(sb); 9682 return (rc); 9683 } 9684 9685 static int 9686 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9687 { 9688 struct adapter *sc = arg1; 9689 struct sbuf *sb; 9690 int rc, i, j; 9691 uint64_t *p0, *p1; 9692 struct lb_port_stats s[2]; 9693 static const char *stat_name[] = { 9694 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9695 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9696 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9697 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9698 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9699 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9700 "BG2FramesTrunc:", "BG3FramesTrunc:" 9701 }; 9702 9703 rc = sysctl_wire_old_buffer(req, 0); 9704 if (rc != 0) 9705 return (rc); 9706 9707 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9708 if (sb == NULL) 9709 return (ENOMEM); 9710 9711 memset(s, 0, sizeof(s)); 9712 9713 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9714 mtx_lock(&sc->reg_lock); 9715 if (hw_off_limits(sc)) 9716 rc = ENXIO; 9717 else { 9718 t4_get_lb_stats(sc, i, &s[0]); 9719 t4_get_lb_stats(sc, i + 1, &s[1]); 9720 } 9721 mtx_unlock(&sc->reg_lock); 9722 if (rc != 0) 9723 break; 9724 9725 p0 = &s[0].octets; 9726 p1 = &s[1].octets; 9727 sbuf_printf(sb, "%s Loopback %u" 9728 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9729 9730 for (j = 0; j < nitems(stat_name); j++) 9731 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9732 *p0++, *p1++); 9733 } 9734 9735 rc = sbuf_finish(sb); 9736 sbuf_delete(sb); 9737 9738 return (rc); 9739 } 9740 9741 static int 9742 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9743 { 9744 int rc = 0; 9745 struct port_info *pi = arg1; 9746 struct link_config *lc = &pi->link_cfg; 9747 struct sbuf *sb; 9748 9749 rc = sysctl_wire_old_buffer(req, 0); 9750 if (rc != 0) 9751 return(rc); 9752 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9753 if (sb == NULL) 9754 return (ENOMEM); 9755 9756 if (lc->link_ok || lc->link_down_rc == 255) 9757 sbuf_printf(sb, "n/a"); 9758 else 9759 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9760 9761 rc = sbuf_finish(sb); 9762 sbuf_delete(sb); 9763 9764 return (rc); 9765 } 9766 9767 struct mem_desc { 9768 u_int base; 9769 u_int limit; 9770 u_int idx; 9771 }; 9772 9773 static int 9774 mem_desc_cmp(const void *a, const void *b) 9775 { 9776 const u_int v1 = ((const struct mem_desc *)a)->base; 9777 const u_int v2 = ((const struct mem_desc *)b)->base; 9778 9779 if (v1 < v2) 9780 return (-1); 9781 else if (v1 > v2) 9782 return (1); 9783 9784 return (0); 9785 } 9786 9787 static void 9788 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9789 unsigned int to) 9790 { 9791 unsigned int size; 9792 9793 if (from == to) 9794 return; 9795 9796 size = to - from + 1; 9797 if (size == 0) 9798 return; 9799 9800 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9801 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9802 } 9803 9804 static int 9805 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9806 { 9807 struct adapter *sc = arg1; 9808 struct sbuf *sb; 9809 int rc, i, n; 9810 uint32_t lo, hi, used, free, alloc; 9811 static const char *memory[] = { 9812 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9813 }; 9814 static const char *region[] = { 9815 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9816 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9817 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9818 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9819 "RQUDP region:", "PBL region:", "TXPBL region:", 9820 "TLSKey region:", "DBVFIFO region:", "ULPRX state:", 9821 "ULPTX state:", "On-chip queues:", 9822 }; 9823 struct mem_desc avail[4]; 9824 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9825 struct mem_desc *md = mem; 9826 9827 rc = sysctl_wire_old_buffer(req, 0); 9828 if (rc != 0) 9829 return (rc); 9830 9831 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9832 if (sb == NULL) 9833 return (ENOMEM); 9834 9835 for (i = 0; i < nitems(mem); i++) { 9836 mem[i].limit = 0; 9837 mem[i].idx = i; 9838 } 9839 9840 mtx_lock(&sc->reg_lock); 9841 if (hw_off_limits(sc)) { 9842 rc = ENXIO; 9843 goto done; 9844 } 9845 9846 /* Find and sort the populated memory ranges */ 9847 i = 0; 9848 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9849 if (lo & F_EDRAM0_ENABLE) { 9850 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9851 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9852 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9853 avail[i].idx = 0; 9854 i++; 9855 } 9856 if (lo & F_EDRAM1_ENABLE) { 9857 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9858 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9859 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9860 avail[i].idx = 1; 9861 i++; 9862 } 9863 if (lo & F_EXT_MEM_ENABLE) { 9864 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9865 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9866 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9867 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9868 i++; 9869 } 9870 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9871 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9872 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9873 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9874 avail[i].idx = 4; 9875 i++; 9876 } 9877 if (is_t6(sc) && lo & F_HMA_MUX) { 9878 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9879 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9880 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9881 avail[i].idx = 5; 9882 i++; 9883 } 9884 MPASS(i <= nitems(avail)); 9885 if (!i) /* no memory available */ 9886 goto done; 9887 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9888 9889 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9890 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9891 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9892 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9893 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9894 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9895 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9896 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9897 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9898 9899 /* the next few have explicit upper bounds */ 9900 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9901 md->limit = md->base - 1 + 9902 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9903 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9904 md++; 9905 9906 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9907 md->limit = md->base - 1 + 9908 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9909 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9910 md++; 9911 9912 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9913 if (chip_id(sc) <= CHELSIO_T5) 9914 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9915 else 9916 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9917 md->limit = 0; 9918 } else { 9919 md->base = 0; 9920 md->idx = nitems(region); /* hide it */ 9921 } 9922 md++; 9923 9924 #define ulp_region(reg) \ 9925 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9926 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9927 9928 ulp_region(RX_ISCSI); 9929 ulp_region(RX_TDDP); 9930 ulp_region(TX_TPT); 9931 ulp_region(RX_STAG); 9932 ulp_region(RX_RQ); 9933 ulp_region(RX_RQUDP); 9934 ulp_region(RX_PBL); 9935 ulp_region(TX_PBL); 9936 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 9937 ulp_region(RX_TLS_KEY); 9938 } 9939 #undef ulp_region 9940 9941 md->base = 0; 9942 if (is_t4(sc)) 9943 md->idx = nitems(region); 9944 else { 9945 uint32_t size = 0; 9946 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9947 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9948 9949 if (is_t5(sc)) { 9950 if (sge_ctrl & F_VFIFO_ENABLE) 9951 size = fifo_size << 2; 9952 } else 9953 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 9954 9955 if (size) { 9956 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 9957 md->limit = md->base + size - 1; 9958 } else 9959 md->idx = nitems(region); 9960 } 9961 md++; 9962 9963 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 9964 md->limit = 0; 9965 md++; 9966 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 9967 md->limit = 0; 9968 md++; 9969 9970 md->base = sc->vres.ocq.start; 9971 if (sc->vres.ocq.size) 9972 md->limit = md->base + sc->vres.ocq.size - 1; 9973 else 9974 md->idx = nitems(region); /* hide it */ 9975 md++; 9976 9977 /* add any address-space holes, there can be up to 3 */ 9978 for (n = 0; n < i - 1; n++) 9979 if (avail[n].limit < avail[n + 1].base) 9980 (md++)->base = avail[n].limit; 9981 if (avail[n].limit) 9982 (md++)->base = avail[n].limit; 9983 9984 n = md - mem; 9985 MPASS(n <= nitems(mem)); 9986 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 9987 9988 for (lo = 0; lo < i; lo++) 9989 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 9990 avail[lo].limit - 1); 9991 9992 sbuf_printf(sb, "\n"); 9993 for (i = 0; i < n; i++) { 9994 if (mem[i].idx >= nitems(region)) 9995 continue; /* skip holes */ 9996 if (!mem[i].limit) 9997 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 9998 mem_region_show(sb, region[mem[i].idx], mem[i].base, 9999 mem[i].limit); 10000 } 10001 10002 sbuf_printf(sb, "\n"); 10003 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 10004 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 10005 mem_region_show(sb, "uP RAM:", lo, hi); 10006 10007 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 10008 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10009 mem_region_show(sb, "uP Extmem2:", lo, hi); 10010 10011 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10012 for (i = 0, free = 0; i < 2; i++) 10013 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10014 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10015 G_PMRXMAXPAGE(lo), free, 10016 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 10017 (lo & F_PMRXNUMCHN) ? 2 : 1); 10018 10019 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10020 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10021 for (i = 0, free = 0; i < 4; i++) 10022 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10023 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10024 G_PMTXMAXPAGE(lo), free, 10025 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10026 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 10027 sbuf_printf(sb, "%u p-structs (%u free)\n", 10028 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10029 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10030 10031 for (i = 0; i < 4; i++) { 10032 if (chip_id(sc) > CHELSIO_T5) 10033 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10034 else 10035 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10036 if (is_t5(sc)) { 10037 used = G_T5_USED(lo); 10038 alloc = G_T5_ALLOC(lo); 10039 } else { 10040 used = G_USED(lo); 10041 alloc = G_ALLOC(lo); 10042 } 10043 /* For T6 these are MAC buffer groups */ 10044 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10045 i, used, alloc); 10046 } 10047 for (i = 0; i < sc->chip_params->nchan; i++) { 10048 if (chip_id(sc) > CHELSIO_T5) 10049 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10050 else 10051 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10052 if (is_t5(sc)) { 10053 used = G_T5_USED(lo); 10054 alloc = G_T5_ALLOC(lo); 10055 } else { 10056 used = G_USED(lo); 10057 alloc = G_ALLOC(lo); 10058 } 10059 /* For T6 these are MAC buffer groups */ 10060 sbuf_printf(sb, 10061 "\nLoopback %d using %u pages out of %u allocated", 10062 i, used, alloc); 10063 } 10064 done: 10065 mtx_unlock(&sc->reg_lock); 10066 if (rc == 0) 10067 rc = sbuf_finish(sb); 10068 sbuf_delete(sb); 10069 return (rc); 10070 } 10071 10072 static inline void 10073 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10074 { 10075 *mask = x | y; 10076 y = htobe64(y); 10077 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10078 } 10079 10080 static int 10081 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10082 { 10083 struct adapter *sc = arg1; 10084 struct sbuf *sb; 10085 int rc, i; 10086 10087 MPASS(chip_id(sc) <= CHELSIO_T5); 10088 10089 rc = sysctl_wire_old_buffer(req, 0); 10090 if (rc != 0) 10091 return (rc); 10092 10093 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10094 if (sb == NULL) 10095 return (ENOMEM); 10096 10097 sbuf_printf(sb, 10098 "Idx Ethernet address Mask Vld Ports PF" 10099 " VF Replication P0 P1 P2 P3 ML"); 10100 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10101 uint64_t tcamx, tcamy, mask; 10102 uint32_t cls_lo, cls_hi; 10103 uint8_t addr[ETHER_ADDR_LEN]; 10104 10105 mtx_lock(&sc->reg_lock); 10106 if (hw_off_limits(sc)) 10107 rc = ENXIO; 10108 else { 10109 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10110 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10111 } 10112 mtx_unlock(&sc->reg_lock); 10113 if (rc != 0) 10114 break; 10115 if (tcamx & tcamy) 10116 continue; 10117 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10118 mtx_lock(&sc->reg_lock); 10119 if (hw_off_limits(sc)) 10120 rc = ENXIO; 10121 else { 10122 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10123 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10124 } 10125 mtx_unlock(&sc->reg_lock); 10126 if (rc != 0) 10127 break; 10128 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10129 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10130 addr[3], addr[4], addr[5], (uintmax_t)mask, 10131 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10132 G_PORTMAP(cls_hi), G_PF(cls_lo), 10133 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10134 10135 if (cls_lo & F_REPLICATE) { 10136 struct fw_ldst_cmd ldst_cmd; 10137 10138 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10139 ldst_cmd.op_to_addrspace = 10140 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10141 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10142 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10143 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10144 ldst_cmd.u.mps.rplc.fid_idx = 10145 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10146 V_FW_LDST_CMD_IDX(i)); 10147 10148 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10149 "t4mps"); 10150 if (rc) 10151 break; 10152 if (hw_off_limits(sc)) 10153 rc = ENXIO; 10154 else 10155 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10156 sizeof(ldst_cmd), &ldst_cmd); 10157 end_synchronized_op(sc, 0); 10158 if (rc != 0) 10159 break; 10160 else { 10161 sbuf_printf(sb, " %08x %08x %08x %08x", 10162 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10163 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10164 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10165 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10166 } 10167 } else 10168 sbuf_printf(sb, "%36s", ""); 10169 10170 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10171 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10172 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10173 } 10174 10175 if (rc) 10176 (void) sbuf_finish(sb); 10177 else 10178 rc = sbuf_finish(sb); 10179 sbuf_delete(sb); 10180 10181 return (rc); 10182 } 10183 10184 static int 10185 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10186 { 10187 struct adapter *sc = arg1; 10188 struct sbuf *sb; 10189 int rc, i; 10190 10191 MPASS(chip_id(sc) > CHELSIO_T5); 10192 10193 rc = sysctl_wire_old_buffer(req, 0); 10194 if (rc != 0) 10195 return (rc); 10196 10197 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10198 if (sb == NULL) 10199 return (ENOMEM); 10200 10201 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10202 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10203 " Replication" 10204 " P0 P1 P2 P3 ML\n"); 10205 10206 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10207 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10208 uint16_t ivlan; 10209 uint64_t tcamx, tcamy, val, mask; 10210 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10211 uint8_t addr[ETHER_ADDR_LEN]; 10212 10213 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10214 if (i < 256) 10215 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10216 else 10217 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10218 mtx_lock(&sc->reg_lock); 10219 if (hw_off_limits(sc)) 10220 rc = ENXIO; 10221 else { 10222 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10223 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10224 tcamy = G_DMACH(val) << 32; 10225 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10226 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10227 } 10228 mtx_unlock(&sc->reg_lock); 10229 if (rc != 0) 10230 break; 10231 10232 lookup_type = G_DATALKPTYPE(data2); 10233 port_num = G_DATAPORTNUM(data2); 10234 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10235 /* Inner header VNI */ 10236 vniy = ((data2 & F_DATAVIDH2) << 23) | 10237 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10238 dip_hit = data2 & F_DATADIPHIT; 10239 vlan_vld = 0; 10240 } else { 10241 vniy = 0; 10242 dip_hit = 0; 10243 vlan_vld = data2 & F_DATAVIDH2; 10244 ivlan = G_VIDL(val); 10245 } 10246 10247 ctl |= V_CTLXYBITSEL(1); 10248 mtx_lock(&sc->reg_lock); 10249 if (hw_off_limits(sc)) 10250 rc = ENXIO; 10251 else { 10252 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10253 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10254 tcamx = G_DMACH(val) << 32; 10255 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10256 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10257 } 10258 mtx_unlock(&sc->reg_lock); 10259 if (rc != 0) 10260 break; 10261 10262 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10263 /* Inner header VNI mask */ 10264 vnix = ((data2 & F_DATAVIDH2) << 23) | 10265 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10266 } else 10267 vnix = 0; 10268 10269 if (tcamx & tcamy) 10270 continue; 10271 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10272 10273 mtx_lock(&sc->reg_lock); 10274 if (hw_off_limits(sc)) 10275 rc = ENXIO; 10276 else { 10277 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10278 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10279 } 10280 mtx_unlock(&sc->reg_lock); 10281 if (rc != 0) 10282 break; 10283 10284 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10285 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10286 "%012jx %06x %06x - - %3c" 10287 " I %4x %3c %#x%4u%4d", i, addr[0], 10288 addr[1], addr[2], addr[3], addr[4], addr[5], 10289 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10290 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10291 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10292 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10293 } else { 10294 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10295 "%012jx - - ", i, addr[0], addr[1], 10296 addr[2], addr[3], addr[4], addr[5], 10297 (uintmax_t)mask); 10298 10299 if (vlan_vld) 10300 sbuf_printf(sb, "%4u Y ", ivlan); 10301 else 10302 sbuf_printf(sb, " - N "); 10303 10304 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10305 lookup_type ? 'I' : 'O', port_num, 10306 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10307 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10308 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10309 } 10310 10311 10312 if (cls_lo & F_T6_REPLICATE) { 10313 struct fw_ldst_cmd ldst_cmd; 10314 10315 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10316 ldst_cmd.op_to_addrspace = 10317 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10318 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10319 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10320 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10321 ldst_cmd.u.mps.rplc.fid_idx = 10322 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10323 V_FW_LDST_CMD_IDX(i)); 10324 10325 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10326 "t6mps"); 10327 if (rc) 10328 break; 10329 if (hw_off_limits(sc)) 10330 rc = ENXIO; 10331 else 10332 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10333 sizeof(ldst_cmd), &ldst_cmd); 10334 end_synchronized_op(sc, 0); 10335 if (rc != 0) 10336 break; 10337 else { 10338 sbuf_printf(sb, " %08x %08x %08x %08x" 10339 " %08x %08x %08x %08x", 10340 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10341 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10342 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10343 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10344 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10345 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10346 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10347 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10348 } 10349 } else 10350 sbuf_printf(sb, "%72s", ""); 10351 10352 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10353 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10354 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10355 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10356 } 10357 10358 if (rc) 10359 (void) sbuf_finish(sb); 10360 else 10361 rc = sbuf_finish(sb); 10362 sbuf_delete(sb); 10363 10364 return (rc); 10365 } 10366 10367 static int 10368 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10369 { 10370 struct adapter *sc = arg1; 10371 struct sbuf *sb; 10372 int rc; 10373 uint16_t mtus[NMTUS]; 10374 10375 rc = sysctl_wire_old_buffer(req, 0); 10376 if (rc != 0) 10377 return (rc); 10378 10379 mtx_lock(&sc->reg_lock); 10380 if (hw_off_limits(sc)) 10381 rc = ENXIO; 10382 else 10383 t4_read_mtu_tbl(sc, mtus, NULL); 10384 mtx_unlock(&sc->reg_lock); 10385 if (rc != 0) 10386 return (rc); 10387 10388 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10389 if (sb == NULL) 10390 return (ENOMEM); 10391 10392 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10393 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10394 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10395 mtus[14], mtus[15]); 10396 10397 rc = sbuf_finish(sb); 10398 sbuf_delete(sb); 10399 10400 return (rc); 10401 } 10402 10403 static int 10404 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10405 { 10406 struct adapter *sc = arg1; 10407 struct sbuf *sb; 10408 int rc, i; 10409 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10410 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10411 static const char *tx_stats[MAX_PM_NSTATS] = { 10412 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10413 "Tx FIFO wait", NULL, "Tx latency" 10414 }; 10415 static const char *rx_stats[MAX_PM_NSTATS] = { 10416 "Read:", "Write bypass:", "Write mem:", "Flush:", 10417 "Rx FIFO wait", NULL, "Rx latency" 10418 }; 10419 10420 rc = sysctl_wire_old_buffer(req, 0); 10421 if (rc != 0) 10422 return (rc); 10423 10424 mtx_lock(&sc->reg_lock); 10425 if (hw_off_limits(sc)) 10426 rc = ENXIO; 10427 else { 10428 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10429 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10430 } 10431 mtx_unlock(&sc->reg_lock); 10432 if (rc != 0) 10433 return (rc); 10434 10435 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10436 if (sb == NULL) 10437 return (ENOMEM); 10438 10439 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10440 for (i = 0; i < 4; i++) { 10441 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10442 tx_cyc[i]); 10443 } 10444 10445 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10446 for (i = 0; i < 4; i++) { 10447 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10448 rx_cyc[i]); 10449 } 10450 10451 if (chip_id(sc) > CHELSIO_T5) { 10452 sbuf_printf(sb, 10453 "\n Total wait Total occupancy"); 10454 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10455 tx_cyc[i]); 10456 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10457 rx_cyc[i]); 10458 10459 i += 2; 10460 MPASS(i < nitems(tx_stats)); 10461 10462 sbuf_printf(sb, 10463 "\n Reads Total wait"); 10464 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10465 tx_cyc[i]); 10466 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10467 rx_cyc[i]); 10468 } 10469 10470 rc = sbuf_finish(sb); 10471 sbuf_delete(sb); 10472 10473 return (rc); 10474 } 10475 10476 static int 10477 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10478 { 10479 struct adapter *sc = arg1; 10480 struct sbuf *sb; 10481 int rc; 10482 struct tp_rdma_stats stats; 10483 10484 rc = sysctl_wire_old_buffer(req, 0); 10485 if (rc != 0) 10486 return (rc); 10487 10488 mtx_lock(&sc->reg_lock); 10489 if (hw_off_limits(sc)) 10490 rc = ENXIO; 10491 else 10492 t4_tp_get_rdma_stats(sc, &stats, 0); 10493 mtx_unlock(&sc->reg_lock); 10494 if (rc != 0) 10495 return (rc); 10496 10497 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10498 if (sb == NULL) 10499 return (ENOMEM); 10500 10501 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10502 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10503 10504 rc = sbuf_finish(sb); 10505 sbuf_delete(sb); 10506 10507 return (rc); 10508 } 10509 10510 static int 10511 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10512 { 10513 struct adapter *sc = arg1; 10514 struct sbuf *sb; 10515 int rc; 10516 struct tp_tcp_stats v4, v6; 10517 10518 rc = sysctl_wire_old_buffer(req, 0); 10519 if (rc != 0) 10520 return (rc); 10521 10522 mtx_lock(&sc->reg_lock); 10523 if (hw_off_limits(sc)) 10524 rc = ENXIO; 10525 else 10526 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10527 mtx_unlock(&sc->reg_lock); 10528 if (rc != 0) 10529 return (rc); 10530 10531 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10532 if (sb == NULL) 10533 return (ENOMEM); 10534 10535 sbuf_printf(sb, 10536 " IP IPv6\n"); 10537 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10538 v4.tcp_out_rsts, v6.tcp_out_rsts); 10539 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10540 v4.tcp_in_segs, v6.tcp_in_segs); 10541 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10542 v4.tcp_out_segs, v6.tcp_out_segs); 10543 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10544 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10545 10546 rc = sbuf_finish(sb); 10547 sbuf_delete(sb); 10548 10549 return (rc); 10550 } 10551 10552 static int 10553 sysctl_tids(SYSCTL_HANDLER_ARGS) 10554 { 10555 struct adapter *sc = arg1; 10556 struct sbuf *sb; 10557 int rc; 10558 uint32_t x, y; 10559 struct tid_info *t = &sc->tids; 10560 10561 rc = sysctl_wire_old_buffer(req, 0); 10562 if (rc != 0) 10563 return (rc); 10564 10565 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10566 if (sb == NULL) 10567 return (ENOMEM); 10568 10569 if (t->natids) { 10570 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10571 t->atids_in_use); 10572 } 10573 10574 if (t->nhpftids) { 10575 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10576 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10577 } 10578 10579 if (t->ntids) { 10580 bool hashen = false; 10581 10582 mtx_lock(&sc->reg_lock); 10583 if (hw_off_limits(sc)) 10584 rc = ENXIO; 10585 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10586 hashen = true; 10587 if (chip_id(sc) <= CHELSIO_T5) { 10588 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10589 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10590 } else { 10591 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10592 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10593 } 10594 } 10595 mtx_unlock(&sc->reg_lock); 10596 if (rc != 0) 10597 goto done; 10598 10599 sbuf_printf(sb, "TID range: "); 10600 if (hashen) { 10601 if (x) 10602 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10603 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10604 } else { 10605 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10606 t->ntids - 1); 10607 } 10608 sbuf_printf(sb, ", in use: %u\n", 10609 atomic_load_acq_int(&t->tids_in_use)); 10610 } 10611 10612 if (t->nstids) { 10613 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10614 t->stid_base + t->nstids - 1, t->stids_in_use); 10615 } 10616 10617 if (t->nftids) { 10618 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10619 t->ftid_end, t->ftids_in_use); 10620 } 10621 10622 if (t->netids) { 10623 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10624 t->etid_base + t->netids - 1, t->etids_in_use); 10625 } 10626 10627 mtx_lock(&sc->reg_lock); 10628 if (hw_off_limits(sc)) 10629 rc = ENXIO; 10630 else { 10631 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10632 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10633 } 10634 mtx_unlock(&sc->reg_lock); 10635 if (rc != 0) 10636 goto done; 10637 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10638 done: 10639 if (rc == 0) 10640 rc = sbuf_finish(sb); 10641 else 10642 (void)sbuf_finish(sb); 10643 sbuf_delete(sb); 10644 10645 return (rc); 10646 } 10647 10648 static int 10649 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10650 { 10651 struct adapter *sc = arg1; 10652 struct sbuf *sb; 10653 int rc; 10654 struct tp_err_stats stats; 10655 10656 rc = sysctl_wire_old_buffer(req, 0); 10657 if (rc != 0) 10658 return (rc); 10659 10660 mtx_lock(&sc->reg_lock); 10661 if (hw_off_limits(sc)) 10662 rc = ENXIO; 10663 else 10664 t4_tp_get_err_stats(sc, &stats, 0); 10665 mtx_unlock(&sc->reg_lock); 10666 if (rc != 0) 10667 return (rc); 10668 10669 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10670 if (sb == NULL) 10671 return (ENOMEM); 10672 10673 if (sc->chip_params->nchan > 2) { 10674 sbuf_printf(sb, " channel 0 channel 1" 10675 " channel 2 channel 3\n"); 10676 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10677 stats.mac_in_errs[0], stats.mac_in_errs[1], 10678 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10679 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10680 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10681 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10682 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10683 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10684 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10685 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10686 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10687 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10688 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10689 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10690 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10691 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10692 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10693 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10694 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10695 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10696 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10697 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10698 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10699 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10700 } else { 10701 sbuf_printf(sb, " channel 0 channel 1\n"); 10702 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10703 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10704 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10705 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10706 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10707 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10708 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10709 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10710 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10711 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10712 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10713 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10714 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10715 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10716 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10717 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10718 } 10719 10720 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10721 stats.ofld_no_neigh, stats.ofld_cong_defer); 10722 10723 rc = sbuf_finish(sb); 10724 sbuf_delete(sb); 10725 10726 return (rc); 10727 } 10728 10729 static int 10730 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10731 { 10732 struct adapter *sc = arg1; 10733 struct sbuf *sb; 10734 int rc; 10735 struct tp_tnl_stats stats; 10736 10737 rc = sysctl_wire_old_buffer(req, 0); 10738 if (rc != 0) 10739 return(rc); 10740 10741 mtx_lock(&sc->reg_lock); 10742 if (hw_off_limits(sc)) 10743 rc = ENXIO; 10744 else 10745 t4_tp_get_tnl_stats(sc, &stats, 1); 10746 mtx_unlock(&sc->reg_lock); 10747 if (rc != 0) 10748 return (rc); 10749 10750 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10751 if (sb == NULL) 10752 return (ENOMEM); 10753 10754 if (sc->chip_params->nchan > 2) { 10755 sbuf_printf(sb, " channel 0 channel 1" 10756 " channel 2 channel 3\n"); 10757 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10758 stats.out_pkt[0], stats.out_pkt[1], 10759 stats.out_pkt[2], stats.out_pkt[3]); 10760 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10761 stats.in_pkt[0], stats.in_pkt[1], 10762 stats.in_pkt[2], stats.in_pkt[3]); 10763 } else { 10764 sbuf_printf(sb, " channel 0 channel 1\n"); 10765 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10766 stats.out_pkt[0], stats.out_pkt[1]); 10767 sbuf_printf(sb, "InPkts: %10u %10u", 10768 stats.in_pkt[0], stats.in_pkt[1]); 10769 } 10770 10771 rc = sbuf_finish(sb); 10772 sbuf_delete(sb); 10773 10774 return (rc); 10775 } 10776 10777 static int 10778 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10779 { 10780 struct adapter *sc = arg1; 10781 struct tp_params *tpp = &sc->params.tp; 10782 u_int mask; 10783 int rc; 10784 10785 mask = tpp->la_mask >> 16; 10786 rc = sysctl_handle_int(oidp, &mask, 0, req); 10787 if (rc != 0 || req->newptr == NULL) 10788 return (rc); 10789 if (mask > 0xffff) 10790 return (EINVAL); 10791 mtx_lock(&sc->reg_lock); 10792 if (hw_off_limits(sc)) 10793 rc = ENXIO; 10794 else { 10795 tpp->la_mask = mask << 16; 10796 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10797 tpp->la_mask); 10798 } 10799 mtx_unlock(&sc->reg_lock); 10800 10801 return (rc); 10802 } 10803 10804 struct field_desc { 10805 const char *name; 10806 u_int start; 10807 u_int width; 10808 }; 10809 10810 static void 10811 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10812 { 10813 char buf[32]; 10814 int line_size = 0; 10815 10816 while (f->name) { 10817 uint64_t mask = (1ULL << f->width) - 1; 10818 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10819 ((uintmax_t)v >> f->start) & mask); 10820 10821 if (line_size + len >= 79) { 10822 line_size = 8; 10823 sbuf_printf(sb, "\n "); 10824 } 10825 sbuf_printf(sb, "%s ", buf); 10826 line_size += len + 1; 10827 f++; 10828 } 10829 sbuf_printf(sb, "\n"); 10830 } 10831 10832 static const struct field_desc tp_la0[] = { 10833 { "RcfOpCodeOut", 60, 4 }, 10834 { "State", 56, 4 }, 10835 { "WcfState", 52, 4 }, 10836 { "RcfOpcSrcOut", 50, 2 }, 10837 { "CRxError", 49, 1 }, 10838 { "ERxError", 48, 1 }, 10839 { "SanityFailed", 47, 1 }, 10840 { "SpuriousMsg", 46, 1 }, 10841 { "FlushInputMsg", 45, 1 }, 10842 { "FlushInputCpl", 44, 1 }, 10843 { "RssUpBit", 43, 1 }, 10844 { "RssFilterHit", 42, 1 }, 10845 { "Tid", 32, 10 }, 10846 { "InitTcb", 31, 1 }, 10847 { "LineNumber", 24, 7 }, 10848 { "Emsg", 23, 1 }, 10849 { "EdataOut", 22, 1 }, 10850 { "Cmsg", 21, 1 }, 10851 { "CdataOut", 20, 1 }, 10852 { "EreadPdu", 19, 1 }, 10853 { "CreadPdu", 18, 1 }, 10854 { "TunnelPkt", 17, 1 }, 10855 { "RcfPeerFin", 16, 1 }, 10856 { "RcfReasonOut", 12, 4 }, 10857 { "TxCchannel", 10, 2 }, 10858 { "RcfTxChannel", 8, 2 }, 10859 { "RxEchannel", 6, 2 }, 10860 { "RcfRxChannel", 5, 1 }, 10861 { "RcfDataOutSrdy", 4, 1 }, 10862 { "RxDvld", 3, 1 }, 10863 { "RxOoDvld", 2, 1 }, 10864 { "RxCongestion", 1, 1 }, 10865 { "TxCongestion", 0, 1 }, 10866 { NULL } 10867 }; 10868 10869 static const struct field_desc tp_la1[] = { 10870 { "CplCmdIn", 56, 8 }, 10871 { "CplCmdOut", 48, 8 }, 10872 { "ESynOut", 47, 1 }, 10873 { "EAckOut", 46, 1 }, 10874 { "EFinOut", 45, 1 }, 10875 { "ERstOut", 44, 1 }, 10876 { "SynIn", 43, 1 }, 10877 { "AckIn", 42, 1 }, 10878 { "FinIn", 41, 1 }, 10879 { "RstIn", 40, 1 }, 10880 { "DataIn", 39, 1 }, 10881 { "DataInVld", 38, 1 }, 10882 { "PadIn", 37, 1 }, 10883 { "RxBufEmpty", 36, 1 }, 10884 { "RxDdp", 35, 1 }, 10885 { "RxFbCongestion", 34, 1 }, 10886 { "TxFbCongestion", 33, 1 }, 10887 { "TxPktSumSrdy", 32, 1 }, 10888 { "RcfUlpType", 28, 4 }, 10889 { "Eread", 27, 1 }, 10890 { "Ebypass", 26, 1 }, 10891 { "Esave", 25, 1 }, 10892 { "Static0", 24, 1 }, 10893 { "Cread", 23, 1 }, 10894 { "Cbypass", 22, 1 }, 10895 { "Csave", 21, 1 }, 10896 { "CPktOut", 20, 1 }, 10897 { "RxPagePoolFull", 18, 2 }, 10898 { "RxLpbkPkt", 17, 1 }, 10899 { "TxLpbkPkt", 16, 1 }, 10900 { "RxVfValid", 15, 1 }, 10901 { "SynLearned", 14, 1 }, 10902 { "SetDelEntry", 13, 1 }, 10903 { "SetInvEntry", 12, 1 }, 10904 { "CpcmdDvld", 11, 1 }, 10905 { "CpcmdSave", 10, 1 }, 10906 { "RxPstructsFull", 8, 2 }, 10907 { "EpcmdDvld", 7, 1 }, 10908 { "EpcmdFlush", 6, 1 }, 10909 { "EpcmdTrimPrefix", 5, 1 }, 10910 { "EpcmdTrimPostfix", 4, 1 }, 10911 { "ERssIp4Pkt", 3, 1 }, 10912 { "ERssIp6Pkt", 2, 1 }, 10913 { "ERssTcpUdpPkt", 1, 1 }, 10914 { "ERssFceFipPkt", 0, 1 }, 10915 { NULL } 10916 }; 10917 10918 static const struct field_desc tp_la2[] = { 10919 { "CplCmdIn", 56, 8 }, 10920 { "MpsVfVld", 55, 1 }, 10921 { "MpsPf", 52, 3 }, 10922 { "MpsVf", 44, 8 }, 10923 { "SynIn", 43, 1 }, 10924 { "AckIn", 42, 1 }, 10925 { "FinIn", 41, 1 }, 10926 { "RstIn", 40, 1 }, 10927 { "DataIn", 39, 1 }, 10928 { "DataInVld", 38, 1 }, 10929 { "PadIn", 37, 1 }, 10930 { "RxBufEmpty", 36, 1 }, 10931 { "RxDdp", 35, 1 }, 10932 { "RxFbCongestion", 34, 1 }, 10933 { "TxFbCongestion", 33, 1 }, 10934 { "TxPktSumSrdy", 32, 1 }, 10935 { "RcfUlpType", 28, 4 }, 10936 { "Eread", 27, 1 }, 10937 { "Ebypass", 26, 1 }, 10938 { "Esave", 25, 1 }, 10939 { "Static0", 24, 1 }, 10940 { "Cread", 23, 1 }, 10941 { "Cbypass", 22, 1 }, 10942 { "Csave", 21, 1 }, 10943 { "CPktOut", 20, 1 }, 10944 { "RxPagePoolFull", 18, 2 }, 10945 { "RxLpbkPkt", 17, 1 }, 10946 { "TxLpbkPkt", 16, 1 }, 10947 { "RxVfValid", 15, 1 }, 10948 { "SynLearned", 14, 1 }, 10949 { "SetDelEntry", 13, 1 }, 10950 { "SetInvEntry", 12, 1 }, 10951 { "CpcmdDvld", 11, 1 }, 10952 { "CpcmdSave", 10, 1 }, 10953 { "RxPstructsFull", 8, 2 }, 10954 { "EpcmdDvld", 7, 1 }, 10955 { "EpcmdFlush", 6, 1 }, 10956 { "EpcmdTrimPrefix", 5, 1 }, 10957 { "EpcmdTrimPostfix", 4, 1 }, 10958 { "ERssIp4Pkt", 3, 1 }, 10959 { "ERssIp6Pkt", 2, 1 }, 10960 { "ERssTcpUdpPkt", 1, 1 }, 10961 { "ERssFceFipPkt", 0, 1 }, 10962 { NULL } 10963 }; 10964 10965 static void 10966 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10967 { 10968 10969 field_desc_show(sb, *p, tp_la0); 10970 } 10971 10972 static void 10973 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10974 { 10975 10976 if (idx) 10977 sbuf_printf(sb, "\n"); 10978 field_desc_show(sb, p[0], tp_la0); 10979 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10980 field_desc_show(sb, p[1], tp_la0); 10981 } 10982 10983 static void 10984 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 10985 { 10986 10987 if (idx) 10988 sbuf_printf(sb, "\n"); 10989 field_desc_show(sb, p[0], tp_la0); 10990 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10991 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 10992 } 10993 10994 static int 10995 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 10996 { 10997 struct adapter *sc = arg1; 10998 struct sbuf *sb; 10999 uint64_t *buf, *p; 11000 int rc; 11001 u_int i, inc; 11002 void (*show_func)(struct sbuf *, uint64_t *, int); 11003 11004 rc = sysctl_wire_old_buffer(req, 0); 11005 if (rc != 0) 11006 return (rc); 11007 11008 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11009 if (sb == NULL) 11010 return (ENOMEM); 11011 11012 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 11013 11014 mtx_lock(&sc->reg_lock); 11015 if (hw_off_limits(sc)) 11016 rc = ENXIO; 11017 else { 11018 t4_tp_read_la(sc, buf, NULL); 11019 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 11020 case 2: 11021 inc = 2; 11022 show_func = tp_la_show2; 11023 break; 11024 case 3: 11025 inc = 2; 11026 show_func = tp_la_show3; 11027 break; 11028 default: 11029 inc = 1; 11030 show_func = tp_la_show; 11031 } 11032 } 11033 mtx_unlock(&sc->reg_lock); 11034 if (rc != 0) 11035 goto done; 11036 11037 p = buf; 11038 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 11039 (*show_func)(sb, p, i); 11040 rc = sbuf_finish(sb); 11041 done: 11042 sbuf_delete(sb); 11043 free(buf, M_CXGBE); 11044 return (rc); 11045 } 11046 11047 static int 11048 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 11049 { 11050 struct adapter *sc = arg1; 11051 struct sbuf *sb; 11052 int rc; 11053 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 11054 11055 rc = sysctl_wire_old_buffer(req, 0); 11056 if (rc != 0) 11057 return (rc); 11058 11059 mtx_lock(&sc->reg_lock); 11060 if (hw_off_limits(sc)) 11061 rc = ENXIO; 11062 else 11063 t4_get_chan_txrate(sc, nrate, orate); 11064 mtx_unlock(&sc->reg_lock); 11065 if (rc != 0) 11066 return (rc); 11067 11068 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11069 if (sb == NULL) 11070 return (ENOMEM); 11071 11072 if (sc->chip_params->nchan > 2) { 11073 sbuf_printf(sb, " channel 0 channel 1" 11074 " channel 2 channel 3\n"); 11075 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 11076 nrate[0], nrate[1], nrate[2], nrate[3]); 11077 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 11078 orate[0], orate[1], orate[2], orate[3]); 11079 } else { 11080 sbuf_printf(sb, " channel 0 channel 1\n"); 11081 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 11082 nrate[0], nrate[1]); 11083 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 11084 orate[0], orate[1]); 11085 } 11086 11087 rc = sbuf_finish(sb); 11088 sbuf_delete(sb); 11089 11090 return (rc); 11091 } 11092 11093 static int 11094 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 11095 { 11096 struct adapter *sc = arg1; 11097 struct sbuf *sb; 11098 uint32_t *buf, *p; 11099 int rc, i; 11100 11101 rc = sysctl_wire_old_buffer(req, 0); 11102 if (rc != 0) 11103 return (rc); 11104 11105 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11106 if (sb == NULL) 11107 return (ENOMEM); 11108 11109 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 11110 M_ZERO | M_WAITOK); 11111 11112 mtx_lock(&sc->reg_lock); 11113 if (hw_off_limits(sc)) 11114 rc = ENXIO; 11115 else 11116 t4_ulprx_read_la(sc, buf); 11117 mtx_unlock(&sc->reg_lock); 11118 if (rc != 0) 11119 goto done; 11120 11121 p = buf; 11122 sbuf_printf(sb, " Pcmd Type Message" 11123 " Data"); 11124 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 11125 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 11126 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 11127 } 11128 rc = sbuf_finish(sb); 11129 done: 11130 sbuf_delete(sb); 11131 free(buf, M_CXGBE); 11132 return (rc); 11133 } 11134 11135 static int 11136 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 11137 { 11138 struct adapter *sc = arg1; 11139 struct sbuf *sb; 11140 int rc; 11141 uint32_t cfg, s1, s2; 11142 11143 MPASS(chip_id(sc) >= CHELSIO_T5); 11144 11145 rc = sysctl_wire_old_buffer(req, 0); 11146 if (rc != 0) 11147 return (rc); 11148 11149 mtx_lock(&sc->reg_lock); 11150 if (hw_off_limits(sc)) 11151 rc = ENXIO; 11152 else { 11153 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 11154 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 11155 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 11156 } 11157 mtx_unlock(&sc->reg_lock); 11158 if (rc != 0) 11159 return (rc); 11160 11161 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11162 if (sb == NULL) 11163 return (ENOMEM); 11164 11165 if (G_STATSOURCE_T5(cfg) == 7) { 11166 int mode; 11167 11168 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 11169 if (mode == 0) 11170 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 11171 else if (mode == 1) 11172 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 11173 else 11174 sbuf_printf(sb, "unknown mode %d", mode); 11175 } 11176 rc = sbuf_finish(sb); 11177 sbuf_delete(sb); 11178 11179 return (rc); 11180 } 11181 11182 static int 11183 sysctl_cpus(SYSCTL_HANDLER_ARGS) 11184 { 11185 struct adapter *sc = arg1; 11186 enum cpu_sets op = arg2; 11187 cpuset_t cpuset; 11188 struct sbuf *sb; 11189 int i, rc; 11190 11191 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11192 11193 CPU_ZERO(&cpuset); 11194 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11195 if (rc != 0) 11196 return (rc); 11197 11198 rc = sysctl_wire_old_buffer(req, 0); 11199 if (rc != 0) 11200 return (rc); 11201 11202 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11203 if (sb == NULL) 11204 return (ENOMEM); 11205 11206 CPU_FOREACH(i) 11207 sbuf_printf(sb, "%d ", i); 11208 rc = sbuf_finish(sb); 11209 sbuf_delete(sb); 11210 11211 return (rc); 11212 } 11213 11214 static int 11215 sysctl_reset(SYSCTL_HANDLER_ARGS) 11216 { 11217 struct adapter *sc = arg1; 11218 u_int val; 11219 int rc; 11220 11221 val = atomic_load_int(&sc->num_resets); 11222 rc = sysctl_handle_int(oidp, &val, 0, req); 11223 if (rc != 0 || req->newptr == NULL) 11224 return (rc); 11225 11226 if (val == 0) { 11227 /* Zero out the counter that tracks reset. */ 11228 atomic_store_int(&sc->num_resets, 0); 11229 return (0); 11230 } 11231 11232 if (val != 1) 11233 return (EINVAL); /* 0 or 1 are the only legal values */ 11234 11235 if (hw_off_limits(sc)) /* harmless race */ 11236 return (EALREADY); 11237 11238 taskqueue_enqueue(reset_tq, &sc->reset_task); 11239 return (0); 11240 } 11241 11242 #ifdef TCP_OFFLOAD 11243 static int 11244 sysctl_tls(SYSCTL_HANDLER_ARGS) 11245 { 11246 struct adapter *sc = arg1; 11247 int i, j, v, rc; 11248 struct vi_info *vi; 11249 11250 v = sc->tt.tls; 11251 rc = sysctl_handle_int(oidp, &v, 0, req); 11252 if (rc != 0 || req->newptr == NULL) 11253 return (rc); 11254 11255 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11256 return (ENOTSUP); 11257 11258 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11259 if (rc) 11260 return (rc); 11261 if (hw_off_limits(sc)) 11262 rc = ENXIO; 11263 else { 11264 sc->tt.tls = !!v; 11265 for_each_port(sc, i) { 11266 for_each_vi(sc->port[i], j, vi) { 11267 if (vi->flags & VI_INIT_DONE) 11268 t4_update_fl_bufsize(vi->ifp); 11269 } 11270 } 11271 } 11272 end_synchronized_op(sc, 0); 11273 11274 return (rc); 11275 11276 } 11277 11278 static void 11279 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11280 { 11281 u_int rem = val % factor; 11282 11283 if (rem == 0) 11284 snprintf(buf, len, "%u", val / factor); 11285 else { 11286 while (rem % 10 == 0) 11287 rem /= 10; 11288 snprintf(buf, len, "%u.%u", val / factor, rem); 11289 } 11290 } 11291 11292 static int 11293 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11294 { 11295 struct adapter *sc = arg1; 11296 char buf[16]; 11297 u_int res, re; 11298 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11299 11300 mtx_lock(&sc->reg_lock); 11301 if (hw_off_limits(sc)) 11302 res = (u_int)-1; 11303 else 11304 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11305 mtx_unlock(&sc->reg_lock); 11306 if (res == (u_int)-1) 11307 return (ENXIO); 11308 11309 switch (arg2) { 11310 case 0: 11311 /* timer_tick */ 11312 re = G_TIMERRESOLUTION(res); 11313 break; 11314 case 1: 11315 /* TCP timestamp tick */ 11316 re = G_TIMESTAMPRESOLUTION(res); 11317 break; 11318 case 2: 11319 /* DACK tick */ 11320 re = G_DELAYEDACKRESOLUTION(res); 11321 break; 11322 default: 11323 return (EDOOFUS); 11324 } 11325 11326 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11327 11328 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11329 } 11330 11331 static int 11332 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11333 { 11334 struct adapter *sc = arg1; 11335 int rc; 11336 u_int dack_tmr, dack_re, v; 11337 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11338 11339 mtx_lock(&sc->reg_lock); 11340 if (hw_off_limits(sc)) 11341 rc = ENXIO; 11342 else { 11343 rc = 0; 11344 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11345 A_TP_TIMER_RESOLUTION)); 11346 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11347 } 11348 mtx_unlock(&sc->reg_lock); 11349 if (rc != 0) 11350 return (rc); 11351 11352 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11353 11354 return (sysctl_handle_int(oidp, &v, 0, req)); 11355 } 11356 11357 static int 11358 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11359 { 11360 struct adapter *sc = arg1; 11361 int rc, reg = arg2; 11362 u_int tre; 11363 u_long tp_tick_us, v; 11364 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11365 11366 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11367 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11368 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11369 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11370 11371 mtx_lock(&sc->reg_lock); 11372 if (hw_off_limits(sc)) 11373 rc = ENXIO; 11374 else { 11375 rc = 0; 11376 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11377 tp_tick_us = (cclk_ps << tre) / 1000000; 11378 if (reg == A_TP_INIT_SRTT) 11379 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11380 else 11381 v = tp_tick_us * t4_read_reg(sc, reg); 11382 } 11383 mtx_unlock(&sc->reg_lock); 11384 if (rc != 0) 11385 return (rc); 11386 else 11387 return (sysctl_handle_long(oidp, &v, 0, req)); 11388 } 11389 11390 /* 11391 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11392 * passed to this function. 11393 */ 11394 static int 11395 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11396 { 11397 struct adapter *sc = arg1; 11398 int rc, idx = arg2; 11399 u_int v; 11400 11401 MPASS(idx >= 0 && idx <= 24); 11402 11403 mtx_lock(&sc->reg_lock); 11404 if (hw_off_limits(sc)) 11405 rc = ENXIO; 11406 else { 11407 rc = 0; 11408 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11409 } 11410 mtx_unlock(&sc->reg_lock); 11411 if (rc != 0) 11412 return (rc); 11413 else 11414 return (sysctl_handle_int(oidp, &v, 0, req)); 11415 } 11416 11417 static int 11418 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11419 { 11420 struct adapter *sc = arg1; 11421 int rc, idx = arg2; 11422 u_int shift, v, r; 11423 11424 MPASS(idx >= 0 && idx < 16); 11425 11426 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11427 shift = (idx & 3) << 3; 11428 mtx_lock(&sc->reg_lock); 11429 if (hw_off_limits(sc)) 11430 rc = ENXIO; 11431 else { 11432 rc = 0; 11433 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11434 } 11435 mtx_unlock(&sc->reg_lock); 11436 if (rc != 0) 11437 return (rc); 11438 else 11439 return (sysctl_handle_int(oidp, &v, 0, req)); 11440 } 11441 11442 static int 11443 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11444 { 11445 struct vi_info *vi = arg1; 11446 struct adapter *sc = vi->adapter; 11447 int idx, rc, i; 11448 struct sge_ofld_rxq *ofld_rxq; 11449 uint8_t v; 11450 11451 idx = vi->ofld_tmr_idx; 11452 11453 rc = sysctl_handle_int(oidp, &idx, 0, req); 11454 if (rc != 0 || req->newptr == NULL) 11455 return (rc); 11456 11457 if (idx < 0 || idx >= SGE_NTIMERS) 11458 return (EINVAL); 11459 11460 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11461 "t4otmr"); 11462 if (rc) 11463 return (rc); 11464 11465 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11466 for_each_ofld_rxq(vi, i, ofld_rxq) { 11467 #ifdef atomic_store_rel_8 11468 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11469 #else 11470 ofld_rxq->iq.intr_params = v; 11471 #endif 11472 } 11473 vi->ofld_tmr_idx = idx; 11474 11475 end_synchronized_op(sc, LOCK_HELD); 11476 return (0); 11477 } 11478 11479 static int 11480 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11481 { 11482 struct vi_info *vi = arg1; 11483 struct adapter *sc = vi->adapter; 11484 int idx, rc; 11485 11486 idx = vi->ofld_pktc_idx; 11487 11488 rc = sysctl_handle_int(oidp, &idx, 0, req); 11489 if (rc != 0 || req->newptr == NULL) 11490 return (rc); 11491 11492 if (idx < -1 || idx >= SGE_NCOUNTERS) 11493 return (EINVAL); 11494 11495 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11496 "t4opktc"); 11497 if (rc) 11498 return (rc); 11499 11500 if (vi->flags & VI_INIT_DONE) 11501 rc = EBUSY; /* cannot be changed once the queues are created */ 11502 else 11503 vi->ofld_pktc_idx = idx; 11504 11505 end_synchronized_op(sc, LOCK_HELD); 11506 return (rc); 11507 } 11508 #endif 11509 11510 static int 11511 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11512 { 11513 int rc; 11514 11515 if (cntxt->cid > M_CTXTQID) 11516 return (EINVAL); 11517 11518 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11519 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11520 return (EINVAL); 11521 11522 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11523 if (rc) 11524 return (rc); 11525 11526 if (hw_off_limits(sc)) { 11527 rc = ENXIO; 11528 goto done; 11529 } 11530 11531 if (sc->flags & FW_OK) { 11532 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11533 &cntxt->data[0]); 11534 if (rc == 0) 11535 goto done; 11536 } 11537 11538 /* 11539 * Read via firmware failed or wasn't even attempted. Read directly via 11540 * the backdoor. 11541 */ 11542 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11543 done: 11544 end_synchronized_op(sc, 0); 11545 return (rc); 11546 } 11547 11548 static int 11549 load_fw(struct adapter *sc, struct t4_data *fw) 11550 { 11551 int rc; 11552 uint8_t *fw_data; 11553 11554 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11555 if (rc) 11556 return (rc); 11557 11558 if (hw_off_limits(sc)) { 11559 rc = ENXIO; 11560 goto done; 11561 } 11562 11563 /* 11564 * The firmware, with the sole exception of the memory parity error 11565 * handler, runs from memory and not flash. It is almost always safe to 11566 * install a new firmware on a running system. Just set bit 1 in 11567 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11568 */ 11569 if (sc->flags & FULL_INIT_DONE && 11570 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11571 rc = EBUSY; 11572 goto done; 11573 } 11574 11575 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11576 11577 rc = copyin(fw->data, fw_data, fw->len); 11578 if (rc == 0) 11579 rc = -t4_load_fw(sc, fw_data, fw->len); 11580 11581 free(fw_data, M_CXGBE); 11582 done: 11583 end_synchronized_op(sc, 0); 11584 return (rc); 11585 } 11586 11587 static int 11588 load_cfg(struct adapter *sc, struct t4_data *cfg) 11589 { 11590 int rc; 11591 uint8_t *cfg_data = NULL; 11592 11593 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11594 if (rc) 11595 return (rc); 11596 11597 if (hw_off_limits(sc)) { 11598 rc = ENXIO; 11599 goto done; 11600 } 11601 11602 if (cfg->len == 0) { 11603 /* clear */ 11604 rc = -t4_load_cfg(sc, NULL, 0); 11605 goto done; 11606 } 11607 11608 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11609 11610 rc = copyin(cfg->data, cfg_data, cfg->len); 11611 if (rc == 0) 11612 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11613 11614 free(cfg_data, M_CXGBE); 11615 done: 11616 end_synchronized_op(sc, 0); 11617 return (rc); 11618 } 11619 11620 static int 11621 load_boot(struct adapter *sc, struct t4_bootrom *br) 11622 { 11623 int rc; 11624 uint8_t *br_data = NULL; 11625 u_int offset; 11626 11627 if (br->len > 1024 * 1024) 11628 return (EFBIG); 11629 11630 if (br->pf_offset == 0) { 11631 /* pfidx */ 11632 if (br->pfidx_addr > 7) 11633 return (EINVAL); 11634 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11635 A_PCIE_PF_EXPROM_OFST))); 11636 } else if (br->pf_offset == 1) { 11637 /* offset */ 11638 offset = G_OFFSET(br->pfidx_addr); 11639 } else { 11640 return (EINVAL); 11641 } 11642 11643 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11644 if (rc) 11645 return (rc); 11646 11647 if (hw_off_limits(sc)) { 11648 rc = ENXIO; 11649 goto done; 11650 } 11651 11652 if (br->len == 0) { 11653 /* clear */ 11654 rc = -t4_load_boot(sc, NULL, offset, 0); 11655 goto done; 11656 } 11657 11658 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11659 11660 rc = copyin(br->data, br_data, br->len); 11661 if (rc == 0) 11662 rc = -t4_load_boot(sc, br_data, offset, br->len); 11663 11664 free(br_data, M_CXGBE); 11665 done: 11666 end_synchronized_op(sc, 0); 11667 return (rc); 11668 } 11669 11670 static int 11671 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11672 { 11673 int rc; 11674 uint8_t *bc_data = NULL; 11675 11676 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11677 if (rc) 11678 return (rc); 11679 11680 if (hw_off_limits(sc)) { 11681 rc = ENXIO; 11682 goto done; 11683 } 11684 11685 if (bc->len == 0) { 11686 /* clear */ 11687 rc = -t4_load_bootcfg(sc, NULL, 0); 11688 goto done; 11689 } 11690 11691 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11692 11693 rc = copyin(bc->data, bc_data, bc->len); 11694 if (rc == 0) 11695 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11696 11697 free(bc_data, M_CXGBE); 11698 done: 11699 end_synchronized_op(sc, 0); 11700 return (rc); 11701 } 11702 11703 static int 11704 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11705 { 11706 int rc; 11707 struct cudbg_init *cudbg; 11708 void *handle, *buf; 11709 11710 /* buf is large, don't block if no memory is available */ 11711 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11712 if (buf == NULL) 11713 return (ENOMEM); 11714 11715 handle = cudbg_alloc_handle(); 11716 if (handle == NULL) { 11717 rc = ENOMEM; 11718 goto done; 11719 } 11720 11721 cudbg = cudbg_get_init(handle); 11722 cudbg->adap = sc; 11723 cudbg->print = (cudbg_print_cb)printf; 11724 11725 #ifndef notyet 11726 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11727 __func__, dump->wr_flash, dump->len, dump->data); 11728 #endif 11729 11730 if (dump->wr_flash) 11731 cudbg->use_flash = 1; 11732 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11733 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11734 11735 rc = cudbg_collect(handle, buf, &dump->len); 11736 if (rc != 0) 11737 goto done; 11738 11739 rc = copyout(buf, dump->data, dump->len); 11740 done: 11741 cudbg_free_handle(handle); 11742 free(buf, M_CXGBE); 11743 return (rc); 11744 } 11745 11746 static void 11747 free_offload_policy(struct t4_offload_policy *op) 11748 { 11749 struct offload_rule *r; 11750 int i; 11751 11752 if (op == NULL) 11753 return; 11754 11755 r = &op->rule[0]; 11756 for (i = 0; i < op->nrules; i++, r++) { 11757 free(r->bpf_prog.bf_insns, M_CXGBE); 11758 } 11759 free(op->rule, M_CXGBE); 11760 free(op, M_CXGBE); 11761 } 11762 11763 static int 11764 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11765 { 11766 int i, rc, len; 11767 struct t4_offload_policy *op, *old; 11768 struct bpf_program *bf; 11769 const struct offload_settings *s; 11770 struct offload_rule *r; 11771 void *u; 11772 11773 if (!is_offload(sc)) 11774 return (ENODEV); 11775 11776 if (uop->nrules == 0) { 11777 /* Delete installed policies. */ 11778 op = NULL; 11779 goto set_policy; 11780 } else if (uop->nrules > 256) { /* arbitrary */ 11781 return (E2BIG); 11782 } 11783 11784 /* Copy userspace offload policy to kernel */ 11785 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11786 op->nrules = uop->nrules; 11787 len = op->nrules * sizeof(struct offload_rule); 11788 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11789 rc = copyin(uop->rule, op->rule, len); 11790 if (rc) { 11791 free(op->rule, M_CXGBE); 11792 free(op, M_CXGBE); 11793 return (rc); 11794 } 11795 11796 r = &op->rule[0]; 11797 for (i = 0; i < op->nrules; i++, r++) { 11798 11799 /* Validate open_type */ 11800 if (r->open_type != OPEN_TYPE_LISTEN && 11801 r->open_type != OPEN_TYPE_ACTIVE && 11802 r->open_type != OPEN_TYPE_PASSIVE && 11803 r->open_type != OPEN_TYPE_DONTCARE) { 11804 error: 11805 /* 11806 * Rules 0 to i have malloc'd filters that need to be 11807 * freed. Rules i+1 to nrules have userspace pointers 11808 * and should be left alone. 11809 */ 11810 op->nrules = i; 11811 free_offload_policy(op); 11812 return (rc); 11813 } 11814 11815 /* Validate settings */ 11816 s = &r->settings; 11817 if ((s->offload != 0 && s->offload != 1) || 11818 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11819 s->sched_class < -1 || 11820 s->sched_class >= sc->params.nsched_cls) { 11821 rc = EINVAL; 11822 goto error; 11823 } 11824 11825 bf = &r->bpf_prog; 11826 u = bf->bf_insns; /* userspace ptr */ 11827 bf->bf_insns = NULL; 11828 if (bf->bf_len == 0) { 11829 /* legal, matches everything */ 11830 continue; 11831 } 11832 len = bf->bf_len * sizeof(*bf->bf_insns); 11833 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11834 rc = copyin(u, bf->bf_insns, len); 11835 if (rc != 0) 11836 goto error; 11837 11838 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11839 rc = EINVAL; 11840 goto error; 11841 } 11842 } 11843 set_policy: 11844 rw_wlock(&sc->policy_lock); 11845 old = sc->policy; 11846 sc->policy = op; 11847 rw_wunlock(&sc->policy_lock); 11848 free_offload_policy(old); 11849 11850 return (0); 11851 } 11852 11853 #define MAX_READ_BUF_SIZE (128 * 1024) 11854 static int 11855 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11856 { 11857 uint32_t addr, remaining, n; 11858 uint32_t *buf; 11859 int rc; 11860 uint8_t *dst; 11861 11862 mtx_lock(&sc->reg_lock); 11863 if (hw_off_limits(sc)) 11864 rc = ENXIO; 11865 else 11866 rc = validate_mem_range(sc, mr->addr, mr->len); 11867 mtx_unlock(&sc->reg_lock); 11868 if (rc != 0) 11869 return (rc); 11870 11871 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11872 addr = mr->addr; 11873 remaining = mr->len; 11874 dst = (void *)mr->data; 11875 11876 while (remaining) { 11877 n = min(remaining, MAX_READ_BUF_SIZE); 11878 mtx_lock(&sc->reg_lock); 11879 if (hw_off_limits(sc)) 11880 rc = ENXIO; 11881 else 11882 read_via_memwin(sc, 2, addr, buf, n); 11883 mtx_unlock(&sc->reg_lock); 11884 if (rc != 0) 11885 break; 11886 11887 rc = copyout(buf, dst, n); 11888 if (rc != 0) 11889 break; 11890 11891 dst += n; 11892 remaining -= n; 11893 addr += n; 11894 } 11895 11896 free(buf, M_CXGBE); 11897 return (rc); 11898 } 11899 #undef MAX_READ_BUF_SIZE 11900 11901 static int 11902 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11903 { 11904 int rc; 11905 11906 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11907 return (EINVAL); 11908 11909 if (i2cd->len > sizeof(i2cd->data)) 11910 return (EFBIG); 11911 11912 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11913 if (rc) 11914 return (rc); 11915 if (hw_off_limits(sc)) 11916 rc = ENXIO; 11917 else 11918 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11919 i2cd->offset, i2cd->len, &i2cd->data[0]); 11920 end_synchronized_op(sc, 0); 11921 11922 return (rc); 11923 } 11924 11925 static int 11926 clear_stats(struct adapter *sc, u_int port_id) 11927 { 11928 int i, v, chan_map; 11929 struct port_info *pi; 11930 struct vi_info *vi; 11931 struct sge_rxq *rxq; 11932 struct sge_txq *txq; 11933 struct sge_wrq *wrq; 11934 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11935 struct sge_ofld_txq *ofld_txq; 11936 #endif 11937 #ifdef TCP_OFFLOAD 11938 struct sge_ofld_rxq *ofld_rxq; 11939 #endif 11940 11941 if (port_id >= sc->params.nports) 11942 return (EINVAL); 11943 pi = sc->port[port_id]; 11944 if (pi == NULL) 11945 return (EIO); 11946 11947 mtx_lock(&sc->reg_lock); 11948 if (!hw_off_limits(sc)) { 11949 /* MAC stats */ 11950 t4_clr_port_stats(sc, pi->tx_chan); 11951 if (is_t6(sc)) { 11952 if (pi->fcs_reg != -1) 11953 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11954 else 11955 pi->stats.rx_fcs_err = 0; 11956 } 11957 for_each_vi(pi, v, vi) { 11958 if (vi->flags & VI_INIT_DONE) 11959 t4_clr_vi_stats(sc, vi->vin); 11960 } 11961 chan_map = pi->rx_e_chan_map; 11962 v = 0; /* reuse */ 11963 while (chan_map) { 11964 i = ffs(chan_map) - 1; 11965 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11966 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11967 chan_map &= ~(1 << i); 11968 } 11969 } 11970 mtx_unlock(&sc->reg_lock); 11971 pi->tx_parse_error = 0; 11972 pi->tnl_cong_drops = 0; 11973 11974 /* 11975 * Since this command accepts a port, clear stats for 11976 * all VIs on this port. 11977 */ 11978 for_each_vi(pi, v, vi) { 11979 if (vi->flags & VI_INIT_DONE) { 11980 11981 for_each_rxq(vi, i, rxq) { 11982 #if defined(INET) || defined(INET6) 11983 rxq->lro.lro_queued = 0; 11984 rxq->lro.lro_flushed = 0; 11985 #endif 11986 rxq->rxcsum = 0; 11987 rxq->vlan_extraction = 0; 11988 rxq->vxlan_rxcsum = 0; 11989 11990 rxq->fl.cl_allocated = 0; 11991 rxq->fl.cl_recycled = 0; 11992 rxq->fl.cl_fast_recycled = 0; 11993 } 11994 11995 for_each_txq(vi, i, txq) { 11996 txq->txcsum = 0; 11997 txq->tso_wrs = 0; 11998 txq->vlan_insertion = 0; 11999 txq->imm_wrs = 0; 12000 txq->sgl_wrs = 0; 12001 txq->txpkt_wrs = 0; 12002 txq->txpkts0_wrs = 0; 12003 txq->txpkts1_wrs = 0; 12004 txq->txpkts0_pkts = 0; 12005 txq->txpkts1_pkts = 0; 12006 txq->txpkts_flush = 0; 12007 txq->raw_wrs = 0; 12008 txq->vxlan_tso_wrs = 0; 12009 txq->vxlan_txcsum = 0; 12010 txq->kern_tls_records = 0; 12011 txq->kern_tls_short = 0; 12012 txq->kern_tls_partial = 0; 12013 txq->kern_tls_full = 0; 12014 txq->kern_tls_octets = 0; 12015 txq->kern_tls_waste = 0; 12016 txq->kern_tls_options = 0; 12017 txq->kern_tls_header = 0; 12018 txq->kern_tls_fin = 0; 12019 txq->kern_tls_fin_short = 0; 12020 txq->kern_tls_cbc = 0; 12021 txq->kern_tls_gcm = 0; 12022 mp_ring_reset_stats(txq->r); 12023 } 12024 12025 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12026 for_each_ofld_txq(vi, i, ofld_txq) { 12027 ofld_txq->wrq.tx_wrs_direct = 0; 12028 ofld_txq->wrq.tx_wrs_copied = 0; 12029 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12030 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12031 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12032 counter_u64_zero(ofld_txq->tx_aio_jobs); 12033 counter_u64_zero(ofld_txq->tx_aio_octets); 12034 counter_u64_zero(ofld_txq->tx_toe_tls_records); 12035 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 12036 } 12037 #endif 12038 #ifdef TCP_OFFLOAD 12039 for_each_ofld_rxq(vi, i, ofld_rxq) { 12040 ofld_rxq->fl.cl_allocated = 0; 12041 ofld_rxq->fl.cl_recycled = 0; 12042 ofld_rxq->fl.cl_fast_recycled = 0; 12043 counter_u64_zero( 12044 ofld_rxq->rx_iscsi_ddp_setup_ok); 12045 counter_u64_zero( 12046 ofld_rxq->rx_iscsi_ddp_setup_error); 12047 ofld_rxq->rx_iscsi_ddp_pdus = 0; 12048 ofld_rxq->rx_iscsi_ddp_octets = 0; 12049 ofld_rxq->rx_iscsi_fl_pdus = 0; 12050 ofld_rxq->rx_iscsi_fl_octets = 0; 12051 ofld_rxq->rx_aio_ddp_jobs = 0; 12052 ofld_rxq->rx_aio_ddp_octets = 0; 12053 ofld_rxq->rx_toe_tls_records = 0; 12054 ofld_rxq->rx_toe_tls_octets = 0; 12055 ofld_rxq->rx_toe_ddp_octets = 0; 12056 counter_u64_zero(ofld_rxq->ddp_buffer_alloc); 12057 counter_u64_zero(ofld_rxq->ddp_buffer_reuse); 12058 counter_u64_zero(ofld_rxq->ddp_buffer_free); 12059 } 12060 #endif 12061 12062 if (IS_MAIN_VI(vi)) { 12063 wrq = &sc->sge.ctrlq[pi->port_id]; 12064 wrq->tx_wrs_direct = 0; 12065 wrq->tx_wrs_copied = 0; 12066 } 12067 } 12068 } 12069 12070 return (0); 12071 } 12072 12073 static int 12074 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12075 { 12076 #ifdef INET6 12077 struct in6_addr in6; 12078 12079 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12080 if (t4_get_clip_entry(sc, &in6, true) != NULL) 12081 return (0); 12082 else 12083 return (EIO); 12084 #else 12085 return (ENOTSUP); 12086 #endif 12087 } 12088 12089 static int 12090 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12091 { 12092 #ifdef INET6 12093 struct in6_addr in6; 12094 12095 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12096 return (t4_release_clip_addr(sc, &in6)); 12097 #else 12098 return (ENOTSUP); 12099 #endif 12100 } 12101 12102 int 12103 t4_os_find_pci_capability(struct adapter *sc, int cap) 12104 { 12105 int i; 12106 12107 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12108 } 12109 12110 int 12111 t4_os_pci_save_state(struct adapter *sc) 12112 { 12113 device_t dev; 12114 struct pci_devinfo *dinfo; 12115 12116 dev = sc->dev; 12117 dinfo = device_get_ivars(dev); 12118 12119 pci_cfg_save(dev, dinfo, 0); 12120 return (0); 12121 } 12122 12123 int 12124 t4_os_pci_restore_state(struct adapter *sc) 12125 { 12126 device_t dev; 12127 struct pci_devinfo *dinfo; 12128 12129 dev = sc->dev; 12130 dinfo = device_get_ivars(dev); 12131 12132 pci_cfg_restore(dev, dinfo); 12133 return (0); 12134 } 12135 12136 void 12137 t4_os_portmod_changed(struct port_info *pi) 12138 { 12139 struct adapter *sc = pi->adapter; 12140 struct vi_info *vi; 12141 if_t ifp; 12142 static const char *mod_str[] = { 12143 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12144 }; 12145 12146 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12147 ("%s: port_type %u", __func__, pi->port_type)); 12148 12149 vi = &pi->vi[0]; 12150 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12151 PORT_LOCK(pi); 12152 build_medialist(pi); 12153 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12154 fixup_link_config(pi); 12155 apply_link_config(pi); 12156 } 12157 PORT_UNLOCK(pi); 12158 end_synchronized_op(sc, LOCK_HELD); 12159 } 12160 12161 ifp = vi->ifp; 12162 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12163 if_printf(ifp, "transceiver unplugged.\n"); 12164 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12165 if_printf(ifp, "unknown transceiver inserted.\n"); 12166 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12167 if_printf(ifp, "unsupported transceiver inserted.\n"); 12168 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12169 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12170 port_top_speed(pi), mod_str[pi->mod_type]); 12171 } else { 12172 if_printf(ifp, "transceiver (type %d) inserted.\n", 12173 pi->mod_type); 12174 } 12175 } 12176 12177 void 12178 t4_os_link_changed(struct port_info *pi) 12179 { 12180 struct vi_info *vi; 12181 if_t ifp; 12182 struct link_config *lc = &pi->link_cfg; 12183 struct adapter *sc = pi->adapter; 12184 int v; 12185 12186 PORT_LOCK_ASSERT_OWNED(pi); 12187 12188 if (is_t6(sc)) { 12189 if (lc->link_ok) { 12190 if (lc->speed > 25000 || 12191 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12192 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12193 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12194 } else { 12195 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12196 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12197 } 12198 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12199 pi->stats.rx_fcs_err = 0; 12200 } else { 12201 pi->fcs_reg = -1; 12202 } 12203 } else { 12204 MPASS(pi->fcs_reg != -1); 12205 MPASS(pi->fcs_base == 0); 12206 } 12207 12208 for_each_vi(pi, v, vi) { 12209 ifp = vi->ifp; 12210 if (ifp == NULL) 12211 continue; 12212 12213 if (lc->link_ok) { 12214 if_setbaudrate(ifp, IF_Mbps(lc->speed)); 12215 if_link_state_change(ifp, LINK_STATE_UP); 12216 } else { 12217 if_link_state_change(ifp, LINK_STATE_DOWN); 12218 } 12219 } 12220 } 12221 12222 void 12223 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12224 { 12225 struct adapter *sc; 12226 12227 sx_slock(&t4_list_lock); 12228 SLIST_FOREACH(sc, &t4_list, link) { 12229 /* 12230 * func should not make any assumptions about what state sc is 12231 * in - the only guarantee is that sc->sc_lock is a valid lock. 12232 */ 12233 func(sc, arg); 12234 } 12235 sx_sunlock(&t4_list_lock); 12236 } 12237 12238 static int 12239 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12240 struct thread *td) 12241 { 12242 int rc; 12243 struct adapter *sc = dev->si_drv1; 12244 12245 rc = priv_check(td, PRIV_DRIVER); 12246 if (rc != 0) 12247 return (rc); 12248 12249 switch (cmd) { 12250 case CHELSIO_T4_GETREG: { 12251 struct t4_reg *edata = (struct t4_reg *)data; 12252 12253 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12254 return (EFAULT); 12255 12256 mtx_lock(&sc->reg_lock); 12257 if (hw_off_limits(sc)) 12258 rc = ENXIO; 12259 else if (edata->size == 4) 12260 edata->val = t4_read_reg(sc, edata->addr); 12261 else if (edata->size == 8) 12262 edata->val = t4_read_reg64(sc, edata->addr); 12263 else 12264 rc = EINVAL; 12265 mtx_unlock(&sc->reg_lock); 12266 12267 break; 12268 } 12269 case CHELSIO_T4_SETREG: { 12270 struct t4_reg *edata = (struct t4_reg *)data; 12271 12272 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12273 return (EFAULT); 12274 12275 mtx_lock(&sc->reg_lock); 12276 if (hw_off_limits(sc)) 12277 rc = ENXIO; 12278 else if (edata->size == 4) { 12279 if (edata->val & 0xffffffff00000000) 12280 rc = EINVAL; 12281 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12282 } else if (edata->size == 8) 12283 t4_write_reg64(sc, edata->addr, edata->val); 12284 else 12285 rc = EINVAL; 12286 mtx_unlock(&sc->reg_lock); 12287 12288 break; 12289 } 12290 case CHELSIO_T4_REGDUMP: { 12291 struct t4_regdump *regs = (struct t4_regdump *)data; 12292 int reglen = t4_get_regs_len(sc); 12293 uint8_t *buf; 12294 12295 if (regs->len < reglen) { 12296 regs->len = reglen; /* hint to the caller */ 12297 return (ENOBUFS); 12298 } 12299 12300 regs->len = reglen; 12301 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12302 mtx_lock(&sc->reg_lock); 12303 if (hw_off_limits(sc)) 12304 rc = ENXIO; 12305 else 12306 get_regs(sc, regs, buf); 12307 mtx_unlock(&sc->reg_lock); 12308 if (rc == 0) 12309 rc = copyout(buf, regs->data, reglen); 12310 free(buf, M_CXGBE); 12311 break; 12312 } 12313 case CHELSIO_T4_GET_FILTER_MODE: 12314 rc = get_filter_mode(sc, (uint32_t *)data); 12315 break; 12316 case CHELSIO_T4_SET_FILTER_MODE: 12317 rc = set_filter_mode(sc, *(uint32_t *)data); 12318 break; 12319 case CHELSIO_T4_SET_FILTER_MASK: 12320 rc = set_filter_mask(sc, *(uint32_t *)data); 12321 break; 12322 case CHELSIO_T4_GET_FILTER: 12323 rc = get_filter(sc, (struct t4_filter *)data); 12324 break; 12325 case CHELSIO_T4_SET_FILTER: 12326 rc = set_filter(sc, (struct t4_filter *)data); 12327 break; 12328 case CHELSIO_T4_DEL_FILTER: 12329 rc = del_filter(sc, (struct t4_filter *)data); 12330 break; 12331 case CHELSIO_T4_GET_SGE_CONTEXT: 12332 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12333 break; 12334 case CHELSIO_T4_LOAD_FW: 12335 rc = load_fw(sc, (struct t4_data *)data); 12336 break; 12337 case CHELSIO_T4_GET_MEM: 12338 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12339 break; 12340 case CHELSIO_T4_GET_I2C: 12341 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12342 break; 12343 case CHELSIO_T4_CLEAR_STATS: 12344 rc = clear_stats(sc, *(uint32_t *)data); 12345 break; 12346 case CHELSIO_T4_SCHED_CLASS: 12347 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12348 break; 12349 case CHELSIO_T4_SCHED_QUEUE: 12350 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12351 break; 12352 case CHELSIO_T4_GET_TRACER: 12353 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12354 break; 12355 case CHELSIO_T4_SET_TRACER: 12356 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12357 break; 12358 case CHELSIO_T4_LOAD_CFG: 12359 rc = load_cfg(sc, (struct t4_data *)data); 12360 break; 12361 case CHELSIO_T4_LOAD_BOOT: 12362 rc = load_boot(sc, (struct t4_bootrom *)data); 12363 break; 12364 case CHELSIO_T4_LOAD_BOOTCFG: 12365 rc = load_bootcfg(sc, (struct t4_data *)data); 12366 break; 12367 case CHELSIO_T4_CUDBG_DUMP: 12368 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12369 break; 12370 case CHELSIO_T4_SET_OFLD_POLICY: 12371 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12372 break; 12373 case CHELSIO_T4_HOLD_CLIP_ADDR: 12374 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12375 break; 12376 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12377 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12378 break; 12379 default: 12380 rc = ENOTTY; 12381 } 12382 12383 return (rc); 12384 } 12385 12386 #ifdef TCP_OFFLOAD 12387 static int 12388 toe_capability(struct vi_info *vi, bool enable) 12389 { 12390 int rc; 12391 struct port_info *pi = vi->pi; 12392 struct adapter *sc = pi->adapter; 12393 12394 ASSERT_SYNCHRONIZED_OP(sc); 12395 12396 if (!is_offload(sc)) 12397 return (ENODEV); 12398 if (hw_off_limits(sc)) 12399 return (ENXIO); 12400 12401 if (enable) { 12402 #ifdef KERN_TLS 12403 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 12404 int i, j, n; 12405 struct port_info *p; 12406 struct vi_info *v; 12407 12408 /* 12409 * Reconfigure hardware for TOE if TXTLS is not enabled 12410 * on any ifnet. 12411 */ 12412 n = 0; 12413 for_each_port(sc, i) { 12414 p = sc->port[i]; 12415 for_each_vi(p, j, v) { 12416 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) { 12417 CH_WARN(sc, 12418 "%s has NIC TLS enabled.\n", 12419 device_get_nameunit(v->dev)); 12420 n++; 12421 } 12422 } 12423 } 12424 if (n > 0) { 12425 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12426 "associated with this adapter before " 12427 "trying to enable TOE.\n"); 12428 return (EAGAIN); 12429 } 12430 rc = t6_config_kern_tls(sc, false); 12431 if (rc) 12432 return (rc); 12433 } 12434 #endif 12435 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) { 12436 /* TOE is already enabled. */ 12437 return (0); 12438 } 12439 12440 /* 12441 * We need the port's queues around so that we're able to send 12442 * and receive CPLs to/from the TOE even if the ifnet for this 12443 * port has never been UP'd administratively. 12444 */ 12445 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12446 return (rc); 12447 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12448 ((rc = vi_init(&pi->vi[0])) != 0)) 12449 return (rc); 12450 12451 if (isset(&sc->offload_map, pi->port_id)) { 12452 /* TOE is enabled on another VI of this port. */ 12453 pi->uld_vis++; 12454 return (0); 12455 } 12456 12457 if (!uld_active(sc, ULD_TOM)) { 12458 rc = t4_activate_uld(sc, ULD_TOM); 12459 if (rc == EAGAIN) { 12460 log(LOG_WARNING, 12461 "You must kldload t4_tom.ko before trying " 12462 "to enable TOE on a cxgbe interface.\n"); 12463 } 12464 if (rc != 0) 12465 return (rc); 12466 KASSERT(sc->tom_softc != NULL, 12467 ("%s: TOM activated but softc NULL", __func__)); 12468 KASSERT(uld_active(sc, ULD_TOM), 12469 ("%s: TOM activated but flag not set", __func__)); 12470 } 12471 12472 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12473 if (!uld_active(sc, ULD_IWARP)) 12474 (void) t4_activate_uld(sc, ULD_IWARP); 12475 if (!uld_active(sc, ULD_ISCSI)) 12476 (void) t4_activate_uld(sc, ULD_ISCSI); 12477 12478 pi->uld_vis++; 12479 setbit(&sc->offload_map, pi->port_id); 12480 } else { 12481 pi->uld_vis--; 12482 12483 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 12484 return (0); 12485 12486 KASSERT(uld_active(sc, ULD_TOM), 12487 ("%s: TOM never initialized?", __func__)); 12488 clrbit(&sc->offload_map, pi->port_id); 12489 } 12490 12491 return (0); 12492 } 12493 12494 /* 12495 * Add an upper layer driver to the global list. 12496 */ 12497 int 12498 t4_register_uld(struct uld_info *ui) 12499 { 12500 int rc = 0; 12501 struct uld_info *u; 12502 12503 sx_xlock(&t4_uld_list_lock); 12504 SLIST_FOREACH(u, &t4_uld_list, link) { 12505 if (u->uld_id == ui->uld_id) { 12506 rc = EEXIST; 12507 goto done; 12508 } 12509 } 12510 12511 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 12512 ui->refcount = 0; 12513 done: 12514 sx_xunlock(&t4_uld_list_lock); 12515 return (rc); 12516 } 12517 12518 int 12519 t4_unregister_uld(struct uld_info *ui) 12520 { 12521 int rc = EINVAL; 12522 struct uld_info *u; 12523 12524 sx_xlock(&t4_uld_list_lock); 12525 12526 SLIST_FOREACH(u, &t4_uld_list, link) { 12527 if (u == ui) { 12528 if (ui->refcount > 0) { 12529 rc = EBUSY; 12530 goto done; 12531 } 12532 12533 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 12534 rc = 0; 12535 goto done; 12536 } 12537 } 12538 done: 12539 sx_xunlock(&t4_uld_list_lock); 12540 return (rc); 12541 } 12542 12543 int 12544 t4_activate_uld(struct adapter *sc, int id) 12545 { 12546 int rc; 12547 struct uld_info *ui; 12548 12549 ASSERT_SYNCHRONIZED_OP(sc); 12550 12551 if (id < 0 || id > ULD_MAX) 12552 return (EINVAL); 12553 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 12554 12555 sx_slock(&t4_uld_list_lock); 12556 12557 SLIST_FOREACH(ui, &t4_uld_list, link) { 12558 if (ui->uld_id == id) { 12559 if (!(sc->flags & FULL_INIT_DONE)) { 12560 rc = adapter_init(sc); 12561 if (rc != 0) 12562 break; 12563 } 12564 12565 rc = ui->activate(sc); 12566 if (rc == 0) { 12567 setbit(&sc->active_ulds, id); 12568 ui->refcount++; 12569 } 12570 break; 12571 } 12572 } 12573 12574 sx_sunlock(&t4_uld_list_lock); 12575 12576 return (rc); 12577 } 12578 12579 int 12580 t4_deactivate_uld(struct adapter *sc, int id) 12581 { 12582 int rc; 12583 struct uld_info *ui; 12584 12585 ASSERT_SYNCHRONIZED_OP(sc); 12586 12587 if (id < 0 || id > ULD_MAX) 12588 return (EINVAL); 12589 rc = ENXIO; 12590 12591 sx_slock(&t4_uld_list_lock); 12592 12593 SLIST_FOREACH(ui, &t4_uld_list, link) { 12594 if (ui->uld_id == id) { 12595 rc = ui->deactivate(sc); 12596 if (rc == 0) { 12597 clrbit(&sc->active_ulds, id); 12598 ui->refcount--; 12599 } 12600 break; 12601 } 12602 } 12603 12604 sx_sunlock(&t4_uld_list_lock); 12605 12606 return (rc); 12607 } 12608 12609 static int 12610 t4_deactivate_all_uld(struct adapter *sc) 12611 { 12612 int rc; 12613 struct uld_info *ui; 12614 12615 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 12616 if (rc != 0) 12617 return (ENXIO); 12618 12619 sx_slock(&t4_uld_list_lock); 12620 12621 SLIST_FOREACH(ui, &t4_uld_list, link) { 12622 if (isset(&sc->active_ulds, ui->uld_id)) { 12623 rc = ui->deactivate(sc); 12624 if (rc != 0) 12625 break; 12626 clrbit(&sc->active_ulds, ui->uld_id); 12627 ui->refcount--; 12628 } 12629 } 12630 12631 sx_sunlock(&t4_uld_list_lock); 12632 end_synchronized_op(sc, 0); 12633 12634 return (rc); 12635 } 12636 12637 static void 12638 t4_async_event(struct adapter *sc) 12639 { 12640 struct uld_info *ui; 12641 12642 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0) 12643 return; 12644 sx_slock(&t4_uld_list_lock); 12645 SLIST_FOREACH(ui, &t4_uld_list, link) { 12646 if (ui->uld_id == ULD_IWARP) { 12647 ui->async_event(sc); 12648 break; 12649 } 12650 } 12651 sx_sunlock(&t4_uld_list_lock); 12652 end_synchronized_op(sc, 0); 12653 } 12654 12655 int 12656 uld_active(struct adapter *sc, int uld_id) 12657 { 12658 12659 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 12660 12661 return (isset(&sc->active_ulds, uld_id)); 12662 } 12663 #endif 12664 12665 #ifdef KERN_TLS 12666 static int 12667 ktls_capability(struct adapter *sc, bool enable) 12668 { 12669 ASSERT_SYNCHRONIZED_OP(sc); 12670 12671 if (!is_ktls(sc)) 12672 return (ENODEV); 12673 if (!is_t6(sc)) 12674 return (0); 12675 if (hw_off_limits(sc)) 12676 return (ENXIO); 12677 12678 if (enable) { 12679 if (sc->flags & KERN_TLS_ON) 12680 return (0); /* already on */ 12681 if (sc->offload_map != 0) { 12682 CH_WARN(sc, 12683 "Disable TOE on all interfaces associated with " 12684 "this adapter before trying to enable NIC TLS.\n"); 12685 return (EAGAIN); 12686 } 12687 return (t6_config_kern_tls(sc, true)); 12688 } else { 12689 /* 12690 * Nothing to do for disable. If TOE is enabled sometime later 12691 * then toe_capability will reconfigure the hardware. 12692 */ 12693 return (0); 12694 } 12695 } 12696 #endif 12697 12698 /* 12699 * t = ptr to tunable. 12700 * nc = number of CPUs. 12701 * c = compiled in default for that tunable. 12702 */ 12703 static void 12704 calculate_nqueues(int *t, int nc, const int c) 12705 { 12706 int nq; 12707 12708 if (*t > 0) 12709 return; 12710 nq = *t < 0 ? -*t : c; 12711 *t = min(nc, nq); 12712 } 12713 12714 /* 12715 * Come up with reasonable defaults for some of the tunables, provided they're 12716 * not set by the user (in which case we'll use the values as is). 12717 */ 12718 static void 12719 tweak_tunables(void) 12720 { 12721 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12722 12723 if (t4_ntxq < 1) { 12724 #ifdef RSS 12725 t4_ntxq = rss_getnumbuckets(); 12726 #else 12727 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12728 #endif 12729 } 12730 12731 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12732 12733 if (t4_nrxq < 1) { 12734 #ifdef RSS 12735 t4_nrxq = rss_getnumbuckets(); 12736 #else 12737 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12738 #endif 12739 } 12740 12741 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12742 12743 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12744 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12745 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12746 #endif 12747 #ifdef TCP_OFFLOAD 12748 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12749 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12750 #endif 12751 12752 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12753 if (t4_toecaps_allowed == -1) 12754 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12755 #else 12756 if (t4_toecaps_allowed == -1) 12757 t4_toecaps_allowed = 0; 12758 #endif 12759 12760 #ifdef TCP_OFFLOAD 12761 if (t4_rdmacaps_allowed == -1) { 12762 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12763 FW_CAPS_CONFIG_RDMA_RDMAC; 12764 } 12765 12766 if (t4_iscsicaps_allowed == -1) { 12767 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12768 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12769 FW_CAPS_CONFIG_ISCSI_T10DIF; 12770 } 12771 12772 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12773 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12774 12775 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12776 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12777 #else 12778 if (t4_rdmacaps_allowed == -1) 12779 t4_rdmacaps_allowed = 0; 12780 12781 if (t4_iscsicaps_allowed == -1) 12782 t4_iscsicaps_allowed = 0; 12783 #endif 12784 12785 #ifdef DEV_NETMAP 12786 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12787 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12788 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12789 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12790 #endif 12791 12792 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12793 t4_tmr_idx = TMR_IDX; 12794 12795 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12796 t4_pktc_idx = PKTC_IDX; 12797 12798 if (t4_qsize_txq < 128) 12799 t4_qsize_txq = 128; 12800 12801 if (t4_qsize_rxq < 128) 12802 t4_qsize_rxq = 128; 12803 while (t4_qsize_rxq & 7) 12804 t4_qsize_rxq++; 12805 12806 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12807 12808 /* 12809 * Number of VIs to create per-port. The first VI is the "main" regular 12810 * VI for the port. The rest are additional virtual interfaces on the 12811 * same physical port. Note that the main VI does not have native 12812 * netmap support but the extra VIs do. 12813 * 12814 * Limit the number of VIs per port to the number of available 12815 * MAC addresses per port. 12816 */ 12817 if (t4_num_vis < 1) 12818 t4_num_vis = 1; 12819 if (t4_num_vis > nitems(vi_mac_funcs)) { 12820 t4_num_vis = nitems(vi_mac_funcs); 12821 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12822 } 12823 12824 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12825 pcie_relaxed_ordering = 1; 12826 #if defined(__i386__) || defined(__amd64__) 12827 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12828 pcie_relaxed_ordering = 0; 12829 #endif 12830 } 12831 } 12832 12833 #ifdef DDB 12834 static void 12835 t4_dump_tcb(struct adapter *sc, int tid) 12836 { 12837 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 12838 12839 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12840 save = t4_read_reg(sc, reg); 12841 base = sc->memwin[2].mw_base; 12842 12843 /* Dump TCB for the tid */ 12844 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12845 tcb_addr += tid * TCB_SIZE; 12846 12847 if (is_t4(sc)) { 12848 pf = 0; 12849 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 12850 } else { 12851 pf = V_PFNUM(sc->pf); 12852 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 12853 } 12854 t4_write_reg(sc, reg, win_pos | pf); 12855 t4_read_reg(sc, reg); 12856 12857 off = tcb_addr - win_pos; 12858 for (i = 0; i < 4; i++) { 12859 uint32_t buf[8]; 12860 for (j = 0; j < 8; j++, off += 4) 12861 buf[j] = htonl(t4_read_reg(sc, base + off)); 12862 12863 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12864 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12865 buf[7]); 12866 } 12867 12868 t4_write_reg(sc, reg, save); 12869 t4_read_reg(sc, reg); 12870 } 12871 12872 static void 12873 t4_dump_devlog(struct adapter *sc) 12874 { 12875 struct devlog_params *dparams = &sc->params.devlog; 12876 struct fw_devlog_e e; 12877 int i, first, j, m, nentries, rc; 12878 uint64_t ftstamp = UINT64_MAX; 12879 12880 if (dparams->start == 0) { 12881 db_printf("devlog params not valid\n"); 12882 return; 12883 } 12884 12885 nentries = dparams->size / sizeof(struct fw_devlog_e); 12886 m = fwmtype_to_hwmtype(dparams->memtype); 12887 12888 /* Find the first entry. */ 12889 first = -1; 12890 for (i = 0; i < nentries && !db_pager_quit; i++) { 12891 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12892 sizeof(e), (void *)&e); 12893 if (rc != 0) 12894 break; 12895 12896 if (e.timestamp == 0) 12897 break; 12898 12899 e.timestamp = be64toh(e.timestamp); 12900 if (e.timestamp < ftstamp) { 12901 ftstamp = e.timestamp; 12902 first = i; 12903 } 12904 } 12905 12906 if (first == -1) 12907 return; 12908 12909 i = first; 12910 do { 12911 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12912 sizeof(e), (void *)&e); 12913 if (rc != 0) 12914 return; 12915 12916 if (e.timestamp == 0) 12917 return; 12918 12919 e.timestamp = be64toh(e.timestamp); 12920 e.seqno = be32toh(e.seqno); 12921 for (j = 0; j < 8; j++) 12922 e.params[j] = be32toh(e.params[j]); 12923 12924 db_printf("%10d %15ju %8s %8s ", 12925 e.seqno, e.timestamp, 12926 (e.level < nitems(devlog_level_strings) ? 12927 devlog_level_strings[e.level] : "UNKNOWN"), 12928 (e.facility < nitems(devlog_facility_strings) ? 12929 devlog_facility_strings[e.facility] : "UNKNOWN")); 12930 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12931 e.params[3], e.params[4], e.params[5], e.params[6], 12932 e.params[7]); 12933 12934 if (++i == nentries) 12935 i = 0; 12936 } while (i != first && !db_pager_quit); 12937 } 12938 12939 static DB_DEFINE_TABLE(show, t4, show_t4); 12940 12941 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN) 12942 { 12943 device_t dev; 12944 int t; 12945 bool valid; 12946 12947 valid = false; 12948 t = db_read_token(); 12949 if (t == tIDENT) { 12950 dev = device_lookup_by_name(db_tok_string); 12951 valid = true; 12952 } 12953 db_skip_to_eol(); 12954 if (!valid) { 12955 db_printf("usage: show t4 devlog <nexus>\n"); 12956 return; 12957 } 12958 12959 if (dev == NULL) { 12960 db_printf("device not found\n"); 12961 return; 12962 } 12963 12964 t4_dump_devlog(device_get_softc(dev)); 12965 } 12966 12967 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN) 12968 { 12969 device_t dev; 12970 int radix, tid, t; 12971 bool valid; 12972 12973 valid = false; 12974 radix = db_radix; 12975 db_radix = 10; 12976 t = db_read_token(); 12977 if (t == tIDENT) { 12978 dev = device_lookup_by_name(db_tok_string); 12979 t = db_read_token(); 12980 if (t == tNUMBER) { 12981 tid = db_tok_number; 12982 valid = true; 12983 } 12984 } 12985 db_radix = radix; 12986 db_skip_to_eol(); 12987 if (!valid) { 12988 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 12989 return; 12990 } 12991 12992 if (dev == NULL) { 12993 db_printf("device not found\n"); 12994 return; 12995 } 12996 if (tid < 0) { 12997 db_printf("invalid tid\n"); 12998 return; 12999 } 13000 13001 t4_dump_tcb(device_get_softc(dev), tid); 13002 } 13003 #endif 13004 13005 static eventhandler_tag vxlan_start_evtag; 13006 static eventhandler_tag vxlan_stop_evtag; 13007 13008 struct vxlan_evargs { 13009 if_t ifp; 13010 uint16_t port; 13011 }; 13012 13013 static void 13014 enable_vxlan_rx(struct adapter *sc) 13015 { 13016 int i, rc; 13017 struct port_info *pi; 13018 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 13019 13020 ASSERT_SYNCHRONIZED_OP(sc); 13021 13022 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 13023 F_VXLAN_EN); 13024 for_each_port(sc, i) { 13025 pi = sc->port[i]; 13026 if (pi->vxlan_tcam_entry == true) 13027 continue; 13028 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 13029 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 13030 true); 13031 if (rc < 0) { 13032 rc = -rc; 13033 CH_ERR(&pi->vi[0], 13034 "failed to add VXLAN TCAM entry: %d.\n", rc); 13035 } else { 13036 MPASS(rc == sc->rawf_base + pi->port_id); 13037 pi->vxlan_tcam_entry = true; 13038 } 13039 } 13040 } 13041 13042 static void 13043 t4_vxlan_start(struct adapter *sc, void *arg) 13044 { 13045 struct vxlan_evargs *v = arg; 13046 13047 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13048 return; 13049 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 13050 return; 13051 13052 if (sc->vxlan_refcount == 0) { 13053 sc->vxlan_port = v->port; 13054 sc->vxlan_refcount = 1; 13055 if (!hw_off_limits(sc)) 13056 enable_vxlan_rx(sc); 13057 } else if (sc->vxlan_port == v->port) { 13058 sc->vxlan_refcount++; 13059 } else { 13060 CH_ERR(sc, "VXLAN already configured on port %d; " 13061 "ignoring attempt to configure it on port %d\n", 13062 sc->vxlan_port, v->port); 13063 } 13064 end_synchronized_op(sc, 0); 13065 } 13066 13067 static void 13068 t4_vxlan_stop(struct adapter *sc, void *arg) 13069 { 13070 struct vxlan_evargs *v = arg; 13071 13072 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13073 return; 13074 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 13075 return; 13076 13077 /* 13078 * VXLANs may have been configured before the driver was loaded so we 13079 * may see more stops than starts. This is not handled cleanly but at 13080 * least we keep the refcount sane. 13081 */ 13082 if (sc->vxlan_port != v->port) 13083 goto done; 13084 if (sc->vxlan_refcount == 0) { 13085 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 13086 "ignoring attempt to stop it again.\n", sc->vxlan_port); 13087 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 13088 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 13089 done: 13090 end_synchronized_op(sc, 0); 13091 } 13092 13093 static void 13094 t4_vxlan_start_handler(void *arg __unused, if_t ifp, 13095 sa_family_t family, u_int port) 13096 { 13097 struct vxlan_evargs v; 13098 13099 MPASS(family == AF_INET || family == AF_INET6); 13100 v.ifp = ifp; 13101 v.port = port; 13102 13103 t4_iterate(t4_vxlan_start, &v); 13104 } 13105 13106 static void 13107 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family, 13108 u_int port) 13109 { 13110 struct vxlan_evargs v; 13111 13112 MPASS(family == AF_INET || family == AF_INET6); 13113 v.ifp = ifp; 13114 v.port = port; 13115 13116 t4_iterate(t4_vxlan_stop, &v); 13117 } 13118 13119 13120 static struct sx mlu; /* mod load unload */ 13121 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 13122 13123 static int 13124 mod_event(module_t mod, int cmd, void *arg) 13125 { 13126 int rc = 0; 13127 static int loaded = 0; 13128 13129 switch (cmd) { 13130 case MOD_LOAD: 13131 sx_xlock(&mlu); 13132 if (loaded++ == 0) { 13133 t4_sge_modload(); 13134 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13135 t4_filter_rpl, CPL_COOKIE_FILTER); 13136 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13137 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13138 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13139 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13140 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13141 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13142 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13143 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13144 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13145 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13146 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13147 do_smt_write_rpl); 13148 sx_init(&t4_list_lock, "T4/T5 adapters"); 13149 SLIST_INIT(&t4_list); 13150 callout_init(&fatal_callout, 1); 13151 #ifdef TCP_OFFLOAD 13152 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13153 SLIST_INIT(&t4_uld_list); 13154 #endif 13155 #ifdef INET6 13156 t4_clip_modload(); 13157 #endif 13158 #ifdef KERN_TLS 13159 t6_ktls_modload(); 13160 #endif 13161 t4_tracer_modload(); 13162 tweak_tunables(); 13163 vxlan_start_evtag = 13164 EVENTHANDLER_REGISTER(vxlan_start, 13165 t4_vxlan_start_handler, NULL, 13166 EVENTHANDLER_PRI_ANY); 13167 vxlan_stop_evtag = 13168 EVENTHANDLER_REGISTER(vxlan_stop, 13169 t4_vxlan_stop_handler, NULL, 13170 EVENTHANDLER_PRI_ANY); 13171 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13172 taskqueue_thread_enqueue, &reset_tq); 13173 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13174 "t4_rst_thr"); 13175 } 13176 sx_xunlock(&mlu); 13177 break; 13178 13179 case MOD_UNLOAD: 13180 sx_xlock(&mlu); 13181 if (--loaded == 0) { 13182 int tries; 13183 13184 taskqueue_free(reset_tq); 13185 sx_slock(&t4_list_lock); 13186 if (!SLIST_EMPTY(&t4_list)) { 13187 rc = EBUSY; 13188 sx_sunlock(&t4_list_lock); 13189 goto done_unload; 13190 } 13191 #ifdef TCP_OFFLOAD 13192 sx_slock(&t4_uld_list_lock); 13193 if (!SLIST_EMPTY(&t4_uld_list)) { 13194 rc = EBUSY; 13195 sx_sunlock(&t4_uld_list_lock); 13196 sx_sunlock(&t4_list_lock); 13197 goto done_unload; 13198 } 13199 #endif 13200 tries = 0; 13201 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13202 uprintf("%ju clusters with custom free routine " 13203 "still is use.\n", t4_sge_extfree_refs()); 13204 pause("t4unload", 2 * hz); 13205 } 13206 #ifdef TCP_OFFLOAD 13207 sx_sunlock(&t4_uld_list_lock); 13208 #endif 13209 sx_sunlock(&t4_list_lock); 13210 13211 if (t4_sge_extfree_refs() == 0) { 13212 EVENTHANDLER_DEREGISTER(vxlan_start, 13213 vxlan_start_evtag); 13214 EVENTHANDLER_DEREGISTER(vxlan_stop, 13215 vxlan_stop_evtag); 13216 t4_tracer_modunload(); 13217 #ifdef KERN_TLS 13218 t6_ktls_modunload(); 13219 #endif 13220 #ifdef INET6 13221 t4_clip_modunload(); 13222 #endif 13223 #ifdef TCP_OFFLOAD 13224 sx_destroy(&t4_uld_list_lock); 13225 #endif 13226 sx_destroy(&t4_list_lock); 13227 t4_sge_modunload(); 13228 loaded = 0; 13229 } else { 13230 rc = EBUSY; 13231 loaded++; /* undo earlier decrement */ 13232 } 13233 } 13234 done_unload: 13235 sx_xunlock(&mlu); 13236 break; 13237 } 13238 13239 return (rc); 13240 } 13241 13242 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 13243 MODULE_VERSION(t4nex, 1); 13244 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13245 #ifdef DEV_NETMAP 13246 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13247 #endif /* DEV_NETMAP */ 13248 13249 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 13250 MODULE_VERSION(t5nex, 1); 13251 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13252 #ifdef DEV_NETMAP 13253 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13254 #endif /* DEV_NETMAP */ 13255 13256 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 13257 MODULE_VERSION(t6nex, 1); 13258 MODULE_DEPEND(t6nex, crypto, 1, 1, 1); 13259 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13260 #ifdef DEV_NETMAP 13261 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13262 #endif /* DEV_NETMAP */ 13263 13264 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 13265 MODULE_VERSION(cxgbe, 1); 13266 13267 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 13268 MODULE_VERSION(cxl, 1); 13269 13270 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 13271 MODULE_VERSION(cc, 1); 13272 13273 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 13274 MODULE_VERSION(vcxgbe, 1); 13275 13276 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 13277 MODULE_VERSION(vcxl, 1); 13278 13279 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 13280 MODULE_VERSION(vcc, 1); 13281