xref: /freebsd/sys/dev/cxgbe/t4_main.c (revision c0b58e65deca1e5e2c434ede7e64f03af6044be8)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include "opt_ddb.h"
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_kern_tls.h"
35 #include "opt_ratelimit.h"
36 #include "opt_rss.h"
37 
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/priv.h>
41 #include <sys/kernel.h>
42 #include <sys/bus.h>
43 #include <sys/eventhandler.h>
44 #include <sys/module.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/pciio.h>
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pci_private.h>
52 #include <sys/firmware.h>
53 #include <sys/sbuf.h>
54 #include <sys/smp.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_dl.h>
62 #include <net/if_vlan_var.h>
63 #ifdef RSS
64 #include <net/rss_config.h>
65 #endif
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #ifdef KERN_TLS
69 #include <netinet/tcp_seq.h>
70 #endif
71 #if defined(__i386__) || defined(__amd64__)
72 #include <machine/md_var.h>
73 #include <machine/cputypes.h>
74 #include <vm/vm.h>
75 #include <vm/pmap.h>
76 #endif
77 #ifdef DDB
78 #include <ddb/ddb.h>
79 #include <ddb/db_lex.h>
80 #endif
81 
82 #include "common/common.h"
83 #include "common/t4_msg.h"
84 #include "common/t4_regs.h"
85 #include "common/t4_regs_values.h"
86 #include "cudbg/cudbg.h"
87 #include "t4_clip.h"
88 #include "t4_ioctl.h"
89 #include "t4_l2t.h"
90 #include "t4_mp_ring.h"
91 #include "t4_if.h"
92 #include "t4_smt.h"
93 
94 /* T4 bus driver interface */
95 static int t4_probe(device_t);
96 static int t4_attach(device_t);
97 static int t4_detach(device_t);
98 static int t4_child_location(device_t, device_t, struct sbuf *);
99 static int t4_ready(device_t);
100 static int t4_read_port_device(device_t, int, device_t *);
101 static int t4_suspend(device_t);
102 static int t4_resume(device_t);
103 static int t4_reset_prepare(device_t, device_t);
104 static int t4_reset_post(device_t, device_t);
105 static device_method_t t4_methods[] = {
106 	DEVMETHOD(device_probe,		t4_probe),
107 	DEVMETHOD(device_attach,	t4_attach),
108 	DEVMETHOD(device_detach,	t4_detach),
109 	DEVMETHOD(device_suspend,	t4_suspend),
110 	DEVMETHOD(device_resume,	t4_resume),
111 
112 	DEVMETHOD(bus_child_location,	t4_child_location),
113 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
114 	DEVMETHOD(bus_reset_post,	t4_reset_post),
115 
116 	DEVMETHOD(t4_is_main_ready,	t4_ready),
117 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
118 
119 	DEVMETHOD_END
120 };
121 static driver_t t4_driver = {
122 	"t4nex",
123 	t4_methods,
124 	sizeof(struct adapter)
125 };
126 
127 
128 /* T4 port (cxgbe) interface */
129 static int cxgbe_probe(device_t);
130 static int cxgbe_attach(device_t);
131 static int cxgbe_detach(device_t);
132 device_method_t cxgbe_methods[] = {
133 	DEVMETHOD(device_probe,		cxgbe_probe),
134 	DEVMETHOD(device_attach,	cxgbe_attach),
135 	DEVMETHOD(device_detach,	cxgbe_detach),
136 	{ 0, 0 }
137 };
138 static driver_t cxgbe_driver = {
139 	"cxgbe",
140 	cxgbe_methods,
141 	sizeof(struct port_info)
142 };
143 
144 /* T4 VI (vcxgbe) interface */
145 static int vcxgbe_probe(device_t);
146 static int vcxgbe_attach(device_t);
147 static int vcxgbe_detach(device_t);
148 static device_method_t vcxgbe_methods[] = {
149 	DEVMETHOD(device_probe,		vcxgbe_probe),
150 	DEVMETHOD(device_attach,	vcxgbe_attach),
151 	DEVMETHOD(device_detach,	vcxgbe_detach),
152 	{ 0, 0 }
153 };
154 static driver_t vcxgbe_driver = {
155 	"vcxgbe",
156 	vcxgbe_methods,
157 	sizeof(struct vi_info)
158 };
159 
160 static d_ioctl_t t4_ioctl;
161 
162 static struct cdevsw t4_cdevsw = {
163        .d_version = D_VERSION,
164        .d_ioctl = t4_ioctl,
165        .d_name = "t4nex",
166 };
167 
168 /* T5 bus driver interface */
169 static int t5_probe(device_t);
170 static device_method_t t5_methods[] = {
171 	DEVMETHOD(device_probe,		t5_probe),
172 	DEVMETHOD(device_attach,	t4_attach),
173 	DEVMETHOD(device_detach,	t4_detach),
174 	DEVMETHOD(device_suspend,	t4_suspend),
175 	DEVMETHOD(device_resume,	t4_resume),
176 
177 	DEVMETHOD(bus_child_location,	t4_child_location),
178 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
179 	DEVMETHOD(bus_reset_post,	t4_reset_post),
180 
181 	DEVMETHOD(t4_is_main_ready,	t4_ready),
182 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
183 
184 	DEVMETHOD_END
185 };
186 static driver_t t5_driver = {
187 	"t5nex",
188 	t5_methods,
189 	sizeof(struct adapter)
190 };
191 
192 
193 /* T5 port (cxl) interface */
194 static driver_t cxl_driver = {
195 	"cxl",
196 	cxgbe_methods,
197 	sizeof(struct port_info)
198 };
199 
200 /* T5 VI (vcxl) interface */
201 static driver_t vcxl_driver = {
202 	"vcxl",
203 	vcxgbe_methods,
204 	sizeof(struct vi_info)
205 };
206 
207 /* T6 bus driver interface */
208 static int t6_probe(device_t);
209 static device_method_t t6_methods[] = {
210 	DEVMETHOD(device_probe,		t6_probe),
211 	DEVMETHOD(device_attach,	t4_attach),
212 	DEVMETHOD(device_detach,	t4_detach),
213 	DEVMETHOD(device_suspend,	t4_suspend),
214 	DEVMETHOD(device_resume,	t4_resume),
215 
216 	DEVMETHOD(bus_child_location,	t4_child_location),
217 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
218 	DEVMETHOD(bus_reset_post,	t4_reset_post),
219 
220 	DEVMETHOD(t4_is_main_ready,	t4_ready),
221 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
222 
223 	DEVMETHOD_END
224 };
225 static driver_t t6_driver = {
226 	"t6nex",
227 	t6_methods,
228 	sizeof(struct adapter)
229 };
230 
231 
232 /* T6 port (cc) interface */
233 static driver_t cc_driver = {
234 	"cc",
235 	cxgbe_methods,
236 	sizeof(struct port_info)
237 };
238 
239 /* T6 VI (vcc) interface */
240 static driver_t vcc_driver = {
241 	"vcc",
242 	vcxgbe_methods,
243 	sizeof(struct vi_info)
244 };
245 
246 /* ifnet interface */
247 static void cxgbe_init(void *);
248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
249 static int cxgbe_transmit(if_t, struct mbuf *);
250 static void cxgbe_qflush(if_t);
251 #if defined(KERN_TLS) || defined(RATELIMIT)
252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
253     struct m_snd_tag **);
254 #endif
255 
256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
257 
258 /*
259  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
260  * then ADAPTER_LOCK, then t4_uld_list_lock.
261  */
262 static struct sx t4_list_lock;
263 SLIST_HEAD(, adapter) t4_list;
264 #ifdef TCP_OFFLOAD
265 static struct sx t4_uld_list_lock;
266 SLIST_HEAD(, uld_info) t4_uld_list;
267 #endif
268 
269 /*
270  * Tunables.  See tweak_tunables() too.
271  *
272  * Each tunable is set to a default value here if it's known at compile-time.
273  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
274  * provide a reasonable default (upto n) when the driver is loaded.
275  *
276  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
277  * T5 are under hw.cxl.
278  */
279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
280     "cxgbe(4) parameters");
281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
282     "cxgbe(4) T5+ parameters");
283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
284     "cxgbe(4) TOE parameters");
285 
286 /*
287  * Number of queues for tx and rx, NIC and offload.
288  */
289 #define NTXQ 16
290 int t4_ntxq = -NTXQ;
291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
292     "Number of TX queues per port");
293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);	/* Old name, undocumented */
294 
295 #define NRXQ 8
296 int t4_nrxq = -NRXQ;
297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
298     "Number of RX queues per port");
299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);	/* Old name, undocumented */
300 
301 #define NTXQ_VI 1
302 static int t4_ntxq_vi = -NTXQ_VI;
303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
304     "Number of TX queues per VI");
305 
306 #define NRXQ_VI 1
307 static int t4_nrxq_vi = -NRXQ_VI;
308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
309     "Number of RX queues per VI");
310 
311 static int t4_rsrv_noflowq = 0;
312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
313     0, "Reserve TX queue 0 of each VI for non-flowid packets");
314 
315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
316 #define NOFLDTXQ 8
317 static int t4_nofldtxq = -NOFLDTXQ;
318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
319     "Number of offload TX queues per port");
320 
321 #define NOFLDRXQ 2
322 static int t4_nofldrxq = -NOFLDRXQ;
323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
324     "Number of offload RX queues per port");
325 
326 #define NOFLDTXQ_VI 1
327 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
329     "Number of offload TX queues per VI");
330 
331 #define NOFLDRXQ_VI 1
332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
334     "Number of offload RX queues per VI");
335 
336 #define TMR_IDX_OFLD 1
337 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
339     &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
340 
341 #define PKTC_IDX_OFLD (-1)
342 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
344     &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
345 
346 /* 0 means chip/fw default, non-zero number is value in microseconds */
347 static u_long t4_toe_keepalive_idle = 0;
348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
349     &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
350 
351 /* 0 means chip/fw default, non-zero number is value in microseconds */
352 static u_long t4_toe_keepalive_interval = 0;
353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
354     &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
355 
356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
357 static int t4_toe_keepalive_count = 0;
358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
359     &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
360 
361 /* 0 means chip/fw default, non-zero number is value in microseconds */
362 static u_long t4_toe_rexmt_min = 0;
363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
364     &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
365 
366 /* 0 means chip/fw default, non-zero number is value in microseconds */
367 static u_long t4_toe_rexmt_max = 0;
368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
369     &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
370 
371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
372 static int t4_toe_rexmt_count = 0;
373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
374     &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
375 
376 /* -1 means chip/fw default, other values are raw backoff values to use */
377 static int t4_toe_rexmt_backoff[16] = {
378 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
379 };
380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
381     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
382     "cxgbe(4) TOE retransmit backoff values");
383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
384     &t4_toe_rexmt_backoff[0], 0, "");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
386     &t4_toe_rexmt_backoff[1], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
388     &t4_toe_rexmt_backoff[2], 0, "");
389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
390     &t4_toe_rexmt_backoff[3], 0, "");
391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
392     &t4_toe_rexmt_backoff[4], 0, "");
393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
394     &t4_toe_rexmt_backoff[5], 0, "");
395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
396     &t4_toe_rexmt_backoff[6], 0, "");
397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
398     &t4_toe_rexmt_backoff[7], 0, "");
399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
400     &t4_toe_rexmt_backoff[8], 0, "");
401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
402     &t4_toe_rexmt_backoff[9], 0, "");
403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
404     &t4_toe_rexmt_backoff[10], 0, "");
405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
406     &t4_toe_rexmt_backoff[11], 0, "");
407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
408     &t4_toe_rexmt_backoff[12], 0, "");
409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
410     &t4_toe_rexmt_backoff[13], 0, "");
411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
412     &t4_toe_rexmt_backoff[14], 0, "");
413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
414     &t4_toe_rexmt_backoff[15], 0, "");
415 
416 int t4_ddp_rcvbuf_len = 256 * 1024;
417 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
418     &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
419 
420 unsigned int t4_ddp_rcvbuf_cache = 4;
421 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
422     &t4_ddp_rcvbuf_cache, 0,
423     "maximum number of free DDP RX buffers to cache per connection");
424 #endif
425 
426 #ifdef DEV_NETMAP
427 #define NN_MAIN_VI	(1 << 0)	/* Native netmap on the main VI */
428 #define NN_EXTRA_VI	(1 << 1)	/* Native netmap on the extra VI(s) */
429 static int t4_native_netmap = NN_EXTRA_VI;
430 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
431     0, "Native netmap support.  bit 0 = main VI, bit 1 = extra VIs");
432 
433 #define NNMTXQ 8
434 static int t4_nnmtxq = -NNMTXQ;
435 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
436     "Number of netmap TX queues");
437 
438 #define NNMRXQ 8
439 static int t4_nnmrxq = -NNMRXQ;
440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
441     "Number of netmap RX queues");
442 
443 #define NNMTXQ_VI 2
444 static int t4_nnmtxq_vi = -NNMTXQ_VI;
445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
446     "Number of netmap TX queues per VI");
447 
448 #define NNMRXQ_VI 2
449 static int t4_nnmrxq_vi = -NNMRXQ_VI;
450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
451     "Number of netmap RX queues per VI");
452 #endif
453 
454 /*
455  * Holdoff parameters for ports.
456  */
457 #define TMR_IDX 1
458 int t4_tmr_idx = TMR_IDX;
459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
460     0, "Holdoff timer index");
461 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);	/* Old name */
462 
463 #define PKTC_IDX (-1)
464 int t4_pktc_idx = PKTC_IDX;
465 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
466     0, "Holdoff packet counter index");
467 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);	/* Old name */
468 
469 /*
470  * Size (# of entries) of each tx and rx queue.
471  */
472 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
474     "Number of descriptors in each TX queue");
475 
476 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
477 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
478     "Number of descriptors in each RX queue");
479 
480 /*
481  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
482  */
483 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
484 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
485     0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
486 
487 /*
488  * Configuration file.  All the _CF names here are special.
489  */
490 #define DEFAULT_CF	"default"
491 #define BUILTIN_CF	"built-in"
492 #define FLASH_CF	"flash"
493 #define UWIRE_CF	"uwire"
494 #define FPGA_CF		"fpga"
495 static char t4_cfg_file[32] = DEFAULT_CF;
496 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
497     sizeof(t4_cfg_file), "Firmware configuration file");
498 
499 /*
500  * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
501  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
502  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
503  *            mark or when signalled to do so, 0 to never emit PAUSE.
504  * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
505  *                 negotiated settings will override rx_pause/tx_pause.
506  *                 Otherwise rx_pause/tx_pause are applied forcibly.
507  */
508 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
510     &t4_pause_settings, 0,
511     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
512 
513 /*
514  * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
515  * -1 to run with the firmware default.  Same as FEC_AUTO (bit 5)
516  *  0 to disable FEC.
517  */
518 static int t4_fec = -1;
519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
520     "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
521 
522 /*
523  * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
524  * issues to the firmware.  If the firmware doesn't support FORCE_FEC then the
525  * driver runs as if this is set to 0.
526  * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
527  *  0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
528  *    transceiver. Multiple FEC bits may not be okay but will be passed on to
529  *    the firmware anyway (may result in l1cfg errors with old firmwares).
530  *  1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
531  *    means set all FEC bits that are valid for the speed.
532  */
533 static int t4_force_fec = -1;
534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
535     "Controls the use of FORCE_FEC bit in L1 configuration.");
536 
537 /*
538  * Link autonegotiation.
539  * -1 to run with the firmware default.
540  *  0 to disable.
541  *  1 to enable.
542  */
543 static int t4_autoneg = -1;
544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
545     "Link autonegotiation");
546 
547 /*
548  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
549  * encouraged respectively).  '-n' is the same as 'n' except the firmware
550  * version used in the checks is read from the firmware bundled with the driver.
551  */
552 static int t4_fw_install = 1;
553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
554     "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
555 
556 /*
557  * ASIC features that will be used.  Disable the ones you don't want so that the
558  * chip resources aren't wasted on features that will not be used.
559  */
560 static int t4_nbmcaps_allowed = 0;
561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
562     &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
563 
564 static int t4_linkcaps_allowed = 0;	/* No DCBX, PPP, etc. by default */
565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
566     &t4_linkcaps_allowed, 0, "Default link capabilities");
567 
568 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
569     FW_CAPS_CONFIG_SWITCH_EGRESS;
570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
571     &t4_switchcaps_allowed, 0, "Default switch capabilities");
572 
573 #ifdef RATELIMIT
574 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
575 	FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
576 #else
577 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
578 	FW_CAPS_CONFIG_NIC_HASHFILTER;
579 #endif
580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
581     &t4_niccaps_allowed, 0, "Default NIC capabilities");
582 
583 static int t4_toecaps_allowed = -1;
584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
585     &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
586 
587 static int t4_rdmacaps_allowed = -1;
588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
589     &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
590 
591 static int t4_cryptocaps_allowed = -1;
592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
593     &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
594 
595 static int t4_iscsicaps_allowed = -1;
596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
597     &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
598 
599 static int t4_fcoecaps_allowed = 0;
600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
601     &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
602 
603 static int t5_write_combine = 0;
604 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
605     0, "Use WC instead of UC for BAR2");
606 
607 static int t4_num_vis = 1;
608 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
609     "Number of VIs per port");
610 
611 /*
612  * PCIe Relaxed Ordering.
613  * -1: driver should figure out a good value.
614  * 0: disable RO.
615  * 1: enable RO.
616  * 2: leave RO alone.
617  */
618 static int pcie_relaxed_ordering = -1;
619 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
620     &pcie_relaxed_ordering, 0,
621     "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
622 
623 static int t4_panic_on_fatal_err = 0;
624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
625     &t4_panic_on_fatal_err, 0, "panic on fatal errors");
626 
627 static int t4_reset_on_fatal_err = 0;
628 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
629     &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
630 
631 static int t4_clock_gate_on_suspend = 0;
632 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
633     &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
634 
635 static int t4_tx_vm_wr = 0;
636 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
637     "Use VM work requests to transmit packets.");
638 
639 /*
640  * Set to non-zero to enable the attack filter.  A packet that matches any of
641  * these conditions will get dropped on ingress:
642  * 1) IP && source address == destination address.
643  * 2) TCP/IP && source address is not a unicast address.
644  * 3) TCP/IP && destination address is not a unicast address.
645  * 4) IP && source address is loopback (127.x.y.z).
646  * 5) IP && destination address is loopback (127.x.y.z).
647  * 6) IPv6 && source address == destination address.
648  * 7) IPv6 && source address is not a unicast address.
649  * 8) IPv6 && source address is loopback (::1/128).
650  * 9) IPv6 && destination address is loopback (::1/128).
651  * 10) IPv6 && source address is unspecified (::/128).
652  * 11) IPv6 && destination address is unspecified (::/128).
653  * 12) TCP/IPv6 && source address is multicast (ff00::/8).
654  * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
655  */
656 static int t4_attack_filter = 0;
657 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
658     &t4_attack_filter, 0, "Drop suspicious traffic");
659 
660 static int t4_drop_ip_fragments = 0;
661 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
662     &t4_drop_ip_fragments, 0, "Drop IP fragments");
663 
664 static int t4_drop_pkts_with_l2_errors = 1;
665 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
666     &t4_drop_pkts_with_l2_errors, 0,
667     "Drop all frames with Layer 2 length or checksum errors");
668 
669 static int t4_drop_pkts_with_l3_errors = 0;
670 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
671     &t4_drop_pkts_with_l3_errors, 0,
672     "Drop all frames with IP version, length, or checksum errors");
673 
674 static int t4_drop_pkts_with_l4_errors = 0;
675 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
676     &t4_drop_pkts_with_l4_errors, 0,
677     "Drop all frames with Layer 4 length, checksum, or other errors");
678 
679 #ifdef TCP_OFFLOAD
680 /*
681  * TOE tunables.
682  */
683 static int t4_cop_managed_offloading = 0;
684 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
685     &t4_cop_managed_offloading, 0,
686     "COP (Connection Offload Policy) controls all TOE offload");
687 #endif
688 
689 #ifdef KERN_TLS
690 /*
691  * This enables KERN_TLS for all adapters if set.
692  */
693 static int t4_kern_tls = 0;
694 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
695     "Enable KERN_TLS mode for T6 adapters");
696 
697 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
698     "cxgbe(4) KERN_TLS parameters");
699 
700 static int t4_tls_inline_keys = 0;
701 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
702     &t4_tls_inline_keys, 0,
703     "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
704     "in card memory.");
705 
706 static int t4_tls_combo_wrs = 0;
707 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
708     0, "Attempt to combine TCB field updates with TLS record work requests.");
709 #endif
710 
711 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
712 static int vi_mac_funcs[] = {
713 	FW_VI_FUNC_ETH,
714 	FW_VI_FUNC_OFLD,
715 	FW_VI_FUNC_IWARP,
716 	FW_VI_FUNC_OPENISCSI,
717 	FW_VI_FUNC_OPENFCOE,
718 	FW_VI_FUNC_FOISCSI,
719 	FW_VI_FUNC_FOFCOE,
720 };
721 
722 struct intrs_and_queues {
723 	uint16_t intr_type;	/* INTx, MSI, or MSI-X */
724 	uint16_t num_vis;	/* number of VIs for each port */
725 	uint16_t nirq;		/* Total # of vectors */
726 	uint16_t ntxq;		/* # of NIC txq's for each port */
727 	uint16_t nrxq;		/* # of NIC rxq's for each port */
728 	uint16_t nofldtxq;	/* # of TOE/ETHOFLD txq's for each port */
729 	uint16_t nofldrxq;	/* # of TOE rxq's for each port */
730 	uint16_t nnmtxq;	/* # of netmap txq's */
731 	uint16_t nnmrxq;	/* # of netmap rxq's */
732 
733 	/* The vcxgbe/vcxl interfaces use these and not the ones above. */
734 	uint16_t ntxq_vi;	/* # of NIC txq's */
735 	uint16_t nrxq_vi;	/* # of NIC rxq's */
736 	uint16_t nofldtxq_vi;	/* # of TOE txq's */
737 	uint16_t nofldrxq_vi;	/* # of TOE rxq's */
738 	uint16_t nnmtxq_vi;	/* # of netmap txq's */
739 	uint16_t nnmrxq_vi;	/* # of netmap rxq's */
740 };
741 
742 static void setup_memwin(struct adapter *);
743 static void position_memwin(struct adapter *, int, uint32_t);
744 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
745 static int fwmtype_to_hwmtype(int);
746 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
747     uint32_t *);
748 static int fixup_devlog_params(struct adapter *);
749 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
750 static int contact_firmware(struct adapter *);
751 static int partition_resources(struct adapter *);
752 static int get_params__pre_init(struct adapter *);
753 static int set_params__pre_init(struct adapter *);
754 static int get_params__post_init(struct adapter *);
755 static int set_params__post_init(struct adapter *);
756 static void t4_set_desc(struct adapter *);
757 static bool fixed_ifmedia(struct port_info *);
758 static void build_medialist(struct port_info *);
759 static void init_link_config(struct port_info *);
760 static int fixup_link_config(struct port_info *);
761 static int apply_link_config(struct port_info *);
762 static int cxgbe_init_synchronized(struct vi_info *);
763 static int cxgbe_uninit_synchronized(struct vi_info *);
764 static int adapter_full_init(struct adapter *);
765 static void adapter_full_uninit(struct adapter *);
766 static int vi_full_init(struct vi_info *);
767 static void vi_full_uninit(struct vi_info *);
768 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
769 static void quiesce_txq(struct sge_txq *);
770 static void quiesce_wrq(struct sge_wrq *);
771 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
772 static void quiesce_vi(struct vi_info *);
773 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
774     driver_intr_t *, void *, char *);
775 static int t4_free_irq(struct adapter *, struct irq *);
776 static void t4_init_atid_table(struct adapter *);
777 static void t4_free_atid_table(struct adapter *);
778 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
779 static void vi_refresh_stats(struct vi_info *);
780 static void cxgbe_refresh_stats(struct vi_info *);
781 static void cxgbe_tick(void *);
782 static void vi_tick(void *);
783 static void cxgbe_sysctls(struct port_info *);
784 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
785 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
786 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
787 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
788 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
789 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
790 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
791 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
792 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
793 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
794 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
795 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
796 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
797 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
798 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
799 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
800 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
801 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
802 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
803 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
804 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
805 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
806 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
807 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
808 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
809 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
810 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
811 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
812 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
813 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
814 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
815 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
816 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
817 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
818 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
819 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
820 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
821 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
822 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
823 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
824 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
825 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
826 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
827 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
828 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
829 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
830 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
831 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
832 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
833 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
834 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
835 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
836 #ifdef TCP_OFFLOAD
837 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
838 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
839 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
840 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
841 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
842 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
843 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
844 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
845 #endif
846 static int get_sge_context(struct adapter *, struct t4_sge_context *);
847 static int load_fw(struct adapter *, struct t4_data *);
848 static int load_cfg(struct adapter *, struct t4_data *);
849 static int load_boot(struct adapter *, struct t4_bootrom *);
850 static int load_bootcfg(struct adapter *, struct t4_data *);
851 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
852 static void free_offload_policy(struct t4_offload_policy *);
853 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
854 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
855 static int read_i2c(struct adapter *, struct t4_i2c_data *);
856 static int clear_stats(struct adapter *, u_int);
857 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
858 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
859 #ifdef TCP_OFFLOAD
860 static int toe_capability(struct vi_info *, bool);
861 static int t4_deactivate_all_uld(struct adapter *);
862 static void t4_async_event(struct adapter *);
863 #endif
864 #ifdef KERN_TLS
865 static int ktls_capability(struct adapter *, bool);
866 #endif
867 static int mod_event(module_t, int, void *);
868 static int notify_siblings(device_t, int);
869 static uint64_t vi_get_counter(if_t, ift_counter);
870 static uint64_t cxgbe_get_counter(if_t, ift_counter);
871 static void enable_vxlan_rx(struct adapter *);
872 static void reset_adapter_task(void *, int);
873 static void fatal_error_task(void *, int);
874 static void dump_devlog(struct adapter *);
875 static void dump_cim_regs(struct adapter *);
876 static void dump_cimla(struct adapter *);
877 
878 struct {
879 	uint16_t device;
880 	char *desc;
881 } t4_pciids[] = {
882 	{0xa000, "Chelsio Terminator 4 FPGA"},
883 	{0x4400, "Chelsio T440-dbg"},
884 	{0x4401, "Chelsio T420-CR"},
885 	{0x4402, "Chelsio T422-CR"},
886 	{0x4403, "Chelsio T440-CR"},
887 	{0x4404, "Chelsio T420-BCH"},
888 	{0x4405, "Chelsio T440-BCH"},
889 	{0x4406, "Chelsio T440-CH"},
890 	{0x4407, "Chelsio T420-SO"},
891 	{0x4408, "Chelsio T420-CX"},
892 	{0x4409, "Chelsio T420-BT"},
893 	{0x440a, "Chelsio T404-BT"},
894 	{0x440e, "Chelsio T440-LP-CR"},
895 }, t5_pciids[] = {
896 	{0xb000, "Chelsio Terminator 5 FPGA"},
897 	{0x5400, "Chelsio T580-dbg"},
898 	{0x5401,  "Chelsio T520-CR"},		/* 2 x 10G */
899 	{0x5402,  "Chelsio T522-CR"},		/* 2 x 10G, 2 X 1G */
900 	{0x5403,  "Chelsio T540-CR"},		/* 4 x 10G */
901 	{0x5407,  "Chelsio T520-SO"},		/* 2 x 10G, nomem */
902 	{0x5409,  "Chelsio T520-BT"},		/* 2 x 10GBaseT */
903 	{0x540a,  "Chelsio T504-BT"},		/* 4 x 1G */
904 	{0x540d,  "Chelsio T580-CR"},		/* 2 x 40G */
905 	{0x540e,  "Chelsio T540-LP-CR"},	/* 4 x 10G */
906 	{0x5410,  "Chelsio T580-LP-CR"},	/* 2 x 40G */
907 	{0x5411,  "Chelsio T520-LL-CR"},	/* 2 x 10G */
908 	{0x5412,  "Chelsio T560-CR"},		/* 1 x 40G, 2 x 10G */
909 	{0x5414,  "Chelsio T580-LP-SO-CR"},	/* 2 x 40G, nomem */
910 	{0x5415,  "Chelsio T502-BT"},		/* 2 x 1G */
911 	{0x5418,  "Chelsio T540-BT"},		/* 4 x 10GBaseT */
912 	{0x5419,  "Chelsio T540-LP-BT"},	/* 4 x 10GBaseT */
913 	{0x541a,  "Chelsio T540-SO-BT"},	/* 4 x 10GBaseT, nomem */
914 	{0x541b,  "Chelsio T540-SO-CR"},	/* 4 x 10G, nomem */
915 
916 	/* Custom */
917 	{0x5483, "Custom T540-CR"},
918 	{0x5484, "Custom T540-BT"},
919 }, t6_pciids[] = {
920 	{0xc006, "Chelsio Terminator 6 FPGA"},	/* T6 PE10K6 FPGA (PF0) */
921 	{0x6400, "Chelsio T6-DBG-25"},		/* 2 x 10/25G, debug */
922 	{0x6401, "Chelsio T6225-CR"},		/* 2 x 10/25G */
923 	{0x6402, "Chelsio T6225-SO-CR"},	/* 2 x 10/25G, nomem */
924 	{0x6403, "Chelsio T6425-CR"},		/* 4 x 10/25G */
925 	{0x6404, "Chelsio T6425-SO-CR"},	/* 4 x 10/25G, nomem */
926 	{0x6405, "Chelsio T6225-OCP-SO"},	/* 2 x 10/25G, nomem */
927 	{0x6406, "Chelsio T62100-OCP-SO"},	/* 2 x 40/50/100G, nomem */
928 	{0x6407, "Chelsio T62100-LP-CR"},	/* 2 x 40/50/100G */
929 	{0x6408, "Chelsio T62100-SO-CR"},	/* 2 x 40/50/100G, nomem */
930 	{0x6409, "Chelsio T6210-BT"},		/* 2 x 10GBASE-T */
931 	{0x640d, "Chelsio T62100-CR"},		/* 2 x 40/50/100G */
932 	{0x6410, "Chelsio T6-DBG-100"},		/* 2 x 40/50/100G, debug */
933 	{0x6411, "Chelsio T6225-LL-CR"},	/* 2 x 10/25G */
934 	{0x6414, "Chelsio T61100-OCP-SO"},	/* 1 x 40/50/100G, nomem */
935 	{0x6415, "Chelsio T6201-BT"},		/* 2 x 1000BASE-T */
936 
937 	/* Custom */
938 	{0x6480, "Custom T6225-CR"},
939 	{0x6481, "Custom T62100-CR"},
940 	{0x6482, "Custom T6225-CR"},
941 	{0x6483, "Custom T62100-CR"},
942 	{0x6484, "Custom T64100-CR"},
943 	{0x6485, "Custom T6240-SO"},
944 	{0x6486, "Custom T6225-SO-CR"},
945 	{0x6487, "Custom T6225-CR"},
946 };
947 
948 #ifdef TCP_OFFLOAD
949 /*
950  * service_iq_fl() has an iq and needs the fl.  Offset of fl from the iq should
951  * be exactly the same for both rxq and ofld_rxq.
952  */
953 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
954 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
955 #endif
956 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
957 
958 static int
959 t4_probe(device_t dev)
960 {
961 	int i;
962 	uint16_t v = pci_get_vendor(dev);
963 	uint16_t d = pci_get_device(dev);
964 	uint8_t f = pci_get_function(dev);
965 
966 	if (v != PCI_VENDOR_ID_CHELSIO)
967 		return (ENXIO);
968 
969 	/* Attach only to PF0 of the FPGA */
970 	if (d == 0xa000 && f != 0)
971 		return (ENXIO);
972 
973 	for (i = 0; i < nitems(t4_pciids); i++) {
974 		if (d == t4_pciids[i].device) {
975 			device_set_desc(dev, t4_pciids[i].desc);
976 			return (BUS_PROBE_DEFAULT);
977 		}
978 	}
979 
980 	return (ENXIO);
981 }
982 
983 static int
984 t5_probe(device_t dev)
985 {
986 	int i;
987 	uint16_t v = pci_get_vendor(dev);
988 	uint16_t d = pci_get_device(dev);
989 	uint8_t f = pci_get_function(dev);
990 
991 	if (v != PCI_VENDOR_ID_CHELSIO)
992 		return (ENXIO);
993 
994 	/* Attach only to PF0 of the FPGA */
995 	if (d == 0xb000 && f != 0)
996 		return (ENXIO);
997 
998 	for (i = 0; i < nitems(t5_pciids); i++) {
999 		if (d == t5_pciids[i].device) {
1000 			device_set_desc(dev, t5_pciids[i].desc);
1001 			return (BUS_PROBE_DEFAULT);
1002 		}
1003 	}
1004 
1005 	return (ENXIO);
1006 }
1007 
1008 static int
1009 t6_probe(device_t dev)
1010 {
1011 	int i;
1012 	uint16_t v = pci_get_vendor(dev);
1013 	uint16_t d = pci_get_device(dev);
1014 
1015 	if (v != PCI_VENDOR_ID_CHELSIO)
1016 		return (ENXIO);
1017 
1018 	for (i = 0; i < nitems(t6_pciids); i++) {
1019 		if (d == t6_pciids[i].device) {
1020 			device_set_desc(dev, t6_pciids[i].desc);
1021 			return (BUS_PROBE_DEFAULT);
1022 		}
1023 	}
1024 
1025 	return (ENXIO);
1026 }
1027 
1028 static void
1029 t5_attribute_workaround(device_t dev)
1030 {
1031 	device_t root_port;
1032 	uint32_t v;
1033 
1034 	/*
1035 	 * The T5 chips do not properly echo the No Snoop and Relaxed
1036 	 * Ordering attributes when replying to a TLP from a Root
1037 	 * Port.  As a workaround, find the parent Root Port and
1038 	 * disable No Snoop and Relaxed Ordering.  Note that this
1039 	 * affects all devices under this root port.
1040 	 */
1041 	root_port = pci_find_pcie_root_port(dev);
1042 	if (root_port == NULL) {
1043 		device_printf(dev, "Unable to find parent root port\n");
1044 		return;
1045 	}
1046 
1047 	v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1048 	    PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1049 	if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1050 	    0)
1051 		device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1052 		    device_get_nameunit(root_port));
1053 }
1054 
1055 static const struct devnames devnames[] = {
1056 	{
1057 		.nexus_name = "t4nex",
1058 		.ifnet_name = "cxgbe",
1059 		.vi_ifnet_name = "vcxgbe",
1060 		.pf03_drv_name = "t4iov",
1061 		.vf_nexus_name = "t4vf",
1062 		.vf_ifnet_name = "cxgbev"
1063 	}, {
1064 		.nexus_name = "t5nex",
1065 		.ifnet_name = "cxl",
1066 		.vi_ifnet_name = "vcxl",
1067 		.pf03_drv_name = "t5iov",
1068 		.vf_nexus_name = "t5vf",
1069 		.vf_ifnet_name = "cxlv"
1070 	}, {
1071 		.nexus_name = "t6nex",
1072 		.ifnet_name = "cc",
1073 		.vi_ifnet_name = "vcc",
1074 		.pf03_drv_name = "t6iov",
1075 		.vf_nexus_name = "t6vf",
1076 		.vf_ifnet_name = "ccv"
1077 	}
1078 };
1079 
1080 void
1081 t4_init_devnames(struct adapter *sc)
1082 {
1083 	int id;
1084 
1085 	id = chip_id(sc);
1086 	if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
1087 		sc->names = &devnames[id - CHELSIO_T4];
1088 	else {
1089 		device_printf(sc->dev, "chip id %d is not supported.\n", id);
1090 		sc->names = NULL;
1091 	}
1092 }
1093 
1094 static int
1095 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1096 {
1097 	const char *parent, *name;
1098 	long value;
1099 	int line, unit;
1100 
1101 	line = 0;
1102 	parent = device_get_nameunit(sc->dev);
1103 	name = sc->names->ifnet_name;
1104 	while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1105 		if (resource_long_value(name, unit, "port", &value) == 0 &&
1106 		    value == pi->port_id)
1107 			return (unit);
1108 	}
1109 	return (-1);
1110 }
1111 
1112 static void
1113 t4_calibration(void *arg)
1114 {
1115 	struct adapter *sc;
1116 	struct clock_sync *cur, *nex;
1117 	uint64_t hw;
1118 	sbintime_t sbt;
1119 	int next_up;
1120 
1121 	sc = (struct adapter *)arg;
1122 
1123 	KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration"));
1124 	hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1125 	sbt = sbinuptime();
1126 
1127 	cur = &sc->cal_info[sc->cal_current];
1128 	next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1129 	nex = &sc->cal_info[next_up];
1130 	if (__predict_false(sc->cal_count == 0)) {
1131 		/* First time in, just get the values in */
1132 		cur->hw_cur = hw;
1133 		cur->sbt_cur = sbt;
1134 		sc->cal_count++;
1135 		goto done;
1136 	}
1137 
1138 	if (cur->hw_cur == hw) {
1139 		/* The clock is not advancing? */
1140 		sc->cal_count = 0;
1141 		atomic_store_rel_int(&cur->gen, 0);
1142 		goto done;
1143 	}
1144 
1145 	seqc_write_begin(&nex->gen);
1146 	nex->hw_prev = cur->hw_cur;
1147 	nex->sbt_prev = cur->sbt_cur;
1148 	nex->hw_cur = hw;
1149 	nex->sbt_cur = sbt;
1150 	seqc_write_end(&nex->gen);
1151 	sc->cal_current = next_up;
1152 done:
1153 	callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1154 	    sc, C_DIRECT_EXEC);
1155 }
1156 
1157 static void
1158 t4_calibration_start(struct adapter *sc)
1159 {
1160 	/*
1161 	 * Here if we have not done a calibration
1162 	 * then do so otherwise start the appropriate
1163 	 * timer.
1164 	 */
1165 	int i;
1166 
1167 	for (i = 0; i < CNT_CAL_INFO; i++) {
1168 		sc->cal_info[i].gen = 0;
1169 	}
1170 	sc->cal_current = 0;
1171 	sc->cal_count = 0;
1172 	sc->cal_gen = 0;
1173 	t4_calibration(sc);
1174 }
1175 
1176 static int
1177 t4_attach(device_t dev)
1178 {
1179 	struct adapter *sc;
1180 	int rc = 0, i, j, rqidx, tqidx, nports;
1181 	struct make_dev_args mda;
1182 	struct intrs_and_queues iaq;
1183 	struct sge *s;
1184 	uint32_t *buf;
1185 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1186 	int ofld_tqidx;
1187 #endif
1188 #ifdef TCP_OFFLOAD
1189 	int ofld_rqidx;
1190 #endif
1191 #ifdef DEV_NETMAP
1192 	int nm_rqidx, nm_tqidx;
1193 #endif
1194 	int num_vis;
1195 
1196 	sc = device_get_softc(dev);
1197 	sc->dev = dev;
1198 	sysctl_ctx_init(&sc->ctx);
1199 	TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1200 
1201 	if ((pci_get_device(dev) & 0xff00) == 0x5400)
1202 		t5_attribute_workaround(dev);
1203 	pci_enable_busmaster(dev);
1204 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1205 		uint32_t v;
1206 
1207 		pci_set_max_read_req(dev, 4096);
1208 		v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1209 		sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1210 		if (pcie_relaxed_ordering == 0 &&
1211 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1212 			v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1213 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1214 		} else if (pcie_relaxed_ordering == 1 &&
1215 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1216 			v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1217 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1218 		}
1219 	}
1220 
1221 	sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1222 	sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1223 	sc->traceq = -1;
1224 	mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1225 	snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1226 	    device_get_nameunit(dev));
1227 
1228 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1229 	    device_get_nameunit(dev));
1230 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1231 	t4_add_adapter(sc);
1232 
1233 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1234 	TAILQ_INIT(&sc->sfl);
1235 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1236 
1237 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1238 
1239 	sc->policy = NULL;
1240 	rw_init(&sc->policy_lock, "connection offload policy");
1241 
1242 	callout_init(&sc->ktls_tick, 1);
1243 
1244 	callout_init(&sc->cal_callout, 1);
1245 
1246 	refcount_init(&sc->vxlan_refcount, 0);
1247 
1248 	TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1249 	TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1250 
1251 	sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1252 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1253 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1254 	sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1255 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1256 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1257 
1258 	rc = t4_map_bars_0_and_4(sc);
1259 	if (rc != 0)
1260 		goto done; /* error message displayed already */
1261 
1262 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1263 
1264 	/* Prepare the adapter for operation. */
1265 	buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1266 	rc = -t4_prep_adapter(sc, buf);
1267 	free(buf, M_CXGBE);
1268 	if (rc != 0) {
1269 		device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1270 		goto done;
1271 	}
1272 
1273 	/*
1274 	 * This is the real PF# to which we're attaching.  Works from within PCI
1275 	 * passthrough environments too, where pci_get_function() could return a
1276 	 * different PF# depending on the passthrough configuration.  We need to
1277 	 * use the real PF# in all our communication with the firmware.
1278 	 */
1279 	j = t4_read_reg(sc, A_PL_WHOAMI);
1280 	sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1281 	sc->mbox = sc->pf;
1282 
1283 	t4_init_devnames(sc);
1284 	if (sc->names == NULL) {
1285 		rc = ENOTSUP;
1286 		goto done; /* error message displayed already */
1287 	}
1288 
1289 	/*
1290 	 * Do this really early, with the memory windows set up even before the
1291 	 * character device.  The userland tool's register i/o and mem read
1292 	 * will work even in "recovery mode".
1293 	 */
1294 	setup_memwin(sc);
1295 	if (t4_init_devlog_params(sc, 0) == 0)
1296 		fixup_devlog_params(sc);
1297 	make_dev_args_init(&mda);
1298 	mda.mda_devsw = &t4_cdevsw;
1299 	mda.mda_uid = UID_ROOT;
1300 	mda.mda_gid = GID_WHEEL;
1301 	mda.mda_mode = 0600;
1302 	mda.mda_si_drv1 = sc;
1303 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1304 	if (rc != 0)
1305 		device_printf(dev, "failed to create nexus char device: %d.\n",
1306 		    rc);
1307 
1308 	/* Go no further if recovery mode has been requested. */
1309 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1310 		device_printf(dev, "recovery mode.\n");
1311 		goto done;
1312 	}
1313 
1314 #if defined(__i386__)
1315 	if ((cpu_feature & CPUID_CX8) == 0) {
1316 		device_printf(dev, "64 bit atomics not available.\n");
1317 		rc = ENOTSUP;
1318 		goto done;
1319 	}
1320 #endif
1321 
1322 	/* Contact the firmware and try to become the master driver. */
1323 	rc = contact_firmware(sc);
1324 	if (rc != 0)
1325 		goto done; /* error message displayed already */
1326 	MPASS(sc->flags & FW_OK);
1327 
1328 	rc = get_params__pre_init(sc);
1329 	if (rc != 0)
1330 		goto done; /* error message displayed already */
1331 
1332 	if (sc->flags & MASTER_PF) {
1333 		rc = partition_resources(sc);
1334 		if (rc != 0)
1335 			goto done; /* error message displayed already */
1336 	}
1337 
1338 	rc = get_params__post_init(sc);
1339 	if (rc != 0)
1340 		goto done; /* error message displayed already */
1341 
1342 	rc = set_params__post_init(sc);
1343 	if (rc != 0)
1344 		goto done; /* error message displayed already */
1345 
1346 	rc = t4_map_bar_2(sc);
1347 	if (rc != 0)
1348 		goto done; /* error message displayed already */
1349 
1350 	rc = t4_create_dma_tag(sc);
1351 	if (rc != 0)
1352 		goto done; /* error message displayed already */
1353 
1354 	/*
1355 	 * First pass over all the ports - allocate VIs and initialize some
1356 	 * basic parameters like mac address, port type, etc.
1357 	 */
1358 	for_each_port(sc, i) {
1359 		struct port_info *pi;
1360 
1361 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1362 		sc->port[i] = pi;
1363 
1364 		/* These must be set before t4_port_init */
1365 		pi->adapter = sc;
1366 		pi->port_id = i;
1367 		/*
1368 		 * XXX: vi[0] is special so we can't delay this allocation until
1369 		 * pi->nvi's final value is known.
1370 		 */
1371 		pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1372 		    M_ZERO | M_WAITOK);
1373 
1374 		/*
1375 		 * Allocate the "main" VI and initialize parameters
1376 		 * like mac addr.
1377 		 */
1378 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1379 		if (rc != 0) {
1380 			device_printf(dev, "unable to initialize port %d: %d\n",
1381 			    i, rc);
1382 			free(pi->vi, M_CXGBE);
1383 			free(pi, M_CXGBE);
1384 			sc->port[i] = NULL;
1385 			goto done;
1386 		}
1387 
1388 		if (is_bt(pi->port_type))
1389 			setbit(&sc->bt_map, pi->tx_chan);
1390 		else
1391 			MPASS(!isset(&sc->bt_map, pi->tx_chan));
1392 
1393 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1394 		    device_get_nameunit(dev), i);
1395 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1396 		sc->chan_map[pi->tx_chan] = i;
1397 
1398 		/*
1399 		 * The MPS counter for FCS errors doesn't work correctly on the
1400 		 * T6 so we use the MAC counter here.  Which MAC is in use
1401 		 * depends on the link settings which will be known when the
1402 		 * link comes up.
1403 		 */
1404 		if (is_t6(sc))
1405 			pi->fcs_reg = -1;
1406 		else {
1407 			pi->fcs_reg = t4_port_reg(sc, pi->tx_chan,
1408 			    A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1409 		}
1410 		pi->fcs_base = 0;
1411 
1412 		/* All VIs on this port share this media. */
1413 		ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1414 		    cxgbe_media_status);
1415 
1416 		PORT_LOCK(pi);
1417 		init_link_config(pi);
1418 		fixup_link_config(pi);
1419 		build_medialist(pi);
1420 		if (fixed_ifmedia(pi))
1421 			pi->flags |= FIXED_IFMEDIA;
1422 		PORT_UNLOCK(pi);
1423 
1424 		pi->dev = device_add_child(dev, sc->names->ifnet_name,
1425 		    t4_ifnet_unit(sc, pi));
1426 		if (pi->dev == NULL) {
1427 			device_printf(dev,
1428 			    "failed to add device for port %d.\n", i);
1429 			rc = ENXIO;
1430 			goto done;
1431 		}
1432 		pi->vi[0].dev = pi->dev;
1433 		device_set_softc(pi->dev, pi);
1434 	}
1435 
1436 	/*
1437 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1438 	 */
1439 	nports = sc->params.nports;
1440 	rc = cfg_itype_and_nqueues(sc, &iaq);
1441 	if (rc != 0)
1442 		goto done; /* error message displayed already */
1443 
1444 	num_vis = iaq.num_vis;
1445 	sc->intr_type = iaq.intr_type;
1446 	sc->intr_count = iaq.nirq;
1447 
1448 	s = &sc->sge;
1449 	s->nrxq = nports * iaq.nrxq;
1450 	s->ntxq = nports * iaq.ntxq;
1451 	if (num_vis > 1) {
1452 		s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1453 		s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1454 	}
1455 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
1456 	s->neq += nports;		/* ctrl queues: 1 per port */
1457 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
1458 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1459 	if (is_offload(sc) || is_ethoffload(sc)) {
1460 		s->nofldtxq = nports * iaq.nofldtxq;
1461 		if (num_vis > 1)
1462 			s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1463 		s->neq += s->nofldtxq;
1464 
1465 		s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1466 		    M_CXGBE, M_ZERO | M_WAITOK);
1467 	}
1468 #endif
1469 #ifdef TCP_OFFLOAD
1470 	if (is_offload(sc)) {
1471 		s->nofldrxq = nports * iaq.nofldrxq;
1472 		if (num_vis > 1)
1473 			s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1474 		s->neq += s->nofldrxq;	/* free list */
1475 		s->niq += s->nofldrxq;
1476 
1477 		s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1478 		    M_CXGBE, M_ZERO | M_WAITOK);
1479 	}
1480 #endif
1481 #ifdef DEV_NETMAP
1482 	s->nnmrxq = 0;
1483 	s->nnmtxq = 0;
1484 	if (t4_native_netmap & NN_MAIN_VI) {
1485 		s->nnmrxq += nports * iaq.nnmrxq;
1486 		s->nnmtxq += nports * iaq.nnmtxq;
1487 	}
1488 	if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1489 		s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1490 		s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1491 	}
1492 	s->neq += s->nnmtxq + s->nnmrxq;
1493 	s->niq += s->nnmrxq;
1494 
1495 	s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1496 	    M_CXGBE, M_ZERO | M_WAITOK);
1497 	s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1498 	    M_CXGBE, M_ZERO | M_WAITOK);
1499 #endif
1500 	MPASS(s->niq <= s->iqmap_sz);
1501 	MPASS(s->neq <= s->eqmap_sz);
1502 
1503 	s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1504 	    M_ZERO | M_WAITOK);
1505 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1506 	    M_ZERO | M_WAITOK);
1507 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1508 	    M_ZERO | M_WAITOK);
1509 	s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1510 	    M_ZERO | M_WAITOK);
1511 	s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1512 	    M_ZERO | M_WAITOK);
1513 
1514 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1515 	    M_ZERO | M_WAITOK);
1516 
1517 	t4_init_l2t(sc, M_WAITOK);
1518 	t4_init_smt(sc, M_WAITOK);
1519 	t4_init_tx_sched(sc);
1520 	t4_init_atid_table(sc);
1521 #ifdef RATELIMIT
1522 	t4_init_etid_table(sc);
1523 #endif
1524 #ifdef INET6
1525 	t4_init_clip_table(sc);
1526 #endif
1527 	if (sc->vres.key.size != 0)
1528 		sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1529 		    sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1530 
1531 	/*
1532 	 * Second pass over the ports.  This time we know the number of rx and
1533 	 * tx queues that each port should get.
1534 	 */
1535 	rqidx = tqidx = 0;
1536 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1537 	ofld_tqidx = 0;
1538 #endif
1539 #ifdef TCP_OFFLOAD
1540 	ofld_rqidx = 0;
1541 #endif
1542 #ifdef DEV_NETMAP
1543 	nm_rqidx = nm_tqidx = 0;
1544 #endif
1545 	for_each_port(sc, i) {
1546 		struct port_info *pi = sc->port[i];
1547 		struct vi_info *vi;
1548 
1549 		if (pi == NULL)
1550 			continue;
1551 
1552 		pi->nvi = num_vis;
1553 		for_each_vi(pi, j, vi) {
1554 			vi->pi = pi;
1555 			vi->adapter = sc;
1556 			vi->first_intr = -1;
1557 			vi->qsize_rxq = t4_qsize_rxq;
1558 			vi->qsize_txq = t4_qsize_txq;
1559 
1560 			vi->first_rxq = rqidx;
1561 			vi->first_txq = tqidx;
1562 			vi->tmr_idx = t4_tmr_idx;
1563 			vi->pktc_idx = t4_pktc_idx;
1564 			vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1565 			vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1566 
1567 			rqidx += vi->nrxq;
1568 			tqidx += vi->ntxq;
1569 
1570 			if (j == 0 && vi->ntxq > 1)
1571 				vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1572 			else
1573 				vi->rsrv_noflowq = 0;
1574 
1575 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1576 			vi->first_ofld_txq = ofld_tqidx;
1577 			vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1578 			ofld_tqidx += vi->nofldtxq;
1579 #endif
1580 #ifdef TCP_OFFLOAD
1581 			vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1582 			vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1583 			vi->first_ofld_rxq = ofld_rqidx;
1584 			vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1585 
1586 			ofld_rqidx += vi->nofldrxq;
1587 #endif
1588 #ifdef DEV_NETMAP
1589 			vi->first_nm_rxq = nm_rqidx;
1590 			vi->first_nm_txq = nm_tqidx;
1591 			if (j == 0) {
1592 				vi->nnmrxq = iaq.nnmrxq;
1593 				vi->nnmtxq = iaq.nnmtxq;
1594 			} else {
1595 				vi->nnmrxq = iaq.nnmrxq_vi;
1596 				vi->nnmtxq = iaq.nnmtxq_vi;
1597 			}
1598 			nm_rqidx += vi->nnmrxq;
1599 			nm_tqidx += vi->nnmtxq;
1600 #endif
1601 		}
1602 	}
1603 
1604 	rc = t4_setup_intr_handlers(sc);
1605 	if (rc != 0) {
1606 		device_printf(dev,
1607 		    "failed to setup interrupt handlers: %d\n", rc);
1608 		goto done;
1609 	}
1610 
1611 	rc = bus_generic_probe(dev);
1612 	if (rc != 0) {
1613 		device_printf(dev, "failed to probe child drivers: %d\n", rc);
1614 		goto done;
1615 	}
1616 
1617 	/*
1618 	 * Ensure thread-safe mailbox access (in debug builds).
1619 	 *
1620 	 * So far this was the only thread accessing the mailbox but various
1621 	 * ifnets and sysctls are about to be created and their handlers/ioctls
1622 	 * will access the mailbox from different threads.
1623 	 */
1624 	sc->flags |= CHK_MBOX_ACCESS;
1625 
1626 	rc = bus_generic_attach(dev);
1627 	if (rc != 0) {
1628 		device_printf(dev,
1629 		    "failed to attach all child ports: %d\n", rc);
1630 		goto done;
1631 	}
1632 	t4_calibration_start(sc);
1633 
1634 	device_printf(dev,
1635 	    "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1636 	    sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1637 	    sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1638 	    (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1639 	    sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1640 
1641 	t4_set_desc(sc);
1642 
1643 	notify_siblings(dev, 0);
1644 
1645 done:
1646 	if (rc != 0 && sc->cdev) {
1647 		/* cdev was created and so cxgbetool works; recover that way. */
1648 		device_printf(dev,
1649 		    "error during attach, adapter is now in recovery mode.\n");
1650 		rc = 0;
1651 	}
1652 
1653 	if (rc != 0)
1654 		t4_detach_common(dev);
1655 	else
1656 		t4_sysctls(sc);
1657 
1658 	return (rc);
1659 }
1660 
1661 static int
1662 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1663 {
1664 	struct adapter *sc;
1665 	struct port_info *pi;
1666 	int i;
1667 
1668 	sc = device_get_softc(bus);
1669 	for_each_port(sc, i) {
1670 		pi = sc->port[i];
1671 		if (pi != NULL && pi->dev == dev) {
1672 			sbuf_printf(sb, "port=%d", pi->port_id);
1673 			break;
1674 		}
1675 	}
1676 	return (0);
1677 }
1678 
1679 static int
1680 t4_ready(device_t dev)
1681 {
1682 	struct adapter *sc;
1683 
1684 	sc = device_get_softc(dev);
1685 	if (sc->flags & FW_OK)
1686 		return (0);
1687 	return (ENXIO);
1688 }
1689 
1690 static int
1691 t4_read_port_device(device_t dev, int port, device_t *child)
1692 {
1693 	struct adapter *sc;
1694 	struct port_info *pi;
1695 
1696 	sc = device_get_softc(dev);
1697 	if (port < 0 || port >= MAX_NPORTS)
1698 		return (EINVAL);
1699 	pi = sc->port[port];
1700 	if (pi == NULL || pi->dev == NULL)
1701 		return (ENXIO);
1702 	*child = pi->dev;
1703 	return (0);
1704 }
1705 
1706 static int
1707 notify_siblings(device_t dev, int detaching)
1708 {
1709 	device_t sibling;
1710 	int error, i;
1711 
1712 	error = 0;
1713 	for (i = 0; i < PCI_FUNCMAX; i++) {
1714 		if (i == pci_get_function(dev))
1715 			continue;
1716 		sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1717 		    pci_get_slot(dev), i);
1718 		if (sibling == NULL || !device_is_attached(sibling))
1719 			continue;
1720 		if (detaching)
1721 			error = T4_DETACH_CHILD(sibling);
1722 		else
1723 			(void)T4_ATTACH_CHILD(sibling);
1724 		if (error)
1725 			break;
1726 	}
1727 	return (error);
1728 }
1729 
1730 /*
1731  * Idempotent
1732  */
1733 static int
1734 t4_detach(device_t dev)
1735 {
1736 	int rc;
1737 
1738 	rc = notify_siblings(dev, 1);
1739 	if (rc) {
1740 		device_printf(dev,
1741 		    "failed to detach sibling devices: %d\n", rc);
1742 		return (rc);
1743 	}
1744 
1745 	return (t4_detach_common(dev));
1746 }
1747 
1748 int
1749 t4_detach_common(device_t dev)
1750 {
1751 	struct adapter *sc;
1752 	struct port_info *pi;
1753 	int i, rc;
1754 
1755 	sc = device_get_softc(dev);
1756 
1757 #ifdef TCP_OFFLOAD
1758 	rc = t4_deactivate_all_uld(sc);
1759 	if (rc) {
1760 		device_printf(dev,
1761 		    "failed to detach upper layer drivers: %d\n", rc);
1762 		return (rc);
1763 	}
1764 #endif
1765 
1766 	if (sc->cdev) {
1767 		destroy_dev(sc->cdev);
1768 		sc->cdev = NULL;
1769 	}
1770 
1771 	sx_xlock(&t4_list_lock);
1772 	SLIST_REMOVE(&t4_list, sc, adapter, link);
1773 	sx_xunlock(&t4_list_lock);
1774 
1775 	sc->flags &= ~CHK_MBOX_ACCESS;
1776 	if (sc->flags & FULL_INIT_DONE) {
1777 		if (!(sc->flags & IS_VF))
1778 			t4_intr_disable(sc);
1779 	}
1780 
1781 	if (device_is_attached(dev)) {
1782 		rc = bus_generic_detach(dev);
1783 		if (rc) {
1784 			device_printf(dev,
1785 			    "failed to detach child devices: %d\n", rc);
1786 			return (rc);
1787 		}
1788 	}
1789 
1790 	for (i = 0; i < sc->intr_count; i++)
1791 		t4_free_irq(sc, &sc->irq[i]);
1792 
1793 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1794 		t4_free_tx_sched(sc);
1795 
1796 	for (i = 0; i < MAX_NPORTS; i++) {
1797 		pi = sc->port[i];
1798 		if (pi) {
1799 			t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1800 			if (pi->dev)
1801 				device_delete_child(dev, pi->dev);
1802 
1803 			mtx_destroy(&pi->pi_lock);
1804 			free(pi->vi, M_CXGBE);
1805 			free(pi, M_CXGBE);
1806 		}
1807 	}
1808 	callout_stop(&sc->cal_callout);
1809 	callout_drain(&sc->cal_callout);
1810 	device_delete_children(dev);
1811 	sysctl_ctx_free(&sc->ctx);
1812 	adapter_full_uninit(sc);
1813 
1814 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1815 		t4_fw_bye(sc, sc->mbox);
1816 
1817 	if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1818 		pci_release_msi(dev);
1819 
1820 	if (sc->regs_res)
1821 		bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1822 		    sc->regs_res);
1823 
1824 	if (sc->udbs_res)
1825 		bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1826 		    sc->udbs_res);
1827 
1828 	if (sc->msix_res)
1829 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1830 		    sc->msix_res);
1831 
1832 	if (sc->l2t)
1833 		t4_free_l2t(sc->l2t);
1834 	if (sc->smt)
1835 		t4_free_smt(sc->smt);
1836 	t4_free_atid_table(sc);
1837 #ifdef RATELIMIT
1838 	t4_free_etid_table(sc);
1839 #endif
1840 	if (sc->key_map)
1841 		vmem_destroy(sc->key_map);
1842 #ifdef INET6
1843 	t4_destroy_clip_table(sc);
1844 #endif
1845 
1846 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1847 	free(sc->sge.ofld_txq, M_CXGBE);
1848 #endif
1849 #ifdef TCP_OFFLOAD
1850 	free(sc->sge.ofld_rxq, M_CXGBE);
1851 #endif
1852 #ifdef DEV_NETMAP
1853 	free(sc->sge.nm_rxq, M_CXGBE);
1854 	free(sc->sge.nm_txq, M_CXGBE);
1855 #endif
1856 	free(sc->irq, M_CXGBE);
1857 	free(sc->sge.rxq, M_CXGBE);
1858 	free(sc->sge.txq, M_CXGBE);
1859 	free(sc->sge.ctrlq, M_CXGBE);
1860 	free(sc->sge.iqmap, M_CXGBE);
1861 	free(sc->sge.eqmap, M_CXGBE);
1862 	free(sc->tids.ftid_tab, M_CXGBE);
1863 	free(sc->tids.hpftid_tab, M_CXGBE);
1864 	free_hftid_hash(&sc->tids);
1865 	free(sc->tids.tid_tab, M_CXGBE);
1866 	t4_destroy_dma_tag(sc);
1867 
1868 	callout_drain(&sc->ktls_tick);
1869 	callout_drain(&sc->sfl_callout);
1870 	if (mtx_initialized(&sc->tids.ftid_lock)) {
1871 		mtx_destroy(&sc->tids.ftid_lock);
1872 		cv_destroy(&sc->tids.ftid_cv);
1873 	}
1874 	if (mtx_initialized(&sc->tids.atid_lock))
1875 		mtx_destroy(&sc->tids.atid_lock);
1876 	if (mtx_initialized(&sc->ifp_lock))
1877 		mtx_destroy(&sc->ifp_lock);
1878 
1879 	if (rw_initialized(&sc->policy_lock)) {
1880 		rw_destroy(&sc->policy_lock);
1881 #ifdef TCP_OFFLOAD
1882 		if (sc->policy != NULL)
1883 			free_offload_policy(sc->policy);
1884 #endif
1885 	}
1886 
1887 	for (i = 0; i < NUM_MEMWIN; i++) {
1888 		struct memwin *mw = &sc->memwin[i];
1889 
1890 		if (rw_initialized(&mw->mw_lock))
1891 			rw_destroy(&mw->mw_lock);
1892 	}
1893 
1894 	mtx_destroy(&sc->sfl_lock);
1895 	mtx_destroy(&sc->reg_lock);
1896 	mtx_destroy(&sc->sc_lock);
1897 
1898 	bzero(sc, sizeof(*sc));
1899 
1900 	return (0);
1901 }
1902 
1903 static inline bool
1904 ok_to_reset(struct adapter *sc)
1905 {
1906 	struct tid_info *t = &sc->tids;
1907 	struct port_info *pi;
1908 	struct vi_info *vi;
1909 	int i, j;
1910 	int caps = IFCAP_TOE | IFCAP_NETMAP | IFCAP_TXRTLMT;
1911 
1912 	if (is_t6(sc))
1913 		caps |= IFCAP_TXTLS;
1914 
1915 	ASSERT_SYNCHRONIZED_OP(sc);
1916 	MPASS(!(sc->flags & IS_VF));
1917 
1918 	for_each_port(sc, i) {
1919 		pi = sc->port[i];
1920 		for_each_vi(pi, j, vi) {
1921 			if (if_getcapenable(vi->ifp) & caps)
1922 				return (false);
1923 		}
1924 	}
1925 
1926 	if (atomic_load_int(&t->tids_in_use) > 0)
1927 		return (false);
1928 	if (atomic_load_int(&t->stids_in_use) > 0)
1929 		return (false);
1930 	if (atomic_load_int(&t->atids_in_use) > 0)
1931 		return (false);
1932 	if (atomic_load_int(&t->ftids_in_use) > 0)
1933 		return (false);
1934 	if (atomic_load_int(&t->hpftids_in_use) > 0)
1935 		return (false);
1936 	if (atomic_load_int(&t->etids_in_use) > 0)
1937 		return (false);
1938 
1939 	return (true);
1940 }
1941 
1942 static inline int
1943 stop_adapter(struct adapter *sc)
1944 {
1945 	if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED)))
1946 		return (1);		/* Already stopped. */
1947 	return (t4_shutdown_adapter(sc));
1948 }
1949 
1950 static int
1951 t4_suspend(device_t dev)
1952 {
1953 	struct adapter *sc = device_get_softc(dev);
1954 	struct port_info *pi;
1955 	struct vi_info *vi;
1956 	if_t ifp;
1957 	struct sge_rxq *rxq;
1958 	struct sge_txq *txq;
1959 	struct sge_wrq *wrq;
1960 #ifdef TCP_OFFLOAD
1961 	struct sge_ofld_rxq *ofld_rxq;
1962 #endif
1963 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1964 	struct sge_ofld_txq *ofld_txq;
1965 #endif
1966 	int rc, i, j, k;
1967 
1968 	CH_ALERT(sc, "suspend requested\n");
1969 
1970 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus");
1971 	if (rc != 0)
1972 		return (ENXIO);
1973 
1974 	/* XXX: Can the kernel call suspend repeatedly without resume? */
1975 	MPASS(!hw_off_limits(sc));
1976 
1977 	if (!ok_to_reset(sc)) {
1978 		/* XXX: should list what resource is preventing suspend. */
1979 		CH_ERR(sc, "not safe to suspend.\n");
1980 		rc = EBUSY;
1981 		goto done;
1982 	}
1983 
1984 	/* No more DMA or interrupts. */
1985 	stop_adapter(sc);
1986 
1987 	/* Quiesce all activity. */
1988 	for_each_port(sc, i) {
1989 		pi = sc->port[i];
1990 		pi->vxlan_tcam_entry = false;
1991 
1992 		PORT_LOCK(pi);
1993 		if (pi->up_vis > 0) {
1994 			/*
1995 			 * t4_shutdown_adapter has already shut down all the
1996 			 * PHYs but it also disables interrupts and DMA so there
1997 			 * won't be a link interrupt.  So we update the state
1998 			 * manually and inform the kernel.
1999 			 */
2000 			pi->link_cfg.link_ok = false;
2001 			t4_os_link_changed(pi);
2002 		}
2003 		PORT_UNLOCK(pi);
2004 
2005 		for_each_vi(pi, j, vi) {
2006 			vi->xact_addr_filt = -1;
2007 			mtx_lock(&vi->tick_mtx);
2008 			vi->flags |= VI_SKIP_STATS;
2009 			mtx_unlock(&vi->tick_mtx);
2010 			if (!(vi->flags & VI_INIT_DONE))
2011 				continue;
2012 
2013 			ifp = vi->ifp;
2014 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2015 				mtx_lock(&vi->tick_mtx);
2016 				callout_stop(&vi->tick);
2017 				mtx_unlock(&vi->tick_mtx);
2018 				callout_drain(&vi->tick);
2019 			}
2020 
2021 			/*
2022 			 * Note that the HW is not available.
2023 			 */
2024 			for_each_txq(vi, k, txq) {
2025 				TXQ_LOCK(txq);
2026 				txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2027 				TXQ_UNLOCK(txq);
2028 			}
2029 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2030 			for_each_ofld_txq(vi, k, ofld_txq) {
2031 				ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2032 			}
2033 #endif
2034 			for_each_rxq(vi, k, rxq) {
2035 				rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2036 			}
2037 #if defined(TCP_OFFLOAD)
2038 			for_each_ofld_rxq(vi, k, ofld_rxq) {
2039 				ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2040 			}
2041 #endif
2042 
2043 			quiesce_vi(vi);
2044 		}
2045 
2046 		if (sc->flags & FULL_INIT_DONE) {
2047 			/* Control queue */
2048 			wrq = &sc->sge.ctrlq[i];
2049 			wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2050 			quiesce_wrq(wrq);
2051 		}
2052 	}
2053 	if (sc->flags & FULL_INIT_DONE) {
2054 		/* Firmware event queue */
2055 		sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2056 		quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2057 	}
2058 
2059 	/* Stop calibration */
2060 	callout_stop(&sc->cal_callout);
2061 	callout_drain(&sc->cal_callout);
2062 
2063 	/* Mark the adapter totally off limits. */
2064 	mtx_lock(&sc->reg_lock);
2065 	atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
2066 	sc->flags &= ~(FW_OK | MASTER_PF);
2067 	sc->reset_thread = NULL;
2068 	mtx_unlock(&sc->reg_lock);
2069 
2070 	if (t4_clock_gate_on_suspend) {
2071 		t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2072 		    F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2073 		    F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2074 	}
2075 
2076 	CH_ALERT(sc, "suspend completed.\n");
2077 done:
2078 	end_synchronized_op(sc, 0);
2079 	return (rc);
2080 }
2081 
2082 struct adapter_pre_reset_state {
2083 	u_int flags;
2084 	uint16_t nbmcaps;
2085 	uint16_t linkcaps;
2086 	uint16_t switchcaps;
2087 	uint16_t niccaps;
2088 	uint16_t toecaps;
2089 	uint16_t rdmacaps;
2090 	uint16_t cryptocaps;
2091 	uint16_t iscsicaps;
2092 	uint16_t fcoecaps;
2093 
2094 	u_int cfcsum;
2095 	char cfg_file[32];
2096 
2097 	struct adapter_params params;
2098 	struct t4_virt_res vres;
2099 	struct tid_info tids;
2100 	struct sge sge;
2101 
2102 	int rawf_base;
2103 	int nrawf;
2104 
2105 };
2106 
2107 static void
2108 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2109 {
2110 
2111 	ASSERT_SYNCHRONIZED_OP(sc);
2112 
2113 	o->flags = sc->flags;
2114 
2115 	o->nbmcaps =  sc->nbmcaps;
2116 	o->linkcaps = sc->linkcaps;
2117 	o->switchcaps = sc->switchcaps;
2118 	o->niccaps = sc->niccaps;
2119 	o->toecaps = sc->toecaps;
2120 	o->rdmacaps = sc->rdmacaps;
2121 	o->cryptocaps = sc->cryptocaps;
2122 	o->iscsicaps = sc->iscsicaps;
2123 	o->fcoecaps = sc->fcoecaps;
2124 
2125 	o->cfcsum = sc->cfcsum;
2126 	MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2127 	memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2128 
2129 	o->params = sc->params;
2130 	o->vres = sc->vres;
2131 	o->tids = sc->tids;
2132 	o->sge = sc->sge;
2133 
2134 	o->rawf_base = sc->rawf_base;
2135 	o->nrawf = sc->nrawf;
2136 }
2137 
2138 static int
2139 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2140 {
2141 	int rc = 0;
2142 
2143 	ASSERT_SYNCHRONIZED_OP(sc);
2144 
2145 	/* Capabilities */
2146 #define COMPARE_CAPS(c) do { \
2147 	if (o->c##caps != sc->c##caps) { \
2148 		CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2149 		    sc->c##caps); \
2150 		rc = EINVAL; \
2151 	} \
2152 } while (0)
2153 	COMPARE_CAPS(nbm);
2154 	COMPARE_CAPS(link);
2155 	COMPARE_CAPS(switch);
2156 	COMPARE_CAPS(nic);
2157 	COMPARE_CAPS(toe);
2158 	COMPARE_CAPS(rdma);
2159 	COMPARE_CAPS(crypto);
2160 	COMPARE_CAPS(iscsi);
2161 	COMPARE_CAPS(fcoe);
2162 #undef COMPARE_CAPS
2163 
2164 	/* Firmware config file */
2165 	if (o->cfcsum != sc->cfcsum) {
2166 		CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2167 		    o->cfcsum, sc->cfg_file, sc->cfcsum);
2168 		rc = EINVAL;
2169 	}
2170 
2171 #define COMPARE_PARAM(p, name) do { \
2172 	if (o->p != sc->p) { \
2173 		CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2174 		rc = EINVAL; \
2175 	} \
2176 } while (0)
2177 	COMPARE_PARAM(sge.iq_start, iq_start);
2178 	COMPARE_PARAM(sge.eq_start, eq_start);
2179 	COMPARE_PARAM(tids.ftid_base, ftid_base);
2180 	COMPARE_PARAM(tids.ftid_end, ftid_end);
2181 	COMPARE_PARAM(tids.nftids, nftids);
2182 	COMPARE_PARAM(vres.l2t.start, l2t_start);
2183 	COMPARE_PARAM(vres.l2t.size, l2t_size);
2184 	COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2185 	COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2186 	COMPARE_PARAM(tids.tid_base, tid_base);
2187 	COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2188 	COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2189 	COMPARE_PARAM(tids.nhpftids, nhpftids);
2190 	COMPARE_PARAM(rawf_base, rawf_base);
2191 	COMPARE_PARAM(nrawf, nrawf);
2192 	COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2193 	COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2194 	COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2195 	COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2196 	COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2197 	COMPARE_PARAM(tids.ntids, ntids);
2198 	COMPARE_PARAM(tids.etid_base, etid_base);
2199 	COMPARE_PARAM(tids.etid_end, etid_end);
2200 	COMPARE_PARAM(tids.netids, netids);
2201 	COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2202 	COMPARE_PARAM(params.ethoffload, ethoffload);
2203 	COMPARE_PARAM(tids.natids, natids);
2204 	COMPARE_PARAM(tids.stid_base, stid_base);
2205 	COMPARE_PARAM(vres.ddp.start, ddp_start);
2206 	COMPARE_PARAM(vres.ddp.size, ddp_size);
2207 	COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2208 	COMPARE_PARAM(vres.stag.start, stag_start);
2209 	COMPARE_PARAM(vres.stag.size, stag_size);
2210 	COMPARE_PARAM(vres.rq.start, rq_start);
2211 	COMPARE_PARAM(vres.rq.size, rq_size);
2212 	COMPARE_PARAM(vres.pbl.start, pbl_start);
2213 	COMPARE_PARAM(vres.pbl.size, pbl_size);
2214 	COMPARE_PARAM(vres.qp.start, qp_start);
2215 	COMPARE_PARAM(vres.qp.size, qp_size);
2216 	COMPARE_PARAM(vres.cq.start, cq_start);
2217 	COMPARE_PARAM(vres.cq.size, cq_size);
2218 	COMPARE_PARAM(vres.ocq.start, ocq_start);
2219 	COMPARE_PARAM(vres.ocq.size, ocq_size);
2220 	COMPARE_PARAM(vres.srq.start, srq_start);
2221 	COMPARE_PARAM(vres.srq.size, srq_size);
2222 	COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2223 	COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2224 	COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2225 	COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2226 	COMPARE_PARAM(vres.key.start, key_start);
2227 	COMPARE_PARAM(vres.key.size, key_size);
2228 #undef COMPARE_PARAM
2229 
2230 	return (rc);
2231 }
2232 
2233 static int
2234 t4_resume(device_t dev)
2235 {
2236 	struct adapter *sc = device_get_softc(dev);
2237 	struct adapter_pre_reset_state *old_state = NULL;
2238 	struct port_info *pi;
2239 	struct vi_info *vi;
2240 	if_t ifp;
2241 	struct sge_txq *txq;
2242 	int rc, i, j, k;
2243 
2244 	CH_ALERT(sc, "resume requested.\n");
2245 
2246 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res");
2247 	if (rc != 0)
2248 		return (ENXIO);
2249 	MPASS(hw_off_limits(sc));
2250 	MPASS((sc->flags & FW_OK) == 0);
2251 	MPASS((sc->flags & MASTER_PF) == 0);
2252 	MPASS(sc->reset_thread == NULL);
2253 	sc->reset_thread = curthread;
2254 
2255 	/* Register access is expected to work by the time we're here. */
2256 	if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) {
2257 		CH_ERR(sc, "%s: can't read device registers\n", __func__);
2258 		rc = ENXIO;
2259 		goto done;
2260 	}
2261 
2262 	/* Note that HW_OFF_LIMITS is cleared a bit later. */
2263 	atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR | ADAP_STOPPED);
2264 
2265 	/* Restore memory window. */
2266 	setup_memwin(sc);
2267 
2268 	/* Go no further if recovery mode has been requested. */
2269 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2270 		CH_ALERT(sc, "recovery mode on resume.\n");
2271 		rc = 0;
2272 		mtx_lock(&sc->reg_lock);
2273 		atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2274 		mtx_unlock(&sc->reg_lock);
2275 		goto done;
2276 	}
2277 
2278 	old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2279 	save_caps_and_params(sc, old_state);
2280 
2281 	/* Reestablish contact with firmware and become the primary PF. */
2282 	rc = contact_firmware(sc);
2283 	if (rc != 0)
2284 		goto done; /* error message displayed already */
2285 	MPASS(sc->flags & FW_OK);
2286 
2287 	if (sc->flags & MASTER_PF) {
2288 		rc = partition_resources(sc);
2289 		if (rc != 0)
2290 			goto done; /* error message displayed already */
2291 	}
2292 
2293 	rc = get_params__post_init(sc);
2294 	if (rc != 0)
2295 		goto done; /* error message displayed already */
2296 
2297 	rc = set_params__post_init(sc);
2298 	if (rc != 0)
2299 		goto done; /* error message displayed already */
2300 
2301 	rc = compare_caps_and_params(sc, old_state);
2302 	if (rc != 0)
2303 		goto done; /* error message displayed already */
2304 
2305 	for_each_port(sc, i) {
2306 		pi = sc->port[i];
2307 		MPASS(pi != NULL);
2308 		MPASS(pi->vi != NULL);
2309 		MPASS(pi->vi[0].dev == pi->dev);
2310 
2311 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2312 		if (rc != 0) {
2313 			CH_ERR(sc,
2314 			    "failed to re-initialize port %d: %d\n", i, rc);
2315 			goto done;
2316 		}
2317 		MPASS(sc->chan_map[pi->tx_chan] == i);
2318 
2319 		PORT_LOCK(pi);
2320 		fixup_link_config(pi);
2321 		build_medialist(pi);
2322 		PORT_UNLOCK(pi);
2323 		for_each_vi(pi, j, vi) {
2324 			if (IS_MAIN_VI(vi))
2325 				continue;
2326 			rc = alloc_extra_vi(sc, pi, vi);
2327 			if (rc != 0) {
2328 				CH_ERR(vi,
2329 				    "failed to re-allocate extra VI: %d\n", rc);
2330 				goto done;
2331 			}
2332 		}
2333 	}
2334 
2335 	/*
2336 	 * Interrupts and queues are about to be enabled and other threads will
2337 	 * want to access the hardware too.  It is safe to do so.  Note that
2338 	 * this thread is still in the middle of a synchronized_op.
2339 	 */
2340 	mtx_lock(&sc->reg_lock);
2341 	atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2342 	mtx_unlock(&sc->reg_lock);
2343 
2344 	if (sc->flags & FULL_INIT_DONE) {
2345 		rc = adapter_full_init(sc);
2346 		if (rc != 0) {
2347 			CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2348 			goto done;
2349 		}
2350 
2351 		if (sc->vxlan_refcount > 0)
2352 			enable_vxlan_rx(sc);
2353 
2354 		for_each_port(sc, i) {
2355 			pi = sc->port[i];
2356 			for_each_vi(pi, j, vi) {
2357 				mtx_lock(&vi->tick_mtx);
2358 				vi->flags &= ~VI_SKIP_STATS;
2359 				mtx_unlock(&vi->tick_mtx);
2360 				if (!(vi->flags & VI_INIT_DONE))
2361 					continue;
2362 				rc = vi_full_init(vi);
2363 				if (rc != 0) {
2364 					CH_ERR(vi, "failed to re-initialize "
2365 					    "interface: %d\n", rc);
2366 					goto done;
2367 				}
2368 
2369 				ifp = vi->ifp;
2370 				if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2371 					continue;
2372 				/*
2373 				 * Note that we do not setup multicast addresses
2374 				 * in the first pass.  This ensures that the
2375 				 * unicast DMACs for all VIs on all ports get an
2376 				 * MPS TCAM entry.
2377 				 */
2378 				rc = update_mac_settings(ifp, XGMAC_ALL &
2379 				    ~XGMAC_MCADDRS);
2380 				if (rc != 0) {
2381 					CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2382 					goto done;
2383 				}
2384 				rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2385 				    true);
2386 				if (rc != 0) {
2387 					CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2388 					goto done;
2389 				}
2390 				for_each_txq(vi, k, txq) {
2391 					TXQ_LOCK(txq);
2392 					txq->eq.flags |= EQ_ENABLED;
2393 					TXQ_UNLOCK(txq);
2394 				}
2395 				mtx_lock(&vi->tick_mtx);
2396 				callout_schedule(&vi->tick, hz);
2397 				mtx_unlock(&vi->tick_mtx);
2398 			}
2399 			PORT_LOCK(pi);
2400 			if (pi->up_vis > 0) {
2401 				t4_update_port_info(pi);
2402 				fixup_link_config(pi);
2403 				build_medialist(pi);
2404 				apply_link_config(pi);
2405 				if (pi->link_cfg.link_ok)
2406 					t4_os_link_changed(pi);
2407 			}
2408 			PORT_UNLOCK(pi);
2409 		}
2410 
2411 		/* Now reprogram the L2 multicast addresses. */
2412 		for_each_port(sc, i) {
2413 			pi = sc->port[i];
2414 			for_each_vi(pi, j, vi) {
2415 				if (!(vi->flags & VI_INIT_DONE))
2416 					continue;
2417 				ifp = vi->ifp;
2418 				if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2419 					continue;
2420 				rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2421 				if (rc != 0) {
2422 					CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2423 					rc = 0;	/* carry on */
2424 				}
2425 			}
2426 		}
2427 	}
2428 
2429 	/* Reset all calibration */
2430 	t4_calibration_start(sc);
2431 
2432 done:
2433 	if (rc == 0) {
2434 		sc->incarnation++;
2435 		CH_ALERT(sc, "resume completed.\n");
2436 	}
2437 	end_synchronized_op(sc, 0);
2438 	free(old_state, M_CXGBE);
2439 	return (rc);
2440 }
2441 
2442 static int
2443 t4_reset_prepare(device_t dev, device_t child)
2444 {
2445 	struct adapter *sc = device_get_softc(dev);
2446 
2447 	CH_ALERT(sc, "reset_prepare.\n");
2448 	return (0);
2449 }
2450 
2451 static int
2452 t4_reset_post(device_t dev, device_t child)
2453 {
2454 	struct adapter *sc = device_get_softc(dev);
2455 
2456 	CH_ALERT(sc, "reset_post.\n");
2457 	return (0);
2458 }
2459 
2460 static int
2461 reset_adapter(struct adapter *sc)
2462 {
2463 	int rc, oldinc, error_flags;
2464 
2465 	CH_ALERT(sc, "reset requested.\n");
2466 
2467 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1");
2468 	if (rc != 0)
2469 		return (EBUSY);
2470 
2471 	if (hw_off_limits(sc)) {
2472 		CH_ERR(sc, "adapter is suspended, use resume (not reset).\n");
2473 		rc = ENXIO;
2474 		goto done;
2475 	}
2476 
2477 	if (!ok_to_reset(sc)) {
2478 		/* XXX: should list what resource is preventing reset. */
2479 		CH_ERR(sc, "not safe to reset.\n");
2480 		rc = EBUSY;
2481 		goto done;
2482 	}
2483 
2484 done:
2485 	oldinc = sc->incarnation;
2486 	end_synchronized_op(sc, 0);
2487 	if (rc != 0)
2488 		return (rc);	/* Error logged already. */
2489 
2490 	atomic_add_int(&sc->num_resets, 1);
2491 	mtx_lock(&Giant);
2492 	rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0);
2493 	mtx_unlock(&Giant);
2494 	if (rc != 0)
2495 		CH_ERR(sc, "bus_reset_child failed: %d.\n", rc);
2496 	else {
2497 		rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst2");
2498 		if (rc != 0)
2499 			return (EBUSY);
2500 		error_flags = atomic_load_int(&sc->error_flags);
2501 		if (sc->incarnation > oldinc && error_flags == 0) {
2502 			CH_ALERT(sc, "bus_reset_child succeeded.\n");
2503 		} else {
2504 			CH_ERR(sc, "adapter did not reset properly, flags "
2505 			    "0x%08x, error_flags 0x%08x.\n", sc->flags,
2506 			    error_flags);
2507 			rc = ENXIO;
2508 		}
2509 		end_synchronized_op(sc, 0);
2510 	}
2511 
2512 	return (rc);
2513 }
2514 
2515 static void
2516 reset_adapter_task(void *arg, int pending)
2517 {
2518 	/* XXX: t4_async_event here? */
2519 	reset_adapter(arg);
2520 }
2521 
2522 static int
2523 cxgbe_probe(device_t dev)
2524 {
2525 	char buf[128];
2526 	struct port_info *pi = device_get_softc(dev);
2527 
2528 	snprintf(buf, sizeof(buf), "port %d", pi->port_id);
2529 	device_set_desc_copy(dev, buf);
2530 
2531 	return (BUS_PROBE_DEFAULT);
2532 }
2533 
2534 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2535     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2536     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2537     IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2538 #define T4_CAP_ENABLE (T4_CAP)
2539 
2540 static int
2541 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2542 {
2543 	if_t ifp;
2544 	struct sbuf *sb;
2545 	struct sysctl_ctx_list *ctx = &vi->ctx;
2546 	struct sysctl_oid_list *children;
2547 	struct pfil_head_args pa;
2548 	struct adapter *sc = vi->adapter;
2549 
2550 	sysctl_ctx_init(ctx);
2551 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2552 	vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2553 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2554 	vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2555 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2556 #ifdef DEV_NETMAP
2557 	vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2558 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2559 	vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2560 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2561 #endif
2562 #ifdef TCP_OFFLOAD
2563 	vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2564 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2565 #endif
2566 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2567 	vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2568 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2569 #endif
2570 
2571 	vi->xact_addr_filt = -1;
2572 	mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2573 	callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2574 	if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2575 		vi->flags |= TX_USES_VM_WR;
2576 
2577 	/* Allocate an ifnet and set it up */
2578 	ifp = if_alloc_dev(IFT_ETHER, dev);
2579 	if (ifp == NULL) {
2580 		device_printf(dev, "Cannot allocate ifnet\n");
2581 		return (ENOMEM);
2582 	}
2583 	vi->ifp = ifp;
2584 	if_setsoftc(ifp, vi);
2585 
2586 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2587 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2588 
2589 	if_setinitfn(ifp, cxgbe_init);
2590 	if_setioctlfn(ifp, cxgbe_ioctl);
2591 	if_settransmitfn(ifp, cxgbe_transmit);
2592 	if_setqflushfn(ifp, cxgbe_qflush);
2593 	if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2594 		if_setgetcounterfn(ifp, vi_get_counter);
2595 	else
2596 		if_setgetcounterfn(ifp, cxgbe_get_counter);
2597 #if defined(KERN_TLS) || defined(RATELIMIT)
2598 	if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2599 #endif
2600 #ifdef RATELIMIT
2601 	if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2602 #endif
2603 
2604 	if_setcapabilities(ifp, T4_CAP);
2605 	if_setcapenable(ifp, T4_CAP_ENABLE);
2606 	if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2607 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2608 	if (chip_id(sc) >= CHELSIO_T6) {
2609 		if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2610 		if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2611 		if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2612 		    CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2613 		    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2614 	}
2615 
2616 #ifdef TCP_OFFLOAD
2617 	if (vi->nofldrxq != 0)
2618 		if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2619 #endif
2620 #ifdef RATELIMIT
2621 	if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2622 		if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2623 		if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2624 	}
2625 #endif
2626 
2627 	if_sethwtsomax(ifp, IP_MAXPACKET);
2628 	if (vi->flags & TX_USES_VM_WR)
2629 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2630 	else
2631 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2632 #ifdef RATELIMIT
2633 	if (is_ethoffload(sc) && vi->nofldtxq != 0)
2634 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2635 #endif
2636 	if_sethwtsomaxsegsize(ifp, 65536);
2637 #ifdef KERN_TLS
2638 	if (is_ktls(sc)) {
2639 		if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2640 		if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2641 			if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2642 	}
2643 #endif
2644 
2645 	ether_ifattach(ifp, vi->hw_addr);
2646 #ifdef DEV_NETMAP
2647 	if (vi->nnmrxq != 0)
2648 		cxgbe_nm_attach(vi);
2649 #endif
2650 	sb = sbuf_new_auto();
2651 	sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2652 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2653 	switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2654 	case IFCAP_TOE:
2655 		sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2656 		break;
2657 	case IFCAP_TOE | IFCAP_TXRTLMT:
2658 		sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2659 		break;
2660 	case IFCAP_TXRTLMT:
2661 		sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2662 		break;
2663 	}
2664 #endif
2665 #ifdef TCP_OFFLOAD
2666 	if (if_getcapabilities(ifp) & IFCAP_TOE)
2667 		sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2668 #endif
2669 #ifdef DEV_NETMAP
2670 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2671 		sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2672 		    vi->nnmtxq, vi->nnmrxq);
2673 #endif
2674 	sbuf_finish(sb);
2675 	device_printf(dev, "%s\n", sbuf_data(sb));
2676 	sbuf_delete(sb);
2677 
2678 	vi_sysctls(vi);
2679 
2680 	pa.pa_version = PFIL_VERSION;
2681 	pa.pa_flags = PFIL_IN;
2682 	pa.pa_type = PFIL_TYPE_ETHERNET;
2683 	pa.pa_headname = if_name(ifp);
2684 	vi->pfil = pfil_head_register(&pa);
2685 
2686 	return (0);
2687 }
2688 
2689 static int
2690 cxgbe_attach(device_t dev)
2691 {
2692 	struct port_info *pi = device_get_softc(dev);
2693 	struct adapter *sc = pi->adapter;
2694 	struct vi_info *vi;
2695 	int i, rc;
2696 
2697 	sysctl_ctx_init(&pi->ctx);
2698 
2699 	rc = cxgbe_vi_attach(dev, &pi->vi[0]);
2700 	if (rc)
2701 		return (rc);
2702 
2703 	for_each_vi(pi, i, vi) {
2704 		if (i == 0)
2705 			continue;
2706 		vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
2707 		if (vi->dev == NULL) {
2708 			device_printf(dev, "failed to add VI %d\n", i);
2709 			continue;
2710 		}
2711 		device_set_softc(vi->dev, vi);
2712 	}
2713 
2714 	cxgbe_sysctls(pi);
2715 
2716 	bus_generic_attach(dev);
2717 
2718 	return (0);
2719 }
2720 
2721 static void
2722 cxgbe_vi_detach(struct vi_info *vi)
2723 {
2724 	if_t ifp = vi->ifp;
2725 
2726 	if (vi->pfil != NULL) {
2727 		pfil_head_unregister(vi->pfil);
2728 		vi->pfil = NULL;
2729 	}
2730 
2731 	ether_ifdetach(ifp);
2732 
2733 	/* Let detach proceed even if these fail. */
2734 #ifdef DEV_NETMAP
2735 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2736 		cxgbe_nm_detach(vi);
2737 #endif
2738 	cxgbe_uninit_synchronized(vi);
2739 	callout_drain(&vi->tick);
2740 	mtx_destroy(&vi->tick_mtx);
2741 	sysctl_ctx_free(&vi->ctx);
2742 	vi_full_uninit(vi);
2743 
2744 	if_free(vi->ifp);
2745 	vi->ifp = NULL;
2746 }
2747 
2748 static int
2749 cxgbe_detach(device_t dev)
2750 {
2751 	struct port_info *pi = device_get_softc(dev);
2752 	struct adapter *sc = pi->adapter;
2753 	int rc;
2754 
2755 	/* Detach the extra VIs first. */
2756 	rc = bus_generic_detach(dev);
2757 	if (rc)
2758 		return (rc);
2759 	device_delete_children(dev);
2760 
2761 	sysctl_ctx_free(&pi->ctx);
2762 	begin_vi_detach(sc, &pi->vi[0]);
2763 	if (pi->flags & HAS_TRACEQ) {
2764 		sc->traceq = -1;	/* cloner should not create ifnet */
2765 		t4_tracer_port_detach(sc);
2766 	}
2767 	cxgbe_vi_detach(&pi->vi[0]);
2768 	ifmedia_removeall(&pi->media);
2769 	end_vi_detach(sc, &pi->vi[0]);
2770 
2771 	return (0);
2772 }
2773 
2774 static void
2775 cxgbe_init(void *arg)
2776 {
2777 	struct vi_info *vi = arg;
2778 	struct adapter *sc = vi->adapter;
2779 
2780 	if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
2781 		return;
2782 	cxgbe_init_synchronized(vi);
2783 	end_synchronized_op(sc, 0);
2784 }
2785 
2786 static int
2787 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
2788 {
2789 	int rc = 0, mtu, flags;
2790 	struct vi_info *vi = if_getsoftc(ifp);
2791 	struct port_info *pi = vi->pi;
2792 	struct adapter *sc = pi->adapter;
2793 	struct ifreq *ifr = (struct ifreq *)data;
2794 	uint32_t mask;
2795 
2796 	switch (cmd) {
2797 	case SIOCSIFMTU:
2798 		mtu = ifr->ifr_mtu;
2799 		if (mtu < ETHERMIN || mtu > MAX_MTU)
2800 			return (EINVAL);
2801 
2802 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
2803 		if (rc)
2804 			return (rc);
2805 		if_setmtu(ifp, mtu);
2806 		if (vi->flags & VI_INIT_DONE) {
2807 			t4_update_fl_bufsize(ifp);
2808 			if (!hw_off_limits(sc) &&
2809 			    if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2810 				rc = update_mac_settings(ifp, XGMAC_MTU);
2811 		}
2812 		end_synchronized_op(sc, 0);
2813 		break;
2814 
2815 	case SIOCSIFFLAGS:
2816 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
2817 		if (rc)
2818 			return (rc);
2819 
2820 		if (hw_off_limits(sc)) {
2821 			rc = ENXIO;
2822 			goto fail;
2823 		}
2824 
2825 		if (if_getflags(ifp) & IFF_UP) {
2826 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2827 				flags = vi->if_flags;
2828 				if ((if_getflags(ifp) ^ flags) &
2829 				    (IFF_PROMISC | IFF_ALLMULTI)) {
2830 					rc = update_mac_settings(ifp,
2831 					    XGMAC_PROMISC | XGMAC_ALLMULTI);
2832 				}
2833 			} else {
2834 				rc = cxgbe_init_synchronized(vi);
2835 			}
2836 			vi->if_flags = if_getflags(ifp);
2837 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2838 			rc = cxgbe_uninit_synchronized(vi);
2839 		}
2840 		end_synchronized_op(sc, 0);
2841 		break;
2842 
2843 	case SIOCADDMULTI:
2844 	case SIOCDELMULTI:
2845 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
2846 		if (rc)
2847 			return (rc);
2848 		if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2849 			rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2850 		end_synchronized_op(sc, 0);
2851 		break;
2852 
2853 	case SIOCSIFCAP:
2854 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
2855 		if (rc)
2856 			return (rc);
2857 
2858 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2859 		if (mask & IFCAP_TXCSUM) {
2860 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2861 			if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
2862 
2863 			if (IFCAP_TSO4 & if_getcapenable(ifp) &&
2864 			    !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2865 				mask &= ~IFCAP_TSO4;
2866 				if_setcapenablebit(ifp, 0, IFCAP_TSO4);
2867 				if_printf(ifp,
2868 				    "tso4 disabled due to -txcsum.\n");
2869 			}
2870 		}
2871 		if (mask & IFCAP_TXCSUM_IPV6) {
2872 			if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
2873 			if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2874 
2875 			if (IFCAP_TSO6 & if_getcapenable(ifp) &&
2876 			    !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2877 				mask &= ~IFCAP_TSO6;
2878 				if_setcapenablebit(ifp, 0, IFCAP_TSO6);
2879 				if_printf(ifp,
2880 				    "tso6 disabled due to -txcsum6.\n");
2881 			}
2882 		}
2883 		if (mask & IFCAP_RXCSUM)
2884 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2885 		if (mask & IFCAP_RXCSUM_IPV6)
2886 			if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
2887 
2888 		/*
2889 		 * Note that we leave CSUM_TSO alone (it is always set).  The
2890 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
2891 		 * sending a TSO request our way, so it's sufficient to toggle
2892 		 * IFCAP_TSOx only.
2893 		 */
2894 		if (mask & IFCAP_TSO4) {
2895 			if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
2896 			    !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2897 				if_printf(ifp, "enable txcsum first.\n");
2898 				rc = EAGAIN;
2899 				goto fail;
2900 			}
2901 			if_togglecapenable(ifp, IFCAP_TSO4);
2902 		}
2903 		if (mask & IFCAP_TSO6) {
2904 			if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
2905 			    !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2906 				if_printf(ifp, "enable txcsum6 first.\n");
2907 				rc = EAGAIN;
2908 				goto fail;
2909 			}
2910 			if_togglecapenable(ifp, IFCAP_TSO6);
2911 		}
2912 		if (mask & IFCAP_LRO) {
2913 #if defined(INET) || defined(INET6)
2914 			int i;
2915 			struct sge_rxq *rxq;
2916 
2917 			if_togglecapenable(ifp, IFCAP_LRO);
2918 			for_each_rxq(vi, i, rxq) {
2919 				if (if_getcapenable(ifp) & IFCAP_LRO)
2920 					rxq->iq.flags |= IQ_LRO_ENABLED;
2921 				else
2922 					rxq->iq.flags &= ~IQ_LRO_ENABLED;
2923 			}
2924 #endif
2925 		}
2926 #ifdef TCP_OFFLOAD
2927 		if (mask & IFCAP_TOE) {
2928 			int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
2929 
2930 			rc = toe_capability(vi, enable);
2931 			if (rc != 0)
2932 				goto fail;
2933 
2934 			if_togglecapenable(ifp, mask);
2935 		}
2936 #endif
2937 		if (mask & IFCAP_VLAN_HWTAGGING) {
2938 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2939 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2940 				rc = update_mac_settings(ifp, XGMAC_VLANEX);
2941 		}
2942 		if (mask & IFCAP_VLAN_MTU) {
2943 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2944 
2945 			/* Need to find out how to disable auto-mtu-inflation */
2946 		}
2947 		if (mask & IFCAP_VLAN_HWTSO)
2948 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2949 		if (mask & IFCAP_VLAN_HWCSUM)
2950 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2951 #ifdef RATELIMIT
2952 		if (mask & IFCAP_TXRTLMT)
2953 			if_togglecapenable(ifp, IFCAP_TXRTLMT);
2954 #endif
2955 		if (mask & IFCAP_HWRXTSTMP) {
2956 			int i;
2957 			struct sge_rxq *rxq;
2958 
2959 			if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
2960 			for_each_rxq(vi, i, rxq) {
2961 				if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
2962 					rxq->iq.flags |= IQ_RX_TIMESTAMP;
2963 				else
2964 					rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
2965 			}
2966 		}
2967 		if (mask & IFCAP_MEXTPG)
2968 			if_togglecapenable(ifp, IFCAP_MEXTPG);
2969 
2970 #ifdef KERN_TLS
2971 		if (mask & IFCAP_TXTLS) {
2972 			int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
2973 
2974 			rc = ktls_capability(sc, enable);
2975 			if (rc != 0)
2976 				goto fail;
2977 
2978 			if_togglecapenable(ifp, mask & IFCAP_TXTLS);
2979 		}
2980 #endif
2981 		if (mask & IFCAP_VXLAN_HWCSUM) {
2982 			if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
2983 			if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
2984 			    CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
2985 			    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
2986 		}
2987 		if (mask & IFCAP_VXLAN_HWTSO) {
2988 			if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
2989 			if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
2990 			    CSUM_INNER_IP_TSO);
2991 		}
2992 
2993 #ifdef VLAN_CAPABILITIES
2994 		VLAN_CAPABILITIES(ifp);
2995 #endif
2996 fail:
2997 		end_synchronized_op(sc, 0);
2998 		break;
2999 
3000 	case SIOCSIFMEDIA:
3001 	case SIOCGIFMEDIA:
3002 	case SIOCGIFXMEDIA:
3003 		rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3004 		break;
3005 
3006 	case SIOCGI2C: {
3007 		struct ifi2creq i2c;
3008 
3009 		rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3010 		if (rc != 0)
3011 			break;
3012 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3013 			rc = EPERM;
3014 			break;
3015 		}
3016 		if (i2c.len > sizeof(i2c.data)) {
3017 			rc = EINVAL;
3018 			break;
3019 		}
3020 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3021 		if (rc)
3022 			return (rc);
3023 		if (hw_off_limits(sc))
3024 			rc = ENXIO;
3025 		else
3026 			rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3027 			    i2c.offset, i2c.len, &i2c.data[0]);
3028 		end_synchronized_op(sc, 0);
3029 		if (rc == 0)
3030 			rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3031 		break;
3032 	}
3033 
3034 	default:
3035 		rc = ether_ioctl(ifp, cmd, data);
3036 	}
3037 
3038 	return (rc);
3039 }
3040 
3041 static int
3042 cxgbe_transmit(if_t ifp, struct mbuf *m)
3043 {
3044 	struct vi_info *vi = if_getsoftc(ifp);
3045 	struct port_info *pi = vi->pi;
3046 	struct adapter *sc;
3047 	struct sge_txq *txq;
3048 	void *items[1];
3049 	int rc;
3050 
3051 	M_ASSERTPKTHDR(m);
3052 	MPASS(m->m_nextpkt == NULL);	/* not quite ready for this yet */
3053 #if defined(KERN_TLS) || defined(RATELIMIT)
3054 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3055 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3056 #endif
3057 
3058 	if (__predict_false(pi->link_cfg.link_ok == false)) {
3059 		m_freem(m);
3060 		return (ENETDOWN);
3061 	}
3062 
3063 	rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3064 	if (__predict_false(rc != 0)) {
3065 		if (__predict_true(rc == EINPROGRESS)) {
3066 			/* queued by parse_pkt */
3067 			MPASS(m != NULL);
3068 			return (0);
3069 		}
3070 
3071 		MPASS(m == NULL);			/* was freed already */
3072 		atomic_add_int(&pi->tx_parse_error, 1);	/* rare, atomic is ok */
3073 		return (rc);
3074 	}
3075 
3076 	/* Select a txq. */
3077 	sc = vi->adapter;
3078 	txq = &sc->sge.txq[vi->first_txq];
3079 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3080 		txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3081 		    vi->rsrv_noflowq);
3082 
3083 	items[0] = m;
3084 	rc = mp_ring_enqueue(txq->r, items, 1, 256);
3085 	if (__predict_false(rc != 0))
3086 		m_freem(m);
3087 
3088 	return (rc);
3089 }
3090 
3091 static void
3092 cxgbe_qflush(if_t ifp)
3093 {
3094 	struct vi_info *vi = if_getsoftc(ifp);
3095 	struct sge_txq *txq;
3096 	int i;
3097 
3098 	/* queues do not exist if !VI_INIT_DONE. */
3099 	if (vi->flags & VI_INIT_DONE) {
3100 		for_each_txq(vi, i, txq) {
3101 			TXQ_LOCK(txq);
3102 			txq->eq.flags |= EQ_QFLUSH;
3103 			TXQ_UNLOCK(txq);
3104 			while (!mp_ring_is_idle(txq->r)) {
3105 				mp_ring_check_drainage(txq->r, 4096);
3106 				pause("qflush", 1);
3107 			}
3108 			TXQ_LOCK(txq);
3109 			txq->eq.flags &= ~EQ_QFLUSH;
3110 			TXQ_UNLOCK(txq);
3111 		}
3112 	}
3113 	if_qflush(ifp);
3114 }
3115 
3116 static uint64_t
3117 vi_get_counter(if_t ifp, ift_counter c)
3118 {
3119 	struct vi_info *vi = if_getsoftc(ifp);
3120 	struct fw_vi_stats_vf *s = &vi->stats;
3121 
3122 	mtx_lock(&vi->tick_mtx);
3123 	vi_refresh_stats(vi);
3124 	mtx_unlock(&vi->tick_mtx);
3125 
3126 	switch (c) {
3127 	case IFCOUNTER_IPACKETS:
3128 		return (s->rx_bcast_frames + s->rx_mcast_frames +
3129 		    s->rx_ucast_frames);
3130 	case IFCOUNTER_IERRORS:
3131 		return (s->rx_err_frames);
3132 	case IFCOUNTER_OPACKETS:
3133 		return (s->tx_bcast_frames + s->tx_mcast_frames +
3134 		    s->tx_ucast_frames + s->tx_offload_frames);
3135 	case IFCOUNTER_OERRORS:
3136 		return (s->tx_drop_frames);
3137 	case IFCOUNTER_IBYTES:
3138 		return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3139 		    s->rx_ucast_bytes);
3140 	case IFCOUNTER_OBYTES:
3141 		return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3142 		    s->tx_ucast_bytes + s->tx_offload_bytes);
3143 	case IFCOUNTER_IMCASTS:
3144 		return (s->rx_mcast_frames);
3145 	case IFCOUNTER_OMCASTS:
3146 		return (s->tx_mcast_frames);
3147 	case IFCOUNTER_OQDROPS: {
3148 		uint64_t drops;
3149 
3150 		drops = 0;
3151 		if (vi->flags & VI_INIT_DONE) {
3152 			int i;
3153 			struct sge_txq *txq;
3154 
3155 			for_each_txq(vi, i, txq)
3156 				drops += counter_u64_fetch(txq->r->dropped);
3157 		}
3158 
3159 		return (drops);
3160 
3161 	}
3162 
3163 	default:
3164 		return (if_get_counter_default(ifp, c));
3165 	}
3166 }
3167 
3168 static uint64_t
3169 cxgbe_get_counter(if_t ifp, ift_counter c)
3170 {
3171 	struct vi_info *vi = if_getsoftc(ifp);
3172 	struct port_info *pi = vi->pi;
3173 	struct port_stats *s = &pi->stats;
3174 
3175 	mtx_lock(&vi->tick_mtx);
3176 	cxgbe_refresh_stats(vi);
3177 	mtx_unlock(&vi->tick_mtx);
3178 
3179 	switch (c) {
3180 	case IFCOUNTER_IPACKETS:
3181 		return (s->rx_frames);
3182 
3183 	case IFCOUNTER_IERRORS:
3184 		return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3185 		    s->rx_fcs_err + s->rx_len_err);
3186 
3187 	case IFCOUNTER_OPACKETS:
3188 		return (s->tx_frames);
3189 
3190 	case IFCOUNTER_OERRORS:
3191 		return (s->tx_error_frames);
3192 
3193 	case IFCOUNTER_IBYTES:
3194 		return (s->rx_octets);
3195 
3196 	case IFCOUNTER_OBYTES:
3197 		return (s->tx_octets);
3198 
3199 	case IFCOUNTER_IMCASTS:
3200 		return (s->rx_mcast_frames);
3201 
3202 	case IFCOUNTER_OMCASTS:
3203 		return (s->tx_mcast_frames);
3204 
3205 	case IFCOUNTER_IQDROPS:
3206 		return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3207 		    s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3208 		    s->rx_trunc3 + pi->tnl_cong_drops);
3209 
3210 	case IFCOUNTER_OQDROPS: {
3211 		uint64_t drops;
3212 
3213 		drops = s->tx_drop;
3214 		if (vi->flags & VI_INIT_DONE) {
3215 			int i;
3216 			struct sge_txq *txq;
3217 
3218 			for_each_txq(vi, i, txq)
3219 				drops += counter_u64_fetch(txq->r->dropped);
3220 		}
3221 
3222 		return (drops);
3223 
3224 	}
3225 
3226 	default:
3227 		return (if_get_counter_default(ifp, c));
3228 	}
3229 }
3230 
3231 #if defined(KERN_TLS) || defined(RATELIMIT)
3232 static int
3233 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3234     struct m_snd_tag **pt)
3235 {
3236 	int error;
3237 
3238 	switch (params->hdr.type) {
3239 #ifdef RATELIMIT
3240 	case IF_SND_TAG_TYPE_RATE_LIMIT:
3241 		error = cxgbe_rate_tag_alloc(ifp, params, pt);
3242 		break;
3243 #endif
3244 #ifdef KERN_TLS
3245 	case IF_SND_TAG_TYPE_TLS:
3246 	{
3247 		struct vi_info *vi = if_getsoftc(ifp);
3248 
3249 		if (is_t6(vi->pi->adapter))
3250 			error = t6_tls_tag_alloc(ifp, params, pt);
3251 		else
3252 			error = EOPNOTSUPP;
3253 		break;
3254 	}
3255 #endif
3256 	default:
3257 		error = EOPNOTSUPP;
3258 	}
3259 	return (error);
3260 }
3261 #endif
3262 
3263 /*
3264  * The kernel picks a media from the list we had provided but we still validate
3265  * the requeste.
3266  */
3267 int
3268 cxgbe_media_change(if_t ifp)
3269 {
3270 	struct vi_info *vi = if_getsoftc(ifp);
3271 	struct port_info *pi = vi->pi;
3272 	struct ifmedia *ifm = &pi->media;
3273 	struct link_config *lc = &pi->link_cfg;
3274 	struct adapter *sc = pi->adapter;
3275 	int rc;
3276 
3277 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3278 	if (rc != 0)
3279 		return (rc);
3280 	PORT_LOCK(pi);
3281 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3282 		/* ifconfig .. media autoselect */
3283 		if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3284 			rc = ENOTSUP; /* AN not supported by transceiver */
3285 			goto done;
3286 		}
3287 		lc->requested_aneg = AUTONEG_ENABLE;
3288 		lc->requested_speed = 0;
3289 		lc->requested_fc |= PAUSE_AUTONEG;
3290 	} else {
3291 		lc->requested_aneg = AUTONEG_DISABLE;
3292 		lc->requested_speed =
3293 		    ifmedia_baudrate(ifm->ifm_media) / 1000000;
3294 		lc->requested_fc = 0;
3295 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3296 			lc->requested_fc |= PAUSE_RX;
3297 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3298 			lc->requested_fc |= PAUSE_TX;
3299 	}
3300 	if (pi->up_vis > 0 && !hw_off_limits(sc)) {
3301 		fixup_link_config(pi);
3302 		rc = apply_link_config(pi);
3303 	}
3304 done:
3305 	PORT_UNLOCK(pi);
3306 	end_synchronized_op(sc, 0);
3307 	return (rc);
3308 }
3309 
3310 /*
3311  * Base media word (without ETHER, pause, link active, etc.) for the port at the
3312  * given speed.
3313  */
3314 static int
3315 port_mword(struct port_info *pi, uint32_t speed)
3316 {
3317 
3318 	MPASS(speed & M_FW_PORT_CAP32_SPEED);
3319 	MPASS(powerof2(speed));
3320 
3321 	switch(pi->port_type) {
3322 	case FW_PORT_TYPE_BT_SGMII:
3323 	case FW_PORT_TYPE_BT_XFI:
3324 	case FW_PORT_TYPE_BT_XAUI:
3325 		/* BaseT */
3326 		switch (speed) {
3327 		case FW_PORT_CAP32_SPEED_100M:
3328 			return (IFM_100_T);
3329 		case FW_PORT_CAP32_SPEED_1G:
3330 			return (IFM_1000_T);
3331 		case FW_PORT_CAP32_SPEED_10G:
3332 			return (IFM_10G_T);
3333 		}
3334 		break;
3335 	case FW_PORT_TYPE_KX4:
3336 		if (speed == FW_PORT_CAP32_SPEED_10G)
3337 			return (IFM_10G_KX4);
3338 		break;
3339 	case FW_PORT_TYPE_CX4:
3340 		if (speed == FW_PORT_CAP32_SPEED_10G)
3341 			return (IFM_10G_CX4);
3342 		break;
3343 	case FW_PORT_TYPE_KX:
3344 		if (speed == FW_PORT_CAP32_SPEED_1G)
3345 			return (IFM_1000_KX);
3346 		break;
3347 	case FW_PORT_TYPE_KR:
3348 	case FW_PORT_TYPE_BP_AP:
3349 	case FW_PORT_TYPE_BP4_AP:
3350 	case FW_PORT_TYPE_BP40_BA:
3351 	case FW_PORT_TYPE_KR4_100G:
3352 	case FW_PORT_TYPE_KR_SFP28:
3353 	case FW_PORT_TYPE_KR_XLAUI:
3354 		switch (speed) {
3355 		case FW_PORT_CAP32_SPEED_1G:
3356 			return (IFM_1000_KX);
3357 		case FW_PORT_CAP32_SPEED_10G:
3358 			return (IFM_10G_KR);
3359 		case FW_PORT_CAP32_SPEED_25G:
3360 			return (IFM_25G_KR);
3361 		case FW_PORT_CAP32_SPEED_40G:
3362 			return (IFM_40G_KR4);
3363 		case FW_PORT_CAP32_SPEED_50G:
3364 			return (IFM_50G_KR2);
3365 		case FW_PORT_CAP32_SPEED_100G:
3366 			return (IFM_100G_KR4);
3367 		}
3368 		break;
3369 	case FW_PORT_TYPE_FIBER_XFI:
3370 	case FW_PORT_TYPE_FIBER_XAUI:
3371 	case FW_PORT_TYPE_SFP:
3372 	case FW_PORT_TYPE_QSFP_10G:
3373 	case FW_PORT_TYPE_QSA:
3374 	case FW_PORT_TYPE_QSFP:
3375 	case FW_PORT_TYPE_CR4_QSFP:
3376 	case FW_PORT_TYPE_CR_QSFP:
3377 	case FW_PORT_TYPE_CR2_QSFP:
3378 	case FW_PORT_TYPE_SFP28:
3379 		/* Pluggable transceiver */
3380 		switch (pi->mod_type) {
3381 		case FW_PORT_MOD_TYPE_LR:
3382 			switch (speed) {
3383 			case FW_PORT_CAP32_SPEED_1G:
3384 				return (IFM_1000_LX);
3385 			case FW_PORT_CAP32_SPEED_10G:
3386 				return (IFM_10G_LR);
3387 			case FW_PORT_CAP32_SPEED_25G:
3388 				return (IFM_25G_LR);
3389 			case FW_PORT_CAP32_SPEED_40G:
3390 				return (IFM_40G_LR4);
3391 			case FW_PORT_CAP32_SPEED_50G:
3392 				return (IFM_50G_LR2);
3393 			case FW_PORT_CAP32_SPEED_100G:
3394 				return (IFM_100G_LR4);
3395 			}
3396 			break;
3397 		case FW_PORT_MOD_TYPE_SR:
3398 			switch (speed) {
3399 			case FW_PORT_CAP32_SPEED_1G:
3400 				return (IFM_1000_SX);
3401 			case FW_PORT_CAP32_SPEED_10G:
3402 				return (IFM_10G_SR);
3403 			case FW_PORT_CAP32_SPEED_25G:
3404 				return (IFM_25G_SR);
3405 			case FW_PORT_CAP32_SPEED_40G:
3406 				return (IFM_40G_SR4);
3407 			case FW_PORT_CAP32_SPEED_50G:
3408 				return (IFM_50G_SR2);
3409 			case FW_PORT_CAP32_SPEED_100G:
3410 				return (IFM_100G_SR4);
3411 			}
3412 			break;
3413 		case FW_PORT_MOD_TYPE_ER:
3414 			if (speed == FW_PORT_CAP32_SPEED_10G)
3415 				return (IFM_10G_ER);
3416 			break;
3417 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3418 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3419 			switch (speed) {
3420 			case FW_PORT_CAP32_SPEED_1G:
3421 				return (IFM_1000_CX);
3422 			case FW_PORT_CAP32_SPEED_10G:
3423 				return (IFM_10G_TWINAX);
3424 			case FW_PORT_CAP32_SPEED_25G:
3425 				return (IFM_25G_CR);
3426 			case FW_PORT_CAP32_SPEED_40G:
3427 				return (IFM_40G_CR4);
3428 			case FW_PORT_CAP32_SPEED_50G:
3429 				return (IFM_50G_CR2);
3430 			case FW_PORT_CAP32_SPEED_100G:
3431 				return (IFM_100G_CR4);
3432 			}
3433 			break;
3434 		case FW_PORT_MOD_TYPE_LRM:
3435 			if (speed == FW_PORT_CAP32_SPEED_10G)
3436 				return (IFM_10G_LRM);
3437 			break;
3438 		case FW_PORT_MOD_TYPE_NA:
3439 			MPASS(0);	/* Not pluggable? */
3440 			/* fall throough */
3441 		case FW_PORT_MOD_TYPE_ERROR:
3442 		case FW_PORT_MOD_TYPE_UNKNOWN:
3443 		case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3444 			break;
3445 		case FW_PORT_MOD_TYPE_NONE:
3446 			return (IFM_NONE);
3447 		}
3448 		break;
3449 	case FW_PORT_TYPE_NONE:
3450 		return (IFM_NONE);
3451 	}
3452 
3453 	return (IFM_UNKNOWN);
3454 }
3455 
3456 void
3457 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3458 {
3459 	struct vi_info *vi = if_getsoftc(ifp);
3460 	struct port_info *pi = vi->pi;
3461 	struct adapter *sc = pi->adapter;
3462 	struct link_config *lc = &pi->link_cfg;
3463 
3464 	if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3465 		return;
3466 	PORT_LOCK(pi);
3467 
3468 	if (pi->up_vis == 0 && !hw_off_limits(sc)) {
3469 		/*
3470 		 * If all the interfaces are administratively down the firmware
3471 		 * does not report transceiver changes.  Refresh port info here
3472 		 * so that ifconfig displays accurate ifmedia at all times.
3473 		 * This is the only reason we have a synchronized op in this
3474 		 * function.  Just PORT_LOCK would have been enough otherwise.
3475 		 */
3476 		t4_update_port_info(pi);
3477 		build_medialist(pi);
3478 	}
3479 
3480 	/* ifm_status */
3481 	ifmr->ifm_status = IFM_AVALID;
3482 	if (lc->link_ok == false)
3483 		goto done;
3484 	ifmr->ifm_status |= IFM_ACTIVE;
3485 
3486 	/* ifm_active */
3487 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3488 	ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3489 	if (lc->fc & PAUSE_RX)
3490 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3491 	if (lc->fc & PAUSE_TX)
3492 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3493 	ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3494 done:
3495 	PORT_UNLOCK(pi);
3496 	end_synchronized_op(sc, 0);
3497 }
3498 
3499 static int
3500 vcxgbe_probe(device_t dev)
3501 {
3502 	char buf[128];
3503 	struct vi_info *vi = device_get_softc(dev);
3504 
3505 	snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
3506 	    vi - vi->pi->vi);
3507 	device_set_desc_copy(dev, buf);
3508 
3509 	return (BUS_PROBE_DEFAULT);
3510 }
3511 
3512 static int
3513 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3514 {
3515 	int func, index, rc;
3516 	uint32_t param, val;
3517 
3518 	ASSERT_SYNCHRONIZED_OP(sc);
3519 
3520 	index = vi - pi->vi;
3521 	MPASS(index > 0);	/* This function deals with _extra_ VIs only */
3522 	KASSERT(index < nitems(vi_mac_funcs),
3523 	    ("%s: VI %s doesn't have a MAC func", __func__,
3524 	    device_get_nameunit(vi->dev)));
3525 	func = vi_mac_funcs[index];
3526 	rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
3527 	    vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3528 	if (rc < 0) {
3529 		CH_ERR(vi, "failed to allocate virtual interface %d"
3530 		    "for port %d: %d\n", index, pi->port_id, -rc);
3531 		return (-rc);
3532 	}
3533 	vi->viid = rc;
3534 
3535 	if (vi->rss_size == 1) {
3536 		/*
3537 		 * This VI didn't get a slice of the RSS table.  Reduce the
3538 		 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3539 		 * configuration file (nvi, rssnvi for this PF) if this is a
3540 		 * problem.
3541 		 */
3542 		device_printf(vi->dev, "RSS table not available.\n");
3543 		vi->rss_base = 0xffff;
3544 
3545 		return (0);
3546 	}
3547 
3548 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3549 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3550 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
3551 	rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3552 	if (rc)
3553 		vi->rss_base = 0xffff;
3554 	else {
3555 		MPASS((val >> 16) == vi->rss_size);
3556 		vi->rss_base = val & 0xffff;
3557 	}
3558 
3559 	return (0);
3560 }
3561 
3562 static int
3563 vcxgbe_attach(device_t dev)
3564 {
3565 	struct vi_info *vi;
3566 	struct port_info *pi;
3567 	struct adapter *sc;
3568 	int rc;
3569 
3570 	vi = device_get_softc(dev);
3571 	pi = vi->pi;
3572 	sc = pi->adapter;
3573 
3574 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3575 	if (rc)
3576 		return (rc);
3577 	rc = alloc_extra_vi(sc, pi, vi);
3578 	end_synchronized_op(sc, 0);
3579 	if (rc)
3580 		return (rc);
3581 
3582 	rc = cxgbe_vi_attach(dev, vi);
3583 	if (rc) {
3584 		t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3585 		return (rc);
3586 	}
3587 	return (0);
3588 }
3589 
3590 static int
3591 vcxgbe_detach(device_t dev)
3592 {
3593 	struct vi_info *vi;
3594 	struct adapter *sc;
3595 
3596 	vi = device_get_softc(dev);
3597 	sc = vi->adapter;
3598 
3599 	begin_vi_detach(sc, vi);
3600 	cxgbe_vi_detach(vi);
3601 	t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3602 	end_vi_detach(sc, vi);
3603 
3604 	return (0);
3605 }
3606 
3607 static struct callout fatal_callout;
3608 static struct taskqueue *reset_tq;
3609 
3610 static void
3611 delayed_panic(void *arg)
3612 {
3613 	struct adapter *sc = arg;
3614 
3615 	panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3616 }
3617 
3618 static void
3619 fatal_error_task(void *arg, int pending)
3620 {
3621 	struct adapter *sc = arg;
3622 	int rc;
3623 
3624 #ifdef TCP_OFFLOAD
3625 	t4_async_event(sc);
3626 #endif
3627 	if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3628 		dump_cim_regs(sc);
3629 		dump_cimla(sc);
3630 		dump_devlog(sc);
3631 	}
3632 
3633 	if (t4_reset_on_fatal_err) {
3634 		CH_ALERT(sc, "resetting on fatal error.\n");
3635 		rc = reset_adapter(sc);
3636 		if (rc == 0 && t4_panic_on_fatal_err) {
3637 			CH_ALERT(sc, "reset was successful, "
3638 			    "system will NOT panic.\n");
3639 			return;
3640 		}
3641 	}
3642 
3643 	if (t4_panic_on_fatal_err) {
3644 		CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3645 		callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3646 	}
3647 }
3648 
3649 void
3650 t4_fatal_err(struct adapter *sc, bool fw_error)
3651 {
3652 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
3653 
3654 	stop_adapter(sc);
3655 	if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3656 		return;
3657 	if (fw_error) {
3658 		/*
3659 		 * We are here because of a firmware error/timeout and not
3660 		 * because of a hardware interrupt.  It is possible (although
3661 		 * not very likely) that an error interrupt was also raised but
3662 		 * this thread ran first and inhibited t4_intr_err.  We walk the
3663 		 * main INT_CAUSE registers here to make sure we haven't missed
3664 		 * anything interesting.
3665 		 */
3666 		t4_slow_intr_handler(sc, verbose);
3667 		atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3668 	}
3669 	t4_report_fw_error(sc);
3670 	log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3671 	    device_get_nameunit(sc->dev), fw_error);
3672 	taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3673 }
3674 
3675 void
3676 t4_add_adapter(struct adapter *sc)
3677 {
3678 	sx_xlock(&t4_list_lock);
3679 	SLIST_INSERT_HEAD(&t4_list, sc, link);
3680 	sx_xunlock(&t4_list_lock);
3681 }
3682 
3683 int
3684 t4_map_bars_0_and_4(struct adapter *sc)
3685 {
3686 	sc->regs_rid = PCIR_BAR(0);
3687 	sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3688 	    &sc->regs_rid, RF_ACTIVE);
3689 	if (sc->regs_res == NULL) {
3690 		device_printf(sc->dev, "cannot map registers.\n");
3691 		return (ENXIO);
3692 	}
3693 	sc->bt = rman_get_bustag(sc->regs_res);
3694 	sc->bh = rman_get_bushandle(sc->regs_res);
3695 	sc->mmio_len = rman_get_size(sc->regs_res);
3696 	setbit(&sc->doorbells, DOORBELL_KDB);
3697 
3698 	sc->msix_rid = PCIR_BAR(4);
3699 	sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3700 	    &sc->msix_rid, RF_ACTIVE);
3701 	if (sc->msix_res == NULL) {
3702 		device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3703 		return (ENXIO);
3704 	}
3705 
3706 	return (0);
3707 }
3708 
3709 int
3710 t4_map_bar_2(struct adapter *sc)
3711 {
3712 
3713 	/*
3714 	 * T4: only iWARP driver uses the userspace doorbells.  There is no need
3715 	 * to map it if RDMA is disabled.
3716 	 */
3717 	if (is_t4(sc) && sc->rdmacaps == 0)
3718 		return (0);
3719 
3720 	sc->udbs_rid = PCIR_BAR(2);
3721 	sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3722 	    &sc->udbs_rid, RF_ACTIVE);
3723 	if (sc->udbs_res == NULL) {
3724 		device_printf(sc->dev, "cannot map doorbell BAR.\n");
3725 		return (ENXIO);
3726 	}
3727 	sc->udbs_base = rman_get_virtual(sc->udbs_res);
3728 
3729 	if (chip_id(sc) >= CHELSIO_T5) {
3730 		setbit(&sc->doorbells, DOORBELL_UDB);
3731 #if defined(__i386__) || defined(__amd64__)
3732 		if (t5_write_combine) {
3733 			int rc, mode;
3734 
3735 			/*
3736 			 * Enable write combining on BAR2.  This is the
3737 			 * userspace doorbell BAR and is split into 128B
3738 			 * (UDBS_SEG_SIZE) doorbell regions, each associated
3739 			 * with an egress queue.  The first 64B has the doorbell
3740 			 * and the second 64B can be used to submit a tx work
3741 			 * request with an implicit doorbell.
3742 			 */
3743 
3744 			rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
3745 			    rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
3746 			if (rc == 0) {
3747 				clrbit(&sc->doorbells, DOORBELL_UDB);
3748 				setbit(&sc->doorbells, DOORBELL_WCWR);
3749 				setbit(&sc->doorbells, DOORBELL_UDBWC);
3750 			} else {
3751 				device_printf(sc->dev,
3752 				    "couldn't enable write combining: %d\n",
3753 				    rc);
3754 			}
3755 
3756 			mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
3757 			t4_write_reg(sc, A_SGE_STAT_CFG,
3758 			    V_STATSOURCE_T5(7) | mode);
3759 		}
3760 #endif
3761 	}
3762 	sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
3763 
3764 	return (0);
3765 }
3766 
3767 struct memwin_init {
3768 	uint32_t base;
3769 	uint32_t aperture;
3770 };
3771 
3772 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
3773 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3774 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3775 	{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
3776 };
3777 
3778 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
3779 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3780 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3781 	{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
3782 };
3783 
3784 static void
3785 setup_memwin(struct adapter *sc)
3786 {
3787 	const struct memwin_init *mw_init;
3788 	struct memwin *mw;
3789 	int i;
3790 	uint32_t bar0;
3791 
3792 	if (is_t4(sc)) {
3793 		/*
3794 		 * Read low 32b of bar0 indirectly via the hardware backdoor
3795 		 * mechanism.  Works from within PCI passthrough environments
3796 		 * too, where rman_get_start() can return a different value.  We
3797 		 * need to program the T4 memory window decoders with the actual
3798 		 * addresses that will be coming across the PCIe link.
3799 		 */
3800 		bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
3801 		bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
3802 
3803 		mw_init = &t4_memwin[0];
3804 	} else {
3805 		/* T5+ use the relative offset inside the PCIe BAR */
3806 		bar0 = 0;
3807 
3808 		mw_init = &t5_memwin[0];
3809 	}
3810 
3811 	for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
3812 		if (!rw_initialized(&mw->mw_lock)) {
3813 			rw_init(&mw->mw_lock, "memory window access");
3814 			mw->mw_base = mw_init->base;
3815 			mw->mw_aperture = mw_init->aperture;
3816 			mw->mw_curpos = 0;
3817 		}
3818 		t4_write_reg(sc,
3819 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
3820 		    (mw->mw_base + bar0) | V_BIR(0) |
3821 		    V_WINDOW(ilog2(mw->mw_aperture) - 10));
3822 		rw_wlock(&mw->mw_lock);
3823 		position_memwin(sc, i, mw->mw_curpos);
3824 		rw_wunlock(&mw->mw_lock);
3825 	}
3826 
3827 	/* flush */
3828 	t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
3829 }
3830 
3831 /*
3832  * Positions the memory window at the given address in the card's address space.
3833  * There are some alignment requirements and the actual position may be at an
3834  * address prior to the requested address.  mw->mw_curpos always has the actual
3835  * position of the window.
3836  */
3837 static void
3838 position_memwin(struct adapter *sc, int idx, uint32_t addr)
3839 {
3840 	struct memwin *mw;
3841 	uint32_t pf;
3842 	uint32_t reg;
3843 
3844 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3845 	mw = &sc->memwin[idx];
3846 	rw_assert(&mw->mw_lock, RA_WLOCKED);
3847 
3848 	if (is_t4(sc)) {
3849 		pf = 0;
3850 		mw->mw_curpos = addr & ~0xf;	/* start must be 16B aligned */
3851 	} else {
3852 		pf = V_PFNUM(sc->pf);
3853 		mw->mw_curpos = addr & ~0x7f;	/* start must be 128B aligned */
3854 	}
3855 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
3856 	t4_write_reg(sc, reg, mw->mw_curpos | pf);
3857 	t4_read_reg(sc, reg);	/* flush */
3858 }
3859 
3860 int
3861 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
3862     int len, int rw)
3863 {
3864 	struct memwin *mw;
3865 	uint32_t mw_end, v;
3866 
3867 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3868 
3869 	/* Memory can only be accessed in naturally aligned 4 byte units */
3870 	if (addr & 3 || len & 3 || len <= 0)
3871 		return (EINVAL);
3872 
3873 	mw = &sc->memwin[idx];
3874 	while (len > 0) {
3875 		rw_rlock(&mw->mw_lock);
3876 		mw_end = mw->mw_curpos + mw->mw_aperture;
3877 		if (addr >= mw_end || addr < mw->mw_curpos) {
3878 			/* Will need to reposition the window */
3879 			if (!rw_try_upgrade(&mw->mw_lock)) {
3880 				rw_runlock(&mw->mw_lock);
3881 				rw_wlock(&mw->mw_lock);
3882 			}
3883 			rw_assert(&mw->mw_lock, RA_WLOCKED);
3884 			position_memwin(sc, idx, addr);
3885 			rw_downgrade(&mw->mw_lock);
3886 			mw_end = mw->mw_curpos + mw->mw_aperture;
3887 		}
3888 		rw_assert(&mw->mw_lock, RA_RLOCKED);
3889 		while (addr < mw_end && len > 0) {
3890 			if (rw == 0) {
3891 				v = t4_read_reg(sc, mw->mw_base + addr -
3892 				    mw->mw_curpos);
3893 				*val++ = le32toh(v);
3894 			} else {
3895 				v = *val++;
3896 				t4_write_reg(sc, mw->mw_base + addr -
3897 				    mw->mw_curpos, htole32(v));
3898 			}
3899 			addr += 4;
3900 			len -= 4;
3901 		}
3902 		rw_runlock(&mw->mw_lock);
3903 	}
3904 
3905 	return (0);
3906 }
3907 
3908 CTASSERT(M_TID_COOKIE == M_COOKIE);
3909 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
3910 
3911 static void
3912 t4_init_atid_table(struct adapter *sc)
3913 {
3914 	struct tid_info *t;
3915 	int i;
3916 
3917 	t = &sc->tids;
3918 	if (t->natids == 0)
3919 		return;
3920 
3921 	MPASS(t->atid_tab == NULL);
3922 
3923 	t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
3924 	    M_ZERO | M_WAITOK);
3925 	mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
3926 	t->afree = t->atid_tab;
3927 	t->atids_in_use = 0;
3928 	for (i = 1; i < t->natids; i++)
3929 		t->atid_tab[i - 1].next = &t->atid_tab[i];
3930 	t->atid_tab[t->natids - 1].next = NULL;
3931 }
3932 
3933 static void
3934 t4_free_atid_table(struct adapter *sc)
3935 {
3936 	struct tid_info *t;
3937 
3938 	t = &sc->tids;
3939 
3940 	KASSERT(t->atids_in_use == 0,
3941 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
3942 
3943 	if (mtx_initialized(&t->atid_lock))
3944 		mtx_destroy(&t->atid_lock);
3945 	free(t->atid_tab, M_CXGBE);
3946 	t->atid_tab = NULL;
3947 }
3948 
3949 int
3950 alloc_atid(struct adapter *sc, void *ctx)
3951 {
3952 	struct tid_info *t = &sc->tids;
3953 	int atid = -1;
3954 
3955 	mtx_lock(&t->atid_lock);
3956 	if (t->afree) {
3957 		union aopen_entry *p = t->afree;
3958 
3959 		atid = p - t->atid_tab;
3960 		MPASS(atid <= M_TID_TID);
3961 		t->afree = p->next;
3962 		p->data = ctx;
3963 		t->atids_in_use++;
3964 	}
3965 	mtx_unlock(&t->atid_lock);
3966 	return (atid);
3967 }
3968 
3969 void *
3970 lookup_atid(struct adapter *sc, int atid)
3971 {
3972 	struct tid_info *t = &sc->tids;
3973 
3974 	return (t->atid_tab[atid].data);
3975 }
3976 
3977 void
3978 free_atid(struct adapter *sc, int atid)
3979 {
3980 	struct tid_info *t = &sc->tids;
3981 	union aopen_entry *p = &t->atid_tab[atid];
3982 
3983 	mtx_lock(&t->atid_lock);
3984 	p->next = t->afree;
3985 	t->afree = p;
3986 	t->atids_in_use--;
3987 	mtx_unlock(&t->atid_lock);
3988 }
3989 
3990 static void
3991 queue_tid_release(struct adapter *sc, int tid)
3992 {
3993 
3994 	CXGBE_UNIMPLEMENTED("deferred tid release");
3995 }
3996 
3997 void
3998 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
3999 {
4000 	struct wrqe *wr;
4001 	struct cpl_tid_release *req;
4002 
4003 	wr = alloc_wrqe(sizeof(*req), ctrlq);
4004 	if (wr == NULL) {
4005 		queue_tid_release(sc, tid);	/* defer */
4006 		return;
4007 	}
4008 	req = wrtod(wr);
4009 
4010 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4011 
4012 	t4_wrq_tx(sc, wr);
4013 }
4014 
4015 static int
4016 t4_range_cmp(const void *a, const void *b)
4017 {
4018 	return ((const struct t4_range *)a)->start -
4019 	       ((const struct t4_range *)b)->start;
4020 }
4021 
4022 /*
4023  * Verify that the memory range specified by the addr/len pair is valid within
4024  * the card's address space.
4025  */
4026 static int
4027 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4028 {
4029 	struct t4_range mem_ranges[4], *r, *next;
4030 	uint32_t em, addr_len;
4031 	int i, n, remaining;
4032 
4033 	/* Memory can only be accessed in naturally aligned 4 byte units */
4034 	if (addr & 3 || len & 3 || len == 0)
4035 		return (EINVAL);
4036 
4037 	/* Enabled memories */
4038 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4039 
4040 	r = &mem_ranges[0];
4041 	n = 0;
4042 	bzero(r, sizeof(mem_ranges));
4043 	if (em & F_EDRAM0_ENABLE) {
4044 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4045 		r->size = G_EDRAM0_SIZE(addr_len) << 20;
4046 		if (r->size > 0) {
4047 			r->start = G_EDRAM0_BASE(addr_len) << 20;
4048 			if (addr >= r->start &&
4049 			    addr + len <= r->start + r->size)
4050 				return (0);
4051 			r++;
4052 			n++;
4053 		}
4054 	}
4055 	if (em & F_EDRAM1_ENABLE) {
4056 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4057 		r->size = G_EDRAM1_SIZE(addr_len) << 20;
4058 		if (r->size > 0) {
4059 			r->start = G_EDRAM1_BASE(addr_len) << 20;
4060 			if (addr >= r->start &&
4061 			    addr + len <= r->start + r->size)
4062 				return (0);
4063 			r++;
4064 			n++;
4065 		}
4066 	}
4067 	if (em & F_EXT_MEM_ENABLE) {
4068 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4069 		r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4070 		if (r->size > 0) {
4071 			r->start = G_EXT_MEM_BASE(addr_len) << 20;
4072 			if (addr >= r->start &&
4073 			    addr + len <= r->start + r->size)
4074 				return (0);
4075 			r++;
4076 			n++;
4077 		}
4078 	}
4079 	if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4080 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4081 		r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4082 		if (r->size > 0) {
4083 			r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4084 			if (addr >= r->start &&
4085 			    addr + len <= r->start + r->size)
4086 				return (0);
4087 			r++;
4088 			n++;
4089 		}
4090 	}
4091 	MPASS(n <= nitems(mem_ranges));
4092 
4093 	if (n > 1) {
4094 		/* Sort and merge the ranges. */
4095 		qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4096 
4097 		/* Start from index 0 and examine the next n - 1 entries. */
4098 		r = &mem_ranges[0];
4099 		for (remaining = n - 1; remaining > 0; remaining--, r++) {
4100 
4101 			MPASS(r->size > 0);	/* r is a valid entry. */
4102 			next = r + 1;
4103 			MPASS(next->size > 0);	/* and so is the next one. */
4104 
4105 			while (r->start + r->size >= next->start) {
4106 				/* Merge the next one into the current entry. */
4107 				r->size = max(r->start + r->size,
4108 				    next->start + next->size) - r->start;
4109 				n--;	/* One fewer entry in total. */
4110 				if (--remaining == 0)
4111 					goto done;	/* short circuit */
4112 				next++;
4113 			}
4114 			if (next != r + 1) {
4115 				/*
4116 				 * Some entries were merged into r and next
4117 				 * points to the first valid entry that couldn't
4118 				 * be merged.
4119 				 */
4120 				MPASS(next->size > 0);	/* must be valid */
4121 				memcpy(r + 1, next, remaining * sizeof(*r));
4122 #ifdef INVARIANTS
4123 				/*
4124 				 * This so that the foo->size assertion in the
4125 				 * next iteration of the loop do the right
4126 				 * thing for entries that were pulled up and are
4127 				 * no longer valid.
4128 				 */
4129 				MPASS(n < nitems(mem_ranges));
4130 				bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4131 				    sizeof(struct t4_range));
4132 #endif
4133 			}
4134 		}
4135 done:
4136 		/* Done merging the ranges. */
4137 		MPASS(n > 0);
4138 		r = &mem_ranges[0];
4139 		for (i = 0; i < n; i++, r++) {
4140 			if (addr >= r->start &&
4141 			    addr + len <= r->start + r->size)
4142 				return (0);
4143 		}
4144 	}
4145 
4146 	return (EFAULT);
4147 }
4148 
4149 static int
4150 fwmtype_to_hwmtype(int mtype)
4151 {
4152 
4153 	switch (mtype) {
4154 	case FW_MEMTYPE_EDC0:
4155 		return (MEM_EDC0);
4156 	case FW_MEMTYPE_EDC1:
4157 		return (MEM_EDC1);
4158 	case FW_MEMTYPE_EXTMEM:
4159 		return (MEM_MC0);
4160 	case FW_MEMTYPE_EXTMEM1:
4161 		return (MEM_MC1);
4162 	default:
4163 		panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4164 	}
4165 }
4166 
4167 /*
4168  * Verify that the memory range specified by the memtype/offset/len pair is
4169  * valid and lies entirely within the memtype specified.  The global address of
4170  * the start of the range is returned in addr.
4171  */
4172 static int
4173 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4174     uint32_t *addr)
4175 {
4176 	uint32_t em, addr_len, maddr;
4177 
4178 	/* Memory can only be accessed in naturally aligned 4 byte units */
4179 	if (off & 3 || len & 3 || len == 0)
4180 		return (EINVAL);
4181 
4182 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4183 	switch (fwmtype_to_hwmtype(mtype)) {
4184 	case MEM_EDC0:
4185 		if (!(em & F_EDRAM0_ENABLE))
4186 			return (EINVAL);
4187 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4188 		maddr = G_EDRAM0_BASE(addr_len) << 20;
4189 		break;
4190 	case MEM_EDC1:
4191 		if (!(em & F_EDRAM1_ENABLE))
4192 			return (EINVAL);
4193 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4194 		maddr = G_EDRAM1_BASE(addr_len) << 20;
4195 		break;
4196 	case MEM_MC:
4197 		if (!(em & F_EXT_MEM_ENABLE))
4198 			return (EINVAL);
4199 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4200 		maddr = G_EXT_MEM_BASE(addr_len) << 20;
4201 		break;
4202 	case MEM_MC1:
4203 		if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4204 			return (EINVAL);
4205 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4206 		maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4207 		break;
4208 	default:
4209 		return (EINVAL);
4210 	}
4211 
4212 	*addr = maddr + off;	/* global address */
4213 	return (validate_mem_range(sc, *addr, len));
4214 }
4215 
4216 static int
4217 fixup_devlog_params(struct adapter *sc)
4218 {
4219 	struct devlog_params *dparams = &sc->params.devlog;
4220 	int rc;
4221 
4222 	rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4223 	    dparams->size, &dparams->addr);
4224 
4225 	return (rc);
4226 }
4227 
4228 static void
4229 update_nirq(struct intrs_and_queues *iaq, int nports)
4230 {
4231 
4232 	iaq->nirq = T4_EXTRA_INTR;
4233 	iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4234 	iaq->nirq += nports * iaq->nofldrxq;
4235 	iaq->nirq += nports * (iaq->num_vis - 1) *
4236 	    max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4237 	iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4238 }
4239 
4240 /*
4241  * Adjust requirements to fit the number of interrupts available.
4242  */
4243 static void
4244 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4245     int navail)
4246 {
4247 	int old_nirq;
4248 	const int nports = sc->params.nports;
4249 
4250 	MPASS(nports > 0);
4251 	MPASS(navail > 0);
4252 
4253 	bzero(iaq, sizeof(*iaq));
4254 	iaq->intr_type = itype;
4255 	iaq->num_vis = t4_num_vis;
4256 	iaq->ntxq = t4_ntxq;
4257 	iaq->ntxq_vi = t4_ntxq_vi;
4258 	iaq->nrxq = t4_nrxq;
4259 	iaq->nrxq_vi = t4_nrxq_vi;
4260 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4261 	if (is_offload(sc) || is_ethoffload(sc)) {
4262 		iaq->nofldtxq = t4_nofldtxq;
4263 		iaq->nofldtxq_vi = t4_nofldtxq_vi;
4264 	}
4265 #endif
4266 #ifdef TCP_OFFLOAD
4267 	if (is_offload(sc)) {
4268 		iaq->nofldrxq = t4_nofldrxq;
4269 		iaq->nofldrxq_vi = t4_nofldrxq_vi;
4270 	}
4271 #endif
4272 #ifdef DEV_NETMAP
4273 	if (t4_native_netmap & NN_MAIN_VI) {
4274 		iaq->nnmtxq = t4_nnmtxq;
4275 		iaq->nnmrxq = t4_nnmrxq;
4276 	}
4277 	if (t4_native_netmap & NN_EXTRA_VI) {
4278 		iaq->nnmtxq_vi = t4_nnmtxq_vi;
4279 		iaq->nnmrxq_vi = t4_nnmrxq_vi;
4280 	}
4281 #endif
4282 
4283 	update_nirq(iaq, nports);
4284 	if (iaq->nirq <= navail &&
4285 	    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4286 		/*
4287 		 * This is the normal case -- there are enough interrupts for
4288 		 * everything.
4289 		 */
4290 		goto done;
4291 	}
4292 
4293 	/*
4294 	 * If extra VIs have been configured try reducing their count and see if
4295 	 * that works.
4296 	 */
4297 	while (iaq->num_vis > 1) {
4298 		iaq->num_vis--;
4299 		update_nirq(iaq, nports);
4300 		if (iaq->nirq <= navail &&
4301 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4302 			device_printf(sc->dev, "virtual interfaces per port "
4303 			    "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
4304 			    "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
4305 			    "itype %d, navail %u, nirq %d.\n",
4306 			    iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4307 			    iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4308 			    itype, navail, iaq->nirq);
4309 			goto done;
4310 		}
4311 	}
4312 
4313 	/*
4314 	 * Extra VIs will not be created.  Log a message if they were requested.
4315 	 */
4316 	MPASS(iaq->num_vis == 1);
4317 	iaq->ntxq_vi = iaq->nrxq_vi = 0;
4318 	iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4319 	iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4320 	if (iaq->num_vis != t4_num_vis) {
4321 		device_printf(sc->dev, "extra virtual interfaces disabled.  "
4322 		    "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4323 		    "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
4324 		    iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4325 		    iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4326 	}
4327 
4328 	/*
4329 	 * Keep reducing the number of NIC rx queues to the next lower power of
4330 	 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4331 	 * if that works.
4332 	 */
4333 	do {
4334 		if (iaq->nrxq > 1) {
4335 			do {
4336 				iaq->nrxq--;
4337 			} while (!powerof2(iaq->nrxq));
4338 			if (iaq->nnmrxq > iaq->nrxq)
4339 				iaq->nnmrxq = iaq->nrxq;
4340 		}
4341 		if (iaq->nofldrxq > 1)
4342 			iaq->nofldrxq >>= 1;
4343 
4344 		old_nirq = iaq->nirq;
4345 		update_nirq(iaq, nports);
4346 		if (iaq->nirq <= navail &&
4347 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4348 			device_printf(sc->dev, "running with reduced number of "
4349 			    "rx queues because of shortage of interrupts.  "
4350 			    "nrxq=%u, nofldrxq=%u.  "
4351 			    "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4352 			    iaq->nofldrxq, itype, navail, iaq->nirq);
4353 			goto done;
4354 		}
4355 	} while (old_nirq != iaq->nirq);
4356 
4357 	/* One interrupt for everything.  Ugh. */
4358 	device_printf(sc->dev, "running with minimal number of queues.  "
4359 	    "itype %d, navail %u.\n", itype, navail);
4360 	iaq->nirq = 1;
4361 	iaq->nrxq = 1;
4362 	iaq->ntxq = 1;
4363 	if (iaq->nofldrxq > 0) {
4364 		iaq->nofldrxq = 1;
4365 		iaq->nofldtxq = 1;
4366 	}
4367 	iaq->nnmtxq = 0;
4368 	iaq->nnmrxq = 0;
4369 done:
4370 	MPASS(iaq->num_vis > 0);
4371 	if (iaq->num_vis > 1) {
4372 		MPASS(iaq->nrxq_vi > 0);
4373 		MPASS(iaq->ntxq_vi > 0);
4374 	}
4375 	MPASS(iaq->nirq > 0);
4376 	MPASS(iaq->nrxq > 0);
4377 	MPASS(iaq->ntxq > 0);
4378 	if (itype == INTR_MSI) {
4379 		MPASS(powerof2(iaq->nirq));
4380 	}
4381 }
4382 
4383 static int
4384 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4385 {
4386 	int rc, itype, navail, nalloc;
4387 
4388 	for (itype = INTR_MSIX; itype; itype >>= 1) {
4389 
4390 		if ((itype & t4_intr_types) == 0)
4391 			continue;	/* not allowed */
4392 
4393 		if (itype == INTR_MSIX)
4394 			navail = pci_msix_count(sc->dev);
4395 		else if (itype == INTR_MSI)
4396 			navail = pci_msi_count(sc->dev);
4397 		else
4398 			navail = 1;
4399 restart:
4400 		if (navail == 0)
4401 			continue;
4402 
4403 		calculate_iaq(sc, iaq, itype, navail);
4404 		nalloc = iaq->nirq;
4405 		rc = 0;
4406 		if (itype == INTR_MSIX)
4407 			rc = pci_alloc_msix(sc->dev, &nalloc);
4408 		else if (itype == INTR_MSI)
4409 			rc = pci_alloc_msi(sc->dev, &nalloc);
4410 
4411 		if (rc == 0 && nalloc > 0) {
4412 			if (nalloc == iaq->nirq)
4413 				return (0);
4414 
4415 			/*
4416 			 * Didn't get the number requested.  Use whatever number
4417 			 * the kernel is willing to allocate.
4418 			 */
4419 			device_printf(sc->dev, "fewer vectors than requested, "
4420 			    "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4421 			    itype, iaq->nirq, nalloc);
4422 			pci_release_msi(sc->dev);
4423 			navail = nalloc;
4424 			goto restart;
4425 		}
4426 
4427 		device_printf(sc->dev,
4428 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4429 		    itype, rc, iaq->nirq, nalloc);
4430 	}
4431 
4432 	device_printf(sc->dev,
4433 	    "failed to find a usable interrupt type.  "
4434 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4435 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4436 
4437 	return (ENXIO);
4438 }
4439 
4440 #define FW_VERSION(chip) ( \
4441     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4442     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4443     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4444     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4445 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4446 
4447 /* Just enough of fw_hdr to cover all version info. */
4448 struct fw_h {
4449 	__u8	ver;
4450 	__u8	chip;
4451 	__be16	len512;
4452 	__be32	fw_ver;
4453 	__be32	tp_microcode_ver;
4454 	__u8	intfver_nic;
4455 	__u8	intfver_vnic;
4456 	__u8	intfver_ofld;
4457 	__u8	intfver_ri;
4458 	__u8	intfver_iscsipdu;
4459 	__u8	intfver_iscsi;
4460 	__u8	intfver_fcoepdu;
4461 	__u8	intfver_fcoe;
4462 };
4463 /* Spot check a couple of fields. */
4464 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4465 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4466 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4467 
4468 struct fw_info {
4469 	uint8_t chip;
4470 	char *kld_name;
4471 	char *fw_mod_name;
4472 	struct fw_h fw_h;
4473 } fw_info[] = {
4474 	{
4475 		.chip = CHELSIO_T4,
4476 		.kld_name = "t4fw_cfg",
4477 		.fw_mod_name = "t4fw",
4478 		.fw_h = {
4479 			.chip = FW_HDR_CHIP_T4,
4480 			.fw_ver = htobe32(FW_VERSION(T4)),
4481 			.intfver_nic = FW_INTFVER(T4, NIC),
4482 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4483 			.intfver_ofld = FW_INTFVER(T4, OFLD),
4484 			.intfver_ri = FW_INTFVER(T4, RI),
4485 			.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4486 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4487 			.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4488 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4489 		},
4490 	}, {
4491 		.chip = CHELSIO_T5,
4492 		.kld_name = "t5fw_cfg",
4493 		.fw_mod_name = "t5fw",
4494 		.fw_h = {
4495 			.chip = FW_HDR_CHIP_T5,
4496 			.fw_ver = htobe32(FW_VERSION(T5)),
4497 			.intfver_nic = FW_INTFVER(T5, NIC),
4498 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4499 			.intfver_ofld = FW_INTFVER(T5, OFLD),
4500 			.intfver_ri = FW_INTFVER(T5, RI),
4501 			.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4502 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4503 			.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4504 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4505 		},
4506 	}, {
4507 		.chip = CHELSIO_T6,
4508 		.kld_name = "t6fw_cfg",
4509 		.fw_mod_name = "t6fw",
4510 		.fw_h = {
4511 			.chip = FW_HDR_CHIP_T6,
4512 			.fw_ver = htobe32(FW_VERSION(T6)),
4513 			.intfver_nic = FW_INTFVER(T6, NIC),
4514 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4515 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4516 			.intfver_ri = FW_INTFVER(T6, RI),
4517 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4518 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4519 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4520 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4521 		},
4522 	}
4523 };
4524 
4525 static struct fw_info *
4526 find_fw_info(int chip)
4527 {
4528 	int i;
4529 
4530 	for (i = 0; i < nitems(fw_info); i++) {
4531 		if (fw_info[i].chip == chip)
4532 			return (&fw_info[i]);
4533 	}
4534 	return (NULL);
4535 }
4536 
4537 /*
4538  * Is the given firmware API compatible with the one the driver was compiled
4539  * with?
4540  */
4541 static int
4542 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4543 {
4544 
4545 	/* short circuit if it's the exact same firmware version */
4546 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4547 		return (1);
4548 
4549 	/*
4550 	 * XXX: Is this too conservative?  Perhaps I should limit this to the
4551 	 * features that are supported in the driver.
4552 	 */
4553 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4554 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4555 	    SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4556 	    SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4557 		return (1);
4558 #undef SAME_INTF
4559 
4560 	return (0);
4561 }
4562 
4563 static int
4564 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4565     const struct firmware **fw)
4566 {
4567 	struct fw_info *fw_info;
4568 
4569 	*dcfg = NULL;
4570 	if (fw != NULL)
4571 		*fw = NULL;
4572 
4573 	fw_info = find_fw_info(chip_id(sc));
4574 	if (fw_info == NULL) {
4575 		device_printf(sc->dev,
4576 		    "unable to look up firmware information for chip %d.\n",
4577 		    chip_id(sc));
4578 		return (EINVAL);
4579 	}
4580 
4581 	*dcfg = firmware_get(fw_info->kld_name);
4582 	if (*dcfg != NULL) {
4583 		if (fw != NULL)
4584 			*fw = firmware_get(fw_info->fw_mod_name);
4585 		return (0);
4586 	}
4587 
4588 	return (ENOENT);
4589 }
4590 
4591 static void
4592 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4593     const struct firmware *fw)
4594 {
4595 
4596 	if (fw != NULL)
4597 		firmware_put(fw, FIRMWARE_UNLOAD);
4598 	if (dcfg != NULL)
4599 		firmware_put(dcfg, FIRMWARE_UNLOAD);
4600 }
4601 
4602 /*
4603  * Return values:
4604  * 0 means no firmware install attempted.
4605  * ERESTART means a firmware install was attempted and was successful.
4606  * +ve errno means a firmware install was attempted but failed.
4607  */
4608 static int
4609 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4610     const struct fw_h *drv_fw, const char *reason, int *already)
4611 {
4612 	const struct firmware *cfg, *fw;
4613 	const uint32_t c = be32toh(card_fw->fw_ver);
4614 	uint32_t d, k;
4615 	int rc, fw_install;
4616 	struct fw_h bundled_fw;
4617 	bool load_attempted;
4618 
4619 	cfg = fw = NULL;
4620 	load_attempted = false;
4621 	fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4622 
4623 	memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4624 	if (t4_fw_install < 0) {
4625 		rc = load_fw_module(sc, &cfg, &fw);
4626 		if (rc != 0 || fw == NULL) {
4627 			device_printf(sc->dev,
4628 			    "failed to load firmware module: %d. cfg %p, fw %p;"
4629 			    " will use compiled-in firmware version for"
4630 			    "hw.cxgbe.fw_install checks.\n",
4631 			    rc, cfg, fw);
4632 		} else {
4633 			memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
4634 		}
4635 		load_attempted = true;
4636 	}
4637 	d = be32toh(bundled_fw.fw_ver);
4638 
4639 	if (reason != NULL)
4640 		goto install;
4641 
4642 	if ((sc->flags & FW_OK) == 0) {
4643 
4644 		if (c == 0xffffffff) {
4645 			reason = "missing";
4646 			goto install;
4647 		}
4648 
4649 		rc = 0;
4650 		goto done;
4651 	}
4652 
4653 	if (!fw_compatible(card_fw, &bundled_fw)) {
4654 		reason = "incompatible or unusable";
4655 		goto install;
4656 	}
4657 
4658 	if (d > c) {
4659 		reason = "older than the version bundled with this driver";
4660 		goto install;
4661 	}
4662 
4663 	if (fw_install == 2 && d != c) {
4664 		reason = "different than the version bundled with this driver";
4665 		goto install;
4666 	}
4667 
4668 	/* No reason to do anything to the firmware already on the card. */
4669 	rc = 0;
4670 	goto done;
4671 
4672 install:
4673 	rc = 0;
4674 	if ((*already)++)
4675 		goto done;
4676 
4677 	if (fw_install == 0) {
4678 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4679 		    "but the driver is prohibited from installing a firmware "
4680 		    "on the card.\n",
4681 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4682 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4683 
4684 		goto done;
4685 	}
4686 
4687 	/*
4688 	 * We'll attempt to install a firmware.  Load the module first (if it
4689 	 * hasn't been loaded already).
4690 	 */
4691 	if (!load_attempted) {
4692 		rc = load_fw_module(sc, &cfg, &fw);
4693 		if (rc != 0 || fw == NULL) {
4694 			device_printf(sc->dev,
4695 			    "failed to load firmware module: %d. cfg %p, fw %p\n",
4696 			    rc, cfg, fw);
4697 			/* carry on */
4698 		}
4699 	}
4700 	if (fw == NULL) {
4701 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4702 		    "but the driver cannot take corrective action because it "
4703 		    "is unable to load the firmware module.\n",
4704 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4705 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4706 		rc = sc->flags & FW_OK ? 0 : ENOENT;
4707 		goto done;
4708 	}
4709 	k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
4710 	if (k != d) {
4711 		MPASS(t4_fw_install > 0);
4712 		device_printf(sc->dev,
4713 		    "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
4714 		    "expecting (%u.%u.%u.%u) and will not be used.\n",
4715 		    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
4716 		    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
4717 		    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4718 		    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4719 		rc = sc->flags & FW_OK ? 0 : EINVAL;
4720 		goto done;
4721 	}
4722 
4723 	device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4724 	    "installing firmware %u.%u.%u.%u on card.\n",
4725 	    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4726 	    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
4727 	    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4728 	    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4729 
4730 	rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
4731 	if (rc != 0) {
4732 		device_printf(sc->dev, "failed to install firmware: %d\n", rc);
4733 	} else {
4734 		/* Installed successfully, update the cached header too. */
4735 		rc = ERESTART;
4736 		memcpy(card_fw, fw->data, sizeof(*card_fw));
4737 	}
4738 done:
4739 	unload_fw_module(sc, cfg, fw);
4740 
4741 	return (rc);
4742 }
4743 
4744 /*
4745  * Establish contact with the firmware and attempt to become the master driver.
4746  *
4747  * A firmware will be installed to the card if needed (if the driver is allowed
4748  * to do so).
4749  */
4750 static int
4751 contact_firmware(struct adapter *sc)
4752 {
4753 	int rc, already = 0;
4754 	enum dev_state state;
4755 	struct fw_info *fw_info;
4756 	struct fw_hdr *card_fw;		/* fw on the card */
4757 	const struct fw_h *drv_fw;
4758 
4759 	fw_info = find_fw_info(chip_id(sc));
4760 	if (fw_info == NULL) {
4761 		device_printf(sc->dev,
4762 		    "unable to look up firmware information for chip %d.\n",
4763 		    chip_id(sc));
4764 		return (EINVAL);
4765 	}
4766 	drv_fw = &fw_info->fw_h;
4767 
4768 	/* Read the header of the firmware on the card */
4769 	card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
4770 restart:
4771 	rc = -t4_get_fw_hdr(sc, card_fw);
4772 	if (rc != 0) {
4773 		device_printf(sc->dev,
4774 		    "unable to read firmware header from card's flash: %d\n",
4775 		    rc);
4776 		goto done;
4777 	}
4778 
4779 	rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
4780 	    &already);
4781 	if (rc == ERESTART)
4782 		goto restart;
4783 	if (rc != 0)
4784 		goto done;
4785 
4786 	rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
4787 	if (rc < 0 || state == DEV_STATE_ERR) {
4788 		rc = -rc;
4789 		device_printf(sc->dev,
4790 		    "failed to connect to the firmware: %d, %d.  "
4791 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4792 #if 0
4793 		if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4794 		    "not responding properly to HELLO", &already) == ERESTART)
4795 			goto restart;
4796 #endif
4797 		goto done;
4798 	}
4799 	MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
4800 	sc->flags |= FW_OK;	/* The firmware responded to the FW_HELLO. */
4801 
4802 	if (rc == sc->pf) {
4803 		sc->flags |= MASTER_PF;
4804 		rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4805 		    NULL, &already);
4806 		if (rc == ERESTART)
4807 			rc = 0;
4808 		else if (rc != 0)
4809 			goto done;
4810 	} else if (state == DEV_STATE_UNINIT) {
4811 		/*
4812 		 * We didn't get to be the master so we definitely won't be
4813 		 * configuring the chip.  It's a bug if someone else hasn't
4814 		 * configured it already.
4815 		 */
4816 		device_printf(sc->dev, "couldn't be master(%d), "
4817 		    "device not already initialized either(%d).  "
4818 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4819 		rc = EPROTO;
4820 		goto done;
4821 	} else {
4822 		/*
4823 		 * Some other PF is the master and has configured the chip.
4824 		 * This is allowed but untested.
4825 		 */
4826 		device_printf(sc->dev, "PF%d is master, device state %d.  "
4827 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4828 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
4829 		sc->cfcsum = 0;
4830 		rc = 0;
4831 	}
4832 done:
4833 	if (rc != 0 && sc->flags & FW_OK) {
4834 		t4_fw_bye(sc, sc->mbox);
4835 		sc->flags &= ~FW_OK;
4836 	}
4837 	free(card_fw, M_CXGBE);
4838 	return (rc);
4839 }
4840 
4841 static int
4842 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
4843     uint32_t mtype, uint32_t moff)
4844 {
4845 	struct fw_info *fw_info;
4846 	const struct firmware *dcfg, *rcfg = NULL;
4847 	const uint32_t *cfdata;
4848 	uint32_t cflen, addr;
4849 	int rc;
4850 
4851 	load_fw_module(sc, &dcfg, NULL);
4852 
4853 	/* Card specific interpretation of "default". */
4854 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4855 		if (pci_get_device(sc->dev) == 0x440a)
4856 			snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
4857 		if (is_fpga(sc))
4858 			snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
4859 	}
4860 
4861 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4862 		if (dcfg == NULL) {
4863 			device_printf(sc->dev,
4864 			    "KLD with default config is not available.\n");
4865 			rc = ENOENT;
4866 			goto done;
4867 		}
4868 		cfdata = dcfg->data;
4869 		cflen = dcfg->datasize & ~3;
4870 	} else {
4871 		char s[32];
4872 
4873 		fw_info = find_fw_info(chip_id(sc));
4874 		if (fw_info == NULL) {
4875 			device_printf(sc->dev,
4876 			    "unable to look up firmware information for chip %d.\n",
4877 			    chip_id(sc));
4878 			rc = EINVAL;
4879 			goto done;
4880 		}
4881 		snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
4882 
4883 		rcfg = firmware_get(s);
4884 		if (rcfg == NULL) {
4885 			device_printf(sc->dev,
4886 			    "unable to load module \"%s\" for configuration "
4887 			    "profile \"%s\".\n", s, cfg_file);
4888 			rc = ENOENT;
4889 			goto done;
4890 		}
4891 		cfdata = rcfg->data;
4892 		cflen = rcfg->datasize & ~3;
4893 	}
4894 
4895 	if (cflen > FLASH_CFG_MAX_SIZE) {
4896 		device_printf(sc->dev,
4897 		    "config file too long (%d, max allowed is %d).\n",
4898 		    cflen, FLASH_CFG_MAX_SIZE);
4899 		rc = EINVAL;
4900 		goto done;
4901 	}
4902 
4903 	rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
4904 	if (rc != 0) {
4905 		device_printf(sc->dev,
4906 		    "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
4907 		    __func__, mtype, moff, cflen, rc);
4908 		rc = EINVAL;
4909 		goto done;
4910 	}
4911 	write_via_memwin(sc, 2, addr, cfdata, cflen);
4912 done:
4913 	if (rcfg != NULL)
4914 		firmware_put(rcfg, FIRMWARE_UNLOAD);
4915 	unload_fw_module(sc, dcfg, NULL);
4916 	return (rc);
4917 }
4918 
4919 struct caps_allowed {
4920 	uint16_t nbmcaps;
4921 	uint16_t linkcaps;
4922 	uint16_t switchcaps;
4923 	uint16_t niccaps;
4924 	uint16_t toecaps;
4925 	uint16_t rdmacaps;
4926 	uint16_t cryptocaps;
4927 	uint16_t iscsicaps;
4928 	uint16_t fcoecaps;
4929 };
4930 
4931 #define FW_PARAM_DEV(param) \
4932 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
4933 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
4934 #define FW_PARAM_PFVF(param) \
4935 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
4936 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
4937 
4938 /*
4939  * Provide a configuration profile to the firmware and have it initialize the
4940  * chip accordingly.  This may involve uploading a configuration file to the
4941  * card.
4942  */
4943 static int
4944 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
4945     const struct caps_allowed *caps_allowed)
4946 {
4947 	int rc;
4948 	struct fw_caps_config_cmd caps;
4949 	uint32_t mtype, moff, finicsum, cfcsum, param, val;
4950 
4951 	rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
4952 	if (rc != 0) {
4953 		device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
4954 		return (rc);
4955 	}
4956 
4957 	bzero(&caps, sizeof(caps));
4958 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4959 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
4960 	if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
4961 		mtype = 0;
4962 		moff = 0;
4963 		caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
4964 	} else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
4965 		mtype = FW_MEMTYPE_FLASH;
4966 		moff = t4_flash_cfg_addr(sc);
4967 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
4968 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4969 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
4970 		    FW_LEN16(caps));
4971 	} else {
4972 		/*
4973 		 * Ask the firmware where it wants us to upload the config file.
4974 		 */
4975 		param = FW_PARAM_DEV(CF);
4976 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4977 		if (rc != 0) {
4978 			/* No support for config file?  Shouldn't happen. */
4979 			device_printf(sc->dev,
4980 			    "failed to query config file location: %d.\n", rc);
4981 			goto done;
4982 		}
4983 		mtype = G_FW_PARAMS_PARAM_Y(val);
4984 		moff = G_FW_PARAMS_PARAM_Z(val) << 16;
4985 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
4986 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4987 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
4988 		    FW_LEN16(caps));
4989 
4990 		rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
4991 		if (rc != 0) {
4992 			device_printf(sc->dev,
4993 			    "failed to upload config file to card: %d.\n", rc);
4994 			goto done;
4995 		}
4996 	}
4997 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
4998 	if (rc != 0) {
4999 		device_printf(sc->dev, "failed to pre-process config file: %d "
5000 		    "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
5001 		goto done;
5002 	}
5003 
5004 	finicsum = be32toh(caps.finicsum);
5005 	cfcsum = be32toh(caps.cfcsum);	/* actual */
5006 	if (finicsum != cfcsum) {
5007 		device_printf(sc->dev,
5008 		    "WARNING: config file checksum mismatch: %08x %08x\n",
5009 		    finicsum, cfcsum);
5010 	}
5011 	sc->cfcsum = cfcsum;
5012 	snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5013 
5014 	/*
5015 	 * Let the firmware know what features will (not) be used so it can tune
5016 	 * things accordingly.
5017 	 */
5018 #define LIMIT_CAPS(x) do { \
5019 	caps.x##caps &= htobe16(caps_allowed->x##caps); \
5020 } while (0)
5021 	LIMIT_CAPS(nbm);
5022 	LIMIT_CAPS(link);
5023 	LIMIT_CAPS(switch);
5024 	LIMIT_CAPS(nic);
5025 	LIMIT_CAPS(toe);
5026 	LIMIT_CAPS(rdma);
5027 	LIMIT_CAPS(crypto);
5028 	LIMIT_CAPS(iscsi);
5029 	LIMIT_CAPS(fcoe);
5030 #undef LIMIT_CAPS
5031 	if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5032 		/*
5033 		 * TOE and hashfilters are mutually exclusive.  It is a config
5034 		 * file or firmware bug if both are reported as available.  Try
5035 		 * to cope with the situation in non-debug builds by disabling
5036 		 * TOE.
5037 		 */
5038 		MPASS(caps.toecaps == 0);
5039 
5040 		caps.toecaps = 0;
5041 		caps.rdmacaps = 0;
5042 		caps.iscsicaps = 0;
5043 	}
5044 
5045 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5046 	    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5047 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5048 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5049 	if (rc != 0) {
5050 		device_printf(sc->dev,
5051 		    "failed to process config file: %d.\n", rc);
5052 		goto done;
5053 	}
5054 
5055 	t4_tweak_chip_settings(sc);
5056 	set_params__pre_init(sc);
5057 
5058 	/* get basic stuff going */
5059 	rc = -t4_fw_initialize(sc, sc->mbox);
5060 	if (rc != 0) {
5061 		device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5062 		goto done;
5063 	}
5064 done:
5065 	return (rc);
5066 }
5067 
5068 /*
5069  * Partition chip resources for use between various PFs, VFs, etc.
5070  */
5071 static int
5072 partition_resources(struct adapter *sc)
5073 {
5074 	char cfg_file[sizeof(t4_cfg_file)];
5075 	struct caps_allowed caps_allowed;
5076 	int rc;
5077 	bool fallback;
5078 
5079 	/* Only the master driver gets to configure the chip resources. */
5080 	MPASS(sc->flags & MASTER_PF);
5081 
5082 #define COPY_CAPS(x) do { \
5083 	caps_allowed.x##caps = t4_##x##caps_allowed; \
5084 } while (0)
5085 	bzero(&caps_allowed, sizeof(caps_allowed));
5086 	COPY_CAPS(nbm);
5087 	COPY_CAPS(link);
5088 	COPY_CAPS(switch);
5089 	COPY_CAPS(nic);
5090 	COPY_CAPS(toe);
5091 	COPY_CAPS(rdma);
5092 	COPY_CAPS(crypto);
5093 	COPY_CAPS(iscsi);
5094 	COPY_CAPS(fcoe);
5095 	fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5096 	snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5097 retry:
5098 	rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5099 	if (rc != 0 && fallback) {
5100 		dump_devlog(sc);
5101 		device_printf(sc->dev,
5102 		    "failed (%d) to configure card with \"%s\" profile, "
5103 		    "will fall back to a basic configuration and retry.\n",
5104 		    rc, cfg_file);
5105 		snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5106 		bzero(&caps_allowed, sizeof(caps_allowed));
5107 		COPY_CAPS(switch);
5108 		caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5109 		fallback = false;
5110 		goto retry;
5111 	}
5112 #undef COPY_CAPS
5113 	return (rc);
5114 }
5115 
5116 /*
5117  * Retrieve parameters that are needed (or nice to have) very early.
5118  */
5119 static int
5120 get_params__pre_init(struct adapter *sc)
5121 {
5122 	int rc;
5123 	uint32_t param[2], val[2];
5124 
5125 	t4_get_version_info(sc);
5126 
5127 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5128 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5129 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5130 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5131 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5132 
5133 	snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5134 	    G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5135 	    G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5136 	    G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5137 	    G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5138 
5139 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5140 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5141 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5142 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5143 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5144 
5145 	snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5146 	    G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5147 	    G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5148 	    G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5149 	    G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5150 
5151 	param[0] = FW_PARAM_DEV(PORTVEC);
5152 	param[1] = FW_PARAM_DEV(CCLK);
5153 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5154 	if (rc != 0) {
5155 		device_printf(sc->dev,
5156 		    "failed to query parameters (pre_init): %d.\n", rc);
5157 		return (rc);
5158 	}
5159 
5160 	sc->params.portvec = val[0];
5161 	sc->params.nports = bitcount32(val[0]);
5162 	sc->params.vpd.cclk = val[1];
5163 
5164 	/* Read device log parameters. */
5165 	rc = -t4_init_devlog_params(sc, 1);
5166 	if (rc == 0)
5167 		fixup_devlog_params(sc);
5168 	else {
5169 		device_printf(sc->dev,
5170 		    "failed to get devlog parameters: %d.\n", rc);
5171 		rc = 0;	/* devlog isn't critical for device operation */
5172 	}
5173 
5174 	return (rc);
5175 }
5176 
5177 /*
5178  * Any params that need to be set before FW_INITIALIZE.
5179  */
5180 static int
5181 set_params__pre_init(struct adapter *sc)
5182 {
5183 	int rc = 0;
5184 	uint32_t param, val;
5185 
5186 	if (chip_id(sc) >= CHELSIO_T6) {
5187 		param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5188 		val = 1;
5189 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5190 		/* firmwares < 1.20.1.0 do not have this param. */
5191 		if (rc == FW_EINVAL &&
5192 		    sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5193 			rc = 0;
5194 		}
5195 		if (rc != 0) {
5196 			device_printf(sc->dev,
5197 			    "failed to enable high priority filters :%d.\n",
5198 			    rc);
5199 		}
5200 
5201 		param = FW_PARAM_DEV(PPOD_EDRAM);
5202 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5203 		if (rc == 0 && val == 1) {
5204 			rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param,
5205 			    &val);
5206 			if (rc != 0) {
5207 				device_printf(sc->dev,
5208 				    "failed to set PPOD_EDRAM: %d.\n", rc);
5209 			}
5210 		}
5211 	}
5212 
5213 	/* Enable opaque VIIDs with firmwares that support it. */
5214 	param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5215 	val = 1;
5216 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5217 	if (rc == 0 && val == 1)
5218 		sc->params.viid_smt_extn_support = true;
5219 	else
5220 		sc->params.viid_smt_extn_support = false;
5221 
5222 	return (rc);
5223 }
5224 
5225 /*
5226  * Retrieve various parameters that are of interest to the driver.  The device
5227  * has been initialized by the firmware at this point.
5228  */
5229 static int
5230 get_params__post_init(struct adapter *sc)
5231 {
5232 	int rc;
5233 	uint32_t param[7], val[7];
5234 	struct fw_caps_config_cmd caps;
5235 
5236 	param[0] = FW_PARAM_PFVF(IQFLINT_START);
5237 	param[1] = FW_PARAM_PFVF(EQ_START);
5238 	param[2] = FW_PARAM_PFVF(FILTER_START);
5239 	param[3] = FW_PARAM_PFVF(FILTER_END);
5240 	param[4] = FW_PARAM_PFVF(L2T_START);
5241 	param[5] = FW_PARAM_PFVF(L2T_END);
5242 	param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5243 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5244 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5245 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5246 	if (rc != 0) {
5247 		device_printf(sc->dev,
5248 		    "failed to query parameters (post_init): %d.\n", rc);
5249 		return (rc);
5250 	}
5251 
5252 	sc->sge.iq_start = val[0];
5253 	sc->sge.eq_start = val[1];
5254 	if ((int)val[3] > (int)val[2]) {
5255 		sc->tids.ftid_base = val[2];
5256 		sc->tids.ftid_end = val[3];
5257 		sc->tids.nftids = val[3] - val[2] + 1;
5258 	}
5259 	sc->vres.l2t.start = val[4];
5260 	sc->vres.l2t.size = val[5] - val[4] + 1;
5261 	KASSERT(sc->vres.l2t.size <= L2T_SIZE,
5262 	    ("%s: L2 table size (%u) larger than expected (%u)",
5263 	    __func__, sc->vres.l2t.size, L2T_SIZE));
5264 	sc->params.core_vdd = val[6];
5265 
5266 	param[0] = FW_PARAM_PFVF(IQFLINT_END);
5267 	param[1] = FW_PARAM_PFVF(EQ_END);
5268 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5269 	if (rc != 0) {
5270 		device_printf(sc->dev,
5271 		    "failed to query parameters (post_init2): %d.\n", rc);
5272 		return (rc);
5273 	}
5274 	MPASS((int)val[0] >= sc->sge.iq_start);
5275 	sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5276 	MPASS((int)val[1] >= sc->sge.eq_start);
5277 	sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5278 
5279 	if (chip_id(sc) >= CHELSIO_T6) {
5280 
5281 		sc->tids.tid_base = t4_read_reg(sc,
5282 		    A_LE_DB_ACTIVE_TABLE_START_INDEX);
5283 
5284 		param[0] = FW_PARAM_PFVF(HPFILTER_START);
5285 		param[1] = FW_PARAM_PFVF(HPFILTER_END);
5286 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5287 		if (rc != 0) {
5288 			device_printf(sc->dev,
5289 			   "failed to query hpfilter parameters: %d.\n", rc);
5290 			return (rc);
5291 		}
5292 		if ((int)val[1] > (int)val[0]) {
5293 			sc->tids.hpftid_base = val[0];
5294 			sc->tids.hpftid_end = val[1];
5295 			sc->tids.nhpftids = val[1] - val[0] + 1;
5296 
5297 			/*
5298 			 * These should go off if the layout changes and the
5299 			 * driver needs to catch up.
5300 			 */
5301 			MPASS(sc->tids.hpftid_base == 0);
5302 			MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5303 		}
5304 
5305 		param[0] = FW_PARAM_PFVF(RAWF_START);
5306 		param[1] = FW_PARAM_PFVF(RAWF_END);
5307 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5308 		if (rc != 0) {
5309 			device_printf(sc->dev,
5310 			   "failed to query rawf parameters: %d.\n", rc);
5311 			return (rc);
5312 		}
5313 		if ((int)val[1] > (int)val[0]) {
5314 			sc->rawf_base = val[0];
5315 			sc->nrawf = val[1] - val[0] + 1;
5316 		}
5317 	}
5318 
5319 	/*
5320 	 * MPSBGMAP is queried separately because only recent firmwares support
5321 	 * it as a parameter and we don't want the compound query above to fail
5322 	 * on older firmwares.
5323 	 */
5324 	param[0] = FW_PARAM_DEV(MPSBGMAP);
5325 	val[0] = 0;
5326 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5327 	if (rc == 0)
5328 		sc->params.mps_bg_map = val[0];
5329 	else
5330 		sc->params.mps_bg_map = 0;
5331 
5332 	/*
5333 	 * Determine whether the firmware supports the filter2 work request.
5334 	 * This is queried separately for the same reason as MPSBGMAP above.
5335 	 */
5336 	param[0] = FW_PARAM_DEV(FILTER2_WR);
5337 	val[0] = 0;
5338 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5339 	if (rc == 0)
5340 		sc->params.filter2_wr_support = val[0] != 0;
5341 	else
5342 		sc->params.filter2_wr_support = 0;
5343 
5344 	/*
5345 	 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5346 	 * This is queried separately for the same reason as other params above.
5347 	 */
5348 	param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5349 	val[0] = 0;
5350 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5351 	if (rc == 0)
5352 		sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5353 	else
5354 		sc->params.ulptx_memwrite_dsgl = false;
5355 
5356 	/* FW_RI_FR_NSMR_TPTE_WR support */
5357 	param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5358 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5359 	if (rc == 0)
5360 		sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5361 	else
5362 		sc->params.fr_nsmr_tpte_wr_support = false;
5363 
5364 	/* Support for 512 SGL entries per FR MR. */
5365 	param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5366 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5367 	if (rc == 0)
5368 		sc->params.dev_512sgl_mr = val[0] != 0;
5369 	else
5370 		sc->params.dev_512sgl_mr = false;
5371 
5372 	param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5373 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5374 	if (rc == 0)
5375 		sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5376 	else
5377 		sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5378 
5379 	param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5380 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5381 	if (rc == 0) {
5382 		MPASS(val[0] > 0 && val[0] < 256);	/* nsched_cls is 8b */
5383 		sc->params.nsched_cls = val[0];
5384 	} else
5385 		sc->params.nsched_cls = sc->chip_params->nsched_cls;
5386 
5387 	/* get capabilites */
5388 	bzero(&caps, sizeof(caps));
5389 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5390 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
5391 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5392 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5393 	if (rc != 0) {
5394 		device_printf(sc->dev,
5395 		    "failed to get card capabilities: %d.\n", rc);
5396 		return (rc);
5397 	}
5398 
5399 #define READ_CAPS(x) do { \
5400 	sc->x = htobe16(caps.x); \
5401 } while (0)
5402 	READ_CAPS(nbmcaps);
5403 	READ_CAPS(linkcaps);
5404 	READ_CAPS(switchcaps);
5405 	READ_CAPS(niccaps);
5406 	READ_CAPS(toecaps);
5407 	READ_CAPS(rdmacaps);
5408 	READ_CAPS(cryptocaps);
5409 	READ_CAPS(iscsicaps);
5410 	READ_CAPS(fcoecaps);
5411 
5412 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5413 		MPASS(chip_id(sc) > CHELSIO_T4);
5414 		MPASS(sc->toecaps == 0);
5415 		sc->toecaps = 0;
5416 
5417 		param[0] = FW_PARAM_DEV(NTID);
5418 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5419 		if (rc != 0) {
5420 			device_printf(sc->dev,
5421 			    "failed to query HASHFILTER parameters: %d.\n", rc);
5422 			return (rc);
5423 		}
5424 		sc->tids.ntids = val[0];
5425 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5426 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5427 			sc->tids.ntids -= sc->tids.nhpftids;
5428 		}
5429 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5430 		sc->params.hash_filter = 1;
5431 	}
5432 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5433 		param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5434 		param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5435 		param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5436 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5437 		if (rc != 0) {
5438 			device_printf(sc->dev,
5439 			    "failed to query NIC parameters: %d.\n", rc);
5440 			return (rc);
5441 		}
5442 		if ((int)val[1] > (int)val[0]) {
5443 			sc->tids.etid_base = val[0];
5444 			sc->tids.etid_end = val[1];
5445 			sc->tids.netids = val[1] - val[0] + 1;
5446 			sc->params.eo_wr_cred = val[2];
5447 			sc->params.ethoffload = 1;
5448 		}
5449 	}
5450 	if (sc->toecaps) {
5451 		/* query offload-related parameters */
5452 		param[0] = FW_PARAM_DEV(NTID);
5453 		param[1] = FW_PARAM_PFVF(SERVER_START);
5454 		param[2] = FW_PARAM_PFVF(SERVER_END);
5455 		param[3] = FW_PARAM_PFVF(TDDP_START);
5456 		param[4] = FW_PARAM_PFVF(TDDP_END);
5457 		param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5458 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5459 		if (rc != 0) {
5460 			device_printf(sc->dev,
5461 			    "failed to query TOE parameters: %d.\n", rc);
5462 			return (rc);
5463 		}
5464 		sc->tids.ntids = val[0];
5465 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5466 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5467 			sc->tids.ntids -= sc->tids.nhpftids;
5468 		}
5469 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5470 		if ((int)val[2] > (int)val[1]) {
5471 			sc->tids.stid_base = val[1];
5472 			sc->tids.nstids = val[2] - val[1] + 1;
5473 		}
5474 		sc->vres.ddp.start = val[3];
5475 		sc->vres.ddp.size = val[4] - val[3] + 1;
5476 		sc->params.ofldq_wr_cred = val[5];
5477 		sc->params.offload = 1;
5478 	} else {
5479 		/*
5480 		 * The firmware attempts memfree TOE configuration for -SO cards
5481 		 * and will report toecaps=0 if it runs out of resources (this
5482 		 * depends on the config file).  It may not report 0 for other
5483 		 * capabilities dependent on the TOE in this case.  Set them to
5484 		 * 0 here so that the driver doesn't bother tracking resources
5485 		 * that will never be used.
5486 		 */
5487 		sc->iscsicaps = 0;
5488 		sc->rdmacaps = 0;
5489 	}
5490 	if (sc->rdmacaps) {
5491 		param[0] = FW_PARAM_PFVF(STAG_START);
5492 		param[1] = FW_PARAM_PFVF(STAG_END);
5493 		param[2] = FW_PARAM_PFVF(RQ_START);
5494 		param[3] = FW_PARAM_PFVF(RQ_END);
5495 		param[4] = FW_PARAM_PFVF(PBL_START);
5496 		param[5] = FW_PARAM_PFVF(PBL_END);
5497 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5498 		if (rc != 0) {
5499 			device_printf(sc->dev,
5500 			    "failed to query RDMA parameters(1): %d.\n", rc);
5501 			return (rc);
5502 		}
5503 		sc->vres.stag.start = val[0];
5504 		sc->vres.stag.size = val[1] - val[0] + 1;
5505 		sc->vres.rq.start = val[2];
5506 		sc->vres.rq.size = val[3] - val[2] + 1;
5507 		sc->vres.pbl.start = val[4];
5508 		sc->vres.pbl.size = val[5] - val[4] + 1;
5509 
5510 		param[0] = FW_PARAM_PFVF(SQRQ_START);
5511 		param[1] = FW_PARAM_PFVF(SQRQ_END);
5512 		param[2] = FW_PARAM_PFVF(CQ_START);
5513 		param[3] = FW_PARAM_PFVF(CQ_END);
5514 		param[4] = FW_PARAM_PFVF(OCQ_START);
5515 		param[5] = FW_PARAM_PFVF(OCQ_END);
5516 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5517 		if (rc != 0) {
5518 			device_printf(sc->dev,
5519 			    "failed to query RDMA parameters(2): %d.\n", rc);
5520 			return (rc);
5521 		}
5522 		sc->vres.qp.start = val[0];
5523 		sc->vres.qp.size = val[1] - val[0] + 1;
5524 		sc->vres.cq.start = val[2];
5525 		sc->vres.cq.size = val[3] - val[2] + 1;
5526 		sc->vres.ocq.start = val[4];
5527 		sc->vres.ocq.size = val[5] - val[4] + 1;
5528 
5529 		param[0] = FW_PARAM_PFVF(SRQ_START);
5530 		param[1] = FW_PARAM_PFVF(SRQ_END);
5531 		param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
5532 		param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5533 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5534 		if (rc != 0) {
5535 			device_printf(sc->dev,
5536 			    "failed to query RDMA parameters(3): %d.\n", rc);
5537 			return (rc);
5538 		}
5539 		sc->vres.srq.start = val[0];
5540 		sc->vres.srq.size = val[1] - val[0] + 1;
5541 		sc->params.max_ordird_qp = val[2];
5542 		sc->params.max_ird_adapter = val[3];
5543 	}
5544 	if (sc->iscsicaps) {
5545 		param[0] = FW_PARAM_PFVF(ISCSI_START);
5546 		param[1] = FW_PARAM_PFVF(ISCSI_END);
5547 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5548 		if (rc != 0) {
5549 			device_printf(sc->dev,
5550 			    "failed to query iSCSI parameters: %d.\n", rc);
5551 			return (rc);
5552 		}
5553 		sc->vres.iscsi.start = val[0];
5554 		sc->vres.iscsi.size = val[1] - val[0] + 1;
5555 	}
5556 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5557 		param[0] = FW_PARAM_PFVF(TLS_START);
5558 		param[1] = FW_PARAM_PFVF(TLS_END);
5559 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5560 		if (rc != 0) {
5561 			device_printf(sc->dev,
5562 			    "failed to query TLS parameters: %d.\n", rc);
5563 			return (rc);
5564 		}
5565 		sc->vres.key.start = val[0];
5566 		sc->vres.key.size = val[1] - val[0] + 1;
5567 	}
5568 
5569 	/*
5570 	 * We've got the params we wanted to query directly from the firmware.
5571 	 * Grab some others via other means.
5572 	 */
5573 	t4_init_sge_params(sc);
5574 	t4_init_tp_params(sc);
5575 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5576 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5577 
5578 	rc = t4_verify_chip_settings(sc);
5579 	if (rc != 0)
5580 		return (rc);
5581 	t4_init_rx_buf_info(sc);
5582 
5583 	return (rc);
5584 }
5585 
5586 #ifdef KERN_TLS
5587 static void
5588 ktls_tick(void *arg)
5589 {
5590 	struct adapter *sc;
5591 	uint32_t tstamp;
5592 
5593 	sc = arg;
5594 	tstamp = tcp_ts_getticks();
5595 	t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
5596 	t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
5597 	callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
5598 }
5599 
5600 static int
5601 t6_config_kern_tls(struct adapter *sc, bool enable)
5602 {
5603 	int rc;
5604 	uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5605 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
5606 	    V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
5607 	    V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
5608 
5609 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &param);
5610 	if (rc != 0) {
5611 		CH_ERR(sc, "failed to %s NIC TLS: %d\n",
5612 		    enable ?  "enable" : "disable", rc);
5613 		return (rc);
5614 	}
5615 
5616 	if (enable) {
5617 		sc->flags |= KERN_TLS_ON;
5618 		callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
5619 		    C_HARDCLOCK);
5620 	} else {
5621 		sc->flags &= ~KERN_TLS_ON;
5622 		callout_stop(&sc->ktls_tick);
5623 	}
5624 
5625 	return (rc);
5626 }
5627 #endif
5628 
5629 static int
5630 set_params__post_init(struct adapter *sc)
5631 {
5632 	uint32_t mask, param, val;
5633 #ifdef TCP_OFFLOAD
5634 	int i, v, shift;
5635 #endif
5636 
5637 	/* ask for encapsulated CPLs */
5638 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5639 	val = 1;
5640 	(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5641 
5642 	/* Enable 32b port caps if the firmware supports it. */
5643 	param = FW_PARAM_PFVF(PORT_CAPS32);
5644 	val = 1;
5645 	if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val) == 0)
5646 		sc->params.port_caps32 = 1;
5647 
5648 	/* Let filter + maskhash steer to a part of the VI's RSS region. */
5649 	val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
5650 	t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
5651 	    V_MASKFILTER(val - 1));
5652 
5653 	mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
5654 	    F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
5655 	    F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5656 	    F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
5657 	val = 0;
5658 	if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
5659 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
5660 		    F_ATTACKFILTERENABLE);
5661 		val |= F_DROPERRORATTACK;
5662 	}
5663 	if (t4_drop_ip_fragments != 0) {
5664 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
5665 		    F_FRAGMENTDROP);
5666 		val |= F_DROPERRORFRAG;
5667 	}
5668 	if (t4_drop_pkts_with_l2_errors != 0)
5669 		val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
5670 	if (t4_drop_pkts_with_l3_errors != 0) {
5671 		val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
5672 		    F_DROPERRORCSUMIP;
5673 	}
5674 	if (t4_drop_pkts_with_l4_errors != 0) {
5675 		val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5676 		    F_DROPERRORTCPOPT | F_DROPERRORCSUM;
5677 	}
5678 	t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
5679 
5680 #ifdef TCP_OFFLOAD
5681 	/*
5682 	 * Override the TOE timers with user provided tunables.  This is not the
5683 	 * recommended way to change the timers (the firmware config file is) so
5684 	 * these tunables are not documented.
5685 	 *
5686 	 * All the timer tunables are in microseconds.
5687 	 */
5688 	if (t4_toe_keepalive_idle != 0) {
5689 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
5690 		v &= M_KEEPALIVEIDLE;
5691 		t4_set_reg_field(sc, A_TP_KEEP_IDLE,
5692 		    V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
5693 	}
5694 	if (t4_toe_keepalive_interval != 0) {
5695 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
5696 		v &= M_KEEPALIVEINTVL;
5697 		t4_set_reg_field(sc, A_TP_KEEP_INTVL,
5698 		    V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
5699 	}
5700 	if (t4_toe_keepalive_count != 0) {
5701 		v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
5702 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5703 		    V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
5704 		    V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
5705 		    V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
5706 	}
5707 	if (t4_toe_rexmt_min != 0) {
5708 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
5709 		v &= M_RXTMIN;
5710 		t4_set_reg_field(sc, A_TP_RXT_MIN,
5711 		    V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
5712 	}
5713 	if (t4_toe_rexmt_max != 0) {
5714 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
5715 		v &= M_RXTMAX;
5716 		t4_set_reg_field(sc, A_TP_RXT_MAX,
5717 		    V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
5718 	}
5719 	if (t4_toe_rexmt_count != 0) {
5720 		v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
5721 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5722 		    V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
5723 		    V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
5724 		    V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
5725 	}
5726 	for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
5727 		if (t4_toe_rexmt_backoff[i] != -1) {
5728 			v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
5729 			shift = (i & 3) << 3;
5730 			t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
5731 			    M_TIMERBACKOFFINDEX0 << shift, v << shift);
5732 		}
5733 	}
5734 #endif
5735 
5736 	/*
5737 	 * Limit TOE connections to 2 reassembly "islands".  This is
5738 	 * required to permit migrating TOE connections to either
5739 	 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
5740 	 */
5741 	t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
5742 	    V_PASSMODE(2));
5743 
5744 #ifdef KERN_TLS
5745 	if (is_ktls(sc)) {
5746 		sc->tlst.inline_keys = t4_tls_inline_keys;
5747 		sc->tlst.combo_wrs = t4_tls_combo_wrs;
5748 		if (t4_kern_tls != 0 && is_t6(sc))
5749 			t6_config_kern_tls(sc, true);
5750 	}
5751 #endif
5752 	return (0);
5753 }
5754 
5755 #undef FW_PARAM_PFVF
5756 #undef FW_PARAM_DEV
5757 
5758 static void
5759 t4_set_desc(struct adapter *sc)
5760 {
5761 	char buf[128];
5762 	struct adapter_params *p = &sc->params;
5763 
5764 	snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
5765 
5766 	device_set_desc_copy(sc->dev, buf);
5767 }
5768 
5769 static inline void
5770 ifmedia_add4(struct ifmedia *ifm, int m)
5771 {
5772 
5773 	ifmedia_add(ifm, m, 0, NULL);
5774 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
5775 	ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
5776 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
5777 }
5778 
5779 /*
5780  * This is the selected media, which is not quite the same as the active media.
5781  * The media line in ifconfig is "media: Ethernet selected (active)" if selected
5782  * and active are not the same, and "media: Ethernet selected" otherwise.
5783  */
5784 static void
5785 set_current_media(struct port_info *pi)
5786 {
5787 	struct link_config *lc;
5788 	struct ifmedia *ifm;
5789 	int mword;
5790 	u_int speed;
5791 
5792 	PORT_LOCK_ASSERT_OWNED(pi);
5793 
5794 	/* Leave current media alone if it's already set to IFM_NONE. */
5795 	ifm = &pi->media;
5796 	if (ifm->ifm_cur != NULL &&
5797 	    IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
5798 		return;
5799 
5800 	lc = &pi->link_cfg;
5801 	if (lc->requested_aneg != AUTONEG_DISABLE &&
5802 	    lc->pcaps & FW_PORT_CAP32_ANEG) {
5803 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
5804 		return;
5805 	}
5806 	mword = IFM_ETHER | IFM_FDX;
5807 	if (lc->requested_fc & PAUSE_TX)
5808 		mword |= IFM_ETH_TXPAUSE;
5809 	if (lc->requested_fc & PAUSE_RX)
5810 		mword |= IFM_ETH_RXPAUSE;
5811 	if (lc->requested_speed == 0)
5812 		speed = port_top_speed(pi) * 1000;	/* Gbps -> Mbps */
5813 	else
5814 		speed = lc->requested_speed;
5815 	mword |= port_mword(pi, speed_to_fwcap(speed));
5816 	ifmedia_set(ifm, mword);
5817 }
5818 
5819 /*
5820  * Returns true if the ifmedia list for the port cannot change.
5821  */
5822 static bool
5823 fixed_ifmedia(struct port_info *pi)
5824 {
5825 
5826 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
5827 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
5828 	    pi->port_type == FW_PORT_TYPE_BT_XAUI ||
5829 	    pi->port_type == FW_PORT_TYPE_KX4 ||
5830 	    pi->port_type == FW_PORT_TYPE_KX ||
5831 	    pi->port_type == FW_PORT_TYPE_KR ||
5832 	    pi->port_type == FW_PORT_TYPE_BP_AP ||
5833 	    pi->port_type == FW_PORT_TYPE_BP4_AP ||
5834 	    pi->port_type == FW_PORT_TYPE_BP40_BA ||
5835 	    pi->port_type == FW_PORT_TYPE_KR4_100G ||
5836 	    pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
5837 	    pi->port_type == FW_PORT_TYPE_KR_XLAUI);
5838 }
5839 
5840 static void
5841 build_medialist(struct port_info *pi)
5842 {
5843 	uint32_t ss, speed;
5844 	int unknown, mword, bit;
5845 	struct link_config *lc;
5846 	struct ifmedia *ifm;
5847 
5848 	PORT_LOCK_ASSERT_OWNED(pi);
5849 
5850 	if (pi->flags & FIXED_IFMEDIA)
5851 		return;
5852 
5853 	/*
5854 	 * Rebuild the ifmedia list.
5855 	 */
5856 	ifm = &pi->media;
5857 	ifmedia_removeall(ifm);
5858 	lc = &pi->link_cfg;
5859 	ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
5860 	if (__predict_false(ss == 0)) {	/* not supposed to happen. */
5861 		MPASS(ss != 0);
5862 no_media:
5863 		MPASS(LIST_EMPTY(&ifm->ifm_list));
5864 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
5865 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
5866 		return;
5867 	}
5868 
5869 	unknown = 0;
5870 	for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
5871 		speed = 1 << bit;
5872 		MPASS(speed & M_FW_PORT_CAP32_SPEED);
5873 		if (ss & speed) {
5874 			mword = port_mword(pi, speed);
5875 			if (mword == IFM_NONE) {
5876 				goto no_media;
5877 			} else if (mword == IFM_UNKNOWN)
5878 				unknown++;
5879 			else
5880 				ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
5881 		}
5882 	}
5883 	if (unknown > 0) /* Add one unknown for all unknown media types. */
5884 		ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
5885 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
5886 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
5887 
5888 	set_current_media(pi);
5889 }
5890 
5891 /*
5892  * Initialize the requested fields in the link config based on driver tunables.
5893  */
5894 static void
5895 init_link_config(struct port_info *pi)
5896 {
5897 	struct link_config *lc = &pi->link_cfg;
5898 
5899 	PORT_LOCK_ASSERT_OWNED(pi);
5900 
5901 	lc->requested_caps = 0;
5902 	lc->requested_speed = 0;
5903 
5904 	if (t4_autoneg == 0)
5905 		lc->requested_aneg = AUTONEG_DISABLE;
5906 	else if (t4_autoneg == 1)
5907 		lc->requested_aneg = AUTONEG_ENABLE;
5908 	else
5909 		lc->requested_aneg = AUTONEG_AUTO;
5910 
5911 	lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
5912 	    PAUSE_AUTONEG);
5913 
5914 	if (t4_fec & FEC_AUTO)
5915 		lc->requested_fec = FEC_AUTO;
5916 	else if (t4_fec == 0)
5917 		lc->requested_fec = FEC_NONE;
5918 	else {
5919 		/* -1 is handled by the FEC_AUTO block above and not here. */
5920 		lc->requested_fec = t4_fec &
5921 		    (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
5922 		if (lc->requested_fec == 0)
5923 			lc->requested_fec = FEC_AUTO;
5924 	}
5925 	if (t4_force_fec < 0)
5926 		lc->force_fec = -1;
5927 	else if (t4_force_fec > 0)
5928 		lc->force_fec = 1;
5929 	else
5930 		lc->force_fec = 0;
5931 }
5932 
5933 /*
5934  * Makes sure that all requested settings comply with what's supported by the
5935  * port.  Returns the number of settings that were invalid and had to be fixed.
5936  */
5937 static int
5938 fixup_link_config(struct port_info *pi)
5939 {
5940 	int n = 0;
5941 	struct link_config *lc = &pi->link_cfg;
5942 	uint32_t fwspeed;
5943 
5944 	PORT_LOCK_ASSERT_OWNED(pi);
5945 
5946 	/* Speed (when not autonegotiating) */
5947 	if (lc->requested_speed != 0) {
5948 		fwspeed = speed_to_fwcap(lc->requested_speed);
5949 		if ((fwspeed & lc->pcaps) == 0) {
5950 			n++;
5951 			lc->requested_speed = 0;
5952 		}
5953 	}
5954 
5955 	/* Link autonegotiation */
5956 	MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
5957 	    lc->requested_aneg == AUTONEG_DISABLE ||
5958 	    lc->requested_aneg == AUTONEG_AUTO);
5959 	if (lc->requested_aneg == AUTONEG_ENABLE &&
5960 	    !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
5961 		n++;
5962 		lc->requested_aneg = AUTONEG_AUTO;
5963 	}
5964 
5965 	/* Flow control */
5966 	MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
5967 	if (lc->requested_fc & PAUSE_TX &&
5968 	    !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
5969 		n++;
5970 		lc->requested_fc &= ~PAUSE_TX;
5971 	}
5972 	if (lc->requested_fc & PAUSE_RX &&
5973 	    !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
5974 		n++;
5975 		lc->requested_fc &= ~PAUSE_RX;
5976 	}
5977 	if (!(lc->requested_fc & PAUSE_AUTONEG) &&
5978 	    !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
5979 		n++;
5980 		lc->requested_fc |= PAUSE_AUTONEG;
5981 	}
5982 
5983 	/* FEC */
5984 	if ((lc->requested_fec & FEC_RS &&
5985 	    !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
5986 	    (lc->requested_fec & FEC_BASER_RS &&
5987 	    !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
5988 		n++;
5989 		lc->requested_fec = FEC_AUTO;
5990 	}
5991 
5992 	return (n);
5993 }
5994 
5995 /*
5996  * Apply the requested L1 settings, which are expected to be valid, to the
5997  * hardware.
5998  */
5999 static int
6000 apply_link_config(struct port_info *pi)
6001 {
6002 	struct adapter *sc = pi->adapter;
6003 	struct link_config *lc = &pi->link_cfg;
6004 	int rc;
6005 
6006 #ifdef INVARIANTS
6007 	ASSERT_SYNCHRONIZED_OP(sc);
6008 	PORT_LOCK_ASSERT_OWNED(pi);
6009 
6010 	if (lc->requested_aneg == AUTONEG_ENABLE)
6011 		MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6012 	if (!(lc->requested_fc & PAUSE_AUTONEG))
6013 		MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6014 	if (lc->requested_fc & PAUSE_TX)
6015 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6016 	if (lc->requested_fc & PAUSE_RX)
6017 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6018 	if (lc->requested_fec & FEC_RS)
6019 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6020 	if (lc->requested_fec & FEC_BASER_RS)
6021 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6022 #endif
6023 	rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6024 	if (rc != 0) {
6025 		/* Don't complain if the VF driver gets back an EPERM. */
6026 		if (!(sc->flags & IS_VF) || rc != FW_EPERM)
6027 			device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6028 	} else {
6029 		/*
6030 		 * An L1_CFG will almost always result in a link-change event if
6031 		 * the link is up, and the driver will refresh the actual
6032 		 * fec/fc/etc. when the notification is processed.  If the link
6033 		 * is down then the actual settings are meaningless.
6034 		 *
6035 		 * This takes care of the case where a change in the L1 settings
6036 		 * may not result in a notification.
6037 		 */
6038 		if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6039 			lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6040 	}
6041 	return (rc);
6042 }
6043 
6044 #define FW_MAC_EXACT_CHUNK	7
6045 struct mcaddr_ctx {
6046 	if_t ifp;
6047 	const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6048 	uint64_t hash;
6049 	int i;
6050 	int del;
6051 	int rc;
6052 };
6053 
6054 static u_int
6055 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6056 {
6057 	struct mcaddr_ctx *ctx = arg;
6058 	struct vi_info *vi = if_getsoftc(ctx->ifp);
6059 	struct port_info *pi = vi->pi;
6060 	struct adapter *sc = pi->adapter;
6061 
6062 	if (ctx->rc < 0)
6063 		return (0);
6064 
6065 	ctx->mcaddr[ctx->i] = LLADDR(sdl);
6066 	MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6067 	ctx->i++;
6068 
6069 	if (ctx->i == FW_MAC_EXACT_CHUNK) {
6070 		ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6071 		    ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6072 		if (ctx->rc < 0) {
6073 			int j;
6074 
6075 			for (j = 0; j < ctx->i; j++) {
6076 				if_printf(ctx->ifp,
6077 				    "failed to add mc address"
6078 				    " %02x:%02x:%02x:"
6079 				    "%02x:%02x:%02x rc=%d\n",
6080 				    ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6081 				    ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6082 				    ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6083 				    -ctx->rc);
6084 			}
6085 			return (0);
6086 		}
6087 		ctx->del = 0;
6088 		ctx->i = 0;
6089 	}
6090 
6091 	return (1);
6092 }
6093 
6094 /*
6095  * Program the port's XGMAC based on parameters in ifnet.  The caller also
6096  * indicates which parameters should be programmed (the rest are left alone).
6097  */
6098 int
6099 update_mac_settings(if_t ifp, int flags)
6100 {
6101 	int rc = 0;
6102 	struct vi_info *vi = if_getsoftc(ifp);
6103 	struct port_info *pi = vi->pi;
6104 	struct adapter *sc = pi->adapter;
6105 	int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6106 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6107 
6108 	ASSERT_SYNCHRONIZED_OP(sc);
6109 	KASSERT(flags, ("%s: not told what to update.", __func__));
6110 
6111 	if (flags & XGMAC_MTU)
6112 		mtu = if_getmtu(ifp);
6113 
6114 	if (flags & XGMAC_PROMISC)
6115 		promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6116 
6117 	if (flags & XGMAC_ALLMULTI)
6118 		allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6119 
6120 	if (flags & XGMAC_VLANEX)
6121 		vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6122 
6123 	if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6124 		rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6125 		    allmulti, 1, vlanex, false);
6126 		if (rc) {
6127 			if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6128 			    rc);
6129 			return (rc);
6130 		}
6131 	}
6132 
6133 	if (flags & XGMAC_UCADDR) {
6134 		uint8_t ucaddr[ETHER_ADDR_LEN];
6135 
6136 		bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6137 		rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6138 		    ucaddr, true, &vi->smt_idx);
6139 		if (rc < 0) {
6140 			rc = -rc;
6141 			if_printf(ifp, "change_mac failed: %d\n", rc);
6142 			return (rc);
6143 		} else {
6144 			vi->xact_addr_filt = rc;
6145 			rc = 0;
6146 		}
6147 	}
6148 
6149 	if (flags & XGMAC_MCADDRS) {
6150 		struct epoch_tracker et;
6151 		struct mcaddr_ctx ctx;
6152 		int j;
6153 
6154 		ctx.ifp = ifp;
6155 		ctx.hash = 0;
6156 		ctx.i = 0;
6157 		ctx.del = 1;
6158 		ctx.rc = 0;
6159 		/*
6160 		 * Unlike other drivers, we accumulate list of pointers into
6161 		 * interface address lists and we need to keep it safe even
6162 		 * after if_foreach_llmaddr() returns, thus we must enter the
6163 		 * network epoch.
6164 		 */
6165 		NET_EPOCH_ENTER(et);
6166 		if_foreach_llmaddr(ifp, add_maddr, &ctx);
6167 		if (ctx.rc < 0) {
6168 			NET_EPOCH_EXIT(et);
6169 			rc = -ctx.rc;
6170 			return (rc);
6171 		}
6172 		if (ctx.i > 0) {
6173 			rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6174 			    ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6175 			NET_EPOCH_EXIT(et);
6176 			if (rc < 0) {
6177 				rc = -rc;
6178 				for (j = 0; j < ctx.i; j++) {
6179 					if_printf(ifp,
6180 					    "failed to add mcast address"
6181 					    " %02x:%02x:%02x:"
6182 					    "%02x:%02x:%02x rc=%d\n",
6183 					    ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6184 					    ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6185 					    ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6186 					    rc);
6187 				}
6188 				return (rc);
6189 			}
6190 			ctx.del = 0;
6191 		} else
6192 			NET_EPOCH_EXIT(et);
6193 
6194 		rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6195 		if (rc != 0)
6196 			if_printf(ifp, "failed to set mcast address hash: %d\n",
6197 			    rc);
6198 		if (ctx.del == 0) {
6199 			/* We clobbered the VXLAN entry if there was one. */
6200 			pi->vxlan_tcam_entry = false;
6201 		}
6202 	}
6203 
6204 	if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6205 	    pi->vxlan_tcam_entry == false) {
6206 		rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6207 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6208 		    true);
6209 		if (rc < 0) {
6210 			rc = -rc;
6211 			if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6212 			    rc);
6213 		} else {
6214 			MPASS(rc == sc->rawf_base + pi->port_id);
6215 			rc = 0;
6216 			pi->vxlan_tcam_entry = true;
6217 		}
6218 	}
6219 
6220 	return (rc);
6221 }
6222 
6223 /*
6224  * {begin|end}_synchronized_op must be called from the same thread.
6225  */
6226 int
6227 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6228     char *wmesg)
6229 {
6230 	int rc, pri;
6231 
6232 #ifdef WITNESS
6233 	/* the caller thinks it's ok to sleep, but is it really? */
6234 	if (flags & SLEEP_OK)
6235 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
6236 		    "begin_synchronized_op");
6237 #endif
6238 
6239 	if (INTR_OK)
6240 		pri = PCATCH;
6241 	else
6242 		pri = 0;
6243 
6244 	ADAPTER_LOCK(sc);
6245 	for (;;) {
6246 
6247 		if (vi && IS_DETACHING(vi)) {
6248 			rc = ENXIO;
6249 			goto done;
6250 		}
6251 
6252 		if (!IS_BUSY(sc)) {
6253 			rc = 0;
6254 			break;
6255 		}
6256 
6257 		if (!(flags & SLEEP_OK)) {
6258 			rc = EBUSY;
6259 			goto done;
6260 		}
6261 
6262 		if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
6263 			rc = EINTR;
6264 			goto done;
6265 		}
6266 	}
6267 
6268 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6269 	SET_BUSY(sc);
6270 #ifdef INVARIANTS
6271 	sc->last_op = wmesg;
6272 	sc->last_op_thr = curthread;
6273 	sc->last_op_flags = flags;
6274 #endif
6275 
6276 done:
6277 	if (!(flags & HOLD_LOCK) || rc)
6278 		ADAPTER_UNLOCK(sc);
6279 
6280 	return (rc);
6281 }
6282 
6283 /*
6284  * Tell if_ioctl and if_init that the VI is going away.  This is
6285  * special variant of begin_synchronized_op and must be paired with a
6286  * call to end_vi_detach.
6287  */
6288 void
6289 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6290 {
6291 	ADAPTER_LOCK(sc);
6292 	SET_DETACHING(vi);
6293 	wakeup(&sc->flags);
6294 	while (IS_BUSY(sc))
6295 		mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6296 	SET_BUSY(sc);
6297 #ifdef INVARIANTS
6298 	sc->last_op = "t4detach";
6299 	sc->last_op_thr = curthread;
6300 	sc->last_op_flags = 0;
6301 #endif
6302 	ADAPTER_UNLOCK(sc);
6303 }
6304 
6305 void
6306 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6307 {
6308 	ADAPTER_LOCK(sc);
6309 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6310 	CLR_BUSY(sc);
6311 	CLR_DETACHING(vi);
6312 	wakeup(&sc->flags);
6313 	ADAPTER_UNLOCK(sc);
6314 }
6315 
6316 /*
6317  * {begin|end}_synchronized_op must be called from the same thread.
6318  */
6319 void
6320 end_synchronized_op(struct adapter *sc, int flags)
6321 {
6322 
6323 	if (flags & LOCK_HELD)
6324 		ADAPTER_LOCK_ASSERT_OWNED(sc);
6325 	else
6326 		ADAPTER_LOCK(sc);
6327 
6328 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6329 	CLR_BUSY(sc);
6330 	wakeup(&sc->flags);
6331 	ADAPTER_UNLOCK(sc);
6332 }
6333 
6334 static int
6335 cxgbe_init_synchronized(struct vi_info *vi)
6336 {
6337 	struct port_info *pi = vi->pi;
6338 	struct adapter *sc = pi->adapter;
6339 	if_t ifp = vi->ifp;
6340 	int rc = 0, i;
6341 	struct sge_txq *txq;
6342 
6343 	ASSERT_SYNCHRONIZED_OP(sc);
6344 
6345 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6346 		return (0);	/* already running */
6347 
6348 	if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6349 		return (rc);	/* error message displayed already */
6350 
6351 	if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6352 		return (rc); /* error message displayed already */
6353 
6354 	rc = update_mac_settings(ifp, XGMAC_ALL);
6355 	if (rc)
6356 		goto done;	/* error message displayed already */
6357 
6358 	PORT_LOCK(pi);
6359 	if (pi->up_vis == 0) {
6360 		t4_update_port_info(pi);
6361 		fixup_link_config(pi);
6362 		build_medialist(pi);
6363 		apply_link_config(pi);
6364 	}
6365 
6366 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6367 	if (rc != 0) {
6368 		if_printf(ifp, "enable_vi failed: %d\n", rc);
6369 		PORT_UNLOCK(pi);
6370 		goto done;
6371 	}
6372 
6373 	/*
6374 	 * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
6375 	 * if this changes.
6376 	 */
6377 
6378 	for_each_txq(vi, i, txq) {
6379 		TXQ_LOCK(txq);
6380 		txq->eq.flags |= EQ_ENABLED;
6381 		TXQ_UNLOCK(txq);
6382 	}
6383 
6384 	/*
6385 	 * The first iq of the first port to come up is used for tracing.
6386 	 */
6387 	if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6388 		sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6389 		t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
6390 		    A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
6391 		    V_QUEUENUMBER(sc->traceq));
6392 		pi->flags |= HAS_TRACEQ;
6393 	}
6394 
6395 	/* all ok */
6396 	pi->up_vis++;
6397 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6398 	if (pi->link_cfg.link_ok)
6399 		t4_os_link_changed(pi);
6400 	PORT_UNLOCK(pi);
6401 
6402 	mtx_lock(&vi->tick_mtx);
6403 	if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6404 		callout_reset(&vi->tick, hz, vi_tick, vi);
6405 	else
6406 		callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6407 	mtx_unlock(&vi->tick_mtx);
6408 done:
6409 	if (rc != 0)
6410 		cxgbe_uninit_synchronized(vi);
6411 
6412 	return (rc);
6413 }
6414 
6415 /*
6416  * Idempotent.
6417  */
6418 static int
6419 cxgbe_uninit_synchronized(struct vi_info *vi)
6420 {
6421 	struct port_info *pi = vi->pi;
6422 	struct adapter *sc = pi->adapter;
6423 	if_t ifp = vi->ifp;
6424 	int rc, i;
6425 	struct sge_txq *txq;
6426 
6427 	ASSERT_SYNCHRONIZED_OP(sc);
6428 
6429 	if (!(vi->flags & VI_INIT_DONE)) {
6430 		if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6431 			KASSERT(0, ("uninited VI is running"));
6432 			if_printf(ifp, "uninited VI with running ifnet.  "
6433 			    "vi->flags 0x%016lx, if_flags 0x%08x, "
6434 			    "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6435 			    if_getdrvflags(ifp));
6436 		}
6437 		return (0);
6438 	}
6439 
6440 	/*
6441 	 * Disable the VI so that all its data in either direction is discarded
6442 	 * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
6443 	 * tick) intact as the TP can deliver negative advice or data that it's
6444 	 * holding in its RAM (for an offloaded connection) even after the VI is
6445 	 * disabled.
6446 	 */
6447 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6448 	if (rc) {
6449 		if_printf(ifp, "disable_vi failed: %d\n", rc);
6450 		return (rc);
6451 	}
6452 
6453 	for_each_txq(vi, i, txq) {
6454 		TXQ_LOCK(txq);
6455 		txq->eq.flags &= ~EQ_ENABLED;
6456 		TXQ_UNLOCK(txq);
6457 	}
6458 
6459 	mtx_lock(&vi->tick_mtx);
6460 	callout_stop(&vi->tick);
6461 	mtx_unlock(&vi->tick_mtx);
6462 
6463 	PORT_LOCK(pi);
6464 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6465 		PORT_UNLOCK(pi);
6466 		return (0);
6467 	}
6468 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6469 	pi->up_vis--;
6470 	if (pi->up_vis > 0) {
6471 		PORT_UNLOCK(pi);
6472 		return (0);
6473 	}
6474 
6475 	pi->link_cfg.link_ok = false;
6476 	pi->link_cfg.speed = 0;
6477 	pi->link_cfg.link_down_rc = 255;
6478 	t4_os_link_changed(pi);
6479 	PORT_UNLOCK(pi);
6480 
6481 	return (0);
6482 }
6483 
6484 /*
6485  * It is ok for this function to fail midway and return right away.  t4_detach
6486  * will walk the entire sc->irq list and clean up whatever is valid.
6487  */
6488 int
6489 t4_setup_intr_handlers(struct adapter *sc)
6490 {
6491 	int rc, rid, p, q, v;
6492 	char s[8];
6493 	struct irq *irq;
6494 	struct port_info *pi;
6495 	struct vi_info *vi;
6496 	struct sge *sge = &sc->sge;
6497 	struct sge_rxq *rxq;
6498 #ifdef TCP_OFFLOAD
6499 	struct sge_ofld_rxq *ofld_rxq;
6500 #endif
6501 #ifdef DEV_NETMAP
6502 	struct sge_nm_rxq *nm_rxq;
6503 #endif
6504 #ifdef RSS
6505 	int nbuckets = rss_getnumbuckets();
6506 #endif
6507 
6508 	/*
6509 	 * Setup interrupts.
6510 	 */
6511 	irq = &sc->irq[0];
6512 	rid = sc->intr_type == INTR_INTX ? 0 : 1;
6513 	if (forwarding_intr_to_fwq(sc))
6514 		return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6515 
6516 	/* Multiple interrupts. */
6517 	if (sc->flags & IS_VF)
6518 		KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6519 		    ("%s: too few intr.", __func__));
6520 	else
6521 		KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6522 		    ("%s: too few intr.", __func__));
6523 
6524 	/* The first one is always error intr on PFs */
6525 	if (!(sc->flags & IS_VF)) {
6526 		rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6527 		if (rc != 0)
6528 			return (rc);
6529 		irq++;
6530 		rid++;
6531 	}
6532 
6533 	/* The second one is always the firmware event queue (first on VFs) */
6534 	rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6535 	if (rc != 0)
6536 		return (rc);
6537 	irq++;
6538 	rid++;
6539 
6540 	for_each_port(sc, p) {
6541 		pi = sc->port[p];
6542 		for_each_vi(pi, v, vi) {
6543 			vi->first_intr = rid - 1;
6544 
6545 			if (vi->nnmrxq > 0) {
6546 				int n = max(vi->nrxq, vi->nnmrxq);
6547 
6548 				rxq = &sge->rxq[vi->first_rxq];
6549 #ifdef DEV_NETMAP
6550 				nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6551 #endif
6552 				for (q = 0; q < n; q++) {
6553 					snprintf(s, sizeof(s), "%x%c%x", p,
6554 					    'a' + v, q);
6555 					if (q < vi->nrxq)
6556 						irq->rxq = rxq++;
6557 #ifdef DEV_NETMAP
6558 					if (q < vi->nnmrxq)
6559 						irq->nm_rxq = nm_rxq++;
6560 
6561 					if (irq->nm_rxq != NULL &&
6562 					    irq->rxq == NULL) {
6563 						/* Netmap rx only */
6564 						rc = t4_alloc_irq(sc, irq, rid,
6565 						    t4_nm_intr, irq->nm_rxq, s);
6566 					}
6567 					if (irq->nm_rxq != NULL &&
6568 					    irq->rxq != NULL) {
6569 						/* NIC and Netmap rx */
6570 						rc = t4_alloc_irq(sc, irq, rid,
6571 						    t4_vi_intr, irq, s);
6572 					}
6573 #endif
6574 					if (irq->rxq != NULL &&
6575 					    irq->nm_rxq == NULL) {
6576 						/* NIC rx only */
6577 						rc = t4_alloc_irq(sc, irq, rid,
6578 						    t4_intr, irq->rxq, s);
6579 					}
6580 					if (rc != 0)
6581 						return (rc);
6582 #ifdef RSS
6583 					if (q < vi->nrxq) {
6584 						bus_bind_intr(sc->dev, irq->res,
6585 						    rss_getcpu(q % nbuckets));
6586 					}
6587 #endif
6588 					irq++;
6589 					rid++;
6590 					vi->nintr++;
6591 				}
6592 			} else {
6593 				for_each_rxq(vi, q, rxq) {
6594 					snprintf(s, sizeof(s), "%x%c%x", p,
6595 					    'a' + v, q);
6596 					rc = t4_alloc_irq(sc, irq, rid,
6597 					    t4_intr, rxq, s);
6598 					if (rc != 0)
6599 						return (rc);
6600 #ifdef RSS
6601 					bus_bind_intr(sc->dev, irq->res,
6602 					    rss_getcpu(q % nbuckets));
6603 #endif
6604 					irq++;
6605 					rid++;
6606 					vi->nintr++;
6607 				}
6608 			}
6609 #ifdef TCP_OFFLOAD
6610 			for_each_ofld_rxq(vi, q, ofld_rxq) {
6611 				snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
6612 				rc = t4_alloc_irq(sc, irq, rid, t4_intr,
6613 				    ofld_rxq, s);
6614 				if (rc != 0)
6615 					return (rc);
6616 				irq++;
6617 				rid++;
6618 				vi->nintr++;
6619 			}
6620 #endif
6621 		}
6622 	}
6623 	MPASS(irq == &sc->irq[sc->intr_count]);
6624 
6625 	return (0);
6626 }
6627 
6628 static void
6629 write_global_rss_key(struct adapter *sc)
6630 {
6631 #ifdef RSS
6632 	int i;
6633 	uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6634 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6635 
6636 	CTASSERT(RSS_KEYSIZE == 40);
6637 
6638 	rss_getkey((void *)&raw_rss_key[0]);
6639 	for (i = 0; i < nitems(rss_key); i++) {
6640 		rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
6641 	}
6642 	t4_write_rss_key(sc, &rss_key[0], -1, 1);
6643 #endif
6644 }
6645 
6646 /*
6647  * Idempotent.
6648  */
6649 static int
6650 adapter_full_init(struct adapter *sc)
6651 {
6652 	int rc, i;
6653 
6654 	ASSERT_SYNCHRONIZED_OP(sc);
6655 
6656 	/*
6657 	 * queues that belong to the adapter (not any particular port).
6658 	 */
6659 	rc = t4_setup_adapter_queues(sc);
6660 	if (rc != 0)
6661 		return (rc);
6662 
6663 	for (i = 0; i < nitems(sc->tq); i++) {
6664 		if (sc->tq[i] != NULL)
6665 			continue;
6666 		sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
6667 		    taskqueue_thread_enqueue, &sc->tq[i]);
6668 		if (sc->tq[i] == NULL) {
6669 			CH_ERR(sc, "failed to allocate task queue %d\n", i);
6670 			return (ENOMEM);
6671 		}
6672 		taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
6673 		    device_get_nameunit(sc->dev), i);
6674 	}
6675 
6676 	if (!(sc->flags & IS_VF)) {
6677 		write_global_rss_key(sc);
6678 		t4_intr_enable(sc);
6679 	}
6680 	return (0);
6681 }
6682 
6683 int
6684 adapter_init(struct adapter *sc)
6685 {
6686 	int rc;
6687 
6688 	ASSERT_SYNCHRONIZED_OP(sc);
6689 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
6690 	KASSERT((sc->flags & FULL_INIT_DONE) == 0,
6691 	    ("%s: FULL_INIT_DONE already", __func__));
6692 
6693 	rc = adapter_full_init(sc);
6694 	if (rc != 0)
6695 		adapter_full_uninit(sc);
6696 	else
6697 		sc->flags |= FULL_INIT_DONE;
6698 
6699 	return (rc);
6700 }
6701 
6702 /*
6703  * Idempotent.
6704  */
6705 static void
6706 adapter_full_uninit(struct adapter *sc)
6707 {
6708 	int i;
6709 
6710 	t4_teardown_adapter_queues(sc);
6711 
6712 	for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
6713 		taskqueue_free(sc->tq[i]);
6714 		sc->tq[i] = NULL;
6715 	}
6716 
6717 	sc->flags &= ~FULL_INIT_DONE;
6718 }
6719 
6720 #ifdef RSS
6721 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
6722     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
6723     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
6724     RSS_HASHTYPE_RSS_UDP_IPV6)
6725 
6726 /* Translates kernel hash types to hardware. */
6727 static int
6728 hashconfig_to_hashen(int hashconfig)
6729 {
6730 	int hashen = 0;
6731 
6732 	if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
6733 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
6734 	if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
6735 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
6736 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
6737 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6738 		    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6739 	}
6740 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
6741 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6742 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6743 	}
6744 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
6745 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6746 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
6747 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6748 
6749 	return (hashen);
6750 }
6751 
6752 /* Translates hardware hash types to kernel. */
6753 static int
6754 hashen_to_hashconfig(int hashen)
6755 {
6756 	int hashconfig = 0;
6757 
6758 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
6759 		/*
6760 		 * If UDP hashing was enabled it must have been enabled for
6761 		 * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
6762 		 * enabling any 4-tuple hash is nonsense configuration.
6763 		 */
6764 		MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6765 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
6766 
6767 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6768 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
6769 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6770 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
6771 	}
6772 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6773 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
6774 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6775 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
6776 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
6777 		hashconfig |= RSS_HASHTYPE_RSS_IPV4;
6778 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
6779 		hashconfig |= RSS_HASHTYPE_RSS_IPV6;
6780 
6781 	return (hashconfig);
6782 }
6783 #endif
6784 
6785 /*
6786  * Idempotent.
6787  */
6788 static int
6789 vi_full_init(struct vi_info *vi)
6790 {
6791 	struct adapter *sc = vi->adapter;
6792 	struct sge_rxq *rxq;
6793 	int rc, i, j;
6794 #ifdef RSS
6795 	int nbuckets = rss_getnumbuckets();
6796 	int hashconfig = rss_gethashconfig();
6797 	int extra;
6798 #endif
6799 
6800 	ASSERT_SYNCHRONIZED_OP(sc);
6801 
6802 	/*
6803 	 * Allocate tx/rx/fl queues for this VI.
6804 	 */
6805 	rc = t4_setup_vi_queues(vi);
6806 	if (rc != 0)
6807 		return (rc);
6808 
6809 	/*
6810 	 * Setup RSS for this VI.  Save a copy of the RSS table for later use.
6811 	 */
6812 	if (vi->nrxq > vi->rss_size) {
6813 		CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
6814 		    "some queues will never receive traffic.\n", vi->nrxq,
6815 		    vi->rss_size);
6816 	} else if (vi->rss_size % vi->nrxq) {
6817 		CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
6818 		    "expect uneven traffic distribution.\n", vi->nrxq,
6819 		    vi->rss_size);
6820 	}
6821 #ifdef RSS
6822 	if (vi->nrxq != nbuckets) {
6823 		CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
6824 		    "performance will be impacted.\n", vi->nrxq, nbuckets);
6825 	}
6826 #endif
6827 	if (vi->rss == NULL)
6828 		vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
6829 		    M_ZERO | M_WAITOK);
6830 	for (i = 0; i < vi->rss_size;) {
6831 #ifdef RSS
6832 		j = rss_get_indirection_to_bucket(i);
6833 		j %= vi->nrxq;
6834 		rxq = &sc->sge.rxq[vi->first_rxq + j];
6835 		vi->rss[i++] = rxq->iq.abs_id;
6836 #else
6837 		for_each_rxq(vi, j, rxq) {
6838 			vi->rss[i++] = rxq->iq.abs_id;
6839 			if (i == vi->rss_size)
6840 				break;
6841 		}
6842 #endif
6843 	}
6844 
6845 	rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
6846 	    vi->rss, vi->rss_size);
6847 	if (rc != 0) {
6848 		CH_ERR(vi, "rss_config failed: %d\n", rc);
6849 		return (rc);
6850 	}
6851 
6852 #ifdef RSS
6853 	vi->hashen = hashconfig_to_hashen(hashconfig);
6854 
6855 	/*
6856 	 * We may have had to enable some hashes even though the global config
6857 	 * wants them disabled.  This is a potential problem that must be
6858 	 * reported to the user.
6859 	 */
6860 	extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
6861 
6862 	/*
6863 	 * If we consider only the supported hash types, then the enabled hashes
6864 	 * are a superset of the requested hashes.  In other words, there cannot
6865 	 * be any supported hash that was requested but not enabled, but there
6866 	 * can be hashes that were not requested but had to be enabled.
6867 	 */
6868 	extra &= SUPPORTED_RSS_HASHTYPES;
6869 	MPASS((extra & hashconfig) == 0);
6870 
6871 	if (extra) {
6872 		CH_ALERT(vi,
6873 		    "global RSS config (0x%x) cannot be accommodated.\n",
6874 		    hashconfig);
6875 	}
6876 	if (extra & RSS_HASHTYPE_RSS_IPV4)
6877 		CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
6878 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
6879 		CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
6880 	if (extra & RSS_HASHTYPE_RSS_IPV6)
6881 		CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
6882 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
6883 		CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
6884 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
6885 		CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
6886 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
6887 		CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
6888 #else
6889 	vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
6890 	    F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
6891 	    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6892 	    F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
6893 #endif
6894 	rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
6895 	    0, 0);
6896 	if (rc != 0) {
6897 		CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
6898 		return (rc);
6899 	}
6900 
6901 	return (0);
6902 }
6903 
6904 int
6905 vi_init(struct vi_info *vi)
6906 {
6907 	int rc;
6908 
6909 	ASSERT_SYNCHRONIZED_OP(vi->adapter);
6910 	KASSERT((vi->flags & VI_INIT_DONE) == 0,
6911 	    ("%s: VI_INIT_DONE already", __func__));
6912 
6913 	rc = vi_full_init(vi);
6914 	if (rc != 0)
6915 		vi_full_uninit(vi);
6916 	else
6917 		vi->flags |= VI_INIT_DONE;
6918 
6919 	return (rc);
6920 }
6921 
6922 /*
6923  * Idempotent.
6924  */
6925 static void
6926 vi_full_uninit(struct vi_info *vi)
6927 {
6928 
6929 	if (vi->flags & VI_INIT_DONE) {
6930 		quiesce_vi(vi);
6931 		free(vi->rss, M_CXGBE);
6932 		free(vi->nm_rss, M_CXGBE);
6933 	}
6934 
6935 	t4_teardown_vi_queues(vi);
6936 	vi->flags &= ~VI_INIT_DONE;
6937 }
6938 
6939 static void
6940 quiesce_txq(struct sge_txq *txq)
6941 {
6942 	struct sge_eq *eq = &txq->eq;
6943 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6944 
6945 	MPASS(eq->flags & EQ_SW_ALLOCATED);
6946 	MPASS(!(eq->flags & EQ_ENABLED));
6947 
6948 	/* Wait for the mp_ring to empty. */
6949 	while (!mp_ring_is_idle(txq->r)) {
6950 		mp_ring_check_drainage(txq->r, 4096);
6951 		pause("rquiesce", 1);
6952 	}
6953 	MPASS(txq->txp.npkt == 0);
6954 
6955 	if (eq->flags & EQ_HW_ALLOCATED) {
6956 		/*
6957 		 * Hardware is alive and working normally.  Wait for it to
6958 		 * finish and then wait for the driver to catch up and reclaim
6959 		 * all descriptors.
6960 		 */
6961 		while (spg->cidx != htobe16(eq->pidx))
6962 			pause("equiesce", 1);
6963 		while (eq->cidx != eq->pidx)
6964 			pause("dquiesce", 1);
6965 	} else {
6966 		/*
6967 		 * Hardware is unavailable.  Discard all pending tx and reclaim
6968 		 * descriptors directly.
6969 		 */
6970 		TXQ_LOCK(txq);
6971 		while (eq->cidx != eq->pidx) {
6972 			struct mbuf *m, *nextpkt;
6973 			struct tx_sdesc *txsd;
6974 
6975 			txsd = &txq->sdesc[eq->cidx];
6976 			for (m = txsd->m; m != NULL; m = nextpkt) {
6977 				nextpkt = m->m_nextpkt;
6978 				m->m_nextpkt = NULL;
6979 				m_freem(m);
6980 			}
6981 			IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
6982 		}
6983 		spg->pidx = spg->cidx = htobe16(eq->cidx);
6984 		TXQ_UNLOCK(txq);
6985 	}
6986 }
6987 
6988 static void
6989 quiesce_wrq(struct sge_wrq *wrq)
6990 {
6991 
6992 	/* XXXTX */
6993 }
6994 
6995 static void
6996 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
6997 {
6998 	/* Synchronize with the interrupt handler */
6999 	while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7000 		pause("iqfree", 1);
7001 
7002 	if (fl != NULL) {
7003 		MPASS(iq->flags & IQ_HAS_FL);
7004 
7005 		mtx_lock(&sc->sfl_lock);
7006 		FL_LOCK(fl);
7007 		fl->flags |= FL_DOOMED;
7008 		FL_UNLOCK(fl);
7009 		callout_stop(&sc->sfl_callout);
7010 		mtx_unlock(&sc->sfl_lock);
7011 
7012 		KASSERT((fl->flags & FL_STARVING) == 0,
7013 		    ("%s: still starving", __func__));
7014 
7015 		/* Release all buffers if hardware is no longer available. */
7016 		if (!(iq->flags & IQ_HW_ALLOCATED))
7017 			free_fl_buffers(sc, fl);
7018 	}
7019 }
7020 
7021 /*
7022  * Wait for all activity on all the queues of the VI to complete.  It is assumed
7023  * that no new work is being enqueued by the hardware or the driver.  That part
7024  * should be arranged before calling this function.
7025  */
7026 static void
7027 quiesce_vi(struct vi_info *vi)
7028 {
7029 	int i;
7030 	struct adapter *sc = vi->adapter;
7031 	struct sge_rxq *rxq;
7032 	struct sge_txq *txq;
7033 #ifdef TCP_OFFLOAD
7034 	struct sge_ofld_rxq *ofld_rxq;
7035 #endif
7036 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7037 	struct sge_ofld_txq *ofld_txq;
7038 #endif
7039 
7040 	if (!(vi->flags & VI_INIT_DONE))
7041 		return;
7042 
7043 	for_each_txq(vi, i, txq) {
7044 		quiesce_txq(txq);
7045 	}
7046 
7047 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7048 	for_each_ofld_txq(vi, i, ofld_txq) {
7049 		quiesce_wrq(&ofld_txq->wrq);
7050 	}
7051 #endif
7052 
7053 	for_each_rxq(vi, i, rxq) {
7054 		quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7055 	}
7056 
7057 #ifdef TCP_OFFLOAD
7058 	for_each_ofld_rxq(vi, i, ofld_rxq) {
7059 		quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7060 	}
7061 #endif
7062 }
7063 
7064 static int
7065 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7066     driver_intr_t *handler, void *arg, char *name)
7067 {
7068 	int rc;
7069 
7070 	irq->rid = rid;
7071 	irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7072 	    RF_SHAREABLE | RF_ACTIVE);
7073 	if (irq->res == NULL) {
7074 		device_printf(sc->dev,
7075 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7076 		return (ENOMEM);
7077 	}
7078 
7079 	rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7080 	    NULL, handler, arg, &irq->tag);
7081 	if (rc != 0) {
7082 		device_printf(sc->dev,
7083 		    "failed to setup interrupt for rid %d, name %s: %d\n",
7084 		    rid, name, rc);
7085 	} else if (name)
7086 		bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7087 
7088 	return (rc);
7089 }
7090 
7091 static int
7092 t4_free_irq(struct adapter *sc, struct irq *irq)
7093 {
7094 	if (irq->tag)
7095 		bus_teardown_intr(sc->dev, irq->res, irq->tag);
7096 	if (irq->res)
7097 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7098 
7099 	bzero(irq, sizeof(*irq));
7100 
7101 	return (0);
7102 }
7103 
7104 static void
7105 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7106 {
7107 
7108 	regs->version = chip_id(sc) | chip_rev(sc) << 10;
7109 	t4_get_regs(sc, buf, regs->len);
7110 }
7111 
7112 #define	A_PL_INDIR_CMD	0x1f8
7113 
7114 #define	S_PL_AUTOINC	31
7115 #define	M_PL_AUTOINC	0x1U
7116 #define	V_PL_AUTOINC(x)	((x) << S_PL_AUTOINC)
7117 #define	G_PL_AUTOINC(x)	(((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7118 
7119 #define	S_PL_VFID	20
7120 #define	M_PL_VFID	0xffU
7121 #define	V_PL_VFID(x)	((x) << S_PL_VFID)
7122 #define	G_PL_VFID(x)	(((x) >> S_PL_VFID) & M_PL_VFID)
7123 
7124 #define	S_PL_ADDR	0
7125 #define	M_PL_ADDR	0xfffffU
7126 #define	V_PL_ADDR(x)	((x) << S_PL_ADDR)
7127 #define	G_PL_ADDR(x)	(((x) >> S_PL_ADDR) & M_PL_ADDR)
7128 
7129 #define	A_PL_INDIR_DATA	0x1fc
7130 
7131 static uint64_t
7132 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7133 {
7134 	u32 stats[2];
7135 
7136 	if (sc->flags & IS_VF) {
7137 		stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7138 		stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7139 	} else {
7140 		mtx_assert(&sc->reg_lock, MA_OWNED);
7141 		t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7142 		    V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7143 		stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7144 		stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7145 	}
7146 	return (((uint64_t)stats[1]) << 32 | stats[0]);
7147 }
7148 
7149 static void
7150 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7151 {
7152 
7153 #define GET_STAT(name) \
7154 	read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7155 
7156 	if (!(sc->flags & IS_VF))
7157 		mtx_lock(&sc->reg_lock);
7158 	stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
7159 	stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
7160 	stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
7161 	stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
7162 	stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
7163 	stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
7164 	stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
7165 	stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
7166 	stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7167 	stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
7168 	stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
7169 	stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
7170 	stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
7171 	stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
7172 	stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
7173 	stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
7174 	if (!(sc->flags & IS_VF))
7175 		mtx_unlock(&sc->reg_lock);
7176 
7177 #undef GET_STAT
7178 }
7179 
7180 static void
7181 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7182 {
7183 	int reg;
7184 
7185 	t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7186 	    V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7187 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7188 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7189 		t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7190 }
7191 
7192 static void
7193 vi_refresh_stats(struct vi_info *vi)
7194 {
7195 	struct timeval tv;
7196 	const struct timeval interval = {0, 250000};	/* 250ms */
7197 
7198 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7199 
7200 	if (vi->flags & VI_SKIP_STATS)
7201 		return;
7202 
7203 	getmicrotime(&tv);
7204 	timevalsub(&tv, &interval);
7205 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7206 		return;
7207 
7208 	t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7209 	getmicrotime(&vi->last_refreshed);
7210 }
7211 
7212 static void
7213 cxgbe_refresh_stats(struct vi_info *vi)
7214 {
7215 	u_int i, v, tnl_cong_drops, chan_map;
7216 	struct timeval tv;
7217 	const struct timeval interval = {0, 250000};	/* 250ms */
7218 	struct port_info *pi;
7219 	struct adapter *sc;
7220 
7221 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7222 
7223 	if (vi->flags & VI_SKIP_STATS)
7224 		return;
7225 
7226 	getmicrotime(&tv);
7227 	timevalsub(&tv, &interval);
7228 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7229 		return;
7230 
7231 	pi = vi->pi;
7232 	sc = vi->adapter;
7233 	tnl_cong_drops = 0;
7234 	t4_get_port_stats(sc, pi->port_id, &pi->stats);
7235 	chan_map = pi->rx_e_chan_map;
7236 	while (chan_map) {
7237 		i = ffs(chan_map) - 1;
7238 		mtx_lock(&sc->reg_lock);
7239 		t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7240 		    A_TP_MIB_TNL_CNG_DROP_0 + i);
7241 		mtx_unlock(&sc->reg_lock);
7242 		tnl_cong_drops += v;
7243 		chan_map &= ~(1 << i);
7244 	}
7245 	pi->tnl_cong_drops = tnl_cong_drops;
7246 	getmicrotime(&vi->last_refreshed);
7247 }
7248 
7249 static void
7250 cxgbe_tick(void *arg)
7251 {
7252 	struct vi_info *vi = arg;
7253 
7254 	MPASS(IS_MAIN_VI(vi));
7255 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7256 
7257 	cxgbe_refresh_stats(vi);
7258 	callout_schedule(&vi->tick, hz);
7259 }
7260 
7261 static void
7262 vi_tick(void *arg)
7263 {
7264 	struct vi_info *vi = arg;
7265 
7266 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7267 
7268 	vi_refresh_stats(vi);
7269 	callout_schedule(&vi->tick, hz);
7270 }
7271 
7272 /*
7273  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7274  */
7275 static char *caps_decoder[] = {
7276 	"\20\001IPMI\002NCSI",				/* 0: NBM */
7277 	"\20\001PPP\002QFC\003DCBX",			/* 1: link */
7278 	"\20\001INGRESS\002EGRESS",			/* 2: switch */
7279 	"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"	/* 3: NIC */
7280 	    "\006HASHFILTER\007ETHOFLD",
7281 	"\20\001TOE",					/* 4: TOE */
7282 	"\20\001RDDP\002RDMAC",				/* 5: RDMA */
7283 	"\20\001INITIATOR_PDU\002TARGET_PDU"		/* 6: iSCSI */
7284 	    "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7285 	    "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7286 	    "\007T10DIF"
7287 	    "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7288 	"\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE"	/* 7: Crypto */
7289 	    "\004TLS_HW",
7290 	"\20\001INITIATOR\002TARGET\003CTRL_OFLD"	/* 8: FCoE */
7291 		    "\004PO_INITIATOR\005PO_TARGET",
7292 };
7293 
7294 void
7295 t4_sysctls(struct adapter *sc)
7296 {
7297 	struct sysctl_ctx_list *ctx = &sc->ctx;
7298 	struct sysctl_oid *oid;
7299 	struct sysctl_oid_list *children, *c0;
7300 	static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7301 
7302 	/*
7303 	 * dev.t4nex.X.
7304 	 */
7305 	oid = device_get_sysctl_tree(sc->dev);
7306 	c0 = children = SYSCTL_CHILDREN(oid);
7307 
7308 	sc->sc_do_rxcopy = 1;
7309 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7310 	    &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7311 
7312 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7313 	    sc->params.nports, "# of ports");
7314 
7315 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7316 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7317 	    (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7318 	    "available doorbells");
7319 
7320 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7321 	    sc->params.vpd.cclk, "core clock frequency (in KHz)");
7322 
7323 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7324 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7325 	    sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7326 	    sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7327 
7328 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7329 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7330 	    sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7331 	    sysctl_int_array, "A", "interrupt holdoff packet counter values");
7332 
7333 	t4_sge_sysctls(sc, ctx, children);
7334 
7335 	sc->lro_timeout = 100;
7336 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7337 	    &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7338 
7339 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7340 	    &sc->debug_flags, 0, "flags to enable runtime debugging");
7341 
7342 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7343 	    CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7344 
7345 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7346 	    CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7347 
7348 	if (sc->flags & IS_VF)
7349 		return;
7350 
7351 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7352 	    NULL, chip_rev(sc), "chip hardware revision");
7353 
7354 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7355 	    CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7356 
7357 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7358 	    CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7359 
7360 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7361 	    CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7362 
7363 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7364 	    CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7365 
7366 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7367 	    CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7368 
7369 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7370 	    sc->er_version, 0, "expansion ROM version");
7371 
7372 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7373 	    sc->bs_version, 0, "bootstrap firmware version");
7374 
7375 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7376 	    NULL, sc->params.scfg_vers, "serial config version");
7377 
7378 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7379 	    NULL, sc->params.vpd_vers, "VPD version");
7380 
7381 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7382 	    CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7383 
7384 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7385 	    sc->cfcsum, "config file checksum");
7386 
7387 #define SYSCTL_CAP(name, n, text) \
7388 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7389 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7390 	    (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7391 	    "available " text " capabilities")
7392 
7393 	SYSCTL_CAP(nbmcaps, 0, "NBM");
7394 	SYSCTL_CAP(linkcaps, 1, "link");
7395 	SYSCTL_CAP(switchcaps, 2, "switch");
7396 	SYSCTL_CAP(niccaps, 3, "NIC");
7397 	SYSCTL_CAP(toecaps, 4, "TCP offload");
7398 	SYSCTL_CAP(rdmacaps, 5, "RDMA");
7399 	SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7400 	SYSCTL_CAP(cryptocaps, 7, "crypto");
7401 	SYSCTL_CAP(fcoecaps, 8, "FCoE");
7402 #undef SYSCTL_CAP
7403 
7404 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7405 	    NULL, sc->tids.nftids, "number of filters");
7406 
7407 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7408 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7409 	    sysctl_temperature, "I", "chip temperature (in Celsius)");
7410 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7411 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7412 	    sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7413 
7414 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg",
7415 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7416 	    sysctl_loadavg, "A",
7417 	    "microprocessor load averages (debug firmwares only)");
7418 
7419 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7420 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7421 	    "I", "core Vdd (in mV)");
7422 
7423 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7424 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7425 	    sysctl_cpus, "A", "local CPUs");
7426 
7427 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7428 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7429 	    sysctl_cpus, "A", "preferred CPUs for interrupts");
7430 
7431 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7432 	    &sc->swintr, 0, "software triggered interrupts");
7433 
7434 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7435 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7436 	    "1 = reset adapter, 0 = zero reset counter");
7437 
7438 	/*
7439 	 * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
7440 	 */
7441 	oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7442 	    CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
7443 	    "logs and miscellaneous information");
7444 	children = SYSCTL_CHILDREN(oid);
7445 
7446 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
7447 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7448 	    sysctl_cctrl, "A", "congestion control");
7449 
7450 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
7451 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7452 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
7453 
7454 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
7455 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7456 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
7457 
7458 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
7459 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7460 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
7461 
7462 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
7463 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3,
7464 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
7465 
7466 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
7467 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4,
7468 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
7469 
7470 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
7471 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5,
7472 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
7473 
7474 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
7475 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7476 	    sysctl_cim_la, "A", "CIM logic analyzer");
7477 
7478 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
7479 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7480 	    sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7481 
7482 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
7483 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7484 	    0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
7485 
7486 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
7487 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7488 	    1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
7489 
7490 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
7491 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7492 	    2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
7493 
7494 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
7495 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7496 	    3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
7497 
7498 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
7499 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7500 	    4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
7501 
7502 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
7503 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7504 	    5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
7505 
7506 	if (chip_id(sc) > CHELSIO_T4) {
7507 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
7508 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7509 		    6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7510 		    "CIM OBQ 6 (SGE0-RX)");
7511 
7512 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
7513 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7514 		    7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7515 		    "CIM OBQ 7 (SGE1-RX)");
7516 	}
7517 
7518 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
7519 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7520 	    sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7521 
7522 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
7523 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7524 	    sysctl_cim_qcfg, "A", "CIM queue configuration");
7525 
7526 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
7527 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7528 	    sysctl_cpl_stats, "A", "CPL statistics");
7529 
7530 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
7531 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7532 	    sysctl_ddp_stats, "A", "non-TCP DDP statistics");
7533 
7534 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
7535 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7536 	    sysctl_tid_stats, "A", "tid stats");
7537 
7538 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
7539 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7540 	    sysctl_devlog, "A", "firmware's device log");
7541 
7542 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
7543 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7544 	    sysctl_fcoe_stats, "A", "FCoE statistics");
7545 
7546 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
7547 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7548 	    sysctl_hw_sched, "A", "hardware scheduler ");
7549 
7550 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
7551 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7552 	    sysctl_l2t, "A", "hardware L2 table");
7553 
7554 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
7555 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7556 	    sysctl_smt, "A", "hardware source MAC table");
7557 
7558 #ifdef INET6
7559 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
7560 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7561 	    sysctl_clip, "A", "active CLIP table entries");
7562 #endif
7563 
7564 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
7565 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7566 	    sysctl_lb_stats, "A", "loopback statistics");
7567 
7568 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
7569 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7570 	    sysctl_meminfo, "A", "memory regions");
7571 
7572 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
7573 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7574 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
7575 	    "A", "MPS TCAM entries");
7576 
7577 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
7578 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7579 	    sysctl_path_mtus, "A", "path MTUs");
7580 
7581 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
7582 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7583 	    sysctl_pm_stats, "A", "PM statistics");
7584 
7585 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
7586 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7587 	    sysctl_rdma_stats, "A", "RDMA statistics");
7588 
7589 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
7590 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7591 	    sysctl_tcp_stats, "A", "TCP statistics");
7592 
7593 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
7594 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7595 	    sysctl_tids, "A", "TID information");
7596 
7597 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
7598 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7599 	    sysctl_tp_err_stats, "A", "TP error statistics");
7600 
7601 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
7602 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7603 	    sysctl_tnl_stats, "A", "TP tunnel statistics");
7604 
7605 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
7606 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7607 	    sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
7608 
7609 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
7610 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7611 	    sysctl_tp_la, "A", "TP logic analyzer");
7612 
7613 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
7614 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7615 	    sysctl_tx_rate, "A", "Tx rate");
7616 
7617 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
7618 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7619 	    sysctl_ulprx_la, "A", "ULPRX logic analyzer");
7620 
7621 	if (chip_id(sc) >= CHELSIO_T5) {
7622 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
7623 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7624 		    sysctl_wcwr_stats, "A", "write combined work requests");
7625 	}
7626 
7627 #ifdef KERN_TLS
7628 	if (is_ktls(sc)) {
7629 		/*
7630 		 * dev.t4nex.0.tls.
7631 		 */
7632 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
7633 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
7634 		children = SYSCTL_CHILDREN(oid);
7635 
7636 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
7637 		    CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
7638 		    "keys in work requests (1) or attempt to store TLS keys "
7639 		    "in card memory.");
7640 
7641 		if (is_t6(sc))
7642 			SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
7643 			    CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
7644 			    "combine TCB field updates with TLS record work "
7645 			    "requests.");
7646 	}
7647 #endif
7648 
7649 #ifdef TCP_OFFLOAD
7650 	if (is_offload(sc)) {
7651 		int i;
7652 		char s[4];
7653 
7654 		/*
7655 		 * dev.t4nex.X.toe.
7656 		 */
7657 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
7658 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
7659 		children = SYSCTL_CHILDREN(oid);
7660 
7661 		sc->tt.cong_algorithm = -1;
7662 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
7663 		    CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
7664 		    "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
7665 		    "3 = highspeed)");
7666 
7667 		sc->tt.sndbuf = -1;
7668 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
7669 		    &sc->tt.sndbuf, 0, "hardware send buffer");
7670 
7671 		sc->tt.ddp = 0;
7672 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
7673 		    CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
7674 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
7675 		    &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
7676 
7677 		sc->tt.rx_coalesce = -1;
7678 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
7679 		    CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
7680 
7681 		sc->tt.tls = 0;
7682 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
7683 		    CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
7684 		    "Inline TLS allowed");
7685 
7686 		sc->tt.tx_align = -1;
7687 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
7688 		    CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
7689 
7690 		sc->tt.tx_zcopy = 0;
7691 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
7692 		    CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
7693 		    "Enable zero-copy aio_write(2)");
7694 
7695 		sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
7696 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7697 		    "cop_managed_offloading", CTLFLAG_RW,
7698 		    &sc->tt.cop_managed_offloading, 0,
7699 		    "COP (Connection Offload Policy) controls all TOE offload");
7700 
7701 		sc->tt.autorcvbuf_inc = 16 * 1024;
7702 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
7703 		    CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
7704 		    "autorcvbuf increment");
7705 
7706 		sc->tt.update_hc_on_pmtu_change = 1;
7707 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7708 		    "update_hc_on_pmtu_change", CTLFLAG_RW,
7709 		    &sc->tt.update_hc_on_pmtu_change, 0,
7710 		    "Update hostcache entry if the PMTU changes");
7711 
7712 		sc->tt.iso = 1;
7713 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
7714 		    &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
7715 
7716 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
7717 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7718 		    sysctl_tp_tick, "A", "TP timer tick (us)");
7719 
7720 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
7721 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7722 		    sysctl_tp_tick, "A", "TCP timestamp tick (us)");
7723 
7724 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
7725 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7726 		    sysctl_tp_tick, "A", "DACK tick (us)");
7727 
7728 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
7729 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7730 		    sysctl_tp_dack_timer, "IU", "DACK timer (us)");
7731 
7732 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
7733 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7734 		    A_TP_RXT_MIN, sysctl_tp_timer, "LU",
7735 		    "Minimum retransmit interval (us)");
7736 
7737 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
7738 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7739 		    A_TP_RXT_MAX, sysctl_tp_timer, "LU",
7740 		    "Maximum retransmit interval (us)");
7741 
7742 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
7743 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7744 		    A_TP_PERS_MIN, sysctl_tp_timer, "LU",
7745 		    "Persist timer min (us)");
7746 
7747 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
7748 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7749 		    A_TP_PERS_MAX, sysctl_tp_timer, "LU",
7750 		    "Persist timer max (us)");
7751 
7752 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
7753 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7754 		    A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
7755 		    "Keepalive idle timer (us)");
7756 
7757 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
7758 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7759 		    A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
7760 		    "Keepalive interval timer (us)");
7761 
7762 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
7763 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7764 		    A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
7765 
7766 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
7767 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7768 		    A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
7769 		    "FINWAIT2 timer (us)");
7770 
7771 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
7772 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7773 		    S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
7774 		    "Number of SYN retransmissions before abort");
7775 
7776 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
7777 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7778 		    S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
7779 		    "Number of retransmissions before abort");
7780 
7781 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
7782 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7783 		    S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
7784 		    "Number of keepalive probes before abort");
7785 
7786 		oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
7787 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7788 		    "TOE retransmit backoffs");
7789 		children = SYSCTL_CHILDREN(oid);
7790 		for (i = 0; i < 16; i++) {
7791 			snprintf(s, sizeof(s), "%u", i);
7792 			SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
7793 			    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7794 			    i, sysctl_tp_backoff, "IU",
7795 			    "TOE retransmit backoff");
7796 		}
7797 	}
7798 #endif
7799 }
7800 
7801 void
7802 vi_sysctls(struct vi_info *vi)
7803 {
7804 	struct sysctl_ctx_list *ctx = &vi->ctx;
7805 	struct sysctl_oid *oid;
7806 	struct sysctl_oid_list *children;
7807 
7808 	/*
7809 	 * dev.v?(cxgbe|cxl).X.
7810 	 */
7811 	oid = device_get_sysctl_tree(vi->dev);
7812 	children = SYSCTL_CHILDREN(oid);
7813 
7814 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
7815 	    vi->viid, "VI identifer");
7816 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
7817 	    &vi->nrxq, 0, "# of rx queues");
7818 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
7819 	    &vi->ntxq, 0, "# of tx queues");
7820 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
7821 	    &vi->first_rxq, 0, "index of first rx queue");
7822 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
7823 	    &vi->first_txq, 0, "index of first tx queue");
7824 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
7825 	    vi->rss_base, "start of RSS indirection table");
7826 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
7827 	    vi->rss_size, "size of RSS indirection table");
7828 
7829 	if (IS_MAIN_VI(vi)) {
7830 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
7831 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7832 		    sysctl_noflowq, "IU",
7833 		    "Reserve queue 0 for non-flowid packets");
7834 	}
7835 
7836 	if (vi->adapter->flags & IS_VF) {
7837 		MPASS(vi->flags & TX_USES_VM_WR);
7838 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
7839 		    NULL, 1, "use VM work requests for transmit");
7840 	} else {
7841 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
7842 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7843 		    sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
7844 	}
7845 
7846 #ifdef TCP_OFFLOAD
7847 	if (vi->nofldrxq != 0) {
7848 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
7849 		    &vi->nofldrxq, 0,
7850 		    "# of rx queues for offloaded TCP connections");
7851 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
7852 		    CTLFLAG_RD, &vi->first_ofld_rxq, 0,
7853 		    "index of first TOE rx queue");
7854 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
7855 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7856 		    sysctl_holdoff_tmr_idx_ofld, "I",
7857 		    "holdoff timer index for TOE queues");
7858 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
7859 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7860 		    sysctl_holdoff_pktc_idx_ofld, "I",
7861 		    "holdoff packet counter index for TOE queues");
7862 	}
7863 #endif
7864 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7865 	if (vi->nofldtxq != 0) {
7866 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
7867 		    &vi->nofldtxq, 0,
7868 		    "# of tx queues for TOE/ETHOFLD");
7869 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
7870 		    CTLFLAG_RD, &vi->first_ofld_txq, 0,
7871 		    "index of first TOE/ETHOFLD tx queue");
7872 	}
7873 #endif
7874 #ifdef DEV_NETMAP
7875 	if (vi->nnmrxq != 0) {
7876 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
7877 		    &vi->nnmrxq, 0, "# of netmap rx queues");
7878 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
7879 		    &vi->nnmtxq, 0, "# of netmap tx queues");
7880 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
7881 		    CTLFLAG_RD, &vi->first_nm_rxq, 0,
7882 		    "index of first netmap rx queue");
7883 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
7884 		    CTLFLAG_RD, &vi->first_nm_txq, 0,
7885 		    "index of first netmap tx queue");
7886 	}
7887 #endif
7888 
7889 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
7890 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7891 	    sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
7892 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
7893 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7894 	    sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
7895 
7896 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
7897 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7898 	    sysctl_qsize_rxq, "I", "rx queue size");
7899 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
7900 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7901 	    sysctl_qsize_txq, "I", "tx queue size");
7902 }
7903 
7904 static void
7905 cxgbe_sysctls(struct port_info *pi)
7906 {
7907 	struct sysctl_ctx_list *ctx = &pi->ctx;
7908 	struct sysctl_oid *oid;
7909 	struct sysctl_oid_list *children, *children2;
7910 	struct adapter *sc = pi->adapter;
7911 	int i;
7912 	char name[16];
7913 	static char *tc_flags = {"\20\1USER"};
7914 
7915 	/*
7916 	 * dev.cxgbe.X.
7917 	 */
7918 	oid = device_get_sysctl_tree(pi->dev);
7919 	children = SYSCTL_CHILDREN(oid);
7920 
7921 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
7922 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
7923 	    sysctl_linkdnrc, "A", "reason why link is down");
7924 	if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
7925 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7926 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
7927 		    sysctl_btphy, "I", "PHY temperature (in Celsius)");
7928 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
7929 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
7930 		    sysctl_btphy, "I", "PHY firmware version");
7931 	}
7932 
7933 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
7934 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7935 	    sysctl_pause_settings, "A",
7936 	    "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
7937 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
7938 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
7939 	    "FEC in use on the link");
7940 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
7941 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7942 	    sysctl_requested_fec, "A",
7943 	    "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
7944 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
7945 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
7946 	    "FEC recommended by the cable/transceiver");
7947 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
7948 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7949 	    sysctl_autoneg, "I",
7950 	    "autonegotiation (-1 = not supported)");
7951 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
7952 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7953 	    sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
7954 
7955 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
7956 	    &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
7957 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
7958 	    &pi->link_cfg.pcaps, 0, "port capabilities");
7959 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
7960 	    &pi->link_cfg.acaps, 0, "advertised capabilities");
7961 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
7962 	    &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
7963 
7964 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
7965 	    port_top_speed(pi), "max speed (in Gbps)");
7966 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
7967 	    pi->mps_bg_map, "MPS buffer group map");
7968 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
7969 	    NULL, pi->rx_e_chan_map, "TP rx e-channel map");
7970 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_c_chan", CTLFLAG_RD, NULL,
7971 	    pi->rx_c_chan, "TP rx c-channel");
7972 
7973 	if (sc->flags & IS_VF)
7974 		return;
7975 
7976 	/*
7977 	 * dev.(cxgbe|cxl).X.tc.
7978 	 */
7979 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
7980 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7981 	    "Tx scheduler traffic classes (cl_rl)");
7982 	children2 = SYSCTL_CHILDREN(oid);
7983 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
7984 	    CTLFLAG_RW, &pi->sched_params->pktsize, 0,
7985 	    "pktsize for per-flow cl-rl (0 means up to the driver )");
7986 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
7987 	    CTLFLAG_RW, &pi->sched_params->burstsize, 0,
7988 	    "burstsize for per-flow cl-rl (0 means up to the driver)");
7989 	for (i = 0; i < sc->params.nsched_cls; i++) {
7990 		struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
7991 
7992 		snprintf(name, sizeof(name), "%d", i);
7993 		children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
7994 		    SYSCTL_CHILDREN(oid), OID_AUTO, name,
7995 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
7996 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
7997 		    CTLFLAG_RD, &tc->state, 0, "current state");
7998 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
7999 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8000 		    (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8001 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8002 		    CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8003 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8004 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8005 		    (pi->port_id << 16) | i, sysctl_tc_params, "A",
8006 		    "traffic class parameters");
8007 	}
8008 
8009 	/*
8010 	 * dev.cxgbe.X.stats.
8011 	 */
8012 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8013 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8014 	children = SYSCTL_CHILDREN(oid);
8015 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8016 	    &pi->tx_parse_error, 0,
8017 	    "# of tx packets with invalid length or # of segments");
8018 
8019 #define T4_REGSTAT(name, stat, desc) \
8020     SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8021 	CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8022 	t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8023         sysctl_handle_t4_reg64, "QU", desc)
8024 
8025 /* We get these from port_stats and they may be stale by up to 1s */
8026 #define T4_PORTSTAT(name, desc) \
8027 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
8028 	    &pi->stats.name, desc)
8029 
8030 	T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8031 	T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8032 	T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8033 	T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8034 	T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8035 	T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8036 	T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8037 	T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8038 	T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8039 	T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8040 	T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8041 	T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8042 	T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8043 	T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8044 	T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8045 	T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8046 	T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8047 	T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8048 	T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8049 	T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8050 	T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8051 	T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8052 	T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8053 
8054 	T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8055 	T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8056 	T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8057 	T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8058 	T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8059 	T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8060 	T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8061 	if (is_t6(sc)) {
8062 		T4_PORTSTAT(rx_fcs_err,
8063 		    "# of frames received with bad FCS since last link up");
8064 	} else {
8065 		T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8066 		    "# of frames received with bad FCS");
8067 	}
8068 	T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8069 	T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8070 	T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8071 	T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8072 	T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8073 	T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8074 	T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8075 	T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8076 	T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8077 	T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8078 	T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8079 	T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8080 	T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8081 	T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8082 	T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8083 	T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8084 	T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8085 	T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8086 	T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8087 
8088 	T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows");
8089 	T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows");
8090 	T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows");
8091 	T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows");
8092 	T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets");
8093 	T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets");
8094 	T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets");
8095 	T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets");
8096 
8097 #undef T4_REGSTAT
8098 #undef T4_PORTSTAT
8099 }
8100 
8101 static int
8102 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8103 {
8104 	int rc, *i, space = 0;
8105 	struct sbuf sb;
8106 
8107 	sbuf_new_for_sysctl(&sb, NULL, 64, req);
8108 	for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8109 		if (space)
8110 			sbuf_printf(&sb, " ");
8111 		sbuf_printf(&sb, "%d", *i);
8112 		space = 1;
8113 	}
8114 	rc = sbuf_finish(&sb);
8115 	sbuf_delete(&sb);
8116 	return (rc);
8117 }
8118 
8119 static int
8120 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8121 {
8122 	int rc;
8123 	struct sbuf *sb;
8124 
8125 	rc = sysctl_wire_old_buffer(req, 0);
8126 	if (rc != 0)
8127 		return(rc);
8128 
8129 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8130 	if (sb == NULL)
8131 		return (ENOMEM);
8132 
8133 	sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8134 	rc = sbuf_finish(sb);
8135 	sbuf_delete(sb);
8136 
8137 	return (rc);
8138 }
8139 
8140 static int
8141 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8142 {
8143 	int rc;
8144 	struct sbuf *sb;
8145 
8146 	rc = sysctl_wire_old_buffer(req, 0);
8147 	if (rc != 0)
8148 		return(rc);
8149 
8150 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8151 	if (sb == NULL)
8152 		return (ENOMEM);
8153 
8154 	sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8155 	rc = sbuf_finish(sb);
8156 	sbuf_delete(sb);
8157 
8158 	return (rc);
8159 }
8160 
8161 static int
8162 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8163 {
8164 	struct port_info *pi = arg1;
8165 	int op = arg2;
8166 	struct adapter *sc = pi->adapter;
8167 	u_int v;
8168 	int rc;
8169 
8170 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8171 	if (rc)
8172 		return (rc);
8173 	if (hw_off_limits(sc))
8174 		rc = ENXIO;
8175 	else {
8176 		/* XXX: magic numbers */
8177 		rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8178 		    op ? 0x20 : 0xc820, &v);
8179 	}
8180 	end_synchronized_op(sc, 0);
8181 	if (rc)
8182 		return (rc);
8183 	if (op == 0)
8184 		v /= 256;
8185 
8186 	rc = sysctl_handle_int(oidp, &v, 0, req);
8187 	return (rc);
8188 }
8189 
8190 static int
8191 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8192 {
8193 	struct vi_info *vi = arg1;
8194 	int rc, val;
8195 
8196 	val = vi->rsrv_noflowq;
8197 	rc = sysctl_handle_int(oidp, &val, 0, req);
8198 	if (rc != 0 || req->newptr == NULL)
8199 		return (rc);
8200 
8201 	if ((val >= 1) && (vi->ntxq > 1))
8202 		vi->rsrv_noflowq = 1;
8203 	else
8204 		vi->rsrv_noflowq = 0;
8205 
8206 	return (rc);
8207 }
8208 
8209 static int
8210 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8211 {
8212 	struct vi_info *vi = arg1;
8213 	struct adapter *sc = vi->adapter;
8214 	int rc, val, i;
8215 
8216 	MPASS(!(sc->flags & IS_VF));
8217 
8218 	val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8219 	rc = sysctl_handle_int(oidp, &val, 0, req);
8220 	if (rc != 0 || req->newptr == NULL)
8221 		return (rc);
8222 
8223 	if (val != 0 && val != 1)
8224 		return (EINVAL);
8225 
8226 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8227 	    "t4txvm");
8228 	if (rc)
8229 		return (rc);
8230 	if (hw_off_limits(sc))
8231 		rc = ENXIO;
8232 	else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8233 		/*
8234 		 * We don't want parse_pkt to run with one setting (VF or PF)
8235 		 * and then eth_tx to see a different setting but still use
8236 		 * stale information calculated by parse_pkt.
8237 		 */
8238 		rc = EBUSY;
8239 	} else {
8240 		struct port_info *pi = vi->pi;
8241 		struct sge_txq *txq;
8242 		uint32_t ctrl0;
8243 		uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8244 
8245 		if (val) {
8246 			vi->flags |= TX_USES_VM_WR;
8247 			if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8248 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8249 			    V_TXPKT_INTF(pi->tx_chan));
8250 			if (!(sc->flags & IS_VF))
8251 				npkt--;
8252 		} else {
8253 			vi->flags &= ~TX_USES_VM_WR;
8254 			if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8255 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8256 			    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
8257 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8258 		}
8259 		for_each_txq(vi, i, txq) {
8260 			txq->cpl_ctrl0 = ctrl0;
8261 			txq->txp.max_npkt = npkt;
8262 		}
8263 	}
8264 	end_synchronized_op(sc, LOCK_HELD);
8265 	return (rc);
8266 }
8267 
8268 static int
8269 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8270 {
8271 	struct vi_info *vi = arg1;
8272 	struct adapter *sc = vi->adapter;
8273 	int idx, rc, i;
8274 	struct sge_rxq *rxq;
8275 	uint8_t v;
8276 
8277 	idx = vi->tmr_idx;
8278 
8279 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8280 	if (rc != 0 || req->newptr == NULL)
8281 		return (rc);
8282 
8283 	if (idx < 0 || idx >= SGE_NTIMERS)
8284 		return (EINVAL);
8285 
8286 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8287 	    "t4tmr");
8288 	if (rc)
8289 		return (rc);
8290 
8291 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8292 	for_each_rxq(vi, i, rxq) {
8293 #ifdef atomic_store_rel_8
8294 		atomic_store_rel_8(&rxq->iq.intr_params, v);
8295 #else
8296 		rxq->iq.intr_params = v;
8297 #endif
8298 	}
8299 	vi->tmr_idx = idx;
8300 
8301 	end_synchronized_op(sc, LOCK_HELD);
8302 	return (0);
8303 }
8304 
8305 static int
8306 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8307 {
8308 	struct vi_info *vi = arg1;
8309 	struct adapter *sc = vi->adapter;
8310 	int idx, rc;
8311 
8312 	idx = vi->pktc_idx;
8313 
8314 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8315 	if (rc != 0 || req->newptr == NULL)
8316 		return (rc);
8317 
8318 	if (idx < -1 || idx >= SGE_NCOUNTERS)
8319 		return (EINVAL);
8320 
8321 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8322 	    "t4pktc");
8323 	if (rc)
8324 		return (rc);
8325 
8326 	if (vi->flags & VI_INIT_DONE)
8327 		rc = EBUSY; /* cannot be changed once the queues are created */
8328 	else
8329 		vi->pktc_idx = idx;
8330 
8331 	end_synchronized_op(sc, LOCK_HELD);
8332 	return (rc);
8333 }
8334 
8335 static int
8336 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8337 {
8338 	struct vi_info *vi = arg1;
8339 	struct adapter *sc = vi->adapter;
8340 	int qsize, rc;
8341 
8342 	qsize = vi->qsize_rxq;
8343 
8344 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8345 	if (rc != 0 || req->newptr == NULL)
8346 		return (rc);
8347 
8348 	if (qsize < 128 || (qsize & 7))
8349 		return (EINVAL);
8350 
8351 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8352 	    "t4rxqs");
8353 	if (rc)
8354 		return (rc);
8355 
8356 	if (vi->flags & VI_INIT_DONE)
8357 		rc = EBUSY; /* cannot be changed once the queues are created */
8358 	else
8359 		vi->qsize_rxq = qsize;
8360 
8361 	end_synchronized_op(sc, LOCK_HELD);
8362 	return (rc);
8363 }
8364 
8365 static int
8366 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8367 {
8368 	struct vi_info *vi = arg1;
8369 	struct adapter *sc = vi->adapter;
8370 	int qsize, rc;
8371 
8372 	qsize = vi->qsize_txq;
8373 
8374 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8375 	if (rc != 0 || req->newptr == NULL)
8376 		return (rc);
8377 
8378 	if (qsize < 128 || qsize > 65536)
8379 		return (EINVAL);
8380 
8381 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8382 	    "t4txqs");
8383 	if (rc)
8384 		return (rc);
8385 
8386 	if (vi->flags & VI_INIT_DONE)
8387 		rc = EBUSY; /* cannot be changed once the queues are created */
8388 	else
8389 		vi->qsize_txq = qsize;
8390 
8391 	end_synchronized_op(sc, LOCK_HELD);
8392 	return (rc);
8393 }
8394 
8395 static int
8396 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8397 {
8398 	struct port_info *pi = arg1;
8399 	struct adapter *sc = pi->adapter;
8400 	struct link_config *lc = &pi->link_cfg;
8401 	int rc;
8402 
8403 	if (req->newptr == NULL) {
8404 		struct sbuf *sb;
8405 		static char *bits = "\20\1RX\2TX\3AUTO";
8406 
8407 		rc = sysctl_wire_old_buffer(req, 0);
8408 		if (rc != 0)
8409 			return(rc);
8410 
8411 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8412 		if (sb == NULL)
8413 			return (ENOMEM);
8414 
8415 		if (lc->link_ok) {
8416 			sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8417 			    (lc->requested_fc & PAUSE_AUTONEG), bits);
8418 		} else {
8419 			sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8420 			    PAUSE_RX | PAUSE_AUTONEG), bits);
8421 		}
8422 		rc = sbuf_finish(sb);
8423 		sbuf_delete(sb);
8424 	} else {
8425 		char s[2];
8426 		int n;
8427 
8428 		s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8429 		    PAUSE_AUTONEG));
8430 		s[1] = 0;
8431 
8432 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8433 		if (rc != 0)
8434 			return(rc);
8435 
8436 		if (s[1] != 0)
8437 			return (EINVAL);
8438 		if (s[0] < '0' || s[0] > '9')
8439 			return (EINVAL);	/* not a number */
8440 		n = s[0] - '0';
8441 		if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8442 			return (EINVAL);	/* some other bit is set too */
8443 
8444 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8445 		    "t4PAUSE");
8446 		if (rc)
8447 			return (rc);
8448 		if (!hw_off_limits(sc)) {
8449 			PORT_LOCK(pi);
8450 			lc->requested_fc = n;
8451 			fixup_link_config(pi);
8452 			if (pi->up_vis > 0)
8453 				rc = apply_link_config(pi);
8454 			set_current_media(pi);
8455 			PORT_UNLOCK(pi);
8456 		}
8457 		end_synchronized_op(sc, 0);
8458 	}
8459 
8460 	return (rc);
8461 }
8462 
8463 static int
8464 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8465 {
8466 	struct port_info *pi = arg1;
8467 	struct link_config *lc = &pi->link_cfg;
8468 	int rc;
8469 	struct sbuf *sb;
8470 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2";
8471 
8472 	rc = sysctl_wire_old_buffer(req, 0);
8473 	if (rc != 0)
8474 		return(rc);
8475 
8476 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8477 	if (sb == NULL)
8478 		return (ENOMEM);
8479 	if (lc->link_ok)
8480 		sbuf_printf(sb, "%b", lc->fec, bits);
8481 	else
8482 		sbuf_printf(sb, "no link");
8483 	rc = sbuf_finish(sb);
8484 	sbuf_delete(sb);
8485 
8486 	return (rc);
8487 }
8488 
8489 static int
8490 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8491 {
8492 	struct port_info *pi = arg1;
8493 	struct adapter *sc = pi->adapter;
8494 	struct link_config *lc = &pi->link_cfg;
8495 	int rc;
8496 	int8_t old;
8497 
8498 	if (req->newptr == NULL) {
8499 		struct sbuf *sb;
8500 		static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2"
8501 		    "\5RSVD3\6auto\7module";
8502 
8503 		rc = sysctl_wire_old_buffer(req, 0);
8504 		if (rc != 0)
8505 			return(rc);
8506 
8507 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8508 		if (sb == NULL)
8509 			return (ENOMEM);
8510 
8511 		sbuf_printf(sb, "%b", lc->requested_fec, bits);
8512 		rc = sbuf_finish(sb);
8513 		sbuf_delete(sb);
8514 	} else {
8515 		char s[8];
8516 		int n;
8517 
8518 		snprintf(s, sizeof(s), "%d",
8519 		    lc->requested_fec == FEC_AUTO ? -1 :
8520 		    lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
8521 
8522 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8523 		if (rc != 0)
8524 			return(rc);
8525 
8526 		n = strtol(&s[0], NULL, 0);
8527 		if (n < 0 || n & FEC_AUTO)
8528 			n = FEC_AUTO;
8529 		else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
8530 			return (EINVAL);/* some other bit is set too */
8531 
8532 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8533 		    "t4reqf");
8534 		if (rc)
8535 			return (rc);
8536 		PORT_LOCK(pi);
8537 		old = lc->requested_fec;
8538 		if (n == FEC_AUTO)
8539 			lc->requested_fec = FEC_AUTO;
8540 		else if (n == 0 || n == FEC_NONE)
8541 			lc->requested_fec = FEC_NONE;
8542 		else {
8543 			if ((lc->pcaps |
8544 			    V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
8545 			    lc->pcaps) {
8546 				rc = ENOTSUP;
8547 				goto done;
8548 			}
8549 			lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
8550 			    FEC_MODULE);
8551 		}
8552 		if (!hw_off_limits(sc)) {
8553 			fixup_link_config(pi);
8554 			if (pi->up_vis > 0) {
8555 				rc = apply_link_config(pi);
8556 				if (rc != 0) {
8557 					lc->requested_fec = old;
8558 					if (rc == FW_EPROTO)
8559 						rc = ENOTSUP;
8560 				}
8561 			}
8562 		}
8563 done:
8564 		PORT_UNLOCK(pi);
8565 		end_synchronized_op(sc, 0);
8566 	}
8567 
8568 	return (rc);
8569 }
8570 
8571 static int
8572 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
8573 {
8574 	struct port_info *pi = arg1;
8575 	struct adapter *sc = pi->adapter;
8576 	struct link_config *lc = &pi->link_cfg;
8577 	int rc;
8578 	int8_t fec;
8579 	struct sbuf *sb;
8580 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3";
8581 
8582 	rc = sysctl_wire_old_buffer(req, 0);
8583 	if (rc != 0)
8584 		return (rc);
8585 
8586 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8587 	if (sb == NULL)
8588 		return (ENOMEM);
8589 
8590 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
8591 		rc = EBUSY;
8592 		goto done;
8593 	}
8594 	if (hw_off_limits(sc)) {
8595 		rc = ENXIO;
8596 		goto done;
8597 	}
8598 	PORT_LOCK(pi);
8599 	if (pi->up_vis == 0) {
8600 		/*
8601 		 * If all the interfaces are administratively down the firmware
8602 		 * does not report transceiver changes.  Refresh port info here.
8603 		 * This is the only reason we have a synchronized op in this
8604 		 * function.  Just PORT_LOCK would have been enough otherwise.
8605 		 */
8606 		t4_update_port_info(pi);
8607 	}
8608 
8609 	fec = lc->fec_hint;
8610 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
8611 	    !fec_supported(lc->pcaps)) {
8612 		sbuf_printf(sb, "n/a");
8613 	} else {
8614 		if (fec == 0)
8615 			fec = FEC_NONE;
8616 		sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits);
8617 	}
8618 	rc = sbuf_finish(sb);
8619 	PORT_UNLOCK(pi);
8620 done:
8621 	sbuf_delete(sb);
8622 	end_synchronized_op(sc, 0);
8623 
8624 	return (rc);
8625 }
8626 
8627 static int
8628 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
8629 {
8630 	struct port_info *pi = arg1;
8631 	struct adapter *sc = pi->adapter;
8632 	struct link_config *lc = &pi->link_cfg;
8633 	int rc, val;
8634 
8635 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
8636 		val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
8637 	else
8638 		val = -1;
8639 	rc = sysctl_handle_int(oidp, &val, 0, req);
8640 	if (rc != 0 || req->newptr == NULL)
8641 		return (rc);
8642 	if (val == 0)
8643 		val = AUTONEG_DISABLE;
8644 	else if (val == 1)
8645 		val = AUTONEG_ENABLE;
8646 	else
8647 		val = AUTONEG_AUTO;
8648 
8649 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8650 	    "t4aneg");
8651 	if (rc)
8652 		return (rc);
8653 	PORT_LOCK(pi);
8654 	if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
8655 		rc = ENOTSUP;
8656 		goto done;
8657 	}
8658 	lc->requested_aneg = val;
8659 	if (!hw_off_limits(sc)) {
8660 		fixup_link_config(pi);
8661 		if (pi->up_vis > 0)
8662 			rc = apply_link_config(pi);
8663 		set_current_media(pi);
8664 	}
8665 done:
8666 	PORT_UNLOCK(pi);
8667 	end_synchronized_op(sc, 0);
8668 	return (rc);
8669 }
8670 
8671 static int
8672 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
8673 {
8674 	struct port_info *pi = arg1;
8675 	struct adapter *sc = pi->adapter;
8676 	struct link_config *lc = &pi->link_cfg;
8677 	int rc, val;
8678 
8679 	val = lc->force_fec;
8680 	MPASS(val >= -1 && val <= 1);
8681 	rc = sysctl_handle_int(oidp, &val, 0, req);
8682 	if (rc != 0 || req->newptr == NULL)
8683 		return (rc);
8684 	if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
8685 		return (ENOTSUP);
8686 	if (val < -1 || val > 1)
8687 		return (EINVAL);
8688 
8689 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
8690 	if (rc)
8691 		return (rc);
8692 	PORT_LOCK(pi);
8693 	lc->force_fec = val;
8694 	if (!hw_off_limits(sc)) {
8695 		fixup_link_config(pi);
8696 		if (pi->up_vis > 0)
8697 			rc = apply_link_config(pi);
8698 	}
8699 	PORT_UNLOCK(pi);
8700 	end_synchronized_op(sc, 0);
8701 	return (rc);
8702 }
8703 
8704 static int
8705 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
8706 {
8707 	struct adapter *sc = arg1;
8708 	int rc, reg = arg2;
8709 	uint64_t val;
8710 
8711 	mtx_lock(&sc->reg_lock);
8712 	if (hw_off_limits(sc))
8713 		rc = ENXIO;
8714 	else {
8715 		rc = 0;
8716 		val = t4_read_reg64(sc, reg);
8717 	}
8718 	mtx_unlock(&sc->reg_lock);
8719 	if (rc == 0)
8720 		rc = sysctl_handle_64(oidp, &val, 0, req);
8721 	return (rc);
8722 }
8723 
8724 static int
8725 sysctl_temperature(SYSCTL_HANDLER_ARGS)
8726 {
8727 	struct adapter *sc = arg1;
8728 	int rc, t;
8729 	uint32_t param, val;
8730 
8731 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
8732 	if (rc)
8733 		return (rc);
8734 	if (hw_off_limits(sc))
8735 		rc = ENXIO;
8736 	else {
8737 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8738 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8739 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
8740 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8741 	}
8742 	end_synchronized_op(sc, 0);
8743 	if (rc)
8744 		return (rc);
8745 
8746 	/* unknown is returned as 0 but we display -1 in that case */
8747 	t = val == 0 ? -1 : val;
8748 
8749 	rc = sysctl_handle_int(oidp, &t, 0, req);
8750 	return (rc);
8751 }
8752 
8753 static int
8754 sysctl_vdd(SYSCTL_HANDLER_ARGS)
8755 {
8756 	struct adapter *sc = arg1;
8757 	int rc;
8758 	uint32_t param, val;
8759 
8760 	if (sc->params.core_vdd == 0) {
8761 		rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8762 		    "t4vdd");
8763 		if (rc)
8764 			return (rc);
8765 		if (hw_off_limits(sc))
8766 			rc = ENXIO;
8767 		else {
8768 			param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8769 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8770 			    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
8771 			rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
8772 			    &param, &val);
8773 		}
8774 		end_synchronized_op(sc, 0);
8775 		if (rc)
8776 			return (rc);
8777 		sc->params.core_vdd = val;
8778 	}
8779 
8780 	return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
8781 }
8782 
8783 static int
8784 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
8785 {
8786 	struct adapter *sc = arg1;
8787 	int rc, v;
8788 	uint32_t param, val;
8789 
8790 	v = sc->sensor_resets;
8791 	rc = sysctl_handle_int(oidp, &v, 0, req);
8792 	if (rc != 0 || req->newptr == NULL || v <= 0)
8793 		return (rc);
8794 
8795 	if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
8796 	    chip_id(sc) < CHELSIO_T5)
8797 		return (ENOTSUP);
8798 
8799 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
8800 	if (rc)
8801 		return (rc);
8802 	if (hw_off_limits(sc))
8803 		rc = ENXIO;
8804 	else {
8805 		param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8806 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8807 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
8808 		val = 1;
8809 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8810 	}
8811 	end_synchronized_op(sc, 0);
8812 	if (rc == 0)
8813 		sc->sensor_resets++;
8814 	return (rc);
8815 }
8816 
8817 static int
8818 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
8819 {
8820 	struct adapter *sc = arg1;
8821 	struct sbuf *sb;
8822 	int rc;
8823 	uint32_t param, val;
8824 
8825 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
8826 	if (rc)
8827 		return (rc);
8828 	if (hw_off_limits(sc))
8829 		rc = ENXIO;
8830 	else {
8831 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8832 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
8833 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8834 	}
8835 	end_synchronized_op(sc, 0);
8836 	if (rc)
8837 		return (rc);
8838 
8839 	rc = sysctl_wire_old_buffer(req, 0);
8840 	if (rc != 0)
8841 		return (rc);
8842 
8843 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8844 	if (sb == NULL)
8845 		return (ENOMEM);
8846 
8847 	if (val == 0xffffffff) {
8848 		/* Only debug and custom firmwares report load averages. */
8849 		sbuf_printf(sb, "not available");
8850 	} else {
8851 		sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
8852 		    (val >> 16) & 0xff);
8853 	}
8854 	rc = sbuf_finish(sb);
8855 	sbuf_delete(sb);
8856 
8857 	return (rc);
8858 }
8859 
8860 static int
8861 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
8862 {
8863 	struct adapter *sc = arg1;
8864 	struct sbuf *sb;
8865 	int rc, i;
8866 	uint16_t incr[NMTUS][NCCTRL_WIN];
8867 	static const char *dec_fac[] = {
8868 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
8869 		"0.9375"
8870 	};
8871 
8872 	rc = sysctl_wire_old_buffer(req, 0);
8873 	if (rc != 0)
8874 		return (rc);
8875 
8876 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8877 	if (sb == NULL)
8878 		return (ENOMEM);
8879 
8880 	mtx_lock(&sc->reg_lock);
8881 	if (hw_off_limits(sc))
8882 		rc = ENXIO;
8883 	else
8884 		t4_read_cong_tbl(sc, incr);
8885 	mtx_unlock(&sc->reg_lock);
8886 	if (rc)
8887 		goto done;
8888 
8889 	for (i = 0; i < NCCTRL_WIN; ++i) {
8890 		sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
8891 		    incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
8892 		    incr[5][i], incr[6][i], incr[7][i]);
8893 		sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
8894 		    incr[8][i], incr[9][i], incr[10][i], incr[11][i],
8895 		    incr[12][i], incr[13][i], incr[14][i], incr[15][i],
8896 		    sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
8897 	}
8898 
8899 	rc = sbuf_finish(sb);
8900 done:
8901 	sbuf_delete(sb);
8902 	return (rc);
8903 }
8904 
8905 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
8906 	"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",	/* ibq's */
8907 	"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",	/* obq's */
8908 	"SGE0-RX", "SGE1-RX"	/* additional obq's (T5 onwards) */
8909 };
8910 
8911 static int
8912 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
8913 {
8914 	struct adapter *sc = arg1;
8915 	struct sbuf *sb;
8916 	int rc, i, n, qid = arg2;
8917 	uint32_t *buf, *p;
8918 	char *qtype;
8919 	u_int cim_num_obq = sc->chip_params->cim_num_obq;
8920 
8921 	KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
8922 	    ("%s: bad qid %d\n", __func__, qid));
8923 
8924 	if (qid < CIM_NUM_IBQ) {
8925 		/* inbound queue */
8926 		qtype = "IBQ";
8927 		n = 4 * CIM_IBQ_SIZE;
8928 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
8929 		mtx_lock(&sc->reg_lock);
8930 		if (hw_off_limits(sc))
8931 			rc = -ENXIO;
8932 		else
8933 			rc = t4_read_cim_ibq(sc, qid, buf, n);
8934 		mtx_unlock(&sc->reg_lock);
8935 	} else {
8936 		/* outbound queue */
8937 		qtype = "OBQ";
8938 		qid -= CIM_NUM_IBQ;
8939 		n = 4 * cim_num_obq * CIM_OBQ_SIZE;
8940 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
8941 		mtx_lock(&sc->reg_lock);
8942 		if (hw_off_limits(sc))
8943 			rc = -ENXIO;
8944 		else
8945 			rc = t4_read_cim_obq(sc, qid, buf, n);
8946 		mtx_unlock(&sc->reg_lock);
8947 	}
8948 
8949 	if (rc < 0) {
8950 		rc = -rc;
8951 		goto done;
8952 	}
8953 	n = rc * sizeof(uint32_t);	/* rc has # of words actually read */
8954 
8955 	rc = sysctl_wire_old_buffer(req, 0);
8956 	if (rc != 0)
8957 		goto done;
8958 
8959 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
8960 	if (sb == NULL) {
8961 		rc = ENOMEM;
8962 		goto done;
8963 	}
8964 
8965 	sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
8966 	for (i = 0, p = buf; i < n; i += 16, p += 4)
8967 		sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
8968 		    p[2], p[3]);
8969 
8970 	rc = sbuf_finish(sb);
8971 	sbuf_delete(sb);
8972 done:
8973 	free(buf, M_CXGBE);
8974 	return (rc);
8975 }
8976 
8977 static void
8978 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
8979 {
8980 	uint32_t *p;
8981 
8982 	sbuf_printf(sb, "Status   Data      PC%s",
8983 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
8984 	    "     LS0Stat  LS0Addr             LS0Data");
8985 
8986 	for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
8987 		if (cfg & F_UPDBGLACAPTPCONLY) {
8988 			sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
8989 			    p[6], p[7]);
8990 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
8991 			    (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
8992 			    p[4] & 0xff, p[5] >> 8);
8993 			sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
8994 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
8995 			    p[1] & 0xf, p[2] >> 4);
8996 		} else {
8997 			sbuf_printf(sb,
8998 			    "\n  %02x   %x%07x %x%07x %08x %08x "
8999 			    "%08x%08x%08x%08x",
9000 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9001 			    p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9002 			    p[6], p[7]);
9003 		}
9004 	}
9005 }
9006 
9007 static void
9008 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9009 {
9010 	uint32_t *p;
9011 
9012 	sbuf_printf(sb, "Status   Inst    Data      PC%s",
9013 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
9014 	    "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
9015 
9016 	for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9017 		if (cfg & F_UPDBGLACAPTPCONLY) {
9018 			sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
9019 			    p[3] & 0xff, p[2], p[1], p[0]);
9020 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
9021 			    (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9022 			    p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9023 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
9024 			    (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9025 			    p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9026 			    p[6] >> 16);
9027 		} else {
9028 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
9029 			    "%08x %08x %08x %08x %08x %08x",
9030 			    (p[9] >> 16) & 0xff,
9031 			    p[9] & 0xffff, p[8] >> 16,
9032 			    p[8] & 0xffff, p[7] >> 16,
9033 			    p[7] & 0xffff, p[6] >> 16,
9034 			    p[2], p[1], p[0], p[5], p[4], p[3]);
9035 		}
9036 	}
9037 }
9038 
9039 static int
9040 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
9041 {
9042 	uint32_t cfg, *buf;
9043 	int rc;
9044 
9045 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9046 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9047 	    M_ZERO | flags);
9048 	if (buf == NULL)
9049 		return (ENOMEM);
9050 
9051 	mtx_lock(&sc->reg_lock);
9052 	if (hw_off_limits(sc))
9053 		rc = ENXIO;
9054 	else {
9055 		rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9056 		if (rc == 0)
9057 			rc = -t4_cim_read_la(sc, buf, NULL);
9058 	}
9059 	mtx_unlock(&sc->reg_lock);
9060 	if (rc == 0) {
9061 		if (chip_id(sc) < CHELSIO_T6)
9062 			sbuf_cim_la4(sc, sb, buf, cfg);
9063 		else
9064 			sbuf_cim_la6(sc, sb, buf, cfg);
9065 	}
9066 	free(buf, M_CXGBE);
9067 	return (rc);
9068 }
9069 
9070 static int
9071 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9072 {
9073 	struct adapter *sc = arg1;
9074 	struct sbuf *sb;
9075 	int rc;
9076 
9077 	rc = sysctl_wire_old_buffer(req, 0);
9078 	if (rc != 0)
9079 		return (rc);
9080 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9081 	if (sb == NULL)
9082 		return (ENOMEM);
9083 
9084 	rc = sbuf_cim_la(sc, sb, M_WAITOK);
9085 	if (rc == 0)
9086 		rc = sbuf_finish(sb);
9087 	sbuf_delete(sb);
9088 	return (rc);
9089 }
9090 
9091 static void
9092 dump_cim_regs(struct adapter *sc)
9093 {
9094 	log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9095 	    device_get_nameunit(sc->dev),
9096 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9097 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9098 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9099 	    t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9100 	    t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9101 	log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9102 	    device_get_nameunit(sc->dev),
9103 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9104 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9105 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9106 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9107 	    t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9108 }
9109 
9110 static void
9111 dump_cimla(struct adapter *sc)
9112 {
9113 	struct sbuf sb;
9114 	int rc;
9115 
9116 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9117 		log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9118 		    device_get_nameunit(sc->dev));
9119 		return;
9120 	}
9121 	rc = sbuf_cim_la(sc, &sb, M_WAITOK);
9122 	if (rc == 0) {
9123 		rc = sbuf_finish(&sb);
9124 		if (rc == 0) {
9125 			log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9126 			    device_get_nameunit(sc->dev), sbuf_data(&sb));
9127 		}
9128 	}
9129 	sbuf_delete(&sb);
9130 }
9131 
9132 void
9133 t4_os_cim_err(struct adapter *sc)
9134 {
9135 	atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9136 }
9137 
9138 static int
9139 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9140 {
9141 	struct adapter *sc = arg1;
9142 	u_int i;
9143 	struct sbuf *sb;
9144 	uint32_t *buf, *p;
9145 	int rc;
9146 
9147 	rc = sysctl_wire_old_buffer(req, 0);
9148 	if (rc != 0)
9149 		return (rc);
9150 
9151 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9152 	if (sb == NULL)
9153 		return (ENOMEM);
9154 
9155 	buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9156 	    M_ZERO | M_WAITOK);
9157 
9158 	mtx_lock(&sc->reg_lock);
9159 	if (hw_off_limits(sc))
9160 		rc = ENXIO;
9161 	else
9162 		t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9163 	mtx_unlock(&sc->reg_lock);
9164 	if (rc)
9165 		goto done;
9166 
9167 	p = buf;
9168 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9169 		sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9170 		    p[1], p[0]);
9171 	}
9172 
9173 	sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
9174 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9175 		sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
9176 		    (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9177 		    (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9178 		    (p[1] >> 2) | ((p[2] & 3) << 30),
9179 		    (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9180 		    p[0] & 1);
9181 	}
9182 	rc = sbuf_finish(sb);
9183 done:
9184 	sbuf_delete(sb);
9185 	free(buf, M_CXGBE);
9186 	return (rc);
9187 }
9188 
9189 static int
9190 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9191 {
9192 	struct adapter *sc = arg1;
9193 	u_int i;
9194 	struct sbuf *sb;
9195 	uint32_t *buf, *p;
9196 	int rc;
9197 
9198 	rc = sysctl_wire_old_buffer(req, 0);
9199 	if (rc != 0)
9200 		return (rc);
9201 
9202 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9203 	if (sb == NULL)
9204 		return (ENOMEM);
9205 
9206 	buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9207 	    M_ZERO | M_WAITOK);
9208 
9209 	mtx_lock(&sc->reg_lock);
9210 	if (hw_off_limits(sc))
9211 		rc = ENXIO;
9212 	else
9213 		t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9214 	mtx_unlock(&sc->reg_lock);
9215 	if (rc)
9216 		goto done;
9217 
9218 	p = buf;
9219 	sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
9220 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9221 		sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
9222 		    (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9223 		    p[4], p[3], p[2], p[1], p[0]);
9224 	}
9225 
9226 	sbuf_printf(sb, "\n\nCntl ID               Data");
9227 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9228 		sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
9229 		    (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9230 	}
9231 
9232 	rc = sbuf_finish(sb);
9233 done:
9234 	sbuf_delete(sb);
9235 	free(buf, M_CXGBE);
9236 	return (rc);
9237 }
9238 
9239 static int
9240 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9241 {
9242 	struct adapter *sc = arg1;
9243 	struct sbuf *sb;
9244 	int rc, i;
9245 	uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9246 	uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9247 	uint16_t thres[CIM_NUM_IBQ];
9248 	uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9249 	uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9250 	u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9251 
9252 	cim_num_obq = sc->chip_params->cim_num_obq;
9253 	if (is_t4(sc)) {
9254 		ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9255 		obq_rdaddr = A_UP_OBQ_0_REALADDR;
9256 	} else {
9257 		ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9258 		obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9259 	}
9260 	nq = CIM_NUM_IBQ + cim_num_obq;
9261 
9262 	mtx_lock(&sc->reg_lock);
9263 	if (hw_off_limits(sc))
9264 		rc = ENXIO;
9265 	else {
9266 		rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9267 		if (rc == 0) {
9268 			rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9269 			    obq_wr);
9270 			if (rc == 0)
9271 				t4_read_cimq_cfg(sc, base, size, thres);
9272 		}
9273 	}
9274 	mtx_unlock(&sc->reg_lock);
9275 	if (rc)
9276 		return (rc);
9277 
9278 	rc = sysctl_wire_old_buffer(req, 0);
9279 	if (rc != 0)
9280 		return (rc);
9281 
9282 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9283 	if (sb == NULL)
9284 		return (ENOMEM);
9285 
9286 	sbuf_printf(sb,
9287 	    "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
9288 
9289 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9290 		sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
9291 		    qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9292 		    G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9293 		    G_QUEREMFLITS(p[2]) * 16);
9294 	for ( ; i < nq; i++, p += 4, wr += 2)
9295 		sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
9296 		    base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9297 		    wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9298 		    G_QUEREMFLITS(p[2]) * 16);
9299 
9300 	rc = sbuf_finish(sb);
9301 	sbuf_delete(sb);
9302 
9303 	return (rc);
9304 }
9305 
9306 static int
9307 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9308 {
9309 	struct adapter *sc = arg1;
9310 	struct sbuf *sb;
9311 	int rc;
9312 	struct tp_cpl_stats stats;
9313 
9314 	rc = sysctl_wire_old_buffer(req, 0);
9315 	if (rc != 0)
9316 		return (rc);
9317 
9318 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9319 	if (sb == NULL)
9320 		return (ENOMEM);
9321 
9322 	mtx_lock(&sc->reg_lock);
9323 	if (hw_off_limits(sc))
9324 		rc = ENXIO;
9325 	else
9326 		t4_tp_get_cpl_stats(sc, &stats, 0);
9327 	mtx_unlock(&sc->reg_lock);
9328 	if (rc)
9329 		goto done;
9330 
9331 	if (sc->chip_params->nchan > 2) {
9332 		sbuf_printf(sb, "                 channel 0  channel 1"
9333 		    "  channel 2  channel 3");
9334 		sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
9335 		    stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9336 		sbuf_printf(sb, "\nCPL responses:  %10u %10u %10u %10u",
9337 		    stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9338 	} else {
9339 		sbuf_printf(sb, "                 channel 0  channel 1");
9340 		sbuf_printf(sb, "\nCPL requests:   %10u %10u",
9341 		    stats.req[0], stats.req[1]);
9342 		sbuf_printf(sb, "\nCPL responses:  %10u %10u",
9343 		    stats.rsp[0], stats.rsp[1]);
9344 	}
9345 
9346 	rc = sbuf_finish(sb);
9347 done:
9348 	sbuf_delete(sb);
9349 	return (rc);
9350 }
9351 
9352 static int
9353 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9354 {
9355 	struct adapter *sc = arg1;
9356 	struct sbuf *sb;
9357 	int rc;
9358 	struct tp_usm_stats stats;
9359 
9360 	rc = sysctl_wire_old_buffer(req, 0);
9361 	if (rc != 0)
9362 		return(rc);
9363 
9364 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9365 	if (sb == NULL)
9366 		return (ENOMEM);
9367 
9368 	mtx_lock(&sc->reg_lock);
9369 	if (hw_off_limits(sc))
9370 		rc = ENXIO;
9371 	else
9372 		t4_get_usm_stats(sc, &stats, 1);
9373 	mtx_unlock(&sc->reg_lock);
9374 	if (rc == 0) {
9375 		sbuf_printf(sb, "Frames: %u\n", stats.frames);
9376 		sbuf_printf(sb, "Octets: %ju\n", stats.octets);
9377 		sbuf_printf(sb, "Drops:  %u", stats.drops);
9378 		rc = sbuf_finish(sb);
9379 	}
9380 	sbuf_delete(sb);
9381 
9382 	return (rc);
9383 }
9384 
9385 static int
9386 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
9387 {
9388 	struct adapter *sc = arg1;
9389 	struct sbuf *sb;
9390 	int rc;
9391 	struct tp_tid_stats stats;
9392 
9393 	rc = sysctl_wire_old_buffer(req, 0);
9394 	if (rc != 0)
9395 		return(rc);
9396 
9397 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9398 	if (sb == NULL)
9399 		return (ENOMEM);
9400 
9401 	mtx_lock(&sc->reg_lock);
9402 	if (hw_off_limits(sc))
9403 		rc = ENXIO;
9404 	else
9405 		t4_tp_get_tid_stats(sc, &stats, 1);
9406 	mtx_unlock(&sc->reg_lock);
9407 	if (rc == 0) {
9408 		sbuf_printf(sb, "Delete:     %u\n", stats.del);
9409 		sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
9410 		sbuf_printf(sb, "Active:     %u\n", stats.act);
9411 		sbuf_printf(sb, "Passive:    %u", stats.pas);
9412 		rc = sbuf_finish(sb);
9413 	}
9414 	sbuf_delete(sb);
9415 
9416 	return (rc);
9417 }
9418 
9419 static const char * const devlog_level_strings[] = {
9420 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
9421 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
9422 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
9423 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
9424 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
9425 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
9426 };
9427 
9428 static const char * const devlog_facility_strings[] = {
9429 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
9430 	[FW_DEVLOG_FACILITY_CF]		= "CF",
9431 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
9432 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
9433 	[FW_DEVLOG_FACILITY_RES]	= "RES",
9434 	[FW_DEVLOG_FACILITY_HW]		= "HW",
9435 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
9436 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
9437 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
9438 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
9439 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
9440 	[FW_DEVLOG_FACILITY_VI]		= "VI",
9441 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
9442 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
9443 	[FW_DEVLOG_FACILITY_TM]		= "TM",
9444 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
9445 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
9446 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
9447 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
9448 	[FW_DEVLOG_FACILITY_RI]		= "RI",
9449 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
9450 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
9451 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
9452 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE",
9453 	[FW_DEVLOG_FACILITY_CHNET]	= "CHNET",
9454 };
9455 
9456 static int
9457 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
9458 {
9459 	int i, j, rc, nentries, first = 0;
9460 	struct devlog_params *dparams = &sc->params.devlog;
9461 	struct fw_devlog_e *buf, *e;
9462 	uint64_t ftstamp = UINT64_MAX;
9463 
9464 	if (dparams->addr == 0)
9465 		return (ENXIO);
9466 
9467 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9468 	buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
9469 	if (buf == NULL)
9470 		return (ENOMEM);
9471 
9472 	mtx_lock(&sc->reg_lock);
9473 	if (hw_off_limits(sc))
9474 		rc = ENXIO;
9475 	else
9476 		rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf,
9477 		    dparams->size);
9478 	mtx_unlock(&sc->reg_lock);
9479 	if (rc != 0)
9480 		goto done;
9481 
9482 	nentries = dparams->size / sizeof(struct fw_devlog_e);
9483 	for (i = 0; i < nentries; i++) {
9484 		e = &buf[i];
9485 
9486 		if (e->timestamp == 0)
9487 			break;	/* end */
9488 
9489 		e->timestamp = be64toh(e->timestamp);
9490 		e->seqno = be32toh(e->seqno);
9491 		for (j = 0; j < 8; j++)
9492 			e->params[j] = be32toh(e->params[j]);
9493 
9494 		if (e->timestamp < ftstamp) {
9495 			ftstamp = e->timestamp;
9496 			first = i;
9497 		}
9498 	}
9499 
9500 	if (buf[first].timestamp == 0)
9501 		goto done;	/* nothing in the log */
9502 
9503 	sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
9504 	    "Seq#", "Tstamp", "Level", "Facility", "Message");
9505 
9506 	i = first;
9507 	do {
9508 		e = &buf[i];
9509 		if (e->timestamp == 0)
9510 			break;	/* end */
9511 
9512 		sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
9513 		    e->seqno, e->timestamp,
9514 		    (e->level < nitems(devlog_level_strings) ?
9515 			devlog_level_strings[e->level] : "UNKNOWN"),
9516 		    (e->facility < nitems(devlog_facility_strings) ?
9517 			devlog_facility_strings[e->facility] : "UNKNOWN"));
9518 		sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
9519 		    e->params[2], e->params[3], e->params[4],
9520 		    e->params[5], e->params[6], e->params[7]);
9521 
9522 		if (++i == nentries)
9523 			i = 0;
9524 	} while (i != first);
9525 done:
9526 	free(buf, M_CXGBE);
9527 	return (rc);
9528 }
9529 
9530 static int
9531 sysctl_devlog(SYSCTL_HANDLER_ARGS)
9532 {
9533 	struct adapter *sc = arg1;
9534 	int rc;
9535 	struct sbuf *sb;
9536 
9537 	rc = sysctl_wire_old_buffer(req, 0);
9538 	if (rc != 0)
9539 		return (rc);
9540 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9541 	if (sb == NULL)
9542 		return (ENOMEM);
9543 
9544 	rc = sbuf_devlog(sc, sb, M_WAITOK);
9545 	if (rc == 0)
9546 		rc = sbuf_finish(sb);
9547 	sbuf_delete(sb);
9548 	return (rc);
9549 }
9550 
9551 static void
9552 dump_devlog(struct adapter *sc)
9553 {
9554 	int rc;
9555 	struct sbuf sb;
9556 
9557 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9558 		log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
9559 		    device_get_nameunit(sc->dev));
9560 		return;
9561 	}
9562 	rc = sbuf_devlog(sc, &sb, M_WAITOK);
9563 	if (rc == 0) {
9564 		rc = sbuf_finish(&sb);
9565 		if (rc == 0) {
9566 			log(LOG_DEBUG, "%s: device log follows.\n%s",
9567 			    device_get_nameunit(sc->dev), sbuf_data(&sb));
9568 		}
9569 	}
9570 	sbuf_delete(&sb);
9571 }
9572 
9573 static int
9574 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
9575 {
9576 	struct adapter *sc = arg1;
9577 	struct sbuf *sb;
9578 	int rc;
9579 	struct tp_fcoe_stats stats[MAX_NCHAN];
9580 	int i, nchan = sc->chip_params->nchan;
9581 
9582 	rc = sysctl_wire_old_buffer(req, 0);
9583 	if (rc != 0)
9584 		return (rc);
9585 
9586 	mtx_lock(&sc->reg_lock);
9587 	if (hw_off_limits(sc))
9588 		rc = ENXIO;
9589 	else {
9590 		for (i = 0; i < nchan; i++)
9591 			t4_get_fcoe_stats(sc, i, &stats[i], 1);
9592 	}
9593 	mtx_unlock(&sc->reg_lock);
9594 	if (rc != 0)
9595 		return (rc);
9596 
9597 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9598 	if (sb == NULL)
9599 		return (ENOMEM);
9600 
9601 	if (nchan > 2) {
9602 		sbuf_printf(sb, "                   channel 0        channel 1"
9603 		    "        channel 2        channel 3");
9604 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
9605 		    stats[0].octets_ddp, stats[1].octets_ddp,
9606 		    stats[2].octets_ddp, stats[3].octets_ddp);
9607 		sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
9608 		    stats[0].frames_ddp, stats[1].frames_ddp,
9609 		    stats[2].frames_ddp, stats[3].frames_ddp);
9610 		sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
9611 		    stats[0].frames_drop, stats[1].frames_drop,
9612 		    stats[2].frames_drop, stats[3].frames_drop);
9613 	} else {
9614 		sbuf_printf(sb, "                   channel 0        channel 1");
9615 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
9616 		    stats[0].octets_ddp, stats[1].octets_ddp);
9617 		sbuf_printf(sb, "\nframesDDP:  %16u %16u",
9618 		    stats[0].frames_ddp, stats[1].frames_ddp);
9619 		sbuf_printf(sb, "\nframesDrop: %16u %16u",
9620 		    stats[0].frames_drop, stats[1].frames_drop);
9621 	}
9622 
9623 	rc = sbuf_finish(sb);
9624 	sbuf_delete(sb);
9625 
9626 	return (rc);
9627 }
9628 
9629 static int
9630 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
9631 {
9632 	struct adapter *sc = arg1;
9633 	struct sbuf *sb;
9634 	int rc, i;
9635 	unsigned int map, kbps, ipg, mode;
9636 	unsigned int pace_tab[NTX_SCHED];
9637 
9638 	rc = sysctl_wire_old_buffer(req, 0);
9639 	if (rc != 0)
9640 		return (rc);
9641 
9642 	sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
9643 	if (sb == NULL)
9644 		return (ENOMEM);
9645 
9646 	mtx_lock(&sc->reg_lock);
9647 	if (hw_off_limits(sc)) {
9648 		rc = ENXIO;
9649 		goto done;
9650 	}
9651 
9652 	map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
9653 	mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
9654 	t4_read_pace_tbl(sc, pace_tab);
9655 
9656 	sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
9657 	    "Class IPG (0.1 ns)   Flow IPG (us)");
9658 
9659 	for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
9660 		t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
9661 		sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
9662 		    (mode & (1 << i)) ? "flow" : "class", map & 3);
9663 		if (kbps)
9664 			sbuf_printf(sb, "%9u     ", kbps);
9665 		else
9666 			sbuf_printf(sb, " disabled     ");
9667 
9668 		if (ipg)
9669 			sbuf_printf(sb, "%13u        ", ipg);
9670 		else
9671 			sbuf_printf(sb, "     disabled        ");
9672 
9673 		if (pace_tab[i])
9674 			sbuf_printf(sb, "%10u", pace_tab[i]);
9675 		else
9676 			sbuf_printf(sb, "  disabled");
9677 	}
9678 	rc = sbuf_finish(sb);
9679 done:
9680 	mtx_unlock(&sc->reg_lock);
9681 	sbuf_delete(sb);
9682 	return (rc);
9683 }
9684 
9685 static int
9686 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
9687 {
9688 	struct adapter *sc = arg1;
9689 	struct sbuf *sb;
9690 	int rc, i, j;
9691 	uint64_t *p0, *p1;
9692 	struct lb_port_stats s[2];
9693 	static const char *stat_name[] = {
9694 		"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
9695 		"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
9696 		"Frames128To255:", "Frames256To511:", "Frames512To1023:",
9697 		"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
9698 		"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
9699 		"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
9700 		"BG2FramesTrunc:", "BG3FramesTrunc:"
9701 	};
9702 
9703 	rc = sysctl_wire_old_buffer(req, 0);
9704 	if (rc != 0)
9705 		return (rc);
9706 
9707 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9708 	if (sb == NULL)
9709 		return (ENOMEM);
9710 
9711 	memset(s, 0, sizeof(s));
9712 
9713 	for (i = 0; i < sc->chip_params->nchan; i += 2) {
9714 		mtx_lock(&sc->reg_lock);
9715 		if (hw_off_limits(sc))
9716 			rc = ENXIO;
9717 		else {
9718 			t4_get_lb_stats(sc, i, &s[0]);
9719 			t4_get_lb_stats(sc, i + 1, &s[1]);
9720 		}
9721 		mtx_unlock(&sc->reg_lock);
9722 		if (rc != 0)
9723 			break;
9724 
9725 		p0 = &s[0].octets;
9726 		p1 = &s[1].octets;
9727 		sbuf_printf(sb, "%s                       Loopback %u"
9728 		    "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
9729 
9730 		for (j = 0; j < nitems(stat_name); j++)
9731 			sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
9732 				   *p0++, *p1++);
9733 	}
9734 
9735 	rc = sbuf_finish(sb);
9736 	sbuf_delete(sb);
9737 
9738 	return (rc);
9739 }
9740 
9741 static int
9742 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
9743 {
9744 	int rc = 0;
9745 	struct port_info *pi = arg1;
9746 	struct link_config *lc = &pi->link_cfg;
9747 	struct sbuf *sb;
9748 
9749 	rc = sysctl_wire_old_buffer(req, 0);
9750 	if (rc != 0)
9751 		return(rc);
9752 	sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
9753 	if (sb == NULL)
9754 		return (ENOMEM);
9755 
9756 	if (lc->link_ok || lc->link_down_rc == 255)
9757 		sbuf_printf(sb, "n/a");
9758 	else
9759 		sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
9760 
9761 	rc = sbuf_finish(sb);
9762 	sbuf_delete(sb);
9763 
9764 	return (rc);
9765 }
9766 
9767 struct mem_desc {
9768 	u_int base;
9769 	u_int limit;
9770 	u_int idx;
9771 };
9772 
9773 static int
9774 mem_desc_cmp(const void *a, const void *b)
9775 {
9776 	const u_int v1 = ((const struct mem_desc *)a)->base;
9777 	const u_int v2 = ((const struct mem_desc *)b)->base;
9778 
9779 	if (v1 < v2)
9780 		return (-1);
9781 	else if (v1 > v2)
9782 		return (1);
9783 
9784 	return (0);
9785 }
9786 
9787 static void
9788 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
9789     unsigned int to)
9790 {
9791 	unsigned int size;
9792 
9793 	if (from == to)
9794 		return;
9795 
9796 	size = to - from + 1;
9797 	if (size == 0)
9798 		return;
9799 
9800 	/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
9801 	sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
9802 }
9803 
9804 static int
9805 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
9806 {
9807 	struct adapter *sc = arg1;
9808 	struct sbuf *sb;
9809 	int rc, i, n;
9810 	uint32_t lo, hi, used, free, alloc;
9811 	static const char *memory[] = {
9812 		"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
9813 	};
9814 	static const char *region[] = {
9815 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
9816 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
9817 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
9818 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
9819 		"RQUDP region:", "PBL region:", "TXPBL region:",
9820 		"TLSKey region:", "DBVFIFO region:", "ULPRX state:",
9821 		"ULPTX state:", "On-chip queues:",
9822 	};
9823 	struct mem_desc avail[4];
9824 	struct mem_desc mem[nitems(region) + 3];	/* up to 3 holes */
9825 	struct mem_desc *md = mem;
9826 
9827 	rc = sysctl_wire_old_buffer(req, 0);
9828 	if (rc != 0)
9829 		return (rc);
9830 
9831 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9832 	if (sb == NULL)
9833 		return (ENOMEM);
9834 
9835 	for (i = 0; i < nitems(mem); i++) {
9836 		mem[i].limit = 0;
9837 		mem[i].idx = i;
9838 	}
9839 
9840 	mtx_lock(&sc->reg_lock);
9841 	if (hw_off_limits(sc)) {
9842 		rc = ENXIO;
9843 		goto done;
9844 	}
9845 
9846 	/* Find and sort the populated memory ranges */
9847 	i = 0;
9848 	lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
9849 	if (lo & F_EDRAM0_ENABLE) {
9850 		hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
9851 		avail[i].base = G_EDRAM0_BASE(hi) << 20;
9852 		avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
9853 		avail[i].idx = 0;
9854 		i++;
9855 	}
9856 	if (lo & F_EDRAM1_ENABLE) {
9857 		hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
9858 		avail[i].base = G_EDRAM1_BASE(hi) << 20;
9859 		avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
9860 		avail[i].idx = 1;
9861 		i++;
9862 	}
9863 	if (lo & F_EXT_MEM_ENABLE) {
9864 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
9865 		avail[i].base = G_EXT_MEM_BASE(hi) << 20;
9866 		avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20);
9867 		avail[i].idx = is_t5(sc) ? 3 : 2;	/* Call it MC0 for T5 */
9868 		i++;
9869 	}
9870 	if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
9871 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9872 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9873 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9874 		avail[i].idx = 4;
9875 		i++;
9876 	}
9877 	if (is_t6(sc) && lo & F_HMA_MUX) {
9878 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9879 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9880 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9881 		avail[i].idx = 5;
9882 		i++;
9883 	}
9884 	MPASS(i <= nitems(avail));
9885 	if (!i)                                    /* no memory available */
9886 		goto done;
9887 	qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
9888 
9889 	(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
9890 	(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
9891 	(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
9892 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
9893 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
9894 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
9895 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
9896 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
9897 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
9898 
9899 	/* the next few have explicit upper bounds */
9900 	md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
9901 	md->limit = md->base - 1 +
9902 		    t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
9903 		    G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
9904 	md++;
9905 
9906 	md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
9907 	md->limit = md->base - 1 +
9908 		    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
9909 		    G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
9910 	md++;
9911 
9912 	if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
9913 		if (chip_id(sc) <= CHELSIO_T5)
9914 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
9915 		else
9916 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
9917 		md->limit = 0;
9918 	} else {
9919 		md->base = 0;
9920 		md->idx = nitems(region);  /* hide it */
9921 	}
9922 	md++;
9923 
9924 #define ulp_region(reg) \
9925 	md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
9926 	(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
9927 
9928 	ulp_region(RX_ISCSI);
9929 	ulp_region(RX_TDDP);
9930 	ulp_region(TX_TPT);
9931 	ulp_region(RX_STAG);
9932 	ulp_region(RX_RQ);
9933 	ulp_region(RX_RQUDP);
9934 	ulp_region(RX_PBL);
9935 	ulp_region(TX_PBL);
9936 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
9937 		ulp_region(RX_TLS_KEY);
9938 	}
9939 #undef ulp_region
9940 
9941 	md->base = 0;
9942 	if (is_t4(sc))
9943 		md->idx = nitems(region);
9944 	else {
9945 		uint32_t size = 0;
9946 		uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
9947 		uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
9948 
9949 		if (is_t5(sc)) {
9950 			if (sge_ctrl & F_VFIFO_ENABLE)
9951 				size = fifo_size << 2;
9952 		} else
9953 			size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
9954 
9955 		if (size) {
9956 			md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
9957 			md->limit = md->base + size - 1;
9958 		} else
9959 			md->idx = nitems(region);
9960 	}
9961 	md++;
9962 
9963 	md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
9964 	md->limit = 0;
9965 	md++;
9966 	md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
9967 	md->limit = 0;
9968 	md++;
9969 
9970 	md->base = sc->vres.ocq.start;
9971 	if (sc->vres.ocq.size)
9972 		md->limit = md->base + sc->vres.ocq.size - 1;
9973 	else
9974 		md->idx = nitems(region);  /* hide it */
9975 	md++;
9976 
9977 	/* add any address-space holes, there can be up to 3 */
9978 	for (n = 0; n < i - 1; n++)
9979 		if (avail[n].limit < avail[n + 1].base)
9980 			(md++)->base = avail[n].limit;
9981 	if (avail[n].limit)
9982 		(md++)->base = avail[n].limit;
9983 
9984 	n = md - mem;
9985 	MPASS(n <= nitems(mem));
9986 	qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
9987 
9988 	for (lo = 0; lo < i; lo++)
9989 		mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
9990 				avail[lo].limit - 1);
9991 
9992 	sbuf_printf(sb, "\n");
9993 	for (i = 0; i < n; i++) {
9994 		if (mem[i].idx >= nitems(region))
9995 			continue;                        /* skip holes */
9996 		if (!mem[i].limit)
9997 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
9998 		mem_region_show(sb, region[mem[i].idx], mem[i].base,
9999 				mem[i].limit);
10000 	}
10001 
10002 	sbuf_printf(sb, "\n");
10003 	lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10004 	hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10005 	mem_region_show(sb, "uP RAM:", lo, hi);
10006 
10007 	lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10008 	hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10009 	mem_region_show(sb, "uP Extmem2:", lo, hi);
10010 
10011 	lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10012 	for (i = 0, free = 0; i < 2; i++)
10013 		free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10014 	sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10015 		   G_PMRXMAXPAGE(lo), free,
10016 		   t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
10017 		   (lo & F_PMRXNUMCHN) ? 2 : 1);
10018 
10019 	lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10020 	hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10021 	for (i = 0, free = 0; i < 4; i++)
10022 		free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10023 	sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10024 		   G_PMTXMAXPAGE(lo), free,
10025 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10026 		   hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
10027 	sbuf_printf(sb, "%u p-structs (%u free)\n",
10028 		   t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10029 		   G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10030 
10031 	for (i = 0; i < 4; i++) {
10032 		if (chip_id(sc) > CHELSIO_T5)
10033 			lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10034 		else
10035 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10036 		if (is_t5(sc)) {
10037 			used = G_T5_USED(lo);
10038 			alloc = G_T5_ALLOC(lo);
10039 		} else {
10040 			used = G_USED(lo);
10041 			alloc = G_ALLOC(lo);
10042 		}
10043 		/* For T6 these are MAC buffer groups */
10044 		sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10045 		    i, used, alloc);
10046 	}
10047 	for (i = 0; i < sc->chip_params->nchan; i++) {
10048 		if (chip_id(sc) > CHELSIO_T5)
10049 			lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10050 		else
10051 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10052 		if (is_t5(sc)) {
10053 			used = G_T5_USED(lo);
10054 			alloc = G_T5_ALLOC(lo);
10055 		} else {
10056 			used = G_USED(lo);
10057 			alloc = G_ALLOC(lo);
10058 		}
10059 		/* For T6 these are MAC buffer groups */
10060 		sbuf_printf(sb,
10061 		    "\nLoopback %d using %u pages out of %u allocated",
10062 		    i, used, alloc);
10063 	}
10064 done:
10065 	mtx_unlock(&sc->reg_lock);
10066 	if (rc == 0)
10067 		rc = sbuf_finish(sb);
10068 	sbuf_delete(sb);
10069 	return (rc);
10070 }
10071 
10072 static inline void
10073 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10074 {
10075 	*mask = x | y;
10076 	y = htobe64(y);
10077 	memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10078 }
10079 
10080 static int
10081 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10082 {
10083 	struct adapter *sc = arg1;
10084 	struct sbuf *sb;
10085 	int rc, i;
10086 
10087 	MPASS(chip_id(sc) <= CHELSIO_T5);
10088 
10089 	rc = sysctl_wire_old_buffer(req, 0);
10090 	if (rc != 0)
10091 		return (rc);
10092 
10093 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10094 	if (sb == NULL)
10095 		return (ENOMEM);
10096 
10097 	sbuf_printf(sb,
10098 	    "Idx  Ethernet address     Mask     Vld Ports PF"
10099 	    "  VF              Replication             P0 P1 P2 P3  ML");
10100 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10101 		uint64_t tcamx, tcamy, mask;
10102 		uint32_t cls_lo, cls_hi;
10103 		uint8_t addr[ETHER_ADDR_LEN];
10104 
10105 		mtx_lock(&sc->reg_lock);
10106 		if (hw_off_limits(sc))
10107 			rc = ENXIO;
10108 		else {
10109 			tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10110 			tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10111 		}
10112 		mtx_unlock(&sc->reg_lock);
10113 		if (rc != 0)
10114 			break;
10115 		if (tcamx & tcamy)
10116 			continue;
10117 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
10118 		mtx_lock(&sc->reg_lock);
10119 		if (hw_off_limits(sc))
10120 			rc = ENXIO;
10121 		else {
10122 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10123 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10124 		}
10125 		mtx_unlock(&sc->reg_lock);
10126 		if (rc != 0)
10127 			break;
10128 		sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10129 			   "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
10130 			   addr[3], addr[4], addr[5], (uintmax_t)mask,
10131 			   (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10132 			   G_PORTMAP(cls_hi), G_PF(cls_lo),
10133 			   (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10134 
10135 		if (cls_lo & F_REPLICATE) {
10136 			struct fw_ldst_cmd ldst_cmd;
10137 
10138 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10139 			ldst_cmd.op_to_addrspace =
10140 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10141 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
10142 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10143 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10144 			ldst_cmd.u.mps.rplc.fid_idx =
10145 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10146 				V_FW_LDST_CMD_IDX(i));
10147 
10148 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10149 			    "t4mps");
10150 			if (rc)
10151 				break;
10152 			if (hw_off_limits(sc))
10153 				rc = ENXIO;
10154 			else
10155 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10156 				    sizeof(ldst_cmd), &ldst_cmd);
10157 			end_synchronized_op(sc, 0);
10158 			if (rc != 0)
10159 				break;
10160 			else {
10161 				sbuf_printf(sb, " %08x %08x %08x %08x",
10162 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10163 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10164 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10165 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10166 			}
10167 		} else
10168 			sbuf_printf(sb, "%36s", "");
10169 
10170 		sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10171 		    G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10172 		    G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10173 	}
10174 
10175 	if (rc)
10176 		(void) sbuf_finish(sb);
10177 	else
10178 		rc = sbuf_finish(sb);
10179 	sbuf_delete(sb);
10180 
10181 	return (rc);
10182 }
10183 
10184 static int
10185 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10186 {
10187 	struct adapter *sc = arg1;
10188 	struct sbuf *sb;
10189 	int rc, i;
10190 
10191 	MPASS(chip_id(sc) > CHELSIO_T5);
10192 
10193 	rc = sysctl_wire_old_buffer(req, 0);
10194 	if (rc != 0)
10195 		return (rc);
10196 
10197 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10198 	if (sb == NULL)
10199 		return (ENOMEM);
10200 
10201 	sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
10202 	    "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
10203 	    "                           Replication"
10204 	    "                                    P0 P1 P2 P3  ML\n");
10205 
10206 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10207 		uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10208 		uint16_t ivlan;
10209 		uint64_t tcamx, tcamy, val, mask;
10210 		uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10211 		uint8_t addr[ETHER_ADDR_LEN];
10212 
10213 		ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10214 		if (i < 256)
10215 			ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10216 		else
10217 			ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10218 		mtx_lock(&sc->reg_lock);
10219 		if (hw_off_limits(sc))
10220 			rc = ENXIO;
10221 		else {
10222 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10223 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10224 			tcamy = G_DMACH(val) << 32;
10225 			tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10226 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10227 		}
10228 		mtx_unlock(&sc->reg_lock);
10229 		if (rc != 0)
10230 			break;
10231 
10232 		lookup_type = G_DATALKPTYPE(data2);
10233 		port_num = G_DATAPORTNUM(data2);
10234 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10235 			/* Inner header VNI */
10236 			vniy = ((data2 & F_DATAVIDH2) << 23) |
10237 				       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10238 			dip_hit = data2 & F_DATADIPHIT;
10239 			vlan_vld = 0;
10240 		} else {
10241 			vniy = 0;
10242 			dip_hit = 0;
10243 			vlan_vld = data2 & F_DATAVIDH2;
10244 			ivlan = G_VIDL(val);
10245 		}
10246 
10247 		ctl |= V_CTLXYBITSEL(1);
10248 		mtx_lock(&sc->reg_lock);
10249 		if (hw_off_limits(sc))
10250 			rc = ENXIO;
10251 		else {
10252 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10253 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10254 			tcamx = G_DMACH(val) << 32;
10255 			tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10256 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10257 		}
10258 		mtx_unlock(&sc->reg_lock);
10259 		if (rc != 0)
10260 			break;
10261 
10262 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10263 			/* Inner header VNI mask */
10264 			vnix = ((data2 & F_DATAVIDH2) << 23) |
10265 			       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10266 		} else
10267 			vnix = 0;
10268 
10269 		if (tcamx & tcamy)
10270 			continue;
10271 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
10272 
10273 		mtx_lock(&sc->reg_lock);
10274 		if (hw_off_limits(sc))
10275 			rc = ENXIO;
10276 		else {
10277 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10278 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10279 		}
10280 		mtx_unlock(&sc->reg_lock);
10281 		if (rc != 0)
10282 			break;
10283 
10284 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10285 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10286 			    "%012jx %06x %06x    -    -   %3c"
10287 			    "        I  %4x   %3c   %#x%4u%4d", i, addr[0],
10288 			    addr[1], addr[2], addr[3], addr[4], addr[5],
10289 			    (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
10290 			    port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10291 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10292 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10293 		} else {
10294 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10295 			    "%012jx    -       -   ", i, addr[0], addr[1],
10296 			    addr[2], addr[3], addr[4], addr[5],
10297 			    (uintmax_t)mask);
10298 
10299 			if (vlan_vld)
10300 				sbuf_printf(sb, "%4u   Y     ", ivlan);
10301 			else
10302 				sbuf_printf(sb, "  -    N     ");
10303 
10304 			sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
10305 			    lookup_type ? 'I' : 'O', port_num,
10306 			    cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10307 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10308 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10309 		}
10310 
10311 
10312 		if (cls_lo & F_T6_REPLICATE) {
10313 			struct fw_ldst_cmd ldst_cmd;
10314 
10315 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10316 			ldst_cmd.op_to_addrspace =
10317 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10318 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
10319 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10320 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10321 			ldst_cmd.u.mps.rplc.fid_idx =
10322 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10323 				V_FW_LDST_CMD_IDX(i));
10324 
10325 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10326 			    "t6mps");
10327 			if (rc)
10328 				break;
10329 			if (hw_off_limits(sc))
10330 				rc = ENXIO;
10331 			else
10332 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10333 				    sizeof(ldst_cmd), &ldst_cmd);
10334 			end_synchronized_op(sc, 0);
10335 			if (rc != 0)
10336 				break;
10337 			else {
10338 				sbuf_printf(sb, " %08x %08x %08x %08x"
10339 				    " %08x %08x %08x %08x",
10340 				    be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
10341 				    be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
10342 				    be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
10343 				    be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
10344 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10345 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10346 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10347 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10348 			}
10349 		} else
10350 			sbuf_printf(sb, "%72s", "");
10351 
10352 		sbuf_printf(sb, "%4u%3u%3u%3u %#x",
10353 		    G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
10354 		    G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
10355 		    (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
10356 	}
10357 
10358 	if (rc)
10359 		(void) sbuf_finish(sb);
10360 	else
10361 		rc = sbuf_finish(sb);
10362 	sbuf_delete(sb);
10363 
10364 	return (rc);
10365 }
10366 
10367 static int
10368 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
10369 {
10370 	struct adapter *sc = arg1;
10371 	struct sbuf *sb;
10372 	int rc;
10373 	uint16_t mtus[NMTUS];
10374 
10375 	rc = sysctl_wire_old_buffer(req, 0);
10376 	if (rc != 0)
10377 		return (rc);
10378 
10379 	mtx_lock(&sc->reg_lock);
10380 	if (hw_off_limits(sc))
10381 		rc = ENXIO;
10382 	else
10383 		t4_read_mtu_tbl(sc, mtus, NULL);
10384 	mtx_unlock(&sc->reg_lock);
10385 	if (rc != 0)
10386 		return (rc);
10387 
10388 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10389 	if (sb == NULL)
10390 		return (ENOMEM);
10391 
10392 	sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
10393 	    mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
10394 	    mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
10395 	    mtus[14], mtus[15]);
10396 
10397 	rc = sbuf_finish(sb);
10398 	sbuf_delete(sb);
10399 
10400 	return (rc);
10401 }
10402 
10403 static int
10404 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
10405 {
10406 	struct adapter *sc = arg1;
10407 	struct sbuf *sb;
10408 	int rc, i;
10409 	uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
10410 	uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
10411 	static const char *tx_stats[MAX_PM_NSTATS] = {
10412 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
10413 		"Tx FIFO wait", NULL, "Tx latency"
10414 	};
10415 	static const char *rx_stats[MAX_PM_NSTATS] = {
10416 		"Read:", "Write bypass:", "Write mem:", "Flush:",
10417 		"Rx FIFO wait", NULL, "Rx latency"
10418 	};
10419 
10420 	rc = sysctl_wire_old_buffer(req, 0);
10421 	if (rc != 0)
10422 		return (rc);
10423 
10424 	mtx_lock(&sc->reg_lock);
10425 	if (hw_off_limits(sc))
10426 		rc = ENXIO;
10427 	else {
10428 		t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
10429 		t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
10430 	}
10431 	mtx_unlock(&sc->reg_lock);
10432 	if (rc != 0)
10433 		return (rc);
10434 
10435 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10436 	if (sb == NULL)
10437 		return (ENOMEM);
10438 
10439 	sbuf_printf(sb, "                Tx pcmds             Tx bytes");
10440 	for (i = 0; i < 4; i++) {
10441 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10442 		    tx_cyc[i]);
10443 	}
10444 
10445 	sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
10446 	for (i = 0; i < 4; i++) {
10447 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10448 		    rx_cyc[i]);
10449 	}
10450 
10451 	if (chip_id(sc) > CHELSIO_T5) {
10452 		sbuf_printf(sb,
10453 		    "\n              Total wait      Total occupancy");
10454 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10455 		    tx_cyc[i]);
10456 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10457 		    rx_cyc[i]);
10458 
10459 		i += 2;
10460 		MPASS(i < nitems(tx_stats));
10461 
10462 		sbuf_printf(sb,
10463 		    "\n                   Reads           Total wait");
10464 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10465 		    tx_cyc[i]);
10466 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10467 		    rx_cyc[i]);
10468 	}
10469 
10470 	rc = sbuf_finish(sb);
10471 	sbuf_delete(sb);
10472 
10473 	return (rc);
10474 }
10475 
10476 static int
10477 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
10478 {
10479 	struct adapter *sc = arg1;
10480 	struct sbuf *sb;
10481 	int rc;
10482 	struct tp_rdma_stats stats;
10483 
10484 	rc = sysctl_wire_old_buffer(req, 0);
10485 	if (rc != 0)
10486 		return (rc);
10487 
10488 	mtx_lock(&sc->reg_lock);
10489 	if (hw_off_limits(sc))
10490 		rc = ENXIO;
10491 	else
10492 		t4_tp_get_rdma_stats(sc, &stats, 0);
10493 	mtx_unlock(&sc->reg_lock);
10494 	if (rc != 0)
10495 		return (rc);
10496 
10497 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10498 	if (sb == NULL)
10499 		return (ENOMEM);
10500 
10501 	sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
10502 	sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
10503 
10504 	rc = sbuf_finish(sb);
10505 	sbuf_delete(sb);
10506 
10507 	return (rc);
10508 }
10509 
10510 static int
10511 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
10512 {
10513 	struct adapter *sc = arg1;
10514 	struct sbuf *sb;
10515 	int rc;
10516 	struct tp_tcp_stats v4, v6;
10517 
10518 	rc = sysctl_wire_old_buffer(req, 0);
10519 	if (rc != 0)
10520 		return (rc);
10521 
10522 	mtx_lock(&sc->reg_lock);
10523 	if (hw_off_limits(sc))
10524 		rc = ENXIO;
10525 	else
10526 		t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
10527 	mtx_unlock(&sc->reg_lock);
10528 	if (rc != 0)
10529 		return (rc);
10530 
10531 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10532 	if (sb == NULL)
10533 		return (ENOMEM);
10534 
10535 	sbuf_printf(sb,
10536 	    "                                IP                 IPv6\n");
10537 	sbuf_printf(sb, "OutRsts:      %20u %20u\n",
10538 	    v4.tcp_out_rsts, v6.tcp_out_rsts);
10539 	sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
10540 	    v4.tcp_in_segs, v6.tcp_in_segs);
10541 	sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
10542 	    v4.tcp_out_segs, v6.tcp_out_segs);
10543 	sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
10544 	    v4.tcp_retrans_segs, v6.tcp_retrans_segs);
10545 
10546 	rc = sbuf_finish(sb);
10547 	sbuf_delete(sb);
10548 
10549 	return (rc);
10550 }
10551 
10552 static int
10553 sysctl_tids(SYSCTL_HANDLER_ARGS)
10554 {
10555 	struct adapter *sc = arg1;
10556 	struct sbuf *sb;
10557 	int rc;
10558 	uint32_t x, y;
10559 	struct tid_info *t = &sc->tids;
10560 
10561 	rc = sysctl_wire_old_buffer(req, 0);
10562 	if (rc != 0)
10563 		return (rc);
10564 
10565 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10566 	if (sb == NULL)
10567 		return (ENOMEM);
10568 
10569 	if (t->natids) {
10570 		sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
10571 		    t->atids_in_use);
10572 	}
10573 
10574 	if (t->nhpftids) {
10575 		sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
10576 		    t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
10577 	}
10578 
10579 	if (t->ntids) {
10580 		bool hashen = false;
10581 
10582 		mtx_lock(&sc->reg_lock);
10583 		if (hw_off_limits(sc))
10584 			rc = ENXIO;
10585 		else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10586 			hashen = true;
10587 			if (chip_id(sc) <= CHELSIO_T5) {
10588 				x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
10589 				y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
10590 			} else {
10591 				x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
10592 				y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
10593 			}
10594 		}
10595 		mtx_unlock(&sc->reg_lock);
10596 		if (rc != 0)
10597 			goto done;
10598 
10599 		sbuf_printf(sb, "TID range: ");
10600 		if (hashen) {
10601 			if (x)
10602 				sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
10603 			sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
10604 		} else {
10605 			sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
10606 			    t->ntids - 1);
10607 		}
10608 		sbuf_printf(sb, ", in use: %u\n",
10609 		    atomic_load_acq_int(&t->tids_in_use));
10610 	}
10611 
10612 	if (t->nstids) {
10613 		sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
10614 		    t->stid_base + t->nstids - 1, t->stids_in_use);
10615 	}
10616 
10617 	if (t->nftids) {
10618 		sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
10619 		    t->ftid_end, t->ftids_in_use);
10620 	}
10621 
10622 	if (t->netids) {
10623 		sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
10624 		    t->etid_base + t->netids - 1, t->etids_in_use);
10625 	}
10626 
10627 	mtx_lock(&sc->reg_lock);
10628 	if (hw_off_limits(sc))
10629 		rc = ENXIO;
10630 	else {
10631 		x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
10632 		y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
10633 	}
10634 	mtx_unlock(&sc->reg_lock);
10635 	if (rc != 0)
10636 		goto done;
10637 	sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
10638 done:
10639 	if (rc == 0)
10640 		rc = sbuf_finish(sb);
10641 	else
10642 		(void)sbuf_finish(sb);
10643 	sbuf_delete(sb);
10644 
10645 	return (rc);
10646 }
10647 
10648 static int
10649 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
10650 {
10651 	struct adapter *sc = arg1;
10652 	struct sbuf *sb;
10653 	int rc;
10654 	struct tp_err_stats stats;
10655 
10656 	rc = sysctl_wire_old_buffer(req, 0);
10657 	if (rc != 0)
10658 		return (rc);
10659 
10660 	mtx_lock(&sc->reg_lock);
10661 	if (hw_off_limits(sc))
10662 		rc = ENXIO;
10663 	else
10664 		t4_tp_get_err_stats(sc, &stats, 0);
10665 	mtx_unlock(&sc->reg_lock);
10666 	if (rc != 0)
10667 		return (rc);
10668 
10669 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10670 	if (sb == NULL)
10671 		return (ENOMEM);
10672 
10673 	if (sc->chip_params->nchan > 2) {
10674 		sbuf_printf(sb, "                 channel 0  channel 1"
10675 		    "  channel 2  channel 3\n");
10676 		sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
10677 		    stats.mac_in_errs[0], stats.mac_in_errs[1],
10678 		    stats.mac_in_errs[2], stats.mac_in_errs[3]);
10679 		sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
10680 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1],
10681 		    stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
10682 		sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
10683 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1],
10684 		    stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
10685 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
10686 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
10687 		    stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
10688 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
10689 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
10690 		    stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
10691 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
10692 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
10693 		    stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
10694 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
10695 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
10696 		    stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
10697 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
10698 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
10699 		    stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
10700 	} else {
10701 		sbuf_printf(sb, "                 channel 0  channel 1\n");
10702 		sbuf_printf(sb, "macInErrs:      %10u %10u\n",
10703 		    stats.mac_in_errs[0], stats.mac_in_errs[1]);
10704 		sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
10705 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
10706 		sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
10707 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
10708 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
10709 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
10710 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
10711 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
10712 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
10713 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
10714 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
10715 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
10716 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
10717 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
10718 	}
10719 
10720 	sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
10721 	    stats.ofld_no_neigh, stats.ofld_cong_defer);
10722 
10723 	rc = sbuf_finish(sb);
10724 	sbuf_delete(sb);
10725 
10726 	return (rc);
10727 }
10728 
10729 static int
10730 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
10731 {
10732 	struct adapter *sc = arg1;
10733 	struct sbuf *sb;
10734 	int rc;
10735 	struct tp_tnl_stats stats;
10736 
10737 	rc = sysctl_wire_old_buffer(req, 0);
10738 	if (rc != 0)
10739 		return(rc);
10740 
10741 	mtx_lock(&sc->reg_lock);
10742 	if (hw_off_limits(sc))
10743 		rc = ENXIO;
10744 	else
10745 		t4_tp_get_tnl_stats(sc, &stats, 1);
10746 	mtx_unlock(&sc->reg_lock);
10747 	if (rc != 0)
10748 		return (rc);
10749 
10750 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10751 	if (sb == NULL)
10752 		return (ENOMEM);
10753 
10754 	if (sc->chip_params->nchan > 2) {
10755 		sbuf_printf(sb, "           channel 0  channel 1"
10756 		    "  channel 2  channel 3\n");
10757 		sbuf_printf(sb, "OutPkts:  %10u %10u %10u %10u\n",
10758 		    stats.out_pkt[0], stats.out_pkt[1],
10759 		    stats.out_pkt[2], stats.out_pkt[3]);
10760 		sbuf_printf(sb, "InPkts:   %10u %10u %10u %10u",
10761 		    stats.in_pkt[0], stats.in_pkt[1],
10762 		    stats.in_pkt[2], stats.in_pkt[3]);
10763 	} else {
10764 		sbuf_printf(sb, "           channel 0  channel 1\n");
10765 		sbuf_printf(sb, "OutPkts:  %10u %10u\n",
10766 		    stats.out_pkt[0], stats.out_pkt[1]);
10767 		sbuf_printf(sb, "InPkts:   %10u %10u",
10768 		    stats.in_pkt[0], stats.in_pkt[1]);
10769 	}
10770 
10771 	rc = sbuf_finish(sb);
10772 	sbuf_delete(sb);
10773 
10774 	return (rc);
10775 }
10776 
10777 static int
10778 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
10779 {
10780 	struct adapter *sc = arg1;
10781 	struct tp_params *tpp = &sc->params.tp;
10782 	u_int mask;
10783 	int rc;
10784 
10785 	mask = tpp->la_mask >> 16;
10786 	rc = sysctl_handle_int(oidp, &mask, 0, req);
10787 	if (rc != 0 || req->newptr == NULL)
10788 		return (rc);
10789 	if (mask > 0xffff)
10790 		return (EINVAL);
10791 	mtx_lock(&sc->reg_lock);
10792 	if (hw_off_limits(sc))
10793 		rc = ENXIO;
10794 	else {
10795 		tpp->la_mask = mask << 16;
10796 		t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
10797 		    tpp->la_mask);
10798 	}
10799 	mtx_unlock(&sc->reg_lock);
10800 
10801 	return (rc);
10802 }
10803 
10804 struct field_desc {
10805 	const char *name;
10806 	u_int start;
10807 	u_int width;
10808 };
10809 
10810 static void
10811 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
10812 {
10813 	char buf[32];
10814 	int line_size = 0;
10815 
10816 	while (f->name) {
10817 		uint64_t mask = (1ULL << f->width) - 1;
10818 		int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
10819 		    ((uintmax_t)v >> f->start) & mask);
10820 
10821 		if (line_size + len >= 79) {
10822 			line_size = 8;
10823 			sbuf_printf(sb, "\n        ");
10824 		}
10825 		sbuf_printf(sb, "%s ", buf);
10826 		line_size += len + 1;
10827 		f++;
10828 	}
10829 	sbuf_printf(sb, "\n");
10830 }
10831 
10832 static const struct field_desc tp_la0[] = {
10833 	{ "RcfOpCodeOut", 60, 4 },
10834 	{ "State", 56, 4 },
10835 	{ "WcfState", 52, 4 },
10836 	{ "RcfOpcSrcOut", 50, 2 },
10837 	{ "CRxError", 49, 1 },
10838 	{ "ERxError", 48, 1 },
10839 	{ "SanityFailed", 47, 1 },
10840 	{ "SpuriousMsg", 46, 1 },
10841 	{ "FlushInputMsg", 45, 1 },
10842 	{ "FlushInputCpl", 44, 1 },
10843 	{ "RssUpBit", 43, 1 },
10844 	{ "RssFilterHit", 42, 1 },
10845 	{ "Tid", 32, 10 },
10846 	{ "InitTcb", 31, 1 },
10847 	{ "LineNumber", 24, 7 },
10848 	{ "Emsg", 23, 1 },
10849 	{ "EdataOut", 22, 1 },
10850 	{ "Cmsg", 21, 1 },
10851 	{ "CdataOut", 20, 1 },
10852 	{ "EreadPdu", 19, 1 },
10853 	{ "CreadPdu", 18, 1 },
10854 	{ "TunnelPkt", 17, 1 },
10855 	{ "RcfPeerFin", 16, 1 },
10856 	{ "RcfReasonOut", 12, 4 },
10857 	{ "TxCchannel", 10, 2 },
10858 	{ "RcfTxChannel", 8, 2 },
10859 	{ "RxEchannel", 6, 2 },
10860 	{ "RcfRxChannel", 5, 1 },
10861 	{ "RcfDataOutSrdy", 4, 1 },
10862 	{ "RxDvld", 3, 1 },
10863 	{ "RxOoDvld", 2, 1 },
10864 	{ "RxCongestion", 1, 1 },
10865 	{ "TxCongestion", 0, 1 },
10866 	{ NULL }
10867 };
10868 
10869 static const struct field_desc tp_la1[] = {
10870 	{ "CplCmdIn", 56, 8 },
10871 	{ "CplCmdOut", 48, 8 },
10872 	{ "ESynOut", 47, 1 },
10873 	{ "EAckOut", 46, 1 },
10874 	{ "EFinOut", 45, 1 },
10875 	{ "ERstOut", 44, 1 },
10876 	{ "SynIn", 43, 1 },
10877 	{ "AckIn", 42, 1 },
10878 	{ "FinIn", 41, 1 },
10879 	{ "RstIn", 40, 1 },
10880 	{ "DataIn", 39, 1 },
10881 	{ "DataInVld", 38, 1 },
10882 	{ "PadIn", 37, 1 },
10883 	{ "RxBufEmpty", 36, 1 },
10884 	{ "RxDdp", 35, 1 },
10885 	{ "RxFbCongestion", 34, 1 },
10886 	{ "TxFbCongestion", 33, 1 },
10887 	{ "TxPktSumSrdy", 32, 1 },
10888 	{ "RcfUlpType", 28, 4 },
10889 	{ "Eread", 27, 1 },
10890 	{ "Ebypass", 26, 1 },
10891 	{ "Esave", 25, 1 },
10892 	{ "Static0", 24, 1 },
10893 	{ "Cread", 23, 1 },
10894 	{ "Cbypass", 22, 1 },
10895 	{ "Csave", 21, 1 },
10896 	{ "CPktOut", 20, 1 },
10897 	{ "RxPagePoolFull", 18, 2 },
10898 	{ "RxLpbkPkt", 17, 1 },
10899 	{ "TxLpbkPkt", 16, 1 },
10900 	{ "RxVfValid", 15, 1 },
10901 	{ "SynLearned", 14, 1 },
10902 	{ "SetDelEntry", 13, 1 },
10903 	{ "SetInvEntry", 12, 1 },
10904 	{ "CpcmdDvld", 11, 1 },
10905 	{ "CpcmdSave", 10, 1 },
10906 	{ "RxPstructsFull", 8, 2 },
10907 	{ "EpcmdDvld", 7, 1 },
10908 	{ "EpcmdFlush", 6, 1 },
10909 	{ "EpcmdTrimPrefix", 5, 1 },
10910 	{ "EpcmdTrimPostfix", 4, 1 },
10911 	{ "ERssIp4Pkt", 3, 1 },
10912 	{ "ERssIp6Pkt", 2, 1 },
10913 	{ "ERssTcpUdpPkt", 1, 1 },
10914 	{ "ERssFceFipPkt", 0, 1 },
10915 	{ NULL }
10916 };
10917 
10918 static const struct field_desc tp_la2[] = {
10919 	{ "CplCmdIn", 56, 8 },
10920 	{ "MpsVfVld", 55, 1 },
10921 	{ "MpsPf", 52, 3 },
10922 	{ "MpsVf", 44, 8 },
10923 	{ "SynIn", 43, 1 },
10924 	{ "AckIn", 42, 1 },
10925 	{ "FinIn", 41, 1 },
10926 	{ "RstIn", 40, 1 },
10927 	{ "DataIn", 39, 1 },
10928 	{ "DataInVld", 38, 1 },
10929 	{ "PadIn", 37, 1 },
10930 	{ "RxBufEmpty", 36, 1 },
10931 	{ "RxDdp", 35, 1 },
10932 	{ "RxFbCongestion", 34, 1 },
10933 	{ "TxFbCongestion", 33, 1 },
10934 	{ "TxPktSumSrdy", 32, 1 },
10935 	{ "RcfUlpType", 28, 4 },
10936 	{ "Eread", 27, 1 },
10937 	{ "Ebypass", 26, 1 },
10938 	{ "Esave", 25, 1 },
10939 	{ "Static0", 24, 1 },
10940 	{ "Cread", 23, 1 },
10941 	{ "Cbypass", 22, 1 },
10942 	{ "Csave", 21, 1 },
10943 	{ "CPktOut", 20, 1 },
10944 	{ "RxPagePoolFull", 18, 2 },
10945 	{ "RxLpbkPkt", 17, 1 },
10946 	{ "TxLpbkPkt", 16, 1 },
10947 	{ "RxVfValid", 15, 1 },
10948 	{ "SynLearned", 14, 1 },
10949 	{ "SetDelEntry", 13, 1 },
10950 	{ "SetInvEntry", 12, 1 },
10951 	{ "CpcmdDvld", 11, 1 },
10952 	{ "CpcmdSave", 10, 1 },
10953 	{ "RxPstructsFull", 8, 2 },
10954 	{ "EpcmdDvld", 7, 1 },
10955 	{ "EpcmdFlush", 6, 1 },
10956 	{ "EpcmdTrimPrefix", 5, 1 },
10957 	{ "EpcmdTrimPostfix", 4, 1 },
10958 	{ "ERssIp4Pkt", 3, 1 },
10959 	{ "ERssIp6Pkt", 2, 1 },
10960 	{ "ERssTcpUdpPkt", 1, 1 },
10961 	{ "ERssFceFipPkt", 0, 1 },
10962 	{ NULL }
10963 };
10964 
10965 static void
10966 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
10967 {
10968 
10969 	field_desc_show(sb, *p, tp_la0);
10970 }
10971 
10972 static void
10973 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
10974 {
10975 
10976 	if (idx)
10977 		sbuf_printf(sb, "\n");
10978 	field_desc_show(sb, p[0], tp_la0);
10979 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10980 		field_desc_show(sb, p[1], tp_la0);
10981 }
10982 
10983 static void
10984 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
10985 {
10986 
10987 	if (idx)
10988 		sbuf_printf(sb, "\n");
10989 	field_desc_show(sb, p[0], tp_la0);
10990 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10991 		field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
10992 }
10993 
10994 static int
10995 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
10996 {
10997 	struct adapter *sc = arg1;
10998 	struct sbuf *sb;
10999 	uint64_t *buf, *p;
11000 	int rc;
11001 	u_int i, inc;
11002 	void (*show_func)(struct sbuf *, uint64_t *, int);
11003 
11004 	rc = sysctl_wire_old_buffer(req, 0);
11005 	if (rc != 0)
11006 		return (rc);
11007 
11008 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11009 	if (sb == NULL)
11010 		return (ENOMEM);
11011 
11012 	buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11013 
11014 	mtx_lock(&sc->reg_lock);
11015 	if (hw_off_limits(sc))
11016 		rc = ENXIO;
11017 	else {
11018 		t4_tp_read_la(sc, buf, NULL);
11019 		switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
11020 		case 2:
11021 			inc = 2;
11022 			show_func = tp_la_show2;
11023 			break;
11024 		case 3:
11025 			inc = 2;
11026 			show_func = tp_la_show3;
11027 			break;
11028 		default:
11029 			inc = 1;
11030 			show_func = tp_la_show;
11031 		}
11032 	}
11033 	mtx_unlock(&sc->reg_lock);
11034 	if (rc != 0)
11035 		goto done;
11036 
11037 	p = buf;
11038 	for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
11039 		(*show_func)(sb, p, i);
11040 	rc = sbuf_finish(sb);
11041 done:
11042 	sbuf_delete(sb);
11043 	free(buf, M_CXGBE);
11044 	return (rc);
11045 }
11046 
11047 static int
11048 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
11049 {
11050 	struct adapter *sc = arg1;
11051 	struct sbuf *sb;
11052 	int rc;
11053 	u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
11054 
11055 	rc = sysctl_wire_old_buffer(req, 0);
11056 	if (rc != 0)
11057 		return (rc);
11058 
11059 	mtx_lock(&sc->reg_lock);
11060 	if (hw_off_limits(sc))
11061 		rc = ENXIO;
11062 	else
11063 		t4_get_chan_txrate(sc, nrate, orate);
11064 	mtx_unlock(&sc->reg_lock);
11065 	if (rc != 0)
11066 		return (rc);
11067 
11068 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11069 	if (sb == NULL)
11070 		return (ENOMEM);
11071 
11072 	if (sc->chip_params->nchan > 2) {
11073 		sbuf_printf(sb, "              channel 0   channel 1"
11074 		    "   channel 2   channel 3\n");
11075 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
11076 		    nrate[0], nrate[1], nrate[2], nrate[3]);
11077 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
11078 		    orate[0], orate[1], orate[2], orate[3]);
11079 	} else {
11080 		sbuf_printf(sb, "              channel 0   channel 1\n");
11081 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
11082 		    nrate[0], nrate[1]);
11083 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
11084 		    orate[0], orate[1]);
11085 	}
11086 
11087 	rc = sbuf_finish(sb);
11088 	sbuf_delete(sb);
11089 
11090 	return (rc);
11091 }
11092 
11093 static int
11094 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
11095 {
11096 	struct adapter *sc = arg1;
11097 	struct sbuf *sb;
11098 	uint32_t *buf, *p;
11099 	int rc, i;
11100 
11101 	rc = sysctl_wire_old_buffer(req, 0);
11102 	if (rc != 0)
11103 		return (rc);
11104 
11105 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11106 	if (sb == NULL)
11107 		return (ENOMEM);
11108 
11109 	buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
11110 	    M_ZERO | M_WAITOK);
11111 
11112 	mtx_lock(&sc->reg_lock);
11113 	if (hw_off_limits(sc))
11114 		rc = ENXIO;
11115 	else
11116 		t4_ulprx_read_la(sc, buf);
11117 	mtx_unlock(&sc->reg_lock);
11118 	if (rc != 0)
11119 		goto done;
11120 
11121 	p = buf;
11122 	sbuf_printf(sb, "      Pcmd        Type   Message"
11123 	    "                Data");
11124 	for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
11125 		sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
11126 		    p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
11127 	}
11128 	rc = sbuf_finish(sb);
11129 done:
11130 	sbuf_delete(sb);
11131 	free(buf, M_CXGBE);
11132 	return (rc);
11133 }
11134 
11135 static int
11136 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
11137 {
11138 	struct adapter *sc = arg1;
11139 	struct sbuf *sb;
11140 	int rc;
11141 	uint32_t cfg, s1, s2;
11142 
11143 	MPASS(chip_id(sc) >= CHELSIO_T5);
11144 
11145 	rc = sysctl_wire_old_buffer(req, 0);
11146 	if (rc != 0)
11147 		return (rc);
11148 
11149 	mtx_lock(&sc->reg_lock);
11150 	if (hw_off_limits(sc))
11151 		rc = ENXIO;
11152 	else {
11153 		cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
11154 		s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
11155 		s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
11156 	}
11157 	mtx_unlock(&sc->reg_lock);
11158 	if (rc != 0)
11159 		return (rc);
11160 
11161 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11162 	if (sb == NULL)
11163 		return (ENOMEM);
11164 
11165 	if (G_STATSOURCE_T5(cfg) == 7) {
11166 		int mode;
11167 
11168 		mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
11169 		if (mode == 0)
11170 			sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
11171 		else if (mode == 1)
11172 			sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
11173 		else
11174 			sbuf_printf(sb, "unknown mode %d", mode);
11175 	}
11176 	rc = sbuf_finish(sb);
11177 	sbuf_delete(sb);
11178 
11179 	return (rc);
11180 }
11181 
11182 static int
11183 sysctl_cpus(SYSCTL_HANDLER_ARGS)
11184 {
11185 	struct adapter *sc = arg1;
11186 	enum cpu_sets op = arg2;
11187 	cpuset_t cpuset;
11188 	struct sbuf *sb;
11189 	int i, rc;
11190 
11191 	MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
11192 
11193 	CPU_ZERO(&cpuset);
11194 	rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
11195 	if (rc != 0)
11196 		return (rc);
11197 
11198 	rc = sysctl_wire_old_buffer(req, 0);
11199 	if (rc != 0)
11200 		return (rc);
11201 
11202 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11203 	if (sb == NULL)
11204 		return (ENOMEM);
11205 
11206 	CPU_FOREACH(i)
11207 		sbuf_printf(sb, "%d ", i);
11208 	rc = sbuf_finish(sb);
11209 	sbuf_delete(sb);
11210 
11211 	return (rc);
11212 }
11213 
11214 static int
11215 sysctl_reset(SYSCTL_HANDLER_ARGS)
11216 {
11217 	struct adapter *sc = arg1;
11218 	u_int val;
11219 	int rc;
11220 
11221 	val = atomic_load_int(&sc->num_resets);
11222 	rc = sysctl_handle_int(oidp, &val, 0, req);
11223 	if (rc != 0 || req->newptr == NULL)
11224 		return (rc);
11225 
11226 	if (val == 0) {
11227 		/* Zero out the counter that tracks reset. */
11228 		atomic_store_int(&sc->num_resets, 0);
11229 		return (0);
11230 	}
11231 
11232 	if (val != 1)
11233 		return (EINVAL);	/* 0 or 1 are the only legal values */
11234 
11235 	if (hw_off_limits(sc))		/* harmless race */
11236 		return (EALREADY);
11237 
11238 	taskqueue_enqueue(reset_tq, &sc->reset_task);
11239 	return (0);
11240 }
11241 
11242 #ifdef TCP_OFFLOAD
11243 static int
11244 sysctl_tls(SYSCTL_HANDLER_ARGS)
11245 {
11246 	struct adapter *sc = arg1;
11247 	int i, j, v, rc;
11248 	struct vi_info *vi;
11249 
11250 	v = sc->tt.tls;
11251 	rc = sysctl_handle_int(oidp, &v, 0, req);
11252 	if (rc != 0 || req->newptr == NULL)
11253 		return (rc);
11254 
11255 	if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11256 		return (ENOTSUP);
11257 
11258 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
11259 	if (rc)
11260 		return (rc);
11261 	if (hw_off_limits(sc))
11262 		rc = ENXIO;
11263 	else {
11264 		sc->tt.tls = !!v;
11265 		for_each_port(sc, i) {
11266 			for_each_vi(sc->port[i], j, vi) {
11267 				if (vi->flags & VI_INIT_DONE)
11268 					t4_update_fl_bufsize(vi->ifp);
11269 			}
11270 		}
11271 	}
11272 	end_synchronized_op(sc, 0);
11273 
11274 	return (rc);
11275 
11276 }
11277 
11278 static void
11279 unit_conv(char *buf, size_t len, u_int val, u_int factor)
11280 {
11281 	u_int rem = val % factor;
11282 
11283 	if (rem == 0)
11284 		snprintf(buf, len, "%u", val / factor);
11285 	else {
11286 		while (rem % 10 == 0)
11287 			rem /= 10;
11288 		snprintf(buf, len, "%u.%u", val / factor, rem);
11289 	}
11290 }
11291 
11292 static int
11293 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
11294 {
11295 	struct adapter *sc = arg1;
11296 	char buf[16];
11297 	u_int res, re;
11298 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11299 
11300 	mtx_lock(&sc->reg_lock);
11301 	if (hw_off_limits(sc))
11302 		res = (u_int)-1;
11303 	else
11304 		res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
11305 	mtx_unlock(&sc->reg_lock);
11306 	if (res == (u_int)-1)
11307 		return (ENXIO);
11308 
11309 	switch (arg2) {
11310 	case 0:
11311 		/* timer_tick */
11312 		re = G_TIMERRESOLUTION(res);
11313 		break;
11314 	case 1:
11315 		/* TCP timestamp tick */
11316 		re = G_TIMESTAMPRESOLUTION(res);
11317 		break;
11318 	case 2:
11319 		/* DACK tick */
11320 		re = G_DELAYEDACKRESOLUTION(res);
11321 		break;
11322 	default:
11323 		return (EDOOFUS);
11324 	}
11325 
11326 	unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
11327 
11328 	return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
11329 }
11330 
11331 static int
11332 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
11333 {
11334 	struct adapter *sc = arg1;
11335 	int rc;
11336 	u_int dack_tmr, dack_re, v;
11337 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11338 
11339 	mtx_lock(&sc->reg_lock);
11340 	if (hw_off_limits(sc))
11341 		rc = ENXIO;
11342 	else {
11343 		rc = 0;
11344 		dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
11345 		    A_TP_TIMER_RESOLUTION));
11346 		dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
11347 	}
11348 	mtx_unlock(&sc->reg_lock);
11349 	if (rc != 0)
11350 		return (rc);
11351 
11352 	v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
11353 
11354 	return (sysctl_handle_int(oidp, &v, 0, req));
11355 }
11356 
11357 static int
11358 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
11359 {
11360 	struct adapter *sc = arg1;
11361 	int rc, reg = arg2;
11362 	u_int tre;
11363 	u_long tp_tick_us, v;
11364 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11365 
11366 	MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
11367 	    reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
11368 	    reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
11369 	    reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
11370 
11371 	mtx_lock(&sc->reg_lock);
11372 	if (hw_off_limits(sc))
11373 		rc = ENXIO;
11374 	else {
11375 		rc = 0;
11376 		tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
11377 		tp_tick_us = (cclk_ps << tre) / 1000000;
11378 		if (reg == A_TP_INIT_SRTT)
11379 			v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
11380 		else
11381 			v = tp_tick_us * t4_read_reg(sc, reg);
11382 	}
11383 	mtx_unlock(&sc->reg_lock);
11384 	if (rc != 0)
11385 		return (rc);
11386 	else
11387 		return (sysctl_handle_long(oidp, &v, 0, req));
11388 }
11389 
11390 /*
11391  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
11392  * passed to this function.
11393  */
11394 static int
11395 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
11396 {
11397 	struct adapter *sc = arg1;
11398 	int rc, idx = arg2;
11399 	u_int v;
11400 
11401 	MPASS(idx >= 0 && idx <= 24);
11402 
11403 	mtx_lock(&sc->reg_lock);
11404 	if (hw_off_limits(sc))
11405 		rc = ENXIO;
11406 	else {
11407 		rc = 0;
11408 		v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
11409 	}
11410 	mtx_unlock(&sc->reg_lock);
11411 	if (rc != 0)
11412 		return (rc);
11413 	else
11414 		return (sysctl_handle_int(oidp, &v, 0, req));
11415 }
11416 
11417 static int
11418 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
11419 {
11420 	struct adapter *sc = arg1;
11421 	int rc, idx = arg2;
11422 	u_int shift, v, r;
11423 
11424 	MPASS(idx >= 0 && idx < 16);
11425 
11426 	r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
11427 	shift = (idx & 3) << 3;
11428 	mtx_lock(&sc->reg_lock);
11429 	if (hw_off_limits(sc))
11430 		rc = ENXIO;
11431 	else {
11432 		rc = 0;
11433 		v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
11434 	}
11435 	mtx_unlock(&sc->reg_lock);
11436 	if (rc != 0)
11437 		return (rc);
11438 	else
11439 		return (sysctl_handle_int(oidp, &v, 0, req));
11440 }
11441 
11442 static int
11443 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
11444 {
11445 	struct vi_info *vi = arg1;
11446 	struct adapter *sc = vi->adapter;
11447 	int idx, rc, i;
11448 	struct sge_ofld_rxq *ofld_rxq;
11449 	uint8_t v;
11450 
11451 	idx = vi->ofld_tmr_idx;
11452 
11453 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11454 	if (rc != 0 || req->newptr == NULL)
11455 		return (rc);
11456 
11457 	if (idx < 0 || idx >= SGE_NTIMERS)
11458 		return (EINVAL);
11459 
11460 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11461 	    "t4otmr");
11462 	if (rc)
11463 		return (rc);
11464 
11465 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
11466 	for_each_ofld_rxq(vi, i, ofld_rxq) {
11467 #ifdef atomic_store_rel_8
11468 		atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
11469 #else
11470 		ofld_rxq->iq.intr_params = v;
11471 #endif
11472 	}
11473 	vi->ofld_tmr_idx = idx;
11474 
11475 	end_synchronized_op(sc, LOCK_HELD);
11476 	return (0);
11477 }
11478 
11479 static int
11480 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
11481 {
11482 	struct vi_info *vi = arg1;
11483 	struct adapter *sc = vi->adapter;
11484 	int idx, rc;
11485 
11486 	idx = vi->ofld_pktc_idx;
11487 
11488 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11489 	if (rc != 0 || req->newptr == NULL)
11490 		return (rc);
11491 
11492 	if (idx < -1 || idx >= SGE_NCOUNTERS)
11493 		return (EINVAL);
11494 
11495 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11496 	    "t4opktc");
11497 	if (rc)
11498 		return (rc);
11499 
11500 	if (vi->flags & VI_INIT_DONE)
11501 		rc = EBUSY; /* cannot be changed once the queues are created */
11502 	else
11503 		vi->ofld_pktc_idx = idx;
11504 
11505 	end_synchronized_op(sc, LOCK_HELD);
11506 	return (rc);
11507 }
11508 #endif
11509 
11510 static int
11511 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
11512 {
11513 	int rc;
11514 
11515 	if (cntxt->cid > M_CTXTQID)
11516 		return (EINVAL);
11517 
11518 	if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
11519 	    cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
11520 		return (EINVAL);
11521 
11522 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
11523 	if (rc)
11524 		return (rc);
11525 
11526 	if (hw_off_limits(sc)) {
11527 		rc = ENXIO;
11528 		goto done;
11529 	}
11530 
11531 	if (sc->flags & FW_OK) {
11532 		rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
11533 		    &cntxt->data[0]);
11534 		if (rc == 0)
11535 			goto done;
11536 	}
11537 
11538 	/*
11539 	 * Read via firmware failed or wasn't even attempted.  Read directly via
11540 	 * the backdoor.
11541 	 */
11542 	rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
11543 done:
11544 	end_synchronized_op(sc, 0);
11545 	return (rc);
11546 }
11547 
11548 static int
11549 load_fw(struct adapter *sc, struct t4_data *fw)
11550 {
11551 	int rc;
11552 	uint8_t *fw_data;
11553 
11554 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
11555 	if (rc)
11556 		return (rc);
11557 
11558 	if (hw_off_limits(sc)) {
11559 		rc = ENXIO;
11560 		goto done;
11561 	}
11562 
11563 	/*
11564 	 * The firmware, with the sole exception of the memory parity error
11565 	 * handler, runs from memory and not flash.  It is almost always safe to
11566 	 * install a new firmware on a running system.  Just set bit 1 in
11567 	 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
11568 	 */
11569 	if (sc->flags & FULL_INIT_DONE &&
11570 	    (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
11571 		rc = EBUSY;
11572 		goto done;
11573 	}
11574 
11575 	fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
11576 
11577 	rc = copyin(fw->data, fw_data, fw->len);
11578 	if (rc == 0)
11579 		rc = -t4_load_fw(sc, fw_data, fw->len);
11580 
11581 	free(fw_data, M_CXGBE);
11582 done:
11583 	end_synchronized_op(sc, 0);
11584 	return (rc);
11585 }
11586 
11587 static int
11588 load_cfg(struct adapter *sc, struct t4_data *cfg)
11589 {
11590 	int rc;
11591 	uint8_t *cfg_data = NULL;
11592 
11593 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11594 	if (rc)
11595 		return (rc);
11596 
11597 	if (hw_off_limits(sc)) {
11598 		rc = ENXIO;
11599 		goto done;
11600 	}
11601 
11602 	if (cfg->len == 0) {
11603 		/* clear */
11604 		rc = -t4_load_cfg(sc, NULL, 0);
11605 		goto done;
11606 	}
11607 
11608 	cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
11609 
11610 	rc = copyin(cfg->data, cfg_data, cfg->len);
11611 	if (rc == 0)
11612 		rc = -t4_load_cfg(sc, cfg_data, cfg->len);
11613 
11614 	free(cfg_data, M_CXGBE);
11615 done:
11616 	end_synchronized_op(sc, 0);
11617 	return (rc);
11618 }
11619 
11620 static int
11621 load_boot(struct adapter *sc, struct t4_bootrom *br)
11622 {
11623 	int rc;
11624 	uint8_t *br_data = NULL;
11625 	u_int offset;
11626 
11627 	if (br->len > 1024 * 1024)
11628 		return (EFBIG);
11629 
11630 	if (br->pf_offset == 0) {
11631 		/* pfidx */
11632 		if (br->pfidx_addr > 7)
11633 			return (EINVAL);
11634 		offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
11635 		    A_PCIE_PF_EXPROM_OFST)));
11636 	} else if (br->pf_offset == 1) {
11637 		/* offset */
11638 		offset = G_OFFSET(br->pfidx_addr);
11639 	} else {
11640 		return (EINVAL);
11641 	}
11642 
11643 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
11644 	if (rc)
11645 		return (rc);
11646 
11647 	if (hw_off_limits(sc)) {
11648 		rc = ENXIO;
11649 		goto done;
11650 	}
11651 
11652 	if (br->len == 0) {
11653 		/* clear */
11654 		rc = -t4_load_boot(sc, NULL, offset, 0);
11655 		goto done;
11656 	}
11657 
11658 	br_data = malloc(br->len, M_CXGBE, M_WAITOK);
11659 
11660 	rc = copyin(br->data, br_data, br->len);
11661 	if (rc == 0)
11662 		rc = -t4_load_boot(sc, br_data, offset, br->len);
11663 
11664 	free(br_data, M_CXGBE);
11665 done:
11666 	end_synchronized_op(sc, 0);
11667 	return (rc);
11668 }
11669 
11670 static int
11671 load_bootcfg(struct adapter *sc, struct t4_data *bc)
11672 {
11673 	int rc;
11674 	uint8_t *bc_data = NULL;
11675 
11676 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11677 	if (rc)
11678 		return (rc);
11679 
11680 	if (hw_off_limits(sc)) {
11681 		rc = ENXIO;
11682 		goto done;
11683 	}
11684 
11685 	if (bc->len == 0) {
11686 		/* clear */
11687 		rc = -t4_load_bootcfg(sc, NULL, 0);
11688 		goto done;
11689 	}
11690 
11691 	bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
11692 
11693 	rc = copyin(bc->data, bc_data, bc->len);
11694 	if (rc == 0)
11695 		rc = -t4_load_bootcfg(sc, bc_data, bc->len);
11696 
11697 	free(bc_data, M_CXGBE);
11698 done:
11699 	end_synchronized_op(sc, 0);
11700 	return (rc);
11701 }
11702 
11703 static int
11704 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
11705 {
11706 	int rc;
11707 	struct cudbg_init *cudbg;
11708 	void *handle, *buf;
11709 
11710 	/* buf is large, don't block if no memory is available */
11711 	buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
11712 	if (buf == NULL)
11713 		return (ENOMEM);
11714 
11715 	handle = cudbg_alloc_handle();
11716 	if (handle == NULL) {
11717 		rc = ENOMEM;
11718 		goto done;
11719 	}
11720 
11721 	cudbg = cudbg_get_init(handle);
11722 	cudbg->adap = sc;
11723 	cudbg->print = (cudbg_print_cb)printf;
11724 
11725 #ifndef notyet
11726 	device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
11727 	    __func__, dump->wr_flash, dump->len, dump->data);
11728 #endif
11729 
11730 	if (dump->wr_flash)
11731 		cudbg->use_flash = 1;
11732 	MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
11733 	memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
11734 
11735 	rc = cudbg_collect(handle, buf, &dump->len);
11736 	if (rc != 0)
11737 		goto done;
11738 
11739 	rc = copyout(buf, dump->data, dump->len);
11740 done:
11741 	cudbg_free_handle(handle);
11742 	free(buf, M_CXGBE);
11743 	return (rc);
11744 }
11745 
11746 static void
11747 free_offload_policy(struct t4_offload_policy *op)
11748 {
11749 	struct offload_rule *r;
11750 	int i;
11751 
11752 	if (op == NULL)
11753 		return;
11754 
11755 	r = &op->rule[0];
11756 	for (i = 0; i < op->nrules; i++, r++) {
11757 		free(r->bpf_prog.bf_insns, M_CXGBE);
11758 	}
11759 	free(op->rule, M_CXGBE);
11760 	free(op, M_CXGBE);
11761 }
11762 
11763 static int
11764 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
11765 {
11766 	int i, rc, len;
11767 	struct t4_offload_policy *op, *old;
11768 	struct bpf_program *bf;
11769 	const struct offload_settings *s;
11770 	struct offload_rule *r;
11771 	void *u;
11772 
11773 	if (!is_offload(sc))
11774 		return (ENODEV);
11775 
11776 	if (uop->nrules == 0) {
11777 		/* Delete installed policies. */
11778 		op = NULL;
11779 		goto set_policy;
11780 	} else if (uop->nrules > 256) { /* arbitrary */
11781 		return (E2BIG);
11782 	}
11783 
11784 	/* Copy userspace offload policy to kernel */
11785 	op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
11786 	op->nrules = uop->nrules;
11787 	len = op->nrules * sizeof(struct offload_rule);
11788 	op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11789 	rc = copyin(uop->rule, op->rule, len);
11790 	if (rc) {
11791 		free(op->rule, M_CXGBE);
11792 		free(op, M_CXGBE);
11793 		return (rc);
11794 	}
11795 
11796 	r = &op->rule[0];
11797 	for (i = 0; i < op->nrules; i++, r++) {
11798 
11799 		/* Validate open_type */
11800 		if (r->open_type != OPEN_TYPE_LISTEN &&
11801 		    r->open_type != OPEN_TYPE_ACTIVE &&
11802 		    r->open_type != OPEN_TYPE_PASSIVE &&
11803 		    r->open_type != OPEN_TYPE_DONTCARE) {
11804 error:
11805 			/*
11806 			 * Rules 0 to i have malloc'd filters that need to be
11807 			 * freed.  Rules i+1 to nrules have userspace pointers
11808 			 * and should be left alone.
11809 			 */
11810 			op->nrules = i;
11811 			free_offload_policy(op);
11812 			return (rc);
11813 		}
11814 
11815 		/* Validate settings */
11816 		s = &r->settings;
11817 		if ((s->offload != 0 && s->offload != 1) ||
11818 		    s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
11819 		    s->sched_class < -1 ||
11820 		    s->sched_class >= sc->params.nsched_cls) {
11821 			rc = EINVAL;
11822 			goto error;
11823 		}
11824 
11825 		bf = &r->bpf_prog;
11826 		u = bf->bf_insns;	/* userspace ptr */
11827 		bf->bf_insns = NULL;
11828 		if (bf->bf_len == 0) {
11829 			/* legal, matches everything */
11830 			continue;
11831 		}
11832 		len = bf->bf_len * sizeof(*bf->bf_insns);
11833 		bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11834 		rc = copyin(u, bf->bf_insns, len);
11835 		if (rc != 0)
11836 			goto error;
11837 
11838 		if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
11839 			rc = EINVAL;
11840 			goto error;
11841 		}
11842 	}
11843 set_policy:
11844 	rw_wlock(&sc->policy_lock);
11845 	old = sc->policy;
11846 	sc->policy = op;
11847 	rw_wunlock(&sc->policy_lock);
11848 	free_offload_policy(old);
11849 
11850 	return (0);
11851 }
11852 
11853 #define MAX_READ_BUF_SIZE (128 * 1024)
11854 static int
11855 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
11856 {
11857 	uint32_t addr, remaining, n;
11858 	uint32_t *buf;
11859 	int rc;
11860 	uint8_t *dst;
11861 
11862 	mtx_lock(&sc->reg_lock);
11863 	if (hw_off_limits(sc))
11864 		rc = ENXIO;
11865 	else
11866 		rc = validate_mem_range(sc, mr->addr, mr->len);
11867 	mtx_unlock(&sc->reg_lock);
11868 	if (rc != 0)
11869 		return (rc);
11870 
11871 	buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
11872 	addr = mr->addr;
11873 	remaining = mr->len;
11874 	dst = (void *)mr->data;
11875 
11876 	while (remaining) {
11877 		n = min(remaining, MAX_READ_BUF_SIZE);
11878 		mtx_lock(&sc->reg_lock);
11879 		if (hw_off_limits(sc))
11880 			rc = ENXIO;
11881 		else
11882 			read_via_memwin(sc, 2, addr, buf, n);
11883 		mtx_unlock(&sc->reg_lock);
11884 		if (rc != 0)
11885 			break;
11886 
11887 		rc = copyout(buf, dst, n);
11888 		if (rc != 0)
11889 			break;
11890 
11891 		dst += n;
11892 		remaining -= n;
11893 		addr += n;
11894 	}
11895 
11896 	free(buf, M_CXGBE);
11897 	return (rc);
11898 }
11899 #undef MAX_READ_BUF_SIZE
11900 
11901 static int
11902 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
11903 {
11904 	int rc;
11905 
11906 	if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
11907 		return (EINVAL);
11908 
11909 	if (i2cd->len > sizeof(i2cd->data))
11910 		return (EFBIG);
11911 
11912 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
11913 	if (rc)
11914 		return (rc);
11915 	if (hw_off_limits(sc))
11916 		rc = ENXIO;
11917 	else
11918 		rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
11919 		    i2cd->offset, i2cd->len, &i2cd->data[0]);
11920 	end_synchronized_op(sc, 0);
11921 
11922 	return (rc);
11923 }
11924 
11925 static int
11926 clear_stats(struct adapter *sc, u_int port_id)
11927 {
11928 	int i, v, chan_map;
11929 	struct port_info *pi;
11930 	struct vi_info *vi;
11931 	struct sge_rxq *rxq;
11932 	struct sge_txq *txq;
11933 	struct sge_wrq *wrq;
11934 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
11935 	struct sge_ofld_txq *ofld_txq;
11936 #endif
11937 #ifdef TCP_OFFLOAD
11938 	struct sge_ofld_rxq *ofld_rxq;
11939 #endif
11940 
11941 	if (port_id >= sc->params.nports)
11942 		return (EINVAL);
11943 	pi = sc->port[port_id];
11944 	if (pi == NULL)
11945 		return (EIO);
11946 
11947 	mtx_lock(&sc->reg_lock);
11948 	if (!hw_off_limits(sc)) {
11949 		/* MAC stats */
11950 		t4_clr_port_stats(sc, pi->tx_chan);
11951 		if (is_t6(sc)) {
11952 			if (pi->fcs_reg != -1)
11953 				pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
11954 			else
11955 				pi->stats.rx_fcs_err = 0;
11956 		}
11957 		for_each_vi(pi, v, vi) {
11958 			if (vi->flags & VI_INIT_DONE)
11959 				t4_clr_vi_stats(sc, vi->vin);
11960 		}
11961 		chan_map = pi->rx_e_chan_map;
11962 		v = 0;	/* reuse */
11963 		while (chan_map) {
11964 			i = ffs(chan_map) - 1;
11965 			t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
11966 			    1, A_TP_MIB_TNL_CNG_DROP_0 + i);
11967 			chan_map &= ~(1 << i);
11968 		}
11969 	}
11970 	mtx_unlock(&sc->reg_lock);
11971 	pi->tx_parse_error = 0;
11972 	pi->tnl_cong_drops = 0;
11973 
11974 	/*
11975 	 * Since this command accepts a port, clear stats for
11976 	 * all VIs on this port.
11977 	 */
11978 	for_each_vi(pi, v, vi) {
11979 		if (vi->flags & VI_INIT_DONE) {
11980 
11981 			for_each_rxq(vi, i, rxq) {
11982 #if defined(INET) || defined(INET6)
11983 				rxq->lro.lro_queued = 0;
11984 				rxq->lro.lro_flushed = 0;
11985 #endif
11986 				rxq->rxcsum = 0;
11987 				rxq->vlan_extraction = 0;
11988 				rxq->vxlan_rxcsum = 0;
11989 
11990 				rxq->fl.cl_allocated = 0;
11991 				rxq->fl.cl_recycled = 0;
11992 				rxq->fl.cl_fast_recycled = 0;
11993 			}
11994 
11995 			for_each_txq(vi, i, txq) {
11996 				txq->txcsum = 0;
11997 				txq->tso_wrs = 0;
11998 				txq->vlan_insertion = 0;
11999 				txq->imm_wrs = 0;
12000 				txq->sgl_wrs = 0;
12001 				txq->txpkt_wrs = 0;
12002 				txq->txpkts0_wrs = 0;
12003 				txq->txpkts1_wrs = 0;
12004 				txq->txpkts0_pkts = 0;
12005 				txq->txpkts1_pkts = 0;
12006 				txq->txpkts_flush = 0;
12007 				txq->raw_wrs = 0;
12008 				txq->vxlan_tso_wrs = 0;
12009 				txq->vxlan_txcsum = 0;
12010 				txq->kern_tls_records = 0;
12011 				txq->kern_tls_short = 0;
12012 				txq->kern_tls_partial = 0;
12013 				txq->kern_tls_full = 0;
12014 				txq->kern_tls_octets = 0;
12015 				txq->kern_tls_waste = 0;
12016 				txq->kern_tls_options = 0;
12017 				txq->kern_tls_header = 0;
12018 				txq->kern_tls_fin = 0;
12019 				txq->kern_tls_fin_short = 0;
12020 				txq->kern_tls_cbc = 0;
12021 				txq->kern_tls_gcm = 0;
12022 				mp_ring_reset_stats(txq->r);
12023 			}
12024 
12025 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12026 			for_each_ofld_txq(vi, i, ofld_txq) {
12027 				ofld_txq->wrq.tx_wrs_direct = 0;
12028 				ofld_txq->wrq.tx_wrs_copied = 0;
12029 				counter_u64_zero(ofld_txq->tx_iscsi_pdus);
12030 				counter_u64_zero(ofld_txq->tx_iscsi_octets);
12031 				counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
12032 				counter_u64_zero(ofld_txq->tx_aio_jobs);
12033 				counter_u64_zero(ofld_txq->tx_aio_octets);
12034 				counter_u64_zero(ofld_txq->tx_toe_tls_records);
12035 				counter_u64_zero(ofld_txq->tx_toe_tls_octets);
12036 			}
12037 #endif
12038 #ifdef TCP_OFFLOAD
12039 			for_each_ofld_rxq(vi, i, ofld_rxq) {
12040 				ofld_rxq->fl.cl_allocated = 0;
12041 				ofld_rxq->fl.cl_recycled = 0;
12042 				ofld_rxq->fl.cl_fast_recycled = 0;
12043 				counter_u64_zero(
12044 				    ofld_rxq->rx_iscsi_ddp_setup_ok);
12045 				counter_u64_zero(
12046 				    ofld_rxq->rx_iscsi_ddp_setup_error);
12047 				ofld_rxq->rx_iscsi_ddp_pdus = 0;
12048 				ofld_rxq->rx_iscsi_ddp_octets = 0;
12049 				ofld_rxq->rx_iscsi_fl_pdus = 0;
12050 				ofld_rxq->rx_iscsi_fl_octets = 0;
12051 				ofld_rxq->rx_aio_ddp_jobs = 0;
12052 				ofld_rxq->rx_aio_ddp_octets = 0;
12053 				ofld_rxq->rx_toe_tls_records = 0;
12054 				ofld_rxq->rx_toe_tls_octets = 0;
12055 				ofld_rxq->rx_toe_ddp_octets = 0;
12056 				counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
12057 				counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
12058 				counter_u64_zero(ofld_rxq->ddp_buffer_free);
12059 			}
12060 #endif
12061 
12062 			if (IS_MAIN_VI(vi)) {
12063 				wrq = &sc->sge.ctrlq[pi->port_id];
12064 				wrq->tx_wrs_direct = 0;
12065 				wrq->tx_wrs_copied = 0;
12066 			}
12067 		}
12068 	}
12069 
12070 	return (0);
12071 }
12072 
12073 static int
12074 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12075 {
12076 #ifdef INET6
12077 	struct in6_addr in6;
12078 
12079 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12080 	if (t4_get_clip_entry(sc, &in6, true) != NULL)
12081 		return (0);
12082 	else
12083 		return (EIO);
12084 #else
12085 	return (ENOTSUP);
12086 #endif
12087 }
12088 
12089 static int
12090 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12091 {
12092 #ifdef INET6
12093 	struct in6_addr in6;
12094 
12095 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12096 	return (t4_release_clip_addr(sc, &in6));
12097 #else
12098 	return (ENOTSUP);
12099 #endif
12100 }
12101 
12102 int
12103 t4_os_find_pci_capability(struct adapter *sc, int cap)
12104 {
12105 	int i;
12106 
12107 	return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
12108 }
12109 
12110 int
12111 t4_os_pci_save_state(struct adapter *sc)
12112 {
12113 	device_t dev;
12114 	struct pci_devinfo *dinfo;
12115 
12116 	dev = sc->dev;
12117 	dinfo = device_get_ivars(dev);
12118 
12119 	pci_cfg_save(dev, dinfo, 0);
12120 	return (0);
12121 }
12122 
12123 int
12124 t4_os_pci_restore_state(struct adapter *sc)
12125 {
12126 	device_t dev;
12127 	struct pci_devinfo *dinfo;
12128 
12129 	dev = sc->dev;
12130 	dinfo = device_get_ivars(dev);
12131 
12132 	pci_cfg_restore(dev, dinfo);
12133 	return (0);
12134 }
12135 
12136 void
12137 t4_os_portmod_changed(struct port_info *pi)
12138 {
12139 	struct adapter *sc = pi->adapter;
12140 	struct vi_info *vi;
12141 	if_t ifp;
12142 	static const char *mod_str[] = {
12143 		NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
12144 	};
12145 
12146 	KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
12147 	    ("%s: port_type %u", __func__, pi->port_type));
12148 
12149 	vi = &pi->vi[0];
12150 	if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
12151 		PORT_LOCK(pi);
12152 		build_medialist(pi);
12153 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
12154 			fixup_link_config(pi);
12155 			apply_link_config(pi);
12156 		}
12157 		PORT_UNLOCK(pi);
12158 		end_synchronized_op(sc, LOCK_HELD);
12159 	}
12160 
12161 	ifp = vi->ifp;
12162 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
12163 		if_printf(ifp, "transceiver unplugged.\n");
12164 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
12165 		if_printf(ifp, "unknown transceiver inserted.\n");
12166 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
12167 		if_printf(ifp, "unsupported transceiver inserted.\n");
12168 	else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
12169 		if_printf(ifp, "%dGbps %s transceiver inserted.\n",
12170 		    port_top_speed(pi), mod_str[pi->mod_type]);
12171 	} else {
12172 		if_printf(ifp, "transceiver (type %d) inserted.\n",
12173 		    pi->mod_type);
12174 	}
12175 }
12176 
12177 void
12178 t4_os_link_changed(struct port_info *pi)
12179 {
12180 	struct vi_info *vi;
12181 	if_t ifp;
12182 	struct link_config *lc = &pi->link_cfg;
12183 	struct adapter *sc = pi->adapter;
12184 	int v;
12185 
12186 	PORT_LOCK_ASSERT_OWNED(pi);
12187 
12188 	if (is_t6(sc)) {
12189 		if (lc->link_ok) {
12190 			if (lc->speed > 25000 ||
12191 			    (lc->speed == 25000 && lc->fec == FEC_RS)) {
12192 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12193 				    A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS);
12194 			} else {
12195 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12196 				    A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS);
12197 			}
12198 			pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
12199 			pi->stats.rx_fcs_err = 0;
12200 		} else {
12201 			pi->fcs_reg = -1;
12202 		}
12203 	} else {
12204 		MPASS(pi->fcs_reg != -1);
12205 		MPASS(pi->fcs_base == 0);
12206 	}
12207 
12208 	for_each_vi(pi, v, vi) {
12209 		ifp = vi->ifp;
12210 		if (ifp == NULL)
12211 			continue;
12212 
12213 		if (lc->link_ok) {
12214 			if_setbaudrate(ifp, IF_Mbps(lc->speed));
12215 			if_link_state_change(ifp, LINK_STATE_UP);
12216 		} else {
12217 			if_link_state_change(ifp, LINK_STATE_DOWN);
12218 		}
12219 	}
12220 }
12221 
12222 void
12223 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
12224 {
12225 	struct adapter *sc;
12226 
12227 	sx_slock(&t4_list_lock);
12228 	SLIST_FOREACH(sc, &t4_list, link) {
12229 		/*
12230 		 * func should not make any assumptions about what state sc is
12231 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
12232 		 */
12233 		func(sc, arg);
12234 	}
12235 	sx_sunlock(&t4_list_lock);
12236 }
12237 
12238 static int
12239 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
12240     struct thread *td)
12241 {
12242 	int rc;
12243 	struct adapter *sc = dev->si_drv1;
12244 
12245 	rc = priv_check(td, PRIV_DRIVER);
12246 	if (rc != 0)
12247 		return (rc);
12248 
12249 	switch (cmd) {
12250 	case CHELSIO_T4_GETREG: {
12251 		struct t4_reg *edata = (struct t4_reg *)data;
12252 
12253 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12254 			return (EFAULT);
12255 
12256 		mtx_lock(&sc->reg_lock);
12257 		if (hw_off_limits(sc))
12258 			rc = ENXIO;
12259 		else if (edata->size == 4)
12260 			edata->val = t4_read_reg(sc, edata->addr);
12261 		else if (edata->size == 8)
12262 			edata->val = t4_read_reg64(sc, edata->addr);
12263 		else
12264 			rc = EINVAL;
12265 		mtx_unlock(&sc->reg_lock);
12266 
12267 		break;
12268 	}
12269 	case CHELSIO_T4_SETREG: {
12270 		struct t4_reg *edata = (struct t4_reg *)data;
12271 
12272 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12273 			return (EFAULT);
12274 
12275 		mtx_lock(&sc->reg_lock);
12276 		if (hw_off_limits(sc))
12277 			rc = ENXIO;
12278 		else if (edata->size == 4) {
12279 			if (edata->val & 0xffffffff00000000)
12280 				rc = EINVAL;
12281 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
12282 		} else if (edata->size == 8)
12283 			t4_write_reg64(sc, edata->addr, edata->val);
12284 		else
12285 			rc = EINVAL;
12286 		mtx_unlock(&sc->reg_lock);
12287 
12288 		break;
12289 	}
12290 	case CHELSIO_T4_REGDUMP: {
12291 		struct t4_regdump *regs = (struct t4_regdump *)data;
12292 		int reglen = t4_get_regs_len(sc);
12293 		uint8_t *buf;
12294 
12295 		if (regs->len < reglen) {
12296 			regs->len = reglen; /* hint to the caller */
12297 			return (ENOBUFS);
12298 		}
12299 
12300 		regs->len = reglen;
12301 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
12302 		mtx_lock(&sc->reg_lock);
12303 		if (hw_off_limits(sc))
12304 			rc = ENXIO;
12305 		else
12306 			get_regs(sc, regs, buf);
12307 		mtx_unlock(&sc->reg_lock);
12308 		if (rc == 0)
12309 			rc = copyout(buf, regs->data, reglen);
12310 		free(buf, M_CXGBE);
12311 		break;
12312 	}
12313 	case CHELSIO_T4_GET_FILTER_MODE:
12314 		rc = get_filter_mode(sc, (uint32_t *)data);
12315 		break;
12316 	case CHELSIO_T4_SET_FILTER_MODE:
12317 		rc = set_filter_mode(sc, *(uint32_t *)data);
12318 		break;
12319 	case CHELSIO_T4_SET_FILTER_MASK:
12320 		rc = set_filter_mask(sc, *(uint32_t *)data);
12321 		break;
12322 	case CHELSIO_T4_GET_FILTER:
12323 		rc = get_filter(sc, (struct t4_filter *)data);
12324 		break;
12325 	case CHELSIO_T4_SET_FILTER:
12326 		rc = set_filter(sc, (struct t4_filter *)data);
12327 		break;
12328 	case CHELSIO_T4_DEL_FILTER:
12329 		rc = del_filter(sc, (struct t4_filter *)data);
12330 		break;
12331 	case CHELSIO_T4_GET_SGE_CONTEXT:
12332 		rc = get_sge_context(sc, (struct t4_sge_context *)data);
12333 		break;
12334 	case CHELSIO_T4_LOAD_FW:
12335 		rc = load_fw(sc, (struct t4_data *)data);
12336 		break;
12337 	case CHELSIO_T4_GET_MEM:
12338 		rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
12339 		break;
12340 	case CHELSIO_T4_GET_I2C:
12341 		rc = read_i2c(sc, (struct t4_i2c_data *)data);
12342 		break;
12343 	case CHELSIO_T4_CLEAR_STATS:
12344 		rc = clear_stats(sc, *(uint32_t *)data);
12345 		break;
12346 	case CHELSIO_T4_SCHED_CLASS:
12347 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
12348 		break;
12349 	case CHELSIO_T4_SCHED_QUEUE:
12350 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
12351 		break;
12352 	case CHELSIO_T4_GET_TRACER:
12353 		rc = t4_get_tracer(sc, (struct t4_tracer *)data);
12354 		break;
12355 	case CHELSIO_T4_SET_TRACER:
12356 		rc = t4_set_tracer(sc, (struct t4_tracer *)data);
12357 		break;
12358 	case CHELSIO_T4_LOAD_CFG:
12359 		rc = load_cfg(sc, (struct t4_data *)data);
12360 		break;
12361 	case CHELSIO_T4_LOAD_BOOT:
12362 		rc = load_boot(sc, (struct t4_bootrom *)data);
12363 		break;
12364 	case CHELSIO_T4_LOAD_BOOTCFG:
12365 		rc = load_bootcfg(sc, (struct t4_data *)data);
12366 		break;
12367 	case CHELSIO_T4_CUDBG_DUMP:
12368 		rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
12369 		break;
12370 	case CHELSIO_T4_SET_OFLD_POLICY:
12371 		rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
12372 		break;
12373 	case CHELSIO_T4_HOLD_CLIP_ADDR:
12374 		rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
12375 		break;
12376 	case CHELSIO_T4_RELEASE_CLIP_ADDR:
12377 		rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
12378 		break;
12379 	default:
12380 		rc = ENOTTY;
12381 	}
12382 
12383 	return (rc);
12384 }
12385 
12386 #ifdef TCP_OFFLOAD
12387 static int
12388 toe_capability(struct vi_info *vi, bool enable)
12389 {
12390 	int rc;
12391 	struct port_info *pi = vi->pi;
12392 	struct adapter *sc = pi->adapter;
12393 
12394 	ASSERT_SYNCHRONIZED_OP(sc);
12395 
12396 	if (!is_offload(sc))
12397 		return (ENODEV);
12398 	if (hw_off_limits(sc))
12399 		return (ENXIO);
12400 
12401 	if (enable) {
12402 #ifdef KERN_TLS
12403 		if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
12404 			int i, j, n;
12405 			struct port_info *p;
12406 			struct vi_info *v;
12407 
12408 			/*
12409 			 * Reconfigure hardware for TOE if TXTLS is not enabled
12410 			 * on any ifnet.
12411 			 */
12412 			n = 0;
12413 			for_each_port(sc, i) {
12414 				p = sc->port[i];
12415 				for_each_vi(p, j, v) {
12416 					if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
12417 						CH_WARN(sc,
12418 						    "%s has NIC TLS enabled.\n",
12419 						    device_get_nameunit(v->dev));
12420 						n++;
12421 					}
12422 				}
12423 			}
12424 			if (n > 0) {
12425 				CH_WARN(sc, "Disable NIC TLS on all interfaces "
12426 				    "associated with this adapter before "
12427 				    "trying to enable TOE.\n");
12428 				return (EAGAIN);
12429 			}
12430 			rc = t6_config_kern_tls(sc, false);
12431 			if (rc)
12432 				return (rc);
12433 		}
12434 #endif
12435 		if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
12436 			/* TOE is already enabled. */
12437 			return (0);
12438 		}
12439 
12440 		/*
12441 		 * We need the port's queues around so that we're able to send
12442 		 * and receive CPLs to/from the TOE even if the ifnet for this
12443 		 * port has never been UP'd administratively.
12444 		 */
12445 		if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
12446 			return (rc);
12447 		if (!(pi->vi[0].flags & VI_INIT_DONE) &&
12448 		    ((rc = vi_init(&pi->vi[0])) != 0))
12449 			return (rc);
12450 
12451 		if (isset(&sc->offload_map, pi->port_id)) {
12452 			/* TOE is enabled on another VI of this port. */
12453 			pi->uld_vis++;
12454 			return (0);
12455 		}
12456 
12457 		if (!uld_active(sc, ULD_TOM)) {
12458 			rc = t4_activate_uld(sc, ULD_TOM);
12459 			if (rc == EAGAIN) {
12460 				log(LOG_WARNING,
12461 				    "You must kldload t4_tom.ko before trying "
12462 				    "to enable TOE on a cxgbe interface.\n");
12463 			}
12464 			if (rc != 0)
12465 				return (rc);
12466 			KASSERT(sc->tom_softc != NULL,
12467 			    ("%s: TOM activated but softc NULL", __func__));
12468 			KASSERT(uld_active(sc, ULD_TOM),
12469 			    ("%s: TOM activated but flag not set", __func__));
12470 		}
12471 
12472 		/* Activate iWARP and iSCSI too, if the modules are loaded. */
12473 		if (!uld_active(sc, ULD_IWARP))
12474 			(void) t4_activate_uld(sc, ULD_IWARP);
12475 		if (!uld_active(sc, ULD_ISCSI))
12476 			(void) t4_activate_uld(sc, ULD_ISCSI);
12477 
12478 		pi->uld_vis++;
12479 		setbit(&sc->offload_map, pi->port_id);
12480 	} else {
12481 		pi->uld_vis--;
12482 
12483 		if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
12484 			return (0);
12485 
12486 		KASSERT(uld_active(sc, ULD_TOM),
12487 		    ("%s: TOM never initialized?", __func__));
12488 		clrbit(&sc->offload_map, pi->port_id);
12489 	}
12490 
12491 	return (0);
12492 }
12493 
12494 /*
12495  * Add an upper layer driver to the global list.
12496  */
12497 int
12498 t4_register_uld(struct uld_info *ui)
12499 {
12500 	int rc = 0;
12501 	struct uld_info *u;
12502 
12503 	sx_xlock(&t4_uld_list_lock);
12504 	SLIST_FOREACH(u, &t4_uld_list, link) {
12505 	    if (u->uld_id == ui->uld_id) {
12506 		    rc = EEXIST;
12507 		    goto done;
12508 	    }
12509 	}
12510 
12511 	SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
12512 	ui->refcount = 0;
12513 done:
12514 	sx_xunlock(&t4_uld_list_lock);
12515 	return (rc);
12516 }
12517 
12518 int
12519 t4_unregister_uld(struct uld_info *ui)
12520 {
12521 	int rc = EINVAL;
12522 	struct uld_info *u;
12523 
12524 	sx_xlock(&t4_uld_list_lock);
12525 
12526 	SLIST_FOREACH(u, &t4_uld_list, link) {
12527 	    if (u == ui) {
12528 		    if (ui->refcount > 0) {
12529 			    rc = EBUSY;
12530 			    goto done;
12531 		    }
12532 
12533 		    SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
12534 		    rc = 0;
12535 		    goto done;
12536 	    }
12537 	}
12538 done:
12539 	sx_xunlock(&t4_uld_list_lock);
12540 	return (rc);
12541 }
12542 
12543 int
12544 t4_activate_uld(struct adapter *sc, int id)
12545 {
12546 	int rc;
12547 	struct uld_info *ui;
12548 
12549 	ASSERT_SYNCHRONIZED_OP(sc);
12550 
12551 	if (id < 0 || id > ULD_MAX)
12552 		return (EINVAL);
12553 	rc = EAGAIN;	/* kldoad the module with this ULD and try again. */
12554 
12555 	sx_slock(&t4_uld_list_lock);
12556 
12557 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12558 		if (ui->uld_id == id) {
12559 			if (!(sc->flags & FULL_INIT_DONE)) {
12560 				rc = adapter_init(sc);
12561 				if (rc != 0)
12562 					break;
12563 			}
12564 
12565 			rc = ui->activate(sc);
12566 			if (rc == 0) {
12567 				setbit(&sc->active_ulds, id);
12568 				ui->refcount++;
12569 			}
12570 			break;
12571 		}
12572 	}
12573 
12574 	sx_sunlock(&t4_uld_list_lock);
12575 
12576 	return (rc);
12577 }
12578 
12579 int
12580 t4_deactivate_uld(struct adapter *sc, int id)
12581 {
12582 	int rc;
12583 	struct uld_info *ui;
12584 
12585 	ASSERT_SYNCHRONIZED_OP(sc);
12586 
12587 	if (id < 0 || id > ULD_MAX)
12588 		return (EINVAL);
12589 	rc = ENXIO;
12590 
12591 	sx_slock(&t4_uld_list_lock);
12592 
12593 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12594 		if (ui->uld_id == id) {
12595 			rc = ui->deactivate(sc);
12596 			if (rc == 0) {
12597 				clrbit(&sc->active_ulds, id);
12598 				ui->refcount--;
12599 			}
12600 			break;
12601 		}
12602 	}
12603 
12604 	sx_sunlock(&t4_uld_list_lock);
12605 
12606 	return (rc);
12607 }
12608 
12609 static int
12610 t4_deactivate_all_uld(struct adapter *sc)
12611 {
12612 	int rc;
12613 	struct uld_info *ui;
12614 
12615 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
12616 	if (rc != 0)
12617 		return (ENXIO);
12618 
12619 	sx_slock(&t4_uld_list_lock);
12620 
12621 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12622 		if (isset(&sc->active_ulds, ui->uld_id)) {
12623 			rc = ui->deactivate(sc);
12624 			if (rc != 0)
12625 				break;
12626 			clrbit(&sc->active_ulds, ui->uld_id);
12627 			ui->refcount--;
12628 		}
12629 	}
12630 
12631 	sx_sunlock(&t4_uld_list_lock);
12632 	end_synchronized_op(sc, 0);
12633 
12634 	return (rc);
12635 }
12636 
12637 static void
12638 t4_async_event(struct adapter *sc)
12639 {
12640 	struct uld_info *ui;
12641 
12642 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0)
12643 		return;
12644 	sx_slock(&t4_uld_list_lock);
12645 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12646 		if (ui->uld_id == ULD_IWARP) {
12647 			ui->async_event(sc);
12648 			break;
12649 		}
12650 	}
12651 	sx_sunlock(&t4_uld_list_lock);
12652 	end_synchronized_op(sc, 0);
12653 }
12654 
12655 int
12656 uld_active(struct adapter *sc, int uld_id)
12657 {
12658 
12659 	MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
12660 
12661 	return (isset(&sc->active_ulds, uld_id));
12662 }
12663 #endif
12664 
12665 #ifdef KERN_TLS
12666 static int
12667 ktls_capability(struct adapter *sc, bool enable)
12668 {
12669 	ASSERT_SYNCHRONIZED_OP(sc);
12670 
12671 	if (!is_ktls(sc))
12672 		return (ENODEV);
12673 	if (!is_t6(sc))
12674 		return (0);
12675 	if (hw_off_limits(sc))
12676 		return (ENXIO);
12677 
12678 	if (enable) {
12679 		if (sc->flags & KERN_TLS_ON)
12680 			return (0);	/* already on */
12681 		if (sc->offload_map != 0) {
12682 			CH_WARN(sc,
12683 			    "Disable TOE on all interfaces associated with "
12684 			    "this adapter before trying to enable NIC TLS.\n");
12685 			return (EAGAIN);
12686 		}
12687 		return (t6_config_kern_tls(sc, true));
12688 	} else {
12689 		/*
12690 		 * Nothing to do for disable.  If TOE is enabled sometime later
12691 		 * then toe_capability will reconfigure the hardware.
12692 		 */
12693 		return (0);
12694 	}
12695 }
12696 #endif
12697 
12698 /*
12699  * t  = ptr to tunable.
12700  * nc = number of CPUs.
12701  * c  = compiled in default for that tunable.
12702  */
12703 static void
12704 calculate_nqueues(int *t, int nc, const int c)
12705 {
12706 	int nq;
12707 
12708 	if (*t > 0)
12709 		return;
12710 	nq = *t < 0 ? -*t : c;
12711 	*t = min(nc, nq);
12712 }
12713 
12714 /*
12715  * Come up with reasonable defaults for some of the tunables, provided they're
12716  * not set by the user (in which case we'll use the values as is).
12717  */
12718 static void
12719 tweak_tunables(void)
12720 {
12721 	int nc = mp_ncpus;	/* our snapshot of the number of CPUs */
12722 
12723 	if (t4_ntxq < 1) {
12724 #ifdef RSS
12725 		t4_ntxq = rss_getnumbuckets();
12726 #else
12727 		calculate_nqueues(&t4_ntxq, nc, NTXQ);
12728 #endif
12729 	}
12730 
12731 	calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
12732 
12733 	if (t4_nrxq < 1) {
12734 #ifdef RSS
12735 		t4_nrxq = rss_getnumbuckets();
12736 #else
12737 		calculate_nqueues(&t4_nrxq, nc, NRXQ);
12738 #endif
12739 	}
12740 
12741 	calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
12742 
12743 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12744 	calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
12745 	calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
12746 #endif
12747 #ifdef TCP_OFFLOAD
12748 	calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
12749 	calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
12750 #endif
12751 
12752 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
12753 	if (t4_toecaps_allowed == -1)
12754 		t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
12755 #else
12756 	if (t4_toecaps_allowed == -1)
12757 		t4_toecaps_allowed = 0;
12758 #endif
12759 
12760 #ifdef TCP_OFFLOAD
12761 	if (t4_rdmacaps_allowed == -1) {
12762 		t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
12763 		    FW_CAPS_CONFIG_RDMA_RDMAC;
12764 	}
12765 
12766 	if (t4_iscsicaps_allowed == -1) {
12767 		t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
12768 		    FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
12769 		    FW_CAPS_CONFIG_ISCSI_T10DIF;
12770 	}
12771 
12772 	if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
12773 		t4_tmr_idx_ofld = TMR_IDX_OFLD;
12774 
12775 	if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
12776 		t4_pktc_idx_ofld = PKTC_IDX_OFLD;
12777 #else
12778 	if (t4_rdmacaps_allowed == -1)
12779 		t4_rdmacaps_allowed = 0;
12780 
12781 	if (t4_iscsicaps_allowed == -1)
12782 		t4_iscsicaps_allowed = 0;
12783 #endif
12784 
12785 #ifdef DEV_NETMAP
12786 	calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
12787 	calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
12788 	calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
12789 	calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
12790 #endif
12791 
12792 	if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
12793 		t4_tmr_idx = TMR_IDX;
12794 
12795 	if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
12796 		t4_pktc_idx = PKTC_IDX;
12797 
12798 	if (t4_qsize_txq < 128)
12799 		t4_qsize_txq = 128;
12800 
12801 	if (t4_qsize_rxq < 128)
12802 		t4_qsize_rxq = 128;
12803 	while (t4_qsize_rxq & 7)
12804 		t4_qsize_rxq++;
12805 
12806 	t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
12807 
12808 	/*
12809 	 * Number of VIs to create per-port.  The first VI is the "main" regular
12810 	 * VI for the port.  The rest are additional virtual interfaces on the
12811 	 * same physical port.  Note that the main VI does not have native
12812 	 * netmap support but the extra VIs do.
12813 	 *
12814 	 * Limit the number of VIs per port to the number of available
12815 	 * MAC addresses per port.
12816 	 */
12817 	if (t4_num_vis < 1)
12818 		t4_num_vis = 1;
12819 	if (t4_num_vis > nitems(vi_mac_funcs)) {
12820 		t4_num_vis = nitems(vi_mac_funcs);
12821 		printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
12822 	}
12823 
12824 	if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
12825 		pcie_relaxed_ordering = 1;
12826 #if defined(__i386__) || defined(__amd64__)
12827 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
12828 			pcie_relaxed_ordering = 0;
12829 #endif
12830 	}
12831 }
12832 
12833 #ifdef DDB
12834 static void
12835 t4_dump_tcb(struct adapter *sc, int tid)
12836 {
12837 	uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
12838 
12839 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
12840 	save = t4_read_reg(sc, reg);
12841 	base = sc->memwin[2].mw_base;
12842 
12843 	/* Dump TCB for the tid */
12844 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
12845 	tcb_addr += tid * TCB_SIZE;
12846 
12847 	if (is_t4(sc)) {
12848 		pf = 0;
12849 		win_pos = tcb_addr & ~0xf;	/* start must be 16B aligned */
12850 	} else {
12851 		pf = V_PFNUM(sc->pf);
12852 		win_pos = tcb_addr & ~0x7f;	/* start must be 128B aligned */
12853 	}
12854 	t4_write_reg(sc, reg, win_pos | pf);
12855 	t4_read_reg(sc, reg);
12856 
12857 	off = tcb_addr - win_pos;
12858 	for (i = 0; i < 4; i++) {
12859 		uint32_t buf[8];
12860 		for (j = 0; j < 8; j++, off += 4)
12861 			buf[j] = htonl(t4_read_reg(sc, base + off));
12862 
12863 		db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
12864 		    buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
12865 		    buf[7]);
12866 	}
12867 
12868 	t4_write_reg(sc, reg, save);
12869 	t4_read_reg(sc, reg);
12870 }
12871 
12872 static void
12873 t4_dump_devlog(struct adapter *sc)
12874 {
12875 	struct devlog_params *dparams = &sc->params.devlog;
12876 	struct fw_devlog_e e;
12877 	int i, first, j, m, nentries, rc;
12878 	uint64_t ftstamp = UINT64_MAX;
12879 
12880 	if (dparams->start == 0) {
12881 		db_printf("devlog params not valid\n");
12882 		return;
12883 	}
12884 
12885 	nentries = dparams->size / sizeof(struct fw_devlog_e);
12886 	m = fwmtype_to_hwmtype(dparams->memtype);
12887 
12888 	/* Find the first entry. */
12889 	first = -1;
12890 	for (i = 0; i < nentries && !db_pager_quit; i++) {
12891 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12892 		    sizeof(e), (void *)&e);
12893 		if (rc != 0)
12894 			break;
12895 
12896 		if (e.timestamp == 0)
12897 			break;
12898 
12899 		e.timestamp = be64toh(e.timestamp);
12900 		if (e.timestamp < ftstamp) {
12901 			ftstamp = e.timestamp;
12902 			first = i;
12903 		}
12904 	}
12905 
12906 	if (first == -1)
12907 		return;
12908 
12909 	i = first;
12910 	do {
12911 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12912 		    sizeof(e), (void *)&e);
12913 		if (rc != 0)
12914 			return;
12915 
12916 		if (e.timestamp == 0)
12917 			return;
12918 
12919 		e.timestamp = be64toh(e.timestamp);
12920 		e.seqno = be32toh(e.seqno);
12921 		for (j = 0; j < 8; j++)
12922 			e.params[j] = be32toh(e.params[j]);
12923 
12924 		db_printf("%10d  %15ju  %8s  %8s  ",
12925 		    e.seqno, e.timestamp,
12926 		    (e.level < nitems(devlog_level_strings) ?
12927 			devlog_level_strings[e.level] : "UNKNOWN"),
12928 		    (e.facility < nitems(devlog_facility_strings) ?
12929 			devlog_facility_strings[e.facility] : "UNKNOWN"));
12930 		db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
12931 		    e.params[3], e.params[4], e.params[5], e.params[6],
12932 		    e.params[7]);
12933 
12934 		if (++i == nentries)
12935 			i = 0;
12936 	} while (i != first && !db_pager_quit);
12937 }
12938 
12939 static DB_DEFINE_TABLE(show, t4, show_t4);
12940 
12941 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
12942 {
12943 	device_t dev;
12944 	int t;
12945 	bool valid;
12946 
12947 	valid = false;
12948 	t = db_read_token();
12949 	if (t == tIDENT) {
12950 		dev = device_lookup_by_name(db_tok_string);
12951 		valid = true;
12952 	}
12953 	db_skip_to_eol();
12954 	if (!valid) {
12955 		db_printf("usage: show t4 devlog <nexus>\n");
12956 		return;
12957 	}
12958 
12959 	if (dev == NULL) {
12960 		db_printf("device not found\n");
12961 		return;
12962 	}
12963 
12964 	t4_dump_devlog(device_get_softc(dev));
12965 }
12966 
12967 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
12968 {
12969 	device_t dev;
12970 	int radix, tid, t;
12971 	bool valid;
12972 
12973 	valid = false;
12974 	radix = db_radix;
12975 	db_radix = 10;
12976 	t = db_read_token();
12977 	if (t == tIDENT) {
12978 		dev = device_lookup_by_name(db_tok_string);
12979 		t = db_read_token();
12980 		if (t == tNUMBER) {
12981 			tid = db_tok_number;
12982 			valid = true;
12983 		}
12984 	}
12985 	db_radix = radix;
12986 	db_skip_to_eol();
12987 	if (!valid) {
12988 		db_printf("usage: show t4 tcb <nexus> <tid>\n");
12989 		return;
12990 	}
12991 
12992 	if (dev == NULL) {
12993 		db_printf("device not found\n");
12994 		return;
12995 	}
12996 	if (tid < 0) {
12997 		db_printf("invalid tid\n");
12998 		return;
12999 	}
13000 
13001 	t4_dump_tcb(device_get_softc(dev), tid);
13002 }
13003 #endif
13004 
13005 static eventhandler_tag vxlan_start_evtag;
13006 static eventhandler_tag vxlan_stop_evtag;
13007 
13008 struct vxlan_evargs {
13009 	if_t ifp;
13010 	uint16_t port;
13011 };
13012 
13013 static void
13014 enable_vxlan_rx(struct adapter *sc)
13015 {
13016 	int i, rc;
13017 	struct port_info *pi;
13018 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
13019 
13020 	ASSERT_SYNCHRONIZED_OP(sc);
13021 
13022 	t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
13023 	    F_VXLAN_EN);
13024 	for_each_port(sc, i) {
13025 		pi = sc->port[i];
13026 		if (pi->vxlan_tcam_entry == true)
13027 			continue;
13028 		rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
13029 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
13030 		    true);
13031 		if (rc < 0) {
13032 			rc = -rc;
13033 			CH_ERR(&pi->vi[0],
13034 			    "failed to add VXLAN TCAM entry: %d.\n", rc);
13035 		} else {
13036 			MPASS(rc == sc->rawf_base + pi->port_id);
13037 			pi->vxlan_tcam_entry = true;
13038 		}
13039 	}
13040 }
13041 
13042 static void
13043 t4_vxlan_start(struct adapter *sc, void *arg)
13044 {
13045 	struct vxlan_evargs *v = arg;
13046 
13047 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13048 		return;
13049 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
13050 		return;
13051 
13052 	if (sc->vxlan_refcount == 0) {
13053 		sc->vxlan_port = v->port;
13054 		sc->vxlan_refcount = 1;
13055 		if (!hw_off_limits(sc))
13056 			enable_vxlan_rx(sc);
13057 	} else if (sc->vxlan_port == v->port) {
13058 		sc->vxlan_refcount++;
13059 	} else {
13060 		CH_ERR(sc, "VXLAN already configured on port  %d; "
13061 		    "ignoring attempt to configure it on port %d\n",
13062 		    sc->vxlan_port, v->port);
13063 	}
13064 	end_synchronized_op(sc, 0);
13065 }
13066 
13067 static void
13068 t4_vxlan_stop(struct adapter *sc, void *arg)
13069 {
13070 	struct vxlan_evargs *v = arg;
13071 
13072 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13073 		return;
13074 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
13075 		return;
13076 
13077 	/*
13078 	 * VXLANs may have been configured before the driver was loaded so we
13079 	 * may see more stops than starts.  This is not handled cleanly but at
13080 	 * least we keep the refcount sane.
13081 	 */
13082 	if (sc->vxlan_port != v->port)
13083 		goto done;
13084 	if (sc->vxlan_refcount == 0) {
13085 		CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
13086 		    "ignoring attempt to stop it again.\n", sc->vxlan_port);
13087 	} else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
13088 		t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
13089 done:
13090 	end_synchronized_op(sc, 0);
13091 }
13092 
13093 static void
13094 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
13095     sa_family_t family, u_int port)
13096 {
13097 	struct vxlan_evargs v;
13098 
13099 	MPASS(family == AF_INET || family == AF_INET6);
13100 	v.ifp = ifp;
13101 	v.port = port;
13102 
13103 	t4_iterate(t4_vxlan_start, &v);
13104 }
13105 
13106 static void
13107 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
13108     u_int port)
13109 {
13110 	struct vxlan_evargs v;
13111 
13112 	MPASS(family == AF_INET || family == AF_INET6);
13113 	v.ifp = ifp;
13114 	v.port = port;
13115 
13116 	t4_iterate(t4_vxlan_stop, &v);
13117 }
13118 
13119 
13120 static struct sx mlu;	/* mod load unload */
13121 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
13122 
13123 static int
13124 mod_event(module_t mod, int cmd, void *arg)
13125 {
13126 	int rc = 0;
13127 	static int loaded = 0;
13128 
13129 	switch (cmd) {
13130 	case MOD_LOAD:
13131 		sx_xlock(&mlu);
13132 		if (loaded++ == 0) {
13133 			t4_sge_modload();
13134 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13135 			    t4_filter_rpl, CPL_COOKIE_FILTER);
13136 			t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
13137 			    do_l2t_write_rpl, CPL_COOKIE_FILTER);
13138 			t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
13139 			    t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
13140 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13141 			    t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
13142 			t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
13143 			    t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
13144 			t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
13145 			t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
13146 			t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
13147 			    do_smt_write_rpl);
13148 			sx_init(&t4_list_lock, "T4/T5 adapters");
13149 			SLIST_INIT(&t4_list);
13150 			callout_init(&fatal_callout, 1);
13151 #ifdef TCP_OFFLOAD
13152 			sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
13153 			SLIST_INIT(&t4_uld_list);
13154 #endif
13155 #ifdef INET6
13156 			t4_clip_modload();
13157 #endif
13158 #ifdef KERN_TLS
13159 			t6_ktls_modload();
13160 #endif
13161 			t4_tracer_modload();
13162 			tweak_tunables();
13163 			vxlan_start_evtag =
13164 			    EVENTHANDLER_REGISTER(vxlan_start,
13165 				t4_vxlan_start_handler, NULL,
13166 				EVENTHANDLER_PRI_ANY);
13167 			vxlan_stop_evtag =
13168 			    EVENTHANDLER_REGISTER(vxlan_stop,
13169 				t4_vxlan_stop_handler, NULL,
13170 				EVENTHANDLER_PRI_ANY);
13171 			reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
13172 			    taskqueue_thread_enqueue, &reset_tq);
13173 			taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
13174 			    "t4_rst_thr");
13175 		}
13176 		sx_xunlock(&mlu);
13177 		break;
13178 
13179 	case MOD_UNLOAD:
13180 		sx_xlock(&mlu);
13181 		if (--loaded == 0) {
13182 			int tries;
13183 
13184 			taskqueue_free(reset_tq);
13185 			sx_slock(&t4_list_lock);
13186 			if (!SLIST_EMPTY(&t4_list)) {
13187 				rc = EBUSY;
13188 				sx_sunlock(&t4_list_lock);
13189 				goto done_unload;
13190 			}
13191 #ifdef TCP_OFFLOAD
13192 			sx_slock(&t4_uld_list_lock);
13193 			if (!SLIST_EMPTY(&t4_uld_list)) {
13194 				rc = EBUSY;
13195 				sx_sunlock(&t4_uld_list_lock);
13196 				sx_sunlock(&t4_list_lock);
13197 				goto done_unload;
13198 			}
13199 #endif
13200 			tries = 0;
13201 			while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
13202 				uprintf("%ju clusters with custom free routine "
13203 				    "still is use.\n", t4_sge_extfree_refs());
13204 				pause("t4unload", 2 * hz);
13205 			}
13206 #ifdef TCP_OFFLOAD
13207 			sx_sunlock(&t4_uld_list_lock);
13208 #endif
13209 			sx_sunlock(&t4_list_lock);
13210 
13211 			if (t4_sge_extfree_refs() == 0) {
13212 				EVENTHANDLER_DEREGISTER(vxlan_start,
13213 				    vxlan_start_evtag);
13214 				EVENTHANDLER_DEREGISTER(vxlan_stop,
13215 				    vxlan_stop_evtag);
13216 				t4_tracer_modunload();
13217 #ifdef KERN_TLS
13218 				t6_ktls_modunload();
13219 #endif
13220 #ifdef INET6
13221 				t4_clip_modunload();
13222 #endif
13223 #ifdef TCP_OFFLOAD
13224 				sx_destroy(&t4_uld_list_lock);
13225 #endif
13226 				sx_destroy(&t4_list_lock);
13227 				t4_sge_modunload();
13228 				loaded = 0;
13229 			} else {
13230 				rc = EBUSY;
13231 				loaded++;	/* undo earlier decrement */
13232 			}
13233 		}
13234 done_unload:
13235 		sx_xunlock(&mlu);
13236 		break;
13237 	}
13238 
13239 	return (rc);
13240 }
13241 
13242 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
13243 MODULE_VERSION(t4nex, 1);
13244 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
13245 #ifdef DEV_NETMAP
13246 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
13247 #endif /* DEV_NETMAP */
13248 
13249 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
13250 MODULE_VERSION(t5nex, 1);
13251 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
13252 #ifdef DEV_NETMAP
13253 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
13254 #endif /* DEV_NETMAP */
13255 
13256 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
13257 MODULE_VERSION(t6nex, 1);
13258 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
13259 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
13260 #ifdef DEV_NETMAP
13261 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
13262 #endif /* DEV_NETMAP */
13263 
13264 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
13265 MODULE_VERSION(cxgbe, 1);
13266 
13267 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
13268 MODULE_VERSION(cxl, 1);
13269 
13270 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
13271 MODULE_VERSION(cc, 1);
13272 
13273 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
13274 MODULE_VERSION(vcxgbe, 1);
13275 
13276 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
13277 MODULE_VERSION(vcxl, 1);
13278 
13279 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
13280 MODULE_VERSION(vcc, 1);
13281